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Chapter 1

INTRODUCTION

This dissertation is positioned in the crossroad between computer vision and robot con-
trol and documents my principal research works and accomplishments pertaining to my
Accreditation to Direct Research - translated from Habilitation à Diriger des Recherches
(HDR) - covering the period from the beginning of my post-doctorate activities in 2010
up to 2022 and my current enrollment as Associate professor in IMT Atlantique and co-
leader of team RAMBO, CNRS Lab-STICC. The scope of the dissertation is encompassed
by section 27/Informatics of the French National University Council - Conseil National
des Universités (CNU) - and more particularly, the domain of artificial intelligence.

1.1 Biography sketch

Figure 1.1 depicts the stages of my career path during the concerned period, namely,
from 2010 up to time of writing in 2023. The chronology of these works starts in the
field of vision, by the culmination of research in 3D shape recognition, a line of research
emanating from my PhD [1]. In the beginning of my first post-doctorate in the University
of Rome ”La Sapienza” in Italy (group ALCOR), I contributed a 4 degree-of-freedom
(for translation and scale) pose normalization approach, inspired from the domain of
incremental learning and novelty detection [2], [3]. In essence, it amounted to the detection
of minor shape parts and articulations and their treatment as novelties as a pre-requisite
for more robust shape matching. This later instigated the creation of the first, publicly
available ground-truth dataset for canonical semantic pose normalization and evaluation
[4]. In conjuction to this fulfillment, my post-doctorate in Sapienza in the 2010 − 2012
period sets a milestone in the extention of my research horizons to the domain of robotics,
via my involvement to the EU project NIFTI, for human robot-teaming in Urban Search
and Rescue Scenarios (USAR). In the context of this activity, my research was focused
in the domain of traversability analysis for unmanned ground vehicles [5] and negative
obstacle negotiation [6]. The former work constituted an extensive literature essay that
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Chapter 1 – Introduction

University of Athens & NCSR ’Demokritos’
2005-2009

University of Rome ’La Sapienza’
2010-2012

INRIA Grenoble
2012-2013

INRIA Sophia-Antipolis
2013-2014

ENSTA ParisTech
2014-2016

IMT Atlantique, Brest
2016-...

Figure 1.1: Overview of professional sojourns in different research and academic institu-
tions, from doctoral studies up to date.

was undertaken to highlight challenges and promising directions for improving the 3D
mobility of ground robots, motivating subsequent project works and further beyond. The
pioneering USAR mission of a human-robot team in Europe of which I was the UGV pilot,
to the earthquake-hit area of Emilia Romana in Italy [7] in 2012 echoes the eminence of
those works in the robotics community and my contribution to their fulfillment.

Following on to 2012 to 2014, I pursued my post-doctorate works within the French
research landscape in the context of the multilateral, INRIA research project PAL (Person-
ally Assisted Living), where I federated research activities between the centers of INRIA
Grenoble (team EMOTION) and INRIA Sophia-Antipolis (team LAGADIC). The core
of my researh consisted in the development of socially compliant, indoor robot behaviors,
namely, accounting for the presence of humans alongside robot operation. In this context,
I proposed an analogy between implicit function learning and human social interaction
mapping [8], that could be employed to regulate human-robot encounters [9]. The latter
work was seminal in proposing to employ non-stationary, skew-normal probability density
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1.2. Organization of dissertation

functions for a generic representation of human proxemic distances. On the basis of that
framework, I then established a graphical-model based approach [10] for the detection of
3D passages (doors or staircases) in indoor environments, based on spatial human activity
cues on top of occupancy maps.

My last post-doctoral sojourn is realized in the period from 2014 to 2016 when I joined
ENSTA ParisTech at Palaiseau (team U2IS and team INRIA FLOWERS), conducting
research in the context of project ROMEO2, led by Aldebaran Robotics. My involvement
contributed to the development of light-weight, unsupervised semantic object mapping
[11] that capitalized RGB-D sensory data and to the deduction of scalable, object label
fusion under different sensing hypotheses [12].

