
HAL Id: tel-04079897
https://theses.hal.science/tel-04079897v1
Submitted on 11 Dec 2022 (v1), last revised 24 Apr 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Understanding Web Applications: Automated
Abstraction Inference and its Applications

Sacha Brisset

To cite this version:
Sacha Brisset. Towards Understanding Web Applications: Automated Abstraction Inference and its
Applications. Computational Engineering, Finance, and Science [cs.CE]. Université de lille; inria lille,
2022. English. �NNT : �. �tel-04079897v1�

https://theses.hal.science/tel-04079897v1
https://hal.archives-ouvertes.fr

Université

Université de Lille
École doctorale

Madis
Centre de recherche

Inria, Spirals
Entreprise partenaire

Mantu

Thèse de doctorat pour obtenir le grade de docteur en Informatique

Towards Understanding Web Applications:
Automated Abstraction Inference and its

Applications
Vers une comprehension des applications web: inference non-supervisée

d’abstraction et ses applications

Sacha Brisset

Directeurs:
Lionel Seinturier

Renaud Pawlak

Encadrant:
Romain Rouvoy

Soutenue le 05/12/2022 devant le jury composé de:

Jean Christophe Routier - Examinateur - Professeur des universités - Université de Lille
Philippe Collet - Examinateur - Professeur des universités - Université de Nice
Xavier Blanc - Rapporteur - Professeur des universités - Université de Bordeaux

Dalila Tamzalit - Rapporteur - Maitresse de conférences - Université de Nantes

Centre de Recherche en Informatique,
 Signal et Automatique de Lille,

Abstract

Web applications are at every corner of modern society. The largest web applications

can serve millions of people. These applications are expected to be strongly reliable

and stable yet capable to evolve to adapt to its users. At such a scale, these expecta-

tions can only be met through huge resources and time. For this reason, it is critical

to further our ability to understand the structure of web applications to ease their

maintenance and evolution.

In this thesis, we explore web application structure through a variety of lenses:

web testing, data extraction and web analytics. Our study shows that many web-

related research, regardless of the research domain, suffer greatly from the lack of a

generic fully unsupervised web application abstraction inference solution. We attempt

to develop such a solution iteratively leading to three main contributions:

SFTM Similarity-based Tree Matching, an algorithm allowing to match two web

pages. Compared to traditional, generic Tree Matching algorithms, SFTM produces

better matchings for computation times several orders of magnitude smaller.

ERRATUM an approach allowing to repair locators on web applications. ERRA-

TUM strongly improves the quality of repairs for little to no overhead. We integrated

ERRATUM to a widely used open-source testing framework.

APPSTRACT an approach to automatically generate an abstraction of a web

application. APPSTRACT combines intra-page abstraction and inter-page abstrac-

tion using SFTM to generate robust and semantically-rich application-wide locator

identifiers for each element of a webpage.

We believe our work opens up many new possibilities in a variety of research

domains, in particular: the computation speed of SFTM enables approaches that

were previously unpractical with generic tree matching and the approach we describe

in APPSTRACT could pioneer new web analytics or web testing generation solutions

based on web application abstraction.

Resumé

Les applications Web sont omniprésentes dans la société moderne. Certaines applica-

tions Web peuvent servir des millions de personnes. Ces applications se doivent d’etre

fiables et stables tout en étant capables d’évoluer pour s’adapter à ses utilisateurs.

À une telle échelle, ces attentes ne peuvent être satisfaites qu’avec d’importantes

ressources. Pour cette raison, il est essentiel d’approfondir notre capacité à compren-

dre la structure des applications Web pour faciliter leur maintenance et leur évolution.

Dans cette thèse, nous explorons la structure des applications Web à travers

plusieurs perspectives : les tests Web, l’extraction de données et l’analyse Web.

Notre étude montre que de nombreuses recherches liées au Web, quel que soit le

domaine de recherche, souffrent grandement de l’absence d’une solution générique

d’inférence d’abstraction d’applications Web entièrement non supervisée. Nous ten-

tons de développer une telle solution de manière itérative aboutissant à trois contri-

butions principales :

SFTM Similarity-based Tree Matching, un algorithme permettant de faire cor-

respondre deux pages web. Comparé aux algorithmes de correspondance d’arbres

génériques traditionnels, SFTM produit de meilleures correspondances plus rapide-

ment.

ERRATUM une approche permettant de réparer les localisateurs sur les appli-

cations web. ERRATUM améliore fortement la qualité des réparations pour peu ou

pas de frais généraux. Nous avons intégré ERRATUM à logiciel de test open source

largement utilisé.

APPSTRACT une approche pour générer automatiquement une abstraction

d’une application web. APPSTRACT combine l’abstraction intra-page et l’abstraction

inter-page à l’aide de SFTM pour générer des identifiants de localisation robustes et

sémantiquement riches à l’échelle de l’application pour chaque élément d’une page

Web.

Nous pensons que notre travail ouvre de nombreuses nouvelles possibilités dans une

variété de domaines de recherche, en particulier : la vitesse de calcul de SFTM per-

met des approches qui n’étaient auparavant pas possibles avec l’appariement d’arbres

génériques et l’approche que nous décrivons dans APPSTRACT pourrait ouvrir la

voie à de nouvelles analyses Web ou à des solutions de génération de tests Web basées

sur l’abstraction d’applications Web.

Acknowledgements

I would like to thank all the people that helped me through this thesis. In particular,
I would like to thank Romain Rouvoy who simply taught me how to be a researcher.
Thank you for being available at literally any time. Thank you for the many days
and nights writing, correcting and revising our various papers.

I would like to thank Renaud Pawlak who trusted me in the first place and with
whom I shared hours and hours of endless discussions in front of an office, a whiteboard
or even a meal. Thank you Renaud for your boundless ambition and imagination.

I would like to thank Lionel Seinturier for being the rock in this thesis. Thank
you for keeping me on track and never giving up on me even on the most delicate
times.

I would like to strongly thank Mantu who funded this research. I had the most
wonderful time within Mantu lab team.

Finally, I would like to thank my partner and my family for supporting me through
the sometimes difficult moments of the thesis.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3

1.2.1 Tree Matching . 3
1.2.2 Robust and Semantically Rich Locators 4
1.2.3 Web Page Abstraction . 4

1.3 Contributions . 5
1.3.1 SFTM . 5
1.3.2 Erratum . 6
1.3.3 Erratum Industrial Case Study 7
1.3.4 Appstract . 7

2 Tree Matching 9
2.1 Introduction . 9
2.2 Related Work . 12
2.3 Flexible Tree Matching (FTM) . 14

2.3.1 FTM Notations and Overview 14
2.3.2 Cost Estimation . 16
2.3.3 Metropolis Algorithm . 16
2.3.4 Complexity Analysis . 17

2.4 Similarity-based FTM (SFTM) . 18
2.4.1 Overview of Similarity-based Matching 19
2.4.2 Implementation Details . 22
2.4.3 Complexity Analysis . 25

2.5 Empirical Evaluation . 26
2.5.1 Input Web Document Dataset 26
2.5.2 Baseline algorithms . 29
2.5.3 Experimental Results . 29

2.6 Threats to Validity . 34
2.7 Conclusion & Perspectives . 34

3 Erratum 36
3.1 Introduction . 37
3.2 Background & Related Work . 39

3.2.1 Introducing Web Element Locators 39
3.2.2 Generating Web Element Locators 40
3.2.3 Repairing Web Element Locators 41

3.3 Locator Problem Statement . 42
3.3.1 Problem Notations . 42
3.3.2 Problem Statement . 43

3.4 Repairing Locators with Erratum 44
3.4.1 Applying Tree Matching to Locator Repair 44
3.4.2 Integrating a Scalable Tree Matching Algorithm 46
3.4.3 Matching DOM Trees by Similarity 47

3.5 The Robust Locator Benchmark . 51
3.5.1 Evaluated Locator Repair Solutions 51
3.5.2 Versioned Web Pages Datasets 52
3.5.3 Evaluating of the Matched Elements 56

3.6 Empirical Evaluation . 58
3.6.1 Evaluation of Repair Accuracy 58
3.6.2 Mutations in the Wayback Dataset 63
3.6.3 Repair Time Evaluation . 66
3.6.4 Threats to Validity . 68

3.7 Applying Erratum . 68
3.8 Conclusion . 69

4 Integrating Erratum into Cerberus 71
4.1 Introduction . 72
4.2 Background . 73

4.2.1 Web Element Locators . 73
4.2.2 Web Locator Terminology . 73

4.3 Repairing web locators with Erratum 74
4.4 Building test cases with Cerberus 75
4.5 Integrating Erratum into Cerberus 77

4.5.1 Preliminary Demonstration of Erratum 77

4.5.2 Integration Strategies in Cerberus 78
4.5.3 The Erratum Robust Locators 79
4.5.4 Usage . 80

4.6 Industrial Impact . 80
4.7 Perspectives . 82
4.8 Conclusion . 83

5 Appstract 84
5.1 Introduction . 84
5.2 Background & Related Works . 86

5.2.1 Data Extraction . 86
5.2.2 Web Testing . 88
5.2.3 Web Analytics . 90

5.3 Appstract . 90
5.3.1 Abstracting a Web Application 90
5.3.2 Building an Abstraction . 92
5.3.3 Intra-Page Abstraction . 94
5.3.4 Inter-Page Abstraction . 103

5.4 Limits . 104
5.5 Evaluation . 104

5.5.1 Experiment . 104
5.6 Conclusion . 109

6 Conclusion 111

Bibliography 124

List of Tables

3.1 Description of the Mutation & Wayback datasets. 53
3.2 Mutations applied in the Mutation dataset 2. 54
3.3 Errors distribution of Erratum and WATER on the Mutation dataset. 59
3.4 Confusion matrix on the Wayback dataset. 62
3.5 Accuracy summary across datasets. 63

4.1 Results of the third testing phase that lasted one month. 81

List of Figures

2.1 Example of matching biased by the TED (as computed by APTED). 11
2.2 Building a bipartite graph G representing the set of all possible match-

ings (left) and then computing the optimal full matching (right). . . . 15
2.3 Steps to compute a full matching between two trees T and T ′. The

upper part covers FTM, while the lower part is SFTM. 15
2.4 Creating the bipartite graph G from two example DOMs T, T ′. (1a,b) are

the input DOMs, (2a,b) the extracted tokens, (3) the inverted in-
dex TM , (4) the neighbors’ dictionaries, and (5) the resulting bi-
partite graph G. For simplicity, the figure shows a matching where
IDF (tk) = 1, P = 0, and no-match nodes are not displayed. 22

2.5 Distribution of DOM sizes (in terms of nodes) in the dataset. 28
2.6 Precision, Recall, and F1 Score of SFTM, APTED, and XyDiff. . . 31
2.7 Computation times when matching trees of different sizes. 32
2.8 Matching efficiency of SFTM, APTED, and XyDiff. 33
2.9 Performance of SFTM given f(N) = Nα according to α. 33

3.1 Illustration of the locator problem statement in automated tests com-
bining the robust locator (in blue) and the locator repair (in green) prob-
lems. 42

3.2 State-of-the-art Vs. tree matching locator repair. 45
3.3 Two versions of an HTML snippet extracted from the homepage of

duckduckgo.com. 48
3.4 Key steps followed by our Similarity-based Flexible Tree Matching (SFTM)

algorithm. 50
3.5 Distribution of DOM sizes (in number of nodes) in the Mutation

dataset. 54
3.6 Distribution of DOM sizes (in number of nodes) in the Wayback dataset. 55

3.7 Labeling a given element matched by Erratum on two versions of
the Linkedin homepage. The screenshot comes from the visual match-
ing application we created to manually label disagreements between
Erratum & WATER. 57

3.8 Accuracy distribution of Erratum and WATER on the Mutation

dataset. 58
3.9 Error percentage according to the mutation type. 60
3.10 Errors rate evolution according to DOM size. 61
3.11 Errors rate evolution according to the mutation ratio. 62
3.12 Analysis of matches labeled as no-match by Erratum. 63
3.13 Cumulative Distribution of ratios between two versions of web pages.

The orange dotted lines show the threshold used in this experiment . 64
3.14 Mutation ratio between two Wayback snapshots depending on gap

duration. 65
3.15 Distribution of mutation labels in the Wayback dataset. 66
3.16 Repair time evolution according to DOM size. 67
3.17 Performances of Erratum and WATER. 67

4.1 A screenshot of the Cerberus web interface to define a test case. . . 76
4.2 The demo application was developed to test Erratum on real use

cases before starting integration. In this example, the description of a
book hovers on the left-side webpage, which automatically highlights
the matched element on the right-side webpage. 78

4.3 Describing how Erratum is integrated as a robust locator in Cer-

berus. Both locator types originally locate an element e ∈ D. The
figure illustrates the ways Cerberus evaluates XPath or Erratum

locators on a new DOM D′. 79

5.1 Screenshots illustrating some elements êλ included in the template
pages p̂list and p̂product of 2 distinct clusters. 86

5.2 Overview of the two stages of the appstraction process: learning and
prediction. The identifier map of p noted Tp associates an identifier to
each element of p. The identifiers are first randomly generated, then
merged to existing maps during inter-page abstraction. The prediction
phase produces an identifier map Tp̂ in which each original element of
p is associated with an application-wide identifier. 92

5.3 Illustration of Intra-Page abstraction. DOM leaves at the end of re-
peating branches are tagged and then recursively merged. 94

5.4 Web page example to illustrate intra-page abstraction with no nested
records . 95

5.5 Output of the node-tagging algorithm. Each node is assigned a tags

map keeping track of the number of leaf groups in its offspring. 97
5.6 Illustrating two important cases our merging algorithm must cover:

nested records and optional elements. 98
5.7 Key functions involved in the abstractTree algorithm. A directed arrow

from function f to g indicates that f calls g. 102
5.8 An example application of the abstractTree function. For each figure,

the stack of the current step is shown below. 102

Chapter 1

Introduction

1.1 Motivation

Nowadays, software bugs are an unavoidable concern along all the stages of a software
development process. From specification to development and production, software
requires to be continuously tested and monitored to detect potential symptoms of
dysfunction. Overall maintenance activities account for over two-thirds of the life-
cycle cost of a software system, summing up to a total of $70 billion per year in the
United States [70].

To support the process of fixing or preventing bugs, a considerable amount of
research focuses on static analysis, software testing, or formal methods to help to
detect bugs before deployment and bug localization or triaging to help to deal with
identified bugs after deployment. However, less attention has been focused on the
detection of bugs in deployed systems. In some cases, detecting a bug is indeed
trivial, for example, when the application crashes, it usually produces an exception
that should be visible in the logs. However, some bugs (like functional bugs) do not
produce any exception and are thus far harder to detect using server logs. In 2006,
Zhenmin Li et al. [54] studied over 29K bug reports and showed that more than 75%

were functional bugs. How to detect such bugs? Surprisingly, this topic has been
very sparsely explored given its importance.

How comes the detection of functional bugs gets so little attention then? We
think this is due to the perception of bugs within the software engineering community.
Analyzing different papers that focus on software defects, we often find classes of bugs
based on the type of the bug (multi-threading, arithmetic, logic. . .) or on the way it
manifests (Heisenbug, Bohrbug. . .). These classifications denote a system-centric
perception of bugs. In a system-centric paradigm, a bug is a divergence from the

1

CHAPTER 1. INTRODUCTION 2

specifications. This definition does not include nor needs to include the end-user
of the application. Users may experience a bug, but the bug always preexisted this
experience. In our work, I tried to shift toward a more user-centric definition
of a software defect.

The motivation for our work can be illustrated with one simple idea: a human
observing a user navigating a web application can easily understand various infor-
mation about the user’s state and intent. Is the user focused on a single task or
browsing without any clear purpose? Is she frustrated? How effectively is the user
achieving various tasks on the application? Automatically inferring such information
requires a very deep understanding of the application under study. Several existing
works studied human behavior in controlled experiments where the application is well
known. In our work, we wonder if a systematic analysis of interactions can be applied
to any web application without human supervision—i.e. with no manual description
of the application under study.

Building tools generic enough to apply to any application poses a certain amount
of challenges. As an example, let us try to analyze the behavior of a user on an e-
commerce web application. The navigation of the user produces a sequence of actions.
As a human, if I see a replay of this sequence, I understand that the user considered
several items before buying one. On the other hand, for a machine, analyzing such
a sequence appears more challenging. Firstly, how do we define an "action"? Let
us only consider clicks, then an action is a tuple ⟨locator, time⟩ where the locator

describes the location of the click (e.g. link, button) and time is the timestamp when
the click occurred. Then, the next question is: how do we define such a locator? A
naive approach would be to use the absolute path of the element that was clicked
on, but again, this is not a viable option: what if the website changes? What if
the web pages are slightly different depending on the country or item category (e.g.
electronics, books)? The problem goes even further. When clicking on two different
items from a list, a naively constructed locator would be different for the two links
even though, from a human point of view, both actions have a semantically identical
value: the user clicked on an item.

The locator problem [28] is a very profound one. It directly relates to our ability
to create an abstract model of an application from a huge amount of elements and
pages in much the same way as computer vision requires an underlying understanding
of the world to make sense out of millions of pixels. This abstract model can be very
subtle and involve visual or contextual clues, it can rely on our experience with a
given application or different similar web applications (UI/UX conventions).

CHAPTER 1. INTRODUCTION 3

Surprisingly, while the locator generation problem has been extensively studied in
the context of web application testing, we have never seen it formulated as an instance
of the more general web application abstraction inference problem. Concretely, it
means existing work focus on building robust locators (i.e. locators that do not break
when the page changes). While robustness is a fundamental property of a locator, we
seek to build locators that are not only robust but also carry semantic information
about the nature of the element with respects to other elements in the application.
We say that such locators are semantically rich.

The overall objective of our work is thus to provide a generic approach
to automatically build robust and semantically rich locators. Such locators
can constitute a powerful web page abstraction which is the cornerstone of many
kinds of web page interaction analysis.

Since the locator objective as formulated above is ambitious, in our work, we tried
to make progress on the locator problem and the more general web page abstraction
problem while applying each iterative progress to improve state-of-the-art on real-life
solutions to bug prevention and detection (in particular testing).

1.2 Objectives

My objective is thus to explore the idea of general web application abstraction. To
do so, we explore three different ideas:

RQ.1 Tree Matching: how to compare two web pages?

RQ.2 Robust Locators: how to use tree matching to build robust locators on
web pages?

RQ.3 Appstract: how to leverage tree matching and intra-page abstraction
to infer a whole web application abstraction?

1.2.1 Tree Matching

One of the core components of humans’ ability to create abstract models of the world
is the ability to compare. For example, recent significant progress in image generation
was obtained by training a neural network to discriminate between real and synthetic
images. As humans, one of the elements that enable us to build an abstraction
of a web page is our ability to compare several parts of one web page and detect
patterns (e.g. list of items), compare several pages from a given application and

CHAPTER 1. INTRODUCTION 4

locate invariant elements (e.g. menus, logo) compare several pages from a given page
template (e.g. product page or news page) and extract what they have in common
(e.g. a buy button, a share icon), and even compare several different web applications
to understand common patterns and conventions.

The internal representation of a web page is the Document Object Model (DOM).
The DOM is a tree of elements that the browser is capable to render into a web page.
Comparing two web pages D and D′ thus means being able to match every element
in D with its corresponding element in D′ (if there is one). Such a comparison is
called matching. Thus the first research question that I propose to investigate is:

RQ.1.1: What solutions can be used to efficiently produce a matching between
two web page DOMs?

Modern web pages can contain several thousand elements and certain applications
contain hundreds of thousands of pages. It means that the efficiency (i.e memory and
time complexity) of the studied solutions is crucial to be able to apply such a solution
to real-life web applications.

RQ.1.2: How to benchmark the accuracy of a given matching solution?
When considering a matching between two web pages, asserting the quality of

this matching manually can be hard or even impossible for large web pages con-
taining thousands of elements, and to our knowledge, there is no existing large-scale
benchmark for web page matching.

1.2.2 Robust and Semantically Rich Locators

Our final goal is to build robust, semantically rich, and application-wide locators.
We first focus on the robustness of our locators. Several works studying the

robustness of locators exist.
RQ.2.1: How to apply DOM matching solutions to improve the robustness of

locators? How does such an approach compare to existing robust-locators solutions?

1.2.3 Web Page Abstraction

The last part of our objective is to study how to leverage tree-matching to infer
the abstraction of any application as a whole in the form of a set of robust and
semantically rich locators.

Such locators must allow the identification of several instances of an element as
semantically equivalent (e.g. the price of each item in a list) throughout the whole
web application.

CHAPTER 1. INTRODUCTION 5

Our ability to generate such locators depends on our ability to separate the content
from the container on a given application. For example, on an item list, each item
has a different price (content), but the same container is instantiated several times.

We formulate the problem as a template extraction one. In particular, we separate
this objective into two parts:

RQ.3.1: How to infer a template that can be used to generate a given web page?
Such an inferred template is optimal when it abstracts away a maximum of the

web page variability while remaining as simple (i.e. few optional nodes) as possible.
Secondly, we wonder how to generalize our results on one page to the full appli-

cation:
RQ.3.2: How to infer the set of templates that generates a given sample of web

pages from an application?
Once we have a set of templates that generates a given sample of web pages, we

can easily match any web page against this set of templates to generate locators.

1.3 Contributions

To achieve the aforementioned objectives, we made four distinct contributions.

1. SFTM: an algorithm allowing to match DOM trees several orders of magnitude
faster and more accurately than generic tree matching algorithms,

2. Erratum: a solution that leverages tree-matching to improve the robustness
of locators,

3. Integration of Erratum to an open-source testing framework and empirical
analysis of its impact in partnership with a major online retailer,

4. Appstract: a solution allowing to infer a set of robust and semantically rich
application-wide locators with almost no human supervision.

1.3.1 SFTM

A critical part of our objective relies on our ability to compare two web pages. Un-
fortunately, none of the state-of-the-art solutions we managed to test allowed us to
produce an accurate matching between real-life web pages (containing up to several
thousands of nodes) within acceptable time constraints (in the order of milliseconds).

CHAPTER 1. INTRODUCTION 6

That is why we developed SFTM. SFTM is a tree-matching solution specializing
in web pages. It takes advantage of the fact that web page DOM nodes naturally
contain very rich labels (e.g. element tags and attributes). Our algorithm thus takes
a different approach from traditional tree-matching algorithms by using statistical
tools to, first, match labels before taking into account the topology of the trees.

We also developed the first large-scale synthetic benchmark to compare SFTM to
other state-of-the-art solutions. Our benchmark shows significant gains in terms of
both computation times and accuracy.

We describe SFTM in Chapter 2

1.3.2 Erratum

While we believe tree-matching is a crucial step towards our objective, the SFTM
contribution does not describe how to use tree-matching to progress towards the
inference of web application abstraction through locator generation.

For this reason, we developed Erratum, a solution that leverages tree-matching
to repair broken locators. Broken locators are the main reason web page test scripts
break along the development of a web application. As an example let us consider a
test scenario for an e-commerce website consisting of three actions:

1. On a product list page, click on a product title,

2. Once on the product page, click on the buy button,

3. Ensure we get to the checkout page.

This scenario contains a minimum of two locators locating the product title and the
buy button. These locators will function as long as the page remains strictly the same
but any change on the page could break them. In this case, the script will have to be
updated. In practice, broken locators can be a major pain for testing teams.

Several approaches to repairing broken locators exist. These approaches all take
as input a locator on an element e on a page D and try to find this element on another
version of the page D′. Unlike existing approaches, Erratum uses a holistic approach
to locator repair: instead of trying to repair one isolated locator, it matches all nodes
between D and D′ and uses the produced matching to fix any broken locators.

We then developed a benchmark for Erratum combining synthetic and real-
life mutations to compare its performance with existing locator repair approaches.
Results show the Erratum outperforms other locator repair solutions with little to
no overhead depending on the number of locators to repair.

CHAPTER 1. INTRODUCTION 7

We describe Erratum in Chapter 3

1.3.3 Erratum Industrial Case Study

Following our work on Erratum, we were approached by the engineering department
of a major online french retailer interested in the potential benefits of Erratum.
Indeed, the company was struggling a lot with the broken locator problem causing
them to spend a considerable amount of resources on fixing past testing campaigns.
We thus released SFTM as an open-source maven library and followed Erratum’s
approach to integrating it into Cerberus, the open-source testing framework used
by the company.

We then followed up with the company to track the usage and impact of Erratum

on their workflow. While executing rigorous and meaningful empirical experiences
in this industrial context proved challenging, we found out that Erratum worked
flawlessly as a replacement for manually written locators.

We describe the industrial application of Erratum in Chapter 4

1.3.4 Appstract

A consequent body of research deals with the study of web applications, in particular
in the domains of testing, web analytics, and information extraction. A large part of
the work on web applications in these domains must resort to innovative heuristics
to make sense of the thousands of pages and nodes in modern applications. While we
originally tackled this idea from the analytics point of view—i.e. creating some kind
of rich encoding for user actions—this idea is more general. I strongly believe most of
the aforementioned research domains linked with the study of web applications would
highly benefit from having a unified objective: unsupervised inference of an abstract
model for any real-life web application. To my knowledge, such an objective has
never been formulated as such in the literature. Thus, we need to note that beyond
the actual algorithms, the first contribution of Appstract is to make a step in this
direction.

Appstract is an approach to inferring an abstract model from a web application.
Concretely, given a set of web pages from a single web application, Appstract is
capable to infer an abstract model. Once the model is built, Appstract allows the
assignment of an identifier to any node of a provided (previously unseen) page from
this application. The assigned identifier is both robust and semantically rich—i.e.
two buy buttons from different products will have the same identifier.

CHAPTER 1. INTRODUCTION 8

Our approach has two main components:

1. Intra-page abstraction: detect patterns within one page,

2. Inter-page abstraction: detect patterns between two pages.

Appstract uses these components at several stages for both the creation of the
abstraction model and its use.

Finally, we designed an experiment to evaluate the quality of Appstract.
We describe Appstract in Chapter 5

Chapter 2

Tree Matching

Summary

Tree matching techniques have been investigated in many fields, including web data
mining and extraction, as a key component to analyze the content of web pages.
However, when applied to existing web pages, traditional tree matching approaches,
covered by algorithms like Tree-Edit Distance (TED) or XyDiff, either fail to scale
beyond a few hundred nodes or exhibit a relatively low accuracy.

In this section, we, therefore, propose a novel algorithm, named Similarity-based
Flexible Tree Matching (SFTM), which enables high accuracy tree matching on real-
life web pages, with practical computation times. We approach tree matching as an
optimization problem and leverage node labels and local topology similarity to avoid
any combinatorial explosion. Our practical evaluation demonstrates that SFTM sig-
nificantly improves the state of the art in terms of accuracy while allowing computa-
tion times significantly lower than the most accurate solutions. By gaining on these
two dimensions, SFTM, therefore, offers an affordable solution to match complex
trees in practice.

2.1 Introduction

The success of the Internet has led to the publication and delivery of a deluge of
structured content. Nowadays, web services and applications are heavily adopting
tree-based documents to structure and transfer online content. However, these web
pages keep evolving, and keeping track of such changes remains a critical issue for the
ecosystem and the research community. Examples of usages that require to detect or

9

CHAPTER 2. TREE MATCHING 10

track changes in web pages include web extraction [71, 89, 91], web testing [15, 76],
comparison of web service versions [22], web schema matching [30], and automatic
re-organization of websites [42].

To date, few solutions are specifically designed or tested to match and compare
two web pages. However, the more general question of tree matching has been ex-
tensively studied by two families of solutions applicable to the problem of web page
matching: 1. Tree Edit Distance (TED) [79] and TED-related solutions, and 2. XML
differentiation (diff) solutions.

