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Abstract

Shape correspondence is a fundamental problem in computer vision, computer graphics,
and related fields since it facilitates many applications such as texture or deformation
transfer and statistical shape analysis to name a few. Although shape correspondence
has been studied from many viewpoints, in this thesis, we focus on functional map-based
approaches as this framework is quite general, scalable and thus, has been extended
to various other applications such as pose estimation, matrix completion, and graph
matching. In this thesis, we propose three contributions to deep functional maps: First,
we propose a simple but effective method to estimate a high-dimensional functional
map. Our method is based on first learning a low dimensional functional map and then
refining it to a higher dimensional one based on iterative spectral upsampling. Second,
we propose a new direction that advocates the use of approximate rigid alignment of
shapes as a weak supervision signal. Our weakly supervised Deep Functional map obtains
competitive performance compared to the fully supervised approach. Our main hypothesis
is that the approximate rigid alignment provides the network with enough information to
disambiguate symmetry issues. Although approximate alignment is easier to obtain than
pointwise ground truth between a pair of shapes, it still suffers from scalability issues on
large-scale 3D shape collections. Thus, we go beyond this prerequisite and consider the
problem of learning simultaneously a self symmetry map and a pairwise map. Our third
contribution is a novel commutative regularization that couples the self-symmetry map
with a pairwise map and thus enable knowledge transfer between the two maps during
training. Our last contribution is an application of the functional map framework to
some graph-based machine learning problems such as geometric matrix completion and
dimensionality reduction. We propose a simplified framework that is based on a key idea
that using a reduced basis to represent functions on the product space is sufficient to
recover a low-rank matrix approximation even from a sparse signal.



Chapter 1

Introduction

Recent years have witnessed a 3D revolution in various fields, largely thanks to advances
in deep learning and 3D sensing technology. The three major fields with the largest
scope of 3D deep learning can be broadly categorized into entertainment, robotics and
life science. In the former, with the emergence of many 3D technologies in the consumer
market such as depth field cameras like the Kinect and virtual reality devices like Oculus
Rift, a lot of 3D media is growing in our digital world and will continue to increase in
the near future. Similarly in robotics, emergence and affordability of new 3D sensor
technologies like Lidar cameras allows autonomous agents to perceive the 3D environment
in a much more complete way than previously possible with standard cameras. These
agents require algorithms to process and analyse 3D signals in order to make decisions.
Lastly, a recent breakthrough in bioinformatics [39] called alphafold has opened a new
avenue for 3D shape analysis in biology. Jumper et al. [39] reliably predicts 3D structure
of proteins given amino acid sequence. One of the major problems in biology is predicting
protein-protein interaction [103] i.e. which protein is likely to bind with another protein.
Correctly predicting protein-protein interaction has important applications in proteins
engineering and drug development [103]. Interestingly, this phenomenon is largely driven
by the similarity in the 3D shapes of individual proteins and thus necessitates 3D shape
matching algorithms.

1.1 Non Rigid 3D Shape Matching

When asked about the most important problems in computer vision in late 90’s, Takeo
Kanade, one of the luminaries, replied: ’Correspondence, correspondence, correspondence’
[112]. Shape correspondence is a fundamental problem in computer vision, computer
graphics and related fields since it facilitates many applications such as texture or
deformation transfer and statistical shape analysis [8] to name a few. It is fair to
attribute similar significance even today to correspondence problems given its widespread
applications in various fields described above. Although shape correspondence has been
studied from many viewpoints [104, 107, 118, 117], in this dissertation we focus on a
functional map-based approaches [68] as this framework is quite general, scalable and
thus, has been extended to various other applications such as pose estimation [65], matrix
completion [91] and graph matching [109].

Given a pair of objects containing m and n points respectively, finding correspondence
entails finding a bijective (if possible) map between these points. e.g. in case of two
images, such points can be keypoints, in case of two graphs, points translate to nodes. In
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the simplest case, such problems are formulated as a labeling problem, where different
points, E.g., in a template shape, correspond to labels to be predicted. This leads to
an extremely large label space that scales linearly with the number of points and thus,
requires lots of data to learn this space. In contrast, the authors in [68] introduced a
functional view in visual correspondence problems by considering shapes or images as
functional spaces. This functional map approach aligns descriptor functions from one
visual object to another and thus, aims to infer an entire global map between a pair
of shapes rather than aligning each point independently. Deep Functional Map [53]
introduces learning into functional map approach by learning a non-linear transformation
of the descriptor functions to be aligned later.

Two main inputs to a typical Functional Map framework are corresponding descriptor
functions and basis functions defined on two objects. Prior to this dissertation, SHOT
features [102] were most commonly used as descriptor functions and Laplacian eigenbasis
[5] as the basis functions. Basis functions are required to perform dimensionality reduction
by projecting the descriptors onto a spanning subspace of basis functions. Finally, one
solves an optimization problem, seeking a matrix that best aligns the projected features.
One of the key benefits of this framework is that it allows us to represent maps between
shapes as small matrices, which encode relations between basis functions defined on the
shapes. As a result, the objective function is independent of the number of points on the
shape and can be optimized with simple linear solvers such as least squares.

Despite its simplicity and scalability, this framework is suboptimal in many ways. The
first source of difficulty lies in estimating a high dimensional functional map accurately.
It remains a challenge for both the axiomatic functional map pipeline as well as deep
functional maps. Learning in high dimensions is known to be difficult in machine learning
[7]. On the other hand, reduced dimensionality results in very approximate maps, losing
medium and high-frequency details and leading to significant artifacts in applications.
Prior to the work in this thesis, state of the art [54] relied on directly embedding the
scalar functions into a high dimensional Laplace Beltrami eigenbasis. As we show in
Chapter 2, this can lead to severe overfitting and thus, significant drop in the accuracy of
resulting point to point map.

A major issue with the axiomatic functional map approach [68] is that descriptor
functions computed on the shape are handcrafted or computed before and not learned
from data. This makes the entire pipeline susceptible to changes in the representation of
3D geometry. e.g. the commonly used SHOT feature [102] heavily relies on the input
mesh structure. Thus, a robust shape matching pipeline should learn features directly
from point clouds rather than relying on input mesh connectivity. Deep Functional Maps
[54] has partially addressed this problem by learning a non-linear transformation of SHOT
features. However, that pipeline still requires an input mesh and can not learn directly
from raw shape geometry.
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Lastly, many natural as well man-made objects contain symmetries which poses a
challenge to any matching algorithm. A simple example being left side of a human
body is often mismatched to the right side. Symmetry disambiguation also poses a
challenge for most techniques based on the functional map estimation pipeline. Inducing
information exchange between a self-symmetry map and a pairwise map should improve
the consistency between the two maps and thus, the resulting accuracy. Symmetry
detection and shape matching are two problems that are inherently linked to each other.
Yet, there is no unified learning framework that learns symmetry detection and shape
matching simultaneously and thus couples the two maps during training.

In the following dissertation, we propose three contributions, each corresponding to
these problems. We marry ideas from deep learning with the functional map framework
thereby resulting in very efficient and robust algorithms for shape matching based on
deep functional maps. Moreover, we extend the notion of functional maps to graphs and
propose a functional view of the graph based matrix completion problem.

List of Publications

• J.M. Roufosse, A. Sharma, M. Ovsjanikov, Unsupervised Deep Learning for Struc-
tured Shape Matching [81] ICCV’2019.

• S. Melzi, J. Ren, E. Rodola, A. Sharma, P. Wonka, M. Ovsjanikov, ZoomOut:
Spectral Upsampling for Efficient Shape Correspondence [60], Siggraph Asia’2019

• N. Donati, A. Sharma, M. Ovsjanikov, Deep geometric functional maps: Robust
feature learning for shape correspondence [19], CVPR’2020

• A. Sharma, M. Ovsjanikov, Weakly Supervised Deep Functional Maps for Shape
Matching [89], NeurIPS’2020

• A. Sharma, M. Ovsjanikov, Matrix Decomposition on Graphs: A Simplified Func-
tional View [91], ICASSP’2022

• A. Sharma, M. Ovsjanikov, Joint Symmetry Detection and Shape Matching for
Non-Rigid Point Cloud[90]

In Chapter 2, we explore the interaction between spectral quantities, and specifically
the size of the functional map used in a deep learning pipeline, and overfitting between
training and test data in different scenarios. We show that smaller functional maps tend
to generalize better in difficult settings, and use this observation to motivate the use of a
simple refinement strategy based on a spectral upsampling technique [60]. Our method is
based on first learning a low dimensional functional map using a deep functional map
[81] and then refining it to higher dimensional one based on iterative spectral upsampling
[60]. With a combination of these two, we demonstrate that one can estimate a high
dimensional functional map effectively. In contrast, directly learning a high dimensional
map with deep functional maps directly leads to severe overfitting, a phenomenon we call
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’Spectral Overfitting’ in Chapter 2. This technique has been adopted in ZoomOut [60],
GeomFmap [19], WSupFMNet [89] and constitutes a key contribution of this thesis.

In Chapter 3, we consider the problem of learning shape correspondence directly
from point cloud data both on near isometric as well as partial shapes without explicit
supervision. The first challenge to overcome is to design a learning framework that
can learn scalar functions on shapes from scratch, without using pre-defined per vertex
functions like SHOT or ground truth correspondences. We follow the approach of
SURFMNet [81] that introduced the idea of learning correspondence with an unsupervised
structural loss that acts as a proxy for ground truth geodesic error. However, learning
from point cloud data with just unsupervised structural loss is insufficient in terms of
supervision. The solution considered in [19] is to use the ground truth correspondence. In
[89], we propose a new direction that advocates the use of approximate rigid alignment of
shapes as a weak supervision signal. We demonstrate through extensive experiments that
this weak supervision obtains competitive performance compared to the fully supervised
approach [19]. Our main hypothesis is that the approximate rigid alignment provides the
network enough information to disambiguate symmetry issues.

One limitation of the method we present in Chapter 3 is that it is only applicable to
shapes that are approximately pre-aligned. Although approximate alignment is easier
to obtain than pointwise ground truth between a pair of shapes, it still suffers from
scalability issues on large scale 3D shape collections. In Chapter 4, we go beyond this
prerequisite and consider the problem of learning simultaneously a self symmetry map
and a pairwise map. In [90], we propose a novel commutative regularization that couples
the self-symmetry map with a pairwise map and thus enables knowledge transfer between
the two maps during training. To the best of our knowledge, we propose the first method
that simultaneously learns symmetry detection and shape matching for non-rigid point
clouds.

Our last contribution in Chapter 5 is an application of the functional map framework
to some graph-based machine learning problems such as geometric matrix completion
[62] and dimensionality reduction [84]. We propose a simplified framework that is based
on a key idea that using a reduced basis to represent functions on the product space
is sufficient to recover a low rank matrix approximation even from a sparse signal. We
validate our framework on various synthetic as well as real world benchmark datasets.

In Chapter 6, we conclude with a brief overview of followup works that cite our work
and build upon it. Lastly, we present cycle consistent deep functional maps as a future
direction that is yet to be explored.

To summarize, Chapter 2 presents learning high dimensional functional map and is
based upon the contributions made in SURFMNet [81], ZoomOut [60] and GeomFmap [19].
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The method proposed in Chapter 3 contributed to Weakly Supervised Deep Functional
Map for Point Clouds [89]. Chapter 4 is based on the following article

• Joint Symmetry Detection and Shape Matching for Non-Rigid Point Clouds [89].

. Chapter 5 contributed to the following paper:

• Matrix Decomposition on Graphs: A Simplified Functional View [91].



Chapter 2

Learning High Dimensional
Functional Map

In this chapter, we introduce a new phenomenon named ’Spectral Overfitting’.
We first show that directly learning high dimensional functional maps gives inaccu-
rate correspondences. Instead, we propose a two stage algorithm that first learns
lower resolution functional maps and then refines them using a iterative spectral
upsampling method [60]. Our key idea is that low frequency information is more
stable across different shapes/classes and thus learning a low dimensional functional
map generalizes much better than a learned high dimensional functional map. This
algorithm is used later throughout in this thesis to effectively estimate high dimension
functional maps.

2.1 Background

In this chapter, we introduce Spectral Overfitting in deep functional maps. Since our
work builds on the functional map framework, we briefly review the basic notions and
pipeline for estimating functional maps, and its deep counterpart [53, 81]. FMNet [53]
introduced learning into a functional map pipeline by learning a non-linear transformation
of SHOT descriptor functions. In this thesis, we distinguish between FMNet and deep
functional maps as the latter is a more general framework considering many followup
works [32, 81, 89]. Specifically, we call deep functional maps any method that learns
descriptors that are used to estimate a functional map inside a neural network, which
then imposes some loss on this estimated functional map. In what follows, we describe
FMNet as a specific deep functional map algorithm which learns on SHOT and deep
functional maps as a general framework that learns features to be used with in-network
functional map estimation.

2.1.1 Functional Map Pipeline

Given a pair of shapes, S1, S2 represented as triangle meshes, and containing, respectively,
n1 and n2 vertices, the basic pipeline for computing a map between them using the
functional map framework, consists of the following main steps :

1. Compute a small set of k1, k2 of basis functions on each shape, e.g. by taking the
first few eigenfunctions of the respective Laplace-Beltrami operators.



12 Chapter 2. Learning High Dimensional Functional Map

2. Compute a set of descriptor functions on each shape that are expected to be
approximately preserved by the unknown map. For example, a descriptor function
can correspond to a particular dimension (e.g. choice of time parameter of the
Heat Kernel Signature [99]) computed at every point. Store their coefficients in the
respective bases as columns of matrices A1,A2.

3. Compute the optimal functional map C by solving the following optimization
problem:

Copt = argmin
C12

Edesc
(
C12

)
+ αEreg

(
C12

)
, (2.1)

where the first term aims at descriptor preservation: Edesc
(
C12

)
=

∥∥C12A1−A2

∥∥2,
whereas the second term regularizes the map by promoting the correctness of its
overall structural properties. The simplest approach penalizes the failure of the
unknown functional map to commute with the Laplace-Beltrami operators:

Ereg(C12) =
∥∥C12Λ1 −Λ2C12

∥∥2 (2.2)

where Λ1 and Λ2 are diagonal matrices of the Laplace-Beltrami eigenvalues on the
two shapes.

4. Convert the functional map C to a point-to-point map, for example using nearest
neighbor search in the spectral embedding, or using other more advanced techniques
[79, 26].

One of the strengths of this pipeline is that typically Eq. (2.1) leads to a simple (e.g.,
least squares) problem with k1k2 unknowns, independent of the number of points on
the shapes. This formulation has been extended using e.g. manifold optimization [49],
descriptor preservation constraints via commutativity [67] and with kernelization [110]
among many others.

2.1.2 Deep Functional Maps

Despite its simplicity and efficiency, the functional map estimation pipeline described
above is fundamentally dependent on the initial choice of descriptor functions. To alleviate
this dependence, several approaches have been proposed to learn the optimal descriptors
from data [53]. In this dissertation, we build upon a recent supervised deep learning-based
framework, called FMNet, introduced by Litany et al. [53] that aims to transform a given
set of descriptors so that the optimal map computed using them is as close as possible to
some ground truth map [53]. The same framework is easily extended to an unsupervised
setting by replacing the supervised loss with some structural loss that satisfies the desired
properties of a functional map. SURFMNet [81] introduced this unsupervised approach.
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FM
Net

FM
Net

Figure 2.1: Overview of the Unsupervised Deep Functional Map approach SURFMNet
[81]: given a pair of shapes and their descriptors D1, D2, it optimizes for a non-linear
transformation T using a Siamese architecture so that the transformed descriptors lead
to functional maps that best satisfy the structural constraints.

In general, given a set of shape pairs, the Deep Functional Map pipeline [53] aims to
solve the following problem:

min
T

∑
(S1,S2)∈Train

lF (Copt), where (2.3)

Copt = argmin
C

∥CAT (D1) −AT (D2)∥. (2.4)

Here T is a non-linear transformation, in the form of a neural network, to be applied to
some input descriptor functions D, Train is the set of training pairs, lF is a loss function
which penalizes the deviation of the computed functional map Copt. In the supervised
setting of FMNet [53], this deviation is measured from the ground truth correspondence.
In the unsupervised setting of SURFMNet [81], such deviation is measured by a structural
loss on estimated Copt. AT (D1) denotes the transformed descriptors D1 written in the
basis of shape S1.

2.1.3 Deep Functional Map Regularization

The loss function, lF (Copt), mentioned in Eq. 2.3 encourages desirable map properties
by penalizing the deviation of estimated map from such properties. In the following, we
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describe four such properties some of which are also used extensively later in Chapter 3
and Chapter 4.

Bijectivity Given a pair of shapes and the functional maps in both directions, perhaps
the simplest requirement is for them to be inverses of each other. It is enforced by
penalizing the difference between their composition and the identity map:

E1 = ∥C12C21 − I∥2 + ∥C21C12 − I∥2 (2.5)

Orthogonality As observed in several works [68, 82] a point-to-point map is locally
area preserving if and only if the corresponding functional map is orthonormal. Thus,
another natural penalty in SURFMNet pipeline is:

E2 = ∥C⊤
12C12 − I∥2 + ∥C⊤

21C21 − I∥2 (2.6)

Laplacian commutativity Similarly, it is well-known that a pointwise map is an
intrinsic isometry if and only if the associated functional map commutes with the Laplace-
Beltrami operator [80, 68]. It is enforced by including the following penalty:

E3 =
∥∥C12Λ1 −Λ2C12

∥∥2 + ∥∥C21Λ2 −Λ1C21

∥∥2 (2.7)

Descriptor preservation via commutativity The last penalty promotes functional
maps that arise from point-to-point maps, rather than more general soft correspondences.
To achieve this, we follow the approach proposed in [67] based on preservation of pointwise
products of functions. Namely, it is known that a non-trivial linear transformation T across
function spaces corresponds to a point-to-point map if and only if T (f⊙h) = T (f)⊙T (h)
for any pair of functions f, h. Here ⊙ denotes the pointwise product between functions
[95], i.e. (f ⊙ h)(x) = f(x)h(x). When f is a descriptor function on the source and
g is the corresponding descriptor on the target, the authors of [67] demonstrate that
this condition can be rewritten in the reduced basis as follows: CMf = MgC, where
Mf = Φ+Diag(f)Φ, and Mg = Ψ+Diag(g)Ψ. This leads to the following penalty:

E4 =
∑

(fi,gi)∈Descriptors

||C12Mfi −MgiC12||2

+||C21Mgi −MfiC21||2,
Mfi = Φ+Diag(fi)Φ,Mgi = Ψ+Diag(gi)Ψ.

