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Résumé

La thèse traite de la modélisation des communautés microbiennes dans les réacteurs

homogènes: elle explore les implications des récents progrès techniques et théoriques

de la microbiologie sur la modélisation du taux de croissance. Elle aborde deux axes

de recherche principaux. Le premier est lié à l’intégration des apports de l’approche

moléculaire en écologie microbienne, tandis que le second vise à intégrer les avancées de

la bioénergétique. Ces approches apportent un éclairage nouveau sur la modélisation des

interactions entre espèces dans les modèles déjà existants, en particulier dans la théorie du

chemostat. Ces axes, bien que complémentaires, peuvent être considérés indépendamment

l’un de l’autre.

Pour intégrer les apports de l’écologie microbienne, l’objectif est de réaliser le passage

d’une modélisation fonctionnelle (approche utilisée traditionnelle en ingénierie micro-

biologique) à une modélisation intégrant l’unité taxonomique opérationnelle (OTU). Ce

sujet est exploré en exploitant des données issues d’un chemostat dans lequel a lieu un pro-

cessus de nitrification. Des questions concrètes telles que l’identification du métabolisme

associé à chaque OTU [125], l’étude des interactions microbiennes et la reconstruction

de leurs fonctions de croissance [124] sont abordées. Les outils mathématiques utilisés

sont principalement la programmation linéaire en nombres entiers mixtes et la théorie du

contrôle.

L’intégration de la bioénergétique apporte, quant à elle, des informations sur la re-

lation entre l’énergie dissipée, les rendements de conversion du substrat en biomasse et

des paramètres cinétiques. Ces relations sont dérivées de recherches théoriques fondées

sur la théorie de l’état de transition microbien [123] et les résultats sont utilisés pour

xiv



RÉSUMÉ xv

revisiter des données provenant de cultures pures en chemostats consommant du glucose

en conditions aérobies.



Abstract

The thesis deals with the modelling of microbial communities in homogeneous reactors: it

explores the implications of the recent technical and theoretical advances in microbiology

on the growth rate expression. Two main axis of research compose this thesis. The first

one is linked with the use of genetic sequencing advances coming from microbial ecology,

while the second one looks at bioenergetics. Both of them bring more complexity in

already existing models, particularly in chemostat theory. Though complementary to

each other, each axis of research can be regarded as an independent subject.

From a microbial ecology perspective the passage from functional group to operative

taxonomic unit (OTU) is the main concern. This topic is explored with data coming

from a nitrification process. More concrete questions such as identifying the functionality

of each OTU [125] and reconstructing their growth expressions are tackled [124]. The

mathematical tools used are mainly mixed integer programming and control theory.

From bioenergetics, insights are drawn on the relationship between dissipated energy,

biomass to substrate conversion yields and other kinetics parameters. These relationships

are derived from theoretical enquiries and are strongly based on microbial transition state

theory [123]. Data coming from chemostats with glucose as substrate is revisited under

this approach.

xvi



Chapter 1

Introduction

In the field of bioprocess, the measurement of variables either physical, chemical, or

biological, within reactors has reached a point where almost a continuum of data can be

obtained in real time [14]. The benchmark mathematical models for wastewater treatment

[49] and anaerobic digestion [8] have been built over these observational capabilities to

offer excellent plant operation, nevertheless unexpected breakdowns in reactors still occur

[134]. A new window of opportunity emerges as data obtained through genetic sequencing

of the microbial community (MC) offers a new proxy in order to better understand and

pilot bioprocesses [138]. In that context there is a rising demand for mathematical models

which take into account the MC.

Ecology, as a scientific discipline studying the interactions between organisms and

abiotic factors, is evidently much older than microbial ecology. It is the case that concepts

in classical ecology find their way in microbial ecology, but it is by no means an easy or

direct transition. To begin with, the distinction of species in the macro world, as to the

criteria of reproductive capabilities between individuals, from species in the micro world

is not evident. Indeed, microbial cells multiply themselves by division, and might acquire

genes from other cells through horizontal gene transfer [15] (as opposed to vertical transfer

from DNA replication during division). Taxonomically, microbes have been classified, but

it is not easy to extend the concept of species in a complex microbial community. In 1963

Sokal and Sneath defined classification as “the ordering of organisms into groups on the

1



CHAPTER 1. INTRODUCTION 2

basis of their relationships by descent or similarity or both”. They used the concept of

Operational Taxonomic Unit (OTU) [114], to simply enumerate the species being studied

at hand, in order to set the principles of numerical taxonomy given the rising use of

electrical and computational devices to analyse observations. However, to pinpoint who

are these OTU in a microbial community was an arduous task of microscopic observation

and experiments to determine characteristics such as the presence of a cell wall. It was in

1977 that the identification of the 16S ribosomal RNA as a slow varying genetic marker

was used to establish and reconstruct phylogeny in the prokariotic domain [140], making

a revolution in the field of microbial ecology, and thus enabling an easier determination

of the OTU within an ecosystem. The microbial OTU take a central place in the models

studied in this thesis.

Cells are open systems exchanging energy in the form of heat and mass with their

environment and other cells, constantly pushing away from thermodynamic equilibrium.

Prigogine and Nikolis in their book of non-equilibrium thermodynamics refer to such

systems as being dissipative structures [89]. They established connections between them

and stable limit cycles from differential equations, and proposed that periodicity, or self

sustained oscillations must lie at the heart of such structures. On the other hand, without

making use of non-equilibrium thermodynamics and dynamical systems theory, Mitchell

proposed the chemiosmotic theory, that explains how an ever-turning wheel of the in and

out flow of protons through the membrane of mitochondria maintains an energy gradient

responsible for ATP formation [82]. This wheel, however, is sustained by the high energy

yielding molecule that is acetyl-coA, and in the case of non-photosynthetic organisms, it

comes from the break down of nutrients captured by the cell. Bioenergetics deals at the

same time with the intricate mechanisms sustaining energy transformations in life, but

also with the available energy gradients to do so, which is one of the focus of the thesis.

This manuscript can be seen as a dialogue between the three introduced topics, bio-

processes, microbial ecology, and bioenergetics, mediated by mathematical modelling.
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1.1 Microbial Growth in Bioprocess

Mathematical models aiming to grasp ecological dynamics of a population can be traced

back to Verlhust (1838) [128]. More than a hundred years later Jacques Monod using data

from continuous cultures proposed a growth law that bears his name, to model bacterial

growth under substrate limitation [85] (see table 1.1). The system of differential equations

corresponding to a chemostat is expressed in equation 1.1, x represents the biomass, s the

substrate concentration, D the dilution rate, sin the concentration of the substrate at the

entry of the reactor, yx/s is the yield of substrate to biomass conversion, and µ(s) is the

growth rate depending on substrate s. The fifties and the sixties were marked by the use

of the chemostat [92] to study microbial development [54], which led some to question

the validity of Monod’s growth law under certain circumstances and consequently to

the proposal of new growth expressions. Table 1.1 shows some expressions for µ, the

constants in these expressions are usually referred to as kinetic parameters. In general

terms, these expressions all retained the key aspect of substrate limitation and added

another important experimental observation or phenomena, such as a density dependent

effect [23], inhibitory effects of the substrate [4], inhibitory effects of the products [2], and

slow transient dynamics [86].

ẋ = (µ(s)−D)x (1.1)

ṡ = (sin − s)D −
1

yx/s
µ(s)x

All of the cited growth expressions are empirical in nature, and thus the physical

interpretation of their parameters remains, in many cases, open. Furthermore these in-

terpretations are sometimes inherited from their analogues in enzyme kinetics. Monod

growth rate is an analogue to the Michaelis-Menten [80] expression, and Andrews in-

hibitory expression is analogue to that of Haldane [42] (moreover, in the literature it is

customary to call this expression Haldane growth). This has attracted some interest in

deriving these expressions from first principles or mechanistic approaches, in order to
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Name Expression

Monod(1942) µmax
s

Ks + s

Contois(1959) µmax
s

Kxx+ s

Haldane(Andrews 1968) µmax
s

s+Ks + s2

KI

Hill or Moser (1958) µmax
sα

Ks + sα
, α > 0

Table 1.1: Some common expressions used to model growth rate µ(·) in response to
substrate s and concentration x. An exhaustive list can be found in [7].

gain insight on these parameters. For example the density dependent Contois equation

has been theoretically derived by Wang [136], considering that microbes may attach to

suspended particles and obstruct other microbes access to substrate.

The Monod equation, being the most popular, has certainly been subject to theoretical

enquiries, specially in light of the affinity constant Ks, whose interpretation is usually

very dependent on the hypothesis used to derive the model [71].

Tan et al. used statistical mechanics based on the number of ligand sites and en-

counters with molecules to derive the Moser equation [118] (which generalizes Monod

Equation see table 1.1). Two years later they used the same approach to derive Hal-

dane and other inhibitory expressions [117]. In a more recent statistical mechanics use,

Desmond-Le Quemener and Bouchez [25] derived an expression on the limiting resource

introducing the concept of harvest volume, which is the volume in which a microbe has

access to substrate, the theory is named Microbial Transition State theory (MTS) for its

analogue in chemical reactions.

The concept of relaxation time has been used in the approach proposed by Merchuk

and Asenjo [79] to derive the Monod equation. Suppose a system at an equilibrium E0 is

perturbed, name the new equilibrium E1, the relaxation time, as defined by Roels [105],

is the time τ that a system takes to pass from E0 to
(
1− 1

e

)
(E1 − E0). The process

rate µ can be estimated by 1
τ
. The cellular process of growth, encompasses several steps

that go from transport of substrate from the medium, to catabolism and finally biomass

formation or anabolism. As in electrical circuits, the relaxation time of processes in series
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are added linearly, thus, the relaxation time of cell growth τg is the sum of the relaxation

times of the previously mentioned stages, namely τg = τT + τcat + τan or in process rates

1
µg

= 1
µT

+ 1
µcat

+ 1
µan

. By supposing that the transport process rate is proportional to the

difference of intracellular substrate concentration and other assumptions they derived a

Monod expression.

Heijnen and Romein [47] defined a cellular process by dividing it as catabolism and

anabolism, and derived rates of each process depending on the ADP and ATP concentra-

tions, respectively. Essentially considering that the sum of ADP and ATP is constant and

giving particular forms to the rates of catabolism and anabolism, they derived a Monod

expression.

Yet in another mechanistic, but much simpler than the above approaches (perhaps

too simple), Lobry deducted the Monod equation from a differential equation with delay,

coming from the fact that substrate is not immediately transformed into biomass [73].

Interestingly, from its derivation it follows that Ks ∝ µmax.

In each of the mentioned approaches, the Ks value ends up being a function of several

other intermediate coefficients. In the case of Tan et al. [118] it depends on the energy

state of binding sites, in the case of Merchuck and Asenjo it depends on the yield and the

mass transfer coefficient of the cell wall [79], and in the case of Heijnen on the particular

coefficients taken for the catabolism and anabolism laws. Thus, it makes very unlikely

to find a unique interpretation on the nature of Ks.

If the situation for the affinity constant seems complicated from a theoretical stand-

point, it does not get any better in terms of measurements. Roques et al. [106] found

that in activated sludge systems the constant depended on the age of the sludge, as well

as on the difference of the input sin and residual substrate s. For that reason, he ex-

tended the Monod model to s
s+M+b(sin−s) , where M is interpreted as the affinity constant.

The term b(sin− s) is interpreted as the inhibitory effect of metabolites produced during

biomass formation, because sin− s is proportional to the formed biomass, with b being a

dimensionless constant.

In a review of modelling approaches [91], Nielsen pointed out that, to measure tran-
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sient kinetics, chemostat systems are better suited. Particularly the Ks constant is not

easy to measure in batch experiments, as opposed to µmax, for which the abundance

of nutrients of a batch experiment makes the measure easy. Years earlier, Owens had

concluded the same [94], but from an experimental point of view.

Button [18] collected extensive data regarding the kinetic parameters of chemostat

and batch experiments, particularly he found more than ten different expressions (and

methods to estimate them) that referenced affinity. He claimed that µmax and Ks are

specific characteristics for each organism and subject to adaptability, as illustrated by an

experiment in which, by slowly raising the dilution rate in a chemostat, µmax doubled

for a marine yeast [19]. He stressed, therefore, the importance of adaptation of microor-

ganisms to new media in order to obtain good results in measurements. However, he did

not question the usefulness of a single parameter to model microbial growth. Jannasch

and Egli, in their historical review of microbial growth cultures, argued that a set of

parameters for describing a particular microbial culture would be of interest [58].

Grady et al. [39], made a review of the possible causes for the variability of parameters.

Three causes were identified: culture history, parameter identifiability, and in the case of

batch experiments the ratio between initial substrate and biomass. Kovarova and Egli

[67] also discussed this variability and noted that for a same strain the pairs µmax, Ks

can go from low µmax and low Ks to high µmax and high Ks. They proceeded to argue

that certain properties related to growth would be better expressed according to the

environmental stimulus: If there is no food shortage a rapid growth (high µmax) will

be expressed after some generations, on the contrary, under food limitation its ability

to scavenge efficiently will flourish (low Ks). This argument implies that it would be

unusual to find low µmax and high Ks, since the two experimental devices to measure

growth, select for either trait. Under this line of reasoning Ferenci [35] made the case for

an uncertainty principle, as in quantum mechanics, regarding the pair (µmax, Ks) (and in

general parameters of equations describing growth rates). The inherent adaptability of

life, makes it paradoxical to define it in terms of constants, instead one should strive to

consider them as variables, or at least study the bounds in which these parameters may
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lie.

Mathematical analysis of growth models in continuous cultures also offers important

insights to the theoretical understanding of microbial growth, this is known as chemo-

stat theory [44], and more generally it is an important part of mathematical ecology

[65]. Continuous cultures are often described by a set of differential equations represent-

ing the mass balance of the inlet, outlet, and reactions taking place inside the reactor.

The solution of a system of differential equations represents the concentration in time of

the chemicals and microorganisms. Lyapunov stability theory, or simply stability analy-

sis, provides information of the long-term run of the solution of a system of differential

equations [60].

The stability analysis of any system of differential equations is very likely to depend

on its parameters. In the case of continuous cultures a reactor can be perturbed by

varying the input concentration (sin) or the dilution rate (D) (or equivalently, the inverse

of the hydraulic retention time). A common way to illustrate the stability analysis of the

system are operating diagrams, because it shows in a D − sin plane the state in which

a reactor will end in the long run (such as the washout state) [95]. Operating diagrams

are well known to process engineers, and have been developed empirically without the

need of mathematical models, for example in the nitrification removal of wastewater

[111], or to show the outcome of three OTUs interacting in a reactor [59]. More recently

operating diagrams have shown the optimal zone for biogas production in anaerobic

digestion models [61].

As a closing comment, it is interesting to note that most of the literature on pa-

rameters of growth expressions, either dealing with the interpretation, identifiability, or

measurements, comes mainly from the 80s to the early 2000s. More recent articles with

the same depth on its inherent and unresolved problems seem to be rare. It seems as if,

with the turn of the century, the increase of models complexity (ADM1, ASM1, systems

biology), computational capabilities and bigger data collection, the most appealing issue

is whether a model is able to predict accurately or not.
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1.2 Mathematical Modelling in Microbial Ecology

As previously stated in 1838 [128] Verhulst established a model to study population

growth known as the logistic equation shown in (1.2), where N is the species abundance,

r is the growth rate, and K is the carrying capacity. When N is small (compared to K),

the species exponentially grows at a rate r, and as N approaches its carrying capacity its

growth rate approaches zero.

Ṅ = rN

(
1− N

K

)
(1.2)

Model (1.2) is a textbook standard in mathematical ecology [65], and serves to illus-

trate the basis of r−K selection theory in ecology [98]. The paradigm essentially states

that two extreme strategies of survival are able to explain the traits of a species [103].

Either that of fast growth (big r), but inefficient resource uptake (conceptually a small

carrying capacity), or slow growth but efficient resource uptake. Organisms can then

be classified in an r −K continuum of both strategies, and environments characteristics

will select for them. This theory has proved consistent in certain domains, notably in

botany [78]. Interestingly, even though the logic of r −K selection theory spawns from

the logistic equation (1.2), there are no cases of animals or plants that actually follow the

predictions of the model [33].

The application of this paradigm in microbial ecology has been defended [5]. It has

been studied how microorganisms strategies are reflected by their operon copy numbers

[63] and affected by resource scarcity [6]. Naturally, no organism can master all strategies,

and in a theoretical approach, models have predicted a metabolic tradeoff between the

rate of growth versus yield of biomass [83] and how the different metabolic strategies

might explain diversity in homogeneous mediums [11].

In the case of bioreactors, one can think that a batch reactor is a very rich nutrient

medium, thus r traits (high µmax) should be selected, while in chemostat experiments

nutrients are limited and the environment should select for K traits (low Ks). Velicer
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and Lenski conducted an experiment to test this hypothesis by sequentially adapting two

different strains to batch and chemostats independently, and then making them compete

jointly, [127]. Clearly if the r−K paradigm holds, consistency should be observed in the

competition experiments (e.g. a batch adapted bacteria should outperform a chemostat

adapted strain in a new batch experiment), nevertheless inconsistency was found in this

sense for most of the experiments.

Once again, a paradigm of general ecology does not seem to easily fit in microbial

ecology. In general terms the r−K paradigm concentrates too much on the environmental

pressure exerted on organisms. As West et al. summarized, microbes seem to have a

very rich social life, phenomena such as quorum sensing, bacteriocin production, and kin

selection might also drive evolution and traits of microorganisms [137].

Which takes us to the point of microbial interactions from a modelling perspective.

Lotka [74], and Volterra [129], independently presented a 2 dimensional dynamical system

to model prey-predator relationships, now known as the Lotka-Volterra (LV) equations.

The model is very rich from a mathematical standpoint, and is also a classic equation to

study in Mathematical Ecology [65]. However, in its original form, the LV model has its

limitations as not being able to model mutualistic behaviour without the species growing

unbounded. Taking that into account, Hoek et al. [51] proposed a modified version of

it to model how available resources shape the cooperative or competitive behaviour in

the case of an experiment where two yeast strains delivered an essential amino acid to

one another. Extensions of the Lotka-Volterra model have derived what is now known as

generalized Lotka-Volterra (gLV) models shown in equation (4.1):

ẋi = µi

(
1 +

n∑
j=1

aijxj

)
xi i ∈ {1, . . . , n} (1.3)

the terms aij reflect the effect of OTU j on the growth of OTU i. The diagonal terms

aii are known as intraspecies interaction, while the off diagonal terms are known as the

pairwise interspecies interactions. Noting the signs of pairs (aij, aji), the classical ecolog-

ical relationships of mutualism or cooperation (+,+), commensalism (+, 0), predation
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(+,−), competition (−,−), and ammensalism (−, 0) can be recovered [97]. Model (4.1)

has been thoroughly analysed, even when the coefficients µi and aij are time dependent

and exhibit periodicity (which models seasonal traits) [37], [3]. Usually the condition of

negative intra-species interactions is used to show that the system can exhibit period-

icity. The gLV model has been used in microbial ecology to some degree of success to

study the gut microbiome of mice infected with C. difficile [17]. However, the quadrat-

ically growing number of parameters to describe interactions naturally entails problems

of identifiability if the data set is not large enough, or the system has not been suffi-

ciently perturbed. Besides, pairwise interactions limit the possibility of accounting for

more complex situations, furthermore the linearity fails to capture known pairwise inter-

actions, for example the secretion of a metabolite from one species known to be toxic to

another species [84]. On a more conceptual ground, the interaction coefficients of a gLV

model do not represent mechanistically anything, so even if a model correctly predicts

the microbial community dynamics it might not add to the understanding of what could

be physically or biologically taking place.

LV models have certainly found their way in the chemostat setting. The predator prey

relationships of an amoeba and E. coli in a chemostat where glucose was the sole carbon

source were investigated by Tsuchiya [122]. The resulting three dimensional dynamical

system was able to reproduce the oscillatory behaviour observed in the experiments.

Also, a general theoretical account of interactions in the form of LV model coupled to a

chemostat system with one substrate was performed by Saito et al. [107].

Chemostat theory naturally deals with interactions among microorganisms. A cor-

nerstone of the theory is known as the competitive exclusion principle (CEP). It roughly

states that in a microbial community of n OTUs, whose growth rates are increasing func-

tions of one limiting substrate, then only one or none will survive. A proof can be found

as early as 1977 [55] for the Monod function, and broad generalizations can be found

[141], even to more abstract mathematical settings [56]. Experimental demonstration

of the principle was accomplished in 1980 [57]: By independently cultivating strains and

fitting a Monod expression to each of them, they predicted the outcome of the two strains
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growing together, proving the usefulness of rigorous mathematical analysis in bioprocess.

Particularly, from the CEP one already knows that more complex growth laws or model

structures are needed in bioreactors, in order to have the observed diversity and functional

redundancy one observes in engineered ecosystems [112]. Interactions as a hypothesis for

coexistence in a chemostat setting have readily been pointed out in the literature [72],

which has been studied under very general hypothesis on the growth function for two

OTU and one limiting substrate [34]. Alternatively, coexistence can also be achieved if

the growth laws are non-monotonic (such as the Haldane function presented before) on

the substrate [44].

Di and Yang studied generic combinations of OTUs (up to three), substrate (up to

three), and growth functions (monotonic and inhibited by either OTU or substrates) in

order to explore the outcome of a reactor in terms of stability (presence of oscillations)

and productivity, by the use of simulation [26]. More classically, detailed mathematical

analysis of a system composed of two OTU and a single substrate, in which one of the

growth rates is non-monotonic, shows that coexistence can be achieved (under certain

operational conditions) [44]. In a more complex model a chemostat system composed of

three bacteria x1, x2, x3 performing denitrification, that is the conversion of nitrite and

nitrates into nitrogen gas, was studied by Vasiliadou et al. [126]. They studied three

chemostat models, for different combinations of the involved OTUs, namely x1 − x2,

x2−x3, and x1−x2−x3, where the growth laws were not all monotonic. They constructed

operating diagrams for each model to compare the different denitrification rates. The

diagrams showed a myriad of possible scenarios in terms of the outcome of the reactor,

from where they could deduct the most performing combination of bacteria, depending

on the operating parameters.

In other works that derive coexistence from a chemostat system, Pilyugin and Walt-

man analytically proved the existence of limit cycles occurring in a chemostat system

conformed by 1 OTU and 1 substrate with a monod law, and variable yield depending on

substrate s [99]. Then they proceeded by simulations to show that when another OTU

is added, with a fixed yield and a monod law, coexistence can be achieved. However, the
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yield substrate dependence is completely artificial, in the sense it does not attempt to

model any phenomena.

A paradigm in biology is that evolutionary time scales are larger than ecological

time scales, however the situation is being reconsidered under what is known as eco-

evolutionary dynamics [96]. For example, in a chemostat experiment it was shown how the

acquisition of traits in some generations of algae (evolution) to protect against a predator

shifted the ecological dynamics. This implies that these two time scales, ecological and

evolutionary, might be more intertwined than what is classically thought of [12], specially

in the microbial world. It is in that sense that Gorter et al. argues that interspecies

interactions (such as the aij i 6= j coefficients) should not be thought of as constants [38].

This section concludes by noting that the division between ecology and microbial

ecology and the insistence on the top-down approach of introducing ecological concepts

in microbiology might not be the best way to go [101], and perhaps it has created more

theoretical problems than it has solved. Ecological theory should, by definition, include

microbial ecology insights. Widder et al. make the case for an integrated collaboration

of theory and modelling along with data collection and method developments in order to

better predict and understand microbial communities [138]. Surely such an effort should

benefit general ecology as well. Thermodynamics, or more precisely bioenergetics, offer

some solid ground to develop microbial theory and is the basis of the next chapter.

1.3 Bioenergetics Models for Microbial Growth

The highly ordered state that life represents can only be sustained by the continuous use

of the available energy gradients in the environment. It is rather appropriate then, to

search for relationships between the physiochemical properties of the environment and the

growth rates and yields of substrate to biomass conversion ys/x of a microbial community.

Implicit in the following methods to be presented is the conceptualisation of a molecule

of biomass to describe the mean contents of a cell and associated thermodynamic proper-

ties such as entropy and enthalpy of formation. Hoover and Allison in 1940 had already
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proposed a formula for biomass composition of C19H32N2O9 obtained from the analysis

of organic dry matter of batch cultures of Rhizobium meliloti [53]. Edwin Battley in the

50’s went a step further on measuring besides a mean formula, also the thermodynamic

properties of yeast cells growing anaerobically and aerobically. At the time he concluded

that the mean composition depends on the substrate used, but in a more recent account

of his [9], he revised this claim arguing for the measurement errors given the technical

capabilities at the time. The direct chemical analysis of lyophilized cells after centrifuga-

tion is preferred now, compared to the direct combustion of dry biomass; the difference

in both methods is specially reflected in the oxygen content of the cell. In the same

article he argued that the fabric of cells of a given microbial species grown exponentially

on a substrate are expected to have the same composition regardless of the substrate

used, but one should expect them to have a different formula when grown on limited

nutrient medium such as continuous cultures. The case is also made for the use of C-mol

of biomass as a formula, that is, normalizing the biomass formula to contain one atom of

carbon, a convention adopted in this manuscript.

