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Introduction

Revolutions of humankind were always preceded by revolutions in communication between human
beings. More than 3500 years B.C., we started encoding our emotions and ideas into symbols that we
called writing. It allowed transmission of information beyond generations. The invention of printing
around 1450 popularized writing and made it accessible to the masses. There is no doubt that these two
events had a tremendous impact on human civilization. Communications have recently reached a new
phase with the emergence of communication networks such as the Internet. By encoding information
into 0s and 1s and constructing layers of compilers to process it into hardware such as transistors and
cables, we are now able to transmit information quasi-instantaneously between two points of the Earth.
We are only witnessing the dawn of the revolution it will imply on our civilization. Yet we are already
preparing the next phase in information transmission, this time again making use of one of the most
recent technologies that we mastered: quantum information.

Quantum Information consists in encoding data into quantum mechanical systems, such as an atom
or a photon. Particles indeed have features that cannot be reproduced at our scale. Even if we do not
fully understand why particles are behaving this way, we have understood and found methods to exploit
their properties to our advantage. Since the discovery of quantum mechanics in the mid-1920s by Niels
Bohr, Erwin Schrödinger, Werner Heisenberg, Max Born, Paul Dirac and others, we have found many
interesting applications going beyond what we can perform with classical systems. Quantum information
can speed up tasks in computation, enhance the precision of our measurements, give better security
properties and move the frontiers of what we can achieve in complex systems simulations. The full range of
these quantum information applications is not known yet. In this thesis we focus on quantum communica-
tions and more particularly in the establishment of a global quantum network called the quantum Internet.

The quantum Internet promises are numerous: it should enhance current classical networking ca-
pabilities and allow some new functionalities beyond what is achievable with today’s world wide web
capabilities. It should help with the design of synchronized clock networks and push current boundaries
in metrology. It should allow secure delegation of computation to distant machines, private electronic
voting, unforgeability of money and many more interesting applications that will have an impact on
our daily lives. The range of these new applications is still to discover and it will undoubtedly lead to
groundbreaking changes for our civilisation. Who could have predicted that we would be able to watch
movies, order food, access journals and create social networks when the first classical networks were
established in the 60s ?



There are however many obstacles towards the establishment of a large scale quantum network.
Quantum devices are still at a relatively early stage of development and do not meet yet the requirements
to create long distance quantum communication links or store quantum information for a long time.
Research communities are organizing to construct standards for quantum communications that will help
with the design of efficient hardware and network architectures. Experimentalists and theoreticians are
joining their efforts to understand what functionalities can be done as of today through simulations
and implement them in real-life scenarios. The quantum Internet community is very active and growing.
The tasks are now well defined and researchers can focus on finding near-term or long-term applica-
tions, on hardware optimization or construction, or on establishing long-distance communication routines.

This thesis is written in the context of quantum Internet development. We try here to contribute to
the community by discussing some security concerns and by providing detailed models and simulation
studies of quantum internet architectures and protocols. We also try to give a comprehensive introduction
to the quantum Internet that encompasses some of its most important aspects. It hopefully highlights
important parameters and issues to resolve, while showing what could be realisable as of today.

The thesis is organised as follows: in Chapter 1 we first introduce the necessary elements of quantum
information for the rest of the thesis. We also introduce some notions of classical networking and define
the goals and challenges of the quantum Internet. In Chapter 2, we expand on some examples of quantum
Internet functionalities and protocols, first focusing on bipartite applications and then on multipartite
applications. Then in Chapter 3, we take an abstract step back and examine specific security properties
of a protocol that is used as a building block in many other protocols. In the rest of the thesis, we
model and simulate different communication settings in order to optimize the protocols and find the
best architectures to go forward. In Chapter 4, we expand on long-distance communication between two
parties using NV centers as basic node hardware and performing so-called quantum repeater protocols.
We investigate different strategies and analyze the effect of imposing a maximal number of attempts on
the quality of the quantum link. In Chapter 5, we design a metropolitan quantum network architecture,
the Quantum City, whose goal is to be realisable as soon as possible while being scalable, adaptable to
future developments and minimizing hardware cost for end users. We also model and simulate different
protocols in the Quantum City to get a better idea of what could be achievable as of today. Finally,
in Chapter 6, we explore long-distance quantum communication and more particularly satellite-based
communication. We design and model communication scenarios between two Quantum Cities separated
by hundreds of kilometers. We perform simulations of a few use cases of interest, with today’s capabilities.
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Introduction

For over a century, we have been puzzled by the non-intuitive properties of quantum mechanics.
Macroscopic systems have fixed properties and their evolution in time and space can be precisely
computed given their initial conditions. When we start looking at systems at the quantum scale, typically
the size of a photon or an atom, we see that they behave differently. Particles have wavelike features that
can be described using the Schrödinger equation. As a consequence, their properties, such as their position
or their spin at a specific time, are not fixed but rather probabilistic. They can be in superposition
of different values or share correlations that can not be explained with classical theory. Even more
strange, when we measure these particle features, they are fixed to a specific value. These surprising and
sometimes counter intuitive properties are still an enigma for many scientists but their mathematical
description is now well known. In fact, we know them so well that we can use them to encode and
process information with particles to achieve capabilities beyond what is possible with classical systems.
The range of these new applications is still unknown. More and more exciting possibilities arise as our
control on quantum systems grows.

One area where encoding information in quantum systems enhances today’s capabilities is communi-
cation, and more particularly communication networks. By creating large networks of distant quantum
devices and allowing them to exchange quantum data, we can envision several enhancements to today’s
classical Internet that should impact our daily lives.

Outline: In this chapter, we introduce elements of quantum information theory and classical network
theory that we will use throughout this thesis. We first recall, in Sec. 1.1, the basics of quantum
information such as single-qubit and multi-qubit systems as well as some common operations on them.
We also go over a few physical systems that will be used in further chapters of this thesis. Then, in
Sec. 1.2, we introduce premises of today’s classical communications: the OSI model used in the creation
of the classical Internet and some classical security definitions. Finally, in Sec. 1.3, we dive into the main
focus of this thesis: quantum networks and the Quantum Internet. We give a definition, highlight the
main challenges and present some of the most recent advances.
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CHAPTER 1. INTRODUCTION

1.1 Quantum information

1.1.1 Basics of quantum information

Quantum information is a novel way to manipulate information. It uses the fascinating properties of
quantum mechanical systems to change the way information is handled at its core by computing devices.
Information is no longer encoded in bits but in quantum bits or qubits. Qubits aim to represent two-level
physical quantum systems such as the polarization of a photon or the spin of an electron. These two
levels are represented using the Dirac notation with the so-called ket |0⟩ and |1⟩. Just like bits, qubits
are an abstract way to talk about information. In this section, we give a brief introduction to some
mathematical definitions and tools in quantum information that will be of use in the rest of this thesis.
We refer the interested reader to [1] for more precisions.

In general, pure quantum states are unit vectors in a Hilbert space H of some dimension. Qubits are
pure quantum states of two dimensions, hence they are normalized vectors in a two-dimensional Hilbert
space H2 (see Eq. 1.1 ). They lie on the surface of a sphere that we call the Bloch Sphere (see Fig. 1.1).

(1.1) |ψ⟩ = α |0⟩ + β |1⟩

with |0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
, (α, β) ∈ C2 and |α|2 + |β|2 = 1. When α or β is equal to 0, then |ψ⟩ is

equivalent to a bit in the state 0 or 1. When this is not the case, we say that |ψ⟩ is in superposition
of 0 and 1. Superposition is the first major difference between classical bits and qubits. One of the
postulates of quantum information is that any qubit in the form of Eq. 1.1 is a valid quantum system.
Usual qubit states are |0⟩, |1⟩, |+⟩ = 1√

2 (|0⟩ + |1⟩) and |−⟩ = 1√
2 (|0⟩ − |1⟩), the last two representing

the equal superposition between |0⟩ and |1⟩.

Figure 1.1: Representation of an arbitrary qubit on the Bloch Sphere.

The set {|0⟩ , |1⟩} is a natural basis for the qubit Hilbert space H2, and we will denote it as the
computational basis. The set {|+⟩ , |−⟩} is also a basis of H2 that we denote as the diagonal basis.

2



1.1. QUANTUM INFORMATION

Qubit manipulation is done through linear unitary trace-preserving matrices that rotate the qubit on
the Bloch sphere. In a circuit-based model in which each qubit is modeled by a wire going from left to
right, we call these matrices quantum gates. Quantum gates are used to manipulate information in order
to perform algorithms taking quantum states as input. The usual set of gates that we use to design
protocols is represented by the Pauli matrices and the Hadamard matrix:

I :=
(

1 0
0 1

)
, X :=

(
0 1
1 0

)
,

Z :=
(

1 0
0 −1

)
, Y :=

(
0 −i
i 0

)
,

H := 1√
2

(
1 1
1 −1

)

The Pauli-X gate (also called bit-flip) is the quantum analog of the classical NOT gate: it takes the
|0⟩ state to the |1⟩ state. The Pauli-Z (also called phase-flip), Pauli-Y and Hadamard gates however
have no classical analog. The Hadamard gate is the transition matrix between the computational basis
and the diagonal basis: it takes the |0⟩ state to the |+⟩ state.

While classical bits can only have two values 0 and 1, qubits can have infinitely many values, namely
all the vectors of the form of Eq. 1.1 with norm 1. However, this does not mean that an infinite amount
of data can be stored in a qubit. In fact, very little information is accessible for an external observer.
The information an observer can extract from a quantum state is defined by the way it is measured.
Moreover measuring a quantum system inherently alters it, and sometimes even completely destroys
it. This measurement process is another major difference between classical and quantum systems. The
interpretation of quantum measurements gives rise to debates in the community, leading to different
interpretations of the fundamental nature of quantum systems that we will not detail here.

In general, measurements are defined by a set of measurement operations {Mn} that project quantum
states on an axis or into a subspace. This set defines a measurement basis that determines the possible
outcomes of the measurement. Two quantum states prepared identically can yield different measurement
outcomes depending on the measurement basis that is chosen. Actually, even for the same measurement
basis, the outcome of a measurement is probabilistic. When a measurement is performed on a state |ψ⟩,
the probability of getting an outcome n is given by the Born rule (see Eq. 1.2). When this happens, the
state is modified as shown in Eq. 1.3.

(1.2) Prob(n, ψ) = ⟨ψ|M†
nMn |ψ⟩

(1.3) |ψ⟩ outcome n−−−−−−→ Mn |ψ⟩√
⟨ψ|M†

nMn |ψ⟩

3



CHAPTER 1. INTRODUCTION

For qubit states, usual measurement basis are the computational basis given by {|0⟩ ⟨0| , |1⟩ ⟨1|} and
the diagonal basis {|+⟩ ⟨+| , |−⟩ ⟨−|}. As an example, the measurement in the computational basis of a
qubit state |ψ⟩ in the form of Eq. 1.1 yields the outcome 0 with probability |α|2 and the outcome 1 with
probability |β|2. If the outcome is 0, we say that |ψ⟩ collapses into the state |0⟩.

In both classical and quantum physics, some objects are defined through statistical mixtures. For
example a system can be described with the sentence: "There is a probability p that the system is in
the state A and a probability (1 − p) that the system is in the state B.". In quantum physics, we talk
about mixed quantum states as opposed to pure quantum states. Mixed quantum states correspond
to a statistical mixture of states |ψi⟩, each appearing with some probability pi. The mathematical
representation for mixed states is the density matrix representation, given by Eq. 1.4. It is a very useful
tool in quantum information as the eigenvalues and eigenvectors of a density matrix exhibit important
properties of a quantum state. Since quantum states cannot be known before we measure them, mixed
states can be a useful representation of the information contained in a system at different steps of a
quantum process.

(1.4) ρ :=
∑

i

pi |ψi⟩ ⟨ψi|

The transfer of quantum information is usually defined through quantum channels. They are maps
that generalize the concept of quantum gates defined above to the context of communication. Generally,
quantum channel N maps a quantum state ρ in some Hilbert space HA into another Hilbert space
HB. Since it should preserve the normalization of state, it is a trace-preserving map meaning that
Tr(ρ) = Tr(N (ρ)). For N (ρ) to be a valid quantum state, we also require that quantum channels are
completely positive maps. As we will see in this thesis, quantum channels are useful for representing loss
and noise in quantum operations.

An important property of a quantum system is its fidelity with respect to another known system.
It is a measure of how close two quantum states are to each other. Fidelity expresses the probability
that a state passes a test identifying it as the other. In general, the fidelity of a state ρ = |ψρ⟩ ⟨ψρ|
with respect to another state σ = |ψσ⟩ ⟨ψσ| is given by the trace of the product of the density matrices:
F (ρ, σ) = (tr

√√
ρσ

√
ρ)2. For pure states, the fidelity reduces to the squared overlap between the state

vectors F (ρ, σ) = | ⟨ψρ|ψσ⟩ |2. Good fidelity of a physical quantum system with respect to the ideal state
that it is expected to represent is a crucial parameter for quantum information processing as we will see
in Chap 3.

We have defined some mathematical tools to describe and manipulate a single qubit. Encoding
information in a two-level degree of liberty of a quantum system to create single-qubit systems is the
basic building block of quantum information processing. However, most interesting phenomena happen
where many of these systems are interacting.
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1.1.2 Multi-qubit systems

To describe a quantum system with more than one particle we use the tensor product. It is a bilinear
map

⊗
going from two Hilbert spaces HA and HB of respective dimension m and n to a Hilbert space

of dimension m× n usually denoted HA

⊗
HB . For example a two-qubit system where the first qubit

is in the state |0⟩ and the second in the state |1⟩ is the state |0⟩
⊗

|1⟩ that we commonly write |01⟩
for simplicity. The general form of a two-qubit system is given in Eq. 1.5. It lies in the Hilbert space
H4 = H2

⊗
H2 of dimension 4 whose basis is given by the tensor product of the vectors of the basis of

each subspace: {|00⟩ , |01⟩ , |10⟩ , |11⟩} .

(1.5) |ψ⟩ = α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩

with |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. As in the single qubit state case, these coefficients correspond
to the probability of getting each possible outcome, 00, 01, 10 or 11 when simultaneously measuring the
two qubits in the computational basis. Two-qubit states can also be written using the density matrix
formalism. Each part of the system can then be investigated using the partial trace operation. The partial
trace outputs the reduced density matrix, that represents the information one can have given only a
part of the system without considering the rest (e.g. only one particle in the case of a two-particles system).

Any state of the form of Eq. 1.5 is a valid quantum state that can be created in a quantum system
in the laboratory. When it can be expressed as the tensor product of single qubit states, it is said
to be separable. When it cannot, we say that the state is entangled. Entanglement is yet another
fascinating property of quantum theory that arises with multi-qubit systems. When a state is entangled,
the two particles forming it cannot be described independently. Measuring the different parts of an
entangled state will give outputs sharing correlations that sometimes cannot be explained with classical
theory. Indeed, classical theories based on local hidden variables that explain the correlations between
measurements outputs give rise to inequalities such as the famous Bell inequality [2]. Entanglement
between two separate systems is a necessary resource to violate a Bell inequality in a test (although the
converse is not always true). Experimental results show violation of this inequality in physical systems
[3], which demonstrates the existence of entanglement in nature.

Examples of entangled two qubits state are the Bell state or EPR pairs:

∣∣ϕ+〉 := |00⟩ + |11⟩√
2

,
∣∣ψ+〉 := |01⟩ + |10⟩√

2
,

∣∣ϕ−〉 := |00⟩ − |11⟩√
2

,
∣∣ψ−〉 := |01⟩ − |10⟩√

2
,

These states are useful in many protocols as we will see in the next chapter. They are maximally
entangled as the reduced density matrix on either system is maximally mixed. They can also be used
as a measurement basis for the joint measure of two qubits. This is called a Bell State Measurement
(BSM), it projects the state of the two qubits into one of the four Bell states.

5



CHAPTER 1. INTRODUCTION

Operations on multi-qubit states are also done with unitary matrices. When an operation is done
independently on each part of a multi-qubit system, it is described using the tensor product of the
unitary matrices that describe each independent operation. For example, applying a bit-flip gate on one
qubit of a two-qubit system and doing nothing to the second qubit is described by the matrix X ⊗ I.
However, operations on two-qubits systems can be based on the interaction between the two qubits. A
common example of such two qubits operation is the CNOT operation. It corresponds to conditional
statement in classical algorithmic: if the first qubit is in the state |1⟩ then the second qubit is flipped,
otherwise nothing happens. The CNOT gate entangles the two qubits it is applied to, and it can be
found in many protocols and algorithms.

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The construction of the two-qubit system generalizes to quantum states with an arbitrary finite

number of qubits. This means that the space of possible quantum states grows exponentially with
the number of qubits. For the sake of simplicity we will write the n-qubit state |0⟩

⊗
|0⟩ ...

⊗
|0⟩ as

|0⟩⊗n. Multipartite states can also be entangled when they cannot be expressed as tensor products of
subsystems, although the classification of multipartite entangled states is richer than in the bipartite
case. In multipartite entanglement, apart from fully separable states and fully entangled states, there
also exists the notion of partially separable states [4] which we will not detail in this thesis.

One multipartite entangled state that will be of great importance in this thesis is the Green-
berger–Horne–Zeilinger (GHZ) state [5] which, for n ≥ 3 qubits, is given by Eq. 1.6. It is a necessary
resource for many multiparty network protocols. Unfortunately the creation of this state in the laboratory
is relatively hard as we will detail in next chapters.

(1.6) |GHZn⟩ := |0⟩⊗n + |1⟩⊗n

√
2

Finally, an important result in quantum information is the no-cloning theorem. It states that it is
impossible to create an identical copy of an arbitrary unknown quantum state. It is a direct consequence
of the measurement principle: once we measure a quantum system, we modify it and, hence, lose some
information about it. As we will see later, it has important consequences on quantum communications
and it is a useful tool for the security of quantum protocols. The no-cloning theorem can be proven simply
using the following proof: let us imagine a quantum channel N that copies perfectly a quantum state into
another state initially in the state |0⟩, i.e. that for all |ψ⟩ in the form of Eq. 1.1, N (|ψ⟩ ⊗ |0⟩) = |ψ⟩ |ψ⟩ =
α2 |00⟩ +αβ |01⟩ + βα |10⟩ + β2 |11⟩ . Then we have that N (|0⟩ ⊗ |0⟩) = |0⟩ |0⟩ and N (|1⟩ ⊗ |0⟩) = |1⟩ |1⟩.
Thus, by linearity of the quantum channel, N (|ψ⟩⊗|0⟩) = N (α |0⟩⊗|0⟩)+N (β |1⟩⊗|0⟩) = α |00⟩+β |11⟩
which is not equal to |ψ⟩ |ψ⟩. This proves that it is not possible to construct a valid channel that would
copy any arbitrary quantum state.

6



1.1. QUANTUM INFORMATION

1.1.3 Physical supports for quantum information

As we mentioned before, quantum information is the encoding and processing of information in quantum
systems. One particular issue with quantum objects is that they are subject to a phenomenon called
decoherence. Quantum objects cannot be completely isolated from their environment, otherwise we could
not even manipulate them. Due to their interaction with the environment, quantum objects are known
to lose their information with time. This information loss process is called decoherence. Many research
efforts are dedicated to creating quantum memories that would be able to maintain the coherence of a
quantum state for a long time. It is not yet known which physical support is the most appropriated
for large scale quantum information processing. Several physical supports for quantum information are
under study by the research community. It is likely that quantum processing devices will work in hybrid
mode, with different quantum systems interacting together. Here we give a non-exhaustive list of ways
to encode data into quantum systems and detail the ones that will be of use in this thesis.

Photonic qubits are one of the most studied supports for quantum information as they have the
non-negligible advantage of being resistant to decoherence. Coding information in a degree of freedom of
a particle of light is moreover convenient for transporting this information into optical fibers or free
space as we will detail in later chapters of this thesis. The degrees of freedom that are most used in
single-photon information processing are the polarization of the photon, its path or its arrival time. Each
exhibits quantum properties that have different pros and cons. Creating single photons in practice is done
using, for instance, weak laser pulses or a phenomenon called Spontaneous Parametric Down Conversion
(SPDC) that we we will detail in Chapter 5. Measurement of single photons is done using chains of
reactions involving supraconducting detectors that have very high efficiency but necessitate a cryostat to
work. Light pulses can also be used to encode information in the quadratures of its electromagnetic field.
This is called Continuous-Variable (CV) encoding of information as the value of the quadratures can be
continuous. These quadratures can be accessed using so-called homodyne and heterodyne measurements.
We will not detail much on this as we will not be using the CV encoding in this thesis. Photonic qubits
are mostly used for communication between distant nodes as for example in [3, 6] but there are also
proposals to use them for computation purposes [7].

Qubits can also be encoded in solid-state spin systems such as nytrogen-vacancy (NV) center in a
diamond structure (see Fig. 1.2). This defect center is a prime candidate for a quantum communication
network due to its packaged combination of a bright optical interface featuring spin-conserving optical
transitions that enable high-fidelity single-shot readout [8] and individually addressable, weakly coupled
13C memory qubits that can be used to store quantum states in a robust fashion [9, 10]. Moreover,
second-long coherence times of an NV electron spin have been achieved [11]. Specifically, the optical
interface of the electron spin allows for the generation of spin-photon entanglement, where the photonic
qubits can then be transmitted over large distances. The carbon nuclear spin acts as a long-lived memory,
but can be accessed only through the interaction with the electron spin. Information encoded in the
electron spin can be swapped to the carbon qubit and joint measurement such as BSM can be done
jointly on the two systems. In Chapter 4, we detail how to model the qubits in NV centers and how to
use them to perform communication protocols.
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Figure 1.2: Schematic of an NV center in a diamond. It contains two addressable qubits: the spin of an
electron with an optical interface coupled to a 13C memory qubit.

Other so-called defect centers can be used in the same way to encode quantum information such
as Silicium vacancy centers [12] or rare-earth ions [13]. Ions can be trapped into arrays of individually
addressable qubits however there exists some difficulties in scaling up these systems [14]. Atoms can
also be used collectively to enhance their interaction with photons in a cavity, thus creating so-called
atomic ensemble states that can be used for computation [15] or communication [16]. Other solutions
that have gained a lot of visibility due to their performances are semiconductor quantum dots in GaAs
system [17] or in Silicon (see [18] for a review). Finally, superconducting qubits that make use of the
Josephson junctions are also good candidates for quantum computing devices [19]. This list is of course
not exhaustive, but it shows that until now, no standard has emerged on the physical implementation of
future quantum devices: there are many different proposals in creating physical qubits. As we will not use
them in the rest of this thesis, we will not dive into the details of each of these qubit implementations.

1.2 Classical networks considerations

1.2.1 The OSI model

Since the 1960s, classical networks have flourished and have been optimized to efficiently link any two
points on Earth. We can now transfer packets of data from a party to another at a very high speed
through the Internet, an international network architecture of servers and computers linked mostly by
cables. The Internet has been constructed by increments, to optimize as much as possible the transfer of
information. Network protocols have been standardized and are now widely used for data transmission.
International organizations have been created such as the Internet Engineering Task Force (IETF) to
develop and promote Internet standards.

In 1984, researchers and engineers have created a conceptual model for designing network architectures
and hardware: the Open Systems Interconnection (OSI) model. It separates the network into seven
layers that we show in Fig. 1.3. It describes a universal standard for communication in a classical
network without any regards to the underlying technology. The goal of the OSI model is to facilitate
the design of hardware on one side and application on the other side. Indeed, interoperability between
different communication systems is crucial for developing new technologies and applications. Nowadays,
an engineer can design a new application without having to think or even understand how bits are
processed by the hardware.
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Figure 1.3: The 7 layers of the OSI model that partition the flow of data

The physical layer is responsible for the emission and reception of raw data. It converts bits into
electrical, optical or radio signals that are processed by the hardware. The data Link layer provides direct
data transfer in a local network and takes care of correcting some error remaining from the physical
layer. This is where ethernet lives and where MAC address of every machine is used to route data in
local networks. The network layer encapsulates data into packets in which the source and destination
addresses are written. This is where routing of the data between distant networks happens and where IP
addresses are in play. Then comes the transport layer which takes care of segmenting the data packet
and actually transporting it from a local network to another. The session layer establishes, manages
and terminates the connections between the local and remote server, and synchronizes different tasks.
The presentation layer translates the data into the format required by the application layer. Finally
the application layer is the one that is directly used by the end user through a software, such as Web
browsers or file explorers.

Whenever a user wants to send or receive data on the Internet, the data flows from layer 7 down to
layer 1 from the sender side, and then flows from layer 1 to layer 7 on the receiver device. This process
is called encapsulation/decapsulation. It consists in splitting the data into packets and adding headers
with the necessary information for routing the packets in the network as well as information about
the content. Packets often contain an error-check value that the receiving device can use to confirm
the full reception of the packet. There are standard protocols that are used in each layer such as FTP
for file transfer, SMTP for emails, HTTP/HTTPS for information transfer on the web and many oth-
ers. They define organizational rules for the data packets according to the protocols the network supports.
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The OSI model is now replaced by the TCP/IP model with four layers. It roughly groups the
application, presentation and session layers of the OSI model into one application layer, the physical and
data link layers into one physical layer and keeps the network and transport layer. However, the OSI
model is still at the core of the design of classical network architectures. It is a useful tool to understand
the complexity in designing applications over a very large network. It shows the necessity of breaking
down the different processes happening in data transmission and to make them interact in the most
standardized way possible. This is a crucial step towards scaling up network architectures.

1.2.2 Secure classical communication

Several applications are already available in the classical Internet, from browsing collaborative websites to
multiparty computation. However one crucial application for many users of the classical Internet is secure
communication. Private communication between any two users has been the focus of many developers
since the dawn of the Internet. Efficient protocols now exist to allow private bipartite communications;
however most of them rely on the same first step: to create a shared secret key between two parties. The
most simple and secure way to transmit a message is then to apply the logic gate XOR between the key
and the message, yielding a completely random cyphertext. This protocol is called the One-Time Pad
protocol (see Fig. 1.4).

Figure 1.4: One-Time Pad protocol (OTP): the encryption of the message is done by applying a XOR
between the key and the message. The cyphertext can then be send to another party. Only a user holding
the same key is able to perfectly decrypt the message by applying again a XOR operation.

One can say that creating a shared secret key is key to private communications. The OTP protocol
is however quite inefficient as the key can be used only once. Indeed, a repeated use of the same key
creates the risk of finding patterns in the cyphertext that would allow a malicious eavesdropper to guess
the key. Another downside of the OTP is that the key has to be the same size as the message. Several
techniques have been found to reduce the size of the key, such as changing the message into a smaller
message using hash functions. In so called symmetric protocols, the same key is used for encryption
and description and thus must be shared between the two parties, while in asymmetric protocols, each
user possess a private and a public key. By doing communication rounds, the parties can ensure that
the message is always well encrypted when going through classical channels. A large key can also be
extracted from a small shared key by using key expansion algorithms.
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These processes are now very efficient, sometimes even embedded in the way the processors of our
computer store the data. As we will see in the next chapter, quantum encoding of data offers new
protocols to create a shared secret key. One point that remains however complicated, even with quantum
devices, is authentication of the data, i.e. proving the identity of a user of a network. In other words,
making sure that the parties involved in the communication are really who they pretend to be still
necessitates sharing a small classical key between the two parties. This property is still essential for
many quantum network protocols, for example Quantum Key Distribution as we detail in Sec. 2.1.1.5.

The hashing functions and protocols that are used to create a key in the classical Internet rely on
computational security. This means that the time it would take for an eavesdropper to guess the key using
the best available classical computer is too long to be practical. More formally the complexity of solving
the problem needed to crack the key grows exponentially with a parameter that the honest senders and
receivers control. They thus can make sure that no-one with current technologies can realistically hack
their communications.

While being very robust and universally adopted, relying on computational assumption carries the
risk of having a new technology discovered that would render the security system useless. For example
in 1995, P. Shor discovered a quantum algorithm able to efficiently factorize great numbers into their
prime factors [20] which is the primitive of the RSA algorithm, the most widely used security system for
data transmission. To this day this result is one of the most impactful results in quantum computation.
Fortunately, new post-quantum secure algorithms are being carefully developed to ensure the security
of data transmission even if quantum computing becomes accessible to the masses. Post-quantum
cryptography protocols still rely on computational security, however, to this day, no efficient classical or
quantum algorithm able to crack them have been found.

We point out that the security of a communication is not only defined by the privacy of data
transmission. It is usually broken down into three main properties: Confidentiality, Integrity and
Availability (CIA). Confidentiality corresponds to the privacy of the transmitted data, while integrity
corresponds to unaltered transmitted data. The integrity of the data can be seen as the other side of the
coin of data authentication. Finally Availability corresponds to a communication channel that remains
accessible despite all attacks. It involves maintaining hardware and technical infrastructure that display
the information. Example of attacks against availability are Denial of Service (DoS) attacks, that consist
in overflowing a server with malicious requests until it cannot accept honest requests.
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1.3 The Quantum Internet

1.3.1 Definition and goals

Various applications have been discovered to make full use of information encoded in quantum states.
Among them are applications in quantum computation, quantum metrology, quantum simulations and
quantum communication. In this thesis we focus on the latter, and more particularly on quantum
networking. It uses the fundamental properties of quantum mechanics that we described before, superpo-
sition, entanglement and measurement, to achieve capabilities that are are beyond what is possible with
classical networks. Quantum networks allow, for example, the creation of quantum sensor networks that
will push the boundaries of current metrology as well as more precise clock synchronization between
devices, with applications in the study of gravitational waves [21]. The holy grail of research in quantum
networking is the establishment of a full scale quantum Internet that could be used by everyone.

Just as the classical internet is a network of classical devices connected, we can define the Quantum
Internet as a global network of quantum devices linked through quantum channels. The objective is
to enhance the classical Internet by enabling quantum communication between any two points of the
network. The quantum Internet should indeed work in parallel of the classical internet. To help with the
design of a standardized architecture like the OSI model from the previous section, a research group has
been created at the Internet Engineering Task Force (IETF): the Quantum Internet Research Group
(QIRG), whose focus is precisely to address the question of how to design and build quantum networks.

The QIRG has set goals and architectural principles that help the community develop quantum
networks. According to these principles, the goal of a Quantum Internet architecture in development
should first be to support distributed quantum applications and enhance today’s networking ability. But
it should also allow for growth and adaptability to tomorrow’s applications to avoid changing the whole
hardware at each new protocol generation. It should support hardware heterogeneity because many new
hardware and techniques are still being investigated and it is not clear what will actually be used. It
should be easy to manage and monitor and it should be resilient to failure and malicious actors. More
importantly this quantum internet should work as soon as possible. In Chapter 5 we will expand on a
model for a metropolitan quantum network that fits these goals.

Entanglement is the fundamental resource of quantum networks. It is possible to use the non-classical
correlations that stem from measuring entangled states in order to create completely new types of
applications that are not possible to achieve with just classical communication. As an example let us
imagine that two persons want to agree on a random bit without anybody else knowing it. If they each
possess a qubit from an entangled state |ϕ+⟩ = |00⟩+|11⟩√

2 , they get a common random bit by simply
measuring their qubit in the same basis. Indeed, once one of the two parties measures its qubit, the
state collapses into one of the two states |00⟩ or |11⟩ with equal probability. Hence, while the outcome is
random and cannot be known prior to the measurement, they always get the same value. Moreover, the
monogamy of entanglement assures the privacy of this outcome. Entanglement creates a sort of private
and confidential channel between the parties sharing it.
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A crucial goal of quantum network is thus the efficient creation and sharing of EPR pairs. A quantum
network may also distribute multipartite entangled states as they are useful for many applications. These
states do not only need to be created and shared fast, but the network also has to ensure that they have
a sufficient fidelity. Different applications may have different requirements for the fidelity of the states
shared by the parties. It may be cheaper for a quantum network architecture to provide EPR pairs
whose fidelity is just above the threshold required by a specific application. It is hence the network’s
responsibility to provide information about the quality of the quantum states that flow through it.

In quantum networks, entanglement is always created locally and then followed by a transfer of one
or more of the entangled qubits to the nodes that will process it. In this context, photons are the natural
choice for entanglement carriers or so called flying qubits. This is because they are moderately affected
by decoherence as well as well supported by current telecom technologies. They can be controlled with
standard optical elements and travel at light speed through optical fibers and free-space.

1.3.2 Challenges

One of the main obstacles towards building an international quantum network is long distance communi-
cation. The natural way to physically link two nodes in a quantum network is to use optical fibres to
carry photons. Unfortunately after a few tens of kilometers, photon loss in fiber becomes predominant
and prevents practical applications. The well known PLOB bound [22] gives fundamental limits on
quantum communication over long distance in a fiber. The main strategy that is under investigation in
the research community is the development of so-called quantum repeaters. Formally, we call a quantum
repeater a device and a protocol that allows for a better performance than what can be achieved over
the direct communication channel alone [23]. In Chapter 4, we will discuss different quantum repeater
strategies to link two nodes. We will also study the possibilities of using free space communication,
with e.g. satellites or high-altitude balloons in Chapter 6, to overcome the limits imposed by optical fibres.

Photons themselves cannot be stored in an efficient way. Their information must be transferred to a
matter qubit and retrieved later. This poses the challenge of creating efficient coupling between light and
matter qubits to transfer the data into a long-lived quantum memory. However, since decoherence happens
whenever a state is stored in a node of the network, managing the time a qubit has to be stored is also of
great importance. In Chapter 4 we will also discuss a possible strategy to limit the storage time of a qubit
in quantum network routing. Photons are also subject to noise and loss during their travel. Strategies
are under investigation to encode a logical qubit into many physical photons, a process that we usually
call error-correction. For photonic qubits, some proposals have recently emerged to create a large entan-
gled system whose logical state can be retrieved should some limited amount of loss and noise affect it [24].

Entangled pairs of photonic qubits are the basic unit of networking. Contrary to classical data that
can be split into packets on which we can add headers to facilitate the routing, qubits are more difficult
to manipulate. This is due to the measurement process and the non-cloning theorem which does not
allow to look at what a specific quantum message contains without altering it. Photons thus are hard to
route as a photonic light pulse cannot be encapsulated into a packet containing its source and destination
as it is done in classical network. In order to route quantum data in a network, specific strategies have to
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be designed. They involve precise timing and classical data going along with the quantum data. This will
probably give rise to an architecture separated in two planes, a quantum plane in which entanglement
will flow and a classical plane to route and control this flow. Routing strategies involving precise timing
between classical and quantum data are currently being investigated [25].

Security in quantum networks have to be ensured to some level. It is a critical point because, as we
will see in Chapter 2, a lot of envisioned applications for the quantum Internet is improving the privacy
of communication. This means that the necessary data to prove security has to be available to the end
users. Network protocols themselves should be security aware in order to protect the network itself and
limit disruption. In Chapter 3, we will discuss some security properties of a specific network protocol to
highlight the difficulty of these considerations.

Quantum devices are far from being widely commercialized and it is likely that they will cost a
lot of money and energy during their first phase of development. When designing a quantum network
architecture, it is important to keep in mind that end users will probably not have access to fully
universal quantum computers. Hence, there is a challenge in designing a network that minimizes the
necessary hardware in certain nodes, especially the end user nodes. Moreover, as we saw in Sec 1.1.3,
many different physical supports for quantum information are being investigated. It is thus crucial to
design standards of communication so that end nodes using different physical systems have efficient
interfaces with the network.

Finally, one particular challenge in designing a quantum internet architecture is to make it scalable.
This means that there should be a limitation in the number of operations necessary to add a new user to
the network. For example if our architecture’s topology is a complete graph, meaning that all nodes are
connected to each other, adding a new user amounts to create as many channels as there are users of the
network. This is unrealistic in a context of thousands of users. Hence, while the ability of entanglement
generation between any two nodes should be preserved, some kind of centralized architecture is necessary
to make the network scalable. Most of the time the security of network protocols using untrusted nodes,
which will necessarily exist in a centralized architecture, is preserved through verification procedures
that checks that the nodes are really doing what they are supposed to. We will see examples of this in
Chapters 2 and 3.

1.3.3 Advances in quantum networking

These challenges do not prevent important advances in creating quantum networks in local areas. We
can for example point out the efforts of the Quantum Internet Alliance [26], a collaboration of several
laboratories in Netherlands, Paris, Barcelona, Lisbon, Copenhagen, Geneva, Innsbruck and Stuttgart.
They divide their work in creating and linking local quantum networks, designing new protocols and
studying the best implementations for the end users or the middle nodes, towards the creation of a
European quantum Internet. In Chapter 5, we design and simulate such a pan-European network to
study its feasibility and explore the protocols that could already be performed. The Quantum Internet
Alliance also works towards building a global vision for the future of the Quantum Internet and has made
an attempt at creating a layered structure for the quantum Internet in [27] that we show in Fig. 1.5.
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Figure 1.5: A layered model for the quantum Internet from [27]

As the OSI model presented in Fig. 1.3, this layer model helps with the design of a network archi-
tecture by imposing standardized interconnection between the different modules. In the final quantum
Internet, application designers should not have to be aware of the underlying physical system in which
quantum information is processed. Conversely, experimentalists and engineers should not have to care
about what the device they construct is going to be used for. With well-defined interfaces, researchers
can specialize and focus on optimizing the hardware or protocol running at their own layer.

Theoretical advances include the design of protocols for different layers of this proposed model, for
example link layer protocols to establish entanglement between two nodes [28], to route entanglement [25]
or to distribute [29] and manipulate [30] multipartite entangled states. The most exciting results are of
course in the top-layer, where lies the applications that would impact our daily use of communication
networks. In the next chapter we will expand on some protocols achieving functionalities such as Quantum
Key Distribution, anonymous transmission or blind and verifiable delegated computation. We however
point out here that the ability of performing these protocols depends on the hardware available to the
end nodes. It defines stages of development for quantum networks that we show in Fig. 1.6.
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Figure 1.6: Stages of development for quantum network architectures from [27]. Depending on the
hardware available of the end nodes (on the left), different protocols can be performed (on the right).
As of the date where this thesis is written, we are between the prepare and measure stage and the
entanglement generation stage.

As of the date where this thesis is written, quantum computing devices are in the Noisy Intermediate
Scale Quantum stage (NISQ). This means that we have access to applications using a few tens of physical
qubits, with no long-lasting quantum memories. From a quantum network point of view, this corresponds
to the ability of sending and measuring photons right when they arrive or to establish entanglement at
metropolitan distances. Simulation of such processes are of the essence to understand the precise limits of
what we can achieve today and how to push these boundaries. Network simulators such as NetSquid [31]
for small quantum networks with precise control on each node, QuISP [32] for large networks and simula-
tion of routing strategies or SimulaQron [33] for software development have emerged to help in this process.

Great advances in designing and simulating complex network protocols are also accompanied by en-
couraging experimental realisations and progress in photonic hardware [34, 35, 36]. Successful generation
of entanglement in metropolitan area have been reported [10, 37] and over 1100km using satellite-based
quantum communication [38, 39, 40]. So-called QKD networks allowing the distribution of secret keys
are already functioning, for example in Bristol [41] with 8 users, in China[6], or in the South of France.
Several projects, focusing on establishing metropolitan quantum networks on a first stage and linking
them on a second stage, are in due course. In some time, they should result in the establishment of a
global quantum network that we could call quantum Internet.

This thesis is written in the context of quantum Internet development. We try here to contribute to
the community by discussing some security concerns and by providing detailed models and simulation
studies of quantum internet architectures and protocols. We also try to give a comprehensive introduction
to the quantum Internet that encompasses some of its most important aspects. It hopefully highlights
important parameters and issues to resolve, while showing what could be realisable as of today.
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Quantum Internet Protocols

In the previous chapter we introduced the quantum Internet, a global network of quantum devices that
enhances today’s networking capabilities. It brings together a large community of researchers working
towards constructing large scale experimental architectures as well as finding new applications for the
end users. From information-theoretic secure communication to the delegation of a computation to a
distant machine that remains completely ignorant of the computation you’re using it for, the quantum
Internet’s promises are numerous. It should enhance the classical internet by making it more secure and
even enlarge the scope of functionalities the users will have access to. Standardized routines to create
specific states, integrated chip circuits, protocols to route quantum information through the network or
to efficiently verify quantum states, new protocols appear regularly for each layer of the future architecture.

Outline: In this chapter, we go over the details of some quantum internet protocols. We will
simulate them in the next chapters to get an idea of what is realizable with current quantum networking
technologies. In Sec. 2.1, we first focus on protocols between two parties and give a particular attention to
the most studied application of quantum communication, Quantum Key Distribution. We then look into
applications making use of more than two parties entanglement in Sec 2.2. For a more exhaustive list of
quantum Internet protocols, we refer the reader to the Quantum Protocol Zoo [42], a community-based
wiki for quantum internet protocols.
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2.1 Bipartite protocols

In this section, the setting will be the following: two users of the quantum Internet, Alice and Bob, are
linked through a quantum channel. They both possess quantum devices such as a source of single-qubit
states as well as single-qubit processing and measurement devices. They also have access to usual classical
computing power as well as the classical Internet. This implies the existence of a classical authenticated
channel between Alice and Bob. Most of the protocols work in communication rounds hence we suppose
that the parties share a time reference allowing them to time their operations according to defined
timesteps.