TED is the first and most widely known approach to match trees. The matchings
computed by TED solutions are optimal and there has been much effort into devel-
oping openly available efficient implementations of the algorithm [67, 68, 69]. Despite
these efforts, TED remains costly to compute. A recent study [9] theoretically showed
that no algorithm could compute the optimal TED in less than O(N3) worst time
complexity. To address TED’s limitations, several restrictions to TED have been
developed. These TED-related algorithms add constraints to the produced matching
allowing to trade accuracy for speed.

XMLdiff solutions aim to find the sequence of editions between two XML trees.
The approach is similar to TED, but solutions sometimes make use of XML speci-
ficities. For example, the most widely-known XMLdiff solution—XyDiff [16]—is
extremely fast, but makes heavy use of XSD schemas and XML primary keys, which
cannot be assumed on any web page. Without such additional information, the algo-
rithm unfortunately yields low-accuracy results.

Overall, when matching two web pages, even the most efficient TED implementa-
tion [69] offers far from optimal accuracy (69% of precision on average in our empirical
evaluation) for computation times often reaching several seconds. The lack of accu-
racy may be due to the restrictions TED solutions impose on the produced matching:
ancestors’ and siblings’ orders must be preserved. However, such restrictions do not
hold for web pages and Figure 2.1 illustrates how TED can report biased matchings,
even on simple trees.

To address these restrictions when attempting to match two web documents, [22]
extended TED with some additional move operations executed a posteriori to address
the ancestry restriction and [43, 42] developed her own Flexible Tree Matching (FTM)
algorithm to address the ancestry restriction problem. Unfortunately, while FTM
provides a truly restriction-free matching, its high complexity does not allow FTM
to scale beyond more than a few dozen of nodes, which is far below the average size
of real-life web pages.

CHAPTER 2. TREE MATCHING 11

#header

body

#content

p a

body

#header

a p

#content

Figure 2.1: Example of matching biased by the TED (as computed by APTED).

In line with the aforementioned work, this chapter, therefore, aims at enabling the
fast and non-restricted comparison of complex web pages. In particular, we propose
an alternative to the state-of-the-art FTM algorithm, named Similarity-based Flexible
Tree Matching (SFTM), that leverages similarity metrics to speed up the comparison
of complex trees. SFTM shares the properties of FTM to offer a non-restricted
tree matching, while offering computation times much lower than FTM, even on
restricted versions of the problem. To match two web page trees, the approach taken
by SFTM strongly differs from traditional techniques. In particular, existing matching
algorithms are structure-centric: they leverage the structure of both trees to select
the nodes to visit and compare. SFTM instead relies on a label-centric approach:
it prunes the space of possible matchings using nodes’ label and considers the tree
topology a posteriori to propagate information contained in the nodes.

We compared SFTM to other state-of-the-art solutions on a large dataset of pop-
ular web pages. SFTM showed almost twice more efficiency as the best existing
solution. Overall, our algorithm SFTM allows us to consistently match real-life web
pages with high precision (89% precision on average) in a reasonable time (182ms on
average).

The code for both SFTM and its benchmark is available openly.1

The remainder of this chapter is organized as follows. Section 2.2 and 2.3 cover
related work, with section 2.3 focusing in details on the Flexible Tree Matching
(FTM) original algorithm. Section 2.4 presents Similarity-based Flexible Tree Match-
ing (SFTM), our extension of FTM that leverages the node labels and local topology
similarity to guide the comparison. Section 2.5 thoroughly evaluates our solution
against the state of the art on a realistic dataset of web documents. Section 2.6 dis-
cusses the threats to validity of our contribution. Section 2.7 concludes and overviews

1https://anonymous.4open.science/r/7ae57bd7-3b29-463a-88a4-d31c04ecfcd2/

CHAPTER 2. TREE MATCHING 12

some perspectives for this work.

2.2 Related Work

Tree Edit Distance (TED) Comparing two trees is a problem that has been at the
center of a significant amount of research. In 1979, Tai [79] introduced the Tree Edit
Distance (TED) as a generalization of the standard edit distance problem applied to
strings. Given two ordered labeled trees T and T ′, the TED is defined as the minimal
amount of node insertion, removal or relabel to transform T into T ′, while different
cost coefficients can be assigned to each type of operation. By following an optimal
sequence of operations applied to T , it is possible to match the nodes between T

and T ′. This problem has been extensively studied since then to reduce the space
and time complexity of the algorithm that computes the TED. To the best of our
knowledge, the reference implementation available today is the All-Path Tree Edit
Distance (APTED) [67, 68, 69] with a complexity of O(n2) in space and O(n3) in
time in the worst case, where n is the total number of nodes (n = |T1|+ |T2|). In our
work, we consider APTED as one of the baselines to evaluate our contribution.

[9] showed that TED cannot be computed in worst-case complexity lower than
O(n3). To circumvent this limitation, several restricted versions of the TED problem
have been formulated. The Constrained Edit Distance [93, 94] is an edit distance
where disjoint subtrees can only be mapped to disjoint subtrees. The Tree Alignment
Distance [36] is a TED where all insertions must be performed before any deletion.
The Top-Down distance [74] is computable in O(|T | × |T ′|), but imposes as a restric-
tion that the parents of nodes in a mapping must be in the mapping. The Bottom-Up
distance [81] between trees builds a mapping in linear time, but such mapping must
respect the following constraint: if two nodes have been mapped, their respective
children must also be part of the mapping. [71] proposes a variation of the Top-Down
mapping, called Restricted Top-Down Mapping (RTDM), where replacement opera-
tions are restricted to the leaves of the trees, which delivers considerable speed gains,
despite a theoretical worst-case time complexity still in O(N2). By definition TED
already sets strong restrictions on produced matchings: sibling order and ancestry
relationships must be preserved [93]. These restrictions are particularly problematic
when matching two full web pages together [42]. While the above solutions improve
computation times, they answer a restricted version of the TED problem leading to
an even more restricted set of possible matchings.

CHAPTER 2. TREE MATCHING 13

XMLdiff While TED-related approaches focus on computing a distance between
trees, another part of the scientific literature focuses on inferring the set of edit
operations between two XML documents. Most XML diff solutions use an interme-
diary matching step to compute the diff. Computing the set of diff from a given
matching is quite straightforward, which means that most works on the subject fo-
cus on the matching part. XyDiff [16] matches and computes the diff of two XML
documents very quickly. To do so, XyDiff hashes subtrees from both documents
and prunes the space of matching possibilities by matching subtrees with identi-
cal hashes. The algorithm can also make use of id attributes and XSD schemas if
they exist. On the other end of the spectrum, X-Diff [85] favors accuracy over
speed and computes an optimal matching using hashing of path signatures. XKey-

Diff [21] builds on XyDiff and adds matching logic based on XML primary keys,
XML_SIM_CHANGE [82] and XREL_CHANGE_SQL [78] match XMLs stored in relational
databases using SQL. Phoenix [65] interestingly uses a more flexible similarity met-
ric between nodes (e.g., to compare the content of two nodes, they use the Longest
Common Sequence) and choose how to match each subtree by recursively applying
the Hungarian algorithm [41]. Unfortunately, Phoenix runs in O(n4) and yields less
accurate results than X-Diff. In our empirical evaluation, we evaluated our solution
along with XyDiff, which is widely known and used for XMLdiff, has an efficient
implementation openly available, and runs in scalable computation times.

Flexible Tree Matching (FTM) In [42], TED is found to be unpractical when
applied on DOM, as the resulting matching enforces ancestry relationship—i.e., once
two nodes n, n′ have been matched, the descendants of n can only be matched with
the descendants of n′, and vice versa. Consequently, Kumar et al. [42, 43] introduced
the notion of Flexible Tree Matching (FTM), which relaxes the ancestry relationship
constraint at the price of a stronger complexity. It restricts its use to small HTML
trees composed of less than a hundred nodes, thus making it unpractical for mod-
ern web documents, often including more than a thousand nodes. Furthermore, to
the best of our knowledge, there is no public implementation of FTM that can be
considered for comparison.

We, therefore, aim at reducing the complexity of the FTM algorithm to scale
on complex web pages without enforcing restrictions on produced tree-matching so-
lutions. While all the above contributions are structure-based, we build on FTM’s
approach and rather offer a flexible, label-based matching where labels are used to
match nodes and structure is only used a posteriori to improve the matching.

CHAPTER 2. TREE MATCHING 14

Our contributions, therefore, read as follows:
1. we develop an algorithm inspired by FTM, coined as Similarity-based Flexi-

ble Tree Matching (SFTM), by leveraging the notion of label similarity, and
similarity propagation to reduce the computation time, and

2. we apply mutations on real-life web documents to provide a thorough evaluation
of our implementation of SFTM, showing that it outperforms state-of-the-art
approaches in terms of efficiency.

2.3 Flexible Tree Matching (FTM)

The Similarity-based Flexible Tree Matching (SFTM) we introduce in this chapter
can be considered as an extension of the Flexible Tree Matching (FTM) algorithm.
This section, therefore, introduces the FTM algorithm, as originally proposed by
Kumar et al. [42]. We first describe the notations used throughout the rest of the
chapter and then describe the main steps of the algorithm.

2.3.1 FTM Notations and Overview

We define an ordered tree T as a directed graph (N,≺) where N is the non-empty
set of nodes and ≺ a total order relation that can relate a child node c ∈ N to its
parent p ∈ N , as c ≺ p, or siblings, as s ∈ N , as c ≺ s.

In particular, we choose a total order rather than a partial one as the order of
siblings has a strong semantic value for a webpage (e.g. the order of paragraphs).

In this chapter, we always consider matchings between two trees T = (N,≺) and
T ′ = (N ′,≺′).

Given two trees T and T ′, the FTM algorithm relies on the complete bipartite
graph G between N∗ = N ∪ Θ and N ′∗ = N ′ ∪ Θ′, where Θ and Θ′ are no-match
nodes. The fact that G is complete means that every node of T ∗ shares exactly one
edge with every node of T ′∗. Formally, we thus have E(G) = N∗ ×N ′∗ where E(G)

are the edges of the graph G. An edge e = (n, n′) ∈ E(G) between n ∈ N∗ and
n′ ∈ N ′∗ represents the matching of n with n′. Each edge linking a tuple (n, n′) is
called a match. So, intuitively, G represents all possible matchings between nodes of
T ∗ and T ′∗ (cf. Figure 2.2).

Formally, we call matching and note M ⊂ E(G), a subset of edges selected from
G. A matching M is said to be full iff each node in N has exactly one edge in M

that links it to a node in N ′∗ and, inversely, each node in N ′ has exactly one edge

CHAPTER 2. TREE MATCHING 15

DIV
AA

A

DIV

A
DIV

DIV
AA

A

DIV

A
DIV

Figure 2.2: Building a bipartite graph G representing the set of all possible matchings
(left) and then computing the optimal full matching (right).

TF-IDF based
algorithm

Similarity
Propagation

Building
bipartite graph

Metropolis
algorithm

Step 1 Step 2 Step 3 Step 4

Building complete
bipartite graph Metropolis algorithm

Estimate Costs
Costs are re-estimated at

each step

SFTM

FTM

Costs are computed once a priori

Penalization

Step 5

Figure 2.3: Steps to compute a full matching between two trees T and T ′. The upper
part covers FTM, while the lower part is SFTM.

in M that links it to a node in N∗. Since matchings need to be full, the auxiliary
no-match nodes Θ1,Θ2 are required to cope with insertion and deletion operations.
The set of possible full matchings is restricted to the set of matchings satisfying that
every node in N ∪ N ′ is covered by exactly one edge. No-match nodes are the only
nodes allowed to be involved in multiple edges.

Given an edge e = (n, n′) ∈ E(G) linking n to n′, FTM defines the cost c(e) to
quantify how different n and n′ are, considering both their labels and the topology of
the tree. Starting from the bipartite graph G describing all possible matchings, the
idea behind FTM is to compute the costs c(e) of each edge e ∈ E(G) and to find the
optimal matching with respect to these estimated costs—i.e., to select the set of edges
M ⊂ E(G), such that M is full and c(M) is minimal (where c(M) =

∑
e∈M c(e)).

The upper part of Figure 2.3 describes the main steps involved in computing the
final full matching between T and T ′.

CHAPTER 2. TREE MATCHING 16

2.3.2 Cost Estimation

As FTM provides wide flexibility regarding possible matchings, the design of the cost
function c is a key parameter to obtain a matching that takes into account both the
labels and the topology of the trees. Typically, the cost c(e) of an edge e between
two nodes n and n′ is estimated by FTM as follows:

c(e) =

wn if n or n′ ∈ {Θ,Θ′}

wrcr(e) + waca(e) + wscs(e) otherwise
(2.1)

where Θ,Θ′ are no-match nodes, wn is the penalty when failing to match one of the
edge ends, cr(e), ca(e) and cs(e) are the cost of relabeling, violating ancestry rela-
tionship and violating sibling group, respectively, and wr, wr and wr their associated
weight in the cost function. wn, wr, cr, wa and ws are parameters of the cost func-
tion that depend on the kind of matching the user requires. By extension, we note
c(M) =

∑
e∈M c(e) the cost of a matching M .

Given e = (n, n′), the ancestry and sibling costs, ca(e) and cs(e), model the changes
in topology that matching n with n′ entails. Unfortunately, we can only estimate the
costs ca and cs if we have access to a full matching, as both costs require knowledge
of how other nodes in the tree were matched (e.g., ca involves counting the number
of children of n matched with nodes that are not children of n′). To circumvent the
problem, FTM rather considers the approximate costs ĉa, ĉs that can be estimated
from bounds on the different components of the cost c. Practically, to generate one
possible full matching, FTM iteratively selects edges in G and, each time an edge is
selected, the bounds of c are tightened (we can approximate c more precisely), which
means that the costs ĉa, ĉs keep being re-estimated along iterations (cf. upper part of
Figure 2.3). The need to re-estimate the approximated costs after each edge selection
imposes some critical limitations on the scalability of the algorithm.

2.3.3 Metropolis Algorithm

Finding the optimal matching, given the graph G and the cost function c is a chal-
lenging problem, the authors even proved in [43] that this problem is NP-hard. Con-
sequently, the authors described how to use the Metropolis algorithm [58] to ap-
proximate the optimal matching. The Metropolis algorithm provides a way to
explore a probability distribution by random walking through samples. FTM uses
this algorithm to walk randomly through several full matchings, and select the least

CHAPTER 2. TREE MATCHING 17

costly. The Metropolis algorithm requires to be configured with:
1. An initial sample (full matching) M0,
2. A suggestion function (alternative matching) Mt 7→Mt+1,
3. An objective function to maximize: f : M 7→ quality of M ,
4. The number of random walks before returning the best value.
Kumar et al. defines the objective function f by:

fFTM(M) = exp(−β c(M)) (2.2)

To suggest a matching Mt+1 from a previously accepted one Mt, FTM selects a
random number of edges from Mt to keep, sorts remaining edges by increasing costs,
and iterates through the ordered edges with a probability γ to select it. Once an
edge e = (n, n′) is selected, all edges connected to n and n′ are removed from G,
and approximate costs need to be re-estimated for all remaining edges, and then
sorted so we can select another edge. The process is repeated until an alternative
full matching is obtained. Therefore, despite using the Metropolis algorithm to
reduce the time complexity of the problem, the overall algorithm remains prohibitively
costly to compute (cf. Section 2.5), notably due to the continuous re-estimation of
the approximated costs at each step of the full matching generation.

2.3.4 Complexity Analysis

The original FTM article [43] does not report on the complexity of the computa-
tion time of the algorithm. We, therefore, provide an analysis of FTM’s theoretical
complexity to compare it to the one of SFTM (cf. Section 2.4.3).

When discussing complexity, to simplify the notations, we consider the matching
of two trees with the same number of nodes and we note N the number of nodes of
both trees.

Complete bipartite graph G Building the complete bipartite graph requires
matching each node from T to one node from T ′, which requires O(N2) operations.

Metropolis algorithm For each iteration of the Metropolis algorithm, FTM
has to suggest a new matching. In the worst case, the algorithm should choose
among all N2 edges. Each time an edge between e1 and e2 is selected, all other edges
connected to e1 and e2 are pruned and remaining costs requires to be re-estimated.
It means that costs have to be re-estimated and sorted for N2 edges, then (N − 1)2

CHAPTER 2. TREE MATCHING 18

edges (after selection and pruning), and so on, until all edges have been selected
or pruned. This implies that the total number of times the costs are re-estimated
and sorted is in O(

∑N
n=0 n

2) = O(N3). Estimating the cost for a given edge linking
e1 and e2 involves counting the number of potential ancestry and sibling violations,
which requires going through all edges connected to siblings and children of e1 and
e2. Even if we assume the number of siblings and children is independent of N , it
still means that estimating the cost of one edge requires O(N) operations. Thus, in
the worst case, the amount of operations required by FTM for each iteration of the
Metropolis algorithm is in O(

∑N
n=0 n

3) = O(N4) (using Faulhaber’s Formula).
Overall, the Metropolis step is the one with the highest complexity, which

means that the complexity of the FTM algorithm is in O(N4) where N is the number
of nodes to match.

2.4 Similarity-based FTM (SFTM)

Based on the above complexity analysis, Similarity-based Flexible Tree Matching
(SFTM) replaces the cost system of FTM by a similarity-based cost that can be
computed once a priori (cf. Figure 2.3). This approach drastically improves compu-
tation times and rather exposes a parameter that can be tuned to find the desired
trade-off between computation time and matching accuracy (cf. Section 2.5).

Given two trees T = (N,≺) and T ′ = (N ′,≺′), SFTM relies on the specification
of a similarity metric between nodes n ∈ N and n′ ∈ N ′. We compute this similarity
metric for all pairs of nodes (n, n′) using i) inverted indices for labels and ii) label
propagation and some penalization heuristics for the topology. We build a bipartite
graph G between nodes of T and T ′ using this similarity metric to compute the costs
and apply the Metropolis algorithm to approximate the optimal full matching from
G. This new similarity measure allows SFTM to improve the FTM algorithm in two
key aspects:

1. when building G, we do not create all |N |×|N ′| possible edges. We only consider
edges linking two nodes with a non-null similarity; and

2. when generating a full matching, costs do not need to be updated as these costs
solely depend on our similarity measure.

In this section, we therefore (a) introduce our new similarity metric, and (b) describes
how we leverage it to approximate the optimal full matching.

CHAPTER 2. TREE MATCHING 19

2.4.1 Overview of Similarity-based Matching

The similarity metric between nodes N and N ′ is computed in two main steps: 1. we
compute s0, the initial similarity function using only labels of the trees individually,
and then 2. we transform s0 to take into account the topology of the tree and compute
our final similarity function s. The computation of s0 leverages inverted index tech-
niques traditionally used to query text in a large document database. In our case, the
documents we query against are N , while queries are extracted from N ′. Figure 2.3
illustrates the different steps described in this section.

Initial Similarity (step 1)

To compute the initial similarity s0 between N and N ′ (cf. step 1 in Figure 2.3),
we independently compare the labels of N and N ′ using the Term Frequency-Inverse
Document Frequency (TF-IDF). The resulting initial node similarity s0 does not take
the topology of the trees into account.

In order to take into account relabeling cost between nodes, some existing solutions
(e.g., APTED) allow the user to input a pairwise comparison function label(n), label(m) 7→
similarity score. However, computing this similarity score for all the pairs of nodes
requires O(N2) operations. Thus, to reduce the number of operations, SFTM uses—
instead—inverted indices: given a tokenize function tokenize : n 7→ token list, SFTM
1. decomposes each node n from N into a set of tokens (as defined by the tokenize

function), and then 2. iterates through tokens of nodes n′ from N ′ to increase the
value of s0(n, n′) for each token n and n′ have in common. Section 2.4.2 provides a
detailed description of the function tokenize we use in our evaluation.

Decomposing nodes from N into tokens allows SFTM to build an inverted index
TM (Token Map), which maps every token tk with the list of nodes of N that contains
tk. The idea behind the inverted index TM is to use the information that a node
n ∈ N contains a token as a differentiating feature of n allowing us to quickly compare
it to nodes in N ′. If a token tk appears in all nodes N , this token has no differentiating
power. In general, the rarest a token, the more differentiating it is. This idea is very
common in Natural Language Processing (NLP) and a common tool to measure how
rare is a token in TF-IDF [38] and more precisely, the Inverted Document Frequency
(IDF) part of the formula. Applying TF-IDF to our similarity yields the following

CHAPTER 2. TREE MATCHING 20

definition:

IDF (tk) = log(|N |/|TM [tk]|) (2.3)

s0(n, n
′) =

∑
tk∈TK

IDF (tk) (2.4)

Where TK = tokens(n) ∩ tokens(n′). The function IDF is a measure of how rare a
token is, |TM [tk]| is the number of nodes containing the token tk and tokens refers
to the user input tokenize function. Intuitively, we retrieve the tokens shared between
nodes n and n′ and, for each common token tk, we increase s(n, n′) by a high value
if tk is rare and a low value if tk is common. In Section 2.4.2, we provide a detailed
implementation of how to compute the initial similarity s0.

Tokens that appear in many nodes have little impact on the final score—i.e., low
IDF—yet have a very negative impact on the computation time. In our algorithm,
we expose the sublinear threshold function f : N 7→ f(N) < N as a parameter of the
algorithm. We use f to filter out all the tokens appearing in more than f(N) nodes.
Therefore, f provides a balance between computation time and matching quality:
when N − f(N) decreases, computation times and matching quality increase. In
Section 2.4.3, we discuss how f(N) influences the worst-case theoretical complexity.

Local Topology (step 2)

s0 represents the similarity between node labels but does not take into account the
topology of the trees. To weigh in local topology similarities, we propagate the score
of each node pair to their offspring and siblings. This idea of propagation is inspired
by recent Graph Convolutional Network (GCN) techniques [39].

The original FTM algorithm includes two terms in the cost function, ca (ancestry
cost) and cs (sibling cost), which reflect the topology of the trees. Since we do not use
these terms (as they require too much computation time), we need our similarity score
to reflect both the similarity of node labels and the similarity of the local topology.
Therefore, we first compute the score matrix s0, based on the label similarity we
described above, and then we update this score to take into account the matching
score of the parents of n and n′. By doing so, n has a higher similarity score with n′

if their respective parents or children are also similar.
Beginning at s0, at each step i and for all pairs that have a non-null initial score

{(n, n′) ∈ N ×N ′|s0 ̸= 0}, we first compute:

si(n, n
′)← si−1(n, n

′) + wi × si−1(p(n), p(n
′)) (2.5)

CHAPTER 2. TREE MATCHING 21

where p(n) ∈ N refers to the parent of node n.
Similarly, we then increase the score of the parents of n, n′:

si(p(n), p(m))← si−1(p(n), p(n
′)) + vi × si−1(n, n

′) (2.6)

where w0, w1 . . . wP and v0, v1...vP are topology weights. We repeat the process P

times (P for propagation) where P is a parameter of SFTM. The resulting function
sP then reflects both label similarity and local topology similarity.

Intuitively, at each iteration, we propagate information further up in the tree.
This is why the weight sequences w and v should be decreasing so that close kinship
among nodes prevails. From our experiments, we advice the following values for
the P = 3 weights: w0 = 0.4, w1 = 0.04, w2 = 0.004 and w0 = 0.8, w1 = 0.08, w2 =

0.008. These values were used and unchanged for all results presented in the empirical
evaluation 2.5, leading to high accuracy on a large variety of web documents.

Penalization (step 3)

There are two main drawbacks to the way we propagate the scores in step 2: 1. the
scores are still almost exclusively based on labels, 2. nodes with many children may
get an unfair score boost from the propagation.

While (2) can be fixed by normalizing the propagation according to the number
of children, the normalization would also potentially remove valuable information.
Instead, for each pair (n, n′), we rather apply a penalization proportional to the
difference between the number of children of n and n′:

s(n, n′) = sP × (1− penalty(n, n′)) (2.7)

where penalty(n, n′) 7→ [0, 1] is the children penalization defined by:

penalty(n, n′) =
|(|children(n)| − |children(n′)|)|
max(|children(n)|, |children(n′)|)

(2.8)

where |ch(n)| is the number of children nodes of n. This step yields the final score
function s, defined for each couple (n, n′).

Building the bipartite graph G (step 4)

Using our final score function s, we can now build the bipartite graph G: we iterate
over all nodes n ∈ N and we create an edge e = (n, n′) for each pair of nodes such

CHAPTER 2. TREE MATCHING 22

Node Tokens

n
1

div class menu

n
2

ul class menu

Node Tokens

m
1

div class menu

m
2

h2

m
3

ul class list

Node Neighbours
m
1

{n
1
: 3, n

2
: 2}

m
2

{}

m
3

{n
1
: , n

2
: }

Token Nodes
div n

1

class n
1
, n

2

menu n
1
, n

2

ul n
2

<div class=“menu”>
<ul class=“menu”>

</div>

<div class=“menu”>
<h2></h2>
<ul class=“list”>

</div>

2a
3

4

5

2b1b

1a

n1

n2

m1

m2

m3

3

2

2

3

1 2

Figure 2.4: Creating the bipartite graph G from two example DOMs T, T ′. (1a,b) are
the input DOMs, (2a,b) the extracted tokens, (3) the inverted index TM , (4) the
neighbors’ dictionaries, and (5) the resulting bipartite graph G. For simplicity, the
figure shows a matching where IDF (tk) = 1, P = 0, and no-match nodes are not
displayed.

that sP (n, n
′) ̸= 0 and associate it with the cost c(n, n′) = 1/(1 + sP (n, n

′)). Our
resulting cost function is thus defined as follows:

cSFTM(e) =

wn, if n or n′ is a no-match node
1

1+sp(n,n′)
, otherwise

(2.9)

Importantly, unlike the bipartite graph built in the FTM algorithm, the resulting
bipartite graph GSFTM is not complete as only edges, such that sp(n, n

′) ̸= 0 are
considered. This is one of the key differences allowing SFTM to drastically improve
computation times.

2.4.2 Implementation Details

In the previous section, we introduced the SFTM algorithm and described how it
compares to FTM. In this section, we describe more precisely how we implement the
different steps of SFTM.

Node Similarity (step 1, 2 and 3)

Let us consider two trees T and T ′. We first build the dictionary TM , an inverted
index—i.e., each entry of TM is a tuple (token, nodes) where token is a token (usually
a string) and nodes is a set of all n ∈ N that contains token. Figure 2.4 (2a,b) depicts
two examples of inverted index. We note TMmap[key] the set of nodes whose key
in TM is key. In Section 2.4.2, we further describe how we sort HTML nodes into
tokens.

CHAPTER 2. TREE MATCHING 23

Given the inverted index TM , we define the function IDF : tk 7→ log(|N |/|TM [tk]|).
To limit the complexity of our algorithm, we remove every token tk ∈ TM that is
contained by more than f(N) =

√
N nodes, where f is the chosen sub-linear thresh-

old function. This is equivalent to putting a threshold on IDF to only keep tokens
{tk ∈ TM |IDF (tk) > log(

√
N)}. Removing the most common tokens has a limited

impact on matching quality since these are exactly the tokens that provide the least
information on the nodes they appear in.

Algorithm 1 For a given node n′ ∈ N ′, compute similarity score s0(n, n
′) with all

n ∈ N , such that s0 > 0

Inputs n′: a node in N , TM : token map, dictionary of nodes from T per token
Output neighbors: a dictionary of scores per node in T

neighbors← new Dictionary()
for all tk in tokens(n’) do

for all n in TM [tk] do
neighbors[n]+ = IDF (tk)

end for
end for
return neighbors

Once we have the token index TM and the function IDF , we apply Algorithm 1
on each node n′ ∈ N ′. In Algorithm 1, we first compute the tokens of node n′

and, for each token tk, we use TM to retrieve the nodes n ∈ N that contain
the token tk. Each node n thus retrieved is considered as a neighbor of n′—i.e.,
s0(n, n

′) ̸= 0. Finally, for each neighbour n of n′, we add IDF (tk) to the cur-
rent score s0(n, n

′). At this point, we have a neighbors(n′) dictionary for each
node n′ ∈ N ′. Each neighbors(n′) dictionary contains all non-null matching scores:
∀n ∈ keys(neighbors(n′)), neighbors(n′)[n] = s0(n, n

′). Using the Equation 2.5, we
can now easily compute sp and s.

