
HAL Id: tel-04078791
https://theses.hal.science/tel-04078791v1

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Étude de statistiques combinatoires et de leur impact en
optimisation évolutionnaire

Carine Khalil

To cite this version:
Carine Khalil. Étude de statistiques combinatoires et de leur impact en optimisation évolutionnaire.
Other [cs.OH]. Université Bourgogne Franche-Comté, 2021. English. �NNT : 2021UBFCK056�. �tel-
04078791�

https://theses.hal.science/tel-04078791v1
https://hal.archives-ouvertes.fr

DOCTORAL DISSERTATION OF THE UNIVERSITY OF BURGUNDY FRANCHE-COMTE PREPARED AT
UNIVERSITY OF BURGUNDY

Doctoral School no37

Sciences Physiques pour l’Ingénieur et Microtechniques (SPIM)

PhD in Computer Science

By

Mrs. Carine KHALIL

Study of combinatorial statistics and their impact in
evolutionary optimization

A dissertation presented and defended at Dijon, on 12/11/2021

Composition of the Jury :

Mr Kondo ADJALLAH Professor, University of Lorraine Reviewer
Mr Hamamache KHEDDOUCI Professor, University of Lyon 1 Reviewer
Mrs Christelle BLOCH Associate Professor, University of Franche-Comté Examiner
Mr Vlady RAVELOMANANA Professor, University of Paris Examiner
Mr Phan THUAN DO Associate Professor, Examiner

Hanoï University of Science and Technology
Mr Vincent VAJNOVSZKI Professor, University of Burgundy Co-supervisor
Mr Jean-Luc BARIL Professor, University of Burgundy Co-supervisor
Mr Wahabou ABDOU Associate Professor, University of Burgundy Co-supervisor

i

Acknowledgments

This thesis could not have been completed without the continuous support and encouragement of
all those who accompanied me during these three years of research.

I begin by expressing my great gratitude to my three thesis co-supervisors Vincent Vajnovzki,
Jean-Luc Baril, and Wahabou Abdou. It is thanks to your experience and your encouragement
and your time that I was able to carry out my research work in the right direction despite my
moments of doubt. You provided me with all the necessary and sufficient conditions, scientific
support, very enriching exchanges, and permanent availability which have enabled me to broaden
my vision and improve my research. It was a pleasure working with you. This thesis was funded
by the ministry and supervised by Ecole Doctorale SPIM for which I am also grateful.

also, I express my gratitude to Mr. Kondo Adjallah, Professor at the University of Lorraine,
and Mr. Hamamache Kheddouci, Professor at the University of Lyon 1, for accepting of being
reviewers for this thesis to evaluate this work and for devoting part of their time to it. I would
also like to thank Ms. Christelle Bloch, Mr. Vlady Ravelomanana, and Mr. Phan Thuan Do for
agreeing to be examiners for this thesis.

Also, I would like to thank all the members of the Laboratoire d’Informatique de Bourgogne for
always being available to exchange some discussions, and for the fraternal atmosphere that reigns
there. In addition, I thank my friends and colleagues in Dijon with whom I shared good times
through outings and evenings organized on all occasions.

My last thanks and not the least go to my family, especially my parents, Zahi and Carmen, and
my brothers Mohamad and Youssef, for their unconditional support and love, their curiosity for
my research, even if it is not always understandable, and for their boundless pride in me. Finally,
Ali, all of this thesis work relies heavily on your understanding, support, and encouragement from
the start and until the last moment!

Carine

ii

iii

Abstract

This thesis studies combinatorial objects, with both an algorithmic and a combinatorial point of
view. In the combinatorial part, we take care first, the enumeration of Catalan words avoiding
pairs of patterns of length three, presenting the proofs of each case with various enumeration
methods. Catalan words are particular growth-restricted words counted by the eponymous integer
sequence. More precisely, we systematically explore the structural properties of the sets of words
under consideration and give enumerating results by constructive bijections or bivariate generating
functions with respect to the length and descent number. Then, we study a sorting machine using
two stacks in series where the first one avoids a pair of patterns of length three. The process
consists of a right-greedy algorithm since we apply at each step the first possible transformation. In
this dissertation, we primarily focus on the machines which sort a set of permutations enumerated
by Catalan and Schröder numbers. For each class of such permutations, we give a characterization
in terms of avoiding patterns which allow us to provide the exact enumeration.

In the second part, being more experimental, we studied the optimization of permutation prob-
lems with genetic algorithms. Different kinds of encoding of the solutions have been considered
to study the transmission of genetic properties in permutation problems. In particular, we used
the Lehmer code, inversion table encoding, transposition array encoding, and inverse transposition
array encoding during the process. Solution encoding describes the way decision variables are
represented. Since indirect encodings are not sensitive to duplicates, they lead to a loss of genetic
properties during crossbreeding. This contribution proposes a study of the impact of this loss both
in the space of decision variables and in that of objective functions considering the four indirect
encodings. In addition, after analyzing that the use of the Lehmer code and inverse transposition
array preserve schemata after the recombination process, we proposed an adaptive crossover oper-
ator in order to be able to keep the prefix/suffix in order to see its influence on the transmission of
genetic properties.

iv

v

Resumé

Ces travaux de thèse portent sur l’étude des objets combinatoires, à la fois d’un point de vue
algorithmique et combinatoire. Nous nous occupons d’abord, dans la partie combinatoire, de
l’énumération des mots de Catalan en évitant les paires de motifs de longueur trois, en présen-
tant les preuves de chaque cas avec différentes méthodes d’énumération. Les mots de Catalan
sont des mots particuliers à croissance restreinte comptés par la séquence entière éponyme. Plus
précisément, nous explorons systématiquement les propriétés structurelles des ensembles de mots
considérés et donnons des résultats d’énumération par bijections constructives ou par des fonc-
tions génératrices bivariées par rapport à la longueur et au nombre de descentes. Ensuite, nous
étudions une machine de tri à deux piles en séries où la première pile évite une paire de motifs de
longueur 3. Ce tri résulte d’un algorithme glouton puisqu’on réalise à chaque étape la première
opération possible. Dans cette thèse, nous nous intéressons en particulier aux machines de tri pour
lesquelles les permutations triables sont comptées par les nombres de Catalan et les nombres de
Schröder. Pour chaque classe de ces permutations, nous donnons une caractérisation en termes de
motifs exclus ce qui nous permet de fournir des résultats exacts d’énumération.

Dans la seconde partie, plus expérimentale, nous étudions l’optimisation des problèmes de per-
mutations avec des algorithmes génétiques. Différents types de codage de solutions sont mis en
œuvre pour étudier la transmission de certaines propriétés génétiques dans les problèmes de per-
mutations. En particulier, nous étudions le code de Lehmer, les tables d’inversion, les tableaux de
transposition et les tableaux de transposition inverses. Le codage des solutions décrit la manière
dont les variables de décision sont représentées. Les codages indirects ne sont pas sensibles aux
doublons, cependant ils conduisent à une perte des propriétés génétiques lors des croisements.
Cette contribution propose une étude de l’impact de cette perte à la fois dans l’espace des variables
de décision et dans celui des valeurs des fonctions objectifs considérant les quatre codages indi-
rects. De plus, après avoir analysé l’utilisation des codages indirects code de Lehmer et tableaux de
transposition inverses, une préservation de schémas après le processus de croisement a retenu notre
attention. Une adaptation sur l’opérateur de croisement a été réalisée afin de pouvoir conserver le
préfixe / suffixe et d’appréhender son influence sur la transmission des propriétés génétiques.

vi

vii

Contents

Acknowledgement ii

Abstract iii

List of figures xii

List of Symbols xvi

Résumé étendu xvii

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Detailed outline and contributions . 2

I Enumerative combinatorics 5

2 Notations, definitions and useful results in Enumerative combinatorics 7

2.1 Combinatorial classes . 7

2.1.1 Sequences and words . 8

2.1.2 Permutations . 11

2.1.3 Lattice paths . 12

2.2 Statistics . 14

2.2.1 Patterns . 15

viii

2.3 Enumeration methods . 17

2.3.1 Bijection . 17

2.3.2 Recurrence relation . 18

2.3.3 Generating function . 19

2.3.4 Wilf equivalence . 21

2.4 Conclusion . 21

3 Catalan words avoiding patterns 23

3.1 Catalan words vs. ascent sequences . 24

3.2 Avoiding a length 2 and a length 3 pattern . 25

3.3 Trivial cases . 26

3.4 Counting via recurrence . 27

3.5 Counting via generating function . 35

3.6 Final remarks . 46

3.7 Conclusion . 46

4 Stack-sorting permutations with stacks under constraints 49

4.1 Sorting with t-stacks in series . 49

4.2 Sorting with Restricted Stacks . 52

4.3 Permutations sortable by the (σ, τ)-machine . 54

4.3.1 Pair (132, 231) . 55

4.3.2 The (σ, σ̂)-machine . 57

4.3.3 Pair (123, 132) . 58

4.3.4 Pair (123, 312) . 60

4.4 Conclusion . 64

II Evolutionary Optimization 65

5 Evolutionary computation: an overview 67

ix

5.1 Permutation-based problems . 67

5.1.1 Assignment problems . 68

5.1.2 Scheduling problems . 69

5.1.3 Traveling salesman problem . 69

5.2 Combinatorial Optimization methods . 70

5.2.1 Exact methods . 70

5.2.2 Approximate methods . 70

5.3 Genetic Algorithm . 71

5.4 Encoding for permutation problems . 75

5.4.1 Crossover operators . 76

5.5 Performance indicators . 79

5.6 Conclusion . 80

6 Transmission of Genetic Properties in Permutation Problems 81

6.1 Introduction . 81

6.2 Related work . 81

6.3 Encoding and recombination operators . 82

6.3.1 Direct Encoding . 83

6.3.2 Classical Encodings . 83

6.3.3 New encodings . 84

6.4 Experiments and results . 86

6.4.1 Assessment of transmissions from parents to offspring 87

6.4.2 Analysis of fitness distribution . 90

6.5 Conclusion . 94

7 Schema Conservation Study in Permutation Problems 95

7.1 Introduction . 95

7.2 The Schema Theory . 96

7.3 Previous Work on Schemata for GA . 97

x

7.4 LC and ITA . 99

7.5 Proposed method . 100

7.6 Experiments . 101

7.6.1 Assessment of transmissions from parents to offspring 102

7.6.2 Analysis of fitness distribution . 103

7.7 Conclusion . 104

8 Conclusion 105

8.1 Summary . 105

8.2 Future research . 107

Bibliography 109

A List of publications 123

xi

List of Figures

1 Hamming Distance pour eil51 . xxii

2 Hamming Distance utilisant Lehmer code . xxii

3 Hamming Distance utilisant Inverse transposition array xxii

2.1 A path corresponding to the Catalan word 0012330121 10

2.2 Graphical representation of the permutation w = 831926457 12

2.3 A path corresponding to the Dyck word 101111010000 or uduuuududddd . . . 13

2.4 A path corresponding to the Motzkin word uhudduhhdu 13

2.5 A path corresponding to a Schröder word . 14

2.6 (a) The Dyck path uduuuududddduuuddudd where each up step is labeled by the
ordinate of its starting point; and (b) its corresponding Catalan word 0012330121 18

2.7 The Dyck path corresponding to 74352681 . 18

2.8 First return decomposition UαDβ of a Dyck path P ∈ D 20

2.9 First return decomposition UαDβ and Fα of a Motzkin path M ∈M 20

4.1 Stack sorting the permutation 3214 . 50

4.2 Stack sorting the permutation 3241 . 50

4.3 Sorting the permutation 3241 with 3 stacks in series 50

4.4 The σ-machine . 52

xii

4.5 The (σ, τ)-machine consists of two stacks in series where the first stack P1 avoids
(from top to bottom) σ and τ while the second P2 avoids the pattern 21. At each
step of the process, we perform the rightmost possible operation among O1, O2,
O3, where O1 pushes in P1 the current entry of the input permutation, O2 pops the
top of P1 and pushes it in P2, andO3 pops the top of P2 and pushes it in the output
permutation. For instance, if σ = 123, τ = 132 then π = 35124 is sortable by ap-
plying the following operations: O1, O1, O2, O1, O1, O1, O2, O2, O2, O3, O3, O2, O3, O3,
O3. 55

4.6 Illustration of φ in the case (iii) of the proof of Theorem 8. 63

5.1 Flowchart of an evolutionary algorithm . 72

5.2 Flowchart of genetic algorithm . 73

5.3 Population, Chromosomes and Genes . 74

5.4 Single point crossover . 77

5.5 Multi-point crossover . 77

5.6 PMX crossover example . 79

6.1 Applying crossover on Lehmer code encoding 83

6.2 Applying crossover on Inversion table encoding 84

6.3 Applying crossover on Transposition array encoding 85

6.4 Applying crossover on Inverse transposition array encoding 86

6.5 Hamming Distance for eil51 . 87

6.6 Hamming Distance for att48 . 87

6.7 Hamming Distance for Bruma14 . 88

6.8 EBI for eil51 . 88

6.9 EBI for att48 . 88

6.10 EBI for burma14 . 88

6.11 PBI for eil51 . 89

6.12 PBI for att48 . 89

6.13 PBI for burma14 . 90

6.14 Classification using permutation encoding for eil51 91

6.15 Classification using Lehmer Code encoding for eil51 91

xiii

6.16 Classification using Inversion Table encoding for eil51 91

6.17 Classification using Transposition array encoding for eil51 91

6.18 Classification using the inverse Transposition array encoding for eil51 91

6.19 Classification using permutation encoding for att48 92

6.20 Classification using Lehmer Code encoding for att48 92

6.21 Classification using Inversion Table encoding for att48 92

6.22 Classification using Transposition array encoding for att48 92

6.23 Classification using the inverse Transposition array encoding for att48 92

6.24 Classification using permutation encoding for burma14 93

6.25 Classification using Lehmer Code encoding for burma14 93

6.26 Classification using Inversion Table encoding for burma14 93

6.27 Classification using Transposition array encoding for burma14 93

6.28 Classification using the inverse Transposition array encoding for burma14 . . . 94

7.1 Schema preservation using LC and ITA with a crossover point after the 5th gene . 100

7.2 Schema preservation using LC and ITA with a crossover point after the 10th gene 100

7.3 Hamming Distance using Lehmer code . 102

7.4 Hamming Distance using Inverse transposition array 102

7.5 EBI using Lehmer code . 103

7.6 EBI using Inverse transposition array . 103

7.7 PBI using Lehmer code . 103

7.8 PBI using Inverse transposition array . 103

7.9 Classification using Lehmer code with adaptation 104

7.10 Classification using Inverse transposition array encoding with adaptation 104

xiv

xv

List of Symbols

An the set of ascent sequences of length n
An |An|
A(x) the g.f. for the ascent sequences
asc(w) the number of ascents in the word w
b.g.f. bivariate generating function
BP barred pattern
C(x) the g.f. for the Catalan numbers
cn the n-th Catalan number
Dn the set of all Dyck paths with 2n steps
des(w) the number of descents in the word w
Fn the n-th Fibonacci number with F0 = 1, F1 = 1
g.f. generating function
i(π) the inverse of a permutation π
inv(π) the number of inversions in a permutation π
ISn the set of inversion sequences of length n
[k] the set {1, 2, . . . , k}
[k]n the set of all words of length n over [k]
M(x) the g.f. for the Motzkin numbers
Mn the n-th Motzkin number
N the set of natural numbers {0, 1, 2, 3, . . . }
n-permutation permutation of length n
R the set of real numbers
S(x) the g.f. for the Schröder numbers
Sn the n-th (large) Schröder number
Sn the set of all permutations of length n
Sn(P) the set of all n-permutations avoiding each pattern in P
sn(P) |Sn(P)|
Sortn(σ) the set of n-permutations sortable with the σ-machine
V P vincular pattern
Wn(k) the set of all words of length n over [k], [k]n

Wn(k, P) the set of all words in [k]n that avoid each pattern in P
Wn(k, P) |Wn(k, P)|
W t(n) the set of t-stack-sortable permutations in Sn

Wt(n, k) set of of t-stack-sortable permutations in Sn with number of descents equal to
k

σ-machine the right greedy algorithm performed on two stacks in series, such that the first
stack is σ-avoiding and the second stack is 21-avoiding.

xvi

xvii

Résumé étendu

Introduction

Les travaux présentés dans cette thèse se situent à la confluence de deux domaines de l’informatique
théorique, qui sont d’une part la combinatoire énumérative et d’autre part l’optimisation évolution-
naire.

La combinatoire est une branche des mathématiques discrètes qui étudie des collections d’objets
discrets. Certains de ses buts sont de caractériser les objets étudiés, d’étabir leurs propriétés, de
compter, pour tout n, le nombre d’objets de taille n, ou de les générer de manière exhaustive
ou aléatoire. Plus précisément, la combinatoire énumérative est généralement définie comme la
discipline qui traite le problème du comptage des éléments dans un ensemble fini. Les objets
étudiés dans cette thèse sont les permutations et les mots, considérés principalement du point de
vue de l’inclusion/évitement des motifs dans les permutations et les mots. Dans la première partie
de cette thèse, on s’intéresse sur deux classes combinatoires : les mots de Catalans évitant des
motifs et des permutations triables par une (σ, τ)-machine, en collectant des résultats énumératifs,
algébriques et algorithmiques sur les deux classes.

Du point de vue de l’optimisation évolutionnaire, dans la deuxième partie de cette thèse, les per-
mutations sont utilisées dans de nombreux problèmes d’optimisation combinatoire (COP) pour
représenter des solutions candidates. De tels problèmes sont communément appelés problèmes
de permutations. Les problèmes de permutations peuvent être trouvés dans divers domaines
d’applications tels que l’ordonnancement, le routage, etc. Nos travaux utilisent des algorithmes
évolutionnaires (EA), plus précisement, des algorithmes génétiques (AG) qui sont des métaheuris-
tiques inspirées de la théorie de l’évolution. Une population de solutions initiales appelées indi-
vidus évolue au fil des générations grâce à l’utilisation de certains opérateurs génétiques tel que la
sélection, le croisement, et la mutation.

Les objets formels étudiés en combinatoire et en algorithmique sont toujours des modèles d’objets
réels, même si la modélisation apparaît plus ou moins immédiatement selon les problèmes étudiés.
Les motivations pour l’étude de ces objets proviennent de l’informatique elle-même (modélisation
de structures de données, analyse de réseaux, . . .). Dans cette thèse, nous verrons que la moti-
vation la plus immédiate provient de l’intérêt pour les mécanismes qui sous-tendent le processus
d’optimisation évolutionnaire.

Dans l’étude d’une famille d’objets discrets, la combinatoire et les algorithmes génétiques offrent
deux points de vue sur ces objets complémentaires : les résultats combinatoires obtenus peuvent
avoir un intérêt en optimisation, et certains opérateurs en algorithm génétique peuvent être in-
téressant d’un point de vue combinatoire. En effet, les propriétés combinatoires des objets, et

xviii

en particulier les propriétés mettant en évidence une structure dans ces objets, peuvent être util-
isées pour concevoir des algorithmes qui, tirant parti de ces propriétés, sont plus complexes qu’un
algorithme sans cette connaissance a priori combinatoire.

Combinatoire énumérative

La première partie de la thèse est centrée sur le domaine de la combinatoire énumérative. La
combinatoire, également appelée mathématiques combinatoires, est la partie des mathématiques
discrètes qui étudie des ensembles finis d’objets appelés objets combinatoires. Le problème de
base de la combinatoire énumérative est de compter des ensembles avec certaines contraintes.
Cependant, ces derniers temps, ce domaine a trouvé une variété d’utilisations, à la fois en sciences
pures et appliquées, et par conséquent, il est devenu une partie du courant dominant des mathé-
matiques modernes. De grands noms tels que Donald Knuth, Philippe Flajolet, Richard Stanley,
André Joyal ont contribué à la création de fondations de combinatoire.

Mots de Catalans évitant des motifs

Ainsi après que Baril et al. [23] aient étudié la distribution des descentes sur des ensembles de
mots de Catalan évitant un motif de longueur au plus 3, nous avons étudié les connexions entre
séquences de l’Encyclopédie en ligne des séquences entières [213] et ces mots évitant deux motifs
de longueur 3. Les mots de Catalan sont des mots particuliers sur l’ensemble des entiers non
négatifs à croissance restreinte et ils représentent une classe combinatoire comptée par les nombres
Catalan, voir [199, 6.19.u, p. 222].

Le tableau 2 resume tous les résultats obtenus dans cette contribution. Il y avait beaucoup de cas
triviaux, tels que les motifs superflus, suites ultimement constantes et la suite n. De nombreux
cas ont été dénombrés par comptage par récurrence, principalement via la séquence de comptage
2(n−1), des séquences impliquant 2n, des séquences impliquant des coefficients binomiaux et des
séquences impliquant des nombres de type Fibonacci. Il est important de noter que pour certains
cas, les suites n’ont pas été étudiées dans la littérature, elles ont donc été comptées en donnant
des fonctions génératrices bivariées Cπ(x, y) où le coefficient de xnyk est le nombre de mots de
Catalan. de longueur n ayant k descentes et évitant π. Des propositions et des corollaires ont
également été proposés pour correspondre à certains cas, en utilisant des séquences d’ascension.
Nous avons spécialement utilisé pour les énumérations le corollaire 1 qui dit, pour n ≥ 4 et un
motif π de longueur trois, An(π) = Cn(π) si et seulement si π ∈ {001, 010, 012, 102}.

Tri de permutations avec des piles sous contraintes

L’étude du tri de permutations (classement des permutations par ordre croissant) a commencé
avec Knuth [124], qui analyse un certain "algorithme de tri par piles", puis il a introduit la
composition en série de piles et a donné de nombreux exemples de liens entre le comportement
pire / meilleur / moyen des algorithmes de tri et les structures combinatoires cachées derrière les
permutations [125].

Puisque le problème (classique) de caractérisation et d’énumération des permutations qui peuvent

xix

σ\τ 000 001 010 011 012 021 100 101 102 110 120 201 210
000 - P. 14 P. 14 u.c. u.c. C. 2 s P. 7 C. 9 C. 8 C. 10 C. 9 C. 14
001 - - P. 5 P. 5 P. 5 P. 13 P. 15 s s P. 13 P. 13 s P. 12
010 - - - P. 5 P. 5 s s s s s s s s

011 - - - - P. 5 s P. 6 s s s P. 6 s s

012 - - - - - s P. 13 P. 13 s P. 13 s s s

021 - - - - - - P. 9 P. 9 P. 11 C. 4 P. 10 s s

100 - - - - - - - P. 17 C. 13 C. 7 C. 3 P. 16 C. 15
101 - - - - - - - - s P. 9 P. 9 s P. 8
102 - - - - - - - - - P. 11 P. 8 C. 6 C. 12
110 - - - - - - - - - - C. 3 C. 5 s

120 - - - - - - - - - - - s s

201 - - - - - - - - - - - - C. 11
210 - - - - - - - - - - - - -

Table 2: Les paires {σ, τ} où τ est superflu pour σ sont marquées par s et celles produisant des
suites d’énumération constantes par u.c.. Les références sont aux propositions ou aux corollaires
où les suites d’énumération ou des fonctions génératrices sont données. Les paires référencées
par la même proposition ou corollaire forment une classe d’équivalence de Wilf et les résultats
d’énumération qui ne sont pas encore enregistrés dans [2] sont en italique. Les paires mises en
évidence sont déjà énumérées dans [30] dans le contexte des séquences d’ascension, voir la sec-
tion 3.1.

être triées à de deux piles connectées en série est encore largement ouvert, Cerbai et al. ont présenté
dans [60] un problème connexe, dans lequel ils ont imposé des restrictions à la fois sur la procédure
et sur les piles. Plus précisément, ils considéraient un algorithme glouton où ils exécutaient les
opérations les plus à droite (ici "le plus à droite" fait référence à la représentation habituelle des
problèmes de tri de pile).

Dans cette contribution, nous traiterons de machines de tri similaires constituées de deux piles
connectés en série. En rappelant les propriétés clés de l’algorithme Stack-sort, nous considérerons
les machines obéissant à certaines contraintes où la première pile évite (σ, τ), une paire de motifs
de longueur trois et la deuxième pile évite le motif 21. Après [60], nous l’appelons (σ, τ)-machine.
Plus précisément, nous nous limitons aux paires de motifs pour lesquels les permutations triables
sont comptées soit par les nombres catalans, soit par deux de leurs proches parents : la transformée
binomiale des nombres de Catalan et les nombres de Schröder.

Pour la paire (132.231) nous avons montré que les permutations triables sont celles évitant 1324
et 2314, un ensemble dont l’énumération est donnée par les grands nombres de Schröder. Sous
certaines conditions sur les motifs évités, la sortie de la première pile est bijectivement liée à son
entrée (voir [33, 59]) : il s’ensuit que pour trois paires de motifs, à savoir (123, 213), (132, 312)
et (231, 321), les permutations triables sont comptées par les nombres de Catalan. Ce résultat a
été prouvé indépendamment dans [21, 33]. Pour la paire (123, 132), nous avons prouvé que les
permutations triables sont celles évitant les motifs 2314, 3214, 4213 et le motif généralisé [241̄3
Aussi, nous avons prouvé que les permutations triables sont énumérées par les nombres de Catalan
en montrant que la distribution du premier élément est donnée par le triangle de Catalan bien
connu. Nous avons montré que pour la paire (123, 312) la séquence de comptage correspondante
est la transformée binomiale des nombres de Catalan.

xx

Optimization evolutionnaire

La première partie de cette thèse a porté sur la combinatoire énumérative. Elle a pris en compte les
propriétés combinatoires de certains objets combinatoires, en particulier les propriétés de permu-
tations. Dans la deuxième partie, en tant que travail complémentaire, nous étudions l’application
des propriétés des permutations dans l’optimisation évolutionnaire. En effet, la contribution pro-
posée concerne les problèmes de permutations et les algorithmes génétiques (plus particulièrement
le codage et les opérateurs génétiques). L’optimisation des problèmes de permutations est large-
ment étudiées dans la littérature en raison de leur complexité et de la diversité de leurs domaines
d’application. Résoudre un tel problème consiste à trouver une permutation qui minimise / max-
imise certains critères.

Transmission des propriétés génétiques dans les problèmes de permutations

Lorsqu’on traite des problèmes de permutations, il faut s’assurer qu’il n’y a pas de doublons dans
la permutation. Cependant, au fil des générations, les opérateurs génétiques tels que le croisement
et la mutation peuvent dupliquer les allèles (valeurs). Il existe principalement deux approches pour
éviter ces répétitions. La première consiste à utiliser des opérateurs de croisement et de mutation
qui réparent les individus contenant des doublons (par exemple OX, UX ou PMX). Une autre
méthode consiste à utiliser un code (dit indirect) qui tolère les doublons. On définit une bijection
entre ce codage indirect et la permutation. Le code de Lehmer et la table d’inversion sont des
exemples de codage indirect. De plus, deux encodages non classiques sont présentés dans cette
contribution. Inspiré des travaux de J-L. Baril, nous nous intéressons au tableau de transposition
présenté dans [19]. Une autre version de ce codage est proposée: le tableau de transposition
inverse.

Cependant, il convient de noter qu’une partie des propriétés génétiques des parents peut être perdue
lors de la génération des enfants si le codage indirect est utilisé. Cette contribution étudie la
transmission de propriétés génétiques en se concentrant à la fois sur les variables de décision et la
fonction objectif. Nous considérons le problème de voyageur de commerce (TSP) comme exemple
de problème de permutations. Pour étudier la transmission des caractéristiques des parents aux
enfants, nous utilisons des métriques qui se concentrent sur les similitudes entre les solutions
(Hamming Distance, Position Based Indicator, Edge Based Indicator). Ensuite, pour analyser la
distribution des solution de chaque codage par rapport à la fonction objectif, une méthode est
utilisée, inspirée de l’étude faite par Portman et Vignier dans [183]. Ils classent les solutions, pour
chaque génération, en cinq groupes en fonction des valeurs de fitness. Trois problèmes TSP sont
étudiés dans cette thèse: eil51, att48 et burma14.

xxi

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300

H
a

m
m

in
g

 D
is

ta
n

c
e

Generation

Permutation
Lehmer Code

Inversion Table
Transposition Array

Inversion Transposition Array

Figure 1: Hamming Distance pour eil51

Les résultats montrent que le codage indirect permet de préserver la diversité au sein des popula-
tions. Plus préciément, fig. 7.3 montre la performance de la distance de Hamming entre les par-
ents et les enfants sur des générations pour les problèmes eil51. On observe que cette métrique
diminue progressivement au fil des générations car l’algorithme génétique aura tendance à ex-
ploiter le voisinage des meilleures solutions. Cependant, en raison de l’apparition de nouveaux
allèles, les codages indirects montrent de bonnes valeurs HD et parviennent tout de même à dimin-
uer et à rester supérieurs au codage direct qui tend vers zéro. Cette diversité est accompagnée par
une conservation de qualité au niveau de la fonction objectif. Les solutions appartenant au groupe
1 dans le cas du codage indirect sont majoritaires et la population reste diversifiée.

Étude de conservation de schéma dans les problèmes de permutations

Dans cette contribution, nous étudions la transmission des propriétés génétiques lors de l’utilisation
de codages indirects. Nous nous concentrons sur le code de Lehmer et le codage du tableau de
transposition inverse car ils préservent le préfixe / suffixe après le processus de recombinaison.
Cela nous rappelle la théorie des schémas de Holland [116], le fondement des explications de
la puissance des algorithmes génétiques (AG) et l’une des premières tentatives pour comprendre
comment ces algorithmes fonctionnent dans un sens formel. On suppose que, grâce au processus
de reproduction entre individus, les schémas les plus adaptés sont plus susceptibles d’être dans la
génération suivante. Une certaine adaptation est proposée pour être appliquée au cours du proces-
sus de croisement qui aide à conserver le schéma de bons parents.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300

H
a

m
m

in
g

 D
is

ta
n

c
e

#Generation

Classical version
With adaptive crossover

Figure 2: Hamming Distance utilisant Lehmer code

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300

H
a

m
m

in
g

 D
is

ta
n

c
e

#Generation

Classical version
With adaptive crossover

Figure 3: Hamming Distance utilisant Inverse transposition array

xxii

Le recours à l’adaptation lors du croisement a permis de conserver les allèles des parents. La
conservation est forte pour les meilleurs individus. Parce que ces meilleurs individus sont ceux
qui survivent et se reproduisent, cette préservation sera donc présente au fil des générations. Cela
se reflète bien dans les valeurs des métriques utilisées, notamment par exemple dans les valeures
de Hamming distance dans les fig. 2 et 3.

xxiii

Chapter 1

Introduction

1.1 Context

The work presented in this thesis lies at the confluence of two fields of theoretical computer sci-
ence, which are on the one hand enumerative combinatorics and on the other hand evolutionary
computation.

Combinatorics is a branch of discrete mathematics that studies collections of discrete objects, i.e.
for which we have a notion of a size such that the number of objects of size n is finite for each n.
Some of the goals of combinatorics are to characterize the studied objects, to shed light on their
properties, to count, for all n, the number of objects of size n, or to generate them exhaustively
or randomly. More specifically, enumerative combinatorics is usually defined as the discipline
that deals with the problem of counting the elements in a finite set. This is of course a somewhat
coarse definition, as the notion of counting, is not entirely transparent itself. In fact, a finite setA is
assigned as the subset of all the elements in a broader finite set B satisfying a given characteristic
property P . Therefore, given an explicit list of the elements of B, to count the elements in A
one can simply scan the list of the elements of B, check which elements satisfy the property P to
produce an explicit list of the elements of A, attach the label 1 to the first element of A you find,
the label 2 to the second one, and so on. The last label one attaches is the number of elements in
A. However, it is easy to see that it quickly becomes insoluble in terms of computation, depending
on the parameters characterizing the finite set, so we must have a good answer for this type of
problem. A more precise discussion could get philosophical, depending on the criteria one can
choose to consider a counting algorithm as computationally efficient. Usually, one is given a
sequence of finite sets {An}n∈N and is asked to count the number f(n) of elements in An for
every n ∈ N. The objects of study in this thesis are permutations and words, considered mainly
from the point of view of pattern involvement/avoidance in permutations and words.

The study of patterns in discrete structures is currently one of the most active trends in combina-
torics research. The notion of a pattern in a permutation was historically born from the problem of
sorting permutations with certain devices. However, the richness of this notion has become partic-
ularly evident from its numerous appearances in several very different disciplines, such as algebra,
geometry, analysis, theoretical computer science, biology, and many others. Similar notions of
pattern have been considered on discrete structures other than permutations, such as integer se-
quences and words, lattice paths, graphs, mappings, and set partitions. The first part of this thesis
aims to shed light on two combinatorial classes: Catalan words avoiding patterns and permutations

1

1.2. MOTIVATION CHAPTER 1. INTRODUCTION

sortable by a (σ, τ)-machine, by collecting enumerative, algebraic, and algorithmic results on both
classes. Most of the enumerating results are obtained by generating functions.

Permutations are also used in many combinatorial optimization problems (COPs) to represent can-
didate solutions. Such problems are commonly known as permutation-based problems. They are
studied in the second part of this thesis which focuses on evolutionary computation. Permutation-
based problems can be found in various application areas such as scheduling and sequencing,
design of VLSI circuits, campus design, routing, etc. They consist either of the optimization of
the assignment cost between two sets of objects of the same cardinality, or the optimization of a
schedule of jobs or any other planning application represented as a sequence of tasks, and so on.
Such problems are generally NP-hard and some of them are among the most challenging opti-
mization problems in terms of resolution time. Their complexity is due partially to the exponential
size of their search space, which makes large benchmarks very difficult to be solved. Our results
take place in the context of evolutionary algorithms (EAs), in particular Genetic algorithms (GAs)
which are very popular population-based metaheuristics inspired by the theory of evolution. A
population of initial configurations called individuals is evolved through generations by the use of
some genetic operators by analogy to their counterparts in biological systems: selection, crossover,
mutation, etc. This method is a very promising research area for solving large permutation-based
problems.

1.2 Motivation

The formal objects studied in combinatorics and in algorithmics are always models of real objects,
even if the modelization appears more or less immediately according to the problems studied. The
motivations for the study of these objects come from computer science itself (modeling of data
structures, network analysis, . . .). In this thesis, we will see that the most immediate motivation
comes from optimization problems involved in the study of evolutionary computation.

In the study of a family of discrete objects, combinatorics and genetic algorithms offer two points
of view on these complementary objects: the combinatorial results obtained can have optimization
repercussions, and some genetic algorithms have implications from a combinatorial point of view.
Indeed, the combinatorial properties of objects, and in particular the properties highlighting a
structure in these objects, can be used to design algorithms. Taking advantage of these properties,
design algorithms are more complex than one without this a priori combinatorial knowledge.

1.3 Detailed outline and contributions

This thesis is organized into two parts. Part I is about enumerative combinatorics and is composed
of three chapters. Part II contains three chapters about evolutionary optimization and permutation-
based optimization problems. The manuscript is ended with some concluding remarks and future
research directions.

Part I: Enumerative combinatorics

Chapter 2 is an introduction to enumerative combinatorics. It essentially constitutes a state of
the art on combinatorial objects and enumeration methods. This review is completed by present-
ing interesting related works. This chapter deals almost exclusively with the combinatorics of

2

1.3. DETAILED OUTLINE AND CONTRIBUTIONS CHAPTER 1. INTRODUCTION

different classes. We formally define the permutations as well as some interesting lattice paths,
sequences, and words. We also give some very classical properties of these objects. Then the no-
tion of pattern, classical and non-classical, is defined in the context of statistics on combinatorial
classes. This chapter ends with listing and explaining different enumeration methods in particu-
larly generating function and recurrence relation.

Chapter 3 presents our first contribution, namely the enumeration of Catalan words avoiding
pairs of patterns of length three, presenting the proofs of each case with different enumeration
methods. Catalan words are particular growth-restricted words counted by the eponymous integer
sequence. In this contribution, we consider Catalan words avoiding a pair of patterns of length
3, pursuing the recent initiating work of J.-L. Baril et al. [23], where (among other things) the
enumeration of Catalan words avoiding patterns of length 3 is completed. More precisely, we
explore systematically the structural properties of the sets of words under consideration and give
enumerating results by constructive bijections or bivariate generating functions with respect to the
length and descent number. Some of the obtained enumerating sequences are known, and thus the
corresponding results establish new combinatorial interpretations for them. The results presented
in this chapter are published in Discrete Mathematics & Theoretical Computer Science journal,
and in Permutation Patterns 2019 conference [22].

Chapter 4 is about stack sorting. We present in this chapter our second contribution about sorting
with restricted stacks avoiding some pairs of patterns. Pattern avoiding machines were introduced
recently by Claesson et al. [60] as a particular case of the two-stacks in series sorting device. They
consist of two restricted stacks in series, ruled by a right-greedy procedure and the stacks avoid
some specified patterns. Some of the obtained results have been further generalized to Cayley
permutations by Cerbai [59], specialized to particular patterns by Defant and Zheng [77], or con-
sidered in the context of functions over the symmetric group by Berlow [33]. In this work, we
study pattern avoiding machines where the first stack avoids a pair of patterns of length 3 and
investigate those pairs for which sortable permutations are counted by the (binomial transform of
the) Catalan numbers and the Schröder numbers.

Part II: Evolutionary Optimization

Chapter 5 is an introduction to permutation-based problems and evolutionary algorithms. A non-
exhaustive list of permutation-based problems is given, as well as the explanation of the genetic
algorithm and its operators. This review is completed by an analysis of the interpretation of the
permutation encoding. Some mathematical properties of permutations, tools and indicators are
also presented.

Chapter 6 presents the third contribution of this thesis. It studies the transmission of genetic
properties in permutation problems using Lehmer code, inversion table encoding, transposition
array encoding and inversion transposition array encoding. Solution encoding describes the way
decision variables are represented. In the case of permutation problems, the classical encoding
should ensure that there are no duplicates. During crossover operations, repairs may be carried out
to correct or avoid repetitions. The use of indirect encoding aims to define bijections between the
classical permutation and a different representation of the decision variables. These encodings are

3

1.3. DETAILED OUTLINE AND CONTRIBUTIONS CHAPTER 1. INTRODUCTION

not sensitive to duplicates. However, they lead to a loss of genetic properties during crossbreeding.
This contribution proposes a study of the impact of this loss both in the space of decision variables
and in the fitness values domain, considering four indirect encodings: Lehmer code, Inversion
table, Transposition array and Inversion transposition array.