In this thesis we mostly focus on photonic quantum communication using free space or optical fibers
as a quantum channel. In the following, we hence suppose that quantum information is encoded in some
degree of freedom of photons, such as their polarization or their arrival time. Thus the quantum devices
that Alice and Bob typically hold are single photon sources, passive optical components such as beam
splitters and mirrors, and single photon detectors. Photons are subject to loss and noise in fiber and
quantum devices that we will model more precisely in Chapters 5 and 6. In this chapter, we however
take into account the fact that all photons sent from a party may not arrive to another.

2.1.1 Quantum Key Distribution

The most ubiquitous quantum network application is Quantum Key Distribution (QKD). It is one of the
first and most studied applications in quantum communication that has been discovered, with advanced
experimental realisations [3, 6, 43] (see reviews [44, 45, 46, 47]). QKD uses quantum phenomena to
achieve better security performance than what is possible with classical network protocols. The main
goal of QKD is to have a private secret key shared between two parties. As we saw in Sec. 1.2.2, a
private key allows two parties to securely communicate over some distance.

QKD has been so extensively studied that there exist many different ways to achieve it. This is
an opportunity for us to point out the difference between what we call a functionality, which is the
application that users want to achieve, and a protocol, which is a concrete algorithm explaining step
by step how to achieve the functionality. In the following we expand on several protocols achieving the
QKD functionality. Note that a good network architecture should allow to choose between different
protocols for the same functionality. The users choice could depend on the speed or the level of security
that they want to reach.

2.1.1.1 BB84

The first and most standard way for Alice and Bob to generate a shared secret key is to perform the
BB84 protocol [48]. By its simplicity, BB84 was the first protocol to raise attention towards quantum
communication. It makes use of the quantum measurement process and the no cloning theorem to create
a shared private key. It has been extensively used to the point where it has become common to use it as
a benchmark for quantum communication channels, as we will do with repeater protocols in Chapter 4.
It is also commonly used to teach the advantage of quantum states in communication to young students.
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The steps of the BB84 protocol are given below:

BB84

1. At each timestep, Alice chooses a random bit b ∈ {0, 1} and a random base t ∈ {+,×} and creates
qubit |0⟩ if b = 0 and t = +, |1⟩ if b = 1 and t = +, |+⟩ if b = 0 and t = × and |−⟩ if b = 1 and
t = ×.

2. Alice sends the state to Bob through an optical fiber
3. At each timestep, Bob randomly chooses a base in {×,+} and perform a measurement on its

interface with the quantum channel. Whenever he gets a click, he records the outcome as well as
the current timestep and the measurement basis.

After a fixed number of timesteps, Alice and Bob get a so-called raw key. They then start perform-
ing classical post processing using authenticated classical communication. Bob first sends the list of
timestamps associated to each click he got. Alice then discards all the bits that Bob didn’t receive and
sends the list of basis picked for the remaining bits. Upon receiving this list, Bob sends back the list of
basis he used for measuring the qubits he received. They both discard the bits where the basis don’t
correspond and get the sifted key.

Alice and Bob then reveal part of this sifted key to each other. By checking the correlation between
these bits, they can check that nobody has peeked into their quantum communication. They abort if
necessary, otherwise they construct a private key by performing some rounds of privacy amplification.

Privacy amplification is a classical procedure that is used by all QKD protocols to ensure the security
of the final key. It is the process of distilling a highly secret key from a partially secure string by public
discussion. It consists in applying some common hash function on the remaining bits, which transforms
them into a shorter, more secure key. Many privacy amplification procedures are possible [49, 50] but we
will not dive into the details of how this is done in this thesis.

2.1.1.2 Entanglement-based QKD

Entanglement-based QKD or Ekert’s protocol [51] or BBM92 [52] is a version of QKD where the parties
take advantage of entanglement between two qubits. It supposes the existence of a third party, Charlie,
who can also simply be seen as source of entangled states. Charlie entangles Alice and Bob by sending
them EPR pairs in the |ψ−⟩ state, one qubit per party. Alice and Bob then measure the arriving qubits
in a random basis to get a shared secret key. The main difficulty comes from the fact that both photons
from the pair should arrive at their destination. It goes as follow:

BBM92

1. At each timestep, Charlie prepares an EPR Pair in the |ψ−⟩ = 1√
2 (|01⟩ − |10⟩) state.

2. Charlie sends one qubit of the pair to Alice and the other to Bob.
3. Both Alice and Bob receive and measure each qubit randomly in the {+,×} basis. If they get a

result, they record the output and the current timestep.
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After performing this protocol for some predefined time, Alice and Bob start the classical post-
processing. This assumes again the existence of authenticated classical channels. They first announce
the timesteps where they got measurement outputs and keep the bits coming from the same pair, which
creates the raw key.

Then they publicly announce the basis that they used to measure the states. The rotational invariance
of the |ψ−⟩ state means that Alice and Bob will observe perfect anti-correlation of their outcomes in
both bases. By checking that this is the case for a part of the raw key, they can check whether Charlie
indeed sent them the expected EPR pairs. Alice and Bob thus keep the rest of the outputs that they
measured in the same basis. Finally they can do a round of classical privacy amplification to get the
final secret key.

Generation of photonic Bell states is now a rich area of research with very promising performances
that make the entanglement-based QKD protocol a good candidate for future key generation. Alice and
Bob don’t need to trust Charlie in this protocol which is important for guaranteeing the security of
the network. However there exists attacks on the detection systems that might affect the security of
this protocol. Moreover single-photon detection technologies typically include cryostats that might be
demanding for end users. This leads us to the next protocol, where the detection station is moved to the
middle node.

2.1.1.3 Measurement-Device Independent QKD

Measurement-Device Independent QKD (MDI-QKD) [53] is a protocol allowing Alice and Bob to create
a secret key by sending states to a third party, Charlie, while not trusting him. It relies on Charlie being
able to perform Bell-State measurements which are inherently probabilistic in the photonic case. This
usually causes the key generation rate to drop. Moreover, without quantum memories the two photons
coming from Alice and Bob must arrive at the same time which also lowers the success probability of
a MQI-QKD round. Below we write a high-level description of the different quantum operations in a
MDI-QKD protocol :

MDI-QKD

1. At each timestep, Alice and Bob both randomly chose a random bit b ∈ {0, 1} and a random base
t ∈ {+,×} and create qubit |0⟩ if b = 0 and t = +, |1⟩ if b = 1 and t = +, |+⟩ if b = 0 and t = ×
and |−⟩ if b = 1 and t = ×.

2. They both send their state to Charlie so that they arrive at the same time
3. When the qubits arrives simultaneously, Charlie performs a Bell state measurement and communi-

cates the outcome to both parties.

This protocol, together with Twin-Field (TF) QKD, which is conceptually close but relies on single-
photon instead of two-photon interference, have received tremendous attention in the recent years as
they allow for high key rates over record long distances, even beating the repeaterless bound for the TF
case [54, 55, 56]. They are also naturally suited to the progressive vision of quantum networks that can
be upgraded as more advanced technology becomes available.
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2.1.1.4 Other QKD protocols

The list of QKD protocols does not stop with the three protocols mentioned above. Without going too
deep in the details, we would like to mention two more QKD protocols that are commonly used in the
lab because they have interesting experimental properties. They both tackle the following issue: it is
actually quite difficult to create true single photons states at a high rate.

In practice, laser pulses used in optics generate a stream of light with a number of photons that is
probabilistic. Multi-photon emission must be avoided at all cost in QKD protocols because an eavesdrop-
per could then break the security of the key by using so called photon number splitting attacks [57, 58].
Coherent states are statistical superposition of all the possible number of photons in a light pulse. They
are used to model photonic states that are coming out of lasers in practice. Weak coherent states are
coherent states where the probability of the laser emitting one photon is very small and the probability
of emitting more than one photon close to zero. Weak coherent laser pulses are a practical and efficient
solution to probabilistically generate a stream of single photons. Following this thought, practical version
of BB84 or MDI-QKD using weak coherent states have flourished and are now performed in many
laboratories.

The probability of emitting more than one photon being small but non zero, the decoy state technique
is typically used to improve security [59]. The idea of the decoy state technique is to send multiple
intensity laser pulses, resulting in varying photon number statistics throughout the channel, in addition
to the BB84 states. By later announcing the intensity used for each pulse, Alice and Bob can measure
the error rate of transmitting these decoy states. Parties can thus detect whether a malicious party is
attempting to perform a photon number splitting attack.

Finally, the last flavour of QKD that we will mention here is the Continuous Variable QKD (CV-
QKD) [60, 61]. Quantum information with continuous variable is a paradigm where information is
encoded in phase space, or more precisely in the quadrature of an electro-magnetic field. Using so-called
homodyne or heterodyne measurements, one can measure the quadratures of the electric field of an
incoming light. These measurements can then be used to create a shared secret key. Without entering the
technical details of continuous variable states, we mention this QKD protocol for completeness because
it is the one currently yielding the highest key rates at short distance while using standard telecom
equipment.

2.1.1.5 Security of QKD

The security of QKD protocols comes from the physical quantum nature of the systems that are used. This
means that there is no attack coherent with the laws of physics that can break the security. An eavesdrop-
per that collects information about the key by interacting with the quantum signals between the parties
can be detected because he would necessarily alter the signals. Alice and Bob can thus detect the presence
of a malicious actor and abort the protocol or reject the key when they think that an eavesdropper is
present. In this case we talk about information-theoretic security, as opposed to security based on com-
putational assumptions on adversarial power that classical key distribution protocols gives (see Sec 1.2.2).
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Information-theoretic security, sometimes called unconditional security, is one of the main advantages
of quantum networks over classical networks. It assures that no matter what new technology arises in
the future (that respects the laws of physics), data transmission will remain secure. This property is
often put forward for critical communication such as governmental or military communications where
you do not want to assume anything on the adversary computing capabilities. Information-theoretic
security guarantees security even if the adversary has unlimited computing power.

The security proofs of QKD protocols can be quite demanding [46, 62], especially in the case of
CV-QKD [47]. Since we cannot perform the protocol for an infinitely long time, it has notably to take
into account finite size effects. We have to decide whether a malicious actor has tampered with the
signals based on a finite number of outcomes. Moreover, because quantum devices are not perfect, we
cannot reject a key based on a single incorrect outcome bit. We must still be able to prove that the
adversary possesses less information on the transmitted bits than the legitimate parties. There are noise
thresholds above which quantum devices don’t allow to prove the security of a QKD setup. These proofs
are the subject of many research papers and are now quite robust.

There is however one downside to the security of QKD. All QKD protocols are based on the
assumption that there exists a classical authenticated channel between the two parties. Authentication
itself however relies on a shared secret key, that has to be created using classical protocols. QKD can
be used to expand this key into a bigger, useful key. This defeats the purpose of solely relying on
physical assumptions that is the main security advantage of QKD. It is also the reason why national
cybersecurity agencies such as the French ANSSI [63] reject the standardization of QKD for high-security
communications of strategic interests.

2.1.2 Quantum Teleportation

One very important protocol in quantum communication is quantum teleportation [64]. In fact it is
so important that it can be considered as a building block of quantum networks. The teleportation
functionality transfers information over some distance by consuming a Bell pair. The name of the
protocol is a bit misleading as there is no actual teleportation of the information: the protocol still
necessitates some classical communication flow to work. It goes as follow:

Quantum Teleportation

1. Alice holds a qubit in the state |ψ⟩. A Bell state is shared between Alice and Bob. Any of the four
Bell states |ϕ+⟩,|ϕ−⟩,|ψ+⟩ or |ψ−⟩ works.

2. Alice performs a Bell state measurement on the joint state composed of the qubit |ψ⟩ and her
qubit from the Bell Pair. She sends the outcome to Bob through a classical channel.

3. Depending on the outcome he receives, Bob performs a correction operation (a X, Z or iY gate)
on his qubit from the initial Bell pair.
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At the end of the protocol, Bob holds the state |ψ⟩ that Alice had in the beginning, without any
quantum communication happening. In fact, due to the entanglement between the qubits of the Bell
pair, the Bell state measurement that Alice performs on her two qubits projects Bob’s qubit into either
|ψ⟩ or a state that is a bit-flip or a phase flip away from the |ψ⟩ state. Knowing Alice’s outcome, he can
perform the adequate operation to retrieve exactly the state that Alice had initially.

The existence of this protocol has tremendous implications for quantum networking. One might
think that the goal of quantum communication through networks is the ability to physically transfer any
quantum state from one point to another. Thanks to the teleportation protocol, creating a Bell pair
between any two points of the network becomes the main focus. Once a Bell pair is shared between two
parties, they can perform this protocol to transfer any quantum state. It simplifies greatly the network
architecture. The main goal of a quantum network is the ability to generate entangled pairs between any
two nodes of the network.

2.1.3 Enhancing bipartite functionalities

Using quantum properties of photons and particles, the quantum Internet will improve some existing
classical functionalities. One of them that has many implications in cryptography and communication
is coin flipping [65]. It is a fundamental primitive in many cryptography protocols. The goal of coin
flipping is to share a uniformly random bit between two parties. It comes in two flavours: strong coin
flipping were the parties wish to share a random bit without caring about the actual outcome, and weak
coin flipping were each party has a preference for the value of the bit.

In the asynchronous model where we don’t assume that players send messages to each other simul-
taneously but rather in communication rounds, there is no existing classical protocol with cheating
probability lower than 1 unless computational assumptions are considered. This means that there is
always a way for a dishonest player to force the outcome to be what he wants. In the quantum case
where the two parties are linked through a quantum channel, perfect coin flipping is still impossible [66].
However there exist quantum protocols that achieve a cheating probability lower than 1 with already
existing experimental realisations [67, 68, 69].

The existence of protocols achieving the coin flipping functionality showcases the ability of the
quantum Internet to enhance classical functionalities. It is also the case for other protocols that were
widely believed impossible such as oblivious transfer [70] and as a consequence bit commitment.

In oblivious transfer, the sender sends two bits to the receiver that can choose to receive only one of
them. It is said to be secure when none of the two parties gains information that they are not supposed
to obtain: the sender cannot know which of his bits has been chosen and the receiver cannot know the
value of the bit he has not chosen. Quantum versions of oblivious transfer have been developed [71, 72].
Unfortunately both classical and quantum versions seems secure only within computational assumption.

Yet, quantum versions of oblivious transfer allow for the design of quantum bit commitment protocols.
Bit commitment is a cryptography primitive in which a party commits to the value of one bit that is
later revealed to another party. It is considered secure when the sender cannot change the value of the
bit after he committed to it (binding) and when the receiver cannot know the value of the bit before the

23



CHAPTER 2. QUANTUM INTERNET PROTOCOLS

sender allows him to (hiding). Quantum bit commitment protocols also exist, with some positive results
in the synchronous model [73]. However, perfect information theoretic security is not achievable even in
the quantum case [66].

Research in how to enhance bipartite classical Internet protocols by taking advantage of the quantum
encoding of information is a very active research field. It is driven mostly by concerns in privacy
preservation. This is indeed the area where quantum enhancement of classical network protocols is
believed to be the most useful. But quantum networks will not only enhance classical networks. There
exists some completely new possibilities that do not have a classical counterpart, such as the next
protocol.

2.1.4 Delegated computation

One of the most interesting features of the future Quantum Internet is that there exist protocols
allowing users to privately delegate their quantum computation to any other quantum server they
are connected to [74, 75, 76, 77]. Private secure delegation of a computation is defined here as the
combination of two features: blindness, in the sense that the server does not have full information about
the computation, and verifiability, in the sense that the user is able to check that the server is performing
the right computation. Recent research exhibits promising results towards protocols providing blind and
verifiable delegated computation [78], even considering classical clients [79] and security concerns [80, 81].
This would mean that not only the quantum server performing the computation is unaware of what
it is actually computing, but also, crucially, the user can check whether the server is doing its task correctly.

In the protocols mentioned above, delegated quantum computation assumes the existence of a power-
ful server, which usually works in the measurement-based quantum computation paradigm (MBQC) [82].
In this framework, a computation is defined by a series of adaptive measurements performed on universal
graph-states. Typically, this server privately receives quantum states from a client that it uses as input
to perform some measurement routine involving back and forth classical communication between server
and client. By only connecting this new server node to a quantum network through a fiber, any user of
the network can securely delegate its computation using a delegation protocol. We recall here the univer-
sal blind delegated protocol from [74] allowing a party to blindly delegate its computation to a server node:

Blind delegated computation

1. The user prepares single qubits chosen randomly from {1/
√

2(|0⟩+eiθ |1⟩)|θ = 0, π/4, 2π/4, ..., 7π/4}
and sends them right away to the server.

2. The server receives and entangles the qubits in a predefined universal graph state (e.g. the brickwork
state from [74]).

3. Then, for each qubit, the user sends a classical message to the server to tell him in which basis
it should measure the qubit. It performs the measurement and communicates the outcome; the
user’s choice of angles in future rounds will depend on these values. This interaction continues
until all the qubits are measured.
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The last outcome of the measurements made by the server then contains the result of the classical
function the user is computing. If the user is computing a quantum function, the outcome is the last
qubits at the server node that he can send back to the user. Provided that the server is able to keep
qubits in its memory for a sufficient time, the user only has to manipulate one photon at a time.

The existence of such delegated computation protocols is very exciting because it theoretically
allows any user of a network to use a quantum device much more powerful than what he would have
access to alone. It permits the centralization of complicated quantum devices in central points of the
network, leaving the users with cheaper equipment. This could potentially lead to reducing energy cost
of deploying quantum network architectures, by reducing the end user hardware and focusing on efficient
delegation of computation.

2.2 Multiparty protocols

Some of quantum network’s most groundbreaking applications are multiparty functionalities based on
Multipartite Entanglement [4, 83] shared among n parties. Multipartite entanglement comes in many
flavours and, just as bipartite entanglement, it produces measurement outputs that have correlations
that cannot be predicted with classical theory. These correlations can be used for example to generate a
secret key between many parties.

In this thesis we focus on protocols based on the GHZ state given by |0⟩
⊗

n+|1⟩
⊗

n

√
2 [5]. It has the

particularity that if we trace out one of the qubits from the state, we get a mixed unentangled state
which is desirable from a network security point of view. The GHZ state is an entangled state of 3 or
more qubits that is used in many protocols where it has been proven to outperform protocols based on
bipartite entanglement [84].

Any GHZ-based protocol relies on the ability for a source node to create these states and to transmit
them to the users of the network. As many of the multiparty protocols rely on sharing many multipar-
tite entangled states sequentially, the rate of creating and sharing these states is a crucial parameter.
Unfortunately, as we will detail a bit more in Chapter 5, GHZ state creation is still at an early stage of
research and the rate and fidelity at which these states are created is still too small for practical use. It
remains however interesting to investigate how multipartite entanglement can be used to perform new
functionalities or how it outperforms some multiparty protocols based on bipartite entanglement.

In this section, we expand on a few GHZ-based protocols. The setting is as follows: n users of the
quantum Internet are connected through some architecture allowing the distribution of n-qubit GHZ
states at some rate. Each user gets a qubit from the GHZ state.

2.2.1 GHZ state verification

Network protocols making use of the GHZ states usually have two phases: one where a n-qubit GHZ
state is shared to n parties, each holding one qubit, and one where local operations and measure-
ments are done by the parties to extract correlated outputs or to transform it to another state. The
users can choose to trust that their source is indeed giving them GHZ states or they can incorporate
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within their protocol entanglement verification rounds [85]. The latter relies on verification protocols,
that ensure that the source is indeed creating close to GHZ states. We note that these verification
protocols consume many states in order to perform the verification task with sufficient confidence.
Hence we see that there is a trade-off between security and rate of performing multiparty protocols. To
prevent malicious activity, it is nonetheless crucial to be sure that the state shared is actually a GHZ state.

To be secure, some protocols are based on the technique of performing protocol rounds randomly in
between GHZ verification rounds. A malicious party hence is not able to know whether the state he
holds will be used for verification or for performing the protocol. The more verification rounds there is,
the more secure the protocol becomes. It is thus crucial to have an efficient verification procedure.

In the following we describe a verification protocol using only classical communication between n

parties that receive a single qubit each from a source of multipartite entanglement. This protocol is
based on the work from [85] where the authors develop and analyze an n-party verification protocol
consisting only of classical communication and local quantum operations once the state is shared. One
of the parties, called the Verifier, has a central role in the protocol: it sends instructions to all parties
and broadcasts the output of the verification. We recall the protocol of [85]:

Multipartite entanglement verification protocol

1. The source creates an n-qubit GHZ state and sends each qubit i to party i using a state generation
resource and n one-way quantum channels.

2. The Verifier selects for each i ∈ [n] a random input xi ∈ {0, 1} such that
∑n

i=1 xi ≡ 0 (mod 2) and
sends it to the corresponding party via an authenticated classical channel resource. The Verifier
keeps one to themselves.

3. If xi = 0, party i performs a Hadamard operation on their qubit. If xi = 1, party i performs a
√
X

operation.
4. Each party i measures their qubit in the {|0⟩ , |1⟩} basis and sends their outcome yi to the Verifier

via the classical channel.
5. The Verifier accepts and outputs bout = 0 if and only if

n∑
i=1

yi ≡ 1
2

n∑
i=1

xi(mod 2)

This protocol has been extensively studied and presents desirable properties that are expected from
such a protocol: it is correct and for one round, its output depends on the distance between the state
that was actually shared by the source and the GHZ state and the number of malicious parties. Precisely,
for a state ρ shared among the parties, bout is such that:

(2.1) bout =
{

0 with probability 1 − τ2

2
1 with probability τ2

2

with

(2.2) τ = min
U

TD(|GHZ⟩⟨GHZ| , UρU†)

where TD is the trace distance and U is an operator acting only on the space of the dishonest parties.
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This protocol is made to be repeated several rounds until some confidence is built on the fact that
the source shares GHZ states. In order to prevent the source from sending a wrong state on the round
where it is supposed to be used for computation, the authors of [85] considered randomizing this round.
They also randomize which party should play the role of the Verifier at each verification round to prevent
malicious actions from the parties. Thus, all parties have access to a trusted common random source
that gives, at each round, a random bit C ∈ {0, 1} used as a security parameter and an identifier for one
party i ∈ [n]. If C = 0 (which happens with some probability PC), the state is used for computation. If
C = 1 (which happens with probability 1 − PC), the parties perform the above verification protocol
with i as the Verifier and restart only if the state is accepted. It has been proven that the probability
that the protocol has not aborted and that a state ρ such that TD(|GHZ⟩⟨GHZ| , UρU†) ≥ ϵ where U
is an operator on the space of the k dishonest parties is used for computation is less than PC = 4n

kϵ2 .

The security properties in [85] are proven in a game-based framework hence are not composable as
we will expand more in Chapter 3. There is for example a strategy where, when performing the protocol
multiple times in a row, a malicious coalition of parties and source could increase the probability that
the honest parties accept a state that is not a GHZ state. It has indeed been noticed that if we allow
for a 50% loss rate in the quantum communication, there exists a strategy for dishonest players that
increases their probability of making the others accept a faulty state. This problem has been later
solved in [86] where a loss-tolerant variation of this protocol that presents the same security properties,
called the θ-protocol, was implemented in a photonic setting. It mainly consists in changing the classical
instructions X = {xi}n

i=1 sent by the Verifier to angles Θ = {θi}n
i=1 indicating the rotated measurement

basis for each party. This protocol increases the loss that can be tolerated by the protocol, but still the
dishonest parties can increase their cheating probability if the losses are high enough.

2.2.2 Conference key agreement

The Conference Key Agreement (CKA) functionality is the multipartite counterpart of Quantum Key
Distribution. It allows n parties to get a shared secret key that they can use for secretly communicating
or any other application. CKA can be achieved by a composition of bipartite QKD protocols but it is
proven that using multipartite quantum correlations can lead to more efficient protocols [84]. There
exists a variety of protocols achieving this functionality (see [87] for an extended review) including
GHZ-based protocol [88, 89] with an experimental realization [90].

The main ingredient to get a conference secret key in these protocols is GHZ state sharing and
measurement. Indeed, a n-qubit GHZ state is given by the superposition of all the qubits in the state |0⟩
and all the qubits in the state |1⟩ (see Eq. 1.6). This means that prior to the measurement of one of the
qubits, any qubit measurement outcome is random. However once one qubit has been measured, all the
other qubit measurements will give the same output. Hence if a GHZ state is shared to n parties, they
all get a private common random bit when measuring their qubit.

By repeating this process multiple times, the n users can get a raw key. Just as in QKD protocols,
the n parties can then extract a common secret key by performing classical rounds of communication and
privacy amplification protocols. This key can be used for multiple purposes such as private communications
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or as a block of a more complex protocol (e.g. a common random number generator). As it consists in
sharing and measuring GHZ states, the rate of a CKA protocol can also be used as a benchmark for a
network architecture with many parties.

2.2.3 Anonymous transmission

This anonymous transmission functionality allows two users of the network, a sender and a receiver, to
establish a link that they can use for transmitting anonymously a message qubit via teleportation [91, 92].
Here we present a GHZ-based protocol achieving anonymous transmission from [93]. The quantum
message is transmitted in a way that the identity of the sender is unknown to every other node, and the
identity of the receiver is known only to the sender. It relies on classical pre-processing allowing the
sender to notify anonymously the receiver that he is going to receive something. Here we don’t describe
nor simulate this classical pre-processing and we refer the reader to [93] for more information.

Anonymous Entanglement

1. A source creates and shares an n-qubit GHZ state.
2. Every user except the sender and the receiver applies a Hadamard gate to their qubit. They

measure it and get outcomes mi that they broadcast.
3. The sender picks a random bit b and broadcasts it. She applies a Z gate to her qubit if b = 1.
4. The receiver picks a random bit b′ and broadcasts it. He applies a Z gate to his qubit if b⊕

⊕
i mi = 1

After performing this protocol, the sender and the receiver anonymously share a Bell pair that they
can use to teleport any other state. This relies on the fact that they are able to keep their qubit for the
time of the protocol. If on-demand quantum storage is not available at the user nodes, for example in
the photonic architecture that we present in Chapter 5, non-optimized solutions like delay lines can be
used for this task.

Repeating the Anonymous entanglement protocol enough times in between GHZ verification rounds
allows for provably secure anonymous transmission of quantum information. However, the number of
GHZ states necessary scales badly with the number of parties and the size of the message to transmit.
This is because the verification protocol presented above is costly in GHZ resources. We will however see
in Chapter 5 that it is still possible to perform a few rounds of this protocol in less than an hour with 4
parties and today’s hardware capabilities. Recently, some work has been done to replace this expensive
verification phase with BB84 based test [84] which might bring more attention towards the protocol
presented in this section.

2.2.4 Other multipartite protocol

We are still at the dawn of research in quantum networks and we are still not fully aware of what
they will allow us to do. A lot of theoretical work is currently achieved to study how to distribute [29]
and manipulate [30] multipartite entangled states. New applications extracted from many-particles
entangled state manipulation and measurement appear frequently in the literature. We cite some of
them in this section for completeness while not pretending to be exhaustive. We don’t go over the precise
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details of these protocols as we will not simulate them in the next chapters and some of them are still
technologically out of reach.

One interesting enhancement that quantum networks get over classical multipartite capabilities is
the existence of quantum Byzantine agreement protocols. Byzantine agreement [94] is a cryptography
problem where n parties at some distance have to agree on a value given by one of them even when
some parties are malicious. Deriving from the image of a general having to pass a message to some
possibly malevolent lieutenants, the byzantine agreement is a fundamental primitive in cryptography and
distributed computing. Several protocols making use of the special properties of quantum information
exist and show performances exceeding classical network protocols. For example, there exists a fast
quantum byzantine agreement [95] with a constant number of communication rounds, where classical
algorithms have a scaling in Ω(

√
n logn). There also exists an elegant 3-party solution using entangled

qutrits [96] as well as solutions based on bipartite entanglement [97], CV-based solutions [98] and basic
experimental realisations [99].

The existence of weak coin flipping protocols allow the design of leader election protocols [100] which
would allow a secure random selection of a party in a network. In the same spirit, a secure electronic
voting GHZ-based protocol has been proposed recently [101]. Multiparty delegated classical [102] and
quantum [103] computation protocols using quantum resources have also been proposed. These services
are often pointed out as distrustful in classical networks. The fact that we can design secure quantum
alternatives could have some impact on our daily lives.

Some applications are still in development and we cannot infer the impact that they could have
on our daily lives. An example of such protocol is the investigation and experimental realisation of
a Quantum Money protocol [104, 105], which would allow unforgeability of quantum banknotes and
credit cards. It is also hard to grasp the impact of synchronized clock networks [106, 107, 108, 109]
on the efficiency of networking processes. Unfortunately current technological capabilities, especially
in creating long lasting quantum memories and efficient GHZ state generation, are not yet up for the
task of performing useful realisation of such protocols. This however bears exciting promises for future
capabilities.
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Security Considerations

Security is one of the main advantages offered by quantum networks. Quantum processing of information
makes security rely on the physical laws of nature instead of relying on computational assumptions. An
important security notion that has interested scientists recently is the so-called composable security. It
is a strong version of security that allows to take protocols as black boxes that we could use as building
blocks to design bigger protocols without having to prove security at a high level. In this chapter, we
study the composable security of the multipartite entanglement verification protocol presented in the
previous chapter. Composable security of this protocol would be very useful as it is used by many other
network protocols to ensure that the honest users indeed share entanglement before proceeding to the
actual protocols. Unfortunately we could prove composable security only against a malicious source. The
case of dishonest parties possibly colluding with a dishonest source raised questions about the limits and
practicality of composable security.

Contribution and outline: Our main contribution in this work is a comprehensive study of the
composable security of a multiparty protocol. Most current composable security studies at this time
were only bipartite. We also give a pedagogical introduction to the Abstract Cryptography framework,
used to prove composable security. We however point out the limitation of our study that was based on
an understanding of the Abstract Cryptography framework that has evolved with new discussions and
results. We start by motivating the use of the Abstract Cryptography framework of which we give a
complete introduction in Sec. 3.1. We then move on to prove the composable security of the multipartite
entanglement verification protocol when we consider the source to be possibly malicious in Sec. 3.2. We
also construct a resource giving verified GHZ states to the parties accessing it, which is more practical
for using in bigger protocols. Finally, in Sec. 3.3 we discuss the realism of our result, the case of more
malicious parties and the evolution in our understanding of the notion of composable security.

Article link : The full article can be found at https://arxiv.org/abs/2004.07679 and is published in
Physical Review A. (Phys. Rev. A 103, 052609, May 2021)

31



CHAPTER 3. SECURITY CONSIDERATIONS

3.1 Abstract Cryptography Definitions

To prove the composable security of a protocol, the usual setting used in cryptography does not suffice.
We need to shift to new paradigms in which composable security comes within the security proof. In
this section we give an introduction to the Abstract Cryptography framework, one such composable
framework.

3.1.1 The usual game-based setting Vs composable security

In communication and cryptography, security of a protocol is usually defined as the ability to resist
certain attacks. By carefully designing relevant scenarios and adversary capabilities, one can then
compute the amount of information it has access to. Using game theory, it is possible to prove that the
maximum information a malicious party could have about the secret data of a protocol is not enough to
break the security. When we do so, we prove security in a game-based framework. This proves security
against a certain family of attacks.

While being quite strong already and sufficient for most practical uses, security properties proven
in a game-based framework leave the door open to attacks exploiting for example the repetition of a
protocol multiple times. This is where composable security comes into play. A protocol is said to be
composably secure if it can be repeated multiple times in a row or if it can be used as a subroutine of a
bigger protocol without threatening the overall security. The protocol is thus seen as a black box with
definite inputs and outputs. This box can be put in series with other composably secure boxes. This
amounts to performing protocols one after the other.

In order to prove composable security, one needs to prove security in a composable framework. One
such framework is Abstract (or Constructive) Cryptography (AC), a top-down approach developed by
U. Maurer and R. Renner [110, 111, 112] to define a so-called simulation-based cryptography theory.
It creates some notion of a module with well-defined interfaces that interacts with the rest of the
world in a black box fashion. In the Universal Composability framework of Canetti [113], another
composable framework, this is called a functionality. In AC, those modules are called resources and
going from a resource to another is done through converters called protocols. For example a one-time
pad protocol constructs a secure communication channel resource out of a secret key resource and an
authenticated classical channel (see Fig. 3.1). In their first paper [110], Renner and Maurer defined
a complete cryptography algebra of resources with their composition rules. This allowed them to de-
fine equivalence relations between resources and to infer security notions that inherit composability
properties. Moreover this framework is of interest when modeling multiparty protocols as it offers a
simpler view of what dishonest parties could have access to than the usual game-based cryptography
theory where the strategy for a dishonest group should be given explicitly. The level of abstraction of
the different resources can be modulated to highlight the properties that one wants to study about
them. Finally, the AC framework is a resource theory with a large power of abstraction that allows us
to think of a protocol the same way we would do when thinking of an application in the quantum Internet.
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Figure 3.1: Concrete One Time Pad resource πAπBRπE : Alice has access to the left interface, Bob to
the right interface and Eve to the down interface. R is the resource composed of a secret key resource
and an authentic channel resource in parallel. Protocols are represented in blue, πE being the protocol
of an honest Eve that blocks the input y from the authenticated channel resource.

Different results have been achieved using this framework such as the study of unfair coin toss-
ing [114], remote state preparation [115], oblivious transfer [72] and composable security of multiparty
delegated quantum computing [103, 81, 116]. Different extensions have also been proposed such as adding
relativistic constraints [117] or global event history in the case of ratcheting [118]. Let us give a brief
overview of this framework which we will use to study our multipartite entanglement verification protocol.

3.1.2 The Abstract Cryptography framework

Abstract cryptography uses the concept of abstract systems to express cryptography as a resource theory.
A cryptography protocol is viewed as the construction of some ideal resource S out of other real resources
R. This construction notion is made through converters. Finally, the distance between two resources is for-
malised through the notion of a distinguisher. Those three objects are the building blocks of the AC theory.

A resource is an abstract system with interfaces specified by a set I (e.g. I = {A,B,E} for Alice,
Bob and Eve in a tripartite setting). Each interface is accessible to one user and provides them with some
abilities. Note that the notion of a party is not explicitly modeled in this framework, but induced by the
interfaces they are restricted to have access to. Resources are used to model functionalities that are not
done specifically by a party. They can be associated with real physical resources (e.g. a quantum channel)
or with abstract functionalities (e.g. bit commitment or quantum random number generation). The level
of abstraction of such a functionality is not bounded per se but it is usually tailored to the application
that one is modeling and the properties one wants to highlight. For example quantum memories can
be explicit and represented with resources or abstracted in converters. Classical protocols can also be
explicitly shown or abstracted through oracle calls. Moreover any parallel composition of resources is a
resource in which the interface set corresponds to the union of the ones from the composed resources. A
resource is said to be concrete if it is a composition of other resources representing an actual protocol
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performed in the real world. Otherwise, if it is simply a box representing a functionality, we call it ideal.
Most of AC thus consists in studying how close a concrete resource is to an ideal resource.

Converters are also abstract systems with one set of “inside” interfaces that are expected to be
connected to a resource and one set of “outside” interfaces. Their name derives from the fact that a
converter attached to a resource converts it into another resource by emulating a certain set of interfaces
to the outside world. Attached on a concrete resource, they typically model the local computation of a
party during a protocol and are denoted with Greek letters. For a resource R with interfaces A and
B and a two-party protocol π = {πA, πB} we denote πARπB the resource obtained from connecting
πA to interface A and πB to interface B (see Fig. 3.1). A dishonest party is then modeled by just
unplugging their corresponding converter from the resources, indicating that the party is not following
the protocol. This leaves the interface they have been accessing open to the outside world. Note that
the ordering of the converters is not important and that they are usually written in the most readable way.

Converters are also used to model the honest utilisation of an ideal resource. Indeed, a dishonest party
is modeled by unplugging its converter from the concrete resource, opening new interfaces. To model
this on the ideal resource associated we use a converter, called a filter. Filters cover some interfaces of an
ideal resource for an honest player, and are removed in the case of a dishonest utilisation of the resource
(see an example in Fig. 3.2). Finally, converters are used in the ideal world as a tool in the proofs to
simulate the local output to a dishonest party. In this case we use the term of simulator. Converters and
resources can be described with the help of boxes and arrows as well as in the form of algorithms by
specifying where each output goes.

Figure 3.2: Filtered one-way private classical channel resource. It is an ideal resource taking as input a
bitstring x at the left interface, outputting it at the right interface and leaking its size |x| on the bottom
interface. ⊥ is a filter blocking the bottom interface to simulate an honest use of the resource. In the case
of a dishonest use of this resource, i.e. an eavesdropper trying to get x, ⊥ is removed and |x| becomes
accessible. This models all the information this eavesdropper can get out of this resource. As we will see
in the next section, this resource is equivalent to the one of Fig. 3.1.

Abstract cryptography is the theory of breaking down cryptographic processes into box-shaped
resources that can be composed together in series or in parallel. Resources, which represent cryptographic
primitives, can be transformed into other resources using converters and usual algebraic composition
rules. A concrete resource represents an actual protocol using physical systems and classical and/or
quantum operations while an ideal resource is the abstraction of the functionality achieved by the
protocol. We say that a protocol π = {πA, πB} constructs the resource S out of R and write R π−→ S.
Such a construction is composable if for all R,S and T resources and π, ν converters (protocols) such
that R π−→ S and S ν−→ T we have that

(3.1) R π−→ S ∧ S ν−→ T =⇒ R ν◦π−−→ T .
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3.1.3 Security definition and assumptions

To show that a protocol π constructs the ideal S out of concrete resource R, we have to capture an
equivalence notion, with a metric ≈ such that πR ≈ S def⇐⇒ R π−→ S. To that end, Abstract Cryptography
introduces its last abstract system: Dinstiguishers. They are used to construct a pseudo-metric between
two resources. They replace the notion of an adversary and also encompass any protocol that is run
before, after or during the protocol being analyzed. As its name indicates, a distinguisher is used to
distinguish between two resources R and S by connecting to all their interfaces and outputting a single
bit: a guess whether it is interacting with R or S (see Fig. 3.3). The advantage of a distinguisher D is
given by

dD(R,S) = |Pr[DR = 0] − Pr[DS = 0]|,

where DR is the output of D when interacting with R. For example in Fig. 3.3, replacing R with
πAπBRπE from Fig.3.1 and S with the filtered private authenticated classical channel resource from
Fig. 3.2, we see that any distinguisher D will see the same output x for any given input x on any of
the two resources. Hence we have that dD(R,S) = 0. For a class of distinguishers D, the distinguishing
advantage is defined as

dD(R,S) = sup
D∈D

dD(R,S).

Figure 3.3: A distinguisher interacting with R and S. It has access to a complete description of the two
systems and can choose the inputs of all players, receive their outputs and simultaneously fulfill the role
of an adversary. After interaction, it must guess which resource is which. Replacing R by Fig. 3.1 and S
by Fig. 3.2, no distinguisher is able to guess between the two resources.

The distinguishing advantage is a pseudo-metric on the space satisfying all properties of a composable
distance, namely identity, symmetry and triangle inequality. This allows to define equivalence relations
between resources: for a class of distinguishers D we say that R is equivalent (or ϵ-close to) S and write
R ≈ S (resp. R ≈ϵ S) if dD(R,S) = 0 (resp. dD(R,S) ≤ ϵ).

To summarize, converters describe mostly local and non-costly operations while resources can have
non local functionalities and extended computational power. Distinguishers are all powerful objects that
represent the environment trying to guess between two resources.
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We now have the necessary ingredients to present the notion of secure construction of a resource
in AC. Let π = {πi}n

i=1 be a protocol run by n parties using the concrete resource R and let S be an
ideal resource with all the desired properties expected from the protocol. R and S have interfaces I. We
say that π securely constructs S out of R within ϵ and write R (π,ϵ)−−−→ S if there exist converters
σ = {σi} called simulators such that

(3.2) ∀P ⊆ I, πPR ≈ϵ σI\PS,

with ∀P ⊆ I, πP = {πi}i∈P .
This means that if only a subset P of parties follow their protocol πi (left-hand side of Eq. 3.2),

we are able to find simulators on the rest of the interfaces {σj}j∈I\P such that this equivalence holds
(right-hand side of Eq. (2)).

The simulator σj locally simulates on the ideal resource the interfaces the party has access to on
the concrete resource when party j is dishonest. Simulators don’t represent actual concrete operations
and should only be seen as a tool in the proof. For example, using a simulator σ taking as input a size
and producing a random bit string of this size, we have an equivalence relation between the concrete
one-time pad resource with an dishonest Eve πAπBR and the ideal private classical channel resource on
which we attach σ (see Fig. 3.4). This equivalence together with the equivalence of Fig. 3.1 and Fig. 3.2
(usually denoted as the correctness of the protocol) proves the composably secure construction of the
private classical channel resource by the one-time pad protocol. In this case, those two equivalences
suffice because we suppose Alice and Bob to be always honest in the one-time pad protocol. One must
find simulators for each subset of possible dishonest parties to prove composable construction.