Since my enrollement in Télécom Bretagne in 2016 and currently IMT Atlantique, my
research activities further encompass the use of smart space technologies, deep learning
and robot learning more broadly, for vision and navigation in 3D environments. Among
them, the most notable recent achievement consists in the development of reinforcement-
learning based, staircase negotiation learning and zero-shot transfer to articulated tracked
robots [13]. These results are pioneering in terms of task complexity, cross-platform testing
and impact in the domain of indoor, 3D navigation learning. Building on top of this work,
a software testbed has been developed and made publicly available to the community,
allowing to train and benchmark navigation controllers in simulated environments, via
incremental domain randomization [14]. Several other parallel works in domains that
range from recognition of activities of daily living [15], 3D semantic mapping [16], human
posture analysis [17], imitation learning [18] and class-incremental learning [19] attest the
central role of deep-learning in my most recent and ongoing research activities.

1.2 Organization of dissertation

The contributions of the dissertation are reflected through its title that reveals from one
hand our research scope (robot vision and navigation) and the operational domain of
interest (3D environments) on the other hand. The contributions of the manuscript are
thus arranged as shown in Figure 1.2.

This arrangement is chosen to facilitate reading based on one’s background, although
the limits between vision and navigation tend to become less pronounced in view of the
latest scientific advances. This justifies the reason why some contributions presented in
Chapter 3 may also concern vision although the task of interest in that chapter is navi-
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Chapter 1 – Introduction

Figure 1.2: Arrangement of the dissertation contributions.

gation and control. Finally, an effort has been made to vulgarize the contents of grouped
contributions by employing a presentation structure composed of a list of Highlights,
a Problem Summary, a Contribution Summary and a Results section, whenever
applicable.

Finally, the dissertation presents a description of my research roadmap and perspec-
tives in Chapter 5 followed by a conclusion in Chapter 6, a summary of teaching activities,
a summary of coordination-direction activities, a detailed curriculum vitae, a list of mul-
timedia resources and bibliography.
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Chapter 2

VISION IN 3D ENVIRONMENTS

The works presented in this chapter fall into to the so-called high-level vision area of com-
puter vision, as prescribed by the taxonomy set by Forsyth and Ponce in [20], where higher
denotes closer to the end of the human (or artificial) visual processing pipeline. Vision
in 3D environments covers a broad variety of research topics, from computer graphics,
sensing, modelling, rendering, visualization and applications such as autonomous sys-
tems, robotics, cultural heritage, virtual and augmented reality. The growing plethora
of benchmarks dedicated to 3D data (e.g. [21], [22], [23], etc.), software tools, consumer
devices with 3D capturing capabilities or 3D printing, highlight a continuing scientific
and industry-wise interest for technologies that rely upon the exploitation of 3D data via
vision.

The works presented in this chapter are more closely linked to cognitive tasks such
as object detection and recognition and scene understanding more globally. These tasks
may not strictly require an accurate 3D reconstruction of the environment but can benefit
if it is available. In this context, it is assumed that the reconstruction of 3-D models of
objects from a collection of 2D images (cf. Ma et al. [24]) is already available and exploited
otherwise vision is performed independently in each scene sample.

The mode of presentation of the contributions has been chosen such that the various
contributions are described with an increasing order of challenges encountered in terms
of: (i) quality, quantity and dimensionality of the processed data and (ii) degree of un-
certainty/entropy. I begin with Section 2.1 by presenting a novel representation of 3D
objects that is more adapted to translation and scale normalization, by being robust to
articulations or outlying parts that are known to bias the canonical pose of a 3D object.
Object normalization often constitutes a crucial step in tasks such as registration, recogni-
tion, view generation/sampling, etc. This contribution follows directly after the end of my
PhD and completes my earlier contributions on rotation normalization. The effectiveness
of the approach is demonstrated quantitatively, by improving object search and retrieval
performance from digital libraries.
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Chapter 2 – Vision in 3D environments

Following on to Section 2.2, I present earlier works pertaining to robot vision and
static environment mapping, by making use of photo-metric and/or geometric sensory
data of real scenes, in the context of robot exploration. This part treats aspects related to
representation of multi-modal sensory data, noise filtering, recognition, continual learning
of objects and accounting for robot or environment motion in the decision process, and
serves as a precursor to the last Section 2.3, that deals explicitly with mapping of a
dynamic environment, as a consequence of human presence and activity alongside robot
operation. The term mapping is employed to denote the fact that the vision task is either
performed directly by a mobile robot or that the outcome of the mapping task is destined
to be used for the purpose of robot navigation in human-robot encounters. We thereby coin
the term social mapping to differentiate it from metric, topological or semantic mapping
that typically concerns the static environment.