(2.8)

In this expression, fi and gi are the optimized descriptors on source and target shape,
obtained by the neural network, and expressed in the full (hat basis), whereas Φ,Ψ are the
fixed basis functions on the two shapes, and + denotes the Moore-Penrose pseudoinverse.
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Source descriptor before Target descriptor before

Source descriptor after Target descriptor after

Figure 2.2: Given a pair of shapes with noisy descriptors (top), SURFMNet [81] makes
them more consistent (bottom) and automatically computes an accurate pointwise
correspondence.
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Source Ground-Truth SURFMNet

Figure 2.3: Illustration of SURFMNet computed point to point map via texture transfer
between a source and a target shape.

Figure 2.1 illustrates the unsupervised Deep Functional Map pipeline of SURFMNet
[81]. It aims to learn a transformation T of descriptors, so that the transformed descriptors
T (D1), T (D2), when used within the functional map pipeline result in a desired map.
Unlike methods based on formulating shape matching as a labeling problem this approach
evaluates the quality of the entire map, obtained using the transformed descriptors and
thus leads to significant improvement compared to several strong baselines.

The only unknowns in this optimization are the parameters of the neural network
applied to the descriptor functions. The functional maps C12 and C21 are fully determined
by the optimized descriptors via the solution of the optimization problems in Eq. (2.4).
Note that although stated as an optimization problem, Eq. 2.3 reduces to a solution of
a linear system of equations. This is easily differentiable using the well-known closed-
form expression for derivatives of matrix inverses [71]. Namely for any matrix Y we
have ∂Y −1

∂x = −Y −1 ∂Y
∂x Y

−1. This expression allows to back-propagate the loss through
the linear system used to solve for the functional maps in Eq. 2.3. Furthermore, the
functionality of differentiating a linear system of equations is already implemented in
TensorFlow and can be used directly.

Figure 2.2 illustrates how the network transforms the initial descriptor functions pre-
defined on individual shapes so that they are better aligned afterwards. Figure 2.3
illustrates a point to point map computed by SURFMNet between a source and a target
pair with texture transfer.
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Motivation Although FMNet [53] and SURFMNet [81] propose an elegant solution to
learning non-linear feature transformation, they rely on directly embedding the scalar
functions into a high dimensional (k = 120) Laplace Beltrami eigen basis that leads to
severe overfitting and thus, significant drop in the accuracy of resulting point to point map.
In the following subsection, we illustrate it with experiments on standard benchmarks.
In the next subsection, we briefly review the ZoomOut [60] algorithm that upsamples
a lower resolution map to a higher resolution map. Afterwards, we introduce Spectral
Overfitting.

2.1.4 Zoomout: Iterative Spectral Upsampling

Before we introduce spectral overfitting, we give a brief overview of ZoomOut [60]. We
use it to iteratively upsample our learned functional map. ZoomOut is an iterative map
refinement method that is particularly useful when the input map is noisy or is encoded
as a ’small’ functional map. It allows to recover a high-quality map, given noisy input.
ZoomOut is a good fit for our purpose as it can upsample from a small-sized functional
map, precisely the setting which is good for learning a functional map without overfitting.

As input we assume to be given either a small functional map C0 k × k or a point-
to-point correspondence T : S1 → S2. The goal of ZoomOut is to extend it to a new
map C1 of size (k + 1)× (k + 1) without any additional information. It consists of the
following two basic steps:

1. Convert a k × k-size functional map to a pointwise map.

2. Convert the pointwise map to a k + 1× k + 1 functional map.

To compute a pointwise map from a given C in step (1), we solve the following
problem:

T (p) = argmin
q

∥C(ΦS2(q))
⊤ − (ΦS1(p))

⊤∥2, ∀ p ∈ S1 (2.9)

where ΦS1(p) denotes the pth row of the matrix of eigenvectors ΦS1 . This procedure
gives a point-to-point map T : S1 → S2, and can be implemented via a nearest-neighbor
query in k-dimensional space.

Mathematically, ZoomOut can be written as:

1. Compute a point-to-point map T and encode it as a matrix Π.

2. Set C1 = (Φk+1
S1

)⊤AS1ΠΦk+1
S2

.

This procedure is then iterated to obtain progressively larger functional maps C0,C1,C2, .,Cn

until some sufficiently large n. This remarkably simple procedure can be implemented in
only a few lines of code and can result in very accurate functional and pointwise maps
even when given a noisy input.
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Figure 2.4: Accuracy of SURFMNet as the functional map size is varied from 10 to 120
in two different settings. In both cases, using 30 eigen basis gives optimal results.

2.2 Spectral Overfitting

In this chapter, we introduce a novel phenomenon that we call Spectral Overfitting.
Figure 2.4 shows the sensitivity of SURFMNet on the SCAPE remeshed dataset as the
number of eigen functions are varied from 10 to 150. We train the network in two settings
to demonstrate the difference. In the first setting, we train and test on same dataset
whereas in the second, we train on FAUST and test on SCAPE. As evident in Figure
2.4, we obtain a similar conclusion in both settings. We see severe over-fitting when
using a large eigen-basis. However, using low number of eigen basis generalizes better
to unseen test data. The generalization with large eigen basis gets even worse in cross
dataset setting where the variation in input shapes is much larger.

We attribute the superior generalization ability with low eigen basis to the fact that
low frequency information is more stable across different shapes/classes. Bias-Variance
tradeoff [7] also plays an important role since we obtain lower accuracy when using a
map resolution of 10. It implies that while low frequency information is stable across
shapes, we also need a tradeoff between model capacity and stability. Thus, in both
settings, we obtain the optimal result at a resolution of 30. We exploit these findings to
estimate a high dimensional functional map using Zoomout. Zoomout is a good method
in this scenario as it can upsample from a small-sized functional map, that is precisely
the setting for learning without overfitting.
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Figure 2.5: Average Geodesic error on SCAPE of learning a high resolution map directly
with SURFMNet (in blue) and learning a small resolution map upsampled afterwards
with ZoomOut (in orange). As evident, the later outperforms the former significantly on
SCAPE testset (45 pairs). We used 80 shapes from FAUST for training.

Our method is based on first learning a low dimensional functional map based on
a deep functional map [81, 19] and then refining it to higher dimensional based on an
iterative spectral upsampling [60]. With a combination of these two, we demonstrate
that one can estimate a high dimensional functional map effectively. To illustrate this
experimentally, we upsample a k × k functional map obtained with a deep functional
map [81]. We vary the size of the functional map k and always upsample it to a fixed
maximum size of 120. As shown in Figure 2.5, the accuracy of the resulting 120 × 120
map is significantly higher, especially when upsampled from low resolutions of 30-90 than
that of learning a large functional map directly.

Conclusion In this chapter, we marry two important concepts: learning without
overfitting with efficient map refinement strategy that is parameter free, and can help
refine even approximate maps. This leads to an effective general purpose pipeline that
both avoids overfitting and leads to accurate maps. This technique is further used in
GeomFmap [19] and WSupFMNet (Chapter 4 in this thesis.) where we directly learn
features from point clouds.



Chapter 3

Weakly Supervised Deep Functional
Maps for Point Clouds

A variety of deep functional maps have been proposed recently, from fully
supervised to totally unsupervised, with a range of loss functions as well as different
regularization terms. However, it is still not clear what are minimum ingredients
of a deep functional map pipeline and whether such ingredients unify or generalize
all recent work on deep functional maps. In this chapter, we show empirically
the minimum components for obtaining state-of-the-art results with different loss
functions, supervised as well as unsupervised. Furthermore, we propose a novel
framework designed for both full-to-full as well as partial to full shape matching that
achieves state of the art results on several benchmark datasets outperforming even
the fully supervised methods. Our code is publicly available at https://github.
com/Not-IITian/Weakly-supervised-Functional-map

3.1 Introduction

Classical correspondence methods are typically based on handcrafted features or defor-
mation models [104]. In contrast, recent approaches have focused on learning an optimal
model directly from 3D data. This includes approaches based on template fitting and
reconstruction [30, 29], and methods that exploit different definitions of convolution and
phrase correspondence as a dense labeling problem [113, 59, 9] among others.

As mentioned in the previous chapter, a prominent direction in learning-based shape
matching was pioneered by the FMNet work, [53] by exploiting the functional map
representation [68] and learning features that recover optimal functional maps rather
than e.g. individual point labels. The use of the functional map representation allows to
efficiently impose global correspondence constraints, and has been recently been extended
in both unsupervised [32, 81] and supervised settings [19]. Despite significant progress in
this area, there still exist three major issues.

First, the most recent approach, Deep Geometric Functional Maps [19] is limited
to supervised setting that requires ground truth correspondences that are difficult to
obtain considering the cost of annotating a dense point-to-point map on each shape pair.
Second, despite a variety of deep functional maps-based methods, it is still not clear
what are minimum ingredients of a deep functional map pipeline. More importantly, do
such minimum ingredients unify or generalize all recent work on deep functional maps?
While a battery of loss functions and regularization have been proposed for different

https://github.com/Not-IITian/Weakly-supervised-Functional-map
https://github.com/Not-IITian/Weakly-supervised-Functional-map
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deep functional maps, as we demonstrate below, the devil is not in the loss functions.
Instead, using a low number of Laplacian eigen-basis, very weak supervision in the form
of rigid alignment and enforcing basic structural properties of the resulting functional
map is sufficient to obtain high quality results. Moreover, our approach generalizes to
many loss functions proposed recently and does not require geodesic matrices, as in
FMNet [53] and UnSupFmnet [32], ground truth maps, as in GeomFmap [19] and FMNet,
regularizers, such as descriptor preservation in SURFMNet [81] and regularized FMap
layer in GeomFMap [19]. Third, recent learning-based approaches are neither designed
nor tested for the partial shape matching problem [78, 54] which is of great interest in
robotics [17] and Virtual reality applications [88]. To this end, we propose a weakly
supervised framework that addresses all three major issues.

Broadly, there are three main components to any deep functional map pipeline, namely
feature extractor, choice of basis functions and design of empirical loss or regularization
on the functional map. In this chapter, we make contributions on all three fronts. First,
we propose to learn feature descriptors directly from raw data with very weak supervision
and establish that for non-rigid shape correspondence, rigid alignment supervision turns
out to be sufficient to obtain accurate results. Remarkably, this approach also outperforms
the fully supervised state-of-the-art methods, which rely on ground truth point-to-point
correspondences, on challenging benchmarks. Secondly, we show that the combination
of our feature extractor projected to low number of Laplacian eigen basis (30) and an
unsupervised loss, consisting of simple regularization terms, suffice to obtain state-of-the-
art results for any recently proposed loss functions. Thirdly, to address partial shape
matching, we propose a novel data driven method to learn an optimal alignment between
source and target Laplacian eigen basis functions which paves the way for future work on
deep functional maps in partial shape matching.

3.2 Related Work

Functional Maps Computing point-to-point maps between two 3D discrete surfaces is a
very well-studied problem. We refer to a recent survey [83] for an in-depth discussion. Our
method builds upon the functional map pipeline. Functional maps encode correspondences
as small matrices, expressed in a reduced basis, which greatly simplifies the associated
optimization problems. A range of recent works, including [48, 34, 11, 78, 67, 77]
among many others, have extended the generality and improved the robustness of
the functional map estimation pipeline, by suggesting regularizers, robust penalties
and powerful post-processing approaches. Nevertheless, existing non-learning based
methods are strongly tied to the choice of descriptor (also known as ’probe’) functions,
which must be specified manually a priori. We also note that there also exist other
techniques that learn correspondences without using the functional map representation,
e.g., [113, 9, 62]. However, such techniques typically either require significantly more
training data (essentially because they treat shape correspondence as a dense labeling
problem with a very large number of labels), or do not learn from 3D geometry which is
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the main goal of this chapter.

Supervised Learning from raw 3D shape In contrast to axiomatic approaches that
use hand-crafted features, a variety of methods have also been proposed to learn the
optimal features or descriptors from 3D data. In the functional maps domain, the seminal
Deep Functional Maps work [53] proposed a deep learning architecture called FMNet
to compute optimal features from data. This architecture was based on optimizing a
non-linear transformation of SHOT descriptors, [102] to obtain maps that are as close
as possible to given ground truth correspondences. Follow-up works have extended this
approach to the unsupervised setting [81, 32] by modifying the training loss, but still
used pre-defined descriptors for optimization. These methods generalize poorly across
datasets as the input features such as SHOT descriptors are sensitive to the triangle mesh
structure, which can vary drastically across different datasets.

Most recently, works including [30, 19] have shown that feature functions can be
learned directly from the raw 3D data without relying on pre-defined descriptors, resulting
in significantly more robust and accurate methods. However, to obtain good results
these works had to rely on ground truth correspondences and do not generalize their
empirical success beyond their own setup. Although PointNet [72] and its variants ([73])
achieve impressive results from raw point clouds for classification tasks, they are not yet
competitive for the shape correspondence task.

In this chapter, weak supervision implies that datasets are only approximately rigidly
aligned, which is necessary primarily due to the presence of symmetries. Since some
poses (e.g. the neutral pose) are fully extrinsically symmetric, a PointNet like feature
extractor cannot distinguish left/right unless the shapes are aligned. Interestingly, as we
demonstrate below, such weak supervision is sufficient to obtain high quality results.

Partial Shape Matching While some formulations of functional maps allow to deal
with the lack of isometry and presence of partiality, this framework is in principle not
designed to deal with partial correspondence. Rodola et al. [78] have provided an
empirical evidence and theoretical analysis of a surprising property of interaction between
Laplacian eigenfunctions as a result of removing parts from surfaces. This work implies
that there exists an unknown alignment between eigenfunctions of partial shapes and full
shapes and knowing it results in a special slanted diagonal structure of the correspondence
matrix. However, their solution relies on a complicated alternating optimization over
the spectral domain and the spatial domain. Instead, [54] proposed an efficient and fully
spectral method for finding this transformation matrix between the two eigen spaces.
This approach, however, is still based on hand-crafted features, optimization on Stiefel
manifold and is instance specific. Besides, replacing handcrafted features by learnable
feature descriptors is not straightforward due to manifold optimization involved in the
process. We address both of these issues by proposing a novel method that mitigates
these issues by learning directly from raw data.
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Figure 3.1: An example of approximate alignment from SCAPE that shows the weak
supervision used in our work.
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3.3 Method

In this section, we first introduce our approach to learning descriptors from raw 3D shapes
for full to full shape matching. Afterwards, we detail our novel partial shape matching
algorithm that learns an optimal alignment of Laplacian eigen basis functions, given
the spectrum of partial and full shape. Note that the feature descriptor extraction is
common to both approaches. However, our unsupervised loss function is totally different
for partial and full shape matching.

Weak Supervision In both full and partial matching cases, our method is ’weakly
supervised’ in the sense that we expect the input non-rigid shapes to be approximately
rigidly aligned. This means having a consistent ’up’ direction (along, e.g., the y axis)
and an approximate forward-facing direction (along, e.g., the z direction). Some existing
datasets, such as partial SHREC, [18], already satisfy this assumption (See Figure 3.2 for
example.)

When considering multiple datasets, we only need to make sure that these axes are
consistent, which can be done with very little manual intervention. We stress that we do
not use ground truth point-to-point or functional correspondences, and that obtaining
reliable detailed ground truth maps requires significant effort especially when considering
cross-dataset learning. Weak supervision is necessary primarily due to the presence of
symmetries. Since some poses (e.g. the neutral pose) are fully extrinsically symmetric,
some way to disambiguate left/right is necessary for accurate correspondence. In our
case, we exploit weak supervision in the form of rigid alignment, and further use it to
explain the performance drop of a fully supervised methods like GeomFmap, [19], when
trained on aligned dataset and tested on SCAPE (non-aligned).

3.3.1 Overview of Architecture

Given a collection of shapes that are approximately rigidly pre-aligned, we train a network
N, which takes a pair of point clouds P1 and P2, and produces feature functions D1 and
D2. These feature functions are then projected onto LB eigenbasis. We then estimate a
functional map C by aligning these feature functions. Lastly, we define a structural loss
on estimated C to enable end to end learning. Note that this pipeline is similar to the
pipeline shown in Figure 2.1 in Chapter 2. However, in this chapter, we learn directly
from point cloud coordinates and with a novel supervision.

PointNet++ Feature extractor As described in Chapter 2, we aim to learn descriptor
functions that will be used in the deep functional map framework. Thus, our main goal
is to learn functional characterizations of point clouds that will later be used to compute
spectral descriptors and then functional maps. Thus, this network must be applied
with the same weights to the source and target shapes in a Siamese way using shared
learnable parameters. Our feature extractor is based on PointNet ++[73], that extracts
local features capturing fine geometric structures from small neighborhoods. Such local
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features are further grouped into larger units and processed to produce higher level
features. Such hierarchical feature learning with increasing scales of contexts is inspired
from convolutional neural networks. To deal with non-uniform densities, it proposes
special sampling layers that are able to intelligently aggregate information from different
scales.