In Chapter 7, we study the transmission of genetic properties when using indirect encodings. We
focus on the Lehmer code and the Inverse transposition array encoding as they preserve the pre-
fix / suffix after the recombination process. This reminds us of the schema theory of Holland [116],
the foundation for explanations of the power of genetic algorithms (GAs) and one of the earliest
attempts to understand how these algorithms work in a formal sense. It supposes that, through the
process of recombination, the fittest schemata are more likely to be in the next generation. Some
adaptation is proposed to be applied during the crossover process which helps to retain the schema
of good parents to the offspring. To do this, we will study the conservation properties of the suffix
or prefix for the Lehmer code and the Inverse transposition table.

4

Part I

Enumerative combinatorics

5

6

Chapter 2

Notations, definitions and useful results
in Enumerative combinatorics

This part of the thesis is considered in the field of enumerative combinatorics. Combinatorics,
also called combinatorial mathematics, is the part of discrete mathematics that studies finite sets
of objects called combinatorial objects. The basic problem of enumerative combinatorics is count-
ing sets with certain constraints. It is a discipline that has developed through various branches
of mathematics such as number theory, group theory, probability theory, integer series, complex
analysis, algebraic geometry. However, in recent times this field has found a variety of uses, both
in pure and applied science, and as a result, it has become part of the mainstream of modern
mathematics. Big names such as Donald Knuth, Philippe Flajolet, Richard Stanley, André Joyal
have contributed to the creation of foundations of combinatorics. In this chapter, we will present
some introductory notions in enumerative combinatorics, as well as some of the methods and tools
used in this thesis, but we must start by defining the basic objects on which this study relates in
particular combinatorial objects and their statistics.

Let n 6= 0 be an element of N, we denote by [n] the set {1, 2 . . . }. For two integers a and b, a ≤ b,
the interval [a, b] consists of the set {a, a+ 1, . . . , b}. When b < a, the interval [a, b] is empty.

2.1 Combinatorial classes

Definition 1. A combinatorial class is a collection O of objects of a similar kind (e.g. sequences,
words, trees, graphs, permutations, paths, ...), endowed with a suitable notion of size p : O → N
such that there are only finitely many objects of each size, i.e. |p−1(n)| is finite for all n ∈ N. For
convenience, we consider that there is a unique object of size 0, and this object will be called ∅.

An important part of combinatorial problems is to enumerate the number of objects of a given size
in a combinatorial class. Below, we define all combinatorial classes used in this thesis, and we
provide some classical enumeration methods (see the books [114, 122, 132, 167, 199] for more
details).

7

2.1. COMBINATORIAL CLASSES CHAPTER 2. ENUMERATIVE COMBINATORICS

2.1.1 Sequences and words

Integer sequences

Definition 2. Formally, a sequence with values in a set B is a function a : I → B, where I ⊆ N.
We denote it by a = (an)n∈I where an = a(n), and whenever I consists of i1, i2, . . . , in, . . .
(sorted in increasing order), we write a = ai1 , ai2 , . . . , ain ,

The set I is called the set of indices, and generally I = N, or I = {0, 1, 2, . . . , n} for some n ∈ N.
A sequence is said to be finite when the set of indices is finite. In this thesis, infinite sequences are
used for the enumerations of classes of combinatorial objects, that is an = |p−1(n)| where p is the
size of objects.

Maybe the prototypical integer sequence is that of celebrated Fibonacci numbers, (Fn)n≥0, se-
quence A000045 in [2], with its first values 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

The Fibonacci sequence is defined recursively by F0 = 0, F1 = 1 and for n ≥ 2

Fn = Fn−1 + Fn−2.

A closed-form formula does exist and is given for n ≥ 0 by

Fn =
1√
5

((
1 +
√

5

2

)n
−
(

1−
√

5

2

)n)
.

The generating function for the sequence (Fn)n≥0 is F(x) =
∑

n≥0 Fnx
n given by

F(x) =
x

1− x− x2 .

Other ubiquitous integer sequences in combinatorics are Catalan numbers and their close relatives
Motzkin and Schröder numbers. The sequence of Catalan numbers defined by

cn =
1

n+ 1

(
2n

n

)
,

is referred as A000108 in [2], with its first values 1, 1, 2, 5, 14, 42, 132, 429, . . . It counts a large
variety of combinatorial objects, for instance, ordered rooted trees with n nodes, Dyck paths and
words, and Catalan words defined below. In [200], Richard Stanley gives more than 200 mostly
combinatorial interpretations of the sequence (cn)n≥0.

The generating function for the Catalan numbers, defined by C(x) =
∑

n≥0 cnx
n, satisfies

C(x) = 1 + xC2(x)

with the solution

C(x) =
1−
√

1− 4x

2x
.

8

https://oeis.org/A000045
https://oeis.org/A000108

2.1. COMBINATORIAL CLASSES CHAPTER 2. ENUMERATIVE COMBINATORICS

Motzkin numbers (Mn)n≥0, sequence A001006 in [2] satisfy, for n ≥ 2, the recurrence relation

Mn =
2n+ 1

n+ 2
Mn−1 +

3n− 3

n+ 2
Mn−2,

with its first values 1, 1, 2, 4, 9, 21, 51, 127, 323, . . . They are also expressed in the term of bino-
mial coefficient and Catalan numbers as

Mn =

[n
2
]∑

k=0

(
n

2k

)
Ck.

The generating functionM(x) =
∑

n≥0Mnx
n for the Motzkin numbers satisfies

M(x) = 1 + xM(x) + x2M2(x)

with the solution

M(x) =
1− x−

√
1− 2x− 3x2

2x2
.

Finally, the large Schröder numbers Sn is the sequence A006318 in [2]. It satisfies the recurrence
relation

Sn = 3Sn−1 +
n−2∑

k=1

SkSn−k−1

for n ≥ 2 with S0 = 1, S1 = 2. The corresponding generating function S(x) =
∑

n=0 Snx
n is

S(x) =
1− x−

√
x2 − 6x+ 1

2x
.

Words

In this thesis, we also consider finite sequences as objects in a combinatorial class, which can also
be viewed as a word on an alphabet (by deleting commas in the notation a0, a1, a2, . . .). Below,
we briefly introduce the basic terminology on words. For a more detailed introduction in the field,
see Lothaire [142], and Berstel and Perrin [34] seminal books.

Definition 3. A word of length n, w = w1w2 . . . wn, is a sequence whose symbols (or letters)
come from a set A called an alphabet. Alphabets in this thesis are finite, and the most typical
alphabets are of the form {0, 1, . . . , k − 1} or [k] = {1, . . . , k}, depending on the content.

For n ≥ 0 and k ≥ 0, let Wn(k) be the set of words of length n over [k] and W(k) =⋃
n≥0Wn(k). There are kn different words of length n over a k-letter alphabet: |Wn(k)| =

kn. For example, 2411121 and 25554 are words over the alphabet [5] = {1, 2, 3, 4, 5} while
abbacca is a word over the alphabet {a, b, c}. Also, the complete set of words in [2]3 is W3(2) =
{111, 112, 121, 211, 122, 212, 221, 222}. The first systematic study of words seems to have ap-
peared in three papers of Axel Thue (1863-1922) in 1906, 1912 and 1914 [210–212], and in a
paper by MacMahon in 1913 [144]. Thue’s work is on infinite words (sequence of symbols)
and he investigated words from a number-theoretic viewpoint. By contrast, MacMahon approach
words, which he called assemblage of objects, in the context of partitions and permutations. His
viewpoint and questions are the first instance of enumerating statistics on words.

9

https://oeis.org/A001006
https://oeis.org/A006318

2.1. COMBINATORIAL CLASSES CHAPTER 2. ENUMERATIVE COMBINATORICS

Catalan word

Catalan words are particular growth-restricted words and they represent a combinatorial class
counted by the Catalan numbers, see for instance exercise [199, 6.19.u, p. 222]. See also in [149],
Catalan words are considered in the context of the exhaustive generation of Gray codes for growth-
restricted words.

Definition 4. A length n Catalan word is a word w = w1w2 . . . wn over the set of non-negative
integers with w1 = 0, and 0 ≤ wi ≤ wi−1 + 1 for i = 2, 3, . . . n.

0 0

1

2

3 3

0

1

2

1

Figure 2.1: A path corresponding to the Catalan word 0012330121

From a Catalan word w1w2 . . . wn, we construct a path in the first quadrant of the plane, starting
at the origin and ending at (n, 0), consisting of horizontal steps H = (1, 0) and vertical steps
(0,±1) such that the i-th horizontal step lies on the line y = wi. Fig. 2.1 represents an example of
a path corresponding to a Catalan word. We denote by Cn the set of length n Catalan words, and
C =

⋃
n≥0 Cn. For instance, C2 = {00, 01} and C3 = {000, 001, 010, 011, 012}. It is well known

that the cardinality of Cn is given by the n-th Catalan number

cn =
1

n+ 1

(
2n

n

)

which is the general term of the sequence A000108 in the On-line Encyclopedia of Integer Se-
quences [2].

Ascent sequence

Ascent sequences are sequences of non-negative integers with restrictions on the size of each letter,
depending on the number of ascents preceding it in the sequence. Given a word w = w1w2 . . . wn
over the alphabet N, asc(w1 . . . wn) will be the number of ascents in the sequence w, that is, the
number of places j ≥ 1 such that wj < wj+1.

Definition 5. An ascent sequence is a sequence w = w1w2 . . . wn of nonnegative integers satisfy-
ing w1 = 0, and, for all i with 1 < i ≤ n, wi ≤ asc(w1 . . . wi−1) + 1 .

We write An for the set of ascent sequences of length n and we let An = |An|. The number of
ascent sequences of length n is given by the Fishburn numbers, A022493 in [2], with the first
values 1, 1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, For example, 01234, 0120102, and
01013 are all ascent sequences, while 01024 is not since asc(0102) = 2 and we do not have
4 ≤ asc(0102) + 1. Ascent sequences have been an increasingly frequent topic of study since
Bousquet-Melou, Claesson, Dukes, and Kitaev related them to (2+2)-free posets and enumerated
the total number of ascent sequences [43], who also managed to count these, which was quite a
feat. They proved that the generating function of ascent sequences is

10

https://oeis.org/A000108
https://oeis.org/A022493

2.1. COMBINATORIAL CLASSES CHAPTER 2. ENUMERATIVE COMBINATORICS

A(x) =
∑

n≥0

n∏

i=1

(1− (1− x)i).

Ascent sequences have since been studied in a series of papers by various authors, connecting
them to many other combinatorial structures. These connections, and generalizations of them,
have exposed what seem to be deep structural correspondences in these apparently disparate com-
binatorial objects. A good source of references and further information is in [66,87,88]. Obviously,
a Catalan word is an ascent sequence, and we reveal some connections between the two classes of
combinatorial objects.

Dyck word

Dyck words, or well-parenthesed words, are a central object in combinatorics and formal language
theory. They are enumerated by Catalan numbers as many other objects. For instance, Chapter 6
of [199] points out the role of Dyck words in enumerative combinatorics. They have been studied
extensively, and there are well-known bijections between Dyck words and other combinatorial
objects such as binary trees, parallelogram polyominoes, 2-lines standard tableaux and so on.
Let B = {0, 1} be a binary alphabet and w = w1w2 . . . wn ∈ Bn. Let h : B → {−1, 1} be a
valuation function with h(0) = 1, h(1) = −1, and

h(w1w2 . . . wn) =
n∑

i=1

h(wi).

Definition 6. A semi-length nwordw = w1w2 . . . w2n ∈ B2n is called a Dyck word if h(w1w2 . . . wi) ≥
0, for 1 ≤ i ≤ 2n− 1 and h(w1w2 . . . w2n) = 0, see [86].

We shall denote by Dn the set of Dyck words of length 2n, and by D =
⋃
n≥0Dn the class of all

Dyck words. The number of Dyck words of length 2n, Dn = |Dn|, as previously mentioned, is
the n-th Catalan number

cn =
1

n+ 1

(
2n

n

)
.

For example, there are 14 Dyck words for n = 4: 00001111, 00010111, 00011011, 00011101,
00100111, 00101011, 00101101, 00110011, 00110101, 01000111, 01001011, 01001101,01010011,
01010101.

2.1.2 Permutations

The now-famous free encyclopedia Wikipedia opens its article devoted to permutations with the
following definition:

In mathematics, a permutation of a set is, loosely speaking, an arrangement of its
members into a sequence or linear order, or if the set is already ordered, a rearrange-
ment of its elements. The word "permutation" also refers to the act or process of
changing the linear order of an ordered set.

This definition is immediately followed by an anchoring of the permutations in the context in
which they are studied:

11

2.1. COMBINATORIAL CLASSES CHAPTER 2. ENUMERATIVE COMBINATORICS

Permutations differ from combinations, which are selections of some members of a
set regardless of order.

In this thesis, we are interested in permutations of an interval of integers, usually starting with 1.

Definition 7. A permutation of length n ∈ N, also referred to as an n-permutation, is a bijection
from the set [n] to itself.

We write permutations as words w = w1w2 . . . wn, whose letters are distinct and usually consist
of the integers 1, 2, 3, . . . , n, where wi is the image of i in w. We denote by Sn the set of permu-
tations of length n and S =

⋃
n∈NSn. It is well known that there are n! distinct n-permutations,

|Sn| = n!. When n = 0, then Sn is the empty set. We denote by idn = 1 . . . n the identity
permutation of [n].
For example, 413265 is a 6-permutation, and S1 = {1}, S2 = {12, 21}, S3 = {123, 132, 213, 231,
312, 321}. The graphical representation of w ∈ Sn is the set of points in a Euclidean plane, pro-
vided with an orthonormal system, whose coordinates are the pairs (i, wi) with i ∈ [n]. See
Fig. 2.2 for an example.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure 2.2: Graphical representation of the permutation w = 831926457

2.1.3 Lattice paths

As another example of combinatorial class, we exhibit the hugely studied case of lattice paths. A
lattice path is intuitively defined as its name suggests: a path (or walk) in a lattice in a Euclidean
plane ε provided with an origin reference O. We denote by the letters u, d, and f (like Up, Down,
and Flat) the vectors of respective coordinates (1, 1), (1,−1) and (1, 0) called respectively step
up, step down and plateau. Paths are better for visual intuition and words are better for writing
proofs, but of course, they represent in different ways the same combinatorial object.
An insight into the study of generic lattice paths and their close link with Probability and Statistics
is reported in [131] and in [157], as well as a discussion about the basic methods for counting
lattice paths. In literature (see for instance [14]), precise computable estimates are given for the
number of lattice paths under various constraints: with ending point lying on the x-axis (bridges)
or, constrained to remain in the positive quarter plane (meanders) or both conditions at the same
time (excursions). Below is a brief presentation on the families of lattice paths frequently involved
in our study.

Dyck path

Definition 8. A Dyck path of length 2n, n ∈ N is a lattice path in Z2 between (0, 0) and (2n, 0)
consisting of up-steps (1, 1) and down-steps (1,−1) which never goes below the x-axis.

12

2.1. COMBINATORIAL CLASSES CHAPTER 2. ENUMERATIVE COMBINATORICS

It is convenient to encode each up-step by the letter u or number 1 and each down step by d or
0, obtaining an encoding of the Dyck path as a Dyck word. The set of Dyck paths of length 2n,
like the set of Dyck words defined previously, is denoted by Dn. As an example, the Dyck path
corresponding to the Dyck word uduuuududddd is drawn in Fig. 2.3.

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

Figure 2.3: A path corresponding to the Dyck word 101111010000 or uduuuududddd

Among the structures counted by Catalan numbers, an important role is played by Dyck paths,
for which a vast literature is devoted. Different aspects of these combinatorial objects are studied,
such as their random generation, the bijections with other combinatorial structures, the enumera-
tion according to a great variety of parameters, giving rise to nice statistics involving well-known
numbers like Narayana number (see [202, 203], for instance). We refer to [79] for some enumera-
tive results and a vast bibliography concerning the enumeration of Dyck paths.

Motzkin path

Motzkin paths are simple combinatorial objects that appear in many contexts. They are similar to
Dyck paths but allow also horizontal (flat) steps of unit length.

Definition 9. A Motzkin path of length n ∈ N is a lattice path starting at point (0, 0), ending at
(n, 0), and never going below the x-axis, consisting of up steps u = (1, 1), down steps d = (1,−1)
and horizontal steps h = (1, 0).

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

Figure 2.4: A path corresponding to the Motzkin word uhudduhhdu

LetMn be the set of Motzkin paths of length n and we setM = ∪n≥0Mn. See Fig. 2.4 for an il-
lustration of a Motzkin path of length 11. There are many studies on Motzkin paths [46,79,84,163].
For example, Baril and Petrossian [27] conducted the study of the equivalence relation in the lan-
guage of Motzkin’s words on the alphabet {u,d,h}. These lattice paths are counted by the Motzkin
numbers, sequence A001006 in [2], which the first terms are 1, 1, 2, 4, 9, 21, 51, 127, 323, 835,

Schröder path

Definition 10. A Schröder path of length n ∈ N is a lattice path from (0, 0), to (2n, 0), and
never going below the x-axis, consisting of up steps u = (1, 1), down steps d = (1,−1) and flat

13

https://oeis.org/A001006

2.2. STATISTICS CHAPTER 2. ENUMERATIVE COMBINATORICS

steps h = (2, 0).

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

Figure 2.5: A path corresponding to a Schröder word

Step (2, 0) is usually called the double horizontal step and it is denoted by h2 or simply by h
when no risk of confusion with Motzkin paths arises. As mentioned before, it is well known that
Schröder paths are enumerated by the (large) Schröder numbers, which form sequence A006318
in [2]. For other combinatorial objects counted by the Schröder numbers, see [17, 126, 187].

2.2 Statistics on combinatorial classes

The subject of permutation statistics, it is frequently claimed, dates back at least to Euler [94].
However, it was not until MacMahon’s extensive study [144] at the turn of the century that this
became an established discipline of mathematics, and it was to take a long time before it developed
into the vast field that it is today. In the past three decades or so much progress has been made,
both in discovering and analyzing new statistics and in extending these, together with the classical
permutation statistics, to arbitrary words, see [93, 97, , 198].

Definition 11. Given O a class of combinatorial objects, a statistic on O is a map f : O → N.
The distribution of f is the sequence (ai)i∈N where ai is the cardinality of f−1(i).

Note that the length function (also called size) of a set of combinatorial objects is an obvious
statistic.

MacMahon considered four different statistics for a permutation p: The number of descents des p,
the number of exceedances exc p, the number of inversions inv p, and the major index maj p.

These are defined as follows:

des p = number of descents in p,

exc p = number of excedances in p,

inv p = number of (i, j) such that i < j and pi > pj ,

maj p = sum of the descents in p.

In fact, MacMahon studied these statistics in greater generality, namely over the rearrangement
class of words w. All of the above-mentioned statistics generalize to words, and in each case,
except for that of exc, the generalization is trivial.

14

https://oeis.org/A006318

2.2. STATISTICS CHAPTER 2. ENUMERATIVE COMBINATORICS

Also, statistics often involve the notion of patterns contained in a combinatorial object. That is
why we give below definition and several examples of patterns for words and permutations.

2.2.1 Patterns

There are countless notions of patterns in different combinatorial objects. Considering words and
permutations, one meets many notions of patterns in these objects in the literature. Roughly speak-
ing, patterns in permutations are permutations with additional restrictions, and patterns in words
are certain restricted words, possibly permutations.

Definition 12. Given a word π = π1π2 . . . πk, we say a word w = w1w2 . . . wn contains the
pattern π, k ≤ n, if there is a sub-word of w, wi1 . . . wik , order-isomorphic with π1π2 . . . πk. If w
does not contain π, we say w avoids π.

See for instance Kitaev’s seminal book [122] on this topic. For example, w = 3422155 contains
the pattern 211 because the letters 322 have the same relative order in w as 211. On the other hand,
3422155 avoids pattern 4321. Let the patterns π1 and π2, if π2 contains π1, then the π2 restriction
is superfluous since every π1-avoiding permutation is also π2-avoiding.

For n, k ≥ 0 and a set P of patterns, we denote by Wn(k, P) the set of words of length n over the
alphabet [k] which avoid every pattern in P .

Classical Patterns

Classical patterns, introduced for permutations by Knuth [124] in 1968 but studied intensively
for the first time by Simion and Schmidt [193] in 1985; this notion was extended to words by
Burstein [52] in 1998, and generalized for words (by allowing repetitions in patterns) by Burstein
and Mansour [55] in 2002; two books [39, 40] by Bona appeared in 2004 and 2006 which discuss
classical patterns for permutations, and the book [114] by Heubach and Mansour appeared in 2010
and discusses these patterns for words.

• Patterns in permutations: Let the set Sn(π) consist of all length n permutations that avoid π.
If P is a set of permutations/patterns, we define Sn(P) =

⋂
π∈P Sn(π). So Sn(P) consists

of all length n permutations that avoid every member of P . The problem of finding sn(P),
the cardinality of Sn(P), for various patterns has received much attention. The first two
calculations were sn(123) and sn(132), by MacMahon [152] and Knuth [126] respectively.
Both cardinalities turn out to be the n-th Catalan number A000108. Later, Simion and
Schmidt [193] found sn(P) for all P ⊆ S3.

This was followed by several articles that found sn({π1, π2}) for various pairs of permuta-
tions: Billey, Jockusch, and Stanley [36] and West [224] solved the problem for π1 ∈ S3,
π2 ∈ S4, and Kremer and Shiu [133] considered several cases with π1, π2 ∈ S4.

• Patterns in ascent sequences: We write An(P) for the set of ascent sequences of length n
avoiding all patterns in P . Also, we let An(P) = |An(P)|. Pattern avoidance in ascent se-
quence was first studied by Duncan and Steingrímsson [91]. They studied the enumeration
of sequences avoiding patterns of length 3 and 4 with the entries in the Online Encyclopedia
of Integer Sequences [2]. Mansour and Shattuck [147] later computed the number of se-
quences avoiding 1012 and 0123 and showed that certain statistics on 0012-avoiding ascent
sequences are equidistributed with other statistics on the set of 132-avoiding permutations.

15

https://oeis.org/A000108

2.2. STATISTICS CHAPTER 2. ENUMERATIVE COMBINATORICS

Non-classical patterns

Barred patterns: First introduced for permutations by West [221], a barred pattern is specified
by a permutation with some barred entries. If π̄ is a barred pattern, let π be the permutation
obtained by removing all bars of π̄, and let π′ be the permutation which is order isomorphic to
the non-barred entries in π̄. For example, let π̄ = 43̄21̄5, so π = 43215 and π′ = 312. An
occurrence of barred pattern π̄ in a permutation w is then an occurrence of π′ in w that is not part
of an occurrence of π in w. Conversely, for w to avoid π̄ , each occurrence in w of π′ must appear
in an occurrence of π. Moreover, barred patterns in words do not seem to appear in the literature,
even though this notion is well defined.

Vincular patterns: Vincular patterns were introduced for permutations by Babson and Stein-
grímsson [13] in 2000; this notion was extended to words by Burstein and Mansour [54] in 2003;
the book [114] by Heubach and Mansour discusses vincular patterns for words. A vincular or
generalised pattern specifies the conditions for adjacency. Two different notations are used. Tra-
ditionally, a vincular pattern is written as a permutation with dashes inserted between terms that
need not be adjacent and no dashes between terms that that need to be adjacent. Alternatively, and
perhaps preferably, terms which are to be adjacent are underlined. For example, 314265 contains
two occurrences of 2314 (or 2 − 31 − 4) and a single occurrence of 2314 (2 − 314) but avoids
23 14 (23 − 14). A vincular pattern in which all the terms must appear contiguously is called a
consecutive pattern.

Bivincular patterns: In a bivincular pattern, conditions of vincular patterns are also placed on
which entries must take adjacent (consecutive) values. It was introduced for permutations by
Bousquet-Mélou Claesson, Dukes and Kitaev [43] in 2010. This notion can not be extended
directly to words.

Mesh patterns: Mesh patterns were introduced by Brändén and Claesson in [49] to provide
explicit expansions for certain permutation statistics as (possibly infinite) linear combinations of
(classical) permutation patterns. This notion was further studied by Kitaev and Remmel in some
series of papers refining conditions on permutations and patterns, see for instance [123]. Classical,
vincular and bivincular patterns are all examples of the more general family of mesh patterns.
Formally, a mesh pattern p of length k is a pair (π,R) with π ∈ Sk and R ⊆ [0, k]× [0, k], a set
of pairs of integers. An example is p = (3241, {(0, 2), (1, 3), (1, 4), (4, 2), (4, 3)}). To depict this
mesh pattern, we plot the points (i, wi) in a Cartesian coordinate system, and for each (i, j) ∈ R
we shade the unit square with the bottom left corner (i, j):

16

2.3. ENUMERATION METHODS CHAPTER 2. ENUMERATIVE COMBINATORICS

An occurrence of a mesh pattern (π,R) in a permutation w consists of an occurrence of the classi-
cal pattern π in w such that no elements of w occur in the shaded regions of the figure. A vincular
pattern is therefore a mesh pattern in which complete columns are shaded.

2.3 Enumeration methods

Combinatorics is the art of counting. The general object of enumerative combinatorics is to calcu-
late the cardinal for particular sets. Most of the time, the set depends on one or more parameters,
and it is a question of expressing this cardinal as a function of these parameters.

In combinatorics, there are powerful tools that help us to solve many enumerative problems,
namely recurrence relation and generating function. Recurrence relation arises naturally in defi-
nitions of sequences or when we try to break the problem into cases, some of which are similar
to the original problem. Generating functions are closely related to sequences, and can be used to
solve recurrence relations and other kinds of problems such as enumeration problems and proving
identities involving sequences. In this thesis, we will have some results and applications using
recurrence relations and generating functions among other enumeration tools.

2.3.1 Bijection

A useful and combinatorially meaningful method to compute the number of elements in a set is
to provide a bijection with a set already counted. Bijective Combinatorics is a field that consists
in studying the enumerative properties of sets of combinatorial objects by exhibiting bijections
(ideally explicit), which preserve some properties, between such sets and already known objects.
This then makes it possible to apply all the tools of analytical combinatorics to these new ob-
jects, in order to obtain an explicit enumeration, asymptotic properties, or even to generate them
exhaustively. We present below examples of a bijection between sets of combinatorial objects

Dyck words vs. Catalan words

Many different classes of combinatorial objects are enumerated by the well-known Catalan num-
bers. This is the case, among others, of ballot sequences, planar trees, Young tableaux, stack
sortable permutations, etc. A list of over 60 types of such combinatorial classes of independent
interest was compiled by Stanley [199]. There is also in the literature a certain number of explicit
bijections between these Catalan classes.

There is a direct bijection

δ 7→ w between maybe the most celebrated combinatorial class enumerated by Catalan numbers,
Dyck paths of semi length n, and Catalan words Cn. Indeed, in a length 2n Dyck path collecting
for the up steps the ordinates of their starting points we obtain a length n Catalan word, and this
construction is a bijection. See Fig. 2.6 where this bijection is depicted for an example.

17

2.3. ENUMERATION METHODS CHAPTER 2. ENUMERATIVE COMBINATORICS

0 0

1

2

3 3

0

1

2

1

(a)

0 0

1

2

3 3

0

1

2

1

(b)

Figure 2.6: (a) The Dyck path uduuuududddduuuddudd where each up step is labeled by the ordinate of its starting point; and (b)
its corresponding Catalan word 0012330121

Note that the above bijection gives a one-to-one correspondence between occurrences of the con-
secutive pattern ddu in Dyck words and descents in Catalan words.

132-Avoiding permutations vs. Dyck paths

In [130], Krattenthaler exhibited a Dyck path correspondence φ for 132-avoiding permutations.
Let φ the map from the set of 132-avoiding permutations to Dyck paths as follows. Let w =
w1w2 . . . wn be a 132-avoiding permutation. We read the permutation w from left to right and
successively generate a Dyck path. When wj is read, then in the path we adjoin as many up-steps
as necessary, followed by a down-step from height hj + 1 to height hj (measured from the x-axis),
where hj is the number of elements in wj+1 . . . wn which are larger than wj .
For example, let w = 74352681. The first element to be read is 7. There is one element in
4352681 that is larger than 7; therefore the path starts with two up-steps followed by a down-step,
thus reaching height 1 (see Fig. 2.7).

The next 4 is read. Three elements in 352681 are larger than 4; therefore the path continues with
three up-steps followed by a down-step, thus reaching height 3, etc. The complete Dyck path
φ(74352681) is shown in Fig. 2.7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4

5

Figure 2.7: The Dyck path corresponding to 74352681

2.3.2 Recurrence relation

A recurrence relation is a formula that recursively defines a sequence (an)∞n=0 provided some
values of initial terms am, am+1, . . . am+k are given, where m, k are non-negative integers. In
other words, subsequent terms am+k+1, am+k+2, . . . are defined as a function of the preceding
terms. For example, let Fn denote the Fibonacci numbers having recurrence Fn = Fn−1 + Fn−2,
n ≥ 2, with the initial values F0 = 0 and F1 = 1. A wordw1, w2, . . . , wn is an inversion sequence
if 0 ≤ wi < i for all i ∈ [n], see [70]. Let ISn(π) the set of inversion sequences of length n
which avoid the pattern π. Mansour and Shattuck [147] counted the set ISn(012) and proved that
it is counted by the odd indices Fibonacci numbers F2n−1.

18

2.3. ENUMERATION METHODS CHAPTER 2. ENUMERATIVE COMBINATORICS

2.3.3 Generating function

LetW be a set of words and for each n ≥ 0, letWn be the set of words inW of length n. The
generating function for the setW is the formal power series

W(x) =
∑

n≥0
|Wn|xn =

∑

w∈W
x|w|.

In particular, when π is a pattern,W(π) is the set of words inW avoiding π, andWn(π) the set
of words of length n inW(π), then the generating function forW(π) is the formal power series

Wπ(x) =
∑

n≥0
|Wn(π)|xn =

∑

w∈W(π)

x|w|.

More general, let fk,P be the generating function for words over the alphabet [k] = {1, . . . , k}
avoiding the pattern set P . That is, fk,P (x) =

∑
n≥0 |Wn(k, P)|xn whereWn(k, P) is precisely

the set of length n words over [k] and avoiding P . In order to better illustrate the generating
fuctions as an enumerating tool, we consider the following ‘degenerate’ cases:

• If 1 ∈ P , then fk,P (x) = 1 (only the empty word avoids the pattern 1)

• If P = ∅, then fk,P (x) = 1
1−kx (the generating function for all words over [k]).

Sometimes, we deal with multivariate generating functions. For instance, let W(x, y) be the bi-
variate generating function where the coefficient of xnyk is the number of pattern-avoiding words
of length n and a fixed value k for a given statistic, say s. Then

W(x, y) =
∑

w∈W
x|w|ys w.

From W(x, y), simple substitutions will allow computing either the associated univariate gen-
erating functions or other similar variations. For example, Asinowski, Bacher, Banderier, and
Gittenberger [11] were interested in enumerating the lattice paths that avoid a fixed pattern π, and
in counting the occurrences of a given pattern. So they used the bivariate generating function
W(t, u), where the variable t encodes the length of the paths, and the variable u the final altitude.
And also, they used the trivariate generating function with the variables length, final altitude, and
the number of occurrences of the pattern π. To show the effectiveness of generating functions as
a counting tool, we give below two examples for counting Dyck and Motzkin paths according to
their length. Many studies on Motzkin and Dyck paths appear in the literature. Generally, they
consist in enumerating these paths according to several parameters, such as length, height, number
of occurrences of a pattern, number of returns to the x-axis (see for instance [25,79,145,146,154]
for Dyck paths and [18, 46, 72, 82] for Motzkin paths). In order to illustrate the effectiveness of
generating functions as a counting tool, we give below two examples: for counting Dyck path and
for Motzkin paths according to their length.

Any non-empty Dyck path P ∈ D has a unique first return decomposition [79] of the form P =
UαDβ where α and β are in turn two Dyck paths in D. See Fig. 2.8 for an illustration of this
decomposition.

19

2.3. ENUMERATION METHODS CHAPTER 2. ENUMERATIVE COMBINATORICS

α β

Figure 2.8: First return decomposition UαDβ of a Dyck path P ∈ D

Thus, a Dyck path w ∈ D is either

• empty; the corresponding generating function is 1, or

• w = UαDβ where {α, β} ∈ D; the generating function for these words is x2 · D2(x).

Combining this case, we deduce the functional equation

D(x) = 1 + x2 · D2(x)

with the solution:

D(x) =
1−
√

1− 4x2

2x2
= 1 + x2 + 2x4 + 5x6 + 14x8 + 42x10 +O(x11).

Now let M ∈ M be a non-empty Motzkin path, it can be uniquely written either as M = UαDβ
or M = Fα where α and β are two Motzkin paths inM. This decomposition will be called first
return decomposition ofM (see Fig. 2.9 for an illustration of this decomposition).

α β α

Figure 2.9: First return decomposition UαDβ and Fα of a Motzkin path M ∈M

A non-empty path w ∈M has one of the following forms:

• w = UαDβ where {α, β} ∈ M; the generating function for these paths is x2 · M2(x),

• w = Fα where α ∈M; the generating function for these paths is x · M(x).

Combining these cases and considering the empty path which contributes with 1 to M(x), we
deduce the functional equation for the paths inM according to their length

M(x) = 1 + x · M(x) + x2 · M2(x).

20

2.4. CONCLUSION CHAPTER 2. ENUMERATIVE COMBINATORICS

Solving this equation, we will get the generating function:

M(x) =
1− x−

√
1− 2x− 3x2

2x2

and the first coefficients of xn, n ≥ 0, in the Taylor expansion are 1, 1, 2, 4, 9, 21, 51, 127 (see
Motzkin sequence A001006 in [213]).

2.3.4 Wilf equivalence

Two patterns π and τ are called Wilf equivalent, which is denoted π v τ , if the cardinality of the
set of words avoiding π is equal to the cardinality of the set of words avoiding τ . Given two classes,
C and D, one natural question is to determine whether they are equinumerous, i.e. |Cn| = |Dn|
for every n. Two combinatorial classes that are equinumerous are said to be Wilf equivalent and
the equivalence classes are called Wilf classes. For example, as is well known, both Sn(123) and
Sn(132) are counted by the Catalan numbers, so all permutations of length three are in the same
Wilf class.
Burstein [52] shows analytically that 123 v 132, while Burstein and Mansour [55] proved that
112 v 121, this allows us to obtain the Wilf equivalence classes for 3-patterns in words:

{111}, {112, 121}, {123, 132}

Of course, the more efficient the counting method is, the more cleverly it will rely on the proper-
ties of the elements in the finite set, therefore enumerative combinatorics is much more than just
counting, but it has to do with understanding the structure of the objects we are counting.

2.4 Conclusion

This chapter was devoted to the presentation of introductory notions and bases in enumerative com-
binatorics. In particular, at first, we started by presenting different combinatorial objects to which
this study relates (words, paths, permutation,. . .) and their statistics. Then, a brief explanation was
presented on the different counting tools that we used in our contributions. This chapter therefore
presents some definitions and results useful for a better understanding of the contributions of the
following two chapters.

21

https://oeis.org/A001006

2.4. CONCLUSION CHAPTER 2. ENUMERATIVE COMBINATORICS

22

Chapter 3

Catalan words avoiding patterns

In this chapter, we present a contribution to a recent line of research on classical pattern avoidance
on words subject to some growth restrictions (for instance, ascent sequences [30,91], inversion se-
quences [70,148,230], restricted growth functions [57,139]) by investigating connections between
sequences on the On-line Encyclopedia of Integer Sequences [2] and Catalan words avoiding two
patterns of length 3.

In this contribution, we recall Catalan words, which are words over the set of non-negative integers
and we denote such words by sequences (for instance w1w2 . . . wn) or by italicized boldface letter
(for instancew and u). As defined in Section 2.1.1, the wordw = w1w2 . . . wn is called a Catalan
word if

w1 = 0 and 0 ≤ wi ≤ wi−1 + 1 for i = 2, 3, . . . , n.

We remind that Cn is the set of length n Catalan words and cn = |Cn| is the nth Catalan num-
ber 1

n+1

(
2n
n

)
. For a pattern π, we denote by Cn(π) the set of length n Catalan words avoid-

ing π, and cn(π) = |Cn(π)| is the cardinality of Cn(π) and C(π) = ∪n≥0Cn(π). For exam-
ple, Cn(101) is the set of length n Catalan words avoiding 101, that is, the set of words w
in Cn such that there are no i, j and k, 1 ≤ i < j < k ≤ n, with wi = wk > wj . So,
C4(101) = {0000, 0001, 0010, 0011, 0012, 0100, 0110, 0111, 0112, 0120, 0121, 0122, 0123}.

Likewise, if π is the set of patterns {α, β, . . . }, then Cn(π) and Cn(α, β, . . .) denote both the set
of length n Catalan words avoiding each pattern in π; and cn(π) = cn(α, β, . . .) and C(π) =
C(α, β, . . .) have similar meaning as above. A descent in a word w = w1w2 . . . wn is a position
i, 1 ≤ i ≤ n− 1, with wi > wi+1. The (ordinary) generating function of a set of pattern avoiding
Catalan words C(π) is the formal power series

Cπ(x) =
∑

n≥0
cn(π)xn =

∑

w∈C(π)
x|w|,

where |w| is the length of the word w. In our case of generating function approach for counting
classes of pattern avoiding Catalan words we consider the descent number as an additional statistic
obtaining ‘for free’ the bivariate generating function

Cπ(x, y) =
∑

w∈C(π)
x|w|ydes(w),

23

3.1. CATALAN WORDS VS. ASCENT SEQUENCES CHAPTER 3. CATALAN WORDS

where des(w) is the number of descents of w. With these notations, the coefficient of xnyk in
Cπ(x, y) is the number of Catalan words of length n avoiding π and having k descents, and for a
set S of Catalan words S(x) and S(x, y) have a similar meaning.

For a word w = w1w2 . . . wn and an integer a, we denote by (w + a) the word obtained from
w by increasing by a each of its entries, that is, the word (w1 + a)(w2 + a) · · · (wn + a). In our
constructions, we will often make use of two particular families of Catalan words: those avoiding
10 (i.e., with no descents) and we call these words weakly increasing (or w.i for short) Catalan
words; and those avoiding 00 (and thus necessarily avoiding 10) and we call these words strictly
increasing (or s.i for short) Catalan words. It is easy to see that for each length n ≥ 1 there are
2n−1 w.i. Catalan words and one s.i. Catalan word.

