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Modeling and optimization of an online publishing

application

by Milos Cuculovic

Abstract

In recent years, we have been observing a constant increase in the number of

scientific articles. This phenomenon is mainly due to the rapid development of science

and technology and the growth in higher education. Each of these articles has to

go through a laborious process, from peer review through author revision rounds

to the final decision made by the Editor-in-Chief. In addition to the pressure to

publish scientific papers, senior scientists are also asked to conduct peer review and

be members of journal editorial boards and part of conference committees where they

are in charge of, in addition to many other activities, making final decisions regarding

new articles’ acceptance.

We propose within this PhD thesis a set of tools to be used in the academic pub-

lishing process by authors, peer-reviewers and Editors-in-Chief with the purpose of

automating parts of their activities. Those tools are based on two research topics:

document comparison and Named Entity Recognition (NER). Regarding the docu-

ment comparison part, we propose a novel XML diff algorithm, called jats-diff, able to

make a bijection between the author modifications and the changes observed between

two article versions. As regards the NER part, a deep learning neural network model

was trained, able to annotate review comments and extract meaningful information.

During the work on the document comparison, 12 existing XML diff algorithms

were assessed with the purpose of evaluating their comparison capacities for JATS

XML documents—JATS being the de facto standard for the XML representation of

academic articles. Most of those algorithms only support basic edit pattern detection

(insert, delete, update and move); however, their capacity to detect higher-level edit
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patterns (structural and style changes) is very limited. Due to that limitation, none

of the tested XML diff algorithms were suitable for JATS document comparison, and

there is a need for a new XML diff algorithm able to make a bijection between author

edits on one side and changes detected on their respective XML versions on the other

side. For this, the jats-diff algorithm was developed allowing a human readable author

change extraction during the revision rounds, which allows the automation of article

comparison activity made by peer-reviewers and Editors-in-Chief. Using jats-diff,

extracting actual changes made by the authors is made possible.

In the NER part, we first assessed different NER approaches and focused our

research on deep learning models that are achieving state-of-the-art results in many

natural language processing (NLP) tasks. After assessing different models that we

further fine-tuned on the reviewer comments annotation task, we created the "review-

annotation" model based on SciBERT, which is able to achieve an weighted average

F1 score of 0.87. Use of this model will allow authors and Editors-in-Chief to better

understand the review request by having the four important named entities extracted:

Location, Action, Modal and Trigger. Using the "review-annotation" model, extract-

ing the requested changes made by the reviewers is made possible.

Finally, the correlation of the actual changes provided by jats-diff and the re-

quested changes provided by the "review-annotation" NER model was carried out.

This combined information will allow the Editor-in-Chief to assess the requested

changes asked by the reviewer and the actual changes made by the authors with

the purpose of automating the final decision-making process during the evaluation of

academic articles and conference proceedings. By using the different tools created,

the author can have a better understanding of the requested changes made by the

reviewers; the reviewers can extract actual changes made by the author; and the

Editor-in-Chief can extract both the requested and the actual change information

and then correlate them together in order to make the final decision.
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node Everything in an XML document is a node. xiii, 15, 16, 18, 20, 21, 22, 23, 24,

27, 29, 30, 31, 49, 51, 52, 57, 58, 59, 60, 61, 62, 63, 67, 68, 69, 70, 71, 72, 73,

74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 93, 94, 134

Open Office Open-source office software suite for word processing developed by

Apache. 18

peer reviewer Expert who volunteers his time to help improve the manuscripts he

reviews. 5, 7, 8, 9, 11, 14, 92, 96, 124, 127, 132

peer review Evaluation process of scientific / academic work by other experts work-

ing in the same field. v, xiii, 5, 6, 7, 8, 9, 12, 46, 95, 125, 137

pre-trained model Saved neural network that was previously trained on a large

dataset. 34, 35, 36, 39

precision Fraction of relevant instances among the retrieved instances. 32, 41, 42,

43, 44, 46, 105, 108, 110, 111, 113, 122

recall Fraction of relevant instances that were retrieved. 32, 41, 42, 43, 44, 46, 105,

108, 110, 111, 113, 114



SQL Structured Query Language. 24

supervised learning Subcategory of machine learning and artificial intelligence de-

fined by its use of labeled datasets to train algorithms that classify data or

predict outcomes accurately. 13, 32, 44, 99, 134

tex LaTeX source document file type. 7

training Calculate the best possible weights that will allow the model to make good

predictions. 13, 32, 34, 37, 38, 39, 40, 41, 42, 46, 96, 99, 100, 101, 102, 103,

104, 105, 106, 107, 109, 111, 112, 113, 114, 115, 116, 134

tree XML documents have a hierarchical structure and can conceptually be inter-

preted as a tree structure. xiii, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30,

31, 47, 49, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62, 68, 70, 71, 72, 75, 76, 78, 79,

81, 82, 83, 85, 86, 87, 88, 91, 92, 94, 134

XML Extensible Markup Language. xiii, xv, 7, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 30, 31, 47, 48, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62,

63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87,

88, 89, 90, 91, 92, 93, 94, 119, 123, 124, 125, 126, 131, 133, 134, 135
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Chapter 1

Introduction

1.1 Motivation

As stated in the brief description of the thesis, the number of scientific, peer reviewed

articles has increased exponentially for more than a decade. Every article has to go

through a specific publication process, including peer review, author revision rounds

and the final decision made by the Editor-in-Chief. Peer review is carried out by the

peer reviewers reading the initial version of the article and making recommendations

and improvement requests to the authors. The revision is carried out by the authors

implementing the recommended review changes and complementing with a response

letter describing the changes made. The final decision is made by the Editors-in-Chief,

analysing and comparing review comments to the revisions made by the authors. All

those are manual processes that require a lot of time, attention and rigour. It is thus

of interest to facilitate the tasks of all involved parties (authors, peer reviewers and

final decision-makers), and new tools to help to strengthen this process are needed.

5



Chapter 1. Introduction 1.2. Context

1.2 Context

1.2.1 Thesis sponsor—MDPI

MDPI (www.mdpi.com), established in 1996 in Basel, Switzerland, is a pioneer in

scholarly open access publishing. With over 400 diverse, peer reviewed open ac-

cess journals across all disciplines, MDPI is supported by more than 130,000 aca-

demic editors and has published over 1,000,000 articles, with 240,000 publications in

2021 alone. With additional offices in Beijing, Wuhan, Tianjian, Nanjing and Dalian

(China), Barcelona (Spain), Belgrade and Novi Sad (Serbia), Manchester (UK), Tokyo

(Japan), Cluj and Bucharest (Romania), Toronto (Canada), Kraków (Poland), Singa-

pore (Singapore) and Bangkok (Thailand), MDPI has over 5500 employees worldwide.

Publishing the research of more than 400,000 individual authors, MDPI journals are

attracting over 25 million monthly web-page views. Most of the published content

is covered by the main academic indexing databases such as Science Citation Index

Expanded (SCIE1), maintained by Web of Science, and Scopus2, maintained by Else-

vier. The biomed-related journals are full-text archived in PubMed Central (PMC3)

and with article abstracts to be found in PubMed/MEDLINE4. All MDPI journals

are archived long term with the Swiss National Library5 and CLOCKSS6.

For over a decade, MDPI has been developing a large variety of platforms and

initiatives around open science. The following can be distinguished:

• sciforum.net—a scientific event planning and management platform;

• scilit.net—a database of scholarly works indexing over 145 million articles;

• preprints.org—a platform for early versions of research outputs;

• sciprofiles.com—a social network for researchers and scholars.

1https://clarivate.com/webofsciencegroup/solutions/webofscience-scie/
2https://www.scopus.com/home.uri
3https://www.ncbi.nlm.nih.gov/pmc/
4https://pubmed.ncbi.nlm.nih.gov/
5https://www.nb.admin.ch/snl/en/home.html
6https://clockss.org/
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MDPI has also developed its own in-house submission system, used by authors, inter-

nal assistant editors, peer reviewers and external academic editors to process papers

from submission to publication. The docx and tex conversion to XML is also made

in-house by a team of production editors, using internal conversion tools. Among

different tools and data available at MDPI, we are mostly interested in the following

as those can be used and integrated with our research:

• An XML conversion tool that allows the docx / tex conversion to JATS XML;

• The different versions of an academic article during the peer review process;

• The review comments with requested changes made during the peer review;

• The database of editors, authors and peer reviewers that could test our tools.

1.2.2 Academic publishing process

Following recent growth in higher education and the rapid development of science and

technology, the number of scientific, peer reviewed articles has been growing expo-

nentially for over a decade [89]. The main reason for this is the growth of science and

technology on one side, and higher education on the other side. In addition to the

pressure to publish scientific papers, senior scientists are also asked to conduct peer

review and be members of journal editorial boards and part of conference committees

where they are in charge of, in addition to many other activities, making final deci-

sions regarding new articles’ acceptance. Some research groups started exploring the

assisted peer review possibilities [103, 96] in order to help senior scientists with their

daily tasks. The final decision making and the overall peer review process is, how-

ever, not receiving enough research attention. With the Editor-in-Chief or Conference

Chair together with the author and peer reviewer playing the key roles in academic

publishing, it is of interest to facilitate their tasks as much as possible. Currently,

this process is very manual and requires a lot of time, attention and rigour. With all

the previously mentioned duties, and with senior scientists lacking the time needed,

the different tasks in the publishing process are prone to human errors, and new tools
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to help to strengthen the entire process are needed.

After the article revision round—see Figure 1-1, in order to make the final decision

the senior scientist must assess whether the author made the requested changes. This

is achieved by reading the review comments, comparing different versions of the article

and reading the author response letter. The article comparison together with the

review comments and the author response letter reading tasks are time-consuming.

Moreover, change description within the author response letter is written by the

author and may not always reflect all, nor real changes made during the revision. It

is then of great importance to automate this task as much as possible in order to

obtain a higher-quality and faster final decision making.

Author

Article v2 

Comment. 1:  
Section 1: Information about 'ABCD data' should
be corrected – Authors should either show the
data, or remove their description

4. Read

5.1. Write

Review comments

Comment. 1:  
In Section 1, we added the missing 'ABCD data'
that was initially not shown.

Author response letter

5.2. Document the change

Article v1 

1 Write

Peer-reviewer / 
editor-in-chief

3. Write
6.2. Read

6.3. Compare

6.1 Read

2. Read

Figure 1-1: Article peer review and decision-making process.

Simplified version of the academic publishing process, limited to one revision round. The
author writes (1) the first version of the article. It then goes to the peer reviewer that reads
(2) the article and makes comments (3). The comments are then read (4) by the author
that writes (5.1) the second version of the article by applying corrections requested by the
peer reviewer, and also the author response letter (5.2). The decision-maker has to read the
review comments (6.1) and author response letter (6.2) and compare different versions of
the article (6.3) in order to evaluate whether the author made all the changes requested by
the peer reviewer

On another note, the peer review process is an indirect exchange between the
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author, the peer reviewer/decision-maker. The first version of the article goes into

the peer review where it gets evaluated and commented on by the peer reviewer. The

author then has to read the review comments and apply the requested changes in

order to write the second (improved) version of the article together with the response

letter containing the information on what and how was the article changed. The key

elements here in the process, enabling the communication between the peer reviewer

and the author, are the review comments and the author response letter documents.

The peer reviewer explains which part of the article has to be revised and in which

way. In the example of a review comment where the peer reviewer asks the author for

a specific change—see Figure 1-1: "Section 1: Information about ’ABCD data’ should

be corrected – Authors should either show the data, or remove their description"—we

can observe a specific location within the article where the change should take part

("Section 1") and the proposed corrections on how to improve the article—"either

show the data or remove their description". The author will read that comment,

identify the location where the change should be made and apply the proposed cor-

rection. Once the change has been made, the author has to document the change in

the response letter so that the peer reviewer (or the Editor-in-Chief) can match that

specific change description with the associated review comment. We can observe here

how manual the entire process is for all involved parties, including the author, the

peer reviewer and the Editor-in-Chief.

Figure 1-2 shows the bird’s-eye view of how different key-players can be assisted

in order to strengthen the entire publication process. For this, instead of having to do

the manual work, i.e., read the author response letter and the review comments and

compare different versions of the article, the new tools will automate that process. The

author will be able to directly access the requested changes asked by peer reviewer; the

peer reviewer will be able to directly access the actual changes made by the author;

and the Editor-in-Chief will be able to access the correlated information between the

requested and the actual changes. This way, all needed information is interconnected

and can be found in one place.

In order to provide such tools, our work was separated into three different parts:
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1. Write 5. Write

XMLize

jats-diff

Change semantics 
(bijection) 

NER

Expected vs effective changes

XMLize

New 7.  Read

Sequence labelling - NER

New 8. Read
3. Write

Author

Peer-reviewer / 
editor-in-chief

9. Compare   with v2 9. Compare  with v1

Extract actual changes

Extract requested changes

6. Write

7. Read

Requested / actual

12

3
change correlation

Article v1 
Article v2 

Author response
letter Review comments

2. Read

4. Read

8. Read

New 4. Read

Figure 1-2: Bird’s eye view on the new straightened publication process.

Instead of reading the author response letter and the review comments and comparing
different versions of the article, the Editor-in-Chief will only have to obtain the correlated
information between the requested and actual changes.

one regarding the extraction of actual changes by comparing different versions of the

article (1); the second regarding the extraction of requested changes by analysing re-

view comments (2); and the third regarding the correlation between the requested and

actual changes (3). For this to happen, our research is based on the following topics:

document comparison for extracting actual changes and Named Entity Recognition

(NER) for identifying requested changes. The document comparison part is used to

not only extract lexical changes made by the authors, such as text inserts, deletes

and updates, but also syntactic changes such as paragraph split and merge, section

upgrade and downgrade, style edits, citable object edits, text moves, etc. The main

goal of the document comparison is to have a bijection between the modifications
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made by the author and the changes detected between the two XML versions of the

article. The NER part is used to label review comments with specific named entities

in order to match the requested change type and location within the article. Finally,

the two pieces of change information are correlated together using the modification

location from the document comparison and the NER sides. This will result in five

different output categories:

• Requested but not detected changes: we were able to match a change

request written by the peer reviewer for a given location within the article, but

there is no modification made by the author on that location;

• Detected but not requested changes: we observed a modification made

by the author in a given location within the article, but there is no associated

change request made by peer reviewer;

• Requested and detected changes: we were able to match a change request

written by the peer reviewer for a given location within the article and specific

modifications made by the author on that location;

• Major requested change but minor change detected: we were able to

match a major/substantial change request written by the peer reviewer for a

given location within the article, but only a minor modification made by the

author was detected;

• Minor requested change but major change detected: we were able to

match a minor change request written by the peer reviewer for a given location

within the article, but a major/substantial modification made by the author

was detected.

As seen in Figures 1-2, the current decision-making process within academic pub-

lishing is rather manual. The authors directly read review comments written in

free-form-text where peer reviewers can use their own wording to describe a specific

change request. Once article correction has taken place, the author writes the re-

sponse letter, again in free-form-text, where each requested change is commented on

regarding if and how the request was fulfilled. Finally, the Editor-in-Chief or the peer
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reviewer has to assess if the requested changes were fulfilled by the author. For this,

the two article versions are compared, usually using the document compare function

in MS Word, and the actual changes are assessed by correlating them with the review

comments. Within the current state of the art, there are no specific tools devel-

oped for the academic community that could be directly used during the publication

process. On one side, there are document comparison tools available, but those are

usually proprietary and depend on the typesetter tools. On the other side, we are not

aware of any tool that can further process or directly annotate review comments in

order to extract meaningful information. Finally, there is no research carried out on

correlating requested and actual changes within the peer review process nor in any

other similar domain.

1.3 Publications

The work that has been carried out during the thesis produced one international

journal and three international conference articles:

• Cuculovic, Milos, Frederic Fondement, Maxime Devanne, Jonathan Weber, and

Michel Hassenforder. "Change Detection on JATS Academic Articles: An XML

Diff Comparison Study." In Proceedings of the ACM Symposium on Document

Engineering 2020, pp. 1-10. (2020)

• Cuculovic, Milos, Frederic Fondement, Maxime Devanne, Jonathan Weber, and

Michel Hassenforder. "Semantics to the rescue of document-based XML diff: A

JATS case study." Software: Practice and Experience (2022)

• Cuculovic, Milos, Frederic Fondement, Maxime Devanne, Jonathan Weber, and

Michel Hassenforder. "A JATS XML Comparison Algorithm for Scientific Lit-

erature." In: Journal Article Tag Suite Conference (JATS-Con) Proceedings

(2022)
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• Cuculovic, Milos, Frederic Fondement, Maxime Devanne, Jonathan Weber, and

Michel Hassenforder. "Named Entity Recognition for peer review disambigua-

tion in academic publishing." Accepted in: ICICT 2023 Conference - IEEE

1.4 Outline

Chapter 2—State of the art

After Chapter 1, Introduction, Chapter 2 is divided into the state of the art on

XML document comparison and the state of the art on NER. Within the document

comparison part (Section 2.1), we describe the current XML diff algorithms, their

comparison capacities and their shortcomings in comparing JATS XML versions of

academic articles. Following is the state of the art on NER (Section 2.2) and the

usage of deep learning models in NER tasks.

Chapter 3—Document Comparison

The third chapter is about our contribution to the XML document comparison re-

search topic. In Section 3.1, we present an evaluation study of the existing state-of-

the-art XML diff algorithms and their capacities in comparing JATS XML documents.

After finding that none of the existing XML diff algorithms are suitable for JATS doc-

ument comparison, we describe a novel XML diff algorithm we have developed, called

jats-diff, presented in Section 3.2. Jats-diff is able to make a bijection between the ac-

tual modifications made by the author on typesetter tools on one side, and differences

observed between two JATS XML documents on the other.

Chapter 4—Named Entity Recognition

The fourth chapter is about our work on training deep learning models on the review

comments annotation task, using the supervised learning approach. We start with a

coarse-grained evaluation of different models such as BERT, SciBERT, DistilBERT,

RoBERTa and XLNet using the grid-search technique. In order to select the best-

scoring model on our NER task, we go further through the hyperparameters’ fine-

tuning process by finally achieving an weighted average F1 score of 0.87.
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Chapter 5—Information matching

Finally, we present a correlation method between the jats-diff output, representing

the actual changes, and the NER output, representing the requested changes. The

goal here is to give to the Editor-in-Chief the possibility to evaluate if the requested

changes written by the peer reviewer are made in a satisfactory manner by the author.

For this, we start with the correlation between the review comments Location and the

location in the article where actual changes are detected with jats-diff. The Location

named entity can be precise, for example, a given line or paragraph; semi-precise,

for example, a given section or multiple paragraphs; or fuzzy, for example, the entire

manuscript, or several sections. Next, we continue with the Action named entity

in order to link it with an actual change detected by jats-diff. We then continue

with the modality of the requested change by using the Modal named entity. The

modality will give us the information about the obligatory and optional change. If a

change is requested using the "must" or "should" modal, the change is obligatory. By

contrast, if requested using the "might" modal, we can estimate the change as being

optional. Finally, we describe the Trigger named entity usage in order to further

refine the correlation of the Action named entity identifying questions or multiple

choice change types.
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State of the Art

2.1 Document Comparison

Since the beginning of the digital age in the 1970s, researchers have expressed their

interest in comparing textual documents with the purpose of extracting, analysing

and understanding differences. Text diff algorithms [88, 58] have been studied and

described. Some of them are still in use, such as Hunt–McIlroy’s [32] algorithm

(currently used in the GNU Diff utility) and Myers’ [60] algorithm. Most of these

algorithms are line-based and rely on two edit operations: Insert and Delete. The

difference is calculated by comparing each line of the original with the corresponding

line of the modified text file. The range of applications for text diff algorithms is

wide; they are present in version control systems (Git, Apache Subversion) and many

other tools such as IDEs (Eclipse Compare) or text editors (Notepad++ Compare),

where tracking textual differences is important. Starting from the early 2000s, with

the explosion of the World Wide Web and semi-structured text documents, several

research groups had their focus on a specific type of text document—XML [91]. The

main reason for this was the promising future of XML, adopted widely in a short

period by many key players in the domain of high technology. Compared with plain

text documents, the particularity of XML resides in its hierarchical structure, also

called tree structure, and nodes can also have attributes to carry specific information.

Moreover, for text-centric XML document types (see the paragraph describing the
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differences between text-centric and data-centric XML documents), the order of the

child nodes within a given parent provides an important information on how the text

is structured within the document.

Regarding the comparison of XML documents, the tree-to-tree editing problem

defined by Selkow [80] makes existing text diff algorithms unsuitable for comparing

XML documents. This was further demonstrated by several research groups [8, 7, 15].

Actually, XML diff algorithms compare attribute–value pairs of objects, each of those

objects corresponding to XML nodes. The comparison is carried out on each node

according to their position in the XML tree. Figure 2-1 shows the main differences

between line-based text diff algorithms (top-right) and proper XML diff algorithms

(bottom-right). We observe that while comparing XML documents, there is a need

for semantics and a higher level of abstraction in order to take into consideration the

XML tree structure properties. We no longer only compare text elements between

different named entities of documents A and B, but we also compare node objects

that are organised within a defined tree structure. In addition to the basic text

insert, delete and update edit actions, XML diff algorithms use those edit actions

on the XML tree structure and also additional edit actions such as move, attribute

edit, etc. As an extreme example, there are one-line valid XML documents where the

line breaks between different nodes are removed. Comparing such a document with

a line-based text diff tool does not make any sense as any change would be shown as

one delete–insert sequence.

Several projects [92] also developed HTML-based diff algorithm implementations.

Both XML and HTML are markup languages; however, the difference between them

is that XML documents are meant to be used for data storage and transportation,

while HTML files are meant to be used for displaying the data. Thus, HTML diff com-

pared to XML diff algorithms are more complex as they have to detect and represent

content, structure and styling/layout differences between two HTML files. Within

our environment, we are only interested in content changes and not in layout changes

made by authors, so this approach of using HTML diff algorithms is not considered.
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<articles>
    <article id="v1">
        <title>Article 1</title>
        <abstract>Abstract text</abstract>
        <keywords>
            <keyword>kwd1</keyword>
            <keyword>kwd2.1</keyword>
        </keywords>
        <sec>Section X</sec>
        <sec>Section Y</sec>
        <sec>Section Z</sec>
    </article>
</articles>

XML A

XML B

2c2
<     <article id="v1">
---
>     <article id="v2">
4a5,7
>         <sec>Section X</sec>
>         <sec>Section Y</sec>
>         <sec>Section Z</sec>
9,11d11
<         <sec>Section X</sec>
<         <sec>Section Y</sec>
<         <sec>Section Z</sec>

<move n="6::12">
  <keywords>
    <keyword>kwd1</keyword>   
    <keyword>kwd2.1</keyword>
  </keywords>
</move>
<update-attribute 
n="1" name="id" newvalue="v2"
oldvalue="v1"/> 

<articles>
    <article id="v2">
        <title>Article 1</title>
        <abstract>Abstract text</abstract>
        <sec>Section X</sec>
        <sec>Section Y</sec>
        <sec>Section Z</sec>
        <keywords>
            <keyword>kwd1</keyword>
            <keyword>kwd2.1</keyword>
        </keywords>
    </article>
</articles>

Figure 2-1: line-based text diff (top-right) VS XML diff (bottom-right) XML compare.

The line-based diff tools use three edit actions: insert (>), delete (<) and update (a com-
bination of <, — and >). They compare the two documents line by line and show the
differences. The XML diff approach compares XML tree objects (nodes) and uses addi-
tional edit actions such as move, attribute-update, etc. We can observe here that moving
the <keywords> sub-tree is shown as a sub-tree move using the XML diff tool and as a full
insert-delete combination using a line-based text-diff tool.

In the scientific literature, there are several main document types largely used

by authors while writing their articles. Among them are well-known and established

formats such as Tex1, docx2 and odt3. In order to facilitate archiving and inter-

change, academic publishers convert articles from their initial document types to

JATS4 (Journal Article Tag Suite) XML developed by NISO (National Information

Standards Organization). JATS is the de facto standard for the XML representation

1https://foldoc.org/TeX
2https://loc.gov/preservation/digital/formats/fdd/fdd000397.shtml
3https://loc.gov/preservation/digital/formats/fdd/fdd000428.shtml
4https://jats.nlm.nih.gov
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of academic articles and is used by major indexing companies, including PubMed

Central5 and SciELO6. It has the advantage of being machine-readable and indepen-

dent of text processors, has no layout information and carries only the article data

and structure. The main text is contained in paragraphs (<p>), which is similar to

what is done within HTML documents. In addition to text, paragraphs are composed

of <xref> elements used for citing objects contained in the back part of JATS (refer-

ences, figures, tables) and styling elements such as <b>, <i>, <sub>, <sup>, etc.

XML documents, being simple and general in nature, are suitable for both text

and data, and so there are two main categories of XML documents: text-centric (or

document-centric) and data-centric, as described in [13] and [54] (see chapter Text-

centric vs. data-centric XML retrieval). The size of individual text nodes is usually

larger in text-centric XML documents, while data-centric nodes are smaller in size

but higher in number. Most of the early XML diff algorithms were developed for

data-centric XML documents with the main focus on execution time, memory usage

and delta size efficiency, and with less attention on the way changes are modelled and

displayed. In order to maintain that high computational performance, most of them

reduced their computational complexity to 𝑂(𝑛 * log(𝑛)), with n being the number

of nodes. The authors of those algorithms were working with a large number of

XML files and had to discard operations of higher complexity in order to improve

execution performance. Moreover, higher complexity operations have lower potential

gain when applied on data-centric XML documents [47]. Several research groups

[74, 70, 13] have demonstrated that XML diff algorithms for data-centric documents

are not suitable for text-centric documents, and there is a need for specific algorithms

adapted to their needs. Those algorithms strive to achieve similar results to those

of MS Word and Open Office track change tools, where differences between the two

documents are represented as close as possible to the changes originally produced by

their authors. Figure 2-2 shows a comparison of two XML documents carried out by

5https://www.ncbi.nlm.nih.gov/pmc/
6https://scielo.org/en/
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a data-centric XML diff algorithm on the top-right (XyDiff), and a text-centric XML

diff algorithm on the bottom-right (jats-diff). We can observe that data-centric XML

diff algorithms are able to only detect basic edit operations compared to text-centric

XML diff algorithms that are able to detect a greater number of higher-level edit

operations. A paragraph split and a text-style edit detected by the text-centric XML

diff algorithm is shown as a basic delete–insert sequence when using data-centric XML

diff algorithms.

<articles>
    <sec>Section A</sec>
    <p>Text paragraph <b>one</b></p>
    <p>Text paragraph <i>one</i></p>
    <p>Text paragraph three four</p>
</articles>

XML A

XML B

    <delete> 
      <p>Text paragraph three four</p>
    </delete>
    <delete> 
      <b/>
    </delete>
    <insert>
      <i/>
    <insert>
    <insert>
      <p>Text paragraph three</p>
    </insert>
    <insert>
      <p>four</p>
    </insert>

<text-style-update op="to">
  <i>one</i>
</text-style-update>
<text-style-update op="from">
  <b>one</b>
</text-style-update>
<split op="to"> 
  <p>Text paragraph three</p>
</split>
<split op="to">
  <p>four</p>
</split>
<split op="from">
  <p>Text paragraph three four</p>
</split>

<articles>
    <sec>Section A</sec>
    <p>Text paragraph <i>one</i></p>
    <p>Text paragraph <i>one</i></p>
    <p>Text paragraph three</p>
    <p>four</p>
</articles>

Figure 2-2: Data-centric (top-right) vs. text-centric (bottom-right) XML compare.

The data-centric XML diff tools (XyDiff in our example) have a limited set of edit pattern
detection capacities. By contrast, text-centric XML diff tools (jats-diff in our example) can
detect additional edit patterns. Within this example, a paragraph split and a style edit is
represented as delete–insert sequences.

Historically, data-centric XML diff algorithms inherited the existing text compar-

ison capacities and additionally added so-called "Level 1" or "basic" edit operations

[36] on tree elements: insert, delete and attribute change. Those basic edit oper-
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ations are very important for the XML tree structure, as without attribute change

detection, modifying the highest parent attribute would result in deleting the entire

XML tree and inserting the same tree with its attribute change. Data-centric XML

diff output is rather large using only those basic edit actions, which is not an issue

as the change information consumers were usually machinamed entities looking for

precise data modifications. The number of individual text nodes being high but small

in size, modifying a text node was naturally represented as a simple delete and insert

combination. Another reason for the restrictive list of changes is their detection per-

formance. Higher-level changes require more computation power and time to execute;

thus, keeping the list of changes simple would allow better performance.

Recent XML diff algorithms are mostly text-centric and propose a specific, higher

level or "Level 2" changes that are not found in data-centric XML diff algorithms.

"Level 2" changes are composed of a combination of "Level 1" basic edit operations.

Each time a specific insert–delete sequence is observed, it then gets converted to a

unique "Level 2" change. The individual text nodes are usually larger in size but

smaller in number; thus, it makes sense to think about higher-level changes that

replace a combination of basic insert and delete operations. Moreover, as humans are

usually the main producers of those text-centric XML documents, there is a need to

use a strong relationship between the modifications made and the changes detected.

Among the "Level 2" tree edits, existing algorithms are able to detect and represent

tree move and wrap/unwrap (observed in [13]). Wrap is used to detect edit patterns

where a specific portion of text within a given node was wrapped by another node,

unwrap being the opposite of wrap. Adding/deleting styling nodes around a text

portion is represented as wrap/unwrap. In the literature, there is a discussion about

an additional number of "Level 2" changes. Some research groups propose element

merge and split [36] and also text move [13]. Unfortunately, none of the existing

algorithms propose a solution regarding how to detect and represent such changes.