Our feature extraction network is based on the standard architecture consisting of 4
sampling layers, with first layer sampling 1024 points and 4 feature propagation layers
such that final layer outputs 128 dimension feature descriptor for each input shape.

Unsupervised loss for full shape matching Given the extracted feature functions,
we first project them onto the Laplacian basis and then compute the optimal functional
map by minimizing minC

∥∥CA − B
∥∥2. As noted in [53], this leads to a simple linear

system of equation, whose solution can be differentiated during training. We therefore
train our feature extraction network by imposing an unsupervised loss on the optimized
functional map. Our loss follows the approach of [81] and is based on three key structural
properties of a functional map between two approximately isometric shapes.

Bijectivity Transporting functions on a shape and transporting them back should yield
the same functions. Following [25, 81], we therefore enforce that composition between
C12 and C21 to be as closely as possible to I, the identity matrix, which leads to:
E1 = ∥C12C21 − I∥2 + ∥C21C12 − I∥2

Orthogonality As observed in the functional map literature, [68, 82, 81] a point-to-
point map is locally area preserving if and only if the corresponding functional map is
orthonormal. Thus, for shape pairs, approximately satisfying this assumption, a natural
penalty in our unsupervised pipeline is: E2 = ∥C⊤

12C12 − I∥2 + ∥C⊤
21C21 − I∥2

Laplacian commutativity Having functional maps that commute with the Laplace-
Beltrami operators is known to be a common regularizer in the functional map pipeline
[80, 68]. We recall that this constraint helps find better mappings since it promotes
near-isometric point-to-point maps: E3 =

∥∥C12Λ1 − Λ2C12

∥∥2 + ∥∥C21Λ2 − Λ1C21

∥∥2
where Λ1 and Λ2 are diagonal matrices of the Laplace-Beltrami eigenvalues on the two
shapes.

Note that orthogonality and commutativity does not imply bijectivity. One counter
example is I and −I. Both are orthogonal and would commute with any Laplacian.
However, they are not inverse of each other.

Our unsupervised loss function is a combination of all three structural properties
and weighted as follows: L = E1 +E2 + 0.001E3 where the weighing scalars are found
empirically.
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3.3.2 Basis Alignment for Partial Shape Matching

The basic pipeline described above for shape matching breaks down in the case of partial
shape matching. This is primarily because structural properties of the maps such as
bijectivity, area preservation (orthogonality) are not applicable anymore. Rodola et al.
[78] show that for each partial eigenfunction (i.e., each eigenfunction of a partial shape),
there exists a corresponding full eigenfunction (i.e., some eigenfunction of the full shape).
The problem then reduces to finding alignment in k dimensional eigen space that is
achieved by optimizing for a new basis on one shape only and keeping the other fixed
to the standard Laplacian eigenfunctions. Due to this coupling, the new basis functions
will behave consistently resulting in almost perfectly diagonal C even in the absence of a
perfect isometry. Keeping the same notation as before, where A and B represents the
PointNet++ descriptors projected onto the laplacian eigen basis, it is written as follows:

min
X

∥∥Ar −X⊤B
∥∥2 + off(X⊤ΛX), (3.1)

where Ar contains the r × k submatrix of A (the first r rows of matrix A) and X
of size k × r is a transformation matrix between the two eigen spaces that stores the
coefficients of desired linear combination. Note that A is the partial shape and X is a
complete shape. The value of r is estimated from the spectrum of partial and full shape
as follows: r = max

kp
i=1{i | λ

p
i < max

kf
j=1 λ

f
j } after setting kp = kf = 60 where f denotes

the full shape and p denotes the partial one. We upper bound the rank obtained by
40. Λ is a diagonal matrix of the first k eigenvalues of partial shape. The second term
in Eq. (3.1) is a regularizer on X that ensures that resulting eigen basis functions on
partial shape minimize the Dirchelet energy on its Laplace Beltrami operator ∆. The
method of [54] obtains the descriptor function matrix A and B using precomputed SHOT
descriptors. Besides, it constrains X to be an orthogonal matrix and thus optimize it
using manifold optimization solver on Stiefel Manifold. However, we do not impose any
orthogonality constraint on X and optimize Eq. (3.1) differently since our descriptor
functions are PointNet ++ based and need to be learned simultaneously. So, instead of
optimzing over X, we are optimizing the functional over X, A and B.

min
X,A,B

∥∥Ar −X⊤B
∥∥2 + off(X⊤ΛX), (3.2)

We split the functional in Eq. 3.2 in two parts and first optimize for X by solving∥∥Ar −X⊤B
∥∥2 with a simple linear system for which the derivatives can be computed

in closed form. Given this optimal X, we then impose the loss on X by computing the
second part of Eq (3.2) and use this unsupervised loss to backpropagate gradients to
learn the appropriate descriptor functions. Note that for partial matching this loss term
is the only one we use, whereas in the full shape matching setting we use a more powerful
loss described in Section 3.3.1.

Implementation We implemented our method in TensorFlow [1]. We train our network
with a batch size of 24 shape pairs for 10000 steps. We use a learning rate of 1e − 4
with Adam optimizer. During training, we randomly sample 4000 points from each shape
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Figure 3.2: An example of approximate alignment from SHREC’16

while training with SURREAL dataset whose shapes contain 7000 points each. For other
datasets such as SCAPE and FAUST remesh, that contain roughly 5000 points each, we
randomly sample 3000 points during for training. We describe partial shape matching
experimental setup later in Section 3.4.3. For a fair comparison with baseline methods,
we always use a recent and efficient refining algorithm, called ZoomOut [60] described in
Chapter 2 based on navigating between spatial and spectral domains while progressively
increasing the number of spectral basis functions.

3.4 Results

This section is divided into three subsections where each provides a separate evaluation
of our contributions. Section 3.4.1 shows the experimental comparison of our weakly
supervised approach with fully supervised state-of-the art methods for near-isometric
shape matching. Section 3.4.2 demonstrates that weak rigid alignment of datasets, low
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Table 3.1: Results on remeshed FAUST and SCAPE. F on S means trained on FAUST
and tested on SCAPE whereas S on F means trained on SCAPE and tested on FAUST.
Note that our weak supervision obtains competitive or even better results than fully
supervised methods such as GeomFmap.

Method \ Dataset F S F on S S on F
SURFMNet 15. 12. 32. 32.
SURFMNet+icp 7.4 6.1 19. 23.
Unsup FMNet 10. 16. 29. 22.
Unsup FMNet+pmf 5.7 10. 12. 9.3
FMNet 11. 17. 30. 33.
FMNet+pmf 5.9 6.3 11. 14.
3D-CODED 2.5 31. 31. 33.
GeomFmap 3.1 4.4 11. 6.0
GeomFmap +zo 1.9 3.0 9.2 4.3
Ours(WSupFMNet) 3.3 7.3 11.7 6.2
Ours(WSupFMNet) + zo 1.9 4.9 8.0 4.3

number of Laplacian eigenbasis and enforcing structural properties of a map suffice
to obtain excellent results across a variety of loss functions. Finally, Section 3.4.3
demonstrates the effectiveness of our novel partial shape matching framework. We
evaluate all results by reporting the per-point-average geodesic distance between the
ground truth map and the computed map. All results are multiplied by 100 for the sake
of readability.

3.4.1 Near-isometric Shape Matching

In this section, we evaluate our method for complete (full to full) near isometric shape
matching. We compare our method with state-of-the-art approaches while focusing
especially on the the very recent functional map-based technique [19], which was shown
to outperform existing competitors.

Datasets For a fair comparison with [19], we follow the same experimental setup and
test our method on a wide spectrum of datasets: first, the re-meshed versions of FAUST
dataset [8] and the SCAPE [3], made publicly available by [77]. Lastly, we also use the
training dataset of 3D-CODED, consisting in 230K synthetic shapes generated using
SURREAL [105] with the parametric model SMPL introduced in [56]. We use a subset
of it for training purposes to compare the generalization ability of different methods to
changes in connectivity and triangulation. This is achieved by training on this synthetic
data and testing on re-meshed datasets such as FAUST and SCAPE.
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Table 3.2: Results when trained on SURREAL and tested on remeshed FAUST and
SCAPE. Our weak supervision obtains significantly better results on SCAPE when
compared to fully supervised methods.

Method \ Dataset F S
GeomFmap +Zo 2.5 9.2
3D-CODED 4.9 6.0
Ours (WSupFMNet) 5.0 8.3
Ours (WSupFMNet)+zo 2.8 5.5

Baselines We compare our method to several state of the art methods: the first
category includes a variety of unsupervised deep functional maps proposed recently with
SHOT descriptors. The second category includes supervised methods that directly learn
from 3D data. This includes the supervised template based approach of 3D-CODED [30]
as well as the recent work GeomFmap [19]. All baseline results are taken from [19]. In
the case of SHOT based deep functional maps [53, 32, 81], all results are invariant by
any rigid transformation of the input shapes and therefore, no alignment is required. For
a fair comparison with other methods, we show our results with and without ZoomOut
[60] refinement, referred to as ZO. For conciseness, we refer to our method as Ours in the
following text. We compare our approach to these different methods in Table 3.1.

Table 3.3: Ablation study of individual losses with and without alignment when trained
with Surreal.

Losses All E1 E2 E3 (E1+E3) All-not-aligned

SCAPE 8.3 13 16 10.5 9.2 22
FAUST 5.0 11 14 9.0 6.3 8.0

Generalization Experiments Following the standard protocol, we split FAUST re-
meshed and SCAPE re-meshed into training and test sets containing 80 and 20 shapes
for FAUST, and 51 and 20 shapes for SCAPE. F and S in Table 3.1 shows the results
for training and testing on same dataset, FAUST and SCAPE, respectively whereas F
on S means trained on FAUST and tested on SCAPE. In Table 3.2, results are shown
with the SURREAL dataset from which we sample 500 shapes for training and test the
trained models on test sets of FAUST re-meshed, SCAPE re-meshed. We compare with
3D-CODED and GeomFMap since they outperform every other method and learn from
raw 3D geometry. We report baseline numbers from [19] which report performance of
different methods by varying the size of training set from few hundred to thousands. We
pick the best results obtained with any number of shapes. All results are multiplied by
100 for the sake of readability. We also report results without ZoomOut refinement.
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Results and Discussion As evident in Table 3.1, our weak supervision performs on
par with the fully supervised approaches such as 3D-CODED [30] and GeomFMap [19].
We observe comparable or superior performance to the supervised approach in Table
3.2. Note that shapes are pre-aligned for our weak supervision whereas for rest of the
approaches, they are not pre-aligned. We obtain a particularly remarkable performance
on the SCAPE dataset at test-time when trained with any other dataset. On FAUST, our
weak supervision is comparable with GeomFMap even though it is trained with ground
truth correspondences.

We would like to stress that baselines such as 3D-CODED and GeomFMap require
hundreds of SURREAL shapes, 2000 for 3D-CODED, in order to obtain reasonable results
on SCAPE whereas we can obtain high quality results with significant improvement over
GeomFMap with as few as 100 and 50 shapes. We stress that no other method is able to
achieve such a generalization with this low number of shapes. We attribute our superior
results over GeomFmap to a range of factors. First, in contrast to our unsupervised
loss, GeomFmap uses a supervised loss without adequate regularization that leads to
severe overfitting on challenging datasets with different poses such as SCAPE. This
underscores the importance of enforcing structural properties of functional map in any
loss function. Second, GeomFmap achieves a robustness to changes in shape orientation
using data augmentation and ground truth functional map supervision, whereas we align
the shapes manually. Third, we assume to be given pre-aligned shapes on the test set
(weak supervision) but use the unaligned test set for GeomFmaps that relies on point to
point ground truth and data augmentation during training.

These experimental results confirm our findings that the devil in non-rigid shape
matching lies in approximate rigid alignment and such weak supervision is equivalent to
having supervised ground truth correspondence. Compared to GeomFmap, we obtain
better results with ZoomOut as it refines initial maps better if they do not contain large
errors, e.g. due to symmetries, which we observe with GeomFmap. Also, when the initial
maps are good, the refined maps are often similar regardless of initial maps.

Ablation Study We show in Table 3.3 the ablation of our method trained on SURREAL
and tested on FAUST and SCAPE. E3 (Laplacian commutativity) is the most important
while E2 (Orthonormality) is the least among the three losses. Drastic decrease in
performance of our method (All) without weak supervision underlines its importance.
The drop is less severe in case of FAUST where one axis is already aligned in contrast to
SCAPE that is not aligned at all.

3.4.2 Deep Functional Maps with any Loss Function

The goal of this section is to unpack the minimum ingredients of a deep functional map
pipeline such that it leads to unification of all the recent work under these minimum
conditions. To this end, we test one representative deep functional map approach each
from supervised setting and unsupervised setting with different loss functions. For both
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Table 3.4: Comparative results of different loss functions when trained with our framework
on Surreal and tested on remeshed Faust and Scape. Note that we train and test various
methods on pre-aligned shapes here except for the first row.

Method \ Dataset F S
GeomFap+zo 2.5 9.2
Unsup FMNet loss + Ours 6.3 7.7
Unsup FMNet loss + Ours +zo 4.4 5.2
GeomFap loss + Ours 5.0 7.7
GeomFap loss + Ours +zo 2.7 4.6
Ours(WSupFMNet) 5.0 8.3
Ours(WSupFMNet) +zo 2.8 5.5

Table 3.5: Comparative results on the partial SHREC benchmark

Method \ Dataset Holes Cuts
Litany et. al 16 12
Ours(WSupFMNet) 12 15

approaches, we assume to be given the pre-aligned shapes as in our weak supervision. We
optimize their loss functions with our PointNet++ feature extractor with low eigenbasis
(30) and our regularizers in both functional map pipeline and discard any other regularizer
or feature extractor as proposed in these works. We train on the SURREAL dataset
from which we sample 500 shapes for training and test the trained models on test sets of
FAUST re-meshed, SCAPE re-meshed.

Unsup FMNet loss + Ours UnsupFMNet [32] is an unsupervised approach that
uses a soft correspondence based loss with geodesic matrix. Note that in their paper,
Unsup FMNet relies on the SHOT descriptor that we replace with a PointNet++ feature
extractor. We use their unsupervised loss in addition to our regularization terms.

GeomFmap loss + Ours We also evaluate GeomFmap [19], a supervised approach
where the ground truth functional map is computed in the spectral domain. We use this
supervised loss function but discard their regularization proposed to alleviate overfitting.
We also discard their feature extractor and do not perform any data augmentation. We
sample 6000 vertices randomly for each shape as more vertices should lead to a better
ground truth functional map estimation. GeomFmap simply reports the performance of
[19] without any modifications.
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Results and Discussion We summarize the findings in Table 3.4. Remarkably, we
obtain state of the art results with both loss functions. In particular, GeomFmap
supervised spectral loss when optimized with our framework leads to significant increase
in accuracy on the challenging SCAPE dataset. This shows the generalization capability
of our framework. Similar performance boost is observed with Unsup FMNet on both
datasets. It must be noted that memory footprint/training time of [32] is 50 times more
as it requires either geodesic matrices to fit to RAM or load them on the fly for each pair.
Our approach does not require geodesic matrices, as in FMnet and UnSupFmnet, ground
truth maps, as in GeomFmap and FMnet, regularizers, such as descriptor preservation in
SURFMNet and regularized FMap layer in GeomFMap. Furthermore, when we remove
these components from the respective works and include our minimum components, we
get comparable or better results, thus proving the redundancy empirically.

In the figure below, we show the correspondence error curves, using the protocol
introduced in [41], that are consistent with average geodesic error shown before.

Figure 3.3: Train on SURREAL,Test on
SCAPE

Figure 3.4: Train on SURREAL, Test on
FAUST

3.4.3 Partial Shape Matching

Finally, we quantitatively evaluate our method in the partial matching scenario on the
challenging SHREC’16 Partial Correspondence benchmark [18]. The dataset is composed
of 200 partial shapes (from a few hundred to 9K vertices each) belonging to 8 different
classes (humans and animals), undergoing nearly-isometric deformations in addition to
having missing parts of various forms and sizes. Each class comes with a null shape in
a standard pose which is used as the full template to which partial shapes are to be
matched. The dataset is split into two subsets, namely cuts (removal of a few large parts)
and holes (removal of many small parts).

Experimental Setup The dataset contains several shapes whose number of points
range from few hundreds to 2500. We use some of these shapes as a validation set and
separate them from training or test set. Holes dataset is shown to be more challenging
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than cuts in [54]. Our loss function for partial shape matching does not contain any
hyperparameters. Thus, we use validation set to only validate the training iterations. We
consider [54] as our main baseline as it is considered state of the art for partial shape
matching and run their code to obtain results. Remark that no existing functional maps
learning-based approach has yet been proposed for partial non-rigid shape matching. For
each class, we obtain 10− 12 training shapes and 4− 5 test shapes.

Results and Discussion We present our findings on partial shape matching in Table
3.5. We obtain superior results on holes dataset. However, on cuts dataset, Litany et al.
obtains better results. We attribute it mainly to the fact that convergence is found to
be different for different shapes with our learned model. Thus, a shape in the test set
obtains optimal matching at time that is different for other shapes in test set. This could
be due to a large fluctuations in the number of points per shape. Results shown here are
obtained when our model was trained with a fixed number of iterations for the whole test
set. Note that the method of [54] is not learning based but relies on expensive manifold
optimization for every pair of shapes at test time. In contrast, our method obtains a
correspondence directly with pre-trained features and without the need for any test time
optimization.