A good starting point to understand the progress and paradigms in these estimation

methods is the 1991 review of Heijnen and Van Dijken [48]. They distinguished between

metabolic approaches which use the description of reactions within the cell and black

box models which deals with the carbon source, electron donor and acceptor and the

N-source. The advantage of black box methods is that one does not require specific

knowledge on the biochemistry of particular organisms, the trade-off being less accurate

predictions. Regardless the methods label, all of them aim to establish a macrochemical

equation describing the process of biomass formation. Several approaches in either cate-

gory have been developed, the relationship between the environmental variables and the

yield were done by the coupling of the set of chemical reactions to be considered. The

coupling of chemical reactions is a linear combination of them, so in order to choose the

correct combination, all methods relied on a parameter calibrated from experimental and

observed data. Various of these parameters made reference to energy efficiencies: ratios

between the energies of different reactions that describe the process. It was observed
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that even though each method arrived at interesting correlations some of them suffered

from not being able to represent the second law of thermodynamics appropriately (al-

ready pointed out in detail by Roels [104]) or that their value depended on the frame of

reference on which the thermodynamic properties were taken from (inconsistency). Tak-

ing into account the observation made by Roels [105], they ended up proposing a black

box method that relies on the dissipated Gibbs free energy per C-mole of biomass of the

machrochemical equation which seemed to be the same for similar C-sources (in terms of

the length of its carbon chain and its reduction state), they had a mean error of 20% for

the prediction of yields with their method.

Curiously, Heijnen did not survey the Thermodynamic Electron Equivalents Method

(TEEM) presented in 1965 by McCarty to estimate yields [77] which can be classified

as a black box method. More than 42 years later the method was republished under

new considerations on the half reactions involved, after Xiao and Vanbriesen [142], a

year earlier, had modified the original method to take into account the carbon degree of

reduction and nitrogen balances. As a consequence, Kleerebezem and Van Loosdrecht

[64] discussed three methods to estimate yx/s: the Gibbs energy dissipation method by

Heijnen, McCarty’s updated TEEM method, and the ATP balancing method (which is

a metabolic approach). They concluded that for most of the cases the TEEM method

and Gibbs dissipated energy predictions behave similarly- their equations being even

equivalent in some cases- and that if one wishes to open either black box, a method quite

similar to the ATP balancing method should result. The Gibbs energy dissipation method

has been further expanded to account for environments where the energy gradients are

more limited [113].

A theoretical explanation on why the dissipated Gibbs energy might be such a good

predictor has been provided by Von Stockar and Liu [130]. A description of the non-

equilibrium system that a cell represents is given in terms of differential equations de-

scribing the entropy flowing in and out of the cell. They elucidated the fact that cells

are able to remain in a non steady state, by either exchange of chemical entropy, or heat,

even archea that take up heat were later found [70]. They concluded that cells growth
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is driven by Gibbs free energy, which englobes both heat and chemical entropy, Battley

had reached the same conclusions years earlier from experimental measurements of S.

cerevisae growth [9]. The theoretical framework of Van Stockar and Liu also allows to

explain the decrease of yields of cultures at slow growth rates [120].

Taking a larger view of MC modelling and bioenergetics, the use of an already se-

quenced genome allows to link the enzymatic activity to the genes and to the metabolic

network. A list of r metabolic reactions concerning m metabolites can then be con-

structed, which is represented in a stoichiometric matrix S ∈ Rm×r, where Sij stand for

the stoichiometric coefficient of metabolite i in reaction j. Note that coordinate-wise

positive vectors v solving the equation Sv = 0 represent possible combinations of the

identified reactions; any model searching for such a vector can be classified as a con-

straint based model (CBM). Flux balance analysis (FBA) is a type of CBM that adds

a linear objective function in order to find such a v [116]. Typical functions include

maximization of growth rate, or minimizing or maximizing the production of ATP. Un-

fortunately, CBM methods suffer from lack of standardization, and the construction of

matrix S usually requires expert knowledge to fill the gap from the missing enzymes in

order to complement metabolic pathways.

This introduction ends by noting that contrary to the prolific literature on methods

able to predict yields based on energy gradients of the environment, much less has been

said about other kinetic parameters from both empirical and theoretical enquiries [131].

As mentioned, Desmond-Le Quemener and Boucher proposed a new growth rate that

relates a threshold energy to be attained in order for a cell two divide [25], but even in

their approach no light is shed on µmax. In more recent findings, using a FBA approach,

growth maximization and a universal upper limit on the rate of Gibbs energy dissipation-

that is the dissipated Gibbs energy times the growth rate- is presented as an underlying

principle describing microbial growth [90]. It is able to explain the metabolic shift from

respiration to aerobic fermentation as well as earlier works on the Pareto frontier of kinetic

parameters [109].



CHAPTER 1. INTRODUCTION 16

1.4 Thesis outline

Chapter 2 states some definitions and technical concepts that are used throughout the the-

sis. Particularly, the Gibbs energy dissipation method is explained. It was the preferred

black box method, because the TEEM method relies on different equations depending

on the carbon source, while the Gibbs energy method uses one unique equation, but it is

the Gibbs dissipated energy that changes depending on the carbon source.

Chapter 3 studies the problem of functional classification of OTU in a continuous

reactor. Widder et al. [138] reviewed the current challenges in microbial ecology with

a focus on modelling demands. It is crucial to link functionality to the members of a

microbial community through models taking into account stoichiometry with an FBA

formulation, this can be seen as the spirit of Chapter 3, even though the model does

not qualify as a CBM, it is based the abundances of the OTU in the reactor and a

stoichiometric matrix. It strongly uses the notion of asymptotic observer [27] in order to

bypass the knowledge of the growth function. First a discussion is given on the use of

the bioenergetics yield methods and asymptotic observers to obtain the effective yields

of functional groups in a chemostat system where only the total biomass and substrates

are measured. The ideas are applied to a nitrification process. In a second movement,

a mixed integer linear program (MILP) can be constructed for the classification of the

OTU in functional groups of the same nitrification process.

Widder et al. [138] also argued that kinetic models to better represent the growth

of each OTU in an MC are strived for, chapters 4 and 5 go in that direction. Chapter

4 deals with the growth functions of the classified OTU on the previous chapter. First

a mathematical analysis of a model involving pairwise linear interactions (as in a gLV

model) coupled with substrate limitation for a two step nitrification process results in

operating diagrams revealing unintuitive behaviour of such a system. Operating diagrams

were also done in the course of this thesis as a technical aid for the work of Hannaki et

al. [43]. The concept of interaction function generalizing pairwise interactions is then

introduced. A method to reconstruct the shape of such an interaction function that may

vary through time is presented.
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In the line of understanding the growth rates of OTU chapter 5 takes a radical twist

to dive into the nature and origins of substrate limitation from the scope of MTS theory.

Chapter 5 begins by noting that a first order approximation of the MTS expression one

gets a Monod function, so a new interpretation of the affinity constant is discussed. The

chapter goes on to extend the MTS theory in two senses: showing how its formulation

can naturally entail in density dependence and product inhibition. The latter is used to

explain coexistence in a real experimental setting on one limiting substrate.

Chapter 6 ends the thesis with conclusions and perspectives of the studied topics.



Chapter 2

Technical framework

The key tools and definitions used throughout the manuscript are stated and exemplified

in this chapter. The dynamical systems section was taken from [44], the chemical reactions

section from [105], and the metabolism section from [64].

Some notation used:

� Given a vector v = (v1, . . . , vn) ∈ Rn, the function diag(v) stands for:

diag : Rn → Mn×n(R)

v →



v1 0 . . . 0

0 v2
. . .

...

...
. . . . . . 0

0 . . . 0 vn


(2.1)

� Let n ∈ N then [n] := {1, . . . , n}.

� For a scalar a ∈ R the term am×n denotes the m× n matrix containing a in all its

entries.

� Let M be a matrix, then Mi• denotes the i-th row, analogously, M•j denotes de

j-th column.

18
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2.1 Dynamical Systems and the Chemostat Model

The main types of models used in this thesis are dynamical systems in the form of

differential equations. To begin consider the system (2.2).

ẋ = f(x)

x(t0) = x0

(2.2)

It is classical to show that under conditions on function f there is a unique function

t 7→ x(t) that solves the system (2.2) the proof can be found in any standard textbook on

differential equations, for example [60], the following definition and theorem were taken

from the same book.

Definition 1. xeq is an equilibrium point of system (2.2) if f(xeq) = 0. They can be:

� Stable if for each ε > 0 there exists δ > 0 such that ‖x0 − xeq‖ < δ ⇒ ‖x(t)‖ <

ε, ∀t ≥ 0.

� Unstable if it is not stable.

� Asymptotically stable if stable, and δ can be chosen such that ‖x0 − xeq‖ < δ ⇒

lim
t→∞

x(t) = xeq

� Globally asymptotically stable if it is asymptotically stable, and for every x0 ∈

dom(f)⇒ lim
t→∞

x(t) = xeq

One can characterize a stable point in terms of the jacobian matrix of function f

Theorem 1. Let xeq be an equilibrium. And let A =
∂f

∂x

∣∣∣∣
x=xeq

be the Jacobian matrix of

function f evaluated at xeq. Let λi i ∈ [n] be the eigenvalues of matrix A Then:

� xeq is asymptotically stable if Re(λi) < 0 for all i ∈ [n]

� xeq is unstable if Re(λi) > 0 for some i ∈ [n].
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The case when Re(λi) = 0 is case dependent of the system at hand.

In this thesis, the models used correspond to the class of chemostat models [44]. The

most simple chemostat model consists of two state variables x and s, that represent the

concentrations in mass per volume of the biomass of an OTU and the limiting substrate

used for growth, respectively, as seen in equations (2.3). µ(x, s) represents the growth

rate (also known as process kinetics) depending on the state variables, D is the dilution

rate of the reactor, both in [time]−1 units. sin is the concentration of substrate s at the

entry of the reactor. yx/s is the yield of biomass per substrate.

ẋ = (µ(x, s)−D)x

ṡ = (sin − s)D − 1
yx/s

µ(x, s)x
(2.3)

This type of system can be easily extended to multiple substrates and multiple OTU

using vector notation and the diag operator defined at the beginning of the chapter.

Note x ∈ Rn the vector containing the concentration of each OTU. Let s ∈ Rm the vector

containing the concentration of measured molecules of the environment and sin the vector

containing the concentration of molecules s at the entry of the reactor. µ(x, s) ∈ Rn, the

vector containing the growth rate of each OTU, the one can write system (2.4).

ẋ = diag(µ(x, s)−Dn×1)x

ṡ = (sin − s)D + Y diag(µ(x, s))x
(2.4)

Eventually instead of Dn×1, one could have different dilution rates for each variable.

Matrix Y ∈ Rm×n is the stoichiometric matrix. The entries Yij are denoted ysi/xj to

recall the classical yield expression of microbiology, however the values ysi/xj have a sign

to account for production (+) or consumption (-). Finally note that at equilibrium one

has xi = 0 ∨ µi(x, s) = D ∀i ∈ [n].

The reaction invariant, which is a quantity that is conserved and does not depend on

the growth rate, is particularly useful for circumventing the knowledge of process kinetics.

It will be exploited in chapters 3 and 4.

Definition 2. Given system (2.4). z := −Y x+ s is called the reaction invariant.
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Lemma 1. If matrix Y is constant, and D > 0 then z(t)→ sin.

Proof.

ż = − ˙(Y x) + ṡ

= −Y ẋ+ ṡ

= −Y (diag(µ(x, s)−Dn×1)x) + (sin − s)D + Y diag(µ(x, s))x

= −Y diag(µ(x, s)x+ Y diag(Dn×1)x+ (sin − s)D + Y diag(µ(x, s))x

= (sin − s+ Y x)D

= (sin − z)D

Note that z = sin is the only equilibrium for equation ż = f(z) = (sin − z)D. The

jacobian of f(z):

Dzf(z) = diag(−Dm×1) (2.5)

Which shows that the jacobian is a negative definite matrix, thus zeq = sin is a global

asymptotic equilibrium.

2.2 Chemical Reactions

The reason for this section is just to formalize some computations (as done in Roels [105]),

to make the link of the stoichiometric matrix presented before and cellular metabolism

presented below.

Cells can only take up soluble particles, and thus chemical reactions appearing in this

manuscript are assumed to take place in medium where water is the solvent. 95% of a

cell’s biomass is composed of Carbon (C), Nitrogen (N), oxygen (O), and Hydrogen (H),

so in most cases reactions dealing with molecules of the type Cn1Nn2On3Hn4 will be the

case.

Definition 3. Consider a set of n molecules composed of m elements C1, . . . , Cm, rep-
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resented by eq (2.6).

{C1
a1j
. . . Cm

amj
}nj=1 (2.6)

where aij is the number of atoms of elements i that compose molecule j. The matrix

m× n matrix A composed of entries aij is called the atomic matrix.

Definition 3 extends to the case with charged molecules. An extra element e is added

to each molecule accounting for its electric charge.

Example 1. Consider the following set of molecules

{C6H12O6,O2,H2O,HCO3
−,H+}

Its atomic matrix is given by:

C6H12O6 O2 H2O HCO3
− H+

C 6 0 0 1 0

H 12 0 2 1 1

O 6 2 1 3 0

e 0 0 0 −1 1

Given a set of molecules (2.6) a reaction is possible if one can find coefficients v1, . . . , vn

not all zero, such that:

n∑
i=1

viaij = 0 ∀j ∈ [m] (2.7)

Or equivalently in vector notation let v = (v1, . . . , vn)>, one searches v ∈ Rn \ {0} such

that Av = 0. In that sense the kernel of the atomic matrix provides us information

concerning the stoichiometry [75].

Definition 4. Let v ∈ ker(A) \ {0} then v is a possible stoichiometry that defines a

reaction on a set of molecules {C1
a1j
. . . Cm

amj
}nj=1. For every j ∈ [n], such that vj < 0,
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one says that molecule j is a reactant. Inversely for any j such that vj > 0 one says that

molecules j is a product of reaction.

Example 2. In example 1 the kernel of the atomic matrix A is given by:

ker(A) = 〈(−1,−6, 0, 6, 6)>〉 (2.8)

vector v = (−1,−6, 0, 6, 6)> defines the following reaction

C6H12O6 + 6 O2 −−→ 6 HCO3
− + 6 H+ (2.9)

Note that the stoichiometric coefficient of water is zero in order to balance this reaction.

Since ker(A) is a vector space, then for any λ ∈ R 6= 0, λ(−1,−1, 0, 6, 6)> is also

a possible stoichiometry. Particularly if λ = −1 it means that the reactants become

products, and the products become reactants.

The concept of Gibbs free energy (G) is of importance in chemical reactions, since the

criterion for the most probable state of a system at constant pressure and temperature

is the minimum of Gibbs free energy [68]. Like any energy function the importance lies

in the difference of energy between two states, rather than its absolute value. The Gibbs

free energy G = H − TS unifies two other concepts, namely H the enthalpy and S the

entropy, and T the temperature. Thus a change in the Gibbs free energy may be due to

a change in the entropy or enthalpy or both.

The Gibbs free energy change ∆G of a reaction is the key to know in which direction

the reaction spontaneously takes place. It is calculated from the Gibbs free energy of

formation of each molecule and a possible stoichiometry.

Definition 5. Given a set of molecules {C1
a1j
. . . Cm

amj
}nj=1 and the vector Gf = (Gf1, . . . , Gfn)>

where entry Gfj represents the Gibbs free energy of formation of molecule j. Let v ∈

ker(A) define a reaction. Then the Gibbs free energy change of the reaction v corresponds
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to:

∆Gv = Gf · v (2.10)

If there is no confusion on the reaction being used it will simply be noted ∆G.

If ∆G < 0 then the reaction is said to be spontaneous or thermodynamically feasible.

On the contrary if ∆G ≥ 0 the reaction is non spontaneous, or thermodynamically

infeasible. Note that if v ∈ ker(A) defines a non-spontaneous reaction, then −v defines a

spontaneous reaction (unless ∆G = 0).

The standard state of a substance is a reference point used to calculate certain prop-

erties. The standard state in this manuscript is referred to a temperature (TS) of 298K,

with a concentration of 1 molar (M) in the case of soluble particles, and 1 atm of pressure

for gases. The superscript 0 denotes the standard state of a given quantity. For example,

the standard Gibbs formation energy of a molecule is noted as Gf 0 and the standard

Gibbs energy change of a reaction ∆G0.

Example 3. In example 1, let Gf 0 = (−917.2, 0,−237.2,−586.9, 0)> (units in [kJ/mole]).

Let v ∈ ker(A) define a reaction, then v = λ(−1,−6, 0, 6, 6)> for some λ ∈ R. There-

fore ∆G0 = −λ2604.2 [kJ]. The reaction is then spontaneous if λ > 0. Note that in

the previous example, the Gibbs free energy of the reaction is in [kJ], for practical rea-

sons one would like to express this quantity as [kJ/mole]. For example if λ = 1 then

one could say that the reaction has a standard Gibbs free energy change of ∆G0 =

−2604.2[kJ/mole of C6H12O6].

Reactions may occur at a different temperature T , and at different chemical activities

compared to the standard state (which is the case in most systems to be studied in this

manuscript). A general formula [64] for the Gibbs free energy of formation of a chemical

species i is presented in equation (2.11).

Gfi = Gf 0
i

TS
T

+
TS − T
T

Hf 0
i +RT ln(ai) (2.11)
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where R is the ideal gas constant, Hf 0
i and ai are the standard enthalpy of formation

and the chemical activity of chemical species i in the reaction. Equation (2.11) should

contain a term ln(ai/a
0
i ) instead of ln(ai) in order to have a dimensionless quantity inside

the logarithm, but since it is assumed a0i = 1, this will be omitted. The chemical activity

in this manuscript, will be the concentration of substance i in molars for diluted chemical

species, and the fraction between the partial pressure and the total pressure for gases.

Since equations coming from bioprocesses are used, water is the common solvent in reac-

tors, and its chemical activity is always 1 (thus the log term disappears). For insoluble

particles the chemical activity is always 1 as well, which is the case of biomass.

Example 4. In example 3, suppose the medium has pH 7, is saturated in O2 and HCO3
– ,

and a glucose concentration of 0.1[gr/l]. The chemical activities are:

[
0.1/180 0.2 1 0.004/29 10−7

]
(2.12)

The Gibbs free energy is ∆G = −2927[kJ/mole of C6H12O6]. About a 12 % difference

with respect to ∆G0.

Note: The chemical activity corresponding to oxygen and HCO3
– are determined

from the atmospheric partial pressure of oxygen and CO2 (in [atm]) (atmosphere is com-

posed 20% oxygen and 0.04 % CO2), divided by Henry constant in the case of HCO3
– ,

since the Gibbs free energy of formation for HCO3
– is considered as a diluted molecule. At

pH=7, HCO3
– is the most abundant inorganic carbon form [68]. R = 0.0083[kJK−1mol−1].

In the former examples one could have chosen CO2 instead of HCO3
– (noting that

CO2 + H2O ←−→ HCO3
– + H+) in the set of molecules. For stressing the importance of

the chemical activity of charged species in ecosystems (for example the pH) the latter

formulation is preferred throughout this manuscript.

Definition 6. Given a set of n molecules, a stoichiometry v, and the vector of chemical

activities given by vector a ∈ Rn. The reaction quotient Qv(a) is defined as

Qv(a) =
n∏
i=1

avii (2.13)
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When the Gibbs energy change of a reaction becomes zero, the reaction is said to be in

equilibrium. The equilibrium constant (at a given temperature and pressure) Kc is the

value of the reaction quotient at an equilibrium.

Given a stoichiometry v and using equation (2.11) the relationship between the reac-

tion quotient, equilibrium and equilibrium constant becomes clear from equations (2.14),

(2.15), (2.16), and (2.17).

∆Gv = 0 (2.14)

Ts
T

∆G0
v +

TS − T
T

∆H0
v +RT

∑
vi ln(ai) = 0 (2.15)

Ts
T

∆G0
v +

TS − T
T

∆H0
v +RT ln

(
n∏
i=1

avii

)
= 0 (2.16)

Ts
T

∆G0
v +

TS − T
T

∆H0
v +RT ln (Kc) = 0 (2.17)

Equilibrium constant allows to calculate the chemical activity of one of the molecules

of the reaction at equilibrium provided the activity of the rest of the molecules involved

in the reaction. At a given temperature and pressure, any a satisfying Kc = Qv(a), also

represents a state of equilibrium. For example, this proves useful in calculating the form

of nitrogen compounds and inorganic carbon fractions depending on the pH.

There is no general relationship that links the rate of a chemical reaction with its

Gibbs free energy change. The only thing known is that if the reaction is at equilibrium,

then the rate of the reaction going in one sense is the same as the rate going in the other

sense.

Finally, it is well known that one can add two reactions v1 and v2 with different

molecules just by adding the corresponding stoichiometric coefficients. Even though

v1 and v2 might be of different sizes, one can write v1 + v2 without ambiguity (which

is the case for the anabolic and catabolic reactions). For the sake of completeness, a

mathematical proof of this can be seen in the appendix A.1.
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2.3 Cellular metabolism

This section formalizes metabolism as a chemical reaction using the dissipated Gibbs

Energy method [64], which is used in chapters 3 and 5.

From an evolutionary perspective, a microbial species will be able to thrive as long

as it is able to profit from a thermodynamically feasible reaction of the set of molecules

of their environment [76]. This is the rational for determining the possible catabolic

reactions of a particular species in a given ecosystem. By definition, a catabolic reaction

must then be thermodynamically feasible. Example 4 could represent the catabolism of

E. coli growing on glucose under aerobic conditions.

The idea of a molecule of biomass (and its formation energy) as characterizing the

mean composition of a cell is an abstraction that serves to build a balanced reaction

representing anabolism. For example CH1.8O0.5N0.2 represents a C-mole of biomass [64],

and whether one would like to include other elements such as phosphorus depends on

the intentions in mind. Its composition implies that forming biomass requires a nitrogen

source and a carbon source as seen in example 5 below. Which carbon and nitrogen

sources to use in order to represent anabolism seems unclear from the literature. Am-

monium for instance seems to be preferred when no other nitrogen source is present.

When no organic carbon source is present in the environment bicarbonate can be used,

in other cases it is more likely that the organic carbon source is used, since the reaction

is thermodynamically more favourable.

Example 5. Consider the set of molecules {C6H12O6,HCO3
− ,NH4

+,H+,H2O,CH1.8O0.5N0.2}

and Gf 0 = (−917.2− 586.9− 79.40− 237.2− 67)>.

ker(A) = 〈(−0.175, 0.05,−0.2, 0.25, 0.4, 1)〉 which gives the reaction:

0.175 C6H12O6 + 0.2 NH4
+ −−→ 0.05 HCO3

− + 0.25 H+ + 0.4 H2O + CH1.8O0.5N0.2

∆G0 = −14.83[kJ/C −mole of Biomass]

Consider the activities a =

[
0.1/180 0.004/29 0.1/18 10−7 1 1

]
, then ∆G = ∆G0+

RT ln(Qv) = −20[kJ/C −mole of Biomass]
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Definition 7. Consider a set of molecules Ccat, which does not include a biomass molecule,

with Acat its stoichiometric matrix. A catabolic reaction is a feasible reaction of Ccat. Con-

sider another set of molecules Can containing a biomass molecule in its n-th coordinate.

Let vcat ∈ ker(Acat) and van ∈ ker(Aan) such that van(n) = 1. A metabolic reaction is a

reaction corresponding to vmet = vcat + van.

The former definition is just to remind than when referring to metabolism, in this

thesis, is always per C −mol of biomass. Also, since it is customary to already have a

balanced reaction to describe catabolism vcat, one usually writes the catabolic reaction

as a multiple of vcat, that is λvcat, with λ > 0.

Even though the formation of biomass (the anabolic reaction) can be thermodynami-

cally feasible in itself, recall that it is an abstraction in order to summarize the energetic

cost of the mean cell composition that was constructed from calorimetric measurements

[9]. The whole process of building all of the life blocks required for a cell to properly

function involves a lengthy number of intermediate reactions. At each step not all of

the energy can be harnessed and a fraction must be dissipated. Therefore a dissipated

energy ∆Gdis is added to the anabolic reaction Gibbs free energy to represent the real

energetic cost of biomass synthesis ∆Gan + ∆Gdis > 0. According to studies, the value

of ∆Gdis depends mainly on the carbon source and its reduction number in the case of

heterotrophic growth [64] and empirical expressions are proposed. In order to overcome

the energetic cost of forming a C-mole of biomass, the cell must then recur to an energy

yielding catabolic reaction from its environment.

Definition 8. Let ∆Gdis > 0, vcat be a catabolism with Gibbs free energy ∆Gcat, van be

an anabolism with Gibbs free energy ∆Gan, and λ > 0. We say a metabolism vmet =

λvcat + van dissipates ∆Gdis if equation (2.18) holds. λ is referred to as the metabolic

coupling coefficient.

λ∆Gcat + ∆Gan + ∆Gdis = 0 (2.18)

Example 6. Suppose ∆Gdis = 236[kJ/C −mole of Biomass]. Let vcat and van be as in
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examples 4 and 5. Then compute λ = −∆Gdis + ∆Gan

∆Gcat

. By equation (2.18), is clear that

vmet = λvcat + van, dissipates ∆Gdis (λ = 0.0737). A molecule’s stoichiometric coefficient

of vmet is denoted (without sign) ys/x. It is the yield of substrate consumed per mole of

biomass formed. Inversely yx/s = 1
ys/x

, denotes the yield of biomass formed per substrate

consumed. For example in the case of glucose this gives ys/x = 0.249
mol Glucose

C −mol Biomass
.

Finally suppose the metabolism of each OTU i is represented by vector vi, and let Π

be the projection from the space of all molecules, to the coordinates representing s of the

chemostat system (2.4). To construct the stoichiometric matrix the columns of matrix

Y are formed by: Y•i = Πvi. When the Gibbs free energy of the metabolism is corrected

by the chemical activity of molecules s, matrix Y depends on s, and lemma 1 no longer

holds. A model under this circumstances is explored in chapter 5.

