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Résumé

L’informatique a radicalement changé notre monde : notre efficacité à effectuer des
calculs a remarquablement progressé en moins d’un siècle. Des années 60 à nos
jours, des nombreux progrès technologiques se sont produites toutes les quelques
années. Un indicateur de ces progrès est la réduction continue de la taille des
transistors. La loi de Moore prédisait que la taille des transistors diminuerait
de moitié tous les deux ans, mais maintenant, elle semble avoir atteint sa limite.
De plus, les transistors approchent d’une taille telle que les lois de la mécanique
quantique auront un impact sur leur capacité à fonctionner. La communauté
scientifique espère que ces effets quantiques, qui nuiraient à la manière classique
de faire des calculs, pourraient représenter un avantage en termes d’efficacité pour
nouveau paradigme de calcul.

La prise de conscience du potentiel de l’informatique quantique existe depuis
1981, lorsque Richard Feynman a imaginé pour la première fois la construction
d’un ordinateur quantique capable de reproduire les principes de la mécanique
quantique. Théoriquement, les algorithmes quantiques pourraient résoudre des
problèmes plus rapidement que les algorithmes classiques pour certains cas spéci-
fiques. Néanmoins, jusqu’à récemment, le domaine a connu beaucoup de scepti-
cisme quant à ses possibilités pratiques à long terme pour résoudre les problèmes.
En particulier, pendant de nombreuses années, les chercheurs ont relevé le défi de
construire des ordinateurs quantiques évolutifs et fiables.

Aujourd’hui, de nombreuses entreprises ont obtenu des résultats encourageants
et ont réussi à construire des machines quantiques avec suffisamment de qubits
pour commencer à mener des expériences intéressantes dessus. L’entreprise cana-
dienne D-wave par exemple, a réalisé des machines analogiques quantiques qui
mettent en œuvre l’approche de recuit quantique. Ils suscitent beaucoup d’intérêt
parce que leur taille est telle que des problèmes réels et difficiles peuvent y être
implémenté. La machine la plus récente contient plus de 5 000 qubits. Les autres
machines disponibles sont celles fournies par IBM. Ils implémentent le paradigme
quantique à portes, par opposition à l’approche analogique proposée par D-wave.
D’autres acteurs de l’informatique quantique, tels que Microsoft, Google et Rigetti,
développent des simulateurs quantiques.
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L’évaluation des temps d’exécution pire cas (WCETs) est fondamentale pour
effectuer l’analyse de faisabilité des applications temps réel. L’analyse WCET
fournit des garanties formelles que le temps d’exécution d’un programme répond à
toutes les contraintes de timing. En général, il est impossible de calculer le WCET
réel d’un programme, donc la plupart des méthodes d’évaluation d’un WCET
appliquent des approximations. Ces estimations sont généralement pessimistes
afin d’assurer la sécurité. Ainsi, le WCET estimé est habituellement supérieur au
WCET réel. Beaucoup d’efforts dans l’exécution de l’analyse WCET consistent à
réduire le pessimisme dans l’analyse pour obtenir une valeur estimée suffisamment
faible pour être utile.

Nous avons choisi l’évaluation du pire temps d’exécution (WCET) comme ap-
plication de nos recherches sur l’informatique quantique, car elle est cruciale pour
diverses applications en temps réel. En outre, elle offre une vaste gamme de sous-
problèmes à examiner, de la complexité polynomiale à la complexité exponentielle.
Dans l’histoire des algorithmes quantiques, l’attention est souvent portée sur des
problèmes avec une structure mathématique particulière, comme c’est, par exem-
ple, le problème de la factorisation des nombres, abordé par l’algorithme de Shor.
L’évaluation des WCET, à l’opposé, n’est pas un problème a priori favorable au
contexte quantique, et possède des solutions classiques efficaces déjà éprouvées.
Ainsi, il est intéressant d’explorer l’impact de l’informatique quantique sur ce type
de problèmes, dans l’esprit de trouver des domaines nouveaux et concrets dans
lesquels l’informatique quantique pourrait apporter sa contribution. Si ce n’est
pas le cas, la recherche dans ces domaines spécifiques peut aider à définir les lim-
ites des applications qui pourraient bénéficier de l’informatique quantique

Dans ce travail de thèse, nous abordons principalement des problèmes des éval-
uations WCET de temps polynomial en appliquant des approches d’informatique
quantique. Travailler avec des problèmes en temps polynomial nous permet de véri-
fier si les algorithmes quantiques peuvent donner un avantage réel avant de traiter
des problèmes plus complexes. En effet, les problèmes polynomiaux permettent
de calculer la solution exacte de manière classique et ainsi de pouvoir comprendre
pleinement la sortie qui sera comparée à la sortie de l’algorithme quantique.

Dans le contexte de l’évaluation WCET, une influence massive est donnée par
le mémoire cache. Aller chercher les données dans la mémoire principale, au lieu
de les retrouver stockées dans le cache, impacte de manière non négligeable le
temps d’exécution. Nous considérons un modèle simplifié dans lequel l’accès à la
mémoire principale est aléatoire. Nous avons considéré le problème du comptage
du nombre d’échecs de cache lors de l’exécution d’un programme. Nous avons traité
ce problème avec une approche naïve, en essayant de construire une superposition
d’états quantiques pour accélérer le calcul. Ce travail représente une première
étape fondamentale vers l’exploitation de l’informatique quantique en montrant
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un effort d’adaptation d’un problème classique au formalisme quantique.
Dans notre seconde contribution, nous nous sommes à nouveau concentrés sur

le problème du comptage des cache misses. Comme cas d’utilisation, nous avons
pris des programmes produisant des séquences déterministes d’accès à la mémoire
lorsque des points de préemption peuvent survenir à tout moment, provoquant
un non-déterminisme. Lorsqu’une préemption se produit, nous supposons que
le contenu du cache est vidé. L’idée principale de ce travail est de transformer
un algorithme classique que nous avons développé en un algorithme basé sur
des portes quantiques. L’algorithme classique pourrait être réécrit comme une
séquence d’opérations matricielles mappées dans une séquence de portes quan-
tiques de base. Cependant, toutes les matrices ne sont pas simples à mapper dans
une porte quantique de base. Pourtant, nous avons eu une amélioration théorique
de l’accélération.

Enfin, nous avons exploré un modèle largement utilisé en informatique quan-
tique : le modèle QUBO. Les machines basées sur le quantum et les machines
analogiques quantiques peuvent résoudre un problème QUBO. En particulier, on
considère les programmes comme des graphes, dans lesquels chaque nœud corre-
spond à un bloc d’instructions avec un coût spécifique correspondant à son temps
d’exécution. Le WCET dans ce problème est donné par le temps d’exécution du
chemin le plus couteaux. Un problème aussi simple est linéaire et peut être facile-
ment transformé en QUBO. Potentiellement, cette approche pourrait être élargie a
priori pour considérer des problèmes plus complexes qui tiennent compte des effets
de cache. Nous avons effectué des expériences à l’aide de machines à ondes D et
d’un simulateur IBM, montrant que pour certains cas idéaux, le recuit quantique
pourrait représenter un concurrent rapide du recuit simulé classique pour résoudre
le problème.
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Chapter 1

Introduction

Computer science has radically changed our world: our efficiency in performing
computations has advanced remarkably in less than a century. From the Sixties
to nowadays, technological breakthroughs have been happening every few years
[1]. An indicator of such advancement is the continuous reduction of the size of
transistors. Moore’s Law predicted successfully that the size of transistors would
halve every two years [2], but now it seems to have reached its limit. Furthermore,
transistors are approaching a size such that the laws of quantum mechanics will
impact their ability to function the way they did.

The scientific community raised the hope that those quantum effects, which
would impair the classic way of doing computations, could represent a booster in
terms of efficiency if a quantum computer would be built. Theoretically, quantum
algorithms could solve problems faster than classical ones for some specific cases,
such as Shor’s and Grover’s algorithms [3][4]. However, quantum machines have
proven challenging to build and not easily scalable. Even if an actual advantage
seems to exist in utilizing quantum computing, it is not clear how to evaluate this
advantage. For such reasons, scientists still struggle to use quantum machines,
even for algorithms that, on paper, should improve the speed-up of algorithms.

The quantum scenario nowadays

Nowadays, quantum computing is gaining massive popularity in the computer sci-
ence community and public opinion. The awareness of the potential of quantum
computing had existed since 1981 when Richard Feynman first speculated about
building a quantum computer able to reproduce the principles of quantum me-
chanics. However, until recently, the field has known much skepticism about its
long-term practical capabilities to solve problems. In particular, for many years,
researchers faced the challenge of building scalable and reliable quantum comput-
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14 CHAPTER 1. INTRODUCTION

ers. Lately, many companies obtained encouraging results and managed to build
quantum machines with enough qubits to start conducting interesting experiments
on them. D-wave systems have built quantum analog machines that implement
the quantum annealing approach. They collect so much interest because their
size is such that real-world and challenging problems can be mapped into them.
The most recent machine contains over 5,000 qubits. Other available machines
are those provided by IBM. They implement the gate-based quantum paradigm,
as opposed to the analog approach proposed by D-wave. Other quantum com-
puting stakeholders, such as Microsoft, Google, and Rigetti, are also developing
simulators.

Worst-case execution-times evaluation

The Worst-Case Execution-Times (WCETs) evaluation is fundamental for per-
forming feasibility analysis of real-time applications. WCET analysis provides
formal guarantees that the execution time of a program matches all the scheduling
and timing constraints. In general, it is impossibleto compute the actual WCET of
a program, so most methods for evaluating a WCET apply approximations. Those
estimates are typically pessimistic in order to provide safety. Thus the estimated
WCET is usually higher than the real WCET. Much effort in performing WCET
analysis is about decreasing the pessimism in analysis to obtain an estimated value
low enough to be valuable to the system designer.

Motivation of this thesis

Along this thesis work, we mainly address polynomial time problems by applying
quantum computing approaches. Those problems are quite simple to solve. We
believe that working with polynomial-time problems allows us to verify if quan-
tum algorithms can give an actual advantage before dealing with more complex
problems. Polynomial problems allow computing the exact solution classically and
thus be able to fully understand the output that will be compared to the quantum
algorithm’s output.

We chose the worst-case execution-time (WCET) evaluation as the application
of our research on quantum computing, as it is crucial for various real-time applica-
tions. Besides, it offers a vast range of sub-problems to examine, from polynomial
to exponential complexity. In quantum algorithms history, attention is often given
to problems with a particular mathematical structure, as it is, for instance, the
problem of factoring numbers, addressed by Shor’s algorithm. The worst-case
execution-time evaluation, as an opposite, is not a particularly quantum-friendly
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problem, and it owns already proven efficient classical solutions. We considered
it was worth exploring the impact of quantum computing on those kinds of ar-
bitrary problems, with the spirit of finding new and unexpected fields to which
quantum computing could bring its potential. If not, research on such arbitrary
fields could help to set the boundaries of which applications could benefit from
quantum computing.

Our contributions

This thesis presents different quantum approaches to perform WCETs evaluations
of programs.

Static analysis

In the context of WCET evaluation, a massive influence is given by the cache.
Fetching the data from the main memory, instead of finding it stored in the cache,
impacts non-negligibly the execution time. We consider a simplified model in which
access to the main memory is random. We considered the problem of counting the
number of cache misses while executing a program. We dealt with this issue with
a naive approach, trying to build a superposition of quantum states to speed up
the computation. This work represents a first fundamental step towards exploiting
quantum computing by showing an effort to adapt a classical problem to quantum
formalism.

Dynamic programming

In our second contribution, we again considered the counting of the cache misses
problem. As a use case, we took programs producing deterministic sequences
of memory accesses when preemption points can happen anytime, causing non-
determinism. When a preemption occurs, we assume the content of the cache to
be flushed. The main idea of this work is to transform a classical algorithm we
developed into a quantum gate-based algorithm. The classical algorithm could
be rewritten as a sequence of matrix operations mapped into a sequence of basic
quantum gates. However, not all the matrices are straightforward to map into a
basic quantum gate. Still, we had a theoretical improvement in the speed-up.

Optimization problems

Finally, we explored a widely used model in quantum computing: the QUBO
model. Quantum-based machines and quantum analog machines can solve a
QUBO problem. In particular, we consider the programs as graphs, in which
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each node corresponds to a block of instructions with a specific cost corresponding
to its execution time. The WCET in this problem is given by the execution time
of the most expensive path. Such a simple problem is linear and can be easily
transformed into a QUBO. Potentially, this approach could be expanded a priori
to consider more complex problems that consider the cache effects. We performed
experiments using D-wave machines and IBM simulator, showing that for some
ideal cases, quantum annealing could represent a fast competitor of the classical
simulated annealing in solving the problem.

Manuscript structure
This thesis is made of two parts. The first part presents a general and technical
overview of the context in which this thesis’s work has been developed, while the
second part presents our contributions.

Part I provides a presentation of the background of this thesis. Chapter 2
presents the basic notions of quantum computing as tools to go through the second
part of the manuscript. In Chapter 3, we give a brief overview of the field of study of
worst-case execution-time (WCET) evaluations of programs. Chapter 4 brings the
reasons for which, in this thesis, we explored the potential of quantum computing
applied to the context of WCETs analysis of programs.

Part II consists of three chapters, each of them presenting one of our con-
tributions. Chapter 5 presents the first steps to define a quantum approach to
perform static analysis in the case of a program whose execution produces a non-
deterministic sequence of memory accesses. Chapter 6 presents the classical dy-
namic programming algorithm we developed to perform static analysis of programs
whose execution produces a deterministic sequence of memory accessed. In par-
ticular, we included random preemption points (i.e., execution interruptions) in
our model. We ported this classical algorithm to the quantum framework. Chap-
ter 7 presents our work on optimization problems related to the WCETs field of
study. We reduced the problem of finding the WCET of a program to a maximiza-
tion problem on graphs, and we compared the performances while solving with a
quantum annealer (D-wave machines) and with QAOA (IBM simulators).
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Chapter 2

Quantum computing

Quantum computing promises that some particular computational tasks might
be executed exponentially faster on a quantum processor than on a classical pro-
cessor. We witness a growing need for algorithms that can process data in less
time because data sets are quickly enlarging. Consequentially, there has been an
increasing desire to implement quantum algorithms on a large scale. Nowadays,
very prominent companies, such as, for instance, Google, IBM, and Microsoft,
believe in the potential of quantum computing and invest in it.

2.1 A bit of history

Richard Feynman is considered the pioneer of quantum computing since he pro-
posed in 1981 to exploit the principle of quantum mechanics to perform compu-
tations. The issue with classical computers is that they can only offer an approx-
imation of the real world. Feynman believed that a quantum computer, i.e., a
computer that follows the quantum mechanics laws, could simulate a real-world
quantum system [5].

In 1980 Paul Benioff described a computer’s first quantum mechanical model,
showing that quantum computers are theoretically possible. In 1985 David Deutsch
developed the idea of a universal quantum computer. Deutsch showed that all Tur-
ing computable functions are also computable by his universal quantum computer
[6].

Nowadays, it is commonly believed that Moore’s law is reaching an ending
point. The law states the ability to decrease by half the size of processors every
two years, but lately, it seems untrue. More than that, engineers have reached a
size for which some quantum effects (for instance, tunneling) must be considered.
Heisenberg uncertainty defines the eventual limit to the miniaturization we can
achieve in engineering [7].

21
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2.1.1 Potential applications

Quantum computers enable substantial speed-up to a relatively modest set of
known computational problems. For other problems, quantum computers do not
seem to perform better than classical computers [8]. The three main areas that
the quantum computing revolution may impact are: cryptography, optimization,
and simulation of quantum systems [9].

Cryptography

In 1994 Shor designed an efficient quantum algorithm to find the prime factors of
large numbers [3]. Shor’s discovery represents a turning point for the area of quan-
tum computing: today, the topic of quantum computing is a central area of physics
and computer science, while before, it was quite a niche topic. A large quantum
computer could compute the secret key from the public key of the RSA scheme,
and hence an attacker could illegitimately decode encrypted messages. While some
parts of classical cryptography are not affected by such attacks, much of our online
communication is protected by cryptographic procedures based on the hardness of
factoring or similar problems. Quantum cryptography exploits quantum effects to
design more secure cryptographic systems: measuring an unknown quantum state
will disturb it; thus, the honest parties can detect such nuisance. Implementations
of these quantum systems already exist.

Optimization

Quantum computers may help to solve extensive search or optimization problems
offering considerable speed-ups. Some examples are search problems, finding the
minimum or maximum of a given function over some finite domain, finding the
shortest path between two points on a map, and approximately solving large sys-
tems of linear equations [10]–[14]. Even polynomial speed-ups can make a relevant
difference in practice in those contexts, mainly when applied to massive inputs.

Simulation

A third area where quantum computers are likely to have an impact is in simulating
the behavior of quantum systems. The simulation of quantum systems is the
main reason that drove Richard Feynman to imagine quantum computing [5]. A
quantum computer can, in principle, simulate the behavior of any other quantum
system efficiently. A large part of the computing time of supercomputers today
is spent on simulating quantum systems, and a quantum computer could make a
huge difference here. Drug design represents a good example of an application for
quantum simulation.
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2.1.2 Limitations of quantum computing

The implementation of quantum computers poses considerable experimental and
theoretical challenges. Foremost, the quantum system has to be designed to per-
form a computation in a large enough computational space and with a low enough
error rate to provide a speed-up. Then, we ought to formulate a problem that
is hard for a classical computer but easy for a quantum computer. Quantum
computer hardware must satisfy fundamental constraints [15]:

• the qubits must interact very weakly with the environment to preserve coher-
ence. A quantum system is defined as coherent if isolated from the outside
world. Coherence is impacted by any interaction in which the environment
measures or acquires information about the system;

• the qubits must interact very strongly with one another to make logic gates
and transfer information;

• the states of the qubits must be able to be initialized and read out with high
efficiency.

Another issue is the remarkable disparities when selecting different qubits in
the implementation design and using different quantum devices to execute the
algorithm [16].

Researchers have immensely progressed but building a high-fidelity processor
capable of running quantum algorithms in a significant computational space still
remains hard. Even if theoretically proven algorithms provide a speed-up, it is
hard to reproduce the results on hardware. Some experimental results showed
that current quantum computers are running slower than expected [16]. In other
words, even though existing quantum computers were capable of producing results
with reasonable accuracy for more extended algorithms, they could still end up
being much slower than their classical counterparts. In conclusion, today, quan-
tum computers can only be used accurately to solve simple problems with small
amounts of data.

2.1.3 Future of quantum computing

The difficulties we described make some researchers doubt quantum computing
and that we will fully develop quantum technologies in the foreseeable future [17].
A scenario emerges in which quantum computers will remain rather complex and
expensive compared to classical computers. At the same time, it is dubious that
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many people will need to own a quantum machine1. Today, some companies such
as IBM have designed and built a few as-powerful-as-possible quantum computers
and are making them widely available, enabling people to use them via the cloud.

It is conjectured that quantum computers cannot offer more than a polynomial
advantage for NP-complete problems. Such a speed-up would struggle to compete
with the classical heuristic approaches commonly used to solve them. However,
even a polynomial speed-up could significantly benefit problems requiring exact
solutions or problems that can be classically solved in sub-exponential time [18].

2.1.4 Complexity

The class of problems for which a found solution can be identified as correct in
polynomial time is called NP (nondeterministic polynomial time). Many real-world
practical problems happen to be NP problems. All the P (polynomials) problems
are NP problems: if a problem can be solved quickly, the solution can be verified
quickly too.

NP-complete problems are the most challenging NP problems. If an efficient
algorithm for any of them were found, it could be adapted to solve all the other
NP problems efficiently. The existence of such an algorithm for an NP-complete
problem would mean that every NP problem was a P problem (P = NP).

To this day, researchers have designed only a few quantum algorithms that
provide a speed-up from exponential to polynomial time for a problem. An efficient
quantum algorithm to crack NP-complete problems has not been found or proved
that it does not exist. A quantum algorithm capable of efficiently solving NP-
complete problems has to exploit the problems’ structure, as Shor’s algorithm
does [8].

A side-effect of the search to develop efficient quantum algorithms is the sig-
nificant progress in designing fast classical algorithms. When a problem is solved
efficiently in quantum computing, it draws more attention and often produces bet-
ter classical options than existed before [19]. Some of the new efficient classical
solutions have been directly inspired by the quantum work, see, for example, the
quantum algorithm in [20] and its more efficient classical counterparts in [21].

