
HAL Id: tel-04082601
https://theses.hal.science/tel-04082601v1

Submitted on 26 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive tensor methods for high dimensional problems
María Fuente Ruiz

To cite this version:
María Fuente Ruiz. Adaptive tensor methods for high dimensional problems. Modeling and Simula-
tion. Sorbonne Université, 2023. English. �NNT : 2023SORUS060�. �tel-04082601�

https://theses.hal.science/tel-04082601v1
https://hal.archives-ouvertes.fr

Adaptive tensor methods for high
dimensional systems

THÈSE DE DOCTORAT

Présentée par

Maŕıa Fuente Ruiz
pour obtenir le grade de

DOCTEUR
de Sorbonne Université

Spécialité : Mathématiques Appliquées

Examinatrice Marie BILLAUD-FRIESS Mâıtre de conférences de Ecole Centrale Nantes
Examinateur Mi-Song DUPUY Mâıtre de conférences de Sorbonne Université
Co-directrice de Thèse Virginie EHRLACHER Chargé de recherche de CERMICS–Ponts ParisTech
Rapporteur Antonio FALCÓ MONTESINOS Professeur de Universidad CEU Cardenal Herrera
Directeur de Thèse Damiano LOMBARDI Chargé de recherche de l’Inria Paris
President Yvon MADAY Professeur de Sorbonne Université
Rapporteur Guillaume PERRIN Professeur de Université Gustave Eiffel
Examinateur André USCHMAJEW Professeur de Universität Augsburg University

Après avis favorables des rapporteurs: Antonio FALCÓ MONTESINOS et Guillaume PERRIN

Thèse préparée au sein de l’équipe-projet Commedia
Centre de Recherche Inria de Paris
2 rue Simone Iff
75589 Paris Cedex 12
et Laboratoire Jacques-Louis Lions
de Sorbonne Université

2

Acknowledgments

I start acknowledging my thesis directors: Virginie Ehrlacher and Damiano Lombardi. Thank you for
the inspiration, the example, the professional advice, and for all the things you have thought me.

I am very grateful to Antonio Falcó and Guillaume Perrin for having taken time to review this manuscript
and for the encouraging reports. I also thank Marie Billaud-Friess, Mi-Song Dupuy, Yvon Maday and André
Uschmajew for being members of the jury for which I am honored.

Thank you to Adrien Beguinet, Roberta Flenghi, Olga Mula and Agustin Somacal, members of a research
team that started in CEMRACS and have continued till today, conforming the last contribution of this
thesis. Also for the help inside and outside the professional environment.

Also, to all the members of the COMMEDIA team, for giving me the opportunity and the support of
doing this project. A special thank you to all the current and former colleagues of the team that have
become close friends. You’ve been the best teammates that one could ask for.

Thanks to all my friends in Paris that have been more my family than my friends here and that were
with me during all this three years and I’m sure for a lot more. A special thank you to my flatmates, that
have lived my thesis submission from a very close and stressful perspective, as if it was theirs. Also to the
ones that have been sending me love and support even in the distance. All of you have filled these three
years of unforgettable moments. To my capoeira and dance group friends, for the daily disconnection time.

Thanks to my family. It’s been years since you support me unconditionally, you are my example in life.
I am very lucky to have you always having my back.

To finalize, thanks to Alberto. Without you none of this would have been possible. Thank you for the
patience, the support, the love and for always stand by my side. This journey has only started.

4

Abstract

Abstract: In this thesis, the aim is to find numerical methods in order to approximate multivariate
functions (tensors). They can be derived from datasets, multiway arrays, or solutions of PDEs coming from
physics, biology, economy or other disciplines. The task of approximating multivariate functions is done from
three different perspectives in this thesis:

1. A tensor approximation method, Sum of Tensor Trains (SoTT), whose output is the approximated
solution in a sum of TTs format.

2. A local tensor approximation method based on clustering, that retrieves an approximated solution in
the introduced local HOSVD format.

3. A deep learning-based method that computes the approximation of the solution of a convection diffusion
PDE when the diffusion parameter is very small.

In the first part of the work, a method is proposed in order to compute an approximation of a given
tensor as a sum of Tensor Trains (TTs), where the order of the variates and the values of the ranks can vary
from one term to the other in an adaptive way. The numerical scheme is based on a greedy algorithm and
an adaptation of the TT-SVD method. It achieves good performances without depending on the variable
ordering. The proposed approach can also be used in order to compute an approximation of a tensor in a
Canonical Polyadic format (CP), as an alternative to standard algorithms. Some numerical experiments are
proposed, in which the proposed method is compared to Alternating Least Squared (ALS) and Alternating
Singular Value Decomposition (ASVD) methods for the construction of a CP approximation of a given
tensor and performs particularly well for high-order tensors. The interest of approximating a tensor as a
sum of Tensor Trains is illustrated in several numerical test cases.

In the second part of the work, we propose a local tensor approximation method based on clustering,
that retrieves an approximated solution in the introduced local High Order Singular Value Decomposition
(local HOSVD) format. The clustering method is performed direction per direction and it provides a dyadic
partition tree that encloses the different possible partitions of the domain. This can be done due to the
separability of the domain. In order to find the best partition to approximate the function, an extensive
search between the possible partition combinations is done. Then, a HOSVD approximation of the tensor
on each one of the partitions is computed. The criterion selected in order to choose one partition over the
others is the memory needed to store the approximation. In the light of the numerical results obtained, we
can say that the method achieves a good compression rate with respect to the HOSVD method.

In the third part of the work, a study on Deep learning-based numerical schemes, such as Physics-
Informed Neural Networks (PINNs) as an alternative to classical numerical schemes for solving Partial
Differential Equations (PDEs) is addressed. These methods are very appealing at first sight because of its
simple implementation. Vanilla versions of PINNs, based on strong residual forms and neural networks,
offer very high approximation capabilities. However, when the PDE solutions are low regular, optimization
solvers are significantly challenged, and can potentially spoil the final quality of the approximated solution
due to the convergence to bad local minima, and bad generalization capabilities. In this work, we present
a numerical study of the merits and limitations of these schemes when solutions exhibit low-regularity, and
compare performance with respect to more benign cases when solutions are very smooth. As a support for
our study, we consider singularly perturbed convection-diffusion problems where the regularity of solutions
typically degrades as certain multiscale parameters go to zero.

Keywords: Tensor methods, Canonical Polyadic, Tesor Train, Local Tensor Methods, Model Order
Reduction, Neural Networks, PINNs, Singulary Perturbed Problems.

5

Résumé

Résumé: Dans cette thèse, nous cherchons à développer des méthodes numériques afin d’approcher des
fonctions multivariées (tenseurs). Celles-ci peuvent être dérivées d’ensembles de données, de tableaux à
entrée multiple , ou de solutions d’EDP qui provient de la physique, de la biologie, de l’économie ou d’autres
disciplines. L’approximation de ces fonctions multivariées est abordée sous trois angles:

1. Une méthode d’approximation tensorielle, Sum of Tensor Trains (SoTT), dont la sortie est la solution
approchée fournie sous la forme d’une somme de TTs.

2. Une méthode d’approximation tensorielle locale basée sur un methode de clustering, qui récupère une
solution approchée dans le format local HOSVD.

3. Une méthode basée sur l’apprentissage profond qui calcule l’approximation de la solution d’une équation
de convection-diffusion lorsque le paramètre de diffusion est très petit.

Dans la première partie de ce travail, la méthode proposée permet de calculer une approximation d’un
tenseur donné comme une somme de Tensor Trains (TT), où pour lequel l’ordre des variables et les valeurs
des rangs peuvent varier d’un terme à l’autre de manière adaptative. Le schéma numérique est basé sur un
algorithme glouton et une adaptation de la méthode TT-SVD. Il permet d’obtenir de bonnes performances
de bons résultats sans dépendre indépendemment de l’ordre des variables. L’approche proposée peut
également être utilisée pour calculer une approximation d’un tenseur dans un format Canonical Polyadic
(CP), comme alternative aux algorithmes standards. Quelques résultats numériques sont proposés, dans
lesquelles la méthode développée est comparée aux méthodes Alternating Least Squared (ALS) et Alternating
Singular Value Decomposition (ASVD) pour la construction d’une approximation CP, celle-ci se comporte
particulièrement bien pour les tenseurs d’ordre élevé. L’intérêt d’approximer un tenseur comme une somme
de Trains Tensoriels est illustré dans plusieurs cas tests numériques.

Dans la deuxième partie du travail, nous proposons une méthode d’approximation tensorielle locale
basée sur le clustering, qui récupère une solution approchée dans le format introduit local High Order
Singular Value Decomposition (local HOSVD). La méthode de clustering est réalisée direction par direction
et fournit un arbre de partition dyadique qui englobe les partitions du domaine. Ceci peut être fait grâce à
la séparabilité du domaine. Afin de trouver la meilleure partition pour approximer la fonction, une recherche
extensive entre les combinaisons de partitions possibles est effectuée. Ensuite, une approche HOSVD du
tenseur sur chacune des partitions est calculée. Le critère retenu pour choisir une partition plutôt que les
autres qu’une autre est la mémoire nécessaire pour stocker la solution approchée. À la lumière des résultats
numériques obtenus, nous pouvons dire que la méthode atteint un bon taux de compression par rapport à
la méthode HOSVD.

Dans la troisième partie du travail, une étude sur les schémas numériques basés sur l’apprentissage pro-
fond, tels que les Physics-Informed Neural Networks (PINNs), comme alternative aux schémas numériques
classiques pour résoudre les équations différentielles partielles (PDEs), est abordée. Ces méthodes sont très
attrayantes à première vue en raison de leur mise en œuvre très simple. Les versions anciennes des PINNs,
basées sur des formes résiduelles fortes et des réseaux de neurones, offrent des capacités d’approximation
très élevées. Cependant, lorsque les solutions des EDP sont peu régulières, les solveurs d’optimisation
peuvent potentiellement restituer une mauvaise solution approchée en raison de la convergence vers de
mauvais minima locaux et de mauvaises capacités de généralisation. Dans ce travail, nous présentons
une étude numérique mettant en excergue les des mérites avantages mais aussi les limites de ces schémas
lorsque les pour des solutions présentent une faible régularité peu régulières, et nous comparons également
les performances pour des cas plus simples avec des solutions lisses. Comme support à notre étude, nous
considérons des problèmes de convection-diffusion singulièrement perturbés où la régularité des solutions se

6

dégrade typiquement lorsque certains paramètres multi-échelles tendent vers zéro.

Mots-clés : Méthodes Tensorielles, Canonical Polyadic, Tensor Train, Méthodes Tensorielles Locales,
Modèles d’Ordre Réduit, Réseaux Neuronaux, PINNs, Problèmes Perturbés Singuliers.

8

Contents

1 Introduction 1
1.1 State of the art of Tensor methods . 2

1.1.1 Proper Orthogonal Decomposition (POD) . 3
1.1.2 Canonical Polyadic (CP) decomposition . 4
1.1.3 Tucker decomposition . 7
1.1.4 Hierarchical Tucker (H-Tucker) format . 8
1.1.5 Tensor Train format . 10
1.1.6 Approximations in local subdomains . 10

1.2 State of the art of clustering methods . 13
1.2.1 Physics-informed clustering . 14
1.2.2 Other classification methods . 15

1.3 State of the art of Deep Learning-based Schemes . 15
1.3.1 Deep learning scheme . 16
1.3.2 Physics-Informed Neural Networks (PINNs) . 18

1.4 Contributions of the thesis . 22
1.4.1 Contribution on Tensor Formats: The Sum of Tensor Trains method 22
1.4.2 Contribution in local tensor methods: The local HOSVD method 24
1.4.3 Contribution in Deep Learning-based Schemes for Singularly Perturbed Convection-

Diffusion Problems . 25
1.5 Organization of the manuscript . 27

2 Sum of Tensor Trains: SoTT 29
2.1 Introduction . 29

2.1.1 Organization of the chapter . 30
2.2 Notation and preliminaries . 30

2.2.1 Tensor spaces . 31
2.2.2 Object definition and POD decomposition . 32
2.2.3 Ranks and tensor formats: Canonical Polyadic (CP) and Tensor Train (TT) 33

2.3 The Sum of Tensor Trains (SoTT) algorithm . 36
2.3.1 Presentation of the SoTT algorithm . 36
2.3.2 Exponential convergence of the SoTT algorithm in finite dimension 40
2.3.3 Complexity estimate of the SoTT algorithm . 41

2.4 CP-TT: fixed-rank SoTT algorithm with rank 1 . 42
2.5 Numerical Experiments . 43

2.5.1 Comparison between CP-TT and other rank-one update methods 43
2.5.2 SoTT method for the compression of multivariate functions 47

2.6 Conclusions and perspectives . 53

3 Local tensor methods 55
3.1 Introduction . 55

3.1.1 Organization of the chapter . 59
3.2 Notation and preliminaries . 59

3.2.1 Partitioning of tensors . 60
3.2.2 The High Order Singular Value (HOSVD) decomposition 61

3.3 Local tensor spaces . 61

9

3.3.1 Construction of local subdomains . 61
3.3.2 Computation of the leaves . 62
3.3.3 Merging local subdomains . 65

3.4 Computing local HOSVD method . 67
3.5 Cost and complexity of the algorithm . 71
3.6 Summary . 73
3.7 Numerical results . 74

3.7.1 Compression of a Gaussian function . 74
3.7.2 Compression of the solutions of the Fitz-Hugh-Nagumo equation 75

3.8 Conclusions and perspectives . 80

4 Deep Learning-based schemes 83
4.1 Introduction . 83

4.1.1 Organization of the chapter . 85
4.2 A singularly perturbed convection-diffusion equation . 85

4.2.1 Problem definition . 85
4.2.2 General formulation . 86
4.2.3 Vanilla (V) formulation . 86
4.2.4 Weak variational (W) formulation . 87
4.2.5 Rescaled formulation . 88
4.2.6 Summary of the methods . 89

4.3 Neural networks based numerical schemes . 89
4.3.1 General principle . 90
4.3.2 Neural Network classes of functions . 90
4.3.3 Sampling schemes . 91
4.3.4 Comparison with finite element schemes . 92

4.4 Numerical Results . 93
4.4.1 Test case and comparison criteria . 93
4.4.2 Our code and practical implementation details . 94
4.4.3 Discussion . 94
4.4.4 Conclusions from the numerical experiments . 95

4.5 Future research directions and extensions . 97

5 Conclusions and perspectives 99
5.1 Conclusions of SoTT . 99
5.2 Conclusions of local HOSVD method . 99
5.3 Conclusions of Deep Learning-based schemes . 100

A Appendix of Sum Of Tensor Trains: SoTT 103
A.1 Optimization of the computation . 103

A.1.1 Optimization of the coefficients . 103
A.1.2 Computing the SVD of the unfolding without explicitly computing and assembling the

unfolding . 103
A.2 Results for functions in H1 . 104

B Appendix of Deep Learning-based schemes 107
B.1 l2 error plots . 107
B.2 Architecture of the NN plots . 108
B.3 Training of the PINN . 108

12 CONTENTS

Chapter 1

Introduction

Contents
1.1 State of the art of Tensor methods . 2

1.1.1 Proper Orthogonal Decomposition (POD) . 3
1.1.2 Canonical Polyadic (CP) decomposition . 4
1.1.3 Tucker decomposition . 7
1.1.4 Hierarchical Tucker (H-Tucker) format . 8
1.1.5 Tensor Train format . 10
1.1.6 Approximations in local subdomains . 10

1.2 State of the art of clustering methods . 13
1.2.1 Physics-informed clustering . 14
1.2.2 Other classification methods . 15

1.3 State of the art of Deep Learning-based Schemes 15
1.3.1 Deep learning scheme . 16
1.3.2 Physics-Informed Neural Networks (PINNs) . 18

1.4 Contributions of the thesis . 22
1.4.1 Contribution on Tensor Formats: The Sum of Tensor Trains method 22
1.4.2 Contribution in local tensor methods: The local HOSVD method 24
1.4.3 Contribution in Deep Learning-based Schemes for Singularly Perturbed Convection-

Diffusion Problems . 25
1.5 Organization of the manuscript . 27

Machine learning and data mining algorithms are becoming increasingly important in analyzing large
volume, multi-relational and multi-modal datasets, which are often conveniently represented as multiway
arrays or tensors [1, 2, 3]. Many problems with practical interest in physics, chemistry or mathematical
applications naturally lead to high-dimensional or multivariate approximation problems. As a consequence,
these can’t be treated naively.

The main challenge in dealing with such amount of data is the so called curse of dimensionality,
introduced by Bellman in [4], that refers to the need of using a number of degrees of freedom exponentially
increasing with the dimension [5]. In many applications, functions may depend on a potentially high number
of variables d. When the dimension d increases, standard methods lead to a complexity of the numerical
approximation which grows exponentially with d. As a consequence, the number of evaluations necessary to
deal with such large datasets with naive tools may become prohivitive.

The numerical simulation of physical models takes today an important place in numerous branches of
science and engineering. Due to the increasing complexity of models, more and more refined discretizations
and robust numerical solution techniques are needed in order to obtain reliable predictions of their responses.
Furthermore, in the context of optimization or model identification, the aim is not to predict the response
of a unique model but of a family of models. In order to achieve these goals, traditional solution techniques
require the optimal use of constantly evolving computational resources. This is closely linked with the

1

2 CHAPTER 1. INTRODUCTION

curse of dimensionality introduced before. However, for many applications, innovative methodologies as an
alternative to the brute force approach are obviously necessary to access numerical prediction. In other
contexts, standard models may become multidimensional if some of the parameters that they involve are
considered as new coordinates. This possibility is specially attractive when these coefficients are not well
known, they have a stochastic nature, or when one is interested in optimization or inverse identification.

The concept of model reduction (MOR, [6, 7]) seems to be a path for solving these computational issues.
Model order reduction aims to lower the computational complexity of certain problems as simulations of large-
scale dynamical systems and control systems. Model reduction methods exploit the fact that the response of
complex models can often be approximated with a reasonable precision by the response of a surrogate model.

For instance, in Reduced Basis (RB, [8, 9, 10, 11, 12, 13]) methods this is usually achieved by projection of
full-order models. In many studies, the reduced basis is obtained by Proper Orthogonal Decomposition-based
methods [14, 15, 16]. The dimension of reduced basis may be of several orders of magnitude lower than the
dimension of the classically used numerical models. We refer to [7] for a complete overview of the Model
Order Reduction picture.

Consequently, the goal is to provide methods for generating reduced models that are simultaneously ac-
curate (concerning the approximation error) and performant (concerning the simulation time) independently
of the complexity in parameters and the complexity in the time evolution of the original problem.

Currently, there are several classes of methods under investigation in order to propose parsimonious
representations in high dimensions. They try to address an approximation in classes of functions that make
it possible to circumvent the curse of dimensionality, [17, 7, 18, 19]. Standard structured approximations
include n-terms approximations [20, 21, 22], sparse approximations [23], low-rank approximations [24, 25],
or deep learning approximation methods [26].

This work is focused on low-rank representations of multivariate functions from three different points of
view. From the so-called low-rank tensor approximations or low-rank tensor decompositions, [27, 28], its
local variant local low-rank tensor approximation models and from a deep learning-based approach.

Find in the present chapter the state of the art of Tensor methods in Section 1.1, an overview on clustering
methods in Section 1.2 and the state of the art of Physics-Informed Neural Networks in Section 1.3. At the
end of the chapter, in Section 1.4 the reader can find also the contributions of this thesis to the scientific
framework.

1.1 State of the art of Tensor methods
In the literature, these high-order equivalents of vectors or matrices are called high-order tensors or
multi-way arrays. For a lot of applications involving high-order tensors, the existing algebraic methods face
the cited curse of dimensionality, what makes them inappropriate for some problems. This problem can be
alleviated by using various tensor formats, achieved by low-rank tensor approximations, for the compression
of the full tensor as described for instance in [29, 30, 31, 32]. Tensors are well-studied objects in the standard
mathematics literature [33, 34, 35] and more specifically in multilinear algebra, [36, 37].

Let p be the dimension of the system and let D be a subset of Rp with a product structure D :=
D1 × . . . × Dd. Let us consider d ∈ N∗. Then, for all 1 ≤ i ≤ d, Di is an open bounded subset of Rpi for
some pi ∈ N∗. We call a tensor any real-valued multivariate function F ∈ L2(D1 × · · · ×Dd). The following
definitions are set for continuous tensors. Let a discrete tensor be the discretizated form of a multivariate
function.
For each 1 ≤ i ≤ d, let us have a certain Hi Hilbert space of univariate functions defined of Di, equipped
with the corresponding inner product (·, ·)Hi and the associated norm ∥ · ∥Hi .
The elementary tensor product u(1) ⊗ . . . ⊗ u(d) of the d univariate functions u(i) ∈ Hi has associated a
multilinear mapping D1 × . . .×Dd → D1 ⊗ . . .⊗Dd and is defined such that for a multivariate function F
and x = (x1, . . . , xd) ∈ D,

F (x) = u(1)(x1),⊗ . . .⊗ u(d)(xd).

The space L2(D) of square-integrable, real-valued functions defined on D equipped with a scalar product

1.1. STATE OF THE ART OF TENSOR METHODS 3

and the corresponding canonical norm ∥ · ∥L2(D) that is defined for F,G ∈ L2(D) by

⟨F,G⟩D :=
∫

D

F (x)G(x)dx and ∥F∥L2(D) :=
(∫

D

F 2(x)dx
)1/2

.

From now on, in order to simplify the notation of the manuscript (every time that there’s no ambiguity)
L2(D) will be simplified as D, equipped with the norm ∥ · ∥D and its associated inner product (·, ·)D.

1.1.1 Proper Orthogonal Decomposition (POD)
The Proper Orthogonal Decomposition (POD), [38], is a popular dimensionality reduction method used in
model reduction (see [39, 40, 41]) to define the trial subspace.

Definition. For any domain D = Dx ×Dy, where Dx and Dy are open subdomains of Rdx and Rdy for
some dx, dy ∈ N∗ respectively, and any W ∈ L2(D), it holds that there exists an orthonormal basis (Uk)k∈N∗

of L2(Dx), an orthonormal basis (Vk)k∈N∗ of L2(Dy) and a non-increasing sequence (σk)k∈N∗ of non-negative
real numbers which converges to 0 as k goes to ∞, such that

W =
∑

k∈N∗

σkUk ⊗ Vk. (1.1)

A decomposition of W under the form (1.1) is called a Proper Orthogonal Decomposition (POD) of
W according to the separation of variables (Dx, Dy). It is essentially the same as the Singular Value
Decomposition (SVD) in a finite-dimensional space or in Euclidean space. The sequence (σk)k∈N∗ is
known to be unique and is called the sequence of singular values of W associated to the separation
of variables (Dx, Dy) of the set D. The orthonormal basis (Uk)k∈N∗ (respectively (Vk)k∈N∗) may not be
unique but is called a sequence of left (respectively right) singular vectors of W associated to this partitioning.

For any set E, we denote in the sequel by #E the cardinality of E. Assuming that Nx := #Dx < +∞
and Ny := #Dy < +∞, the complexity of the computation of an SVD decomposition of the form (1.1) scales
like

O
(
max(Nx,Ny) min(Nx,Ny)2) . (1.2)

The definition of these different tensor formats relies on the well-known separation of variables principle.
We refer the reader to [24] and [42] for extensive reviews on tensor theory and extended analysis of tensor
decompositions and their numerous applications. Tensor formats are also used for solving time-dependent
and stochastic/parametric PDEs ([43, 44]).

Principal component analysis (PCA), [45, 46], is a multivariate technique that analyzes a data
set in which observations are described by several intercorrelated quantitative dependent variables. PCA
is probably the most popular multivariate statistical technique and it is used by almost all scientific
disciplines. Its goal is to extract the important information from these data, to compress the size of the
data set by keeping only this important information, to represent them as a set of new orthogonal variables
called principal components (obtained as linear combinations of the original variables), and to display the
pattern of similarity of the observations and of the variables as points in certain maps. Mathematically, its
components are obtained from the singular value decomposition (SVD) introduced in Equation 1.1 of the
data. Thus, PCA depends on the singular value decomposition of positive semidefinite matrices, i.e. on the
SVD of rectangular matrices. Its generalized form, Generalized principal component analysis (GPCA) is
introduced in [47].

In the context of approximating a multivariate function and in model order reduction, the POD is also
known as PCA. It belongs to the family of linear dimensionality reduction techniques. POD-based reduced
models consist in finding a low-dimensional afine subspace minimizing the projection error between the
projected data and the original data. We call a solution {ϕ1, . . . , ϕM } a POD basis of order M . Comput-
ing a POD basis of order M as given by Problem 1.1 is equivalent to solve a minimization problem of the form:

For X = {xi}P
i=1 given, find orthonormal functions {ϕj}M

j=1 solving:

4 CHAPTER 1. INTRODUCTION

min
ϕj

P∑
i=1

∥xi −
M∑

j=1
(xi, ϕj)ϕj∥2

Eckart-Young theorem, [48], shows the optimality of the POD for two variables. Let us define then the
maximal POD basis {ψj}M

j=1 and then:

P∑
i=1

∥xi −
M∑

j=1
(xi, ψj)ψj∥2 ≤ min

ϕj

P∑
i=1

∥xi −
M∑

j=1
(xi, ϕj)ϕj∥2 (1.3)

for any other {ϕj}M
j=1 and M ≤ P . Moreover the truncation error ε of using M instead of P POD basis in

representing X is given by:

ε(M) =
P∑

i=1
∥xi −

M∑
j=1

(xi, ψj)ψj∥2 =
P∑

k=M+1
σ2

k

where σk, k = M + 1, . . . , P are the P − M smaller singular values of the POD decomposition of 1.1.
The corresponding M singular values kept indicate the variance that is captured, which enables to ordering
the principal component and choosing their appropriate number to represent the dataset with a given level
of accuracy ε.

The reduced order X derived by projecting onto the POD subspace, are represented as follows

xM =
M∑

j=1
αM

j ψj

where αM are the expansion coefficients. Solving the reduced order model 1.3 for the coefficients allow us
to compute the reduced order solution xM . The different choice of basis functions will lead us to different
solving strategies: Galerkin, Petrov Galerkin, reduced basis methods...

Over the past years, model reduction techniques have become a very important tool for the reduction of
computational requirements in the numerical simulation of complex high-dimensional models. A technique
able to alleviate the already mentioned curse of dimensionality consists of using a separated representation
of the unknown multivariate function. This can be done due to the separability of the domain. A family of
models that rely on the construction of separated variables representation of the solution in tensor product
spaces is conformed. The methods of this family can be interpreted as generalizations of Proper Orthogonal
Decomposition (POD), Singular Value Decomposition (SVD) or Principal Component analysis (PCA) in
other contexts. The use of these methods for tensor decomposition in high dimensional problems can be
seen in [49, 50].

Tensor product spaces are introduced as the foundations of both a priori MOR methods and low-rank
tensor approximations. Tensor Product Spaces are the appropriate framework to formalize the approxima-
tion in the parametric domain. Furthermore, the separated representations and tensor product spaces are
closely related.
In the following, some of the most popular low-rank tensor decompositions are introduced.

1.1.2 Canonical Polyadic (CP) decomposition
As it it detailed in [51], the idea of the polyadic form of a tensor (expressing a tensor as the sum of a finite
number of elementary tensors) arose initially in [52, 53]. This tensor format is also known as Candecomp
Parafac. The form of Candecomp (canonical decomposition), was proposed in [54] and Parafac (parallel
factors) in [55]. We refer to the Candecomp/Parafac decomposition as CP proposed independently in [56]
and [57].

Let us now introduce some notation which will be used in all the sequel. From now on, we fix some d ∈ N∗

and for all 1 ≤ j ≤ d, let Ωj be an open subset of Rpj for some pj ∈ N∗. We define Ω := Ω1 × · · · × Ωd.

1.1. STATE OF THE ART OF TENSOR METHODS 5

Let F ∈ L2(Ω1 × · · · × Ωd). The function F is said to belong to the Canonical Polyadic (CP)
format [52, 29, 58] with rank r ∈ N∗ if it reads as:

F (x1, x2, ..., xd) =
r∑

i=1
u

(1)
i (x1)u(2)

i (x2) · · ·u(d)
i (xd) (1.4)

for some functions u(j)
i ∈ L2(Ωj) for 1 ≤ i ≤ r and 1 ≤ j ≤ d. The CP decomposition factorizes a tensor

into a sum of component rank-one (elementary) tensors.

The rank of a tensor is the minimum number of terms in an exact CP. A CP decomposition of a tensor
F with r = rank(F) number of components is called the rank decomposition. More details and its relation
with the uniqueness can be found in [59, 51, 60] and [61].

The main advantage of this decomposition is the low memory cost needed to store it. Indeed, if N degrees
of freedom are used per variable, the storage cost of a general function F ∈ L2(Ω1 × · · · × Ωd) is O

(
N d
)
. On

the other hand, the storage cost of a CP tensor with rank r reduces to O(dN r), which scales linearly in the
tensor order d and size N . However, it suffers from several drawbacks. The computation of the canonical
rank is an NP-hard problem [62] and the problem of finding a best approximation of a tensor in CP format
may be ill-posed [63], i.e. when the problem is written as a minimization problem, a minimizer may not exist;
thus the numerical algorithms for computing an approximate representation in such cases might fail. The
most classical algorithm in order to compute an approximation of a tensor in the CP format is the so-called
Alternating Least Square (ALS) method.

See the details in Algorithm 1. Several researchers have proposed improving ALS with line searches
[64, 65], including the ELS [66], which adds a line search after each major iteration that updates all
component matrices simultaneously based on the standard ALS search directions. Let us also cite the
Modified Alternating Least Square (MALS), [67], where the idea behind is to modify the least squares
format used in the ordinary ALS algorithm. In addition, weighted least squares method can be found in the
literature, [68, 69, 70, 71].

Algorithm 1 Rank-one ALS greedy algorithm
1: Require: Prescribed tolerance ϵ > 0, and tensor W ∈ L2(Ω)
2: Output: N ∈ N∗, for all 1 ≤ n ≤ N and all 1 ≤ i ≤ d, Rn

i ∈ L2 (Ωi) so that the CP tensor W̃ ∈ L2(Ω) defined by

W̃ (x1, · · · , xd) :=
N∑

n=1

R
n
1 (x1)R

n
2 (x2) · · · R

n
d (xd) ∀(x1, · · · , xd) ∈ Ω,

satisfies ∥W − W̃ ∥2
L2(Ω) ≤ ϵ.

3: Set W 0 = W , n = 1.
4: while ∥W n−1∥2

L2(Ω) > ϵ do

5: For all 1 ≤ i ≤ d, select randomly Rn,0
i

∈ L2(Ωi) and set η := ϵ and m = 1.
6: while η > 1

10 ϵ do
7: for j = 1, · · · , d do
8: Compute Rn,m

j
∈ L2(Ωj) solution to

R
n,m
j ∈ argmin

Rj ∈L2(Ωj)

∥∥Wn−1 − R
n,m
1 ⊗ · · · ⊗ R

n,m
j−1 ⊗ Rj ⊗ R

n,m−1
j+1 ⊗ · · · ⊗ R

n,m−1
d

∥∥2

L2(Ω)

9: end for
10: Compute η :=

∥∥Rn,m
1 ⊗ · · · ⊗ Rn,m

d
− Rn,m−1

1 ⊗ · · · ⊗ Rn,m−1
d

∥∥2

L2 . Set m := m + 1.
11: end while
12: Define Rn

i = Rn,m−1
i

for all 1 ≤ i ≤ d.
13: Compute Wn(x1, · · · , xd) = Wn−1(x1, · · · , xd) − Rn

1 (x1)Rn
2 (x2) · · · Rn

d (xd) for all (x1, · · · , xd) ∈ Ω.
14: n = n + 1
15: end while
16: N = n − 1

The ALS algorithm applied to CP is also used for tensor completion [72], i.e. the case in which the
problem of tensor factorization into CP format is applied to incomplete data. For this task, some works are

6 CHAPTER 1. INTRODUCTION

proposed such as [59, 73, 74].
CP approximations have proven useful in approximating certain multidimensional operators such as the

Newton potential (see [75]). CP is also used in data mining and in text analysis, [76].

Nevertheless, this separated representation is not a new proposal. It was first proposed in [77] for per-
forming efficient solutions of complex non-linear thermo-mechanical models and more detailed later in [78]
and [79]. Proper Generalized Decomposition is the common name for techniques using such separated repre-
sentations. The general form of the separated representation of a generic multivariate function F (x1, . . . , xd)
in the PGD form reads as in Equation 1.4:

F (x1, . . . , xd) =
N∑

i=1
f1

i (x1) . . . fd
i (xd) (1.5)

where xi denotes a scalar or vector coordinate defined in a domain Ωi of moderate dimension Ωi ∈ Rd. The
PGD decomposition is thus a sum of N functional products involving each a number of d functions that are
unknown a priori. The case when the function F is known, has been extensively studied over the past years
in multilinear algebra as the POD decomposition [80, 81, 82].

The PGD method aims to construct a decomposition of a tensor F . The solution is sought by applying
a greedy algorithm (in which every iteration is solved through a fixed point algorithm, see [83]), to the weak
formulation of the problem. For each iteration of the algorithm, a mode consisting in a set of numerical
values of the functional products f1

i (x1) . . . fd
i (xd) of the solution is computed. Each mode enriches the

approximation of the solution and it gets more precise with the iterations.
There exist several approaches to the numerical analysis of PGD, [84]. They combine the existence of

a best approximation and a greedy algorithm. The idea of using greedy algorithms to construct successive
approximations was considered in [85] in the context of the numerical solution of multidimensional PDEs.
In [86] the use of a Greedy Rank-One Update Algorithm to construct a rank-r approximate solution for a
full rank linear system is proposed. Also, different greedy tensor decompositions have been used in order to
compute low-rank approximations, see [87, 88, 89, 90, 91]. The principle of these methods is to approximate
a function which depends on a large number of variates by a sum of tensor product functions, each term of
which is iteratively computed via a greedy algorithm.

Between the main applications of the PGD method we can find: uncertainty quantification, where
sometimes is called Generalized Spectral Decomposition, [92], stochastic parametric analyses and numerical
analysis of separated representation and its associated constructors. See more applications and details in
[93, 94].

Let us now introduce the concept of unfoldings of a tensor. Assume a N−th order tensor X ∈ RN1×...×NN .
The matrix unfolding X(n) ∈ RNn×(Nn+1...NN N1...Nn−1) contains the element xi1...ip

at the row position in
and column number equal to:

(in+1 − 1)Nn+2 . . .NN N1 . . .Nn−1 + (in+2 − 1)Nn+3 . . .NN N1 . . .Nn−1 + . . .

. . .+ (iN − 1)N1 . . .Nn−1 + (i1 − 1)N2 . . .Nn−1 + . . .+ in−1

The slices of a tensor are introduced as the two-dimensional sections defined by fixing all the indices but
two. In a third order tensor X ∈ RN1×N2×N3 , the horizontal, lateral, and frontal slices are denoted by Xi1::,
X:i2:, and X::i3 , respectively. They are matrices, and when we refer to the n-th frontal slice of a third order
tensor we refer to its unfolding X(n).

In general, we refer to the column and row vectors of a N−th order tensor as its n-mode vectors defined
as the Nn−vectors obtained by varying the index in and keeping the rest fixed. The n-mode vectors (or just
modes) of a certain tensor X are the column vectors of the unfolding X(n).

We define the n-rank of a tensor X, denoted by Rn = rankn(X) as the dimension of the vector space
spanned by the n−mode vectors.

1.1. STATE OF THE ART OF TENSOR METHODS 7

The n−mode multiplication of a tensor X ∈ RN1×...×Nn×...Nd by a matrix A ∈ RIn×Nn is defined by

[X ×n A]i1...in−1Inin+1...id
=

Nn∑
in=1

Xi1...in−1inin+1...id
aIn×in

(1.6)

leading to a tensor X ×n A ∈ RN1×...×In×...Nd . With the n−mode product, the POD decomposition intro-
duced in Equation 1.1 is written as: X = UΣV T = Σ ×1 U ×2 V .

1.1.3 Tucker decomposition
The Tucker decomposition was first introduced by Tucker in 1963 in [95] and then refined in [96, 97]. The
Tucker decomposition is a form of higher-order PCA, see [98, 99]. The Tucker model seeks a d−dimensional
tensor F ∈ RN1×...×Nd as mode products of a core tensor G ∈ RI1×...×Id and d mode matrices U (n) ∈ RIn×N1

It decomposes a tensor into a core tensor multiplied by a matrix along each mode. For a certain tensor F it
reads:

F ≈
I1∑

i1=1
. . .

Id∑
id=1

Gi1...id
u

(1)
i1

⊗ . . .⊗ u
(d)
id

(1.7)

where u(j) are the corresponding modes. G is a real (I1 × . . . × Id)-tensor with the property of ”all
orthogonality” called the core tensor. When In = Nn, for all n = 1, . . . , d, the approximation becomes an
equality. The Tucker format [97, 100] is stable but has exponential in d number of parameters, dIR + Rd

(for all equal ranks and degrees of freedom per dimension namely R and I respectively) parameters while
the initial array has N d entries. It is suitable for “small” dimensions, especially for the three-dimensional
case [101, 102, 103]. Therefore, in some sense Tucker representations suffer from the curse of rank due to the
need of storing the core tensor, whose size scales exponentially with the number of dimensions. For large d
it is not suitable. The CP decomposition can be viewed as a special case of Tucker where the core tensor
is superdiagonal and N1 = . . . = Nd. The Hierarchical Tucker format (H-Tucker), can be seen as a multi-
level variant of the Tucker format, it was introduced in [104] as a hierarchical SVD method for tensors of d ≥ 2.

Tucker representation is often computed by a generalization of the SVD, Higher-Order SVD (HOSVD)
that produces quasi optimal approximations of the tensor, see [82, 105, 104]. For compression, it is also
commonly used the HOSVD:

F =
R1∑

i1=1
. . .

Rd∑
id=1

Gi1...id
u

(1)
i1

⊗ . . .⊗ u
(d)
id

(1.8)

in which R1, . . . , Rd are the n−ranks defined above and they are smaller that N1, . . . ,Nd, respectively. See
more details in Algorithm 2. The core tensor G ∈ RR1...Rd is computed by the n−mode multiplication
defined in Equation 1.6 of the initial tensor and the mode matrices.

Algorithm 2 Truncated HOSVD algorithm
1: Require: The tensor W (x1, . . . , xd) ∈ L2(Ω). The set of ranks {Rk}1≤k≤d.
2: Output: The set of truncated HOSVD matrices {Uk}1≤k≤d. The HOSVD core tensor G ∈ RR1...Rd .
3: for i = 1, · · · , d do
4: Compute the SVD of W (i):

W
(i) = ŪiΣiV

T
i

5: Set Ui as the Ri first column vectors of Ūi.
6: end for
7: Compute the core tensor: G = W ×1 UT

1 . . . ×d UT
d

The Tucker tensors of fixed rank being an embedded manifold provide a stable parametrization, reflected
in reliable practical computations. The Tucker-ALS algorithm convergence properties are very satisfactory
[106, 99, 98, 107], even if a formal analysis is not yet available.

The principle of these methods is to construct a hierarchy of optimal subspaces that results in a final
tensor product of subspaces in which the function F is projected, to define its final approximation. Under
strong assumptions on the estimation error made in the determination of subspaces, it is shown in [82] that
with a number of evaluations scaling in the storage complexity of the tree-based tensor format, see more

8 CHAPTER 1. INTRODUCTION

in [108, 109], the approximation satisfies the desired error up to constants depending on some projection
operators, which are not quantified.

For d-dimensional tensors with possibly large d > 3, a hierarchical data structure, called the Tree-Tucker
format, is presented in [110] as an alternative to the canonical decomposition CP. It has smaller or equal
number of representation parameters and viable stability properties. The approach involves a recursive con-
struction described by a tree with the leafs corresponding to the Tucker decompositions of three-dimensional
tensors, and is based on a sequence of SVDs for the recursively obtained unfolding matrices and on the
auxiliary dimensions added to the initial “spatial” dimensions.

Several examples of using the Tucker decomposition in chemical analysis are provided in [111] as part of
a tutorial on N-way PCA, also applications in signal processing [112], as well as several tasks in computer
vision related with facial expression [113, 114].

1.1.4 Hierarchical Tucker (H-Tucker) format
The Hierarchical Tucker (H-Tucker) format from [104, 115] is a variant of the Tucker format. Hierarchical
Tucker representations are an attempt to keep the generality of the Tucker representation but reducing at
the same time its complexity, which was greatly affected by the size of the core tensor. In order to de-
fine it, we need to introduce a hierarchy between the modes. To do so, some preliminary concepts are needed.

Let us define the indices of a d−order tensor as D := {1, . . . , d}. And let t ⊂ D, t ̸= ∅.
Definition. A dimension tree or mode-cluster tree T for dimension d is a finite tree with root Root(T) = D
and depth p := {i ∈ N0|i ≤ log2(d)} such that each node t ∈ T is either:

• a leaf and singleton t = {µ}, with µ ∈ D.

• the union of two disjoint successors S(t) = {t1, t2} and t = t1∪̇t2.

The level l of the tree is defined as a set of nodes having a distance l to the root. We denote the set of nodes
in the level l as: T l := {t ∈ T |level(t) = l}. A node of the tree is called a so-called mode cluster or just
cluster (a set of modes). A Canonical dimension tree is a particular case in which each node has two successors.

Definition. Let T be a dimension tree. The hierarchical rank (H-rank) (rt)t∈T , see [116], of a tensor
F ∈ RN , being N := N1 × . . .× Nd, is defined by:

∀t ∈ T, rt := rank(F (t))

the set of tensors of hierarchical rank (nodewise) at most (rt)t∈T are the so calles H-Tucker tensors and
they are denoted by:

H-Tucker(T, (rt)t∈T) := {F ∈ RN |∀t ∈ T : rank(F (t)) ≤ rt}

From Definition of the H-rank of a tensor F based on a dimension tree T , one can obtain representation
of the tensor. For this, we first notice that a representation matrix unfolding F (t) in the form

F (t) = UtV
T

t

is an exact representation of F for every node t of the tree T . Since for S(t) = t1, t2 the column-vectors (Ut)i

of Ut ∈ RNt×rt fulfil the nestedness property, there exists for every i ∈ {1, . . . , rt} a matrix (Bt)i,·,· ∈ Rrt1 ×rt2

such that

(Ut)i =
rt1∑
j=1

rt2∑
l=1

(Bt)i,j,l(Ut1)j ⊗ (Ut2)l

In the root and the leaves t = {µ}, the matrices are small enough to be stored in full tensor format but
in the rest of the nodes we need to store sparse matrices. A tensor stored or represented in this form is said
to be given in H-Tucker format.

1.1. STATE OF THE ART OF TENSOR METHODS 9

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{1, 2, 3, 4}

{1} {2, 3, 4}

{2} {3, 4}

{3} {4}

Figure 1.1: In this schematic trees we can see two 4-dimensional examples of dimension trees. In the right,
a hierarchical binary tree, H-Tucker. In the left the representation of the TT format as a binary dimension
tree.

The computational complexity is in the order of O(dr3 + dNr), where r = maxt∈T rt and
N = maxk∈D #Nk, which improves Tucker’s complexity. However, operating with H-Tucker tensors
is not always straightforward. For instance, the complexity of the inner product between tensors in H-Tucker
format is in the order of O(dNr2 + dr4).

The basic idea of the Hierarchical Tucker decomposition is that a tensor F can be represented in the
H-Tucker format if it allows for a recursive construction out of lower-dimensional subspaces. This recursion
is completely defined by the dimension tree introduced before. In this framework, a tensor is partitioned into
a dimension tree with matrices at its leaves containing the modes of the tensor. These matrices are linked by
the so-called transfer tensors, which are located at all inner nodes of the partition tree. Typical choices for
such dimension trees are those obtained by a balanced splitting of the index set, as used, e.g., by Grasedyck
[104], or a front-to-back splitting which leads to the Tensor Trains (TT) format, [117], proposed by Oseledets
and Tyrtyshnikov in [118, 110].

In [119], a projection method in a linear space is proposed. This method constructs the approximation
of a function in tree-based tensor format, proposing a strategy to choose the tree structure in order to
reduce ranks of the approximation at given precision and therefore its complexity and the required number
of samples.

The use of rank-structured set of functions in tree-based tensor formats or tree tensor networks can be
seen as a particular class of neural networks. It includes the Tucker format for a trivial tree, the tensor-train
format for a linear binary tree [110] and the more general hierarchical format for a general dimension
partition tree [115]. Any function in T l

I admits a multilinear parametrization with parameters forming
a tree network of low-order tensors, hence the name tree tensor networks, [120]. Considering dimension
trees gives nice topological and geometrical properties [121, 122]. Tree tensor networks are particularly
relevant for high-dimensional approximation, because the complexity of the parametrization of a function in
tree-based tensor format is linear in the dimension d and polynomial in the ranks [123]. It can also be used
for one-dimensional approximation [124, 125].

The tensor tree structure contains the Tucker format and the Hierarchical Tucker format (including
the Tensor Train format). In the following scheme, Figure 1.1, we can see a 4-dimensional example of the
front-to-back dimension trees representations for H-Tucker format on the left, and on the right special
variant of the general H-Tucker format, the so-called Tensor Train (TT) format.

In the literature, some algorithms constructing approximations in tree-based tensor formats using
points evaluations of functions have already been proposed. In [123], by using the tree structure and the
dimensions of the associated minimal subspaces, it is proved that there exist a set of tensors that can be
approximated by a tree-based format with bounded tree-based rank. There are learning approaches that use

10 CHAPTER 1. INTRODUCTION

random evaluations of the functions [126, 127]. In the numerical experiments, robustness and effectiveness
of such algorithms are observed. On the other side, there are algorithms that use adaptive and structured
evaluations of tensors for tree-based tensor formats, see [128].

