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Platelets are small discoid-shaped anucleated cells derived from megakaryocytes in the 

bone marrow and circulating freely in the bloodstream. Their main role is to ensure hemostasis, 

which represents the physiological process leading to the arrest of bleeding. After vessel lesion, 

under high flow conditions, von Willebrand factor (vWF) bound to subendothelial collagen 

recruits platelets through its interaction with the glycoprotein complex (GP) Ib-IX-V. Stable 

adhesion of platelets is then ensured by the interaction of integrins α2β1, α5β1 and α6β1 with 

their respective ligands namely collagen, fibronectin and laminins. Integrin αIIbβ3 is also 

involved in stable platelet adhesion through the binding to vWF and fibronectin. This adhesion 

step leads to the interaction between subendothelial collagen and GPVI, which initiates strong 

platelet activation, notably through the release of ADP and TxA2. These soluble agonists, via 

their receptors, amplify platelet activation by increasing the affinity of integrin αIIbβ3 for its 

main plasma ligand, soluble fibrinogen, which ensures aggregation and the formation of the 

hemostatic plug. Some activated platelets expose negatively charged phospholipids on their 

surface allowing the recruitment of coagulation factors and the generation of thrombin. This 

serine protease is then able to cleave fibrinogen within the clot into an insoluble fibrin network 

which stabilizes the aggregate and stops bleeding under physiological conditions.  

A similar process can occur in a pathological context, after erosion or rupture of an 

evolved atherosclerotic plaque in a diseased artery. This leads to the exposure of tissue factor 

and highly reactive proteins such as fibrillar collagen, initiating the coagulation cascade and the 

recruitment and aggregation of flowing platelets. The forming thrombus can become occlusive 

and block the bloodstream which leads to necrosis of surrounding tissue responsible for a high 

rate of mortality.  

Rheology plays a central role in the regulation of hemostasis and arterial thrombosis. 

First of all, it regulates receptor-ligand bond formation during the initial step of platelet 

adhesion at the site of injury. Once platelets have adhered, hemodynamic forces can stimulate 
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their mechano-receptors to activate them. In addition, the amplification of platelet activation by 

soluble agonists is finely tuned by the flow which carries them away from the place of injury. 

While the importance of blood flow in the regulation of platelet activation, thrombus 

growth and stability has been defined, the precise rheological conditions occurring after lesion 

of a healthy vessel remain undetermined. Moreover, while the molecular mechanism that occurs 

during hemostasis and arterial thrombosis is well established, and the role of the main adhesion 

receptors has been characterized, the importance of integrin α5β1 remains elusive. Finally, the 

process by which the platelet plug stops his growth to limit unwanted vessel occlusion at site 

of lesion of healthy vessels is also unclear. 

The main objective of my thesis project consists in: i) the characterization of flow 

conditions occurring after lesion of a healthy vessel; ii), define the importance of platelet 

integrin α5β1 in hemostasis and arterial thrombosis; iii) evaluate the role of fibrin in the 

termination of the hemostatic response. 
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I. Hemostasis 

 

Hemostasis is the physiological process leading to the arrest of bleeding (Sang et al., 

2021). It includes primary hemostasis, coagulation and fibrinolysis. Primary hemostasis is 

mainly ensured by platelets which adhere, activate and aggregate at the injured site (Broos et 

al., 2011). Coagulation is a cascade of enzymatic reactions leading to generation of thrombin 

which cleaves fibrinogen within the clot to form an insoluble fibrin network leading to 

stabilization of the platelet aggregate (Palta et al., 2014). Finally, at the end of the process, 

fibrinolysis is initiated and generates locally plasmin, which degrades fibrin to dissolve the clot 

and restore normal blood flow (Gale, 2011). 

 

A. Primary hemostasis: the major role of platelets 

 

Primary hemostasis relies on the ability of platelets to form the hemostatic plug at the 

site of vascular injury to limit bleeding. 

 

1. Platelet morphology and ultrastructure 

 

Platelets are anucleate fragments derived from the cortical cytoplasm of bone marrow 

megakaryocytes (Figure 1) (Gremmel et al., 2016). In man they have a mean diameter of 3.1 ± 

0.3 μm, an average thickness of 1.0 ± 0.2 μm and a volume of approximately 7 fm3 (David-

Ferreira, 1964). After being released from the megakaryocytes, platelets circulate in the blood 
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in a discoid shape for about 7 to 10 days. A normal human platelet count is ranging from 

150,000 up to 450,000 platelets per microliter.  

 

Figure 1: Schematic representation of platelet ultrastructure (Adapted from (Brisson et al., 

1997)). 

The platelet cytoskeleton is responsible for the discoid shape of platelets. It is mainly 

composed of microtubules forming a circumferential network under the plasma membrane and 

acto-myosin filaments located under the plasma membrane and in the cytosol (White, 1969). 

Upon activation, platelets change their shape which is regulated by rapid and dramatic actin 

filament de- and re-polymerization (Bearer et al., 2002). Platelets contain on average seven 

times more actin by cell volume than non-muscle cells (Hartwig et al., 1999). Inside platelets, 

actin exists in a dynamic equilibrium between the monomeric or globular form (G-actin) and 

the polymeric filamentous form (F-actin). The actin dynamics underlying shape changes of 

platelets depend on a large number of actin-binding proteins. For example, VASP inhibits 

filament disassembly and Arp2/3 is required to polymerize new filaments (Bearer et al., 2002).  

Platelets have a complete set of organelles: mitochondria, endoplasmic reticulum, 

glycogen grains, dense tubular system, and granules. Platelets contain three types of granules—

Marginal band 

Dense granule 
Glycogen 

Alpha granule 

Lysosome 

Open canalicular 

system Mitochondria 
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α-granules, dense granules and lysosomes — which carry distinct cargos and vary in biogenesis, 

trafficking, and exocytosis (Heijnen and van der Sluijs, 2015). 

The α-granules count is 40–80 per platelet with a diameter of 200–500 nm and they 

account for about 10-16% of the platelet volume (Eckly et al., 2016; Frojmovic and Milton, 

1982; White, 1998). The content of -granules comes either from its biosynthesis in 

megakaryocytes or endocytosis from the plasma (Table 1) (Fitch-Tewfik and Flaumenhaft, 

2013; Mumford et al., 2015). Defects of α–granule formation lead to a severe bleeding disorder 

named gray platelet syndrome, which highlights the importance of these organelles in platelet 

function (Buchanan and Handin, 1976; Costa et al., 1976).  

The dense granules count is 3–8 per platelet and their diameter is about 150 nm (White, 

1998). These granules contain small non-protein molecules such as ADP, ATP, serotonin, 

pyrophosphates, calcium and polyphosphates (Table 1) (Holmsen, 1989; Smith and Morrissey, 

2008). The role of dense granules in hemostasis is evidenced by the bleeding tendency in 

patients with inherited dense granule deficiency, such as Hermansky-Pudlak syndrome 

(Ambrosio and Di Pietro, 2017; Toro et al., 1993) and by increasing bleeding times in mice 

with dense granule defects (Ren et al., 2010). 

The lysosomes count is lower than 3 per platelet and their diameter is about 200–250 

nm. Platelet lysosomes contain β-hexosaminidase, acid glycohydrolases, membrane bound 

proteins such as LAMP-1, LAMP-2 and LAMP-3 (Table 1) (Holmsen and Dangelmaier, 1989). 

Secretion of the lysosomal content has important extracellular functions, such as supporting 

receptor cleavage, fibrinolysis and degradation of extracellular matrix components, and 

remodeling of the vasculature (Heijnen and van der Sluijs, 2015). 
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Table 1. Platelet granules components 

Type of granules Type of granule components Components 

α–granules 

Adhesive proteins 
Fibrinogen, fibronectin, vWF, 

vitronectin 

Membrane glycoproteins GPIb, αIIbβ3, GPVI 

Coagulation factors FV, FXI, FXIII, TF, kininogens 

Coagulation inhibitors TFPI, protein S, protease nexin-2 

Fibrinolysis components 
PAI-1, TAFI, α2-antiplasmin, 

plasminogen, uPA 

Inflammatory, pro-atherogenic, 

wound healing and antimicrobial 

proteins 

P-selectin, PSLGP-1, 

thrombospondin, chemokines and 

cytokines, TLT-1, osteonectin, 

complement components, VEGF 

Dense granules Small molecules 

ATP, ADP, serotonin (5-HT), 

calcium, polyphosphates, 

pyrophosphate 

Lysosomes Enzymes Hydrolases, metalloproteases  

 

2. The molecular mechanisms of primary hemostasis 

 

The molecular mechanisms of primary hemostasis have been widely described. After 

vessel lesion, under high flow conditions, von Willebrand factor (vWF) bound to subendothelial 

collagen recruits platelets through its interaction with the glycoprotein complex Ib-IX-V 

(Savage et al., 1996). Stable adhesion of platelets is then ensured by the interaction of integrins 

notably, α2β1, α5β1 and α6β1 which bind to their respective ligands namely collagen, 

fibronectin and laminins (Bergmeier and Hynes, 2012). Integrin αIIbβ3 is also involved in 

stable platelet adhesion through the binding to vWF and fibronectin (Giuliano et al., 2003; 

Maurer et al., 2015). This adhesion step leads to the interaction of collagen with GPVI, which 

initiates strong platelet activation, that is amplified through the release of the soluble agonists, 

ADP, ATP and TxA2 (Zahid et al., 2012). These soluble agonists via their receptors, P2Y1 and 

P2Y12 for ADP, P2X1 for ATP and the thromboxane receptor (TP) for TxA2, amplify platelet 

activation by increasing the affinity of integrin αIIbβ3 for its main plasma ligand, soluble 
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fibrinogen, which ensures aggregation and the formation of the hemostatic plug (Figure 2) 

(Versteeg et al., 2013).  

 

Figure 2: The molecular mechanisms of primary hemostasis. ADP, adenosine diphosphate; 

ATP, adenosine triphosphate; Fgn, fibrinogen; FN, fibronectin; vWF, von Willebrand factor; 

GP, glycoprotein complex; LM, laminin; PAR, protease-activated receptor; TP, thromboxane 

receptor; TxA2, thromboxane A2. 

 

3. Platelet receptors involved in primary hemostasis 

 

 

Primary hemostasis is mediated by receptors that allow platelet adhesion, activation and 

aggregation.  
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3.1. Activation and adhesion receptors 

 

3.1.1.  The GPIb-IX-V Complex  

 

The GPIb-IX-V complex is expressed only in megakaryocytes and platelets. It belongs 

to the leucine-rich repeat protein family (Hickey et al., 1989; Lopez et al., 1988). GPIb-IX-V 

contains 4 types of subunits: 1 GPIbα molecule linked to 2 GPIbβ subunits via disulfide bridges 

to form the GPIb; the latter is non-covalently associated with 1 GPIX subunit to form the GPIb-

IX complex. GPIb-IX complex is weakly linked to one GPV subunit (Luo et al., 2007b; Mo et 

al., 2012; Modderman et al., 1992; Phillips and Agin, 1977). There are about 25,000 copies of 

GPIb-IX and 12,500 copies of GPV per platelet which was measured by antibody binding 

(Modderman et al., 1992).  

The main ligand of GPIb is vWF, which becomes instrumental in platelet recruitment 

at elevated shear (>900 s-1) at site of vessel injury or to a growing thrombus. In vitro, this 

interaction induces platelet rolling on immobilized vWF which is explained by the fact that 

GPIb-vWF bonds have fast association and dissociation rates (Fressinaud et al., 1988). GPIb 

also binds to additional ligands including thrombin, P-selectin, thrombospondin-1, factor XI, 

factor XII and high-molecular weight kininogen, which all bind to the 45-kDa globular N-

terminal extracellular domain of the receptor (Andrews et al., 2003; Bradford et al., 1997; 

Bradford et al., 2000; Jurk et al., 2003; Simon et al., 2000). At the intracytoplasmic level, GPIbα 

interacts with the actin binding protein filamin A, phosphoinositide 3-kinase and the adapter 

14-3-3ζ through its cytoplasmic tail domain (Bryckaert et al., 2015). 

Ligation of vWF to the GPIbα subunit induces an intracellular signal involving a 

member of the Src-kinase family, which leads to phospholipase Cγ2 activation, and subsequent 

Ca2+ release from internal stores generating oscillations (Ozaki et al., 2005). This signal is 
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relatively weak, but is nevertheless proposed to contribute to αIIbβ3 activation and filopodia 

extension (Figure 3) (Fredrickson et al., 1998; Mangin et al., 2003).  
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Figure 3: The signaling pathway triggered by the GPIb–IX–V complex. Akt, protein kinase 

B alpha; DAG, diacylglycerol; GP, glycoprotein; IP3, inositol 1,4,5-triphosphate; PI3K, 

phosphoinositide 3-kinase; PKC, protein kinase C; PKG, protein kinase G; PLCγ, 

phospholipase Cγ; Syk, spleen tyrosine kinase (Adapted from (Andrews et al., 2003)).  

Defects of one of the members of the GPIb-IX complex leads to a rare bleeding disorder 

named Bernard-Soulier syndrome, which is characterized by a macrothrombocytopenia, 

highlighting the importance of this receptor in hemostasis (Buchanan and Handin, 1976; Costa 

et al., 1976; Liang et al., 2005; Strassel et al., 2009). Numerous in vitro and in vivo studies have 

shown that absence of the GPIb-IX complex or blockade of the vWF-GPIb interaction reduces 

experimental thrombosis, indicating the importance of the GPIb-IX complex in thrombus 

formation (Bergmeier et al., 2006; Konstantinides et al., 2006; Maurer et al., 2013). In contrast, 

this receptor does not appear to play a major role in thrombus stability (Ni et al., 2000). 

Targeting GPIb-IX complex is recognized as a potential efficient antithrombotic strategy, 

however, the function blocking antibodies could have an impact on the bleeding risk and need 

therefore to be further investigated.  

 

3.1.2.  Glycoprotein VI  

 

GPVI is a 62 kDa glycoprotein expressed only on platelets and megakaryocytes 

(Nieswandt and Watson, 2003; Zahid et al., 2012). It is best known as the main platelet 

activating receptor for collagen. It belongs to the Ig receptor superfamily and has: i) two 

extracellular Ig domains (D1 and D2), to which ligands are binding, ii) a mucin-like stalk rich 

in serine and threonine with sites of O-glycosylation, iii) a single transmembrane helix and iv) 

a cytoplasmic tail. There are 3,000 to 4,000 copies of GPVI per platelet (Best et al., 2003). 

GPVI is mainly expressed as a monomer on resting platelets, but 30% of it is expressed as a 
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dimer and this proportion increases upon activation up to 44% (Jung et al., 2012). GPVI is 

associated with two FcRγ-chains through a salt bridge (Feng et al., 2005). The FcRγ-chain 

contains an immunoreceptor tyrosine-based activation motif (ITAM) which initiates a signaling 

cascade following GPVI – ligand interaction. The coupling to the FcRγ-chain with GPVI is 

necessary for the surface expression of GPVI, and to initiate its signaling (Zheng et al., 2001).  

Ligand binding to GPVI promotes its clustering and brings into close proximity the Src 

family kinases, Fyn and Lyn, bound to the proline-rich region of the cytoplasmic tail of GPVI 

and the ITAM domain of the FcRγ-chain, promoting its phosphorylation (Ezumi et al., 1998; 

Quek et al., 2000; Suzuki-Inoue et al., 2002). This leads to the recruitment and phosphorylation 

of the tyrosine kinase Syk which initiates a downstream signaling cascade leading to the 

formation of a LAT-based signaling complex located at the cell membrane (Pasquet et al., 

1999). Formation of this complex allows effector proteins such as the tyrosine kinases Btk and 

Tec to come into contact with their substrate resulting in the activation of phospholipase Cγ2 

(Watson et al., 2005). Phospholipase Cγ2 hydrolyzes phospho-inositol-4,5-bisphosphate into 

DAG and inositol-1,4,5-triphosphate, which leads to the release of Ca2+ from internal stores 

into the cytosol. Post-calcium events are then initiated which ultimately increase the affinity of 

αIIbβ3 for its main ligand, fibrinogen, promoting platelet aggregation. The GPVI signaling 

pathway is particularly efficient in releasing soluble agonists such as ADP and TxA2, which 

enhance platelet activation (Figure 4) (Ahmed et al., 2020). 

Fibrillar collagen is the first identified, best known and most potent ligand of GPVI 

(Nieswandt et al., 2001). The glycine-proline-hydroxyproline (GPO) sequences of type I and 

type III collagens are instrumental to bind GPVI (Jarvis et al., 2008). Additional ligands have 

been identified including the adhesive proteins fibrinogen (Induruwa et al., 2018; Mangin et al., 

2018), fibrin (Alshehri et al., 2015; Mammadova-Bach et al., 2015) and laminins (Inoue et al., 

2006). A family of snake venom toxins – the C-type lectins (convulxin, ophioluxin, 
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alboagregin-A and alboluxin) – have been shown to activate GPVI (Dormann et al., 2001; Du 

et al., 2002a; Du et al., 2002b; Murakami et al., 2003).  

 

Figure 4: The signaling pathway triggered by the GPVI/FcRγ complex. DAG, 

diacylglycerol; Fyn, tyrosine-protein kinase Fyn; Gads, Grb2-related adapter dowstream of 

Shc; GP, glycoprotein; IP3, inositol 1,4,5-triphosphate; ITAM immunoreceptor tyrosine-based 

activation motif; LAT, linker for activation of T cells; PI3K, phosphoinositide 3-kinase; PIP2, 

phosphatidylinositol 4',5'-bisphosphate; PKC, protein kinase C; PLCγ2, phospholipase Cγ2; 
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SLP76, Scr homology 2 domain-containing leukocyte phosphoprotein of 76 kDa adapter 

protein; Syk, spleen tyrosine kinase (Adapted from (Rayes et al., 2019)). 

GPVI is not considered as a key platelet receptor for hemostasis as patients presenting 

a defect in GPVI only present minor bleedings such as purpura or epistaxis (Jandrot-Perrus et 

al., 2019). In addition, mice deficient or immuno-depleted for GPVI do not present a 

prolongation in tail-bleeding time (Kato et al., 2003; Lockyer et al., 2006; Mangin et al., 2012). 

In contrast, numerous studies based on in vitro, ex vivo and in vivo models have identified a 

role of these receptor in some experimental models of thrombosis (Andrews et al., 2014; Bender 

et al., 2011; Hechler et al., 2010; Munnix et al., 2005).  Ultrasound or mechanical injuries of 

atherosclerotic plaque in aged ApoE-/- mice, which are proposed to better mimic pathological 

conditions of atherothrombosis, further highlighted an important role of GPVI in arterial 

thrombosis (Cosemans et al., 2005; Hechler and Gachet, 2011a; Kuijpers et al., 2009; Mangin 

et al., 2006; Massberg et al., 2003). Together, these observations suggest that GPVI represents 

an attractive anti-thrombotic target with a potential minor effect on bleedings. 

 

3.1.3. C-type lectin-like type II transmembrane receptor 

 

C-type lectin-like type II transmembrane receptor (CLEC-2) is a 30 kDa protein 

expressed on platelets and megakaryocytes, and at low levels on dendritic cells and myeloid 

cells (Lowe et al., 2015; Suzuki-Inoue et al., 2006). Its extracellular domain consists of a stem 

and a carbohydrate-recognizing domain (CTLD) (Watson et al., 2009) and its cytoplasmic 

domain is composed of a short cytosolic tail harboring a single YxxL sequence termed 

hemITAM (Watson et al., 2007; Watson et al., 2010). There are 2,000 to 4,000 copies of CLEC-

2 per platelet (Gitz et al., 2014). On non-activated platelets, CLEC-2 is mainly expressed as a 

monomer with only about a third of the receptors being in a dimerized state, but after ligand 
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binding with CLEC-2, most molecules pass into an oligomerized state, which contributes to the 

receptor clustering to induce signals (Hughes et al., 2010; Martin et al., 2021; Martyanov et al., 

2020; Martyanov et al., 2018). 