There is many studies on Catalan words [29,209], for example, Baril, Kirgizov and Vajnovszki [23]
studied the distribution of descents on the sets of Catalan words avoiding a pattern of length at most
three, and Keith [228] proved combinatorially a conjecture of Chunwei Song on a limiting case of
the q, t-Schröder theorem where the proof matches pairs of tableaux to Catalan words in a manner
that preserves differences in the maj statistic.

The remaining of this chapter is structured as follows. In the next subsection, we characterize
pattern avoiding ascent sequences which are Catalan words, establishing ties with some similar
enumerative results for ascent sequences in [30]. In Section 3.2 we consider classes of Catalan
words avoiding both a length two and a length three pattern. In the next sections we discuss Catalan
words avoiding two patterns of length three, in increasing order of their complexity: obvious
cases (Section 3.3), cases counted via recurrences (Section 3.4) and cases counted via generating
functions (Section 3.5); these results are summarized in Table 3.2. We conclude with some remarks
and further research directions.

3.1 Catalan words vs. ascent sequences

An ascent in a word w = w1w2 . . . wn is a position i, 1 ≤ i ≤ n − 1, with wi < wi+1, and
asc(w) denotes the number of ascents inw. Closely related to Catalan words are ascent sequences
introduced in [43] and defined as: the word w = w1w2 . . . wn is called an ascent sequence if

w1 = 0 and 0 ≤ wi ≤ asc(w1w2 . . . wi−1) + 1 for i = 2, 3, . . . , n,

and An denotes the set of length n ascent sequences, and A = ∪n≥0An. Similarly as for Catalan
words, if π is a pattern, thenAn(π) is the set of length n ascent sequences avoiding π, andA(π) =
∪n≥0An(π). Clearly, Cn = An for n ≤ 3, and Cn ⊂ An for n ≥ 4, and this inclusion is strict, for
instance, 0102 ∈ A4 \ C4. It turns out that, for particular patterns π, An(π) collapses to Cn(π) for
any n, and this behavior where the pattern 0102 plays a critical role is discussed below.

Proposition 1. If w ∈ A \ C, then w contains the pattern 0102.

Proof. If w = w1w2 . . . wn is an ascent sequence which is not a Catalan word, then there is an i
such that wi ≥ wi−1 + 2, and let k be the smallest such i. It follows that wi ≤ wi−1 + 1 for any i,
2 ≤ i ≤ k − 1, or equivalently w1w2 . . . wk−1 is a Catalan word. Thus, if wi > 0, 2 ≤ i ≤ k − 1,
then each symbol less than wi occurs in the prefix w1w2 . . . wi−1. We distinguish two cases: (i)
wk−1 is not the maximal symbol of the prefix w1w2 . . . wk−1, and (ii) otherwise.

(i) In this case, there exist i and j, 1 ≤ i < j < k − 1, such that wj = wk−1 + 1 and wi = wk−1.
It follows that wiwjwk−1wk is an occurrence of 0102.

24

3.2. AVOIDING A LENGTH 2 AND A LENGTH 3 PATTERN CHAPTER 3. CATALAN WORDS

(ii) In this case the prefix w1w2 . . . wk−1 has a descent (otherwise, since w is an ascent sequence,
the maximal possible value for wk is wk−1 + 1), and let j be such a descent, that is wj > wj+1,
j+1 < k−1. As noticed above, the symbolwj+1 already occurs inw1w2 . . . wj−1, say in position
i. Thus, wiwjwj+1wk is an occurrence of 0102.

Proposition 2. For n ≥ 4 and a pattern π the followings are equivalent

1. An(π) = Cn(π),

2. 0102 contains the pattern π.

Proof. ‘2. ⇒ 1.’ We proceed by contraposition and considering Cn(π) ⊆ An(π). Ifw ∈ An(π) \
Cn(π), then, by Proposition 1, w contains 0102, and so 0102 does not contain π.

‘1. ⇒ 2.’ Again by contraposition: if 0102 does not contain π, then at least one of the words
01023 · · · (n− 2) or 01020n−4 belongs to An(π) and not to Cn(π), and so An(π) 6= Cn(π).

Since the only patterns of length three of 0102 are 001, 010, 012 and 102, we have the following
consequence of Proposition 2.

Corollary 1. For n ≥ 4 and a pattern π of length three, An(π) = Cn(π) if and only if π ∈
{001, 010, 012, 102}.

Pattern avoidance in ascent sequences was initiated in [91], and in [30] ascent sequences avoiding
a pair of patterns of length three are considered and exact enumeration for several such pairs is
given. In light of Corollary 1 it can happen that if a pattern of the avoided pair is one of the four
specified in this corollary, then the resulting ascent sequences are Catalan words as well. The pairs
of avoided patterns for which ascent sequences and Catalan words coincide, and for which the
enumeration has already been considered in [30] are highlighted in the summarizing Table 3.2.
In order to keep the present article self-contained we fully consider these cases, our proofs being
alternative to those in [30].

3.2 Avoiding a length two and a length three pattern

There are three patterns of length two, namely 00, 01 and 10, and we have:

Proposition 3. The number of Catalan words avoiding a pattern of length two and a pattern π of
length three is given by:

cn(00, π) =

{
0 if π = 012 and n ≥ 3,
1 elsewhere;

cn(01, π) =

{
0 if π = 000 and n ≥ 3,
1 elsewhere;

cn(10, π) =

Fn if π = 000,
n if π ∈ {001, 011, 012},
2n−1 elsewhere,

25

3.3. TRIVIAL CASES CHAPTER 3. CATALAN WORDS

where Fn is the nth Fibonacci number defined by F0 = F1 = 1 and for n ≥ 2

Fn = Fn−1 + Fn−2

Proof. If w ∈ Cn(00), then w = 012 · · · (n − 1). Thus, Cn(00, π) = {012 · · · (n − 1)} except
when π = 012 and in this case Cn(00, π) = ∅ for n ≥ 3, and the counting relation for Cn(00, π)
follows.
Similarly, ifw ∈ Cn(01), thenw = 00 · · · 0. Thus, Cn(01, π) = {000 · · · 0} except when π = 000
and in this case Cn(01, π) = ∅ for n ≥ 3.

Finally, a Catalan word avoids 10 if and only if it avoids 010. It follows that cn(10, π) =
cn(010, π), which falls in the case of avoidance of two length 3 patterns and the corresponding
proofs are given in the next section, see also Table 3.2.

3.3 Trivial cases

Superfluous patterns

If the pattern τ contains the pattern σ, then clearly Cn(σ, τ) = Cn(σ); but this phenomenon can
occur even when σ and τ are not related by containment and in this case, following [30], we
say that τ is a superfluous pattern for σ. For example, any word in Cn(012) is a binary word,
and thus any pattern with at least three different symbols is a superfluous pattern for 012. In
Table 3.1 are listed all pairs of superfluous patterns of length three. It is worth to mentioning that
superfluousness is a transitive relation, for instance, 201 is superfluous for 021 which in turn is
superfluous for 011. So, a pattern can be superfluous for several other ones, for instance τ = 201
is superfluous for each of the patterns 001, 010, 011, 012, 021, 101, 120. Also, it is easy to see that
if τ is superfluous for σ, then τ is larger lexicographically than σ.

σ 000 001 010 011 012 021 101 110 120

100 101 021 021 021 201 102 210 201
102 100 101 102 210 201 210
201 101 102 120

τ 102 110 201
110 201 210
120 210
201
210

Table 3.1: In each column, each pattern τ is superfluous for the pattern σ.

Ultimately constant sequences

It can happen that the number of Catalan words avoiding a pair of length 3 patterns is constant for
enough long words. The only two such cases are given below.

Proposition 4.

26

3.4. COUNTING VIA RECURRENCE CHAPTER 3. CATALAN WORDS

cn(000, 011) =

1 if n = 1,
2 if n = 2,
3 if n ≥ 3;

and

cn(000, 012) =

1 if n = 1,
2 if n = 2,
3 if n = 3 or n = 4,
0 if n ≥ 5.

Proof. If n ≥ 3, then Cn(000, 011) = {0x,x0,x(n− 1)} where x is the word 01 · · · (n− 2), and
the first point follows.
If a Catalan word avoids 012, then it is a binary word. In addition, if its length is larger than 4 it
necessarily contains three identical entries, and so Cn(000, 012) = ∅ for n ≥ 5. Considering the
initial values of cn(000, 012) the second point follows.

Counting sequence n

Proposition 5. If π is one of the pairs of patterns {001, 010}, {001, 011}, {001, 012}, {010, 011},
{010, 012} or {011, 012}, then cn(π) = n.

Proof. The proof is based on the easy to understand description given below for the corresponding
sets of Catalan words:

π Cn(π) π Cn(π)

{001, 010} {012 · · · jj · · · j : 0 ≤ j ≤ n− 1} {010, 011} {0j12 · · · (n− j) : 1 ≤ j ≤ n}
{001, 011} {012 · · · j0 · · · 0 : 0 ≤ j ≤ n− 1} {010, 012} {0j+11n−j−1 : 0 ≤ j ≤ n− 1}
{001, 012} {01j0n−j−1 : 0 ≤ j ≤ n− 1} {011, 012} {0n} ∪ {0j10n−j−1 : 1 ≤ j ≤ n− 1}

3.4 Counting via recurrence

Counting sequence 2(n− 1)

Proposition 6. If π = {011, 100} or π = {011, 120}, then

cn(π) = 2(n− 1)

for n ≥ 2 (Sequence A005843 in [2]).

Proof. If π = {011, 100} and w ∈ Cn(π), n ≥ 2, then either

− w = 0ku, 0 ≤ k ≤ n− 1, with u a s.i. Catalan word (of length at least one), or

− w = 0ku0, 0 ≤ k ≤ n− 3, with u a s.i. Catalan word (of length at least two).

In the first case, there are n possibilities for w and n − 2 possibilities in the second case, and the
result holds. If π = {011, 120} and w ∈ Cn(π), n ≥ 2, then either

27

https://oeis.org/A005843

3.4. COUNTING VIA RECURRENCE CHAPTER 3. CATALAN WORDS

− w = 0ku, 0 ≤ k ≤ n− 1, with u a s.i. Catalan word, or
− w = 0k10n−k−1, 1 ≤ k ≤ n− 2,

and as previously the result holds.

Sequences involving 2n

Proposition 7. If π = {000, 101}, then

cn(π) = 2n−1

for n ≥ 1 (A000079 in [2]).

Proof. If a Catalan word avoids 101, then it is unimodal (that is, it can be written not necessarily
in a unique way as uv with u a weakly decreasing and v weakly decreasing word). In addition,
if the word avoids 000, then its maximal value occurs at most twice, and when it occurs twice this
happens in consecutive positions.
We denote by Dn the subset of words in Cn(π) where the maximal entry occurs once and by
En that where it occurs twice, dn = |Dn|, en = |En|, and cn(π) = dn + en. Any word w =
w1 · · ·mm · · ·wn−1 ∈ En−1 with its maximal value m occurring twice can be extended into a
word in Dn by one of the transformations:

w 7→ w1 · · ·m(m+ 1)m · · ·wn−1, and

w 7→ w1 · · ·mm(m+ 1) · · ·wn−1,

and any word w = w1 · · ·m · · ·wn−1 ∈ Dn−1 with its maximal value m occurring once can be
extended into a word in Dn by:

w 7→ w1 · · ·m(m+ 1) · · ·wn−1.

Conversely, any word in Dn, n ≥ 2, can uniquely be obtained from a word in Dn−1 or in En−1 by
reversing one of the transformations above, so

dn = 2 · en−1 + dn−1,

for n ≥ 2.
Reasoning in a similar way we have

en = 2 · en−2 + dn−2,

Thus, for n ≥ 3, en = dn−1, and finally

cn(π) = dn + en = 2 · (dn−1 + en−1) = 2 · cn−1(π),

and with the initial conditions c1(π) = 1 and c2(π) = 2, the result follows.

Proposition 8. If π = {101, 210} or π = {102, 120}, then

cn(π) = (n− 1) · 2n−2 + 1

for n ≥ 2 (A005183 in [2]).

28

https://oeis.org/A000079
https://oeis.org/A005183

3.4. COUNTING VIA RECURRENCE CHAPTER 3. CATALAN WORDS

Proof. If π = {101, 210} and w ∈ Cn(π), n ≥ 3, then either

− w = 0u with u ∈ Cn−1(π), or

− w = 0(u+ 1) with u ∈ Cn−1(π), or

− w = 0(u+ 1)0n−k−1 with u a w.i. Catalan word of length k, 1 ≤ k ≤ n− 2.

The number of words in each of the first two cases is cn−1(π). The number of length k w.i. Catalan
words is 2k−1, so the number of words in the last case is

n−2∑

k=1

2k−1 =

n−3∑

k=0

2k = 2n−2 − 1.

Thus, cn(π) = 2cn−1(π) + 2n−2 − 1, and after calculation the result holds.

If π = {102, 120} and w ∈ Cn(π), n ≥ 3, then either

− w = 0u with u ∈ Cn−1(π), or

− w = 0(u+ 1) with u ∈ Cn−1(π), or

− w = 01u with u a length (n− 2) binary word other than 11 · · · 1.

The number of words in each of the first two cases is cn−1(π), and the number of words in the last
case is 2n−2 − 1. So cn(π) = 2cn−1(π) + 2n−2 − 1, and again the result holds.

Proposition 9. If π is one of the pairs of patterns {021, 100}, {021, 101}, {101, 110} or {101, 120},
then

cn(π) = 2n − n
for n ≥ 0 (A000325 in [2]).

Proof. If π = {021, 100} and w ∈ Cn(π), n ≥ 4, then either

− w is a w.i. Catalan word, or

− w = u0 with u a w.i. Catalan word of length (n− 1) other than 00 · · · 0, or

− w = 0v0(u + 1) where v is w.i. binary word ending by 1 and u is a w.i. Catalan word of
length k, 1 ≤ k ≤ n− 3.

In the first case the number of words w is 2n−1 and in the second case the number of words w is
2n−2 − 1. In the last, case the number of words w is

n−3∑

k=1

(n− k − 2) · 2k−1 = 2n−2 − (n− 1).

Combining these cases and considering the initial values of cn(π) the result holds.

If π = {021, 101} and w ∈ Cn(π), n ≥ 2, then either

− w = u0 with u ∈ Cn−1(π), or

− w = 0n−k(u+ 1) with u a w.i. Catalan word of length k, 1 ≤ k ≤ n− 1.

29

https://oeis.org/A000325

3.4. COUNTING VIA RECURRENCE CHAPTER 3. CATALAN WORDS

The number of words in the first case is cn−1(π) and the number of words in the second case is∑n−1
k=1 2k−1 = 2n−1− 1. So cn(π) = cn−1(π) + 2n−1− 1 and after calculation the result follows.

If π = {101, 110} and w ∈ Cn(π), n ≥ 3, then either

− w = 0u with u ∈ Cn−1(π), or

− w = 0(u+ 1) with u ∈ Cn−1(π), or

− w = u0n−k with u a s.i. Catalan word of length k, 2 ≤ k ≤ n− 1.

The number of wordsw in each of the first two cases is cn−1(π). For the last case, for each k there
is exactly one wordw, so their number is (n− 2) in this case. So cn(π) = 2cn−1(π) + n− 2 and
after calculation the result holds.

If π = {101, 120} and w ∈ Cn(π), n ≥ 3, then either

− w = 0u with u ∈ Cn−1(π), or

− w = 0(u+ 1) with u ∈ Cn−1(π), or

− w = 01k0n−k−1, 1 ≤ k ≤ n− 2.

So, again cn(π) = 2cn−1(π) + n− 2.

Proposition 10. If π = {021, 120}, then

cn(π) = (n+ 2) · 2n−3

for n ≥ 3 (A045623 in [2]).

Proof. If w ∈ Cn(π), n ≥ 4, then either

− w = 0u0 with u a length (n− 2) binary word, or

− w = 0(u+ 1) with u a length (n− 1) w.i. Catalan word, or

− w = 0u0(v + 1) with u a binary word and v w.i. Catalan word.

The number of words in each of the first two cases is 2n−2 and the number of words in the last
case is

n−2∑

k=1

2n−k−22k−1 = (n− 2)2n−3,

and so cn(π) = 2n−1 + (n− 2)2n−3, which gives the desired result.

If a Catalan word avoids both 102 and 110, then it has at most one descent. In the second part
of the proof of the next proposition we need the following technical lemma which gives the num-
ber of Catalan words in Cn(102, 110) with one descent and avoiding the pattern 00 before the
descent (note that in this case avoiding 00 is equivalent to avoiding equal consecutive entries).
The set of these words is empty for n ≤ 2, it is the single word set {010} for n = 3, and
{0100, 0101, 0120, 0121} for n = 4.

30

https://oeis.org/A045623

3.4. COUNTING VIA RECURRENCE CHAPTER 3. CATALAN WORDS

Lemma 1. Let Dn be the set of words in Cn(102, 110) having one descent and avoiding 00 before
the descent. Then |Dn| = n

6 (n− 1)(n− 2).

Proof. A word belongs to Dn, n ≥ 3, if and only if it can be written as

012 . . . (k − 1)a(u+ a),

with 2 ≤ k ≤ n − 1 (k is the position of the unique descent in the word), a ∈ {0, 1, . . . k − 2},
and u is a length (n− k − 1) w.i. Catalan word over {0, 1}. For each choice of k, there are k − 1
choices for a, and for each choice for a there are n− k choices for u. It follows that

|Dn| =
n−1∑

k=2

(k − 1) · (n− k),

and after calculation the statement holds.

Proposition 11. If π = {021, 102} or π = {102, 110}, then

cn(π) = 3 · 2n−1 − 1

2
(n+ 1)(n+ 2) + n

for n ≥ 1 (A116702 in [2]).

Proof. If π = {021, 102} and w ∈ Cn(π), n ≥ 3, then either

− w = 0u with u a length (n− 1) binary word, or

− w = 0 · · · 0(u + 1)0 · · · 0 with u a length k, 2 ≤ k ≤ n − 1, w.i. Catalan word other than
00 · · · 0 and w beginning by at least one 0.

The number of words in the first case is 2n−1 and the number of those in the second case is

n−1∑

k=2

(2k−1 − 1) · (n− k)

= 2 · 2n−1 − 1

2
(n+ 1)(n+ 2) + n,

and combining the two cases the result holds.

If π = {102, 110} and w ∈ Cn(π), then either

− w is a w.i. Catalan word, the number of such words is 2n−1, or

− w ∈ Dn, with Dn defined in Lemma 1, or

− w = u(v + m), where u is a w.i. Catalan word of length k, 1 ≤ k ≤ n − 3, m is the
maximal (rightmost) entry of u, and v is a word belonging to Dn−k.

31

https://oeis.org/A116702

3.4. COUNTING VIA RECURRENCE CHAPTER 3. CATALAN WORDS

Indeed, the first case corresponds to words with no descents, the second one to those with a descent
and no occurrences of 00 before the descent, and the third one to those with both descent and
occurrences of 00 before the descent (the rightmost such occurrence is in positions k and k + 1).
By Lemma 1, the number of words in the third case is

n−3∑

k=1

2k−1 · (n− k) ·
(

1

6
(n− k)2 − 1

2
(n− k) +

1

3

)

= 2n − 1

6
(n+ 1)(n2 − n+ 6).

Finally, combining the three previous cases the desired result holds.

Sequences involving binomial coefficients

In this part, we use the notation
ab · · · cd

↑
i

e · · · f

to denote that the entry d is in position i in the word ab · · · cde · · · f .

Proposition 12. If π = {001, 210}, then

cn(π) =

(
n

3

)
+ n

for n ≥ 3 (A000125 in [2]).

Proof. If w ∈ Cn(π), then it has at most one descent.

Ifw has no descents, then it has the formw = 01 · · · (m− 1)m · · ·m and there are n such words.

If w has one descent, then it has the form w = 01 · · · (m− 1)m · · ·mk · · · k with 0 ≤ k < m <
n−1. It follows that there is a bijection between the family of 3-element subsets of {0, 1, . . . , n−1}
and the words in Cn(π) with one descent:

{k,m, `} 7→ 0123 · · · (m− 1)m · · ·m
↑
`

k · · · k.

Combining the two cases, we have cn(π) =
(
n
3

)
+ n.

Proposition 13. If π is one of the pairs of patterns {001, 021}, {001, 110}, {001, 120}, {012, 100},
{012, 101} or {012, 110}, then

cn(π) =

(
n

2

)
+ 1

for n ≥ 2 (A000124 in [2]).

Proof. In any of the six cases for π, the set Cn(π) is in bijection with the family S of subsets
of {2, . . . , n} with at most two elements. We give below explicit definitions for such bijections,
where the empty set is mapped to 0 · · · 0 ∈ Cn(π) by each of them.

If π = {001, 021} and w ∈ Cn(π), then either w = 00 · · · 0 or for some m ≥ 1, w =
0123 · · · (m − 1)ms with s ≥ 1 or w = 0123 · · · (m − 1)ms0t with s ≥ 1, t ≥ 1, and the
desired bijection S → Cn(001, 021) is

32

https://oeis.org/A000125
https://oeis.org/A000124

3.4. COUNTING VIA RECURRENCE CHAPTER 3. CATALAN WORDS

{k} 7→ 0123 · · · (m− 1) m
↑

k=m+1

· · ·m;

{k, j} 7→ 0123 · · · (m− 1) m
↑

k=m+1

· · ·m0
↑
j

· · · 0.

If π = {001, 110} and w ∈ Cn(π), then either w = 00 · · · 0 or w = 0123 · · · (m − 1)m · · ·m
with m the maximal entry of w, or w = 0123 · · · (m − 1)m` · · · ` with ` < m, and the desired
bijection S → Cn(001, 110) is

{k} 7→ 0123 · · · (m− 1) m
↑

k=m+1

· · ·m;

{k, j} 7→ 0123 · · · (j − 2)(k − 2) · · · (k − 2).

If π = {001, 120} and w ∈ Cn(π), then either w = 00 · · · 0, or for some m ≥ 1, w =
0123 · · · (m − 1)ms with s ≥ 1 or w = 0123 · · · (m − 1)ms(m − 1)t with s, t ≥ 1, and the
desired bijection S → Cn(001, 120) is

{k} 7→ 0123 · · · (m− 1) m
↑

k=m+1

· · ·m;

{k, j} 7→ 0123 · · · (m− 1) m
↑

k=m+1

· · ·m(m− 1)
↑
j

· · · (m− 1).

For the next three cases we need the following observation: a Catalan word avoids 012 if and only
if it is a binary word (over {0, 1}) beginning by a 0.

If π = {012, 100} and w ∈ Cn(π), then either w = 0s1t with s ≥ 1, t ≥ 0 or w = 0s1t01r with
s, t ≥ 1, r ≥ 0, and the desired bijection S → Cn(012, 100) is

{k} 7→ 0 · · · 01
↑
k

· · · 1;

{k, j} 7→ 0 · · · 01
↑
k

· · · 10
↑
j

1 · · · 1.

If π = {012, 101} and w ∈ Cn(π), then either w = 0s1t with s ≥ 1, t ≥ 0 or w = 0s1t0r with
s, t ≥ 1, r ≥ 1, and the desired bijection S → Cn(012, 101) is

{k} 7→ 0 · · · 01
↑
k

· · · 1;

{k, j} 7→ 0 · · · 01
↑
k

· · · 10
↑
j

· · · 0.

If π = {012, 110} and w ∈ Cn(π), then either w = 0s1t with s ≥ 1, t ≥ 0 or w = 0s10t1r with
s, t ≥ 1, r ≥ 0, and the desired bijection S → Cn(012, 110) is

{k} 7→ 0 · · · 01
↑
k

· · · 1;

{k, j} 7→ 0 · · · 01
↑
k

0 · · · 0
↑
j

1 · · · 1.

Sequences involving Fibonacci(-like) numbers

As in Proposition 3, we consider the sequence of Fibonacci numbers (Fn)n≥0 defined as F0 = 1,
F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

33

3.4. COUNTING VIA RECURRENCE CHAPTER 3. CATALAN WORDS

Proposition 14. If π = {000, 001} or π = {000, 010}, then

cn(π) = Fn

for n ≥ 0 (A00045 in [2]).

Proof. For π = {000, 001} the proof is up to a certain point similar to that of Proposition 7. A
word belonging to Cn(π) is unimodal and its maximal entry occurs once or twice in consecutive
positions. Let Dn denote the subset of words in Cn(π) where the maximal entry occurs once
and En denote that where it occurs twice. If w ∈ Cn(π) has its maximal entry m, then the
insertion of (m + 1) after the leftmost occurrence of m in w produces a word in Dn+1, and the
insertion of (m+ 1)(m+ 1) produces a word in En+2. It is easy to see that these transformations
induce a bijection between Cn(π) and Dn+1, and between Cn(π) and En+2, and thus between
Cn−2(π) ∪ Cn−1(π) and Cn(π). It follows that cn(π) satisfies a Fibonacci-like recurrence, and by
considering the initial values for cn(π) the result holds.

For π = {000, 010}, a word w ∈ Cn(π) is characterized by: w is w.i. and w does not have three
consecutive equal entries. So w can be represented by the binary word b1b2 . . . bn−1 with no two
consecutive 1s where bi = 1 iff wi = wi−1. This representation is a bijection between Cn(π)
and the set of binary words of length (n− 1) without two consecutive 1s, which cardinality is the
Fibonacci number, see for instance [216].

Proposition 15. If π = {001, 100}, then

cn(π) = Fn+1 − 1

for n ≥ 1.

Proof. If w ∈ Cn(π), n ≥ 3, then either

− w = 0 · · · 0, or

− w = 0(u+ 1) with u ∈ Cn−1(π), or

− w = 0(u+ 1)0 with u ∈ Cn−2(π).

So, cn(π) satisfies the recurrence cn(π) = cn−1(π) + cn−2(π) + 1 for n ≥ 3, and solving it we
have the desired result.

In the next proposition, we will make use of the following relation satisfied by the even index
Fibonacci numbers: F2n = F2n−2 +

∑n−1
i=0 F2i for n ≥ 1.

Proposition 16. If π = {100, 201}, then

cn(π) = F2n−2

for n ≥ 1 (A001519 in [2]).

Proof. If w ∈ Cn(π), n ≥ 3, then either

− w = 0u with u ∈ Cn−1(π), or

− w = 0(u+ 1) with u ∈ Cn−1(π), or

34

https://oeis.org/A00045
https://oeis.org/A001519

3.5. COUNTING VIA GENERATING FUNCTION CHAPTER 3. CATALAN WORDS

− w = 0(u+ 1)0 with u ∈ Cn−2(π), or
− w = 01n−k−20(u+ 1) with u ∈ Ck(π) for some k, 1 ≤ k ≤ n− 3.

In both of the first two cases, the number of wordsw is cn−1(π) and in the third case, this number
is cn−2(π). In the last case, the number of words w is

∑n−3
k=1 ck(π). So, cn(π) = 2cn−1(π) +

cn−2(π)+
∑n−3

k=1 ck(π) = cn−1(π)+
∑n−1

k=1 ck(π), and with the initial conditions we have cn(π) =
F2n−2.

The sequence of Pell numbers (pn)n≥0 is defined as p0 = 0, p1 = 1 and pn = 2pn−1 + pn−2 for
n ≥ 2.

Proposition 17. If π = {100, 101}, then cn(π) is the nth Pell number for n ≥ 1 (A000129 in [2]).

Proof. If w ∈ Cn(π), n ≥ 2, then either

− w = 0u with u ∈ Cn−1(π), or
− w = 0(u+ 1) with u ∈ Cn−1(π), or
− w = 0(u+ 1)0 with u ∈ Cn−2(π).

In both of the first two cases, the number of wordsw is cn−1(π) and it is cn−2(π) in the last case.
So, cn(π) satisfies Pell numbers recurrence and considering its initial values the statement holds.

3.5 Counting via generating function

Here we give bivariate generating functions Cπ(x, y) where the coefficient of xnyk is the number
of Catalan words of length n having k descents and avoiding π, for each of the remaining pairs
π of patterns of length 3. Plugging y = 1 in Cπ(x, y) we obtain Cπ(x) = Cπ(x, 1) where
the coefficient of xn is the number of Catalan words of length n avoiding π. All the obtained
enumerating sequences are not yet recorded in [2], except that for: π = {100, 120} and for π =
{110, 120} (see Corollary 3) and presumably for π = {100, 210} (see Corollary 15). In almost all
the proofs of the next propositions the desired generating function is the solution of a functional
equation satisfied by it.

Proposition 18. If π = {000, 021}, then

Cπ(x, y) = −x
4y + x2y + 1

x2 + x− 1
.

Proof. Here we need the generating function for the Fibonacci numbers C000,010(x) = 1
1−x−x2

for the set in Proposition 14. Note that words in C(000, 010) have no descents.

Let w be a non-empty word in C(π). Then w has one of the following forms:

− w = 0(u+1) where u ∈ C(000, 010); the generating function for these words is x· 1
1−x−x2 ,

− w = 00(u + 1) where u ∈ C(000, 010); the generating function for these words is x2 ·
1

1−x−x2 ,

− w = 0(u + 1)0 where u ∈ C(000, 010); the generating function for these words is y · x2 ·
1

1−x−x2 ,

35

https://oeis.org/A000129

3.5. COUNTING VIA GENERATING FUNCTION CHAPTER 3. CATALAN WORDS

− w = 0101(u + 2) where u ∈ C(000, 010); the generating function for these words is
y · x4 · 1

1−x−x2 .

Combining these cases and adding 1 corresponding to the empty word we have

Cπ(x, y) = 1 + x(1 + x) · 1

1− x− x2 + yx2(1 + x2)

(
1

1− x− x2
)
,

which after calculation gives the desired result.

Corollary 2. If π = {000, 021}, then

Cπ(x) = −x
4 + x2 + 1

x2 + x− 1

= 1 + x+ 3x2 + 4x3 + 8x4 + 12x5 + 20x6 + 32x7 +O(x6).

Proposition 19. If π = {100, 120}, then

Cπ(x, y) = − (x− 1)2

x3y − 2x2 + 3x− 1
.

Proof. A word w ∈ C(π) is in one of the following cases:

− w is a w.i. Catalan word,
− w = u(m− 1)(v +m) where u is a w.i. Catalan word other than 00 · · · 0, m is the largest

(last) entry of u and v ∈ C(π).

The generating function for the words of the first form is 1−x
1−2x and the generating function for the

words of the second form is
(

1− x
1− 2x

− 1

1− x

)
· x · y · Cπ(x, y).

Combining these cases we deduce the functional equation below which solution gives the desired
result:

Cπ(x, y) =

(
1− x
1− 2x

− 1

1− x

)
· x · y · Cπ(x, y) +

1− x
1− 2x

.

Proposition 20. If π = {110, 120}, then

Cπ(x, y) = − (x− 1)2

x3y − 2x2 + 3x− 1
.

Proof. A word w ∈ C(π) is in one of the following cases:

− w is a w.i. Catalan word,
− w = u(m+ 1)v where u is a non-empty w.i. Catalan word, m is the largest (last) entry of
u and v is a word of the form mm · · ·m(x + m + 1) with at least one m in its prefix and
x ∈ C(π).

36

3.5. COUNTING VIA GENERATING FUNCTION CHAPTER 3. CATALAN WORDS

The generating function for the words of the first form is 1−x
1−2x .

For the second form, the generating function for the words u is 1−x
1−2x −1 = x

1−2x , and the generat-
ing function for the words mm · · ·m(x+m+ 1) is x

1−x ·Cπ(x, y). Thus, the generating function
for the words of the second form is

x

1− 2x
· x · y · x

1− x · Cπ(x, y).

Combining these cases we deduce the functional equation

Cπ(x, y) =
x

1− 2x
· x · y · x

1− x · Cπ(x, y) +
1− x
1− 2x

.

The functional equations in the proofs of Propositions 19 and 20 are different but the resulting
bivariate generating functions are the same. Instantiating y by 1 in Cπ(x, y) of these propositions
we have the next corollary.

Corollary 3. If π = {100, 120} or π = {110, 120}, then

Cπ(x) = − (x− 1)2

x3 − 2x2 + 3x− 1

= 1 + x+ 2x2 + 5x3 + 12x4 + 28x5 + 65x6 + 151x7 +O(x8),

and cn(π) is the sequence A034943 in [2].

Proposition 21. If π = {021, 110}, then

Cπ(x, y) = −x
5y + x4y − x4 − x3y + 4x3 − 6x2 + 4x− 1

(2x− 1)(x− 1)3
.

Proof. A non-empty word w ∈ C(π) is in one of the following cases:

− w = 0u where u ∈ C(π); the generating function for these words is x · Cπ(x, y),

− w = 0(u+ 1) where u is a non-empty w.i. Catalan word; the generating function for these
words is x · x

1−2x ,

− w = 01u where u is a non-empty w.i. Catalan word; the generating function for these
words is x2 · y · x

1−2x ,

− w = u0 · · · 0 where u is a s.i. Catalan word of length at least three andw ending by at least
one 0; the generating function for these words is y · x4

(1−x)2 .

Combining these cases and considering the empty word which contributes with 1 to Cπ(x, y), we
deduce the functional equation

Cπ(x, y) = 1 + x · Cπ(x, y) + x · x

1− 2x
+ x2 · y · x

1− 2x
+ y · x4

(1− x)2
.

37

https://oeis.org/A034943

3.5. COUNTING VIA GENERATING FUNCTION CHAPTER 3. CATALAN WORDS

Corollary 4. If π = {021, 110}, then

Cπ(x) = −x
5 + 3x3 − 6x2 + 4x− 1

(2x− 1)(x− 1)3

= 1 + x+ 2x2 + 5x3 + 12x4 + 26x5 + 53x6 + 105x7 +O(x8),

Proposition 22. If π = {110, 201}, then

Cπ(x, y) =
x4y − x3 + 3x2 − 3x+ 1

(x− 1)(x3y − 2x2 + 3x− 1)
.

Proof. A non-empty word w ∈ C(π) is in one of the following cases:

− w = 0u where u ∈ C(π); the generating function for these words is x · Cπ(x, y),

− w = 0(u + 1) where u is a non-empty word in C(π); the generating function for these
words is x · (Cπ(x, y)− 1),

− w = u0 · · · 0 where u is a s.i. Catalan word of length at least 2 and w ending by at least
one 0; the generating function for these words is y · x3

(1−x)2 ,

− w = 010 · · · 0(u + 1) where u is a non-empty word in C(π) and w beginning by 010; the
generating function for these words is y · x3 · 1

1−x · (Cπ(x)− 1).

Combining these cases and adding 1 corresponding to the empty word we deduce the functional
equation

Cπ(x, y) = 1 + x ·Cπ(x, y) + x · (Cπ(x, y)− 1) + y · x3

(1− x)2
+ y · x3 · 1

1− x · (Cπ(x, y)− 1).

Corollary 5. If π = {110, 201}, then

Cπ(x) =
x4 − x3 + 3x2 − 3x+ 1

(x− 1)(x3 − 2x2 + 3x− 1)

= 1 + x+ 2x2 + 5x3 + 13x4 + 32x5 + 76x6 + 178x7 +O(x8),

Proposition 23. If π = {102, 201}, then

Cπ(x, y) =
x5y + x4y2 − x5 − 5x4y + 5x4 + 6x3y − 10x3 − 2x2y + 10x2 − 5x+ 1

(−x+ 1)(x2y − x2 + 2x− 1)(x2y − 2x2 + 3x− 1)
.

Proof. A non-empty word w ∈ C(π) is in one of the following cases:

− w = 0u where u ∈ C(π); the generating function for these words is x · Cπ(x, y),

− w = 0(u + 1) where u is a non-empty word in C(π); the generating function for these
words is x · (Cπ(x, y)− 1),

− w = 0(v + 1)0 · · · 0 where u is a non-empty word in C(π) andw ending by at least one 0;
the generating function for these words is y · x2 · 1

1−x · (Cπ(x, y)− 1),

38

3.5. COUNTING VIA GENERATING FUNCTION CHAPTER 3. CATALAN WORDS

− w = 01 · · · 1u where u is a binary word beginning by a 0 and different from 0 · · · 0, or
equivalently, u a word in C(012) other than 0 · · · 0; the generating function for these words
is x2

1−x · y ·
(
C012(x, y)− 1

1−x

)
= x2·y

1−x ·
(

1−x+x2−x2y
1−2x+x2−x2y − 1

1−x

)
, see Theorem 4 in [24].

Combining these cases and adding 1 corresponding to the empty word we deduce the functional
equation

Cπ(x, y) = 1 + x · Cπ(x, y) + x · (Cπ(x, y)− 1) +
x2 · y
1− x · (Cπ(x, y)− 1)

+
x2 · y
1− x ·

(
1− x+ x2 − x2y
1− 2x+ x2 − x2y −

1

1− x

)
.

Corollary 6. If π = {102, 201}, then

Cπ(x) =
x4 − 4x3 + 8x2 − 5x+ 1

(x− 1)(2x− 1)(x2 − 3x+ 1)

= 1 + x+ 2x2 + 5x3 + 14x4 + 40x5 + 113x6 + 314x7 +O(x8),

Proposition 24. If π = {100, 110}, then

Cπ(x, y) =
x4y − x4 + 2x3 − 2x+ 1

(x− 1)(x3y − 2x3 + x2 + 2x− 1)
.

Proof. A non-empty word in C(π) has one of the following forms:

− 0u where u ∈ C(π); the generating function for these words is x · Cπ(x, y),
− 0(u + 1) where u is a non-empty word in C(π); the generating function for these words is
x · (Cπ(x, y)− 1),

− u(m+ 1)(m+ 2)v where u and v are non-empty s.i. Catalan words, m is the largest entry
of u and the length of v is less than or equal to that of u; the generating function for these
words is y · x4 · (x+ 1) · 1

(1−x2)2 ,

− u(m+ 1)u(v+m+ 1) where u is a non-empty s.i. Catalan word, m is the largest entry of
u and v ∈ C(π); the generating function for these words is y · x3 · 1

1−x2 · Cπ(x, y).