2.1.5 Quantum supremacy

In recent years, quantum computing research focused on reaching the quantum
supremacy. Quantum supremacy is achieved when a computational task is per-
formed with an existing quantum device that cannot be accomplished using any

1Although such assertions need to be considered with caution as everyone remembers Thomas
Watson, chairman of IBM, stating in 1943: "I think there is a world market for maybe five
computers.
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known algorithm running on a current classical supercomputer in a reasonable
amount of time [22]. Harrow and Montanaro [23] have proposed a list of criteria
for a quantum supremacy experiment. We need to have the following:

• a well-defined computational problem,

• a quantum algorithm solving the problem which can run on near-term hard-
ware capable of dealing with noise and imperfections,

• several computational resources (time/space) allowed to any classical com-
petitor,

• a small number of well-justified complexity-theoretic assumptions,

• a verification method that can efficiently distinguish the performances of the
quantum algorithm from any classical competitor.

Calude and Calude [19] identify some plausible topics that could serve to prove
quantum computational supremacy. These topics are evaluated according to a
balance of their usefulness and their difficulty to be solved on a quantum com-
puter. We could take as an example the factoring problem. Factoring is a useful
application: as we said before, factoring quickly large numbers would break the
security of applications based on the RSA scheme. However, factoring is very hard
on a quantum computer, at the moment.

Google claimed to have reached quantum supremacy in 2019 [24], and the re-
sult has been quite immediately questioned by IBM [25]. The problem Google’s
quantum machine solved was chosen just to demonstrate the computer’s supe-
riority. Otherwise, the problem has not much practical interest. In a nutshell,
the quantum computer executed a randomly chosen sequence of instructions, and
then all the qubits were measured to produce an output bit string. This quantum
computation has very little structure, which makes it harder for the classical com-
puter to deal with it. The answer to this computation is not really informative or
helpful. Still, this result is a valuable step in exploring the potential of quantum
computing.

Google used a device with 53 qubits and declared that it took just minutes
to perform quantum computations that would take today’s most powerful super-
computers thousands of years. Although, the IBM team argued that an ideal
simulation of the same task could be achieved on a classical system in 2.5 days
and with far greater fidelity. They also expect that with additional improvements,
they can further reduce the classical cost of the simulation.

To conclude, if we achieved quantum supremacy for some algorithms, they
would be on particular problems [8]. A hybrid approach combining quantum and
classical computing could be a promising strategy for solving some complex prob-
lems, that have been considered intractable using only classical methods [26].
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2.2 Basic quantum theory

In this section, we give an overview of quantum computing, for which we will
mainly follow the paper of Yanofsky [27].

We can identify three fundamental quantum-mechanical effects for quantum
computers: superposition, interference, and entanglement.

Superposition

In classic computing, a binary variable is a perfectly defined binary number: the
variable x can only be either 0 or 1. Superposition allows a quantum computer’s
memory to be in a superposition of many classical states, each state having a
certain complex amplitude. For instance, a qubit represents a superposition of
the states 0 and 1, creating a quantum state |ψ⟩. This has been accomplished by
employing elemental particles such as electrons and photons. The charge or po-
larization of those particles represents their current state. A qubit can represent
two states in superposition, and a quantum computer can potentially complete 2n

computations in one physical step when utilizing n qubits. This phenomenon is
the so-called quantum parallelism, and it is, theoretically, possible for a quantum
computer to achieve complete tasks in exponentially fewer steps than a classical
computer. Indeed, an exponential amount of computation has been achieved in the
time it takes to compute the function on a single input. That said, it is essential to
stress that, unfortunately, superposition alone is not enough to boost computation
performance. Indeed, suppose the exponentially rich state is measured. In that
case, the entire state collapses into a single randomly chosen input-output pair. It
would have been easier to choose the input randomly before applying the compu-
tation classically. Quantum interference allows us to make good use of quantum
parallelism [15].

Interference

Interference allows different superpositions to combine: positive and negative am-
plitudes cancel each other out (destructive interference), while amplitudes with
the same sign add up (constructive interference). When a superposition of states
is built, all the possible solutions have an equal non-zero probability of being
observed. Clever exploitation of quantum interference is fundamental to benefit
from quantum computing. The goal is to reinforce the probability of obtaining
the desired results while reducing or even canceling the probability of obtaining
unwanted results [15].
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Entanglement

Entanglement allows different parts of the quantum computer, or even different
quantum computers far away from each other, to be correlated. Quantum entan-
glement is a physical phenomenon occurring when a group of particles interacts.
It is impossible to describe each particle’s quantum state independently of the
other’s state, even if a significant distance separates the particles.

2.2.1 Quantum states

An n dimensional quantum system is a system that can be observed in one of n
possible states. Column vectors of n complex numbers represent the states of a
quantum system. We denote these vectors with the ket |⟩ notation:

|φ⟩ = [c0, c1, . . . , cj, . . . , cn−1]
T (2.1)

To give an example,
|ψ⟩ = [0, 1, . . . , 0, . . . , 0]T (2.2)

is saying that our particle will be found in position 1. The state

|ψ′⟩ = [0, 0, . . . , 1, . . . , 0]T (2.3)

says that the particle is in position j. These two states are examples of what are
called pure states.

An arbitrary state is written as:

|φ⟩ = [c0, c1, . . . , cj, . . . , cn−1]
T (2.4)

Let S be the sum of the squares of modulus of the cj, i.e.

S = |c0|2 + |c1|2 + · · ·+ |cn−1|2 (2.5)

If we measure the state described by |φ⟩ we would find the particle in position
0 with probability |c0|2

S , in position 1 with probability |c1|2
S , . . . , in position n − 1

with probability |cn−1|2
S .

Such states are superpositions: the particle is in more than one position at a
time. The ψ means that the particle is in all positions simultaneously and not
that the particle is in some single position and the cj are giving us probabilities of
which position.

These superpositions can be manipulated; for instance, they can be added:

|φ⟩ = [c0, c1, . . . , cj, . . . , cn−1]
T (2.6)
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|φ′⟩ = [c′0, c
′
1, . . . , c

′
j, . . . , c

′
n−1]

T (2.7)

then

|φ⟩+ |φ⟩ = [c0 + c′0, c1 + c′1, . . . , cj + c′j, . . . , cn−1 + c′n−1]
T . (2.8)

Also, if there is a complex number c ∈ C, we can multiply a ket by this c:

c |φ⟩ = [c× c0, c× c1, . . . , c× cj, . . . , c× cn−1]
T (2.9)

These operations satisfy the properties of being a complex vector space. So
the states of an n dimensional quantum system are represented by the complex
vector space Cn. The ket 2 |φ⟩ describes the same physical system as |φ⟩: for an
arbitrary c ∈ C, c ̸= 0 we have that the |φ⟩ and the c |φ⟩ describe the same physical
state. Geometrically, it is equal to say that the vector |φ⟩ and the extension c |φ⟩
describe the same physical state. So the only thing that matters is the direction
of |φ⟩. We might as well work with a normalized |φ⟩, i.e.,

|φ⟩√
S

(2.10)

Given an n dimensional quantum system represented by Cn and an m dimensional
quantum system represented by Cm, we can combine these two systems to form
one system. This one system is represented by the tensor product of the two vector
spaces:

Cn ⊗ Cm ∼= Cn×m (2.11)

Two quantum systems |φ⟩ and |φ′⟩ combined are represented as:

|φ⟩ ⊗ |φ′⟩ = |φ, φ′⟩ = |φφ′⟩ (2.12)

In general, there are more elements in the tensor product of the two systems
than in the union of each of the two systems. States in Cn ⊗ Cm that cannot
be represented simply as an element in Cn and an element in Cm are said to be
entangled.

2.2.2 Dynamics

Quantum systems constantly change, and the changes (or operators) on an n
dimensional quantum system are represented by n by n unitary matrices. Given a
state |φ⟩ that represents a system at time t, then the system will be in state U |φ⟩
at time t+ 1.

U is unitary, meaning that there is a related matrix that can undo the action
that U does here U †takes the result of U ’s action and returns the original vector.
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In the quantum world, the only non-reversible action is measuring. If U operates
on Cn and U ′ operates on Cm, then U⊗U ′ will operate on Cn⊗Cm in the following
way:

(U ⊗ U ′)(|φ⟩ ⊗ |φ′⟩) = U |φ⟩ ⊗ U ′ |φ′⟩ . (2.13)

2.2.3 Observables

Other operations can be performed on a n dimensional quantum system: observ-
ing or measuring the system. When we measure a system, it is no longer in a
superposition. The superposition is said to collapse to a pure state.

|φ⟩ = [c0, c1, . . . , cj, . . . , cn−1]
T ⇝ |φ′⟩ = [0, 0, . . . , 1, . . . , 0]T . (2.14)

The state could collapse to any of the n pure states. As before, let S be the
sum of all the squares of the modulus, i.e.

S = |c0|2 + |c1|2 + · · ·+ |cn−1|2 (2.15)

This means that there is a |c0|2
S of a chance of the superposition collapsing to

the 0th pure state. There is |c1|2
S of a chance of the superposition collapsing to the

1st pure state, and so on. There is no way to know, a priori, to which pure state
the state will collapse.

An observable or measurement on an n dimensional system is represented by
an n by n hermitian matrix. A n by n matrix A is hermitian, or self-adjoint if
A† = A. In other words, A[j, k] = A[k, j], meaning that A is hermitian if and only
if AT = A

For a matrix A in Cn×n, if there is a number c in C and a vector |φ⟩ in Cn such
that

A |φ⟩ = c |φ⟩ (2.16)

then c is called an eigenvalue of A and |φ⟩ is called an eigenvector of A associated
to c. The eigenvalues of a hermitian matrix are all real numbers. Furthermore, dis-
tinct eigenvectors with distinct eigenvalues of any hermitian matrix are orthogonal.
The hermitian matrices representing observables for an n dimensional system have
the further property that there are n distinct eigenvalues and n distinct eigenvec-
tors That means that the set of eigenvectors forms a basis for the entire complex
vector space that represents the quantum system we are interested in. Hence if
we have an observable A and |φ⟩ an eigenvalue of A then A |φ⟩ = c |φ⟩ for some
c ∈ C. c |φ⟩ represents the same state as |φ⟩ as we said before. So if the system is
in an eigenvector of the basis, then the system will not change.
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2.3 Architecture of a quantum computer

Quantum mechanics ideas could be exploited to build a quantum computer. In
order to describe a quantum machine, we need the following:

• the number of available qubits,

• the error rate (or noise) and the decoherence time

• the architecture and the qubits connection.

Several hardware companies, such as IBM and Intel, have built gate model
quantum computers and are now dealing with the challenge of scaling up their
devices. These machines require low temperatures to operate; thus, they need
expensive refrigeration technology.

Another approach is quantum annealing: it utilizes quantum fluctuations to
find the ground state of a quantum system associated to an optimization prob-
lem. Instead of expressing the problem in terms of quantum gates, we consider
the problem as an optimization problem, and the quantum annealing computer
seeks to find the minimum. D-Wave Systems company builds quantum annealing
computers.

2.3.1 Gate-based model quantum computer

The gate model of a quantum computer requires algorithms to be expressed in
terms of quantum gates.

Bits and Qubits

A bit describes a system whose set of states is of size two. A bit can be represented
by two 2 by 1 matrices. From now on, we write in red the labels for the vectors.
We represent the state 0, or |0⟩, as:

|0⟩ =
[
1
0

]
0
1

(2.17)

We represent the state 1, or |1⟩, as:

|1⟩ =
[
0
1

]
0
1

(2.18)

A classical bit is either in state |0⟩ or in state |1⟩. In the quantum world, we
have systems where a switch is in a superposition of states |0⟩ and |1⟩. So we define
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a quantum bit or a qubit as a way of describing a quantum system of dimension
two. We represent any such qubit as a two-by-one matrix with complex numbers:

|ϕ⟩ =
[
c0
c1

]
0
1

(2.19)

where |c0|2 + |c1|2 = 1 (see 2.10). |c0|2 is to be interpreted as the probability that
after measuring the qubit, it will be found in state |0⟩. |c1|2 is to be interpreted
as the probability that after measuring the qubit, it will be found in state |1⟩.
Whenever we measure a qubit, it automatically becomes a bit. The bits |0⟩ and
|1⟩ are the canonical basis of C2. So any qubit can be written as[

c0
c1

]
= c0

[
1
0

]
+ c1

[
0
1

]
(2.20)

There are several ways of writing qubits. For instance 1√
2

[
1
1

]
can be written

as [
1√
2
1√
2

]
=

1√
2
|0⟩+ 1√

2
|1⟩ = |0⟩+ |1⟩√

2
(2.21)

Similarly: 1√
2

[
1
−1

]
can be written as[

1√
2

−1√
2

]
=

1√
2
|0⟩ − 1√

2
|1⟩ = |0⟩ − |1⟩√

2
(2.22)

We have that:
|0⟩+ |1⟩√

2
=

|1⟩+ |0⟩√
2

(2.23)

because they both are ways of writing

[
1√
2
1√
2

]
. In contrast:

|0⟩ − |1⟩√
2

̸= |1⟩ − |0⟩√
2

(2.24)

The first state is

[
1√
2

−1√
2

]
and the second one is

[
−1√
2
1√
2

]
.

However, the two states are related:

|0⟩ − |1⟩√
2

= (−1)
|1⟩ − |0⟩√

2
(2.25)

Some examples of qubit implementations are given:



32 CHAPTER 2. QUANTUM COMPUTING

• an electron might be in one of two different orbits around a nucleus of an
atom (ground state and excited state),

• a photon might be in one of two different polarized states,

• a subatomic particle might be in spinning in one of two different directions.

In order to be useful, a quantum device should have more than one qubit. Let
us consider a byte, or eight classical bits:

01101011 (2.26)

We might also write it as:[
1
0

]
,

[
0
1

]
,

[
0
1

]
,

[
1
0

]
,

[
0
1

]
,

[
1
0

]
,

[
0
1

]
,

[
0
1

]
(2.27)

In order to combine systems, we should use the tensor product. We can describe
the above byte as

|0⟩ ⊗ |1⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |1⟩ (2.28)

As a qubit, this is an element of:

C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 (2.29)

This vector space can be written as (C2)⊗
8 . This is a complex vector space of

dimension 28 = 256.This space is isomorphic to C256.
We can describe our byte in the classical world as:

0
0
...
0
1
0
...
0
0



00000000
00000001

...
01101010
01101011
01101100

...
11111110
11111111

(2.30)
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For the quantum world, a general qubit can be written as:

c0
c1
...
c106
c107
c108
...
c254
c255



00000000
00000001

...
01101010
01101011
01101100

...
11111110
11111111

(2.31)

where
∑255

i=0 |ci|2. In the classical world, to describe a byte, we need eight bits.
In the quantum world, a state of eight qubits is given by writing 256 complex
numbers. This exponential growth was one of the reasons why researchers started
thinking about quantum computing. To emulate a quantum computer with a 64
qubit register, we would need to store 264 complex numbers.

The qubits:

x =


0
1
0
0


00
01
10
11

(2.32)

can be written as:
|0⟩ ⊗ |1⟩ . (2.33)

We might also write these qubits as |0, 1⟩ or |01⟩.

Example

A variable x representing two qubits has as law of probability PX(0.25, 0.25, 0.25, 0.25),
meaning that x has a probability of 25% of being equal to 00, of 25% of being equal
to 01, of 25% of being equal to 10 and, finally, of 25% of being equal to 11.

We can represent a quantum variable x as a vector of amplitudes, see Fig. 2.1:

x =



1
2

1
2

1
2

1
2



00

01

10

11

(2.34)
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00 01 10 11

1√
4

A
m

pl
it

ud
e

Figure 2.1: Representation of the vector x.

These qubits can be written as

1

2
|00⟩+ 1

2
|01⟩+ 1

2
|10⟩+ 1

2
|11⟩ (2.35)

The tensor product of two states is not commutative:

|0⟩ ⊗ |1⟩ = |0, 1⟩ ≠ |10⟩ = |1, 0⟩ = |1⟩ ⊗ |0⟩ (2.36)

The first ket means that the first qubit is in state 0 and the second qubit is in
state 1. The second ket says that the first qubit is in state 1 and the second qubit
is in state 0.

Classical gates

To manipulate classical bits, we use classical logical gates. We represent n input
bits as a 2n by 1 matrix and m output bits as a 2m by 1 matrix. A 2m by 2n matrix
takes a 2n by 1 matrix and outputs a 2m by 1 matrix. Column vectors represent
bits, and matrices represent logic gates.

For example, the NOT gate takes as input one bit and returns as output one
bit. The matrix is [

0 1
1 0

]
(2.37)

We have that NOT |1⟩ = |0⟩ and NOT |0⟩ = |1⟩.
Other important gates are:

AND =

[
1 1 1 0
0 0 0 1

]
(2.38)

OR =

[
1 0 0 0
0 1 1 1

]
(2.39)



2.3. ARCHITECTURE OF A QUANTUM COMPUTER 35

NOR =

[
0 1 1 1
1 0 0 0

]
(2.40)

If we perform a computation, one operation followed by another, it is a sequen-
tial operation.

A B

Figure 2.2: Sequential operations.

If matrix A corresponds to performing an operation and matrix B corresponds
to performing another operation, then the multiplication matrix B×A corresponds
to performing the operations sequentially.

There are parallel operations:

A

B

Figure 2.3: Parallel operations.

Here we are doing A to some bits and B to other bits. This will be represented
by A ⊗ B, the tensor product of two matrices. A combination of sequential and
parallel operations gates (matrices) is a circuit. Four main steps make a quantum
circuit:

• declaration of qubits to use

• qubits initialization

• specification of the problem to solve

• modification of the probability law to obtain the calculation result

The circuit:

A B

A’ B’

Figure 2.4: Example of circuit.

can be realized as

(B × A)⊗ (B′ × A′) = (B ⊗B′)× (A⊗ A′) (2.41)
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Quantum gates

A quantum gate is simply any unitary matrix that manipulates qubits. Some
quantum gates are the following.

The Hadamard gate:

H =
1√
2

[
1 1
1 −1

]
=

[
1√
2

1√
2

1√
2

− 1√
2

]
(2.42)

The Pauli matrices:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
(2.43)

The controlled-not gate (Fig. 2.5) has two inputs and two outputs. The top
input is the control bit. If |x⟩ = |0⟩, then the output of |y⟩ will be the same as
the input. If |x⟩ = |1⟩, then the output of |y⟩ will be the opposite. If we write
the top qubit first and then the bottom qubit, then the controlled-not gate takes
|x, y⟩ to |x, x⊕ y⟩ where ⊕ is the binary exclusive or operation. The matrix that
corresponds to this reversible gate is:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.44)

|x⟩ |x⟩

|y⟩ |(x⊕ y)⟩

Figure 2.5: Controlled-NOT gate.

An example: Grover’s algorithm

Grover’s algorithm is a quantum search algorithm from 1996 [4]. We have access
to an unsorted quantum database that can be asked if it contains a specific entry.
Given an unsorted list of N elements, Grover’s algorithm finds with high probabil-
ity the target element with O(

√
N) operations. Conversely, a classical algorithm

requires O(N) operations. Therefore, the quantum algorithm provides a quadratic
speed-up over its classical counterparts.

The search problem we consider is finding the target element’s index among
the list of N = 2n elements, where n is the number of qubits and N is the list size.
The procedure of Grover’s algorithm is as follows:
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1. Prepare |0⟩⊗n where ⊗ means tensor, i.e., |0⟩⊗n is equivalent to |0⟩⊗|0⊗ . . . |0⟩⟩
with n terms.

2. Apply H⊗n to create a superposition. Suppose the searched element is 10
We are in a situation as in Fig. 2.6

00 01 10 11

1√
N

A
m

pl
it

ud
e

Figure 2.6: The superposition, after step 2 of Grover’s algorithm. The target
element is 10.

3. Apply the oracle O to mark the target element by negating its sign, i.e.,
O |x⟩ = − |x⟩ where |x⟩ is the target. See Fig. 2.7
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Figure 2.7: Sign negation of the target element.

4. Apply the Grover diffusion operator D to amplify the probability amplitude
of the target element. See Fig. 2.8
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00 01 10 11

1√
N

≈ 3√
N

≈
(
1− 4

N

)
1√
N

A
m

pl
it

ud
e

Figure 2.8: Amplification of the probability amplitude of the target element.