CLEC-2 was identified by affinity chromatography as a receptor for rhodocytin, the 

snake C type lectin toxin, which activates platelets through a Src kinase-regulated pathway 

(Suzuki-Inoue et al., 2006). In contrast to the GPVI pathway, CLEC-2 activates Syk through a 

dimerization mechanism via a hemITAM, while downstream signaling is similar to the one 

induced by GPVI, with phosphorylation of Syk, LAT, SLP-76, Btk and PLCγ2 (Fuller et al., 

2007; Spalton et al., 2009; Suzuki-Inoue et al., 2006) ultimately leading to Ca2+ release and 

platelet activation events (Figure 5) (Lombard et al., 2018).  
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Figure 5: The signaling pathway triggered by the CLEC-2 receptor. Btk, Bruton tyrosine 

kinase; CLEC-2, C-type lectin-like receptor-2; DAG, diacylglycerol; IP3, inositol 1,4,5-

triphosphate; ITAM immunoreceptor tyrosine-based activation motif; LAT, linker for 

activation of T cells; PIP2, phosphatidylinositol 4',5'-bisphosphate; PKC, protein kinase C; 

PLCγ2, phospholipase Cγ2; SFK, Src family kinase; SLP76, Scr homology 2 domain-

containing leukocyte phosphoprotein of 76 kDa adapter protein; Syk, spleen tyrosine kinase; 

TxA2, thromboxane A2 (Adapted from (Rayes et al., 2019)). 

Podoplanin is the first identified endogenous ligand of CLEC-2. It is a type I 

transmembrane glycoprotein, which is present on the surface of endothelial cells of lympho-

capillaries, type I alveolocytes, kidney podocytes, cardiomyocytes, and reticular fibroblasts 

(Astarita et al., 2012). Under pathological conditions it was found on the surface of malignant 

tumors (squamous cell carcinomas, melanomas, gliomas) (Sekiguchi et al., 2016; Shirai et al., 

2017), macrophages during macro-inflammation process (Hitchcock et al., 2015) and inside 

atherosclerotic plaques (Inoue et al., 2015). 

CLEC-2 does not appear to play a key role in hemostasis, since bleeding time in mice 

with CLEC-2 deficiency is not prolonged (Shirai et al., 2017). However, mice deficient in 

CLEC-2 or treated with a depleting anti-podoplanin antibody have been reported to experience 

reduced experimental thrombosis (Bender et al., 2013; Inoue et al., 2015; May et al., 2009; 

Suzuki-Inoue et al., 2010). Podoplanin is unlikely to be the ligand explaining the potential role 

of CLEC-2 in thrombosis models as it is not found on the healthy vessel wall. Of note, the role 

of CLEC-2 in experimental thrombosis could not be confirmed in our laboratory with GPIbCre-

CLEC-2-deficent mice which presented a normal thrombus formation after mechanical injury 

of the aorta and FeCl3 of the carotid artery (unpublished data). CLEC-2 has also been shown to 

be involved in arterial thrombosis independently of hemITAM signaling. Indeed, mice 
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presenting the CLEC-2 receptor with a mutation impairing  hemITAM signaling, have defects 

in thrombus formation only with an anti–CLEC-2 antibody (Haining et al., 2017). 

CLEC-2/podoplanin interaction has been proposed to play a role beyond hemostasis. As 

podoplanin is present on the surface of endothelial cells of lympho-capillaries, CLEC-2-

mediated platelet activation appears important during vessel development to block blood 

effusion and to prevent blood filling of the lymphatic system, a process potentially restricted to 

chronic vascular remodeling (Haining et al., 2021; Suzuki-Inoue et al., 2010; Zhang et al., 

2018). In addition, a role for the CLEC-2-podoplanin interaction has been shown to contribute 

to tumor progression notably through the ability of podoplanin expressed on tumor cells to 

promote platelet aggregation (Christofori, 2007). In agreement with this study, anti-podoplanin 

antibody has been reported to suppress lung colonization of colon adenocarcinoma intestines 

revealing that CLEC-2-mediated platelet activation is a potential trigger of tumor metastasis 

(Sugimoto et al., 1991; Suzuki-Inoue, 2019).  

 

3.1.4. Integrins 

 

Integrins are a family of transmembrane glycoproteins functioning as cell adhesion and 

signaling molecules. They are heterodimers composed of α and β subunits which associate non-

covalently (Burke, 1999). Each subunit consists of 3 domains: a large extracellular domain that 

is responsible for ligand binding, a single-pass transmembrane domain and a smaller 

cytoplasmic tail (Hynes, 2002). In mammals, 24 integrins have been described which consist 

of the association of 18 different α-chains with 8 β subunits (Humphries et al., 2006; Kinashi, 

2005; Luo et al., 2007a). Integrins are regulating many biological functions, such as cell 

migration, proliferation, differentiation, survival and apoptosis (Nieswandt et al., 2009). Two 

subgroups of integrins are present on human platelets: β1 and β3 families, which account for a 
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total of five human platelet integrins:  α2β1, α5β1, α6β1, αvβ3 and αIIbβ3 (Piotrowicz et al., 

1988; Sonnenberg et al., 1988; Staatz et al., 1989). 

Integrins can adopt three different conformational states as identified by electronic 

microscopy (Takagi et al., 2002): i) on resting platelets, integrins are mostly inactive with low 

affinity for extracellular ligands. The integrin ectodomain is folded forming an inverted V 

which presents a closed binding side; ii) after platelet activation which generates an inside-out 

signal, integrins switch to an intermediate state in which the molecule expands, but contains a 

closed globular head. In this conformation, integrins have an intermediate affinity for their 

ligands (Huang et al., 2019); and iii) in case of stronger signals integrins expand and the 

globular head opens allowing a high affinity for ligands (Chen et al., 2019). Besides these 

conformational changes, integrins can cluster into oligomers to increase avidity for their ligands 

(Carman and Springer, 2003).  

Inside-out signaling of integrins, which has been mainly studied for IIb3, is initiated 

upon ligand binding of agonists such as collagen, ADP, TxA2 or thrombin to their receptors 

(Figures 6). Most of the signaling pathways stimulated by these agonists lead to phospholipase 

C (PLC) β or PLCγ activation. PLC generates diacylglycerol (DAG) and inositol-1,4,5-

triphosphate (IP3), activating protein kinase C (PKC) and mobilizing intracellular Ca2+, 

respectively. This promotes activation of a small GTPase Rap1 which is a common downstream 

activator in this signaling pathway (Boettner and Van Aelst, 2009; Bos, 2005; Katagiri and 

Kinashi, 2012). Activated Rap1b forms a complex with the integrin activator talin through 

Rap1-GTP-interacting adaptor molecule (Han et al., 2006) and thus facilitates talin interaction 

with the cytoplasmic tail of the β subunit (Bromberger et al., 2018) resulting in conformational 

change and increase in the affinity of integrins for their ligands (Lefort et al., 2012). Kindlin-3 

cooperates with talin to facilitate talin binding to the β subunit (Haydari et al., 2020).  



42 
 

  

Figure 6: Molecular mechanisms of platelet integrin activation (inside-out signalling). 

CalDAG-GEFI, calcium and DAG-regulated guanine-nucleotide-exchange factor; CLEC-2, C-

type lectin-like receptor-2; DAG, diacylglycerol; GDP, guanosine diphosphate; GP, 

glycoprotein; GTP, guanosine triphosphate; IP3, inositol 1,4,5-triphosphate; PAR, protease-

activated receptor; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; PLCβ, 

phospholipase Cβ; PLCγ, phospholipase Cγ; Rap1b, Ras-related protein 1b; TP, thromboxane 

receptor (Adapted from (Stefanini et al., 2015)).   
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The ligand binding to integrins initiates an outside-in signal, which has also been mainly 

studied for IIb3 (Luo et al., 2007a). This process initiates focal adhesion kinase (FAK) and 

Src recruitment to the β integrin cytoplasmic tail. They phosphorylate paxillin and P130C, 

leading to Rac activation. This Rac pathway promotes formation of lamellipodial protrusion 

(Kurokawa et al., 2005; Machacek et al., 2009). In parallel, integrin linked kinase (ILK) is 

recruited to the β integrin cytoplasmic domain and together with Src promote Akt activity. This 

Akt pathway regulates sensitivity to thrombin receptor activating peptide (TRAP)-dependent 

fibrinogen binding and secretion of dense and α-granule contents (Woulfe et al., 

2004). Activated Src also initiates Ras–Erk pathway which regulates store-mediated Ca2+ entry 

in human platelets (Figure 7) (Hu and Luo, 2013; Rosado and Sage, 2001). 
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Figure 7: The outside-in signaling of integrin αIIbβ3. Akt, protein kinase B alpha; DAG, 

diacylglycerol; Erk, extracellular signal-regulated kinase; FAK, focal adhesion kinase; Grb, 

growth factor receptor-bound protein; ILK, integrin linked kinase; IP3, inositol 1,4,5-

triphosphate; PKC, protein kinase C; PLCγ, phospholipase Cγ; P130C, p130 Crk-associated 

substrate; Rac, Ras-related C3 botulinum toxin substrate, RhoA, Ras homolog family memeber 

A; Syk, spleen tyrosine kinase; TRAP, thrombin receptor activated peptide (Adapted from (Hu 

and Luo, 2013)). 
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3.1.4.1. Integrin α2β1  

 

Integrin α2β1 is expressed on the surface of platelets, fibroblasts, epithelial, and 

endothelial cells (Ojalill et al., 2018; Zutter and Santoro, 1990). Two polymorphisms in the 2 

gene are associated with the cell-surface density of integrin 21 (Corral et al., 1999; Kritzik 

et al., 1998). The expression of this receptor varies between 2,000 and 8,000 copies per platelet 

(Di Paola et al., 2005). The α2β1 integrin is the first collagen receptor identified on platelets 

(Santoro et al., 1988) and mainly supports stable adhesion (Sarratt et al., 2005). It recognizes 

type I fibrillar collagen with high affinity (Knight et al., 2000), but can also bind type IV 

subendothelial collagen (Vandenberg et al., 1991). Integrin α2β1 has also a large number of 

additional ligands, such as tenascin C, laminins, proteoglycans endorepellin/ perlecan and 

decorin (Bix et al., 2004; Chan and Hemler, 1993; Guidetti et al., 2002; Sriramarao et al., 1993). 

The outside-in signaling pathway of this receptor results in shape change, filopodia extension, 

lamellipodia formation and platelet spreading (Inoue et al., 2003). 

Integrin α2β1 does not seem to play a critical role in hemostasis. Two patients with α2β1 

genetic defects presented only a moderate bleeding phenotype (Kehrel et al., 1988; 

Nieuwenhuis et al., 1985). This result is in agreement with the normal tail-bleeding time in mice 

with a deficiency of the α2 chain (Chen et al., 2002; Habart et al., 2013; Holtkotter et al., 2002; 

Nieswandt et al., 2001). In humans with overexpression of α2β1, an increased risk of 

myocardial infarction, diabetic retinopathy and stroke has been reported, pointing out to a role 

of this integrin in arterial thrombosis (Matsubara et al., 2000; Santoso et al., 1999). The role of 

integrin α2β1 in thrombus formation and stability has been demonstrated in a flow-based assay 

consisting in blood perfusion over collagen (He et al., 2003; Kuijpers et al., 2007). The role of 

this integrin has also been shown in experimental thrombosis in in vivo mouse models based on 

chemical injuries (FeCl3; Rose Bengal) but appears dispensable after intravascular injection of 

collagen, a model mimicking thromboembolism (He et al., 2003; Kuijpers et al., 2007).  
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3.1.4.2. Integrin α5β1  

 

Integrin α5β1 is expressed on the surface of platelets, endothelial cells, fibroblasts, 

lymphocytes, monocytes and cancer cells (Kita et al., 2001; Wayner et al., 1988). The 

expression of this receptor varies between 2,000 and 4,000 copies per platelet (Ni and 

Freedman, 2003). The main ligand for the α5β1 integrin is fibronectin, which is present in 

plasma, in the subendothelium of the vessel wall and stored in platelet α-granules (Magnusson 

and Mosher, 1998), but this receptor also interacts with other proteins presenting an Arg-Gly-

Asp (RGD) sequence (Rocha et al., 2018).  α5β1 binding to fibronectin supports platelet 

adhesion under static and low flow conditions resulting in outside-in signaling which promotes 

platelet shape change and filopodia formation (Beumer et al., 1994; Maurer et al., 2015; 

McCarty et al., 2004).  

Integrin α5β1 is involved in cell migration and differentiation, therefore, its absence 

leads to embryonic lethality due to a lack of development of blood vessels (Francis et al., 2002; 

Yang et al., 1993). For this reason, the investigation of its role in thrombus formation in vivo 

was precluded for a while. During my PhD studies, we generated a mouse for which the gene 

of α5β1 was deleted specifically in the megakaryocyte lineage, allowing to study the importance 

of integrin α5β1 specifically in hemostasis and thrombosis (see Publication 2). 

 

3.1.4.3. Integrin α6β1  

 

Integrin α6β1 is expressed on the surface of platelets, endothelial cells, pericytes, 

eosinophils, neutrophils and cancer cells (Bohnsack, 1992; Georas et al., 1993; Larrieu-

Lahargue et al., 2011; Wewer et al., 1997). The expression of this receptor varies between 4,000 

and 12,000 copies per platelet (Burkhart et al., 2012; Ni and Freedman, 2003). The main ligands 

for the α6β1 integrin are laminins, which are present in various cell types of both developing 
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and adult tissues, including vascular endothelial and smooth muscle cells (Magnusson and 

Mosher, 1998). Integrin α6β1 can also interact with TSP-1 as proposed after observation of a 

reduction in adhesion to TSP-1 of platelets deficient for α6 (Schaff et al., 2013). The integrin 

binding to its ligands supports platelet adhesion under static and flow conditions (Geberhiwot 

et al., 1999; Hindriks et al., 1992; Inoue et al., 2006; Nigatu et al., 2006; Schaff et al., 2013; 

Sonnenberg et al., 1988) and promotes outside-in signaling resulting in an increase in 

intracellular Ca2+ concentrations, shape change and filopodia extension (Inoue et al., 2006; 

Schaff et al., 2013). 

Integrin α6β1 does not seem to play a critical role in hemostasis as bleeding time in mice 

with an α6 deficiency is not increased (Schaff et al., 2013). In contrast, this integrin plays a role 

in thrombus formation both in vitro under shear flow and in vivo in 3 experimental thrombosis 

animal models based on mechanical-injury of the aorta, laser-injury of the mesenteric arteriole 

and guide wire-injury of the carotid artery (Schaff et al., 2013). 

 

3.1.4.4. Integrin αIIbβ3  

 

Integrin αIIbβ3 is a heterodimer of 230 kDa composed of an αIIb subunit and a β3 

subunit (Jennings and Phillips, 1982). Integrin αIIbβ3 is specifically expressed on platelets, 

even though it has been proposed to also be expressed by tumor cells (Boukerche et al., 1989; 

Grossi et al., 1988; Honn et al., 1992a; Timar et al., 1998). This receptor is present at 80,000 

copies on the surface of a resting platelet and 30,000 additional copies are found on the 

membrane of the open canalicular system and α granules which are exposed after platelet 

activation (Wagner et al., 1996). Fibrinogen is the main ligand of integrin αIIbβ3. This receptor 

recognizes both the RGD peptide-binding sequence of the α chain of fibrinogen and the 

KQAGDV sequence of the γ chain. This interaction allows the bridging of adjacent platelets 

resulting in their aggregation, which represents the main function of αIIbβ3 (Marguerie et al., 
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1979; Springer et al., 2008). This integrin also recognizes additional adhesive proteins with an 

RGD motif including vWF, fibronectin and vitronectin. Its interaction with collagen-bound 

vWF and fibronectin is involved in stable platelet adhesion (Giuliano et al., 2003; Maurer et al., 

2015) and could also participate in the formation of aggregates under low shear (<1,000 s-1) 

(Moake et al., 1988; Moake et al., 1986).  Following ligand binding the outside-in signaling 

pathway of this receptor results in the change of the shape of platelets, promotes secretion of 

the granule content and the retraction of the fibrin clot (Huang et al., 2019).  

Defects or deficiency of one subunit of integrin αIIbβ3 leads to a rare and severe 

bleeding disorder named Glanzmann's thrombasthenia, which is characterized by a decreased 

ability of platelets to adhere, spread and aggregate, despite a normal platelet count (Nurden, 

2006; Solh et al., 2015). On the other hand, integrin αIIbβ3 plays a crucial role in arterial 

thrombosis through its ability to ensure platelet aggregation and therefore the growth and 

stability of the thrombus (Akuta et al., 2020; Goschnick et al., 2006; Hodivala-Dilke et al., 

1999; Tronik-Le Roux et al., 2000). The inhibition of this integrin results in prevention of 

thrombus growth in experimental models (Schaff et al., 2013). Its importance in arterial 

thrombosis is attested by the clinical use of a class of anti-platelet agents targeting this integrin, 

and named: abciximab, eptifibatide and tirofiban. These drugs are restricted to acute settings as 

their use is accompanied by a significant hemorrhagic risk. 

 

3.1.4.5. Integrin αvβ3  

 

Integrin αvβ3 is expressed on the surface of platelets, smooth muscle cells, fibroblasts, 

neutrophils, osteoclasts and tumor cells (Honn et al., 1992b; Kappert et al., 2001; Nesbitt et al., 

1993; Rainger et al., 1999). The expression level of this receptor reaches only a couple of 

hundred copies per platelet (Poujol et al., 1997). Similarly to αIIbβ3, this receptor recognizes 
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an RGD peptide-binding sequence, and its ligands were proposed to be vitronectin, vWF, 

osteopontin, fibrinogen and fibronectin (Adair et al., 2005; Bennett et al., 1997). At the 

functional level, αvβ3 supports platelet adhesion to fibronectin, vitronectin and osteopontin 

which are present in the vessel wall (McCarty et al., 2004; Paul et al., 2003). This integrin has 

also been proposed to participate in clot retraction (Mor-Cohen, 2016). 

The importance of the αvβ3 integrin in hemostasis and arterial thrombosis has not yet 

been reported. In humans, no αv integrin mutation has been described to induce hemorrhagic 

disease. Unpublished data of our group indicate that mice deficient for αv specifically in the 

platelet lineage have a normal tail bleeding time and an unaltered response in models of 

experimental thrombosis (unpublished, Mangin P. and Léon C. 2016).  

 

3.2. Receptors for soluble agonists 

 

Soluble agonists such as ADP, ATP, thrombin or TxA2 play an instrumental role in 

amplifying platelet activation to ensure thrombus growth and stability. They act through ion 

channel receptors (P2X1 receptor) and G protein–coupled receptors (P2Y1, P2Y12, TP and 

PARs receptors) (Figure 8) (Gurbel et al., 2015).  
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Figure 8: Signaling pathways triggered by soluble agonist receptors P2Y1, P2Y12, P2X1 

and TP. AC, adenylate cyclase; ADP, adenosine diphosphate; Akt, protein kinase B alpha; 

cAMP, cyclic adenosine monophosphate; ATP, adenosine triphosphate; DAG, diacylglycerol; 

IP3, inositol 1,4,5-triphosphate; MLC, myosin light chain; PI3K, phosphoinositide 3-kinase; 

PKC, protein kinase C; PLCβ, phospholipase β; Rap1b, Ras-related protein 1b; Rho-GEF, 

Guanine nucleotide exchange factor for Rho; ROCK, Rho-associated protein kinase; TP, 
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thromboxane receptor; TxA2, thromboxane A2 (Adapted from (Mahaut-Smith, 2012; 

Offermanns, 2006). 