In order to cope with performance issues while comparing large textual nodes,

some XML diff algorithms [15, 71, 13] use the two-pass logic where the first pass is

used to assign fingerprint values to the XML tree structure on both versions of the
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document. In the second pass, differences are detected by comparing node finger-

prints, instead of comparing their content.

Among the existing XML diff algorithms, we were able to find documentations

(or research literature) and execute 12 of them that are shown on Table 2.1: 11

are state-of-the-art algorithms from the scientific literature, and 1 is a commercial

implementation. In these algorithms, edit operations specific to the tree structure

were introduced: Insert, Delete, Update and Move.

Algorithm Language Link XML type Published date

XMLDiff [8] Python Pypi.org data 1996
DeltaXML Java Commercial data 2001
XyDiff [15] C++ Github data 2002
Xdiff [97] C++ Github data 2003
DiffXML [10] Java Github data 2004
XOp [42] Java Living-pages.de data 2004
FC-XmlDiff [47] Java Github data 2006
DiffMK [63] Java Sourceforge data 2007
JXyDiff [73] Java Github data 2009
XCC [71] Java Launchpad text 2009
JNDiff [13] Java Sourceforge text 2009
Node-delta [50] JavaScript Github data 2012

Table 2.1: XML diff algorithms.

Deleting a node implies the same action on all of its child nodes, which means

it is no longer a line-based approach but becomes a tree-structure-based approach.

While moving a tree has no impact on the text content, it does move the content

by changing its position within the tree. In the real-world scenario of an academic

article, an operation as simple as inserting an additional author composed of their

name, email and affiliation number would result in a node Insert action where the

entire author tree substructure is impacted. The Update operation is also important

in order to minimise the overuse of Insert/Delete operations. Ronnau et al. [72]

explain that in the case of an attribute change on the root of the document tree,

without Update, it is necessary to represent the change with a full Delete operation

followed by a full Insert operation. The Move operation consists of changing the
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position of a given child node among the other child nodes of a specific parent and

can be used for author reordering. Without the Move action, changing the node order

would result in removing and re-inserting them in the correct order. Attribute editing

is another specificity of XML documents which the text diff algorithms are not able

to deal with. By using all previously mentioned edit operations, XML diff algorithms

should be able to detect both text and tree changes.

In the following, we will describe each of these algorithms and the research work

carried out around them in chronological order.

2.1.1 XMLDiff

XMLDiff is the oldest among the algorithms we analysed. It was published in 1996

[8]. However, the XMLDiff implementation we tested dated from 2004. The paper

was published two years before the first XML 1.0 Specification and did not directly

mention the XML format. It was related to hierarchically structured data, which

are closely related to data-centric XML documents. The algorithm was justified by

explaining the importance of detecting and representing changes in databases and

version and configuration management. Unlike most of the previous work carried

out in the field of change management, where the differences were computed from

flat-files and relational data, they focused on hierarchically structured data which are

very close to XML documents. By converting the data into hierarchically structured

documents, evaluating the changes between the old and new versions of the data

will consist of computing hierarchical change detection and finding a “minimum-cost

edit script” that transforms one data tree to another. XMLDiff uses so-called "key

domain" characteristics in order to improve its performance compared to previous

generic comparison algorithms. Four edit actions, all related to tree structure changes,

were defined: Insert, Delete, Update and Move. The algorithm is still maintained and

is at version 2.4.

22 of 156



Chapter 2. State of the Art 2.1. Document Comparison

2.1.2 DeltaXML

DeltaXML is a commercial suite of products that started in 2001. One of their

solutions is XML Compare, which can be used as a command line or GUI to compare

XML files. The delta results are passed through a pipeline so the output can be

adapted to different needs. The default delta output uses their own namespace and

is a summary of the original XML document enriched with embedded annotation

attributes describing the change in each node in the XML tree. Three edit actions,

all related to tree structure changes, were defined: Delete, Insert and Update. The

move operation is not supported. For unchanged nodes, those are annotated with

deltaxml:unchanged attribute. DeltaXML is still maintained, and their R&D teams

have published several white papers [93] regarding new approaches in XML diffing.

2.1.3 XyDiff

XyDiff was developed by Gregory Cobena within a PhD project called Xyleme. The

publication describing the algorithm was published in 2002 [15]. XyDiff was developed

in C++ with the purpose of managing data changes on the Web by indexing and

analysing parts of French websites stored as XML documents. In the first part of

their work, changes at the “microscopic” scale were considered which resulted in the

creation of the XyDiff algorithm. The algorithm parses each XML document twice:

the first time for assigning so-called “XID persistent identifiers”, acting as fingerprint

values, to each node and then to compute the difference. Differences, called XyDelta,

are all related to the XIDs. An additional .xidmap file is created grouping XIDs

depending on the node differences between the two documents. XyDiff supports four

edit actions, all related to tree structure changes: Insert, Delete, Update and Move.

Its implementation has not been maintained since 2015.

2.1.4 XDiff

XDiff was published in 2003 [97]. The paper describes a new XML diff algorithm

used to detect changes in internet query systems, search engines and continuous
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query systems. Compared to previous XML diff algorithms that used an ordered tree

model where the left-to-right order among siblings is important, the XDiff authors

explain that for data-centric XML documents, the order of the elements is not im-

portant. They defended the theory that an unordered model, where only ancestor

relationships are important, is more adapted for date-centric XML documents. This

approach involved the vanishing of the Move edit action, and XDiff supports three

edit actions, all related to tree structure changes: Delete, Insert and Update. On the

other side, the complexity of comparing XML documents within the unordered tree

model was described as higher than the ordered model comparison. The algorithm

implementation was written in C++ and was maintained until 2015.

2.1.5 DiffXML

DiffXML was published in 2004 [10]. The algorithm introduces a new approach that

consists of mapping the XML DOM tree structure to a relational database. Each

node has two key pieces of information: its value and a unique path. Those pieces

of information are stored in relational tables, and SQL operations are then used to

detect changes between two XML documents stored in the database. In order to

detect changes, for example, finding a node Move, SQL queries are executed to detect

nodes whose path changed and value stayed the same. Each SQL query is adapted

to one of the four specific edit actions supported by DiffXML: Insert, Delete, Update

and Move. Its implementation was written in JAVA and and was maintained until

2018.

2.1.6 XOp

XOp stands for XOperator and was developed in 2004 by Living Pages Research

GmbH as part of the Ercato project. The project was based on “thing-oriented pro-

gramming” with the so-called ercatons representing “things” (i.e., XML documents).

There is no research paper directly describing XOp; however, the Ercato project con-

cept [42] was published in 2004 as a press article and one year later analysed in a

24 of 156



Chapter 2. State of the Art 2.1. Document Comparison

XMLDiff comparison study [30] that evaluated, among others, the XOp algorithm.

In order to represent object-oriented inheritance, the XOp was developed within the

project to compute the difference between two XML documents by using algebraic

operations on XML trees. The default operation used while comparing two XML files

is subtraction (-) where the initial document (a.xml) is compared to the modified doc-

ument (b.xml) by subtraction. There is also a possibility to use different operations

as addition (+), equality (==) and inequality (!=) where both return a Boolean, etc.

Due to the algebraic comparison approach, XOp does not directly support any of the

XML edit actions, and those have to be detected with a post treatment of the XOp

delta. The algorithm implementation was written in JAVA and was maintained until

2009.

2.1.7 FC-XmlDiff

FC-XmlDiff, also called faxma, was published in 2006 [47]. The first implementation

of the algorithm is from 2008. The algorithm uses a greedy heuristic approach by

transforming the XML ordered trees to the domain of sequence alignment, computing

the difference and transforming it back to the ordered trees domain. This approach

reduces the complexity of the XML tree comparison and makes it simpler compared

to the direct comparison of XML trees. FC-XmlDiff was compared to other existing

algorithms and the results showed that, although simple and with lower complexity,

their approach had similar output size and execution time performance compared to

other XML diff algorithms with a more complex design. FC-XmlDiff supports four

edit actions: Insert, Delete, Update and Move. The algorithm implementation has

not been maintained since 2009.

2.1.8 DiffMK

DiffMK was initially developed by Sun Microsystems in 2001 as a generic file com-

parison tool and later adapted by Norman Walsh as an XML diff tool. There was no

research literature describing DiffMK, but there was one paper [47] evaluating Nor-
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man Walsh’s, and one PhD thesis [14] evaluating the Sun Microsystems algorithm.

The DiffMK algorithm we evaluate here is the one adapted by Norman Walsh and

we use its version 3.0 from 2007. It annotates the changes on the original XML file,

similar to DeltaXML. DiffMK uses the Unix diff algorithm and works in the sequence

domain, which makes the tree move detection impossible. Thus, there are only three

possible edit actions: Insert, Delete and Update. The algorithm implementation has

not been maintained since 2015.

2.1.9 JXyDiff

JXyDiff is a Java implementation of the XyDiff algorithm developed by Adriano Bonat

in 2009. The author claimed this implementation had some bug fixes compared to

the original C++ implementation developed by Gregory Cobena in 2002. JXyDiff

has not been maintained since its publication in 2009.

2.1.10 XCC

XCC was published in 2012 [71]; however, the implementation we evaluate here dates

from 2009. XCC is the first algorithm fully dedicated to text-centric XML document

comparison and has the purpose of comparing office documents where the content is

saved in XML format—more precisely, the OpenDocument format. The algorithm

has two main goals, diff and patch. Diff is used to identify and represent differences

between two versions of a document, and patch is used for merging purposes of

document versions resulting from different editing processes. Those two goals are

already achieved in different typesetter tools by using the change tracking function

during the editing phase. Those are, however, dependent on those typesetter tools

and not applicable outside of the corresponding applications. In order to be able

to achieve those goals outside of the typesetter tools, a different approach that is

state-based is required. XCC also introduces the context fingerprints in order to

identify the edit operation in a highly reliable and faster way. It supports four edit

actions: Insert, Delete, Update and Move. The algorithm implementation has not
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been maintained since 2009.

2.1.11 JNDiff

JNDiff was published in 2016 [13]; however, its implementation was carried out earlier,

in 2009. Similar to the XCC algorithm approach and opposite to most existing XML

diff algorithms, the authors of JNDiff made a clear distinction between text- and

data-centric XML documents. They explained clearly that data-centric XML diff

algorithms process both text-centric and data-centric XML documents the same way,

which is not optimal. JNDiff has the focus on delta output quality (human readability,

accuracy and clear named entities) rather than high execution performance. The goal

of the algorithm was to compare textual documents in XML format and represent

the differences in a similar way to the existing change-tracking functions that we

can find in different typesetter tools. Compared to those functions which do record

edit actions while they are performed, reconstructing the edit sequence by comparing

two versions of an XML document is way more complex when using diff algorithms.

JNDiff supports five edit actions: Insert, Delete, Update, Move and Wrap/Unwrap.

This new Wrap/Unwrap edit action is specific to text-centric XML documents and

represents a specific text wrapped inside a new node. An example would be the styling

of some words using <bold>, <italic> etc. The research paper also mentioned the

need for additional so-called "Level 2" edit operations to detect paragraph merge and

split. The algorithm implementation has not been maintained since 2014.

2.1.12 Node-delta

Node-delta was part of the Delta.js JavaScript project developed by Lorenz Schori

in 2012. There was no research literature describing the algorithm. However, its

development was part of a BSc thesis [50]. The main purpose of the Delta.js project

was the implementation of a version control system for structured documents. The

author claimed that the current version control systems are well adapted for plain

text files but do not work properly with structured documents. This is one of the
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main reasons those systems are not used by people who mainly work with content.

Node-delta was inspired by the XCC algorithm we mentioned earlier and supports

four edit actions: Insert, Delete, Update and Move. In order to improve its execution

performance, the algorithm also uses fingerprints. Its implementation was maintained

until 2020.

2.1.13 Existing XML diff algorithm characteristics

In the above, we described 12 existing XML diff algorithms. There are probably

many more that are less well known, proprietary or with no scientific literature. Each

of these algorithms has its own way of describing differences with no universal delta

model. This makes it challenging to compare them and measure the quality of their

delta outputs, as described in [3]. Table 2.2 shows the main characteristics for every

of the 12 XML diff algorithms we will further evaluate in Section 3.1. We can find

there their supported edit actions and the fingerprint use that we represent with a

binary success operator ( for success and X for fail), together with the type of XML

documents they were designed for, the published and the last updated date.

Supported edit actions
Algorithm Del Ins Mv Upd Other Fingerprint XML

type
Language Published

date
Last

update

XMLDiff X X data Python 1996 present
DeltaXML X X ? data Java 2001 present
XyDiff X data C++ 2002 2015
Xdiff X X X data C++ 2003 2015
DiffXML X X data Java 2004 2018
XOP X X X X X X data Java 2004 2009
FC-XmlDiff X X data Java 2006 2009
DiffMK X X X data Java 2007 2015
jXyDiff X data Java 2009 2009
XCC X text Java 2009 2009
JNDiff text Java 2009 2014
Node-delta X data JavaScript 2012 2020

Table 2.2: State-of-the-art XML diff algorithm characteristics.

Regarding the basic edit operations (insert, delete and update) the existing XML

diff algorithms are able to detect, those were first discussed in the literature by Selkow

[80] describing the problem of identifying the differences between two ordered labelled
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trees, known as tree-to-tree correction problem. Selkow extended Sankoff’s algorithm

[79] used to solve the string-to-string editing problem and applied it to find the tree-

to-tree edit distance between ordered labelled trees. Three basic edit operations were

defined: relabel (change), delete and insert.

The Selkow algorithm being recursive, given two trees A and B and with their

respective nodes 𝐴𝑖 and 𝐵𝑗, it calculates the edit distance between different node

pairs starting from the root nodes and propagating towards the child nodes. At each

node pair, the algorithm sets a cost matrix that is computed by taking the minimum

cost from the three previously mentioned edit operations that are detected as follows:

• Insert: Cost to edit 𝐴1, 𝐴2, ..., 𝐴𝑖 → 𝐵1, 𝐵2, ..., 𝐵𝑗−1 + cost to insert 𝐵𝑗

• Delete: Cost to edit 𝐴1, 𝐴2, ..., 𝐴𝑖−1 → 𝐵1, 𝐵2, ..., 𝐵𝑗 + cost to delete 𝐴𝑖

• Change: Cost to edit 𝐴1, 𝐴2, ..., 𝐴𝑖−1 → 𝐵1, 𝐵2, ..., 𝐵𝑗−1 + cost to edit 𝐴𝑖 → 𝐵𝑗

Although able to adapt the Sankoff’s string-to-string editing algorithm to solve

the tree-to-tree editing problem, Selkow’s algorithm has a major limitation because

of the fact that delete and insert edits are restricted to the leaf nodes, meaning that

deleting nodes containing other child nodes or inserting nodes on parents containing

other child nodes is not possible. This results in having to perform 2n+1 edits for a

simple insert/delete, n being the number of child nodes belonging to the parent where

the edit action is made.

In order to solve this issue, Tai’s algorithm [87] uses a dynamic programming

approach without recursion where deletes and inserts are possible within parent nodes

containing other child nodes. While deleting, all remaining child nodes are attached to

the parent of the deleted node. While inserting, all remaining child nodes are attached

to the newly inserted node. In order to adapt the string-to-string edit algorithm to

trees, Tai’s algorithm uses a so-called preorder tree traversal with the purpose of

assigning unique numbers to each node, starting with the root node. Once all nodes

on trees A and B are annotated, the algorithm compares the two trees by using

the idea of traces (called mappings by Tai) from the Wagner and Fischer’s string-

to-string edit algorithm [94]. With the same edit operations as Selkow’s algorithm
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(insert, delete and change), Tai’s algorithm detects insertions where for a given node

in the B tree, there is no pair node on the A tree. The deletion is detected, while

for a given node in the A tree, there is no node pair on the B tree. Finally, the

change is detected while there are differences between two paired nodes. Although

having improvements compared to the Selkow’s algorithm, Tai’s algorith has another

limitation that forces the structure of the trees A and B to be preserved. While the

two tree structures are different, Tai’s algorithm is not able to operate correctly.

Another algorithm that is an improved version of Tai’s algorithm was proposed

by Zhang and Shasha [81, 104]. The main difference between the two algorithms is

the tree traversal for assigning unique node numbers—see Figure 2-3. Zhang and

Shasha’s algorithm performs a postorder tree traversal instead of the preorder tree

traversal carried out by Tai. Contrarily to the preorder tree traversal that starts

the numbering at the root node annotating the remaining child nodes left to right,

Zhang and Shasha’s algorithm performs the postorder tree traversal and starts with

the leftmost leaf descendant of the root, proceeding to the leftmost descendant of

the right sibling of that leaf, the right sibling, then the parent of the leaf and so

on up the tree to the root node. Compared to Tai’s algorithm where the minimum

cost computation is calculated once the tree traversal has been completed, Zhang

and Shasha’s algorithm is able to calculate the minimum cost distance right away,

before the node is encountered. This is made possible by keeping track of the tree

keyroots—defined as the root of the tree plus all nodes which have a left sibling. In

addition to the tree distance defined as the distance between two nodes considered

separately from their siblings and ancestors, the keyroots allow the calculation of

the forest distance, defined as the distance between two nodes considering their left

siblings in the trees A and B.

The previously mentioned algorithms were further reused in XML document com-

parison where XML trees are seen as ordered labelled trees. Besides the insert, delete

and change edit actions, the move edit action was further added, seen as a combina-

tion of insert–delete edit actions of the same node.
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Figure 2-3: Tai vs. Zhang and Shasha tree traversal unique node numbers assignment.

Tai’s algorithm performs the preorder tree traversal and starts with the root; Zhang and
Shasha’s algorithm performs the postorder tree traversal and ends with the root node.

2.2 Named Entity Recognition

The goal of the NER task we plan to achieve is to annotate review comments with

specific named entity categories in order to extract the changes requested by the

reviewers. This additional information will be used by human readers to better un-

derstand the change requests and to correlate those requests with the actual changes

extracted by XML document comparison. NER was first introduced in 1996 at the

sixth Message Understanding Conference (MUC-6) [27]. It seeks to identify named

entities in raw text and classifies text spans into predefined categories. The usual

named entities we observe in the literature are person name, location, date, organ-

isation, monetary value, etc. By analysing a specific raw text, for example, "John

Doe was in Paris, France on February 21–24, 2022", important text spans can be

identified and classified in specific categories. Within our example, "John Doe" can

be categorised as a person, "Paris, France" as a location, and "February 21–24, 2022"

as a date. In Natural Language Processing (NLP), NER plays an important role for

tasks such as question answering [59], machine translation [2], text understanding

[106, 11], relation extraction [102], entity linking [100], text summarisation [43], etc.

Although conceptually simple, NER is a complex task that usually requires large

training datasets. The right choice of a named entity depends on multiple factors

involving text semantics and the neighbourhood of the specific text span. After three
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decades, researchers are still working on NER [98, 62, 20], and the NER task is not

yet solved [55]. There are two main reasons for this: the limited set of named entities,

especially for domain-specific NER tasks, and the different languages the NER needs

to operate in.

There are two main named entity types: generic (or coarse-grained) and domain-

specific (or fine-grained). Initially, coarse-grained NER [27, 77], representing named

entities such as person name, location, date, organisation, etc. were developed. Later,

fine-grained NER tasks [48, 69, 1, 38] appeared with a broader number of named

entities where a text span can also be assigned to multiple named entities. Domain-

specific named entities are proper to the domain they are used in. Researchers are

working on NER for domains such as bio-medicine [86] and history [37], but also for

some newly emerging topics such as analysing the COVID-19 literature [17]. The

language being another important factor for NER, some research groups are working

on the use of NER in languages other than English [83, 90, 52].

In the literature, there are different ways to perform NER [46]:

• The handcrafted rules approach uses grammar-, syntactic- and orthographic-

based linguistic techniques [6]. This approach does not need annotated data,

has a high precision but also a lower recall, is domain/language-specific and

requires a large amount of work by experienced computational linguists. Lin-

guists have to write specific, so-called handcrafted rules that will be able to

analyse the raw text and identify specific named entities;

• The feature-based supervised machine learning approach [82] uses sta-

tistical models and turns named entity identification into a classification task.

It is faster to put in place but requires a large amount of manually or semi-

automated labelled data for training purposes. The model learns from the

labelled data in a supervised manNER in order to correctly carry out named

entity distinctions;

• The hybrid approach [56, 84, 85] is a combination of both handcrafted rules

and feature-based supervised machine learning approaches. This approach can
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achieve better results than each of the two individual approaches but also inher-

its the handcrafted rules technique weakness, where experienced linguists have

to write specific rules by hand;

• The unsupervised machine learning approach uses clustering [61] with

the idea of extracting named entities based on context similarity. The use of

lexical patterns and statistics on a large corpus of raw text gives the possibility

to match specific named entities and build their representations from raw data.

This approach is not very popular in NER today;

• The deep learning approach [44] is the most used NER technique today [46],

with many research groups [18, 31, 39, 12, 66] working on the topic and achieving

state-of-the-art performance compared to the other approaches. deep learning

is composed of multiple artificial neural network layers—see Figure2-4—created

to learn representations of data with multiple levels of abstraction. This makes

it possible to understand the context of a sentence using vector representation

and neural processing. Recent deep learning models we can find in the literature

are ELMo [67], GPT [68], BERT [23], XLM [40], XLNet [101], etc. BERT has

also some derivative models as RoBERTa[49], SciBERT[4], DistilBERT [78] and

ALBERT [41].

As deep learning is the most used NER technique today, achieving state-of-the-

art performance, we will focus our research on this NER approach. As seen, there

are already several pre-trained deep learning language models that can be further

trained on the NER task, one of them being BERT. BERT was first introduced by

researchers at Google AI Language [23]) in 2018, achieving state-of-the-art results

in a large variety of NLP tasks. As seen in Figure 2-4, BERT is based on stacked

layers of encoders and makes use of transformers, an attention mechanism that learns

contextual relations between words and sub-words in a text. BERT is pre-trained on

two NLP tasks: Masked Language Modelling (MLM) and Next Sentence Prediction

(NSP). MLM consists of using randomly masked tokens where random words in a

sentence are masked, and then the model is trained to predict those masked tokens.

NSP is a binary classification task based on understanding the relationship between
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two sentences. The model is trained to distinguish, for a randomly chosen sentence

A from the training corpus, if sentence B is the sentence subsequent to sentence A.

This is shown as beneficial to several NLP tasks, such as Question Answering (QA)

and Natural Language Inference (NLI).

During the pre-training phase—see Figure 2-4 showing the NSP training—BERT

learns contextual embedding for words which is computationally expensive and re-

quires large training sets. Afterwards, BERT models can be fine-tuned for specific

tasks such as NER—see Figure 2-5—text classification, question answering and se-

mantic textual similarity, using fewer resources and smaller datasets. BERT has

achieved state-of-the-art performance in those NLP tasks: General Language Un-

derstanding Evaluation (GLUE), Stanford Question Answering Dataset (SQuAD),

Situations With Adversarial Generations (SWAG) etc. It uses the WordPiece [99]

subword-based tokenisation algorithm for constructing its BERT base and BERT

large vocabularies. The difference between the BERT base and BERT large lies on

the number of encoder layers. The BERT base has 12 and BERT large 24 transformer

encoder layers stacked on top of each other. Besides the number of encoder layers,

BERT also uses cased and uncased text. The difference between BERT cased and

BERT uncased is during the WordPiece tokenisation step. BERT cased uses cased

text, accents and diacritical marks. By contrast, BERT uncased converts everything

to lowercase and also deletes the accents and diacritical marks. For example, the

following text, "Université Haute Alsace", while being transformed from cased to un-

cased, will result in "universite haute alsace". Note the first letter of each word that

became lowercase and the accent removal from "é". In total, there are four combi-

nations of BERT models: BERT-base-cased, BERT-large-cased, BERT-base-uncased

and BERT-large-uncased.

During fine-tuning—see Figure 2-5—the same pre-trained model parameters are

used and further fine-tuned on the NER task. Each input example starts with a [CLS]

token, and each sentence is delimited with a [SEP] token. The input example first

goes through the WordPiece tokenisation, where it gets converted into tokens. Once

tokenisation has taken place, the input tokens go to the embedding phase where each
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Figure 2-4: Pre-training NSP phase principles for BERT.

NSP is a binary classification task in which, given a pair of sentences, it is predicted if the
second is the actual next sentence of the first sentence. The [CLS] symbol is added in front
of every input example, and [SEP] is a separator token separating different sentences.

input token will have its embedding representation (Ex). Input embedding is the sum

of the token, segmentation and position embedding. Each embedding representation

then goes through different layers of transformers where every layer performs multi-

headed attention computation on the word representation of the previous layer. In a

n-layer BERT model, a token will have n intermediate representations.

We will describe some of the BERT-derived deep learning models in order to

understand their specificity compared to the original BERT:

• SciBERT is a BERT-based pre-trained model on scientific data. Compared to

BERT vocabulary usage, SciBERT can use both BASEVOCAB (BERT base)

and a new SCIVOCAB vocabulary constructed using the SentencePiece [35]

subword-based tokenisation algorithm. There are four variants of SciBERT, us-

ing different combinations of BASEVOCAB and SCIVOCAB as vocabularies,
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and cased and uncased text: scibert_scivocab_cased, scibert_scivocab_uncased,

scibert_basevocab_cased and scibert_basevocab_uncased. The models using

BASEVOCAB are fine-tuned from the BERT base models, while the SCIVO-

CAB models are trained from scratch. SciBERT can perform the following NLP

tasks: NER, Dependency Parsing (DEP), PICO Extraction, Relation Classifi-

cation (REL) and Text Classification (CLS).

E[CLS] E1 E2 E[SEP]EN...

C T1 T2 TN S...

B-LOCATION I-LOCATION ... O

[CLS] Line 22 should be
removed . [SEP]

Classification

Stacked layer  
of Transformers

Embedding 
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Input 
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Transformer 
Outputs

Classification 
Layer

Classification 
Outputs

Line 22 should be removed.
Input 
Text

WordPiece Tokenization Tokenization

Figure 2-5: Fine-tuning phase principles for BERT on NER task.

During fine-tuning, the same pre-trained model parameters are used and further fine-tuned
on the NER task. The [CLS] symbol is added in front of every input example, and [SEP] is
a separator token separating different sentences.
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• RoBERTa, i.e., the Robustly Optimised BERT Pre-Training Approach, was

developed by researchers at Facebook and Washington University with the pur-

pose of optimising the training of BERT in order to reduce the pre-training

time. This is made possible by using specific BERT design choices and training

strategies for better performance. For this, the following was carried out:

– Disable the NSP which improved the downstream task performance;

– Train with bigger batch sizes (number of training examples utilised in one

iteration) and longer sequences: compared to BERT that was trained for

1M steps with a batch size of 256 sequences, RoBERTa was trained for

125 steps with a batch size of 2K sequences and 31K steps with a batch

size of 8k sequences. Large batches are easier to parallelise via distributed

parallel training, and their use improves the perplexity on masked language

modelling objective and end-task accuracy;

– Dynamically change the masking pattern applied to the training data: in

the BERT architecture, masking is carried out once during the data pre-

processing step. With RoBERTa, the training data are duplicated and

masked 10 times over 40 epochs, each time with a different mask strategy,

resulting in 10 x 4 epochs with the same mask.

RoBERTa achieved state-of-the-art performance on the SQuAD 1.1, SQuAD

2.0 and RACE benchmark datasets. The same was found in four GLUE tasks:

Multi Natural Language Inference (MNLI), QuestionNLI, Semantic Textual

Similarity Benchmark (STS-B), and Recognising Textual Entailments (RTE).

• DistilBERT is presented as a distilled version of BERT that is 40% smaller in

size while being 60% faster and able to retain 95% of BERT’s language under-

standing capabilities while tested on a GLUE language understanding bench-

mark. In order to leverage the inductive biases learned by larger models during

pre-training, the authors introduce the triple loss technique combining language

modelling, distillation and cosine-distance losses. The knowledge distillation

technique [5, 29] consists of training a smaller student model to reproduce the
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behavior of a larger teacher model, which is what RoBERTa does with BERT.

• ALBERT is another BERT-derived model with reduced memory usage com-

pared to its predecessor. For this to happen, ALBERT uses the following tech-

niques:

– Cross-layer parameter sharing: same as BERT base, ALBERT architec-

ture also has 12 transformer encoder layers stacked on top of each other.

However, compared to BERT, where each encoder layer is initiated with a

specific set of weights, the encoder weight initiation for ALBERT is carried

out by repeating the first encoder weights to the remaining encoders. This

directly reduces the number of unique parameters, which reduces memory

usage;

– Embedding factorisation: In BERT, the vocabulary is of the same size as

the hidden layer. ALBERT adds a smaller layer between the vocabulary

and the hidden layers, which decomposes the embedding matrix into two

smaller matrices. This approach reduces the total number of parameters

between vocabulary and the first hidden layer;

– Sentence-order prediction (SOP): Compared to BERT, which uses next

sentence prediction (NSP), ALBERT uses SOP that focuses on inter-

sentence coherence and self-supervised loss, which improve loss compared

to BERT.

