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Introduction and context of this work

General context

When I first stepped into this laboratory, a question that puzzled me for a long time was how
it could be possible to describe light as a fluid. So I would like to review the key findings
theoretically and experimentally at the beginning with the aim of introducing certain simple
concepts that will be helpful for understanding this manuscript and will open up the door to
the quantum fluids of light.

What comes to mind when I mention fluid? A slow-moving stream or a raging waterfall?
A spring breeze on the face or a north wind blows leaves off the trees in autumn. Of course, all
of these are fluids. Fluids exist everywhere and at every moment. Nevertheless, can you imag-
ine that there exists a kind of fluid characterized by frictionless flow due to zero viscosity? In
other words, without any loss of kinetic energy in the whole process of flowing? They are called
superfluids. Superfluids can flow through narrow capillaries or slits without dissipating energy,
which gives rise to certain striking phenomena. For example, when the superfluid encounters
an obstacle, it flows around without any disturbances. Another interesting phenomenon is
a superfluid placed in a container will escape spontaneously by moving up the walls of the
container to cascade on its edges [1, 2]. These landmarks and phenomena have given rise to
broad experimental and theoretical research in quantum fluids. There are several approaches
to creating superfluids. A fluid is placed in a rotating vessel, the fluid does not move with the
vessel under critical velocity [3]. Another approach is to place the classical fluid in a rotating
state and then cool it below a critical point. At this moment, if the rotational mechanism is
removed, the superfluid will rotate indefinitely.

To explain this phenomenon, Allen [4], Misenerand simultaneously Kapitza [5], decided to
measure the resistance to the flow of liquid Helium clamped in narrow channels and subjected
to a pressure drop. They found that while the so-called He-I phase, (Helium above the lambda
temperature), showed behavior that could be described in terms of a conventional viscosity.
While below the lambda point (in the so-called He-II phase), the liquid flowed so easily that
the concept of viscosity was not applicable at all. It was this anomalous behavior for which
Kapitza coined the term ”superfluidity”. Superfluidity is one of the most striking manifestations
of quantum many-body physics.
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In 1938, London first recognized that the superfluidity observed in liquid 4He was related
to BEC from the fact that the transition temperature of the superfluid and the temperature of
BEC were the same under the same experimental conditions. Bose-Einstein condensates (BEC)
is Einstein’s proposal for a phase transition of non-interacting atomic gases based on Bose’s the-
ory which attempted to explain the quantization of light by quantum statistics [6]. This phase
transition is associated with particles occupying the lowest energy quantum state and sharing
the same wave function at low temperature. The phase transition from the thermal gas of non-

interacting atoms to BEC occurs when the thermal de Broglie wavelength λT =
(

2πℏ2

mkBT

)1/2

become comparable or larger than the distance of the average particle n−1/3 [6], where the m is
the particle mass, ℏ is the reduced Planck constant, kB is the Boltzmann constant, T is the tem-
perature and the n = N/V is the particles number density of N particles occupying the volume
V . According to this condition, we could arrive at the critical temperature for condensation:

Tc ≈ (2πℏ)2n2/3

mkB

. This means that the ensembles of bosons will form a Bose-Einstein conden-
sate under this critical temperature Tc and the essence of this transition is the approximation
of the phase coherence over macroscopic distances. Initially, it was extensively considered that
Bose-Einstein condensates take place only for non-interacting particles. However, scientists
found surprisingly that weakly interacting particles would be helpful for the formation of con-
densation [7]. For weakly interacting Bose-gas, it will give rise to the spectacular phenomenon
of superfluidity, which results from the combination of quantum degeneracy and interparticle
interaction. Even though Einstein predicted the Bose-Einstein condensation of non-interacting
gas in 1925. The first experimental creation of Bose-Einstein condensates (BECs) was realized
in atomic gases using cooling the alkali metal atoms with the lasers and magnetic evaporate
tools in the laboratory after seven decades [8, 9, 10]. Compared to Superfluid helium failed to
explain the fact that the ideal gas model due to strong interactions [11]. The Bose Einstein
Condensate is easy to control with high precision. So numerous people turn their attention to
atomic quantum gases.

Although cold atomic gas is viewed as an ideal platform for the study of superfluidity, many
alternative systems and configurations have emerged to study this interesting physical phe-
nomenon. Different experimental platforms are essential to explore the same phenomena in
order to gain a better understanding and reveal their physical nature. For example, some of
the scientists has started wondering whether light can be considered a fluid composed of many
photons with sizable photon-photon interactions in appropriate situation.

However, in a vacuum, the interaction between photons is so weak that it is usually ignored.
But it is possible for us to improve the cross-section of photons in their collision process. In
the presence of a third-order non-linear medium, the nonlinear polarization of nonlinear opti-
cal media is capable of mediating interactions between photons resulting in photon coupling
strength enhanced. A multi-photon system behaves as a collective quantum fluid in this case.
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Quantum fluids of light are a photonic counterpart to atomic Bose gases and are defined by the
hydrodynamic interpretation of the electromagnetic field, which connects photons in an optical
laser beam mediated by the nonlinear optical response of the medium to an analog quantum
system with interparticle interactions [12, 13].

There are different configurations for this nonlinear optical system to get the strong non-
linearity to study collective behavior. One example developed at LKB since 2003 such as the
exciton-polariton gas in a microcavity. Under low temperatures, semi-conductor materials com-
prising exciton, a quasi-particle consisting of electron and hole attracted to each other by the
electrostatic Coulomb force, interact with photons and give rise to a quasi-particle, refereed to
polariton [14]. The polariton can be seen as constituting a mixture of a state of half-light and
half-matter. The optical nonlinearity is enhanced thanks to the relatively strong interactions
between excitons. The effective photon mass arises from the spatial confinement of the photon
by planar mirrors. In addition, it is noted that the wave function of polaritons almost shares
similar dynamics to the interacting atomic Bose-Einstein condensates except for an additional
dissipation term, which arises from the fixed lifetime of the polariton. So now it is clear that
exciton-polariton gas in microcavity undergoes Bose-Einstein condensates [12]. These polari-
tons all move in the same direction, like a flowing fluid, and possess great advantages compared
to atomic BEC. First of all, polaritons are easier to condense in the ground state since the
polariton have a lighter mass: the polaritons exhibit the Bose-Einstein condensates at higher
temperatures from several kelvins [15] up to the room temperature [16] (around eight orders of
magnitude larger than the atomic Bose-Einstein condensates) and with lower densities. More, it
offers possibility of fully reconstructing both the density and the phase pattern of the polariton
condensate from the properties of the emitted light. It has been realized huge achievements via
this system, for example the superfluity of polariton around the defect [17] and the hydrody-
namic nucleation of nonlinear excitations such as solitons [18] and quantized vortices [19, 20, 21]
in dilute photon gases. Nevertheless, this method has some limitations. On the one hand, the
effective interaction is slightly tunable because it strongly relies on the exciton-exciton coupling,
which makes obtaining strong enough nonlinearities in scalable systems to study the dynamics
of a strongly interacting photon gas turns out to be a major experimental challenge. On the
other hand, the driven-dissipative nature of polariton introduces severe complications in the
theoretical description of such systems and which is typically detrimental for the study of purely
quantum features [22].

To overcome the above shortcomings, another alternative route to the regime is the cavity-
less system based on intriguing laser paraxial propagating in a Kerr nonlinear medium, whose
refractive index depends on the laser intensity. Paraxial fluid density depend on a direct math-
ematical comparison between the Gross-Pitaevskii equation (GPE), which characterizes the
mean field evolution of the weakly-interacting Bose-Einstein condensate (BEC), and the non-
linear Schrödinger equation (NLSE), which describes light propagation through a χ(3) nonlinear
medium within the so-called paraxial and slowly-varying-envelope approximations [23]. If we
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further apply the Madelung transformation to express the electric field as a function of density
and phase, we can get a set of hydrodynamic-like equations. It is straightforward that a suf-
ficiently strong laser field E(r, t) in a nonlinear medium behaves as a photon fluid. The fluid,
whose density corresponds to the field intensity, flows at the gradient of the phase as an effective
velocity in the plane perpendicular to the propagation along the optical-axis coordinate z. In
other words, the propagation direction of the laser beam along the z axis in this photon fluid
system replaces the effective time t in BEC. It is this time-space role exchange that makes the
evolution of the beam obtained at successive planes along the propagation direction correspond
to snapshots of the analogue fluid system at specified moments [24]. And the reason why this
platform is referred to as (2D+1) dimensional geometry is that the t direction corresponds to
a third spatial dimension in addition to the transverse x and y directions. In this paraxial-
propagation of laser field in the nonlinear medium configuration, light diffraction provides an
effective mass to the photon in the (x, y) plane and chromatic dispersion leads to a, typically
different, effective mass in the t direction. The effective coupling between photons comes from
the polarization of the nonlinear medium. So now you will be clear that the fluid of light is
referred to as weakly interacting photons formed by a strong laser beam propagating through a
nonlinear medium [13]. It has been reported that thermal optic liquid [25, 26], photorefractive
crystal [27, 28], as well as the alkaline metal vapors [29, 13, 30] are ideal candidates for the
nonlinear medium.

Our fluid of light group in LKB mainly explores the hydrodynamic behavior of the photon fluid
in the warm rubidium vapors. Compared to the thermal optic liquid and photorefractive crys-
tal, this fluid of light configuration is developed and applied thanks to the strong nonlinearity
under a near-resonance excitation. The rubidium vapor cell will exhibit an intensity-dependent
refractive index from a non-zero third-order dielectric susceptibility χ(3). The Kerr nonlinearity
of the medium gives rise to repulsive photon-photon interactions. By mediating this parame-
ter, we can easily tune the interaction strength between photons [31, 32, 33, 34, 35]. Recent
extensive reviews and hydrodynamics phenomena have been studied and explored based on
this platform as a potential analog quantum simulator, including the demonstrations of super-
fluidity of light [36, 37, 38], the observation of the Berezinskii-Kosterlitz-Thouless transition
[39], shockwaves [29, 40, 41] and precondensation [31], quantum turbulence [42], the creation
of analogue rotating black hole geometries [43], the evidence of photon droplets [44].

With this simple configuration, we imprint analogues of short Bragg pulses on a photon fluid
by wavefront shaping using a spatial light modulator to measure the static structure factor
S(k). The results demonstrate the presence of pair-correlated excitations, revealing indirectly
the quantum depletion in a paraxial fluid of light. We also discuss how the relatively small
fluctuations superimposing upon a coherent light field in the weak-nonlinearity regime can be
treated within the framework of the Bogoliubov theory of dilute Bose-Einstein condensates.

One of the main predictions of quantum field theory concerns the possibility of producing
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pairs of particles by exciting vacuum fluctuations. Furthermore, a very similar process based
on the tearing apart of quantum vacuum fluctuations by an expanding universe explains the
creation of the seeds for structure formation. Even though signatures of these effects can still be
observed today in the cosmic microwave background (CMB) radiation, direct detection using
elementary particles remain missing. To circumvent the difficulties, it has been proposed to
use quasiparticles describing collective excitations of some medium. We want to unitize the
dynamical Casimir effect, which is the generation of pairs of real particles or photons from the
vacuum as a result of a non-adiabatic change of a system parameter or boundary condition
to mimic this process. When a coherent light propagates across a weakly nonlinear medium,
the photons experience a pair of sudden jumps of the interaction parameter upon crossing the
front and the back faces of the nonlinear medium. As a result of these two quantum quenches,
the fluid of light gets excited and we calculate the two-body quantum correlations and find
the main excitation process consists of the emission of pairs of correlated counterpropagating
Bogoliubov phonon. We find the multi-peak structure in the density power spectrum, known
as Sakharov oscillations, conventionally discussed in the context of early universe evolution and
the anisotropy of cosmic microwave background (CMB) radiation [45].

Another intriguing effect is the existence of quantum vortices predicted by Lars Onsager [46].
A quantum vortex is a density hole with the superfluid circulating the vortex axis [3, 47]. In
the typical case, the closed loop circulation in the superfluid should be zero. Nevertheless, if in
this region there exist a non-superfluid element, the circulation is quantized: 2πℏ/m because
the macroscopic wavefunction is a single value at the space coordinate r. It thus implies that
vortices only exist with a fixed strength in the quantum fluids, and the quantum vortices sustain
any rotational motion of the superfluid. Many of the early studies for the superfluid photon
focus on the hydrodynamics of the quantum vortices on the coherent photon fluid. Scientists
are interested in quantum vortices because several tangled quantum vortices will give rise to
the creation of quantum turbulence, the counterpart of classical turbulence [48]. Turbulence is
a disordered state in space and time, characterized by many degrees of freedom interacting non-
linearly over a substantial range of scales, where the kinetic energy of the fluid is transported
without loss. Although the behavior of the classical turbulence is too complex, Kolomogrov’s
power-law scaling of the energy flow has been proposed to describe the steady behavior of the
turbulence [49]. In 3D turbulence, a direct cascade of energy and vorticity towards small-length
scales emerges when the system is forced at a larger-length scale. Remarkably, restricting the
fluid dynamics to two dimensions (2D) results in an inverse cascade process: small-scale forcing
leads to an energy flux towards larger scales [50]. Quantum turbulence with disordered tangle
quantized vortices flow in the inviscous fluid will aid in comprehending turbulent behavior. It
has been reported that oscillating structures such as wires, spheres, and grids are an excellent
way to generate quantum turbulence in 4He [51]. And rotating the external potential [52, 53] or
two-axis rotation [54] is the essential method for creating vortices in trapped BECs. Moreover,
it also has been reported that the hydrodynamic formation of topological excitations such as
quantized vortices and dark solitons at the surface of large impenetrable obstacles. While much
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great progress has been made in BEC, experimental observation of quantum turbulence in the
fluid of light is still missing. Inspired by the first realization of quantum turbulence in the
atomic Bose-Einstein condensates and the evidence of the quantized circulation of optical vor-
tices possess similar behaviors like the turbulence in superfluid Helium and the Bose-Einstein
condensates [55, 42], we expect to open new windows to explore quantum hydrodynamics in
the fluid of light in experiment. With our two counter-streaming fluids of light, we first get
the k−5/3 Kolmogorov power law in the inertial range in the incompressible kinetic energy
spectrum experimentally. The photon fluids have been demonstrated to constitute an effective
platform to study quantum turbulence.

Thesis Summary
My thesis is structured as follows.

In chapter 1, I will introduce the concept of fluids of light that are relevant to this manuscript.
I review the classical propagation equation of a paraxial beam of light in a cavityless nonlinear
optical medium of the Kerr type. Emphasis on describing the nonlinear response when the elec-
tromagnetic field propagates through a nonlinear medium. Then I will describe the interaction
between the photons and the laser field in the Kerr medium. Next, I will explain the analogy
between the Nonlinear Schrödinger Equation (NLSE) and the Gross Pitvaskii Equation (GPE)
and mathematically demonstrate that it is reasonable to consider light as a fluid in the case of
the electric field propagating in the nonlinear medium. By further comparing the NLSE and
hydrodynamics equations, I connect the optics quantities to the hydrodynamics equation to
demonstrate that a laser can be considered a fluid whose intensity is equivalent to the density
of the fluid and the gradient of the laser phase is related to the velocity of the fluid. We also
derive the Bogoliubov dispersion relation, describing the small density waves propagating on
top of a uniform background. Finally, Landau criteria are given to define whether a fluid fea-
tures superfluidity.

In chapter 2, I focus on giving the structure of rubidium to help readers understand why
researchers favored this Alkali metal in nonlinear optical experiments. Moreover, I present the
atom density, Doppler broadening, and optical depth, which are crucial when considering the
laser-atom interaction. Next, I introduce the Saturated Absorption Spectroscopy (SAS) setup
used to determine spectral characteristics. Finally, I show how to precisely quantify the rubid-
ium cell’s temperature and the nonlinear refractive index that governs photon interaction.

In chapter 3, I will describe the experimental tools that accompany us almost every week-
day. Begin with the working principle of the laser source and introduce the light source in our
lab. The Spatial Light Modulator (SLM) is then described, which is used to modulate a specific
phase of the light field through liquid crystal molecules. Next, I’ll talk about the acoustic-optic
modulator (AOM), which utilizes sound waves to diffract and modify the frequency of light.
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Finally, I’d like to discuss some technical specifics concerning the glass cells that store the ru-
bidium vapor and the homemade heating apparatus.

In chapter 4, I will state how to measure the static structure factor S(k), which characterizes
the density-density correlations of the elementary excitations by using Bragg-like spectroscopy,
which has proved to be an essential tool to study ultracold atomic BECs. Our platform uses
a spatial light modulator to imprint an analogy of short Bragg pulses in the photon fluid. In
addition, we also discussed how the relatively small fluctuations superimposed upon a coherent
light field in the weak-nonlinearity regime can be treated within the Bogoliubov theory of di-
luted Bose-Einstein condensates. The dispersion relation that demonstrates a linear phononic
regime for photons with weak interactions and low sound velocity. This new technique could
also improve the resolution compared to the methods we used before [36, 56].

In chapter 5, with the paraxial quantum fluid of light configuration, we study the sudden
change of interaction strength, also known as the interaction quenches that take place at the
entrance and exit of the rubidium vapor cell, to simulate expanding and contracting universes.
When the laser beam leaves the vapor cell, photon interactions abruptly cease, which causes a
sudden red shift in the energy spectrum. This process resembles an expanding universe [45].
We evaluate the density structure factor after the second quench and the observed acoustic
peak. This structure, known as Sakharov oscillating, resembles the angular spectrum of CMB
radiation.

In chapter 6, I will provide a study of vortex turbulence, by introducing certain definitions
necessary for better understanding this phenomenon, characterized by cascades of excitations
across length scales. Next, I will present quantum turbulence implemented by two fluids of
light with different velocities in the rubidium vapor cell, which is rooted in the resonant energy
transfer from the drift velocity to the elementary Bogoliubov excitations of the photon gas. We
also explore the whole instability evolution process and observe the Kolmogorov energy cascade
from small to large length in an inertial range. We show that the fluid of light is an exciting
platform to study quantum turbulence.
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Chapter 1

Fluid of light and superfluity

Quantum fluids of light merge many-body physics and nonlinear optics, revealing quantum
hydrodynamic features of light when it propagates in nonlinear media. The theoretical frame-
work used to describe quantum fluids of light relies on the analogy with weakly interacting
Bose gases and was initially derived by Bogoliubov. I will review the classical propagation
equation of a paraxial fluid of light and describe the main steps of the derivation of the well-
known paraxial wave equation in a Kerr nonlinear medium. I then analyze the parameters that
affect the interaction between photons. I also discuss how the relatively small fluctuations in
the weak-nonlinearity regime can be considered sound waves. A fundamental property of the
Bogoliubov dispersion relation is the linear dependence in the excitation wave vector at long
wavelengths (soundlike) and the quadratic dependence at short wavelengths (free particle-like).
Finally, I introduce how to verify a fluid is superfluid.

9
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1.1 Background

Even though photons are fundamentally noninteracting particles in free space, photon propa-
gation in appropriately designed nonlinear optical systems is now attracting growing interest as
a novel platform for investigating the physics of interacting Bose gases, also known as quantum
fluids of light.

The systems in the so-called strong light-matter coupling regime have emerged as particu-
larly promising for obtaining the relatively strong nonlinear interactions required for collective
behavior. A new mixed quasi-particle, the polariton, is created in this regime when the photon
is strongly mixed with matter degrees of freedom [14, 18].

An alternative platform for studying many-body physics in photon fluids is provided by light
propagating through an optical medium of the Kerr nonlinear type, whose refractive index
depends on the strength of the electric field [12]. It has been demonstrated that a sufficiently
intense laser propagates in a self-defocusing nonlinear refractive medium, the nonlinearity of the
medium gives rise to repulsive force between photons and gives an effective mass to the photon.
This particular Kerr medium consists of photo-refractive crystals [57, 37], the thermo-optic
media [25, 26], and hot alkaline metal vapor [36, 34]. However, the nonlocality exhibited in the
thermal optic liquid media is extremely detrimental to the observation of experimental results.
On the other hand, the atomic medium can provide a large nonlinearity that will be beneficial
to obtain a wider interaction scale. So our group chooses the hot atomic alkaline vapor as the
nonlinear medium [25]. In our experiment, the nonlinearity is induced by the propagation of
a near-resonant laser field inside a hot Rubidium atomic vapor. The sign and the strength of
the interactions can be finely tuned by adjusting the laser detuning with respect to the atomic
resonance. The vapor temperature, which controls the atomic density, adds another layer of
control over the strength of the interactions.

In contrast to the microcavity architecture, where a driven-dissipative equation describes the
temporal dynamics of the fluid of light, paraxial photon fluid propagation in a nonlinear medium
has the following advantages. First of all, the highly sensitive optical detection technology pro-
vides the opportunity to precisely measure density and phase distribution. Second, it is simple
to produce paraxial photon fluids without a trapping potential and a homogeneous density. In
this system, the evolution of the electric field in the transverse plane along the propagation is
analogous to the evolution of atomic Bose-Einstein condensates, which describe the dynamics
of the wavefunction of the interacting Bose-Einstein condensates in time. The roles played
by the optical-axis coordinate z and the time parameter t are exchanged: Light propagation
in the z direction is naturally described in terms of evolution equations while the t direction
corresponds to a third spatial dimension in addition to the transverse x and y directions. This
analogy makes light have fluid properties whose initial density and flow speed is controlled by
the intensity and the angle of incidence of the incident beam. Thus, it provides us more chances
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to explore hydrodynamics phenomena that benefit from this flexible system [12, 38, 58]. And
several phenomena have been observed, from the superfluid around the defect at low speed
to the hydrodynamic formation of topological excitations such as the quantum vortex and the
dark soliton.

1.2 Quantum fluid of light
This chapter discusses the analogy between this nonlinear propagation and the evolution of a
paraxial photon fluid. I first describe the electric field propagating in the nonlinear medium to
derive the nonlinear Schrödinger equation. By mapping it to the Gross Pitaevskii equation, the
electric field of the laser beam can be regarded as a fluid flowing in the plane perpendicular to
the propagation axis. In this section, we derive the propagation of the electromagnetic field in
the nonlinear medium. The point is to give information on how to map the optical quantities
to the hydrodynamics quantities of the quantum fluid. In other words, how to connect the
nonlinear optics to the fluids of light. I also present the theoretical framework required to
describe the photon fluids’ elementary excitations by introducing Bogoliubov transform and
the so-called Bogoliubov dispersion relation.

