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Objectifs

Ma thèse vise le développement de méthodes statistiques et d'outils informatiques appliqués à la fouille des données de la biodiversité dans le but de (1) comprendre les facteurs qui déterminent la distribution des organismes vivants; afin de (2) prédire leur réponse aux changements des conditions environnementales. Tout d'abord, nous formalisons un cadre méthodologique modulable pour la modélisation des données de 6 communauté (multi-espèces). Par la suite, nous montrons comment les modules de ce cadre peuvent être exploités dans trois applications courantes en écologie des communautés: la prédiction de la réponse des communautés à l'environnement, la recommandation d'espèces, et l'inférence de réseaux d'associations interspécifiques. Enfin, nous terminons par un cas d'étude détaillé de l'utilisation du cadre pour comprendre les déterminants de la distribution des Lombriciens en France.

Recommandation d'espèces par emplacement géographique

La prédiction automatique de la composition en espèces dans des lieux géographiques est d'une grande importance dans le contexte des questionnements actuels sur la biodiversité. Inspirés par les concepts de niche abiotique et biotique, nous étudions deux architectures de réseaux neuronaux qui visent à exploiter les caractéristiques respectives de ces deux types de niches afin d'aborder la tâche de recommandation de plantes. La première proposition utilise des trames environnementales et exploite des techniques avancées d'extraction de caractéristiques, basées sur des représentations distribuées et des réseaux de neurones convolutifs. La seconde proposition s'appuie sur des cooccurrences proches de plantes et d'organismes provenant d'une liste de taxons établie par des experts. Nous constatons que la première solution surpasse la seconde en termes de précision des prédictions, mais la seconde solution fournit des indicateurs intéressants et plus faciles à interpréter. Les deux approches donnent des résultats prometteurs dans le cadre du défi GeoLifeCLEF 2019.

Inférence de réseaux d'associations asymétriques

La question de savoir si les interactions biotiques peuvent être déduites des modèles de cooccurrence a récemment fait l'objet de nombreux débats. En théorie, les interactions biotiques au sein des communautés devraient créer des motifs spatiaux d'association entre les espèces. Ces associations spatiales peuvent découler de tous types d'interactions, qui peuvent être symétriques ou asymétriques, et qui peuvent varier à la fois en intensité et en direction.

Lorsque l'observation directe des interactions est impossible et que seules les associations peuvent être observées, des méthodes statistiques ont été proposées pour tenter de déduire les interactions sous-jacentes à partir des associations. Cependant, ces méthodes soit ignorent la réponse des espèces à l'environnement (par exemple, modèles nuls basés sur les matrices d'incide uniquement), soit se limitent à l'apprentissage de dépendances symétriques (par exemple via des modèles joints de distribution d'espèces ou des modèles graphiques probabilistes non dirigés i-e champs de Markov aléatoires) ou de liens strictement dirigés (par exemple via des réseaux bayésiens). Leur capacité relativement faible à détecter des interactions connues et le fait que la plupart des interactions sont asymétriques nécessitent le développement d'un nouveau cadre d'inférence d'associations asymétriques.

Nous proposons ici un nouveau cadre qui (a) modélise les associations comme des influences dirigées d'une espèce source vers une espèce cible, paramétrées par deux variables latentes spécifiques à l'espèce : la réponse de la cible à la communauté et l'effet de la source sur la communauté ; et (b) intègre ces associations avec un modèle d'adéquation d'habitat (habitat suitability model). Nous évaluons d'abord la capacité du cadre à détecter les associations connues à partir de simulations de processus d'assemblage. Ensuite, nous mettons en évidence les propriétés intéressantes des réseaux d'associations appris grâce à une application sur des données de comptages de végétation le long d'un gradient méso-topographique alpin.

Le modèle que nous proposons permet de distinguer différents types d'associations, comme l'ont montré nos expériences de simulation. Appliqué à des données réelles, il permet de récupérer la majorité des principales associations connues des communautés végétales alpines. Dans l'ensemble, les résultats indiquent que les données de coabondance reflètent mieux les dépendances des espèces que les cooccurrences. Plusieurs facteurs influencent l'inférence de l'intensité d'une association notamment la quantité de chevauchement des niches des espèces, la densité réelle du réseau d'interaction et la présence de multiples associations confondantes. Enfin, le regroupement des espèces sur la base de leurs représentations latentes fournit des indications complémentaires sur la similarité écologique de nombreuses espèces.

Modèle joint de distributions d'espèces

Les modèles joints de distribution d'espèces (Joint Species Distribution Models, JSDM) visent à résoudre le problème d'inférence de réseaux d'associations tout en apprenant simultanément les préférences abiotiques des espèces, ce qui permet de prédire la composition des communautés en fonction des conditions environnementales. Contrairement aux approches qui modélisent une seule espèce à la fois qui bénéficient d'une boîte à outils riche, les implémentations actuelles de JSDM reposent principalement sur la famille des modèles linéaires généralisés (Generalized Linear Models, GLM) pour modéliser les réponses abiotiques. Les réseaux de neurones (Artificial Neural Networks, ANN) constituent une classe de méthodes d'apprentissage automatique qui a fait ses preuves dans plusieurs disciplines. Un ANN peut être considéré comme une composition d'un GLM et de fonctions déterministes d'apprentissage de caractéristiques à partir des données brutes.

Sur cette base, nous proposons une extension des JSDM qui exploite le pouvoir de représentation des réseaux neuronaux pour prendre en charge des co-variables complexes et modéliser des réponses non linéaires. Le modèle proposé supporte des distributions de probabilité dans la famille exponentielle par opposition aux autres JSDM basés sur les réseaux neuronaux qui ont été spécifiquement optimisés pour le modèle probit multivarié.

Les données de communautés écologiques présentent plusieurs défis, notamment un nombre d'espèces souvent plus élevé, avec quelques espèces prévalentes et de nombreuses espèces rares. Nous proposons l'utilisation des réseaux de neurones multi-tâches, tels que chaque sortie du modèle (espèce prédite) est associée à une tâche de prédiction. De plus, une partie des couches d'apprentissage des caractéristiques (représentation intermédiaire) est partagée entre les différentes tâches. Cela permet de réduire le nombre de paramètres et répartir la puissance statistique entre les tâches de prédiction des espèces.

La complexité de la modélisation des associations dans les JSDM est proportionnelle à la taille de la matrice de covariance. Celle-ci augmente avec le nombre d'espèces considérées. Nous suivons l'approche par variable latente utilisée dans les implémentations modernes de JSDM. Le processus d'inférence avec des variables latentes est un goulot d'étranglement majeur en matière de calcul, en particulier dans les jeux de données comportant de nombreuses observations. Pour contourner ce problème, nous avons recours à l'inférence variationnelle amortie (amortized variational inference) pour contrôler la complexité du modèle et assurer son passage à l'échelle. Pour ce faire, nous utilisons un type de réseau de neurones appelé "auto-encodeurs variationnels", intégré au modèle multi-tâche précédents.

La flexibilité des modèles proposés permet d'améliorer les performances prédictives. Cependant, elle rend plus ardue l'interprétation des résultats et du processus qui les a produits. Sans modifier le modèle, nous proposons d'utiliser un ensemble de routines décrites dans la littérature pour mettre en lumière l'importance et la forme de la contribution de chaque facteur environnemental à chaque espèce prédite.

Cas d'étude: biogéographie des lombriciens de France

Dans la présente étude, nous modélisons la distribution spatiale des assemblages de vers de terre, de l'échelle locale à l'échelle nationale en France métropolitaine, en réponse au climat régional et aux conditions locales de l'habitat. Ainsi, nous utilisons le JSDM à base de réseau de neurones multitâches introduit précédemment pour modéliser les associations biotiques entre espèces et prédire conjointement les réponses des espèces à l'environnement. Le modèle est entraîné sur les données d'occurrence de Lombriciens relevées par Marcel Bouché (1972).

Premièrement, nous comparons les performances de notre modèle à celles de modèles de distribution d'espèces, sur chaque taxon et en moyenne. Deuxièmement, à l'aide d'outils d'interprétabilité de modèle d'apprentissage, nous analysons le comportement et les prédictions du modèle pour identifier les facteurs abiotiques essentiels qui déterminent la distribution générale des vers de terre. En nous concentrant sur chaque taxon, nous mettons en lumière ses préférences en matière d'habitat et sa réaction à divers gradients environnementaux. Nous explorons les points communs des réponses des espèces pour révéler des groupes de réponse. Troisièmement, nous analysons les associations identifiées par le modèle. Enfin, en utilisant le modèle cali-bré, en considérant une grille d'environ 1km de résolution à travers la France, nous calculons des projections géographiques d'indicateurs calculés sur les communautés prédites comprenant : les catégories écologiques, les traits moyens pondérés de la communauté et la diversité des assemblages de vers de terre au niveau local (diversité alpha), régional (diversité gamma) et le turnover (diversité bêta), et ce dans ses trois aspects : taxonomique, fonctionnel et phylogénétique.

Résumé

Pour anticiper l'impact potentiel des changements environnementaux sur les communautés écologiques, il est essentiel de comprendre les facteurs contrôlant la répartition géographique des organismes vivants et leurs interactions. En biogéographie, ce problème est abordé en analysant les observations des espèces dans diverses conditions environnementales. Au cours des dernières décennies, de grandes quantités de données sur la présence d'espèces ont été mises à disposition dans des bases de données ouvertes (par exemple GBIF), ainsi que des données environnementales décrivant le climat, l'occupation du sol, etc.
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General context

Biodiversity, the variability of living organisms and their complex organizational structures [START_REF] Kevin | Biodiversity: an introduction[END_REF], supports ecosystems functioning and provides significant contribution to people [START_REF] Haines | The links between biodiversity, ecosystem services and human well-being[END_REF]Potschin, 2010, Díaz et al., 2018]. These services include supplying renewable resources (food, wood, medicines, etc.), regulating environmental threats (pests/diseases, erosion control, etc.), in addition to providing cultural services for the recreational and spiritual enjoyments of human societies [START_REF] Barrios | Soil biota, ecosystem services and land productivity[END_REF].

Currently, we are witnessing a deterioration of natural (and also human-modified) habitats driven by global changes, i.e. over-exploitation of natural resources, climate change, pollution, and the introduction of invasive species (IPBES 2019 global assessment report [START_REF] Brondizio | Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services[END_REF]). This degradation of ecosystems affects biodiversity at various levels of organization starting from the individual organisms, to groups of individuals (species' population), to the collection of two or more interacting species populations (community) and their surrounding physical environment (ecosystem) [START_REF] Brodie | Secondary extinctions of biodiversity[END_REF].

To anticipate the consequences of global change on biodiversity, ecological research strives towards a deeper understanding of the interactions between organisms and with their physical environment [START_REF] Thuiller | A road map for integrating eco-evolutionary processes into biodiversity models[END_REF]. In biogeography, this problem is addressed by analyzing observations of the presence or absence of species (or abundances) under various environmental conditions [START_REF] Alexander Von Humboldt | Essai sur la géographie des plantes[END_REF] and relating them to the ecology and evolution of organisms.

Over the last couple of decades, large amounts of data on species occurrences have been made available in open databases (e.g. GBIF [Lane and [START_REF] Meredith | The global biodiversity information facility (gbif)[END_REF]). These data originated from research programs (e.g. soil organisms occurrences: Edaphobase [START_REF] Burkhardt | The edaphobase project of gbif-germany-a new online soil-zoological data warehouse[END_REF]), or from citizen science applications (e.g. PlantNet [START_REF] Goëau | Pl@ ntnet mobile app[END_REF], iNaturalist [START_REF] Nugent | inaturalist: citizen science for 21st-century naturalists[END_REF]). In addition, increasingly precise environmental data are becoming available in the form of rasters describing climate (e.g. Worldclim [Fick and Hijmans, 2017], CHELSA [START_REF] Dn Karger | Chelsa climatologies at high resolution for the earth's land surface areas (version 1.1)[END_REF]), land use (e.g. [START_REF] Land | Corine land cover[END_REF]), physical and chemical characteristics of soils (e.g. ESDB [START_REF] Panagos | The european soil database[END_REF], ISRIC [ISRIC, 2013]), but also raw high-resolution satellite pictures and multi-sensor imagery (e.g. Landsat [Woodcock et al., 2008], sentinel [START_REF] Schmitt | Sen12ms-a curated dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep learning and data fusion[END_REF]).

All these data provides a breeding ground for the development of statistical and computational methods to mine biodiversity data allowing in turn to understand the factors that determine the observed distribution of living organisms, and predict their response to changing environmental conditions. My thesis work falls within this interdisciplinary context.

In the following, section 2 introduces the theoretical foundations of community ecology. Section 3 reviews the current advances in community modeling, specifically species distributions models (3.1) and ecological network learning (3.2). Section 4 summarizes the thesis objectives and main contributions. Finally, section 5 outlines the structure of this document.
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CHAPTER 1. INTRODUCTION

Theoretical context

A community is an assemblage of populations of organisms living together in the same area or habitat, such that spatial boundaries are either natural (islands) or arbitrary (study plots) [START_REF] Je Fauth | Simplifying the jargon of community ecology: a conceptual approach[END_REF][START_REF] Charles | The experimental analysis of distribution and abundance[END_REF].

Community ecology examines how interactions between species in a community and their environment affect the resulting species diversity and abundances [START_REF] Marc | An emerging synthesis between community ecology and evolutionary biology[END_REF].

Community assembly rules

The assembly rules framework which stems from the seminal work of [START_REF] Diamond | The island dilemma: lessons of modern biogeographic studies for the design of natural reserves[END_REF] and depicted in Fig 1 .1 explains the composition of communities at different spatial scales by a set of processes operating as filters that can explain the local abundance of a species [START_REF] Weiher | Ecological assembly rules: perspectives, advances, retreats[END_REF]. Globally, phylogeographic processes, including evolutionary history and large-scale migration, restrict the pool of potential species regionally. At regional and local scales, three ecological processes co-determine whether a species from the restricted pool can be present at a given site. First, the abiotic conditions should enable the species population to satisfy its physiological needs in order to survive, grow and reproduce. This is referred to as habitat suitability, it constitutes the abiotic filter. Second, the net impact of direct and indirect biotic interactions in which a species is involved should allow it to sustain its populations. This is referred to as the biotic filter [Guisan et al., 2017, Ovaskainen and[START_REF] Ovaskainen | Joint Species Distribution Modelling: With Applications in R[END_REF]. Third, the dispersal or movement filter requires the site to be accessible from a previous location. This depends both on the dispersal capacity of the species but also on the existence of corridors or, on the contrary, barriers to migration. A distinction is made between active (unassisted) and passive dispersion (via animals, wind, rivers or human activity). Sometimes, populations go locally extinct in response to stochasticity. The dispersal capacity of the species controls how fast it can recolonise the empty patch. Finally, some species may attain high abundance in unsuitable "sink" sites due to frequent immigration from neighbouring suitable "source" sites, a phenomenon known as source-sink dynamics [START_REF] Pulliam | Sources, sinks, and population regulation[END_REF].

Figure 1.1: The assembly rules framework and models for learning eco-evolutionary assembly processes from biogeographical patterns. Schema adapted from [START_REF] Ovaskainen | Joint Species Distribution Modelling: With Applications in R[END_REF]. CSA: Conspecifics Species Aggregations, ISA: Interspecific Spatial Associations, SDM: Species Distribution Models, ENL: Ecological Network Learning.

1.2. THEORETICAL CONTEXT

Biotic interactions and ecological networks

Organisms co-existing in a community may affect each other through biotic interactions. Interactions are either intraspecific, if they occur between individuals of the same species (e.g reproduction, cooperation, and competition), or interspecific if they involve different species (e.g the pollination of a flower by a bee). Haskell [1949] distinguishes short-term and long-term interactions. The former include trophic or predator-preys and plant-pollinators interaction. The latter, also known as symbioses, can be of different types depending on whether their outcome is beneficial for one (commensalism) or both partners (mutualism), harmful for one (ammensalism) or both partners (competition), or beneficial for one and harmful for the other (parasitism), as depicted in Fig 1 .2. For a pair of species (i, j), a i,j and a j,i represent the outcome of the interaction on j and i respectively. [START_REF] Morales-Castilla | Inferring biotic interactions from proxies[END_REF] It is customary to use networks as a tool to represent the direct interactions taking place in an ecosystem, yielding ecological networks. Food webs are a special type of ecological networks restricted to trophic interactions i-e to consumer-resource relationships. Networks are important ecological features to understand the functioning of ecosystems [START_REF] Ross M Thompson | Food webs: reconciling the structure and function of biodiversity[END_REF] and their resilience to disturbances [START_REF] Poisot | Describe, understand and predict: why do we need networks in ecology?[END_REF][START_REF] Domínguez-García | Unveiling dimensions of stability in complex ecological networks[END_REF]. They are also useful to make projections on future communities' composition under climate or land use change scenarios [START_REF] James S Clark | The emergent interactions that govern biodiversity change[END_REF][START_REF] Woodward | Ecological networks in a changing climate[END_REF].

In addition to the direct effects resulting from physical interactions, interaction networks also highlight indirect effects. Indirect interactions emerge in multi-species assemblages when "the impact of one species on another requires the presence of a third species" [START_REF] Wootton | The nature and consequences of indirect effects in ecological communities[END_REF]. They operate through two possible modes: interaction chain or interaction modification. The classic example of interaction chain is the trophic cascade: when a predator feeds on a herbivore, it reduces the consumption pressure of the latter on the vegetation, thus the predator has a positive effect on the vegetation. Interaction modification occurs when the presence or activity of one species alters the probability or outcome of an interaction between two other species. For example, vegetation growth offers shelter from predators, thus reducing the probability of the prey consumption by the predator. Also referred to as higher-order interactions, interaction modification operates via several mechanisms: behavioral, chemical, morphological or response modification [START_REF] Wootton | The nature and consequences of indirect effects in ecological communities[END_REF]. Both modes of indirect interactions have been shown to promote the stability and resilience of communities [START_REF] Grilli | Higher-order interactions stabilize dynamics in competitive network models[END_REF].

The interplay between abiotic and biotic filters

Species can influence each other indirectly through habitat modification. For example, the presence of cushion plants in dry alpine environments creates a moist micro-habitat, facilitating the establishment of droughtintolerant species. This process is a form of facilitation. Similarly, earthworms consume soil and release casts rich in mineral salts and humus and enriched with bacteria that make nutrients quickly available to plants. By their movement in the soil and through geophagy (soil consumption), earthworms create underground galleries (soil bioturbation) that allow water infiltration and vertical root development. They are therefore considered as soil ecosystem engineers along with ants and termites. Habitat modification can also be negative. For instance, the high acidity of some trees litter (e.g Picea) suppresses non acid-tolerant litter-dwelling earthworms [START_REF] Schelfhout | Tree species identity shapes earthworm communities[END_REF].

Furthermore, abiotic conditions may potentially change the probability of interaction. For instance, increasing temperatures from global warming alter the metabolism of organisms and consequently their life cycles, which can lead to phenological mismatches between potentially interacting species as observed in plantpollinator networks [START_REF] Gérard | Global warming and plantpollinator mismatches[END_REF]. Abiotic conditions can also change the type and/or magnitude of interactions. For example, the stress-gradient hypothesis (SGH) predicts that the frequency of facilitative and competitive interactions will vary inversely along abiotic stress gradients, with facilitation being more common in conditions of high abiotic stress relative to more benign abiotic conditions [START_REF] Fernando T Maestre | Is the change of plant-plant interactions with abiotic stress predictable? a meta-analysis of field results in arid environments[END_REF].

The SGH has been supported by numerous studies in many ecosystems, including Alpine plants along elevation gradients [START_REF] Ragan M Callaway | Positive interactions among alpine plants increase with stress[END_REF] and crops associations under increasing soil phosphorus contents [START_REF] Boudsocq | Shifts in belowground interactions in a legumecereal intercrop: a test of the stress gradient hypothesis[END_REF].

Ecological niche

The niche of a species represents its position in an ecosystem, defined by its ecophysiological requirements or habitat preferences and its adaptive capacities (abiotic or Grinnellian niche [START_REF] Grinnell | The niche-relationships of the california thrasher[END_REF]), as well as its role within the community and its place in the interaction network (Eltonian niche [START_REF] Charles | Animal ecology[END_REF]). Hutchinson [1957] formalized the abiotic niche of a species as an n-dimensional hypervolume in the multivariate space of environmental and resource characteristics. The fundamental niche comprises all abiotic environmental conditions where a species can survive indefinitely, meaning where it has a positive population growth. The realised niche is what remains of this hypervolume after accounting for biotic effects (e.g. facilitation, competition) [START_REF] Bruno | Inclusion of facilitation into ecological theory[END_REF][START_REF] Christopher J Lortie | Rethinking plant community theory[END_REF]. The combined influence of all eco-evolutionary processes produces the observed composition of the communities (observed niche).

From the perspective of a given species of interest, Fig 1 .3 illustrates the possible scenarios of observation in a prescribed geographic area. The fact that a species can be observed in locations where not all its ecological requirements are met highlights the potential complementary nature of ecological processes: habitat suitability, biotic interactions and dispersal and the non-linearity of their combined effects.

Patterns, processes and models

Individuals of the same species cluster spatially into populations of varying densities, forming Conspecific Spatial Aggregations (CSA) [START_REF] Keil | Interspecific spatial associations as a facet of biodiversity, and a review of approaches to measure them[END_REF]. The resulting spatial patterns reflect the realised niche, intraspecific interactions and dispersal patterns. CSA motifs are used to quantify the biodiversity on a regional (gamma) or local (alpha) scale and its turnover between sites (beta). Populations of species with similar environmental preferences or dependent on each other through interactions assemble into communities or on the contrary dissociate spatially (in case of competitive exclusion for example) spatially, producing patterns of co-occurrence or co-abundance called Interspecific Spatial Associations (ISA) [START_REF] Keil | Interspecific spatial associations as a facet of biodiversity, and a review of approaches to measure them[END_REF]. ISA motifs reflect niche overlap and interaction networks. Several metrics exist to quantify ISA based on co-occurrence or co-abundance (cf. review in [START_REF] Keil | Interspecific spatial associations as a facet of biodiversity, and a review of approaches to measure them[END_REF]).

The objective of species community modeling is to analyze biogeographic patterns (CSA, ISA) at the observed sites and across scales, to infer the assembly processes governing the distribution of modeled species and then use these to predict community composition on new conditions. The Grinnellian and Eltonian niches explain the species' response to abiotic and biotic filters respectively. Therefore, inferring these two filters Figure 1.3: BAM diagram [Soberón and Nakamura, 2009] highlighting the interplay between the three drivers of species distribution: abiotic or habitat suitability, biotic interactions, and dispersal/movement. For a given species in a given geographic area of interest, denoted as G, at a given time, we denote by M the subset of sites that are accessible to the species (colonizable by movement/dispersal), by A the subset of sites with suitable habitat or abiotic conditions (fundamental niche), and by B the subset of sites with suitable biotic conditions. The species may be observed on the field in the configurations marked as 1-4 resulting from different intersections of the previous subsets. 1: realized niche (suitable with regard to all factors), 2: suitable habitat but unsuitable biotic conditions (e.g competition). 3: Colonization outside the suitable environment, maybe due to facilitation (sink). 4: Sink in unsuitable biotic and abiotic conditions, maybe due to historical presence. A further configuration ( 5) corresponds to a potential distributional area that is not accessible within the time-frame of interest, it is an invadable area. Schema adapted from [START_REF] Guisan | Habitat suitability and distribution models: with applications in R[END_REF] is equivalent to learning the Grinnellian and Eltonian niches. Learning the former is the target of Habitat Suitability or Species Distribution Models (HSM / SDM), learning the latter is the target of Ecological Network Learning (ENL) models.

Traits and phylogeny

A functional trait is "a morphological, physiological or phenological characteristic of an organism measured at the individual level that affects its individual performance" [START_REF] Violle | Let the concept of trait be functional![END_REF]. The functional trait approach considers that the response of species to different filters is explained by their traits. Several groups of traits can be distinguished. Response traits [Lavorel andGarnier, 2002, Suding et al., 2008] influence the response of organisms to abiotic factors. Effect traits [Lavorel andGarnier, 2002, Suding et al., 2008] modulate the contribution of species to ecosystem functions. Dispersal traits measure the ability of the species to actively disperse [START_REF] Schleuning | Trait-based assessments of climate-change impacts on interacting species[END_REF]. Finally, interaction or matching traits [START_REF] Bartomeus | A common framework for identifying linkage rules across different types of interactions[END_REF], Gravel et al., 2016] determine the potential partners of a species for a given type of interaction.

A trait may be significantly correlated to the probability of occurrence of a species even if it has nothing to do with it. This occurs because phylogenetically related species share patterns of occurrence and traits, some of which are effectively response traits and others are legacies of ancestral traits. This phenomenon is called niche conservatism and results in phylogenetic attraction [Münkemüller et al., 2015]. Paradoxically, the principle of competitive exclusion [START_REF] Hardin | The competitive exclusion principle[END_REF] in community ecology states that species that consume similar resources and have similar habitat preferences are mutually exclusive, inducing phylogenetic repulsion CHAPTER 1. INTRODUCTION [Helmus et al., 2007].

The functional traits paradigm allows us to free ourselves from taxonomy and to get closer to the response mechanisms of organisms by linking them to the processes of adaptation and speciation at the origin of the evolution of these traits. Moreover, the models created can be applied to species other than those modeled, including rare species. Nevertheless, existing approaches still lack genericity because the traits measured vary between large taxonomic groups and are often incomparable in multi-trophic assemblages. Databases of traits are made available for different groups: soil invertebrates (BETSI [START_REF] Betsi | Database for functional traits of soil invertebrates[END_REF]), plants (TRY [START_REF] Kattge | Try-a global database of plant traits[END_REF]), fungi (FunGUILD [Nguyen et al., 2016]), nematodes (NemaGUILD [Nguyen et al., 2016], Nemaplex [START_REF] Ferris | Nematode plant expert information system (nemaplex)[END_REF]), etc. Since it is impossible to measure all relevant traits, phylogeny is sometimes used to approximate unmeasured traits [Münkemüller et al., 2015[START_REF] Desjardins-Proulx | Ecological interactions and the netflix problem[END_REF][START_REF] Laigle | Species traits as drivers of food web structure[END_REF]. Phylogenetic analyses are also used to infer missing values of partially observed traits using trait evolution models [START_REF] Paradis | Analysis of Phylogenetics and Evolution with R[END_REF].

Methodological context

In this thesis, we refer to the modeled entities as species although the same described approaches can be applied to infra-(subspecies, variety) and supra-species levels (genus, family). In addition, we do not impose any phylogenetic or taxonomic or functional restrictions on the composition of sampled communities.

We refer to observations as sites. In general, we will assume sites are independent, unless stated otherwise. This assumption might be invalidated for instance in cases of nested sampling designs, spatial auto-correlation where distance between sites is accounted for, and temporal auto-correlation where the same site is sampled at multiple points in time.

A typical community dataset comprises the observation of presence/absence or abundance (count of individuals, biomass) or relative abundance of M species, in N sites. The dataset may also include a S-by-T matrix of traits for each species. Traits can be discrete (binary or categorical) or continuous. The dataset can also include a phylogenetic distance matrix S-by-S between all or a subset of the modeled species.

Community data contain the footprint of eco-evolutionary processes. Inferring these processes from the data is one of the most active topics of research at the intersection of biogeography and community ecology. Focusing on habitat suitability and biotic interactions, we hereafter review models used to tackle these processes separately and jointly.

Species distribution models

General assumptions

Habitat Suitability or Species Distribution Models (HSM/SDM) seek to identify statistical relationships between the occurrence or abundance of a species and the abiotic factors describing its habitat/environment. Concretely, SDMs relate species' observations to environmental covariates using a combination of response curves that describes the species' realized niche [START_REF] Guisan | Habitat suitability and distribution models: with applications in R[END_REF].

As simplified depictions of the real world, SDMs rely on strong assumptions that should be taken in consideration while using these models to answer basic and applied questions [START_REF] Guisan | Habitat suitability and distribution models: with applications in R[END_REF]. First, species-environment relationships are assumed to be at equilibrium or pseudo-equilibrium, meaning that they will not change across space or time. The species is expected to have colonized most of its suitable habitats in the studied area. There are situations where this assumption is violated, such as when modeling invasive species that are still undergoing expansion, in which case such species' niches are modeled using their native range or the union of the invasive and the native ranges [START_REF] Gallien | Predicting potential distributions of invasive species: where to go from here?[END_REF]. Second, all important environmental predictors required to describe the species niche are assumed to be available, at a relevant resolution and with no measurement error. Third, a suitable measure of composition (occurrence, abundance, frequency) for the study of interest with an appropriate probability distribution must be employed. Fourth, observations/sites are assumed to be independent. Last, the sampling design of species occurrences is assumed to be objective and unbiased. For instance, in citizen science data occurrences tend to be concentrated along transportation axes (roads, hiking trails) and public spaces (parks) making this assumption invalid and hence precluding the direct use of these models.

Statistical tools for single species distribution models

Species distribution modeling is possible via a variety of statistical and machine learning methods [START_REF] Guisan | Habitat suitability and distribution models: with applications in R[END_REF], including: regression based approaches (e.g. Generalized Linear Models (GLM) [McCullagh,81], Generalized Additive Models (GAM) [START_REF] Trevor | Generalized additive models[END_REF], Multivariate Adaptive Regression Splines (MARS) [START_REF] Jerome H Friedman | Multivariate adaptive regression splines[END_REF]), machine learning and classification methods (Support Vector Machines (SVM) [START_REF] Hearst | Support vector machines[END_REF], Artificial Neural Networks (NN) [START_REF] Goodfellow | Deep learning[END_REF], Classification and Regression Trees (CART) [START_REF] Breiman | Cart: Classification and regression trees[END_REF], boosting (e.g Boosted Regression Trees (BRT) [START_REF] Elith | A working guide to boosted regression trees[END_REF]) and bagging approaches (e.g Random Forests (RF) [START_REF] Breiman | Random forests[END_REF]), Maximum ENTropy [START_REF] Steven | Maximum entropy modeling of species geographic distributions[END_REF] in addition to ensemble models [START_REF] Thuiller | Biomod-a platform for ensemble forecasting of species distributions[END_REF]. The availability of advanced tools and software (e.g biomod [START_REF] Thuiller | Biomod-a platform for ensemble forecasting of species distributions[END_REF], dismo [Hijmans et al., 2017], ENMtools [Warren et al., 2010], etc.) disseminated the use of SDMs in various applications in ecology and conservation. Recently, a standardized protocol for SDMs was proposed [Zurell et al., 2020a].

Multi-species distribution models

At the community or assemblage level, two different approaches are used to predict spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) [START_REF] Nicholas | Patterns and causes of species richness: a general simulation model for macroecology[END_REF] focuses directly on realized properties of species assemblages, whereas the second approach (stacked species distribution modelling, S-SDM) starts with constituent species to approximate the properties of assemblages [START_REF] Schmitt | ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models[END_REF]. The properties of species assemblages include the number of co-occurring species (richness), inter-specifc abundance patterns, and compositional, functional and structural community characteristics. SESAM [START_REF] Guisan | Sesam-a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages[END_REF] was proposed as a unifying framework of both approaches, whereby MEMs are used to constrain S-SDMs. For instance, d'Amen et al. [2015] used predictions of richness and community traits averages to constrain S-SDMs predictions of mountain grassland communities in the Western Swiss Alps.

The advantage of S-SDM is a flexibility in terms of model choice for each species. However, this approach still requires calibrating several distinct models thus multiplying sources of uncertainty and error as well as the computational overhead, although the latter can be solved using parallel computation. It is sometimes reasonable to assume the input-output mapping (i-e the environmental predictors involved and the shape of response curves) is similar across different species models, so better performances can be obtained by fitting all the parameters simultaneously. This setup is known as multi-task learning (MTL) [Caruana, 1993]. Hierarchical Bayesian regression models [START_REF] Bakker | Task clustering and gating for bayesian multitask learning[END_REF], particularly Hierarchical Generalized Linear Models, are the most common method adopted in the context of multi-species distribution models [START_REF] Ovaskainen | Joint Species Distribution Modelling: With Applications in R[END_REF].

When abundance data on natural populations are collected, two patterns are often observed. First, the most common species accounts for a substantial fraction of the individuals sampled. Second, a substantial fraction of the species sampled are very rare. These patterns are omnipresent in community data, leading to long-tailed distributions of species' prevalences. Thus, it might lead to excluding rare species when modelling lots of species. At the same time, it is not desirable to use the same model for all species because some species may have very different response to the environment. As a compromise, Hierarchical Bayesian regression models fit dedicated parameters for each species, but encourage parameters to be similar across species by drawing the parameters from a common distribution. In this way, rare species borrow statistical strength from prevalent species (assuming that rare species respond in a similar way to the environment than common species). In the same setting, functional traits have been used to explain the regression weights of species to each environmental predictor [START_REF] Pollock | The role of functional traits in species distributions revealed through a hierarchical model[END_REF]. For instance, [START_REF] Carboni | Functional traits modulate the response of alien plants along abiotic and biotic gradients[END_REF] highlighted using this approach the role of traits on the invasion success of alien herbaceous plants in French permanent grasslands. Additionally, phylogenetic distances have been used to explain the covariance of species responses, as a model-based approach to test for phylogenetic conservatism [START_REF] Anthony | Generalized linear mixed models for phylogenetic analyses of community structure[END_REF]. [START_REF] Piers K Dunstan | Model based grouping of species across environmental gradients[END_REF][Hui et al., 2015] have proposed using finite mixture of regression (FMR) for CHAPTER 1. INTRODUCTION multi-species distribution modeling, whereby species are clustered based on their environmental responses into a small number of "archetypal responses." Archetypes can be interpreted as abiotic response groups. These models are referred to as Species Archetype Models (SAM). When compared to SSDMs [START_REF] Francis | To mix or not to mix: comparing the predictive performance of mixture models vs. separate species distribution models[END_REF], SAMs improved model accuracy and discriminatory capacity, especially for rare species as they borrow strength from common species for which more data is available.

Biotic interactions in species distribution models

Although species distribution models are fitted to the realized niche, which results of both abiotic and biotic filtering, the models previously described often overlook the effect of biotic interactions. The relevance of this problem depends on the scale of study. Indeed, some studies [START_REF] Thuiller | From species distributions to meta-communities[END_REF][START_REF] Miguel | The geographic scaling of biotic interactions[END_REF][START_REF] Heidi K Mod | Scale dependence of ecological assembly rules: insights from empirical datasets and joint species distribution modelling[END_REF][START_REF] Zurell | Do joint species distribution models reliably detect interspecific interactions from co-occurrence data in homogenous environments[END_REF] found that at sufficiently large spatial scales or coarse resolution, the effect of biotic interactions becomes negligible, especially competition. Other studies highlighted the impact of interactions on species ranges at large spatial scales [Gotelli andMcCabe, 2002, Wisz et al., 2013], thus advocating for their inclusion in SDMs. BI-SDMs (Biotic Interactions SDM, sensu [START_REF] Daniel Kissling | Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents[END_REF], [START_REF] Carsten F Dormann | Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions[END_REF]) account for biotitc interactions by including as a predictor in the model the abundance/occurrence of other species [Araújo et al., 2011, Araújo and[START_REF] Miguel | The importance of biotic interactions for modelling species distributions under climate change[END_REF], by restricting the species' predicted distribution with that of interacting species it depends on (e.g. prey, predators, parasites) [START_REF] Schweiger | Increasing range mismatching of interacting species under global change is related to their ecological characteristics[END_REF], or more generally by refining SDMs predictions with biotic interactions [START_REF] Phillip | Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks[END_REF]. However, BI-SDMs require knowledge of the interactions in which the focal species is involved, and a measure of the abundance of the interacting partners a every site, in order to allow predicting its occurrence. Furthermore, these approaches only incorporate unidirectional interactions and do not take into account the reciprocal effect of the focal species on the others [START_REF] Daniel Kissling | Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents[END_REF][START_REF] Pollock | Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (jsdm)[END_REF].

Joint species distribution models

Joint species distribution models (JSDMs) have emerged as extensions of SDMs that simultaneously model multiple species' distributions, accounting for both environmental relationships and residual associations that might arise from species interactions. Thus, they inform about both abiotic and biotic filters [START_REF] Pollock | Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (jsdm)[END_REF] and can potentially improve the predictions of community composition [START_REF] Harris | Generating realistic assemblages with a joint species distribution model[END_REF].