Figure 3.4: Equivalence between the One-time pad resource with a dishonest Eve and the ideal private
classical channel resource with the simulator σ.

The power of the class of distinguishers and simulators used to prove a secure construction determines
the strength of the security proof. For example considering only classical distinguishers leads to security
against classical adversaries while considering all powerful distinguishers leads to information-theoretic
security. Ideally we would want the class of simulators to be restricted to a class of easily implementable
converters and the set of distinguishers to be as general as possible. This leads to security statements
such as “We can easily construct the ideal resource S from R and we can easily simulate any cheating
behaviour such that even a very powerful distinguisher cannot tell the two resources apart”.
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3.2 Composable security of Multipartite Entanglement Verification

In this section, we introduce the ideal and concrete resources, and finally prove the secure construction.
We recall that the multipartite entanglement verification protocol consists in one party randomly des-
ignated as the verifier sending classical signals to all other parties, gathering measurement outputs of
the shared state from the other parties and outputing a bit indicating if the shared state was a GHZ
state. The protocol is detailed in Sec. 2.2.1. In the following, we will call “Source” the party controlling
the entanglement source or the device itself interchangeably. We will consider authenticated classical
communication and perfect quantum communication as any imperfection can be modeled as the source
perfectly sending noisy states.

We believe the following proof can be adapted to any stabilizer state verification where parties first
receive a qubit and then do only local operations and classical communication (LOCC). For simplicity
we will consider only the version of the protocol presented in Sec. 2.2.1 (called the XY-protocol) but the
following proof can be straightforwardly extended to match the θ-protocol as well.

3.2.1 Ideal Resource

Let us now present the ideal resource for practical multipartite entanglement verification. Consider a
source using physical resources to create and share an n-qubit quantum state to n parties expecting a
qubit from a GHZ state. Our resource, called MEVC , aims to get a sense of how trustworthy the source
is, by verifying that it sends a state at least close to the GHZ state. It also has a built-in parameter C
that makes the resource output qubits with some probability known by all n+1 parties using the resource.

Figure 3.5: The MEVC resource for n = 3 parties. For readability we put the parties interfaces on the
left and the source interface on the right. The left interfaces are “collective interfaces” meaning that
inputs are sent collectively by all the parties and the output is obtained by all parties.

This black box (see Fig. 3.5 for a 3-party example) has n+ 1 input interfaces. All n parties wishing
to test a source collectively send a start signal to the input interfaces of resource. The last interface is
the source interface that gets a classical description of the state sent by the source. Upon reception of
the start inputs, MEVC will forward the start signals to the source interface then wait for the classical
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description of an n-qubit quantum state ρ. After that, it outputs on all interfaces a bit C = 0 with
probability p, or C = 1 with probability 1 − p. This bit indicates if the resource is going to output
qubits or a verification bit bout. The probability distribution of C can be tuned freely to match any
distribution. If C = 0 it then outputs to each party a qubit of ρ and if C = 1 it computes a bit bout

indicating if the state shared by the source is close to the GHZ state and sends it to all parties. This
box is made to be composed with itself in series with a very small p until all parties get a qubit or bout = 1.

The output bit bout should indicate whether the state shared by the source is ϵ-close to the GHZ
state for some ϵ. At this level of abstraction, we don’t care whether this behaviour comes from a faulty
device or an actual adversary trying to manipulate the source. Our MEVC resource outputs a bout such
that

(3.3) bout =
{

0 with probability 1 − τ2

2
1 with probability τ2

2

with

(3.4) τ = TD(|GHZ⟩⟨GHZ| , ρ),

where TD is the trace distance. The output of the resource is thus probabilistic, and depends on the
trace distance between the input state ρ and the GHZ state and on the security parameter C. Notice
that this bout follows the same distribution as the one of the original protocol (see Sec. 2.2.1) in the
case where all parties are honest. The security parameter C is added to the verification procedure to
make the resource suitable for practical use in larger protocols where one wants to eventually get shared
entanglement between the parties when the source is acting correctly.

Now in the case of the honest use of the resource, the source interface is given as input a classical
description of the GHZ state. Moreover the output C remains hidden to the outside world. In AC this is
modeled by using converters, the so called filters, that block the adversarial interfaces (thus filtering the
outputs) and send a specific input. In our case we define one filter ⊥ that enforces the honest use of
MEVC . It blocks any deviation from the outside world and upon reception of a start signal, it sends a
classical description of a GHZ state to MEVC (see Fig. 3.6). It has its inside interface plugged into the
MEVC resource and its outside interface open to inputs from any distinguisher (see [118] for extended
discussion about filtering and the inclusion of events in AC).

Figure 3.6: Filter ⊥. Upon reception of a start input, it outputs a classical description of a GHZ state
on its inside interface and blocks any input at its outside or inside interface.
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Composed with MEVC , they form our ideal resource MEVC⊥ for secure verified GHZ sharing or
source testing (see Fig. 3.7 for a 3-party example).

Figure 3.7: The ideal filtered MEVC⊥ resource for n = 3 parties. On the left are the “collective
interfaces” that are used by the parties to collectively send the start signal and receive the output. On
the right is the source interface filtered by ⊥, that blocks any input and sends a specific message to the
resource.

3.2.2 Concrete Resource

We will now make explicit the protocol in the AC framework, by defining the resources used and the
converters for each party. We first define the concrete resources, which in this case are abstractions
of physical resources. More explicitly we define the state generator resource, the one-way quantum
channel resource, the two-way classical channel resource and two multiparty classical computation oracles.

The state generator (SGn) resource (see Fig. 3.8) represents a perfect source of quantum states able
to create arbitrary quantum states of at most n qubits. Receiving a classical description of an n-qubit
state ρ on its input interface it will output each qubit of ρ on its n output interfaces. This resource can
be used to model imperfect sources by including the noise in the classical description of the state given
as input. We consider that no information is leaked by this resource about the state that it creates, as it
is the more restricting scenario in our security proof. In Sec. 3.3.3 we discuss the realization of such a
resource.

SGn

Class. 
desc.
of  ⍴

.

.

.{n 
qubits 
of ⍴

Figure 3.8: State generator resource.
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The SGn resource is to be composed with n quantum channel resources which we draw as arrows
with a Q (see Fig. 3.9). A quantum channel resource in our case is an ideal resource representing a
perfect private authenticated quantum channel. It takes as input a qubit and outputs the same qubit at
a different place without any leakage. We don’t make here any assumption on how these resources are
realised. They could be constructed out of quantum repeater protocols or out of a good fiber and an
error-correcting protocol depending on the distance between the source and the parties. AC typically
allows us to abstract these considerations in the context of this work, though we assume that such an
ideal resource can be realised.

Figure 3.9: Quantum channel resource.

Finally the classical communication between parties is modeled through classical channel resources
which we simply draw as arrows (see Fig. 3.10). They take bits at any of their interfaces and transmit
them to the other interface. We suppose those channels to be authenticated: to any other party watching
the channel, it will also output of the message transmitted without the possibility to alter it. In order
not to overload the figures, we don’t represent this leaking interface when all parties are honest but we
do when considering a dishonest source watching over the classical communication.

Figure 3.10: Classical channel resource.

We will abstract multiparty classical functionalities achieved by the parties by the use of oracle
queries. All parties can collectively call two oracles OC and Ov that respectively give a common random
bit C and a common random party identifier v to each party. We will draw them as boxes with n input
interfaces expecting a collective query from the parties and n output interface broadcasting C or v. This
is a modeling of classical communication protocols that provide random bits and random identifiers to
the parties. It is not considered private and the values of C and v are available to any malicious party
watching over the classical communication. We will discuss how these oracles can be replaced by actual
classical protocols in Sec. 3.3.3. Moreover, each party is locally equipped with a quantum register able
to perfectly store a qubit for the time required by the protocol on which they can perform one-qubit
operations and measurements. Quantum registers will not be drawn in the figures for simplification
purposes as well as the leakage interfaces of the classical channels, but they should not be forgotten as
assumptions in our model, particularly when considering the case of a malicious party. Since we consider
here all parties to be honest during the verification protocol, we only draw resources and interfaces of
interest.

We call R the resource constructed by a state generator resource composed in series to a collection
of n quantum channel resources and in parallel to n classical channel resources, OC and Ov. R formally
defines the creation of a state, common classical randomness generator protocols, the (2-way) classical
communication between the Verifier and the parties and the (one-way) quantum communication between
the source and the parties.
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The next step is to present the converters π = {πi}n
i=1 and πS that represent the protocols followed

by each party and the source. They model the local computation of each party during an honest round of
the protocol and can be represented either as algorithms or as boxes and arrows, that both expect some
input from which they produce output to send to the resources. Their quantum abilities are equal to the
ones that we give to local parties performing the multipartite entanglement verification protocol [85].

We start with π = {πi}n
i=1 representing the protocol followed by each party i (See Protocol 2). i is a

binary identifier for each party, but for simplicity we represent it with i ∈ [n] and we write π[n] for the
parallel composition of all {πi}n

i=1.

Protocol for the ith party πi

1. Ask the source to send a GHZ state. Wait for the reception of the qubit.
2. After reception, query OC , get C and output it. If C = 0, keep the qubit (output the qubit to

party).
3. If C = 1,

a) Query Ov, get v.
b) If v ̸= i

i. Wait for the reception of xi.
ii. If xi = 0, perform a Hadamard operation on the qubit. If xi = 1, perform a

√
X operation

on the qubit.
iii. Measure in the {|0⟩ , |1⟩} basis.
iv. Send the outcome yi to the Verifier via the classical channel resource.

c) If v = i

i. Create a random bit string X = {xi}n
i=1 with xi ∈ {0, 1} such that

∑n
i=1 xi ≡ 0 (mod 2)

ii. Send xi it to party i via a classical channel resource, keep xv.
iii. Follow steps (iii).b.2 to (iii).b.4 and get yv

iv. Wait for the reception of all the other yi.
v. Upon the reception of all the yi, output 0 to all if

n∑
i=1

yi ≡ 1
2

n∑
i=1

xi(mod 2)

and 1 otherwise.

The actual verification protocol is thus seen here as a subroutine (steps (iii).(a) to (iii).(c)). All
parties start by collectively querying a qubit and C and then, depending on the value of C, they either
keep the qubit or do the verification protocol. During the verification protocol, one party is chosen to be
the Verifier and after some classical communication and local quantum operations, the Verifier sends the
output bout to all parties.

The last converter, πS , represents the local operation that an honest source would perform using
the source to create an n-qubit GHZ state and send it to the parties. We consider a source separated
from the parties, hence having its own converter. πS simply consists in, upon receiving a signal from the
parties, sending a classical description of the GHZ state to the SGn resource. It implies that the source
is not watching the classical communication between the parties at any point. Functioning like a filter,
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this converter is made to be removed in case the source is noisy or some malicious party takes control of
the source to reveal new interfaces to the outside world.

Protocol for the source πS

1. Upon reception of a query by the parties, send a classical description of the GHZ state to the SGn

resource.

Together with R, this completes the definition of the concrete multipartite entanglement resource
π[n]RπS (see Fig. 3.11 for a 3-party example), which takes as input a start signal and outputs a bit C
then a qubit from a GHZ state to each party or a bit bout = 0.

π1

π2

π3

SGn πS

Start

Start

Start

Class. Desc. 
of a GHZ state

Q

Q

Q

1 qubit

1 qubit

1 qubit

Start

Start

Ov

OC

Query

Query

Query

v

v

v
Query

Query

Query

C

C

C

       (C=1, bout)
                    or
(C=0, GHZ qubit)

      (C=1, bout)
                   or
(C=0, GHZ qubit)

    (C=1, bout)
                   or
(C=0, GHZ qubit)

x3

y3

y2x2

Figure 3.11: The π[n]RπS Resource within the dotted red line for n = 3 parties wishing to test a source,
when party 1 is chosen to be the Verifier. We represent resources in red and converters in blue. We
recall the timeline of the protocol: (1) all the parties πi send a start signal to the source πS that sends
a classical description of a GHZ state to the SGn resource. (2) Upon reception of the qubit, parties
send a query to OC and get C. (3) If C = 0 they output a GHZ qubit and if C = 1 they query Ov and
get v (here party 1). (4) The Verifier sends instructions X = {xi}n

i=1 (here {x2, x3}) to others parties,
get outcomes Y = {yi}n

i=1 (here {y2, y3}) and computes and broadcasts bout. To avoid overloading the
figure we don’t represent quantum memories as well as the classical signals going from π1 to πS . As πS

represents honest behaviour from the source, we also don’t represent the leakage of information from
the classical channels.
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3.2.3 Security Analysis

We come now to the proof of the main claim of this work, namely that the multipartite entanglement
verification protocol π securely constructs the MEVC resource out of R. We proceed as expected from the
security definition of Sec. 3.1.3 that is by finding simulators to emulate local dishonest behaviour on the
ideal resource. A dishonest behavior from a party is simply modeled by removing the associated converter.
This creates new free interfaces on the concrete resource accessible to a distinguisher. Simulators should
render the ideal resource indistinguishable from dishonest concrete resources.

We will only consider cases that are of interest for our security claim which are when all parties are
honest and when the source is noisy or malicious. The case of dishonest parties possibly tampering the
source is discussed in Sec. 3.3.2, but it appears that composable security cannot be proven in the AC
framework when a party is dishonest. Distinguishers in this section are all powerful, both classically and
quantumly.

3.2.3.1 Correctness.

The first step of the proof corresponds to the correctness of the multipartite entanglement verification
protocol, meaning that when all parties are honest and the source is honest the parties all get either a
qubit from a GHZ state or a bit bout = 0.

Theorem 3.1. The multipartite entanglement verification protocol emulates the filtered ideal resource
MEVC⊥.

Proof. Let D be an all powerful distinguisher trying to guess between MEVC⊥ and π[n]RπS . Let us
look at the distribution of outputs that it will get from them.

D first sends start signals to both resources. When interacting with MEVC⊥, it gets C = 1 and
bout = 0 with some probability 1 − p and C = 0 and n qubits from a GHZ state with probability p.
Throughout this work, the probability distribution of p is tuned to match the one of OC . When interacting
with π[n]RπS , the distinguisher thus performs the concrete multipartite entanglement verification proto-
col with the same probability p. If all parties share a GHZ, the condition

∑n
i=1 yi ≡ 1

2
∑n

i=1 xi(mod 2) is
always fulfilled (see [85] for complete proof). So the Verifier always sends bout = 0 at the end. Hence, D
gets C = 1 and bout = 0 with probability 1−p and C = 0 and n qubits from a GHZ state with probability p.

We can conclude that for any distinguisher D, dD(π[n]RπS ,MEVC⊥) = 0 hence

(3.5) π[n]RπS ≈ MEVC⊥.

■
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3.2.3.2 Dishonest source.

Let us now look at the case of a dishonest or noisy source. As custom in AC, we model this by removing
the filter ⊥ of the ideal resource and the protocol πS of the concrete one (see Fig. 3.13). This leaves a
new interface free for a distinguisher to send in a classical description of a state ρ. Because we do not
use private but rather authenticated classical communication, the distinguisher also receives all leakage
of classical communication between the parties and when they query oracles.

In order to prove security, as expected from the security definition of Sec. 3.1.3, we need to find a
simulator σS such that we can prove π[n]R ≈ MEVCσS . It should simulate the dishonest behaviour of
the source watching over the classical communication of the parties. More specifically, it should emulate
on the ideal resource the new interfaces a distinguisher has access to when πS is unplugged from the
concrete resource.

Let σS be the simulator shown in Fig. 3.12. It first takes as input a start signal from the MEVC

resource, then emulates the verification protocol by forwarding this start signal. After receiving a classical
description of a state ρ, it forwards it to MEVC . It gets and forwards the bit C. If C = 1, it creates a
random v ∈ [n] and a random bit string X = {xi}n

i=1 such that
∑n

i=1 xi ≡ 0 (mod 2) and sends them
to the outside world, except for xv. Then it computes a table of possible measurement outcomes by
calculating all necessary scalar products:

(3.6)

Pr[y1 = 0, y2 = 0, ..., yn = 0] = ⟨00...0|UρU† |00...0⟩

Pr[y1 = 0, y2 = 0, ..., yn = 1] = ⟨00...1|UρU† |00...1⟩

...

P r[y1 = 1, y2 = 1, ..., yn = 1] = ⟨11...1|UρU† |11...1⟩

with U = Hx1(
√
X)1−x1 ⊗Hx2(

√
X)1−x2 ⊗ ...⊗Hxn(

√
X)1−xn corresponding to the local operations

made by each party on their qubit in the verification protocol. Then it randomly samples Y = {yi}n
i=1

from this table and sends them to the outside world, except for yv.

Figure 3.12: Simulator σS for a dishonest source.
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Roughly speaking, σS classically emulates the whole multiparty protocol by reproducing the classical
communication and local quantum operations. Plugged in MEVC , this defines a new resource MEVCσS

(see Fig. 3.14). With this simulator we can state that:

Theorem 3.2. The multipartite entanglement verification protocol with a noisy or malicious source
emulates the ideal resource MEVCσS.

Proof. In this scenario, we have to prove an equivalence between MEVCσS and π[n]R (i.e., Figs. 3.13
and 3.14). This is done by showing that no distinguisher sending inputs and receiving outputs from both
can guess which resource it is interacting with. In the concrete setting this means that the parties will
share a state ρ that is τ -close to the GHZ state, with τ = TD(|GHZ⟩⟨GHZ| , ρ), that they will either
keep or verify with probability S. In [85], it is shown that a state ρ passes the verification test with
probability 1 − τ2

2 .
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Start

Start

Start

Q

Q

Q

1 qubit

1 qubit

1 qubit

x3
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C, v, x2, y2
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     (C=1, bout)
                   or

(C=0, 1 qubit from ⍴)

   (C=1, bout)
               or
(C=0, 1 qubit 
from ⍴)

       (C=1, bout)
                    or

(C=0, 1 qubit from ⍴)

Figure 3.13: The π[n]R resource for n = 3 parties when party 1 is chosen as the Verifier, accessed by
a distinguisher (in green). To not overload the figure we join all leakages interfaces from the classical
channel resources into two arrows, but they should each be considered as a different interface the
distinguisher has access to.

Let D be an all powerful distinguisher trying to guess between π[n]R and MEVCσS . In the concrete
setting, it sends in start signals at the parties interfaces then receives it at the source interface. It then
sends a classical description of a state ρ to SGn. D then sees all the classical communication happening
out of the authenticated classical channels. More explicitly it will first see a bit C. If C = 0, it will see
nothing but the qubits of ρ at each party’s interface. If C = 1, a random identifier v ∈ [n] leaks, then
random bits X\{xv} from the Verifier to each party. Then the outcome of each party’s measurement
except the Verifier’s Y \{yv} leaks and finally the bit bout is broadcasted by the Verifier.
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MEV
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Figure 3.14: The MEVCσS resource for n = 3 parties accessed by a distinguisher (in green).

In the ideal setting, after D sends in a start signal, MEVC forwards it to σS . The simulator then
sends a start signal simulating the query of a state by the parties. After that, the distinguisher sends a
classical description of a state ρ to σS who forwards it to MEVC , which outputs C at all its interfaces.
σS gets C and outputs it at its outside interface. If C = 0, MEVC outputs the qubits of ρ at each
party’s interface. If C = 1, σS creates and outputs a random v̂ ∈ [n] then computes a random bit string
X̂ = {x̂i}n

i=1 such that
∑n

i=1 x̂i ≡ 0 (mod 2). It sends them to the outside world, except for x̂v. After
that, σS computes the table of Eq. (3.6) and randomly samples Ŷ = {ŷi}n

i=1. It outputs them all to
the outside world except for ŷv. Finally MEVC outputs b̂out = 0 with probability 1 − τ2

2 and b̂out = 1
otherwise.

The probability distribution of the bit C is designed to match the probability distribution given
by the oracle OC . In the concrete setting v is chosen randomly among the players through a query
to the oracle Ov so we have that for all i ∈ [n], Pr[v = i] = Pr[v̂ = i]. X = {xi}n

i=1 and X̂ = {x̂i}n
i=1

are both chosen randomly so their probability distribution is the same. Y = {yi}n
i=1,i̸=v are the

outcomes of the measurements of each qubit ρ by each party in the {|0⟩ , |1⟩} basis after doing the
operation indicated by each xi. The state after each party applied their operation is UρU† with
U = Hx1(

√
X)1−x1 ⊗Hx2(

√
X)1−x2 ⊗ ...⊗Hxn(

√
X)1−xn . They are samples from the table of Eq. (3.6).

Hence for each i ∈ [n] we have that Pr[yi = 0] = Pr[ŷi = 0]. Finally, by definition of our MEVC resource,
the probability distribution of b̂out is the same as the one of bout.

The probability distribution of the output given by the two resources depending on the inputs is
thus the same. Hence we have that for any distinguisher D, dD(π[n]R,MEVσS) = 0 and

(3.7) π[n]R ≈ MEVCσS .

■
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3.2.3.3 Conclusion.

We have proved that π[n]RπS ≈ MEVC⊥ and that ∃σS s.t. π[n]R ≈ MEVCσS . This means that the
multipartite entanglement verification protocol presented is composable when all parties are honest but
with a possibly dishonest source. The protocol can thus be thought of as a black box and equivalently
replaced by the MEVC resource (Fig. 3.5) when designing protocols using this one as a subroutine. It
assumes that the parties have access to resources R, including common oracles and quantum memories.

3.2.4 Application : Verified GHZ sharing resource.

The composability result we proved allows n parties to securely compose the protocol with itself multiple
times. If the probability that C = 0 is sufficiently small, the protocol will be repeated on expectation
enough rounds to allow the parties to build high confidence on the source’s ability to create a state
close to the GHZ state. Since the round where they will actually use the qubits sent by the source to
perform some communication or computation protocol is unknown to the source, it is not possible for
the source to adapt and decide when to send faulty states. Hence it forces the source to send states that
are sufficiently close to the GHZ state every time it is queried. We call this protocol the multi-round
multipartite entanglement verification protocol.

1. Send start signal.
2. Get C.
3. If C=1, wait for  bout. 

    If bout = 0, restart.  
    If bout = 1, abort.

4. If C=0, 
    forward qubit.

Ⲡ1

“Abort” 
or 
1 GHZ qubit

Start 

MEV Class. 
desc.
of GHZ

C
C
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        (C=1, bout)
                        or
(C=0, GHZ qubit)

        (C=1, bout)
                        or
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                        or
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or 
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“Abort” 
or 
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⊥

Figure 3.15: Multi-round verification resource Π[n]MEVC⊥ for 3 parties (in the red dotted square). It
takes start signals as input and outputs either a shared quantum state ϵ-close to the GHZ state or an
abort signal.
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By defining converters {Πi}n
i=1 representing the aforementioned protocol, we can construct a resource

Π[n]MEVC⊥ that gives either a state at least ϵ-close to the GHZ state to n parties or an abort signal
(see Fig. 3.15 for a 3-party example and the explicit description of a Πi). As it is a composable framework,
AC allows us to state that

Π[n]π[n]RπS ≈ Π[n]MEVC⊥(3.8)

and ∃σS s.t. Π[n]π[n]R ≈ Π[n]MEVCσS .(3.9)

Let us define a verified ϵ-GHZ state sharing resource that we call GHZ (see Fig. 3.16). This resource
is the idealisation of multipartite entanglement verification achieved through an interactive protocol
between the source and the parties. We assume that at each round of the interaction a state is produced
and shared by the source and the parties perform some verification protocol until, in the end, they
decide to trust that the shared state is close to the GHZ state or abort the protocol. GHZ takes as
input start signals from the parties, then interacts with the source and finally outputs either a state
ϵ-close to the GHZ state or an abort signal. The interaction is abstractly modeled in the following way:
first a Start signal is sent to the source interface, which replies with the classical description of a state ρ.
Then GHZ will either ask for another state by sending a “Continue” signal to the source interface, or
output an “Abort” signal to all interfaces because the current state was found to be far from the GHZ
state, or, last, stop the protocol and share the last state it has received to the parties interface and send
a “Stop” signal to the source interface. The probability that GHZ either asks for more states or outputs
qubits can be tuned freely.

Verified

GHZ
sharing resource

Class. 
desc.
of  ⍴

“Continue”,
“Abort” or
“Stop”

Start {

{

Start 

GHZ qubits
          or

Abort

}Interaction
with the source

Figure 3.16: Verified ϵ-GHZ sharing resource for 3 parties. It takes start signals as input from the
parties on the left interface then interacts with the source on the right interface. It outputs either a
shared quantum state ϵ-close to the GHZ state or an abort signal to the parties.

This resource abstracts all the local operations and communication between the parties. From their
point of view it is simply a source of states that are close to the GHZ state. However, to capture possibly
malicious behavior from the source, we include the interaction on the source interface. We argue this is
an abstract enough resource that captures all interactive verification procedures where the parties verify
a number of states from the source before asserting that the source gives close to GHZ states.
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Figure 3.17: Filter ⊥′ (on the left) and simulator σC (on the right) to plug into the GHZ resource. The
former represents the honest use of the resource and allows us to state the correctness of the AC security
proof (Eq. (12)). The latter is the simulator that models the interface to which a distinguisher has
access when we consider the source to act maliciously using the multiround multipartite entanglement
verification resource Π[n]MEVC . It allows us to derive the second part (noisy or malicious source) of the
AC security proof (Eq. (13)).

Similarly to Sec. 3.2.3, when we define ⊥′ and σC as in Fig. 3.17, we can prove that

Π[n]MEVC⊥ ≈ GHZ⊥′(3.10)

and Π[n]MEVC ≈ GHZσC(3.11)

Hence,

Π[n]π[n]RπS ≈ GHZ⊥(3.12)

and ∃σS s.t. Π[n]π[n]R ≈ GHZσS(3.13)

This means that the multi-round multipartite entanglement verification protocol constructs the GHZ
resource out of R. We can also state that it is composably secure in the setting of all honest parties
and in the presence of a possibly malicious or noisy source. We can conclude that this protocol allows n
parties to get a GHZ state as a subroutine of a bigger protocol with an untrusted source.

3.3 Discussion

3.3.1 Case of honest parties

The multipartite entanglement verification protocol is particularly suited in a distributed computing
scenario where the parties are honest but where there could be a faulty resource. They can use this
protocol to check if the noise of an entanglement source is small enough for practical use. Indeed, if after
many rounds of performing this protocol the output is most of the time bout = 0, they can realistically
be sure that the source is producing states that are close to the GHZ state. Its composability allows
for the construction of the multi-round verification resource, which can find practical use in larger
communication protocols, as for example in anonymous ranking [119], quantum secret sharing [120] or
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distributed consensus [121] protocols. In fact, any protocol that starts with a GHZ state shared among
n honest parties that don’t trust their source can be composed with this one in a secure way. This might
seem limiting but is in fact realistic in many distributed computing settings.

This protocol can also be seen as a building block of a quantum network. We can reasonably assume
that parties are honest when performing protocols establishing the network in the same way we think
about parties when considering entanglement distillation, network or transport layer protocols of the
OSI model of the classical Internet. An intermediate scale metropolitan quantum Internet example is a
network where a source shares a GHZ state to all parties at each time-step, that they either use or verify.
Our verification protocol can in this case be hidden in the assumptions of the network. Moreover recent
work on graph state verification [122] hint that composable security can be extended to verification of
any graph state. This is particularly relevant because not all states can be obtained from local operations
on the GHZ state and classical communications (see e.g.[123]).

One may wonder why we did not start by defining the multi-round and the verified ϵ-GHZ sharing
resources of the above section from the beginning. This is indeed the practical resource that one would
like to use in larger protocols as it directly provides quantum states that are ϵ-close to the GHZ
state. This was based on the fact that our priority was not to define ad hoc the most useful resource,
but to succeed in modeling a resource that is as close as possible to the signals that will actually be
sent by the parties when performing the protocol in real life, and use this resource in a composably
secure way to obtain a practical multipartite entanglement verification resource, that of the multi-round
resource. Our one-round resource captures the important parameters for composing the protocol in larger
routines and it allows for modularity and a more precise understanding of what happens in the multi-
round case. Moreover, the composability of the one-round GHZ-verification protocol allows to perform
many of these multi-round GHZ-verification protocols in parallel. By sending start signals to different
sources, a group of honest parties could decide which source provides the best quantum states. This al-
lows this protocol to fit in a bigger network model where the parties could get states from different sources.

We will also see below that dishonest behavior of a party already causes composability issues in
the one-round case thus we get a better understanding of the issues by proving composability in this
case. Moreover the box-shaped resource that we construct using AC (Fig. 3.7) is close to the black-box
picture that one would like to have when thinking of the building blocks of near-term Quantum Internet
applications such as the one listed above [93, 119, 120, 121]. Finally, we emphasize that this protocol
only assumes classical communications between the parties and single-qubit local operations for each
party, making it a good candidate for scalable application development.

3.3.2 Case of a malicious party

When studying this problem, it is natural to think about the case of dishonest parties possibly controlling
the source. If we assume that dishonest parties are trying to make the others accept a state that is not
close the GHZ state, results from [85] and [86] show that for one round of verification, the output bit bout

depends on the minimal distance between the GHZ state and the shared state up to local operations on
the part of the state held by the dishonest parties. This result holds even when the dishonest parties have
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complete control over the state generation resource. For this to hold, we have to assume that the Verifier is
always honest and that the parties cannot influence the probability distributions of the oracles OC and Ov.

Yet as discussed in the first part of this chapter, it seems that this protocol cannot be proven
composable in the Abstract Cryptography framework when considering a dishonest party. Indeed one
straightforward strategy for a dishonest party would be to make the protocol abort randomly, which
would give false information about the source. Any dishonest party actually has complete control on
the distribution of the concrete resource’s output bout while the ideal resource’s output is fixed by the
distance with the GHZ state of the state given as input. Even if we add switches to our resource on
which a simulator could act to make it abort (as custom is such cases), we could not reproduce the
abort probability distribution of our concrete protocol in the ideal world. It seems impossible to find a
simulator that emulates the interfaces a distinguisher has access to when removing one of the πi. This
can be seen in the AC framework by removing the converters corresponding to the dishonest parties and
finding distinguishing attacks for every possible simulator. We would moreover need extra assumptions
on the quantum registers and the access to the multiparty computation oracles OC and Ov that seem
unpractical in a near-term network.

However, our composability result comes on top of the security proof of [85] meaning that our
multiparty entanglement verification protocol is secure against possible coalition of dishonest parties and
source trying to persuade others that they share a GHZ when they don’t and composably secure against
a malicious source. It does not limit the use of our protocol to the all honest case. No attack is known
to make use of the repetition of the protocol that would alter the integrity of the shared state more
than simply repeating the attack described in [85]. On the other hand, the availability of the resource
can be compromised by dishonest behaviour in an unpredictable way. This sheds light on the pros and
cons of using a game-based framework versus a composable framework. In the former we can restrict
dishonest behaviour to specific attacks and get specific security properties while in the former we can
only act on how powerful the class of distinguishers is but get more general security claims. By studying
the protocol in different frameworks, we are able to take the best of all approaches and show different
aspects of security that increase confidence in the protocols.

3.3.3 Practical implementation in a near-term quantum network

To actually implement the protocol, one has to replace the resources in R with actual protocols or
physical resources. Multiparty classical protocols should take the place of oracle calls, and have to be
proved composable to securely construct R out of them and the quantum resources. An example of a
protocol replacing calls to OC is the random bit protocol explicited in [93] and [124]. Previous work [85]
shows that by choosing the probability of using the qubit for computation (C = 0) to be ϵ2

4nδ for some
δ > 0, all honest parties have the guarantee that the probability the state used has distance at least ϵ
from the correct one is at most 1

δ .

Qubit transportation should be taken care of by physical channels and protocols that one has to
study to see if they are equivalent to the quantum channel resource presented in this work. This would
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happen at the equivalent of the link layer of the OSI model for the Quantum Internet. As previously
mentioned, any noisy channel can be modeled by a perfect channel in which a noisy state is given
as input, and a noisy source can be modeled by a perfect source in which a classical description of
a noisy state is given. The SGn resource is designed as an attempt to capture what happens in the
most general case when the protocol is performed in the lab where, at some point, a classical signal
is sent to a quantum device that creates a state. Usually some information is accessible to the person
controlling the device to check (for example by heralding photons) if the right state has been created.
We suppose here that none of this information leaks from SGn as it is the more restricting scenario.
Moreover we don’t restrict the source to create only n-qubit states, but merely enforce that it is able
to create states up to this size. The proof holds even if the source creates bigger states and keeps part
of it or sends it to a malicious party. SGn is thus not meant to be realistic but to give an abstract
embodiment of any source. A photonic implementation of a loss-tolerant variation of the original
protocol has been achieved with 4 parties [86]. This leads to expect near-term realization of our pro-
tocol, presenting all security properties as well as composability and modularity for use in bigger protocols.

Lastly, the quantum memory assumption can be removed by asking the parties to measure their
bit directly after receiving it and flipping the outcome randomly depending on the input given by the
Verifier. We would lose the security properties against a malicious party from [85] that are based on the
actual order of the inputs for each party. In our all honest setting, this would not matter so this protocol
can actually be used in near-term architecture to securely check a source. Experimental realization of
this protocol in a composable way is currently studied, which would allow to take this protocol as a
concrete building block for applications in the quantum Internet. Whether this protocol should remain
in the application layer or be hidden in some network or transport layer is still to be determined and
will depend on future developments in quantum network architectures.

3.3.4 Thoughts on composable security and Abstract Cryptography

This work was done in the first years of my thesis research and the conclusion was not very satisfactory.
For a long time, we considered that composable is a too restrictive notion with very little actual
practical use. Consequently we dropped this topic for a while. However, we recently started questioning
the methodology of the proof for multi-party protocols. It seemed that a strong assumption that we
considered as essential can actually be lifted. Namely, when considering multiple dishonest parties and
designing simulators to emulate the free interfaces accessed by a distinguisher, we restricted ourselves to
local simulators. This means that simulators should not interact because the communication between
them would involve new resources that were not considered in the construction of this ideal resource.
This is the main cause for not being able to design a set of simulators that would be able to simulate
dishonest behaviour from a party possibly colluding with the source.

After some discussions with U. Maurer and R. Renner, it seems that the Abstract Cryptography
framework has now evolved towards removing of the concept of simulators and that our restriction
on the simulator does not necessarily hold. Adding resources to allow communication between the
different simulators should be possible without affecting the composability proof. They however have to
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be clearly stated in the description of the ideal resource. With Léo Colisson, we will work on studying
the composable security of a more general protocol, namely generic graph-state verification, in this new
context.

When designing protocols for the future Quantum Internet, composable security is a very useful
property. A protocol that is proven composably secure can be used as a building block for bigger and
more complex protocols without having to prove security again. It is however quite a demanding property
for an actual implementations of the protocol. Composable security relies on many assumptions: all
the resources used in the concrete version of the protocol have to be actually realisable and proven
composable. In the context of noisy quantum communication with error correction protocol on top
of each data transfer this could cause flaws in the concrete representation of the protocol. Classical
communication and multiparty computation should also be proven composable. However, research that
we discovered after this work shows that multi-party classical computation has been proven composable
in the Universal Composability framework [125]. Hence, studying the composable security of protocols
could yield interesting results, but it is however not clear yet if they will have practical use on actual
implementations of quantum network protocols.
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Quantum Repeaters

In this chapter, we take a close look at communication between two nodes through an optical fiber
which is a crucial building block of quantum networks. Unfortunately, after a few tens of kilometers,
photon loss in fiber becomes predominant and prevents practical applications. The well known PLOB
bound [22] gives fundamental limits on quantum communication over long distance in a fiber. Moreover
the no-cloning theorem prevents us from simply copying a quantum state and resending it before it is
lost. One way to overcome this issue is to use quantum repeaters, analogs of amplifiers in a classical
network. A quantum repeater is the combination of a protocol and some devices that allow quantum
communication over a longer distance than what would be achievable with a direct fiber link. It typically
divides a long-distance link between two nodes into sublinks of smaller length.

Contribution and outline: In this chapter, we study four different repeater schemes based on
NV-center nodes. We notably investigate the strategy of establishing a cut-off on the number of trials
in establishing entanglement in one sublink before moving on to the next. We model and simulate the
secret key rate of the four schemes in the context of quantum key distribution. This work was done
in collaboration with Filip Rozpedeck and Kenneth Goodenough, who participated in writing what
follows. In Section 4.2 we discuss and detail the different repeater proposals that will be assessed in this
work. In Section 4.3 we expand on how the different components of the repeater proposals would be
implemented experimentally. Section 4.4 details how to calculate the secret-key rate achieved with the
quantum repeater proposals from the modeled components. In Section 4.5 we discuss how to assess the
performance of a quantum repeater. The comparison of the different repeater proposals is performed in
Section 4.6, which allows us to conclude with our results in Section 4.7. The numerical results of this
work were produced with a Python and a Mathematica script.

Article Link: The full article can be found at https://arxiv.org/abs/1809.00364 and is published in
Physical Review A (Phys. Rev. A 99, 052330, May 2019)
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4.1 Introduction

One of the main hurdles for long-distance quantum communication is the loss of photons, whether it
is through fiber or free-space. Unfortunately, the no-cloning theorem [126] makes the amplification of
the transmitted quantum states impossible. For tasks such as the generation of shared secret key or
entanglement, this limits the corresponding generation rate to scale at best linearly in the transmissivity
η of the fiber joining two distant parties [127, 128, 129].

Luckily, while quantum mechanics prevents us from overcoming the effects of losses through amplifica-
tion, it is possible to do so using repeater stations [130, 131, 132]. Formally, we call a quantum repeater a
device that allows for a better performance than can be achieved over the direct communication channel
alone [23]. This performance is measured differently for different tasks, such as secret-key generation
or transmission of quantum information. Consequently, the optimal performance that can be achieved
over the direct channel without using repeaters, called the channel capacity, is also different for these
two tasks. Here we will assess our proposed repeater schemes for the task of secret-key generation,
as it is easier to realize experimentally. Our formal definition of a repeater—as opposed to a relative
definition with respect to some setup of reference—endows the demonstration of a quantum repeater
with a fundamental meaning that cannot be affected by future technological developments in the field.

However, a successful experimental implementation of a quantum repeater has not yet been demon-
strated. This is mainly due to the additional noise introduced by such a quantum repeater. The first
demonstration of a functioning quantum repeater will form an important step towards practical quantum
communication and the quantum internet [133].

A multitude of quantum repeater schemes have been put forward [134, 135, 136, 137, 138, 131, 139,
140], each with their own strengths and weaknesses. A priori, it is not clear which of those schemes will
perform best with current or near-term experimental parameters. In this work we propose three such
schemes and together with the fourth scheme analyzed before [141, 23], we assess their performance for
generating secret key. We consider their implementation based on nitrogen-vacancy centers in diamond
(NV centers), a system which has properties making it an excellent candidate for long-distance quantum
communication applications [142, 11, 10, 143, 144, 145, 146, 147, 148, 149].

The four considered schemes are: the “single sequential quantum repeater node” (first proposed and
studied in [141], then further analyzed in [23]), the single-photon scheme (proposed originally in the
context of remote entanglement generation [150], also studied in the context of secret-key generation
without quantum memories [54]), and two schemes which are a combination of the first two. See Fig. 4.1
for a schematic overview of the repeater proposals considered in this work.

We compare the secret-key rate of each of these schemes to the highest theoretically achievable
secret-key rate using direct transmission, the secret-key capacity of the pure-loss channel [129]. We show
that one of these schemes, the single-photon scheme, can surpass the secret-key capacity by a factor of
seven. This shows the viability of this scheme for the first experimental implementation of a quantum
repeater.
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Figure 4.1: (Color on-line) Schematic overview of the four quantum repeater schemes assessed in this
work. From top to bottom: the Single Sequential Quantum Repeater (SiSQuaRe) scheme (A), the
single-photon scheme (B), the Single-Photon with Additional Detection Setup (SPADS) scheme (C) and
the Single-Photon Over Two Links (SPOTL) scheme (D). The purple particles represent NV electron
spins capable of emitting photons (red wiggly arrows) while the yellow particles represent carbon 13C
nuclear spins. Dark blue squares depict the beam splitters used to erase the which-way information of the
photons, followed by blue photon detectors. For more details on the different proposals, see Section 4.2.

4.2 Quantum repeater schemes

In the following section we present the quantum repeater schemes that will be assessed in this work.
All these schemes use NV center based setups which involve memory nodes consisting of an electron
spin qubit acting as an optical interface and possibly an additional carbon 13C nuclear spin qubit acting
as a long-lived quantum memory (see Sec. 1.1.3). Here, we briefly go over all the proposed schemes,
motivate why they are interesting from an experimental perspective and discuss their advantages and
disadvantages.