1.2.1 Nonlinear Schrödinger Equation
When an electromagnetic field E propagates in a nonlinear medium, it takes the form of Maxwell
equations:

∇2E − n2

c2
∂2E

∂t2
= 1
ϵ0c2

∂P 2
NL

∂t2
(1.1)

where In this equation, ∇ = (∂x, ∂y, ∂z) denotes the nabla operator in the r, E is the amplitude
of the electric field, n is the linear refractive index and the c is the speed of light in the vacuum,
ϵ0 is the vacuum permittivity. And the PNL stands for the nonlinear response of the medium
to the applied field. If we assume that the wave propagates to the optical axis (z-direction) at
a small angle. In such a situation, the field amplitude E(r, z) slowly alters in the r = (x, y)
transverse plane (that is, the plane perpendicular to the z-axis). The electrical fields envelop
can be expressed as:

E = E(r, z)ei(k0z−ωt) (1.2)

where ω is the frequency of the electric field, the k0 = 2πω/c is the wavevector in vacuum and
E(r, z) is a slowly-varying function of z . If we insert the above equation into the Eq. 1.1, we
can derive the gethe neral propagation equation inside a nonlinear medium.
Here is our derive process:

∇E = ei(k0z−ωt)
(

∇⊥E + ∂E(r, z)
∂z

+ ik0E
)

(1.3)
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where the ⊥ stands for the transverse plane (x, y).

∇2E = ik0e
i(k0z−ωt)

(
∂E
∂z

)
+ ei(k0z−ωt)

(
∂2E
∂z2 + ik0

∂E
∂z

)
(1.4)

= ei(k0z−ωt)
(

∇2
⊥E + ∂2E

∂z2 + 2ik0
∂E
∂z

− k2
0E
)

(1.5)

∂2E

∂t2
= −ei(k0z−ωt)ω2E (1.6)

And we also have:
∂P 2

NL

∂t2
= −ei(k0z−ωt)ω2χ(3)ϵ0|E|2E (1.7)

So the final result is as follows:

∇2
⊥E + ∂2E

∂z2 + 2ik0
∂E
∂z

− (k2
0 − n2ω2

c2 )E = −ω2

c2 χ
(3)|E|2E (1.8)

Under the slowly varying envelope approximation (SEVA), assuming that the amplitude of
the envelope E changes slowly along z axis comparable to the wavelength. We can apply the
paraxial approximation, which is valid as long as derivative ∂2E

∂z2 ≪ ∂E
∂z

≪ 1. In this way, we
can neglect the second order, so the above equation finally reduces to:

∇2
⊥E + 2ik0

∂E
∂z

− (k2
0 − n2ω2

c2 )E = −ω2

c2 χ
(3)|E|2E (1.9)

Then we decompose the refractive index as the sum of the average index and local modulation
of the linear refractive index: n = n0 + δn. Here, it is worth noting that the modulation δn

can be seen as an external potential in the transverse acting on photons and play the role of
the defect or a wave guide for the light beam. It can be optically generated in our system by
locally driving another rubidium transition with a second laser field tuned close to resonance.
Finally, the above equation can be expressed as:

i
∂E
∂z

=
(

− 1
2k0

∇2
⊥ − k0δn

n0
− k0χ

(3)|E|2

2n2
0

− i
α

2

)
E , (1.10)

This is the Nonlinear Schrödinger equation (NLSE), which describes a spatial evolution of an
electric field passing through a Kerr-type medium. The first term on the right side gives us
the diffraction information. In the second term, the refractive index modulation acts as the
potential and the last one corresponds to the photon-photon interaction. The last term is the
linear absorbtion term.



1.2. QUANTUM FLUID OF LIGHT 13

1.2.2 Gross Pitaevskii Equation
The NLSE is formally analogous to the 2D Gross Pitaevskii equation (GPE) except the absorp-
tion term. The GPE describes the evolution of the wave function Ψ(r, t) of the weak interaction
of the atomic Bose-Einstein condensates in the mean field approximation:

iℏ
∂Ψ(r, t)
∂t

=
(

− ℏ2

2m∇2 + V(r) + g|Ψ(r, t)|2
)

Ψ(r, t) , (1.11)

where the ℏ is the Plank constant, m is the boson mass, V(r) is the external potential (trap-

ping potential, obstacle potential, etc.) and g = 4πℏ2a

m
denotes the strength of the interaction

characterized by the s-wave scattering length a is the coupling parameter. If the coupling g

is positive indicates that the condensate is in a stable state. Conversely, the system is in an
unstable state. The coherence length is the GP model’s only characteristic length scale. It
is defined as follows: ξ = ℏ√

2mg |Ψ|, estimates the vortex core size. This GPE offers a main
theoretical tool for investigating nonuniform dilute Bose gases at low temperatures derived in-
dependently by Gross and Pitaevskii [6].

1.2.3 Analogy between the NLSE and GPE
It is worth noting that the NLSE and GPE are similar mathematically. Now, we will com-
prehensively analyze and compare each term of the Nonlinear Schrödinger equation 1.10 and
Gross Pitaevskii equation 1.11.

1. Ψ(r, t) ↔ E(r⊥, z)

The NLSE is a spatial derivative that describes the evolution of the electric field E along
the z direction instead of the temporal derivative in GPE. So we can say that the axis
coordinate z in the NLSE can be treated as the effective evolution time τ = n0z/c in the
GPE through the following space-time mapping: z ↔ τ . This is a key point that means
that every transverse plane of the laser beam in the nonlinear medium can be considered
as the evolution of the 2D Bose gas of photons after the corresponding effective evolution
time τ . Figure 1.1 graphically illustrates this analogy. More precisely, this space-time
mapping allows us to get information on the system’s state after an effective time by
means of imaging the field at the relevant output plane of the medium. This is the reason
why we refer this system to the 2D + 1 geometry. 2D is the transverse plane r⊥ = (x, y)
and 1 stand for the time dimension.

2. ℏ/m ↔ 1/k0

Another comment is that the mass in the energy term is replaced by a quantity related
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Figure 1.1: Scheme of the propagation of the photon fluid along the optical axis. Each transverse
plane in the z-direction is representative of a snapshot of "time evolution".
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to the laser wavevector k. So we can derive the effective photon mass by this analogy:
m = ℏk/c. This equation is significantly important since it is one of the preconditions
that we can consider the electromagnetic field as the fluid of light.

3. V(r)/ℏ ↔ −k0δn/n0

According to the analogy, the external potential act on the photons relies on the refrac-
tive index modulation can be rewritten as: V(r) = −ℏk0δn. The attractive (repulsive)
potential depends on the sign of the local variations of the linear refractive index δn. So it
gives us insight that we can shape the potential by inducing a refractive index modulation
with an additional intense laser beam via the optical nonlinearity of the medium. It is
worth mentioning that we don’t consider this term throughout the text.

4. g/ℏ ↔ k0χ
(3)/2n2

0

By comparing the last term, we can also get the expression for the coupling constant
g = −ℏωn2, which characterize the weakly interacting photon gas formed by an electric
field inside the Kerr nonlinear medium. We should also be careful that the refractive
index n2 not only controls the strength of the photon-photon interaction but determines
whether the interaction is attractive or repulsive (depending on the sign of n2). For
the negative n2 < 0 or the positive n2 > 0 nonlinear refractive index, the medium will
have a defocusing or the focusing response corresponding to the repulsive and attractive
photon-photon strength, respectively. To make the photon gas system in a stable state,
all the experiments throughout this manuscript turn it at the defocusing regime [32]. We
also focus on the scenario of a weak nonlinearity, where the observed refractive index
modulation is caused by the collective interaction of a large number of photons.

Up to now, it is clear that the photon fluid is an ideal analogue of the BEC with the highly
control.

1.2.4 Hydrodynamic analogy
As mentioned above, the comparison between two critical equations tells us that the evolution
of light in a nonlinear Kerr medium as a fluid of light along the propagation direction can be
regarded as the evolution of an ordinary fluid over time. The photon-photon interaction comes
from nonlinear materials. However, there is still a problem that needs to be clarified. Since
light under special conditions can be regarded as fluid. How can we establish the connection
between electromagnetic fields and hydrodynamics? In other words, how to translate the optics
physics quantities to the hydrodynamics quantities. To solve this question, we have to utilize
the Madelung transform, which expresses the electric field as the function of density ρ(r⊥, z)
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and the phase Φ(r⊥, z): E(r⊥, z) =
√
ρ(r⊥, z)eiΦ(r⊥,z) [59]. This transformation decompose the

NLSE into a set of hydrodynamic equations:

∂ρ

∂z
+ ∇⊥(ρv) = 0 (1.12)

∂v

∂z
+ (v × ∇⊥)v = − g

n0k0
∇⊥ρ+ 1

2∇⊥

(
1

√
ρ

∇2
⊥

√
ρ

)
(1.13)

These two equations describe the paraxial laser beam in a defocusing Kerr medium as a fluid
of density ρ = |E|2 flows at velocity at v = c

n0k0
∇⊥ϕ in the transverse plane along the beam

propagation plane. In this way, the analogy between photon fluids in propagating geometries
becomes clearer: by replacing the role of time in classical fluids with the propagation axis z,
light behaves as the fluid that flows at velocity related to the gradient of the phase and its
density dependent on the electric field intensity. Moreover, since the τ − z mapping, the veloc-
ity has no unit and corresponds to the angle of the laser. The first equation is the continuity
equation, and the second is the well-known Euler equation. The wave character of the system
manifests itself through the last term, commonly regarded as the quantum pressure or Bohm
potential in the equation 1.13. The quantum pressure can be ignored as long as the density in
the transverse plane varies slowly.

We now conclude that with the mapping of τ ↔ z, we can know the possibility of describ-
ing a strong electric field in the nonlinear medium as the fluid of light under the paraxial
approximation. With the hydrodynamic equation, it is become clear and straightforward to
connect the optics quantities to hydrodynamics quantities. The light intensity corresponds to
the fluid density, the spatial gradient of its phase related to the fluid velocity. The hydrody-
namic analogy tells us that we can control and manipulate the fluid by shaping the phase of
the fluid at the entrance of the cell. Moreover, by mediating the interaction of the photon, we
could quickly change the evolution time L/ZNL (where the ZNL = 1/k0∆n is nonlinear length).
This means despite always image the same plane of the Rubidium vapor cell, this enables us
to see how the fluid changes over time.

1.3 Interaction between light and matter

Now we know that the warm rubidium vapor cell can trigger the interaction between photons
when tuning the laser frequency close to the rubidium atom resonance. However, how could
we quantify this coupling strength? In the present section, I shall present a brief qualitative
description of the nonlinear behavior when a laser propagates in the Kerr medium and the
modification of properties of the material system in the presence of the intense laser. We will
see in the following that this modification will have a different response to the applied field,
which relies on the laser’s strength. To characterize this response precisely, we bring the con-
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cept of polarization P, which plays a key role when we describe the relevant phenomenon of
nonlinear optics since it acts as the component of the electromagnetic field.

1.3.1 Interaction between the atom and the light

We can use the Maxwell-Bloch equation, also called the optical Bloch equation, to describe the
case of the interaction of the electric field with N two-level atoms consists of ground state |ψg⟩
and the excited state |ψe⟩. The ωeg is the resonant transition frequency. The wave function of
the two-level atoms takes the form of ψ = cgψg + ceψe. And the Bloch equation is written as
follows:

dρ̂

dt
= − i

ℏ
[
Ĥ, ρ̂

]
− Γρ̂ (1.14)

where Γ is the spontaneous decay rate (Einstein A coefficient) of the excited states, also called
the natural line width of the emitted radiation, which is acquired from inverting the lifetime.

ρ =
(
ρee ρeg

ρge ρgg

)
=
(
cec

∗
e cec

∗
g

cgc
∗
e cgc

∗
g

)
denotes atomic density matrix and Ĥ = Ĥ0 + V̂ is the Hamilto-

nian of the system with the unperturbed part Ĥ0 = ℏωeg |ψe⟩ ⟨ψe| and the interaction with light
V̂ = −d·E in the doppler approximation, which means that spatial variation of the electric field
at the atomic scale could be negligible. Moreover, we assume that the incident monochromatic
field with frequency ω and amplitude E0, expressed as E = E0cos(ωt). It therefore makes sense
that interaction between the electric field and the atom can be viewed as a coupling between
the electric dipole and the laser electric field.

V = −1
2 (d∗ |ψe⟩ ⟨ψg| + d |ψg⟩ ⟨ψe|)

[
E0(eiωt + e−iωt)

]
(1.15)

= −ℏ
2 (Ω∗ |ψe⟩ ⟨ψg| + Ω |ψg⟩ ⟨ψe|) (eiωt + e−iωt) (1.16)

Ω = −E0µeg/ℏ is the Rabi frequency which characterizes the strength of coupling between the
atom and the applied field, where µeg is the dipole moment.
To eliminate the time dependence we define the operator:

Û = exp(−iĤ0t/ℏ) = |ψg⟩ ⟨ψg| + |ψe⟩ ⟨ψe| e−iωt (1.17)

So the interaction term can be written as:

V = U †V U = −ℏ
2 (Ω∗ |ψe⟩ ⟨ψg| + Ω |ψg⟩ ⟨ψe|) (1.18)

The matrix density can be written as
ρ = U †ρU (1.19)
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Noted that we applied the Rotating Wave Approximation (RWA) that allows us to eliminate
the fast-decaying terms. Inserting the above equations 1.18 and 1.19 and rewriting the Bloch
equation for slow varying amplitudes σij(t) of the density matrix elements ρij(t) = σij(t)e−iωijt

then determined the following relations:

˙ρgg =iΩ2 (σeg − σge) + Γρee (1.20)

˙ρee = − i
Ω
2 (σeg − σge) − Γρee (1.21)

˙ρge = − i
Ω
2 (σee − σgg) − i(∆ − i

Γ
2 )σeg (1.22)

where the ρ̇ij is the density element of the density operator. ∆ = ωeg −ω0 is the laser detuning
from the resonance frequency. The elements ρgg and ρee correspond to the population of the
ground state and excited state, respectively. While the σeg = σ∗

ge correspond the atomic
coherence. We can rewrite the equations as:

˙ρee − ˙ρgg = −iΩ(σeg − σge) − Γ(ρee − ρgg + 1) (1.23)

˙σge = −i(∆ − iΓ − i
Γ
2 )σeg − i

Ω
2 (ρee − ρgg) (1.24)

Take into account the condition that ρee+ρgg = 1. And we also assume that ˙ρgg = ˙ρee = ˙ρge = 0,
the solutions could be expressed as:

σge = −Ω
2
ρee − ρgg

∆ − iΓ/2 (1.25)

ρee − ρgg = − ∆2 + Γ2/4
∆2 + Γ2/4 + Ω2/2 (1.26)

1.3.2 Atomic polarization
The dielectric medium response to the applied electromagnetic field of laser is the electric
polarization P. In the isotropic medium, all of the dipoles along the direction of the applied
field, the electric polarization P could be expressed as:

P = ε0χE (1.27)

Where the ε0 is the electric permittivity of the free space, and χ is the electric susceptibility
indicating the polarization degree of the dielectric materials in response to the applied field.
However, this is valid for the linear case, which means the amplitude of the applied field is
extremely small. If the sufficiently strong laser is applied, the situation will become complex
and we rewrite the electric polarization as a power series in the field strength, which take the
form of:

P = ε0
[
χ(1)E + χ(2)|E|2 + χ(3)|E|3 + ...+ χ(n)|E|n

]
(1.28)
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where the χ(1) is the linear susceptibility and quantity χ(n) are known as the n-order nonlinear
optical susceptibilities which describe the nonlinear response of the medium. For the center
symmetric medium, all even terms will vanish. Besides, we neglect all high orders that more
than 3-rd terms due to it is too weak to have any effects on the result in our system. Finally
we get the formula:

P = ε0χ
(1)E + ε0χ

(3)|E|3 (1.29)

The polarization can also be expressed as atomic density matrix:

P = Nµegσeg (1.30)

where N is the atomic density and µeg is the dipole moment of the transition. Insert the
equation 1.25, we can arrive at the polarization of the atomic system:

P = −4N |µeg|2

ℏ2Γ2
∆ + iΓ/2

1 + 4∆2/Γ2 + 2Ω2/Γ2 (1.31)

We write the P as the function of saturation intensity Isat, which is defined as the value of the
intensity when the dipole cross section is reduced by half compared to the atom interacting
with light in free space at a low-intensity case.

I

Isat

= 2
[

Ω2

Γ2

]
(1.32)

where the laser intensity is given by I = 1
2n0ϵ0cE

2. So we obtain:

P = −4N |µeg|2

ℏ2Γ2
∆ + iΓ/2

1 + 4∆2/Γ2 + I/Isat

E (1.33)

By performing the Taylor expansion of eq.(1.33) in the case of I/Isat ≪ 1 + 4∆2/Γ2. The
polarization is determined as follows:

P ≈ −4N |µeg|2

ℏ2Γ2
∆ + iΓ/2

1 + 4∆2/Γ2

(
1 − I/Isat

1 + 4∆2/Γ2

)
E (1.34)

At this moment, we can give the expressions for the total electric susceptibility χ, the linear
susceptibility χ(1) and the 3-rd nonlinear susceptibility χ(3):

χ = −4N |µeg|2

ϵ0ℏ2Γ2
∆ + iΓ/2

1 + 4∆2/Γ2 + I/Isat

(1.35)

χ(1) = 4N |µeg|2

ϵ0ℏ2Γ2
∆ + iΓ/2

1 + 4∆2/Γ2 (1.36)

χ(3) = 4N |µeg|2

ϵ0ℏ2Γ2|E|2
∆ + iΓ/2

1 + 4∆2/Γ2
I/Isat

1 + 4∆2/Γ2 (1.37)
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Figure 1.2: Real (a) and imaginary parts (b) of the total (black solid), first order (blue, solid),
and third order (red dashed) dielectric susceptibilities. The total susceptibility has been plotted
for frequencies Ω = Γ. The signs of χ and χ(3) are opposite since the latter represents a
saturation of the optical response. Plots obtained for the D1 line of rubidium 87. Parameters:
T = 423 K and N = 8.8 × 1019 atoms/m3.

We have plotted the real and imaginary parts of the total electric susceptibility (solid black
curve), linear electric susceptibility (solid blue curve) and nonlinear electric susceptibility (red
dashed curve) in the figure.1.2. Note that the real part of the electric susceptibility χ is linked
to the refractive index of the medium.

n0 =
√

1 +Re(χ(1)) (1.38)

n2 = 3Re(χ(3))
n2

0ϵ0c
(1.39)

And the total refractive index is given by:

n = n0 + n2I (1.40)

The imaginary part of the electric susceptibility χ is related to the absorption:

α = kIm(χ) (1.41)

where the k is the light wavevector in the nonlinear medium. Three comments about these:

• The interaction between the photons is controlled by the nonlinear refractive index, or
we say, the 3-rd nonlinear susceptibility χ(3). It is a rather important parameter in all
our experiments since it determines the type of photon-photon interaction and strength.
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Free-particle
linear
Bogoliubov dispersion

1e9

Figure 1.3: Theoretical Bogoliubov dispersion relation (blue solid line) obtained for sound waves
and mass particle regimes have been plotted in red dashed line and black solid line.

The sign of the n2 determines the nature of the interactions: n2 > 0 corresponds to the
attractive interaction, and n2 < 0 is the repulsive interaction. And it is noted that in all
experiments, we place ourselves in the repulsive regime to have a stable system. From the
expression, it is straightforward that the interaction between photons can be modified via
two tools: the atomic density N and the detuning ∆. We will see that the atomic density
is temperature dependent so we can improve this quantity via increasing temperature
detailed in the next section.

• In practice, we always neglect the nonlinear absorption since it is too small. In other
words, the absorption of the medium depends on the imaginary part of linear susceptibility
χ(1).

• We expect to have a large photon interaction strength in our experiment. According to the
formulation 1.39, it means that a relatively larger nonlinear refractive index is necessary.
We can see that the figure 1.2 that the more close the atomic resonance, the more we get
a large real part of the susceptibility related to the nonlinear refractive index. In parallel,
it is also worth noting that this operation will increase the absorption, preventing the
light from being transmitted. So in actual manipulation, we should take into account the
trade-off between maximizing the refractive index and a certain fraction of the absorption.

1.4 Bogoliubov dispersion
In general, the equation 1.12 and equation 1.13 can not be solved analytically, so it would be
interesting to probe the dispersion relation of the system, which describes the small density
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waves propagating on top of a uniform background. The derive process of the Bogoliubov
dispersion relation as follows: We decompose the wave function into a mean-field ψ0(r, t) and
plus a small perturbation δψ(r, t),ch take the form as:

Ψ(r, t) = [ψ0(r, t) + δψ(r, t)] (1.42)

The unperturbed state condensate wave-function ψ0(r, t) can be expressed as :

ψ0 =
√
n(r)e−iµt/ℏ (1.43)

where the n(r) is the density of the condensate and the µ is the chemical potential. For a
uniform system, the µ is governed by µ = |ψ0|2g = ng. The solution of the δψ(r, t) take the
form of:

δψ(r, t) = [u(r)e−iωt − v∗(r)eiωt]e−iµt/ℏ (1.44)

This dispersion relation corresponds to a modified two-branch Bogoliubov. Inserting this into
the linearized Gross-Pitaevskii equation, we obtain two coupled equations for u(r) and v(r),
known as Brogoliubov equations:

[ ℏ
2

2m∇2 + gn− ℏω]u(r) − gnv(r) = 0

[ ℏ
2

2m∇2 + gn+ ℏω]v(r) − gnu(r) = 0

Consider the commutation relation for bosonic creation â† and the annihilation operators â:

[â, â†] = 1 (1.45)

Define a new pair of operators:

b̂ = uqâ+ vqâ
† (1.46)

b̂† = u∗
q â

† + v∗
q â (1.47)

For the complex number u∗ and v∗ are the Hermitian conjugate of the u and v. The Bogoliubov
transformation is the canonical transformation mapping the operators â and â† to b̂ and b̂†.