Promising advances in JSDMs have led to the development of several statistical models and computational implementations. JSDM implementations are essentially based on Generalized Linear Mixed Effect Models (GLMM) [START_REF] Ovaskainen | Joint Species Distribution Modelling: With Applications in R[END_REF] combining fixed effects capturing the response to the abiotic predictors, with random effects capturing residual correlations between species. The core statistical differences between different JSDMs can be broadly explained by three methodological choices [START_REF] David P Wilkinson | A comparison of joint species distribution models for presence-absence data[END_REF]: (1) the inclusion of a hierarchical structure on the regression coefficients, (2) the use of either the full residual covariance or its decomposition into latent factors (LV-JSDM), (3) the use of dimension reduction (DR-JSDM).

Latent factors are interpreted as hypothetical unmeasured environmental variables impacting species cooccurrence patterns. From a computational perspective, latent factors allow the reduction of model complexity as they require substantially fewer parameters than classic GLMM with full-covariance. DR-JSDM allow further complexity reduction by clustering species residual correlations (into clusters akin to biotic response groups) in contrast to SAMs which cluster species on the basis of their abiotic responses (abiotic response groups).

However, current JSDM implementations present several limitations.

On one hand, JSDMs did not show much improvement in marginal predictive performances compared to univariate GLMs [Zurell et al., 2020b[START_REF] Norberg | A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels[END_REF]. This is due to the fact that marginal predictions are based solely on environmental attributes. This explains why different JSDMs tended to have similar predictive performances [Pichler and Hartig, 2020]. In theory, per the likelihood formulation, the estimation of the residual covariance does not affect the estimation of regression coefficients of the environmental response [Poggiato et al., in revision, Wilkinson et al.], i-e the abiotic niche estimation. This statement is backed by several empirical results reporting similar regression coefficients regardless of the covariance modeling strategy (full-covariance, latent variable, dimension reduction) [Wilkinson et al., 2019, Pichler andHartig, 2020].

On the other hand, empirical comparisons of JSDMs to SDMs (aside from GLMs) showed either similar to inferior marginal predictive performances [Zurell et al., 2020b], or large variation among the models and datasets, especially for communities comprising many species that are rare [START_REF] Norberg | A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels[END_REF]. With regard to rare species, one of the assumed strengths of multi-species and joint models, both studies concluded that marginal predictions did not benefit from the joint modeling. A recent study [START_REF] Zhang | Improving prediction of rare species' distribution from community data[END_REF] found that multivariate machine learning models (multi-output neural networks, and multioutput Random Forest) which include dependencies implicitly were better at rare species prediction than JSDMs which include dependencies explicitly.

The predictive superiority of non-linear machine learning algorithms (RF, BRT, NN) compared to conventional regression models and their multivariate extensions (JSDMs) highlights the importance of the representation power of the distribution models. Indeed, JSDMs rely heavily on GLMs to model species' environmental response, which limits their ability to capture complex response shapes. A typical workaround employed by most studies consists in the manual inclusion of pre-transformed features: logarithmic, polynomial, or feature interaction effects. As JSDMs are applied to increasingly large species pools, the ability to discriminate the high number of potential combinations of species using simple linear mappings is limiting. Additionally, complex features such as images, sounds or large sets of features require consequent feature engineering efforts prior to applying current JSDMs.

Finally, most JSDMs rely on variants of Markov Chain Monte Carlo (MCMC) algorithms for the posterior inference. While they allow a better quantification of the parameter uncertainty in a Bayesian framework, these inference algorithms scale poorly with the dataset size (number of observations). This is due to the estimation of random effects (as many as the number of species or the number of latent factors) for each observation/site. Approximate inference algorithms have been developed to improve the computational efficiency of JSDMs, relying on either Variational Inference (VI) (e.g. GLLVM [START_REF] Niku | gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r[END_REF]) or Monte Carlo integration (e.g. sJSDM [Pichler andHartig, 2020, Chen et al., 2018]). However, these optimizations were tailored to the GLMM model, whereas little effort has been devoted to extending the abiotic response beyond the classical GLM.

Ecological network learning

Ecological networks are paramount tools in community ecology and food web ecology [START_REF] Boitani | Ecological networks as conceptual frameworks or operational tools in conservation[END_REF][START_REF] Gravel | Trophic theory of island biogeography[END_REF][START_REF] David A Bohan | Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks[END_REF]. Building an ecological network requires data on the community composition and ecological interactions. In general, community composition is directly observed in the field, but in certain circumstances could also be predicted by (multi-/joint-)species distribution models. Nowadays, the emergence of environmental DNA sampling of soil or water allowed near-exhaustive (depending on the markers used) inventory of species currently or previously populating communities [START_REF] Taberlet | Environmental DNA: For biodiversity research and monitoring[END_REF][START_REF] Stephane | Biomonitoring for the 21st century: integrating next-generation sequencing into ecological network analysis[END_REF][START_REF] David A Bohan | Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks[END_REF]. However, interspecific interactions are not always easy to establish. While the proliferation of interaction databases (e.g. GLOBI [Poelen et al., 2014], MANGAL [START_REF] Vissault | Mangal: An open infrastructure for ecological interactions[END_REF]) allows at least the partial description of some networks, most of the available knowledge is limited to well-studied ecosystems and to a few mostly direct interactions: trophic interactions (e.g European tetrapods [START_REF] Maiorano | Tetra-eu 1.0: A species-level trophic metaweb of european tetrapods[END_REF], Grassland invertebrates [START_REF] Hines | A meta food web for invertebrate species collected in a european grassland[END_REF]), plant-pollinators (e.g. [START_REF] Boreux | Global pollinator database[END_REF]), plant-frugivores (e.g. [START_REF] Dehling | Morphology predicts species' functional roles and their degree of specialization in plant-frugivore interactions[END_REF]) host-parasite (e.g. [START_REF] Dallas | helminthr: an r interface to the london natural history museum's host-parasite database[END_REF]), seed dispersal (e.g. [START_REF] Timóteo | Multilayer networks reveal the spatial structure of seed-dispersal interactions across the great rift landscapes[END_REF]), root-fungi (mycorrhizal complex) (e.g. [START_REF] V Bala Chaudhary | Mycodb, a global database of plant response to mycorrhizal fungi[END_REF][START_REF] Nadejda | Fungalroot: global online database of plant mycorrhizal associations[END_REF]). Some interactions are impossible to observe for practical reasons (e.g. interactions happening below-ground in the soil). Inference techniques dedicated to specific types of interactions are being developed (e.g. stable isotopes in food webs [START_REF] Craig A Layman | Applying stable isotopes to examine food-web structure: an overview of analytical tools[END_REF]). Ecologists also resort to proxies based on species traits, phylogenetic conservatism of interactions within clades, co-occurrence patterns, and so on [START_REF] Morales-Castilla | Inferring biotic interactions from proxies[END_REF]. These proxies take the form of heuristic rules either formulated by experts (e.g [START_REF] Maiorano | Tetra-eu 1.0: A species-level trophic metaweb of european tetrapods[END_REF][START_REF] Hines | A meta food web for invertebrate species collected in a european grassland[END_REF]) or learnt by machine learning models [START_REF] Majdi | There's no harm in having too much: A comprehensive toolbox of methods in trophic ecology[END_REF][START_REF] Vacher | Learning ecological networks from next-generation sequencing data[END_REF].

There are two paradigms for machine learning ecological networks as outlined in Fig 1 .4. The Interaction prediction paradigm consists of methods that aim at predicting the probability of an interaction between a pair of species. The association inference paradigm, on the other hand, consists of methods that infer the consequence of interactions on the realized niche of species from their co-distributions. In the former, the interaction is the target of the prediction, so that the problem can be solved by supervised or semi-supervised learning algorithms. These approaches require at least a partial observation of the ecological network. Their output is a list of pairwise interactions that can be expressed as an interaction network. This learning problem is sometimes referred to as network reconstruction [START_REF] Momal | Tree-based inference of species interaction network from abundance data[END_REF] in the literature.

In the latter, the interaction is thought of as a latent process which impacts co-occurrences resulting in correlated or dependent spatial distributions. Such dependencies referred to as "associations" are encoded in a covariance structure represented with a graph known as "association network". Learning the structure of this network is an unsupervised learning problem known in computational biology as network inference.

Predicting pairwise interactions

Rooted in community and functional ecology, the predictive approach seeks to predict the probability of interaction of a pair of species according to either their attributes such as functional traits (e.g body size, beak shape, physiological, phenological or life history traits), functional/trophic groups (e.g herbivores, decomposers, predators, etc.), or to the interactions of closely related species.

Learning interaction rules Supervised approaches relate known interactions to species attributes to understand the determinant of biotic interactions. In other words, they aim to answer the question "why particular species interact and others not ?" A key hypothesis regarding this question known as "traitmatching" [START_REF] Schleuning | Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant-animal interactions[END_REF] is that species interact when their traits are compatible [START_REF] Eklöf | The dimensionality of ecological networks[END_REF]. For example, a long narrow flower is more compatible with a hummingbird species having a very long beak whereas a flat wide flower makes a more convenient landing platform for bees [START_REF] Lucas A Garibaldi | Editor's choice: Review: Trait matching of flower visitors and crops predicts fruit set better than trait diversity[END_REF].

Trait-matching was found relevant in other mutualistic networks (plant-frugivore and seed-dispersal networks [START_REF] Dehling | Morphology predicts species' functional roles and their degree of specialization in plant-frugivore interactions[END_REF][START_REF] Bender | Morphological trait matching shapes plant-frugivore networks across the andes[END_REF]), but also in antagonistic networks (host-parasites [McQuaid and Britton, 2013], food webs [START_REF] Gravel | Inferring food web structure from predator-prey body size relationships[END_REF][START_REF] Laigle | Species traits as drivers of food web structure[END_REF][START_REF] Brousseau | Trait matching and phylogeny as predictors of predator-prey interactions involving ground beetles[END_REF]). Learning traitmatching rules can be achieved using either logic-based [START_REF] David A Bohan | Automated discovery of food webs from ecological data using logic-based machine learning[END_REF][START_REF] David A Bohan | Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks[END_REF] or probabilistic machine learning approaches. In the latter, non-linear models (random forest, deep neural networks) were found to have better performances than conventional regression models [Pichler et al., 2020]. The extent to which trait-matching is useful to learn ecological networks depends on the relative proportion of specialists as opposed to generalists amongst modeled species. So far this approach was applied to direct interactions, in well-studied systems with documented interaction databases, with little transferability to other systems. Finally, the approach loses all its interest in the absence of relevant traits information.

Predicting missing links Empirical ecological networks are sparse and hence any unobserved interactions could be either "missing links" (interactions that would be observed with complete sampling), or true absences [START_REF] Christopher | Finding missing links in interaction networks[END_REF]. Ecological networks are manifestly non-random [START_REF] Vázquez | Uniting pattern and process in plant-animal mutualistic networks: a review[END_REF][START_REF] Pascual | Ecological networks: linking structure to dynamics in food webs[END_REF]. Several semi-supervised learning techniques have been developed to harness the underlying structure of the network to help predict missing links. They include hierarchical structuring models [START_REF] Clauset | Hierarchical structure and the prediction of missing links in networks[END_REF], matching-centrality models [START_REF] Rohr | Matching-centrality decomposition and the forecasting of new links in networks[END_REF], stochastic block models [START_REF] Guimerà | Missing and spurious interactions and the reconstruction of complex networks[END_REF], k-nearest neighbor recommenders [START_REF] Desjardins-Proulx | Ecological interactions and the netflix problem[END_REF], and collaborative filtering [START_REF] Fu | Link prediction under imperfect detection: Collaborative filtering for ecological networks[END_REF], etc. Unlike trait-matching methods which are interested in the mechanisms and requirements of interactions, these approaches originating from graph mining are more focused on the network properties and patterns such as the existence of a modular structure: communities/roles, the degree distribution, etc.

Inferring association networks

In many applications, knowledge of existing interactions is not available or is highly contextdependent, rendering the previous methods inapplicable. In contrast, occurrence data is easier to obtain. In the study of community response to environmental change, uncovering the exact mechanism underlying the interaction is less important than detecting the existence of the interaction and assessing its effect on species abundances. Inference methods aim to assess the imprint of biotic interactions on species co-occurrences. To achieve this objective, species associations are first quantified from the data using either descriptive or model-based techniques. Afterwards, associations are linked to possible processes (biotic interactions, unmeasured abiotic factors) by an expert or in light of empirical studies.

Descriptive approaches A battery of indices are used to describe interspecific associations (cf. [START_REF] Keil | Interspecific spatial associations as a facet of biodiversity, and a review of approaches to measure them[END_REF] for review). This includes spatially-implicit indices calculated solely on community data (e.g Jaccard index, odds ratios) [START_REF] Ulrich | Pattern detection in null model analysis[END_REF] and spatially-explicit indices (e.g community variograms, point patterns analysis) [START_REF] Wiegand | Handbook of spatial point-pattern analysis in ecology[END_REF]. Null models [Gotelli andGraves, 1996, Sanderson and[START_REF] James | Patterns in Nature: The analysis of species co-occurrences[END_REF] are used to assess the statistical significance of associations and standardize their value to enable their comparison between studies. Pairwise associations can eventually be thresholded and visualized as a network. These approaches are primarily descriptive, rather than predictive.

Model-based approaches

The model-based approaches rely on a formalization of the joint probability of species occurrences/abundances, such that associations are encoded in a probabilistic graphical model. Probabilistic graphical models (PGM) [START_REF] Koller | Probabilistic graphical models: principles and techniques[END_REF]] use a graph-based representation to encode a joint distribution over a multi-dimensional space, whereby the presence (resp. absence) of an edge between two nodes represents a dependence (resp. independence) conditional to the rest of the nodes. PGMs are particularly useful because they distinguish direct effects between species from indirect effects mediated by other species [START_REF] Gordana C Popovic | Untangling direct species associations from indirect mediator species effects with graphical models[END_REF]. The core differences between network inference models revolves around three interlinked axes.

First, the type of graphical model determines the structural constraints of the associations: directed acyclic graph or Bayesian Network (BN), undirected graphical models including Markov Random Fields (MRF) and covariance graphs (CG). A covariance graph [START_REF] Jose | Reading dependencies from covariance graphs[END_REF] is a graph derived from a sparse covariance matrix. Therefore, it represents unconditional dependencies as opposed to a graph derived from a precision matrix which encodes conditional dependencies [START_REF] Murphy | Machine learning: a probabilistic perspective[END_REF]. Application of Covariance Graphs in community ecology include exclusively JSDMs, whereas BNs received little uptake from the ecological community [START_REF] Phillip | Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks[END_REF][START_REF] Faisal | Inferring species interaction networks from species abundance data: A comparative evaluation of various statistical and machine learning methods[END_REF] compared to MRFs [START_REF] David | Inferring species interactions from co-occurrence data with markov networks[END_REF][START_REF] Nicholas | Unravelling changing interspecific interactions across environmental gradients using markov random fields[END_REF] and CGs.

Second, models differ in terms of supported probability distributions of the observed data. Amongst MRF types, with the exception of the Ising Model which was applied to binary presence/absence data [START_REF] David | Inferring species interactions from co-occurrence data with markov networks[END_REF], most frameworks rely on the Gaussian Random Field or Gaussian Graphical Model (GGM). A GGM assumes a multivariate gaussian distribution of the data. Data transformations are typically used to accomodate non-gaussian data. Alternatively, hierarchical models (including JSDMs) use gaussian latent (unobserved) variables to encode dependencies and flexible data generating distributions to support different observed data types (presence/absence, abundance).

Third, models can be separated into conditional/hierarchical approaches, on one hand, and marginal approaches, on the other hand. Conditional models condition the dependencies on latent variables. They include the multivariate Poisson Log-Normal model (PLN) [START_REF] Aitchison | The multivariate poisson-log normal distribution[END_REF]] and its extensions [START_REF] Chiquet | Variational inference for sparse network reconstruction from count data[END_REF][START_REF] Momal | Tree-based inference of species interaction network from abundance data[END_REF], as well as current implementations of JSDMs (GLMM/GLLVM) [START_REF] Pollock | Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (jsdm)[END_REF], Warton et al., 2015[START_REF] Ovaskainen | How to make more out of community data? a conceptual framework and its implementation as models and software[END_REF][START_REF] James S Clark | Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data[END_REF][START_REF] Niku | gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r[END_REF], Pichler and Hartig, 2020]. In contrast, marginal models represent dependencies between species marginal distributions. This category includes copulas [START_REF] Gordana C Popovic | A general algorithm for covariance modeling of discrete data[END_REF] and generalized estimation equations [START_REF] David | Regularized sandwich estimators for analysis of high-dimensional data using generalized estimating equations[END_REF].

Most network inference frameworks account for environmental conditions when inferring biotic associations (but see [START_REF] David | Inferring species interactions from co-occurrence data with markov networks[END_REF][START_REF] Faisal | Inferring species interaction networks from species abundance data: A comparative evaluation of various statistical and machine learning methods[END_REF]) by including covariates in the generative model of the data. The underlying incentive for the association learning task is to prevent the inference of spurious associations (false positives). In the community modeling context, the inclusion of abiotic covariates aims to disentangle abiotic preferences and biotic processes driving species distributions. Currently, this goal is far from being achieved [START_REF] Blanchet | Co-occurrence is not evidence of ecological interactions[END_REF][START_REF] Allison K Barner | Fundamental contradictions among observational and experimental estimates of non-trophic species interactions[END_REF][START_REF] Robert | Trophic interactions and range limits: the diverse roles of predation[END_REF]. We posit several reasons.

On one hand, the outcome of an ecological interaction for the involved species is rarely symmetric both in polarity (e.g parasitism, predation) and intensity. Consequently, the associations that arise from direct and indirect influences should not be expected to be symmetric either. Yet, so far inference models used in community ecology rely heavily on symmetric associations modeled using Gaussian Graphical Models, or Markov Random Fields in general. For their part, Bayesian networks are even more constraining as they impose a direction of influence and do not allow feedback links.

On the other hand, most inference frameworks employ linear abiotic responses, which limits the niche shapes that can be expressed by the model. Incorrectly specifying the abiotic model induces errors captured by the residuals, affecting the association estimation for methods that exploit the correlation of residuals to infer associations (e.g JSDM). While the inclusion of covariates reduces spurious associations, the remaining associations may still reflect the effect of hidden factors [START_REF] Carsten F Dormann | Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions[END_REF][START_REF] Blanchet | Co-occurrence is not evidence of ecological interactions[END_REF][START_REF] Harris | Generating realistic assemblages with a joint species distribution model[END_REF]] (e.g dispersal limitations, micro-habitat conditions, etc).

Finally, most network inference frameworks assume that the response of a species is the sum of its abiotic and biotic responses. This additive link can detect associations that compensate the effect of the environment, either positively (e.g facilitation) or negatively (competition), but is ill-suited in other situations. For instance, if we assume a system where the presence of a predator is conditioned on the habitat suitability of the site and the presence of at least one prey, the response can be expressed as a product of two probabilities describing the satisfaction of both requirements [START_REF] Gravel | Bringing elton and grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks[END_REF]. Using an additive form will likely fail to detect the positive dependence of the predator on its preys. Moreover, one can naively assume that in a predator-prey relationship, the prey would be negatively affected by the predator (at least in terms of abundance). But, in some systems it has been observed that predators induce range expansion of their preys, which can be translated into a positive association [START_REF] Robert | Trophic interactions and range limits: the diverse roles of predation[END_REF]. This highlights a fundamental conceptual shortcoming for network inference from community data: the same biotic interactions can translate into different associations. In this regard, a flexible framework that allows testing various hypotheses is much needed.

Objectives and methodological contributions

Adopting the assembly theory as our theoretical framework, our objectives in this thesis was to develop new methods to analyze community data to disentangle the effects of assembly drivers, specifically habitat suitability and biotic interactions. These tools also aim to predict how community composition changes in response to the environment. We break down the former objectives into the following tasks and highlight the main contributions hereafter:

Joint modeling of species distributions

Our first objective is to develop a joint species distribution model that conserves the benefits of existing solutions while allowing for the automatic discovery of relevant features to reduce feature engineering on the 1.5. THESIS OUTLINE users end, a task known as feature or representation learning. Current state of art of feature learning points towards the use of artificial neural networks (ANN). As natural extensions of Generalized Linear Models, the use of ANN preserves the flexibility in response types of GLMs, enabled by the exponential family of distributions. We also propose the use of multi-task neural networks to share learnt features between species prediction tasks. We hypothesize that this feature/representation sharing would improve the generalization ability of the model.

The complexity of associations modeling increases with the size of species pools. We follow the Latent Variable approach used in modern JSDM implementations to reduce the number of parameters. Each site is associated to a latent factor capturing unmeasured environmental descriptors affecting species or their co-occurrences. Since latent variables are not observed, their posterior inference from data is a major computational bottleneck, especially in datasets with many observations. To circumvent this issue, we resort to amortized variational inference to control model complexity and ensure its scalability. This is achieved by using a type of neural network called Variational Autoencoders, integrated within the previous multi-task model.

We describe our proposed solution in Chapter 3, and illustrate it with a concrete application in Chapter 6.

Interpretability of black-box models

Community modeling has two goals: understanding the abiotic and biotic drivers of species distributions and predicting their response to environmental changes. The shift towards black-box machine learning models to achieve more accurate predictions, our second goal, comes at the cost of reduced interpretability, which goes against the first goal. Interpretable Machine Learning (IML) tools make it possible to extract hidden knowledge captured by black box models (like our previous proposal). We review relevant IML techniques in Chapter 2 and their application to answer specific questions regarding species responses in Chapters 3 and 6.

Network inference from community data

In this thesis, we present a novel model for bidirectional association inference. We use a type of graphical model known as dependency network which allows for more flexibility in defining the network structure.

The behavior of each species depends on its role (effect on other species) and its response to the effect of others and to the environment. We compare the ability of our approach to previously described network inference methods in simulation experiments, and illustrate its benefits on an empirical application. This task is addressed in Chapter 5.

Thesis outline

We dedicate the first part of this document to review methodologies upon which this thesis work is built.

• In chapter 1, we covered the theoretical ecology background needed to highlight our objectives and position this thesis work in the statistical community ecology literature,

• In chapter 2, we present an overview of feedforward neural networks and introduce principles and techniques of machine learning interpretability that are relevant to subsequent applications.

In the second part of the manuscript, we present the methods developed during this thesis and their applications.

• In chapter 3, we present a generic multi-task learning framework for modeling and inference from community data. Specifically, we delineate and detail its various components, and how they relate to existing species distribution models. Subsequent chapters report adaptations of the framework to address different ecological questions.

• In chapter 4, we apply the framework to a location-based recommendation problem aiming to predict the vegetation structure given a spatial location. The model is trained on a big dataset of opportunistic CHAPTER 1. INTRODUCTION citizen science observations of plants in France.

• In chapter 5, we present a novel method for learning bidirectional inter-specific associations from coabundance data. As part of the study, we evaluate the ability of the model to recover associations in a simulation study against existing frameworks. Additionally, we apply the model to an empirical dataset of Alpine plants from a well-studied system.

• In chapter 6, we present a detailed case study highlighting the tools developed during the thesis and applied to the study of the biogeography of earthworms in France. For this purpose, we

• Finally, in chapter 7, we discuss the overall contributions of this thesis work, conceptual and technical limitations as well as outstanding questions and potential ways of improvement.

Chapter 2

From GLMs to neural networks: learning and interpretability

Introduction

The digitisation of scientific experiments along with advances in sensors and data capture tools, and the decrease in storage costs led to the generation of huge amounts of data. A core task of data-driven research is to make sense of this deluge of data. Data mining provides the tools to process, analyze and gain insights from the data [START_REF] Charu | Data mining: the textbook[END_REF]. Machine learning, the science of getting computers to decide without being explicitly programmed, provides the "methods to automatically detect patterns in data, and then use the uncovered patterns to predict future data or perform other kinds of decision making." [START_REF] Murphy | Machine learning: a probabilistic perspective[END_REF] 

Machine learning problems

Machine learning comprises three main paradigms: supervised, unsupervised and reinforcement learning. Supervised learning aims to predict the state of a modeled entity given some conditions described by a set of variables called covariates. On the other hand, unsupervised learning attempts to discover structural patterns in the data. Reinforcement learning aims to train software agents to learn in an interactive environment by trial and error, to maximize a given reward. This category is not relevant to this work.

Predictive or supervised approaches learn a mapping from inputs x to outputs y, given a set of pairs D = (x i , y i ) N i=1 called the training/calibration set. In the simplest case, each training input x i is a vector of scalars, referred to as features, attributes, or covariates. More generally, x can have a more complex structure (image, text sentence, graph, etc.). Similarly, the output y, referred to as response or target or label, can be anything. But for many real world problems it can be represented by a scalar. The type of output variable differentiates various supervised learning problems. When y is a categorical or nominal variable, the problem is known as classification, and when y is a real-valued scalar, the problem is known as regression. An ordinal response y yields an ordinal regression problem.

Unsupervised approaches deal with datasets with only inputs D = (x i ) N i=1 , but no targets/labels, hence the name. These methods aim to discover interesting patterns in the data. For instance, the task of discovering groups of similar instances is an unsupervised problem known as clustering. Similarly, discovering factors of variation using for example Principal Component analysis or Factor analysis also falls within this category.

A probabilistic approach

A supervised learning algorithm defines a function f to map the input to the output y = f (x). The goal of learning is to estimate this function from the training set, then use it to make predictions of y given new 30 CHAPTER 2. FROM GLMS TO NEURAL NETWORKS: LEARNING AND INTERPRETABILITY values of x. Each learning problem can be solved via different algorithms, which vary in the form of the learnt function f (e.g linear, decision tree, neural network etc).

In this thesis, we adopt a probabilistic model-based approach [START_REF] Murphy | Machine learning: a probabilistic perspective[END_REF], whereby instead of modeling Y , we model the distribution of y conditioned on x given the data. Concretely, we write 1]. From this model f , we can compute the expected prediction, its variance and its mode (most probable value). This allows us to quantify for each possible value a of y, its probability given the value x = b, thus providing a measure of confidence, or conversely of uncertainty in the predictions.

P (y = a | x = b, D) = f (a, b) ∈ [0,
In the unsupervised setting, since we do not have access to labels, we formalize the task as one of density estimation. This means that we assume our data have been generated from a given family of distributions with parameter Θ, for instance the family of multivariate normal distributions with mean zero parameterized with a covariance matrix Σ. In this case, the goal is to learn the parameters of the assumed data distribution.

Outline

Most models described further in this thesis build on the generalized linear model (GLM) [McCullagh,81]. These supervised models apply for both discrete and continuous responses. We start by describing the univariate GLM, used to model scalar responses. Then, we present an overview of feedforward neural networks as extensions of GLMs which constitute a crucial building block of our proposals in subsequent chapters. We limit ourselves to multi-layer perceptrons, convolutional neural networks and autoencoders which are relevant for the subsequent applications. Finally, we present an overview of machine learning interpretability tools applicable to neural networks and relevant to subsequent applications. The mathematical details of methods used in the following chapters are detailed. An exhaustive overview of the topic can be found in the Interpretable Machine Learning book [START_REF] Molnar | Interpretable Machine Learning[END_REF].

Generalized linear models 2.2.1 GLMs and the exponential family

The Exponential Family of distributions

The Exponential Family (EF) defines a set of probability distributions whose probability density function can be expressed in the following canonical form: The EF includes most commonly used distributions: Gaussian (normal), Bernoulli, Poisson, Dirichlet, etc. For a given distribution in the EF, the functions a and c can be uniquely derived from its probability density function. Moreover, the density parameter of this distribution µ (usually the mean) can be mapped to the natural parameter θ of the canonical form using a uniquely determined and invertible function ψ. This way, any distribution of this family can be written in the canonical form described previously, simply by plugging the appropriate expression for ψ, that satisfies:

f (y; θ, ϕ) = exp yθ -a(θ) ϕ + c(y,
µ = ψ -1 (θ)

Probabilistic formulation of the GLM

In the GLM framework, a scalar response y conditioned on a vector of covariates x follows a distribution in the exponential family F with natural or canonical parameter θ and dispersion ϕ, such that the natural parameter is a function of x.

y ∼ F (θ(x), ϕ)

In a GLM model, the mean is assumed to be an invertible monotonic function g -1 of a linear combination of the covariates. The functions g and its inverse g -1 are known as the link and inverse mapping or mean function respectively.

η i = β • x i µ i = g -1 (η i )
Commonly written as: We provide in Table 2.1 some of the most used link functions for distributions employed in this thesis. A special case is the canonical link function g = ψ which satisfies:

g(µ i ) = β • x i
θ i = η i .

Maximum Likelihood and Maximum A Posteriori estimates

The goal of learning in a GLM is to estimate the parameters β that maximize the conditional likelihood w.r.t the training data. Since the logarithm is a monotonically increasing function, we can maximize the conditional log-likelihood equivalently.

The conditional log-likelihood for a univariate GLM, with probability density function f and a dataset D is given by:

ℓ(β) = log p(D | β) = N i=1 log f (y i ; x i , β, ϕ) = 1 ϕ N i=1 ℓ i ℓ i ≜ θ i y i -a(θ i ) ; θ i = ψ • g -1 (β.x i )
The likelihood can be optimized for instance using gradient descent [START_REF] Bottou | Large-scale machine learning with stochastic gradient descent[END_REF], or second-order methods [START_REF] Battiti | First-and second-order methods for learning: between steepest descent and newton's method[END_REF] for improved efficiency. Both procedures require computing the gradient of the likelihood w.r.t the parameters. By properties of the exponential family and the partition function we have the following

Model Distribution, mean µ and dispersion ϕ

Link function θ = g(µ)

Inverse mapping (mean) function µ = g -1 (θ)

Linear regression

Normal

N (µ, σ 2 ) ϕ = σ 2 identity θ = µ identity µ = θ Binary logistic regression Bernoulli B(p) µ = p ϕ = 1 logit θ = log µ 1-µ logistic/sigmoid µ = sigmoid(θ) µ = 1 1+exp(-θ)

Multinomial logistic regression

Multinomial of size K M(π) µ = π = (π 1 , ..., π K ) π K = 1 - K-1 i=1 π i ϕ = 1
Inverse softmax (generalized logit) θ = (log π1 πK , . . . , log πK-1 πk , 0)

Softmax (generalized logistic) µ = ( exp(θ1) 1+ ∑ K-1
i=1 exp(θi) , . . . , exp(θK-1)

1+ ∑ K-1 i=1 exp(θi) , 1)

Negative binomial regression

Negative binomial with fixed number of failures r > 1

N B(p, r) µ = p ϕ = 1 r log θ = log(µ) exponential µ = exp(θ)

Poisson regression

Poisson

P(λ) µ = λ ϕ = 1 log θ = log(µ) exponential µ = exp(θ)
Table 2.1: Generalized linear models for common distributions, link functions. The inverse of the link function yields the mean for most distributions. Note that in the case of the negative binomial, the distribution is parameterized with the probability of success instead.

expressions of the expectation and variance:

E[y i | x i ; β, ϕ] = µ i = da dθ (θ i ) V[y i | x i ; β, ϕ] = ϕ i = d 2 a dθ (θ i )ϕ
Hence, the partial derivative w.r.t the regression parameters over the j th covariate β j :

∂l i ∂β j = (y i -µ i ) ∂θ i ∂µ i ∂µ i ∂η i x ij
Furthermore, if the canonical link is used, i-e η i = θ i , then the partial derivative is:

∇ β l(β) = 1 ϕ N i=1 (y i -µ i ).x i = 1 ϕ N i=1 (y i -g -1 (β.x i )).x i
Given a prior distribution p(β) over the regression parameters, we can compute the point of maximum posterior probability of the parameters, known as the maximum-a-posteriori (MAP) estimate. The MAP combines background information represented as a priori distribution over the value of the parameter p(β) (kind of regularization) and the likelihood p(D | β).

βMAP = arg max β [log p(D | β) + log p(β)]

Regularization and priors

Regularization techniques are used to prevent machine learning models from overfitting. With some choices of priors, finding the MAP estimate is equivalent to adding regularization terms to the log-likelihood. However, not all forms of regularization can be expressed in terms of prior distribution (e.g data-dependent penalties). For instance, using a Gaussian prior is equivalent to adding L2 penalties, known as ridge or Tikhonov regularization [START_REF] Andrey | Solutions of ill-posed problems[END_REF]. Conversely, using the Laplace prior amounts to minimizing L1 penalties, known as lasso regularization [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] (Table 2.2)

Name Parameter Penalty Prior Lasso, L1 λ λ k |β k | β ∼ Laplace(λ) Tikhonov, ridge, L2 λ λ k β 2 k β ∼ N (0, 1 λ I) Elastic net, L1_L2 α or (λ 1 , λ 2 ) (1 -α) k |β k | + α k β 2 k λ 1 k |β k | + λ 2 k β 2 k / Table 2.2:
Common regularization penalties and formulation in terms of prior over the parameters.

Both L1 and L2 techniques of regularization prevent overfitting by shrinking the coefficients. L2 shrinks all the coefficient by the same proportions but eliminates none. The resulting objective is convex and the estimates stable but the coefficients are less sparse. On the other hand, L1 can shrink some coefficients to zero, performing variable selection. However, the number of selected variables is bounded by the number of observation on datasets with more features than observations. Moreover, it performs poorly in the presence of correlated groups of variables. Elastic net (or L1-L2) regularization combines both types of penalties linearly. The absolute (L1) term generates a sparse model, while the quadratic (L2) term removes the limitation on the number of variables, encourages correlated variables to be selected together (grouping effect) and stabilizes the lasso selection procedure [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF].

Limits of linear models

Linear models are appealing because they can be fit reliably, either in closed form or with convex optimization. However, they cannot model non-linear functions of the input covariates, including interactions between inputs. To extend linear models, we can apply them to non-linear transformations of the input ξ(x). It can be interpreted as providing a new derived representation of the covariates called features. There are various strategies for choosing ξ. One option involves feature engineering and human effort, and is specific to the domain of the predictive task. Another possibility is to use kernel machines [START_REF] Scholkopf | Learning with kernels: support vector machines, regularization, optimization, and beyond[END_REF] within GLMs ξ(x) = (k(x, u 1 ), ..., k(x, u N )) which perform a sort of template matching by measuring the similarity of observed covariates to stored prototypes by means of a kernel function k. Finding a good kernel function is task-specific. Last, one can learn ξ directly from the data. Models which follow this strategy are part of the Adaptive Basis Function Models (ABM) family [START_REF] Murphy | Machine learning: a probabilistic perspective[END_REF] which includes Classification and Regression Trees (CART) [START_REF] Breiman | Cart: Classification and regression trees[END_REF], Generalized Additive Models (GAM) [START_REF] Trevor | Generalized additive models[END_REF], Random Forest (RF) [START_REF] Breiman | Random forests[END_REF] and feedforward neural networks (NN) [START_REF] Goodfellow | Deep learning[END_REF].
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Feedforward neural networks 2.3.1 Multilayer perceptrons

A feedforward neural network approximates the response variable using a composition of many different functions applied to the input covariates. The information flows from the input through the intermediate computations to the output without feedback, hence the adjective feedforward. Neural networks that contain feedback connections belong to the class of recurrent neural networks [START_REF] David E Rumelhart | Learning representations by backpropagating errors[END_REF]], which we do not use in this thesis.

The network architecture, i.e. how the functions are composed together, can be represented as a directed acyclic graph. The most common architecture used is a sequential chain. Other topologies have been explored for various applications, we illustrate some in Fig 2 .2. Each feature is generated by a unit called neuron. Each neuron (Fig 2 .3) computes a linear combination of its inputs followed by a non-linear transformation called activation or transfer function. The role of activations in hidden layers is to incorporate non-linearity.

Finally, the last or output layer computes the model prediction. In classification and regression problems, the output layer is equivalent to a generalized linear model applied to the result of the penultimate layer with the output activation playing the role of the inverse mapping function (Table 2.1).

In the deep learning lingo, the identity, logistic, and generalized logistic functions are known as linear, sigmoid and softmax activations respectively. Other common activation functions include the hyperbolic tangent (tanh), the rectified linear unit (relu), the exponential linear unit (elu), and leaky rectified linear unit (leaky relu), etc. The number of layers quantifies the depth of the network. Based on that, we distinguish shallow from deep neural networks. The width of a layer is the number of neurons it contains or equivalently the number of new features it generates. The MLP is a universal approximator, meaning it can model any smooth function given enough hidden units [START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF]. With limited data, designing a neural network architecture requires balancing depth and width while maintaining enough complexity to correctly approximate the function y ≈ f (x). Deep networks are better than shallow networks at generalization whereas wide networks are better than narrow network at memorization.