XLNet is another deep learning model that achieved significant performance im-

provements using the benefits of transfer learning approach. The authors of XLNet

claim that this new model outperforms BERT on 20 tasks, including question answer-

ing, natural language inference, sentiment analysis and document ranking. XLnet is

an extension of the Transformer-XL model [21]. Compared to BERT that is an auto-

encoding based model, XLNet is pre-trained using an auto-regressive method with

the goal of learning bidirectional contexts using Permutation Language Modelling

(PLM). PLM is the concept of training a bi-directional auto-regressive model on all

permutation of words in a sentence. This difference mainly impacts the MLM task,
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which is illustrated within the example in Figure 2-6. While selecting the two to-

kens [Clermont, Ferrand] as the prediction targets and streaming to maximise the log

(Clermont, Ferrand | is, a, city), XLNet is able to capture the dependency between

the pair (Clermont, Ferrand), which is omitted by BERT. The XLNet pre-trained

model can be used and further fine-tuned in two different versions: the XLNet-large-

cased and the XLNet-base-cased. The XLNet-large-cased model variant has 24 and

the XLNet-base-cased model variant 12 transformer encoder layers stacked on top of

each other.

Clermont Ferrand is a city.

    J{BERT} = log(Clermont | is, a, city) + log(Ferrand | is, a, city)

 J{XLNet} = log(Clermont | is, a, city) + log(Ferrand | Clermont, is, a, city)

Figure 2-6: Main difference between XLNet and BERT on MLM task.

Compared to BERT that is an auto-encoding based model, XLNet is an auto-regressive-
based model. Within the example, this approach allows XLNet to capture the dependency
between the pair (Clermont, Ferrand), which is omitted by BERT.

All previously described models have the advantage of tokenising the words before

going into the embedding layer. This avoids having to pre-process the input text with

stemming or lemmatisation. If we take the example of the word run that can also be

mentioned as running, BERT will for example decompose that word into two tokens

"run" and "##ing" before going to the embedding layer.

Once the different deep learning models we will fine-tune on our NER task have

been described, we will continue with the state of the art regarding the evaluation

criteria during the model training and testing phases.
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2.2.1 Evaluation criteria

Training phase

In deep learning, the goal of the training (or the fine-tuning) phase is to calculate

the best possible weights that will allow the model to make good predictions. Due

to the complexity of the problem, calculating the perfect weights is not possible

as there are too many unknowns. In order to improve the model prediction, the

learning process is projected as an optimisation problem with an initial arbitrary

weight-set that is further optimised through different training epochs. For this, the

training dataset is used in order to train the neural networks using the stochastic

gradient descent optimisation algorithm [45] where the gradient is the error gradient.

Starting with the initial arbitrary weight-set, the model predictions are evaluated on

the training dataset, and the prediction error is calculated using a loss function [95].

With the prediction error, the weights are updated using backpropagation [76] so

that the next evaluation reduces the error. The gradient descent algorithm seeks to

change the weights with the goal to reduce the error on the next evaluation, meaning

the optimisation algorithm navigates down the error gradient. The parameter that

determines the step size at each iteration while navigating down the error gradient is

called learning rate or gain. This parameter represents the speed at which the model

learns.

One of the major issues faced during the training phase is the overfitting problem

[28], where the model learns the training data to the extent that it negatively impacts

the performance of the model on new data. In order to avoid overfitting, a technique

called weight decay is used for regularisation. It consists of adding a small penalty to

the loss function with the purpose of shrinking the weights during backpropagation.

Compared to weight decay and the learning rate that have a direct impact on the

model prediction success, the batch size defines the number of samples that will be

propagated through the network and also impacts the training speed and memory

usage. The bigger the batch size is, the higher the memory usage and the slower the

model is to train. On the other side, the smaller the batch, the less accurate the

40 of 156



Chapter 2. State of the Art 2.2. Named Entity Recognition

estimate of the error gradient will be. Another standard parameter while training

neural network models is the warm-up learning rate. The warm-up phase represents

the beginning of the training where the warm-up learning rate is a lower percentage

of the learning rate initially defined. Over the initial epochs, the warm-up learning

rate is doubled per epoch until it reaches the initially defined learning rate. This

parameter is very useful, while the training dataset is highly differentiated and the

number of training epochs is low. Without its usage, the model could face the early

overfitting problem as it can quickly learn with a high learning rate on a specific batch

of examples that are strongly related.

Our NER task being a multi-class classification problem, assigning the right class

to a specific word consists in classifying that word as belonging to one of the classes.

This problem is projected as the prediction of the likelihood of that specific word

belonging to each of the possible classes. During training in a multi-class NER task

and under the maximum likelihood framework [75], the commonly used loss function

is cross-entropy [22]. This loss function is used to calculate the error between two

probability distributions. Figure 2-7 shows the use of the cross-entropy function that

enables loss calculation.

Paris

Input word Model Logits Softmax
Output Probabilities 

(p)
0.775 

 
0.116 

 
0.039 

 
0.070 

 
0.039

Truth values 
(q)

3.2 
 

1.3 
 

0.2 
 

0.8 
 

0.2

Neural Network
Layers

  1 - City 
 
  0 - Country 
 
  0 - Person 
 
  0 - Date 
 
  0 - Organisation

Cross-Entropy

Figure 2-7: Cross-entropy loss function use.

On the left, the input word goes through the neural network layers in order to calculate
its logits per different named entity classes. The Softmax function then converts logits
into probabilities. The cross-entropy of the distribution of truth values q relative to the
distribution of output probabilities p is then calculated in order to measure the distance
from the output probabilities to the truth values.

Testing phase

In order to evaluate a neural network model on a given task, the standard approach

consists of evaluating its precision, recall and the F1 score [26]. This is carried out
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during the testing phase and consists in executing the model on a dataset containing

examples the model never saw during the training. Figure 2-8 shows how the precision,

recall and F1 scores are obtained in a binary classification task. The model is executed

on the testing dataset examples in order to evaluate the differences between the

predicted and the correct values. Four different result groups are obtained during the

evaluation:

• False Positives: Negative labels that were wrongly predicted as being positive;

• True Positives: Positive labels that were correctly predicted as being positive;

• False Negatives: Positive labels that were wrongly predicted as being negative;

• True Negatives: Negative labels that were correctly predicted as being negative.

Positive Predictions Negative Predictions

Training Data-set

NER Classifier

Positive Labels Negative Labels

False Positives True Positives False Negatives

Precision Recall

F1 Score

Testing Data-set

True Negatives

Figure 2-8: Precision, recall and F1 score.

Once the results have been grouped, the calculation of the precision and the recall

is made possible. The precision is defined as the ratio of successful predictions to all

attempted predictions. The recall is defined as the ratio of successful predictions to
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the total number of the positive cases in the dataset. The higher the precision and

the recall are, the better the prediction is. The two following formulas are used in

order to calculate precision and recall:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

Once precision and recall have been calculated, the calculation of the F1 score is

made possible, that is, by definition, the combination of both. The F1 score is the

harmonic mean representing the average of precision and recall. In order to have a

high F1 score, both precision and recall have to be high. The mathematical formula

to calculate the F1 score is as follows:

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

Another basic metric for evaluation of neural network models on classification

tasks is accuracy. This performance indicator represents the proportion of correct

predictions over all predictions. The mathematical formula to calculate accuracy is

as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

However, the accuracy performance indicator is ineffective in assessing model perfor-

mance on imbalanced datasets—see Section 2.2.2. Thus, we will not calculate, nor

use, this performance indicator.

It is important to note that compared to the binary classification where each

performance indicator represents a single overall score, in multi-class classification,

the different performance indicators are calculated for each class separately in a one-

vs.-rest approach as if there are distinct classifiers for each class. Compared to binary

classification performance indicators, for multi-class classification, there are additional
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useful metrics, such as the micro, macro and weighted averages that are calculated

per precision, recall and F1 score within the one-vs.-rest approach.

The macro average is calculated by taking the arithmetic (unweighted) mean of

all the per-class performance indicators. The mathematical formula to calculate the

macro average (of the F1 score in this example), n being the number of total classes,

is as follows:

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑔 =

∑︀𝑛
1 𝐹1𝑛
𝑛

The micro average is calculated as a global average by counting the sums of the

True Positives, False Positives and False Negatives. The mathematical formula to

calculate the micro average (of the F1 score in this example), n being the number of

total classes, is as follows:

𝑀𝑖𝑐𝑟𝑜𝐴𝑣𝑔 =

∑︀𝑛
1 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑛∑︀𝑛

1 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑛 +
∑︀𝑛

1 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑛

The weighted average is calculated by taking the mean of all per-class performance

indicators while being aware of the dataset imbalance (per-class representation in the

dataset represented by the support proportion indicator). The mathematical formula

to calculate the weighted average (of the F1 score in this example), n being the

number of total classes and sup being the support proportion indicator, is as follows:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑔 =
𝑛∑︁
1

𝐹1𝑛 * 𝑠𝑢𝑝𝑛

2.2.2 Datasets

The first thing to check while annotating the datasets to be used in supervised learning

is the representation ratio for each class. Having a so-called imbalanced dataset where

certain classes are more represented compared to others could be confusing for the

model that will learn to assign higher probability weights to the over-represented

classes and lower probability rates to the under-represented classes. In order to cope

with imbalanced datasets, there are different techniques that can be applied on the
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dataset directly, by changing its composition in order to improve the class distribution,

or during the model evaluation phase by measuring the right performance indicators.

The following techniques can be used in order to improve the dataset balance:

• Collect more data: add examples of the under-represented class to the dataset;

• Oversampling: copy dataset instances of the under-represented class;

• Undersampling: delete dataset instances of the over-represented class;

• Combination of over– and undersampling: copy dataset instances of the

under-represented and delete dataset instances of the over-represented class.

The first approach that consists in collecting more data is the ideal but less com-

monly used technique as it requires additional data which are not always possible

to obtain. Regarding the data-sampling techniques, there are many variants that

can be divided into three categories: oversampling, undersampling and a combina-

tion of both. The simplest oversampling technique is random oversampling which,

as its name indicates, consists in randomly adding more support examples of the

under-represented classes. This technique is, however, prone to the overfitting prob-

lem, where the model models the training data too well due to the random duplicates.

The most popular oversampling technique that helps to overcome the overfitting prob-

lem is the Synthetic Minority Oversampling Technique (SMOTE) [9]. This technique

consists in selecting support examples that are close in the feature space and, with the

help of interpolation between the positive instances that lie together, copying those

support examples in order to reduce the dataset imbalance. Regarding the under-

sampling techniques, the simplest to implement is random undersampling, which is

the opposite of the random oversampling technique and comes with the under-fitting

problem where the model cannot model the training data nor generalise to new data.

Alternative approaches exist for the undersampling techniques, allowing to solve the

under-fitting problem, such as the Condensed Nearest Neighbor Rule (CNN), Near

Miss undersampling, etc. Those techniques are, however, less used as they consist

in decreasing the size of the training dataset, which is a costly approach. It is also

common to have a combination of over- and undersampling techniques in order to
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cope with the dataset imbalance. For example, combining the oversampling SMOTE

technique with an undersampling method applied to the dataset after SMOTE allows

improving the dataset imbalance while keeping a similar dataset size. Unfortunately,

it is not possible to use any of those techniques for our dataset due to the fact that

all examples are imbalanced in a similar way and there are no examples in which

the under-represented classes are solely available. Moreover, the classes are linked

together, dependent on each other, and each have similar word sizes.

Another approach to coping with less severe imbalanced datasets is accepting

it and being aware of it during the model testing phase. This can be achieved by

measuring the right performance indicators. The first basic performance indicator

while evaluating models on classification problems is its accuracy—see Section 2.2.1.

Accuracy represents the ratio between the number of correct predictions over all

predictions and does not taking into consideration the representation of a given class

within the dataset at all. If we take as an extreme example a dataset having 1000

representations of class A and only 10 representations of class B, having 5 wrong

predictions in both classes A and B will result in having an accuracy of 0.95 for class

A and 0.5 of class B. With imbalanced datasets, exclusively measuring accuracy is

not optimal, and the use of additional performance indicators such as precision, recall

and F1 score—see Section 2.2.1—better addresses imbalanced datasets. In addition to

those performance indicators, there is the weighted average indicator that takes into

consideration the support examples ratio per class while making the averages—see

Section 2.2.1. Using those performance indicators and having a non severe imbalanced

dataset can give us accurate performance indicators while evaluating our models.

In the above, we described some of the existing deep learning models that can be

fine-tuned on our NER task. In addition, we covered how to evaluate a given model

during the training and testing phase. Finally, we saw what the different impacts and

solution techniques are to deal with imbalanced datasets. In Chapter 4, we will apply

some of those models in the domain of academic peer review comments with the goal

to improve the final decision-making process by review comments annotation.
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Chapter 3

Document comparison

In order to evaluate the current XML diff algorithms’ capacity to have a bijection

between the author edits and the XML diff while comparing JATS academic articles,

we have identified 12 implementations of XML diff algorithms as seen in Table 2.1:

11 are state-of-the-art algorithms from the scientific literature and 1 is a commercial

implementation. Our goal is to asses each of those algorithms by analysing their

capacity to detect and represent common author edit actions we have extracted during

the article revision process. Each of those common edit action was then applied on

our dataset by creating one JATS XML file pair per edit action.

3.1 XML Diff Comparison Study

In order to perform the analyses of the 12 XML diff algorithms, we start with describ-

ing different common edit actions an author applies during the article revision and

the impact those edits have on JATS XML . Following is the XMLDiffAnalyzer script

we developed in order to automate one part of the analysis. We continue with car-

rying out an initial high-level performance and suitability analysis of the algorithms

for JATS document comparison. The performance is evaluated in terms of execution

time, average and maximal memory used and resulting delta file size. The suitability

depends on the results obtained by analysing the delta files for specific author edit

operations which impact the XML document in both the text and tree structure.
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Finally, we focus on the three algorithms we identified as most suitable and three

algorithms identified as low-performing in JATS comparison. A deeper analysis of

the delta outputs they generated is performed in order to identify their strengths and

weaknesses.

3.1.1 Evaluation metrics

In previous XML diff comparison studies [16, 30], the main criteria for an appropriate

algorithm were based on execution time, delta size, CPU and memory usage. In

our case, we are mainly focused on the delta output—that is, all the differences

between two versions of an academic article should be detected, correctly interpreted

and represented. In order to assess the delta output, we need to understand the

modifications an author is making during the revision process and correlate those

with the changes observed on JATS. During the revision rounds, the following author

modification actions are seen:

• Paragraph correction is the most common author modification we observed.

This is because paragraphs represent the largest text content part of the article

(over 95%). Authors mostly modify paragraph content but also move, merge or

split paragraphs. Content changes include text additions, removals, moves and

style changes. Paragraphs are also composed of other objects such as mathe-

matical formulas and citations that are subject to editing. Smaller corrections

can be interpreted as updates, while larger corrections can be seen as rewrites;

• Section correction is mostly about article structural change. A section is

composed of other sub-elements such as its title, subsections, paragraphs, fig-

ures, etc. Authors modify section sub-elements, merge and split sections or

upgrade subsections into sections or downgrade sections into subsections;

• Author correction is observed while modifying author information, adding or

deleting an author or changing an author’s position within the authors list;

• Title correction is observed in the article title, which is a relatively short

portion of text;
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• Citable object correction is observed on objects that can be cited within

the article (i.e., references, figures, tables, sections, algorithms, etc.). The par-

ticularity of those objects is that their order of appearance within the article is

used to generate their incremental citation number; moving a table, reference

or figure impacts the number with which this object is cited within the article;

• Embedded object correction is observed on objects that are externally pro-

duced and inserted in the article. The most common examples are figures.

By further analysing the previously mentioned modifications observed on a corpus

of 50 academic article revision pairs, we identified nine general edit actions that an

author can apply: Add, Remove, Update, Move, Merge, Split, Upgrade, Downgrade

and Styling. Add and Remove are the two main modifications, and the others can

be reinterpreted with their sequence. Figure 3-1 shows the correlation between the

typesetter version of an academic article and its JATS representation. As mentioned

in the introduction, JATS has structured data, and important information resides in

text nodes, tree element structures and attributes. The following list shows a short

description of each edit, divided into two groups, content and structural edits:

Content edits:

• Add is the first main modification observed on all levels of the article. Authors

can add characters, sentences, paragraphs, sections, references, etc.;

• Remove is the opposite of Add;

• Update is observed where changes are minor. Instead of representing a typo

correction or a rephrasing in a paragraph as a full Remove/Add sequence, Up-

date is used as a more fine-grained approach;

• Styling is observed on portions of text, mostly within paragraphs. Authors

can add or remove styling elements such as italic, bold, subscript, superscript,

etc. Those styling elements can also have their range changed while extending

or shrinking the styled portion.
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article

auth. 1

auth. 2
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Edit
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Figure 3-1: Author modifications’ impact on JATS article version.

Left, the original typesetter article; middle, the modified version; right, the impact on JATS.

Structural edits:

• Move is observed where the order of items within the article is changed. It has

no impact on the content itself, only on its position within the article;

• Merge is observed on paragraphs, subsections and sections. For paragraphs,

it usually consists of removing the line breaks between two paragraphs in order

to form one larger paragraph. For subsections and sections, the line breaks are

removed and, additionally, their titles are merged;

• Split is the opposite of Merge;

• Upgrade is observed on subsections and consists of changing a subsection to a

section;

• Downgrade is observed on sections and consists of changing a section to a

subsection.

Each of the previously described modifications that an author applies to an article

is a sequence of the edit actions we identified. Paragraph correction, for example,

can be composed of text Insertions, Deletions, Updates, Moves, Merges with other

paragraphs, Splits or Styling changes.
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3.1.2 JATS Edit Actions

In order to understand how these common author modifications impact the JATS

versions of the article, we analysed each of them by observing the changes from an

XML perspective. This gave us the opportunity to define 16 edit actions produced

by the author and reflected on the JATS. Those actions are divided into two edit

groups: six text and ten tree edits. Text edits are actions observed on text nodes,

mostly paragraphs, but also article title, author name, etc. Tree edit actions are

observed on the tree structure of the JATS while adding or deleting elements, moving

paragraphs or sections, etc.

Text edits:

• Delete: basic edit operation that can be executed on any text node within the

article. Can be found in text deletion in paragraphs, sections, authors, title and

other nodes;

• Insert: basic edit operation that can be executed on any text node within the

article;

• Move: composite operation that is often seen in paragraphs. Entire sentences

or parts of sentences are moved in order to correct the grammar or improve the

writing clarity;

• Update: composite edit type that can be seen in any of the XML nodes. Makes

sense while doing relatively small modifications to a given text. Having a text

edit action with a high volume of inserted/deleted text should not be considered

as an update, but rather as a full rewrite using Delete–Insert actions;

• Style: specific edit type where styling elements range change while extending

or shrinking the styled portion. One example is the extension of a portion of

text that is in italics;

• Complex environment edits: any text edit performed on text nodes that

have the specificity of embedding other child nodes such as styling, reference,

mathematical formulas, etc. Being very common in academic article XML rep-
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resentations, text edits applied on such nodes should be detected in the same

way as edits on non-complex nodes.

Tree edits:

• Delete: produced by deleting specific parts of the article, for example an au-

thor, section, paragraph, reference or figure. Specific enough that when a parent

node is removed, all child nodes are also removed;

• Insert: the opposite of Delete;

• Update attribute: specific to XML documents. Observed when changing

the correspondence of an author, the license information of the article or the

reference type within the reference;

• Move: observed in the reordering of authors, references, figures and other

elements. Important edit action for text-centric XML documents and is reflected

by changing the order of child nodes within their parent node;

• Merge: observed when paragraphs or sections are merged. Implies the merging

of multiple parent nodes with all their child nodes into a single parent node

containing all child elements from each merged parent node;

• Split: the opposite of Merge;

• Upgrade: observed when subsections are changed to sections;

• Downgrade: opposite of Upgrade and is observed when sections are changed

to subsections;

• Style consists of adding/removing styling such as bold or italics to portions of

text;

• Complex environment edits: any tree edit performed on nodes that contain

text nodes embedding other markups.

After observing a sample batch of 50 real-life author JATS articles1, we found

that the frequency of complex paragraphs was much higher compared to that of plain

text paragraphs. The average ratio is 80% vs. 20%. The largest edited part of a

JATS document is the article body, composed mostly of paragraphs. We conclude

that edits on complex text and trees are important.
1github.com/milos-cuculovic/XMLDiffAnalyzer/tree/master/Supplement/XML
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3.1.3 XMLDiffAnalyzer Script

In order to automate the execution and the results collection for the 12 algorithms

we are comparing, we developed the XMLDiffAnalyser script available online2. The

results collected and JATS testing files prepared from the original research paper

[53] are also available3. Algorithm 1 presents the pseudo code of the script written

in Python. The script embeds the executable of 12 algorithm implementations, the

compared articles and the resulting delta files per algorithm per article. It requires

the user to input the number of times each algorithm will be executed, and which

articles the algorithms will run on. It measures and returns the time, memory and

delta size performance data, writing them to a CSV file and generating SVG vector

figures. In case of further tests, the algorithm can be easily reused for other XML

documents.

Algorithm 1 XMLDiffAnalyzer
procedure XMLDiffAnalyzer()

tools← XyDiff, JNDiff, JXyDiff, ..., DiffXml
rounds← 5

𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠←

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑜𝑟𝑖𝑔1 𝑛𝑒𝑤1

𝑜𝑟𝑖𝑔2 𝑛𝑒𝑤2

... ...

𝑜𝑟𝑖𝑔𝑛 𝑛𝑒𝑤𝑛

delta_dir← Full path of the delta save directory
start(rounds, articles, delta_dir)
function start(rounds, articles, delta_dir)

build the CSV file
for 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 in 𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 do

for 𝑟𝑜𝑢𝑛𝑑 in 𝑟𝑜𝑢𝑛𝑑𝑠 do
for 𝑡𝑜𝑜𝑙 in 𝑡𝑜𝑜𝑙𝑠 do

𝑟𝑒𝑠𝑢𝑙𝑡← proc(𝑡𝑜𝑜𝑙, 𝑟𝑜𝑢𝑛𝑑𝑠, 𝑎𝑟𝑡𝑖𝑐𝑙𝑒)
for 𝑟𝑒𝑠𝑢𝑙𝑡_𝑖𝑡𝑒𝑚 in 𝑟𝑒𝑠𝑢𝑙𝑡 do

generate 𝑟𝑒𝑠𝑢𝑙𝑡_𝑖𝑡𝑒𝑚 pyplot graph
save 𝑟𝑒𝑠𝑢𝑙𝑡_𝑖𝑡𝑒𝑚 into SVG vector figures

end for
𝑟𝑒𝑠𝑢𝑙𝑡𝑠[]←result

end for
end for

end for
write results[] in the CSV file

end function
function proc(tool,rounds,article)

build and execute the command
results.execution_time← Execution time
results.memory← Max and average memory used
results.delta_file_size← Size of the delta output
return result

end function
end procedure

2github.com/milos-cuculovic/XMLDiffAnalyzer
3github.com/milos-cuculovic/XMLDiffAnalyzer/tree/master/TestingCorpus
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3.1.4 Coarse-grained evaluation

The initial evaluation phase consists of a high-level performance and suitability anal-

ysis of the 12 XML diff algorithms. Here, we carry out a coarse-grained evaluation

with the purpose of identifying the potential suitable algorithms for JATS article

comparisons. These are further analysed in Section 3.1.5 with a more fine-grained

approach. The coarse-grained evaluation is divided into two parts: first the perfor-

mance evaluation, and then the delta output analysis.

Performance Evaluation

JATS articles are large text-centric XML files that may vary from 100 KB to 400 KB.

In order to calculate the minimum performance requirements for suitable algorithms,

we measure the time and memory needed per algorithm for a comparison. The tests4

were run on two different edit scenarios: the first on a JATS representing one minimal

change on the title, and the second on a JATS representing real-life author changes

to the article title, authors, affiliations, paragraphs, figures, tables, references, etc.

Figure 3-2a represents the average and maximum RAM usage per algorithm. The

results range from 5 MB for XDiff to 120 MB for DiffMK in terms of average RAM

used, which is more than acceptable within our environment. We noticed that DiffMK

has an imbalance between the average and maximum RAM used, where the maximum

peaks are up to six times larger than the average.

Figure 3-2b shows the execution time each algorithm takes on average to perform

a comparison of the XML file pairs. The average was calculated on five comparison

round executions per algorithm. Except for XMLDiff, where the execution time

scales exponentially while the number of changes increases, the rest of the algorithms

are able to complete the comparison in under three seconds (under five seconds for

DiffXML), which is acceptable within our environment.

The purpose of the delta file size measure is to obtain initial insights on the

number of potential operations that each algorithm will produce, and how those are

4The evaluation was carried out on an Apple MacBook Pro (15-inch, 2016); Processor: 2.7 GHz
Quad-Core Intel Core i7; Memory: 16 GB 2133 MHz LPDDR3; SSD Hard Drive

54 of 156



Chapter 3. Document comparison 3.1. XML Diff Comparison Study

(a) Memory (b) Time

Figure 3-2: Memory and Time evaluation—minimal vs. real-life author changes.

Average and maximum memory and time measured per algorithm in two edit scenarios: one
with minimal text edit and the other with real-life author changes. In both scenarios, the
algorithms were run to compare the same original file with its modified version depending
on the two edit scenarios.

stored. For one minimal change comparison, Figure 3-3a shows that three algorithms,

DeltaXML, DiffMK and XMLDiff, produce large delta files compared to others due to

the fact these algorithms represent differences by annotating one of the two compared

XML files. While evaluating the real-life author changes comparison, Figure 3-3b

shows that DiffXML produces the largest delta file with over 10k edit actions, which

seems to be oversized. JXyDiff and XCC are both heavily affected by the number of

changes. Overall, with the exception of DiffXML, the algorithms produce delta files

with acceptable sizes within our environment.

Delta Output

The evaluation of delta outputs is carried out within the two modification groups

we have presented—text and tree edits—with a total of the 16 edit actions. Using

the XMLDiffAnalyzer, we applied the algorithms to 16 different JATS file pairs, each

pair reflecting one of the edit actions. The full comparison results are shown in the

supplementary supporting information5 organised into individual tables, each table

5github.com/milos-cuculovic/XMLDiffAnalyzer/tree/master/Supplement/Supplementary.pdf
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(a) Minimal change (b) Real-life author changes

Figure 3-3: Delta size—minimal vs. real-life author changes.

Delta size per algorithm applied to the same original JATS—once on the modified JATS
with minimal text edit and once with real-life author changes.

describing our observation per edit action. The scoring system gives between zero

and two points per edit action by comparing the expected and obtained delta results.

The number of points is weighted by a factor two for complex edit actions, both on

text and trees. This decision is supported by the importance of the author edits on

complex content, as mentioned in 3.1.2.

We present the delta output results in Table 3.1. The total score is calculated by

summing the successful matching of expected versus obtained delta outputs per edit

action. Based on this, we can rate the JNDiff algorithm as first; XyDiff sharing the

second place with XMLDiff; and XCC as third.

Text edits Tree edits
Algorithm Del Ins Mv Upd Style Complex Del Ins Attr Mv Merge Split Upgr Dwngr Style Complex Res/36

XOP 0
DiffXML 1 1 2
FC-XmlDiff 2 1 3
DiffMK 1 1 2 4
Xdiff 2 2 2 6
Node-delta 1 1 2 1 1 1 1 2 10
DeltaXML 2 2 2 2 1 1 1 11
jXyDiff 2 2 1 1 1 2 2 2 13
XCC 2 2 1 1 2 2 1 1 2 14
XMLDiff 2 2 2 2 4 1 1 1 15
XyDiff 2 1 1 2 2 2 2 1 1 1 15
JNDiff 2 2 1 1 4 2 1 2 2 1 1 1 1 4 25

Table 3.1: Delta output analysis.

Coarse-grained analysis of delta output per edit action for each of the 12 XML diff algorithms
with results divided into two groups: text and tree edits.
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By further analysing the obtained results, we first observe that none of the algo-

rithms are able to deal with text move nor style addition nor removal detection. In

the best-case scenario, those are considered full text node updates, and in other cases

treated as a suite of Delete–Insert actions. Operations on complex text nodes are

common in text-centric XML documents, and only one of the 12 algorithms, JNDiff,

is able to successfully treat complex text edits. Regarding complex tree operations,

the best-scoring algorithm is XDiff because it only detects tree edits and is not af-

fected by analysing text edit operations. Tree move is only supported by jXyDiff,

XyDiff and JNDiff. Most of the remaining algorithms present this change as a se-

quence of tree Delete–Insert operations. Tree merge, split, upgrade and downgrade

are not fully supported by any of the tested algorithms. Node-Delta, DeltaXML,

XyDiff, XCC and JNDiff are partly able to represent some of those operations as a

short sequence of tree Delete–Insert operations.

3.1.5 Fine-Grained Analysis

As seen in Table 3.1, none of the tested XML diff algorithms are able to fully fulfil

our expectations for comparing JATS documents. Moreover, XMLDiff is too slow

within our environment (see Figure 3-2b). However, three of them (JNDiff, XyDiff

and XCC) are interesting, as their delta outputs could eventually be improved or

post-processed in order to obtain the desired results; we decided to further analyse

these three algorithms in order to understand their functional principles and identify

their strengths and weaknesses. Moreover, we also perform a quick analysis of the

three algorithms that scored the lowest in order to identify the principal reasons for

their low performance in our testing scenario. The analysis is more technical and

allows us to extract important aspects for a suitable JATS XML diff algorithm.

JNDiff

JNDiff is able to fulfil 69% of our expectations and is the only algorithm able to

deal with text changes in complex environments—one of the reasons it rates as top-
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performing. Complex environments are common in JATS documents, as the majority

of the text content contains bold, italics, xref and other styling or reference nodes.