Combining these cases and adding 1 corresponding to the empty word we deduce the functional
equation

Cπ(x, y) = 1 + x ·Cπ(x, y) + x · (Cπ(x, y)− 1) + y · x4 · (x+ 1)

(1− x2)2 + y · x3 · 1

1− x2 ·Cπ(x, y).

Corollary 7. If π = {100, 110}, then

Cπ(x) =
−2x3 + 2x− 1

(x− 1)(x3 − x2 − 2x+ 1)

= 1 + x+ 2x2 + 5x3 + 12x4 + 28x5 + 64x6 + 145x7 +O(x8).

39

3.5. COUNTING VIA GENERATING FUNCTION CHAPTER 3. CATALAN WORDS

Proposition 25. If π = {000, 110}, then

Cπ(x, y) =
x3y + x3 − x2 − x+ 1

(−x+ 1)(x3 − x2y − x2 − x+ 1)
.

Proof. A non-empty word in C(π) has one of the following forms:

− 0(u+ 1) where u ∈ C(π); the generating function for these words is x · Cπ(x, y),

− uu(v+m+ 1) where u is a non-empty s.i. Catalan word, m is the largest (last) entry of u
and v ∈ C(π); the generating function for these words is y · x2

1−x2 · Cπ(x, y),

− u(m + 1)v where u and m are as above, and v is a non-empty s.i. Catalan word of length
less than that of u; the generating function for these words is y · x3 · (1 + x) · 1

(1−x2)2 .

Combining these cases and adding 1 corresponding to the empty word we deduce the functional
equation

Cπ(x, y) = 1 + x · Cπ(x, y) + y · x2

1− x2 · Cπ(x, y) + y · x3 · (1 + x) · 1

(1− x2)2 .

Corollary 8. If π = {000, 110}, then

Cπ(x) =
2x3 − x2 − x+ 1

(−x+ 1)(x3 − 2x2 − x+ 1)

= 1 + x+ 2x2 + 4x3 + 8x4 + 15x5 + 28x6 + 51x7 +O(x8),

Proposition 26. If π = {000, 102} or π = {000, 201}, then

Cπ(x, y) =
yx2 − 1

yx4 + yx2 + x2 + x− 1
.

Proof. If π = {000, 102}, then a non-empty word in C(π) has one of the following forms:

− 0(u+ 1) where u ∈ C(π); the generating function for these words is x · Cπ(x, y),

− 00(u+ 1) where u ∈ C(π); the generating function for these words is x2 · Cπ(x, y),

− 0(u+ 1)0 where u is a non-empty word in C(π); the generating function for these words is
y · x2 · (Cπ(x, y)− 1),

− 01(u+ 2)01 where u ∈ C(π); the generating function for these words is y · x4 · Cπ(x, y).

Similarly, if π = {000, 201} andw is a non-empty word in C(π), thenw has either one of the first
three forms above, or

− w = 0101(u+2) whereu ∈ C(π); the generating function for these words is y·x4·Cπ(x, y).

In both cases we obtain the functional equation

Cπ(x, y) = 1 + x · Cπ(x, y) + x2 · Cπ(x, y) + y · x2 · (Cπ(x, y)− 1) + y · x4 · Cπ(x, y).

40

3.5. COUNTING VIA GENERATING FUNCTION CHAPTER 3. CATALAN WORDS

Corollary 9. If π = {000, 102} or π = {000, 201}, then

Cπ(x) =
x2 − 1

x4 + 2x2 + x− 1

= 1 + x+ 2x2 + 4x3 + 9x4 + 18x5 + +38x6 + 78x7 +O(x8),

Proposition 27. If π = {000, 120}, then

Cπ(x, y) = − x4y + x3y + 1

x4y + x2 + x− 1
.

Proof. A non-empty word in C(π) has one of the following forms:

− 0(u+ 1) where u ∈ C(π); the generating function for these words is x · Cπ(x, y),

− 00(u+ 1) where u ∈ C(π); the generating function for these words is x2 · Cπ(x, y),

− 0101(u+ 2) where u ∈ C(π); the generating function for these words is y · x4 · Cπ(x, y).

Apart from these general cases, there are two other fixed length ones:

− 010; the corresponding generating function is y · x3,

− 0110; the corresponding generating function is y · x4.

Combining these cases and adding 1 corresponding to the empty word we deduce the functional
equation

Cπ(x, y) = 1 + x · Cπ(x, y) + x2 · Cπ(x, y) + y · x4 · Cπ(x, y) + y · x3 + y · x4.

Corollary 10. If π = {000, 120}, then

Cπ(x) = − x4 + x3 + 1

x4 + x2 + x− 1

= 1 + x+ 2x2 + 4x3 + 8x4 + 13x5 + 23x6 + 40x7 +O(x8),

Proposition 28. If π = {201, 210}, then

Cπ(x, y) =
x4y − 2x4 − 3x3y + 7x3 + x2y − 9x2 + 5x− 1

(2x− 1)(x− 1)(x2y − 2x2 + 3x− 1)
.

Proof. A non-empty word w in C(π) has one of the following forms:

− 0u where u ∈ C(π); the generating function for these words is x · Cπ(x, y),

− 0(u + 1) where u is a non-empty word in C(π); the generating function for these words is
x · (Cπ(x, y)− 1),

− 01 · · · 1u where u is a non-empty word in C(π) and 01 is a prefix of w; the generating
function for these words is y · x2

1−x · (Cπ(x, y)− 1),

− 0(u + 1)0 . . . 0 where u is a w.i. Catalan word other than 0 · · · 0 and w ending by a 0; the
generating function for these words is y · x2

1−x · (1−x
1−2x − 1

1−x).

41

3.5. COUNTING VIA GENERATING FUNCTION CHAPTER 3. CATALAN WORDS

Combining these cases and adding 1 corresponding to the empty word we deduce the functional
equation

Cπ(x, y) = 1 + x · Cπ(x, y) + x · (Cπ(x, y)− 1) + y · x2

1− x · (Cπ(x, y)− 1) +

y · x2

1− x ·
(

1− x
1− 2x

− 1

1− x

)
.

Corollary 11. If π = {201, 210}, then

Cπ(x) =
x4 − 4x3 + 8x2 − 5x+ 1

(x− 1)(2x− 1)(x2 − 3x+ 1)

= 1 + x+ 2x2 + 5x3 + 14x4 + 40x5 + 113x6 + 314x7 +O(x8),

Proposition 29. If π = {102, 210}, then

Cπ(x, y) =

(2y − 2)x7 + (13− 10y − y2)x6 − 36x5 + 19x5y + 55x4 − 17x4y − 50x3 + 7x3y + 27x2 − yx2 − 8x+ 1

(x− 1)3(2x− 1)2(x2y − x2 + 2x− 1)
.

Proof. A non-empty word w in C(π) has one of the following forms:

− 0u where u ∈ C(π); the generating function for these words is x · Cπ(x, y),

− 0(u + 1) where u is a non-empty word in C(π); the generating function for these words is
x · (Cπ(x, y)− 1),

− 01 · · · 1u where u is a non-empty word in C(012), and w begins by 01; the generating
function for these words is y · x2

1−x · (C012(x, y) − 1) = y · x2

1−x · (
1−x+x2−x2y
1−2x+x2−x2y − 1) (see

Theorem 4 in [24] for the generating function of C012(x, y)),

− 0(u + 1)v where u is a w.i. Catalan word of length at least 2 different from 0 · · · 0 and v
is a non-empty word in C(010, 012) (see Proposition 5); the generating function for these
words is x · (1−x

1−2x − 1
1−x) · y · C010,012(x, y) = y · x · x

(1−x)2 · (1−x
1−2x − 1

1−x).

Combining these cases and adding 1 corresponding to the empty word we deduce the functional
equation

Cπ(x, y) = 1 + x · Cπ(x, y) + x · (Cπ(x, y)− 1) + y · x2

1− x ·
(

1− x+ x2 − x2y
1− 2x+ x2 − x2y − 1

)
+

y · x2

(1− x)2
·
(

1− x
1− 2x

− 1

1− x

)
.

42

3.5. COUNTING VIA GENERATING FUNCTION CHAPTER 3. CATALAN WORDS

Corollary 12. If π = {102, 210}, then

Cπ(x) =
2x6 − 17x5 + 38x4 − 43x3 + 26x2 − 8x+ 1

(x− 1)3(2x− 1)3

= 1 + x+ 2x2 + 5x3 + 14x4 + 40x5 + 111x6 + 295x7 +O(x8).

Proposition 30. If π = {100, 102}, then

Cπ(x, y) =
x5y − x4y − x3 + 2x3y + 3x2 − x2y − 3x+ 1

(x− 1)(x4y − x3y − 2x2 + x2y + 3x− 1)
.

Proof. A non-empty word in C(π) has one of the following forms:

− 0u where u ∈ C(π); the generating function for these words is x · Cπ(x, y),

− 0(u + 1) where u is a non-empty word in C(π); the generating function for these words is
x · (Cπ(x, y)− 1),

− 0(u+1)0 whereu is as above; the generating function for these words is y·x2·(Cπ(x, y)−1),

− 011 · · · 1(u + 2)01 where u is as above; the generating function for these words is y ·
x4

1−x(Cπ(x, y)− 1),

− uv where u and v are binary words of length at least 2 of form 011 · · · 1; the generating
function for these words is y · x4

(1−x)2 .

Combining these cases and adding 1 corresponding to the empty word we deduce the functional
equation

Cπ(x, y) = 1 + x · Cπ(x, y) + x · (Cπ(x, y)− 1) + y · x2 · (Cπ(x, y)− 1) +

y · x4

1− x(Cπ(x, y)− 1) + y · x4

(1− x)2

Corollary 13. If π = {100, 102}, then

Cπ(x) =
x5 − x4 + x3 + 2x2 − 3x+ 1

(x− 1)(x4 − x3 − x2 + 3x− 1)

= 1 + x+ 2x2 + 5x3 + 13x4 + 34x5 + 87x6 + 220x7 +O(x8),

In the proof of the next proposition, we need the following lemma where the generating functions
for some particular subsets of C(000, 210) are given.

Lemma 2. The bivariate generating function corresponding to

1. the set A of words uu with u a non-empty s.i. Catalan word is A(x, y) = x2 + yx2 · x2

1−x2
and A(x) = x2

1−x2 ;

2. the set B of words uv with u and v non-empty s.i. Catalan words and the length of v is less
than or equal to that of u is B(x, y) = y · x2

1−x2 · 1
1−x ;

3. the setD of words uv with u and v non-empty s.i. Catalan words and the length of v is less
than that of u is D(x, y) = y · x2

1−x2 · x
1−x .

43

3.5. COUNTING VIA GENERATING FUNCTION CHAPTER 3. CATALAN WORDS

Proof. 1. For any even n there is exactly one word of this form, so the monovariate corresponding
generating function is x2

1−x2 ; and only words of length larger than two have one descent.

2. The transformation (uu,x) 7→ uxu where uu ∈ A and x is a s.i. Catalan word defines a
bijection between pairs of such words and B, and thus B(x, y) = y ·A(x) · 1

1−x .

3. Similarly as point 2.

Proposition 31. If π = {000, 210}, then

Cπ(x, y) = − (x+ 1)(x3 + x3y − 2x+ 1)

(x4 − x4y + x3 − 2x2 − x+ 1)(x2 + x− 1)
.

Proof. A non-empty word in C(000, 210) has one of the following forms:

- u with u ∈ D and D as in Lemma 2; the generating function for these words is D(x, y) =

y · x2

1−x2 · x
1−x ,

- u(m+ 1)(m+ 1)(x+m+ 2)v with u and v non-empty s.i. Catalan words and the length
of v is less than or equal to that of u, m is the largest entry of u, and x ∈ C(000, 010); the
generating function for these words is B(x, y) · x2 · 1

1−x−x2 = y · x2

1−x2 · 1
1−x · x2 · 1

1−x−x2
(see Lemma 2 and Proposition 14),

- 0(u+ 1) where u ∈ C(π); the generating function for these words is x · Cπ(x, y),

- uu(v + m + 1) where u is a non-empty s.i. Catalan word, m the largest entry of u and
v ∈ C(π); the generating function for these words is A(x, y) · Cπ(x, y).

Combining these cases and adding 1 corresponding to the empty word we deduce the functional
equation

Cπ(x, y) = 1 + y · x2

1− x2 ·
x

1− x + y · x4

1− x2 ·
1

1− x ·
1

1− x− x2 + x · C(x, y) +
(
x2 + y · x4

1− x2
)
· C(x, y)

Corollary 14. If π = {000, 210}, then

Cπ(x) = − (x+ 1)(2x3 − 2x+ 1)

(x3 − 2x2 − x+ 1)(x2 + x− 1)

= 1 + x+ 2x2 + 4x3 + 9x4 + 18x5 + 37x6 + 72x7 +O(x8),

In the proof of the next proposition we need the following lemma where the generating functions
for two subsets of C(100, 210) are given.

Lemma 3.

44

3.5. COUNTING VIA GENERATING FUNCTION CHAPTER 3. CATALAN WORDS

1. The generating function corresponding to the set E of words uv with u a w.i. Catalan word,
v a non-empty s.i. Catalan word and the largest entry of v is equal to that of u minus 1 is

x3

(x−1)(x2+x−1) .
2. The generating function corresponding to the setF of words uv with u a w.i. Catalan word,
v a non-empty s.i. Catalan word and the largest entry of v is less than that of u minus 1 is

x3

(x−1)(x2+x−1) · x
1−2x .

Proof. 1. If En is the set of words of length n in E , then En = ∅ for 0 ≤ i ≤ 2, E3 = {010} and
E4 = {0010, 0110}. With u and v as above, for any n ≥ 3, the transformation

uv 7→ uav, with a the maximal entry of u, transforms a word in En into one in En+1 where
the maximal entry occurs at least twice,
uv 7→ u(a + 1)v(b + 1), with a and b the maximal entries of u and of v respectively,
transforms a word in En into one in En+2 where the maximal entry occurs once.

Any word in En, n ≥ 5, except 0 · · · 010, can be obtained uniquely from either a word in En−1 or
in En−2 by one of these transformations. This yields the recurrence |En| = 1 + |En−1| + |En−2|
for n ≥ 5, and the desired generating function is precisely that of the sequence (|En|)n≥0.

2. Any pair of words (w,x) with w = uv ∈ E (with u and v as above) and x a non-empty w.i.
Catalan word can be transformed into the word uxv ∈ F , and (w,x) 7→ uxv is a bijection, so
the generating function for F is that for E multiplied by x

1−2x .

Proposition 32. If π = {100, 210}, then

Cπ(x, y) =
1− x
1− 2x

− x3y

(2x− 1)(2x3 − x3y + x2 − 3x+ 1)
.

Proof. First, we consider only words in C(π) having at least one descent, and we denote byG(x, y)
the corresponding generating function, and clearly Cπ(x, y) = 1−x

1−2x +G(x, y).

A word in C(π) with at least one descent has one of the following forms:

− u(α+s+1)(v+s+t+1) where u and v are both w.i. Catalan words,α belongs to the set E
defined in Lemma 3, and s is the largest symbol of u (and for convenience−1 if u is empty)

and t that of α; the generating function for these words is y · x3

(x−1)(x2+x−1) ·
(

1−x
1−2x

)2
,

− u(α+ s+ 1) where u and s are as above, and α belongs to the set F defined in Lemma 3;
the generating function for these words is y · 1−x

1−2x · x3

(x−1)(x2+x−1) · x
1−2x ,

− u(α + s + 1)(v + s + t + 1) where u and s are as above, α belongs to E , v is a word in
C(π) with at least one descent, and t is the largest symbol of α; the generating function for
these words is y · 1−x

1−2x · x3

(x−1)(x2+x−1) ·G(x, y).

It follows that G(x, y) satisfies the functional equation

G(x, y) = y · x3

(x− 1)(x2 + x− 1)
·
(

1− x
1− 2x

)2

+ y · 1− x
1− 2x

· x3

(x− 1)(x2 + x− 1)
· x

1− 2x
+

y · 1− x
1− 2x

· x3

(x− 1)(x2 + x− 1)
·G(x, y).

45

3.6. FINAL REMARKS CHAPTER 3. CATALAN WORDS

Finally, solving it and adding the generating function for the Catalan words with no descents (that
is, w.i. Catalan words) the statement holds.

Corollary 15. If π = {100, 210}, then

Cπ(x) =
x− 1

2x− 1
− x3

(2x− 1)(x− 1)(x2 + 2x− 1)

= 1 + x+ 2x2 + 5x3 + 13x4 + 34x5 + 88x6 + 225x7 +O(x8),

Numerical evidences let us believe that cn(100, 210) is the sequence A267905 in [2], however
we failed to prove this formally.

3.6 Final remarks

Catalan words are in bijection with Dyck paths and thus pattern avoiding Catalan words correspond
to restricted Dyck paths. For instance, a Catalan word avoiding 012 corresponds to a Dyck path
of height at most two. In this context, it can be of interest to investigate how our results on pattern
avoiding Catalan words translate to corresponding restricted Dyck paths.

Even if in this article we restrict ourselves to the avoidance of two patterns of length 3, some classes
considered here can be trivially extended to larger length patterns, for instance C(102, 201) =
C(01012, 01201). In this light, it can be of interest to explore Catalan words avoiding patterns of
length 4 or more, triples of patterns or generalized patterns.

3.7 Conclusion

In this contribution, we were interested in the enumeration of Catalan words avoiding pairs of
patterns of length three. Catalan words are particular growth-restricted words counted by the
eponymous integer sequence. Enumerating results and proofs of each case were presented with
various enumeration methods, by constructive bijections or bivariate generating functions with
respect to the length and descent number.

46

https://oeis.org/A267905

3.7. CONCLUSION CHAPTER 3. CATALAN WORDS

σ\τ 000 001 010 011 012 021 100 101 102 110 120 201 210
000 - P. 14 P. 14 u.c. u.c. C. 2 s P. 7 C. 9 C. 8 C. 10 C. 9 C. 14
001 - - P. 5 P. 5 P. 5 P. 13 P. 15 s s P. 13 P. 13 s P. 12
010 - - - P. 5 P. 5 s s s s s s s s

011 - - - - P. 5 s P. 6 s s s P. 6 s s

012 - - - - - s P. 13 P. 13 s P. 13 s s s

021 - - - - - - P. 9 P. 9 P. 11 C. 4 P. 10 s s

100 - - - - - - - P. 17 C. 13 C. 7 C. 3 P. 16 C. 15
101 - - - - - - - - s P. 9 P. 9 s P. 8
102 - - - - - - - - - P. 11 P. 8 C. 6 C. 12
110 - - - - - - - - - - C. 3 C. 5 s

120 - - - - - - - - - - - s s

201 - - - - - - - - - - - - C. 11
210 - - - - - - - - - - - - -

Table 3.2: Pairs {σ, τ} where τ is superfluous for σ are marked by s and those yielding ultimately
constant enumerating sequences (see Proposition 4) by u.c.. The references are to the propositions
or the corollaries where the enumerating sequences or generating functions are given. Pairs re-
ferred by the same proposition or corollary form a Wilf-equivalence class and enumerating results
that are not yet recorded in [2] are italicized. Highlighted pairs are already enumerated in [30] in
the context of ascent sequences, see Section 3.1.

47

3.7. CONCLUSION CHAPTER 3. CATALAN WORDS

48

Chapter 4

Stack-sorting permutations with stacks
under constraints

The study of sorting permutation (arranging permutations in increasing order) began with the
third volume from Knuth’s Art of Computer Programming [124], which analyzes a certain "stack
sorting algorithm", then he introduced serial composition of stacks and gave many examples of
links between the worst/best/average case behavior of sorting algorithms and the combinatorial
structures hidden behind permutations [125]. We refer also to [38] and chapter 8 of [39] by Bóna
for introductions to the area of sorting we are interested in.

There is a long line of papers in the computer science literature dedicated to problems of sorting
permutations with different devices, e.g., stacks, queues, and deques, see for example [8, 12, 38,
41, 44, 53, 195].

After Knuth introduced the problem of stack-sorting in 1968 [124], stack-sorting was further gen-
eralized to sorting networks by Tarjan [208] while several variants appear by either considering
other types of combinatorial structures or by changing rules [9, 95, 184]. Then West [221] defined
a deterministic variant of Knuth’s algorithm.

4.1 Sorting with t-stacks in series

A stack is a last-in first-out linear sorting device with push / insert and pop / remove operations.
In other words, a stack is a container for a linear sequence (in this thesis, for a permutation) that
one is allowed to modify by inserting new elements, one at a time, in its tail and removing tail
elements, also , one at a time. Initially, the stack is empty and then a sequence of interlaced
insertions with removals is performed. Thus an input permutation is transformed thereby into an
output permutation.

In his dissertation, West [221] defined a deterministic variant of Knuth’s algorithm. This variant
is a function, which we call the “stack-sorting map” and denote by s, that sends permutations to
permutations. To define the function s, let us begin with an input permutation w = w1w2 . . . wn.
At any time during this procedure, if the next entry in the input permutation is smaller than the
entry at the top of the stack or if the stack is empty, the next entry in the input permutation is placed
to the top of the stack. Otherwise, the entry at the top of the stack is appended to the end of the

49

4.1. SORTING WITH T-STACKS IN SERIES CHAPTER 4. STACK-SORTING

3214
(input)

Stage 1

214

3

Stage 2

14

3

2

Stage 3

4

1

2

3

Stage 4

41

2

3

Stage 5

4

3

12 123 123 1234
(output)

Stage 6

4

Stage 7

4

Stage 8 Stage 9

Figure 4.1: Stack sorting the permutation 3214

3241
(input)

Stage 1

241

3

Stage 2

41

3

2

Stage 3

2 41

3

Stage 4

4123

Stage 5

1

4

23 23 231 2314
(output)

Stage 6

1

4

Stage 7

4

Stage 8 Stage 9

Figure 4.2: Stack sorting the permutation 3241

ascending output permutation. This process terminates when the output permutation has length n,
and s(w) is defined to be this output permutation.

Definition 13. We say a permutation w is t-stack-sortable if st(w) is an increasing permutation,
where st denotes the t-fold iterate of s. Let Wt(n) be the set of t-stack-sortable permutations in
Sn and Wt(n) = |Wt(n)|

We remind that des(w) denote the number of descents of w.

Fig. 4.1 shows an example of a stack-sortable permutation, while Fig. 4.2 shows an example of
a non-stack-sortable permutation. The permutation 3241 is a 3-stack sortable permutation, see
Fig. 4.3

Knuth simultaneously initiated the study of stack-sorting and the investigation of permutation
patterns with the following theorem.

Definition 14. [125] A permutation is 1-stack-sortable if and only if it avoids the pattern 231.
Furthermore, W1(n) = |Sn(231)| = cn, where cn is the nth Catalan number 1

n+1

(
2n
n

)

In his celebrated book [124], Knuth gave the following characterization of stack sortable per-
mutations, which is often considered the starting point of stack sorting and permutation patterns
disciplines.

231421341234
(Output)

3241
(input)

Figure 4.3: Sorting the permutation 3241 with 3 stacks in series

50

4.1. SORTING WITH T-STACKS IN SERIES CHAPTER 4. STACK-SORTING

Proposition 1 ([124]). A permutation π is sortable using a classical stack (that is, a 21-avoiding
stack) if and only if π avoids the pattern 231.

In his dissertation, West conjectured a formula for W2(n), which Zeilberger later proved.

Definition 15. [233] We have

W2(n) =
2

(n+ 1)(2n+ 1)

(
3n

n

)
. (4.1)

Combinatorial proofs of Zeilberger’s theorem emerged later in [69, 89, 90, 108]. Some authors
have investigated the enumeration of 2-stack-sortable permutations according to various statistics
[37, 42, 45, 69].

For t ≥ 3, there is very little known about t-stack-sortable permutations when t ≥ 3 is fixed.
Ulfarsson [215] characterized 3-stack-sortable permutations in terms of new “decorated patterns”,
but the characterization is too unwieldy to yield any additional information. The recent paper [10]
shows that for every t ≥ 1, the set of t-stack-sortable permutations can be described by a sentence
in a first-order logical theory that the authors call TOTO. The paper [65] also investigates t-stack-
sortable permutations when t = n − r for some fixed r (focusing on the case in which r = 4).
For fixed t ≥ 3, the best known general upper bound for Wt(n), see Theorem 3.4 of [38], is the
estimate

Wt(n) ≤ (t+ 1)2n. (4.2)

Bóna has also shown that

lim
n−→∞

W3(n)
1
n < 12.53296, and lim

n−→∞
W4(n)

1
n < 21.97225 (4.3)

Even though the problem of one stack is or may be simple, things got to be significantly more com-
plicated in case one allows more stacks associated in series. Unnecessary to say, the enumeration
of t-stack sortable permutations is obscure. Since the issue of sorting with two stacks is as well
troublesome, a few special cases have been considered. Among them, the West-2-stack-sortable
permutations [221] are those permutations that can be sorted by making two passes through a stack.
Equivalently, these are the permutations that can be sorted by 2 stacks connected in series using
a right greedy algorithm (see [221] for more details). West-2-stack-sortable permutations do not
form a class, nevertheless, it is conceivable to characterize them using a few kinds of generalized
patterns (barred patterns).

Imposing some restrictions on the content of the stack is considering another possible variation on
the two-stacks problem. In [194], Rebecca Smith has studied the case in which the first stack is
required to be decreasing.

Take note that, the second stack turns out to be necessarily increasing if we don’t select a particular
algorithm in advance. Within the case above, Smith can describe an optimal sorting algorithm,
thanks to which she can completely characterize (in terms of avoided patterns) and enumerate
sortable permutations.

51

4.2. SORTING WITH RESTRICTED STACKS CHAPTER 4. STACK-SORTING

4.2 Sorting with Restricted Stacks

Since the (classical) problem of characterizing and enumerating permutations that can be sorted
using two stacks connected in series is still largely open, Cerbai and al. presented in [60] a related
problem, in which they imposed restrictions both on the procedure and on the stacks. More pre-
cisely, they considered a greedy algorithm where they perform the rightmost legal operation (here
”rightmost” refers to the usual representation of stack sorting problems).

In this thesis, we will deal with similar sorting machines consisting of two stacks connected in
series (see Fig. 4.4). Recalling the key properties of the Stack-sort algorithm, we will consider
machines obeying certain constraints, which are described below.

Output Input

21 σ

O1O2O3

P2 P1

Figure 4.4: The σ-machine

1. The stacks must obey some restrictions, which are expressed by saying that, at each step
of the execution, the elements into each stack (read from top to bottom) must avoid certain
forbidden configurations. In particular, in analogy with Stack-sort, we require the second
stack to be increasing. Notice that this can be equivalently expressed as follows: at every
step, the sequence of numbers contained in the stack (read from top to bottom) has to avoid
pattern 21. We will express this by saying that the stack is 21-avoiding. Moreover, we will
be interested in machines in which the first stack is σ-avoiding, for some pattern σ.

2. The algorithm we perform on the two stacks connected in series is right greedy. As already
observed, this is equivalent to making two passes through a stack, performing the right
greedy algorithm at each pass. However, due to the restriction described above, during the
first pass, the stack is σ-avoiding, whereas during the second pass it is 21-avoiding.

We will use the term σ-machine to refer to the right greedy algorithm performed on two stacks in
series, such that the first stack is σ-avoiding and the second stack is 21-avoiding. Formally, the
algorithm we are going to analyze is described in the Listing below. The set of permutations which
are sortable by the σ-machine is denoted Sort(σ) and its elements are the σ-sortable permutations.

52

4.2. SORTING WITH RESTRICTED STACKS CHAPTER 4. STACK-SORTING

The set of σ-sortable permutations of length n is denoted Sortn(σ).

Stackσ := ∅;
StackI := ∅;
i := 1;
while i ≤ n do

if σ � Stackσ ◦ wi then
execute Sσ;
i := i+ 1;

end
else if StackI = ∅ or TOP (Stackσ) < TOP (StackI) then

execute SI ;
end
execute O;

end
while Stackσ 6= ∅ do

if StackI = ∅ or TOP (Stackσ) < TOP (StackI) then
execute SI ;

else
execute O;

end
end
while StackI 6= ∅ do

execute O;
end

Algorithm 4.1: The σ-machine (Stackσ is the σ-avoiding stack, StackI is the increasing
stack, Sσ means pushing into Stackσ, SI means pushing into StackI , O means moving
TOP(StackI) into the output, ◦ is the concatenation operation)

Let P be a set of patterns. A P -stack is a stack that is not allowed to contain an occurrence of
any pattern in P , reading its elements from top to bottom. Given a permutation π, denote by
outT (π) the permutation obtained after passing the permutation w through the P -avoiding stack
by applying a greedy procedure, i.e. by always pushing the next element of the input, unless
it creates an occurrence of a forbidden pattern inside the stack. Denote by Sortn(P) the set of
length n permutations that are sortable by the P -machine, that is, by passing w through the P -
avoiding stack and then through the 21-avoiding stack. Permutations in Sortn(P) are called P -
sortable, and Sort(P) is the set of P -sortable permutations of any length. As a consequence of
Proposition 1, Sort(P) consists precisely of those permutations w for which outP (w) avoids 231.
To ease notations, if P is either a singleton P = {σ} or a pair of patterns P = {σ, τ}, we will
omit the curly brackets from the above notations. For instance, we will write Sort(σ, τ) instead of
Sort({σ, τ}).

There were many works on the pattern-avoiding machine. For instance, besides introducing the
machine, the authors of [60] first proved that the set of σ-machines whose associated sortable
permutations are not a class is counted by Catalan numbers. Moreover, they analyzed two specific
σ-machines in full detail (namely when σ = 321 and σ = 123), providing for each of them
a complete characterization and enumeration of sortable permutations. Also, they showed that
if w is a 12-sortable permutation of length n, then out12(w) = n(n − 1) . . . 1. Moreover, by
Proposition 1 and applying the complement operation on the processed permutation, we have that

53

4.3. PERMUTATIONS SORTABLE BY THE (σ, τ)-MACHINE CHAPTER 4. STACK-SORTING

Sort(12) = S(213). To refer to this result later, we state it below in a slightly more general form.
A partial permutation of n is an injection w : {1, 2, . . . , k} → {1, 2, . . . , n}, for some 0 ≤ k ≤ n,
and the integer k is said to be the length of w. We let a 12-stack act on a partial permutation w of
n in a natural way by identifying w with the list of its images.

Proposition 2. If w is a partial permutation of n which is 12-sortable, then out12(w) is the de-
creasing rearrangement of the symbols of w. Moreover, w is 12-sortable if and only if it avoids
213.

Then, in [59], Cerbai generalized these Pattern-avoiding Machines by allowing permutations with
repeated elements, also known as Cayley permutations. The main result is a description of those
patterns such that the corresponding set of sortable permutations is a class. They also showed a
new involution on the set of Cayley permutations, obtained by regarding a pattern-avoiding stack as
an operator. Also, they analyzed two generalizations of pop-stack sorting on Cayley permutations.
In both cases, we describe sortable permutations in terms of pattern avoidance.

Finally, in [61], Cerbai et al. continued the analysis of the pattern-avoiding sorting machines
introduced by Cerbai, Claesson and, Ferrari [60]. They characterized and enumerated the set
of permutations that can be sorted when the first stack is 132-avoiding, solving one of the open
problems proposed in [60]. To that end, they presented several connections with other well-known
combinatorial objects, such as lattice paths and restricted growth functions (which encode set
partitions). They also provided new proofs for the enumeration of some sets of pattern-avoiding
restricted growth functions and they expect that the tools introduced can be fruitfully employed to
get further similar results.

4.3 Permutations sortable by the (σ, τ)-machine

In this thesis, we study a variant of pattern-avoiding machines where the first stack avoids (σ, τ),
a pair of patterns of length three. Following [60], we call it (σ, τ)-machine. More specifically, we
restrict ourselves to those pairs of patterns for which sortable permutations are counted by either
the Catalan numbers or two of their close relatives: the binomial transform of Catalan numbers
and the Schröder numbers. For the pair (132, 231) we show that sortable permutations are those
avoiding 1324 and 2314, a set whose enumeration is given by the large Schröder numbers. Under
certain conditions on the avoided patterns, the output of the first stack is bijectively related to its
input (see [33, 59]): it follows that for three pairs of patterns, namely (123, 213), (132, 312) and
(231, 321), sortable permutations are counted by the Catalan numbers. This result was proved
independently in [21, 33]. For the pair (123, 132), we prove that sortable permutations are those
avoiding the patterns 2314, 3214, 4213 and the generalized pattern [241̄3 (a permutation w avoids
the pattern [241̄3 if for any subsequence w1wiwj , with 1 < i < j and w1 < wj < wi, there
is an index t, i < t < j, such that π1πiπtπj is an occurrence of 2413). We prove that sortable
permutations are enumerated by the Catalan numbers by showing that the distribution of the first
element is given by the well-known Catalan triangle. Finally, we show that for the pair (123, 312)
the corresponding counting sequence is the binomial transform of Catalan numbers.

An entry wi of a permutation w is a left-to-right minimum if wi < wj , for each j < i. The left-to-
right minima decomposition (briefly ltr-min decomposition) of w is w = m1B1m2B2 · · ·mtBt,
where m1 > m2 > · · · > mt are the ltr-minima of w and the block Bi contains the elements
of w between mi and mi+1, for i = 1, . . . , t − 1. The last block Bt contains the elements that
follow mt in w. Note that mt = 1. The notion of a left-to-right maximum of a permutation

54

4.3. PERMUTATIONS SORTABLE BY THE (σ, τ)-MACHINE CHAPTER 4. STACK-SORTING

Output Input

21 σ, τ

O1O2O3

P2 P1

Figure 4.5: The (σ, τ)-machine consists of two stacks in series where the first stack P1 avoids (from top to bottom) σ and τ while the
second P2 avoids the pattern 21. At each step of the process, we perform the rightmost possible operation among O1, O2, O3, where
O1 pushes in P1 the current entry of the input permutation, O2 pops the top of P1 and pushes it in P2, and O3 pops the top of P2

and pushes it in the output permutation. For instance, if σ = 123, τ = 132 then π = 35124 is sortable by applying the following
operations: O1, O1, O2, O1, O1, O1, O2, O2, O2, O3, O3, O2, O3, O3, O3.

w is defined similarly. The ltr-max decomposition of w is w = M1B1M2B2 · · ·MtBt, where
M1 < M2 < · · · < Mt are the ltr-maxima of w. In this case, Mt = n, where n is the length of w.

4.3.1 Pair (132, 231)

This section is devoted to the analysis of the (132, 231)-machine.

Theorem 1. Consider the (132, σ)-machine, where σ = σ1 · · ·σk−1σk ∈ Sk, with k ≥ 3 and
σk−1 > σk. Given a permutation π of length n, let m1B1 · · ·mtBt = π be its ltr-min decomposi-
tion. Then:

1. Every time an ltr-minimummi is pushed into the (132, σ)-stack, the (132, σ)-stack contains
the elements mi−1, . . . ,m2,m1, reading from top to bottom. Moreover, we have

out132,σ(π) = B̃1 · · · B̃tmt · · ·m1,

where B̃i is a rearrangement of Bi.

2. If π is (132, σ)-sortable, then B̃i is decreasing for each i. Moreover, for each i ≤ t− 1, we
have Bi > Bi+1 (i.e. x > y for each x ∈ Bi, y ∈ Bi+1).

Proof. 1. Let us consider the evolution of the (132, σ)-stack on input π. Note that, since k ≥ 3,
the element m1 remains at the bottom of the (132, σ)-stack until the end of the process.
Now, if B1 is not empty then for each x ∈ B1, the elements m2xm1 form an occurrence of
132. Therefore the block B1 is extracted before m2 enters the (132, σ)-stack. After m2 is
pushed, the (132, σ)-stack contains m2m1, reading from top to bottom. Since m2 < m1,
but σk−1 > σk by hypothesis, m2 cannot play the role of either σk−1 in an occurrence of σ
or of 3 in an occurrence of 132. Thus m2 remains at the bottom of the (132, σ)-stack until
the end of the sorting procedure. The thesis follows by iterating the same argument on each
block Bi, for i ≥ 2.

2. Suppose that π is (132, σ)-sortable. Assume, for a contradiction, that B̃i is not decreasing,
for some i. Then there are two consecutive elements x < y in B̃i. Therefore, by what was
proved above, out132,σ(π) contains an occurrence xymt of 231, which is impossible due to
Proposition 1. Finally, suppose that x < y, for x ∈ Bi and y ∈ Bi+1. Then xymt is an
occurrence of 231 in out132,σ(π), a contradiction.

55

4.3. PERMUTATIONS SORTABLE BY THE (σ, τ)-MACHINE CHAPTER 4. STACK-SORTING

Theorem 1 and Proposition 2 guarantee that if π = m1B1 · · ·mtBt is the ltr-min decomposition
of a (132, 231)-sortable permutation π, then (with the notation above) B̃i = out12(Bi), for each
i. However, this is true even when the sortability requirement is relaxed.

Lemma 4. Let π = m1B1 · · ·mtBt be the ltr-min decomposition of a permutation π. Write
out132,231(π) = B̃1 · · · B̃tmt · · ·m1 as in Theorem 1. Then B̃i = out12(Bi), for each i.

Proof. Consider the instant immediately after mi is pushed into the (132, 231)-stack and the non-
empty block Bi has to be processed, for some i. By Theorem 1, at this point the (132, 231)-stack
contains mi,mi−1, . . . ,m1, reading from top to bottom. We want to show that the behavior of
the (132, 231)-stack on Bi is equivalent to the behavior of an empty 12-stack on input Bi. We
prove that the (132, 231)-stack performs the pop operation of some x ∈ Bi if and only if the
12-stack does the same. If either the next element of the input is mi+1 or x is the last element
of π to be processed, then both the (132, 231)-stack and the 12-stack perform a pop operation, as
desired. Otherwise, suppose the next element of the input is y, for some y in the same block Bi,
and the (132, 231)-stack pops the element x ∈ Bi. This means that the (132, 231)-stack contains
two elements z, w, with z above w, such that yzw is an occurrence of either 132 or 231. Note
that, since z > w, z is not an ltr-minimum. Therefore yz is an occurrence of 12 and the 12-stack
performs a pop operation, as desired. Conversely, suppose that the 12-stack pops the element x,
with y ∈ Bi the next element of the input. This implies that the 12-stack contains an element z
such that z > y. Therefore yzmi is an occurrence of 231 and the (132, 231)-stack performs a pop
operation, as desired.