3.5 Conclusion

We presented a novel weakly supervised method based on the functional map represen-
tation for both full and partial shape matching. Our main observation is that weak
supervision in the form of approximately rigidly aligned input data is sufficient for learning
powerful features to solve the non-rigid correspondence problem from raw data. Moreover,
we establish that the key to cross dataset generalization lies in working with low number
of eigen basis and enforcing very basic structural properties of a functional map. Our
method for partial shape matching is also the first approach towards learning partial
functional map and is of independent interest. We believe that this method will set the
future direction of research, especially towards simpler techniques and weak supervision,
in both near isometric as well as partial shape matching.



Chapter 4

Joint Symmetry Detection and
Shape Matching

In Chapters 2 and 3, we introduced two different deep functional map pipelines
for shape matching. We have shown that approximate rigid alignment provides a
simple way to disambiguate left/right that is necessary for accurate correspondence.
However, such approach suffers from scalability issues on large scale 3D shape
collections. In Chapter 4, we go beyond this prerequisite and consider the problem
of learning simultaneously a self symmetry map and a pairwise map. Despite the
success of deep functional maps in non-rigid shape matching, there exists no learning
framework that models both self-symmetry and shape matching simultaneously.
This is despite the fact that errors due to symmetry mismatch are a major challenge
in non-rigid shape matching. In this chapter, we propose a novel framework that
simultaneously learns both self symmetry as well as a pairwise map between a pair of
shapes. Our key idea is to couple a self symmetry map and a pairwise map through a
regularization term that provides a joint constraint on both of them, thereby leading
to more accurate correspondences. We validate our method on several benchmarks
where it outperforms many competitive baselines on both tasks.

4.1 Related Work

Learning from raw 3D shape Although early approaches in functional maps litera-
ture used hand-crafted features, more recent methods aim to learn either the optimal
transformations of hand crafted descriptors [54, 81] or even features directly from 3D
geometry itself [89]. Deep Functional Maps [53] proposed a deep learning architecture
called FMNet to optimize a non-linear transformation of SHOT descriptors [102], that
was further extended to unsupervised setting [81, 32, 23]. To alleviate the sensitivity of
the SHOT descriptor to changes in mesh structure, recent works including [30, 89] learn
shape matching directly from the raw 3D data without relying on pre-defined descriptors,
thus leading to improvements in both robustness and accuracy. However, all these works
are aimed at full (complete) shape correspondence and do not handle partial shape
matching effectively. Our work is also related to a recent work [58] that proposes to
replace the Laplace-Beltrami basis with learned embeddings. However, unlike [58], we do
not impose linearly invariant constraint between the learned embeddings.

Symmetry for Non Rigid Shape Matching Matching shapes with intrinsic sym-
metries involves dealing with symmetric ambiguity problem which has been very well
studied and explored in axiomatic methods [75, 52, 61, 69, 64, 76]. More recently, [93, 27]
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proposes an end to end method to learn extrinsic 3D symmetries from a RGB-D image.
However, none of the existing learning based non-rigid shape matching methods models
or learn symmetry explicitly as a regularizer for shape matching.

Joint Learning of similar tasks Computer vision literature is full of problems
that are inherently linked [46, 87, 22] and thus, should be learned simultaneously. In
3D shape analysis, NeuroMorph [22] simultaneously learns shape correspondence and
interpolation. Our work also follows a similar direction as we aim to learn shape matching
and symmetry detection simultaneously. Our work is most similar in spirit to [87]
that couples image segmentation and detection via linear constraints and thus, induces
information transfer/sharing between the segmentation map and detection map via these
constraints. In our formulation, we enable this information transfer during training via a
commutative loss that couples the self-symmetry and pairwise map.

The rest of this chapter is structured as follows: in the next section, we first propose our
method to learn a canonical embedding for joint shape matching and symmetry detection
and introduce our novel regularization term that constrains self-symmetry and pairwise
map. We then consider the unsupervised setting in which symmetry supervision is not
provided. Lastly, we validate our framework on three benchmark datasets by comparing
it to various state-of-the-art methods and providing ablation studies.

4.2 Joint Shape Matching and Symmetry Detection

Due to the instability of Laplace-Beltrami operator, LBO, on partial 3D shapes [42] and
noise [58], our main goal is to avoid using its eigenfunctions and instead we aim to learn
an embedding that can replace the spectral embedding given by the LBO. This section
details how to learn such an embedding while working in the symmetric space.

Input Shape Representation In contrast to several recent works [32, 89] that assume
to be given a mesh representation of 3D shapes in terms of LBO operator, we do not
impose such a constraint and work directly with the point cloud representation. We
denote a map between a pair of shapes X and Y by TXY : X → Y so that TXY(xi) = yj ,
∀i ∈ {1, . . . , nX} and some j ∈ {1, . . . , nY}. This map can be represented by a matrix
ΠXY ∈ RnX×nY such that ΠXY(i, j) = 1 if TXY(xi) = yj and 0 otherwise. We use PX

to denote the 3D coordinates of X.

4.2.1 Supervised Loss functions

In the supervised setting, we assume to be given a set of pairs of shapes X,Y for which
ground truth correspondences Tgt

XY as well as the ground truth self-symmetry map Tsym

are known. Our main goal in the supervised setting is to construct descriptors that
lead to self-symmetries, which match Tsym. We then show that this regularization in
the descriptor space helps to obtain significantly higher-quality correspondences across
shape pairs. Our network takes input as PX, 3D coordinates of point clouds, computes
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an embedding ΦX ∈ RnX×k for each shape based on a PointNet [72] feature extractor
that embeds the shapes into some fixed k dimensional space. The parameters of this
feature extractor are learned by optimizing the sum of two loss functions during training
as described below.

Cosine Similarity Our loss functions are based on a soft-correspondence matrix, also
used in [53] and [58]. The soft correspondence matrix SXY is a soft version of the binary
correspondence matrix ΠXY. We compare the rows of ΦX to those of ΦY to obtain the
soft correspondence matrix SXY that approximates the pairwise map in a differentiable
way as follows:

(SXY)ij =
eΦ

iT

X Φj
Y/τ∑

j e
ΦjT

X Φj
Y/τ

(4.1)

where ΦiT

XΦj
Y measures the similarity between any two pointwise embeddings and is

defined as their inner product and the scalar τ is set to .3.

Nearest Neighbour Loss Our Nearest Neighbour loss links the embeddings of the two
shapes and is designed to preserve the given ground truth mapping. Specifically, we first
compute the soft correspondence matrix SXY between a pair of shapes, by comparing
the rows of ΦX to those of ΦY in a differentiable way as done in Eq. (4.9). We then
evaluate the computed soft map, again, by evaluating how well it transfers the coordinate
functions, compared to the given ground truth mapping.

L(ΦX,ΦY)NN. =
∑

∥SXYPY −Tgt
XYPY∥22. (4.2)

Note that unlike the linearly invariant loss imposed in [58], this loss is based on comparing
ΦX and ΦY directly, without computing any linear transformations. This significantly
simplifies the learning process and in particular, reduces the computation of the corre-
spondence at test time to a simple nearest-neighbor search. Despite this, as we show
below, due to our strong regularization, our approach achieves superior results compared
to the method of [58], based on computing an optimal linear transformation at test time.

Symmetry Commutativity Loss Our next loss aims to link the symmetry map
computed for each shape and the correspondence across the two shapes. We achieve this
by using the algebraic properties of the functional representation, and especially using
the fact that map composition can simply be expressed as matrix multiplication.

Specifically, given a self-symmetry pointwise groundtruth maps on shape X and shape
Y, we aim to promote the consistency between the computed correspondence and the
symmetries on each shape. We do this by imposing the following commutativity loss
during training:

L(ΦX,ΦY)supcomm. = ∥Tsym
X SXY − SXYTsym

Y ∥2 (4.3)
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Intuitively, this loss considers the difference between mapping from X to Y and
applying the symmetry map on Y, as opposed to applying the symmetry on X and
then mapping from X to Y. Note that this is similar to the commonly used Laplacian
commutativity in the functional map literature [68]. However, rather than promoting
isometries, our loss enforces that the computed map respects the self-symmetry structure
of each shape, which holds regardless of the deformation class, and is not limited to
isometries.

Overall Loss We combine the two embedding losses defined in (4.11) and (4.3) and
write the overall loss as follows:

Lsup. = LNN. + γ ∗ Lsup
comm. (4.4)

4.2.2 Unsupervised Setting

In the previous section, we assume to be given the ground truth self-symmetry map Tsym.
In this subsection, we propose an unsupervised method that does not require Tsym to be
given. To this end, our network takes a shape X as input and then performs a reflection
(flip) of each shape along X-axis resulting in a shape denoted as Xf . The intuition behind
such extrinsic flip is to let the network learn two different embeddings for the same shape
from which a symmetry map can be computed when no symmetry ground truth is given.
We also experimented with other axis but chose a flip along X axis as most of the datasets
by default have a symmetry bias along this axis and thus, best performance. The original
and flipped shapes are then forwarded to a Siamese architecture, based on a PointNet [72]
feature extractor, that embeds these two shapes into some fixed k dimensional space. Let
ΦX and ΦXf

denote the matrices, whose rows can be interpreted as embeddings of the
points of X and Xf .

Self-Symmetry Map We compare the rows of ΦX to those of ΦXf
to obtain the soft

correspondence matrix SXXf
that approximates the self-symmetry map in a differentiable

way as follows:

(SXXf
)ij =

e
ΦiT

X Φj
Xf

/τ∑
j e

ΦjT

X Φj
Xf

/τ
(4.5)

Unsupervised Symmetry Commutativity We enforce a consistency between the
computed correspondence and the estimated symmetry map in an unsupervised way
using commutativity loss as follows:

L(ΦX,ΦY)unscomm. = ∥SXfXSXY − SXYSYYf
∥2 (4.6)
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Figure 4.1: On the left, we show a source shape and on the right, we show the flipped
version. We compute features from these two shapes in the unsupervised version of our
pipeline and use them to compute an unsupervised self-symmetry map.

Overall Loss We combine the two embedding losses defined in (4.11) with that of
commutativity loss defined in (4.6) and define the training loss in the unsupervised setting
as follows:

Lunsup. = LNN. + γ ∗ Luns
comm. (4.7)

The scalar γ allows us to weigh the symmetry information differently in a supervised
setting where we assume to be given a self-symmetry map and in an unsupervised setting
where we work without a symmetry map. Naturally, we set it higher for the supervised
case where enforcing symmetry structure makes more sense than unsupervised case where
symmetry is induced by a pairwise matching NN loss and transferred by commutativity
loss. We set γ to 1 for supervised setting and .2 for unsupervised setting.

Test Phase At test time, once the network is trained, we simply compute the embedding
ΦX and ΦY and do a nearest neighbour search between them to find correspondence
between the two shapes. Similarly, to estimate a self-symmetry map, we compute the
embedding ΦX and ΦXf

and do a nearest neighbour search between them.

Implementation Details We implemented our method in Pytorch [70]. All experi-
ments are run on a Nvidia RTX 2080 graphics processing card with 16 GB of GPU memory.
We learn a k = 20 dimensional embedding (basis) for each point cloud. Following [89, 58],
our feature extractor is also based on the architecture of PointNet. We use a batch size of
8 and learning rate of 1e− 4 and optimize our objective with Adam optimizer in Pytorch
[70]. During training, we randomly sample 3000 points from the point cloud and obtain
an embedding of 20 dimensions. Our results are not sensitive to small changes in these
two parameters. We experimented with an embedding size of 20, 40, 60 and obtained
an average geodesic error in the range 33 − 36 on FAUST-R. Similarly, in addition to
the 3000 point cloud resolution during training, we also tried a point cloud resolution in
the range 2k − 4k and found our network to be robust to small changes. This can be
explained by PointNet resilience to change in point cloud density.
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4.3 Results

This section is divided into three subsections. First subsection 4.3.1 shows the experimental
comparison of our approach with state-of-the art methods for shape matching and tests
our method on a wide spectrum of datasets: the re-meshed versions [77] of the FAUST
dataset [8] and SHREC’16 Partial Correspondence dataset [18]. These experiments
validate the promising direction of our embedding-based method as it obtains competitive
performance on these two benchmarks and especially outperforms LBO based methods
on benchmarks with noise. The next subsection 4.3.2 ablates the overall performance and
experimentally validates our claim that shape matching with canonical embedding with
appropriate regularization outperforms the linearly invariant embeddings proposed in
Marin et al. [58]. We demonstrate this with both symmetry supervision as well as without
symmetry supervision. Lastly, Section 4.3.3 shows the effectiveness of our method on the
symmetry detection task in the presence of noise. We evaluate all results by reporting
the per-point-average geodesic distance between the ground truth map and the computed
map. All results are multiplied by 100 for the sake of readability. We conclude with an
illustration showing a failure case of our method.

4.3.1 Shape Matching

We present our results on a full shape matching benchmark dataset FAUST remesh
[8, 77], denoted in future subsections as FAUST-R. We also use its two other versions
used previously: the FAUST aligned dataset used in [89], denoted as FAUST-A and noisy
FAUST version [58] denoted as FAUST-N. All these datasets contain 100 shapes of 10
different subjects in different poses where each point cloud contains roughly 5000 points.
Following prior work, we use the last 20 shapes as a test set and report the performance
on this test set. We compare our results with various LBO based methods [19, 23, 89] in
Table 4.1 as well as embedding based methods [30, 58] as they are applicable, in principle,
to both partial and complete shape matching.

Baselines We compare with the following two broad approaches that are shown to
outperform existing competitors:

LBO based Methods. Such baselines [89, 23] assume to be given as input a mesh
representation of a shape as they rely on LBO. While [19, 89] directly learn features
from raw 3D data similar to our method, they project them into LBO basis. DeepShells
[23] refines pre-computed SHOT descriptors [102] to learn shape matching. We provide
results after refining the point to point map with ZoomOut [60] where applicable for
all the methods. Note that in presence of outliers and noise, such a refinement makes
the resulting point to point map worse and thus, for FAUST-N, we do not apply it.
DeepShells [23] already has a refinement built in their architecture.

Embedding based Methods. 3D-Coded [30] and Marin et al. [58] are considered
state-of-the-art in learning correspondences directly from the point cloud representation
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Table 4.1: Avg. Geodesic Error for Shape Matching on FAUST

Method \ Dataset FAUST-R FAUST-N
GeomFM[19]+Zo 1.9 32
DeepShell[23] 1.7 24
Sharma-Ovsjanikov[89]+Zo 5.0 28
3D-Coded[30] 2.5 6.8
Marin et al.[58] 7.0 9.0
Marin et al.[58] +Zo 5.0 -
Ours-sym-Sup. 3.3 5.8
Ours-sym-Sup.+Zo 1.8 -
Ours-sym-Unsup. 5.0 6.9
Ours-sym-Unsup.+Zo 1.8 -

without relying on LBO. Note that the baseline [58] is somewhat different from others
since it requires and thus, learns both basis functions and probe functions (feature
descriptors).

Ours. For all results in this chapter, we denote our method with symmetry supervision
as Ours-sym-Sup and without symmetry supervision as Ours-sym-Unsup. Here symmetry
supervision means the access to the ground truth self-symmetry map that is publicly
available for FAUST-R point clouds. While our method already achieves good performance
without symmetry ground truth during training, we include Ours-sym-Sup to show the
additional gain brought in by additional symmetry supervision during training.

Results and Discussion. As evident in Table 4.1, we obtain competitive performance
on FAUST-R. LBO eigen functions already form a good basis for shapes and thus, prior
work based on it obtains impressive performance. However, the performance of this line of
work degrades significantly under noise, as shown in the Table 4.1 and also in [58]. Thus,
our method is significantly more resilient to noise than LBO-based methods. Compared
to embedding-based approaches, we obtain slightly better accuracy. In particular, our
symmetry-unsupervised version, Ours-sym-Unsup, obtains slightly better performance
than our main baseline [58]. We also provide a qualitative example to show comparison
with [58] in Figure 4.3. Note that the right foot is mismatched with the method of
Marin et al. whereas we transfer it comparatively well without left-right ambiguity. We
also provide more qualitative comparison in Figure 4.2. We note that 3D-Coded is also
resilient to noise in point clouds and achieves competitive performance in both scenarios.

We also note that the method described in Chapter 3 [89] proposes to align the shapes
rigidly and shows that manual rigid alignment resolves some symmetry problems arising
in shape matching.
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Figure 4.2: On the left, we show a source shape that is to be matched with a target shape. In
the middle, we show the color coded map on target shape using the method presented in Chapter
3, WSupFMNet, whereas on the right, we show our color coded map. Notice that WSupFMNet
mismatches left and right, our method does not.

In this work, we go further and provide an alternative based on a principled approach
that combines symmetry with shape correspondence.

Partial Shape Matching. For a fair comparison with [89, 54], we follow the same
experimental setup and test our method on the challenging SHREC’16 Partial Correspon-
dence dataset [18]. The dataset is composed of 200 partial shapes, each containing about
few hundreds to 9000 vertices, belonging to 8 different classes (humans and animals),
undergoing nearly-isometric deformations in addition to having missing parts of various
forms and sizes. Each class comes with a null shape in a standard pose which is used as
the full template to which partial shapes are to be matched. The dataset is split into two
sets, namely cuts (removal of a few large parts) and holes (removal of many small parts).
We use the same test set following [89]. Overall, this test set contains 20 shapes each for
cuts and holes datasets chosen randomly from the two sets respectively. In addition to
[58], we compare with the following two baselines:

WSupFMNet (Chapter 3) . This baseline relies on learning LBO alignment and
thus, is dependent on class and needs to be retrained for each of the 8 classes. We include
their results even though our results are class agnostic and thus, significantly more robust
and efficient.