1.1.5 Tensor Train format
Let us now continue presenting the tensor format introduced before as a concrete case of the Tucker de-
composition, that is going to be one of the key methods in the contributions of this manuscript. It was
introduced in [118]. The same format was introduced in the computational chemistry community under the
name Matrix Product States (MPS), [129]. The function F is said to belong to the Tensor Train (TT)
format with ranks r1, . . . , rd−1 ∈ N∗ if and only if

F (x1, x2, ..., xd) =
r1∑

i1=1
...

rd−1∑
id−1=1

u
(1)
i1

(x1)u(2)
i1,i2

(x2)u(3)
i2,i3

(x3) · · ·u(d−1)
id−2,id−1

(xd−1)u(d)
id−1

(xd) (1.9)

with u
(j)
ij−1,ij

∈ L2(Ωj) for 1 ≤ ij−1 ≤ rj−1 and 1 ≤ ij ≤ rj for all 1 ≤ j ≤ d (with r0 = rd = 1).
It combines two main advantages: On the one hand, it is stable from an algorithmic point of view; on

the other, it is computationally affordable provided that the TT ranks of the tensors used stay reasonably
small. The ranks characterize the complexity to store a tensor in the TT format. Supposing that
r1 = . . . = rd−1 = r, its storage complexity is O(dr2N). In [116] bound for these TT ranks are provided.

One of the schemes used for the optimization of a TT tensor with a given rank is the ALS method, see
details in [130, 67, 131]. In [67] some numerical examples that concern the stability of the TT decomposition
and of ALS are shown as well as how high TT ranks are required during the iterative approximation of
low-rank tensors, showing some potential of improvement. These ranks are chosen a priori and that makes
the method less robust. As we will recall in Algorithm 3, other ways of computing the TT decomposition of
a tensor is via the well-known TT-SVD algorithm.

We will also consider three different tensor representations which are based on slight modifications of
the TT format, namely the quantized tensor-train format (QTT), (see more in [132]), the block tensor-train
format (BTT) (see [133]), and the cyclic tensor-train format (CTT) (see [24]).

Let us make a reference also to the approximation of high-dimensional functions in a statistical learning
setting: using model classes of functions in tree-based tensor format. These are particular classes of
rank-structured functions that admit explicit and numerically stable representations, parametrized by a
tree-structured network of low-order tensors. These nonlinear model classes can be seen as deep neural
networks, see [126].

1.1.6 Approximations in local subdomains
Nowadays, high-dimensional problems arise in a wide range of fields with practical interest such as quan-
tum chemistry, molecular dynamics, uncertainty quantification, finance... or mathematical applications that
naturally lead to high-dimensional or multivariate approximation problems. One of the main challenges
that these high-dimensional and complex systems present is the already introduced curse of dimensionality
[4, 134, 5], that refers to the need of using a number of degrees of freedom exponentially increasing with the
dimension to describe them.

Dimensionality reduction methods naturally arise from this problem. They consist in finding a com-
pressed representation of a multivariate function or dataset while limiting as much as possible the loss of
information. In many applications, high-dimensional data have a low intrinsic dimension or present a certain
correlation in the hidden structure of the data such as symmetry, periodicity, etc. In the case in which the
method is able to detect these aspects, the curse of dimensionality is alleviated.
A more efficient approach will involve approximating the function locally using a series of subspaces of
smaller dimension or with less degrees of freedom on it. This idea of computing local approximations is
extensively developed in the field of Model Order Reduction, see Chapter 3 of [7] for more details.

1.1. STATE OF THE ART OF TENSOR METHODS 11

Algorithm 3 TT-SVD algorithm
1: Require: Prescribed tolerance ϵ > 0, the tensor W ∈ L2(Ω)
2: Output: K1, · · · , Kd−1 ∈ N∗ TT-ranks, R1 ∈ L2

(
Ω1, R1×K1

)
, Rd ∈ L2

(
Ωd, RKd−1×1

)
and for all i = 2, · · · , d − 1, Ri ∈

L2
(

Ωi, RKi−1×Ki
)

so that the Tensor Train W̃ ∈ L2(Ω) defined by

W̃ (x1, · · · , xd) := R1(x1)R2(x2) · · · Rd(xd) ∀(x1, · · · , xd) ∈ Ω,

satisfies ∥W − W̃ ∥2
L2(Ω) ≤ ϵ2.

3: Define K0 := 1, D0 = {1} and define W 0 ∈ L2(D0 × Ω) such that W 0(1, ·) = W , I0 := {1, · · · , d}, Ω̂0 := Ω.
4: for j = 1, · · · , d − 1 do
5: Since Dj−1 × Ω̂j−1 = (Dj−1 × Ωj) × Ω̂j with Ω̂j = Ωj+1 × · · · × Ωd, compute the SVD decomposition of W j−1 according to

the separation of variables (Dj−1 × Ωj , Ω̂j) so that

W j−1 =
∑
k∈N∗

σj,kUj,k ⊗ Vj,k.

6: Select Kj ∈ N∗ such that Kj = inf

{
K ∈ N∗

,

∑
k≥K

|σj,k|2 ≤
ϵ2

d − 1

}
.

7: Define Dj := {1, · · · , Kj} and define W j ∈ L2
(

Dj × Ω̂j

)
by

W j(kj , yj) = σj,kj
Vj,kj

(yj)

for all (kj , yj) ∈ Dj × Ω̂j .
8: Define Rj ∈ L2

(
Ωj , RKj−1×Kj

)
as

Rj(xj) =
(

Uj,kj
(kj−1, xj)

)
1 ≤ kj−1 ≤ Kj−1
1 ≤ kj ≤ Kj

for all xj ∈ Ωj .
9: end for

10: Define Rd ∈ L2
(

Ωd, RKd−1×1
)

by

Rd(xd) =
(

σd−1,kd−1 Vd−1,kd−1 (xd)
)

1≤kd−1≤Kd−1
.

12 CHAPTER 1. INTRODUCTION

The Kolmogorov N−widths describe the rate of the worst-case error arising from a projection onto
the best-possible linear subspace of dimension N ∈ N, [135]. It has been proven that for certain linear,
coercive, parameterized problems, the Kolmogorov N−widths decay exponentially or polynomially with
high exponent as N grows, [136]. This extremely fast decay is the base of any model reduction strategy since
it guarantees that even choosing a very moderate dimension N , it is possible to achieve good approximations.

In the last years, the problem of finding a dimensionality reduction model has also been considered as a
classification problem and, treated like one, studied with supervised learning algorithms, [137, 138].

Projection-based model order reduction consists in computing an approximate solution in a low-
dimensional subspace of the solution space, which can give accurate predictions provided that the solution
manifold is embedded in a low-dimensional space, see [139]. Projection-based model reduction techniques
reduce the computational cost associated by restricting the solution space to a subspace of much smaller
dimension. Among them, we can find POD Galerkin method [140] and Reduced Basis method [141, 142, 143].
They enclose the family of models in which the approximated solution is obtained by solving the physics
equations with the Galerkin method on a well chosen ROB, [144].

Find in [7] some cases in which the Kolmogorov N−widths decay very slowly. In these cases, it may
be very difficult to build a linear model that provides a certified approximation for a small tolerance and
an affordable numerical complexity. For these classes of problems, an efficient strategy for model reduction
requires to look for nonlinear models that capture the geometry of the manifold where the data lies better
than linear spaces. In the situations in which we face moderate order functions is sometimes advantageous to
apply a nonlinear dimensionality reduction method [145, 146, 147, 148, 149]. Theoretically, this is equivalent
to map the data into a higher-dimensional space and then applying POD. Some methods like Kernel PCA
(a nonlinear extension of PCA, see [150, 151, 152]) or the use of neural networks, [153, 154] are proposed in
the literature for nonlinear problems.

Local reduced basis methods

Most MOR techniques build a single subspace that approximates the solution manifold. However, when the
solution manifold is highly nonlinear and as a result a subspace of large dimension is required to approximate
it globally, a more efficient approach involves approximating the manifold locally using a series of subspaces
of smaller dimension or with less degrees of freedom on it. Each of the subspaces is associated with a local
reduced-order basis that can be eventually stored. This methods works in such a way that the parametric
domain is partitioned into subregions. Then, for a new parameter value, a local basis can be computed by
simply choosing the region where the parameter belongs to. See [155] for a detailed analysis of nonlinear
model reduction using local basis.

In [156, 157, 155], the local subspace is selected by finding the closest cluster to the solution. The distance
used is the Euclidean distance.

The MOR method introduced in [156] (and applied in [157]) alleviates the problem of the low-efficiency
of reduced models in high dimensions through the use of multiple local bases. In this approach, a local ROB
is selected at each time step of the ROM simulation based on the current state of the system. Such a concept
is particularly well-suited for the POD method in which the basis is built from snapshots of the system taken
at various locations of the state-space.

In practice, the set of reduced bases {Vj}NV
j=1, where NV is the number of subspaces, is built using a POD

algorithm based on the method of snapshots. The proposed method for constructing a database of local
bases consists of three steps:

• First, the states are clustered into NV subsets using an unsupervised learning algorithm, such as the k-
means. More important than the choice of algorithm is the choice of distance metric used, the Euclidean
distance in this case.

• Second, the clusters are made to overlap with one another by sharing a small number of states between
neighboring clusters.

• Third, the snapshots are formed from the state clusters and the individual local reduced order basis
are computed.

1.2. STATE OF THE ART OF CLUSTERING METHODS 13

Transitions between local subspaces require special care and updating the reduced bases associated with
each subspace increases the accuracy of the reduced-order model.

Let us recall the already introduced Generalized principal component analysis (GPCA), [47], where
the alternative extension of PCA to the case of data lying in a union of subspaces is exploited. Subspace
segmentation is a fundamental problem in many applications. If the segmentation of the data was known,
one could simply assign a subspace to each set of points using PCA (although its effectiveness is limited by
its global linearity). On the other hand, if the subspaces and its basis were known, the problem reduces
to find the points that best fit the subspace. Normally, neither the subspaces or the segmentation of the
data are known, most existing methods randomly choose a base for each subspace and then iterate between
data segmentation and subspace estimation. In the literature, it has been done as K-subspaces, in [158], the
extension of K-means to the case of subspaces; subspace growing or subspace selection, [159]; or Expectation
Maximization ([160]) fore mixtures of PCAs, see more in [161].

Splitting a non-reducible problem into multiple reducible ones can be achieved with cluster analysis.
Cluster analysis belongs to unsupervised learning tasks and can be defined as the search of groups (or
clusters) of similar objects in a database. The choice of the clustering algorithm depends on the underlying
motivation and thus on the clusters topological properties that are expected.

1.2 State of the art of clustering methods
Clustering is a common technique for statistical data analysis, which is used in many fields, including
machine learning, data mining, pattern recognition, image analysis between others. This reflects its broad
appeal and usefulness as one of the steps in exploratory data analysis. Clustering is the process of grouping
similar objects into different groups, or more precisely, the partitioning of a data set into subsets, so that the
data in each subset according to some defined distance measure. Clustering problem is not a trivial task,
especially in the case of high-dimensional data that is exactly the case that we face in most applications,
and it is where conventional methods usually fail. The number of data required to define correctly the
system increases exponentially with its dimension. This phenomenon is referred to as the already introduced
curse of dimensionality. The difference with classification tasks is that the set of categories (or clusters) is
not known a priori. Hence, clustering methods are included in the family of unsupervised learning models,
where the data to be classified are not labeled. Dimensionality reduction methods are also included.

Therefore, clustering can simply be defined as the task of grouping entities in terms of a similarity
measure. Here, the critical issue is to understand what is meant by “similar”. Similarity is in a sense the
inverse of a distance metric between two entities. The shorter the distance, the more similar the entities, and
vice versa. It is important hence to note that, clustering results will be crucially dependent on the similarity
notion chosen. Determining the distance between both clustering solutions is non-trivial and still subject
to discussion. A conventional distance metric is the Euclidean distance. Deriving the Euclidean distance
between two data points involves computing the square root of the sum of the squares of the differences
between corresponding values. Many other similarity measures, e.g., [162, 163], could be used to tackle the
broad range of domain specific clustering problems.

Clustering methods are usually categorized under four main groups: hierarchical, partitioning, overlap-
ping, and ordination algorithms.

• The first group is based on the cluster formation methodology. Hierarchical algorithms can be
agglomerative (bottom-up) or divisive (top-down), and this choice is done via analytic optimization
techniques (see more in [164]). Agglomerative algorithms begin with each element as a separate cluster
and merge them in successively larger clusters while divisive algorithms starts from large clusters and
splits it succesively in smaller ones.

• A second group lists methods depending on the cluster model acquired such as hierarchical [165],
representative (such that each cluster is associated to a partitioning representative, i.e. a reference

14 CHAPTER 1. INTRODUCTION

point that well represents the cluster’s members, they include k-means [166, 167] when the optimal
representatives are the clusters means or centroids; k-medians [168] when the optimal representatives
are the medians, k-medoids [169] when the optimal representatives are the medioids, in this case
the representatives must be taken among the elements of the dataset; and many variants of k-means),
distribution such as expectation maximization, density [170], subspace, group, and graph-based models,
[171].

• Thirdly, depending on the relationship type between entities and clusters, hard or soft clustering can
be distinguished by defining binary or fuzzy relations, respectively.

• A final clustering group, based on the nature of cluster-cluster relations, defines the distinction between
overlapping versus disjoint partition groups in general.

Let us make a remark on hierarchical clustering. Hierarchical techniques produce a nested sequence of
partitions, with a single, inclusive cluster at the top and singleton clusters of individual points at the bottom.
Each intermediate level can be viewed as combining two clusters from the next lower level (or splitting a cluster
from the next higher level). The result of a hierarchical clustering algorithm can be graphically displayed
as tree. This tree graphically displays the merging process and the intermediate clusters. For document
clustering, this tree provides a hierarchical index. The two basic approaches to generate a hierarchical
clustering:
a) Agglomerative: Start with the points as individual clusters and, at each step, merge the most similar or
closest pair of clusters. This requires a definition of cluster similarity or distance.
b) Divisive: Start with one, all-inclusive cluster and, at each step, split a cluster until only singleton clusters
of individual points remain. In this case, we will need to decide, at each step, which cluster to split and how
to perform the division.

Hierarchical method suffers from the fact that once the merge/split is done, it can never be undone. This
rigidity is useful in that it leads to smaller computation costs by not worrying about a combinatorial number
of different choices. Divisive algorithms begin with the whole set and proceed to divide it into successively
smaller clusters.

See [172, 173], for more information of families of clustering methods. The clustering process is
considerably more complicated when dealing with clusterings of overlapping clusters. In this work we are
going to restrict ourselves to the situation in which they are not overlapping. More information and an
analysis of this situation can be found in [174]. The validation of such algorithms refers to the problem of
determining the ability of the methods to recover cluster configurations which are known to exist in the
data. Validation approaches include mathematical derivations, analyses of empirical datasets, and Monte
Carlo simulation methods.

Some unsupervised learning tasks such as clustering and dimensionality reduction can be seen as data
mining tasks. Dimensionality reduction is used for the construction of reduced-order models, the compression
of simulation data, and the reduction of the number of variables to be processed by some predictive models;
cluster analysis is used for the identification of groups of data with similar physical or mechanical behaviors,
enabling the construction of dictionaries of cluster-specific models.

See [175] for an extensive study in model order reduction methods and its machine learning-based
variants (ROM-net) and applications. In this work, local ROMs are combined with a classifier for automatic
model recommendation. The classifier recommends a suitable reduced-order model. Nevertheless, as the
classes are given by a clustering algorithm the computational cost is very high. The time-consuming
operations required for model selection are avoided by replacing by an approximation the theoretical perfect
classifier.

1.2.1 Physics-informed clustering
Physics-informed clustering strategies were firstly introduced in [176, 177]. The focus is on finding a
clustering strategy that is appropriate for model order reduction purposes. Physics-informed cluster analysis
consists in clustering the parameter space by means of a dissimilarity measure which involves physical

1.3. STATE OF THE ART OF DEEP LEARNING-BASED SCHEMES 15

quantities obtained when solving the problem. In practice, this means that a clustering algorithm is applied
in the solution space.

When using a clustering algorithm to compute partitions of the solution manifold, the quality of the
partition is related with the choice of the clustering method and the measure used to group similar solutions
on the manifold. Among physics-informed clustering strategies, it is common to use K-means algorithm
(introduced in what follows), that measures similarities with Euclidean distances in the solution space or
in a subspace of the solution space found by PCA. In [178], it was noticed that clustering based on the
Euclidean distance in the solution space was not adapted for the construction of local ROMs, which led to
the definition of projection-error based local ROMs where the solution space is hierarchically partitioned
using the projection error as a dissimilarity criterion. In [176] an alternative based on the use of rela-
tive errors is proposed. In other works like [138] and [179], the Grassmann distance between subspaces is used.

1.2.2 Other classification methods
Many algorithms exist for nonlinear classification problems, each of them having its own advantages and
drawbacks. Naive Bayes classifiers [180] are well-known for their interpretability as well as Decision trees
[181]. Decision trees are supervised learning algorithms that model the correspondence between inputs
and outputs by means of simple decision rules, leading to a recursive partition of the input space. They
are known to be interpretable in the sense that classification rules can be visualized as paths in a tree structure.

Other nonlinear classifiers include the k-nearest neighbors algorithm (kNN [182]) and quadratic discrim-
inant analysis. See more detailed information in [183, 184]. In [185] a greedy method to reduce dimensions
in classification problems is investigated. The k-nearest neighbors method was first introduced in [186], and
more developed in [187] and [188]. The kNN classifier [182] belongs to the family of instance-based learning
algorithms, which store training data in memory and compare test data with training examples to make
predictions. The label for a given observation is obtained by a majority vote among the k-nearest training
examples, understanding nearest as the smallest Euclidean distance.

K-means algorithm is one of the best-known and simplest clustering algorithms, it is based on kNN
method and it is mostly applied to solve classification problems, grouping the given data in a certain number
K of clusters defined a priori.

1.3 State of the art of Deep Learning-based Schemes
Neural networks produce structured parametric families of functions that have been studied and used for
almost 70 years. In the last several years, however, their popularity has surged as they have achieved state
of the art in large variety of problems. We have seen an increase in the application of Deep Neural Networks
(DNNs) in a wide range of disciplines. In scientific computing, computational experiments with DNNs
for the numerical solution of Partial Differential Equations (PDEs) have been reported to be strikingly
successful in a wide range of applications [189, 190, 191, 192]. Moreover, deep learning-based reduced order
models (DL-ROMs) have been recently proposed to overcome common limitations shared by conventional
reduced order models, [193]. All these encouraging results show that DNNs are an interesting candidate for
efficiently emulating other (linear or nonlinear) approximation methods.

Underlying this success, deep learning based schemes are a way to approximate functions. They
embrace schemes from an additive construction commonly used in approximation theory to a compositional
construction used in deep neural networks. The compositional construction seems to be particularly powerful
in high dimensions. This suggests that deep neural network based models can be an interesting choice in
function approximation tasks. This includes solving partial differential equations [194], molecular modeling
[195] and as mentioned before, model reduction [138], among others.

The idea of working with neural network functions to solve PDEs is by far not novel, and countless
contributions have been proposed on this front in recent years, [194, 191, 189].

16 CHAPTER 1. INTRODUCTION

In high dimensional equations, the number of degrees of freedom grows exponentially fast as the
dimension of PDE increases, hence we face the curse of dimensionality. One striking advantage of DNNs
over classical numerical methods is that the number of degrees of freedom ”only” grows (at most) polyno-
mially. Therefore, DNNs are particularly suitable for solving high-dimensional PDEs, see [196, 197, 191, 198].

Neural networks produce certified approximations of continuous functions, [199, 200], in the sense that
given a function f and a prescribed tolerance ε > 0, a neural network (with the right parameters) produces
an approximation of f within an error smaller or equal than ε, [201].

The motivation to study the approximation of parametric PDEs by DNNs stems from the similarities
between parametric problems and statistical learning problems. Assume given domains X ⊂ RdX , where
dX ∈ N and Y ⊂ RdY , dY ∈ N. Let X to be the vector space of all possible inputs and Y the vector space for
the possible outputs. Further assume that there exists an unknown probability distribution ρ on X × Y. Let
us call loss function to J : Y × Y → R+. It measures (or penalizes, that’s why it is called loss) the disparity
between the estimated values and the true values for an instance of the data.

The goal of a statistical learning problem is to find a function f : X → Y such that f(x) ∼ y and that
minimizes the loss function J (f(x), y)

min
f∈Y

J (f(x), y) (1.10)

Since the probability measure is unknown, we have no direct access to the expected loss. Instead, we
assume that we are given a set of training data, i.e., N pairs of points (xi, yi)N

i=1, N ∈ N, called collocation
points and distributed independently with respect to ρ. Then one finds f by minimizing the so-called
empirical loss function:

min
f∈Y

1
N

N∑
i=1

J (f(xi), yi) (1.11)

We will call optimizing the empirical loss to the learning procedure. The approximation model provides a
solution at a given collocation point. It will be detailed later on.

1.3.1 Deep learning scheme
Let us start by recalling basic concepts and notions related with neural networks. We begin by introducing
feedforward neural networks and their elementary properties. The feedforward neural networks are those
whose connections between neurons go from the input layer to the output layer without forming loops in
the hidden layers (see [202] for general references). Let us have the case of a classical multilayer perceptron,
that is a feedforward network composed of fully connected layers. While the latter networks are generally
not the architecture of choice in most targeted applications, their architecture provides the most convenient
way to understand the trade-offs between approximation efficiency and the complexity of the network.

Let X ⊂ RdX and Y ⊂ RdY be some input and output sets of finite dimensions dX , dY ∈ N∗. A feedforward
neural network ψ is a function

ψ : X → Y

which reads as
ψ(x) = TL(σ(TL−1(σ(. . . σ(T0(x))))), ∀x ∈ X , (1.12)

being, for every ℓ ∈ {0, . . . , L},

Tℓ :
{

Rpℓ → Rpℓ+1

xℓ 7→ Tℓ(xℓ) = Aℓxℓ + bℓ
(1.13)

an affine function which can be expressed through a matrix Aℓ ∈ Rpℓ+1×pℓ , and an offset vector bℓ ∈ Rpℓ+1 .
σ : R → R is called the (nonlinear) activation function. The smoothness of the activation function plays a
key role in the accuracy of the optimization part of the algorithm, [26]. In [194] it is stated that, under some
technical assumptions, there exists a DNN that approximates the discretized solution map.

1.3. STATE OF THE ART OF DEEP LEARNING-BASED SCHEMES 17

Note that since ψ maps X onto Y, it is necessary that the number of neurons in the input layer is
equal to the input dimension, p0 = dX , and equivalently in the output layer, where pL+1 = dY . The layers
numbered from 1 to L are usually called the hidden layers of the neural network.

The main component of the neural network based methods is a nonlinear transformation with respect
to its parameters. To define a class of feedforward neural networks, its architecture needs to be fixed by
prescribing a given activation function σ, depth L ∈ N, and layer widths p = (p0, . . . , pL+1) ∈ (N∗)L+2. Once
the values of σ, L and p have been chosen, the coefficients (Aℓ, bℓ)0≤ℓ≤L of the affine mappings T0, · · · , TL

are viewed as parameters. We gather these coefficients in the vector of parameters, typically known as the
weights in the neural network and named θ, that helps to define the transformation from xℓ to Tℓ(xℓ). They
read:

θ = {(Aℓ, bℓ)}L
ℓ=0,

and assume that θ takes values in a set

Θ ⊆
L

"
ℓ=0

(
Rpℓ×pℓ+1 × Rpℓ+1

)
.

For any θ ∈ Θ, we define by ψθ : X → Y the function ψ with θ = {(Aℓ, bℓ)}L
ℓ=0 ∈ Θ.

The class of neural network functions with architecture (σ, L,p) and coefficient sets Θ is then defined as

N (σ, L,p,Θ) := {ψθ : θ ∈ Θ} . (1.14)

Let us name K the set of neural networks for concrete values of the parameters, K ⊂ N . In the following
scheme, Figure 1.2, let us show the possible architecture of a feedforward neural network with one hidden
layer composed by n neurons and input and output dimension dX and dY , respectively.

...

...
...

x1

x2

x3

xdX

h1

hn

y1

ydY

Input
layer

Hidden
layer

Ouput
layer

Figure 1.2: Schematic example of the architecture of a feedforward neural network with one hidden layer
composed by n neurons and input dimension dX and output dimension dY .

Having made the choices of architecture and activation function of the network, the problem of design
an approximation method for a target function f can be reduced to the one of choosing parameters θ.

Nevertheless, one must first specify the activation functions σ and initialize the parameters θ. The
proper choice of initialization is important, because one tends to run into the problem of vanishing gradients
whenever initialization is done poorly. Vanishing gradients occur when activation become saturated and thus

18 CHAPTER 1. INTRODUCTION

these nodes no longer contribute to training, i.e. when the inputs x to the activation function σ(x) become
so small, or large, that its gradient becomes vanishingly small. Activation functions introduce non-linearities
into the neural network. Common activation functions include tanh, ReLU, swish and sigmoid. A deeper
study of the use of the ReLU activation function is done in [26, 203, 204, 205].

1.3.2 Physics-Informed Neural Networks (PINNs)
Being motivated by solving PDEs in the forward and inverse sense in regimes where data is sparse,
combining the generality and power of machine-learning techniques with physics and domain knowledge has
been deeply studied. To this end, Physics-Informed Neural Networks (PINNs, [206]) were developed. The
method of PINNs is based on embedding prior knowledge about the physical systems into a neural network.
The major innovation with PINNs is the introduction of a residual network that encodes the governing
physics equations, takes the output of a deep-learning network, and calculates a residual value in order to
minimize the loss function. In such a way, it is possible to build the space of possible solutions only with the
solutions which we are interested in. Then, the information that the model obtains from the available data
is magnified. This is done through a regularizer in the form of the governing equations which enforces the
physical laws into the solution. As such, the model is not only more efficient with the dealt data, but also
it is able to infer the solution by using the physical laws. This is especially useful in the instances where
collecting the data is difficult or expensive.

PINNs methods approximate PDE solutions by training a neural network to minimize a loss function
(mostly based on residuals of the equations); it includes terms reflecting the initial and boundary conditions
along the space-time domain’s boundary and the PDE residual at selected points in the domain (collocation
points). The method retrieves the approximated function evaluated on the collocation points. One finds
the coefficients of the neural network solution by minimizing a discretized version of the L2(Ω) norm of the
strong form of the residual of the PDE. This is normally done by Gradient Descent (GD) based algorithms.
One of the main advantages of this method is that it is very easily implementable but a lot of regularity in
the solutions is implicitly assumed.

The basic concept behind PINN training is that it can be thought of as an unsupervised strategy that
does not require labelled data, such as results from prior simulations or experiments. The PINN algorithm
is essentially a mesh-free technique that finds PDE solutions by converting the problem of directly solving
the governing equations into a loss function optimization problem. It works by integrating the mathematical
model into the network and reinforcing the loss function with a residual term from the governing equation,
which acts as a penalizing term to restrict the space of acceptable solutions.

Beyond the initial collocation version of PINNs expressed above, these methods to conservative PINNs
(cPINNs, [207]), variational PINNs (vPINNS, [208, 209, 210]), stochastic PINNs (sPINNs, [211]) between
the developed variants.

Neural networks require a large amount of training data to perform well. For example, the image
classification problem can only really be solved effectively by gathering sufficiently many labelled image
examples for the neural network to train on. With today’s powerful and efficient computers, training the
neural network does not constitute a huge hurdle anymore, even with large data-sets and large networks.
However, for many scientific applications, there can be a great difficulty and expense in gathering such great
amount of data, especially for large scale systems. In those cases, data may be quite sparse in both space and
time and it may be corrupted by noise. Hence, obtaining a good performance may be prohibitively expensive.

Physics-informed neural networks can address problems that are described by few data, or noisy experi-
ment observations. They can use known data while adhering to any given physical law specified by general
nonlinear partial differential equations, PINNs can also be considered as neural networks that deal with
supervised learning problems. Let a differential equation on its more general form be:

R(u(x), y) = f(x), x ∈ Ω (1.15)

S(u(x)) = g(x), x ∈ ∂Ω

1.3. STATE OF THE ART OF DEEP LEARNING-BASED SCHEMES 19

Where x := [x1, . . . , xd−1, t] indicates the space-time coordinate vector. The function u represents the
unknown solution, y are the parameters related to the physics, f is the function identifying the data of the
problem and R is the non linear differential operator. We denote S as the operator indicating arbitrary
initial or boundary conditions related to the problem and g the boundary function.

In classical numerical methods, boundary conditions can be exactly enforced for mesh points at the
boundary. Typically boundary conditions include Dirichlet, Neumann, Robin, and periodic boundary
conditions [212]. However, it is very difficult to impose exact boundary conditions for a DNN representation.
Therefore, in the loss function, it is common to add a penalty term which penalizes the difference between
the DNN representation on the boundary and the exact boundary condition, typically in the sense of L2 norm.

PDEs can describe numerous physical systems including both forward and inverse problems. The goal of
forward problems is to find the function u(x) for every x, where y are specified parameters.

The forward and inverse PINNs wish to solve for two very different problems, but there are only very slight
differences between how the two formulations are constructed. Recall that the forward problem is concerned
with solving for u when the PDE and initial/boundary conditions are fully specified. The inverse problem
however, is concerned with using data measured from the approximation of the solution and then estimating
the unknown parameters in the PDE. The main difference comes from how the supervised loss function is
defined, and which parameters we set as trainable variables. In this work, we are working with forward PINNs.

The usage of a DNNs to solve PDE can be summarized on three main parts:

1. Assembly of the loss function.

2. Neural network structure.

3. Solving the discretized minimization problem.

In the following, we introduce two of the most popular different methods to solve PDE’s with the PINN
method. The Deep Ritz Method and the Deep Galerkin Method.

The Deep Ritz Method

Let us consider the boundary value problem over a bounded domain Ω ⊂ Rd introduced in Equation 1.15.
To proceed, we assume that the problem is well-posed. The basic idea of solving a PDE using DNNs is to
seek an approximated solution represented by a DNN in a certain sense [200].

Let us start by recalling the Deep Ritz Method, [190], named so since it is based on using the neural
network representation of functions in the context of the Ritz method, [213]. The Deep Ritz method is
naturally nonlinear, naturally adaptive and its moderate computational cost gives the method the potential
to work in rather high dimensions [214, 215, 216]. The framework is quite simple and fits well with the
stochastic gradient descent method used in deep learning. It leverages the fact that the solution of certain
PDEs is the unique minimizer to a certain energy functional.

The method is based on the following set of ideas:

• Deep neural network based approximation of the trial function.

• A numerical quadrature rule for the functional.

• An algorithm for solving the final optimization problem.

Any neural-network based numerical scheme for the solution of the kind of problems we are interested
in relies on the use of a variational formulation of this problem which let us write the approximation of the
solution u (or another function defined from u) as the solution of the minimization problem

u = arg min
v∈V

J (v), (1.16)

where V is a particular set of real-valued functions defined on a certain domain Ω.

20 CHAPTER 1. INTRODUCTION

The Ritz approximation, is defined by a solution uk such that for all vk ∈ Vk ⊂ V, being Vk the set of
admissible functions, it satisfies Equation 1.15.

The minimization problem set in Equation 1.16 reads:

uk = arg min
vk∈Vk

J (vk), (1.17)

and it is proved to converge. Hence, the loss function associated to Equation 1.15 reads:

J (vk) =
∫

Ω
|W (vk) − f(x)vk|2dx

where we have named W (·) to the variational expression of the left-hand-side of the given PDE, R(vk), and
Vk denotes the space of functions considering the boundary conditions.

Following the work of Raissi et al. [217], we approximate the solution of a PDE u(x, t) with a neural
network parametrized by θ and with input variables (x, t). From now on, let us call it ψθ(x, t). The
form of this parametrized function is directly related to the architecture of the network and the activation
functions used. Recall that in the PINN case, we are required to use activation functions which can be dif-
ferentiated more than once. In some contemporary papers [218, 219] the tanh(x) activation function was used.

Let the test function be now a NN, ψθ(x), the loss function associated to the bulk term reads:

I(ψθ) =
∫

Ω
|W (ψθ) − f(x)ψθ|2dx

Where W (ψθ) is the variational expression of the left-hand-side part of the PDE, R(ψθ). DRM works in
a weak sense that the variation of I(ψθ) with respect to ψθ yields the associated Euler-Lagrange equation
R(ψθ) = f(x).

Since the NN doesn’t necessarily belong to the space and it may not satisfy the boundary conditions, we
impose them by adding them as a penalty term in the loss function

B(ψθ) =
∫

∂Ω
|Z(ψθ) − g(x)ψθ|2dx

Where Z(ψθ) is the variational expression of the left-hand-side part of the boundary conditions of the
PDE, S(ψθ).

And then the total loss function reads:

J (ψθ) = I(ψθ) + λB(ψθ) (1.18)

where λ ∈ [0, 1] is the penalization parameter. The optimal solution for the PDE is given by the solution of
the minimization problem introduced in Equation 1.19.

Then, the problem of Equation 1.16 in the case in which the minimization process is computed by a
Neural Network, often reads as:

θ∗ = arg min
θ∈Θ

J (ψθ) := 1
N

N∑
i=1

Ji(ψθ) (1.19)

where θ∗ denotes the parameters of the NN that provide the approximation and each term at the
right-hand side corresponds to one data point (xi, yi)N

i=1, N ∈ N. Conjointly, Ji(ψθ) := J (ψθ(xi), yi).

The minimization of the loss function evaluated in the collocation points (xj , yj)M
j=1, for M ∈ N, will

provide the values for the parameters that we await. In this expression, N , the number of data points, and
M the number of evaluation points, are typically very large. Quadrature schemes for the high-dimensional

1.3. STATE OF THE ART OF DEEP LEARNING-BASED SCHEMES 21

integral run into the curse of dimensionality, and Monte-Carlo method can overcome this issue.

In order to solve the minimization problem defined in Equation 1.19, we make use of the Stochastic
Gradient Descent algorithm (SGD, [220, 221]). The SGD algorithm and its variants play a key role in deep
learning training. It is a first-order optimization method which naturally incorporates the idea of Monte-
Carlo sampling and thus alleviates the curse of dimensionality. At each iteration, SGD updates the neural
parameters by evaluating the gradient of the loss function at a batch of samples P ∈ N, P ≤ N , as:

θk+1 = θk − ϵk
1
P

P∑
i=1

∇θji(θk) (1.20)

Here θk are the parameters of neural network at the k-th iteration, ϵk is the learning rate, and ji(θk)
is used to approximate the loss function. The points xi are randomly generated with uniform distribution
over the domain Ω and the boundary domain ∂Ω. This is the stochastic version of the gradient descent
algorithm (GD). The key idea is that instead of computing the sum when evaluating the gradient of J , we
simply randomly choose one term in the sum. Even though SGD requires more iterations to converge than
GD, each iteration is much less computationally expensive.

Other strategies where less regular solutions are allowed are proposed in the literature. Usually, they
start from its variational formulation. Let us cite the deep Galerkin method (DGM, [222]) that is based on a
least-squares formulation, and the vPINNs (mentioned above), based on the Galerkin method. In this kind of
methods, the quality of the approximation depends on the architecture of both the trial and the test neural
network classes. In addition, numerous evaluations for multiple test functions need to be performed. In what
follows, a brief introduction of Deep Galerkin Method is done in order to see other way to approximate the
solution.

The Deep Galerkin Method

The Deep Galerkin Method, was proposed by Sirignano and Spiliopoulos [192]. The Galerkin method
is a widely used computational method which seeks a reduced-form solution to a PDE as a linear
combination of basis functions. The deep learning algorithm, DGM, uses a deep neural network instead
of a linear combination of basis functions. The deep neural network is trained to satisfy the differen-
tial operator, initial condition, and boundary conditions using stochastic gradient descent at randomly
sampled spatial points. In this case, the loss function is defined as the PDE residual in the least-squares sense.

In this case, the DNN approximation is substituted directly in the strong form of the equation 1.15,
R(ψθ) = f(x) . The loss function associated to the bulk term is:

I(ψθ) =
∫

Ω
|R(ψθ) − f(x)|2dx

DGM aims to minimize the imbalance when the approximate DNN solution is substituted into the strong
form in the least-squares sense.

The inclusion of the boundary conditions in the loss function is done by adding the following penalty
term. In an analogous way, the DNN is substituted in the strong form of the boundary conditions.

B(ψθ) =
∫

∂Ω
|S(ψθ) − g(x)|2dx

And then the total loss function reads:

J (ψθ) = I(ψθ) + λB(ψθ) (1.21)

where λ ∈ R is the penalization parameter. The optimal solution for the PDE is given by the solution of the
minimization problem introduced in Equation 1.19.

22 CHAPTER 1. INTRODUCTION

Then, the problem of Equation 1.16 is solved then in an analogous way as in DRM and the minimization
process is solved by SGD method of Equation 1.20.

The highest derivative in the loss function in DRM is lower than that in DGM, thus it is thought that
DGM works better for smooth solutions while DRM works better for low-regularity solutions. However,
DRM can outperform DGM with a clear dependence of dimensionality even for smooth solutions and DGM
can also outperform DRM for low-regularity solutions, [223].

1.4 Contributions of the thesis
In this work, the aim is to find numerical methods in order to approximate multivariate functions. They
can be derived from datasets, multiway arrays, or solutions of PDEs coming from physics, biology, economy
or other disciplines.

The task of approximating multivariate functions is done from three different perspectives in this thesis.
The original contributions are the following:

1. A tensor approximation method, Sum of Tensor Trains (SoTT), that retrieves the approximated solution
in a sum of TTs format.

2. A local tensor approximation method based on clustering, that retrieves an approximated solution in
the introduced local HOSVD format.

3. A deep learning-based method that computes the approximation of the solution of a convection diffusion
PDE when the diffusion parameter is very small.

Find in the following a brief overview of the contributions that can be found in the manuscript.

1.4.1 Contribution on Tensor Formats: The Sum of Tensor Trains method
In the first chapter of the thesis, we propose a numerical scheme, Sum of Tensor Trains (SoTT), that
constructs an approximation of a tensor as a sum of tensor train decompositions, [224].

Among the different existing tensor formats in the literature, two of them present specific importance
with respect to applications: the Canonical Polyadic (CP) and Tensor Train (TT) format. As we can see in
Equation 1.4, the CP format presents a low memory cost but may be ill-posed and present instabilities. On
the other hand, recalling Equation 1.9, the TT format is stable from an algorithmic point of view and it
is computationally affordable (provided that the TT ranks of the tensors remain reasonably small) but the
order of the variables needs to be fixed a priori.

The aim of this work is to find a method that is efficient in memory and that doesn’t fix a priori the
order of the variables or the ranks. This is done in such a way that the resulting approximation presents a
Sum of Tensor Trains (SoTT) format.

The advantages of this procedure are:

• It selects in an adaptive way the order of the variables in each term so as to obtain favorable compressing
rates with respect to pure TT approximations with an a priori prescribed order of variables.

• When the values of the ranks of the terms are fixed to be equal to one, the procedure provides a new
scheme for the computation of a CP approximation of a given tensor (namely CP-TT), which appears
to be more efficient than ALS for high-order tensors.

In the proposed SoTT method, the order of the variables and the ranks are greedily chosen by the
method and they can vary from one term to another. They are the result of an optimization step based on
the idea of an energy-balance between the accuracy of the approximation of a tensor and the computational
cost needed to store it. This is done by defining a certain minimization problem in which the functional to
minimize has two terms, one represents the memory spent to store the approximation and the other one is

1.4. CONTRIBUTIONS OF THE THESIS 23

related with the energy (information) kept from the system.

The main goal of the SoTT algorithm is to compute, after n iterations, an approximation of a certain
tensor F as a sum of n TTs. At iteration n, the SoTT computes an approximation of F under the form

F ≈ F̃n−1 +Rn
1 (xτn(1))Rn

2 (xτn(2)) · · ·Rn
d (xτn(d)) (1.22)

where F̃n−1 is the approximation obtained after n− 1 iterations of the algorithm, τn ∈ {1, . . . , d} denotes
the permutation of the variables on the iteration n and, for all 1 ≤ j ≤ d, let Rn

j ∈ L2
(

Ωτn(j),RKn
j−1×Kn

j

)
,

be the modes obtained in the SVD of the tensor:

Rn
j (xτn(j)) =

(
U

τn(j),n
j,kj

(kj−1, xτn(j))
)

1≤kj≤Kn
j

,1≤kj−1≤Kn
j−1

where Kn
0 = Kn

d = 1.

The aim of the nth iteration is to choose the permutation τn and the values of the ranks (Kn
j)1≤j≤d−1 in

an appropriate way, which is done here using a greedy procedure.

Fixing the ranks as one in all the steps of the algorithm, a CP approximation of the given tensor is
obtained. We name this rank-1 particular instance as the Canonical Polyadic - Tensor Train (CP-
TT) method. As an output, after n iterations of the CP-TT algorithm, the method greedily produces an
approximation of the tensor F under the CP format

F ≈
n∑

k=1
Rk

1(xτk(1)) · · ·Rk
d(xτk(d)) (1.23)

where for all 1 ≤ k ≤ n and all 1 ≤ i ≤ d, Rk
i ∈ L2(Ωτk(i)).

We propose a proof of convergence in the general case of the SoTT algorithm, which can be extended to
the case of the CP-TT algorithm.

In the particular case of the CP-TT method, we take advantage of the simplicity of the CP format
and the efficiency of the TT. CP-TT is exempt of the ill-posedness of the solving methods present in the
canonical format and it has the advantage of not choosing the order of the variables a priori like in the TT
format. Thus, the CP-TT method is a hybrid rank-1 approximation method that gets the best of both
worlds from the TT and the CP methods.

In order to check the performance of the proposed techniques, several numerical experiments were con-
ducted. First, we compared the CP-TT to other rank-one update methods (ALS, ASVD, TTr1). Although
a single iteration of CP-TT is more expensive in terms of number of operations, it presents a stability
that makes it a promising candidate to compress high-dimensional tensors in CP format. We propose
some tests in which we compressed the numerical solution of a parametric partial differential equation
of reaction-diffusion type as well as other functions coming from different applications. In particular, we
compared SoTT with the TT-SVD obtained by testing all the possible permutations of the indices. Although
SoTT is suboptimal with respect to the best TT-SVD, it is independent of the order of the variables and
its performances are comparable to the average TT-SVD. In this test, the SoTT method outperforms CP-TT.

The SoTT method and its rank-1 particular case show preliminary yet encouraging results in view of
applications in scientific computing and compression of high order tensors. Nevertheless, the SoTT method
shows some shortcomings to be addressed in further investigations: while a greedy method is appealing in
view of computational tasks in which fixing the rank a priori could be cumbersome, it might be featured by
a saturation effect, slowing down its convergence.

24 CHAPTER 1. INTRODUCTION

1.4.2 Contribution in local tensor methods: The local HOSVD method
In the second chapter of the thesis, we present a method that computes an approximation of a tensor in a
local HOSVD format.

In the classical compression methods, one of the most common ways to compute the approximation of
a tensor is through projection. Usually, one must choose onto which space to project and normally the
basis of the space consists of functions whose support is the whole domain. Nevertheless, the choice of an
appropriate projection space is crucial to obtain a good approximation.

The tensor to be approximated is a multivariate function F (x1, . . . , xd) of dimension d defined in Ω :=
Ω1 × . . . × Ωd. The aim of the proposed method is to provide an approximation of the tensor on the local
HOSVD format with good compression rate with respect to the HOSVD decomposition.

The main idea of the method is that a tensor defined in a global domain can be expressed as the sum of
its approximations on local subdomains Ω(i):

F ≈ F̃ (x1, . . . , xd) =
N∑

i=1
F̃ (x1, . . . , xd)I(i)(x1, . . . , xd) =

N∑
i=1

F̃i(x1, . . . , xd) (1.24)

where I(i)(x) are the characteristic functions that restrict the tensor into a certain subdomain.

I(i)(x) =
{

1 if I(i)(x) = 1 if x ∈ Ω(i)

0 otherwise

The method is constructed in such a way that on each of the partitions of the domain, a local approxima-
tion of the function (restricted to the partition of the domain) is computed by applying the HOSVD method.
Then, the approximation reads, for 1 ≤ i ≤ N :

F̃i =
R1∑

i1=1
. . .

Rd∑
id=1

Gi1...id
b

(1)
i1

× . . .× b
(d)
id

in which R1, . . . , Rd are the n−ranks, b are the modes and G is the tensor core.

A crucial point is to determine the subdomain partition. In the proposed method, we don’t impose the
partition a priori. The aim is to come up with a method that computes automatically the partition. This is
done with an agglomerative clustering algorithm. The clustering process is computed in 2 different phases
and it is applied independently to every direction k, with 1 ≤ k ≤ d, exploiting that the subdomains Ω(i) are
separable. Henceforward, the problem of finding the partition of Ω is reduced to the problem of partitioning
each of the domains per direction.

The clustering method computes a dyadic hierarchical tree of the possible partitions of the domains(
Ω(i)

k

)
1≤k≤d

.

1. It starts by computing the clusters of fibers that will be held as the leaves of the tree. This is done by
grouping the fibers considered as similar and finding the 2-dimensional basis that represents well all of
them.
The partition of the set of fibers in smaller subsets is mutually exclusive (no fiber in the set is in more
than one subset) and jointly exhaustive (every fiber is in some subset). The clustering provides the
set of indices of the fibers that belong to each cluster, the set of bases that define them and the set of
errors that we are making when we group the fibers.

2. It computes the pairwise Ward’s distance [225], between the clusters in the leaves. Find the neighbor
clusters and merge them. The resulting cluster encloses the fibers of its two sons.

The algorithm starts pairing the similar leaves and it carries on pairing till every node in the tree is
fused. Each one of the levels lk of the tree denotes a possible partition of the domain on the direction k.

1.4. CONTRIBUTIONS OF THE THESIS 25

In the root of the tree, the point in which every cluster is fused, the POD decomposition of the unfolding
transposed in the direction k is recovered.

Each of the nodes defines a partition of the domain. The total number of possible partitions in all the
directions reads as

∏d
k=1 lk. The closest the nodes are to the root of the tree, the biggest the clusters are and

the less the domain is divided.
In the present work, in order to find the best partition, an extensive search between the possible

partition combinations is done. Then, a HOSVD approximation of the tensor on each one of the partitions
is computed. The selected criterion in order to choose one partition over the others is the memory needed
to store the approximation. For every possible combination of the partitions of the domain obtained, the
method computes the basis that generates the subspace defined by the partition performing HOSVD on the
truncated space. The one that requires less amount of memory to be stored is said to be the best of the
partitions of the domain and it is the one that we are going to use to compute the approximation of the tensor.