2.4 Optimization Theory

Throughout the thesis several optimization problems are formulated. Given a set S and

a function f : S → R an optimization problem can be generally formulated as (2.19)

where s.t. is read as ”subject to”. The set S is called the constraints, and the function f

is called the objective function. However there is no general procedure for solving such

a problem [16]. If the set S is non-empty we say that the problem is feasible, and any

point in set S is a feasible point. A local optimum x point is a feasible point such that

there exists a neighbourhood V of x f(x) ≤ f(y) for every y ∈ V ∩S. A global optimum

x is a feasible point such that f(x) ≤ f(y) for every y ∈ S.

min f(x)

s.t. x ∈ S
(2.19)

Optimization problems are classified for particular instances of the function f and set

S. A mixed integer linear problem (MILP) is a problem where function f is linear and

the set S consists of a linear constraint (Ax = b) and some of the entries of x must take
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integer values (x ∈ Rm×Zn) (2.20). When there are no integer values, the problem simply

becomes a linear problem, and can be solved by the use of the simplex-dual algorithm.

For solving the case with integer values, a common method is the branch and bound

algorithm both using the simplex-dual algorithm to its advantage [108]. In several open-

source projects these algorithms are already deployed, for example Pyomo [46]. However,

we used an academic license of the Gurobi solver [41]. This type of problems are solved

in chapter 3.

f(x) = c>x

S = {x ∈ Rm × Zn| Ax = b}
(2.20)

Another common case is that of smooth non-linear problems (2.21). In this case the

objective function is a convex differentiable function, and the set S is defined by the points

satisfying g(x) = 0 and h(x) ≤ 0) both being differentiable functions (possibly multival-

ued, where the inequality should be read component-wise). Interior point methods or

barrier methods are usually employed [16] and can be found in open source software as

well [46]. This type of problem can sometimes have multiple local optimum points. A

type of non-linear problem is also solved in chapter 3.

f(x) ∈ C1(Rn)

S = {x ∈ Rn| g(x) = 0, h(x) ≤ 0}
(2.21)

Finally an optimal control problem (2.22). The objective function is now a functional

(a function that uses functions as inputs) that takes the solution of a differential equation

and a control u, the control u affects the solution of the differential equations. The set

of constraints becomes a functional space such as the set of all measurable functions,

which is infinite dimensional. This type of problem makes part of control theory [121].

A method for solving them is called the shooting method which is implemented in the

open source software bocop [119].
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f(u) =
∫ T
0
r(x, u)dt

S =

 u : [0, T ]→ Rm measurable

|ẋ = g(x, u), x(0) = x0


(2.22)



Chapter 3

Quantification and Assignment of

Metabolisms in a Microbial

Community

This chapter deals with two challenges, the assignment and quantification (in terms of

yields of substrate to biomass) of metabolism to the OTU in a MC. A framework is

developed that is applied to data coming from the PhD thesis of Dumont et al. [28].

Dumont had already explored the problem of functional assignment using asymptotic

observers [31], this chapter extends or completes his results in three ways:

� A discussion on how to identify the yields by the aid of the Gibbs energy dissipation

method and asymptotic observers.

� A class of asymptotic observers are proposed, that includes the original observer

proposed by Dumont.

� The problem of functional assignment is done using mixed integer linear program-

ming instead of statistical likelihood.

32
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3.1 Stoichiometric Matrix and Functional Groups

The functionality of a microbial group corresponds here to the catabolic reaction associ-

ated with this group. The term functional group makes reference then to all OTU that

perform a given catabolic reaction. The challenge is the assignment of known functionali-

ties to the identified OTU within a reactor. Even if two OTU perform the same catabolic

reaction, their yields might differ, however, for an initial simplification, consider a unique

yield for all of the OTU of a same functional group. We will come back to this hypothesis

at the end of this section.

Biological a priori knowledge is required for identifying the known functionalities

existing in a given environment. All of the possible thermodynamically feasible reactions

of the set of environment molecules do not forcefully imply the existence of a microbial

species performing such a reaction. Let nF be the number of identified functional groups,

and consider a system of the type (3.1)

ẋ = diag(µ(x, s)−DnF×1)x

ṡ = (sin − s)D + Y diag(µ(x, s))x
(3.1)

where x ∈ RnF is the vector containing the biomass concentration of each functional

group, and s represents the concentrations of a subset of the environment molecules that

define the metabolism. If vi defines the metabolism of functional group i, then Π is

the projection such that Πvi = Y•i. That is, the column of the stoichiometric matrix is

composed of the metabolic coefficients.

A problem of parameter identification arises. How to find the best fitting coefficients

of matrix Y . The matrix Y is of size m× nF . To achieve this, the theory of asymptotic

observers may be employed [ [27], so let us present them at first. In general biochemical

reactions they allow to reconstruct the unmeasured state variables, from the measured

state variables, independent of the reaction rate, which represents the main source of

uncertainty in modelling mass-balance biological systems. In this case suppose the sub-

strates s are measured, represented by sobs(t). The reaction invariant of system (2.4),
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z := −Y x + s, had already been introduced in chapter 2. Let Y −1 be a left inverse

of Y (if Y has full column rank one can take, for example, Y −1 = (Y >Y )−1Y >), then

x = Y −1(s− z). The asymptotic observer is constructed by using the measurement sobs,

instead of s, in the former equation.

x̂ := Y −1(sobs − z). (3.2)

x̂i is called the asymptotic observer of the functional group i. Suppose now that the total

biomass XT is also measured. The following optimization problem arises for finding the

best stoichiometric matrix.

min

T∫
0

∣∣∣∣∣
nF∑
i=1

x̂i(t)−XT (t)

∣∣∣∣∣ dt
st. Y•i = Πvi (3.3)

∆Gvi + ∆Gdis = 0

∆Gdis ∈ [∆Gmin
dis ,∆G

max
dis ]

Note that the constraints are linear. Furthermore the thermodynamic formalism of the

metabolism of a species can be omitted if one already has some bounds on the stoi-

chiometric coefficients and model structure for a particular bioprocess. Also it can prove

numerically unwise to calculate the pseudoinverse of a matrix in an optimization problem,

so it is desirable to derive an algebraic expression of the left inverse.

Lets apply all of the former to the case of a nitrification process in a chemostat, the

conditions of the experiments performed by Dumont are used [28]. Two reactors, A and

B, were operated continuously for approximately 500 days with variable dilution rate and

substrate input. They were inoculated with wastewater sludge and a synthetic mineral

medium was used, as a consequence a nitrification process took place. Oxygen injection

was maximized so there was no oxygen limitation and pH was regulated and maintained

around 7. The activities and the standard Gibbs free energies of formation used are given

in Table 3.1.
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In the nitrification process two functional groups are known to drive the system,

ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). In both func-

tional groups it is suggested that the dissipated energy per C-mole should be around 3500

kJ/C-mol of biomass, because the reverse electron transport mechanism is used to drive

the anabolic reaction [64].

Molecules G0
f [kJ ·mol−1] MW [g ·mol−1] Observation ai [mol · l−1]

NH4
+ -79.4 18 1 [g · l−1] 1/18

O2 0 32 saturated 0.2
NO2

– -32.2 46 0.5[g · l−1] 0.5/46
H+ 0 1 pH=7 10−7
H2O -237.2 18 - 1
NO3

– -111.3 62 0.5 [g · l−1] 0.5/62
HCO3

– -586.9 61 saturated 0.004/29
CH1.8O0.5N0.2 -67 24.6 - 1

Table 3.1: Molecules, standard Gibbs free energies of formation (from [64]), and activities
for a nitrification process based on the experiments of Dumont [28].

The AOB and NOB catabolic reactions read as follows:

NH4
+ + 1.5 O2 −−→ NO2

− + 2 H+ + H2O ∆GcatAOB = −264 [kJ/molNH4
+] (3.4)

NO2
− + 0.5 O2 −−→ NO3

− ∆GcatNOB = −75.5 [kJ/molNO2
−] (3.5)

A biomass synthesis reaction, representing anabolism, for both of the functional

groups:

0.2 NH4
+ + HCO3

− + 0.8 H+ −−→ CH1.8O0.5N0.2 + 1.05 O2 + 0.4 H2O (3.6)

∆Gan = 493 [kJ/molCH1.8O0.5N0.2] (3.7)

Note that oxygen is a product of this reaction, however the global stoichiometry

(metabolism) will be oxygen consuming. Based on the analysis made by Von Stockar et

al. on formalizing anabolic reactions [132], there is no problem in adding molecules from

the catabolic reaction (oxygen in this case) to balance the synthesis reaction while using

the Gibbs energy dissipation method, only the metabolic coupling coefficient changes,

but the global stoichiometry will remain the same. With that in mind, one solves the
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following equation:

λAOB = −∆Gdis + ∆Gan

∆GcatAOB

= 15.1

λNOB = −∆Gdis + ∆Gan

∆GcatNOB

= 52.8

which gives the following metabolisms

15.3 NH4
+ + 21.6 O2 + HCO3

− −−→ 15.1 NO2
− + 29.4 H+ + 15.5 H2O + CH1.8O0.5N0.2

0.2 NH4
+ + 25.4 O2 + 52.8 NO2

− + 0.8 H+ + HCO3
− −−→ 0.4 H2O + 52.8 NO3

− + CH1.8O0.5N0.2

In the nitrification process here studied, denote x = (xAOB, xNOB), s consists of am-

monium (s1), nitrite (s2) and nitrate (s3). From this analysis it can be seen that the

stoichiometric coefficients ys1/xAOB
and ys2/xAOB

are almost the same,
∣∣∣ys1/xAOB

ys2/xAOB

∣∣∣ = 1.01,

and approximated by λAOB, with their respective signs. Conversely, the proportion be-

tween ys1/xNOB
and ys2/xNOB

,
∣∣∣ys1/xNOB

ys2/xNOB

∣∣∣ = 0.004, is very small. Evidently, the question

remains to what extent does the value ∆Gdis affect the results. In table 3.2 the com-

putations of the ratios are shown for other ∆Gdis values obtained from fitting ∆Gdis to

literature values (see table 3.3)

∆Gdis[kJ/molCH1.8O0.5N0.2] ∆Gdis = 539 ∆Gdis = 2668 ∆Gdis = 3500
λAOB 3.9 12 15.1
λNOB 13.7 41.9 52.8∣∣∣ys1/xAOB

ys2/xAOB

∣∣∣ 1.05 1.02 1.01∣∣∣ys1/xNOB

ys2/xNOB

∣∣∣ 0.01 0.005 0.004

Table 3.2: Sensitivity of the ratio of yields for other ∆Gdis values.

The former implies that the usual hypothesis [93] that the yield of ammonium con-

sumption and nitrite production are the same for the AOB community, and the hypothesis

that the NOB community does not take up ammonium, are both well justified under this

thermodynamic analysis.
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For the above reason the stoichiometric matrix is approximated by:

Y =


−λAOB 0

λAOB −λNOB

0 λNOB

 (3.8)

In table 3.3 a comparison to the nitrification study performed by Weissmann [139]

is shown, the yields are calculated as 1
λAOB

mwCH1.8O0.5N0.2

mwNH4
+−N and 1

λNOB

mwCH1.8O0.5N0.2

mwNO2
− − N

where

mw stands for molecular weight, in particular, mwNH4
+ −N and mwNO2

− −N stands

for the molecular weight corresponding to nitrogen of the compound, which in both cases

is 14. It is interesting that a single ∆Gdis value fitted both reported yields, shown to

be ∆Gdis = 2668[kJ/molCH1.8O0.5N0.2], significantly lower that the value proposed in

[64] for organisms performing reverse electron transport. For the AOB community even

yields as high as 0.45[g odm/gNH4
+ − N] have been reported [13], implying a ∆Gdis =

474[kJ/molCH1.8O0.5N0.2].

Yield values yx/s AOB [g odm/gNH4
+ − N] NOB [g odm/gNO2

− − N]

∆Gdis = 539[kJ/molCH1.8O0.5N0.2]
0.45 (ref: [13]) 0.13

∆Gdis = 2668[kJ/molCH1.8O0.5N0.2]
0.147 (ref: [139]) 0.042 (ref: [139])

∆Gdis = 3500[kJ/molCH1.8O0.5N0.2]
0.12 0.03

Table 3.3: The relationship between ∆Gdis and yield for nitrifiers. odm stands for organic
dry matter.

Given that data of s1, s2 and s2 is given in grams of nitrogen, the stoichiometric

matrix will be written in terms of yx/s in grams of odm (organic dry matter) per gram

of nitrogen, as in Table 3.3. Going back to the optimization problem (3.8), denote yAOB

and yNOB the yields of AOB and NOB, respectively and rewrite (3.8) as:
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Y =


−1/yAOB 0

1/yAOB −1/yNOB

0 1/yNOB

 (3.9)

⇒ Y −1 = (Y >Y )−1Y > =

−2yAOB

3
yAOB

3
yAOB

3

−yNOB

3
−yNOB

3
2yNOB

3

 (3.10)

which in turn implies that:

x̂ =

 yAOB

3

(
−2(sobs1 − z1) + (sobs2 − z2) + sobs3 − z3

)
yNOB

3

(
−(sobs1 − z1)− (sobs2 − z2) + 2(sobs3 − z3)

)
 (3.11)

For this case study the optimization problem (3.3) can be written as:

min

T∫
0

|x̂AOB(t) + x̂NOB(t)−XT (t)| dt

s.t. yAOB ∈ [0.12, 0.45] (3.12)

yNOB ∈ [0.03, 0.13]

Before solving (3.12) to the data from experiments, a final word on the fact that

x̂ might be negative, which is physically senseless. It would be better to use x̂i(t) =

max{(Y −1(sobs(t) − z(t)))i, 0} as the observer, and it is indeed the case in the following

. A change in temperature was done in day 183, and only then complete nitrification

started, therefore only data from that point onwards was analysed.

Samples of the total dry biomass, concentrations of ammonium (NH4
+), nitrite (NO2

– ),

and nitrate (NO3
– ), were taken at specific times. Only ammonium (s1) was entering the

reactor, abusing of notation note sin =

[
sin 0 0

]>
From Reactor A the fitted yields were: yAOB = 0.213, ∆Gdis,AOB = 1531, yNOB =

0.085 ∆Gdis,NOB = 964. While in Reactor B fitted yields were: yAOB = 0.2622, ∆Gdis,AOB =
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1127, yNOB = 0.03 ∆Gdis,NOB = 3602. In the case of the AOB community, the dissipated

energies in each reactor are somewhat close. This is not the case for the NOB community,

however, note that in Reactor B, yNOB is the lower bound of the optimization problem,

which suggests that the NOB community probably did not developed as well as in Reac-

tor A. Figures 3.1 and 3.2 show the results of the solution of problem (3.3) for reactors

A and B, respectively. Note how the invariants in figures 3.1a and 3.2a converge quickly

to the same values. The observers from figures 3.1b and 3.2b indeed show that the NOB

community in reactor B was very low compared to reactor A.

(a) Invariant for reactor A. (b) Observer for reactor A.

Figure 3.1: Reactor A results of solving problem (3.12)

(a) Invariant for reactor B. (b) Observer for reactor B.

Figure 3.2: Reactor B results of solving problem (3.12)
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3.2 Assigning functions

Now that the stoichiometry of each functional group has been found, the task at hand is

to assign one of the possible nF stoichiometries to each OTU. In other words one wishes

to assign to each of the n OTU a functional group. Suppose p ∈ N genetic sequencing

measurements were made at timesteps t1, . . . tp, and denote x̂(t) the observer of the nF

functional groups. Some variables and parameters to pose the problem of assignation as

an optimization problem are stated:

� αik ∈ {0, 1}, i ∈ [n], k ∈ [nF ]. αik = 1 if OTU i is assigned to functional group k,

0 otherwise.

� εkj ∈ R+ k ∈ nF , j ∈ [p], error associated to the classification in functional group k

of OTU at measurement j.

� W ∈Mn×p(R+): Wij represents the concentration of OTU i at measurement j.

� X̂ ∈ MnF×p(R+). X̂kj = x̂k(tj), represents the observer of functiona group k

evaluated at the time of measurement j.

With this one can define the following constraints:

−εkj ≤ W>
•jα•k − X̂kj ≤ εkj ∀k ∈ [nF ], j ∈ [p] (3.13)

nf∑
k=1

αik ≤ 1 ∀i ∈ [n]. (3.14)

Constraint (3.13) describes the made done by the assignment of αik at measurement

j. Constraint (3.14) implies that each OTU can be classified to a maximum of one

functional group (leaving the possibility to not be classified at all). The problem to be
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solved becomes:

min
∑

k∈[nF ], j∈[m]

εkj

s.t. (3.13), (3.14). (3.15)

αik ∈ {0, 1}, i ∈ [n], k ∈ [nF ]

εkj ≥ 0 k ∈ nF , j ∈ [p]

Problem (3.15) is a mixed integer linear problem, however one might like to minimize

the quadratic error, in that case the problem becomes a mixed integer quadratic problem.

The procedure was applied to the data of Dumont [28], and appeared in the 2019 Euro-

pean Control Conference proceedings [125]. At the moment of its writing, the method

was applied with a different left inverse (eq (3.16)), and therefore a different asymptotic

observer.

Y −1 =

−yAOB 0 0

−yNOB −yNOB 0

 (3.16)

The multiplicity of left inverses opens up the question of the best choice. We argue

that the best choice comes from equation (3.10), for the simple reason that the resulting

observer uses the information of sobs3 , whereas with (3.16) it does not. Moreover, the

definition of the observer in the article was done without multiplying the yield, so it

may cause confusion to the reader. This was done because the optimization problem

explained in the article tries at the same time to find the optimal yields and classify

each species, which eliminates the original hypothesis of all of the OTU having the same

metabolism in each functional group. This is done by the use of big-M constraints and

its technicality would have obscured the presentation of Gibbs energy dissipation method

and asymptotic observers for fitting the yield. Without any other warning, the rest of

this chapter consists of the aforementioned article [125], which describes in detail the

implementation of a mixed integer program.



CHAPTER 3. QUANTIFICATION AND ASSIGNMENT OF METABOLISMS 42

Asymptotic Observers and Integer Program-
ming for Functional Classification of a Micro-
bial Community in a Chemostat.
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Abstract

From genetic sequencing, dry biomass, and metabolites measurements,

the assignment of functions to the species present in chemostat experiments

was solved by merging chemostat modelling and quadratic mixed integer pro-

gramming. The method was tested on a nitrification bioprocess where two

functions are known to drive the system. Sensitivity of the method, its ad-

vantages, and limitations are discussed.

3.3 Introduction

The objective of this manuscript is to present an optimization method based on mixed

integer programming and invariants of chemostat dynamical models for the functional

classification of microorganisms in bioprocess. One of the first attempts to implement an

optimization procedure can be found in Dumont et al. [31].

Measurements based on genetic material have become standard practice in ecological

engineered systems (e.g. wastewater treatments plants) [88]. However using these mea-

surements for prediction and control is still at a very early stage. To face such challenges

linking functionality to the different members of the community is an important initial

task to be tackled [138], [133]. Comparisons of such measurements to current databases

often fall short, since the coverage of existing species is very limited compared to reality.
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The motivation is therefore to develop tools for incorporating these new measurements

in engineering models.

3.4 Materials and Methods

Variables used throughout the article are summarized in Table 3.4. The following con-

ventions are used: Let n ∈ N then [n] := {1, . . . , n}, R+ := {t ≥ 0|t ∈ R}.

3.4.1 Experimental Conditions

The optimization method is applied to data coming from a chemostat experiment. A

chemostat is an experimental device used to study microbial growth where a reactor

continuously receives a solution containing nutrients for proper microbial development

[76]. The reactor has the same inlet and outlet flow, thus a constant volume is maintained

inside the reactor.

Two reactors, A and B, were operated continuously for approximately 500 days with

variable dilution rate and substrate input. They were inoculated with wastewater sludge

and a dilution composed of ammonium and a synthetic mineral medium was used; as a

consequence a nitrification process took place. Oxygen injection was maximized so there

was no oxygen limitation, and pH was regulated and maintained around 7.

Samples of the total dry biomass, concentrations of ammonium (NH4
+), nitrite (NO2

– ),

and nitrate (NO3
– ), were taken at specific times. Microbial diversity was analyzed using

single strand conformation polymorphism (SSCP) at specific times: 44 different Opera-

tional Taxonomic Unit (OTU) were identified in total, with most of them being present in

both. More details on the experimental conditions can be found in the author’s original

article [30].

3.4.2 Stoichiometry and Functional Groups

For this article a cascade (bio)reaction process is considered. Suppose n different OTU

are present in the chemostat. The cascade reaction refers to the situation where a group
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Table 3.4: Notation used throughout the article.

Symbol Description
s1(t) Concentration ([g/l]) of ammonium in time.
s2(t) Concentration ([g/l]) of nitrite in time.
s3(t) Concentration ([g/l]) of nitrate in time.
s(t) Vector containing s1(t), s2(t), s3(t).
xi(t) Concentration ([g/l]) of OTU i in time.
x(t) Vector containing x1(t), . . . , xn(t).
D(t) Dilution Rate ([1/day]) in time.
sin(t) Concentration ([g/l]) of input ammonium in time.
sobs1 (t) Measured concentration ([g/l]) of ammonium in time.
sobs2 (t) Measured concentration ([g/l]) of nitrite in time.
xobsi (t) Measured concentration ([g/l]) of OTU i in time.
z1(t) Reaction invariant of the dynamical system treated.
z2(t) Reaction invariant of the dynamical system treated.
x̂G1(t) Observer of the sum of the biomass of OTU in G1.
x̂G2(t) Observer of the sum of the biomass of OTU in G2.

of microorganisms (G1 ⊂ [n]) consumes a substrate s1 and produces s2 and biomass,

while another group of microorganisms (G2 ⊂ [n]) consumes s2 and produces s3 and

biomass. G1 and G2 are called functional groups. The situation is described as simplified

reactions (R1) and (R2). The reactions are simplified in the sense that they do not

attempt to represent a balanced chemical reaction, rather it represents the direction of

the bioprocess and the proportions (stoichiometric coefficients) of different consumed and

formed compounds of interest.

s1
µi(s,x)−→ s2 + yiMx ∀i ∈ G1 (R1)

s2
µi(s,x)−→ s3 + yiMx ∀i ∈ G2 (R2)

The terms yi are known as yields, it represents the number of moles of biomass

produced per mole of substrate consumed. However in this work the unit grams of dry

biomass per gram of substrate is used for yields. The term Mx represents a molecule of

biomass and several expressions can be found in the literature (e.g. CH1.613O0.557N0.158

[10]). Furthermore, for each i ∈ [n], OTU i is characterized by its process rate (also

known as growth function or kinetics) µi(s, x), where the first variable s represents a
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vector containing the concentration of (s1, s2, s3). The second variable x represents the

vector containing the concentration of all OTU.

From an evolutionary perspective there is reason to think that each OTU may have

its own yield and growth function.

From biological knowledge it is sometimes known that two different OTU can not

belong to the same functional group, that is G1 ∩G2 = ∅. This is the case of nitrification

process [139]. The group G1 is known as ammonia oxidizer Bacteria (AOB), which turn

ammonia (s1) into nitrite (s2), the group G2 is known as nitrite oxidizer Bacteria (NOB)

which turns nitrite into nitrate (s3).

3.4.3 Mass-Balanced model

The cascade reaction is modelled as a substrate-coupled dynamical model.

The chemostat has a dilution rate of D and an input of ammonium concentration sin,

both of which are operating parameters that can change in time, that is D = D(t) and

sin = sin(t), however for alleviating notation the time dependence is dropped. For more

details in chemostat modelling the reader may refer to [44].

Denoting each OTU concentration by xi, ammonium by s1, nitrite by s2, nitrate by

s3, and considering reactions (R1), and (R2) the mass balanced model can be formally

expressed:

ẋi = (µi(s, x)−D)xi ∀i ∈ G1 (3.17)

ẋi = (µi(s, x)−D)xi ∀i ∈ G2 (3.18)

ṡ1 =(sin − s1)D −
∑
i∈G1

1

yi
µi(s, x)xi (3.19)

ṡ2 =− s2D +
∑
i∈G1

1

yi
µi(s, x)xi −

∑
i∈G2

1

yi
µi(s, x)xi (3.20)

ṡ3 =− s3D +
∑
i∈G1

1

yi
µi(s, x)xi (3.21)

At this point we can formally state the problem. Let us assume that we know the
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measurements of the abundance of n OTU xobsi (t) i ∈ [n], sobs1 (t), sobs2 (t), and sobs3 (t) in a

chemostat where sin and D(t) are known. Find two disjoint subsets G1, G2 ⊂ [n], such

that the norm of the difference of the observations and the solution of the system (x, s)

given by equations (3.17), (3.18), (3.19), (3.20), and (3.21) is minimized, that is

min
∑
i∈G1

‖xi − xobsi ‖2 +
∑
i∈G2

‖xi − xobsi ‖2

+‖s1 − sobs1 ‖2 + ‖s2 − sobs2 ‖2 + ‖s3 − sobs3 ‖2

s.t G1, G2 ⊂ [n]

G1 ∩G2 = ∅

(x, s) solution of (3.17), (3.18), (3.19), (3.20), (3.21)

(3.22)

The problem relies on (i) not knowing the growth rates and (ii) testing all the possible

combinations and simulating is computationally expensive.

3.4.4 Asymptotic Observer

If we knew a priori both sets G1 and G2 and the growth rates µi(x, s), then we could

directly compare the measurements and the dynamical system given by equations (3.17),

(3.18), (3.19), (3.20), and (3.21). However we do not know neither the sets nor the

kinetics.