Litany et al. [54] . This baseline is not learning based and relies on hand crafted
features and an expensive optimization scheme on the Stiefel manifold for every pair of
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Table 4.2: Avg. Geodesic Error on partial SHREC benchmarks

Method \ Dataset Holes Cuts
Litany et al.[54] 16 13
Sharma-Ovsjanikov [89] 14 16
Marin et al.[58] 12 15
Ours-sym-UnSup. 10 12

shapes at test time. Thus, in terms of computation, it is most expensive.

Results and Discussion We present our findings on partial shape matching in Table
4.2 where we obtain superior performance on both benchmark datasets for partial shape
matching. We would like to stress that baseline methods such as WSupFMNet and Litany
et al. are class specific and need to be trained each time for a class whereas our method
is class agnostic and can obtain good results with a fraction of computational time.
Similarly, [58] trains a similar network as ours two times. First, it learns an embedding
with a network similar to ours, followed by a similar network training to compute the
optimal linear transformation between the two embeddings. Moreover, the test phase
also requires running the network twice. Therefore, our method is 2 times faster than
this baseline in computational complexity.

Figure 4.3: On the left, we show the source shape. In the middle, we transfer a color
function on a target shape using Marin et al. [58] whereas on the right, we show the
transfer using our results.

4.3.2 Ablation Study

In Table 4.3, we ablate the overall performance and validate our claim on two different
correspondence map coupling via the commutativity loss.

NN : This baseline ablates the overall performance of our method and quantifies the
gain brought in by the pairwise point to point ground truth map alone during training.
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Table 4.3: Ablation Study for Shape Matching: Note that just using the nearest neighbour
loss on a self-symmetry map and a pairwise map denoted as NN +NNsym overfits badly
as there is no coupling between the two maps.

Method \ Dataset FAUST-R
NN 61
NN +NNsym 108
NN+ comm.(sup) 33
NN+ comm.(unsup) 50

It shows the performance if we learn an embedding by just projecting the shapes into a
canonical space using point to point pairwise map.

Figure 4.4: Left shows a source shape
and the right shows our self-symmetry
map.

NN+NNsym : This baseline shows the re-
sults obtained for shape matching with strong
supervision i.e. instead of using commutativity
loss defined in Eq 4.3, we replace it with a near-
est neighbour loss that preserves the ground
truth symmetry map for each shape. This base-
line is most important to quantify the coupling
effect brought in by our commutative loss.

NN + comm.(sup) : This baseline repre-
sents Ours-sym-Sup and quantifies the gain
brought in by commutativity loss (Eq 4.3) in
supervised setting.

NN + comm.(unsup) : shows the gain
brought in by coupling with a commutativity
loss in an unsupervised way (Eq 4.6) and rep-
resents Ours-sym-Unsup.

Discussion Our ablation study shows the
individual importance of the two loss functions.
We note that the performance gains brought in by commutative loss on self-symmetry
embeddings are significant. More specifically, as evident in Table 4.3, using just the
nearest neighbour loss on a self-symmetry map and a pairwise map, denoted as NN
+ NNsym in Table 4.3, overfits badly as there is no explicit information transfer or
constraint between the two maps.
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Table 4.4: Avg. Geodesic Error for self-symmetry maps

Method \ Dataset Faust-A Scape-A Faust-N Scape-N

Nagar-Raman[64] 34 60 - -
Ren et al.+Zo[76] 19 54 166 193
Our-sym-Sup.+Zo 29 63 58 88
Our-sym-Unsup+Zo 50 75 66 95

4.3.3 Symmetry Detection

This subsection evaluates our method on the task of symmetry detection in non-rigid
shapes. We evaluate it on FAUST aligned dataset (FAUST-A), SCAPE-A as well as its
noisy version. We use the usual train-test split where we test on the last 20 shapes for
FAUST-A and last 12

Figure 4.5: Left shows a source shape and
the right shows our self-symmetry map.

shapes for SCAPE-A. We show the compar-
ative results in Table 4.4 where we compare
with multiple baselines.

In particular, Ren et al.[76] is considered
state-of-the-art and heavily relies on LBO to
estimate self-symmetry maps. We show our re-
sults with both symmetry supervision, denoted
as Ours-sym-Sup as well as without symme-
try supervision denoted as Ours-sym-Unsup
in Table 4.4. Similar to Ren et al.[76], we
also refine our point to point map by apply-
ing ZoomOut to initial maps. For the noisy
setting, we simply show the results as such
and do not apply ZoomOut refinement as it
is based on LBO that is unreliable in a noisy
setup. We provide a qualitative example from
SCAPE-A in Figure 4.4 and from FAUST-A
in Figure 4.5 to illustrate our results.

Discussion Table 4.4 shows that axiomatic
approach of Ren et al.[76] obtains slightly bet-
ter performance than us on both FAUST-A
and SCAPE-A. However, in the presence of
noise, its performance suffers significantly. We
also remark that we are not aware of any other
work that investigates the performance of ax-
iomatic approach for symmetry detection in
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the presence of outliers. Our method also undergoes a decrease in accuracy. However, our
approach is still resilient to noise and performs significantly better than that of Ren et al.

Failure Case We show a failure case from SCAPE-A in Figure 4.6 where our method
finds it challenging to disambiguate symmetry. It maps the right foot of source shape to
the left foot on target shape. The method of Marin et al. still performs worse than us as
it fails to disambiguate the lower leg of source shape from the lower right leg of target
shape. Human poses are quite diverse and this example shows a failure for symmetry
detection when training with small data.

Figure 4.6: Failure Case: On the left, we show the source shape. In the middle, we
transfer a color function on a target shape using the approach of Marin et al. [58] whereas
on the right, we show our result.

4.4 Conclusion

In shape correspondence literature, partial shape matching and full shape matching are
generally tackled by two different sets of methods which obtain impressive results in one
of the two respective domains. Similarly, symmetry detection and shape matching are also
learned or modelled separately. We presented a simple, general but promising approach
that provides a unifying framework and reduces pairwise as well as self-symmetry map
estimation to a nearest neighbour search in a canonical embedding. Our approach is
significantly more resilient to noise than methods based on predefined basis/embedding
functions. We believe our key idea of coupling a self-symmetry and a pairwise map via
commutativity will encourage future work to explore similar constraints in unsupervised
or weakly supervised learning of canonical embeddings.

4.5 Alternative Formulation

In the preceding section, we described a novel way to tackle symmetry issues in a shape
matching pipeline and also simultaneously learn a self-symmetry map for each shape.
In this section, we propose a slightly different formulation whose aim is to structure
the embedding (feature) space so that symmetry is a linear map in it. Thus, different
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from preceding section, we enforce a linearly invariant embedding regularization on
self-symmetry embedding in the loss function. It comes with a few caveats and trade-off
that we explain next.

Our approach is closely related to a recent work [58] that proposes to replace the
Laplace-Beltrami basis by learning embeddings that are related by a linear transformation
across pairs of shapes. Intuitively, this formulation aims to embed a shape from the 3D
space, in which complex non-rigid deformations could occur, to another higher-dimensional
space, in which transformations across shapes are linear. However, using a supervised loss
to learn this embedding without enforcing any structural properties on the underlying
linear transform provides little guarantee that the learned transform will generalize from
the train to test setting. Instead, in our formulation, we learn an embedding of each
shape that would make the given self-symmetry map linear in some higher-dimensional
space. Thus, this formulation imposes a linearly invariant constraint on a dual space and
in this way, facilitates shape matching in canonical space. This is advantageous since
at test time, we can simply discard the dual space and do shape matching in canonical
space without estimating the linear transform. However, we cannot easily estimate a
self-symmetry map in this setting as it involves estimating the linear transform enforced
in the dual symmetry space and the problems associated with it.

4.5.1 Learning Canonical Embedding

Let ΦX and ΦXf
denote the matrices, whose rows can be interpreted as embeddings of

the points of X and Xf . In the functional map framework, there exists a functional
map CXXf

that aligns the corresponding embeddings. Given a self symmetry ground
truth pointwise map TXXf

, we can estimate CXXf
by solving the following optimization

problem:
CXXf

= argmin
C

∥ΦXCT −TXXf
ΦXf

∥2 (4.8)

The optimal symmetry map CXXf
is given by: CXXf

= (Φ+
XTXXf

ΦXf
)T , that is

differentiable using the closed-form expression of derivatives of matrix inverses, as also
mentioned in Chapter 2. Similarly, we can compute CYYf

for shape Y.

Loss functions Similar to previous section, given a set of pairs of shapes X,Y for which
ground truth correspondences Tgt

XY are known along with a pointwise symmetry map,
our network computes an embedding ΦX,ΦY for each shape as well as a self symmetry
functional map CXXf

and CYYf
respectively as described above. We then optimize the

sum of three loss functions, one defined for linearly invariant self symmetry embedding,
nearest neighbour based loss for pairwise (shape pair) embedding and a commutativity
loss. We remark that the last two loss functions are similar to preceding section. So, we
only explain linearly invariant loss on self symmetry embedding.

Linearly Invariant Loss The first two loss functions are based on a soft-correspondence
matrix, also used in [53] and [58]. To define it for self symmetry map, we transform
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each shape embedding Φ̂X = ΦXCT
XXf

by applying the optimal symmetry map. We then
compare the rows of Φ̂X to those of ΦXf

to obtain the soft correspondence matrix SXXf

that approximates the self-symmetry map in a differentiable way as follows:

(SXXf
)ij =

e
−∥Φ̂i

X−Φj
Xf

∥2∑n
k=1 e

−∥Φ̂i
X−Φk

Xf
∥2

(4.9)

We then define our loss that uses this soft-map to transfer the Euclidean coordinates
and compares the result to transferring the coordinates using the ground truth map.

L(ΦX,ΦXf
,ΦY,ΦYf

)lin. =
∑

∥SXXf
PXf

−Tgt
XXf

PXf
∥22 +

∑
∥SYYf

PYf
−Tgt

YYf
PYf

∥22
(4.10)

Note that this does not assume that the Euclidean coordinates to correspond. Instead,
this loss measures how well the predicted map transfers a particular set of functions,
compared to the ground truth map. This loss was introduced in [58] but we enforce it on
the self-symmetry map.

Euclidean Loss The loss described in the previous paragraph only considers the
embedding of each shape independently and aims to promote the structural property of
this embedding: i.e., that the symmetry map should be linear in the embedding space.

This loss is same as described before in previous section. We first compute the soft
correspondence matrix SXY between a pair of shapes as done previously in (4.9). We
then evaluate the computed soft map SXY, again, by evaluating how well it transfers the
coordinate functions, compared to the given ground truth mapping.

L(ΦX,ΦY)euc. =
∑

∥SXYPY −Tgt
XYPY∥22. (4.11)

Due to an additional regularization, our approach achieves superior results compared to
the method of [58], based on computing an optimal linear transformation at test time.
We also achieve slightly better results than the approach presented in preceding section.

Overall training Loss We combine the two embedding losses defined in Eq. (4.10) and
Eq. (4.11) with that of commutativity loss defined in Eq. (4.3) and define the training
loss as follows:

Ltot. = Leuc. + λ ∗ Llin. + γ ∗ Lcomm. (4.12)

We set λ and γ to 5 for full shape matching.

Test Phase At test time, once the network is trained, we simply compute the embedding
ΦX and ΦY and do a nearest neighbour search between them to find correspondence
between the two shapes. This significantly simplifies the learning process and in particular,
reduces the computation of the correspondence at test time to a simple nearest-neighbor
search.
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Table 4.5: Avg. Geodesic Error on FAUST. We obtain slightly better results than our
approach described in preceding section denoted here as Euc. Emb. + comm. We
attribute this to linearly invariant constraint on symmetry embedding.

Method \ Dataset Faust
Marin et al. [58]-3k 08
Marin et al. [58] + sym. 09
Euc. Emb. 12
Euc. Emb. + comm. 07
Euc. Emb. + comm. + Lin. Inv. (Ours) 06

Results We briefly discuss our results on FAUST original benchmark. We first describe
our baseline methods. Euc. Emb. ablates the overall performance of our method and
quantifies the gain brought in by the euclidean loss alone during training. It shows the
performance if we learn an embedding by just projecting the shapes into a 50 dimensional
space with a nearest neighbour euclidean loss. Euc. Emb. + comm. This baseline
combines the above baseline with the commutativity loss and quantifies what can be
achieved without the linearly invariant assumption on self-symmetry map. This is same
as the approach described in preceding section. We denote our results with Euc. Emb.
+ comm. + Lin. Inv. in Table 4.5.

Discussion Note that we obtain slightly better results than our approach described
in preceding section, denoted here as Euc. Emb. + comm. We attribute this to the
regularization brought in by linearly invariant constraint on self-symmetry embedding.
However, due to the linearly invariant assumption on self-symmetry embedding, inference
becomes much harder to compute a self-symmetry map. Moreover, unlike preceding
section, it is not clear in this formulation how to leverage symmetry information in an
unsupervised way.



Chapter 5

Graph Alignment for Matrix
Completion

In the previous chapters, we described learning based formulations where the optimal
neural network parameters were learned from training data. However, in this chapter, we
mainly focus on an optimization problem and thus, there is no neural network learning
involved. In this chapter, we propose a simplified functional view of matrix decomposition
problems on graphs such as geometric matrix completion. Our unifying framework is
based on the key idea that using a reduced basis to represent functions on the product
space is sufficient to recover a low rank matrix approximation even from a sparse signal.
We validate our framework on several real and synthetic benchmarks where it either
outperforms very competitive baselines or achieves competitive results at a fraction of
the computational effort of prior work. We first define the geometric matrix completion
problem below and then propose our functional view of it.

The assumption that high-dimensional data samples lie on or close to a smooth low-
dimensional manifold is exploited as a regularizer or prior in many machine learning
algorithms. Often, the low-dimensional manifold information is exploited via a graph
structure between the data samples. As a result, graphs are often used as a regularizer in
various machine learning problems such as dimensionality reduction [37], hashing [55]
or matrix completion [40] to name a few. In this chapter, we focus on geometric matrix
completion.

Matrix completion deals with the recovery of missing values of a matrix of which
we have only measured a subset of the entries. In general, without any constraints, this
problem is ill-posed. However if the rank of the underlying matrix is small, it is common
to find the lowest rank matrix that agrees with known measurements [14]. Under this
low rank assumption, the problem is very similar to dimensionality reduction and can be
rewritten as,

min
X

rank (X) +
µ

2
∥(X−M)⊙ S∥2F . (5.1)

Here X stands for the unknown matrix, M ∈ Rm×n for the ground truth matrix, S
is a binary mask representing the input support, and ⊙ denotes the Hadamard prod-
uct. Various problems in collaborative filtering can be posed as a matrix completion
problem [40, 74], where for example the columns and rows represent users and items,
respectively, and matrix values represent a score determining the preference of user for
that item. Often, additional structural information is available in the form of column
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and row graphs representing similarity of users and items, respectively. Most of the
prior work that incorporates geometric structure into matrix completion problems is
either based on highly engineered frameworks, e.g., [63] or a non convex formulation with
several hyperparameters [10] thereby making the overall optimization harder to optimize.
Instead, our simple formulation based on the functional map representation [68], with a
single regularizer, mitigates the problems associated with [10].

Contributions. We propose a convex and smooth matrix decomposition formulation
that explicitly imposes and optimizes for a low rank approximation and, as we demonstrate
below, is empirically more accurate in recovering a low rank matrix approximation
than competitive baselines. Our simplified functional framework also proposes a novel
regularization that is shown to be competitive with a combination of several regularizers
on various real world datasets. Moreover, we also outline a condition under which a
functional map based framework can recover the low rank matrix.

5.1 Related work

Matrix completion has been studied from many viewpoints. In this section, we first briefly
cover related work on geometric matrix completion and then describe prior work that is
directly related to our work.

Geometric matrix completion. A prominent relaxation of the rank operator in
Equation (5.1) is to constrain the space of solutions to be smooth w.r.t. some geometric
structure of the matrix rows and columns. There exist several prior works on geometric
matrix completion that exploit geometric information [6, 40, 74] such as graphs encoding
relations between rows and columns. More recent works leverage deep learning on
geometric domains [6, 63] to extract relevant information from graphs. While these
techniques achieve state-of-the-art results, their design is highly engineered and thus,
non-intuitive and often lacks a proper theoretical foundation.

Graph Regularized Dimensionality Reduction. Jiang et. al. proposed Graph
Laplacian PCA (GLPCA) [37] which imposes the graph regularization of principal
components using the Dirichlet term for clustering in the low dimensional space. Similarly,
the models proposed in [37, 119, 38, 100] leverage the graph structure to learn enhanced
class structures. All of these methods still suffer from non-convexity [37, 38, 100]. RPCAG
[84] is convex but uses the nuclear norm relaxation that involves an expensive SVD step
inhibiting its scalabilty to large datasets. The idea of using two graph regularization
terms has also been applied in co-clustering [31], Non negative matrix factorization [86]
and more recently in the context of low-rank representation [115]. The co-clustering &
NMF based models which use such a scheme [31], [86] suffer from non-convexity and
the works of [115] use a nuclear-norm formulation making it difficult to scale. Note that
there also exist methods that learn a union of low dimensional subspaces where each
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class belongs to a different subspace [24, 106] but they are not directly related to our
approach.

Low Rank Estimators. In classical matrix completion or estimation literature, there
is large body of work that assumes the underlying signal matrix M to be low rank and
then tries to estimate it using truncated SVD methods [47, 44, 20, 16, 45] as it is the
best approximation of a given rank r to the data in the least squares sense. Most of these
works estimate this unknown rank and provide bounds on optimality of hard thresholded
SVD in an asymptotic framework. Our method is not directly related to these work and
we explain it in more detail in the methodology section 5.3.