Corollary 1. Let π = m1B1 · · ·mtBt be the ltr-min decomposition of a permutation π. Then the
following are equivalent.

1. Bi avoids 213 and Bi > Bi+1, for each i.

2. π is (132, 231)-sortable.

3. π ∈ Av(1324, 2314).

Proof. Combining the first point in Theorem 1 and Lemma 4 we have:

out132,231(π) = out12(B1) · · · out12(Bt)mt · · ·m1.

We will use this decomposition of out132,231(π) throughout the rest of the proof.

[1⇒ 2] Suppose, for a contradiction, that out132,231(π) contains an occurrence bca of 231. Note
that, since c > a, while mt < · · · < m1, c is not a ltr-minimum of π (and thus neither b is). Now,
if b and c are in the same block Bj , then out12(Bj) is not decreasing. Thus, by Proposition 2, Bj
contains 213, which is a contradiction. Otherwise, if b ∈ Bj and c ∈ Bk, with j < k, then we
have a contradiction with the hypothesis Bi > Bi+1 for each i.

[2⇒ 3] Suppose, for a contradiction, that π /∈ Av(1324, 2314). First, suppose that π contains an
occurrence acbd of 1324. Observe that b, c, d are not ltr-minima of π. Now, if b and d are in the
same block Bj of π, for some j, then Bj contains an occurrence cbd of 213. Therefore out12(Bj)

56

4.3. PERMUTATIONS SORTABLE BY THE (σ, τ)-MACHINE CHAPTER 4. STACK-SORTING

contains an occurrence of 231 due to Proposition 2, which contradicts the hypothesis. Otherwise,
if b ∈ Bj and d ∈ Bk, for some j < k, then out132,231(π) contains an occurrence bdmk of 231,
again a contradiction. The pattern 2314 can be addressed analogously, so we leave it to the reader.

[3⇒ 1] Let π ∈ Av(1324, 2314). If Bi contains an occurrence bac of 213, then π contains an
occurrence mibac of 1324, which is impossible. Otherwise, if π contains two elements x ∈ Bj ,
y ∈ Bk, with x < y and j < k, then mjxmky is an occurrence of 2314, contradicting the
hypothesis.

The enumeration of Av(1324, 2314) (or symmetry of these patterns) can be found for instance
in [17, 223]. Note that in [15], the authors provide a constructive bijection between these permu-
tations and Schröder paths.

Corollary 2. Permutations of length n in Sort(132, 231) are enumerated by the large Schröder
numbers (sequence A006318 in [2]).

4.3.2 The (σ, σ̂)-machine

For a permutation σ of length two or more, denote by σ̂ the permutation obtained from σ by
interchanging its first two entries. Let us regard a (σ, τ)-stack as an operator outσ,τ : S → S.
By conveniently modifying the proof of Corollary 4.5 in [59] (stated in the context of Cayley
permutations), we have that outσ,τ is a length preserving bijection on S if and only if τ = σ̂.
More generally, Berlow [33] showed that for a set P of patterns, outT is a length preserving
bijection on S if and only if P is closed under the ˆ operator. For the paper to be self-contained,
we shall give the following result, which is easier to prove (although weaker): outσ,σ̂ is a bijection
for any pattern σ. An immediate consequence will be Theorem 2 below.

Let N∗ be the set of finite length integer sequences. The action of the (σ, τ)-stack on input π can
be naturally represented as a sequence of triples (r; s; t) ∈ (N∗)3, where r is the current content
of the output, s is the current content of the (σ, τ)-stack (read from top to bottom) and t is the
current content of the input. The triple (r; s; t) is said to be a state of the passing of π through
the (σ, τ)-stack. Clearly, r is a prefix of outσ,τ (π), t is a suffix of π, the initial state is (λ;λ;π)
and the final one is (outσ,τ (π);λ;λ), where λ is the empty sequence. Moreover, a non-final state
(p1p2 · · · pa; s1s2 · · · sb; t1t2 · · · tc) is followed by either the state

(p1p2 · · · pas1; s2 · · · sb; t1t2 · · · tc),

if a pop operation is performed next, or

(p1p2 · · · pa; t1s1s2 · · · sb; t2 · · · tc),

if a push operation is performed next.

For p = p1 · · · pn ∈ Nn, we denote by pr the reverse of p, that is pr = pn · · · p1. We wish to
show that the behavior of the (σ, σ̂)-stack on π is strictly related to its behavior on

(
outσ,σ̂(π)

)r.
More precisely, if o1 · · · o2n is the sequence of push/pop operations performed when π is passed
through a (σ, σ̂)-stack, then o′2n · · · o′1 is the sequence of push/pop operations performed when(
outσ,σ̂(π)

)r is passed through the (σ, σ̂)-stack, where o′i is a push (resp. pop) operation if oi is a
pop (resp. push) operation. This can be equivalently expressed by saying that the state (p; s; t) is
followed by (u; v;w) if and only if the state (wr; v;ur) is followed by (tr; s; pr).

57

4.3. PERMUTATIONS SORTABLE BY THE (σ, τ)-MACHINE CHAPTER 4. STACK-SORTING

Lemma 5. Consider the action of the (σ, σ̂)-stack. Let p, s, t ∈ N∗ and x ∈ N.

1. If the state (p, xs, t) is followed by the state (px, s, t) (and thus a pop operation is per-
formed) then the state (tr, s, xpr) is followed by the state (tr, xs, pr) (and thus a push oper-
ation is performed).

2. If the state (p, s, xt) is followed by the state (p, xs, t) (and thus a push operation is per-
formed), then the state (tr, xs, pr) is followed by the state (trx, s, pr) (and thus a pop oper-
ation is performed).

Proof. 1. Since xs is the content of the (σ, σ̂)-stack in the state (p, xs, t), we have that xs
avoids σ and σ̂. Thus a push operation is performed if s is the content of the (σ, σ̂)-stack
and x is the next element of the input.

2. If p is empty, the statement holds. Otherwise, let p = p1 · · · pa and s = s1 · · · sb. Observe
that pa is the last element that has been extracted from the (σ, σ̂)-stack before x enters.
Therefore, when pa is extracted, pa plays the role of either σ2 in an occurrence of σ or of σ̂2
in an occurrence of σ̂. More precisely, one of the following four cases holds. We show the
details for the first case only, the others being similar. Let z be the length of σ.

• s`pasi3 · · · siz is an occurrence of σ, for some ` ≥ 1 and ` < i3 < · · · < iz . Then
pas`si3 · · · siz is an occurrence of σ̂ and therefore a pop operation is performed when
pa is the next element of the input and xs is the content of the (σ, σ̂)-stack, as desired.

• s`pasi3 · · · siz is an occurrence of σ̂, for some ` ≥ 1 and ` < i3 < · · · < iz .

• xpasi3 · · · siz is an occurrence of σ, for some i3 < · · · < iz .

• xpasi3 · · · siz is an occurrence of σ̂, for some i3 < · · · < iz .

A straightforward consequence of the previous lemma is that the map
(
outσ,σ̂

)r
: S → S

is its own inverse, and thus a bijection. More specifically, for any permutation π, we have(
outσ,σ̂

)−1
(π) =

(
outσ,σ̂(πr)

)r. Since π is (σ, σ̂)-sortable if and only if outσ,σ̂(π) avoids 231
(and the reverse map is bijective), we have that Sort(σ, σ̂) is in bijection with Av(231). The next
theorem follows.

Theorem 2. For any pattern σ, outσ,σ̂n is a bijection on Sn. Moreover, we have |Sortn(123, 213)| =
|Sortn(132, 312)| = |Sortn(231, 321)| = cn, the nth Catalan number.

4.3.3 Pair (123, 132)

We characterize Sort(123, 132) in terms of pattern avoidance. Then we show that (123, 132)-
sortable permutations are enumerated by the Catalan numbers by exhibiting a link with the very
well studied Catalan triangle.

Theorem 3. A permutation π is (123, 132)-sortable if and only if π avoids 2314,3214, 4213 and
[241̄3.

Proof.

58

4.3. PERMUTATIONS SORTABLE BY THE (σ, τ)-MACHINE CHAPTER 4. STACK-SORTING

Proposition 3. The distribution of the first element in Sort(123, 132) is given by the Catalan
triangle (sequence A009766 in [2]).

Proof. Let An(k) be the set of (123, 132)-sortable permutations of length n and starting with k.
Let A1

n(k) be the subset of An(k) consisting of those permutations π = π1π2 . . . πn where any
occurrence π1πiπ` of [231 with π` = π1−1 can be extended into an occurrence π1πiπjπ` of [3412.
Set A2

n(k) = An(k)\A1
n(k) and let k ≥ 2. We shall provide bijections α : A1

n(k) → An(k − 1)
and β : A2

n(k)→ An−1(k).

Define α : A1
n(k) → An(k − 1) by α(π) = π′, where π′ is obtained from π by swapping the

two entries π1 and π1 − 1 in π. Since π ∈ A1
n(k), it is easy to check that π′ avoids [241̄3. In

addition, swapping π1 and π1 − 1 does not affect the avoidance of the three patterns 3214, 2314,
4213, which implies (see Theorem 3) that α(π) ∈ An(k − 1).

Next define β : A2
n(k) → An−1(k) by β(π) = π′′, where π′′ is obtained from π by deleting the

entry π` immediately before k−1 and by decreasing by one all entries of π greater than π`. Notice
that β(π) ∈ An−1(k). Let us now sketch the proof that β is bijective, leaving some technical
details to the reader. We shall explicitly define the inverse map of β. Given π ∈ An−1(k), choose
an integer ` as follows:

• ` is the minimal entry l = πu > π1, with 1 < u < i, such that there is an index v with
πv < πi and u < v < i, if such entry exists.

• Otherwise, set ` = n.

The preimage π is obtained by inserting ` immediately before πi = k − 1 and then increasing by
one all the entries πj of π with πj ≥ `.

Finally, setting akn = |An(k)|, we have that akn = ak−1n + akn−1, for 2 ≤ k ≤ n. Since An(1) =
{123 · · ·n} and An(n) is the set of length n permutations avoiding 213 and starting with n, the
initial conditions are given by a1n = 1 and ann = cn−1, where cn is the nth Catalan number.
Therefore, akn generates the well-known Catalan triangle (see Table 4.1 and [56, 78, 192]).

k\n 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7
3 2 5 9 14 20 27
4 5 14 28 48 75
5 14 42 90 165
6 42 132 297
.∑

1 2 5 14 42 132 429 1430

Table 4.1: The Catalan triangle akn = |An(k)|, with 1 ≤ n ≤ 8 and 1 ≤ k ≤ 6.

Corollary 3. Permutations of length n in Sort(123, 132) are enumerated by the Catalan numbers.

Proof. With the previous notations we have |Sortn(123, 132)| = ∑n
k=1 a

k
n = cn, the nth Catalan

number (see again [56, 78, 192]).

59

4.3. PERMUTATIONS SORTABLE BY THE (σ, τ)-MACHINE CHAPTER 4. STACK-SORTING

4.3.4 Pair (123, 312)

We start by giving a ltr-max counterpart of Theorem 1.

Theorem 4. Consider the (312, σ)-machine, where σ = σ1 · · ·σk−1σk ∈ Sk, with k ≥ 3 and
σk−1 < σk. Given a permutation π of length n, let π = M1B1 · · ·MtBt be its ltr-max decompo-
sition. Then:

1. Everytime a ltr-maximum Mi is pushed into the (312, σ)-stack, the (312, σ)-stack contains
the elements Mi,Mi−1, . . . ,M2,M1, reading from top to bottom. Moreover, we have

out312,σ(π) = B̃1 · · · B̃tMt · · ·M1,

where B̃i is a rearrangement of Bi.

2. If π is (312, σ)-sortable, then M1,M2, . . . ,Mt = n− t+ 1, n− t+ 2, . . . , n.

Proof. 1. The proof is identical to that of the first part of Theorem 1.

2. If π is (312, σ)-sortable, then out312,σ(π) avoids 231 by Proposition 1. Suppose, for a contra-
diction, that there is an element j ∈ {n − t + 1, . . . , n} which is not a ltr-maximum. Note that
j 6= π1 = M1 and j 6= n = Mt. Then, out312,σ(π) contains an occurrence jnM1 of 231, which is
a contradiction.

Instantiating σ by 123 in the previous theorem we have the next result.

Theorem 5. Let π be a (123, 312)-sortable permutation and let π = M1B1 · · ·MtBt be its ltr-max
decomposition. Then:

1. Bi avoids 213 for each i.

2. B̃i = out12(Bi), for each i.

Proof. Let i ≥ 2. Notice that, as a consequence of Theorem 4, immediately after Mi has been
pushed in the (123, 312)-stack, this stack contains the elements Mi · · ·M2M1, reading from top
to bottom. Moreover, these elements remain at the bottom of the (123, 312)-stack until the end of
the sorting procedure, since they are the last elements of out123,312(π). This fact will be used for
the rest of the proof.

1. Suppose, for a contradiction, that Bi contains an occurrence of 213, for some i, and let bac
be such an occurrence with a ‘minimal’, in the sense that there is no a′ < a where ba′c is an
occurrence of 213 in Bi. Therefore, since abMi is an occurrence of 123, b is extracted from the
(123, 312)-stack before a enters. In addition, when c enters into the (123, 312)-stack, a is still in
this stack. Indeed, no entry in Bi between a and c together with a produces a forbidden pattern
in the (123, 312)-stack. It follows that out123,312(π) contains bca which is an occurrence of 231,
yielding a contradiction with the sortability of π.

2. Let us consider the action of the (123, 312)-stack on block Bi. We wish to show that the
behavior of the (123, 312)-stack when processing Bi is equivalent to the behavior of an empty
12-stack on input Bi. In other words, we prove that the restriction of the (123, 312)-stack is

60

4.3. PERMUTATIONS SORTABLE BY THE (σ, τ)-MACHINE CHAPTER 4. STACK-SORTING

triggered if and only if the next element of the input forms an occurrence of 12 together with
some other element in the (123, 312)-stack. Immediately after Mi has been pushed (i.e. before
the first element of Bi is processed), the (123, 312)-stack contains the elements Mi · · ·M2M1,
reading from top to bottom. Observe that Bi avoids 213 by what was proved above, therefore the
(123, 312)-stack cannot be triggered by an occurrence of 312 when processing Bi. Suppose that
the next element of the input x forms an occurrence xy of 12 with some y ∈ Bi. Then xyMi is
an occurrence of 123 in the (123, 312)-stack, and so this stack behaves as a 12-stack. Conversely,
suppose that the (123, 312)-stack is triggered by an occurrence of xyz of 123, where x is the
next element of the input. Since Mi > Mi−1 > · · · > M1, necessarily y ∈ Bi. Thus xy is an
occurrence of 12 that triggers the 12-stack, as wanted.

As a consequence of what proved so far in this section, for any (123, 312)-sortable permutation
π = M1B1 · · ·MtBt of length n, we have Bi ∈ Av(213) and M1, . . . ,Mt = n − t + 1, . . . , n.
Moreover, by Proposition 2, each B̃i in out123,312(π) = B̃1 · · · B̃tMt · · ·M1 is decreasing. There-
fore, for any three elements x, y, z, with x ∈ Bi, y ∈ Bj and z ∈ Bk, with i < j ≤ k, xyz is
not an occurrence of 231. Otherwise, xyz would still be an occurrence of 231 in out123,312(π),
contradicting the fact that π is (123, 312)-sortable. From now on, we say that xyz is an occurrence
of 2 − 3 − 1 if z < x < y, with x ∈ Bi, y ∈ Bj and z ∈ Bk, with i < j < k. Similarly, when
j = k, we say that xyz is an occurrence of 2− 31.

Theorem 6. Let π = M1B1 · · ·MtBt be the ltr-max decomposition of a permutation π of length
n. Write out123,312(π) = B̃1 · · · B̃tMt · · ·M1 as in Theorem 4. Then π is (123, 312)-sortable if
and only if the following conditions are satisfied:

1. Mj = n− t+ j, for each j = 1, . . . , t.

2. Bi avoids 213 for each i (and thus B̃i is decreasing for each i).

3. out123,312(π) avoids 2− 3− 1.

4. out123,312(π) avoids 2− 31.

Proof. If π is (123, 312)-sortable, then π satisfies all the above conditions as a consequence of
what was proved before in this section. Conversely, it is easy to check that if π satisfies the above
conditions, then out123,312(π) avoids 231. Thus π is (123, 312)-sortable.

Reformulating the third condition of Theorem 6 we obtain the following lemma, whose easy proof
is omitted.

Lemma 6. Let π = M1B1 · · ·MtBt be the ltr-max decomposition of the (123, 312)-sortable
permutation π. Write out123,312(π) = B̃1 · · · B̃tMt · · ·M1 as in Theorem 4. Then out123,312(π)
avoids 2− 31 if and only if for each x ∈ Bi, y ∈ Bj , with i < j, we have:

• if y > x, then Bj > x.

• If y < x, then Bj < x.

In other words, Lemma 6 says that each block Bj of a (123, 312)-sortable permutation π is
bounded between two previous elements of π. The following result is obtained by restating this
lemma and Theorem 6 in terms of pattern avoidance.

61

4.3. PERMUTATIONS SORTABLE BY THE (σ, τ)-MACHINE CHAPTER 4. STACK-SORTING

Theorem 7. A permutation π is (123, 312)-sortable if and only if π avoids the three generalized
patterns [132, [42531 and [42153.

Next we prove that (123, 312)-sortable permutations are enumerated by the binomial transform
of Catalan numbers. We shall exploit the above characterization in terms of patterns in order to
provide a bijection with a certain set of partial permutations, whose enumeration is straightforward.

Recall from Section 4.2 that a partial permutation of n is an injection π : {1, 2, . . . , k} →
{1, 2, . . . , n}, for some 0 ≤ k ≤ n. The partial permutation of length zero will be denoted
by λ. Denote by An the set of all partial permutations of n. For instance, we have A3 =
{λ, 1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}. There is a natural bijection be-
tween the set of permutations in Sn avoiding the pattern [132 and An−1. Indeed, from a length n
permutation π avoiding [132, we associate the unique partial permutation α(π) ∈ An−1 defined
as follows:

α(π)πi = i− 1, for πi < π1.

In other words, α(π) is obtained by recording the indices (minus one) of the elements πi < π1,
from the smallest to the largest one. For instance, if π = 52461783, then α(π) = 4172. Notice
that α(π) = λ if and only if π1 = 1. Let us now define two pattern containments on An. Let
a = a1a2 · · · am be a partial permutation of n, with m ≤ n, and let i < j < k. Then aiajak is
an occurrence of the pattern 31|2 if it is an occurrence of 312 such that at least one value of the
interval [aj , ak] does not appear in a. Moreover, we say that aiajak is an occurrence of the pattern
213 if it is an occurrence of 213 such that ai = ak − 1.1 By interpreting Theorem 7 in terms of
partial permutations, we obtain easily:

Theorem 8. A permutation π is (123, 312)-sortable if and only if α(π) avoids 31|2 and 213.

Let An(31|2, 213) be the set of partial permutations of n avoiding the two patterns 31|2 and 213,
and An(213) be the set of partial permutations of n avoiding the classical pattern 213.

Theorem 9. For any n ≥ 1, there is a bijection φ between An(31|2, 213) and An(213).

Proof. Let us define recursively the map φ fromAn(31|2, 213) toAn(213). If π = λ, then we set
φ(π) = λ. Otherwise, π has a unique decomposition of the form π = Amin(π)B where A and B
are disjoint partial permutations of n. We distinguish three cases:

(i) If at least one of A or B is empty, then we set φ(π) = φ(A) min(π)φ(B);

(ii) If bothA andB are not empty and min(A) > max(B), then we set φ(π) = φ(A) min(π)φ(B).
It is worth noting that the hypothesis that π avoids 31|2 implies that any value x ∈ [min(π),max(B)]
occurs in B.

(iii) Suppose that both A and B are not empty and min(A) < max(B). Since π avoids 213,
there exists x ∈ [min(A),max(B)] such that x does not occur in π. We choose the smallest
x with this property so that any value of the interval [min(A), x] occurs in A. Moreover,
since π avoids 31|2, it must be max(A) = x − 1. An illustration of this case is depicted
in Fig. 4.6. Let r be the maximum value of B that is lower than min(A) and consider the
string B′ obtained from B by decreasing by x− r − 1 all entries greater than x. Similarly,

1This is analogous to the notion of bivincular pattern on classical permutations

62

4.3. PERMUTATIONS SORTABLE BY THE (σ, τ)-MACHINE CHAPTER 4. STACK-SORTING

let A′ be obtained from A by increasing by max(B) − x + 1 all its entries. Obviously, A′

and B′ belong to An(31|2, 213), whereas π′ = A′min(π)B′ contains 31|2. Then we set
φ(π) = φ(A′) min(π)φ(B′) (see again Fig. 4.6 for an illustration of this mapping). It is
worth noting that the value r + 1 does not occur in both A′ and B′, which imply that there
exists y ∈ [min(π), r + 1] such that y does not occur in φ(B′).

Next we prove that φ is an injective map. We proceed by induction on the length of partial permu-
tations. Let π be a partial permutation. Due to the remarks at the end of (ii) and (iii), the image of
π under φ satisfying (ii) is a partial permutation π′ such that any value x ∈ [min(π),max(φ(B))]
occurs in φ(B), which is not true for a permutation π satisfying (iii). Then, for two non-empty
partial permutations π and σ in An(31|2, 213), φ(π) = φ(σ) implies that π and σ have the same
length and they belong to the same case (i), (ii) or (iii). The recurrence hypothesis induces π = σ
which completes the induction.

Finally, observe that any partial permutation π avoiding 213 is of the form Amin(π)B where
min(A) > max(B) and both A and B avoid 213. According to the geometrical shape of π (as in
the proof of injectivity), π fits exactly in one of the cases (i), (ii) and (iii) in the definition of φ.
Therefore the surjectivity of φ can be showed by using its recursive definition and induction on A
and B. We leave the details to the reader.

π =

A

B

B

x

−→ π′ =

r + 1

B′

B′

A′

and φ(π) =

y <= r + 1

φ(B′)

φ(B′)

φ(A)

Figure 4.6: Illustration of φ in the case (iii) of the proof of Theorem 8.

Now, it is easy to enumerate the set An(213). Indeed any partial permutation π ∈ An(213) can
be obtained by choosing k integers from {1, 2, . . . , n} and then arranging them according to the
partial order of a permutation in Avk(213) (there are ck such permutations). Therefore, we have:

|An(213)| =
n∑

k=0

(
n

k

)
ck,

the binomial transform of Catalan numbers (sequence A007317 in [2]). The enumeration of
Sort(123, 312) follows immediately.

Corollary 4. For each n ≥ 1, we have:

|Sortn+1(123, 312)| =
n∑

k=0

(
n

k

)
ck.

63

4.4. CONCLUSION CHAPTER 4. STACK-SORTING

4.4 Conclusion

In this chapter, we were interested in pattern avoiding machines where the first stack avoids a pair
of patterns of length 3. They were introduced recently by Claesson, Cerbai and Ferrari as a partic-
ular case of the two-stacks in series sorting device. We investigated those pairs for which sortable
permutations are counted by the (binomial transform of the) Catalan numbers and the Schröder
numbers. We prove that for the pair (132, 231) the enumeration of the set of sortable permutations
is given by the large Schröder numbers; and for three pairs of patterns, (123, 213), (132, 312)
and (231, 321), sortable permutations are counted by the Catalan numbers. Some of the obtained
results have been further generalized to Cayley permutations by Cerbai, specialized to particular
patterns by Defant and Zheng, or considered in the context of functions over the symmetric group
by Berlow.

64

Part II

Evolutionary Optimization

65

66

Chapter 5

Evolutionary computation: an overview

The first part of this thesis focuses on enumerative combinatorics. It took into account the combi-
natorial properties of some combinatorial objects, in particular the properties of permutations. In
the second part, as a complementary work, we study the application of permutation properties in
evolutionary computation. In fact, the proposed contribution concerns permutation problems and
genetic algorithms (more especially encoding and associated operators).

This chapter begins by presenting the permutation problems and why it is always interesting to
design suitable methods for them, followed by the introduction and definition of evolutionary
algorithms, genetic operators and indicators. Then, some optimization problems based on permu-
tations are reviewed. The chapter ends with concluding remarks.

5.1 Permutation-based problems

Permutation-based optimization problems are a great example of the direct application of permuta-
tions and their properties since they use permutations to represent potential solutions. Applications
of permutation problems can be found in various areas of real life, such as assignment applications
which include a variety of design problems in different fields, production scheduling and sequenc-
ing applications, traveling salesman problems, routing issues, etc.

The mathematical properties of permutations could be useful for algorithms applied to this type of
problem. Thus, in combinatorics, as defined in section 2.1.2, a permutation is an arrangement of
a finite set of n objects denoted [n] = {1, 2, . . . , n}, in a specific order and each element appears
only once. There are exactly n! possible permutations on n. A permutation π of length n can
be represented as follows: π1π2 . . . πn. Sn, the set of all possible permutations of size n, forms
a group with the composition of mappings as product and the identity permutation as a neutral
element. The identity permutation is the permutation π1π2 . . . πn such that: π1 < π2 < · · · < πn.
For example, the identity permutation on the set {1, 2, 3, 4, 5} is 12345.

Some examples of permutation-based problems in combinatorial optimization are summarized and
classified by general application categories.

67

5.1. PERMUTATION-BASED PROBLEMS CHAPTER 5. AN OVERVIEW

5.1.1 Assignment problems

Assignment problems are included in the category of optimization problems which consists in
minimizing or maximizing a certain cost. They regroup problems of assignments between sets
having the same size. Each problem is characterized by its size, the constraints on the assignments
and the cost involved depending on the application domain. Burkard et al. provide in [51] a com-
prehensive review of assignment problems from their conceptual beginnings in the 1920s through
theoretical, algorithmic, and practical developments.

The simplest problem within this category is the Linear assignment problem (LAP). Given two
sets of objects of the same size n, that is to say a set of tasks to be executed on a set of machines.
An assignment problem is said to be linear if the total cost of the assignment for all tasks is equal
to the sum of the costs for each machine. The problem is to find an assignment p that optimizes
the sum of all the assignments in pairs. Burkard and Cela in [50] have proposed a state of the art
on linear assignment problems (LAP).

As an extension of linear assignment problems, Pierskalla [166] presented the Multi-index assign-
ment problems (AP3) in 1968. First, only 3-index assignment problems have been considered,
while in recent years, problems with more than 3 indices have been investigated [180–182].

The three index assignment problem (AP3), also introduced by Pierskalla [165], consists in as-
signing a set of p items to q locations at r points or intervals of time in such a way to minimize the
cost of the assignment. It is assumed that p ≤ q ≤ r.

Only implicit enumeration methods are known for this type of problem, like the branch and bound
methods [166, 218] or primal-dual implicit enumeration method based on a graph theoretic ap-
proach [112].

Also we have the Quadratic assignment problem (QAP), which was introduced by Koopmans
and Beckmann in 1957 [129] as a mathematical model for the allocation of indivisible economical
activities. It is one of the fundamental hardest combinatorial optimization problems in mathemat-
ics.

Formally, given two sets P and L of equal size n representing the sets of facilities and locations
respectively. For each pair of locations, a distance d : L −→ R is specified and for each pair
of facilities a weight w is indicated. The issue is to assign all facilities to different locations,
f : P −→ L, with the objective of minimizing the cost function, which is the sum of the distances
multiplied by the corresponding flows, see Eq. 5.1.

∑

a,b∈P
w(a, b) · d(f(a), f(b)) (5.1)

The QAP has been proved NP-hard by Sahni and Gonzalez [189], i.e., it cannot be solved in
polynomial time, and gained growing attention within the optimization community because of its
challenging complexity and the interesting number of applications in numerous real life domains
such as scheduling, production, computer manufacture, chemistry, facility location, communica-
tion, and other fields.

68

5.1. PERMUTATION-BASED PROBLEMS CHAPTER 5. AN OVERVIEW

5.1.2 Scheduling problems

Scheduling problems are widely encountered in real world applications mainly in industrial fields.
The inputs of such problems are a set of jobs or tasks and a set of machines. The required output is
a schedule – an assignment of jobs to machines. The schedule should optimize a certain objective
function. Scheduling problems will be presented using permutations such as the flowshop and
jobshop problems.

The permutation flowshop problem(FSP), introduced by Johnson in his paper [118], is one of
the numerous scheduling problems. In the general flowshop problem (FSP), according to Brucker
in [48], a set of unrelated n jobs J1, J2, . . . , Jn are to be processed on a set of m machines,
M1,M2, . . . ,Mm . These machines are arranged in series and each job has to visit all of them in
the same order. Therefore, each job Ji is composed of m consecutive tasks Oij . The processing
times of the jobs at the machines are known in advance, non-negative and deterministic. They are
denoted by pij (j = 1, . . . ,m) whereOij means the j-th operation of the job Ji must be processed
on machine Mj . The problem consists in obtaining a production sequence of jobs Jj , for each
machine j, (j = 1, . . . ,m) so that a given criterion is optimized.

Another variant of optimal job scheduling, the jobshop problem. It is a generalization of the
permutation flowshop problem. Formally, referring to Brucker [48], letM = {M1,M2, . . . ,Mm}
and J = {J1, J2, . . . , Jn} be two finite sets where the Mi are machines and the Jj are jobs. Let
O = M × J , denotes the set of all sequential assignments of jobs to machines, such that every job
is done by every machine exactly once; elements x ∈ O may be written as n×m matrices.

Cij : M × J → [0,+∞[(5.2)

Let Cij be the function representing the cost / time for machine Mi to do job Jj . The jobshop
problem is to find an assignment of jobs x ∈ O such that C(x) is a minimum.

5.1.3 Traveling salesman problem

One of the most well-known permutation problems is the traveling salesman problem(TSP). It was
first formulated by the Irish mathematician Sir William Rowan Hamilton and the British mathe-
matician Thomas Penynington Kirkman in the 19th century in [35]. Given a list of cities and the
distances between each pair of cities, the question stated in such a problem is:

what is the shortest possible path that visits each city exactly once and returns to the
original city? This turns back to calculate the shortest Hamiltonian cycle

There are a wide variety of everyday applications to TSP problems, as they belong to the class of
routing problems, such as in the warehouse industry, transportation, supply chain industry, material
design, manufacturing, etc.

TSP’s permutation representation is seen as a sequence of cities placed in a permutation π of size
n, in the order in which they are visited in the tour. And since it is a tour, the first city (the first
entry of the permutation) is connected to the last. The overall cost of a feasible tour is the sum of
the distances between each pair of adjacent cities of the circuit, and often, it should be minimized,
see Eq. 5.3

Minimize
n−2∑

i=0

cπ(i)π(i+1) + cπ(n−1)π(0) (5.3)

69

5.2. COMBINATORIAL OPTIMIZATION METHODS CHAPTER 5. AN OVERVIEW

The TSP is a well-studied problem in the literature because of its harshness and the number of
its applications. It sounds simple enough, but it is quite difficult to solve such problems because
they are NP-hard problems. Starting with von Neumann in 1951 [219], solving TSP problems
has motivated the development of important optimization methods including Cutting Planes [74],
Branch-and-Bound [32, 113], Local Search [71], Lagrangian Relaxation [96], Simulated Anneal-
ing [120].

5.2 Combinatorial Optimization methods

Combinatorial optimization is an optimization subdomain related to operations research, algorithm
theory, and computational complexity theory, as well as a combinatorial subdomain related to dis-
crete mathematics. It has important applications in artificial intelligence, auction theory, software
engineering, applied mathematics, and theoretical computer science.

Combinatorial optimization is a subject that consists in finding an optimal object from a finite set
of objects [191]. Typical problems using combinatorial optimization methods are the TSP, our
study problem.

Given the importance of these problems, justified by their great difficulty and by the large num-
ber of applications that can be formulated in the form of a combinatorial optimization problem,
many resolution methods have been developed. These methods can be roughly classified into
two categories: exact (complete) methods which guarantee the completeness of the resolution and
approximate (incomplete) methods which lose their exhaustiveness to gain efficiency.

5.2.1 Exact methods

The exact methods can provide an optimal solution, which minimizes or maximizes the value of the
objective function. They help to find optimal solutions especially for reasonably sized problems
but they generally have difficulties with large applications.

Among the exact methods, the most traditional ones are the Branch and Bound techniques (B & B),
initially proposed by Land and Doig [135], or the cutting plane algorithm (the Branch and Cut),
initially proposed by Gomory [106].

It is not always possible or reasonable to apply exact resolution methods, due to the complexity
of a combinatorial optimization problem (NP-hard problem), and the limited time available to find
a solution. Thus, it is useful to use heuristic methods given the possibility of implementing exact
methods, the availability of the computation time and the size of the instances to be resolved etc.

5.2.2 Approximate methods

As a general definition, an approximate search method aims to find good quality or near-optimal
solution to the problem addressed within a reasonable timeframe by exploring a selected part of
the solution space. Good quality solutions are expected but there is no guarantee of optimality of
the solutions found.

The most popular search algorithms within the class of heuristic methods are metaheuristics. They
are versatile optimization methods that can be applied to any type of problem because they do not
contain any specific knowledge of a problem in their design line. It provides a good sufficient

70

5.3. GENETIC ALGORITHM CHAPTER 5. AN OVERVIEW

solution to an optimization problem, even with incomplete or imperfect information or limited
computational capacity. Thanks to these metaheuristics, approximate solutions can be proposed
for classical optimization problems of larger size and for very many requests that were previously
impossible to process.

Interest in metaheuristics has grown steadily in recent years, in operations research and artificial
intelligence [28, 162, 204]. They are represented mainly by neighborhood-based methods like
Simulated Annealing (SA), Tabu Search and Evolutionary Algorithm (EA). This thesis focuses on
EAs and more precisely the genetic algorithms (GA).

Evolutionary algorithms are mainly based on the evolutionary theory introduced by Charles
Darwin. They are powerful stochastic search and optimization techniques to solve problems that
cannot be easily solved in polynomial time and would take far too long to exhaustively process.

As the process of natural selection, there are four main processes in evolutionary algorithms. First,
in the process of initialization, an initial population of solutions is created (often randomly) con-
taining an arbitrary number of possible solutions to the problem.

Then, once a population is created, each solution must be evaluated according to a fitness function.
Fitness values can be used to calculate the average aptitude of solutions or rank solutions within
the population in order to select a portion of the highest rated individuals.

After selecting some solutions, the third process is the generation of a new population, and it may
include two sub-process: crossover and mutation. Using the characteristics of the selected parents,
new offspring are created with the crossover and mutation operators. These offspring are a mixture
of the qualities of the parents.

Finally, there is the termination phase. Either because the algorithm has reached a maximum
execution time, or because the algorithm has reached a certain performance threshold. At this
point, a final solution is selected and returned. Yu and Gen [231] provided a more recent discussion
about evolutionary algorithms.

Fig. 5.1 shows the different steps of the evolutionary algorithm where, after initialization, the pop-
ulation is evaluated then a new population is generated if none of the stopping criteria is met. The
process is repeated until a stop criterion is met. A stop criterion can be static like a fixed number of
iterations or dynamic, for example, when there are no improvements in fitness values for a certain
number of iterations. We can have several stopping criteria in some cases.

Evolutionary algorithms include evolutionary strategies (ES), evolutionary programming (EP), ge-
netic algorithms (GA) and genetic programming (GP). In the following, the interest is in genetic
algorithms (GA).

5.3 Genetic Algorithm

Genetic algorithms are one of the most studied classes of EAs. They were developed by John
Holland and his collaborators since 1975 [115, 116]. They are powerful stochastic search and
optimization techniques for complex problems in a model or abstraction of biological evolution
based on Charles Darwin’s theory of natural selection. These algorithms have been used to solve

71

5.3. GENETIC ALGORITHM CHAPTER 5. AN OVERVIEW

Generation of initial
population

Evaluation of fitness
values

Generation of new
population

Stop?
Final

solution

Yes

No

Figure 5.1: Flowchart of an evolutionary algorithm

various kinds of problems [85, 105] and many theoretical and experimental studies have been
performed [7, 58, 62, 104, 119, 127, 227].

Fig. 5.2 shows the different steps of GAs through generation to find better solutions using tech-
niques inspired by natural evolution such as inheritance, mutation, selection. As shown in the
diagram, in the first step, an initial population of initial individuals is generated. Each individ-
ual is represented as a permutation or binary representation or another encoding. By analogy to
the evolution theory in biology, an individual is composed of one or several chromosomes. In
each chromosome, the genes are the variables of the problem (decision variables) and the possible
values are referred to as alleles, see fig. 5.3.

Algorithm 5.1 presents a pseudo-code of a GA.

Generate initial population: P (0)
t← 0
while stop condition not reached do

Evaluate P (t)
P ′(t)← Selection(P (t))
P ′(t)← Recombination(P ′(t))
P (t+ 1)← Replacement(P ′(t), P (t))
t← t+ 1

end
Return best solution(s)

Algorithm 5.1: Template of a genetic algorithm

During evolution, according to the Darwinian principle of the survival of the fittest, an evaluation
function (objective function) is used to associate a "fitness" measurement with each solution in-
dicating its quality. Then the most suitable individuals are selected for reproduction according to

72

5.3. GENETIC ALGORITHM CHAPTER 5. AN OVERVIEW

Generation of initial
population

Evaluation of fitness
values

Stop?
YesNo Final

solution

Initial
population

?

No

Replacement

Selection

Yes

Crossover

Mutation

Figure 5.2: Flowchart of genetic algorithm

different selection strategies (Roulette Wheel Selection, Rank Selection, Steady State Selection,
Tournament Selection, . . .). Then, crossover and mutation, the reproduction operators, are applied
to each couple of individuals selected to generate new individuals (offspring). More detailed dis-
cussions can be found in the more classic reference by Holland [116], Goldberg [104] and the
more recent reference by Gen and Cheng [102], and Gen et al. [103].

Genetic algorithms, over traditional optimization algorithms, have the ability to deal with complex
problems and parallelism. They can deal with various types of optimization, whether the objective
function is stationary or non-stationary (changes with time), linear or nonlinear, continuous or
discontinuous, or with random noise. However, the choice of parameters must be made with care,
such as the choice of population size or the mutation and crossover operators. Any inappropriate
choice will make it difficult for the algorithm to converge or simply produce meaningless results.