Building the Token Vector

The actual labels are never directly used by SFTM. The algorithm only leverages
the tokens extracted from these labels. The way we choose to extract the tokens
contained in a node n thus strongly influences the quality of our similarity score. We
implemented the following function tokens to report all the tokens of a node n. Given
n, an HTML node representing a tag:

<tag att_1="val_1" ... att_2="val_2">

CONTENT

CHAPTER 2. TREE MATCHING 24

</tag>

where l is the number of attributes, (atti, vali), i ∈ [1, l] are the attribute/value pairs
of n and the absolute XPath of n is xPath(n). We decompose n into the following
tokens:

tokens(n) = {xPath(n), tag, att1..al, tok(val1)..tok(vall)} (2.10)

where tok is a standard string tokenizing function that takes a string and splits it
into a list of tokens on each non-Latin character. The absolute XPath of a node n

in a tree is the full path from the root to the element where ranks of the nodes are
indicated when necessary—e.g., html/body/div[2]/p.

SFTM does not include the text content of the nodes in the extracted token
vectors. This decision allows to match pages in different languages or containing
different content (e.g. news website) robustly.

Building G (step 4)

Using Equation 2.9, we compute the cost c(n, n′) for each couple (n, n′) where sp(n, n′) ̸=
0. Then, for each node n′ ∈ N ′, we add one edge for all nodes values(neighbours(n′)) ⊂
N .

Metropolis Algorithm (step 5)

Once we built the graph G with its associated costs, we need to find the set of edges
M in G that represents the best full matching between T and T ′. To do so, we
apply the Metropolis algorithm in a different way than FTM does: 1. we adopt an
alternative objective function, and 2. SFTM matching suggestion function is faster
to compute, as costs never need to be re-estimated.

Typically, FTM uses the objective function fFTM(M) = exp(−β c(M)). In the
original FTM article, the authors noted that the parameter β seemed to depend on
|M |. To avoid this dependency, we, therefore, normalize the total cost:

fSFTM(M) = exp(−β c(M)

|M |
) (2.11)

The function suggestMatching : Mi 7→Mi+1 takes a full matching Mi and returns a
full matching Mi+1 related to Mi. In Algorithm 2,

1. selectEdgeFrom(edges) loops through edges (in order) and, at each iteration
j, has a probability γ ∈ [0, 1] to stop and return edges[j],

CHAPTER 2. TREE MATCHING 25

2. connectedEdges(edge), where edge connects u and v, returns the set E of all
edges connected to u or v (note that edge ∈ E).

Algorithm 2 Suggest a new matching
Inputs G : The bipartite graph, Mi: A full matching
Output Mi+1: the suggested full matching

Mi+1 ← []
remainingEdges← sortedEdges(g)
toKeep← randomInt(0, |Mi|)
for j = 0 ... toKeep do

edge ← remainingEdges.first
Mi+1.add(edge)
remainingEdges.removeAll(connectedEdges(edge))

end for
while remainingEdges is not empty do edge ←
selectEdgeFrom(remainingEdges) Mi+1.add(edge) remain-
ingEdges.removeAll(connectedEdges(edge))
end while
return Mt+1

In practice, we first compute all the connected nodes and edges before storing them
as dictionaries, so that the function connectedEdges in Algorithm 2 can be computed
in O(1) time. It is worth noting that, to allow fast removal, the list remainingEdges

is implemented as a double-linked list. The parameter γ defines a trade-off between
exploration (low γ) and exploitation (high γ). For the Metropolis related parameters,
we used mostly the values advised in the original FTM article [43]: γ = 0.8, β = 2.5

and a number of iterations of 10.

2.4.3 Complexity Analysis

We are interested in evaluating the time complexity of the algorithm concerning the
size of both trees N . In our analysis, we consider that Ntk = max(|tokens(n)|, n ∈
nodes(T)), the maximum number of tokens per node is a constant since it does not
evolve with N .

When building G, we first compute the inverted index TM , which requires it-
erating through the tokens of all the nodes in T , and thus implies complexity in
O(N ·Ntk) = O(N).

To find the neighbors of nodes from T ′ using TM , we iterate through all the
nodes in T ′, while each node in T ′ has Ntk tokens. The number of nodes containing

CHAPTER 2. TREE MATCHING 26

a token is artificially limited to f(N). Thus, building the similarity function s0 takes
O(N · f(N)) time.

For each node n′ in T ′, we create an edge for each neighbor n of T . Each token
tk ∈ tokens(n′) adds up to f(N) neighbors. It means that the total number of edges
is in O(N ·Ntk · f(N)) = O(N · f(N)).

Before executing the Metropolis algorithm on G, we sort all the edges by cost,
which takes O(N · f(N) · log(N · f(N))) = O(N · f(N) · log(N)) (as f(N) ≤ N).
Finally, at each step of the Metropolis algorithm, we run the suggestMatching

function, which prunes a maximum of O(f(N)) neighbors for each one of the N edges
it selects.

Overall, sorting all edges requires the highest theoretical complexity: O(N ·f(N) ·
log(N)). If no threshold is set—i.e., f(N) = N—then the worst-case overall com-
plexity of SFTM is O(N2 · log(N)), which keeps outperforming TED (O(N3)) and
FTM (O(N4)).

In this evaluation, we used f(N) =
√
N , which leads to a theoretical worst-case

complexity in O(N ·
√
N · log(N)).

2.5 Empirical Evaluation

The objective of this evaluation is to assess that:
1. the quality of the matchings reported by SFTM compares with the baselines we

selected—APTED and XyDiff—and
2. SFTM offers practical computation times on real-life web pages.

2.5.1 Input Web Document Dataset

We need to assess the ability of SFTM to match the nodes between two slightly
different web pages d and d′. To measure and compare the accuracy of all studied
solutions, we must have access to the ground truth matching between d and d′—i.e.,
for each node n in d, what is the true matching node n′ in d′.

To the best of our knowledge, there is no established and public benchmark that
includes such pairs of trees, along with the ground truth matching of their nodes.
Creating such a benchmark is challenging. Existing matching solutions usually do
not provide any qualitative empirical benchmark [10, 20, 36, 81, 83, 93] and chal-
lenging matching problems involve thousands of nodes, which makes manual labeling
error-prone for humans (both trees could not even be rendered on the same screen).

CHAPTER 2. TREE MATCHING 27

Therefore, we built a semi-synthetic dataset built from mutations applied to real-life
web pages, thus obtaining a large-scale dataset in which the ground truth is known.

DOM mutation To build a grounded dataset of (d, d′) pairs—i.e., where the
ground truth (perfect matching) is known—we developed a mutation-based tool that
operates as follows:

1. we construct the DOM d from an input web document,
2. for each element of d, we generate a unique signature attribute,
3. for each original DOM d, we randomly generate a set of mutated versions: the

mutants. Each mutant d′ is stored along with the precisely described set of
mutations that were applied to d to obtain d′. Importantly, the signature tags
of the elements in d are transferred to d′, which constitutes the perfect matching
between d and d′. These signatures are ignored when applying the matching
algorithms.

In our tool, most attention has been dedicated to the choice of relevant mutations
to apply. We, therefore, relied on the expertise of web developers to identify the most
common changes that can apply to DOM. Their feedback led to the identification of
the following list of mutation operations:

Category Mutation Operators
Structure Remove, duplicate, wrap, unwrap, swap
Attribute Remove, remove words
Content Replace, remove, remove words, change letters

where Structure: remove removes an element and its children (recursively), duplicate
duplicates a subtree, applies mutate to duplicated subtree, and inserts the subtree
anywhere in the tree, wrap wraps an element within a new div container, unwrap
removes an element e and attach the children of e to the parent of e, swap swaps
the position of two sibling elements, Attribute: remove removes an attribute with its
value, Attribute: remove words removes a random number of tokens from the value
of an attribute, Content: replace replaces the content of an element with a random
text whose size is close to the original, Content: change letters replaces a few letters
in the content of an element, Content: remove removes the content of an element,
Content: remove words removes random tokens from the content of an element.

CHAPTER 2. TREE MATCHING 28

0 500 1000 1500 2000 2500 3000
Nodes

0

200

400

600

800

1000

1200

1400

Co
un

t

Figure 2.5: Distribution of DOM sizes (in terms of nodes) in the dataset.

We believe that the above mutations are representative of a wide range of changes
that apply to web pages, although they may not perfectly cover all the cases en-
countered in practice. In particular, the distribution of these mutations might not
be uniform in real life—i.e. some mutations might happen more than others. Yet,
this evaluation intends to compare the sensitivity of studied matching algorithms to
common mutations, which remains a relevant context to estimate and compare their
quality.

Input document sample We fed our mutation tool with the home pages of the
Top 1K Alexa websites.2 Alexa provides a list of websites ordered by popularity, thus
providing a representative list of web pages of variable complexities. For each original
DOM d, we created 10 mutants d′0 . . . d

′
9 with a ratio of mutated nodes ranging from

0 to 50% of the total number of nodes on the page, |nodes(d)|.
Overall, we obtained a dataset composed of 6, 276 document pairs d, d′n that could

be correctly processed by the algorithms under study. Figure 2.5 reports on the size
distribution, in the number of nodes, of original and mutated web documents included
in this dataset.

2https://www.alexa.com/topsites

CHAPTER 2. TREE MATCHING 29

2.5.2 Baseline algorithms

Given no implementation of the original FTM algorithm is available, we implemented
and evaluated it, but the computation times and space complexity of this implemen-
tation were too high to run the algorithm on real-life web documents (e.g. for a tree
of 58 nodes, the computation took 1 hour).

We thus mainly compare SFTM to APTED and XyDiff. APTED is the ref-
erence implementation of TED that reports on the best performance so far. The
implementation of APTED used for this evaluation is the one provided by the au-
thors of [69, 68]. Since APTED yields the optimal solution to the TED problem, TED
is theoretically superior in accuracy to all more restricted solutions (see Section 2.2).

XyDiff is the most widely-known and used algorithm to efficiently match XML
documents. Unlike APTED, XyDiff does not return an optimal result, it instead
focuses on speed which makes it a complementary candidate to APTED as a baseline.
In order to use XyDiff on HTML pages we had to convert the HTML into XHTML,
which mostly means closing unclosed tags (e.g., input tags). We used an existing
open source implementation of XyDiff.3 We consider the pairs (d, d′) taken from
the above input dataset, and we systematically ran SFTM, APTED, and XyDiff

algorithms with each pair to match d with d′ on the same machine.

Ground truth When building the dataset, we keep track of nodes’ signatures so
that we always know which nodes from d should match with nodes from d′. This
ground truth is hidden from the evaluated algorithms but is used a posteriori to
measure and compare the quality of the matchings computed by the algorithms under
evaluation.

2.5.3 Experimental Results

All the results in this section have been obtained by running all three algorithms on
the same server containing 252GB of RAM and an Intel(R) Xeon(R) CPU E5-2660 v3
@ 2.60GHz.

Matching quality The signature tags injected in nodes from d and d′ allow us
to assess the quality of the matchings by comparing them to the ideal matching
Mideal. For the qualitative analysis, we model the tree matching algorithm as a
binary classification problem: Given two trees T and T ′ containing the set of nodes

3https://github.com/fdintino/xydiff

CHAPTER 2. TREE MATCHING 30

N and N ′ respectively, N × N ′ is the set of all possible matches. We consider the
matching Ma ⊂ N × N ′ produced by a tree matching solution a. Then, a match
e = (n, n′) ∈ M is classified as positive by a if e ∈ Ma. All matches that should
be positive are in the ideal matching Mideal. All possibilities are summarized in the
following confusion matrix:

e ∈Mideal e /∈Mideal

e ∈Ma True Positive False Positive
e /∈Ma False Positive True Negative

Using the above confusion matrix, we can compute the precision, recall, metrics
and the F1 score, which are very commonly considered for binary classification prob-
lems.

Figure 2.6 reports on the precision, recall and F1 score of the 3 tree matching
solutions we compared, namely SFTM, APTED, and XyDiff. As expected, the
accuracy of all solutions decreases when the mutation ratio increases. However, for
all the reported metrics, SFTM outperforms both XyDiff and APTED. For both
APTED and XyDiff, we believe the lack of accuracy stems from the lack of flexibility
when matching labels. XyDiff relies entirely on hashing subtrees of the document
and matching subtrees with identical hash. While this approach might be robust to
small structural mutations, it is naturally very sensitive to large amounts of mutations
when both structures and labels are mutated. Similarly, TED compares the labels of
most pairs of nodes and generates an associated cost of 1 when the labels are identical
and 0 when they are different (no gradual costs if the labels are similar).

Completion time For each couple (d, d′) retrieved from the dataset, we measured
the time taken by SFTM, APTED, and XyDiff to compute a full matching. Fig-
ure 2.7 reports the average time to match DOM couples of increasing size (in terms of
the number of nodes) for all three solutions. XyDiff exhibits a very fast computation
speed and despite its numerous optimizations, APTED’s computation times increase
exponentially for large web documents. SFTM is not as fast as XyDiff, but seems
to show reasonable growth when the size of web documents increases. Interestingly,
APTED computation time varies greatly, which is due to the multiple heuristics used
by this implementation to optimize the computation in certain situations.

Overall, one can observe that SFTM offers an interesting trade-off between two
classes of tree matching algorithms: the ones maximizing accuracy at the cost of
time, like APTED, and those minimizing the completion time at the cost of reduced
accuracy, like XyDiff.

CHAPTER 2. TREE MATCHING 31

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5
Mutation Ratio

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

SFTM
APTED
XyDiff

Figure 2.6: Precision, Recall, and F1 Score of SFTM, APTED, and XyDiff.

CHAPTER 2. TREE MATCHING 32

0 250 500 750 1000 1250 1500 1750 2000
Nodes

0

1000

2000

3000

4000

5000

Co
m

pu
ta

tio
n

tim
e

(m
s)

SFTM
APTED
XyDiff

Figure 2.7: Computation times when matching trees of different sizes.

Matching efficiency The matching efficiency measures how fast a given solution
can produce accurate results. Efficiency is a way to combine both accuracy and speed
metrics into one that can be used to compare all solutions. In our case, we already
showed that SFTM outperforms APTED in both accuracy and computation time.
This efficiency measure is thus particularly interesting to compare SFTM to XyDiff,
as SFTM outperforms XyDiff in terms of accuracy, but remains slower when it comes
to speed. To compute this matching efficiency, we consider the same metric as [65]—
i.e., the number of good matches produced per millisecond. Figure 2.8 reports the
matching efficiency of all three matching solutions. One can observe that SFTM
produces 7.7 good matches per millisecond on average, which is far above APTED
and XyDiff that produce 3.6 and 2.4 good matches per millisecond, respectively.

Parameter sensitivity Since we aim at improving the performances of FTM in
terms of computation times, we study the sensitivity of the sub-linear threshold func-
tion f , which is a parameter that directly influences the computation time of the
algorithm.

Figure 2.9, therefore, reports on the evolution of SFTM performances when f

varies. To study the sensitivity of f , we choose to use the power function f(N) = Nα

as a threshold and display how the computation times and matching accuracy evolve
with α.

For this experiment, as we are interested in studying the sensitivity of the parame-

CHAPTER 2. TREE MATCHING 33

SFTM APTED XyDiff
0

5

10

15

20

Ef
fic

ie
nc

y
(G

oo
d

m
at

ch
 p

er
 m

s)

Figure 2.8: Matching efficiency of SFTM, APTED, and XyDiff.

70%

75%

80%

85%

90%

95%

100%

0

2

4

6

8

10

12

14

0.15 0.25 0.35 0.45 0.55 0.65 0.75

G
o

o
d

 M
at

ch
 (

%
)

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

α

SFTM Time (s)

SFTM Success (%)

Chosen Value

Figure 2.9: Performance of SFTM given f(N) = Nα according to α.

CHAPTER 2. TREE MATCHING 34

ter α on the performances of SFTM, we, therefore, consider a subset of 243 pairs from
the complete dataset used in previous sections (cf. Section 2.5.3), which represents a
6% error margin with 95% confidence.

As expected, when α increases, the quality of the matching and the computation
times increase. However, beyond a certain value of α, the increase of computation
time is superior to the gain in accuracy: increasing α from 0.5 to 0.8 entails more
than 10 times longer computation times for 8% gain in accuracy. Intuitively, this is
because tokens contained in most nodes provide little relevant information (low IDF),
but increase the complexity quadratically. In this chapter, we thus adopted α = 0.5

(i.e., f(N) =
√
N) as this value achieves good enough performances to demonstrate

that SFTM can match two real-life web pages in practical time, with a minimum of
compromise on quality.

2.6 Threats to Validity

The absolute values of completion times depend on the machine on which the al-
gorithms were executed. As computations took time, we had to run both SFTM,
APTED, and XyDiff on a server, which is shared among several users. Although
we paid careful attention to isolating our benchmarks, the available resources of the
server might have varied along execution thus impacting our results.

Our dataset contains the homepages of the Top 1k Alexa websites. The fact that
our qualitative evaluation has only been conducted on homepages might have biased
the results, as such pages might not be fully representative of the complexity of online
documents. Yet, one can observe that the distribution of page sizes in our datasets
offers a good diversity of situations.

The parameters used for SFTM and, in particular, the weights for the propagation
may not be optimal. However, our evaluation shows that the adopted values succeed
to report tree matchings that compete with the state-of-the-art accuracy in reasonable
times and on a very large variety of web pages, which means the values we provided
for the parameters do not require to be tuned for most web page matching cases.

2.7 Conclusion & Perspectives

Comparing modern real-life web pages is a challenge for which traditional Tree Edit
Distance (TED) and XyDiff solutions are too restricted and computationally ex-
pensive. [43] introduced Flexible Tree Matching (FTM) to offer a restriction-free

CHAPTER 2. TREE MATCHING 35

matching but at the cost of prohibitive computational times.
This chapter thus introduced Similarity-based Flexible Tree Matching (SFTM),

the first implementation of an advanced Flexible Tree Matching (FTM) algorithm
with scalable computation times. We evaluated our solution using mutations on real-
life web pages and we showed that SFTM outperforms XyDiff qualitatively and
compares to TED, while significantly improving the computation time of the latter.
Our proof of concept demonstrates that accurate matching of real-life web pages in
practical time is possible.

Our label-centric approach to matching is significantly different than previous
structure-centric techniques. In addition to providing a competitive solution to match
web pages, we hope that our solution will encourage the development of solutions
based on similar approaches. We also believe that having a robust algorithm to effi-
ciently compare web pages will open up new perspectives within the web community.

In future work, we will further investigate how to improve the quality of the
tree matchings by analyzing which situations cause SFTM to report mismatches and
establishing guidelines to adjust the exposed parameters.

Finally, whether our work might apply to other trees than web DOMs remains
to be demonstrated. Indeed, SFTM strongly relies on the fact that node labels in
DOMs are highly differentiating (many specific attributes on each element), which is
not the case for all kinds of trees.

The final objective of our work is to build a set of tools allowing us to create an
abstraction of any web application. Being able to compare two web pages is the first
step. In the next section, we will apply tree-matching to the robust locator problem.

Chapter 3

Erratum

Summary

Web applications are constantly evolving to integrate new features and fix reported
bugs. Even an imperceptible change can sometimes entail significant modifications of
the Document Object Model (DOM), which is the underlying model used by browsers
to render all the elements included in a web application. Scripts that interact with
web applications (e.g. web test scripts, crawlers, or robotic process automation)
rely on this continuously evolving DOM which means they are often particularly
fragile. More precisely, the major cause of breakages observed in automation scripts
is element locators, which are identifiers used by automation scripts to navigate across
the DOM. When the DOM evolves, these identifiers tend to break, thus causing the
related scripts to no longer locate the intended target elements.

For this reason, several contributions explored the idea of automatically repairing
broken locators on a page. These works attempt to repair a given broken locator by
scanning all elements in the new DOM to find the most similar one. Unfortunately,
this approach fails to scale when the complexity of web pages grows, leading to either
too long computation times or incorrect element repairs. We, therefore, adopt a dif-
ferent perspective on this problem by introducing a new locator repair solution that
leverages tree matching algorithms to relocate broken locators. This solution, named
Erratum, implements a holistic approach to reduce the element search space, which
greatly eases the locator repair task and drastically improves repair accuracy. We
compare the robustness of Erratum on a large-scale benchmark composed of real-
istic and synthetic mutations applied to popular web applications currently deployed
in production. Our empirical results demonstrate that Erratum outperforms the
accuracy of WATER, a state-of-the-art solution, by 67%.

36

CHAPTER 3. ERRATUM 37

3.1 Introduction

The implementation of automated tasks on web applications (apps), like crawling
or testing, often requires software engineers to locate specific elements in the DOM
(Document Object Model) of a web page. To do so, software engineers or automa-
tion/testing tools often rely on CSS (Cascading Style Sheets) or XPath selectors to
query the target elements they need to interact with. Unfortunately, such statically-
defined locators tend to break along time and deployments of new versions of a web
application. This often fails all the associated automation scripts (including test
cases) that apply to the modified web pages.

While several existing works focus on repairing tests on GUI applications, there
are surprisingly very few test repair solutions targeting web interfaces [34]. These
solutions either propose to i) generate locators that are robust to changes (so-called
robust locator problem), or ii) repair locators that are broken by the changes applied to
the web pages (so-called locator repair problem). Unfortunately, most of the existing
solutions in the literature fail to accurately relocate a broken locator, thus leaving all
the related web automation scripts as broken [28]. More specifically, state-of-the-art
solutions to the locator repair problem, WATER [15] and VISTA [77], tend to rely
on the intrinsic properties of the element whose locator needs repairing to locate its
matching element on the modified page. However, this approach fails to leverage
the element position and relations with the rest of the DOM, thus ignoring valuable
contextual insights that may greatly help to repair the locator.

We adopt a more holistic approach to the locator repair problem: instead of focus-
ing on the element whose locator is broken individually, we leverage a tree matching
algorithm to match all elements between the two DOM versions. Intuitively, using
a holistic approach to repair a broken locator should significantly improve accuracy
by reducing the search space of candidate elements in the new version of the page:
for example, if the parent of the element whose locator is broken is easily identifiable
(e.g., the item of a menu) a tree matching algorithm will use this information to
relocate the target element in the modified page with better accuracy. Additionally,
if more than one locator is broken on a given web page, our approach will repair all of
them consistently at once. The holistic solution we propose, named Erratum,1 more
specifically leverages the efficient Similarity-based Flexible Tree Matching (SFTM) al-
gorithm we developed to repair all broken locators by matching all changes in a web
page.

1Erratum stands for "rEpaiRing bRoken locATors Using tree Matching"

CHAPTER 3. ERRATUM 38

As described in chapter 2, SFTM is a tree matching algorithm providing fast
computation times and high accuracy when compared to other generic tree matching
solutions. To do so, SFTM builds on a distinctive characteristic of DOM trees:
the labels of the nodes (i.e., node attributes and tags) contain a high amount of
information that can be leveraged to prune the space of possible matchings between
two trees.

Evaluating solutions to both robust locator and locator repair problems requires
building a dataset of web page versions—i.e., (original page, modified page) pairs.
Unfortunately, previous works assessed their contributions on hardly-reproducible
benchmarks of limited sizes (never beyond a dozen of websites). We rather evaluate
the robustness of our approach against the state of the art by introducing an open
benchmark, which covers a wider range of changes that can be found in modern web
apps. Concretely, our open benchmark considers over 83k+ locators on more than
650 web apps. It combines i) a synthetic dataset generated from random mutations
applied to popular web apps and ii) a realistic dataset replaying real mutations ob-
served in web apps from the Alexa Top 1K,2 which ranks the most popular websites
worldwide.

When evaluated on both datasets, our results demonstrate that Erratum out-
performs the state-of-the-art solution, namely WATER [15], both in accuracy (67%
improvement on average) and performance, when more than 3 locators require to be
repaired in a web page.

Concerning the potential applications of Erratum, while we introduce and eval-
uate our solution within the well-studied context of locator repair, we also discuss a
novel resilient architecture centered around Erratum allowing us to entirely replace
all locator-based interactions. This architecture intends to support much more in-
teractive and robust script editions in the context of web testing, web crawling, and
Robotic Process Automation (RPA) [35]

Summary Overall, the key contributions in this chapter consist of:
1. proposing a solution to the locator repair problem leveraging the principles of

Flexible Tree Matching (FTM),
2. implementing and integrating an efficient algorithm, named Erratum, to repair

broken locators,
3. providing a novel, reproducible, large-scale benchmark dataset to evaluate both

the robust locator and locator repair problems,
2https://www.alexa.com/topsites

https://www.alexa.com/topsites

CHAPTER 3. ERRATUM 39

4. reporting on an empirical evaluation of our approach when solving the locator
repair problem,

5. proposing a novel script edition architecture centered on Erratum.

Outline The remainder of this chapter is organized as follows. Section 3.2 intro-
duces the state-of-the-art approaches in the domain of robust locators and locator
repair, before highlighting their shortcomings. Section 3.3 formalizes the locator
problem we address. Section 3.4 introduces our approach, Erratum, which leverages
an efficient flexible tree matching solution that we identified. Section 3.5 describes
the locator benchmark we designed and implemented. Section 3.6 reports on the
performance of our approach compared to the state-of-the-art algorithms. Finally,
Section 3.7 presents some perspectives for this work, while Section 3.8 concludes.

3.2 Background & Related Work

We deliver a novel contribution to the locator repair problem, which has been initially
studied in the domain of web testing. In this section, we thus introduce the required
background and describe state-of-the-art approaches to repairing broken locators, and
in particular, the literature published in the domain of web test repair.

3.2.1 Introducing Web Element Locators

To detect regressions in web applications, software engineers often rely on automated
web-testing solutions to make sure that end-to-end user scenarios keep exhibiting the
same behavior along with changes applied to the system under test. Such automated
tests usually trigger interactions as sequences of actions applied on selected elements
and followed by assertions on the updated state of the web page. For example,
"click on button e1, and assert that the text block e2 contains the text ’Form sent’".
To develop such test scenarios, a software engineer can 1. manually write web test
scripts to interact with the application, or 2. use record/replay tools [11, 75, 60] to
visually record their scenarios. In both cases, the scenario requires identifying the
target elements on the page [e1, e2] in a deterministic way, which is usually achieved
using XPath, a query language for selecting elements from an XML document. For
example, let us consider the following HTML snippet describing a form:

<form method="post" action="index.php">

<input type="text" name="username"/>

CHAPTER 3. ERRATUM 40

<input type="submit" value="send"/>

</form>

The following XPath snippets describe 3 different queries, which all result in
selecting the submit button: /form/input[2], /form/input[@value="Send"], input[

@type="submit"]. In the literature, such element queries or identifiers are named
locators [46].

In practice, automated tests are often subject to breakages [28]. It is important
to understand that a test breakage is different from a test failure [77]: a test failure
successfully exposes a regression of the application, while a test is said to be broken
whenever it can no longer apply to the application (e.g., the test triggered a click on
a button e, but e has been removed from the page). While there can be many causes
to test breakage, [28] reports that 74% of web tests break because one of the included
locators fails to locate an element in a web page.

3.2.2 Generating Web Element Locators

The fragility of locators remains the root cause of test breakage, no matter whether
they have been automatically generated (e.g., in the case of record/replay tools), or
manually written. To tackle this limitation, several studies have focused on gener-
ating more robust locators. This includes ROBULA [46], ROBULA+ [49], which
are algorithms that apply successive refining transformations from a raw XPath
query until it yields an XPath locator that exclusively returns the desired element.
Leotta et al. [47, 44] also propose Sideral, a graph-based algorithm to generate XPath
locators. Sideral requires to specifically train on each application to learn what prop-
erties are most likely safe to rely on when building XPath locators. While these
methods all use ancestors of a given element as an anchor to generate a locator, [64]
uses siblings instead, arguing that they make more reliable anchors.