5. Repeat Steps 3) and 4) for about
√
N times.

6. Perform measurements.

After about
√
N iterations of Steps 3) and 4), we will find the target element

with a high probability.
As stated in Nielsen and Chuang [28], it is useful to note that the Grover

diffusion operator can be expressed as 2 |ψ⟩ ⟨ψ| − IN , where |ψ⟩ is the uniform
superposition of states, and IN is the N dimensional identity matrix. 2 |ψ⟩ ⟨ψ|−IN
operates a reflection about the |ψ⟩

Grover’s algorithm offers a provable speed-up. However, the speed-up is not
exponential, and the problem it solves is unrealistic: the cost of constructing the
quantum database makes any algorithm advantage negligible. We could do much
better by simply creating (and maintaining) an ordered database. Still, using
Grover’s algorithm as a subroutine for solving problems is efficient and a strategy
used on several hybrid quantum-classical algorithms.[19]

2.3.2 Quantum annealing computers

Quantum annealing computer requires problems to be expressed as a minimiza-
tion problem. Quantum annealing is a computational process that relies on the
adiabatic theorem to solve combinatorial optimization problems. As a principle,
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it implements a time-dependent Hamiltonian composed of an initial Hamiltonian
H0 and a final one tied to the cost function of the optimization problem. The
ground state of the initial Hamiltonian is easy to calculate. For D-Wave quantum
computers, the Hamiltonian could be written as:

HIsing(t) = A(t)H0 +B(t)HP (2.45)

where the functions A(t) et B(t) have to satisfy B(t = 0) = 0 and A(t = τ) = 0.
From t = 0 to t = τ , the state H(0) = H0 evolves to H(τ) = HP :{

HIsing(0) = H0

HIsing(τ) = HP

(2.46)

where τ is the optimal annealing time.
The adiabatic theorem states that if the time evolution is slow enough (i.e., τ is

large enough), then the of Hp ground state can be obtained with high probability.
If quantum annealing can reach a minimum energy configuration, then the

associated state vector solves the equivalent optimization problem.





Chapter 3

Worst-Case Execution-Times
analysis

Embedded software systems are almost everywhere to maintain the functioning
of the technical devices we use daily. Many of these systems are safety-critical.
Some examples are the applications in the avionics and automotive field, where
safety is a crucial aspect of the functioning of the systems. Usually, these systems
are also time-critical: indeed, they need to perform correct calculations, but also
those have to be provided in a timely fashion. In other words, safety and precision
have to be guaranteed. The Worst-Case Execution-Times (WCETs) evaluation is
a fundamental concern for performing feasibility analysis of real-time applications.
This chapter mainly refers to the sources [29]–[32].

3.1 Complexity of the problem

WCET analysis provides formal guarantees for the appropriate timing behavior of
a system by computing tight upper bounds for the execution time of a program.
The upper curve represents the set of all execution times in figure 3.1, from [29].
The shortest execution time is the best-case execution time (BCET), while the
longest time is named the worst-case execution time (WCET). Determining the
actual WCET of a problem may be prohibitively difficult.

In general, it is unfeasible to find WCET by analysis because it includes solving
the halting problem, which is known to be undecidable. The halting problem
consists of determining whether the program will terminate or continue to run
forever, starting from the description of an arbitrary program and input. If it were
possible to compute the actual WCET of arbitrary programs, it would be possible
to determine, in linear time complexity, whether the WCET is a finite quantity,
thus solving the halting problem.

41
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Figure 3.1: The lower curve represents a subset of measured executions. Its min-
imum and maximum are the minimal observed execution times and maximal ob-
served execution times, resp. The darker curve, an envelope of the former, repre-
sents the times of all executions. Its minimum and maximum are the best-case and
worst-case execution times, resp., abbreviated BCET and WCET. Figure taken
from [29]

However, real-time systems only use a restricted form of programming, guar-
anteeing that programs always terminate.

Kligerman and Stoyenko [32], as well as Puschner and Koza [33], have listed
the conditions for this problem to be decidable:

• absence of recursive function calls;

• absence of dynamic structures;

• bounded loops.

Unfortunately, the worst-case input is generally unknown and hard to derive;
otherwise, its corresponding execution time would represent a reliable WCET.
One could exhaustively explore all program execution paths. However, this is
usually unfeasible because the number of possible paths increases exponentially
with the program’s size. Therefore, we can claim that, in practice, the exact
WCET is often considered unobtainable. WCET could be intrinsic to the program
or, depending on the platform the program is running on. The WCET should be
provided for any hardware state. The problem is that modern processors have
become increasingly complex, full of intellectual-property restrictions and micro-
state-perturbing features such as caches, pipelines, branch prediction, preemption,
and other speculative components.
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3.2 Solving the problem

Most methods for evaluating a WCET apply approximations, so those different
techniques produce different estimates for the WCET. Those estimates are typi-
cally pessimistic to assure safety. Thus, the estimated WCET will be higher than
the real WCET. Much effort in performing WCET analysis is about reducing the
pessimism in the analysis to obtain an estimated value low enough to be valuable.

State-of-the-art WCET analysis tools rely on supporting analyses to provide
information on the program’s execution behavior, such as loop bounds or maximum
recursion depths. Typically, both steps need the binary code of the program.

There exist many automated approaches to computing WCET in the state of
the art. These include:

• analytical techniques to improve test cases to increase confidence in end-to-
end measurements;

• static analysis of the software. These methods do not depend on executing
code on real hardware or a simulator. Instead, while considering the task
code, they combine the analysis of the set of possible control-flow paths with
some abstract model of the hardware architecture to obtain upper bounds.
Static methods emphasize safety, guaranteeing that the execution time will
not exceed these bounds.;

• a combination of measurements and structural analysis, often referred to
as "hybrid" analysis. These methods execute the task or parts on the given
hardware or a simulator for some set of inputs. They then take the measured
times and derive the maximal and minimal observed execution times for the
whole task.

Static timing analysis has been the standard to compute WCET in real-time
embedded systems for long time. However, the current complex hardware deep-
ens the limitations of static analysis. In particular, the issue of acquiring detailed
information on the hardware has been proven challenging. Some probabilistic ap-
proaches for analyzing the timing behavior of next-generation real-time embedded
systems have then been proposed [34]–[36].

3.3 Measurement and hybrid techniques

Measurement-based and hybrid approaches measure the execution times of small
code segments on the actual hardware. Those pieces of information are then
combined in a higher-level analysis. Tools consider the structure of the program
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(as loops and branches) to estimate the WCET of the larger program. While it is
hard to test the longest path in complex software, it is easier to test the longest
path in many more minor components.

Typically, small software sections can be measured automatically by adding
markers to the software or with hardware support like debuggers. The result is
an execution trace, which includes the path taken through the program and the
moments when it was executed. The trace is examined to determine the maximum
time each part of the program took to execute, the maximum observed iteration
time of each loop, and whether any elements of the software stand untested.

3.4 Static analysis

In computer science, static program analysis is a generic method to determine the
properties of the dynamic behavior of a given program without actually executing
it [37]. We need an abstract model of the target hardware, the binary executable,
and the program’s source to perform static analysis. The execution time depends
on the program’s control flow and the fine-grained behavior of the hardware. A
static WCET tool estimates WCET by examining the computer software without
executing it directly on the hardware.

Static analysis operates at a high level to determine the structure of a pro-
gram, considering either the source code or the binary executable. At low-level
static analysis exploits the information on the hardware’s features. Static analysis
provides an upper bound of the execution time of a given task on a given hardware
platform by combining those two kinds of analysis.

Static WCET analyses typically consist of three parts. First, control flow and
data flow analyses are used to create a program model as a control flow graph.

In the second phase, the micro-architectural analysis determines local tim-
ings, taking into account the actual timing behavior of the processor. Finally, the
execution time is maximized over all control-flow paths, usually by representing
the findings of the other phases as constraints in a linear program that a linear
program solver can solve. This technique is called implicit path enumeration tech-
nique (IPET). Phases one and three are independent of the actual memory layout
of the program on the target machine; phase two depends on the hardware and
the granularity of the analysis.

3.4.1 High-level analysis

The high-level analysis addresses program execution and performs control flow
analysis, building a control flow graph (CFG) representing the program. Each
node is a block of code, i.e., a sequence of instructions. Program path analysis
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determines what sequence of instructions will be executed in the worst-case sce-
nario. A program data flow analysis must remove infeasible program paths from
the solution search space. Therefore, a mechanism for program path annotations
is essential. The number of program paths is exponential with the program size,
so an efficient path analysis method is required to avoid exhaustive program path
searches.

3.4.2 Integer Linear Programming (ILP) Formulation

.
Linear programming is a generic methodology to code the requirements of a

system in the form of a system of linear constraints. In addition, a goal function
that has to be maximized or minimized to obtain an optimal assignment of integer
values to the system’s variables is given. Only linear programs can be solved in
polynomial time. ILP formulation should be restricted to small problem instances
or to subproblems of timing analysis generating only small problem instances.

The program’s control flow is translated into integer linear programs with con-
straints. The cost function expresses the program’s execution time, and which
maximal value is an upper bound for all execution times.

ILP has been used to model (straightforward) processors [30]. However, the
complexity of solving the resulting integer linear programs did not allow this ap-
proach to scale.

For this thesis, we considered simple microarchitecture models that assume
the execution time of an instruction to be a constant, i.e., every instruction fetch
results in a cache miss.

For this simple case, the total execution time is the sum of the products of
instruction counts by their corresponding instruction execution times. The in-
structions in the same basic block are executed together, so we consider them a
single unit. If we let xi be the execution count of a basic block Bi and ci be the
execution time of the basic block, then given that there are N basic blocks in the
program, the total execution time of the program is given as:

Total execution time =
∑
i

cixi (3.1)

Suppose we can represent the program constraints as linear inequalities. In
that case, the problem of finding the estimated WCET of a program is declined
to an integer linear programming (ILP) problem, which many existing ILP solvers
can solve.

The linear constraints are divided in:

• program structural constraints, which are derived automatically from the
program’s control flow graph (CFG);



46 CHAPTER 3. WORST-CASE EXECUTION-TIMES ANALYSIS

• program functionality constraints, such as loop bounds and other path in-
formation, established by the user or extracted from the program semantics.

Let us consider the example (taken from [30]) of a control flow graph in which
a conditional statement is nested inside a while loop.

Figure 3.2: Example of a code fragment from [30]

Each node in the control flow graph represents a basic block Bi. A basic block
execution count, xi, is associated with each node. Each edge is marked with a
variable di, representing the count of times the program control passes through
that edge.

The structural constraints of the problem can be deduced from the control
flow graph. For each node Bi, its execution count equals the number of times the
control enters the node (inflow) and exits it (outflow). The structural constraints
of this example are:
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d1 = 1,

x1 = d1 = d2

x2 = d2 + d8 = d3 + d9

x3 = d3 = d4 + d5

x4 = d4 = d6

x5 = d5 = d7

x6 = d6 + d7 = d8

x7 = d9 = d10

(3.2)

3.4.3 Low-level analysis

Low-level analysis determines the timing cost of individual processor instructions
on the abstract model of the hardware. The timing cost is not constant in modern
hardware. To perform the analysis, we must know the hardware’s inner workings
(pipeline, caches, etc.).

At the low-level, static WCET analysis is complicated by architectural features
that improve the average-case performance of the processor: pipelined instruction
execution units and cached memory systems. While speeding up the system’s typ-
ical performance, these features complicate timing analysis. The cache memory,
in particular, is challenging to model accurately. To determine whether the execu-
tion of an instruction results in a cache hit, several previously executed instructions
must be examined.

Any incorrect prediction will result in large pessimism. Moreover, we face
a lack of comprehensive information (intellectual property, patents, differences
between specification and implementation). Preemption also substantially affects
the analysis. Preemption is the act of temporarily interrupting an executing task
to resume it at a later time. Determining tight WCET bounds employing static
analysis tools on modern hardware with those features is increasingly problematic.

3.5 Cache memories

Caches are small memories with quicker access times than the main memory. They
are employed to avoid long waiting times when accessing memory locations mul-
tiple times.

A cache hit happens when the program requires data already in the cache
memories. Otherwise, it is a cache miss. See Fig. 3.4.

The following values mainly define the cache memories:

• the line size SL defines the number of bytes cached together (cache block),
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CPU Cache Main memory

Figure 3.3: Cache memory and main memory.

Cache

CPU

Main memory
cache miss

cache hit

Figure 3.4: The green arrow represents a cache hit: the required data is into the
cache. The red arrow represents a cache miss: the data is not into the cache and
it has to be fetched from the main memory

i.e., the size of the portion of main memory loaded when a cache miss hap-
pens;

• the associativity A characterizes the number of locations into which a mem-
ory block can be loaded;

• the capacity SC is the total number of bytes in the cache; with n = SC

SL
blocks

in the cache.

A set consists of all memory locations that can be loaded into a cache line, and
the number of different sets equals n

A
.

The main mapping strategies are:

• direct mapping: the cache is split into lines, and each memory address maps
to a single cache line;

• N-way set associative: the cache is separated into sets, and each memory
address maps to a single cache set;

• fully associative: the cache is divided into lines, and each memory address
may map to any cache line.
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A cache with A = 1 is called direct-mapped, and a cache with A = n is
called a fully-associative cache. Different mapping strategies trade the likelihood
of access conflicts with cache design complexity. For instance, a fully-associative
cache assures access conflicts are maximally reduced, but it is very complex to
realize in hardware.

Instruction caches exploit the memory’s spatial and temporal proximity of ex-
ecuted instructions. Memories are constructed so that instructions located close
to each other are not conflicting. Therefore, the behavior of caches depends on
the position of each instruction (or basic block) and the relative distance of code
fragments executed on the same path. Any change in the program location or the
order of code fragments will directly affect the WCET analysis result.

The most common replacement strategy is the Least Recently Used policy
(LRU)). The principle of selecting a new set to replace a previously stored cache
line is founded on how recent the last access to data in a line was. In the picture,
H0 is the youngest access in history, until HA−1 which is the oldest. M stands
for the miss state, which means that the considered line in memory is not in the
cache. LRU policy means that when an access occurs to a given line in memory, it
is copied in the cache at H0. When another line the considered line history counter
is increased by one until it reaches A− 1. If another concurrency occurs, then the
line is expelled from the cache, and a later access would be a miss.

Figure 3.5: LRU remplacement strategy. Fig. from [38].

The LRU must analysis is operated to determine which cache blocks are all hit
(AH), i.e., cache blocks which never generate a cache penalty. The must analysis
creates abstract cache states, where each memory block maps to the cache line
corresponding to its oldest possible age in the cache at the given program point.
Cached blocks of the younger generation are degraded, and blocks of age A are
evicted if there is a miss.

The may analysis is used to classify cache blocks as all miss (AM). It is similar
to the must analysis, with the difference that it associates each memory block with
the cache line of the youngest age the memory block may have.





Chapter 4

Conclusion:
motivation for this thesis

This chapter summarizes the main reasons supporting this research work. This
thesis explores the potential of applying quantum computing to evaluate the worst-
case execution time of programs. When quantum computing was initially proposed
as a way to improve computations, it was merely a speculative suggestion. A point
of change was Shor’s algorithm, which, if implemented in a quantum computer,
could exponentially speed up a class of cryptoanalysis problems. Back then, Shor’s
result was still not more than of theoretical interest. In the last decade, researchers
have progressed a lot in designing quantum computers, which has reinvigorated
the field. Today large investments and efforts are poured into developing such
a new computational paradigm. Today, the race to find new possible real-world
applications for quantum computing knows a massive acceleration [39].

This thesis has taken the first steps from the work of Stéphane Louise [38].
This work developed a new approach to evaluate cache-related contributions to
WCET for single-core execution, for in-order processors, especially in the case
of preemptions. His approach is classical, but it has been inspired by the linear
operations of Quantum Mechanics. This new method has negligible computing
cost compared to the usual approach and represents a fair estimation of WCET in
case of preemption. While it is not an entire parallel quantum algorithm, it is the
first step in that direction. The idea was that since the formalism in single-history
execution is purely linear, obtaining a quantum algorithm should be relatively
straightforward.

While the interest in quantum computing is increasing at high speed, there is
not enough awareness about what kind of applications can find some advantage
in the context of quantum computing. There is often the misconception that
quantum computing is a powerful technique that will allow us to solve all the
challenging problems that, for many reasons, such as too large an input size, have
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been proven difficult to solve with classical computers. Nevertheless, this is an
oversimplification. A quantum computer will not be a faster version of a classical
computer. Instead, it will be a different sort of computer engineered to handle
coherent quantum mechanical waves for various applications.

Sometimes the speed-up that quantum computing could provide is only polyno-
mial. For instance, Grover’s algorithm has proven optimal for finding an element in
one unsorted array, providing only a polynomial speed-up. Even so, it is essential
to remark that even a polynomial improvement could be beneficial for some spe-
cific problems. Therefore, in those cases, the effort to obtain a speed-up through
quantum computing has its reward.

Till today, scientists have not been able to identify with precision the appli-
cations for which quantum computing could be helpful. Some specific topics, like
Shor’s algorithm, are proven well suited for quantum computing thanks to their
intrinsic structure. This thesis has as its aim the willingness to show how an ar-
bitrary problem without a specific quantum friendliness could be tackled to be
brought to the quantum framework.

The evaluation of worst-case execution-time seemed us a good playfield for
this purpose. It is a problem that has been extensively studied recently, leading
to a deep available knowledge of the topic. Concrete applications from automo-
tive, smart city, healthcare, environmental, and infrastructure monitoring require
specific timing constraints, similar to real-time applications running on embedded
systems. Those domains usually require an HPC infrastructure to run [40]. To-
day, researchers focus on the challenges of pairing quantum computing systems
with modern HPC infrastructure [41]. Integrating quantum computers with HPC
systems is indeed within reach of current technologies. Many technical challenges
remain to achieve such integration, but the idea’s feasibility has proven sound.
Furthermore, the field contains many problems of all sorts of complexities and
kinds, with many efficient solutions that can inspire future quantum equivalents
and also provide a metric of comparison for the performances of those quantum
algorithms.
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Chapter 5

A quantum approach for the static
analysis of cache memory misses

While the interest in quantum computing is constantly rising, the design of quan-
tum algorithms suitable for real applications is still in its infancy. This work
presents how to build a superposition of all memory access sequences generated
by a program to evaluate Worst-Case Execution-Time (WCET). WCETs are fun-
damental for validating real-time systems where all time constraints must be met.
Since the cache handling in non-deterministic programs substantially impacts the
execution time, we use it as a case study to design a quantum algorithm to im-
prove the static analysis of cache misses on programs performing random accesses
to the memory. Cache misses are connected to the execution time of a program.
For in-order processors, the worst-case execution-time is realized on the path with
the higher amount of cache misses. This chapter presents a first attempt to use a
quantum algorithm to tackle the problem of evaluating WCETs: it shows how to
build a quantum superposition of the cache memory miss values and gives some
insights on how this state could be exploited to extract helpful information from
the superposition. The content of this chapter has been presented as a short paper
on July 2021 at the conference Compas2021 1.

5.1 Introduction

This work is a first step toward utilizing quantum computing to improve the perfor-
mances of static analysis of WCETs (Worst-Case Execution Times). In particular,
we consider programs that perform non-deterministic accesses to the memory, us-

1Gabriella Bettonte, Stéphane Louise, Renaud Sirdey. Two real-time applications of quantum
computing for the evaluation of WCETs, Compas2021, Jul 2021, Lyon, France.
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ing the count of cache misses as a first proxy evaluation2 of the WCET (or as the
literature calls it, the Cache memory related delay). A dual approach has already
been explored in the literature, with papers about applying static analysis tech-
niques to quantum algorithms to evaluate their performance [42], [43]. However,
the application of quantum computing to improve static analysis problems has still
to be fully explored, to the best of our knowledge.

We will describe an algorithm that, using a quantum-inspired formalism, builds
a superposition of all the possible sequences of memory accesses. The superposi-
tion produced by that algorithm is suitable to be used as input for a yet-to-be-
determined quantum algorithm that could boost the speed-up, allowing to count
the worst number of cache misses with increased efficiency (i.e., using less time)
with regards to the classical equivalent.

This chapter is organized as follows. Section 6.2 provides an overview of quan-
tum computing, cache memory, and WCETs. Section 5.3 presents the addressed
problem and then formalizes it. Section 5.4 describes the algorithm we designed
to build a superposition of sequences of memory accesses. Sections 5.5 and 5.6
contain examples of algorithm application. It is worth noting that, unless speci-
fied otherwise, WCET will be a notation for the number of memory cache misses
in this chapter. Still, we will draw the link between this number and the actual
WCET in the conclusion.