Model complexity

In a multi-layer perceptron, each neuron in each layer computes a linear combination of all the layer inputs (outputs of the previous layer) followed by an activation. In practice, the layer output is computed using matrix multiplication followed by the activation function. If we denote by N out the number of hidden units (neurons) of the layer, and by N in the number of inputs, then the number of parameters of the layer is equal to N out • (N in + 1).

Convolutional neural networks

Convolutional Neural Networks (CNN) [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF] are specialized networks for processing data with grid-like topologies (e.g. images). The name "convolutional" refers to the fact that these networks use the convolution operation in lieu of matrix multiplication in at least one of their layers.

CNNs use three types of layers depicted in 

Convolution layer

The convolution layer uses filters that perform convolution operations. Each filter is defined by a kernel.

The filter scans the input image from left to right and from top to bottom. At each step, it computes the linear combination of its kernel with the part of the image it covers, followed by a non-linearity (activation function). Each convolution filter learns to detect specific features (e.g. edges, circles). Since they apply to raw data, the initial convolution layers learn low-level features such as edges. Subsequent layers apply to these low-level features to learn mid-level features such as various shapes (circles, triangles, etc.), the deeper the layer position, the more it learns high-level features.

Assuming the input image/patch has a dimension In addition to the number and dimension of the filters, a convolution layer includes two hyperparameters which control the dimension O of the feature maps, namely the stride S and the zero-padding P . The stride denotes the number of pixels by which the convolution filter moves after each operation.

I × I × C.
Zero-padding denotes the process of adding P zeroes to each side of the boundaries of the input. This value can either be manually specified or automatically set using one of the following strategies:

• Valid padding: Does not use any padding, instead it drops the last convolution if dimensions do not match.

• Same or half padding: padding chosen such that the dimension of the feature map is I S

• Full or maximum padding: chosen such that end convolutions are applied on the limits of the input. The output size O of the feature map is given by:

O = I -F + P start + P end S + 1

Pooling layer

The pooling layer is typically applied after a convolution layer to down-sample the data by aggregating neighboring pixels, taking the average (average pooling) or maximum (max-pooling) value. The pooling operation can be viewed as adding an infinitely strong prior that the feature learnt by the layer must be invariant to small translations. This property might be useful for some features (channels) but not for others.

Fully connected layers

Fully connected layers (FC) are the same as those used in Multilayer Perceptrons. They are typically applied on a flattened input where each input is connected to all the neurons of the layer. If present, FC layers are usually found towards the end of CNN architectures to optimize supervised objectives such as class scores.

Model complexity

The model complexity of a convolutional neural network is measured by the number of parameters. For each type of layer, Fig 2.6 summarizes the input, output and parameter sizes. 

Autoencoders and Variational autoencoders

An autoencoder is a feedforward neural network that learns to copy its input to its output. It is composed of two MLPs: an encoder network that maps the input into the code, and a decoder network that maps the code to a reconstruction of the original input. Several variants exist to the basic model, that force the learned representations of the input to have useful properties: sparse, denoising, contrastive [START_REF] Goodfellow | Deep learning[END_REF].

Figure 2.7: Graphical models depicting the architecture of a standard autoencoder (left) and a variational autoencoder (right). The standard autoencoder defines the code/latent layer as a deterministic function of the data. The variational autoencoder defines the latent code as a random vector and incorporates a sampling mechanism to draw samples from its distribution. [START_REF] Mazoure | Estimating the structure of probabilistic graphical models through a Gaussian copula with discrete marginals[END_REF] Variational autoencoders (VAEs) are generative neural networks. Generative models like the VAE try to simulate how the data is generated, in order to understand the underlying factors driving it. Concretely VAEs are directed probabilistic graphical models of the data conditioned on latent variables whose posterior is approximated by a neural network, forming an autoencoder-like architecture. VAEs use a variational approach for latent representation learning, which results in an additional loss component and a specific estimator for the training algorithm called the Stochastic Gradient Variational Bayes (SGVB) estimator [START_REF] Diederik | Auto-encoding variational bayes[END_REF]. 

Training feedforward neural networks

The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to their correct output. Training a feedforward neural network aims to find the parameters (weights, biases) Θ = {W, b} that minimize the predictive error on the data D as measured by a loss function L(D, Θ). Common loss function include the Mean Squared Error for regression tasks, and cross-entropy for classification.

Gradient descent

The gradient descent method involves calculating the derivative of the loss function with respect to the weights of the network. The simplest algorithm for parameter estimation in neural networks is known as stochastic gradient descent (SGD) [START_REF] Bottou | Large-scale machine learning with stochastic gradient descent[END_REF].

Algorithm 1: Stochastic Gradient Descent

Inputs : Observed values x 1 , .., x n , responses y 1 , .., y n , iterations number T , learning rate α(t), loss function L w , batch size B; Outputs :

Converged parameters θ (T ) ; Initialize θ(0) according to some distribution;

foreach t = 1, 2, ..., T do foreach b = 1, 2, ..., B do θ (t) ← θ (t-1) -α(t) 1 B i∈B ∇ w L w (y i , ŷi ); end end

Backpropagation

Feedforward neural networks can be expressed as composition of functions. The chain rule dictates how to compute the gradients for composition of differentiable functions. Assuming each layer/neuron computes a differentiable transformation of its input, the chain rule can be used to compute the derivative of the loss function w.r.t any parameter at any layer.

y = f (u) u = g(x) y = f (g(x)) = f • g δy δx = δy δu δu δx
The backpropagation (BP) algorithm starts from random initial parameters (weights and biases). Typically, weights are initialized using the glorot uniform function [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF], while biases start at zero. Then, at each iteration (epoch), the algorithm computes for each observation (x, y), the corresponding network prediction by applying the successive transformations of the network layers from the input to the output. This step is known as the forward pass. After that, the algorithm evaluates the loss/error of prediction as a function of the actual prediction ŷ and the true outcome y : L(ŷ, y).

Then, it applies gradient descent to update each of the network parameters, which requires computing the gradient of the loss w.r.t each parameter. To achieve that efficiently, the BP algorithm exploits the DAG structure of the feedforward network architecture to compute these gradients starting from the output layer to the input layer using the chain rule. This step is referred to as the backward pass.

In summary, gradient descent is used within the backpropagation loop to evaluate the likelihood of each parameter combination and update their values accordingly.

Multi-task learning 2.4.1 Overview

Multi-task Learning (MTL) is a technique that aims to improve model generalization by solving several machine learning tasks in parallel while using sharing parts of their models (intermediary features/representations).

Caruana [1993] highlighted mechanisms explaining why MTL works. MTL increases the sample size that we are using for training our model, since some parameters are shared (implicit data augmentation). As all tasks are at least somewhat noisy, learning a single task bears the risk of overfitting whereas jointly learning two tasks enables the model to learn more general features/representations. As such MTL has a regularizing effect. Moreover, solving for multiple problems allows the model to focus on relevant features (attention focusing). Sometimes, useful features are easy to learn for some tasks, but difficult for other tasks. Through MTL, we can allow the model to eavesdrop, i.e. learn useful features through other tasks [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF].

Auxiliary tasks

One can attempt learning a group of principal tasks using a group of auxiliary tasks, unrelated to the principal ones. In many applications, joint learning of unrelated tasks which use the same input data can be beneficial. Experiments on synthetic and real data have indicated that incorporating unrelated tasks can result in significant improvements over standard multi-task learning methods. For instance, in Chapter 5, we propose a network inference model that solves two tasks simultaneously: abundance prediction and association inference. The former is a supervised learning problem, and the latter an unsupervised problem.

The embeddings learnt in the association model (auxiliary task) are shared with the model predicting species abundances (principal task).

Multi-task neural networks

In the deep learning literature, multi-task learning is traditionally achieved using two types of neural network architectures: hard or soft sharing of hidden layers depicted in Fig 2 .8. In hard sharing, a subset of the top hidden layers is shared between all tasks. However, each task has specific output layers. The more tasks are learned simultaneously, the more the model is forced to find a general representation, which reduces overfitting. Conversely, in soft parameter sharing, each task has its own model with its own parameters.

The distance between the parameters of the model is then regularized in order to encourage the parameters to be similar. A similar approach is used in hierarchical models of species distributions. 

Learning what to share

A natural question arises when considering multi-task neural networks: what and with whom to share representations ? This question is an active research topic (see task grouping, [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF] for review). For instance, some studies suggest an adaptive approach to learning the sharing configuration. First, training the networks starting with zero sharing. Then, grouping tasks with similar parameters and repeating the process until the predictive performances deteriorate consequently. For the purpose of this thesis applications, we will address the problem of sharing architecture in the same way as hyper parameter selection, using crossvalidation and grid search or random search to find the optimal sharing configuration.

Machine learning interpretability 2.5.1 Overview

In many scientific disciplines including ecology, there is a shift from qualitative to quantitative methods. Modern scientific problems are solved using big datasets enabled by advances in sensors and data capture, analyzed with black box machine learning models. However, when such models are used in research, scientific findings remain unjustifiable if the models only give predictions without explanations. To facilitate learning and satisfy curiosity as to why certain predictions are made by machines, interpretability and explanations are crucial. "Interpretability is the degree to which a human can understand the cause of a decision." [START_REF] Molnar | Interpretable Machine Learning[END_REF] The aim of interpretability in machine learning is to make explicit what patterns lead to the prediction so that the human analyst can track, understand and verify the inference process (decision) of a model. Interpretability and explainability can be use interchangeably. However, the term "explanation" is used when we attempt to explain an individual prediction.

Interpretability should not be confused with algorithm transparency. Algorithm transparency evaluates the learning algorithm in theory, regardless of the data it is applied to, whereas interpretability considers a specific model trained on some data and how individual predictions are made.

Classification of interpretability methods

Machine learning interpretability (IML) methods are classified depending on several criteria [START_REF] Molnar | Interpretable Machine Learning[END_REF]:

Intrinsic vs post-hoc : Intrinsic or ad-hoc methods apply to models that are interpretable due to their simple structure, such as sparse linear regression, short decision trees, decision rules, etc. In contrast, extrinsic or post-hoc methods analyze models after training.

Model-specific vs model-agnostic : Model-agnostic methods are applicable to all models. They work by analyzing the (input feature, output prediction) pairs. Model-specific tools are developed for a restricted class of models, they exploit model internals (learnt parameters) to explain predictions.

Local vs global

Local methods explain single predictions whereas global methods explain the entire model behavior.

Result of the method : interpretability methods produce different types of outputs:

• Feature summary statistics. For instance, feature importance measures the contribution of a feature to the prediction of either a small group (usually one) of instances i-e local importance, or to the overall model performance i-e global importance.

• Feature visualization. For instance, response curves are used visualize the (marginal/conditional/differential) response of the model to variations of the input features,

• Model internals visualization including parameters (e.g weights, embeddings) and intermediary activations, specific to the machine learning model.

• Data point. This category includes methods that return data points (sampled from the training data or synthetic instances) to make a model interpretable. The data points should be interpretable. This works well for images and texts, but is less useful for tabular data with many features. This category includes counterfactual explanations, class prototypes (representative instance of a class), etc.

• Local approximation by an intrinsically interpretable model (local surrogate, LIME).

• Global approximation by an intrinsically interpretable model (global surrogate).

Permutation feature importance

Permutation feature importance is a global model-agnostic method, producing feature summary statistics.

It measures the increase (or decrease) in the prediction error (or quality) of the model after applying a random permutation to the values of a feature of interest. A feature is "important" (resp. "unimportant") if shuffling its values increases (resp. does not change) the model error.

The permutation importance was first introduced as part of Random Forest [START_REF] Breiman | Random forests[END_REF]. [START_REF] Altmann | Permutation importance: a corrected feature importance measure[END_REF] proposed a heuristic to estimate p-values for importance values in Random Forest. Later on, [START_REF] Fisher | Model class reliance: Variable importance measures for any machine learning model class, from the "rashomon" perspective[END_REF] extended the method to work with any machine learning model (model-agnostic).

Algorithm 2: Permutation feature IMPortance (PIMP) [START_REF] Fisher | Model class reliance: Variable importance measures for any machine learning model class, from the "rashomon" perspective[END_REF] Inputs :

• X: input features matrix (p: number of features),

• y: true response vector,

• f : prediction function of the black-box model, ŷ = f (x),

• L(y, ŷ): evaluation function (prediction quality or error).

• R: number of repetitions to assess the statistical strength of importance values. Outputs : avg) , I (sd) : vectors of (average and standard deviation of) feature importance values. 

I (
Xj := σ(X j ), s.t X j is the j th column in X; 10 X := X 1 , . . . , X j-1 , Xj , X j+1 , . . . , X p ; /*

Multi-output feature importance

Most of the problems addressed in subsequent chapters relate to predicting multiple entities simultaneously using models with multiple responses, a.k.a multi-output models. Assuming that an error measure is available for each response variable L k , Algorithm 2 can be applied to each output separately or simultaneously. An overall feature importance for all outputs can be estimated in a similar fashion by assuming an aggregated evaluation measure of error (e.g sum of individual errors) or quality (e.g macro-average or micro-average AUC, recall, ...).

Group feature importance

To compute the importance of a feature, the algorithm breaks its association to the output by shuffling its values. When two or more features are correlated, permuting one while keeping the other(s) in the original order can yield unrealistic feature vectors.

Consider two features Weight(kg) and Height(cm), and the following synthetic instances: T(toddler): (Height=0.86, Weight=12.5) K(kid): (Height=1.2, Weight=23) A(adult) (Height=1.8, Weight=70)

Permuting values of the weight column can yield unrealistic instances (e.g [Height=0.86,Weight=70]). This problem is relevant for all permutation-based approaches. To address this issue within the PIMP framework, we group features per degree of correlation. For each group of features, the permutation is applied jointly to the corresponding columns to evaluate a group-wise importance.

Tricks to improve the efficiency

The complexity of the permutation importance algorithm is linear on the cost c of a call to the black-box model prediction. For r repetitions, p features, and n data instances, the overall complexity is O(cnpr).

In practice, we can run most of the computations (Algorithm 2) in parallel since importance calculation of different features as well as repetitions are independent. For multioutput machine learning models, we can estimate the importance of features for all response variables in the same loop to optimize the number of calls to the prediction function of the multioutput model.

Surrogate models

A surrogate model is an interpretable model (linear model, decision tree, decision rules, etc.) that is trained to approximate the predictions of a black box model. The choice of the black box model type and of the surrogate model type is decoupled. The true responses and the performance of the black box model do not play a role in training the surrogate model. The interpretation of the surrogate model makes statements about the model and not about the real world [START_REF] Molnar | Interpretable Machine Learning[END_REF].

Global surrogate

The goal of a global surrogate is to approximate the black box model's prediction function f as closely as possible with the surrogate model prediction function g, under the constraint that g is interpretable.

1. Select a dataset of features X. This can be the training dataset of the black box model, a subset of the training dataset or a new dataset from the same distribution.

2. Obtain the predictions of the black-box model on this dataset ŷ = f (X).

3.

Train an interpretable surrogate model on the dataset (X, ŷ).

4. Evaluate the quality of the approximation L(ŷ, g(X)).

Interpret the surrogate model.

Local surrogate

Local surrogate models are interpretable models that are used to explain the predictions of black box machine learning models on individual instances. For each instance, a local surrogate is built as opposed to a single model in the global surrogate approach.

Local Interpretable Model-agnostic Explanations (LIME) [START_REF] Tulio Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] is a framework that implements local surrogate models. The goal is to understand how the black-box machine learning model arrived to a certain prediction on a particular instance. LIME tests the response of the black-box model to variations of the instance of interest. Concretely, LIME works as follow:

1. Select a instance of interest x to explain.

2. Generate synthetic samples X by applying local variations to the instance x.

3. Compute the prediction of the black-box model on the sampled instances ỹ = f ( X)

4. Assign to each synthetic instance a weight proportional to its proximity to the instance of interest. w x is the resulting vector of weights.

5. Train a weighted interpretable surrogate model g on the dataset ( X, ỹ), while keeping the surrogate model complexity Ω(g) low: explanation(x) = arg min g∈G L(f, g, w x ) + Ω(g)

6. Explain the prediction by interpreting the local model.

The surrogate model should be a good approximation of the machine learning model predictions locally, but it does not have to be a good global approximation. This kind of accuracy is also called local fidelity.

To generate local variations of the focal instance, LIME authors proposed different approaches per type of data: tabular, text, image. Here, we describe the method used for tabular data with each row representing an instance and each column a feature.

Most machine learning models are smooth, meaning that if the feature values are slightly perturbed, the model prediction does not vary much f (x + ϵ) ≈ f (x). For this reason, LIME samples in tabular data are not generated by adding noise to the feature of interest but rather sampled from the training data distribution of the features. This increases the probability that the result for some of the sample points predictions differ from the data point of interest and that LIME can learn at least some explanation.

Shapley values

For a given instance, highlighting the relative contribution of a feature value to the prediction compared to the average prediction, is of major importance. In linear regression models, the answer is straightforward. The contribution of each feature is the weight of the feature times the feature value. For more complex models, a model-agnostic approach is needed.

f (x) = β 0 + β 1 x 1 + . . . + β p x p ϕ j (f ) = β j x j -E(β j X j ) = β j x j -β j E(X j )
In coalitional game theory, Shapley values [START_REF] Lloyd | A value for n-person games[END_REF] provides a way to fairly distribute the payout among multiple cooperating players in a game. [START_REF] Štrumbelj | Explaining prediction models and individual predictions with feature contributions[END_REF] proposed the use of Shapley values to evaluate the contribution of individual features, assuming the "game" is the prediction, the "payout" is the black-box model's prediction on the focal instance minus the average prediction for all instances, the "players" are the feature values of the instance that are weighted and aggregated to make the prediction. As the method is applied to single instances, the absolute Shapley value is a measure of local importance.

Computing Shapley values

The Shapley value of a feature value is its contribution to the payout, weighted and summed over all possible feature value combinations (coalitions): 

ϕ j (val x ) = S⊆{x1,...,xp}\{xj } 1 p 1 1 p-1 |S| (val x (S ∪ {x j }) -val x (S)) = S⊆{x1,...,xp}\{xj } |S|!(p -|S| -1)! p! (val x (S ∪ {x j }) -val x (S))
where S is a subset of the features used in the model, x is the vector of feature values of the instance to be explained and p the total number of features. val x is the payout function for a coalition of feature values. It yields the prediction for feature values in set S that are marginalized over features that are not included in set S.

val x (S) = f (x 1 , . . . , x p )dP x / ∈S -E X (f (X))
All possible coalitions (sets) of feature values have to be evaluated with and without the j-th feature to calculate the exact Shapley value. For more than a few features, computing the exact solution to this problem becomes intractable as the number of possible coalitions exponentially increases as more features are added. [START_REF] Štrumbelj | Explaining prediction models and individual predictions with feature contributions[END_REF] proposed an approach relying on Monte-Carlo sampling in the set of possible coalitions:

φj = 1 M M m=1 f (x m +j ) -f (x m -j )
At each iteration m, a random instance z is drawn from the dataset. The algorithm then draws a coalition S from the features except the feature of interest. x m -j is built using values in x for features in S and using values in z for the others. x m +j is constructed similarly except the value of the j th feature is chosen from x. The difference of prediction on the two constructed instances yields the marginal contribution for the sampled coalition. The Shapley value is the average of marginal contribution across all samples.

Properties of Shapley values

The Shapley value satisfies the following properties:

• Dummy: A feature that does not change the predicted value, regardless of which coalition of feature values it is added to, should have a Shapley value of 0.

• Efficiency: The feature contributions must add up to the difference of prediction for the focal instance and the average.

• Symmetry: The contributions of two feature values should be the same if they contribute equally to all possible coalitions.

• Additivity: For a game with multiple combined payouts (e.g ensemble average) the respective Shapley values are obtained by averaging the Shapley values on individual payouts.

Unlike LIME, Shapley values are backed by a solid theory. However, it returns a simple value per feature but no prediction model as opposed to LIME. This means it cannot be used to assess changes in prediction for changes in the input. Moreover, explanations created with the Shapley value method always use all the features, rendering this approach ill-suited for applications where users seek sparse explanations. SHAP, an alternative method to estimate Shapley values addresses some of these issues as it connects Shapley values and LIME.

SHapley Additive exPlanations (SHAP)

SHapley Additive exPlanations [START_REF] Scott | A unified approach to interpreting model predictions[END_REF] represents the Shapley value explanation as a linear model. This view connects LIME and Shapley Values.

In SHAP, we represent a coalition S by a binary vector z ∈ {0, 1} P of dimension equal to the maximum coalition size P , such that z j = 1 is the j t h feature is part of the coalition, z j = 1 otherwise.

g(z) = ϕ 0 + P j=1 ϕ j z j
The end goal is to estimate the individual feature contributions (Shapley values) ϕ j .

KernelSHAP

KernelSHAP estimates for an instance x the contributions of each feature value to the prediction. It consists of the following steps:

1. Sample coalition z k ∈ {0, 1} P for k = 1 . . . M .
2. Convert each coalition vector to a feature vector:

xk = h x (z k ) s.t h x : {0, 1} M → R p .
The function h x maps 1's to the corresponding value from the instance x that we want to explain. For tabular data, it maps 0's to the values of another instance sampled from the data.

3. Get the prediction of the black-box model on the constructed instances ŷk = f (x k )

4. Compute the weight for each coalition vector z k using the SHAP kernel:

w k = π x (z k ).
The SHAP kernel is computed as follows:

π x (z) = (P -1) P |z| |z|(P -|z|) 5.
Fit a weighted linear model on the dataset (Z, Ŷ , w):

L(f, g, π x ) = z∈Z [f (h x (z)) -g(z)] 2 π x (z) = M k=1 [ ŷk -g(z k )] 2 w k 6.
Return the coefficients ϕ of the linear model.

Global interpretation of SHAP values

Shapley values can be combined into global explanations. If we run SHAP for every instance, we get a matrix of Shapley values. This matrix has one row per data instance and one column per feature. We can interpret the model globally by analyzing the Shapley values in this matrix.

SHAP feature importance To obtain the global importance for each feature, we average the absolute Shapley values per feature across the data instances.

I j = n i=1 |ϕ (i) j |
This measure is an alternative to permutation importance. Permutation feature importance is based on the decrease in model performance whereas SHAP is based on the magnitude of feature attributions.

SHAP interaction

The interaction effect is defined as the additional combined feature effect after accounting for the individual feature effects. For two features of interest i = j:

ϕ i,j = S⊆\{i,j} 1 p 2 p-2 |S| δ ij (S) = S⊆\{i,j} |S|!(p -|S| -2)! 2(p -1)! δ ij (S) δ ij (S) = f x (S ∪ {i, j}) -f x (S ∪ {i}) -f x (S ∪ {j}) + f x (S)
To compute the interaction effect in each coalition δ ij (S), we subtract the main effect of the features so that we get the pure interaction effect after accounting for the individual effects. Afterwards, we average the values over all possible feature coalitions S, as in the Shapley value computation.

Clustering SHAP values

The goal of clustering is to find groups of similar instances. SHAP clustering works by clustering on Shapley values of each instance. This means that we cluster instances by explanation similarity. Unlike clustering on the original feature space, SHAP values have the same unit (the unit of the prediction space). Any clustering algorithm can be applied at this point.

Response curves

Once important features are selected for each prediction task, response curves are feature visualization techniques which allow to visualize the shape (monotonic, linear, quadratic, complex, etc.) of the prediction along the domain of the features of interest (two at most simultaneously). The following methods work for both continuous and categorical features. They are all classified as global methods, since they describe the global relationship of a feature with the predicted outcome.

SHAP dependence plots

When SHAP valeus are computed for each instance and each features, we can visualize SHAP values as a function of feature values i-e {(x

(i) j , ϕ (i) j )} n i=1 .
The resulting graph is known as SHAP dependence plot. We can fit a curve to this plot or make do with a scatter plot.

Evaluation strip

Developed in the context of Species Distribution Models [START_REF] Elith | The evaluation strip: a new and robust method for plotting predicted responses from species distribution models[END_REF], the evaluation strip (ES) produces a response curve by holding all variables other than the variable of interest constant (at their mean or some other appropriate value), and making predictions at regular intervals over the range of the focal variable.

Given a vector of reference values z (e.g mean feature values), S = {j} the feature of interest and C = S -{j} the rest of the features.

f ES (X S ) = f (X S , z C )

Partial dependence plot

The partial dependence plot (PD) shows the marginal effect of one or two features on the model predictions [START_REF] Jerome H Friedman | Greedy function approximation: a gradient boosting machine[END_REF]. It works by marginalizing the model output over the distribution of non-focal features C in order to show the relationship between the feature(s) of interest S and the predicted outcome. S contains at most two features.

f P D (X S ) = E X C [f (X S , X C )] = f (X S , X C )dP(X C )
A Monte-Carlo approach is typically used to approximate the previous integral:

f P D (x S ) = 1 n n i=1 f (x S , x (i) C )
While for numerical features, the PD computes the partial dependence at regular intervals to produce the PD plot. With categorical features, the PD computation are conducted for each category of the feature. An assumption of the PD is that the features in C are not correlated with the features in S. If this assumption is violated, the averages calculated for the partial dependence plot will include data points that are very unlikely or even impossible.

Bias in ES and PD plots

When computing the value of the response curve at a given value of the focal feature, the ES and PD aggregate predictions on artificial instances that can be physically impossible or unrealistic if they are generated without accounting for feature correlation Molnar 

Mathematical formulation

f S (x S , x C ) = δf (x S , x C ) δx S (2.1) f ALE (x s ) = x S z0,1 E X C |X S f S (X s , X c )|X S = z S dz S -constant (2.2) = x S z0,1 x C f S (z s , x c )P(x C |z S )dx C dz S -constant (2.3)
ALE for a single numerical feature First, we formulate the computations for a single numerical feature (Fig 2 .12). Let j be the feature of interest. We assume that the feature has a compact support: S j = [x min,j , x max,j ]. Let P K j ≡ {z K k,j : k = 0, 1, . . . , K} be a partition of S j into K intervals, with z 0,j = x min,j and z K,j = x max,j . It follows that:

lim K →∞ max K (|z K k,j -z K k-1,j |) = 0. For any x ∈ S j , k K j (x) is the index of the interval in P K j in which the value of x falls i-e x ∈ (z K k-1,j , z K k,j ] for k = k K j (x). We note n j (k) the number of training observations that fall into the k th interval N j (k) = (z K k-1,j , z K k,j
]. Eq 2.3 can be generalized to non-differentiable prediction functions using limiting finite differences (Eq 2.4), whereas integrals are approximated using summations (Eq 2.5). Figure 2.12: Calculation of ALE for feature x1, which is correlated with x2. First, we divide the feature into intervals (vertical lines). For the data instances (points) in an interval, we calculate the difference in the prediction when we replace the feature with the upper and lower limit of the interval (horizontal lines). These differences are later accumulated and centered, resulting in the ALE curve. (Source: [START_REF] Molnar | Interpretable Machine Learning[END_REF])

g j (x) ≡ lim K →∞ k K j (x) k=1 E f (z K k,j , X \j ) -f (z K k-1,j , X \j ) | X j ∈ (z K k-1,j , z K k,j ] (2.4) ĝj (x) = k K j (x) k=1 1 n j (k) i:x (i) j ∈Nj (k) f (z K k,j , x (i) \j ) -f (z K k-1,j , x (i) \j ) (2.5)
The function g computes the uncentered ALE effects. To obtain the centered ALE plot (i-e with mean zero), we simply substract the expected value of g (Eq 2.6). Thus, the value of the ALE is interpreted as the main effect of the feature at a certain value compared to the average prediction of the data.

f ALE (x j ) ≡ g j (x j ) -E [g j (X j )] (2.6) = g j (x j ) -p j (z j )g j (z j )dz j (2.7) f ALE (x j ) = ĝj (x j ) - 1 n K k=1 n j (k)ĝ j (z k,j ) (2.8)
ALE plot for the interaction of two numerical features 2D ALE plots show the additional interaction effect for two features (second-order effect). The calculation principles are the same as for a single feature, but we work with rectangular cells instead of intervals, because we have to accumulate the effects in two dimensions (Fig 2.13). The estimation is conducted similarly to the 1D configuration. Eq 2.9 estimates the uncentered effect ĥ as a summation of second-order finite differences. In Eq 2.10, ∆ (j,l) f (K, k, m; x i,\{j,l} ) is the second-order finite difference evaluated at the i th observation. Eq 2.11 computes the centered effect. 52 CHAPTER 2. FROM GLMS TO NEURAL NETWORKS: LEARNING AND INTERPRETABILITY ĥ

(j,l) (x j , x l ) = kj (xj ) k=1 k l (x l ) m=1 1 n (j,l) (k, m) i:x i,(j,l) ∈N (j,l) (k,m) ∆ (j,l) f (K, k, m; x i,\{j,l} ) (2.9) ∆ (j,l) f (K, k, m; x i,\{j,l} ) = [f (z k,j , z m,l , x i,\{j,l} ) -f (z k-1,j , z m,l , x i,\{j,l} )] -[f (z k,j , z m-1,l , x i,\{j,l} ) -f (z k-1,j , z m-1,l , x i,\{j,l} )]
(2.10) ALE plot for a single categorical feature In the case of ordinal features, the previous process is applicable. For categorical features, an order of categories has to be provided. Otherwise, the algorithm computes the distance between instances with respect to the other (non-focal) features, followed by a multidimensional scaling to reduce the distance matrix into a one-dimensional distance measure. This process yields a similarity-based order of the categories.

for each (x j , x l ) ∈ (z 0,j , z K,j ] × (z 0,l , z K,l ]. f ALE (j,l) (x j , x l ) = ĥALE (j,l) (x j , x l ) - 1 n K k=1 K m=1 n (j,l) (k, m) ĥ(j,l) (z k,j , z m,l ) (2.11)

Synthesis: interpreting response curves

• Evaluation Strip (ES)

: "what the model predicts for the value v if all other features are kept at a constant value (average, median)."

• Partial Dependence Plots (PDP): "what the model predicts on average when each data instance has the value v for that feature, ignores whether the value v makes sense for all data instances."

• Accumulated Local Effects (ALE): "how the model predictions change in a small "window" of the feature around v for data instances in that window."

• SHAP dependence plot: "what is the contribution of the feature to the prediction on v compared to the average prediction"

Conclusion

In this chapter, we presented the building blocks of the methodological developments proposed in this thesis. First, we introduced Generalized Linear Models (GLMs) which define our response model. Afterwards, we described neural networks as extensions of GLMs with a built-in upstream feature learning mechanism. We described two neural architectures used for supervised learning: multi-layer perceptrons and convolutional neural networks. The latter uses particular operators such as the convolution and the pooling to learn features from images and grid-like data efficiently. We briefly introduced autoencoders and variational autoencoders, two architectures for unsupervised deep learning. The latter will be detailed in the following chapter where it is used as an inference tool. We also introduced an brief overview of multi-task learning in the context of neural networks and deep learning. Finally, we reviewed principles and methods of machine learning interpretability that are relevant for subsequent applications. In the following chapter, we will highlight how the various methods of interpretability can be applied to answer specific questions in community modeling.

Chapter 3

Multi-task modeling of ecological communities

Introduction

A paramount question in biogeography is to understand and predict the response of ecological communities to environmental conditions. The ecological communities response can be captured by multiple indicators describing various facets of diversity: taxonomic (e.g species abundances, biomass), functional (e.g traits), network (e.g biotic interactions, co-occurrences). Indicators are dependent, due to direct interactions or retroactive effects on the environment. Such dependencies are encoded in networks of associations.

Considering each indicator as a response variable in a prediction task, we obtain a multi-task learning problem.

Very often, environmental conditions are described by features encoded in a raster format with varying resolutions. In addition to the previous computed information, rich contextual information can be obtained from aerial/satellite images. In this case, relevant features are typically extracted from raw images using signal processing techniques or using convolutional neural networks [START_REF] Lecun | Convolutional networks for images, speech, and time series[END_REF] as upstream feature extraction components. [START_REF] Botella | A deep learning approach to species distribution modelling[END_REF] applied similar CNN-based architectures to multi-channel images constructed from the environmental rasters (one channel per raster), restricted to a radius around the point of prediction. Unfortunately, these feature learning approaches are incompatible with existing ecological community modeling frameworks.

We propose Multi-Task modeling of Ecological Communities (MTEC), a methodological framework to model the response of ecological communities. It extends the traditional setting based on multivariate linear regression models [START_REF] Niku | gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r[END_REF][START_REF] Ovaskainen | How to make more out of community data? a conceptual framework and its implementation as models and software[END_REF] to allow the automatic extraction of features and non-linear responses via feedforward neural networks.

Generic framework

We illustrate the generic conceptual framework and the common probabilistic components shared by subsequent applications in Fig 3 .1. To avoid excessive abstractions, without loss of genericity, we will describe the framework as used for predicting species abundances. The same mechanisms apply if the targets of the prediction are at other taxonomic levels (e.g family or subspecies), representing groups of taxa (e.g functional group), or a set of traits. 

Context builder

The framework takes as input a set of locations, environmental rasters and an occurrence database. The context builder leverages expert knowledge to select the subset of relevant abiotic and biotic factors for the prediction task.

Abiotic descriptors

Environmental data come in various formats and coverage, including metadata accompanying community data in tabular format or raster databases provided by third-party institutions. In the latter case, a preliminary step consists in extracting the portion of raster surrounding the location of interest around a radius in km or pixels on the map. We refer to it using the term patch. After normalization and missing values filling, patches can be used directly, or be transformed into single values using summary statistics (average, minimum, maximum, median).

Biotic context

The biotic context encodes our assumptions about the potential biotic effects which could affect the prediction at a given site. In the case of species abundance prediction, it imposes implicit constraints on the structure of species association networks by restricting the set of potential associations a priori. In the simplest case, without any prior knowledge, the biotic context consists of individuals from other species observed at the same site. Formally, the biotic context of species i ∈ S at site s ∈ K, denoted C si , is defined as follows:

C si = {j ∈ S, j = i and y sj > 0} (3.1)
From this basic definition, we can create straightforward extensions, with corresponding representations (Box).

GENERIC FRAMEWORK

Biotic context extensions for species abundance prediction

Temporally-explicit extension When longitudinal data are available, we denote the abundance of species i at site s at time-point t as y (t)

si . Accordingly, the definition of the biotic context for a target species at a given time-point is extended to contain the species, including the target, that were observed in the previous time-point:

C (t) si = {j ∈ S, y (t-1) sj > 0} z (t) si = 1 C (t) si j∈C (t) si y (t-1) sj α j
Spatially-explicit extension Given a function d that measures the distance between any pair of sites and a radius r, we consider a spatial extension of the base model where the biotic context contains species that were observed at locations within a distance r of the considered site.

C si = {(j, l) ∈ S × K, y lj > 0 and d(s, l) ≤ r}
One can use multiple radius values, for instance customized to the dispersal abilities of each target group or species. The effect of each contextual element is weighted inversely to its distance to the target location. The hyperparameter τ controls the decrease in weight per unit of distance. Similarly, τ can be customized for each group of species based on expert knowledge.

z si = (j,l)∈Csi y lj • exp(-τ d(s, l))
Graph extension So far, we defined the biotic context using the community composition in terms of species, possibly involving their abundances. At this point, we are able to capture pairwise additive effects. However, we miss the impact of interactions between context species or the whole network structure around the target location on the abundance distribution of the target group, referred to as the contextual network. Fortunately, graph embedding algorithms permit the incorporation of structured data such as knowledge graphs into predictive models. For instance, we can redefine the biotic context as the interaction network at site of interest s after removing the target species i, noted G s/i . The context embedding is then obtained by applying a graph embedding function k with parameter θ on the contextual network.

z si = k(G s/i ; θ) .