Some tests have been performed for moderate order tensors. In the light of the numerical results obtained,
we can say that the method achieves a good compression rate with respect to the HOSVD method. This fact
is specially remarkable for the systems that present different ”regimes” and the local approximation seems
to be more advantageous with respect to a global approximation. Computing partitions of the domain per
direction allows the method to detect the different patterns on each direction and obtain more information
spending the same amount of memory.

1.4.3 Contribution in Deep Learning-based Schemes for Singularly Perturbed
Convection-Diffusion Problems

In the third chapter of the thesis, we propose a deep learning-based method in the context of finding an
approximated solution of the convection-diffusion PDE, when the diffusion parameter tends to zero and
classical methods like FEM are not able to solve it correctly, [226].

Let us consider the following singularly perturbed convection-diffusion equation on a given domain Ω ⊂
Rd, with d ∈ N∗. Let F : Ω → Rd be a given force field, 0 < ϵ ≪ 1 a small parameter, and f : Ω → R be a
given right-hand side function. Our goal is to find a solution u : Ω → R to

− ϵ(∆u)(x) + ∇ · (Fu)(x) = f(x), ∀x ∈ Ω, (1.25)

together with general Robin boundary conditions

α(∇u · n)(x) + κu(x) = g(x) ∀x ∈ ∂Ω, (1.26)

where n refers to the outward unit vector of ∂Ω, α, κ ≥ 0 and g is a real-valued function defined on ∂Ω. In
the following, we assume that the force field F derives from a potential function V : Ω → R, in the sense that

F (x) = −∇V (x), ∀x ∈ Ω.

Under appropriate assumptions on F , f and g, which are assumed to be smooth functions for the sake of
simplicity, the problem can be proved to have a unique solution [227, 228, 229].

The problem introduced in Equation (1.25) is challenging for classical numerical methods because it
presents numerical instabilities when ϵ is small. The aim of this work is to propose and test various
neural network-based schemes in order to find a strategy that is robust for small values of ϵ in the
convection-diffusion problem.

Any neural-network based numerical scheme for the solution of the kind of problems we are interested in,
relies on the use of a variational formulation of this problem which makes it possible to write the approxi-
mation of the solution u (or another function defined from u) as the solution of the minimization problem

min
v∈V

J (v), (1.27)

26 CHAPTER 1. INTRODUCTION

where V is a particular set of real-valued functions defined on a certain domain Ω. The loss function J : V → R
is usually of the form

J (v) := λ

∫
Ω

R(v)(x)dρ(x) + (1 − λ)
∫

∂Ω
S(v)(r)dτ(r), ∀v ∈ V, (1.28)

where λ is the penalization parameter and for every v ∈ V, R(v) and S(v) are real-valued functions defined
on Ω and ∂Ω respectively. They are assumed to be measurable with respect to ρ and τ , which are defined
on the domain Ω and its boundary ∂Ω respectively.

In order to assemble the loss function from the PDE and its boundary conditions, we propose different
variants and we compare among the results obtained which one is more suitable for our problem. Let us
start by the the most classical formulation used in neural network-based numerical schemes, in which the
loss function is directly the strong formulation of the problem 1.25,

R(v)(x) = | − ϵ(∆v)(x) + ∇ · (Fv)(x) − f(x)|2

analogously for the boundary conditions
S(v)(x) = |α(∇v · n)(x) + κu(x) − g(x)|2

and therefore we refer to it as Vanilla (V) formulation. Remark that the approach requires the solution
u to be more regular than the usual solution. For this reason, we develop an approach that requires less
regularity in the solutions. It is computed by introducing an exponential change of variable in the vanilla
formulation and solving the minimization problem. We call it the Vanilla-z (Vz) formulation. This method
does not fully exploit the change of variable. Since the elliptic nature of the problem allows us to easily build
a weak formulation of this equation, other strategy is then developed in which the loss function is written on
its weak form, the Weak-z (Wz) formulation. Last, we introduce another formulation based on a change
of scale in the original problem. We refer to this approach as the rescaled-weak-z (RWz) formulation.

The proposed method is based on Physics-Informed Neural Networks (PINN, [206]). PINN is a
collocation-based method, [230], in which the problem defined in a PDE is encoded as a part of the neural
network. These models transform the problem of finding a solution for the PDE (1.25) into a minimization
problem, and its solving process relies on the neural network. The PINNs method finds the coefficients of
the neural network solution by minimizing a discretized version of the L2(Ω) norm of the strong form of the
residual of the PDE. This method is very easily implementable but it implicitly assumes that solutions are
very regular.

One of the objectives of this work is to see how the introduced alternatives for the shape of the loss
function and the strategy adopted to solve the problem affecting the neural network approach, as well as a
comparison between them. Moreover, a survey on other factors that also impact the results is done. These
factors include the number of K training points used, the architecture of the NN and the precision of the
machine, between others.

The last step of the study is a comparison between the merits and limitations of using deep learning-based
approaches (for the different formulations studied) and the classical Finite Elements Method (FEM) when
the solutions become low regular. See more about FEM techniques applied to convection-diffusion equations
in [231, 232, 233]. Some hybrid models between NNs and FEM are proposed as well in [234, 235].

For large values of ϵ when solutions are rather regular, some PINNs perform clearly better than FEM
regarding the generalization errors. The superiority is particularly remarkable for very small number of
training points. However, the shapes of PINN solutions are sometimes not as satisfactory as the ones
given by FEM. For the case where ϵ becomes small and solutions become less regular (which was the main
motivation of our study), the accuracy of the variational neural-network methods is essentially comparable
or worse to the one given by FEM in terms of generalization errors. Some PINN variational approaches
become too unstable and the errors blow up. Only FEM and the vanilla PINN approach seem to be able to
recover the correct shape of the exact function. The latter one has however the risk of sometimes falling into
local minima with bad shapes. The runtimes are clearly in favor to PINN methods as well as the simplicity
of implementation.

1.5. ORGANIZATION OF THE MANUSCRIPT 27

1.5 Organization of the manuscript
The first chapter of this work, Chapter 2, is devoted to the development of the Sum of Tensor Trains (SoTT)
algorithm in which the decomposition of a tensor is obtained with the shape of a sum of Tensor Trains.
It is also shown its particular case for a rank-1 approximation, the so called Canonical Polyadic - Tensor
Train (CP-TT), in which the Canonical Polyadic is recovered. Some numerical tests are shown, some of
them showing the compression of the algorithm in comparison with other methods and others showing its
efficiency in terms of cost and memory. In Appendix A.1, some results and tests are included.

In the second chapter of the manuscript, Chapter 3 a local method for tensor compression is proposed.
The approximation of the tensor is retrieved in a local HOSVD format. It is a clustering-based method
and it performs in order to compute local subdomains in which the function restricted to the subspace
is approximated. This is done with the aim of approximating solutions of tensor in which the global
approximation was not very effective. By construction, if the best way to approximate the tensor is the
global one, it recovers the HOSVD method. Some numerical examples are included in which we can see
diverse applications of the method.

In the third chapter, Chapter 4, an analysis of Deep Learning-based Schemes for Singularly Perturbed
Convection-Diffusion Problems is done. Specifically, the stationary Fokker-Plank equation. In order to
approximate this particular equation, we make use of Physics-Informed Neural Networks (PINNs). A survey
of some possible variations of the method and an anaysis of how their input format affects the results is
studied. The corresponding tests in order to illustrate the different behaviors of the obtained approximation
are also included in Appendix B.1.

28 CHAPTER 1. INTRODUCTION

Chapter 2

Sum of Tensor Trains: SoTT

Contents
2.1 Introduction . 29

2.1.1 Organization of the chapter . 30
2.2 Notation and preliminaries . 30

2.2.1 Tensor spaces . 31
2.2.2 Object definition and POD decomposition . 32
2.2.3 Ranks and tensor formats: Canonical Polyadic (CP) and Tensor Train (TT) 33

2.3 The Sum of Tensor Trains (SoTT) algorithm . 36
2.3.1 Presentation of the SoTT algorithm . 36
2.3.2 Exponential convergence of the SoTT algorithm in finite dimension 40
2.3.3 Complexity estimate of the SoTT algorithm . 41

2.4 CP-TT: fixed-rank SoTT algorithm with rank 1 42
2.5 Numerical Experiments . 43

2.5.1 Comparison between CP-TT and other rank-one update methods 43
2.5.2 SoTT method for the compression of multivariate functions 47

2.6 Conclusions and perspectives . 53

2.1 Introduction
Nowadays, applications such as artificial intelligence and data mining algorithms are becoming more and more
important in our society. The task of analyzing large volume, multi-relational and multi-modal datasets, is
gaining importance too. These datasets are often represented as multiway arrays or tensors [1, 2, 3].

The main challenge in dealing with such data is the already cited curse of dimensionality, that refers
to the need of using a number of degrees of freedom exponentially increasing with the dimension [5]. This
problem can be alleviated by using various tensor formats, achieved by low-rank tensor approximations, for
the compression of the full tensor as described for instance in [29, 30, 31, 32]. The definition of these different
tensor formats relies on the well-known separation of variables principle. Some of the most used tensor
formats have been already presented in the Introduction: Canonical Polyadic (CP), Tensor Train (TT),
Tucker and High Order Singular Value Decomposition (HOSVD); and they are defined in Equation 1.4,
1.9, 1.7, 1.8, respectively. We refer the reader to [24] and [42] for extensive reviews on tensor theory and
extended analysis of tensor decompositions and their numerous applications. Tensor formats are also used for
solving time-dependent and stochastic/parametric PDEs ([43], [44]). Other families of methods called Proper
Generalized Decomposition (PGD) methods use tensor decomposition in high dimensional problems [49], [50].

Among the different existing tensor formats, two of them are of specific importance with respect to
applications: the Canonical Polyadic (CP) and Tensor Train (TT) format. The main advantage of these
decompositions is the low memory cost needed to store them. In the case of the CP format, this cost only
scales linearly with the order of the tensor, whereas the memory cost for the storage of a full tensor scales

29

30 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

exponentially with its order. However, the problem of finding a best approximation of a tensor in CP format
may be ill-posed [63] and it leads to numerical instabilities. The most classical algorithm in order to compute
an approximation of a tensor in the CP format is the so-called Alternating Least Square (ALS) method,
which sometimes may be quite slow to converge [236] especially for high-order tensors. Some alternative
methods [237, 238] have been proposed in order to obtain more efficient algorithms.

The Tensor Train format is probably one of the most used tensor formats in realistic applications [239,
240, 241], due to a good trade off between optimality and numerical stability. The TT format combines two
advantages to take into consideration: on the one hand, it is stable from an algorithmic point of view; on the
other, it is computationally affordable provided that the TT ranks of the tensors remain reasonably small.
The computation of the approximation of a tensor in the TT format is usually done via the so-called TT-SVD
algorithm. One of the drawback of the TT-format is that it requires a priori the choice of a particular order in
the variables of the tensor, and the quality of the resulting approximation computed by a TT-SVD algorithm
strongly depends on this particular choice. Even if the number of entries could be larger than in CP, the
main advantage of the TT format is its ability to provide stable quasi-optimal rank reduction, obtained, for
instance, by truncated singular value decompositions.

In the literature, hybrid formats combining CP with other methods have been proposed in [242],
and described in [27]. Also, CP has been combined with TT in [243], where it was highlighted that the
combination of both methods yields interesting improvements. Fast algorithms for the rank truncation in
the canonical input tensors with large CP-ranks and large mode size, have been introduced and analyzed in
[101]. Some other optimization-based algorithms could be seen in [244].

The main contribution of this chapter is a numerical scheme that constructs an approximation of a tensor
as a sum of TTs, called the Sum of Tensor Trains (SoTT) scheme, where the order of the variables and
the values of the ranks can vary from one term to another and can be adaptively chosen by an algorithm
which combines the TT-SVD algorithm together with a greedy procedure (see [245]). The interest of such a
procedure is two-fold:

• It enables to select in an adaptive way the order of the variables in each term so as to obtain favorable
compressing rates with respect to pure TT approximations with an a priori prescribed order of variables.

• When the values of the ranks of the terms computed are fixed to be equal to one, the procedure provides
a new scheme for the computation of a CP approximation of a given tensor (namely CP-TT), which
appears to be more efficient than ALS for high-order tensors.

We also observe numerically that this algorithm performs well in practice in the sense that it provides a
more accurate approximation of a given tensor, at fixed memory storage cost, than a TT-SVD algorithm, in
average, when the order of the variables in the TT decomposition is chosen randomly.

We also consider a particular version of the SoTT algorithm, named CP-TT, which consists in adding
pure rank-1 tensor-product at each iteration of the scheme. This procedure can be used in order to compute
a CP approximation of a given tensor. Such a scheme gives interesting results in comparison with other
rank-1 update methods such as ALS for instance, especially when the order of the tensor is high.

2.1.1 Organization of the chapter
This chapter is structured as follows. In Section 2.2, some preliminary concepts about tensors are recalled
or introduced. The SoTT algorithm is presented and discussed in Section 2.3. The CP-TT version of SoTT
is discussed in Section 2.4 and compared with other numerical methods used for the construction of CP
decompositions. Numerical experiments and results illustrating the efficiency of the approach are given in
Section 2.5.

2.2 Notation and preliminaries
This section is devoted to the presentation of some concepts and notations that are going to be used in the
following chapter. Let us recall some of the concepts introduced before and particularize them to its concrete
use on this section.
Tensors are well-studied objects in the standard mathematics literature ([33], [34], [35]) and more specifically

2.2. NOTATION AND PRELIMINARIES 31

in multilinear algebra ([36], [37]). In this section, we introduce the tensor spaces for multivariate functions
and some of the objects that concern tensors. Furthermore, we recall the concept of tensor rank and some
of the tensor formats more relevant in the literature. We begin by introducing some notations together
with the well-known Singular Value Decomposition in Section 2.2.1. We then recall some basic facts about
the Canonical Polyadic (CP) and Tensor Train (TT) format in Section 2.2.3. The most common algorithm
to compute the CP format ALS and one of its variations, the Alternating Singular Value Decomposition
(ASVD) are introduced in Section 2.2.3. The classical TT-SVD algorithm is then presented in Section 2.2.3.

2.2.1 Tensor spaces
Let D be a subset of Rp with a product structure D := D1 × . . .×Dd. Let us consider d ∈ N∗. Then, for all
1 ≤ i ≤ d, Di is an open bounded subset of Rpi for some pi ∈ N∗. We call a tensor (with a slight language
abuse) any real-valued function F ∈ L2(D1 × · · · ×Dd).
For each 1 ≤ i ≤ d, a certain Hi is a Hilbert space of univariate functions defined of Di, equipped with the
corresponding inner product (·, ·)Hi and the associated norm ∥ · ∥Hi .

The elementary tensor product u(1) ⊗ . . . ⊗ u(d) of d univariate functions u(i) ∈ Hi has associated a
multilinear mapping D1 × . . .×Dd → D1 ⊗ . . .⊗Dd and is defined such that for a multivariate function F
and x = (x1, . . . , xd) ∈ D,

F (x) = (u(1) ⊗ . . .⊗ u(d))(x1, . . . , xd) = u(1)(x1) ⊗ . . .⊗ u(d)(xd).

The span of these elementary tensor products is the algebraic tensor space H1 ⊗ . . . ⊗ Hd where belong all
the multivariate functions that can be expressed as a finite linear combination of elementary tensors (see
more in [246]).

For any u(1) ∈ L2(D1), · · · , u(d) ∈ L2(Dd), we denote u(1) ⊗ · · · ⊗ u(d) ∈ L2(D) the pure tensor product
function defined by

u(1) ⊗ · · · ⊗ u(d) :
{
D = D1 × · · · ×Dd → R

(x1, · · · , xd) 7→ u(1)(x1) · · ·u(p)(xd).

A canonical inner product over the tensor space between F and other multivariate function namely V ∈
L2(D1 × . . .×Dd), whose elementary tensors are denoted by v(i), with i ≤ i ≤ d, is defined by:

(u(1) ⊗ . . .⊗ u(p), v(1) ⊗ . . .⊗ v(d)) = (u(1) ⊗ v(1))H1 . . . (u(d) ⊗ v(d))Hd
.

This tensor product holds bilinearity properties and in the literature can be referred as Kronecker product.
Its associated canonical norm ∥ · ∥Hi

, verifies that: ∥u(1) ⊗ . . . ⊗ u(d)∥ = ∥u(1)∥H1 . . . ∥u(d)∥Hd
. A tensor

Hilbert space H of dimension d is defined as the completion of this algebraic tensor space H = H1 ⊗ . . .⊗Hd.

Moreover, we make use of the following abuse of notation. For any nonempty subset I ⊂ {1, · · · , d} such
that Ic = {1, · · · , d} \ I is non-empty, and any F ∈ L2(D1 × · · ·Dd), we still denote by F the function
F̃ ∈ L2 (("i∈I Di) × ("j∈Ic Dj)) defined by

F̃ :
{

("i∈I Di) × ("j∈Ic Dj) → R
((xi)i∈I , (xj)j∈Ic) 7→ F (x1, · · · , xd).

For each 1 ≤ i ≤ d, we consider L2(Di), the Hilbert space of sqare integrable, real-valued univariate
functions defined on Dk. Its natural norm ∥ · ∥L2(Di) is defined for u(i) ∈ L2(Di) by

∥u(i)∥2
L2(Di) =

∫
Di

u(i)(xi)2dxi.

The space L2(D) of square-integrable, real-valued functions defined on D equipped with the canonical
norm ∥ · ∥L2(D) that is defined for F ∈ L2(D) by

∥F∥2
L2(D) =

∫
D

F (x)2dx and ∥F∥L2(D) :=
(∫

D

F 2(x)dx
)1/2

32 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

and it can be identified with the completion of the algebraic tensor spaces L2(D1) ⊗ . . .⊗L2(Dp). The scalar
product for all F,G ∈ L2(D),

⟨F,G⟩D :=
∫

D

F (x)G(x)dx

From now on, in order to simplify the notation of the manuscript (every time that there’s no ambiguity)
the norm ∥ · ∥L2(D) will be denoted just as ∥ · ∥D and its associated inner product as (·, ·)D.

Let us have a discrete d−dimensional subset Dh ⊂ RN1×N2×...×Nd . For each direction i we fix a index
set Ni = {1, . . . , Ni}, that denotes the degrees of freedom per direction. The Cartesian product of these
index sets is denoted as N = N1 × . . .× Nd.
Being d the dimension of the discrete tensor. Let us refer to discrete tensor (or just tensor) to the
discretization of the multivariate function introduced before. A dth-order tensor is an element of the tensor
product of d vector spaces D1 × . . . × Dd. Up to a certain choice of basis on the spaces (each has its own
coordinate system), such an element has to be represented as a d−way array of real numbers. Tensors
will carry d sub indices i1, . . . , id ∈ {1, . . . , d} to denote them by elements. A certain discrete tensor
x ∈ RN1×...×Nd is defined by its entries, xi1...id

.

The Frobenius norm, or the l2 norm in a discrete d-dimensional tensor space is the square root of the
sum of the squares of all its elements. For a certain F ∈ L2(Dh):

∥F∥2
l2 =

d∑
k=1

|Fi|2

if the norm is not explicitly specified, we assume that is the Frobenius norm.

2.2.2 Object definition and POD decomposition
The so called fibers all along the manuscript are the higher-order analogue of matrix rows and columns,
defined by fixing every index of a tensor but one. In a 3-dimensional tensor X ∈ RN1×N2×N3 , for a certain
value of two of its indices i2 ∈ {1, . . . ,N2} and i3 ∈ {1, . . . ,N3}, a fiber on the i1−th direction is given
by x(i1) = X:i2i3 , with i1 ∈ {1, . . . ,N1}. When fibers are extracted from tensors, they are assumed to be
column vectors.

Assume a N−th order tensor X ∈ RN1×...×NN . The matrix Unfolding X(n) ∈ RNn×(Nn+1...NN N1...Nn−1)

contains the element xi1...ip
at the row position in and column number equal to:

(in+1 − 1)Nn+2 . . .NN N1 . . .Nn−1 + in+2 − 1)Nn+3 . . .NN N1 . . .Nn−1 + . . .

. . .+ (iN − 1)N1 . . .Nn−1 + (i1 − 1)N2 . . .Nn−1 + . . .+ in−1

In a third order tensor X ∈ RN1×N2×N3 , the horizontal, lateral, and frontal slices are denoted by Xi1::,
X:i2:, and X::i3 , respectively. When we refer to the n-th frontal slice of a third order tensor, we obtain its
unfolding X(n).

Proper orthogonal decomposition (POD)

The Proper Orthogonal Decomposition (POD) [38] is a popular dimensionality reduction method used in
model reduction (see [39], [40], [41]) to define the trial subspace.

Definition. For any domain D = Dx ×Dy, where Dx and Dy are open subdomains of Rdx and Rdy for
some dx, dy ∈ N∗ respectively, and any W ∈ L2(D), it holds that there exists an orthonormal basis (Uk)k∈N∗

of L2(Dx), an orthonormal basis (Vk)k∈N∗ of L2(Dy) and a non-increasing sequence (σk)k∈N∗ of non-negative
real numbers which converges to 0 as k goes to ∞, such that

W =
∑

k∈N∗

σkUk ⊗ Vk. (2.1)

2.2. NOTATION AND PRELIMINARIES 33

A decomposition of W under the form (2.1) is called a Singular Value Decomposition (SVD) (or Proper
Orthogonal Decomposition (POD)) of W according to the separation of variables (Dx, Dy). The sequence
(σk)k∈N∗ is known to be unique and is called the sequence of singular values of W associated to the separation
of variables (Dx, Dy) of the set D. The orthonormal basis (Uk)k∈N∗ (respectively (Vk)k∈N∗) may not be
unique but is called a sequence of left (respectively right) singular vectors of W associated to this partitioning.

For any set E, we denote in the sequel by #E the cardinality of E. Assuming that Nx := #Dx < +∞
and Ny := #Dy < +∞, the complexity of the computation of an SVD decomposition of the form (2.1) scales
like

O
(
max(Nx,Ny) min(Nx,Ny)2) . (2.2)

2.2.3 Ranks and tensor formats: Canonical Polyadic (CP) and Tensor Train
(TT)

Let us define the rank of a tensor F , denoted rank(F) or just r, as the smallest number of rank-one tensors
that generate F as their sum.

rank(F) = min{r : F ∈ Rr}

where Rr is the set of tensors of rank not exceeding r.

The tensor rank decomposition factorizes a tensor into a minimum-length linear combination of
rank-one tensors. Let F be a real tensor obtained by the discretization of a certain d−variate function
F ∈ D1 × · · · ×Dd. Every order-d tensor in this space may then be represented with a suitably large r ∈ N∗,
as a linear combination of r rank-one tensors.

More details about the concepts of tensor rank and the decomposition of a tensor into a sum of outer
products of elementary tensors introduced in [52] and [53], can be found in [247].

Although we focus on the previous concept of rank, there is a simpler notion of multilinear rank which
directly generalizes the column and row ranks of a matrix to higher order tensors. Let us illustrate this
concept with a 3−dimensional example. Let us have a certain tensor F ∈ RN1×N2×N3 . Note that the
space can be viewed as RN1×N2N3 (similarly in the other directions). Then r1(F) is simply the rank of the
first one of its unfoldings. The same for r2(F) and r3(F). Then, the multilinear rank of F , is the tuple
(r1(F), r2(F), r3(F)) and it was also introduced in [52], [53].

The Canonical Polyadic (CP) decomposition
As it is detailed in [51], the idea of the polyadic form of a tensor (expressing a tensor as the sum of a finite
number of elementary tensors) arose initially in [52], [53]. The form of CANDECOMP (canonical decompo-
sition), was proposed in [54] and the form of parallel factors in [55]. We refer to the CP decomposition as
proposed independently in [56] and [57].

Let us now introduce some notation which will be used in all the sequel. From now on, we fix some d ∈ N∗

and for all 1 ≤ j ≤ d, let Ωj be an open subset of Rpj for some pj ∈ N∗. We define Ω := Ω1 × · · · × Ωd.

Let F ∈ L2(Ω1 × · · · × Ωd). The function F is said to belong to the Canonical Polyadic (CP)
format [52, 29, 58] with rank r ∈ N∗ if it reads as:

F (x1, x2, ..., xd) =
r∑

i=1
u

(1)
i (x1)u(2)

i (x2) · · ·u(d)
i (xd) (2.3)

for some functions u(j)
i ∈ L2(Ωj) for 1 ≤ i ≤ r and 1 ≤ j ≤ d. The CP decomposition factorizes a tensor

into a sum of component rank-one tensors.

The rank of a tensor can be expressed as the minimum number of terms in an exact CP. A CP
decomposition of a tensor F with r = rank(F) number of components is called the rank decomposition.

34 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

More details about this decomposition and its uniqueness can be found in [59], [51], [60] and [61].

Given a certain tensor F , find the best rank approximation is equivalent to determine d rank-1 tensors
that approximate well it. This can be written as a minimization problem: Find u

(1)
i ∈ RN1 , . . . , u

(d)
i ∈ RNd ,

with i = 1, . . . , r, that minimize

∥F −
r∑

i=1
u

(1)
i (x1) ⊗ u

(2)
i (x2) ⊗ . . .⊗ u

(d)
i (xd)∥

where ∥ · ∥ denotes some choice of norm on RN1×...×Nd . When d = 2, the result of the minimization
problem is given by the first r terms in the sum of its SVD decomposition, see [248], for unitarily invariant
norms. The SVD decomposition in two variables is then optimal. For higher order tensors this is a problem
of central importance. It can be seen in [247] and [249] that the problem is ill-posed for many r regardless
the choice of norm. Moreover, if one randomly picks a tensor F in a suitable tensor space, there’s a non-zero
probability that F will fail to have a best rank-r approximation for some r < rank(F). It is also known as
the phenomenon underlying the concept of border rank, see [250], [251], [252], and it is related to (but with
different from) “CP degeneracy” ([253]).

The main advantage of the CP decomposition is the low memory cost needed to store it. Indeed, if
N degrees of freedom are used per variable (N1 = . . . = Nd = N), the storage cost of a general function
F ∈ L2(Ω1 × · · · × Ωd) is O

(
N d
)
. On the other hand, the storage cost of a CP tensor with rank r reduces

to O(dN r), which scales linearly in the tensor order d and size N . However, the problem of finding a best
approximation of a tensor in CP format may be ill-posed [63] and leads to numerical instabilities. The
most classical algorithm in order to compute an approximation of a tensor in the CP format is the so-called
Alternating Least Square (ALS) method.

Alternating Least Square (ALS) and Alternating Singular Value Decomposition (ASVD)

In general the determination of a tensor rank is an NP-hard problem. Previous works revealed us that there
isn’t any finite algorithm that determines the rank of a tensor. Because of that, the first problem that
we face in computing a CP decomposition is how to choose the number of rank-one components. The CP
decomposition with r components that best approximates F via the ALS method will be the one solving the
minimization problem:

min
F̃

(∥F − F̃∥)

where F̃ is the rank−r approximation of F given by Equation 2.3. We introduce and detail the ALS algorithm
in Algorithm 4 for a certain tensor namely W and a given accuracy ϵ. In order to explain the method, let us
introduce some notation. In the following, W̃n−1 is the approximation of the tensor W obtained after n− 1
iterations of the algorithm, and for all 1 ≤ i ≤ d, Rn

i ∈ L2 (Ωi) and its components: Rn,m
i ∈ L2 (Ωi) .

As we can see in [64], the ALS method for the computation of a CP approximation of a tensor can
take many iterations to converge [236], especially when the order of the tensor d is high. Moreover, it is
not guaranteed to converge to a global minimum or even a stationary point, only to a solution where the
objective function stops decreasing. The convergence properties of the ALS algorithm have been abundantly
studied. We refer the reader for more details to the following series of works [64, 131, 254, 255, 256]. The
final solution can be heavily dependent on the starting guess as well. The reason for the popularity of
this algorithm lies in the fact that it is very simple, conceptually and numerically, while still delivering
astonishingly good results in many cases in low dimension. For higher ranks most of the difficulties with
the global behavior of ALS seem to be intimately related to the fact that the approximation problem itself
can be ill-posed. Some alternative methods [237, 238] have been proposed in order to obtain more efficient
algorithms. The Alternating Singular Value Decomposition (ASVD) method is proposed in [257].

For the presentation of the ASVD algorithm, we need to introduce some additional notation. We denote
by J := {{i, j}, 1 ≤ i < j ≤ d} the set of all possible pairs of indices between 1 and d. An ordering of
the elements of J is chosen so that J = (Jl)1≤l≤L with L := #J . We introduce the ASVD algorithm in
Algorithm 5 for W and the tolerance ϵ.

2.2. NOTATION AND PRELIMINARIES 35

Algorithm 4 ALS algorithm
1: Require:ϵ > 0, W ∈ L2(Ω)
2: Output: N ∈ N∗, for all 1 ≤ n ≤ N and all 1 ≤ i ≤ d, Rn

i ∈ L2 (Ωi) so that the CP tensor W̃ ∈ L2(Ω) defined by

W̃ (x1, · · · , xd) :=
N∑

n=1

R
n
1 (x1)R

n
2 (x2) · · · R

n
d (xd) ∀(x1, · · · , xd) ∈ Ω,

satisfies ∥W − W̃ ∥2
L2(Ω) ≤ ϵ.

3: Set W 0 = W , n = 1.
4: while ∥W n−1∥2

L2(Ω) > ϵ do

5: For all 1 ≤ i ≤ d, select randomly Rn,0
i

∈ L2(Ωi) and set η := ϵ and m = 1.
6: while η > 1

10 ϵ do
7: for j = 1, · · · , d do
8: Compute Rn,m

j
∈ L2(Ωj) solution to

R
n,m
j ∈ argmin

Rj ∈L2(Ωj)

∥∥Wn−1 − R
n,m
1 ⊗ · · · ⊗ R

n,m
j−1 ⊗ Rj ⊗ R

n,m−1
j+1 ⊗ · · · ⊗ R

n,m−1
d

∥∥2

L2(Ω)

9: end for
10: Compute η :=

∥∥Rn,m
1 ⊗ · · · ⊗ Rn,m

d
− Rn,m−1

1 ⊗ · · · ⊗ Rn,m−1
d

∥∥2

L2 . Set m := m + 1.
11: end while
12: Define Rn

i = Rn,m−1
i

for all 1 ≤ i ≤ d.
13: Compute Wn(x1, · · · , xd) = Wn−1(x1, · · · , xd) − Rn

1 (x1)Rn
2 (x2) · · · Rn

d (xd) for all (x1, · · · , xd) ∈ Ω.
14: n = n + 1
15: end while
16: N = n − 1

The Tensor Train (TT) decomposition

Let us now continue presenting other tensor format that is going to be present in this manuscript. It was
introduced in [118].

The function F is said to belong to the Tensor Train (TT) format with ranks r1, . . . , rd−1 ∈ N∗ if and
only if

F (x1, x2, . . . , xd) =
r1∑

i1=1
. . .

rd−1∑
id−1=1

u
(1)
i1

(x1)u(2)
i1,i2

(x2)u(3)
i2,i3

(x3) . . . u(d−1)
id−2,id−1

(xd−1)u(d)
id−1

(xd)

with u
(j)
ij−1,ij

∈ L2(Ωj) for 1 ≤ ij−1 ≤ rj−1 and 1 ≤ ij ≤ rj for all 1 ≤ j ≤ d (with r0 = rd = 1).

It combines two main advantages: On the one hand, it is stable from an algorithmic point of view; on
the other, it is computationally affordable provided that the TT ranks of the tensors used stay reasonably
small.

One of the schemes used for the optimization of a TT tensor with a given rank is the ALS method, see
details in [130]. In [67] some numerical examples that concern the stability of the TT decomposition and of
ALS are shown as well as how high TT ranks are required during the iterative approximation of low-rank
tensors, showing some potential of improvement. These ranks are chosen a priori and that makes the method
less robust. As we will recall in Algorithm 6, the most used way of computing the TT decomposition of a
tensor is via the well-known TT-SVD algorithm. Let us make a special remark in this chapter to the TTr1
algorithm, proposed in [258]. As we will see, this is one of the closest alternatives to the proposed rank-1
particular case of the method.

TT-SVD algorithm

Let now choose and fix some W ∈ L2(Ω). We recall in Algorithm 6 the well-known TT-SVD algorithm for
computing an approximation of the tensor W with prescribed accuracy ϵ > 0 in a TT format.

36 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

Algorithm 5 ASVD algorithm
1: Require:ϵ > 0, W ∈ L2(Ω)
2: Output: N ∈ N∗, for all 1 ≤ n ≤ N and all 1 ≤ i ≤ d, Rn

i ∈ L2 (Ωi) so that the CP tensor W̃ ∈ L2(Ω) defined by

W̃ (x1, · · · , xd) :=
N∑

n=1

R
n
1 (x1R

n
2 (x2) · · · R

n
d (xd) ∀(x1, · · · , xd) ∈ Ω,

satisfies ∥W − W̃ ∥2
L2(Ω) ≤ ϵ.

3: Set W 0 = W , n = 1.
4: while ∥W n−1∥2

L2(Ω) > ϵ do

5: For all 1 ≤ i ≤ d, select randomly Rn,0
i

∈ L2(Ωi) and set η := ϵ and m = 1.
6: while η > 1

10 ϵ do
7: Set Rn,m

i
= Rn,m−1

i
for all 1 ≤ i ≤ d

8: for l = 1, · · · , L do
9: Let 1 ≤ il < jl ≤ d so that Jl = (il, jl).

10: Compute Un,m
l

∈ L2(Ωil
× Ωjl

) solution to

U
n,m
l

∈ argmin
Ul∈L2(Ωil

×Ωjl
)

∥∥∥∥∥∥Wn−1 − Ul ⊗
⊗

i∈{1,··· ,d}\Jl

R
n,m
i

∥∥∥∥∥∥
2

L2(Ω)

.

11: Compute
(

Rn,m
il

, Rn,m
jl

)
∈ L2(Ωil

) × L2(Ωjl
) solution to(

R
n,m
il

, R
n,m
jl

)
∈ argmin(

Ril
,Rjl

)
∈L2(Ωil

)×L2(Ωjl
)

∥U
n,m
l

− Ril
⊗ Rjl

∥2
L2(Ωil

×Ωjl
).

12: end for
13: Compute η :=

∥∥Rn,m
1 ⊗ · · · ⊗ Rn,m

d
− Rn,m−1

1 ⊗ · · · ⊗ Rn,m−1
d

∥∥2

L2 .
14: end while
15: Define Rn

i = Rn,m
i

for all 1 ≤ i ≤ d.
16: Compute Wn(x1, · · · , xd) = Wn−1(x1, · · · , xd) − Rn

1 (x1)Rn
2 (x2) · · · Rn

d (xd) for all (x1, · · · , xd) ∈ Ω.
17: n = n + 1
18: end while
19: N = n − 1

2.3 The Sum of Tensor Trains (SoTT) algorithm
The aim of this section is to present the Sum of Tensor Trains (SoTT) algorithm. We propose a method in
order to greedily construct an approximation of a given tensor as a sum of Tensor Trains (TTs), where the
order of the variables and the values of the ranks can be different from one term to another. The algorithm is
presented in Section 2.3.1 and in a more detailed way in Algorithm 7. It is proved to converge exponentially
fast in finite dimension in Section 2.3.2. Lastly, a discussion about the complexity of the method is given in
Section 2.3.3.

2.3.1 Presentation of the SoTT algorithm
In the following, we denote Sd the set of permutations of the set {1, · · · , d}.
Let us introduce a detailed scheme of the SoTT method in Algorithm 7. The different steps are explained
in the following.

The aim of the SoTT algorithm is to compute, after n iterations, an approximation of a certain tensor
W as a sum of n TTs. At iteration n, the SoTT computes an approximation of W under the form

W̃n−1 +Rn
1 (xτn(1))Rn

2 (xτn(2)) · · ·Rn
d (xτn(d)),

where W̃n−1 is the approximation obtained after n − 1 iterations of the algorithm, τn ∈ Sd denotes a
well-chosen permutation of the variables, and for all 1 ≤ j ≤ d, Rn

j ∈ L2
(

Ωτn(j),RKn
j−1×Kn

j

)
, where

Kn
0 = Kn

d = 1. The aim of the nth iteration is to choose the permutation τn and the values of the ranks
(Kn

j)1≤j≤d−1 in an appropriate way, which is done here using a greedy procedure.

2.3. THE SUM OF TENSOR TRAINS (SOTT) ALGORITHM 37

Algorithm 6 TT-SVD algorithm
1: Require:ϵ > 0, W ∈ L2(Ω)
2: Output: K1, · · · , Kd−1 ∈ N∗ TT-ranks, R1 ∈ L2

(
Ω1, R1×K1

)
, Rd ∈ L2

(
Ωd, RKd−1×1

)
and for all i = 2, · · · , d − 1, Ri ∈

L2
(

Ωi, RKi−1×Ki
)

so that the Tensor Train W̃ ∈ L2(Ω) defined by

W̃ (x1, · · · , xd) := R1(x1)R2(x2) · · · Rd(xd) ∀(x1, · · · , xd) ∈ Ω,

satisfies ∥W − W̃ ∥2
L2(Ω) ≤ ϵ2.

3: Define K0 := 1, D0 = {1} and define W 0 ∈ L2(D0 × Ω) such that W 0(1, ·) = W , I0 := {1, · · · , d}, Ω̂0 := Ω.
4: for j = 1, · · · , d − 1 do
5: Since Dj−1 × Ω̂j−1 = (Dj−1 × Ωj) × Ω̂j with Ω̂j = Ωj+1 × · · · × Ωd, compute the SVD decomposition of W j−1 according to

the separation of variables (Dj−1 × Ωj , Ω̂j) so that

W j−1 =
∑
k∈N∗

σj,kUj,k ⊗ Vj,k.

6: Select Kj ∈ N∗ such that Kj = inf

{
K ∈ N∗

,

∑
k≥K

|σj,k|2 ≤
ϵ2

d − 1

}
.

7: Define Dj := {1, · · · , Kj} and define W j ∈ L2
(

Dj × Ω̂j

)
by

W j(kj , yj) = σj,kj
Vj,kj

(yj)

for all (kj , yj) ∈ Dj × Ω̂j .
8: Define Rj ∈ L2

(
Ωj , RKj−1×Kj

)
as

Rj(xj) =
(

Uj,kj
(kj−1, xj)

)
1 ≤ kj−1 ≤ Kj−1
1 ≤ kj ≤ Kj

for all xj ∈ Ωj .
9: end for

10: Define Rd ∈ L2
(

Ωd, RKd−1×1
)

by

Rd(xd) =
(

σd−1,kd−1 Vd−1,kd−1 (xd)
)

1≤kd−1≤Kd−1
.

38 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

Algorithm 7 SoTT algorithm
1: Require:ϵ > 0, W ∈ L2(Ω)
2: Output: N ∈ N∗, for all 1 ≤ n ≤ N , τn ∈ Sd, Kn

1 , · · · , Kn
d−1 ∈ N∗ TT-ranks, Rn

1 ∈ L2
(

Ωτn(1), R1×Kn
1
)

, Rn
d ∈

L2
(

Ωτn(d),RKn
d−1×1

)
and for all i = 2, · · · , d − 1, Rn

i ∈ L2
(

Ωτn(i), RKn
i−1×Kn

i

)
so that the sum of Tensor Trains W̃ ∈ L2(Ω)

defined by

W̃ (x1, · · · , xd) :=
N∑

n=1

R
n
1 (xτn(1))R

n
2 (xτn(2)) · · · R

n
d (xτn(d)) ∀(x1, · · · , xd) ∈ Ω,

satisfies ∥W − W̃ ∥2
L2(Ω) ≤ ϵ.

3: Set W 0 = W , n = 1.
4: while ∥W n−1∥2

L2(Ω) > ϵ do

5: Define Kn
0 := 1, Dn

0 = {1} and define W
n

0 ∈ L2(D0 × Ω) such that W
n

0 (1, ·) = W n−1, In
0 := {1, · · · , d}.

6: for j = 1, · · · , d − 1 do
7: For all i ∈ In

j−1, since D
n
j−1 × "

i∈In
j−1

Ωi =
(

D
n
j−1 × Ωi

)
× "

i′∈In
j−1\{i}

Ωi′ , compute the SVD decomposition of W
n

j−1

according to the separation of variables (Dn
j−1 × Ωi, "i′∈In

j−1\{i′} Ωi′) so that

W
n

j−1 =
∑
k∈N∗

σ
i,n
j,k

U
i,n
j,k

⊗ V
i,n

j,k
.

8: Select in
j ∈ In

j−1 and K
n

j ∈ N∗ so that

(
i

n
j , K

n

j

)
∈ argmax

i∈In−1,r∈N∗

r∑
k=1

(
σ

i,n
j,k

)2
− β

n
i,jr,

where for all i ∈ In
j−1, βn

i,j > 0 is chosen according to (2.4).
9: Define τn(j) = in

j .

10: Select Kn
j ∈ N∗ such that K

n
j = min

(
K

n

j , inf

{
K ∈ N∗

,

∑
k≥K

∣∣στn(j),n

j,k

∣∣2 ≤
ϵ2

d − 1

})
.

11: Define In
j := In

j−1 \ {τn(j)} so that #In
j = d − j.

12: Define Dn
j :=

{
1, · · · , Kn

j

}
and define W

n

j ∈ L2
(

Dn
j × "i∈In

j
Ωi

)
by

W
n

j (kj , yτn(j)) = σ
τn(j),n

j,kj
V

τn(j),n

j,kj
(yτn(j))

for all (kj , yτn(j)) ∈ D
n
j × "

i∈In
j

Ωi.

13: Define Rn
j ∈ L2

(
Ωτn(j), RKn

j−1×Kn
j

)
as

R
n
j (xτn(j)) =

(
U

τn(j),n

j,kj
(kj−1, xτn(j))

)
1≤kj ≤Kn

j
,1≤kj−1≤Kn

j−1

for all xτn(j) ∈ Ωτn(j).
14: end for
15: Since #In

d−1 = 1, let in
d ∈ {1, · · · , n} such that In

d−1 = {in
d }. Define τn(d) = in

d .

16: Define Rn
d ∈ L2

(
Ωτn(d), RKn

d−1×1
)

by

R
n
d (xτn(d)) =

(
σ

τn(d−1),n

d−1,kd−1
V

τn(d−1),n

d−1,kd−1
(xτn(d))

)
1≤kd−1≤Kn

d−1

.

17: Compute W n(x1, · · · , xd) = W n−1(x1, · · · , xd) − Rn
1 (xτn(1))Rn

2 (xτn(2)) · · · Rn
d (xτn(d)) for all (x1, · · · , xd) ∈ Ω.

18: n = n + 1
19: end while
20: N = n − 1

The idea behind the SoTT procedure is the following: the order of the variables is chosen so that it
enables to obtain an interesting trade-off between accuracy and memory storage.

2.3. THE SUM OF TENSOR TRAINS (SOTT) ALGORITHM 39

For instance, τn(1) is chosen as follows. Let us denote by Wn−1 := W − W̃n−1 the difference between
the tensor and its approximation in the (n − 1)th iteration and by Wn

0 := Wn−1. The POD decomposition
of Wn

0 is computed with respect to all the unfoldings, i.e. the partitioning of the variables of the form
Ω = Ωi × ("1≤j ̸=i≤d Ωj) for all i ∈ {1, · · · , d} = In

0 . Denoting by
(
σi,n

1,k

)
k∈N∗

the sequence of singular values
associated to the ith partitioning of the variables, for all r ∈ N, let us define the functional

Ln
i,1(r) =

r∑
k=1

(
σi,n

1,k

)2
− βn

i,1r

where βn
i,1 is a positive real number. The function Ln

i,1 : N → R represents the trade-off between accuracy

and memory storage on every iteration. It reads as the sum of two terms: on the one hand,
∑r

k=1

(
σi,n

1,k

)2
is

equal to the ℓ2 norm of the rank-r truncated POD of Wn

0 and increases with r; on the other hand, βn
i,1r is a

term which reflects the memory need related to the storage of a rank-r truncated POD of Wn

0 . An integer
rn

i,1 ∈ N solution to
rn

i,1 ∈ argmax
r∈N

Ln
i,1(r)

is a value of rank which enables to obtain a reasonable trade-off between the accuracy of the truncated POD
and its memory storage. Then, τn(1) is chosen as the optimum index i ∈ In

0 such that

τn(1) = argmax
i∈In

0

Ln
i,1(rn

i,1) = argmax
i∈In

0

max
r∈N

Ln
i,1(r),

and gives the index of the first variable in the TT computed at the nth iteration of the SoTT algorithm. A
preliminary value of the rank Kn

1 is then chosen so that Kn

1 = rn
τn(1),1.

An additional step is used at line 9 for the definition of the final value of the rank Kn
1 which ensures that

if ∑
k≥K

n

1

(
σ

τn(1),n
1,k

)2
≤ ϵ2

d− 1 ,

then the final value of Kn
1 is the lowest possible rank which guarantees that∑

k≥Kn
1

(
σ

τn(1),n
1,k

)2
≤ ϵ2

d− 1 .

Now we need to select the values for the rest of the permutations τn(2), · · · , τn(d). In order to choose
the complete order of the variables entering the definition of the nth TT term, one uses a similar iterative
procedure applied to the d− 1-order tensor Wn

1 which reads as the projection of the tensor Wn

0 onto the Kn
1

first POD modes obtained from the τn(1)th partitioning of variables.