5.2 Background overview

In our discussion, we use concepts from quantum computing and cache memories,
which we briefly overview in this section.

5.2.1 On quantum computing

Classic computers rely on bits that are deterministic: they can be either on (in
the state 0) or off (in the state 1). On the other hand, qubits have the capacity of
being in a superposition of |0⟩ and |1⟩ (in Dirac notation). More precisely,

|ψ⟩ = α |0⟩+ β |1⟩ , | α |2 + | β |2= 1, with α, β ∈ C (5.1)

A part of the interest that quantum computing arises comes from the ability of
qubits to generate states of superposition that reflect all the possible outcomes of
a given algorithm until a measurement is done, which is usually at the end of the
algorithm. This property is called quantum parallelism and could theoretically give

2This is true, especially for in-order execution for which the execution-time grows monotoni-
cally with the number of memory cache misses.
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a massive performance boost for quantum algorithms. However, the advantages
of quantum computing are not without caveats: only some classes of problems
can be solved by quantum computing with a significant gain in terms of efficiency
with respect to classical computing. Indeed, one crucial research issue related to
quantum computing is defining with precision those kinds of problems [28].

To have an idea of the momentum the scientific community gives to quantum
computing [44], the Quantum Algorithm Zoo [45] (at the time of writing) cites
430 papers and counting on quantum algorithms. Companies such as Google,
IBM, and Rigetti Computing are investing many resources in research on quan-
tum technologies. Among all quantum algorithms, we can identify two main es-
sential blueprints. The first one is defined by quantum algorithms able to reach
an exponential speed-up over classical algorithms on precisely defined and heavily
structured mathematical problems, e.g., Shor’s algorithm for integer factorization.
The second one is defined by quantum algorithms with a polynomial speed-up
over classical ones, e.g., Grover’s algorithm for searching an unstructured array.
Still, many questions remain open about the real-world applications and benefits
of quantum computing [46].

5.2.2 On cache memory and WCETs

Real-time systems are computer systems for which processing outcomes must also
meet timing constraints which otherwise would jeopardize the real-time system
or its environment, potentially including the life of human beings. Evaluating
a WCET for programs and tasks is a fundamental issue in verifying this kind
of system. In this context, the behavior of cache memories usually has the most
significant impact on the execution time of programs and must be considered while
evaluating worst-case performance.

Cache memories are employed to address the problem represented by the so-
called memory wall: the gap between the speed of processors and the memory
latency increases by order of magnitude every few years. The solution, applied
mainly since the ’80s, has been to add small amounts of high-speed memory close
to the processing parts –the cache memories– to provide faster access to a local
copy of often or recently used values in memory, thus speeding up the average
access time to memory.

The data accessed – and data close to the accessed location, to exploit the
principle of locality – are copied into the cache memory. The position of the copy
inside the cache memory is decided by several parameters, including its so-called
associativity A –which determines the number of lines in which a particular copy
of the memory can reside– size, and replacement policy.
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5.3 A simple model of program
As a first step, we consider evaluating the WCET for a simple model of program
that considers only a linear sequence of memory accesses, some of which are deter-
ministically and others non-deterministically chosen from a given subset of memory
addresses.

We define E as the set of all the possible memory elements the program has
access to:

E = {e0, e1 · · · , eN−1} (5.2)

We denote the sequence of accesses to the cache the program does as:

C1C2 · · · CM (5.3)

Any access to the cache Ci can be deterministic or chosen arbitrarily in some
subsets of E :

| Ci |=
{

1 deterministic access
n, n > 1 non-deterministic access (5.4)

with

i = 1, . . . ,M (5.5)
∀i Ci ⊆ E (5.6)

We will study the case of direct mapped cache memory (i.e., associativity A =
1: a block of the main memory can be mapped only to a specific block/line of the
cache memory). We remind that cache memories constitute a means to provide
a local copy of often or recently used values in memory and decrease the average
access time to memory. The allocation of copies in a cache memory is done in so-
called lines. The location of these lines is defined by several parameters, including
the cache memory associativity A, which determines the number of lines in each
cache set, its size, and its replacement policy. For an A-way associative cache with
l lines of b bytes per line, then each set defines a l · b space of addresses. The cache
has a total number of lines L = l · A and a total size of S = b · L = b · l · A. The
replacement policy determines which previously used cache line must be replaced
when a new snippet from memory must be copied into the cache after a miss [47].

Despite its simplicity, this non-deterministic model of program is difficult to
statically analyze for the evaluation of WCET with classical algorithms3. In-
deed, the non-deterministic memory accesses produce a large set of possible ex-
ecution paths for which a non-exhaustive analysis can significantly overestimate
the WCET.

3It is worth noting that despite its apparent simplicity, any single-threaded program is
amenable to our model, by replacing at relevant points in the execution, accesses on different
branches of the control-flow graph by a corresponding number of non-deterministic accesses.
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5.4 Algorithm

The sequence of memory accesses performed by the program contains non-determ-
inistic accesses, which our quantum algorithm superposes to take into account, in
one execution, the number of cache misses for each possible path. Our final goal
is to design an algorithm that returns (with non-negligible probability) the largest
number of cache misses over every path, which should give important hints about
the path of worst-case execution time for in-order processors.

5.4.1 First step: encoding

The first operation the algorithm performs is encoding the addresses of all the
elements in E and the cache state s. With this simple model, we do not need to
know where the elements in the cache are stored. As there are several options to
encode the elements of E and s, we describe below the ones we considered while
designing this algorithm.

Direct encoding for the accessed element α

We encode all the elements in E as vectors of N qubits, for which any possible
memory access possesses its line of encoding.

e0 −→ 000 · · · 1
e1 −→ 00 · · · 10

...
eN−1 −→ 10 · · · 0

Therefore the access α to the cache, being an element of E , is represented using a
N qubits vector:

α = α[0], α[1], · · · , α[N − 1] (5.7)

where ∃! i s.t. α[i] = 1 and ∀j ̸= i, α[j] = 0.

Compact encoding for the accessed element α

The elements in E are vectors of ⌈log2N⌉ qubits with an incremental label in an
associated binary numeration.

e0 −→ 000 · · · 1
e1 −→ 00 · · · 10

...
eN−1 −→ 11 · · · 1
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Therefore the access α to the cache, being an element of E , is represented using a
⌈log2N⌉ qubits vector:

α = α[0], α[1], · · · , α[⌈log2N⌉] (5.8)

The direct encoding provides a low number of quantum gates but also a high
number of necessary qubits as a drawback. Conversely, a compact encoding has
the advantage of requiring a lower number of necessary qubits but then, the number
of quantum gates used to deal with them increases.

Encoding for the cache state s

To represent the state of the cache we chose to stick with a simple encoding. The
cache state s is a N qubit vector.

s[j] =

{
1 if ej ∈ E is in the cache
0 otherwise (5.9)

5.4.2 Second step: superposition

Since the program performs some non-deterministic accesses to the memory (i.e.,
| Ci |> 1, for some i), there exist multiple possible linear sequences. We aim to
exploit the quantum parallelism to compute a superposition of the total number
of cache misses over each possible execution path. It is not difficult to produce a
superposition of all the possible elements that can be selected for each | Ci |> 1
employing a small network of Hadamard gates. The upper bound of the number
of possible paths is:

R =
∏
i

|Ci| (5.10)

5.4.3 Third step: cache misses counter

For every access to the memory in each possible sequence of accesses, the algorithm
checks if a cache miss or hit occurred and modifies the cache’s state accordingly.
After a cache miss, the accessed element is added to the cache to its assigned place.
As consequence, the vector representing the cache state has to show the presence of
such element inside the cache, after fetching it from the memory. The cache state
vector represents the presence into the cache of an element by a 1 at the position
corresponding to the element. In contrast, after a cache hit, the cache state does
not change (since it is direct-mapped, every element has a unique possible position
in the cache). We designed a circuit Q that checks if a cache miss occurred, takes
note of it, and creates a new cache state that contains the considered element. It
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is worth noting that we have to make a new cache state instead of updating the
previous one to maintain the reversibility of the quantum circuit. The circuit Q
is the concatenation of the circuits M (i.e. the MISS operator) and N (i.e. the
NEXT operator) below.

MISS operator

The MISS operator M is designed to evaluate if the requested data is available
in the cache (cache hit) or if the program has to perform an access to the main
memory (cache miss). The inputs of the miss operator are:

• the accessed data α;

• the actual state of the cache s;

• a qubit b to store the result.

At the beginning b = |0⟩, while, after the application of the miss operator, the
qubit b will be in the state |1⟩ if a cache miss occurred or be left to the state |0⟩
if a cache hit occurred.

M : |α, s, b⟩ −→ |α, s, b⊕ miss(α, s)⟩ (5.11)

where α is the accessed data at time t and s is the state of the cache when the
program has access to α.

miss(α, s) =
{

1 if s[α] = 0
0 otherwise (5.12)

NEXT operator

The operator NEXT N is built to create a new cache state snew from the previous
one s. The inputs of the next operator N are:

• the accessed data α;

• the current state of the cache s

• the information about if α generated a cache miss (i.e. the result of the MISS
operator): b

• the new state of the cache snew
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The operator N needs the accessed element α, the current state of the cache
s. It is necessary to know also if the previous access to the cache has generated a
cache hit or miss. In other words, N needs b (i.e. the result of the M operator).
Then, N creates the new cache state snew by adding, bit-a-bit to the cache state
s, a vector v. The vector v is all zeros, but at the place of index α. We have
that v[α] is the result of the function miss, described above: miss(α, s).To put it
in another way, this corresponds to add +1 if the accessed data generated a cache
miss, giving the information that, from that moment on, the data α is inside the
cache. If the accessed data generated a cache hit, the content of the cache does
not change, so snew will be only a copy of s (the vector v in this case is made of
all zeros).

N : |α, s, b, snew⟩ −→
∣∣α, s, b, s⊕ [

0 · · · 0 miss(α, s) 0 · · · 0
]〉

(5.13)

where α is the accessed data at the time t and s is the state of the cache at the
time t.

It is required to repeat the Q circuit m times (m being the number of accesses
the program performs after the first non-deterministic access), with m < M .

We provide below the details of the design of the MISS and NEXT operators
for both the encoding (direct and compact) of the accessed element α. For the
cache state s we stick with the direct encoding. The figure below represents the
main flow of the algorithm. The circuit Q is made by the concatenation of the
operator M and the operator N . Q takes as input the accessed element, the
actual cache state, the new cache state, and a miss flag wire. We perform Q for
every access of the sequence of memory accessed. In this figure, two iterations of
the algorithm are represented. The number of qubits required to represent the
considered access or cache state is on the right.
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First memory access
1 wire

#E wires

#E wires

1 wire

#E wires

...

...

...

...

...

Miss flag

Cache state

New cache state

Miss flag

Second memory access

New cache state

Q

Q
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5.4.4 Fourth step: Sum operator

After performing the third step circuit, we have m cache misses wires (i.e. qubits):
the wires associated with a cache miss are in the state |1⟩ while the wires associated
with a cache hit are in the state |0⟩.

The idea is that we can use one of the many quantum sum operators in the
literature, e.g., [48], to perform the sum of the qubits.

...

b1
b2
b3

bm
result

QUANTUM
ADDER

0 b1 + b2 + b3 + . . .+ bm

b1
b2
b3

... bm

The obtained value, plus the cache misses we counted before the first non-
deterministic access, is the total number of memory-cache misses of the sequence
The total number of cache misses can be tied to an estimation of the (cache-related)
worst-case execution-time for the program considered in the case of in-order pro-
cessors. We want to point out that we are not providing any post-processing for
extracting the maximum number of cache misses from the superposition built by
our algorithm. In essence, the work presented in this chapter is a preliminary first
contact with applying quantum computing to WCET problems and we focused
primarily on building meaningful superpositions. Unfortunately, as it is generally
the case with quantum computing, exploiting such superpositions to extract mean-
ingful results is difficult to achieve and it remains unclear how to do so from the
quantum states obtained in this chapter.

5.5 First application: direct encoding for the ac-
cess α

In this section we examine the application of the algorithm when encoding the
access α in the direct way. Since, in this case, the cache state s and the access
α are encoded in the same way, to check if α generated a cache hit, it suffices to
multiply bit a bit α with s and check if one of the product returns 1. Thus, we
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have:

miss(α, s) = ¬(
N−1∑
i=0

(s[i] ∧ α[i]) (5.14)

The number of (non-auxiliary) qubits needed by the miss operator M is N +
N + 1 as:

• α: N qubits

• s: N qubits

• b (the result): 1 qubit.

The number of (non-auxiliary) qubits needed by the next operator N is N +
N +N + 1 as:

• α: N qubits

• s: N qubits

• b: 1 qubit

• snew: N qubits.

5.5.1 Example

Let us consider a set of two possible elements E = {A,B}. We encode such
elements as:

A =
[
0 1

]
(5.15)

and
B =

[
1 0

]
(5.16)

The cache state s is a vector of dimension 2.

s =



[
0 0

]
if the cache is empty[

0 1
]

if A is inside the cache[
1 0

]
if B is inside the cache[

1 1
]

if both A and B are inside the cache

(5.17)
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If a cache HIT happens

We suppose the program access to A (thus α =
[
0 1

]
), while inside the cache there

is already A (thus, for instance, s =
[
0 1

]
). This situation generates a cache hit.

The circuit represents the action of the MISS operator M and the NEXT operator
N . The operator M returns a cache hit: ¬(α[0]·s[0]+α[1]·s[1]) = ¬(0·0+1·1) = 0.
The NEXT operator N creates a new cache state that is a copy of the previous
one. Q is the concatenation of M and N .

M

0α{
{s
b{ ¬(0 · 0 + 1 · 1) = 0 N

{Snew
0 + 0 = 0

1 + 0 = 1

0

0

0
0

1

1

0

0

0

0

1

1

1

Q

If a cache MISS happens

Let us now suppose that the cache is empty (i.e. s =
[
0 0

]
while we access to

α =
[
0 1

]
.

This situation generates a cache miss. The circuit represents the action of the
MISS operator M and the NEXT operator N . The operator M returns a cache
miss: ¬(α[0] ·s[0]+α[1] ·s[1]) = ¬(0 ·0+1 ·0) = 1. This means that α = A is added
to the cache. Thus, in this case v =

[
0 1

]
and the NEXT operator N creates a

new cache state snew where it is represented that now into the cache there is the
element α = A, i.e. snew =

[
0 1

]
. Q is the concatenation of M and N .
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M

0α{
{s
b{ ¬(0 · 0 + 1 · 0) = 1 N

{Snew
0 + 0 = 0

0 + 1 = 1

0

0

0
0

1

0

0

0

1

0

1

0

1

Q

5.6 Second application: compact encoding for the
access α

For each of the element that could be into the cache, we need to build a miss
operator, able to check its presence into the cache.

∀e ∈ E ,me =

{
1 if e is not inside the cache
0 otherwise

(5.18)

The miss operator for a general element α is:

miss(α, s) = me1 ⊕me2 ⊕ · · · ⊕meM (5.19)

The number of (non-auxiliary) qubits required by the MISS operator M is
(n+N + 1), as:

• α: n = ⌈log2N⌉

• s: N qubits

• b: 1 qubit

The number of (non-auxiliary) qubits required by the NEXT operator N is
(n+N +N + 1), as:

• α: n = ⌈log2N⌉

• s: N qubits

• b: 1 qubit

• snew: N qubits
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5.6.1 Example

We consider a 1-way associative cache with two lines. We suppose to have the
following sequence of accesses:

ABABE∗AE∗ (5.20)

where
E∗ = {E,F} (5.21)

With the compact encoding, to code the access α, we need two qubits: α0α1.

A
[
0 0

]
B

[
0 1

]
E

[
1 0

]
F

[
1 1

]
We need four qubits to store the state s of the cache: s = sAsBsEsF .

sα =

{
1 if α is in the cache
0 otherwise

.

In our example we have four possible situations that can happen: ABABEAE,
ABABEAF, ABABFAE and ABABFAF. There are only deterministic accesses at
the beginning: we have two cache misses (A, B) and two cache hits (A, B).

0000 1000 1100 · · ·

+1 +1

access to A access to B

cache miss

access to A

cache miss

· · · 1100 1100

+0 +0

access to A access to B

cache hit cache hit

We apply the Hadamard gate on the second qubits to build a superposition of
E and F.
The miss operator M for our example is:

|α, s, b⟩ −→ |α, s, b⊕ miss(α, s)⟩ (5.22)
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where:

miss(α, s) = mA ⊕mB ⊕mE ⊕mF (5.23)

More precisely:

• mA = ¬α0 ∧ ¬α1 ∧ ¬s00

• mB = ¬α0 ∧ α1 ∧ ¬s01

• mE = α0 ∧ ¬α1 ∧ ¬s10

• mF = α0 ∧ α1 ∧ ¬s11

The number of (non-auxiliary) qubits needed by the operator M is 7:

• access α: 2 qubits

• cache state s: 4 qubits

• target b: 1 qubit

The number of (non-auxiliary) qubits needed by the operator N is 11:

• access α: 2 qubits

• cache state s: 4 qubits

• target b: 1 qubit

• new cache state s: 4 qubits

If a cache miss happens

In the circuit below we consider an access to the element A (i.e. α =
[
0 0

]
), while

inside the cache there is only B (i.e s =
[
0 1 0 0

]
. This situation generates

a cache miss. After applying the MISS operator, q will be equal to 1. The
NEXT operator creates a new cache, representing the presence of A and B (i.e.
snew =

[
1 1 0 0

]
).
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M

0

N

SnewA

0

0
0

0

0

1

0

0

1

0

1

0

1

Q

mA

0mB

mE 0
mF 0

0b

α0

α1

¬ α0 · ¬α1 · ¬s00 = 1 · 1 · 1 = 1

sA
sB
sE
sF

¬ α0 · α1 · ¬s01 = 1 · 0 · 0 = 0

α0 · ¬α1 · ¬s10 = 0 · 1 · 1 = 0

α0 · α1 · ¬s11 = 0 · 0 · 1 = 0

mA ⊕ mB ⊕ mE ⊕ mF = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1

0
0
0
0

0 + 1 = 1

1 + 0 = 1

0 + 0 = 0

0 + 0 = 0

0

0

0

1

0

0
0

1

SnewB

SnewE

SnewF

5.7 Conclusion

To explore the potential advantages of quantum computing for static analysis, we
chose to consider programs performing non-deterministic accesses to the memory
as a first case study. Since static analysis on those programs generates a consider-
able amount of equally important execution paths, it is tempting to use quantum
parallelism to build a superposition of analysis results (here, the number of cache
misses) for all these paths. Overall, this chapter presents a preliminary work and
there still are some aspects, in particular with respect to post-processing of the
quantum states, that require further exploration to derive a fully functional algo-
rithm. For instance, we should try to encode the cache state s in a compact way
because it would potentially be more efficient in terms of the number of qubits re-
quired (yet, this can be expected to result in a gate increase trade-off). To do so, we
should find a way to connect the elements represented into the cache state (i.e. the
index of the accessed element in E) and the corresponding elements in E . Also, a
complete formalization of the creation of the state superposition in the second step
of the algorithm must be dealt with. We considered a straightforward program to
which we applied our algorithm in this chapter. We should define an approach for
more complex programs. For example, we could beforehand split the program into
smaller pieces onto which we would perform the quantum static analysis described
in this chapter instead of directly applying it holistically to the program. Beyond
those technical details, some conceptual questions must be raised as well. We have
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yet to provide post-processing for the superposed state whose construction was
shown in this chapter, as the ultimate goal is to extract beneficial analysis results,
as we state in section 5.4.4. There are pieces of evidence that quantum computing
can significantly accelerate certain computations, even if there is no formal proof
of that, except for the case of Grover’s algorithm. It is also worth mentioning that
exponential differences in speed-ups between classical and quantum computing are
known only for problems with no formally established complexity lower bounds.
For the future, to obtain a speed-up over classical algorithms, we could try to
take advantage of Simon’s algorithm, which is an oracle algorithm that provides
an exponential speed-up over classical computation. However, this will most likely
apply to programs with specific access patterns. Another option could be to obtain
a polynomial speed-up over classical computation, as researchers do today.