 

3.2.1. The P2X1 receptor 

 

P2X1 belongs to the ion channel family that is activated by ATP and inhibited by ADP 

(Sun et al., 1998). This receptor is expressed on the surface of platelets, smooth muscle cells, 

neutrophils, macrophages (Hinze et al., 2013; Lecut et al., 2009; Sim et al., 2007). The 

expression of this receptor ranges from 100 to 150 copies per platelet (MacKenzie et al., 1996; 

Vial et al., 1997). The activation of P2X1 results in a rapid intracellular calcium influx into 

platelets and, further, myosin light chain phosphorylation that leads to platelet activation 

evidenced by platelet shape change, pseudopodia formation and degranulation (Mahaut-Smith, 

2012; Rolf et al., 2001; Toth-Zsamboki et al., 2003). Stimulation of the P2X1 receptor does not 

induce platelet aggregation, but it amplifies aggregation under high shear conditions or in 

response to various agonists (Erhardt et al., 2006; Fung et al., 2007; Gachet et al., 2006; Ilkan 

et al., 2018; Jones et al., 2014; Oury et al., 2004; Oury et al., 2001; Vial et al., 2002). 

The P2X1 receptor is rapidly desensitized after interaction with ATP, which has 

complicated the in vitro study of its role in platelet function (Gachet et al., 2006). Experiments 

with P2X1-deficient mice identified a reduced ability of platelets to adhere and form aggregates 

on collagen, particularly under high shear stress (Hechler et al., 2003).  Deletion or inhibition 

of P2X1 in mice does not modify bleeding time, but reduces thrombus size in a laser-induced 

thrombosis model (Erhardt et al., 2006; Hechler et al., 2003; Hechler et al., 2005). In agreement, 

genetically modified mice overexpressing P2X1 have a prothrombotic phenotype (Oury et al., 

2003). 
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3.2.2. G protein–coupled receptors 

 

G protein–coupled receptors (GPCRs) account for the largest family of proteins in the 

human genome (Fredriksson et al., 2003; Pierce et al., 2002; Vassilatis et al., 2003). GPCRs 

consist of 7 transmembrane α-helices connected to 3 extracellular loops containing ligand 

binding sites and to 3 intracellular loops associated with guanine nucleotide binding proteins 

(G proteins). A GPCR can be associated with different G proteins which determine its specific 

intracellular responses to agonists. G proteins are heterodimers with α, β, and γ subunits. In 

their inactive state Gα subunit is bound to GDP and tightly associated with Gβ-Gγ unit. After 

agonist binding, GDP becomes phosphorylated and induces Gα subunit dissociation allowing 

interaction with downstream effectors (Offermanns, 2006; Smyth et al., 2009). 

 

3.2.2.1. The P2Y1 receptor 

 

The P2Y1 receptor is a GPCRs coupled to the Gαq protein. This receptor is widely 

expressed in human tissues and is found in particular on endothelial cells, smooth muscle cells, 

immune cells including macrophages, eosinophils and lymphocytes (Abbracchio et al., 2006). 

The expression of this receptor is estimated to be around 150 copies per platelet (Gurbel et al., 

2015; Leon et al., 1997). The binding of ADP to P2Y1 results in the interaction of Gαq subunit 

with PLCβ leading to the generation of IP3 and subsequent mobilization of intracellular Ca2+ 

stores (Cattaneo, 2007; Hechler and Gachet, 2011b; Offermanns, 2006). P2Y1 signaling results 

in platelet shape change, integrin activation and subsequent platelet aggregation (Fabre et al., 

1999; Gachet, 2008; Hechler et al., 1998; Leon et al., 1999). P2Y1 also participates in the 

procoagulant function of platelets (Leon et al., 2004; Leon et al., 2003).  
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Bleeding time in mice deficient in P2Y1 or treated by its inhibitor MRS 2500 is slightly 

increased suggesting a minor role of this receptor in hemostasis (Fabre et al., 1999; Hechler et 

al., 2006; Leon et al., 1999; Wong et al., 2016). In contrast, deletion or inhibition of P2Y1 in 

mice leads to protection from collagen-, ADP- or TF-induced thromboembolism (Fabre et al., 

1999; Leon et al., 1999) and reduction of thrombus formation after laser-induced injury of the 

mesenteric arterioles or FeCl3 injury of the carotid artery (Gachet, 2006; Hechler et al., 2006; 

Lenain et al., 2003; Leon et al., 2001). These results indicate an important role of P2Y1 in 

arterial thrombosis.  

 

3.2.2.2. The P2Y12 receptor 

 

The P2Y12 receptor is a GPCR coupled to the Gαi protein. This receptor is mainly 

expressed in platelets (Gurbel et al., 2015), but is also found in particular in brain tissue, smooth 

muscle cells, dendritic cells and some leukocytes (Ben Addi et al., 2010; Wang et al., 2004; 

Wihlborg et al., 2004). The expression of this receptor is estimated to be around 600 copies per 

platelet (Gurbel et al., 2015; Ohlmann et al., 2013). The binding of ADP to P2Y12 results in 

the Gαi-associated inhibition of adenylyl cyclase leading to the reduction of cAMP (Cattaneo, 

2007; Hechler and Gachet, 2011b; Hollopeter et al., 2001). Since cAMP levels control protein 

kinase A activation and by consequence the inhibition of IP3 receptor, which itself mediates 

Ca2+ levels, a decrease in cAMP leads to an increase of intracellular Ca2+ (Quinton and Dean, 

1992; Tertyshnikova and Fein, 1998). In parallel, ADP-binding to the P2Y12 receptor results 

in a downstream signaling through the Gβγ which activates PI3K, and then Akt and Rap1b, 

resulting in activation of αIIbβ3 and subsequent platelet aggregation (Cosemans et al., 2006; 

Guidetti et al., 2008; Kim et al., 2004; Schoenwaelder et al., 2007; Stefanini and Bergmeier, 
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2018; Woulfe et al., 2002). P2Y12 also participates in the procoagulant function of platelets 

(Leon et al., 2003). 

Absence of P2Y12 in humans results in an increased bleeding time and mild signs of 

hemorrhages (Cattaneo et al., 2003; Conley and Delaney, 2003; Lecchi et al., 2015; Nurden et 

al., 1995; Remijn et al., 2007; Shiraga et al., 2005). In agreement, bleeding times in mice 

deficient in P2Y12 were shown to be increased (Andre et al., 2003). The importance of P2Y12 

receptor in arterial thrombosis is attested by the clinical use of antithrombotic drugs targeting 

this receptor. One finds irreversible antagonists of P2Y12, such as clopidogrel, prasugrel and 

ticlopidine, and reversible antagonists, such as ticagrelor and cangrelor (Gachet, 2006). In 

agreement, deletion or inhibition of P2Y12 in mice leads to reduction of thrombus formation 

after FeCl3 injury of the mesenteric arterioles or after photochemical injury of the carotid artery 

(Andre et al., 2003; Conley and Delaney, 2003; Reiner et al., 2017).  

 

3.2.2.3. The TP receptor 

 

The thromboxane A2 receptor is a GPCR coupled to Gαq and Gα12/13 proteins. This 

receptor is mainly expressed in platelets (Gurbel et al., 2015), but is also found on endothelial 

cells, smooth muscle cells, monocytes and macrophages (Davi et al., 2012). The expression of 

this receptor is around 1,500 copies per platelet (Halushka et al., 1986). The main ligand of this 

receptor is TxA2 whose action is locally restricted because of its short half-life (Hamberg et al., 

1975; Offermanns, 2006). As mentioned above, platelet activation leads to production of TxA2 

through synthesis of arachidonic acid which is further metabolized to unstable PGH2 by 

cyclooxygenase-1 and then to TxA2 by TxA2 synthase (O'Donnell et al., 2014). The binding 

of TxA2 to its receptor results in the interaction of Gαq subunit with PLCβ leading to the 

generation of IP3 and subsequent mobilization of intracellular Ca2+ stores (Cattaneo, 2007; 
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Hechler and Gachet, 2011b; Offermanns, 2006). In parallel, ligand binding to the TP receptor 

results in a downstream signaling through the Gα12 subunit that activates Rho-associated 

protein kinase pathway leading to phosphorylation of the myosin light chain (Klages et al., 

1999). TP signaling results in platelet shape change, granule secretion, integrin activation and 

subsequent platelet aggregation (Bauer et al., 1999; Getz et al., 2010). 

Genetic defects of TP in humans result in a modest bleeding, highlighting the role of 

this receptor in hemostasis (Defreyn et al., 1981; Lages et al., 1981; Samama et al., 1981; Wu 

et al., 1981). This is further supported by the increased bleeding time in mice deficient in TP 

receptor (Cathcart et al., 2008; Thomas et al., 1998; Yu et al., 2004). Moreover, deletion or 

inhibition of TP receptor in mice leads to a reduction of thrombus formation after catheter-

induced injury of the carotid artery or after photochemical injury of the femoral artery indicating 

an important role of this receptor in arterial thrombosis (Capra et al., 2014; Cheng et al., 2002; 

Grad et al., 2012). The importance of TP receptor in arterial thrombosis is further attested by 

the clinical trials of antithrombotic drugs targeting this receptor:  terutroban, terbogrel (Capra 

et al., 2014; Gurbel et al., 2015). 

 

3.2.2.4. The protease-activated receptors 

 

The protease-activated receptors (PARs) are GPCRs coupled to Gαq, Gα12/13 and Gαi 

(Klages et al., 1999; Offermanns et al., 1994). These receptors are expressed in platelets (Gurbel 

et al., 2015), but are also found in endothelial cells, smooth muscle cells, monocytes and 

astrocytes (Ossovskaya and Bunnett, 2004). Human platelets express PAR1 and PAR4 at 

around 1,000 to 2,000 copies per platelet, while mouse platelets express PAR3 and PAR4 at 

1,500 to 5,000 copies per platelet (Kahn et al., 1999; Zeiler et al., 2014). The main ligand of 

these receptors is thrombin (Coughlin, 2005) which cleaves the extracellular N-terminal end of 
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the receptor between residues Arg41 and Ser42, in order to expose a new N-terminal end which 

can then bind and activate the PAR receptors (Vu et al., 1991). PAR1 and PAR3 have 

additionally a hirudin-like sequence close to the C-terminal thrombin cleavage site which 

facilitates the binding to thrombin and is not present on PAR4 (Kahn et al., 1998; Xu et al., 

1998). After ligand binding to the PARs, a signaling is initiated through Gαq which activates 

PLCβ leading to mobilization of intracellular Ca2+ stores, while Gα12–mediated activation of 

the Rho-associated protein kinase pathway leads to phosphorylation of the myosin light chain 

and actin remodeling (Voss et al., 2007; Woulfe, 2005). The Gαi subunit-mediated signaling 

leads to the inhibition of adenylyl cyclase inducing the reduction of cAMP (Kim et al., 2002). 

PAR1 and PAR3 are activated by a low concentration of thrombin (order of 1 nM), while PAR4 

is activated by higher concentrations (order of 50 nM) (Kahn et al., 1999). Due to this unique 

mechanism of action, these two receptors signaling pathways complete each other: the signal 

from PAR1 is fast, but it is quickly switched off, while, PAR4 signals are slow but prolonged 

(Leger et al., 2006). PAR signaling results in platelet shape change, TxA2 release, granule 

secretion, integrin activation and subsequent platelet aggregation (Bauer et al., 1999; Henriksen 

and Hanks, 2002; Kahn et al., 1999). These receptors are also involved in the procoagulant 

activity of platelets (Figure 9) (Andersen et al., 1999). 
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Figure 9: The signaling pathway triggered by PAR receptors. AC, adenylate cyclase; 

cAMP, cyclic adenosine monophosphate; DAG, diacylglycerol; IP3, inositol 1,4,5-

triphosphate; MLC, myosin light chain; PAR, protease-activated receptor; PKA, protein kinase 

A; PLCβ, phospholipase β; Rho-GEF, Guanine nucleotide exchange factor for Rho; ROCK, 

Rho-associated protein kinase. 

 



58 
 

The importance of PAR receptors in arterial thrombosis is attested by the clinical use of 

the vorapaxar which inhibits PAR1 and is recommended in the prevention of ischemic events 

(Gupta et al., 2021; Kraft et al., 2016). These results were in line with pre-clinical data 

indicating that the deletion of PAR3 or PAR4 in mice leads to a reduction in thrombus formation 

after FeCl3 injury of the mesenteric arteriole or the carotid artery, after laser injury of the 

cremaster arteriole or after thromboplastin-induced pulmonary embolism (Cornelissen et al., 

2010; Hamilton et al., 2004; Sambrano et al., 2001; Vandendries et al., 2007; Weiss et al., 

2002). Interestingly, vorapaxar does not prolong bleeding time suggesting that PAR1 does not 

play a major role in hemostasis (Kraft et al., 2016). In agreement, bleeding time in cynomolgus 

monkeys inhibited of PAR1 receptor was not modified (Chintala et al., 2010; Coughlin, 2005). 

In contrast, mice deficient in PAR3 or PAR4 receptors have a prolonged bleeding time 

(Hamilton et al., 2004; Sambrano et al., 2001; Weiss et al., 2002).  

 

B. Coagulation  

 

La coagulation sanguine est une cascade de réactions enzymatiques aboutissant à la 

génération de thrombine qui clive le fibrinogène plasmatique en fibrine pour former un réseau 

insoluble consolidant l'agrégat plaquettaire (Norris, 2003). Ce processus est subdivisé en deux 

voies : la voie extrinsèque et la voie intrinsèque, qui conduisent toutes deux à la génération de 

facteur X (Figure 10). L’activation du facteur X via ces deux voies marque le début de la voie 

commune, menant à la génération de thrombine (Palta et al., 2014). 
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Figure 10: Cascade de coagulation schématique. TF, facteur tissulaire (Adapté de (Palta et 

al., 2014)). 

1. La voie extrinsèque 

 

L’activateur principal de la voie extrinsèque est le facteur tissulaire, qui est une 

glycoprotéine transmembranaire (TF) (Williams et Mackman, 2012). Cette glycoprotéine de 

47kD contient un domaine extracellulaire composé de 2 fibronectine de type III qui se lient à 

deux endroits différents du facteur VII : l’un à sa partie transmembranaire, l’autre à une courte 

partie intracellulaire. (Banner et al., 1996 ; Butenas, 2012). TF est exprimé à la surface des 

cellules périvasculaires et des cellules épithéliales entourant les vaisseaux sanguins et dans le 
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placenta, le cœur, les poumons et le cerveau (Drake et al., 1989 ; Fleck et al., 1990 ; Grover et 

Mackman, 2018 ; Hoffman et al., 2007). Lors d'une lésion vasculaire, le facteur tissulaire est 

exposé au flux sanguin, ce qui permet la liaison du facteur VII et conduit à son activation (VIIa) 

(Owens et Mackman, 2010). Le complexe TF-VIIa permet alors la liaison calcium-dépendante 

des facteurs de coagulation plasmatiques (F), à savoir le facteur IX et le facteur X (Zeerleder, 

2018).  

2. La voie intrinsèque 

 

La voie intrinsèque est initiée par le contact du facteur XII avec une surface chargée 

négativement, entraînant son activation (van der Graaf et al., 1982). Le FXIIa active la 

prékallikréine en α-kallikréine qui va alors activer le FXII 30 fois plus efficacement qu'une 

surface chargée négativement et sert de rétroaction positive (Wiggins et Cochrane, 1979). Le 

FXIIa conduit à l'activation ultérieure du facteur XI et du facteur IX (Mackman et al., 2007). 

Le facteur IX agit avec son cofacteur VIII pour former un complexe ténase pour 

transformer/cliver les facteurs X en facteur Xa (Chaudhry et al., 2022). 

3. La voie commune 

 

Le facteur Xa produit par les voies extrinsèques et intrinsèques clive la prothrombine 

pour générer de la thrombine (Smith et al., 2015). Quelques secondes après le début du 

processus de coagulation, seules de très petites quantités de thrombine (<<1 nM) sont générées, 

mais elles sont suffisantes pour activer les facteurs V et VIII, ces deux derniers étant des 

cofacteurs de protéases actives (Wolberg, 2007). Le facteur Va se lie au facteur Xa et à la 

prothrombine sur la membrane chargée négativement des microparticules ou des plaquettes 

activées, pour former le complexe prothrombinase qui accélère la réaction de formation de 

thrombine de 105 fois (Mann et al., 1990 ; Podoplevova et al., 2016). À la suite de cette réaction, 

la thrombine est générée à des concentrations très élevées explosives atteignant de l'ordre 100 
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nM (Cawthern et al., 1998). La thrombine catalyse la conversion du fibrinogène en filaments 

de fibrine et active également le facteur XIII, qui réticule et renforce les polymères de fibrine 

conduisant à la formation d'un caillot de fibrine qui stabilise les agrégats plaquettaires 

(Wolberg, 2007). 

4. Régulation spatio-temporelle des voies extrinsèques et intrinsèques 

 

La coagulation est un processus complexe, strictement régulé dans l'espace et dans le temps, 

qui conduit à la formation d'un caillot de fibrine à un endroit donné. Ce processus est subdivisé 

en trois phases : initiation, amplification et propagation. L'initiation de la cascade de 

coagulation et son amplification commencent au niveau de la paroi vasculaire endommagée. A 

ce stade, la voie extrinsèque a un fort impact car elle permet de produire localement de la 

thrombine (Palta et al., 2014). Cependant, la voie extrinsèque ne peut pas assurer la propagation 

de la génération de thrombine conduisant à la croissance linéaire d'un caillot de fibrine dans 

l'espace car la distance de diffusion de la thrombine et du FXa est limitée : ils sont rapidement 

et irréversiblement inactivés par des inhibiteurs plasmatiques (Travis et Salvesen, 1983). Par 

conséquent, l’étape de la voie intrinsèque concernant l'activation du facteur IX par la thrombine 

a un impact important sur l'étape de propagation (Figure 11). Le taux d'inactivation du facteur 

IXa est d'un ordre de grandeur inférieur à celui du facteur Xa et de la thrombine (Afosah et al., 

2022). Cette caractéristique permet au facteur IXa de diffuser efficacement, assurant la 

polymérisation de la fibrine à de plus grandes distances du site initial d'activation de la 

coagulation (Dashkevich et al., 2012). La propagation par diffusion du facteur IXa peut 

entraîner une propagation d'onde auto-entretenue de la thrombine dans l'espace et une 

augmentation linéaire de la taille du caillot de fibrine à une vitesse d'environ 1 μm/sec 

(Ataullakhanov et Guriia, 1994). 
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Figure 11: Régulation spatio-temporelle des voies extrinsèques et intrinsèques. APC, 

protéine C activée; ATIII, antithrombine; TF, facteur tissulaire ; TM, thrombomoduline 

(Adapté de (Panteleev et al., 2006)).   

5. Régulation négative de la coagulation 

 

Pour éviter l'activation incontrôlée du processus telle que la coagulation intravasculaire 

disséminée, plusieurs régulateurs négatifs de la cascade de coagulation existent, notamment la 

protéine C, l'antithrombine, la α2-macroglobuline et d'autres (Travis et Salvesen, 1983). Ces 

inhibiteurs régulent l'activité des protéases de coagulation et peuvent réduire à zéro la 

concentration locale de thrombine au site de la lésion en un temps caractéristique d'environ 100 

s. La protéine C est activée par la thrombine et dégrade les facteurs Va et VIIIa (Panteleev et 

al., 2006). L'activation de la protéine C par la thrombine est accélérée par un cofacteur de la 

thrombine, la thrombomoduline, présente à la surface de l'endothélium vasculaire intact (Esmon 

et Esmon, 1988). L'antithrombine est un inhibiteur de sérine protéase, qui inactive la thrombine 
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et les facteurs IXa, Xa, XIa et XIIa. Son activité est renforcée en présence d'héparine (Opal et 

al., 2002). 