Functional Maps. Our work is mainly inspired by the functional map framework [68].
This framework has recently been adapted for geometric matrix completion in [10], where
the authors propose to build a functional map between graphs of rows and columns.
However, they 1) impose several non convex regularization terms each with a scaling
hyperparameter and some even with different initialization 2) explore a huge range of
hyperparameter space. Instead, we propose a simple and convex formulation with one
hyperaparameter.

5.2 Preliminaries

In this section, we cover some preliminaries about product graphs and functional maps.

Product graphs Let G = (V,E,W ) be a (weighted) graph with its vertex set V , edge
set E and adjacency matrix denoted by W . Graph Laplacian L is given by L = D−W,
where D = diag(W) is the degree matrix. L is symmetric and positive semi-definite
and therefore admits a spectral decomposition L = ΦΛΦ⊤. It is well-known that
spectrum of the Laplacian contains the structural information about the graph [98]. Let
G1 = (V1, E1,W1), G2 = (V2, E2,W2) be two graphs, with L1 = ΦΛ1Φ

⊤, L2 = ΨΛ2Ψ
⊤

being their corresponding graph Laplacians. We define the Cartesian product of G1 and
G2, denoted by G1G2, as the graph with vertex set V1 × V2.

Functional maps. Let X be a function defined on G1G2. It can be encoded as a matrix
of size |V1| × |V2|. Then it can be represented using the bases Φ,Ψ of the individual
graph Laplacians, C = Φ⊤XΨ. In the shape processing community, such C is called
a functional map [68] as it is used to map between the functional spaces of G1 and G2.
One of the advantages of working with the functional map representation C rather than
the matrix X is that its size is typically much smaller, and is only controlled by the
size of the basis, independent of the number of nodes in G1 and G2, resulting in simpler
optimization problems. Moreover, the projection onto a basis also provides a strong
regularization, which can itself be beneficial for both shape matching, and, as we show
below, matrix completion.
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5.3 Low Rank Matrix Decomposition

We assume that we are given a set of samples in some matrix M ∈ Rm×n. In addition,
we construct two graphs Gr,Gc, encoding relations between the rows and the columns,
respectively. We represent the Laplacians of these graphs and their spectral decompositions
by Lr = ΦΛrΦ

⊤, Lc = ΨΛcΨ
⊤. For the matrix completion problem, the matrix M is

not completely known so we are also given a binary indicator mask S that indicates 1
for measured samples and 0 for missing ones. We minimize the objective function of the
following form:

min
X

Edata(X) + µEreg(X) (5.2)

with Edata denoting a data term of the form

Edata(X) = ∥(X−M)⊙ S∥2F , (5.3)

As observed in [10], we can decompose X = ΦCΨ⊤ where C is some unknown matrix
to be optimized. Remarkably, the data term itself, as we show in our experiments, when
expressed through the functional map i.e.X = ΦCΨ⊤ already recovers low-rank matrices
and outperforms the recent approach of [10] on synthetic geometric experiments for
matrix completion and obtains competitive results on dimensionality reduction tasks.
Before we explain the choice and motivation of our regularizer Ereg, we explain next
why the data term itself already works remarkably well on rank constrained geometric
problems.

5.3.1 Motivation and Analysis

Suppose that we constrain X to be a matrix such that X = ΦCΨ⊤ for some matrix C.
Note that if Φ and Ψ have k columns each then C must be a k×k matrix. We would like
to argue that solving the optimization problem in Equation (5.3) under the constraint
that X = ΦCΨ⊤ will recover the underlying ground truth signal if it is low rank and
satisfies an additional condition that we call basis consistency.

For this suppose that the ground truth hidden signal M has rank r. Consider its
singular value decomposition M = UΣV⊤. As M has rank r, Σ is a diagonal matrix
with r non-zero entries. We will call M basis-consistent with respect to Φ,Ψ if the first
r left singular vectors Ur (i.e., those corresponding to non-zero singular values) lie in
the span of Φ, and the first r right singular vectors Vr lie in the span of Ψ. In other
words, there exist some matrices R,Q s.t. Ur = ΦR (note that this implies k ≥ r) and
Vr = ΨQ. Given this definition, it is easy to see that all basis-consistent matrices with
rank r ≤ k can be represented by some functional map C. In other words, given Y that
is basis-consistent, there is some functional map C s.t. Y = ΦCΨT . Conversely any
X = ΦCΨT has rank at most k and must be basis-consistent by construction.
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Second, suppose we are optimizing Equation (5.3) under the constraint X = ΦCΨ⊤

and that the optimum, i.e., the ground truth matrix M, is basis-consistent. Then since the
energy Edata(C) is convex, given k2 known samples to fully constrain the corresponding
linear system, we are guaranteed to recover the optimum low-rank basis-consistent matrix.

This simple observation suggests that by restricting X = ΦCΨ⊤ and optimizing
over the matrices C instead of X already provides a strong regularization that can help
recover appropriate low-rank signals even without any other regularization. Further, it
avoids solving complex optimization problems involving iterative SVD, since C becomes
the only free variable, which can be optimized directly. For problems such as geometric
matrix completion, we observe that a weak additional regularization is often sufficient to
obtain state-of-the-art results. More formally, we state our result as follows

Proposition 1 We recover an optimal low rank matrix with high probability as long as
the underlying latent matrix X is basis consistent.

Proof: The proof is based on the main result (Theorem 1 in [14]) in low rank exact matrix
recovery method. [14] prove that there is a unique rank k matrix that agrees with the
sampled values with high probability and thus, recovers this underlying hidden signal
matrix. Our method also recovers a rank k matrix by construction. Since our problem
is convex, our method will recover the best rank k matrix that is within the span of
the eigenfunctions. If the underlying matrix is basis consistent, then our method will
recover the same exact matrix as a low rank exact recovery method (by definition of basis
consistency).

Note that we verified on the Synthetic Netflix dataset that our basis consistency
condition is indeed satisfied for small values of k such as 30 and 50.

5.3.2 Laplacian Commutativity as a Regularizer

Our Ereg contains a single regularization term on the functional map induced between
row space and column spaces described next. We propose to use the simplest possible
regularizer, which furthermore leads to a convex optimization problem and can achieve
state-of-the-art results. For this, we borrow a condition that is prominent in the functional
map literature [68]. Namely, in the context of surfaces, the functional map is often expected
to commute with the Laplace-Beltrami operator : Ereg =

∥∥CΛr −ΛcC
∥∥2 where Λr and

Λc are diagonal matrices of Laplacian eigenvalues of the source graph (row graph) and
target graph (column graph). More broadly, commutativity with the Laplacian imposes
a diagonal structure of the functional map, which intuitively promotes preservation of
low frequency eigenfunctions used in the basis. In the context of matrix completion, this
can be interpreted simply as approximate preservation of global low frequency signals
defined on the two graphs.
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Given these above definitions, our problem defined in equation (5.2) reduces to

min
C

∥(X−M)⊙ S∥2F + µ ∗
∥∥CΛr −ΛcC

∥∥2
where X = ΦCΨ⊤

(5.4)

In practice, we observe faster convergence if we replace C with PCQ⊤ , and let all
three P,C and Q be free variables.

Differences from SGMC [10] Even though both methods, ours and SGMC build
on the functional map framework, there is a fundamental difference between the two.
SGMC focuses on high complexity functional map based model (large values of C,
multiple resolutions of C,P,Q) and thus, requires a variety of (non-convex) regularizers.
In contrast, our core idea is to represent the low rank matrix recovery based on the
functional map based decomposition alone X = ΦCΨ⊤ (See ’Ours-FM’ baseline in
experiments Section 5.2).

To outline the differences more precisely, in addition to the Dirichlet energy on the two
graphs, [10] also introduces two non-convex regularizations on the transformation matrix
P and Q. Non-convexity comes from orthogonality constraint on P and Q. Additionaly,
[10] also uses a multi-resolution spectral loss named SGMC-Zoomout (SGMC-Z) [60]
with its own hyperparameters (step size between different resolutions) besides several
scalars to weigh different regularizations.

Hyperparameters The optimization is carried out using gradient descent in Tensorflow
[1]. For all experiments, we set µ and the learning rate to be .00001. We report the size
of C explicitly in each experiment below. For geometric matrix completion, we divide
the number of available entries in the matrix randomly into training and validation set in
a 95 to 5 ratio respectively.

5.4 Experiments

In the first half of this section, we extensively compare between our approach and Spectral
Geometric Matrix Completion (SGMC)[10] on a synthetic example of a community
structured graphs. In the latter half, we compare with all approaches on various real world
recommendation benchmarks. For a fair comparison with [10], we use graphs taken from
the synthetic Netflix dataset. Synthetic Netflix is a small synthetic dataset constructed
by [40] and [63], in which the user and item graphs have strong community structure.
Similar to [10], we use a randomly generated low rank matrix on the product graph
GcGr to test the matrix completion accuracy. Synthetic Netflix is useful in conducting
controlled experiments to understand the behavior of geometry-exploiting algorithms.
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Table 5.1: Testing the dependence on the density of the sampling set for a random rank
10 matrix of size 150× 200. In the data-poor regime, our regularization is strong enough
to recover the matrix unlike other methods.

Density in % Ours Ours-FM SGMC
1 2e-2 2e-2 1e-1
5 8e-7 1e-3 5e-4
10 2e-7 5e-5 2e-4
20 1e-7 2e-5 1e-4

Table 5.2: Testing the robustness to noisy graphs. Our method is robust to substantial
amounts of noise in graphs.

Noise Ours Ours-FM SGMC
5 1e-3 2e-3 5e-3
10 4e-3 3e-3 1e-2
20 6e-3 6e-3 1e-2

Graph Construction We follow the setup of [40] and use the graphs constructed by
them as described next. The row graph Gr of the matrix M is constructed as follows.
The rows of M are grouped into 10 communities of different sizes. We connect nodes
within a community using a 3-nearest neighbors graph and then add different amounts of
erroneous edges, that is, edges between vertices belonging to different communities. The
erroneous edges form a standard Erdos-Renyi graph with variable probability. We follow
the same construction process for the column graph Gc that contains 12 communities.
For both graphs, binary edge weights are used. The intuition behind this choice of graphs
is that users form communities of people with similar taste. Likewise, movies can be
grouped according to their type, so that movies of the same group obtain similar ratings.

We consider the following two baselines:

Ours-FM : This baseline only optimizes for C without any regularization. All results
are obtained with C of size 30× 30. This value was chosen after a cross validation from
a set of 20, 30, 40. SGMC: All results are obtained with their open source code with
their optimal parameters.

Test Error. To evaluate the performance of the algorithms in this section, we report
the root mean squared error,

RMSE(X,S) =

√
∥(X−M)⊙ S∥2F∑

i,j Si,j
(5.5)
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Table 5.3: Perturbation in the rank of the underlying matrix. As the rank increases, it
becomes harder for other methods to recover the matrix

Rank Ours Ours-FM SGMC
5 1e-7 2e-5 1e-4
10 2e-7 2e-5 2e-4
12 5e-7 4e-5 9e-4
15 6e-3 1e-3 1e-2

computed on the complement of the training set. Here X is the recovered matrix
and S is the binary mask representing the support of the set on which the RMSE is
computed. We compare the two approaches on different constraints ranging from rank of
the underlying matrix to the sampling density. Note that optimality bounds for classical
matrix completion algorithms also depend on constraints such as sampling density, noise
variance etc.

Rank of the underlying matrix. We observe that as the rank increases up to 15,
it becomes harder for both methods to recover the matrix. We remark that Ours-FM
alone recovers the low rank very effectively. However, on real data, we find the additional
regularizer in Ours to be more effective than Ours-FM. We also remark that Ours-FM
consistently outperforms SGMC for all rank values. For the training set we used 10% of
the points chosen at random (same training set for all experiments summarized in Table
5.3).

Sampling density. We demonstrate that in the data-poor regime, our regularization is
strong enough to recover the matrix, compared to performance achieved by incorporating
geometric regularization through SGMC. These experiments are summarized in Table
5.1. Note that gap between us and SGMC remains high even when the sample density
increases to 20%. Even when using 1% of the samples, we perform better than SGMC.

Noisy graphs. We follow the same experimental setup as [10] and perturb the edges
of the graphs by adding random Gaussian noise with zero mean and tunable standard
deviation to the adjacency matrix. We discard the edges that became negative as a
result of the noise, and symmetrize the adjacency matrix. Table 5.2 demonstrates that
our method is robust to substantial amounts of noise in graphs. Surprisingly, Ours-FM
demonstrates even stronger resilience to noise.

Runtime Comparison. Our method runs 20 times faster than SGMC when compared
on synthetic experiments described above. This is not surprising as SGMC involves
optimizing various regularizers and with high values of P,C,Q.
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Table 5.4: Test error on Flixster and Movielens-100K

Model Flixster ML-100K
MC [14] 1.533 0.973
GMC [40] – 0.996
GRALS [74] 1.245 0.945
RGCNN [63] 0.926 0.929
GC-MC [6] 0.917 0.910
Ours-FM 1.02 1.12
DMF[4] 1.06 0.922
SGMC 0.900 0.912
SGMC-Z 0.888 0.913
Ours 0.888 0.915

In addition to synthetic Netflix, we also validate our method on two more recommender
systems datasets for which row and column graphs are available. Movielens-100K [33]
contains ratings of 1682 items by 943 users whereas Flixter [36] contains ratings of 3000
items by 3000 users. All baseline numbers, except Ours-FM, are taken from [63] and
[10]. In addition to SGMC and SGMC(Z), we also compare with DMF[4]. This is
a matrix factorization approach that was adapted for matrix completion tasks by [10].
Note that this approach does not incorporate any geometric information. We explain
some observations from Table 5.4: first, our baseline, Ours-FM, obtains surprisingly good
performance across all datasets. This underscores the regularization brought in by the
Laplacian eigen-basis of row and column graphs. Second, the non geometric model DMF
shows competitive performance with all the other methods on ML-100K. This suggests
that the geometric information is not very useful for this dataset. Third, our proposed
algorithm is competitive with the other methods while being simple and interpretable.
Lastly, these experimental results validate the effectiveness of our single regularization
when compared to the combination of several non-convex regularizations introduced in
[10].

5.5 Graph Regularized Dimensionality reduction

In the previous section, we describe the application of functional maps to geometric matrix
completion problem. In this section, we extend the same formulation to Graph regularized
Dimensionality reduction. Given a data matrix M ∈ Rm×n with n m-dimensional data
vectors, we seek to find a lower dimensional representation of this data which will lead to
better clustering and classification performance. In contrast to the previous setting, we
are given the entire matrix M as input here.

Most prior work related to PCA [2] can be broadly categorised in two themes: 1)
matrix factorization approach of the classical PCA and its variants 2) matrix subtraction
approach of robust PCA [13] and its variants. The former learns the projection of M in
some lower d-dimensional linear space. Several followup works including Graph Laplacian
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PCA [37, 119, 38, 100] have shown that the clustering quality of PCA can be significantly
improved by incorporating the data manifold information in the form of some underlying
graph structure. All of these methods still suffer from non-convexity [37, 38, 100].

Instead of relying on matrix factorization, the second line of work directly estimates
clean low rank approximation X of data matrix M by separating noise with a matrix
additive model. Along these lines, Fast Robust PCA on graphs (FRPCAG [85]) introduces
a joint notion of reduced rank for the rows and columns of a data matrix and proposes to
jointly minimize the Dirichlet energy on the row and column graphs:

min
X

∥M−X∥1 + γ1 tr(XL1X
⊤) + γ2 tr(X

⊤L2X). (5.6)

Here L1,L2 are Laplacian matrices of graphs built, respectively, from the rows and
columns of the data matrix M. We describe the graph construction in next section.
Conceptually, minimizing the Dirichlet energy, tr(XL1X

⊤), promotes smoothness of
X by penalizing high frequency components of the signals on corresponding graphs.
The authors of FRPCAG [85] demonstrate theoretically that under certain assumptions
this minimization is connected with the spectrum of the underlying low rank matrix
X. Building on this idea, we instead directly constrain the low rank approximation by
decomposing it using the first few eigenvectors of row and column graph Laplacians
X = ΦCΨ⊤ and optimizing over the coupling matrix C only.

Our Approach for Dimensionality Reduction. For dimensionality reduction, we
optimize the data term alone i.e. Edata(X) = ∥(X−M)∥2F under the constraint X =
ΦCΨ⊤. The resulting low rank matrix is then considered a new representation of original
data matrix M. One can use this new representation directly for clustering using k-means
algorithm.

Differences from FRPCAG [85] We do not target the Robust PCA problem [13] as
done in FRPCAG. FRPCAG obtains a low rank approximation by minimizing the Dirichlet
energy on the two graphs and thus, only implicitly obtains a low rank approximation. In
contrast, we explicitly factorize the data matrix. As shown in our experiments below,
this explicit control over the resulting low rank of matrix, by optimizing over C, yields
superior clustering results over FRPCAG.

Graphs Construction Following [85], we use two types of graphs G1 and G2 in our
proposed model. The graph G1 is constructed between the data samples or the columns
of the data matrix and the graph G2 is constructed between the features or the rows
of the data matrix. The graphs are undirected and built using a standard K-nearest
neighbor strategy. We connect each xi to its K nearest neighbors xj where K is 10. This
is followed by the graph weight matrix A computation as

Aij =

{
exp

(
− ∥(xi−xj)∥22

σ2

)
if xj is connected to xi

0 otherwise.
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Table 5.5: Clustering purity on Benchmark Datasets.