We observe that the choice of the values of βn
i,j > 0 at Step 8 of the SoTT algorithm is critical for its

efficiency. In practice, in the case where for all 1 ≤ j ≤ d, #Ωj = Nj < +∞ (i.e. when the tensor is defined
on a discrete domain), we make the following choice:

βn
i,j =

Ni + Πi′∈In
j

\{i}Ni′

Πi′∈In
j

Ni′

+∞∑
k=1

(
σi,n

j,k

)2
=

Ni + Πi′∈In
j

\{i}Ni′

Πi′∈In
j

Ni′
∥Wn

j−1∥2
ℓ2 . (2.4)

Introducing the function N ∋ r 7→ Ln
i,j(r) :=

∑r
k=1

(
σi,n

j,k

)2
− βn

i,jr, for 1 ≤ j ≤ d, it holds that Ln
i,j(0) = 0,

and there exists at least one rn
i,j ∈

{
0, · · · ,min

(
Ni,Πi′∈In

j
\{i}Ni′

)}
so that

rn
i,j ∈ argmax

r∈
{

0,··· ,min
(

Ni,Πi′∈In
j

\{i}Ni′

)}Ln
i,j(r),

and
Ln

i,j(rn
i,j) ≥ 0.

40 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

2.3.2 Exponential convergence of the SoTT algorithm in finite dimension
The aim of this section is to prove that the SoTT algorithm converges exponentially fast with the number
of iterations in finite dimension.

Proposition 2.3.1 Let us assume that for all 1 ≤ j ≤ d, #Ωj < +∞. Then, there exists 0 < α < 1 such
that for all n ∈ N∗,

∥Wn∥2
L2(Ω) ≤ αn∥W∥2

L2(Ω), (2.5)

with
α ≤ 1 − 1

N ⌈d/2⌉(⌈d/2⌉+1) ,

where N := max1≤i≤d #Ωi.

We observe in practice that the upper bound on the convergence rate of the SoTT algorithm given by
Proposition 2.3.1 is pessimistic. We refer the reader to Section 2.5 for numerical results which illustrate this
fact.

Proof 1 Let us begin by proving that for all n ∈ N∗,

∥Wn∥2
L2 ≤

(
1 − 1

N ⌈d/2⌉(⌈d/2⌉+1)

)∥∥Wn−1∥∥2
L2 . (2.6)

Indeed, for all n ∈ N∗, let us denote by

Un(x1, · · · , xd) := Rn
1 (xτn(1))Rn

2 (xτn(2)) · · ·Rn
d (xτn(d)), ∀(x1, · · · , xd) ∈ Ω1 × · · · × Ωd.

Note that, by construction and definition of the SoTT algorithm,
〈
Wn−1 − Un, Un

〉
L2(Ω) = 0, so that

∥Wn∥2
L2 =

∥∥Wn−1 − Un
∥∥2

L2 =
∥∥Wn−1∥∥2

L2 − ∥Un∥2
L2 . (2.7)

By definition of the algorithm, it holds that for all 1 ≤ j ≤ d− 1, Kn
j is lower than the minimum of the

cardinality of Dn
j−1 × Ωi and the cardinality of "i′∈In

j−1\{i′} Ωi′ . Hence, we have

Kn
j ≤ min

(
NKn

j−1,N d−j
)
,

where Kn
0 = 1. Thus, by induction, we obtain that for all 1 ≤ j ≤ d− 1,

Kn
j ≤ min

(
N j ,N d−j

)
.

As a consequence, for all n ∈ N∗, and all 1 ≤ j ≤ d− 1, we obtain that for all i ∈ In
j−1,

#Dn
j−1 × Ωi ≤ N min

(
N j−1,N d+1−j

)
= min

(
N j ,N d+2−j

)
and # "

i′∈In
j−1\{i}

Ωi′ ≤ N d−j .

Thus, for all i ∈ In
j−1,

min
(

#Dn
j−1 × Ωi,# "

i′∈In
j−1\{i}

Ωi′

)
≤ min

(
N j ,N d−j

)
. (2.8)

As a consequence, for all i ∈ In
j−1, it holds that

(
σi,n

j,1

)2
≥

∥∥∥Wn

j−1

∥∥∥2

L2

min (N j ,N d−j) .

Moreover, denoting by Ŵn
j :=

∑Kn
j

kj=1 σ
τn(j),n
j,kj

U
τn(j),n
j,kj

⊗ V
τn(j),n

j,kj
, it holds that∥∥∥Wn

j−1 − Ŵn
j

∥∥∥2

L2
(

Dn
j−1×"i∈In

j−1
Ωi

) ≤
(
σi,n

j,1

)2
.

2.3. THE SUM OF TENSOR TRAINS (SOTT) ALGORITHM 41

Thus, using the fact that Wn

j−1 − Ŵn
j is orthogonal to Ŵn

j , we obtain that∥∥∥Ŵn
j

∥∥∥2

L2
(

Dn
j−1×"i∈In

j−1
Ωi

) =
∥∥∥Wn

j−1

∥∥∥2

L2
(

Dn
j−1×"i∈In

j−1
Ωi

) −
∥∥∥Wn

j−1 − Ŵn
j

∥∥∥2

L2
(

Dn
j−1×"i∈In

j−1
Ωi

)
≥
∥∥∥Wn

j−1

∥∥∥2

L2
(

Dn
j−1×"i∈In

j−1
Ωi

) (1 − 1
min (N j ,N d−j)

)
.

Lastly, using the fact that
(
U

τn(j),n
j,kj

)
1≤kj≤Kj

n

is an orthonormal family of L2 (Ωτn(j)
)

and
(
V

τn(j),n
j,kj

)
1≤kj≤Kj

n

is an orthonormal family of L2
(
"i∈In

j
Ωi

)
, it holds that

∥∥∥Ŵn
j

∥∥∥2

L2
(

Dn
j−1×"i∈In

j−1
Ωi

) =
∥∥∥Wn

j

∥∥∥2

L2
(

Dn
j

×"i∈In
j

Ωi

) =
Kn

j∑
kj=1

(
σ

τn(j),n
j,kj

)2
.

As a consequence, we obtain that for all n ∈ N∗ and for all 1 ≤ j ≤ d− 1,∥∥∥Wn

j

∥∥∥2

L2
(

Dn
j

×"i∈In
j

Ωi

) ≥
∥∥∥Wn

j−1

∥∥∥2

L2
(

Dn
j−1×"i∈In

j−1
Ωi

) .
In addition, it can easily be checked that ∥Un∥L2(Ω)2 =

∥∥∥Wn

d−1

∥∥∥2

L2(Dn
d−1×Ωτn(d))

. Thus, by induction over

1 ≤ j ≤ d− 1, we obtain that for all n ∈ N∗,

∥Un∥L2(Ω)2 ≥
∥∥∥Wn

0

∥∥∥2

L2(Ω)

1
Π1≤j≤d−1 min(N j ,N d−j)

=
∥∥Wn−1∥∥2

L2(Ω)
1

Π1≤j≤d−1 min(N j ,N d−j)

≥
∥∥Wn−1∥∥2

L2(Ω)
1

N
∑⌈d/2⌉

j=1
j+
∑d−1

j=⌊d/2⌋
d−j

≥
∥∥Wn−1∥∥2

L2(Ω)
1

N 2
∑⌈d/2⌉

j=1
j

=
∥∥Wn−1∥∥2

L2(Ω)
1

N ⌈d/2⌉(⌈d/2⌉+1) .

Collecting this estimate with (2.7), we obtain (2.6). Thus, by induction, we easily obtain the desired result
(2.5).

2.3.3 Complexity estimate of the SoTT algorithm
The aim of this section is to provide some estimates on the complexity of the computational cost of the SoTT
algorithm. Let us assume here that there exists N ∈ N∗ such that #Ωi ≤ N for all 1 ≤ i ≤ d.

We detail the computational cost of each iteration n ∈ N∗. The computational cost is concentrated in the
computation of the different POD decompositions of the tensor Wn

j−1 for each 1 ≤ j ≤ d − 1 (l.7 of SoTT
algorithm), which can be estimated using (2.2). In this process the most expensive part is the one in which
we compute the SVD of the unfoldings. Exploting the computation presented in Appendix A.1.2 this cost
can be reduced significantly. We consider two different cases.

Case 1: Unbounded ranks

Let us begin by giving a very pessimistic bound in the case where no upper bound on the ranks Kn
j is imposed

for all 1 ≤ j ≤ d. From (2.8), it holds that the computational cost of each POD decomposition scales like

O
(

max
(
N j ,N d−j

)
min

(
N j ,N d−j

)2)
.

42 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

Thus, the total computational cost of the POD decompositions of one iteration of the SoTT algorithm is of
the order of

O

d−1∑
j=1

(d− j + 1) max
(
N j ,N d−j

)
min

(
N j ,N d−j

)2

 ≈ O
(
d2N 3⌈d/2⌉

)
.

Case 2: Bounded ranks

Now, let us assume that there exists R ∈ N∗ such that R < N and such that for all 1 ≤ j ≤ d− 1, Kn
j ≤ R.

Then, for j = 1, the computational cost of each POD decomposition scales like

N d+1.

Besides, for 2 ≤ j ≤ d− 2, the computational cost of each POD decomposition scales like

R2N d−j+1.

Lastly, for j = d− 1, there is only one POD decomposition to compute, the cost of which scales like

RN 3.

Thus, the total cost of the POD decompositions of one SoTT iteration scales like

O

dN d+1 +
d−2∑
j=2

(d− j + 1)R2N d−j+1 +RN 3

 ≈ O
(
dN d+1 + dR2N d−1 +RN 3) .

Remark The computational cost of the SoTT algorithm is in general larger than the computational cost
of the TT-SVD, as we do not fix a priori the order of the variables. In the first step of the SoTT iteration,
the cost is similar to the one of the HOSVD method, in which we compute the POD for all the unfoldings.
However, there is a difference in terms of the amount of memory needed to carry out the computations. In
the practical implementation of SoTT, it is not necessary to store POD decompositions of all the unfoldings
of the tensor, only a POD decomposition of the best one. In addition, we do not need to store the potentially
dense core tensor. In the case in which the values of the ranks in SoTT are a priori fixed (for instance to
1, as will be the case in the forthcoming section), the computational cost of a POD decomposition can be
reduced.

Storage

Let d be the dimension of the tensor. Let us suppose that the SoTT ranks Kn
j are equal for all the values of

j, 1 ≤ j ≤ d, and for all the n terms of the SoTT sum. For simplicity in the notation, in the following we
will denote them by K. The total storage of the SoTT tensor format is then

O(n× N × ((d− 2)K2 + 2K)).

Comparing this value with the storage of a tensor on its full format O(N d), we obtain a compression rate of
order:

O(n−1 × N d−1 × ((d− 2)K2 + 2K)−1).

2.4 CP-TT: fixed-rank SoTT algorithm with rank 1
We make here a focus on a particular variant of the SoTT algorithm where all the ranks Kn

j are a priori
chosen to be fixed and equal to 1 for all 1 ≤ j ≤ d and all iterations n ∈ N∗. We refer the reader to [259]
for a review on the stability properties of rank-1 tensor decompositions. As an output, the SoTT algorithm
then computes an approximation of the tensor W in a CP format and we refer to the resulting procedure as
the CP-TT algorithm. More precisely, for all 1 ≤ j ≤ d and n ∈ N∗, Step 8 of the Algorithm 7 is replaced

2.5. NUMERICAL EXPERIMENTS 43

by the following step:
Select inj ∈ In

j−1 so that

inj ∈ argmax
i∈In−1

(
σi,n

j,1

)2

and then Step 10 is not performed.
As an output, after n iterations of the CP-TT algorithm, the method greedily produces an approximation

of the tensor W under the CP format

W ≈
n∑

k=1
Rk

1(xτk(1)) · · ·Rk
d(xτk(d))

where for all 1 ≤ k ≤ n and all 1 ≤ i ≤ d, Rk
i ∈ L2(Ωτk(i)). Find in the following Algorithm 8 the detailed

method.

We make a specific focus on this particular case because we numerically observed that this algorithm
owns interesting stability and approximation properties in comparison to other more classical numerical
methods like ALS or ASVD for the computation of a CP approximation of a tensor, especially when the order
of the tensor d is high. For the sake of comparison, we recall the ALS and ASVD algorithm in Algorithm 4
and Algorithm 5 respectively. For more details and convergence properties of the ALS method, we re-
fer the reader to the following series of works [64, 131, 254, 255, 256]. The ASVD method is proposed in [257].

The closest method to CP-TT we found in the literature is the so called TTr1 algorithm, proposed in
[258]. In this method, a TT-SVD decomposition with fixed ranks equal to one is computed at every stage
of the algorithm. All the possible rank-1 terms are computed, stored and ordered according to the singular
values of the corresponding POD decompositions. Favorable orthogonality properties of the method enable
to truncate the obtained CP decomposition in order to fulfill a prescribed accuracy. The main differences of
the TTr1 algorithm with respect to CP-TT are the following: first, the order of the variables is not fixed a
priori in CP-TT, but is fixed beforehand in TTr1. Second, a greedy procedure is used in CP-TT computing
one term at a time, whereas in TTr1 all the terms are computed at the same time before truncation. Hence,
the computational cost per term is larger in CP-TT, but the storage need is much less significant, which
seems beneficial for the compression of higher order tensors.

2.5 Numerical Experiments
In this section, several numerical experiments are proposed. In the first part, we compare several rank-1
update methods: ALS, ASVD, TTr1 and CP-TT, on the compression of a set of random functions belonging
to certain classes of regularity. Then in the second part, we illustrate the behavior of the SoTT method with
respect to the standard TT-SVD algorithm on several test cases which consist in compressing the solution of
a parametric Partial Differential Equation (PDE), as well as other functions arising in different applications.

2.5.1 Comparison between CP-TT and other rank-one update methods
The aim of this section is to compare the efficiency of the CP-TT algorithm for the computation of approxi-
mations of a tensor in a CP format with other rank-1 methods, ALS, ASVD and TTr1.

Let (x1, . . . , xd) ∈ Ω = [0, 1]d. Let (k1, ..., kd) ∈ Nd be the wave numbers. The function to be compressed
is assumed to be given in a Tucker format :

W (x1, . . . , xd) =
l1∑

k1=1

l2∑
k2=1

. . .

ld∑
kd=1

ak1...kd
sin(πk1x1) × . . .× sin(πkdxd) (2.9)

First, the values of (li)1≤i≤d ∈ N∗ are chosen to be a family of independent random integers uniformly
distributed between 1 and 6.

Second, the coefficients (ak1...kd
)1≤k1≤l1,··· ,1≤kd≤ld

are randomly chosen as follows: Let β > 0. Let
(αk1...kd

)1≤k1≤l1,...,1≤kd≤ld
be a family of independent random variables uniformly distributed in [−1, 1]. For

44 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

Algorithm 8 CP-TT algorithm
1: Require:ϵ > 0, W ∈ L2(Ω)
2: Output: N ∈ N∗, for all 1 ≤ n ≤ N , τn ∈ Sd and for all i = 1, · · · , d, Rn

i ∈ L2
(

Ωτn(i), R2
)

so that the sum of Tensor Trains

W̃ ∈ L2(Ω) defined by

W̃ (x1, · · · , xd) :=
N∑

n=1

R
n
1 (xτn(1))R

n
2 (xτn(2)) · · · R

n
d (xτn(d)) ∀(x1, · · · , xd) ∈ Ω,

satisfies ∥W − W̃ ∥2
L2(Ω) ≤ ϵ.

3: Set W 0 = W , n = 1.
4: while ∥W n−1∥2

L2(Ω) > ϵ do

5: Define Kn
0 := 1, Dn

0 = {1} and define W
n

0 ∈ L2(D0 × Ω) such that W
n

0 (1, ·) = W n−1, In
0 := {1, · · · , d}.

6: for j = 1, · · · , d − 1 do
7: For all i ∈ In

j−1, since D
n
j−1 × "

i∈In
j−1

Ωi =
(

D
n
j−1 × Ωi

)
× "

i′∈In
j−1\{i}

Ωi′ , compute the SVD decomposition of W
n

j−1

according to the separation of variables (Dn
j−1 × Ωi, "i′∈In

j−1\{i′} Ωi′) so that

W
n

j−1 =
∑
k∈N∗

σ
i,n
j,k

U
i,n
j,k

⊗ V
i,n

j,k
.

8: Select in
j ∈ In

j−1 so that

i
n
j ∈ argmax

i∈In−1

(
σ

i,n
j,1

)2
,

9: Define τn(j) = in
j .

10: Define In
j := In

j−1 \ {τn(j)} so that #In
j = d − j.

11: Define Dn
j :=

{
1, · · · , Kn

j

}
and define W

n

j ∈ L2
(

Dn
j × "i∈In

j
Ωi

)
by

W
n

j (kj , yτn(j)) = σ
τn(j),n

j,kj
V

τn(j),n

j,kj
(yτn(j))

for all (kj , yτn(j)) ∈ D
n
j × "

i∈In
j

Ωi.

12: Define Rn
j ∈ L2

(
Ωτn(j),R2

)
as

R
n
j (xτn(j)) =

(
U

τn(j),n
j,1 (xτn(j))

)
for all xτn(j) ∈ Ωτn(j).

13: end for
14: Since #In

d−1 = 1, let in
d ∈ {1, · · · , n} such that In

d−1 = {in
d }. Define τn(d) = in

d .
15: Define Rn

d ∈ L2
(

Ωτn(d), R2
)

by

R
n
d (xτn(d)) =

(
σ

τn(d−1),n

d−1,1 V
τn(d−1),n

d−1,1 (xτn(d))
)

.

16: Compute W n(x1, · · · , xd) = W n−1(x1, · · · , xd) − Rn
1 (xτn(1))Rn

2 (xτn(2)) · · · Rn
d (xτn(d)) for all (x1, · · · , xd) ∈ Ω.

17: n = n + 1
18: end while
19: N = n − 1

all 1 ≤ k1 ≤ l1, ..., 1 ≤ kd ≤ ld, the value ak1...kd
is then defined as:

ak1...kd
= αk1...kd

(
√
k2

1 + ...+ k2
d)β

.

For different random samples and different values of the coefficient β, we obtain different families of
functions W given by (2.9). Let us remark that more detailed rank-r CP approximation of the orthogonal
Tucker tensor could be seen in [260], [101].

We are testing how the four methods behave for the compression of 32 different functions generated by
the random procedure described above for values of d ranging from 4 to 16. Let us point out that ALS
and ASVD are both fixed point based methods, in contrast to CP-TT and TTr1, and the tolerance for the
fixed point procedure has been set as η = 1.0 × 10−4. The maximum number of iterations of the method
itmax = 100. A uniform discretization grid of Ω with 25 degrees of freedom per direction is used for the
discretization of W .

2.5. NUMERICAL EXPERIMENTS 45

Description and analysis of Sobolev regularity in the d-torus

Let us establish the modes R1(x1), . . . , Rd(xd) contained in the space L2(Ω). Let Ω : [0, 1]d be the domain.
By simplicity of notation, let us name the product: R(x1, . . . , xd) = R1(x1) . . . Rd(xd).

We want to prove that the norm of the modes is finite: ∥R(x1, . . . , xd)∥L2(Ω) < ∞.
To do so, we are going to work with the square of the norm. Writing the modes in the continuous space

on the exponential representation of the sinus∫
Ω

∥R(x1, . . . , xd)∥2dΩ =
∫

Ω

(
ak1...kd

ei2πk1x1 . . . ei2πkdxd
)2
dΩ

Extending to a certain values of the wave number also the amplitude:

∫
Ω

∥R(x1, . . . , xd)∥2dΩ =
∫

Ω

(
l1∑

k1=1
. . .

ld∑
kd=1

αk1,...,kd√
k2

1 + . . .+ k2
d

β
ei2πk1x1 . . . ei2πkdxd

)2

dΩ =

=
l1∑

k1=1
. . .

ld∑
kd=1

l1∑
m1=1

. . .

ld∑
md=1

αk1,...,kd
αm1,...,md√

(k2
1 + . . .+ k2

d)(m2
1 + . . .+m2

d)β

∫
Ω
ei2π(k1−m1)x1 . . . ei2π(kd−md)xddΩ =

=
l1∑

k1=1
. . .

ld∑
kd=1

α2
k1,...,kd

(k2
1 + . . .+ k2

d)β
≤

l1∑
k1=1

. . .

ld∑
kd=1

1
(k2

1 + . . .+ k2
d)β

=
l1∑

k1=1
. . .

ld∑
kd=1

1∑d
i=1(k2

i)β
< ∞

where we have used the orthogonality of the functions inside the integral. Solving this inequality in order to
establish boundaries to the value of β for the functions to be regular in L2(Ω), we obtain a relation between
the dimension and the parameter: d− 2β < 0 =⇒ β > d

2 .
If we want to extend the regularity of the functions to H1(Ω) the calculus is completely analogue. The

relation obtained in this case: β − 1 > d
2 =⇒ β > 1 + d

2 .
In the view of this results, from the dimension of the problem we can select a value for the parameter β

that will determine the regularity of the functions.

Results for functions with β = d
2 + 0.1

We begin by presenting here some numerical tests obtained with functions generated with β = d
2 + 0.1.

We first present numerical experiments comparing the compression of the function given by Equation 2.9
computed by CP-TT, TTr1, ALS and ASVD in cases where d = 4 in Figure 2.1. Note that the memory
required by the TTr1 method has prevented us from being able to carry out the method for higher
values of d. Hence, for higher values of d, we only compare CP-TT with ALS and ASVD methods in
Figure 2.2 for d = 12 and d = 16. The mean and standard deviation of the L2 norm of the difference
between the exact function W and its approximation given by any method is plotted as a function of
the rank of the approximation. Let us make a remark: the negative values of the squared norm of the
residual appear by subtracting the standard deviation to the mean of the results in Figure 2.1 and Figure 2.2.

Note that in the case d = 4 (Figure 2.1), ALS outperforms ASVD and CP-TT. The ALS also outperforms
TTr1 for small values of the rank. However, in cases where d = 12 and d = 16 (Figure 2.2), CP-TT has
a better numerical behavior when considering the decay of the norm of the residual with respect to the
number of terms. In particular, the compression rate is better on average and the norm decay of the error
with respect to the rank of the approximation is less subject to statistical noise.

Table 2.1 summarizes the numerical results obtained with the CP-TT, ALS and ASVD methods. In
particular, the mean and the standard deviation of the error (on the 32 random functions) are reported for
ranks equal to 25, 50, 75 and tensor orders d = 4, 6, 8, 10, 12, 14, 16. We see here again that for low-order
tensors (here when d = 4) ALS has better performances, whereas for higher order tensors CP-TT outperforms
the other methods both in terms of mean and standard deviation.

Similar numerical tests have been performed in the case where the value of the parameter β is chosen to
be equal to d

2 +1.1. We refer the reader to the Appendix A.2 to see them in more detail. The results obtained

46 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

0 20 40 60 80 100
Number of te ms

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sq
ua

 e
d

no
 m

 o
f t

he
 e

sid
ua

l

Dec easing of the no m of the esidual. Mean and Std fo the diffe ent methods.
Mean of TT 1
Mean of ASVD
Mean of CPTT
Mean of ALS
Std of TT 1
Std of ASVD
Std of CPTT
Std of ALS

Figure 2.1: Case d = 4 and β = d
2 + 0.1. Mean and standard deviation of the L2 norm of the difference

between the exact function W and its approximation given by ALS (red), TTr1 (blue), CP-TT (black) and
ASVD (green) as a function of the number of terms. See Table 2.1 for more detailed information.

20 40 60 80
Number of te ms

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sq
ua

 e
d

no
 m

 o
f t

he
 e

sid
ua

l

Dec easing of the no m of the esidual. Mean and Std fo the diffe ent methods.
Mean of ASVD
Mean of CPTT
Mean of ALS
Std of ASVD
Std of CPTT
Std of ALS

20 40 60 80 100
Number of te ms

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sq
ua

 e
d

no
 m

 o
f t

he
 e

sid
ua

l

Dec easing of the no m of the esidual. Mean and Std fo the diffe ent methods.
Mean of ASVD
Mean of CPTT
Mean of ALS
Std of ASVD
Std of CPTT
Std of ALS

Figure 2.2: Case β = d
2 + 0.1. Mean and standard deviation of the L2 norm of the difference between the

exact function W and its approximation given by ALS (red), ASVD (blue) and CP-TT (black) as a function
of the number of terms. Left: case d = 12. Right: case d = 16. See Table 2.1 for more detailed information.

on H1(Ω) functions are equivalent to the ones shown for L2(Ω) functions, showing that the decrease in the
error norm with the approximation rank is quite regular in CP-TT and behaves in a quite stable way also
for higher order tensors. As a summary of the tests done we add Table A.1 as the counterpart of Table 2.1
for β = d

2 + 1.1.

Comparison of the norm of the residual with respect to computational time

It is clear that one iteration of CP-TT is in general more costly in terms of computational time than one
ALS iteration. As a consequence, even if the norm of the residual given by the CP-TT algorithm seems to
decrease faster as a function of the number of terms in the approximation than with any other rank-1 update
methods for high values of d, it is legitimate to compare the norm of the residual given by any method with
respect to the computational time needed to compute the corresponding approximations.

This is the aim of Figure 2.3, where the norm of the residual is plotted for CP-TT, ALS and ASVD as a
function of the computational time.

2.5. NUMERICAL EXPERIMENTS 47

Mean Std
Dimension (d) Rank (r) ALS CPTT ASVD TTr1 ALS CPTT ASVD TTr1

25 0.2942 0.3826 0.3118 0.4948 0.0702 0.0850 0.0843 0.0644
4 50 0.1082 0.2433 0.1257 0.2092 0.0326 0.0568 0.0664 0.0981

75 0.0508 0.1681 0.0689 0.0928 0.0180 0.0408 0.0666 0.0720
25 0.4479 0.3771 0.4806 0.1099 0.0826 0.1074

6 50 0.2705 0.1982 0.2883 0.0752 0.0485 0.0675
75 0.1232 0.0806 0.1369 0.0325 0.0252 0.0368
25 0.5341 0.3707 0.5532 0.1183 0.0592 0.1238

8 50 0.3060 0.1909 0.3415 0.0722 0.0341 0.0932
75 0.1592 0.0682 0.1807 0.0435 0.0160 0.0625
25 0.5023 0.3598 0.5451 0.0879 0.0643 0.1055

10 50 0.3191 0.1826 0.3797 0.0643 0.0342 0.0774
75 0.1714 0.0655 0.2792 0.0453 0.0162 0.1265
25 0.5170 0.3246 0.5639 0.1117 0.0576 0.1250

12 50 0.3249 0.1623 0.4206 0.0824 0.0286 0.1579
75 0.1543 0.0579 0.3498 0.0369 0.0113 0.2057
25 0.4443 0.2336 0.4783 0.1712 0.1064 0.1585

14 50 0.2407 0.1004 0.3307 0.0937 0.0588 0.1737
75 0.1411 0.0321 0.2230 0.0541 0.0235 0.1821
25 0.5529 0.3160 0.6150 0.1305 0.0818 0.1656

16 50 0.3487 0.1448 0.4424 0.0849 0.0389 0.1942
75 0.1946 0.0616 0.3678 0.0905 0.0289 0.2354

Table 2.1: Mean and standard deviation of the norm of the residual for 32 random functions in the case
where β = d

2 + 0.1. For TTr1, due to memory issues, it wasn’t possible to obtain definite results for order
higher than four.

We observe in these tests that, in terms of mean of the decay of the norm of the residual as a function of
the computational time, the three methods perform similarly in the sense that they are uniformly decreasing
even if they present small jumps or flat intervals. However, we observe that CP-TT has a lower stochastic
variability than ALS and ASVD. For functions in H1(Ω) the behavior is similar.

SoTT method

The goal of this section was to propose, on a simple synthetic test case, a comparison between rank-one update
methods. We have also run the tests presented above by using the SoTT method. For the sake of brevity, we
will synthetically comment the results in this section. For all dimensions, the SoTT method outperforms its
rank-one particularization (CP-TT), as well as all the other rank-one update methods. Furthermore, it can
reach a relative accuracy of 10−3 by using 3-4 TT terms. This has two important consequences. In terms of
memory, SoTT outperforms in general rank-one update methods. Concerning the computational cost: the
cost per iteration of SoTT is larger than the cost of all the other methods. It is similar to the one of CP-TT
(with some overheads due to the need of computing more singular vectors and values when performing the
SVD, instead of just one). However, the large computational cost per iteration is counterbalanced by the fact
that the method just needs three of four iterations to converge, as opposed to hundreds of iterations needed
for rank-one update methods. These encouraging results motivate further investigation of the SoTT method.
In the following section, we propose four different test-cases in which we compare the performances of SoTT
with the TT-SVD method. Moreover, we will report the comparison between SoTT and two rank-one update
methods, namely CP-TT and ALS, which is the rank-one update method which seems to perform the best
for the functions of interest in the present work.

2.5.2 SoTT method for the compression of multivariate functions
In this section we present some numerical experiments to assess the performances of the SoTT method in
compressing functions arising in different applications. Two main comparisons are shown: first, we will com-

48 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

0 5 10 15 20 25 30 35 40
Accumulated time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sq
ua

re
d

no
rm

 o
f t

he
 re

sid
ua

l

Decreasing of the norm of the residual with the time.
Mean of ASVD
Mean of CPTT
Mean of ALS
Std of ASVD
Std of CPTT
Std of ALS

20 40 60 80 100 120 140 160
Accumulated ime

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sq
ua

re
d

no
rm

 o
f

he
 re

sid
ua

l

Decreasing of he norm of he residual wi h he ime.
Mean of ASVD
Mean of CPTT
Mean of ALS
S d of ASVD
S d of CPTT
S d of ALS

50 100 150 200
Accumulated time

0.0

0.2

0.4

0.6

0.8

1.0

Sq
ua

re
d
no

rm
 o
f t

he
 re

sid
ua

l

Decreasing of the norm of the residual with the time.
Mean of ASVD
Mean of CPTT
Mean of ALS
Std of ASVD
Std of CPTT
Std of ALS

Figure 2.3: Functions with β = d
2 +0.1. From left to right in the top d = 4, 12. In the bottom: d = 16. Mean

and standard deviation of the norm of the residual as a function of the accumulated time of computation for
ALS (red), ASVD (blue) and CP-TT (black).

pare the SoTT method with the classical TT-SVD method, for different values of accuracy and by considering
all the possible permutation of the indices (for TT-SVD); second, we will compare the performances (in terms
of memory) of SoTT with its rank-one particularization, CP-TT, and the ALS method.

SoTT for the compression of the solution of a parametric reaction diffusion equation

The aim of this section is to illustrate the numerical behavior of the SoTT algorithm where the ranks are
not fixed a priori but chosen according to Algorithm 7.

We consider here a fourth-order tensor obtained by solving numerically a 1D-1D parametric Fischer-
Kolmogorov-Petrovsky-Piskunov (FKPP) equation. Let Ω1 := [0, 1] be the space domain, and Ω2 := [0, 0.25]
be the time domain. Let α ∈ Ω3 := [25, 100] be the reaction coefficient, and β ∈ Ω4 := [0.25, 0.75] be a
parameter defining the initial condition. The equation reads: for all (α, β) ∈ Ω3 × Ω4, find uα,β : Ω1 × Ω2 ∋
(x, t) 7→ uα,β(x, t) ∈ R solution to ∂tuα,β = ∂2

xuα,β + αuα,β(1 − uα,β), ∀(x, t) ∈ Ω1 × Ω2
uα,β(0, t) = uα,β(1, t) = 0, ∀t ∈ Ω2,
uα,β(x, 0) = exp(−200(x− β)2), ∀x ∈ Ω1.

(2.10)

We then define, for all (x1, x2, x3, x4) ∈ Ω1 × Ω2 × Ω3 × Ω4,

W (x1, x2, x3, x4) := ux3,x4(x1, x2).

2.5. NUMERICAL EXPERIMENTS 49

Equation 2.10 is discretized and solved by means of a classical centered finite difference scheme. Examples
of the space-time portrait of the solution for different values of the parameters are shown in Fig.2.4.

Figure 2.4: Three slices of the full tensor used in Section 2.5.2. The horizontal axis is the space coordinate,
the vertical axis is the time coordinate, the color represents the solution value, from 0 (black), to 1 (white)
for different values of the parameters determining the initial condition and the reaction coefficient.

We consider uniform discretization grids of Ω1, Ω2, Ω3 and Ω4 of size N1 = 100, N2 = 50, N3 = 10 and
N4 = 10 respectively.

Figure 2.5: Compression test performed in Section 2.5.2, double logarithmic plot of the memory as function
of the residual norm for the TT-SVD runs (obtained by considering all the possible permutations of the
indices), for several tolerances, and the SoTT approximations.

In Figure 2.5, the memory of the computed approximation (i.e. the number of stored double precision
numbers) is plotted as a function of the residual norm, for the TT-SVD approximations corresponding
to all the possible 24 choices of permutations of the variable indices and the SoTT approximation. These
approximations are computed in all cases for several residual tolerances, ranging from 10−2 to 5·10−4. Remark
here that the results obtained by the TT-SVD algorithm heavily depend on the order of the variables chosen.
The difference in memory between the best and the worst TT-SVD is roughly one order of magnitude, for
all the tolerances tested.

We observe in this test case that the SoTT method produces a sub-optimal compression with respect to
the best TT-SVD compression. However, it performs better than the average TT-SVD and in general better
than the canonical order 1, 2, 3, 4. The first term computed is a rank-1 update, for the second term the TT

50 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

ranks are [5, 5, 4], for the third [7, 7, 5], and in general we observe that the order of the variables change.
In Figure 2.6, we compare the performance of SoTT with CP-TT, its particularization to rank-1 updates.

More precisely, the logarithm of the memory is plotted as a function of the logarithm of the residual norm,
for 5 iterations of SoTT and approximately 360 iterations of CP-TT and about 300 iterations of ALS. We
observe that the performance of SoTT is better than the one of CP-TT and ALS.

Figure 2.6: Compression test performed in Section2.5.2, double logarithmic plot of the memory as function
of the residual norm for the SoTT, the CP-TT and ALS algorithms. For the rank-1 update methods we
plotted the result every 16 iterations for the sake of clarity in the graphical representation.

SoTT for the compression of the parametric displacement of a cantilever beam

In this section we consider, as a 4-variate function, the displacement of the tip of a cantilever beam subjected
to a uniform load. More details can be found in [261]. Let L = 1 be the beam length, perfectly attached
in x = 0, let E be the Young modulus, Jx = Jy = J be the inertia momentum of the beam (supposed
to be symmetric), fy, fz the components along the y and z coordinates of a uniform in space load. Let
uy(x), uz(x) : [0, 1] → R be the displacement fields along the y and z directions respectively. It holds:

uy(x) = fy

4EJ x
2 − fy

6EJ x
3 + fy

24EJ x
4, (2.11)

uz(x) = fz

4EJ x
2 − fz

6EJ x
3 + fz

24EJ x
4. (2.12)

The maximal displacement reads: u =
(
u2

y + u2
z

)1/2, which equals:

u(E, J, fy, fz) =
(
f2

y + f2
z

)1/2

8EJ . (2.13)

For the present case we considered E ∈ [108, 2 · 108], J ∈ [0.5, 1], fy, fz ∈ [0, 1] and Ni = 32, 1 ≤ i ≤ 4.
In Fig. 2.7.a) we show a comparison, in terms of memory as function of the residual norm, between SoTT

and the 24 possible TT-SVD, for 3 different levels of tolerance. Due to the function symmetries, the 24
TT-SVD group into 3 clusters of indices permutations. We observe that SoTT is suboptimal if compared to
the best possible TT-SVDs, but it is better than the average TT-SVD. In terms of the comparison between
SoTT and rank-one update methods, shown in Fig.2.7.b), we observe, that SoTT is performing better than
CP-TT and ALS, although the difference is not large for the function considered.

2.5. NUMERICAL EXPERIMENTS 51

Figure 2.7: Cantilever beam case, presented in Section 2.5.2, memory as function of the residual norm, in
logarithmic scale for: a) and b).

SoTT for the compression of the Friedman function

The Friedman function emulates the outcome of a computational process.1 Let x ∈ [0, 1]5, the Friedman
function f : [0, 1]5 → R reads:

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. (2.14)

In terms of discretization, we consider Ni = 20, 1 ≤ i ≤ 5. As for the other test cases, we compared the

Figure 2.8: Friedman function case, presented in Section 2.5.2, memory as function of the residual norm, in
logarithmic scale for: a) and b).

SoTT method with the TT-SVD for all 120 possible permutations of the indices, for 3 different values of
tolerance, namely ε =

{
10−2, 10−4, 10−6}. The results are shown in Figure 2.8.a). We observe that, due to

the symmetries of the function, the 120 permutations clusters into 6 groups. SoTT is suboptimal with respect
to the best TT-SVD, but it performs better than the average, requiring roughly half the memory than the
worse TT-SVD. In Figure 2.8.b) we compare SoTT with its rank-1 version, CP-TT and the ALS method. As
expected, SoTT outperforms both the rank-one update methods by roughly on order of magnitude in terms
of storage for an accuracy of 10−6.

1We consider the function as reported in http://www.sfu.ca/˜ssurjano/fried.html.

http://www.sfu.ca/~ssurjano/fried.html

52 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

SoTT for the compression of the OTL-circuit function

In this section we consider a function relying the values of resistances and gain of a transformerless push-
pull circuit (OTL) to its output2. Let the variables be R1 ∈ [50, 150], R2 ∈ [25, 70], Rf ∈ [0.5, 3], R3 ∈
[1.2, 2.5], R4 ∈ [0.25, 1.2], β ∈ [50, 300]. The circuit output V reads as follows:

V1 = 12R2

R1 +R2
, (2.15)

γ = β(R4 + 9) +Rf

β(R4 + 9) , (2.16)

V (R1, R2, Rf , R3, R4, β) = (V1 + 0.74)
γ

+ 11.35Rf

γβ(R4 + 9) + 0.74Rf

γR3
. (2.17)

The results are shown in Fig.2.9. On the left, we show the comparison, in terms of memory as function of

Figure 2.9: OTL circuit case, presented in Section 2.5.2, memory as function of the residual norm, in
logarithmic scale for: a) SoTT and the 720 possible TT-SVD, for 3 different values of tolerance, b) ALS,
CP-TT and SoTT methods.

the residual, between the TT-SVD performed by considering all the 720 permutations of the indices and the
SoTT iterations. On the right, we show the results for the SoTT method compared to its rank one version,
CP-TT, and the ALS method. The observed behavior is similar to the one observed and commented in
previous test cases.

Computational cost

We summarize some observations on the computational cost, for all the test cases presented in this section.
The computational cost per single iteration of SoTT is comparable to the one of CP-TT; both of them are
in general larger than the computational cost of a single iteration of ALS, although the latter is featured by
a large variance (due to the convergence of the fix point). The overall cost of SoTT to reach a given result
in terms of accuracy is significantly smaller if compared to the cost of both ALS and CP-TT. This is due to
the fact that, in order to achieve the target accuracy, we need to perform few iterations of SoTT (typically
we computed not more than 5-6 SoTT terms on the test cases considered), contrary to ALS and CP-TT,
which need a significantly larger amount of iterations. Compared to TT-SVD, the computational cost per
iteration of SoTT is about d2 times larger than the one of the TT-SVD. This computational burden could
be compensated by the fact that, choosing a bad order of variables for TT-SVD could result in extra costs
in terms of storage and further computational tasks.

2The function can be found in http://www.sfu.ca/˜ssurjano/otlcircuit.html.

http://www.sfu.ca/~ssurjano/otlcircuit.html

2.6. CONCLUSIONS AND PERSPECTIVES 53

2.6 Conclusions and perspectives
In this chapter, we proposed a method to compress a given tensor as a sum of Tensor Trains (SoTT). Neither
the order of the variables nor the ranks are fixed a priori. Instead, they are the result of an optimization
step. A particular instance of this method, consisting in fixing the ranks equal to one in all the steps of
the algorithm, produces a CP approximation of a given tensor. A proof of convergence is proposed in the
general case of the SoTT algorithm, which can be extended to the case of the CP-TT algorithm. Several
numerical experiments are proposed to illustrate the properties of the methods. First, we compared the
CP-TT to other rank-one update methods (ALS, ASVD, TTr1). Although a single iteration of CP-TT is
more expensive in terms of number of operation, its stability makes it a promising candidate to compress
high-dimensional tensors in CP format. We proposed some tests in which we compressed the numerical
solution of a parametric partial differential equation of reaction-diffusion type as well as other functions
coming from different applications. In particular, we compared SoTT with the TT-SVD obtained by testing
all the possible permutations of the indices. Although SoTT is suboptimal with respect to the best TT-SVD,
it is independent of the order of the variables and its performances are comparable to the average TT-SVD. In
this test, the SoTT method outperforms CP-TT. Both methods showed preliminary yet encouraging results
in view of applications in scientific computing and compression of high order tensors. The method presented
shows some shortcomings, to be addressed in further investigations: while a greedy method is appealing in
view of computational tasks in which fixing the rank a priori could be cumbersome, it might be featured by
a saturation effect, slowing down its convergence.

54 CHAPTER 2. SUM OF TENSOR TRAINS: SOTT

Chapter 3

Local tensor methods

Contents
3.1 Introduction . 55

3.1.1 Organization of the chapter . 59
3.2 Notation and preliminaries . 59

3.2.1 Partitioning of tensors . 60
3.2.2 The High Order Singular Value (HOSVD) decomposition 61

3.3 Local tensor spaces . 61
3.3.1 Construction of local subdomains . 61
3.3.2 Computation of the leaves . 62
3.3.3 Merging local subdomains . 65

3.4 Computing local HOSVD method . 67
3.5 Cost and complexity of the algorithm . 71
3.6 Summary . 73
3.7 Numerical results . 74

3.7.1 Compression of a Gaussian function . 74
3.7.2 Compression of the solutions of the Fitz-Hugh-Nagumo equation 75

3.8 Conclusions and perspectives . 80

3.1 Introduction
In this chapter of the thesis, we propose a ”local” HOSVD method to approximate tensors. Let d ∈ N∗,
p1, · · · , pd ∈ N∗ and Ω1 ⊂ Rp1 , . . . ,Ωd ⊂ Rpd be open finite sets. Let Ω := Ω1 × . . .× Ωd and F ∈ L2(Ω).

The tensor to be approximated is a multivariate function F (x1, . . . , xd). This object is defined in all the
domain, namely Ω := Ω1 × . . .× Ωd. Let us introduce the domain partition.

Let N ∈ N∗ be the number of non-overlapping local domains Ω(i). We have:

Ω =
N⋃

i=1
Ω(i).

To each subdomain Ω(i), we can associate the characteristic functions I(i)(x1, . . . , xd), which will be useful
in what follows. These functions are one in the local subdomain and zero elsewhere. They read:

I(i)(x) =
{

1 if x ∈ Ω(i)

0 otherwise (3.1)

When multiplying a function by the characteristic function of a subdomain we can restrict its values to
the local domain that we are considering.

55

56 CHAPTER 3. LOCAL TENSOR METHODS

Henceforward, a tensor defined in the global domain can be expressed as the sum of its values on N local
domains as follows:

F (x1, . . . , xd) =
N∑

i=1
Fi(x1, . . . , xd) =

N∑
i=1

F (x1, . . . , xd)I(i)(x1, . . . , xd) (3.2)

where we have denoted Fi(x1, . . . , xd) the function F (x1, . . . , xd) whose values are restricted to the
specified subdomain Ω(i).

Let F̃ (x1, . . . , xd) denote the approximation of F (x1, . . . , xd). The goal is to provide a certified approxi-
mation such that

∥F − F̃∥L2(Ω) ≤ ϵ

where ϵ > 0 is the prescribed accuracy. The approximation can be expressed by using the characteristic
functions:

F̃ (x1, . . . , xd) =
N∑

i=1
F̃ (x1, . . . , xd)I(i)(x1, . . . , xd) =

N∑
i=1

F̃i(x1, . . . , xd) (3.3)

The local HOSVD method to approximate F consists in approximating Fi in local domains and applying
the HOSVD method on each one of the partitions. Then, the approximation reads, for 1 ≤ i ≤ N :

Fi ≈ F̃i =
R1∑

i1=1
. . .

Rd∑
id=1

Gi1...id
b

(1)
i1

× . . .× b
(d)
id

in which R1, . . . , Rd are the n−ranks, b are the modes and G is the tensor core. Their computation will
be detailed later on.

The goal of this chapter is to investigate whether the local HOSVD will provide a better compression
rate with respect to the HOSVD decomposition.

A crucial point is to determine the subdomain partition. In the proposed method, we don’t impose the
partition a priori, the aim is to come up with a method that computes automatically the partition.

Let us illustrate the partitioning on a 2-dimensional example in Figure 3.1. As Ω = Ω1 × Ω2 the local
partition reads Ω(i) = Ω(i)

1 × Ω(i)
2 , where 1 ≤ i ≤ N . In this case, let us say that N = 2, and let the

subdomains originated by dividing the domain of x1 be Ω(1)
1 and Ω(2)

1 , and the ones obtained by dividing x2,
Ω(1)

2 and Ω(2)
2 . For x1 ∈ (0, 1) and x2 ∈ (0, 1).

As we can see in the schematic Figure 3.1, the partition of the left is done in the axis x1 and the partition
of the right is done in the axis x2. One would like to guess which one of the partitions provides a better
local approximation of the tensor.

Let us call N1 ∈ N∗ the number of the partitions in x1 and N2 ∈ N∗ the partitions in x2. The total
number of subdomains is N = N1 ×N2. In this case, N = 4. When partitioning at the same time on x1 and
x2 we have a set of N local domains. This corresponds to the partition shown in Figure 3.2.

At this point the question of how to make the choice of the local domains arises. The main idea we
investigate in this chapter is how to perform the subdivision per direction by using a clustering method. We
would like to exploit the separability of the domain Ω = Ω1 × . . . × Ωd in such a way that the partitions in
the different directions provides a partition of the whole domain. The way of computing the local domains
with a clustering algorithm is by applying it to the unfoldings of the different directions of the tensor. In
this work we are going to restrict ourselves to the situation in which they are not overlapping. See [172, 173]
for details of clustering methods.

Being Nk the number of partitions of the domain in the k−th direction, with k = 1, . . . , d. Let J(i)
k (xk)

be the characteristic functions in the direction k, J(ik)
k .For ik = 1, . . . , Nk and i = (i1, . . . , id), they read:

3.1. INTRODUCTION 57

Ω(1)
1 Ω(2)

1

x1
1 · · · · · · · · · 1

x2

1

...

...

...

1

Ω(1)
2

Ω(2)
2

x1
1 · · · · · · · · · 1

x2

1

...