2.1 3D pose normalization

3D pose normalization accounts for the normalization of the translation, scale and rotation
of 3D objects, namely, of the 7th degree-of-freedom (DOF) object pose represented as a
similarity transformation (cf. Table 3.2 in [25]). The need of normalization stems from the
fact that the true pose of 3D objects is generally considered unknown or set with respect
to an arbitrary reference coordinate frame.

It is therefore necessary, for example, in content-based retrieval when shape match-
ing is based on the establishment of correspondences between the surfaces of objects and
achieving invariance to isometric transformations, or further up to non-isometric trans-
formations if scale is irrelevant. Alternatively, it can be used to reduce the search space
for obtaining a registration between two shapes, by providing an initial rough solution,
favoring the convergence of Iterative-Closest-Point (ICP) methods [26]. Finally, it can also
serve in Deep Learning (DL) and neural network architectures operating on voxel-grids
that lack the property of invariance to 3D pose.

My contributions in this field concern a method (see section 2.1.1), a prototype grouth-
truth (see section 2.1.2) and reside on publications [3], [2] and [4].
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2.1. 3D pose normalization

2.1.1 Decision-surface representation of 3D shapes

1. The canonical object translation and scale are computed by
discarding object outliers or articulations by one-class SVMs.

2. The improved object surface correspondence favors content-
based retrieval in terms of precision and recall.

Highlights

Problem summary Translation normalization is ordinarily addressed by computing
the centroid of a 3D object and by translating it to coincide with the coordinates origin. For
the majority of 3D objects, this method is effective and objects are well normalized with
respect to translation. However, there are cases where this method is not appropriate such
as articulated 3D objects or objects with isolated-outlying or extruding parts. Such cases
are demonstrated in Fig. 2.1 (a) and (b) respectively. We would intuitively agree that the
centers of the two objects in either case should coincide (in a semantic context). However,
by setting the geometric centroid of the surface of an object as its center, we obtain a result
that is perceptually inconsistent. As it is evident from the examples, a small change in the

(a) (b) (c) (d)

Figure 2.1: (a) 3D object pairs before normalization and (b) after conventional translation
and scale normalization, (c) object whose scale is normalized to fit in the unit cube and
(d) scale normalized version of its deformed version with elongated carriage axis.
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Chapter 2 – Vision in 3D environments

shape of 3D objects can have significant impact on the resulting translation normalization
which may in turn negatively affect scale and rotation normalization. Clearly, we expect
that the perturbation of the centroid of the surface of an object becomes more pronounced
as the amount of articulation or extrusion increases.

Scale normalization is ordinarily addressed by setting the scale of a 3D object to fit
within a bounding volume of fixed size (unit cube or unit sphere), or to a size proportional
to the average distance of the surface of an object from its centroid. The performance of the
first method is problematic in the presence of outlying parts that will cause an undesired
shrinking of the entire object in order to make it fit within the bounding volume. A
characteristic example is shown in Fig. 2.1 where the objects are scaled so as to fit within
the unit cube. The object in Fig. 2.1 (d) is the same in every aspect as the object in Fig.
2.1 (c) not considering the elongated carriage axis. However, the scale normalized versions
of the two objects are significantly different.

Contribution summary We posit the following hypothesis:

The vast majority of objects is characterized by a central, dominant component
that can be viewed as a single class to which we seek to determine which 3D
object points belong, the rest being considered as outliers or novelties.

Therefore, instead of accounting for the entire distribution of 3D points belonging to an
object, its center is taken as the centroid of a 3D distribution of points estimated by
employing a one-class detection method.

The desired distribution is delimited by the boundaries of a decision function fs(x) =
sgn(f(x)) in the observation space R3, where sgn is the sign operator, giving +1 if the
input is positive, −1 if it is negative and 0 otherwise.

The centroid of the distribution is obtained by:

c = 1
V

∫ ∫ ∫
fs(p)≥0

pdxdydz (2.1)

where p = (x, y, z) ∈ R3 and V =
∫ ∫ ∫

fs(p)≥0 dxdydz.
We tested this idea using One-Class Support Vector Machines (OC-SVM) [27], though

other methods could be analogously employed. In the case of OC-SVM, the unknown
function f(x) is obtained by solving for the corresponding optimization problem (cf. eq.
(1)-(2) in [3]). The two parameters γ and v of OC-SVM can be used to control: (i) the

14



2.1. 3D pose normalization

Figure 2.2: Comparison of translation and scale normalization using OCSVM (top row)
against conventional use of the centroid and the mean surface distance (bottom row).

over-fitting of the decision surface to the original distribution and (ii) the degree by which
we include or discard object outliers, extrusions or articulations (cf. Figure 4 in [3]).