Many approaches can be implemented in the realization of a genetic algorithm (GA). In this the-
sis and our experiments, the approach that was used is known as the generational approach. In
generational GA, a large part of the population is selected and crossed, the resulting offspring
are mutated and inserted into the population, thus replacing the old individuals. This means that
a temporal or intermediate population is used. Within generation n, it is initialized with a fixed
number of individuals from the previous population, and the offspring are inserted into it until the
maximum size is reached. At this stage, this temporal population must be in the new population
(at generation n + 1), a new temporary population is created and the process begins again. Other
strategies are presented in the literature (see Goldberg’s 1989 book [104] for an introduction) and
for comparison between the generational GA and other approaches [73, 160].

73

5.3. GENETIC ALGORITHM CHAPTER 5. AN OVERVIEW

Each of the basic components of a GA is detailed below.

Encoding Using the evolutionary algorithm in general and the genetic algorithm in particular to
solve optimization problems requires an important task, that is to determine how the solution can
be represented according to the elements or terminology of the specific algorithm.

In a population, an individual is characterized by a set of parameters (decision variables) called
genes. The genes come together in a chain to form a chromosome (solution) (Fig5.3). The set of
genes of an individual is represented in terms of alphabet or numbers.

Figure 5.3: Population, Chromosomes and Genes

The processes of generating solutions can produce unfeasible solutions, like solutions with dupli-
cates. It is very important to choose a solution representation that is more likely to produce feasible
solutions. The choice of representation can be direct or indirect but the main design consideration
is to ensure that each individual generated can still be decoded into a workable solution. For a
complex problem, indirect representation is often used with a decoding procedure to convert the
indirect representation and to calculate the fitness function for evaluation. In section 5.4, indirect
encodings are presented.

Initialization of initial populations It should be emphasized that this step is not so obvious
since the initial generation can affect the convergence and quality of the solution in the GA. The
importance of the degree of quality and diversification of the initial population is proven and shown
in several works [64,143,158,186]. Indeed, the quality of the starting solutions can help to obtain
the fittest individuals faster.

Heuristics can be used as a sort of initialization strategy to obtain optimized initial populations
[64], taking into account the quality of the solutions, their distribution in the solution space and
the cost of calculating the method used to generate this population. For example, part of the
population could be generated randomly in order to introduce some diversity while the rest of the
population is optimized.

Selection operators Selection mechanisms determine which individuals in the population will
be used to produce the next generation according to the fittest parents as they are more likely to
generate good quality offspring.

In the literature, a variety of selection methods are proposed. Some of them are based on the fitness
of the individuals [67, 220], others are based both on the fitness of the individuals and on some
stochastic mechanisms [190]. Roulette wheel selection, also known as Fitness proportionate se-
lection, is a selection operator used in genetic algorithms for selecting potentially useful solutions

74

5.4. ENCODING FOR PERMUTATION PROBLEMS CHAPTER 5. AN OVERVIEW

for the recombination, see [140] for more details. In roulette wheel selection, the individuals are
given a probability of being selected that is directly proportionate to their fitness. Other examples
of selection techniques: Binary Tournament, Best Solution Selection, Random Selection, Worst
Solution Selection,. . .

Crossover operators After the selection, recombination stage, using crossover operators, is the
most significant phase in a genetic algorithm since it generates new generations. It is the computer
transposition of the mechanism which allows, in nature, the production of chromosomes that partly
inherit the characteristics of the parents. The crossover operator, as well as the mutation operator,
must be designed according to the properties of the problem in question.

The crossover operator is usually a binary operator that combines two selected parents in order
to produce better offspring. There are several crossover techniques: Single Point Crossover, Two
Points Crossover, PMX Crossover,. . . In the literature, researchers tend to develop and update
existing operator [5, 94] or to create new variation Crossover operator to improve permutation-
based Genetic Algorithm [6, 15, 134] See [179, 197] for studies on crossover operators. In section
5.4.1, some specific operators are presented.

Mutation operators After crossing, and for the sake of diversity, the strings are subjected to a
mutation since it prevents the algorithm from being trapped in a local minimum. The mutation
phase plays the role of recovering lost genetic materials as well as randomly disrupting genetic
information.

The mutation operator has traditionally been seen as a simple search operator. It introduces new
genetic structures in the population by randomly modifying some of its constituent elements. Mu-
tation operators, such as Uniform Mutation, Swap Mutation, Polynomial Mutation, etc, are widely
studied in the literature, see for instance [75, 196, 206].

5.4 Encoding for permutation problems

The use of genetic algorithms allows defining the genotype in the optimization process with dif-
ferent encodings. It refers to the way decision variables are represented. One can use a traditional
direct encoding (which is also referred to permutations) or an indirect representation of decision
variables (indirect coding) can be used. The choice of the encoding must take into account the
problem and the operators to be used (crossover and mutation). This mapping between the set of
permutations and the set of their encoding could be used to translate any problem represented by
permutations into an equivalent problem represented by another code. This can simplify some of
these problems.

The classical permutation allows an easy representation of solutions. However, it can generate
duplicates during the crossover and mutation steps. To deal with this issue, specific operators are
defined in the literature. For instance, we have PMX, OX, UX for crossover, and Swap, Scramble,
and Inversion for the mutation [111]. Quite often, these operators repair to non-viable solutions
(those with duplicates). To avoid these repair phases, it is possible to use indirect encodings which
are not sensitive to duplicates. In the following, two indirect encoding methods are presented: the
Lehmer code and the Inversion table.

75

5.4. ENCODING FOR PERMUTATION PROBLEMS CHAPTER 5. AN OVERVIEW

Lehmer code Lehmer code, attributed to Derrick Lehmer [137], associates a unique code L(π)
to each permutation π = π1π2 . . . πn. L(π) is a sequence L(π) = l1l2 . . . ln with li the number of
elements that are smaller than πi and that appear to the right of πi in the permutation.

li = Card{j|j > i & πj < πi} (5.4)

For example, the Lehmer code of the permutation "5 2 1 4 3" is "4 1 0 1 0". The ele-
ments li in the Lehmer code satisfies the condition 0 ≤ li ≤ n − i, ∀i. The complete process for
Permutation to Lehmer code is provided in algorithm 5.2.

Input: Permutation
Output: LehmerCode
l =length of Permutation
for i = 0; i < l; i+ + do

counter← 0
for j = i+ 1; j < l; j + + do

if Permutation[i] > Permutation[j] then
counter←counter+1

end
end
LehmerCode[i]← counter

end
Algorithm 5.2: Permutation to Lehmer code

Inversion table This type of representation is very similar to the Lehmer Code [125]. The
inversion table of a permutation π = π1π2 . . . πn is T (π) = t1t2 . . . tn with ti the number of
elements that are greater than i and appearing to the left of i in the permutation.

ti = Card{j|i < j & j < πi} (5.5)

For example the inversion table of the permutation "5 2 1 4 3" is "2 1 2 1 0". Here
t3 = 2 because there are two elements (5 and 2) that are greater than 1 and placed at lower
positions in the permutation (to the left of 1). By definition, ti in the Inversion table always
satisfies the condition 0 ≤ ti ≤ n − i, ∀i. The complete process for Permutation to Inversion
Table is provided in algorithm 5.3.

5.4.1 Crossover operators

As defined previously in section 5.3, the crossover operator allows generating new solutions from
one generation to another. Two Individuals are randomly selected from the population to cross
and produce new offspring. Bellow, crossover operators adapted for permutation problems are
presented and described.

Single point crossover method consists of choosing a random crossover point and the tails of its
two parents are swapped. This results in two offspring, each carrying some genetic information
from both parents, see Fig. 5.4.

76

5.4. ENCODING FOR PERMUTATION PROBLEMS CHAPTER 5. AN OVERVIEW

Input: Permutation
Output: InversionTable
l =length of Permutation
for i = 0; i < l; i+ + do

counter← 0
for j = 0; j < i; j + + do

if Permutation[i] < Permutation[j] then
counter←counter+1

end
end
InversionTable[i]← counter

end
Algorithm 5.3: Permutation to Inversion Table

Figure 5.4: Single point crossover

In two-point crossover, two crossover points are picked randomly and the gene’s value in between
the two points are swapped between the parent organisms, see Fig. 5.5. Two-point crossover is
equivalent to making two single-point crossings with different crossover points.

Figure 5.5: Multi-point crossover

Multi-point crossover is a generalization of one-point crossover in which alternate segments are
exchanged to obtain new offspring.

The complete process for the k-points crossover method is provided in Algorithm 5.4.

77

5.4. ENCODING FOR PERMUTATION PROBLEMS CHAPTER 5. AN OVERVIEW

Input: Parent1,Parent2,k
Output: Offspring1,Offspring2
l =length of Parent1;
CrossPoints: list of length k;
for i = 0; i < k; i+ + do

do
p←Math.random(0, l − 1);
While CrossPoints.contains(p)
CrossPoints.add(p);

end
Sort CrossPoints;
index← 0;
Boolean exist← false;
for i = 0; i < k; i+ + do

p← 0
if index < k && i => CrossPoints.get(index) then

exist=!exist;
index++;

end
if exist then

Offspring1[i]←parent2[i];
Offspring2[i]←parent1[i];

else
Offspring1[i]←parent1[i];
Offspring2[i]←parent2[i];

end
end

Algorithm 5.4: k-points crossover

The partially mapped crossover (PMX), first introduced by Goldberg and Lingle in [105] is one
of the most popular and efficient crossovers for GAs to deal with permutation problems [136].

PMX applies a two-point crossover but additionally uses a mapping relationship to legalize off-
spring that have duplicate numbers. That means, after choosing two random cutoff points on the
parents to build an offspring, the part between the cutoff points, one parent’s chain is mapped to
the other parent’s chain, and the remaining information is exchanged.

For example, in Fig. 5.6, a cutting point is chosen for both parents randomly between the 3rd and
4th gene and another one between the 6th and 7th gene. The substrings between the cut points are
called the mapping sections. In our example they define the mappings 1←→ 8, 9←→ 5, 8←→ 7
and 6←→ 3. Now the mapping section of the first parent is copied into the second offspring, and
the one of the second parent is copied into the first offspring. Then offspring 1 / 2 is filled up by
copying the elements of the parent 2 / 1. In case a gene is already present in the offspring it is
replaced according to the mappings. For example, the first element of offspring 1 would be a 1 like
the first element of the first parent. However, there is already a 1 present in this offspring. Hence,
because of the mapping 1 ←→ 8, we choose the first element of offspring 1 to be 8. But since
also 8 is already in offspring 1, because of the mapping 8 ←→ 7, we choose the first element of
offspring 1 to be 7. Similarly for the rest and for the second offspring as well.

78

5.5. PERFORMANCE INDICATORS CHAPTER 5. AN OVERVIEW

Figure 5.6: PMX crossover example

5.5 Performance indicators

It is necessary to use performance indicators to measure how each kind of operator keeps some
characteristics of any considered permutation problem.

Hamming distance The Hamming distance is a known mathematical distance metric. It was
initially defined to measure how two binary strings differ from each other and then it has been
generalized for permutations. It is an indicator that can be used to assess diversity. It measures the
similarity between two solutions concerning the decision variables. Considering two permutations
say π and π′, it is equal to the number of positions in which π differs from π′ (Eq. 5.7).

D(π, π′) =

n−1∑

i=0

xi (5.6)

where

xi =

{
1 if πi 6= π′i
0 Otherwise

(5.7)

Note that low Hamming distances mean that two permutations (π, π′) are almost identical

Now, there are different indicators to assess how different genetic properties are transmitted from
parents to offspring.

Edge Based Indicator (EBI) The Edge Based Indicator [81] permits to observe the transmission
of properties from parents to offspring. It is more particularly related to edges. It counts the edges
which are present both in parent and in offspring, using Eq. 5.8, which is reminded just below to
make the reading easier. This metric must be maximized.

EBI =
NET × 100

2n
(5.8)

Where the total number of edges (NET) is:

NET =

n∑

i=1

n∑

j 6=i
NE(vi, vj) (5.9)

79

5.6. CONCLUSION CHAPTER 5. AN OVERVIEW

Where the number of edges (NE) is:

NE(v1, v2) =

2 if

v1 immediately proceeds v2 in Parent 1
and v1 immediately proceeds v2 in Parent 2
and v1 immediately proceeds v2 in the offspring

1 if

v1 immediately proceeds v2 in Parent 1
or v1 immediately proceeds v2 in Parent 2

and v1 immediately proceeds v2 in the offspring
0 Otherwise

(5.10)

Position based indicator This indicator more specifically deals with positions. It is defined by
Eq. 5.5.

PBI =

∑2
i=1

∑2
j=1 PBij

4
× 6

n(n+ 1)(2n+ 1)
(5.11)

where PBij is the euclidean distance

PBij =

√√√√
n∑

k=1

POj(k)− PPi(k) (5.12)

where

PPi(k) is the position of k in the parent i, i ∈ {1, 2},

and

POj(k) is the position of k in the Offspring j, j ∈ {1, 2} . This indicator must be minimized

5.6 Conclusion

This chapter gave a general overview of optimization problems based on permutations as an ex-
cellent example of the direct application of permutations and their properties. Combinatorial op-
timization methods are divided into two large families: exact methods and heuristic methods. In
this thesis, we are interested in genetic algorithms, powerful heuristic stochastic search and opti-
mization techniques for complex problems, in particular permutation-based problems. A detailed
explanation of the different stages of the GA is also presented, with the definition of certain op-
erators. In the next two chapters, we will present the contributions made on the optimization of
permutation-based problems. More precisely, we will focus in these works on the indirect encod-
ings of decision variables.

80

Chapter 6

Transmission of Genetic Properties in
Permutation Problems

6.1 Introduction

Permutation-based optimization problems are widely studied in the literature because of their
hardness and the diversity of their application fields. They are used in different domains, for
instance, the network devices deployment, scheduling or transportation. Solving such problems
consists in finding a permutation that minimizes / maximizes some criteria.

When dealing with permutation problems, one should ensure that there are no duplicates in the
permutation. Using a genetic algorithm, this can be easily verified when generating the initial
solutions. However, over generations, genetic operators such as crossover and mutation can dupli-
cate alleles (values). There are mainly two approaches to avoid these repetitions. The first is to use
mutation and crossover operators which repair individuals containing duplicates (e.g. OX, UX,
or PMX [111]). Another method consists in using a solution encoding (indirect encoding) which
tolerates, duplicates and defines a bijection between this indirect encoding and the permutation.
The Lehmer code and the Inversion table are two examples of indirect encoding. Also, two non-
classical encodings are introduced in this chapter. However, it should be noted that part of parents’
genetic properties can be lost when generating offspring if indirect encoding is used [155]. This
chapter studies the transmission of genetic properties focusing on both decision variables and ob-
jective function domains. We consider a single objective traveling salesman problem (TSP) as an
example of a permutation optimization problem.

This chapter is organized as follows. A brief overview of related works is introduced in Sec-
tion 6.2. Section 6.3 describes classical direct and indirect encodings, and two non-classical new
indirect encodings, as well as their associated operators. Section 6.4 presents our experiments and
results regarding the transmissions from parents to offspring and the fitness improvement for three
different problems. Finally, conclusions are given in Section 6.5.

6.2 Related work

Initially proposed by Holland and Goldberg, genetic algorithms (GAs) have quickly evolved
to solve multi-objective problems. Since Holland introduced the main mechanisms of GAs [115],

81

6.3. ENCODING AND RECOMBINATION OPERATORS CHAPTER 6. GENETIC PROPERTIES

many authors explained that choosing the most suitable representation / encoding is one of the ma-
jor issues [31, 68, 81, 104, 110, 141, 155, 164, 214]. Among these authors, Goldberg [104] studied
the behavior of representations and crossover-based GAs. He explained, in the schemata princi-
ple, how this representation - crossover combination should allow the transmission of meaningful
building blocks from parents to offspring. Recently, Mohammed Ali et al. [155] show the impact
of the choice of the couple encoding - crossover operator on the resolution of the permutation
problems. They compare the characteristics related to the transmission of the properties between
the parents and the offspring.

Djerid et al. [81] considered permutation encoding and crossover in a way similar to the classical
schema theory [104]. They explain that encoding and crossover should be adapted according to
which properties of the parents should be inherited by offspring. Pesko [164] presents an evolution
algorithm for solving small (up to 32 nodes) constrained TSP. This new differential evolution
algorithm with only two parameters (the population size and the number of the generations) uses
the Lehmer code to encode solutions. In [214], Ücoluk proposes an inversion sequence as the
representation of a permutation. This method is used for solving TSP and is compared to the
well-known PMX crossover method. It is observed that Ücoluk’s method outperforms PMX in
convergence rate by a factor which can be as high as 11.1, on a cost of obtaining slightly worse
solutions on average. Bekiroğlu [31] uses new alternatives of encoding types such as Quaternary
encoding and octal encoding. He examined how they contribute to the efficiency and robustness
of the genetic algorithm. He concluded that it is not possible to claim that one of the encoding
types is exactly dominant over the others in all aspects such as convergence, finding the optimum
solution, and the number of iteration. In [110], a GA is proposed to optimize the weight of steel
truss structures. The obtained results proved the effectiveness of the genetic algorithm in relation
to the classical genetic algorithm. In this case, the set of design variables consists of the collection
of profiles manufactured in steel mills. Obviously, this set of profiles is discrete. The most effective
type of encoding in such a case is value encoding.

In [188], Rosa et al. discuss the teachers’ placement (in elementary school) problem based on
genetic algorithms by finding a chromosome that represents the possibility of teachers placement
solution, composing a population, and finding the recommended combination of two selected mu-
tations operators and two selected crossover operators to achieve optimal results. Another work
that studies the choice in selection, crossover, and mutation operators and their impact on the per-
formance of a genetic algorithm is [161]. The authors present a novel framework for an adaptive
and modular genetic algorithm (AMGA) to discover the optimal combination of the operators in
each stage of the GA to avoid premature convergence.

6.3 Encoding and recombination operators

Encoding refers to the way decision variables are represented. When using genetic algorithms, it
allows to define the genotype in the optimization process. One can use a direct encoding or an
indirect representation of the decision variables (indirect encoding). The choice of the encoding
should take into consideration the problem and the operators to use (crossover and mutation). This
mapping between the set of permutations and the set of their encoding could be used to translate
any solution represented by permutations into an equivalent solution represented by another code.
This may simplify some problems. Bellow, we will present the direct encoding, permutation, as
well as two classical indirect encodings, Lehmer code and Inversion table, and finally we will
make an introduction to two non-classical encodings, Transposition array and Inverse Transposi-
tion array.

82

6.3. ENCODING AND RECOMBINATION OPERATORS CHAPTER 6. GENETIC PROPERTIES

6.3.1 Direct Encoding

A permutation π = π1π2 . . . πn is an arrangement of the numbers 1, 2, . . . , n for some positive n.
Each permutation is represented by a unique number that represents its order among the n! possible
permutations enumerated following a lexicographic order. The classical permutation allows an
easy representation of solutions. However, it can generate duplicates during the crossover and
mutation steps. To deal with this issue, specific operators are defined in the literature. We can
list PMX, OX, UX for the crossover, and Swap, Scramble, and Inversion for the mutation [111].
Quite often, these operators repair to non-viable solutions (those with duplicates). To avoid these
repair phases, it is possible to use indirect encodings which are not sensitive to duplicates. In the
following, we define four indirect encoding methods, some are classical, and others are new.

6.3.2 Classical Encodings

As a classical encoding, we can cite several ones, but in this chapter, we are interested in the
Lehmer code and the Transposition table. These encodings are described in detail in the sec-
tion 5.4. These are considered classic because there are many studies about then. For example, the
article by Mohammed Ali et al. [156] deals with evolutionary algorithms and studies the behavior
of an evolutionary design, based on a Lehmer code representation coupled to a simple k-point
crossover. Moreover, Mehdi studied in her thesis [153] permutations as natural numbers and pro-
posed an encoding as a new way of representing the solution space of permutation problems in
metaheuristics. This coding approach is based on Lehmer codes and inversion tables.

The use of an indirect representation requires coding and decoding operations. Fig. 6.1 and 6.4
illustrate the steps of the process of crossover using Lehmer code and Inversion table. For instance,
in Fig. 6.1, the parents are represented first as a classic permutation (Fig. 6.1(a)). Then, they are
coded using the Lehmer code (Fig. 6.1(b)) before applying the crossover operator and generating
offspring (Fig. 6.1(c)). These offspring are then decoded to be presented as a classical permutation
(Fig. 6.1(d)).

Figure 6.1: Applying crossover on Lehmer code encoding

83

6.3. ENCODING AND RECOMBINATION OPERATORS CHAPTER 6. GENETIC PROPERTIES

Figure 6.2: Applying crossover on Inversion table encoding

It is important to note here that the offspring illustrated in Fig. 6.1(d) (or Fig. 6.2(d)) have alleles
that are not inherited from their parents. For example, for the offspring of Fig. 6.1(d), the sequences
"4 1 3" and "1 3 2" are not inherited from any parent. This problem can be rephrased as: the
sequences "1 4 3" and "3 1 2" of the parents (Fig. 6.1(a)) are lost during the recombination process
(without a mutation having been carried out).

6.3.3 New encodings

Transposition array Inspired by the work of J-L. Baril [19, 20] and the work of Mantaci [151],
we are interested in an encoding that, in [19], is used in order to obtain Gray codes for restricted
classes of length n permutations. Let Sn be the set of permutations of length n. We represent
a permutation π ∈ Sn, where π = π1π2 . . . πn. Moreover, if γ = γ(1)γ(2) . . . γ(n) is a length
n permutation then the product γ · π is the permutation γ(π1)γ(π2) . . . γ(πn). In Sn, a k-cycle
π = 〈i1, i2, . . . , ik〉 is a length n permutation verifying π(i1) = i2, π(i2) = i3, . . . , π(ik−1) = ik,
π(ik) = i1 and π(j) = j for j ∈ [n]\{i1, . . . , ik}. In particular, a 2-cycle is called a transposition.
Let Cn ⊂ Sn be the set of n-cycles. The elements of Cn will be called cyclic permutations (or
cycles for short). Obviously, Cn+1 and Sn have the same cardinality. Any permutation π ∈ Sn is
uniquely decomposed as a product of transpositions of the following form (Eq. 6.1):

π = 〈p1, 1〉 · 〈p2, 2〉 · 〈p3, 3〉 . . . 〈pn, n〉 =
n∏

i=1

〈pi, i〉, (6.1)

where πi are some integers such that 1 ≤ π ≤ i ≤ n. Conversely, any such decomposition
provides a permutation in Sn. Therefore, Eq. 6.1 yields a bijection from Sn to the product set
Tn = [1]× [2]× · · · × [n]. Then we have another way to represent a permutation:

Definition 16. The transposition array (TA) of a permutation π =
∏n
i=1〈pi, i〉 ∈ Sn is defined by

p1p2 . . . pn ∈ Tn

For example, if π = 145632 then its decomposition into transpositions is 〈1, 1〉 · 〈2, 2〉 · 〈3, 3〉 ·
〈2, 4〉 · 〈3, 5〉 · 〈4, 6〉, and its corresponding transposition array is 123234.

84

6.3. ENCODING AND RECOMBINATION OPERATORS CHAPTER 6. GENETIC PROPERTIES

Figure 6.3: Applying crossover on Transposition array encoding

Fig. 6.3 illustrates the steps of the process of crossover using the Transposition array encoding
where, at first, the parents are represented as a classic permutation then, they are coded using into
TA encoding before applying the crossover operator and generating offspring. Then these offspring
are then decoded to be presented as a classical permutation. In this case as well, the offspring
illustrated in Fig. 6.3(d) have alleles that are not inherited from their parents. For example, the
sequences "3 2" and "4 1" of the offspring are not inherited from any parent.

Inverse transposition array Another decomposition is proposed to any permutation π ∈ Sn

also as a product of transpositions of the following form:

π = 〈p1, n〉 · 〈p2, n− 1〉 · 〈p3, n− 2〉 . . . 〈pn, 1〉 =
n∏

i=1

〈pi, n− i+ 1〉, (6.2)

where πi are some integers such that 1 ≤ π ≤ i ≤ n. Conversely, any such decomposition
provides a permutation in Sn. Therefore, Eq. 6.2 yields a bijection from Sn to the product set
Tn = [1]× [2]× · · · × [n]. Then we have another way to represent a permutation:

Definition 17. The inverse transposition array (ITA) of a permutation π =
∏n
i=1〈pi, n− i+ 1〉 ∈

Sn is defined by p1p2 . . . pn ∈ Tn

For example, if π = 4312 then its decomposition into transpositions is 〈2, 4〉 · 〈1, 3〉 · 〈1, 2〉 · 〈1, 1〉,
and its corresponding inverse transposition array is 2111.

Fig. 6.4 illustrates the steps of the process of crossover using the Inverse transposition array en-
coding.

85

6.4. EXPERIMENTS AND RESULTS CHAPTER 6. GENETIC PROPERTIES

Figure 6.4: Applying crossover on Inverse transposition array encoding

In the case of ITA also, the offspring illustrated in Fig. 6.4(d) have alleles that are not inherited
from their parents and were lost during the recombination process (without a mutation having been
carried out). It is therefore important to study the impact of the loss of these genetic characteristics
over generations.

6.4 Experiments and results

Our goal is, first, to study the transmission of characteristics from parents to offspring. For this, we
use metrics that focus on the similarities between solutions (Section 6.4.1). Then, we evaluate the
quality of the results of each encoding with respect to the objective function (Section 6.4.2). For
this study, we considered three TSP problems proposed in the TSPLIB benchmark [213]: eil51,
att48, and burma14. These problems instances are of 51, 48, and 14 cities respectively.

The experimentations carried out during this study use the jMetal framework [1]. jMetal stands
for metaheuristic algorithms in Java, and it is an object oriented Java framework for single / multi-
objective optimization with metaheuristics. The framework’s object-oriented architecture and the
included features allowed us to experiment with the classic and advanced techniques provided
in the state-of-the-art, to develop our own algorithms and to solve optimization permutation prob-
lems. For more informations, two papers for Nebro, Durillo and Vergne [92,159] describes jMetal.

The results presented in this section correspond to the averages of 10 independent runs. The
experiment parameters used are summarized in Table 6.1.

Encoding Crossover Mutation Population size Nb. of generations
Permutation PMX Swap
Lehmer code 2-point BitFlip 200 300

Inversion table 2-point BitFlip
Transposition array 2-point BitFlip

Inverse transposition array 2-point BitFlip

Table 6.1: Experiment parameters

86

6.4. EXPERIMENTS AND RESULTS CHAPTER 6. GENETIC PROPERTIES

6.4.1 Assessment of transmissions from parents to offspring

The goal is to evaluate the transmission of the genetic characteristics from parents to offspring
in order to observe the impact of the different encodings. For this purpose, several indicators are
used: the Hamming distance, the Edge based indicator and the Position based indicator.

Hamming Distance

As defined in section 5.5, this metric measures the similarity between two solutions with respect
to the decision variables. Each hamming distance (HD) value in this study is the maximum value
between the distance of the solution and each of its parents.

Fig. 6.5 and Fig. 6.6 show the performance of the Hamming distance between parents and offspring
over generations for the problems eil51 and att48. We observe that this metric gradually
decreases over the generations because the genetic algorithm will tend to exploit the neighborhood
of the best solutions. However, due to the appearance of new alleles (as shown in Fig. 6.1 and 6.2),
the Lehmer code and the Inversion table show higher HD values than the other encodings. But also,
the Transposition array and the Inverse transposition array encodings, even if they display lower
HD values than the other two indirect encodings, still manage to decrease and remain superior to
the direct permutation encoding. This is due to the same previous reason, the appearance of new
alleles after recombination (as shown in Fig. 6.3 and 6.4).

Fig. 6.7 shows this performance in the case of the problem burma14. We have the same aspect
like the other problems but in a condensed way, since the chromosome length is relatively small
(14 cities).

For the permutation encoding there may be a lack of diversity for the permutation encoding case
since after the 100th generation, the HD tend to be zero, which means that the parents and the
offspring become almost identical. Based on the results of this metric, the diversity of solutions is
better using Transposition array and Inverse transposition array, and even better using the Lehmer
code, and Inversion table shows the best diversity.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300

H
a

m
m

in
g

 D
is

ta
n

c
e

Generation

Permutation
Lehmer Code

Inversion Table
Transposition Array

Inversion Transposition Array

Figure 6.5: Hamming Distance for eil51

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300

H
a

m
m

in
g

 D
is

ta
n

c
e

Generation

Permutation
Lehmer Code

Inversion Table
Transposition Array

Inversion Transposition Array

Figure 6.6: Hamming Distance for att48

87

6.4. EXPERIMENTS AND RESULTS CHAPTER 6. GENETIC PROPERTIES

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

H
a

m
m

in
g

 D
is

ta
n

c
e

Generation

Permutation
Lehmer Code

Inversion Table
Transposition Array

Inversion Transposition Array

Figure 6.7: Hamming Distance for Bruma14

Edge Based Indicator

The EBI metric counts the edges which are present both in parent and in offspring. It is defined in
section 5.5. The greater this value, the better the hereditary transmission occurs between parents
and offspring.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

E
B

I

Generation

Permutation
Lehmer Code

Inversion Table
Transposition Array

Inverse Transposition Array

Figure 6.8: EBI for eil51

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

E
B

I

Generation

Permutation
Lehmer Code

Inversion Table
Transposition Array

Inverse Transposition Array

Figure 6.9: EBI for att48

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

E
B

I

Generation

Permutation
Lehmer Code

Inversion Table
Transposition Array

Inverse Transposition Array

Figure 6.10: EBI for burma14

Fig. 6.8 and 6.9 show the variation of EBI values for eil51 and att48. Although not all parent
genes are correctly copied in offspring when using the indirect encodings, these four, in addition

88

6.4. EXPERIMENTS AND RESULTS CHAPTER 6. GENETIC PROPERTIES

to the permutation, achieve high values of EBI. Which means that offspring retain and inherit the
edges presented in their parents. For indirect encodings, we tend to have slightly lower values of
EBI than the classic permutation, since the red curve increases clearly higher than the rest. This
means that the edges are preserved after crossover when using indirect encodings but not in a large
quantity that can lead to have almost identical solutions.

In Fig. 6.10, the curves representing the EBI values for the burma14 problem are superimposed.
But if we take a closer look, the red line referring to the permutation encoding shows the highest
values. But overall, all representations show good EBI values.

Position Based Indicator

The PBI metric looks at the position of cities among parents and offspring. The weaker this
indicator, the more the positions are respected (see section 5.5).

Fig. 6.11 and 6.12 illustrates the variation of the PBI according to the five proposed encodings for
eil51 and att48. In terms of the PBI values for the case of permutation, it decreases to reach
of the value zero with small perturbations, this means that, at some point, starting from around
the generation 100, there is no distance between the permutations representing the parents and the
offspring. The curves representing the other four encodings strongly decreases and tends towards
zero . This can be explained by the diversity of individuals in these cases, since the distance from
the parent is low but not zero.

Fig. 6.13 shows the performance of PBI for burma14. The variation is almost the same for all
encodings. This can be explained by the relatively small chromosome length (14 cities), which
means that the probability of having different positions for cities is low. But we can see that there
is a faster decline for the indirect encodings.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

P
B

I
(x

 1
0

−
3
)

Generation

Permutation
Lehmer Code

Inversion Table
Transposition Array

Inverse Transposition Array

Figure 6.11: PBI for eil51

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

P
B

I
(x

 1
0

−
3
)

Generation

Permutation
Lehmer Code

Inversion Table
Transposition Array

Inverse Transposition Array

Figure 6.12: PBI for att48

89

6.4. EXPERIMENTS AND RESULTS CHAPTER 6. GENETIC PROPERTIES

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

P
B

I
(x

 1
0

−
3
)

Generation

Permutation
Lehmer Code

Inversion Table
Transposition Array

Inverse Transposition Array

Figure 6.13: PBI for burma14

6.4.2 Analysis of fitness distribution

In this section, we study the evolution of the fitness value over generations and compare the per-
formance of the different types of encoding. This is done using a method, inspired by the set of
experimentation introduced by Portman and Vignier in [183]. They classify solutions, for each
generation, in five groups based on the fitness values. These groups represent five equal intervals
of values such that the overall interval is bounded by the minimal and maximal values of the ob-
jective function at each generation. This means, at each generation, the intervals that define the
groups depend on the values in this specific generation. Solutions for the first group (group 1) are
better than the ones while the last group (group 5) is the worst.

At each generation, the solutions will be distributed in each quintile called group 1 to group 5.
It is expected that the number of solutions in group 1 increases over the generations. This group
would therefore become predominant over the others. However, if almost all the solutions were
found in a single group, this could show a premature convergence and a possible trap due to a local
optimum.

In summary, the distribution of the population into five quintiles as proposed by Portmann and Vi-
gnier [183], makes it possible to analyze the structure of the population. This allows, among other
things, to observe the distribution of solutions in the space of objective functions. The distribution
being made generation by generation, it is not necessary (even, it could be counterproductive) to
have almost all the solutions in Group 1. On the other hand, this group must be majority to illus-
trate a good structure of the population. In our study, such a distribution would reflect a diversity in
the space of the objective functions (which could be supplemented by the values of the indicators
such as the Hamming distance, the EBI and the PBI in the space of the decision variables).

Eil51 Problem

Fig. 6.14 shows that for the classical permutation, after the 100th generation, almost all the solu-
tions are in group 1. The other groups are barely represented. This is in accordance with the Ham-
ming distance of the permutation (see Fig. 6.5) where it was observed that parents and offspring
were almost identical after the 100th generation. This situation may cause a lack of diversity.

90

6.4. EXPERIMENTS AND RESULTS CHAPTER 6. GENETIC PROPERTIES

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.14: Classification using permutation encoding for
eil51

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.15: Classification using Lehmer Code encoding for
eil51

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.16: Classification using Inversion Table encoding for
eil51

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.17: Classification using Transposition array encoding for
eil51

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.18: Classification using the inverse Transposition array encoding for eil51

The rest of the figures representing the classification of individuals for indirect encodings show that
solutions of group 1 correspond to the majority, but the other groups proportions of the solutions
are not negligible . This is explained as a good diversity. A small difference may hold our attention,
for Lehmer code and IT, in Fig. 6.15 and 6.16, the first group reaches 70% while for the TA and
ITA, the best group reaches 60% of the population (see Fig. 6.17 and 6.18). But this is not a sign
of poor quality, since the percentage of the number of solutions in the top two groups represents

91

6.4. EXPERIMENTS AND RESULTS CHAPTER 6. GENETIC PROPERTIES

between 70 and 75% for all indirect encodings.

att48 Problem

For att48, we can also see a problem of diversity. In Fig. 6.19 that represents the classification
of groups using the classical encoding, almost all the solutions are in group 1 after the 100th

generation while the other groups are barely represented.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.19: Classification using permutation encoding for
att48

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.20: Classification using Lehmer Code encoding for
att48

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.21: Classification using Inversion Table encoding for
att48

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.22: Classification using Transposition array encoding for
att48

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.23: Classification using the inverse Transposition array encoding for att48

92

6.4. EXPERIMENTS AND RESULTS CHAPTER 6. GENETIC PROPERTIES

Fig. 6.20, 6.21, 6.22 and Fig. 6.23 show that the indirect encodings present greater diversity since
the solutions of group 1 correspond to the majority, but the proportions of the solutions in the other
groups are not negligible. This helps alleviate the pressure from elitism.

Burma14 Problem

The diversity problem is also presented in the case of burma14 problem. A simple comparison
between Fig. 6.24 and the other figures (Fig. 6.25, Fig. 6.26, Fig. 6.27 and Fig. 6.28) shows how
groups 3, 4 and 5 are barely represented after the 50th generation when using permutation encod-
ing and how for the other encodings, these groups are better represented keeping the majority of
the individuals in the best group.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.24: Classification using permutation encoding for
burma14

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.25: Classification using Lehmer Code encoding for
burma14

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.26: Classification using Inversion Table encoding for
burma14

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.27: Classification using Transposition array encoding for
burma14

93

6.5. CONCLUSION CHAPTER 6. GENETIC PROPERTIES

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 6.28: Classification using the inverse Transposition array encoding for burma14

6.5 Conclusion

This chapter studies the transmission of genetic characters in an optimization process. It presents
five encodings. The first, called direct encoding is the classical permutation. The other four are
referred to as indirect encodings: the Lehmer code, the Inversion tables, the Transposition array,
and the Inverse transposition array. Indirect coding has the advantage of not being sensitive to
the appearance of duplicates during crossover operations. However, there is a partial loss of the
genetic properties between parents and offspring. The study of the impact of these encodings was
made both in the space of decision variables (thanks to the Hamming distance, EBI, PBI) and in
the space of fitness values (distribution of solutions in quintiles). The results show that indirect
encoding makes it possible to preserve diversity within populations without losing quality in terms
of the objective function (the solutions in group 1 are the majority and the population remains
diverse).

94

Chapter 7

Schema Conservation Study in
Permutation Problems

7.1 Introduction

The success of an optimization process based on a genetic algorithm relies on the transmission of
the genetic heritage between parents and offspring. Relevant information from parents should be
passed on to offspring and this goes through a crossover operation. This operator must therefore
preserve this good transmission. So to create more efficient genetic algorithms, it is instructive to
look at how evolution works from generation to generation.

One of the first attempts to understand how genetic algorithms (GAs) work in a formal sense was
the use of schema theory, developed in 1975 by John Henry Holland. He realized that when the
genetic algorithm assesses the fitness of a solution in the population, it is in fact assessing the
fitness of many solutions in an implicitly parallel mode.

The objective of this chapter is to study the transmission of genetic properties when using indirect
encodings. We focus on the Lehmer code (LC) and the Inverse transposition array (ITA) encoding
as they preserve the prefix / suffix after the crossover operator. An adaptation of the crossover
process is proposed to reinforce the preservation of the schema of good parents. To do this, we
will study the conservation of the suffix or prefix for the Lehmer code and the Inverse transposition
array.

First, a brief overview of schema theory in genetic algorithms is shown along with some related
work. Then a detailed section is devoted to explain schema conservation for LC and ITA encoding.
After that, we will present the proposed method to apply the adaptation in question and then
the results are presented with descriptions and interpretations. Finally, this chapter ends with a
conclusion and final remarks.