6. Défauts de la cascade de coagulation 
 

Les défauts génétiques du système de coagulation chez l'homme peuvent entraîner des 

saignements massifs (Bolton-Maggs, 1996 ; Martin-Salces et al., 2010 ; Perry, 2003). L'une des 

maladies les plus courantes de la coagulation sanguine est l'hémophilie A et B associée à un 

déficit en facteurs de coagulation sanguine VIII et IX, respectivement (Kurian et al., 2020). Ces 

pathologies se traduisent par un défaut majeur de génération de thrombine, et se manifestent 

par des hémorragies survenant au niveau des articulations, des muscles et des organes internes, 

spontanément ou à la suite d'un traumatisme ou d'une intervention chirurgicale (Kulkarni et 

Soucie, 2011). Une autre thrombophilie héréditaire est une mutation du facteur V Leiden, dans 

laquelle le site de clivage de la protéine C dans le polypeptide du facteur V est muté et son 

inactivation ne se produit pas. Cette maladie se manifeste par un risque accru de thrombose 

veineuse mésentérique et de thromboembolie veineuse (Kujovich, 2011 ; van Langevelde et al., 

2012 ; Zheng et al., 2021). 

7. Contribution de la fibrine et du fibrinogène à la formation de thrombus 

 

7.1. La structure et la fonction de la fibrine et du fibrinogène 

 

Le fibrinogène est une glycoprotéine hexamérique soluble synthétisée par les 

hépatocytes (Drury et McMaster, 1929). Sa concentration dans le plasma varie entre 2 et 4 

mg/mL (Lowe et al., 1997). Le fibrinogène est également stocké dans les granules plaquettaires 

α (Harrison et al., 1990 ; Wencel-Drake et al., 1985). Cette glycoprotéine est composée de 2 

ensembles de 3 chaînes polypeptidiques, Aα, Bβ et γ, délimitées par des ponts disulfure (Kattula 

et al., 2017). La partie centrale du fibrinogène est constituée des extrémités N-terminales des 
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six chaînes présentant les sites de clivage des fibrinopeptides A et B (Mosesson, 2005). Le 

clivage par la thrombine du fibrinopeptide A entraîne la formation de monomérique de fibrine, 

ce qui, ensuite, initie la polymérisation de la fibrine en présence d'une transglutaminase (facteur 

XIIIa), entraînant la formation d'un caillot de fibrine stable (Figure 12) (Litvinov et al., 2005; 

Weisel et Litvinov, 2013). 
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Figure 12: Fibrinogène, fibrine, fibrinolyse. FpA, fibrinopeptide A; FpB ; fibrinopeptide B 

(Adapté de (Kohler et al., 2015; Slater et al., 2019)). 

Le fibrinogène et la fibrine participent tous les deux à la formation d'un thrombus stable. 

La liaison du fibrinogène à αIIbβ3 permet l'agrégation plaquettaire (Isenberg et al., 1987 ; 

Mangin et al., 2018). La fibrine forme une structure insoluble. Cela facilite à son tour la liaison 

des facteurs de coagulation ce qui conduit à une stimulation supplémentaire de la formation de 

thrombus et de sa stabilisation (Sang et al., 2021 ; van Geffen et al., 2016). Les patients 

afibrinogénémiques ont des complications avec des événements thromboemboliques artériels 

et veineux qui démontrent l'importance de la fibrine et du fibrinogène dans la formation de 

thrombus (de Moerloose et al., 2010 ; Dupuy et al., 2001 ; Girolami et al., 2006 ; Lak et al., 

1999). 

 

7.2. La structure du caillot de fibrine 

 

La structure du caillot de fibrine peut avoir différentes architectures en fonction des 

variations génétiques des chaînes polypeptidiques, de la concentration locale de thrombine et 

du débit à travers le thrombus nécessaire pour un accès optimal aux régulateurs négatifs de la 

coagulation (Stalker et al., 2014 ; Weisel, 2007). Le caillot peut être composé de fibres de 

fibrine épaisses et lâches conduisant à une porosité élevée ou de fibres fines et serrées induisant 

à une faible porosité (Gu et Lentz, 2018). Dans des études cliniques, il a été démontré que le 

plasma des patients hémophiles forme des caillots de fibrine lâches anormaux, tandis que le 

plasma des patients atteints d'anévrisme de l'aorte abdominale, d'accident vasculaire cérébral 

ischémique, de thromboembolie veineuse ou chez les fumeurs forme des caillots de fibrine 

denses (Brummel-Ziedins et al. , 2009 ; Laurens et al., 2006 ; Parastatidis et al., 2008 ; Scott et 
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al., 2011 ; Undas et al., 2009a ; Undas et al., 2009c). Étant donné que le réseau / maillage de 

fibrine est reconnu comme une caractéristique spécifique de la formation stable du thrombus, 

le ciblage de la polymérisation de la fibrine avec des peptides synthétiques qui bloquent les 

interactions entre les monomères de fibrine tels que les peptides avec des séquences de boutons 

de fibrine A ou B attachés à l'albumine, a été proposé comme une stratégie innovante pour 

bloquer la thrombose (Risser et al., 2022 ; Stabenfeldt et al., 2012 ; Watson et Doolittle, 2011). 

 

7.3. Le rôle respectif du fibrinogène et de la fibrine dans la formation du thrombus 

 

Malgré des études de longue date sur la contribution de la fibrine et du fibrinogène dans 

la formation du thrombus, il est encore difficile de distinguer leur rôle respectif car ce sont les 

ligands des récepteurs plaquettaires αIIbβ3 et GPVI, et ils dérivent l'un de l'autre (Inoue et al., 

2006; Mammadova -Bach et al., 2015). Pour ces raisons, le groupe de M. Flick a généré des 

souris exprimant le gène FibAEK n'ayant pas la capacité de former un réseau de fibrine, mais 

avec des quantités normales de fibrinogène (Prasad et al., 2015). Dans les modèles 

hémostatiques, certaines de ces souris ont pu arrêter la perte de sang après la coupe du bout de 

la queue contrairement aux souris déficientes en fibrinogène qui ne parviennent pas à arrêter le 

saignement, confirmant le rôle clé du fibrinogène. Dans un modèle de thrombose après 

application de FeCl3, les souris FibAEK forment un thrombus, mais la formation de fibrine 

était nécessaire pour une occlusion complète du vaisseau. Ces résultats laissent une certaine 

incertitude sur le rôle du réseau de fibrine par rapport au fibrinogène soluble dans la formation 

du thrombus. Au cours de mes études doctorales, nous avons utilisé ces souris FibAEK dans 

des modèles d'hémostase et de thrombose pour étudier l'importance de la formation de fibrine 

dans la dynamique de croissance du thrombus et dans la limitation de la thrombose, au-delà de 

son rôle dans la stabilisation du caillot (voir Publication 3). 
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C. Fibrinolyse 

 

La fibrinolyse est le processus physiologique conduisant à la dégradation de la fibrine 

(Chapin et Hajjar, 2015 ; Gale, 2011 ; Mackie et Bull, 1989). Les principaux activateurs de ce 

processus sont les activateurs du plasminogène tissulaire (tPA) et de l'urokinase (uPA). Le tPA 

est sécrété dans la circulation sanguine par l'endothélium vasculaire au cours d'un processus 

d'inflammation, d'une stase sanguine et d'états pathologiques supplémentaires. L'uPA est 

sécrétée par les monocytes, les macrophages et l'épithélium urinaire (Chapin et Hajjar, 2015). 

Les deux activateurs du plasminogène ont de courtes demi-vies de 4 à 8 minutes dans la 

circulation en raison d'une concentration élevée d'inhibiteurs présents dans le plasma, 

notamment la α2-antiplasmine, la α1-antitrypsine et l'inhibiteur de l'activateur du 

plasminogène-1 (Rijken et Lijnen, 2009). Le tPA et uPA forment un complexe avec le 

plasminogène à la surface de la fibrine (Ilich et al., 2017) induisant son clivage pour générer la 

plasmine, qui est l'acteur majeur de la fibrinolyse (Cesarman-Maus et Hajjar, 2005). Le 

plasminogène est une protéine de 92 kDa qui circule dans le sang à une concentration de 200 

mg/L (2 μM) (Keragala et Medcalf, 2021). Le plasminogène s'associe au fibrinogène, par 

conséquent, lorsqu'un caillot riche en fibrine se forme, le plasminogène est déjà présent à 

l'intérieur du caillot où il est nécessaire pour former la plasmine (Mosesson, 2005). La plasmine 

est régulée positivement par le FXIIa de la voie de coagulation par contact et régulée 

négativement par l'inhibiteur de fibrinolyse activé par la thrombine (TAFI) (Figure 13). TAFI 

est une protéase qui est activée par la thrombine et élimine les résidus de lysine et d'arginine C-

terminaux sur la fibrine, entraînant une diminution du nombre de sites de liaison au 

plasminogène (Sillen et Declerck, 2021). La plasmine clive les polymères de fibrine aux deux 

extrémités de la chaîne α, libérant ainsi des fragments αC qui forment le fragment X - un produit 

de dégradation de poids moléculaire élevé (Mutch et al., 2003). Ce fragment peut être à nouveau 

polymérisé par la thrombine ou dégradé en fragments D et E qui sont inhibiteurs de la 
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polymérisation du monomère de fibrine (Lane et al., 1978). Le fragment D de deux molécules 

de fibrine liées l'une à l'autre est appelé D-dimères et est un indicateur de la coagulation 

intravasculaire en cours (Bailey et al., 1951 ; Tripodi, 2011). 

 

Figure 13: Cascade fibrinolytique schématique. Les flèches indiquent la stimulation et 

l'activation, et la barre à la fin d'une ligne indique un inhibiteur. TAFI, inhibiteur de fibrinolyse 

activable par la thrombine ; t-PA, activateur du plasminogène de type tissulaire ; u-PA, 

activateur du plasminogène de l'urokinase (Adapté de (Meltzer et al., 2009)). 
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II. Arterial thrombosis 

 

 

Arterial thrombosis is a pathological process taking place in a diseased vessel after 

erosion or rupture of an evolved atherosclerotic plaque (Lippi et al., 2011). The thrombus 

forming on the injured plaque is mainly composed of platelets and fibrin and can lead to the 

obstruction of a vessel resulting in a reduction in blood supply for downstream tissues (Kurihara 

et al., 2021), and as a consequence tissue necrosis and a high mortality rate (Leadley et al., 

2000). According to statistics, Cardiovascular Diseases are the most common underlying cause 

of death in the world. In 2018, they accounted for an estimated 30.9% (95% uncertainty interval, 

30.3%–32.9%) of all global deaths (Virani et al., 2021). 

 Arterial thrombosis is the final complication of a chronic vascular disease named 

atherosclerosis (Figure 14). 

 

Figure 14: The molecular mechanisms of atherothrombosis. ADP, adenosine diphosphate; 

vWF, von Willebrand factor; GP, glycoprotein complex; TF, tissue factor; TxA2, thromboxane 

A2. 
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1. Pathophysiology of atherothrombosis 

 

1.1. From atherosclerosis to atherothrombosis 

 

Atherosclerosis is a progressive vascular inflammatory disease resulting in the 

accumulation of lipids in the arterial vessel wall and the formation of an atherosclerotic plaque 

narrowing the blood vessel lumen (Mackman, 2008). In humans, atherosclerotic plaques are 

usually found in the aorta, coronary, carotid and cerebral arteries (Lusis, 2000). An evolved 

plaque can be stable for a long time, and suddenly rupture under the effect of blood flow forces 

thereby precipitating thrombus formation (Emini Veseli et al., 2017). Ruptured plaque exposes 

to the blood stream a highly thrombogenic surface containing TF and collagen that initiates 

thrombus growth (Toschi et al., 1997; van Zanten et al., 1994).   

 

1.2.The process of atherosclerosis 

 

The process of atherosclerotic plaque formation is initiated by high plasma levels of 

low-density lipoprotein (LDL) (Gimbrone and Garcia-Cardena, 2016). LDLs accumulate in the 

sub-endothelial space of the arterial wall through endocytosis (Libby et al., 2011). There, they 

are oxidized and initiate an inflammatory response of the endothelial cells which starts to 

express chemotactic proteins such as monocyte chemoattractant protein-1 (MCP-1), vascular 

cell adhesion molecule-1 (VCAM-1), E- selectin and P-selectin (Fuster et al., 2012; Tabas et 

al., 2015). These proteins recruit circulating immune and pro-inflammatory cells, especially 

monocytes into arterial vessel wall (Galkina and Ley, 2007; Sakakura et al., 2013). Within the 

vessel wall, the monocytes differentiate into macrophages capable of cholesterol phagocytosis 

leading to formation of foam cells secreting inflammatory mediators (Libby et al., 2011; 
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Sakakura et al., 2013). This is followed by the migration of vascular smooth muscle cells 

(SMCs) from the tunica media to the tunica intima where they proliferate and synthesize 

components of the extracellular matrix such as collagen and elastin that form the fibrous cap 

covering and stabilizing the plaque (Fuster et al., 2012). Foam cells and SMCs in the center of 

the plaque undergo apoptosis and necrosis inducing the release of oxidized LDL and generating 

a cholesterol-rich area called the lipid core or necrotic core plaque (Libby et al., 2011). If the 

plaque contains a limited amount of lipids and is covered by a thick fibrous cap, it represents a 

“stable plaque” and its probability to rupture is low (Finn et al., 2010). In contrast, if the plaque 

has a lipid-reach core covered by a weakened fibrous cap, it is considered as a “vulnerable 

plaque” and its probability to erode or rupture is very high (Figure 15) (Tomaniak et al., 2020). 

  

Figure 15: The mechanism of atherothrombosis. LDL, low density lipoprotein; SMC, 

smooth muscle cells (Adapted from (Libby et al., 2019)). 

 

2. Treatment of arterial thrombosis 
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The management of arterial thrombosis depends on its severity and the affected artery. 

The therapy usually consists in pharmacological treatment which can be combined to an 

endovascular approach with the aim to restore normal circulation and prevent thrombus 

regrowth. The endovascular approach is usually an angioplasty consisting in the introduction 

of a catheter in an artery of the arm or a leg which is guided to the blocked artery (Kerzmann 

et al., 2018; Sorini Dini et al., 2019). This catheter has a small balloon on its tip whose inflation 

dilates the artery, crushing the atherosclerotic plaque. This procedure can be accompanied by 

the placement of a stent that keeps the vessel open and helps restore normal blood flow (Mehta 

et al., 2016).  

Concerning the pharmacological treatment, it mainly relies on antiplatelet agents, 

anticoagulants or fibrinolytic agents (Figure 16). 
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Figure 16: Pharmacological treatment of arterial thrombosis. AA, arachidonic acid; COX-

1, cyclooxygenase-1; LMWH, low molecular weight heparin; PGH2, prostaglandin H2; PLA2, 

phospholipase A2; PM, membrane phospholipids; TA, thromboxane A2 synthase; TF, tissue 

factor; TP, thromboxane receptor; TxA2, thromboxane A2. 
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2.1. Pharmacological treatment of arterial thrombosis 

 

2.1.1. Aspirin 

 

The first anti-platelet agent identified and still widely used in clinics is aspirin. It 

irreversibly inhibits cyclooxygenase-1 (COX-1) in platelets by acetylation of a serine residue 

within its catalytic pocket (Finamore et al., 2019). This leads to prevention of the arachidonic 

acid transformation to prostaglandins impairing/limiting TxA2 formation and the subsequent 

platelet activation through TP receptors (Awtry and Loscalzo, 2000). Aspirin is generally used 

orally at a dose of 75-100 mg per day in the treatment and secondary prevention of thrombotic 

cardiovascular diseases such as myocardial infarction and stroke (Johnston et al., 2020). The 

half-life of aspirin in the bloodstream is 13–19 min after its single oral administration (Ornelas 

et al., 2017). Aspirin treatment is accompanied by adverse effects including bleeding, which 

occurs notably at the gastrointestinal level (Lanas et al., 2018).  

 

2.1.2. P2Y12 receptor antagonists 

 

A second class of antiplatelet drugs widely used in arterial thrombosis targets the P2Y12 

receptor (Gachet, 2015). Antagonists of this receptor can be divided into two groups based on 

their mechanism of action:  i) prodrugs whose active metabolites inhibit irreversibly the P2Y12 

receptor, such as ticlopidine, clopidogrel and prasugrel; ii) direct and reversible inhibitors of 

the P2Y12 receptor, such as ticagrelor and cangrelor (Secco et al., 2013) (Table 2). These 

antithrombotics are used in the prevention and treatment of thrombotic events such as acute 

coronary syndrome, stent thrombosis and ischemic stroke (Baqi and Muller, 2019; Lasica et al., 

2022; Verheugt et al., 2021). The main limitation of targeting P2Y12 is the risk of bleeding, 

which increases with the degree of inhibition of the receptor, explaining that the doses used in 



75 
 

the clinic only promote 50–60% inhibition of ADP-induced platelet aggregation (Gachet, 2006; 

Wallentin, 2009). 

Table 2. ADP-P2Y12 inhibitors (Patti et al., 2020; Schneider et al., 2015; Secco et al., 2013)  

Title Structure Mechanism of action Administration Side effects 

Ticlopidine thienopyridine prodrug, irreversible the use is 

discouraged 

neutropenia, aplastic anemia, 

thrombotic thrombocytopenic 

purpura and gastrointestinal distress 

Clopidogrel thienopyridine prodrug, irreversible oral, once daily dark purple bruise, itching, pain, 

redness, or swelling 

Prasugrel thienopyridine prodrug, irreversible oral, once daily increased risk of major and life-

threatening bleedings 

Ticagrelor cyclo-

pentyltriazolop

yrimidine 

noncompetitive, 

reversible 

oral, twice daily high rate of major bleedings, 

bleeding gums, blurred vision, chest 

pain, tightness, or discomfort, 

confusion etc 

Cangrelor adenosine 

triphosphate 

analogue 

competitive, reversible IV, continuous 

infusion 

abdominal or stomach pain, back 

pain, blood in the eyes, blood in the 

urine 

 

2.1.3. Dual-antiplatelet therapy 

 

The treatment recommended for secondary prevention of arterial thrombosis and stent 

thrombosis is based on dual-antiplatelet therapy combining aspirin and a P2Y12 inhibitor 

(Sharma et al., 2020; Sinnaeve and Adriaenssens, 2021). This dual therapy consisting of aspirin 

and clopidogrel at 12 months has been reported in the CURE study to reduce cardiovascular 

events (cardiovascular death, non-fatal myocardial infarction or stroke) more than aspirin alone. 

It is however, accompanied with an increased risk of major bleeding in patients with acute 

coronary syndrome (Roberto et al., 2021; Sharma et al., 2020). In the CHARISMA trial the 

combination of aspirin with clopidogrel is also more effective than clopidogrel alone by 

reducing the risk of cardiovascular events (Bhatt et al., 2006). 
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Current recommendations suggest to use the newest P2Y12 inhibitors, prasugrel and 

ticagrelor. These inhibitors act faster than clopidogrel (30 min vs 2 hours) and lead to lesser 

high on-treatment residual platelet reactivity (HTPR) (3% vs 30%) (Kamran et al., 2021). In 

patients with risk of acute coronary syndrome after coronary intervention, the combination of 

aspirin with prasugrel has been reported to reduce cardiovascular risk further than clopidogrel, 

with, nevertheless, an increased risk of bleeding (Wiviott et al., 2007). The same result was 

observed in a study comparing the rate of cardiovascular risk in patients with acute coronary 

syndrome after a therapy combining ticagrelor and aspirin or clopidogrel and aspirin (Wallentin 

et al., 2009). 

Dual-antiplatelet therapy is not recommended following an ischemic stroke because of 

the high risk of bleeding (Kamran et al., 2021). In this situation, the combination of platelet 

aggregation inhibitors amplifies the risk of hemorrhagic transformation which can be fatal for 

the patient. 