The algorithm is also able to make distinctions between text updates and replace-

ments (Delete–Insert), depending on the size of the modification compared to the

original text. While editing short text sequences such as the author name, JNDiff

considers this action a full replace. The article title being longer, the same text inser-

tion is considered a text update. All tree edits are well or partly detected, more than

any of the 11 other algorithms. As a concrete example, JNDiff was able to detect all

modifications to article authors: insertions and removals, changes in the correspon-

dences via attribute updates and position/ordering changes. Although scoring higher

than others regarding the ability to detect changes in JATS documents, there are sev-

eral aspects we would like to mention where the algorithm was not able to fulfil our

expectations. One of them is the missing ability to represent text Move operations.

When an author moves large portions of text, it is considered a complete rewrite us-

ing the Delete–Insert edit sequence. Tree moves are presented for the parent but also

for all its child nodes, which represents an author Move operation containing three

child nodes (firstname, lastname and email) as four Move operations. Although the

distinction between text Update and text Replace has its strengths, it also presents

a weakness where small changes have to be detected. This can be the case for text

corrections where changes have been made on the character level. JNDiff will, in

this case, consider those edits complete word rewrites. Tree Merge, Split, Upgrade

and Downgrade operations are represented as Delete–Insert sequences. In this way,

merging or splitting two paragraphs and upgrading or downgrading sections within

a document are not interpreted as we would expect. When on Style edit operations,

styling a text is represented as a complete deletion of the existing text followed by a

complete insertion of the new text containing the styling node. One last note about

JNDiff is the fact that the documentation is written in Italian, which could present

further difficulties for future improvements.
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XyDiff

XyDiff is one of the fastest XML diff algorithms, able to fulfil 42% of our expectations

and to deal with most of the tree edits (Delete, Insert, Attribute Update and Move)

with the exception of Split, Merge and Downgrade, which are only partly carried

out. Tree downgrade is, for example, represented as four move actions, which makes

post-processing difficult. On the other hand, the text edits score is much lower for

XyDiff. Text Update precision is fine-grained, which is good for small text changes

such as corrections; however, in our test environment, this is more often considered

a weakness for larger text changes, as the algorithm calculates the longest common

substring (LCS) and tries to minimise the edit distance at the cost of increasing

the difficulty of post-processing the delta representations. Comparisons of complex

text nodes are not optimal. Minor text changes are represented as very large due to

the fact that the change is shown on the entire non-complex part of the text node;

changing one letter in such an environment results in a multi-sentence change. Note

that XyDiff also considers complex those text nodes containing HTML character

representations. In the same way as other algorithms, text moves are represented as

complete Delete–Insert rewrites. The same behaviour occurs in tree merges, where

paragraph/section merges are not represented as we would expect.

XCC

XCC is able to fulfil 39% of our expectations. It always presents old and new values,

which could be very useful for eventual post-treatment of the delta results. XCC

is also able to detect text Updates. Tree Insert is represented as one edit action,

which is easier to interpret compared to JNDiff. Furthermore, attribute updates are

also well represented. There are, however, several important edit actions that are

not represented as we would expect. The most important is the detection of all edit

operations in complex environments. Changing one character in a large paragraph

containing one bold node will result in a large update of the entire text content

outside of the bold node. Text Move operations are not detected and are represented
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as an Update. XCC is also not able to deal with Style changes; they are represented

as two actions—an Insert of the new style element with the following text node,

and an Update of the original edited element in order to remove the duplicated

text. Tree Move detection is another weakness of the XCC algorithm. This edit

action is represented as two Inserts, two Deletes and four Updates. Tree Delete

impacts the parent, but also all its child elements, similar to how JNDiff interprets

tree Move, making the further processing of this edit action difficult. Tree Upgrade

and Downgrade are represented by complete Delete–Insert actions, followed by some

Updates.

Low-Performing Algorithms

XOP, DiffXML and FC-XmlDiff (faxma) are the lowest-scoring among the tested

algorithms. XOP is not able to represent text-node differences but only tree differ-

ences. DiffXML is able to represent text Insert, Delete and Move operations. While

performing tree edits, a tree Upgrade operation results in close to 1000 edit opera-

tions, mostly composed of Move actions. FC-XmlDiff, also called faxma, presents the

difference with a diff-copy XML tag, and there is no information about the edit type.

Analysis conclusion

As seen during the XML diff comparison study, we have identified 12 existing XML

diff algorithms (Table 2.1) that we assessed for their suitability in comparing text-

centric JATS XML documents that represent academic articles. We started with a

performance evaluation using the XMLDiffAnalyzer script we developed, followed by

a manual evaluation of the resulting deltas. Table 3.2 shows the key detection capacity

differences between the XML diff algorithms we have evaluated. We present those

with a success operator ( ) within different edit groups: text edits, tree edits, style

edits, level 2 edits (paragraph split, merge, upgrade and downgrade), the execution

time below five seconds, a fair number of operations that could represent changes in

a human readable way and the last updated date.

The overall execution-time performance was rather acceptable among the algo-
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Algorithm XML
Type

Text
edits

tree
edits

Style
edits

Level
2

Time
<10sec

Fair nbr. of
operations

XOp data
DiffXML data
FC-XmlDiff data
DiffMK data
Xdiff data
Node-delta data
DeltaXML data
JXyDiff data
XCC text
XMLDiff data
XyDiff data
JNDiff text

Table 3.2: XML diff algorithms analysis recap.

rithms (<10sec) except for XMLDiff implementation that presents large execution

times for real-life JATS document comparison and is not suitable for production us-

age. Regarding the second part of the evaluation where we analysed the delta output

produced by each algorithm, the results show that none of the algorithms fully meet

our expectations. The main weakness shown by most of the algorithms, except JNDiff,

is the inability to represent edit operations in complex environments where styling

nodes are embedded into text nodes, which is very common in a text-centric XML

document environment. Moreover, the existing edit operations’ detection capacity

(Insert, Delete, Update and Move) is not sufficient to efficiently represent the differ-

ences between two JATS XML versions of an academic article. In order to implement

a suitable JATS diff algorithm, it would be necessary to detect, in addition to the

existing edits, style changes, citable object reference changes, text moves, tree splits

and merges, tree upgrades and downgrades and semantic differences. We can divide

those new edit actions into three groups: styling, structural and inducted changes.

• Styling changes are observed inside different text nodes representing styles

changes applied to text elements, as italic, bold, etc. They have no narrative

nor textual structure impact but are heavily impacting the XML structure;

• Structural changes are another example where the XML structure is heavily

impacted while the text structure stays the same. We can observe node split,

merge, upgrade and downgrade there;
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• Inducted changes are observed when citable object reference nodes are au-

tomatically modified when citable object lists such as bibliographies, figures

and tables are changed. Those citable object reference nodes are observed in-

side different text nodes and use the citable object label and ID as a reference.

Those auto-incremental values are dependent on the order of the citable object

appearance within a list. Each time this order changes, this creates a so-called

inducted change on every citable object reference.

All those changes are currently represented as simple delete–insert sequences that

have to be further refined by using proper change semantics and convert specific

delete–insert sequences into higher level changes that better reflect real author mod-

ifications. Once those new change detection mechanisms are added, it would be

possible to properly detect, represent and store most of the edit operations presented

in Section 3.1.1. Having this in place would be useful for an eventual future versioning

system for academic articles.

3.2 New jats-diff algorithm

As mentioned above, XML documents are divided into two types, text- and data-

centric. Historically, data-centric XML diff algorithms inherited the existing text

comparison capacities and also added so-called "Level 1" or "basic" lexical edit op-

erations [36] on tree elements: insert, delete and attribute change. Recent XML diff

algorithms are mostly text-centric and propose specific higher level or "Level 2" syn-

tactic changes that were not found in data-centric XML diff algorithms. The size

of individual text nodes is usually larger, but they are smaller in number; thus, it

makes sense to think about higher level changes that replace a combination of basic

insert and delete operations. Moreover, as humans are usually the main producers

of those text-centric XML documents, there is a need to use bijection—see Figure 3-

4—in order to detect and represent their modifications in the same way as how they

are produced. Among "Level 2" changes, existing algorithms are able to detect and

represent tree move and wrap/unwrap (observed in [13]). Wrap and unwrap is used

62 of 156



Chapter 3. Document comparison 3.2. New jats-diff algorithm

to detect edit patterns where a specific portion of text within a given node was

wrapped/unwrapped by/from another node. Adding/deleting styling nodes around

a text portion is represented as wrap/unwrap. In the literature, there is a discussion

around an additional number of "Level 2" changes. Some research groups propose

element merge and split [36] and also text move among the nodes [13]. Unfortunately,

none of the existing algorithms propose a solution on how to detect such changes.

Bijection

Merge 3 paragraphs Delete paragraph 2

Delete paragraph 3

Update paragraph 1

Author edit Syntactic changes Change semantics

Merge 3 paragraphs

Figure 3-4: Example of bijection used while detecting a paragraph merge.

Three paragraphs were merged together by the author and detected as two delete and one
update. Using change semantics, the merge edit is detected in the syntactic change sequence
and presented to the change information consumer.

In addition to detecting existing "Level 1" and "Level 2" changes, there is also

a need for the detection of additional "Level 2" changes such as paragraph split and

merge, section upgrade and downgrade, style edit, text move and citable object edits.

For this to happen, we need to apply similar bijection methods as seen in Figure 3-

4, where change semantics are used to recognise author edits as a specific sequence

of lexical and syntactic changes. Several research groups have started working on

XML diff algorithms for semantic change extraction [105, 24, 64, 65]. The main idea

shared by those research groups is to track the evolution of an XML document in

time by extracting change semantics between elements that do not necessarily share
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the same structure and the same identifiers. There are algorithm proposals [105] able

to support an XML versioning system where the XML structural changes are ignored

and change detection is achieved by first detecting identifiers for elements that are

common across the versions and then using these identifiers to associate elements

among the versions. The XKeyMatch algorithm proposed in [24] follows the same

goal and uses XML keys to match elements that refer to the same entity among

the versions. They use this extension to pre-process the structural analysis phase

that ordinary XML diff algorithms carry out in order to match similar elements, but

with structural changes between the versions. Another algorithm was proposed [64]

that identifies syntactic change patterns in order to deduce semantic changes. In

their example, a combination of employees with a salary increase and employees with

title change could be used to extract employee promotion semantics. Alessandreia

Oliveira et al. [65] describe the Phoenix algorithm used for the same goal to match the

same elements among different document versions that have their identifiers changed.

Phoenix uses similarity metrics for this purpose.

3.2.1 Impact of author edits on XML: a JATS example

The existing text processor track change tool is very efficient for generating a human-

readable description of the edits applied by the author on a given digital textual

document. Unfortunately, this tool lies in the author’s hands and depends on the

text processors. On the other hand, the current XML diff algorithms generate delta

outputs with a limited number of edit patterns where one author edit action is inter-

preted as a sequence of different lower-level edit actions (insert/delete), which makes

the delta hard to read and understand for humans. In this section, we analyse some

common edit actions observed on digital textual documents (academic articles being

used as an example) that authors regularly produce and correlate those with their

impact on XML .

Academic articles usually follow a standard structure in terms of how they are

written regarding the sections they embed and in which order those appear. An

article usually starts on the first page with the journal, title, authors, affiliation,
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abstract and keywords information. What follows is the largest part with several

sections, each of which can contain subsections, paragraphs, citations, figures, tables,

maths formulas, etc. At the end, we usually find the acknowledgments and reference

list. As the largest part of an article is text blocks known as paragraphs, most of

the changes made by authors are mainly observed there. Figure 3-5 shows some

common author edit actions and their impact on JATS XML —see Figure 3-6. The

current "Level 2" edit actions are unfortunately not able to represent all those edits

in a human-readable way. Instead, those are mostly presented with a combination of

"Level 1" (insert and delete) edits. In the following text, we use abbreviations I, D,

A, U and M for Insert, Delete, Attribute edit, Update and Move representations of

XML edits, respectively.

Merge

Split

Text move

Upgrade

Downgrade

Style

Figure 3-5: Two article versions side by side written in a text processor.

The following author changes are highlighted: Three paragraphs from Section 1 merged into
one; one paragraph from Section 2 split into two; text portion moved from the second into
the first paragraph in Section 3; Subsection 4.1 upgraded as Section 5, implying the auto-
increment of the previous Section 5 to Section 6; styling edits on the paragraph in Section
5; initial Section 6 downgraded as a new Subsection 6.1.
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Figure 3-6: Two JATS XML versions side by side.

The following author changes are highlighted: Three paragraphs from sect. 1 merged into
one; one paragraph from sect. 2 split into two; text portion moved from the second into
the first paragraph in sect. 3; sect. 4.1 upgraded as sect. 5, implying the auto-increment
of the previous sect. 5 to sect. 6; styling edits on the paragraph in sect. 5; initial sect. 6
downgraded as a new sect. 6.1.

3.2.2 Paragraph merge and split

Two of the first paragraph edit actions we observed are merge and split. Authors

usually split large paragraphs into smaller ones or merge several small paragraphs

into a bigger one. This action is relatively easy in text processors and consists of

adding or removing line breaks between text blocks.

Figure 3-5 (Section 1) shows how a paragraph merge action is carried out by the

author on the text processor and its impact on XML (see Figure 3-6, sect. 1), with a

higher complexity than simply removing line breaks. We can observe a combination
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of U+(n-1)D, n being the initial number of paragraphs to merge. Looking at the delta

output of existing XML diff algorithms, the merge modification in our example will

appear as three or more edit actions: U+2D in the best-case scenario or I+3D, while

U is seen as a combination of D+I. The split edit action is the opposite of merge as

can be seen in Figure 3-5 (Section 2), where content "i j" lands in a new paragraph

annotated 4’ in Figure 3-6 (sect. 2), representing the split edit impact on JATS. The

delta representation for this change is symmetrical and of similar complexity to that

of merge.

From the human reader perspective, reading a delta output representing a struc-

tural split or merge edit action as a combination of three or four basic edit actions is

not convenient and requires some higher-level interpretation.

3.2.3 Text move

Another common edit action we observed is the text move where authors move sen-

tences or part of text from one paragraph to another within the document. Figure 3-5

(sect. 3) shows how part of a text labelled "m" was moved from the second to the

first paragraph. The impact of this edit on XML will appear as 2U in the best-case

scenario—see Figure 3-6, sect. 3—or as 2(D+I).

Again, from the human reader perspective, representing a text move as two node

updates is not self-intuitive and cannot be easily interpreted as a text move.

3.2.4 Subsection upgrade/Section downgrade

Subsection upgrade is yet another edit action we observed and happens when authors

upgrade a subsection to a section. Each section/subsection being composed of one

label, one title and the section body, upgrading a subsection in the text processor is

usually seen as a combination of font increase, indent decrease and label change—see

Figure 3-5 (Section 4). As JATS XML does not hold any layout information, the

changes observed in the text processor cannot be directly detected, which increases

the detection complexity. We can observe in Figure 3-6 (sect. 4.1 -> sect. 5) that
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multiple nodes are affected by the change. The entire Section 4.1 is removed and

inserted as Section 5. Moreover, an important inducted change is observed in sections

following the upgraded subsection as their label, and the ID will automatically be

changed according to the numbering plan. In our case, the initial Section 5 will

be renumbered as Section 6. Depending on the XML diff algorithm, comparing the

two JATS files will result in a delta showing a full D of Section 4.1 and a full I of

Section 5, followed by an attribute and label change on the initial Section 5 becoming

Section 6. Eventually, the full delete–insert combination is also seen on some XML

diff algorithms as a simpler Section 4.1 parent and title node D, followed with the

new Section 5 parent and title node I and a M of Section 4.1 child elements in the

newly created Section 5, resulting from a combination of 2(D+I)+M.

The downgrade edit action is the opposite of upgrade. Downgrading a section in

the text processor is usually seen as a combination of font decrease, indent increase

and label change—see Figure 3-5 (Section 6) for author edits in a text processor. Its

impact on XML —see Figure 3-6 (sect. 6.1)—is exactly the same as for an upgrade,

but in the opposite direction.

Both of the mentioned author edit patterns are not recognised in the existing

XML diff algorithms and make the delta difficult to interpret from a human reader

perspective.

3.2.5 Style edit

Although JATS XML documents do not hold any layout information, textual styling

is still part of it and represents important information in the document. Most of

the paragraphs within the document hold text styling information, where we can

observe bold, italic, underline, subscript, superscript and others. Styling is purely a

visual change in the text processor—see Figure 3-5 (Section 5 -> Section 6) where

one part of the text was styled bold and another one italic and underlined. On the

other hand, styling information is represented as node elements on XML , and their

insertion/removal directly impacts the XML tree—see Figure 3-6 (sect. 5 -> sect. 6).

This adds another layer of complexity for the XML diff algorithms as inserting a
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bold style around a text portion consists in inserting a new node that will wrap this

text content. Most XML diff algorithms will represent this change as a new node I

containing the edited text portion and an U of the edited paragraph text node. This

kind of delta output is, again. not easy for human readers and is hard to interpret as

a style edit action made by the author.

3.2.6 Citable object reference edit

Another common element we can observe in paragraphs are citable object references.

Authors usually cite bibliographies, figures, tables and other sections within the ar-

ticle. Those references appear as <xref> nodes in XML and are visible in most of

the paragraphs. In order to cite an object, its label and ID can be used. Those auto-

incremental values are assigned to each citable object and are dependent on its appear-

ance in the citable objects list. A reference citation is seen as <xref ref-type="bibr"

rid=" B2-molecules-25-00430 "> 2 </xref>, where "B2-molecules-25-00430" represents

the ID, and the number 2 represents the label. If the paragraph is changed from cit-

ing the bibliography B2-molecules-25-00430 to B3-molecules-25-00430, both the ID

and the label will be changed within the <xref> node. Those two properties make

it difficult to track author edits on the citable objects list. Let us assume a scenario

where there are five references that the author is using as the bibliography. If a new

reference were to be added at the position 2, the IDs and labels of all the following ref-

erences would be incremented, i.e., the "B2-molecules-25-00430" would switch to "B3-

molecules-25-00430", and so on. The same applies for their labels. This change would

then also impact all the references those objects have within the article, where the

<xref> from our previous example would change to <xref ref-type="bibr" rid=" B3 -

molecules-25-00430"> 3 </xref>, and the same for the following references. Having

those inducted changes while adding or removing citable objects would result in them

being represented in most of the XML diff tools as, instead of a simple citable object

I, I+n(A+U) in the best-case scenario, or I+n(D+I) if the A and U are seen as full

<xref> D+I, n being the number of auto-incremented bibliographies. This type of

simple author edits creates a lot of noise in the delta output that needs to be detected
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and eliminated by the XML diff algorithm. Without any filtering, one reference I or

D can reproduce hundreds of other edits due to the inducted changes it generates.

3.2.7 XML diff base—JNDiff

The JNDiff algorithm has achieved state-of-the-art performance [19] in comparing

text-centric JATS XML documents. Its two-pass logic on detecting "Level 1" edits

and the existing logic of analysing and converting sequences of level "Level 1" to

"Level 2" edits makes JNDiff a suitable candidate to build our new jats-diff algorithm

on top of the existing code. We decided to ground our new edit pattern recognition

using the core functionalities of JNDiff—see Figure3-7—in order to avoid rewriting

the existing "Level 1" edit actions detection logic that is composed of over 12k lines of

code. Besides having a good performance, JNDiff is also highly reliable in respect of

detecting differences between two XML documents. The logic of the algorithm is as

follows: It first builds one virtual tree object per document; then, it detect inserts and

deletes as basic/"Level 1" edit actions; finally, it tries to refine the detected "Level 1"

differences and convert them to "Level 2". Each time a specific insert–delete sequence

is turned to "Level 2" change, it is removed and replaced in the change list by its

"Level 2" representation. Our new edit pattern detection will be added to the JNDiff

refinement logic in order to recognise and represent them in the delta.

3.2.8 XML tree annotation

We use the conventional labelled ordered tree model to represent the XML trees

in the following edit pattern detection on JATS XML . As we always compare two

XML documents A and B—two XML trees—each node belonging to the document

A is labelled 𝛼 and the document B 𝛽. We assign to each node an identifier m for

document A and p for document B. In addition to the identifier, the node depth

regarding the tree represented by n for document A and q for document B is also

added, resulting in the annotation 𝛼[𝑚,𝑛] for document A and 𝛽[𝑝, 𝑞] for document

B.
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Figure 3-7: JNDiff base workflow.

The JNDiff base workflow is as follows: 1. Build one virtual tree object per XML document;
2. Detect "Level 1" edit actions (insert, deletes and attribute edits); 3. Refine the detected
"Level 1" edits and convert them to "Level 2". Each time a specific insert–delete sequence
is turned to "Level 2" change, it is removed and replaced in the change list by its "Level 2"
representation; 4. The final XML diff output is built.

As we can see in Figure 3-8 representing the XML tree of the document A, each

node has a specific annotation. 𝛼[0, 0] represents the article node, being the root

node. 𝛼[0.0, 1] and 𝛼[0.1, 1] represent Section 1 and Section 2, respectively, Section 1

being the node number 0.0 at depth 1 and Section 2 the node number 0.1 at depth

1. Section titles and paragraphs are within depth 2 and have node numbers 0.0.0 to

0.1.1. Finally, text nodes are at depth 3 and have node numbers 0.0.1.0 and 0.1.1.0.

On the left, we can observe shallow nodes, and on the right, deeper nodes.
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Figure 3-8: Document A XML tree.

Example of XML tree on document A using the conventional labelled ordered tree model
𝛼[𝑚,𝑛] and 𝛽[𝑝, 𝑞], where m and p represent the node identifier and n and q the depth.

3.2.9 Text similarity vs. text equality

All existing XML diff algorithms we tested use text equality while trying to match

"Level 2" among the "Level 1" changes. Taking the example of structural merge, see

Figure 3-9 where the P1 and P2 nodes, representing paragraph 1 and 2, are merged

into P3. The merge is detected only if the text in P3 is exactly the same as the sum of

the texts in P1 and P2. This behaviour is suitable for data-centric XML documents

where high precision is required. On the other hand, text-centric XML documents are

prone to small textual edits where grammar and sentence rephrasing are common. It

is then important to replace text equality checks with text similarity while evaluating

"Level 2" changes. This way, the algorithm is more flexible and can detect "Level

2" changes even with small textual change interference represented in Figure 3-9 by

the addition of "but the". All the following "Level 2" change patterns we present

use text similarity with a threshold that we experimentally defined at 95%; however,

this value can be changed for further fine tuning. Once the "Level 2" change pattern

has been detected, and if the text node has a similarity different from 100%, the text

updates have to be detected in the usual way regardless of the "Level 2" change.

3.2.10 Structural upgrade / downgrade

As seen in Figure 3-6 (sect. 4 -> sect. 5), upgrading one child node to the same depth

as its parent represented by upgrading one subsection with x nodes into a section
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Logic will get you from A to Z but the imagination will get you everywhere

Logic will get you from A to Z imagination will get you everywhere

P1 P2

P3

Figure 3-9: Paragraph merge.

Nodes P1 and P2 merged into P3 while a text change common to text-centric XML document
was introduced, showing the benefits of text similarity over text equality usage for "Level
2" change detection.

results in x(D+I) "Level 1" edits. Moreover, as the remaining section numbering will

also change due to their auto-incremental nature, we observe additional y(A+D+I))

"Level 1" edits, y being the number of remaining sections following the upgrade: A

for id; D+I for the title. In total, a simple section upgrade will result in x(D+I)

+ y(A+D+I) "Level 1" edits. Within our example—see Figure 3-10—the structural

changes that consist in upgrading (sec 1.1) node into (sect. 2) result in depth lowering

on each of the upgraded nodes followed by attribute id and title change.

By applying the following mathematical formula on the lists of node changes

detected between documents A and B, respectively annotated c𝛼 and c𝛽, we can

evaluate if the specific change pair fulfils the structural upgrade condition:

(∀𝑐𝛽)(∀𝑐𝛼)𝛽[𝑝, 𝑞].𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ≃ 𝛼[𝑚,𝑛].𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ∧ 𝑞 < 𝑛 (3.1)

The formula verifies if the contents of the (sect. 1.1) and (sect. 2) nodes are

similar and, in addition, if the depth of (sect. 2) is lower than the depth of (sect.

1.1) node. Having this condition satisfied will result in a structural upgrade detec-

tion. By running the formula on our example, the following scenario occurs: for
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each change detected in document B (𝛽[𝑝, 𝑞]), evaluate if the text content of 𝛽[0.1, 1]

"title"+"cd" is similar to the text content of 𝛼[0.0.2, 2] "title"+"cd". In addition,

evaluate if the depth of the modified 𝛽[0.1, 1] element is lover than the depth of the

𝛼[0.0.2, 2] element. As both conditions are satisfied, the structural upgrade pattern

is recognised. The delta output of such pattern detection is represented as one "Level

2" change named "upgrade", having two information elements: "upgrade_from" and

"upgrade_to".

Structural downgrade is the opposite of upgrade, where it is enough to invert

the depth comparison in order to adapt the upgrade formula to detect downgrade

patters. Once a structural downgrade pattern has been detected, the delta output will

contain one "Level 2" change named "downgrade", having two information elements:

"downgrade_from" and "downgrade_to".
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Figure 3-10: Impact of structural upgrade on an XML tree.

We observe that the depth of the upgraded (sect. 1.1) node is lowered by one, becoming,
on the depth level, the same as their previous parent (sect. 1).

3.2.11 Structural merge/split

As seen in Figure 3-6 (sect. 1), merging x nodes, represented by paragraphs, into a

unique one will be seen as x+1 "Level 1" edits, composed of xD+I. Using the up-

date "Level 2" edit, the number of edits observed is lowered to x, with (x-1)D+U.

We propose here a new way of detecting structural merge. Within our example—see

Figure 3-11—nodes 𝛼[0.0.2, 2] and 𝛼[0.0.3, 2] are merged with node 𝛼[0.0.1, 2]. Rep-

resented with "Level 1" changes, this edit pattern detection results in 3D (𝛼[0.0.1, 2]
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with content "ab", 𝛼[0.0.2, 2] with content "cd" and 𝛼[0.0.3, 2] with content "ef"),

followed by I of 𝛽[0.0.1, 2] with content "abcdef".

By applying the following mathematical formula on the lists of node changes

detected between documents A and B, respectively annotated c𝛼 and c𝛽, we can

evaluate if specific node pair fulfils the structural merge condition, the merge being

valid only if two or more nodes from c𝛽 fulfil the condition:

(∀𝑐𝛽)(∀𝑐𝛼)𝛼[𝑚,𝑛].𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ⊂ 𝛽[𝑝, 𝑞].𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ∧ 𝑞 = 𝑛 (3.2)

This mathematical formula verifies for every node content on 𝛽 if there are nodes

on 𝛼 whose content is subset 𝛽 node content and where both depths on 𝛽 and 𝛼 are

identical. By running the formula on our example from Figure 3-11, the following

scenario occurs: for each change detected in document B 𝛽[𝑝, 𝑞], test if the math-

ematical condition is verified for a given node in document A (𝛼[𝑚,𝑛]); if so, the

examined node is a merge candidate. The algorithm will test for a given node in

document B 𝛽[0.0.1, 2] all nodes within the same depth in document A 𝛼[0.0.1, 2],

𝛼[0.0.2, 2] and 𝛼[0.0.3, 2], with their respective text content "ab", "cd" and "ef". As

their text contents are all contained in 𝛽[0.0.1, 2] "abcdef" and they all have the same

depth 2, they will be added to the merge candidate pool. At the end, if there is more

than one merge candidate in the pool, a "Level 2" tree merge edit is detected. The

resulting delta using the structural merge pattern detection while merging n nodes

into a unique node will be seen as one "Level 2" edit, containing n-1 merge_from and

one merge_to information elements.

Structural split is the opposite of merge, where instead of evaluating if the text

content of changed 𝛼[𝑚,𝑛] nodes are contained by 𝛽[𝑝, 𝑞], we evaluate if the text

content 𝛽[𝑝, 𝑞] nodes are contained by 𝛼[𝑚,𝑛]. While using structural split edit

pattern detection, splitting one into n nodes will be represented as one "Level 2" edit

containing one split_from and n split_to information.
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Figure 3-11: Impact of structural merge on XML tree

We observe that the text content "cd" and "ef" from nodes (par. 2) and (par. 3) is merged
with the text content "ab" of the (par. 1) node

3.2.12 Inline style edit

As seen in Figure 3-6 (sect. 5) -> (sect. 6), styling information is seen as XML

nodes. The most often observed styling elements are <b> for bold, <i> for italic,

<sub> for subscript, <sup> for superscript and <u> for underline. Style edits

have no narrative impact, and the node textual structure remains the same. On

the other hand, the XML structure is heavily impacted by those styling nodes, which

makes their change detection complex. Most of the existing XML diff algorithms have

difficulties representing text changes in nodes containing styling elements. Having

no impact on the narrative structure, one of the possible solutions we propose to

deal with inline style edits is to separate styling and textual change detection on

XML . This is possible by converting style nodes to simple text using encryption

(XML tags to text conversion). This way, the bold "hello" text is encrypted from

initially <b>hello</b> to a pure text variant, for example, _|b|_hello_|/b|_. This

significantly simplifies the detection of the inline style changes as there is no need to

operate with complex tree changes—everything is seen and treated as simple text.