[b̂, b̂†] = (|uq|2 − |vq|2)[â, â†] (1.48)

In the case of |uq|2 − |vq|2 = 1, the transformation is invariance. And the form of this condition
is suggestive of hyperbolic identity. We can take the u(r) and v(r) as the form of plane wave,

u(r) = uqe
iqr, v(r) = vqe

iqr (1.49)
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And then we insert these two equations into the above equations, and finally, we obtained the
called Bogoliubov dispersion:

(ℏω)2 =
[
ℏ2q2

2m + gn

]2

− (gn)2 (1.50)

Take the positive energy solution and finally, we arrive at the following:

ϵ(q) = ℏω(q) = ϵ0(q)[ϵ0(q) + 2gn] (1.51)

ω(q) defined in Eq.1.51 corresponds to the well-known Bogoliubov dispersion relation for the
elementary excitations propagating on top of a uniform dilute Bose-Einstein condensate at rest
[6]. Here the ϵ0 = ℏ2q2/2m is the energy of free particle without interaction. From this we can
conclude that in the case of ϵ0 ≪ 2gn, in other words, in the small q, the energy would become:

ϵ0 = ℏ
√
gn

m
q = ℏcsq (1.52)

where the cs =
√
gn/m is the speed of sound, and the physical meaning is that the spectrum

will behave as a linear shape (phonon-like). The linear dispersion relation guarantees superflu-
idity. While for the larger q, the dispersion becomes quadratic, massive free-particle-like. The
energy is plotted in the solid blue curve in Fig.1.3. The red dashed, and solid black curves
represent the sound and particle regimes, respectively.

Transposing to the current optical case, for small amplitude modulations moving on a uni-
form background fluid at rest, the set of hydrodynamic equations can be linearized assuming
ρ = ρ0 + δρ and v = v0 + δv. For a plane wave, the dispersion relation describes the response
frequency of the fluid of light to a small density fluctuation δρ of wavevector k⊥ on top of a
spatially uniform fluid of light at rest. It has the form:

ΩB =

√√√√ k4
⊥

4k2
0

+ k2
⊥∆n (1.53)

The Bogoliubov dispersion relation governs the dynamics of the density fluctuations on top of
the photon fluid. Within space-time mapping, ΩB has units of an inverse length. When the
wavelength of the modulation is larger than the healing length: ξ = 1

k0

√
n0

|∆n|
, the Bogoliubov

dispersion relation is linear, and density excitation propagates as collective sound waves. This

regime is characterized by the speed of sound: cs =
√

|∆n|
n0

which scales as the square root
of the fluid density and in dimensional units since the physical meaning of it is propagation
angles with respect to the z-axis. When the wavelength of the modulation is smaller than
the healing length, the dispersion relation becomes parabolic. Excitations have then been a
particle-like behavior: they propagate in the transverse plane as "massive" free particles. They
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may be interpreted physically as a particle being excited out of the Bose-condensed cloud into
the high-momentum state of wavevector k⊥, where it travels at high speed through the fluid.
It is worth noting that, as a consequence of the space–time t ↔ z mapping underlying the
Schrödinger equation 1.10, frequencies ΩB(k⊥) are measured in inverse lengths and speeds like
v, cs and vgr = ∇kΩB(k⊥) are measured in adimensional units, as they have the physical mean-
ing of propagation angles with respect to the z-axis.

1.4.1 Landau’s criterion of superfluidity

Superfluidity is the remarkable property of flow without friction. It is characterized by the
absence of excitations when the fluid hits a localized static obstacle at flow speeds vflow below
some critical velocity vc. The transformation laws of energy and momentum under Galilean
transformations play a major role in Landau’s theory of superfluids. Let E and P represent the
fluid’s energy and momentum in a reference system K, respectively. The energy and momentum
of the system K ′, which is moving with velocity V relative to K, are given by [6]:

E ′ = E − P · V = 1
2MV 2,P′ = P −MV (1.54)

where M is the total mass of the fluid. Consider a homogeneous fluid at zero temperature
flowing at constant velocity through a capillary v. If the fluid is viscous, the motion will cause
energy dissipation, resulting in heating and a decrease in kinetic energy. In the following, we
will focus on dissipative processes resulting from the generation of elementary excitations. Let
us describe the process in the reference frame moving with the fluid. Suppose a single excitation
with momentum p emerges in the fluid. In that case, the total energy is E0 + ε(p), where E0

and ε(p) are the energy of the ground state and the excitation, respectively. And p is the
momentum carried by the fluid. Let us now go to the reference system where the capillary is
at rest. In this frame, which moves with respect to the fluid with velocity −v, the energy E ′

and momentum P ′ are given, according to Eq. 1.54, by:

E ′ = E0 + ε(p) + p · v + 1
2Mv2,P′ = p −Mv (1.55)

Equation 1.55 demonstrates that the values ε(p) + p · v and p represent the change in energy
and momentum caused by the emergence of the excitation. As a result, we may deduce that
ε(p) + p · v represents the energy of an elementary excitation in the frame when the capillary
is at rest. The critical issue here is that the process of spontaneous excitation production can
occur only if it is energetically ’profitable’, that is if the excitation energy is negative:

ε(p) + p · v < 0 (1.56)
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If v > ε(p)/p, the sample can transfer the momentum p to the capillary. In this case, the flow
of the fluid is unstable, and its kinetic energy will be transformed into heat. If the velocity is
smaller than the value

vc = min
ε(p)
p

(1.57)

where the minimum is calculated over all the values of p, then the condition 1.56 is never satis-
fied, and no excitation will spontaneously grow in the fluid. Landau’s criterion for superfluidity
can then be written in the form

v < vc (1.58)

The Landau criterion for superfluidity states that below some critical flow velocity vc, the
background fluid can no longer transfer kinetic energy by exciting density fluctuation. In other
words, there will be a persistent flow without friction, and the liquid will exhibit superfluidity.

By looking at the Bogoliubov excitation spectrum 1.50, one easily concludes that the weakly
interacting Bose gas fulfills the Landau criterion for superfluidity and that the speed of sound
gives the critical velocity. We can note that for a parabolic dispersion of the elementary exci-
tations ε(p) ∝ p2, the density waves are created as soon as an obstacle is dropped into the flow
for arbitrary small fluid, and the critical velocity is 0. On the other hand, a linear dispersion
ε(p) ∝ p will allow for superfluidity. Here, we should note that Landau’s argument is only valid
for weak perturbations that do not significantly alter the condensate density and speed [60].
Otherwise, the dissipation of the superfluid will not occur in the form of phonon excitation but
at the expense of creating the solitons (high velocity) and vortices (low velocity) even if the
velocity below the critical velocity [61, 21].
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Chapter 2

Rubidium structure and properties

In this chapter, I will describe some of the physical effects we must consider when light propa-
gates through a nonlinear medium and the measurement of some critical experimental param-
eters. I first introduce the rubidium level structure with a two-level description, which mainly
helps introduce the basic concepts and understand why we chose Rubidium: hot alkaline va-
pors provide strong nonlinearity under a near-resonance excitation. We also describe the atomic
density’s dependence on temperature. Then I state the Doppler broadening result from the in-
homogeneous atom velocity distribution and the optical depth, which is the natural logarithm
of the ratio of incident to transmitted radiant power through a medium. The measurements
were performed to access the vapor temperature T . Finally, the most critical measurement of
the nonlinear refractive index n2 is presented.
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2.1 Rubidium Structure

The rubidium vapor cell contains two isotopes, 85Rb and 87Rb in their natural abundances of
72.17% and 27.83%, respectively [62, 63]. It is widely used in atomic physics and quantum
optics experiments because its resonance is close to a common laser source. Moreover, it is
relatively flexible to control them with specific tunable parameters. With these advantages,
there is no doubt that rubidium is the best candidate for quantum optics experiments. We
work with Rubidium as the ingredient since it has been developed for many years. And the
cell filled with high-quality alkaline vapors is easy to handle. In addition, we can design it into
different shapes according to various experimental purposes. In the beginning, I would like to
present the fine and hyperfine structure of the rubidium. We take the example of the 85Rb,
which has two D lines.
The D1 line: 52S1/2 to 52P1/2 transition.
The D2 line: 52S1/2 to 52P3/2 transition.

Among these two transitions, the D2 transition is used extensively in the quantum and op-
tics experiments since its cycling transition is important for the cooling and trapping 85Rb.
The 52S1/2 → 52P3/2 and 52S1/2 → 52P1/2 transitions are the components of a fine-structure
doublet, and each of these transitions has a hyperfine structure. The fine structure is a result
of the coupling between the orbital angular momentum L of the outer electron and its spin
angular momentum S. The total electron angular momentum is then given by:

J = L + S (2.1)

And the values of the J just can taken in this range: |L− S| ≤ J ≤ L+S. For the ground state
of 85Rb, L = 0 and S = 1/2, so J = 1/2. For the excited state of 85Rb, L = 1 and S = 3/2, so
the J take the value of J = 1/2 or J = 3/2.
The hyperfine structure results from the coupling between the J and the total nuclear angular
moment I. As a result, the total atomic angular moment is written as:

F = J + I (2.2)

The magnitude of the F take the value of |J − I| ≤ F ≤ J + I.
For the ground state of 85Rb, the J = 1/2 and the I = 5/2, so the value of the F = 2 or F = 3.
For the excited of the 85Rb D2 line, F takes the values of F = 1, 2, 3, 4. And the excited of
the 85Rb D1 line, F take the values of F = 2, 3. And the relevant 85Rb transition hyperfine
structure showed in fig.2.1(a).

Two level atom

It is a little sophisticated for the hyperfine structure of the Rubidium. When we deal with the
problem involving the interaction between atoms and light, we can use a two-level atom approx-
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D2

D1

Figure 2.1: Rb 85 hyperfine structure and Two level structure

imation under certain conditions. As shown in the figure.2.1(b), we only consider 5S1/2, F = 3
and 5P3/2 level to simply this system to the two-level structure in most problems. As mentioned
before, when a sufficiently strong beam passes through a Kerr medium, the laser electric field’s
evolution can be considered a fluid of light. And we aim to study the hydrodynamic behavior
of the quantum fluid of light. Before introducing this, I would like to present some essential
tools to characterize the medium’s properties.

2.2 Physics properties

2.2.1 Atomic density
In the Rubidium vapor cell, the pressure for the fluid rubidium depends on the temperature T
given by [64]:

log10p = 15.88253 − 4529.635
T

+ 0.00058663 × T − 2.99138 × log10T (2.3)

where p is the pressure in Torr and the T corresponds to the temperature in K. Now we can
calculate the atomic number density in the rubidium cell depending on the vapor pressure,
namely, the ideal gas law:

N = 133.323 × p

kBT
(2.4)

The factor of 133.323 converts the vapor pressure from Torr to Pa. The kB is the Boltzmann
constant. Since there are two isotopes present in the cell, the number densities need to be
calculated separately according to their abundance. We plot the vapor pressure and the atomic
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Figure 2.2: Pressure and the density of the atoms in the vapour cell as a function of the
temperature from T = 50◦C to T = 200◦C.

density as a function of temperature in figure 2.2(a) and figure 2.4(b) from 50◦C to 200◦C.
As we have discussed before, atomic density is crucial to mediate the nonlinearity. So to
improve the interaction between the photons, we can increase the atom density by increasing
the temperature of the medium. At room temperature, the vapor pressure of the Rubidium cell
is p = 1.87 × 10−7 torr and the corresponding atomic density is N = 6.1 × 1015 m−3. The vapor
pressure of the Rubidium cell is p = 7.2 × 10−4 torr and the corresponding atomic density is
N = 1.76 × 1019 m−3 in the case of the Rubidium vapor cell is heated at T = 120◦C.

2.2.2 Doppler broadening
When the laser field enters the nonlinear medium, the atoms will move in any arbitrary direction
with different velocities. The atoms propagating along the beam will experience photons at the
frequency ν = (1 + v/c)ν0, also known as blue detuned (at a higher frequency), whereas atoms
traveling to the direction of the beam will experience photons at the frequency ν = (1−v/c)ν0,
or red detuned (lower frequency). Different velocities give rise to different Doppler shifts. This
cumulative effect leads to the Doppler broadening of the spectral line and will result in a
spectrum with broad dips and a gaussian profile rather than narrow peaks at the transition
frequencies. This effect is more apparent in the Rubidium vapor cell at a high temperature.
A particular case results from the increase of the temperature of the cell. Since the thermal
average velocity of the atoms along the axis of the probe beam is governed by the Maxwell-
Boltzmann distribution u =

√
2kBT/m. Where the T is the temperature of the vapor cell
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and the kB is the Boltzmann constant and the m is the atomic mass. In warm atomic vapor,
the Doppler broadening effect is significant to understand the dynamics of the system. As the
Doppler broadening could be greater than the linewidth Γ. For an atom of a mass m at the
temperature T , the Doppler linewidth ΓD takes the form of:

ΓD =
√
kBT

mλ2 (2.5)

At 150◦C, the Doppler linewidth ΓD ≈ 265 MHz for the Rb D2 line, compared to the Γ ≈
6 MHz.

2.2.3 Optical depth

The Beer-Lambert law describes how an atomic vapor with uniform density will absorb a
monochromatic laser field traveling in the z-direction. It can be expresed as:

I(z) = I0exp(−αL) (2.6)

where I(z) is the intensity at the position z, and the I0 is the initial intensity at the entrance
of the medium. The α is the linear absorption coefficient proportional to the atom density and
depends on the frequency of the incident light as well as the temperature of the medium. It
takes the form of the following:

α = Nσ0 (2.7)

where the σ0 is the resonant cross-section, and N is the atomic number density. Noted that
the Beer-Lambert law only valid when the absorption α is independent of the initial intensity.
To achieve this, we must make the intensity of incoming field weak enough. In this way, the
absorption α is the only function of the temperature. On the one hand, the atomic density is
a function according to eq.2.4. On the other hand, the atomic cross-section is proportional to
the square root of the temperature.

In reality, what attracts our attention is the situation when we add a detuning between the
laser field frequency and the atomic transition. In this case, we have:

σ(∆) = σ0

1 + 4(∆/Γ)2 + I/Isat

(2.8)

With this formula, we can estimate the absorption coefficient of the medium. The optical depth
OD is the natural logarithm of the ratio of the transmitted radiant power through the media
materials to the incident one. According to this definition, we can arrive at the expression of
optical depth:

OD = −ln
(
I(z)
I0

)
(2.9)
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Figure 2.3: (a) Saturated absorption spectrum setup. The laser beam traveling in the right
direction is called the pump beam. The second weak reflected by the mirror overlapping laser
beam propagating in the opposite direction is called the probe beam. The probe beam is sent to
a photodetector (PD) to measure the intensity. (b)Typical absorption spectrum for a rubidium
vapor cell. The frequency difference between two ground state F = 2 and F = 3 for 85Rb is
3.035 GHz, 6.8 GHz for 87Rb between F = 2 and F = 1.

And in our case, it is equal to the product of the α and the length of the medium L. So if the
OD = 1, only e−1 = 0.377 energy passes through the medium without being extinct. For the
hot rubidium vapor and the laser close to resonance, the OD can arrive at the order of 103.
The benefit of using optical depth is that we use the dimensionless quantity to instead of real
physical distance.

2.2.4 Saturated Absorption Spectroscopy and frequency locking

The frequency stability of light sources is critical in quantum optics for the majority of ex-
periments to be successful. For example, the generation of quantum entanglement and the
areas that use it, such as quantum information or quantum metrology. This point is especially
important when it involves light-matter interaction. Meanwhile, precise atomic spectroscopy
is one of the most important scientific applications of lasers. Not only spectroscopy is used to
comprehend the structure of atoms better, but it is also utilized to create standards in metrol-
ogy. The second, for example, is determined by atomic clocks using the hyperfine transition
frequency in atomic cesium. At the same time, the meter is defined from the wavelength of
lasers locked to atomic reference lines.

Saturated absorption spectroscopy is a straightforward and widely used method for deter-
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mining narrow-line atomic spectral characteristics. The experimental setup is illustrated in
Figure.2.3(a). A powerful pump beam comes from the laser resource passes through the rubid-
ium vapor cell and is reflected on the mirror. There will be a weak probe beam propagating
the atomic vapor cell for the second time in opposite directions. And a quarter-wave plate
(QWP) alters the polarization state of light and directs the probe beam to the photodetector
(PD), which measures the intensity of the probe beam while the laser frequency is scanned.
When the probe frequency ν corresponds with the atomic resonance ν0, atoms will absorb light
jump from the ground state |g⟩ to the excited state |e⟩, which results in probe beam absorption
around the atomic resonance.

Fig.2.3(b) shows the Saturated Absorption Spectrum (SAS) of the rubidium atom. And the
peaks show hyperfine transitions between the ground states to the hyperfine states as well as
crossover transitions. Because the Rb cell contains the two most common isotopes, we can
see four peaks correspond to 85Rb (F = 2, F = 3) and 87Rb (F = 2, F = 3). The frequency
difference between the 1st and the 4th peaks is the ground state hyperfine splitting in Rb87

(≈ 6.8 GHz). The frequency difference between the 2nd and the 3rd peaks is the ground state
hyperfine splitting in Rb87 (≈ 3.0 GHz). We can find there appears an extra spike at the
atomic resonance frequency. This spike arises for the following reasons: If the laser frequency
is ν0 − ∆ν, the probe beam is absorbed exclusively by atoms traveling toward the probe beam
with longitudinal velocity v ≈ c∆ν/ν0. These atoms see the probe beam blueshifted into reso-
nance. Other atoms do not contribute to probe absorption because they are not in resonance
with the probe beam. The pump beam is in the opposite direction, so these atoms feel redshift
further away from resonance and are unaffected by it. Situation changes if ν = ν0. Since the
pump and probe beams counter-propagate inside the rubidium cell. The only atoms that can
resonate with both lasers simultaneously are those with a zero velocity v = 0 projection on the
optical axis. The pump beam is strong enough to maintain a large percentage of the atoms in
the excited state without the capacity to absorb the probe beam. In that case, the absorption
of the probe beam is reduced by the saturation induced by the pump. As a result, at ν = ν0,
the probe absorption becomes smaller. The reason why people named it saturated absorption
spectroscopy is that the pump beam completely saturates the atoms.

Knowing the frequency of the laser is especially important for exploring the hydrodynamic
properties of fluid of light. We usually use the following method to determine the detuning of
our laser, so as to lock the laser at the frequency we want. When a voltage within a certain
range scans the frequency of the laser, we can obtain the saturation absorption spectrum of the
Rb atom. And these two waveform can be shown in oscilloscope. Research on the transitions
of atoms is well-determined. By calculating the frequency difference between two absorption
peaks and the corresponding range of voltage variation between these two frequencies, we can
know the voltage corresponding to each frequency. If we assume that the frequency varies
linearly with the scanning voltage. The laser frequency is controlled and locked by calculating
the corresponding voltage.
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Figure 2.4: Transmission of the laser beam through the rubidium vapor cell as a function of the
detuning ∆ between the laser and the atomic resonance with respect to the 85Rb D2 transition
of 5S1/2(F = 2) − 5P3/2(F = 1, 2, 3). According to the transmission profile fit to the theory
value allows us to deduce the temperature of the gas T = 151◦C.

2.3 Rubidium cell temperature measurement

As we discussed before, the temperature of the vapor cell is a key parameter because it is capa-
ble of tuning the interaction between the photons. So it is necessary to know its precise value.
However, the thermocouple can not characterize the actual temperature of the medium as the
low accuracy. To extract atomic gas temperature, we measure the transmission of a weak laser
beam after propagation through the vapor as a function of the laser detuning. Specifically,
we utilize a sufficiently weak probe beam passing through the hot rubidium vapor. The laser
frequency is scanned around 10 GHz. The transmission can be calculated at different detunings
by measuring the power ratio of the laser before and after the medium. We always realize it
by directing the incoming and transmitted light to the photodetector (PD). And the photode-
tector connected to the oscilloscope (OS) to show the waveform. The frequency reference is
obtained from the saturated absorption spectrum of figures 2.3(b) with the setup 2.3(a). Since
the energy levels of rubidium atoms and the frequency corresponding to each peak have been
well understood. We can fit the experimental transmission data with a numerical simulation
taking into account atomic lines of both isotopes, rubidium vapor pressure as a function of the
temperature and the Doppler broadening. The fitting curve gives us information about the
temperature T and the isotopic fraction in the vapor cell. It is noted that the choice of the
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Figure 2.5: Experimental setup used to measure the nonlinear refractive index.

power of the probe beam is a trade-off between two competing effects. On the one hand, a weak
probe can ensure enough absorption. On the other hand, a higher probe beam power gives us
a good signal-noise ratio.

Our result is shown in figure.2.4. The blue curve shows the transmission spectrum for ru-
bidium vapor at 7.5 cm long at 150◦C. And the orange one shows the predicted theoretical
line. Intuitively, the experiment curve has a good agreement with the theory. We can also learn
that the percentage of Rb 87 is 1%.

2.4 Nonlinear refractive index measurement
As we have discussed before, when the fluid of light propagates in a nonlinear medium, the
interaction between photons depends on the nonlinear refractive index n2. This quantity plays,
therefore, an essential role in helping us to mediate photon fluid physics. But how characterize
this parameter? It has been reported that using z-scan [65, 66] and the ring patterns in the far
fields [31, 67] to measure the nonlinear refractive index. However, these two methods all have
their limitations. All these methods require the Gaussian beam to keep the intensity profile
during propagation process. It is obviously not suitable for light passing through a defocusing
Kerr nonlinear medium, the nonlinear medium behaves as a negative lens so that the light
diverges. So we turn our attention to considering a Gaussian beam propagating in the medium.
It will give rise to a nonlinear refractive index variation since the beam’s intensity at the center
is stronger than its edge, directly leading to an accumulation of the phase. This self-induced
phase modulation acts on the beam and behaves as a lens, focusing or defocusing the laser
beam depending on the attractive or repulsive photon interactions. By measuring this nonlin-
ear phase shift as a function of intensity, we can thus calculate the nonlinear refractive index n2.