...

...

1

Figure 3.1: 2-dimensional schematic example of a possible partition of the domain with respect to its 2
directions.

Ω1

Ω2Ω3

Ω4

x1
1 · · · · · · · · · 1

x2

1

...

...

...

1

Figure 3.2: 2-dimensional schematic example of the combination of the partitions of Figure 3.1.

J(ik)
k (xk) =

{
1 if x ∈ Ω(ik)

k

0 otherwise (3.4)

Where the domain Ωk is partitioned as:

Ωk =
Nk⋃

ik=1
Ω(ik)

k .

The method performs independently direction per direction. Let us recall that the characteristic functions
that restrict the tensor of Equation 3.2 to the local domain read

I(i)(x1, . . . , xd) =
d∏

k=1
J(ik)

k (xk) (3.5)

The domain Ω is separable and then, the subdomain Ω(i) can be also separated Ω(i) = Ω(i1)
1 × . . .× Ω(id)

d .
Hence, the problem of partitioning the domain Ω can be reduced to the problem of partitioning Ωk. The

58 CHAPTER 3. LOCAL TENSOR METHODS

partition of Ωk into local subdomains is done by a clustering method.

Clustering problem is not a trivial task, especially in the case of high-dimensional data that is exactly
the case that we face in most applications, and it is where conventional methods usually fail [262, 263]. The
number of data required to define correctly the system increases exponentially with the dimension of the
system. This phenomenon is referred to as the already introduced curse of dimensionality.

Clustering is the process of grouping similar objects into different groups, or more precisely, the
partitioning of a data set into subsets. This can be achieved by grouping entities in terms of a similarity (or
dissimilarity) measure. Here, the critical issue is to understand what is meant by “similar”. In this work,
we consider similarity as the inverse of a distance metric between two entities. The shorter the distance,
the more similar the entities, and vice versa. Clustering results will be crucially dependent on the similar-
ity notion chosen. In this work, we make the choice of using a L2 distance, and when discretizing a l2 distance.

The clustering method proposed in this chapter is agglomerative. As mentioned, it works independently
for each one of the directions of the tensor. Let us recall that the n-mode vectors (or just modes), in this
work also called fibers, of a certain unfolding F (k) are its column vectors, when k ∈ {1, . . . , d}. In the
new partitioning of Ωk, we will apply the clustering to the fibers of the unfolding transposed. Let us now
introduce some notation which will be used in all the sequel. Let xk and yk = (x1, . . . , xj , . . . , xd)j ̸=k. The
set of fibers of F (k)T reads as: {fk

p (yk)}1≤p≤Nk
.

If we face a d−dimensional tensor, F ∈ RN1×...×Nd and we compute the unfolding transposed corre-
sponding to the first one of the directions F (1) ∈ R(N2×...×Nd)×N1 , the system presents a set of N1 mode
vectors: f1

1 (y1), . . . , f1
n1

(y1) of size N2 × . . . × Nd. Then, for the k-th one of the unfoldings of the tensor,
k ∈ {1, . . . , d}, the Nk fiber modes read as: fk

1 (yk), . . . , fk
Nk

(yk), of size Nyk =
∏d

k ̸=j Nj .

This clustering method will allow us to subdivide the fibers of a tensor in different groups (clusters). The
intuition suggest that in a physical context, we are grouping the fibers that belong to the same ”regime”.

Remark: In this case, we are going to work from the unfoldings of the tensor transposed, F (k)T . If we
want to work with the unfoldings directly, let us remark that the partitions that we are computing are done
not in the direction k but in the rest of the directions 1 ≤ j ̸= k ≤ d. The subdomains in which we divide
the multivariate functions reads as

(
Ω(i)

j ̸=k

)
1≤j≤d

instead of
(

Ω(i)
k

)
1≤k≤d

. It is indeed, an equivalent way of
proceeding. In this work, we have chosen to work with the transpose of the unfoldings.

The output of the clustering method is a hierarchical tree of the possible partitions of the domains(
Ω(i)

k

)
1≤k≤d

. It starts pairing the similar leaves and it carries on pairing the nodes till everything is fused.
Each one of the levels lk of the tree denotes a possible partition of the domain on the direction k. In the root
of the tree, the point in which every cluster is fused, the POD decomposition of the unfolding transposed in
the direction k is recovered. Each of the nodes defines a partition of the domain. The closest the nodes are
to the root of the tree, the biggest the clusters are.

Let #lk be the number of levels of the tree TIk
on the direction k. Each level lk denotes a possible

partition of the domain Ωk on that direction. The total number of possible combinations of partitions in all
the directions reads as

∏d
k=1 #lk. On each level lk, where lk = 0, . . . ,#lk − 1, of the tree, the number of

subdomains in which the domain Ωk is divided is denoted by Nk,lk
.

In this work, in order to find the best partition we perform an extensive search between the possible
partition combinations and we perform the HOSVD on each of them. In order to determine which partition
of the domain is the best we need to establish a criterion in order to select one partition over the others.
This is the memory needed to store the approximation. For every possible combination of the partitions of
the domain obtained, the method computes the basis that generates the subspace defined by the partition
performing HOSVD on the truncated space. The one that requires less amount of memory to be stored is
said to be the best of the partitions of the domain.

3.2. NOTATION AND PRELIMINARIES 59

Clustering methods that focus on finding a clustering strategy that is appropriate for model order re-
duction purposes have been already used and can be found in [176, 177], where a dictionary of clusters is
assembled and when a new instance of the data needs to be classified, the method finds the cluster to which
it belongs. In [156, 157] a multiple local bases method is introduced. The main difference with the method
proposed in this work is that in [156], the local ROB are computed by the method of snapshots in the
intersection between overlapping clusters.

3.1.1 Organization of the chapter
After the presented overview of the method proposed in this chapter, it will be studied in detail in the
following sections. The organization followed in the chapter reads as follows:

Find in Section 3.2 some notation and preliminary concepts that are used in the present chapter. In
Section 3.3 the process of construction of the local domains is detailed. In Section 3.4, the computation
of the approximation of the tensor in the local subspaces obtained is computed. It is in this section where
the local HOSVD method is presented. Section 3.5 breaks down the cost and complexity of the proposed
algorithm. A summary recalling the important steps of the method can be found in Section 3.6. To finish,
the numerical results of the method applied to practical cases appear in Section 3.7.

3.2 Notation and preliminaries
The notation here recalls the one used in Section 2.2. Let us look back on some of the concepts introduced
before and particularize them to its concrete use on this section. New notation and concepts are introduced
as well.

Let us begin by recalling some definitions. Let us start by the definition of a tensor as a multivariate
function and its associated preliminary concepts. Let p be the dimension and let D be a subset of Rp

with a product structure D := D1 × . . . × Dd. Let us consider d ∈ N∗. Then, for all 1 ≤ i ≤ d, Di is
an open bounded subset of Rpi for some pi ∈ N∗. We call a tensor any real-valued multivariate function
F ∈ L2(D1 × · · · ×Dd).
For each 1 ≤ i ≤ d, a certain Hi a Hilbert space of univariate functions defined of Di, equipped with the
corresponding inner product (·, ·)Hi and the associated norm ∥ · ∥Hi .

The space L2(D) of square-integrable, real-valued functions defined on D equipped with a scalar product
and the corresponding canonical norm ∥ · ∥L2(D) that is defined for F,G ∈ L2(D) by

⟨F,G⟩D :=
∫

D

F (x)G(x)dx and ∥F∥L2(D) :=
(∫

D

F 2(x)dx
)1/2

.

From now on, in order to simplify the notation of the manuscript (every time that there’s no ambiguity)
L2(D) will be denoted as D, equipped with the norm ∥ · ∥D and its associated inner product (·, ·)D. In the
cases in which we work with discrete objects in l2(D), the norm used will be the Euclidean norm and will
be denoted by ∥ · ∥l2 .

We recall here some well-known definitions and introduce some notation about tensor fibers and tensor
unfoldings:

The so called fibers are the higher-order analogue of matrix rows and columns, defined by fixing every
index of a tensor but one. In a 3-dimensional tensor F ∈ RN1×N2×N3 , for a certain value of two of its
indices i2 ∈ {1, . . . ,N2} and i3 ∈ {1, . . . ,N3}, a fiber on the i1−th direction is given by f i1 = F:i2i3 , with
i1 ∈ {1, . . . ,N1}. When fibers are extracted from tensors, they are assumed to be column vectors.

Unfoldings. Assume a N−th order tensor X ∈ RN1×...×NN . The matrix unfolding X(n) ∈
RNn×(Nn+1...NN N1...Nn−1) contains the element xi1...ip

at the row position in and column number equal to:

(in+1 − 1)Nn+2 . . .NN N1 . . .Nn−1 + in+2 − 1)Nn+3 . . .NN N1 . . .Nn−1 + . . .

. . .+ (iN − 1)N1 . . .Nn−1 + (i1 − 1)N2 . . .Nn−1 + . . .+ in−1

60 CHAPTER 3. LOCAL TENSOR METHODS

The unfolding transpose of a N−th order tensor X ∈ RN1...Nd tensor is the matrix X(n)T ∈
R(Nn+1...NN N1...Nn−1)×Nn that contains the element xi1...ip at the column position in and row number equal
to:

(in+1 − 1)Nn+2 . . .NN N1 . . .Nn−1 + in+2 − 1)Nn+3 . . .NN N1 . . .Nn−1 + . . .

. . .+ (iN − 1)N1 . . .Nn−1 + (i1 − 1)N2 . . .Nn−1 + . . .+ in−1

As a remark, notice that the fibers are the column vectors of the unfolding matrices.

Given two fibers, f i1
1 ∈ RN1 and f (i1)

2 ∈ RN1 , for i1 ∈ {1, . . . ,N1}, let us define the concatenation of them
as a matrix F ∈ RN1×2:

F = (f i1
1 f

i1
2) (3.6)

such that its first column F:,1, is the fiber f i1
1 and its second column F:,2, is f i1

2 .

Following this definition, we extend it to a concatenation of matrices. Let F ∈ RN1×N2 and X ∈ RN1×N3 .
The concatenation of them results other matrix A ∈ RN1×(N2+N3) reads:

A = (FX)

such that: for 1 ≤ i ≤ N2, A:,i = F:,i and for N2 ≤ j ≤ N4, A:,j = X:,j−N2 .

3.2.1 Partitioning of tensors
In this chapter, the notation followed in order to explain the concepts related with local tensor decomposition
is the one introduced in [264].

Let d ∈ N∗ be the dimension of the system and p ∈ N∗. Let D1, . . . , Dp be open subsets of Rdi with
di ∈ N∗ and 1 ≤ i ≤ p. We denote D := D1 × . . .×Dp.

A domain partition {D(k)}1≤k≤K of D satisfies:

• For all 1 ≤ k ≤ K, there exists D(k)
1 ⊂ D1, . . . , D

(k)
d ⊂ Dd open subsets such that D(k) := D

(k)
1 × . . .×

D
(k)
d .

• For all 1 ≤ k ̸= l ≤ K, D(k) ∩D(l) = ∅.

• D =
⋃K

k=1 D
(k).

A domain partition of D for 1 ≤ j ≤ d can be: a set of subdomains Pj = D
(kj)
j ∈ Dj , with 1 ≤ kj ≤ Kj ,

that satisfies the properties enhanced before, such that the partition reads

P =
(

×d
j=1D

(kj)
j

)
1≤k1≤K1,...,1≤kd≤Kd

In [264] we can also see that under appropriate assumptions, it can be proved that there exists an
admissible domain partition D(k) ⊂ D such that the restricted tensor F (xk

1 , . . . , x
k
d), with xk

j the restricted
values of the variable xj , can be represented in some tensor formats with low ranks.

Partition trees

Let TI be a tree with nodes V(TI) and edges E(TI). For all J ∈ V(TI) we denote the set of sons of the node
J as:

SJ(TI) := {J ′ ∈ V(TI), (J, J ′) ∈ E(TI)}
and equivalently we can define the set of sons of J of the k−th generation, Sk

J (TI) and the nodes in the k−th
generation as Vk(TI) . The set of leaves reads,

L(TI) := {J ∈ V(TI),SJ(TI) = ∅}

The set of parents of leaves of a tree TI is defined as Lp(TI) ⊂ V(TI) which have at least one son that is
a leaf of TI .

With all this concepts set we are in position to recall the definition of partition tree. A tree TI is called
a partition tree if:

3.3. LOCAL TENSOR SPACES 61

• I is the root of TI .

• For all J ∈ V(TI)\L(TI), SJ(TI) is an admissible partition and |SJ(TI)| ≥ 2.

• For all J ∈ V(TI), J ̸= ∅.

In this work we are interested in the particular case in which TI is a dyadic partition tree. In this case,
for all J ∈ V(TI)\L(TI), SJ(TI) is an admissible partition and |SJ(TI)| = 2.

3.2.2 The High Order Singular Value (HOSVD) decomposition
Let us recall from Equation 1.8 the already introduced HOSVD format altogether with the concept of
n−rank of a tensor. It is the generalization of the SVD decomposition presented in Equation 2.1.

Let us refer to the column, row, ... vectors of a N−th order tensor as its n-mode vectors defined as the
Nn−vectors obtained by varying the index in and keeping the rest fixed. The n-mode vectors (or just modes)
of a certain tensor X are the column vectors of the unfolding X(n).
We define the n-rank of a tensor X, denoted by Rn = rankn(X) as the dimension of the vector space spanned
by the n−mode vectors.
The HOSVD of a certain tensor F reads:

F =
R1∑

i1=1
. . .

Rd∑
id=1

Gi1...id
u

(1)
i1

× . . .× u
(d)
id

(3.7)

in which R1, . . . , Rd are the n−ranks defined above and they are smaller than N1, . . . ,Nd, respectively. For
compression, it is also commonly used the Truncated HOSVD, in which the summation is truncated when
the approximation reaches a certain tolerance. The representation of a tensor in this format requires to
store N d + NdR elements, supposing that all the ranks R1 = . . . = Rd = R are equal.

3.3 Local tensor spaces
The objective is to propose a partition of the domain in which the function is well approximated by HOSVD
method. This is done automatically by the method and it doesn’t require the choice of the ranks of the
approximation a priori.

From now on, we fix some d ∈ N∗ and for all 1 ≤ j ≤ d, let Ωj be an open subset of Rpj for some pj ∈ N∗.
We define Ω := Ω1 × · · · × Ωd.

3.3.1 Construction of local subdomains
Recalling Equation 3.2, a multivariate function F (x1, . . . , xd) can be expressed as a sum on N local domains:

F (x1, . . . , xd) =
N∑

i=1
Fi(x1, . . . , xd) =

N∑
i=1

F (x1, . . . , xd)I(i)(x1, . . . , xd)

where, for N number of local subdomains and i = 1, . . . , N , Fi(x1, . . . , xd) is the function whose values are
restricted to the specified subdomain defined by the characteristic functions defined in Equation 3.1.

In order to exploit that Ω is a separable domain, the clustering method is applied independently to each
one of the unfoldings of the tensor F (1), . . . , F (d). On each direction, a partition tree is computed in an
agglomerative way. It will provide the possible partitions of the domain that will be considered.
Let Nk,lk

be the number of subdomains. The approximation of the unfolding transposed reads:

F (k)T (xk, yk) =
Nk,lk∑
ik=1

F
(k)T
ik

(xk, yk)I(ik)
k (xk)

62 CHAPTER 3. LOCAL TENSOR METHODS

where the characteristic functions per direction are defined in Equation 3.4.

As introduced before, in this part of the work for u and v given fibers of the unfolding transposed, we set
the distance between them as dist(u, v) = ∥u−v∥L2("j ̸=k Ωj), being "j ̸=k Ωj with j = 1, . . . , d, j ̸= k the prod-
uct of the spaces different from Ωk, when we are dealing with continuous functions and dist(u, v) = ∥u−v∥l2 ,
where l2 is on RNyk , when we are working with discrete vectors. Let us recall that we have denoted
Nyk =

∏d
j ̸=k Nj .

The method introduced in this work proceeds by computing an agglomerative tree. Let us start introduc-
ing how to compute the leaves. They are clusters of fibers represented by 2-dimensional bases. This grouping
process relies on the notion of distance between the fibers on the different unfoldings of the tensor.

3.3.2 Computation of the leaves
Let us now explain how the method proceeds for one of the directions of the system. The extension to
others is identical. As we have introduced before, for a certain direction k of the tensor we have a set of
fibers depending of the rest of the variables, fk

1 (yk), . . . , fk
Nk

(yk) of size Nyk. Let us define a set of indices
per direction Tk = {1, . . . ,Nk} that denotes the index of the fibers. At the beginning of the method, it
denotes the whole set and at the end an empty set Tk = ∅.

Each one of the fibers is then a vector of Nyk components. Choosing randomly one of the fibers, let us
say without loss of generality the first of them fk

1 (yk), we take its index out of the set, Tk is updated by
Tk \ {1}, and we compute its nearest neighbor.

q∗ = arg min
q∈Tk

dist(fk
1 , f

k
q)

where
dist(fk

1 (yk), fk
q∗

(yk)) = ∥fk
1 − fk

q∗
∥l2

This pairing of two fibers is the first step in the grouping process. A SVD of the matrix composed by the
two fibers as its columns will allow us to compute the basis.

Let us suppose that q∗ is such that fk
q∗

(yk) is linearly independent from fk
1 (yk). Then, let us define the

matrix F k(1,q∗) ∈ RNyk×2 as introduced in 3.6:

F k(1,q∗) = (fk
1 (yk)fk

q∗
(yk)).

Recalling the previously defined SVD decomposition, it holds that there exists an orthonormal ba-
sis (Ui)i∈N∗ ∈ RNyk×Nyk , an orthonormal basis (Vi)i∈N∗ ∈ R2×2, and a decreasing sequence (σi)i∈N∗ ∈
Rmin(Nyk,2)×min(Nyk,2) of non-negative real numbers, such that

F k(1,q∗) = Uk(1,q∗)Σk(1,q∗)V k(1,q∗)T =
∑
i∈N∗

σ
k(1,q∗)
i U

k(1,q∗)
i ⊗ V

k(1,q∗)
i . (3.8)

If the fibers fk
1 and fk

q∗
are linearly dependent, one of the singular values is going to be zero and a

one-dimensional basis will be retrieved. If that occurs, we look for the next neighbor to perform this step.
The orthonormal basis of the joint subspace is given by the matrix Uk(1,q∗). From now on, let us

call it B
(1)
k , where the superindex of the basis is the first selected fiber. Let us define now a certain

set of indices I(1)
k = {1, q∗} that is composed by the indices of the fibers in a certain cluster. The

superindex corresponds to the one used for the basis. Every time that one of the fibers is added to a
cluster, we take its index out of Tk in order to avoid repetition, and Tk is updated by Tk \ I(j)

k , being I(j)
k

the set of indices of the fibers in the j−th cluster in the k−th direction that is being used to construct a cluster.

If some neighbors with zero distance had been found when constructing the 2-dimensional basis process,
its indices need to be included also in the set because it is obvious that they are well represented by the
basis. An example of this situations is the case in which the solution of a PDE is periodic and some of the
fibers are consecutively repeated.
If they are linearly dependent, the index of the neighbor will be also added to the set.

3.3. LOCAL TENSOR SPACES 63

In the clusters, not only the fibers that we used to compute the basis or the ones that are linearly dependent
(and that belong to the subspace) can be included, but also the ones that are close enough to the subspace.
In this case, a fiber is considered close enough to the subspace if it can be represented on it with an error
smaller than the one needed to guarantee the prescribed accuracy.

The error for a certain fiber fk
p (yk) that is approximated in the space spanned by a basis B(h)

k is defined
as the difference between the projection of the fiber and the fiber itself:

∥fk
p (yk) −

∫
"j ̸=k Ωj

B
(h)T
k fk

p (yk)dyk∥L2 = ϵ
(h)
k (3.9)

Let Nk be the number of fibers in the k-th direction. In order to consider a certain fiber of the direction
k, fk

p (yk), where p /∈ I(1)
k , well represented by the basis B(1)

k , the error defined in Equation 3.9 needs to be
smaller than the squared tolerance ε2 (prescribed) over the number of fibers (δ(1)

k)2 = ε2/Nk.
Let us define the error made in the cluster q of the direction k, namely ϵ(q)

k,l , as the sum of the errors made
each time that a fiber is added to it:

∑
h∈#I(q)

k

ϵ
(h)
k = ϵ

(q)
k,l . In order to obtain a guaranteed approximation,

we need that ϵ(h)
k < δ

(1)
k . At the beginning, this error is zero because the cluster consists only in the two

vectors themselves, the fibers with indices {1, q∗} in the previous example. When we add fibers to the
cluster, they are represented by the basis with an error ϵ(1)

k . This error is such that it guarantees that the
global error made in all the clusters respects the prescribed tolerance.

When a certain fiber is included in a cluster, we modify its basis in order to reduce the approximation
error in the cluster. When just the two neighbor fibers were considered, the error was zero but when we
include other fiber in the cluster it may be represented for the basis of the cluster with a certain error given by
Equation 3.9. With the objective of minimizing the error in the cluster, an update of the basis is computed.
In [265, 266] the author develops an identity for additive modifications of a singular value decomposition
(SVD) to reflect updates, downdates, shifts, and edits of the data matrix. This situation has our particular
interest because it allows us to compute the new SVD decomposition by adapting the old one instead of
recomputing the whole SVD. In our concrete case, we are interested on the SVD of the matrix after a rank-1
modification. Let a real matrix F ∈ RNi×p, with Ni, degrees of freedom in the direction i and p ∈ N∗,
have rank R and SVD F = UΣV T with Σ ∈ RR×R the diagonal matrix of singular values. Let A ∈ RNi×c,
B ∈ Rp×c be arbitrary matrices of rank c. We are interested in the SVD of the real matrix F̂ ∈ RNi×(p+1)

resulting from the sum:
F̂ = F +ABT =

(
U A

)(Σ 0
0 I

)(
V B

)T (3.10)

Where I is the identity matrix. In our case the application of this method for the joint function F k(1,q∗,p)

as a rank-1 modification of F k(1,q∗) reads:

F k(1,q,p) = F k(1,q) + fk
p b

T =
(
B

(1)
k fk

p

)(Σk(1,q∗) 0
0 I

)(
V k(1,q∗) b

)T (3.11)

where bT = [0, 0, . . . , 1] is the rank-1 value of B and A on its particular rank-1 case is chosen as fk
p . Find

more details of the choice of the values for A and B and of the method itself in the cited work, [265]. In our
case, the new basis of the cluster with the new fiber included obtained by the SVD of the expression 3.11
will update the old B

(1)
k . The error budget, that at the beginning of the method was equal to the tolerance

squared, bk = ε2, will be also updated because making some error in the projection means spending part of
the error budget. It becomes now bk = bk − (ϵ(1)

k)2. The quantity (δ(1)
k)2 used to determine if a fiber is well

represented or not by a certain basis, is updated as: (δ(1)
k)2 = bk

#Tk
.

This process is repeated till there are no fibers left to be checked and Tk = {0}. We have obtained a set
of 2-dimensional basis that well represents all the fibers in a certain direction.

It could happen that at the end of the clustering process, a fiber is not well represented by any of the
existing bases. The fiber is then the generator of its own 1-dimensional space.

64 CHAPTER 3. LOCAL TENSOR METHODS

Let us introduce Nk,0 as the number of clusters that we obtain as the leaves for the tree and let us
remark that 1 ≤ Nk,0 ≤ ⌈ Nk

2 ⌉. The case in which, Nk,0 = ⌈ Nk

2 ⌉ is the one in which all the fibers of the
direction k have been paired two by two. The other endpoint, Nk,#lk−1 = 1 represents the case in which the
first basis originated by two fibers represents well the rest of the fibers on the set. Let us name Nk the set
of all the partitions of the domain Ωk, Nk =

∑#lk−1
j=0 Nk,j .

A necessary condition to guarantee that we are obtaining a certified approximation is that sum of all the
errors squared is smaller or equal that the prescribed tolerance:

∑Nk,0
q=1 (ϵ(q)

k,l)2 ≤ ε2. The error satisfies also
that

∑Nk,0
q=1 (ϵ(q)

k,l)2 + bk = ε2. Where bk denotes the part of the error squared that hasn’t been made in the
clustering process, or what is the same, the difference between the prescribed tolerance and the errors made
on each cluster.

The first part of the method, developed till here, can be found more detailed in Algorithm 9.

Algorithm 9 Computation of the leaves algorithm

1: Require: Unfolding of a tensor in the direction k, F (k)T (x1, . . . , xd) ∈ R

(∏d

j=1,j ̸=k
Nj

)
×Nk , for 1 ≤ k ≤ d. Tolerance ε.

2: Output: Set of indices {I(q)
k

}1≤q≤Nk,0 . Set of bases {B
(q)
k

}1≤q≤Nk,0 . Set of local error budgets {ϵ
(q)
k,b

}1≤q≤Nk,0 and an error
budget bk.

3: Compute the set of Nk fibers fk
1 (yk), . . . , fk

Nk
(yk)

4: Initalize n = 1
5: Initialize T (1)

k
= {1, . . . , Nk}

6: Initialize i = T (1)
k,1

7: Initialize the error budget: bk = ε2

8: while T (i)
k

̸= {0} do
9: for n > 1 do

10: Set i = T (i)
k,1

11: end for
12: for q ∈ T (i)

k
do

13: Compute the distance between the fibers and select the closest one:

q∗ = arg min
q∈T (i)

k
,q ̸=i

dist(f
k
i (yk), f

k
q (yk)), where dist(f

k
i (yk), f

k
q (yk)) = ∥f

k
i,j − f

k
q,j∥l2

14: end for
15: Set I(i)

k
= {i, q∗}

16: Update T (i)
k

= T (i)
k

− {q∗}
17: Compute the joint matrix F k(i,q∗) = (fk

i (yk)fk
q∗ (yk))

18: SVD of F k(i,q∗) =
∑

j∈N∗ σ
k(i,q∗)
j

U
k(i,q∗)
j

⊗ V
k(i,q∗)

j

19: Set B
(i)
k

= Uk(i,q∗)

20: Set δ2 = bk/#T (i)
k

21: Initialize local error: ϵ
(i)
k,l

= 0
22: for p ∈ T (i)

k
do

23: if |fk
p (yk) −

∫
"j ̸=k Ωj

B
(i)T

k
fk

p (yk)dyk|2 = (ϵ
(i)
k

)2 < δ2 then

24: The fiber is well represented by the basis
25: Update I(i)

k
= I(i)

k
+ {p}

26: Update T (i)
k

= T (i)
k

− {p}
27: Recompute the SVD of F

k(i,q∗,p)
i

= (F k(i,q∗)fk
p (yk)).

28: Update the basis B
(i)
k

= U
k(i,q,p)
i

29: Update the error budget: bk = bk − (ϵ
(i)
k

)2

30: Update the local error (ϵ
(i)
k,l

)2 = (ϵ
(i)
k,l

)2 + (ϵ
(i)
k

)2

31: end if
32: end for
33: n = n+1
34: end while

This process is computed independently for each of the directions. For 1 ≤ k ≤ d, the output of the
method is:

1. The sets of indices {I(q)
k }1≤q≤Nk,0

2. The sets of local error budgets {ϵ(q)
k,b}1≤q≤Nk,0

3.3. LOCAL TENSOR SPACES 65

3. The set of bases {B(q)
k }1≤q≤Nk,0

4. The global error budget squared bk

where Nk,0 is the number of the leaves.

Let us remark that for the moment the basis obtained are 2-dimensional ones. We now consider that
option and let us remember that we may still have some budget that we can spend in compressing more the
tensor.

3.3.3 Merging local subdomains
In this section we are going to introduce a second phase of the proposed method: starting from the
leaves obtained from Algorithm 9, a merging process between clusters is performed. The merging criteria
will rely on the notion of similarity between clusters. This process provides a hierarchical bottom-to-top
binary partition tree with an agglomerative structure, [165], per direction. This procedure is computed
independently for each of the directions of the tensor.

Let us denote the set of clusters obtained from Algorithm 9 as {C(q)
k }1≤q≤Nk,0 . In order to start the

merging phase, the notion of distance between clusters needs to be set.

The computation of the distances between clusters have been widely studied and some methods are
proposed in the literature, [174]. Between the alternatives we find in the literature, let us cite some works on
distances between subspaces in [267, 268]. In this work, the notion of distance used is the so called Ward’s
distance, denoted by ∆, (see [225] for more details). Find more choices of distances and its analysis in [269].

Ward’s method is used in order to find the nearest neighbor of a centroid ck
p. This is performed by finding

the smaller distance with respect to the others centroids weighted with a certain constant.
Let us name the partition tree that we are computing per direction k as TIk

. This part of the algorithm
begins by computing the centroids or baricenters of the clusters. These centroids of the leaves of the TIk

denoted as ck
1 , . . . , c

k
Nk,0

are computed as the mean of the fibers well represented by the basis of the clustering,
they are the barycenters of the Ck

1 , . . . , C
k
Nk,0 clusters. For q = 1, . . . , Nk,0:

ck
q =

∑
p∈I(q)

k

fk
p (yk)

#I(q)
k

Let us introduce the set of indices C(q)
k of clusters that are not merged (as the analogous set to T (q)

k for
the fibers). At the beginning of this merging phase, the set is complete C(q)

k = {1, . . . , Nk,0} and while we
are merging, we are removing the indices of the clusters that are being paired. For an intermediate iteration
let us have C(q)

k = {1, . . . , Nk}. The process finishes when Ck = {0}.

q∗, p∗ = arg min
q,p∈C(q)

k

∆(Ck
p , C

k
q)

Ward’s method says that the distance between two clusters,Ck
p and Ck

q , is how much the sum of squares
will increase when we merge them:

∆(Ck
p , C

k
q) =

∑
i∈I(p)

k
∪I(q)

k

∥fk
i − ck

Ck
p ∪Ck

q
∥2 −

∑
i∈I(p)

k

∥fk
i − ck

p∥2 −
∑

i∈I(q)
k

∥fk
i − ck

q ∥2 = #I(p)
k #I(q)

k

#I(p)
k + #I(q)

k

∥ck
p − ck

q ∥2

where #I(p)
k ,#I(q)

k is the number of elements of each set of indices and then of each cluster. Let us
remark that in this case, the coefficient that multiplies the distance between the centroids promotes to the
fusion of small clusters, considering them closer than if we were computing the Euclidean distance. Or what
is the same, given two pairs of clusters whose centers are equally far apart, Ward’s method will prefer to
merge the smaller ones.

66 CHAPTER 3. LOCAL TENSOR METHODS

Other difference between the computation of the leaves and the merging process apart from the notion
of distance chosen, is that in this case instead of selecting the nearest neighbor between one fiber and the
rest, we perform a pairwise computation of the distance. This means that we compute the Ward’s distances
between all the clusters: for all 1 ≤ p, q ≤ Nk,0, the distances ∆(Ck

p , C
k
q) are computed, and among all of

them we select the smallest. We select the pair that provides it as the neighbor clusters.

In the leaves level of the tree lk = 0, in order to compute the pairwise distance operation,
(Nk,0 − 1) × (Nk,0 − 2) × . . . × 1 distances need to be computed, taking into account that we don’t
recompute distances between the same two clusters. As we go up in the levels of the tree, some of the
clusters are merged and this quantity diminishes. In Algorithm 10, this procedure is explained in a more
detailed way.

Merging the two neighbor clusters Ck
q∗

and Ck
p∗

found, they become sons of a certain node of the tree of
the level lk = 1. This node defines a new cluster Ck

p∗,q∗
that holds the fibers whose indices are in I(q∗,p∗)

k .
This set of indices I(q∗,p∗)

k is the joint set of the ones of the sons of the node, such that I(q∗,p∗)
k = I(q∗)

k ∪I(p∗)
k .

Then, it is possible to compute its basis by a POD, let us name it Ak(p∗,q∗). In this case, we truncate the
SVD, in order for our approximation to have an error squared smaller or equal to the sum of the local errors
squared obtained in both clusters.

Let e(q)
k,l be the error for the cluster Cq

k . Before starting the merging process, it is equal to the one that
the computation of the leaves outputted, e(q)

k,l = ϵ
(q)
k,l . Let us recall that at the end of the previous grouping

given by Algorithm 9, a global error budget bk such that (ϵ(1)
k,l)2 + . . .+(ϵ(Nk,0)

k,l)2 + bk = ε2, may be left. Now,
this budget can be used by equally distributing it between the clusters. A proportional part of the budget,
bk/Nk,0, is added to the local budgets for each cluster. Hence, the error budget that we have for a cluster
Cq

k reads as e(q)
k,l = ϵ

(q)
k,l + bk/Nk,0.

Notice that the error budget has been distributed between the clusters but the errors keep satisfying
that (e(1)

k,l)2 + . . . + (e(Nk,0)
k,l)2 ≤ ε2. Respecting the prescribed accuracy is a necessary condition and this

inequality will held in all the directions and for all the iterations of the method.

The error of the resulting merged cluster e(q∗)
k is given by the tail of the singular values of its SVD, the

sum of the singular values that we depreciate in the truncation,

(e(q∗)
k)2 =

∑
h∈N∗,h>j

(σk(q∗,p∗)
h)2

being j the number of terms that we need to keep in the truncated SVD in order to ensure that
(e(q∗)

k)2 ≤ (e(q∗)
k,l)2 + (e(p∗)

k,l)2. At this stage of the algorithm, let us have the part of the error budget that
has not been spent: g(q)

k = (e(q)
k,l)2 + (e(p)

k,l)2 − (e(q)
k)2. This value is equally redistributed into all the errors

(e(q)
k,l)2. They are updated by its value plus a factor g

(q)
k

#C(q)
k

.

Now that the two clusters are merged, the centroid of this new cluster needs to be recomputed as well as
the values for the distances between clusters. The process of finding its nearest neighbor and merging the
clusters they refer to is performed again. This process originates a new merge. Notice that this procedure is
agglomerative and it is repeated till we have consecutively fused all the clusters in one. In this situation, the
POD of the unfolding transposed is recovered. Find more details about the computation of the joint bases
in Algorithm 10, where the process of merge clusters is shown in a schematic way.

Once the method explained in Algorithm 9 and Algorithm 10 finishes for all the different directions, we
obtain a set of d partition trees. Each one of the trees corresponds to the succession of #lk possibilities
of partitions of the domain with respect to one direction. In a certain level lk of the tree, we have Nk,lk

partitions of the domain. A node h, with 1 ≤ h ≤ Nk, of the tree has associated sets of indices I(h)
k that

denote synthetically which fibers are well represented by the basis of a certain cluster and the error ϵ(h)
k,l that

we are making when we compute the approximation of a fiber by projecting it into the space generated by
the basis of the cluster. We have obtained the different subdomains, Ω(i)

k , for 1 ≤ i ≤ Nk.

3.4. COMPUTING LOCAL HOSVD METHOD 67

Algorithm 10 Merging clusters algorithm

1: Require: Unfolding of a tensor in the direction k, F (k)(x1, . . . , xd) ∈ R

(∏d

j=1,j ̸=k
Nj

)
×Nk , for 1 ≤ k ≤ d. Tolerance ε. Set of

indices I(1)
k

, . . . , I(Nk)
k

. Set of local errors ϵ
(1)
k,l

, . . . , ϵ
(Nk)
k,l

and error budget bk.

2: Output: Set of indices on each node I(1)
k

, . . . , I(Nk)
k

. Local errors ϵ
(1)
k,l

, . . . , ϵ
(Nk)
k,l

for 1 ≤ k ≤ d.
3: Compute the set of Nk fibers fk

1 (yk), . . . , fk
Nk

(yk), with 1 ≤ k ≤ d

4: Initialize the set of indices of centroids: C(0)
k

= {1, . . . , Nk}
5: Initialize counter of iterations n = 1
6: for i = 1, . . . , Nk do

7: Compute centroid: ck
i =

∑
p∈I(i)

k

fk
p (yk)

#I(i)
k

8: Distribute the budget equally in the local errors: (e
(i)
k,l

)2 = (ϵ
(i)
k,l

)2 + bk/Nk

9: end for
10: for i = 1, . . . , Nk do
11: Compute the Ward’s distance between clusters and select the closest one:

q∗ = arg min
q∈C(i)

k

∆(C
k
i (xk), C

k
q (xk))

where

∆(C
k
i , C

k
q) =

#I(i)
k

#I(q)
k

#I(i)
k

+ #I(q)
k

∥c
k

Ck
i

− c
k

Ck
q

∥2

12: Compute joint basis matrix: Ak(i,q∗) = (B
(i)
k

B
(q∗)
k

)
13: Compute its basis by the truncated SVD:

A
k(i,q∗) =

(∑
j∈N∗

σ
k(i,q∗)
j

U
k(i,q∗)
j

⊗ V
k(i,q∗)

j

)
+ (e

(i)
k

)2
, , where (e

(i)
k

)2 ≤ (e
(i)
k,l

)2 + (e
(q)
k,l

)2

14: Merge clusters and set the basis of the joint A
(i)
k

= Uk(i,q∗)

15: Set the error budget of the joint: (e
(i)
k

)2 =
∑

h∈N∗,h>j
(σ

k(i,q∗)
h

)2

16: Update the local error: e
(i)
k,l

= e
(i)
k

17: Compute the non used error budget: g
(i)
k

= (e
(i)
k,l

)2 + (e
(q)
k,l

)2 − (e
(i)
k

)2

18: Update the set of indices of centroids: C(i)
k

= C(i−1)
k

− q

19: Redistribute g
(i)
k

: (e
(i)
k,l

)2 = (e
(i)
k,l

)2 + g
(i)
k

/#C(i)
k

20: Update the centroid: ck
i =

∑
p∈I(i)

k
∪I(q)

k

fk
p (yk)

#I(i)
k

·#I(q)
k

21: end for

3.4 Computing local HOSVD method
In the following, in order to determine the best partitioning to approximate the tensor, we perform an
extensive search for all the possible combinations. If we have lk different possibilities of partitions of the
domain in the direction k, with 1 ≤ k ≤ d, the whole set of combinations is then

∏d
k=1 lk. Each of this

combinations provides a certain partitioning for computing a certified approximation of the tensor F in
the local domain. Between all these combinations, we select as the best the one that provides the most
compressed approximation.

The cost of computing and comparing the HOSVD of the
∏d

k=1 lk possible combinations of partitions is
what makes this alternative very costly and in some situations not feasible.

Let us explain the method in more detail. As we have seen along the chapter, the clustering method
proposed in this work, performs independently for each one of the directions. From the clustering method,
d binary partition trees are obtained {TIk

}1≤k≤d. Being lk the number of partitions of the domain in the
k−th dimension, with k = 1, . . . , d.

Each level lk of the partition tree obtained, TIk
in the direction k, defines a set of sets of indices that

determine a possible partition of the domain. The possible combinations of indices are given by the number
of nodes in the different generations of the tree, Nk. The number of nodes per generation is equal to the
total number of levels #lk minus the level of the generation lk for this binary tree structure.

68 CHAPTER 3. LOCAL TENSOR METHODS

We recall that the proposed clustering method provides Nk sets of indices per direction namely I(i)
k ,

with i = 1, . . . , Nk, that denote the fibers that belong to the cluster Ci
k. During the merging process, the

number of clusters, and its associated set of indices, decrease in one unit as we get closer to the root of the
tree. See in the following Figure 3.3 , an schematic partition tree TI in the k−th direction for #lk = 4. As
we can see, in the leaves Nk,0 = 4, and with the first fusion, Nk,1 = 3 and successively till arriving to the root.

I(q,m,p,h)
k

I(h)
k

I(h)
k

I(h)
k

I(q,m,p)
k

I(p)
k

I(p)
k

I(q,m)
k

I(q)
k I(m)

k

xk

yk

xk

yk

xk

yk

xk

yk

Figure 3.3: In the left an example of the partition tree in the direction k with Nk,0 = 4 and in parallel on
the right, the evolution of the partitions of the domain with the mergings.

As we can see in Figure 3.3, as the method goes on and the levels of the tree increase, the number of
partitions of the domain in one direction changes. The number of subdomains is reduced in one after each
merge.

For each one of the trees, each level defines one possible partition of the domain. As we have seen, each
tree presents #lk levels. As we can easily see in the scheme of the partition tree, the level lk = 0 correspond-
ing to the leaves, provides one possible partition of the domain, in which L(TIk

) = I(h)
k ∪ I(p)

k ∪ I(q)
k ∪ I(m)

k .
In the previous generation a different partition of the domain is provided, V1(TIk

) = I(h)
k ∪ I(p)

k ∪ I(q,m)
k , in

which the partitions have decreased in one unit. It continues till we arrive to the root.

Remark: In general, the best partition of the domain is different from the intersection of the best
partitions per direction.

The sets of indices I(i)
k are closely related with the characteristic functions J(i)

k defined in Equation 3.4.
They denote which fibers of the unfolding belong to the same cluster and hence, they can be well represented
on a certain subdomain. Let us recall from Equation 3.5 that the characteristic functions per direction are
related with the characteristic functions that restrict the tensor of Equation 3.2 to the local domain as

I(i)(x1, . . . , xd) =
d∏

k=1
J(i)

k (xk) (3.12)

Maria Fuente

Maria Fuente

Maria Fuente

Maria Fuente

3.4. COMPUTING LOCAL HOSVD METHOD 69

To illustrate the main idea of the method, let us start with a 2-dimensional example. The merging
process provides two trees TI1 and TI2 . Let us say that, a certain partition of the domain provides N1 = 2
and N2 = 2. The local domains that appear look as follows: The combination of the partitions J(1)

1 and J(1)
2

originates the blue domain Ω1; the combination of J(1)
1 and J(2)

2 the orange subdomain, Ω2, the partitions
J(2)

1 and J(1)
2 originate Ω3 in green, and J(2)

1 and J(2)
2 the red domain Ω4. In the figure below we can see a

schematic example of how these domains can be placed in the 2-dimensional set.

Ω1 Ω2

Ω4Ω3

x1
1 · · · · · · · · · N1

x2

1

...

...

...

N2

In a different iteration of the method, we place ourselves in different levels of the trees. Let us say that
they provide a partition in which the domain is more divided than before (the case is in a generation close to
the leaves of the tree) and we have that N1 = 2 and N2 = 3 and for a certain combination of partitions, the
local domains that appear in this case look as follows: As before, The combination of the partitions J(1)

1 and
J(1)

2 originates the blue domain Ω1; the combination of J(1)
1 and J(2)

2 the orange subdomain, Ω2, but then
the partitions J(2)

1 and J(1)
2 originate Ω5 in pink, and J(2)

1 and J(2)
2 the yellow domain Ω6. The combination

between J(1)
1 and J(3)

2 provides now the green domain Ω3 and the red domain Ω4 is given by J(1)
1 and J(3)

2 .
In the schematic figure below we can see how these domains are distributed.

Ω1 Ω2

Ω6Ω5

Ω4Ω3

x1
1 · · · · · · · · · N1

x2

1

...

...

...

N2

Among all the possible partitions, we pick the best one in terms of memory. That means that we compute
the POD basis of all the non-zero subdomains and we keep the partition per direction that provides the sub-
domain with the smaller amount of memory needed. We have named it Ω∗. In the following schematic figure,
an example of the local domains obtained is presented following the simple 2-dimensional case. Without loss
of generality we can say that in this case, Ω∗ = Ω2 and then, the domain in which we are considering our
approximation will look:

70 CHAPTER 3. LOCAL TENSOR METHODS

Ω∗
x1

1 · · · · · · · · · N1

x2

1

...

...

...

N2

The aim of the method will be to find out the partitions of the domain given by J(i1∗)
1 (x1) . . .J(id∗)

d (xd)
that provide the best approximation F̃i1∗...id∗(x1, . . . , xd) in terms of memory. This means that for all
1 ≤ i1 ≤ #l1, . . . , 1 ≤ id ≤ #ld, between all the F̃i1...id

we select as the best F̃i1∗...id∗, the one that requires
less memory to store its HOSVD basis. For the sake of simplicity, in the following let us denote the set
{i1 ∗ . . . id∗} just ∗. Then, the best one of the approximations becomes F̃∗(x1, . . . , xd).

After computing the memory needed to store the basis on each of the #l1 × . . .× #ld possible partitions
of the domain and selecting the best in terms of memory, we define the partition of the domain associated
to the best approximation. The best of the possible partitions of the domain is given by the set of indices:

I(∗)(xk, yk) =
d∏

k=1
J(ik∗)

k (xk)

where J(ik∗)
k (xk), with 1 ≤ ik∗ ≤ Nk is the value of the characteristic function in the direction k that

appears in the best combination of partitions. Then, the number of different subdomains in which the
function is locally approximated reads as N =

∏d
k=1 Nk,lk∗.

The best approximation obtained by the proposed method is given by Equation 3.2 and it reads:

F̃∗(xk, yk) = F̃ (xk, yk)J(i1∗)
1 (x1) . . .J(id∗)

d (xd) (3.13)

where F̃ is the HOSVD approximation given by:

F̃ (xk, yk) =
R1∑

i1=1
. . .

Rd∑
id=1

Gi1...id
b

(1)
i1

⊗ . . .⊗ b
(d)
id

(3.14)

in which R1, . . . , Rd are the n−ranks and they are smaller that N1, . . . ,Nd, respectively. Given the function
restricted in the local subdomain F∗, the ranks of the approximation are chosen by truncating the HOSVD
approximation with a certain error that has been uniformly distributed in the local domains ε

Nk
. In this

way, the approximation is certified under the prescribed tolerance.

The core tensor G ∈ RR1×...×Rd is stored in full format. The basis functions are written by terms,
introducing the set of Rk modes of each basis Bk as: bk,1, bk,2 . . . , bk,Rk

. These modes are the columns of
the basis: Bk = (bk,1 bk,2 . . . bk,Rk

).

The approximation in local HOSVD format of the tensor reads:

F (x1, . . . , xd) ≈
(
F̃i∗,...,j∗

)
J(i∗)

1 . . .J(j∗)
d =

(
Rd∑

id=1
. . .