After translation normalization, we can use the computed distribution that corre-
sponds to the 3D object to perform scale normalization. To normalize the scale we esti-
mate the average distance d of the distribution of the object from its center and scale the
object so that this distance is unit. The average distance d is computed as:

d = 1
V

∫ ∫ ∫
fs(p)≥0

‖ p− c ‖ dxdydz (2.2)

where ‖ . ‖ denotes the L2 norm.

Results The improved object surface correspondence leads to improved object matching
in content-based retrieval in three different benchmarks, with an average performance as
shown in Table 2.1 (cf. Table 1 of [3]). Figure 2.2 shows indicative examples comparing
conventional translation and scale normalization against the proposed approach.

Method Nearest-Neighbor first-tier second-tier
PANORAMA-OCSVM 92.7% 58.8% 69.9%
PANORAMA 91.4% 56.8% 67.3%

Table 2.1: Average performance of content-based retrieval employing OC-SVM based nor-
malization (PANORAMA-OCSVM) against conventional retrieval (PANORAMA [28]).
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Chapter 2 – Vision in 3D environments

2.1.2 The CAnonically Posed 3D Objects (CAPOD) Dataset

Problem summary The gain of performance in content-based retrieval provided an
indirect way for promoting my proposal for robust translation and scale normalization.
This was due to the fact that at the time of publication of those results, there was a lack
of a test-bed or ground-truth for objects of the same class that appear in their canonical
3D pose, that prevented the comparison of alternative methods for pose (translation, scale
and rotation) normalization.

Contribution summary To construct such a test-bed, we had to alleviate the subjec-
tivity in semantics and error proneness issues of a conventional approach where 3D objects
are first collected, then classified and finally pose normalized. Instead, the construction
protocol is summarized as follows:

1. Selection of categories of 3D objects that span a desired semantics range which
depends on the desired categorization resolution.

2. Acquisition of a reference 3D object for each category which captures the semantics
of the particular class.

3. Generation of 3D object instances for each class by applying permissible modi-
fications of the corresponding reference object, such as articulations, extrusions,
suppressions, additions and deletions of shape parts (see Figure 2.3).

The CAPOD dataset [4] contains 180 object instances uniformly distributed in 15
classes and is downloadable from https://sites.google.com/site/pgpapadakis/CAPOD.

Figure 2.3: Repertoire of shape deformations used to produce object class members.
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2.2. Static environment mapping

2.2 Static environment mapping

Mapping an environment allows robots to be deployed in previously unknown workspaces,
marking this skill as a primary element in the integration of robots into real-world, human-
populated environments. Conventionally, the problem of environment mapping is treated
through a decomposition into layers where each represents a desired abstraction level,
ranging from the low-level 2D/3D metric Simultaneous Localization and Mapping (SLAM)
[29] and topological [30] to the semantic [31] and instance-based level. Also, the process of
mapping is incremental following the acquisition of robot data and needs to account for
noise, outliers as well as novelties that can be encountered in the unknown environment.

As such, mapping is generally a computationally demanding process and the role of
the robot in the respective environment (e.g. obstacle avoidance or negotiation, search
or exploration, surveillance or inspection, etc) prescribes a specific, constrained type of
mapping to be performed, along with the sensors to be used.

Besides [32] which addresses dense metric SLAM, the various contributions presented
in the following sections are all concerned with the highest level of abstraction in environ-
ment mapping, namely semantic or instance-based and reside on publications [19], [10],
[6], [11], [12], [16], [33] and [34], following my inaugurating work in the domain on topolog-
ical mapping [35]. They were further promoted via the following national or international
presentations:

• P. Papadakis, Semantic Mapping for Indoor Environments, Journées Nationales de
la Recherche en Robotique (JNRR), 2015, Cap Hornu, France

• P. Papadakis, From shape descriptors to real world object-based mapping in robotics,
2015, LAAS-CNRS, Toulouse, France