95

7.2. THE SCHEMA THEORY CHAPTER 7. SCHEMA CONSERVATION

7.2 The Schema Theory for Genetic Algorithms

Although "survival of the fittest" has worked relatively well in the real world, the question remains
about how the concept of a genetic algorithm actually works in a computer. To explain how this
algorithm works, John Holland, introduced the schema theory [116], then it was popularized by
Goldberg [47] .

Holland’s schema theory is widely regarded as the foundation for explanations of the power of ge-
netic algorithms (GAs) and one of the earliest attempts to understand how these algorithms work
in a formal sense. Holland realized that when the genetic algorithm evaluates the fitness of a solu-
tion in the population, it is in fact evaluating the fitness of many solutions in an implicitly parallel
mode. Specifically, in schema theory, the search space is divided into subspaces of different levels
of generality, and mathematical models are built that estimate how the number of individuals in
the population belonging to a certain schema can increase over the next generation.

A schema is a set of binary strings that match the template for schema H . More precisely, sup-
posing that we have a binary string, a schema is a string of length l from the alphabet {0, 1, ∗}
where the ∗ is a wildcard that represents either a 0 or 1. The defining length of a schema is the
distance between the outermost non wildcard symbols. When a string matches the schema on the
fixed positions it is called an instance of the schema.

Through the process of reproduction between individuals, the most fit schemata1 will increase or
decrease their representations in populations. But, the most fit schemata are more likely to be in
the next generation, while the least fit are less likely. Even though Crossover and mutation can
disrupt the individuals, schema patterns still exist. Holland found that a GA efficiently processes
n3 schemata in a population size of n. Eq. 7.1 describes the general growth rate of schemata in the
search space.

m(H, t+ 1) = m(H, t) · fitness of schemata (7.1)

where m is the function that describes the number of individuals that represent the schema H at
generation t.

Schema theories can be viewed as macroscopic models of genetic algorithms. This means that
they state something about the properties of a population in the next generation in terms of macro-
scopic quantities (like schema fitness, population fitness, number of individuals in a schema, etc.)
measured in the current generation. Using the established methods and genetic operators of ge-
netic algorithms, the schema with above average fitness, short defining length and lower order is
more likely to survive and it increases exponentially in successive generations.

Schema theorem is an inequality that results from coarse-graining an equation for evolutionary
dynamics (Eq. 7.2). It serves as the analysis tool for the GA process and states that the schema
with above average fitness, short and low-order schemata is more likely to survive.

〈m(H, t+ 1)〉 ≥ m(H, t)
f(H, t)

at
[1− p] (7.2)

1Schemata: plural of schema

96

7.3. PREVIOUS WORK ON SCHEMATA FOR GA CHAPTER 7. SCHEMA CONSERVATION

where 〈m(H, t+ 1)〉 is the expected number of individuals that represent the schema H at genera-
tion t+1, f(H, t) is the average fitness value of the individuals containing schemaH at generation
t and at is the average fitness value of the population at generation t. Eq. 7.3 defines p.

p = pc
σ(H)

l − 1
+ o(H)pm (7.3)

where o(H) is the order of the schema (the number of fixed positions in the template), ` is the
length of the string , pc is the crossover probability and pm is the probability of mutation. σ(H) is
the defining length defined as the distance between the between the first and last specific positions.

Much controversy has surrounded schema theory, mainly because of its apparent lack of utility.
Opponents of schema theory argue that it tells us very little about what really goes on inside an
EA. Moreover, the traditional theorem of the Holland scheme is pessimistic in the sense that it only
provides a lower bound on the expected growth of the schema. But many researchers and scientific
have successfully proved that the Schema theory is useful and interesting study for analysis of
GA. [80, 168, 169, 171, 173, 174, 176, 178, 225].

Among the direct criticisms of the Schema, Fogel and Ghozeil [99–101] criticized it for failing
to estimate correctly the population of a schema in the population when fitness proportionate
selection is used in problems with noise or other stochastic effects. However, this idea should
be qualified for two reasons suggested by Poli [170]. First, the theorem in its original form is not
applicable to problems with noise. Moreover, if the quantities involved in the schema theorems are
random variables, the theorems must be interpreted as conditional statements. Second, he showed
how the conditional versions of Holland and other researchers’ schema theorem are indeed very
useful to model the sampling of schemata in the presence of stochasticity.

Whitley’s criticism [226] supposed that, because the selection becomes biased as the population
grows, the observed fit of the schema changes radically. Thus, the average fitness of a schema
is only relevant in the first generations of a series. Thus, the schema theorem cannot be used
recursively. It is one of the most common criticisms of the Schema theorem. This criticism
has been resolved in [172] and [177] in the more general setting of genetic programming. A
particularly strong version of the schema theorem is the recursive conditional schema theorem,
and this has solved this criticism very completely.

Schema theory has many applications. For instance, in [168], Plant and Stanton present the use
of Schema theory in ergonomic research, particularly in the key areas of situation awareness and
naturalistic decision making.

7.3 Previous Work on Schemata for GA

Since John Holland’s work in the mid seventies on his well known schema theory [47, 116], this
theory is used to explain how GAs work. More precisely, it describes how schemata are expected
to propagate generation after generation under the effects of selection, crossover, and mutation.

There have been many researchers interested in studies on schema theory since Holland. Some
of these where interested in giving introductions and overviews to the field of Schema Theory
[80, 176, 217, 225]. For instance, in [175] , Poli reviewed the main results available to date 1997
in the theory of schemata and some recent experimental works. Then, he [176] reviewed the

97

7.3. PREVIOUS WORK ON SCHEMATA FOR GA CHAPTER 7. SCHEMA CONSERVATION

main results obtained in the theory of schemata in genetic programming (GP), emphasizing their
strengths and weaknesses. Another relatively recent example , White presented in his work [225]
an introduction written by a mathematician and for mathematicians. In particular, he endeavored
to highlight areas of the field which might be of interest to a mathematician, to point out some
related open problems, and to suggest some large-scale projects.

Other authors have been interested in developing and improving this theory. Since the Holland
Schema theorem gives a lower bound on the expected fraction of a population in a schema after
one generation of a simple genetic algorithm, Wright gives formulas for the exact expected fraction
of a population in a schema after one generation of the simple genetic algorithm [229]. In [235],
the main objective was to propose a schema theory which could be a more realistic model for
genetic programming and could be potentially employed for improving GP in practice.

Some versions of the Schema theorem have been proposed to held with different crossover, muta-
tion, and selection. Riccardo Poli and others took up the challenge of generalizing the Schema the-
orem for genetic programming and this brought the discussion over the usefulness of the Schema
theorem to the fore. In 1997, Poli [176] reviewed the main results obtained in the theory of
schemata in Genetic Programming (GP) emphasising their strengths and weaknesses. Then he
proposed a new, simpler definition of the concept of schema for GP which is closer to the original
concept of schema in genetic algorithms (GAs). The simplicity of this definition along with that
of one-point crossover has allowed him to derive a new schema theorem, since he shown that this
crossover can explore the search space of programs better than standard crossover.

Cheng et al. [63] focus on a new, and general schema theory for gene expression programming,
where the chromosome consists of a linear, symbolic string of fixed length composed of one or
more genes. The result shows that the individuals with high fitness values, shorter schema or-
der, more function nodes, and the shorter the insertion sequence have the greater transmission
probability than the average ones.

As another research direction, many studies are in the literature that were interested in improving
genetic algorithms based on schema theory. For instance, in [234], Zhou studied an improved GA
based on the analysis of Schema Theory. In addition, a method was developed to study the struc-
ture of GA solution space by characterizing interactions between genes. Also, the main purpose
of the research of Liu [83] is to improve the mathematical modeling of GA, and to explore how
to overcome the shortcomings of traditional algorithms under the Schema theorem. The research
results show that the improved GA can be more widely applied to the optimization problems and
play an important role in solving practical problems. In [207], Tao and Xin analyzed the impacts
of operators in artificial immune optimization algorithms on schema survival and population di-
versity. Therefore, a schema theorem based on artificial immune is proposed and proved. It is
validated in the experiments, which provides the theoretical basis for the designs and improve-
ments of operators in artificial immune algorithms.

The traditional schema theorem uses a binary representation. However, in reality, solving many
problems using a genetic algorithm requires using other encoding methods. In [232], Yuping first
gives some typical genetic operators, on the basis of which they proved the scheme theorem using
limited character set encoding. The result shows that the number of schema with low order, short
defined length and a fitness value greater than the average fitness value grows exponentially.

In this contribution, the schema theory is considered to study how the GAs are working using
non-binary encodings, especially Lehmer code and Inverse transposition array.

98

7.4. LC AND ITA CHAPTER 7. SCHEMA CONSERVATION

7.4 Preservation of schema for Lehmer code and Inverse transposi-
tion array

In chapter 6, we studied the impact of indirect encoding on the transmission of genetic properties
in permutation problems. The indirect encodings in question were the Lehmer code, the Inversion
table, the Transposition array, and the Inverse transposition array. During this study, we notice
specific criteria in two between these codings, the Lehmer code and the Inverse transposition
array. We have observed the conservation of a part of the genetic heritage during the crossover
process with the single point operator. If the parents are encoded in a Lehmer code, the offspring
will retain the prefix. Conversely, if the parents are coded in the Inverse transposition array, the
offspring will keep the suffix.

To explain why we have this conservation, we must observe the algorithms of each encoding and
analyse it. First of all, recalling the equation of the Lehmer code from section 5.4, we have that
the Lehmer code, associates a unique code L(π) to each permutation π = π1π2 . . . πn. L(π) is a
sequence L(π) = l1l2 . . . ln with li the number of elements that are smaller than πi and that appear
to the right of πi in the permutation.

li = Card{j|j > i & πj < πi} (7.4)

For a better observation, the process of decoding of the Lehmer code into permutation also helps to
deduce the proposed conservation, see pseudocode 7.1. The main reason is that ,during decoding,
the value of the ith gene depends on the (i − 1) first positions. For example, to decode the 4th
gene, its value alone does not really tell us enough information, it depends on the value of the 1st,
2d then 3d genes. More precisely, at each step, the value of the ith gene in Lehmer code represents
the position of the value of the ith gene for the permutation among an alphabet list ({1, 2, 3, . . . n}
where n =length Lehmer code), then this value is removed from the list. This deletion has its
consequences for the rest of the decoding.

Input: LehmerCode
Output: Permutation
l :length of Lehmer code
Alphabet: list of length l
for i = 0; i < l; i+ + do

Alphabet.add(i+ 1)
end
for i = 0; i < l; i+ + do

index=LehmerCode[i]
Permutation[i]← Alphabet[index]
Alphabet.remove(index)

end
Algorithm 7.1: Decoding of Lehmer code

For a larger view, assuming P1 and P2 are two parents encoded into the Lehmer code. When
applying the crossover using the single point operator, assuming after the kth gene, the first part of
the offspring 1 (O1) is the same as P1’s first part, and the second part of O1 is the same as P2’s
second part. Using the Lehmer code, the decoding of each allele depends on those that precede it.
The O1’s alleles inherited from P2 will therefore be decoded according to the first part, inherited
from P1. This will give rise to new values (not present in either P1 or P2).

99

7.5. PROPOSED METHOD CHAPTER 7. SCHEMA CONSERVATION

For the Inverse transposition array encoding, during decoding, the value of the ith gene depends
on the (n − i) last positions. That means that the suffix is preserved after the crossover process
and the decoding into permutation.

Let take the example of two parent of length 14, P1 = [10, 5, 9, 13, 14, 4, 8, 7, 1, 3, 6, 11, 2, 12]
and P2 = [7, 4, 6, 5, 3, 1, 9, 11, 10, 14, 8, 12, 13, 2]. In Fig. 7.1 and 7.2, we see how the prefix,
respectively the suffix, is preserved for the LC, respectively ITA, depending on the position of the
cutting point. The colser the position of this point is to 14, the more schema is preserved.

Figure 7.1: Schema preservation using LC and ITA with a crossover point after the 5th gene

Figure 7.2: Schema preservation using LC and ITA with a crossover point after the 10th gene

7.5 Proposed method: schema preservation based on crossover point
selection

During an optimization process, it is important to keep the interesting parts of good solutions.
This is what the recombination (which leads to the generation of new solutions) is supposed to
achieve. More precisely, it is the crossover which should play a part in this transmission process.
Indeed, the crossover is an exploitation operator. Exploitation means the intensification of the
search within good solutions’ neighborhood. It is therefore necessary to ensure that the genetic

100

7.6. EXPERIMENTS CHAPTER 7. SCHEMA CONSERVATION

properties of the best individuals are preserved. However, as we noted in Sections 6.3.2 and 6.3.3,
during the crossover step using indirect encoding, some parents’ genetic properties are lost.

Among the four indirect encoding studied in Chapter 6, we can note that two among them have
particular attributes. Applying the 1-point crossover to the Lehmer code preserves the prefix (al-
leles located before the crossover point) and the Inverse transposition array preserves the suffix
(alleles located after the crossover point). This is illustrated by Fig. 7.1 and 7.2. This preservation
is also noticeable after the decoding phase. That is to say that we observe this conservation in the
genotypes as well. Indeed, the decoding process of the Lehmer code is based on the values of the
first genes, while the Inverse transposition array’s decoding is based on the last genes.

The idea behind our contribution is as follows: the preservation of a large number of alleles for
good solutions should be stimulated. In the case of the Lehmer code, one should seek the preser-
vation of the begin of the TSP’s tour, while for the Inverse transposition array, the end of the tour
will be kept.

To favour this preservation of the parents’ genetic properties, we consider to select the crossover
point (denotedXp) according to the parent solutions’ quality. Let f be the objective function value
of the best of the two selected parents and fmin (respectively fmax) be the smallest (respectively
the largest) objective function value within the current population (parents’ population). We define
σ as the devaluation rate of fmin by f (see Eq. 7.5).

σ =
f − fmin

fmax − fmin
(7.5)

The smaller σ, the better the quality of parents (at least one of them) within the population. There-
fore, the crossover point must be chosen as a function of σ (see Eq. 7.6). For parents of good
quality, we will try to choose a cutoff point as far as possible. Conversely, when the parents are of
poor quality, the crossover by will be selected after the very first genes, in order to create a strong
disruption that can lead to the generation of good offspring.

Xp = exp(−σ)× n (7.6)

where n is the number of decision variables.

7.6 Experiments

Our objective is, first of all, to study the transmission of characteristics from parents to offspring
when using the adaptive crossover, and to compare it with the classical version. For this, we use
the metrics that focus on the similarities between the solutions (Section 7.6.1). Then, we evaluate
and compare the quality of the results of each encoding with respect to the objective function with
and without using the adaptive crossover, (Section 7.6.2). For this study, we considered the eil51
problem (a traveling salesman problem instance of 51 cities proposed in the TSPLIB [213]). The
experiment parameters used are summarized in Table 7.1.

The results presented in this section correspond to the averages of 10 independent runs.

101

7.6. EXPERIMENTS CHAPTER 7. SCHEMA CONSERVATION

Encoding Crossover Mutation Population size Nb. of generations
Lehmer Code Single point BitFlip 200 300

Inverse transposition array Single point BitFlip 200 300

Table 7.1: Experiment parameters

7.6.1 Assessment of transmissions from parents to offspring

The goal is to evaluate the transmission of the genetic characteristics from parents to offspring in
order to observe the impact of the adaptation of the choice of the crossover point for each encoding.
For this purpose, several indicators are used: the Hamming distance, the edge based indicator and
the position based indicator.

The first indicator is the Hamming distance that measures the similarity between two solutions
with respect to the decision variables.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300

H
a

m
m

in
g

 D
is

ta
n

c
e

#Generation

Classical version
With adaptive crossover

Figure 7.3: Hamming Distance using Lehmer code

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300

H
a

m
m

in
g

 D
is

ta
n

c
e

#Generation

Classical version
With adaptive crossover

Figure 7.4: Hamming Distance using Inverse transposition array

Fig. 7.3 shows the variation of the value of Hamming distance in function of generation for the
LC with and without adaptation. We can see that we have lower values of HD with adaptive
crossover. Fig. 7.4 shows this variation for ITA where we also have the same interpretation. The
use of adaptation during crossover made it possible to conserve the alleles of the parents. The
conservation is strong for the best individuals. Because these best individuals are the ones who
survive and reproduce, this preservation will therefore be present over the generations.

The second indicator is the Edge Based Indicator (EBI) [81] that counts the edges which are
present both in parent and in offspring. It is defined by Eq. 5.8 in chapter 5. Fig. 7.5 shows the
variation of the value of EBI in function of generation for the LC with and without adaptation.
Fig. 7.6 shows this variation for ITA.

102

7.6. EXPERIMENTS CHAPTER 7. SCHEMA CONSERVATION

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

E
B

I

#Generation

Classical version
With adaptive crossover

Figure 7.5: EBI using Lehmer code

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

E
B

I

#Generation

Classical version
With adaptive crossover

Figure 7.6: EBI using Inverse transposition array

The last indicator is the Position Based Indicator (PBI) [81], it is a metric that looks at the position
of cities among parents and children.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

P
B

I
(x

 1
0

-3
)

#Generation

Classical version
With adaptive crossover

Figure 7.7: PBI using Lehmer code

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 50 100 150 200 250 300

P
B

I
(x

 1
0

-3
)

#Generation

Classical version
With adaptive crossover

Figure 7.8: PBI using Inverse transposition array

Fig. 7.7 shows the variation of the value of PBI in function of generation for the Lehmer code
with and without adaptation on the crossover operator. Fig. 7.8 shows this variation for Inverse
transposition array.

The two indicators, PBI and EBI, are calculated from the decoded solutions. The decoding process
for the Lehmer code (respectively for the Inverse transposition array) is based on alleles located
on the left (respectively on the right), i.e. the prefix (respectively the suffix). Thus, given that the
adaptation operator preserves the prefix / suffix, it favors the preservation of edges and positions.

7.6.2 Analysis of fitness distribution

In this section, we study the evolution of the fitness value over generations and compare the per-
formance of the two different types of encoding with and without the adaptation. This is done
using the method presented in section 6.4.1.

The principle of choosing the crossover point according to the values of the objective functions
aims to reinforce the "exploitation" pressure. However, an uncontrolled exploitation could lead to
a loss of diversity and to premature convergence [3, 205]. Fig. 7.9 and 7.10 show a distribution of
solutions within the different groups which is almost similar to the version without adaptation (see

103

7.7. CONCLUSION CHAPTER 7. SCHEMA CONSERVATION

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 7.9: Classification using Lehmer code with adaptation

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n

Generation

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 7.10: Classification using Inverse transposition array encoding with adaptation

Fig. 6.15 and 6.18). This could be explained by the fact that the pressure to conserve the genetic
characteristics of the best solutions being exerted at the crossover level and not during the selection
step, the solutions of poor quality can participate to the recombination process. Therefore, the
proposed adaptation would act in this case as an exploration tool by creating a disruption when
generating offspring (weak inheritance from the parents). This could preserve diversity and avoid
premature convergence.

7.7 Conclusion

In 1975, Holland developed a schema theory to understand how genetic algorithms (GAs) work
in a formal sense. Specifically, this theory describes how schema are suppose to propagate from
generation to generation under the effects of selection, crossover, and mutation. This chapter
has studied the transmission of genetic properties in an optimization process using two indirect
encodings, the Lehmer code (LC) and the Inverse transposition array (ITA). The choice of these
encoding is made because the LC decoding process (respectively for ITA) was characterized by
preservation of the prefix (respectively the suffix). Thus, an adaptation operator has been proposed
which preserves the prefix / suffix of good solutions. This adaptation has favored the preservation
of genetic characteristics such as edges and positions.

104

Chapter 8

Conclusion

During this thesis, we have made contributions in two fields theoretical computer science, which
are on the one hand enumerative combinatorics and on the other hand evolutionary computation.
Our goal was to study the combinatorial properties of some combinatorial objects, and, as a com-
plementary work, to study the application of combinatorial objects properties (permutations) in
evolutionary computation.

To conclude this work, we propose in section 8.1 a synthesis allowing to provide some answers to
the problems of this study. Some perspectives relating to our contributions are then given in the
section 8.2

8.1 Summary

First, we looked at a recent line of research on classical pattern avoidance on words subject to
certain growth restrictions. So after Baril et al. [23] studied the distribution of descents on sets of
Catalan words avoiding a pattern of length at most 3, we studied, in Chapter 3, the connections
between sequences on the Online encyclopedia of Integer sequences [213] and Catalan words
avoiding two patterns of length 3. More precisely:

• In this study, there was a lot of trivial cases, such as Superfluous patterns, Ultimately con-
stant sequences and the Counting sequence n,

• Many cases were enumerated by counting via recurrence, mainly via the counting sequence
2(n− 1), sequences involving 2n, sequences involving binomial coefficients and sequences
involving Fibonacci(-like) numbers,

• It is important to note that for some cases, the sequences have not been studied in the litera-
ture, so they were counted giving bivariate generating functions Cπ(x, y) where the coeffi-
cient of xnyk is the number of Catalan words of length n having k descents and avoiding π.

Also some propositions and corollaries were proposed to match some cases, by using ascent se-
quences. We specially used for the enumerations the corollary 1 that says, for n ≥ 4 and a pattern
π of length three, An(π) = Cn(π) if and only if π ∈ {001, 010, 012, 102}.

105

8.1. SUMMARY CHAPTER 8. CONCLUSION

Then, the study of sorting permutation (arranging permutations in increasing order) was in the
top of our research interests. More precisely, we studied a variant of pattern-avoiding machines
where the first stack avoids (σ, τ), a pair of patterns of length three. Following [60], we call
it (σ, τ)-machine. More specifically, we restrict ourselves to those pairs of patterns for which
sortable permutations are counted by either the Catalan numbers or two of their close relatives:
the binomial transform of Catalan numbers and the Schröder numbers.

• For the pair (132, 231) we showed that sortable permutations are those avoiding 1324 and
2314, a set whose enumeration is given by the large Schröder numbers.

• Under certain conditions on the avoided patterns, the output of the first stack is bijectively
related to its input (see [33,59]): it follows that for three pairs of patterns, namely (123, 213),
(132, 312) and (231, 321), sortable permutations are counted by the Catalan numbers. This
result was proved independently in [21, 33].

• For the pair (123, 132), we proved that sortable permutations are those avoiding the patterns
2314, 3214, 4213 and the generalized pattern [241̄3. Also, we proved that sortable permu-
tations are enumerated by the Catalan numbers by showing that the distribution of the first
element is given by the well-known Catalan triangle.

• We showed that for the pair (123, 312) the corresponding counting sequence is the binomial
transform of Catalan numbers.

In the second part of the thesis, we investigated one of the most interesting and difficult permuta-
tion problems, the Transport Salesman Problem (TSP). This difficulty is due in part to the combi-
natorial explosion that occurs when the size of the problems increases. To solve such problems, we
were interested in metaheuristic optimization methods, in particular the genetic algorithm, inspired
by Darwin’s theory. First, our objective was to observe the transmission of genetic properties dur-
ing the optimization algorithm for the TSP problem. Different encoding types have been studied
to represent permutations, in order to avoid generating duplicates during the crossover and muta-
tion steps. Among these encodings, some were introduced previously like the Lehmer code and
the Inversion table and others are new in the literature like the Transposition array and the Inverse
transposition array. The work carried out during in this section is summarized in the following
points:

• In order to evaluate the transmission of the genetic characteristics from parents to offspring
to observe the impact of the encoding, several indicators were used: the Hamming distance,
the edge based indicator and the position based indicator. The results of experiments was
explained by the diversity of individuals in the cases of indirect encodings,

• To study the evolution of the fitness value over generations and to compare the performance
of the different types of encoding, a method was used and it was inspired by the set of
experimentation introduced by Portman and Vignier in [183]. They classify solutions, for
each generation, in five groups based on the fitness values. The results of experiments has
shown that for the indirect encoding, greater diversity is observed because the solutions of
group 1 correspond to the majority, but the proportions of the solutions in the other groups
are not negligible.

Then, the objective of the next contribution was is to study the transmission of genetic properties
when using indirect encodings that preserve schemata. After finding that there is conservation

106

8.2. FUTURE RESEARCH CHAPTER 8. CONCLUSION

properties of the suffix or prefix for the Lehmer code and the Inverse transposition array, this led
us to the studies on the schema theory of Holland. He realized that when the genetic algorithm
evaluates the fitness of a solution in the population, it is in fact evaluating the fitness of many
solutions in an implicitly parallel mode. The work carried out during in this section is summarized
in the following points:

• The preservation of a large number of alleles for good solutions is stimulated by applying
an adaptation on the choice of the cutting point during the crossover process according to
the parent solutions’ quality.

• The use of adaptation during crossover made it possible to retain more alleles from the
best individuals. Because these best individuals are those who survive and reproduce, this
preservation will therefore be present over generations. This has been shown using Ham-
ming Distance, Edge Based Indicator, and Position Based Indicator.

• We have studied the evolution of the fitness value over generations after applying the adap-
tation method on the crossover operator. It shows a distribution of the solutions within
the different groups almost similar to the version without adaptation. This means the way
exploitation is forced in our proposal did not to diversity loss.

8.2 Future research

To conclude we offer some open questions and perspectives offered by this work.

The first future research suggestion concerns Catalan words. They are in bijection with Dyck
paths and thus pattern avoiding Catalan words correspond to restricted Dyck paths. For instance,
a Catalan word avoiding 012 corresponds to a Dyck path of height at most two. In this context,
it can be of interest to investigate how our results on pattern avoiding Catalan words translate to
corresponding restricted Dyck paths.

Even if in this thesis we restrict ourselves to the avoidance of two patterns of length 3, some classes
considered here can be trivially extended to larger length patterns, for instance C(102, 201) =
C(01012, 01201). In this light, it can be of interest to explore Catalan words avoiding patterns of
length 4 or more, triples of patterns or generalized patterns.

Our contribution in stack-sorting permutation can open to many other studies and researches about
stack-sorting. More precisely, we can apply other restrictions on the stack, other than pattern
avoidance, or we can choose to apply constraints on the Stack-sorting algorithm itself.

The restrictions on the stack are expressed by saying that, at each step of the execution, the el-
ements into the stack (read from top to bottom) must avoid certain forbidden configurations. In
particular, k-interval avoidance, k-length avoidance, k-ecart avoidance . . . For instance, to avoid
k-length, at every step, the sequence of numbers contained in the stack has to contain intervals of
length less than k.

As a constraint on the Stack-sorting algorithm, we suppose the algorithm we perform on the stack
is equivalent to make a short-circuit through a stack. This can be applied to perform a right greedy
algorithm and avoid the stack and the pop steps of an element that can be sorted directly. The fact
that we choose to use the short circuit step does not change anything in the algorithm concerning
stacking and arranging, but when we want to study some properties and restrictions, it can affect.

107

8.2. FUTURE RESEARCH CHAPTER 8. CONCLUSION

For example, if we take the example of the permutation 652143, the number of intervals and their
length differs if we allowed the short circuit or if we do not.

There are many ways to broaden the study of the inheritance of genetic properties in permutation
problems. In our contributions we have focused on the popular and challenging optimization prob-
lem, the traveling salesman problem (TSP). The same experiments can be done using other per-
mutation problems, such as Asymmetric traveling salesman problem (ATSP), Sequential ordering
problem (SOP), Capacitated vehicle routing problem (CVRP),. . . These problems are challenging
since they introduce new constraints.

There is another idea that can be interesting in exploiting good solutions. If one has a priori
knowledge of the problem and perhaps of the optimal solution, this can lead to a preliminary
sorting on the alphabet of the problem in question. The issue here is also whether we can also have
an impact on the quality of the solutions after having forced this procedure.

While exploiting the schema preservation in the genetic algorithm, the focus was on the single
point crossover operator, but as further work we can seek preservation of the schema when using
k-points crossover. This can be considered as another challenging and interesting research track
since it would be necessary to find other mechanisms ensuring the preservation.

108

Bibliography

[1] jMetal web site. http://jmetal.sourceforge.net/.

[2] The on-line encyclopedia of integer sequences. http://oeis.org.

[3] W. Abdou, C. Bloch, D. Charlet, and F. Spies. Adaptive multi-objective genetic algorithm
using multi-pareto-ranking. In GECCO 2012, 14th Int. Genetic and evolutionary computa-
tion Conference, pages 449 – 456, Philadelphia, Pennsylvania, United States, jul 2012.

[4] M. Aigner. Motzkin numbers. European Journal of Combinatorics, 19(6):663–675, 1998.

[5] S. Akter, M. Murad, R. Chaity, M. Sadiquzzaman, and S. Akter. Genetic algorithm with
updated multipoint crossover technique and its application to tsp. In 2020 IEEE Region 10
Symposium (TENSYMP), pages 1209–1212, 2020.

[6] S. Akter, N. Nahar, M. ShahadatHossain, and K. Andersson. A new crossover technique to
improve genetic algorithm and its application to tsp. In 2019 International Conference on
Electrical, Computer and Communication Engineering (ECCE), pages 1–6, 2019.

[7] E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 6(5):443–462, 2002.

[8] M. Albert and M. Atkinson. Sorting with a forklift. Electron. J. Comb., 9, 2002.

[9] M. Albert, M. Atkinson, and S. Linton. Permutations generated by stacks and deques.
Annals of Combinatorics, 14(1):3–16, 2010.

[10] M. Albert, M. Bouvel, and V. Féray. Two first-order logics of permutations. Journal of
Combinatorial Theory, Series A, 171:105158, 2020.

[11] A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger. Analytic combinatorics of
lattice paths with forbidden patterns, the vectorial kernel method, and generating functions
for pushdown automata. Algorithmica, 82(3):386–428, 2019.

[12] M. Atkinson, M. Murphy, and N. Ruškuc. Sorting with two ordered stacks in series. Theo-
retical Computer Science, 289(1):205–223, 2002.

[13] E. Babson and E. Steingrímsson. Generalized permutation patterns and a classification
of the mahonian statistics. Séminaire Lotharingien de Combinatoire [electronic only],
44:B44b, 18 p.–B44b, 18 p., 2000.

[14] C. Banderier and P. Flajolet. Basic analytic combinatorics of directed lattice paths. Theo-
retical Computer Science, 281(1-2):37–80, 2002.

109

http://jmetal.sourceforge.net/
http://oeis.org

BIBLIOGRAPHY BIBLIOGRAPHY

[15] J. Bandlow, E. Egge, and K. Killpatrick. A weight-preserving bijection between Schröder
paths and Schröder permutations. Annals of Combinatorics, 6(3):235–248, 2002.

[16] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. Eco:a methodology for the enu-
meration of combinatorial objects. Journal of Difference Equations and Applications, 5(4-
5):435–490, 1999.

[17] E. Barcucci, A. D. Lungo, E. Pergola, and R. Pinzani. Some combinatorial interpretations
ofq-analogs of Schröder numbers. Annals of Combinatorics, 3(2-4):171–190, 1999.

[18] E. Barcucci, R. Sprugnoli, and R. Pinzani. The Motzkin family. Pure Mathematics and
Applications, 2(3-4):249–279, 1992.

[19] J.-L. Baril. Gray code for permutations with a fixed number of cycles. Discrete Mathemat-
ics, 307:1559–1571, 06 2007.

[20] J.-L. Baril. Statistics-preserving bijections between classical and cyclic permutations. In-
formation Processing Letters, 113(1):17–22, 2013.

[21] J.-L. Baril, G. Cerbai, C. Khalil, and V. Vajnovszki. Catalan and Schröder permutations
sortable by two restricted stacks, 2020.

[22] J.-L. Baril, C. Khalil, and V. Vajnovszki. Catalan words avoiding pairs of length three
patterns, 2021.

[23] J.-L. Baril, S. Kirgizov, and V. Vajnovszki. Descent distribution on Catalan words avoiding
a pattern of length at most three. Discrete Mathematics, 341(9):2608–2615, 2018.

[24] J.-L. Baril, S. Kirgizov, and V. Vajnovszki. Descent distribution on Catalan words avoiding
a pattern of length at most three. American Discrete Mathematics, pages 2608–2615, 2018.

[25] J.-L. Baril and A. Petrossian. Equivalence classes of Dyck paths modulo some statistics.
Discret. Math., 338:655–660, 2015.

[26] J.-L. Baril and A. Petrossian. Equivalence classes of Dyck paths modulo some statistics.
Discrete Mathematics, 338(4):655–660, 2015.

[27] J.-L. Baril and A. Petrossian. Equivalence classes of Motzkin paths modulo a pattern of
length at most two. Journal of Integer Sequences, 2015.

[28] R. Barr, R. Helgason, and J. Kennington. Interfaces in Computer Science and Operations
Research: Advances in Metaheuristics, Optimization, and Stochastic Modeling Technolo-
gies. Springer Publishing Company, Incorporated, 2012.

[29] R. Basu, A. Bose, S. Ganguly, and R. Hazra. Spectral properties of random triangular
matrices, 2012.

[30] A. Baxter and L. Pudwell. Ascent sequences avoiding pairs of patterns. The Electronic
Journal of Combinatorics, 22(1), 2015.

[31] S. Bekiroğlu, T. Dede, and Y. Ayvaz. Implementation of different encoding types on struc-
tural optimization based on adaptive genetic algorithm. Finite Elements in Analysis and
Design, pages 826–835, 2009.

[32] R. Bellman. Dynamic programming treatment of the travelling salesman problem. J. ACM,
9(1):61–63, Jan. 1962.

110

BIBLIOGRAPHY BIBLIOGRAPHY

[33] K. Berlow. Restricted stacks as functions, 2020.

[34] J. Berstel and D. Perrin. Theory of codes. Academic Press, 1985.

[35] N. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory, 1736-1936. Clarendon Press, USA,
1986.

[36] S. Billey, W. Jockusch, and R. P. Stanley. Some combinatorial properties of schubert poly-
nomials. Journal of Algebraic Combinatorics 2, pages 345–374, 1993.

[37] M. Bòna. A simplicial complex of 2-stack sortable permutations. Advances in Applied
Mathematics, 29(4):499–508, 2002.

[38] M. Bòna. A survey of stack-sorting disciplines. The Electronic Journal of Combinatorics,
9(2), 2003.

[39] M. Bòna. Combinatorics of Permutations. CRC Press, Inc., USA, 2004.

[40] M. Bòna. A walk through combinatorics: an introduction to enumeration and graph theory.
World Scientific Pub., 2006.

[41] M. Bòna and R. Flynn. The average number of block interchanges needed to sort a per-
mutation and a recent result of Stanley. Information Processing Letters, 109(16):927–931,
2009.

[42] M. Bousquet-Mélou. Multi-statistic enumeration of two-stack sortable permutations. Elec-
tron. J. Comb., 5, 1998.

[43] M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev. (2 + 2)-free posets, ascent
sequences and pattern avoiding permutations. Journal of Combinatorial Theory, Series A,
117(7):884–909, 2010.

[44] M. Bousquet-Mélou. Sorted and/or sortable permutations. Discrete Mathematics,
225(1):25–50, 2000. FPSAC’98.

[45] M. Bouvel and O. Guibert. Refined enumeration of permutations sorted with two stacks
and a d8-symmetry, 2012.

[46] C. Brennan and S. Mavhungu. Peaks and valleys in Motzkin paths. Quaestiones Mathe-
maticae, 33(2):171–188, 2010.

[47] C. Bridges and D. Goldberg. An analysis of reproduction and crossover in a binary-coded
genetic algorithm. In Proceedings of the Second International Conference on Genetic Al-
gorithms on Genetic Algorithms and Their Application, page 9–13, USA, 1987. L. Erlbaum
Associates Inc.

[48] P. Brucker. Scheduling Algorithms. Springer Publishing Company, Incorporated, 5th edi-
tion, 2010.

[49] P. Brändén and A. Claesson. Mesh patterns and the expansion of permutation statistics as
sums of permutation patterns. The Electronic Journal of Combinatorics, 18(2), 2011.

[50] R. Burkard and E. Cela. Linear assignment problems and extensions, 1998.

[51] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. Revised reprint. SIAM
- Society of Industrial and Applied Mathematics, 2012. 393 Seiten.

111

BIBLIOGRAPHY BIBLIOGRAPHY

[52] A. Burstein. Enumeration of words with forbidden patterns. University of Pennsylvania,
1998.

[53] A. Burstein and I. Lankham. Combinatorics of patience sorting piles. FPSAC Proceed-
ings 2005 - 17th Annual International Conference on Formal Power Series and Algebraic
Combinatorics, 07 2005.

[54] A. Burstein and T. Mansour. Words restricted by 3-letter generalized multipermutation
patterns. Annals of Combinatorics, 7:1–14, 2001.

[55] A. Burstein and T. Mansour. Words restricted by patterns with at most 2 distinct letters. The
Electronic Journal of Combinatorics, 9(2), 2002.

[56] Y. Cai and C. Yan. Counting with Borel’s triangle, 2018.

[57] L. Campbell, S. Dahlberg, R. Dorward, J. Gerhard, T. Grubb, C. Purcell, and B. Sagan.
Restricted growth function patterns and statistics. Discrete Mathematics and Theoretical
Computer Science, 18(2):electronic, 2016.

[58] E. Cantú-Paz and D. Goldberg. Efficient parallel genetic algorithms: theory and practice.
Computer Methods in Applied Mechanics and Engineering, 186(2):221–238, 2000.

[59] G. Cerbai. Sorting cayley permutations with pattern-avoiding machines, 2020.

[60] G. Cerbai, A. Claesson, and L. Ferrari. Stack sorting with restricted stacks, 2019.

[61] G. Cerbai, A. Claesson, L. Ferrari, and E. Steingrímsson. Sorting with pattern-avoiding
stacks: the 132-machine, 2020.

[62] V. Chahar, S. Katoch, and S. Chauhan. A review on genetic algorithm: Past, present, and
future. Multimedia Tools and Applications, 80, 02 2021.

[63] H. Cheng, J. Zhao, and H. Wang. Schema theorem based on probability for multigenic
chromosomes genes expression programming. International journal of security and its
applications, 10(1):87–94, 2016.

[64] J. Chung, S. Oh, and I. Choi. A hybrid genetic algorithm for train sequencing in the korean
railway. Omega, 37(3):555–565, 2009.

[65] A. Claesson, M. Dukes, and E. Steingrímsson. Permutations sortable by n − 4 passes
through a stack, 2009.

[66] A. Claesson and S. Linusson. n! matchings, n! posets. Proceedings of the American Math-
ematical Society, 139(02):435–435, 2011.

[67] P. Consoli and L. Minku. Dynamic selection of evolutionary algorithm operators based on
online learning and fitness landscape metrics. volume 20, pages 359–370, 12 2014.