(
R1∑

i1=1
G

(i∗,...,j∗)
i1,...,id

⊗ b
(i∗)
1,i1

⊗ . . .⊗ b
(j∗)
d,id

))
J(i∗)

1 . . .J(j∗)
d

(3.15)

3.5. COST AND COMPLEXITY OF THE ALGORITHM 71

As a remark, if we observe that in some region, the function is zero (or close to zero), we don’t spend
memory on that region. We consider it well approximated by the zero function. The approximation
∥Fi∥L2(Ωi) < ε

Nk
and then F̃i = 0. Imagine that following with the previous example, the function in

the region Ω4 in the example turns out to have values equal or very close to zero and its best approximation
is the zero function. Then, the domain can be considered as:

Ω1 Ω2

Ω5Ω6

0Ω3

x1
1 · · · · · · · · · N1

x2

1

...

...

...

N2

Discretization

If we proceed with the discretization of the function by points, the variables will read: yk,pk
∈ yk for

pk = 1, . . . ,Nyk. The approximated discretized function then reads:

F (x1,p1 , . . . , xd,pd
) ≈

(
Rd∑

id=1
. . .

R1∑
i1=1

G
(i∗,...,j∗)
i1,...,id

(x1,p1 , . . . , xd,pd
) × b

(i∗)
1,i1

(x1,p1) × . . .× b
(j∗)
d,id

(xd,pd
)
)

J(i∗)
1 (x1,p1) . . .J(j∗)

d (xd,pd
)

3.5 Cost and complexity of the algorithm
Let us compute the complexity of the algorithm with respect to one of the unfoldings of the input tensor.
Taking into account that there are d of them, the final result will be d times the result obtained for the
unfolding k, where k ∈ [1, . . . , d]. In the following we will consider the number of degrees of freedom of the
fibers equal for all of them and let us call it N such that N = Nyk.

Cost of computing the leaves

We start by computing the cost of its first phase of clustering/regrouping the fibers. The number
of operations of this part will depend on how long it takes to find the ”closest” fiber, computing its ba-
sis and then checking again the similarity between basis in the sense of the l2 distance that we are considering.

In the first iteration, in order to compute the distance to find the nearest neighbors, the computation
requires O(N N 2

k) operations. Then, on each iteration the number is decreasing by at least 2 units. To write
so, let us use the already introduced cardinality of the set of indices of the fibers that are not yet included
in a cluster #T (it). At the beginning #T (0) = Nk, and it will decrease with the iterations.

This numbers are specific for the case in which the partition of the set of fibers in smaller subsets is
mutually exclusive (no fiber in the set is in more than one subset) and jointly exhaustive (every fiber is in
some subset).

It would be possible to accelerate this first phase constructing k − d trees (this data structure splits the
space and allows faster search for neighbors), or with the ball tree method (that also divides the space but
with in contrast to k-d trees, which divides the space with median value ”cuts”, ball tree groups points into

72 CHAPTER 3. LOCAL TENSOR METHODS

”balls” organized into a tree structure). See more details and alternatives in [270].

After the computation of the nearest neighbors and the SVD in order to compute the basis that generates
the subspace needs to be computed. Computing a full SVD of a matrix M ∈ Rp×q is fundamentally
an O(pq · min(p, q))-time problem. Normally, we are facing ”tall and skinny” matrices, because the
number of columns is equal to two and the number of rows is equal to the degrees of freedom N (normally
larger than 2). The cost of an SVD of one of them is equal to 4N , i.e. linear on the degrees of freedom O(N).

The next step is checking if some of the fibers left can be well represented by the basis. This operation
is composed by a scalar product between the 2d basis, a subtraction and a squared. To compute the scalar
product, we must perform 2N multiplications and 2(N − 1) additions. The cost reads O(N).

The last operation that eventually we need to compute is the modification of the basis with the already
introduced Brand’s method. In the concrete case in which we are computing an additive rank-1 modification,
the new SVD can be computed in O(R2

b) time, being Rb the rank of the matrix.

In a certain iteration of the method in which we have included some fiber into the cluster, it, the cost of
the subdivision in 2-dimensional domains will be:

O(#T (it)N N 2
k) + O(N) + O((#T (it) − 2)N) + O(R2

b) =

= O((#T (it)(N 2
k + 1) − 1)N +R2

b)

In the case in which the method doesn’t compute the tilting part, the expression won’t have the last term.

This process is done d times, one per direction. Considering all Nk equal. The total cost of this phase
reads:

O((#T (it)(N 2 + 1) − 1)dNk + dR2
b)

Cost of the merging

In this second part of the proposed method, a partition tree is computed. Starting from the clusters set as
leaves and finishing when all the local domains have been fused and the HOSVD is recovered.

In order to compute the neighbors between centroids we compute its pairwise distance. In the leaves
level of the tree, iteration itl = 0, (Nk,0 − 1) × (Nk,0 − 2) × . . . × 1 distances need to be computed, taking
into account that we don’t recompute distances between the same two clusters. let us name the quantity of
distances that we need to compute on each iteration itl as #D(itl)

k . In the level lk, reached at itl = lk, the
number of distances: (lk − 1) × (lk − 2) × . . .× 1. As we iterate, we go up in the levels of the tree, and this
quantity diminishes because a pair of clusters are merged. The distance computation requires O(#D(itl)2

k Nk)

The next operation in the algorithm is the computation of the SVD of the joint basis matrix. In this
case the matrices are still ”tall and thin” because the number of columns is normally smaller that N . In the
first merging, the number of columns of the matrix is at most 4 (due to the fact that in the previous part of
the method the bases were at most 2-dimensional), in the second is at most 6, etc. For each iteration itl on
the tree, the number of columns of the matrix obtained by SVD has at most 2 · itl + 2 columns. Hence, the
order is O((2 · itl + 2)2N), linear on the degrees of freedom.

This way, the cost per direction reads as:

O((#D(itl)2
k + (2 · itl + 2)2)Nk)

As before, the merging process is done independently for each one of the d directions. If we consider the
value of #D(itl)

k equivalent in all the directions, the total cost:

O((#D(itl)2
k + (2 · itl + 2)2)dNk)

3.6. SUMMARY 73

Cost of the basis computation

The last operation in the algorithm is the computation of the SVD of the
∏d

k=1 lk possible partitions of the
domain.

Compute the cost of the computation of the basis is difficult a priori because it depends on the partitions
produced by the method. Let us estimate this value considering generic partitions of the domains. Let us
suppose that for the k−th direction, the partition of the subdomain Ωk that provides the best partition of
the whole domain Ω involves Nk

pk
fibers of size N . Let pk be a generic fractional coefficient to describe the

partition. The cost of one computation of the HOSVD for the local domain is:

O(
d∏

k=1

(
Nk

pk

)
)

The total cost of the algorithm depending on the iterations of the first and second phase results:

O((#T (it)(N 2
k + 1) − 1 + #D(itl)2 + (2 · itl + 2)2)dNk + dR2

b +
d∏

k=1

(
Nk

pk

)
) (3.16)

Let us also remark that in the subdomains in which the value for the tensor is zero, or very close to zero,
no memory is spent, neither the computation of the SVD is done once we have identified the null regions.
Even though, the cost is very high. In this work a first approach to a good local approximation is studied
by computing all the possibilities, computing their memories and keeping the most compressed one.

3.6 Summary
The clustering method proposed performs independently for each one of the unfolding matrices on the different
directions. Its aim is to compute a partition tree per direction that encloses the different partitions of the
domain in subdomains. Among them, the one in which the compression ratio for a given tensor is larger is
selected.

In broad terms, the process can be divided in three different phases: the initial one that computes
2-dimensional subdomains, leaves of the partition trees; the second phase in which the tree is computed
that merges consecutively them and saves information on every merging; and the last one in which, once the
two previous phases of the method have finished for all the different dimensions, between all the possible
partitions of the domain, selects the one in which the tensor is more compressible. Let us recapitulate the
main steps performed by the method.

For 1 ≤ k ≤ d, let F (k) be the unfolding of the k−th direction of the tensor F .

• Computation of the leaves

– Starting from the fibers (column vectors) of the unfolding, find the nearest neighbor.
– Compute 2-dimensional basis of the space spanned by the two neighbor fibers as the matrix of

modes of a POD of the two vectors.
– Check if other fibers are well represented by the basis. If it is so, modify the POD with Brand’s

method of Equation 3.11.

At this point, a set of clusters defined by 2-dimensional basis that well represents some of the fibers
(with a certain error) is obtained. They are the leaves of the partition tree constructed. In the following
phase, the tree is constructed.

• Merging clusters

– Compute centroids of each cluster.
– Compute pairwise distances between clusters and select the smallest.
– Compute the joint subspace, a new cluster resulting from the merging of two clusters.

74 CHAPTER 3. LOCAL TENSOR METHODS

– Recompute centroids and distances for the new cluster.

This process is repeated till all the clusters have been fused. On each fusion, the resulting partition of
the domain is saved.

• Selecting the best partition of the domain

The task of selecting the best partition of the domain is done by computing all the possible combinations
of partitions of the domain between the different directions. The method computes all the HOSVD
and selects as the best the one that requires less memory to store the approximation, i.e. the one that
provides higher compression ratio with respect to the HOSVD of the initial tensor.

3.7 Numerical results
In the present section, we propose several test cases to asses the properties of the proposed method. The
tensors we are going to approximate are of moderate order because, as we have already introduced, the
computational complexity of the method is high.

3.7.1 Compression of a Gaussian function
The initial test consists in computing the approximation of a Gaussian function. The function to approximate
reads as:

f(x, t) = e−500∗(x−0.05−t)2
(3.17)

where x ∈ [0, 1] and t ∈ [0, 0.9]. The resolution for the variable x is fixed to Nx = 500 points and the
resolution in the variable t, Nt is going to be changed in order to see how its value affects the results. We
consider a finite difference approach of the function f .

The compression ratio (Cr) shown in the following results is defined as the memory employed to store
the compressed tensor obtained by the local HOSVD method over the memory needed to store the tensor in
full format:

Cr = Memory(FlocHOSV D)
Memory(F)

Let us show in Figure 3.4 the compression rate for different values of the tolerance of the approximation
of the tensor computed by HOSVD method and the local HOSVD alternative. The values from the tolerance
in this test hold ϵ = {1.0 · 10−2, ϵ = 1.0 · 10−3, ϵ = 1.0 · 10−4}. And the values for the time resolution
Nt = {200, 400, 600, 800, 1000}.

200 300 400 500 600 700 800 900 1000

Number of points in time

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
o

m
p

re
s
s
io

n
 r

a
te

 (
M

e
m

 c
o

m
p

re
s
s
e

d
/M

e
m

 f
u

ll
te

n
s
o

r)

HOSVD method

Local HOSVD method

200 300 400 500 600 700 800 900 1000

Number of points in time

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

C
o

m
p

re
s
s
io

n
 r

a
te

 (
M

e
m

 c
o

m
p

re
s
s
e

d
/M

e
m

 f
u

ll
te

n
s
o

r)

HOSVD method

Local HOSVD method

200 300 400 500 600 700 800 900 1000

Number of points in time

0.05

0.1

0.15

0.2

0.25

0.3

C
o

m
p

re
s
s
io

n
 r

a
te

 (
M

e
m

 c
o

m
p

re
s
s
e

d
/M

e
m

 f
u

ll
te

n
s
o

r)

HOSVD method

Local HOSVD method

Figure 3.4: The compression rate for the function computed by the local HOSVD approximation method
(in orange) and also the compression rate for HOSVD method (in blue). From left to right, the tolerance:
ϵ = 1.0 · 10−2, ϵ = 1.0 · 10−3 and ϵ = 1.0 · 10−4. In all of them the resolution in space is fixed to Nx = 500
and in time Nt = 200, 400, 600, 800, 1000 points.

Let us show in the next Figure 3.5, the reconstruction of the Gaussian function of Equation 3.17 with
an error of ϵ = 1.0 · 10−2 and resolution Nx = 500 and Nt = 400. In the figure, the exact function is

3.7. NUMERICAL RESULTS 75

reconstructed with the HOSVD method and with its local version. It is known that the HOSVD method
is not optimal for the reconstruction of this function, leading to some oscillations that are not present in
the exact function. We can observe that in the reconstruction made via the local HOSVD method, these
oscillations have disappeared.

0 50 100 150 200 250 300 350 400 450 500

x

-0.2

0

0.2

0.4

0.6

0.8

1

f(
x
)

Reconstruction HOSVD method

Reconstruction local HOSVD method

Exact solution

Figure 3.5: Local reconstruction for the Gaussian function (in orange) in comparison with the HOSVD (in
blue) and the analytic expression (in yellow) for an error of ϵ = 1.0 · 10−2 and resolution Nx = 500 and
Nt = 400.

In Figure 3.6, the solution of the transport function is shown for the same values of error and resolution.
The value for the error is ϵ = 1.0 · 10−2 and for the resolution the values taken are Nx = 500 and Nt = 400.

The exact solution of the Equation 3.17 is shown, as well as its reconstructions by local HOSVD and
HOSVD methods.

As we can see, the reconstruction with local HOSVD presents some ondulatory interferences, this can be
due to the large value for the error that we are considering. On the other hand, the reconstruction computed
with HOSVD presents several oscillations is all the domain, more concentrated close to the solution and
wider as we are going further.

In the following table, Table 3.1 some values of the lowest memory storage required obtained from the
extensive research between the possible partitions of the domain in which the HOSVD method has been
applied. They are computed for different resolutions in the domain, changing the number of degrees of
freedom in the variable x, Nx, and in t, Nt, as well as the values for the error. In this test, the error adopts
values from 1.0 · 10−4 to 5.0 · 10−2. It is shown as well, the compression ratio. In this case, the ratio that
appears in the table is not with respect to the memory needed to store the function in the full format but to
the one needed to store the HOSVD (in this 2-dimensional case, SVD) decomposition of the function.

Moreover, the number of partitions per direction that provides the best compression ratio is shown.

As we can see in Table 3.1, the compression ratio obtained with the proposed method varies with
relation to the HOSVD, providing a larger compression of the data with an approximately factor two. This
ratio stays stable even when changing the tolerance or the resolution. Nevertheless, the optimal number of
partitions of the domain changes with the prescribed tolerance and also with the resolution.

3.7.2 Compression of the solutions of the Fitz-Hugh-Nagumo equation
The Fitz-Hugh–Nagumo model (FHN), named after Richard FitzHugh (1922–2007) who suggested the system
in 1961 and J. Nagumo et al. who created the equivalent circuit the following year, describes a prototype of
an excitable system (e.g., a neuron).

The FHN Model is an example of a relaxation oscillator because, if the external stimulus Iext exceeds a
certain threshold value, the system will exhibit a characteristic excursion in phase space, before the variables
u and w relax back to their rest values. This behavior is typical for spike generations (a short, nonlinear

76 CHAPTER 3. LOCAL TENSOR METHODS

(Nx,Nt) ϵ Best Memory Mem POD/ Best Mem Best # clusters (x-t)
5 · 10−2 4576 2,07 3-4

(250,200) 1 · 10−2 5015 2,43 7-9
5 · 10−3 6087 2,15 12-15
1 · 10−3 6866 2,23 8-8
5 · 10−4 7326 2,21 6-8
1 · 10−4 8438 2,13 6-8
5 · 10−2 6477 2,92 6-7

(500,400) 1 · 10−2 9433 2,58 9-9
5 · 10−3 12013 2,17 9-13
1 · 10−3 13894 2,20 11-17
5 · 10−4 14931 2,17 6-8
1 · 10−4 18144 1,98 7-8
5 · 10−2 9768 2,90 7-8

(750,600) 1 · 10−2 12806 2,85 10-10
5 · 10−3 15899 2,46 8-10
1 · 10−3 23477 1,96 11-14
5 · 10−4 21883 2,22 7-11
1 · 10−4 25134 2,15 8-9
5 · 10−2 14559 2,60 6-6

(1000,800) 1 · 10−2 17367 2,80 7-9
5 · 10−3 19723 2,65 9-10
1 · 10−3 29826 2,05 7-7
5 · 10−4 34050 1,90 11-13
1 · 10−4 35581 2,02 7-10

Table 3.1: Comparison between the memory obtained when computing the POD and the memory computed
for the best of the possible partitions of the domain for different values of the error tolerance and different
resolutions in the domain.

3.7. NUMERICAL RESULTS 77

Figure 3.6: Reconstruction of the exact solution with an error of ϵ = 1.0 · 10−2 and resolution Nx = 500 and
Nt = 400. In the left, the reconstruction of the exact solution is computed with the local HOSVD method
and in the right with the HOSVD method.

elevation of membrane voltage u, diminished over time by a slower, linear recovery variable w) in a neuron
after stimulation by an external input current.

The pair of equation describing the phenomena:

∂tu(x, t) = −ku(x, t)(u(x, t) − a)(u(x, t) − 1) − w(x, t) + ν∆u(x, t) + Iext (3.18)

∂tw(x, t) = ϵ(u(x, t) − γw(x, t))
where ∆ := ∂2

∂2x + ∂2

∂2y the Laplace operator. The domain is defined as Ω = ([0, 1] × [0, 1], T). Being
T the final time whose value change depending on the test performed. The boundary conditions have
been set as Neumann homogeneous boundary conditions (zero-flux boundary conditions.): ∂u(x,t)

∂n⃗ = 0 in ∂Ω.

The parameters ϵ > 0, the time of the pulse, and γ ≥ 0, the strength of the recovery of the system.
The different choices of the parameters in the equations make the solution u(x, t) adopting different shapes:
from the stationary wave to a labyrinth structure, passing trough certain values that produce a spiral. See
[271] for more information about the values of the parameters and the different patterns that they produce.
In the tests performed, we are facing a 2-dimensional space variable, the time variable and other variable,
let us call it θ, that refers to the parameters of the system. In this case, the variable θ encloses a linear
combination of the parameters k and ϵ. In some tests, the variable θ will adopt a fixed value and it will
behave as a parameter of the system. In other tests, it will adopt values inside a certain domain and it will
be treated as a third variable.

78 CHAPTER 3. LOCAL TENSOR METHODS

The system is simulated numerically by a finite differences scheme on a (256 × 256) two-dimensional
spatial grid. The number of time steps is being changed on the different tests performed. The final time
has been set as T = 800. The initial conditions from which we have recovered the spiral shape have been:
u(x, 0) = 1 for x ∈ ([0, 0.5] × [0, 0.5]) and 0 in the rest, being the left down quarter of the square 1 and
the rest 0. The values for the parameters chosen in all the simulations are: γ = 1, a = 0.1, ν = 1/62500,
k = 0.96 and ϵ = 0.0015. In the case in which they are treated as variables and take values in the intervals
they read k ∈ [0.96, 1.20] and ϵ ∈ [0.0015, 0.0060] respectively.

In Figure 3.7 we can see how from the initial conditions the system evolves in time. In order to compute
this simulation, the number of time steps is Nt = 400.

Figure 3.7: Solution of the Fitz-Hugh-Nagumo equation, 3.18, for Nx = 256×256 square and time step equal
to 2, Nt = 400. The initial conditions are set as: 1 for x ∈ ([0, 0.5] × [0, 0.5]). The values for the parameters
k = 1 and ϵ = 0.005.

The part of the algorithm shown in Algorithm 9 returns a set of 2-dimensional basis with respect to
one of the dimensions of the system. Let us show an example of one of the basis obtained for the unfold-
ing in x in Figure 3.8. We can see the spiral structure that we identify in the Figure 3.7 in the spatial domain.

Let us show graphically how the merging algorithm operates. In Figure 3.9 three different screenshots
of the simulation in the spacial domain are shown. We can see in the exact solution the transition from the
initial solution till the initial part of the spiral for three different values of time. The values have been enough
spaced in order to give an intuition of how the function behaves. In the next Figure 3.10, three sets of parti-
tions of the spatial domain corresponding to the beginning of the simulation are shown. Each partition of the
domain is colored differently to visualize well them. They refer to three consecutive nodes of the partitioning
tree. It is clear how after each merging (iteration of the merging phase), the number of groups is reduced
in one. The plots are for a T = 200, what means that just the first part of the dynamical system is considered.

From Figure 3.10, we can see how the local HOSVD method has divided the spatial domain in
order to compute the approximation. We can also see how the shape of the partitions is adapted to
the initial condition and its initial translation. The Figure 3.11 shows three analogous plots for three
consecutive partitions on the spatial domain in a longer time T = 800. In this case, the system has
evolved and we can identify the spiral structure that characterizes the solution of the equation. We can

3.7. NUMERICAL RESULTS 79

Figure 3.8: One of the 2-dimensional basis obtained for 3.18 with respect to the variable x. From left to
right, the first and the second modes of the basis. For Nx = 256 × 256 square and time step equal to 2. The
values for the parameters are: 2 values of k = [0.96, 0.98] and 5 values of ϵ with ϵ ∈ [0.0050, 0.00375].

Figure 3.9: From left to right, three different time consecutive captures of the initial condition square moving
to the right and vanishing into a vertical structure that will originate the spiral shape. The simulation is
produced for final time T = 200.

Figure 3.10: Three different consecutive partitions of the spatial domain. Each partition is colored different.
From left to right, the number of color blocks is reduced by one. Plots for T = 200. These partitions show
the domains that represent the sequence of Figure 3.9

see that the method is capable of capturing the behavior of the system and adapting the partitions made to it.

In Table 3.2 and Table 3.3 a summary of the memory compression for the obtained best number of
divisions of the space is included. In Table 3.2 we start by changing the final time of the experiment,
T = {200, 400, 800} and fixing the time step nt = 1 in such a way that the degrees of freedom of the time
variable change with the final time.

In the following table, Table 3.3, let us see how the values for the memory have changed if we change the

80 CHAPTER 3. LOCAL TENSOR METHODS

Figure 3.11: Three different consecutive partitions of the spatial domain. Each partition is colored differently.
From left to right, the number of color blocks is reduced by one. Plots for T = 800.

T ϵ Best Memory Mem POD/ Best Mem Best # clusters (x-t)
5 · 10−2 239082 3,30 1-19

200 1 · 10−2 305741 5,59 1-20
5 · 10−3 315965 6,45 1-18
1 · 10−3 459811 6,43 1-30
5 · 10−4 497865 6,87 1-70
1 · 10−4 604648 7,28 1-42
5 · 10−2 204283 2,16 1-29

400 1 · 10−2 483252 6,55 1-42
5 · 10−3 535816 7,14 1-30
1 · 10−3 697919 8,03 1-44
5 · 10−4 884585 7,23 1-30
1 · 10−4 1017435 8,17 1-69
5 · 10−2 1605626 2,02 1-28

800 1 · 10−2 2410667 2,96 1-60
5 · 10−3 2450132 3,46 1-60
1 · 10−3 3367752 3,51 1-68
5 · 10−4 2952861 5,22 1-50
1 · 10−4 3022160 6,15 1-50

Table 3.2: Comparison between the memory obtained when computing the POD and the memory computed
for the best of the possible partitions of the domain for different values of the error tolerance and different
resolutions in the domain. In this case the final time T = Nt, i.e. what we are reconstructing are parts of
the whole simulation with a times tep nt = 1. The resolution in x, is Nx = 256 × 256.

resolution in time. Let us fix the final time T = 800 and let us change the time step nt = {4, 2, 1} in a way
that the degrees of freedom in this variable also change as Nt = {200, 400, 800}, respectively.

As we can see in the previous results, the compression rate with respect to the HOSVD is notorious.
Starting from a factor two of compression and reaching so far a factor eight in some cases. The results
are very optimistic. When the prescribed tolerance decreases, more costly the HOSVD becomes, and the
advantage of the use of the local approximation method arises. The number of optimal partitions of the
domain is augmenting when decreasing the tolerance for the same resolution what was expected because the
number of partitions obtained before starting the merging phase was also larger.

3.8 Conclusions and perspectives
In this chapter a method that computes the local HOSVD approximation of a tensor is introduced. This
is done by computing a HOSVD approximation of the tensor restricted to local subdomains, obtained by
dividing the whole domain. A key point of the method is how to compute the subdomain in which the
function is well approximated. What we propose in this work is that it is obtained automatically by applying

3.8. CONCLUSIONS AND PERSPECTIVES 81

(Nx,Nt) ϵ Best Memory Mem POD/ Best Mem Best # clusters (x-t)
5 · 10−2 1258991 2,51 1-46

(256 × 256,200) 1 · 10−2 1431429 3,48 1-50
5 · 10−3 1571165 4,98 1-50
1 · 10−3 2334709 4,67 1-50
5 · 10−4 2424712 4,56 1-50
1 · 10−4 3204997 4,02 1-50
5 · 10−2 1392122 2,27 1-30

(256 × 256,400) 1 · 10−2 1528037 3,15 1-30
5 · 10−3 1859227 4,27 1-50
1 · 10−3 1893692 6,16 1-50
5 · 10−4 1942698 6,07 1-80
1 · 10−4 3915820 4,39 1-70
5 · 10−2 1605626 2,02 1-28

(256 × 256,800) 1 · 10−2 2410667 2,96 1-60
5 · 10−3 2450132 3,46 1-60
1 · 10−3 3367752 3,51 1-68
5 · 10−4 2952861 5,22 1-70
1 · 10−4 3022160 6,15 1-70

Table 3.3: Comparison between the memory obtained when computing the POD and the memory computed
for the best of the possible partitions of the domain for different values of the error tolerance and different
resolutions in the domain. In this case the final time T = 800 and the resolution Nt = {200, 400, 800}, i.e.
what we are reconstructing is the whole simulation changing the time step.

a clustering method independently on each direction. This can be done due to the separability of the domain
and it provides a certain partition of the domains on each direction.

In this work a first approach is obtained by computing all the possible partitions of subdomains and
keeping the one that provides the most compressed approximation. The main negative aspect of the
proposed method is that the cost of the algorithm is very high, even though the numerical tests have been
restricted to moderate order tensors. In further works a less expensive approach to the current method will
be studied and eventually a good trade-off between memory and computational cost will be studied.

From the numerical results of the tests computed, we can infer that the partitions of the domain obtained
with the clustering method are able to provide a certified approximation by spending less memory. This
aspect increases notoriously when the tensor we want to approximate presents different regimes.

82 CHAPTER 3. LOCAL TENSOR METHODS

Chapter 4

Deep Learning-based schemes

Contents
4.1 Introduction . 83

4.1.1 Organization of the chapter . 85
4.2 A singularly perturbed convection-diffusion equation 85

4.2.1 Problem definition . 85
4.2.2 General formulation . 86
4.2.3 Vanilla (V) formulation . 86
4.2.4 Weak variational (W) formulation . 87
4.2.5 Rescaled formulation . 88
4.2.6 Summary of the methods . 89

4.3 Neural networks based numerical schemes . 89
4.3.1 General principle . 90
4.3.2 Neural Network classes of functions . 90
4.3.3 Sampling schemes . 91
4.3.4 Comparison with finite element schemes . 92

4.4 Numerical Results . 93
4.4.1 Test case and comparison criteria . 93
4.4.2 Our code and practical implementation details . 94
4.4.3 Discussion . 94
4.4.4 Conclusions from the numerical experiments . 95

4.5 Future research directions and extensions . 97

4.1 Introduction
Singularly perturbed differential equations are typically characterized by a small parameter ϵ > 0 multiplying
some of the highest order terms in the differential equation. In general, the solutions to such equations
exhibit multiscale phenomena, and this raises significant challenges to classical numerical methods such as
finite elements or finite volumes. To build accurate and robust approximations with these methods as ϵ
decreases, it is necessary to develop elaborate numerical discretizations. In addition to the mathematical
difficulties of the formulation, the resulting numerical schemes are often not entirely trivial to implement:
they often require mesh adaptation, and working on complicated geometries is challenging. These difficulties
motivate the search for new discretization schemes, hopefully mesh-free, with potential to deliver good
quality approximations with easier implementation techniques. In this chapter, we explore this research
direction, and consider strategies based on deep learning techniques. Our main goal is to test various neural
network-based schemes, so as to design a strategy which should be robust when ϵ → 0, easily implementable
even for complicated geometries, and with potential to scale in high dimension.

83

84 CHAPTER 4. DEEP LEARNING-BASED SCHEMES

The idea of working with neural network functions to solve PDEs is by far not novel, and countless
contributions have been proposed on this front in recent years. The strategies can be roughly classified into
two categories:

1. In the first category, deep neural networks are employed to assist classical numerical methods by
improving some limitations, or accelerating certain steps (see, e.g., [272, 273]). It has notably been
used to assist in the construction of numerical fluxes adapted to Finite Volumes (see, e.g., [274]). They
can also be used in order to compute reduced-order models of parametric problems: for each value of
the parameters, the solution (or other quantities of interest) of the model of interest is computed by
means of a standard numerical scheme, and the values of the solutions are interpolated by mean of a
deep neural network over the whole range of parameter values [275, 276].

2. In the second category, neural networks are used to directly approximate the solution of PDEs. The
solution schemes become in this case an optimization problem where it is crucial to design appropriate
loss functions. The loss functions are mostly based on residuals of the equations, and yield to different
methods depending on the specific choice:

(a) Physics-informed neural networks (PINNs, [206]) is a collocation-based method. One finds the
coefficients of the neural network solution by minimizing a discretized version of the L2 norm
of the strong form of the residual of the PDE. This method is very easily implementable but it
implicitly assumes that solutions are very regular.

(b) Other strategies leverage weak variational formulations where less regular solutions are allowed. On
this front, most of the classical methods originally formulated for piecewise polynomial functions
have by now been tested with trial and test spaces of neural network functions. In this respect, the
deep Galerkin method (DGM, [222]) is based on a least-squares formulation, and the variational
PINNS (vPINNs, [209, 210]) is based on the Galerkin method. The main drawback of this approach
is that the approximation quality depends on the architecture of both the trial and the test
neural network classes. In addition, numerous evaluations for multiple test functions need to be
performed. Also, strategies involving the minimization of weak-form residuals are usually not
trivial to implement because they involve the computation of norms in very weak spaces which
necessitate extra discretization steps.

(c) Another approach based on weak variational formulations is the so-called deep Ritz method (DRM,
[215]). It leverages the fact that the solution of certain PDEs is the unique minimizer to a certain
energy functional. When possible, this approach seems the most appealing: the loss function is
naturally given by the problem, it can accommodate low regular solutions, and the computational
cost is moderate in the sense that it only requires to handle test functions (no trial functions). It
also carries potential to address high dimensional problem as illustrated in [214, 215, 216].

The goal of this part of the work is to develop and compare several neural network schemes for singularly
perturbed problems when ϵ → 0. We focus more particularly on convection-diffusion (or stationary Fokker-
Planck) problems with vanishing diffusion for which we explore schemes from the second category according
to the above distinction. In other words, we approximate solutions of singular PDEs with feed-forward neural
network functions. When ϵ → 0, the regularity of the solutions is deteriorated because of local or boundary
thin layers.

The classical formulation commonly used in neural network based schemes is constructed from the strong
formulation of the problem, where the analytical solution is approximated by the one generated by evaluations
on the sampling points. It is referred in the following as vanilla PINNs, which has been introduced in the (2)-
(a) subcategory on the introduction. More details could be found in Section 4.2.3. Therefore, it is expected to
perform poorly for small values of ϵ because it commits a ”variational crime” (and this is actually confirmed
in our numerical experiments). By ”variational crime”, we mean that the norm of the residual which is
traditionally used in vanilla PINNs methods requires that the solution of the PDE has to be more regular
than what would naturally be expected from the theory.

In our case (convection-diffusion problems), the Vanilla-PINN method requires the solution to belong to
an H2 space, whereas it is more natural from a theoretical point of view to look for an approximation of the
solution in a set of H1 functions.

Methods based on weak variational formulations seem better adapted, and on that front, it is desirable
to work with the deep Ritz method. However, finding energy formulations is not straightforward due to the

4.2. A SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATION 85

non-symmetric nature of convective effects. We show how this method can be applied in this context thanks
to a change of variable. We compare its numerical robustness with respect to the PINNs method, and a
naive finite element discretization with a uniform grid. In the present study, our tests are performed on a
1D example. Despite its simplicity, the example exhibits all the features that are challenging for numerical
schemes. For our purposes, the example also presents the important advantage of having analytic solutions
which we can leverage in our error analysis, and our validations. Higher-dimensional tests involving also
more elaborate sampling strategies are left for future work.

4.1.1 Organization of the chapter
This chapter is organized as follows. In Section 4.2, various formulations of the convection-diffusion problem
we are interested in are introduced. In Section 4.3, we introduce various neural networks-based schemes
which are inspired from the various formulations introduced in Section 4.2. The reader is encouraged to
observe that an expert mathematical insight is required in order to build formulations that do not incur
in variational crimes. In Section 4.4, these various schemes are compared for one-dimensional problem. To
conclude, in Section 4.4.4, after the presentation of the numerical results, it is summarized how each one of
the PINN methods behave for small values of ϵ and its comparison with the FEM method.

4.2 A singularly perturbed convection-diffusion equation
The aim of this section is to introduce the singularly perturbed convection-diffusion equation we consider in
this work, and various formulations of the problem which will be used in Section 4.3 so as to design various
neural networks-based schemes for its numerical solution.

4.2.1 Problem definition
As a prototypical example, we consider the following singularly perturbed convection-diffusion equation on
a given domain Ω ⊂ Rd, with d ∈ N∗. Let F : Ω → Rd be a given force field, 0 < ϵ ≪ 1 a small parameter,
and f : Ω → R be a given right-hand side function. Our goal is to find a solution u : Ω → R to

− ϵ(∆u)(x) + ∇ · (Fu)(x) = f(x), ∀x ∈ Ω, (4.1)

together with Robin boundary conditions

α(∇u · n)(x) + κu(x) = g(x) ∀x ∈ ∂Ω, (4.2)

where n refers to the outward unit vector of ∂Ω, α, κ ≥ 0 and g is a real-valued function defined on ∂Ω. In
the following, we assume that the force field F derives from a potential function V : Ω → R, in the sense that

F (x) = −∇V (x), ∀x ∈ Ω.

Under appropriate assumptions on F (or V), f and g, which are assumed to be smooth functions for the
sake of simplicity, problem (4.1)-(4.2) can be proved to have a unique solution [227, 228, 229]. Note that,
more generally, α and κ could also be given as real-valued functions defined on ∂Ω, instead of constants, and
our subsequent developments could be easily adapted.

The equation represents the change in the concentration u of a quantity in a given medium in presence of
convective and diffusive effects. The force field F represents the drag force while the singular perturbation
parameter ϵ represents the diffusivity of the medium. In the limit of an inviscid medium as ϵ → 0, the
equation changes from elliptic to hyperbolic nature, and from second to first order. For Dirichlet boundary
conditions u = 0 on ∂Ω, the solution can develop sharp boundary layers of width ϵ near the outflow. We
refer the reader to [277] for general references on this equation regarding its analysis and numerical methods.

Classical numerical methods are challenged by problem (4.1) when ϵ is small. In the case of the Galerkin
finite element method, the poor performance for this problem is reflected in the bound on the error in the
finite element solution. For Ω = (0, 1) and Dirichlet boundary conditions, a standard Galerkin method with
a uniform grid of size h delivers a solution uh on a finite element space Ph that satisfies

∥u− uh∥H1(0,1) ≤ C(ϵ) inf
wh∈Ph

∥u− wh∥H1(0,1), (4.3)

86 CHAPTER 4. DEEP LEARNING-BASED SCHEMES

where C(ϵ) ∼ ϵ−1, so that the constant blows up as ϵ → 0 (see [277, Theorem 2.49]). The dependence
of C on ϵ is usually referred to as a loss of robustness in the sense that, as ϵ decreases, the Galerkin
method is bounded more and more loosely by the best approximation error. As a consequence, on
a coarse mesh and for small values ϵ, the Galerkin approximation develops spurious oscillations every-
where in the domain. This very well-known behavior will actually be observed later on in our numerical tests.

Numerous methods have been proposed in order to address this loss of robustness in finite element
methods. An important family of methods is based on using residual-based stabilization techniques. Given
some variational form, the problem is modified by adding to the bilinear form the strong form of the residual,
weighted by a test function and scaled by a stabilization constant τ . The most well-known example of
this technique is the streamline upwind Petrov-Galerkin (SUPG) method (see [278]). The addition of the
residual-based stabilization term, can be interpreted as a modification of the test functions which means that
these methods seek stabilization by changing the test space, and motivates to search for optimal test spaces
in the spirit of [279, 280].

Other classical discretization methods such as finite volumes suffer from similar issues, and strategies
involving layer-adaptive grids such as Shishkin meshes have been proposed (see, e.g., [281]).

The aim of this work is to explore the potential of approximating solutions of such problems with neural
network functions, and the next section presents several options for this, with a discussion on their merits
and limitations.

4.2.2 General formulation
Any neural-network based numerical scheme for the solution of (4.1)-(4.2) relies on the use of a variational
formulation of this problem which enables to write u (or another function defined from u) as a minimizer of
a problem of the form

min
v∈V

J (v), (4.4)

where V is a particular set of real-valued functions defined on Ω. The loss function J : V → R is usually of
the form

J (v) :=
∫

Ω
R(v)(x)dρ(x) +

∫
∂Ω

S(v)(r)dτ(r), ∀v ∈ V, (4.5)

where for every v ∈ V, R(v) and S(v) are real-valued functions defined on Ω and ∂Ω respectively. They are
assumed to be integrable with respect to the measures ρ and τ , which are defined on Ω and ∂Ω respectively.
Note that the measures ρ and τ have to be chosen a priori, and they can greatly affect the final result. The
question of discovering the optimal weights is beyond the scope of our present investigation.

The aim of the next sections is to introduce various formulations of problem (4.1)-(4.2) under the form
(4.4)-(4.5). This requires appropriate definitions of the set V, the functions R(v) and S(v) for any v ∈ V and
the unknown function solution of (4.4). Unless otherwise stated, the measures ρ and τ will be defined as the
Lebesgue bulk measure and Lebesgue surface measure respectively.

4.2.3 Vanilla (V) formulation
We begin by introducing the most classical formulation used in neural network-based numerical schemes
such as PINNs. For the reasons that we outline next, different aspects of this formulation can be improved,
therefore we refer to it as vanilla (V) formulation in the following.

The formulation consists in interpreting the solution u of (4.1)-(4.2) as the unique solution of a minimiza-
tion problem of the form (4.4) with V = H2(Ω) and to define for all v ∈ V,{

R(v)(x) := λ |−ϵ(∆v)(x) + ∇ · (Fv)(x) − f(x)|2 , for all x ∈ Ω,
S(v)(x) := (1 − λ) |α(∇v · n)(x) + κv(x) − g(x)|2 , for all x ∈ ∂Ω,

(4.6)

for some λ ∈ (0, 1). In this approach, the parameter λ enables to tune the respective weight of the contribu-
tions of the bulk and boundary terms in the total functional J to be minimized. In practice, in the numerical
tests presented in Section 4.4, λ will always be chosen to be equal to 1

2 .

4.2. A SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATION 87

Note that such an approach requires the solution u to belong to H2(Ω), which implies that the solution has
to be sufficiently regular. When ϵ → 0, this assumption becomes less and less realistic due to the formation
of boundary layers. This raises the question as to whether it is possible to introduce another formulation of
problem (4.1)-(4.2) which would allow for less regular solutions. The goal of the next section is to introduce
such an alternative formulation.

4.2.4 Weak variational (W) formulation
In this section we develop an avenue based on an energy minimization approach which requires less regularity
in the solutions than the vanilla formulation. To this aim, we introduce the change of variable

u(x) = ecV (x)z(x), (4.7)

where c ∈ R is a constant yet to be determined. Taking first and second derivatives in (4.7) yield that for all
x ∈ Ω,

∇u(x) = ecV (x) (c∇V (x)z(x) + ∇z(x))
∆u(x) = ecV (x) (c∆V (x)z(x) + |c∇V (x)|2z(x) + 2c∇V (x) · ∇z(x) + ∆z(x)

)
.

Now, setting the value of c to be
c = 1

2ϵ ,

and inserting the change of variable into (4.1), we conclude that u is a solution to (4.1) if and only if z is a
solution to the elliptic problem

− ∆z(x) +
(

∆V (x)
2ϵ + |∇V (x)|2

4ϵ2

)
z(x) = f(x)e

− V (x)
2ϵ

ϵ
, ∀x ∈ Ω, (4.8)

with Robin boundary conditions

α(∇z(x) · n(x)) +
(
κ+ α

2ϵ∇V (x) · n(x)
)
z(x) = e

−V (x)
2ϵ g(x), ∀x ∈ ∂Ω. (4.9)

At this stage, one could of course apply the vanilla formulation to solve (4.8)-(4.9) and compute z solution
of a minimization problem of the form (4.4) with V = H2(Ω) and the functionals R and S defined byR(v)(x) := λ

∣∣∣∣∆v(x) +
(

∆V (x)
2ϵ + |∇V (x)|2

4ϵ2

)
v(x) − f(x) e− V (x)

2ϵ

ϵ

∣∣∣∣2 , for all x ∈ Ω,

S(v)(x) := (1 − λ)
∣∣∣α(∇v(x) · n(x)) +

(
κ+ α

2ϵ ∇V (x) · n(x)
)
v(x) − e

−V (x)
2ϵ g(x)

∣∣∣2 , for all x ∈ ∂Ω,
(4.10)

for all v ∈ V = H2(Ω) and some λ ∈ (0, 1). The value of λ chosen in our numerical tests is λ = 0.5. We will
refer to this approach as the vanilla-z (V z) formulation.

Note that this method does not fully exploit the change of variables since the elliptic nature of problem
(4.8) allows us to easily build a weak formulation of this equation. Testing against a smooth test function v
and integrating by parts we obtain the weak formulation∫

Ω
∇z · ∇v −

∫
∂Ω
v∇z · n+

∫
Ω

(
∆V
2ϵ + |∇V |2

4ϵ2

)
zv =

∫
Ω
fe

V
2ϵ
v

ϵ

Using equality (4.9), we get∫
Ω

∇z · ∇v +
∫

Ω

(
∆V
2ϵ + |∇V |2

4ϵ2

)
zv +

∫
∂Ω

(
κ

α
+ 1

2ϵ∇V · n
)
zv

=
∫

Ω
f
e− V

2ϵ

ϵ
v +

∫
∂Ω

1
α
e

−V
2ϵ gv.

Therefore the weak formulation of problem (4.8) is to find z ∈ H1(Ω) such that

a(z, v) = ℓ(v), ∀v ∈ H1(Ω) (4.11)

88 CHAPTER 4. DEEP LEARNING-BASED SCHEMES

with
a(z, v) =

∫
Ω

∇z · ∇v +
∫

Ω

(
∆V
2ϵ + |∇V |2

4ϵ2

)
zv +

∫
∂Ω

(
κ

α
+ 1

2ϵ∇V · n
)
zv

l(v) =
∫

Ω
f
e− V

2ϵ

ϵ
v +

∫
∂Ω

1
α
e

−V
2ϵ gv.

To ensure that the symmetric bilinear form a is continuous and coercive, we assume in the sequel that the
following conditions are satisfied:

(
∆V (x)

2ϵ + |∇V (x)|2

4ϵ2

)
≥ a0 > 0, ∀x ∈ Ω(

κ
α + 1

2ϵ ∇V (x) · n(x)
)

≥ 0, ∀x ∈ ∂Ω
f ∈ L2(Ω), g ∈ L2(∂Ω)

(4.12)

In that case, all the hypothesis of the Lax-Milgram theorem are satisfied for a and ℓ. Notice that, if V
is a regular confining potential (i.e. if ∇V (x) · n(x) ≥ 0 for all x ∈ ∂Ω), then there exists ϵ0 > 0 such that
conditions (4.12) are satisfied for all ϵ ≤ ϵ0.

If conditions (4.12) are satisfied, z can be equivalently rewritten as the unique solution of a minimization
problem of the form

z = argmin
v∈H1(Ω)

1
2a(v, v) − ℓ(v). (4.13)

This implies that z can equivalently be recast as the unique solution of a minimization problem of the
form (4.4) with V = H1(Ω) andR(v)(x) = 1

2

[
|∇v(x)|2 +

(
∆V (x)

2ϵ + |∇V (x)|2

4ϵ2

)
|v(x)|2

]
− f(x) e− V (x)

2ϵ

ϵ v(x), ∀x ∈ Ω,
S(v)(x) = 1

2
[(

κ
α + 1

2ϵ ∇V (x) · n(x)
)

|v(x)|2
]

− 1
αe

−V (x)
2ϵ g(x)v(x), ∀x ∈ ∂Ω.

(4.14)

We will refer to this approach as the weak-z (Wz) formulation.
Moreover, using (4.7), we can equivalently express u as a solution of a minimization problem of the form

(4.4) with
V :=

{
v = e

V
2ϵ v, v ∈ H1(Ω)

}
, (4.15)

and rewriting the Equation (4.14)R(v)(x) = 1
2

[
|∇v(x)|2 +

(
∆V (x)

2ϵ + |∇V (x)|2

4ϵ2

)
|v(x)|2

]
− f(x) e− V (x)

2ϵ

ϵ v(x), ∀x ∈ Ω,
S(v)(x) = 1

2
[(

κ
α + 1

2ϵ ∇V (x) · n(x)
)

|v(x)|2
]

− 1
αe

−V (x)
2ϵ g(x)v(x), ∀x ∈ ∂Ω,

(4.16)

for all v ∈ V with v := ve− V
2ϵ the change of variable suggested above. We will refer to this formulation as

the weak (W) formulation.
Note that in the non-discretized case, formulations (W) and (W-z) are equivalent up to the exponential

change of variable. However, when the minimizer of both formulations is computed by means of a neural
network, the corresponding approximations will be different and have different accuracies. The (W) formu-
lation has the advantage to avoid potential machine precision issues linked to the presence of the exponential
term when ϵ becomes small.

4.2.5 Rescaled formulation
In this section, we introduce another formulation based on a change of scale in the original problem. More
precisely, introducing Ωϵ := 1

ϵ Ω, we introduce auxiliary functions ũ : Ωϵ → R, z̃ : Ωϵ → R and Ṽ : Ωϵ → R
defined so that for all x ∈ Ω,

u(x) = ϵũ
(x
ϵ

)
, z(x) = ϵz̃

(x
ϵ

)
, V (x) = ϵṼ

(x
ϵ

)
. (4.17)

Notice that if u and z satisfy (4.7), then

z̃(y) = ũ(y)e 1
2 Ṽ (y), ∀y ∈ Ωϵ.