• P. Papadakis, Object Classification in Indoor RGB-D Scenes using Projective Light
Diffusion Image Expansion, GDR-ISIS, 2016, Télécom ParisTech, Paris, France

• P. Papadakis, Object Classification in Indoor RGB-D Scenes using Projective Light
Diffusion Image Expansion, Lab-STICC, 2016, Télécom Bretagne, Brest, France

• P. Papadakis, Generic Object Discrimination for Mobile Assistive Robots using Pro-
jective Light Diffusion & Binding Human Spatial Interactions with Mapping for En-
hanced Mobility in Dynamic Environments, University of Adelaide, Adelaide, Aus-
tralia, FASIC Workshop 2018.
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Chapter 2 – Vision in 3D environments

2.2.1 Object discrimination and multi-hypothesis fusion

1. Early fusion; we propose a novel, discriminative object rep-
resentation termed as projective light diffusion image (PLDI)
which can encode surface orientation, depth as well as photo-
metric characteristics.

2. Late fusion; we compare multi-view hypothesis fusion schemes
for 3D object classification under observation (in)dependence
and in consideration of the robot observational capacities.

Highlights

Problem summary 3D object discrimination is indispensable for indoor robots.
The fact that skills such as manipulation, semantic mapping and navigation are directly
dependent on this capability explains its prevalent role, further promoted by the advent of
sensors that provide synchronized photometric and geometric (RGB-D) information. The
preponderance of RGB-D data for object perception can be observed by the creation of nu-
merous benchmarks [36], [37] and international contests [38]. Despite the abundance and
richness of information captured by RGB-D data, however, there are several challenges
to account in RGB-D based object perception by robots, such as differences in domain
statistics between colour and 3D data or real and synthetic data, quality and sparsity dif-
ferences, scene occlusions, not to mention limited on-board computational power. Figure
2.4 shows such problems in different examples.

Differences in domain statistics imply that objects that are similar in 3D geometry
might diverge visually and vice versa or that value ranges are different between pixel
intensities and depth. Then, the quality of color data is consistently superior compared to
3D and of higher resolution, while 3D data are easily corrupted by environmental noise or
sensing conditions, yielding either noisy depth estimations or undetermined (null) values
[39]. Finally, a captured color image is intrinsically associated with the 2D coordinate
frame of the picture and a regularly spaced grid, whereas a 3D point cloud can be reviewed
from any angle and does not impose a space discretization.

These non-trivial differences instigated the majority of researchers to favor distinct
pipelines for RGB and 3D data processing, opting for late fusion of the two pipelines, i.e.
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2.2. Static environment mapping

in the classification stage. Alternatively, to alleviate these challenges a robot could ideally
rely on light-weight and at the same time discriminative RGB-D object representations,
that capitalize complementarities between colour and geometry and are robust to noise.

Finally, due to limits in the sensor field-of-view, occlusions or obstacles, partial and
more broadly multi-view based object discrimination is crucial in robot applications. In
turn, inspecting an object from different view-points requires the development of multi-
hypothesis or decision-level fusion mechanisms (alternatively referred as late fusion),
as not all viewpoints are equally informative and each introduces its own bias to a certain
class. The performance of a late-fusion approach depends on the underlying data distri-
bution and object class semantics but also on the geometric dependency of viewpoints,
extracted either via knowledge about sensor or object motion.

Contribution summary For the first problem pertaining to 3D object discrimination,
we adopted an early fusion approach for color and depth in order to : (i) exploit local
correlation existing between image intensities and 3D geometry for noise filtering and
edge preservation and (ii) reduce processing time by subsequently processing a single
representation for feature extraction instead of separate pipelines.

We use the 4-channel image of an RGB-D frame as a filtering guide (see Figure 2.5 (a))
and employ three kernels that operate within the color, depth and the 2D image domain
space respectively. The operation resembles that of the conventional bilateral filtering but
differentiates with respect to the input and desired output image, known as joint bilateral
filtering (JBF) [40]. We employ JBF by treating the RGB-D image as a guide in order to
obtain a reconstructed depth and ignore pixels with undetermined depth (see Figure 2.5

Figure 2.4: Challenges encountered in RGB-D object perception induced by domain dif-
ferences (left) or viewpoint-dependent class interpretation (middle and right)
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Chapter 2 – Vision in 3D environments

Figure 2.5: Early fusion/filtering pipeline; (a) Raw depth image and RGB image, (b)
reconstructed depth image and (c) projective light diffusion image. Emergent depth, pho-
tometric and surface orientation scene characteristics captured by PLDI are partially
highlighted for emphasis (best viewed in color).