Feature extraction

This module maps raw data to meaningful features using a function whose parameters are learnt in an endto-end learning way. These features represented in vector formats are shared across prediction tasks. The feature extraction function can be as simple as a lookup table returning a vector representation (embedding) given an index, we use this formulation to represent species in a biotic context (Eq 3.2). Conversely, a single layer neural network can be used for feature extraction, it acts as a Principal Component Analysis adjusted for all the prediction tasks (supervised PCA). Finally, when the spatial organization of feature values matters, convolutional neural networks can be used to extract meaningful features.

z si = 1 |C si | j∈Csi y sj α j (3.2)
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Covariate-dependent biotic representations

In the base model, the estimation of the biotic context effects is oblivious to the abiotic or biotic conditions surrounding it. To account for these neighborhood conditions, we extend the base model by allowing the embeddings used to represent the biotic context to depend on some chosen variables. Each site is associated to p conditioning covariates. These covariates are stored alongside an offset in a n × (p + 1) matrix V , such that each of the first p columns of V contains the values of the corresponding covariates for the different sites while the last column is filled with ones. Then, given an embedding dimension d, the covariates are mapped to each dimension by applying a regression with a weight matrix W ∈ R d× (p+1) . The resulting conditioning vectors are such that

β s = W v T s .
The extended biotic context is then represented as follows, where * is the element-wise vector product:

z si = β s * 1 |C si | j∈Csi y sj α j = 1 |C si | j∈Csi y sj • (β s * α j )

Prediction

The prediction module combines the incident abiotic and biotic features using a parametric aggregation function to determine the target of the prediction, whether it is species abundances, trait distribution, etc. This aggregation function can be one of the following:

• Hierarchical filter: each factor operates as a selection filter, the result of the first filter is fed to the second filter,

• Multiplicative filter (intersection): the product of both filters outcomes.

• Additive or linear filter: the abiotic and biotic effects are added, they can compensate each other,

• Learnt filter: e.g. a neural network

We provide some illustrative examples for the specific case of modeling species abundances in Fig 5 .3.

We assume within this framework that target variables are independent conditionally to the abiotic and biotic features. Thus, we model each output variable as following a univariate distribution within the Exponential Family. As opposed to the feature extraction components that are shared across tasks, the prediction module has specific prediction parameters for each task. As with GLMs, the type of data considered (presence/absence, abundance, biomass, etc.) determines the choice of distribution and link function.

Opening the black-box

The flexibility of the generative model allows to improve its predictive accuracy, but it comes at the cost of a reduction in the interpretability of the model's decision process. Without altering the model, we propose to use a set of routines from the machine learning interpretability literature to shed light on the magnitude and direction of the contribution of each factor to the task prediction function. The mathematical details of the methods are described in Section 2.5. 

Incorporating expert knowledge

Expert guidance can be incorporated at various levels: from selecting relevant covariates and their scope, defining the biotic contexts, choosing an appropriate aggregation function to assessing model interpretability.

Additionally, expert knowledge can be harnessed to reduce model complexity by exploiting known ecological similarities via the mechanisms of parameter sharing, at various levels:

• Environmental features sharing (Applied in chapter 4);

• Abiotic response sharing;

• Biotic representations sharing (Applied in chapter 3). 

Multi-task neural model of the joint environmental response

The goal is to predict the joint response of multiple ecological entities (e.g species or traits) to common influencing factors (e.g environment, other taxonomic groups). The method should satisfy the following requirements:

• (R1) Accommodate various types of covariates: continuous, ordinal, categorical.

• (R2) Address the potential for multicollinearity induced by the large number of covariates.

• (R3) Allow for non-linear responses to the environment.

• (R4) Support heterogeneous responses: binary, ordinal, categorical, continuous.

• (R5) Incorporate a mechanism to estimate residual (unexplained by measured covariates) associations between response variables.

• (R6) Enable an efficient inference procedure.

Generative model

Let us first formalize the general probabilistic model. We address requirements R[1-3] by using a neural network f EXT with weights W dedicated to learning relevant representations of the environment X = (x s ) s∈S for the prediction tasks from the raw input features E = (e s ) s∈S :

x s = f EXT (e s ). (3.3) 
We adopt a latent factor approach similar to Warton et al. [2015]. The response depends on the fixed effects induced by measured covariates and random effects arising from a set of K latent factors (Eq 3.5). We encode the dependence of each response variable y i on the observed and latent factors in respectively the abiotic response B = (β i ) matrix and loadings matrix A = (α i ). We further assume independence of latent factors (Eq 3.7), and responses conditioned on the latent variables (Eq 3.4). Dependencies between responses are mediated by the latent factors, and are thus encoded in the residual covariance matrix Σ.

y si ⊥ ⊥ y sj | h s , ∀i = j (3.4)
To enable flexibility in response types (in accordance with R4), we model response variables in the exponential family of distributions (Eq 3.9).

g i (m si ) = β i x s + z si (3.5) z si = h s α i (3.6) h s ∼ N (0, I d ) (3.7) z si ∼ N (0, A.A ) (3.8) y si | h s ∼ F i (m si , ϕ i ) (3.9)
In summary, the full generative model parameters are: θ = {W, B, A, ϕ}.

Inference as optimization

The goal is to maximize the marginal likelihood w.r.t the generative parameters: 

log p θ (Y) = log p θ (Y,
Q = {q : q(H) = N s=1 N (h s ; µ s , diag(σ 2 s ))} (3.12)
From Eq 3.12, the number of posterior parameters (means and variances) increases linearly with N the number of observations O(2KN ). To ensure the scalability of the inference, we follow the AEVB algorithm 1 and use a sufficiently complex parametric function f EN C : y s → (µ s , σ 2 s ). In practice, f EN C is a neural network parameterized with weights ξ, referred as recognition or encoder network. The combination of the encoder and the generative model (also called decoder (Eq 3.9), leads to a variational autoencoder [START_REF] Diederik | Auto-encoding variational bayes[END_REF].

We transform the inference problem to the optimization (maximization) of the likelihood w.r.t the global parameters θ minus the information loss induced by the posterior approximation (Eq 3.13). The latter is measured by a divergence measure D and parameterized with the variational parameters. By setting D to the Kullback-Leibler divergence [START_REF] Lin | Divergence measures based on the shannon entropy[END_REF], we obtain the Variational EM algorithm which optimizes a lower-bound of the marginal log-likelihood, commonly known as the evidence lower-bound or ELBO [START_REF] Yang | Understanding the variational lower bound[END_REF].

J (Y; θ, ξ) = log p θ (Y) -D(q ξ (H) || p θ (H | Y)) (3.13) = log p θ (Y) -E H∼q(H|Y) log q ξ (H | Y) p θ (H | Y) (3.14) = log p θ (Y) -E H∼q(H|Y) log q ξ (H | Y) • p θ (Y) p θ (Y | H) • p(H) (3.15) J reg (Y; θ, ξ) = E H∼q(H|Y) log p θ (Y | H) Reconstruction L + D(p(H)||q ξ (H | Y)) KL term KL + log p(θ) + log p(ξ) Parameter regularization R (3.16) (3.17)
The KL divergence between the prior Eq 3.7 and approximate posterior Eq 3.12 of the latent variables, both normally distributed, can be computed in closed form.

Kullback-Leibler divergence

The KL-divergence or relative entropy is a measure of how one probability distribution is different from a second reference distribution.

The KL-divergence of two multivariate normal distribution N 1 (µ 1 , Σ 1 ) and N 2 (µ 2 , Σ 2 ) is defined as:

KL(µ 1 , µ 2 , Σ 1 , Σ 2 ) = 1 2 log |Σ2| |Σ1| -d + tr{Σ -1 2 Σ 1 } + (µ 2 -µ 1 ) T Σ -1 2 (µ 2 -µ 1 ) .
We use the reparameterization trick to transform the reconstruction term into an expectation over an auxiliary noise that does not depend on the parameters and can be estimated using Monte-Carlo sampling, thus enabling gradient-based optimization. 

; θ, ξ) = E hs∼N K (µs,diag(σ 2 s )) M i=1 log p θ (y si | h s ) (3.18) = E ϵ∼N (0,I K ) M i=1 log p θ (y si | h s = µ s + σ 2 s ϵ) (3.19) L(y s ; θ, ξ) ≈ 1 L L l=1 M i=1 log p θ (y si | h (l) s = µ s + σ 2 s ϵ (l) ) s.t ϵ (l) ∼ N (0, I K ) (3.20) ≈ 1 L L l=1 M i=1 log f i (m (l) si , ϕ i ) / (3.21) s.t m (l) si = g -1 i (β i x s + α i (µ s + σ 2 s ϵ (l) )) (µ s , σ 2 s ) = f EN C (y s ; ξ) and x s = f EXT (e s ; θ) (3.22)
Given N data points, we construct an estimator of the reconstruction term using mini-batches of size N :

L(Y; θ, ξ) = N N N ′ s=1 L(y s ; θ, ξ) (3.23)
Experiments from Kingma and Welling [2013] showed empirically that given a sufficiently large batch size, it is possible to use a single posterior sample, i-e L = 1. The objective function with the addition of regularization terms on the global parameters (θ, ξ) is optimized using Stochastic Gradient Descent [START_REF] Bottou | Large-scale machine learning with stochastic gradient descent[END_REF] or its variants [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF]. We illustrate the computation graph of the data generating process and the inference in Fig 3 .3

Machine learning frameworks such as Tensorflow [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF] and PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] offer automatic differentiation and parallel optimization capabilities by exploiting hardware architectures of both CPUs and GPUs. We used the former library combined with Keras [START_REF] Chollet | The python deep learning library. ascl[END_REF], a high-level library to specify neural network architectures.

J reg (Y; θ, ξ) = L(Y; θ, ξ) + K(Y; ξ) + R θ + R ξ (3.24)

Sparse associations estimation

We define the following posterior statistics over the latent factors H:

Variational mean matrix U = (µ s ) N s=1 N × K Accumulated variance matrix S = N s=1 diag(σ 2 s ) K × K Latent covariance matrix estimator Σ = 1 N (U U + S) K × K
From there, the estimated residual covariance matrix (Eq 3.25). We use the Graphical lasso algorithm [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF] 2 to estimate a sparse inverse (Eq 3.26) for the posterior residual covariance matrix Ωr = Σ-1 r , with a sample size of N. The association network estimated from the data is the Gaussian Graphical Model encoded in the corresponding partial correlation matrix P r . 

Extending Joint Species Distribution Models

We can recover the generalized linear latent variable JSDM used in [Warton et al., 2015[START_REF] Niku | gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r[END_REF][START_REF] Ovaskainen | Joint Species Distribution Modelling: With Applications in R[END_REF] by setting f EXT = Id : x → x and by choosing the link function g as in Generalized linear models.

While the latent variable are combined linearly to the environmental features similarly to aforementioned work, our proposal additionally allows non-linear responses to the environment, introduced via the f EXT function. Note that, Eq 3.5 can be traded for a non-linear function f DEC θ ′ : (x s , h s ) → m s . However, by doing so the derivation of species associations is not straightforward. Here, we assume species dependencies are linear and captured by the pairwise correlations of random effects Z.

Conclusion

In this chapter, we introduced a generic framework for modeling ecological communities using multi-task neural networks. We introduced a declination of the framework into a joint model of species distributions with support for non-linear responses, with an efficient inference algorithm. We illustrate the proposed solution on an empirical application in Chapter 6. In the following chapters, we describe the application of the framework to two other problems: location-based recommendation (Chapter 4) and ecological association inference (Chapter 5).

Chapter 4

Plant recommendation using environment and biotic associations

Introduction

Predicting the most likely species occurring in a given location is of great importance in biodiversity studies. This age-old task in biogeography can be formulated as learning a density function of the species over the geographic space from a set of observed geolocalized occurrences. In practice, due to sampling bias, limited examples and local habitat heterogeneity, geographic coordinates are not used directly as predictors. Instead, species abundance is modeled as a function of the environmental conditions at the given locations. Such models are called Species Distribution Models (SDMs) or Habitat Suitability Models (HSMs).

The local environment is usually described by abiotic features such as climate and pedology. Recently, more studies include biotic covariates in the form of other living beings abundance, motivated by the need to account for the dependencies between species that can affect their co-distributions. Indeed, two species distributions may be correlated indirectly through a latent abiotic variable or directly if they interact in some way that creates a dependency between their respective populations as in the case of plant-pollinators, host-parasites, predator-preys, etc.

The set of locations with suitable abiotic conditions for a given species define its Grinnellian niche [START_REF] Grinnell | The niche-relationships of the california thrasher[END_REF]. On the other hand, the role it occupies within its community through feeding on other organisms or interacting with them defines its Eltonian niche [START_REF] Charles | Animal ecology[END_REF] or its biotic requirements. The locations at the intersection between the two niches constitute the species' Fundamental niche. What we observe is an accessible subset of it called the Realized niche [START_REF] Townsend Peterson | Ecological niches and geographic distributions (MPB-49)[END_REF].

In the context of the GeoLifeCLEF 2019 challenge, part of the LifeCLEF evaluation campaign [START_REF] Joly | Overview of lifeclef 2019: Identification of amazonian plants, south & north american birds, and niche prediction[END_REF], we evaluate two models on location-based plant recommendation. The first one relies purely on abiotic features while the second harnesses regional level co-occurrences of the target species with other organisms selected with expert assistance. We describe both solutions and discuss results obtained during training, validation and test phases.

Dataset description

The task organizers provided a training dataset containing about 280K observations from the Global Biodiversity and Information Facility database. Nearly 2M plant occurrences from automatic species identification of pictures produced in 2017-2018 by the smartphone application Pl@ntNet were added. We used the complete provided plant occurrences involving almost 3.5K plant taxa. Besides, 10M occurrences from other biodiversity kingdoms were also included. Finally, 33 environmental rasters covering the French territory were provided. They describe the climate, topology and pedological landscape. They were constructed from 66 CHAPTER 4. LOCATION-BASED RECOMMENDATION various open datasets as explained in the protocol note [START_REF] Christophe | Overview of geolifeclef 2019: plant species prediction using environment and animal occurrences[END_REF].

Task and proposals

The task consists in training a model that predicts at a geographic location the dominant plant species. We formulate this task as a multi-class classification problem where the output class is the dominant plant identity. We evaluate two architectures for solving the task:

• GrinnellNet: A convolutional neural network architecture using environmental rasters. It aims to learn features of species Grinnellian niche.

• EltonNet: A species embedding network leveraging associations with nearest non-plant taxa occurrences. Its purpose is to identify community composition patterns that are positively associated with a specific plant species, possibly related to the Eltonian niche concept.

Hereafter, we describe both proposals and motivate our architecture, preprocessing and optimization choices.

GrinnellNet: a CNN with categorical rasters embedding

GrinnellNet's architecture (illustrated in Figure 4.1) is organized in a stack of components trained end-toend: input preprocessing, feature extraction, feature interaction and classification. It takes environmental rasters as inputs and returns the identity of the dominant plant for each location.

Input preprocessing

Observing a species in a given location does not necessarily imply the suitability of the abiotic environment. Indeed, some species survive in locations with unfavorable conditions (known as sink locations) as long as new individuals continuously join the population from a nearby suitable habitat (source locations), through seed dispersal for instance via wind currents. These so called source-sink dynamics [START_REF] Robert | Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution[END_REF] ensure an indefinite sustainability of the sink populations despite unfavorable abiotic conditions. Consequently, failing to account for these spatial processes may result in overestimation of the species' environmental niche's breadth. In addition to the effects of such stochastic assembly processes, the geographic coordinates provided by smartphone devices come with measurement errors, which represent a further source of uncertainties that need to be accounted for.

For these reasons, it is necessary to consider a landscapewise rather than a pointwise description of the environment around the observation geolocation by using environmental patches instead of local values.

We divide the environmental rasters into three groups based on their semantic, the resolution at which they vary and their data type (quantitative, ordinal and categorical).

• TopoHydroClimate group: quantitative variables describing global bioclimate (CHBIO, ETP), hydrology (water proximity) and topology (altitude).

• Pedology group: ordinal and categorical variables describing the physico-chemical structure of the soil.

• Land use group: includes Corine Land Cover class.

Embedding categorical features

Part of the soil's physico-chemical properties are described by categorical or pseudo-ordinal features such as texture, land cover, erodibility and crusting class. Therefore, for each of the f c categorical features, before feeding it to the CNN layers, we replace each of its n c categories by a real vector representation of size k c , where k c is a tunable hyperparameter, typically chosen in the interval [2, nc 2 ]. In practice, this is implemented by a feature-specific embedding lookup layer parameterized by a (n c , f c ) matrix E c , such that E c [i, ] is the k c sized embedding of the i th value of f c . We apply this transformation batchwise in parallel to all patch cells (light grey module in Figure 4.1). For an input of dimension (batchSize, patchRadius, patchRadius, 1), Categorical embeddings capture richer relationships than raw categories. They are also considered as a dimensionality reduction technique, more practical than one-hot-encoding when dealing with high-cardinality yet sparse features (a typical example in our case is land cover). Note that each embedding dimension could have multiple meanings that do not necessarily line up with ordinal dimensions. In the end, categories with similar representations translate a similar effect on the target variable. Climate, topological and hydrological features are input to the neural network as batches of (batchSize, patchRadius, patchRad multi-channel images, d num = 22 being the number of features.

Resulting preprocessed inputs

Feature extraction

We investigated two modes of feature extraction on the preprocessed inputs: Handling spatial data requires to use appropriate feature extraction techniques that are able to harness the spatial structure of such inputs. Convolutional neural networks [START_REF] Lecun | Convolutional networks for images, speech, and time series[END_REF], a class of artificial neural networks inspired from the virtual cortex of animals, constitute an ideal choice as they allow to extract features from spatially-structured inputs within an end-to-end learning process. They have been previously shown to provide substantial improvements in predicting species abundance [START_REF] Botella | A deep learning approach to species distribution modelling[END_REF][START_REF] Deneu | Location-based species recommendation using co-occurrences and environment-geolifeclef 2018 challenge[END_REF]. 

Each

Feature interaction and classification components

Extracted features from the different components are flattened and eventually concatenated into a single large vector. This vector is then fed into a fully connected neural network dedicated to learning the separation of the plant classes in the learnt feature space. This feature interaction component (green box in Figure 4.1) comprises 3 dense layers of respectively 8192, 4096 and 3353 neurons. We applied a 0.75 dropout rate on the intermediary layers to prevent overfitting. The classification layer consists on a softmax activation applied on the output to determine the probabilities of each class. Class probabilities sum to one by definition. Naturally, the class with the highest probability is attributed to the instance.

EltonNet: a species embedding network

Here we propose to rely purely on associations between plants and other taxonomic groups. The goal is to predict the dominant plant from knowledge of the occurrences of other taxa around it, up to a certain radius.

In order to reduce the number of co-occurring organisms, address the rarity of some of them and capture stronger associations with plants, the following processing steps were applied to the records of non-plant occurrences.

Taxonomic grouping and biogeographical filtering

We aggregated taxa according to ecological knowledge on the taxonomic level where biogeographical correlations to plants are meaningful. This level differs from one group to another, thus different preprocessing schemes were applied to different taxonomic groups. Then, for some groups we used domain-knowledge heuristics to filter irrelevant groups. Proportions of retained groups in the taxa list are illustrated in Figure 4.2. Finally, we assigned internal codes, i.e. unique identifiers, to each group.

Fungi selection . We grouped fungal species by genus. Then, we used the FunGUILD database [START_REF] Nhu H Nguyen | Funguild: an open annotation tool for parsing fungal community datasets by ecological guild[END_REF] to select fungi from guilds (groups with similar diets and functions in the ecosystem) that are dependent on plants for feeding. We kept the following guilds: Pathotrophs (parasites of plants) and Symbiotrophs (involved in positive associations with plants such as mycchorizea). We deleted Saprotrophs (organic matter decomposers) as they do not depend on plants whatsoever. In the end, we retained 195 out of 531 genuses.

Insects selection . We aggregated insects to the order level except for Coleoptera and Orthoptera which were grouped in families as they exhibit significant intraorder variability in terms of habitat preferences and diet. We chose among insect orders those with known co-evolution history with plants (such as Hymenoptera) and/or established potential for direct interaction with plants (such as pollinators and herbivores) [START_REF] Sauvion | Interactions insectes-plantes[END_REF]. The intuition is that some insects have strong affinities or preferences (such as specialist pollinators) towards specific plants which leads to a greater chance of co-existence. This process led to the selection of 464 families of Coleoptera and Orthoptera in addition to 9 other orders.

Aves selection . Most birds breed in their preferential habitat during the period spanning from March to July. The rest of the year, during their migration phase, they travel through other areas where they can occasionally be observed. We considered these observations as spurious and removed them to avoid establishing false associations to plants. We then aggregated birds to the genus level. Afterwards, we used www.oiseaux.net to identify and remove some introduced/invasive genuses. We ended up with 240 bird taxa.

Amphibians, mammals and reptiles aggregation . Lacking expert knowledge on these phyla, we simply grouped them to the genus level, yielding 21 amphibians, 93 mammals, and 33 reptiles.

Biotic context calculation

To accelerate the training phase, we precomputed for each training example i, given its coordinates, the set V i of non plant observations that occur within a radius of at most 8 Km. Starting with 500m, we iteratively doubled the radius until we identified a non-empty set of neighbor species, up until at most 8km. Afterwards, we randomly draw with repetition w observations from V i with a uniform probability. That way, more abundant taxa (present multiple times in V i ) have a higher probability of being included. At the end of this process, we had associated each training example to its biotic context made of w observations of organisms from other kingdoms.

The species embedding network architecture

The -The input layer of size W receives the identifiers of the biotic context components.

-An embedding layer that associates a real-valued vector of size k np for each taxa (non plants). This embedding vector captures the effect of observing this organism on the odds of each plant class.

-A lambda averaging layer that aggregates the biotic context embeddings.

-A dense layer that computes for each target plant species the dot products of its weight vector to the aggregated context embedding. This layer uses a softmax activation to return the probabilities of each target plant to occur given the observations of the surrounding non plants.

Training and evaluation

Optimization and evaluation metrics

Given:

-P : the set of plant classes (here species-level identifications).

c: the expected or true class.

s c : the neural network output probability for the true class.

w c : weight of the true class.

In both proposals, we optimize the class-weighted sparse categorical cross-entropy loss given by equation Eq 4.1

CE = -w c log( exp sc P j exp sj ) (4.1)
Some species were observed more often than others leading to a class-imbalance problem within the training set. To address this issue, we weighted each training example by the weight of its expected class (see Eq 4.2). This strategy allowed us to give more importance to the misclassification of rare classes observations (correcting for false negatives). Each class c with a frequency of occurrence p c on the training set was attributed a weight computed as the ratio of its points of absence to its points of presence.

w c = 1 -p c p c (4.2)
This process is particularly useful for endemic species of undersampled locations. 

Implementation and learning setting

We implemented GrinnellNet and EltonNet in Python1 using Keras deep learning framework with Tensorflow2 backend. We trained the models using multigpu data parallelism on a single computing node equiped with 4 GPUS V100 with NVlink3 . We used the adam optimization algorithm [Kingma and Ba, 2014] with a decaying learning rate starting from 0.001 and reduced by a 10 factor whenever the validation loss stops improving after 5 epochs.

Evaluation

We sampled 80% of the dataset for training and kept the remaining 20% for validation. We used a stratified cross-validation split procedure to ensure coverage of all classes in the training set. At the end of every epoch, we evaluated the prediction accuracy of the models on the validation set. ELT100 and ELT300 correspond to EltonNet applied to occurrences of test species (evaluated in the test set) with the embedding size parameter k np set respectively to 100 and 300. GRIN_SEP and GRIN_SEP+ (trained longer) apply GrinnellNet on occurrences of all plant species whereas in GRIN_SEP_TEST the model is trained only on test species. GRIN_SEP uses separate feature extraction components for each feature group while GRIN_JOINT uses the joint feature extraction mode.

Unsurprisingly, GrinnellNet performs much better than EltonNet. Indeed, we would expect such results as covariates used in the former are richer and unbiased. Besides, biogeographical theory recognizes the superiority of the abiotic filter in selecting species [START_REF] Boulangeat | Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances[END_REF], as it is directly related to their physiological traits. On the other hand, EltonNet resulted from a series of arbitrary domain heuristics. Nevertheless, it still performs better than random with relatively strong associations learnt between plants and other taxa, a non-negligible insight for community ecologists.

In the case of GrinnellNet, the choice of the feature extraction mode clearly affects its predictive performances. Results show that treating the feature groups separately leads to better performances. This can be explained by the nature of the data encoded in the rasters that were created/interpolated from different data collection protocols. Indeed, pedological characteristics for instance are mainly determined by subjective field observations whereas climate data are calculated with advanced mathematical models. Another possible reason to separate the feature extraction processes is the scale at which the rasters were constructed.

While bioclimatic variables are interpolated to the kilometer in regular grids, soil data are aggregated using anthropo-topological polygons to the landscape level, which translates in several kilometers. Consequently, we only submitted GRIN_SEP runs for the clef challenge.

We also observed that that the weighting strategy yielded significant performance improvements over the unweighted variant (not shown here). Furthermore, the runs ranking on the validation set is roughly the same as in the test set results except for GRIN_SEP and GRIN_SEP_TEST. During validation, we found that GrinnellNet performs better when it is trained solely on test species than when it uses occurrences of all plant species. At test time, the order was reversed which might be a sign of overfitting in GRIN_SEP. But also, because GRIN_SEP_TEST is exposed to more observations it probably learns more robust features.

Conclusion

We presented two proposals for the location-based species recommendation problem. The first solution leverages the concept of Grinnellian niche by building its predictions on only abiotic features, automatically extracted from environmental rasters using convolutional neural networks. This approach can be extended to any taxonomic group beyond plants. Moreover, we investigated the use of distributed representations as a means to reduce feature dimensionality as well as to capture rich semantic associations.

In the second proposal, we attempted to learn the Eltonian niche of the plants by embedding the biotic contexts where they are observed. We relied heavily on domain knowledge with expert assistance to filter co-occurrences in order to learn strong associations. Although the assumptions and rules used to select non plants species were specific to plant modeling, the learning architecture itself can be used for any taxonomic group. Additionally, this approach suffered from the heterogeneity of the sampling effort. Ideally, one could use projection maps predicted by species distribution models when available as input to a convolutional neural network.

Overall, our proposed CNN solution outperformed the species embedding approach. But the latter allowed us to identify associations between plants and other taxa which can be used to develop bioindicators. In the end, one could train both models jointly with shared layers that can capture the interactions and possible feedbacks between biotic and abiotic variables.

Chapter 5

Uncovering bidirectional ecological associations from community data

Introduction

Species co-abundances across space, recorded as community data, result from the interplay of abiotic filtering, biotic interactions and dispersal limitations [START_REF] Weiher | Ecological assembly rules: perspectives, advances, retreats[END_REF]Keddy, 2001, Peterson et al., 2011]. As a result of species Grinnellian and Eltonian niches, together with species dispersal abilities, species co-abundances vary in space. These data, measured as community data, are usually the corner-stone of analyses that aim to tease apart the relative importance of these processes [START_REF] Weiher | Ecological assembly rules: perspectives, advances, retreats[END_REF]Keddy, 2001, Peterson et al., 2011].

A natural way to address this objective is to jointly model multiple species distributions against environmental covariates, and then, analyse the pairwise co-dependencies between species knowing the environmental effects. These pairwise co-dependencies (i.e. associations) represent the net effect of one species on another, resulting from direct interactions or indirect interactions mediated by non modeled species or unmeasured environmental factors [START_REF] Wootton | The nature and consequences of indirect effects in ecological communities[END_REF].

Several statistical frameworks allow to infer these associations, either as their main objective or as a byproduct of the modeling process. These approaches differ in the type of dependencies they can model, in how they accommodate abundance data, and in the way they incorporate environmental covariates.

Joint Species Distribution Models (JSDM) address the problem by jointly predicting co-distributions of multiple species. Basically, once abiotic factors are accounted for, the residual correlation matrix captures species associations that are unexplained by the modeled covariates [START_REF] Pollock | Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (jsdm)[END_REF]. Early JSDMs used (Hierarchical) Generalized Mixed Effect Models to estimate full covariance matrices. Most recent implementations incorporate latent factors as a way to account for missing environmental variables as well as to reduce the parameter space size [START_REF] Ovaskainen | How to make more out of community data? a conceptual framework and its implementation as models and software[END_REF]. Support for abundance data, particularly counts, was achieved through either data transformation techniques or appropriate link functions Clark et al.

[2017], [START_REF] Niku | gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r[END_REF], [START_REF] Ovaskainen | Joint Species Distribution Modelling: With Applications in R[END_REF].

Beside multivariate extensions of GLMs, the Poisson-Log-Normal distribution [START_REF] Aitchison | The multivariate poisson-log normal distribution[END_REF] has been used to model observed counts that arise from a Poisson distribution controlled by fixed environmental effects and latent variables describing species dependencies. The latter are modeled by means of a multivariate normal distribution whose inverse covariance (precision) encodes conditional dependencies or direct associations, which defines a Gaussian Graphical Model (GGM). [START_REF] Chiquet | Variational inference for sparse network reconstruction from count data[END_REF] proposed PLNetwork an efficient variational procedure to fit the PLN model while estimating a sparse GGM with the graphical lasso algorithm [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF]. On the other hand, [START_REF] Momal | Tree-based inference of species interaction network from abundance data[END_REF] developed EMtree to model the association network as a mixture of tree-shaped GGMs, additionaly providing edge probabilities.

To support different count distributions as well as mixed response types, Popovic et al. [2018] developed an algorithm that can handle discrete data (presence/absence and count) in Gaussian Copula Graphical Models, 76 CHAPTER 5. ECOLOGICAL ASSOCIATION INFERENCE implemented in the EcoCopula software. Their approach fits species-wise Generalized Linear Models as a function of the environment. Then, residuals are coupled together in a Gaussian Copula [START_REF] Roger | An introduction to copulas[END_REF] to capture species associations. The underlying dependencies are encoded in a GGM. GGMs have also been used directly to model continuous multivariate species abundances as well as multi-trophic communities turnover [START_REF] Ohlmann | Mapping the imprint of biotic interactions on β-diversity[END_REF]. Gaussian Graphical Models are a special case of undirected graphical models or Markov Random Fields (MRF). Clark et al.

[2018] used L1-penalized regression to learn a MRF from species occurrences. The method called MRFcov accomodates count data through a non-paranormal transformation prior to model fitting.

In addition to MRFs, Bayesian networks (BN) have been used to model directed associations involving plants [START_REF] Aderhold | Hierarchical bayesian models in ecology: reconstructing species interaction networks from non-homogeneous species abundance data[END_REF], host-parasites [START_REF] Pilosof | Host-parasite network structure is associated with community-level immunogenetic diversity[END_REF] and predator-preys [START_REF] Trifonova | Spatiotemporal bayesian network models with latent variables for revealing trophic dynamics and functional networks in fisheries ecology[END_REF][START_REF] Majdi | There's no harm in having too much: A comprehensive toolbox of methods in trophic ecology[END_REF].

JSDMs and MRFs are limited to estimating symmetric associations where the involved parties influence one another with the same polarity and strength whereas BNs impose an acyclic structure that does not support bidirectional influences. Lany et al. [2018] proposed a JSDM that allows to capture asymmetric associations but requires longitudinal data (see also [START_REF] Hollingdale | Inferring symmetric and asymmetric interactions between animals and groups from positional data[END_REF], [START_REF] Bibliography | Inferring species interactions using granger causality and convergent cross mapping[END_REF]).

Alternatively, dependency networks (DN) [START_REF] Heckerman | Dependency networks for inference, collaborative filtering, and data visualization[END_REF] are a type of graphical model that tolerates cycles. DNs are conditionally-specified, they are built by independently performing a probabilistic regression or classification for each variable/node. The resulting node-wise conditional responses are then combined. Given enough data, DNs can learn consistent joint probabilities. As opposed to GGMs, they do not assume linear relationships and can be learnt using various methods ranging from simple linear regression to non-linear machine learning algorithms such as Random Forest or Neural Networks. However, given their representation power DNs require more parameters than BNs and MRFs.

Objectives and outline

Here, we aim to efficiently learn dependency networks encoding bidirectional associations from community data. We present a response-effect framework to infer both species habitat suitability and biotic associations.

Through two experiments on synthetic datasets and an empirical case study, we illustrate three possible modes of interplay of biotic associations with environmental filters. First, we simulate abundance data to compare the ability of our method as well as existing frameworks to recover the known associations. Second, we evaluate the ability of our model to recover simulated predator-prey associations under different food web structures. Finally, in an empirical case study, we apply the framework to a well-studied Alpine vegetation gradient [START_REF] Choler | Consistent shifts in alpine plant traits along a mesotopographical gradient[END_REF], Warton et al., 2015], we use it to demonstrate how to analyze the structure of learnt biotic association networks.

The framework

Notation We consider a dataset consisting of the abundances of a collection S of m species observed at a collection K of n sites, as well as abiotic variables measured at these same sites or nearby. The abundance of species i at site s is denoted y si , while the vector x s represents the abiotic variables at site s.

Three main conditions should be satisfied for a species to be present at a given site. First, the site must be accessible. This relates to the species' intrinsic dispersal capacity and the presence of migration opportunities or, instead, of barriers. Second, the abiotic conditions should allow the species' population to maintain a positive growth rate. Third, the impact of other species through direct or indirect biotic interactions should allow it to sustain its populations [START_REF] Guisan | Habitat suitability and distribution models: with applications in R[END_REF]. Although we recognize the importance of spatial dispersal processes, in this study we focus on the latter two factors, namely habitat suitability and biotic associations.

Spatial associations and species embeddings

Representing species responses and effects using embeddings

For a given pair of species, a spatial association describes the influence that one species has on the other species' abundance. The influences between two species along opposite directions can be of different polarity (positive, negative or neutral) and have different intensities (Fig 5.1b). Several mechanisms can lead to such association: a direct interaction between these two species (e.g. pollination, predation), an indirect interaction through the environment (e.g. resource competition) or a shared correlation to an unmeasured environmental variable or an unobserved group of organisms.

Here, we represent the influence of species j on species i and, vice-versa, of species i on species j as scalars a ij and a ji , respectively. More specifically, a ij represents the change (excess if positive, deficit if negative) in target species i's abundance induced by the source species j. These values across all pairs of species, and in both directions, can be collected into an m × m asymmetric association matrix A.

Species

Species Q effects The association strength depends on two parameters: the effect applied by the source on the target species, and the response of the target species. We assume these parameters are controlled by intrinsic traits or properties of the species, which we encode as two separate d-dimensional real-valued vectors referred to as embeddings.

1 i α i m 1 d P T responses d 1 1 j ρ T j m A associations a ij
The effect embedding of species i, α i , captures the type of organisms the species allows or deters when it is present. The response embedding of species i, ρ i , measures the type of biotic context the species would strive in. For instance, trees with spreading canopy create shade (effect) that selects only shade-tolerant (response) species and exclude others. The response and effect embeddings of the different species can be collected into two m × d matrices, respectively denoted as P and Q.

The association matrix is then written as A = P Q T (cf. Fig 5.1a).
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Biotic context

As described in chapter 3, the biotic context encodes our assumptions about the potential biotic effects a target species is exposed to at a given site. We obtain the aggregated effect of the biotic context by averaging the effect embeddings of its elements weighted by their respective abundances. Recall:

z si = 1 |C si | j∈Csi y sj α j .
This formulation allows the presence of opposing effects to balance one another. By weighting with abundance, we implicitly consider that all individuals from the same species are similar and contribute equally to the community structure. Rare species have a noticeable impact only if their per capita effect is stronger than the aggregated effect of dominant groups.

The biotic context implicitely imposes constraints on the structure of species association networks by restricting the set of potential associations a priori. For instance, the biotic context can be customized for each species according to known interactions. Moreover, it can include species from neighboring locations (spatially-explicit) up to a chosen radius within which their influence is relevant (e.g. species with low/high mobility). Similarly, we can construct a temporally-explicit biotic context from previous observations to account for time-lag. We provide the mathematical details for the formulation variants corresponding to these alternative definitions along with the associated data requirements and relevant effect aggregation functions in 3.2.1.

A conditional generative model of abundance

Inferring species habitat preferences and biotic associations consists in learning the structure and parameters of the graphical model depicted in Fig 5 .2a. Here, we assume that the habitat-species dependency is strictly directed from the environment to the species, but that species associations can be bidirectional.

Each species incoming edges weights (responses) are learnt using multiple regression over all relevant influences including the abiotic covariates and the species in its biotic context Fig 5.2b. By including all factors in a single formula, we aim to uncover conditional dependencies and disentangle direct associations from indirect ones. To avoid variance inflation due to multicollinearity [Dormann et al., 2013], we add regularization penalties to select a few meaningful associations for each species.

As opposed to Morueta-Holme et al. [2016], [START_REF] Nicholas | Unravelling changing interspecific interactions across environmental gradients using markov random fields[END_REF] who used a similar node-wise approach to learn a Gaussian Markov Random Field, we do not symmetrize the pairwise associations in order to detect bidirectional influences. Moreover, we factorize outgoing and incoming edges using species-specific effect and response embeddings respectively to discover structure in the association networks. Another advantage of this approach is the flexibility in terms of data types and functional forms at the level of species joint response to abiotic factors and biotic associations.