4.2.1 The Single Sequential Quantum Repeater (SiSQuaRe) scheme

The first scheme that we discuss here was proposed and analyzed in [141], and further studied in [23]. The
scheme involves a node holding two quantum memories in the middle of Alice and Bob (see Fig. 4.2). This
middle node tries to send a photonic qubit, encoded in the time-bin degree of freedom, that is entangled
with one of the quantum memories, through a fiber to Alice. This is attempted repeatedly until the
photon successfully arrives, after which Alice performs a BB84 [151] or a six-state measurement [152, 153].
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By performing such a measurement, the quantum memory will be steered into a specific state depending
on the measurement outcome. Now the same is attempted on Bob’s side. After Bob has measured a
photon, the middle node performs a Bell-state measurement on both quantum memories. Using the
classical information of the outcome of the Bell-state measurement, Alice and Bob can generate a single
raw bit. In our model, the middle node has only one photonic interface (corresponding to the NV electron
spin), and hence has to send the photon sequentially firstly to Alice and then to Bob.

While trying to send a photon to Bob, the state stored in the middle node will decohere. A possible
way to compensate for the effects of decoherence is to introduce a so-called cut-off [23]. The cut-off is
a limit on the number of attempts we allow the middle node to try and send a photon to Bob. If the
cut-off is reached, the stored state is discarded, and the middle node attempts again to send a photon to
Alice. Since the scheme starts from scratch, we are effectively trading off the generation time versus the
quality of our state. By optimizing over the cut-off, it is possible to considerably increase the distance
over which secret key can be generated [23].

Setup and scheme

Figure 4.2: (Color on-line) Schematic overview of the SiSQuaRe scheme. The NV center in the middle
first attempts to generate an entangled photon-electron pair, after which it tries to send the photon
through the fiber to Alice. Alice then directly measures the photon, using either a BB84 or a six-state
measurement. Then after the state of the electron spin is swapped to the carbon 13C nuclear spin,
the same is attempted on Bob’s side. After both Alice and Bob measured a photon, a Bell-state
measurement is performed on the two quantum states held by the middle node. Alice and Bob can use
their measurement outcomes together with the outcome of the Bell-state measurement to generate a
single raw bit of key.

We will now describe the exact procedure of this scheme, when Alice and Bob use a nitrogen-vacancy
center in diamond as quantum memories and as a photon source. The scheme that we study is the
following:

SiSQuaRe scheme

1. The quantum repeater attempts to generate an entangled qubit-qubit state between a photon and
its electron spin, and sends the photon to Alice through a fiber.

2. The first step is repeated until a photon arrives at Alice’s side, after which she performs a BB84
or a six-state measurement. The electron state is swapped to the carbon spin.

3. The quantum repeater attempts to do the same on Bob’s side while the state in the carbon spin is
kept stored. This state will decohere during the next steps.

4. Repeat until a photon arrives at Bob’s side, who will perform a BB84 or a six-state measurement.
If the number of attempts n reaches the cut-off n∗, restart from step 1.

5. The quantum repeater performs a Bell-state measurement and communicates the result to Bob.
6. All the previous steps are repeated until sufficient data have been generated.
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4.2.2 The single-photon scheme

Cabrillo et al. [150] devised a procedure that allows for the heralded generation of entanglement between
a separated pair of matter qubits (their proposal discusses specific implementation with single atoms,
but the scheme can also be applied to other platforms such as NV centers or quantum dots) using linear
optics. For the atomic ensemble platform this scheme also forms a building block of the DLCZ quantum
repeater scheme [135]. Here we will refer to this scheme as a single-photon scheme as the entanglement
generation is heralded by a detection of only a single photon. This requirement of successful transmission
of only a single photon from one node makes it possible for this scheme to qualify as a quantum repeater
(see below for more details).

The basic setup of the single-photon scheme consists of placing a beam splitter and two detectors
between Alice and Bob, with both parties simultaneously sending a photonic quantum state towards
the beam splitter. The transmitted quantum state is entangled with a quantum memory, and the
state space of the photon is spanned by the two states corresponding to the presence and absence
of a photon. Immediately after transmitting their photons through the fiber, both Alice and Bob
measure their quantum memories in a BB84 or six-state basis (see the discussion of which quantum
key distribution protocol is optimal for each scheme in Section 4.4.2 and in Section 4.6.1). Note that
this is equivalent to preparing a specific state of the photonic qubit and therefore is closely linked
to the measurement device independent quantum key distribution (see Sec.2.1.1.3) as discussed in
Appendix A.9. However, preparing specific states that involve the superposition of the presence and
absence of a photon on its own is generally experimentally challenging. The NV-implementation allows us
to achieve this task precisely by preparing spin-photon entanglement and then measuring the spin qubit.
Afterwards, by conditioning on the click of a single detector only, Alice and Bob can use the information of
which detector clicked to generate a single raw bit of key, see Appendix A.5 and [150] for more information.

The main motivation of this scheme is that, informally, we only need one photon to travel half the
distance between the two parties to get an entangled state. This thus effectively reduces the effects
of losses, and in the ideal scenario the secret-key rate would scale with the square root of the total
transmissivity η, as opposed to linear scaling in η (which is the optimal scaling without a quantum
repeater [154]). However, one problem that one faces when implementing this scheme is that the fiber
induces a phase shift on the transmitted photons. This shift can change over time, e.g. due to fluctuations
in the temperature and vibrations of the fiber. The uncertainty of the phase shift induces dephasing
noise on the state, reducing the quality of the state.

To overcome this problem, a two-photon scheme was proposed by Barrett and Kok [155], which does
not place such high requirement on the optical stability of the setup. Specifically, in the Barrett and
Kok scheme the problem of optical phase fluctuations is overcome by requiring two consecutive clicks
and performing additional spin flip operations on both of the remote memories. The Barrett and Kok
scheme has seen implementation in many experiments [156, 157, 158, 159]. However, the requirement of
two consecutive clicks implies that a setup using only the Barrett and Kok scheme with two memory
nodes will never be able to satisfy the demands of a quantum repeater. Specifically, the probability of
getting two consecutive clicks will not be higher than the transmissivity of the fiber between the two
parties and therefore will not surpass the secret-key capacity.
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In the single-photon scheme, on the other hand, the dephasing caused by the unknown optical
phase shift is overcome by using active phase-stabilization of the fiber to reduce the fluctuations in the
induced phase. This technique has been used in the experimental implementations of the single-photon
scheme for remote entanglement generation using quantum dots [160, 161], NV centers [142] and atomic
ensembles [162]. For experimental details relating to NV-implementation, we refer the reader to Sec-
tion 4.3. This phase-stabilization technique effectively reduces the uncertainty in the phase, allowing us
to significantly mitigate the resulting dephasing noise, see Appendix A.1 for mathematical details.

In contrast to the Barrett and Kok scheme, the single-photon scheme cannot produce a perfect
maximally entangled state, even in the case of perfect operations and perfect phase-stabilization. This is
because losses in the channel result in a significant probability of having both nodes emitting a photon
which can also lead to a single click in one of the detectors, yet the memories will be projected onto a
product state. As we discuss below, this noise can be traded versus the probability of success of the
scheme by reducing the weight of the photon-presence term in the generated spin-photon entangled
state. This is discussed in more detail below and the full analysis is presented in Appendix A.5.

The single-photon scheme with phase-stabilization is a promising candidate for a near-term quantum
repeater with NV centers. We note here that recently other QKD schemes that use the MDI framework
have been proposed, for example Twin-Field QKD. These schemes, similarly to our proposal, use
single-photon detection events to overcome the linear scaling of the secret-key rate with η [54, 163, 164].
In these proposals, in contrast to our single-photon scheme, no quantum memories are used, but instead
Alice and Bob send phase-randomized optical pulses to the middle heralding station.

Setup and scheme

In the setup of the single-photon scheme Alice and Bob are separated by a fiber where in the center
there is a beam splitter with two detectors (see Fig. 4.3). They will both create entanglement between a
photonic qubit and a stored spin and send the photonic qubit to the beam splitter.

Figure 4.3: (Color on-line) Schematic overview of the single-photon scheme. Alice and Bob simultaneously
transmit a photonic state from their NV centers towards a balanced beam splitter in the center. This
photonic qubit, corresponding to the presence and absence of a photon, is initially entangled with the
NV electron spin. If only one of the detectors (which can be seen at the top of the figure) registers a
click, Alice and Bob can use the information of which detector clicked to generate a single raw bit of key.
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Alice and Bob thus perform the following:

Single-click scheme

1. Alice and Bob both prepare a state |ψ⟩ = sin θ |↓⟩ |0⟩ + cos θ |↑⟩ |1⟩ where |↓⟩/|↑⟩ refers to the
dark/bright state of the electron-spin qubit, |0⟩/|1⟩ indicates the absence/presence of a photon,
and θ is a tunable parameter.

2. Alice and Bob attempt to both separately send the photonic qubit to the beam splitter.
3. Alice and Bob both perform a six-state measurement on their memories.
4. The previous steps are repeated until only one of the detectors between the parties clicks.
5. The information of which detector clicked gets sent to Alice and Bob for classical correction.
6. All the previous step are repeated until sufficient data have been generated.

The parameter θ can be chosen by preparing a non-uniform superposition of the dark and bright
state of the electron spin |ψ⟩ = sin θ |↓⟩ + cos θ |↑⟩ via coherent microwave pulses. This is done before
applying the optical pulse to the electron which entangles it with the presence and absence of a photon.
The parameter θ can then be tuned in such a way as to maximize the secret-key rate. In the next section,
we will briefly expand on some of the issues arising when losses and imperfect detectors are present. We
show the full explanation and calculations in Appendix A.5.

Realistic setup

In any realistic implementation of the single-photon scheme, a large number of attempts is needed
before a photon detection event is observed. Furthermore, a single detector registering a click does not
necessarily mean that the state of the memories is projected onto the maximally entangled state. This
is due to multiple reasons, such as losing photons in the fiber or in some other loss process between
the emission and detection, arrival of the emitted photons outside of the detection time-window and
the fact that dark counts generate clicks at the detectors. Photon loss in the fiber effectively acts as
amplitude-damping on the state of the photon when using the presence/absence state space [129, 165].
Dark counts are clicks in the detectors, caused by thermal excitations. These clicks introduce noise, since
it is impossible to distinguish between clicks caused by thermal excitations and the photons traveling
through the fiber if they arrive in the same time-window. All these sources of loss and noise acting on
the photonic qubits are discussed in detail in Appendix A.1. Finally we note that we assume here the
application of non-number resolving detectors. This can lead to additional noise in the low loss regime,
since then the event in which two photons got emitted cannot be distinguished from the single-photon
emission events even if no photons got lost. However, in any realistic loss regime this is not a problem,
since the probability of two such photons arriving at the heralding station is quadratically suppressed
with respect to events where only one photon arrives. In the realistic regime, almost all the noise coming
from the impossibility of distinguishing two-photon from single-photon emission events is the result of
photon loss. Namely, if a two-photon emission event occurs and the detector registers a click, then with
dominant probability it is due to only a single photon arriving, while the other one being lost. Hence
the use of photon-number resolving detectors would not give any visible benefit with respect to the use
of the non-number resolving ones. For a detailed calculation of the effects of losses and dark counts for
the single-photon scheme, see Appendix A.5.
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4.2.3 Single-Photon with Additional Detection Setup (SPADS) scheme

The third scheme that we consider here is the Single-Photon with Additional Detection Setup (SPADS)
scheme, which is effectively a combination of the single-photon scheme and the SiSQuaRe scheme as
shown in Fig. 4.4. If the middle node is positioned at two-thirds of the total distance away from Alice,
the rate of this setup would scale, ideally, with the cube root of the transmissivity η.

Figure 4.4: (Color on-line) Schematic overview of the SPADS scheme. First, the two NV centers run
the single-photon scheme, such that Alice measures her electron spin directly after every attempt.
After success, the middle node swaps its state to the carbon spin. Then the middle node generates
electron-photon entangled pairs where the photonic qubit is encoded in the time-bin degree of freedom
and sent to Bob. This is attempted until Bob successfully measures the photon or until the cut-off is
reached. If the cut-off is reached, the scheme gets restarted, otherwise the middle node performs an
entanglement swapping on its two memories and communicates the classical outcome to Alice and Bob,
who can correct their measurement outcomes to obtain a bit of raw key.

This scheme runs as follows:

SPADS scheme

1. Alice and the repeater run the single-photon scheme until success, however, only Alice performs
her spin measurement immediately after each spin-photon entanglement generation attempt. This
measurement is either in a six-state or BB84 basis.

2. The repeater swaps the state of the electron spin onto the carbon spin.
3. The repeater runs the second part of the SiSQuaRe scheme with Bob. This means it generates spin-

photon entanglement between an electron and the time-bin encoded photonic qubit. Afterwards, it
sends the photonic qubit to Bob. This is repeated until Bob successfully measures his photon in
a six-state or BB84 basis or until the cut-off n∗ is reached in which case the scheme is restarted
with step 1.

4. After Bob has received the photon and communicated this to the repeater, the repeater performs
a Bell-state measurement on its two quantum memories and communicates the classical result to
Bob.

5. All the previous steps are repeated until sufficient data have been generated.

The motivation for introducing this scheme is two-fold. Firstly, we note that by using this scheme we
divide the total distance between Alice and Bob into three segments: two segments corresponding to the
single-photon subscheme and the third segment over which the time-bin encoded photons are sent. This
gives us one additional independent segment with respect to the single-photon or the SiSQuaRe scheme
on its own. Hence, for distances where no cut-off is required, we expect the scaling of the secret-key
rate with the transmissivity to be better than the ideal square root scaling of the previous two schemes.
Furthermore, dividing the total distance into more segments should also allow us to reach larger distances
before dark counts become significant. When considering the resources necessary to run this scheme, we
note that the additional third node needs to be equipped only with a photon detection setup.
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Secondly, we note that the SPADS scheme can also be naturally compared to the scenario in which
an NV center is used as a single photon source for direct transmission between Alice and Bob. Both the
setup for the SPADS scheme and such direct transmission involve Alice using an NV for emission and
Bob having only a detector setup. Hence, the SPADS scheme corresponds to inserting a new NV-node
(the repeater) between Alice and Bob without changing their local experimental setups at all. This
motivates us to compare the achievable secret-key rate of the SPADS scheme and direct transmission.
We perform this comparison on a separate plot in Section 4.6.

4.2.4 Single-Photon Over Two Links (SPOTL) scheme

The final scheme that we study here is the Single-Photon Over Two Links (SPOTL) scheme, and it
is another combination of the single-photon and SiSQuaRe schemes. A node is placed between Alice
and Bob which tries to sequentially generate entanglement with their quantum memories by using the
single-photon scheme (see Fig. 4.5). The motivation for this scheme is that, while using relatively simple
components and without imposing stricter requirement on the memories than in the previous schemes,
its secret-key rate would ideally scale with the fourth root of the transmissivity η.

Setup and scheme

The setup that we study is the following:

Figure 4.5: (Color on-line) Schematic overview of the setup for the SPOTL scheme. This scheme is a
combination of the SiSQuaRe and single-photon scheme. Instead of sending photons directly through the
fiber as in the SiSQuaRe scheme, entanglement is established between the middle node and Alice/Bob
using the single-photon scheme.

SPOTL scheme

1. Alice and the repeater run the single-photon scheme until success with the tunable parameter
θ = θA. However, only Alice performs her spin measurement immediately after each spin-photon
entanglement generation attempt. This measurement is in a six-state basis.

2. The repeater swaps the state of the electron spin onto the carbon spin.
3. Bob and the repeater run the single-photon scheme until success or until the cut-off n∗ is reached

in which case the scheme is restarted with step 1. The tunable parameter is set here to θ = θB.
Again, only Bob performs his spin measurement immediately after each spin-photon entanglement
generation attempt and this measurement is in a six-state basis.

4. The quantum repeater performs a Bell-state measurement and communicates the result to Bob.
5. All the previous steps are repeated until sufficient data have been generated.
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We note that for larger distances the optimal cut-off becomes smaller. Then, since we lose the
independence of the attempts on both sides, the scaling of the secret-key rate with distance is expected
to drop to √

η, which is the same as for the single-photon scheme. However, the total distance between
Alice and Bob is now split into four segments. Alice and Bob thus send photons over only one fourth of
the total distance. Thus, this scheme should be able to generate key over much larger distances than the
previous ones, as the dark counts will start becoming significant for larger distances only.

4.3 NV-implementation

Having proposed different quantum repeater schemes, we now move on to describe their experimental
implementation based on nitrogen-vacancy centers in diamond [166]. An introduction to the NV center
node can be found Sec. 1.1.3.

By applying selective optical pulses and coherent microwave rotations, we first generate spin-photon
entanglement at an NV center node [158]. To generate entanglement between two distant NV electron
spins, these emitted photons are then overlapped on a central beam splitter to remove their which-path
information. Subsequent detection of a single photon heralds the generation of a spin-spin entangled
state [158]. For all schemes based on single-photon entanglement generation, we need to employ active
phase-stabilization techniques to compensate for phase shifts of the transmitted photons, which will
reduce the entangled state fidelity, as introduced in Section 4.2.2. These fluctuations arise from both
mechanical vibrations and temperature induced changes in optical path length, as well as phase fluctua-
tions of the lasers used during spin-photon entanglement generation. This problem can be mitigated by
using light reflected off the diamond surface to probe the phase of an effectively formed interferometer
between the two NV nodes and the central beam splitter, and by feeding the acquired error signal back
to a fiber stretcher that changes the relative optical path length [142].

The electron spin state can be swapped to a surrounding 13C nuclear spin to free up the single
optical NV interface per node for a subsequent entangling round; a weak (∼ few kHz), always-on,
distance-dependent magnetic hyperfine interaction between the electron and 13C spin forms the basis
of a dynamical decoupling based universal set of nuclear gates that allow for high fidelity control of
individual nuclear spins [143, 146, 147, 10]. Crucially, the so-formed memory can retain coherence for
thousands of remote entangling attempts despite stochastic electron spin reset operations, quasi static
noise and microwave control infidelities during the subsequent probabilistic entanglement generation
attempts [147, 167] (see Appendix A.2 for details).

In the NV node containing both the electron and carbon nuclear spin it is also possible to perform a
deterministic Bell-state measurement on the two spins. Specifically, a combination of two nuclear-electron
spin gates and two sequential electron spin state measurements reads out the combined nuclear-electron
spin state in the Z- and X-bases, enabling us to discriminate all four Bell states [168].

For an NV center in free space, only ∼ 3% of photons are emitted in the zero-phonon-line (ZPL) that
can be used for secret-key generation. This poses a key challenge for a repeater implementation, since
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this means that the probability of successfully detecting an emitted photon is low. Therefore, we consider
a setup in which the NV center is embedded in an optical cavity with a high ratio of quality factor Q to
mode volume V to enhance this probability via the Purcell effect in the weak coupling regime [169]. This
directly translates into a lower optical excited state lifetime that is beneficial to shorten the time-window
during which we detect ZPL photons after the beam splitter, reducing the impact of dark counts on
the entangled state. Additionally, a cavity introduces a preferential mode into which the ZPL photons
are emitted that can be picked up efficiently. This leads to a higher expected collection efficiency than
the non-cavity case [149]. Enhancement of the ZPL has been successfully implemented for different
cavity architectures, including photonic crystal cavities [170, 171, 172, 173, 174, 175, 176, 177], microring
resonators [178], whispering gallery mode resonators [179, 180] and open, tunable cavities [181, 182, 183].
However, cavity-assisted entanglement generation has not yet been demonstrated for these systems,
limited predominantly by broad optical lines of surface-proximal NV centers. Therefore, we focus on
the open, tunable microcavity approach [184], since it has the potential of incorporating micron-scale
diamond slabs inside the cavity, while allowing to keep high Q/V values and providing in-situ spatial
and spectral tunability [185]. In these diamond slabs, an NV centre can be microns away from surfaces,
potentially allowing to maintain bulk like optical and spin properties as needed for the considered
repeater protocols.

4.4 Calculation of the secret-key rate

With the modeling of each of the components of the different setups in hand, the performance of each
setup can be estimated. The performance of a setup is assessed in this work by its ability to generate
secret key between two parties Alice and Bob. We note here that the ability of a quantum repeater to
generate secret key can be measured in two different ways - in its throughput and its secret-key rate. The
throughput is equal to the amount of secret key generated per unit time, while the secret-key rate equals
the amount of secret key generated per channel use. In this chapter, we will focus on the secret-key rate
only. This is due to the fact that it allows us to make concrete information-theoretical statements about
our ability to generate secret key. Moreover, we note that the secret-key rate is also more universal in
the sense that it can be easily converted into the throughput by multiplying it with the repetition rate
of our scheme (number of attempts we can perform in a unit time).

The secret-key rate R is equal to

R = Y · r
Nmodes

,(4.1)

where Y and r are the yield and secret-key fraction, respectively. The yield Y is defined as the
average number of raw bits generated per channel use and the secret-key fraction r is defined as the
amount of secret key that can be extracted from a single raw bit (in the limit of asymptotically many
rounds). Here Nmodes is the number of optical modes needed to run the scheme. Time-bin encoding
requires two modes while the single-photon scheme uses only one mode. Hence Nmodes = 2 for all the
schemes that use time-bin encoding in at least one of the arms of the setup. For the schemes that use
only the single-photon subschemes as their building blocks we have that Nmodes = 1.

In the remainder of this section, we will briefly detail how to calculate the yield and secret-key
fraction, from which we can estimate the secret-key rate of each scheme.
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4.4.1 Yield

The yield depends not only on the used scheme, but also on the losses in the system. We model the
general emission and transmission of photons through fibers from NV centers in diamond as in Fig. 4.6.
That is, with probability pce spin-photon entanglement is generated and the photon is coupled into a fiber.
The photons that successfully got coupled into the fiber might not be useful for quantum information
processing since they are not coherent. Thus, we filter out those photons that are not emitted at the
zero-phonon line, reducing the number of photons by a further factor of pzpl. Then, over the length of
the fiber, a photon gets lost with probability 1 − ηf = 1 − e− L

L0 , where L0 is the attenuation length and
ηf is the transmissivity. After exiting the fiber the photon gets registered as a click by the detector with
probability pdet. Finally, the photon gets accepted as a successful click if the click happens within the
time-window tw of the detector (see Appendix A.1 for more details).

Figure 4.6: The model of photon loss proccesses occurring in our repeater setups. The parameter pce is
the photon collection efficiency, which includes the probability that the photon is successfully coupled
into the fiber. Only photons emitted at the zero phonon line (ZPL) can be used for quantum information
processing. All non-ZPL photons are filtered out, such that a fraction pzpl of the photons remains. The
photons are then transmitted through a fiber with transmissivity ηf . Such successful transmissions are
registered by the detector with probability pdet. Additionally, a significant fraction of photons can arrive
in the detector outside of the detection time-window tw. Such photons will effectively also get discarded.
Here we describe the total efficiency of our apparatus by a single parameter, papp = pcepzplpdet.

The yield can then be calculated as the reciprocal of the expected number of channel uses needed to
get one single raw bit,

(4.2) Y = 1
E[N ] ,

with N being the random variable that models the number of channel uses needed for generating a
single raw bit.

Yield of the single-photon scheme

The yield of the single-photon scheme is relatively easy to calculate, since the single condition heralding
the success of the scheme is a single click in one of the detectors in the heralding station. Therefore the
yield Y is simply the probability that an individual attempt will result in a single click in one of the
detectors. This probability will depend on the losses in the system, dark counts and the angle θ. A full
calculation of the yield is given in Appendix A.5.
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Yield of the SiSQuaRe, SPADS and SPOTL schemes

The SiSQuaRe, SPADS and SPOTL schemes require two conditions for the heralding of the successful
generation of a raw bit, namely the scheme needs to succeed both on Alice’s and Bob’s side independently.
In this case we are going to take a very conservative perspective and assume the total number of channel
uses to be the sum of the required channel uses on Alice’s and Bob’s side of the memory repeater node

(4.3) E[N ] = E[NA +NB ] .

Moreover, every time Bob reaches n∗ attempts, both parties start the scheme over again. The cut-off
increases the average number of channel uses, thus decreasing the yield. Denoting by pA and pB the
probability that a single attempt of the subscheme on Alice’s and Bob’s side respectively succeeds, we
find (see Appendix A.3 for the derivation),

(4.4) E[NA +NB ] = 1
pA

(
1 − (1 − pB)n∗

) + 1
pB

.

4.4.2 Secret-key fraction

The secret-key fraction is the fraction of key that can be extracted from a single raw bit. It is a function
of the average quantum bit error rates in the X-, Y - and Z-basis [186, 187] (QBER), and depends on
the protocol (such as the BB84 [151] or six-state protocol [152, 153]) and classical post-processing used
(such as the advantage distillation post-processing [187]).

Here we consider the entanglement-based version of the BB84 and six-state protocols. That is,
Alice and Bob both perform measurements on their local qubits which share quantum correlations. We
note that both the BB84 and the six-state protocol can in principle be run either in a symmetric or
asymmetric way. Symmetric means that the probabilities of performing measurements in all the used
bases are the same, while for asymmetric protocols they can be different. We note in the asymptotic
regime, which is the regime that we consider here, it is possible to set this probability bias to approach
unity and still maintain security [188]. Unfortunately, for technical reasons, within our model it is not
possible to run an asymmetric six-state protocol when time-bin encoded photons are used [23].

Moreover, as we mentioned above, it is also possible to apply different types of classical post-processing
of the raw key generated through the BB84 or the six-state protocol. In particular, here we consider
two types of post processing: the standard one-way error correction and a more involved two-way error
correction protocol called advantage distillation which can tolerate much more errors. Specifically, here
we consider the advantage distillation protocol proposed in [187], as this advantage distillation protocol
has high efficiency (in particular, in the scenario of no noise, the efficiency of this protocol equals
unity). Hence in our model we effectively consider two protocols for generating secret key: BB84 with
standard one-way error correction and six-state with advantage distillation. We refer the reader to
Appendix A.7 for the mathematical expressions for the secret-key fraction for all the considered protocols.
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Now we can state explicitly which QKD protocols will be considered for each scheme, which in
turn depends on the type of measurements that Alice and Bob perform in that scheme. There are two
physical implementations of measurements that Alice and Bob perform, depending on the scheme under
consideration. That is, they either measure a quantum state of a spin or of a time-bin encoded photons.
Since the fully asymmetric six-state protocol with advantage distillation has higher efficiency than both
symmetric and asymmetric BB84 protocol with one-way error correction, we will use this six-state
protocol for both the single-photon and SPOTL scheme. The SiSQuaRe and SPADS schemes involve
direct measurement on time-bin encoded photons. Hence, for these schemes we consider the maximum
of the amount of key that can be obtained using the fully asymmetric BB84 protocol and the symmetric
six-state protocol with advantage distillation (which can tolerate more noise, but has three times lower
efficiency than the fully asymmetric BB84 protocol).

To estimate the QBER, we model all the noisy and lossy processes that take place during the protocol
run. From this, we calculate the qubit error rates and yield, from which we can retrieve the secret-key
fraction. We invite the interested reader to read about the details of these calculations in Appendices A.5
and A.6. The derivation of the QBER and the yield for the SiSQuaRe scheme is performed in [23].
Moreover, in this work we introduce certain refinements to the model which we discuss in Appendix A.4.
With the QBER in hand, we can calculate the resulting secret-key fraction for the considered protocols
as presented in Appendix A.7.

We note here that we consider only the secret-key rate in the asymptotic limit, and that we thus do
not have to deal with non-asymptotic statistics.

4.5 Assessing the performance of quantum repeater schemes

In this section we will detail four benchmarks that will be used to assess the performance of quantum
repeaters. The usage of such benchmarks for repeater assessment has been done in [23, 141], and
achieving a rate greater than such benchmarks can be seen as milestones towards the construction
of a quantum repeater. The considered benchmarks are defined with respect to the efficiencies of
processes involving photon loss when emitting photons at NV centers, transmitting them through an op-
tical fiber and detecting them at the end of the fiber as described in Section 4.4.1 and as shown in Fig. 4.6.

Having this picture in mind, we can now proceed to present the considered benchmarks. The first
three of these benchmarks are inspired by fundamental limits on the maximum achievable secret-key
rate if Alice and Bob are connected by quantum channels which model quantum key distribution over
optical fiber without the use of a (possible) quantum repeater.

The first of these benchmarks we consider here is also the most stringent one, the so-called
capacity of the pure-loss channel. The capacity of the pure-loss channel is the maximum achievable
secret-key rate over a channel modeling a fiber of transmissivity ηf , and is given by [129]

− log2 (1 − ηf ) .(4.5)
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This is the maximum secret-key rate achievable, meaning that even if Alice and Bob had perfect
unbounded quantum computers and memories, they could not generate secret key at a larger rate.
If, by using a quantum repeater setup, a higher rate can be achieved than − log2(1 − ηf ), we are
certain our quantum repeater setup allowed us to do something that would be impossible with direct
transmission. Surpassing the secret-key capacity has been widely used as a defining feature of a quantum
repeater [189, 190, 191, 192, 141, 23, 127, 128, 129, 193, 194, 195]. Unfortunately, and as could be
expected, surpassing the capacity is experimentally challenging. This motivates the introduction of other,
easier to surpass, benchmarks. These benchmarks are still based on (upper bounds on) the secret-key
capacity of quantum channels which model realistic implementations of quantum communications over
fibers.

The second benchmark is built on the idea of including the losses of the apparatus into the
transmissivity of the fiber. The resultant channel with all those losses included we call here the extended
channel. The benchmark is thus equal to

− log2 (1 − ηfpapp) .(4.6)

Here papp describes all the intrinsic losses of the devices used. That is, the collection efficiency pce

at the emitting diamond, the probability that the emitted photon is within the zero-phonon-line pzpl

(which is necessary for generating quantum correlations) and photon detection efficiency pdet, so that
papp = pcepzplpdet.

The third benchmark we consider is the so-called thermal channel bound, which takes into
account the effects of dark counts. The secret-key capacity of the thermal channel has been studied
extensively [196, 193, 195, 194, 129, 197]. We consider the following bound on the secret-key capacity of
the thermal channel,

− log2

[
(1 − ηfpapp) (ηfpapp)n

]
− g (n) ,(4.7)

if n ≤ ηf papp
1−ηf papp

, and otherwise zero [129]. Here n is the average number of thermal photons per channel
use, and is equal to tw, the time-window of the detector, times the average number of dark counts per
second, see [23] for more details. The function g(x) is defined as g(x) ≡ (x+ 1) log2 (x+ 1) − x log2 (x).
We note here that the time-window of the detector tw is not fixed in our model, but is optimized over
for every distance in order to achieve the highest possible secret-key rate. Hence in this benchmark we
fix tw = 5 ns which is the shortest duration of the time-window that we consider in our secret-key rate
optimization.

Finally, the secret-key rate achieved with direct transmission using the same devices can also be seen
as a benchmark. Specifically, here we mean the secret-key rate achieved when Alice uses her electron
spin to generate spin-photon entanglement and sends the time-bin encoded photon to Bob. She then
measures her electron spin while Bob measures the arriving photon. However, to take a conservative
view, we will only use this direct transmission benchmark for the SPADS scheme. This is motivated
by the fact that for both the SPADS scheme and the direction transmission scheme the experimental
setups on Alice’s and Bob’s side are the same, ensuring that the two rates can be compared fairly. We
note that similarly as in the modeled secret-key rates achievable with our proposed repeater schemes,
also for this direct transmission benchmark we optimize over the time-window tw for each distance.
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The secret-key capacity stated in Eq. (4.5) is the main benchmark that we consider. Surpassing it
establishes the considered scheme as a quantum repeater. The two expressions in Eqs. (4.6) and (4.7)
and the achieved rate with direct transmission are additional benchmarks, which guide the way towards
implementation of a quantum repeater. We define all the considered benchmarks for the channel with
the same fiber attenuation length L0 as the channel used for the corresponding achievable secret-key
rate.

4.6 Numerical results

We now have a full model of the rate of the presented quantum repeater protocols as a function of the
underlying experimental parameters. In this section we will firstly state all the parameters required
by our model and then present the results and conclusions drawn from the numerical implementation
of this model. In particular, in Section 4.6.1 we will first provide a deeper insight into the benefits of
using the six-state protocol and advantage distillation in specific schemes. In Section 4.6.2 we determine
the optimal positioning of the repeater nodes for our schemes and investigate the dependence of the
secret-key rate achievable with those schemes on the photon emission angle θ and the cutoff n∗ for
the appropriate schemes. In Section 4.6.3 we then use the insights acquired in the previous section to
compare the achievable secret-key rates for all the proposed repeater schemes with the secret-key capacity
and other proposed benchmarks. In particular, we show that the single-photon scheme significantly
outperforms the secret-key capacity and hence can be used to demonstrate a quantum repeater. Finally,
in Section 4.6.4 we determine the duration of the experiment that would allow us to demonstrate such a
quantum repeater with the single-photon scheme.

The parameters that we will use are either parameters that have been achieved in an experiment,
or correspond to expected parameters when the NV center is embedded in an optical Fabry-Perot
microcavity. The parameters we will use are listed below:

• a0 (dephasing of 13C due to interaction) = 1
2000 per attempt [147, 167]

• a1 (dephasing of 13C with time) = 1
3 per second [9]

• b0 (depolarizing of 13C due to interaction) = 1
5000 per attempt [147]

• b1 (depolarizing of 13C with time) = 1
3 per second [9]

• tprep (memory-photon entanglement preparation time) = 6 µs [156]
• Fm (depolarizing parameter for the measurement of the electron spin) = 0.95 [142]
• Fg (depolarizing parameter for two qubit gates in quantum memories) = 0.98 [10]
• Fprep (dephasing parameter for the memory-photon state preparation) = 0.99 [156]
• pce (collection efficiency) = 0.49 [156, 149]
• pzpl (emission into the zero phonon line) = 0.46 [183]
• pdet (detector efficiency) = 0.8 [156]
• Dark count rate = 10 per second [156]
• τ (characteristic time of the NV emission) = 6.48 ns [183, 198]
• toffset

w (detection window offset) = 1.28 ns [156]
• L0 (attenuation length) = 0.542 km [156]
• nri (refractive index of the fiber) = 1.44 [199]
• ∆ϕ (optical phase uncertainty of the spin-spin entangled state) = 14.3° [142]
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To be more specific, the photon collection efficiency pce and the probability of emitting into the zero
phonon line pzpl are the two crucial parameters relying on the implementation of the optical cavity.
The quoted value of pce has not been experimentally demonstrated yet, while the value of pzpl has not
been demonstrated in the context of quantum communication. All the other independent parameters in
the above list that are not related to the setup with a cavity, have been demonstrated in experiments
relevant for remote entanglement generation. The parameters that have not been discussed in the main
text are discussed in the appendix.

4.6.1 Comparing BB84 and six-state advantage distillation protocols

We first investigate here when the BB84 or six-state advantage distillation protocol performs better. It
was shown in [23] that in the SiSQuaRe scheme there is a trade-off - for the low noise regime (small
distances) the fully asymmetric BB84 protocol is preferable, while in the high noise regime (large dis-
tances) the problem of noise can be overcome by using a six-state protocol supplemented with advantage
distillation. This technique allows us to increase the secret-key fraction at the expense of reducing the
yield by a factor of three, since a six-state protocol in which Alice and Bob perform measurements on
photonic qubits does not allow for the (fully) asymmetric protocol within our model. Numerically, we
find that for the SPADS and SPOTL scheme advantage distillation is necessary to generate non-zero
secret-key at any distance. This is due to the fact that there is a significant amount of noise in these
schemes. Thus, for the SPADS (SPOTL) scheme the (a)symmetric six-state protocol with advantage
distillation is optimal.

To provide more insight into the performance of those different QKD schemes for different parameter
regimes, we plot the achievable secret-key fraction for the SPADS and SPOTL schemes as a function of the
depolarizing parameter due to imperfect electron spin measurement Fm in Figure 4.7 (see Appendix A.2
for the discussion of the corresponding noise model). Noise due to imperfect measurements is one of the
significant noise sources in our setup, since the SPADS scheme involves three and the SPOTL scheme
four single-qubit measurements on the memory qubits. The data have been plotted for a fixed distance of
12.5L0, where L0 = 0.542 km is the attenuation length of the fiber. Moreover, since on this plot we aim at
maximizing only the secret-key fraction over the tunable parameters, we set the cutoff n∗ to one and the
detection time-window tw to 5 ns (the smallest detection time-window we use) for both schemes. Further-
more, within the single-photon subscheme the heralding station is always placed exactly in the middle
between the two memory nodes. We also consider the positioning of the memory repeater node to be two-
thirds away from Alice for the SPADS scheme and in the middle for the SPOTL scheme as discussed in
the next section. For the SPOTL scheme we also assume θA = θB which we will justify in the next section.

We see that for the current experimental value of Fm = 0.95 both schemes can generate key only
if the advantage distillation post-processing is used. As Fm increases, we observe that for the SPADS
scheme firstly the six-state protocol without advantage distillation and then the BB84 protocol start
generating key. For the SPOTL scheme the value of Fm at which the six-state protocol without advantage
distillation starts generating key is much larger than the corresponding value of Fm for any of the studied
protocols for the SPADS scheme. This is because the SPOTL scheme involves more noisy processes than
the SPADS scheme. This also provides an approximate quantification of the benefit of using advantage
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distillation. Specifically, looking at the SPOTL scheme, it can be observed that while at the current
experimental value of Fm = 0.95 advantage distillation allows for generating key, at a higher value of the
depolarizing parameter Fm = 0.97, still no key can be generated with standard one-way post-processing.
Moreover, we see that utilizing advantage distillation for the SPADS scheme allows for the generation
of key, even with very noisy measurements when Fm = 0.91. We also observe two distinct scalings of
the secret-key fraction with Fm in the regime where non-zero amount of key is generated. These two
scalings depend on whether we use a symmetric or asymmetric protocol. Specifically, for the SPADS
scheme the symmetric six-state protocol is used. Therefore the corresponding two curves have a slope
that is approximately three times smaller than the other three curves corresponding to the protocols
that run in the fully asymmetric mode.
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Figure 4.7: (Color on-line) Secret-key fraction as a function of the depolarizing parameter due to
noisy measurement Fm for the total distance of 12.5L0. We see that for the current experimental value
of Fm = 0.95 (marked with a dashed black vertical line) both schemes can generate key only if the
advantage distillation post-processing is used. As Fm increases the protocols that do not utilize advantage
distillation also start generating key. We also see that the curves can be divided into two groups in terms
of their slope in the regime where they generate non-zero amount of key. Those two groups correspond
to the scenarios where a fully asymmetric (bigger slope) or a symmetric (smaller slope) protocol is
used. For all the plotted protocols the cutoff n∗ is set to one and tw = 5 ns (the smallest detection
time-window we use) to maximize the secret-key fraction. Moreover, for each value of Fm we optimize
the secret-key fraction over the angle θ. For the SPOTL scheme we assume θA = θB. For the SPADS
scheme we position the repeater node 2/3 away of the total distance from Alice and in the middle
between Alice and Bob for the SPOTL scheme.
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Figure 4.8: (Color on-line) Secret-key rate as a function of the relative positioning of the repeater for
few different total distances for the SPADS scheme. The total distances are expressed in terms of the
fiber attenuation length L0 = 0.542 km. We see that positioning the repeater two-thirds of the distance
away from Alice (marked by the vertical black dashed line) is a good positioning for all the distances.
For each total distance considered and each positioning the secret-key rate is optimized over the cutoff
n∗, the angle θ and the time-window of the detector tw.
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Figure 4.9: (Color on-line) Secret-key rate as a function of the relative positioning of the repeater for
few different total distances for the SPOTL scheme. The total distances are expressed in terms of the
fiber attenuation length L0 = 0.542 km. We see that positioning the repeater in the middle between
Alice and Bob (marked by the vertical black dashed line) is a good positioning for all the distances. For
each total distance considered and each positioning the secret-key rate is optimized over the cutoff n∗,
the angles θA and θB and the time-window of the detector tw.
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4.6.2 Optimal settings

We see that the above described repeater schemes include several tunable parameters. These parameters
are the cut-off n∗ for Bob’s number of attempts until restart, the angle θ in the single-photon scheme
and the positioning of the repeater. These parameters can be optimized to maximize the secret-key rate.
Here we will approach this optimization in a consistent way - we gradually restrict the parameter space
by making specific observations based on numerical evidence.

The first claim that we will make is in relation to the optimal positioning of the repeater. In [23]
we have conjectured that for the SiSQuaRe scheme the middle positioning of the repeater is optimal.
For the single-photon scheme we want the probability of transmitting the photons from each of the two
nodes to the beam splitter heralding station to be equal. This effectively sets the target state between
the electron spins to be the maximally entangled state. Hence, if we restrict ourselves to the case where
the emission angles θ of both Alice and Bob are the same, then it is natural to position the heralding
station symmetrically in the middle between them. Hence, the only non-obvious optimal positioning is
for the SPADS and SPOTL scheme.