Figure 2.6: Iterative JBF-based filtering for progressive 3D reconstruction

(b)). Multiple iterations of the JBF filtering can be performed in order to extend depth
reconstruction until there are no missing depth values (see Figure 2.6). Finally, the 3D
surface orientation of the reconstructed depth image is computed by backward projection
of depth pixels, computation of the surface orientation tensor and light source emulation
at the center of the camera (see Figure 2.5 (c)), making use of the known camera intrinsics.

We term this process as Projective Light Diffusion and the resulting image as PLDI.
Thanks to the use of RGB and depth kernels in the filtering and depth reconstruction
and the derivation of the 3D surface orientation with respect to the camera, we manage
to jointly encode depth, photometric and surface orientation features in a single-channel
2D image that we can subsequently use for object discrimination.
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Figure 2.7: Example object and multi-view configuration

For the second problem pertaining to decision-level fusion, we pursued a formulation
of the problem in the form of a Hidden Markov Model (HMM). Accordingly, we defined
: (i) an observation model that jointly assessed the class and the particular viewpoint
from which the object is observed, i.e. the state and (ii) a state transition model that is
normally distributed and centered around the rotational displacement of the sensor around
the object or vice versa. We then compared the performance of 4 in total, class inference
mechanisms of the HMM for an observed object, using a a PLDI-based descriptor.

Results A PLDI-based shape descriptor was proposed and compared against competi-
tive descriptors for 3D shapes, namely, Viewpoint Feature Histogram (VFH) [41], Ensem-
ble of Shape Functions (ESF) [42] and Signature of Histograms of Orientations (SHOT)
[43] and RoPS (Rotational Projection Statistics) which corresponded to the most infor-
mative local 3D shape descriptor based on [44]. Testing the PLDI descriptor on a robot
with an RGB-D sensor as well as in Princeton ModelNet10 [45] revealed a superior
discriminative power, in view of its low dimensionality (cf. Tables VI-VII of [11]). Video
# 4 of the Appendix - Multimedia provides qualitative examples of performance of the
corresponding work.

Using the PLDI-based descriptor for object discrimination in single RGB-D scans, we
devised 4 decision fusion schemes that could account for knowledge of robot/object motion
and employ a voting or winner-takes-all rule (cf.HMM-dep,HMM-indep,MAXS and
MAXC schemes in [12]). Experiments were performed on the ModelNet10 dataset and
for a range of 1−6 viewpoint observations. Knowing that this benchmark contains the 10
most frequently encountered object classes in indoor environments according to [46], the
main finding of the evaluation is of particular importance for 3D robot vision, namely :
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Optimal multi-view object classification resides on observation dependency for
the first couple of views and on observation independence for the rest.

2.2.2 Semantic segmentation of 3D point clouds

3D point cloud data are nowadays ubiquitous in numerous areas such as remote sens-
ing, autonomous vehicles, cultural heritage, video games and more recently, consumer
cell phones, largely thanks to the development of lightweight sensors and accelerated
embedded processing. A complete semantic analysis of a scene (panoptic segmentation)
consists in discovering the underlying structure of classes (semantic segmentation) and
object instances (instance segmentation) that yielded a certain spatial configuration [47].

Similar to images, 3D point cloud segmentation consists in appointing a class label to
each 3D point of the scene [48]. Besides common challenges with image segmentation, 3D
point clouds are characterized by higher levels of noise, non-uniformly distributed data
and higher differences in the scale/size of the contained objects. Last, but not least, the
task of annotating 3D point cloud data is more arduous which reduces their availability
compared to images.

Despite noticeable progress in indoor environments or urban scenes where 3D point
cloud data are more abundant, emerging areas of interest such as industrial site inspection
or remote sensing need to tackle data scarcity and poorer quality. In [16], we identified
such major bottlenecks for the semantic segmentation of 3D point clouds of industrial
sites, namely, increased relative object sizes combined with limited or underrepresented
scene layouts. The very poor generalization ability of current neural-network architectures
suggested that before attempting to learn to segment 3D point clouds, we should revise
the use of the underlying ground-truth data.