In Figure 3-12, we can see an example where some parts of the (par. 1) node

content are styled. Text "a" is made bold, "b" is made italic and underlined and

"c" remains unchanged. By analysing the impact of this modification on XML ,

we can observe that the node 𝛼[0.0.1, 2] changes from having one child text node

"abc" 𝛼[0.0.1.0, 3] to six nodes: 𝛽[0.0.1.0, 3], 𝛽[0.0.1.0.0, 4], 𝛽[0.0.1.1, 3], 𝛽[0.0.1.1.0, 4],

𝛽[0.0.1.1.0.0, 5] and 𝛽[0.0.1.2, 3]. By encrypting all those newly added styling elements
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to simple text, we retrieve only one text node for (par. 1), which facilitates change

detection.

Once we have simple text nodes on both sides, we split them into two lists,

𝑙𝑖𝑠𝑡𝑂𝑓𝑇𝑒𝑥𝑡𝐴 and 𝑙𝑖𝑠𝑡𝑂𝑓𝑇𝑒𝑥𝑡𝐵, by using the styling encrypted tags as separators.

The two lists are then compared using the JAVA DiffUtils6 library that returns the

𝑑𝑖𝑓𝑓𝐿𝑖𝑠𝑡 containing two parameters: difference content and type. With the type

having one of three values (insert, delete or change), we are able to find inline style

insertions, deletions and updates. In our example, DiffUtils will return three style

inserts: bold, italic and underline. Deletions are observed when styling is removed

and edits when styling type or styled text portion change. An example can be demon-

strated in Albert Einstein’s quote "Logic will get you from <b>A to Z</b>; imag-

ination will get you everywhere" that is changed to "Logic will get you <b>from A

to Z</b>; imagination will get you everywhere". Note the bold part change from

<b>A to Z</b> to <b>from A to Z</b>. DiffUtils will return two differences in

this example: the bold part content change with "from" added and the text part

changed with "from" deleted. We interpret this change as an inline style edit where

the styled portion of text changed.

By using the described approach, jats-diff is able to detect three different inline

style changes: "text-style-insert", "text-style-delete" and "text-style-update". The

"text-style-update" is used for both style type changes and style content changes.

Using the inline styling "Level 2" pattern recognition in our previous example

allows us to change the delta output from D+6I to three text-style-insert. The change

consumer can understand this way that there is only inline style and no content

changes applied by the author.

3.2.13 Text move

As seen in Figure 3-6 (sect. 3), moving text portions from one node to another will

result in four "Level 1" edit actions, 2(D+I). Making text moves within the document

will be represented in a similar way to making real content changes, which does not
6https://github.com/java-diff-utils/java-diff-utils

77 of 156



Chapter 3. Document comparison 3.2. New jats-diff algorithm

sect. 1 par. 1

title

a b carticle

α[0,0] α[0.0,1]

α[0.0.0,2]

α[0.0.1,2] α[0.0.1.0,3]

β[0.0.0,2]

sect. 1 par. 1

title

aarticle

β[0,0] β[0.0,1] β[0.0.1,2] β[0.0.1.0,3]Style

c

b

i u b

β[0.0.1.0.0,4]

β[0.0.1.1.0,4]β[0.0.1.1,3]

β[0.0.1.2,3]

β[0.0.1.1.0.0,5]

Figure 3-12: Impact of inline style change on XML tree.

We observe that adding bold to one part of the text and italic + underline to another changes
the XML tree structure, as each inline style addition is seen as a new element added to the
existing XML tree.

represent real modification made by the author. Within our example (see Figure 3-

13), text "c" from node 𝛼[0.0.2.0, 3] has been moved to node 𝛼[0.0.1.0, 3]. There, we

can observe two change pairs: 𝛼[0.0.1.0, 3] - 𝛽[0.0.1.0, 3] and 𝛼[0.0.2.0, 3] - 𝛽[0.0.2.0, 3].

By applying the following mathematical formula for each of the detected change

pairs between documents A and B, respectively annotated c𝛼 and c𝛽, we can evaluate

if two specific change pairs fulfil the text move condition:

(∀𝑐𝛽)(∀𝑐𝛼)𝑐𝛽[𝑚,𝑛].𝑐𝑜𝑛𝑡𝑒𝑛𝑡−𝑐𝛼[𝑚,𝑛].𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ≃ 𝑐𝛼′[𝑚,𝑛].𝑐𝑜𝑛𝑡𝑒𝑛𝑡−𝑐𝛽′[𝑚,𝑛].𝑐𝑜𝑛𝑡𝑒𝑛𝑡

(3.3)

The formula evaluates if each of the change pairs differences have common text

between them. If true, then the text move pattern is detected. By running the formula

on our example, the following scenario occurs: for each change pair between document

A and B, 𝛼[𝑚,𝑛] and 𝛽[𝑚,𝑛], evaluate if there is another change pair, 𝛼′[𝑚,𝑛] and

𝛽′[𝑚,𝑛], where the content difference between both change pairs is similar. This

results in verifying whether 𝛽[0.0.1.0, 3].content - 𝛼[0.0.1.0, 3].content is similar or

equals to 𝛼′[𝑚,𝑛].content - 𝛽′[𝑚,𝑛] content. As both content differences will return

"c", the text move condition is satisfied.

The delta output of such pattern detection is represented as one "Level 2" change

named "text-move", having two information elements: "text-move_from" and "text-

move_to".
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sect. 1 par. 1

title

a barticle

α[0,0] α[0.0,1]

α[0.0.0,2]

α[0.0.1,2] α[0.0.1.0,3]

par. 2 c d

α[0.0.2.0,3]α[0.0.2,2]

β[0.0.0,2]

sect. 1 par. 1

title

abcarticle

β[0,0] β[0.0,1] β[0.0.1,2] β[0.0.1.0,3]Text move

par. 2 d

β[0.0.2,2] β[0.0.2.0,3]

Figure 3-13: Impact of text move on XML.

We observe that moving some text content from the (par. 2) to the (par. 1) node has an
impact on both nodes.

3.2.14 Order of the edit detection

The order in which we recognise the previously described edit patterns is important

as some "Level 2" edits are composed of a combination of "Level 1" or even other

"Level 2" edits. In the example of two structural merge, seen as one node delete

("Level 1") and one node update ("Level 2"), it is important to run the structural

merge pattern detection before the node delete and text update detection. Regarding

the structural upgrade, this edit pattern is composed of several tree moves and text

updates, and it is thus important to run this pattern detection before tree move and

text update. Following an empirical evaluation, we decided to choose the following

"Level 2" edit pattern detection order:

Upgrade Downgrade Merge Split

Tree move Style edit Text move Text update

1 2 3 4

5 6 7 8

Figure 3-14: Edit pattern detection order.

Higher-level edits are usually composed of other "Level 1" or "Level 2" edits, which makes
their detection order important.
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3.2.15 Citable node

As seen in Section 3.2.6, in addition to styling nodes, text nodes are also composed of

references used to cite other nodes within the document. The most common citable

nodes on JATS XML are bibliographies, but we also observe figures, tables and sec-

tions. References are inserted as <xref> nodes containing the "ref-type" and "id"

as attributes and the citing reference label as text. The "id" and the label are auto-

incremental values dependent on the cited node appearance order; thus, inserting

or removing a cited node automatically changes the remaining citable nodes’ auto-

incremental values. Those inducted changes are not interesting for the human reader

and should be ignored as they are not directly made by the author.

Figure 3-15 shows the impact of adding one additional bibliography node 𝛽[0.1.0, 2]

at position one in the bibliography list. This change will move the initial position

one bibliography node 𝛼[0.1.0, 2] to position two 𝛽[0.1.1, 2], which implies that its

label and attribute ID auto-incremental numbering values will change from 1 to 2.

This then has a direct impact on the citing xref node 𝛼[0.0.1.1, 3] that will change to

𝛽[0.0.1.1, 3] with a different attribute "ID" and a different label, citing the previous

(ref. 1) that became (ref. 2) node. This kind of inducted changes is not interesting

for the human reader, for whom the only relevant information is the insertion of the

new bibliography. We propose here a solution on how to ignore those non-relevant

changes and only keep the relevant changes made by the author. The main idea is to

first scan the citable nodes list, detect insertions, deletions and the impact of those

edits on their positions within the list. Citable node insertion will auto-increment

and deletion will auto-decrement all following citable node IDs and labels, which will

then impact all citing references within the text nodes. A precise list containing

the original and new citable node numbering values is then used to scan all citing

references within the paragraphs and ignore the changes detected where the original

numbering value is changed to the new value as an inducted change. This way, only

real citing reference changes are kept in the delta output, and the inducted ones are

ignored.
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sect. 1 par. 1

title

a b carticle

α[0,0] α[0.0,1]

α[0.0.0,2]

α[0.0.1,2] α[0.0.1.0,3]

β[0.0.0,2]

sect. 1 par. 1

title

a b carticle

β[0,0] β[0.0,1] β[0.0.1,2]Citable β[0.0.1.0,3]

refs.

α[0.1,1]

ref. 1 r1

xref 2xref r1

α[0.0.1.1,3]

α[0.1.0,2] α[0.1.0.0,3]

refs.

β[0.1,1]

ref. 1

ref. 2

r2

r1

β[0.1.0,2]

β[0.1.1,2]

β[0.1.0.0,3]

β[0.1.1.0,3]

β[0.0.1.1,3]

Figure 3-15: Impact of citable node insert on XML tree.

We observe that adding a new citable node (bibliography reference) in the references list
will change the auto-incremental values (label and ID the following reference nodes, which
directly impacts all citing (xref) nodes within the document.

3.3 Similarity index between the two documents

Text nodes are the most important part of text-centric XML documents. Having a

similarity index between the two documents is beneficial for the final decision-maker

that can evaluate the impact that the modifications had on the textual content of

the article. Due to the XML tree structure, using ordinary text diff algorithms is

not possible, which is why we developed a simple and efficient algorithm that can

calculate text similarity between modified text nodes and propagate upwards in the

XML tree.

3.3.1 Text similarity index propagation

After evaluating different text diff algorithms, we decided to embed the Jaccard index

[33] and Term Frequency (TF) [51] that is calculated for every change node pair

between document A and document B, regardless of whether the change is of "Level

1" or "Level 2". Once the similarity index is calculated for every change in the delta,

those are propagated upwards in the XML tree by applying the following equation,

using p as the parent node number, n as the child node number, S as their text

similarity index, I as their text content ratio and N as the total number of child

nodes for a given parent:
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𝑃𝑎𝑟𝑒𝑛𝑡𝑆𝑦𝑚 = 𝑆𝑝 * 𝐼𝑝+
𝑛=𝑁−1∑︁
𝑛=0

𝑆𝑛 * 𝐼𝑛

A similar result can be achieved without using propagation but is more expensive

in calculation power where, instead of completing one similarity calculation per change

and propagating it upwards in the XML tree, one similarity calculation has to be

carried out per node pair, increasing the number of similarity calculation operations.

Figure 3-16 presents two JATS XML versions where node 𝛼[0.0.0.0, 3] lost "b",

representing half of its initial content, and node 𝛼[0.0.1.0, 3] had 50% textual con-

tent changes on "d" that represent 50% of the entire text node content. The delta

output will show in this example one text update per modified node 𝛼[0.0.0.0, 3] and

𝛼[0.0.1.0, 3].

Using our similarity calculation algorithm, we could deduce that the text node

𝛼[0.0.0.0, 3] has a similarity of 50% compared to its document B version node 𝛽[0.0.1.0, 3].

Calculating the same for the 𝛼[0.0.1.0, 3] and 𝛽[0.0.1.0, 3] nodes, we can deduce that

the two text nodes have a similarity of 75% ("d" representing 50% of the entire text

node, and modified by 50%). Once both similarities have been calculated, we can

now propagate those upwards on the tree in order to measure the similarity between

the two section trees 𝛼[0.0, 1] and 𝛽[0.0, 1], both containing three paragraph nodes

each. Here, you can find details on applying the previous formula to the Figure 3-16

example:

• N = 3 as Section 1 has three child nodes;

• n0 represents 𝛼[0.0.0, 2]; n1 represents 𝛼[0.0.1, 2]; n2 represents 𝛼[0.0.2, 2];

• 𝑆𝑛0 = 0.5; 𝑆𝑛1 = 0.75; 𝑆𝑛2 = 1;

• 𝐼𝑛0 = 0.25; 𝐼𝑛1 = 0.25; 𝐼𝑛2 = 0.5.

𝑃𝑎𝑟𝑒𝑛𝑡𝑆𝑦𝑚(𝛼[0.0, 1]) = 0.5 * 0.25 + 0.75 * 0.25 + 1 * 0.5 = 0.8125 ∼ 81%

The example previously provided in Figure 3-16 is rather simple for comprehen-

sion purposes, but the same mathematical formula can be applied to more complex

cases where, for example, we can observe text moves, node moves, structural up-
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grades, downgrades, etc. as soon as we convert an XML sub-tree to simple text by

concatenating their individual text nodes to a single text block.

sect. 1 par. 1 a barticle

α[0,0] α[0.0,1] α[0.0.0,2] α[0.0.0.0,3]

Text similarity

par. 2 c d

α[0.0.1,2] α[0.0.1.0,3]

sect. 1 par. 1 aarticle

β[0.0,1] β[0.0.0,2] β[0.0.0.0,3]

par. 2 c d'

β[0.0.1,2] β[0.0.1.0,3]

β[0,0]

par. 3 e f g h

α[0.0.2,2] α[0.0.2.0,3]

par. 3 e f g h

β[[0.0.2,2] β[[0.0.2.0,3]

Figure 3-16: Text node modifications between two XML tree.

Paragraphs (par. 1) and (par. 2) represent 25% each of the (sect. 1) content, while (par.
3) represents the remaining 50%. We can observe that text element pairs "ab", "cd" and
"efgh", respectively, on text nodes 𝛼[0.0.1.0, 3], 𝛼[0.0.2.0, 3] and 𝛼[0.0.3.0, 3] represent 100%
each of the text node content and 12.5% each regarding the (sect. 1) node content.

3.3.2 Element lists and special objects similarity

We previously saw how to calculate text similarity and propagate this similarity

upwards on the XML tree. In JATS, having the text similarity makes sense for

paragraphs, subsections and sections; it is, however, rather useless for other types

of sub-trees that are presented as lists (authors, references, tables and figures). For

those, it makes more sense to express the similarity in number of changed/unchanged

elements (4/5 authors, or 28/30 references).

Figure 3-17 shows a modification on the authors list where (author 2) was removed.

If we use the similarity propagation to calculate the similarity between the "authors"

parent nodes 𝛼[0.0, 1] and 𝛽[0.0, 1], we would observe a similarity percentage that

is highly influenced by the length of the removed author first and last names. To

accentuate this problem, let us assume authors 1 and 3 have very short first and last

names, and author 2 has long first and last names. The author two first and last

names could, for example, be composed of 20 characters, while the other first and

last names are composed of only five characters, meaning that regarding its size, the

author 2 first and last names are double the size compared to the two remaining

authors together.
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We can conclude that text similarity calculation for those special types of JATS

XML sub-trees can be inappropriate as this is purely based on text content. In such

cases, it is much better to use child element counters and represent their parent

element similarity that way. For this concrete example, we would say that authors

have a similarity of 2/3, as two authors are exactly the same, and one was modified.

In order to have even a higher precision, we propose to use the following semantic

information for such lists:

• Initial: number of child elements on document A;

• Final: number of child elements on document B;

• Modified: number of modified child elements;

• Deleted: number of deleted child elements;

• Inserted: number of inserted child elements.

This way, the human reader can judge the changes applied by the author on

such special sub-trees in an easy and convenient way. For additional information,

consulting the delta output remains always available.

authors author 1

firstname

article

α[0,0] α[0.0,1] α[0.0.0,2]

α[0.0.0.0,3]

Lists similarity

author 2
α[0.0.1,2]

β[0,0]

author 3

α[0.0.2,2]

lastname

α[0.0.0.1,3]

firstname

α[0.0.1.0,3]

lastname

α[0.0.1.1,3]

firstname
α[0.0.2.0,3]

lastname
α[0.0.2.1,3]

authors author 1

firstname

article

β[0.0,1] β[0.0.0,2]

β[0.0.0.0,3]

author 2
β[0.0.1,2]

author 3

β[0.0.2,2]

lastname

β[0.0.0.1,3]

firstname

β[0.0.1.0,3]

lastname

β[0.0.1.1,3]

firstname
β[0.0.2.0,3]

lastname
β[0.0.2.1,3]

Figure 3-17: Removing an author from the authors list.

The (author 2) node 𝛼[0.0.1, 2] was removed during the revision. Measuring the impact
of this change on the parent (authors) node 𝛼[0.0, 1] using similarity propagation does not
reflect well the real changes made by the author. It is much better to use child element
counters and represent their parent element similarity that way.
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3.4 Algorithm workflow and outputs

While comparing two XML documents, jats-diff generates two distinct files: one XML

file containing the delta output and a second text file containing the similarity in-

dex and refining the delta output using different change semantics proper to JATS

documents: citable objects, special objects (math formulas and figures) and lists con-

taining tables, references and authors. Figure 3-18 shows the algorithm workflow.

In the first step, each of the JATS documents are converted into virtual XML tree

object. The algorithm will then compare the two Vtree files and identify the differ-

ences represented as "Level 1" Insert–Delete and Attribute edit actions. Once those

differences have been detected, jats-diff will try to convert them to higher "Level 2"

edit actions such as paragraph split/merge, section upgrade/downgrade, paragraph

move, etc. For this, the mathematical formulas we described in Section 3.2 are used.

Different classes of the algorithm check the list of Insert–Delete sequences and try

to identify patterns that satisfy specific mathematical conditions. Each time a con-

dition is satisfied, that given Insert–Delete sequence is removed from the change list

and converted to its higher level representation. Once the delta output is built, the

algorithm will parse it and use JATS specific change semantics in order to build a

human-readable tree structure file representing the change summary. Moreover, the

similarity index is also calculated between different parts of the JATS document and

propagated through the tree.

We will see in the next two subsections how the delta and the semantics output

files are built and what information the end-user can retrieve there.

Delta output

The delta output generated by jats-diff is an XML document that represents both

"Level 1" and "Level 2" edits. We observe there 11 possible edit actions: Delete,

Insert, Update Attribute, Upgrade, Downgrade, Merge, Split, Move, Text Style edits,

Text Move and Text Update. In order to understand the delta XML structure, we

first describe within Table 3.3 the attributes used for additional information on the
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Detect "Level1" 
edits

2. "Level 1"

3. "Level 2"

Detect 
Upgrade

Detect 
Downgrade

Detect 
Merge

Detect 
Split

Detect 
Tree move

Detect  
Style edit

Detect 
Text move

Detect 
Text update

4. "JATS diff"5. "Semantics"

<insert> 
<delete> 

<attr>

Build VTree 1
XML 1 XML 2

Build VTree 2

1. VTree

<upgrade>

<downgrade>

<merge>

<split>

<move>

<style-edit>

<text-move>

<update>

Figure 3-18: jats-diff algorithm workflow.

1. Build one virtual tree object per XML document; 2. Detect "Level 1" edit actions; 3.
Refine and convert "Level 1" edits to "Level 2"; 4. Build the JATS diff output in XML
format; 5. Analyse the JATS diff output and use JATS-specific change semantics in order
to build a human readable tree structure and calculate the similarity index.

specific edit action. Those attributes allow the reader to identify the exact position

of the change inside the original document A or the modified document B.

We also provide the following short version of the Document Type Definition (DTD)

representing the possible edit actions represented in the jats-diff output:
<!DOCTYPE jats -diff [

<!ELEMENT jats -diff ( delete|insert|update -attribute|upgrade|downgrade|merge|
split|move|text -style -insert|text -style -delete|
text -style -update|text -move|text -update)*>

The examples of the delta output per common edit action can be found within

the Supplementary Materials A.

86 of 156



Chapter 3. Document comparison 3.5. Performance analyses

Attribute Description

at The parent node number where the child node was edited
nodenumberA Node number in the document A
nodenumberB Node number in the document B
direction Parameters <from>:<to> used to represent the direction while moving, splitting and merging node
op For edits composed of multiple XML operation tags, specifies the type of each operation
pos For text edits, specifies the position within a given text node where the edit takes place
length For text update, specifies the length of the modified text

Table 3.3: Delta output edit action attributes.

Semantics output XML

Once the initial "Level 1" and "Level 2" edits have been identified, jats-diff will

refine those and use change semantics proper to JATS in order to improve the visual

representation of the detected changes and avoid representing the so-called induced

changes we saw in Section 3.2.1. Moreover, the similarity index will also be calculated

and the results will be presented in a form of an XML tree structure. Some real-life

examples where change semantics are used in order to refine a long list of "Level 1"

and "Level 2" induced edits and summarise those in a human readable format and

also the similarity index benefits can be found in the Supplementary Materials B.

jats-diff allows calculating different similarity indexes: similartext, similartext-

word, Jaccard and Term Frequency–Inverse Document Frequency (TFIDF). By de-

fault, the similartext-word index is used that allows the reader to obtain insights

about lexical changes.

As the new edit actions detection and the similarity index have been described,

we compare in the next section the new jats-diff algorithm with the other text-centric

state-of-the-art XML diff algorithms.

3.5 Performance analyses

The performance analyses of jats-diff7 are divided into two subsections, one on the

information extraction capacity and the other on execution performance. This being

a state-of-the-art algorithm, our main effort was focused on the capacity to detect

7github.com/milos-cuculovic/jats-diff
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new edit patterns and change semantics extraction, rather than its implementation

performance.

3.5.1 Information extraction capacity

The initial evaluation phase consists in comparing the "Level 1" and "Level 2" in-

formation extraction capacities of the new jats-diff algorithm with JNDiff, XyDiff

and XCC. During this performance analysis, we created different XML file pairs, one

original and one modified version of the same document. The modified version is

composed of one of the human edits that is described in the "Human edit descrip-

tion" column. The output of each of the compared algorithms is then verified for its

ability to detect the given edit type.

As we can observe in Table 3.4, jats-diff is able to detect all of the "Level 1" and

"Level 2" edits. In addition, there is a similarity index calculated and propagated

upwards of the XML for each change detected. This is followed by JNDiff with a

perfect score for "Level 1" and a low score for "Level 2" edits. JNDiff can also detect

"wrap" and "unwrap" edit patterns that are similar to style edits. This is followed by

XyDiff with similar results in addition to text insert detection, where XyDiff mostly

uses text updates to represent text inserts. This is because XyDiff calculates the

LCS in order to minimise the edit distance between two strings, which increases the

complexity for a human reader to interpret the results. XCC follows XyDiff but with

additional issues in detecting tree delete and tree move edits compared to JNDiff.

Concerning the delta output, Table 3.4 also shows that jats-diff uses the minimal

number of edit actions for almost all edit pattern detection. For a few of them

where JNDiff, XyDiff or XCC output a lower number of edit actions, they are usually

represented as a simple delete–insert combination which does not reflect the real

changes made by humans at all, which we observe in the next section where we

evaluate the delta file size for each of the jats-diff. If we push the theory of minimising

the number of edit actions, one could think of using the delete–insert combination on

the complete document, which will minimise the number of edit actions but maximise

the delta file size.

88 of 156



Chapter 3. Document comparison 3.5. Performance analyses

Success Nb. of actions
Lev. Edit Type Human Edits jats-diff JNDiff XyDiff XCC jats-diff JNDiff XyDiff XCC
1 Text del. Del. title part 1 1 1 1
1 Text ins. Ins. title part 1 1 2 1
1 tree del. Del. author 1 1 1 5
1 tree ins. Ins. author 1 1 1 1
1 tree attr. Corr. author 1 1 1 1
2 Text upd. Update title 2 2 1 1
2 tree move Move author 2 2 2 8
2 Style ins. Ins. bold 1 3 4 2
2 Style del. Del. bold 1 3 4 2
2 Style type Bold->italic 2 2 4 2
2 Style cont. Extend bold 2 2 3 2
2 Upgrade sec2.3->sec6 2 6 4 2
2 Downgrade sec5->sec2.4 2 20 4 2
2 Split Split one p 3 2 3 2
2 Merge Merge two p 3 2 3 2
2 Text move Move text 2 4 4 2
2 Citable Del. reference 1 8 9 17

Sim. index Real-life edits

Table 3.4: Level 1/2 edit detection and similarity index calculation capacities for
jats-diff, JNDiff, XYDiff and XCC.

3.5.2 Execution performance

Although not critical in our working environment, algorithm performance for both

execution time and memory usage stays important. Compared to other XML diff

algorithms that are made with the purpose of comparing hundreds of thousands of

XML documents (for example, XyDiff and webpage difference extraction), jats-diff

will have to compare academic articles in JATS XML format during the publication

process. The current large academic publishers publish from several hundreds to

several thousands articles per day, which is far from the number of, say, the web-page

changes tackled by XyDiff.

Using the JNDiff core functions for "Level 1" change detection, the execution

time and memory usage of jats-diff is minimum at the level of JNDiff. Adding new

"Level 2" pattern detection requires additional analysis of the detected "Level 1"

differences; thus, it requires more time and memory for the algorithm to be executed.

The similarity calculation and propagation are carried out separately by analysing

the delta output and require additional execution time.

We divide jats-diff into two parts: first, "Level 1" and "Level 2" pattern detection,
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and second, similarity calculation and propagation. JATS articles are large XML files

that may vary from 100 KB to 400 KB. The tests8 were run on a JATS document

pair A and B representing real-life author changes during a revision round, affecting

every aspect of the article: the title, authors, affiliations, paragraphs, figures, tables

and references.

Figure 3-19 shows both the execution time (3-19a) and the maximum and average

memory used (3-19b) during a comparison of two real-life author changes in JATS

documents. The average was calculated on five comparison round executions per

algorithm. As expected, both parts of the new tools take more time and memory to

perform the diff and semantics extraction. If we compare jats-diff to JNDiff, the top-

scoring algorithm from our previous comparison study, JNDiff is five times faster that

jats-diff while using five times less average memory. However, those are acceptable

within our environment as the information consumers are humans with the aim to

compare the original and revised version of academic articles, which does not need to

be carried out in real time while the authors submit their revised version.

(a) Execution time. (b) Maximum and average memory used

Figure 3-19: Execution time and memory usage.

Comparison of two real-life author changes in JATS documents.

Once the execution time and memory usage have been assessed, we will also

compare jats-diff to the other top-scoring algorithms regarding their delta file sizes.
8The evaluation was carried out on an Apple MacBook Pro (16-inch, 2019); Processor: 2.4 GHz

8-Core Intel Core i9; Memory: 32 GB 2667 MHz DDR4; SSD
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3.6 Discussion

The previous section illustrates how new "Level 2" edit patterns can be detected and

how important it is for the human reader to have a bijection of the changes made by

the author and the modifications detected by analysing the two XML documents. In

addition, the similarity index is also useful in order to obtain a broader picture of the

impact that the changes made by the author have had.

The current algorithm still has possibilities for further improvements, one of which

is when the document is heavily rewritten by the author in regard to sentence rephras-

ing and grammar changes. Taking JATS XML as an example, this can be requested

by the reviewers in order to improve the article writing and organisation while main-

taining the sentence meanings. In order to cope with this, additional text change

similarity indexes could be included in the algorithm that will allow the reader to

distinguish between simple sentence rephrasing and sentence meaning. Those in-

dexes could be calculated using Topic model [25], word2vec [57, 34] and BERT [23].

This way, distinguishing between simple sentence rephrasing and sentence meaning

changes would be possible.

On another note, the current output of jats-diff still needs to be improved; in-

formation is visualised as XML delta outputs for "Level 2" and tree structure text

output for the similarity index. Having a better and more understandable representa-

tion of this information could help the human reader even more. An idea would be to

convert the XML document pair to HTML in order to have a readable representation

of the document, similarly to versioning control systems (Git/Subversion, etc.). On

top of this, we could use our change pattern detection and similarity index in order to

visually annotate the changes made by the author, and also the textual impact those

changes had on specific key elements of the document—for JATS, as an example, on

specific sections.

Regarding execution time and memory use efficiency, our algorithm is less efficient

than the state-of-the-art algorithms available. The main reason for this is the fact that

we mostly focused on new edit pattern detection being the main algorithm efficiency
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indicator, rather than the execution time and memory use that we planned to improve

during the industrialisation phase. "Level 2" changes are composed of a combination

of "Level 1" basic edit operations. Each time a "Level 1" edit operation is observed,

it is analysed as per "Level 2" changes until the right sequence is found, or after going

through all "Level 2" types and not finding a match. For each of those "Level 2"

edit patterns, there is a specific independent part of code that needs to be executed,

which increases time and memory usage. By sharing information between the "Level

2" detection steps, a possibility could be to share different indexes, through which

we could avoid constant analyse of the XML tree and reduce the execution time and

improve the memory use efficiency.

As another practical use case of the presented jats-diff algorithm, we plan to

further use it in assisting the final decision-maker by correlating the actual changes

provided by jats-diff and the expected changes extracted from the review comments.

In Figure 1-1, we can see that jats-diff helps with comparing different article versions;

however, the final decision-maker should still read the review comments and match

them with the changes made by the authors. Having a bijection of the modifications

made by the authors and the changes detected by comparing the JATS versions

and, in addition, calculating the similarity index could be used by the final decision-

maker to understand the actual changes made by the author. In order to correlate

those with the review comments, Named Entity Recognition (NER) could be used

in order to extract information from the review comments on how, where and what

should be changed in the article, representing expected changes. Once both pieces of

information are available, we could correlate them and provide valuable insight to the

final decision-maker that will assess if the author made the changes requested by the

peer reviewer. Potential candidates for the named entities regarding review comments

could be Location, Action and Content. Location could be matched with the change

location within the article, Action with the modification pattern and Content with

the change semantics. Additional author change information could also be used in

order to further improve the software, one example being the author response letter

that is usually uploaded together with the revised version of the article where the
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authors claim their changes and modifications as an answer to the review comments.