For the SPADS scheme, positioning the repeater at two-thirds of the relative distance away from
Alice could intuitively be expected to be optimal. This is due to the fact that the single-photon scheme
runs on two segments: Alice-beam splitter, beam splitter-repeater, while the one half of the SiSQuaRe
scheme runs only over a single segment between repeater and Bob. By segment we mean here a distance
over which we need to be able to independently transmit a photon. In Fig. 4.8 we show the secret-key
rate as a function of the relative positioning of the repeater for a set of different total distances. We see
there that despite the fact that positioning the repeater at two-thirds is not always optimal, it is a good
enough positioning for all distances for our purposes. For each data point on the plot we independently
optimize over the cut-off n∗, the angle θ of the single-photon subscheme and the duration of the detector
time-window tw.

The SPOTL scheme has the same symmetry as the SiSQuaRe scheme, in the sense that the part of
the scheme performed on Alice’s side is exactly the same as on Bob’s side. This symmetry is only broken
by the sequential nature of the scheme. Since we have already observed that the middle positioning is
optimal for the SiSQuaRe scheme, we expect to see the same behavior for the SPOTL scheme. Indeed,
we confirm this expectation numerically in Fig. 4.9. Here for each data point we independently optimize
over the cut-off n∗, the angle θA (θB) of the single-photon subscheme on Alice’s (Bob’s) side and the
duration of the detection time-window.

To conclude, we will always place the heralding station within the single-photon (sub)protocol exactly
in the middle between the two corresponding memory nodes. Moreover, we will also always place the
memory repeater node in the middle for the SPOTL scheme and two-thirds of the distance away from
Alice for the SPADS scheme.
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Figure 4.10: (Color online) Secret-key rate as a function of the θ angle for the single-photon scheme for
the total distance of 12.5L0, where L0 = 0.542 km. We see that there is a relatively large range of angles
for which non-zero amount of key can be generated. For each value of θ the secret-key rate is optimized
over the time-window tw. The kink on the plot is a consequence of the fact that the six-state protocol
with advantage distillation involves optimization over of two subprotocols.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Angle θ (rad)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Se
cr
et
-k
ey

 ra
te

1e−7
SPADS

Figure 4.11: (Color on-line) Secret-key rate as a function of the θ angle for the SPADS scheme for the
total distance of 12.5L0, where L0 = 0.542 km. We see that due to more noisy processes the range of θ
that allows us to generate key is much more restricted than for the single-photon scheme. For each value
of θ the secret-key rate is optimized over the cutoff n∗ and the time-window tw.
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Having established the optimal positioning of the repeater, we look into the relation between θA and
θB for the SPOTL scheme. We observe that the relative error resulting from optimizing the secret-key
rate over a single angle θA = θB rather than two independent ones is smaller than 1% for all distances.
Hence from now on we will restrict ourselves to optimizing only over one angle θ for the SPOTL scheme.

Having resolved the issues of the optimal positioning of the repeater for all schemes and reducing the
number of angles to optimize over for the SPOTL scheme to one, we now investigate how our secret-key
rate depends on the remaining parameters. These parameters are the angle θ, the cut-off n∗ and the
duration of the detection time-window tw. The optimal time-window follows a simple behavior for all
schemes: for short distances the probability of getting a dark count pd is negligible compared to the
probability of detecting the signal photon. Hence for those distances we can use a time-window of 30
ns to make sure that almost all the emitted photons which are not polluted by the photons from the
optical excitation pulse arrive inside the detection time-window. We always need to sacrifice the photons
arriving within the time toffset

w after the optical pulse has been applied to filter out the photons from that
pulse, see Appendix A.1 for details. Then, for larger distances where pd starts to become comparable
with the probability of detecting the signal photon, the duration of the time-window is gradually reduced.
This reduces the effect of dark counts at the expense of having more and more photons arriving outside
of the time-window. See Appendix A.1 for the modeling of the losses resulting from photons arriving
outside of the time-window.

The dependence of the secret-key rate on the angle θ, the tunable parameter that Alice and Bob
choose in their starting state |ψ⟩ = sin θ |↓⟩ |0⟩+cos θ |↑⟩ |1⟩ in the single-photon scheme, is more complex.
We observe that the optimal value of θ is closer to π

2 for schemes that involve more noisy processes.
Informally, this means that Alice and Bob send ‘less’ photons towards the beam splitter, to overcome
the noise coming from events in which both nodes emit a photon. At π

2 however, no photons are emitted
and the rate drops down to zero. We illustrate this in Figs. 4.10, 4.11, and 4.12. We see that for the
SPADS and SPOTL scheme, there is only a restricted regime of the angle θ for which one can generate
non-zero amount of key. In particular, the SPOTL scheme requires a larger number of noisy operations,
and therefore cannot tolerate much noise arising from the effect of photon loss in the single-photon
subscheme. This means that there is only a small range of θ that allows for production of secret key. The
single-photon scheme involves much less operations and can tolerate more noise, and so lower values of
the parameter θ still allow for the generation of key.

We also investigate the dependence of the rate on the cut-off. Both the SPADS and SPOTL scheme
require a lower cut-off than the SiSQuaRe scheme, see Fig. 4.13 and 4.14. This is caused by the fact that
each of them involves more noisy operations, and hence less noise tolerance is possible.
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Figure 4.12: (Color on-line) Secret-key rate as a function of the angle θ = θA = θB for the SPOTL
scheme for the total distance of 12.5L0, where L0 = 0.542 km. We see that, due to the increased amount
of noisy processes, this scheme requires θ to be in a much narrower regime than for the single-photon and
SPADS schemes, as can be seen by comparing the plot with the plots in FIG. 4.10 and in FIG. 4.11. This
corresponds to the overwhelming dominance of the dark state of the spin (no emission of the photon) in
order to avoid any extra noise coming from the photon loss. For each value of θ the secret-key rate is
optimized over the cutoff n∗ and the time-window tw.
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Figure 4.13: (Color on-line) Secret-key rate as a function of the cut-off for the SiSQuaRe and SPADS
scheme for the total distance of 12.5L0, where L0 = 0.542 km. We see that the SPADS scheme requires
lower cut-off than the SiSQuaRe scheme because it involves more noisy operations. For each value of
the cutoff n∗ we optimize the secret-key rate over the time-window tw and for the SPADS scheme also
over the θ angle. The kink for the SiSQuaRe scheme arises because of the optimization over the fully
asymmetric one-way BB84 protocol and symmetric six-state protocol with advantage distillation, which
itself involves optimization over two subprotocols.
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Figure 4.14: (Color on-line) Secret-key rate as a function of the cut-off for the SPOTL scheme for the
total distance of 12.5L0, where L0 = 0.542 km. We see that due to the large number of noisy operations,
this scheme requires a low cut-off in order to be able to generate key. For each value of the cutoff n∗ we
optimize the secret-key rate over the time-window tw and the θ angle.

4.6.3 Achieved secret-key rates of the quantum repeater proposals

Now we are ready to present the main results, the secret-key rate for all the considered schemes as a
function of the total distance when optimized over θ, the cut-off n∗ and the duration of the time-window
tw. We compare the rates to the benchmarks from Section 4.5.

In Fig. 4.15 we plot the rate of all four of the quantum repeater schemes as a function of the distance
between Alice and Bob. We recall that L0 is the attenuation length of the fiber, such that there is a
probability η(L) = exp(L/L0) that a photon is lost after distance L. We observe that already for realistic
near-term parameters, the single-photon scheme can outperform the secret-key capacity of the pure-loss
channel by a factor of seven.

We have also investigated what improvements would need to be done in order for the SPADS and
SPOTL schemes to also overcome the secret-key capacity. An example scenario in which the SPADS
scheme outperforms this repeaterless bound includes better phase stabilization such that ∆ϕ = 5° and
reduction of the decoherence effects in the carbon spin during subsequent entanglement generation
attempts such that a0 = 1/8000 and b0 = 1/20000. Further improvement of these effective coherence
times to a0 = 1/20000 and b0 = 1/50000 allows the SPOTL scheme to also overcome the secret-key
capacity. We note that maintaining coherence of the carbon-spin memory qubit for such large number of
subsequent remote entanglement generation attempts is expected to be possible using the method of
decoherence-protected subspaces [147, 167].

As mentioned before, the SPADS scheme can be naturally compared against the benchmark of
the direct transmission using NV as a source. The results are depicted in Fig. 4.16. We see that the
SPADS scheme easily overcomes the NV-based direct transmission and the thermal benchmark for larger
distances for which these benchmarks drop to zero.

79



CHAPTER 4. QUANTUM REPEATERS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Distance (L0 unit)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

Se
cr
et
-k
ey

 ra
te

SiSQuaRe
Single-photon
SPADS
SPOTL
Secret-key capacity
Secret-key capacity (Ext.)
Thermal benchmark

Figure 4.15: (Color on-line) Rate of all studied quantum repeater schemes as a function of the distance
between Alice and Bob, expressed in the units of L0 = 0.542 km. We also plot the different benchmarks
from Section 4.5. We see that the single-photon scheme outperforms the secret-key capacity. For the
achievable rates the secret-key rate is optimized over the cutoff n∗, the angle θ and the time-window tw
independently for each distance.

In Fig. 4.15 we observe that for the SPOTL scheme, the total distance over which key can be
generated is significantly smaller than for the SPADS scheme. This is despite the fact that the full
distance is divided into four segments. The rather weak performance of this scheme is due to the fact
that it involves a larger number of noisy operations. As a result, the scheme can tolerate little noise
from the single-photon subscheme, requiring the angle θ to be close to π

2 as can be seen in Fig. 4.12.
As a result, the probability of photon emission becomes greatly diminished and so the distance after
which dark counts start becoming significant is much smaller than for the SPADS scheme. To overcome
this problem one would need to reduce the amount of noise in the system. One of the main sources of
noise is the imperfect single-qubit measurement. Hence we illustrate the achievable rates for the scenario
with the boosted measurement depolarizing parameter Fm = 0.98 in Fig. 4.17. Additionally, in this
plot we also consider the application of probabilistic frequency conversion to the telecom wavelength at
which L0 = 22 km. Frequency conversion has already been achieved experimentally in the single-photon
regime with success probability of 30% [200]. This is also the success probability that we consider here.
The corresponding benchmarks have also been plotted for the new channel with L0 = 22 km. We see
in Fig. 4.17 that with the improved measurement and using frequency conversion, the SPOTL scheme
allows now to generate secret key over more than 550 km. We also see that under those conditions the
single-photon scheme can also overcome the secret-key capacity of the telecom channel.
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Figure 4.16: (Color on-line) Comparison of the SPADS scheme with the rate achievable using the direct
transmission, with NV being the photon source. The secret-key rates for those schemes are plotted as a
function of the distance between Alice and Bob, expressed in the units of L0 = 0.542 km. We also plot
the different benchmarks. We see that the SPADS scheme easily overcomes the direct transmission and
the thermal benchmark (see Section 4.5). For the secret-key rate achievable with the SPADS scheme we
perform optimization over the cutoff n∗, the angle θ and the time-window tw independently for each
distance. Similarly, we also optimize the secret-key rate achievable with direct transmission over the
time-window tw.
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Figure 4.17: (Color on-line) Secret-key rate as a function of distance in units of km for transmission
at telecom channel with L0 = 22 km, along with the benchmarks from Section 4.5. We consider an
improved measurement depolarizing parameter of Fm = 0.98. The frequency conversion efficiency is
assumed to be 0.3. We observe that the SPOTL scheme allows for the generation of secret-key over a
distance of more than 550 km. For the achievable rates the secret-key rate is optimized over the cutoff
n∗, the angle θ and the time-window tw independently for each distance.
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4.6.4 Runtime of the experiment

While the theoretical capability of an experimental setup to surpass the secret-key capacity is a neces-
sary requirement to claim a working quantum repeater, it does not necessarily mean that this can be
experimentally verified in practice. Indeed, if a quantum repeater proposal only surpasses the secret-key
capacity by a narrow margin at a large distance, the running time of an experiment could be too long
for practical purposes. In this section, we will discuss an experiment which can validate a quantum
repeater setup and calculate the running time of such an experiment, where we demonstrate that the
single-photon scheme could be validated to be a quantum repeater within twelve hours.

A straightforward way of validating a quantum repeater would consist of first generating secret-key,
calculating the achieved (finite-size) secret-key rate and then comparing the rate with the secret-key
capacity. However, this requires a large number of raw bits to be generated, partially due to the loose
bounds on finite-size secret-key generation. What we propose here is an experiment where the QBER and
yield are separately estimated to lie within a certain confidence interval. Then, if with the (worst-case)
values of the yield and the QBER the corresponding asymptotic secret-key rate still confidently beats
the benchmarks, one could claim that, in the asymptotic regime, the setup would qualify as a quantum
repeater.

As we show in Appendix A.8, it is possible to run the single-photon scheme over a distance of
17L0 ≈ 9.2 km for approximately twelve hours to find with high confidence (≥ 1 − 1.5 · 10−4) that the
scheme beats the capacity (see Eq. (4.5)) at that distance by a factor of at least three.

82



4.7. CONCLUSIONS

4.7 Conclusions

We analyzed four experimentally relevant quantum repeater schemes on their ability to generate secret
key. More specifically, the schemes were assessed by contrasting their achievable secret-key rate with
the secret-key capacity of the channel corresponding to direct transmission. The secret-key rates have
been estimated using near-term experimental parameters for the NV center platform. The majority of
these parameters have already been demonstrated across multiple experiments. A remaining challenging
element of our proposed schemes is the implementation of optical cavities. These cavities would enable
the enhancement of both the photon emission probability into the zero-phonon line and the photon
collection efficiency to the desired level.

With these near-term experimental parameters, our assessment shows the viability of one of the
schemes, the single-photon scheme, for the first experimental demonstration of a quantum repeater.
In fact, the single-photon scheme achieves a secret-key rate more than seven times greater than the
secret-key capacity. We also estimated the duration of an experiment to conclude that a rate larger than
the secret-key capacity is achievable. The duration of the experiment would be approximately twelve hours.

Finally, we show that a scheme based on concatenating the single-photon scheme twice (i.e. the
SPOTL scheme), has the capability to generate secret-key at large distances. However, this requires
converting the frequency of the emitted photons to the telecom wavelength and modestly improving the
fidelity at which measurements can be performed.

This simulation work allowed us to understand in depth the challenges around long-distance bipartite
communications and quantum repeaters. We saw that there is a distance where a NV-based repeater
protocol can generate key between two nodes at a higher rate than using direct transmission. However,
this rate, that we achieved using state of the art parameters for our nodes, is still very small and
not suited for practical use. The experimental causes of this low rate are two-folds: the generation of
entanglement between two neighbouring node is too slow and the swapping of the entanglement is too
noisy. The former is mostly due to the low probability of emitting a photon using the electron spin of the
NV-center and the latter to the noise in the memory caused by the coupling between the two NV qubits.

While yielding interesting data about repeater protocols with NV centers, this study hints the
impracticality of quantum repeaters with today’s abilities. Even at low distances, the noise added by
the repeating operations lowers the achieved secret key rate. For distances over 50km, there are very
few use cases in which the achieved rate could prove useful. In the rest of this thesis we will focus on
repeaterless quantum communications, first by looking at short-distance metropolitan networks and
then by analyzing alternatives to fiber-based communications at long distance.
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Feasibility of metropolitan Quantum Networks

In the rest of this thesis, we take a more concrete step towards the realization of a realistic architecture
for the Quantum Internet. As explained in the previous chapter, one of the main obstacles towards
building a full scale Quantum Internet is long distance quantum communication. Here, we wish to
show that a number of quantum network applications are in fact accessible at a metropolitan level
even with near-term technology. Our goal is to contribute to the identification of network topologies
and system architectures that can enhance today’s communications with quantum-enabled function-
alities in a realistic and practical way, while more advanced technologies gradually become available
and upgrade the network. We take inspiration from the methods used in the previous chapter to
create a loss and noise model for photonic quantum networking, that we embed into a network simula-
tor. We will tackle the issue of long-distance communication with alternatives to fiber in the next chapter.

Contribution and outline: Here, we create a model for metropolitan photonic quantum networks,
that we call the Quantum City, which we detail in Sec. 5.1. Close discussions with experimentalists
allowed us to create a realistic model of all the processes that happen during a network protocol, from
creation, sending and detection of a qubit. We also show this modeling in this section. In Sec 5.2, we then
assess today’s and near future networking capabilities by performing simulation based on a library of
function using Netsquid, a network simulator developed at QuTech in Delft. We simulate our Quantum
City architecture on a realistic instance in Paris and analyze the simulations of bipartite and multipartite
applications. We hope that this study will help future developments by highlighting the important
hardware parameters limiting quantum Internet development.

Article link: The manuscript will be submitted within the next few weeks.
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5.1 The Quantum City

We propose an architecture for a metropolitan scale quantum network that minimizes end user hardware,
that we call the Quantum City. It should have all the properties desired from a network architecture
in development namely support distributed quantum applications, enhance today’s networking ability,
allow for growth and adaptability to tomorrow’s applications, support hardware heterogeneity, be easy
to manage, be resilient to failure and malicious actors and work as soon as possible (see Sec. 1.3.1 for
more details).

5.1.1 Architecture description

In this section we describe the Quantum City, a realistic architecture for photonic quantum networks. In
its basic form, it has a star topology with a central node that we call Qonnector linked to a number
of users that we call Qlients through optical fibers (see Fig. 5.1). This allows for centralized routing
procedures and asymmetric distribution of hardware between a powerful Qonnector and very limited
Qlients. This corresponds well to the expected intermediate-term development of quantum networks,
where some nodes with advanced quantum resources will be providing quantum access and functionalities
to a number of users with very limited quantum capabilities. Below we describe precisely the abilities of
a Qonnector and a Qlient node in our model.

Figure 5.1: The Quantum City topology. It is a photonic star quantum network with a special node in
the middle, the Qonnector, that has advanced quantum capabilities. Each end node (Qlient) has very
limited quantum capabilities and is connected to the Qonnector through an optical fiber. The Quantum
City allows for Qlients to perform quantum protocols via the Qonnector.

Qonnector nodes provide the core quantum functionalities of our model. They are an abstraction of
quantum servers providing quantum services to end users. The capabilities of a Qonnector may vary and
evolve in time, but in principle they are nodes that can create and share multipartite photonic quantum
states and are connected both classically and quantumly to a certain number of users from whom they
can receive photons and perform measurements on them. Using state-of-the-art photonic technology,
we can already assume that a Qonnector has a number of capabilities: to create and manipulate any
one-qubit state as well as multiparty entangled states such as Bell pairs and GHZ states up to a certain
number of qubits; to receive and measure any photonic state and to perform probabilistic Bell state
measurements on two photons arriving simultaneously; to route photonic states arriving from one Qlient
to another Qlient.
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A Qonnector will also use classical computing power and classical Internet. In particular, a Qonnector
holds a list of each Qlient’s identification and port to use to communicate with each of them. It also
has empty classical memory slots reserved for each connected Qlient to perform classical post and
pre-processing in protocols. This centralizes network information in one node, facilitating routing of
quantum information and addition of new Qlients to the network. In a metropolitan area, a Qonnector
able to perform those specific tasks provides the resource for the creation of a quantum network of tens
or hundreds of users. A Qonnector thus represents a network provider for an area.

As mentioned before, one can imagine even more powerful Qonnectors, for example a node equipped
with quantum memories to enable efficient, on-demand operations, or with a quantum processor to which
a Qlient can delegate securely a computation. Distant Qonnectors may also be linked with quantum
repeater or satellite links, forming a backbone network with entangled central nodes. Our architecture is
agile enough to handle such upgrades in the quantum capabilities of the Qonnector nodes, while making
it possible for the quantum network to support a number of different functionalities already with a simple
state-of-the-art photonic node as a Qonnector and Qlients with limited and realistic quantum capabilities.

Qlient nodes represent the end users connecting to the quantum network. They abstract private
users that hold photonic quantum communication devices expected to be commercially available in the
near future. They are classically connected to the rest of the network through the classical Internet
and have usual classical computing power. We assume that they have very limited quantum hardware
capabilities namely they can manipulate one qubit at a time. More precisely they can generate, receive
and measure any one-qubit photonic state (in fact, it may be sufficient to have the ability to either
generate or receive and measure such states). In a more advanced version, Qlients also have the capability
to store quantum states for a short period of time. Industrial-grade devices offering these capabilities are
already available today or will become in the near future, and can be expected to become more suitable
for wider use in the following years, thanks to advances for instance in photonic integration [201].

As we will show in the rest of this work, even in the most restricting memory-less setup, Qlients have
access to various quantum-enhanced functionalities, including performing Quantum Key Distribution,
conference agreement, anonymous transmission, E-voting and others. The architecture is easily scalable
as adding a Qlient only amounts to connecting it to the Qonnector through an optical fiber. Moreover,
through entanglement with the Qonnector, Qlients have the power to securely and privately perform
remote computation on a more powerful device. A Qonnector node that possesses or is connected to
a quantum computer would let any Qlient to securely enjoy universal quantum computation, thanks
to blind and verifiable delegated computing protocols that only requires a series of one-qubit states
provided by the Qlient [78].

Given the fact that it seems highly unrealistic that all nodes of future quantum networks will be
able to perform universal quantum computation or even to store qubits in quantum memories at home,
such more centralised networks provide a realizable way forward for quantum communications.

Last, a Quantum City is compatible with the longer-term vision of a Quantum Internet, where
nodes use quantum memories to share entanglement between them in order to transmit quantum
information via teleportation. Qonnector nodes can play such a role, creating a backbone quantum
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network that creates entanglement between the central nodes of different metropolitan networks, via
repeater or satellite links. Nevertheless, one need not wait for such capabilities to become deployable
before developing functional metropolitan quantum networks in the coming years.

5.1.2 Modelling Quantum Processes

Let us now go into more detail in the operations that the nodes of our network architecture can perform,
to include in particular losses and errors that are inherent in any realistic quantum operation. As in the
previous chapter, we model losses and errors through depolarizing and dephasing channels that act on
the state ρ on which the operation is applied:

Dλ1
depol(ρ) = λ1ρ+ (1 − λ1) I

d
,

Dλ2
dephase(ρ) = λ2ρ+ (1 − λ2)ZρZ ,

(5.1)

where λ1 represents losses and λ2 represents noise. Every time a specific operation is applied to a qubit,
these channels describe the applied operation with its corresponding parameters. In other words, λ1

corresponds to a loss probability and λ2 to an error probability. In this work we focus on photonic
quantum communication, thus we suppose qubits cannot be stored and we don’t consider decoherence
effects. More precisely we will consider the following sources of losses and errors:

• The creation of any one-qubit state |ψ⟩ = cos θ |0⟩ + sin θ |1⟩ is attempted at a rate fqubit and
succeeds with probability pqubit. A bit flip error occurs with probability pflip.

• The creation of an EPR pair is attempted at a rate fEP R and succeeds with probability pEP R.
• The creation of an n-qubit GHZ state is attempted at a rate fGHZ−n and succeeds with probability
pGHZ−n.

• The routing of a state received from a user to another one succeeds with probability ptransmit.
• A Bell State Measurement (BSM) on two photonic states received simultaneously succeeds with

probability pBSM .
• Photonic qubits are coupled in fibers with a probability pcoupling, also called coupling efficiency.
• Losses in optical fibers are characterized by the quantity ηfiber in dB/km, such that a photon is

transmitted over a distance L with probability exp(−ηfiber · L/10), and dephasing occurs with
probability pdephase.

• A photonic qubit is successfully measured with probability pdet, and the outcome is flipped with
probability pcrosstalk.

• Detectors are active only in a time window ∆tdet around each state creation attempt, called the
detection gate.

• Detectors can spontaneously be triggered even in the absence of photons, resulting in dark counts at
an average rate Rdark. Hence, they occur with a probability pdark = Rdark · ∆tdet when attempting
to create a state. Dark counts typically trigger state detection, when none was emitted or when
the state was lost. They can also lead to double outcomes at the detection of one qubit, in which
case the data is discarded.

Other effects can occur with far lower probabilities and are therefore ignored.
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In Fig. 5.2, we show as an example the error and loss model that we consider for sending and receiving
a photonic qubit. It is a generalization of the loss model that was used in the previous chapter to model
fiber communication (Fig. 4.6).

Figure 5.2: Photon loss and error model for the emission, sending and measurement of a qubit.

For modularity, all the failure probabilities and rates can be defined separately for each Qlient and for
the Qonnector. This reflects the future probable differences in hardware quality between a server node
and the different end users. Note that we here ignore the travel time of photons. We fix it to 1ns in our
simulations, regardless of the distance between the nodes. In a real life setting, this travel time should
be carefully measured so that receiving nodes know as precisely as possible when they should expect
photons. This typically causes the receiving node to start its measurement routine a few milliseconds
after the sending node starts sending photons, to account for photon travel time in the fiber.

To simulate our network architecture we use a quantum network simulation tool using discrete events,
NetSquid [31]. Most errors and losses are embedded in Netsquid which facilitate the simulation of realistic
quantum networks. The modularity of this simulator and its built-in components allows us to easily
create a network model on which one can run protocols of interest. By defining simple local routines
for each node such as the creation and sending of a state or performing a Bell state measurement, we
can simulate the quantum operations involved in the protocols we consider. In this work we focus on
modeling quantum operations and we do not take classical pre and post processing into account as their
complexity is still sufficiently low to be performed fast enough by any classical computer. This will allow
us to find the critical physical parameters of the Quantum City architecture that limit the functionalities
accessible to a user, hence pointing to possible optimizations for networks under development. To learn
more about the use of NetSquid, we encourage the reader to check out the NetSquid website [202]. The
code used in our work is available on GitHub [203] and the documentation can be found in Appendix B.

89



CHAPTER 5. FEASIBILITY OF METROPOLITAN QUANTUM NETWORKS

5.1.3 Figures of merit

Using a network simulator allows to benchmark different properties of network protocols depending on
specific hardware parameters. In this chapter we will focus on the raw throughput, in bit per second,
at which protocols can be performed. As introduced in Sec. 4.4, the throughput is highly dependent
on the quantum state creation rate of the sources which varies a lot from a setup to another and can
usually be tuned to match the detector’s dead time. We will also give an estimation of the rate, defined
as the number of states received divided by the number of states sent (or channel uses). Although they
can easily be converted from one to the other given the hardware parameters, the former gives a good
estimate of the feasibility of a protocol while the latter characterizes the quality of the qubit transmission
in a quantum network. Note that we here focus on the raw throughput instead of the secret key as we
did in the last chapter because it applies to other protocols than QKD.

We will also focus on the Qubit Error Rate (QBER) that we define as the number of measurement
outputs that where flipped during quantum processes. More explicitly it corresponds to the number of
qubits measured in the |1⟩ state when a |0⟩ state was sent (and conversely) over the total number of
qubits measured. This bit flipping due to faulty operations during the protocol is a practical measure of
the quality of the different pieces of hardware.

These parameters allow in most cases to estimate the actual rate at which a protocol can be performed.
For example in QKD protocols, the secret key rate is given as a function of the throughput and the QBER
that depends on the post-processing techniques that are chosen [46]. Here, we focus on the quantum
communication and processing parts of protocols, ignoring classical pre and post processing. Indeed, we
simply aim to investigate the performances of a realistic near-term metropolitan-scale quantum network
to motivate and guide practical implementations. Based on the results of our simulations, it will be then
possible to check in more detail the feasibility of specific protocols. We hope this will show that the
Quantum City is a promising architecture, suitable for near term quantum applications.

5.2 Results

We will now simulate a Quantum city in a realistic setting using Netsquid. As explained in Sec. 5.1.2,
errors and losses are modeled with dephasing and depolarising channels that we apply to quantum states
when they undergo quantum processes. Our simulation model is formed by five Qlients that represent
actual laboratories in the Parisian region: Sorbonne Université campus (SU-Alice), Université Paris Cité
campus (UPC-Bob), Orange Labs Châtillon (OR-Charlie), Télécom Paris (TP-Dina) and TGCC-CEA
(CEA-Erika) (see Fig. 5.3). They are connected through lossy optical fibers to a Qonnector placed in the
same lab as Alice. It is easy to see that this choice of placing the Qonnector is not optimal however it
can allow for more Qlients at different distances to join and we will see that it already allows interesting
applications.
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Figure 5.3: Paris Quantum City: Five Qlients are connected through optical fibers to a Qonnector
located at Sorbonne Université (SU) campus. The length of the fiber are 1m for the link Alice-Qonnector,
3km for the link Bob-Qonnector, 7km for the link Charlie-Qonnector, 19km for the link Dina-Qonnector
and 32km for the link Erika-Qonnector.

In Netsquid, protocols are modeled with node subroutines that correspond to the local operations
performed by each node during the protocol. By creating the routines that correspond to creating and
sending BB84 states, measuring such states in random bases, transmitting these states from one Qlient
to another, creating Bell pairs or GHZ states and performing Bell State Measurement, we are able to
simulate all the protocols mentioned in Sec. 2.1.1 and 2.2, at least from a network point of view. We
also created classes of nodes that represents Qlients and Qonnector. They contain the necessary classical
memory slots for routing and processing outcomes. Note that quantum storage is not included in the
routines in this analysis. With these elements we can create a Quantum City instance on which all the
protocols can be simulated.

5.2.1 Baseline simulation parameters

We start by discussing the set of realistic parameters that we use in our simulations. We consider here
photon sources based on Spontaneous-Parametric Down-Conversion (SPDC) in nonlinear crystals, as
they are widely used for generation of heralded single-photon and entangled-photon states with high
performance in terms of brightness and fidelity [35, 34]. Such sources are in general cost-effective and can
operate at a range of wavelengths. Note however that deterministic single-photon sources, such as those
based on semiconductor quantum dots, may also be interesting for quantum network applications [204].
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Using SPDC sources, heralded single-qubit states are generated by measuring one photon of a
correlated pair with a single-photon detector. EPR pairs are generated with a probability pEPR. Measuring
one photon of an EPR pair with a single-photon detector allows us to herald its twin and therefore
generate a single-photon state. GHZ state with 2n qubits are created by simultaneously generating
n EPR pairs and performing on them probabilistic fusion operations [205]. We assume here that the
probability of success of the fusion operation is the same as the one of a linear-optic BSM [206] with
some additional losses, and set it to pfusion = 0.36. We therefore deduce the average generation rate for
2n-qubits states:

(5.2) GR2n = f · pn
EP R · pn−1

fusion

with f the pump Laser repetition rate and we consider each Laser pulse as an attempt to create a state.
This way, we can evaluate the probability of generating a GHZ state in a Laser pulse:

(5.3) pGHZ−2n = pn
EP R · pn−1

fusion,

GHZ states with (2n− 1) qubits are generated by measuring a heralding qubit of a 2n-qubit GHZ
state, resulting in an average generation rate:

(5.4) GR2n−1 = GR2n · ηherald = f · pn
EP R · pn−1

fusion · ηherald

with ηherald the probability of measuring the heralding photon, including detectors and coupling efficiency,
as well as eventual losses in optical components. For state-of-the-art detectors and optimized coupling
setup we can consider ηherald ≃ 0.7 − 0.8. Similarly to the 2n−qubits GHZ state case we can interpret f
as the rates fqubit and fGHZ−(2n−1), and we can evaluate the probabilities of generating a single-photon
or a GHZ state in a laser pulse:

(5.5)
pqubit = pEP R · ηherald

pGHZ−(2n−1) = pn
EP R · pn−1

fusion · ηherald

Most current experiments use Laser that do not exceed a pulse repetition rate of f = 80 MHz.
Temporal multiplexing can be used to increase the average rate of emission while keeping the noise
low [34]; however, we wish to keep f · pEPR ≤ 10 MHz, as a higher pair emission rate would lead to a
drop of the detector performance because of the recovery time, which is typically ≲ 100 ns. Hence, we
take f = 80 MHz and pEP R = 0.01 for 1− and 2−qubits experiments, in order to limit the noise due to
double emission [207]. For experiments with more photons, we take a higher value pEP R = 0.1 in order
to favor multiple-pair emission in one pulse, while keeping a lower f = 8 MHz.
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Below we list the parameters used for the simulations. Most of them are actual parameters witnessed
in nowadays experiments, or are derived from what is expected to be possible in the years to come. Some
others, such as the errors probabilities pflip, pcrosstalk or pdephase, highly depend on how tailored the
experiment is. We therefore choose somewhat arbitrary parameters, that can be easily modified in our
code in order to simulate errors in the protocols. We also set somewhat arbitrarily the routing probability
ptransmit, leaving the possibility to change it in order to model novel techniques. Hence we also set an
arbitrary value for ptransmit, leaving the possibility to change it in order to model novel techniques.
Finally, we set the parameters pdet, Rdark, and ∆tdet to values corresponding to high-performance
superconducting nanowire single-photon detectors.

Parameters:

fqubit 80 MHz Qubit creation attempt frequency
pqubit 8 · 10−3 Success probability of creation of a qubit
pflip 0 Flipping probability at the creation of a qubit
pcrosstalk 10−5 Probability that the detector flips the outcome
fEP R 80 MHz EPR pair creation attempt frequency
pEP R 10−2 Success probability of the creation of an EPR pair
pBSM 0.36 probability that a Bell state measurement succeed
fGHZ 8 MHz GHZ state creation attempt frequency
pGHZ−3 2.5 · 10−3 Probability that an attempt of a 3 qubits GHZ state creation succeeds
pGHZ−4 3.6 · 10−3 Probability that an attempt of a 4 qubits GHZ state succeed
pGHZ−5 9 · 10−5 Probability that an initialisation of a 5 qubits GHZ state succeed
ptransmit 0.9 Probability that transmitting a qubit succeeds
tgate 1 ns Time it takes to perform an operation on one qubit
pcoupling 0.9 Fiber coupling efficiency
ηfiber 0.18 dB/km Fiber loss per kilometer
pdephase 0.02 Phase flip probability in the fiber
pdet 0.95 Detector efficiency (Probability that a measurement succeeds)
Rdark 100Hz Dark count rate
∆tdet 100 ps Detector detection gate
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5.2.2 Bipartite protocols

5.2.2.1 Simulation of Quantum Key Distribution protocols

Here, we show the performance of the Quantum City architecture for Quantum Key Distribution. Our
analysis uses as a running example a quantum network in the Paris region (see Fig. 5.3), featuring
characteristics common to many urban areas in Europe and beyond. As shown in Sec. 2.1.1, there are
many protocols achieving the QKD functionality, namely establishing a secret key between two Qlients.
These protocols differ in rate, hardware involved and in the trust that Qlients give to the Qonnector. In
the context of this work, we suppose that each Qlient node is capable of manipulating (creating and/or
measuring) one qubit at a time. The Qlients choose among the different QKD protocols depending on
their hardware or on which feature is more desired. In Fig 5.4, we show five QKD protocols between two
Qlients that we study in the following.

Figure 5.4: QKD protocols between two Qlients of a Quantum City. From left to right, top to bottom:
2xBB84, 2xBB84 reversed, transmitted BB84, Entanglement-based QKD and MDI-QKD. The hardware
involved in each of these protocols is given on the left.

We perform between 200 and 500 simulation runs for each protocol. By averaging over these runs, we
give an estimate of the sifted key throughput by dividing the length of the sifted key over the simulation
time. We estimate the rate by dividing the number of photon received by the number of photon sent as
well as the QBER by counting the number of bits that have been flipped at the end of protocol. We also
show plots with the accumulated sifted key after a certain simulation time. Sifted key rate and QBER
are the two main parameters taken in consideration during the calculation of the secret-key rate of QKD
protocols.
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BB84. We first simulate the performances of the BB84 protocol (see Sec. 2.1.1.1 for details) in two
settings: between the Qonnector and each Qlients and between two Qlients using the Qonnector as a
router. In the first case, once a key is shared between the Qonnector and two Qlients, the Qonnector can
use one Qlient’s key to transmit him the other Qlient’s key. We assume for the moment that all the
nodes have the same hardware parameters so it does not matter whether the sender is the Qonnector or
the Qlient. In the second case, the photon transmission at the Qonnector node succeeds with probability
ptransmit = 0.9; we recall that this routing parameter can easily change in the simulation.

The simulation is performed as follows: At each timestep defined by 1/fqubit as the time necessary to
create a BB84 state, a photon is created at a sending node. The associated classical bit as well as the
basis and a timestamp are stored in classical memory slots. Qubit states are sent through fibers along
with a classical message containing the timestamp. They are then measured at the receiving node and
outcomes are stored in classical memory slots alongside the measurement basis and the timestamp. After
a fixed simulation time, we perform sifting on the two resulting lists, using the timestamps to compare
measurement basis accordingly. This leaves us with correlated lists of raw key bits at the sending and
receiving nodes from which we can extract data of interest for our analysis.

In Table 5.1 we show the achieved sifted key throughput, rate and QBER after a few hundred rounds
of simulation. We also show in Fig. 5.5 the throughput for each Qlient as a function of the distance and
in Fig. 5.6 and 5.7 the number of successful BB84 round as a function of the simulation time for each
setting.

Nodes involved Throughput (sifted
key bit per second)

Rate (sifted key bit per
channel use) QBER

Qonn − > Alice 263900 0.423 1.0%
Qonn − > Bob 228700 0.374 0.9%

Qonn − > Charlie 200700 0.322 1.0%
Qonn − > Dina 116850 0.180 0.9%
Qonn − > Erika 71250 0.115 0.9%

Alice − > Qonn − > Bob 184200 0.2185 1.8%
Alice − > Qonn − > Charlie 158450 0.2592 1.8%
Dina − > Qonn − > Charlie 72700 0.1078 1.9%

Bob − > Qonn − > Erika 51950 0.0845 1.7%

Table 5.1: Performance of the BB84 protocol in the Paris Quantum City. The first five lines correspond
to the Qonnector sending BB84 state to each Qlient, and the last four correspond to pairs of Qlient
using the Qonnector as a transmitting station.

The actual key rate that corresponds to sharing a key between two Qlients using the BB84 protocol
between the Qonnector and the Qlients is given by the minimum of the key rate with each individual
Qlient. As expected, photon loss in the fiber affects directly the performance of this protocol. We can see
the rate dropping for nodes situated further away from the Qonnector, dropping even more when the
Qonnector routes a photon coming from one Qlient to another. Despite this lower performance, Qlients
do not have to trust the Qonnector in the latter case. They can see if it is tampering with the state they
are sending during the reconciliation part of the protocol.
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Alice    Bob          Charlie                                                              Dina                                                                       Erika                                                            
(1m)   (~3km)      (~6km)                                                            (~18km)                                                              (~31km)

Figure 5.5: Throughput of BB84 state transmission from the Qonnector to the Qlients (blue squares).
The throughput is the number of sifted key bits per second shared between each Qlient and the Qonnector.
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Figure 5.6: Comparison between the number of successful BB84 qubit transmission from the Qonnector
to every Qlient of our network.

As a comparison [208], BB84 experiment done using nitrogen-vacancy defect centers as single photon
sources with 1MHz repetition rate at a few meter distance in free space gives lower sifted key throughput
of 3.99kbit/s while the ones with silicon-vacancy defect center have a sifted key throughput of 1.51kbit/s.
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Figure 5.7: Comparison between the number of successful BB84 qubit transmission from some Qlients
to others through the Qonnector.

Entanglement-based QKD. We now investigate the performance of the Quantum City for QKD
when EPR pairs are sent between Qlients. We simulate the following: at each timestep defined by 1/fEPR

an EPR pair is created and sent by the Qonnector to two Qlients who measure it in a randomly selected
basis according to the protocol. As in the BB84 simulations, outcomes, timestamps and measurement
bases are stored in classical memory slots. We can then use the resulting lists to extract relevant data.
Note that to estimate the QBER we count the timesteps where Qlients obtained correlated results.

In Table 5.2 we show the EPR sharing rate and throughput as well as the QBER for a few pairs of
Qlients. We also plot in Fig. 5.8 the accumulated sifted key obtained by pairs of Qlient receiving and
measuring EPR pairs from the Qonnector and counting the qubits received with the same timestamp
and measured in the same basis.

Nodes involved Throughput (EPR
pair per second)

Rate (pair received over
pair sent ) QBER

Alice < − Qonn − > Bob 248250 0.2068 1.9%
Alice < − Qonn − > Erika 79750 0.1042 1.3%

Dina < − Qonn − > Charlie 96750 0.1252 2.2%

Table 5.2: Performance of the BBM92 protocol between pairs of Qlients
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Figure 5.8: Comparison between the number of EPR pairs successfully measured by pairs of Qlients.

Note that this also showcases how long it takes to create entanglement between two nodes in the
Quantum City. As explained in the introduction, this is a crucial characteristic of a quantum network.
To consider this properly, it is necessary to upgrade the Qlient capacities with quantum storage. In
addition to allowing for efficient, on-demand operations, this also opens the way to a whole range of
applications based on teleportation and entanglement swapping techniques.