 

2.1.4. Integrin αIIbβ3 blockers 

 

A third class of antiplatelet drugs used in arterial thrombosis targets integrin αIIbβ3 

(Huang et al., 2019). There are only three agents inhibiting this integrin approved for clinical 

use: abciximab, eptifibatide and tirofiban (Giordano et al., 2016). Abciximab (ReoPro) is a Fab 

fragment of a chimeric monoclonal antibody inhibiting the interaction of αIIbβ3 with fibrinogen 

(Giordano et al., 2016). Eptifibatide (Integrilin) is a cyclic heptapeptide containing a KGD 

sequence (Scarborough et al., 1993). Finally, tirofiban (Aggrastat) is a non-peptide antagonist 

structurally mimicking a RGD sequence (Hartman et al., 1992). These therapeutic agents are 

administered intravenously in emergency situations such as myocardial infarction or during 

percutaneous coronary interventions (Jamasbi et al., 2017). The main limitation of anti-αIIbβ3 
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agents is the risk of bleeding which is higher than for P2Y12 receptor antagonists (Gammie et 

al., 1998; Junghans et al., 2001; Rasty et al., 2002; Tigen et al., 2021). A new strategy to inhibit 

αIIbβ3 with a potential lower risk of bleeding is to only target the activated form of αIIbβ3. 

These agents are promising in pre-clinical studies but have not yet been evaluated in clinic 

(Hohmann et al., 2013; Huang et al., 2015; Li et al., 2014). 

 

2.1.5. Anticoagulant therapy 

 

Another class of agents targeting arterial thrombosis are anticoagulants which can be 

divided on their mode of action in: i) heparin and low molecular weight heparins (LMWHs); ii) 

vitamin K antagonists; iii) direct factor Xa inhibitors and iv) direct thrombin inhibitors (DeWald 

et al., 2018).   

Heparin and LMWHs interact with antithrombin (AT) and catalyze AT-mediated 

inhibition of thrombin, and factors IXa, Xa, XIa, and XIIa (Garcia et al., 2012). At high doses, 

heparin catalyzes thrombin inactivation by heparin cofactor II and binds to IXa leading to 

inhibition of Xa (Hirsh et al., 1995). Heparin equally inhibits the activity of thrombin and Xa 

while LMWHs efficiently inhibits the activity of Xa compared to thrombin whose inhibition 

requires the presence of the high affinity pentasaccharide sequence and an oligosaccharide 

chain with at least 18 units length that is absent in LMWH due to its shortened chain length 

(Garcia et al., 2012; Lam et al., 1976; Petitou et al., 1999). A potential major side effect of 

heparin treatment is heparin-induced thrombocytopenia (HIT) which is triggered by the ability 

of heparin to bind platelet factor 4 (PF4) which is released after platelets activation (Onishi et 

al., 2016). The heparin/PF4 complex can activate the immune system producing antibodies 

against the complex activating platelets and monocytes. This leads to TF and procoagulant 

microparticles releases resulting in facilitating of platelets activation and formation of 
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aggregates (Marcucci et al., 2021).  LMWHs have weaker protein binding capacities and 

therefore led to a lower rate of HIT (Cosmi et al., 1997). Heparin and LMWHs are used to treat 

pulmonary embolism, but can also be combined to aspirin in the setting of complications of 

acute coronary syndrome (myocardial infarction and unstable angina) (Amane and Burte, 2011; 

Cohen et al., 2014; Undas et al., 2009b). 

Another anticoagulant family comprises the vitamin K antagonists. Vitamin K 

participates in the biosynthesis of several key coagulation factors as a cofactor for their 

carboxylation in the liver (Dowd et al., 1995). Warfarin, is one of the member of the vitamin K 

antagonists, and inhibits the C1 subunit of vitamin K leading to distortions of its function in the 

synthesis of thrombin and factors VII, IX, and X (Stirling, 1995). Therefore, warfarin blocks 

the generation of coagulation factors but has no impact on circulating factors or pre-existing 

thrombi. This anticoagulant is used to reduce the risk of recurrent myocardial infarction, 

systemic embolism after it and stroke (Jones et al., 2021; Mant et al., 2007). The main 

disadvantage of this agent is its interaction with numerous drugs and food which influences its 

anticoagulant response (Wells et al., 1994). 

Another type of anticoagulants is inhibitors of factor Xa. Apixaban is a direct reversible 

inhibitor that binds to free and clot-bound factor Xa leading to decrease of thrombin generation 

(Byon et al., 2019). This anticoagulant is used in the prevention and treatment of thrombotic 

events such as pulmonary embolism and stroke in patients with non-valvular atrial fibrillation 

(Cirincione et al., 2018; Halvorsen et al., 2014). Its main limitation is the risk of hemorrhage 

and thrombocytopenia (Gresham et al., 2009; Harter et al., 2015). 

Finally, one of the member of anticoagulants which directly inhibit thrombin is 

dabigatran. It binds to free and fibrin-bound thrombin (Antonijevic et al., 2017). This 

anticoagulant is used in the prevention of embolic events in patients with non-valvular atrial 

fibrillation and with non-hemorrhagic stroke (Connolly et al., 2009; Gomez-Outes et al., 2013). 
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Possible side effects of dabigatran are gastrointestinal bleeding and intracranial hemorrhage 

(Eikelboom et al., 2011). 

2.1.6. Thrombolytic therapy 

 

The thrombolytic therapy consists in transforming plasminogen into plasmin to promote 

the degradation of the fibrin clot and restore vessel patency. The clinically used thrombolytic 

agents includes recombinant forms of tPA (rtPA) and urokinase (Simpson et al., 2006). rtPA is 

the most widely used pharmacologically approved treatment for acute ischemic stroke 

(Tsivgoulis et al., 2020). It is used alone or combined with thrombectomy to promote the 

dissolution of a clot which occludes a cerebral artery (Alberts et al., 2015; Anfray et al., 2021; 

Frey, 2005). Due to the risk of intracerebral haemorrhage associated with rtPA-mediated 

thrombolysis, a strict treatment window of up to 4.5 hours post-stroke onset has been applied 

as a threshold for administration of rtPA (Shobha et al., 2011; Su et al., 2008; Yepes and 

Lawrence, 2004). rtPA-treated patients have a low recanalization rate of 17% and 38% 

depending on the vessel (Nichols et al., 2008; Rohan et al., 2014). Side effect rtPA is its ability 

to induce seizure and excitotoxicity through promoting the activation of N-Methyl-D-Aspartate 

receptors (NMDAR) (Alvarez et al., 2013; Nicole et al., 2001; Tsirka et al., 1995). Taken 

together, only a small fraction of stroke patients benefit from thrombolysis with no side effects 

(National Institute of Neurological and Stroke rt, 1995; Vivien, 2017).  

 

3. Murine models of experimental thrombosis 

 

Models of experimental thrombosis represent unique tools to study the mechanism of 

thrombus formation in vivo, allowing to dissect cellular and molecular events of this complex 

process. This section is focusing on the in vivo models which were used during my PhD studies. 
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Mouse models are extensively used because of numerous advantages including their high 

fertility, low cost of breeding and small size (Kohnken et al., 2017). The use of mouse models 

also allows to study thrombus formation in transgenic mice which were instrumental to better 

characterize the function of numerous receptors or signaling molecules (Whinna, 2008). A very 

common approach  to induce thrombosis in murine healthy vessels consists in damaging the 

vessel wall chemically, mechanically, with electricity or a laser (Cooley, 2012; Westrick et al., 

2007). Besides their advantages, mouse models have limitations, notably the absence of 

correlation to any clinical situation as the lesion are performed on healthy vessels in young mice 

which do not mimic a clinical setting in patients. 

 

3.1. The FeCl3-induced injury model 

 

FeCl3-induced injury is realized by putting a drop or the application of the filter paper 

with this chemical to the external part of the mouse vessel (Figure 17) (Grambow et al., 2020; 

Zhou et al., 2015). FeCl3 in small vesicles has been shown to cross the endothelium by an 

endocytic-exocytic pathway and to generate reactive oxygen species which initiates thrombus 

formation (Kurz et al., 1990; Tseng et al., 2006). Although this thrombosis model is widely 

used the exact mechanism by which it triggers thrombosis is still not fully understood.  In some 

studies, the generation of reactive oxygen species triggers the denudation of endothelial cells 

and the exposure of the subendothelium matrix (Dubois et al., 2006; Westrick et al., 2007; 

Woollard et al., 2009). In other studies, FeCl3 damages the vessel wall but the endothelial 

denudation is absent (Barr et al., 2013; Eckly et al., 2011). In this case the mechanism initiating 

the thrombus formation is unclear. One hypothesis is that RBC-derived structures recruit 

platelets and this process initiates thrombus formation. Another hypothesis is that FeCl3 bodies 

exposed on the injured vessel wall to the blood flow contain large amounts of tissue factor on 
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their surface that could support thrombus formation by generating thrombin (Eckly et al., 2011). 

These different outcomes probably depend on the vessel type to which FeCl3 is applied 

(Chauhan et al., 2007; Konstantinides et al., 2006).     

The technical simplicity of this model allows to target any mouse vessel (especially, the 

mesenteric, cremaster or carotid vessels), and resulted in a broad use in our research field. The 

level of thrombus formation depends on the concentration of FeCl3, application time and the 

injury size which could result in the formation of occlusive or non-occlusive thrombi (Eckly et 

al., 2011; Kurz et al., 1990). The recording of thrombus formation can be done in real time by 

visualizing platelet accumulation with fluorescent microscopy (and another thrombus 

components if it is necessary) or by measuring the blood flow with a Doppler probe (Denis et 

al., 1998; Fay et al., 1999).  

 

Figure 17: FeCl3-induced model of arterial thrombosis. (Figure from (Shim et al., 2021)). 

 

3.2. The laser-induced injury model  

 

Laser-induced injury is realized with the pulsed, high power laser focused on a small 

tissue volume with minimum damaging of surrounding tissue due to the microscope optics 
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(Figure 18) (Stalker, 2020). This type of injury includes thermal and mechanical damages. The 

laser beam superheats the tissue or cells which are further destroyed by mechanical forces 

created by cavitation bubble formation (Dubois et al., 2007; Falati et al., 2002; Rau et al., 2006; 

Vogel and Venugopalan, 2003). As a result, laser injury is a mechanical injury, but subsequent 

physical rupture of cells or tissue has additional biochemical effects. The level of laser injury 

depends on its wavelength, pulse duration, pulse energy and beam diameter (Ando et al., 2011; 

Larsson et al., 2022). In our laboratory we showed that minimal laser ablation induces 

endothelial cell denudation, while strong laser ablation leads to the disruption of all vessel wall 

layers (Hechler et al., 2010). However, depending on the laser intensity and studied vessel 

different levels of injury could be induced: endothelial cell denudation when thrombus 

formation is induced by subendothelium matrix and activation of endothelial cells without 

denudation (Atkinson et al., 2010). Because of the thickness of many vessel walls and the 

presence of fat in surrounding tissue which absorbed laser energy, a main limitation of this 

murine thrombosis model is that not every vessel can be targeted. This model is currently 

mainly used in small murine vessels: mesenteric arterioles, ear microcirculation and the 

cremaster muscle microcirculation (Dubois et al., 2006; Falati et al., 2002; Falati et al., 2004; 

Hechler et al., 2003; Nonne et al., 2005; Stalker, 2020). The thrombus formation in laser-

induced model is studied in real time by using brightfield and/or fluorescence imaging (Dubois 

et al., 2007; Stalker et al., 2013). 
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Figure 18: Laser-induced model of arterial thrombosis. (Figure from (Hechler et al., 2010; 

Kolesnikov et al., 2015)). 

3.3. The electrolytic injury model 

 

Electrolytic injury is generated by an electrical current delivery through a probe to the 

vessel that is often also subjected to a stasis mediated with a hemostatic clamp (Figure 19) 

(Sturgeon et al., 2006). This type of injury leads to a damage of the intima, the extent of which 

appears to be controlled by regulation of the voltage of the stimulation current and by 

application time. This model is currently used in carotid artery and results mostly in occlusive 

thrombus formation (Aleman et al., 2013; Hughan et al., 2014; Schoenwaelder et al., 2017). 

The electrolytic injury model is not widely used to study the mechanism of arterial thrombosis 

because the level of damage is extremely high. Thrombus formation in electrolytic injury 

models is studied in real time by using brightfield imaging or by measuring the flow with a 

Doppler probe (Kusada et al., 2007; Mangin et al., 2006). 
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Figure 19: Electrolytic model of arterial thrombosis. (Figure from (Huang et al., 2000)). 

 

3.4. The mechanical injury model  

 

Mechanical injury is generated by forceps compression of the vessel which can 

sometimes be coupled to concentric vessel stenosis (Folts-like method) (Figure 20) (Westrick 

et al., 2007). This type of injury leads to the deformation or detachment of the endothelium 

depending on compression by the forceps jaws or application time (Tang et al., 2016). Two 

levels of injuries were reported with a moderate injury corresponding to the deformation of the 

endothelium but not a complete detachment, while the severe injury promotes denudation and 

breakage of the internal elastic lamina (Tang et al., 2016). This model is used in the carotid 

artery, aorta and femoral vein (Gruner et al., 2005; Pierangeli et al., 1995; Pozgajova et al., 

2006). Thrombus formation in mechanical injury models is studied in real time by using 

fluorescent imaging or by measuring the flow with a Doppler probe (Mangin et al., 2006; 
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Mangin et al., 2012). The main limitation of this model is that it is operator-dependent and 

requires skills and a lot of practice (Tang et al., 2016). 

 

Figure 20: Mechanical model of arterial thrombosis. The injury was induced by using the 

forceps to pinch the aorta (Figure from (Tang et al., 2016)). 
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III. The role of blood flow in hemostasis and arterial thrombosis  

 

In the 1,800s the physician Rudolf Virchow described three key features of intravascular 

venous thrombosis, which later became known as Virchow’s Triad: stagnant flow, 

hypercoagulability and endothelial injury (Bagot and Arya, 2008). Later, this concept was 

expanded to recognize the importance of blood flow in the regulation of hemostasis and arterial 

thrombosis (Sakariassen et al., 2015; Storch et al., 2018). The importance of flow in thrombosis 

is notably evidenced by the impact of the flow regime on thrombus composition. Indeed, arterial 

thrombi formed under high flow velocities are rich in platelets and fibrin, while venous thrombi 

formed under lower flow velocities and are rich in RBC and fibrin (Baumgartner, 1973).  

 

1. Rheology applicable to blood flow 

 

Blood is a viscous fluid which consists of a liquid fraction – plasma – and a cellular 

fraction – cells: platelets, red blood cells (RBCs) and leukocytes (Sweeney, 2008). Blood cells 

tend to move towards the streamlines of higher velocities, i.e. towards the center of the lumen 

with gravity having only a negligible effect on their motion in bloodstream. RBC are the 

dominant part of blood cellular mass and are usually localized in the center of bloodstream 

where they push other cells towards the walls, a process called margination (Basmadjian, 1990; 

Goldsmith and Turitto, 1986). This lateral migration creates a layer of platelets and white blood 

cells (WBC) near the vessel wall in the so-called cell-free layer (Aarts et al., 1988; Czaja et al., 

2020; Eckstein et al., 1988). 

 

1.1. Concept of blood flow motion  
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For simplification blood is usually considered as an incompressible fluid with a constant 

viscosity, named Newtonian fluid. The blood movement through a cylindrical tube is 

considered as a Poiseuille flow, which means that it relies on a pressure difference created by 

the heart. Blood flowing through a cylindrical tube has a parabolic velocity profile with a 

maximal velocity in the center that decreases towards the wall (Figure 21) (Ruggeri, 2009). 

Therefore, blood flow is modelled as a series of adjacent layers sliding smoothly one over 

another, which creates a friction called shear. Due to the parabolic profile of velocities the flow 

near the vessel wall being close to zero, it facilitates the initiation of coagulation reaction as 

well as platelet adhesion (Hathcock, 2006).  
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Figure 21: Blood flow rheology. The blood vessel section illustrates a typical flow profile 

through a vessel. The arrows indicate blood velocity along the radius. (Figure from (Panteleev 

et al., 2021)). 

 

Although, blood is usually described as a Newtonian fluid, in reality, it is non-

Newtonian because under low flow its viscosity depends on the hematocrit which decreases 

exponentially with increasing blood flow (Goldsmith and Turitto, 1986; Schmid-Schonbein et 

al., 1981). As a consequence, blood exhibits non-Newtonian behaviors such as shear thinning, 

yield stress and viscoelasticity (Fisher and Rossmann, 2009; Gijsen et al., 1999; Merrill et al., 

1963; Thurston, 1972). These properties affect the blood movement inside the vessel, fluid 

transport and blood force acting on vessel walls and surrounding tissues especially in paths with 

irregular lumen geometry or stenosed arteries (Liu and Tang, 2011; Lou and Yang, 1993). 

Another important parameter to consider is the pulsatile nature of arterial flow which ranges 

from 0 (or even reversed flow) up to two times the average velocity during each cyclic period 

(Rhode et al., 2005). Taking into account the pulsatility, the peak blood flow parameters exceed 

the values of blood flow regimes calculated for non-Newtonian fluid (Lutz et al., 1983). 

 

1.2.Shear rate and shear stress as major hemodynamic parameters  

 

A key parameter to define blood flowing in different vessels is the shear rate (). It is 

used to characterize the rate at which one fluid layer passes over another. For a Poiseuille flow, 

the wall shear rate increases linearly with a volume velocity (Q) and decreases as the inverse 

cube of tube radius (R) (1): 

𝛾 =
4𝑄

𝜋𝑅3
 

(1) 
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For healthy human vessels the mean wall shear rates are 450–2,000 s−1 in the 

microcirculation and in arterioles, 300–800 s−1 in the large arteries and 15–200 s−1 in veins 

(Table 3) (Goldsmith and Turitto, 1986; Nader et al., 2019; Panteleev et al., 2021). Of note, 

these values are mean wall shear rates and they can vary in arteries due to pulsatile flow. 

Table 3. Time-average values of shear rate within the human vasculature vessel 

(Hathcock, 2006) 

Vessel Diameter, mm Shear rate, s-1 

Ascending aorta 23-45 50-300 

Femoral artery 5 300 

Common carotid artery 5.9 250 

Left main coronary artery 4 460 

Small arteries 0.3 1,500 

Arterioles 0.03 1,900 

Large veins 5-10 200 

Inferior vena cava 20 40-60  

 

Blood flow is creating a tangential force between fluid layers called shear stress (τ) 

which linearly depends on shear rate with a proportionality constant called viscosity (η) (2) 

(Benis et al., 1971): 

𝜏 = 𝜂 ∙ 𝛾 (2) 

Shear stress and shear rate regulate receptor-ligand bond formation during the initial 

step of platelet adhesion at the site of injury.  

 

2. Role of blood flow in thrombus formation 

 

The process of platelet aggregate formation in thrombosis and hemostasis shows a high 

degree of similarity. Following vascular injury, platelets carried by flow adhere, become 

activated and aggregate. In parallel, the coagulation cascade becomes activated leading to the 

generation of thrombin and to the formation of fibrin insoluble network. Blood flow affects 
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every step of this process (Savage et al., 1998; Weiss et al., 1978). First, the flow has an impact 

on the ability of platelet receptors to engage their ligands immobilized at site of injury. While 

under relatively low shear (< 900 s-1) almost all the adhesive receptors can bind their ligands to 

ensure the capture of flowing platelets, under high shear only the GPIb-IX complex has the 

potential to sustain platelet attachment through its interaction with vWF (Maxwell et al., 2007; 

Turitto et al., 1984). Once platelets have adhered, hemodynamic forces can stimulate mechano-

sensors, such as the GPIb-IX complex and integrin αIIbβ3, mechano-receptor  Piezo1 and 

mechano-sensitive ion channels TRPV2 and TRPV4, to initiate signal transduction and 

subsequent platelet activation (Abbonante et al., 2017; Chen et al., 2019; Li et al., 2021; 

Mazzucato et al., 2002; Shen et al., 2013; Zhao et al., 2021). Moreover, once the aggregate is 

formed, the shear forces tend to disrupt the receptor/ligand and/or receptor/receptor bonds and 

thereby promote thrombus instability and platelet disaggregation. Finally, the amplification of 

platelet activation by soluble agonists, such as ADP, TxA2 or thrombin, is finely tuned by the 

flow which carries away those released by activated platelets at site of thrombus formation to 

avoid excessive thrombus growth at site of vascular injury.  