Another work by Yandrapally et al. leveraged contextual clues to generate loca-
tors [87]. These clues rely mostly on the content surrounding the element to locate
which may be problematic in case the content changes. LED [5] uses a SAT solver
to select several elements at once, but is never evaluated on different DOM versions.
Finally, some works combine several locator generators with a voting mechanism to
locate a single element with more robustness [48, 95, 56]. However, all these ap-
proaches, which consider a limited set of locator generators, strongly depend on the
accuracy of individual algorithms to agree upon a single and relevant locator.

While automatically generating locators can speed up the definition of test cases,

CHAPTER 3. ERRATUM 41

it becomes a keystone for visually-generated test cases based on record/replay tools.
In the end, the reliability of test cases built using such a tool depends mostly on the
quality of the locators it automatically generates [28].

3.2.3 Repairing Web Element Locators

While some solutions to the robust locator problem, as presented above, aim to
prevent locators from breaking, others focus on repairing broken locators. In this
context, the repair tool considers a) the descriptor of the locator, b) the last version
of the page on which the locator was still functional (D), c) the new version of the
page on which the locator is broken (D′).

Property Based In this area, WATER [15] and COLOR [40] provide an algorithm
to fix broken tests using intrinsic properties of the element to relocate. The process of
repairing a test involves several steps: 1. running the test, 2. extracting the causes of
failure and, 3. repairing the locator, if broken. The last part is particularly challeng-
ing. To relocate a locator from one version to another, WATER and COLOR scan
all elements in the new version and return the most similar one to the element in
the original version with regards to intrinsic properties (e.g., absolute XPath, classes,
tag). Hammoudi et al. [27] further studied the locator repair part of WATER and
found that repairing tests over finer-grained sequences of change (typically commits)
contributes to improving accuracy.

Vision Based Using a completely different approach, VISTA [77] is a recent tech-
nique that adopts computer vision to repair locators. VISTA falls within the cate-
gory of computer vision-aided web tests [13, 51, 3]. However, while using computer
vision succeeds in repairing most of the invisible changes, such solutions tend to fail
when the content, language, or visual rendering of the website changes. Furthermore,
visual-based solutions fail to locate dynamic elements that only appear through user
interactions (e.g., a dropdown menu).

Finally, J.Imtiaz et al [33] developed a test repair solution that integrates several
different capture replay tools. While we focus specifically on the locator repair prob-
lem, they used and evaluated a more comprehensive test-repair strategy involving the
classification of the test script and detected breakages and the extension of the UML
Testing Profile specifications to capture more interaction details.

CHAPTER 3. ERRATUM 42

Select elements

Write Test

Generate locators for
each element

Write test scenario
(sequence of

interaction with
located elements)

Run on

Test Repair

Extract cause
of breakage Relocate element Re-generate

locators
No locator involved

New test

Figure 3.1: Illustration of the locator problem statement in automated tests combin-
ing the robust locator (in blue) and the locator repair (in green) problems.

3.3 Locator Problem Statement

Figure 3.1 summarizes the steps to follow when writing or repairing a locator in a
web test script. When a test breaks, the repairing process generally includes three
main steps: 1. extract the cause of the breakage 2. if a locator caused the breakage,
the element is first relocated then 3. a new locator is generated/written. Beyond
automated tests, this problem can also arise in more general web automation scripts
covering web content crawling and Robotic Process Automation (RPA), which heavily
rely on locators to automate the navigation across web applications.

In this section, we formalize the description of two locator-related problems high-
lighted in Figure 3.1, namely the robust locator (in blue) and locator repair (in green)
problems for the general case of web automation scripts.

3.3.1 Problem Notations

We consider that a given web page can change for various reasons, such as 1. content
variation, 2. page rendered for different regions/languages, or 3. release of the web
application. No matter the cause, we distinguish D and D′ as two versions of the
same web page observed before and after a change, respectively. More specifically, we
define the following similarity notations:

1. D ≈ D′ if scripts written for D are expected to apply on D′;
2. Given 2 web elements e ∈ D and e′ ∈ D′, e ≈ e′ if e and e′ refer to semantically

equivalent elements (e.g., the same menu item observed in pages D and D′);
3. By extension of (2), given a set of elements E = e1...en ⊂ D and E ′ = e′1...e

′
n′ ⊂

D′, E ≈ E ′ if n = n′ and, for each i ∈ [1..n], ei ≈ e′i.
Based on the above similarity notation, we provide the following definitions:

Definition 3.3.1. Given a page D, and a set of elements E = e1...en, the pair

CHAPTER 3. ERRATUM 43

(locE,D, eval) is a locator of E with regard to D if:

eval(locE,D, D) = E (3.1)

where locE,D is a descriptor of E and eval an evaluation function that returns a set
of web elements from a descriptor and an evaluation context (e.g., a web page).

In the case of XPath-based locators, the descriptor locE,D refers to an XPath query
describing the elements E in the page D and eval the XPath solver.

Definition 3.3.2. Let mut be a mutation function that transforms the page D into
another page D′, such as mut(D) = D′. mut is said to be a mutation of D if
D ≈ D′.

Definition 3.3.3. Given a locator L = (locE,D, eval), L is robust to a mutation
function mut if:

eval(locE,D,mut(D)) ≈ E (3.2)

Finally, we note λ(e) the label of the node e in the DOM tree. The label of a node
comprises the tag, the attributes, their values, and the textual content. However,
in the context of Erratum, we willingly ignore the content as described in section
3.4.3.

3.3.2 Problem Statement

Given the above definitions, we can formalize the locator problem statement along
with the two following research questions.

RQ 3.3.1. Robust Locator. For any subset of elements on a given page D, how to
automatically generate locators that are robust to mutations of D?

When evaluating a locator on a new page D′, the only available information to
describe the targeted element is the descriptor locE,D, which often remains insufficient
(cf. state-of-the-art techniques).

On the other hand, in the context of locator repair, the original page D from which
locE,D was built is available. Thus, using definition 3.3.1, this piece of information
allows to locate the originally selected elements eval(locE,D, D) = E.

RQ 3.3.2. Locator Repair. Given two pages D, D′, such that D ≈ D′ and a set of
elements E ∈ D, how to locate the elements E ′ ≈ E in D′?

CHAPTER 3. ERRATUM 44

To the best of our knowledge, existing solutions to both robust locator and locator
repair focus on the restricted case of |E| = 1.

Once the locator repair problem is solved (i.e., E ′ are correctly located), we need
to generate new locators, which brings us back to the situation of the robust locator
problem (cf. RQ. 3.3.1).

We thus present a novel approach to solving the locator repair problem.

3.4 Repairing Locators with Erratum

The previous section formalized both robust locator and locator repair problems. The
approach we report, Erratum, therefore matches the DOM trees of 2 versions of a
web page to solve the locator repair problem. Several tree matching solutions exist
in the literature, such as Tree Edit Distance (TED) [80] or tree alignment [36]. This
section therefore motivates and explains how Erratum leverages tree matching to
repair locators, before discussing the choice of a tree matching implementation fitting
Erratum’s requirements.

3.4.1 Applying Tree Matching to Locator Repair

Embedding tree matching allows Erratum to leverage the tree structure in the
same way an XPath-based solution would, while offering the flexibility of a more
statistic-based solution. Intuitively, a tree matching algorithm should consider all
easily identifiable elements on a page (elements with rare tags, unique classes, ids, or
other attributes) as anchors to relocate less easily identifiable elements.

Figure 3.2 illustrates the benefits of a more holistic approach using tree matching.
In the example, the locator of element a (in blue) breaks because the mutations
between D and D′ entails a change in its absolute XPath (/body/div/a). Attempting
to repair such a broken locator by relying on the properties of the original element
alone (state-of-the-art approaches like [15, 77]) is often challenging and can easily lead
to a mismatch. By using tree matching (cf. right-bottom of Figure 3.2), matching
the parent of the element to locate (div#menu) brings instead a strong contextual
clue to accurately relocate the element a1’ whose locator was broken 2.

Formally, given a pair of page versions D and D′, we:
1. parse D and D′ into DOM trees T and T ′. Consequently, nodes(T) is the set

of elements in the DOM tree T ;

CHAPTER 3. ERRATUM 45

body'

div#menu

a

body

State-of-the-art approach Tree-matching approach

div#menu'

a1'

div'

a2'

/body/div/a

/body/div/a

?

?
a

3a a1'
a2'

2

Matches 1, 2 provide
clues for match 3

Risk of mismatch
(/body/div/a might match a2')

div#menu div#menu'

div'

a1'

a2'

div#menu'
div'

DOM linkmatch link

body' body'

body 1

Figure 3.2: State-of-the-art Vs. tree matching locator repair.

CHAPTER 3. ERRATUM 46

2. apply tree matching to T, T ′ yielding a matching M ⊂ nodes(T) × nodes(T ′).
If the resulting matching M is accurate, then ∀(e, e′) ∈M, e ≈ e′;

3. use the resulting matching M to repair the broken locator(s).
Regarding the test repair process illustrated in Figure 3.1, our approach thus

fits in the block "relocate element" (in green) by matching the elements of D in D′

and reporting the relocated element. Thus, once the element is relocated using tree
matching—i.e. Erratum found e′ ∈ D′|e ≈ e′—we only need to generate a new
locator loce′,D′ to achieve the test repair process. This task can be performed using
solutions to the robust locator problem, like ROBULA [46], and is therefore considered
out of the scope of our study.

3.4.2 Integrating a Scalable Tree Matching Algorithm

The state-of-the-art approach to match two trees is Tree Edit Distance (TED) [80].
When comparing two trees T and T ′, TED-based approaches rely on finding the
optimal sequence of relabels, insertions, and deletions that transforms T into T ′.
Unfortunately, TED might be unsuitable to match real-life web pages due to two
core restrictions [43]: 1. if two nodes e and e′ are matched, the descendants of e

can only match with the descendants of e′, and 2. the order of siblings must be
preserved. Furthermore, TED is computationally expensive (O(n3) for the worst-case
complexity [9]) and, more practically, our preliminary experimentation has shown
that applying the state-of-the-art implementation of TED, named APTED [69], on
the YouTube page takes several minutes. We believe that, in addition to qualitative
restrictions, such computation times are not acceptable when periodically repairing
locators on real websites.

Further studies of TED proposed to improve computation times [37, 81, 94], but
at the cost of even more restrictive constraints on the produced matching (e.g., the
tree alignment problem [37] restricts the problem to transformations where insertions
are performed before deletions).

To the best of our knowledge, the only contribution that provides a solution to the
general (restriction-free) tree-matching problem is the Flexible Tree Matching (FTM)
algorithm [43]. FTM models tree matching as an optimization problem: given two
trees T and T ′ how to build a set of pairs (e, e′) ∈ T × T ′ such that the similarity
between all selected node pairs is maximal. The similarity used by FTM combines
both the labels and the topology of the tree.

However, as shown in the previous chapter (2), the theoretical complexity of FTM

CHAPTER 3. ERRATUM 47

is high (O(n4)) and the implementation of FTM was shown to take more than an hour
to match a web page made of only 58 nodes, while the average number of nodes on
a web page observed in our dataset is 1, 507. Consequently, we believe that such
computation times make FTM unpractical in the context of locator repair.

3.4.3 Matching DOM Trees by Similarity

Given the limitation of FTM, Erratum integrates the Similarity-based Flexible Tree
Matching (SFTM) algorithm we developed in the previous chapter, which is an ex-
tension of state-of-the-art FTM to improve the computation times of FTM without
any restriction on the resulting matching.

In the context of Erratum, the SFTM algorithm assumes that, given a web
page, several elements are easily identifiable by considering their intrinsic properties.
The algorithm first assigns scores to all possible matches between nodes from the two
trees based on their label and only then uses the topology of the trees to adjust these
scores.

Almost all existing tree matching algorithms rely first and foremost on the topol-
ogy of the trees. Conversely, SFTM relies mostly on the labels of the trees and only
makes use of topology in a second step, to fine-tune the already computed scores.
Intuitively, matching two sets of labels is significantly easier than trying to match
trees, which is the reason why SFTM achieves such competitive performance. The
only trade-off of this approach is that it requires the labels of the trees to be highly
differentiating (i.e., carry a lot of information). Fortunately, this is the case for the
great majority of web pages.

In this section, we walk through the key steps of the SFTM algorithm (described
in chapter 2) applied to Erratum’s approach. We use HTML snippets reported in
Figure 3.3. The figure provides two versions (D and D′) of a simplified HTML code
sample extracted from the homepage of the famous search engine duckduckgo.com.
In this example, our purpose is to relocate a1 ∈ D with a′1 ∈ D′.

Unlike the state-of-the-art matching algorithms, SFTM first tries to match ele-
ments in D′ whose labels are similar to D, before using these matched elements to
adjust the similarity of surrounding elements in the tree. For example, the similarity
scores of the tuple (a1, a

′
1) links will increase as their direct parents (div3, div

′
3) are

matched with confidence. Figure 3.4 summarizes the SFTM algorithm’s key steps
and the remainder of this section provides an overview of its integration in Erratum

(cf. green box in Figure 3.1). The interested reader can refer to our technical report 2

CHAPTER 3. ERRATUM 48

(a) Original document D.

<div class="content -info__item"> div1

<div class="item__title">...</div> div2

<div class="item__subtitle"> div3

...

Plugins a1

</div>
</div>

(b) Updated document D′ from D.

<div class="items -wrap"> div′4

<div class="item"> div′1

<div class="item__title">...</div> div′2

<div class="item__subtitle"> div′3

...

Extensions a′1

</div>
</div>

<div> div′5

...

Newsletter a′2

</div>
</div>

Figure 3.3: Two versions of an HTML snippet extracted from the homepage of duck-
duckgo.com.

CHAPTER 3. ERRATUM 49

for an exhaustive description of our SFTM algorithm, whose applications go beyond
the context of repairing broken locators.

Step 1: Node Similarity Elements of DOMs D and D′ are compared. The first
step consists in computing an initial similarity s0 : D × D′ → [0, 1]. For each pair
of nodes (e, e′) ∈ D × D′, s0(e, e′) measures how similar the labels of e and e′ are.
In HTML pages, the label of a node e ∈ D that we use is the set of tokens obtained
from applying a tokenizer to the HTML code describing e. This may include the type
of the HTML element, its attributes, and eventually, the raw content associated with
this element—i.e., thus ignoring the content from the child elements.

Example 3.4.1. The label computed for div1 (cf. Figure 3.3) includes the following
tokens: {div, class, content-info__item}.

To compute s0, SFTM first indexes the labels of each node of D. The idea of this
step is to prune the space of possible matches by pre-matching nodes with similar
labels. When indexing, to improve the accuracy of s0, we apply the Term Frequency-
Inverse Document Frequency (TF-IDF) [38] formula to take into account how rare
each token is.

Example 3.4.2. Following our previous Example 3.3, when considering the match
(div1, div

′
1):

1. token div will yield very few similarity points since it is included in the labels
of almost all the nodes,

2. token content-info__item will increase the score significantly, as it only ap-
pears once in both documents.

In general, very common tokens bring very little information to the relevance of a
given match, while they cause a significant increase of potential matches to consider.
That is why, to reduce the computation times, the algorithm rules out the most
common tokens.

Step 2: Similarity Propagation The initial similarity s0 only takes into account
the labels of nodes. In this second step, the idea is to enrich the information contained
in s0 by leveraging the topology of the trees D and D′.

Example 3.4.3. In Example 3.3, it is hard to choose the correct match m1 = (a1, a
′
1)

over the incorrect one m2 = (a1, a
′
2) by only considering labels, since all three elements

share the same set of tokens: {a, href}. In the similarity propagation step, we leverage

CHAPTER 3. ERRATUM 50

...

1

1

1

1.	Node	Similarity

1 + 1

+

1

1

2.	Similarity	Propagation 3.	Optimization

...

Figure 3.4: Key steps followed by our Similarity-based Flexible Tree Matching (SFTM)
algorithm.

the fact that the parents of a1 and a′1 are similar to increase the similarity between a1

and a′1, thus preferring m1 over m2.

In general, for each considered match (e, e′) ∈ D × D′, the parents of e and e′

gets more similarity points if e and e′ are similar and inversely, s(e, e′) is increased if
the parents of e and e′ are similar (with regard to s0). We call s the final similarity
produced by this step.

Step 3: Optimization Producing the optimal matching with regards to the com-
puted similarity means selecting the full set of matches such that each element of D
is matched with at most one element of D′ and the sum of similarity scores of the
selected matches is maximum.

To approximate the optimal set of matches, SFTM implements the Metropolis
algorithm [58]. The idea is to randomly walk through several possible configurations
(set of matches) to converge towards the optimal one.

At the end of the optimization step, the SFTM algorithm yields a full matching
M ⊂ D × D′ comprising matches between nodes of D and D′. These matches can
be analyzed by Erratum to locate broken locators and fix them by generating new
locators in the target document D′.

Best and worst case scenarios The greatest strength of Erratum’s approach is
to handle variations of labels—e.g., renaming a class, adding an id, and removing an
attribute. This is because of the fuzzy nature of the first similarity steps of SFTM: as
long as two elements’ labels share enough rare tokens, they will match. For elements
that have little information in their label (e.g., a bare div tag with no attributes) the
algorithm will still be able to rely on the parents and children of the node whose label
may contain more discriminative information.

CHAPTER 3. ERRATUM 51

The worst-case scenario happens when making structural changes around nodes
with labels containing little information. For example, if the content of a bare div node
is moved to another div node, matching the first div node accurately will become very
challenging. More than that, since the node that was moved contains a high amount
of information, the matching of this node will propagate to its new parents, thus
increasing the chances of mismatch in the surrounding of the moved node.

3.5 The Robust Locator Benchmark

In our context we are interested in covering the following research questions:

RQ 3.5.1. How does Erratum perform in solving the locator repair problem (cf.
RQ. 3.3.2) when compared to state-of-the-art solutions?

RQ 3.5.2. What are the factors influencing the accuracy of WATER and Erratum?

RQ 3.5.3. How quickly can Erratum repair broken locators when compared to state-
of-the-art solutions?

This section, therefore, describes the benchmark we propose to assess these ques-
tions.

3.5.1 Evaluated Locator Repair Solutions

We compare two solutions: 1. Erratum, our approach to repairing broken locators
by leveraging flexible tree matching, and 2. WATER, the reference implementation
of a locator repair technique applied to web test scripts [15].

The original algorithm of WATER analyses a given test case and finds the ori-
gin of the test breakage and suggests potential repairs to the developer. In our
context we are interested in the most challenging part of the algorithm: the part
that repairs broken locators, if needed. Given the originally located element e ∈
D, WATER attempts to find e′ ∈ D′ such that e′ ≈ e by scanning over all ele-
ments in D′ such that tag(e′) = tag(e) and selecting the elements most similar to
e. The similarity between two elements e1, e2 used by WATER mostly consists in
computing the Levenshtein distance between the absolute XPaths of both elements
(Levenshtein(XPath(e1), XPath(e2))) combined with other element properties sim-
ilarity (e.g., visibility, z-index, coordinates). In our evaluation, we re-implemented
this part of the WATER algorithm to compare its performance to Erratum.

CHAPTER 3. ERRATUM 52

We initially considered VISTA [77] as a baseline, even though the approach they
use (computer vision) is radically different from Erratum and WATER. However,
despite our efforts, we failed to run their implementation and received no answer
when trying to contact the authors.

Note that, in this evaluation, we focus on single-element locator cases of the
locator repair problem (we only try to repair single-element locators). The reasons for
this decision are: 1. The state-of-the-art solutions to both repair and robust locator
problems only treat this case and in particular, WATER can only repair locators
locating a single element, 2. Erratum reasons on the whole trees, so locating several
independent elements is done the same way as locating a group of elements.

3.5.2 Versioned Web Pages Datasets

In the remainder of this chapter, we propose two datasets to compare Erratum and
WATER against potential evolutions of web pages. Given two versions of the same
page D,D′, and a set of elements E ⊂ D, the locator repair problem consists in
locating a set of elements E ′ ⊂ D′, such that E ′ ≈ E. To evaluate the performance
of a locator repair tool, we thus need what we call a DOM versions dataset: a
dataset of pairs (D,D′), such that D ≈ D′.

A DOM version dataset is also required to evaluate solutions to the robust locator
problem. To build such a dataset, previous works on locator repair [49, 46] and robust
locator [77, 15, 27] manually analyzed different versions of a few open source appli-
cations (like Claroline, AddressBook, or Joomla). These evaluations are significantly
limited in size (never beyond a dozen of websites considered) and hard to reproduce
since the exact versions of the open source applications used are often not provided
or available.

In our study, we, therefore, introduce the first large-scale, reproducible, real-life
DOM versions dataset that can be used to assess locator repair solutions, and is
composed of two parts:

1. A Mutation dataset 2 generated by applying random mutations to a given
set of web pages (see Section 3.5.2),

2. A Wayback dataset collects past versions of popular websites from the Way-
back API (see Section 3.5.2).

Then, for each pair (D,D′) in the dataset, our experiments consist of selecting a
set of elements to locate in D and in comparing both Erratum and WATER trying
to find the corresponding element on D′.

CHAPTER 3. ERRATUM 53

Table 3.1 describes both datasets in terms of:
1. # Unique URLs: the number of unique URLs among the total of version pairs

in the dataset. The duplication is because there can be several mutations or
successive versions of the same web page. In the case of the Wayback dataset,
more popular websites are more represented (see Section 3.5.2);

2. # Version pairs: the number of considered pairs of web pages (D,D′),
3. # Located elements: the number of elements e ∈ D that any solution should

locate in D′.

Table 3.1: Description of the Mutation & Wayback datasets.

Dataset Mutation Wayback
Unique URLs 650 64
Version pairs 3,291 2,314
Located elements 49,305 34,421

The two datasets we provide are complementary. Since the Mutation dataset is
generated by mutating elements from an original DOM D, the ground truth matching
between D and its associated mutation D′ is known to easily evaluate the solution
on a very large amount of version pairs. However, since the versions are artificially
generated, this dataset is synthetic and, as such, might not entirely reflect the actual
distribution of mutations happening along a real-life website lifecycle.

Then, the Wayback dataset is composed of real website versions mined from the
Wayback API: an open archive that crawls the web and saves snapshots of as many
websites as possible at a rate depending on the popularity of the website.3 In the
Wayback dataset, mutations between D and D′ are not synthetic, but as a result,
the ground truth matching between D and D′ is unknown. In our evaluation, we thus
had to manually label a sample of the results obtained on this dataset, which limits
the scalability of the experiment compared to the Mutation dataset.

The following sections provide more details on how both datasets were built.

Building the Mutation dataset.

We extend the technique we introduced to generate a Mutation dataset in 2. The
mutation dataset is built by applying a random amount of random mutations to a set
of original web pages: for each original DOM D, 10 mutants are created by applying
mutations to D. Since the mutations applied to D to construct each mutant D′ are

3https://archive.org/help/wayback_api.php

https://archive.org/help/wayback_api.php

CHAPTER 3. ERRATUM 54

Table 3.2: Mutations applied in the Mutation dataset 2.

Type Mutation operators
Structure remove, duplicate, wrap, unwrap, swap
Attribute remove, remove words
Content replace with random text, change letters,

remove, remove words

known, the ground truth matching between D and D′ is also known. Knowing the
ground truth matching on the mutation dataset allows us to evaluate our locator
repair solution on a very large dataset. Table 3.2 describes the set of DOM mutations
that can be observed along the evolution of a web page.

The original websites from which mutants were generated were randomly selected
from the Top 1K Alexa. Figure 3.5 depicts the distribution of DOM sizes in this
synthetic dataset.

0 2500 5000 7500 10000 12500 15000 17500
Nodes

0

100

200

300

400

500

600

Or

ig
in

al
 P

ag
es

Figure 3.5: Distribution of DOM sizes (in number of nodes) in the Mutation dataset.

This dataset was built with an automation tool that we made available along with
its source code 3.8. From a given list or source URLs, our tool creates a dataset of
randomly mutated web pages following the above-described approach.

Buidling the Wayback dataset.

This dataset encloses a list of (D,D′) DOM pairs where D and D′ are two versions of
the same page (e.g., google.com between 01/01/2013 and 01/02/2013). Two versions

CHAPTER 3. ERRATUM 55

can be separated by different gaps in time. In this section, we explain how we used
the Wayback API to build this dataset. The Wayback API can be used to explore
past versions of websites. The two endpoints we used to build the dataset can be
modeled as the following functions:

versionsExplorer :: (url, duration)→ timestamp[]

versionResolver :: (url, timestamp)→ document

The versionsExplorer retrieves the list of available snapshots between two dates, while
the versionResolver returns the snapshot of a given url at the requested timestamp.

Using these endpoints, for each website URL considered, we:
1. retrieved the timestamps of all versions between 2010 and today using the Ver-

sionExplorer,
2. generated a list of all pairs of timestamps with one of the following differences

in days (±10%): [7, 15, 30, 60, 120, 240, 360],
3. picked up to 1, 000 random elements from the list of timestamps pairs,
4. resolved each selected timestamp pair using the versionResolver.
Similarly to the Mutation dataset, the URLs we fed to our algorithm were taken

from the Top 1K Alexa. Since both datasets are based on the same set of URLs
(taken from Alexa), the distribution of the Wayback dataset is very similar to the
Mutation one (cf. Figure 3.6).

0 1000 2000 3000 4000 5000 6000 7000 8000
Nodes

0

100

200

300

400

500

600

700

Or

ig
in

al
 P

ag
es

Figure 3.6: Distribution of DOM sizes (in number of nodes) in the Wayback dataset.

CHAPTER 3. ERRATUM 56

Selecting the elements to repair.

Erratum and WATER operate in different ways. Erratum takes two trees (D,D′)

and returns a matching between each element of the trees, thus solving any possi-
ble broken locator between D and D′. The algorithm extracted from WATER is a
more straightforward solution to the locator repair problem as formally described (cf.
Section 3.3.2): it takes a pair of DOM versions (D,D′) and an element e ∈ D as
input and returns an element e′ ∈ D′ (or null if it fails to find any candidate for the
matching).

Consequently, in the case of the WATER algorithm, the following question arises:
given a pair (D,D′) taken from the DOM version dataset, which elements of D should
be picked for repair? Ideally, we would try to locate every element of D in D′ to
obtain a comprehensive comparison with Erratum. Unfortunately, the computation
times of WATER make it impractical to locate every single element from D to D′.
Selecting realistic targets for locators is a non-obvious task since many elements in
the DOM would not be targeted in a test script (e.g., large container blocks, invisible
elements, aesthetic elements). Therefore, for each version pair, we randomly select
up to 15 clickable elements from D. We focus on clickable elements as this is the
most common use case for web UI testing (to trigger interactions), and WATER has
specific heuristics to enhance its accuracy on links. By considering clickable elements,
we 1. make sure to choose realistic elements, and 2. compare to WATER on its most
typical use case.

Regarding the sample size, considering 15 elements per web page leads to selecting
34,000+ elements in both datasets. As the average number of nodes per web page in
each dataset is around 1, 500, this means that there are more than 3.6M candidate
locators for repair in each dataset. Therefore, the confidence interval at 95 % of the
measurements applied to the 34K sample of located elements is 0.5%.

3.5.3 Evaluating of the Matched Elements

On the Mutation dataset, the signature attributes are preserved after mutations
(but ignored when applying either locator repair solution), thus providing the ground
truth matching between the DOMs of a version pair.