Towards this goal, in [49] we promoted the use of synthetic 3D models for data augmen-
tation via a protocol that generated more realistic scene layouts and 3D point sampling,
combined with an artificial coloring learned from unlabeled, real colored data. In this way,
we sought to reduce the domain shift between training data and the targeted application
data, tackle data imbalance and instill implicit knowledge (color) in the parameters of
a neural-network that could help in shape discrimination in cases where 3D geometry
only fails. Quantitative experiments in the S3DIS [50] dataset highlighted the overall
positive effect of the previous steps in semantic segmentation for indoor scenes while an
ablation study revealed the impact of different set-ups. A qualitative example of semantic
segmentation using the proposed approach is provided in Figure 2.8.
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Figure 2.8: Semantic segmentation of an indoor scene. From left to right, ground-truth,
segmentation using the artificially colored point cloud as input and segmentation using
the colorless point cloud.

2.2.3 Incremental learning of objects

Beyond the discrimination of objects to a predefined set of categories, several real-world
applications are characterized by partial knowledge of the set of categories that are en-
countered and/or by computational constraints that limit the capacity of memorization
to a fixed set of exemplars or classes. Typical scenarios concern drones and robots that
need to operate with limited on-board resources and/or asynchronous connectivity to ex-
ternal ones. In this context, objects and classes need to be learned incrementally keeping a
balance between previously and newly acquired knowledge, a problem in neural networks
known as catastrophic forgetting [51]. Various techniques have been since introduced to
tackle this problem [52], namely, experience/memory rehearsal, correction of bias due to
task recency and knowledge distillation.

We proposed a contrastive learning-based, cross-entropy and knowledge distillation loss
used along-side their conventional versions, to learn better features as well as preserve
richer knowledge of the previous tasks [19]. This leads to four losses that are linearly
combined during each incremental step by accounting for the ratio of the number of old
classes to the total number of old and new classes. Experiments performed in CIFAR-
100 [53] and ImageNet-100 [54] benchmarks against competitive methods iCarL [55],
MDFCIL [56] and CO2L [57] show that the proposed method attains a superior average
performance in terms of top-1 accuracy (see Figure 2.9).
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Figure 2.9: Mean accuracy over 10 training trials with random class orderings, as a function
of the number of incrementally learnt classes

2.2.4 Passage detection

1. We perform global and partial passage detection to deal with
variation in object scale or robot proximity.

2. We develop graphical model-based passage detection to
jointly account for static map and human activity cues.

3. We develop a gap detection and traversability assessment al-
gorithm.

Highlights

Problem summary The perception of passages demands particular attention in static
scene mapping as such structures are often poorly or partially observed due to their
increased size or obstruction by humans. With only partial and noisy data, it can become
difficult to assess the true size and geometric pose of a passage such as a door or a
staircase, information that is essential in robot navigation. The presence of a passage may
also not be bind to salient, visible characteristics but may merely be derived by tracing
a human trajectory or be the consequence of an opening towards a spacious area (e.g.
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an opened door). In certain robotic applications a negative obstacle such as a gap that
is sufficiently small to be traversed can also be interpreted as a passage between two
disjoint areas. In this sense, passage detection can be a highly contextual task depending
on static as well as dynamic surroundings, i.e. human presence. In the latter case, the
question to be answered concerns how to make constructive use of human activity cues
which unavoidably interfere in the process of static environment mapping.

Contribution summary We investigated different use-cases where a robot perceives
conventional passages such as staircases and doors or negative obstacles such as gaps that
could be conditionally traversable by a robot.

In the case of conventional passages, we proposed a RANSAC-based approach for
detecting dominant staircase structures in 3D [33] and a complementary rule-based algo-
rithm for extracting local, stair-like structures whose clusters can agglomeratively form
staircases of more general shape and of arbitrary size [34]. Due to the increased scale
of staircases, we note that both paradigms of global as well as local staircase perception
were deemed equally useful, as a robot may encounter a staircase from a far distance as
well as come across it at very high proximity before traversal. Another motivation for
pursuing both paradigms is that changes in scale as a function of distance further impact
the quality and the quantity of 3D data captured by an RGB-D sensor.