Our team proposed a different way based on the wavefront measurement using interferometric
techniques [33]. The technique rely on measuring the phase difference between the reference
beam and a beam that interacted with the nonlinear medium. The core idea is to place the
non-linear medium in one arm of a Mach-Zehnder interferogram and use phase retrieval to re-
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construct the accumulated phase from the interferogram. The experimental configuration used
to measure the refractive index based on the Mach-Zehnder interferometer is shown in fig.2.5.
A laser source is split into two arms and recombined with an angle θ to modulate the signal
through the interferences. The image plane of the camera is shown by the dashed line after the
cell. From the images on the camera, we can see two interesting phenomena: an enlargement of
the beam size with the increase of the power. It is caused by the defocusing effect arising from
the diffraction of the beam. Another thing is that the interference fringes become increasingly
curved with the increase of the power resulting from the nonlinear phase accumulation of the
laser in the nonlinear medium. We should be careful that the reference beam needs to be
collimated, and the probe beam should be small enough in the practical experimental imple-
mentation. We have talked before that the nonlinear refractive index is ∆ = n2I. Note that
this equation is only valid at low power. When we take account into the saturation intensity
[68], the nonlinear refractive index can be expressed as follows:

∆n = n2I = n2 + I

1 + I

Is

(2.10)

The intensity detected on the camera as a function of r = (x, y) is given by:

Icam(r) ∝ |E(r, L) + Er(r, L)eikrr|2

= I(r, L) + Ir(r, L) + 2
√
I(r, L)Ir(r, L)cos(krr + φ(r) + ϕ0) (2.11)

In this equation, kr = k0θ accounts for the relative tilt, I is the intensity of the beams, φ(r) is
the signal beam’s phase, and ϕ0 is a constant stemming from the reference beam’s phase. And
the accumulated nonlinear phase linked to the nonlinear refractive index ∆n can be expressed
as:

ψNL(r) = k0L∆n = k0Ln2
1
L

∫ L

0
I(z, r)dz (2.12)

Where L is the length of the cell. According to the Beer-Lambert law eq. 2.6, taking the linear
absorption into account, we arrive at the following form:

ψNL(r) = k0Ln2I0
1 − e−αL

αL
(2.13)

Compared to the z-scan or the ring pattern methods, it is easier and more flexible to implement.
More details of this method can be found in [33]. The nonlinear refractive index as a function of
power is shown in the figure.2.6. The blue dots are the experimental data, the orange curve is the
fitting curve according to the theory. We measured ∆n and extracted the nonlinear coefficient
n2 and the saturation Is. From the curve we can see that the n2 = 6.75 × 10−2 m2/W and the
absorption intensity is Is = 30.5 W/cm2.
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Chapter 3

Useful experimental tools

In this chapter, I would like to introduce the experimental tools used to produce and characterize
such paraxial fluids of light. Understanding their working principles is beneficial to experiment.
I first briefly present how the laser sources work. Then, I describe the Spatial Light Modulator
(SLM), used to modulate a particular phase of the light field through liquid crystal molecules
to characterize the photon fluid’s properties. Next, I focus on the acousto-optic modulator
(AOM), which uses the acousto-optic effect to diffract and shift the frequency of light using
sound waves. Finally, I would like to show some technical details about the glass cells containing
rubidium vapor and the homemade heating system designed to control its temperature.
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3.1 Laser source
A laser is a device that emits light through an optical amplification process achieved by the ex-
cited emission of electromagnetic radiation. The main difference between it and ordinary light
sources, like the light from the incandescent lamp, lies in its spatial and temporal coherence.
Spatial coherence guarantees that the laser can travel long distances without diffraction, thus
focusing on a small spot and increasing the power of the light. Temporal coherence ensures
that the output light has a narrow spectral range, thereby making the light monochromatic.

Generally speaking, the number of atoms in the lower energy levels is greater than the number
in the higher energy levels. At this stage, the system being in thermal equilibrium, the num-
ber of photons absorbed by the atomic system per unit of time is greater than the number of
photons produced by the stimulated emission. The stimulated absorption of the atomic system
plays a dominant role. To obtain laser light, the number of atoms in the excited state must be
greater than the number of atoms in the ground state. This process can be achieved by the
atoms absorbing the energy of the pump source, which keeps the particle number inversion.
For example, the kinetic energy of the electrons excites the laser material through a gas dis-
charge, which breaks the thermal equilibrium of the system and thus puts it in a non-thermal
equilibrium state. When the number of atoms excited by radiation per unit time exceeds the
number of atoms excited by absorption, the light rays are enhanced. The process of achieving a
higher number of atoms at the energy level than at the lower energy level is the particle number
inversion.

There are three elements to laser generation: pump source, gain medium, and optical res-
onator.

1. Pump source: The working material absorbs the external energy and excites the elec-
trons from the low to the high energy level, thus providing the possibility to achieve and
maintain the particle number inversion. The most common excitation devices are optical
excitation, gas discharge excitation, and chemical excitation.

2. Gain medium: It absorbs the energy from the pump source to excite the electrons from
a lower energy level to a higher energy level. This results in light amplification using
stimulated emission. The characteristics of lasers include low divergence, high power,
good monochromaticity, and good coherence. The power of light at a specific wavelength
through the gain medium is increased.

3. Optical resonator: It consists of two mirrors parallel to each other, one fully reflective
and one partially reflective. The distance between the two mirrors plays a selective role
in the output laser. On the one hand, the optical resonator provides optical feedback ca-
pability, allowing the excited radiation photons to make several round trips in the cavity
to form coherent and continuous oscillations so that the excited light achieves sufficient
amplification to escape from the partially reflective mirror. On the other hand, it can
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limit the direction and frequency of the oscillating beam in the cavity to ensure that the
output light has a certain direction and monochromaticity.

3.2 Spatial Light Modulator
A spatial light modulator is a device that can modulate a certain parameter of the light field
through liquid crystal molecules. It works as follows: the spatial light modulators contain sev-
eral independent units that are spatially arranged in one- or two-dimensional arrays, each of
which can independently receive control of an optical or electrical signal and change its optical
properties according to this signal. Such as by modulating the amplitude of the light field,
modulating the phase through the refractive index, modulating the polarization state through
the rotation of the polarization plane, or realizing the incoherent-coherent light conversion, to
write certain information into the light wave and achieve light wave modulation. It can easily
load information into an optical field and take advantage of the wide bandwidth of light and
parallel processing of multiple channels to process the loaded information quickly. It is the core
device that constitutes the system of real-time optical information processing, optical intercon-
nection, optical computing, etc.

In our photon fluid configuration, the initial fluid density and its flow velocity can be eas-
ily tuned to control the transverse intensity distribution and the spatial phase profile of the
incident laser beam at the medium entrance plane by the spatial light modulator (SLM).

3.3 Acousto-optical modulator
When the ultrasonic wave through the medium causes local compression and elongation of the
medium and produces elastic strain, the medium appears sparse and dense phenomenon in
time and space, equivalent to the phase grating, and results in a corresponding change in the
refractive index of the medium. In this case, the diffraction phenomenon will occur when the
light passes through, which is called the acoustic-optical effect. Due to the development of laser
technology and ultrasound technology, the acousto-optic effect has been widely used.

There are two types of acoustic-optical effects: normal acoustic-optical effects and anomalous
acoustic-optical effects. The interaction of sound and light in all homogeneous media does not
cause changes in the polarisation state of the incident light, resulting in normal acoustic-optical
effects. Sound-light interaction in all anisotropic media can induce changes in the polarisation
state of the incoming light, resulting in anomalous acoustic-optical effects. The anomalous
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Figure 3.1: Spatial light modulator produced by HOLOEYE company.
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Figure 3.2: (a) Acousto effect diffraction (b) Schematic diagram of the internal structure of the
acousto-optic modulator
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acoustic-optical effect is the foundation for developing high-performance acoustic-optical de-
flectors and tunable filters. The Raman-Nass optical grating theory can account for normal
acoustic-optical phenomena but cannot account for abnormal acoustic-optic events.

In an acousto-optic medium, an ultrasonic traveling wave is a plane longitudinal wave moving in
the y direction with an angular frequency of ωs, a wavelength of λs, and a wave vector of ks. In
the medium, incident light is a plane wave moving in the x direction with an angular frequency
ω, the wavelength of λ, and wavevector k. The elastic strain within the medium propagates
with the sound wave as a traveling wave. Because the speed of light is approximately 105 times
that of sound, the change in the period of the medium in space throughout the light wave’s
passage may be regarded as fixed. The change in the refractive index of the medium due to
the strain is determined by the following equation:

∆(1/n2) = PS (3.1)

where n is the refractive index of the medium, S is the strain and P is the coefficient of
photoelasticity. Typically, P and S are second-order tensors. When sound waves propagate in
an isotropic medium, P and S can be treated as scalars and, as mentioned earlier, the strain
also propagates as a traveling wave so that it can be written as:

S = S0sin(ωst− ksy) (3.2)

When the strain is small, the refractive index as a function of y and t can be written as:

n(y, t) = n0 + ∆nsin(ωst− ksy) (3.3)

Where n0 is the refractive index of the medium in the absence of ultrasound, ∆n is the amplitude
of the change in the refractive index of the acoustic wave, which can be found by 3.1 equation:

∆n = −1
2n

3PS0 (3.4)

If the beam is incident vertically (k ⊥ ks) and passes through a medium of thickness L, the
phase difference between the front and rear points is:

∆Φ = k0∆n(y, t)L = k0n0L+ k0∆nsin(ωst− ksy)L (3.5)

Here we define ∆Φ0 = k0n0L as the phase difference between the front and rear points of the
light wave in the absence of ultrasound, k0 is the magnitude of the wave vector of incident light
in a vacuum. The second term δΦ0 = k0∆nL is the phase modulation caused by the ultrasound.
Assume that the optical vibration on the incident plane x = −L

2 is Ei = Aeit, where A is a
constant or a complex number. Considering the change of phase and modulation of the points
on the incident plane x = L

2 , the result of the superposition of diffracted light at a point far
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from the incident plane in the xy plane is:

E = Ceiωt
∫ b/2

−b/2
eiδΦsin(ksy−ωst)eik0ysinθdy (3.6)

where b is the beam width, θ is the diffraction angle and C is a constant. Using a constant
equation related to the Bessel function eiasinθ = ∑∞

−∞ Jm(a)eimθ, where Jm(a) is a type I Bessel
function. Expanding and integrating equation 3.6 gives:

E = Cb
∞∑

−∞
Jm(δΦ)e

i(ω−ωs)t
sin[b(mks − k0sinθ)/2]
b(mks − k0sinθ)/2 (3.7)

Since the function sin(θ)/θ takes the maximum in the case of θ = 0.So the maximum diffraction
angle θmis given by:

sin(θm) = m
ks

k0
= m

λ0

λs

(3.8)

where the λ0 is the light wavelength in the vacuum, λs is the ultrasound wavelength in the
medium. Compared with the general grating equation, it can be seen that the ultrasonic
wavelength in a medium with strain is equivalent to the d of the spacing between the slits of a
normal grating. From equation 3.8, the frequency ωm of the m-th level of diffracted light is

ωm = ω −mωs (3.9)

It is clear that diffracted light is still monochromatic but with frequency shifted. When the
distance of the acousto-optic action satisfies L > 2λ2

s/λ and the beam is incident obliquely
at an angle with respect to the ultrasonic wavefront. In the ideal case, only level 1st or -1st
diffraction occurs in addition to level 0. This is shown in Figure 2. This diffraction is very
similar to the Bragg diffraction of X-rays by crystals and is therefore called Bragg diffraction.
The angle of incidence of the beam that produces this diffraction is called the Bragg angle. At
this point, the medium in which the ultrasonic waves are present acts as a volume grating. It
can be shown that the Bragg angle satisfies the following:

siniB = λ

λs

(3.10)

Because the Bragg angle is generally small, the angle of deflection of the diffracted light with
respect to the incident light is written as:

Φ = 2iB ≈ λ

Λs

= λ0

nvs

fs (3.11)
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where vs is the wave speed of ultrasound, fs is the frequency of ultrasound. Under Bragg
diffraction conditions, the efficiency of the first level of diffracted light is

η = sin2

 π
λ0

√
MLPs

2H

 (3.12)

where Ps is the ultrasonic power, L and H are the length and width of the ultrasonic trans-
ducer, respectively. M is a constant reflecting the nature of the acousto-optic medium itself.
From equations 3.11 and 3.12, it can be seen that by varying the frequency and power of
the ultrasonic waves, control of the laser beam direction and modulation of the intensity can
be achieved respectively, which is the basis of the acousto-optic deflector and acousto-optic
modulator. The driving power supply is used to generate the modulating signal applied to
the electrodes at both ends of the transducer, which uses the inverse voltage effect of certain
piezoelectric crystals or piezoelectric semiconductors to generate mechanical waves under the
action of the applied electric field. When a beam of light through the changing mechanical wave
field, light and mechanical waves interact in the dielectric region. The outgoing light has time-
varying levels of diffracted light. And the use of diffracted light intensity with the mechanical
wave intensity changes the nature of the light intensity modulator. The opposite of the general
mechanical wave source prevents an absorption device for the absorption of mechanical waves
that have passed through the medium. Grating is an essential optical element. A grating is
broadly defined as an optical element that allows the amplitude or phase (or both) of incident
light to be spatially modulated periodically. Gratings that can only subject light to amplitude
modulation or phase modulation are called amplitude gratings and phase gratings, respectively.
Gratings can be divided by mode of operation into transmission gratings (where the transmit-
ted light is modulated) and reflection gratings (where the reflected light is modulated.) The
number of marks per unit length of the grating is mainly determined by the wavelength range
of the light being divided (the distance between the two marks should be similar to the order
of magnitude of the wavelength), the more marks per unit length, the greater the dispersion.
The number of marks determines the resolving power of the grating. By grating, we mean a
diffraction grating that uses the diffraction effect to modulate light.

3.4 Vapour cell
The Rb atomic cell is the non-linear medium for our system to create the fluid of light. It
plays an important role in enhancing the coupling between photons and photons. The cells
can be filled with a mixture of Rb85 and Rb87 vapor in different proportions depending on the
specific experimental purpose. As previously described, the length of the rubidium vapor cell
is proportional to the evolution time of the photon fluid. This means that we can observe the
hydrodynamics of the photon at different times by changing the length of the cell provided that
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Figure 3.3: Rubidium vapor cell heating system. A 5 cm Rubidium atomic cell is wrapped in
several aluminum foil layers to stabilize the temperature and provide better heating efficiency.
Finally, the wrapped atomic cell is placed in the copper cylinder

other parameters (Rb cell temperature, laser detuning, optical power) are the same. However,
it noted that the vapor cell could not provide a strong enough nonlinear effect if it is too short.
On the other hand, if the vapor cell is too long, a part of the light will be absorbed by the
rubidium atoms. Therefore, choosing the right length of the atomic cell is one of the critical
factors for good experimental results. Cells’ diameters are typically 1 inch in our lab, but the
shape of the cell can be customized to meet specific experimental requirements. The input and
output windows of the cell are coated with Anti-Reflection (AR) matter, giving a transmission
of approximately 98.3% on a single window. The vapor pressure of the cell is approximately
1.86 × 10−7 torr at room temperature. We need to heat the cell to increase the vapor density
of the rubidium atoms. The Kapton heaters are attached to the Rb cell, and several layers of
aluminum are wrapped around the cell with insulating Kapton tape. The thermistor forms a
closed loop with the AC transformer to stabilize the cell at the temperature required for our
experiments. The covered cell is placed in the copper cylinder to keep the temperature of the
cell at a relevantly stable degree. And it has been demonstrated that this heating system is
capable of stabilizing the cell temperature at ±1◦C during the experiments. For our experi-
ments, we need to heat the rubidium cell to about 150◦C, where the vapor pressure is about
4 × 10−3 torr and the atomic density is 8.9 × 1019 m−3.

The temperature record of the cell can be realized with the thermocouple. It offers an easy,
convenient and fast way to estimate the rubidium vapor cell’s temperature roughly. However,
it is essential that an absolute temperature is needed to calculate several relevant parameters,
such as the atomic density and atoms’ average speed. We can fit the transmission spectrum
with the theory to extract the temperature in this case.



Chapter 4

Short Bragg pulse spectroscopy for a
paraxial fluids of light

We implement Bragg-like spectroscopy in a paraxial fluid of light by imprinting analogues of
short Bragg pulses on the photon fluid using wavefront shaping with a spatial light modulator.
We report a measurement of the static structure factor, S(k), that characterizes the density-
density correlations of the elementary excitations. And we find a quantitative agreement with
the prediction of the Feynman relation revealing the presence of pair-correlated particles in the
fluid indirectly. We also study the dynamics of small amplitude density modulations traveling
onto the paraxial fluid of light. The results demonstrate that we improved the resolution over
previous methods and obtained the dispersion relation, including a linear phononic regime for
weakly interacting photons and low sound velocity. The result of this section has been pub-
lished in: “Measurement of the static structure factor in a paraxial fluid of light using Bragg-like
spectroscopy”, Phys.Rev.Lett.127, 023401 (2021) [34].

This chapter is organized as follows. I first introduce the short Bragg pulse technique, which
inspired our approach. Then I present the measurement of the Bogoliubov dispersion relation
of photon fluid based on the integral group velocity. We describe numerically and experi-
mentally the optical implementation of Bragg spectroscopy and present a measurement of the
static structure factor in agreement with the Feynman relation for a homogeneous Bose gas
[11]. Finally, we measure the dispersion relation and evaluate the maximum resolution of our
technique. In addition, we show that our method allows for an improvement of the resolution
for dispersion measurements.
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4.1 Bragg pulse spectroscopy

An essential characterization tool for an atomic BEC is Bragg spectroscopy [70]. The origi-
nal implementation was based on the two-photon Bragg scattering and allowed for accurate
measurement of the momentum distribution. It has been reported that the measurement of
the dispersion relation, which describes how each frequency component of wave packet evolves
[71] and the dynamic structure factor, the Fourier transform of the density-density correla-
tion, which is significantly important to describe the many-body system with this technique in
atomic BEC [11].

Bragg spectroscopy in atomic BEC relies on counting the number of scattered atoms as a
function of the frequency difference between two Bragg beams [72]. The basic principle is as
follows, the two far-off-resonant laser beams used for the Bragg spectroscopy are detuned from
each other by a frequency ∆ν and have in-plane wavevectors k1 and k2. This will result in the
recoil momentum ℏkr = ℏ(k1 − k2) and the diffracted atoms leave the trap. Measuring the
number of the diffracted atoms, Ndiff , as a function of ∆ν gives the line integrated distribution
parallel to kr.

A variant of this configuration [69] has been presented in Fig.4.1 and relies on short Bragg
pulses at two symmetrically far detuned laser beam impinging the condensate with an angle of
θ for a short time τ , as shown in the Fig. 4.1(a). It is possible that the condensate absorbs a
photon from one of the beams and then emits a photon to another since the photon has a signif-
icant energy uncertainty ℏδω. This process will create left-moving and right-moving phonons
with energy ℏωk. And the wavenumber k of phonon relies on the relative angle θ between
two far-detuned beams. The phonons with the same amplitude and frequency but moving in
opposite directions give rise to the standing wave with a given wavenumber k. After the short
Bragg pulse, the phonon freely propagates in the condensates. We can also see phase-contrast
of standing waves at different periods from Fig.4.1(b), (c), (d). The density perturbation after
time t is:

δn(t) = |ψ(t)|2 − |ψ(0)|2 (4.1)

The author measured the spatial Fourier transform ρk of δn(t), where the ρk can be written as:
ρk = (Uτ

ℏ
)NS0(k)sin(ωkt). The U is the amplitude of the sinusoidal potential resulting from

the interference between the two laser beams, and N is the number of the condensate. The
asterisk in Fig.4.1(e) indicates the k value corresponding to the standing wave. They extracted
the Bogoliubov relation from the zero-crossings (in time) of ρk as shown in Fig.4.1(g) and re-
peating the experiment for many values of k. The static structure factor S0(k) is extracted
from the amplitude of the ρk by parabolic fit.
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Figure 4.1: Figure extracted from [69]. Creating a phonon standing wave by short Bragg
pulses. The larger condensate is shown. (a) Two far-detuned laser beams, with frequency ωL

and wave number kL, impinge on the condensate. Absorption from the left (right) beam and
emission into the right (left) beam results in the production of a right-moving (left-moving)
phonon with wave number k. The combination of the left- and right-moving phonons results in
a standing wave. (b)–(d) Phase-contrast images of the in situ condensate, for a short 22 µsec
Bragg pulse with k = 2.47 µm−1, where (b) shows the time just before the pulse, (c) shows the
first antinode of the standing wave, at 250 µsec and (d) shows the second node, at 510 µsec.
(e) Integrated profiles of the images. The top, middle, and bottom curves correspond to (b),
(c), and (d), respectively. The top and middle curves have been shifted vertically for clarity.
(f) The magnitude squared of the Fourier transform of the profiles. The blue dash-dotted,
black solid, and green dashed curves correspond before the pulse, the antinode, and the node,
respectively. The asterisk indicates the k value corresponding to the standing wave. (g) The
time dependence of the Fourier transform of the standing wave, for k = 0.35 µm−1. The linear
fit at the zero crossing determines ωk (solid line). The parabolic fit at the maximum determines
S0(k) (dashed curve).
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4.2 Measure the dispersion with the group velocity

Before we discuss the Bogoliubov dispersion relation measurement unitize the Bragg spec-
troscopy technique, we first review another important work that measures the excitations spec-
trum in a light fluid based on a group velocity measurement [36]. The experimental setup is
shown in the figure.4.2. A polariton beam splitter (PBS) splits the light with a wavelength
780 nm coming from the Ti-Sapphire laser source into two paths. One is the pump beam (red
line), and another is the probe beam (orange line). The stronger pump beam is tuned close to
the atom resonance and spatially elongated along the y-axis using two cylindrical lenses and is
sent into the rubidium atomic cell as our photon fluid. The lower power probe beam elongated
along the x-axis creates a density perturbation with respect to the fluid at an angle θ. At
the entrance of the medium, as the quench effect produces two wave packets with wavenumber
k⊥ = ±kprsin(θ), where the kpr is the wavevector of the probe beam. The velocity of the two
wave packets can be adjusted by the angle θ between the pump and probe beam. Two wave
packets with the same velocity but in opposite directions propagate in a nonlinear medium.
The group velocity vg of the wave packets can be determined by measuring their distance at
the end of the cell in the transverse plane. And the result shows that the wave packet distance
of the two wavevectors is a constant when tuning the incidence angle θ within a certain range
k⊥ < kξ, where ξ is the healing length and kξ = 2π/ξ. It means the velocity of the wave
packet, namely, the speed of sound cs = c

√
∆n independent on the kx in the transverse plane

in this range. This interesting phenomenon tells us that when changing the angle θ between
the probe beam and the pump beam within this range, the probe beam emerges at the same
position at the end of the cell. Even if the θ = 0, it still produces a pair of counter-propagating
wave packets moving along the x-axis at cs. This finding is different from the classical Snell’s
law, which describes the relationship between the incidence angle and the refractive angle when
light passes through the boundary of two media. And this difference comes from the sound-like
behavior of the Bogoliubov dispersion relation at low wave vectors. However, a different phe-
nomenon will occur when beyond this value k⊥ > kξ, the distance of two wave packets starts
to increase linearly with increasing wavenumber. The excitations behave as single particles
along the x-axis in the transverse plane. So we can derive the group velocity according to the
distance between two wave packets D = 2Lvg from the end of the cell, where L is the length
of the rubidium cell. The dispersion relation can be obtained by integrating the group velocity
over the momentum according to the definition of the group velocity vg = ∂Ω

∂k⊥
. The dispersion

relations measured by this method are in high agreement with the theoretical predictions of
Bogoliubov dispersion described in chapter 2. As long as the k⊥ ≪ kξ, the excitations behave
as collective phonons and move at sound velocity cs in the transverse plane. Reversely, k⊥ ≫ kξ

the excitations behave as single particle propagating at vg along the x-axis in the transverse
plane.