MDI-QKD. Finally we simulate the MDI-QKD protocol as follows: at each timestep the Qlients
prepare and send BB84 states to the Qonnector who performs a Bell state measurement on them (see
Sec. 2.1.1.3 for details). If the measurement is successful, the outcome along with its timestamp is stored
in a classical memory slot. We do not simulate classical post-processing and consider that a round is
successful when the joint BSM is successful. As these techniques are still under development, we will
only give an estimation of the protocol’s rate in order to compare to other protocols. In particular, we
will leave the consideration of noise and dark counts in the Bell State measurement as an open question.
We show the performance of MDI QKD between two different Qlients in Table 5.3.

Qlient involved Throughput (successful MDI
QKD round per second)

Rate (successful round
over photon sent)

Alice − > Qonn < − Bob 420 0.05%
Alice − > Qonn < − Charlie 330 0.04%
Dina − > Qonn < − Charlie 240 0.03%

Bob − > Qonn < − Erika 30 0.004%

Table 5.3: Performance of the MDIQKD protocol between pairs of Qlients
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The low success probability of the Bell state measurement combined with low probability that both
Qlient photons arrive at the same time explains the lower rate of this scheme compared to the previously
studied schemes. However, this scheme could be greatly improved by using quantum memories to store
an arriving qubit from one Qlient for a small time until a qubit arrives from the other Qlient [209].
Moreover, MDI QKD has strong security properties as Qlients do not need to trust the Qonnector. It
might be preferred over the BBM92 protocol for hardware considerations: high-quality detectors typically
involve cryostats that may be too expensive for Qlients.

Moreover research in variants of this protocol is evolving rapidly, especially with the rise of novel
Twin-Field QKD techniques exploiting new phase locking techniques [54]. We leave the modeling of this
particular QKD protocol to further work. For now we simply showcase the feasibility of MDI-QKD in a
Quantum City architecture.

We conclude this section by noting that decoy-state BB84 [210] and Continuous-Variable QKD
or CV-QKD [61, 211] are also widely studied QKD protocols offering significant advantages (see
Sec. 2.1.1.4 ). Unfortunately, NetSquid does not support yet models for (weak) coherent state generation
or coherent detection techniques used in these protocols, and therefore we do not include them in our
analysis. We emphasize, however, that it will be important to develop such network simulation models
for a complete analysis of quantum networks, and leave this as an open question.

5.2.2.2 Playing with the parameters

To test our network architecture in the most realistic setting, we can choose different capabilities for
each node. As an example let us set Bob to have the best detector parameters but a low-performance
transmitter (pqubit = 5 · 10−3 and pflip = 0.01) and Dina to have the best transmitter parameters but
low-performance detectors (pdet = 0.85 , pcrosstalk = 10−2, Rdark = 104Hz and ∆tdet = 500 ps). Moreover,
let Charlie represent the most limited Qlient with the lowest abilities both in sending and detecting
states. We leave the Qonnector as well as Alice and Erika to have the best possible choice of parameters
that corresponds to state of the art capabilities. We emphasize that all these parameters can be easily
modified in our code and that the simulation modules are available on GitHub[203]. In this section, we
will refer to this more realistic set of parameter as the modified set of parameters.

In Table 5.4 we show the sifted key rate, throughput and QBER for sending and receiving BB84
state both ways between the Qonnector and each Qlient. We also plot the rate as a function of the
distance between the Qonnector and each Qlient (see Fig. 5.9). We see that the different quality in
hardware directly reflects on the simulations outcomes. For example, Bob, who has state of the art
detectors but poor transmission capabilities, performs better as a receiving node, and Dina, with the
reverse capabilities, performs better as a sending node. We remark that with the simulation parameters
we have chosen, the effect of the transmitting capability is more pronounced that the detection one.
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Nodes involved Throughput (sifted
key bit per second)

Rate (sifted key bit per
channel use) QBER

Qonn − > Alice 263900 0.4233 1.0%
Qonn − > Bob 228700 0.3742 0.9%

Qonn − > Charlie 175650 0.2864 1.9%
Qonn − > Dina 112050 0.1804 2.2%
Qonn − > Erika 71250 0.1156 0.9%
Alice − > Qonn 260450 0.4323 1.0%
Bob − > Qonn 141800 0.3735 2.0%

Charlie − > Qonn 122400 0.3218 2.0%
Dina − > Qonn 121750 0.1963 1.0%
Erika − > Qonn 70750 0.1142 0.9%

Table 5.4: Performance of the BB84 protocol between Qlients and the Qonnector in the Paris Quantum
City with the modified set of parameter.

Alice    Bob          Charlie                                                              Dina                                                                       Erika                                                            
(1m)   (~3km)      (~6km)                                                            (~18km)                                                              (~31km)

Figure 5.9: Throughput of BB84 state transmission from the Qonnector to the Qlients (blue squares)
and from the Qlients to the Qonnector (red triangles) with the modified set of parameter. The throughput
represent the number of sifted key bits per second shared between each Qlient and the Qonnector.

We have studied the feasibility of different QKD protocols from Sec. 2.1.1 in a realistic Quantum City
architecture. With simple optical elements on the Qlient side, we have seen various ways for two Qlients
to secretly share a key that we can now compare. In Figs. 5.10 and 5.11 we show the accumulated sifted
key length as a function of the simulation time for different QKD protocols for Alice and Bob and for
Charlie and Dina with the modified set of hardware parameters. With these parameters, we can see
that Alice and Bob can use favorably entanglement-based QKD while BB84 from the Qlients to the
Qonnector is optimal for Charlie and Dina. For these small simulation times, MDI-QKD generates few
bits of shared key due to its very low success probability, which appears as zero when averaging over all
the simulation runs. This highlights that such network simulation tools can allow in a fast and flexible
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way for resource optimization when choosing between different protocols for a target functionality, while
also considering a the trade-off between performance and desired trust requirements.
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Figure 5.10: Comparison between different QKD protocols between Alice and Bob. We show the size of
the sifted key between the two Qlient using different QKD protocol as a function of the simulation time.
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Figure 5.11: Comparison between different QKD protocols between Charlie and Dina. We show the size
of the sifted key between the two Qlient using different QKD protocol as a function of the simulation
time.
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5.2.2.3 Delegated computation

In this section, we call a Qomputer node a node with access to a universal quantum device able to
perform arbitrary computations. In the Quantum City architecture, simply connecting a Qomputer node
to the Qonnector makes delegation protocols available to any Qlient. The Qomputer could for example
work in the measurement-based quantum computing paradigm [82] where a computation is done by
successive adaptive measurement on a grid of entangled qubits. Delegation can be done by asking the
Qlient to send a photon whose phase is randomized then with a back-and-forth classical interaction
(see Sec.2.1.4 for more details). In this work we will not dive into the details of how the qubits are
entangled and measured by the Qomputer, but rather estimate the rate at which they can be sent
from the Qlient to the Qomputer. Although we don’t expect near-term Quantum Cities to have a Qom-
puter node, this showcases the feasibility of delegated computation protocols from a network point of view.

Let us imagine that one of the nodes of our quantum City, say Erika, grows to have the abilities
of a quantum computer and becomes a Qomputer node. As explained in Sec. 2.1.4, by simply sending
single photons and then classically communicating with Erika, any Qlient of the Quantum City can
enjoy Erika’s quantum computing power. In Table 5.5 we show the throughput at which single photons
can be sent from each Qlients to Erika with our baseline set of parameters.

Qlient Throughput (successful photon transmission per second)
Alice 118200
Bob 64940

Charlie 54480
Dina 53520

Table 5.5: Performance of qubit transmission from each Qlient to Erika through the Qonnector.

We do not know yet how this rate relates to the rate of the actual computation a Qlient could
perform. However the work from [212] shows that the method that we have described in Sec. 2.1.4 comes
within a factor of 8/3 of optimal in the used resources. This means that in principle, new developments
could reduce the number of photons sent necessary to remotely perform an operation. The optimization
of delegation protocols, which also depend on the Qomputer technology and computing model, is outside
the scope of this thesis. Note also that according to the results from [79], a Qlient could even securely
use the Qonnector to send qubits to Erika and delegate a quantum computation while being completely
classical.
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5.2.3 Multiparty protocols

As discussed in Sec.2.2, most interesting applications of quantum networks are multiparty computations
taking advantage of shared multipartite entanglement. In a Quantum City architecture, multiparty
protocols that only require a qubit per party at each timestep can be implemented.

In this work we focus on protocols based on the GHZ state |0⟩
⊗

n+|1⟩
⊗

n

√
2 [5] such as the one

presented in Sec. 2.2. However the Quantum city architecture allows for sharing any multiparty quantum
state as long as at each timestep of the protocol only one qubit is held by each party. The Qonnector in
this case is simply used as a source of genuine multipartite entanglement (see Fig. 5.12). Restricting our
network simulation analysis to GHZ states, the relevant figure of merit for assessing the performance in
this case is the rate of successful transmission of such states. Protocols using other states are not very
different from a network simulation point of view; the main difference would be the probability that
they are successfully created.

Figure 5.12: Sharing of a 4 qubit GHZ state from the Qonnector to Qlients.

Following the analysis of Sec. 5.2.1, we assume that n-qubit GHZ states are generated at the Qonnec-
tor node at a rate fGHZ with a probability pGHZ−n. The qubits are then sent through the channels to
the Qlients, who record the number of detection events. Precise synchronization is required for correctly
assessing the obtained correlations. Here for simplicity, we just consider the events that correspond to
the same timestamp.

We present in Table 5.6 the estimated sharing throughput and error rate for GHZ sharing in a
Quantum City with the baseline set of parameters. The error rates have been estimated by counting the
number of GHZ states successfully shared in which at least one of the outcome bits has been flipped
during the process. For GHZ-5 the number of successful GHZ state transmissions is too low to have a
correct estimation of the error rate.

We also show in Fig. 5.13 the number of GHZ states that arrive successfully to 3, 4 or 5 Qlients as a
function of the simulation time. This may correspond, for instance, to accumulated raw conference key,
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which can then be made secure following a conference key agreement protocol (see Sec. 2.2.2). We can
see that scaling GHZ states to a larger size with the fusion operations considered in our simulations is
challenging; going from 3 and 4 qubit GHZ states to 5 and 6 qubit GHZ states requires the operation
to succeed twice, which occurs with low probability. Upgrading to techniques based on deterministic
single-photon sources may offer a promising avenue towards such scaling [213].

Qlients involved Throughput (successful
GHZ shared per second) GHZ error rate

GHZ3 to Alice, Bob and Charlie 4260 2.1%
GHZ4 to Alice, Bob, Charlie and Dina 4495 1.8%

GHZ5 to Alice, Bob, Charlie, Dina and Erika 45 -

Table 5.6: Performances of GHZ sharing from the Qonnector to 3, 4 and 5 Qlients.These results have
been obtained after averaging over 500 runs of 2000µs.

Figure 5.13: Number of GHZ state successfully transmitted to three, four and five Qlients as a function
of the simulation time. It also corresponds to raw conference key size in a CKA context. Each point has
been averaged over 100 runs of simulation.

These estimations of course highly depend on the GHZ creation rate of the source at the Qonnector
node. As explained in Sec. 6.2.1, photonic GHZ states are created by applying fusion operations to Bell
pairs. This explains why the number of GHZ states received by 3 and 4 parties are close. However,
fusion-based GHZ creation scales quite badly with the size of the state. Going from 3 and 4 qubit GHZ
states to 5 and 6 qubits GHZ state requires the probabilistic EPR fusion operation to succeed twice
which is still very challenging today. Performing GHZ-based network applications with a number of
Qlients above these numbers unfortunately seems unrealistic even with today’s state of the art photonic
hardware. However other methods using for example better single-photon sources are under investigation
to push this limitation [36].
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Once GHZ states are shared, multiparty quantum protocols such as conference key agreement
or anonymous transmission become available to Qlients. When running, for instance, conference key
agreement, the Qlients may not trust that the source is indeed providing GHZ states. The Qonnector
may be dishonest or have noisy hardware. In this case, the Qlients will perform several verification
rounds in between actual protocol rounds. Following the discussion in Sec. 2.2.1, it would take approxi-
mately 50 seconds for 4 Qlients to obtain one state such that there is a probability 0.99 that the state
has 90% fidelity with the GHZ state. By randomly doing key agreement rounds in between tens of
thousands verification rounds, four Qlients thus can perform a conference key agreement protocol secure
against a malicious Qonnector in a few tens of minutes. They would then get a raw key from which
a common secret key can be extracted. Hence, in a Quantum City with currently available hardware,
secure 4-party conference key agreement protocols can be achieved in a relatively practical amount of time.

Similarly, the full anonymous message transmission protocol from [93] supposes that the protocol
presented Sec. 2.2.3 is done in between GHZ verification rounds. This means that a message of a few
bits can be securely and anonymously transmitted in less that an hour in our Paris Quantum City
setting when 4 Qlients are involved. However, the time it would take to perform these protocols for
more Qlients becomes impractical with present technology because of the low probability of n-qubit
GHZ state generation when n > 4 and of the high overhead in GHZ states required by the verification
protocol. Nevertheless if the Qlients choose to trust their Qonnector, the rate at which the presented
protocol can be performed becomes quite practical. We can then conclude that near-term multiparty
quantum protocols will most probably have to work in a trusted-node scenario.

5.3 Conclusion

In this chapter, we have presented a simple network architecture that is sufficient and realistic for
metropolitan area quantum networks, of radius up to a few tens of kilometers. This architecture consists
of a single powerful node with the ability to create bipartite or multipartite entanglement and make
joint measurements in pairs of qubits, called the Qonnector, and a number of users with simple photonic
capabilities of preparing and measuring single qubits, called the Qlients. Together they form a Quantum
City. We have shown through Netsquid simulation the feasibility of various QKD protocols as well as
some multiparty functionality. The code is available on GitHub [203] and the documentation can be
found in Appendix B.

Our work gives rise to a number of open questions. Notably, we did not consider quantum memories
in the nodes of our Quantum city. Integrating this aspect is of particular interest as it will allow for
efficient routing strategies between the Qlients and for on-demand operations. Synchronization and
timing strategies that need to be put in place at the nodes were also not discussed, and are crucial for
proper network operation and hence for a complete protocol analysis. It will also be important to extend
NetSquid to support the simulation of coherent state generation and coherent detection techniques to
allow the investigation of an even wider range of protocols and applications. Finally, we also did not
consider the effect of noise such as dark counts in Bell state measurements. Future work will also include
more detailed error models for some of the protocol operations.
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Our focus here has been to explore what applications can be available with optimized and realistic
resources to quantum network users today. Our results highlight the significance and relevance of early
deployment of quantum networks, while also preparing the ground for applications that will become
available when more advanced quantum hardware is integrated, thereby unlocking the full potential
of a Quantum Internet. Indeed, Quantum Cities could be linked together using quantum repeaters or
free-space links, in order to create a larger-scale quantum communication network. The photonic and
centralized features of the Quantum City architecture facilitates connectivity between different cities. It
is capable of adapting with future developments on local nodes, provided efficient interfaces between
photon and local quantum memories are developed. In the next Chapter we study the feasibility of
satellite quantum communication to connect Quantum cities.
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Long distance communication

In Chapter 4, we saw that a successful implementation of quantum repeaters has not yet been demon-
strated. Despite the promising simulation results of Chapter 5 on metropolitan scale quantum networks,
communications beyond a city is crucial to achieve a Quantum Internet. Over the last decade, free-space
communications and more particularly satellite communications have received more and more attention
to overcome the issue of long-distance communications. Indeed in free-space, photons are less likely
to be lost than in fibers especially if part of the photon path is outside of the Earth atmosphere.
Feasibility studies [214] and actual implementations over more than 4000km [6] show that satellite
quantum communication could be the missing link to interconnect the various metropolitan quantum
networks that are being developed.

Contribution and outline: In this chapter, we continue the study started in Chapter 5 by simulat-
ing free-space links between two quantum cities. In Sec 6.1, we first design and provide a loss model for
satellite to ground communication and for horizontal free-space communication. This modelling was
done with the help of Matteo Schiavon and Valentina Marulanda Acosta. In Sec. 6.2, we then show and
study the effect of different parameters on satellites sending single photons to ground stations using an
adapted Netsquid library and real satellite orbital data. We then embed this study in the context of
our Quantum Internet architecture by studying two QKD scenarios between different Quantum Cities
in Sec. 6.3. Finally we discuss how realistic satellite communication is on the path towards quantum
Internet in Sec. 6.4 where we also discuss and simulate a high-altitude balloon based alternative to
achieve long distance communication.

Article link: The manuscript will be submitted within the next few weeks.

107



CHAPTER 6. LONG DISTANCE COMMUNICATION

6.1 Connecting Quantum Cities with satellites

In this work we investigate the feasibility of a satellite-based international network architecture in a
realistic pan-European context. In Fig 6.1, we show our envisioned network architecture, that we call
the Qloud. It allows growth and adaptability to future developments and also minimizes the end user
hardware which, as we saw in the previous chapter, is key for a practical implementation. It is based
on satellite communication between Quantum cities that are small star-like metropolitan networks.
Quantum cities centralize the information in so-called Qonnector nodes to optimize routing of quantum
data between distant nodes. The full definition of each component of the Quantum City architecture
can be found in Chap. 5.
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Figure 6.1: Schematic of a Qloud: Quantum cities connected through a backbone network of satellites
(BacQbone nodes). A Quantum City is formed by a powerful central node (Qonnector nodes) used as a
server allowing end users (Qlients) to enjoy quantum-enhanced functionalities. The end users can also
be powerful quantum machines (Qomputer nodes).

We support this architecture with simulations that show the feasibility of quantum key distribution
using real satellite data. We exhibit the crucial parameters by looking at their separate effect on the key
rate of a simple BB84 downlink scenario and in different QKD settings. Note that the beam-wandering
effect is stronger in the uplink scenario because the beam pass through the atmosphere at the beginning
of the path, when it is of smaller size. Satellite communication is easier to implement from the satellite
to the ground than the other way around. In the downlink scenario, the atmosphere comes at the end of
the path. Hence, turbulence induced by the beam wandering due to the atmosphere has a much lower
effect in this case. In the following we detail our model for the noise in satellite to ground quantum
communication. This model has been created in collaboration with Valentina Marulanda Acosta and
Matteo Schiavon.
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Since atmospheric turbulence is a very complex phenomenon, the realisation of a model for it requires
a choice of the effects that most severely affect the transmission. We have decided to focus on atmospheric
absorption and beam wandering effects.

In order to describe the impact of atmospheric propagation on the signal, we exploited a computer
code called Lowtran [215]. It is a fortran code developed for the calculation of the transmittance
and background radiance of the atmosphere. It is based on an empirical prediction scheme derived
from lab measurements and provides a reasonably accurate estimation of atmospheric effects over a
broad spectral interval (∼ 0.25 to 28.5 µm). The atmosphere is represented by 33 horizontal layers
between sea level and an altitude of 100 km. The total transmittance is computed as the product of
different atmospheric effects, namely continuum absorption, aerosol extinction, molecular scattering and
molecular absorption, the latter of which includes the influence of water vapor, ozone, nitric acid and
other uniformly mixed gases. The program contains a few different representative atmospheric models
based on geographical-seasonal characteristics (such as for tropical or mid-latitude environments) that
encompass the variation of pressure, temperature, water vapor and ozone with altitude. It also accounts
for several aerosol models that describe particular meteorological ranges such as an urban environment,
a less severe rural setting or a more wind and humidity dependent maritime navy situation. Lastly a cou-
ple of different visual ranges corresponding to different aerosol density models are considered as well [216].

In order to account for beam wandering, we used the model proposed by Vasylyev et al. [217] which
presents a rigorous treatment of beam wandering effects, one of the leading causes of losses in the
free-space channel. Its main advantage lies in an analytical formulation of the probability distribution of
the transmission coefficient (PDTC), a feature exploited to provide a computationally efficient software
implementation of the model. The model has also been studied recently to the satellite-to-ground channel
[214] in the context of continuous variable quantum key distribution. While a more complete model of
atmospheric propagation for the satellite-to-ground case is described in Vasylyev et al. [218], its much
higher complexity makes it unsuitable for a NetSquid embedding.

The beam wandering effects come from two main sources, the turbulence induced beam wandering
and the jitter due to the pointing error of the transmitter. The effects of beam wandering due to
turbulence depend mostly on the size of the beam at the beginning of the propagation in the atmosphere
and are determined by the refractive index structure constant C2

n which we will consider as fixed
throughout the propagation. The satellite pointing jitter is in turn, characterized by the standard
deviation of the pointing error θp. The parameters which are necessary to physically describe the
channel are the size of the transmitting and receiving stations and the properties of the atmosphere
and the pointing system. The main characteristic of the receiving station is the radius of the receiv-
ing telescope, that determines the proportion of the transmitted light that can be collected by the receiver.
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The current implementation includes two possible configurations for this channel, the ground-to-
ground free-space one (class FreeSpaceLossModel) and the satellite-to-ground one (class FixedSatel-
liteLossModel). The first one considers a horizontal channel, meaning the entirety of the propagation
path will happen within the atmosphere and therefore will be affected by it. This can either be the
case for communication between two ground stations or for a link between two drones or high altitude
balloons carrying telescopes. In both cases, the C2

n value is indeed constant and will depend on the
altitude of the link. For this configuration, the transmitter will be characterized by the beam waist ω0.

The second configuration considers a slant propagation path, only the last 10 km of which will be
affected by the atmosphere. For this kind of links, a constant C2

n is more of an approximation since in
reality it varies throughout the propagation path as it is a highly altitude dependent parameter. For this
configuration, the transmitter will be characterized by the divergence angle θd, a value related to the
previously mentioned beam waist as follows: θd = λ/(πω0).

As for the pointing error of the satellite, assuming that the position of the center of the transmitted
beam with respect to the receiving aperture follows a normal distribution and is centered around the
midpoint of said aperture, the PDTC will follow a log-negative Weibull distribution. The incidence of
turbulence on beam wandering is less important for the satellite-to-ground case, becoming negligible in
front of the beam wandering effects due to the pointing error θp.

The model assumes that each qubit is affected by the PDTC independently from the other qubits of
the transmission. Despite being unrealistic since it neglects the dynamics of the atmosphere, that is
considerably slower than the typical time difference between two qubits, it allows to provide a good
insight of the average properties of the channel. In addition to this, the satellite-to-ground channel
assumes a fixed position for the satellite. This allows to give a first estimate of the performance of the
channel when the satellite is on a given position in the sky, but it lacks the ability to provide information
about a long-time operation on the channel. We take this into account externally by discretizing the
orbit in 10 second intervals for which the satellite is considered as fixed and we then make a separate
simulation for each trajectory.

In this work we will use the satellite as a BacQbone node that connects two Quantum cities (see
Fig. 6.1). We will suppose that it is able to create and send BB84 states with probability pqubit at a
time rate fqubit as well as EPR states with probability pEP R and a rate fEP R to two ground stations.

110
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6.2 Simulation results

6.2.1 Setting and parameters

We will consider the following setting. We suppose that two European Quantum cities, one around the city
of Paris with five Qlients and one in the country of Netherlands with three Qlients are realised, allowing
metropolitan scale quantum networking. We also suppose that satellites are going over Europe, following
an orbit allowing to send photonic states to the Qonnectors (see Fig. 6.2). The Qlients localisation
corresponds to actual cities or laboratories. In addition to the Paris Quantum city from the previous
chapter, we add a Quantum City in the Netherlands composed of a Qonnector in QuTech at the TU
Delft campus and 3 Qlient nodes: Fatou in Amsterdam, Geralt in Den Haag and Hadi in Rotterdam.

Figure 6.2: A Satellite connecting Paris and Dutch Quantum Cities with downlinks only. Quantum
City of Paris: Five Qlients are connected through optical fibers to a Qonnector located in the Sorbonne
Université (SU) campus. The length of the fiber links are 1m for the link Alice-Qonnector, 3km for the
link Bob-Qonnector, 7km for the link Charlie-Qonnector, 19km for the link Dina-Qonnector and 31km
for the link Erika-Qonnector. Dutch Quantum City: Three Qlients connected through optical fibers to a
Qonnector placed in Delft. The length of the fiber links are 54km for the link Fatou-Qonnector, 9km for
the link Geralt-Qonnector and 13km for the link Hadi-Qonnector.
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We recall below the set of parameters used in Chapter 5 to simulate the performance of the Quantum
City of Paris. These numbers were extracted from relevant experimental works, including the laboratory
in our group.

fqubit 80 MHz Qubit creation attempt frequency
pqubit 8 · 10−3 Success probability of creation of a qubit
pflip 0 Flipping probability at the creation of a qubit
pcrosstalk 10−5 Probability that the detector flips the outcome
fEP R 80 MHz EPR pair creation attempt frequency
pEP R 10−2 Success probability of the creation of an EPR pair
pBSM 0.36 probability that a Bell state measurement succeed
ptransmit 0.81 Probability that transmitting a qubit succeeds
tgate 1 ns Time it takes to perform an operation on one qubit
pcoupling 0.81 Fiber coupling efficiency
ηfiber 0.18 dB/km Fiber loss per kilometer
pdephase 0.02 Phase flip probability in the fiber
pdet 0.95 Detector efficiency (Probability that a measurement succeeds)
Rdark 102Hz Dark count rate
∆tdet 100 ps Detector detection gate

We point out that the rate at which single qubit states or EPR pairs are generated highly depends
on the source model that we choose, namely Spontaneous-Parametric Down-Conversion (SPDC) in
nonlinear crystals that we detail in Sec. 5.2.1. It influences directly the rate at which entanglement can
be created between different nodes of our network. This parameter, like all the others, can be tuned
freely for each source in our code to match an actual source. For simplicity, we chose in this work to have
the same qubit creation rates in Qonnector’s source and satellite’s source. This is why we focus on the
rate, in bit per attempts, at which protocols are performed instead of the throughput in bits per seconds.
It gives a less source dependent view on the performance of the communication protocols that we study.

Using real live data from n2yo [219] and the orekit library [220], we are able to find satellites with
different orbits and to track down the precise time frame where they would pass over Europe. This also
gives us other useful information such as the elevation of the satellite as well as the distance between the
satellite and our ground stations at each point in time. In the following we will focus on four different
satellite orbits: the QSS (Micius) orbit that was used in [38], the Starlink-1013 orbit, the Iridium-113
orbit and the Cosmos-2545 orbit and we focus on a time frame where the elevation of the satellites
allow for quantum communication (usually set at 20 degrees). The first two considered are low Earth
orbit (LEO) satellites evolving at around 550km above Earth, with slightly different orbits. The Iridium
satellite is higher, around 800km above Earth. Lastly, the Cosmos satellite is a middle Earth orbit
(MEO) satellite above Europe, at around 19000km above Earth. In Fig. 6.3 we show the elevation and
the distance to the ground stations (Paris and Delft) for these satellites. We point out that our code is
modular and that any satellite can be investigated like we do in the following.
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(a) Micius Satellite (b) Starlink-1013 Satellite

(c) Iridium-113 Satellite (d) Cosmos-2545 Satellite

Figure 6.3: Elevation and distance to Paris and Delft of the Micius, Starlink, Iridium and Cosmo
satellites in the time frame considered.

6.2.2 Simple down link scenario: Choosing a satellite

To test our model, we first simulate a simple down link scenario between each of the satellites and
the Qonnector from Paris. This will allow us to choose the satellite that is most suited for quantum
communications.

The down link scenario simulation goes as follows: for each point in the orbit where the satellite’s
elevation is over 20 degrees, the satellite starts sending BB84 states to the Qonnector in Paris for one
second while recording the time stamp of each state. The Qonnector receives, measures the states and
records the measurement outputs. We can thus estimate the rate, i.e. the number of states received over
the number of states sent, which also corresponds to the link efficiency at this point in the orbit. We
average this over ten runs to get a better estimate. After this is done we move on to the next point
in the orbit, ten seconds later. We show the result in Fig. 6.4 and in Table 6.1 for a given set of parameters.

Satellite Maximum rate
Micius 0.238

Starlink 0.157
Iridium 0.101
Cosmo 0

Table 6.1: Maximum rate for the four satellites. The maximum rate is the rate, i.e. the number of qubits
received at the ground station over the number of qubits sent from the satellite, when the satellite is
closer to the ground station.
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Figure 6.4: Comparison of the average number of photons received in Paris for the four satellites
considered for approximately 6000 photons sent by the satellite at each point of its orbit. For this
simulation we suppose there are no aerosols in the atmosphere and we set the aperture radius of the
receiving telescope at 1m, the beam divergence at 5e-6 radians and the pointing error at 5e-7 radians.

As expected, distance and elevation of the satellite impact the number of states that arrive at the
ground station. For example, we can see that none of the photons sent by the Cosmo satellite arrives
at the Earth. MEO satellites, while having the advantage of having a longer time frame in which the
elevation allows for quantum communication, are too far for single photon states to arrive at a precise
point on Earth. It follows that geocentric satellites at a height of 36000km above ground, while having
the advantage of always being visible by a given ground station, would, under typical conditions, be too
far for the photons to arrive at the ground stations. As it is located further than the other two satellites,
the Iridium satellite has a lower rate but a longer exploitation time. We thus identify the well-known
trade-off in satellite communication between distance of the satellite to the Earth and time frame in
which we can use it. Micius and Starlink satellites are performing better but as can be seen in Fig.6.3b,
the elevation angle of Starlink with respect to the Paris ground station is lower than the one of Micius.
This means Starlink does not pass exactly above Paris which causes a drop in the rate.
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6.2.3 Influence of the parameters

As detailed in Sec. 6.1, our loss model allows us to analyse the effect of a few parameters of satellite
communication, namely the aperture radius of the receiving telescope, the beam divergence, the pointing
error and the the aerosol model, which affects directly the atmospheric transmittance. In this section we
study the effect of these different parameters on the rate of the down link scenario. We chose to focus
on the Micius satellite for the rest of this section as it exhibits the best performances with the Paris
node. When studying the influence of a parameter, we fix the other ones to what we expect to be the
best value achievable in the near future: an aperture radius of the receiving telescope of 1m, a beam
divergence at 5 × 10−6 radians and a pointing error at 5 × 10−7 radians. We also suppose that the effect
of the atmospheric turbulence are negligible with respect to the parameters studied.

We start with a study of the atmospheric model. In Sec. 6.1 we have detailed a few atmospheric
models that have an effect on photonic communication in free-space. Here we will study the ideal case
where there is no aerosol between the ground station and the satellite, the rural5 and rural23 models
that correspond to ground stations in rural areas with a meteorological range of, respectively, 5 and
23 km, the urban5 model that correspond to a ground station close to a city and the navy model
corresponding to a ground station in the middle of the sea. Meteorological range is usually defined as
the length of atmosphere over which a beam of light travels before its luminous flux is reduced to 5% of
its original value. In Fig. 6.5 we show the number of photons received at the ground station in Paris
when considering these different atmospheric models. This simulation has been done as the one in the
previous section, meaning that BB84 states are sent by the satellite for each point of the orbit where the
elevation of the satellite is over 20degrees.
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Figure 6.5: Effect of different aerosol models on the number of photonic qubits arriving from the Micius
satellite.
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We then study, using again the down link scenario, the effect of modifying the other parameters
included in our model. This study allows us to know what to expect from a specific setting and to
identify the key parameters to improve future quantum communication. We choose values that are
considered as realisable with current or near term technology.

We see that the transmitter parameters do not have all the same importance. A change of 5 micro-
radians in the beam divergence angle (see Fig. 6.6), has a drastic effect on the number of photons
arriving at the ground station. On the other hand the pointing error of the transmitter (see Fig. 6.7)
has to be multiplied by five in order to reduce the number of arriving photons by a half. Finally, we see
that increasing the aperture radius of the receiving telescope at the ground station by 20cm can almost
double the number of qubits successfully measured (see Fig. 6.8). This last parameter can be the easiest
to improve in future experimental realizations.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (min) 

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f p
ho

to
n 

re
ce

iv
ed

Divergence = 5e-6rad
Divergence = 10e-6rad
Divergence = 15e-6rad
Divergence = 20e-6rad

Figure 6.6: Effect of the beam divergence angle θd on the number of photonic qubits arriving from the
Micius satellite.
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Figure 6.7: Effect of the pointing error θp on the number of photonic qubits arriving from the Micius
satellite..
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Figure 6.8: Effect of the aperture radius of the receiving telescope Rx on the number of photonic qubits
arriving from the Micius satellite.
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6.3 Quantum Key Distribution between two Qlients.

In this section we reconnect with the path to quantum Internet and show the performance of satellite
communication in the context of linking two Quantum Cities. We study the achievable QKD rate between
two Qlients respectively from the quantum city of Paris and the Dutch quantum city connected via the
Micius satellite (see Fig. 6.2 and 6.3a). We will consider the most optimistic set of parameters from the
previous section, namely no atmospheric turbulence, an aperture radius of the receiving telescope of 1m,
a beam divergence at 5 × 10−6 radians and a pointing error at 5 × 10−7 radians.

Let us imagine that one Qlient from the Paris Quantum City, say Bob, wants to generate a secret
key with a Qlient from the Dutch Quantum City, say Hadi, using a QKD protocol. There are different
protocols achieving this functionality and we focus our analysis on two of them. For a more extensive
study of the different ways of achieving QKD in a metropolitan network, see Chapter 5. In the following
we show the feasibility of two QKD scenarios, one trusted and one untrusted, and then we discuss how
realistic they actually are.

6.3.1 Trusted satellite

The most natural way to achieve key distribution between Bob and Hadi is to perform BB84 between
all the nodes between these nodes while trusting each of them not to reveal the key. More precisely the
satellite performs two BB84 protocols in parallel to establish two keys with the Qonnectors from the two
cities, kParis and kDelft. At the same time the two Qlients establish secret keys, kBob and kHadi using the
BB84 protocol with their Qonnector. Once all keys are created, the Parisian Qonnector can send kBob

to the satellite using kParis, the satellite forwards it to Delft’s Qonnector using kDelft who sends it to
Hadi using kHadi. In the end, Bob and Hadi share kBob.

Figure 6.9: QKD between Bob and Hadi: All trusted node Scenario. Here the satellite performs two
BB84 protocols in parallel to establish two keys with the Qonnectors, kParis and kDelft. At the same
time the two Qlient establish secret keys, kBob and kHadi using the BB84 protocol with their Qonnector.
Once all keys are created, the Parisian Qonnector can send kBob to the satellite using kParis, the satellite
forwards it to Delft’s Qonnector using kDelft who sends it to Hadi using kHadi. In the end, Bob and Hadi
share kBob
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As in the previous section we simulate the sending of BB84 states to both ground stations and get
the rate for the two satellite to ground links. We also simulate the sending of BB84 states from each
Qlient to the Qonnectors. A more extended study of the different ways to perform BB84 in the Quantum
City of Paris can be found in Chapter 5, from which we extract some of the simulation results. We also
simulate the sending of BB84 states from each Qlient of the Dutch Quantum City to their Qonnector.
The parameters for the hardware at each node are listed in Sec. 6.2.1. We show the results of these
simulations in Fig. 6.10 and Table 6.2.
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Figure 6.10: Average number of photons received in Paris and Delft for approximately 3000 photons
sent from the satellite at each orbit point.

Nodes involved Rate (sifted key bit per channel use)
Satellite − >Paris Qonn 0.238

Satellite − > Dutch Qonn 0.228
Alice − > Paris Qonn 0.423
Bob − > Paris Qonn 0.374

Charlie − > Paris Qonn 0.322
Dina − > Paris Qonn 0.180
Erika − > Paris Qonn 0.115

Fatou − > Dutch Qonn 0.043
Geralt − > Dutch Qonn 0.296
Hadi − > Dutch Qonn 0.253

Table 6.2: Performance of the BB84 protocol between all nodes. The first two lines correspond to the
Satellite sending BB84 states to the two ground stations, and the other lines correspond to BB84 rate
with each Qlient of the two Quantum Cities.

119



CHAPTER 6. LONG DISTANCE COMMUNICATION

As expected, the longer a photon has to travel in a fiber the lower is the rate. In this scenario,
the rate of the overall key distribution protocol is given by the minimum rate of each sublink. Hence
depending on the pair of nodes that want to establish a secure key, the limiting sublink can be the
satellite-to-ground link or the fiber link inside the Quantum City. For example if Hadi and Bob want to
perform this trusted-node QKD protocol, their total rate is limited by the rate of the satellite to ground
link. But if Erika and Fatou want to do the same, it is the fiber link between Fatou and her Qonnector
that is most limiting. Note that the satellite-to-ground rate here is the rate when the satellite is at its
optimal position, namely just above the ground stations. As an example with a source rate of 80 MHz,
the raw key throughput at this point of the orbit 1.7Mbit/s for Bob and Hadi and 300kbit/s for Erika
and Fatou. We discuss how realistic this value is in Sec. 6.3.3. Note also that in order for this scenario
to securely create a key between two Qlients, all the nodes (Qonnectors and satellite) along the path
between two Qlients have to be trusted.

6.3.2 Untrusted satellite

Another way to distribute a key between Hadi and Bob is to use the entanglement-based version of
QKD also known as Ekert protocol or, in its simplest version, BBM92 (see Sec. 2.1.1.2 for a detailed
explanation of the protocol). The goal here is to have an EPR pair shared between our two Qlients.
Once this is done, by simply measuring their qubits in random bases and sifting the outcome, Hadi and
Bob get a correlated list of bits. They can then use a part of this list to check that no one attempted
to corrupt their quantum communication and use privacy amplification techniques to transform the
remaining part of the key into a shared private key.

Figure 6.11: QKD between Bob and Hadi: Untrusted nodes. Here the satellite performs the BBM92
protocol directly with the Qlients. The Qonnectors are used as transmitting stations, that couple the
photons arriving from the satellite into a fiber and send them to the Qlients.
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In the context of Quantum Cities connected by a satellite, the protocol goes as follows (see Fig. 6.11):
an EPR pair in the state |ψ−⟩ = 1√

2 (|01⟩−|10⟩) is created at the satellite and each qubit of the pair is sent
to two Qonnectors at the ground. Once there, it is coupled into an optical fiber and transmitted to each
Qlient who measures it. They then keep the outcomes that had been measured with the same timestamp
to post-select the qubits that came from the same pair. These steps are performed for each point of the
Micius orbit where the satellite’s elevation is above 20degrees for both Qonnectors. The coupling of a
photon coming from a satellite into a fiber succeeds with probability ptransmit that we fix to 81% here as
it is the theoretical maximum [221]. Coupling photons arriving from a satellite into a fiber is done through
adaptive optics to correct the effect of the atmosphere. The optimization of this process is currently
investigated by the research community [222]. This parameter is of course freely tunable in our simulation.

After simulating the process described above for each point in the satellite orbit and averaging over
tens of run, we can have an estimate of the rate by simply looking at the ratio between the number
of pairs sent from the satellite and the number of pairs received by the Qlients. We show results of
simulations with different pairs of Qlients in Fig. 6.12 and Table 6.3.
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Figure 6.12: Average number of successful EPR pair transmissions from the Micius satellite to pairs of
Qlients in the two Quantum Cities considered. For each point of the orbit we simulate the sending of
approximately 650 EPR pairs from the satellite and average over 10 rounds.

Qlient pairs Maximum rate
Bob & Hadi 0.0183

Charlie & Geralt 0.0185
Erika & Fatou 0.0019

Table 6.3: Average maximum rate for pairs of Qlients of the two Quantum Cities considered.

Here, in addition to the loss due to atmosphere between the satellite and the ground stations, the rate
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is affected by the distance photons have to travel in optical fibres from the Qonnectors to each Qlient. As
expected the longer this distance is, e.g. for Erika and Fatou, the lower the rate is. This is also why the
rate is similar for the two pairs of Qlient Bob & Hadi and Charlie & Geralt: the distance photons have
to travel into fibers is comparable (see Fig. 6.2). With a source rate of 80 MHz, the raw key throughput
would be 150kbit/second for Hadi and Bob, and 14kbit/second for Erika and Fatou. This scenario has a
lower rate than the one presented above but presents a non-negligible advantage: Qonnector nodes and
satellite do not have to be trusted. Indeed the Qlients can check if their communication was disturbed by
using part of their measurement outcomes. This trade-off between time and security is found in almost
all communication protocols.

6.3.3 Realistic quantum key distribution

The above simulations illustrate the feasibility of quantum key distribution between two quantum cities
separated by a few hundreds of kilometers. However this analysis assumes that the satellite is always at
its optimal point in its orbit. This is clearly unrealistic since, as we saw in Sec. 6.1, the time span in
which a satellite’s elevation allows for quantum communication is only five to ten minutes. The QKD
rate significantly drops when we take this into account. For example in the trusted scenario above, the
total raw key established between the Micius satellite and the Paris ground station during the whole
passage of the satellite above Europe is of length 17kbits on average. This limits drastically the amount
of messages that can be securely sent between the two Qlients considered.