For the Wayback dataset though, this information is not available. For each
version pair (D,D′), the evaluation of both solutions yields to a list of suggested
matching (e, e′ERRATUM) and (e, e′WATER) where e ∈ D and e′ERRATUM , e′WATER ∈ D′.
In both cases, e′ may be null in case no matching was found. Given the above situa-

CHAPTER 3. ERRATUM 57

Figure 3.7: Labeling a given element matched by Erratum on two versions of the
Linkedin homepage. The screenshot comes from the visual matching application we
created to manually label disagreements between Erratum & WATER.

tion, the labeling process consists of determining whether the matching element of e
is e′ERRATUM , e′WATER, or neither. In many cases, e′ERRATUM = e′WATER (consensus).
We choose to focus our manual labeling effort on cases where WATER and Erratum

disagree and assume that both solutions are right otherwise.
Thus, to label the disagreements between Erratum and WATER, we developed

a web application (cf. Figure 3.7) to display the identified elements on both versions
of the DOM version pair and label the matching as either correct or wrong.

When we defined the similarity equivalence between two elements (cf. Defini-
tion 3.3.1), we mentioned the potential subjective part of the measure. To lessen
this subjective part and label the proposed matchings as objectively as possible, we
systematically recommended the following guidelines:

1. Sometimes, matched elements are not visible (it happens when the visibility of
some parts of the page is triggered dynamically). In this case, if elements in
both versions are not visible, the locator is skipped, otherwise, the matching is
considered as mismatch;

2. Sometimes, a link appears in different locations on the website (often sign-in
links). Matching two such links from different locations is considered wrong
even though the two links might be assumed to have a similar semantic value.
Therefore, we always consider the surrounding of the located element to judge
whether the matching is correct or mismatch.

CHAPTER 3. ERRATUM 58

ERRATUM WATER

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Figure 3.8: Accuracy distribution of Erratum and WATER on the Mutation
dataset.

3.6 Empirical Evaluation

This section evaluates locator repair solutions along with two criteria, accuracy and
performance, to answer our research questions.

3.6.1 Evaluation of Repair Accuracy

In this section we answer RQ.3.5.1: How does Erratum perform in solving the
locator repair problem (RQ. 3.3.2) when compared to state-of-the-art solutions?

Repair accuracy on the Mutation dataset. Figure 3.8 summarizes the dis-
tribution of the accuracy of Erratum and WATER as a violin plot over the 3, 291

version pairs of our Mutation dataset. For each version pair (D,D′), the reported
accuracy ratio corresponds to the ratio of the 15 selected elements from D that are
accurately located in D′. The figure shows

There are two ways a repair solution can fail to locate an element e ∈ D in D′:
1. a mismatch, when the original element e ∈ D has been matched to the wrong
element e′ ∈ D′, or 2. a no-match, when the algorithm does not manage to locate e

in D′. In case of failure, a no-match is always preferred to a mismatch, since a no-
match alerts the developer about failure. Thus, considering the two classes of errors
on the Mutation dataset, Table 3.3 summarizes the ratio of no-match and mismatch
reported by both solutions. In particular, the data shows a significant advantage
in favor of Erratum when it comes to reducing locator mismatches, compared to
WATER.

CHAPTER 3. ERRATUM 59

Table 3.3: Errors distribution of Erratum and WATER on the Mutation dataset.

Erratum WATER
correct 42, 876 (87.0%) 20, 740 (42.1%)

mismatch 4, 420 (9.0%) 26, 820 (54.4%)

no-match 2, 009 (4.0%) 1, 745 (3.5%)

Total: 49, 305 (100%) 49, 305 (100%)

To further understand which factors influence the accuracy of Erratum and
WATER (RQ.3.5.2), we studied the evolution of accuracy according to three factors:
1. the type of mutations applied, 2. the size of the DOM (number of nodes) of the
original page D, and 3. the mutation ratio applied to the original page D to obtain
the mutant D′.

First, to assess the impact of the mutation type on the accuracy of Erratum

and WATER, we used a constrained version of the Mutation dataset with only one
mutation operation applied for each mutant. In the original Mutation dataset, a
mutant D′ of a page D is obtained by picking a random number l of random nodes
n1, n2...nl ∈ D and applying a random mutation type (cf. Table 3.2) to each node. In
the constrained version, we use the same original pages D, but select a single random
mutation operation per mutant D′. We then apply the mutation operation to l

randomly selected nodes: n1, n2...nl. For each original page D, the result is a list of
mutants such that each mutant D′ was obtained using only one mutation operation
on a random amount of random nodes. Figure 3.9 depicts the sensitivity of both
locator repair solutions on this alternative dataset. The vertical lines on top of each
bar represent the confidence interval. The figure highlights that Erratum is almost
exclusively sensitive to structural mutations. In particular, the average accuracy of
Erratum is not sensitive to content mutations on the page, which is expected since
the algorithm ignores the content of the nodes by default. The very low sensitivity of
Erratum to attributes-related mutations is more surprising as attributes account for
a major part of the similarity metric of the algorithm. For this reason, we believe that
the mutation of attributes might have more impact when combined with structural
mutations, which does not happen in the constrained Mutation dataset.

Then, regarding the impact of the size of the DOM, our analysis concludes that
WATER loses accuracy when the number of nodes increases (cf. Figure 3.10), while
Erratum exhibits a more stable performance. The Spearman correlation coeffi-
cient between the error ratio of WATER and the size of the DOM is ρ = 0.41 com-

CHAPTER 3. ERRATUM 60

Structure Attribute Content
0

10

20

30

40

50

60

70

Er
ro

r P
er

ce
nt

ag
e

(n
o-

m
at

ch
 a

nd
 m

ism
at

ch
)

10.35%

0.01% 0.00%

54.78%
49.50% 48.47%

ERRATUM
WATER

Figure 3.9: Error percentage according to the mutation type.

pared to 0.28 for Erratum. Interestingly, while Erratum correlates rather strongly
(ρ = 0.46) with the percentage of mutation between the two DOM versions, WATER
shows almost no correlation with the same variable (ρ = 0.12). It means WATER
is surprisingly not impacted by the number of mutations between the versions. The
dependency to the mutation ratio of Erratum is easily explainable: for each match,
Erratum indirectly relies on structural and textual similarities in the whole DOM
which means mutations anywhere in the DOM could theoretically impact the scores
on which Erratum relies to compute a matching. Conversely, the WATER approach
is fundamentally more local to the element to match. We believe these are key insights
in understanding the limitation of WATER when compared to Erratum. For each
element e ∈ D to locate, WATER searches through all same-tag elements in D′ (the
candidates) and picks the closest one to D, concerning WATER’s chosen similarity
metric. We believe that the sensitivity of WATER to the number of nodes comes
from the fact that the number of candidate matchings for a given element e tend
to grow with the size of the DOM, which increases the complexity of the ordering-
by-similarity task. Conversely, additional nodes provide more "anchor" points to
Erratum, partially compensating for the increase in possible combinations.

Finally, regarding the impact of the mutation ratio (#mutations
#nodes

), Figure 3.11 reports
how Erratum and WATER’s errors evolve when increasing the number of mutations
(#mutation) on the original page D. The figure contains more information than most
common box plots, in particular: the stars indicate the average ratio, the horizontal

CHAPTER 3. ERRATUM 61

0 250 500 750 1000 1250 1500 1750 2000
Number of nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r r
at

io
 (n

o
m

at
ch

 o
r m

ism
at

ch
) ERRATUM

WATER

Figure 3.10: Errors rate evolution according to DOM size.

orange lines, and the medians whose values also appear above the boxes. As expected,
both solutions lose accuracy when the mutation ratio increases, but one can still
observe that Erratum demonstrates a significant advantage over WATER, no matter
the mutation ratio, and exhibits only 20% of errors on average (against 67% for
WATER) when the ratio of mutation exceeds 20% of the nodes.

Repair accuracy on the Wayback dataset. Since the Wayback dataset does
not provide any ground truth matching, we had to manually label the results of the
evaluation. We ran both algorithms on the same 34,421 elements. For each element
e ∈ D, Erratum and WATER returned e′S and e′W ∈ D′∪∅, respectively. In 49.0% of
cases, Erratum and WATER agreed on a matching element (e′S = e′W ̸= ∅). In 13.6%
of cases, no solution found a matching element (e′S = e′W = ∅). In 37.4% of cases,
Erratum and WATER disagreed on the matching element (e′S ̸= e′W and (e′S, e

′
W) ̸=

(∅, ∅)).
A sample of 366 matchings out of the 14, 784 disagreements was labeled by web

testing experts, which corresponds to a 5% confidence interval at 95%. Table 3.4
reports on the results of the manual labeling (for disagreements), thus assuming that
both WATER and Erratum are correct whenever they agree.

We further investigated the causes of no-match cases reported by Erratum to
assess if these specific cases could be matched by experts. As part of the Wayback

experiment, we thus included Erratum’s no-match cases in our labelling application
(cf. Figure 3.7) and requested the participants to eventually propose a matching

CHAPTER 3. ERRATUM 62

(0.
0,

0.0
5]

(0.
0,

0.0
5]

(0.
05

, 0
.1]

(0.
05

, 0
.1]

(0.
1,

0.1
5]

(0.
1,

0.1
5]

(0.
15

, 0
.2]

(0.
15

, 0
.2]

(0.
2,

0.2
5]

(0.
2,

0.2
5]

(0.
25

, 0
.3]

(0.
25

, 0
.3]

(0.
3,

0.4
]

(0.
3,

0.4
]

Mutation Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

io
 (m

ism
at

ch
 o

r n
o-

m
at

ch
)

0.0 0.47 0.0 0.53 0.07 0.6 0.13 0.6 0.13 0.6 0.13 0.6 0.2 0.6
ERRATUM
WATER

Figure 3.11: Errors rate evolution according to the mutation ratio.

Table 3.4: Confusion matrix on the Wayback dataset.

Erratum
correct mismatch no-match

correct 49.0% 1.5% 1.4% 51.9%
mismatch 26.5% 5.5% 3.3% 35.3%

W
A

T
E
R

no-match 2.8% 1.9% 8.1% 12.8%
78.3% 8.9% 12.8%

element if a no-match was reported by Erratum. The result of this evaluation,
summarized in Figure 3.12, highlights that a majority of no-match are accurately
labeled as such by Erratum, since the participants could not propose a matching
element in the target web page. For the few cases where the participants proposed
a matching element, we observed that the structure of the DOM tree was subject to
many mutations, thus misleading Erratum as already observed in Figure 3.9.

Comparison of repair accuracy. Interestingly, as shown in Table 3.5, the ac-
curacy of Erratum on the Wayback dataset (78.3% ± 5%) is 8.7% inferior to
the accuracy obtained on the Mutation dataset (87.0%), while the accuracy of the
WATER algorithm is better on the Wayback dataset (51.9% ± 5%) than on the
Mutation dataset (42.1%) by 9.8%. We believe the difference observed between
the two datasets is because real-life mutations might not be uniformly distributed. In
particular, regarding our sensitivity analysis with regards to types of tree mutations
(cf. Figure 3.9), one can guess that real-life websites are more subject to content and
attribute-related mutations than structure-based mutations (cf. Table 3.2), as the
former do not affect the accuracy of Erratum. However, since we miss the ground
truth for the Wayback dataset, we cannot assess this hypothesis and the distribution

CHAPTER 3. ERRATUM 63

No-match13%

Correct
78%

Mismatch

9%

68%

32%

No-match analysis
Confirmed
Failed

Figure 3.12: Analysis of matches labeled as no-match by Erratum.

of real-life mutations.

Table 3.5: Accuracy summary across datasets.

Mutation Wayback
Erratum 87.0% 78.3 ± 5%
WATER 42.1% 51.9 ± 5%

3.6.2 Mutations in the Wayback Dataset

To assess the accuracy of Erratum on both datasets, we study the nature of the
changes occurring between two versions of a given page in the Wayback dataset. The
changes applied along versions of pages available in the Wayback dataset are not
labeled, thus lacking a ground truth. The robust locator benchmark (cf. Section 3.5)
assumes the input datasets as the ground truth to evaluate Erratum on the locator
repair problem. Conversely, this section assumes the matching algorithm exploited
by Erratum—i.e., SFTM—to be correct and uses it to label the mutations observed
in the Wayback dataset. To do so, we estimate the number and types of mutations
between each pair of web pages (D,D′) by leveraging the resulting matching M =

sftm(D,D′). The following table lists the considered mutation types, considering
∀e ∈ D and ∀e′ ∈ D′, where p(e) is the parent of e and λ(e) is the label of e:

Dataset Consolidation. The robust locator benchmark considers a subset of the
Wayback dataset, manually labeled by experts. However, during this process, poten-
tial inconsistencies observed in rendered web pages were ignored by experts. There-

CHAPTER 3. ERRATUM 64

Label Mutation Category
addition ∄e|(e, e′) ∈M Structural
removal ∄e′|(e, e′) ∈M Structural
move (e, e′) ∈M and (p(e), p(e′)) /∈M Structural
relabel (e, e′) ∈M and λ(e) ̸= λ(e′) Relabel

0.0 0.1 0.2 0.3 0.4 0.5
Size difference ratio

0.0

0.2

0.4

0.6

0.8

0.9

1.0
Cu

m
ul

at
ed

 D
ist

rib
ut

io
n

(R
at

io
)

Figure 3.13: Cumulative Distribution of ratios between two versions of web pages.
The orange dotted lines show the threshold used in this experiment

fore, before analyzing the full Wayback dataset, one should discard such inconsisten-
cies between unrelated web pages, including cases where: (a) one of the versions can
be an error page or a redirection page, (b) the website may show "in construction" or
may have closed between the two snapshots. For this reason, we apply two heuristics
to prepare the dataset by removing all the pairs where:

1. one of the two versions has less than 30 nodes, reflecting one of the above
inconsistencies. For example, even a minimalist web page, like Google, contains
more than 250 nodes;

2. the absolute ratio of sizes between the two versions exceeds 40% which selects
approximately 90% of the dataset (see Figure 3.13). When this ratio is large,
comparing the two pages is likely to be conceptually irrelevant.

While the initial Wayback dataset contains 19, 161 pairs of web pages, the appli-
cation of the above rules leads to a consolidated dataset of 8, 641 pairs. Figure 3.13
reports on the distribution of ratios of web page versions in the consolidated Way-

back dataset.

CHAPTER 3. ERRATUM 65

7 22 56 162 299
Gap (in days)

0

10

20

30

40

50

60

M
ut

at
io

n
Pe

rc
en

ta
ge

 (%
)

Structural
Relabel

Figure 3.14: Mutation ratio between two Wayback snapshots depending on gap
duration.

Mutation Frequency. Figure 3.14 further analyzes the above dataset by reporting
on the ratio of mutations by category occurring between two versions of a web page.

As expected, the mutation ratio increases with the gap between the versions.
Most importantly, the average mutation ratio in the Wayback dataset is 60%, i.e.
on average, 60% of the nodes have mutated between two versions D and D′ from
the Wayback dataset. This mutation ratio is significantly higher than the average
amount of mutations in the Mutation dataset: 20%. This difference is probably
an important factor justifying the differences of accuracy measured on both datasets.
Comparing versions with large gaps is practical because it ensures there will be dif-
ferences between the versions. In addition, it provides interesting insights into the
frequency of changes on popular web pages. However, in the context of web test-
ing, the mutation ratio between two consecutive versions is unlikely to reach 60%, in
particular when adopting test-driven developments.

Mutation Labels. Figure 3.15 further describes the distribution of mutation labels
in the Wayback dataset. The figure highlights that relabel is the most common
mutation, while move is quite rare. This result can be explained by the following
observations: 1. when a subtree is moved, only one move is accounted for even if the
visual change may appear as important, and 2. the SFTM algorithm is particularly
robust to relabels, which could also be a factor explaining the observed ratio.

CHAPTER 3. ERRATUM 66

Addition

15.6%

Removal

15.0%

Relabel

63.3%

Move
6.1%

Figure 3.15: Distribution of mutation labels in the Wayback dataset.

3.6.3 Repair Time Evaluation

In Figure 3.16, we compare the computation times of Erratum and WATER. The
results have been obtained by running both algorithms on the same server containing
252GB of RAM and an Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz.

Erratum works differently than WATER: while WATER matches one single
element at a time, Erratum matches all elements at once. One can observe that
WATER is thus faster at locating a single element than Erratum is at locating all
elements. However, when the number of locators to repair grows, the computation
time of WATER evolves proportionally, while the computation time of Erratum

remains the same.
More specifically, we compare the evolution of the performance coefficient (α)

when increasing the number of locators to repair on a web page. Figure 3.17 plots
these coefficients for Erratum and WATER so that we can establish that Erratum

becomes more efficient than WATER as soon as there are more than 3 locators to
repair on a web page.

CHAPTER 3. ERRATUM 67

0 500 1000 1500 2000 2500 3000 3500 4000
nodes

0

1

2

3

4

5

6

Co
m

pu
ta

tio
n

tim
e

(s
)

ERRATUM (=0.7)
WATER[1] (=0.2)
WATER[8] (=1.7)

Figure 3.16: Repair time evolution according to DOM size.

0 1 2 3.24 4 5 6 7 8
Number of locators to repair

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lin
ea

r C
oe

ffi
cie

nt

 (s
)

ERRATUM
WATER

Figure 3.17: Performances of Erratum and WATER.

CHAPTER 3. ERRATUM 68

3.6.4 Threats to Validity

As described in Section 3.5.3, the Wayback dataset does not include a ground truth
(perfect matching). This is why we had to manually label a representative sample of
the matchings obtained on this dataset, which might have introduced some bias. To
mitigate this bias, we recommended systematic and consistent decisions to label the
data (cf. Section 3.5.3).

All our experiments with Erratum adopt the default FTM parameters, as recom-
mended by [43]. Nonetheless, a thorough parameter sensitivity study would probably
result in further improving the accuracy of Erratum. Given the results we obtain
on a wide diversity of web page evolutions, we believe that this parameter tuning
would only positively and marginally impact the accuracy of Erratum.

In terms of repair time, we discussed the absolute value of repair time for both
solutions. However, these values highly depend on the way each tool was implemented
and the machines on which the simulations were run. To limit this bias, both solutions
were executed on the same Node.js runtime version deployed in the same environment
to ensure a proper comparison.

3.7 Applying Erratum

We have studied how Erratum can help in solving the existing locator repair prob-
lem, which is a common problem in web automation scripts. In this section, we
envision a more interactive development process made possible by Erratum.

When developing a web automation script, a developer typically opens the page
under test in the browser, visually locates the element to interact with, and then
encodes (or generates) a locator for this element. The locator is then used in the
web automation script to select the target element and interact with it. Based on
the results achieved by Erratum, the perspectives for this work include a new layer
of abstraction to the target selection. In this new layer, web automation scripts no
longer need to explicitly locate elements on the page directly, but only locate elements
using a back-end service H:

1. each web page D under automation is registered in H,
2. for each registered web page D, H exposes a visual interface allowing the de-

veloper to visually select an element e and generate a unique identifier eid (e.g
UUID),

3. in the web automation script, instead of using a manually encoded (or gener-

CHAPTER 3. ERRATUM 69

ated) XPath or CSS locator to select the target element e, the developer sends
(D, eid) to H’s API, which returns an absolute XPath selecting the target ele-
ment e,

4. when a web page D registered in H evolves into a new version D′, Erratum

is automatically used to relocate all registered elements eid in D with their
matching elements in D′,

5. whenever Erratum fails (or lacks confidence) to relocate an element, the de-
veloper is notified and invited to visually relocate the broken locator.

This approach differs from the test repair approach described in the original WA-
TER article. In the test repair approach, the locator repair is triggered by the failure
of one of the test scripts. Once such a test script fails, the test repair solution attempts
to determine the cause of the breakage and if it is a locator, repair the locator. The
approach we suggest in this section does not include the analysis of any automation
script, as locators are updated whenever the page changes.

In many cases, the locator breakage occurs silently (the locator is mismatched
and the consequences happen only later in the test script) [77]. In these situations,
it is harder to locate the origin of the breakage from the test script. The silent
breakage problem happens because when using XPath locators to relocate e in D′,
the XPath query either succeeds or fails. There is no indication of the confidence
of the relocation that would help to detect a mismatch. On the opposite, Using
Erratum, every individual match between two elements e and e′ has an associated
cost s(e, e′) that can be used as a confidence level to avoid mismatch.

In addition to the obvious gain in time that having a visual-based breakage and
repair solution provides, the Erratum-based notification process described above
would thus help to detect possible breakage before the scripts are even run, thus
diminishing the chances for a "silent breakage" to occur.

3.8 Conclusion

In this chapter, we considered the situation in which the evolution of a web page
causes one of its associated automation scripts to break. In the domain of automated
web testing, this situation accounts for 74% of test breakages, according to past stud-
ies [28]. Our analysis of the state-of-the-art approaches on this topic contributed to
formalizing the key steps involved in preventing or fixing such a kind of test breakage.

While existing solutions to the locator repair problem treats broken locators indi-
vidually, we rather propose to apply a holistic approach to the problem, by leveraging

CHAPTER 3. ERRATUM 70

an efficient tree matching algorithm. This tree matching approach thus allows Erra-

tum, our solution to repair all broken locators by mapping all the elements contained
in an original page, to accurately relocate each of them in its new version at once. To
assess Erratum, we created and shared the first reproducible, large-scale datasets
of web page locators, combining synthetic and real instances,4 which has been in-
corporated in a comprehensive benchmark of Erratum and WATER, a state-of-
the-art competitor.5 Our in-depth evaluation highlights that Erratum outperforms
WATER, both in accuracy—by fixing twice more broken than WATER—and perfor-
mance —by providing faster computation time than WATER when repairing more
than 3 locators in a web test script.

Finally, we worked with the development team of a widely used open source test
framework called Cerberus 6 to integrate 7 the Erratum approach into the test cre-
ation part of the software. The next section describes the integration of Erratum to
Cerberus and its impact on some of its users.

4Dataset available from https://zenodo.org/record/3800130#.XrQb02gzY20
5Benchmark available from https://zenodo.org/record/3817617#.XrWdqGgzaoQ
6https://cerberus-testing.com/
7https://github.com/cerberustesting/cerberus-source/commit/0a70d4cc0d70a797901652fd2b97d501bb7fa511

https://zenodo.org/record/3800130#.XrQb02gzY20
https://zenodo.org/record/3817617#.XrWdqGgzaoQ

Chapter 4

Integrating Erratum into Cerberus

Summary

Web applications are constantly evolving to integrate new features and fix reported
bugs. However, even an imperceptible change can sometimes entail significant modifi-
cations of the Document Object Model (DOM), which is the underlying model used by
browsers to render elements of a web application. In this context, the continuous evo-
lution of web applications makes it extremely challenging to automate test scenarios
of a web application robustly. More precisely, the major cause of breakages observed
in integration tests is element locators, which are identifiers used by automated tests
to navigate across a DOM. When this DOM evolves, these locators tend to break,
thus causing the related tests to no longer locate the intended target elements.

So far, established test automation frameworks adopted by the industry, like Cer-

berus, only support CSS or XPath selectors to query web page elements. Such web
locators require to be manually crafted and are often fragile with regards to DOM
changes, hence often requiring testers to fix the broken test scenarios in priority.
While several solutions to this problem have been proposed in the scientific litera-
ture, to our knowledge, no locator repair or locator generator has been integrated
into open-source test-automation software before. We thus report on the seamless
integration of a more robust web locator in Cerberus by leveraging a new locator
repair solution, named Erratum. While Erratum was originally designed to re-
pair broken locators, this chapter demonstrates how it can be extended to deliver
an elegant robust locator solution that succeeds to reduce the maintenance cost of
automated tests.

71

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 72

4.1 Introduction

The implementation of automated tests on web applications (apps) requires software
engineers to locate specific elements in the DOM (Document Object Model) of a
web page. To do so, software testers or automation/testing tools often rely on CSS
(Cascading Style Sheets) or XPath selectors to query the target elements they need
to interact with. Unfortunately, such statically-defined locators tend to break along
time and deployments of new versions of a web application. This often fails in all the
associated test scenarios that apply to the modified web pages.

Several existing works focus on repairing tests on GUI applications, but there
are surprisingly very few test repair solutions targeting web interfaces [34]. These
solutions either propose to i) generate locators that are robust to changes (so-called
robust locator problem), or ii) repair locators that are broken by the changes applied to
the web pages (so-called locator repair problem). Unfortunately, most of the existing
solutions in the literature fail to accurately fix a broken locator, thus leaving all the
related automation tests as broken [28].

While we already introduced Erratum,1 as an holistic approach to the locator
repair problem 3, this paper explores its extension to address the robust locator
problem. More specifically, we report on the integration of Erratum in an open-
source test automation solution called Cerberus [17].2 Cerberus is commonly
adopted by several companies to write, organize, and run their test campaigns. In
particular, we worked in close collaboration with the web testing team of LaRedoute,3

a large (846M turnover, 1, 700 employees) french online fashion retailer.
The teams we worked with acknowledged that locator breakage is a painful issue

for them that even caused a whole test campaign to be canceled. Yet, to the best of
our knowledge, none of the locator generator or locator repair solutions existing in
the literature have ever been integrated into an open-source testing software. As a
matter of assessment, we observed that the concept of locator repair was unknown to
all professional testers we interviewed.

The remainder of this chapter is organized as follows. Section 4.2 introduces
the necessary background on web locators. Then, Sections 4.3 and 4.4 overview
Erratum and Cerberus, respectively, while Section 4.5 reports on the integration of
a robust locator solution in Cerberus based on Erratum. Section 4.6 discusses the
preliminary impact of this integration on the software development projects managed

1Erratum stands for "rEpaiRing bRoken locATors Using tree Matching"
2https://cerberus-testing.com/
3https://www.laredoute.com/

https://cerberus-testing.com/
https://www.laredoute.com/

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 73

by LaRedoute. Finally, Section 4.7 presents some perspectives for this work, while
Section 4.8 concludes.

4.2 Background

4.2.1 Web Element Locators

To detect regressions in web applications, software engineers often rely on automated
web-testing solutions to make sure that end-to-end user scenarios keep exhibiting the
same behavior along with changes applied to the system under test. Such automated
tests usually trigger interactions as sequences of actions applied on selected elements
and followed by assertions on the updated state of the web page. For example, "click
on button e1, and assert that the text block e2 contains the text ’Form sent’". To
build such test scenarios, a software engineer can 1. manually write web test scripts
to interact with the application, 2. use record/replay tools [11, 75, 60] to visually
record their scenarios, or 3. adopt low-code test libraries to leverage the description
of actions for domain experts. In all these cases, the scenario requires identifying the
target elements on the page [e1, e2] in a deterministic way, which is usually achieved
using XPath, a query language for selecting elements from an XML document. For
example, let us consider the following HTML snippet describing a web form:

<form method="post" action="index.php">

<input type="text" name="username"/>

<input type="submit" value="send"/>

</form>

The following XPath snippets describe 3 different queries, which all result in
selecting the submit button: /form/input[2], /form/input[@value="Send"], input[

@type="submit"]. In the literature, such element queries or identifiers are named
locators [46].

In practice, automated tests are often subject to breakages [28]. While there can
be many causes to test breakage, Hammoudi et al. [28] report that 74% of web tests
break because one of the included locators fails to locate an element in a web page.

4.2.2 Web Locator Terminology

When a locator is defined, manually or automatically, it is written from and for a given
web page. The internal representation of a web page by the browser is a Document

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 74

Object Model (DOM). In this chapter, we adopt the following notations:
• we denote D the original DOM of the web page for which the locator was written

and D′ an evolution of D on which the locator is expected to work,
• we note e ∈ D an element of the DOM D and e′ ∈ D′ the corresponding element

in D′,
• we note loce,D a locator that identifies e in D,
• then by construction, evaluating this locator on D returns the original element
e: eval(loce,D, D) = e,

• finally, we assume there is a locator breakage if eval(loce,D, D′) ̸= e′.
The robustness of a locator can be characterized by its capability to keep selecting

the element e on any mutation of D. In the following section, we, therefore, report on
how we integrated Erratum—an effective solution to the locator repair problem—
into the Cerberus web testing framework to implement an elegant solution to the
robust locator problem, thus addressing a major concern of web testers.