 

2.1. vWF, a shear sensitive molecule  

 

vWF is a multimeric plasma glycoprotein which is synthesized by endothelial cells and 

megakaryocytes (Jaffe et al., 1974; Sporn et al., 1985). It is also stored in the platelet α granules 

and becomes released after platelet activation (Mumford et al., 2015). vWF is composed of 

several domains: i) the A1 domain which binds GPIbα and type IV collagen, ii) the A2 domain, 

site of cleavage of the vWF by A Desintegrin and Metalloproteinase with ThromboSpondin 

type 1 repeat 13 (ADAMTS13) which reduces the size and reactivity of circulating multimers, 
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iii) the A3 domain binding site of type I and III subendothelial collagen, iv) the C4 domain 

which binds the integrin αIIbβ3 and v) the D3 domain which binds FVIII (Brehm, 2017). 

Under low shear rates, this protein has a closed globular conformation hiding a cryptic 

binding site in the A1 domain, and therefore preventing its accessibility to the GPIb-IX complex 

(De Luca et al., 2000; Di Stasio and De Cristofaro, 2010; Ulrichts et al., 2005). Under high 

shear rates (> 5,000 s-1) or when immobilized on a surface in the presence of low shear, vWF 

stretches due to the hydrodynamic force and exposes the A1 domain allowing platelet adhesion 

through the GPIb-IX complex (Alexander-Katz et al., 2006; Li et al., 2008; Shankaran et al., 

2003; Springer, 2014). 

 

2.2. Platelet aggregation under pathological conditions 

 

In diseased arteries with a thickening of the wall due to an evolved atherosclerotic 

plaque or a pre-existing thrombus, the irregular vessel geometry leads to generation of flow 

perturbations (Figure 22) (Glagov et al., 1988; Young and Tsai, 1973). For example, blood 

flowing through a stenosed vessel generates i) flow acceleration in the pre-stenotic area, ii) high 

shear exceeding 45,000 s-1 in the stenosis throat and iii) regions of flow recirculation in the 

post-stenotic zone (Bark and Ku, 2010). In the pre-stenotic region, acceleration of the blood 

flow generates elongational flows and shear gradients which facilitate vWF unfolding that 

exposes the A1 domain and can promote platelet aggregation (Sing and Alexander-Katz, 2010). 

Concerning the apex of the stenosis, the shear exceeds threshold values of 5,000 s-1 and can 

also unfold circulating vWF (Kroll et al., 1996). Finally, in the post-stenotic zone, the 

recirculation flows have been shown to be highly prothrombotic in in vitro and in vivo models. 

This effect is likely explained by the accumulation of soluble activators and platelets which are 

not washed away and can more easily accumulate (Jackson et al., 2009).  
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Figure 22: Pathological blood flow condition. The blood vessel section illustrates a typical 

flow profile through a diseased vessel. The arrows indicate blood velocity along the radius. 

(Figure from (Gorog and Jeong, 2015)). 

 

3. Shear-selective therapy 

 

Shear-selective anti-platelet therapies have been proposed as an innovative treatment to 

prevent pathological thrombus formation while only modestly increasing the risk of bleeding. 

Two approaches to block high shear-mediated thrombosis were proposed. One is focusing on 

inhibition of the shear-driven interaction between the vWF A1 domain and GPIbα (a single-

chain antibody scFv-A1) (Hoefer et al., 2021). The second approach is based on shear-sensitive 

vehicles or nanoparticles aggregates with anti-thrombotic agents which release their contents 



93 
 

only under high shear rates (Holme et al., 2012; Korin et al., 2012; Marosfoi et al., 2015; Molloy 

et al., 2017).  
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Introduction 

The parameter most commonly used to characterize blood flow is the shear rate, which 

describes the rate at which one fluid layer passes over another and estimates the velocity change 

in the direction perpendicular to the flow. The current view is that low and intermediate flows 

(50 s-1, 500 s-1) occur in intact healthy vessels, while high shear levels (>2,000 s-1) are reached 

in stenosed arteries, notably during thrombosis (Goldsmith and Turitto, 1986; Panteleev et al., 

2021). High shear found at the apex of a plaque believed to be a specific feature of thrombosis. 

It has been proposed that targeting high shear through the inhibition of the shear gradient 

specific conformation of VWF or by shear-sensitive vehicles of anti-thrombotic agents 

represents an innovative strategy to selectively block thrombosis with a minor impact on 

hemostasis, thereby potentially avoiding bleeding complications (Hoefer et al., 2021; Korin et 

al., 2012). While the range of physiological wall shear rates values is well established in intact 

vessels, the shear rates occurring at the edge of a lesion in a healthy vessel remain unknown.  

The objective of my first project was to measure the blood flow occurring in wounds 

after different types of vessel injuries in a context relevant to hemostasis in human and mice. 

For this purpose, we developed two novel mouse models of hemostasis in distinct vessels 

(carotid artery, aorta, saphenous vein and spermatic artery) which represent the two basic 

scenarios of traumatic injury, i.e. vessel puncture or vessel transection. The lesions and the 

plugs forming in these models were characterized by fluorescence and scanning electron 

microscopies. Combining Doppler probe measurements and computations, we determined the 

variation of blood flow over time after vessel damage. On the basis of the flows and the size of 

the injury measured experimentally, the shear rate at the edge of the wound was calculated 

using Navier-Stokes equations and ComSol Multiphysics software. An original model was also 

developed in humans, based on measurement of the blood loss after injury of the median cubital 

vein. A puncture was created by inserting a catheter into the cubital vein of healthy human 
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volunteers and the blood loss was measured every minute after injury to calculate the shear 

levels by applying Poiseuille’s equation with volumetric rates of blood loss. This work has been 

published in Blood Advances in June 2022. 
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Conclusion 

My study shows that after vessel puncture of the murine carotid artery, the shear rate 

values appear very elevated with medians of 22,000 s-1 at the edge of the hole where platelets 

start to adhere. The shear rates were increased up to 3 times as compared to a carotid with a 

stenosis and 20 times when compared to an intact carotid. Similar results were obtained after 

puncture of the aorta and saphenous vein with medians of shear rates reaching 25,000 s-1 and 

7,000 s-1, respectively. In all models, the high shear conditions were accompanied by elevated 

levels of elongational flow exceeding the threshold levels required for unfolding of vWF. 

Similar shear and elongational levels were observed after transection of the mouse spermatic 

artery with medians of 14,500 s-1 and 1,000 s-1, respectively. In humans, the level of shear at 

the edge of a wound was highly increased after vessel damage with a catheter and reached 

2,000-27,000 s-1. Another interesting observation made in the puncture models in human and 

mice, was that the shear rates decreased steeply with increasing injury size. This phenomenon 

was explained by the low hydrodynamic resistance of the injuries as compared to that of the 

downstream vessel network.  

All of these results indicate that various types of lesions in small and large mouse and 

human vessels can result in extremely high shear rates, which was unexpected. We propose that 

elevated shear rates are not specific to pathological conditions and can be equally relevant to 

the physiological process of hemostasis after vessel damage. 
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Introduction 

Platelets express at their surface five different integrins of the β1 and β3 families: The 

β1 integrins comprising α2β1, α5β1 and α6β1, and the β3 integrins including αvβ3 and αIIbβ3. 

Among the β1 integrin family, α2β1 and α6β1 are involved in the initial step of platelet adhesion 

and activation to adhesive proteins of the subendothelium, and their roles in hemostasis and 

thrombosis have also been well studied (He et al., 2003; Schaff et al., 2013). While the role of 

integrin α5β1 in platelet adhesion, activation and aggregation on fibrillar fibronectin has been 

identified (Maurer et al., 2015), the importance of this integrin in hemostasis and in 

experimental thrombosis remained unknown when we started this work. 

The objective of this project was to evaluate the role of integrin α5β1 in hemostasis and 

experimental thrombosis. For this purpose, mice invalidated for the α5β1 integrin in the platelet 

lineage (PF4Cre-α5-/-) were generated. We first characterized these mice and their platelets by 

evaluating the expression of surface receptors, in order to ensure the absence of major 

abnormalities. Then, we studied in vitro platelet functions by performing aggregometry, 

determining platelet activation state in response to soluble agonists by flow cytometry and by 

perfusing murine whole blood on different adhesive proteins. Further, we evaluated the role of 

integrin α5β1 in arterial thrombosis in vivo in three different experimental animal models of 

arterial thrombosis for which the rheological conditions as well as the exposed adhesive 

proteins were different. Finally, we examined the role of integrin α5β1 in hemostasis by using 

a tail bleeding time model. This work has been published in Thrombosis and Haemostasis in 

October 2021. 
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Conclusion 

The results of this work show that the platelets of mice deficient for α5β1 do not show 

any particular defect. PF4Cre-α5-/- platelets have a normal count and volume, as well as a 

normal expression of the main surface receptors (αIIbβ3, α2, α6, β1, GPIbα, GPV, GPIX, 

GPVI), apart for the α5 integrin which is absent. Aggregation of PF4Cre-α5-/- platelets was also 

normal in response to series of agonists such as collagen, ADP, U46619, a thromboxane A2 

analog, and thrombin. Absence of α5 integrin on platelets has no major impact on integrin 

αIIbβ3 activation and granule secretion. Platelets of these mice adhere normally to a surface of 

vWF, fibrinogen or laminins under shear flow. However, they present a major defect in 

adhesion, activation, and aggregation on a fibrillar fibronectin surface. In three experimental 

models of arterial thrombosis, mice invalidated for the α5β1 presented a normal profile of 

thrombus formation and disaggregation as compared to controls. Finally, the normal tail-

bleeding time favors no major role of this integrin in hemostasis. 

Together, the results gathered in this study suggest that α5β1 integrin plays an 

instrumental role in the adhesion, activation and aggregation of platelets to fibrillar fibronectin, 

and might also participate in thrombus growth on collagen. However, our results indicate that 

integrin α5β1 does not play a major role in hemostasis or arterial thrombosis in mice. It remains 

possible that integrin α5β1 could play a more important role in a lesion exposing a large amount 

of fibronectin, but this remains to be demonstrated. We conclude that it is unlikely that integrin 

α5β1 represents an interesting anti-thrombotic target. 
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Introduction 

Following an injury of a healthy vessel, tissue factor and adhesive proteins of the 

subendothelium are exposed to the flowing blood and initiate the hemostatic response. Thanks 

to the use of intravital microscopy in various experimental models of vessel injury in mice, the 

dynamic process of platelet aggregation has been unraveled. First, platelets accumulate to form 

a large, sometimes subocclusive aggregate, which then disaggregates to leave a platelet rich 

plug to cover the site of injury. This plug is stabilized by fibrin which forms as the result of 

fibrinogen cleavage by thrombin generated locally upon tissue factor exposure. The bi-phasic 

nature of plug formation is essential to avoid unwanted occlusion and ischemia in surrounding 

tissues. While the mechanism allowing platelet aggregation is very well characterized, the one 

limiting this process and switching off the hemostatic response is still unclear.  

The objective of my third project was to evaluate the role of fibrin in the dynamics of 

the formation of a hemostatic plug, beyond its stabilizing role. For this purpose, we 

characterized the dynamic of thrombus and fibrin formation and the plug composition in FeCl3 

injury and needle puncture models by using histology, fluorescence microscopy, and electron 

microscopy approaches. Then, we studied in vitro the ability of platelets to form aggregates on 

fibrin-poor and fibrin-rich aggregates by using a blood flow assay. Further, we evaluated in 

vivo the role of fibrin in thrombus formation by mechanically or pharmacologically removing 

the aggregate before fibrin was predominant in the clot. Finally, we examined in vivo the 

dynamic of thrombus growth using FeCl3-induced model, in transgenic FibAEK mice 

presenting a mutation of the Aa chain of fibrinogen which cannot form a fibrin network. A 

manuscript related to this work is in preparation. 
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ABSTRACT 

Following an injury of a healthy vessel, the subendothelium proteins are exposed to 

the flowing blood and initiate the hemostatic response. While the mechanism allowing 

platelet aggregation is very well characterized, the one switching off the hemostatic 

response is still unclear. The aim of this work was to evaluate the role of fibrin in the 

dynamics of the formation of a hemostatic plug, beyond its stabilizing role. Using a 

flow-based assay, we observed that the presence of a fibrin layer on top of an 

aggregate prevents its growth. Mechanical removal of the thrombus after vessel 

flicking resulted in continuous regrowth which stopped only when fibrin reached its 

maximal level within the thrombus surface and covered it. In vivo experiments with 

pharmacological agents removing fibrin during thrombus growth lead to thrombus 

embolization, which allowed the aggregate to grow again, and this regrowth process 

could be repeated many times. Finally, the dynamic of thrombus formation in FibAEK 

mice was profoundly altered with as expected a lack of thrombus stabilization, but 

additionally we observed that the hemostatic process was prolonged compared to a 

control with successive growth and embolization phases. In conclusion, these findings 

identify a central role of fibrin in the arrest of the hemostatic response, by limiting 

platelet adhesion to the plug. In addition to its very well-established role in stabilizing 

the clot, fibrin is also instrumental in regulating the hemostatic response by turning off 

the physiological response of plug formation and preventing further platelet 

incorporation. 
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INTRODUCTION 

Hemostasis is a finely tuned physiological process initiated after vessel injury and 

which aims at repairing the vessel to rapidly stop blood loss and to restore a normal 

blood intake to supply downstream tissues and organs1. It is composed of three 

interconnected steps and starts with primary hemostasis, which is initiated thanks to 

the unique ability of blood platelets to be recruited to thrombogenic subendothelial 

proteins exposed at sites of injury2. Platelets then activate and form an aggregate 

through their ability to bind plasma proteins such as von Willebrand factor (vWF) and 

fibrinogen, allowing platelet aggregation to form the hemostatic plug3,4. In parallel, the 

tissue factor (TF) exposed in the vessel wall initiates secondary hemostasis or 

coagulation, which is a cascade of enzymatic reactions amplified at the surface of 

negatively charged surfaces of platelets and endothelial cells5. This leads to the 

generation of thrombin, a key serine protease, which cleaves fibrinogen into an 

insoluble fibrin network which stabilizes the clot6. At later stages, fibrinolysis is 

activated and removes the remaining part of the clot to restore normal blood flow and 

full vessel wall repair7. 

Platelet plug formation is central for a relevant hemostatic response and to ensure the 

arrest of bleeding. One of its unique feature is that it is very rapidly initiated following 

vessel injury to form the aggregate as quickly as possible, thereby limiting blood loss. 

Plug formation requires to be finely regulated to allow a suitable response, i.e. 

occlusive clot formation in case of vessel rupture or a non-occlusive plug for weaker 

injuries8. This is essential to avoid an excessive response which could result in 

unnecessary occlusion in vessels presenting modest injuries, thereby avoiding 

reduction of blood supply to downstream tissues. While the process of platelet 

adhesion, activation and aggregation at site of injury is very well understood, the 
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process limiting extensive platelet aggregation and switching off the hemostatic 

response remains fully unknown. In this manuscript, we studied the dynamics of 

platelet plug formation using in vivo mouse models to investigate the regulation of the 

hemostatic process. We identified a central role of fibrin, which in addition to its very 

well-established role in stabilizing the clot, is instrumental in regulating the hemostatic 

response by turning off the physiological response of plug formation.  

 

MATERIALS AND METHODS 

 

FibAEK mice 

Mice carrying a mutant form of fibrinogen were generated by backcrossing FibAEK 

progeny mice (Matthew J. Flick Laboratory) with C57Bl/6J (Jackson Labs) as was 

described9. In all animal studies, gender and age matched (6-8 weeks) mice were used 

 

Mouse model of hemostasis based on vessel puncture 

WT mice with a pure C57BL/6 background were maintained in the animal facilities of 

the EFS Grand-Est. Ethical approval for the experiments was obtained from the French 

Ministry of Research. Fluorescent agents (3,3'-dihexyloxacarbocyanine iodide (DIOC6) 

(Thermo Fisher Scientific, MA, USA); DyLight650-coupled anti-fibrin antibody 59d8 

(Inserm UMR_S11076, Marseille, France)) were injected into the jugular vein of 7-28 

week-old mice, 5 min before the experiment, to label platelets. The common carotid 

artery was exposed surgically and was then punctured with a 25-gauge needle. 

Thrombus formation was monitored in real time with fluorescent microscope coupled 

to a CCD camera. At the end of the experiment, the thrombus was fixed and processed 

for histology or electron microscopy10.  
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In vivo models of arterial thrombosis 

Fluorescent agents were injected into the jugular vein 5 min before initiation of 

thrombus formation. The abdominal aorta of anesthetized WT mice (8-10 weeks old) 

was exposed and mechanically injured by pinching with forceps (type 11063-07, 

F.S.T., Heidelberg, Germany), as previously described11. FeCl3-injury was performed 

as in10. Briefly, the common carotid arteries of anesthetized WT mice (7 to 10 weeks 

old) were exposed and the left carotid artery was injured by applying a 1 mm long patch 

of filter paper (1M Whatmann) saturated with 7.5% FeCl3 for 2.5 min. 

 

Drug administration 

 Mice were infused through the jugular vein with either saline (control), rt-PA (10 mg/kg) 

or hirudin (20 mg/kg) at the indicated times.  

 

Histology of the carotid artery 

 Before injury, the ligature was prepared in both ends of the carotid artery. At the end 

of experiment, the vessel was fixed with 300 ul 4% paraformaldehyde was placed on 

the vessel as previously described12. After 15 minutes, the ligature was put and the 

carotid artery was excised, placed in 4% paraformaldehyde overnight and rinsed with 

phosphate buffer saline. Then it was placed in increasing concentrations of saccharose 

and was frozen in optimal cutting temperature compound. The sample was sectioned 

at 8-um thickness by microtome-cryostat. The sample was labelled with DAPI. Imaging 

was performed with a Leica confocal microsystem SP5 DMI 6000. 

 

Scanning electron microscopy 
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Before injury, the ligature was prepared in both ends of the carotid artery. At the end 

of experiment, the vessel was fixed with 2% glutaraldehyde and 2% paraformaldehyde 

by transcardiac perfusion. The carotid artery was then excised and post-fixed in 2% 

glutaraldehyde and 2% paraformaldehyde overnight. The isolated vessel segment was 

sectioned in the middle by razor and it was dehydrated in increasing concentrations of 

ethanol followed by hexamethyldisilazine and glued onto a cover slip with the lumen 

uppermost. The cover slips were sputtered with gold prior to observation at 5 kV under 

an FEG Sirion SEM (FEI). The chemical distribution of elements was studied by energy 

dispersive X-ray emission microanalysis (EDX) of selected sections using an ESEM 

(FEI) at 20 kV, spot size 4. 

 

In vitro flow-based adhesion assay 

 Microfluidic flow chambers were prepared as previously described13. Briefly, the 

chambers were coated with a solution of fibrillary Horm collagen (200 µg/mL) overnight 

at 4℃ and blocked with phosphate buffered saline (PBS) 10 mg/mL human serum 

albumin for 30 minutes at room temperature. For fibrin-poor thrombus formation, 

hirudinated (100 U/mL) whole blood from healthy human volunteers was labelled with 

DiOC6 (3,3’-dihexyloxacarbocyanine iodide;1 µmol/L) and was perfused through the 

coated microfluidic flow chambers with a syringe pump (Harvard Apparatus, Holliston, 

MA, USA) at 37℃ at 1500 s−1. For fibrin-reach thrombus formation, citrated (3.2%) 

human whole blood was labelled with a DyLight 647-coupled anti-fibrin antibody (10 

µg/mL) and DiOC6 (3,3’-dihexyloxacarbocyanine iodide;1 µmol/L) and was recalcified 

by adding CaCl2 (12.5 mmol/L) and MgCl2 (3.5 mmol/L) just before perfusing it through 

microfluidic flow chambers at 1500 s−1. Once platelet rich thrombi were formed, a brief 

washing step was performed to rinse the thrombi before perfusing hirudinated blood 



161 
 

stained with RAM.1-A567 (2 µg/mL) from the same donor. Fluorescence emission was 

measured using a confocal Leica SP8 inverted microscope with a resonant scanner 

and a 40× oil objective. Series of optical sections in xyz were taken from the base to 

the peak of the thrombi (Leica LAS X software). Images were then stacked and the 

volume of the thrombi was determined with ImageJ software (National Institutes of 

Health, Bethesda, MD, USA). 