We write the target species abundance as an aggregation f agg of abiotic η A si and biotic η B si responses at site s (Eq. ( 5.1a)).

The abiotic response is given by a habitat suitability model h i (see Eq. ( 5.1b)). The biotic response η B si depends on the response embedding ρ i of the target species and on the biotic context effect z si resulting in a weighted sum of pairwise association strengths (see Eq. (5.1c)). An offset o i is used to represent the outcome in the event of an empty biotic context. Additionally, the type of data considered (presence/absence, abundance, biomass, etc.) might lead to different choices of probability distributions. As with GLMs, this only requires changing the link function g to accomodate the abundance distribution.

g(y si ) = f agg (η A si , η B si ) (5.1a) η A si = h i (x s ) (5.1b) η B si = o i + ρ i z si = o i + j∈Csi (y sj * a ij ) (5.1c)

Inference and model selection

We minimize the negative loglikelihood of the observed abundances or occurrences, with lasso penalties on the associations to promote their sparsity. We use the Stochastic Gradient Descent1 algorithm Bottou [2010] to learn the parameters (esp. response and effect embeddings matrices and HSM parameters). The proposed model includes a set of hyperparameters that need to be selected carefully: the hyper-parameters for the abiotic suitability model, embedding dimension, the vector of species offsets and the regularization coefficient. The best model can be selected using one of various information criterias [START_REF] Konishi | Information criteria and statistical modeling[END_REF] to penalize complex models: Akaike Information Criteria (AIC), Bayesian Information criteria (BIC) or its extended version (eBIC). Alternatively, the best model can be selected through cross-validation, based on predictive performances, considering for instance the AUC for presence/absence data or poisson deviance for counts.

To assess the robustness of the association estimates, the model can be fitted on multiple bootstrap samples of the original dataset. A confidence interval for the mean of each pairwise association can then be obtained. Due to the invariance of the associations to rotations of the embeddings, we advise against averaging embedding estimates obtained by fitting the model on different subsamples of the data as opposed to averaging associations. Moreover, when using bootstrap, lasso regularization should be avoided [START_REF] Hastie | Statistical learning with sparsity: the lasso and generalizations[END_REF].

Unraveling inter-specific association networks

In principle, regularization allows to reduce the number of associations for each species. When using bootstrap estimates, we perform an additional step which consists in setting to zero all associations with a confidence interval containing zero and keeping the mean value for the rest. In general, the user can choose a given threshold to obtain a discrete version of the association matrix, defined as follows:

I ij =    positive if a ij > ϵ + , negative if a ij < -ϵ -, neutral otherwise.
such that ϵ + and ϵ -represent user-defined thresholds on the strength of the positive and negative associations, respectively. The resulting matrix can be seen as a network, where each species is represented by a vertex and a directed edge labelled as positive (resp. negative) from vertex i to vertex j represents a positive (resp. negative) influence of species i on species j.

By design (Fig. 5.1a), species with similar response embeddings constitute clusters of rows in the adjacency matrix, called response groups. Conversely, species with similar effect embeddings constitute clusters of columns called effect groups. These groups can be computed simultaneously using a bi-clustering algorithm [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF]. The product of both types of groups results in the emergence of clusters of exchangeable or redundant species in the resulting network, called structural roles [START_REF] Gauzens | Trophic groups and modules: two levels of group detection in food webs[END_REF].

To validate the ability of the model to recover true associations under different scenarios of associations, we setup two virtual experiments that differ in the data process used to simulate communities. 

Simulation experiment: process-based assembly with additive drivers

Methods

Data generation

In this experiment, we used a process-based stochastic model adapted from Virtualcom [START_REF] Münkemüller | Virtualcom: a simulation model for eco-evolutionary community assembly and invasion[END_REF] to simulate the assembly of individuals from a regional species pool into communities, on different locations sampled along an environmental gradient. The assembly process is controlled by three filtering mechanisms: the response to the abiotic environment, the outcome of biotic interactions, and reproduction.

The simulation starts with a given or random initial composition for each community independently. In each iteration, individuals are replaced through time until an equilibrium state is reached or a user-defined number of iterations is completed. In the end, the final composition of the communities is returned as the result of the simulation.

We set up an experiment where multiple simulations were run on random points on a single abiotic gradient ranging from 0 to 100 with different randomly selected configurations of the prior association matrix: absence of association, positive associations only, negative associations only and a mix of positive and negative associations. In each configuration mode, we varied the pool size i-e the number of species (10, 20 or 50), the density in terms of number of associated pairs as a function of the pool size (sparse 1/3 or dense 2/3) and whether the association matrix included asymmetric effects: semi-attraction (as in commensalism) or semi-repulsion (as in amensalism). Positive (resp. negative) effects were all set to +1 (resp. -1) as we are interested in the polarity of the associations rather than their intensity. The factorial design of this experiment produced 33 simulation datasets (Fig 5.4).

Simulation diagnosis

To assess whether the virtual communities reflect the simulated species dependencies, we defined the relative abundance index (RAI), an asymmetric pairwise that measures the change in abundance of the target species when the source species is present as compared to its mean abundance irrespective of whether the source species is present. ȳt = avg { y st , for all s ∈ K such that y st > 0 } , and ∆ st = { y st -ȳt , for all s ∈ K such that y st > 0 and y ss > 0 } .

Then RAI st = avg(∆ st ). The larger the standard deviation std(∆ st ), the more ambiguous the strength of the effect of species s on species t. If the confidence interval avg(∆ st ) ± 1.96 std(∆ st ) does not contain zero, then the simulated dependencies unambiguously translate a polarized effect of species s on species t.

Otherwise, the polarity of the effect is ambiguous, due to either confounding effects of other species or a neutral association if the mean is close to zero. We also compute the Jaccard coefficient between the binary presence/absence vectors of species s and t, a.k.a. Jaccard co-occurrence index, denoted as J st . 

Results

Amongst the six statistical frameworks tested including our proposal, some were straightforward to fit, with little control over the model selection procedure including EMtree, EcoCopula, MRFcov except the number of iterations and the size and number of samples for the estimation of confidence intervals. In the case of PLNetwork and EA, the frameworks also required the specification of a network selection criteria amongst either information criteria (AIC, BIC, eBIC) or predictive performance (R 2 , Deviance) on out-offold observations of species abundance conditioned on the abiotic environment. For the latter two methods, both classes of metrics selected different network structures. The execution time varied greatly between all methods and was inflated by the model selection procedures used (bootstrapping, lasso path execution, cross-validation). The Bayesian posterior inference step in HMSC made this method significantly slower to fit than others.
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Simulation diagnosis

Before fitting the inference models on the simulated data, we checked using an empirical measure of pairwise association RAI ij whether species dependencies reflected the simulated patterns. 

Association strengths distribution

For each inference method, we represented the distribution of association intensity inferred, grouped by their simulated polarity (see Fig 5.6). Recall that we simulated fixed intensities. All methods except HMSC produced sparse association networks (most association values close to zero), with low strengths values and were good at discriminating positive and negative associations, while maintaining neutral associations mediancentered at zero . Therefore, there exists an interval delimiting neutral associations with extremes specific to each inference method and dataset. Most spurious associations, i.e. neutral pairs with inferred value significantly different from zero, were negative especially in simulations involving only positive associations reflecting the implicit constraint induced by the fixed carrying capacity on the total species count. On the other hand, HMSC produced very dense association matrices despite a large support level for association selection suggesting that some of the inferred associations are indirect associations. However, it was closer to the true strength of positive associations than other approaches. There was no difference in inferred strengths neither between symmetric and asymmetric simulations (for all methods).

Figure 5.6: Distribution of fitted association strengths per simulated class (positive, negative, neutral) for each simulation configuration. A data point represents a directed association from a species to another, its color encodes the true type of the association, its coordinates on the y axis represents the fitted association strength by the corresponding model for the simulation configuration x-axis.

On larger pool sizes, the distance between niche optima decreases as the probability of niche overlap increases. Consequently, the estimates of species associations varied with the number of modeled species. Although the strengths appeared to be drawn from a small fixed interval, their value was sensitive to the species niche differences(Fig 5 .7). For all tested frameworks, the strength inferred for true positive associations decreased with the amount of niche overlap. For large niche differences (no overlap), MRFcov, EMtree and PLN even reported opposite signs. Conversely, inferred strengths of true negative associations were either invariant to niche difference (MRFcov), very small and close to neutral (EMtree, PLN, ecocopula and EA) or increasing in absolute strength (HMSC). At medium to high niche distance, EA reported an increase in the absolute strength of negative associations. HMSC showed the opposite pattern, suggesting that the negative effects were rather explained by the abiotic covariates.

Figure 5.7: Sensitivity of the inferred association strength a ij per association type and inference model to the abiotic niche distance measured by the absolute difference between their niche optima µ i -µ j .

Comparative performances on association type inference

We reported the Area Under the Precision-Recall Curve (PR-AUC), the recall and f1-score in Fig 5 .8 for each association type separately. We found no significant difference between performances on positive vs dense or symmetric/asymetric datasets. However, the quality of inferred associations varied with the pool size.

On positive associations, EA and Ecocopula outperformed the other methods in all pool sizes. EMtree, PLN and MRFcov reported good performances for 20 and 50 species datasets, but they failed to detect positive associations in 10-species datasets. On negative associations, EA, MRFcov and HMSC outperformed other methods. But generally, the detection of negative effects decreased with the pool size.

Simulation experiment: predator-prey co-occurrences

Methods

Data generation

We generate 6 food webs involving the same number of trophic groups G = 5 using different trophic niche models, using the trophic R package. To each trophic group (Eltonian niche), we assign m G = 5 species with different abiotic (Grinnellian) niche optima sampled uniformly along an environmental gradient ranging from 0 to 100. We select 500 sites uniformly in the same gradient. 9 illustrates the experimental setup and the procedure used to generate occurrences. Briefly, we assume a bottom-up control so that to be present, a consumer requires the availability of at least one resource, in 

Evaluation

In this experiment, we only evaluate our proposed model. We combines abiotic and biotic responses using a product of probabilities (illustrated in Fig 5 .3 as intersection of requirements) to fit the model on presenceabsence data, combined to a linear logistic regression with a quadratic term to fit the Gaussian abiotic niche.

The simulation model assumes an unrequited positive dependency of the predators on their preys. Thus, we imposed a non-negative constraint to the embedding vectors to prevent the inference of negative associations and promote sparsity of the association matrix [START_REF] Hoyer | Non-negative matrix factorization with sparseness constraints[END_REF]. Consequently, we only inferred two types of associations: positive and neutral. We used 10 fold cross-validation to select the combination of embedding dimension and lasso regularization that maximized the accuracy of predicted occurrences.

We first evaluated the quality (accuracy, AUC, sensitivity and specificity) of recovered consumer-resource associations using as ground truth:

• The potential foodweb (metaweb): all potential interactions.

• The realized foodweb: obtained from the potential foodweb by filtering edges involving non co-occurring species.

Afterwards, we evaluated whether sharing embeddings between species of the same trophic group improved the ability of the model to retrieve true potential and realized associations.

Structural regularities conserved in the embeddings

For each topology, we investigated whether learnt embeddings reflect the underlying clustering of species into trophic groups. Concretely, we performed a Mann-Whitney ranking test Mann and Whitney [1947] checking whether species from the same prior trophic group had more similar embeddings than species from different groups. Finally, we asked to what extent response and effect embeddings captured species abiotic preferences and their biotic requirements. We did that by testing the correlation between embedding similarity and niche overlap measured with environmental optima differences and the proportion of shared preys in both the potential and realized food webs.

Results

Network inference performances

The inferred associations were more faithful to the realized than the potential network (Fig 5.10). All metrics varied amongst topologies. Specificity was notably lower for the niche topology. In all cases, incorporating a parameter-sharing constraint within trophic groups allowed to improve the sensitivity with respect to both ground truth networks. The visualization of inferred networks highlighted that the main source of error was due to the confusion of directed associations with symmetric reciprocal associations, introducing spurious associations. This error was particularly frequent between species of inner groups in trophic chains as in the niche topology. However, the model managed to break this symmetry for species from groups with a higher diversity (number of distinct groups) of preys.

Structural regularities captured by the embeddings

For all topologies, the ranking test showed that both response and effect representations were significantly more similar when species belonged to the same trophic group. Moreover, species embedding similarity correlated positively with both abiotic and biotic niche similarity, with varying significance levels across topologies. Response and effect representations similarity were strongly correlated for two reasons: (1) species with similar responses were likely to have similar effects and vice-versa, (2) both representations were very similar, which explains the symmetry in some of the inferred associations.

Empirical case study

In our last experimental study, we applied our model to a dataset of Alpine plant abundances (previously analyzed by Warton et al. [2015]) and show how it can uncover meaningful associations from observational data. 

Additive abiotic and biotic responses Intersection of abiotic and biotic requirements

Data preparation

The dataset consists of records of abundance for 82 distinct plant species collected around July 2000 on 75 vegetation plots of size 5 × 5m each [START_REF] Choler | Consistent shifts in alpine plant traits along a mesotopographical gradient[END_REF]. In addition, a set of environmental and topographic variables was recorded on each plot: slope : the slope inclination in degrees, snow : the average snowmelt date in Julian days between 1997 and 1999, physd : the percentage of non vegetated soil due to physical processes, zoogd : the percentage of non vegetated soil due to marmot activity, aspect : the relative south aspect, and form : the microtopographic landform index.

We applied a one-hot encoding scheme to the two categorical features (aspect and form) and scaled the numerical features. We split the observations into a training and a test dataset using a multi-label stratification scheme2 to ensure that all species were covered and their proportions were preserved in both sets.

Statistical analysis

Framework adaptation

We assumed that habitat suitability drove the species occurrences whereas local within-community biotic associations determined their abundance, and could in turn induce local absence. Thus, we used the hierarchical filtering mode (Fig 5 .3). We defined the biotic context for a target species as the set of plants observed on the location of interest, and we used a negative binomial distribution to fit the plant counts.

Training

For each plant species, we pre-trained a generalized linear model (GLM) with a logit link to relate species occurrences to the environmental variables. We used the learnt weights as initial parameter values in the habitat suitability component of our framework. On the other hand, the embedding vectors were initialized using random samples from a uniform distribution on the [-0.01, 0.01] interval, and subjected to lasso penalties. Finally, the offset value for each species was set to its average count on occurrence points.

We trained the full model using stochastic gradient descent (with a learning rate of 0.01, a momentum of 0.8 and a batch size of 1) on the training dataset. We monitored the negative log-likelihood of positive examples (presences) on the validation set after each full pass of the training set to assess the convergence of the training. We stopped when the validation loss started increasing or when 200 epochs have elapsed.

The first step in this evaluation was to find appropriate values for the hyperparameters of our model. For a species pool of size m, the embedding dimension d is selected among powers of 2 up to m/2, to improve hyperparameter search speed. In our case, with m = 82, the embedding dimension is chosen from the set {2, 4, 8, 16, 32}. Note that this is a maximum dimension, that could shrink to a smaller dimension with the lasso regularization. For each value of d, we apply the training procedure described previously with increasing values of λ ∈ {0.01, 0.015, 0.02, 0.025}. We evaluate the resulting models on the test set by computing the deviance of the predicted counts on the test set.

Network analysis

We performed a hierarchical bi-clustering on the inferred association matrix, to obtain effect and response groups. In parallel, we applied the modularity maximization algorithm Newman [2006] on the association network to identify densely connected modules, referred to as communities (sensu graph theory) [START_REF] Gauzens | Trophic groups and modules: two levels of group detection in food webs[END_REF]. After that, we mapped the structural roles within the modules to create the group-level network. Finally, we analyzed the resulting patterns in light of existing literature on Alpine plants interactions [START_REF] Choler | Facilitation and competition on gradients in alpine plant communities[END_REF].

Relationship between functional traits and embeddings

We investigated the functional determinants of the associations diversity. To do so, we computed the mutual information between the learnt embeddings and the following plant traits (reported in [START_REF] Choler | Consistent shifts in alpine plant traits along a mesotopographical gradient[END_REF]):

Height : Vegetation height in centimeters, The Mutual Information [START_REF] Shannon | A mathematical model of communication[END_REF] is an unbounded symmetric and positive score that measures the amount of information contained in one random variable about another. It quantifies the reduction in uncertainty about one random variable given knowledge of another. Zero mutual information indicates independence.

Spread

In general, we expected traits related to dispersal capabilities (seed mass, spread) to impact the prevalence of the species, consequently increasing or decreasing the opportunity to affect other species (interaction probability). As a result, we expected such traits to have a higher mutual information with effect embeddings than with response embeddings. Conversely, traits related to nutrient uptake and biomass accumulation potential capture competitive or cooperative abilities of the plant species. Hence, we would expect a high mutual information between these traits and both responses and effects embeddings. The model predicts habitat suitability with a 87.7 ± 0.17% AUC score for all genera (Fig. 5.11). The analysis of environmental variable importance showed the dominance of snow duration followed by zoogenic disturbances, the site form and aspect. Physical disturbance and slope weights were negligible, probably due to their correlation with snow.

Results

Plant habitat suitability

Plant associations along the mesotopographic gradient

The application of the proposed approach to the Alpine dataset identified four densely connected modules of different sizes, within which species occupied distinct structural roles in the plant association network. Modules were structured along the snow melting date gradient (Fig. 5.12a).

Species from early-melting sites were classified into the same module. We found a prominence of positive associations, specifically an unselective mostly asymmetric attraction of forbs and grasses to tall dominant graminoids (Carex, Kobresia). Forbs and grasses formed two distinct groups linked by negative associations.

Besides, some of them acted as hubs connecting the high elevation sites to the adjacent sites where they also occurred. The second module encompassed two groups of grasses: (i) Tall herbs occuring in favorables conditions, mostly structured by negative associations (ammensalism and competition); (ii) Short herb meadows, exposed to zoogenic disturbances. They presented higher abundances when co-occuring with tall herbs. The third module consisted of chinopholous (cold-resistant) vegetation appearing on late-melting sites. The last module included north-facing isolated communities dominated by Salix herbacea positively associated with high-altitude communities, but disconnected from the other modules (Fig. 5.12).

In general, positive associations were prominent under stressful conditions. For instance, on early melting sites, species are exposed to wind and erosion due to snow melting [START_REF] Choler | Consistent shifts in alpine plant traits along a mesotopographical gradient[END_REF]. The positive associations could be explained by the facilitative effect of graminoids through multiple hypothetical mechanisms.

Graminoids have the ability to maintain the soil stability Callaway [2007], Heilbronn and Walton [1984], they can also prevent dessication and frost heaving on stones in favor of seedling survival [START_REF] Choler | Facilitation and competition on gradients in alpine plant communities[END_REF].

They also sustain a suitable microclimate for small forbs and grasses, while offering protection from the wind Wardle et al. [1998]. On the other hand, negative associations were found on the richest sites, hypothetically reflecting a competition for resources: water and Nitrogen [START_REF] Choler | Facilitation and competition on gradients in alpine plant communities[END_REF].

As reported in the literature, the abiotic conditions strongly structured the predicted response [START_REF] Choler | Consistent shifts in alpine plant traits along a mesotopographical gradient[END_REF] of the plant species and the dominant interaction types Callaway et al. [2002]. Specifically, network modules were distributed along the gradient following their composition's response to the average snow duration.

Negative associations inflicted by competitive tall grasses on mid slope communities connected early-melting communities to the chinopholous vegetation from late-melting sites in the resulting association network (Fig. 5.12b). Response and effect groups were included in one or at most two close (in terms of position in the gradient) modules (Fig. 5.12a). Non neutral associations had consistent types (either negative or positive) within effect groups regardless of the responding species, suggesting that species roles (effects) in their community might be predictable from their own characteristics and the surrounding abiotic conditions. At last, learnt associations were symmetric within groups but asymmetric (mostly semi-attraction or semirepulsion) between them.

Analyzing the functional meaning of plant embeddings

There was a relatively significant contribution of the leaf nitrogen mass and spread to the plants response, whereas leaf angle was found to be independent (Fig. 5.13). The Specific Leaf Area contributed significantly to the effect, in addition to the Nitrogen mass and on a lesser extent Spread. Height wad related to both parameters.

Discussion

In this chapter, we tackled the challenge of inferring interspecific associations from multiple species coabundances in hetereogeneous environments. To do so, we formalized pairwise associations as a function of two sets of latent variables representing the response and the effect of each species with respect to the others.

We incorporated these associations into a conditional probabilistic model of abundance that accounts for environmental covariates.

Disentangling abiotic and biotic drivers

Uncovering positive, negative and neutral associations

Comparatively to other tested frameworks, our method (EA) performed well on both positive and negative associations detection, despite the constraint induced by the embedding-based factorization. On average, discriminating positive and negative associations was within reach of most methods, provided an appropriate pair of thresholds was used to delimit the range of neutral associations. An exception concerned HMSC, which recovered multiple spurious associations that were potentially indirect effects despite the high support level. A more appropriate approach would have been to analyze the inverse covariance matrix. However, inverting the posterior estimate of the covariance matrix suffered from various numerical instabilities.

Due to the upper-limit constraint of the fixed carrying capacity on the total count, all models inferred spurious negative associations between non-interacting species, especially in simulation with positive effects only, as a compensation mechanism. Association strengths were sensitive to niche overlap. For all methods, positive associations were easier to detect between species with overlapping niches. The fact that this pattern was observed for all methods as well as on the pairwise relative abundance indices suggested that the abiotic filter outruled these associations during the community assembly simulation.

Amongst the tested methods, HMSC, PLN/EMtree and EcoCopula first fit the abiotic response then species dependencies are estimated either as random effects (HMSC, PLN) or from the marginal residuals (EcoCopula). The implicit importance given by these inference procedures to the abiotic drivers over the species associations explains the low detection rate of negative associations. In constrast, EA and MRFcov which both rely on an explicit regression over species abundances, do not suffer from the same bias, explaining their superiority in detecting repulsive effects.

Uncovering prey-predator associations

Several studies discuss the difficulties of recovering biotic interactions from co-occurrences Sander et al.

[2017], [START_REF] Allison K Barner | Fundamental contradictions among observational and experimental estimates of non-trophic species interactions[END_REF], [START_REF] Blanchet | Co-occurrence is not evidence of ecological interactions[END_REF]. In our experiment, we assumed that trophic interactions induce a dependence of predators on their preys but not vice-versa (directed positive association).

We showed that using an appropriate coupling with the abiotic drivers allows to detect such associations providing that the species pair co-occur. However, the model detected symmetric dependencies when the abiotic niches of the pair overlapped strongly and especially when the predator did not have alternative preys, as in trophic chains. Moreover, the varying performances in recovery the true network structure amongst food web topologies questions the power of the response-effect factorization to represent arbitrary DAG structures and suggests that a symmetric approach might be more effective, if coupled with knowledge of species trophic levels.

Importance of the abiotic-biotic aggregation function

Species joint responses to abiotic (environment) and biotic (associations) drivers take on different forms, modeled by an aggregation function. Most existing frameworks are limited to linear or additive forms. Linear responses are particularly useful when associations are mediated by the environment (e.g in competition) or can alter it (as in habitat facilitation). In this case, associations compensate the suitability of the environment by either improving microhabitat conditions or exerting a negative force that counterbalances it.

On the other hand, when associations arise from direct interferences, their detection requires conditioning on co-occurrence, hence on habitat suitability [START_REF] Gravel | Bringing elton and grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks[END_REF]. When we fitted an additive architecture to the predator-prey occurrences, the model had a very low detection rate confirming that linear combinations of habitat suitability and biotic effects are not sensitive to such direct associations. These results may be specific to presence/absences and not hold true for abundances.

In general, the choice of an aggregation function depends on the type of interactions expected in the studied system. To guide this choice, several frameworks [START_REF] Daniel Kissling | Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents[END_REF][START_REF] Boulangeat | Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances[END_REF][START_REF] Thuiller | A road map for integrating eco-evolutionary processes into biodiversity models[END_REF] conceptualize the incorporation of eco-evolutionary processes into species distribution models (a.k.a BI-SDMs [START_REF] Carsten F Dormann | Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions[END_REF]). Besides, theoretical developments extended the theory of island biogeography [START_REF] Robert | The theory of island biogeography[END_REF] to account for trophic interactions [START_REF] Gravel | Trophic theory of island biogeography[END_REF] and more general interaction networks under environmental constraints [Cazelles et al., 2016a,b].

From species representations to biotic associations

The meaning of species embeddings

In theory, the effect embedding of a species A is equivalent to a factor analysis of all other species abundances (residual abiotic responses if coupled with environmental data) when A is present. The effect embedding is a proxy of the species' influence on the community composition. Combining the effect embeddings of occurring species produces an ordination of the community composition in the embedding space of dimension d: R d . The species response embedding can be mapped into the same space, we can measure through the dot product the compatibility of the species to the observed community.

Since the community ordination is obtained as a linear combination of present species' effects, species response to the community can be rewritten as a sum of one-to-one responses to each observed species. When the response and effect embeddings are forced to be similar, we recover the same structure used by Latent Variable JSDMs.

Analogously to the species embeddings, [START_REF] Daniel Kissling | Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents[END_REF] proposed the concept of interaction currencies as surrogates for biotic interactions in distribution models in a similar response-effect framework. Hypothetically, these currencies include resources, bionomic variables [START_REF] Ge Hutchinson | The multivariate niche[END_REF], traits, and other nonconsumable environmental conditions that mediate interactions. Our analysis of embeddings learnt from data in food web simulations showed that they captured both abiotic and biotic species preferences. In the case study on Alpine plants, we found that embeddings were mildly related to functional traits.

Constraining embeddings with prior knowledge

In practice, the embedding dimension is typically significantly smaller than the number of species. While species can have distinct habitat preferences, the biotic role expressed in their interactions and the spatial associations they produce is drawn from a limited number (significantly smaller than the pool size) of behaviors represented by functional groups [START_REF] Brian | Biodiversity and ecological redundancy[END_REF]. A species can belong to one or several functional groups with different proportions. Such information can be mined from online databases or provided by experts [START_REF] Betsi | Database for functional traits of soil invertebrates[END_REF][START_REF] Nhu H Nguyen | Funguild: an open annotation tool for parsing fungal community datasets by ecological guild[END_REF][START_REF] Kattge | Try plant trait database-enhanced coverage and open access[END_REF]. While learning graphical models with large species pools requires large datasets, replacing species with fixed groups [START_REF] Ohlmann | Mapping the imprint of biotic interactions on β-diversity[END_REF] has two advantages: (1) to reduce the parameter space size by sharing embeddings within groups, (2) allowing extrapolation to new settings where different taxa are observed yet from the same modeled groups. Besides, as evidenced by our simulated experiment, using group constraints can improve the ability of inference models to recover potential associations even when species did not co-occur.

Perspectives

Beyond group constraints, some frameworks [START_REF] Lo | Mplasso: Inferring microbial association networks using prior microbial knowledge[END_REF][START_REF] Chiquet | Variational inference for sparse network reconstruction from count data[END_REF][START_REF] Scutari | Package 'bnlearn'. Bayesian network structure learning, parameter learning and inference[END_REF] support white-lists and black-lists, containing authorized and forbidden associations respectively, by penalizing graphs that do not satisfy those constraints. When interaction networks can be described at least partially, the same approach can be used to complete missing edges by harnessing similarities of species interactions. This semi-supervised problem is referred to as collaborative fitlering [START_REF] Fu | Link prediction under imperfect detection: Collaborative filtering for ecological networks[END_REF] and is one of the main applications of dependency networks. Incorporating this link prediction task within a multispecies distribution model would allow to quantify the effect of known and predicted interactions on species distributions.

We motivated throughout our simulation experiments the use of different joint responses for abiotic and biotic drivers depending on the underlying biotic interactions. The fact that interactions require and affect cooccurrences simultaneously are not mutually exclusive [START_REF] Gravel | Bringing elton and grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks[END_REF]. The availability of multi-trophic communities datasets [START_REF] Stephane | Biomonitoring for the 21st century: integrating next-generation sequencing into ecological network analysis[END_REF] where complex interactions are entangled calls for applications coupling different modes of aggregating abiotic drivers with biotic associations.

Conclusion

Biological interactions and other processes induce spatial patterns of co-occurrence and co-abundance. We presented and validated a model of species co-abundances as a function of the habitat and biotic associations. We proposed an asymmetric scheme for modeling associations that is based on learning latent representations of species' responses and effects. Future efforts should be directed towards an incorporation of prior knowledge of the complete or partial topology of the association networks to guide the inference process.

Along with that, a strong theory of how known ecological interactions influence the co-distribution of species is needed to support all these models.

Supplementary Materials

Virtualcomm how-to

We used a process-based stochastic model adapted from Virtualcomm [START_REF] Münkemüller | Virtualcom: a simulation model for eco-evolutionary community assembly and invasion[END_REF] to simulate the assembly of individuals from a regional species pool into communities, on different locations sampled along an environmental gradient. The assembly process is controlled by three filtering mechanisms: the response to the abiotic environment, the outcome of biotic interactions and reproduction. For simplicity, the spatial structure of communities and thus dispersal processes are ignored. In other words, there is no exchange of individuals between neighboring communities. The simulation starts with a given or random initial composition for each community independently. Individuals are replaced through time until an equilibrium state is reached or a user-defined number of iterations is completed. The final communities' composition is returned at the end Fig. 5.14.

Notation

-We start by sampling n locations uniformly on a single environmental gradient E.

-All locations have the same carrying capacity of K individuals from a common pool of m species

S = {S j /j ∈ [1, m]}.
-Each species has its own optimal environmental value µ j ∈ E as well as a niche breadth δ j ∈ E.

-Biotic interactions are described by a full interaction matrix I = (I jk )/j, k ∈ [1, m] 2 ; -1 ≤ I jk ≤ 1 where I jk represents the effect of the interaction between the pair (S j , S k ) on species S k . We also write: I = I + -I -such that:

-

I + = (I + jk )/j, k ∈ [1, m] 2 ; 0 ≤ I + jk ≤ 1 represents the matrix of positive effects (facilitation matrix) -I -= (I + jk )/j, k ∈ [1, m] 2 ; -1 ≤ I +
jk ≤ 0 represents the matrix of negative effects (competition matrix)

Assembly rules

At each timestep (epoch), given an actual composition c, the probability that an individual from a given species i to replace any other individual of c is given by the following equation ; such that:

• B env : weights of the abiotic filter.

• B comp : weight of the competition.

• B f ac : weight of the facilitation.

• B abun : weight of the reproduction filter, can be interpreted in terms of growth rate.

• P env,i,c : the probability of species i to occur under the environmental value E c is given by the normalized density on E c of a Gaussian distribution parameterized by its optimum and niche breadth. The closer to its optima, the higher the probability of the species' occurrence.

• P comp,i,c : the probability for an individual of species i to join the community given the aggregated effect of its competitors in c.

• P f ac,i,c : the probability for an individual of species i to join the community given the aggregated effect of its facilitators in c.

• P abund,i,c : probability of an individual of species i to join the community as a result of the reproduction of some of the N i,c conspecifics in c.

The unnormalized weights W i,c for each species are then normalized by dividing each one of them by their sum. The result is a vector of probabilities W that sums to 1. Finally, we sample from a multinomial distribution, parameterized with W , K individuals to compose the new community. Chapter 6



Biogeography and diversity of earthworms in mainland France

It may be doubted whether there are many other animals which have played so important a part in the history of the world, as have these lowly organized creatures. [START_REF] Darwin | The formation of vegetable mould through the action of worms: with observations on their habits[END_REF] 

Introduction

Earthworms are terrestrial invertebrates from the clitellate annelids subclass [START_REF] Erin K Cameron | Earthworm databases and ecological theory: Synthesis of current initiatives and main research directions[END_REF]. Distributed worldwide [START_REF] Phillips | Global distribution of earthworm diversity[END_REF] except in drylands, deserts and polar lands, they account for a major proportion of the soil biomass [START_REF] Amat | Éléments de géographie physique[END_REF]. They are divided into 23 families, more than 700 genera, and more than 7,000 species. However, a high amount of cryptic species [Marchán et al., 2020b] is supposed and many species are not yet described, even in well-studied countries [Marchán et al., 2020a].

Earthworms contribute to many physical and chemical processes crucial to soil-based ecosystem services [START_REF] Lavelle | Soil ecology[END_REF]. As detritivores, they accelerate nutrient cycling through physical grinding and chemical digestion of plant debris on the surface (leaf litter) and in the soil (root litter), and the mixing of organic matter with minerals from the soil, which enhances nutrient availability and soil fertility [START_REF] Juan | Soil fauna: key to soil organic matter dynamics and modelling[END_REF]. As the engine of soil bioturbation [START_REF] Filip Jr Meysman | Bioturbation: a fresh look at darwin's last idea[END_REF], earthworms enable organic matter, water and air to circulate within the soil, through networks of burrows [START_REF] Capowiez | Characterisation of the three-dimensional structure of earthworm burrow systems using image analysis and mathematical morphology[END_REF]] that also help the penetration of the root system in depth, and the fast drainage of soil [START_REF] Beven | Macropores and water flow in soils revisited[END_REF]Germann, 2013, van Schaik et al., 2014]. Through the production of casts and galleries, earthworms contribute to soil structure maintenance [START_REF] Blanchart | Effects of earthworms on soil structure and physical properties[END_REF], [START_REF] Mm Pulleman | Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils[END_REF] and restoration [START_REF] Blanchart | Restoration by earthworms (megascolecidae) of the macroaggregate structure of a destructured savanna soil under field conditions[END_REF] as well as the creation of habitats for the microbiota [START_REF] George G Brown | How do earthworms affect microfloral and faunal community diversity?[END_REF]. For this, they are known as ecosystem engineers [START_REF] Lavelle | Earthworm activities and the soil system[END_REF][START_REF] Lavelle | Soil function in a changing world: the role of invertebrate ecosystem engineers[END_REF].

For its intrinsic and extrinsic values, edaphic biodiversity is receiving increasing attention [START_REF] Phillips | Lessons from the wbf2020: extrinsic and intrinsic value of soil organisms[END_REF] in light of the threats posed by global and local environmental change. Earthworms are particularly affected by drought resulting from warming [START_REF] Eisenhauer | Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern north america[END_REF][START_REF] Phillips | Global distribution of earthworm diversity[END_REF], habitat disturbance, and passive dispersal of invasive species via human trade, in addition to intense farming strategies such as tillage and the excessive use of fertilizers [START_REF] Mg Kibblewhite | Soil health in agricultural systems[END_REF][START_REF] Else K Bünemann | Soil quality-a critical review[END_REF]. In the context of global changes, the description of earthworms' niches is a prerequisite for understanding their response to environmental pressures and, in turn, the spatial emergence of their effects on ecosystem functioning. Since the 70s and Marcel Bouché's seminal works on French species, earthworm are regularly grouped into three 102 CHAPTER 6. EARTHWORMS BIOGEOGRAPHY AND DIVERSITY guilds a.k.a ecological categories [START_REF] Marcel | Lombriciens de France: écologie et systématique[END_REF] based on microhabitat preferences, diet and demography. Recently, Bottinelli et al. [2020] proposed a fuzzy classification of earthworms into the latter categories based on morpho-anatomical traits, allowing to compute ecological distances and represent taxa with intermediate strategies.

Recently, functional trait-based approaches have received increasing attention in soil fauna ecology [START_REF] Hedde | a complete framework for studying soil invertebrate functional traits[END_REF]. In particular, anatomical and morphological traits have been linked to earthworm's habitat preferences [Marchán et al., 2016a, Briones and[START_REF] Briones | Body wall thickness as a potential functional trait for assigning earthworm species to ecological categories[END_REF]. Since ecological categories are built from traits, we assume that species responses would be more similar within ecological categories than between them. Furthermore, because traits are phenotypic expressions of a genetic makeup, it is not far fetched to assume that phylogenetically close taxa would have similar abiotic preferences.