However, in this experiment, the weak nonlinearity corresponds to the lower speed of sound,
which will lead to the two wave packets propagating too slowly to separate very clearly, causing
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Figure 4.2: Experimental setup: polarized beam splitter (PBS) and half-wave plate (HWP).
θ is the angle between the probe (orange beam) and the optical axis defined by the pump
(red beam). The probe interferes with the pump and slightly modulates its intensity. (Blue
inset) Integrated intensity profile at the input of the medium (z = 0). The wavelength Λ of
the density modulation is given by 2π/kperp, where k⊥ = k0sin(θ). (Orange inset) Integrated
intensity profile at the output of the medium (z = L). The distance D between the two wave
packets gives access to the group velocity of the elementary excitations in the transverse plane.
The output plane is imaged on a CMOS camera. (Inset, top left) Background-subtracted image
obtained for θ ≈ 0 rad and associated integrated envelope profile (blue: original; red dotted:
high frequency filtered).
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difficulty in deriving the dispersion relation.

Analogy to the 4-wave mixing process

In reality, this experiment is a degenerate four-wave mixing process in which two pump pho-
tons are turned into a probe photon and a conjugate photon. However, in the fluid community,
they are more commonly referred to as Bogoliubov excitation modes in a nonlinear medium
propagating along +kx and −kx, where kx is the wave number in the transverse direction. It
is worth noting that in the four-wave mixing process, if the probe beam and the pump beam
overlap, the resultant conjugate light also overlap. However, two Bogoliubov modes were still
formed in a language of the fluid community.

4.3 Bragg-like Spectroscopy in the paraxial the fluid of light
While the dispersion relation has been recently obtained by measuring the group velocity of two
counter-propagating wave packets. A measurement of the static structure factor that charac-
terizes the density-density correlations of the elementary excitations has not yet been reported
for a fluid of light.

We want to implement an optical analogue of Bragg spectroscopy to measure the static struc-
ture factor in a paraxial fluid of light. We show that short Bragg pulses used for the phase
imprinting technique in an atomic BEC [69] can be achieved in a photon fluid using wavefront
shaping with a spatial light modulator.

In the atomic BEC experiment, the author creates the phase modulation by applying the sinu-
soidal potential in the condensate. To realize the production of counter-propagating phonons
in the photon fluid, we imprint a phase modulation on the beam with a given wavelength and
a given depth with a spatial light modulator (SLM) and image it on the input plane of the
nonlinear medium. This is in fact a general strength of paraxial fluids of light, since any phase
modulation (analogous to any short external potential) can be applied to the initial state of
our system. It will give rise to two opposite direction phonons generation with wavevector +kx

and −kx at the input plane. These two phonons with the same characteristics as in short Bragg
pulse spectroscopy. Two counter-propagation phonons freely move in the nonlinear medium.
Sometimes they are out of phase, and sometimes they are in phase.

On the other hand, instead of probing the intensity perturbation as a function of the time.
We only have access to a fixed time (t = nL/c, where L is the length of the nonlinear medium),
and study the intensity perturbation as a function of the kx. The state at a fixed effective time
corresponds to the end of the cell, which we can image onto a camera using a set of lenses.
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Figure 4.3: Simulated density modulation for the medium of 7.5 cm and a transverse wave vector
of kx = 3.6 × 104 mm−1 and phase modulation parameter α = 0.1, with different refractive
index (a) ∆n = 0 and (b) ∆n = 1.87 × 10−5.

Using only a measurement at the fixed effective time, we show in the following that we can
obtain the dispersion relation from the minima of δn, and the zero temperature static structure
factor from the maxima of δn.

4.3.1 Numerical simulation

Before implementing the experiment, we begin with the numeric simulation. We have discussed
in chapter 1 that the NLSE describes how an electric field close to the atom resonance prop-
agates in the nonlinear medium. However, it is not enough to understand the electric field’s
state at a given position in the nonlinear medium. Thus, we must solve the NLSE. The splitting
step Fourier method is commonly used to deal with the nonlinear problem.

When a laser field passes through the nonlinear medium, the electric field in the presence
of the modulation can be expressed as:

E(x, z) = E0e
i(k0z+αcos(kxx)) (4.2)

where the E0 is the amplitude of the electric field, k0 is the wave vector, kx is the wave number
in the transverse direction and α gives the depth of the modulation.
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The numerical simulation pattern of plane waves counter-propagating in the transverse plane
with opposite wave vectors +kx and −kx and oscillating in z at the angular frequency ΩB(kx)
as represented in Figs.4.3(a) and 4.3(b). Here we set the parameters as following: laser wave-
length λ = 780 nm, length of the rubidium cell L = 7.5 cm, the intensity of the pump beam
Ipump = 2.0 × 105 W/m2 and wave vector kx = 3.6 × 104 m−1. Figure 4.3(a) presents the
simulated pattern in the non-interacting case ∆n = 0, which means a large detuning or a small
fluid power. While Figure 4.3.(b) includes repulsive interactions and the nonlinear refractive
index given by ∆n = 2 × 10−5, corresponding to the near resonance or a large fluid power. In
these two cases, we set the phase modulation depth α = 0.05. Here, we surprisingly find that
the interference fringes along the z period become smaller in the nonlinear case compared to
the linear one. The reason causes this difference is that the free particle dispersion relationship
starts to turn to the Bogoliubov dispersion. It is well demonstrated that when the strong laser
beam close to resonance passes through a nonlinear medium, causing a change in the refrac-
tive index coefficient. Or we say that an effective interaction exists between photon and photon.

Next, we investigate the effect of the phase modulation parameter α on the result. All other
stimulated parameters are same as Figure.4.3 except for the different modulator parameter for
α = 0.01, α = 0.05, α = 0.1 and α = 1. The result is shown in figure.4.4. Note that the
phase modulation parameter should be within a certain reasonable range. Strictly speaking,
the phase modulation parameter α should be sufficiently small without changing the charac-
teristics of the photon fluids. Otherwise, if the phase modulation parameter is too large, the
interference diagram will be deformed, as in fig. 4.4(d).

However, the next problem we encounter is how to extract the information from the den-
sity pattern. In other words, how to connect the density pattern with the dispersion relation
Ω(kx) and the structure factor S0(k). As we have seen from the previous introduction, it is
impossible to observe the time evolution in our paraxial fluid of light due to fact the fixed length
of our atomic cell medium. We can only determine the density perturbation at a fixed time
τ = L/c, corresponding to the exit plane of the nonlinear medium. However, we can calculate
the interference contrast as a function kx at the exit plane of the nonlinear medium to extract
the static structure factor S(kx) and the dispersion relation ΩB(kx). And the contrast at the
end of the medium is defined as:

C = nmax − nmin

nmax + nmin

(4.3)

The structure factor is the spatial noise spectrum (normalized to 1 for a coherent state). It is
defined by:

S(kx) = ⟨ρ2
kx

⟩ − ⟨ρkx⟩2

N
(4.4)

where ρkx is the spatial Fourier transform of δn and N the total number of photons. The out
plane of the vapor cell is imaged on the camera to study the fringe. The density perturbation
is given by:

δn(z) = US0(kx)cos(k · r)sin(ΩBz) (4.5)
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Figure 4.4: The simulated density modulation pattern for medium of 7.5 cm and a transverse
wave vector of kx = 3.6 × 104 m−1 and ∆n = 1.87 × 10−5 for different modulation parameter
(a) α = 0.01, (b) α = 0.05 (c) α = 0.1 and (d) α = 1.
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Using the definition of the contrast C in the transverse plane given above, we obtain the
following:

C(kx) = |US0(k)sin(ΩBz)| (4.6)

In Eq. 4.6, it is clear that we can isolate US0(kx) using the maximum contrast values. To further
remove the U dependence, we measure US0(kx) for the non-interacting case. In this regime, it
is known that S0(kx) is equal to 1 at all kx since the beam here is a spatially coherent state
[6] and therefore U is equal to the contrast maxima. Then we can also obtain the dispersion
from the minima of contrast. We determine the kx from the contrast minimum value. At this
moment, the dispersion relation ΩB should meet the condition:

ΩB(kx)L = pπ (4.7)

This equation has a profound and essential physics point. It means that we can plot the
dispersion relation by reporting the kx positions of the contrast minima and assigning them
a frequency pπ/L, where p = 1, 2, 3 .... Specifically, we can know the dispersion relation
ΩB1 = π/L for corresponding to the first minimum kx1. And for the second contrast minimum,
the dispersion relation ΩB2 = 2π/L for corresponding kx2 and so on. With this method, we can
get a set of the value of kx and the ΩB, so that we can plot the ΩB as a function of the kx and
then compare with the theory.

For a fixed depth phase modulation ϕ = 0.1cos(kxx) with a given wave vector value kx, we
can calculate the contrast at the end of the medium at this kx. So we can plot the contrast as
a function of kx. According to the formula Eq.4.6, we can extract the dispersion relation from
the minimum value of the contrast and the static structure factor from the maximum contrast
value. From this set of kx and ΩB values, we are able to plot the dispersion relation in Fig.4.5
and find it has a good agreement with the theory. The orange ’x’ label the minimum of the
contrast at the end of the cell, and the orange dots stand for the data points we extracted from
the minimum of the contrast. The blue curve is the theoretical Bogoliubov dispersion curve.
From this figure, we can get when kxξ < 1, the dispersion relation increase linearly with the
kxξ < 1, which predicts the phonon regime. While kxξ > 1. the dispersion relation becomes
parabolic. We also extract the maximum value from the contrast and plot the structure factor
S0(kx) as a function of the kxξ. In the figure.4.6, the blue dots are the maximum points ex-
tracted from the contrast, the orange curve is plotted according to the Feynmann relation. We
can see they are highly in agreement with each other. We found that the static structure factor
is significantly reduced at long wavelengths compared to free particles, revealing the presence
of nontrivial pair correlations indirectly in a paraxial fluid of light [71].

4.3.2 Experimental configuration and result

Our experimental setup is shown in the figure.4.7. A 780 nm quasi-parallel Gaussian beam
coming from a tunable diode laser Toptica DL Pro laser source is elongated along the x-axis
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Figure 4.5: Numerically calculate the contrast at the end of the medium as the function of
the product of wave vector kx in the transverse plane times the healing length ξ. The orange
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red vertical line represents the kxξ = 1. The numerical simulation shows that the dispersion
is linear when kxξ < 1. However, when kxξ > 1, the dispersion relation behaves as parabolic.
Parameters: λ = 780 nm, ∆n = 1.875 × 10−5, T = 142◦C, ξ = 2.87 × 10−5 m−1 .
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with a pair of cylindrical lenses. We can finely adjust the frequency detuning ∆ with respect
to the F = 2 to F ′ = 2 D2 line of 87Rb. The beam was then sent to the spatial light modulator
(SLM), and the beam’s length could cover the spatial light modulator screen. The spatial light
modulator modulated the phase of the input light via imprinting a sinusoidal phase of wave
vector kx. It noted that in our case, we limited the modulation depth to 0.1 to remain within the
Bogoliubov perturbative approximation so that intensity modulation does not locally modify
the nonlinear index ∆n. For a given kx, the phase applied on the SLM is ϕ(x) = 0.1cos(kxx),
which leads to the generation of phonons with opposite propagation directions with wavevector
+kx and −kx. And the wave vector can be changed by a phase hologram loaded on the spatial
light modulator. Since the spatial light modulator is likely to reflect part of the light, we use a
filter in the Fourier plane to keep only the modulated first-order beam. Then we use a polariza-
tion beam splitter (PBS) to split the light into two paths, one of which is imaged on the camera
to observe the situation in momentum space. The other path is directed to the entrance of the
6.8 cm Rubidium vapor cell with a demagnification factor of three to increase its resolution.
The Rubidium vapor cell is filled with a natural mixture of 28% of 85Rb and 72% of 87Rb,
and the beam waists at the entrance are ωx = 0.15 mm and ωy = 1.5 mm. The two phonons
propagate in the transverse plane with wavevector ±kx and fringes along the z-direction with
Bogoliubov frequency ΩB. After the rubidium cell, a camera mounted on a translation stage
is used to record the interferogram at the exit of the medium. Since we can only access the
images at effective fixed times t = 0 and t = n0L/c for the states corresponding to the input
plane (z = 0) and the output plane (z = L) of the medium. In the experiment, a translation
stage can easily be manipulated to get the density image at the entrance and end of the medium.

We probe the density perturbation as a function of the wavevector kx of the phase modulation
at a fixed time instead of studying it as a function of time. At the entrance of the medium,
two counter-propagating phonons are destructive interference independent of the value of kx.
At the cell’s exit, they may be in phase or out of phase, determined by the initial kx, which
can be varied by the phase diagram on the SLM. Figure 4.8 is the experimental image of the
density collected by the camera for the different wave numbers kx. The figure.4.8 (a) shows the
minimum contrast when the wave vector kx = 27.8 mm−1 at the transverse plane and maximum
contrast when the wave vector kx = 43.2 mm−1 at the transverse plane in the non-interacting
case. Note that these images are taken with a large modulation depth for illustration. This
non-interacting case is obtained experimentally by setting a large detuning (∆ = −6 GHz)
from the 87Rb F = 2 to F ′ = 2 transition.

We then took 475 images of the cell output with modulations ranging from kx = 5 mm−1

to kx = 100 mm−1 with a step dkx = 0.2 mm−1. To measure the density modulation δn, we
normalize the images by a reference taken without phase modulation and then select a central
window of the fluid. After integrating the intensity along the y (vertical) axis, we calculate the
contrast directly proportional to δn(τ = L/c).
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Figure 4.7: Principle of the experiment and simplified experimental setup. A 780 nm laser beam
is elongated in the x direction with a pair of the cylinder lens and impinges on a spatial light
modulator (SLM displays a vertical grating, which imprints a sinusoidal phase modulation of
wave vector kx. The SLM plane is imaged at the input of the 6.7 cm rubidium vapor cell. This
phase modulation creates two counter-propagating left (L) and right (R) phonons at +kx and
−kx represented in green and orange. Initially, in phase opposition (constant input density), the
phonons constructively interfere after some effective time τ = z/c, giving a maximum density
contrast. The output plane of the nonlinear medium (a rubidium vapor cell) is imaged on a
camera to study the fringe contrast at z = L.

To obtain the dispersion relation, we use the contrast measured as a function of kx and record
the successive minimum locations in kx shown in Fig 4.9(a). The grey curve corresponds to
a non-interacting case via setting the frequency far away from the resonance (∆ = −6 GHz).
While the red curves determine the interacting case with an input power P = 90 mW , cell
temperature T = 128◦C with ∆ = −1.5 GHz. Since we have created two counter-propagating
excitations in the fluid by imposing a phase modulation, minima occur when ω(kx) = p(π/L),
where p is an integer. In Fig.4.9(b), we plot the dispersion relation for the different detuning
by reporting the kx positions of the contrast minima from Fig.4.9(a) and assigning them a
frequency pπ = L. We compare it to the parabolic dispersion (in black) obtained with the
same method in the non-interacting case by setting the fluid laser far-off resonance. For the
non-interacting case, we obtain the fit parameter ∆n = 0. While for the interacting cases,
in which we tune the detuning ∆ = −2.5 GHz (green curve), ∆ = −2.0 GHz (yellow curve)
and the ∆ = −1.5 GHz (red curve), the fit nonlinear refractive indexes give ∆n = 0.5 × 10−5,
∆n = 0.7 × 10−5 and ∆n = 1.0 × 10−5, respectively. From Fig.4.9(b), we can see that the
contrast minima towards a smaller kx characterize the interaction between the photons. The
contrast minima corresponding to kx moves to a point substantially further away compared to
the weak interaction case.

We carry out the same experiment but with different experiment parameters: input power is
90 mW and the cell temperature T = 106◦C in the nonlinear case, as shown in the Fig.4.10(a).
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(a)

(b)

Figure 4.8: Experimental images of the density obtained respectively for kx = 27.8 mm−1

(minimum of contrast) and kx = 43.2 mm−1 (maximum of contrast) in the non-interacting case
(∆n = 0). These images are taken with a large modulation depth for illustration.
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Figure 4.9: (a) Contrast results (smoothed and normalized) for the reference far-off resonance
case (grey) with ∆n = 0 and a close-to-resonance set (red) with an input power of 90 mW ,
a cell temperature of 128◦C and an absorption of 50%. The shift of the minima of contrast
toward the smaller kx for the ∆ = −1.5 GHz set, shown by the grey arrow, is evidence of the
nonlinear effect taking place. (b) Dispersion Ω(kx) extracted from the minima of contrast of the
reference far-off-resonance set, and for three data sets with decreasing detunings ∆ = −2.5 GHz
(green curve), ∆ = −2 GHz (yellow curve) and ∆ = −1.5 GHz (red curve ) with a laser power
increased to 105 mW . The dots show the extracted experimental values Ω(kx) = pπ/L for the
p-th minimum and the full lines the fits of the Bogolioubov dispersion. The resulting values of
∆n are indicated in the legend.
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We extract the structure factor from this contrast measurement using the methodology de-
scribed previously. We first calibrate the phase imprinting efficiency of the SLM, the modula-
tion transfer function of the optical system, and the depth of phase modulation experimentally
by measuring the response function U for the non-interacting case. Since U is not modified
while changing ∆n, the structure factor for the interacting case is obtained by dividing the
contrast maxima values for ∆n ̸= 0 by this calibrated value of U to obtain a normalization to
1 at large kx. Experimentally, it corresponds to the ratio between the red and black maxima
for the same p in Fig.4.10(a). The results are presented in Fig.4.10(a) for a weakly interacting
fluid (∆ = −1.5 GHz) and non-interacting case (∆ = −6 GHz). The structure factor is a
normalized, unitless quantity, that characterizes the spatial density-density correlations.

To complement our measurement of the structure factor, we provide a quantitative comparison
with the Feynman relation [11]:

S(kx) = k2
x/2k0)

ΩB(kx) (4.8)

The Feynman relationship predicts the excitation spectrum and structure factor of the con-
densates in the phonon regime drops to zero when the external interaction is neglected. It
provides a fundamental understanding of the collective response for the ultra-cold gas in the
small phonon regime without the spin.

Figure 4.10(b) clearly shows that S(kx) is highly reduced at low kx (long wavelength). This
can be explained by the creation of correlated pairs at +kx and −kx which minimize the total
energy of the system, known as quantum depletion [71].The solid red line shown in Fig.4.10(b)
presents this relation with no adjustable parameters.

We also extract the dispersion relation in these experimental parameters, shown in inset of
Fig.4.10(b). The dots are the experimental points, and the full lines are fitted to the Bo-
goliubov relation. For the noninteracting case, we obtain the fit parameter ∆n = 0 with an
uncertainty of 2 × 10−7. This value agrees, within the resolution of our experiment, with the
expected quadratic dispersion ωlin = k2

x/2k0 in the absence of interaction. For the interacting
case, the fit of the Bogoliubov dispersion relation gives a value ∆n = 4.6 × 10−6 ± 3 × 10−7.
This is the value we used to plot the Feynman relation in order to compare it with our data
without extra adjustable parameters in Fig.4.10. Using the relation cs = c

√
∆n, we can extract

the sound velocity cs from these fits, and we obtain cs = 2.1 × 10−3c.

Finally, we evaluate the sensitivity of this method for resolving weak interaction (small ∆n).
The energy offset accumulated in the linear part of the dispersion translates into an energy shift
at large kx. The dispersion curve with ∆n ̸= 0 is vertically shifted relative to the non-interacting
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Figure 4.10: Static structure factor measurement for close-to-resonance set with an input power
of 90 mW , a cell temperature of 106◦C, and an absorption of 40%. The dashed line at S0(k) = 1
is the structure factor of a noninteracting gas (coherent state). The solid red line is the Feynman
model given by Eq. (7) with the parameter ∆n = 4.6 × 10−6.

one (∆n = 0). We calculate this shift at large kx as:

ΩB(kx) − ωlin(kx) =

√√√√k2
x|∆n| +

(
k2

x

2k0

)2

− k2
x

2k0
≈ k0∆n (4.9)

The value of ∆n is then directly obtained by the difference with the noninteracting reference
at high kx. Knowing the uncertainty on kx to be dkx = 0.2 mm−1, it is possible to estimate
the smallest nonlinear index value achievable with this technique to be ∆n = 2 × 10−7(cs =
0.45 × 10−3c). This is more than an order of magnitude better than previous techniques using
a group velocity measurement we introduced earlier.
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4.4 Conclusion
In this work, we have implemented Bragg spectroscopy in a paraxial fluid of light. This tech-
nique has proved to be an essential tool for studying ultracold atomic BEC and was missing in
the fluid of light platforms. The optical analogue of the Bragg spectroscopy technique allows
us to measure the dispersion relation with a better resolution at a low speed of sound. We
show that our implementation is robust and highly sensitive since it allows us to measure the
interactions an order of magnitude weaker than previously reported. Importantly, we present
a measurement of the zero temperature static structure factor, which could be translated to
the excitation strength of the phonons. It shows a good agreement with the Feynman relation
because we find a significant reduction compared to free particles. This measurement of the
structure factor reveals the presence of pair-correlated particles in a paraxial fluid of light.
These results open the way to measuring Tan’s contact and observing beyond mean field effects
in photon fluids.