To solve this problem a classic invariant of such types of model are derived. These are

called also reaction invariants [135]. They allow the construction of asymptotic observers

[27], which are observers in the sense that, whatever the initial conditions are, they

converge to a manifold which only depends on the yields and some state variables, thus

circumventing the knowledge of process rate; this has been done for general biochemical

reactors (equations (49) to (56)) in [27]. The price to pay for such observers is that the

convergence rate to the manifold depends on the operating conditions.
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Define z1 :=
∑
i∈G1

1
yi
xi + s1 and compute ż1 using equations (3.17) and (3.19):

ż1 =
∑
i∈G1

1

yi
ẋi + ṡ1 (3.23)

=
∑
i∈G1

1

yi
(µi(s, x)−D)xi + (sin − s1)D −

∑
i∈G1

1

yi
µi(s, x)xi (3.24)

= −D

(∑
i∈G1

1

yi
xi + s1 − sin

)
(3.25)

= −D(t)(z1 − sin(t)) (3.26)

Analogously another invariant can be derived that allows linking the biomass of G2

and substrates. Define z2 :=
∑
i∈G2

1
yi
xi + s1 + s2 and compute ż2 using equations (3.18),

(3.19), and(3.20):

ż2 =
∑
i∈G2

1

yi
ẋi + ṡ1 + ṡ2 (3.27)

=
∑
i∈G2

1

yi
(µi(s2, x)−D)xi + (sin − s1)D (3.28)

−
∑
i∈G1

1

yi
µi(s1, x)xi − s2D +

∑
i∈G1

1

yi
µi(s1, x)xi

−
∑
i∈G2

1

yi
µi(s2, x)xi (3.29)

= −D

(∑
i∈G2

1

yi
xi + s1 + s2 − sin

)
(3.30)

= −D(t)(z2 − sin(t)) (3.31)

Note that z1 and z2 satisfy the same dynamics, which does not depend in µi. Invariants

z1 and z2 can be shown to be stable [27].

A simulation of the differential equation (3.26) using the dilution rate and input am-

monium of the experiment can be seen in Fig. 3.3, it suggests that the solutions approach

rapidly to a similar curve independently of the initial point. Since at the beginning of the
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experiment minimal biomass is present one assumes z1(0) =
∑
i∈G1

1

yi
xi(0) + s1(0) ≈ s1(t1).

Analogously z2(0) =
∑
i∈G2

1

yi
xi(0) + s1(0) + s2(0) ≈ s1(t1) + s2(t1).

Figure 3.3: Invariant evolution for Reactor A with three different initial points.

The observers are defined as x̂G1 := z1− s1 and x̂G2 := z2− s1− s2, each one of them

converges to
∑
i∈G1

1

yi
xi and

∑
i∈G2

1

yi
xi, respectively. A simulation of the observers trajectory

can be seen from figure 3.4 where s1 and s2 were taken as sobs1 and sobs2 , respectively.

Figure 3.4: Observer evolution for Reactor A using the measurements of s1 and s2.

3.4.5 Mixed Integer Program

A mixed integer program is presented in order to classify each OTU as AOB, NOB, or

not determined by using observers x̂G1 and x̂G2 as inputs. The objective function is to

minimize the error defined as the difference of the observers and
∑
i∈Gj

1

yi
xi for j ∈ {1, 2} .
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Let n be the number of different OTU identified, m the number of measurements, and tj

the time stamp of measurement j ∈ [m] . The variables to decide the classification are:

Variables:

� a ∈ {0, 1}n: ai = 1 if OTU i is classified as AOB, 0 otherwise.

� b ∈ {0, 1}n: bi = 1 if OTU i is classified as NOB, 0 otherwise.

� kA ∈ Rn
+: kAi > 0 if OTU i is classified as AOB, 0 otherwise. If kAi > 0 then

kAi = y−1i .

� kB ∈ Rn
+: kBi > 0 if OTU i is classified as NOB, 0 otherwise. If kBi > 0 then

kBi = y−1i .

� ε ∈ Rm
+ : εj error associated to classification of AOB in measurement j.

� η ∈ Rm
+ : ηj error associated to classification of NOB in measurement j.

Parameters of the optimization problem are divided in data as presented in table 3.4,

and meta-parameters: yAref , y
B
ref , δ,ma,Ma,mb,Mb, meaning that these parameters come

from prior knowledge to the experiment. All together they give bounds for the variables

kB and kA.

Parameters of the Problem

� W ∈ Mn×m(R+) : Wij = xi(tj). Column j contain the concentration of each OTU

at timestep tj.

� s1(tj) ∈ R+ ∀j ∈ [m] as defined in table 3.4.

� s2(tj) ∈ R+ ∀j ∈ [m] :as defined in table 3.4.

� x̂G1(tj) ∈ R+ ∀j ∈ [m] : Observer evaluated at timestamps.

� x̂G2(tj) ∈ R+ ∀j ∈ [m] : Observer evaluated at timestamps.

� yAref , y
B
ref ∈ R+ : Literature reference value for yields of AOB and NOB, respectively.

� δ ∈ (0, 1): fraction allowed to deviate from the reference yields.
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� mA,MA ∈ R+: lower and upper bounds for kAi , respectively. mA :=
1

(1 + δ)yAref
,

MA :=
1

(1− δ)yAref
.

� mB,MB ∈ R+: lower and upper bounds for kBi , respectively. mB :=
1

(1 + δ)yBref
,

MB :=
1

(1− δ)yBref
.

In the numerical experiences, the reference yield for AOB is yAref = 0.147 [gr odm/grNH4
+],

and for the NOB is yBref = 0.042 [gr odm/grNO2
– ] where odm stands for organic dry mat-

ter [139].

Based on the former discussion the following constraints are imposed. The notation

W•j is used to represent the j-th column of matrix W .

Constraints:

� AOB mass error classification: The difference between x̂G1 and the assigned mass

at each measurement is bounded by ε .

−εj ≤ W>
•jk

A − x̂G1(tj) ≤ εj ∀j ∈ [m]. (3.32)

� NOB mass error classification: The difference between x̂G2 and the assigned mass

at each measurement is bounded by η.

−ηj ≤ W>
•jk

B − x̂G2(tj) ≤ ηj ∀j ∈ [m] (3.33)

� Each species can be classified in only one functional group:

ai + bi ≤ 1 ∀i ∈ [n] (3.34)

� Linking constraint (Big-M Constraints): Activation of kAi or kBi when ai or bi is
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active, respectively:

mAai ≤ kAi ≤MAai ∀i ∈ [n] (3.35)

mBbi ≤ kBi ≤MBbi ∀i ∈ [n] (3.36)

� Objective Function: The minimum of the norms of vector ε and η.

‖ε‖2 + ‖η‖2 =
m∑
j=1

(η2j + ε2j) (3.37)

The problem to be solved is:

min
m∑
j=1

(η2j + ε2j)

s.t. (3.32), (3.33), (3.34), (3.35), (3.36)

ε, η,∈ Rm
+

a, b ∈ {0, 1}n

kA, kB ∈ Rn
+

(MIQP )

The problem (MIQP ) falls in the category of mixed integer quadratic programming,

and it can be properly described in terms of the number of OTU (n) and the number

of functional groups (r), and the number of observations (m). Note that since if one

considers one observer per functional group, the number of variables is calculated as

2× n× r+ 2×m× r. The number of restrictions is calculated as 2×m× r+ 3× n× r.

This shows that the number of restrictions and variables grow linearly with the number

of OTU (for fixed r).

3.5 Results and discussion

In all cases here presented the computing time was less than a second with zero optimal-

ity gap. The solver GUROBI was used within a Matlab interface. The computer was

equipped with 8gb of RAM memory and Intel core i3-7100U CPU 2,40 GHz .
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By varying δ the classification changes for certain OTU. The method always classifies

35 OTU in the same guild, which represent 87 % of the total biomass found. While 9

of them changed of class by varying the allowed bounds. Not all of the present OTU

were participating in the nitrification process. This can be explained by the presence of

heterotrophs which are feeding on decayed cell material and or predators.

The obtained yields were plotted for the case δ = 0.3 in figure 3.5. One can see that

the classification usually assigns the minimum or maximum yield.

Figure 3.5: Obtained Yields for Reactor A

The study shows that the bounds imposed on the inverse of the yields (kA, kB) deserve

some attention, since they can change the classification of some OTU. A more precise

quantification of the possible variability within a guild escapes the authors’ knowledge.

In the literature a measurement error of 30 % is usually found, therefore δ = 0.3 was

taken in order to compare both reactors.

The results for the comparison of both reactors can be seen in Table 3.5, where one

notes that 3 OTU were assigned to a different functional group (highlighted in dark grey);

it is very unlikely from a biological point of view that they had changed their function in

each chemostat, implying that the classification can be tricked in certain cases. 15 OTU

were assigned to a functional group in one case, but to none in the other (highlighted

in light grey); which can be explained by their low abundance and presence time in the

reactors where they were not assigned to any guild. Finally 26 OTU were assigned to the

same guild (highlighted in white), representing a mean abundance of 74 % and 76 % of
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Table 3.5: Comparison of reactors and results of previous work.

A 1 under an AOB and NOB columns represent classification in the functional group, 0 means
not classified in the functional group. Rows highlighted in light grey show OTU that changed
from either AOB or NOB in one reactor to none in the other one. Rows highlighted in dark grey
show OTU that changed from either AOB or NOB in one reactor to NOB or AOB, respectively,
in the other one. Highlighted in light blue the cases where the classification changed from either
AOB or NOB in one work to none in the other. Higlighted in blue the cases where classification
changed from either AOB or NOB in one work to NOB or AOB in the other work, respectively.
Time present in bold means it was close to clones identified in a database. ND stands for non
demonstrated nitrifying capacity.

.

Reactor A Reactor B
Functional
Assignment

Functional
Assignment

OTU
Relative Species
Abundance (%)

This
Work

Previous
Work

Relative Species
Abundance (%)

This
Work

Previous
Work

Time
Present

(%) Mean Max AOB NOB AOB NOB

TimePresent
(%)

Mean Max AOB NOB AOB NOB
1 20 0 2 1 0 1 0 9 0 3 1 0 1 0
2 31 1 6 1 0 0 1 20 0 2 1 0 0 0
3 15 0 3 0 0 0 0 3 0 3 0 0 0 0
4 0 0 0 0 0 0 0 16 0 5 1 0 1 0
5 57 1 11 0 1 0 1 81 NOB 4 27 0 1 0 1
6 32 1 15 0 1 0 1 25 1 7 0 0 0 1
7 14 0 4 0 0 1 0 24 1 5 1 0 0 0
8 71 3 18 1 0 1 0 17 0 11 0 0 1 0
9 24 NOB 1 6 0 0 0 0 36 1 8 0 0 0 1
10 19 1 9 0 0 1 0 16 0 5 1 0 0 1
11 12 ND 0 13 0 0 1 0 10 0 7 0 0 0 0
12 19 1 8 1 0 1 0 6 0 9 1 0 1 0
13 31 1 12 0 0 0 1 88 2 8 0 1 0 1
14 36 ND 1 9 1 0 0 0 20 1 9 1 0 0 1
15 38 1 12 1 0 0 1 41 1 8 1 0 0 1
16 44 1 4 0 0 0 0 83 2 6 0 0 0 1
17 36 1 4 0 1 0 1 30 1 8 0 1 0 1
18 35 1 10 0 1 0 1 0 0 0 0 0 0 1
19 11 ND 0 4 0 1 0 1 20 0 3 0 0 0 0
20 19 0 3 1 0 0 1 31 1 5 1 0 1 0
21 41 1 6 0 1 0 1 18 0 4 0 1 0 0
22 15 0 2 0 1 0 1 31 1 7 0 1 0 1
23 73 ND 2 8 0 0 1 0 76 2 8 0 0 1 0
24 23 1 4 0 1 1 0 23 0 5 1 0 0 1
25 64 ND 2 11 1 0 1 0 89 3 18 1 0 1 0
26 34 1 5 1 0 0 1 17 0 4 1 0 1 0
27 18 1 12 1 0 0 1 40 3 23 1 0 0 0
28 41 1 7 0 0 1 0 28 1 13 0 0 1 0
29 45 ND 2 6 1 0 1 0 15 0 5 0 0 1 0
30 16 1 11 0 1 0 1 76 ND 2 10 1 0 0 1
31 23 1 5 1 0 0 1 20 1 13 1 0 0 1
32 60 2 18 1 0 0 1 58 1 6 0 1 0 1
33 50 2 36 1 0 1 0 95 4 49 1 0 1 0
34 17 1 16 0 1 0 0 0 0 0 0 0 0 0
35 100 ND 10 41 1 0 1 0 100 ND 12 38 1 0 1 0
36 50 3 26 1 0 1 0 96 5 28 0 0 1 0
37 100 ND 6 37 0 0 1 0 39 2 10 0 0 1 0
38 100 AOB 38 77 1 0 1 0 100 AOB 35 65 1 0 1 0
39 30 1 13 1 0 1 0 42 2 20 0 0 0 0
40 0 0 0 0 0 0 0 57 2 11 0 1 0 1
41 25 1 5 0 0 0 0 11 1 28 0 0 1 0
42 17 1 13 0 1 0 0 9 0 12 0 0 1 0
43 93 5 30 0 0 1 0 93 5 29 1 0 0 0
44 11 1 21 1 0 1 0 0 0 0 0 0 0 0
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the total biomass of reactors A and B, respectively. The mean abundance corresponding

to AOB in reactors A and B was of 71 and 69 % and of the total biomass, respectively.

while the abundance of the NOB community in reactors A and B was 9 and 11 % of the

total biomass, respectively.

The method used in the work of Dumont et al. [31], consisted in generating the total

AOB and NOB biomass from an observer. Then they randomly picked 10 OTU and tested

all the possible assignments to find the one that best fitted the generated AOB and NOB

biomasses. They repeated this process 10000 times and finally assigned probabilities to

each OTU to be classified as either AOB, NOB or not determined. It took three days of

computing time.

Comparison from the classification obtained from the previous work can be seen from

table 3.5 as well. In Reactor A 19 OTU were classified differently, representing 27 %

of the total biomass; 7 out of 19 OTU (highlighted in blue) changed functional group

while the others (highlighted in light blue) had no functional group assigned in one of

the works. In Reactor B, 23 OTU were classified differently, representing 32 % of the

total biomass; 5 out of 23 OTU (highlighted in blue) changed functional group while the

others (highlighted in light blue) had no functional group assigned in one of the works.

The change in functional group (highlighted in blue) was systematically from AOB with

the method here presented, to NOB from the previous work. Another point worth noting

is that 7 and 9 false positives (assignment as AOB or NOB when database assigned ND)

can be seen from this work and previous work, respectively. This suggests that one should

consider modelling for heterotrophs, or taking out the rows corresponding to the ND from

the mass Matrix W of problem (MIQP ). The disagreement from the methods may be

explained, partially, from the low relative abundances of the OTU which should create

difficulties in any method.

Testing the effectiveness of the method would require chemostat experiments with a

completely characterized inoculum. However some a priori advantages of the method

here presented are highlighted: (1) Allows a deviation from a reference yield accounting

for variability within a microbial community, (2) the only user-defined parameter (δ) is
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suggested from experimental error (3) all OTU can be compared at the same time, and

(4) low computing time.

3.6 Conclusions and Perspectives

The classification problem of assigning a functional group to the different microorganisms

present in bioreactors was solved from an asymptotic observer that bypasses the choice

of the growth function and mixed integer programming.

The extension of the method to other types of bioprocess is currently under develop-

ment by considering the general invariants described in [27] and biological knowledge for

the different functional groups interacting in the process. The complexity of (MIQP )

offers, at least theoretically, chances that the problem is solvable for a big number of

OTU, if the number of functional groups remain low.

The use of mixed integer programming seems more suitable as an engine for classifi-

cation than testing combinations; it inherently handles the combinatorial nature of the

task.
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Chapter 4

On the Growth Rates of a Microbial

Community

The previous chapter dealt with the assignation of OTU to a given function within a

complex ecosystem independently of growth rate expressions. This chapter deals with

the modelling of growth rates of the same microbial community classified in the previous

chapter. It begins with the stability analysis of the gLV model proposed by Dumont

et al [29]. The structure of that model is generalized by the interaction function that

modulates a substrate limited growth expression. We show how microbial interactions

drive the nitrification process and a method to measure the influence of interactions on

the growth rate is presented. It is based on an article that has not yet been submitted.

The method used to identify the growth rates was published in the European Control

Conference 2020 proceedings [124], but it is completely retaken in the present article, so

it is redundant to include both of them.

56
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Microbial Interactions as Drivers of a Ni-
trification Process in a Chemostat

Pablo Ugalde-Salas, Héctor Ramı́rez C., Jérôme Harmand, Elie Desmond-Le Quéméner

Abstract

This article deals with the inclusion of microbial ecology measurements

such as abundances of operational taxonomic units in bioprocess modelling.

The first part presents the mathematical analysis of a model that may be

framed within the class of Lotka-Volterra models fitted to experimental data

in a chemostat setting where a nitrification process was operated for over 500

days. The limitations and the insights of such an approach are discussed. In

the second part, the use of an optimal tracking technique (developed within

the framework of control theory) for the integration of data from genetic

sequencing in chemostat models is presented. The optimal tracking revisits

the data used in the aforementioned chemostat setting. The resulting model

is an explanatory model, not a predictive one, it is able to reconstruct the

different forms of nitrogen in the reactor by using the abundances of the

operational taxonomic units, providing some insights into the growth rate of

microbes in a complex community.

4.1 Introduction

Microbial communities and their interactions play a central role in the understanding

of microbial ecosystems [137], and a current challenge is integrating genetic sequencing

data in a deterministic modelling framework [138, 133]. Using the terminology from the

thorough review in current methodologies on the deterministic modelling approaches of

microbial community dynamics presented by Song et al. [115], this articles deals with

population-based approaches where species are taken as the interacting units.

The classical ecological concept of species and niche in the microbial world is an elu-

sive one: in the macro world one can clearly differentiate one species from another for
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reproductive reasons and their ability to give birth to offspring. In the case of bacteria

and archea, reproduction goes simply by binary fission and exchange of some functional

genes (e.g. the ability to synthesize or metabolize substances) can be acquired in evo-

lutionary scale through lateral gene transfer [15]. Therefore as an ecological problem is

hard to define precisely the ’niche’ of ’microbial species’. These obstacles can be circum-

vented by considering the microbiologist concept of operational taxonomic unit (OTU)

based on the clustering of organisms sharing similar sequences of the 16S rDNA marker

gene. In the past years considerable efforts have been made to measure the bacterial

community composition. Tests such as fluorescence in situ hybridization (FISH), poly-

merase chain reaction (PCR) dependent techniques, and PCR independent techniques for

the analysis of DNA have become a standard tool for studying microbial diversity [36].

The contribution of this article is a new method to integrate the microbial community

measurements in chemostat models, based on any sequencing or fingerprinting technique

that can quantify the species abundances over time. In other words, while most models

used in bioengineering are functional- in the sense they consider only one species per bi-

ological reaction considered- this work is an attempt to merge classical population-based

models used in ecology and those used by engineers in biotechnology.

Interactions lie at the heart of ecology. Lotka [74] and Volterra [129], independently,

presented a 2 dimensional dynamical system to model prey-predator relationships, now

known as the Lotka-Volterra (LV) equations. The model is very rich from a mathemat-

ical standpoint, and is also a classic equation to study in Mathematical Ecology [65].

Extensions of the Lotka-Volterra model have derived what is now known as generalized

Lotka-Volterra (gLV) models [50] shown in equation (4.1):

ẋi = µi

(
1 +

n∑
j=1

aijxj

)
xi i ∈ {1, . . . , n} (4.1)

where xi represents the species abundance, µi the intrinsic growth rate of the species,

and the terms aij reflect the effect of OTU j on the growth of OTU i. The equation

states that the growth rate of xi is proportional to xi, but this proportionality constant
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depends on its intrinsic growth rate multiplied by the sum of all interactions affecting

it. Note that if there are no type of interactions (aij = 0), one recovers n uncoupled

linear differential equations, and thus the solution becomes xi(t) = xi(0) exp(µit), that is

exponential growth on time.

The diagonal terms aii are known as intraspecies interaction, while the off diago-

nal terms are known as the pairwise interspecies interactions. Noting the signs of pairs

(aij, aji), the classical ecological relationships of mutualism or cooperation (+,+), com-

mensalism (+, 0), predation (+,−), competition (−,−), and ammensalism (−, 0) can be

recovered [97]. Model (4.1) has been thoroughly analysed, even when the coefficients µi

and aij are time dependent and exhibit periodicity (which models seasonal traits) [37],

[?]. The gLV model has been used in microbial ecology to some degree of success to

study the gut microbiome of mice infected with C. difficile [17]. However, the quadrati-

cally growing number of parameters to describe interactions naturally entails problems of

identifiability if the data set is not large enough, or the system has not been sufficiently

perturbed. On a more conceptual ground, the interaction coefficients of a gLV model do

not represent mechanistically anything, so even if a model correctly predicts the microbial

community dynamics it might not add to the understanding of what could be physically

or biologically taking place. These observations led us to develop what can be considered

the core contribution of this article, which is to study the growth rate of each species in

a mixed culture: we reconstruct the shape of their growth rate, instead of trying to fit

a particular function (such as the gLV equations). As Monod himself commented when

developing the growth law that bears his name is that any function with the same shape

(monotone, concave, and bounded on the substrate) would have served [85], in this spirit

we formulate the question: what is the shape of the growth functions of multiple species

developing together?

As a departing point, the work of Dumont et al. [29] is presented in section 2. They

modelled a chemostat experiment where nitrification takes place by considering a glV

model coupled with a substrate limited growth expression (µi is no longer a constant, but

the classic Monod expression) and fitted their model using absolute abundances of the
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major OTU identified by molecular fingerprints. Section 3 inspects the model through a

mathematical analysis. Some interesting outputs of this analysis are that the number of

possible equilibrium points grows exponentially with the number of species, coexistence

can be achieved within the same functional group, and bi-stability may arise. In sec-

tion 4 the concept of interaction function is developed such that it generalizes the gLV

model. For approximating the interaction function a method of optimal control theory

was adapted: The growth rate of each species is modulated by a constrained regular

control of the system, thus the growth rate of each OTU is corrected in order to fit the

experimental data. The regular control is composed of a feedback part on the species

state variable, and a feed forward part, or tracking, on the measurement of abundances

of each species; the method involves solving state-dependent Ricatti equations [21]. In

section 5 the methodology from section 4 is applied to the data from the experiments

performed by Dumont et al. [30] and not just to the most abundant species as it was the

case of the model analysed in section 3 [29]. This approach explicitly assumes that dy-

namics of complex ecosystems are driven by interactions, that are the results of feedback

loops of each species on the growth rate of others. The method shows that by following

the community dynamics one can propose a growth rate that reconstructs the substrates

dynamics, however this can not be considered a predictive model, but rather a explicatory

model. The article ends with a discussion on the scope of applicability and perspectives

of the method.

4.2 Model Definition

Notations used throughout the article:

1. n: the number of OTU considered.

2. ni, i ∈ {1, 2}: the number of OTU in functional group Gi. In the example G1

corresponds to ammonia oxidizing bacteria (AOB) and G2 corresponds to nitrite

oxidizing bacteria (NOB).

3. Let m be an interger then [m] := {1, . . . , n}.



CHAPTER 4. ON THE GROWTH RATES OF A MICROBIAL COMMUNITY 61

4. xi : is the concentration of OTU i measured in [g/l]. i ∈ [n].

5. x: vector (x1, . . . , xn)>.

6. s1 : concentration of substrate 1 in [g/l]. In the example s1 represents ammonium.

7. s2 : concentration of substrate 2 in [g/l]. In the example s2 represents nitrite.

8. s3 : concentration of substrate 3 in [g/l]. In the example s3 represents nitrate.

9. sin: entry concentration of substrate 1 in [g/l]. May depend on time sin = sin(t).

10. s: vector (s1, s2, s3)
>. Referred to as metabolites.

11. Ii(t, x) : Interaction function of OTU i ∈ {1, . . . , n}.

12. µi(s, x) : growth function of OTU i ∈ {1, . . . , n}.

13. µ = (µ1(s, x), . . . , µn(s, x)) vector containing the growth function of every OTU.

14. D: dilution rate of the continuous reactor in [1/day]. May depend on time D =

D(t).

15. yi: yield of grams of OTU i formed per gram of substrate consumed.

16. ysi/xj : yield of grams of substrate si consumed/produced per gram of OTU j formed.

If negative it represents consumption, if positive it represents production.

17. Y : matrix containing all yields such that Yij = ysi/xj .

18. For integers m1 and m2 and a ∈ R, am1×m2 represents a matrix of m1 rows and m2

columns with a in every entry.

19. Let m be an integer then Im is the identity matrix of size m.

20. Let M be a matrix, then Mi• represents the i-th row of matrix M .

21. Let S be a finite set with m ∈ N elements. Then |S| := m.



CHAPTER 4. ON THE GROWTH RATES OF A MICROBIAL COMMUNITY 62

22. Given a vector v = (v1, . . . , vn) ∈ Rn, the function diag(v) stands for:

diag : Rn → Mn×n(R)

v →



v1 0 . . . 0

0 v2
. . .

...

...
. . . . . . 0

0 . . . 0 vn


(4.2)

4.2.1 Stoichiometric Equations

A cascade (bio)reaction process is considered. Suppose n different OTU are present in

the chemostat. A two step cascade reaction refers to the situation where a group of

microorganisms (G1 ⊂ [n]) consumes a substrate s1 and produces s2 and biomass, while

another group of microorganisms (G2 ⊂ [n]) consumes s2 and produces s3 and biomass.