Chapter 6

Porting a classical dynamic
programming algorithm for WCET
to the quantum framework

In this chapter, we propose a quantum-based solution to the problem of counting
the cache hits, an important issue when analyzing real-time embedded applica-
tions. This field has already seen the development of quantum-inspired classi-
cal algorithms, which are competitive with the state of the art. We designed a
polynomial-time dynamic programming algorithm for computing the lowest num-
ber of cache hits realized by a deterministic sequence of memory accesses in the
presence of preemptions. Our contribution consists of porting that algorithm to
the quantum framework, improving the algorithm’s complexity from O(N3) to
O(N2 + N). The content of this chapter has been published as a long paper in
the proceedings of the Quantum Software Engineering and Technology Workshop
(QSET21), co-located with IEEE International Conference on Quantum Comput-
ing and Engineering (QCE21) (IEEE Quantum Week 2021) 1.

6.1 Introduction

For the most part, the interest addressed to quantum computing comes from the
ability of qubits to store a superposition state that reflects all the possible in-
puts/outputs of a given algorithm until a measurement is done. This property is
called quantum parallelism and can, in some instances, give a massive performance
boost for quantum algorithms. However, the advantages of quantum computing do

1Gabriella Bettonte, Stéphane Louise, Renaud Sirdey. Towards a quantum algorithm for eval-
uating WCETs, 2nd Quantum Software Engineering and Technology Workshop, IEEE Quantum
Week 2021, Oct 2021, Virtual Conference, United States.

73
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not come without caveats: only some classes of problems can be solved by quan-
tum computing, with a definite gain in terms of efficiency with respect to classical
computing. Indeed, one crucial research issue related to quantum computing is
defining with precision such problems.

However, we can identify two main design blueprints within the variety of
quantum algorithms. The first one is defined by quantum algorithms capable
of reaching an exponential speedup over classical algorithms on precisely defined
and heavily structured mathematical problems like Shor’s algorithm for integer
factorization. The second one is defined by quantum algorithms with a quadratic
speedup over classical ones like Grover’s algorithm for searching an unstructured
array. Still, many questions remain about the real-world applications and benefits
of quantum computing, especially for more arbitrary problems and fields without
any a priori quantum-friendliness.

We consider the problem of worst-case execution time (WCET) evaluation by
static analysis of programs. The WCET analysis is highly relevant to the design of
safety-critical real-time systems, which must respect all the timing constraints to
match safety properties. Also, WCET analysis has recently seen the developments
of quantum-inspired classical algorithms, which are competitive (in terms of pre-
cision and efficiency) with state-of-the-art approaches. Furthermore, the problems
arising in WCET evaluation cover a wide range of complexity classes, from unde-
cidability in the general case to NP -hardness and polynomial-time solvability in
some restricted cases [29]. As such, it appears to provide a relevant playground to
put the quantum computing promise to the test, although other fields may be as
relevant and should be explored as well.

In this direction, in this chapter, we tackle only a restricted setup with the
most simple program model: the evaluation of the worst-case number of cache
misses of programs performing deterministic sequences of memory accesses in case
of arbitrary preemptions. Preemption is the act of interrupting one task to allow
the execution of another task on a machine. There is a strong connection be-
tween the number of cache misses done by a program and its execution time, as
uncached memory accesses are highly time-consuming on modern processors. In
other words, we consider a single path program (linear sequences of instructions),
and the complexity of the model comes from the arbitrary-placed interruptions
due to other programs running on the same system, which create interferences in
the cache memory. Our model considers K preemption points, which can occur at
any time in the sequence, making the cache behavior non-predictable.

In this chapter, we propose a dynamic programming classical algorithm with
polynomial-time complexity to compute the minimal number of cache hits in the
sequence of memory accesses as a proxy measure of the WCET for the considered
program. Although our model is standard for the WCET community, we consider
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it, as well as the classical polynomial-time algorithm solving it, as the basis to
derive a lower complexity (still polynomial-time) hybrid quantum-classical algo-
rithm. In doing so, we demonstrate a first benefit of explicitly using the quantum
computing paradigm in the WCET calculations field, albeit in a simplified setting.

Dynamic programming is an algorithmic technique to solve a problem con-
sisting in finding one optimal solution by solving a family of more manageable
sub-problems. We designed a dynamic programming algorithm to compute the
minimal number of cache hits while executing a deterministic sequence with K
preemptions. This technique to solve WCETs is consistent with other classical
solutions in the literature [49]. Still, we want to emphasize that designing the best
classical algorithm to solve the considered problem is not the point of our work: we
are focused on the portability of classical algorithms to the quantum framework.

This chapter is organized as follows: Section 6.2 provides a brief overview
of cache memories and preemptions. Then, Section 6.3 places the work in the
context of the state-of-the-art and presents our program model. In Section 6.4
we propose a dynamic programming algorithm for evaluating WCET. Section 6.5
then contains the quantum version of that algorithm. Lastly, in Section 6.6, we
compare the complexity of the two algorithms, and in Section 6.7, we provide some
perspectives for future works.

6.2 Background on cache and preemption
Cache memories impact the variability of execution times since the access time
between an element stored in the cache memories and an element that is not
can be up to two orders of magnitude. As cache memories are limited in size,
the hardware uses the history of previous accesses in the cache to decide which
currently stored elements should be replaced when a new one must be stored in the
cache memory. For instance, LRU (Least Recently Used) cache policy privileges,
as a replacement candidate, the oldest used line of memory in a set. In the general
case, when the program access an element already in the cache, it is called a
cache hit ; otherwise, cache miss. Cache misses impact the execution time because
the missing element needs to be fetched from the main memory, which induces
additional delays.

The advantage of preemptions is the possibility of optimal computing power
utilization. In particular, in fully preemptive systems, the running task can be
interrupted at any time by another task with higher priority and be resumed to
continue when all higher priority tasks have been completed [50]. When the task is
preempted, the memory blocks corresponding to the task are usually considered as
flushed from the cache memory2, between the time the task is preempted and the

2Whilst it is possible that, for a given set of tasks, preemption would preserve some cache



76 CHAPTER 6. DYNAMIC PROGRAMMING

time the task resumes execution. Therefore a substantial amount of time is spent
to restore the previous content of the cache, greatly increasing the task’s execution
time [51]. In certain cases, preemption has not a great impact because it happens
at a moment of the program’s execution in which data stored in the cache are not
useful: for instance, before a cache miss. Still, in general, preemption damages
program locality and therefore it causes a degradation of system predictability,
making WCETs not easy to characterize and predict [52] [53] [51] [50].

6.3 Deterministic memory access with preemptions
We consider programs that perform deterministic accesses to the memory that can
be interrupted at any time, using the count of cache misses as a first proxy eval-
uation of the WCET (or, as the literature calls it, the Cache memory preemption
delay). A “dual” approach has already been explored in the literature, with papers
about applying static analysis techniques to quantum algorithms to evaluate their
performance and formally analyze their functional properties [42], [43]. On the
other hand, the applications of quantum computing to improve the static analysis
of programs has been only scarcely explored [46] and even lesser so is the issue of
static analysis of cache misses and WCET, where only quantum-inspired classic
algorithm have been proposed [38]. So many questions remain open about the ap-
plications and benefits of quantum computing for software engineering issues [46].
Numerous research works exist in improving classical polynomial algorithms with
a quantum-inspired approach, allowing to gain a polynomial factor of complexity
[21], [54]–[60]. In this chapter, we propose a dynamic programming algorithm for
computing the minimal number of cache hits and improve it into a quantum-classic
hybrid version, leading to lower complexity.

As a model case, we consider the problem of evaluating the WCET of a de-
terministic sequence of memory accesses in case of preemptions. We denote the
sequence of memory accesses as a0, a1, . . . , aN−1 and we are supposed to know if
each of them is a cache miss or a cache hit in an execution without preemptions
(this is done in linear time as a pre-processing step). We denote X[i] the i-th
access of the sequence and

X[i] =

{
1 if cache miss
0 if cache hit.

P is the set of possible contents of those memory accesses p0, . . . , pM−1. Any
memory access ai belongs to the set P , i.e. ai ∈ P . The number of preemptions

lines, the situation when one wants to calculate WCET of a task in the general case requires the
hypothesis that no useful cache line would be retained by a preemption.
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interrupting the program is a fixed number of K. Preemption can happen at
any time, leading to the model’s non-predictability. We also suppose that when
preemption occurs, the cache’s content is flushed from it.

6.4 Our classical starting point
We designed a dynamic programming algorithm to compute the minimal number
of cache hits while executing a deterministic sequence with K preemptions. The
minimal number of cache hits corresponds to the maximal number of cache misses.

First, we scan the sequence of memory accesses, as it would be without any
point of preemption, and we store the information of being a cache hit or miss into
an array X: if the considered access is cache miss X[i] = 1, X[i] = 0 otherwise.
We also compute the Ni[pt] > i, the table of indexes of the first access to the
object pt, after the i-th access, into the memory access sequence. If there is no
other access to pt, we write ∞.

We suppose that we know the solution of the problem for the sequence ai+1, · · · , aN−1

and all the numbers of preemptions k, where 0 ≤ k ≤ K. In other words, it is
known:

• S(i + 1, pt, k): the smallest number of cache hits for the object pt and k
preemptions;

• Y (i+ 1, k) ≥ i+ 1 : index of the next preemption in this solution.

We want to determine the S(i, pt, k) and the Y (i, k),∀i, k from the S(i+1, pt, k)
and Y (i+ 1, k). Many different cases have to be considered.

6.4.1 Case 1: cache miss

For a given pt ∈ P and a given 0 ≤ k ≤ K, how to determine S(i, pt, k) and Y (i, k)
from S(i+1, pt, k) and Y (i+1, k), in the case of a cache miss when executing the
linear sequence, without preemptions. In other words, when X[i] = 1).

Independently from the previous preemptions that may have happened, when
we call the data ai a cache miss is generated. A preemption point can arrive just
before ai (what we call sub-case β) or not (what we call sub-case α).

Sub-case α

In this case, there is not preemption just before calling ai. This means that the
number of cache hit will not be modified:

S(i, pt, k) = S(i+ 1, pt, k) ∀t, k. (6.1)
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More than that, the index of the next point of preemption is not modified,
because the number of preemptions didn’t change:

Y (i, k) = Y (i+ 1, k) ∀k. (6.2)

Sub-case β

This case describes the situation in which a point of preemption happens, just
before calling ai. As condition we have that k > 0. For k = 0, we consider
S(i, pt, 0) = ∞, for all pt.
We loose 1 cache hit if the next access to pt was a cache hit (in the linear sequence
X) and if the next preemption is after this access. If the next preemption is before
this access, we already subtracted it from the cache hit counter. In symbols:

∀pt, k
if X[Ni[pt]] = 0 and Y (i+ 1, k − 1) > Ni[pt]

then S(i, pt, k) = S(i+ 1, pt, k − 1)− 1

otherwise S(i, pt, k) = S(i+ 1, pt, k − 1)

(6.3)

We have also to change the index of the next preemption:

Y (i, k) = i ∀k. (6.4)

6.4.2 Case 2: cache hit

For a given pt ∈ P and a given 0 ≤ k ≤ K, how to determine S(i, pt, k) and Y (i, k)
from S(i + 1, pt, k) and Y (i + 1, k), in the case of a cache hit when executing the
linear sequence, without preemptions. In other words, when X[i] = 0).

A preemption point can arrive just before ai (what we call the sub-case β) or
not (what we call sub-case α).

Sub-case α

In this case, there is no preemption just before calling ai.
This means that the number of cache hits will not be modified, for all the objects
pt ∈ P if the considered object pt it is not the called one ai. In symbols:

∀k, t such that pt ̸= ai
S(i, pt, k) = S(i+ 1, pt, k).

(6.5)

Otherwise, if the considered object pt is the called element ai, the counter of
cache hits have to be increased by one. Indeed, since no preemption happened and
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the object ai gave a cache hit in the sequential execution, it will gives a cache hit
as well. In symbols:

S(i, ai, k) = 1 + S(i+ 1, ai, k) ∀k. (6.6)

We have also that the index of the next preemption does not change, because
a preemption did not happen.

Y (i, k) = Y (i+ 1, k) ∀k. (6.7)

Sub-case β

This case describes the situation in which a point of preemption happens, just
before calling ai. As condition we have that k > 0. For k = 0, we consider
S(i, pt, 0) = ∞, for all pt.
The counter of cache hits has to be decreased by one if the next access to pt was
a cache hit (in the linear sequence X) and if the next preemption is after this
access. If the next preemption is before this access, we already subtracted it from
the cache hit counter. In symbols:

∀k,∀t such that pt ̸= ai
if X[Ni[pt]] = 0 and Y (i+ 1, k − 1) > Ni[pt]

then S(i, pt, k) = S(i+ 1, pt, k − 1)− 1

otherwise S(i, pt, k) = S(i+ 1, pt, k − 1)

(6.8)

and, because of the preemption, the counter of cache hits for the called object ai
become:

S(i, ai, k) = S(i+ 1, ai, k − 1). (6.9)

We have also to change the index of the next preemption:

Y (i, k) = i ∀k. (6.10)

6.4.3 Algorithm

For both cases 1 and 2, the choice between the sub-case α and the sub-case β is
done in order to minimize the number of cache hits. In other words, for a given k
we choose the option that minimize:∑

t

S(i, pt, k). (6.11)

In the situation in which the sub-case α and β give the same amount of cache hits,
the choice between them is done arbitrarily.
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We use those recursion rules to compute the S(∗, pt, k) and the Y (∗, k) from
right (the end of the sequence) to the left (beginning of the sequence), knowing
that that:

• S(N − 1, pt, k) and Y (N − 1, k), ∀k are trivial to compute;

• The solution of the problem is the smallest number of cache hits for all the
objects and for k = K, i.e.

∑
t S(i, pt, K).

Since M and K are bounded by N , the time and memory complexity of the
algorithm is O(N3)

6.4.4 Example of application of the classic algorithm

For example, we consider a cache of size 2, with K = 2 (i.e., two preemptions
occur). The set of possible contents of the cache is P = {p0, p1, p2} = {A,B,C}.
The sequence of memory accesses is a0a1a2a3a4 = ABABC. The first two accesses
and the last one are cache misses, while the third and fourth accesses are cache
hits.

The worst case scenario is when the two point of preemptions delete both of
the two cache hit, resulting in a sequence of all cache misses. In particular this
result is given by different situations:

• ApBpABC

• ABppABC

• ABpApBC

• ABpABpC

where p represents a point of preemption. We can summarize saying that the
worst case scenario is given by the situation:

A(miss)B(miss)p(preemption)A(miss)B(miss)C(miss).

and the second point of preemption can be anywhere, it will give 0 cache hits
anyway. After the algorithm performs the first scan of the sequence of memory
accesses, we have X = 11001.
The table N is:

N =

i \pt p0 (A) p1 (B) p2 (C)
0 2 1 4
1 2 3 4
2 ∞ 3 4
3 ∞ ∞ 4
4 ∞ ∞ ∞

(6.12)
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We provide below the details for all the iterations.

First round i = 4

The first iteration corresponds to the 4th access into the sequence, i.e. a4 = C. In
the linear executions sequence this access corresponds to a cache miss. It is clear
that, no matter if a preemption happens or not, the cache hits counter is 0 for all
pt and k.

S(4, pt, k) =

t \k 0 1 2
p0 (A) 0 0 0
p1 (B) 0 0 0
p2 (C) 0 0 0

(6.13)

The index of the next preemption is:

Y (4, k) =
k 0 1 2

∞ 4 4 (6.14)

Second round i = 3

The second iteration corresponds to the access into the sequence a3 = B. In the
linear executions sequence this access corresponds to a cache hit. We will apply
the rules described by the Case 2 in 6.4.2. We have to analyze both sub-cases α
and β.

• Case α (without preemption), we have:

– S(3, A, k) = S(4, A, k), for all k

– S(3, C, k) = S(4, C, k), for all k

– S(3, B, k) = 1 + S(4, B, k), for all k.

S(3, pt, k) =

t \k 0 1 2
p0 (A) 0 0 0
p1 (B) 1 1 1
p2 (C) 0 0 0

(6.15)

Then we have the table of index of the next preemption Y (i, k) = Y (i+1, k),
∀k

Y (3, k) =
k 0 1 2

∞ 4 4 (6.16)

• Case β (with preemption), we have:
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– S(3, pt, 0) = ∞, for all pt;

– X[N3(A)] = X[∞] is not defined, then S(3, A, k) = S(4, A, k − 1), for
k = 1, 2;

– X[N3(C)] = X[4] = 1, then S(3, C, k) = S(4, C, k − 1), for k = 1, 2;

– a3 = B, then S(3, B, k) = S(4, B, k − 1), for k = 1, 2.

S(3, pt, k) =

t \k 0 1 2
p0 (A) ∞ 0 0
p1 (B) ∞ 0 0
p2 (C) ∞ 0 0

(6.17)

Then we have the table of index of the next preemption Y (i, k) = i, ∀k

Y (3, k) =
k 0 1 2

3 3 3 (6.18)

Final tables S(i, pt, k) and Y (i, k), made by choosing between the tables of sub-
cases, column by column, the option that minimize

∑
t S(i, pt, k). In this example,

we take the first column from the sub-case α (without preemption) and the second
and the third ones from the sub-case β (with preemption).

S(3, pt, k) =

t \k 0 1 2
p0 (A) 0 0 0
p1 (B) 1 0 0
p2 (C) 0 0 0

(6.19)

Y (3, k) =
k 0 1 2

∞ 3 3 (6.20)

Third round i = 2

The third iteration corresponds to the access into the sequence a2 = A. In the
linear executions sequence this access corresponds to a cache hit. We will apply
the rules described by the Case 2 in 6.4.2. We have to analyze both sub-cases α
and β.

• Case α (without preemption), we have:

– S(2, B, k) = S(3, B, k), for all k

– S(2, C, k) = S(3, C, k), for all k

– S(2, A, k) = 1 + S(3, A, k), for all k.
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S(3, pt, k) =

t \k 0 1 2
p0 (A) 1 1 1
p1 (B) 1 0 0
p2 (C) 0 0 0

(6.21)

Then we have the table of index of the next preemption Y (i, k) = Y (i+1, k),
∀k

Y (2, k) =
k 0 1 2

∞ 3 3 (6.22)

• Case β (with preemption), we have:

– S(2, pt, 0) = ∞, for all pt;
– X[N2(B)] = X[3] = 0 and Y (3, 0) = ∞ > N2[B] = 3 then S(2, B, 1) =
S(3, B, 0)− 1 = 1− 1 = 0;

– X[N2(B)] = X[3] = 0 and Y (3, 1) = 3 ≯ N2[B] = 3 then S(2, B, 2) =
S(3, B, 1) = 0;

– X[N2(C)] = X[4] = 1, then S(2, C, k) = S(3, C, k − 1), for k = 1, 2;
– a2 = A, then S(2, A, k) = S(3, A, k − 1), for k = 1, 2.

S(2, pt, k) =

t \k 0 1 2
p0 (A) ∞ 0 0
p1 (B) ∞ 0 0
p2 (C) ∞ 0 0

(6.23)

Then we have the table of index of the next preemption Y (i, k) = i, ∀k

Y (2, k) =
k 0 1 2

2 2 2 (6.24)

Final tables S(i, pt, k) and Y (i, k), made by choosing between the tables of sub-
cases, column by column, the option that minimize

∑
t S(i, pt, k). In this example,

we take the first column from the sub-case α (without preemption) and the second
and the third ones from the sub-case β (with preemption).

S(2, pt, k) =

t \k 0 1 2
p0 (A) 1 0 0
p1 (B) 1 0 0
p2 (C) 0 0 0

(6.25)

Y (2, k) =
k 0 1 2

∞ 2 2 (6.26)
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Fourth round i = 1

The fourth iteration corresponds to the access into the sequence a1 = B. In the
linear executions sequence this access corresponds to a cache miss. We will apply
the rules described by the Case 1 in 6.4.1. We have to analyze both sub-cases α
and β.

• Case α (without preemption), we have:

– S(1, A, k) = S(2, A, k), for all k.