A few solutions arise to get more useful key distribution rates. The first is to use multiple passages
of a satellite over several days to create and store keys at the ground stations. These keys can be
established using one of the two scenarios presented. They can later be used to establish a secure
communication channel between the Qlients. This is useful in a scenario where different quantum cities
need to communicate securely only for a few specific applications. It can be envisioned, for example,
in the context of governmental communications, or for some targeted business communications. One
possible downside of this solution is that the keys have to remain secure at the Qonnector nodes until
they are used, which could be a week away from the day they were established. Security of the facilities
have to be ensured during this time. It might seem limiting at first, however, in the near term, there will
probably be very few applications that really need the information-theoretic security that QKD offers.
Post-quantum communication protocols are expected to ensure the security of classical communication
even when quantum computers start to appear.

Another solution is to use a constellation of satellites orbiting around the Earth. The idea is simple:
once a satellite is out of reach for quantum communication, we wait for the next one to start creating
key. In this case, finding the optimal orbit height and the optimal number of satellites on this orbit is a
complex question that we leave for further work. We refer the reader to [223] for a more detailed study
of this problem.

Some other issues have not been taken into account in this study that might reduce the final QKD
rate. For example in this section, we neglected atmospheric turbulences that may vary with the position
of the Qonnector and the timing of the experiment. Satellite quantum communication is very dependent
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on the pollution and weather conditions at the time of the key establishment. Moreover in our simulations
we supposed the wavelength of the photon to be 1550nm which is convenient for coupling them with
telecom equipment at the ground. In the Micius experiment however [38], the wavelength considered is
850nm and would have to be converted to telecom wavelength to be included in our network model.
This would induce more loss in the second scenario that we considered above.

We hope this study shows the possibilities and limitations of satellite communication to link
local networks. According to our simulations, current technologies could already allow for interesting
applications between distant cities, as we will show in the next section.

6.4 Discussion

6.4.1 Comparison with ground-based communication

As we mentioned in the introduction, current quantum repeater technologies do not allow for positive
QKD key rates over the distances that we consider here. Since the distance between the Dutch Quantum
City and the one of Paris is 377km, according to the study from Chapter 4, we would need five to ten
repeaters to divide the link into sublinks of sufficiently small length. However the noise induced by the
repeater operations in each sublink is still too high for giving any kind of communication advantage
[209, 208] unless considering boosted performances [202]. Reasons for this depend highly on the repeater
model that we consider. Overall the repeater parameters could be separated into two categories: the ones
affecting the time it takes to generate entanglement in a sublink (e.g. probability of emission, of coupling
into fibers, of detection) and the ones affecting the swapping operation in middle nodes (e.g. Bell state
measurement success probability, two qubits gates noise). Many proposals to overcome these issues are
under investigation such as the use of multiplexing [224, 225] or all photonic quantum repeaters [24].

Another solution that could be envisioned is the use of drones or high-altitude balloons. Let us
imagine a key distribution scenario using two stationary high-altitude balloons 10km above the Paris
and Dutch Qonnectors. One trusted-node QKD scenario is to build a path between the two Qlients,
as we show in Fig. 6.13, and to perform the BB84 protocol between each node. As in Sec. 6.3.1, the
protocol used to have a shared key between the two Qlients consists in establishing secret keys between
each node along the path and then to use these keys to transmit a key from one Qlient to the other.
The final rate is thus given by the minimum of the rate of every sublink along the path.

Using the free-space loss model described in Sec. 6.1 we can make a rough estimate of the QKD
rate between the two balloons and between each balloon and the Qonnector below. To get a estima-
tion, we suppose that the aperture radius of the receiving telescope in the balloons is 40cm, we fix
the beam divergence at 5 × 10−6 radians and the pointing error at 5 × 10−7 radians. We compute
separately the horizontal atmospheric transmittance between the two balloons (around 0.96) and the
vertical atmospheric transmittance between the balloon and the ground (around 0.9). As the free-space
communication happens in the atmosphere, we can no longer neglect the effect of the refractive index
structure constant C2

n. The value of C2
n depends on the height of the high-altitude balloons. As we show

in Table 6.4, this value has a drastic effect on the communication rate between the two balloons.
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Figure 6.13: A trusted node QKD scenario between two Qlients using two high-altitude balloons over
the Qonnectors. We suppose that the drones are 10km above each Qonnector.

Value of C2
n Rate

0 0.138
10e-18 0.079
10e-17 0.014
10e-16 0.001
10e-14 1e-5

Table 6.4: BB84 rate for balloon-to-balloon communication for different values of C2
n. The balloons are

separated by 377km.

In what follows we chose an optimistic yet non-zero value for C2
n between the two balloons, namely

10e-18. For the balloon-to-Qonnector links we fix C2
n at 10e-16 and take the aperture radius of the

receiving telescope at the Qonnector to be 1m. In Table 6.5 we show the rate for all the sublinks between
Bob and Hadi.

Sublink Rate
Bob − > Paris Qonn 0.374

Paris Drone − > Paris Qonn 0.463
Paris Drone − > Dutch Drone 0.079
Dutch Drone − > Dutch Qonn 0.463

Dutch Qonn − > Hadi 0.253

Table 6.5: BB84 rate for every sublink across the path between Bob and Hadi

Note that this gives us only a first estimate of the BB84 rate between two Qlients in Quantum
Cities linked with high altitude balloons. It however shows the feasibility of such free-space links, which
could come as a handy solution to perform quantum communication when satellites are not available.
Theoretically, two balloons at 10km altitude can be separated by a maximum 714km and still be visible
in the horizon. We leave a more detailed study of these kind of high-altitude balloons links for future
works.
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6.4.2 Towards quantum Internet applications

Once entanglement is generated between the Qonnectors of our two Quantum cities, a new range of
applications becomes available to the Qlients. As we detailed in Chapter 2, there are a few multipartite

applications based on first the sharing of a GHZ state |0⟩
⊗

n+|1⟩
⊗

n

√
2 [5] to all the Qlients and then

measuring and processing the outcome. For example some conference key agreement protocols [88, 87],
the multipartite counterpart of QKD allowing n parties to get a secure shared key are based on such
techniques. Anonymous transmission [93] or electronic voting [101] are also examples of protocols taking
advantage of correlations obtained through GHZ state measurements. Through Bell state measurements
and local corrections, two GHZ states and a Bell pair can be transformed into a bigger graph state suitable
for these applications as we show in Fig. 6.14. For more information about graph state manipulation,
see e.g.[30, 29].

Figure 6.14: By making Bell state measurements and local corrections, two GHZ states generated in
Paris and the Netherlands can be transformed into one single shared GHZ state, consuming one Bell
pair.

The main obstacle to performing these protocols is precisely the sharing of these multipartite entan-
gled states. As we detailed in Chapter 3, security properties often rely on performing many rounds of
GHZ state verification to ensure that nobody is altering the protocol. This means that our network should
be able to efficiently create and share thousands such states in a relatively short time. Unfortunately
this is unrealistic with current hardware performances. As explained in detail in Chapter 5, photonic
GHZ states are created by simultaneously creating Bell pairs that are then entangled using fusion gates
[205]. All these processes are probabilistic and this makes the probability of succeeding in creating a
GHZ state very low: on the order of 10−3 for 3 or 4 qubits GHZ states and 10−5 for 5 or 6 qubits GHZ state.

While technologically out of reach for now, these applications are theoretically possible in our Qloud
architecture. It is crucial to think ahead on how future network applications will be performed when
designing near-term quantum networks. This will avoid energy waste on constructing architectures
that have to change with new applications. The Qloud architecture is also convenient for a new user
to join as it only has to connect to one Qonnector of a Quantum City. Future work will explore how
communication between bacQbone nodes could be optimized to facilitate communication of two Qlients
in distant Quantum Cities, for example Dina and Alice in Fig 6.1.
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6.5 Conclusion

In this Chapter, we have studied the feasibility of satellite quantum communication between two
Quantum Cities in Europe using simulation results from a library based on the Netsquid network
simulator. This method allowed us to try out different scenarios without actually using satellite and
gave us the freedom to test different hardware parameters. We showed performances of different QKD
scenarios in a specific realistic setting. This motivates the building of the Qloud architecture of Fig 6.1
as it minimizes end user hardware while facilitating routing of entanglement. We also discussed alter-
natives to satellite communication for connecting different Quantum Cities, such as high-altitude balloons.

All of these results are promising and show that the Quantum Internet is not a dream for the far future
anymore, but something that engineers could already start constructing. Alternatives to fiber-based
communication, e.g. a hybrid combination of satellite constellations and high-altitude antennas, could
be the missing link to enable long-distance communications. There are however both experimental and
theoretical issues to deal with before putting in the money and energy to actually send satellites around
the Earth. The limited exploitation time of satellites actually questions the suitability of satellite-based
quantum communications. There is, for now, a lack of realistic strategies to get longer exploitation times.
The research community should focus on precise use cases and analyze whether the effort of creating
satellite links is actually worth it.
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Conclusion and Outlook

In this thesis we have explored different aspects of the development of a global quantum network that we
could call the quantum Internet. We first introduced some definitions and network consideration to help
with the understanding of the rest of the work. We showed the current goals set by the international
quantum Internet research community and challenges that arise in front of us. We also introduced some
of the protocols that will push the boundaries of today’s web capabilities. Without being exhaustive, we
hope this gives a glimpse of the future revolution that quantum information will bring to communication
networks.

We then have discussed composable security properties of a specific building block network protocol
called multipartite entanglement protocol. As it is used as a building block in many multipartite protocols,
it is crucial to be able to perform it many times sequentially without security breaches. We have showed
composable security of this protocol against a possibly malicious source and have discussed some issues
of the current framework used to prove composable security. As a follow-up, we will explore in the near
future a more general verification protocol for any graph state with an updated framework.

After that, we have showed the limitation of current hardware in the establishment of quantum
repeater protocols that would allow long distance communication between two nodes. We studied and
modeled a specific hardware choice for local nodes, the NV center. We analyzed the effect of imposing a
cut-off, a maximal number of entanglement establishment attempts on a sublink before moving on to
the next one. We showed that current capabilities, especially in photon generation rates and coherence
time of NV centers, limit greatly the distance at which bipartite entanglement can be created. A
natural follow-up to this work is to explore other hardware in the same way. We also hope this gives
experimentalists some kind of a roadmap to which parameters they should try to improve.

We then introduced our vision for a quantum Internet architecture that would both be scalable and
minimize end users hardware. It starts with a model for metropolitan quantum network that we call
the Quantum city. After a precise modeling work of what we can achieve today or in the near term in
Sorbonne Université’s laboratories, we have simulated the performances of bipartite and multipartite
applications in a Parisian instance of a Quantum City. We tried to highlight the important hardware
parameters and to link them to actual implementation of useful network protocols. We notably showed
that the generation rate of multipartite entangled states such as the GHZ state is for now limiting
multipartite network applications. The outlook here consists in expanding in more detail how the central
node of this architecture, the Qonnector, would actually perform its operations. A more detailed study
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of the timing at which local operations are performed would be crucial too, as we mostly neglected this
during this study. It would also be interesting to look at what new applications could be available should
some end user nodes hardware improve with for example quantum memories.

We finally modeled satellite and balloon communication to scale up local networks to continental and
transcontinental networks. We have studied different bipartite scenarios to establish secret key between
two users from distant Quantum Cities, using real satellite data. We have tried to highlight the important
parameters and issues to resolve in order to establish large-scale quantum networks and perform useful
applications. In particular we highlight the issue of establishing long-distance links that would be
available all the time. The time frame in which satellites are available for quantum communication
is very small and we discussed some solutions to this problem such as using balloon-based free space
links. A natural follow-up to this work would be to explore other solutions and strategies to establish
long-distance quantum communication links, with different hardware such as satellite constellations.

A large part of the results given in this thesis were obtained using a library of functions that we
constructed on top of the NetSquid network simulator. We used this library to model protocols on
specific quantum network instances including as much hardware parameters as possible. One contribution
of this work thus is this network simulator, that can be found on GitHub and that we document in
Appendix B. We hope to continue improving this simulator for future NetSquid users.

My personal outlook is to study yet another aspect of quantum communications which seems crucial
for near term development, namely the energy consumption of such networks. We hope in the near
future to develop a framework for studying how much energy is consumed by a specific protocol using a
specific hardware. We also hope to understand how the energy consumption scales with the parameters
of the protocol such as the number of parties involved or the length of the message to transmit. This
might rule out some of the hardware or strategies that we now have in mind for network protocols. This
kind of study seems essential to avoid a waste of time and resources.

We hope that the work done in this thesis shows that the quantum Internet is not a dream for the
far future. Many efforts are congregating to perform the first useful quantum network protocols. As we
said in the introduction, it is still hard to grasp where this will lead us but there is no doubt that it will
have tremendous implications on our daily lives.
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Appendices for Chapter 4

A.1 Losses and noise on the photonic qubits

In this Appendix we describe how the losses and noise affect our photonic qubits. In particular, we first
recall how the two types of encoding result in the losses acting as different quantum channels on the
states. Then, we study the effects of a finite detector time-window. More specifically, we firstly show
that the arrival of a photon outside the time-window is equivalent to all the other loss processes and
secondly we calculate the probability of registering a dark count within the time-window. We also show
how to model the noise arising from those dark counts for the SiSQuaRe and SPADS schemes. Finally,
we calculate the dephasing induced by the unknown phase shift for the single-photon scheme.

Effects of losses for the different encodings

The physical process of probabilistically losing photons corresponds to different quantum channels
depending on the qubit encoding. In our repeater schemes we use two types of encoding: time-bin and
presence-absence of a photon. For a time-bin encoded qubit in the ideal scenario of no loss we always
expect to obtain a click in one of the detectors. Hence loss of a photon resulting in a no-click event
raises an erasure flag which carries the failure information. Therefore it is clear that for this encoding
the physical photon loss process corresponds to an erasure channel with the erasure probability given by
one minus the corresponding transmissivity,

(A.1) D(ρ) = ηρ+ (1 − η) |⊥⟩⟨⊥| .

Here |⊥⟩ is the loss flag, corresponding to the non-detection of a photon. Since we are only interested
in the quantum state of the system for the successful events when a detection event has occurred, we
effectively post-select on the non-erasure events. For presence-absence encoding the situation is different
since now there is no flag available that could explicitly tell us whether a photon got lost or not. In fact
for this encoding the photon loss results in an amplitude-damping channel applied to the photonic qubit.
Here the damping parameter equals one minus the transmissivity of the channel [226].
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Effects of the detector time-window

The detector only registers clicks that fall within a certain time-window. It is a priori not clear what
kind of noisy or lossy channel should be used to model the loss of information due to non-detection
of photons arriving outside of the time-window. This is because in a typical loss process we have a
probabilistic leakage of information to the environment. In the scenario considered here, the situation is
slightly different as effectively no leakage occurs, but rather certain part of the incoming signal effectively
gets discarded. Here we will show that despite this qualitative difference, within our model this process
can effectively be modeled as any other loss process.

Now, let us provide a brief description of the physics of this process. Firstly, the detection time-window
is chosen such that the probability of detecting a photon from the optical excitation pulse used to
entangle the electron spin with the photonic qubit is negligible [156]. For that reason the detection
time-window is opened after a fixed offset toffset

w with respect to the beginning of the decay of the optical
excited state of the electron spin. We note that for the considered enhancement of the ZPL-emission
using the optical cavity we predict the characteristic time of the NV emission τ to be approximately a
half of the corresponding value of τ if no cavity is used [156, 198, 183]. Therefore here we consider the
scenario where the duration of the optical excitation pulse is made twice shorter with respect to the one
used in [156]. This will allow us to filter out the unwanted photons from the excitation pulse by setting
toffset
w to half of the offset used in [156].

Secondly, we note that the detection time-window cannot last too long, specifically, it needs to be
chosen such that there is a good trade-off between detecting coherent and non-coherent (i.e. dark counts)
photons. In this subsection we will discuss the effects of photons arriving outside of this time-window
and the effects of registering dark counts within this time-window.

A.1.0.1 Losses from the detector time-window

The NV center emits a photon through an exponential decay process with characteristic time τ . Therefore
the probability of detecting a photon during a time-window starting at toffset

w and lasting for tw is

(A.2) pin(tw) = 1
τ

∫ toffset
w +tw

toffset
w

dt exp
(

− t

τ

)
= exp

(
− toffset

w
τ

)
− exp

(
− toffset

w + tw
τ

)
.

Clearly the process of a photon arriving outside of the time-window is qualitatively different from the
loss process where the photons get lost to the environment. In the remainder of this section we will now
look at the difference between these two phenomena in more detail.

The emission process of the NV center is a coherent process over time. Consider a generic scenario in
which we divide the emission time into two intervals, denoted by “in” and “out”, respectively. Coherent
emission then means that the state of the photon emitted by the electron spin in state |↑⟩ will be

(A.3) |ψ⟩ = √
pin |1⟩in |0⟩out +

√
1 − pin |0⟩in |1⟩out .

Now let us come back to our specific model, in which the “in” mode corresponds to the interval[
toffset
w , toffset

w + tw
]

and the “out” mode to all the times t ≥ 0 lying outside of this interval (t = 0 is the
earliest possible emission time). Here, the emission into the “in” mode occurs with probability pin(tw).
Hence the spin-photon state resulting from the emission by the α |↓⟩ + β |↑⟩ spin state is

(A.4) |ψ⟩ = α |↓⟩ |0⟩in |0⟩out + β |↑⟩
(√

pin(tw) |1⟩in |0⟩out +
√

1 − pin(tw) |0⟩in |1⟩out

)
.
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If the presence-absence encoding is used, such a photonic qubit is then transmitted to the detector. Since
only the spin and the “in” mode of the photon will be measured, we can now trace out the “out” mode

(A.5) ρ =
(

|α|2 + |β|2pin(tw)
)

|ϕ⟩⟨ϕ| + |β|2(1 − pin(tw)) |↑⟩⟨↑| ⊗ |0⟩⟨0|in ,

where

(A.6) |ϕ⟩ = 1√
|α|2 + |β|2pin(tw)

(
α |↓⟩ |0⟩in + β

√
pin(tw) |↑⟩ |1⟩in

)
.

Note that this state can be obtained by passing the photonic qubit of the state

(A.7) |ψ⟩ = α |↓⟩ |0⟩ + β |↑⟩ |1⟩ ,

through the amplitude-damping channel with the damping parameter given by 1 − pin(tw). Hence we
can conclude that for the photon number encoding, the possibility of the photon arriving outside of the
time-window of the detector can be modeled in the same way as any other photon loss process, namely
an amplitude-damping channel applied to that photonic qubit.

In the case of time-bin encoding we effectively have four photonic qubits, since now we have an
“in” and “out” mode for both the early (denoted by “e”) and the late (denoted by “l”) time-window.
We assume here that the slots do not overlap. That is, a photon emitted in the “out” mode of the
early time-window is always distinct from any photon in the late time-window. This can be achieved by
making the time gap between the “in” modes of the early and late window long enough. In this case the
emission process results in a state

|ψ⟩ = α |↓⟩
(√

pin(tw) |1⟩e,in |0⟩e,out |0⟩l,in |0⟩l,out +
√

1 − pin(tw) |0⟩e,in |1⟩e,out |0⟩l,in |0⟩l,out

)
(A.8)

+ β |↑⟩
(√

pin(tw) |0⟩e,in |0⟩e,out |1⟩l,in |0⟩l,out +
√

1 − pin(tw) |0⟩e,in |0⟩e,out |0⟩l,in |1⟩l,out

)
.(A.9)

Again, tracing out the “out” modes results in a state

(A.10) ρ = pin(tw) |ϕ⟩⟨ϕ| + (1 − pin(tw))
(

|α|2 |↓⟩⟨↓| + |β|2 |↑⟩⟨↑|
)

⊗ |00⟩⟨00|e,l ,

where

(A.11) |ϕ⟩ = α |↓⟩ |1⟩e |0⟩l + β |↑⟩ |0⟩e |1⟩l = α |↓⟩ |e⟩ + β |↑⟩ |l⟩ .

Here |00⟩e,l corresponds to the loss flag from which we see that for the time-bin encoding the possible
arrival of a photon outside of the time-window results in an erasure channel with the erasure probability
given by (1 − pin(tw)). Hence this process can be also modeled as any other loss process for this encoding.

We have just shown that for both photon presence/absence and time-bin encodings the process of
the photon arriving outside of the time-window can be modeled by the source which prepares photons
in a coherent superposition of the “in” and “out” modes and the detector tracing out (losing) the “out”
modes. We have also shown that those two elements combined together result effectively in a loss process
corresponding to the same channel as any other loss process for that encoding (amplitude-damping for
photon presence/absence and erasure channel for time-bin encoding).
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However, between the source and the detector there are other lossy or noisy components resulting
in other quantum channels that need to be applied before the tracing out of the “out” mode at the
detector. Now we show that for all loss and noise processes that occur in our model, the tracing out of
the “out” mode can be mathematically commuted through all those additional noise/lossy processes.
This means that the tracing out can be applied directly after the source, such that the above described
reductions to amplitude-damping or erasure channel can be applied.

Consider the quantum channels acting on the photonic qubits of the form

(A.12) N =
∑

i

piN i
in ⊗ N i

out .

Effectively these are the channels that do not couple the “in” and “out” modes. Since in reality “in” and
“out” modes correspond to different time modes, their coupling would require some kind of memory
inside the channel. Hence we can think of the above defined channels as channels without memory. Now
it is clear that for a quantum state ρ that among its registers includes both the “in” and the “out” mode,
we have that

(A.13) trout[N (ρ)] = trout

[∑
i

piN i
in ⊗ N i

out(ρ)
]

=
∑

i

piN i
in(ρin) .

Now, firstly tracing out the “out” modes and then applying the channel N (only the “in” part can be
applied now) also results in

∑
i piN i

in(ρin) at the output. Hence the tracing out of the “out” modes
commutes with all the channels that are of the form (A.12), which correspond to channels without
memory. Clearly the noise/loss processes that occur before the detection, such as photon loss or dephasing
due to uncertainty in the optical phase of the photon, belong to this class of channels. In particular this
means that for photon presence/absence the amplitude-damping due to photon loss in the channel and
due to photon arrival outside of the time-window can be both combined into one channel with the single
damping parameter given by 1 − ηpin(tw) (η denotes the transmissivity due to the loss process e.g. the
transmissivity of the fiber). The same applies to time-bin encoding where we now have a single erasure
channel with erasure probability 1 − ηpin(tw).

To conclude, the arrival of the photon outside of the time-window can be modeled in the same
way as any other loss process for both photon encodings used and therefore we can now redefine the
detector efficiency p′

det = pdet · pin(tw) and the total apparatus efficiency p′
app = pcepzplp

′
det. We can then

define ηtotal = p′
appηf as the total transmissivity - with probability ηtotal a photon will be successfully

transmitted from the sender to the receiver.

A.1.0.2 Dark counts within the detector time-window

Photon detectors are imperfect, and due to thermal excitations, they will register clicks that do not
correspond to any incoming photons. These undesired clicks are called dark counts and can effectively
be seen as a source of noise. The magnitude of this noise depends on the ratio between the probability of
detecting the signal photon and measuring a dark count. Clearly, dark counts become a dominant source
of noise when the probability of detecting the signal photon becomes comparable to the probability of a
dark count click. The probability pd of getting at least one dark count within the time-window tw of
awaiting the signal photon is given by pd = 1 − exp(−tw · DCpS), where DCpS is the number of dark
count per second of the detector [23].
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In the SiSQuRe scheme Alice and Bob perform measurements on time-bin encoded photons. The
same applies to Bob in the SPADS scheme. Since at least two detectors are required to perform this
measurement, the presence of dark counts means that the outcome may lie outside of the qubit space.
Moreover, this measurement needs to be trusted. In consequence, a squashing map needs to be used to
process the multi-click events in a secure way. Here as an approximation we consider the squashing map
for the polarization encoding [227] in the same way as described in [23]. Hence this measurement can
also be modeled as a perfect measurement preceded by a depolarizing channel with parameter α which
depends on whether the BB84 or six-state protocol is used. The parameter α is given by [23]:

αA/B, BB84 =
p′

appηB(1 − pd)
1 − (1 − p′

appηA/B)(1 − pd)2 ,(A.14)

αA/B, six-state =
p′

appηA/B(1 − pd)5

1 − (1 − p′
appηA/B)(1 − pd)6 .(A.15)

Here ηA/B denotes the transmissivity of the fiber between the memory repeater node and Alice’s/Bob’s
detector setup. Finally we note that dark counts increase the probability of registering a successfull
measurement event. For the optical measurement schemes utilising the squashing map the probability of
registering a click in at least one detector is given by [23]:

pA/B, BB84 = 1 − (1 − p′
appηA/B)(1 − pd)2 ,(A.16)

pA/B, six-state = 1 − (1 − p′
appηA/B)(1 − pd)6 .(A.17)

The effect of dark counts in the single-photon scheme, which carries over to the SPOTL scheme, is
analyzed in Appendix A.5.

Noise due to optical phase uncertainty

Another important noise process affecting photonic qubits is related to the fact that for the photon
presence/absence encoding the spin-photon entangled state will also depend on the optical phase of
the apparatus used. Specifically, it will depend on the phase of the lasers used to generate the spin
photon entanglement as well as the optical phase acquired by the photons during the transmission of the
photonic qubit. Knowledge about this phase is crucial for being able to generate entanglement through
the single-photon scheme. In any realistic setup however, there would be a certain degree of the lack of
knowledge about this phase acquired by the photons. Since in the end what matters is the knowledge
about the relative phase between the two photons, we can model this source of noise as the lack of
knowledge of the phase on only one of the incoming photonic qubits. This noise process can be effectively
modeled as dephasing. In this section we will show that the phase uncertainty induces dephasing with a
parameter λ equal to

λ =
I1

(
1

(∆ϕ)2

)
2I0

(
1

(∆ϕ)2

) + 1
2 ,(A.18)

where ∆ϕ is the uncertainty in the phase and I0/1 is the Bessel function of order 0/1. Let us assume
that for Alice, the local phase of the photonic qubit has a Gaussian-like distribution on a circle, with
standard deviation ∆ϕ as observed in [142]. This motivates us to model the distribution as a von Mises
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distribution [228]. The von Mises distribution reads

(A.19) f(ϕ) = eκ cos(ϕ−µ)

2πI0(κ) .

Here µ is the measure of location, i.e. it corresponds to the center of the distribution, κ is a measure of
concentration and can be effectively seen as the inverse of the variance and I0 is the modified Bessel
function of the first kind of order 0. One can then show [228] that

(A.20)
∫ π

−π

dϕf(ϕ)e±iϕ = I1(κ)
I0(κ)e

±iµ .

Since we are only interested in the noise arising from the lack of knowledge about the phase rather
than the actual value of this phase, without loss of generality we can assume µ = 0. Moreover, the
experimental parameter that we use here is effectively the standard deviation of the distribution ∆ϕ
and therefore we can write κ = 1

(∆ϕ)2 .
Hence, let us write the spin-photon entangled state that depends on the optical phase ϕ.

(A.21)
∣∣ψ±(ϕ)

〉
= sin(θ) |↓ 0⟩ ± eiϕ cos(θ) |↑ 1⟩ .

Now, the lack of knowledge about this phase leads to a mixed state:

(A.22)

∫ π

−π

f(ϕ)
∣∣ψ±(ϕ)

〉〈
ψ±(ϕ)

∣∣dϕ = sin2(θ) |↓ 0⟩⟨↓ 0| + cos2(θ) |↑ 1⟩⟨↑ 1|

± sin(θ) cos(θ)
∫ π

−π

f(ϕ)(eiϕ |↑ 1⟩ ⟨↓ 0| + e−iϕ |↓ 0⟩ ⟨↑ 1|)dϕ .

Let us now try to map this state onto a dephased state

(A.23)
λ
∣∣ψ±(0)

〉〈
ψ±(0)

∣∣+ (1 − λ)
∣∣ψ∓(0)

〉〈
ψ∓(0)

∣∣ = sin2(θ) |↓ 0⟩⟨↓ 0| + cos2(θ) |↑ 1⟩⟨↑ 1|

± sin(θ) cos(θ)(2λ− 1)(|↑ 1⟩ ⟨↓ 0| + |↓ 0⟩ ⟨↑ 1|) .

Hence, we observe that

2λ− 1 =
I1

(
1

(∆ϕ)2

)
I0

(
1

(∆ϕ)2

) .(A.24)

→ λ =
I1

(
1

(∆ϕ)2

)
2I0

(
1

(∆ϕ)2

) + 1
2 .(A.25)

A.2 Noisy processes in NV-based quantum memories

In our setups we use 13C nuclear spins in diamond as long-lived memory qubits next to a Nitrogen
Vacancy (NV) electron spin taking the role of a communication qubit. In this Appendix, we will detail
our model of the noisy processes in the NV.

The electron spin can be manipulated via microwave pulses and an optical pulse is used to create and
send a photon entangled with it. This operation is noisy and can be modeled as having a dephasing noise
of parameter Fprep. This means that, if the desired generated target state between the photon and the
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electron spin was |ψ+⟩, we actually have a mixture Fprep |ψ+⟩⟨ψ+| + (1 − Fprep)(I⊗Z) |ψ+⟩⟨ψ+| (I⊗Z).
Information can be stored via a swapping of the electron spin state to the long living nuclear 13C spin.
Through this swap operation we also free the communication qubit to be used for consecutive remote
entanglement generation attempts. Due to interaction with its environment, a quantum state stored in a
13C spin quantum memory undergoes an evolution that we model with a dephasing and a depolarizing
channel with noise parameters λ1 = (1+e−an)/2 and λ2 = e−bn, respectively. The form of the parameters
a and b in general depends on the scheme. For the SiSQuaRe, SPADS the SPOTL schemes there are two
distinct effects that cause this decoherence: one induced by the time it takes to generate entanglement
between the middle node and Bob, and one induced by the always-on hyperfine coupling between the
electron spin and the carbon spin inside the middle NV node. This coupling becomes an additional
source of decoherence for the carbon spin during probabilistic attempts to generate remote entanglement
using the electron spin [147, 167]. We model the decoherence effect on the qubit stored in the carbon
spin of the middle node by a dephasing channel with parameter λ1,

(A.26) Dλ1
dephase(ρ) = λ1ρ+ (1 − λ1)ZρZ ,

and depolarizing channel with parameter λ2,

(A.27) Dλ2
depol(ρ) = λ2ρ+ (1 − λ2) I

d
,

where λ1 and λ2 quantify the noise. The parameters depend as follows on the number of attempts n,

λ1 = FT2 = 1 + e−an

2 ,(A.28)

λ2 = FT1 = e−bn ,(A.29)

where a and b are given by

(A.30) a = a0 + a1

(
Ls · nri

c
+ tprep

)
, b = b0 + b1

(
Ls · nri

c
+ tprep

)
.

Here nri is the refractive index of the fiber, c is the speed of light in vacuum, tprep is the time it takes to
prepare for the emission of an entangled photon and Ls is the distance the signal needs to travel before
the repeater receives the information about failure or success of the attempt. Let LB denote the distance
between the memory repeater node and Bob. Then for the SiSQuaRe and SPADS schemes Ls = 2LB as
in each attempt first the quantum signal needs to travel to Bob who then sends back to the middle node
the classical information about success or failure. For the SPOTL scheme Ls = LB as in this case both
the quantum and the classical signals need to travel only half of the distance between the middle node
and Bob since the signals are exchanged with the heralding station which is located half-way between
the middle memory node and Bob. The parameters a0 and b0 quantify the noise due to a single attempt
at generating an entangled spin-photon, induced by stochastic electron spin reset operations, quasi static
noise and microwave control infidelities. The parameters a1 and b1 quantify the noise during storage per
second.

Gates and measurements in the quantum memory are also imperfect. We model those imperfections
via two depolarizing channels. The first one acts on a single qubit with depolarizing parameter λ2 = Fm

corresponding to the measurement of the electron spin. The second one acts on two qubits with
depolarizing parameter λ2 = Fg corresponding to applying a two-qubit gate to both the electron spin

135



APPENDIX A. APPENDICES FOR CHAPTER 4

and the 13C spin. This means that every time a measurement is done on a e− qubit of a quantum state
ρ, it is actually done on DFm

depol(ρ). Also a swapping operation between the e− spin and the nuclear spin
(done experimentally via two two-qubit gates, see main text) leads to an error modeled by a depolarizing
channel of parameter Fswap = F 2

g . Following the same logic, a Bell state measurement will cause the
state to undergo an evolution given by a depolarizing channel. Specifically, following the decomposition
of the Bell measurement into elementary gates for the NV-implementation as described in Section 4.3,
this evolution will consist of a depolarizing channel with parameter F 2

g acting on both of the measured
qubits and the depolarizing channel with parameter F 2

m acting only on the electron spin qubit.
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A.3 Expectation of the number of channel uses with a cut-off

In this Appendix we derive an analytical formula for the expectation value of the number of channel uses
between Alice and Bob needed to generate one bit of raw key for the SiSQuaRe, SPADS and SPOTL
schemes,

E[N ] = 1
pA · (1 − (1 − pB)n∗) + 1

pB
.(A.31)

For these three schemes, we implement a cut-off which is used to prevent decoherence. Each time the
number of channel uses between the repeater node and Bob reaches the cut-off n∗, the entire protocol
restarts from the beginning. Here we take a conservative view and define the number of channel uses N
between Alice and Bob as the sum NA +NB, where NA (NB) corresponds to the number of channel
uses between Alice (Bob) and the middle node. From the linearity of the expectation value we have that

(A.32) E[NA +NB ] = E[NA] + E[NB ] .

We denote by pA and pB the probability of a successful attempt on Alice’s and Bob’s side respectively.
Bob’s number of channel uses follows a geometric distribution with parameter p = pB , so that E[NB ] = 1

pB
.

Without the cut-off, Alice’s number of channel uses would follow a geometric distribution with parameter
p = pA. However, the cut-off parameter adds additional channel uses on Alice side. Since the probability
that Bob succeeds within n∗ trials is psucc = 1 − (1 − pB)n∗ , we in fact have that Alice’s number of
channel uses follows a geometric distribution with parameter p′

A = pA · psucc. Hence it is straightforward
to see that

E[NA +NB ] = 1
p′

A

+ 1
pB

(A.33)

= 1
pA · (1 − (1 − pB)n∗) + 1

pB
.(A.34)





A.4. SISQUARE SCHEME ANALYSIS

A.4 SiSQuaRe scheme analysis

The analysis of the SiSQuare scheme has been performed in [23]. In this work we use the estimates of
the yield and QBER as derived in [23] with the following modifications:

• For the calculation of the yield we now adopt a conservative perspective and calculate the number
of channel uses as E[NA +NB], as derived in Appendix A.3, rather than E[max(NA, NB)]. Note
that E[max(NA, NB)] ≤ E[NA +NB ] ≤ 2E[max(NA, NB)].

• The total depolarising parameter for gates and measurements Fgm defined in [23] is now decomposed
into individual operations as described in Appendix A.2. That is, in this work depolarisation
due to imperfect operations on the memories is expressed in terms of depolarising parameter due
to imperfect measurement, Fm, and imperfect two-qubit gate, Fg. Since in the analysis of the
SiSQuaRe scheme we only deal with Bell diagonal states, the overall noise due to imperfect swap
gate and the Bell measurement leads to Fgm = F 4

g F
2
m.

• In [23] we have assumed the duration of the detection time-window to be fixed to 30 ns and
assumed that all the emitted photons will fall into that time-window. Here, similarly as for other
schemes, we perform a more refined analysis in which we include the trade-off between the duration
of the time-window and the dark count probability as described in Appendix A.1.

A.5 Single-photon scheme analysis

In this Appendix we provide a detailed analysis of the single-photon scheme between two remote
NV-center nodes. This section is structured as follows. First, we describe the creation of the spin-photon
entangled state followed by the action of the lossy channel on the photonic part of this state, including
the noise due to the uncertainty in the phase of the state induced by the fiber. Second, we apply the
optical Bell measurement. Then we evaluate the effect of dark counts which introduce additional errors
to the generated state. Finally we calculate the yield of this scheme and extract the QBER from the
resulting state.

Spin-photon entanglement and action of a lossy fiber on the photonic qubit

Firstly, both Alice and Bob generate spin-photon entangled states, parameterized by θ. As we will later
see, this parameter allows for trading off the quality of the final entangled state of the two spins with
the yield of the generation process. The ideal spin-photon state would then be described as

(A.35)
∣∣ψ+〉 = sin (θ) |↓⟩ |0⟩ + cos (θ) |↑⟩ |1⟩ .

The preparation of the spin-photon entangled state is not ideal. That is, the spin-photon entangled state
is not actually as described above, but rather of the form (see Appendix A.2)

ρ = Fprep
∣∣ψ+〉〈ψ+∣∣+ (1 − Fprep)(I⊗Z)

∣∣ψ+〉〈ψ+∣∣ (I⊗Z)

= Fprep
∣∣ψ+〉〈ψ+∣∣+ (1 − Fprep)

∣∣ψ−〉〈ψ−∣∣ .(A.36)

Here

(A.37)
∣∣ψ−〉 = sin (θ) |↓⟩ |0⟩ − cos (θ) |↑⟩ |1⟩ .
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For the next step we need to consider two additional noise processes that affect the photonic qubits
before the optical Bell measurement is performed. The first one is the loss of the photonic qubit. This
can happen at the emission, while filtering the photons that are not of the required ZPL frequency, in
the lossy fiber, in the imperfect detectors, or due to the arrival outside of the time window in which
detectors expect a click. All these losses can be combined into a single loss parameter

(A.38) η = ηtotal = pcepzpl
√
ηfp

′
det ,

with ηf = exp
(

− L
L0

)
, where L is the distance between the two remote NV-center nodes in the scheme

(see Fig. 4.6 and Appendix A). Hence, a photon is successfully transmitted through the fiber and
detected in the middle heralding station with probability η. Now we note that the action of the pure-loss
channel on the qubit encoded in the presence or absence of a photon corresponds to the action of the
amplitude-damping channel with the damping parameter 1 − η [226].

The second process that effectively happens at the same time as loss, is the dephasing noise arising
from the optical instability of the apparatus as described in Appendix A.1. We note that the amplitude-
damping and dephasing channel commute, hence it does not matter in which order we apply the two
noise processes corresponding to the loss of the photonic qubit and unknown drifts of the phase of the
photonic qubit in our model. Here we firstly apply the dephasing due to the lack of knowledge of the
phase on Alice’s photon and then amplitude-damping on both photons due to all the loss processes.

Following the model in Appendix A.1, the lack of knowledge about the optical phase will effectively
transform Alice’s state to

(A.39) ρA = (Fprepλ+ (1 − Fprep)(1 − λ))
∣∣ψ+〉〈ψ+∣∣+ ((1 − Fprep)λ+ Fprep(1 − λ))

∣∣ψ−〉〈ψ−∣∣ .
where

(A.40) λ =
I1

(
1

(∆ϕ)2

)
2I0

(
1

(∆ϕ)2

) + 1
2 .

Now we can apply all the transmission losses modeled as the amplitude-damping channel. The action
of this channel on the photonic part of the state ρ results in the state that we can describe as follows.
Firstly, let us introduce two new states

(A.41)
∣∣ψ±

η

〉
= 1√

sin2(θ) + η cos2(θ)
(sin (θ) |↓⟩ |0⟩ ± √

η cos (θ) |↑⟩ |1⟩) .

Then, after the losses and before the Bell measurement, the state of Alice can be written as

ρ′
A =

(
sin2(θ) + η cos2(θ)

) (
(Fprepλ+ (1 − Fprep)(1 − λ))

∣∣ψ+
η

〉〈
ψ+

η

∣∣+ ((1 − Fprep)λ+ Fprep(1 − λ))
∣∣ψ−

η

〉〈
ψ−

η

∣∣)
+ (1 − η) cos2(θ) |↑⟩⟨↑| |0⟩⟨0| ,

(A.42)

and for Bob
(A.43)
ρ′

B =
(
sin2(θ) + η cos2(θ)

) (
Fprep

∣∣ψ+
η

〉〈
ψ+

η

∣∣+ (1 − Fprep)
∣∣ψ−

η

〉〈
ψ−

η

∣∣)+ (1 − η) cos2(θ) |↑⟩⟨↑| |0⟩⟨0| .
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States after the Bell measurement

Now we need to perform a Bell measurement on the photonic qubits within the states ρ′
A and ρ′

B . Here
we consider the scenario with non photon-number resolving detectors. Assuming for the moment the
scenario without dark counts, we have at most two photons in the system. Hence we can consider three
possible outcomes of our optical measurement: left detector clicked, right detector clicked, none of the
detectors clicked. The measurement operators can be easily derived by noting that in our scenario without
dark counts, each of the detectors can be triggered either by one or two photons and no cross-clicks
between detectors are possible due to the photon-bunching effect. Then we can apply the reverse of the
beam splitter mode transformations to the projectors on the events with one or two photons in each of
the detectors to obtain these projectors in terms of the input modes. Finally we truncate the resulting
projectors to the qubit space since in our scenario it is not possible for more than one photon to be
present in each of the input modes of the beam splitter. In this way we obtain the following measurement
operators

A0 =
∣∣Ψ+〉〈Ψ+∣∣+ 1√

2
|11⟩⟨11| ,

A1 =
∣∣Ψ−〉〈Ψ−∣∣+ 1√

2
|11⟩⟨11| ,

A2 = |00⟩⟨00| .