[68] J. Contreras, P. Bosch, M. Varas, and F. Basso. A new genetic algorithm encoding for coali-
tion structure generation problems. Mathematical Problems in Engineering, page 1–13,
2020.

[69] R. Cori, B. Jacquard, and G. Schaeffer. Description trees for some families of planar maps.
In Proceedings of the 9th Conference on Formal Power Series and Algebraic Combina-
torics, pages 196–208, 1997.

112

BIBLIOGRAPHY BIBLIOGRAPHY

[70] S. Corteel, M. Martinez, C. Savage, and M. Weselcouch. Patterns in inversion sequences I,
2016.

[71] G. Croes. A method for solving traveling-salesman problems. Operations Research,
6(6):791–812, 1958.

[72] E. Czabarka, R. Flórez, L. Junes, and J. Ramírez. Enumerations of peaks and valleys on
non-decreasing Dyck paths. Discrete Mathematics, 341(10):2789–2807, 2018.

[73] K. Dahal and J. McDonald. Generational and steady-state genetic algorithms for generator
maintenance scheduling problems. In Artificial Neural Nets and Genetic Algorithms, pages
259–263, Vienna, 1998. Springer Vienna.

[74] G. Dantzig, D. R. Fulkerson, and M. Selmer. Solution of a Large-Scale Traveling-Salesman
Problem. RAND Corporation, Santa Monica, CA, 1954.

[75] K. Deep and M. Thakur. A new mutation operator for real coded genetic algrithms. Applied
Mathematics and Computation, 193:211–230, 10 2007.

[76] C. Defant. Counting 3-stack-sortable permutations. Journal of Combinatorial Theory, Se-
ries A, 172:105209, 2020.

[77] C. Defant and K. Zheng. Stack-sorting with consecutive-pattern-avoiding stacks, 2020.

[78] D. Desantis, R. Field, W. Hough, B. Jones, R. Meissen, and J. Ziefle. Permutation Pattern
Avoidance and the Catalan Triangle. Missouri Journal of Mathematical Sciences, 25(1):50
– 60, 2013.

[79] E. Deutsch. Dyck path enumeration. Discrete Mathematics, 204(1-3):167–202, 1999.

[80] M. Dianati, I. Song, and M. Treiber. An introduction to genetic algorithms and evolution.
2002.

[81] L. Djerid, M.-C. Portmann, and P. Villon. Performance analysis of permutation crossover
genetic operators. Journal of Decision Systems, page 157–177, 1996.

[82] R. Donaghey and L. Shapiro. Motzkin numbers. Journal of Combinatorial Theory, Series
A, 23(3):291–301, 1977.

[83] L. Donghai. Mathematical modeling analysis of genetic algorithms under schema theorem.
Journal of Computational Methods in Sciences and Engineering, 19:1–7, 05 2019.

[84] D. Drake and R. Gantner. Generating functions for plateaus in Motzkin paths. Journal of
the Chungcheong Mathematical Society, 25(3):475–489, 2012.

[85] Z. Drezner. Extensive experiments with hybrid genetic algorithms for the solution of the
quadratic assignment problem. Computers & Operations Research, 35(3):717–736, 2008.
Part Special Issue: New Trends in Locational Analysis.

[86] P. Duchon. On the enumeration and generation of generalized Dyck words. Discrete Math-
ematics, 225(1-3):121–135, 2000.

[87] M. Dukes, S. Kitaev, J. Remmel, and E. Steingrímsson. Enumerating (22)-free posets by
indistinguishable elements. Journal of Combinatorics, 2(1):139–163, 2011.

113

BIBLIOGRAPHY BIBLIOGRAPHY

[88] M. Dukes and R. Parviainen. Ascent sequences and upper triangular matrices containing
non-negative integers. The Electronic Journal of Combinatorics, 17(1), 2010.

[89] S. Dulucq, S. Gire, and O. Guibert. A combinatorial proof of J. West’s conjecture. Discrete
Mathematics, 187(1):71–96, 1998.

[90] S. Dulucq, S. Gire, and J. West. Permutations with forbidden subsequences and nonsep-
arable planar maps. Discrete Mathematics, 153(1):85–103, 1996. Proceedings of the 5th
Conference on Formal Power Series and Algebraic Combinatorics.

[91] P. Duncan and E. Steingrímsson. Pattern avoidance in ascent sequences. The Electronic
Journal of Combinatorics, 18(1):P226, electronic, 2011.

[92] J. Durillo and A. Nebro. jMetal: A java framework for multi-objective optimization. Ad-
vances in Engineering Software, 42(10):760–771, 2011.

[93] R. Ehrenborg and E. Steingrímsson. The excedance set of a permutation. Advances in
Applied Mathematics, 24(3):284–299, 2000.

[94] L. Euler and G. Kowalewski. Institutiones calculi differentialis. B.G. Teubneri, 1913.

[95] S. Even and A. Itai. Queues, stacks and graphs. Theory of Machines and Computations,
page 71–86, 1971.

[96] M. Fisher. The lagrangian relaxation method for solving integer programming problems.
Management Science, 27(1):1–18, 1981.

[97] D. Foata. On the Netto inversion number of a sequence. Proceedings of the American
Mathematical Society, 19(1):236–236, 1968.

[98] D. Foata and M. Schützenberger. Major index and inversion number of permutations. Math-
ematische Nachrichten, 83(1):143–159, 1978.

[99] D. Fogel and A. Ghozeil. Schema processing under proportional selection in the presence
of random effects. IEEE Trans. Evol. Comput., 1:290–293, 1997.

[100] D. Fogel and A. Ghozeil. The schema theorem and the misallocation of trials in the presence
of stochastic effects. In Proceedings of the 7th International Conference on Evolutionary
Programming VII, EP ’98, page 313–321, Berlin, Heidelberg, 1998. Springer-Verlag.

[101] D. Fogel and A. Ghozeil. Schema processing, proportional selection, and the misallocation
of trials in genetic algorithms. Inf. Sci., 122:93–119, 2000.

[102] M. Gen and R. Cheng. Genetic algorithms and engineering design. 1997.

[103] M. Gen, R. Cheng, and L. Lin. Network Models and Optimization: Multiobjective Genetic
Algorithm Approach. Springer Publishing Company, Incorporated, 1 edition, 2008.

[104] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Reading, MA, 1989.

[105] D. Goldberg and R. Lingle. Alleleslociand the traveling salesman problem. In Proceedings
of the 1st International Conference on Genetic Algorithms, page 154–159, USA, 1985. L.
Erlbaum Associates Inc.

114

BIBLIOGRAPHY BIBLIOGRAPHY

[106] R. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the
American Mathematical Society, 64(5):275 – 278, 1958.

[107] M. Goossens, F. Mittelbach, and A. Samarin. The LATEX Companion. Addison-Wesley,
Reading, Massachusetts, 1993.

[108] I. Goulden and J. West. Raney paths and a combinatorial relationship between rooted
nonseparable planar maps and two-stack-sortable permutations. J. Comb. Theory Ser. A,
75(2):220–242, Aug. 1996.

[109] J. Grefenstette. Deception considered harmful. In FOGA, 1992.

[110] K. Grygierek. Optimization of trusses with self-adaptive approach in genetic algorithms.
Architecture Civil Engineering Environment, 2016.

[111] M. Haj-Rachid, W. Ramdane-Cherif, P. Chatonnay, and C. Bloch. Comparing the perfor-
mance of genetic operators for the vehicle routing problem. IFAC Proceedings Volumes,
43(17):313–319, 2010.

[112] P. Hansen and L. Kaufman. A primal-dual algorithm for the three-dimensional assignment
problem. Cahiers du CERO, 15:327–336, 1973.

[113] M. Held and R. Karp. A dynamic programming approach to sequencing problems. In
Proceedings of the 1961 16th ACM National Meeting, ACM ’61, page 71.201–71.204, New
York, NY, USA, 1961. Association for Computing Machinery.

[114] S. Heubach and T. Mansour. Combinatorics of Compositions and Words: Solutions Manual.
Chapman & Hall/CRC, 2009.

[115] J. Holland. Outline for a logical theory of adaptive systems. J. ACM, 9(3):297–314, 1962.

[116] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI, 1975. second edition, 1992.

[117] J. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA,
USA, 1992.

[118] S. Johnson. Optimal Two- and Three-Stage Production Schedules with Setup Time Included.
RAND Corporation, Santa Monica, CA, 1953.

[119] H. Kargupta, K. Deb, and D. Goldberg. Ordering genetic algorithms and deception. In
PPSN, 1992.

[120] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. In M. A.
Fischler and O. Firschein, editors, Readings in Computer Vision, pages 606–615. Morgan
Kaufmann, San Francisco (CA), 1987.

[121] S. Kitaev. Miscellaneous on patterns in permutations and words. Monographs in Theoretical
Computer Science. An EATCS Series Patterns in Permutations and Words, page 317–360,
2011.

[122] S. Kitaev. Patterns in Permutations and Words. Springer, 2011.

[123] S. Kitaev and J. Remmel. Quadrant marked mesh patterns in alternating permutations ii.
Journal of Combinatorics, 4(1):31–65, 2013.

115

BIBLIOGRAPHY BIBLIOGRAPHY

[124] D. Knuth. The Art of Computer Programming, volume 1, Fundamental Algorithms.
Addison-Wesley, 1968.

[125] D. Knuth. The art of computer programming. Addison-Wesley, 1973.

[126] D. Knuth. Computer programming as an art. ACM Turing Award Lectures, 1974.

[127] Z. Konfrst. Parallel genetic algorithms: advances, computing trends, applications and per-
spectives. In 18th International Parallel and Distributed Processing Symposium, 2004.
Proceedings., pages 162–, 2004.

[128] B. Koohestani. A crossover operator for improving the efficiency of permutation-based
genetic algorithms. Expert Systems with Applications, 151:113381, 2020.

[129] T. Koopmans and M. Beckmann. Assignment problems and the location of economic ac-
tivities. Cowles Foundation Discussion Papers 4, Cowles Foundation for Research in Eco-
nomics, Yale University, 1955.

[130] C. Krattenthaler. Permutations with restricted patterns and Dyck paths. Advances in Applied
Mathematics, 27(2):510–530, 2001.

[131] C. Krattenthaler and S. G. Mohanty. Lattice path combinatorics – applications to probability
and statistics.

[132] D. Kreher and D. Stinson. Combinatorial Algorithms: Generation, Enumeration, and
Search. Discrete Mathematics and Its Applications. Taylor & Francis, 1998.

[133] D. Kremer and W. Shiu. Finite transition matrices for permutations avoiding pairs of length
four patterns. Discrete Mathematics, 268(1-3):171–183, 2003.

[134] R. Kumar. Using new variation crossover operator of genetic algorithm for solving the
traveling salesmen problem in e-governance.

[135] A. Land and A. Doig. An Automatic Method for Solving Discrete Programming Problems,
volume 28, pages 105–132. 11 2010.

[136] P. Larranaga, C. Kuijpers, R. Murga, I. Inza, and S. Dizdarevic. Genetic algorithms for the
travelling salesman problem: A review of representations and operators. Artificial Intelli-
gence Review, 13:129–170, 01 1999.

[137] D. Lehmer. Teaching combinatorial tricks to a computer. 1960.

[138] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Oper. Res., 21(2):498–516, Apr. 1973.

[139] Z. Lin and S. Fu. On 1212-avoiding restricted growth functions. The Electronic Journal of
Combinatorics, 24(1):P53, electronic, 2017.

[140] A. Lipowski and D. Lipowska. Roulette-wheel selection via stochastic acceptance. Physica
A: Statistical Mechanics and its Applications, 391(6):2193–2196, Mar 2012.

[141] Q. Liu, X. Li, L. Gao, and Y. Li. A modified genetic algorithm with new encoding and
decoding methods for integrated process planning and scheduling problem. IEEE Transac-
tions on Cybernetics, pages 1–10, 2020.

[142] M. Lothaire. Combinatorics on words. Addison-wesley, 1983.

116

BIBLIOGRAPHY BIBLIOGRAPHY

[143] H. Maaranen, K. Miettinen, and M. Mäkelä. Quasi-random initial population for genetic
algorithms. Computers & Mathematics with Applications, 47(12):1885–1895, 2004.

[144] P. MacMahon. The indices of permutations and derivation therefrom of functions of a
single variable associated with the permutations of any assemblage of objects. Amer. J.
Math., 35:281–322, 1913.

[145] T. Mansour. Counting peaks at height k in a Dyck path. Journal of Integer Sequences,
5:Article 02.1.1, 03 2002.

[146] T. Mansour and M. Shattuck. Counting Dyck paths according to the maximum distance
between peaks and valleys. Journal of Integer Sequences, 15:Article 12.1.1, 05 2012.

[147] T. Mansour and M. Shattuck. Some enumerative results related to ascent sequences. Dis-
crete Mathematics, 315-316:29–41, 2014.

[148] T. Mansour and M. Shattuck. Pattern avoidance in inversion sequences. Pure Mathematics
and Applications, 25(2):157–176, 2015.

[149] T. Mansour and V. Vajnovszki. Efficient generation of restricted growth words. Information
Processing Letters, 113(17):613–616, 2013.

[150] T. Mansour and V. Vajnovszki. Efficient generation of restricted growth words. American
Discrete Mathematics, page 113:613–616, 2013.

[151] R. Mantaci and F. Rakotondrajao. A permutations representation that knows what eulerian
means. Discrete Mathematics and Theoretical Computer Science, 4, 12 2001.

[152] G. Mathews and P. MacMahon. Combinatory analysis. vol. i. The Mathematical Gazette,
8(118):125, 1915.

[153] M. Mehdi. Paralell hybrid optimization methods for permutation based problems. Thesis,
Université des Sciences et Technologie de Lille - Lille I, Oct. 2011.

[154] D. Merlini, R. Sprugnoli, and C. Verri. Some statistics on Dyck paths. Journal of Statistical
Planning and Inference, 101(1):211–227, 2002.

[155] H. Mohammed Ali, W. Abdou, P. Chatonnay, C. Bloch, and F. Spies. Behaviour study of an
evolutionary design for permutation problems. International Congress on Information and
Communication Technology , London, UK, 2018.

[156] H. Mohammed Ali, C. Bloch, W. Abdou, P. Chatonnay, and F. Spies. Behaviour Study of
an Evolutionary Design for Permutation Problems. In International Congress on Informa-
tion and Communication Technology, volume 797 of Advances in Intelligent Systems and
Computing, pages 845 – 853, London, United Kingdom, Feb. 2018.

[157] G. Mohanty. Path counting—simple boundaries. Lattice Path Counting and Applications,
page 1–29, 1979.

[158] S. Muelas, J. Peña, V. Robles, and A. LaTorre. Voronoi-initializated island models for
solving real-coded deceptive problems. In Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’08, page 993–1000, New York, NY,
USA, 2008. Association for Computing Machinery.

117

BIBLIOGRAPHY BIBLIOGRAPHY

[159] A. Nebro, J. Durillo, and M. Vergne. Redesigning the jMetal multi-objective optimiza-
tion framework. In Proceedings of the Companion Publication of the 2015 Annual Confer-
ence on Genetic and Evolutionary Computation, GECCO Companion ’15, page 1093–1100,
New York, NY, USA, 2015. Association for Computing Machinery.

[160] D. Noever and S. Baskaran. Steady-state vs. generational genetic algorithms: A comparison
of time complexity and convergence properties, 07 1992.

[161] R. Ohira, M. Islam, J. Jo, and B. Stantic. Amga: An adaptive and modular genetic algorithm
for the traveling salesman problem. Intelligent Systems Design and Applications, 2020.

[162] I. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operational Research,
63:513–628, 10 1996.

[163] R. Oste and J. Jeugt. Motzkin paths, Motzkin polynomials and recurrence relations. The
Electronic Journal of Combinatorics, 22(2), 2015.

[164] S. Pesko. Differential evolution for small tsps with constraints. Fourth International Scien-
tific Conference : Challenges in Transport and Communications, 2006.

[165] W. Pierskalla. The tri-substitution method for the three-dimensional assignment problem.
Journal of the Canadian Operational Research Society, 5:71–81, 1967.

[166] W. Pierskalla. Letter to the editor–the multidimensional assignment problem. Operations
Research, 16:422–431, 04 1968.

[167] V. Pillwein and C. Schneider. Algorithmic Combinatorics: Enumerative Combinatorics,
Special Functions and Computer Algebra In Honour of Peter Paule on his 60th Birthday:
In Honour of Peter Paule on his 60th Birthday. Springer, 01 2020.

[168] K. Plant and N. Stanton. The explanatory power of schema theory: theoretical foundations
and future applications in ergonomics. Ergonomics, 56(1):1–15, 2013. PMID: 23140407.

[169] R. Poli. Schema theorems without expectations. In Proceedings of the 1st Annual Con-
ference on Genetic and Evolutionary Computation - Volume 1, GECCO’99, page 806, San
Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[170] R. Poli. On fitness proportionate selection and the schema theorem in the presence of
stochastic effects. 2000.

[171] R. Poli. Exact schema theory for genetic programming and variable-length genetic algo-
rithms with one-point crossover. Genetic Programming and Evolvable Machines, 2(2):123–
163, 2001.

[172] R. Poli. Recursive conditional schema theorem, convergence and population sizing in ge-
netic algorithms. In W. N. Martin and W. M. Spears, editors, Foundations of Genetic Algo-
rithms 6, pages 143–163. Morgan Kaufmann, San Francisco, 2001.

[173] R. Poli. Why the schema theorem is correct also in the presence of stochastic effects. 12
2001.

[174] R. Poli. Hyperschema theory for gp with one-point crossover, building blocks, and some
new results in ga theory. 04 2002.

118

BIBLIOGRAPHY BIBLIOGRAPHY

[175] R. Poli and W. Langdon. A review of theoretical and experimental results on schemata in
genetic programming. pages 1–15, 01 1998.

[176] R. Poli and W. Langdon. Schema theory for genetic programming with one-point crossover
and point mutation. Evol. Comput., 6(3):231–252, Sept. 1998.

[177] R. Poli and N. McPhee. General schema theory for genetic programming with subtree-
swapping crossover: Part i. Evol. Comput., 11(1):53–66, Mar. 2003.

[178] R. Poli, N. Mcphee, and J. Rowe. Exact schema theory and markov chain models for genetic
programming and variable-length genetic algorithms with homologous crossover. Genetic
Programming and Evolvable Machines, 5:31–70, 03 2004.

[179] P. Poon and J. Carter. Genetic algorithm crossover operators for ordering applications.
Computers & Operations Research, 22(1):135–147, 1995. Genetic Algorithms.

[180] A. Poore. Multidimensional assignment formulation of data association problems arising
from multitarget and multisensor tracking. Computational Optimization and Applications,
3:27–57, 03 1994.

[181] A. Poore and N. Rijavec. A lagrangian relaxation algorithm for multidimensional assign-
ment problems arising from multitarget tracking. Siam Journal on Optimization - SIAM J
OPTIMIZATION, 3, 08 1993.

[182] A. Poore, N. Rijavec, M. Liggins, and V. Vannicola. Data association problems posed
as multidimensional assignment problems: problem formulation. In O. E. Drummond,
editor, Signal and Data Processing of Small Targets 1993, volume 1954, pages 552 – 563.
International Society for Optics and Photonics, SPIE, 1993.

[183] M. Portmann and A. Vignier. Performances’ study on crossover operators keeping good
schemata for some scheduling problems. In Proceedings of the 2nd Annual Conference on
Genetic and Evolutionary Computation, GECCO’00, page 331–338, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc.

[184] V. Pratt. Computing permutations with double-ended queues, parallel stacks and parallel
queues. Proceedings of the fifth annual ACM symposium on Theory of computing - STOC
73, 1973.

[185] L. Pudwell. Enumeration schemes for words avoiding permutations. Permutation Patterns,
page 193–212, 2010.

[186] S. Rahnamayan, H. Tizhoosh, and M. Salama. A novel population initialization method
for accelerating evolutionary algorithms. Computers & Mathematics with Applications,
53(10):1605–1614, 2007.

[187] D. Rogers and L. Shapiro. Some correspondences involving the Schröder numbers and
relations. Lecture Notes in Mathematics Combinatorial Mathematics, page 267–274, 1978.

[188] P. Rosa, H. Sriwindono, A. Nugroho, A. Polina, and K. Pinaryanto. Comparison of
crossover and mutation operators to solve teachers placement problem by using genetic
algorithm. Journal of Physics Conference Series, 2020.

[189] S. Sahni and T. Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–565,
July 1976.

119

BIBLIOGRAPHY BIBLIOGRAPHY

[190] K. Sallam, S. Elsayed, R. Sarker, and D. Essam. Differential Evolution with Landscape-
Based Operator Selection for Solving Numerical Optimization Problems, volume 8, pages
371–387. 11 2017.

[191] A. Schrijver. Combinatorial optimization, 2003.

[192] L. Shapiro. A Catalan triangle. Discrete Mathematics, 14(1):83–90, 1976.

[193] R. Simion and F. Schmidt. Restricted permutations. European J. Combin, page 383–406,
1985.

[194] R. Smith. Two stacks in series: A decreasing stack followed by an increasing stack. Annals
of Combinatorics, 18:359–363, 2014.

[195] R. Smith and V. Vatter. A stack and a pop stack in series, 2013.

[196] N. Soni and T. Kumar. Study of various mutation operators in genetic algorithms. 2014.

[197] W. Spears and V. Anand. A study of crossover operators in genetic programming. Proceed-
ing of the Sixth International Symposium on Methodologies for Intelligent Systems, 542, 07
1992.

[198] R. Stanley. What is enumerative combinatorics? Enumerative Combinatorics, page 1–63,
1986.

[199] R. Stanley. Enumerative Combinatorics, volume 2 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1999.

[200] R. Stanley. Catalan Numbers. Cambridge University Press, 2015.

[201] R. Sulanke. Bijective recurrences concerning Schröder paths. The Electronic Journal of
Combinatorics, 5(1), 1998.

[202] R. Sulanke. Catalan path statistics having the Narayana distribution. Discrete Mathematics,
180(1):369–389, 1998. Proceedings of the 7th Conference on Formal Power Series and
Algebraic Combinatorics.

[203] R. Sulanke. Constraint-sensitive Catalan path statistics having the Narayana distribution.
Discrete Mathematics, 204(1):397–414, 1999. Selected papers in honor of Henry W. Gould.

[204] E. Talbi. Metaheuristics: From Design to Implementation. Wiley Publishing, 2009.

[205] K. Tan, S. Chiam, A. Mamun, and C. Goh. Balancing exploration and exploitation with
adaptive variation for evolutionary multi-objective optimization. European Journal of Op-
erational Research, 197(2):701–713, 2009.

[206] P. Tang and M. Tseng. Adaptive directed mutation for real-coded genetic algorithms. Ap-
plied Soft Computing, 13:600–614, 01 2013.

[207] L. Tao and X. Xin. Study of artificial immune based schema theorem. The Journal of
Information and Computational Science, 11(11):3663–3671, 2014.

[208] R. Tarjan. Sorting using networks of queues and stacks. Journal of the ACM,
19(2):341–346, 1972.

120

BIBLIOGRAPHY BIBLIOGRAPHY

[209] P. Terwilliger. Using Catalan words and a q-shuffle algebra to describe a pbw basis for the
positive part of uq(ŝl2), 2018.

[210] A. Thue. Uber unendliche Zeichenreihen. Kristiania, 1906.

[211] A. Thue. Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kristiania,
1912.

[212] A. Thue. Probleme uber Veranderungen von Zeichenreihen nach gegebenen Regeln. Kris-
tiania, 1914.

[213] TSPData. Tsplib. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/t
sp.

[214] G. Ücoluk. Genetic algorithm solution of the tsp avoiding special crossover and mutation.
Intelligent Automation & Soft Computing, 8(3):265–272, 2002.

[215] H. Ulfarsson. Describing West-3-stack-sortable permutations with permutation patterns,
2012.

[216] V. Vajnovszki. A loopless generation of bitstrings without p consecutive ones. In C. S.
Calude, M. J. Dinneen, and S. Sburlan, editors, Combinatorics, Computability and Logic,
pages 227–240, London, 2001. Springer London.

[217] A. Vie. Qualities, challenges and future of genetic algorithms: a literature review, 2021.

[218] M. Vlach. Branch and bound method for the three-index assignment problem. Ekonomicko-
Matematicky Obzor, 3:181–191, 01 1967.

[219] J. von Neumann. Various techniques used in connection with random digits. In A. S.
Householder, G. E. Forsythe, and H. H. Germond, editors, Monte Carlo Method, volume 12
of National Bureau of Standards Applied Mathematics Series, chapter 13, pages 36–38. US
Government Printing Office, Washington, DC, 1951.

[220] A. Wadhwa. Analysis of Selection Techniques in Genetic Algorithm. 06 2016.

[221] J. West. Permutations with forbidden subsequences, and, stack-sortable permutations. Mas-
sachusetts Institute of Technology, 1990.

[222] J. West. Sorting twice through a stack. Theoretical Computer Science, 117(1):303–313,
1993.

[223] J. West. Generating trees and the Catalan and Schröder numbers. Discrete Mathematics,
146(1-3):247–262, 1995.

[224] J. West. Generating trees and forbidden subsequences. Discrete Mathematics, 157(1-
3):271–283, 1996.

[225] D. White. An overview of schema theory, 2014.

[226] D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4, 10 1998.

[227] L. Whitley. Cellular genetic algorithms. In Proceedings of the 5th International Confer-
ence on Genetic Algorithms, page 658, San Francisco, CA, USA, 1993. Morgan Kaufmann
Publishers Inc.

121

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp

BIBLIOGRAPHY BIBLIOGRAPHY

[228] K. William. Proof of a conjectured q,t-Schröder identity, 2010.

[229] A. Wright. The exact schema theorem. Computing Research Repository - CORR, 05 2011.

[230] C. Yan and Z. Lin. Inversion sequences avoiding pairs of patterns. Discrete Mathematics &
Theoretical Computer Science, vol. 22 no. 1, June 2020.

[231] X. Yu and M. Gen. Introduction to Evolutionary Algorithms. Springer Publishing Company,
Incorporated, 2012.

[232] W. Yuping. Schema theorem based on limited character set encoding and its proof. Journal
of Xidian University, 2012.

[233] D. Zeilberger. A proof of Julian Wests conjecture that the number of two-stack sortable
permutations of length n is 2(3n)!/((n+1)!(2n+1)!). Discrete Mathematics, 102(1):85–93,
1992.

[234] Y. Zhou. Study on genetic algorithm improvement and application. Thesis, Worcester
Polytechnic Institute, 100 Institute Road, Worcester MA 01609-2280 USA, May 2006.

[235] Z. Zojaji and M. Ebadzadeh. Semantic schema theory for genetic programming. Applied
Intelligence, 44, 07 2015.

122

Appendix A

List of publications

123

APPENDIX A. LIST OF PUBLICATIONS

124

ar
X

iv
:1

91
2.

10
44

7v
3

 [
cs

.D
M

]
 1

4
A

pr
 2

02
1

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 22:2, 2021, #5

Catalan words avoiding pairs of length three
patterns

Jean-Luc Baril Carine Khalil Vincent Vajnovszki

LIB, Université de Bourgogne Franche-Comté, Dijon, France

received 25th Dec. 2019, revised 31st Mar. 2021, accepted 1st Apr. 2021.

Catalan words are particular growth-restricted words counted by the eponymous integer sequence. In this article we
consider Catalan words avoiding a pair of patterns of length 3, pursuing the recent initiating work of the first and
last authors and of S. Kirgizov where (among other things) the enumeration of Catalan words avoiding a patterns of
length 3 is completed. More precisely, we explore systematically the structural properties of the sets of words under
consideration and give enumerating results by constructive bijections or bivariate generating functions with respect to
the length and descent number. Some of the obtained enumerating sequences are known, and thus the corresponding
results establish new combinatorial interpretations for them.

Keywords: Catalan/pattern-avoiding words, enumeration, constructive bijections, (bivariate) generating functions.

1 Introduction and notation

Catalan words are particular growth-restricted words and they represent still another combinatorial class
counted by the Catalan numbers, see for instance [12, exercise 6.19.u, p. 222]. This paper contributes to
a recent line of research on classical pattern avoidance on words subject to some growth restrictions (for
instance, ascent sequences [2, 6], inversion sequences [5, 10, 14], restricted growth functions [4, 9]) by
investigating connections between sequences on the On-line Encyclopedia of Integer Sequences [11] and
Catalan words avoiding two patterns of length 3.

Through this paper we consider words over the set of non-negative integers and we denote such words
by sequences (for instance w1w2 . . . wn) or by italicized boldface letter (for instance w and u). The word
w = w1w2 . . . wn is called a Catalan word if

w1 = 0 and 0 ≤ wi ≤ wi−1 + 1 for i = 2, 3, . . . , n.

Catalan words are in bijection with maybe the most celebrated combinatorial class having the same enu-
merating sequence: Dyck paths(i). Indeed, in a length 2n Dyck path collecting for the up steps the ordinates
of their starting points we obtain a length n Catalan word, and this construction is a bijection. See Figure 1
where this bijection is depicted for an example. We denote by Cn the set of length n Catalan words and
cn = |Cn| is the nth Catalan number 1

n+1

(
2n
n

)
.

A pattern is a word with the property that if i occurs in it, then so does j, for any j with 0 ≤ j < i. A
pattern π = π1π2 . . . πk is said to be contained in the word w = w1w2 . . . wn, k ≤ n, if there is a sub-word
of w, wi1wi2 . . . wik , order-isomorphic with π1π2 . . . πk. If w does not contain π, we say that w avoids π,
see for instance Kitaev’s seminal book [7] on this topic.

For a pattern π, we denote by Cn(π) the set of length n Catalan words avoiding π, and cn(π) = |Cn(π)|
is the cardinality of Cn(π) and C(π) = ∪n≥0Cn(π). For example, Cn(101) is the set of length n Catalan
words avoiding 101, that is, the set of words w in Cn such that there are no i, j and k, 1 ≤ i < j < k ≤ n,
with wi = wk > wj . So, C4(101) = {0000, 0001, 0010, 0011, 0012, 0100, 0110, 0111, 0112, 0120, 0121,
0122, 0123}. Likewise, if π is the set of patterns {α, β, . . . }, then Cn(π) and Cn(α, β, . . .) denote both
the set of length n Catalan words avoiding each pattern in π; and cn(π) = cn(α, β, . . .) and C(π) =

(i) A Dyck path is a path in the first quadrant of the plane which begins at the origin, ends at (2n, 0), and consists of up steps (1, 1)
and down steps (1,−1).

ISSN 1365–8050 © 2021 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

APPENDIX A. LIST OF PUBLICATIONS

126

Information Processing Letters 171 (2021) 106138

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Catalan and Schröder permutations sortable by two restricted

stacks

Jean-Luc Baril a, Giulio Cerbai b,1, Carine Khalil a, Vincent Vajnovszki a,∗
a LIB, Université de Bourgogne Franche-Comté, B.P. 47 870, 21078 Dijon Cedex, France
b Dipartimento di Matematica e Informatica “U. Dini”, University of Firenze, Firenze, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 September 2020
Received in revised form 15 February 2021
Accepted 2 May 2021
Available online 19 May 2021
Communicated by Amit Chakrabarti

Keywords:
Stack sorting/two stacks in series
Pattern avoiding permutations/machines
Catalan and the Schröder numbers
Combinatorial problems

Pattern avoiding machines were introduced recently by Claesson, Cerbai and Ferrari
as a particular case of the two-stacks in series sorting device. They consist of two
restricted stacks in series, ruled by a right-greedy procedure and the stacks avoid some
specified patterns. Some of the obtained results have been further generalized to Cayley
permutations by Cerbai, specialized to particular patterns by Defant and Zheng, or
considered in the context of functions over the symmetric group by Berlow. In this work
we study pattern avoiding machines where the first stack avoids a pair of patterns of
length 3 and investigate those pairs for which sortable permutations are counted by the
(binomial transform of the) Catalan numbers and the Schröder numbers.

© 2021 Published by Elsevier B.V.

1. Introduction

Pattern avoiding machines were recently introduced
in [7] in attempt to gain a better understanding of sortable
permutations using stacks in series. They consist of two re-
stricted stacks in series, equipped with a right-greedy pro-
cedure, where the first stack avoids a fixed pattern, reading
the elements from top to bottom; and the second stack
avoids the pattern 21 (which is a necessary condition for
the machine to sort permutations). The authors of [7] pro-
vide a characterization of the avoided patterns for which
sortable permutations do not form a class, and they show
that those patterns are enumerated by the Catalan num-
bers. For specific patterns, such as 123 and the decreasing
pattern of any length, a geometrical description of sortable

* Corresponding author.
E-mail addresses: barjl@u-bourgogne.fr (J.-L. Baril),

giulio.cerbai@unifi.it (G. Cerbai), carine.khalil@u-bourgogne.fr (C. Khalil),
vvajnov@u-bourgogne.fr (V. Vajnovszki).

1 G.C. is member of the INdAM Research group GNCS; he is par-
tially supported by INdAM-GNCS 2020 project “Combinatoria delle per-
mutazioni, delle parole e dei grafi: algoritmi e applicazioni”.

permutations is also obtained. The pattern 132 has been
solved later in [8]. Some of these results have been further
generalized to Cayley permutations in [9]. More recently,
Berlow [5] explores a single stack version of pattern avoid-
ing machines, where the stack avoids a set of patterns and
the sorting process is regarded as a function. Analogous
machines, but based on the notion of consecutive patterns,
have been introduced and discussed in [10].

In this work we study a variant of pattern-avoiding
machines where the first stack avoids (σ , τ), a pair of
patterns of length three. Following [7], we call it (σ , τ)-
machine. More specifically, we restrict ourselves to those
pairs of patterns for which sortable permutations are
counted by either the Catalan numbers or two of their
close relatives: the binomial transform of Catalan num-
bers and the Schröder numbers. For the pair (132, 231)

we show that sortable permutations are those avoiding
1324 and 2314, a set whose enumeration is given by the
large Schröder numbers. Under certain conditions on the
avoided patterns, the output of the first stack is bijec-
tively related to its input (see [5,9]): it follows that for
three pairs of patterns, namely (123, 213), (132, 312) and
(231, 321), sortable permutations are counted by the Cata-

https://doi.org/10.1016/j.ipl.2021.106138
0020-0190/© 2021 Published by Elsevier B.V.

APPENDIX A. LIST OF PUBLICATIONS

128

Transmission of Genetic Properties
in Permutation Problems: Study
of Lehmer Code and Inversion

Table Encoding

Carine Khalil(B) and Wahabou Abdou

LIB, Université de Bourgogne Franche-Comté, B.P. 47 870, 21078 Dijon, France
{carine.khalil,wahabou.abdou}@u-bourgogne.fr

Abstract. Solution encoding describes the way decision variables are
represented. In the case of permutation problems, the classical encoding
should ensure that there are no duplicates. During crossover operations,
repairs may be carried out to correct or avoid repetitions. The use of
indirect encoding aims to define bijections between the classical per-
mutation and a different representation of the decision variables. These
encodings are not sensitive to duplicates. However, they lead to a loss of
genetic properties during crossbreeding. This paper proposes a study of
the impact of this loss both in the space of decision variables and in that
of fitness values. We consider two indirect encoding: the Lehmer code
and the Inversion table.

Keywords: Genetic algorithm · Permutation problems · TSP ·
Encoding · Lehmer code · Inversion table

1 Introduction

Permutation-based optimization problems are widely studied in the literature
because of their hardness and the diversity of their application fields. They are
particularly used in the domain of network device deployment, scheduling or
transportation. Solving such problems consists of finding a permutation that
minimizes/maximizes some criteria.

Many efficient methods exist for solving permutation problems. This paper
focuses on Genetic Algorithms (GAs) which are powerful stochastic optimiza-
tion techniques. They are inspired by Darwin’s theory of evolution and natural
selection. GAs help with the exploration of a search space in order to find an
optimal or a near optimal solution for a given problem. In GAs, a possible solu-
tion to the optimization problem is referred to as an individual. Generally, the
algorithm starts with a randomly generated set of individuals (population). This
population evolves throughout generations towards good solutions. At each gen-
eration of the genetic process, each individual in the population is evaluated
based on objective function(s). This leads to the computation of a fitness value

c© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12854, pp. 1–10, 2021.
https://doi.org/10.1007/978-3-030-87986-0_35

A
ut

ho
r

Pr
oo

f

	Acknowledgement
	Abstract
	List of figures
	List of Symbols
	Résumé étendu
	Introduction
	Context
	Motivation
	Detailed outline and contributions

	I Enumerative combinatorics
	Notations, definitions and useful results in Enumerative combinatorics
	Combinatorial classes
	Sequences and words
	Permutations
	Lattice paths

	Statistics
	Patterns

	Enumeration methods
	Bijection
	Recurrence relation
	Generating function
	Wilf equivalence

	Conclusion

	Catalan words avoiding patterns
	Catalan words vs. ascent sequences
	Avoiding a length 2 and a length 3 pattern
	Trivial cases
	Counting via recurrence
	Counting via generating function
	Final remarks
	Conclusion

	Stack-sorting permutations with stacks under constraints
	Sorting with t-stacks in series
	Sorting with Restricted Stacks
	Permutations sortable by the (,)-machine
	Pair (132,231)
	The (,)-machine
	Pair (123, 132)
	Pair (123,312)

	Conclusion

	II Evolutionary Optimization
	Evolutionary computation: an overview
	Permutation-based problems
	Assignment problems
	Scheduling problems
	 Traveling salesman problem

	Combinatorial Optimization methods
	Exact methods
	Approximate methods

	Genetic Algorithm
	Encoding for permutation problems
	Crossover operators

	Performance indicators
	Conclusion

	Transmission of Genetic Properties in Permutation Problems
	Introduction
	Related work
	Encoding and recombination operators
	Direct Encoding
	Classical Encodings
	New encodings

	Experiments and results
	Assessment of transmissions from parents to offspring
	Analysis of fitness distribution

	Conclusion

	Schema Conservation Study in Permutation Problems
	Introduction
	The Schema Theory
	Previous Work on Schemata for GA
	LC and ITA
	Proposed method
	Experiments
	Assessment of transmissions from parents to offspring
	Analysis of fitness distribution

	Conclusion

	Conclusion
	Summary
	Future research

	Bibliography
	List of publications