G1 and G2 are called functional groups. The number of organisms in each functional will

be denoted n1 and n2 respectively, that is |G1| = n1 and |G2| = n2. This work treats the

case when G1 and G2 are disjoint sets:

H 1. Sets G1 and G2 satisfy: G1 ∩G2 = ∅ and G1 ∪G2 = [n].

The situation is described as simplified reactions (R G1) and (R G2). The reactions

are simplified in the sense that they do not attempt to represent a balanced chemical

reaction, rather they represent the direction of the bioprocess and the proportions of

different consumed and formed compounds of interest. The terms yi are known as yields,

they represent the quantity of g of biomass produced per g of substrate consumed by

OTU i. For example in the case of reaction (R G1), one gram of s1 is consumed, one

gram of s2 and yxi/s1 grams of dry biomass of OTU i are produced.

s1
µi(s,x)−→ s2 + yixi ∀i ∈ G1 (R G1)

s2
µi(s,x)−→ s3 + yixi ∀i ∈ G2 (R G2)
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However for expressing the system of differential equations further below, the terms ysi/xj

are used. They express the grams of substrate si consumed (negative sign) or produced

(positive sign) per gram of OTU j formed. They are related to yi as seen in table 4.1.

This defines the stoichiometry matrix Y ∈ R3×n, such that Yij = ysi/xj .

Yields per
Biomass formed

j ∈ G1 j ∈ G2

ys1/xj − 1

yj
0

ys2/xj
1

yj
− 1

yj

ys3/xj 0
1

yj

Table 4.1: Relationship of ysi/xj with yj.

Furthermore, for each i ∈ [n], OTU i is characterized by its process rate (also known

as growth function) µi(s, x). Notice that for being as generic as possible, the growth rate

may be a function of the whole state in order to model the influence of all OTU on the

growth rates of others.

An example of this process is the nitrification process where group G1 is known as

Ammonia oxidizing Bacteria (AOB), and group G2 is known as Nitrite oxidizing Bacteria

(NOB) [111].

4.2.2 Mass Balance Equations

Consider the scenario of a continuous and homogeneous reactor: the input flow is the

same as the output flow, with a dilution rate D. The input flow contains a concentration

sin of substrate s1. Each OTU grows at a rate µi(s, x). System (4.3) represents this

situation. A specific case of µi(s, x) is given in the next subsection.



CHAPTER 4. ON THE GROWTH RATES OF A MICROBIAL COMMUNITY 64

ẋi = (µi(s, x)−D)xi ∀i ∈ [n]

ṡ1 = (sin − s1)D −
∑
i∈G1

1

yi
µi(s, x)xi

ṡ2 = −s2D +
∑
i∈G1

1

yi
µi(s, x)xi −

∑
i∈G2

1

yi
µi(s, x)xi

ṡ3 = −s3D +
∑
i∈G2

1

yi
µi(s, x)xi

(4.3)

System (4.3) can also be written in a more compact form using the stoichiometric

matrix Y and the diag operator.

ẋ = diag(µ(x, s)−Dn×1)x (4.4)

ṡ =

([
sin 0 0

]>
− s

)
D + Y diag(µ(x, s))x (4.5)

4.2.3 Kinetic Equations

In the work of Dumont et al. [29] the growth rates seen in equations (4.6) were calibrated

against experimental data for the two most abundant OTU of each functional group.

µi(s, x) = µ̄i
s1

Ki + s1

(
1 +

∑
j∈[n]

aijxj

)
∀i ∈ G1

µi(s, x) = µ̄i
s2

Ki + s2

(
1 +

∑
j∈[n]

aijxj

)
∀i ∈ G2

(4.6)

The term

(
1 +

∑
j∈[n]

aijxj

)
accounts for pairwise interactions affecting the growth

rate of each OTU, while the term µ̄i
sj

Ki + sj
is a Monod growth expression, where µ̄i

represents the maximum growth rate, and Ki the half saturation constant [85]. Note

that if every aij = 0, then one recovers a classic substrate limited growth. Let A denote

the matrix with entries aij hereafter referred to as the interaction matrix. Dumont et

al. did not analyse their model but simply provided several simulations using parameter

values identified from experimental data. The following section of this article deals with
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the mathematical analysis of model (4.3) with growth rates given by (4.6).

4.3 Mathematical Analysis

The system of equations (4.3) is defined in the region

Ω := {(x1, . . . , xn, s1, s2, s3) ∈ Rn+3|x1, . . . , xn, s1, s2, s3 ≥ 0}

First, sufficient conditions on the interaction matrix for the system to be well posed

are established: meaning that solutions remain bounded and non-negative in time, this

ultimately implies that the solution exists for every t ≥ 0 [60].

Second, the equilibria of the system are derived. Possible equilibrium points for this

system grow exponentially with the number of OTU considered (n). Stability is not

analytically addressed, a numerical scheme calculating every equilibrium point and the

system’s Jacobian eigenvalues at the equilibrium point was implemented for studying the

system.

4.3.1 Properties of the system

A bound on the norm of the interaction matrix that depends on the initial conditions

and parameters one establishes that solutions will remain positive and bounded.

Lemma 2. For initial conditions (x1(0), . . . , xn(0), s1(0), s2(0), s3(0))) ∈ Ω, there exists

positive scalars M1, M2, and M3 such that solutions to (4.3) satisfy the following inequal-

ities:

∑
i∈G1

1

yi
xi + s1 ≤M1 (4.7)

∑
i∈G2

1

yi
xi + s1 + s2 ≤M2 (4.8)

s1 + s2 + s2 ≤M3 (4.9)
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The proof can be seen in the supplementary material. A bound on the norm of A is

found such that every matrix A respecting the bound, guaranties that Ω is a positively

invariant set.

Lemma 3. For initial conditions (x1(0), . . . , xn(0), s1(0), s2(0), s3(0))) ∈ Ω, there exists

a constant M > 0 such that for every matrix A satisfying ‖A‖∞ ≤ M , the solutions of

system (4.3) with growth rates given by (4.6), remain in Ω and are bounded.

The proof can be seen in the supplementary material.

The importance of Lemma 3 is that by restricting the norm of matrix A the sys-

tem is well-posed, meaning that the solutions can have biological and physical sense

(there is no such thing as negative concentrations). Particularly, one has that ‖A‖∞ =

max1≤i≤m
∑n

j=1 |aij|, which in this context implies that a bound on the sum of the ab-

solute value of the interaction terms that affects each species allows the system to be

well-posed. Note, however, this is a sufficient condition, thus the range of values matrix

A can sustain for the system to remain well-posed may be considerably larger.

4.3.2 Equilibrium Points

In this section analytical expressions for equilibrium points are shown. However, no

analytic expression concerning the stability of such points is presented. In the following

pages the reader will appreciate that the expressions of the equilibrium points are not

simple, consequently replacing them in a 5× 5 block matrix and calculating eigenvalues

resisted an algebraic treatment. To answer the question of stability a numeric scheme is

used by evaluating the Jacobian at the equilibrium point. At the end of the section an

algorithm is provided for exploring all the possible equilibria. All the computations for

deriving the equations of this section can be found in the appendix.

Let f(s) be such that,

fi(s) =


µ̄i

s1
Ki + s1

∀i ∈ G1

µ̄i
s2

Ki + s2
∀i ∈ G2

(4.10)
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Then µ(x, s) = diag(f(s))(1n×1 + Ax)

Thus, system (4.3) is rewritten as follows.

ẋ = diag(µ(x, s)−Dn×1)x (4.11)

ṡ1 =(sin − s1)D + Y1• diag(µ(x, s))x (4.12)

ṡ2 =− s2D + Y2• diag(µ(x, s))x (4.13)

ṡ3 =− s3D + Y3• diag(µ(x, s))x (4.14)

Definition 9. An equilibrium point (or steady state) is a point (xeq, seq) ∈ Ω so that the

right hand side of equations (4.11),(4.12), (4.13), and (4.14) equals zero.

Observe that equilibrium points are by definition non-negative so the state variables

can have physical meaning. For studying the cases where xeq contains zero valued entries,

the set of non-active coordinates is defined as follows:

Definition 10. Given an equilibrium point (xeq, seq) of system (4.3), then the set of non-

active coordinates J ⊂ {1, . . . , n} is defined as: J = {j1, . . . , jm : xeqji = 0, i ∈ [m]}.

nact1 and nact2 denote the number of positive entries of xeq of functional groups G1 and G2,

respectively. nact = n−m denotes the total number of positive entries of xeq. The active

point xact ∈ Rnact
is defined by the positive entries of xeq. Analogously, the functions

fact(s) and µact(x, s) are defined by the positive entries of xeq. The active interactions

Aact is defined as the matrix A without the J rows and columns. The active stoichiometry

matrix Y act is the matrix Y without the J columns.

In order to derive the equilibrium points, it is desirable an invertible Aact matrix.

Therefore in what follows of the work it is assumed that matrix A and some of its

submatrices have an inverse, this is stated properly in Hypothesis 2.

H 2. Let A be the interaction matrix of size n ∈ N and S be a proper subset of [n]

with |S| = m. Then the matrix B ∈ R(n−m)×(n−m) defined by taking out the S rows and

columns of matrix A is invertible.
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Assuming Hypothesis 2 a formula for the active points is derived from equation (4.11):

xact = (Aact)−1(diag(fact(s))−1Dnact×1 − 1nact×1) (4.15)

Note as well that at the equilibrium, s3 can be defined in terms of s1, s2 and sin. This

is done by adding equations (4.12), (4.13), and (4.14) which gives :

sin = s1 + s2 + s3 (4.16)

Both functional groups are present

The case where in each functional group remains at least one OTU is represented by

Hypothesis 3.

H 3. The set J satisfies G1 6⊂ J , G2 6⊂ J .

By replacing equation (4.15) in equation (4.12) s2 can be written as a function of s1:

s2 =
s1

b1s21 + b2s1 + b3
(4.17)

Then by replacing (4.17) in equation (4.13), one gets a fourth degree polynomial for

s1.

a4s
4
1 + a3s

3
1 + a2s

2
1 + a1s1 + a0 = 0 (4.18)

Formulae for coefficients b1, b2, b3, a0, a1, a2, a3, a4 can be found in supplementary ma-

terial.

The equilibrium point can be calculated from the solutions of the system of equations

(4.15), (4.16), (4.17), and (4.18) with non negative coordinates. If the system only
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provides solutions with at least one negative entry then the set J can not define an

equilibrium point.

Washout of G2

The washout of G2 is equivalent to hypothesis 4.

H 4. G2 ⊂ J and G1 6⊂ J

Under this case note that fact(s) depends only on s1. Therefore when equation (4.15)

is replaced in (4.12), one obtains a quadratic equation for s1:

a′2s
2
1 + a′1s1 + a′0 = 0 (4.19)

Where a′i can be found in the appendix.

Since xi = 0∀i ∈ G2 then from equation (4.14).

ṡ3 = 0 = −s3D (4.20)

⇒ s3 = 0 (4.21)

In this case the equilibrium point can be calculated from the solutions of the system of

equations (4.15), (4.16), (4.19), and (4.21) with non-negative coordinates. If the system

only provides solutions with at least one negative entry then the set J can not define an

equilibrium point.

Washout

The washout equilibria means xi = 0 for every i ∈ {1, . . . , n1}. This is equivalent to

hypothesis 5.Note that the structure of a cascade reaction implies that if G1 gets washed

out, then so is G2.

H 5. J = G1 ∪G2



CHAPTER 4. ON THE GROWTH RATES OF A MICROBIAL COMMUNITY 70

From equation (4.12), one gets

sin = s1

then (4.16) implies

s2 = s3 = 0

The equilibrium is then given by

(
01×n sin 0 0

)>
.

All the former discussion leads to a potential number of (2n1−1) · (4 · (2n2−1)+2)+1

different equilibria. Indeed:

nonempty subsets
of G1︷ ︸︸ ︷

(2n1 − 1) ( 4︸︷︷︸
possible

solutions of
equation (4.18)

·

nonempty subsets
of G2︷ ︸︸ ︷

(2n2 − 1) + 2︸︷︷︸
G2

Washout

) +

Washout︷︸︸︷
1 (4.22)

4.3.3 Stability: Operating and Ecological Diagrams

In this subsection the stability of the equilibrium points is addressed. Operating and

ecological diagrams are created from this stability analysis. Both are an illustrative way

of representing the long term behaviour of a reactor depending on operating parameters,

namely D and sin: In a D− sin plane different zones representing the stability properties

of system (4.3) are identified [95].

For checking local asymptotic stability of the equilibrium points, the Jacobian of

the system is provided and evaluated at each of these points. The resulting matrix’s

eigenvalues must have negative real part. A general formula for this Jacobian is presented
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in the supplementary material (A.70). Algorithm 1 summarizes this procedure.

Data: A ∈Mn×n(R), D, sin, µ̄i, Ki, ki,∈ R i ∈ [n],, n1, n2 ∈ N

Result: Set P containing all Positive Stable Equilibrium Points

P = ∅

for S ⊂ [n] do

Calculate equilibrium (x, s1, s2, s3) when J := S according to hypothesis 3, 4,

or 5.

if (x, s1, s2, s3) ≥ 0 then

eig = Eigenvalues of J(x, s1, s2, s3)

if Real(eig) < 0 then

P = P ∪ (x, s1, s2, s3)

end

end

end

Algorithm 1: Algorithm for evaluating the possible equilibrium points of system

(4.3).

Operating and ecological diagrams are created by running algorithm 1 for different

pairs (sin, D). In the case of operating diagrams [?] (OD) all the pairs (sin, D) are

regrouped such that the points of the set P represent when partial nitrification (PN),

complete nitrification (CN), washout (WO), or a combination of them may arise [62]. PN

refers to the state when nitrite (s2) accumulates because the OTU of G2 are washed out

and thus no conversion from s2 to s3 takes place. On the contrary CN is when nitrate

(s3) accumulates because of the presence of OTU of G2.

In the case of ecological diagrams (ED) the pairs are regrouped such that the points in

the set P have the same non-active coordinates. In other words, instead of representing

areas where either CN, PN or WO take place, ranges of pairs (sin, D) where species

coexist are represented. ED provide more information than OD, in the sense that one

can deduce the latter from the former.

A first example using operating diagrams is presented to illustrate how adding inter-

actions in a model consisting of 1 OTU in G1 and 1 OTU in G2 may lead to very different

outcomes.
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The important question of the existence of limit cycles was not resolved in this work.

In the numerical analysis of this model at least one stable equilibrium was found for any

choice of parameters. This obviously does not exclude the existence of limit cycles, but

to what concerns the authors’ intuitions there always seems to be at least one stable

equilibrium point.

Case study 1: 1 AOB and 1 NOB

Consider the case where n1 = 1 and n2 = 1. The operating diagrams when no interactions

take place (A = 0) and a non-zero interaction matrix are presented. When A = 0

algorithm 1 is no longer valid (A is not invertible), nevertheless the stability analysis

is much simpler and is given in the supplementary material section. The interaction

matrices are shown in Figures 4.1a and 4.1b, the rational behind the second choice was

to force a very strong interaction of x1 on x2 and observe its effects. The biological reason

behind a negative microbial interaction might be the release of a toxin by x1 that affects

x2 [137], or in this case it might represent competition for oxygen; we stress the fact that

gLV interactions do not explicitly account for mechanistically anything they just try to

represent an ecological relationship taking place. The rest of parameters can be seen in

Table 4.2.

The operating diagrams can be seen in Figure 4.2, note how partial nitrification

(washout of G2) of Figure 4.2b is much bigger when compared to Figure 4.2a. The shape

of the PN region in 4.2b is somewhat unintuitive, because at a constant dilution rate

(0.24 day−1 for example) and an increasing sin, one passes from a PN zone, to a CN zone,

and then back again to a PN zone. The mathematical explanation lies in the fact that

x1 also increases with sin, and the affine part (1 + a21x1 + a22x2) of the growth function

of x2 plays a bigger role than substrate limitation ( s2
s2+K2

).

Kinetic Parameters µ̄i [1/day] Ki [g/L] 1
yi

[gr/gr]

x1 ∈ G1 0.77 0.7 3.98
x2 ∈ G2 1.07 0.3 16.12

Table 4.2: A set of kinetic parameters of model (4.3).
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(a) Interaction matrix of model (4.3) with
no interactions.

(b) A non-zero interaction matrix of model
(4.3).

Figure 4.1: Interaction matrices. Note how the presence of x1 affects very negatively x2
in Figure 4.1b, with respect to other interactions. The terms in the diagonal entries of
the matrix represent intraspecies interactions, while the terms off the diagonal represent
the interspecies interactions.

(a) Operating diagram of model (4.3) with
no interactions (interaction matrix repre-
sented by figure 4.1a).

(b) Operating diagram of model (4.3) with
interactions represented by figure 4.1b.

Figure 4.2: Note how 4.2b has a much larger zone where partial nitrification takes place.
This is due to the negative interaction of x1 on x2.
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Case study 2: 2 AOB and 2 NOB

The case study 2 is based on Dumont et al. [29] model parameters. They proposed

a distribution of parameters obtained from a Bayesian estimation method. Their fit

describes well the dynamics of the two most abundant OTU in each functional group,

but it still fails to capture the measured substrates dynamics. Kinetic parameters of case

study 2 can be seen in Table 4.3. The estimated interaction matrix is shown in Figure

4.3a. A second matrix is presented, which is obtained by the sign change of coefficient

a11 (Figure 4.3b), and finally a third one is obtained by using a positive value for a12

(Figure 4.3c). The idea is to show that qualitatively different outcomes can be obtained

by changing one interaction at a time.

Case study 2 kinetic parameters µi [1/day] Ki [mg/L] 1
yi

[gr/gr]

x1 ∈ G1 0.828 0.147 3.85
x2 ∈ G1 0.828 0.147 3.85
x3 ∈ G2 0.18 0.026 100
x4 ∈ G2 0.18 0.026 100

Table 4.3: Kinetic parameters of model (4.3) from Dumont et al. [29]

(a) Originally calibrated inter-
action matrix.

(b) Modified interaction ma-
trix with positive intraspecies
interaction a11 > 0.

(c) Modified interaction ma-
trix with positive interspecies
interaction a12 > 0.

Figure 4.3: Interaction matrices for each case for a consortia of 4 bacterial species where
x1 and x2 are AOB and x3 and x4 are NOB. Parameters a11 and a12 were modified in
figures (4.3b) and (4.3c), respectively.

The ecological diagrams are presented in Figure 4.4, where the legend indicates the

species surviving in the zone of the respective colour. In Figure 4.4b, the system exhibits

bi-stability (it is represented in numbering as 1) and 2) of the different possible equilib-

riums). Note how every zone in figure 4.4b has two stable equilibria, meaning that the
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(a) Original parameters eco-
logical diagram.

(b) ED from interaction ma-
trix on Figure 4.3b. In the
legend 1) and 2) represent the
two different stable equilibria
in each zone.

(c) ED from interaction ma-
trix on Figure 4.3c.

Figure 4.4: Ecological diagrams. The different zones represent the combination of sur-
viving species in the steady state. PN takes place when neither x3 nor x4 are present.
CN takes place if x3 or x4 are present. Note that in figure 4.4b two stable equilibria exist
for each zone.

outcome of the system is determined by its initial conditions, particularly interesting is

the green zone where either x1, x3 coexist or only x2 remains, because in operational terms

this means that either PN or CN may take place. When compared to Figure 4.4a, one

can see that this change in the interactions of the microbial community can dramatically

change the outcome of the reactor in a large operating zone.

One can see that coexistence in the same functional group is never attained in Figure

4.4a and 4.4b, whereas in figure 4.4c x1 and x2, both AOB, coexist in either partial or

complete nitrification. That means that the competitive exclusion principle [44] (CEP)

does not hold. The CEP roughly states that if two species are growing on the same

limiting resource, and their growth laws only depend non decreasingly on the resource,

then only one of them will survive in the long run. This is interesting in light of reports

on wastewater treatment plants where coexistence between species in nitrifying reactors

has been shown [134], thus implying that a more complex growth law (as shown in here)

or model structure involving other biological processes is required to include microbial

diversity in mathematical models.
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Remarks

Model (4.3) serves to illustrate that by considering a more complex growth rate that tries

to model ecological interactions one might explain differences in reactors operating under

similar conditions. It also shows a new mechanism by which the CEP no longer holds and

which explains how multiple stable equilibria may appear. Since the gLV model discussed

fails to completely capture the dynamics observed in the chemostat experiments [29], the

next section proposes a new approach to study interactions.

4.4 Generalized approach for modelling interactions

In the following an explanatory model (as opposed to a predictive model) is developed

based on the hypothesis that interactions might be driving the nitrification process. In

the previous sections interactions were modelled as an affine function of the OTU con-

centration that multiplies a substrate dependent growth equation. More generally the

interaction function represents how the growth rate of species i is affected by the concen-

tration of other species, x:

Given a vector (v1, . . . , vn)> the interaction function I is denoted as:

I : Rn
+ → Rn

+

v →



I1(v)

I2(v)

...

In(v)


(4.23)

Let fi(s) be a bounded, positive, and continuous function of s (e.g. Monod, Haldane).

The growth equation of OTU i becomes:

µi(s, x) = fi(s)Ii(x) (4.24)
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Note f(s) := (f1(s), . . . , fn(s))>.

Since the growth of a single strain in batch experiments is driven by the substrate

concentration, when no interactions are present one should recover expression fi(s).

Therefore if there are no interactions then Ii(x) = 1. From this hypothesis, note that

lim
x→0

Ii(x) = 1 since if there is minimal presence of OTU, interactions can not exist. Fur-

thermore for this study it is assumed that Ii(·) is a continuously differentiable function

on x. For making explicit all of the former:

H 6. The interaction function I previously defined satisfies:

1. I
(
(0, . . . , 0)>

)
= (1, . . . , 1)>

2. There is an open set Ω ⊂ Rn such that I ∈ C1(Ω).

Note JI(x) the Jacobian matrix of function I, then a first order approximation of I(·)

centred at x̄ gives: I(x) = I(x̄)+JI(x̄)(x− x̄)+o(‖x− x̄‖). When x̄ = 0 one recovers the

growth expression from the previous section (equations (4.6)) implying that JI(0̄) can be

seen as the interaction matrix from model (4.3).

4.4.1 Unravelling the Interaction Function

Suppose that the functions fi(s), and the yields yi are well-known. By using experimental

measurements of x, represented by z(t), the objective is to reconstruct function I(x). For

doing so, the terms Ii(x) are replaced by controls ui(t), thus Ii(x(t)) = ui(t). A control

law is obtained by solving a nonlinear optimal tracking problem.

Consider the observable system (4.25), with y(t) = x(t) being the output, because we

are observing measurements coming from genetic sequencing.
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ẋi = (fi(s)ui(t)−D)xi ∀i ∈ G1

ẋi = (fi(s)ui(t)−D)xi ∀i ∈ G2

ṡ1 = (sin − s1)D +
∑
i∈G1

ys1/xifi(s)ui(t)xi

ṡ2 = −s2D +
∑

i∈G1∪G2

ys2/xifi(s)ui(t)xi

ṡ3 = −s3D +
∑
i∈G2

ys3/xifi(s)ui(t)xi

y = x

(4.25)

Consider the weighted norms defined by positive definite matrices Q and R, repre-

sented by ‖ · ‖Q and ‖ · ‖R, respectively, and ū > 0. The optimal tracking problem is

defined as:

min
T∫
0

‖y − z‖Q + ‖(u−~1)‖Rdt

s.t. (x, s1, s2, s3) solution of (4.25)

ui(t) ∈ [0, ū]

(4.26)

The control u(t) is intended to drive the system to be near a desired output z(t),

which in this context are the measurements of the concentrations of OTU. The term

‖(u−~1)‖R, was added for two reasons:

� First because the interest is testing the idea that interactions could be driving the

system. Therefore adding a penalization in the objective function for each control to

remain near 1 can be seen as an attempt to explain data without any interaction. In

other words, if the control terms are found to drift from 1, it means that interactions

are necessary to explain the system dynamics.

� Second, to force a regularized control. Otherwise note that u is linear in (4.25),

therefore if the integral cost does not have a non-linear expression of u the optimal

control will be of a bang-bang type with possibly singular arcs [45]. Since the ob-
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jective is to find a differentiable expression of I(x) the addition of the regularization

term is deemed necessary.

The problem of approximating the solution of the system to a desired reference (z in this

case) is called the optimal tracking problem. For solving such a problem the approach

developed by Cimen et al. [22, 21] was adapted to our problem. The method proposed

involves the resolution of Approximating Sequences of Ricatti Equations (ASRE). It

consists of iteratively calculating trajectories of System (4.25) with a certain control law

to later feed a non-autonomous Ricatti differential equation with the resulting trajectory.

Then, a new control law that uses the solution of the Ricatti equation is proposed and a

new trajectory is calculated. The iteration is stopped when a convergence in the output

or the control is observed.

The control term should remain positive for the system to be well posed (no nega-

tive states), and an upper bound was added to represent the fact that life cannot grow

infinitely fast. The tracking problem does not consider a constrained control. Neverthe-

less, the methods of Cimen et al. [22] were directly used with an explicit constraint in

the synthesis of the control. Even though this is probably suboptimal when the control

reaches its bounds, one at least is certain about its optimality when the control never

reaches its constraints.

Another departure from their method is that in their formulation an approximation of

the dynamics for calculating the trajectories is used. They proved that such a linearisation

converges to the original dynamics. In the case here presented the linearisation of the

dynamics was not necessary.