Chapter 5

Oscillating spectrum of a quenched
quantum fluid of light

According to the quantum field theory, pairs of particles can be generated from the quantum
vacuum when system parameter changes. This chapter introduces the oscillating spectrum
of a quenched quantum fluid of light by sending a near-resonant laser pulse propagating in a
warm atomic vapor cell. When photons propagating cross at the front and back faces of the
nonlinear medium in this relatively simple setup, they encounter a pair of abrupt jumps in
the interaction parameter. The fluid of light is stimulated as a result of these two quantum
quenches. The fundamental excitation mechanism in the weak-nonlinearity regime is the emis-
sion of pairs of correlated counter-propagating Bogoliubov phonons, which results in unusual
characteristics in the intensity distribution and the near- and far-field two-body correlation
functions. We calculate the static structure factor and observe an acoustic peak in the density
power spectrum, known as Sakharov oscillating, which is usually discussed in cosmic microwave
background (CMB) radiation. This interesting analogy can then be drawn toward the analogue
of cosmological particle creation. The result of this section has been published in: “Analogue
cosmological particle creation in an ultracold quantum fluid of light”, Nat. Comm, 13(1):1-7
(2022) [30].

65
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5.1 Background

One of the most remarkable predictions of modern quantum theory is that the vacuum of space
is not empty. In fact, we often consider the quantum vacuum as containing ubiquitous fluc-
tuations, as implied by the Heisenberg uncertainty principle. Although the virtual particles
(that make up the quantum vacuum) whose observable effects are not visible directly, it is
an outstanding prediction of quantum field theory that the vacuum can generate pairs of real
particles when boundary conditions are suddenly changed. For example, the quantum vacuum
fluctuation (propagating in the cosmic fluid as acoustic pressure wave) due to the rapid expan-
sion of the very early Universe can tear these fluctuations apart and, thereby, turn them into
pairs of real particles [73, 74]. This is responsible for the generation of the seeds for cosmic
structure formation and further explains why we can see a colorful world today [75]. However,
the rate of expansion of our Universe is too slow to create a measurable amount of particles
in the cosmic microwave background radiation (CMB) at present. What is exciting is that the
field theory neglects the microscopic details. And the frequencies of particle modes evolving
over time [76], so we can apply the Bogoliubov transformation to connect the mode states at
earlier and later times [77]. As a result, it is possible to create analogue cosmological particles
via various quantum fluids in the laboratory.

In fact, analogue cosmological particle creation is a type of dynamical Casimir Effect (DCE),
which is defined as the generation of pairs of real particles or photons from the vacuum as a result
of a non-adiabatic change of a system parameter or boundary condition. It has been reported
that a periodically oscillating mirror could convert virtual photons into directly observable pairs
of real photons (Pair particles will be generated at frequency Ω/2 for a sinusoidal modulation at
frequency Ω) [78, 79]. This kind of pair generation is due to a mechanical movement of mirrors,
named “mechanical” DCE. An analogue effect can be achieved by simply modulating one of
the system parameters by changing the boundary conditions, labeled “parametric” DCE. It
has been suggested that a periodic change of an optical cavity either filled with or constituted
by a medium of refractive index n is equivalent to a periodic change of the boundary conditions.

The change in the interaction strength in atomic superfluid is analogous to an optical index
change. A key experimental observation was that the quench excites acoustic waves, which in-
terfere in both the spatial and temporal domains, leading to Sakharov oscillations. The quench
in this context does not indicate the rapid cooling of the metal from the high temperature at
which it is formed in the heating process to increase its hardness and mechanical strength. It
should be noted that quench refers to how the quantum fluid responds when subjected to an
abrupt environmental change. The Sakharov oscillations are usually discussed in the context
of universe evolution and the anisotropy of the cosmic microwave background. Notably, the
oscillations are unaffected by the microscopic specifics of the medium and have been observed
by quenching the sample and monitoring the subsequent density fluctuations at different time
and length scales in an atomic superfluid [45]. Sakharov oscillations are identified as the multi-
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peak structure in the atomic density power spectrum, resembling that of the cosmic microwave
background (CMB). So this oscillating offers indispensable information for inferring the com-
position of the universe and its evolution.

We want to use the quantum fluid of light to simulate the expansion process of the universe.
In particular, we report on the spontaneous production of analogous cosmic particles via the
quantum fluid of light in laboratory circumstances. Compared to the cosmological particle cre-
ation in the early universe, the radiation pressure in the cosmic fluid can be considered as the
interactions between the photons. To generate the sound in the quantum fluid of light, we send
a near-resonant pulse laser into a Rubidium vapor cell so generating two-photon interaction
quenches at the front and the back faces. The interaction between photons is zero when a laser
beam is near the atomic resonance in the vacuum because the coupling cross-section is too small
to be insignificant. However, as the beam enters the nonlinear medium’s front face, the situation
changes because the interaction begins to play a role as a result of the nonlinear medium’s χ(3)

Kerr nonlinearity. This is the first quench in which the photon interaction abruptly changes
from zero to nonzero. At the back face of the Rubidium vapor cell, the photon interaction
drops to zero and experiences the second quench. The emission of correlated-phonon pairs in
the fluid of light due to the quantum quench of the photon-photon interaction constant can
also be detected in momentum space by taking a far-field and spectrally resolved picture of the
light emerging from the back face of the nonlinear medium.

5.2 Theoretical considerations
We want to investigate analogous cosmological particles by calculating the static structure factor
so that a comparison with the cosmic microwave background power spectrum. To extract the
dynamics of phonons and search for Sakharov oscillations, we calculate the structure factor of
the quenched superfluids. The structure factor S(k, t). which measures the power spectrum of
spatial density fluctuations, is analogous to the angular power spectrum used in analyzing the
CMB radiation. The static structure factor S(k) is defined as the ratio of the spatial Fourier
transform of the density fluctuation to the total number of particles, which can be expressed
as a mathematical formulation:

S(kx, ky, k
′
z) = ⟨|δρ(kx, ky, k

′
z)|2⟩

N
(5.1)

where δρ(kx, ky, k
′
z) is the spatial Fourier transform of the density fluctuation δn(kx, ky, k

′
z) at

time τ , and N is the number of total photons. According to this definition, it is clear that
S(k) = 1 at zero temperature for non-interacting gas, reflecting the presence of spatial shot
noise (quantum fluctuations) and the absence of correlations between the opposite modes.

The operator b̂†
k corresponds to the creation of a quasiparticle after the quench, in mode

k = (kx, ky, k
′
z) oscillating at frequency ωk. In the presence of quasiparticle populations
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N ≡ ⟨b̂†
kb̂k⟩ and correlations C ≡ ⟨b̂kb̂−k⟩, the mean occupation numbers N are real and posi-

tive, while C is in general a complex number. The static structure factor within the Bogoliubov
approximation is given by:

S(k) = 1 + 2N + 2Re(Ce−i2ωkτ ) (5.2)

The populations and correlations are given by

N = β2 +N0(α2 + β2) + 2αβRe(C0) (5.3)
C = αβ + C0α

2 + C∗
0β

2 + 2αβN0 (5.4)

Where N0 ≡ ⟨â†
kâk⟩ and C0 ≡ ⟨âkâ−k⟩ are the populations and correlations before the quench,

and the operators are related by the Bogoliubov transform b̂k = αâk + βâ†
−k. Since our series

of two quenches, Eqs. (5.3) and (5.4) are applied twice. Because each quench either starts or
ends with no interactions. α and β are the same Bogoliubov coefficients which diagonalize the
Hamiltonian of a weakly-interacting quantum fluid. In the absence of quasiparticles before a
given quench, the pair production is spontaneous, and Eqs. (5.3) and (5.4) becomes N = β2

and C = αβ.

5.3 Experimental Setup and result

We send a 100 ns laser pulse with 100 mW power and 4 mm Gaussian waist into a rubidium
85 vapor cell heated to 150◦C via the resistance covered the cell. The laser is detuned -1.5
GHz from 5S1/2, F = 3 → 5P3/2 transition, giving vg = 0.007c. When a coherent light passes
through the nonlinear medium, the photons experience twice the sudden jumps of interaction
parameter upon crossing the nonlinear medium’s front and back faces. And the Kerr nonlinear-
ity resulting from atomic resonance causes a repulsive interaction between the photons. This
interaction appears suddenly at the entrance of the rubidium cell and drops to zero rapidly at
the exit plane of the cell. Back-propagating light waves caused by reflection on the interfaces
would break the positive-z laser propagation reformulation in terms of effective time evolution.
To avoid dealing with them, we assume that the surfaces of the nonlinear-dielectric layer have
a perfect anti-reflection coating. When the sudden change of the photon-photon interaction
strength from zero to g ̸= 0 occurs at z = 0, pairs of correlated Bogoliubov waves of opposite
wave vectors ±k are spontaneously emitted.

In such a configuration, the photon-photon interaction constant undergoes a sudden hat-shaped
modulation along the optical axis. What is interesting for us is that the sudden emergence of
the interaction at the entrance plane can mimic the universe’s contraction process. The rapid
decrease of the interaction at the exit plane of the cell can be used to simulate the expansion of
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Figure 5.1: The analogue universe. a The fluid of light (red) is a laser pulse traversing a
heated 85Rb vapor cell. The axial position gives the effective time τ . The quenches occur at the
entrance and exit of the vapor cell. τ = 0 corresponds to quench 2. The time between the two
quenches is τ12. b. The true time gives an effective third spatial dimension z′. c. The typical
image of the fluid of light integrated along z′, given in units of photon density. An effective
time τ = 103 ps after quench two is shown.
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the Universe. As a result of these two quenches, the fluid of light gets excited, and its quantum
state, after the conservative evolution across the nonlinear material can be reconstructed from
the statistical properties of the transmitted light. The resulting quantum correlations appear-
ing in the transmitted light reveal the spontaneous emission of correlated counterpropagating
excitations in the photon fluid.

The fluid of light is imaged on a CMOS camera, as shown in Fig.5.1(a). We tune the imaging
system to pick out a certain z after the cell by fixing the effective time τ after the second
quench. And the camera integrates over true time, as illustrated in Fig. 5.1(b). The power
spectrum is computed by 2-dimensional Fourier transforms within the dashed square shown in
Fig.5.1(c).

In the Fig.5.2, we observe the ring patterns in S(kx, ky, kz′=0), oscillating as a function of
k. Pairs of quasiparticles with momenta ±k are generated at the moment of the quench with a
random overall phase. A definite phase relationship between +k and −k oscillating with various
frequencies ωk. The synchronous generation ensures the phase coherence of the acoustic wave,
while the sound speed v relates the time and length scales of wave dynamics. Assume that
two counter-propagating waves with momenta ℏk and −ℏk are created with a relative phase ϕ,
After propagating for a time τ , the waves interfere constructively when 2kvτ + ϕ = 2mπ and
destructively when 2kvτ + ϕ = 2(m − 1/2)π, where m is integer. This explains why we see in
Fig.5.2 that the interfering bright and dark ring fringes because only certain k-values interfere
constructively at the observation time τ , resulting in a ring pattern. The rings shrink with τ

since lower frequencies take longer to develop oscillations. The shrinking pattern of the rings
is described quantitatively by the Eq.5.2, indicated by the dashed green curve.

The azimuthal averages S(k) of S(kx, ky, kz′=0) are indicated in black in Fig.5.3. The red
curves are calculated from Eq.5.2, taking into account two quenches, and the variations in
α, β, ωk, which result from the measured absorption. It is clear that there is a great agree-
ment between the experimental black and theoretical red curve. The most noticeable feature in
Fig.5.3 is that density fluctuations of the sample after the quench show a multi-peak structure
in the power spectrum. Depending on the value of the wave vector k, the emission processes at
the back interfaces reveal constructive or destructive interferences at well-defined periods. The
multiple peaks and troughs in momentum space result from the interference of sound waves
with different wavelengths and are the key features of Sakharov oscillations in the angular
spectrum of the CMB radiation. Moreover, At τ = 0, the feature is not so clear, as a result of
strong interaction adds a short correlation length. After the quench, the fluctuations amplify:
a peak in the spectrum quickly appears in the first few picoseconds, and its location moves
towards small k as time τ increases. The moving acoustic peaks as time evolves suggest that
the correlations are spreading out at a finite speed of sound. This behavior supports the pic-
ture of phonons in the quantum fluid of light created coherently and can interfere at later times.
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Figure 5.2: The static structure factor S(kx, ky, kz′=0) at various times after the second quench.
The dashed green curves indicate the first minimum of the red curves in Fig.5.3. The symmetric
white points near the center of all panels are due to spurious fringes in the imaging system.
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20 ps

Figure 5.3: Radial Profile s of Fig.5.2 The black curves are the experimental data. The red
curves are the prediction for analogue cosmological particle creation from the Eq.5.2.
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20 ps

Figure 5.4: Density-density correlations. The experimental (black) and the theoretical (red)
curves are obtained from b by the spherical Fourier transform of Eq.5.5.
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We also demonstrate the spatial density correlations produced by the analogue cosmological
particle creation. We derive the density-density correlation function g(2)(r) from the S(k) by
spherically-symmetric Fourier transform:

g(2)(r) − 1 = 1
2π2ρ

∫
dkk2 sin(kr)

kr
[S(k) − 1] (5.5)

At the back face of the nonlinear medium, the correlation between counterpropagating Bo-
goliubov excitations generated by the quench of the optical nonlinearity at z = 0 result in an
oscillatory structure in the g(2) function. Fig.5.4 shows g(2)(r) − 1, found by applying Eq.5.5 to
fig.5.3. The oscillations are spherical shells propagating outward. This oscillatory behavior of
the correlation function can be interpreted as resulting from a dynamical Casimir emission of
elementary excitations on top of a quantum fluid of light presenting a quench of the photon-
photon interaction constant. The amplitude of the fringe pattern diminishes as the separation
distance r grows: The correlations between Bogoliubov excitations of opposite momenta are
naturally all the weaker as the excitations are separated in space and time. The correlations
are seen to reach increasing distances as time increases. They are on the order of 10−6, which
implies that the relative density fluctuations are on the order of 10−3. The oscillations are clear
despite the small signal, due to the high sensitivity of the optical detection. The theoretical
red curves are obtained by applying Eq.5.5 to Eq.5.2, and quantitative agreement with the
experimental curves are seen.

5.4 Conclusion
This experiment further establishes that the paraxial quantum fluid of light is an important
participant in quantum fluids by sending a near-resonant pulsed laser beam through a warm
rubidium vapor cell. In this configuration, the direction of propagation of the laser beam can
be considered as the effective time in the Bose-Einstein condensates. With this device, we
studied how a quantum fluid reacts to rapid changes in interaction in the second quench and
have demonstrated the stimulated generation of analogous cosmological particles in the quan-
tum fluid of light [32]. We evaluate the density structure factor after the second quench to
study the evolution of the density fluctuations and search for the Sakharov oscillations. And
an acoustic peak was observed in the density power spectrum, resembling those in the angular
spectrum of CMB radiation.



Chapter 6

Turbulence in two counter-propagating
fluids of light

Turbulence, characterized by cascades of excitations across lengthscales, is ubiquitous in nature
[80]. Quantum turbulence studies the turbulence phenomenon in quantum fluids with special
quantized vortices and is common with its classical counterparts. Although the superfluid tur-
bulence has been studied for centuries and some universal and classical properties have been
found, such as the same Kolmogorov energy spectrum in three-dimensional (3D) turbulence.
However, incompressible two-dimensional (2D) classical fluids exhibit different flow character-
istics. The existence of a range of length scales (the inertial range) over which kinetic energy is
transferred from small to large length scales is known as an inverse energy cascade. It has been
theoretically reported that the turbulence in super Helium and the cold atomic gas exhibit the
key Kolmogorov −5/3 law. But a major challenge is how to prove the inverse energy cascade ex-
perimentally. Here, we investigate hydrodynamics behaviors in fluid of light by interfering two
photon fluids. We observe the emergence of statistical isotropy, a key phenomenon associated
with the development of turbulence. Importantly, we also get the k−5/3 Kolmogorov power law
in the inertial range in the incompressible kinetic energy spectrum thanks to the easy access to
the velocity in our two counter-streaming fluids of light configuration. This experiment paves
the way for the experimental investigation of out-of-equilibrium dynamics in a homogeneous
density configuration. The paper titled “Inverse energy cascade in two-dimensional quantum
turbulence with fluids of light” is in progress.

75
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Figure 6.1: Leonardo da Vinci’s Studies of water. The fall of a stream of water from a sluice
into a pool. Source: Wikimedia Commons.

6.1 Background
Turbulence, one of the most common and striking phenomena in nature, was first described
and investigated by Leonardo da Vinci. Fig.6.1 shows a pattern of vortices of various sizes.
Since then, studying the turbulence phenomenon underlying the oceans [81], atmosphere, and
supernovae [82] has drawn much attention from scientists since it was believed to be the last
question unsolved in the classical physical community. Turbulence, characterized by a large
number of degrees of freedom, distributed over a substantial range of scales, produces a dis-
ordered state both in space and time. Although they have intricate spatiotemporal dynamics,
turbulent flows frequently follow a universal law: transfer of energy from large to small length-
scales in turbulent flows in Fourier space discovered by Kolmogorov in [83]. Although it has a
unique and important role in modern physics, it is a sad story that not only can we tell more
about how turbulence appears, it is impossible for us to predict the behavior of turbulence at
a given time until today.

6.1.1 Classical turbulence (CT)
When we think of "turbulence," a wide range of living phenomena come to mind. Maybe you
wish to give a precise description and definition of turbulence. In fact, many physicists have
attempted to do it in this manner. However, due to the difficulty of giving a general and
complete definition, more researchers are inclined to abandon the formal definition in favor of
intuitive characterizations since we haven’t learned enough about turbulence until this point.
It was believed that turbulence in a classical fluid is expected to exhibit all of the following
main features [80, 84]:

1. Irregularity
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Figure 6.2: Cartoon of a turbulent wave’s dynamics in real space. By forcing the matter-wave
field at a significant lengthscale, 1/kF , energy is introduced, and it propagates to smaller scales
as a result of nonlinear interactions. Once the excitations reach the 1/kD small dissipation
lengthscale at time td, a steady state can be created.

The turbulent flow is a random, free, and chaotic spectrum of different scales. The
turbulent vortex exists for a limited time in a specific region of space before being de-
stroyed. The smallest vortices at the far end of the spectrum are converted into thermal
energy by viscous forces, causing the temperature to rise.

2. High diffusivity and thus efficient mixing

The diffusivity and exchange of momentum increase in a turbulent flow. Increased diffu-
sivity raises resistance (wall friction) and heat transfer in internal flows like channels and
pipes.

3. High Reynolds numbers

Reynolds studied the transition from laminar to turbulent flows in a pipe and used the
Reynolds number to characterize the behavior of dye streak flow in a pipe with a smooth,
transparent wall: Re = ρUL/µ, where ρ is the flow density, µ is the viscosity, the L is the
length of the pipe, and U is the velocity. Reynolds number can also be translated to the
ratio of inertial forces to viscous forces within a fluid subjected to relative internal move-
ment due to different fluid velocities. Reynolds concluded that turbulence takes place at
high Reynolds numbers.

4. High Dissipation
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At the moment, all of our understanding on turbulence is based on Richardson’s the-
ory, which states that energy injected into a system at a large lengthscale flows without
loss through momentum space until it is dissipated at some small lengthscale at the same
rate in the 1920s [85]. This no dissipation occurs range, called inertial range, or interme-
diary range, was independent of viscosity. We describe this turbulence cascade process in
fig.6.2: The field is continuously forced from the mean flow at a large length scale 1/kF ,
and the excitation propagates to smaller length scales due to nonlinear interactions until
kinetic energy in small vortices is converted to thermal energy. The energy is dissipated
at kD at the same rate as it is injected at kF . This scaling is thought to arise from a
Richardson cascade process as large vortices break up into smaller and smaller vortices
until at very small scales, energy is dissipated.

In 1941, Kolmogorov proposed a universal law describing energy cascade with a self-
similar behavior of the turbulent flow [83]. Assume in the simplest case of an isotropic
and homogeneous steady state, the energy injected into the system at the largest length
scale F to the smallest one D, with a constant dissipation rate ϵ as shown in fig. 6.3.
The Reynolds number connects these length scales, D/F ≈ Re−3/4. Instead of working
in real space, it is convenient to go to the momentum space to describe the cascade as a
function of wavenumbers k = 2π/r. Kolmogorov revealed that some aspects of turbulence
are universal in the inertial range: the kinetic energy is given by Ek = Cϵ2/3k−5/3.

5. Continuum

Although the flow has small turbulent scales, they are much larger than the molecular
scale and can be considered a continuum.

6.1.2 Quantum turbulence
In comparison to classical fluids, superfluids exhibit fascinating characteristics such as irro-
tational and frictionless flow, raising fundamental questions about the nature of turbulent
cascades [86]. Classical turbulence is made up of vortices with different vorticity and size, and
in order to mathematically analyse viscous fluid dynamics, the Navier-Stokes equation must
be solved[87]. QT, on the other hand, is made up of simpler vortices structure, each with a
well-defined vortex core and quantized circulation. Because superfluid flow is inviscid, vortices
cannot decay through viscous vorticity diffusion. In fact, the term QT was first used in 1982
by Barenghi in his Ph.D. thesis [88]. Donnelly and Swanson, who adopted the term in 1986,
were responsible for the shift from the commonly used superfluid to QT [89]. This change
was not simply a matter of terminology; it showed that turbulence had more to do with the
quantization of vortices than the lack of viscosity of superfluids.