Dataset Samples PCA LE GLPCA GRPCA FGRPCA Ours
ORL 400 57 56 68 74 77 79

COIL20 1404 67 56 66 65 68 71
MFEAT 400 82 90 71 80 85 90

BCI 400 52 52 52 53 52 53

5.5.1 Graph Regularized Dimensionality Reduction

Datasets We use 4 well-known benchmarks and perform our clustering experiments on
following databases: ORL, BCI, COIL20, and MFEAT. ORL1 is a face database with
small pose variations. COIL20 2 is a dataset of objects with significant pose changes.
MFeat3 consists of features extracted from handwritten numerals whereas BCI database
consists of features extracted from a Brain Computer Interface setup 4.

Baselines

We compare the clustering performance of our model with 5 other dimensionality reduction
models. Apart from classical PCA, the rest of the models exploit graph information.

Models using graph structure : We compare 1) Graph Laplacian PCA (GLPCA)
[37] 2) Laplacian Eigenmaps (LE) 3) Robust PCA on graphs RPCAG [84] 4) Fast Robust
PCA on graphs FRPCAG [85] 5) Our proposed model. Note that RPCAG and FRPCAG
are closest to our approach and known to outperform other graph regularized models
such as Manifold Regularized Matrix Factorization (MMF) [119], Non-negative Matrix
Factorization (NMF)[50], Graph Regularized Non-negative Matrix Factorization (GNMF)
[12]. We obtain FRPCAG and RPCAG results by running the open source implementation
provided by the authors on the four datasets. Note that we run the clustering on all the
samples of COIL20 and all the features of MFEAT whereas FRPCAG only use a subset
of them in their paper. FRPCAG contains two hyperparameters, namely weighing scalars
for Dirichlet energy. For these scalars, we pick the best value from the set (1,10,50,100)
based on empirical performance. For PCA, we chose the first 40 principal components
from a set (30, 40, 50). For our method, the only hyper-parameter is the dimensionality
of matrix C. We pick the best value out of (50, 100).We pre-process the datasets to zero
mean and unit standard deviation along the features.

Clustering Metric We follow the standard evaluation protocol and use clustering
purity to evaluate our method. To compute purity, each cluster is assigned to the class
which is most frequent in the cluster, and then the accuracy of this assignment is measured

1cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2cs.columbia.edu/CAVE/software/softlib/coil-20.php
3archive.ics.uci.edu/ml/datasets/Multiple+Features
4olivier.chapelle.cc/ssl-book/benchmarks.html

cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
cs.columbia.edu/CAVE/software/softlib/coil-20.php
olivier.chapelle.cc/ssl-book/benchmarks.html
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by counting the number of correctly assigned and dividing by the total no. of samples.
We report the maximum clustering error from 10 runs of k-means and summarize our
findings in Table 5.5.

Table 5.6: Classification accuracy on Benchmark Datasets.

Dataset PCA LE FGRPCA Ours
ORL 63 56 66 68

COIL20 88 78 88 89
MFEAT 97 94 97 97

BCI 52 48 53 55

As shown in Table 5.5, our model obtains superior or competitive performance over
all other baselines.

Classification We further evaluate our framework on the classification task on the
same 4 datasets. We perform classification with PCA, LE and our data representations
using a KNN classifier. We randomly select 30% of labeled data, and use the rest to
evaluate. We repeat this 5 times and summarize the average classification accuracy in
Table 5.6. Our method obtains competitive accuracy compared to other baselines. PCA
representation with first 40 components already provides very competitive classification
results on several datasets.

Conclusion We establish empirically and theoretically that using a reduced basis
to represent a function on the product space of two graphs already provides a strong
regularization, that is sufficient to recover a low rank matrix approximation. Moreover,
by extensive experiments, we show that our functional map based framework is very
competitive when compared to some complex baselines proposed before for geometric
matrix completion as well graph regularized dimensionality reduction.



Chapter 6

Conclusion, Extensions and Future
Work

In this thesis, we have made several contributions to Deep Functional Maps which we
summarize in this chapter. In the next subsection, we provide a quick overview of the
impact of our contributions since their publication and of other closely related works.
Afterwards, we propose possible future extensions of our work.

In Chapter 2, we coin the term spectral overfitting and demonstrate that naively
learning a high dimensional map directly with Deep Functional Maps [53] leads to severe
overfitting. Besides, we propose to learn a higher resolution map by learning a low
resolution map with a Deep Functional Map approach and then refining it with iterative
spectral upsampling.

In Chapter 3, we propose a novel form of weak supervision that allows learning shape
matching over point clouds with Deep Functional Maps. We show that approximate
alignment provides the network enough information to disambiguate symmetry mismatch
and thus, acts as a proxy for ground truth correspondences. Moreover, we also propose a
simple but effective loss to learn partial shape matching.

In Chapter 4, we go beyond this prerequisite of approximate rigid-alignment and
consider the problem of learning simultaneously a self symmetry map and a pairwise
map. We propose a novel commutative regularization that couples the self-symmetry
with a pairwise map computation and thus, enables knowledge transfer between the two
maps during training. To the best of our knowledge, we propose the first method that
simultaneously learns symmetry detection and shape matching for non-rigid point clouds.

In Chapter 5, we extend the notion of functional spaces to graphs and propose a novel
application of functional map framework to graph based machine learning problems such
as geometric matrix completion.

6.0.1 Follow up works

Since its publication, our work has been cited in multiple papers. In this section we list
some recent papers that either reuse or cite the work presented in this thesis or simply
propose new approaches to the problems we considered. For each one we explain how it
relates to our work.
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Learning High Dimensional Functional Map

In Chapter 2, we introduced a simple but remarkably effective technique to learn high
resolution functional map. We advocate learning with lower resolution embedding and
refining it later with an axiomatic spectral upsampling approach. Many follow up works
have used our technique or our insights to obtain accurate correspondence for non-rigid
3D shapes. In the following, we list some of the works inspired by us or that build upon
our approach.

• Following the spectral overfitting phenomenon, Marin et al. [58] propose to learn
a low dimensional linearly invariant embedding. In essence, it replaces the LB
eigen basis typically used in the functional map pipeline with a learned embedding
of 3D point clouds. However, similar to our approach, it also advocates learning
a low dimensional embedding. We would like to emphasise that this is in sharp
contrast to classical functional map framework where working with high dimensional
embedding was considered inevitable before this dissertation. Moreover, similar to
our approach, in their follow up work [57], they also refine these learned embeddings
with ZoomOut.

• One potential shortcoming of our approach is that it is not differentiable end to
end. On a high level, a recent work [23] addresses this problem by including our
two stage algorithm into an end to end differentiable learning pipeline. Instead
of refining it by axiomatic spectral upsampling, Eisenberger et al. [23] propose to
upsample the map to a higher resolution with a differentiable and end to end loss.

Weakly Supervised Deep Functional Map

In Chapter 3, we proposed a novel form of weak supervision that can be used to learn
shape matching from point clouds. We show that approximate alignment provides an
extrinsic feature extractor network enough information to disambiguate symmetry issues.
Our extrinsic feature extractor is based on PointNet++. We also propose a simple
algorithm for partial shape matching that is differentiable end to end. In the following,
we mention couple of works that cite our method.

• DiffusionNet [92] proposes a novel feature learning architecture for surfaces such as
3D triangle meshes and point clouds. DiffusionNet features demonstrates impressive
performance across all forms of supervision including our weak supervision.

• NeuroMorph [22] is another unsupervised shape correspondence method that out-
performs our method on various datasets. Its high level approach is based on
3D-CODED that simultaneously models deformation and correspondence between
two shapes. However, it exploits our weak supervision based on approximate rigid
alignment.

• [15] is another work that heavily builds on our weakly supervised structural loss.
It proposes a cycle consistency loss in addition to the structural properties of the
functional map proposed in our work [81, 89].
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Graph Alignment for Matrix Completion

In Chapter 5, we proposed a functional view of graph based machine learning problems
such as Geometric Matrix completion. In the following, we mention one work, MAF-GNN
[97] that compares and improves upon our result on matrix completion and another [96]
that cites our method and proposes a novel solution to the geometric matrix completion
problem.

• MAF-GNN [97] develops a novel deep GNN model with multi-graph attention
fusion (MAF). It constructs two feature graph attention modules and a multi-scale
latent features module, to generate better user and item latent features from input
information. Through extensive experiments, the authors show that it improves
upon our results on both Synthetic Netflix as well as real world datasets.

• A straightforward extension of graph based matrix completion problem is to ap-
ply them to tensor completion where one can exploit higher order correlation
among entities. Sofuoglu et al. [96] propose a graph regularized tensor-completion
method where the graph regularization is applied across each mode of the tensor to
incorporate the local geometry.

Applications in Biology

In this subsection, we mention couple of works that extensively apply Deep Functional
Maps for applications in bioinformatics or shape matching on biological data and exten-
sively cite our work.

• µ-Match [43] packages a deep functional map approach [32] and its refinement with
ZoomOut into a user-friendly, open-source end-to-end Python pipeline. The authors
demonstrate µ-Match’s ability on a biologically-relevant benchmark dataset for
shape correspondence, and to recover previously reported morphological differences
in embryonic limb development.

• The authors of [101] models functional correspondence between bones and propose
an approach that characterizes the shape variation within a dataset. This approach
classifies biological shapes to the Genus level and demonstrate which aspects of
bone shapes differ most between groups.

6.1 Future Work

In this section, we describe a future direction in Deep Functional Maps that has largely
been left unexplored until now.

Despite the significant progresses in Deep Functional Maps, little is known about
joint optimization of their composite maps. In axiomatic functional map estimation,
consistency of maps along cycles serves as a strong regularizer for correcting and improving
noisy initial maps computed between pairs of shapes in isolation [34]. Moreover, cycle
consistency also allows one to convert the difficult task of computing maps between two
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dissimilar objects into an easy task by composing maps along a path of similar object
pairs. While some recent work enforce the consistency between a forward and a reverse
map between a pair of shapes [81, 28], pairwise consistency by default is not enough to
guarantee cycle consistency over a collection of shapes.

Cycle consistency has been used in various forms ranging from regularization to a proxy
for self supervision [21] in various computer vision and graphics problem formulations
[120]. For instance, early methods attempt to detect and eliminate inconsistent cycles
to enforce consistency constraints [116, 66, 114, 28]. Especially, in [66], the authors
show that, when the map network is complete (i.e., maps between any two shapes exist),
3-cycle consistency implies cycle consistency along a cycle of arbitrary length. More recent
approaches have associated cycle consistency with low-rank properties of matrices that
encode the map network [35, 111, 51], which leads to relatively simple formulations. More
importantly, this line of work also comes up with a theoretical guarantee on the optimality
[35]. On the other hand, the matrix nature of the functional map representation enables
a convenient access to map composition, which naturally bridges the functional map
framework and consistent map refinement techniques [108, 34, 94].

2-Cyclic Deep Functional Map We remark that two previous works already enforce
2-cycle consistency in Deep Functional Maps. SURFMNet enforces that composition
between C12 and C21 to be as closely as possible to I. In contrast, Cyclic Functional
Map [28] enforces the same constraint on pairwise maps and not spectral maps. However,
both these works do not explore 3-cycle consistency in their formulation which we detail
next.

6.1.1 Cycle Consistency in Deep Functional Maps

In this section, we state a simple observation about 3-cycle consistency in deep functional
maps. Based on the following observation, we design some baselines and experiments to
analyze cycle consistency and its utility in Deep Functional Maps.

Proposition 2 Deep Functional maps are cycle consistent as long as Edesc
(
C
)

is satisfied
exactly.

Proof: For a shape pair i and j, functional map Cij is obtained by Cij = argminC
∥∥CAi−

Aj

∥∥2 where Ai and Aj are the coefficients of learned descriptors.
We can also write this as Cij = AjA

+
i where A+

i is the pseudo inverse of Ai.
Extending this to a triplet of shapes, we obtain:

CjkCij = AkA
+
j AjA

+
i = AkA

+
i = Cik (6.1)

Eq 6.1 is the definition of cycle consistency for a shape triplet (i, j, k). This suggests
that learning-based functional maps are only capable of producing consistent maps
networks, as long as the descriptor losses are indeed satisfied. It implies that either the
networks already produce cycle consistent functional maps or if not, we could simply
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add the residual of the linear system
∥∥CijAi −Bj

∥∥2 into the loss and make it satisfy
cycle consistency. We test this hypothesis by defining some baselines in next section. We
define the normalized residuals by computing them as follows:

Res. =
∥∥CA−B

∥∥2/∥∥B∥∥2 (6.2)

Triplet Loss Another way to enforce cycle consistency in Deep Functional Map is
by training with a triplet loss. Given a triplet of shapes i,j and k along with their
corresponding pairwise functional map, triplet loss is defined as follows:

E3 = (lt(Cji,Ckj ,Cki) + lt(Cjk,Cij ,Cik) + lt(Cki,Cjk,Cji)+

lt(Ckj ,Cik,Cij) + lt(Cij ,Cki,Ckj) + lt(Cik,Cji,Cjk))/6
(6.3)

where lt(U, V,W ) =
∥∥UV −W

∥∥2.
6.1.2 Experiments and Results

In this section, we analyze various baselines performance on a challenging dataset SMAL
[121]. The goal of this section is to test the residual hypothesis and also find out the utility
of triplet loss in enforcing cycle consistency. SMAL dataset comprises 49 remeshed shapes
of different animal groups (big cats, canines, horses, bovine, and hippos), exhibiting
significant non-isometries, making regularization potentially more important.

Baselines In the following, we describe the three baseline approaches based on SURFM-
Net. Note that SURFMNet is unsupervised so it makes sense to add this regularization.

SURFMNet denotes a modified version of SURFMNet architecture [81]. It follows
the architecture proposed in [89] that uses only 30 eigenbasis functions as opposed to 120
and 4 layers of non-linear transformation as opposed to 7.

SURFMNet+Tri. This baseline takes SURFMnet and replaces the bijectivity loss
with triplet loss as defined above. It quantifies if minimizing triplet loss during training
could enforce cycle consistency more strictly during training when compared to the
residual loss.

SURFMNet+Tri.+Res. This baseline adds the residual of linear solver into the
SURFMNet+Tri.

We next plot the residuals of SURFMNet on SMAL in Figure 6.1. We observe an
interesting phenomenon with regards to our Proposition 2 in Figure 6.1. Enforcing cycle
consistency with triplet loss increases the residual values whereas explicitly minimizing
the residual decreases its value.

To measure the accuracy of the different baselines, we divide SMAL dataset as follows.
First, we cluster the dataset into similar looking classes manually. e.g. fox and dogs are
merged into one class. As a consequence, we create a cluster of 5 classes namely dogs,
cows, lions, hippos and horses each containing 6-19 shapes. The purpose of this division
is to facilitate an analysis in an intermediate challenging setting as described next.
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Figure 6.1: The normalized residuals of SURFMNet and triplet loss on SMAL suggest
that residuals go higher even after cycle consistency is enforced with Triplet loss in
SURFMNet. Nevertheless, interestingly the accuracy of the maps is better with SurfMnet
+ Tri. as shown in Table 6.1

2-class triplets One can train with all possible triplets but we focus on a special case
where a triplet only contains 3 shapes of 2 classes only. We remark that such triplets are
slightly less challenging than the triplets where each shape comes from a different class.
We find that enforcing cycle consistency in Deep Functional Maps during training gets
easier if we work with 2 class triplets instead of 3 classes. We now show the performance
of these 3 baselines on 3 different data splits of SMAL. In the first split denoted as S1, we
train with 40 train shapes and test on the remaining 9. In the second split S2, we train
with 30 shapes whereas we test on the remaining 19. Third split is extreme as we divide
the whole dataset almost equally into train and test by 25 and 24 shapes respectively.
We show the performance of various baselines on SMAL dataset in Table 6.1.

We notice in Table 6.1 that SURFMNet+Tri. outperforms SURFMNet in low data
regime. Moreover, adding residual into the loss function degrades the overall performance.
Although in theory zero residual implies zero triplet loss, we observe that in practice the
triplet loss is better correlated with the the geodesic error with respect to the ground
truth. A more in-depth study is necessary to analyze the exact behavior of these different
losses and their correlation to ground truth maps.
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Table 6.1: Results on SMAL dataset. Triplet loss enforces cycle consistency and improves
SURFMNet results in low data splits S1 and S2.

Method \ Class S1 S2 S3
SURFMNet .15 .31 .39
SURFMNet+Tri. .17 .25 .25
SURFMNet+Tri.+Res. .20 .27 .29
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Résumé

Étant donné une paire d’objets contenant respectivement m et n points, trouver la corre-
spondance consiste à trouver une carte bijective (si possible) entre ces points. Dans le cas
le plus simple, ces problèmes sont formulés comme un problème d’étiquetage, où différents
des points correspondent à des étiquettes à prédire. Cela mène à un espace d’étiquette
extrêmement grand qui évolue linéairement avec le nombre de points et donc,nécessite
beaucoup de données pour apprendre cet espace. En revanche, les auteurs dans [69]
ont introduit une vue fonctionnelle dans les problèmes de correspondance visuelle en
considérant les formes ou les images comme espaces fonctionnels. Cette approche de
carte fonctionnelle aligne les fonctions de descripteur d’un objet visuel à un autre et vise
ainsi à déduire une carte globale entière entre une paire de formes plutôt que d’aligner
chaque point indépendamment.