The change of variable ui(t) = vi(t) + 1 is used for technical reasons explained in

the appendix. This in turn implies vi(t) ∈ [−1, ū − 1]. The feedback control v(t), will

be of the form v(t) = −R−1B̃>(t)
(
P̃ (t)x(t)− sf (t)

)
. Where matrix P (t) and vector

sf (t) solve differential equations. In the supplementary material it is proved that, thanks

to the structure of the system, one only needs to calculate 2n differential equations for

the synthesis of the control, instead of (n + 3)2 + (n + 3) that would imply the direct

application of the method, which renders the method- at least theoretically- scalable for
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a growing number of OTU.

4.4.2 Proof of concept

The approach was tested with data generated by simulating model (4.3) using the pa-

rameters of the case study 1 (Table 4.2) with interaction matrix given by (4.1b). In

the operating diagram of the same case (figure (4.2b)) the red zone implies complete

nitrification, while the green zone means partial nitrification. For integrating the former

phenomena in the simulation, the system was simulated for 300 days, and perturbed at

day 150 from the CN zone ((sin, D) = (1.25, 0.24)) to a PN zone ((sin, D) = (1.95, 0.24)).

Simulations can be seen in figure 4.5. Note how from day 150 the NOB population (OTU

2) represented in figure (4.5b) decreases, which in turn implies a decrease in s3, as seen

in figure (4.5c). In the case where no interactions take place, the OD seen in Figure 4.2a

implies that s3 would have accumulated all along the trajectory, since the perturbation

still remains in the CN zone.

(a) AOB. (b) NOB. (c) Metabolites.

Figure 4.5: Synthetic data generated by model (4.3), with parameters from case study 1.
Note the effects of the increased input sin generated in day 150.

For the tracking procedure the functions fi(s) and the yields yi were the same as those

used for simulating the synthetic data (parameters in table 4.2) and the control is meant

to account for the interaction term. The Q and R matrices were

λ1In1 0

0 λ2In2

 and In,

respectively, with λ1 = 10−4 and λ2 = 10−5 in order to better track the NOB trajectories,

since they are less abundant. The values were obtained by trial and error, by using a

single λ for both functional groups, beginning with λ = 1, in which case one can see how
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the optimal control becomes u = 1, thus no tracking is performed. Further diminishing

the value from 10−5 adds too much noise to the control, without significant gains on the

quality of the tracking.

The results of the procedure to identify interactions can be seen in figures 4.6 and 4.7.

Figures 4.6a, 4.7a, and 4.7b show the total biomass concentration, and the trajectories

for the OTU belonging to G1 and G2, respectively. It can be seen that the method ap-

proaches well the trajectories of the OTU, with a better result for the AOB community,

which can be explained by the one order of magnitude difference in their concentrations

(which in turn is a consequence of the one order of magnitude difference in their yields).

The metabolites concentration represented in figure 4.6b are in accordance with the simu-

lated: The method is able to reconstruct the metabolites trajectories from the community

measurements.

Figures 4.8 and 4.9 show the controls and the corrected growth rate for each functional

group. The control for each functional group can be seen in figures 4.8a and 4.9a. Note

that from the structure of a quadratic regulator, since there is no cost in the final state,

the end value is always 1. Figures 4.8b and 4.9b show the resulting growth rates for

AOB and NOB, respectively, without the control ui(t). Figures 4.8c and 4.9c are the

complete expression that determines growth rate, that is fi(s(t))ui(t)xi(t). Note how

little the shape changes with respect to figures 4.8b and 4.9b, which might mislead the

reader to conclude that the control had reduced effects in the dynamics. The way out

of this conundrum is to remember that the control’s effects are already included in xi(t)

and si(t), and thus in expression fi(s(t))xi(t).

A final comment on the identifiability of the interaction terms. Even though one

might propose a growth rate with the tracking control u(t) that accurately replicates the

OTU trajectory x(t), retrieving the original interaction coefficients from the obtained

control for this example was not possible. The former was tried by minimizing function

f(A) =

∥∥∥∥∥∥
T∫

0

u(t)− (1 + Ax(t))dt

∥∥∥∥∥∥ with a non linear optimization solver for a 1000 initial

random guesses for matrix A. If one also takes into account µ̄i and Ki as parameters

to fit this adds even more degrees of freedom, thus suggesting that the identifiability of
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growth functions (4.6) in model (4.3) might be very low.

(a) Total biomass. (b) Metabolites.

Figure 4.6: Asterisks represent the synthetic data, while the continuous lines represent
the method’s output. The method is able to reconstruct the metabolites pattern, from
the biomasses concentrations.

(a) AOB biomass. (b) NOB biomass.

Figure 4.7: Asterisks represent the synthetic data, while the continuous lines represent the
method’s output. The method reconstructs a continuous trajectory from the synthetic
data.
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(a) Control for the AOB com-
munity.

(b) Growth rate ”without”
the control.

(c) Complete reconstructed
growth rate for the AOB com-
munity.

Figure 4.8: Obtained control and reconstructed growth rate for OTU 1 (AOB).

(a) Control for the NOB com-
munity.

(b) Growth rate ”without” the
control.

(c) Complete reconstructed
growth rate for the NOB com-
munity.

Figure 4.9: Control and reconstructed growth rate for OTU 2 (NOB).
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4.5 Application

The tracking problem was applied to data coming from a nitrification process with ex-

perimental conditions described in [32]. For exploring the hypothesis of interactions as

drivers of bioreactors performance environmental conditions should be kept as constant

as possible. Therefore only data from day 183 onwards was used because a change in

the operating temperature happened at that point, which is known to have an effect on

kinetics. For choosing which species belong in which functional group, the procedure

described of Ugalde-Salas et al. [125] was used. From day 183 to day 315, 31 OTU were

identified in the G1 group (AOB) and 5 in the G2 functional group (NOB).

A first example of the procedure is performed when the classified OTU are regrouped

in their assigned functional groups by adding their concentrations. A 5 dimensional

dynamical system is obtained, thus there are only two interacting functional biomasses:

this case is structurally the same as in the proof of concept, but here a real dataset is

used. The same procedure is applied where no regrouping occurs and the system state

grows to 39.

The knowledge of functions fi(s) was based on a study of nitrification’s kinetic param-

eters [139]. Particularly given the system’s ammonium and nitrite concentration a Monod

function (eq (4.27)) was used for G1 and G2 with parameters given in table 4.4 calculated

from the equation of Table 2 of the same article. The yields were fitted to match the

nitrogen mass balances. The Q and R matrices were the same as in the proof of concept

section, that is

λ1In1 0

0 λ2In2

 and In, respectively, with λ1 = 10−4 and λ2 = 10−5,

because data lies in the same order of magnitude than synthetic data.

fi(s) = µ̄2
s1

K1 + s1
∀i ∈ G1 (4.27)

fi(s) = µ̄2
s2

K2 + s2
∀i ∈ G2

For the reader to gain understanding of the situation, a simulation of the system
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Kinetic Parameters µi [1/day] Ki [g/L] 1
yi

[gr/gr]

x1 ∈ G1 1.97 7 · 10−1 4.49
x2 ∈ G2 1.87 5.4 · 10−1 45.51

Table 4.4: A set of kinetic parameters of model (4.25).

using the experiments operating parameters (D and sin) is presented without control

(i.e. u(t) = 1) in figure 4.10 nitrate (s3) accumulates all along the trajectory, but when

compared to data it is clear that s3 stops accumulating after a while.

(a) Total Biomass. (b) Metabolites.

Figure 4.10: Simulation of system (4.25) when u = 1, with functions as in (4.27). Data
points are represented by a star. The continuous line represents the simulation.

When applying the tracking method one obtains the simulation that can be seen in

figures 4.11 and 4.12. The method captures the tendencies of the measured substrates as

seen in figure 4.11b. The tracking of each functional group G1 (AOB), and G2 (NOB)

can be seen in figures 4.12a and 4.12b, respectively.

The growth rates of each functional group are shown in figure 4.13. Note in the case

of AOB (figure 4.13a) the resulting growth rate shows a noisy curve formed by pulses.

The behaviour of the NOB community (figure 4.13b) is qualitatively very similar with

somewhat stronger pulses and less noise. The former is to be expected since more OTU

were regrouped to compose the AOB biomass, therefore more noise sources were added.

The same procedure is applied without regrouping. The results on total biomass and

metabolites are shown in figures 4.14a and 4.14b, respectively. Both patterns still fit

the data, but to a lesser degree of precision when compared to figure 4.11. This can be

explained by inspecting figures 4.15 to 4.20. First note the absolute error of the tracking
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(a) Total Biomass. (b) Metabolites.

Figure 4.11: Results on applying the tracking method to a nitrification experiment when
regrouping OTU in their functional groups. Data points are represented by asterisks.
The continuous line represents the tracking procedure results.

(a) AOB biomass. (b) NOB biomass.

Figure 4.12: The tracking procedure applied to the observed biomass (asterisks) re-
grouped in two functional groups.

for each of the OTU in the AOB community (figures 4.15b to 4.19b), almost every point

lies below 0.015[g/l] , implying that the method might not be able to track below that

threshold for the members of the AOB community. The former ultimately implies that

the most abundant OTU are better tracked, thus the information contained in the least

abundant species is not integrated in the model. Notice that the error for the NOB

community is lower (figure 4.20b), almost every point lies below 0.005[g/l], this can be

explained in the one order of difference in the entry of matrix Q for the AOB and the

NOB community. It may be the case that using appropriate weight matrices that account

for the difference between OTU abundances could help in this aspect; in that sense only

one rational was tested (inverse of the mean abundance of each OTU in the diagonal
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(a) Growth rate of the model for AOB com-
munity.

(b) Growth rate of the model for the NOB
community.

Figure 4.13: Obtained growth rates when regrouping OTU in their functional groups.

entries of matrix Q) and did not improve the results. When looking at the growth rates

(figures 4.15c to 4.20c) one again observes pulses for each OTU. Finally, note that most

OTU were present only for a fraction of the experiment’s duration.

In both cases, the regrouped and individual tracking, the growth rate varies strongly,

raising the question whether the observed pulses are emerging from interactions within the

microbial community. When growth rates are compared to the proof of concept section

it seems doubtful that a linear pairwise interaction model such as the gLV model could

capture the complexity of the particular chemostat analysed. Perhaps these interactions

are not constant through time (as opposed to the gLV model) or a different interaction

function should be thought of. However the former questions can not be fully clarified

here, because the quality of the genetic sequencing from molecular fingerprints might not

be the best when compared to more recent techniques, thus it is unclear if the pulses are

due to noise of the measurements.

The interpretation of the correction term as interactions is not the only possible read-

ing. In other contexts the correction term might also be interpreted as a non accounted

phenomena ranging from environmental factors (e.g. temperature, pH) to other biolog-

ical factors (viruses, flock formation, pathogens). Alternative hypothesis for explaining

the observed patterns in the microbial community should be considered as well.
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(a) Total Biomass. (b) Metabolites.

Figure 4.14: Results on applying the tracking method to a nitrification experiment when
all OTU are tracked independently. Data points are represented by a star. The continuous
line represents the tracking procedure results.

(a) Tracking results and data. (b) Absolute difference be-
tween tracking and data.

(c) Reconstructed growth rate.

Figure 4.15: Results for OTU 1-7 (AOB)

(a) Tracking results and data. (b) Absolute difference be-
tween tracking and data.

(c) Reconstructed growth rate.

Figure 4.16: Results for OTU 8-14 (AOB)
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(a) Tracking results and data. (b) Absolute difference be-
tween tracking and data.

(c) Reconstructed growth rate.

Figure 4.17: Results for OTU 15-22 (AOB)

(a) Tracking results and data. (b) Absolute difference be-
tween tracking and data.

(c) Reconstructed growth rate.

Figure 4.18: Results for OTU 23-28 (AOB)

(a) Tracking results and data. (b) Absolute difference be-
tween tracking and data.

(c) Reconstructed growth rate.

Figure 4.19: Results for OTU 29-31 (AOB)

(a) Tracking results and data. (b) Absolute difference be-
tween tracking and data.

(c) Reconstructed growth rate.

Figure 4.20: Results for OTU 32-36 (NOB)
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4.6 Conclusions and Perspectives

Over the last decades, advances in genetic sequencing and microbial ecology have opened

a gap for modellers in biochemical processes to integrate this valuable information. Con-

sidering the success of mass balance models to predict and pilot bioreactors, new models

should be built upon them, or at least be compared against them. This article exposed

what can be gained from combining population-based models as used in ecology with

functional group based approaches as used in bioengineering. The analysis of the gLV

model proposed by Dumont et al. [29] already shows that such a combination can give way

to models that include bi-stability, coexistence within a functional group, and unintuitive

operational insights such as raising the input ammonium sin to achieve partial nitrifica-

tion. The increased number of parameters of this particular model obviously hinders its

potential application, but it surely helps to illustrate what can be gained by joining both

types of models. The mathematical analysis focused on the particular case of pairwise

interactions, which can be seen as a first order approximation of the introduced concept of

interaction function. This opens the question for a broader class of interaction functions

that could well represent complex microbial ecosystems, particularly bioreactors.

With that line of reasoning, in order to understand what this interaction function

should look like, a data-driven approach was presented. It can be simply described as

correcting the growth rate expression of each individual species in a mass balance model

by explicitly assuming a control loop on the growth rate depending on the species state

variables and the measured abundances. The reconstructed growth rates seem to consist

of pulses, suggesting that a form of a possible interaction function should reproduce this

behaviour, however since the quality of molecular fingerprints at the moment of the data

collection was not the best (techniques for raw data treatment were still discussed at the

time), one can not discard the possibility that this is due to noise of the measurements.

In spite of the former, one is able to recover the substrates dynamics, implying that the

hypothesis of microbial interactions as drivers of a bioprocess, in the form of feedback

loops affecting each others growth rates, is not far-fetched.

The use of the tracking technique can be applied in a straightforward manner to
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already existing models in mixed homogeneous bioreactors, under the condition that

the microbial species have already been identified with a particular functionality of the

system. Even though the tracking model was proposed for a chemostat setting as a way

to correct a substrate limited expression, the method could be used in contexts where

less information on the growth function of microbes is known. If one supposes nothing

on the growth expression but the fact that is bounded (life cannot grow infinitely fast)

the model becomes a linear model and one recovers a classic quadratic regulator for

linear systems. This was tested for the data presented in this article and, unfortunately,

negative substrate appeared as an output, suggesting that the substrate limitation term

is crucial for the model to be well-posed. Nevertheless, even in the former case, the

synthesis of the optimal bounded control remains an open theoretical challenge. One

might bypass this issue of the current control scheme by, for example, a very thorough

use of the Pontryagin maximum principle for the synthesis of the control. In a more

general view the reconstruction of the growth function in chemostat systems is already

subject to problems of identifiability [27], integrating genetic sequencing could provide a

path for more certainty in model calibration.

4.7 Codes

All the codes can be recovered from the following repository https://github.com/

paus-5/Class-and-Track.
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Chapter 5

On Microbial Transition State

Theory Implications

The final chapter of this thesis studies the growth rates of OTU from a theoretical stand-

point. This section explores the recent theory of microbial growth, Microbial Transition

State Theory (MTS), proposed by Desmond-Le Queménér and Bouchez [25]. We begin

by an article that was published in Scientific Reports that introduces their model and

explores the meaning of Monod’s affinity constant under this setting. The novelty lies in

a link between Ks and the substrate to biomass yield. In the second part further impli-

cations are drawn from the MTS theory, dealing with density dependence and variable

yields.

5.1 Insights from Microbial Transition State Theory

on Monod’s Affinity Constant

92
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Abstract

Microbial transition state theory (MTS) offers a theoretically explicit math-

ematical model for substrate limited microbial growth. By considering a

first order approximation of the MTS equation one recovers the well-known

Monod’s expression for growth, which was regarded as a purely empirical

function. The harvest volume of a cell as defined in MTS theory can then be

related to the affinity concept, giving a new physical interpretation to it, and

a new way to determine its value. Consequences of such a relationship are

discussed.

Since the success of Monod’s expression (Equation (5.1)) to model substrate-limited

microbial growth [85], many expressions have been proposed [7], accounting for a range

of phenomena including substrate inhibition [4] and population density effects [23]. All of

these expressions rely on empirical rules, differently to enzymology for which analogues

of Monod and Haldane expressions have been mathematically derived [87]). Microbial

transition state theory [25] recently introduced a new expression for microbial growth

based on the statistics of molecules distribution in a medium inspired from chemical

transition state theory. In this communication we explore the physical meaning of the

affinity concept through the lens of MTS theory and particularly show how it may provide

a novel interpretation of Monod’s growth function.
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µ(s) = µmax
s

Ks + s
(5.1)

Equation (5.1) represents the Monod growth function, where µmax[1/day] is the maxi-

mal growth rate, s[g/L] represents the substrate concentration of the medium andKs[g/L]

is known as the ’affinity constant’. Earlier works on kinetics [94], [67] show the differ-

ences in reported literature values for the affinity constant for the same species: these

differences are explained by culture history, quality of the experimental data, and poste-

rior data analysis. However little to no consensus can be found in the literature on its

interpretation. Furthermore in a review of theoretical derivations of the Monod growth

function [71] the author concludes that no clear interpretation may be given to the affinity

constant. A revision of the affinity concept in Microbiology was made by Button [18],

where fourteen different expressions for affinity are documented. The concept is largely

influenced by the Michaelis-Menten model for enzyme kinetics interpretation of affinity

from receptor and ligand binding sites, since Monod’s expression for growth is mathe-

matically equivalent to the Michaelis-Menten expression. As stated by Monod himself,

Monod’s growth function is purely empirical, while Michaelis-Menten expression has a

rigorous theoretical justification [87], thus one might wonder if the concept of affinity for

representing cell growth has a solid conceptual ground.

MTS theory relates the growth rate to the amount of energy available to perform cel-

lular work. The central idea of bioenergetics is that the energy consuming anabolism can

only be thermodynamically feasible if it is coupled with an energy yielding catabolism.

The overall reaction resulting from the coupling is known as metabolism [64]. The for-

mulation and complexity of both catabolism and anabolism vary greatly depending on

the objective the modeller has in mind. On the one hand, when describing the metabolic

pathways within a specific microbial species, the formulation takes into account ATP

formation and intra cellular intermediates and quickly becomes a very complex web, e.g.

[100]. On the other hand if one is interested in observing the general metabolism of a

culture at a macroscopic level then the situation simplifies to just a couple of reactions
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[64] . We will focus on the latter.

Let us consider a first reaction representing catabolism (Equation (5.2)), a second

reaction representing anabolism (Equation (5.3)) then a linear combination of the two

creates metabolism (Equation (5.4)): by completing λ times the catabolism the energy

requirements of the global metabolic reaction are fulfilled 13 (its negative free enthalpy

constitutes the driving force for growth).

Ed + aEa −−→ bP ∆rGcat < 0/ · λ > 0 (5.2)

dP −−→ Bx + cEa ∆rGan > 0 (5.3)

λEd + (λa−c) Ea −−→ Bx + (λb−d)P ∆rGmet = λ∆rGcat + ∆rGan < 0 (5.4)

where Ed, Ea, and P stand for electron donor, electron acceptor, and products, re-

spectively. Bx represents an equivalent biomass unit, for instance Bx = CH1.8O0.5N0.2 is a

generic composition of one C-mole of biomass [10]. a, b, c, d are stoichiometric coefficients.

Finally ∆rG represents the Gibbs free energy variation for each reaction.

The reader should notice that λ is the inverse of the yield as usually expressed (yx/s

) in microbiology as shown in the equation (5.5)

yx/s =
1

ys/x
=

1

λ
(5.5)

yx/s represents how many moles of biomass are formed per mole of substrate consumed,

conversely ys/x = λ represents how many moles of substrate are being consumed per mole

of biomass formed. The methods reviewed by Kleerebezem et al. [64] allow computing λ

from mass balanced reactions with examples coming from a variety of biological process.

MTS theory demonstrates on a theoretically explicit ground a growth rate expression

µ of a culture of bacteria limited by an electron donor in perfectly mixed conditions [25].

More precisely, if we denote by s the concentration of the limiting electron donor and x

the concentration of the species then these two concentrations are dynamically related



CHAPTER 5. ON MICROBIAL TRANSITION STATE THEORY IMPLICATIONS96

by:

ẋ = µ(s)x = µmax exp

(
−λ
Vhs

)
x (5.6)

where Vh, known as the harvest volume, represents the volume to which each microbe

has access in order to harvest the substrate s during the time between two cell divisions.

It is worth pointing out that the harvest volume is an average characteristic.

Figure 5.1: Example of plots of equations 1 and 6, with the values chosen such that
Ks = λ

Vh
. The measurement of the harvest volume from growth experiments can be

obtained in an analogous fashion to the determination of the affinity constant: by noting
s∗ the value of substrate concentration at which the growth rate is e−1µmax (represented
by the black diamond) one obtains Vh by the formula Vh = 1

yx/ss
∗1

, similarly to the Ks

value identified as the concentration for which the specific growth rate µ is equal to
µmax

2
in the Monod expression, (represented by the black square).

If one considers a first order approximation of the exponential function near zero (see

supplementary material) then one recovers Monod’s expression of growth:

µmaxe
−
λ

Vhs ≈ µmax
s

s+ λ
Vh

= µmax
s

s+ 1
yx/sVh

(5.7)

The approximation holds true for high substrate concentrations. More precisely, it can
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be shown that the two curves differ by less than 10% for s ≥ 1.92Ks, (see supplementary

material). In Figure 5.1 the graphical comparison of both growth functions can be seen

for a given set of parameters. The MTS growth function is approximated very well by

the Monod growth function, which is reassuring from a practical point of view: in a re-

examination of the kinetics of Escherichia coli [110] different empirical substrate limiting

expressions- all of them with a Monod-like shape- were compared and no difference was

found in the identifiability of their parameters. Note also that in equation (5.7), 1
yx/sVh

replaces the Ks parameter of Monod’s expression. In that sense the affinity constant can

be interpreted as a decreasing function of the harvest volume of the cell and its yield per

mole of substrate. On one hand, associating low Ks values to large harvest volumes is

well in line with our understanding of the affinity concept, since a cell that can harvest

substrate molecules in a more extended region should be less substrate limited. On the

other hand, the fact that a low Ks value could be due to a higher conversion yield of

substrate to biomass sheds a new light on the affinity concept. The order of magnitude of

Vh can be seen from Table 1 for some literature references for E. coli ML 30. In the cases

where no yield was reported the energy dissipation method 11 can be used as illustrated

in table 1 and supplementary material. For computing the yield a unique biomass formula

was used (CH1 · 8 O0 · 5 N0 · 2). However, for each case, the biomass composition could

be different and, consequently, the yield, thus contributing to the explanation of the

observed variability of Ks.

Ks reported [µg/l]

for E. Coli ML 30

λ [gS/gX]
∗ Estimated by Energy
dissipation method
∗∗ Measured during
experiment

Vh[l/gX]

Vh[µm
3/cell]

(cell dry weight:
2.8 · 10−13[gr/cell]
Ref: BNID 103904 [81] )

Radius [µm]
of a sphere of Volume
Vh.

33 (Ref: [66]) λ∗ = 1.89 4.91 · 104 1.6 · 107 156
33 (Ref: [66]) λ∗ = 1.88 4.85 · 104 1.6 · 107 156
53 (Ref: [110]) λ∗ = 1.88 3.02 · 104 9.94 · 106 133
72 (Ref: [110]) λ∗ = 1.88 2.22 · 104 7.32 · 106 120
76 (Ref: [69]) λ∗∗ = 2.22 2.92 · 104 8.19 · 106 125
90 (Ref: [69]) λ∗∗ = 2.22 2.47 · 104 6.91 · 106 118
100 (Ref: [69]) λ∗∗ = 2.22 2.22 · 104 6.22 · 106 114
132 (Ref: [69]) λ∗∗ = 2.22 1.68 · 104 4.71 · 106 104
125 (Ref: [69]) λ∗∗ = 2.22 1.77 · 104 4.98 · 106 105

Table 5.1: Literature values of Ks and calculation of Vh = λ
Ks

, for different chemostat
experiments using hexoses as substrates.
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On a more conceptual ground, the MTS approach proposes a way to revisit our

current perception of the ”affinity-concept” of a microbial culture for a given substrate.

It offers an alternative view of the microbial affinity notion than its enzymatic analogue

related to Michaelis Menten theory. It unravels a contribution that is related to the yield

(mole of biomass formed per mole of substrate consumed) from another that represents

the capacity of the microbial culture to explore a fraction of its surroundings in order to

harvest substrate (Vh term). To this extent, it allows to compute the affinity constant from

the knowledge of the yield and the harvest volume, which is a completely new approach

to determining this constant. This analysis thus plants a seed towards a more physically

grounded view of affinity than earlier proposals made from attempts to theoretically

derive Monod’s equation[71]. The physical interpretation of the affinity concept raises new

opportunities to analyse and experimentally challenge the meaning of the Vh parameter.

Particularly interesting would be to assess to which extent Vh constitutes an intrinsic trait

of the microbial culture, or if extrinsic attributes associated to the culture conditions

(such as agitation, viscosity or ionic force) could also significantly influence its value.

Such questions remain open and obviously await further studies.
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In the appendix A.3 the details in the approximation of the MTS expression are given.

5.2 Extension of the model

The MTS model was derived from statistical mechanics as mentioned earlier. This section

changes the hypothesis that the harvest volumes of different organisms do not intersect,

in order to account for the case of high population densities that may arise in ecosystems.