4.3 Repairing web locators with Erratum

Erratum was developed as a locator repair solution. Given a locator loce,D broken on
a new page D′, Erratum allows to relocate e on D′—i.e., to find e′ ∈ D′. Formally,
a locator repair solution, like Erratum, is defined as a function: (D′, loce,D)→ e′.

Erratum differs from other locator repair solutions by using a holistic approach:
all the elements from D and D′ are matched by an efficient tree matching algorithm,
and the resulting matching is processed to relocate all elements from D in D′ 3.

Example 4.3.1. Given the Google search page D, the send button e is located by
the XPath locator loce,D = /html/body/div[3]/button. Sometime later, the page may
evolve to D′. Evaluating loce,D on D′ yields no result as the button is now in a wrapped
inside a form tag. In such a situation, Erratum can automatically repair the broken
locator loce,D by detecting that the matched element e → e′ is a now child of node
form, hence located with loce′,D′ = /html/body/div[3]/form/button.

The core of the Erratum approach the Similarity Based Flexible Tree Matching
(SFTM) described in chapter 2. Given two trees D and D′, the SFTM algorithm
allows for the creation of a mapping between all elements e ∈ D and e′ ∈ D′.

Erratum then uses this mapping to relocate all locators defined in D in D′.
While many tree-matching solutions have been developed, we designed SFTM to

specifically match complex web pages with fast response times (below 100ms) and

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 75

accurately. To do so, SFTM relies on a distinctive characteristic of DOM trees: the
labels, which usually contain a lot of information (attributes, attribute values, tags,
and inner text).

SFTM thus relies mostly on the labels of the trees and only makes use of topology
in a second step, to fine-tune the estimated matchings. Intuitively, matching two sets
of labels is significantly easier than trying to match trees, which is the reason why
SFTM achieves such competitive performance.

4.4 Building test cases with Cerberus

Cerberus is a low-code open source scalable test automation solution. It is used
by several large companies to create, organize, and run their test suites. Cerberus

contains many features, including parallel test execution, test requirement manage-
ment, and reporting. We integrated Erratum in one of the core components of
Cerberus: the test case creation.4

A test case in Cerberus describes a sequence of actions to be executed. Each
action has a type and specific arguments that match this type. Figure 4.1 depicts
the action editor of Cerberus. For most action types, the main required argument
is the locator ("element path" in the screenshot)—e.g., if the action is "click", the
locator refers to the element on which Cerberus should click. The action "form"
allows the tester to specify the locator using element properties, like id, class, name,
or use more expressive query languages, like CSS or XPath. Nonetheless, there are
mainly two drawbacks to such basic queries:

• defining the robust locator of an element is a tedious and often arbitrary task,
• tests tend to quickly break because the underlying locators break.
It appears that these drawbacks are more than mere inconvenience. When first

meeting with one of the companies interested in Erratum, we were told that a whole
test campaign had to be discarded because the locators included in the considered
test cases were constantly breaking during the software development process.

To overcome these problems, Cerberus standardized the use of data-cerberus
identifiers, which are simple element attributes aimed at uniquely identifying web
elements to be used by automated tests. For example, if developers anticipate that
the web testing team needs to interact with a specific application button, they should
include such an identifier as follows:

4https://github.com/cerberustesting/cerberus-source/issues/2252

https://github.com/cerberustesting/cerberus-source/issues/2252

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 76

Figure 4.1: A screenshot of the Cerberus web interface to define a test case.

<button data-cerberus="a_special_button" type="button"

>Send</button>

Unfortunately, using such static identifiers entails other challenges, among which:
1. it introduces a—probably undesired—tight coupling between the development

and testing teams,
2. if a data-cerberus attribute is missing, the development team should first fix

the page under test and then re-deploy the web application, which may take
time and several iterations to expose all the required identifiers,

3. for various reasons, the testing team might not have the possibility to change
the source code of the page under test (e.g., proprietary source code), and finally

4. it forces web developers to anticipate and maintain all these unique identifiers
to ensure the absence of identifier collision.

The above observations shared by testing practitioners from LaRedoute and Cer-

berus demonstrate that none of the standard locators support a robust execution of
their test campaigns. In the best case, they reported that broken locators causing
the failure of a test campaign may require some hours to be fixed. In the worst case,
they even mention that some test campaigns were canceled and discarded due to
the fragility of web locators, thus causing recurrent breakages of test executions and
a prohibitive maintenance cost. Unfortunately, data-cerberus identifiers failed to be
applied in this specific case, due to the proprietary source code used by the web appli-
cation under test. In this context, the integration of Erratum in Cerberus offers
a practical alternative to standard web locators, thus aiming to drastically reduce the
cost of broken locators for web testing teams.

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 77

4.5 Integrating Erratum into Cerberus

Given the maturity of the Cerberus open-source project, the integration of Erra-

tum has been achieved in several steps that we report in this section.

4.5.1 Preliminary Demonstration of Erratum

Since integrating a solution like Erratum requires a non-negligible amount of work,
we decided to start by sharing a demonstration of Erratum’s core matching algo-
rithm to encourage testers to assess some of their typical test breakages before starting
to integrate.

Given an element e in a DOM D, the broken locator problem happens when the
locator that located e ∈ D does not return any results on D′. In this scenario, the
key idea of Erratum is to match all elements from D → D′ and use this matching
to locate e ∈ D′.

Figure 4.2 reports on a screenshot of the demo application. To use the application,
one simply needs to:

i) Input the URL of 2 web pages to match (e.g., two different product pages or two
versions of the same product page),

ii) Hover over one of the elements on either page. The corresponding element
matched on the other page is automatically highlighted. If no element matches,
the input element is highlighted in red,

iii) Check that the matched element exists and assesses it matches the expected one.
The application also allows users to input HTML files, which allowed them to test

the matching algorithm on several alternative versions of pages. This demonstration
step constituted a crucial step of the integration process by convincing the Cerberus

community of the benefit brought by Erratum with regards to existing support for
web locators. Practitioners quickly understood that the algorithms of Erratum 3
could automate most of the situations they were facing during the web testing cam-
paigns. Furthermore, the fact that Erratum preserved the separation of concerns
between the web application and the testing campaign emerged as another convinc-
ing argument in favor of Erratum. Once validated, we moved forward by studying
the integration strategies to implement these research results into the open-source
platform.

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 78

Figure 4.2: The demo application was developed to test Erratum on real use cases
before starting integration. In this example, the description of a book hovers on the
left-side webpage, which automatically highlights the matched element on the right-
side webpage.

4.5.2 Integration Strategies in Cerberus

Two main strategies were investigated: (i) use Erratum to automatically repair
broken locators by fixing automated tests, or (ii) use Erratum directly in the Cer-

berus testing environment, as an alternative way to locate elements.
The first approach reflects the case study considered in the original Erratum

article 3 The main benefit of this approach is that it can be seamless for the tester:
whenever a locator breaks, it is automatically repaired without requiring any action
from the tester. However, integrating such a solution implies some significant changes
in the Cerberus architecture. Indeed, given a locator l = loce,D that identifies an
element e ∈ D, if l breaks on D′, then Erratum requires to recover the original
page D on which the locator was initially working. Since the history of pages is not
recorded by Cerberus, the repair approach would require some major structural
changes to keep track of web application histories.

As a first iteration, we, therefore, chose the second strategy. Instead of using
Erratum as a locator repair method, we consider its extension as a robust locator
method to replace standard locators, like CSS or XPath, as described in Section 4.3.
Interestingly, the existing support for multiple classes of web locators in Cerberus

offers a more straightforward hook to integrate Erratum.

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 79

4.5.3 The Erratum Robust Locators

To leverage the integration of Erratum in Cerberus, we, therefore, packaged Er-

ratum as a robust locator. The key property that differentiates Erratum from other
web locators is that Erratum requires the original DOM D on which the element
was successfully located. To build a robust locator with Erratum, we embedded
the whole DOM D in the locator—i.e., the Erratum locator of an element e ∈ D

is the pair (XPath(e), D), where XPath(e) is the absolute XPath of e ∈ D. Fig-
ure 4.3 depicts how we extended Erratum to implement to robust locator support
in Cerberus:

1. from the original page D, the tester selects the element to locate e,
2. so far, with XPath:

(a) the tester specifies the web locator as an XPath query that she thinks to
be robust to select e ∈ D,

(b) during the test execution, the XPath query is executed on the new DOM
D′. If the locator is not broken, the query evaluation returns e′, but if the
XPath query fails, then the test scenario is likely considered broken,

3. while, with Erratum:
(a) the web locator is automatically generated, as a pair (XPath(e), D), where

XPath(e) is the absolute XPath of e and D is the full DOM,
(b) during the test execution, Erratum first matches all the elements of D′

with D, and then the resulting matching is used to relocate the matched
element e ∈ D into e′ ∈ D′.

Evaluate xPath locator

Evaluate Erratum locator

xPath Query Solver/html/div[2]/button

SFTM Matcher/html/div[2]/button
<html>...</html>

xPath Query Solver
(xPath on D)

Lookup
Matching

Matching
D D'

ERRATUM Locator Solver

After Evolution

Figure 4.3: Describing how Erratum is integrated as a robust locator in Cerberus.
Both locator types originally locate an element e ∈ D. The figure illustrates the ways
Cerberus evaluates XPath or Erratum locators on a new DOM D′.

To allow this integration within Cerberus, we rewrote the generic matching

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 80

algorithm of Erratum, namely SFTM 2, in a language that can compile to JVM.
The code of the resulting library is open-source5 and the library is published in Maven
central.6 Then, the integration of the Erratum library in the Cerberus platform
represents only 127 lines of Java code.7

4.5.4 Usage

The usage of the new Erratum locator on Cerberus is very similar to that of other
locators. Given an element e that the tester wants to select on page p, she has to:

1. select the Erratum locator type on the test case select box (see figure 4.1),
and then

2. copy-paste the absolute XPath of e and the whole HTML of p in the input form.
To ease this process, we developed a browser extension allowing you to simply click
on the targeted element e to copy the required data in the clipboard before pasting
it into the input form.

In addition to providing more robust locators, writing a test scenario using Erra-

tum along with its extension represents a significant time gain: instead of manually
crafting a locator that the tester judges to be robust enough, she simply needs to click
on the targeted element. It allows the tester to completely ignore the details of how
a certain element should be located and instead focus on building the most relevant
test scenarios.

4.6 Industrial Impact

Every year, the LaRedoute web testing team estimated that the locator breakage
entailing the failure of their test campaigns induced more than 11 K€ worth of load
to their teams. For industrial projects that evolve quickly, some testing campaigns
were even canceled because of the cost of continuously repairing the broken test
scripts. In addition to that, repairing broken locators was considered a tedious low-
value task, which may be harmful to the morale of testers. We collected the feedback
of 2 testers from this team, mainly asking about the biggest pain points faced by the
testing team and how a solution like Erratum could help. According to the most
experienced tester we interviewed, most challenges faced by the test team stem from

5https://github.com/lssol/sftm_tree_matching
6https://mvnrepository.com/artifact/io.github.amaris/sftm-tree-matching
7https://github.com/cerberustesting/cerberus-source/commit/

0a70d4cc0d70a797901652fd2b97d501bb7fa511

https://github.com/lssol/sftm_tree_matching
https://mvnrepository.com/artifact/io.github.amaris/sftm-tree-matching
https://github.com/cerberustesting/cerberus-source/commit/0a70d4cc0d70a797901652fd2b97d501bb7fa511
https://github.com/cerberustesting/cerberus-source/commit/0a70d4cc0d70a797901652fd2b97d501bb7fa511

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 81

Campaign A Campaign B
Test cases 16 3
Releases 16 2
Locators / test (avg) 18 22
Relocations 4,608 132
[XPath] # Locator Failure 0 1
[Erratum] # Locator Failures 0 0

Table 4.1: Results of the third testing phase that lasted one month.

the separation between the development team and the testing team. The development
team is encouraged to push features fast (pressure on quantity), while the testing
team’s role is to monitor the quality of the released application. The problem is all
the more aggravated by the fragility of the developed test cases: when a new version
is released, it takes several days to fix all tests which means that when the tests
are ready, the developers are already working on different features. Hence, using a
tool like Erratum helps tighten the feedback loop between the testing team and the
development team, thus allowing more intricate collaboration and less friction.

LaRedoute unfortunately does not conserve a history of failed tests (along with
the web page versions), which makes it hard to quantitatively measure the exact
percentage of successful relocation of Erratum on their industrial cases. We collab-
orated with 5 testing experts working on different campaigns to evaluate Erratum.
The purpose of this evaluation was mainly to assess if Erratum could be used sys-
tematically in place of manually written XPath to locate elements on new test cases,
which would significantly fasten their development and maintenance. We tried to
design evaluation strategies that would not require too much time from the testing
experts. In particular, there were three stages of testing:

1. Each tester tested 2 to 3 typical pages from their testing campaigns on the demo
described earlier (see section 4.5.1);

2. After Erratum was integrated to Cerberus, the Erratum locator type was
tested on the same pages within the Cerberus framework;

3. For two campaigns, each new test case written by the testers was duplicated
for one month: one version used an XPath locator, and the other version, the
Erratum locator.

The evaluation of Erratum attempted to answer two questions:

1. Is Erratum a viable locator replacement of XPath?

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 82

2. Are Erratum locators more robust than manually written XPath locators?

Table 4.1 presents the results of the third testing phase. Campaign A applies to an
application being completely rewritten, which explains the high frequency of releases.

During a month, there were 4, 740 locator relocations (# tests × # releases ×
average # locators / test) over the two campaigns under study. For Erratum, none
of these relocations failed, while one failed for XPath.

The results thus tend to indicate that Erratum can be safely used as a replace-
ment of manually written XPaths. As for whether Erratum provides more robust
locators than manually written XPath, there is still not enough data to conclude.

Following the evaluation, LaRedoute now adopted Erratum as the preferred lo-
cator method, along with data-cerberus attributes, and have not yet reported any
relocation failure at the time of writing this manuscript. Beyond the collaboration
with LaRedoute, we believe that these promising results will benefit the wider Cer-

berus community.

4.7 Perspectives

Adoption While we specifically studied the integration of Erratum to Cerberus for
La Redoute, Cerberus is used by several more major online stores. It has GPL licence
and once the integration is mature, the Cerberus team will communicate to all its
users to allow for a broader adoption.

Visual integration considering the above Erratum web extension, the tester no
longer needs to analyze the HTML source code and manually assemble a robust
locator. It means that, theoretically, Cerberus could integrate a fully visual locator
selection approach where (i) the tester fills in the web application URL, (ii) the page
opens in an iframe, (iii) the tester selects the target element, (iv) the Erratum

locator is automatically generated. This process was originally considered, however,
it would not be usable in more complex situations where some pages are not directly
accessible from a given URL (e.g., a page that requires login first).

Mobile testing the web testing teams in the LaRedoute company also use Cer-

berus to automate tests from mobile devices. Web pages are described using HTML
and Android views are written in XML. While HTML and XML are very similar and
our tree matching library theoretically allows Erratum to match any kind of tree
(and not only HTML trees), some technical adjustments still need to be completed

CHAPTER 4. INTEGRATING ERRATUM INTO CERBERUS 83

to include XML trees in Cerberus. Furthermore, the robustness of Erratum’s
locators to typical Android XML view mutations still needs to be assessed, as they
may differ from typical HTML mutations.

4.8 Conclusion

Web locators remain a fragile keystone of automated test suites executed by modern
test platforms. Whenever a locator fails to locate a web element in a test suite, it
directly impacts the whole test campaign and imposes some additional maintenance
tasks on the web testing team.

In this section, we described how we extended and successfully integrated the
locator repair solution Erratum into Cerberus, a widely used open-source test-
automation solution. In particular, we reported on the development of a robust
locator based on Erratum that eases the pain of web testers, by saving time and
reducing the cost of test campaigns.

Through a thorough benchmark and the integration of Erratum to a largely used
open-source testing framework, we showed that we are capable to build robust locators
on any web application. In the following section, we extend our work to build locators
that are not only robust but also semantically rich.

Chapter 5

Appstract

Summary

Web applications are at the cornerstone of modern society. Web applications are made
for humans, yet in many situations we need to automate or monitor interactions with
these applications. Such situations include web data extraction, web analytics or web
testing.

As soon as the need to scale a solution on multiple web applications in the wild
arise, state-of-the-art research in web-related fields often require clever heuristics to
compensate for the lack of abstract model. We argue that a considerable amount
of research in a variety of web-related fields can hugely benefit from a universal
abstraction inference solution.

We introduce Appstract, a solution allowing to infer an abstraction model on
any web application with almost no human intervention.

5.1 Introduction

Web applications are often perceived by end-users as online systems exposing a lim-
ited set of views, concepts, and related actions. From a user perspective, an online
shop—like Amazon—mainly offers to search and list products, while clicking on a
given product brings us to its details view. From a machine perspective, like a bot,
navigating the same web application will be perceived as crawling thousands of unique
pages, exposing unrelated content and seemingly unique actions.

This inability of a machine to understand the navigation model of a web appli-
cation, like a user intuitively does, makes it very hard to automate interactions with

84

CHAPTER 5. APPSTRACT 85

web applications. Typically, research topics benefiting from more intuitive navigation
include: (a) web data mining to automatically extract, de-noise, and structure data
from web pages, (b) web testing to generate, maintain, repair, and augment tests on
web applications, and (c) web analytics to report on how users interact with the web
application.

While there is a considerable amount of existing literature, notably in the fields
of data mining [92, 4, 18, 72, 14, 59], most of the existing works are highly specific
and do not provide adequate insights to build an application-wide understanding of
a navigation model.

In particular, state-of-the-art approaches focus on either extracting data within a
page (so-called, intra-page extraction) or across two pages (inter-page extractions).

For example, Miao et al. [59] clusters full tag paths—i.e., /html/body/div[2]/em—
to detect repeating occurrences of a template within a page. This allows their ap-
proach to extract what is usually called records in a web page (e.g., a single product
card in a product list). This is an example of what we categorize as intra-page ab-
straction.

Inter-page abstraction solutions usually try to detect templates of a webpage or
to learn a wrapper by studying two different instances of the same template. That
is what is done by the state-of-the-art algorithms, like EXALG [4] and RoadRun-

ner [18]. However, none of these approaches provide any insight to take into account
the intra-page variability.

In this chapter, we thus propose an unsupervised approach to infer the navigation
model of a whole web application that we call an appstraction. The appstraction
of a web application aims at delivering actionable insights: it allows a machine to
understand application states (e.g., product pages, blog page), as well as elements
within states (e.g., product title, price), hence guiding the information extraction
process, as well as identifying relevant navigation actions. The appstraction process
aims to abstract away the natural variability of web pages into a canonical model
built as a compact tree of template pages and template elements. Our unsupervised
approach assumes that even web applications with billions of pages will build on
a limited set of template pages, thus making it possible to infer these generative
templates from a dataset of visited pages. To achieve this, our approach—named
Appstract—builds on three stages: 1. web page clustering to group instances of
related web pages, 2. intra-page abstraction to extract repeating patterns within each
cluster of pages, and 3. inter-page abstraction to capture repeating patterns across
clusters.

CHAPTER 5. APPSTRACT 86

We empirically demonstrate that our appstraction succeeds to generate application-
wide locators that can be used to support semantic guidance across multiple pages of
any web application.

The remainder of this chapter is therefore organized as follows. Section 5.2 intro-
duces the required background and related works in this area. Section 5.3 presents the
design and implementation of Appstract, while Section 5.5 reports on an evaluation
of the perceived accuracy of Appstract. Finally, Section 5.6 concludes.

5.2 Background & Related Works

In this section, we present several studies across different research fields that offer
partial solutions to the general problem of web application abstraction inference.
Throughout this chapter, we consider a subset of the Amazon web application as a
running example. In particular, we focus on two related page templates: the product
details and product list pages (cf. Figure 5.1).

(a) Sample page from cluster
list.

(b) Sample page from cluster
product.

Figure 5.1: Screenshots illustrating some elements êλ included in the template pages
p̂list and p̂product of 2 distinct clusters.

5.2.1 Data Extraction

The role of a web page is mainly to present a subset of the information it has access
to in a certain way. All data extraction solutions attempt to separate the information

CHAPTER 5. APPSTRACT 87

from its presentation—i.e., the template. The process of data extraction is thus a
form of abstraction of an application: instead of viewing the different pages as a
multitude of unrelated blobs of HTML, the application is seen as a limited set of
templates that consistently presents various information. The process of information
extraction is thus closely related to our appstraction objectives and our approach is
highly inspired by the ideas behind data extraction.

Following the classification made by a survey on data extraction [12], most existing
literature on data extraction can be classified according to the levels of supervision
needed to extract the data:

• (semi-)supervised approaches where the user inputs more or less detailed direc-
tions to describe to how to extract data [7, 32, 53, 62, 23, 24, 31],

• unsupervised approaches where data is automatically extracted by analysing
recurring patterns [18, 4, 55, 84, 84].

Supervised approaches are usually qualified as "wrapper-based". The idea of
wrapper-based data extraction is to consider the set of web pages containing the
data to extract as an unstructured (or semi-structured) database and build a query
language (and its query engine) to query the desired data.

In this chapter, we focus solely on unsupervised approaches. These approaches rely
on the assumption that even though there are a lot of different pieces of information
exposed by an application, the same type of information will always be structured in
the same way. For example, on the product list page of an online shop, each product
will be structured in a similar fashion (e.g., product name, price, description). In
this context, we distinguish two families of unsupervised approaches: intra-page and
inter-page data extraction. One should note that intra-page data extraction is usually
referred as record extraction [12, 19].

Intra-page data extraction refers to the extraction of data within a page. For
example, in the case of the Amazon page presented in Figure 5.1a, an intra-page
data extraction solution, such as MDR [55], relies on the topology of the DOM tree
and string matching to detect data regions êproduct within a single page. As is always
the case when attempting to extract data in an unsupervised way, MDR can only
detect data regions if at least two of these regions are present on the page. This is
a necessary condition since all unsupervised algorithms must rely on some kind of
pattern discovery to detect data regions.

Inter-page data extraction refers to the extraction of data across several pages. In
particular, all existing algorithms apply to pages that are assumed to belong to the
same template (e.g., two Amazon product pages). The idea is then to use the simi-

CHAPTER 5. APPSTRACT 88

larity between the two pages to understand what is common and what has changed
between the two pages. The parts that changed are then assumed to be data, while
the common part has to do with its presentation (template). To compare these pages,
one solution [19] uses a modified version of the most popular general tree matching
solution: tree edit distance. In the inter-page abstraction part of our approach, we
also use a tree matching solution but not the same one.

The challenge of data extraction presented above is very similar to that of our
appstraction objective. However, it differs in a few important points:

1. while data extraction focuses on extracting data, we try to abstract any kind of
variability. For example, in Figure 5.1a, a data extraction solution should not
attempt to extract the êfilter template elements, as they do not represent data.

2. several data extraction studies are focused on how to infer a schema of the
extracted data (e.g., relational schema [4, 63])), which we are not interested to
do in the context of appstraction, and

3. most importantly, to the best of our knowledge, no previous work has attempted
to extract data throughout a whole web application (combining both inter-page
and inter-page abstraction).

5.2.2 Web Testing

Web testing covers a large body of research that encompasses various themes, such
as test generation, test coverage, or test robustness. We claim that, essentially, the
main challenge of web testing comes from the lack of abstract understanding of the
application under study and most works in this field have to resort to ingenious ideas
to compensate for this lack of an abstract model.

Test Robustness One of the main challenges of web testing encountered by the
industry is test breakage: tests written for a given version of a web application break
when the application evolves. For example, let us consider a testing script that applies
to a web page D. One part of the script instructs to click on a given button e on
the page D. To locate e, scripts usually use xPath or CSS selector to build what is
called a locator le. Breakage can then happen when a new version D′ of the page
D is published. Most of these breakage are locator based [29]: the locator le that
successfully located e on D does not locate the matching element e′ in D′. To solve
this problem, some attempt to automatically generate more robust locators relying

CHAPTER 5. APPSTRACT 89

on the structure of the tree [50, 45, 88, 6] while other works offered solutions to repair
broken locators 3.

In particular, The Erratum approach 3 achieves high accuracy specifically thanks
to a more holistic stance: instead of looking at individual locators independently, the
approach considers the page as a whole using a similar technique to the inter-page
abstraction part of our appstraction.

The "locator" problem is a more specific instance of the web application abstrac-
tion: the breakage happens because when a machine sees a multitude of different
pages (e.g., different versions), a human perceives a single page template with slight
differences and thus comes to expect the locators on D should naturally work on D′.

In the present work, we go beyond Erratum 3 on the generalization scale and
create "locators" that are valid through all pages of a web application.

Test Generation Automatic test generation is a domain of research that studies
different approaches to automatically generating tests. Most test generation tech-
niques rely on an abstraction of the application called a navigational model. A navi-
gational model of a web application describes the different states an application can
be in and the transitions between them [57].

There exist many approaches to take advantage of this navigational model. The
goal of these techniques is to generate the minimum amount of tests that covers a
maximum of the application’s behavior given a navigation model [52, 57, 90, 8]

We are particularly interested in the generation of the underlying navigational
model. The navigational model can be written manually, for example, Leveau and
al. [52] developed a whole Domain Specific Language to describe this navigational
model. It can also be generated. The only approach we managed to find that gen-
erates a navigational model is APOGEN [76]. APOGEN is quite close in spirit to
our APPSTRACT solution. The idea of APOGEN is not originally to create a nav-
igational model but to create page objects. However, it has been used as a way to
generate a navigational model [8]. APOGEN crawls, clusters, and then analyses the
different clusters of a web application to generate page objects. The main difference
with our approach is that APOGEN is heavily based on the analysis of links to un-
derstand how different pages interact with one another and most importantly, it does
not include any intra-page abstraction.

CHAPTER 5. APPSTRACT 90

5.2.3 Web Analytics

Web analytics deals with the analysis of the user behavior on a given web application.
A lot of studies have been published on the subject since the popularisation of the
web. However, most works are applied in controlled environments where the ability to
automatically infer an abstract model of an application is not needed. For example,
some research focuses solely on mouse movements [26, 86] or focuses on a given search
engine and tries to analyze behavior to optimize search results [2, 1]. Research that
does rely on a certain model of an application usually uses an url-based model. While
the first research works on the subject, at the beginning of the web, could use simple
logs of visited urls [25, 61, 73], modern web applications are generally much more
complex with virtually unlimited amounts of URLs dynamically generated making
it hard to reason about unprocessed logs of visited URLs. To tackle this challenge,
recent work on web browsing behavior uses a variety of techniques to encode URLs like
Recurrent neural network [66] so that several strictly different URLs that refer to the
same template page will have similar encodings. While using URL-based encoding to
create an abstract model of a web application can help abstract relationship between
pages (given that they contain enough information which depends on the application),
it will not provide the intra-page abstraction that we need to obtain meaningful
encodings within pages.

5.3 Appstract

5.3.1 Abstracting a Web Application

This section starts by defining the notions of application and application abstraction
we assume, before discussing the challenges of inferring such defined abstractions.

Definition 5.3.1 (Application). A web application A is a set of web pages {p ∈ A},
where every page p is captured by a Document Object Model (DOM).

The number of web pages ∥A∥ can be very high and keep rising with time (e.g.,
Amazon products or blog posts). In addition, we consider that any mutation of a
web page (even if the URL does not change) is considered a new page. Obviously,
from a human perspective, a web application is much more than a collection of pages
(e.g., the pages are linked, the application has different features usable by different
users), but we choose to take the perspective of a machine, for which an application
is perceived as a set of visited web pages. As a DOM of a page p is a tree, we

CHAPTER 5. APPSTRACT 91

represent it as a tuple ⟨N(p), par⟩ where N(p) is the set of elements (or nodes) in p

and par : N(p) → N(p) is the parent function that associates a DOM node with its
parent. To lighten the notations, we write e ∈ p to describe an element e in a page
p, instead of writing e ∈ N(p).