Carte fonctionnelle approfondie [54] introduit l’apprentissage dans l’approche de la
carte fonctionnelle en apprenant une transformation non linéaire des fonctions descrip-
teurs à aligner ultérieurement. Deux entrées principales d’un cadre de carte fonctionnelle
typique sont le descripteur correspondant fonctions et fonctions de base définies sur
deux objets. Avant cette thèse, SHOT[104] étaient les plus couramment utilisées comme
fonctions de description et base propre laplacienne[5] comme fonctions de base. Les
fonctions de base sont nécessaires pour effectuer la réduction de dimensionnalité en
projetant les descripteurs sur un sous-espace couvrant de fonctions de base. Enfin, un
résout un problème d’optimisation, en recherchant une matrice qui aligne au mieux les
caractéristiques projetées. L’un des principaux avantages de ce cadre est qu’il nous permet
de représenter des cartes entre formes sous forme de petites matrices, qui encodent les
relations entre les fonctions de base définies sur le formes. Par conséquent, la fonction
objectif est indépendante du nombre de points sur la forme et peut être optimisé avec
des solveurs linéaires simples tels que les moindres carrés.

Malgré sa simplicité et son évolutivité, ce cadre est sous-optimal à bien des égards.
La première source de difficulté réside dans l’estimation précise d’une carte fonctionnelle
de grande dimension. Cela reste un défi à la fois pour le pipeline de cartes fonctionnelles
axiomatiques et pour cartes fonctionnelles. L’apprentissage en haute dimension est connu
pour être difficile en apprentissage automatique [7]. D’autre part, une dimensionnalité
réduite se traduit par des cartes très approximatives, perdant détails à moyenne et haute
fréquence et conduisant à des artefacts importants dans les applications. Avant les travaux
de cette thèse, l’état de l’art [55] reposait sur l’intégration directe des fonctions scalaires
dans une base propre de Laplace Beltrami de grande dimension.

Dans la thèse qui suit, nous proposons trois contributions, chacune correspondant à
ces problèmes. Nous marions les idées de l’apprentissage en profondeur avec le cadre de
la carte fonctionnelle résultant ainsi en des algorithmes très efficaces et robustes pour
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l’appariement de formes basés sur cartes fonctionnelles profondes. De plus, nous étendons
la notion d’applications fonctionnelles aux graphes et proposer une vue fonctionnelle du
problème de complétion matricielle basé sur les graphes.
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Titre : Cartes fonctionnelles profondes efficaces en données pour l’analyse de formes et de graphiques 3D

Mots clés : cartes fonctionnelles ; correspondance de forme; surveillance faible ; complétion matri-
cielle ; alignement graphique

Résumé : La correspondance de forme est un
problème fondamental en vision par ordinateur, en in-
fographie et dans les domaines connexes, car elle fa-
cilite de nombreuses applications telles que le trans-
fert de texture ou de déformation et l’analyse sta-
tistique de forme, pour n’en nommer que quelques-
unes. Bien que la correspondance de forme ait été
étudiée sous de nombreux points de vue, dans cette
thèse, nous nous concentrons sur les approches fonc-
tionnelles basées sur des cartes, car ce cadre est as-
sez général, évolutif et a donc été étendu à diverses
autres applications telles que l’estimation de pose, la
complétion de matrices et le graphe. correspondant à.
Dans cette thèse, nous proposons trois contributions
aux cartes fonctionnelles profondes : Premièrement,
nous proposons une méthode simple mais efficace
pour estimer une carte fonctionnelle de grande di-
mension. Notre méthode est basée sur l’apprentis-
sage d’une carte fonctionnelle de faible dimension,
puis sur son raffinement en une carte de dimension
supérieure basée sur un suréchantillonnage spectral
itératif. Deuxièmement, nous proposons une nouvelle
direction qui préconise l’utilisation d’un alignement ri-
gide approximatif des formes comme signal de su-

pervision faible. Notre hypothèse principale est que
l’alignement rigide approximatif fournit au réseau suf-
fisamment d’informations pour lever l’ambiguı̈té des
problèmes de symétrie. Bien que l’alignement ap-
proximatif soit plus facile à obtenir que la vérité ter-
rain ponctuelle entre une paire de formes, il souffre
toujours de problèmes d’évolutivité sur les collections
de formes 3D à grande échelle. Ainsi, nous allons
au-delà de ce prérequis et considérons le problème
de l’apprentissage simultané d’une auto-symétrie et
d’une application par paires. Notre troisième contri-
bution est une nouvelle régularisation commutative
qui couple la carte d’autosymétrie avec une carte par
paires et permet ainsi le transfert de connaissances
entre les deux cartes pendant l’apprentissage. Notre
dernière contribution est une application du cadre de
la carte fonctionnelle à certains problèmes d’appren-
tissage automatique basés sur des graphes. Nous
proposons un cadre simplifié basé sur une idée clé
selon laquelle l’utilisation d’une base réduite pour
représenter des fonctions sur l’espace produit est suf-
fisante pour récupérer une approximation matricielle
de rang bas même à partir d’un signal clairsemé.

Title : Data-Efficient Deep Functional Maps for 3D Shape and Graph Analysis

Keywords : Deep functional maps ; Shape Matching ; Weak supervision ; Matrix completion ; Graph alignment

Abstract : Shape correspondence is a fundamen-
tal problem in computer vision, computer graphics,
and related fields since it facilitates many applications
such as texture or deformation transfer and statistical
shape analysis to name a few. Although shape cor-
respondence has been studied from many viewpoints,
in this thesis, we focus on functional map-based ap-
proaches as this framework is quite general, scalable
and thus, has been extended to various other appli-
cations such as pose estimation, matrix completion,
and graph matching. In this thesis, we propose three
contributions to deep functional maps : First, we pro-
pose a simple but effective method to estimate a high-
dimensional functional map. Our method is based on
first learning a low dimensional functional map and
then refining it to a higher dimensional one based
on iterative spectral upsampling. Second, we propose
a new direction that advocates the use of approxi-
mate rigid alignment of shapes as a weak supervi-

sion signal. Our main hypothesis is that the approxi-
mate rigid alignment provides the network with en-
ough information to disambiguate symmetry issues.
Although approximate alignment is easier to obtain
than pointwise ground truth between a pair of shapes,
it still suffers from scalability issues on large-scale
3D shape collections. Thus, we go beyond this pre-
requisite and consider the problem of learning simul-
taneously a self symmetry map and a pairwise map.
Our third contribution is a novel commutative regu-
larization that couples the self-symmetry map with a
pairwise map and thus enable knowledge transfer bet-
ween the two maps during training. Our last contribu-
tion is an application of the functional map framework
to some graph-based machine learning problems. We
propose a simplified framework that is based on a key
idea that using a reduced basis to represent functions
on the product space is sufficient to recover a low-rank
matrix approximation even from a sparse signal.
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	Introduction
	Non Rigid 3D Shape Matching

	Learning High Dimensional Functional Map
	Background
	Functional Map Pipeline
	Deep Functional Maps
	Deep Functional Map Regularization
	Zoomout: Iterative Spectral Upsampling

	Spectral Overfitting

	Weakly Supervised Deep Functional Maps for Point Clouds
	Introduction
	Related Work
	Method
	Overview of Architecture
	Basis Alignment for Partial Shape Matching

	Results
	Near-isometric Shape Matching
	Deep Functional Maps with any Loss Function
	Partial Shape Matching

	Conclusion

	Joint Symmetry Detection and Shape Matching
	Related Work
	Joint Shape Matching and Symmetry Detection
	Supervised Loss functions
	Unsupervised Setting

	Results
	Shape Matching
	Ablation Study
	Symmetry Detection

	Conclusion
	Alternative Formulation
	Learning Canonical Embedding


	Graph Alignment for Matrix Completion
	Related work
	Preliminaries
	Low Rank Matrix Decomposition
	Motivation and Analysis
	Laplacian Commutativity as a Regularizer

	Experiments
	Graph Regularized Dimensionality reduction
	Graph Regularized Dimensionality Reduction


	Conclusion, Extensions and Future Work
	Follow up works
	Future Work
	Cycle Consistency in Deep Functional Maps
	Experiments and Results


	Bibliography
	179f08c8-b4d8-4bde-bccf-6c6db566372c.pdf
	Introduction
	Non Rigid 3D Shape Matching

	Learning High Dimensional Functional Map
	Background
	Functional Map Pipeline
	Deep Functional Maps
	Deep Functional Map Regularization
	Zoomout: Iterative Spectral Upsampling

	Spectral Overfitting

	Weakly Supervised Deep Functional Maps for Point Clouds
	Introduction
	Related Work
	Method
	Overview of Architecture
	Basis Alignment for Partial Shape Matching

	Results
	Near-isometric Shape Matching
	Deep Functional Maps with any Loss Function
	Partial Shape Matching

	Conclusion

	Joint Symmetry Detection and Shape Matching
	Related Work
	Joint Shape Matching and Symmetry Detection
	Supervised Loss functions
	Unsupervised Setting

	Results
	Shape Matching
	Ablation Study
	Symmetry Detection

	Conclusion
	Alternative Formulation
	Learning Canonical Embedding


	Graph Alignment for Matrix Completion
	Related work
	Preliminaries
	Low Rank Matrix Decomposition
	Motivation and Analysis
	Laplacian Commutativity as a Regularizer

	Experiments
	Graph Regularized Dimensionality reduction
	Graph Regularized Dimensionality Reduction


	Conclusion, Extensions and Future Work
	Follow up works
	Future Work
	Cycle Consistency in Deep Functional Maps
	Experiments and Results


	Bibliography

	179f08c8-b4d8-4bde-bccf-6c6db566372c.pdf
	Introduction
	Non Rigid 3D Shape Matching

	Learning High Dimensional Functional Map
	Background
	Functional Map Pipeline
	Deep Functional Maps
	Deep Functional Map Regularization
	Zoomout: Iterative Spectral Upsampling

	Spectral Overfitting

	Weakly Supervised Deep Functional Maps for Point Clouds
	Introduction
	Related Work
	Method
	Overview of Architecture
	Basis Alignment for Partial Shape Matching

	Results
	Near-isometric Shape Matching
	Deep Functional Maps with any Loss Function
	Partial Shape Matching

	Conclusion

	Joint Symmetry Detection and Shape Matching
	Related Work
	Joint Shape Matching and Symmetry Detection
	Supervised Loss functions
	Unsupervised Setting

	Results
	Shape Matching
	Ablation Study
	Symmetry Detection

	Conclusion
	Alternative Formulation
	Learning Canonical Embedding


	Graph Alignment for Matrix Completion
	Related work
	Preliminaries
	Low Rank Matrix Decomposition
	Motivation and Analysis
	Laplacian Commutativity as a Regularizer

	Experiments
	Graph Regularized Dimensionality reduction
	Graph Regularized Dimensionality Reduction


	Conclusion, Extensions and Future Work
	Follow up works
	Future Work
	Cycle Consistency in Deep Functional Maps
	Experiments and Results


	Bibliography

	179f08c8-b4d8-4bde-bccf-6c6db566372c.pdf
	Introduction
	Non Rigid 3D Shape Matching

	Learning High Dimensional Functional Map
	Background
	Functional Map Pipeline
	Deep Functional Maps
	Deep Functional Map Regularization
	Zoomout: Iterative Spectral Upsampling

	Spectral Overfitting

	Weakly Supervised Deep Functional Maps for Point Clouds
	Introduction
	Related Work
	Method
	Overview of Architecture
	Basis Alignment for Partial Shape Matching

	Results
	Near-isometric Shape Matching
	Deep Functional Maps with any Loss Function
	Partial Shape Matching

	Conclusion

	Joint Symmetry Detection and Shape Matching
	Related Work
	Joint Shape Matching and Symmetry Detection
	Supervised Loss functions
	Unsupervised Setting

	Results
	Shape Matching
	Ablation Study
	Symmetry Detection

	Conclusion
	Alternative Formulation
	Learning Canonical Embedding


	Graph Alignment for Matrix Completion
	Related work
	Preliminaries
	Low Rank Matrix Decomposition
	Motivation and Analysis
	Laplacian Commutativity as a Regularizer

	Experiments
	Graph Regularized Dimensionality reduction
	Graph Regularized Dimensionality Reduction


	Conclusion, Extensions and Future Work
	Follow up works
	Future Work
	Cycle Consistency in Deep Functional Maps
	Experiments and Results


	Bibliography

	179f08c8-b4d8-4bde-bccf-6c6db566372c.pdf
	Introduction
	Non Rigid 3D Shape Matching

	Learning High Dimensional Functional Map
	Background
	Functional Map Pipeline
	Deep Functional Maps
	Deep Functional Map Regularization
	Zoomout: Iterative Spectral Upsampling

	Spectral Overfitting

	Weakly Supervised Deep Functional Maps for Point Clouds
	Introduction
	Related Work
	Method
	Overview of Architecture
	Basis Alignment for Partial Shape Matching

	Results
	Near-isometric Shape Matching
	Deep Functional Maps with any Loss Function
	Partial Shape Matching

	Conclusion

	Joint Symmetry Detection and Shape Matching
	Related Work
	Joint Shape Matching and Symmetry Detection
	Supervised Loss functions
	Unsupervised Setting

	Results
	Shape Matching
	Ablation Study
	Symmetry Detection

	Conclusion
	Alternative Formulation
	Learning Canonical Embedding


	Graph Alignment for Matrix Completion
	Related work
	Preliminaries
	Low Rank Matrix Decomposition
	Motivation and Analysis
	Laplacian Commutativity as a Regularizer

	Experiments
	Graph Regularized Dimensionality reduction
	Graph Regularized Dimensionality Reduction


	Conclusion, Extensions and Future Work
	Follow up works
	Future Work
	Cycle Consistency in Deep Functional Maps
	Experiments and Results


	Bibliography

	179f08c8-b4d8-4bde-bccf-6c6db566372c.pdf
	Introduction
	Non Rigid 3D Shape Matching

	Learning High Dimensional Functional Map
	Background
	Functional Map Pipeline
	Deep Functional Maps
	Deep Functional Map Regularization
	Zoomout: Iterative Spectral Upsampling

	Spectral Overfitting

	Weakly Supervised Deep Functional Maps for Point Clouds
	Introduction
	Related Work
	Method
	Overview of Architecture
	Basis Alignment for Partial Shape Matching

	Results
	Near-isometric Shape Matching
	Deep Functional Maps with any Loss Function
	Partial Shape Matching

	Conclusion

	Joint Symmetry Detection and Shape Matching
	Related Work
	Joint Shape Matching and Symmetry Detection
	Supervised Loss functions
	Unsupervised Setting

	Results
	Shape Matching
	Ablation Study
	Symmetry Detection

	Conclusion
	Alternative Formulation
	Learning Canonical Embedding


	Graph Alignment for Matrix Completion
	Related work
	Preliminaries
	Low Rank Matrix Decomposition
	Motivation and Analysis
	Laplacian Commutativity as a Regularizer

	Experiments
	Graph Regularized Dimensionality reduction
	Graph Regularized Dimensionality Reduction


	Conclusion, Extensions and Future Work
	Follow up works
	Future Work
	Cycle Consistency in Deep Functional Maps
	Experiments and Results


	Bibliography

	179f08c8-b4d8-4bde-bccf-6c6db566372c.pdf
	Introduction
	Non Rigid 3D Shape Matching

	Learning High Dimensional Functional Map
	Background
	Functional Map Pipeline
	Deep Functional Maps
	Deep Functional Map Regularization
	Zoomout: Iterative Spectral Upsampling

	Spectral Overfitting

	Weakly Supervised Deep Functional Maps for Point Clouds
	Introduction
	Related Work
	Method
	Overview of Architecture
	Basis Alignment for Partial Shape Matching

	Results
	Near-isometric Shape Matching
	Deep Functional Maps with any Loss Function
	Partial Shape Matching

	Conclusion

	Joint Symmetry Detection and Shape Matching
	Related Work
	Joint Shape Matching and Symmetry Detection
	Supervised Loss functions
	Unsupervised Setting

	Results
	Shape Matching
	Ablation Study
	Symmetry Detection

	Conclusion
	Alternative Formulation
	Learning Canonical Embedding


	Graph Alignment for Matrix Completion
	Related work
	Preliminaries
	Low Rank Matrix Decomposition
	Motivation and Analysis
	Laplacian Commutativity as a Regularizer

	Experiments
	Graph Regularized Dimensionality reduction
	Graph Regularized Dimensionality Reduction


	Conclusion, Extensions and Future Work
	Follow up works
	Future Work
	Cycle Consistency in Deep Functional Maps
	Experiments and Results


	Bibliography

	179f08c8-b4d8-4bde-bccf-6c6db566372c.pdf
	Introduction
	Non Rigid 3D Shape Matching

	Learning High Dimensional Functional Map
	Background
	Functional Map Pipeline
	Deep Functional Maps
	Deep Functional Map Regularization
	Zoomout: Iterative Spectral Upsampling

	Spectral Overfitting

	Weakly Supervised Deep Functional Maps for Point Clouds
	Introduction
	Related Work
	Method
	Overview of Architecture
	Basis Alignment for Partial Shape Matching

	Results
	Near-isometric Shape Matching
	Deep Functional Maps with any Loss Function
	Partial Shape Matching

	Conclusion

	Joint Symmetry Detection and Shape Matching
	Related Work
	Joint Shape Matching and Symmetry Detection
	Supervised Loss functions
	Unsupervised Setting

	Results
	Shape Matching
	Ablation Study
	Symmetry Detection

	Conclusion
	Alternative Formulation
	Learning Canonical Embedding


	Graph Alignment for Matrix Completion
	Related work
	Preliminaries
	Low Rank Matrix Decomposition
	Motivation and Analysis
	Laplacian Commutativity as a Regularizer

	Experiments
	Graph Regularized Dimensionality reduction
	Graph Regularized Dimensionality Reduction


	Conclusion, Extensions and Future Work
	Follow up works
	Future Work
	Cycle Consistency in Deep Functional Maps
	Experiments and Results


	Bibliography