– S(1, B, k) = S(2, B, k), for all k

– S(1, C, k) = S(2, C, k), for all k

S(1, pt, k) =

t \k 0 1 2
p0 (A) 1 0 0
p1 (B) 1 0 0
p2 (C) 0 0 0

(6.27)

Then we have the table of index of the next preemption Y (i, k) = Y (i+1, k),
∀k

Y (1, k) =
k 0 1 2

∞ 2 2 (6.28)

• Case β (with preemption), we have:

– S(1, pt, 0) = ∞, for all pt;

– X[N1(A)] = X[2] = 0 and Y (2, 0) = ∞ > N1[A] = 2 then S(1, A, 1) =
S(2, A, 0)− 1 = 1− 1 = 0;

– X[N1(A)] = X[2] = 0 and Y (2, 1) = 2 ≯ N1[A] = 2 then S(1, A, 2) =
S(2, A, 1) = 0;

– X[N1(B)] = X[3] = 0 and Y (2, 0) = ∞ > N1[B] = 3 then S(1, B, 1) =
S(2, B, 0)− 1 = 1− 1 = 0;

– X[N1(B)] = X[3] = 0 and Y (2, 1) = 2 ≯ N1[A] = 3 then S(1, B, 2) =
S(2, B, 1) = 0;

– X[N1(C)] = X[4] = 1, then S(1, C, k) = S(2, C, k − 1), for k = 1, 2;

S(1, pt, k) =

t \k 0 1 2
p0 (A) ∞ 0 0
p1 (B) ∞ 0 0
p2 (C) ∞ 0 0

(6.29)
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Then we have the table of index of the next preemption Y (i, k) = i, ∀k

Y (1, k) =
k 0 1 2

1 1 1 (6.30)

Final tables S(i, pt, k) and Y (i, k), made by choosing between the tables of sub-
cases, column by column, the option that minimize

∑
t S(i, pt, k). In this example,

we take the first column from the sub-case α (without preemption) and the second
and the third ones from the sub-case β (with preemption).

S(1, pt, k) =

t \k 0 1 2
p0 (A) 1 0 0
p1 (B) 1 0 0
p2 (C) 0 0 0

(6.31)

Y (1, k) =
k 0 1 2

∞ 1 1 (6.32)

Fifth round i = 0

The fifth iteration corresponds to the access into the sequence a0 = A. In the
linear executions sequence this access corresponds to a cache miss. We will apply
the rules described by the Case 1 in 6.4.1. We have to analyze both sub-cases α
and β.

• Case α (without preemption), we have:

– S(0, A, k) = S(1, A, k), for all k;

– S(0, B, k) = S(1, B, k), for all k:

– S(0, C, k) = S(1, C, k), for all k

S(0, pt, k) =

t \k 0 1 2
p0 (A) 1 0 0
p1 (B) 1 0 0
p2 (C) 0 0 0

(6.33)

Then we have the table of index of the next preemption Y (i, k) = Y (i+1, k),
∀k

Y (0, k) =
k 0 1 2

∞ 1 1 (6.34)

• Case β (with preemption), we have:
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– S(0, pt, 0) = ∞, for all pt;
– X[N0(A)] = X[2] = 0 and Y (1, 0) = ∞ > N0[A] = 2 then S(0, A, 1) =
S(1, A, 0)− 1 = 1− 1 = 0;

– X[N0(A)] = X[2] = 0 and Y (1, 1) = 1 ≯ N0[A] = 2 then S(0, A, 2) =
S(1, A, 1) = 0;

– X[N0(B)] = X[1] = 1 then S(0, B, k) = S(1, B, k − 1), for k = 1, 2 ;
– X[N1(C)] = X[4] = 1, then S(1, C, k) = S(2, C, k − 1), for k = 1, 2;

S(0, pt, k) =

t \k 0 1 2
p0 (A) ∞ 0 0
p1 (B) ∞ 1 0
p2 (C) ∞ 0 0

(6.35)

Then we have the table of index of the next preemption Y (i, k) = i, ∀k

Y (0, k) =
k 0 1 2

0 0 0 (6.36)

Final tables S(i, pt, k) and Y (i, k), made by choosing between the tables of sub-
cases, column by column, the option that minimize

∑
t S(i, pt, k). In this example,

we take the first and second column from the sub-case α (without preemption)
and the third one from the sub-case β (with preemption).

S(0, pt, k) =

t \k 0 1 2
p0 (A) 1 0 0
p1 (B) 1 0 0
p2 (C) 0 0 0

(6.37)

Y (0, k) =
k 0 1 2

∞ 1 0 (6.38)

The solution is given by the sum of the values in the last column of the last
table. Then,the minimal number of cache hits for the sequence ABABC is 0+0+
0 = 0 cache hits.

6.5 Going quantum
This section presents the steps towards a quantum version of the previous algo-
rithm. We already know the cache’s behavior in case of the program’s execution
without preemptions (i.e., the arrayX) and the tableN , both deterministic. While
searching for the minimal number of cache misses, in the classic algorithm, we per-
form three nested loops:
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• over the sequence memory accesses (N iterations)

• over all the possible objects that can be into the cache (M iterations)

• over all the k with 0 ≤ k ≤ K (K + 1 iterations)

To compute the solution (i.e., the number of cache hits corresponding to K
preemption and the last memory access), the algorithm needs all the number of
cache hits corresponding to k with 0 ≤ k ≤ K. We reformulated the dynamic pro-
gramming classic algorithm into a hybrid quantum-classical algorithm in which
the third loop (the one over the number of preemptions) is suitable to be executed
on a quantum computer.

6.5.1 Superpositions construction

To explain the construction of the superpositions in the quantum version of the
previous algorithm, we exploit the previous example to make easier going through
the details of the algorithm and give a glimpse of its functioning.
We recall from the previous example that the sequence of accesses is a0a1a2a3a4 =
ABABC. The set of object is P = {A,B,C}. We build a superposed state
represented as |k, S⟩ where k is the number of considered preemptions and S
is the corresponding number of cache hits. In other words, for each number of
preemptions k, it is known the minimum possible number of cache hits while
performing the sequence of memory accesses. We have to consider k = {0, 1, 2}.
The number of cache hits, for this example, can be equal to {0, 1}. Thus, for our
example, we consider the following table for the first round of the algorithm (i.e.
when i = 4).

A 1√
3
|0, 0⟩+ 0 |0, 1⟩+ 1√

3
|1, 0⟩+ 0 |1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩

B 1√
3
|0, 0⟩+ 0 |0, 1⟩+ 1√

3
|1, 0⟩+ 0 |1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩

C 1√
3
|0, 0⟩+ 0 |0, 1⟩+ 1√

3
|1, 0⟩+ 0 |1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩

For i = 3, we have a3 = B that corresponds to a cache hit. To pass from
table for i = 4 to the table for i = 3, we switch the two first entries for the object
B (we have indeed a cache hit when calling the second B, when the number of
preemption k is 0). The table for i = 3 is:

A 1√
3
|0, 0⟩+ 0 |0, 1⟩+ 1√

3
|1, 0⟩+ 0 |1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩

B 0|0, 0⟩+ 1√
3
|0, 1⟩+ 1√

3
|1, 0⟩+ 0 |1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩

C 1√
3
|0, 0⟩+ 0 |0, 1⟩+ 1√

3
|1, 0⟩+ 0 |1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩
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6.5.2 Case 1: a cache miss happens

Let us analyze the case in which a cache miss happens (i.e. in the case X[i] = 1),
see the classical counterpart in 6.4.1.

Sub-case α: no preemption

We recall that, from equation 6.1, the sub-case α that describes the case in which
no preemption happens just before the called data ai corresponds to perform
S(i, pt, k) = S(i + 1, pt, k),∀t, k. This corresponds to applying an identity ma-
trix (for our example, of dimension 6) for each object in P .

I =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (6.39)

For instance, if we are in the sub-case α for a input superposition, for an object,
as:

1√
3
|0, 0⟩+ 0 |0, 1⟩+ 1√

3
|1, 0⟩+ 0 |1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩ (6.40)

at the next iteration, we obtain the same superposition. In other words, we ap-
pliedy the identity matrix I6, for each object, on the corresponding vector of am-
plitudes, in other to pass to the next iteration:

1√
3

0
1√
3

0
1√
3

0


(6.41)

Sub-case β: preemption

For the sub-case β, we recall equation 6.3. In this sub-case, we have a condition:

if X[Ni[pt]] = 0 and Y (i+ 1, k − 1) > Ni[pt] (6.42)

• If this condition in 6.42 is FALSE we apply:

S(i, pt, k) = S(i+ 1, pt, k − 1). (6.43)
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To perform the equation 6.43, for each object pt, we define the operator:

D =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0

 (6.44)

It is easy to see that the operator D is not more than an permutation from
the values of S(i + 1, pt, k − 1) to S(i, pt, k), for an object pt ∈ P . For
instance, if we are in the sub-case β, where the condition 6.42 is false for a
input superposition as:

1√
3
|0, 0⟩+ 0 |0, 1⟩+ 1√

3
|1, 0⟩+ 0 |1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩ (6.45)

we obtain again, for this case, the same superposition. In other words, we
apply the D matrix on the corresponding vector of amplitudes:

1√
3

0
1√
3

0
1√
3

0


(6.46)

and we obtain: 
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0





1√
3

0
1√
3

0
1√
3

0


=



1√
3

0
1√
3

0
1√
3

0


(6.47)

• If otherwise the condition 6.42 is TRUE, we apply:

S(i, pt, k) = S(i+ 1, pt, k − 1)− 1 (6.48)

To perform the equation, for our example, 6.48 we define the operator G, to
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apply after the operator D, where:

G =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 (6.49)

For instance, if we are in the sub-case β, where the condition 6.42 is true for
a input superposition as:

0 |0, 0⟩+ 1√
3
|0, 1⟩+ 0 |1, 0⟩+ 1√

3
|1, 1⟩+ 0 |2, 0⟩+ 1√

3
|2, 1⟩ (6.50)

we obtain:
1√
3
|0, 0⟩+ 0 |0, 1⟩+ 1√

3
|1, 0⟩+ 0 |1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩ . (6.51)

In other words, we applied the G matrix, after the D matrix, on the corre-
sponding vector of amplitudes: 

0
1√
3

0
1√
3

0
1√
3


(6.52)

We obtain: 
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0





0
1√
3

0
1√
3

0
1√
3


=



1√
3

0
1√
3

0
1√
3

0


(6.53)

Please note that the matrix G has the shape of a permutation because it is nec-
essary to maintain the reversibility. This does not represent a problem because
in the classical algorithm we never perform 6.48 when S(i + 1, pt, k − 1) = 0. To
clarify, if we consider another example as:

0 |0, 0⟩+0 |0, 1⟩+ 1√
3
|0, 2⟩+0 |1, 0⟩+0 |1, 1⟩+ 1√

3
|1, 2⟩+0 |2, 0⟩+0 |2, 1⟩+ 1√

3
|2, 2⟩ .

(6.54)
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In this case, the matrix G would be:

G =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0


(6.55)

and we would obtain:

0 |0, 0⟩+ 1√
3
|0, 1⟩+0 |0, 2⟩+0 |1, 0⟩+ 1√

3
|1, 1⟩+0 |1, 2⟩+0 |2, 0⟩+ 1√

3
|2, 1⟩+0 |2, 2⟩ .

(6.56)
The Case 2 (if a cache hit happens) is quite similar, we are not developing the

details.

6.5.3 Choice between the sub-case α and the sub-case β

In the Algorithm, at the end of each round we need to choose between the output
of the sub-case α and the output of the sub-case β. In the classical algorithm,
for a given k, we take the option that minimize

∑
t S(i, pt, k). We now provide an

equivalent, suitable to be implemented in a quantum circuit. For simplicity, let us
consider a simplified example, with respect the previous one. We suppose to have
only two elements to consider A and B. We suppose to have again k = {0, 1, 2}
and S = {0, 1}. The superpositions describing the number of cache hits for all the
possible k-s for the two elements A,B are, for instance:

A 0|0, 0⟩+ 1√
3
|0, 1⟩+ 1√

3
|1, 0⟩+ 0 |1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩

B 1√
3
|0, 0⟩+ 0 |0, 1⟩+ 1√

3
|1, 0⟩+ 0 |1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩

The two superposition are independent and we can perform the tensor product:
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

0
1√
3
1√
3

0
1√
3

0



|00⟩
|01⟩
|10⟩
|11⟩
|20⟩
|21⟩

⊗



1√
3

0
1√
3

0
1√
3

0



|00⟩
|01⟩
|10⟩
|11⟩
|20⟩
|21⟩

=



0
0
0
0
0
0
1
3

0
1
3

0
1
3

0
...



|0000⟩
|0001⟩
|0010⟩
|0011⟩
|0020⟩
|0021⟩
|0100⟩
|0101⟩
|0110⟩
|0111⟩
|0120⟩
|0121⟩

...

. (6.57)

If we write the states of the superposition for an element as:

|indexelement, valueelement⟩ (6.58)

we can express the states of the resulting superposition of the tensor product in
6.57 as:

|iAvAiBvB⟩ (6.59)

We suppose now to have to choose between the output of the sub-case α and the
output of the sub-case β. We represent the states of the superposition resulting
as output of the sub-case α as:

|iAvAiBvB⟩ . (6.60)

In particular, for iA = iB = l, where l is a fixed value of k, the only non-zero
amplitudes are those with states:

|ltA[l]ltB[l]⟩ . (6.61)

We represent the states of the superposition resulting as output of the sub-case β
as:

|i′Av′Ai′Bv′B⟩ . (6.62)

In particular, for i′A = i′B = l, where l is a fixed value of k, the only non-zero
amplitudes are those with states:

|lt′A[l]lt′B[l]⟩ . (6.63)

If we perform the tensor product between the superposition resulting as output
from the sub-case α and the superposition resulting as output from the sub-case
β we obtain a superposition which states can be represented as:

|iAvAiBvBi′Av′Av′Bv′B⟩ . (6.64)
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Then, for iA = iB = i′A = i′B = l where l is a fixed value of k, the only non-zero
amplitudes in the superposition resulting as output of the tensor product are those
with states:

|ltA[l]ltB[l]lt′A[l]lt′B[l]⟩ . (6.65)

The choice between the option α and the option β is done performing the following
comparison:

COMPARE(tA[l] + tB[l], t
′
A[l] + t′B[l]) (6.66)

choosing the option that minimize the sum.

Example

To clarify, let us consider an example. We can rewrite the superposition for the
element A such as:

0 |0, 0⟩+ 1√
3
|0, 1⟩+ 0 |1, 0⟩+ 1√

3
|1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩ =

1√
3
|0, t[0]⟩+ 1√

3
|1, t[1]⟩+ 1√

3
|2, t[2]⟩ .

(6.67)

In other words, 6.67 represents the superposition for the array:
t[0] = 1

t[1] = 1

t[2] = 0.

(6.68)

Note that he array in 6.68 corresponds to the first line of the matrix in 6.13. We
can rewrite the superposition for the element B such as:

1√
3
|0, 0⟩+ 0 |0, 1⟩+ 0 |1, 0⟩+ 1√

3
|1, 1⟩+ 1√

3
|2, 0⟩+ 0 |2, 1⟩ =

1√
3
|0, s[0]⟩+ 1√

3
|1, s[1]⟩+ 1√

3
|2, s[2]⟩

. (6.69)

In other words, 6.69 represents the superposition for the array:
s[0] = 0

s[1] = 1

s[2] = 0.

(6.70)

Note that he array in 6.68 corresponds to the second line of the matrix in 6.13. If
now we perform the tensor product between the two superpositions 6.67 and 6.69
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we obtain:

1

3
(|0, t[0], 0, s[0]⟩+ |0, t[0], 1, s[1]⟩+ |0, t[0], 2, s[2]⟩+

+ |1, t[1], 0, s[0]⟩+ |1, t[1], 1, s[1]⟩+ |1, t[1], 2, s[2]⟩+
+ |2, t[2], 0, s[0]⟩+ |2, t[2], 1, s[1]⟩+ |2, t[2], 2, s[2]⟩)

(6.71)

The only states (with amplitude non-zero) that matter to us (those with iA =
iB) are: 

|0, t[0], 0, s[0]⟩
|1, t[1], 1, s[1]⟩
|2, t[2], 2, s[2]⟩

(6.72)

Equation 6.72 express the states with non-zero amplitude and iA = iB for the
superposition resulting as output of the sub-case α. For the sub-case β, for we will
have a similar result. Equation 6.73 express the states with non-zero amplitude
and i′A = i′B for the superposition resulting as output of the sub-case β.

|0, t′[0], 0, s′[0]⟩
|1, t′[1], 1, s′[1]⟩
|2, t′[2], 2, s′[2]⟩

(6.73)

We perform the tensor product between the superposition produced by the sub-
case α and the superposition produced by the sub-case β. We obtain a resulting
superposition which states are:

|0, t[0], 0, s[0], 0, t′[0], 0, s′[0]⟩
|0, t[0], 0, s[0], 1, t′[1], 1, s′[1]⟩
...
|1, t[1], 1, s[1], 0, t′[0], 0, s′[0]⟩
|1, t[1], 1, s[1], 1, t′[1], 1, s′[1]⟩
...
|2, t[2], 2, s[2], 2, t′[2], 2, s′[2]⟩

(6.74)

In particular, the resulting superposition is:

1

9
(|0, t[0], 0, s[0], 0, t′[0], 0, s′[0]⟩+ |0, t[0], 0, s[0], 1, t′[1], 1, s′[1]⟩+ . . .

+ |1, t[1], 1, s[1], 0, t′[0], 0, s′[0]⟩+ |1, t[1], 1, s[1], 1, t′[1], 1, s′[1]⟩+ . . .

+ |2, t[2], 2, s[2], 2, t′[2], 2, s′[2]⟩)

(6.75)
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The only states that matter to us are those with non-zero amplitudes, when
iA = iB = i′A = i′B: 

|0, t[0], 0, s[0], 0, t′[0], 0, s′[0]⟩
|1, t[1], 1, s[1], 1, t′[1], 1, s′[1]⟩
|2, t[2], 2, s[2], 2, t′[2], 2, s′[2]⟩

(6.76)

We need an auxiliary qubit to store the boolean value resulting from the evalua-
tion of the condition and make the choice between the sub-case α and the sub-case
β a reversible operation. Let us perform a small change of notation to take into
consideration the boolean value b. We consider from now on t(b) for the element
A and s(b) for the element B. Thus, we have:{

t(0) = t

t(1) = t′
(6.77)

and {
s(0) = s

s(1) = s′
(6.78)

Then, for a fixed k, from 6.76 and considering the new notation in 6.77 and
6.78, we have: ∣∣k, t(b)[k], k, s(b)[k], k, t(1−b)[k], k, s(1−b)[k], b

〉
. (6.79)

Let us suppose, for instance, b = |0⟩. If t(0)[k] + s(0)[k] < t(1)[k] + s(1)[k], then
b = |0⟩ and the state stays as it is. In the final output, for the considered k, we
will have : ∣∣k, t(0)[k], k, s(0)[k], k, t(1)[k], k, s(1)[k], 0〉 (6.80)

Otherwise if t(1)[k] + s(1)[k] < t(0)[k] + s(0)[k],then b = |1⟩ and for the considered k
we obtain: ∣∣k, t(1)[k], k, s(1)[k], k, t(0)[k], k, s(0)[k], 1〉 (6.81)

For the next iteration, we work on the states without considering the qubit b. In
this way, the size of states increases but not size of computations. For the other
states in 6.75 such that it is not true that iA = iB = i′A = i′B, we simply consider
that the circuit returns an arbitrary value of b (e.g. b = |0⟩) since we are not
interested in those states.

Example

As example, we suppose that we have to choose between the superposition pro-
duced by the sub-case α and the one produced by the sub-case β. We consider
the tensor product of those two and the resulting superposition. The only states
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in the resulting superposition that have non-zero amplitude and that respect our
desired condition of equality between indices are :

∣∣0, t(0)[0], 0, s(0)[0], 0, t(1)[0], 0, s(1)[0], 0〉∣∣1, t(0)[1], 1, s(0)[1], 1, t(1)[1], 1, s(1)[1], 0〉∣∣2, t(0)[2], 2, s(0)[2], 2, t(1)[2], 2, s(1)[2], 0〉 . (6.82)

Then, for example, we suppose that:
t(0)[0] + s(0)[0] < t(1)[0] + s(1)[0]

t(1)[1] + s(1)[1] < t(0)[1] + s(0)[1]

t(0)[2] + s(0)[2] < t(1)[2] + s(1)[2].