This information could be used to validate and enrich the modifications detected by

the algorithm.

One last idea about a similar topic regarding document comparison semantics and

their benefits would be its usage in version control systems (Git, Subversion, etc.) If

those version control systems were to be aware of the programming language grammar

they are detecting changes for, using change semantics to interpret some edit actions

could be beneficial: for example, one class name change and its impact on other files

where this initial class name is called could replace dozens or hundreds of detected

modifications with one single edit which initiated all the other changes.

3.7 Conclusion

In this chapter, we assessed the current text-centric state-of-the-art XML diff algo-

rithms and their capacity to detect higher-level changes made by authors on XML

documents, using JATS as a text-centric XML document type for testing purposes.

Those algorithms all support "Level 1" edit pattern detection; however, their capacity

to detect higher "Level 2" edit patterns is very limited.

We proposed a new XML diff algorithm called jats-diff, based on the existing

JNDiff core functions, able to detect "Level 2" edit patterns which are closely related

to text document edits made by the authors regardless of their typesetter tools.

This allows us to have a bijection of the author modifications and changes detected

between two text-centric XML documents. In order to assess the need for the new

"Level 2" edit pattern recognition, we started by evaluating different edit actions

authors take during the document revision. We then assessed the impact that those

edits have on XML and realised that there is a need for new edit pattern recognition:

structural upgrade, downgrade, split and merge, inline style edit, text move and

citable node edit. Afterwards, we proposed solutions on how to use change semantics

on different combinations of existing "Level 1" and "Level 2" edit actions made by

authors and how to recognise the new "Level 2" edit patterns. We also proposed a
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way to calculate the XML node text similarity index and propagate it through the

XML tree. Finally, we conducted a performance analysis comparing jats-diff with

three other state-of-the-art XML diff algorithms: JNdiff, XyDiff and XCC. First, we

evaluated the "Level 2" edit capacities where we could clearly observe that jats-diff is

able to detect and represent all existing and new edit patterns described within this

article. Afterwards, we evaluated the execution performance, where we measured the

impact of the new "Level 2" edit detection and text similarity index computation on

the time and memory used to compare two real-life author change documents.

Compared to existing XML diff algorithms that represent differences between

two documents with a limited set of edit pattern recognition, jats-diff proposes an

extended set of author modifications and changes detected by comparing the two

XML versions. Among different use case scenarios, one of them is to help the Editor-

in-Chief in the final decision-making process by automating the manual comparison

of different article versions. This is achieved by offering enough details to the final

decision-maker to assess whether author changes follow the reviewer requirements.

The similarity index computed on different parts of the document also provides a

clearer picture to the final decision-maker in order to understand which parts of the

articles are the most impacted by the change.

As for the future of jats-diff, there is still work to be carried out on better visuali-

sation, execution and memory use performance, and additional information that can

be added in order to enrich change detection.
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Named Entity Recognition

As seen in Figure 1-2, in order to strengthen the academic publishing process, the au-

tomation of the three following parts is needed: the extraction of actual changes (1);

the extraction of requested changes (2); and the correlation between the requested

and actual changes (3). In the previous chapter, we were able to automate the first

part of the process while comparing different article versions using jats-diff algorithm.

This offers the possibility to understand the actual changes made by the author dur-

ing the revision rounds. The second part of the thesis will consist in working on the

requested changes made by the reviewers during the peer review process. In order to

provide such a tool, we have taken the NER approach with the purpose of annotating

the review comments and extracting meaningful information that will give us the pos-

sibility to further correlate the requested and the actual changes. For this, we have

evaluated different deep learning models: BERT, SciBERT, DistilBERT, RoBERTa

and XLNet. We have first started with a coarse-grained evaluation by applying the

grid-search technique varying the learning rate, the weight decay and the train batch

size. This approach gave us the possibility to identify different hyperparameter com-

bination clusters each model performs the best. We have then continued with a

fine-grained evaluation where, depending on the coarse-grained results, different fine-

grained hyperparameters were used in order to further fine-tune the models. The top

scoring model based on SciBERT was trained, achieving an weighted average F1 score
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of 0.87. This new model, called "review-annotation", was published on Huggingface1

and is able to annotate review comments extracting four meaningful classes.

This chapter is divided in the following way: In Section 4.1, we explain the use of

five classes that are common to each review comment and could offer us the possibility

to make a correlation between the requested and the actual changes. In Section 4.2,

we present the dataset preparation used for further NER neural network model train-

ing, validating and testing. In Section 4.3, we carry out a coarse-grained evaluation

using the grid-search technique of the commonly used NER models, BERT, SciBERT,

DistilBERT, RoBERTa and XLNet. In Section 4.4, we carry out a more fine-grained

evaluation of the same models with a a final long epochs train selecting the highest-

scoring model on our NER task. Finally, in Section 4.7, we discuss additional steps

and tools needed in order to further facilitate the final decision-making process for

the Editor-in-Chief.

4.1 Review comments

While reviewing an article, peer reviewers write comments about their overall im-

pression of the quality but also give instructions on how to make improvements in

order to be eventually accepted for publication. The authors then have to read the

comments and assess them by completing the requested changes. For this to happen,

the author needs to know the three following pieces of information in order to under-

stand what should be modified and how: the location within the article where the

modification should take place; the modification type that explains how the specific

content at the given location should be modified; and the modification modality that

gives information regarding whether the change is mandatory or optional.

Each peer reviewer has their own writing style and uses their own wording while

writing their comments; however, we have identified five named entities that are com-

mon among all reviewers and could give us information that can help to understand

1https://huggingface.co/MilosCuculovic/review-annotation
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the requested changes. Those named entities will also offer us the possibility to link

them with the actual changes made by the authors and present this unique piece of

information to the final decision-maker. Those five named entities are:

• Location: location/area in the article where the requested change has to hap-

pen. We distinguish here three sub-types of location:

– Precise: usually represented by line numbers, figure and table names,

quoted text, etc. Matching the review comment directly with a specific

portion of text within the article is straightforward when using a precise

Location;

– Semi-Precise: usually represented by section names or a combination of

section and paragraph numbers where the comment is not related to a

specific portion of text but to a broader location;

– Imprecise: we mainly observe this type of location in generic comments

such as the level of English, some generic errors or other types of change

requests that have to be applied to the entire article.

• Action: verbs or adjectives describing the type of change that should be re-

alised. While using verbs, we usually observe "correct", "define", "specify",

"add", "remove", etc. Besides verbs, we also observe adjectives that can spec-

ify the requested change type: "redundant", "wrong", "too long", "unclear",

etc. A list of 37 actions was initially created with the goal to expand it during

the analysis of additional new review comments;

• Modal: modals describing the modality of the action. In terms of use, we

can divide the change requests into two categories: mandatory and optional.

For mandatory changes, the modals that we usually observe are "must" and

"should". For optional or nice-to-have changes, we usually observe "would",

"might" and "could".

• Trigger: short words that are important for the overall comment understand-

ing. Triggers allow us to identify if a comment is a question—e.g., "why",

"what" and which"—but also to distinguish whether the reviewer is propos-

ing more than one possible action in order to answer to their request by using
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"either", "or", etc. We can also find other, different triggers such as "how-

ever", "rather" and "instead of" that give additional granularity to the action

we described earlier;

• Content: information on what the change is about. The content is the largest

part of the comment and is domain-specific. At the opposite of the action

named entity that defines the type of change that is requested, the content

defines what the change is about. Within the easiest examples, the content

named entity represents nouns, but the NER for the content named entity is

usually of higher complexity.

Figure 4-1 shows an example of the NER applied on a review comment where we

identified the five classes Location, Action, Modal, Trigger and Content. In the first

comment, we can interpret the review comment as: the author "should" - Modal ,

in "Section 1" - Location , "correct" - Action the "information" - Content about

"ABCD data" - Location by "either" - Trigger "show" - Action "the data" -

Content "or" - Trigger "remove" - Action "their description" - Content .

Section 1: Information about “ABCD data” should be corrected –  
 
Authors should either show the data, or remove their description.  
 
The excessive examples are redundant – lines 9-10.

 

Correct the typo *heello* on line 103.

 

The title is too short and should be reformulated. 

 

The possible physiological explanation of the observed differences 
 
should be presented in the Results and Discussion section.

Review Report

ACTION CONTENT MODAL TRIGGER LOCATION

Figure 4-1: NER on review comments.

A review report where important named entities are highlighted using the five classes: Lo-
cation, Action, Modal, Trigger and Content.
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Matching the mentioned named entities on the review report is beneficial to the

reviewer, the author and the final decision-maker. The reviewer can use the NER tool

in order to validate their comments during or at the end of the writing. Comments

that do not have specific entities matched, for example, Location, might not be clear

enough to the author and could benefit from being further clarified. The author

can use those highlighted named entities in order to better understand the review

comment and further fulfil the reviewer requests. The decision-maker can on their

end use the tool in order to assess if the requested changes are fulfilled by the author

in an easier and a more automated way.

4.2 Training, valid and testing datasets

In order to evaluate different neural network models for our NER task, we will need

train, valid and testing datasets composed of annotated review comments using the

five named entities we defined in Section 4.1. Those models will be trained in a

supervised learning. For this purpose, we exported a corpus of 7000 review comments,

where one comment contains one or more change instructions.

4.2.1 Dataset annotation

We first pre-annotated the entire training set using the handcrafted rules approach,

where we run different regular expressions2 in order to identify the Location, Action,

Modal and Trigger named entities. Once the training corpus was pre-annotated,

we built a team of editors that made a manual pass with the purpose to verify

and improve the training corpus annotation. The open-source NER annotation tool

called Doccano3 was used, where each of the editors had a specific number of review

comments to annotate.

Once the manual labeling work has been carried out, we divided the dataset into

three sets: one for training, one for validating the hyperparameters’ fine-tuning and

2https://en.wikipedia.org/wiki/Regular_expression
3https://github.com/doccano/doccano
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another for testing purposes. The training dataset is composed of 5000 and the

validation and testing sets of 1000 review comments, representing a best practices

dataset splitting ratio of 80–20 percent.

4.2.2 Dataset conversion to CONLL format

Once the three datasets become available, they have to be converted from the Docanno

json format—See Figure 4-2a—to a format that can be understood by the PyTorch

library we are using for the models training. We decided to opt for the CONLL

format—See Figure 4-2b that is standard for NER datasets.

 
"text": 
    "6) Line 85 should start as “2.2 Preparation of…”",
"array_agg":[
    "11, 17, MODAL",
    "18, 23, ACTION",
    "3, 10, LOCATION",
    "27, 48, CONTENT",
    "3, 10, LOCATION",
    "18, 24, ACTION",
    "11, 18, MODAL"],
 

(a) Docanno json

6 O
) O
Line B-LOCATION
85 I-LOCATION
should B-MODAL
start B-ACTION
as O
“2.2 B-CONTENT
Preparation I-CONTENT
of…” I-CONTENT

(b) CONLL txt

Figure 4-2: Docanno json vs. CONLL txt formats.

As we can observe in Figure 4-2b, while converting the Docanno dataset format to

CONLL, each word of a given sentence goes to a new line, and while multiple words

are part of the same named entity, those are marked with B-<NE> and I<NE>. If

we take the example of "Line 85" as being marked as the Location named entity on

the json document, this is now converted into two separate words, but marked as B-

LOCATION and I-LOCATION. The B-<NE> represents the beginning of a named

entity right after another named entity, and the I<NE> represents then rest of the

multi-word named entity. The remaining text that is not identified as belonging to a

named entity will be marked as belonging to the O (other) named entity.
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4.2.3 Dataset cleanup

While starting with the experiments, we noticed that part of the dataset was lowering

the model performance due to missing important named entities. In most review

comments, the first paragraph is about the global overview of the article mentioning

its title, as well as (eventually) the authors and a short resume. This specific part

is not about a requested change which we try to annotate. As over 90% of the

remaining dataset will always have at least the Action and the Location named entities

and in order to cope with this situation, we decided to exclude examples where the

Action and the Location named entities are missing. In addition, some reviewers

group several change requests within an ordered/unordered list by first mentioning

the location, followed by a colon and then listing all requested changes for that specific

location—see Figure 4-3.

Results and discussion: 
    - This section does not present discussion – there is even no single reference
    - Author should briefly formulate the conclusions from the conducted study
    - The second paragraph is saying the same thing as the first one
    - The numbers in the tables are hard to read

Figure 4-3: Single location with a list of actions.

Once the datasets are cleaned and available within the right format, we will move

to the next step which consists of training, testing and evaluating the scores of dif-

ferent NER models.

4.2.4 Imbalanced dataset

The NER task we are striving to achieve can be categorised as a multi-class classifica-

tion task where a neural network model has to classify each word of our dataset into

one of the possible classes. For training and testing purposes, it is important to have

a balanced dataset, where each of the classes is represented by a similar number of

examples. Once our datasets were prepared and cleaned up, we measured the number

of words representing each class within the test dataset (1000 examples):
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• Location: 2112

• Trigger : 1935

• Content : 3600

• Action: 1491

• Modal : 813

As we can observe, our training dataset is rather imbalanced due to the fact that

the classes are not represented equally within the dataset. If we compare the Content

and the Modal classes—the two extremes—the number of Content support examples

(the number of actual occurrences of the class in the training dataset) is four times

larger compared to the number of Modal support examples. This is not extreme

compared to datasets with severe imbalance such as 1:10, 1:100 or even 1:000, but it

is worth noting and evaluating its impact on the training and the evaluation of our

models.

As seen in Section 2.2.2, there are different techniques to cope with an imbalanced

dataset. The first one is that additional data annotation was not possible in our

case due to the fact that additional examples would come with a similar imbalance

to the one already observed. The data-sampling techniques are also not applicable

within our dataset as there are no examples where the under-represented classes are

available in a solitary form. If we oversample the examples where the Modal class

is represented, we will also increase the support for other classes, at least for the

Action and the Content classes. If, however, we use the undersampling technique,

we will do the opposite and by reducing the over-represented classes also reduce the

under-represented ones. Finally, we decided to take the third approach and accept

working with our imbalanced dataset by measuring the right performance indicators

during the evaluation phase. The indicator we will use for comparing different model

scores in the following is the weighted average of the F1 score. This indicator takes

into consideration the support examples ratio per class while making the averages.

4.3 Coarse-grained evaluation

Before opting for a specific neural network model and concentrating on its hyper-

parameters’ tuning, we will start with a coarse-grained evaluation in order to select
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the one that is best-performing within our dataset. Among the different models

we described in Section 2.2, we will do our coarse-grained evaluation using BERT,

SciBERT, RoBERTa, DistillBERT and XLNet.

4.3.1 Models evaluation script

With the purpose of evaluating different neural network models and before concen-

trating on the best-scoring model for fine-tuning purposes, we tested the five models

using the nerModelsAnalyzer script. The script takes as input the list of models,

the number of epochs each model will be trained through and the train, valid and

test datasets. It also runs a grid search technique for hyperparameters’ tuning, using

the BUILD_HYPERPARAMS function where a total of 64 different hyperparame-

ter combinations are evaluated per model. The number of epochs is set to 10 for

coarse-grained evaluation. In order to accelerate the training process, the script is

executed on an Nvidia Tesla V100 GPU with a total of 32.5G of memory. Once the

grid-search per model is performed, the script runs the final evaluation that will se-

lect the best grid-search hyperparameter combination for the Location class and the

weighted average. The choice of the Location class is due to the fact that we consider

this class the most important for the future correlation between the requested and

the actual changes using the location within the article where a change is requested

and is eventually fulfilled.

The grid-search technique uses the 64 different hyperparameter combinations with

different values for the weight decay, the learning rate and the train batch size. Within

the experiment, we took the value of 0.1 representing 10% of the defined learning

rate. As the total number of epoch is defined to 10, the final epoch will operate at

the initially defined learning rate.

4.3.2 Results

During our experimentation phase, we started evaluating our models on all classes

together, namely, Location, Action, Content, Modal and Trigger. A short experiment
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Algorithm 2 nerModelsAnalyzer
models← BERT, SciBERT, RoBERTa, DistillBERT, XLNet
n_epoch← 10
train_data← train.txt
valid_data← valid.txt
test_data← test.txt
start(models, n_epoch, train_data, valid_data, test_data)
function start(models, n_epoch, train_data, valid_data, test_data)

𝑏𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 = 1
for ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚 in build_hyperparams( )do

for 𝑚𝑜𝑑𝑒𝑙 in 𝑚𝑜𝑑𝑒𝑙𝑠 do
for 𝑖 = 1, 𝑖++, while 𝑖 < 𝑛_𝑒𝑝𝑜𝑐ℎ do

for 𝑏𝑎𝑡𝑐ℎ in 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎 do
𝑙𝑜𝑠𝑠← train(𝑚𝑜𝑑𝑒𝑙, 𝑏𝑎𝑡𝑐ℎ, ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚)
𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑠𝑠𝑒𝑠 += 𝑙𝑜𝑠𝑠

end for
𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑠𝑠 = 𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑠𝑠𝑒𝑠/𝑙𝑒𝑛(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎)
if 𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑠𝑠 < 𝑏𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 then

best_loss← train_loss
model_to_save← model

end if
end for
𝑒𝑣𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡𝑠[𝑚𝑜𝑑𝑒𝑙, ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚]← eval(𝑚𝑜𝑑𝑒𝑙_𝑡𝑜_𝑠𝑎𝑣𝑒, 𝑣𝑎𝑙𝑖𝑑_𝑑𝑎𝑡𝑎)

end for
end for
𝑒𝑣𝑎𝑙_𝑐𝑜𝑚𝑝𝑎𝑟𝑒← eval_compare(𝑒𝑣𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡𝑠, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎)

end function
function build_hyperparams

weightdecay← [0.1, 0.01, 0.001, 0.0001]
learningrate← [0.01, 0.001, 0.0001, 0.00001]
warmupproportion← [0.1]
trainbatchsize← [16,32,64,128]
list_hyperparams← build the hyperparameter combination list
return list_hyperparams

end function
function eval_compare(eval_results, test_data)

for 𝑚𝑜𝑑𝑒𝑙_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 in 𝑒𝑣𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 do
𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙← sort_best_model(𝑚𝑜𝑑𝑒𝑙_𝑟𝑒𝑠𝑢𝑙𝑡𝑠)
𝑡𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡𝑠[𝑚𝑜𝑑𝑒𝑙]← test(𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎)

end for
return sort(test_results)

end function

was also carried out on training each class separately by removing all the remaining

classes each time. The obtained scores for individual class training were much lower

compared to training with all classes. This confirms that the tested deep-learning

models are well aware of the sentence structure and the relationship between classes

which allows them to perform better, as requested, on multi-class labelling vs. la-

belling each class separately.

Evaluation results including all classes

After running the nerModelsAnalyzer evaluation script on the five previously men-

tioned models using the grid search technique, we were able to identify different high-
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scoring hyperparameter combination clusters and also obtain the best coarse-grained

hyperparameter combination per model.

Figure 4-4 shows the 4D graphs for each of the models representing the weighted

average F1 score variation per unique combination of learning rate, weight decay and

train batch size (the numerical values are reported in Table 4.2). For all the models,

we can deduce that by using a high learning rate of 0.01, the F1 scores are very low.

In addition, XLNet has low F1 scores for high and low learning rates and operates

the best while the learning rates are 0.001 or 0.0001. Regarding the train batch sizes

across all models, the highest scores were obtained while using lower train batch sizes

of 16.

The following hyperparameter combinations shown in Table 4.1 were used per

model while achieving their optimal scores:

Model Learning rate Weight decay Train batch size

BERT 0.0001 0.1 16
SciBERT 0.0001 0.001 16
DistilBERT 0.0001 0.01 16
RoBERTa 0.0001 0.0001 16
XLNet 0.0001 0.001 16

Table 4.1: Optimal hyperparameter combination per model—coarse.

Table 4.2 shows the different precision, recall and F1 scores per model and per

class including the micro, macro and weighted averages. We have highlighted in ,

and the top scores per class and per different averages.

BERT SciBERT DistilBERT RoBERTa XLNet
Precis. recall F1 Precis. recall F1 Precis. recall F1 Precis. recall F1 Precis. recall F1

ACTION .7720 .8129 .7919 .7749 .8082 .7912 .6631 .7391 .6990 .7759 .8035 .7895 .7062 .7316 .7187
CONTENT .6628 .6886 .6781 .6830 .6947 .6888 .4083 .5469 .4676 .6729 .6389 .6678 .5515 .5253 .5381
LOCATION .8201 .8300 .8052 .7858 .8409 .8124 .6049 .7074 .6521 .7894 .8059 .8045 .7137 .7024 .7080
MODAL .9342 .9434 .9388 .9251 .9422 .9336 .8947 .9410 .9173 .9205 .9262 .9234 .8733 .8916 .8824
TRIGGER .9316 .9364 .9340 .9346 .9385 .9366 .9123 .9245 .9184 .9250 .9054 .9151 .8339 .8357 .8348

micro avg .7797 .8063 .7927 .7869 .8104 .7985 .6048 .7154 .6555 .7824 .7860 .7842 .6927 .6836 .6881
macro avg .8175 .8423 .8296 .8207 .8449 .8325 .6967 .7718 .7309 .8168 .8236 .8200 .7357 .7373 .7364
weighted avg .7807 .8063 .7932 .7873 .8104 .7986 .6259 .7154 .6658 .7823 .7860 .7840 .6899 .6836 .6866

Table 4.2: Top coarse-grained grid-search scores for BERT-based and XLNet models.

Coarse-grained scores for the top grid-search hyperparameter combinations training the
BERT-based and XLNet deep learning models. Highlighted per class are in the top
precision, in lime the top recall and in green the top F1 score.
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(c) DistilBERT
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(d) RoBERTa
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Figure 4-4: Coarse-grained grid-search for all classes.
During 10 training epochs, the weighted F1 scores are shown in the function of different
grid-search hyperparameter combinations with the top scores circled for each model.
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As seen from the results table, the SciBERT model obtained the highest scores

during our coarse-grained approach. This is most probably due to the fact that

the SciBERT model was pre-trained on scientific data using a similar vocabulary

to the review comments that are composed of different critiques made on scientific

articles. SciBERT is closely followed by BERT and RoBERTa, while DistilBERT had

the lowest scoring. As seen in Section 2.2, DistilBERT was made to be smaller in

size and faster while retaining 95% of BERTs language understanding. Within our

training dataset, this had a direct impact on the prediction result scores that are,

compared to BERT, 16% lower. The XLNet model also achieved lower scores that

are higher than those of DistilBERT but lower compared to the other BERT-based

models. Regarding the top weighted average F1 scores of different models, BERT is

able to achieve a weighted average F1 score of 0.7932, SciBERT of 0.786, DistilBERT

of 0.6658, RoBERTa of 0.7840 and XLNet of 0.6866. In addition, we can see that the

lowest-scoring class is the Content named entity with scores lower that 0.7 compared

to other classes that are close to 0.8 for Action and Location and 0.9 for Trigger and

Modal. This is mainly due to the two following reasons: on one hand, the complexity

of the content part in the review comments which can be difficult to judge; and on the

other, the number of poorly annotated examples within our dataset as the humans

who made the manual annotation had different criteria regarding what the content

really is. For these reasons, we decided to experiment on the training by ignoring the

Content class in order to increase the final scores and check the impact this has on

the scores of the labelling of the remaining classes.

Evaluation results excluding the Content class

During the last experiment, we excluded the Content class from the datasets. Without

using the NER tool, in most cases we could assume the content being the remaining

text that is not annotated within a given sentence. The same evaluation nerModels-

Analyzer script was used to train the BERT, SciBERT, RoBERTa, DistillBERT and

XLNet models using the same hyperparameter combinations within our new datasets,

excluding the Content named entity.
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Figure 4-5 shows the 4D graphs for each of the four BERT-based and XLNet

models representing the F1 score variation per unique combination of learning rate,

weight decay and train batch size (the numerical values are reported in Table 4.4).

Compared to the previous experiment, on this occasion, we trained the models with-

out the Content class as this class achieved the lowest scores and is the hardest to

predict. The first requested impact of removing the lowest-scoring class is the increase

in the average scores across all models. BERT increased its weighted average F1 score

from 0.7932 to 0.8583, SciBERT from 0.7986 to 0.8609, DistilBERT from 0.6658 to

0.7658, RoBERTa from 0.784 to 0.8483 and XLNet from 0.6866 to 0.7762.

The following hyperparameter combinations shown in Table 4.3 were used per

model while achieving their optimal scores:

Model Learning rate Weight decay Train batch size

BERT 0.0001 0.1 32
SciBERT 0.0001 0.1 16
DistilBERT 0.0001 0.0001 16
RoBERTa 0.0001 0.01 16
XLNet 0.0001 0.1 16

Table 4.3: Optimal hyperparameter combination per model—coarse w.o. Content.

Table 4.4 shows the different precision, recall and F1 scores per model and per

class including the micro, macro and weighted averages. We have highlighted in

, and the top scores per class and per different averages. In addition to

the previously mentioned improvement of the overall score averages by ignoring the

Content class, the other scores per class remained similar to their previous versions.

We can notice, however, a slight F1 score increase for the Location and the Action

classes regarding the BERT and SciBERT models on one side and a slight decrease

for those scores for the DistilBERT, RoBERTa and XLNet models on the other side.

Similar to the previous experiment results, the BERT and the SciBert models

achieved the best scores but now within all the measured indicators including the

precision, recall and the F1 scores. We can also observe from the results that, within

the newly revised datasets ignoring the Content class, there is almost a clear division

between the precision and the recall capacities of the BERT and the SciBERT models.
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(b) SciBERT
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(d) RoBERTa
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Figure 4-5: Coarse-grained grid-search without Content class.
Excluding the Content class from the initial datasets, during 10 training epochs, the weighted
F1 scores are shown in the function of different grid-search hyperparameter combinations
with the top scores circled for each model.
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BERT SciBERT DistilBERT RoBERTa XLNet
Precis. recall F1 Precis. recall F1 Precis. recall F1 Precis. recall F1 Precis. recall F1

ACTION .7722 .8048 .7882 .7790 .8015 .7901 .6732 .7143 .6931 .7697 .7981 .7837 .7250 .7351 .7300
LOCATION .7919 .8376 .8141 .7997 .8281 .8137 .5934 .6662 .6277 .7857 .8125 .7989 .6971 .7004 .6988
MODAL .9214 .9373 .9293 .9253 .9299 .9276 .8863 .9200 .9028 .9250 .9250 .9250 .8654 .9027 .8837
TRIGGER .9326 .9292 .9309 .9408 .9370 .9389 .9113 .9189 .9151 .9270 .9127 .9198 .8597 .8399 .8497

micro avg .8450 .8706 .8576 .8527 .8681 .8603 .7407 .7870 .7631 .8412 .8540 .8476 .7748 .7774 .7761
macro avg .8545 .8772 .8656 .8612 .8741 .8676 .7661 .8048 .7847 .8519 .8621 .8568 .7868 .7945 .7905
weighted avg .8467 .8706 .8583 .8539 .8681 .8609 .7465 .7870 .7658 .8428 .8540 .8483 .7751 .7774 .7762

Table 4.4: Top coarse-grained grid-search scores without Content class.

Coarse-grained scores for the top grid-search hyperparameter combinations without the Con-
tent class.

The BERT model has the highest recall scores for three out of the four classes, while

the SciBERT model has the highest precision for all four classes. Overall, SciBERT

has the highest F1 scores among all average indicators and half of the highest F1

scores, namely, for the Action and the Trigger classes. Regarding the top weighted

average F1 scores of different models, BERT is able to achieve an weighted average

F1 score of 0.8583, SciBERT of 0.8609, DistilBERT of 0.7658, RoBERTa of 0.8483

and XLNet of 0.7762.

With the coarse-grained evaluation carried out and the hyperparameter combina-

tion clusters where the specific model performs the best identified, we can move on

to the fine-grained approach in order to further optimise the evaluated models.

4.4 Fine-grained evaluation

For each of the previously coarse-grained model evaluation results, we identified hy-

perparameter combination clusters where the specific model performs the best. We

will now further fine-tune those hyperparameters by using additional fine-grained

variations within the cluster.

The following hyperparameter combinations were built for each of the previously

coarse-grained evaluated models, using Script 2:

• BERT, SciBERT, DistilBERT and XLNet models:

- weight decay = [0.1, 0.01, 0.001, 0.0001];

- learning rate = [1e-5, 2.5e-5, 5e-5, 7.5e-5, 1e-4, 2.5e-4, 5e-4, 7.5e-4, 1e-3];

- train batch size = 128, 32, 24, 18, 12, 8]
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• RoBERTa model:

- weight decay = [0.1, 0.01, 0.001, 0.0001, 0.00001];

- learning rate = [1e-5, 2.5e-5, 5e-5, 7.5e-5, 1e-4, 2.5e-5, 5e-4, 7.5e-4, 1e-3];

- train batch size = [128, 32, 24, 18, 12, 8]

The main reason for adding an extra weight decay of 0.00001 to the RoBERTa

model was that we observed during the coarse-grained evaluation with the Content

class that the best weighted average F1 score was obtained with the 0.00001 weight de-

cay, and we decided to explore this direction even further. Using the same evaluation

nerModelsAnalyzer script, we trained the BERT, SciBERT, RoBERTa, DistillBERT

and XLNet models using the previously mentioned fine-grained hyperparameters.