(A.44)

These outcomes occur with the following probabilities,

p0 = p1 = η cos2(θ)
(

1 − η

2 cos2(θ)
)
,(A.45)

p2 = (1 − η cos2(θ))2 .(A.46)

The post-measurement state of the two spins for the outcome A0 is

(A.47) ρ0 = 2 sin2(θ)
2 − η cos2(θ)

(
a
∣∣Ψ+〉〈Ψ+∣∣+ b

∣∣Ψ−〉〈Ψ−∣∣)+ cos2(θ)(2 − η)
2 − η cos2(θ) |↑↑⟩⟨↑↑| .

Here ∣∣Ψ±〉 = 1√
2

(|↓↑⟩ ± |↑↓⟩) ,(A.48)

a = λ(F 2
prep + (1 − Fprep)2) + 2Fprep(1 − Fprep)(1 − λ) ,(A.49)

b = (1 − λ)(F 2
prep + (1 − Fprep)2) + 2Fprep(1 − Fprep)λ .(A.50)

For the outcome A1 the post-measurement state of the spins is the same up to a local Z gate which
Bob can apply following the trigger of the A1 outcome. The post-measurement state of the spins for the
outcome A2, that is when none of the detector clicked, is
(A.51)
ρ2 = 1

(1 − η cos2(θ))2

(
sin4(θ) |↓↓⟩⟨↓↓| + (1 − η) cos2(θ) sin2(θ) (|↓↑⟩⟨↓↑| + |↑↓⟩⟨↑↓|) + (1 − η)2 cos4(θ) |↑↑⟩⟨↑↑|

)
.

This is a separable state and so events corresponding to outcome A2 (that is, no click in any of the
detectors) will be discarded as failure. However, dark counts on our detectors can make us draw wrong
conclusions about which of the three outcomes we actually obtained.

The effect of dark counts can be seen as follows

141



APPENDIX A. APPENDICES FOR CHAPTER 4

• We measured A2 (no actual detection) but one of the detectors had a dark count. This event will
happen with probability 2p2pd(1 − pd) and will make us accept the state ρ2. Note that this is a
classical state so application of the Z correction by Bob does not affect this state at all.

• We measured A1 or A2 but we also got a dark count in the other detector. This event will happen
with probability (p0 + p1) · pd. This will effectively lead us to rejection of the desired state ρ0.
Hence effectively ρ0 will only be accepted if we measured A1 or A2 but the other detector did not
have a dark count, which will happen with probability (p0 + p1) · (1 − pd).

The yield and QBER

Taking dark counts into account, we see that the yield of the single-photon scheme, which is just the
probability of registering a click in only one of the detectors, will be

Y = (p0 + p1)(1 − pd) + 2p2pd(1 − pd)

= 2(1 − pd)
[
η cos2(θ)

(
1 − η

2 cos2(θ)
)

+ (1 − η cos2(θ))2pd

]
.

(A.52)

The effective accepted state after a click in one of the detectors will then be

(A.53) ρout = 1
Y

((p0 + p1)(1 − pd)ρ0 + 2p2pd(1 − pd)ρ2) .

Note that both Alice and Bob perform a measurement on their electron spins immediately after
each of the spin-photon entanglement generation events. This measurement causes an error modeled
as a depolarizing channel of parameter Fm on each qubit, which means that after a successful run of
the single-photon protocol, the effective state shared by Alice and Bob including the noise of their
measurements will be given by

ρAB = F 2
mρout + (1 − Fm)Fm

[
I2,A

2 ⊗ trA[ρout] + trB [ρout] ⊗ I2,B

2

]
+ (1 − Fm)2 I4,AB

4 .(A.54)

One can then extract the QBER for this state in all the three bases using the appropriate correlated/anti-
correlated projectors such that:

ez = Tr((|00⟩⟨00| + |11⟩⟨11|)ρAB) ,(A.55)

exy = Tr((|+−⟩⟨+−| + |−+⟩⟨−+|)ρAB) = Tr((|0y1y⟩⟨0y1y| + |1y0y⟩⟨1y0y|)ρAB) .(A.56)

Here |+⟩ and |−⟩ denote the two eigenstates of X and |0y⟩ and |1y⟩ denote the two eigenstates of Y .
We note that for our model of the single-photon scheme the QBER in X- and Y - bases are the same
and therefore we denote both by a single symbol exy.
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A.6 SPADS and SPOTL schemes analysis

In order to compute the quantum bit error rate (QBER) of the Single-Photon with Additional Detection
Setup (SPADS) scheme and the Single-Photon Over Two Links (SPOTL) scheme, we derive step by
step the quantum state shared between Alice and Bob. The following results have been found using
Mathematica. Finally, we also calculate the yield of the SPADS and SPOTL schemes.

Generation of elementary links

Single-photon scheme on Alice side

The application of the single-photon scheme on Alice’s side leads Alice and the quantum repeater to
share a state given in Eq. (A.53). This state can be rewritten as

ρA-QRe = A1
∣∣Ψ+〉〈Ψ+∣∣+B1

∣∣Ψ−〉〈Ψ−∣∣+ C1 (|10⟩⟨10| + |01⟩⟨01|) +D1 |11⟩⟨11| + E1 |00⟩⟨00| ,(A.57)

with A1 = A(θA, YA), B1 = B(θA, YA), C1 = C(θA, YA), D1 = D(θA, YA) and E1 = E(θA, YA). Here we
have that

A(θ, Y ) = 1
Y

2 cos2(θ) sin2(θ)η(1 − pd)
[
(F 2

prep + (1 − Fprep)2)λ+ 2Fprep(1 − Fprep)(1 − λ)
]
,

B(θ, Y ) = 1
Y

2 cos2(θ) sin2(θ)η(1 − pd)
[
(F 2

prep + (1 − Fprep)2)(1 − λ) + 2Fprep(1 − Fprep)λ
]
,

C(θ, Y ) = 2
Y

cos2(θ) sin2(θ)pd(1 − pd)(1 − η) ,

D(θ, Y ) = 1
Y

cos4(θ)
(
2(1 − η)η(1 − pd) + η2(1 − pd) + 2(1 − η)2pd(1 − pd)

)
,

E(θ, Y ) = 2
Y

sin4(θ)pd(1 − pd) .

(A.58)

In the above Y denotes the yield or the probability of success of the single-photon scheme and is given
by Eq. (A.52). Subscript A indicates that in that expression for the yield and for each of the above
defined coefficients we use θ = θA. Moreover, we have made here the following change of notation with
respect to the Appendix A.5, |↓⟩ → |0⟩ and |↑⟩ → |1⟩.

SWAP gate in the middle node

In the next step a SWAP gate is applied in the middle node to transfer the electron state to the nuclear
spin of the NV center. This causes a depolarizing noise of parameter Fswap = F 2

g (see Appendix A.1).
The resulting state can then be written as

(A.59) ρA-QRC = FswapρA-QRe + (1 − Fswap) trQR[ρA-QRe ] ⊗ I2,QR

2 .

The procedure on Bob’s side

We now use the electron spin of the quantum repeater to generate the second quantum state. Here the
procedures for the SPADS and SPOTL schemes diverge.

In the procedure for the SPADS scheme, the quantum repeater generates a spin-photon entangled
state where the photonic qubit is encoded in the time-bin degree of freedom. Since the spin-photon
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entangled state is imperfect, the electron and the photon share a state

(A.60) ρQRe−B = Fprep
∣∣Ψ+〉〈Ψ+∣∣+ (1 − Fprep)

∣∣Ψ−〉〈Ψ−∣∣ .
Here we use the following labeling for time-bin encoded early and late mode of the photon: |e⟩ =
|1⟩ , |l⟩ = |0⟩. This photon is then sent towards Bob’s detector. The lossy channel acts on such a time-bin
encoded qubit as an erasure channel and so the quantum spin-photon state of the successful events in
which the photonic qubit successfully arrives at the detector is unaffected by the lossy channel.

For the SPOTL scheme the repeater’s electron spin and Bob’s quantum memory generate a second
state of the form given in Eq. (A.53). We can rewrite this state as

ρQRe−B = A2
∣∣Ψ+〉〈Ψ+∣∣+B2

∣∣Ψ−〉〈Ψ−∣∣+ C2 (|10⟩⟨10| + |01⟩⟨01|) +D2 |11⟩⟨11| + E2 |00⟩⟨00| ,(A.61)

with A2 = A(θB , YB), B2 = B(θB , YB), C2 = C(θB , YB), D2 = D(θB , YB) and E2 = E(θB , YB).

Decoherence in the quantum memories

Decoherence of the carbon spin in the middle node can be modeled identically for both the SPADS and
SPOTL scheme.

During the n < n∗ attempts to generate the state ρQRe-B, the carbon spin in the middle node
holding half of the state ρA-QRC will decohere. Using the decoherence model discussed in Appendix A.2,
decoherence of the carbon spin will thus give us

(A.62) ρ′
A-QRC = FT1(FT2ρA-QRC +(1−FT2)(I2⊗Z)ρA-QRC (I2⊗Z)†)+(1−FT1) trQR[ρA-QRC ]⊗ I2,QR

2 .

For key generation, Alice (SPADS and SPOTL schemes) and Bob (SPOTL scheme) can actually measure
their electron spin(s) immediately after the generation of spin photon entanglement, preventing the
effect of decoherence on these qubit(s).

Noise due to measurements

Measurement of the qubits of Alice and Bob

In the SPADS scheme Alice performs a measurement on her electron spin immediately after each of the
spin-photon entanglement generation events to prevent any decoherence with time of this qubit. This
measurement causes an error modeled as a depolarizing channel of parameter Fm. Bob on the other
hand performs a measurement on a photonic qubit that is encoded in the time-bin degree of freedom. His
measurement utilises the squashin map so that we can model the noise arising from this measurement
as a depolarising channel with parameter αB as described in Appendix A.1. Hence the total state just
before the Bell measurement is given by

ρA−QR−B = FmαBρ
′
A-QRC ⊗ ρQRe−B + (1 − Fm)αB

I2,A

2 ⊗ trA[ρ′
A-QRC ] ⊗ ρQRe−B

+ (1 − αB)Fmρ
′
A-QRC ⊗ trB [ρQRe−B ] ⊗ I2,B

2 + (1 − Fm)(1 − αB) trAB [ρ′
A-QRC ⊗ ρQRe−B ] ⊗ I4,AB

4 .

(A.63)

For the SPOTL scheme, both Alice and Bob perform a measurement on their electron spins immediately
after each of the spin-photon entanglement generation events. This measurement causes an error modeled
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as a depolarizing channel of parameter Fm on each qubit, which means that after both Alice and Bob
succeeded in performing the single-photon scheme with the repeater, the total, four-qubit state just
before the Bell-measurement and including the noise of the measurements of Alice and Bob will be given
by

ρA−QR−B = F 2
mρ

′
A-QRC ⊗ ρQRe−B + (1 − Fm)Fm

[
I2,A

2 ⊗ trA[ρ′
A-QRC ] ⊗ ρQRe−B + ρ′

A-QRC ⊗ trB [ρQRe−B ] ⊗ I2,B

2

]

+ (1 − Fm)2 trAB [ρ′
A-QRC ⊗ ρQRe−B ] ⊗ I4,AB

4 .

(A.64)

Bell state measurement

Before the entanglement swapping, we have a total state ρA−QR−B. We now perform a Bell state
measurement on the two qubits in the middle node. The error coming from this measurement is modeled
by concatenation of depolarizing channels (see Appendix A.1) which means that the measurement is
actually performed on
(A.65)
ρfin = F 2

g F
2
mρA−QR−B + F 2

g (1 − F 2
m) trQRe [ρA−QR−B ] ⊗ I2,QRe

2 + (1 − F 2
g ) trQR[ρA−QR−B ] ⊗ I4,QR

4 .

While ρ′
A-QRC is not Bell diagonal for the SPADS scheme, ρQRe−B is, and so we find that taking into

account the classical correction (which will be performed on the measured bit-value by Alice and Bob)
the four cases corresponding to different measurement outcomes are equivalent. This means that if we
model the correction to be applied to the quantum state rather than the classical bit, then the four
post-measurement bipartite states shared between Alice and Bob are exactly the same.

For the SPOTL scheme, both ρ′
A-QRC and ρQRe−B are not Bell diagonal which means that the

resulting state of qubits of Alice and Bob after the Bell state measurement depends on the outcome
of this Bell measurement and those four corresponding states are not equivalent under local unitary
corrections. In fact, the two states corresponding to the Φ± outcomes and the two states corresponding
to the Ψ± outcomes are pairwise equivalent under local Pauli corrections. Hence, we will derive two
different QBER corresponding to the following different resulting states shared between Alice and Bob,

ρΦ,AB = (IA ⊗ UΦ±,B) TrQR

[
(I ⊗ |Φ±⟩⟨Φ±| ⊗ I)ρfin(I ⊗ |Φ±⟩⟨Φ±| ⊗ I)†

Tr(ρfin(I ⊗ |Φ±⟩⟨Φ±| ⊗ I))

]
(I ⊗ UΦ±,B)† ,(A.66)

ρΨ,AB = (IA ⊗ UΨ±,B) TrQR

[
(I ⊗ |Ψ±⟩⟨Ψ±| ⊗ I)ρfin(I ⊗ |Ψ±⟩⟨Ψ±| ⊗ I)†

Tr(ρfin(I ⊗ |Ψ±⟩⟨Ψ±| ⊗ I))

]
(I ⊗ UΨ±,B)† .(A.67)

Here UΦ±,B and UΨ±,B denote the four Pauli corrections implemented by Bob after the corresponding
outcome of the Bell measurement. Note that for the SPADS scheme ρΦ,AB = ρΨ,AB .

The yield and QBER

A.6.0.1 Yield

For both SPADS and SPOTL scheme we calculate the yield as the inverse of the number of channel
uses required to generate one bit of raw key, Y = 1/E[N ], where E[N ] is given by Eq. (A.31). For the
SPOTL scheme in that formula we use pA/B = YA/B , where YA/B denotes the yield of the single-photon
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scheme on Alice’s/Bob’s side given by Eq. (A.52). For the SPADS scheme pA takes the same form as for
the SPOTL scheme (but is now calculated for two thirds of the total distance between Alice and Bob
rather than half), while pB is the probability of registering a click in Bob’s optical detection setup as in
the SiSQuaRe scheme.

Extraction of the qubit error rates

By projecting these final corrected states onto the correct subspaces, we can obtain the qubit error rates
ez and exy (with our model we find that for both SPADS and SPOTL schemes the error rates in X and
Y bases are the same). The state shared between Alice and Bob after the Pauli correction will always be
the same for the SPADS scheme. Thus, there is only a single QBER ez and exy independently of the
outcome of the Bell measurement. For the SPOTL scheme that is not the case, there will be two set of
QBER corresponding to the states ρΦ,AB and ρΨ,AB .

ez,Φ = Tr((|00⟩⟨00| + |11⟩⟨11|)ρΦ) ,(A.68)

ez,Ψ = Tr((|00⟩⟨00| + |11⟩⟨11|)ρΨ) ,(A.69)

exy,Φ = Tr((|+−⟩⟨+−| + |−+⟩⟨−+|)ρΦ) = Tr((|0y1y⟩⟨0y1y| + |1y0y⟩⟨1y0y|)ρΦ) ,(A.70)

exy,Ψ = Tr((|+−⟩⟨+−| + |−+⟩⟨−+|)ρΨ) = Tr((|0y1y⟩⟨0y1y| + |1y0y⟩⟨1y0y|)ρΨ) .(A.71)

Again, for the SPADS scheme ez,Φ = ez,Ψ = ez and exy,Φ = exy,Ψ = exy.

Averaging the qubit error rates

We have now derived the qubit error rates as a function of the experimental parameters. For the SPOTL
scheme we now average the QBER over the two outcomes to get the final average QBER

⟨ez⟩ = ⟨pΨez,Ψ + pΦez,Φ⟩ ,(A.72)

⟨exy⟩ = ⟨pΨexy,Ψ + pΦexy,Φ⟩ ,(A.73)

where pΨ (pΦ) is the probability of measuring one of the |Ψ⟩ (|Φ⟩) states in the Bell measurement and
⟨...⟩ is found by averaging the expression over the number of Bob’s attempts n with the geometric
distribution within the first n∗ trials. For the SPADS scheme ⟨ez⟩ and ⟨exy⟩ can be averaged directly.
The dependence on n arises from the decoherence terms FT1 and FT2 . Indeed, those terms correspond to
the decoherence in the middle node during the attempts on Bob’s side. Denoting by pB the probability
that in a single attempt Bob generates entanglement with the quantum repeater using the single-photon
scheme for the SPOTL scheme and using direct transmission of the time-bin encoded qubit from the
repeater to Bob for the SPADS scheme, we have that the exponentials in those expressions can be
averaged as follows [23]

(A.74) ⟨e−cn⟩ = pBe
−c

1 − (1 − pB)n∗

1 − (1 − p)n∗
e−cn∗

1 − (1 − pB)e−c
.
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A.7 Secret-key fraction and advantage distillation

In this section we review the formulas for the secret-key fraction for the QKD protocols used in our
model as a function of the QBER.

One-way BB84 protocol

For the fully asymmetric BB84 protocol with standard one-way post-processing, the secret-key fraction
is given by [186, 188]:

(A.75) r = 1 − h(ex) − h(ez) ,

where h(x) is the binary entropy function. Note that this formula is symmetric under the exchange of ex

and ez - that is, the secret-key fraction is the same independently of whether we extract the key in the
Z- or X-basis. As we will see later in this section, this is not the case for the six-state protocol with
advantage distillation.

Six-state protocol with advantage distillation

Now we shall examine the six-state protocol with advantage distillation of [187]. For the purpose of this
section, following the notation of [187], we shall denote the four Bell states as

|ψ(x, z)⟩ = 1√
2

(|0⟩ |0 + x⟩ + (−1)z |1⟩ |1 + x (mod 2)⟩),(A.76)

for x, z ∈ {0, 1}. We then write the Bell-diagonal state as

ρAB =
∑

x,z∈{0,1}

pxz |ψ(x, z)⟩ ⟨ψ(x, z)| .(A.77)

The considered advantage distillation protocol is described in [187]. It is shown there that if the key
is extracted in the Z-basis, then the secret-key fraction for the fully asymmetric six-state protocol
supplemented with this two-way post-processing technique is given by

rsix-state = max
[
1 −H(PXZ) + PX̄(1)

2 h

(
p00p10 + p01p11

(p00 + p01)(p10 + p11)

)
,
PX̄(0)

2 (1 −H(P ′
XZ))

]
,(A.78)

where

PX̄(0) = (p00 + p01)2 + (p10 + p11)2 ,(A.79)

PX̄(1) = 2(p00 + p01)(p10 + p11) ,(A.80)

p′
00 = p2

00 + p2
01

(p00 + p01)2 + (p10 + p11)2 ,(A.81)

p′
10 = 2p00p01

(p00 + p01)2 + (p10 + p11)2 ,(A.82)

p′
01 = p2

10 + p2
11

(p00 + p01)2 + (p10 + p11)2 ,(A.83)

p′
11 = 2p10p11

(p00 + p01)2 + (p10 + p11)2 ,(A.84)
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PXZ (P ′
XZ) is the probability distribution over the coefficients pxz (p′

xz) and H(PXZ) (H(P ′
XZ)) is the

Shannon entropy of this distribution.
Now let us have a look at how to link the Bell coefficients pxz with our QBER ez and exy (for all

our schemes the estimated QBER in the X-basis is the same as in the Y -basis). In this section we
assume the target state that Alice and Bob want to generate to be |ψ(0, 0)⟩. Note that in the analysis in
Appendices A.5 and A.6 it is the state |ψ(1, 0)⟩ that is a target, but of course the secret-key fraction
analysis is independent of which Bell-state is a target state as they are all the same up to local Pauli
rotations. Hence, the relation between the Bell-diagonal coefficients and the QBER is

p10 + p11 = ez ,(A.85)

p01 + p11 = exy ,(A.86)

p01 + p10 = exy ,(A.87)

p00 + p01 + p10 + p11 = 1 .(A.88)

Therefore

p00 = 1 − ez

2 − exy ,

p01 = exy − ez

2 ,

p10 = p11 = ez

2 .

(A.89)

And so

PX̄(0) = 1 − 2ez + 2e2
z ,(A.90)

PX̄(1) = 2(1 − ez)ez .(A.91)

It is important to note that for the above described advantage distillation, the amount of generated
secret key depends on the basis in which it is extracted, as has been shown in [229]. Let us now have a
look at the amount of key that can be extracted in the X- and Y -bases. As has been shown in [229], the
secret-key fraction in these cases is also given by Eq. (A.78) but now the Bell coefficients depend on
QBER in the following way:

p00 = 1 − ez

2 − exy ,

p10 = exy − ez

2 ,

p01 = p11 = ez

2 .

(A.92)

And so

PX̄(0) = 1 − 2exy + 2e2
xy ,

PX̄(1) = 2(1 − exy)exy .
(A.93)

We note that we have assumed here that in the case of key extraction in Y -basis, either Alice or Bob
applies a local bit flip in the Y -basis to the shared state, as the target state |ψ(0, 0)⟩ is anti-correlated
in that basis.
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In [229] it has been also observed that in the considered case of having the QBER in the X- and
Y -bases being equal, the six-state protocol with advantage distillation allows us to extract more key
if it is extracted in the basis with higher QBER. This observation determines the basis that we use
for extracting key for the single-photon and the SPOTL schemes that use fully asymmetric six-state
protocol with advantage distillation. Specifically, for the single-photon scheme we observe higher QBER
in the Z-basis, while for the SPOTL scheme the QBER is higher in the X- and Y -bases. Therefore these
are the bases that we choose to use for extracting key for those schemes.

For the SiSQuaRe and SPADS schemes the symmetric six-state protocol is used, hence for those
schemes we group the raw bits into three groups corresponding to three different key-extraction bases
and we extract the key separately for each of these bases. Finally, to obtain the final secret-key fraction,
we note that for the symmetric six-state protocol we also need to include sifting, that is only one third
of all the raw bits were obtained by Alice and Bob measuring in the same basis (the raw bits for the
protocol runs in which they measured in different bases are discarded). Hence, if we denote by ri the
secret-key fraction obtained from the group of raw bits in which both Alice and Bob measured in the
basis i, the final secret-key fraction for the six-state protocol for those schemes is given by

(A.94) r = 1
3

(
1
3rx + 1

3ry + 1
3rz

)
.

Clearly in our case we have rx = ry = rxy.

One-way six-state protocol

In Figure 4.7 we have also plotted the secret-key fraction for the one-way six-state protocol. For the
fully asymmetric protocol and the case in which the key is extracted in the Z-basis, it is given by [186]

(A.95) r = 1 − ezh

(
1 + (ex − ey)/ez

2

)
− (1 − ez)h

(
1 − (ex + ey + ez)/2

1 − ez

)
− h(ez) .

Although this formula does not appear to be symmetric under the permutation of ex, ey, ez, it is in fact
invariant under this permutation [230]. This means that for the symmetric one-way six-state protocol,
in our case the final secret-key fraction is given by the expression in Eq. (A.95) multiplied by the sifting
efficiency of one-third.
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A.8 Runtime of the experiment

In this section we will detail how to perform an experiment that will be able to establish that a setup
can surpass the capacity of a quantum channel modeling losses in a fiber (see Eq. (4.5)). This experiment
can validate a setup to qualify as a quantum repeater, without explicitly having to generate secret-key.
We show then that, for the listed parameters in the main text, the single-photon scheme can be certified
to be a quantum repeater within approximately twelve hours.

The experiment is based on estimating the yield of the scheme and the individual QBER of the
generated states. More specifically, here we will calculate the probability that, assuming our model is
accurate and each individual run is independent and identically distributed, the observed estimate of the
yield and the individual QBER are larger and smaller, respectively, than some fixed threshold values. If,
with these threshold values for the yield and QBER, the calculated asymptotic secret-key still surpasses
the capacity, we can claim a working quantum repeater. The experiment consists of first performing
n attempts at generating a state between Alice and Bob, from which the yield can be estimated by
calculating the ratio of the successful attempts and n. Then, the QBER in each basis is estimated by
Alice and Bob measuring in the same basis in each of the successful attempts.

Central to our calculation is the fact that, for n instances of a Bernoulli random variable with
probability p, the probability that the number of observed successes S(n) is smaller or equal than some
value k is equal to

P (S(n) ≤ k) =
k∑

i=0

(
n

i

)
pi (1 − p)n−i

.(A.96)

Assuming the outcomes of our experiment are independent and identically distributed, the observed
yield Ȳ satisfies

P
(
Ȳ ≤ (Y − tY )

)
= P

(
nȲ ≤ n (Y − tY )

)
=

⌊n(Y −tY )⌋∑
i=0

(
n

i

)
Y i (1 − Y )n−i

,(A.97)

where Y − tY is the lower threshold. Let us make this more concrete with a specific calculation. For
a distance of 17L0 the yield is equal to ≈ 5.6 · 10−6. Setting the maximum deviation in the yield to
Ȳ = Y − tY with tY = 2.0 · 10−7 and the number of attempts to n = 5 · 109 (which corresponds to
approximately a runtime of twelve hours assuming a single attempt takes 8.5 · 10−6 s, corresponding to
tprep and a single-shot readout lasting 2.5 · 10−6 s), we find that

P
(
Ȳ ≤ (Y − tY )

)
≤ 9.2 · 10−10 .(A.98)

Similarly, for the individual errors {ek}k∈{x,y,z} in the three bases we have that

P (ēk ≥ (ek + tk)) = P (m · ēk ≥ m (ek + tk)) =
m∑

i=⌈m(ek+tk)⌉

(
m

i

)
(ek)i (1 − ek)m−i

.(A.99)

Here we set m =
⌊

n
3 (Y − tY )

⌋
, which is an estimate for the number of raw bits that Alice and Bob

obtain from measurements in each of the three bases, for the total n attempts of the protocol. All the
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raw bits from those three sets are then compared to estimate the QBER in each of the three bases. Note
that we gather the same amount of samples for each basis, even when an asymmetric protocol would be
performed. Setting ti = t = 0.015, ∀i ∈ {x, y, z} and, as before, n = 5 · 109, we find, at a distance of
17L0 where ez ≈ 0.171 and ey = ex ≈ 0.141, that

P (ēz ≥ (ez + t)) ≤ 9.0 · 10−5 ,(A.100)

P (ēy ≥ (ey + t)) = P (ēx ≥ (ex + t)) ≤ 2.7 · 10−5 .(A.101)

Then, with probability at least

(1 − P (ēx ≥ (ex + t))) · (1 − P (ēy ≥ (ey + t))) · (1 − P (ēz ≥ (ez + t))) ·
(
1 − P

(
Ȳ ≤ (Y − tY )

))(A.102)

≥ 1 − 1.5 · 10−4 ,(A.103)

none of the observed QBER and yield exceed their threshold conditions. The corresponding lowest
secret-key rate for these parameters (with a yield of Y − tY and QBER of ex + tx, ey + ty, ez + tz) is
≈ 1.97 · 10−7, which we observe is greater than the secret-key capacity by a factor ≈ 3.29 (see Eq.(4.5))
at a distance of 17L0, since the secret-key capacity equals − log2

(
1 − e−17) ≲ 5.97 · 10−8.

Thus, with high probability we can establish that the single-photon scheme achieves a secret-key rate
significantly greater than the corresponding secret-key capacity for a distance of 17L0 ≈ 9.2 kilometer
within approximately twelve hours.
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A.9 MDI QKD

We note here that the single-photon scheme for generating key is closely linked to the measurement
device independent (MDI) QKD protocol [231]. In particular it is an entanglement-based version of a
scheme in which Alice and Bob prepare and send specific photonic qubit states to the heralding station
in the middle, where the qubits are encoded in the presence/absence of the photon. We note that in the
ideal case of the single-photon scheme, the spin-photon state is given in Eq. (A.35). For the six-state
protocol the spin part of this state is then measured in the X-, Y - or Z- basis at random according
to a fixed probability distribution (this probability distribution dictates whether we use symmetric
or asymmetric protocol). Considering the probabilities of the individual measurement outcomes, this
is equivalent to the scenario in which Alice and Bob choose one of the three set of states at random
according to the same probability distribution and prepare each of the two states from that set with
the probability equal to the corresponding measurement outcome probability. These sets do not form
bases, as the two states within each set are not orthogonal. We will therefore refer to these sets here as
“pseudo-bases”. Depending on the chosen pseudo-basis they prepare one of the six states encoding the bit
value of “0” or “1” in that pseudo-basis. These states and the corresponding preparation probabilities are

• pseudo-basis 1: {|0⟩ , |1⟩} with probabilities {sin2 θ, cos2 θ},
• pseudo-basis 2: {sin θ |0⟩ + cos θ |1⟩ , sin θ |0⟩ − cos θ |1⟩} with probabilities { 1

2 ,
1
2 },

• pseudo-basis 3: {sin θ |0⟩ + i cos θ |1⟩ , sin θ |0⟩ − i cos θ |1⟩} with probabilities { 1
2 ,

1
2 }.

These states are then sent towards the beam splitter station. The station performs the standard
photonic Bell-state measurement and sends the outcome to both Alice and Bob. Alice and Bob discard
all the runs for which the beam splitter station measured A2 (recall the measurement operators in
Eq. (A.44)). They then exchange the classical information about their pseudo-basis choice and keep only
the data for the runs in which they both used the same basis. For those data they apply the following
post-processing in order to obtain correlated raw bits

• pseudo-basis 1: for both outcomes A0 and A1 Bob flips the value of his bit.
• pseudo-basis 2: for the outcome A0 they do nothing, for the outcome A1 Bob flips the value of his

bit.
• pseudo-basis 3: for the outcome A0 they do nothing, for the outcome A1 Bob flips the value of his

bit.

In this way Alice and Bob have generated their strings of raw bits.
We note here that the direct preparation of the six states from the three pseudo-bases described

above in the photonic presence/absence degree of freedom is experimentally hard. This is related to
the fact that linear optics does not allow to easily perform single qubit rotations necessary to prepare
these states. The use of memory-based NV-centers offers a great advantage here, as in these schemes the
rotations that allow us to obtain the required amplitudes of the photonic states are performed on the
electron spins rather than the photons themselves. There has also been proposed an alternative scheme
that also benefits from single photon detection events in which Alice and Bob send coherent pulses to
the heralding station [232, 163].
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Appendix: Documentation for the Netsquid library

In this thesis, particularly in Chapters 5 and 6 we have simulated metropolitan networks linked with
satellite links. These simulations have been done using Netsquid [202, 31], a python-based discrete event
network simulator developped in QuTech (Delft) on top of which we have built our own functions for
the functionalities we needed. In this appendix we give a documentation for these functions.

B.1 Qlient, Qonnector and Network initialisation

Our Quantum City model is based on two types of nodes: Qlients (end users) and Qonnector (servers
giving access to quantum-enhanced functionalities). In our code they are modeled with two classes,
subclasses of the Node class, itself a subclass of the Netsquid Component class (see Fig. B.1). They
contain the classical empty slots that we will use to store measurement outputs during protocols or to
create connections between the different nodes of our network.

More specifically each Qlient has a keylist attribute where it will store raw key bits as well as a
listport attribute to make the connections easy during the protocol runs. When a Qlient node is created,
it automatically generates a Quantum Processor of size 1 to be able to process single qubits.

Qonnectors also have a QlientPort attribute to help with the connections, a QlientList attribute to
store the name of each Qlient it is attached to and a QlientKeys attribute to store raw key bits for each
Qlient. Qonnector do not have a built-in quantum processor but they will generate one for each Qlient
they are connected to.

The network is initiated with the QEurope class. It has three methods allowing to add Qonnectors,
to add Qlients or to connect Qonnectors via satellites or drones. The method adding a Qonnector
simply creates a Qonnector node. The method adding a Qlient takes 3 arguments: the name of the
Qlient, the Qonnector it should be attached to and the distance between the Qonnector and this Qlient.
When the add_Qlient method is called, it creates a Qlient node and a Quantum processor is created
at the Qonnector associated. It also creates two ways quantum and classical channels between the
Qonnector and the Qlient. This means that for each Qlient, the Qonnector will have a separate processor.
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Figure B.1: Code for the Qlient and Qonnector classes

This facilitates simulations because in Netsquid, each processor has input and output ports that can
be connected to one quantum channel only. It is when adding these connections that the list of port
attribute of the Qonnector and Qlient classes are useful. The quantum channel between a Qlient and
the Qonnector is associated with a Fiber noise model that already exists in Netsquid.

Finally the Connect_Qonnector method of the QEurope class connects two Qonnectors via a free-
space channel, either directly or via a satellite. It takes as arguments the name of the two Qonnectors
that should be connected, the distance between them or between each of them and the satellite, the
atmospheric transmittance and the link type: ’satellite’ or ’drone’. When ’satellite’ is selected, it creates
a new Qonnector called Satellite at a distance specified by the parameters of the method. In this case
the connect_qonnector function takes as input the name of the two Qonnectors, the length of the two
links between each Qonnector and the satellite and the atmospheric transmittance of each link. When
’drone’ is selected, it creates two qonnector nodes called DroneQonnector1 and DroneQonnector2 and a
link between them as well as a link to each qonnector. The parameters here are the name of the two
Qonnectors, the height of the drone, the distance between the drones, the atmospheric transmittance
between the drones and the atmospheric transmittance between the drones and the ground. The noise
model of these quantum channels have been created in collaboration with researchers of the LIP6 QI
team: Matteo Schiavon and Valentina Marulanda Acosta.

The node parameters such as the time it takes to create a pair or the probability of success can be
changed at will in the main QEurope file to match a particular simulation. Satellites are initialized using
the create_satellite python file which uses the orekit package and the channel file to get the elevation,
the distance to the ground stations and atmospheric transmittance depending on the atmospheric model
that is chosen. This creates an npz file that can be used to simulate the orbit of a satellite.
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To summarise, a network is first initiated by calling the QEurope class and then by adding Qonnectors
and Qlients with the methods of the class (see Fig. B.2).

Figure B.2: Example of the creation of a Network with two Quantum cities linked by a Satellite. the
parameters in the Connect_Qonnector method are given by the satellite data npz file and depend on
the position i of the satellite.

B.2 Protocols

We now explain the different protocols that we implemented in this model. They are all subclasses of
the NodeProtocol Netsquid class which allows the simulation of discrete events for a given simulation
time. Protocols are virtual simulation entities that are attached to components such as our Qlient node
to steer their behaviour. This means that calling a protocol on a node will drive the components such as
the quantum processors embedded in that node.

• The SendBB84 node protocol creates and sends random BB84 states. It takes as argument the
success probability pinit and the flip probability pflip for creating a single photon (see Sec. 5.1.2)
as well as the node it should send the qubit to. The protocol first creates a clock that gives him
the timesteps that depend on the initialisation time given as parameter to the program. After
flipping a coin following a Bernouilli distribution with success probability pinit at each timestep, it
will create a |0⟩ state and store it in the processor of the node. It will then flip it with probability
pflip by applying an X operation on it. If the state is created, a random bit and a random basis
is then chosen and the appropriated operations is performed on the |0⟩ state to transform it in
either |0⟩ , |1⟩ , |+⟩ or |−⟩. The bit and basis chosen are recorded in the key list attribute of the
node. The ’pop’ method is then called on the quantum processor which will automatically send
the qubit out of the memory, through the output port and the quantum channel linked to it. The
timestamp associated with the qubit is sent at the same time via the classical channel. We assume
for simplifying the simulation that information travelling in both quantum and classical channels
travel at the same speed and that it takes 1ns to go from any node to another.

• The ReceiveProtocol node protocol is performed by a node to receive a state a measure it.
It saves the outputs as well as the measurement basis and timestamps of reception in the list
QlientKeys["name of the sending node"] in the case of a Qonnector or in the list keylist in the
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case of a Qlient. It takes as input the name of the node from which qubits are expected, the
probability that the measurement succeeds meassucc or flips the outcome measflip and a boolean
BB84 indicating if the measurement basis should be randomized. When this protocol is called on
a node, the receiving port of the node will await for qubits until the end of the simulation time.
Whenever a qubit arrives, it is stored in the quantum processor of the node. If BB84 is False then
the measurement is always done in the computational basis, otherwise a random base is chosen.
After flipping coins to decide whether to actually perform the measurement or to apply an X
operation on the qubit, it will measure the qubit in the appropriate basis and store the output and
the measurement basis. At the same time it will receive the classical timestamp on the classical
channel and store it along with the output.

• The TransmitProtocol node protocol is used by a Qonnector to transmit a qubit sent by a Qlient
or a satellite to another Qlient. It takes as input a node from which to expect qubit, another to
send qubits to and a success probability switchsucc. When this method is called on a node, it will
open its quantum ports and wait for the reception of a qubit. Whenever this happens, it flips a
coin with probability switchsucc. If the outcome is positive, it moves the qubit from the processor
associated to the node that sent a qubit to the processor associated with the node that should
receive the qubit. It also transmit the classical timestamp associated if there is one.

• The SendEPR node protocol is performed by a Qonnector or a satellite node to create and send
an EPR pair to two nodes, each getting one qubit. It takes as input the two nodes it should send
the qubits to and a success probability EPRsucc. It creates a QSource component that creates EPR
pairs at a rate given by the parameters of the program and with probability of success EPRsucc.
The qubits from the EPR pairs are then given to the processors associated with the node that
should receive the qubits. A simple call to the ’pop’ function on these processors automatically
sends the qubit to the receiving nodes. A classical signal indicating the timestamp of each qubit
sending is also going to the receiving node. To keep track of how many pairs are actually sent by
the node, a ’0’ is stored in the memory of the node.

• The BSMProtocol node protocol corresponds to a Bell state measurement performed by a
Qonnector node on two qubits received from two different Qlients simultaneously. It takes as input
the two Qlient from wich the qubits are expected and a probability that the Bell state measurement
succeeds BSMsucc. It can only be performed by a Qonnector node and the outputs are stored
in the QlientKeys[’name of the Qlients’] attribute. When this protocol is called by a Qonnector
node, it will open its input ports and whenever qubits are in the two processors associated to the
two Qlients, it does a comparison of the timestamp received with them. If they are equal, it then
moves one qubit in the other qubit’s processor and perform a CNOT gate on the two qubits, then
a Hadamard gate on the first one and finally measure the two qubits with success probability
BSMsucc. This implements a Bell State measurement.

• The SendGHZ3, SendGHZ4 and SendGHZ5 node protocols work in the same way as the
SendEPR protocol to create and send GHZ states to 3, 4 or 5 Qlients. They take as input the
name of the Qlients and the success probability GHZsucc.

As an example we show below in Fig. B.3 the code following the one of Fig. B.2 to send an EPR pair
from the satellite to two Qonnectors used as ground stations, who in turn transmit the qubits to two
Qlients who receive and measure it.
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Figure B.3: Example code for creating a raw key between two Qlients in two different Cities using
entanglement-based QKD with a satellite as a source of EPR pairs. The last command sim_run starts
the simulation for some time simtime.

B.3 Classical Post Processing

We also defined a few functions to extract relevant data from the outcomes of the protocols. After
a protocol is done, the nodes that were involved hold in their classical memory slots the outcome of
measurements. Each outcome is recorded alongside with its timestamp and its measurement basis. We
added Sifting functions taking as input two, three, four or five raw outcome lists and outputing a single
list with the outcomes that have the same timestamp. This resulting sifted list contains tuples where
each element of the tuple corresponds to the output of one of the parties involved.

From the sifted list we can compute the final raw sifted key rate and throughput by dividing its
length by the number of qubits sent or by the time of the simulation. We can also extract the Qubit
Error Rate (QBER) with the functions estimQBER, estimQBERGHZ3, estimQBERGHZ4 and
estimQBERGHZ5. These functions will simply look at the tuple in the sifted list, count the non-
matching outcomes and divide it by the length of the sifted list. We also added the estimQBEREPR
function that does the same job but this time counting the matching outcomes since the BBM92 protocol
uses the Bell state |ψ−⟩ which creates perfectly unmatched bits.

Finally the dark counts are added directly on the outcome list with the function addDarkCounts.
It takes as a parameter a list of outcomes, the probability that a dark count happens pdark and the last
timestep of the protocol. For each timestep it will either add a random outcome to the list if there is
none or remove an outcome if there is one with probability pdark. The reason for the dark count to be
added classically after the protocol is that the ReceiveProtocol records outcomes only when qubits arrive
to the node. If they are lost before, nothing is added to the outcome list hence we could not directly add
a probability that a random outcome appears. The addDarkCounts function thus have to be added to
the resulting outcome lists if one wants to take into account background noise or cross-talk effects at the
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detector.
Below we show in Fig. B.4 the code following the ones from the previous figures to add dark count

and extract relevant data from the lists of measurement outcome.

Figure B.4: Example code for adding dark count and extract data from the protocol initiated in Fig. B.3.
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