(6.83)

Thus, the circuit described above operates on the states and in the result we have
as states of matter the following ones:

∣∣0, t(0)[0], 0, s(0)[0], 0, t(1)[0], 0, s(1)[0], 0〉∣∣1, t(1)[1], 1, s(1)[1], 1, t(0)[1], 1, s(0)[1], 1〉∣∣2, t(0)[2], 2, s(0)[2], 2, t(1)[2], 2, s(1)[2], 0〉 . (6.84)

6.5.4 Some clarifications on the algorithm

While describing the algorithm we discussed the two possible sub-cases that may
happen when executing a program. A point of preemption may (sub-case β) or may
not (sub-case α) happen just before performing a memory access. We presented
two cases as we computed both of them, over duplicating the qubits, to simplify
the description. However, such simplification does not reflect a necessary step to
perform into the algorithm. Indeed, at each iteration of the algorithm we can
rather compute:

x = cf(z) + (1− c)g(z) (6.85)

where x is the output superposition, z is the input superposition, c is the condition
that chooses between the sub-case α and the sub-cases β, f(z) is the function that
does not modify the superposition (sub-case α) and finally g(z) is the function
performing the SWAP between the qubits (sub-case β).

While executing the algorithm, we use auxiliary qubits. We can choose to keep
these auxiliary qubits unchanged. Alternatively, since we only perform reversible
operations and if there is an incentive to do it, it is always possible to de-intricate
these qubits, by performing a correct set of operations.
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6.5.5 Post-processing

After applying the previous quantum-algorithm, for each k, we have a superposi-
tion of states |k, Smin(k)⟩ where Smin(k) is the minimal number of cache hits if k
preemptions occur and 0 ≤ k ≤ K. We need to extrapolate the minimal number
of cache hits corresponding to K preemption from superposition (i.e. Smin(K).

In particular, we expect to have as input for the oracle the superposition:

0 |0, 0⟩+ 0 |0, 1⟩+ · · ·+ α0 |0, Smin(0)⟩+ · · ·
+ 0 |k,N − 1⟩+ 0 |k, 0⟩+ 0 |k, 1⟩+ · · ·+ αk |k, Smin(k)⟩+ · · ·+ 0 |k,N − 1⟩+ · · ·

+ 0 |K, 0⟩+ 0 |K, 1⟩+ · · ·+ αK |K,Smin(K)⟩+ · · ·+ 0 |K,N − 1⟩
(6.86)

where α0, . . . , αK are the only non-zero amplitudes. We have that α0 = α1 =
· · · = αK = 1√

K+1
. Thus, the superposition in 6.86 omitting the states with zero

amplitude, is:

1√
K + 1

|0, Smin(0)⟩+ · · ·+ 1√
K + 1

|k, Smin(k)⟩+ · · ·+ 1√
K + 1

|K,Smin(K)⟩

(6.87)
We suppose then to build an oracle OG that selects the states with index corre-
sponding to K, in order to isolate the value of interest Smin(K) (i.e. the number of
cache hits for K preemptions). If, at the end of the algorithm, the result is |x, y⟩
where x ̸= K, it means that the searching algorithm did not work, and we should
apply the algorithm again. The final result is the sum, for each element in P , of
its relative Smin(K).

Example of oracle OG

When applying the classical dynamic programming algorithm to the example pro-
posed in 6.4.4, at the end of algorithm we obtain as result the table in 6.37. We
expect, for the same example, the quantum version of the algorithm to return a
uniform superposition for the element A such as:

1√
3
|0, 1⟩+ 1√

3
|1, 0⟩+ 1√

3
|2, 0⟩ . (6.88)

An amplitude amplification procedure amplifies the amplitude of the marked item,
so that measuring the final state will return the right item with near-certainty. For
our example, the target item is |2, 0⟩. So we must apply a sign inversion on this
specific component of the state, as shown below:

1√
3
|0, 1⟩+ 1√

3
|1, 0⟩ − 1√

3
|2, 0⟩ (6.89)
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and then perform an inversion about the mean:

− 0.19 |0, 1⟩+−0.19 |1, 0⟩+ 0.96 |2, 0⟩ . (6.90)

Thus, measuring the final state yields a probability (0.96)2 = 0.92 of obtaining the
expected final state |2, 0⟩

6.6 Complexity analysis
In order to compute the final solution, at each iteration of the first loop, we create
a table of dimensions M × (K + 1), containing the number of the cache hits for
each item in P and each k, with 0 ≤ k ≤ K. Each iteration of the second loop
is independent of the others, meaning that we can compute any row of the next
table independently from the other rows. Then, the complexity of "updating"
a row (most inner loop) is O(K). Therefore the dynamic programming classical
algorithm has a complexity of O(M × N × K) (see Fig 6.1a). In the context
of porting classical applications to quantum computing, we designed a "hybrid
quantum-classical version" of the previous algorithm, whose output is the number
of cache hits corresponding to K preemption. We consider a row in one table as a
superposition of states representing all the numbers of preemptions k and all the
possible values of the number of cache hits. In this way, the complexity of the act of
"updating" a row becomes O(1) (see Fig. 6.1b). Therefore, the complexity of the
resulting quantum algorithm becomes O(M×N). As a drawback, we need to post-
process the result we obtained in the previous step: superpositions of dimension
K × U , where U < N is the maximum number of cache hits. However, we only
need the value of the number of cache hits when K preemptions occur (i.e., only
one value per row in the last set of rows). Therefore, we can use Grover’s algorithm
for each row to extract the value of interest in the associated superposition. This
means that this post-processing has complexity

√
K × U <

√
K ×N <

√
N2 = N .

Hence, the complexity of the whole quantum algorithm is decreased to O(N2+N)
compared to O(N3) for the classical algorithm.
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(a) Classic algorithm

(b) Quantum algorithm

Figure 6.1: In orange: the number of cache hits for one object in P and all k′

6.7 Conclusions and perspectives
In this chapter, as a first step to deal with WCET-related problems employing
quantum-classic hybrid algorithms, we worked on a highly simplified program
model since we just considered single-path programs, yet in the presence of ar-
bitrary preemptions. A natural perspective would be to generalize this approach
to more complex program models allowing for some non-determinism in the control
flow. However, such a generalization would require careful control of the size of
the quantum state representing the cache hit counters array to avoid a complexity
blow-up at the post-processing amplification step.

Also, we have investigated how to port a polynomial-time dynamic program-
ming algorithm to the quantum framework. In essence, most such algorithms
follow the same regular pattern of several nested loops updating an array data
structure with the final result obtained in only one of the entries of the last array.
As such, the approach in this chapter consists in turning the inner loop of our
algorithm into a quantum parallel for associated with a Grover-style amplification
on the single result of interest. Consequently, the approach in this chapter may
potentially be generalized to other (exponential-time or polynomial-time) dynamic
programming algorithms to derive polynomial quantum speedups.





Chapter 7

Quantum approaches for
WCET-related optimization
problems

This chapter explores the potential of quantum computing on a WCET1-related
combinatorial optimization problem applied to a set of several polynomial special
cases. We consider the maximization problem of determining the most expensive
path in a control flow graph. In these graphs, vertices represent blocks of code
whose execution times are fixed and known in advance. We port the considered
optimization problem to the quantum framework by expressing it as a QUBO. We
then experimentally compare the performances in solving the problem of classic
Simulated Annealing (SA), Quantum Annealing (QA), and Quantum Approximate
Optimization Algorithm (QAOA). Our experiments suggest that QA represents a
fast equivalent of simulated annealing. Indeed, we measured the approximation
ratio on the results of QA and SA, showing that their performances are compara-
ble, at least on our set of simplified problems. This chapter corresponds a paper
published in the proceedings of the International Conference on Computational
Science (ICCS) 2.

7.1 Introduction

The interest given to quantum computing primarily comes from the ability of
qubits to store a superposition state that reflects all the possible inputs and outputs

1Worst-Case Execution Time (of a program).
2Gabriella Bettonte, Valentin Gilbert, Daniel Vert, Stéphane Louise, Renaud Sirdey. Quan-

tum approaches for WCET-related optimization problems, ICCS 2022, Jun 2022, London, United
Kingdom.
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of a given algorithm until a measurement is performed. This property is called
quantum parallelism and can, in certain cases [3], [4], give a performance boost
for quantum algorithms. However, the advantages of quantum computing do not
come without caveats. Only some classes of problems can be solved by quantum
computing, with a definite efficiency increase compared to classical computing
[61]. One crucial research issue related to quantum computing is determining with
precision which problems are better solved by means of quantum approaches [61].

This chapter explores the potential of quantum computing by examining prob-
lems involved with determining the Worst-Case Execution Time (WCET) of a
restricted set of programs. The problems arising in WCET evaluation cover a
wide range of complexity classes, from undecidability in the general case to NP -
hardness and polynomial-time solvability in some restricted cases [29]. As such,
WCET evaluation appears to provide a relevant playground to put the quantum
computing promise to the test. The execution time of a program running on a
machine depends on multiple factors, such as the initial system state, the hard-
ware, and the input data. The validation of a real-time system requires knowing
the WCET. However, the analysis of the exact WCET of a program is compli-
cated by dynamic hardware mechanisms. A possible way to cope with the analysis
complexity of WCET is by omitting such hardware mechanisms [62].

All the possible combinations of input data and execution paths need to be
considered for computing the actual WCET of a program. This computation of
an exact WCET is usually unfeasible with classic computers because the number
of possible program paths can grow exponentially with the program size (notwith-
standing decidability issues in the general case). Classical computing performs
static analysis that approximates the WCET without actually executing the pro-
gram. This approximation has to be an upper bound of the actual value of
the worst-case execution time to assure the system’s safeness. However, these
WCET approximations should also not be overly pessimistic to avoid system over-
dimensioning.

Yet, performing an exhaustive examination, even implicitly, of all possible pro-
gram paths is a sufficient condition, even if not necessary, for understanding the
worst-case scenario [62]. Thus, quantum computing could allow computing better
worst-case-execution-time approximations, thanks to its promising computational
power higher than classical computing. In a nutshell, the program path analysis
method determines which sequence of instructions requires the highest execution
time. The problem of determining a program’s WCET generally is undecidable.
Still, if there are no recursive function calls, dynamic structures, and unbounded
loops in the program, it becomes decidable [32], [33]. Those strong hypothesis
are enforced to be true in the field of real-time embedded systems, which is the
primary target of WCET research.
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In this chapter, as a first step, we focus on a simplified program model: we
consider only programs with IF-ELSE conditions (i.e., programs in which stati-
cally bounded loops have been unrolled), assuming uninterrupted executions and
independence from the hardware. We assume the execution time of an instruction
to be a constant: each instruction leads to a cache miss, and all data have to be
fetched from the main memory. It is worth noticing that all these hypotheses make
the problem solvable in polynomial time. Nevertheless, considering the limitation
of existing quantum hardware, we argue that they represent an interesting model
to be transposed to the quantum framework for benchmarking and that quantum
computing approaches should be also evaluated against polynomial problems [63]
rather than only on NP-hard ones [64]: Performing well on the former is presum-
ably necessary to perform well on the latter. Furthermore, distance to optimality
is of course easier to measure when attempting to solve polynomial-time problems
on quantum hardware.

In particular, we examined well-known approaches for the estimation of worst-
case execution times [29], [30], [65], [66]. Using Integer Linear Programming (ILP)
problems, we can naturally describe the structure of our problem and the set of
possible program paths, reducing the issue of estimating the WCET of a program
into an optimization problem. The sum of the execution time of the executed basic
blocks gives the cost function. Our goal is to find the maximum of this function. It
is possible to adapt this optimization problem to the quantum computing frame-
work through the penalty function method. The cost function and the constraints
of the original problem are represented using linear and quadratic terms. Thus, the
problem can be reformulated as a QUBO (Quadratic Unconstrained Binary Op-
timization) problem [67], [68] and solved by Quantum Approximate Optimization
Algorithm (QAOA) and Quantum Annealing.

We solve the problem with different methods: Quantum annealing on D-Wave
machines, classical Simulated Annealing and Quantum Approximate Optimization
Algorithm.The aim is to compare the performance of these methods (in term of
optimization quality). Our tests suggest that D-Wave machines, in ideal cases,
achieve the performances of classical Simulated Annealing while being much faster.

The chapter is organized as follows. Section 7.2 provides the necessary prelimi-
naries. Section 7.3 defines our problem and reformulates it in the form of a QUBO
problem. Section 7.4 describes our evaluation parameters and the machines for
the experiments. Section 7.5 collects the results of our experiments. Section 7.6
concludes the chapter.
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7.2 Combinatorial optimization
Combinatorial optimization computes the maximum or minimum of a function
over a discrete domain. A combinatorial optimization problem is expressed as:

z∗ = argmax
z∈S

f(z) (7.1){
gl(z) = 0, l = 1, . . . , L

hm(z) < 0 m = 1, . . . ,M
(7.2)

where z is a discrete integer variables, f(z) is the cost function, and S the
set of decision variables satisfying the equality and inequality constraints given in
(7.2) [69].

An integer linear programming (ILP) formulation is the mathematical formula-
tion of an optimization problem in which variables are restricted to integer values
and the constraints and cost function are linear [70]. ILP canonical form is ex-
pressed as:

max cTx (7.3)

subject to {
Ax = b,

0 ≤ x, x ∈ Zn
(7.4)

A Quadratic Unconstrained Binary Optimization (QUBO) problem is a com-
binatorial problem defined through an upper triangular matrix Q ∈ RNxN and a
vector x of binary variables. The goal of the optimization problem is to determine
the vector of binary variables ∀i, xi ∈ {0, 1} that minimizes (or maximizes) the
objective function : ∑

i

Qiixi +
∑
i<j

Qijxixj. (7.5)

Using the penalty function method, we can rewrite any optimization problem
into one without any constraints. For instance, given the equality constaint g(z) =
0, we can transform (7.1) into:

z∗ = argmax
z

f(z) + λg(z). (7.6)

In this work, we solve the QUBO problem to find the most expensive execution
path by using quantum annealing (QA) and the Quantum Approximate Optimiza-
tion Algorithm (QAOA). We compare the results with these of Classical Simulated
Annealing (SA).
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At this point, it is worth noting that any QUBO cost function can be trans-
formed into a generalized 2D-Ising Hamiltonian with a simple transformation of
variable xi =

1+σz
i

2
with σz

i ∈ {−1, 1}:

HP =
n∑
i

hiσ
z
i +

n∑
i<j

Jijσ
z
i σ

z
j (7.7)

7.2.1 Quantum annealing

Quantum annealing is a computational process that relies on the adiabatic theo-
rem to solve combinatorial optimization problems. As a principle, it implements a
time-dependent Hamiltonian composed of an initial Hamiltonian H0 whose ground
state is easy to calculate and a final one tied to the cost function of the optimiza-
tion problem as seen in equation (7.7): HIsing(t) = A(t)H0 + B(t)HP such that
HIsing(0) = H0 and HIsing(τ) = HP where τ is the optimal annealing time.

We choose H0 = −
∑n

i σ
x
i whose ground state corresponds to an equal super-

position of the states of the computational basis. The adiabatic theorem states
that if the time evolution is slow enough (i.e., τ is large enough), then the (global)
optimal solution can be obtained with high probability. In practice, the final result
is conditioned by the size of the spectral gap, the evolution time, the environmen-
tal or intrinsic decoherence effects, and the size of the coherence domain of the
qubits on the chip.

If the quantum annealing can reach a minimum energy configuration, then
the associated state vector solves the equivalent QUBO problem. Reformulating
combinatorial problems in QUBO form preserves the underlying structure of the
objective function [71].

7.2.2 Quantum Approximate Optimization Algorithm

The Quantum approximate optimization algorithm (QAOA)[72] is a quantum-
classical algorithm used to solve optimization problems. It can be seen as an
ansatz for the simulation of the Adiabatic process on a gate-based quantum com-
puter. The approximation of the process is done using a parameter p stating the
number of steps for the simulation: A p-depth QAOA consists of alternatively
apply the two unitary propagators associated with both Hamiltonians U(HP , γ)
and U(HM , β) on the initial state |s⟩ which is a uniform superposition of all states
of the computational basis.

|ψ⟩ = U(HM , βp)U(HP , γp)...U(HM , β1)U(HP , γ1) |s⟩ (7.8)
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Each classical optimization round is used to optimize angles β1..βp and γ1..γp
to maximize the expectation value obtained from the run of the quantum circuit.

7.3 Problem designing: from control flow graphs
to QUBO

We consider a simple micro-architecture [65] such that each basic block Bi of
the program takes a constant time ci to execute. A basic block is defined as a
sequence of consecutive instructions. The flow of control enters into the block at
the beginning and leaves at the end, without halt or possibility of branching except
in the end. Let variable xi be the execution count of the basic block Bi and N
be the number of basic blocks in the program. In this chapter, we assume that
xi ∈ {0, 1}, meaning that each basic block could be executed only once. The total
execution time of the program is given by the linear expression:

Program execution time =
N∑
i

cixi. (7.9)

The problem has intrinsic constraints: not every execution flow is possible. For
instance, if there is an IF-ELSE condition in our code, only the block respecting
that condition is executed. Thus, one part of the program is ignored, depending
on the input data. The WCET is given by the cost of the most expensive flow in
terms of execution time. Notice that, in our model, we consider that the solution
is unique. Our goal is to find the sequence of variables x0, · · · , xN−1 such that it
maximizes the cost function. To clarify all this, let us consider an example of a
program with an IF condition: concretely, we have a sequential path that at some
point splits into two branches and then reconnects again to the main path.

In this particular example we have only two possible paths of execution and
the objective of our optimisation problem is to find the execution path that gives
us the maximal cost:

argmax (c1x1 + c2x2 + c3x3 + c5x5 , c1x1 + c2x2 + c4x4 + c5x5) (7.10)

We call x the vector representing the execution path, with xi = 1 if the corre-
sponding basic block Bi is executed and xi = 0 otherwise. The solution is:

x =


[
1 1 1 0 1

]
if (c1x1 + c2x2 + c3x3 + c5x5 > c1x1 + c2x2 + c4x4 + c5x5)

[
1 1 0 1 1

]
otherwise.



7.3. PROBLEM DESIGNING: FROM CONTROL FLOW GRAPHS TO QUBO107

Figure 7.1: Control flow diagram of a simple program structure

In this example, the solution would be obtained simply considering the path
that includes the most expensive branch of the IF condition. However, let us
consider the constraints of this graph to compute the solution. The nodes of this
graph are the blocks of code. The edges are the dis, representing the action of
entering or the quitting of a basic block. This graph represents the execution of a
program, so we know for sure that the first and the last block have to be executed,
so the edges entering and quitting these nodes will be equal to one. Only one
branch of the condition will be executed (if, for instance, d3 = 1, then d4 = 0).
For this example, the set of constraints to consider is:


d1 = 1,

x1 = d1 = d2

x2 = d2 = d3 + d4


x3 = d3 = d5

x4 = d4 = d6

x5 = d5 + d6 = d7

(7.11)

We transform this optimization problem to a QUBO moving the constraints to the
cost function (penalty method). We omit the constant values in the cost function
and we consider x2i = xi,∀i because xi ∈ {0, 1}. Our optimization problem thus
becomes:

argmaxx(
∑5

i cixi − λ(1− x3 − x4)
2)

= argmaxx(
∑N

i cixi − λ(1− x23 − x24 + 2x3x4))
= argmaxx(c1x

2
1 + c2x

2
2 + (c3 + λ)x23 + (c4 + λ)x24 − 2λx3x4 + c5x

2
5))

(7.12)
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Thus, for the considered problem, the matrix Q is:

Q =


c1 0 0 0 0
0 c2 0 0 0
0 0 c3 + λ −2λ 0
0 0 0 c4 + λ 0
0 0 0 0 c5

 (7.13)

where c1, . . . , c5 ∈ N and x = (x1, x2, x3, x4, x5)
T .

This chapter focuses on a finite set of study cases to perform our experiments.
The most basic program is not more than a linear sequence of instructions, thus
with a deterministic and constant execution time, (Fig. 7.2(a)). We explored pro-
grams made by chains of consecutive IFs (Fig. 7.2(b)). This problem is interesting
because, essentially, any program could be reduced to a loop with a condition in it.
So, by unrolling loops, a program could be seen as a chain of conditions. Still, we
want to underline that the problem is polynomial: the solution is easily founded
by considering the most expensive branch at each IF.

Then we analyzed an expanded version by allowing the exclusive conditions to
be more than two SWITCHes (Fig. 7.2(c)). Here again, the solution is given by
the path that takes the most expensive branch at each IF condition, so the problem
is still polynomially solvable. However, both examples give us the possibility of
building an interesting benchmark for quantum computing.

Enlarging slightly more the focus on the targeted problem, we allowed the IFs
blocks to have other nested IFs blocks inside them (Fig. 7.2(d)). This situation
is slightly more complex than the previous ones because the paths need to be
enumerated to find the actual worst-case path. All these cases of study are called
series–parallel graphs.