Figure 4-6 shows the 4D graphs for each of the four BERT-based and the XLNet

models representing the F1 score variation per unique combination of learning rate,

weight decay and train batch size. During the fine-grained training phase, BERT

increased its weighted average F1 score from 0.8583 to 0.8594, SciBERT from 0.8609

to 0.8655, DistilBERT from 0.7658 to 0.7813, RoBERTa from 0.8483 to 0.8484 and

XLNet from 0.7762 to 0.8068. The new scores rank the five deep learning neural

network models as follows: 1st SciBERT, 2nd BERT, 3rd RoBERTa, 4th XLNet and

5th DistilBERT. We observe that the hyperparameter that influenced the weighted

F1 scores the most is the learning rate, which we have varied the most.

The following hyperparameter combinations shown in Table 4.5 were used per

model while achieving their optimal scores:

Model Learning rate Weight decay Train batch size

BERT 0.0001 0.1 8
SciBERT 0.000075 0.0001 8
DistilBERT 0.0001 0.0001 16
RoBERTa 0.0001 0.001 18
XLNet 0.00025 0.1 12

Table 4.5: Optimal hyperparameter combination per model—fine.

Table 4.6 shows the different precision, recall and F1 scores per model and per

class including the micro, macro and weighted averages. We have highlighted in ,

and the top scores per class and per different averages. Besides the overall
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(c) DistilBERT
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(d) RoBERTa
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(e) XLNet

Figure 4-6: Fine-grained grid-search without Content class.
Excluding the Content class from the initial datasets, during 10 training epochs, the weighted
F1 scores are shown in the function of different fine-grained grid-search hyperparameter
combinations with the top scores circled for each model.
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increase in the weighted F1 score across all models, we can also observe that during

the fine-grained evaluation, the SciBERT model had the best F1 scores across all

classes. Compared to the coarse-grained evaluation where BERT, as the 2nd scoring

model, had better recall scores, while SciBERT had better precision scores, SciBERT

now has both the majority of best precision and recall scores. The largest weighted

F1 score increase during the fine-grained evaluation was observed with the XLNet

model that had its score increased from 0.7762 to 0.8068.
BERT SciBERT DistilBERT RoBERTa XLNet

Precis. recall F1 Precis. recall F1 Precis. recall F1 Precis. recall F1 Precis. recall F1

ACTION .7801 .7995 .7897 .8015 .7988 .8001 .7094 .7123 .7108 .7680 .7948 .7811 .7455 .7434 .7444
LOCATION .7945 .8348 .8141 .7981 .8423 .8196 .6174 .6899 .6516 .7853 .8120 .7984 .7420 .7360 .7390
MODAL .9219 .9287 .9252 .9164 .9434 .9297 .8951 .9237 .9092 .9186 .9299 .9242 .8965 .9064 .9014
TRIGGER .9381 .9292 .9349 .9358 .9421 .9390 .9200 .9266 .9233 .9348 .9111 .9228 .9009 .8749 .8877

micro avg .8497 .8681 .8588 .8554 .8755 .8653 .7619 .7972 .7792 .8420 .8533 .8476 .8110 .8023 .8067
macro avg .8586 .8737 .8660 .8629 .8817 .8721 .7855 .8131 .7987 .8517 .8619 .8566 .8212 .8152 .8181
weighted avg .8512 .8681 .8594 .8560 .8755 .8655 .7667 .7972 .7813 .8438 .8533 .8484 .8115 .8023 .8068

Table 4.6: Top fine-grained grid-search scores without Content class.

Fine-grained scores for the top grid-search hyperparameter combinations without the Con-
tent class.

With the fine-grained grid-search evaluation done, we can reuse the top-scoring

hyperparameter combinations in order to do a final training for each model during

200 epochs (compared to the number of 10 epochs during the grid-search evaluation).

At the end, we will compare their final scores with the purpose of selecting the best

model for our NER task.

4.5 Final long-epoch evaluation

By using the top-performing hyperparameter combination per model obtained during

the fine-grained grid-search evaluation, we used a similar algorithm to Script 2 for

final training during 200 epochs by automatically selecting the best model variant

with the lowest loss. Instead of getting the hyperparameter combination from the

BUILD_HYPERPARAMS function described in the nerModelsAnalyzer evaluation

script, those were now used depending on the weighted average F1 score results from

Figure 4-6. Table 4.7 shows the different scores per model, with the top-scoring

model being SciBERT with an weighted F1 average score of 0.8655. SciBERT is
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closely followed by BERT with 0.8568 and RoBERTa with 0.8476. Those are then

followed by XLNET with 0.8188 and DistilBERT as the lowest-scoring model with

0.7982.

BERT SciBERT DistilBERT RoBERTa XLNet
Precis. recall F1 Precis. recall F1 Precis. recall F1 Precis. recall F1 Precis. recall F1

ACTION .7988 .7854 .7920 .7848 .7827 .7837 .7659 .7176 .7410 .7911 .7673 .7790 .7474 .7386 .7429
LOCATION .7986 .8073 .8029 .8216 .8220 .8218 .6944 .6681 .6810 .7983 .8078 .8030 .7624 .7427 .7524
MODAL .9177 .9323 .9250 .9191 .9360 .9275 .8983 .9237 .9109 .9206 .9127 .9166 .9059 .9126 .9092
TRIGGER .9420 .9318 .9369 .9440 .9318 .9378 .9339 .9121 .9229 .9406 .9003 .9200 .9225 .8974 .9098

micro avg .8574 .8561 .8568 .8626 .8608 .8617 .8119 .7868 .7991 .8547 .8533 .8472 .8266 .8111 .8188
macro avg .8643 .8642 .8642 .8674 .8681 .8677 .8231 .8054 .8139 .8627 .8619 .8547 .8346 .8228 .8286
weighted avg .8576 .8561 .8568 .8627 .8608 .8655 .8103 .7868 .7982 .8556 .8533 .8476 .8266 .8111 .8188

Table 4.7: Final model training scores without Content class.

Figure 4-7 shows the confusion matrix per final trained model where we can see

the different ratios between the predicted and the true values. We observe that the

Action and the Location classes most often got confused with the Modal class. For

higher-scoring models, the confusion of those classes is between 3% and 4% and for

the lower-scoring models between 5% and 6%. As we have already fine-tuned our

hyperparameters, we assume that with a larger and improved dataset, those class

confusion errors could be reduced even further and brought closer to 0%.

Table 4.8 presents a summary of the five models’ evaluation, with SciBERT being

the top-performing (using the F1 weighted average score) on our NER task annotating

review comments. SciBERT is closely followed by BERT, and the lowest-scoring

model is DistilBERT, with a 7.8% lower weighted avg F1 score.

Model ↓ Weighted avg F1 Location F1 Action F1

SciBERT 0.8655 0.8218 0.7837
BERT 0.8568 0.8029 0.7920
RoBERTa 0.8476 0.8030 0.7790
XLNet 0.8188 0.7524 0.7429
DistilBERT 0.7982 0.6810 0.7410

Table 4.8: Final evaluation results.

By performing the evaluation of different deep learning neural network models

(BERT, SciBERT, DistilBERT, RoBERTa and XLNet), we were able to select the

best-scoring model on our NER task, which is SciBERT. A final 200 epoch training
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(a) BERT (b) SciBERT

(c) DistilBERT (d) RoBERTa

(e) XLNet

Figure 4-7: Confusion matrix: Action, Location, Modal, Trigger and O class.
During 200 training epochs, the predicted vs. true values are shown per class combination,
showing the four classes Action, Location, Modal, Trigger and the class O representing the
other words within the CONLL format.
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resulted in a new model, based on SciBERT, which we called "review-annotation" and

which was able to achieve a weighted average F1 score of 0.8655. In the next section,

we will present the human evaluation of that model on its prediction capacities of the

Location class.

4.6 Manual human evaluation—Location class

In order to validate the annotation of review comments for the Location class using

our NER tool, we extracted 1000 random real-life review comment examples from the

database, ran those through the annotation tool and asked internal MDPI editors to

check them manually and document the examples where the model made a prediction

error. Out of the 1000 examples, a success rate of 77.1% was achieved, with an error

rate of 22.9%, from which 14.8% were missing and 10.1% were wrong predictions.

By analysing more closely different errors made by the model while predicting the

Location class, we first observed that the model learned that everything within quotes

is a location. This is not always true as there can be examples of text corrections

where one quoted sentence (being the location) should be replaced by another quoted

sentence (which is not the location). There is probably a need for additional training

data in order for the model to better distinguish between quoted locations and other

quoted text. Another issue is regarding some under-represented examples using the

words "figure", "equation", "introduction", "conclusion", etc., which also result in

missing predictions. We also observed that some generic (imprecise) location words

are also not being predicted, such as "manuscript", "paper", "sentence" and "text".

Regarding the evaluation results that are lower than requested (lower than the

score of 0.87 during the evaluation), we concluded that for better results, we first

need to re-work and then also increase our training dataset in order to provide the

model with better training examples. This way, we should be able to first increase

the evaluation score, but also the real-life testing score.
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4.7 Discussion

As seen within this chapter, we evaluated five pre-trained neural network models and

assessed their capacities around achieving our NER tasks. Besides the five tested

models, there are other models available that we did not test for various reasons,

the first one being their lower state-of-the-art performance made available within the

literature. There are also other models such as GPT-2 and GPT-3 achieving similar

or even better state-of-the-art results than BERT or XLNet. Those are, however,

not available in open source and are only available through the OpenAI API4. In

order to further improve the prediction scores, we will continue to build a better

annotated dataset, also higher in number of examples. In addition, evaluating other

deep learning models is another possibility for increasing the prediction scores.

4.8 Conclusion

Within this chapter, we have described our work on extracting requested changes—

those asked by the reviewer—by annotating the review comments and extracting the

following meaningful change information: Location, Action, Modal and Trigger. For

this, we evaluated different deep learning models that were fine-tuned on our NER

task. The models we evaluated are BERT, SciBERT, DistilBERT, RoBERTa and

XLNet. We first started with a coarse-grained evaluation by applying the grid-search

technique having 64 different combinations of hyperparameters by varying the learn-

ing rate, weight decay and train batch size. The approach is coarse-grained as those

variations are large, going from 0.1 to 0.00001 for the learning rate, 0.1 to 0.0001 for

the weight decay and 16 to 128 for the train batch size. A script we developed, called

nerModelsAnalyzer, was used to perform the grid-search and generate 4D graphs per

evaluated model. Once the coarse-grained evaluation was carried out, we moved on to

the fine-grained evaluation, where depending on the coarse-grained results, different

fine-grained hyperparameters were used in order to further fine-tune the models and

increase their scores. Once the fine-grained evaluation was completed, the models
4https://openai.com/api/
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were further trained with the optimal hyperparameters for 200 epochs, with the top-

scoring model selected, being SciBERT, achieving an weighted average F1 score of

0.87. Finally, a group of 10 editors tested the fine-tuned model on real-life review

comments for its capacity to detect Location named entities. Those named entities

are categorised as being the most critical within the next step that will consist of

correlating the requested changes Location named entities with their corresponding

locations within the article where the author made corrections. The obtained human

evaluation result gave us a success rate of 77.1%.
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Information matching

As seen in Figure 1-2, once the actual changes—those made by the authors—are

extracted by comparing the two JATS XML versions of the article, and the requested

changes—those asked by the reviewer—are extracted using our NER model, we can

start correlating those two pieces of information in order to propose a unified view to

the decision-maker.

The Figure 5-1 will be used in the following sections as a demonstration example.

It is composed of: Figure 5-1a that shows two article versions, the original on the

left and the modified on the right; and Figure 5-1b that shows the current change

information we are able to extract, on the left the requested changes obtained by

using the NER model while on the right are the actual changes obtained by using

the jats-diff algorithm. The Figure 5-1b shows a practical use-case where correlating

the Location entity extracted from the review comments and the location where the

change should happen within the article gives to the final decision-maker a quick and

precise overview of the requested and actual changes. Using the Location entity, we

have the answer to "Where" the change should happen. By using the other entities

(Action, Modal and Trigger), we can understand "How" the change should be realised.

The first and the most important step towards providing the decision-maker with

information if the author fulfilled the expected changes during the revision round is

taken by correlating the author modifications and the review comments. We will

show in the following how different extracted named entities can be correlated within
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Line: 1   This is a simple text that we
Line: 2   are using as introduction to
Line: 3   the article. 
 
Line 4   In this text we are mentioning
Line 5.  some simple facts about  
Line 6   ABCD data. 
 
Line 7  This part ABCD to be removed. 
Line 8   Here we show some examples 
Line 9.  Here we show some excessive
Line 10  examples

Line: 101   This is another part of  
Line: 102   the article. 
 
Line 103    Here a typo: heello.

Line: 1   This is a simple text that we
Line: 2   are using as introduction to
Line: 3   the article. 
 
Line 4   In this text we are mentioning
Line 5.  some simple facts about  
Line 6   ABCD data. Some info here. 
 
Line 7  This part ABCD to be removed. 
Line 8   Here we show some examples 

Line: 101   This is another part of  
Line: 102   the article. 
 
Line 103    Here a typo: hello.

Modified

(a) Two article versions

Section 1: Information about “ABCD data” should be corrected –  
 
Authors should either show the data, or remove their description.  
 
The excessive examples are redundant – lines 9-10.

 

Correct the typo *heello* on line 103.

 

The title is too short and should be reformulated.

Review Report

ACTION CONTENT MODAL TRIGGER LOCATION

0 - article
* depth: 0
* similar-word: 99.4
 
  1 - front
  * depth: 1
  * similar-word: 99.9
 
    17 - article-meta
    * depth: 2
    * similar-word: 99.9
 
      29 - title-group
      * depth: 3
      * similar-word: 80.0
 
        30 - article-title
        * depth: 4
        * similar-word: 80.0
 
          31 - p
          * depth: 5
          * change-type: text-update - text-inserted - ' Modified'
          * similar-word: 80.0
 
  139 - body
  * depth: 1
  * similar-word: 98.5

    140 - sec 
    * id :sec1
    * Section One
    * depth: 2
    * similar-word: 68.9
 
      145 - p
      * depth: 3
      * change-type: text-update - text-inserted - '. Some info here.'
      * old-value: ... some simple facts about ABCD data.
      * similar-word: 28.6
 
      147 - p
      * depth: 3
      * change-type: text-update - text-deleted - ' Here we show ...'
      * old-value: Here we show some excessive examples
      * similar-word: 62.5
 
    154 - sec
    * id :sec3
    * Section three
    * depth: 2
    * similar-word: 93.2
 
      157 - p
      * depth: 3
      * change-type: text-update - 'heello -> hello'
      * old-value: Here a typo: heello.
      * similar-word: 91.7

(b) Change information

Figure 5-1: Analogies between change information.

Figure (a) shows two article versions, on the left the original article and on the right its
modified version. Figure (b) shows on the left the annotated review comments and on the
right the differences extracted between two article versions using jats-diff algorithm.
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the modifications from the author change list and what additional information each

of those entities can provide.

5.1 Location

The Location named entity plays the most important role regarding the correlation

between the requested and actual changes. This is made possible by using the location

within the article where the actual change took place and the Location annotated in

the review comment. Correlating those two pieces of information will result in three

change categories:

• Requested and detected changes: the author made modifications on a

specific location within the article following a review request;

• Requested but not detected changes: the author did not make the modi-

fications requested by the reviewer on a specific location within the article;

• Detected but not requested changes: the author made modifications that

were not requested by the reviewer on a specific location within the article.

In order to distinguish between those three categories, for each of the review com-

ments Location named entities, a correlation trial is made to find a corresponding

article location within the author change list. If the match is positive, the correlation

worked and the given change is categorised as requested and detected. If the match

is negative, either the change request is optional (using the modality information) or

the author ignored that given change request. The remaining modifications in the

author change list for which there is no correlation with the Location named entity

within the review comments are categorised as detected but not requested.

As observed in Figure 5-1, there are four Location named entities: "Section 1",

"title" and the two quoted examples "ABCD data" and "heello" that can be correlated

with the delta information extracted by jats-diff. By analysing the training dataset,
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we extracted the 20 most commonly used Location named entities—see Table 5.1—

described them and assessed their precision within the text. The 3 most commonly

used out of those 20 named entities (quoted text, line numbers and section names)

cover over 90% of the total Location named entities observed within the dataset. We

have decided to mainly concentrate on those in order to have a robust Location named

entity correlation for the types covering the majority of the identified Location named

entities.

named entity Type Description precision

quotes quoted text that can be found within the article precise
x section / section x specific section identified by name or number semi-pre.
line(s) x / x-y / x,y,... line number available within the PDF precise
table x specific table identified by the number precise
figure x specific figure identified by the number precise
title title of the article, of the section, etc. precise
keywords keywords part of the article precise
abstract abstract part of the article precise
references references part of the article semi-pre.
label/caption the label / caption of a specific table / figure precise
Introduction common section cited without the section suffix semi-pre.
Results and Discussion common section cited without the section suffix semi-pre.
Discussion common section cited without the section suffix semi-pre.
Conclusion common section cited without the section suffix semi-pre.
Supplementary x common section cited without the section suffix semi-pre.
paper/manuscript/body generic comments applied to the whole article generic
Reference(s) x / [x-y] specific references identified by the number precise

Table 5.1: Common Location named entity observed within the training dataset.

Once they are identified, we will assess in the following subsection how those Loca-

tion named entities can be linked to a specific part of the article and the corresponding

change detected by jats-diff.

5.1.1 Out-of-the-shelf matching possibilities

We will go through each of the previously identified Location named entity types—

see Table 5.1—and assess the current out-of-the-shelf techniques to link those to their

corresponding location within the article and the jats-diff output.
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• Quotes: reviewers use single or double quotes to cite text parts of the article

and request specific changes related to that text. Those are relatively easy to

match by using search text and identifying those to a related location within

the article and a given change detected using jats-diff;

• Sections (and synonyms such as chapter, etc.): there are different approaches

when reviewers are identifying a section. The most straightforward one is by

using section names or section numbers. However, we also face cases where

reviewers describe a section as being the first, second, etc. or instead of using

numerals, they use words as "Section two", "Section five" etc. This requires

further processing in order to retrieve the right section name or number—for

example, the reviewer can give a comment about the "last section" that we need

to link to the last section of the article. In addition, subsections may also be

mentioned by the reviewer with an example of requested change in the "Section

two in the Methods section". Here, we have two levels of sections where we

would need to identify the second subsection within the Methods section;

• Line numbers: reviewers also frequently use line number while identifying a

specific text. Unfortunately, JATS XML representation of the article has no

layout information, and thus, it does not provide any line number information,

and those Location named entities are not possible to match out-of-the-shelf.

For this, we will be using another custom technique described in Section 5.1.2;

• Tables, Figures: reviewers cite specific tables and figures by using their num-

bers and occasionally their labels. Both types of information are available within

the article itself but also within the jats-diff output, as for each table and figure,

jats-diff mentions its number and label;

• Title, keywords, abstract, references: those very specific parts of the article

are always present and can be matched both on the JATS XML and also on the

jats-diff output;

• Citable references: references available within the references list are num-

bered depending on their order of appearance. While mentioning a specific

reference, for example, "reference 5", we use the reference number in order to
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identify the right reference. For more complex examples where several refer-

ences are mentioned with a from–to reference number, for example, "references

[5-8]", further processing is needed as this annotation has to be converted to

references 5, 6, 7 and 8. In addition, similarly to the section and line numbers,

non-numerical references have to be converted to their numerical values.

We have observed examples where the exact match of the previously mentioned

Location types was not successful due to different typos introduced by the peer re-

viewer. For such cases, instead of using exact match while searching the corresponding

text, regular expressions or approximate string matching could be beneficial.

5.1.2 Custom matching

As seen previously, there are two use-cases where a simple and direct correlation of

the Location named entity and the jats-diff output is impossible. We will discuss in

the following which approach we took for those.

Line numbers

While reviewing an article, peer reviewers usually receive the PDF version of that

article containing the line number annotated—see Figure 5-2. Very often, they make

use of those line numbers to identify a specific location within the article the comments

made are related to.

Carrying only the article data and structure and no layout information, assigning

line numbers in JATS XML is not straightforward. We thus adopted an alternative

approach that consists of extracting the line numbers from that PDF document and

matching each line number with its corresponding text. The script 3 shows the

pseudo-code on how the output map is generated, linking each line number to its

corresponding text. The script first goes through the PDF document and extracts all

character positions within the document. Those characters are afterwards evaluated

and classified within sentence characters or line numbers. Once classification has

been made, the output map is built, assigning each line number to its corresponding

sequence of sentence characters (string).
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Figure 5-2: Example of PDF line numbers usage

A PDF version of the article sent to peer review containing line numbers on the right.

With the output map created, we will use it as a support database that will be

accessed each time the line Location named entity containing line numbers is detected.

This way, the initial correlation problem where line numbers were missing from the

JATS XML is turned into a simple text quotation correlation problem which can be

solved using text search.

Algorithm 3 PDFLineExtractor
input← article.pdf
start(input)
function start(input)

𝑐ℎ𝑎𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠← ReadCharacterPositions(𝑖𝑛𝑝𝑢𝑡)
𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠← extractStringPositions(𝑐ℎ𝑎𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠)
𝑙𝑖𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟𝑠← extractLinePositions(𝑐ℎ𝑎𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠)
𝑜𝑢𝑡𝑝𝑢𝑡_𝑚𝑎𝑝← buildOutput(𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠, 𝑙𝑖𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟𝑠)
return output_map

end function
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Section numbers

Section numbers are easy to correlate between the Location named entity and the

section numbers within the JATS XML and the jats-diff output. However, in cases

where reviewers do not explicitly mention section numbers but use synonyms such as

"First section" or "Section one" for the "1. Section", some additional pre-processing

is needed in order to have a correspondence table between the real section numbers

and different synonyms those can be referenced with.

Two main approaches are used here: first, the correspondence between the nu-

meral and word representation of section numbers (1—one; 2—two, 3—three, ...);

and second, between the ordinal and word representation of section numbers (1—

first; 2—second, ..., n—last). This way, the capacity of correlating a Location named

entity referring to a section is increased.

5.1.3 Location correlation result

Finally, once we know how to correlate most of the Location named entities extracted

by our NER model to the location within the article and the location where specific

changes took place, we show in Figure 5-3 how different named entities are correlated

with different changes made by the authors during the revision round. Most of the

named entities are directly correlated except the line numbers that go through the

line numbers database map in order to retrieve the text behind each line.

5.2 Modal

The modality of a requested change is defined by the Modal NE. As seen in Chapter 4,

the modality categorises a specific change request as being mandatory or optional.

This information will help us to understand if a specific review request has to be linked

or not to a change location in between. If we take the example seen in Figure 5-1, the

modal "should" is categorising the requested change as mandatory, which includes a

mandatory correlation between the requested change and the actual change linked to
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Section 1: Information about “ABCD data” should be corrected –  
 
Authors should either show the data, or remove their description.  
 
The excessive examples are redundant – lines 9-10.

 

Correct the typo *heello* on line 103.

 

The title is too short and should be reformulated.

Review Report

ACTION CONTENT MODAL TRIGGER LOCATION

0 - article
* depth: 0
* similar-word: 99.4
 
  1 - front
  * depth: 1
  * similar-word: 99.9
 
    17 - article-meta
    * depth: 2
    * similar-word: 99.9
 
      29 - title-group
      * depth: 3
      * similar-word: 80.0
 
        30 - article-title
        * depth: 4
        * similar-word: 80.0
 
          31 - p
          * depth: 5
          * change-type: text-update - text-inserted - ' Modified'
          * similar-word: 80.0
 
  139 - body
  * depth: 1
  * similar-word: 98.5

    140 - sec 
    * id :sec1
    * Section One
    * depth: 2
    * similar-word: 68.9
 
      145 - p
      * depth: 3
      * change-type: text-update - text-inserted - '. Some info here.'
      * old-value: ... some simple facts about ABCD data.
      * similar-word: 28.6
 
      147 - p
      * depth: 3
      * change-type: text-update - text-deleted - ' Here we show ...'
      * old-value: Here we show some excessive examples
      * similar-word: 62.5
 
    154 - sec
    * id :sec3
    * Section three
    * depth: 2
    * similar-word: 93.2
 
      157 - p
      * depth: 3
      * change-type: text-update - 'heello -> hello'
      * old-value: Here a typo: heello.
      * similar-word: 91.7

Line
numbers

Figure 5-3: Analogies between NER Location namedentity and jats-diff.

On the left are the annotated review comments, and on the right the differences extracted
between two article versions using jats-diff algorithm. The black arrows indicate the corre-
lation between the Location named entities and the change location within the article. The
line number map transforms the line number to its contained text.

a specific location within the article.

Table 5.2 shows the top six used modals within our training dataset. We can

categorise those within the two initially defined categories for mandatory and optional

change requests as follows: "should" and "must" for mandatory and "will", "can",

"could" and "may" for optional changes. By analysing the total number of 4700

Modal named entity appearances, the top 6 modals represent over 90%, and those

are divided as 86% being mandatory and 14% optional changes.

NE: should must will can could may

Count: 3150 639 349 110 66 59

Table 5.2: Common Modal named entities observed within the training dataset.

5.3 Action

The Action named entity identifies different type of actions the author should under-

take in order to fulfil the requested changes described by the peer reviewer. Within

127 of 156



Chapter 5. Information matching 5.3. Action

our training dataset, over 630 unique Action named entities were annotated with

a total of 8300 appearances. Table 5.3 shows the top used named entities and their

number of appearance. We see that the top 20 used named entities represent over 30%

of the total number of appearances. Moreover, lemmatised versions of those words

are also detected using similar root words by the models, meaning that the word

mentioned being decomposed in "mention" + ("##ing" OR "ed" OR ...) covers

additional examples within our dataset.

named
entity

Count named
entity

Count named
entity

Count named
entity

Count

add 314 present 278 presented 260 revise 178
mentioned 150 provide 150 avoid 148 specified 134
check 130 mention 126 use 120 benefit 114
corrected 112 indicated 108 address 106 include 102
highlight 88 explained 84 removed 82 make 80

Table 5.3: Common Action named entities observed within the training dataset.

The next step is to correlate those Action named entities with specific edit actions

observed in the jats-diff output. For this, we started creating a correspondence table

that links different named entities to specific edit action(s). Table 5.4 shows some of

those correspondences. As there are many more to be added, we also decided to use

the synonyms of the top Action named entities in order to expand their correlation

capacities.

Insert Delete Update Split Merge

add remove revise split merge
provide avoid correct separate join
include excessive update break unify
present delete explain combine
insert justify stick
cite specify

Table 5.4: Action named entities correspondence table example.

The top used Action named entities are mostly verbs such as "add", "revise",

"mention", "provide", "avoid", etc., but we can also observe, with a lower but still

important number of occurrences, adjectives addressing a critique to a specific location

within the article. Some examples of the adjectives used are "is missing", "too short",
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"is not clear", "is not appropriate", etc. In a similar way as we categorised the verbs,

there is also a need to categorise those adjectives where, for example, "is missing"

and "too short" should be correlated to an Insert edit action, while "is not clear" and

"is not appropriate" should be correlated an Update edit action.

Finally, having determined how to correlate some of the Action named entities

extracted by our NER model to the edit action type on the jats-diff output, we show

in Figure 5-4 how different named entities are correlated with different changes made

by the authors during the revision round.

Section 1: Information about “ABCD data” should be corrected –  
 
Authors should either show the data, or remove their description.  
 
The excessive examples are redundant – lines 9-10.

 

Correct the typo *heello* on line 103.

 

The title is too short and should be reformulated.

Review Report

ACTION CONTENT MODAL TRIGGER LOCATION

0 - article
* depth: 0
* similar-word: 99.4
 
  1 - front
  * depth: 1
  * similar-word: 99.9
 
    17 - article-meta
    * depth: 2
    * similar-word: 99.9
 
      29 - title-group
      * depth: 3
      * similar-word: 80.0
 
        30 - article-title
        * depth: 4
        * similar-word: 80.0
 
          31 - p
          * depth: 5
          * change-type: text-update - text-inserted - ' Modified'
          * similar-word: 80.0
 
  139 - body
  * depth: 1
  * similar-word: 98.5

    140 - sec 
    * id :sec1
    * Section One
    * depth: 2
    * similar-word: 68.9
 
      145 - p
      * depth: 3
      * change-type: text-update - text-inserted - '. Some info here.'
      * old-value: ... some simple facts about ABCD data.
      * similar-word: 28.6
 
      147 - p
      * depth: 3
      * change-type: text-update - text-deleted - ' Here we show ...'
      * old-value: Here we show some excessive examples
      * similar-word: 62.5
 
    154 - sec
    * id :sec3
    * Section three
    * depth: 2
    * similar-word: 93.2
 
      157 - p
      * depth: 3
      * change-type: text-update - 'heello -> hello'
      * old-value: Here a typo: heello.
      * similar-word: 91.7

Figure 5-4: Analogies between NER Action named entities and jats-diff.

On the left are the annotated review comments and on the right the differences extracted
between two article versions using the jats-diff algorithm. The black arrows indicate the
correlation between the Action named entities and the change type extracted by jats-diff.

There are also other more ambiguous Action examples where the requested changes

described can be achieved with different edits, or a combination of multiple edits that

we are not yet able to solve. As an example, we have the Action "revise" that can

be performed in multiple ways, using the Insert, Delete or Update edits, or a com-

bination of all. Another example is the Action "check", where the author can apply

different edits once that specific "check" is made.
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5.4 Trigger

The last information provided by our NER model is the Trigger NE. The so-called

triggers are used to further refine the correlation of the Action named entities. We do

use Triggers in order to identify if a specific sentence is a question by using "what",

"where", "why" and other triggers. In addition, within the examples, where there are

multiple Action named entities, and triggers such as "or" "either", "instead of" and

others specify that the author can choose one of the edit actions to fulfil the requested

change. Moreover, within the same examples where there are multiple Action named

entities, triggers such as "not only", "also", "both", "in particular" and others specify

that the multiple Action named entities are not optional but have to all be addressed.