Definition 5.3.2 (Application abstraction). The abstraction of a web application A

is a tuple ⟨Â, TÂ⟩ where i) Â is the set of template pages and each page p̂ ∈ Â contains
template elements ê ∈ p̂ and ii):

∀p ∈ A, TÂ(p) = ⟨p̂, Tp̂⟩

and ∀e ∈ p, Tp̂(e) = ⟨ê⟩
(5.1)

In other words, the abstraction of a web application A is a set of template pages
(e.g., product page, list page) and a function that allows mapping any page from A to
its corresponding template, and every element within the page to the corresponding
element in the template page. This mapping is completed by two functions:

1. TÂ : A→ Â is the template function that takes any page p ∈ A and returns the
matched template page p̂ ∈ Â, and

2. Tp̂ : N(p) → N(p̂) is a function that takes any element e ∈ p and returns the
matched element in the template ê ∈ p̂.

Additionally, we also use:

• T−1

Â
(p̂) ⊂ A as the set of pages p ∈ A, such that TÂ(p) = p̂, and

• T−1
p̂ as the inverse function of Tp̂.

These notations allow us to easily refer to the instance pages/elements of a given
template page/element.

Figure 5.1 depicts a theoretical application of the appstraction to 2 web pages
crawled from Amazon. For each related clusters of similar web pages, the TÂ function
will return either template page p̂list or p̂product. Then, for each clustered web page,
each web element can be mapped to its corresponding template element (e.g., êtitle,
êproduct) using the Tp̂ function.

Please note that our appstraction process does not intend to label template pages
or elements. Thus, our references to p̂list or êproduct should be understood as a global
unique identifier (GUID) capturing a class of pages and elements within and across
clusters.

CHAPTER 5. APPSTRACT 92

5.3.2 Building an Abstraction

Product list pages

Product pages

User Selects one
example page per

category

Blog pages

Intra-page

abstraction

Intra-page

abstraction

Intra-page

abstraction

Generate random
GUID identifier for
each element in

page

Inter-page
abstraction

Inter-page
abstraction

Final Model

Training

Prediction

User sends a new
product page

 is arbitrarily chosen
as the application-wide

template

Intra-page

abstraction

Find
closest

template
page

Inter-page
abstraction

Figure 5.2: Overview of the two stages of the appstraction process: learning and
prediction. The identifier map of p noted Tp associates an identifier to each element
of p. The identifiers are first randomly generated, then merged to existing maps
during inter-page abstraction. The prediction phase produces an identifier map Tp̂ in
which each original element of p is associated with an application-wide identifier.

To abstract the web page p into its appstraction Ap, we operate at two levels:

1. intra-page abstraction to extract repeating patterns of elements within a cluster
of web pages, and

2. inter-page abstraction to group repeating patterns of elements across template
pages.

This bi-level abstraction process combines two steps: learning and prediction, as
depicted in Figure 5.2. In this section, we first overview the abstraction process
by considering intra- and inter-page abstractions as black boxes. In the following
sections, we provide an in-depth description of individual-level abstraction techniques.

Learning The objective of the learning phase is to build a model of the application
that will deliver accurate predictions. The upper part of Figure 5.2 describes how
intra- and inter-page abstractions are used to build this model.

Before any abstraction, the application is perceived as a set of related pages. The
first step is thus to organize these pages into clusters, each cluster representing a
template page (e.g., product page). To do this, any clustering algorithm could be
used and, in this chapter, we consider the clustering part as out of scope as we focus

CHAPTER 5. APPSTRACT 93

on the actual abstraction process. The learning approach thus starts with the user
picking one example page per template.

Each template page goes through intra-page abstraction. The intra-page abstrac-
tion takes a DOM tree p as input and returns a template as output. A template
is a tuple t = ⟨p̂, Tp⟩ where Tp is the identifier map that maps every element from
the original tree p to a global identifier. After the intra-page abstraction, p̂ typically
contains much fewer elements than p since all repeated patterns have been abstracted
away. The Tp map is a way to keep track of the elements in the original page p after
abstraction. For example, in Figure 5.3 illustrating intra-page abstraction, the iden-
tifier map would contain 11 entries, one for each original element in p and 5 distinct
values corresponding to the five distinct nodes of p̂.

In practice, the values of Tp are Global Unique Identifiers (GUID). Before starting
the abstraction process, we transform the page p into a template tuple, where the
identifier mapping maps every node to a randomly generated GUID. Each abstraction
step will thus transform the input tree and update the associated identifier map.

Once each page has been abstracted at the intra-page granularity, we build a
model allowing us to achieve two aspects of inter-page abstraction:

• Template abstraction: same elements within different instances of a template
must have the same identifiers (e.g., the title of a product on different product
pages)

• Cross-template abstraction: same elements within different pages (regardless of
templates) should have the same identifiers. (e.g., menu link that appears on
all template pages)

To achieve cross-template abstraction, we arbitrarily select one template to rep-
resent the whole application (⟨p̂a, Tpa⟩ in Figure 5.2) we call this template the mother
template. All other template pages are then inter-page abstracted against the mother
template. The inter-page abstraction function takes two templates: a reference tem-
plate and a query template. It then returns one template in which the values of the
identifier map have been updated to match the reference template.

The final model is obtained after applying intra-page abstraction between the
mother template and all other pages. The final model is simply a set of n templates
where each template is a tuple ⟨p̂, Tp⟩.

Prediction During the prediction phase described in the bottom part of Figure 5.2,
the user sends a previously unseen page and Appstract returns the mapping be-

CHAPTER 5. APPSTRACT 94

tween each element e of the page and the id of the associated template element ê.
To do so, Appstract first applies intra-page abstraction to create an abstracted

DOM tree p̂, then applies the tree matching algorithm at the core of the inter-page
abstraction between p̂ and all templates in the model. The template page from the
model that matches best with p̂ is retained (e.g., p̂b in Figure 5.2).

The matching between p̂ and the corresponding template is then used to compute
the final mapping Tp̂.

Overall, the user sent a page and received the mapping between each element of
the page and the corresponding template element in the corresponding template page.

In the following sections, we describe both intra-page abstraction and inter-page
abstraction in more detail.

5.3.3 Intra-Page Abstraction

e-Shop

Toothbrush 3$

Shampoo 2$

Toothpaste 2.50$

Intra-Page abstractionDOM

Figure 5.3: Illustration of Intra-Page abstraction. DOM leaves at the end of repeating
branches are tagged and then recursively merged.

Intra-page abstraction relies on the detection of repeating patterns within a page.
Building the intra-page abstraction corresponds to creating the Te function defined

above. The intra-page abstraction deals with a single page: given an input page p, we
want to build a template page p̂ and a function Te that maps all the elements e ∈ p

to their corresponding elements ê ∈ p̂ Overall, the Intra-Page abstraction is done in
three steps:

1. Leaf clustering clusters repeating DOM leaves together,

2. Node tagging propagates information about leaf clusters in all ancestor nodes
to prepare for the final step,

3. Recursive leaf-group merging builds the intra-page abstraction by recursively
merging branches.

CHAPTER 5. APPSTRACT 95

Leaf Grouping

In the first step of intra-page abstraction, we attempt to identify groups of leaf nodes
that present data of the same type. To do so, we: 1. build all root-to-leaf paths from
the DOM tree, 2. group all same paths together, and 3. filter out groups of leaves
containing less than a fixed threshold k of elements. At the end of this phase, we
have a set of leaf groups (LG), each containing at least k elements.

The root-to-leaf path of a node is the formatted sequence of tags from the root
to the node. For example, on the web page from Figure 5.4, the root-to-leaf path of
the element containing the text price2 is //html/body/div/span/.

<html>
<head> <!-- header --> </head>
<body>

<div> <!-- content --> </div>
<div>

Item1
price1

</div>
<div>

Item2
price2

</div>
</body>

</html>

Figure 5.4: Web page example to illustrate intra-page abstraction with no nested
records

To find leaf groups, we extract all root-to-leaf paths from the DOM tree and
group the same ones together and only keep the groups that contain more than a
fixed threshold k of elements. In example 5.4, assuming k = 2, it means we have two
groups:

1. Leaf group 1 (//html/body/div/span/) containing price1 and price2, and
2. Leaf group 2 (//html/body/div/a/) containing Item1 and Item2.

In our evaluation, however, this threshold is set to k = 4.

Limits Our grouping method may fail to cluster items correctly in two situations:
• Over-abstraction: Items can be clustered together even if they are not of the

same type, or

CHAPTER 5. APPSTRACT 96

• Sub-abstraction: Items can be put in different clusters even though a human
would put them in the same cluster.

To a certain extent, sub-abstraction can be compensated afterwards. For example,
when extracting information, it is common for websites to structure data differently
according to the type of exposed products (e.g., regular products or "sponsored"
products). In this case, using the approach we presented, the two types of products
will be classified in different clusters, meaning that if the data is extracted as a table,
the prices will be spread in two different columns that the user will be able to easily
merge.

The cases of over-abstraction are more problematic since it will mean that the
associated data has been lost when abstracting the page.

Node Tagging

At this stage, we have a list of all leaf groups (LG1, LG2...). To be able to recursively
merge all leaf groups, we propagate the information that a leaf belongs to a certain
group to all ancestors of the leaf using the node-tagging algorithm 3.

Algorithm 3 Intra-Page abstraction: Node Tagging
1: function createTags(LGs = [LG1, LG2...])
2: function tagBranch(depth, LG, e)
3: tag ← ⟨LG, depth⟩
4: e.tags[tag]+ = 1 // Inc or init tag count of node e
5: tagBranch(depth+ 1, LG, e.parent)
6: end function
7: for all LG ∈ LGs do
8: for all eleaf ∈ LG do
9: tagBranch(0, LG, eleaf)

10: end for
11: end for
12: end function

Algorithm 3 iterates through all the leaves that belong to a leaf group LG and
for each leaf, it recursively tags all the ancestors of the leaf. The tag of an element e
is the tuple ⟨LG, depth⟩ where LG is a leaf group and depth is the number of nodes
between e and the leaf from its offspring that belongs to LG. The tag is used to
identify nodes that should be merged.

When the algorithm ends, each node e of the DOM tree contains a map tags whose
keys are tags and values are integers count. Figure 5.5 shows an example result of
the node-tagging algorithm on a simple DOM tree.

CHAPTER 5. APPSTRACT 97

Figure 5.5: Output of the node-tagging algorithm. Each node is assigned a tags map
keeping track of the number of leaf groups in its offspring.

An important implementation detail: the above algorithm assumes that the tag

tuple’s hash code will be generated from the value of its components (and not the
object’s reference)—i.e., two tag tuples containing the same leaf group LG and the
same depth should have the same hash code when inserted into the e.tags map (even
though the tags will have different addresses in memory since they were created at a
different stage of the algorithm).

Recursive Branch Merging

Overview The last step of the intra-page abstraction consists in merging all re-
quired nodes such that the resulting DOM contains only one node instance of each
leaf group. Figure 5.3 shows an example of the result obtained after this last step
of the intra-page abstraction. In the final abstract tree of Figure 5.3, the red dotted
edge connecting the template element ê to its parent indicates that ê has a special

CHAPTER 5. APPSTRACT 98

relationship with its parent, in this case: a 1-to-many relationship.
The algorithm must be recursive because it is possible (and likely) that some leaf

groups will have to be merged at different levels of the tree. Figure 5.6 illustrates this
use case: ea1 and ea2 must be merged first before their ancestor eb1 can merge with
eb2.

(a) Nested records

0..n
0..1

(b) Optional elements

Figure 5.6: Illustrating two important cases our merging algorithm must cover: nested
records and optional elements.

The second case illustrated in Figure 5.6b occurs when merging two nodes even
though not all their respective children are merged. In this case, the inferred abstract
node ê1 is said to have an optional relationship with its parent template element—
i.e., it only exists as a child node in certain instances of ê1. In general, a template
element ê can have many types of relationships with its parent. In this chapter, we
distinguish two relationships:

• A zero-to-many relationship when at least one element from T−1
e (par(ê)) =

par(e1), par(e2)... has no child element that is an instance of ê and at least one
other element has more than 1,

• An optional (or zero-to-one) relationship when at least one element from T−1
e (par(ê)) =

par(e1), par(e2)... has no child element that is an instance of ê and at least one
other element has more than 1.

Algorithm Algorithm 4 gives a high level view of the solution. The function ab-
stractTree recursively traverses the tree. For each node e considered, it checks if e is
already abstract using the isAbstract function (line 2). A node is abstract if none of
its children need to be merged. If e is already abstract then it is returned, otherwise,
we:

1. recursively call the abstractTree function on all children of e,
2. group all abstract children by group of tags using assocGroup (see paragraph 5.3.3),

and
3. merge each group of children using mergeGroup (see paragraph 5.3.3)

CHAPTER 5. APPSTRACT 99

Algorithm 4 Intra-page abstraction: recursive merge
1: function abstractTree(e : Element)
2: if isAbstract(e) then
3: return e
4: else
5: children ← e.children.map(abstractTree)
6: children ← assocGroup(children).map(mergeGroup)
7: ê ← { e with e.children = children }
8: return ê
9: end if

10: end function

We describe in details the three functions used in algorithm 4, namely: 1. isAb-
stract, 2. assocGroup, and 3. mergeGroup.

isAbstract The function isAbstract checks if an element e is already abstract. An
element e is abstract if none of its offsprings need to be merged. This information is
obtained using the tags computed in previous steps (see Section 5.3.3).

Each tag tag associated to a node e is associated to its tag count |tag|. Using the
tag counts, we can then detect if e is abstract: a node e is abstract iff all tag counts
are equal to 1. In this case, it means that no node in the offspring will have to be
merged. For example, in Figure 5.5, all nodes are abstract except e0 since two tags
in e0.tags have a tag count of 2. In practice, it means that some children of e0 (in
this case e1 and e2) will have to be merged.

assocGroup The function assocGroup (for associative grouping) groups all the
nodes that need to be merged. To know if two nodes need to be merged, we look
at their associated tags map. The merging condition is simple: two nodes should be
merged iff they share the same tag. Below is an example of input/output pair of the
assocGroup function:

Input:

A has t1 , t2

B has t2 , t3

C has t3

D has t4

E has t4

Output:

CHAPTER 5. APPSTRACT 100

[A, B, C] -> [t1, t2, t3]

[D, E] -> [t4]

In our case, the letters A to E are nodes and t1 to t4 are tags.

mergeGroup The function mergeGroup is the core of the recursive merging algo-
rithm. As an input, it takes a list of abstract nodes—i.e., abstract subtrees—that
need to be merged and the set of common tags between the groups of nodes. The
output is the abstract node ê. The inputs come from the output of the function
assocGroup, described above, and the abstract node output replaces all children that
were merged in the tree, as shown in the abstractTree algorithm 4

The function mergeGroup reduces the group list taken as input by repeatedly
applying the function mergeAbstractTrees. Algorithm 5 describes how the function
merges two abstract trees into one.

Algorithm 5 Intra-page abstraction: merge two abstract trees
1: function mergeAbstractTrees(ê1, ê2)
2: // Group pairs of children containing the same tags
3: pairs, orphans ← groupPairs(ê1, ê2)
4: mergedChildren ← pairs.map(mergeAbstractTrees)
5: for e in orphans do
6: e.rel ← relType.Optional
7: end for
8: ê ← new Node()
9: ê.tag = ê.tag

10: ê.attrs = mergeAttrs(ê1.attrs, ê2.attrs)
11: ê.rel = mergeRel(ê1.rel, ê1.rel)
12: ê.children = mergedChildren + orphans
13: ê.tags = {ê1 ∪ ê2 with tag counts set to 1}
14: return ê
15: end function

Before diving into the details of the algorithm, it is important to highlight that
the inputs of the function mergeAbstractTrees are already abstract. At this stage of
the algorithm, we are assured that along the whole branch starting at the root of
both nodes sent as parameters, there are never two children belonging to the same
cluster—i.e., that needs to be merged. It means that the algorithm’s sole purpose is
to recursively merge the two trees between them (and not within).

The function starts by grouping the children of the two nodes into pairs and
orphans. The function groupPairs returns two lists: the pairs of nodes that must be

CHAPTER 5. APPSTRACT 101

merged and the orphan nodes. The orphan nodes are the children in ˆe1/2 that have
no corresponding element to be merged within ˆe2/1, these elements are set as optional
using the rel (as in relationship) property.

Before merging, we recursively call the function mergeAbstractTrees on each pair
of nodes returned by groupPairs. Intuitively, the algorithm will stack the calls to
mergeAbstractTrees until it reaches the leaves of the trees, then it will merge the
groups of leaves and merge their ancestors as the function calls unstack.

Most of the steps described above help compute the children property of the
abstract node returned by the mergeAbstractTrees function. Other properties of the
nodes are also merged:
rel : In case the relationships of the nodes to merge are different, they are merged

using the following pattern matching:

mergeRelTypes : : (RelType , RelType)−>RelType
mergeRelTypes (t1 , t2)

| (t1 , t2) when t1 = t2 −> t1
| (t1 , Normal) −> t1
| (_, ZeroToMany) −> ZeroToMany
| (Optional , OneToMany) −> ZeroToMany
| (t1 , t2) −> mergeRelTypes (t2 , t1)

attrs: In case the attributes of the nodes to merge are different, they are merged. To
merge the attributes, we select the attributes that are present in both nodes and
merge their values using the Longest Common Subsequence (LCS) algorithm.
For example, given three nodes having the following class values: class attribute:
"link nav-link", "link active nav-link" and
"link nav-link", the function mergeAttrs will return the following value: "link

nav-link".

Stack Diagram Since the algorithm has several levels of recursion, it may be hard
to understand how a given tree will be abstracted.

In Figure 5.8 we describe the different steps of the algorithm. At each step, we
show the output of the current function that is called. Below each tree, we show the
current stack of functions called.

The functions we mention are all described earlier:
Figure 5.8 describes an example application of the abstractTree function. At each

step, the current stack of functions is shown at the bottom. All functions shown have
been described in the previous sections. Figure 5.7 summarizes all these functions

CHAPTER 5. APPSTRACT 102

abstractTree
Node🠒Node

isAbstract
Node🠒bool

assocGroup
Node[]🠒Node[][]

mergeGroup
Node[]🠒Node

mergeTwoAbstractTrees
Node*Node🠒Node

groupPairs
Node[]🠒Node[]*Node[]

Figure 5.7: Key functions involved in the abstractTree algorithm. A directed arrow
from function f to g indicates that f calls g.

0

abstractTree(0)

St
ac

k

abstractTree(0)
isAbstract(0)

not
abstract

54

abstractTree(0)

assocGroup([4, 5])
abstractTree(2)

2 31

abstractTree(0)
assocGroup([1, 2, 3])

abstractTree(0)

mergeGroup([4, 5])
abstractTree(2)

0��n

2 3

abstractTree(0)
mergeGroup([2, 3])

2 31

abstractTree(0)

isAbstract(n)
abstractTree(n)

abstract

6 7

abstractTree(0)

groupPairs([, 6, 7]
mergeGroup([2, 3])

Pairs Orphans

2

54

abstractTree(0)

isAbstract(n)
abstractTree(n)
abstractTree(2)

0��1

7

abstractTree(0)

mergeGroup([, 6]
mergeGroup([2, 3])

0��n
0��1

7

abstractTree(0)
mergeGroup([2, 3])

0��n 0��1

7

abstractTree(0)

0��n

Figure 5.8: An example application of the abstractTree function. For each figure, the
stack of the current step is shown below.

CHAPTER 5. APPSTRACT 103

and how they interact. For simplicity, however, the mergeTwoAbstractTrees is not
explicitly mentioned, it is considered as part of the function mergeGroup.

5.3.4 Inter-Page Abstraction

We described how to detect and abstract the repeating patterns contained within
one page. In the second part of the Appstract approach, we detect and abstract
repeating patterns across pages of the web application.

The inter-page abstraction relies on tree-matching. A tree matching solution al-
lows matching two web page DOM trees p and p′. The matching Mp,p′ obtained is
a subset of p × p′ such that each tuple (e, e′) ∈ Mp,p′ represents the fact that the
element e ∈ p matches with the element e′ ∈ p′ (e.g. e and e′ contain the names of
two different products on two different product pages p and p′).

As described in Section 5.3.3, inter-page abstraction is used at both the learning
and prediction phases. In both cases, the inter-page abstraction can be described as
a function that:

1. takes two templates as input: the reference template and a new template,

2. returns a template in which every template element ê of the new template
references its corresponding template element ê′ in the reference template (if a
match was found).

Algorithm 6 Inter-page abstraction
1: function inter(⟨pref , Tref⟩, ⟨p, T ⟩)
2: M ← tree-matching(p, pref)
3: Tnew ← T.map((e, id) → Tref [M [e]] if e in M else id)
4: return ⟨p, Tnew⟩
5: end function

Algorithm 6 describes the inter-page abstraction process. The function role is to
create a new identifier map Tnew in which each element from p maps to the id of the
matching element in pref (if there is any) or remains the same.

Figure 5.2 describes how the function inter is used for both learning and predic-
tion:

1. during learning, we apply inter-page abstraction between the mother template
and each of the other templates. This step allows for building a model of the
application where elements that appear in all page templates will have the same
id,

CHAPTER 5. APPSTRACT 104

2. during prediction, inter-page abstraction is used to match all elements from an
unseen page to the template elements of its matching template page.

5.4 Limits

Modeling a whole application is a highly ambitious task. We hope our work can help
progress toward this goal, but we cannot claim that it already does. Indeed, our
current work has several limits, mainly:

Template Topology Real-life templates may have a much more complex structure
than the one we assume:

1. there can be a tree-like structure with deeply nested templates,

2. there could be graph-like template structure (e.g., components).

Our current appstraction method does not allow us to infer such template topologies.
Mother Template Selection During the learning stage, we choose the mother tem-

plate arbitrarily among the existing template pages. This selection process assumes
that all template pages have an equivalent amount of common parts.

5.5 Evaluation

In this section, we describe the experiment we devised allowing us to evaluate App-

stract. The idea of the experiment is to consider several samples of DOM elements
couples and manually judge if they are correctly labeled (should they have the same
id?)

5.5.1 Experiment

We intend to measure over- and sub-abstraction rates of Appstract. Fundamen-
tally, Appstract allows the creation of semantically rich, application-wide ids for
elements on a webpage. Where:

• Semantically Rich means that two instances of the same template should have
the same id

• Application-wide means that on a given application instances of a template will
have the same id regardless of the page

There are two ways in which Appstract can fail:

CHAPTER 5. APPSTRACT 105

• Over-abstraction: Items have the same id even though they are not of the same
type, or

• Sub-abstraction: Items have different ids even though a human would assign
them the same.

To analyze the performance of Appstract, we thus propose to measure the rates of
over- and sub-abstraction. To do so, we developed a visual way to explore the web
page abstractions created by Appstract. Given an application A:

• We apply Appstract to A thus obtaining an abstraction ⟨Â, TÂ⟩
• Open two pages pa1 , pa2 that we assume to be instances from the same template
pa (e.g. two product pages or two blog posts)

• Use ⟨Â, TÂ⟩ to get the id Tp̂(e) = ê of every element e on both pages pa1 , pa2

• Visually display the id ê when the mouse hovers over an element e

This method allows us to simply analyze the results of Appstract.
We separate our experiment into two parts: 1. Over-abstraction and 2. Sub-

abstraction

Defining Measures

After having described what we refer to as over-abstraction and sub-abstraction, in
this section, we give formal definitions of these measures. To do so, we formulate the
experimental application of Appstract as a binary classification problem in which
each couple of elements between two pages can either have the same locator or a
different one. We then define over-abstraction and sub-abstraction as complementary
to the precision and recall of our binary classification problem.

Let us consider two pages p1 and p2 from the same application A. We apply
Appstract to A and obtain the abstraction ⟨Â, TÂ⟩. Then, we apply the abstract
model to p1 and p2:

TÂ(p̂1) = ⟨p̂1, Tp̂1⟩ (5.2)

TÂ(p̂2) = ⟨p̂2, Tp̂2⟩ (5.3)

We formulate the experimental application of Appstract as a binary classifica-
tion problem.

CHAPTER 5. APPSTRACT 106

Definition 5.5.1 (Ground Truth Binary Classification function f).

f : p1 × p2 → [0, 1] (5.4)

f(e1, e2) = 1 if e1 ∼ e2 (5.5)

f(e1, e2) = 0 otherwise (5.6)

where e1 ∼ e2 means that e1 and e2 are instances of the same template element (e.g.
a buy button on a product page) as judged by a human.

f is the ground truth of our experiment. In practice, in the experiment, we only
know a small manually labeled sample of f .

Definition 5.5.2 (Prediction function f̂).

f : p1 × p2 → [0, 1] (5.7)

f(e1, e2) = 1 if Tp̂1(e1) = Tp̂2(e2) (5.8)

f(e1, e2) = 0 otherwise (5.9)

f̂ is a guess made using Appstract predicting whether two elements should have
the same locator.

Definition 5.5.3 (Prediction function f̂).

f : p1 × p2 → [0, 1] (5.10)

f(e1, e2) = 1 if Tp̂1(e1) = Tp̂2(e2) (5.11)

f(e1, e2) = 0 otherwise (5.12)

Given the above definitions, we can define the traditional precision and recall of
our binary classification problem:

Definition 5.5.4 (Binary Classification Measures).

tp = |{e1, e2 ∈ p1, p2/f(e1, e2) = f̂(e1, e2) = 1}| (5.13)

fp = |{e1, e2 ∈ p1, p2/f(e1, e2) = 0, f̂(e1, e2) = 1}| (5.14)

fn = |{e1, e2 ∈ p1, p2/f(e1, e2) = 1, f̂(e1, e2) = 0}| (5.15)

where tp, fp, and fn stand for true positive, false positive, and false negative, and |S|

CHAPTER 5. APPSTRACT 107

is the cardinality of a set S.

precisionp1,p2(f̂) =
tp

tp+ fp
(5.16)

recallp1,p2(f̂) =
tp

tp+ fn
(5.17)

Finally, we define over-abstraction and sub-abstraction as complementary mea-
sures of precision and recall:

Definition 5.5.5 (Over-abstraction rate).

op1,p2(f̂) = 1− precision (5.18)

Definition 5.5.6 (Sub-abstraction rate).

sp1,p2(f̂) = 1− recall (5.19)

In the next section, we describe an empirical experiment allowing us to estimate
the over-abstraction and sub-abstraction rates of predictions made by Appstract.

Experimental Protocol

We devise an experimental protocol allowing us to evaluate the performance of App-

stract on an application. We separate the experiment into two parts: sub-abstraction
and over-abstraction evaluations. In both experiments, we manually label couples of
DOM elements from two pages of the same application. The idea is to estimate the
precision and recall of the function f̂ defined in section 5.5.1.

Selecting couples of pages Given an application containing several pages, we
need to select a subset of page couples on which we experiment. There are two
possibilities:

1. Picking random couples

2. Picking couples of pages that seem to belong to the same template

We choose the second possibility because it provides more relevant data to evaluate.
In the rest of the section, we thus describe the evaluation process on a single

couple of DOMs (p, p′) belonging to the same template of the same application to
which we already applied Appstract. Formally, it means we use the functions Tp̂

and Tp̂′ .

CHAPTER 5. APPSTRACT 108

Over-abstraction Over-abstraction measures the precision of our algorithm: to
how many couples of elements do we mistakenly assign the same id? More formally:

op,p′(f̂) = 1− tp

tp+ fp
(5.20)

where tp is the number of true positives and fp is the number of false positives.
The objective of this part of the experiment is thus to estimate tp and fp given

a couple of DOMs (p, p′). Both tp and fp concern the subset of positive couples: the
subset of DOM elements couple (e, e′) ∈ p× p′ such that Tp̂ = Tp̂′ .