Despite differences due to the nature of vortices, classical and quantum turbulence share pro-
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Figure 6.3: Energy injection at large lengthscales at kF and transfer it over the inertial range
to the small lengthscale at kD. The incompressible energy cascade exhibit the k ∼−5/3 law.

found similarities that highlight turbulence’s universality. In 3D turbulence, the vortex core
structure is unimportant in locations far from vortex cores and for length scales greater than
the average intervortex spacing. The quantized vortex lines are analogous to vortex filament
lines in an Euler fluid [90]. Therefore, the classical and quantum turbulence exhibit same Kol-
mogorov spectrum E(k) ∼ k−5/3 in the inertial range for 3D turbulence.

QT experiments have been conducted for over half a century with superfluid helium systems[91].
Because superfluid 4He and 3He-B systems have a wide range of accessible length scales, tur-
bulent vortex tangles can contain hundreds of thousands of vortices. The intrinsic superfluid
parameters, such as the fixed strength of atom-atom interaction and the homogeneous density
make it a good participant in the study of quantum turbulence. The same classical Kolmogorov
scaling has been verified numerically and experimentally in liquid helium [92, 93, 94]. How-
ever, controlling single-vortex dynamics in a turbulent 4He and 3He-B superfluid is extremely
difficult. Moreover, the strong interaction between atoms in liquid and superfluid helium limit
the theoretical understanding [95].

Superfluid Bose-Einstein condensates (BECs) have recently received attention because many
condensate parameters can be finely controlled. By adjusting an external magnetic field around
a Feshbach resonance, one can control the strength of atom-atom interactions[96]. Moreover,
the visualization of vortex cores thanks to the imaging techniques make it more easier to explore
to control individual vortex dynamics and position. The presence of a Kolmogorov spectrum
has also been established in numerical studies of 3DQT in trapped and homogeneous atomic
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condensates using the Gross-Pitaevskii equation (GPE) [97, 54, 98]. These evidence has sparked
intense interest in the similarities between classical turbulence (CT) and quantum turbulence
(QT), with the belief that a quantitative understanding of aspects of QT may aid in a broader
understanding of the whole turbulence subject.

There are lots of papers that reported the quantum vortices and turbulence in the atomic
BECs. For example, the São Carlos group was responsible for the first evidence of QT in
trapped dilute atomic BECs and found turbulent cloud expands keeping the ratio between
their axis constant in 2009 [55]. It has been demonstrated that the formation of clusters of
quantum vortices is triggered by the increase of the incompressible kinetic energy per vortex
[99]. The observation of a cascade process characterized by an isotropic power-law distribution
in momentum space has been reported by driving a Bose-Einstein condensate in an optical box
out of equilibrium with an oscillating force that pumps energy into the system at the largest
length scale [100]. The Kelvin-Helmholtz instabilities, which were believed to occur at the
interface of two fluids with a relative motion and give rise to the formation of the vortices, have
been demonstrated to contribute to nucleating the vortices and eventually lead to the turbulent
state by directly observing the quadrupolar modes, as well as vortex structures in the interface
of the dense core [101].

It is critical to ascertain whether the highly excited state is truly QT. Several ways for identi-
fying the turbulent state are explored in this part.

Signature of quantum turbulence

1. Power low

What concerns us is how to know a N excited state is the quantum turbulence. It has been
demonstrated that if the incompressible kinetic energy spectrum of the turbulent regime obeys
Kolmogorov’s −5/3 law [102], we could be sure that the system is turbulent.
The wave function of the condensate can be written as

Ψ(r, t) =
√
n(r, t)eiθ(r,t) (6.1)

The kinetic energy Eint can be expressed as sum of the superfluid kinetic energy Ek and
quantum pressure energyEq: Eint = Ek + Eq, where the Ek = (ℏ2/2m)

∫
dr |

√
n∇θ|2 and

the Eq = (ℏ2/2m)
∫
dr |∇

√
n|2.The quantum pressure energy only happens when there are

sharp variations in the condensate density, such as at vortex cores, dark solitons, and other
density discontinuities. The vector field

√
n∇θ can be divided into incompressible and the

compressible components:
√
n∇θ = (

√
n∇θ)i + (

√
n∇θ)c, where the ∇ · (

√
n∇θ)i = 0 and

∇ × (
√
n∇θ)c = 0. Therefore, the incompressible and compressible kinetic energy is defined

as: Ei,c
k = (ℏ2/2m)

∫
dr |(

√
n∇θ)i,c|2. They correspond to kinetic energy and sound waves, re-
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spectively. As a result of the incompressible and compressible fields orthogonal, it follows the:
Ek = Ei

k + Ec
k. The kinetic energy spectrum as a function of the wavenumber k is defined as:

ϵi,c
k = ℏ2

2m

∫
k2sinθdθdϕ

∣∣∣∣∣
∫
eik·r(

√
n∇θ)i,c dr

(2π)3

∣∣∣∣∣ (6.2)

such Ei,c
k =

∫∞
0 ϵi,c

k (k)dk. The Kolmogorov laws states that the incompressible energy spectrum
obeys the power law ϵi

k(k) ≈ kν where over the range of k [54].

2. Vortex line density L on t

The structure of the quantum turbulence is reflected in the time dependence of the decay
of the total vortex line density L after tuning off the excitation that sustains the turbulence.
Correlations of vortex tangles can be classified into two kinds [93]: correlated vortex tangle
and uncorrelated vortex tangle. For the correlated vortex tangle, it exhibits the Kolmogorov
spectrum. The energy is then transferred to smaller scales by Richardson cascades, and L

decays as t−3/2. For the uncorrelated vortex tangle, L decays as t−1.

3. Self-similar expansion

Another remarkable feature of quantum turbulence observed by Henn et al. The turbulent
state does not expand like either a quantum or a thermal but has a similar expansion preserved
the initial aspect ratio [55].

6.1.3 Two-Dimensional Turbulence

A direct Kolmogorov k−5/3 cascade from the forcing scale to the dissipated scale in the inertial
range is visible in 3D turbulence. 2D turbulence is the approximate counterpart produced in
the laboratory to simplify complex situations. Due to the presence of enstrophy, incompressible
two-dimensional (2D) classical fluids display very different flow characteristics [103]. Energy
flux toward shorter scales is suppressed in two-dimensional (2D) flows subject to small-scale
forcing, while kinetic energy is transported toward larger scales. These interactions result in
the well-known inverse energy cascade (IEC). This phenomenon is well-known in classical fluids
and is thought to be the cause of Jupiter’s great red spot [104] and was observer in soap films
[105]. Despite the fact that there is a wealth of information regarding 3DQT in BECs [106].
However, the proof of inverse energy cascade in the turbulence experiment is still missing. Un-
derstanding the fundamental characteristics of 2DQT requires additional work.
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6.2 Turbulence in the quantum fluid of light

As we have know that one major aspect that remains unexplored in quantum turbulence is the
experimental demonstration of an inverse energy cascade. In this work, we want to show that a
2D quantum fluid contains an inverse energy cascade by using the fluid of light platform. Two
counter-streaming phonon fluids with controlled velocities and densities collide to create the
turbulence. We are able to directly measure the fluid velocity and divide it into compressible
(linked to phononic-excitations) and incompressible (linked to vortices) components thanks to
optical techniques. This allows us to access to the role of vortices in the appearance of power
law decay of the kinetic energy. In addition, we also study the other hydrodynamics behaviors
of the quantum turbulence.

6.2.1 Numerical simulation

Two-stream instability is a widely studied phenomenon. In the paper [42], the author develops
a theory to describe the onset of the kinetic instability in the case of two photon fluids of light
with different velocities interacting in the nonlinear medium. This instability rooted in the
resonant energy transfer from the drift velocity to the elementary Bogoliubov excitations of the
photon gas. Inspired by this paper, we We use paraxial fluids of light in hot atomic vapors to
observe the hydrodynamic phenomena by varying the ratio of flow velocity to sound speed of
collective Bogoliubov excitations.

Let’s first analyze the behavior of the dispersion relation between two 2D photon fluids. [42].
We have two photon fluids of light and these two fluids satisfy the hydrodynamic equation 1.12
and 1.13. To clarify this derivation, we rewrite the hydrodynamic equation here.

∂ρ

∂z
+ ∇⊥(ρv) = 0 (6.3)

∂v

∂z
+ (v × ∇⊥)v = − g

nk0
∇⊥ρ+ 1

2∇⊥

(
1

√
ρ

∇2
⊥

√
ρ

)
(6.4)

The term inside the brackets on the right side of the Euler equation can be simplified to:

∇2
⊥

√
ρ = ∇⊥

(
1

2√
ρ

∇⊥ρ

)
= 1

2√
ρ

∇2
⊥ρ− 1

4
1
ρ3/2 (∇⊥ρ)2 (6.5)
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ρ = 1
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⊥ρ− 1

4
1
ρ2 (∇⊥ρ)2 (6.6)

Finally, the second term in Euler’s right side equation is expressed as:

1
2∇⊥

(
1

√
ρ

∇2
⊥

√
ρ

)
= 1

4

(
1
ρ

− 1
ρ2

)
∇3

⊥ρ (6.7)
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Now, we consider two fluids with the same density but one is considered as rest and another
photon fluid propagating with the velocity v0,:

ρ1,2 = ρ0

2 + δρ1,2 (6.8)

v1 = δv1, v2 = v0 + δv2 (6.9)

Inserting the above equations into the fluid dynamics equation, we get:

∂

∂z

(
ρ0

2 + δρ
)

+ ∇⊥

((
ρ0

2 + δρ
)
δv
)

= 0 (6.10)

∂δv

∂z
+ (δv · ∇⊥) δv = − g

nk0
∇⊥δρ+ 1

2ρ0
∇3

⊥δρ (6.11)

For the first fluid, we have:

∂

∂z

δρ1 + ρ0

2 ∇⊥ (δρ1) = 0 (6.12)

∂δv1

∂z
+ (δv1 · ∇⊥) δv1 = − g

nk0
∇⊥δρ1 + 1

2ρ0
∇3

⊥δρ1 (6.13)

The same applied for the second fluid,

∂

∂z

δρ2 + ρ0

2 ∇⊥ (δρ1) + v0 · (∇⊥δρ2) = 0 (6.14)

∂δv2

∂z
+ (δv2 · ∇⊥) δv2 = − g

nk0
∇⊥δρ2 + 1

2ρ0
∇3

⊥δρ2 (6.15)

Here, we assume that:
δρ1,2 = A1,2e

ikr⊥−iΩz (6.16)

where Ai is the amplitude, k is the transverse wave vector and Ω represents the frequency of
the elementary excitations. Inserting the eq.6.16 to the above hydrodynamics equations, finally
the dispersion relation can be expressed as:

1 − 1
2csk

2
(

1
Ω2 − k4/4 − 1

(Ω − v0 · k)2 − k4/4

)
= 0 (6.17)

Where the cs = c
√

∆n is the speed of the sound of the photon fluid. The Bogoliubov dispersion
of the weakly interacting Bose gas, which describes an acoustic regime at low momenta, can be
derived from eq.6.17. We also define the healing length ξ = 1

k0

√
|∆n|

as the scale where the

fluid behavior break and turns into a single-particle regime.
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Figure 6.4: Imaginary and real parts of the dispersion relation of two-fluid system. From left
to right, indicating the velocity of the fluid is increased, corresponding to Mach number β = 1,
β = 2, β = 3.

Then the solution gives:

Ωξ2 = 1
2kξ

(
β ±

√
2 + β2 + (kξ)2 ± 2

√
1 + 2β2 + β2(kξ)2

)
(6.18)

We obtain a two fluids counter-propagating modified Bogoliubov dispersion relation with unsta-
ble zones (Mach number β = v0/cs). Unlike the single-fluid dispersion relation, this collective
excitation spectrum features a region of instability when the right-hand inside of the root of
Eq.6.18 become negative. We also plot the real (blue curves) and imaginary parts (red curves)
of the dispersion relation in fig.6.4 for the different flow velocities. We could find that there
is always a region

√
β2 − 4 ≤ kξ ≤ β where the imaginary part of the dispersion relation is

greater than zero. And it is in this region that there is a gain of energy. The system will
dissipate excessive energy by generating vortices, which will cause instabilities similar to those
seen in classical hydrodynamics.

We also employ a split-step Fourier method [107] to integrate the nonlinear Schrödinger equa-
tion in order to investigate the simulation model of the two fluid instabilities and the re-
sults shown in the fig.6.5. Panels (a)(b) depict a typical evolution of the two-fluid density
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ρ = |ϕ|2 = |E|2 for the linear case and nonlinear case. The instability develops slowly as one
fluid propagates toward the other. As we can see for the nonlinear stage (b), vortex-antivortex
pairs are formed. Panels (c)(d) show the phase distribution extracted from panels (a)(b).
Panels (e)(f) present the Fourier spectrum of the region of interest from panels (a)(b).

6.3 Experimental design and result

6.3.1 Experiment method

This field propagates along the z-axis into a cylindrical cell of length L = 5 cm and diameter
D = 2.5 cm filled with an isotopic mixture of 95% of 85Rb and 5% of 87Rb. Such a vapor behaves
like a nonlinear medium whose strength can be tuned experimentally. The fluid is created with
a µquans laser source whose wavelength λ is tuned near the D2 resonance of 85Rb. The laser
detuning can be adjusted from −5 to 5 GHz with respect to the F = 3 → F ′ transition of 85Rb

by the voltage applied on the laser device. In practical implementation, the detuning is set at
∆ = −5 GHz for the photon non-interacting case and ∆ = −2 GHz for the photon interacting
case, which is large compared to the Doppler broadening (≈ 250 MHz) such that the Lorentzian
shape of the line dominates. The atomic vapor density, as introduced in chapter 2, is controlled
by adjusting and stabilizing the cell’s temperature. To calibrate the value of n2, we measure
the far field intensity of a collimated Gaussian beam with the initial waist of 0.5 mm and peak
intensity I = 1.25 × 106 Wm−2. Due to self-phase modulation, this configuration generates
curved fringes and provides a measurement of the nonlinear phase ϕNL = k0n2IL accumulated
by the beam along its propagation. Here, we measure values of n2 = 6.75 × 10−10 m2W−1.
The nonlinearity can be adjusted through the beam intensity I, the detuning ∆ or the atomic
density of the vapour ρat (tunable with the vapour temperature).

The experimental setup is depicted in fig.6.6. An initial 500 mW laser beam is magnified
with the telescope and then sent to a SLM. The SLM displays a vertical and horizontal grating,
which imprints a phase modulation of wave vector ∆k⊥ that creates left and right two counter-
propagating fluids of light with opposite velocities. The non-diffracted beam corresponds to the
zero order of the grating and is cut by a slit in the Fourier plane. We only keep the first-order
laser beam diffracted by grating after the SLM to eliminate the unmodulated reflection on the
SLM. The beam waist ω = 0.5 mm is locate at the entrance of the nonlinear medium z = 0 with
a demagnification factor of 4, to increase its resolution. The experimental protocol consists of
fixing the laser transmission by adjusting the laser detuning ∆ after the cell has been heated
to a given temperature T . Here, we control our Rubidium vapour cell temperature at 150◦C

(the atomic density of ρat ≈ 9 × 1019 atoms /m3) and a transmission of 4%. The output plane
of the cell is imaged on the camera in order to observe the dynamics phenomenon of the fluid
of light at different effective time Z/ZNL(ZNL = 1/k0∆n) within the non-linear medium [41].
Since the nonlinear medium has a finite size, reducing ZNL through ∆n mimics an increase of
the effective propagated time. Another typical important lengths in the system is the healing
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Figure 6.5: Numerical results on the two-stream instability. Panels (a)(b) depict a typical
evolution of the two-fluid density ρ = |ϕ|2 = |E|2 for the linear case and nonlinear case.
The instability develops slowly as one fluid propagates toward the other. As we can see for
the nonlinear stage (b), vortex-antivortex pairs are formed. Panels (c)(d) show the phase
distribution extracted from panels (a)(b). Panels (e)(f) present the Fourier spectrum of the
region of interest from panels (a)(b).



6.3. EXPERIMENTAL DESIGN AND RESULT 87

PBS

Vapor

Vapor

HWP

Mirror

Cam

Z
=
0

Lens

SLM

Z=0

Z
=
L

Z=L

Figure 6.6: An experimental schematic representation of the experiment. The laser beam from
µquans laser source split in two (pump beam and probe beam) by a polarizing beam splitter
(PBS), coupled with a half-waveplate (HWP) to tune the power in each arm. A special phase
is imprinted on the pump beam with a spatial light modulator (SLM) and then focused on
the entrance of L = 5 cm rubidium cell heated at 150◦C used to create two photon fluids
propagating with different velocity. The probe beam as the reference beam interfere with the
pump beam by putting them together at a beam splitter (BS) used to extract the relevant
phase. A half-waveplate and a polarizer ensure that the reference has the same polarization as
the pump. A camera is used to record the image at the exit plane of the nonlinear medium so
as to see how the system evolves from the initial condition after propagating along the effective
time τ = Z/ZNL.

length ξ = 1/k0
√

2∆n, corresponding to the minimal length scale for density variation in the
transverse plane. The images captured by the camera in the real space detection arm offers
the possibility to measure the intensity and phase (The probe beam interacts with the pump
beam and the resulting interferogram is used to reconstruct the phase map) of the field directly,
which access to the optical fluid density and velocity in our experiment.

Fig.6.7(a) shows typical beam images obtained for the non-interacting case (∆n = 0) with
∆k⊥ = 45 mm−1. This non-interacting case is realized experimentally by setting a large detun-
ing (∆ = −5 GHz) from the 87Rb F = 3 to F ′ transition with a low laser power P = 10 mW ,
corresponds to an effective time Z/ZNL ≈ 0. The fringes shown here look like the normal
case of two beams interfering in the vacuum. The Fig.6.7(b) shows the Fourier transform of
Fig.6.7(a). For the nonlinear case, we set the experimental parameters as follows, the laser
detuning ∆ = −2 GHz from the 87Rb F = 3 to F ′ transition with a laser power P = 500 mW .
Under these conditions, the effective time equals Z/ZNL = 70. We can see from fig.6.7(c) that
fringes behave as snake shapes and occur lots of vortices in the meanwhile. Note that we don’t
change the phase image on the SLM, which means we use the same phase pattern on the SLM.
The interaction of photons is the only reason this phenomenon occurs. And the relevant Fourier
transform of fig.6.7(c) is showed in fig.6.7(d).
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Figure 6.7: The image captured by the camera in the real space in the non-interacting case
(∆n = 0) with wave vector ∆k⊥ = 45 mm−1, the laser power is P = 10 mW and detuning
∆ = −5GHz shown in fig.(a). The corresponding Fourier transform is shown in fig.(b). In the
interacting case, the laser detuning ∆ = −2 GHz with the laser power P = 500 mW is shown
in fig.(c). And fig.(d) is the Fourier transform.
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6.3.2 Evolution of the dynamics
To further study and understand how the vortices were created in our experimental setup and
the generation mechanism of the turbulent state. We use a camera that captures the near field
at the output of the medium for different power by progressively increasing the nonlinearity re-
alized by changing the power of the fluids of light, thus, reducing ZNL. We also reconstruct the
phase map of instabilities by interfering with the emitted light with a reference beam extracted
from the driving field before any modulation by the SLM. We observed the fluid evolution after
different effective times at the output facet as shown in Fig.6.8. Begin with the linear case, we
give a power of P = 10 mW with detuning ∆ = −5 GHz. In the linear regime, we observed
linear straight fringes behave as two beams interfering with each other in the air. The phase
map, on the other hand, is the same as the phase modulation placed on the SLM.

When the fluid power is increased to P = 100 mW , the fringes begin to curve in compari-
son to the linear case. It is also obvious that the larger image size than in the linear case is
most likely due to the nonlinear medium’s defocusing effect.

When the fluid’s power increased to P = 200 mW , the trend of the curve of fringes in the
center of the region of interest (ROI) substantially improved. Another discovery is that vertical
phase jumping lines (’solitons’) emerge as a result of system disorder and solitary wave that
propagates without being distorted in a nonlinear and dispersive fluid at this moment.

When the fluid’s power increases to P = 300 mW , there are instabilities in the interference
fringes caused by solitons moving at opposing velocities to each other and eventually breaking
up. Certain vortices appear on the phase map in the high power zone. It is well known that
dark solitons are unstable against snake instabilities and shatter into quantum vortex-antivortex
pairs. When the fluid power increases to P = 400mW , the instabilities begin to break quickly,
more vortices are generated, and the system becomes chaotic.

When the power of the fluid is increased to P = 500mW , we can see that more vortices
are generated in the system, and they are all distributed randomly. The system is currently in
a highly chaotic state. The image’s interferogram, which shows phase irregularities and dislo-
cation of fringes, also known as ’forks’ in the phase map, is the typical signature of vortices.
The phase shift of the quantum vortices indicated by the orange circle is clearly visible. It is
formed when solitons decay into vortex anti-vortex pairs with opposing circulation.

Remarks on the observation

• Turbulence is a phenomenon that occurs when the kinetic energy of a flowing fluid becomes
too large compared to the viscous forces. The excess energy will then be dissipated by
the system via the generation of vortex pairs.

• At low power, snake instabilities do not have the necessary evolution time to break into
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Figure 6.8: Experimental images of the density from the camera and the relevant region of
interest (green dashed region) phase map. Each image is taken with different power, from
10 mW to 500 mW at a step of 100 mW . Experimental parameters as follows: Detuning
∆ = −2 GHz, k⊥ = 17.5 mm−1 and cell temperature stabled at 105◦C with transmission
Tr = 4%.
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Figure 6.9: Density profile along kx in blue solid curve and along ky in red solid curve for
the different effective time. (a). In the non-interacting photon case, we use the grey dashed
line label the k⊥ = 22.5 mm−1 value of peaks occurs in the blue curve. This value is exactly
correspond to the value imposed on the SLM. We also plot this curve at (b). The effective time
Z/ZNL = 35 and (c). The effective time Z/ZNL = 70 for a clear comparison.

too many vortices. An increase of Mach number β accelerates the snake instability growth
and leads to vortex nucleation. The snake instability always leads to breaking up into a
pair of oppositely charged vortices to conserve the total topological charge of the system
to zero.