Earthworms are known to be constrained by a combination of abiotic and biotic factors. The main abiotic factors limiting earthworms occurrences and abundances are temperature and soil moisture [START_REF] Eggleton | A six year study of earthworm (lumbricidae) populations in pasture woodland in southern england shows their responses to soil temperature and soil moisture[END_REF][START_REF] Eisenhauer | Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern north america[END_REF], resource availability especially for species with low mobility [START_REF] Barot | Self-organization in a simple consumer-resource system, the example of earthworms[END_REF], as well as the physical and chemical soil properties. The latter include soil texture [START_REF] Visa Nuutinen | Spatial variation of an earthworm community related to soil properties and yield in a grass-clover field[END_REF], pH [START_REF] Lavelle | Faunal activity in acid soils[END_REF][START_REF] Decaëns | Assembly rules within earthworm communities in north-western france-a regional analysis[END_REF], and organic carbon content [START_REF] Palm | Modelling distribution patterns of anecic, epigeic and endogeic earthworms at catchment-scale in agro-ecosystems[END_REF]. On the other hand, biotic factors include competition [START_REF] Abbott | Do earthworms compete for food?[END_REF][START_REF] Jiménez | Stability of the spatio-temporal distribution and niche overlap in neotropical earthworm assemblages[END_REF][START_REF] Decaëns | Macroecological patterns in soil communities[END_REF] or facilitation [START_REF] Jiménez | Soil environmental heterogeneity allows spatial co-occurrence of competitor earthworm species in a gallery forest of the colombian 'llanos[END_REF] with other species as well as small-scale dispersal processes [START_REF] Decaëns | Assembly rules within earthworm communities in north-western france-a regional analysis[END_REF][START_REF] Mather | Surface movements of earthworms in agricultural land[END_REF]. The factors affecting earthworms vary with scale. At the very local scale, earthworms are affected by the direct and indirect effects of vegetation cover, land use [START_REF] Decaëns | Assembly rules within earthworm communities in north-western france-a regional analysis[END_REF][START_REF] Liliana B Falco | Earthworm assemblages in different intensity of agricultural uses and their relation to edaphic variables[END_REF]. Management strategies, like liming [START_REF] Potthoff | Earthworm communities in temperate beech wood forest soils affected by liming[END_REF], tillage [START_REF] Pelosi | Reducing tillage in cultivated fields increases earthworm functional diversity[END_REF] and crop residue management [START_REF] Frazão | Responses of earthworm communities to crop residue management after inoculation of the earthworm lumbricus terrestris (linnaeus, 1758)[END_REF]] also highly influence them. At the regional scale, [START_REF] Mathieu | Glaciation as an historical filter of below-ground biodiversity[END_REF] investigated post-glacial dispersal processes as an important biogeographical filter in France. However, this process was not identified as relevant at the West-European scale by [START_REF] Rutgers | Mapping earthworm communities in europe[END_REF]. At the continental scale, temperature and precipitation gradients along with land use are the main driving forces of West-european earthworms [START_REF] Rutgers | Mapping earthworm communities in europe[END_REF]. At the global scale, climate along with phylogeographic history rule [START_REF] Brussaard | Biogeography and phylogenetic community structure of soil invertebrate ecosystem engineers, global to local patterns, implications for ecosystem, functioning and services and global, environmental change impacts[END_REF][START_REF] Phillips | Global distribution of earthworm diversity[END_REF].

Several attempts have been made to identify the driving environmental factors that explain the spatial patterns of species and the habitat preferences of earthworms mainly using species distribution models (SDMs). SDMs have been applied to model single species occurrences or abundances from presence-absence or presence-only data using either mechanistic (process-based) or correlative methods. [START_REF] Johnston | Earthworm distribution and abundance predicted by a process-based model[END_REF] used a process-based model that combines individual energy budgets, movement and soil profiles to predict the abundance and distribution of Aporrectodea caliginosa (Savigny, 1826) . Taking a correlative instead of a mechanistic approach, Marchán et al. [2015] applied the MaxEnt algorithm [START_REF] Elith | A statistical explanation of maxent for ecologists[END_REF][START_REF] Dan L Warren | Enmtools: a toolbox for comparative studies of environmental niche models[END_REF] to presence-only data to predict the relative probabilities of occurrence of Hormogaster elisae (Alvarez, 1977) in Spain as a function of vegetation, land use and bioclimatic conditions. Marchán et al.

[2016b] applied the same approach to compare and disentangle the ecological preferences of different clades of the Hormogastridae, an endemic mediterranean family. Last, Shartell et al. [2013] applied a Generalized Linear Model to predict the percentage cover of the exotic Lumbricus terrestris (Linnaeus, 1758) in the Upper Peninsula of Michigan as a function of soil properties (pH, soil drainage) and landscape characteristics (topology).

In a multispecies setting, [START_REF] Schneider | Which abiotic filters shape earthworm distribution patterns at the catchment scale?[END_REF] used Boosted Regression Trees (BRT) [START_REF] Elith | A working guide to boosted regression trees[END_REF] to predict the abundance of common species at the catchment scale in an agricultural system. A BRT model was calibrated for each species independently. The authors used plot-scale edaphic properties and topography-derived landscape covariates as a proxy for local climate and hydrology. BRT were also used in a similar context to model the abundance of epigeic, endogeic and anecic worms using for each ecological group the abundance of the others as covariates to estimate inter-group interactions [START_REF] Palm | Modelling distribution patterns of anecic, epigeic and endogeic earthworms at catchment-scale in agro-ecosystems[END_REF].

All studies targeting multiple species assemblages fitted dedicated SDMs for each taxa. Moreover, these studies concerned common taxa with wide ranges (e.g Lumbricus terrestris (Linnaeus, 1758) , Aporrectodea caliginosa (Savigny, 1826) , etc.) and mainly in agricultural systems and forests, with a limited spatial scale.

Large-scale applications of distributions models at the community level mostly involved modeling the total biomass or taxonomic diversity. The latter were investigated at the country-wide scale in France [Mathieu andJonathan Davies, 2014, Rutgers et al., 2016], at the continental scale in Europe [START_REF] Rutgers | Mapping earthworm communities in europe[END_REF] using Generalized Linear Models and at the global scale [START_REF] Phillips | Global distribution of earthworm diversity[END_REF] using Generalized Linear Mixed Effect Models. As predictors, these studies used climate data (temperature, precipitation), soil physico-chemical properties, water retention, habitat cover and elevation. Unlike taxonomic diversity, the distribution of functional and phylogenetic diversity has not yet been explored for earthworm communities.

Many studies argue that biotic interactions can alter species ranges at larger scales than the mechanism's [START_REF] Susanne Wisz | The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling[END_REF] leaving a footprint in species distributions. Whether these findings hold true for soil invertebrates in general and earthworms in particular has never been explored [START_REF] Hannah J White | Methods and approaches to advance soil macroecology[END_REF]. Most SDMs on earthworms used abiotic conditions, or abundance of vegetation, or other soil fauna as predictors, overlooking potential inter-specific associations between earthworms arising from biotic interactions or other indirect mechanisms of dependency.

In the present study, we model the spatial distribution patterns of earthworm assemblages from the local to the country-wide scales in mainland France, in response to regional climate and local habitat conditions. Indeed, we explore an alternative way to overcome the current limitations in earthworm distribution models.

For this purpose, we use a multi-task neural network to model biotic associations and predict species responses jointly with latent variables. The neural network part of the model enables it to capture interaction effects and non-linear responses to the environment. The multi-task part allows the modeling of multiple species simultaneously, avoiding the computational overhead of training many dedicated SDMs, and permitting rare taxa with few observations to gain statistical strength by being modeled alongside common taxa.

We compare (1) the predictive performances of our model on individual taxa and in average to SDMs. Also, using machine learning interpretability tools, we analyze the model's behavior and predictions to (2) identify crucial abiotic factors driving earthworms' distributions overall, (3) focusing on each taxa, we shed light on its habitat preferences, and response to various environmental gradients, and ( 4) explore commonalities in species' responses to reveal response groups. Afterwards, we analyze the association network uncovered by the model ( 5). Finally, using the calibrated model, we compute projections, on a grid of 1km across France, of metrics computed on predicted communities (6) including: ecological categories, community weighted mean traits and the diversity of earthworm assemblages at the local (alpha), regional (gamma) and its turnover (beta) in its three aspects: taxonomic, functional and phylogenetic.

Materials and Methods

Data acquisition and processing

Earthworms occurrences

The earthworm occurrence data, obtained from Bouché [1972], includes 5708 presence/absence points covering 1360 sites in mainland France and Corsica (Fig 6.1). We mapped the taxonomic information from the original dataset (131 taxa) to a more recent taxonomy (121 taxa) using the drilobase database [START_REF] Erin K Cameron | Earthworm databases and ecological theory: Synthesis of current initiatives and main research directions[END_REF]. We used the latter in subsequent data processing and reporting.

We selected taxa that occurred in at least 5 sites, and removed sites where no local habitat characteristics were reported. The final dataset comprised 1346 sites and 77 taxa with heterogeneous taxonomic assignment levels among : Species, Subspecies, and Variety.

Phylogeny

The earthworm phylogeny was provided by (Marchàn et al, in prep). We transformed the phylogenetic tree into a distance matrix using the ape package [START_REF] Paradis | ape 5.0: an environment for modern phylogenetics and evolutionary analyses in r[END_REF]. For taxa with no phylogenetic information (25/77), we averaged information of siblings within the same subspecies (6/25), species (11/25) or genus (8/25).

Environmental covariates

To model the distribution of earthworms, we collected environmental descriptors describing the climate (temperature and precipitation), soil physico-chemical, structural and hydrological properties, in addition to the land cover type. We built two datasets of environmental conditions with different spatial coverage and temporal relevance. A calibration dataset: limited to the occurrence data sites at the period of observation . A projection dataset: covering a grid of 1km resolution for the current period .

We summarize in Table 6.1 the covariates used and the corresponding sources for each dataset. Table 6.1: List of environmental descriptors. We used the same sources for structural properties that are not likely to vary between the two periods (1972 todate). These are marked invariant.

Evaluation dataset

We collected a dataset of recently sampled geotagged earthworm observations containing 1126 occurrences collected in the period [1998 -2019] and covering 37/77 of the modeled taxa. Due to the multiplicity of sources and the heterogeneous sampling effort, we treated this collection as presence-only data. We extracted environmental data for the corresponding locations from the projection dataset. Some observations contained metadata describing local land cover, when available we used this information instead.

Joint model of earthworms distribution

We aimed to predict the probability of presence of all selected taxa simultaneously under variable environmental conditions. We applied the joint model described in 3.3 with a Bernoulli distribution and a probit link g = Φ to accommodate the binary presence/absences. We fix the number of latent factors to at most 3 to facilitate the visualization. Moreover, we use L1-L2 regularization of the generative θ and variational ξ parameters.

Model selection and evaluation

Since ROC-AUC is threshold-independent, we used the macro average ROC-AUC across taxa as a metric to select the best configuration. Particularly, we performed a 5 × 2 cross-validation coupled with a paired t-test [START_REF] Thomas | Approximate statistical tests for comparing supervised classification learning algorithms[END_REF] to compare models in pairs. We shortlisted two learning architectures that did not show significant differences.

Combining learning architectures with the preprocessing modes yielded in 6 configurations. We trained all 6 models on the full calibration dataset while varying the regularization strength in the range {1, 2, 5, 10}•10 -4 .

For each trained model, we quantified the recall of its predictions on the presence-only evaluation dataset. We retained the model with the best performance on the evaluation dataset. For this model, we evaluated for each taxa the ROC-AUC and True Skill Statistic (TSS) of the selected model predictions.

Comparison to species distribution models

For each taxa, we fit three single species distribution models: a Generalized Linear Model (GLM) and a Gradient Booosted Machine (GBM) with Bernoulli distribution in addition to a Random Forest (RF), using the BIOMOD package [START_REF] Thuiller | Package 'biomod2'. Species distribution modeling within an ensemble forecasting framework[END_REF]. We evaluate the ROC-AUC and TSS as well as the recall on the evaluation dataset for each taxa and each SDM. We compare the per taxa scores on the training dataset to those reported for the proposed multi-task model (MTEC) using a Wilcoxon ranking test [START_REF] Wilcoxon | Individual comparisons by ranking methods[END_REF].

Unraveling the association network

We applied the graphical lasso algorithm to the posterior covariance matrix estimated using the full dataset size (n=1346). We used the extended Bayesian Information Criteria [START_REF] Konishi | Information criteria and statistical modeling[END_REF]] (eBIC) with tuning parameter (gamma=0.5) to select the best partial correlation graph. The resulting graph encodes the direct dependencies between modeled taxa and is referred to as the association network. We analyze network topological properties and the distribution of associations with respect to the identity, prevalence and ecological categories of the associated taxa.

Abiotic drivers of earthworms distribution

Measuring feature contributions with SHAPley values

To identify the main driving factors of habitat suitability, we analyze the model's predictions across environmental conditions using machine learning interpretability tools. In this study, we use the framework of Shapley values (cf. Section 2.5). This approach is chosen for two reasons. First, it is model-agnostic therefore compatible with the current model and any ulterior updates (e.g extensions to new taxa). Second, it measures for each prediction task (here a given taxa) and a given observation the contribution of each feature to the predicted output (here probability of occurrence). Specifically, it computes the difference of the prediction to the average prediction across observations as a payout. Then, it attempts to partition the payout into individual features contributions fairly. Therefore, the shapley value can be interpreted as a partial response to a feature. In practice, we use SHAP an efficient implementation, via the R package iml [START_REF] Molnar | Interpretable Machine Learning[END_REF].

Concretely, assuming N observation sites, a pool of M taxa and P features, the method takes in a matrix N-by-P of environmental conditions and a matrix N-by-M containing the corresponding model's predictions.

The result is the mean and standard deviation of the SHAP estimate for each feature (P), taxa (M), and observation (N), collected in a matrix of size [N.M.P,3+2].

Positive (resp. negative) SHAP values indicate that the current value of the feature increases (resp. decreases) habitat suitability, negative values indicate that it decreases habitat suitability relatively to the average prediction. A feature can have a positive effect in an interval of its domain and a negative or neutral effect in another interval. Similarly, the SHAP can be different for the same level of the feature value in presence of interaction effects. To assess the response shape of a given earthworm taxon into a feature, we visualize the dependence plots representing the SHAP values of the target (feature, taxa) pair along the feature gradient.
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Finally, the absolute value of the SHAP statistic measures the local importance. Local importance values across geotagged observation sites can be mapped to assess the spatial variability of feature relevance and identify limiting factors in different locations. Finally, the average of local importance across observations yields the global feature importance for a given taxa.

Comparing earthworm responses to environmental gradients

First, we adopt a visual approach that consists in displaying the SHAP dependence plots side by side to identify the preferences of each taxon for the given variable (e.g. preferential pH range) and compare them between taxa. Then, we evaluate the variability of their responses by calculating distances between their partial responses (SHAP values). The previous analyses are conducted for each environmental variable and by thematic group of variables. Finally, we identify response groups specific to environmental factors by applying a hierarchical clustering algorithm from the distances computed previously. We selected the smallest number of clusters maximizing the GAP statistic [START_REF] Tibshirani | Estimating the number of clusters in a data set via the gap statistic[END_REF] locally (up to 6 clusters). We limited our discussion to the resulting groups for edaphic properties, land use, and precipitation.

Projection to current conditions

Using the environmental conditions collected in the projection dataset, we compute the community composition across France with a 1 km grid. We filtered out sites where land cover was not habitable by earthworms (e.g water bodies, roads and urban infrastructures), since they can result in empty communities.

The predicted occurrence probabilities for each taxon are typically used to produce habitat suitability maps for the current conditions. Here, we focus our discussion on community-level indicators computed from the vectors of taxa probabilities of occurrences. Particularly, we compute and project community weighted means of functional traits and relative proportions of ecological categories in France. Finally, we compute earthworm taxonomic, functional and phylogenetic richness at the local (alpha) and regional (gamma) scales as well as the turnover (beta) using a radius of 100 km. We use the framework developed by [START_REF] Leinster | Measuring diversity: the importance of species similarity[END_REF] for diversity partitioning (Details in 6.5.5).

Results

Predictive performances

The comparison with SDMs (Fig 6 .3) showed that the use of a multispecies model improved the performances on the calibration dataset in average significantly compared to single species models, regardless of their complexity. Moreover, SDM models did not converge on some taxa with low prevalence (less than 10). For all models, predictive performances were lower for widespread taxa and were variable for less prevalent taxa (Table 6.5.3). In the case of the selected MTEC architecture, AUC values were particularly low (around 0.69) for the widespread Lumbricus castaneus disjonctus (Savigny, 1826) and Octolasium cyaneum (Savigny, 1826) .

Furthermore, we reported comparable to better performances on the most widespread peregrine species (Aporrectodea caliginosa (Savigny, 1826) , Lumbricus terrestris (Linnaeus, 1758) ) for SDMs (especially RF and GBM) than MTEC. Indeed, dominant species did not benefit from the parameter sharing as much as rare and less prevalent taxa did. However, the ability of the MTEC model to predict recent occurrences of the evaluation dataset was higher than SDMs both in average and for most taxa, including those for which performances were higher for SDMs. This result suggests that some of the SDMs might be prone to overfitting.

MTEC is a Joint Species Distribution Model (JSDM) with latent variables. The underlying probabilistic model is similar to generalized linear latent variable models (GLLVM), except that the proposed method relies on amortized (fixed parameters) inference using a type of neural networks called variational autoencoders.

Recent reviews on JSDMs showed that predictive performances are similar or lower in JSDMs than with stacks of SDMs [START_REF] David P Wilkinson | A comparison of joint species distribution models for presence-absence data[END_REF][START_REF] Norberg | A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels[END_REF], Pichler and Hartig, 2020]. The results we obtained on earthworms did not follow this trend. A possible explanation is that the mean response of MTEC is a neural network which has the ability to capture complex non-linear response shapes. However, the superiority of MTEC might not hold in comparison to other machine learning models since we could not test all possible methods.

Modeling rare taxa relates to the more general problem of imbalanced classification, which is challenging regardless of the machine learning model at hand. In our case, the better performances observed on rare taxa may be due do two factors: (1) benefits arising from sharing representations with common taxa with higher statistical power, (2) loss weighting strategies that force the model to pay more attention to the presences of these species than their absences.

The better generalization power of MTEC can be explained by the enforced regularization through sharing environmental feature extraction amongst prediction tasks. In this particular setting, the relevance of this technical choice can be justified by the mono-guild nature of the taxonomic pool. Indeed, earthworms broadly share the same habitat, morphological constraints, physiological needs and resource types despite having differential adaptations. Therefore, their perception of the environmental conditions in terms of relevant features does not vary much. But, we cannot conclude that feature sharing is beneficial beyond the scope of this application as it might not extend, for instance, to above-ground multi-trophic communities.

Habitat suitability

Abiotic drivers of earthworm habitat suitability

Land cover, precipitation extremes and temperature variability were the most important abiotic parameters overall (Fig 6.4). These results are consistent with global patterns reported by [START_REF] Phillips | Global distribution of earthworm diversity[END_REF] who identified precipitation and land use followed by temperature, soil and altitude as the main drivers of earthworms distribution. Although our results are on a mesoscopic scale (France) in comparison to [START_REF] Phillips | Global distribution of earthworm diversity[END_REF], the geographic extent of our work encompasses climates and land uses that are sufficiently contrasted
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for the following hierarchy to appear: at fine scales (landscape, catchment) soil properties are predominant but at larger scales where climate and land use change strongly, climate becomes the main driver of species distribution. Precipitation regimes affect soil moisture, which conditions earthworms' activity and development. Indeed, [START_REF] Eisenhauer | Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern north america[END_REF] showed through experimental warming that earthworms development is limited by temperature only to the extent that it induces drought.

In fact, total precipitation had little influence on overall habitat suitability predictions. Instead, the model relied on precipitation of the wettest month (autumn in France), coldest and warmest quarters (winter and summer) and variability over the year (seasonality). While precipitation extremes are known to affect earthworms, the importance of seasonality means that some species have developed strategies to deal with high climate variability both during day and between month (e.g. Scherotheca). On the other hand, several species clearly prefer more uniform climatic conditions (e.g. N-W France). These species are more likely to be species belonging to the 'epigeic' pole of Bouché's triangle.

The influence of temperature in ecoregions was carried by different features for different taxa, but we found similar patterns within ecological categories (Fig 6.5). The epigeics Lumbricus castaneus (Savigny, 1826) and Lumbricus friendi (Cognetti, 1904) are affected by short-term temperature fluctuations reflected by the mean diurnal range on coastal regions and isothermality elsewhere. On the other hand, endogeics Aporrectodea caliginosa (Savigny, 1826) and Aporrectodea rosea (Savigny, 1826) were driven by temperature extremes and long-term trends (yearly average, seasonality). Epi-anecics Aporrectodea giardi (Ribaucourt, 1901) and Aporrectodea longa longa (Mrsic and Sapkarev, 1988) responded to both short-term climate events, longterm trends and extremes. This pattern shows that the soil acts as a protection layer against above-ground pressures in this context heat strokes, and buffers their effects. In terms of edaphic properties, soil acidity was in the most important variables. The pH is regularly recognized as one of the most discriminating edaphic factors [START_REF] Marcel | Lombriciens de France: écologie et systématique[END_REF][START_REF] Lavelle | Faunal activity in acid soils[END_REF]. Soil pH influences plant growth, plant litter on the soil, but also the availability of metals (Al, Zn, Cu, Cd) that can reach toxic levels [START_REF] Dj Spurgeon | Effects of variations of the organic matter content and ph of soils on the availability and toxicity of zinc to the earthworm eisenia fetida[END_REF]. On the other hand, the quantity of soil organic carbon content had a lower importance than its quality (seen through C/N).

The water regime as a proxy for soil moisture reflecting the amount and duration of the drainage had a great importance for most taxa whereas proximity to water courses had negligible influence. Land cover already included an "inland wetland" class which must have been exploited by the model instead.

In terms of structural properties, soil packing density had a greater impact at the assemblage level than texture. This result is unsurprising since packing density (pd_top) was estimated from soil texture and structure classes using pedo-transfer rules [START_REF] Hiederer | Mapping soil properties for europe-spatial representation of soil database attributes[END_REF]. During the preprocessing phase, we converted descriptions of the texture into classes of the GEPPA texture system [START_REF] Moeys | The soil texture wizard: R functions for plotting, classifying, transforming and exploring soil texture data[END_REF], then we used the class centroids in the texture triangles defined by (%clay,%silt,%sand) as features to ensure compatibility with texture rasters. This transformation might have induced an information loss and reduced the discriminating power of textural features. Regardless, texture was the most discriminating factor for other species like Dendrodrilus subrubicundus (Eisen, 1874) and Eiseniella tetraedra (Savigny, 1826) that are subservient to sandy soils near water bodies.

In conclusion, the ranking shown in Fig 6 .4 reflects the role of features for determining community composition overall. However, the hierarchy of features tends to vary amongst taxa as are the shapes of their responses.

Response of earthworms to environmental gradients.

Due to the high number of model output, we only presented a select set of results to illustrate the model's potential. We explored the response shape of taxa to three groups of environmental features of high overall importance and with direct link to global change factors: precipitations, land cover and soil characteristics (C content and pH). We discuss these results in light of the ecological categories sensu Bottinelli et al. We interpreted PCA1 as a gradient of precipitation seasonality, with high seasonality correlated with negative coordinates . PCA2 interpretation was not obvious, and we proposed that it may reflect total precipitation. Four clusters were selected by the GAP criterion in a hierarchical clustering procedure on all PCA axes. The cluster 1 was first separated from the rest. It mostly gathered Mediterranean species with strong ability to live in xeric, warm and dry, environment (e.g. Scherotheca corsica, Hormogaster samnitica, Kritodrilus calarensis). The species in this cluster presented a positive response to precipitation seasonality. Anecic is the dominant ecological group, probably because those species avoid the adverse climate conditions by remaining deeper in the soil. The second cluster contained many species belonging to the genus Zophoscolex, Prosellodrilus, Scherotheca and Hemigastrodrilus that are endemic of the South-Western France. It also included some eurytopic, peregrine species like Al. chlorotica or Ap. rosea. There are many endogeic and anecic species, but also some epigeic. We interpreted this cluster as a mesophilous with warm-tolerant species group. The third cluster is composed by many species located near the epigeic pole of Bouché's triangle with 'full' epigeic species (E. tetraedra, S. mammalis, D. octaedra), epi-anecic species (A. giardi, L. centralis).

Living at soil surface, these species require wet conditions to maintain themselves. The last cluster gathers few species, some of them known as riparious. We propose that the species of this group share a high affinity for a precipitation regime uniformly distributed during the year.

Land cover preferences

The multi-species plots of dependency to land cover (Fig 6 .7) highlighted striking differences in earthworm preferences. Particularly, inland wetlands and forests had the most contrasting effects among species. Most species had a positive response to humid soils, but a few riparian epigeics such as Eiseniella tetraedra (Savigny, 1826) and endogeics including Helodrilus oculatus (Hoffmeister, 1845), Haplotaxis gordioides (Hartmann, 1821), and Octolasium cyaneum gracile (Savigny, 1826), had a strong preference for marshes and/or peat bogs. On the other hand, most taxa have a neutral or negative response to forest soils, except a very limited and distinct pool made exclusively of litter-dwelling epigeics including Dendrobaena octaedra (Savigny, 1826), Dendrobaena attemsi (Michaelsen, 1902)and Eisenia foetida (Savigny, 1826) , etc. These taxa had a preference (positive SHAP) for closed canopy environments and aversion (negative SHAP) to open-spaces like pastures, grasslands and scrublands. Other epigeics were positively associated with pastures.

Pastures hosted the richest set of species from all ecological categories, including open-space epigeics and epianecics, slightly dominated by endogeics (Table 6. 3). This pattern could also be an artefact of the sampling effort. In-between forests and pastures, shrubs and meadows were co-dominated by endogeic and anecic worms. The latter, mainly composed of the genus Scherotheca, were preponderant in Mediterranean garrigues of Golfe du Lion and Corsica.

Forests, pastures and shrubs/herbaceous land cover classes comprised ∼ 80% of the calibration dataset. In contrast, arable and permanent crop lands were underrepresented in the training dataset. Their composition included widespread peregrine species and a few endemic species. Their median ecological categories assignement included mostly anecics and endogeics (Table 6.3). The lack of epigeics could be related to farming practices which affect the surface fauna. These patterns were reflected in the shap responses (Fig 6 .7) which showed no species with a strong affinity to agricultural sites, but a few with a strong aversion (negative shap values) towards them. Edaphic preferences and response groups. We analyzed the response shapes of earthworm taxa to soil acidity and organic matter quality (measured by the C:N ratio) and quantity (organic carbone), the top edaphic properties exploited by the model. The dependence plots are reported in Fig 6 .8.

The first two components of the PCA of the responses to pH and C:N ratio explained ∼ 70% of the variation and ordinated species according to tolerance to soil acidity and organic matter quality. At one end, we find the typical forest assemblages. They include epigeics and epi-endogeics that survive in spite of acidic soils by taking advantage of the rich organic matter in the litter. In this group, we also found endogeics of the Zophoscolex genus, described by [START_REF] Qiu | Zophoscolex, un nouveau genre de lumbricidae (annelida: Oligochaeta) d'iberie et de france[END_REF] as acid-tolerant. At the other end are taxa that prefer neutral, slightly alkaline environments despite poorer organic matter. An intermediate group Figure 6.7: Response to land cover type. On the right, SHAP dependence plot of modeled taxa to land cover. Labels are colored according to the ecological categories, and ordered following their phylogenetic relatedness. On the left, we project the partial response (SHAP) to the land cover across all observations for each taxa, using Principal Components Analysis. The first two components explain ∼ 80% of the variation in earthworm's responses.

connects the two extremes of the gradient. It is made of species which showed little sensitivity to pH values (SHAP values closes to zero), or with preference for the average pH value (slightly acidic 6). Riparian taxa stand out in a distinct cluster as they live in neutral wetland soils characterized with a sandy texture and an average quality organic matter.

Earthworms have different preferences in terms of organic matter quality [START_REF] James | The feeding ecology of earthworms-a review[END_REF]. In tropic ecosystems, endogeics are further classified depending on the quality of the consumed organic matter, from the richest to the poorest: polyhumic, mesohumic and oligohumic [START_REF] Lavelle | Earthworm activities and the soil system[END_REF]. In our study, the gradient from "acid soils with rich SOM rich" to "alkaline soil with poor SOM" highlights a trade-off between tolerance to acidity and ability to degrade the carbon.

To assess the ability of the model's outputs to identify relationships between earthworm responses and earthworm traits, Fig 6.9 shows the results of linear models of the earthworms responses (measured by SHAP values) to the amount of soil organic carbon, with different slopes and intercepts per typhlosolis type. The typhlosolis is a dorsal flap that runs along the interior of the intestine, effectively increasing the absorption area by that of its inner surface. Its function is to increase intestine surface area for more efficient absorption of digested nutrients [START_REF] Samuel | Feeding ecology of some earthworms in kansas tallgrass prairie[END_REF]]. The slopes highlighted two opposing preferences towards the amount of organic matter: species with low exchange surface (no lamellae) preferred rich soils with abundant organic matter as opposed to species with wide exchange surface (lamelated typhlosoles) whose habitat suitability decreased in carbon-rich soils. This corroborates the hypothesis linking the greater convolution of intestinal surface to lower quality diets [Marchán et al., 2016a].

Earthworm association networks

The proposed method recovered a network of 31 significant pairwise associations, resulting in a 0.015 density.

Only 31 out of the 77 modeled taxa were involved in these associations. We restricted the visualization of nodes to these taxa (Fig 6.10). It is worth noting that the partial correlations (associations strengths, edge attributes in the graph) had low and comparable strengths ranging between 0.14 and 0.22 in absolute value. This shows that earthworm distribution is rather driven by abiotic conditions after all. Nevertheless, some very interesting patterns arose from the association network.

The network was composed of three connected components, one of which included the majority of nodes (80%) and edges (87%). This component involved a hub of 4 of the most prevalent taxa: L. castaneus, S. mammalis and two subspecies of A.caliginosa: A.caliginosa.caliginosa which is present throughout the territory but rarely alongside the southern-distributed A.caliginosa.meridionalis as reflected in their negative associations. A positive ternary association was detected between L.rubellus, A.longa.ripicola and D.rubidus.rubidus three epigeics-epianecics with a predominantly northern distribution.

Few studies explored earthworm associations, most of them involved laboratory experiments [Edwards andLofty, 1982, Butt, 1998]. Many authors stressed a greater strength of intraspecific than interspecific interactions [START_REF] Av Uvarov | Effects of intra-and interspecific interactions in earthworm assemblages: A comparative study[END_REF]. Competition was regularly proposed as the main driver, e.g. by the trophic competition for the litter-dwelling, whereas the soil dwellers were presumably determined by competition for the space [START_REF] Av Uvarov | Effects of intra-and interspecific interactions in earthworm assemblages: A comparative study[END_REF]. Earthworm densities are often high in lab experiments to exacerbate processes. However, in cases of high population density in the field, niche separation or migration away from competitive pressure may help to regulate a multi-species population to a given level. This may not be possible to observe in laboratory experiments, probably leading to an increase in competitive interactions. Since we worked on field-collected data, the detection of many neutral associations and of twice as more positive than negative associations is a clue that interspecific competition is low at the studied scale. Indeed, we did not exclude the possibility of competitive exclusion at a fine scale (plot), but our data set and metadata Figure 6.9: Response of different typhlosolis types to soil organic carbon content. Types of typhlosolis by decreasing exchange surface: lamellated, lamellated pinnated, pinnated, massive, reduced.

set do not allow the detection of these dependencies at fine scale [START_REF] Decaëns | Macroecological patterns in soil communities[END_REF]. This result suggests that associations are scale-dependent. [START_REF] Richard | Spatial organization of earthworm assemblages in pastures of northwestern france[END_REF] explored spatial associations at the same sampling scale (plot) as our data, within meadows in Normandy. Our findings did not agree with their results for several reasons. First, the network estimated by our model is country-wide which further supports the scale-dependency hypothesis. Second, it was inferred across different land uses (not restricted to meadows). The third and most plausible reason is that the nature of associations in the two studies is different. The previous study analyzed the cooccurrence or conversely spatial segregation. In theory, the co-occurrence of two species may result from the fact that they share the same abiotic requirements at the study scale without necessarily having any form of interaction. Similarly, spatial segregation of two species may result from opposite abiotic requirements rather than competition. By taking abiotic factors into account, the associations reflected by our model capture the dependencies that are not due to the environment as measured by abiotic features.

Nevertheless, our proposed approach can still detect associations arising from a shared dependence on an unmeasured environmental factor instead of an interaction. For instance, the majority of species in the network were epigeics, epi-endogeics or epi-anecics. This pattern might be due to an unmodeled effect of an above-ground factor such as the type of vegetation cover which controls the litter quality (leaf C:N) and seasonality (deciduous vs evergreen trees). We also observed that species placed at the "epigeic" pole of the Bouché's triangle (epigeics, epi-endogeics or epi-anecics) were mainly involved in positive associations with endogeics and anecics. This suggests a possible facilitation by the use of burrows and galleries built by soil-dwelling species as a refuge from above-ground disturbances such as cold, wind or drought episodes or to avoid above ground predators (birds, mammals or lizards for instance).

Incidentally, we reported the quasi-absence of endemic/narrow range species in the association network composed of a majority of peregrine species. We assume that the ability of the eurytopic species to spread and colonize previously inaccessible areas might be due not only to their competitive and dispersal abilities [START_REF] Mathieu | Glaciation as an historical filter of below-ground biodiversity[END_REF] but also to their positive interactions with other species that are reflected in the association patterns.

Figure 6.10: Earthworm association network. The graph represents the residual partial correlations (edges) between modeled taxa (nodes). Representation is restricted to taxa that are involved in at lease one significant association. Nodes are colored according to the ecological category of the taxa (colormap provided in the legend), and sized proportionally to their degree (number of associations). Positive (resp. negative) associations are annotated in red (resp. blue).

Mapping earthworm communities

The advantage of modeling community composition instead of modeling diversity directly [START_REF] Phillips | Global distribution of earthworm diversity[END_REF][START_REF] Rutgers | Mapping earthworm communities in europe[END_REF] is that from the predicted communities one can compute and represent geographically not only the distribution of species but also the average trait values and the diversity of the assemblages in all its aspects: taxonomic, functional and phylogenetic.

Ecological categories distribution

The ecological categories distribution map (Fig 6.11,right) shows that different geographical areas are dominated by different ecological categories. Areas of bare rock in alpine heights, watercourses, highways and artificial territories (large metropolises such as Paris, Lyon, Toulouse) are shown in white as they are non habitable land uses for earthworms.

On average, the communities presented a balanced composition with a few exceptions here and there. In the South, the genus Scherotheca, whose species are true anecics, dominates communities with low taxonomic richness in the dry environments of the Mediterranean scrublands. High dominance of anecics is limited to the "Golfe du Lion", bounded to the North by the Massif Central, to the East by the Alps and to the West by the Garonne river and the Pyrenées moutains. Epigeics dominate areas in Aquitaine, in the western tip of Brittany in the Armorican Massif, in the marshes and grasslands of the Cotentin penisula as well as in the Figure 6.11: (i) The simplified land cover map of France [START_REF] Meersmans | A high resolution map of french soil organic carbon[END_REF] for ease of interpretation.

(ii) Geographic distribution of ecological categories relative proportions, on the right. In each pixel, the local community composition is predicted using a joint distribution model. The ecological categories assignment of taxa predicted as present are aggregated to obtain the community-level relative proportions of the epigeic (reddish), endogeic (greenish) and anecic (bluish) classes respectively. The white pixels correspond to unsuitable land uses for the presence of any earthworm assemblages such as urban surfaces and water bodies.

meadows of northern France. Also, to a lower extent, they represent a high proportion of communities in low mountain such as the Massif Central, the Vosges and the Ardennes, mostly covered by forests. Elsewhere in the meadows and agricultural landscapes, we observed either an endogeic dominance or even a balanced tendency between the three groups.

Distribution of earthworm diversity

Our results showed that the overall variability in taxonomic diversity is much higher than functional and phylogenetic diversity, with highest values > 3 fold vs 20-1.1 fold the lowest values. It reflects the low variability in traits of earthworms as morphology and anatomy is highly constrained by living in soil-related habitats.

Taxonomic diversity Taxonomic diversity maps (Fig 6 .13) showed a decrease in the size of regional pools (gamma diversity, over 100 km radius) from South to North accompanied by an increase in community richness (alpha diversity, predicted over 1km pixels) from south to north with the exception of the Ile de France region. This result is consistent with the results described by [START_REF] Mathieu | Glaciation as an historical filter of below-ground biodiversity[END_REF] on the same dataset.

Gamma diversity was maximum in the southeast, in the region bounded by the Massif Central in the North and the "Golfe du Lion" in the south. This area, that globally intersect a former glacial refuge (Fig 6 .12), constitutes a corridor devoid of topographic barriers linking Ligurian biodiversity to the East and Catalonia to the West. At the level of this hotspot of earthworm diversity, the communities were restricted in terms of alpha richness with an average of 2 to 3 taxa, inducing a high turnover between sites.