To label true and false positives, we develop a script that, given two abstracted
web pages p, p′:

1. Display p and p′ side by side,

2. Highlights one element of each page that has the same id,

3. Offer a popup allowing the tester to manually choose between "Correct", "Wrong"
or "Skip"

This experiment allows to estimate the amount of true positives tp ("Correct")
and false positives fp ("Wrong"). The "Skip" option is most useful in cases where
the elements highlighted are not visible. Results allow us to calculate an estimate of
the over-abstraction ˆop,p′(f̂)

Sub-abstraction Sub-abstraction measures the recall of our algorithm: how many
elements should have the same id but not? More formally:

sp,p′(f̂) = 1− tp

tp+ fn
(5.21)

To estimate sub-abstraction, we develop a script that, given two abstracted web pages
p, p′:

1. Display p and p′ side by side

2. Ask the user to select one element from each web page that should have the
same id

3. Check if they indeed have the same id. If yes, increment the number of true
positive tp else increment the number of false negatives fn

We do not disclose the results of the comparison to avoid influencing the following
experimenter’s choices.

CHAPTER 5. APPSTRACT 109

Preliminary Results and Limitations

While we, unfortunately, did not have enough time to lead the described experiments
quantitatively, our first tests of Appstract are promising but show some limitations,
mainly related to Free Text detection. We call Free Text, portions of web pages
containing text written and, more importantly, formatted by the user. The most
significant example of free text is content written on forums or comment sections.
Comment editors on these websites often offer users the option to format (bold, italic,
paragraphs...) their text. The formatting tags in free text introduce noise that is
difficult to ignore for Appstract. Indeed, the main assumption used by Appstract

to separate content from presentation (templates) is that web applications present a
high variability of content (text) encoded in a limited amount of templates. In the case
of free text, this assumption is false: the structure of the webpage defined through tags
is partially written by the user which leads to the high variability of structure since,
in this case, the structure is also part of the content. Appstract then mistakenly
believes the formatting tags should be used to infer the template which can lead to
unexpected results. To solve the free-text limitation, we need to find a way to detect
free text.

5.6 Conclusion

We believe Appstract’s approach is an important and pioneering solution in two
ways.

Firstly, we introduce the webpage abstraction problem independently to its tradi-
tional areas of application (e.g. web testing, data extraction, web analytics). We
propose a formalization of the abstraction problem using the idea of robust and
semantically-rich application-wide identifiers.

Secondly, we propose an abstraction approach combining intra- and inter-page
abstraction to generate such identifiers. While both intra- and inter-page abstraction
underlying techniques are akin to existing approaches in different research areas, to
our knowledge, the idea to combine both to infer a web application abstraction is
original.

The web application abstraction problem we described is very complex, mainly
because of the high variety of existing modern web applications. Unfortunately, App-

stract is not the off-the-shelf web application abstraction solution working on any
application that we intended to develop. Appstract mainly suffers from a lack

CHAPTER 5. APPSTRACT 110

of quantitative evaluation benchmark and can be misled by Free Text sections (e.g.
comment sections or forum posts). However, we hope it will serve as a starting point
to developing new solutions for the web application abstraction problem.

Chapter 6

Conclusion

The original purpose that inspired my work was to build a comprehensive set of tools
allowing for analyzing interactions between the user and any real-life web applications
to detect every time the user struggles to achieve her purpose. I initially expected
most challenges to arise from the analysis of these interactions. However, very quickly,
I encountered one major obstacle: how to even describe an interaction? In the end, all
my studies and contributions have been guided by this question, leaving the analysis
part unfortunately untouched.

Describing an interaction between a user and a web application requires a sur-
prisingly deep and subtle understanding of the application. An interaction between a
user and an application is the expression of the intent of the user. She translates this
intent into a series of actions. These actions can be seen as a language, a language
entirely defined by the makers of the application. This language has to be easily
discoverable by the user by just looking at the application, it is also as similar as
possible to the one used by other applications (UX/UI conventions). In this context,
describing action is akin to figuring out what is the limited set of tokens the language
is made of. Without such preliminary abstraction work, each node of every page is
seen as unique. Analyzing streams of such actions would be like trying to understand
a language where almost no two words are the same.

The main challenge in describing an interaction is the description of a location on
the web page. Such description is called a locator. The first kind of variability we
attempted to handle is the variability between pages: how to build a locator of an
element that remains the same for each page on which the element appears? To answer
this question we attempted to compare every couple of pages from a given web page
and mark every matching element so they would have the same locator. However,
every off-the-shelf state-of-the-art tree-matching solution we tried to use had either

111

CHAPTER 6. CONCLUSION 112

unpractical computation times (seconds to minutes) or unacceptable accuracy. That
is why we developed SFTM which stands for Similarity-base Flexible Tree Matching
(see chapter 2).

SFTM is a practical solution to tree-matching specialized web pages. Tree-matching
algorithms have been studied for more than 50 years. To improve on such a legacy, we
took a radically different approach from traditional generic tree-matching solutions.
While state-of-the-art solutions are always topology first, we instead used statistical
tools to match nodes using their labels first before taking into account topology. This
approach relies on the specificity of web pages: their labels contain a large amount of
information (tags and attributes).

The second major obstacle we had to face was the lack of available open-source
benchmarks for web page matching. This is mainly because most existing generic
tree-matching solutions are correct by construction and their efficiency is thus proved
analytically rather than empirically. Since our approach included more statistical
tools such an approach could not be applied to SFTM. We thus developed a synthetic
large-scale benchmark based on mutations. Results showed significant gains in terms
of both computation times and accuracy thus allowing us to move towards our initial
goal: applying tree matching to build meaningful and robust locators.

Following our work on tree matching, we studied the state of the art on robust
locators and found out no existing solution was based on tree matching. We thus
worked on an approach to improve the robustness of locators using SFTM that we
named Erratum (see chapter 3). While our approach could be used to generate
robust locators (and we did so later on when we integrated Erratum) we described
Erratum as a locator repair solution. The idea of locator repair is to use the last
web page on which a given locator is working and try to relocate the located element
on the newer version of the page where the locator breaks. Existing locator repair
solutions try to find individual elements of one version of the page in the other. Our
approach uses all nodes from both pages to serve as anchors and thus tremendously
help relocate the element.

Once again, we could not find any off-the-shelf benchmarking solutions to com-
pare Erratum to other locator repair solutions. We thus built an open benchmark
using both synthetic and manually labeled test data. Results showed that Erratum

was significantly more accurate for almost no overhead when compared to existing
solutions.

Following our work on Erratum, a large online French retail company reached
out to us. They shared how painful the locator breakage problem is to their test

CHAPTER 6. CONCLUSION 113

department, entailing large waste of resources and sometimes even the cancellation of
whole test campaigns. Since they relied on a famous open-source library for their tests,
we thus integrated Erratum into the open source framework (see chapter 4). Our
integration allows the user to use automatically generated Erratum-based locators
as a replacement for traditional manually written XPath or CSS-based locators. This
allowed testers to both save time on manually writing XPaths and benefit from much
more robust locators.

Finally, we set out to apply our previous work to achieve our original objective: to
build a tool that can infer an abstract model of any web application without requiring
any human intervention. We called our tool Appstract (see chapter 5). Intuitively,
Appstract works in the following way: given a set of web pages from the same appli-
cation, we group the pages belonging to the same templates together (e.g. blog page,
product page, product list page). We then use an intra-page abstraction algorithm to
extract patterns within one page. The output of the intra-page abstraction step is a
set of abstract templates. We then select one mother template and use tree matching
(i.e. inter-page abstraction) to match every template to the mother template. The
matchings are then used to update all templates so that elements appearing on all
pages (e.g. menu, logo) have the same locators. The result of the above steps is an
abstract model of the application. Each new page can then be matched against this
model to retrieve semantically rich and robust locators for each element of the page.

Perspectives

Short Term In the short term, some work remains to be done so that Appstract

can be applied confidently on any web page. In particular, three challenges remain
to be addressed:

At the moment Appstract is not entirely unsupervised since the clustering phase
has to be done manually. To solve this issue, we need to experiment on unsupervised
clustering of web pages into templates (e.g. blog page, product page, product list
page).

Secondly, Appstract currently does not support what we called free text. Free
text is a part of a page where users can write formatted content. This is a problem
because Appstract relies on the assumption that while the data of an application
varies greatly, the structure does not. This assumption is wrong in the case of free
text because it is user-generated content (large variability) that contains a structure
(formatting)

CHAPTER 6. CONCLUSION 114

Finally, we have not had the time to evaluate Appstract quantitatively which is
necessary if we want to solve its limitations described above and allow the community
to trust and build upon Appstract.

Middle & Long Term In the middle to long term, the most exciting perspec-
tives are the application of Appstract to web testing, web analytics, and web data
extraction. We strongly believe our approach can bring a whole range of novel ap-
proaches to each of these fields. As an example, Appstract can be used to build
a navigational model allowing us to generate web test scenarios, it can be used to
direct crawling and extract data from an application, and finally, our original intent,
Appstract can be used to mine user behavior where user actions are encoded using
the inferred abstract identifiers.

Bibliography

[1] Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web search ranking
by incorporating user behavior information. In Proceedings of the 29th annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, pages 19–26, 2006.

[2] Eugene Agichtein, Eric Brill, Susan Dumais, and Robert Ragno. Learning user
interaction models for predicting web search result preferences. In Proceedings
of the 29th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 3–10, 2006.

[3] Emil Alegroth, Michel Nass, and Helena H Olsson. Jautomate: A tool for system-
and acceptance-test automation. In ICST, pages 439–446. IEEE, 2013.

[4] Arvind Arasu and Hector Garcia-molina. Extracting structured data from web
pages. pages 337–348.

[5] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. Synthesizing web element
locators (t). In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 331–341. IEEE, 2015.

[6] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. Synthesizing web ele-
ment locators. Proceedings - 2015 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015, pages 331–341, 2016.

[7] Greg Barish, Yi Shin Chen, Dan DiPasquo, Craig A. Knoblock, Steven Minton,
Ion Muslea, and Cyrus Shahabi. TheaterLoc: Using information integration
technology to rapidly build virtual applications. Proceedings - International Con-
ference on Data Engineering, pages 681–682, 2000.

[8] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Diversity-
based web test generation. In Proceedings of the 2019 27th ACM Joint Meeting on

115

BIBLIOGRAPHY 116

European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 142–153, 2019.

[9] Karl Bringmann, Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Tree
edit distance cannot be computed in strongly subcubic time (unless apsp can).
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1190–1206. Society for Industrial and Applied Mathematics,
2018.

[10] Horst Bunke and Kim Shearer. A graph distance metric based on the maximal
common subgraph. Technical report, 1998.

[11] Brian Burg, Richard Bailey, Andrew J Ko, and Michael D Ernst. Interactive
record/replay for web application debugging. In UIST, pages 473–484, 2013.

[12] Chia-Hui Chang, Mohammed Kayed, M R Girgis, Khaled F Shaalan, Ramzy
Girgis, and Khaled F Shaalan. A Survey of Web Information Extraction Systems.
Technical Report 10, 4 2006.

[13] Tsung-Hsiang Chang, Tom Yeh, and Robert C Miller. Gui testing using computer
vision. In CHI, pages 1535–1544, 2010.

[14] K P Chaudhari, Miss Poonam, and Rangnath Dholi. Template Extraction From
Heterogeneous Web Pages. Technical report.

[15] Shauvik Roy Choudhary, Dan Zhao, Husayn Versee, and Alessandro Orso. Water:
Web application test repair. In Proceedings of the First International Workshop
on End-to-End Test Script Engineering, pages 24–29. ACM, 2011.

[16] Grégory Cobéna, Serge Abiteboul, and Amélie Marian. Detecting changes in
XML documents. Proceedings - International Conference on Data Engineering,
pages 41–52, 2002.

[17] Antoine Craske. Cerberus: an automated tool for continuous testing. In ICST,
2020. tool demonstration.

[18] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. RoadRunner: To-
wards automatic data extraction from large web sites. VLDB 2001 - Proceedings
of 27th International Conference on Very Large Data Bases, pages 109–118, 2001.

BIBLIOGRAPHY 117

[19] Davi Castro De Reis, Paulo B. Golgher, Altigran S. Da Silva, and Alberto H.F.
Laender. Automatic web news extraction using tree edit distance. In Thirteenth
International World Wide Web Conference Proceedings, WWW2004, pages 502–
511, New York, New York, USA, 2004. ACM Press.

[20] Yeem Dinitz, Alon Itai, and Michael Rodeh. On an Algorithm of Zemlyachenko
for Subtree Isomorphism. Technical report, 1998.

[21] Rodrigo Cordeiro Dos Santos and Carmem Hara. A semantical change detection
algorithm for xml. SEKE 2007, page 438, 2007.

[22] Marios Fokaefs, Rimon Mikhaiel, Nikolaos Tsantalis, Eleni Stroulia, and Alex
Lau. An empirical study on web service evolution. In 2011 IEEE International
Conference on Web Services, pages 49–56. IEEE, 2011.

[23] Georg Gottlob and Christoph Koch. Logic-based Web information extraction.
SIGMOD Record, 33(2):87–94, 2004.

[24] Georg Gottlob and Christoph Koch. Monadic datalog and the expressive power
of languages for Web information extraction. Journal of the ACM, 51(1):74–113,
2004.

[25] Şule Gündüz and M Tamer Özsu. A web page prediction model based on
click-stream tree representation of user behavior. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 535–540, 2003.

[26] Qi Guo and Eugene Agichtein. Exploring mouse movements for inferring query
intent. In Proceedings of the 31st annual international ACM SIGIR conference
on Research and development in information retrieval, pages 707–708, 2008.

[27] Mouna Hammoudi, Gregg Rothermel, and Andrea Stocco. Waterfall: An incre-
mental approach for repairing record-replay tests of web applications. In Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 751–762. ACM, 2016.

[28] Mouna Hammoudi, Gregg Rothermel, and Paolo Tonella. Why do record/replay
tests of web applications break? In ICST, pages 180–190. IEEE, 2016.

[29] Mouna Hammoudi, Gregg Rothermel, and Paolo Tonella. Why do Record/Re-
play Tests of Web Applications Break? In 2016 IEEE International Conference

BIBLIOGRAPHY 118

on Software Testing, Verification and Validation (ICST), pages 180–190. IEEE,
6 2016.

[30] Yanan Hao and Yanchun Zhang. Web services discovery based on schema match-
ing. In Proceedings of the thirtieth Australasian conference on Computer science-
Volume 62, pages 107–113. Australian Computer society, Inc., 2007.

[31] Chun Nan Hsu and Ming Tzung Dung. Generating finite-state transducers for
semi-structured data extraction from the Web. Information Systems, 23(8):521–
538, 1998.

[32] Yuqing Huang, Guangzhi Qi, and Fuyan Zhang. Extracting semi-structured
information from the WEB. Ruan Jian Xue Bao/Journal of Software, 11(1):73–
78, 2000.

[33] Javaria Imtiaz, Muhammad Zohaib Iqbal, et al. An automated model-based
approach to repair test suites of evolving web applications. Journal of Systems
and Software, 171:110841, 2021.

[34] Javaria Imtiaz, Salman Sherin, Muhammad Uzair Khan, and Muhammad Zohaib
Iqbal. A systematic literature review of test breakage prevention and repair
techniques. Information and Software Technology, 113:1–19, 2019.

[35] Lucija Ivančić, Dalia Suša Vugec, and Vesna Bosilj Vukšić. Robotic process au-
tomation: systematic literature review. In International Conference on Business
Process Management, pages 280–295. Springer, 2019.

[36] Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees—an alter-
native to tree edit. In Annual Symposium on Combinatorial Pattern Matching,
pages 75–86. Springer, 1994.

[37] Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees—an alter-
native to tree edit. Theoretical Computer Science, 143(1):137–148, 1995.

[38] Karen Sparck Jones. A statistical interpretation of term specificity and its ap-
plication in retrieval. Journal of documentation, 1972.

[39] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

BIBLIOGRAPHY 119

[40] Hiroyuki Kirinuki, Haruto Tanno, and Katsuyuki Natsukawa. Color: correct lo-
cator recommender for broken test scripts using various clues in web application.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 310–320. IEEE, 2019.

[41] Harold W Kuhn. The hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97, 1955.

[42] Ranjitha Kumar, Jerry O Talton, Salman Ahmad, and Scott R Klemmer. Brico-
lage: example-based retargeting for web design. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 2197–2206. ACM,
2011.

[43] Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, Tim Roughgarden, and
Scott R. Klemmer. Flexible tree matching. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence (AAAI), 2011.

[44] Maurizio Leotta, Filippo Ricca, and Paolo Tonella. Sidereal: Statistical adaptive
generation of robust locators for web testing. Software Testing, Verification and
Reliability, 31(3):e1767, 2021.

[45] Maurizio Leotta, Filippo Ricca, and Paolo Tonella. Sidereal: Statistical adaptive
generation of robust locators for web testing. Software Testing Verification and
Reliability, 31(3):1–31, 2021.

[46] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Reducing web
test cases aging by means of robust xpath locators. In SBST, pages 449–454.
IEEE, 2014.

[47] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Meta-
heuristic generation of robust xpath locators for web testing. In SBST, pages
36–39. IEEE, 2015.

[48] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Using multi-
locators to increase the robustness of web test cases. In ICST, pages 1–10. IEEE,
2015.

[49] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Robula+:
An algorithm for generating robust xpath locators for web testing. Journal of
Software: Evolution and Process, 28(3):177–204, 2016.

BIBLIOGRAPHY 120

[50] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Robula+ : an algorithm for gener-
ating robust XPath locators for web testing: ROBULA+: An Algorithm for
Generating Robust XPath Locators. Journal of Software: Evolution and Pro-
cess, 28(3):177–204, 6 2016.

[51] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Pesto: Au-
tomated migration of dom-based web tests towards the visual approach. STVR,
28(4):e1665, 2018.

[52] Julien Leveau, Xavier Blanc, Laurent Réveillère, Jean-Rémy Falleri, and Ro-
main Rouvoy. Fostering the diversity of exploratory testing in web applications.
Software Testing, Verification and Reliability, 32(5):e1827, 2022.

[53] Alon Y Levy, Anand Rajaraman, and Joann J Ordille. Querying Heterogeneous
Information Sources Using Source Descriptions. Proceedings of 22th International
Conference on Very Large Data Bases, 1:1–26, 1996.

[54] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang
Zhai. Have things changed now?: an empirical study of bug characteristics in
modern open source software. In Proceedings of the 1st workshop on Architectural
and system support for improving software dependability, pages 25–33. ACM,
2006.

[55] Bing Liu, Robert Grossman, and Yanhong Zhai. Mining data records in web
pages. Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 601–606, 2003.

[56] Zhenyue Long, Guoquan Wu, Xiaojiang Chen, Wei Chen, and Jun Wei. We-
brr: self-replay enhanced robust record/replay for web application testing. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
1498–1508, 2020.

[57] Ali Mesbah and Arie Van Deursen. Invariant-based automatic testing of ajax user
interfaces. In 2009 IEEE 31st International Conference on Software Engineering,
pages 210–220. IEEE, 2009.

BIBLIOGRAPHY 121

[58] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing
machines. The journal of chemical physics, 21(6):1087–1092, 1953.

[59] Gengxin Miao, Junichi Tatemura, Wang-Pin Hsiung, Arsany Sawires, and
Louise E Moser. Extracting Data Records from the Web Using Tag Path Clus-
tering.

[60] James W Mickens, Jeremy Elson, and Jon Howell. Mugshot: Deterministic
capture and replay for javascript applications. In NSDI, volume 10, pages 159–
174, 2010.

[61] Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. Effective
personalization based on association rule discovery from web usage data. In Pro-
ceedings of the 3rd international workshop on Web information and data man-
agement, pages 9–15, 2001.

[62] Ion Muslea. Extraction Patterns for Information Extraction Tasks: A Survey.
Technical report, 1999.

[63] Svetlozar Nestorov and SERGE ABITEBOUL. Extracting Schema from
Semistructured Data. Technical report.

[64] Vu Nguyen, Thanh To, and Gia-Han Diep. Generating and selecting resilient and
maintainable locators for web automated testing. Software Testing, Verification
and Reliability, 31(3):e1760, 2021.

[65] Alessandreia Oliveira, Gabriel Tessarolli, Gleiph Ghiotto, Bruno Pinto, Fer-
nando Campello, Matheus Marques, Carlos Oliveira, Igor Rodrigues, Marcos
Kalinowski, Uéverton Souza, et al. An efficient similarity-based approach for
comparing xml documents. Information Systems, 78:40–57, 2018.

[66] Changkun Ou, Daniel Buschek, Malin Eiband, and Andreas Butz. Modeling
Web Browsing Behavior across Tabs and Websites with Tracking and Prediction
on the Client Side. 2021.

[67] Mateusz Pawlik and Nikolaus Augsten. RTED: a robust algorithm for the tree
edit distance. Proceedings of the VLDB Endowment, 5(4):334–345, 2011.

[68] Mateusz Pawlik and Nikolaus Augsten. Efficient computation of the tree edit
distance. ACM Transactions on Database Systems (TODS), 40(1):1–40, 2015.

BIBLIOGRAPHY 122

[69] Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and memory-
efficient. Information Systems, 56:157–173, 2016.

[70] Strategic Planning. The economic impacts of inadequate infrastructure for soft-
ware testing. National Institute of Standards and Technology, 2002.

[71] Davi de Castro Reis, Paulo Braz Golgher, Altigran Soares Silva, and AlbertoF
Laender. Automatic web news extraction using tree edit distance. In Proceedings
of the 13th international conference on World Wide Web, pages 502–511. ACM,
2004.

[72] Sunita Sarawagi. Information Extraction, volume 39. 1996.

[73] Ramesh R Sarukkai. Link prediction and path analysis using markov chains.
Computer Networks, 33(1-6):377–386, 2000.

[74] Stanley M Selkow. The tree-to-tree editing problem. Information processing
letters, 6(6):184–186, 1977.

[75] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi:
a selective record-replay and dynamic analysis framework for javascript. In FSE,
pages 488–498, 2013.

[76] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella. Apogen:
automatic page object generator for web testing. Software Quality Journal,
25(3):1007–1039, 2017.

[77] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. Visual web test
repair. In Proceedings of the 2018 26th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 503–514. ACM, 2018.

[78] Sathya Sundaram and Sanjay K Madria. A change detection system for un-
ordered xml data using a relational model. Data & Knowledge Engineering,
72:257–284, 2012.

[79] Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the ACM
(JACM), 26(3):422–433, 1979.

[80] Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the ACM
(JACM), 26(3):422–433, 1979.

BIBLIOGRAPHY 123

[81] Gabriel Valiente. An efficient bottom-up distance between trees. In spire, pages
212–219, 2001.

[82] Waraporn Viyanon and Sanjay K Madria. Xml-sim-change: structure and con-
tent semantic similarity detection among xml document versions. In OTM Con-
federated International Conferences" On the Move to Meaningful Internet Sys-
tems", pages 1061–1078. Springer, 2010.

[83] Jason T.L. Wang and Kaizhong Zhang. Finding similar consensus between trees:
An algorithm and a distance hierarchy. Pattern Recognition, 34(1):127–137, 1
2001.

[84] Jiying Wang and F.H. Lochovsky. Wrapper induction based on nested pattern
discovery. World Wide Web Internet And Web Information Systems, pages 1–29,
2002.

[85] Yuan Wang, David J DeWitt, and J-Y Cai. X-diff: An effective change detection
algorithm for xml documents. In Proceedings 19th international conference on
data engineering (Cat. No. 03CH37405), pages 519–530. IEEE, 2003.

[86] Takashi Yamauchi. Mouse trajectories and state anxiety: feature selection with
random forest. In 2013 Humaine Association Conference on Affective Computing
and Intelligent Interaction, pages 399–404. IEEE, 2013.

[87] Rahulkrishna Yandrapally, Suresh Thummalapenta, Saurabh Sinha, and Satish
Chandra. Robust test automation using contextual clues. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, pages 304–314.
ACM, 2014.

[88] Rahulkrishna Yandrapally, Suresh Thummalapenta, Saurabh Sinha, and Satish
Chandra. Robust test automation using contextual clues. 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014 - Proceedings, pages
304–314, 2014.

[89] Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter Clark. An-
swer extraction as sequence tagging with tree edit distance. In Proceedings of
the 2013 conference of the North American chapter of the association for com-
putational linguistics: human language technologies, pages 858–867, 2013.

BIBLIOGRAPHY 124

[90] Xun Yuan and Atif M Memon. Using gui run-time state as feedback to generate
test cases. In 29th International Conference on Software Engineering (ICSE’07),
pages 396–405. IEEE, 2007.

[91] Yanhong Zhai and Bing Liu. Web data extraction based on partial tree alignment.
In Proceedings of the 14th international conference on World Wide Web, pages
76–85. ACM, 2005.

[92] Yanhong Zhai, Bing Liu, Zha Yanhong, Liu Bing, and Yanhong Zhai. Web data
extraction based on partial tree alignment. pages 76–85, 2005.

[93] Kaizhong Zhang. Algorithms for the constrained editing distance between or-
dered labeled trees and related problems. Pattern recognition, 28(3):463–474,
1995.

[94] Kaizhong Zhang. A constrained edit distance between unordered labeled trees.
Algorithmica, 15(3):205–222, 1996.

[95] Yu Zheng, Song Huang, Zhan-wei Hui, and Ya-Ning Wu. A method of opti-
mizing multi-locators based on machine learning. In 2018 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C),
pages 172–174. IEEE, 2018.

	Introduction
	Motivation
	Objectives
	Tree Matching
	Robust and Semantically Rich Locators
	Web Page Abstraction

	Contributions
	SFTM
	Erratum
	Erratum Industrial Case Study
	Appstract

	Tree Matching
	Introduction
	Related Work
	Flexible Tree Matching (FTM)
	FTM Notations and Overview
	Cost Estimation
	Metropolis Algorithm
	Complexity Analysis

	Similarity-based FTM (SFTM)
	Overview of Similarity-based Matching
	Implementation Details
	Complexity Analysis

	Empirical Evaluation
	Input Web Document Dataset
	Baseline algorithms
	Experimental Results

	Threats to Validity
	Conclusion & Perspectives

	Erratum
	Introduction
	Background & Related Work
	Introducing Web Element Locators
	Generating Web Element Locators
	Repairing Web Element Locators

	Locator Problem Statement
	Problem Notations
	Problem Statement

	Repairing Locators with Erratum
	Applying Tree Matching to Locator Repair
	Integrating a Scalable Tree Matching Algorithm
	Matching DOM Trees by Similarity

	The Robust Locator Benchmark
	Evaluated Locator Repair Solutions
	Versioned Web Pages Datasets
	Evaluating of the Matched Elements

	Empirical Evaluation
	Evaluation of Repair Accuracy
	Mutations in the Wayback Dataset
	Repair Time Evaluation
	Threats to Validity

	Applying Erratum
	Conclusion

	Integrating Erratum into Cerberus
	Introduction
	Background
	Web Element Locators
	Web Locator Terminology

	Repairing web locators with Erratum
	Building test cases with Cerberus
	Integrating Erratum into Cerberus
	Preliminary Demonstration of Erratum
	Integration Strategies in Cerberus
	The Erratum Robust Locators
	Usage

	Industrial Impact
	Perspectives
	Conclusion

	Appstract
	Introduction
	Background & Related Works
	Data Extraction
	Web Testing
	Web Analytics

	Appstract
	Abstracting a Web Application
	Building an Abstraction
	Intra-Page Abstraction
	Inter-Page Abstraction

	Limits
	Evaluation
	Experiment

	Conclusion

	Conclusion
	Bibliography