6.3.3 Isotropic behavior
To study the turbulence, we investigate how the density distribution in the momentum space
evolves line-integrated distributions parallel n(kx) and perpendicular n(ky) to the drive in the
linear and nonlinear regime.

We took 20 images for 3 different effective times (Z/ZNL = 0, Z/ZNL = 35, Z/ZNL = 70) under
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the same experimental conditions except for adding random noise. The initial state (τ = 0)
corresponds to the linear regime and is obtained by setting a large detuning (∆ = −5 GHz)
and low laser power (P = 10 mW). Longer effective times (τ = 35, 70) are obtained by setting
the detuning closer to resonance and a higher power. Then we perform a Fourier analysis to
gain access to the density profile in Fourier space n(k) long the kx and ky. Each configuration
is averaged over 20 images obtained by adding random noise to the input plane of the nonlinear
medium.

At the initial state (τ = 0), due to the angle imposed between the two fluids by the SLM mod-
ulation, a clear modulation (the vertical grey line ) at the forcing length-scale kf ≈ 22.5 mm−1

is visible along kx. This initial state reflects anisotropic forcing on a short time scale. The grey
curve plotted at τ = 35 and τ = 70 is the density profile along kx of the non-interacting case
multiplied by the power difference ratio. We see a clear reduction in the forcing peak as the
effective time increases, but the density spectrum remains anisotropic at short effective times
(τ < 70). A quasi-isotropic behaviour between the profile along kx and ky emerges at τ = 70.
The emergency of isotropy is seen in the convergence of two curves for k > k⊥ = 22.5 mm−1. So
we can say that beyond a sufficiently large effective time, the cascade is statistically isotropic.
While at low k, their distribution is anisotropic. This result agreement with a recent finding
in ultra-cold atomic gases about the emergence of statistical isotropy under anisotropic forcing
[108].

6.3.4 Velocity

We can directly extract the total velocity of the system vtot(r) ∝ ∇⊥θ(r) from the phase
map of the fluid in fig. 6.8 as we can direct access to the fluid’s phase. This is also one of
the advantages of the fluid of light compared to atomic gas. To disentangle the velocity into
its incompressible and compressible parts, we adopt the Helmholtz decomposition for vector
fields from the density-weighted velocity, given by utot(r) =

√
ρ(r)vtot(r) , where ρ(r) is the

light intensity. Given vtot(r), we can write it as the sum of a potential and a divergence-free
contribution:

utot(r) = ∇ϕ(r) + ∇ × A(r) (6.19)

where ϕ and A are a scalar and a vector field, respectively. In the Fourier space, the decom-
position has a straightforward implementation. Indeed, given the vector field in real space
v(x):

U(k) = 1
2π

∫
e−ikxv(x)dSx (6.20)

Which can be decomposed as Fourier space:

U(k) = ikUϕ(k) + ik × UA(k) (6.21)
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Figure 6.10: Velocity field decomposition in the region of interest(ROI). (a). The module of
total velocity. (b). The module of compressible velocity. (c). The module of incompressible
velocity. (d). Circulation distribution of the vortices in (c). The red and blue dots represent
the position of the positive and negative vortices linked by solid lines if they belong to the
same cluster. The classification of the vortices is based on their signs and positions: vortices
(antivortices) are indicated by red(blue) points; clusters by lines of the same color. Streamlines
of the computed flow are shown in gray.
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Where we used the scalar and vector fields:

Uϕ(k) = −i k · U(k)
||U(k)||2

(6.22)

UA(k) = i
k × U(k)
||U(k)||2

(6.23)

Once we calculated these in the Fourier space, back to the real space we have:

∇ϕ(x) =
∫
eik·xikUϕ(k)dSk (6.24)

∇ × A(x) =
∫
eik·xik × UA(k)dSk (6.25)

After decomposing the velocity into the compressible and incompressible parts of the fluid,
which allows to separate the divergent (incompressible) and irrational (compressible) part of
the superfluid velocity, associated with the vortex distribution and the sound waves, respec-
tively. Therefore, it is possible to remove the contribution of the acoustic waves as shown in
fig.6.10 (b). The module of the incompressible velocity |U inc| is shown in fig.6.10 (c). The
bright points in fig.6.10 (c) correspond to singularities in the turbulent state phase. And the
incompressible velocity field can be used as a tool to compare the information on the kinetic
energy with the vortex classification analysis.

Moreover, it provides possibilities for us to study the direction of the rotation of each vortex
with its position and then apply the vortex classification algorithm by calculating the vorticity
of the system, given by ∇vtot. In the tracking and classification analysis, we consider only those
vortices with cores separated by a distance larger than the healing length ξ.

We used a vortex classification algorithm[109, 110] to identify vortices as clusters, dipole, pairs,
or free vortices. Sign of topological charges is conventionally defined depending on the wind
direction as follows: + for anti-clockwise (blue) and − for clockwise (red) velocity. Each pair
is composed of the same charged vortices. Any two like-sign vortices are said to belong to the
same cluster if they are closer to one another than either is to an opposite-sign vortex. Because
the vortices are quantized, the spatial clustering of like-sign vortices forms the equivalent of
classical large-scale flows. A vortex–antivortex pair is defined as a dipole if they are mutual
nearest neighbors. Free vortices are those that are left over after all clusters and dipoles have
been assigned. For experimental results, please refer to fig.6.10(d).

6.3.5 Vortex spectra
Decomposing the condensate kinetic energy into compressible and incompressible parts is a
useful technique, which allows us to analyze how kinetic energy distributed over length scales
due to vortex lines and sound.
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in order to explore the role of the vortex in exhibiting the energy cascade, we utilize this
optical imprinting method by accurately shaping the beam with a Spatial Light Modulator.
which allows us to generate an on-demand vortex on a photon fluid. For example, we can
design the position and number of vortices. In the previous section, we explained that it offers
opportunities for us to calculate the incompressible part of the velocity field from the phase mea-
surement. We can define the density-weighted velocity field given by u(r)inc =

√
n(r)v(r)inc.

The incompressible energy can be expressed by analyzing the Fourier space [111, 99]:

Einc
kin = m

2 k
∑

i=x,y

∫ 2π

0
|U inc

i (k)|2dθ (6.26)

with Uinc(k) = TF [u(r)inc].

With the incompressible density-weighted velocity field, we present the streamlines and in-
compressible density-weighted velocity field and compute the incompressible kinetic energy
spectrum. The experimental incompressible energy spectra for several initial states are pre-
sented in Fig.6.11. Firstly we have investigated the kinetic energy spectrum from a single
vortex and dipole vortices (opposite sign) by direct imprinting with the SLM. For a single vor-
tex without acoustic energy, the field is automatically incompressible [112]. The spectrum of a
single vortex state shows a Einc

kin ∝ k−1 decay in the infrared (IR) range (kξ ≪ 1) which arises
purely from the irrotational velocity field of a quantum vortex. The scaling is similar to point-
like vortices and is the only remaining sign of the vortex far from its core. However, in contrast
with the point-like model, in the ultraviolet (UV) range (kξ ≫ 1), we observe a Einc

kin ∝ k−3 de-
cay which stems from the internal structure of the vortex core as described theoretically in [113].

Because the vortex core structure remains unchanged, the UV scaling for the dipole spec-
tra remains unchanged. For the dipole spectrum, a Einc

kin ∝ k1 IR-scaling is observed, which
results from the cancellation of the velocity field for length scales much larger than typical
inter-vortex separation in any neutral configuration of vortices [112]. As expected, the UV
scaling remains identical for the dipole spectra since the vortex core structure is not modified.
For the dipole spectrum, a Einc

kin ∝ k1 IR-scaling is observed for the dipole configuration, which
originates from the cancellation of the velocity field for length scales much larger than typical
inter-vortex separation in any neutral configuration of vortices [112].

6.3.6 Energy spectrum
2D turbulence is quite different from turbulence in three-dimensional (3D) classical fluids and
is connected with an energy cascade from large-length scales specified by the features of an
energy-forcing mechanism to short-length scales where viscous damping reduces the fluid’s ki-
netic energy. The inertial range of energy flux is defined by this range of length scales and the
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Figure 6.11: (a). Module and streamlines of the incompressible velocity field from a single
vortex. (b). The kinetic energy spectra corresponding to (a) is shown in the purple curve. The
blue and the green dashed lines are the fitting curves k−1 and k−3. (c) Module and streamlines
of the incompressible velocity field from a pair of vortices. (d). The purple curve shows the
kinetic energy spectra corresponding to the vertex/antivortex dipole. The grey dashed curve
stands for k1 fitting curve besides the same meaning for the blue and green dashed lines.
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range of related wave numbers k. Kolmogorov demonstrated that the energy cascade corre-
sponds to a kinetic-energy spectrum corresponding to k−5/3 in the inertial range [83].

Although the results of some theoretical and experimental simulations have proved that there is
an inverse energy cascade in the two-dimensional turbulent flow of quantum fluids. However, a
question still unsolved in quantum turbulence is the experimental demonstration of an inverse
energy cascade. We calculate the incompressible energy spectrum from the region of interest
(ROI) in Fig. 6.8 for a turbulent state. The spectrum is averaged over 20 images, adding a ran-
dom noise on the input of the nonlinear medium. And the result showed in Fig.6.12, an inertial
range appears 1 and kl/kξ, the energy spectrum is displayed for a range of wavevectors that
spans from the healing length (solid vertical grey line) of the medium to wave-vector associated
to l ≈ 3−4ξ the size of the cluster, showed by the solid vertical green line. Due to the fact that
the vortex structure doesn’t change in this turbulent state, we still observe the k−3 in the UV
range. However, this configuration can be considered as several dipoles composed, so we can
observe k1 IR-scaling appears as same as what we have seen in the dipole vortices. Importantly,
a spectral range between these two limits with different scaling is also clearly visible. In the
momentum range between the inverse of the mean vortex cluster radius and the inverse of the
healing length, the kinetic energy spectrum decays as k−5/3, which is in perfect agreement with
the Kolmogorov exponent predicted for the inverse energy cascade mechanism.

6.3.7 C2 and C4

We also explore the number of vortices as a function of effective time. The result is shown
in Fig.6.13(a). With the increase of the effective time, we could observe more vortices. The
number of vortices shows an exponential growth trend. We then study the vortex interaction
based on the vortex algorithm by exploring the correlation between them [114]. For N vortices
the correlation Cd is given by: The 2nd and 4th-order nearest-neighbor correlation functions
C2 and C4 are also calculated (left panel). Those are defined by:

Cd =
N∑

i=1

d∑
j=1

cij/dN (6.27)

where cij = 1 if vortex i and its jth nearest neighbor have the same sign, and cij = 0 if they
have opposite sign. For both Cd, the points never exceed the bar of 0.5, representing what is
expected for a random distribution of vortices, and remain between 0.3 and 0.5. In agreement
with [114], this allows us to determine that our clustering occurs in regions that are spatially
independent since for a configuration dominated by dipoles (clusters), the sign of C2 and C4

should constant [111].
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Figure 6.12: Incompressible kinetic energy spectra measured on all vortices in the center region
of interest(ROI), for Z/ZNL = 0 (purple chain line), Z/ZNL = 35 (purple dashed line) and
Z/ZNL = 70 (solid purple line). The grey, red, and green dashed lines are power-law functions
plotted respectively for k1, k−5/3, and k−3. The crossover scale k/kξ = 1 is given by the solid
grey vertical line. The solid green vertical line represents the start of the inertial range set at
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(a) (b)Real space Fourier space

Figure 6.14: Image when a probe beam interferes with the fluid in the real space and Fourier
space.

6.3.8 Explore the energy transfer
As previously stated, an unstable region exists where the imaginary part of the Bogoliubov
dispersion relation is positive, which is caused by excess energy in the turbulent state. To show
that turbulence is generated in our fluid of light system, we designed an experiment in which
a probe beam kprsinθ interacts with a turbulent region of the fluid of light, where kpr is the
probe beam’s wavenumber and θ is the angle between the probe beam and the signal. If there
is a transfer of energy from the turbulent flow to the probe light, or if the probe light gains
energy, this indicates that the system is in a turbulent state.

The energy of the probe beam is measured by directing it to a spectrum analyzer or oscil-
loscope. However, the low transmission of the rubidium cell under the experimental conditions
of our system’s turbulent state makes measurement difficult. On the other hand, the laser
source’s limited maximum output power prevents us from providing more power to the probe
path. As a result of the experimental results, we did not see energy peaks at specific wave
numbers k⊥. This inspired us to change our plan and use the camera to see if we could spot a
conjugate beam on the other side of the photon fluid. The experimental results are shown in
Fig.6.14. The probe beam is represented by the bottom green dashed circle, and the conjugate
is represented by the top red dashed circle. This exciting phenomenon confirms that photon
fluid is an excellent platform to generate quantum turbulence.
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6.4 Conclusion
Our results demonstrate the potential of photon fluid for experimental studies of quantum
turbulence. The fluid’s velocity and density access to fluid density and phase can be finely
controlled by optical means. We have demonstrated that quantum turbulence in a 2D parax-
ial fluid of light starting with an anisotropic forcing will become isotropic. We reported the
incompressible kinetic energy spectrum in 1, 2, and N vortices configurations by extracting
the incompressible density-weighted velocity using the Helmholtz decomposition. The most
striking finding is the observation of a k−5/3 scaled Kolmogorov spectrum for an inverse energy
cascade in a superfluid. This is the first direct experimental signature of a flux of kinetic energy
from small to large length scales in a quantum fluid of light. And this configuration offers the
opportunity to probe more complex phenomena. The new experimental scheme’s flexibility and
ease of control pave the way for research into the out-of-equilibrium physics of quantum fluids.

.



General conclusion and outlooks

This thesis manuscript’s primary goal was to investigate several hydrodynamic properties of a
photon fluid passing through hot rubidium vapors. While photons do not interact in a vacuum,
the situation will change when an intense laser is adjusted near an atomic resonance within a
hot rubidium vapor cell. The dynamics of the electric field in a nonlinear medium are described
by the nonlinear Schrödinger equation, which can be mapped to the Gross-Pitaevskii equation,
which explains the space-time evolution of atomic Bose-Einstein condensates under the mean-
field approximation. As a result of this analogy, interact photons behave like a fluid flowing in
a plane perpendicular to the optical axis. Those systems exhibit, in particular, the ability of
superfluity without dissipating energy. Therefore, it is an excellent platform to investigate the
many-body problem and the hydrodynamic behavior of the superfluid.

Chapter 1 deduces the nonlinear Schrödinger equation. The relationship with the Gross
Pitaevskii equation is established and thoroughly investigated. Following that, the dynamics
of tiny amplitude density waves moving onto the photon fluid are described. Using the Bo-
goliubov transform, we show that those waves obey the Bogoliubov dispersion relation, which
has two distinct regimes. It starts linearly for low excitation wave vectors, when density waves
behave as collective phonons all moving at the same speed (the sound velocity), before gaining
a quadratic tendency, which is characteristic of particle-like dispersion. I also introduce how
to know a fluid belongs to the superfluid. The presence of the sound speed, according to the
Landau criteria for superfluidity, would ensure the detection of superfluid light flows in our
system.

In Chapter 2, I present some necessary knowledge on our system to create the photon fluid.
Start with the introduction of the rubidium structure and the heating mechanism of the non-
linear medium. I also discuss some important factors that should take into account when a
laser beam passes through a hot vapor cell. Furthermore, a substantial portion of this chapter
is devoted to presenting our method for calculating the nonlinear refractive index ∆n by mea-
suring the spatial changes of the nonlinear phase shift accumulated by the beam.

In chapter 3, we report the working principle of several experimental tools used to create
and characterize a photon fluid. I first briefly present how the laser sources work. Then the at-
tention turns to describing the Spatial Light modulator (SLM), which imprints a special phase
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to the laser beam so as to modulate the properties of photon fluid through the liquid crystal.
The acousto-optic modulator (AOM) used to diffract and shift the frequency of light using
sound waves is also presented. Finally, some technical details about the glass cells containing
rubidium vapor and the homemade heating system designed to control its temperature are
introduced.

In chapter 4, we implement Bragg-like spectroscopy in a paraxial fluid of light by imprint-
ing analogues of short Bragg pulses on the photon fluid using wavefront shaping with a spatial
light modulator. We provide a static structure factor measurement and observe a decrease in
small wave vector variations. This conclusion is in great accord with the Femann relation,
which indirectly reveals the presence of pair-correlated particles in the photon fluid. We also
get the Bogoliubov dispersion, which describes small amplitude density fluctuations traveling
onto the fluid of light. And the relation shows a linear phononic domain for photons with weak
interactions and low sound velocity. This work opens the way to the measurement of Tan’s
contact [115] and the observation of beyond mean field effects in photon fluids.

In chapter 5, by sending a near-resonant laser pulse propagating in a warm atomic vapor
cell, I introduce the analogue of cosmological particle creation in the quantum fluid of light.
When photons cross the front and back faces of the nonlinear medium, they encounter a pair
of abrupt jumps in the interaction parameter, which can be translated into quantum quenches.
The emission of pairs of correlated counter-propagating Bogoliubov phonons results in unusual
characteristics in the intensity distribution and the near- and far-field two-body correlation func-
tions in the weak-nonlinearity regime. We see acoustic peaks in the density power spectrum,
known as Sakharov oscillating, which is usually discussed in the context of universe evolution,
and cosmic microwave background anisotropy is the manifestation of interfering acoustic waves
in an ideal fluid. Our experiments show that vacuum fluctuations in these two quench processes
produce analogous cosmological particles.

In chapter 6, I introduced some basic concepts and properties of classical turbulence and quan-
tum turbulence. We want to utilize two counter-propagating fluids of light that interfere with
each other in hot atomic vapors to investigate the existence of the inertial range where kinetic
energy is transferred from small to large lengths in two dimensions of quantum turbulence. We
first explore the instability evolution process from the quantum soliton and quantum vortices
to the completely disordered quantum turbulence by varying the Mach number. Meanwhile,
we decompose the velocity into the compressible and incompressible parts associated with the
sound waves and the vortex distribution from the phase of fluid by the Helmholtz decompo-
sition method. Then, we analyze the energy spectrum of incompressible flow and find energy
cascade E(k) ∝ k−5/3 agrees with Kolmogorov’s prediction in the inertial range. This is the
first direct experimental evidence of inverse energy cascade in 2D quantum fluid. Moreover, we
study the density distribution n(kx) and n(ky) in the momentum space for different effective
propagation times. We find the system begin with an anisotropic state and ends up with an
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isotropic state. To demonstrate the energy transfer from the streaming flow to the elementary
(Bogoliubov) excitations, we use a probe beam to interfere with the photon fluid. A conjugate
beam appears on the symmetrical side of the probe beam. Our experiments demonstrate the
great potential of photon fluid for studying quantum turbulence. This novel platform opens
exciting possibilities for studying non-equilibrium turbulence dynamics in reduced dimensions
with a controlled forcing mechanism and a homogeneous density.
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Sujet : Hydrodynamic effects in a paraxial fluid of light

Résumé : Le fluide quantique de la lumière désigne un gaz de photons en interaction faible
qui est formé par un faisceau laser paraxial se propageant dans un milieu de Kerr non
linéaire en remplaçant la coordonnée temporelle dans le fluide classique par la direction
de propagation du faisceau. Il peut être considéré comme un fluide dont la densité est
liée à l’intensité du champ, s’écoulant au gradient de la phase comme vitesse dans le plan
perpendiculaire à la propagation le long de la coordonnée z de l’axe optique. Dans ce travail,
des vapeurs chaudes de Rb comme milieu non linéaire ont été utilisées pour créer un tel fluide
photonique. Trois expériences différentes ont été menées afin de déterminer le comportement
hydrodynamique du fluide photonique. Tout d’abord, la spectroscopie de Bragg dans un
fluide paraxial de lumière en imprimant des analogues de courtes impulsions de Bragg sur
le fluide de photons a été mise en œuvre pour explorer le facteur de structure statique et la
relation de dispersion de Bogoliubov. Ensuite, la réponse du fluide aux quenches quantiques,
changement soudain d’interaction, a été réalisée pour étudier la création d’une particule
cosmologique analogue. Enfin, la turbulence quantique a été étudiée dans deux fluides de
lumière à contre-courant, signalant une signature claire d’un flux d’énergie cinétique des
petites aux grandes échelles de longueur dans un fluide quantique via l’observation d’une
loi d’échelle de Kolmogorov dans le spectre d’énergie cinétique incompressible. Tous ces
éléments démontrent que le fluide photonique est une plateforme idéale pour explorer la
dynamique hors équilibre.

Mots clés : Fluid of light, Kerr medium, Bragg-like spectroscopy, Quantum turbulence,
Quantum vortices, Interaction quench, Hydrodynamic instability

Subject : Hydrodynamic effects in a paraxial fluid of light

Abstract: Quantum fluid of light refer to a weakly interacting gas of photons which is formed
by a laser beam paraxial propagating through a non-linear Kerr medium by replacing the
time coordinate in classical fluid to the beam’s propagation direction. It can be considered
as a fluid with density related to the field intensity, flowing at the gradient of the phase as
velocity in the plane perpendicular to the propagation along optical-axis coordinate z. In
this work, warm Rb vapors as nonlinear medium were used to create such a photon fluid.
Three different experiments are carried to feature the hydrodynamics behaviour of photon
fluid. First of all, Bragg-like spectroscopy in a paraxial fluid of light by imprinting analogues
of short Bragg pulses on the photon fluid was implemented to explore the static structure
factor and Bogoliubov dispersion relation. Second, the fluid’s response to quantum quenches,
sudden interaction change, was carried out to study the creation of analogue cosmological
particle. Finally, quantum turbulence was studied in two counter-streaming fluids of light,
report a clear signature of a flux of kinetic energy from small to large length scales in a
quantum fluid via the observation of a Kolmogorov scaling law in the incompressible kinetic
energy spectrum. All of these demonstrate that photon fluid is a ideal platform to explore
the out of equilibrium dynamics.

Keywords : Fluid of light, Kerr medium, Bragg-like spectroscopy, Quantum turbulence,
Quantum vortices, Interaction quench, Hydrodynamic instability
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