To the West of this hotspot, the second former glacial refuge located in Aquitaine region depicted a different pattern. We did not observe the high regional richness as in the "Golfe de Lion". It can be assumed that Figure 6.12: Sample sites of earthworms in France and permafrost limits during the Last Glacial Maximum (LGM). Ice, areas continuously frozen and under ice during the LGM; continuous, areas where the soil was continuously frozen during the LGM; discontinuous, areas where the soil was periodically frozen during the LGM; and refugia, areas that were not glaciated during the LGM. Obtained from [START_REF] Mathieu | Glaciation as an historical filter of below-ground biodiversity[END_REF] the barrier of the Atlantic Ocean to the West, the Pyrenees mountains to the South and the Garonne River to the East played against dispersal from the western refuge. This hypothesis was supported by the distinct regional pools with endemic species in Aquitaine, including endogenous species of the genus Prosellodrilus. However, high alpha richness in Aquitaine can be attributed to the more favourable climatic conditions in this region than in the southeast. On the other hand, northern communities were more homogeneous in species composition (low turnover, high richness). These locations were recolonized at the end of the last glaciations by peregrine species with high dispersal capacities. Finally, in Corsica, we reported a relatively high total pool size (gamma) but a rather homogeneous richness per community.

Functional and phylogenetic diversity

In the southeastern hotspot identified previously, functional richness matched the taxonomic patterns as communities were made of a small number of similar taxa despite a relatively diverse regional pool. This indicates that climate acts as a strong environmental filter, harsher conditions (dryer and warmer climate) selected a restricted combination of traits. The high functional turnover reflected a potential habitat heterogeneity (that can be confirmed from the land cover maps Fig 6 .11) and microclimate conditions (North vs South hill slope for instance). It may also relate to the presence of exoticMicroscolex species in Batz Island that increased the diversity of traits. The high taxonomic turnover observed previously in light of the high functional turnover rules out competition in these communities.

Unlike its uniform taxonomic diversity, the patterns indicated that Corsica hosts a functionally diverse pool of earthworms especially in the southern part of the island. At the Atlantic edge of Aquitaine and in Brittany, low functional diversity level was associated with high functional turnover, probably in relation with smallscale heterogeneity in habitat or in local abiotic filtering (e.g land cover or topological features).

As for taxonomic and functional diversity, alpha phylogenetic diversity is low in South-East France. We assume that beta diversity patterns relies on to the distribution of two genus: Microscolex and Haplotaxis that are phylogenetically distant from others. 

Conclusions and future directions

Understanding the drivers of earthworms distribution is a prerequisite to predict their trajectory in response to the ongoing changes in climate and land use, as well as to estimate the spatial emergence of their functional benefits as ecosystem engineers. To achieve that, scientists use species distribution models to establish statistical relationships between observed occurrences and the corresponding environmental conditions. So far, most studies used single species distribution models in experiments involving a limited number of widespread taxa or conversely aggregated indicators such as biomass or richness, irrespective of the species identities.

France hosts a diverse pool of lumbricids, itself part of a wide taxonomic group spanning several families. Studying each species separately using dedicated SDMs can be time-consuming and might be unfeasible for species with few available observations due to their intrinsic rarity or to insufficient sampling effort. Therefore, we aimed to build a multispecies model that identifies the environmental preferences of all species simultaneously, while being able to predict whole community composition. To satisfy this objective, we used a multi-task model such that each taxa's habitat suitability is ensured by a probit regression task applied to a set of features or environment representation shared amongst all tasks. Although we have raised a number of methodological obstacles, we discuss in this section the main conclusions, existing limitations and how our solution can be further improved in the future.

Improving the predictive performances

A few widespread taxa had relatively low performances for all fitted methods. This indicates that forecasting habitat suitability is harder for species with high adaptation capacities. Modeling relative abundances might help understand these species niches better than occurrence. In some cases, this might be an indicator of cryptic species [Marchán et al., 2020b] (e.g L.terrestris [START_REF] Samuel | Dna barcoding reveals cryptic diversity in lumbricus terrestris l., 1758 (clitellata): resurrection of l. herculeus (savigny, 1826)[END_REF]), and calls for in-depth genetic studies [START_REF] King | Opening a can of worms: unprecedented sympatric cryptic diversity within british lumbricid earthworms[END_REF][START_REF] Shekhovtsov | Transcriptomic analysis confirms differences among nuclear genomes of cryptic earthworm lineages living in sympatry[END_REF].

In our modeling experiment, we can also assume that discriminating environmental conditions were missing. As these species have a wide geographical extent, the climate gradient is not sufficient to discriminate their presence/absence zones. Indeed, they are also highly invasive in other parts of the world such as Northern America [START_REF] Ja Addison | Distribution and impacts of invasive earthworms in canadian forest ecosystems[END_REF][START_REF] Eisenhauer | Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern north america[END_REF]. Thus, to improve their occurrence prediction performances, we propose the future inclusion of more fine-scale variables describing the micro-habitat. For instance, proximal density data (e.g soil electrical conductivity (EC), near infrared absorbance (NIR) [START_REF] Schirrmann | Proximal soil sensing-a contribution for species habitat distribution modelling of earthworms in agricultural soils?[END_REF]), altitude as a proxy for soil depth and other topological features (e.g slope, topographic wetness index, solar radiation [START_REF] Schneider | Which abiotic filters shape earthworm distribution patterns at the catchment scale?[END_REF]).

Many edaphic properties are themselves influenced by earthworm activity. Even if their inclusion in the model highlights correlations with the distribution of earthworms and improves predictive performances, it is not possible to identify the direction of causality without experimentation. Further experimental studies are needed to shed light on this question. On the other hand, process-based models are better equipped to address this problem [START_REF] Schneider | Perspectives in modelling earthworm dynamics and their feedbacks with abiotic soil properties[END_REF] as they can model the dynamics of earthworm populations and soil properties simultaneously. Unfortunately, these models are difficult to adapt to a large number of species and require temporal data, which limits their applicability.

In addition to the abiotic variables, a description of the surrounding biotic context would allow the study of associations between earthworms and other groups of soil fauna (e.g microarthropods [START_REF] Gutiérrez-López | Relationships among spatial distribution of soil microarthropods, earthworm species and soil properties[END_REF]) and microflora [START_REF] Zirbes | Microsale interactions between earthworms and microorganisms, a review[END_REF][START_REF] Gong | Earthworms modify soil bacterial and fungal communities through enhancing aggregation and buffering ph[END_REF], which could further explain the microhabitat preferences of these worms. Beyond the land use class, a more detailed description of the type of vegetation or plant traits from databases TRY [START_REF] Kattge | Try plant trait database-enhanced coverage and open access[END_REF] would make it possible to clarify the more favourable litter conditions for epigeics, epi-endogeics and epi-anecics. We reported preliminary results on this relationship in Appendix 6.5.4. In any case, the vegetation landscape is a typical information in field data, while modern techniques based on satellite imagery [START_REF] Rogan | Remote sensing technology for mapping and monitoring land-cover and land-use change[END_REF]] can be used to obtain this information for non-sampled areas.

6.4. CONCLUSIONS AND FUTURE DIRECTIONS 123

Extending the association model

The organization of the soil layers allows the niche separation and the cohabitation of several species, creating opportunities for a mutual influence via interactions mediated by the availability of resources and the feedback on the soil structure. These interactions can attract or repel species, thus affecting the observed composition of communities and producing positive or negative spatial associations.

A peculiarity of our approach compared to previous studies on earthworms is the estimation of associations between taxa that are not attributable to the environment. Our results showed that these associations, even if weak in comparison to abiotic effects, are still significant. Moreover, the resulting network is structured around a hub of peregrine species with epigeic tendency associated with peripheral nodes from different ecological categories.

Existing studies of spatial associations have been carried out in various land uses: forest, pasture, agricultural land. The variability of the reported results is indicative of the context-dependence of the associations. Thus, an interesting question to investigate further would be to estimate a different network per land use.

As biotic interactions between earthworms are mainly indirect, an interesting extension of the method would be to estimate varying associations as a function of resources or soil characteristics. In contrary to the current method which produced a single association network, we would try to address questions typically asked in community ecology like: Does resource scarcity (e.g organic carbon content) or harsh abiotic conditions (e.g acid soil) lead to facilitation between earthworms? Does resource abundance favor competition between earthworms? (e.g field experiment [START_REF] Winsome | Competitive interactions between native and exotic earthworm species as influenced by habitat quality in a california grassland[END_REF]) The topic can be extended to other soil fauna groups with common resources, such as micro-arthropods [START_REF] Gutiérrez-López | Relationships among spatial distribution of soil microarthropods, earthworm species and soil properties[END_REF]. The ultimate goal would be to identify determinants of earthworms spatial associations.

Earthworm habitat suitability

What are the main drivers of earthworm habitat suitability?

The analysis of feature importance identified climate and land use as the main abiotic drivers of earthworm distribution. Seasonality was the most discriminating precipitation characteristic, whereas the effect of temperature was carried by short-term events (diurnal range, extreme events, isothermality) for above-ground litter-dwelling species, and long-term trends (annual range, seasonal average) for soil-dwelling species.

The activity of earthworms is strongly conditioned by soil moisture and sensitivity to variations in precipitation and temperature [START_REF] Edwards | Biology and ecology of earthworms[END_REF]. Some species developed adaptations to drought. For instance, Ap.caliginosa.caliginosa survives drought by forming estivation chambers in the topsoil [START_REF] Jacob | Survivability of aporrectodea caliginosa in response to drought stress in a colorado soil[END_REF]. Anecics of the Scherotheca genus manage to survive in warm and dry environments by slowing down water losses thanks to their thick cuticle epidermis. Their gigantic size was posited as a hypothesis of adaptation to sclerophyllous vegetation typical of Mediterranean garrigues. The grinding power and traction to the galleries of these animals is considerable and well adapted to the crushing of tough litter. Their ability to burrow deep in the soil allows them to seek refuge in wet soil depths [START_REF] Marcel | Les modalités d'adaptation des lombriciens à la sécheresse[END_REF].

Land cover was an important feature in our model as it allowed the distinction of characteristic assemblages per habitat type: riparian soils, forest, pasture, scrubland and grassland, etc. However, the land cover classes were not represented equivalently in the training dataset (e.g few agricultural sites) which could have resulted in biased results, particularly in the assignment of species to response groups.

Can phylogeny and ecological categories predict earthworms responses ?

The ranking of environmental factors varied amongst species and differed from the global importance ranking (Appendix ??). The analysis of the modeled taxa's responses to various feature gradients also highlighted variability in abiotic preferences even within the same species (e.g Ap.caliginosa caliginosa and meridionalis) and within the same subspecies (e.g Ap.chlorotica.chlorotica chlorotype and leucotype). This highlights the need to model infra-specific groups (subspecies, varieties) and calls for in-depth phylogenetic analysis beyond the species level. In some cases, the infra-specific variability in response can be attributed to different ecological categories resulting from trait differences. For instance the subspecies of Ap.caliginosa alternisetosus, caliginosa and meridionalis ; which are respectively endogeic, epi-endogeic and epi-anecic ; have different affinities to land cover, organic matter quality and soil acidity. However, the ecological category alone was not sufficient to infer the abiotic preferences of species.

The question of whether the response of earthworms to environmental conditions is similar within closelyrelated taxa cannot be addressed in this context due to the high variability of responses within species (deepest level of genetic analysis). But, by crossing the dependency plots with the phylogenetic tree we found some examples of phylogenetic conservatism within certain genera. For instance, in the genus Dendrobaena, species D.octaedra and D.attemsi had similar responses to all abiotic factors but differed from D.byblica and D.pygmea, although all of them are epigeics. It turned out that the former are very close phylogenetically and distant from the latter two. On the other hand, closely related Lumbricus species: L.festivus, L.centralis and L.friendi all preferred pastures over other habitats. However, they had different tolerances to soil acidity and preferences to organic matter quality. Moreover, their different tolerances to precipitation seasonality reflected in their geographic ranges: northern, central-meridional and southern respectively.

In summary, setting apart infra-specific variability, phylogenetic conservatism existed in inferred earthworms responses but it was only relevant in the land cover and to some extent edaphic properties responses, less so with regard to precipitation for instance.

Is there a congruence of response groups ?

Based on the partial responses of earthworms to the modeled abiotic factors, we identified several clusterings of earthworm taxa into response groups. Some groups were consistent across clusterings. For instance, forest epigeics (Fig 6 .7) had roughly the same preferences in terms of organic matter quality (rich SOM, high C:N ratio) and pH (acid soils) (Fig 6.8). Similarly, riparian species were grouped together in response to land cover (inland wetlands) and edaphic properties (sandy soil, neutral pH). This may result from the fact that land use type limits the range of values for soil properties. In contrast, the precipitation response groups provided a complementary picture of species preferences that rather reflected the gradient of precipitation seasonality.

While the groups we identified can be combined to produce an overall classification of earthworm abiotic niches, we deemed it necessary to present these various facets as they have different implications for conservation, bio-indication and climate change studies.

Characterizing earthworm communities

Implications of ecological categories distribution

The relative densities of the ecological categories (epigeic, endogeic and anecic) are often used as bioindicators of soil health and environmental disturbance [START_REF] Mg Kibblewhite | Soil health in agricultural systems[END_REF][START_REF] Pulleman | Soil biodiversity, biological indicators and soil ecosystem services-an overview of european approaches[END_REF] since they could reveal the availability of different niches. For instance, the absence of mulch or leaf litter at soil surface is deleterous for epigeic worms while compacted or ploughed soils preclude the presence of soildwelling endogeic and anecics. In addition, even if the ecological categories are not functional groups senu stricto [Bottinelli and Capowiez, 2020], their complementary effects on the physical and chemical structure of soil have been used as proxy for soil functioning [START_REF] Schneider | Which abiotic filters shape earthworm distribution patterns at the catchment scale?[END_REF]. Any bio-indicators need a referential with a known range of values to be useful. Our results concerning the response of different categories to land use (Table 6. 3,Fig 6.7) and the variability of the geographically dominant categories (Fig 6.11) showed that several reference frames need to be constructed per region (i.e. per topoclimatic zone), but also per land use, to fully exploit the potential of ecological categories as bio-indicators.

A more complete picture of earthworm diversity patterns

Several studies addressed the question of diversity distribution [START_REF] Rutgers | Mapping earthworm communities in europe[END_REF][START_REF] Phillips | Global distribution of earthworm diversity[END_REF] using similar abiotic factors as our study (climate, land use, soil parameters) resulting in various maps of total biomass/abundance and richness/diversity in the literature. However, the previous works used data from heterogeneous sources to model complex parameters. In our case, we used data sampled using a uniform protocol and identified by a single taxonomist, thus preventing biases due to conflicting taxonomic identifications which can occur when combining multiple sources.

Interpreting geographic patterns of diversity can be difficult and arbitrary when modeled directly. Linking the geographic distribution of abiotic factors to diversity is more natural by knowing the underlying species preferences. Our analysis focused on three related aspects of diversity: taxonomic, functional and phylogenetic and was not limited to the first aspect, contrary to existing studies on diversity patterns in France.

Our study highlighted areas of congruence between the different diversity facets, in link with latitudinal and elevation gradients and with last glaciation refuges particularly the Mediterranean basin. The latter is known to be an exceptional ecoregion in which the paleogeography and historical land-use have created a complex mosaic of communities, which is reflected in the diversity patterns we identified.

Our results highlighted hotspots of earthworm diversity. Areas like the Meditteranean basin and Aquitaine region, locations of two previous glaciation refuges, but also Brittany and Corsica are home to phylogenetically and functionally unique groups. Our study paves the way for further exploration of the functional rarity [START_REF] Violle | Functional rarity: the ecology of outliers[END_REF] of the assemblages in these regions.

Future directions

A natural continuation of our study would be to predict the response of earthworms to climate change scenarios. Climate models project an increase in the frequency of extreme precipitation events, whereas the total amount of rainfall is predicted to remain comparable to its present state but with increasing variability [START_REF] Singh | Climate change effects on earthworms-a review[END_REF]. Given the sensitivity of earthworms to precipitation seasonality, these changes will most likely affect earthworms distributions. Increasing temperature, drought, and winter rainfall will affect soil moisture and temperature regimes, which have varying impacts on earthworms. Moreover, the combination of high temperatures, that increase metabolic demands, and the higher frequency of extreme precipitation events (drought, flood) may change the life cycles of earthworms, leading to a rise in mortality. Extreme rainfall and land use change can make soils more vulnerable to erosion, thus destroying the habitat of earthworms [START_REF] Singh | Climate change effects on earthworms-a review[END_REF]. Climate change via temperature and precipitation may also impact earthworms indirectly by altering soil properties and the vegetation landscape [START_REF] Eisenhauer | Plant community impacts on the structure of earthworm communities depend on season and change with time[END_REF]. In addition to climate conditions, we identified land use as a crucial predictor in our model. Thus, scenarios of land use changes are needed in order to predict future trajectories of earthworm distributions. Finally, the ability to account for species dispersal abilities through spatially-explicit modeling of dispersal corridors and barriers, will be crucial for a more accurate forecasting of earthworm distributions.

Evaluation dataset

Figure 6.15: Geographic and taxonomic (species) coverage of the evaluation dataset. Colors are derived from the functional groups assignment of each species: epigeic (red), endogeic (green), anecic (blue). The annual mean temperature approximates the total energy inputs for an ecosystem. Isothermality is generally useful for tropical, insular, and maritime environments (Nix,1986). Isothermality quantifies how large the day-tonight temperatures oscillate relative to the summerto-winter (annual) oscillations.

Full description of environmental features

Environmental features distribution and interpretation guide

• An isothermal value of 100 indicates the diurnal temperature range is equivalent to the annual temperature range, • Anything less than 100 indicates a smaller level of temperature variability within an average month relative to the year. A species distribution may be influenced by larger or smaller temperature fluctuations within a month relative to the year and this predictor is useful for ascertaining such information.

35.9 ± 2.9 50.5 ± 2.1

Temperature Seasonality (*10°C)

Temperature seasonality is a measure of temperature change over the course of the year. 

Hydrological properties

Proximity to water courses

Whether there is a water course at <1km 0.09 ± 0.29 0.05 ± 0.22

Available water capacity topsoil

Available water capacity is the maximum amount of plant available water a soil can provide. It is an indicator of a soil's ability to retain water and make it available for plant use. 

Model and preprocessing selection

The best architecture selected in terms of cross-validated performances was E2E-Shared16 which contained a single shared layer of depth 16 and a specific output layer per taxa, with a rectified linear unit (ReLU) hidden activation and a probit link (output activation). The best recall scores on the evaluation dataset was obtained for a value λ = (10 -4 , 10 -4 ) of the elastic net regularization parameter. Amongst feature preprocessing strategies, the end-to-end approach with a shared feature extraction layer outperformed the others in terms of recall on the evaluation dataset, while scores on the training dataset were comparable (Table 6.4). During training, we found that loss weighting strategies benefited rare taxa especially in terms of TSS (the sensitivity component of the TSS reflected the ability of the model to detect the presence of rare taxa instead of systematically predicting their absence, as is the case when weighting is not used, resulting in a TSS of zero or less). 

Drivers of earthworm distribution

Taxa clustering Figure 6.18: Abiotic response groups. On the left, a principal component analysis projection of the response embeddings (output regression parameters). On the right, the agglomerative hierarchical clustering tree of taxa's response embeddings. The optimal clusters (5) are annotated in colors.

Phylogenetic and functional structure of earthworm responses

We evaluate the variability of earthworm responses by calculating distances between their partial responses (SHAP values) to each environmental variable and by thematic group of variables. Then, we try to explain the differences in responses between taxa by their phylogenetic, functional (between their vectors of morphoanatomical traits) or ecological (between their percentages of assignment to the 3 ecological categories) distances using a partial Mantel test (ecodist::mantel function on R). The test quantifies the partial correlation (direct effects) between the distances, so it takes into account the existing multicollinearity including the fact that phylogeny and functional traits, as well as ecological traits and categories are correlated. We report the correlation values and their p-values (with a significance threshold of 0.01).

We reported the correlations as well as their significance level (*:<0.01, **:<0.001) in Fig 6 .19 

Response to tree traits

For a subset of forest sites ( 316 observations) in the training dataset, Bouché [1972] also described the surrounding vegetation in terms of trees, shrubs, mosses and ferns. We selected trees amongst the described plants. We queried the plant traits database TRY (Version 5, 2019-03-26). [START_REF] Kattge | Try plant trait database-enhanced coverage and open access[END_REF] for a set of litter and leaf traits namely: the C:N ratio of tree leaves (1), of its litter (2), litter decomposition rate (3), and the litter nitrogen ( 4) and tannin content per dry mass (5). Their traits are reported in Table 6 We restricted our analysis to forest epigeic earthworms. For each of these taxa, we computed the mean traits of the trees with which it co-occurs. Then, we performed a Principal Component Anlysis on the traits (Fig 6.20).

The first component carried solely by the litter decomposition rate explained 88% of the variation in forest epigeics preferences. The remaining variation was attributed to leaf and litter C:N ratios.

We ordinated the tree species in a similar way in Fig 6 .21. 

Measuring the diversity of an ecological community

To quantify the diversity of a censused ecological community of S species, we follow the distance-based diversity framework by [START_REF] Leinster | Measuring diversity: the importance of species similarity[END_REF]. It takes as input:

• A relative abundance vector p describing the proportions of each species. The term "species" refers to the biological unit chosen to describe the community composition.

• A species by species similarity matrix Z = (Z ij ). It is assumed that 0 ≤ Z ij ≤ 1. Z ij = 1 indicates total dissimilarity, whereas Z ij = 1 for identical species. If no information is available, the naive setting considers all species to be completely unique, i-e Z = Id. Distances (values in [0, +∞[) are transformed into similarity using a negative exponential transformation:

Z ij = e -dij .
• The sensitivity parameter, q = 0...∞, which controls the relative importance attached to species abundance. For q = 0, prevalent and rare species are equally important. At the other extreme i-e q = ∞, rare species are completely ignored.

The nature of the similarity described by Z determines the type of diversity measured: taxonomic, phylogenetic, functional, trophic, etc. The diversity of order q is computed as follows:

(O) i = S j=1
Z ij p i Ordinariness: relative abundance of species similar to the ith

C q = S i=1 p i O q-1 i 1 q-1
Generalized mean ordinariness (concentration)

D q = 1 C q = S i=1 p i O q-1 i 1 1-q
Diversity of order q = 1, ∞

D 1 = lim q→1 D q = 1 (O 1 ) p1 (O 2 ) p2 ...(O S ) p S = S i=1 (O i ) -pi D ∞ = lim q→∞ D q = 1 max(O i )

Diversity across spatial scales

Whittaker [1972] defined three terms for measuring biodiversity over spatial scales: alpha, beta, and gamma diversity. The γ-diversity is a measure of the total diversity within a region. The α-diversity is a measure of the local diversity in the study unit. The β-diversity is a pairwise measure of the turnover of species between communities at different study units. It is computed as the total number of species that are not common to both units, i-e: β ss ′ = |i ∈ S | Y si > 0, Y s ′ i > 0|. The average beta diversity in a given study unit s can be deduced as β s = γ/α s .

Chapter 7 Discussion 7.1 Advancing network inference

Theoretical advances and outstanding questions

The complex interplay of different assembly processes operating at various scales generates spatial coabundance patterns, quantified by multivariate abundance data a.k.a community data [START_REF] Weiher | Ecological assembly rules: perspectives, advances, retreats[END_REF]. Community data contain the footprint of eco-evolutionary filters and reflect species ecological niches. While Species Distribution Models (SDM) in biogeography attempt to learn the abiotic preferences of species, i.e their Grinnellian niches, Ecological Network Learning in community ecology aims to infer species interactions, i.e. their Eltonian niches. Interspecific association networks bridge biogeography and community ecology by connecting ecological interactions to species distributions. Biotic interactions are physical processes that occur between individuals on a one-off or long-term basis, whereas associations are quantified at the level of the species (meta-)population on the scale of data sampling, which seldom matches the scale of interactions. Thus, associations are highly scale-dependent [START_REF] Zurell | Do joint species distribution models reliably detect interspecific interactions from co-occurrence data in homogenous environments[END_REF][START_REF] Miguel | The geographic scaling of biotic interactions[END_REF], Thuiller et al., 2015]. Whether two species on a spatial unit attract (positive association) or repulse (negative association) each other results from several factors including: the total effect of direct interactions between individuals of their populations, but also indirect effects mediated by the shared habitat. Even when models include environmental descriptors to rule out the effects mediated by the habitat, dependencies may still arise from indirect interactions mediated by non-sampled species, model mis-specifications or missing variables. All these arguments highlight the fact that pinpointing the exact type of ecological interactions is conceptually impossible [START_REF] Blanchet | Co-occurrence is not evidence of ecological interactions[END_REF][START_REF] Allison K Barner | Fundamental contradictions among observational and experimental estimates of non-trophic species interactions[END_REF][START_REF] Townsend Peterson | Co-occurrence networks do not support identification of biotic interactions[END_REF][START_REF] Robert | Trophic interactions and range limits: the diverse roles of predation[END_REF]. Nevertheless, association networks can be powerful hypothesis generators for empirical studies.

Much has been written on the question of inferring interactions from co-occurrences, the current consensus being that co-occurrence is not evidence for interaction [START_REF] Blanchet | Co-occurrence is not evidence of ecological interactions[END_REF][START_REF] Townsend Peterson | Co-occurrence networks do not support identification of biotic interactions[END_REF]. Some studies argued that taking into account the effect of the environment would allow the effect of interactions to be isolated [START_REF] Momal | Tree-based inference of species interaction network from abundance data[END_REF], so long as all relevant predictors are measured. Simulation studies using process-based models [START_REF] Münkemüller | Virtualcom: a simulation model for eco-evolutionary community assembly and invasion[END_REF] or generative models showed promising results with idealistic error-free data. However, the unsupervised nature of the association inference problem made it difficult to evaluate the existing frameworks on empirical data [Barner et al., 2018, Pichler andHartig, 2020]. The evaluation was further complicated by the lack of theory on how various types of biotic interactions translate into associations. For instance, does a host-parasite interaction lead to a negative or a positive association between the host and parasite species? In this example, one may argue that despite the cooccurrence of the two antagonists, abundances would be more suitable to capture the negative association [START_REF] Blanchet | Co-occurrence is not evidence of ecological interactions[END_REF]. Our virtual experiments showed that regardless of the inference framework, association strength depended on niche overlap. In our empirical application, it depended on species prevalence and mean abundance (also reported by [START_REF] Zurell | Do joint species distribution models reliably detect interspecific interactions from co-occurrence data in homogenous environments[END_REF]). 142 CHAPTER 7. DISCUSSION Ecological assembly processes can interact in an additive (compensatory effects), multiplicative (intersection of requirements), interactive (e.g. an abiotic factor may alter the type or magnitude of an interaction) or even hierarchical or nested (e.g. trophic relationship requires co-occurrence which is conditioned by the suitability of the habitat for prey and predator) manner. Thus, untangling their respective effects is based on a good choice of the response model. Most inference models that integrate covariates do so in a linear fashion (additive model). We showed in Chapter 5 (5.9) via a simulation of predator-prey co-occurrences that an additive model fails to detect the dependency between species when their abiotic niche overlap strongly. Furthermore, the positive dependency of predators on their preys is sometimes confused by a negative association with non prey species that don't overlap with its preys. This result supports the claim that several interaction networks under different niches can generate similar co-occurrence patterns, which makes the problem non-identifiable. Expert knowledge of potential interactions can inform the choice of the response function.

Association inference from community data is well-suited for the detection of interactions that are inherently related to habitat and space such as indirect effects mediated by micro-habitat conditions, resource competition, facilitation, etc. This is often the case when modeling species of the same guild (e.g plant-plant). On the other hand, with novel community data obtained via eDNA sampling, more diverse interactions can be expected, thus the ability to detect a wide range of association types (symmetric, asymmetric) becomes more crucial.

Towards bridging network learning paradigms

The decomposition of associations into a dot product of embeddings is an old idea in computer science [START_REF] Heckerman | Dependency networks for inference, collaborative filtering, and data visualization[END_REF]. In recommendation systems, this factorization is akin to a problem known as "collaborative filtering". It is typically applied to matrix completion problems. The method developed can thus be applied to scenarios where the association matrix is only partially observed, bridging network inference with missing link prediction approaches.

There is also a promising avenue for further research in combining trait-based ecological network reconstruction that mostly targets direct interactions (trophic, pollination, parasitism) with network inference methods that identify residual associations to species environmental responses. Interactions can be used to constrain association networks, or conversely associations can be used to select the most plausible links. Ultimately, associations should be considered as a standalone facet in the multi-layer network of species dependencies, along with biotic interactions.

Since biotic interactions are dynamic processes, a more ideal setting for network inference would be to have time-series of community data. Aside from Bayesian Networks which have a natural extension to time-series (Dynamic Bayesian Neworks [START_REF] Auclair | Learning network structure using parameterized dynamic bayesian networks[END_REF]), existing frameworks cannot straightforwardly be applied to dynamic data. Our proposed model can easily be extended to time-series by simply changing the biotic context definition (3.2.1).

Advancing joint species distribution models 7.2.1 Benefits and limits of neural architectures

Joint species distribution models address the network inference problem while simultaneously learning about species abiotic preferences, thus allowing the prediction of community composition in response to the environmental conditions. Current JSDM implementations rely on the Generalised Linear Model to estimate the abiotic responses (but see Generalized Additive Mixed models [START_REF] Knape | Decomposing trends in swedish bird populations using generalized additive mixed models[END_REF] and stochastic neural networks [START_REF] Harris | Generating realistic assemblages with a joint species distribution model[END_REF]). This limitation is due to the difficulty to integrate random effects in other machine learning models (e.g Random Forest, Boosted Regression Trees). Neural networks can be viewed as deterministic parametric feature learning functions composed with generalized linear models or other probabilistic response distribution. Based on this, we proposed an extension to existing JSDMs that combines the function representation power of neural networks with the inferential capacity of hierarchical models to support complex features and model non-linear responses. The proposed model supports response distribution in 7.2. ADVANCING JOINT SPECIES DISTRIBUTION MODELS 143 the exponential family as opposed to other neural network based JSDMs that were specifically optimized for the multivariate probit model [START_REF] Chen | Deep multi-species embedding[END_REF], Pichler and Hartig, 2020[START_REF] Chen | End-to-end learning for the deep multivariate probit model[END_REF][START_REF] Harris | Generating realistic assemblages with a joint species distribution model[END_REF].

The use of a variational autoencoder (VAE) to fit the latent variable part of the model can be interpreted as a non-linear factor analysis on the residuals of the abiotic response model. The main advantage of a VAE is the fixed complexity (number of parameters) with respect to dataset size. VAEs are optimized using gradient descent which makes them composable with other feedforward neural networks. One important limitation of VAEs is the prior assumption that latent sample representations are independent and identically distributed. Extensions of VAEs that account for spatial/temporal structure of observations (e.g spatial autocorrelation) have emerged recently, for instance using Gaussian Process priors (GPPVAE [Casale et al., 2018]) on the latent factors instead of isotropic multivariate Gaussian priors [START_REF] Diederik | Auto-encoding variational bayes[END_REF]. Aside from the gaussian graphical model, VAEs have been applied outside ecological research to learn the structure of Bayesian Networks [START_REF] Zhang | D-vae: A variational autoencoder for directed acyclic graphs[END_REF] and Gaussian Copulas [START_REF] Suh | Gaussian copula variational autoencoders for mixed data[END_REF], Wang and Wang, 2019[START_REF] Mazoure | Estimating the structure of probabilistic graphical models through a Gaussian copula with discrete marginals[END_REF].

The ill-conditioned and highly multimodal likelihood functions associated with most neural networks make it difficult to quantify the uncertainty associated with parameter estimates. Thus, only point estimates of local optima are provided. To quantify parameter uncertainty, on moderate-size networks, Bayesian neural networks [START_REF] Tran | Bayesian layers: A module for neural network uncertainty[END_REF] enable the specification of a prior over the parameters. Then, stochastic variational inference (SVI) [START_REF] David M Blei | Variational inference: A review for statisticians[END_REF] is used to perform posterior inference on those parameters. An alternative solution called deep ensembles consist on optimizing the neural network parameters starting from different initial parameter values [START_REF] Balaji Lakshminarayanan | Simple and scalable predictive uncertainty estimation using deep ensembles[END_REF]. Other approaches rely on the post-hoc analysis of stochastic gradient descent trajectories to weight various regions of the parameter space [START_REF] Izmailov | Subspace inference for bayesian deep learning[END_REF].

Contribution of multi-task learning and improvement perspectives

Ecological community data presents several challenges, including often a higher number of species than observations, a few abundant species and many rare species. By sharing feature (representation) learning layers, multi-task neural networks reduce the number of parameters and distribute statistical power amongst species prediction tasks. Moreover, parameter sharing operates as a regularization force. In our case study, it made sense to share representations between all species, particularly as we model similar organisms that are generally affected by the same abiotic factors (earthworms). Multi-task models are susceptible to task interference, which occurs when the representation sharing does more harm than good. In general, determining the proportion of shared versus specific layers is application-specific. Future efforts should be directed towards an adaptive selection of the feature sharing architecture [START_REF] Ruder | Latent multi-task architecture learning[END_REF][START_REF] Rosenbaum | Routing networks: Adaptive selection of non-linear functions for multi-task learning[END_REF][START_REF] Misra | Cross-stitch networks for multi-task learning[END_REF].

In our case study on earthworms, the main benefit of the proposed architecture was a regularizing effect of representation sharing that led to a better generalization of the model compared to single species models, as measured by the predictive performances on the evaluation dataset (6.2). Just as these shared representations have benefited the modeled pool, they can be extended to new taxa by plugging new regression tasks on the shared features, and fitting only their specific parameters. Furthermore, the feature learning layers can be re-purposed and fine-tuned via the techniques of transfer learning [START_REF] Torrey | Handbook of research on machine learning applications and trends: algorithms, methods, and techniques[END_REF] for another related application subject to the same environmental conditions such as modeling earthworm traits responses, or modeling the habitat suitability of other edaphic groups such as collembola, nematodes, ants, etc.

The multi-task neural network architecture consists of shared layers representing a transformation function of the raw features, and specific layers for each taxa. In our case study, specific layers were set to be GLMs. The taxa-wise GLM regression weights allow to embed species in a shared response space, analogous to the Hutchinson's niche hypervolume. But, in general, specific layers can have different depths per taxa. In this case, species response weights cannot be represented in the same space. However, it is possible to use partial responses derived for instance using the SHAP framework (or local surrogate models) to cluster species. The drawback of this approach is that the resulting species clusters will depend on the dataset used for computing SHAP values. Species clustering can also be performed in an ad-hoc fashion similarly to Species Archetype Models [START_REF] Francis | To mix or not to mix: comparing the predictive performance of mixture models vs. separate species distribution models[END_REF]. This can be achieved by using a discrete (multinomial) latent variable layer with a Dirichlet prior (e.g Dirichlet Autoencoder [START_REF] Joo | Dirichlet variational autoencoder[END_REF]).

Prospective applications

The flexibility in the response types of the proposed multi-task model paves the way for applications on mixed data such as the joint prediction of functional traits responses to the environment. In practice, it's been shown that multi-task learning can benefit from combining mildly related tasks [START_REF] Liebel | Auxiliary tasks in multi-task learning[END_REF]. For instance, one can jointly predict species and functional traits. The proposed framework can also be applied outside community modeling, to predict functions (e.g decomposition, respiration, enzymatic activity, etc.) Finally, while we focused on ecological assembly processes, our case study on earthworms highlighted the importance of phylogeographic history, which calls for further investigations into modeling genetic diversity distribution.
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 12 Figure 1.2: Classes of long-term interactions (symbioses). For a pair of species (i, j), a i,j and a j,i represent the outcome of the interaction on j and i respectively.[START_REF] Morales-Castilla | Inferring biotic interactions from proxies[END_REF] 
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 14 Figure 1.4: Classification of ecological network learning methods.

  ϕ) c :normalizing term (constant wrt the parameter) a :partition function θ :natural or canonical parameter ϕ :dispersion parameter
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 21 Fig 2.1 illustrates the relationship between the link and mean function.
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 21 Figure 2.1: Schematic illustration of the mapping between the natural parameter, the linear predictor and the mean response in a generalized linear model.