The IFs chain and the SWITCH study case are easily generalizable from the
matrix (7.13). The nested IF study case is more complex because it is not enough
to choose the most expensive branch at each step. Thus, it is not possible to
determine a pattern. We develop explicitly here the Q matrix only for a particular
example. The Q matrix for the graph shown in Fig. 7.2(d) is:

Q =


c0 0 0 0 0 0
0 c1 −2λ 2λ 2λ 0
0 0 c2 + 2λ −2λ −2λ 0
0 0 0 c3 −4λ 0
0 0 0 0 c4 0
0 0 0 0 0 c5


7.3.1 Choice of the lambda value

Let {c1, ...ck} ∈ C be the set of weights for each node of the graph. {x1, ...xk} are
boolean values defining if the basic block is executed. In the single IF case, the
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Figure 7.2: Series–parallel graphs

local cost function to the IF case is expressed as (ci + λ)xi + (cj + λ)xj − 2λxixj
with ci, cj the weigths of each path and xi, xj the boolean values. The factor λ is
appropriate if it follows the set of conditions:

∀ ci, cj ∈ R+we must have :

ci + λ > ci + λ+ cj + λ− 2λ⇔ λ > cj

cj + λ > ci + λ+ cj + λ− 2λ⇔ λ > ci

(7.14)

For simplicity, we use a single λ for the whole expression, even if it contains multiple
IF cases. We also consider that λ is an integer as each graph weight is integer.
Therefore, λ should be greater than each weight of the graph yielding:

λ = max(C) + 1 (7.15)

This choice of λ appears to behave well with the nested IFs and SWITCH too.

7.4 Benchmark Metrics and Computers
We compare the performances of SA, QA and QAOA while solving the optimi-
sation problem of finding the most expensive execution path in the case tests
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we mentioned above: IF chains, SWITCH and nested IF. This section presents
metrics, algorithms and quantum computers used for the benchmark.

7.4.1 Benchmark metrics

Problems presented in this chapter are toy problems in which optimal solutions can
be found in polynomial time. However, their simplicity allows us to fully evaluate
and understand the results of our experiments. Before executing the experiments,
each of our optimization problems is transposed into their minimization form. To
compare our results, we took into consideration two parameters:

• The approximation ratio (7.16). It represents the quality of the solution
found compared to the whole energy landscape of the problem. E is the
energy obtained from a single simulation, Emin is the energy of the optimal
solution and Emax the energy of the worst solution.

r =
E − Emax

Emin − Emax

(7.16)

This parameter is interesting because, although the solution may not be the
exact one, it could be very close.

• The optimal solution probability. It represents the proportion of optimal
solutions (solutions having the energy Emin) obtained during the simulation.

7.4.2 Simulated Annealing

We configure the simulated annealing with an exponential decrease of temperature
T1 = 0.95 ∗ T0. In the following experiments, we set the thermal equilibrium at
T = 10−3. These iterations are fixed with the number of input variables n and
may vary between n0,5 to n1,5. We consider SA running in a degraded mode where
the number of iterations per temperature step is inferior to n. Each simulation is
based on 100 runs of the SA to extract the mean of energy and the probability of
getting the optimal solution.

7.4.3 Quantum annealing with D-Wave systems

Our experiments on D-Wave systems involve adiabatic quantum computing used
to find the vector that minimizes the input cost function. At the moment, they
represent the most advanced quantum machines having thousands of qubits. How-
ever, they require problems under the form of QUBOs and the topology of their
chips limits their performance [73]. D-Wave systems used during our benchmarks
are:
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• DW_2000Q_6 with 2048 qubits (2041 usable qubits) and 6 connections
between each qubit (cf. Chimera topology).

• Advantage_system4.1 with 5760 qubits (5627 usable qubits) and 15 con-
nections between each qubit (cf. Pegasus topology).

For each experiment, results are computed with and without gauge inversion. The
principle of a gauge inversion is to apply a Boolean inversion to the σi operators
in our Hamiltonian. This technique preserves the optimal solution of the problem
while limiting the effect of local biases of the qubits, as well as the machine accu-
racy errors [22]. Following the commonly used procedure (e.g. [74]), we randomly
selected 10% of the physical qubits used as spin inversion for each instance. Each
simulation is based on 1000 runs of D-Wave systems to extract the mean of energy
and the optimal solution probability.

7.4.4 Simulation of QAOA

The simulation of QAOA is performed using the Qiskit library [75]. QAOA circuits
are built from QUBO instances using penalty terms to express constraints. In our
experiments, weights are specified with integers, hence γ ∈ [0, 2π] and β ∈ [0, π].
We did not find patterns to perform interpolation optimization as in [76]. We
followed the parameter fixing strategy [77] to set angles at p-depth. This method
starts at p = 1 and randomly generates 100 pairs of angles γ1 and β1. Then, we
run a local optimizer on each of these pairs. We used COBYLA, a gradient-free
optimizer. We run 1024 times the QAOA circuit at each optimization step to
sample the mean expectation value corresponding to γ and β angles. At the end
of the 100 optimization loops, we get 100 optimized pairs of angles. We select
γ∗1 and β∗

1 such as they minimize the value of the cost function. This process
is then repeated at p = n, initializing the problem with γ∗1 ...γ

∗
n−1 and β∗

1 ...β
∗
n−1

and 100 pairs of angles γn and βn. For the simulation of the QAOA we used the
aer_simulator, which provides a good speed performance.

7.5 Experimental results

To represent the cost of each basic block, we generated random integer, such that
c0, ..., cn ∈ {1, . . . , 50}, and used them as input for our experiments. Each prob-
lem is designed to have only a single optimal solution, meaning that each branch
candidate for solution should have a different global cost. In section 7.5.1 and
section 7.5.2, each data point is smoothed over 30 randomly generated instances.
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7.5.1 IF chains

Each IF chain (Fig. 7.2(a)) is composed of a succession of several IF conditions.
This study case represents an ideal problem for the D-Wave as the corresponding
QUBO matrix is sparse. Hence, the encoding on D-Wave systems does not require
any duplication of qubits, neither for the 2000Q_6 nor the Advantage4.1 system.
We start from one IF condition for this benchmark and grow the problem up to 10
IF conditions. A single block separates each IF condition block. We benchmark in
Fig. 7.3 D-Wave systems against the resolution with classical simulated annealing.
As the problem grows, QA seems to outperform SA progressively. For the IF chain,
D-Wave system 2000_Q_6 systematically outperforms the Advantage_system4.1.
Although the Advantage system is more recent than the 2000Q_6 system, it seems
more sensitive to noise. We do not simulate QAOA for IF chains as it gives rather
poor results compared to SA and D-Wave systems.

(a) (b)

Figure 7.3: Benchmark of the QUBO resolution by D-Wave systems and SA for
IF chains from 1 to 10 IF conditions. Each D-Wave simulation is done with and
without GI (Gauge Inversion). n is the number of blocks in the if chain. SA
number of iteration per temperature step is expressed according to n. a) Mean of
approximation ratio. b) Mean of the probability to get the optimal solution.

Fig. 7.4 shows the QAOA energy landscape at p = 1 for a 3-if chain picked
randomly. The heatmap exhibits many local minima, which impact the angle
optimization of QAOA. This heatmap is more complex than heatmaps usually
obtained for the well-studied Max-cut problem ([77],Fig. 5a). This complex energy
landscape seems to be closely related to penalty terms that impact the whole
energy landscape. Moreover, minimizing the mean energy does not always lead to
an increased probability of getting the optimal solution.
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(a) Approximation ratio (b) Optimal solution probability

Figure 7.4: QAOA heatmap at p = 1 for a random 3 IFs chain. Approximation
ratio is computed from the mean of the expectation value at angles γ and β.

7.5.2 SWITCH

SWITCHes presented in Fig. 7.2(b) are harder to solve for D-Wave system since
the plurality of choices leads to a dense matrix and requires higher connectivity
between qubits. The impact of the density on QAOA is lower thanks to SWAP
gates. In this execution case, we notice that the D-Wave Advantage4.1 performs
better than the D-Wave 2000Q_6 for SWITCH cases 3 and 4. This improvement
is due to the qubit duplication occurring on D-Wave 2000Q_6 whereas there is no
qubit duplication on the Advantage4.1 for these instances (Fig. 7.5e). On larger
instances (from 10 to 15 SWITCHes), the advantage of the D-Wave Advantage4.1
provided by its number of connections is questionable. However, when the case is
not ideal for D-Wave systems, the performances are poor against SA, even when
SA is running under a degraded mode (n0.5 iterations per temperature step).

7.5.3 Nested IFs

Nested IFs cases increase the density of the QUBO matrix. Table ?? shows two
cases of nested IFs. The results are smoothed over 30 costs generated randomly. We
compare the results obtained with SA, QA, and QAOA simulator. As for SWITCH
cases, nested IF cases are difficult to be solved for D-Wave systems. They result to
be not competitive against simulated annealing. QAOA simulations provide results
of a lower performance compared to the D-Wave systems. The results obtained
with QAOA start to decrease at p = 6. This decrease may be due to the difficulty
of COBYLA to optimize γ and β angles at this depth. As the optimization at
depth p always starts from angles β∗

1 ...β
∗
p−1 and γ∗1 ...γ

∗
p−1, the global optimization

may be stuck at local minima imposed by the parameters found at p − 1. The
energy landscape of problems with penalty terms would deserves in-depth study
to understand and find patterns of optimization of QAOA angles.
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Table 7.1: Nested IFs simulation, Case 1

Nested if results Case 1 (see fig.2d)
Mean energy Opt sol prob

SA n0.5 0.985 0.66
SA n0.6 0.986 0.69
SA n0.7 0.989 0.76
D-Wave 2000Q 0.985 0.57
D-Wave Advan. 0.983 0.54
QAOA p = 4 0.958 0.44
QAOA p = 5 0.965 0.49
QAOA p = 6 0.926 0.40

Table 7.2: Nested IFs simulation, Case 2

Nested if results Case 2 (see fig.2e)
Mean energy Opt sol prob

SA n0.5 0.999 0.934
SA n0.6 0.999 0.923
SA n0.7 0.999 0.956
D-Wave 2000Q 0.993 0.56
D-Wave Advan. 0.975 0.29
QAOA p = 4 0.909 0.10
QAOA p = 5 0.920 0.13
QAOA p = 6 0.855 0.06

7.5.4 Real case

We provide a concrete application inspired by the bubble sort algorithm provided
in the Mälardalen WCET research group [78][79]. The algorithm’s goal is to sort an
array of integers in ascending order. We consider an ideal scenario with an in-order,
single-issue Arm processor similar to an M0 with prefetched cache memory. Blocks
composing the graph are built from the instructions obtained after the compilation
of C code (using gcc Arm 8.3 with -O2 level of optimization). The number of
micro-instruction in each basic block defines its cost as given by our in-house
WCET explorer with block identification and pipeline simulation. For the sake of
simplicity, we limited to 3 the number of elements in the vector to sort. Table 7.3
shows the obtained result while solving the problem with SA and QA. From Table
7.3 we conclude that the 2000Q system performs quite well, even duplicating 4
qubits. The Advantage system, while duplicating only 1 qubits performs poorly.
We may conclude that duplicating on Advantages machines downgrade drastically



7.6. CONCLUSION 115

the performances of the machine.

Table 7.3: Real case simulation

Method Mean en-
ergy

Optimal so-
lution prob

Qubits used Max
qubits
duplica-
tion

SA n0.5 0.944 0.58 / /
SA n1 0.972 0.79 / /
SA n1.1 0.990 0.91 / /
D-Wave
2000Q_6

0.987 0.868 15 1

D-Wave Ad-
vantage4.1

0.901 0.325 12 1

7.6 Conclusion

In this chapter, we explored the potential of quantum computing in dealing with
the combinatorial optimization problem of finding the most expensive execution
path in a graph on a restricted set of simple instances. Our work offers an ex-
ample of using quantum computing in a new application field. The performances
we obtained using D-Wave machines and the QAOA do not suggest that quantum
computing is the silver bullet solution that will replace the classical computing
solid and road-tested techniques. Still, we claim the results we obtained are en-
couraging enough to explore further the potential of quantum computing on the
proposed problem (for instance, the backtracking quantum algorithm). Indeed,
our experiments suggest that quantum computing gives us a fast equivalent of
simulated annealing for ideal problems, such as the IFs chains.

We can draw some conclusions from the experience of this work on D-Wave
machines. Their topology is quite limiting, and it is not straightforward to adapt
the considered optimization problem to it. We noticed that the Advantage4.1 ma-
chine outperforms the 2000Q machine when the considered problems involve qubit
duplications on 2000Q device and not on the Advantage4.1 machine. It may be
worth exploring the performances of these machines while solving problems that
need more qubit duplications to be adapted to both topologies. The goal is to find
parameters that show a priori which D-Wave machine is the most suitable to solve
the considered problem. The chain of IFs is ideal for the topology of D-Wave sys-
tems, and their results are competitive with SA. Concretely, SA on 5600 variables
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at n2 would need billions of evaluations of the cost function against millisecond
runtime for D-Wave systems. However, we stress again that the problem is poly-
nomially solvable using methods other than SA, and the interest is the possibility
of building a benchmark for quantum computers.

We can as well draw some conclusions about QAOA. At p = 5 the performances
of QAOA are almost the same as D-Wave. QAOA does not have the problem of
qubit duplication since we can circumvent the chip’s topology with SWAP gates.
Still, we performed our experiments on a simulator and not on a physical machine
as D-Wave systems. An idea to investigate is to restrict the search on the feasible
subspace of the problem [80]. In our case, this would be a subspace where every
solution preserves the flow constraint.

Another aspect that may be explored in the future is the behavior of our
models considering the effect of cache memories. Additionally, our choice of λ has
no guarantees of being optimal, even if it provides good results. As a perspective,
it may be interesting to perform a pre-processing to find, through simulations, the
optimal λ. However, the effort of finding the optimal λ could overcome its benefits.
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(a) Energy ratio SA and D-Wave (b) Optimal solution probability

(c) Energy ratio QAOA and D-Wave (d) Optimal solution probability

(e) Qubits used by D-Wave systems

Figure 7.5: Comparison of switch instances solved with classical SA, D-Wave sys-
tems and QAOA simulator. (e) Mean of the number of qubits used by D-Wave
systems to solve switch instances against the optimal number of qubits on ideal
fully connected topology.





Chapter 8

Conclusion and perspectives

This thesis work focuses on tackling a concrete problem, namely the WCET eval-
uation, using quantum computing approaches. Rather than just indulging in the
most followed patterns, as it would have been exploiting Shor- or Grover-like al-
gorithms as subroutines for other algorithms, we decided to exhaustively explore
the mainstream current quantum techniques to dive into the problem.

Until a few years ago, the possibility of using quantum machines was limited,
but nowadays, many companies in the quantum computing field provide access to
quantum machines, such as the D-wave annealers and IBM simulators we used for
our tests. The possibility to access those resources, aside from helping the author’s
work, testifies how much the whole quantum computing field has advanced in the
last decades. Still, our experience allowed us to draw some conclusions and identify
two main issues with current quantum computers: hardware and formalism.

Currently, quantum hardware is limited by several technical issues. Not only
quantum computers have at their disposal only a few qubits that are not connected
enough, but it is also often necessary to duplicate qubits to map a problem onto a
quantum machine, thus reducing even more the number of logical qubits available
for the actual computation. In addition, the computation process suffers from
noise issues in the sense that these machines are only very imperfect ersatzes their
respective theoretical models, especially with respect to coherence, resulting in
sometimes disappointing experimental results.

Concerning formalism, to map the target problem onto a quantum computer,
it is necessary to modify it by reformulating most of its hard constraints into soft
ones. For instance, theoretically, the QUBO model is universal and allows rep-
resenting all problems (in NP ). However, in practice, we had to remove many
constraints and add penalty factors to our model to make it fit. The resulting
model, albeit fitting the machine constraints, ultimately became too ill-conditioned
to solve real-world instances satisfactorily. This trade-off is acceptable since our
research’s focus was to fully explore one particular problem from a quantum com-
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puting point of view and confirm that it is possible to use today’s quantum com-
puters to solve simple problems rather than have a breakthrough in the WCETs
solving techniques.

Once we recognize how inherently different quantum computing is from clas-
sical computing, it becomes apparent that to be able to harness the potential of
the former, we need to grow our skills and knowledge on how to formalize and
solve problems on quantum computers. Thus, tackling concrete problems through
quantum approaches is essential, and so it is for universities and companies in the
quantum computing field to keep pushing the limits of today’s machines and imple-
ment new, more flexible ones with other quantum paradigms. Also, with a deeper
understanding of this technology, we should aim to be able to establish a priori if
an application is suitable for the quantum computing framework. Moreover, when
a particular application is judged suitable to be implemented in quantum comput-
ing with actual benefit, it would be essential to be able to address the quantum
approach and machine that could give the maximal benefit. In that sense, this
thesis belongs to the first line of works that attempt to build a practically relevant
benchmark for quantum computing.
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Titre: Approches quantiques pour l’analyse des exécutions pire-cas des programmes.
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Résumé: L’informatique quantique gagne en pop-
ularité dans la communauté informatique. La
prise de conscience du potentiel de l’informatique
quantique a commencée en 1981, lorsque Richard
Feynman a imaginé la construction d’un ordina-
teur quantique. Cependant, le domaine a connu
beaucoup de scepticisme quant à ses capacités
pratiques à long terme pour résoudre les prob-
lèmes. En particulier, les chercheurs tente de
relever le défi de construire des ordinateurs quan-
tiques scalables et fiables. Dernièrement, de nom-
breuses entreprises ont obtenu des résultats en-
courageants et ont construit des machines quan-
tiques avec suffisamment de qubits pour com-
mencer à mener des expériences intéressantes
dessus. Nous avons choisi l’évaluation du pire
temps d’exécution (WCET) comme application de
nos recherches sur l’informatique quantique, car
elle est cruciale pour diverses applications temps
réel. L’analyse WCET garantit que le temps

d’exécution d’un programme respecte toutes les
contraintes d’ordonnancement et de timing. Dans
l’histoire des algorithmes quantiques, l’attention
a souvent été accordée aux problèmes avec une
structure mathématique particulière. L’évaluation
des WCET, à l’opposé, n’est pas un problème
a priori favorable au contexte quantique, et pos-
sède des solutions classiques efficaces déjà éprou-
vées. Ainsi, il est intéressant d’explorer l’impact de
l’informatique quantique sur ce type de problèmes,
dans l’esprit de trouver des domaines nouveaux
et concrets dans lesquels l’informatique quantique
pourrait apporter sa contribution. Si ce n’est pas
le cas, la recherche dans ces domaines spécifiques
peut aider à définir les limites des applications qui
pourraient bénéficier de l’informatique quantique.
Cette thèse présente différentes approches quan-
tiques pour effectuer des évaluations WCETs de
programmes pour des modèles simplifiés.

Title: Quantum approaches for Worst-Case Execution-Times analysis of programs.
Keywords: Quantum computing, Application of quantum computing, WCET, QUBO, Dynamic pro-
gramming.

Abstract: Quantum computing is gaining popu-
larity in the computer science community. The
awareness of the potential of quantum computing
started in 1981, when Richard Feynman first spec-
ulated about building a quantum computer. How-
ever, until recently, the field has known much skep-
ticism about its long-term practical capabilities to
solve problems. In particular, researchers are still
facing the challenge of building scalable and reli-
able quantum computers. Lately, many companies
have obtained encouraging results and built quan-
tum machines with enough qubits to start conduct-
ing interesting experiments. We chose the worst-
case execution-time (WCET) evaluation as the ap-
plication of our research on quantum computing,
as it is crucial for various real-time applications.
WCET analysis guarantees that a program’s exe-

cution time matches all the scheduling and timing
constraints. In quantum algorithms history, atten-
tion was often given to problems with a partic-
ular mathematical structure. The WCETs evalua-
tion, as an opposite, is not a particularly quantum-
friendly problem, and it has already proven efficient
classical solutions. Hence, it is worth exploring
the impact of quantum computing on those kinds
of problems, with the spirit of finding new and
concrete fields to which quantum computing could
bring its potential. If not, research on such specific
fields will help to set the boundaries of which ap-
plications could benefit from quantum computing.
This thesis presents different quantum approaches
to perform WCETs evaluations of programs under
simplified assumptions.
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