4.3. NEURAL NETWORKS BASED NUMERICAL SCHEMES 89

Denoting by F̃ (y) := −∇Ṽ (y) = F (ϵy) for all y ∈ Ωϵ, it holds that u is solution to (4.1)-(4.2) if and only if
ũ is solution to

− ∆ũ(y) + ∇ ·
(
F̃ ũ
)

(y) = f̃(y), ∀y ∈ Ωϵ (4.18)

where f̃(y) := f(ϵy) for all y ∈ Ωϵ with boundary conditions

α(∇ũ · n)(y) + ϵκũ(y) = g̃(y), ∀y ∈ ∂Ωϵ, (4.19)

with g̃(y) := g(ϵy) for all y ∈ Ωϵ.
Using similar calculations to the ones done in Section 4.2.4, the Lax-Milgram theorem guarantees that z̃

is the unique solution in H1(Ωϵ) of the following variational problem: for all ṽ ∈ H1(Ωϵ),∫
Ωϵ

∇z̃(y) · ∇ṽ(y) dy+
∫

∂Ωϵ

(
ϵκ

α
+ 1

2∇Ṽ (y) · n(y)
)
z̃(y)ṽ(y) dy+

∫
Ωϵ

(
∆Ṽ (y)

2 + |∇Ṽ (y) |2

4

)
z̃ (y) ṽ(y) dy =

(4.20)

=
∫

Ωϵ

f̃(y)e− 1
2 Ṽ (y)ṽ(y) dy +

∫
∂Ωϵ

1
α
e− 1

2 Ṽ (y)g̃(y)ṽ(y)dy.

The result is valid provided that the following assumptions on the coefficients hold
∆Ṽ (y) + |∇Ṽ |2(y) ≥ 0, ∀y ∈ Ωϵ,
κϵ
α + 1

2 ∇Ṽ (y) · n(y) ≥ 0, ∀y ∈ ∂Ωϵ,

f̃ ∈ L2(Ωϵ), g̃ ∈ L2(∂Ωϵ).

The above conditions are equivalent to the assumptions (4.12) stated in Section 4.2.4.

As in the previous section, the function z̃ is then the unique solution of a minimization problem of the
form (4.4) with V = H1(Ωϵ) with

R(v)(y) = 1
2

[
|∇v(y)|2 +

(
∆Ṽ (y)

2 + |∇Ṽ (y)|2

4

)
|v(y)|2

]
− f̃(y)e− Ṽ (y)

2 v(y), ∀y ∈ Ωϵ,

S(v)(y) = 1
2

[(
ϵκ
α + 1

2 ∇Ṽ (y) · n(y)
)

|v(y)|2
]

− 1
αe

−Ṽ (y)
2 g̃(y)v(y), ∀y ∈ ∂Ωϵ.

(4.21)

We will refer to this approach as the rescaled-weak-z (RWz) formulation.

4.2.6 Summary of the methods
For the sake of clarity, we summarize here the main features of each method.

Method Acronym Unknown V R and S
vanilla V u H2(Ω) (4.6)

vanilla-z Vz v H2(Ω) (4.10)
weak-z Wz z H1(Ω) (4.14)
weak W u (4.15) (4.16)

rescaled-weak-z RWz z̃ H1(Ωϵ) (4.21)

4.3 Neural networks based numerical schemes
In this section we describe the numerical approach used in order to compute an approximation of the solution
of a minimization problem of the form (4.4) by means of a neural-network based method. We first present
in Section 4.3.1 the general principle of such approaches. The main ingredients to design a neural-network
based method consist in the choice of a class of neural network functions and of sampling schemes in order
to approximate the integrals involved in the definition of the loss function J defined by (4.5). These two
ingredients are detailed respectively in Section 4.3.2 and Section 4.3.3. Finally, some details on the numerical
implementation are given in Section 4.4.2.

90 CHAPTER 4. DEEP LEARNING-BASED SCHEMES

4.3.1 General principle
The numerical solution of a minimization problem of the form (4.4) usually requires to consider alternatives
to V and J that are amenable for practical implementation. The strategy thus consists in formulating a
related problem of the form

min
v∈K

Ĵ (v), (4.22)

where

• K ⊂ V is a set of functions parametrized by a finite number of scalar coefficients. A classical class of
functions are finite elements. Here, we consider neural networks (see Section 4.3.2 below);

• Ĵ is an approximation of the loss function J where the integrals are approximated using some particular
quadrature or sampling schemes.

More precisely, for given integers K,M ∈ N∗, given sets of points (xk)1≤k≤K ⊂ Ω, (ym)1≤m≤M ⊂ ∂Ω,
and given sets of weights (ρk)1≤k≤K ⊂ R and (τm)1≤m≤M ⊂ R, for all v ∈ K, the functional Ĵ (v) is defined
by

Ĵ (v) :=
K∑

k=1
ρkR(v)(xk) +

M∑
m=1

τmS(v)(ym). (4.23)

As a consequence, the definition of a neural-network based numerical scheme for the approximation of a
problem of the form (4.4) requires the definition of two ingredients:

• the class K ⊂ V of neural network functions;

• the sampling scheme, i.e. the choice of K, M , (xk)1≤k≤K , (ym)1≤m≤M , (ρk)1≤k≤K and (τm)1≤m≤M in
order to define the approximate functional Ĵ given by (4.23).

The set of neural network functions K we consider in our numerical experiments is presented in Sec-
tion 4.3.2. The various sampling schemes tested here are given in Section 4.3.3.

4.3.2 Neural Network classes of functions
In this work, we only consider classes of functions defined by means of feedforward neural networks whose
definition was already introduced and we recall next (see [202] for more detailed definitions).

Let X ⊂ RdX and Y ⊂ RdY be some input and output sets of finite dimensions dX , dY ∈ N∗. A feedforward
neural network is a function

ψ : X → Y

which reads as
ψ(x) = TL(σ(TL−1(σ(. . . σ(T0(x))))), ∀x ∈ X . (4.24)

Recalling Equation 1.13, for every ℓ ∈ {0, . . . , L},

Tℓ :
{

Rpℓ → Rpℓ+1

xℓ 7→ Tℓ(xℓ) = Aℓxℓ + bℓ
(4.25)

is an affine function which can be expressed through a matrix Aℓ ∈ Rpℓ+1×pℓ , an offset vector bℓ ∈ Rpℓ+1 ,
and the so-called (nonlinear) activation function σ : R → R. By a slight abuse of notation, for all p ∈ N∗ and
for any vector w := (wi)1≤i≤p ⊂ Rp, the notation σ(w) actually denotes the vector of Rp with entries σ(wi),
that is, σ(w) = (σ(wi))p

i=1. Note that since ψ maps X onto Y, it is necessary that p0 = dX and pL+1 = dY .
The layers numbered from 1 to L are the hidden layers of the neural network.

To define a class of feedforward neural networks, we fix an architecture by prescribing a given activation
function σ, depth L ∈ N, and layer widths p = (p0, . . . , pL+1) ∈ (N∗)L+2. Once the values of σ, L and p
have been chosen, we view the coefficients (Aℓ, bℓ)0≤ℓ≤L of the affine mappings T0, · · · , TL as parameters.
We gather these coefficients in the vector of parameters

θ = {(Aℓ, bℓ)}L
ℓ=0,

4.3. NEURAL NETWORKS BASED NUMERICAL SCHEMES 91

and assume that θ takes values in a set

Θ ⊆
L

"
ℓ=0

(
Rpℓ×pℓ+1 × Rpℓ+1

)
.

For any θ ∈ Θ, we define by ψθ : X → Y the function ψ defined by (4.24) with θ = {(Aℓ, bℓ)}L
ℓ=0 ∈ Θ.

The class of neural network functions with architecture (σ, L,p) and coefficient sets Θ is then defined as

N (σ, L,p,Θ) := {ψθ : θ ∈ Θ}

In our context, the input and output sets X and Y are respectively given by

X = Ω (or Ωϵ) and Y = R,

so that dX = d and dY = 1. In all the numerical tests presented below, the class K is chosen as

K := N (σ, L,p,Θ),

with
σ = tanh, L = 2, p = (d, 10, 10, 1) and Θ =

L

"
ℓ=0

(
Rpℓ×pℓ+1 × Rpℓ+1

)
.

Note that the set K is then a subset of V for all the formulations of the convection-diffusion problem we
introduced in Section 4.2. Moreover, the solution of the approximate problem (4.22) is equivalent to finding
a minimizer θ∗ ∈ Θ solution to

min
θ∈Θ

Ĵ (ψθ). (4.26)

Remark: In many machine learning applications, the choice of relu activation functions is very common
due to its low computational cost when performing evaluation or first order differentiation. However, in our
problem, second order derivatives are needed to calculate the loss function. If relu activation functions were
used, then the second order derivative terms would be 0, and no good approximation could be learned. This
reason motivates our choice of tanh as the activation function. In Figure B.2 some results concerning the
choice of the architecture of the network are attached.

4.3.3 Sampling schemes
We detail in this section the various sampling schemes we considered in our numerical tests in order to define
the approximate loss function Ĵ .

Since we work with one-dimensional examples, we carry the discussion for dimension one. In fact, we
consider problem (4.1)-(4.2) with Ω = (0, 1) so that ∂Ω = {0} ∪ {1} (and ∂Ωϵ = {0} ∪ {1/ϵ}). Thus, for
all our tests, the domain boundary has M = 2 points y1 = 0 and y2 = 1 (or y2 = 1

ϵ for the RWz method).
Taking τ1 = τ2 = 1 for the surface weights, the surface term in (4.23) takes the simple form

M=2∑
m=1

τmS(v)(ym) =
∫

∂Ω
S(v) dτ ∀v ∈ V (or

∫
∂Ωϵ

S(v) dτ for the RWz formulation).

We consider three different sampling schemes for the approximation of the bulk term
∫

Ω R(v) dρ:

1. The first choice is a simple uniform sampling scheme (labeled −u in our tests). For a given K ∈ N∗,
we set ρk = 1

K and (xk)1≤k≤K as the centers of the intervals given by a uniform discretization grid of
the interval (0, 1).

2. The second sampling scheme, called random (−r) scheme, consists in choosing ρk = 1
K and the points

(xk)1≤k≤K as a collection of random points, identically independently distributed according to the
uniform distribution on (0, 1).

3. We lastly consider a third sampling scheme, called exponential (−e) scheme, which is specific to the Wz
formulation. Recall that in this case, for all v ∈ K, the expression of R(v) is given by (4.14), namely

R(v)(x) = R(1)(v)(x) + R(2)(v)(x), ∀x ∈ Ω

92 CHAPTER 4. DEEP LEARNING-BASED SCHEMES

with R(1)(v)(x) := 1
2

[
|∇v(x)|2 +

(
∆V (x)

2ϵ + |∇V (x)|2

4ϵ2

)
|v(x)|2

]
R(2)(v)(x) := −f(x) e− V (x)

2ϵ

ϵ v(x), ∀x ∈ Ω.

Thus, the bulk integral term:∫
Ω

R(v)(x)dρ(x) =
∫

Ω
R(1)(v)(x)dρ(x) +

∫
Ω

R(2)(v)(x)dρ(x),

and we approximate each component separately as follows. For the first term, we draw a collection
of K1 ∈ N∗ independent identically distributed (iid) random points (x(1)

k)1≤k≤K1 from the uniform
distribution on (0, 1) and for all 1 ≤ k ≤ K1, the weights ρ(1)

k are chosen to be equal to 1
K1

. For the
second term, we draw K2 ∈ N∗ iid random points (x(2)

k)1≤k≤K2 following the probability density

ρ(2)(x) := e− V (x)
2ϵ

Zϵ
, x ∈ Ω,

with
Zϵ :=

∫
Ω
e− V (x)

2ϵ dx.

Setting now ρ
(2)
k = Zϵ

K2
for all 1 ≤ k ≤ K2, the integral

∫
Ω R(v) is then approximated by

K1∑
k=1

ρ
(1)
k

(
1
2

[
|∇v(x(1)

k)|2 +
(

∆V (x(1)
k)

2ϵ + |∇V (x(1)
k)|2

4ϵ2

)
|v(x(1)

k)|2
])

−
K2∑

k=1
ρ

(2)
k

(
f(x(2)

k)1
ϵ
v(x(2)

k)
)
.

In the following, we use the notation −u (respectively −r and −e), after the name of a formulation, in order
to refer to the numerical method obtained by using this formulation, together with a uniform (respectively
random or exponential) sampling scheme. For instance, the V − u method refers to the vanilla formulation
used in conjunction with a uniform sampling scheme.

Note that to tackle higher-dimensional problems, special sampling techniques such as adaptive Markov-
Chain Monte-Carlo or Quasi Monte Carlo would be required.

4.3.4 Comparison with finite element schemes
One important point in the investigation of the merits and limitations of deep learning-based numerical
schemes is to understand how they compare with respect to other existing schemes. In our tests, we provide
a numerical comparison with a vanilla finite element Galerkin scheme involving a uniform mesh. For the sake
of completeness, we briefly recall the main steps of our finite element Galerkin approach.

Integrating the original equation (4.1) against a sufficiently smooth function v ∈ C∞(Ω), and integrating
by parts, it follows that a weak formulation of problem (4.1) is to find u ∈ H1(Ω) such that

a(u, v) = l(v), ∀v ∈ H1(Ω)

with

a(u, v) =
∫

Ω
∇u · ∇v + ϵ−1

∫
Ω

∇ · (Fu)v + κ

α

∫
∂Ω
uv (4.27)

l(v) = ϵ−1
∫

Ω
fv −

∫
∂Ω
gv. (4.28)

We numerically solve this problem by Galerkin projection. For this, we consider a mesh (Tn)N
n=1 of Ω and

define the associated P1 finite element space

VN := {v ∈ C 0(R) : ∀0 ≤ s ≤ N − 1, v|[xs,xs+1) ∈ P1([xs, xs+1])}

with
P1([xs, xs+1]) := {v : [xs, xs+1] → R, v(x) = ax+ b, (a, b) ∈ R2}.

4.4. NUMERICAL RESULTS 93

We then search for a solution uN ∈ VN ⊂ H1(Ω) by Galerkin projection, that is, we search for uN ∈ VN such
that

a(uN , v) = l(v), ∀v ∈ VN .

We next take as a basis of VN the set of tent functions defined as

φi(xj) = δij , for 1 ≤ i, j ≤ N,

and we express the solution as uN =
∑N

i=1 ciφi. Gathering the expansion coefficients in the vector c = (ci)N
i=1,

and injecting the expansion of uN in the variational formulation, we are led to the system of equations

Mc = q

where
M = (Mi,j)1≤i,j≤N , Mi,j := a(φi, φj), and q = (qi)N

i=1, qi := l(φi).

4.4 Numerical Results
4.4.1 Test case and comparison criteria
In this section we show the results obtained by approximating the exact solution of the problem described
in equation (4.1) using the methods introduced above.

Here, we work in the case when d = 1, Ω = (0, 1), and F , f are assumed to be equal to some constant real
numbers. Then, the solution of (4.1)-(4.2) has an analytic expression which is given hereafter. Let us also
introduce g0, g1 ∈ R so that g(0) = g0 and g(1) = g1. The problem then reads as follows: find u : (0, 1) → R
solution to −ϵu′′(x) + Fu′(x) = f, ∀x ∈ (0, 1),

−αu′(0) + κu(0) = g0,
αu′(1) + κu(1) = g1.

(4.29)

Then, it can be easily checked that the solution to this equation reads as

u(x) = C1 + C2e
F x

ϵ + f

F
x

where C1 and C2 are constants that are determined with the Robin boundary conditions. They satisfy the
system (

κ κ− αF
ϵ

κ κe
F
ϵ + αF

ϵ e
F
ϵ

)(
C1
C2

)
=
(

g0 + α f
F

g1 − f
F (κ+ α)

)
which is invertible except for

κ = 0, or α

κ
= ϵ(1 − e

F
ϵ)

F (1 + e
F
ϵ)
.

In the following, the values of κ and α are always chosen so that the above system is invertible.

In the numerical tests presented below, we fix F = 1, f = 1. We choose Robin boundary conditions that
mimic Dirichlet conditions and we set α = 10−3, κ = 1, g0 = g1 = 0. Note that we cannot take α = 0 since
all variational methods are not well defined for pure Dirichlet boundary conditions. With these choices, the
equation reads −ϵu′′(x) + u′(x) = 1, ∀x ∈ (0, 1),

−10−3u′(0) + u(0) = 0,
10−3u′(1) + u(1) = 0.

(4.30)

Since the exact solution has an analytic form, we can thus easily compare the approximation quality of
the output functions û from our methods by computing a discrete version of their L2(Ω) error norm with
respect to the exact solution:

e2
L2 := ∥u− û∥2

L2(Ω) ≈ 1
K̃

K̃−1∑
k=0

(u(xk) − û(xk))2 =: e2
ℓ2 .

94 CHAPTER 4. DEEP LEARNING-BASED SCHEMES

The points xk are sampled uniformly as defined in 4.3.3. We use 10 times more points than the ones used
for approximating the integral, so K̃ = 10K. Similarly, we also compute the error with respect to the H1(Ω)
semi-norm:

e2
H1 := ∥u′ − û′∥2

L2(Ω) ≈ 1
K̃

K̃−1∑
k=0

(u′(xk) − û′(xk))2 =: e2
h1 .

Note that one can obtain the H1 error by adding the above error components.
We study the impact on the errors of the following parameters:

• The values of ϵ. They range from 5 · 10−3 to 10.0 with a logarithmic spacing.

• The number K of training points (or collocation points). We consider K = 10, 102, 103, 104.

• The choice of the sampling method for the training points (uniformly spaced or uniformly random,
labelled as −u and −r).

• The impact of the machine precision (Float16, Float32, Float64).

Due to the randomness in the initialization of weights on the neural networks, for each combination of param-
eters (ϵ, K, sampling type, and machine precision), we perform 10 repetitions with different initialization.
Since we didn’t notice a big difference between the l2 error and the h1 error, we keep just the second one
for clarity and put in the Appendix B.1 the plots in l2 error. Moreover, in the Section B.3 of the Appendix,
some results concerning the training of the NN.

4.4.2 Our code and practical implementation details
All our neural network based numerical tests were performed in Python 3.6 and using the TensorFlow 1.13.1
library [282]. The code provided in the original paper on PINNs [209] was used as the starting point for our
own code developments, and we have followed similar guidelines to generalize and enlarge it where needed.
In the same way, for each numerical method, derivatives of functions v ∈ K are computed using automatic
differentiation. The numerical optimization procedure used in order to compute an approximation of θ∗

a minimizer of problem (4.26) is given by the quasi-Newton L-BFGS algorithm [283]. The code used to
generate the examples shown here is available at

https://github.com/agussomacal/ConDiPINN

The interested reader can reproduce our results and test the impact of the variations of certain parameters
such as ϵ, K, the sampling method, and the machine precision.

4.4.3 Discussion
Impact of the number K of training points

In this section we discuss the impact of the number K of training points. We fix the machine precision to
Float32, and the uniform sampling −u.

Figure 4.1 shows the best result obtained in the tests, i.e., the minimum value of the h1 norm obtained in
the 10 different simulations, plotted against the values of ϵ. In Figure 4.2, we fix ϵ = 10, and plot statistics
on the accuracy eh1 (left plot) and computation runtimes for different K (right plot), and for the different
methods. Find in the Appendix in Section B.1 the equivalent plot for the l2 error.

From these figures, we first notice that the approximation of FEM degrades when ϵ decreases. However,
the accuracy improves when the number of discretization points increases (see, e.g., Figure 4.2 - left plot).
The rate of improvement is linear as we can see from the right plot in Figure 4.2, as expected. In addition,
when looking at the runtimes (Figure 4.2 - right) we observe the expected linear increase with respect to the
number K of discretization points.

We can next study the behavior of Vanilla PINN and compare to FEM. We observe that it performs at an
almost constant accuracy for any number of training points until around ϵ = 0.027 where it stops producing
reliable approximations (see Figure 4.1). One remarkable observation is that the Vanilla PINN error for large
values of ϵ and small number of training points K = 10 is comparable to the FEM errors with a much larger
number of degrees of freedom K > 103 (see left plot in Figure 4.2). However, we observe that the running

https://github.com/agussomacal/ConDiPINN

4.4. NUMERICAL RESULTS 95

times of FEM computations remain much lower than the ones of PINN-based methods (right plot in Figure
4.2). Note that the low runtime of the FEM approach is due to the fact that the associated resulting linear
system is tridiagonal, and this allows to solve with a linear cost w.r.t. the number of degrees of freedom.

We next comment on the other PINN-based variational methods. For ϵ large enough, we observe that
all the variational based methods follow the same error trend as FEM both with respect to ϵ and K and
for K < 104 they even perform marginally better. With respect to the computing time, all the methods
perform with almost constant time with respect to K and similarly to a FEM method with K = 100 degrees
of freedom. However, for ϵ < 0.63, the methods W − z, W − z − e and V − z blow up and lose completely
their approximation capabilities. We conjecture that this is due to the fact that the neural network is used to
approximate the solution z from the transformed problem, and there is an exponential term to go back from z
to u (see equation (4.7)). This may lead to machine precision overflows (in the exponential computation) and
underflows (the neural network has to learn very small values of z which also are in the limits of precision).
To address this issue, we have explored two possible strategies: one was by directly minimizing over u while
maintaining the weak formulation which accounts for the method W . The second approach is to perform the
re-scaling of the domain RW − z. In both cases the blow up caused by the exponential is solved although
the re-scaling method RW − z doesn’t perform as good as others in the region with large ϵ values.

We finish this section by plotting in Figure 4.3 the best approximated solution for each model, and
different values of ϵ. The interested reader may experiment other configurations in our provided code. The
most striking observation is that only FEM and the vanilla PINN method recover the final shape of the
exact solution when ϵ is small. The other variational PINN methods fail despite that some of them exhibit
comparable values to FEM in the generalization errors as Figure 4.1 illustrates. This observations suggests
that perhaps other types of error metrics should be introduced in order to be able to better distinguish
between “good solution shapes” and “bad ones”.

Impact of Machine Precision

Figure 4.4 shows the h1-error of the different approximated solution by changing the machine precision in
the parameters of the neural networks for the different values of ϵ: Float16, Float32 and Float64. There is
an improvement when going from Float16 to Float32 in all methods. Interestingly, we did not obtain very
satisfactory results when working with Float64 precision. This precision seems to difficult the convergence
to good quality minima: even after 10 repetitions, we failed to find good results. However, as the plots show,
when a good minimum is found, it delivers slightly better approximation than lower machine precisions. For
these reasons we have performed our experiments using the Float32 which seemed the most stable choice.

Impact of Sampling Strategy

Figure 4.5 shows the h1-error of the different approximated solution by changing the sampling strategy. For
all models, the uniform strategy is found to be either as good as the random or slightly better. For this
reason we performed all the experiments using the uniform strategy.

4.4.4 Conclusions from the numerical experiments
The above numerical experiments depict a contrasted landscape concerning the merits and limitations of
deep learning-based approaches when the solutions become low regular:

• For large values of ϵ when solutions are rather regular, some PINNs perform clearly better than FEM
regarding the generalization errors. The superiority is particularly remarkable for very small number
K of training points. However, the shapes of PINN solutions are sometimes not as satisfactory as the
ones given by FEM.

• For the challenging case where ϵ becomes small and solutions become less regular (which was the
main motivation of our study), the accuracy of the variational neural-network methods is essentially
comparable or worse to the one given by FEM in terms of generalization errors. Some PINN variational
approaches become too unstable and the errors blow up. Only FEM and the vanilla PINN approach
seem to be able to recover the correct shape of the exact function. The latter one has however the risk
of sometimes falling into local minima with bad shapes.

• The runtimes are clearly in favor to FEM methods as Figure 4.2 illustrates, but the simplicity of
implementation is in favor to all PINN methods.

96 CHAPTER 4. DEEP LEARNING-BASED SCHEMES

Figure 4.1: Comparison of the behavior of the h1 error for the different methods and different number of
sampling points in training. From top to bottom and from left to right, the first figure is produced for
K = 10, the second for K = 100, the third for K = 1000 and the last one for K = 10000. The set of points to
train and test have been chosen with the uniform sampling method. The precision has been fixed to Float32
for all the tests.

Figure 4.2: For ϵ = 10 (region where all methods work well), we look at the comparison between methods
and the difference with respect to the number of training points K. The h1 error (left) and the computation
times (right). The set of points to train and test have been chosen with the uniform sampling method. The
precision has been chosen as Float32 for all the tests.

4.5. FUTURE RESEARCH DIRECTIONS AND EXTENSIONS 97

Figure 4.3: The best approximated solution out of 10 repetitions, for each model, and with K = 100 training
samples. From left to right: ε = 0.039, 0.18, 10. The interested reader may experiment other configurations
in our provided code.

Figure 4.4: Here, the comparison of the behavior of the model for different float precision. The tests have
been performed for K = 100 and uniform sampling.

4.5 Future research directions and extensions
One important point to explore in future works concerns the choice of the loss function for the training, and
also the metric to evaluate generalization errors. It will also be interesting to explore if adaptive sampling

98 CHAPTER 4. DEEP LEARNING-BASED SCHEMES

Figure 4.5: Here, the comparison of the behavior of the model for the two different sampling strategies. The
tests have been performed for K = 100 and the float precision equal to Float32.

strategies during the training could help to recover good solutions in a more stable manner. Finally, the
impact of the machine precision in some steps involving exponential transformations seems also to be
an important obstacle to retrieving stable solutions. It would be interesting to develop strategies that
circumvent this issue. All these developments will play a crucial role in order to address higher dimensional
problems with similar characteristics as the one considered here.

Find in Figure B.2 in the Appendix a comparison between different architectures (depth and width) and
the activation function of the network that have been tested. In the future, a possible improvement would
be test more architectures in order to obtain better results.

We also refer the reader to Figure B.3 and Figure B.4 to see the number of iterations that the network
takes to converge.

Chapter 5

Conclusions and perspectives

In the present work, we propose and study three numerical methods to approximate functions from different
perspectives.

1. A tensor approximation method, Sum of Tensor Trains (SoTT), whose output is the approximated
solution in a sum of TTs format.

2. A local tensor approximation method based on clustering, that retrieves an approximated solution in
the introduced local HOSVD format.

3. A deep learning-based method that computes the approximation of the solution of a convection diffusion
PDE when the diffusion parameter is very small.

5.1 Conclusions of SoTT
In the first chapter of the thesis, we proposed a method to compress a given tensor as a sum of Tensor
Trains (SoTT). Neither the order of the variables nor the ranks are fixed a priori. They are the result of an
optimization step. A particular instance of this method, consisting in fixing the ranks equal to one in all the
steps of the algorithm, produces a CP approximation of a given tensor, we have introduced it as CP-TT. A
proof of convergence is proposed in the general case of the SoTT algorithm, which can be extended to the
case of the CP-TT algorithm. Moreover, several numerical experiments are proposed in order to illustrate
the properties of the methods:

• First, we compared the CP-TT to other rank-one update methods (ALS, ASVD, TTr1). Although a
single iteration of CP-TT is more expensive in terms of number of operations, its stability makes it a
promising candidate to compress high-dimensional tensors in CP format.

• Then, we did some tests in which we compressed the numerical solution of a parametric partial differ-
ential equation of reaction-diffusion type as well as other functions coming from different applications.
In particular, we compared SoTT with the TT-SVD obtained by testing all the possible permutations
of the indices. Although SoTT is suboptimal with respect to the best TT-SVD, it is independent of
the order of the variables and its performances are comparable to the average TT-SVD. In this test,
the SoTT method outperforms CP-TT.

Both methods showed preliminary yet encouraging results in view of applications in scientific computing
and compression of high order tensors. The method presented shows some shortcomings, to be addressed in
further investigations: while a greedy method is appealing in view of computational tasks in which fixing the
rank a priori could be cumbersome, it might be featured by a saturation effect, slowing down its convergence.

5.2 Conclusions of local HOSVD method
In the second chapter of the thesis, a method to compress tensors is proposed. In this case, the approximation
is done locally and it is computed by the HOSVD method in a local subdomain of the original domain. The

99

100 CHAPTER 5. CONCLUSIONS AND PERSPECTIVES

subdomain is obtained automatically with a clustering method, that exploits the separability of the domain
to compute partitions of the domain per direction. The different combinations of these partitions provide
local subdomains. The HOSVD approximation of the tensor restricted to the local subdomain is computed.
Among the partitions obtained, an extensive search of the subdomain that provides the smaller compression
ratio with respect to the classical HOSVD method (in all the domain) is chosen to approximate the function.
To the approximation of the tensor with the HOSVD method in this partition of the domain we have called
local HOSVD method.

The process is computationally expensive and that is the reason why the numerical tests have been
restricted to moderate order tensors. Nevertheless, some numerical tests for different applications and with
different input formats have been performed and the results are optimistic.

• The partitions of the domain obtained with the clustering method are able to detect symmetry or
periodicity in the system.

• An advantage in memory storage with respect to the HOSVD method is observed. This becomes more
remarkable when the tensor we want to approximate presents different regimes.

Some other alternatives of how to select the subspace in which we compute the approximation have
been explored but the results were not as encouraging as the ones obtained with the extensive search. An
approach to the extensive search reducing the computational cost is a subject under study and it will be
addressed in further investigations.

Moreover, there are other alternatives in order to use the idea of computing local approximations
produced by the proposed clustering method. Once the clustering part is finished and the partitions of the
domains per direction have been obtained, the objects obtained as an output can be used to construct a
local tensor approximations with other format different to HOSVD. This idea is still under study but we are
encouraged about it.

5.3 Conclusions of Deep Learning-based schemes
In the third chapter of the thesis, the task of approximating a multivariate function is tackled from a deep
learning based method. The function to approximate is the solution of a convection-diffusion equation, known
to be difficult to solve with the classical methods like Finite Element Method (FEM) when the diffusion
coefficient ϵ adopts small values. Some experiments are done in order to see how different parameters affect
the neural network (the format of the equation input, number of training points, etc). The experiments done,
depict a contrasted landscape concerning the merits and limitations of deep learning-based approaches when
the solutions become low regular:

• For large values of ϵ when solutions are rather regular, some PINNs perform clearly better than FEM
regarding the generalization errors. The superiority is particularly remarkable for very small number
K of training points. However, the shapes of PINN solutions are sometimes not as satisfactory as the
ones given by FEM.

• For the challenging case where ϵ becomes small and solutions become less regular (which was the
main motivation of our study), the accuracy of the variational neural-network methods is essentially
comparable or worse to the one given by FEM in terms of generalization errors. Some PINN variational
approaches become too unstable and the errors blow up. Only FEM and the vanilla PINN approach
seem to be able to recover the correct shape of the exact function. The latter one has however the risk
of sometimes falling into local minima with bad shapes.

• The runtimes and simplicity of implementation are clearly in favor to PINN methods.

In future works, a study of the choice of the loss function for the training and the metric to evaluate
generalization errors will be performed. It will also be interesting to explore if adaptive sampling strategies
during the training could help to recover good solutions in a more stable manner. Finally, the impact of the
machine precision in some steps involving exponential transformations seems also to be an important obstacle
to retrieving stable solutions. It would be interesting to develop strategies that circumvent this issue. We
refer the reader to Appendix B to see other points in which the method can improve.

102 CHAPTER 5. CONCLUSIONS AND PERSPECTIVES

Appendix A

Appendix of Sum Of Tensor Trains:
SoTT

A.1 Optimization of the computation
A.1.1 Optimization of the coefficients
In this section we try to maximize the coefficients c in every term of the CP decomposition given by Equation
2.3, in order to have a better result. This is possible because we can add some small α such that |α| ≪ 1 to
the coefficient c to reach a better approximation. The goal of the coefficient optimization is to retrieve the
best projection on the subspaces selected by the algorithm. Slightly modifying the coefficients c that appear
in every term of the CP decomposition, what we are doing is letting the parameters that define our result a
small range of movement in order to make the approximation closer to the exact projection of the tensor in
the subspace.

The optimum value of the CP coefficients is given by the following minimization problem:

copt = arg min
c

(1
2∥F − F̃ (c)∥2)

Where F̃ is the CP approximation of the tensor F given by Equation 2.3. It is possible to rewrite the
expression as a minimization problem. Let us define the functional to minimize J(c) : L2(Ω) → R+ as:

J(c) = 1
2

∫
(F − F̃ (c))2dΩ

Then, by finding the minimum of the functional with respect to the coefficients, δJ
δc(l) = 0, a linear system

for the coefficients has to be solved. For j, l = 1, . . . , r, the system written by terms: Mjlcj − bl = 0.
Where:

Mjl =
∫

Ω

[
u

(1)
j (x1) ⊗ . . .⊗ u

(d)
j (xd)

] [
u

(1)
l (x1) ⊗ . . .⊗ u

(d)
l (xd)

]
dΩ

bl =
∫

Ω
F̃
[
u

(1)
l (x1) ⊗ . . .⊗ u

(d)
l (xd)

]
dΩ

A.1.2 Computing the SVD of the unfolding without explicitly computing and
assembling the unfolding

As we can see in Section 2.3.3, one of the most computationally expensive operations in the computation of
a tensor approximation via the SoTT method is the one that computes the unfolding matrices of the tensor
and does an SVD of them on each iteration. For this reason, we have developed a numerical scheme that
computes the SVD of each one of the unfoldings needed in the SoTT method without computing explicitly
all of them.

103

104 APPENDIX A. APPENDIX OF SUM OF TENSOR TRAINS: SOTT

Let us explain this. By simplicity let us particularize for one of the dimensions of the tensor. Without
loss of generality, let us choose the one that has been identified as the first. Let M ∈ RN1×N2...Nd , be an
unfolding of a certain tensor F with respect to the first one of the variables, M (1). The CP form of F , defined
in Equation 2.3 reads:

F =
r∑

i=1
ciu

(1)
i (x1) ⊗ . . .⊗ u

(d)
i (xd)

A first approximation of the tensor F is given by the projection of F into the subspace generated by the
first modes of its SVD decomposition u

(1)
1 in the first direction.

F̄1 =
∫

Ω1

r∑
i=1

(
ciu

(1)
i (x1) ⊗ . . .⊗ u

(d)
i (xd)

)
u

(1)
1 (x1)dx1 =

r∑
i=1

ci

(∫
Ω1

u
(1)
i (x1)u(1)

1 (x1)dx1

)
⊗u(2)

i (x2)⊗. . .⊗u(d)
i (xd)

The expression above could be interpreted as a CP tensor decomposition if we consider a new set of
coefficients for 1 ≤ i ≤ r, namely

c
(1)
i = ci

(∫
Ω1

u
(1)
i (x1)u(1)

1 (x1)dx1

)
Multiplying the matrix unfolding and its transpose M (1)M (1)T and using the change of variable in the

coefficients
M (1)M (1)T

= c
(1)
i c

(1)
j

∫
Ω2

. . .

∫
Ωd

u
(2)
i ⊗ . . .⊗ u

(d)
i u

(2)
j ⊗ . . .⊗ u

(d)
j dx2 . . . dxd

We can identify in the result the form T (1)KT (1)T , whereK ∈ Rr×r is a covariance matrix. By components
defined as:

Kij = cicj

∫
Ω2

. . .

∫
Ωd

u
(2)
i ⊗ . . .⊗ u

(d)
i u

(2)
j ⊗ . . .⊗ u

(d)
j dx2 . . . dxd

And T (1) ∈ Rr reads
T

(1)
i =

∫
Ω1

u
(1)
i (x1)u(1)

1 (x1)dx1

Its SVD is T (1) = Ū (1)ΣV (1)T , where we can also define Z(1) = ΣV (1)T . Then,

M (1)M (1)T

= T (1)KT (1)T

= Ū (1)Z(1)KZ(1)T

Ū (1)T

If we identify the product K̄ = Z(1)KZ(1)T = WΛWT , being Λ the diagonal matrix of eigenvalues, we
can compute the largest singular value and its associated singular vector of K̄,

u
(1)
1 = Ū (1)w(1)

σ(1) =
√
λ1

By doing this computation, we can obtain all the information of the needed unfolding without explicitly
computing it. In terms of the computational cost, instead of computing as much SVD decompositions as
unfoldings, we can obtain directly the mode associated to the largest singular value of each one of them.

A.2 Results for functions in H1
Similar numerical tests have been performed to the ones in Section 2.5.1 for different regularity of the
functions. In this case, the value of the parameter β is chosen to be β = d

2 + 1.1. The results on the
compression of the multivariate function given in Equation 2.9 obtained for H1(Ω) functions are equivalent
to the ones shown for L2(Ω) functions, in which the decrease of the error norm with the approximation rank
is quite regular in CP-TT and behaves in a quite stable way also for higher order tensors.
Let us show in Figure A.1, a comparison between the compression computed by different rank-1 methods:
CP-TT, ALS, ASVD and TTr1, for functions with regularity H1(Ω) in 4 dimensions.

As a summary of the tests done we add Table A.1 as the counterpart of Table 2.1 for β = d
2 + 1.1.

Conclusions on this second test case are similar to the ones obtained in Section 2.5.1. ALS seems to
outperform all other rank-1 update methods in the case where d = 4, whereas CP-TT seems to outperform
the other methods for higher values of d.

A.2. RESULTS FOR FUNCTIONS IN H1 105

0 10 20 30 40 50 60 70 80 90 100

Number of terms

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S
q
u
a
re

d
 n

o
rm

 o
f
th

e
 r

e
s
id

u
a
l

Decreasing of the norm of the residual. Mean and std for the different methods.

Mean of TTr1

Mean of ALS

Mean of CPTT

Mean of ASVD

Std of ALS

Std of CPTT

Std of TTr1

Std of ASVD

Figure A.1: Case β = d
2 + 1.1. Mean and standard deviation of the L2 norm of the difference between the

exact function W and its approximation given by ALS (red), ASVD (blue) and CP-TT (black) as a function
of the number of terms. See Table A.1 for more detailed information.

Mean Std
Dimension (d) Rank (r) ALS CPTT ASVD ALS CPTT ASVD

25 0.1722 0.2261 0.1759 0.0643 0.2261 0.1759
4 50 0.0572 0.1382 0.0590 0.0220 0.1382 0.0232

75 0.0252 0.0948 0.0262 0.0103 0.0948 0.0110
25 0.3741 0.2938 0.4171 0.1158 0.0942 0.1341

6 50 0.2037 0.1507 0.2281 0.0655 0.0523 0.0791
75 0.0851 0.0579 0.1045 0.0334 0.0233 0.0493
25 0.3676 0.2560 0.3977 0.1361 0.0905 0.1517

8 50 0.2136 0.1229 0.2413 0.0807 0.0451 0.1023
75 0.1046 0.0455 0.1145 0.0437 0.0195 0.0631
25 0.4574 0.3737 0.4753 0.1235 0.1548 0.1817

10 50 0.2613 0.3483 0.3193 0.0809 0.1825 0.1648
75 0.1168 0.3332 0.2352 0.0628 0.2034 0.1865
25 0.4634 0.2505 0.5182 0.1681 0.0842 0.2116

12 50 0.2889 0.1141 0.3922 0.1421 0.0384 0.2170
75 0.1278 0.0382 0.3144 0.0671 0.0126 0.2502
25 0.5943 0.2169 0.4386 0.2043 0.1262 0.2014

14 50 0.2841 0.0779 0.3132 0.1277 0.0686 0.1915
75 0.1422 0.0244 0.2021 0.0814 0.0227 0.2192
25 0.4598 0.2460 0.5543 0.1496 0.0726 0.1603

16 50 0.2861 0.1108 0.3936 0.1268 0.0348 0.2022
75 0.1395 0.0438 0.3181 0.0552 0.0153 0.2477

Table A.1: Mean and standard deviation of the norm of the residual for 32 random functions in the case
where β = d

2 + 1.1.

106 APPENDIX A. APPENDIX OF SUM OF TENSOR TRAINS: SOTT

Appendix B

Appendix of Deep Learning-based
schemes

B.1 l2 error plots

Figure B.1: The comparison of the behavior of the l2 error for the different methods and different number of
sampling points in training. From up to down and from left to right, the first figure is produced for K = 10,
the second for K = 100, the third for K = 1000 and the last one for K = 10000. The set of points to train
and test have been chosen with the uniform sampling method. The precision has been chosen as Float32 for
all the tests.

107

108 APPENDIX B. APPENDIX OF DEEP LEARNING-BASED SCHEMES

B.2 Architecture of the NN plots
The choice of the architecture (depth and width) and activation function (tanh, sigmoid, etc) of the underlying
neural network have an effect. For the present work, we decided that this investigation was not going to be our
main focus, and that we wanted to concentrate mainly in the different formulations of PINNs. Note that we
originally choose the activation function to be tanh because it was used in the original paper of PINNs. Our
architecture with two hidden layers of twenty neurons each was fixed to have a trade-off between expressivity
and computation time. To illustrate that the choice of architecture and activation function is not obvious, we
have drawn the four plots of figure B.2 below. They show that increasing the depth effectively increases in
general the computation time to arrive to the optimum, but the choice of width and the activation function
doesn’t seem to shed clear tendencies as to which one should be chosen.

Figure B.2: Accuracy vs time to fit of networks depending on depth (left) or width (right) and activation
function sigmoid (up), tanh (down). Each point is the best of two realizations of approximations to the
solution of the test example for ϵ = 0.05 and K = 100 using Vanilla PINN.

B.3 Training of the PINN
As the neural networks are neither very deep nor very wide, the training typically doesn’t take too much
time. In general we have observed that for initializations that finish by converging to a good approximation
the time spent in training is bigger than those in which the optimization got stuck into a local minima B.3
(left). But it can be otherwise too as shown in figure B.4.

B.3. TRAINING OF THE PINN 109

Figure B.3: For ϵ = 0.014 (left) and ϵ = 0.108 (right) we see the approximation obtained by Vanilla PINN
with K = 100. In the left the local minimum that was found correspond to a straight line that plays a
trade-off between minimizing the residuals (with ∂u

∂2x = 0 and ∂u
∂x ≈ 1 = f) and the loss in the boundary

conditions.

Figure B.4: Each curve correspond to the evolution of the train loss for a realization Vanilla PINN for
different choices of ϵ and K = 100.

110 APPENDIX B. APPENDIX OF DEEP LEARNING-BASED SCHEMES

Bibliography

[1] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, and Danilo P Mandic.
Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor
decompositions. Foundations and Trends® in Machine Learning, 9(4-5):249–429, 2016.

[2] Tamara G Kolda. Tensor decomposition: A mathematical tool for data analysis. Technical report,
Sandia National Lab.(SNL-CA), Livermore, CA (United States), 2018.

[3] Tamara G Kolda and Jimeng Sun. Scalable tensor decompositions for multi-aspect data mining. In
2008 Eighth IEEE international conference on data mining, pages 363–372. IEEE, 2008.

[4] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[5] I.V. Oseledets and E.E. Tyrtyshnikov. Breaking the curse of dimensionality, or how to use svd in many
dimensions. SIAM Journal on Matrix Analysis and Applications, 31(5):1084–1127, January 2009.

[6] Wilhelmus HA Schilders, Henk A Van der Vorst, and Joost Rommes. Model order reduction: theory,
research aspects and applications, volume 13. Springer, 2008.

[7] Peter Benner, Mario Ohlberger, Albert Cohen, and Karen Willcox. Model reduction and approximation:
theory and algorithms. SIAM, 2017.

[8] NC Nguyen, Gianluigi Rozza, DB Phuong Huynh, and Anthony T Patera. Reduced basis approximation
and a posteriori error estimation for parametrized parabolic pdes: Application to real-time bayesian
parameter estimation. Large-Scale Inverse Problems and Quantification of Uncertainty, pages 151–177,
2010.

[9] DV Rovas, L Machiels, and Yvon Maday. Reduced-basis output bound methods for parabolic problems.
IMA journal of numerical analysis, 26(3):423–445, 2006.

[10] Alfio Quarteroni, Andrea Manzoni, and Federico Negri. Reduced basis methods for partial differential
equations: an introduction, volume 92. Springer, 2015.

[11] Alfio Quarteroni, Gianluigi Rozza, and Andrea Manzoni. Certified reduced basis approximation for
parametrized partial differential equations and applications. Journal of Mathematics in Industry,
1(1):1–49, 2011.

[12] Bernard Haasdonk and Mario Ohlberger. Reduced basis method for finite volume approximations of
parametrized linear evolution equations. ESAIM: Mathematical Modelling and Numerical Analysis,
42(2):277–302, 2008.

[13] Martin A Grepl and Anthony T Patera. A posteriori error bounds for reduced-basis approximations of
parametrized parabolic partial differential equations. ESAIM: Mathematical Modelling and Numerical
Analysis, 39(1):157–181, 2005.

[14] Gal Berkooz, Philip Holmes, and John L Lumley. The proper orthogonal decomposition in the analysis
of turbulent flows. Annual review of fluid mechanics, 25(1):539–575, 1993.

[15] Lawrence Sirovich. Turbulence and the dynamics of coherent structures. i. coherent structures.
Quarterly of applied mathematics, 45(3):561–571, 1987.

111

112 BIBLIOGRAPHY

[16] Kenneth S Breuer and Lawrence Sirovich. The use of the karhunen-loeve procedure for the calculation
of linear eigenfunctions. Journal of Computational Physics, 96(2):277–296, 1991.

[17] Albert Cohen and Ronald DeVore. Approximation of high-dimensional parametric pdes. Acta Numerica,
24:1–159, 2015.

[18] Albert Cohen, Wolfgang Dahmen, Ronald A DeVore, and Angela Kunoth. Multiscale and high-
dimensional problems. Oberwolfach Reports, 14(1):1001–1051, 2018.

[19] Tan Bui-Thanh, Karen Willcox, and Omar Ghattas. Model reduction for large-scale systems with
high-dimensional parametric input space. SIAM Journal on Scientific Computing, 30(6):3270–3288,
2008.

[20] Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Guergana Petrova, and Przemyslaw
Wojtaszczyk. Convergence rates for greedy algorithms in reduced basis methods. SIAM journal on
mathematical analysis, 43(3):1457–1472, 2011.

[21] Ronald A DeVore and Vladimir N Temlyakov. Some remarks on greedy algorithms. Advances in
computational Mathematics, 5(1):173–187, 1996.