  Residual or skip-connection networks. (c) Multi-input and multi-output models with shared layers for the prediction and feature extraction respectively.
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 22 Figure 2.2: Examples of feedforward neural architectures. Computation layers are arranged into a directed acyclic graph (i.e. involve no feedback loops).In general, theses functions are referred to as layers. For this reason, feedforward are sometimes referred to as Multi-Layer Perceptrons (MLP). The first or input layer simply feeds the input covariates to the
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 23 Fig 2.3 illustrates the architecture and functioning of a multi-layer perceptron.
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 23 Figure 2.3: Multilayer perceptron with fully connected layers. Square nodes are observed data, circular nodes are functions. (a) MLP architecture, (b) the functioning of a neuron (c) Common activation functions.

  Fig 2.4: convolutional (A), pooling (B) and fully connected layers (C).
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 24 Figure 2.4: Convolutional neural network layer types functioning.

  For instance, a RGB picture of size 64 × 64 is represented by a multidimensional matrix (tensor) of dimension 64 × 64 × 3, the third dimension represents the RGB values. Input images are often assumed have a squared dimension (I=I'). In general, the filter dimensions are small odd numbers F × F (e.g. 3 × 3, 5 × 5 or 7 × 7). The associated kernel is a hypervolume of dimension F × F × C (F <<< I), as opposed to I × I × C if a fully-connected layer is used on the flattened image. Therefore, the use of the convolution operator instead of general matrix multiplication reduces the parameters drastically by sharing the kernel parameters amongst the image regions.Each filters produces a feature map or activation map of dimension O × O × 1. Therefore, a convolution layer that uses N filters outputs a tensor of dimension O × O × N representing a stack of N feature maps.
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 25 Figure 2.5: Convolution layer padding types. Modified from (CS230 Deep Learning course Stanford University)

Figure 2 .

 2 Figure 2.6: Complexity of layer types in a convolutional neural network. (Reprinted from CS230 Deep Learning course Stanford University)

Fig 2 .

 2 Fig 2.7 illustrates the difference between an autoencoder (left) and a variational autoencoder (right). In VAEs, injecting stochastic noise (shaded node) allows for sampling new observations instead of reconstructing the input exactly. While an autoencoder can be seen as a nonlinear version of Principal Component Analysis (PCA), a variational autoencoder can be seen as a nonlinear equivalent to Factor Analysis or probabilistic PCA[START_REF] Diederik | An introduction to variational autoencoders[END_REF].
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 2 Figure 2.8: Hard (left) vs soft (right) parameter sharing in multi-task neural networks.

Figure 2 .

 2 Figure 2.9: The place of interpretability in the machine learning process. The real world (e.g nature, ecological community) processes are captured through measures or descriptions and digitised prior to being fed to the black box machine learning model. The interpretability methods operate on trained machine learning models, yielding useful insights to the human user. (Modified from Molnar [2020])
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 1 I : vector of size R; /* Initialization */ 2 I (avg) := 0; 3 I (sd) := 0; 4 Estimate the original error: e = L(y, f (x)); 5 foreach feature j = 1 . . . p do 6 feature matrix by permuting the feature column j in original data. */ Generate a random permutation of instances (rows) σ;

  9

  Compute importance */ 11 Estimate error based on predictions on permuted feature matrix ẽ := L(y, f ( X)); 12 Calculate feature importance: F I r := ẽ/e or F I r := ẽ -e; 13 end /* Compute empirical mean and standard deviation */ 14 I (avg) j = mean(F I); 15 I (sd) j = stddev(F I); 44 CHAPTER 2. FROM GLMS TO NEURAL NETWORKS: LEARNING AND INTERPRETABILITY

Figure 2 .

 2 Figure 2.10: LIME algorithm for tabular data. A) Predictions given features x1 and x2. Predicted classes: 1 (dark grey) or 0 (light blue). B) Instance of interest (yellow dot) and data sampled from a normal distribution (small dots). C) Assign higher weight to points near the instance of interest. D) Signs of the grid show the classifications of the locally learned linear model from the weighted samples. The white line marks the decision boundary (P(class=1) = 0.5). (Reprinted from Molnar [2020])

  [2020]. The PD shows what the model predicts on average when each data instance has the value v for the focal feature. It ignores whether the value v makes sense for all data instances. On the other hand, the ES gives the model prediction of an average instance at various levels v of the focal feature. If the value v is incompatible with the other feature values, we fall into the same trap as for PD.Accumulated local effectsAccumulated local effects(ALE)[START_REF] Daniel | Visualizing the effects of predictor variables in black box supervised learning models[END_REF] describe how features influence the prediction of a machine learning model on average. ALE plots are a faster and unbiased alternative to partial dependence plots (PDPs). Unlike PDP, the ALE computation relies on conditional expectation to account for the correlations of the focal feature with other features (seeFig 2.11 for an illustration).

Figure 2 .

 2 Figure 2.11: Difference between marginal computations of Partial Dependence Plots (PDP), and conditional computations of Accumulated Local Effects (ALE). (Modified from Apley and Zhu [2016])

Figure 2 .

 2 Figure 2.13: Calculation of 2D-ALE. We place a grid over the two features j and l. In each grid cell we calculate the 2nd-order differences for all instance within. We first replace values of x1 and x2 with the values from the cell corners. If a, b, c and d represent the "corner"-predictions of a manipulated instance (as labeled in the graphic), then the 2nd-order difference is (d -c) -(b -a). The mean 2nd-order difference in each cell is accumulated over the grid and centered. (Modified from Apley and Zhu [2016])
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 3 Figure 3.1: Architecture of MTEC. The framework is organized in tiers. The context builder selects the potential covariates: abiotic conditions as well as biotic actors (a.k.a biotic context) relevant to the prediction, and determines their spatial scope. The feature extraction tier transforms the raw covariates into meaningful features exploitable by the down-stream prediction tier. The latter aggregates the effect of features representing the environmental conditions and the biotic context to predict the response of the species (or traits, etc.)

Fig

  Fig 3.2 illustrates the functioning of the interpretability module. A set of algorithms interact with the blackbox model (here multi-task model) via calls to the prediction function and produce artefacts that support the interpretation of the model's outputs which can take different forms: global importance, surrogate model, response curves, etc. The parameters (model internals) of the black-box model in turn can be examined, as well its intermediary activations (outputs of successive hidden layers). The right-most column contains example of visualizations (a-j) representative of different interpretability tools/artefacts.
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 332 Figure 3.2: Interpretability methods for multi-task models.
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 3 MULTI-TASK NEURAL MODEL OF THE JOINT ENVIRONMENTAL RESPONSE 61

  H)dH (3.10) CHAPTER 3. MULTI-TASK MODELING OF ECOLOGICAL COMMUNITIES Naively, this requires computing an intractable integral to marginalize the unobserved latent variables. log p θ (Y) = log p θ (Y, H)dH (3.11) To circumvent this issue, we rely upon a variational approximation of the true posterior of the hidden variables p(H | Y) within a class Q of distributions. Here, we choose the family of factorized Gaussian distributions.
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 33 Figure 3.3: Learning architecture of the joint multi-task neural network model. Parameters are shown in white circles. Observed data (input) are highlighted with a grey background. Colored boxes represent the components of the model. Black (resp. red) arrows indicate the data generating workflow (resp. inferencerelated operations).

  (a) SepGrinnellNet: separate feature extraction modules (b) JointGrinnellNet: joint feature extraction

Figure 4 . 1 :

 41 Figure 4.1: GrinnellNet architecture

  Pedological features embeddings resulting from the previous step are concatenated into a single tensor of dimension: (batchSize, patchRadius, patchRadius, d c ) s.t d c = c∈C k c (brown module in Figure 4.1). C refers to the set of categorical features. In our case, d c = 18. Land cover is embedded separately (khaki box in Fig 4.1).

•

  JointGrinnellNet: A joint mode where all input tensors are concatenated into a single multi-channel image. The result with dimension (batchSize, patchRadius, patchRadius, c∈C k c + n num )) is fed into a feature extraction module, as presented in Fig 4.1. • SepGrinnellNet: A separate mode where the three groups of features are treated separately by dedicated feature extraction modules then merged afterwards, as shown in Fig 4.1.

  of our CNN-based feature extraction modules comprises a two-block architecture similar to VGG [Simonyan and Zisserman, 2014]. Each block contains two 3×3 convolution layers set to extract 256 features, followed by MaxPooling then a Leaky Rectified Linear Unit activation. The latter function choice prevents the model from falling into a dying ReLu problem (experienced during first tests with ReLu activation) [Maas et al., 2013]. Retained embedding sizes, patch radius and resulting number of channels are shown in the detailed architecture are provided in the source code.

  learning model used is an adaptation of the Continuous Bag of Words model first introduced in Mikolov et al. [2013]. The architecture, illustrated in Figure 4.3, is based on a neural network composed of 3 layers:

Figure 4 . 2 :

 42 Figure 4.2: Non plants taxa proportion in the retained list.
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 43 Figure 4.3: EltonNet architecture. Each box represents a layer described by its name and type as well as its input and output dimensions. None refers to the undefined batch size. The context size and embedding dimension shown here are respectively w = 50 and k np = 100. The last layer (bottom level) gives the probabilities of each plant class, here 3353 classes.

  Figure 4.4 summarizes the performances obtained during training (left axis) along with results on test set (right axis). Note that different evaluation metrics are used. As a result, we can only compare the models ranking.

Figure 4 . 4 :

 44 Figure 4.4: Performance of GrinnellNet and EltonNet variants on validation and test set.
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 51 Figure 5.1: Association strengths are computed from species response and effects (a). Pairwise association strengths are mapped to potential interaction classes (b). The different quarters of the bi-plot represent the various types of associations between species. The first bissector represents the association domain covered by correlation-based approaches (JSDM) and undirected graphical models (MRF).
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 52 Figure 5.2:A graphical illustration of the interplay between the habitat and biotic associations. (a) Species in a community form a network of associations of different signs: positive (red), negative (blue). Each edge represents an association from the source to the target species. When both species influence each other, the association is bidirectional. All species, along with their associations, respond to the habitat conditions (green). We ignore the reciprocal effect of species on habitat. (b)The abundance of a given target species results of its aggregated response to the abiotic (habitat) and biotic contexts (other species).
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 53 Figure 5.3: Abiotic and biotic response aggregation. Illustrated examples of potential applications.
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 354 Figure 5.4: Schematic representation of the virtual experiment.

Fig 5 . 5

 55 depicts the value of the statistic for each directed association a i j. The distribution of RAI ij values showed a good discrimination of positive and negative associations, albeit with different strengths. Neutral associations translated into small RAI ij values, median-centered on zero for simulations with negative associations only. Whereas they spanned a large spectrum of values in simulations with only positive or a mix of positive and negative effects. The proposed indicator is itself a good proxy for association inference, however since it does not account for environmental covariates we use it as a diagnosis tool.
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 55 Figure 5.5: Simulation diagnosis. Distribution of relative abundance indices RAI ij per simulation. Each data point represents a directed association (positive in red, negative in blue and neutral in gray) involving two species from the corresponding simulation. Labels on the x-axis correspond to simulation configurations.

Fig 5 .

 5 Fig 5.9 illustrates the experimental setup and the procedure used to generate occurrences. Briefly, we assume a bottom-up control so that to be present, a consumer requires the availability of at least one resource, in
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 58 Figure 5.8: Inference of true association class per type of association for each model measured by the recall, f1-score and AUC-PR metrics. The higher the value the better performing is the model. AUC-PR is computed on the raw associations while the recall and f1-score are computed on the discretized associations using as a threshold ϵ + = ϵ -= 5E -2
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 59 Figure 5.9: Simulation of consumer-resource co-occurrences along an environmental gradient given food web topology and true abiotic niches.

Figure 5 .

 5 Figure 5.10: Network structure inference quality with respect to the potential (metaweb) and the realized networks under two different constraints: non-negative associations and within-group embedding sharing. Performances are reported separately for each food web topology.

:

  Maximum lateral spread of clonal plants in centimeters, Angle : Leaf elevation angle, estimated at the laminal level, Area : Area of a single leaf, Thick : Maximum thickness of a leaf, N mass : Mass-based leaf nitrogen content, SLA : Specific Leaf Area, Seed : Seed mass,

Figure 5 .

 5 Figure 5.11: Habitat Suitability Model variable importance and prediction performances per genus.

  Inferred plant association matrix. Species in the association matrix are grouped based on a hierarchical biclustering performed row-wise (yielding response groups) and column-wise (yielding effect groups). (b) Network of plant associations. Blue (resp. red) edges indicate negative (resp. positive) edge weights. Node colors on the graph represent communities identified by the modularity maximization algorithm Newman [2006] whilst node sizes are scaled according to the plant height. Nodes (except Salix herbacea, which represents the vegetation on the northern face of the gradient) are placed from left to right following an ascending order of their response to Snow duration (regression coefficient from the Generalized Linear Model used as a Habitat Suitability Model).

Figure 5 . 4 Figure 5 .

 545 Figure 5.12: Plant associations on an Alpine mesotopographic gradient. We highlight the communities (node colors) in figure (b) using colored labels on the matrix (a).

Figure 5 .

 5 Figure 5.14: Virtualcomm simulation procedure.
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 63 Figure 6.3: Comparison of joint and separate models prediction scores. Wilcoxon ranking test of the hypothesis that the score of the MTEC model is greater than the score of the SDM i-e "Score(MTEC)> Score(SDM)" for each of the three single species distribution models : GLM, GBM, RF.
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 64 Figure 6.4: Overall feature importance. For a given taxa, feature importance is measured as the average across sites of the feature's contribution to the habitat suitability probability. The distribution of importance amongst taxa for the features used by the model is shown in descending order.
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 65 Figure 6.5: Limiting (locally important) temperature factors for 6 common taxa (2 epigeic, 2 endogeic, 2 anecic earthworms).

  We projected the response (SHAP) values of all taxa using the first two components of a Principal Component Analysis (PCA), explaining 60% of variation(Fig 6.6).

Figure 6 . 6 :

 66 Figure 6.6: Response of earthworms to precipitation and its variability. (i) Precipitation seasonality in current climate (from CHELSA database). (ii) Response groups to precipitation conditions overall: we project the partial response (SHAP) to the precipitation across all observations for each taxa, using Principal Components Analysis. (iii) SHAP dependence plot to Precipitation Seasonality.
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 68 Figure 6.8: Response groups to soil physico-chemical properties. (i) visualizes the response of each taxa to soil acidity level (pH) and Carbone to Nitrogen ratio (CN). (ii) shows the clustering of taxa based on their responses to pH and CN (i) and Organic Carbone content. Clusters represent groups of similar response (response groups) to physical and chemical properties of the soil. (iii) highlights the cluster assignations in a PCA projection of the response of earthworm taxa. Annotations are done manually based on optimal conditions for each taxa, extracted from (i).

  Figure 6.13: Mapping of taxonomic, functional and phylogenetic diversity. The indices are computed on presence/absence predictions on the calibration dataset, using the Leinster and Cobbold [2012] framework with q=0. Alpha diversity is computed on local communities (1km grid), gamma diversity is computed using a radius of 100km.

  This information is useful when examining whether species distributions are affected by warm temperature anomalies throughout the year. This information is useful when examining whether species distributions are affected by cold temperature anomalies throughout the year. This information is useful when examining whether species distributions are affected by ranges of extreme temperature conditions.This index provides mean temperatures during the (wettest, driest, warmest, coldest) three months of the year, which can be useful for examining how such environmental factors may affect species seasonal distributions.

  Base saturation is calculated as the percentage of CEC occupied by base cations. s total quantity of negative surface charges. It is the potential of available nutrient supply 11Dominant annual average soil water regime class of the soil profile. https://esdac.jrc.ec.europa.eu/ESDB_Archive/sgdbe/wra3.pdf NA Not applicable (non-soil) 80 cm for over 3 months, not wet within 40 m for over a month 81% 82%W3-6D1Wet within 80 cm for 3 to 6 months, but not wet within 40 cm for over 1 cm for over 6 months, but not wet within 40 cm for over 11The gleyed horizon is characterized by its asphyxiating and reducing conditions where iron in its divalent esdac.jrc.ec.europa.eu/ESDB_Archive/ptrdb/dgha3.pdf Shallow: <40cm ; Moderate:40-80cm ; Deep: 80-120cm ; Very deep:Refers to the density of solid particles. It is computed using pedo-transfer rules based on texture and soil structure class. https://esdac.jrc.ec.europa.eu/Projects/SINFO/pdf/annex4_7.Soil crusting refers to the forming processes and the consequences of a thin layer at the soil surface with reduced porosity and high penetration resistance. This phenomenon causes water runoffesdac.jrc.ec.europa.eu/ESDB_Archive/ptrdb/crustinga3.esdac.jrc.ec.europa.eu/ESDB_Archive/ptrdb/erodibilitya3.esdac.jrc.ec.europa.eu/ESDB_Archive/sgdbe/par-mat-dom1a3.pdf alluvWeathSlope Unconsolidated deposits (alluvium, weathering residuum and slope deposits)
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 6 Figure 6.16: Selected MTEC architecture for the prediction of the joint distribution of earthworms.

Figure 6 .

 6 Figure 6.19: Mantel test phylogenetic and functional structure of earthworms abiotic responses..

  Figure6.20: Principal component analysis biplot of mean tree traits associated to epigeics occurrences in forest sites sampled by Bouché[1972] .

Figure 6 .

 6 Figure 6.21: Principal component analysis biplot of tree traits in forest sites sampled by Bouché [1972].
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  3.2 illustrates the functioning of the interpretability module. A set of algorithms interact with the blackbox model (here multi-task model) via calls to the prediction function and produce artefacts that support the interpretation of the model's outputs which can take different forms: global importance, surrogate model, response curves, etc. The parameters (model internals) of the black-box model in turn can be examined, as well its intermediary activations (outputs of successive hidden layers). The right-most column contains example of visualizations (a-j) representative of different interpretability tools/artefacts. Artefact (e) visualizes the identity of the most contributing feature per observation. Metadata of these observations' locations is used to map the dominant feature spatially. The resulting map highlights limiting factors and their geographic relevance. Artefact (f-h) represent response plots. (f) visualizes the Accumulated Local Effect (ALE), or the difference to the mean of the prediction at various values of the environmental feature. (g) showcases the effect (color scale) of two features' interactions on a species distribution (here Temperature and Relative humidity). (h) is a SHAP dependence plot. It visualizes the contribution of the feature (x-axis) to the model prediction at a given feature value. There is a point for each species,observation pair. Colors allow the differentiation of species. Here, species are colored per trait value.

	Artefact (i) is
	a multispecies summary of species (y-axis) responses (x-axis) to a particular feature at various values
	(color scale) of the focal feature. Artefact (j) is a PCA of the data in (i) per species, which aims to identify
	feature(s)-specific responses groups.

Artefact (a) uses shared environmental features for observations at various locations in a grid. These observations are clustered on the basis of the corresponding learnt features. The result is a spatial mapping of environmental types/clusters as seen by the modeled species. Artefact (b) uses abiotic response weights to visualize and assess species similarities identifying response groups. Artefacts (c,d) explore feature importance globally (for all the observations) for individual species (c) or communities (d).
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			Group-level	Species-level	Group-level			Species-level
		MW	RN	MW	RN	MW	RN		MW	RN
	Accuracy (ACC)								
	min	0.45	0.80	0.72	0.82	0.45	0.62		0.24	0.38
	max	0.83	0.94	0.83	0.94	0.88	0.96		0.72	0.87
	median	0.790	0.890	0.765	0.895	0.780	0.735		0.615	0.735
	mean (sd)	0.72 ± 0.15 0.87 ± 0.06 0.77 ± 0.04 0.88 ± 0.05 0.71 ± 0.18 0.76 ± 0.12 0.55 ± 0.19 0.69 ± 0.18
	ROC-AUC (AUC)								
	min	0.24	0.07	0.49	0.50	0.50	0.75		0.47	0.62
	max	0.80	0.85	0.53	0.74	0.80	0.92		0.58	0.83
	median	0.470	0.415	0.505	0.565	0.670	0.855	0.535	0.800
	mean (sd)	0.52 ± 0.22 0.43 ± 0.27 0.51 ± 0.01 0.58 ± 0.09 0.64 ± 0.12 0.84 ± 0.07 0.53 ± 0.04 0.77 ± 0.08
	F2-score (F2)								
	min	0.00	0.00	0.00	0.00	0.29	0.50		0.27	0.49
	max	0.56	0.65	0.19	0.44	0.68	0.77		0.52	0.55
	median	0.120	0.220	0.105	0.220	0.520	0.590	0.415	0.520
	mean (sd)	0.19 ± 0.23 0.25 ± 0.25 0.10 ± 0.08 0.19 ± 0.16 0.52 ± 0.14 0.61 ± 0.09 0.40 ± 0.11 0.52 ± 0.02
	True Skill Statistic (TSS)								
	min	-0.06	0.00	-0.01	0.00	0.11	0.37		0.02	0.30
	max	0.36	0.77	0.06	0.46	0.60	0.83		0.16	0.63
	median	0.000	0.150	0.005	0.120	0.335	0.715	0.085	0.600
	mean (sd)	0.08 ± 0.16 0.24 ± 0.30 0.02 ± 0.03 0.15 ± 0.17 0.34 ± 0.16 0.68 ± 0.16 0.09 ± 0.05 0.54 ± 0.13
		Anarchy	Democracy	Cascade	gCascade		Niche		pNiche
	Internal clustering validation							
	response	38278(<0.001) 36408(0.0021)	40024(<0.001) 35983(0.0044) 37188(<0.001) 38100(<0.001)
	effect	36683(0.0013)	37300(<0.001) 39164(<0.001) 36708(0.0013) 36448(0.002)	38188(<0.001)
	Abiotic niche similarity								
	response	0.21(<0.001)	0.13(0.0014)	0.13(<0.001)	0.16(<0.001) 0.23(<0.001)	0.16(<0.001)
	effect	0.21(<0.001)	0.12(0.0033)	0.18(<0.001)	0.24(<0.001) 0.07(0.065)	0.15(<0.001)
	Eltonian niche similarity								
	response	0.04(0.29)	0.1(0.015)	0.15(<0.001)	0.09(0.03)		0.12(0.0039)	0.13(0.0011)
	effect	0.04(0.31)	0.11(0.0052)	0.2(<0.001)	0.08(0.06)		0.08(0.041)	0.15(<0.001)
	Filtered prey similarity								
	response	0.14(<0.001)	-0.03(0.39)	0.34(<0.001)	-0.11(0.0052)	0.13(0.0013)	0.03(0.48)
	effect	0.13(<0.001)	0.02(0.59)	0.31(<0.001)	-0.09(0.033)	0.05(0.25)	0.08(0.035)

2: Summary of trophic network structure inference performances using two architectures: Additive abiotic and biotic effects, intersection of requirements (reported in the main text), with associations at the species level or the group level (by sharing embeddings within prior trophic groups). Metrics are computed taking in turn the potential MW (metaweb) and the realized RN network as ground truth. We highlight the best median score for each metric and reference network.

Table 5 .

 5 3: Structural regularities captured by the response and effect embeddings, for each food web topology.

  ± 0.243 0.912 ± 0.102 0.818 ± 0.317 GLM 0.411 ± 0.234 0.681 ± 0.186 0.519 ± 0.389 GBM 0.552 ± 0.281 0.753 ± 0.238 0.302 ± 0.267 RF 0.646 ± 0.247 0.816 ± 0.145 0.250 ± 0.314 Table 6.2: Predictive performances distribution over taxa for the proposed multi-task architecture (MTEC) and single species distribution models (GBM, GLM, RF).

	Model	TSS	ROC-AUC	Eval Recall
	MTEC 0.746		

Land cover response groups In

  the PCA projection of the responses, the first two components explained about ∼ 80% of the variation. The first axis (62% of variance) positioned modeled taxa in the gradient from pastures to forests. The clustering algorithm applied to all dimensions identified six response groups (Fig 6.7), three of which were associated with distinct land cover classes: forests, pastures and inland wetlands. Taxa with affinities to shrub and herbaceous vegetation were divided into two groups on the forest-to-pasture gradient: scrub woodlands and meadows. Another intermediate group was identified for species from wet grasslands.

	Land cover class	Proportion (%) of calibration set	%Epigeic %Endogeic %Anecic
	Forests	24	85	11	4
	Scrublands &				
	Open-space herbaceous	20	16	44	40
	vegetations				
	Pastures	42	30	41	29
	Agricultural lands (arable, permanent crops)	5.3	8	43	49
	Inland wetlands	5.3	38	38	24
	Table 6.3: Median of ecological categories assignment probabilities amongst observed taxa in various land
	cover types.				

  The local phylogenetic diversity reached its maximal values around the "Côte d'Azur" and at the end of Brittany, two areas colonized by the exotic Microscolex species. This genus belongs to the Acanthodrilidae which is an ancient family, a lineage far away from French species

that are mostly dominated by Lumbricidae and Hormogastridae. Additionnaly, it is now recognized that several clades exist within peregrine Microscolex species that should modify a bit the observed pattern

[START_REF] Emilia Rota | Green light to an integrative view of microscolex phosphoreus (dugès, 1837)(annelida: Clitellata: Acanthodrilidae)[END_REF]

. In addition, high phylogenetic values in Massif Central, Western Pyrénées and North meet the distribution of the riparian Haplotaxis gordioides

(Hartmann, 1821)

. The species is the furthest clade (cf. phylogenetic tree Fig 6

.

2) from the rest of the earthworm families in France.

  Annual total precipitation approximates the total water inputs and is therefore useful when ascertaining the importance of water availability to a species distribution.This index provides total precipitation during the (wettest, driest, warmest, coldest) three months of the year, which can be useful for examining how such environmental factors may affect species seasonal distributions.

	properties	chemical	Physical and									Precipitation								
	Carbon-to-nitrogen ratio Ratio of organic carbon quantity (mg/Kg) to nitrogen quantity (mg/Kg)	Carbon (mg/Kg soil) Quantity of organic carbon per kg of soil	pH_H2O Acidity level (x10) <7: acidic, 7: neutral, >7: basic	Quarter (mm)	Precipitation of Coldest	Quarter (mm)	Precipitation of Warmest	Quarter (mm)	Precipitation of Driest	Quarter (mm)	Precipitation of Wettest	variability of precipitation.	(%) provides a percentage of precipitation variability where larger percentages represent greater	Precipitation Seasonality Since species distributions can be strongly influenced by variability in precipitation, this index	Month (mm)	Precipitation of Driest	Month (mm) the year influence a species potential range.	Precipitation of Wettest The wettest and driest month precipitation are useful if extreme precipitation conditions during	(mm)	Annual Precipitation
	12.15 ± 3.44	4,266 ± 4,509	63 ± 11	209 ± 52	186 ± 50	161 ± 44	243 ± 49		18 ± 9		46 ± 16	89 ± 18	808 ± 152
	11.67 ± 2.13	3,223 ± 1,964	65 ± 8	199 ± 37	167 ± 48	154 ± 43	274 ± 53		22 ± 10		48 ± 15	97 ± 19	821 ± 148

Land use Land cover (Corine Land Cover nomenclature)

  Land cover is the physical material at the surface of the earth. Land covers include grass, asphalt, trees, bare ground, water, etc.

		5.1 ContinWater	4.2 CoastalWet	4.1 InlandWet	3.3 OpenSpacNVeg	3.2 ScrubHerbVeg	3.1 Forest	2.4 HeterAgri	2.3 Pasture	2.2 PermaCrop	2.1 Arable	1.4 ArtifVeg	1.3 MineDump	1.2 Transport	1.1 Urban	sediment	organic	metamorpho	igneous	glacial	eolian
	1 Statistics presented: Mean ± SD ; %	Continental water: water courses, water bodies 0%	Costal wetlands: salt marshes, salines, intertidal flats 0.3%	Inland wetlands: marshes, peat bogs 5.3%	Open spaces with little to no vegetation: bare rock, beach, burnt areas, glaciers 1.6%	Shrub and/or herbaceous vegetation associations: grassland, moors, scrubland, woodland. 20%	Forests: including broad-leaved, coniferous, or mixed 24%	Heterogeneous agricultural areas: associations of permanent/annual crops, agroforestry, etc. 0%	Pastures: land covered with grass and other low plants suitable for grazing animals. 42%	Permanent crops: vineyards, fruit trees, olive groves, etc. 3.1%	Arable lands: irrigated, non-irrigated and rice-fields 2.2%	Artificial, non-agricultural vegetated areas: leisure facilities, green urban sites 1.0%	Mine, dump, and construction sites 0.1%	Industrial, commercial and transport units: roads, ports, airports, etc. 0%	Urban fabric 0%	Sedimentary rocks (chemically precipitated, evaporated, or organogenic or biogenic) 13%	Organic materials 7.6%	Metamorphic rocks 16%	Igneous rocks 29%	Unconsolidated glacial deposits/glacial drift 20%	Eolian deposits 0.4%
		0.3%	0.6%	<0.1%	1.0%	5.9%	25%	13%	6.3%	4.2%	26%	1.6%	0.4%	1.2%	14%	4.5%	15%	7.2%	20%	29%	<0.1%

Table 6 .

 6 .5.Leaf C:N ratio Litter C:N ratio Litter decomposition rate Litter Nitrogen content Litter Tannin content 5: Functional traits of observed trees in forest sites.

	Abies sp.	1.75	4.2	1.4	n.a
	Acer campestre	1	13	3	n.a
	Acer pseudoplanatus	1	20	3	n.a
	Alnus sp.	0.5	11	3	n.a
	Betula pubescens	1	10	5	3
	Buxus sempervirens	n.a	5	n.a	n.a
	Carpinus betulus	2	16	3	n.a
	Castanea sativa	2	10	1	n.a
	Corylus avellana	1	12	n.a	n.a
	Fagus sylvatica	5	20	6	n.a
	Fraxinus excelsior	2	13	n.a	n.a
	Ilex aquifolium	n.a	13	1	n.a
	Larix decidua	8	11	1	n.a
	Picea abies	2	20	7	2
	Pinus nigra	n.a	6	1	n.a
	Pinus silvestris	4	34	9	3
	pinus.silvestris	4	34	9	3
	Populus sp.	n.a	3	4	n.a
	Prunus avium	2	12	1	n.a
	Prunus spinosa	n.a	12	1	n.a
	Quercus coccifera	1	2	1	n.a
	Quercus ilex	1	13	2	n.a
	Quercus pubescens	n.a	2	1	n.a
	Quercus robur	1	24	3	n.a
	Quercus sessilifolia	n.a	6	1	n.a
	Quercus sp.	1	9	2	n.a
	Quercus suber	1	4	3	n.a
	Robinia pseudoacacia	1	10	2	n.a
	Salix alba	n.a	10	n.a	n.a
	Ulmus minor	n.a	3	1	n.a

Tout cela constitue un cadre propice au développement de méthodes de fouille de données de la biodiversité afin de(1) comprendre les facteurs qui déterminent la répartition observée des organismes vivants ;(2) prédire leur réponse aux conditions environnementales changeantes. Cette thèse s'inscrit dans ce contexte interdisciplinaire.En adoptant les théories de l'assemblage des communautés et des niches écologiques comme cadre conceptuel, nous présentons un cadre méthodologique pour l'analyse des données d'occurrence multi-espèces. Ensuite, nous illustrons son utilité par le biais de trois applications concrètes.En premier lieu, nous abordons le problème de la recommandation des espèces en fonction de leur localisation géographique, appliqué aux données de végétation de l'application mobile Pl@ntNet. Nous avons évalué deux architectures alternatives rendues possibles par notre cadre méthodologique pour cette tâche : un réseau neuronal convolutif appliqué aux rasters environnementaux uniquement, et une architecture à base d'embeddings appliquée aux occurrences animales.En second lieu, nous présentons un nouveau cadre pour l'inférence d'associations asymétriques et bidirectionnelles à partir de co-abondances via une décomposition réponse-effet des réseaux de dépendance. Nous avons évalué notre proposition par rapport aux méthodes d'inférence de réseau les plus récentes dans le cadre d'une expérience de simulation, puis nous avons appliqué l'approche à l'analyse des comptages de plantes alpines sur un gradient méso-topographique.En troisième lieu, nous avons étendu les modèles joints de distribution d'espèces afin de prendre en charge des descripteurs environnementaux riches et des réponses non linéaires à l'aide de réseaux neuronaux multitâches. Nous avons utilisé des variables latentes pour modéliser les associations d'espèces. Le modèle a été appliqué à l'étude des vers de terre de France et leurs associations, puis à la prédiction de la répartition géographique de leur diversité. Enfin, nous avons illustré sur le même cas d'étude l'utilisation d'outils d'interprétabilité pour démêler les préférences abiotiques capturées par le modèle joint.

R package glasso https://CRAN.R-project.org/package=glasso

Source code: https://github.com/SoccoCMOS/GeoLifeCLEF2019-GrinnEltonNet

https://www.tensorflow.org/guide/keras

Ciment cluster, UMS GRICAD, Grenoble Alpes University

(a) Overall graphical model. (b) Node-wise neighborhood inference.

The framework is implemented atop the Tensorflow

2.0 and Keras stack, and uses automatic differentiation.

Python library scikit-multilearn: http://scikit.ml/
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Comparative evaluation

We fit the proposed model on species counts using a negative binomial distribution, with exponential link, and an additive aggregation function to combine abiotic and biotic drivers. We selected the best hyperparameters using 10 fold cross-validation and the poisson deviance as a performance metric.

For comparison, we also fitted 5 other well-established or emergent methods commonly used in community ecology to infer associations from count data. In Table 5.1, we indicate, for each method, the probabilistic model it relies on, along with the data requirements, the training/inference configuration used to fit the model, as well as any additional post-processing.

For all methods, we discretized the associations learnt by each method to obtain the corresponding association classes (positive, negative, neutral), which we compared against the ground-truth of the simulated association classes using standard multi-class performance metrics (recall, precision, F1-score). The recall measures the percentage of associations of a specific class correctly recovered by the model, whereas the precision quantifies the percentage of true associations amongst those classified as the specified class. The F1-score is computed as the harmonic mean of recall and precision. A higher recall indicates lower false negatives whilst higher precision indicates lower false positives.

We compare the performances between inference methods and across simulation scenarios.

CHAPTER 

Traits and ecological categories

We extracted 25 morpho-anatomical traits from the database of soil invertebrate functional traits [START_REF] Betsi | Database for functional traits of soil invertebrates[END_REF]. We filled missing information by aggregating information from closely related taxa. We completed the dataset with a fuzzy classification of earthworms into ecological categories triangle with the three poles:epigeic, endogeic and anecic [Bottinelli et al., 2020] .

CHAPTER 6. EARTHWORMS BIOGEOGRAPHY AND DIVERSITY

Model training

In the following, we detail the steps followed to preprocess the data, train the model and select the optimal hyperparameters.

Feature preprocessing

We applied a one-hot-encoding to categorical features and standardize numerical and ordinal features. Due to the large number of abiotic covariates and responding taxa, we investigated different feature selection/transformation approaches: (1) End-to-end (learnt transformation); ( 2) preprocessing via correlation-based selection using the Variation Inflation Factor; (3) preprocessing via principal component analysis.

Learning architecture To find the optimal configuration of network complexity and transfer amongst prediction tasks, we varied the shared feature learning network depth, and the width (number of neurons) of each layer.

Dealing with imbalance Due to the imbalance of presences and absences, random sampling of observations may result in training sets that contain only absences for rare taxa. To circumvent this issue and to enable a robust estimation of the abiotic niche for all taxa, we used Algorithm 3 that ensures at least 5 occurrences for each taxa in the sampled set i-e min_occur = 5. In addition to ensuring all taxa occur in each training set, we also weighted the individual likelihood presences (positive loss) with their odds relatively to absences (negative loss) (Eq 6.3). Last, we initialize the intercept of the mean predictions to the logit-prevalence (Eq 6.5) of each taxa, to prevent the model from fitting the bias in the data. The rest of the parameters were initialized using the glorot-uniform initializer [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF].

m si : Probability of taxa occurrence in observation site (6.2)

Negative loss

: Weighted binary cross-entropy (6.3)

Positive weight of taxa prediction task (6.4)

Training configuration We fit the model using the adam optimization algorithm for at most 400 iterations (epochs), using a batch size of 32. To prevent overfitting, we used early-stopping to stop the training whenever the objective function of the validation set stopped improving after more than 10 epochs.

CHAPTER 6. EARTHWORMS BIOGEOGRAPHY AND DIVERSITY 6.5 Supplementary Materials Table 6.4: Grid search cross-validation scores and model selection. Feature learning architecture is represented by an array whose size gives the depth of the network and elements represent the width of its layers (from the input to the output). We highlight the retained model (colored row) and the best performances for each feature preprocessing strategy. 

Dataset

Full predictive performances