Consider a system consisting of an isolated physical space of volume Vtot in which a

clonal population of N microbes is consuming substrate s and dividing. Each individual
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microbe has access to a volume Vh in which it can harvest the substrate. The probability

to find oneself in one volume Vh is p = Vh
Vtot

. The probability of not being in any harvest

volume is then (1 − p)N . Therefore, the probability of finding oneself in the union of

all harvest volumes becomes 1 − (1− p)N . This allows to define the apparent harvest

volume, (5.8), which essentially represents the volume in which substrate is available to

microbes.

Vapp =
1−

(
1− Vh

Vtot

)N
N

Vtot (5.8)

The microbes concentration in the medium x is defined as x = N
Vtot

. Therefore

Vapp(x) =
1−

(
1− Vh

Vtot

)xVtot
x

(5.9)

We redefine in the same framework of statistical mechanics of [25] the elementary volume

napp := Vtot
Vapp

, all their computations follow exactly the same which gives a growth function

of

µ(x, s) = µmax exp

(
−λ

Vapp(x)s

)
(5.10)

As done in the previous section, function (5.10), can be approximated by:

µ(x, s) ≈ µmax
s

s+ λ
Vapp(x)

(5.11)

Note Vapp(x) decreases monotonically with respect to x, which implies that µ(x, s) de-

creases monotonically with respect to x, which can be interpreted as a decreasing growth

rate from density dependence.

Now consider the order 2 approximation centred at 0 of f(y) = (1 − y)N . That is

f(y) = f(0) + f ′(0)y+ 1/2f ′′(0)y2 + o(|y|2) = 1−Ny+ 1
2
N(N − 1)y2 + o(|y|2). Replaced
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in (5.8) it gives:

Vapp =
1−

(
1−N Vh

Vtot
+ 1

2
N(N − 1)( Vh

Vtot
)2 + o(| Vh

Vtot
|2)
)

N
Vtot (5.12)

≈ Vh

(
1− 1

2
xVh

)
(5.13)

Which implies one can further approximate (5.10), by:

µ(x, s) ≈ µmax
s

s+
λ

Vh
(
1− 1

2
xVh
) (5.14)

≈ µmax
s

s+
λ

Vh

(
1 + 1

2
xVh
) (5.15)

= µmax
s

s+
λ

Vh
1 + λ

2
x

(5.16)

Where the approximation 1
1−ε ≈ 1 + ε, was made from the passage of equation (5.14)

to (5.15). Expression (5.16) generalizes at the same time Contois and Monod’s growth

functions. Unexpectedly, approximation (5.16) has the form of one of the growth expres-

sions proposed by Roques et al [106]. They studied the validity of Monod’s expression

in activated sludge systems and experimentally it was shown that the Ks constant of

the Monod expression depends linearly on the difference of the input substrate and the

substrate concentration, namely: Ks = M+b(sin−s). Then they approximated the term

sin − s by x
yx/s

. From the former section, if one remembers that λ = 1
yx/s

, one recovers

their formula with b = 1
2

and M = λ
Vh

.

This section ends by revisiting the parameters of the article of Lendenmann et al.

[69], they measured the maximum growth rate µmaxin batch experiments, and the Ks

value for chemostat experiments for E. coli ML30. (The same last entries as in table

5.1). In figure 5.2 one can see a comparison of expression (5.10) and (5.16) using the

set of parameters of table 5.2, and by doing the identification of Ks = λ
Vh

. Clearly the

approximation has a much softer density inhibition than the original function.

Moreover let us see if the density dependence postulated by the MTS theory pre-



CHAPTER 5. ON MICROBIAL TRANSITION STATE THEORY IMPLICATIONS101

µmax Ks yield (yx/s) sin Dilution Rate Reactor volume
0.92[day]−1 90[µg/l] 0.45[gX/gS] 0.1[g/l] 0.14− 0.71[day]−1 0.93[l]

Table 5.2: Experimental conditions and fitted parameters of a Monod growth function
to E. Coli ML30 growing on a continuous culture fed with galactose [69]. µmax was
calculated from batch experiments.

(a) Plot of equation (5.10) using parame-
ters of table 5.2.

(b) Plot of equation (5.16) using parame-
ters of table 5.2.

Figure 5.2: Comparison of the MTS function and its approximation considering density
dependence.

dicts their experimental data. Figure 5.3 shows a chemostat simulation using a Monod

growth rate with the original parameters (dotted line) and the the extended MTS growth

rate with the identification Ks = λ
Vh

(continuous line), the blue lines represent biomass,

while the red lines represent the substrate, galactose in this case. The green dot shows

the residual galactose measured in the reactor (107 [µg/l]), evidently, since the Monod

expression was fitted to the data, the red dotted line ends at the residual galactose,

while the continuous red line ends at 6000 [µg/l], one order of magnitude higher than

the residual galactose. This suggests, perhaps, that the implicitly assumed hypothesis

of independence in the computing of the probability of not being in any harvest volume

((1− p)N) was too strong. The spontaneous formation of flocks, biofilms and granules in

microbial ecosystems indicates that some microbes arrange preferentially in aggregates,

and not independently from each other. It would be interesting from a mechanical statis-

tics approach to numerically compute the probability distribution of not being in any

harvest volume from chemostat experiments data, in order to gain insight on microbes

tendency of organizing themselves on a given continuous culture.
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Figure 5.3: Simulation of a chemostat model with MTS growth and Monod growth
considering the parameters in 5.2. The density inhibitory effects are too strong and the
resulting residual galactose is extremely elevated.
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5.3 Diversity arising from MTS Theory

This section was inspired by the article of Großkopf and Soyer [40]. They achieved

coexistence of two species feeding on the same substrate in a chemostat model by using

a growth rate that corrects a Monod function by an expression involving the Gibbs free

energy of the metabolic reaction, as introduced by Hoh [52]. Davidson et al. had already

studied, in both theoretical and experimental ways, how product inhibition in the growth

function can imply coexistence of two species feeding on the same substrate [24]. Note

that the Gibbs free energy ∆G of a feasible reaction (negative Gibbs free energy), is

decreasing with respect to the chemical activity of its reactants, and increasing with

respect to the chemical activity of the products. And as such if a growth rate µ(s,∆G)

is decreasing with respect to the Gibbs free energy, it means it is decreasing with respect

to the concentration of the product of the reaction.

Here, the coupling coefficient λ is calculated from the Gibbs free energy of the catabolic

and anabolic reaction. The stoichiometric coefficients of metabolism are an affine function

of λ, and in MTS theory the stoichiometric coefficient corresponding to the limiting

substrate appears in the growth expression. Therefore one can expect that the same effect

as in [40] might arise when correcting the Gibbs free energies of the involved reactions.

In anaerobic systems, it is the case that the activities of molecules can affect the

Gibbs free energy of the reaction, thus it is only natural to test the MTS expression

in that context. Data coming from the experiments of Yan Rafrafi was revisited [102].

Seven experiments were carried out using different sources of inoculum. The data from

the experiment corresponding to the anaerobic sludge inoculum without heat treatment

was used in a continuous stirred tank reactor, with a working volume of 1.5 L. pH was

controlled at 5.5. A batch period of 24h after inoculation took place before continuous

operation. The hydraulic retention time (HRT) was fixed at 6h. The reactor was heated at

37◦ C and the gas flow rate was monitored using an electronic gas volumeter. Experiment

lasted 10 days. A glucose solution of 10[g/l] was used as sole carbon source. The gas

phased was initially composed solely of nitrogen gas, and after less than a day of operation

it was composed of 65% H2 and 35 % CO2 at atmospheric pressure. Two species were
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present: Clostridium pasteurianum and Bacillus racemilacticus, which were identified

via a CE-SSCP fingerprinting method. The following possible catabolic reactions were

proposed by Rafrafi in the same article.

The catabolism of Clostridium is supposed to be a linear combination of the two

following reactions:

C6H12O6 + 4 H2O −−→ 2 C2H3O2
− + 4 H+ + 2 HCO3

− + 4 H2 (5.17)

C6H12O6 + 2 H2O −−→ C4H7O2
− + 3 H+ + 2 HCO3

− + 2 H2 (5.18)

The coupling was chosen a priori, such that the proportion of acetate and butyrate

observed in the steady state is attained. Which gave the following catabolism:

C6H12O6 + 2.5 H2O −−→ 0.5 C2H3O2
− + 0.75 C4H7O2

− + 3.25 H+ + 2 HCO3
− + 2.5 H2

(5.19)

For Bacillus that lactate pathway was assumed:

C6H12O6 −−→ 2 C3H5O3
− + 2 H+ (5.20)

The synthesis reaction, representing anabolism, is modelled as follows (for both):

0.2 NH4
+ + 0.175 C6H12O6 −−→ 0.4 H2O + 0.05 HCO3

− + 0.25 H+ + CH1.8O0.5N0.2

(5.21)

Note from table 5.3, the activities from molecules and which are chosen to be variables

of the model, as usual, let x = (x1, x2) and s = (s1, s2, s3, s4, s5). Let vcat,1, vcat,1, and van

be the vectors representing reactions (5.19), (5.20), and (5.21), respectively. Let Qcat,1(s),

Qcat,2(s), and Qan(s) be the reaction quotients of each reaction, note their dependence



CHAPTER 5. ON MICROBIAL TRANSITION STATE THEORY IMPLICATIONS105

Name Formula G0
f [kJ ·mol−1] Variable [mol/l] ai [mol · l−1]

Glucose C6H12O6 -917.2 s1 s1
Acetate C2H3O3

– -369.4 s2 s2
Butyrate C4H7O2

– -352.6 s3 s3
Lactate C3H5O3

– -517.1 s4 s4
Hydrogen H2 0 s5 0.65
Ammonium NH4

+ - - 0.05/18
Proton H+ 0 - 10−5.5

Water H2O -237.2 - 1
Carbonate HCO3

– -394.4* - 0.35
Clostridium CH1.8O0.5N0.2 -67 x1 1
Bacillus CH1.8O0.5N0.2 -67 x2 1

Table 5.3: Molecules, Gibbs free energies of formation, chemical activities, and variables
of the model. *Gibbs free energy of formation of CO2.

on s. The Gibbs free energy of each reaction can be written as:

∆Gcat,1(s) = ∆G0
cat,1 +RT ln(Qcat,1(s)) (5.22)

∆Gcat,2(s) = ∆G0
cat,2 +RT ln(Qcat,2(s)) (5.23)

∆Gan(s) = ∆G0
an +RT ln(Qan(s)) (5.24)

Let ∆Gdis,1, and ∆Gdis,2 be the dissipated energy of each metabolism. The coupling

coefficient of each metabolism is then calculated as

λi(s) = −∆Gdis,i + ∆Gan,i(s)

∆Gcat,i(s)
i ∈ 1, 2 (5.25)

the metabolic reaction of each species is then vmet,i(s) = λi(s)vcat,i + van. Let Π be the

projection into the coordinates of molecules corresponding to variables (s1, s2, s4, s4, s5).

So one can write:

Y (s) =

[
Πvmet,1(s) Πvmet,1(s)

]
(5.26)

Let µmax,1 and µmax,2, the maximum growth rates of x1 and x2, and Vh,1 and Vh,2 their re-

spective harvest volumes. Let (vmet,i(s))s1 be the coordinate corresponding to the glucose
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stoichiometric coefficient of metabolism i. Then the growth rate is written as:

µi(s) = µmax,i exp

(
(vmet,i(s))s1

Vh,is1

)
i ∈ {1, 2} (5.27)

with µ(s) =

[
µ1(s) µ2(s)

]>
. Let (once again, abusing of notation) sin =

[
sin 0 0 0 0

]>
From all the above one can write the the chemostat model as:

ẋ = diag(µ(s)−D2×1)x

ṡ = (sin − s)D + Y (s) diag(µ(s))x (5.28)

In the following some simulations are presented for 5 sets of parameters shown in table 5.4.

The idea is to observe the qualitative behaviour of the model over reasonable values of its

output compared to the experiment. For the first set, the dissipated energy corresponds to

the value suggested for glucose as the carbon source [64]. The µmax values are taken from

other study of hydrogen production [1]. Only the Vh value was used to “fit” the model. In

sets 2, 3, and 4, just one parameter was changed with respect to set 1. No optimization

procedure was used, because the reactor was not perturbed neither in its dilution rate,

nor in its input glucose, so identifiability is probably low. The former is shown with

Set 5, the parameters are completely different, particularly the ∆Gdis,1 was estimated in

order to have the same hydrogen yield as the experiment (1.9 [molH2/molC6H12O6]), this

implies λ = 0.76. The activity used to estimate ∆Gdis in that case was the observed data

at the steady state.

Parameters Set 1 Set 2 Set 3 Set 4 set 5
∆Gdis,1[kJ/C −mol Biomass] 236 236 236 236 198
∆Gdis,2[kJ/C −mol Biomass] 236 210 236 236 170
µmax,1[day]−1 35 35 35 35 20
µmax,2[day]−1 35 35 35 35 25
Vh,1[mol Biomass/l] 13 13 13 13 17.5
Vh,2[mol Biomass/l] 14.5 14.5 15 14.5 15
x1(t = 0)[mol/l] 10−3 10−3 10−3 10−5 5·10−4

x2(t = 0)[mol/l] 10−3 10−3 10−3 10−3 5·10−4

Table 5.4: 5 sets of parameters for model (5.28). Bold numbers indicate a difference with
respect to set 1.
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(a) Metabolites resulting from model simulation and data.

(b) Proportion of OTU measured by molec-
ular fingerprints.

(c) Coupling coefficients λi(s(t)) and
growth rates µi(s(t)) through time.

Figure 5.4: Model simulation for parameter set 1. Note how the growth rate converge,
implying that coexistence was attained.

The model seems to replicate the results of coexistence found in [40], to estimate if

coexistence is achieved, longer simulation times were used to observe the species con-

centration, in all cases shown here coexistence occurred, but for discussion only the

simulation corresponding to the experiments duration are shown. Evidently, washout of

one of the two species can be achieved by, for example, doubling the µmax of one of the

species (not shown in here). The growth rates are shown in all cases to converge to D.

In all figures, the COD balance of the model was taken as the sum of the COD equiv-

alent of vector s(t), the CODin represents the glucose input concentration, finally the
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CODout(data) was taken only as the sum of s1 to s4 (remaining glucose + VFA). It seems

from simulations that one can not replicate at the same time the proportion of x1 and x2

and the lactate concentration (compare figures 5.4 and 5.5 where ∆Gdis,2 was lowered).

In figure 5.6 a different initial point was used (x1 initial concentration was divided by a

hundred), and the system appears to reach the same equilibria as in 5.4.

The behaviour of the glucose transient concentrations could neither be captured in any

of the simulations done while studying this system. However, given the 20 % error of the

COD mass balance, the simulations can be considered acceptable in terms of capturing

the qualitative dynamics of the system. The metabolic coupling coefficient appears to be

dynamic in all five simulations, particularly in figure 5.8. Under the hypothesis that the

dissipated energy of a cell is constant this would imply a very quick adaptability from

the OTU.

It seems that thermodynamics corrections in anaerobic systems are necessary in order

to explain the ecological dynamics. The growth function dependecy on catabolic products

is essential to achieve coexistence, so the CEP can no longer hold.
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(a) Metabolites resulting from model simulation and data.

(b) Proportion of OTU measured by molec-
ular fingerprints.

(c) Coupling coefficients λi(s(t)) and
growth rates µi(s(t)) through time.

Figure 5.5: Model simulation for parameter set 2. ∆Gdis,2 was lower than set 1, thus the
yield of glucose consumed per biomass for x2 became lower, consequently its “Ks” (as in
the identification shown at the beginning of the chapter) also diminished, giving x2 the
upper hand in substrate acquisition.
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(a) Metabolites resulting from model simulation and data.

(b) Proportion of OTU measured by molec-
ular fingerprints.

(c) Coupling coefficients λi(s(t)) and
growth rates µi(s(t)) through time.

Figure 5.6: Model simulation for parameter set 3. The initial concentration for x1 was
divided by a hundred, but the system still arrives to a similar steady state as in case 1.



CHAPTER 5. ON MICROBIAL TRANSITION STATE THEORY IMPLICATIONS111

(a) Metabolites resulting from model simulation and data.

(b) Proportion of OTU measured by molec-
ular fingerprints.

(c) Coupling coefficients λi(s(t)) and
growth rates µi(s(t)) through time.

Figure 5.7: Model simulation for parameter set 4. Vh,2 was lowered, and consequently
“Ks”, the system arrives at a coexistence equilibrium as well, but the proportion of x2
augmented with respect case 1.



CHAPTER 5. ON MICROBIAL TRANSITION STATE THEORY IMPLICATIONS112

(a) Metabolites resulting from model simulation and data.

(b) Proportion of OTU measured by molec-
ular fingerprints.

(c) Coupling coefficients λi(s(t)) and
growth rates µi(s(t)) through time.

Figure 5.8: Model simulation for parameter set 5. ∆Gdis,1 was calculated to fit the
hydrogen yield experimentally found. The other parameters were tinkered to more or
less fit data. The models parameters probably can not be identified to a great degree of
accuracy.



Chapter 6

Conclusions and Perspectives

In the previous pages some mathematical models on the community dynamics in chemo-

stat settings were developed and discussed. The main aspects that one might say have

contributed to the current state of modelling in bioprocess are three: 1) A method to

assign functionality, or more precisely, a metabolic reaction to OTU present in a reactor

2) A framework to study the interactions of OTU that can be directly integrated in al-

ready existing mass-balance models and 3) Theoretical connections between growth rates

of microbial development under substrate limitation and the energy gradients available

in the environment.

The first contribution, as already mentioned, was motivated by the challenges posed

by Widder et al. [138]. Even though a CBM formulation was not used, the method is

robust, in the sense that it does not need expert knowledge on the particular metabolic

pathways of each microorganism, but rather general biological knowledge on the catabolic

reactions that are known to take place in a particular environment. A very important

part of the classification method relies on the reference yield used. For assessing the yield

(that is known to vary from one reactor to another), a previous analysis based on the

Gibbs energy dissipation method was coupled to asymptotic observers.

Developing an asymptotic observer that takes into account the activity corrections

of the stoichiometric matrix requires finding a new invariant. Note that the reaction

invariant as defined in this work would imply, ż = ṡ−Ẏ (s)x−Y (s)ẋ = (sin−z)D−Ẏ (s)x,

113
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so the deduction is not as straightforward as before.

The framework developed to integrate interactions as drivers of a reactor outcome was

originally inspired from a gLV model, both of the models exposed what can be gained

from combining population-based models as used in ecology with functional group based

approaches as used in bioengineering. However, gLV models suffer from quadratic growth

of parameters that clearly renders them of low potential application, even though some

successful cases do exist. Contrarily the framework presented grows linearly in terms

of parameters per OTU (the weights on the control), and also grows linearly in terms

of computing time per OTU. How to go from studying interactions to using them for

prediction is clearly the next step. In that sense, using the control terms to fit a new

particular growth function seems a good idea (instead of trying to fit the whole system

of differential equations again), and searching for functions with a reduced number of

parameters (as opposed to linear pairwise interactions) is also a good guideline.

In these times, when data-driven approaches are on the rise, our capacity to under-

stand phenomena is being relegated to the performance of prediction of algorithms. ”Do

not try to understand, compute,” seems to be the general paradigm. It is worth asking,

then, the value in the task of deriving microbial growth expressions from theoretical en-

quiries. From the author’s point of view it is not only a useful but a necessary exercise.

In a certain sense, one cannot advance without the other, and as the power of algorithms

predictability increases, the ability to understand the causality of the input-output of

the corresponding algorithm decreases. This just creates a new scenario in which theory

should include these predictions as new observations.

Moreover, data is not born out of thin air. It is theory that pushes for the search

and development of measurement instruments to gather information. The chemostat did

not exist before microbial growth; however, as a tool to measure it, both of them became

entangled, and it is hard to discuss microbial growth without using the affinity concept.

Even though the meaning of the affinity constant has not yet been unveiled (if it ever

is), it has been measured in thousands of experiments on different settings. What does

it mean to measure a constant without a clear interpretation? A very practical and



CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 115

concrete answer to that question is that a function has been fitted to data in a particular

condition. To a certain extent, the meaning comes from the model and the theory itself.

Once a model works, we strive to adjust the model to different situations other than the

one in which it originally worked. When these adjustments become a list of cases (all of

the existing growth expressions), then, perhaps a new theory is required that wraps up

all of the above cases.

Certain theoretical consequences of the MTS model seem to be reflected in observed

phenomena. The concept of harvest volume is an intellectual edifice that intuitively

encapsulates the notion of density dependence and affinity, so it is no surprise that its

approximations appear to be in line with some documented experimental growth rates.

Since it also takes into account energetic principles governing cellular growth it forces

a link between stoichiometry and the growth rate which came to be around Monod’s

affinity constant.

The need for a thermodynamic framework in order to gain insight on the trade-offs

of classical kinetic parameters is sought for. In here the affinity Ks was shown to have

a theoretical relationship to the yield, any insight on µmax still remains a mystery. The

recent findings in an upper limit of gibbs energy dissipation rate could be tested in a

chemostat setting [90]. A good starting point would be to compile data coming from

chemostat experiments where dilution rate D was varied, and calculate D∆Gdis in order

to obtain an approximation of the dissipated energy rate.



Appendix A

Appendix

A.1 Technical Framework

Theorem 2. Consider two sets of molecules C1 and C2, with n1 and n2 elements, A1

and A2 atomic matrices, and Gf1 and Gf2 formation energies, respectively. Let C =

C1 ∪ C2 be the set of all molecules, with n elements, atomic matrix A, and formation

energy Gf . Let Ji the set of indices corresponding to molecules Ci in set C, and define

the matrix Mi ∈ Rn×ni (Mi)•j = ej, j ∈ Ji, with ej canonical vector j of Rn. Then

ker(Ai) ∼= ker(A) ∩ Im(Mi). Using this identification for v1 ∈ ker(A1) and v2 ∈ ker(A2)

we can write v = v1 + v2 without ambiguity. Furthermore Gf = M1Gf1 + M2Gf2 and

∆Gv = v ·Gf = v1 ·Gf1 + v2 ·Gf2.

Proof. Basic matrix manipulation yields AMi = Ai. Note that πi : x ∈ ker(Ai)→Mix ∈

ker(A)∩Im(Mi), defines a surjective homomorphism, and ker(πi) = {x : Mix = 0} = {0},

since Mi is composed of linearly independent columns, thus πi is an isomorphism.

Note that ImMi = {x ∈ Rn, xj = 0, ∀j /∈ Ji}. Basically the isomorphism injects the

elements v ∈ ker(Ai) into the coordinates of the corresponding molecules of a vector of

Rn, with zeros in the other coordinates.
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A.2 On the Growth Rates of a Microbial Community

A.2.1 Proofs of Properties of the System

Lemma 4. For initial conditions (x1(0), . . . , xn(0), s1(0), s2(0), s3(0))) ∈ Ω, there exists

positive scalars M1, M2, and M3 such that solutions to (4.3) satisfy the following inequal-

ities:

∑
i∈G1

1

yi
xi + s1 ≤M1 (A.1)

∑
i∈G2

1

yi
xi + s1 + s2 ≤M2 (A.2)

s1 + s2 + s2 ≤M3 (A.3)

Proof. Define z1 :=
∑
i∈G1

1

yi
xi+s1; z2 :=

∑
i∈G2

1

yi
xi+s1+s2; z3 := s1+s2+s3. Computing

ż1 one gets:

ż1 =
∑
i∈G1

1

yi
ẋi + ṡ1 = D

(
−
∑
i∈G1

1

yi
xi − s1 + sin

)
= D(sin − z1)

Define s̄ = max{sin(t)|t ≥ 0} and consider the differential equation:

ẇ = D(s̄− w); w(0) =
∑
i∈G1

1
yi
xi(0) + s1(0) (A.4)

If there is a time interval H such that t∗ ∈ H ⇒ D(t∗) = 0, then z1 is constant and

therefore bounded by the value of the solution in z(t∗). If D(t) > 0, then w = s̄ is a

stable asymptotic equilibrium. Define M1 := max{w(0), s̄}. If w(0) > s̄ then by the

Picard-Lindeloff theorem ∀t ẇ(t) < 0, otherwise it would cross the solution of the initial

value problem (A.4) with starting point s̄ , therefore w(t) ≥ s̄. The same reasoning may

be applied if w(0) < s̄. One concludes that w(t) ≤M1.

Now consider

ż1 = D(sin − z1); z1(0) =
∑
i∈G1

1
yi
xi(0) + s1(0) (A.5)
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From a comparison lemma (see chapter 3 [60]), the solution of (A.5) is bounded by w

and therefore z1(t) ≤M1.

DefineM2 = max

{
n∑

i=n1+1

1

yi
xi(0) + s1(0) + s2(0), s̄

}
, andM3 = max {s1(0) + s2(0) + s3(0), s̄}

and noting that z2(t) and z3(t) satisfies the same differential equations as z1 the above

reasoning may be applied and one has the desired bounds.

Lemma 5. For initial conditions (x1(0), . . . , xn(0), s1(0), s2(0), s3(0))) ∈ Ω, there exists

a constant M > 0 such that for every matrix A satisfying ‖A‖∞ ≤ M , the solutions of

system (4.3) with growth rates given by (4.6), remain in Ω and are bounded.

Proof. If any coordinate of the solution becomes zero, then it’s derivative is either zero,

or positive. The bound will follow from Lemma 2.