Within our training dataset, over 630 unique Action named entities were anno-

tated with a total of 11,900 appearances. Table 5.5 shows the top used named entities

and their number of appearance. We see that the top 20 used named entities represent

over 85% of the total number of appearances.

named
entity

Count named
entity

Count named
entity

Count named
entity

Count

and 4462 also 350 does 152 which 112
that 1902 but 341 why 147 however 110
what 699 how 196 while 143 like 94
or 617 etc 195 when 128 instead of 85
if 357 than 172 rather 124 without 80

Table 5.5: Common Trigger named entities observed within the training dataset.

If we take our example in Figure 5-4 with the two triggers "either" and "or"

annotated in the comment "Authors should either show the data, or remove their

description", we can link each of the two triggers to the edit actions that follow. This

way, it can be deduced that the edit action to be executed could be either "show"

or "remove". The author has chosen the 1st option and has added some text to the

identified location within the article.
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5.5 Conclusion

In this chapter, we have seen how the annotated named entities can be used in order

to link specific change requests to their corresponding actual changes. We first de-

scribed how to correlate the Location named entity with their corresponding locations

where author modifications took place within the article. The most straightforward

correlation is made using the quoted text, section names and specific parts of the ar-

ticle such as the title, keywords, abstract, etc. One of the most used Location named

entity types is the line number, which is not directly available within the JATS XML

, which was solved by extracting the line numbers from the article PDF. In the second

part, we described how to use the Modal named entity in order to judge if a change

request is mandatory or optional. This is valuable information during the correlation

trials where changes are categorised within three groups: requested and detected;

requested but not detected; and detected but not requested. If a change is requested

but not detected, using the modality extracted with the Modal named entity, we can

deduce if the change was optional, or if the author did not implement a requested

change. Following was the correlation of the Action named entity with specific edit

types observed in the jats-diff output. We categorised different Action named entity

such as add, provide, avoid, etc. within their corresponding edit action groups: Insert,

Delete, Update, etc. Using this type of information, we can assess if the requested

edit from the review comments was fulfilled by the author with a corresponding edit

detected by jats-diff. Finally, we explained how the Trigger named entity can be

used in order to further refine the correlation of the Action named entity. Within the

example provided where the change request mentions two different edit actions using

the triggers "either" and "or", the author had to choose between "either" adding data

"or" removing the data description. Using the correlation trials information where

specific requested changes are correlated with their corresponding actual changes al-

lows the final decision-maker to first assess the requested and detected changes within

a unified view. For the remaining requested but not detected changes, we do provide

the modality that is used to isolate mandatory changes that were requested but not
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made by the author. And finally, the changes that were detected but never requested

are shown separately so that the decision-maker can assess them and verify why the

author performed changes that were never requested by the peer reviewer.

132 of 156



Chapter 6

Conclusion / Discussion

Over the last decade, the number of academic articles has been constantly growing.

Besides their many other activities, senior scientists are also key players in the article

publishing process, in charge of reviewing the articles and making the final acceptance

decision. Within this PhD thesis, we assessed the article publishing process and

proposed novel tools that can help to automate and further improve some of the

manual tasks scientists perform during the academic publishing process.

6.1 Contributions

The contributions of this PhD thesis are divided into two research topics: first, doc-

ument comparison; and second, Named Entity Recognition.

6.1.1 Document Comparison

The first contribution of this PhD thesis is in regard to assisting the reviewer or the

final decision-maker in extracting the actual changes made by the author during the

revision round. In order to extract the differences between the two article versions, we

first analysed different XML diff algorithms and assessed their capacity in comparing

JATS XML representations of academic articles. As their overall scoring was rather
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low, we developed a novel XML diff algorithm, called jats-diff, which was able to

make a bijection between the changes made by the author and the modifications

detected by analysing the two XML documents. Compared to the existing XML

diff algorithms, jats-diff is able to detect and represent the following author edit

actions: structural upgrade, downgrade, split and merge, inline style edit, text move

and citable node edit. In addition, jats-diff is also able to calculate and propagate

towards the XML tree a so-called similarity index. This information is useful in order

to obtain a broader picture of the impact that the changes made by the author have

had. Finally, jats-diff uses some JATS-specific change semantics in order to properly

detect and represent changes on citable objects, special objects (math formulas and

figures) and lists containing tables, references and authors.

6.1.2 Named Entity Recognition

The second part of this PhD thesis was about assisting authors and final decision-

makers in extracting the requested changes written by the reviewers. In order to

achieve this, we took the sequence labelling approach by using deep learning mod-

els for the NER task. We started by comparing different deep learning models by

training them in a supervised learning on a dataset of annotated review comments.

We first started with a coarse-grained approach using the grid-search technique with

different combinations of hyperparameters by varying the learning rate, weight decay

and train batch size. Once the optimal hyperparameter cluster combinations were

identified, we processed them with a more fine-grained approach until finding the

optimal hyperparameter combination per model. The final step was a longer training

(200 epoch) per model using the previously optimal hyperparameter combinations in

order to select the best-scoring model, i.e., SciBERT, which achieved an weighted av-

erage F1 score of 0.87. During the human testing phase on real-life review comments

carried out by a group of editors, our model obtained a success score on the Location

named entity prediction of 77.1%.
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6.1.3 Information Matching

With the actual and the requested changes retrieved using the document comparison

jats-diff algorithm and the "review-annotation" NER model, we worked on the in-

formation matching part with the goal to correlate requested to actual changes. For

each review comment, the Location named entity was correlated with its correspond-

ing location within the article the jats-diff detected a change. Three types of Location

named entities were identified: precise, semi-precise and geNERic. The Action named

entity was correlated to the edit type regarding the correspondence table we made.

The Modal named entity was used to define the modality of the requested edit action

that we grouped into mandatory and optional. Finally, the Trigger named entity was

used to add additional granularity to the Action named entity. Using the Trigger,

we can define if there are multiple action options, or all proposed actions have to be

fulfilled. In addition, triggers are also used to detect questions.

6.2 Perspective

6.2.1 Academic

The first output of this PhD thesis is the jats-diff algorithm that is meant not only to

be used to compare JATS XML versions of academic articles but also any type of text-

centric XML documents. Compared to other XML diff algorithms, jats-diff is able to

detect additional high-level author edits and make a bijection between those edits on

one side and the differences between the XML documents on the other side. Within

future work, we do plan to make jats-diff modular, meaning the user can choose which

edit action they are willing to detect and also create new edit actions by specifying

the insert–delete sequence that specific edit actions are composed of. In addition, it

could be very interesting to add a versioning option to jats-diff where the user could

version different JATS articles. Yet another interesting idea would be to work on

additional similarity indexes that jats-diff provides. The current similarity indexes

measure the impact of textual and structural changes only. By adding additional
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similarity indexes able to understand change semantics, we could distinguish between

simple rephrase and sentence meaning changes. During document revision, the author

could completely rewrite a specific paragraph, section or the whole paper by keeping

a similar meaning. This additional similarity index could be very beneficial for the

reviewer.

The second output of the thesis is the fine-tuned NER model trained on an an-

notated corpus of review comments. This is the first NER model available within

this specific domain that can be further fine-tuned on similar datasets. The same

sequence labelling approach could also be used on different domains where someone

writes a review of a given text asking the author to revise it. Among the evaluated

deep learning models, some additional models appeared recently, such as the GPT-3,

which would be interesting to test on our dataset. Moreover, having extracted both

the expected and the actual changes, additional experiments could be carried out

in order to try to measure the fulfillment of the actual changes compared to the re-

quested changes. An unsupervised machine learning approach could be taken, having

a large corpus of requested and actual changes.

6.2.2 Industrial

This PhD thesis was financed by MDPI and is meant to be scaled and used in an

industrial/production environment. As already mentioned, the two research topics

we covered, document comparison and NER, could help the key players in the pub-

lishing process to further automate the review and the decision-making tasks. By

using jats-diff, the publisher, the reviewer and the decision-maker can compare dif-

ferent article versions and extract the changes an author made during the revision

round. In addition to change extraction, jats-diff also provides information about

the impact that the author changes had on the article. Using the NER model we

have trained on annotated review comments, the author and the decision-maker can

better understand the requested changes written by the reviewer. An important step

within our model improvement process is to add a user interface where different users

of the model can validate and correct the output results. This way, the model can
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be constantly improved during its use in order to increase its prediction scores. We

can also imagine that once we have a well-trained model, it could also be used by the

reviewer while writing the review comments. The model will be used to automatically

highlight different named entities and guide the reviewers to improve the writing of

their comments. Finally, the correlation between the named entities labelled by our

NER model and the jats-diff output could provide a unified source of information

where the reviewer/decision-maker can view the requested and actual changes corre-

lated and annotated on the article. A graphical interface while converting the JATS

versions of the article to HTML and annotating the actual and requested changes

on different locations of the article will have great potential and a great added value

in the publishing industry. Providing such novel tools and a user-friendly graphical

interface to the reviewers, authors and decision-makers can help MDPI to improve its

overall user experience and facilitate the daily tasks of the mentioned parties within

the publishing process. Moreover, the risk of human error will be reduced. As another

benefit of extracting the requested and actual changes, future work could be carried

out which explores the semi-automated peer review process. Having both types of

information available, those could be used to train a new deep learning model in

order to find context similarity between review requests and author changes. Using

unsupervised machine learning, author corrections could be checked depending on the

review comments in order to assess if the author fulfilled the requested changes.
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Chapter 7

Résumé

7.1 Introduction et Motivation

Depuis plus d’une décennie, le nombre d’articles académiques publiés chaque année

est en constante hausse. Chaque article soumis passe par un processus bien défini—

voir Figure 7-1 (suivre les traits noir). Nous proposons dans cette thèse plusieurs

outils d’automatisation destinés aux différents acteurs du processus de publication

académique: les auteurs, les relecteurs et les éditeurs. Pour cela, un travail impli-

quant deux domaines de recherche a été réalisé: la comparaison de documents et la

reconnaissance d’entités nommées (NER). Concernant la partie comparaison de doc-

uments, nous proposons un nouvel algorithme de comparaison de document XML ap-

pelé jats-diff. Cet algorithme permet d’extraire les changements apportés par l’auteur

lors de la révision de l’article. Quant à la partie NER, un réseau de neurones profond

a été entrainé, capable d’annoter les commentaires de relecteurs dans le but d’extraire

les changements requis. Au final, les informations sur les changements requis et les

changements effectifs sont corrélés afin de pouvoir évaluer si l’auteur a bien répondu

aux remarques et corrections du relecteur durant la révision. En utilisant ces out-

ils, l’éditeur peut extraire à la fois les changements demandés et les changements

apportés par les auteurs et mesurer la corrélation entre les deux afin de prendre en

toute conaissance de cause la décision finale concernant l’acceptation de l’article.
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1. Ecrire 5. Ecrire

XMLisation

jats-diff

Changement
semantique 
(bijection) 

NER

Changements requis vs effectifs

XMLisation

Nouveau   7.  Lire

Reconnaissance d'entités
nommées - NER

Nouveau 8. Lire
3. Ecrire

Author

Relecteur / 
rédacteur en chief

9. Comparer avec v2 9. Comparer  avec v1

Extraire les
changements effectifs

Extraire les  
changements requis

6. Ecrire

7. Lire

Correlation changements  
requis / effectif

12

3

Article v1 
Article v2 

Lettre 
réponse auteur

Commentaires
relecteur

2. Lire

4. Lire

8. Lire

Nouveau 4. Lire

Figure 7-1: Vue d’ensemble sur le processus de publication scientifique amélioré.

Au lieu de consulter la lettre de réponse de l’auteur, les commentaires du relecteur et de
comparer les versions de l’article, l’éditeur n’a plus qu’à consulter les informations corrélées
sur les changements requis et effectifs afin de prendre la décision finale.
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7.2 Contributions

Comme nous l’avons expliqué dans l’introduction, la contributions scientifique de

cette thèse est concrétisé sous la forme de trois outils: (1) l’extraction de changements

apportés par l’auteur; (2) l’extraction des changements requis; et (3) la corrélation

entre les deux. La Figure 7-1 montre leur intégration dans le processus de publication

actuel (la partie avec les traits verts).

7.2.1 Comparaison de documents XML - jats-diff

Jats-diff est l’algorithme de comparaison de documents XML que nous avons développé

sur la base d’une réinterprétation des résultats de JNDiff. Contrairement aux algo-

rithmes de comparaison existants uniquement capables de détecter des changements

de bas niveau (insérer, supprimer, modifier et déplacer), jats-diff est capable de dé-

tecter des changements de plus haut niveau qui, de plus, représentent réellement

les modifications de l’aauteur. Par exemple, un auteur fusionne trois paragraphes, ce

changement est détecté par les algorithmes de comparaison existants comme une mod-

ification et deux suppressions de paragraphes. Jats-diff est capable de reconstruire

cette fusion depuis la séquence de changements syntaxiques. Ceci donne la possibil-

ité d’établir une bijection entre le changement réel fait par l’auteur et la différence

détectée en comparant les deux documents XML.

La Figure 7-2 montre le principe de fonctionnement de jats-diff. L’algorithme

produit deux sorties: un document XML avec les modifications: insérer, supprimer,

changer l’attribut, promouvoir, rétrograder, fusionner, diviser, déplacer, modifier le

style, déplacer et modifier le texte; et un document texte sous forme d’un arbre en

intégrant un index de similarité entre les différentes parties de l’article. Ce dernier

document, plus facile à lire par un être humain, est produit en analysant les résultats

XML afin d’utiliser la sémantique de changement propre au XML JATS.
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Détecter
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1. VTree

<upgrade>

<downgrade>
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<split>

<move>

<style-edit>

<text-move>
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Figure 7-2: Flux de travail jats-diff.

1. Construire l’arbre XML; 2. Détecter les changements bas niveau; 3. Identifier les change-
ments haut niveau parmi les séquences de changements bas niveau; 4. Construire la sortie
jats-diff au format XML. 5. Analyser la sortie jats-diff en utilisant la sémantique propre au
JATS pour construire une sortie sous la forme d’arbre et calculer l’index de similarité
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7.2.2 Reconnaissance d’entités nommées - NER

Le but de cette partie est d’extraire les améliorations souhaitées par un relecteur.

Pour cela, nous avons défini 5 classes d’entités nommées: Location, Action, Modal,

Trigger et Content. Location est utilisé pour identifier la localisation de l’amélioration

souhaitée dans l’article, et par extension où un changement devrait avoir lieu. Action

est utiliser pour identifier le type de changement (ajouter, supprimer, préciser, refor-

muler, etc.). Modal définit la modalité de changement, c’est à dire si le changement

est impératif ou non. Trigger représente des mots courts qui nous donnent la possibil-

ité d’affiner le type de changement, de distinguer les questions ou de comprendre des

solutions de corrections à choix multiples. Enfin, Content représente l’information

sur le sujet de changement requis et contrairement à la classe Action qui elle définit

le type de changement, la classe Content décrit en quoi consiste le changement. La

Figure 7-3 montre un exemple d’application de NER sur les commentaires de relecteur

où le fait d’annoter les différentes classes facilite la compréhension des changements

requis.

Section 1: Information about “ABCD data” should be corrected –  
 
Authors should either show the data, or remove their description.  
 
The excessive examples are redundant – lines 9-10.

 

Correct the typo *heello* on line 103.

 

The title is too short and should be reformulated. 

 

The possible physiological explanation of the observed differences 
 
should be presented in the Results and Discussion section.

Review Report

ACTION CONTENT MODAL TRIGGER LOCATION

Figure 7-3: Exemple d’application NER sur un commentaire de relecteur.

Un commentaire de relecteur avec la NER appliqué où nous retrouvons les 5 classes Location,
Action, Modal, Trigger et Content.

Afin de compléter notre tâche NER, nous avons comparés plusieurs modèles de
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réseau de neurones profonds: BERT, SciBERT, RoBERTa, DistilBERT et XLNet.

Afin de faire un entrainement de ces modèles de manière supervisée, nous avons

commencé par construire nos data sets d’entrainement et d’évaluation en extrayant

10 000 commentaires de relecteurs. Ces commentaires sont passés tout d’abord par

une phase d’annotations automatiques en utilisant des expressions régulières afin de

détecter les action, locations, triggers et modaux. La deuxième passe consistait à faire

une annotation manuelle par des éditeurs de MDPI en utilisant un outil d’annotations

appelé Doccano1.

Une fois le data-set prêt, nous avons commencé par une évaluation grossière des 5

modèles en utilisant la technique de grid-search afin d’identifier les differents clusters

d’hyper-paramètres où les modèles performent le mieux. Durant cette évaluation,

nous avons constaté que les scores de prédiction de la classe Content sont plus bas

comparé aux autres classes. Ceci est principalement dû à la qualité médiocre des

commentaires des éditeurs et à leur très grande variété. Nous avons donc décidé de

continuer les expérimentations en retirant la classe Content. Avec les différents clus-

ters où les modèles performent le mieux, une évaluation plus fine a été réalisée. Elle

nous a permis d’identifier le modèle le plus performant—SciBERT—pour effectuer la

tâche NER sur les commentaires des relecteurs, capable d’avoir un F1-score de 0.8665.

La performance de ce modèle a été également validée par un groupe d’éditeurs de

MDPI qui ont manuellement vérifié la reconnaissance de la classe Location sur 1000

commentaires réels avec un succès de 77.1%. Parmi les 229 erreurs rapportées, 148

sont des prédictions manquantes, (le modèle n’a pas annoté la localisation) et 101

sont des mauvaises prédictions (le modèle a annoté une localisation erronée).

7.2.3 Corrélation des changements requis et effectifs

Une fois les informations sur les changements effectués par l’auteur et les changements

requis part le relecteur identifiées, nous avons travaillé sur leur corrélation via la

Location dans l’article. La Figure 7-4 montre un exemple où la classe Location des

changements requis est corrélées avec la Location où les changements effectués ont eu
1https://github.com/doccano/doccano
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lieu. Cette approche de corrélation est bien plus intuitive pour les éditeurs comparée

à une analyse manuelle décrite dans la Figure 7-1.

Section 1: Information about “ABCD data” should be corrected –  
 
Authors should either show the data, or remove their description.  
 
The excessive examples are redundant – lines 9-10.

 

Correct the typo *heello* on line 103.

 

The title is too short and should be reformulated.

Review Report

ACTION CONTENT MODAL TRIGGER LOCATION

0 - article
* depth: 0
* similar-word: 99.4
 
  1 - front
  * depth: 1
  * similar-word: 99.9
 
    17 - article-meta
    * depth: 2
    * similar-word: 99.9
 
      29 - title-group
      * depth: 3
      * similar-word: 80.0
 
        30 - article-title
        * depth: 4
        * similar-word: 80.0
 
          31 - p
          * depth: 5
          * change-type: text-update - text-inserted - ' Modified'
          * similar-word: 80.0
 
  139 - body
  * depth: 1
  * similar-word: 98.5

    140 - sec 
    * id :sec1
    * Section One
    * depth: 2
    * similar-word: 68.9
 
      145 - p
      * depth: 3
      * change-type: text-update - text-inserted - '. Some info here.'
      * old-value: ... some simple facts about ABCD data.
      * similar-word: 28.6
 
      147 - p
      * depth: 3
      * change-type: text-update - text-deleted - ' Here we show ...'
      * old-value: Here we show some excessive examples
      * similar-word: 62.5
 
    154 - sec
    * id :sec3
    * Section three
    * depth: 2
    * similar-word: 93.2
 
      157 - p
      * depth: 3
      * change-type: text-update - 'heello -> hello'
      * old-value: Here a typo: heello.
      * similar-word: 91.7

Line
numbers

Figure 7-4: Analogies entre la classe Location et la sortie jats-diff.

À gauche les changements requis; à droite les différences extraites par jats-diff. Les flèches
montrent la corrélation de la classe Location avec la location des changements

7.3 Conclusion

En plus de leur activité de recherche, les scientifiques ont un rôle très important dans

le processus de publication d’articles où ils sont en charge de l’écriture, de la relecture

et de la décision finale. Le but de cette thèse est d’améliorer ce processus en appor-

tant des nouveaux outils quoi vont faciliter les tâches des différents intervenants. La

contribution scientifique s’étends sur deux domaines de recherche: la comparaison de

documents et la reconnaissance d’entités nommées. En ce qui concerne la comparai-

son de documents, nous avons travaillé sur la comparaison d’articles au format JATS

XML afin d’extraire les changements effectifs apportées par l’auteur pendant une

révision. Le nouvel algorithme développé, nommé jats-diff, est capable d’extraire des

changements de haut niveau et faire une bijection entre les modifications apportées

par l’auteur et les différences détectées entre deux documents XML. Le travail sur la

NER a été appliqué sur les commentaires de relecteurs afin d’extraire les changements

requis. Plusieurs modèles de réseau de neurones profonds ont été évalués avec un en-

trainement final du modèle SciBERT qui a obtenu le F1 score de 0.8665. L’utilisation
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de différentes classes ont permis de mieux comprendre les requis des relecteurs afin

de passer à l’étape finale de la thèse qui consiste à corréler d’un côté les change-

ments effectifs et de l’autre côté les changements requis en utilisant la location où

un changement spécifique devrait y avoir lieu comme élément de liaison. En mettant

en place ces outils, le travail manuel de l’auteur, du relecteur et de l’éditeur est sim-

plifié. L’auteur peut utiliser l’outil NER afin de mieux comprendre les changements

requis. Le relecteur peut utiliser le même outil afin d’améliorer la rédaction de ses

commentaires. Au final, l’éditeur peut utiliser l’ensemble des outils afin d’extraire les

changements requis, les changements effectifs et avoir une information unique où ces

deux types de changement sont corrélées.

7.4 Publications

• Cuculovic, Milos, Frederic Fondement, Maxime Devanne, Jonathan Weber, and

Michel Hassenforder. "Change Detection on JATS Academic Articles: An XML

Diff Comparison Study." In Proceedings of the ACM Symposium on Document

Engineering 2020, pp. 1-10. (2020)

• Cuculovic, Milos, Frederic Fondement, Maxime Devanne, Jonathan Weber, and

Michel Hassenforder. "Semantics to the rescue of document-based XML diff: A

JATS case study." Software: Practice and Experience (2022)

• Cuculovic, Milos, Frederic Fondement, Maxime Devanne, Jonathan Weber, and

Michel Hassenforder. "A JATS XML Comparison Algorithm for Scientific Lit-

erature." In: Journal Article Tag Suite Conference (JATS-Con) Proceedings

(2022)

• Cuculovic, Milos, Frederic Fondement, Maxime Devanne, Jonathan Weber, and

Michel Hassenforder. "Named Entity Recognition to the rescue of academic

publishing." Soumis à: ICTAI 2022 Conference - IEEE
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Appendix A

jats-diff delta output examples

Insert: addition of a new keyword "test keyword"
<insert at="373" nodecount="1" nodenumberB="388" pos="7">

<kwd>test keyword </kwd>
</insert >

Delete: removal of an existing keyword "river monitoring"
<delete nodecount="2" nodenumberA="386">

<kwd>river monitoring </kwd>
</deletes

Attribute Update: section 6 id change from "sec6" to "sec6dot1"
<update -attribute name="id" newvalue="sec6dot1" nodenumberA="38" nodenumberB="36"

oldvalue="sec6" op="change -attr"/>

Section Upgrade: Section 2.3 that is upgraded as Section 6
<upgrade at="388" nodecount="5" nodenumberB="601" op="upgradedTo" pos="5">

<sec id="sec6 -remotesensing -10 -00641"/>
</upgrade >
<upgrade nodecount="4" nodenumberA="447" op="upgradedFrom">

<sec id="seczdot3 -remotesensing -10 -00641"/>
</upgrade >

Section Downgrade: Section 5 that is downgraded to Section 2.4
<downgrade at="410" nodecount="89" nodenumberB="452" op="downgradedTo" pos="5">

<sec id="sec2dot4 -remotesensing -10 -00641"/>
</downgrade >
<downgrade nodecount="88" nodenumberA="517" op="downgradedFrom">

<sec id="sec5 -remotesensing -10 -00641"/>
</downgrade >

Paragraph Merge: merge two paragraphs into one

1



Appendix A. jats-diff delta output examples

<merge at="0" direction="9:9" nodenumberB="9" op="mergedTo" pos="4">
<p>Text paragraph four with some additional text of paragraph five</p>

</merge >
<merge direction="9:9" nodenumberA="9" op="mergedFrom">

<p>Text paragraph four</p>
</merge >
<merge direction="11:9" nodenumberA="11" op="mergedFrom">

<p>with some additional text of paragraph five</p>
</merge >

Paragraph Split: split one paragraph into two different paragraphs
<split at="0" direction="9:9" nodenumberB="9" op="splitedTo" pos="4">

<p>Text paragraph four</p>
</split >
<split at="0" direction="9:11" nodenumberB="11" op="splitedTo" pos="5">

<p>with some additional text of paragraph five</p>
</split >
<split direction="9:9" nodenumberA="9" op="splitedFrom">

<p>Text paragraph four with some additional text of paragraph five</p>
</split >

Move: move one keyword from its initial position 2 to position 4
<move move="376 ::378" nodecount="2">

<kwd>remote sensing </kwd>
</move>

Style insert: insert bold style around the word "disasters"
<text -style -insert nodenumberB="117" op="insert -style" pos="319">

<b>disasters </b>
</text -stvle -insert >

Style delete: remove bold style around the word "monitoring"
<text -style -delete nodenumberA="117" op="delete -style" DOS="14">

<b>monitoring </b>
</text -style -delete >

Style edit: Moving one keyword from his initial position 2 to position 4
<text -style -update nodenumberB="117" op="update -style -to" pos="14">

<i>monitoring </i>
</text -style -update >
<text -style -update nodenumberA="117" op="update -style -from" pos="14">

<b>monitoring </b>
</text -style -update >

Text Move: move portion of thext from one paragraph to another
<text -move nodecount="1" nodenumberB="6" op="movedTo" text -position -to="19">text of

paragraph five</text -move>
<text -move nodecount="1" nodenumberA="12" op="movedFrom" text -position -from="21">text of

paragraph five</text -move>

Text Update: change one word from "central" to "centralised"
<text -update length="7" nodenumberA="368" nodenumberB="368" op="text -deleted"

pos="33">central </text -update >
<text -update length="11" nodenumberA="368" nodenumberB="368" op="text -inserted"

pos="33">centralised </text -update >
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Appendix B

jats-diff semantics output examples

Citable objects: insertion of a new bibliography in the references list <ref-list>
0 - article

* depth: 0
* similar -word: 99.9

606 - back
* depth: 1
* similar -word: 99.8

1932 - ref -list
* Initial: 156
* Final: 157
* depth: 2
* similar -word: 99.7

7993 - ref
* id :B153 -remotesensing -10 -00641
* depth: 3
* change -type: insert

Being inserted at position 153 (out of 156), the reference insert edit action produces

additional induced changes. While the delta XML shows for this simple bibliogra-

phy insert over a dozen of different edit actions: text updates, inserts, deletes and

attribute updates, the semantics output file is ignoring those induced edits and rep-

resents the change in a human readable way.

jats-diff considers as special objects: tables, bibliographies, figures and mathe-

matical formulas. Those objects are special due to the fact that their edits are not

human readable and have to be represented in a different way: for tables (as seen in

3
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the previous example) the similarity index is calculated per table content and caption.

Element lists and special objects: modification of a table.
0 - article
* depth: 0
* similar -word: 100.0

3977 - back
* depth: 1
* similar -word: 99.8

6312 - sec
* id :sec -type="display -objects"
* depth: 2
* similar -word: 99.5

6313 - table
* Initial: 6
* Modified: 1
* Final: 6
* depth: 2
* similar -word: 99.6

6895 - table -wrap
* id :remotesensing -12 -02506 - t006
* depth: 3
* change -type: table -edit

* table
* 66.7

* caption
* 98.0

* similar -word: 89.9

Most of the special objects (tables, figures) but also bibliographies are within so-

called element lists. jats-diff is also using change semantics in order to represent those

in a more readable way. In the previous example where a table edit is shown, we can

observe that the entire table list is shown with its initial, modified and final values.

The initial value represents the total number of tables in document A, the modified

value represents the number of edited tables and the final value represents the total

number of tables in document B.

Similarity index: text edits in the Introduction and the Section 2.2
0 - article
* depth: 0
* similar -word: 99.5

155 - body
* depth: 1
* similar -word: 99.3
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156 - sec
* id :sec1 -remotesensing -12 -02506
* 1. Introduction
* depth: 2
* similar -word: 99.9

169 - p
* depth: 3
* change -type: text -update - text -inserted
* similar -word: 99.3

175 - sec
* id :sec2 -remotesensing -12 -02506
* 2. Materials
* depth: 2
* similar -word: 96.2

199 - sec
* id :sec2dot2 -remotesensing -12 -02506
* 2.2. Imagery Surveyed from UAV and Satellites
* depth: 3
* similar -word: 77.8

202 - p
* depth: 4
* change -type: delete

As seen in the previous examples, the similarity index is calculated and propagated

through the JATS XML tree. jats-diff allows to calculate different similarity indexes:

similartext, similartext-word, Jaccard, and TFIDF. By default, the similartext-word

index is used that allows the reader to get insights about lexical changes.
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