 

Statistical analyses 

All statistical analyses were performed using a GraphPad Prism program, version 

6.0 (Prism, GraphPad, La Jolla, CA, USA). All values are reported as the mean ± 

standard error of the mean for a normal distribution, or median for a non-normal 

distribution. The data of two groups were compared by the two-tailed paired test. 

 

RESULTS 

Insight into the dynamics of the formation of a hemostatic plug. To gain insight 

into the process stopping the hemostatic response after a localized vessel injury, we 

used in vivo mouse models of vascular injury. We first observed that puncturing the 

carotid artery of adult mice with a needle resulted in bleeding followed by the formation 

of a platelet and fibrin-rich plug which stops blood loss. Real-time video microscopy 

showed that the plug formation is reversible presenting a bell-shaped curve with a 

phase of growth, embolization to finally stabilize. The thrombus embolization occurs at 

250 ± 50 sec after thrombus onset, after which no platelets accumulated anymore 

(Figure 1A). Fibrin appeared with a delay of 60 ± 20 sec after the first platelets adhered 

at site of injury, and grew progressively occupying 40 ± 20 % of thrombus area at the 



162 
 

time of embolization. By 450 sec after thrombosis initiation fibrin occupied 60 ± 15 % 

of thrombus area coinciding with no more platelet accumulation (Figure 1B). 

Interestingly, when FeCl3 was applied to the carotid, a similar kinetic of platelet 

aggregation and fibrin formation was evidenced, with the only distinction of the 

formation of a mural thrombus (Figure 1C). In this model, there was no more platelets 

accumulation after thrombus embolization, which starts at 1,030 ± 80 sec, when fibrin 

occupied 52 ± 9 % of its maximum area and its amount was 70 ± 9% of fibrin maximum 

area 300 sec after embolization (Figure 1D). Similar observations were also obtained 

after a mechanical injury with forceps of the aorta, even though the overall process 

was more rapid compared to the two other models (Figure 1E-F). Together, a common 

feature of three distinct models of vascular injury indicate that the arrest of thrombus 

growth, i.e. of the hemostatic response, appeared after thrombus embolization and 

coincides with the time at which fibrin occupied most of the area of the plug. 

 

Fibrin covers the hemostatic plug. To better appreciate the spatiotemporal 

localization of fibrin within a plug, the carotid artery of adult mice was injured with FeCl3 

and fibrin distribution in the thrombus was studied by different approaches. 

Fluorescence images using a macroscope to have a large field of view, indicated that 

after 1500 sec, when the most part of the thrombus was embolized, fibrin occupied 32 

± 8 % of the area of the residual platelet rich plug (Figure 2A). Histological analysis of 

these thrombi revealed that fibrin staining reached the top of the thrombus, suggesting 

its exposure to the flowing blood (Figure 2B). This result was confirmed using scanning 

electron microscopy (SEM) which showed that a large area of the plug contained fibrin 

on its top that covers the thrombus surface (Figure 2C). Similar observations were 

made for plugs forming after puncture of the carotid artery and pinching of aorta. 
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Fluorescence images confirmed that after 400 sec and 1,100 sec, fibrin occupied 63 ± 

20 % and 70 ± 20 % of the area of the residual platelet plug and covered his surface 

for puncture (Figure 2D-E) and pinching models (Figure 2F-G), respectively. 

Together, these imaging approaches indicate that the residual platelet plug is very rich 

in fibrin, which reaches its top to form a layer. This observation questions whether such 

a layer exhibits a protective function and could stop further platelet adhesion and 

aggregation to stop the hemostatic response. 

 

A fibrin layer prevents thrombus growth in vitro. To test the hypothesis of fibrin 

being involved in arresting the hemostatic response, we used an in vitro approach. 

Using a flow-based assay, we formed fibrin-poor and fibrin-rich thrombi by perfusing 

hirudinated and recalcified citrated blood over collagen at 1,500 s-1, respectively 

(Figure 3A). The mean thrombus volumes of fibrin-poor and fibrin-rich thrombi were 

10±2 x 104 m3 and 9±3 x 104 m3 (mean ± SEM, n=5), respectively (Figure 3B, C). 

We next perfused human hirudinated whole blood over the pre-formed thrombi to 

evaluate their thrombogenic potential. We observed thrombus build-up on fibrin poor 

aggregates (3±1 x 104 m3), while this process was reduced by more than 10 times on 

fibrin-rich thrombi (0.3±0.1 x 104 m3 (mean ± SEM, n=5) (Figure 3B, D). This in vitro 

observation indicates a negative role of fibrin in thrombus growth and allows to 

hypothesize that a fibrin layer could exhibit a protective function and efficiently limit 

platelet adhesion and aggregation. 

 

Fibrin stops the process of platelet recruitment and aggregation in vivo. To test 

the hypothesis that fibrin limits thrombus growth in vivo after thrombus embolization, 
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we injured the carotid artery of an adult mouse with a solution of FeCl3, and once the 

thrombus reached its maximal size and fibrin only started to appear in the core (fibrin 

poor thrombus), we mechanically removed the thrombus by flicking the vessel. 

Interestingly, under such conditions where fibrin is largely absent from the aggregate, 

the thrombus was able to repeatedly form again and stopped only when fibrin reached 

its maximal level i.e., the thrombus surface (Figure 4A-B). This result was confirmed 

by using a pharmacological approach based on rtPA injection to lyse the fibrin content 

within the aggregate when the thrombus reached its maximal size (Figure 4C).  As 

expected rtPA in contrast to saline and even hirudin efficiently reduced the level of 

fibrin within the thrombus and destabilized the aggregate to induce embolization that 

was not observed to other solutions (Figure 4D, E; Sup. Figure 1A). Interestingly, this 

did not lead to the arrest of the hemostatic process but led to a regrowth process which 

far exceeded the time at which aggregation stops in the control and with hirudin (Figure 

4F). In addition, this regrowth could be repeated several times, further highlighting a 

role of fibrin in the arrest of the hemostatic response (Figure 4F).  

 

A genetically modified mouse defective in fibrin formation a marked impairment 

in the arrest of the hemostatic response. To confirm the hypothesis that fibrin limits 

thrombus growth and exclude side effects of mechanical and pharmacological 

approaches, we studied the thrombus formation after FeCl3-induced thrombosis in 

transgenic FibAEK mice presenting a mutation of the Aa chain of fibrinogen. These 

mice present a normal level of circulating fibrinogen, but do not have the ability to form 

an insoluble fibrin network. The dynamic of thrombus formation in FibAEK mice 

consists of a repeated series of growths and embolizations during all experimental time 

(Figure 5A, B). In addition, the amount of regrowth processes during thrombus 
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formation was significantly higher in FibAEK mice compared to WT mice (Figure 5C). 

More importantly, we could not detect a time at which the process stopped and had to 

terminate the experiments after 60 min, which far exceeds the time at which 

aggregation stops in controls (Figure 5D). In conclusion, these findings identified a 

central role of fibrin, which in addition to its very well-established role in stabilizing the 

clot, is also instrumental in regulating the hemostatic response by turning off the 

physiological response of plug formation and preventing further platelet incorporation.  

 

DISCUSSION 

The results of this work show that the process of thrombus growth leads to the 

formation of a stable platelet rich plug which ended up covered by fibrin in three distinct 

experimental models of vascular injury in large vessels. Using a flow-based assay, we 

observed that the presence of a fibrin layer on top of an aggregate prevents its growth. 

In agreement, we observed that mechanical removal of a thrombus formed in vivo, 

after vessel flicking, resulted in continuous regrowth which stopped when fibrin 

reached the top of the thrombus. Moreover, in vivo experiments with pharmacological 

agents removing the fibrin during the thrombus growth phase, leads to thrombus 

embolization, which allowed the aggregate to grow again. Interestingly this regrowth 

process could be repeated many times. Finally, the dynamic of thrombus formation in 

FibAEK mice was profoundly altered with an expected defect in thrombus stabilization, 

and an additional prolongation of the hemostatic process composed of successive 

growth and embolization phases. This study identified a novel instrumental role for 

fibrin in turning off the physiological response of plug formation by limiting further 

incorporation of circulating platelets. 
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Vessel injury in various mouse models of localized vascular injury results in a very 

similar dynamic of thrombosis, with an initial growth of a very large thrombus, followed 

by a stage of embolization leaving a patch covering the lesion. The main focus of our 

study was to understand why following embolization of the large aggregate, the patch 

composed of highly activated platelets remained inert and did not grow again. This 

study is purely focused on understanding the physiological process of hemostasis, and 

is not considering a situation of arterial thrombosis. It is also important to highlight that 

we did not study the process of embolization per se, neither the process of occlusive 

thrombus formation. Our study was clearly focused on the first couple of minutes after 

vessel injury and the profile of the thrombus that forms is common to various vessels 

and mode of injury including a mechanical injury of the aorta, photochemical injury of 

the carotid, electrolytic injury of the femoral vein, laser-injury of the cremaster vessels 

and mesenteric arterioles, puncture injury of femoral vein and aorta and FeCl3-induced 

injury of the aorta and mesenteric arterioles 10,11,14-19.  

We observed that the surface of the residual patch formed in three different 

experimental models was covered by a layer of fibrin. These results correlate with the 

thrombus structure obtained after laser-induced injury in mouse mesenteric vessels 

which was reported to be mainly composed of platelets and covered by fibrin 20. Such 

a fibrin biofilm was also detected on human intracoronary thrombi which were aspirated 

in patients with acute myocardial infarction 21. Similar observations were made on 

thrombi responsible for large vessel occlusion in the setting of acute ischemic stroke 

22. Together, these results indicate that various thrombi from animal models or from 

patients share in common the presence of a fibrin layer on the luminal side. While the 

group of Robert Ariëns proposed that such fibrin biofilms play an antimicrobial function, 

its role in hemostasis had never been addressed 23. We propose here that the fibrin 
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layer plays an important role in the passivation of the thrombus and promotes thereby 

the arrest of the hemostatic response. 

While the main result of this study indicates that the fibrin layer covering the thrombus 

switches off the process of thrombus growth, the precise mechanism remains to be 

determined. An obvious explanation of the arrest of thrombus growth is that the fibrin 

layer is poorly adhesive as shown in in vitro based experiments with a fibrin layer not 

efficiently promoting platelet activation and aggregation, and do therefore not represent 

a nucleation site for further growth 24. In addition, it is well established that fibrin traps 

thrombin limiting its diffusion and pro-thrombotic effects 25,26. This is best illustrated 

when we compared the effect rtPA versus rtPA combined to the direct thrombin 

inhibitor hirudin. While rtPA started to lyse fibrin and free thrombin a regrowth was 

observed which was due to thrombin as this effect disappeared in the presence of 

hirudin (Figure 4, Sup. Figure 1). Whether there are additional ways by which fibrin 

arrests thrombus growth cannot be excluded. One potential explanation could be that 

fibrin decreases the permeability-porosity of thrombus, thereby limits the transport 

velocity of soluble agonists released by platelets in thrombus core 27,28. It is also 

possible that the fibrin layer on the residual thrombus surface restricts the distribution 

of granule content, for example, the exposure of vWF from α-granules as this molecule 

could remained trapped in fibrin fibers and not reach the thrombus surface to allow 

platelet recruitment 29,30. 

From a hemostatic standpoint, the platelet plug should be formed as quickly as 

possible to limit blood loss after vessel injury. While an occlusive aggregate is required 

after rupture of a vessel wall, a non-occlusive plug should be formed in case of non-

penetrating injuries. This is essential to avoid an unnecessary vessel occlusion, which 

would impair blood supply to downstream tissues. Our study proposes that the arrest 
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of the hemostatic process is finely tuned by fibrin. Based on this data, it could be 

assumed that fibrin would be present in elevated quantities to form a non-occlusive 

thrombus and low quantities to allow the formation of an occlusive clot when a 

dramatically injured vessel has to be closed to avoid excessive blood loss. This 

hypothesis is in agreement with the literature, as murine thrombi formed after 

perforating laser injury have lower mounts of fibrin compared to thrombi forming after 

non-penetrating injury induced by laser ablation 31,32. Because of a lack of sufficient 

amount of experimental evidence, the difference in occlusive and non-occlusive 

thrombi composition and the role of fibrin in it, requires further investigations.  

In conclusion, our findings identify a central role of fibrin in the arrest of the hemostatic 

response, by passivating the surface of the thrombus and thereby limiting platelet 

adhesion to the plug. We propose that, in addition to its very well-established role in 

stabilizing the clot, fibrin is also instrumental in regulating the hemostatic response by 

turning off the physiological response of plug formation and preventing further platelet 

incorporation. 
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FIGURE LEGEND 

Figure 1. The dynamics of the thrombus formation after vessel wall injury. A-B, 

Thrombus formation was induced by needle puncture of the left common carotid artery 

of wild-type mice. A, Representative fluorescence images of the thrombus (platelets 

labeled in green, fibrin labeled in red) at the indicated time points after injury with a 

25G needle. Scale bar: 500 μm. The arrows represent the direction of blood flow and 
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the dotted lines the borders of the vessel. B, The curve shows the area of the platelets 

aggregate and fibrin as a function of the time after injury. C-D, Thrombus formation 

was induced by FeCl3 (7.5%)-injury of the left common carotid artery of wild type mice. 

C, Representative fluorescence images of the thrombus (platelets labeled in green, 

fibrin labeled in red) were taken at the indicated time points after injury. Scale bar: 500 

μm. The arrow represents the direction of the blood flow and the dotted line the borders 

of the vessel. D, The curve shows the area of the platelets aggregate and fibrin as a 

function of the time after injury. E-F, Thrombus formation was induced by pinching the 

mouse aorta with forceps. E, Representative fluorescence images of the thrombus 

(platelets labeled in green, fibrin labeled in red) were taken at the indicated time points 

after injury. Scale bar: 250 μm. The arrow represents the direction of the blood flow 

and the dotted line the borders of the vessel. F, The curve shows the area of the 

platelets aggregate and fibrin as a function of the time after injury. 

Figure 2. Fibrin covers the hemostatic plug. A-C, Thrombus formation was induced 

by FeCl3 (7.5%)-injury of the left common carotid artery of wild type mice and fixed at 

the last time point. A, The dot plot (left) shows the fibrin area of the residual plug 

expressed as the percentage of the thrombus area measured by intravital microscopy. 

Data are presented as the mean ± SEM and individual symbols represent individual 

mice. Representative fluorescence image (right) of the thrombus 40 min after initiation 

of the experiment. Platelets are shown in green and fibrin in red. Scale bar: 500 μm. 

The arrow represents the direction of the blood flow and the dotted line the borders of 

the vessel. B, Representative histology image of the residual plug 1,610 sec after 

FeCl3-injury. C, Representative scanning electron microscopy images of the residual 

plug X min after FeCl3-injury. The thrombus is composed of tightly packed platelets, 

fibrous strands whose ultrastructure resembles to fibrin colored on the enlarged image 
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of the area in the red square in gray and green, respectively. D-E, Thrombus formation 

was induced by needle puncture with a 25G needle of the left common carotid artery 

of wild-type mice.  D, The dot plot (left) shows the fibrin area of the intraluminal residual 

plug expressed as the percentage of the thrombus area measured by intravital 

microscopy. Data are presented as the mean ± SEM and individual symbols represent 

individual mice. Representative fluorescence image (right) of the thrombus 71 sec after 

initiation of the experiment. Platelets are shown in green and fibrin in red. Scale bar: 

500 μm. The arrow represents the direction of the blood flow and the dotted line the 

borders of the vessel. E, Representative scanning electron microscopy images of the 

intraluminal residual plug 10 min after puncture. The thrombus is composed of tightly 

packed platelets, fibrous strands whose ultrastructure resembles to fibrin colored on 

the enlarged image of the area in the red square in gray and green, respectively. F-G, 

Thrombus formation was induced by pinching the mouse aorta with forceps.  F, The 

dot plot (left) shows the fibrin area of the intraluminal residual plug expressed as the 

percentage of the thrombus area measured by intravital microscopy. Data are 

presented as the mean ± SEM and individual symbols represent individual mice. 

Representative fluorescence image (right) of the thrombus 1,140 sec after initiation of 

the experiment. Platelets are shown in green and fibrin in red. Scale bar: 500 μm. The 

arrow represents the direction of the blood flow and the dotted line the borders of the 

vessel. E, Representative scanning electron microscopy images of the intraluminal 

residual plug 1,200 sec after pinching. The thrombus is composed of tightly packed 

platelets, fibrous strands whose ultrastructure resembles to fibrin colored on the 

enlarged image of the area in the red square in gray and green, respectively. 
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Figure 3. Comparison of thrombus growth between fibrin-poor and fibrin-rich 

clots in vitro. A-C, Thrombus formation (1st population) was induced by perfusing 

citrated (for fibrin-rich aggregate) or hirudinated (for fibrin-poor aggregate) human 

whole blood through collagen coated microfluidic flow chambers at 1500 s−1. Once 

platelet thrombi were formed, a brief washing step was performed to rinse the thrombi 

before perfusing hirudinated blood from the same donor to form thrombi (2nd 

population). A, Representative 3D reconstructed confocal microscopy images of first 

population (in grey), second population (in green) and overlay of fibrin-poor or fibrin-

rich aggregates (fibrin in red). B, Bar graphs shows the thrombus volume of 1st and 2nd 

population of fibrin-rich and fibrin-poor aggregates. Data are presented as the mean ± 

SEM (n=5) and individual symbols represent individual mice. C, The dot plot shows the 

thrombus volume of 1st population of fibrin-poor or fibrin-rich aggregates. Data are 

presented as the mean ± SEM (n=5) and individual symbols represent individual donor. 

Result was compared by unpaired t-test. Ns p > 0.05. D, The dot plot shows the 

thrombus volume of 2nd population of fibrin-poor or fibrin-rich aggregates. Data are 

presented as the mean ± SEM (n=5) and individual symbols represent individual donor. 

Result was compared by unpaired t-test. ** – p≤ 0.01. 

Figure 4. The role of fibrin in thrombus formation after vessel wall injury in vivo. 

A-B, Thrombus formation was induced by FeCl3 (7.5%)-injury of the left common 

carotid artery of wild type mice and the thrombus was destroyed by flicking the vessel 

at the indicated time points. A, Representative fluorescence images of the thrombus 

(platelets labeled in green, fibrin labeled in red) were taken at the indicated time points 

after injury. Scale bar: 500 μm. The arrow represents the direction of the blood flow 

and the dotted line the borders of the vessel. B, The curve shows the area of the 

platelets aggregate and fibrin as a function of the time after injury. C-F, Thrombus 
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formation was induced by FeCl3 (7.5%)-injury of the left common carotid artery of wild 

type mice and was followed by injection of 10 mg/kg rtPA (C, D, F) or saline (E, F) 20 

min after thrombus initiation. The time represents the time of the injection. C, 

Representative fluorescence images of the thrombus (platelets labeled in green, fibrin 

labeled in red) were taken at the indicated time points after rtPA injection. Scale bar: 

500 μm. The arrow represents the direction of the blood flow and the dotted line the 

borders of the vessel. D, The curve shows the area of the platelets aggregate and fibrin 

as a function of the time after rtPA injection. E, The curve shows the area of the 

platelets aggregate and fibrin as a function of the time after saline injection. F, The dot 

plot shows the amount of thrombus regrowth after rtPA and saline injection. Data are 

presented as the mean ± SEM (n=4) and individual symbols represent individual mice. 