Note that for any i ∈ [n], if xi = 0 then ẋi = 0, therefore all solutions of system (4.3)

with initial condition xi(t0) = 0 remain in these planes. By the Picard Lindeloff theorem

a solution starting in int(Ω) cannot cross these planes, therefore xi(t) ≥ 0 for t ≥ 0. If

s1 = 0, then ṡ1 = Dsin > 0. Therefore s1(t) ≥ 0. If s2 = 0, let k̄ = min
{

1
yi

: i ∈ [n]
}

, by

adding both inequalities from Lemma (2) and since s1 ≥ 0 one has k̄
n∑
i=1

xi ≤ M1 + M2,

which in turn implies: k̄‖x‖∞ ≤M1 +M2. Define M :=
k̄

M1 +M2

, and let A be a matrix

such that ‖A‖∞ ≤M . It follows that ‖Ax‖∞ ≤ ‖A‖∞‖x‖∞ ≤M 1
M

= 1, and therefore:

(1 + Ai•x) ≥ 0 ∀i ∈ [n] (A.6)

Computing ṡ2 =
∑
i∈G1

1
yi
µ̄ifi(s)(1 + Ai•x)xi ≥ 0, and thus s2(t) ≥ 0. Note that since

s2 ≥ 0, bound (A.6) is valid for any time, and not only when s2 = 0. If s3 = 0 then

ṡ3 =
n∑

i∈G2

1
yi
µi(s2, x) ≥ 0. Therefore s3 ≥ 0. For the boundedness it suffices to notice from

2 that the sum of positive elements is bounded, therefore each element is bounded.
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A.2.2 Deduction of Equilibrium points

Recall that fi(s) =


µ̄i

s1
Ki + s1

∀i ∈ G1

µ̄i
s2

Ki + s2
∀i ∈ G2

, then µ(x, s) = diag(f(s))(1n×1 + Ax) thus,

system (4.3) is rewritten as follows.

ẋ = diag(µ(x, s)−Dn×1)x (A.7)

ṡ1 =(sin − s1)D + Y1• diag(µ(x, s))x (A.8)

ṡ2 =− s2D + Y2• diag(µ(x, s))x (A.9)

ṡ3 =− s3D + Y3• diag(µ(x, s))x (A.10)

Recall J the set of non-active coordinates. Let M be the matrix defined by taking out

the J columns of the identity matrix of size n. When M multiplies from the left it adds

rows of zeros to the multiplied matrix in the J coordinates. When matrix M multiplies

from the right it takes out the J columns of the multiplied matrix. When M> multiplies

from the left it takes out the J rows of the multiplied matrix. When M> multiplies from

the right it adds columns of zeros to the multiplied matrix in the J coordinates. This

gives the following relationships:

xeq = Mxact; fact(s) = M>f(s); µact(x, s) = M>µ(x, s); Y act = YM ; M>M = Inact

(A.11)

From equation (A.7) equilibrium points satisfy:

xi = 0 ∨ (diag(f(s))(1n×1 + Ax)−Dn×1)i = 0 ∀i ∈ [n] (A.12)

⇒ fi(s)(1 + Ai•x)−D = 0 ∀i ∈ [n] \ J (A.13)
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note that ∀j ∈ J , xeqj = 0 therefore the coefficients aij play no role in equation (A.13)

and one can rewrite equation (A.13) as

µact(x, s) = diag(fact(s))(1nact×1 + Aactxact) = Dnact×1 (A.14)

From hypothesis 2 matrix Aact has an inverse. This gives the following formula

xact = (Aact)−1(diag(fact(s))−1Dnact×1 − 1nact×1) (A.15)

Note as well that at the equilibrium, s3 can be defined in terms of s1, s2 and sin. This

is done by adding equations (A.8), (A.9), and (A.10) which gives:

sin = s1 + s2 + s3 (A.16)

Both functional groups are present

The case where in each functional group remains at least one OTU is represented by

Hypothesis 3. By replacing xeq = Mxact in equation (A.8) yields

(sin − s1)D + Y act
1• diag(µact(x, s))xact = 0 (A.17)

For notation and indexing purposes it is useful to define B := Y act
1• (Aact)−1M> (note

Bj = 0∀j ∈ J ). Replacing (A.15) in equation (A.8) reads as follows:

(sin − s1) + Y act
1• (Aact)−1M>M︸ ︷︷ ︸

Inact

(diag(fact(s))−1Dnact×1 − 1nact×1) = 0 (A.18)

sin − s1 +
∑
i∈G1

Bi

(
Ki + s1
µ̄is1

D − 1

)
+
∑
i∈G2

Bi

(
Ki + s2
µ̄is2

D − 1

)
= 0 / · s1s2 (A.19)

s2

(
−s21 + s1

(
sin +

∑
i∈G1∪∈G2

Bi

(
D

µ̄i
− 1

))
+
∑
i∈G1

DBiKi

µ̄i

)
= −s1

∑
i∈G2

DBiKi

µ̄i
(A.20)
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and so we get to formula (4.17) of the main text:

s2 =
s1

b1s21 + b2s1 + b3
(A.21)

where

b1 =

(∑
i∈G2

DBiKi

µ̄i

)−1
(A.22)

b2 = −

(
sin +

∑
i∈G1∪∈G2

Bi

(
D

µ̄i
− 1

))(∑
i∈G2

DBiKi

µ̄i

)−1
(A.23)

b3 = −
∑
i∈G1

DBiKi

µ̄i

(∑
i∈G2

DBiKi

µ̄i

)−1
(A.24)

(A.25)

The same computations must be done with equation (A.9), which is structurally very

similar to (A.8). By replacing xeq = Mxact in equation (A.9) yields

−s2 + Y act
2• (Aact)−1(diag(fact(s))−1Dnact×1 − 1nact×1) = 0 (A.26)

It is again useful to define:

C := Y act
2• (Aact)−1M>. (A.27)

−s2 + Y act
2• (Aact)−1M>M︸ ︷︷ ︸

Inact

(diag(fact(s))−1Dnact×1 − 1nact×1) = 0 (A.28)

−s2 +
∑
i∈G1

DCi
Ki + s1
µ̄is1

+
∑
i∈G2

DCi
Ki + s2
µ̄is2

−
∑

i∈G1∪G2

Ci = 0 / · s1s2 (A.29)

s1

(
−s22 + s2

∑
i∈G1∪∈G2

Ci

(
D

µ̄i
− 1

)
+
∑
i∈G2

DCiKi

µ̄i

)
= −s2

∑
i∈G1

DCiKi

µ̄i
(A.30)
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and one gets to expression:

s1 =
s2

c1s22 + c2s2 + c3
(A.31)

where

c1 =

(∑
i∈G1

DCiKi

µ̄i

)−1
(A.32)

c2 = −
∑

i∈G1∪∈G2

Ci

(
D

µ̄i
− 1

)(∑
i∈G1

DCiKi

µ̄i

)−1
(A.33)

c3 = −
∑
i∈G2

DCiKi

µ̄i

(∑
i∈G1

DCiKi

µ̄i

)−1
(A.34)

(A.35)

Then by replacing (A.21) in equation (A.31), and after some reordering, one gets a fifth

degree polynomial for s1.

s1

(
c1

(
s1

b1s21 + b2s1 + b3

)2

+ c2

(
s1

b1s21 + b2s1 + b3

)
+ c3

)
=

s1
b1s21 + b2s1 + b3

/ ·
(
b1s

2
1 + b2s1 + b3

)2
(A.36)

a4s
4
1 + a3s

3
1 + a2s

2
1 + a1s1 + a0 = 0 ∨ s1 = 0 (A.37)

where

a0 = b3 + c3b
2
3 (A.38)

a1 = c2b3 + 2c3b3b2 − b2 (A.39)

a2 = c1 + c2b2 + c3(b
2
2 + 2b1b3)− b1 (A.40)

a3 = c2b1 + 2c3b1b2 (A.41)

a4 = c3b
2
1 (A.42)
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Washout of G2

The washout of G2 is represented in Hypothesis 4.

Under this case note that fact(s) depends only on s1. By replacing again xeq = Mxact

in equation (A.7), one obtains the same computations as in the previous section, so retake

equation (A.19)

sin − s1 +
∑
i∈G1

Bi

(
Ki + s1
µ̄is1

D − 1

)
+
∑
i∈G2

Bi

(
Ki + s2
µ̄is2

D − 1

)
= 0 (A.19)

Since G1 ⊂ J then Bi = 0∀i ∈ G2 thus (A.19) becomes:

sin − s1 +
∑
i∈G1

Bi

(
Ki + s1
µ̄is1

D − 1

)
= 0 / · s1 (A.43)

s1sin − s21 +
∑
i∈G1

Bi
DBiKi

µ̄i
+ s1

∑
i∈G1

Bi

(
D

µ̄i
− 1

)
= 0 (A.44)

And so a quadratic equation for s1 is obtained.

a′2s
2
1 + a′1s1 + a′0 = 0 (4.19)

where

a′2 = −1 (A.45)

a′1 = sin +
∑
i∈G1

Bi

(
D

µ̄i
− 1

)
(A.46)

a′0 =
∑
i∈G1

Bi
DBiKi

µ̄i
(A.47)

A.2.3 Jacobian of the system

Recall that f : X → Y is a function, then its derivative is f ′ : X → L(X, Y ) where

L(X, Y ) denotes the set of continuous linear mappings from X to Y , such that ‖f(x)−

f(a)− f ′(a)[x− a]‖ = o(‖x− a‖), where the linear mapping f ′(a) is evaluated at [x− a]

[20]. In the case where X = Rn and Y = Rm, f ′(x) is the Jacobian matrix evaluated at
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point x, furthermore f ′(x)[ej] (where ej is the canonical j-th vector) is the j-th column

of the Jacobian matrix evaluated at point x.

If f is linear then f ′(a) = f for any a ∈ X. In the case of the diag operator, we

observe it is linear, therefore diag′(a)[x] = diag(x)

In the case of bilinear mappings another formula holds, let h : X1×X2 → Y be bilinear.

Then h′(a1, a2)[x1, x2] = h(x1, a2) +h(a1, x2). In the case of the function h1 :Mn×n(R)×

Rn 7→ Rn such that h1(M,x) = Mx, one can see that h′1(A, x)[B, y] = Bx+ Ay.

The chain rule states that f : X → Y and g : Y → Z, if h := g ◦ f then h′(a) =

g′(f(a)) ◦ f ′(a). Take the expression h : (x, y) ∈ Rn × Rn 7→ diag(x)y. It is clear that

h = h1(diag(x), y). By the chain rule:

h′(x, y)[a, b] = h′1(diag(x), y) ◦ (diag′(x), In)[a, b] (A.48)

= h′1(diag(x), y)[diag(a), b] (A.49)

= diag(a)y + diag(x)b (A.50)

Note finally that function h is symmetric, i.e. h(x, y) = h(y, x). Then going back to our

system.

ẋ =g1(x, s) = diag(µ(x, s)−Dn×1)x (A.51)

ṡ =g2(x, s) =

([
sin 0 0

]>
− s

)
D + Y diag(µ(x, s))x (A.52)

where µ(x, s) = diag(f(s))(1n×1 + Ax) For a fixed s, let µs(x) : x 7→ diag(f(s))(1 + Ax)

then, µ′s(x) = diag(f(s))A . Let g1s(x) := h(µs(x) − Dn×1, x) = g1(x, s), then compute

g′1s:

g′1s(x)[ej] = h′(µs(x)−Dn×1, x) ◦ (µ′s(x), In)[ej, ej] (A.53)

= h′(µs(x)−Dn×1, x)[diag(f(s))Aej, ej] (A.54)

= diag(f(s)) diag(x)A•j + diag(µs(x)−Dn×1)ej (A.55)

⇒ g′1s(x) = diag(f(s)) diag(x)A+ diag(µs(x)−Dn×1) (A.56)
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Again, for a fixed s, let g2s(x) :=

([
sin 0 0

]>
− s

)
D + Y h(µs(x), x) = g2(x, s), then

compute g′2s:

g′2s(x)[ej] = Y h′(µs(x), x) ◦ (µ′s(x), In)[ej, ej] (A.57)

= Y (diag(f(s)) diag(x)A•j + diag(µs(x))ej) (A.58)

⇒ g′2s(x) = Y (diag(f(s)) diag(x)A+ diag(µs(x))) (A.59)

Let fG1(s1) the function containing the first n1 components of function f(s) and fG2(s2)

the function containing the last n2 components of function f(s) so one can write

f(s) =

fG1(s1)

fG2(s2)

 (A.60)

One can see then that:

f ′(s) =

f ′G1
(s1) 0n1×2

0n2×1 f ′G2
(s2) 0n2×1

 (A.61)

Now for a fixed x let µx(s) : s 7→ diag(f(s))(1n×1 + Ax), therefore µ′x(s) = diag(1 +

Ax)f ′(s). Let g1x(s) := h(µx(s)−Dn×1, x) = g1(x, s), then compute g′1x:

g′1x(s)[ej] = h′(µx(s)−Dn×1, x) ◦ (µ′x(s), 0)[ej, ej] (A.62)

g′1x(s)[ej] = h′(µx(s)−Dn×1, x)[µ′x(s)ej, 0] (A.63)

g′1x(s)[ej] = diag(x)µ′x(s)ej (A.64)

⇒ g′1x = diag(x) diag(1 + Ax)f ′(s) (A.65)

Again, for a fixed x let g2x(s) :=

([
sin 0 0

]>
− s

)
D + Y h(µs(x), x) = g2(x, s), then
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compute g′1x:

g′2x(s)[ej] = −DInej + Y h′(µx(s), x) ◦ (µ′x(s), 0)[ej, ej] (A.66)

g′2x(s)[ej] = −DInej + Y h′(µx(s), x)[µ′x(s)ej, 0] (A.67)

g′2x(s)[ej] = −DInej + Y diag(x)µ′x(s)ej (A.68)

⇒ g′2x(s) = −DIn + Y diag(x) diag(1 + Ax)f ′(s) (A.69)

Finally note that:

f ′G1
:=

(
∂f1
∂s1

, . . . ,
∂fn1

∂s1

)>
=

(
µ̄1K1

(K1 + s1)2
, . . . ,

µ̄n1Kn1

(Kn1 + s1)2

)>
∈ Rn1

f ′G2
:=

(
∂fn1+1

∂s2
, . . . ,

∂fn
∂s2

)>
=

(
µ̄n1+1Kn1+1

(Kn1+1 + s2)2
, . . . ,

µ̄nKn

(Kn + s2)2

)>
∈ Rn2

Then the Jacobian of the system may be expressed as:

J(x, s) =

g′1s(x) g′1x(s)

g′2s(x) g′2x(s)

 (A.70)

A.2.4 Tracking Problem reformulation and details

For applying the methods developed in [22]. Define the system state X = (x, s). Make

the change of variables vi = ui − 1 with v = (v1, . . . , vn) are applied to system (4.25).

The system may be rewritten then as:

ẋi = (fi(s)(1 + vi(t))−D)xi ∀i ∈ G1

ẋi = (fi(s)(1 + vi(t))−D)xi ∀i ∈ G2

ṡ1 = s1

(
sin
s1
− 1

)
D +

∑
i∈G1

ys1/xifi(s)(1 + vi(t))xi

ṡ2 = −s2D +
∑

i∈G1∪G2

ys2/xifi(s)(1 + vi(t))xi

ṡ3 = −s3D +

n1+n2∑
i∈G2

ys3/xifi(s)(1 + vi(t))xi

y(t) = x(t)

(A.71)
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Define:

A (X) =

A11(X) A12(X)

A21(X) A22(X)

 ; B (X) =

B1(X)

B2(X)

 (A.72)

with

A11(X) = diag(f(s)−Dn×1); A12(X) = 0n×3 (A.73)

A21(X) = Y diag(f(s)); A22(X) =


(
sin
s1
− 1
)
D 0 0

0 −D 0

0 0 −D

 (A.74)

and

B1(X) = diag(f(s)) diag(x); B2(X) = Y diag(f(s)) diag(x); C(X) =

[
diag(In) 0n×3

]
(A.75)

Then the system (A.71) can be rewritten as:

Ẋ = A(X)X +B(X)v; y = C(X)X (A.76)

z(t) ∈ Rn is the measured vector containing the OTU concentrations in time. The cost

functional is given by

J(v) = (z(tf )− C(X)X(tf ))
> F (z(tf )− C(X)X(tf )) (A.77)

+

tf∫
t0

(z(t)− C(X)X(t))>Q (z(t)− C(X)X(t)) + v(t)>Rv(t) (A.78)

where F,Q and R are positive definite matrices. Since there is no interest in the final

time F = 0. Q and R are taken as diagonal matrices, in that way the system can be

reduced as shown below. Particularly after testing the model in the proof of concept and
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data, the Q and R matrices were

λ1In1 0

0 λ2In2

 and In, respectively, with λ1 = 10−4

and λ2 = 10−5.

Define the dynamic sequences for i ∈ N, Ẋ [i] as :

Ẋ [i] = A(X [i])X [i] +B(X [i])v[i] i ∈ N (A.79)

y[i] = X [i] i ∈ N (A.80)

X [i](t0) = X0 i ∈ N (A.81)

and for i = 0 define X [0](t) as the solution of (A.71) with v(t) ≡ 0. The control law is

given by

v[i](t)j = max

{
−1,min

{
0,
(
−R−1B>

(
X [i−1](t)

) (
P [i](t)X [i](t)− s[i]f (t)

))
j

}}
∀j ∈ [n]

(A.82)

Where P [i](t) ∈ Mn+3×n+3(R) and s
[i]
f (t) ∈ Rn+3 are the solution to the differential

equations:

Ṗ [i] = −CT
(
X [i−1](t)

)
QC

(
X [i−1](t)

)
− P [i]A

(
X [i−1](t)

)
− A>

(
X [i−1](t)

)
P [i]

(A.83)

+ P [i]B
(
X [i−1](t)

)
R−1B>

(
X [i−1](t)

)
P [i] (A.84)

P [i](tf ) = C>
(
X [i−1](tf )

)
FC

(
X [i−1](tf )

)
(A.85)

˙
s
[i]
f = −C>

(
X [i−1](t)

)
Qz(t)−

[
A
(
X [i−1](t)

)
−B

(
X [i−1](t)

)
R−1B>

(
X [i−1](t)

)
P [i](t)

]>
s
[i]
f

(A.86)

s
[i]
f (tf ) = C>

(
X [i−1](tf )

)
Fz(tf ) (A.87)

Replacing the matrices of our problem
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Ṗ [i](t) = −

 Q 0n×3

03×n 03×3

− P [i]A
(
X [i−1](t)

)
− A>

(
X [i−1](t)

)
P [i] (A.88)

+ P [i]B
(
X [i−1](t)

)
R−1B>

(
X [i−1](t)

)
P [i]

P [i](tf ) =

0n×n 0n×3

03×n 03×3

 (A.89)

ṡf
[i](t) = −

Qz(t)

03×1

− [A (X [i−1](t)
)
−B

(
X [i−1](t)

)
R−1B>

(
X [i−1](t)

)
P [i](t)

]>
s
[i]
f

(A.90)

s
[i]
f (tf ) =

[
0n×n 0n×3

]>
z(tf ) (A.91)

For certain entries of the dynamic the constantly zero function is a solution for them,

implying by existence and uniqueness that they should be constantly zero. Then P [i] has

n× n non zero entries and s[i] has n non zero entries, explicitly:

P [i](t) =

P̃ [i](t) 0n×3

03×n 03×3

 ; s
[i]
f (t) =

s̃[i]f (t)

01×3

 (A.92)

A
(
X [i−1](t)

)
=

A11 A12

A21 A22

 ; B
(
X [i−1](t)

)
=

B1

B2

 (A.93)

where A11 = diag
(
f
(
s[i−1]

)
−Dn×1

)
, and B1 = diag

(
f
(
s[i−1]

))
diag

(
x[i−1]

)
The equa-

tions for P̃ [i](t):

˙̃P [i](t) = −Q− P̃ [i]A11 − A>11P̃ [i] + P̃ [i]B1R
−1B>1 P̃

[i]; P̃ [i](tf ) = 0 (A.94)

Inspecting the former equation one notices that if i 6= j, Pij(t) = 0 is a solution of
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all non diagonal entries when R is diagonal. And therefore, once again, by existence and

uniqueness they should be constantly zero. Hence only the diagonal entries should be

calculated.

˙̃P
[i]
jj (t) = −Qjj − 2

(
fj
(
s[i−1]

)
−D

)
P̃

[i]
jj +R−1

(
P̃

[i]
jj

)2
fj
(
s[i−1]

)2 (
x
[i−1]
j

)2
; P̃

[i]
jj (tf ) = 0

(A.95)

For and s̃f
[i](t) the system reduces to:

˙̃s
[i]
f (t) = −z(t)−

[
A11 −R−1B1B

>
1 P̃

[i](t)
]>
s̃
[i]
f ; s̃

[i]
f (tf ) = 0 (A.96)

And the control law is given by

v[i](t)j = max

{
−1,min

{
0,
(
−R−1B>1

(
X [i−1](t)

) (
P̃ [i](t)x[i](t)− s̃[i]f (t)

))
j

}}
∀j ∈ [n]

(A.97)

They were solved using standard backward numerical integration.
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Approximation

Consider the first order approximation of the exponential function:

exp(x) = 1 + x+ o(x) (A.98)

and the first order approximation:

1

1 + x
= 1− x+ o(x) (A.99)

Then rewrite MTS expression as follows:

µmaxexp

(
−λ
Vhs

)
≈ µmax

(
1− λ

Vhs

)
(A.100)

≈ µmax
1

1 +
λ

Vhs

(A.101)

= µmax
s

s+
λ

Vh

(A.102)

Comparison of both expressions

The substrate limitation range can be studied through the ratio of both growth functions,

shown in expressions (A.103) and (A.104), respectively.

µmax
s

s+
λ

Vh

(A.103)

µmaxexp

(
−λ
Vhs

)
(A.104)

Noting Ks :=
λ

Vh
One then considers the ratio:

R(s) =
exp

(−Ks

s

)
s

s+Ks

(A.105)
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Note that ratio (A.105) does not depend on µmax, It can be shown that R(s) ∈ (0, 1),

by using the well known inequality exp(x) < 1
1−x for x < 1. Which is valid since the term

inside the exponential is negative:

R(s) ≤ 1

1− −Ks

s

Ks + s

s
= 1 (A.106)

The change of variables u = s
Ks

is used to analyse the expression R(s), which gives

equation (A.107).

F (u) = exp

(
−1

u

)
u+ 1

u
(A.107)

F ′(u) = exp

(
−1

u

)
1

u2
u

u+ 1
+ exp

(
−1

u

)
1

(u+ 1)2
> 0 (A.108)

Since F is monotonic, one gets that there exists a unique u∗ such that exp
(
− 1
u∗

) u∗ + 1

u∗
=

0.9, implying a unique s∗ := u∗Ks, such that R(s∗) = 0.9. From the former it can be

seen that for each Ks MTS expression approximates to 90 % of the Monod expression

whenever s ≥ u∗Ks.

The curve s 7→ R(s) is shown in figure A.1, for different Ks values of table 5.1 of the

manuscript. One can see that u∗ ≈ 1.92 therefore s ≥ 1.92Ks then R(s) ≥ 0.9.
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Figure A.1: R(s) curve for several Ks values obtained for E. Coli ML 30. The asterisk
∗ represents Ks values evaluated in expression R(s), note that R(Ks) ≈ 0.74. The plus
sign + represents the point where the R(s) = 0.9.



Bibliography

[1] C. A. Aceves-Lara, E. Latrille, N. Bernet, P. Buffière, and J. P. Steyer. A pseudo-

stoichiometric dynamic model of anaerobic hydrogen production from molasses.

Water Research, 2008.

[2] S. Aiba, M. Shoda, and M. Nagatani. Kinetics of product inhibition in alcohol

fermentation. Biotechnology and Bioengineering, 1968.

[3] A. Y. Aleksandrov and E. B. Aleksandrova. Convergence conditions for some classes

of nonlinear systems. Systems and Control Letters, 2017.

[4] J. F. Andrews. A mathematical model for the continuous culture of microorganisms

utilizing inhibitory substrates. Biotechnology and Bioengineering, 10(6):707–723,

1968.

[5] J. H. Andrews and R. F. Harris. r-and k-selection and microbial ecology. Advances

in microbial ecology, pages 99–147, 1986.

[6] H. Bachmann, M. Fischlechner, I. Rabbers, N. Barfa, F. B. Dos Santos, D. Mole-

naar, and B. Teusink. Availability of public goods shapes the evolution of competing

metabolic strategies. Proceedings of the National Academy of Sciences of the United

States of America, 2013.

[7] G. Bastin and D. Dochain. On-line estimation and adaptive control of bioreactors.

Hermann, 1991.

[8] D. J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G. Pavlostathis,

A. Rozzi, W. T. Sanders, H. Siegrist, and V. A. Vavilin. The iwa anaerobic digestion

134



BIBLIOGRAPHY 135

model no 1 (adm1). Water science and technology : a journal of the International

Association on Water Pollution Research, 2002.

[9] E. H. Battley. The development of direct and indirect methods for the study of the

thermodynamics of microbial growth. Thermochimica Acta, 309(1-2):17–37, 1998.

[10] E. H. Battley, R. L. Putnam, and J. Boerio-Goates. Heat capacity measurements

from 10 to 300 k and derived thermodynamic functions of lyophilized cells of sac-

charomyces cerevisiae including the absolute entropy and the entropy of formation

at 298.15 k. Thermochimica Acta, 298(1-2):37–46, sep 1997.

[11] R. E. Beardmore, I. Gudelj, D. A. Lipson, and L. D. Hurst. Metabolic trade-offs

and the maintenance of the fittest and the flattest. Nature, 2011.

[12] L. Becks, S. P. Ellner, L. E. Jones, and J. G. Hairston Nelson G. Reduction of

adaptive genetic diversity radically alters eco-evolutionary community dynamics.

Ecology Letters, 2010.
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