[22] Vladimir N Temlyakov. The best m-term approximation and greedy algorithms. Advances in
Computational Mathematics, 8(3):249–265, 1998.

[23] David L Donoho, Michael Elad, and Vladimir N Temlyakov. Stable recovery of sparse overcomplete
representations in the presence of noise. IEEE Transactions on information theory, 52(1):6–18, 2005.

[24] Wolfgang Hackbusch. Tensor spaces and numerical tensor calculus, volume 42. Springer, 2012.

[25] Anthony Nouy. Low-rank tensor methods for model order reduction. arXiv preprint arXiv:1511.01555,
2015.

[26] Ronald DeVore, Boris Hanin, and Guergana Petrova. Neural network approximation. Acta Numerica,
30:327–444, 2021.

[27] Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature survey of low-rank tensor approx-
imation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

[28] Anthony Nouy. Low-rank methods for high-dimensional approximation and model order reduction.
Model Reduction and Approximation: Theory and Algorithms, 15(171):3672148, 2017.

[29] T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51:455–500, 2009.

[30] A. Cichocki, N. Lee, I. Oseledets, A. Phan amd Q. Zhaonand, and D. Mandic. Tensor networks for
dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions. Now
Publishers Inc., 35, December 2016.

[31] I. Domanov and L. Lathauwer. On uniqueness and computation of the decomposition of a tensor into
multilinear rank-(1, lr, lr) terms. SIAM J. Matrix Anal. Appl., 41:747–803, 2020.

[32] S. Friedland and G. Ottaviani. The number of singular vector tuples and uniqueness of best rank-one
approximation of tensors. Found Comput Math, 14:1209–1242, March 2014.

[33] William A Adkins and Steven H Weintraub. Algebra: an approach via module theory, volume 136.
Springer Science & Business Media, 2012.

[34] David Steven Dummit and Richard M Foote. Abstract algebra, volume 3. Wiley Hoboken, 2004.

[35] Serge Lang. Algebra, volume 211. Springer Science & Business Media, 2012.

[36] Wolfgang Hackbusch. Multi-grid methods and applications, volume 4. Springer Science & Business
Media, 2013.

[37] Marvin Marcus. Finite dimensional multilinear algebra, volume 23. M. Dekker, 1973.

BIBLIOGRAPHY 113

[38] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.

[39] Bruce Moore. Principal component analysis in linear systems: Controllability, observability, and model
reduction. IEEE transactions on automatic control, 26(1):17–32, 1981.

[40] Karen Willcox and Jaime Peraire. Balanced model reduction via the proper orthogonal decomposition.
AIAA journal, 40(11):2323–2330, 2002.

[41] Kevin Carlberg, Charbel Bou-Mosleh, and Charbel Farhat. Efficient non-linear model reduction via a
least-squares petrov–galerkin projection and compressive tensor approximations. International Journal
for numerical methods in engineering, 86(2):155–181, 2011.

[42] Boris N Khoromskij. Tensor numerical methods in scientific computing, volume 19. Walter de Gruyter
GmbH & Co KG, 2018.

[43] Venera Khoromskaia and Boris N Khoromskij. Tensor-based techniques for fast discretization and
solution of 3d elliptic equations with random coefficients. arXiv preprint arXiv:2007.06524, 2020.

[44] Ivo Babuška, Fabio Nobile, and Raúl Tempone. A stochastic collocation method for elliptic partial
differential equations with random input data. SIAM Journal on Numerical Analysis, 45(3):1005–1034,
2007.

[45] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

[46] Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
educational psychology, 24(6):417, 1933.

[47] Rene Vidal, Yi Ma, and Shankar Sastry. Generalized principal component analysis (gpca). IEEE
transactions on pattern analysis and machine intelligence, 27(12):1945–1959, 2005.

[48] Nicholas J Higham. Computing the nearest correlation matrix—a problem from finance. IMA journal
of Numerical Analysis, 22(3):329–343, 2002.

[49] Anthony Nouy. A priori tensor approximations for the numerical solution of high dimensional prob-
lems: alternative definitions. In The Seventh International Conference on Engineering Computational
Technology (ECT2010), pages Paper–44, 2010.

[50] P. Ladevèze, J.-C. Passieux, and D. Néron. The latin multiscale computational method and the proper
generalized decomposition. Computer Methods in Applied Mechanics and Engineering, 199(21):1287–
1296, 2010. Multiscale Models and Mathematical Aspects in Solid and Fluid Mechanics.

[51] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):455–
500, 2009.

[52] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

[53] Frank L Hitchcock. Multiple invariants and generalized rank of a p-way matrix or tensor. Journal of
Mathematics and Physics, 7(1-4):39–79, 1928.

[54] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scaling via
an n-way generalization of “eckart-young” decomposition. Psychometrika, 35(3):283–319, 1970.

[55] Richard A Harshman et al. Foundations of the parafac procedure: Models and conditions for an”
explanatory” multimodal factor analysis. 1970.

[56] Henk AL Kiers. Towards a standardized notation and terminology in multiway analysis. Journal of
Chemometrics: A Journal of the Chemometrics Society, 14(3):105–122, 2000.

[57] J Mocks. Topographic components model for event-related potentials and some biophysical considera-
tions. IEEE transactions on biomedical engineering, 35(6):482–484, 1988.

114 BIBLIOGRAPHY

[58] I. Domanov and L. De Lathauwer. Canonical polyadic decomposition of third-order tensors: reduc-
tion to generalized eigenvalue decomposition. SIAM Journal on Matrix Analysis and Applications,
35(2):636–660, December 2014.

[59] Lars Karlsson, Daniel Kressner, and André Uschmajew. Parallel algorithms for tensor completion in
the cp format. Parallel Computing, 57:222–234, 2016.

[60] Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan. Tensor robust
principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5249–5257,
2016.

[61] Alwin Stegeman and Nicholas D Sidiropoulos. On kruskal’s uniqueness condition for the candecomp/-
parafac decomposition. Linear Algebra and its applications, 420(2-3):540–552, 2007.

[62] Johan H̊astad. Tensor rank is np-complete. Journal of Algorithms, 11(4):644–654, 1990.

[63] Vin de Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-rank approximation
problem. SIAM Journal on Matrix Analysis and Applications, 30(3):1084–1127, June 2008.

[64] André Uschmajew. Local convergence of the alternating least squares algorithm for canonical tensor
approximation. SIAM Journal on Matrix Analysis and Applications, 33(2):639–652, 2012.

[65] Lieven De Lathauwer and Dimitri Nion. Decompositions of a higher-order tensor in block terms—part
iii: Alternating least squares algorithms. SIAM journal on Matrix Analysis and Applications,
30(3):1067–1083, 2008.

[66] Myriam Rajih, Pierre Comon, and Richard A Harshman. Enhanced line search: A novel method to
accelerate parafac. SIAM journal on matrix analysis and applications, 30(3):1128–1147, 2008.

[67] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. The alternating linear scheme for
tensor optimization in the tensor train format. SIAM Journal on Scientific Computing, 34(2):A683–
A713, 2012.

[68] David Ruppert and Matthew P Wand. Multivariate locally weighted least squares regression. The
annals of statistics, pages 1346–1370, 1994.

[69] Cécile Haberstich, Anthony Nouy, and Guillaume Perrin. Boosted optimal weighted least-squares.
Mathematics of Computation, 91(335):1281–1315, 2022.

[70] Tihomir Asparouhov and Bengt Muthén. Weighted least squares estimation with missing data. Mplus
technical appendix, 2010(1-10):5, 2010.

[71] Albert Cohen and Giovanni Migliorati. Optimal weighted least-squares methods. The SMAI journal
of computational mathematics, 3:181–203, 2017.

[72] Balázs Hidasi and Domonkos Tikk. Fast als-based tensor factorization for context-aware recommen-
dation from implicit feedback. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 67–82. Springer, 2012.

[73] Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and Morten Mørup. Scalable tensor factorizations
for incomplete data. Chemometrics and Intelligent Laboratory Systems, 106(1):41–56, 2011.

[74] Giorgio Tomasi and Rasmus Bro. Parafac and missing values. Chemometrics and Intelligent Laboratory
Systems, 75(2):163–180, 2005.

[75] Wolfgang Hackbusch, Boris N Khoromskij, and Eugene E Tyrtyshnikov. Hierarchical kronecker tensor-
product approximations. 2005.

[76] Brett W Bader, Michael W Berry, and Murray Browne. Discussion tracking in enron email using
parafac. In Survey of text mining II, pages 147–163. Springer, 2008.

BIBLIOGRAPHY 115

[77] Pierre Ladevèze, J-C Passieux, and David Néron. The latin multiscale computational method and
the proper generalized decomposition. Computer Methods in Applied Mechanics and Engineering,
199(21-22):1287–1296, 2010.

[78] Pierre Ladevèze. Nonlinear computational structural mechanics: new approaches and non-incremental
methods of calculation. Springer Science & Business Media, 2012.

[79] Anthony Nouy and Pierre Ladevèze. Multiscale computational strategy with time and space homoge-
nization: a radial-type approximation technique for solving microproblems. International Journal for
Multiscale Computational Engineering, 2(4), 2004.

[80] Jie Chen and Yousef Saad. On the tensor svd and the optimal low rank orthogonal approximation of
tensors. SIAM journal on Matrix Analysis and Applications, 30(4):1709–1734, 2009.

[81] Tamara G Kolda. A counterexample to the possibility of an extension of the eckart–young low-rank ap-
proximation theorem for the orthogonal rank tensor decomposition. SIAM Journal on Matrix Analysis
and Applications, 24(3):762–767, 2003.

[82] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value decomposition.
SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.

[83] Antonio Falco and Anthony Nouy. A proper generalized decomposition for the solution of elliptic
problems in abstract form by using a functional eckart–young approach. Journal of Mathematical
Analysis and Applications, 376(2):469–480, 2011.

[84] Francisco Chinesta, Roland Keunings, and Adrien Leygue. The proper generalized decomposition for
advanced numerical simulations: a primer. Springer Science & Business Media, 2013.

[85] Amine Ammar, Béchir Mokdad, Francisco Chinesta, and Roland Keunings. A new family of solvers for
some classes of multidimensional partial differential equations encountered in kinetic theory modeling
of complex fluids. Journal of non-Newtonian fluid Mechanics, 139(3):153–176, 2006.

[86] Amine Ammar, Francisco Chinesta, and Antonio Falco. On the convergence of a greedy rank-one
update algorithm for a class of linear systems. Archives of Computational Methods in Engineering,
17(4):473–486, 2010.

[87] André Uschmajew and Bart Vandereycken. Greedy rank updates combined with riemannian de-
scent methods for low-rank optimization. In 2015 International Conference on Sampling Theory and
Applications (SampTA), pages 420–424. IEEE, 2015.

[88] Marie Billaud-Friess, Anthony Nouy, and Olivier Zahm. A tensor approximation method based on ideal
minimal residual formulations for the solution of high-dimensional problems. ESAIM: Mathematical
Modelling and Numerical Analysis, 48(6):1777–1806, 2014.

[89] Tamara G Kolda. Orthogonal tensor decompositions. SIAM Journal on Matrix Analysis and
Applications, 23(1):243–255, 2001.

[90] Eric Cances, Virginie Ehrlacher, and Tony Lelievre. Convergence of a greedy algorithm for high-
dimensional convex nonlinear problems. Mathematical Models and Methods in Applied Sciences,
21(12):2433–2467, 2011.

[91] Eric Cances, Virginie Ehrlacher, and Tony Lelièvre. Greedy algorithms for high-dimensional non-
symmetric linear problems. In ESAIM: Proceedings, volume 41, pages 95–131. EDP Sciences, 2013.

[92] Anthony Nouy. A generalized spectral decomposition technique to solve a class of linear stochastic
partial differential equations. Computer Methods in Applied Mechanics and Engineering, 196(45-
48):4521–4537, 2007.

[93] Francisco Chinesta, Pierre Ladeveze, and Elias Cueto. A short review on model order reduction based
on proper generalized decomposition. Archives of Computational Methods in Engineering, 18(4):395–
404, 2011.

116 BIBLIOGRAPHY

[94] Francisco Chinesta, Amine Ammar, and Eĺıas Cueto. Recent advances and new challenges in the use of
the proper generalized decomposition for solving multidimensional models. Archives of Computational
methods in Engineering, 17(4):327–350, 2010.

[95] Ledyard R Tucker. Implications of factor analysis of three-way matrices for measurement of change.
Problems in measuring change, 15(122-137):3, 1963.

[96] Ledyard R Tucker et al. The extension of factor analysis to three-dimensional matrices. Contributions
to mathematical psychology, 110119, 1964.

[97] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279–
311, 1966.

[98] Pieter M Kroonenberg and Jan De Leeuw. Principal component analysis of three-mode data by means
of alternating least squares algorithms. Psychometrika, 45(1):69–97, 1980.

[99] Arie Kapteyn, Heinz Neudecker, and Tom Wansbeek. An approach ton-mode components analysis.
Psychometrika, 51(2):269–275, 1986.

[100] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1 and rank-(r 1, r
2,..., rn) approximation of higher-order tensors. SIAM journal on Matrix Analysis and Applications,
21(4):1324–1342, 2000.

[101] Boris N Khoromskij and Venera Khoromskaia. Multigrid accelerated tensor approximation of function
related multidimensional arrays. SIAM Journal on Scientific Computing, 31(4):3002–3026, 2009.

[102] Boris N Khoromskij, Venera Khoromskaia, and H-J Flad. Numerical solution of the hartree–fock
equation in multilevel tensor-structured format. SIAM journal on scientific computing, 33(1):45–65,
2011.

[103] Ivan V Oseledets, DV Savostianov, and Eugene E Tyrtyshnikov. Tucker dimensionality reduction of
three-dimensional arrays in linear time. SIAM Journal on Matrix Analysis and Applications, 30(3):939–
956, 2008.

[104] Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM journal on matrix analysis
and applications, 31(4):2029–2054, 2010.

[105] Roland Badeau and Rémy Boyer. Fast multilinear singular value decomposition for structured tensors.
SIAM Journal on Matrix Analysis and Applications, 30(3):1008–1021, 2008.

[106] Osman Asif Malik and Stephen Becker. Low-rank tucker decomposition of large tensors using tensors-
ketch. Advances in neural information processing systems, 31, 2018.

[107] Linjian Ma and Edgar Solomonik. Fast and accurate randomized algorithms for low-rank tensor de-
compositions. Advances in Neural Information Processing Systems, 34:24299–24312, 2021.

[108] Antonio Falcó, Wolfgang Hackbusch, and Anthony Nouy. Tree-based tensor formats. SeMA Journal,
78(2):159–173, 2021.

[109] Jonas Ballani and Lars Grasedyck. Tree adaptive approximation in the hierarchical tensor format.
SIAM journal on scientific computing, 36(4):A1415–A1431, 2014.

[110] Ivan V Oseledets and Eugene E Tyrtyshnikov. Breaking the curse of dimensionality, or how to use svd
in many dimensions. SIAM Journal on Scientific Computing, 31(5):3744–3759, 2009.

[111] René Henrion. N-way principal component analysis theory, algorithms and applications. Chemometrics
and intelligent laboratory systems, 25(1):1–23, 1994.

[112] Lieven De Lathauwer and Joos Vandewalle. Dimensionality reduction in higher-order signal processing
and rank-(r1,r2,. . . ,rn) reduction in multilinear algebra. Linear Algebra and its Applications, 391:31–55,
2004. Special Issue on Linear Algebra in Signal and Image Processing.

BIBLIOGRAPHY 117

[113] M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis of image ensembles: Tensorfaces.
In European conference on computer vision, pages 447–460. Springer, 2002.

[114] Hongcheng Wang and N. Ahuja. Compact representation of multidimensional data using tensor rank-
one decomposition. In Proceedings of the 17th International Conference on Pattern Recognition, 2004.
ICPR 2004., volume 1, pages 44–47 Vol.1, 2004.

[115] Wolfgang Hackbusch and Stefan Kühn. A new scheme for the tensor representation. Journal of Fourier
analysis and applications, 15(5):706–722, 2009.

[116] Lars Grasedyck and Wolfgang Hackbusch. An introduction to hierarchical (h-) rank and tt-rank of
tensors with examples. Computational methods in applied mathematics, 11(3):291–304, 2011.

[117] Anh-Huy Phan, Andrzej Cichocki, André Uschmajew, Petr Tichavskỳ, George Luta, and Danilo P
Mandic. Tensor networks for latent variable analysis: Novel algorithms for tensor train approximation.
IEEE transactions on neural networks and learning systems, 31(11):4622–4636, 2020.

[118] I. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33:2295–2317, 2011.

[119] Cécile Haberstich. Adaptive approximation of high-dimensional functions with tree tensor networks for
Uncertainty Quantification. PhD thesis, École centrale de Nantes, 2020.

[120] Markus Bachmayr, Reinhold Schneider, and André Uschmajew. Tensor networks and hierarchical
tensors for the solution of high-dimensional partial differential equations. Foundations of Computational
Mathematics, 16(6):1423–1472, 2016.

[121] Antonio Falcó and Wolfgang Hackbusch. On minimal subspaces in tensor representations. Foundations
of computational mathematics, 12(6):765–803, 2012.

[122] Antonio Falcó, Wolfgang Hackbusch, and Anthony Nouy. On the dirac–frenkel variational principle on
tensor banach spaces. Foundations of computational mathematics, 19(1):159–204, 2019.

[123] Antonio Falcó, Wolfgang Hackbusch, and Anthony Nouy. Geometric structures in tensor representations
(final release). arXiv preprint arXiv:1505.03027, 2015.

[124] Mazen Ali and Anthony Nouy. Approximation with tensor networks. part i: Approximation spaces.
arXiv preprint arXiv:2007.00118, 2020.

[125] Mazen Ali and Anthony Nouy. Approximation with tensor networks. part ii: Approximation rates for
smoothness classes. arXiv preprint arXiv:2007.00128, 2020.

[126] Erwan Grelier, Anthony Nouy, and Mathilde Chevreuil. Learning with tree-based tensor formats. arXiv
preprint arXiv:1811.04455, 2018.

[127] Cécile Haberstich, Anthony Nouy, and Guillaume Perrin. Active learning of tree tensor networks using
optimal least-squares. arXiv preprint arXiv:2104.13436, 2021.

[128] Ivan Oseledets and Eugene Tyrtyshnikov. Tt-cross approximation for multidimensional arrays. Linear
Algebra and its Applications, 432(1):70–88, 2010.

[129] Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations. Physical review
letters, 91(14):147902, 2003.

[130] Lars Grasedyck and Sebastian Krämer. Stable als approximation in the tt-format for rank-adaptive
tensor completion. Numerische Mathematik, 143(4):855–904, 2019.

[131] Thorsten Rohwedder and André Uschmajew. On local convergence of alternating schemes for op-
timization of convex problems in the tensor train format. SIAM Journal on Numerical Analysis,
51(2):1134–1162, 2013.

[132] Boris N Khoromskij. O (dlog n)-quantics approximation of nd tensors in high-dimensional numerical
modeling. Constructive Approximation, 34(2):257–280, 2011.

118 BIBLIOGRAPHY

[133] Sergey V Dolgov, Boris N Khoromskij, Ivan V Oseledets, and Dmitry V Savostyanov. Computa-
tion of extreme eigenvalues in higher dimensions using block tensor train format. Computer Physics
Communications, 185(4):1207–1216, 2014.

[134] Richard E Bellman and Stuart E Dreyfus. Applied dynamic programming, volume 2050. Princeton
university press, 2015.

[135] Allan Pinkus. N-widths in Approximation Theory, volume 7. Springer Science & Business Media, 2012.

[136] Annalisa Buffa, Yvon Maday, Anthony T Patera, Christophe Prud’homme, and Gabriel Turinici.
A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM:
Mathematical modelling and numerical analysis, 46(3):595–603, 2012.

[137] Seaar Al-Dabooni and Donald Wunsch. Model order reduction based on agglomerative hierarchical
clustering. IEEE transactions on neural networks and learning systems, 30(6):1881–1895, 2018.

[138] Thomas Daniel, Fabien Casenave, Nissrine Akkari, and David Ryckelynck. Model order reduction as-
sisted by deep neural networks (rom-net). Advanced Modeling and Simulation in Engineering Sciences,
7(1):1–27, 2020.

[139] Olivier Zahm, Marie Billaud-Friess, and Anthony Nouy. Projection-based model order reduction meth-
ods for the estimation of vector-valued variables of interest. SIAM Journal on Scientific Computing,
39(4):A1647–A1674, 2017.

[140] Clarence W Rowley, Tim Colonius, and Richard M Murray. Model reduction for compressible flows
using pod and galerkin projection. Physica D: Nonlinear Phenomena, 189(1-2):115–129, 2004.

[141] Christophe Prud’Homme, Dimitrios V Rovas, Karen Veroy, Luc Machiels, Yvon Maday, Anthony T
Patera, and Gabriel Turinici. Reliable real-time solution of parametrized partial differential equations:
Reduced-basis output bound methods. J. Fluids Eng., 124(1):70–80, 2002.

[142] Gianluigi Rozza, Dinh Bao Phuong Huynh, and Anthony T Patera. Reduced basis approximation and
a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations.
Archives of Computational Methods in Engineering, 15(3):229–275, 2008.

[143] Guillaume Perrin, Christian Soize, Denis Duhamel, and Christine Funfschilling. A posteriori error and
optimal reduced basis for stochastic processes defined by a finite set of realizations. SIAM/ASA Journal
on Uncertainty Quantification, 2(1):745–762, 2014.

[144] Antonio Falcó, Lucia Hilario, Nicolás Montés, and Marta C Mora. Numerical strategies for the galerkin–
proper generalized decomposition method. Mathematical and Computer Modelling, 57(7-8):1694–1702,
2013.

[145] Vladimir N Temlyakov. Nonlinear methods of approximation. Foundations of Computational
Mathematics, 3(1), 2003.

[146] John A Lee and Michel Verleysen. Nonlinear dimensionality reduction, volume 1. Springer, 2007.

[147] Ronald A DeVore. Nonlinear approximation. Acta numerica, 7:51–150, 1998.

[148] Virginie Ehrlacher, Damiano Lombardi, Olga Mula, and François-Xavier Vialard. Nonlinear model
reduction on metric spaces. application to one-dimensional conservative pdes in wasserstein spaces.
ESAIM: Mathematical Modelling and Numerical Analysis, 54(6):2159–2197, 2020.

[149] Andrea Bonito, Albert Cohen, Ronald DeVore, Diane Guignard, Peter Jantsch, and Guergana Petrova.
Nonlinear methods for model reduction. ESAIM: Mathematical Modelling and Numerical Analysis,
55(2):507–531, 2021.

[150] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component analysis.
In International conference on artificial neural networks, pages 583–588. Springer, 1997.

[151] Heiko Hoffmann. Kernel pca for novelty detection. Pattern recognition, 40(3):863–874, 2007.

BIBLIOGRAPHY 119

[152] Sebastian Mika, Bernhard Schölkopf, Alex Smola, Klaus-Robert Müller, Matthias Scholz, and Gunnar
Rätsch. Kernel pca and de-noising in feature spaces. Advances in neural information processing systems,
11, 1998.

[153] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

[154] Matthias Scholz and Ricardo Vigário. Nonlinear pca: a new hierarchical approach. In Esann, pages
439–444, 2002.

[155] David Amsallem, Matthew J Zahr, and Kyle Washabaugh. Fast local reduced basis updates for the
efficient reduction of nonlinear systems with hyper-reduction. Advances in Computational Mathematics,
41(5):1187–1230, 2015.

[156] David Amsallem, Matthew J Zahr, and Charbel Farhat. Nonlinear model order reduction based on
local reduced-order bases. International Journal for Numerical Methods in Engineering, 92(10):891–916,
2012.

[157] Kyle Washabaugh, David Amsallem, Matthew Zahr, and Charbel Farhat. Nonlinear model reduction
for cfd problems using local reduced-order bases. In 42nd AIAA Fluid Dynamics Conference and
Exhibit, page 2686, 2012.

[158] Jeffrey Ho, Ming-Husang Yang, Jongwoo Lim, Kuang-Chih Lee, and David Kriegman. Clustering ap-
pearances of objects under varying illumination conditions. In 2003 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2003. Proceedings., volume 1, pages I–I. IEEE, 2003.

[159] Aleš Leonardis, Horst Bischof, and Jasna Maver. Multiple eigenspaces. Pattern recognition,
35(11):2613–2627, 2002.

[160] Todd K Moon. The expectation-maximization algorithm. IEEE Signal processing magazine, 13(6):47–
60, 1996.

[161] Michael E Tipping and Christopher M Bishop. Mixtures of probabilistic principal component analysers.
1998.

[162] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart. The mahalanobis distance.
Chemometrics and intelligent laboratory systems, 50(1):1–18, 2000.

[163] Gunilla Borgefors. Distance transformations in digital images. Computer vision, graphics, and image
processing, 34(3):344–371, 1986.

[164] Allan D Gordon. A review of hierarchical classification. Journal of the Royal Statistical Society: Series
A (General), 150(2):119–137, 1987.

[165] Robin Sibson. Slink: an optimally efficient algorithm for the single-link cluster method. The computer
journal, 16(1):30–34, 1973.

[166] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–
137, 1982.

[167] J MacQueen. Classification and analysis of multivariate observations. In 5th Berkeley Symp. Math.
Statist. Probability, pages 281–297, 1967.

[168] Charu C Aggarwal et al. Data mining: the textbook, volume 1. Springer, 2015.

[169] LKPJ Rdusseeun and P Kaufman. Clustering by means of medoids. In Proceedings of the statistical
data analysis based on the L1 norm conference, neuchatel, switzerland, volume 31, 1987.

[170] Hans-Peter Kriegel, Peer Kröger, Jörg Sander, and Arthur Zimek. Density-based clustering. Wiley
interdisciplinary reviews: data mining and knowledge discovery, 1(3):231–240, 2011.

[171] Petr Novák, Pavel Neumann, and Jǐŕı Macas. Graph-based clustering and characterization of repetitive
sequences in next-generation sequencing data. BMC bioinformatics, 11(1):1–12, 2010.

120 BIBLIOGRAPHY

[172] Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharill, Om Prakash Patel, Aruna Tiwari,
Meng Joo Er, Weiping Ding, and Chin-Teng Lin. A review of clustering techniques and developments.
Neurocomputing, 267:664–681, 2017.

[173] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review. ACM computing
surveys (CSUR), 31(3):264–323, 1999.

[174] Mark K Goldberg, Mykola Hayvanovych, and Malik Magdon-Ismail. Measuring similarity between sets
of overlapping clusters. In 2010 IEEE Second International Conference on Social Computing, pages
303–308. IEEE, 2010.

[175] Thomas Daniel. Machine learning for nonlinear model order reduction. PhD thesis, Université Paris
sciences et lettres, 2021.

[176] Thomas Daniel, Fabien Casenave, Nissrine Akkari, Ali Ketata, and David Ryckelynck. Physics-informed
cluster analysis and a priori efficiency criterion for the construction of local reduced-order bases. Journal
of Computational Physics, 458:111120, 2022.

[177] Thomas Daniel, Fabien Casenave, Nissrine Akkari, and David Ryckelynck. Optimal piecewise lin-
ear data compression for solutions of parametrized partial differential equations. arXiv preprint
arXiv:2108.12291, 2021.

[178] David Amsallem and Bernard Haasdonk. Pebl-rom: Projection-error based local reduced-order models.
Advanced Modeling and Simulation in Engineering Sciences, 3(1):1–25, 2016.

[179] Benjamin Peherstorfer, Daniel Butnaru, Karen Willcox, and Hans-Joachim Bungartz. Localized dis-
crete empirical interpolation method. SIAM Journal on Scientific Computing, 36(1):A168–A192, 2014.

[180] Harry Zhang. The optimality of naive bayes. Aa, 1(2):3, 2004.

[181] Celine Vens, Jan Struyf, Leander Schietgat, Sašo Džeroski, and Hendrik Blockeel. Decision trees for
hierarchical multi-label classification. Machine learning, 73(2):185–214, 2008.

[182] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

[183] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[184] Sotiris B Kotsiantis, Ioannis Zaharakis, P Pintelas, et al. Supervised machine learning: A review of
classification techniques. Emerging artificial intelligence applications in computer engineering, 160(1):3–
24, 2007.

[185] Damiano Lombardi and Fabien Raphel. A greedy dimension reduction method for classification prob-
lems. 2019.

[186] Evelyn Fix and Joseph Lawson Hodges. Discriminatory analysis. nonparametric discrimination: Consis-
tency properties. International Statistical Review/Revue Internationale de Statistique, 57(3):238–247,
1989.

[187] Peter Hart. The condensed nearest neighbor rule (corresp.). IEEE transactions on information theory,
14(3):515–516, 1968.

[188] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[189] Christian Beck, Sebastian Becker, Philipp Grohs, Nor Jaafari, and Arnulf Jentzen. Solving the kol-
mogorov pde by means of deep learning. Journal of Scientific Computing, 88(3):1–28, 2021.

[190] Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational
problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

[191] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

BIBLIOGRAPHY 121

[192] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

[193] Stefania Fresca and Andrea Manzoni. Pod-dl-rom: enhancing deep learning-based reduced order models
for nonlinear parametrized pdes by proper orthogonal decomposition. Computer Methods in Applied
Mechanics and Engineering, 388:114181, 2022.

[194] Gitta Kutyniok, Philipp Petersen, Mones Raslan, and Reinhold Schneider. A theoretical analysis of
deep neural networks and parametric pdes. Constructive Approximation, 55(1):73–125, 2022.

[195] Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused molecule
libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):120–131, 2018.

[196] Dennis Elbrächter, Philipp Grohs, Arnulf Jentzen, and Christoph Schwab. Dnn expression rate analysis
of high-dimensional pdes: Application to option pricing. Constructive Approximation, 55(1):3–71, 2022.

[197] E Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 1(5):1–11, 2017.

[198] Jiequn Han, Arnulf Jentzen, et al. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Communications
in mathematics and statistics, 5(4):349–380, 2017.

[199] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

[200] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[201] Helmut Bolcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. Optimal approximation with
sparsely connected deep neural networks. SIAM Journal on Mathematics of Data Science, 1(1):8–45,
2019.

[202] C. Ma, S. Wojtowytsch, L. Wu, et al. Towards a mathematical understanding of neural network-based
machine learning: what we know and what we don’t. arXiv preprint arXiv:2009.10713, 2020.

[203] Ingrid Daubechies, Ronald DeVore, Simon Foucart, Boris Hanin, and Guergana Petrova. Nonlinear
approximation and (deep) relu networks. Constructive Approximation, 55(1):127–172, 2022.

[204] Lukas Gonon and Christoph Schwab. Deep relu neural networks overcome the curse of dimensionality
for partial integrodifferential equations. arXiv preprint arXiv:2102.11707, 2021.

[205] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation
function. The Annals of Statistics, 48(4):1875–1897, 2020.

[206] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686–707, 2019.

[207] Ameya D Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative physics-informed neural
networks on discrete domains for conservation laws: Applications to forward and inverse problems.
Computer Methods in Applied Mechanics and Engineering, 365:113028, 2020.

[208] Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. Variational physics-informed neural
networks for solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

[209] E. Kharazmi, Z. Zhang, and G. E. Karniadakis. Variational physics-informed neural networks for
solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

[210] E. Kharazmi, Z. Zhang, and G.E. Karniadakis. hp-vpinns: Variational physics-informed neural
networks with domain decomposition. Computer Methods in Applied Mechanics and Engineering,
374:113547, 2021.

122 BIBLIOGRAPHY

[211] Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quantifying total uncertainty in
physics-informed neural networks for solving forward and inverse stochastic problems. Journal of
Computational Physics, 397:108850, 2019.

[212] Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

[213] Walter Ritz. Über eine neue methode zur lösung gewisser variationsprobleme der mathematischen
physik. 1909.

[214] W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-dimensional parabolic
partial differential equations and backward stochastic differential equations. Communications in
Mathematics and Statistics, 5(4):349–380, 2017.

[215] W. E and B. Yu. The deep ritz method: a deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

[216] G. M. Rotskoff, A. R. Mitchell, and E. Vanden-Eijnden. Active importance sampling for variational
objectives dominated by rare events: Consequences for optimization and generalization. arXiv preprint
arXiv:2008.06334, 2020.

[217] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational physics, 378:686–707, 2019.

[218] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Charac-
terizing possible failure modes in physics-informed neural networks. Advances in Neural Information
Processing Systems, 34:26548–26560, 2021.

[219] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: A navier-
stokes informed deep learning framework for assimilating flow visualization data. arXiv preprint
arXiv:1808.04327, 2018.

[220] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

[221] Justin Sirignano and Konstantinos Spiliopoulos. Stochastic gradient descent in continuous time. SIAM
Journal on Financial Mathematics, 8(1):933–961, 2017.

[222] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial differential
equations. Journal of computational physics, 375:1339–1364, 2018.

[223] Jingrun Chen, Rui Du, and Keke Wu. A comparison study of deep galerkin method and deep ritz
method for elliptic problems with different boundary conditions. arXiv preprint arXiv:2005.04554,
2020.

[224] Virginie Ehrlacher, Maria Fuente Ruiz, and Damiano Lombardi. Sott: greedy approximation of a tensor
as a sum of tensor trains. SIAM Journal on Scientific Computing, 44(2):A664–A688, 2022.

[225] Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American
statistical association, 58(301):236–244, 1963.

[226] Adrien Beguinet, Virginie Ehrlacher, Roberta Flenghi, O Mula, A Somacal, et al. Deep learning-based
schemes for singularly perturbed convection-diffusion problems. arXiv preprint arXiv:2205.04779, 2022.

[227] H. Risken. Fokker-planck equation. In The Fokker-Planck Equation, pages 63–95. Springer, 1996.

[228] R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the fokker–planck equation.
SIAM journal on mathematical analysis, 29(1):1–17, 1998.

[229] V.I. Bogachev, N.V. Krylov, M. Röckner, and S.V. Shaposhnikov. Fokker-Planck-Kolmogorov
Equations, volume 207. American Mathematical Soc., 2015.

BIBLIOGRAPHY 123

[230] Dongbin Xiu and Jan S Hesthaven. High-order collocation methods for differential equations with
random inputs. SIAM Journal on Scientific Computing, 27(3):1118–1139, 2005.

[231] Jinchao Xu and Ludmil Zikatanov. A monotone finite element scheme for convection-diffusion equa-
tions. Mathematics of Computation, 68(228):1429–1446, 1999.

[232] BR Baliga and SV Patankar. A new finite-element formulation for convection-diffusion problems.
Numerical Heat Transfer, 3(4):393–409, 1980.

[233] Kenneth Eriksson and Claes Johnson. Adaptive streamline diffusion finite element methods for sta-
tionary convection-diffusion problems. mathematics of computation, 60(201):167–188, 1993.

[234] Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. Relu deep neural networks and linear finite
elements. arXiv preprint arXiv:1807.03973, 2018.

[235] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. arXiv preprint arXiv:1611.01491, 2016.

[236] Gregory Beylkin and Martin J. Mohlenkamp. Algorithms for numerical analysis in high dimensions.
SIAM J. SCI. COMPUT, 26:2133–2159, 2005.

[237] M. Vandecappelle, N. Vervliet, and L. De Lathauwer. Nonlinear least squares updating of the canonical
polyadic decomposition. In 2017 25th European Signal Processing Conference (EUSIPCO), pages 663–
667, 2017.

[238] M. Rajih, P. Comon, and R. Harsman. Enhanced line search: A novel method to accelerate parafac.
SIAM Journal on Matrix Analysis and Applications, 30, September 2008.

[239] Daniele Bigoni, Allan P Engsig-Karup, and Youssef M Marzouk. Spectral tensor-train decomposition.
SIAM Journal on Scientific Computing, 38(4):A2405–A2439, 2016.

[240] Xiaokang Wang, Laurence T Yang, Yihao Wang, Xingang Liu, Qingxia Zhang, and M Jamal Deen. A
distributed tensor-train decomposition method for cyber-physical-social services. ACM Transactions
on Cyber-Physical Systems, 3(4):1–15, 2019.

[241] Maxim Rakhuba and Ivan Oseledets. Calculating vibrational spectra of molecules using tensor train
decomposition. The Journal of Chemical Physics, 145(12):124101, 2016.

[242] Anh-Huy Phan, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov, Julia Gusak, Petr
Tichavsky, Valeriy Glukhov, Ivan Oseledets, and Andrzej Cichocki. Stable low-rank tensor decom-
position for compression of convolutional neural network. ECCV2020, August 2020.

[243] Kirandeep Kour, Sergey Dolgov, Martin Stoll, and Peter Benner. Efficient structure-preserving support
tensor train machine. arXiv preprint arXiv:2002.05079, 2020.

[244] Laurent Sorber, Marc Van Barel, and Lieven De Lathauwer. Optimization-based algorithms for tensor
decompositions: Canonical polyadic decomposition, decomposition in rank-(l r,l r,1) terms, and a new
generalization. SIAM Journal on Optimization, 23(2):695–720, 2013.

[245] Vladimir N Temlyakov. Greedy algorithms andm-term approximation with regard to redundant dic-
tionaries. Journal of Approximation Theory, 98(1):117–145, 1999.

[246] Werner H Greub. Linear algebra, volume 23. Springer Science & Business Media, 2012.

[247] Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-rank approximation
problem. SIAM Journal on Matrix Analysis and Applications, 30(3):1084–1127, 2008.

[248] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[249] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Journal of the ACM
(JACM), 60(6):1–39, 2013.

[250] Dario Bini. Border rank of m× n×(mn- q) tensors. Linear Algebra and Its Applications, 79:45–51,
1986.

124 BIBLIOGRAPHY

[251] Dario Bini. Border rank of ap× q× 2 tensor and the optimal approximation of a pair of bilinear forms.
In International Colloquium on Automata, Languages, and Programming, pages 98–108. Springer,
1980.

[252] J Landsberg. The border rank of the multiplication of 2× 2 matrices is seven. Journal of the American
Mathematical Society, 19(2):447–459, 2006.

[253] Wim P Krijnen, Theo K Dijkstra, and Alwin Stegeman. On the non-existence of optimal solutions and
the occurrence of “degeneracy” in the candecomp/parafac model. Psychometrika, 73(3):431–439, 2008.

[254] Mike Espig, Wolfgang Hackbusch, and Aram Khachatryan. On the convergence of alternating least
squares optimisation in tensor format representations. arXiv preprint arXiv:1506.00062, 2015.

[255] Xiaofei Wang, Carmeliza Navasca, and Stefan Kindermann. On accelerating the regularized alternating
least square algorithm for tensors. arXiv preprint arXiv:1507.04721, 2015.

[256] Ivan V Oseledets, Maxim V Rakhuba, and André Uschmajew. Alternating least squares as moving
subspace correction. SIAM Journal on Numerical Analysis, 56(6):3459–3479, 2018.

[257] Shmuel Friedland, Volker Mehrmann, Renato Pajarola, and Susanne K Suter. On best rank one
approximation of tensors. Numerical Linear Algebra with Applications, 20(6):942–955, 2013.

[258] Kim Batselier, Haotian Liu, and Ngai Wong. A constructive algorithm for decomposing a tensor
into a finite sum of orthonormal rank-1 terms. SIAM Journal on Matrix Analysis and Applications,
36(3):1315–1337, 2015.

[259] Tong Zhang and Gene H Golub. Rank-one approximation to high order tensors. SIAM Journal on
Matrix Analysis and Applications, 23(2):534–550, 2001.

[260] B Khoromskij and Venera Khoromskaia. Low rank tucker-type tensor approximation to classical po-
tentials. Open Mathematics, 5(3):523–550, 2007.

[261] Steen Krenk and Jan Høgsberg. Statics and mechanics of structures. Springer Science & Business
Media, 2013.

[262] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high dimensional data: a
review. Acm sigkdd explorations newsletter, 6(1):90–105, 2004.

[263] Alexander Hinneburg and Daniel A Keim. Optimal grid-clustering: Towards breaking the curse of
dimensionality in high-dimensional clustering. 1999.

[264] Virginie Ehrlacher, Laura Grigori, Damiano Lombardi, and Hao Song. Adaptive hierarchical subtensor
partitioning for tensor compression. SIAM Journal on Scientific Computing, 43(1):A139–A163, 2021.

[265] Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. Linear algebra
and its applications, 415(1):20–30, 2006.

[266] Matthew Brand. Fast online svd revisions for lightweight recommender systems. In Proceedings of the
2003 SIAM international conference on data mining, pages 37–46. SIAM, 2003.

[267] Ke Ye and Lek-Heng Lim. Distance between subspaces of different dimensions. arXiv preprint
arXiv:1407.0900, 4:4, 2014.

[268] Ke Ye and Lek-Heng Lim. Schubert varieties and distances between subspaces of different dimensions.
SIAM Journal on Matrix Analysis and Applications, 37(3):1176–1197, 2016.

[269] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

[270] Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern
recognition, 40(7):2038–2048, 2007.

[271] Qianqian Zheng and Jianwei Shen. Pattern formation in the fitzhugh–nagumo model. Computers &
Mathematics with Applications, 70(5):1082–1097, 2015.

BIBLIOGRAPHY 125

[272] H. Lee and I. S. Kang. Neural algorithm for solving differential equations. Journal of Computational
Physics, 91(1):110–131, 1990.

[273] L. Wang and J. M. Mendel. Structured trainable networks for matrix algebra. In 1990 IJCNN
International Joint Conference on Neural Networks, pages 125–132. IEEE, 1990.

[274] B. Després and H. Jourdren. Machine learning design of volume of fluid schemes for compressible flows.
Journal of Computational Physics, 408:109275, 2020.

[275] Sumeet Trehan, Kevin T Carlberg, and Louis J Durlofsky. Error modeling for surrogates of dynam-
ical systems using machine learning. International Journal for Numerical Methods in Engineering,
112(12):1801–1827, 2017.

[276] Brian A Freno and Kevin T Carlberg. Machine-learning error models for approximate solutions to pa-
rameterized systems of nonlinear equations. Computer Methods in Applied Mechanics and Engineering,
348:250–296, 2019.

[277] H.-G. Roos, M. Stynes, and L. Tobiska. Robust numerical methods for singularly perturbed differential
equations: convection-diffusion-reaction and flow problems, volume 24. Springer Science & Business
Media, 2008.

[278] A. N Brooks and T. JR. Hughes. Streamline upwind/petrov-galerkin formulations for convection
dominated flows with particular emphasis on the incompressible navier-stokes equations. Computer
methods in applied mechanics and engineering, 32(1-3):199–259, 1982.

[279] Leszek Demkowicz and Norbert Heuer. Robust DPG method for convection-dominated diffusion prob-
lems. SIAM Journal on Numerical Analysis, 51(5):2514–2537, 2013.

[280] J. Chan, N. Heuer, T. Bui-Thanh, and L. Demkowicz. A robust dpg method for convection-dominated
diffusion problems ii: Adjoint boundary conditions and mesh-dependent test norms. Computers &
Mathematics with Applications, 67(4):771–795, 2014.

[281] N. Kopteva and E. O’Riordan. Shishkin meshes in the numerical solution of singularly perturbed
differential equations. 2010.

[282] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, and et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv, 2016.

[283] J. Nocedal D. C. Liu. On the limited memory bfgs method for large scale optimization. Mathematical
programming, 45:503–528, 1989.

	Introduction
	State of the art of Tensor methods
	Proper Orthogonal Decomposition (POD)
	Canonical Polyadic (CP) decomposition
	Tucker decomposition
	Hierarchical Tucker (H-Tucker) format
	Tensor Train format
	Approximations in local subdomains

	State of the art of clustering methods
	Physics-informed clustering
	Other classification methods

	State of the art of Deep Learning-based Schemes
	Deep learning scheme
	Physics-Informed Neural Networks (PINNs)

	Contributions of the thesis
	Contribution on Tensor Formats: The Sum of Tensor Trains method
	Contribution in local tensor methods: The local HOSVD method
	Contribution in Deep Learning-based Schemes for Singularly Perturbed Convection-Diffusion Problems

	Organization of the manuscript

	Sum of Tensor Trains: SoTT
	Introduction
	Organization of the chapter

	Notation and preliminaries
	Tensor spaces
	Object definition and POD decomposition
	Ranks and tensor formats: Canonical Polyadic (CP) and Tensor Train (TT)

	The Sum of Tensor Trains (SoTT) algorithm
	Presentation of the SoTT algorithm
	Exponential convergence of the SoTT algorithm in finite dimension
	Complexity estimate of the SoTT algorithm

	CP-TT: fixed-rank SoTT algorithm with rank 1
	Numerical Experiments
	Comparison between CP-TT and other rank-one update methods
	SoTT method for the compression of multivariate functions

	Conclusions and perspectives

	Local tensor methods
	Introduction
	Organization of the chapter

	Notation and preliminaries
	Partitioning of tensors
	The High Order Singular Value (HOSVD) decomposition

	Local tensor spaces
	Construction of local subdomains
	Computation of the leaves
	Merging local subdomains

	Computing local HOSVD method
	Cost and complexity of the algorithm
	Summary
	Numerical results
	Compression of a Gaussian function
	Compression of the solutions of the Fitz-Hugh-Nagumo equation

	Conclusions and perspectives

	Deep Learning-based schemes
	Introduction
	Organization of the chapter

	A singularly perturbed convection-diffusion equation
	Problem definition
	General formulation
	Vanilla (V) formulation
	Weak variational (W) formulation
	Rescaled formulation
	Summary of the methods

	Neural networks based numerical schemes
	General principle
	Neural Network classes of functions
	Sampling schemes
	Comparison with finite element schemes

	Numerical Results
	Test case and comparison criteria
	Our code and practical implementation details
	Discussion
	Conclusions from the numerical experiments

	Future research directions and extensions

	Conclusions and perspectives
	Conclusions of SoTT
	Conclusions of local HOSVD method
	Conclusions of Deep Learning-based schemes

	Appendix of Sum Of Tensor Trains: SoTT
	Optimization of the computation
	Optimization of the coefficients
	Computing the SVD of the unfolding without explicitly computing and assembling the unfolding

	Results for functions in H1

	Appendix of Deep Learning-based schemes
	l2 error plots
	Architecture of the NN plots
	Training of the PINN