Result was compared by unpaired t-test. * – p≤ 0.05. 

Figure 5. The thrombus formation after vessel wall injury in FibAEK mice. A-B, 

Thrombus formation was induced by FeCl3 (7.5%)-injury of the left common carotid 

artery of FibAEK mice. A, Representative fluorescence images of the thrombus 

(platelets labeled in green, fibrin labeled in red) were taken at the indicated time points 

after injury. Scale bar: 500 μm. The arrow represents the direction of the blood flow 

and the dotted line the borders of the vessel. B, The curve shows the area of the 

platelets aggregate and fibrin as a function of the time after injury. C, The dot plot 

shows the amount of thrombus regrowth in WT and FibAEK mice. Data are presented 

as the mean ± SEM (n=6) and individual symbols represent individual mice. Result 

was compared by unpaired t-test. ** – p≤ 0.01. D, The dot plot shows the time at which 

platelets stop to adhere to the thrombus in WT and FibAEK mice. Data are presented 

as the mean ± SEM (n=6) and individual symbols represent individual mice. Result 

was compared by unpaired t-test. ** – p≤ 0.01. 
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Supplementary Figure 1. The role of fibrin in thrombus formation after vessel 

wall injury in vivo. A, Thrombus formation was induced by FeCl3 (7.5%)-injury of the 

left common carotid artery of wild type mice and was followed by injection of 20 mg/kg 

hirudin 20 min after thrombus initiation. The time represents the time of the injection. 

The curve shows the area of the platelets aggregate and fibrin as a function of the time 

after injection.  
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Conclusion 

The results of this work show that the process of thrombus growth leads to the formation 

of a stable platelet rich plug which was covered by fibrin in three distinct experimental models 

of vascular injury in large vessels. Using a flow-based assay, we observed that the presence of 

a fibrin layer on top of an aggregate prevents its growth. Mechanical removal of the thrombus 

after vessel flicking resulted in continuous regrowth which stopped only when fibrin reached 

its maximal level within the thrombus surface and covered it. In vivo experiments with 

pharmacological agents removing the fibrin during thrombus growth lead to thrombus 

embolization, which allowed the aggregate to grow again, and this regrowth process was 

repeated many times. Finally, the dynamic of thrombus formation in FibAEK mice was 

profoundly altered with as expected a lack of thrombus stabilization, but additionally we also 

observed that the hemostatic process was prolonged compared to a control with successive 

growth and embolization phases. 

In conclusion, these findings identified a central role of fibrin in the arrest of the 

hemostatic response, by limiting platelet adhesion to the plug. We propose that, in addition to 

its very well-established role in stabilizing the clot, fibrin is also instrumental in regulating the 

hemostatic response by turning off the physiological response of plug formation and preventing 

further platelet incorporation. 
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After vascular injury, platelets adhere, activate and aggregate at the injury site to form 

a hemostatic plug that limits bleeding. They are also involved in arterial thrombosis, which is 

the cause of serious pathologies such as myocardial infarction or ischemic stroke. Arterial 

thrombosis is treated by antiplatelet drugs which have shown their effectiveness in markedly 

reducing the mortality rates of thrombotic pathologies. However, the main limitation of these 

treatments is the increased risk of bleeding limiting their use in some clinical situations, such 

as ischemic stroke, for which the risk of hemorrhagic transformation is high and can have 

deleterious consequences for the patient. Identifying the specific features of hemostasis and 

arterial thrombosis in terms of molecular mechanisms or rheological conditions could provide 

valuable information to reduce the risk of bleeding while maintaining the antithrombotic effect. 

 

To address this question, the objective of my thesis project consisted in: i) the 

characterization of flow conditions occurring after lesion of a healthy vessel; ii) the 

identification of the importance of platelet integrin α5β1 in hemostasis and arterial thrombosis; 

iii) the evaluation of the role of fibrin in the termination of the hemostatic response. 

 

In the 1,800s the physician Rudolf Virchow described three key features of intravascular 

venous thrombosis, i.e, endothelial injury, stasis of blood flow and hypercoagulability, which 

later were expanded to recognize the importance of blood flow in the regulation of hemostasis 

and arterial thrombosis. The parameter most commonly used to characterize blood flow is the 

shear rate. In intact vessels, the wall shear rate (WSR), which is the velocity gradient near the 

vessel wall, ranging from about 100 s-1 in veins up to 2,000 s-1 in small arterioles. In diseased 

vessels, in which an atherosclerotic plaque forms a severe stenosis, the WSR can reach several 

10,000 s-1. Since the high shear found at the apex of a plaque is recognized as a specific feature 
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of thrombosis, targeting high shear has been proposed as an innovative strategy to selectively 

block thrombosis with a minor impact on hemostasis, thereby potentially avoiding bleeding 

complications. A major caveat of this paradigm and the anti-thrombotic strategy derived from 

it, is that the current knowledge of blood flow parameters occurring in vivo, are based on intact 

vessels in homeostatic conditions, and the rheological conditions taking place in the wound 

after vessel wall rupture have never been measured experimentally. The main finding of my 

first project is that various types of lesions in small and large mouse and human blood vessels 

result in extremely high shear rates at the edge of the wound where hemostasis occurs. The data 

demonstrate that shear rates reached during hemostasis are much greater than those occurring 

in intact vessels and currently proposed as being relevant for hemostasis. These results 

challenge the belief in the field that hemostasis is a process that depends on low and 

intermediate shears (< 2,000 s-1), while occlusive thrombosis in regions of plaque occurs under 

high shear. This paradigm shift in the field questions the postulate that targeting thrombus 

formation at high shear is a specific anti-thrombotic approach. 

 

Hemostasis is taking place in many distinct settings including after injuries resulting in 

internal bleeding and resulting in bruising, or after open injuries responsible for external 

bleeding with blood leaving into the external environment. Any type of bleeding is induced by 

a pressure drop between two points of flow, i.e. inside the circulation and outside the vessel. 

My first project was focused on traumatic injuries resulting in external bleeding. In this situation 

the bleeding is induced by pressure drop occurring between the blood circulation system and 

the atmosphere, with a drop evaluated at about 600 mmHg (Δ P≈600 mmHg). By comparison, 

internal bleeding is induced by a pressure drop appearing between the surrounding tissues and 

the circulation system that should be much lower due to tissue compression (Δ P≈10-74 mmHg) 

(Ashton, 1975).  Our study reports the occurrence of high shear rates in the case of external 
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bleeding, while blood flow levels taking place during internal bleeding are still unknown and 

require further investigation. It would have been very interesting to obtain results by using, for 

example, a laser-induced model adapted to induce a perforating injury of small vessels resulting 

in internal bleeding and study the effect of active closure of small arterioles under vasomotor 

tone and passive collapse of soft-walled capillaries. 

 

In our study, we proposed that external bleeding occurs under two different flow 

regimes: “constant pressure” for small injuries (< 30 μm) and “constant flow” for big injuries 

(> 150 μm). The occurrence of a “constant flow” regime was determined experimentally as it 

was possible to generate a large wound in the vessel wall by using a needle. However, a 

limitation of my study is that it was not possible to provide experimental evidence that for small 

injuries the shear rate relies on pressure drop – the “constant pressure” regime. We could 

unfortunately not perform smaller injuries due to technical limitations and generate such data. 

Other studies faced similar issues, notably a publication using an experimental hemostasis 

model based on laser injury of the saphenous vein where the injury diameter was 48 μm, 

demonstrating the high challenge to perform injuries smaller than 30 µm in diameter which is 

necessary to switch to another flow regime for this vessel (Getz et al., 2015). A detailed analysis 

of fluid dynamics for tiny injuries would be definitely interesting and important but requires 

development of new technical approaches. 

 

Based on observation of the presence of elevated shear at the edge of a wound in healthy 

vessels, we can now hypothesize that targeting high shear will probably not be devoid of 

bleeding complications after traumatic injuries (falls, trauma, surgery, etc) and, therefore, 

would not represent a specific antithrombotic strategy. However, whether there is a rheological 
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parameter which could be used as a specific antithrombotic target remains an open and 

attractive question. One of them could be an excessive elongation flow which is known to be 

thrombogenic due to its efficiency in unfolding vWF and promoting platelet adhesion and 

activation. In our study, we also observed occurrence of increased elongational flows in injured 

healthy vessels when compared to values in intact vessels. Upcoming studies should identify 

the levels of elongational flows occurring in hemostatic and thrombotic settings and define the 

threshold of elongational flows precipitating vWF unfolding to determine whether this 

parameter can discriminate such situations. Another potential flow parameter discriminating 

hemostasis from thrombosis is turbulence which does not occur in the setting of hemostasis but 

could take place in the post-stenotic areas in diseased arteries. A detailed analysis of fluid 

dynamics in the setting of thrombosis would be definitely interesting and important to define 

turbulent conditions an elongational flow conditions found in regions where thrombosis is 

exacerbated. 

 

Antiplatelet agents used in the clinic mainly target the platelet activation and 

aggregation stages, which is the case of aspirin, P2Y12 inhibitors and integrin αIIbβ3 blockers. 

Another option of antiplatelet treatment would be to develop drugs targeting the interaction of 

platelets with the extracellular matrix in order to interrupt the initial step of the thrombotic 

process. These platelet-extracellular matrix interactions notably involve integrins of the β1 

family (Bergmeier and Hynes, 2012). Among these are the integrins α2β1 and α6β1 which have 

already been proposed to participate in experimental thrombosis, and whose involvement in 

hemostasis appears modest, making them potentially interesting new antiplatelet targets (He et 

al., 2003; Schaff et al., 2013). At the beginning of my PhD, the importance of integrin α5β1 in 

hemostasis and experimental thrombosis had never been evaluated, and became the aim of my 

second project. 
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The bleeding time of mice not expressing the α5β1 integrin specifically at the platelet 

level was not modified. The same results were published for mice deficient for α2β1 and α6β1 

in which bleeding times were normal (He et al., 2003; Schaff et al., 2013). Interestingly, the 

mice deficient for the three β1 integrins were described to present an increased bleeding time 

which suggested that these three receptors are important to ensure hemostasis, but present an 

important functional compensation. It also suggested that blocking only one of these receptors 

in the setting of a pharmacological antithrombotic approach might reduce arterial thrombosis 

for some of them and potentially be devoid of bleeding risk (Petzold et al., 2013). 

 

Our findings indicate that the platelet integrin α5β1 plays a key role in the adhesion, 

activation and aggregation of platelets in vitro on a surface of fibrillar cellular fibronectin. 

However, our study did not show any major role of this integrin in models of experimental 

thrombosis in vivo. A potential explanation for this apparent discrepancy between the results 

obtained in vitro and in vivo, could rely in different rheological conditions. Indeed, while the 

blood perfusion in vitro over fibronectin was performed at 300 s-1, it is well known that WSR 

found in mouse arteries are 5 to 10-times higher (Panteleev et al., 2021). Unfortunately, using 

such elevated WSR in vitro was not achievable as adhesion no longer occurred onto fibrillar 

fibronectin above 1,000 s-1, which is in agreement with previously published studies (Maurer 

et al., 2015). At the molecular level, this lack of adhesion is most likely explained by the fact 

that immobilized fibronectin very inefficiently adsorbs plasma vWF compared to collagen. It 

would have been very interesting to obtain results at high wall shear rates in vitro by using, for 

example, a mixed matrix of vWF and cellular fibrillar fibronectin or by covering the flow 

chamber surface with cell-derived extracellular matrix. This matrix could be produced by 
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immortalized fibroblasts and it is rich in fibrillar fibronectin which supports platelet adhesion 

even under high shear rates (Maurer et al., 2015). 

 

Our results indicate that α5β1 alone does not play a central role in experimental 

thrombosis, and one could be tempted to conclude that α5β1 is less important than the two other 

β1 integrins, α2β1 and α6β1, which have both been shown to contribute to experimental 

thrombosis (He et al., 2003; Schaff et al., 2013). This hypothesis is also supported by the fact 

that we have studied PF4Cre-6-deficient mice in the same experimental thrombosis models as 

PF4Cre-5-deficient mice and only observed a defect in the former strain (Schaff et al., 2013). 

We should nevertheless remain cautious as the injuries applied in the different experimental 

models might not expose sufficient amounts of fibronectin and therefore not favor the 

observation of a defect in PF4Cre-5-deficient mice. Moreover, in patients, arterial thrombosis 

generally occurs in a diseased vessel after rupture of an atherosclerotic plaque which is rich in 

fibronectin (Rohwedder et al., 2012). Therefore, an analysis of thrombus formation in a plaque 

rupture model in mice deficient for α5β1 integrin would have been definitely interesting and 

important to fully estimate the role of this integrin in vivo. To reproduce atherosclerosis, α5β1 

deficient mice could be crossed with mice deficient in apolipoprotein E (ApoE) and the plaque 

could be ruptured by a needle or ultrasound to induce thrombosis (Hechler and Gachet, 2011a). 

Finally, our observations result from mouse studies, and it remains possible that the role of 

α5β1 might be more important in humans.  

 

Platelet plug formation is a dynamic process which could be divided into three stages: 

the transient build-up of a sub-occlusive thrombus, which is followed by disaggregation and 

ends up in the stabilization of a residual patch. Such a profile has been observed in numerous 
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in vivo studies in large and small vessels under different types of injuries (Denis and Wagner, 

2007; Nonne et al., 2005; Smith et al., 2012; Tang et al., 2016; Wang et al., 2017). While the 

process of platelet adhesion, activation and aggregation at the site of injury is very well 

understood, the mechanism limiting extensive platelet aggregation to switch off the process 

remains fully unknown, which became the aim of my third project. 

 

Using intravital microscopy of laser-induced cremaster muscle arteriole thrombosis, the 

group of Lawrence Brass has reported that a thrombus is heterogeneous in composition with a 

core of highly activated platelets close to the site of injury, surrounded by a shell of less 

activated platelets (Stalker et al., 2013). The core region is composed of tightly packed platelets 

and is the primary site of thrombin activity and fibrin deposition. A limitation of this view is 

that it is a snapshot at one given time point and does not take into account the dynamic aspect 

of thrombus formation which is very important. Our findings took into account the dynamics 

of thrombus formation and focused on the end stage when the plug formation ends. Our results 

indicate that the arrest of thrombus growth appeared after embolization of the shell, when only 

a fibrin-rich core was exposed to the blood. We propose that this core is covered with a fibrin 

layer, which exhibits a protective function, plays an important role in the passivation of the 

thrombus and promotes thereby the arrest of the hemostatic response. 

 

In our study, we provided evidence for the formation of a fibrin layer on the thrombus 

surface in needle- and FeCl3-injury models in the carotid artery formed under arterial blood 

flow conditions. The limitation of our study is the lack of evidence of fibrin layer formation 

under venous blood flow conditions. The group of Rosen E. demonstrated that fibrin was a main 

component of the stabilized thrombus area by using a fibrin(ogen) antibody in a laser-induced 
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injury model of the mesenteric venule (Kamocka et al., 2010). However, there is no other study 

of stabilized (after embolization) thrombus composition under venous conditions. Therefore, 

an analysis of fibrin distribution in a remaining thrombus after vein injury would have been 

definitely interesting and important to fully estimate the role of fibrin in the arrest of thrombus 

growth. 

 

Our results indicate that the fibrin layer covering the thrombus switches off the process 

of thrombus growth. However, we did not fully investigate the mechanism of this process. An 

obvious explanation of the arrest of thrombus growth is that the fibrin layer is poorly adhesive 

and reactive so that when platelets adhere to it, they do not become fully activated and do 

therefore not represent a nucleation site for further growth.  Another explanation could be that 

fibrin physically or chemically traps thrombin within the thrombus limiting its diffusion and 

avoiding it to sustain platelet activation and enhance coagulation. Therefore, in vivo analysis of 

thrombin diffusion within the thrombus during its growth could be interesting for further 

investigation of the mechanism of the arrest of the hemostatic response. 

 

Under hemostatic conditions, the platelet plug should be formed as quickly as possible 

to limit blood loss after injury. Depending on the injury severity the plug geometry has to be 

different. Indeed, an occlusive aggregate is required after the rupture of small vessels while a 

non-occlusive plug has to be formed in case of smaller injuries, when the circulation still 

persists, but blood is pouring out of the vessel. This is essential to avoid an excessive response 

which could result in unnecessary occlusion in vessels presenting modest injuries, thereby 

avoiding reduction of blood supply to downstream tissues. Our study hypothesized that this 

process of arrest of hemostasis is finely tuned by fibrin. If fibrin indeed stops the hemostatic 
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process one could wonder how a plug can become occlusive in the case of a vessel transection. 

Interestingly, we observed that in such a case, the thrombus forming is very rich in platelets but 

does not contain significant amounts of fibrin, which explains its ability to fully grow in the 

lumen. It remains to be determined why after vessel transection, no significant levels of fibrin 

are formed, which will require further investigations.  

 

To conclude, my work is part of a global perspective of characterizing the role of fibrin 

and platelet receptors in hemostasis and thrombosis, which could not only help to better 

appreciate and discriminate hemostasis from thrombosis, but also open new avenues for specific 

antithrombotic strategies. My work indicates that targeting high shear rates is not a specific 

antithrombotic strategy since high shear also occurs in injured healthy vessels. In my second 

study focused on integrin α5β1, I could show that this integrin plays an important role in platelet 

accumulation on fibronectin, but not in experimental thrombosis in mice, which suggests that 

this receptor might not be a relevant antiplatelet target. Finally, I identified of a role for fibrin 

in turning off the physiological response of plug formation and preventing further platelet 

incorporation. 
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L’adhérence, l’activation et l’agrégation des plaquettes assurent l’hémostase, mais sont 

également à l’origine de la thrombose artérielle responsable de pathologies ischémiques graves. Toutes 

les étapes des deux processus sont contrôlées par le flux sanguin dont les paramètres diffèrent selon le 

contexte (patho)physiologique. L'objectif de ce travail a été de mieux comprendre les mécanismes 

impliquant les plaquettes et la fibrine en hémostase et en thrombose artérielle et de caractériser les 

conditions rhéologiques de l'hémostase. L'identification de taux de cisaillement élevés au niveau d’un 

site de lésion a élargi la gamme de paramètres rhéologiques physiologiques trouvés dans un contexte 

hémostatique. L'utilisation de souris déficientes en intégrine α5β1 montre le caractère modeste de cette 

intégrine dans l'hémostase et la thrombose artérielle. Enfin, l'identification du rôle de la fibrine dans 

l'arrêt de la croissance du clou hémostatique a montré sa capacité à désactiver la réponse physiologique 

et à limiter le recrutement de plaquettes. 

Mots clés : taux de cisaillement, hémostase, intégrines, plaquettes, fibrine, thrombose artérielle  

 

 

 

The role of platelets, fibrin and hemodynamics in hemostasis 

and arterial thrombosis 

 

Platelet adhesion, activation and aggregation ensure hemostasis but can also lead to arterial 

thrombosis inducing serious ischemic pathologies. All steps of both processes are controlled by blood 

flow whose parameters differ depending on the (patho)physiological context. The aim of this work was 

to improve our understanding of the mechanisms implicating platelets and fibrin in hemostasis and 

arterial thrombosis and to characterize the rheological conditions occurring during hemostasis. 

Identification of elevated shear rates after vessel lesion expanded the range of physiological rheological 

parameters relevant to hemostasis. The use of α5β1 integrin deficient mice shows the modest role of this 

integrin in hemostasis and arterial thrombosis. Identification of a role for fibrin in the arrest of platelet 

plug formation confirmed its ability to turn off the physiological response by preventing further platelet 

incorporation. 
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