Going beyond using cues of the static environment only for perceiving passages, we
subsequently proposed graphical-model based passage (staircase and door) detection [10]
that jointly accounted for metric map (cf.M(u) function in Figure 2.10) and human activ-
ity cues (cf. ISp,t(u) function in Figure 2.10) residing on probabilistic model of proxemics
as presented in [9]. Finally, subsidiary probabilistic graphical models were developed, to
either update space occupancy from human trajectory tracking or filter false positives of
detected humans.

For the case of negative obstacle detection and their potential assessment as pas-
sages, we contributed the fist method at that time in the domain of Urban Search &
Rescue (USAR) [6]. In such adverse, hostile and unconstrained environments, robot oper-
ation requires reliable positive as well as negative obstacle perception to avoid accidents.
Occasionally however, certain positive or negative obstacles may be negotiated (i.e. be
traversed) with safety. To allow real-time performance and timely prevention of unre-
coverable robotic states, our approach relied on morphological image processing for noise
reduction and border following for the detection and grouping of gaps. Upon the detection
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Figure 2.10: Detection of passages via probabilistic graphical models.

of a gap its traversability is assessed as described in Section 3.2.1.

Results Conventional passage detection was performed in a multi-floor office building
of INRIA research center in Sophia Antipolis, using a Neobotix MP-500 robot running the
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Robot Operating System [58] and equipped with Asus XtionPRO Live cameras capturing
synchronized RGB-D images. The accompanied video # 5 of the Appendix - Multimedia
shows a part of the experiments on the base floor where the robot detected passages
through the probabilistic graphical model-based approach, jointly accounting for the static
map and for human activity. Indicative snapshots of staircase perception using all three
different approaches are provided in Figure 2.11. Note that in the case where a staircase
is detected globally, detection is accompanied with the corresponding inclination and/or
size parameters.

Experiments on negative obstacle detection and assessment as potential passages that
a tracked mobile robot could traverse, were mostly conducted in the MonteLibretti fire-
fighter training facility in Italy, recreating the conditions of a car accident within a tunnel
along with debris (cf. Figure 6 of [6]). Variation of different aspects affecting detection
such as processing resolution, distance from sensor, robot pose error or occlusions allowed
to assess the robustness of our approach in different conditions.

These experiments yielded a 100% true positive rate, namely, that true gaps were
always detected, although occasional false positives could appear depending on noise or
other perturbations. This was an acceptable trade-off for the application of interest where
missing a true gap could be fatal for the robot while on the other hand false positives
could only make the robot more conservative. Figure 2.12 provides a snapshot of video # 8
(see Appendix - Multimedia), visualizing the 3D model of the actual tracked robot within
a 3D scan of the tunnel area. It is worth noticing that in contrast to positive obstacles
that protrude inside a scene, negative obstacles are invisible and far more subtle.

Figure 2.11: Detection of staircases following different approaches: (Left) based on domi-
nant 3D plane extraction, (middle) joint analysis of human trajectory on static map and
(right) local-features computation for partial observation.
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Figure 2.12: 3D visualization of tracked mobile robot and its 3D scanning of a tunneled
site, along with detected negative obstacles delimited by different contours.

2.3 Dynamic environment mapping

Following static environment mapping, the next challenge in the deployment of a robot
in human populated environments concerns the capacity to perceive and adapt to the
dynamics induced by human presence. This is essential for human safety and acceptability
of the robot and analogously for ensuring safety and adequate performance of the robot.
Beyond dynamics originating to humans, robots and autonomous vehicles more broadly
need further account for environment dynamics in case they operate outdoors and for
prolonged time periods, for example due to weather or daylight variations. The common
denominator is that mapping is a continuous, incremental and interminable process for
representing environment geometry and appearance along with human state and intent.

My scope will be on human induced dynamics only, thus mapping the dynamic envi-
ronment of a robot involves from one hand the problem of detection, tracking and analysis
of human individuals or groups and on the other hand transposing this information into
robot-centered representations associated to its tasks. This makes it a theme of trans-
disciplinary research at the cross-roads of computer vision, sociology, machine learning
and robotics, with the potential to foster significant advances in human-robot collabora-
tion in fields such as the Industry of the Future (IoF), Hospital of the Future, Ambient
Assisted Living (AAL) and the tertiary sector via service robotics applications.

The contributions presented in the sequel relate to selected matter from publications
[8], [9], [15], [59], [60] and [61] and were partially invoked in the next communications :
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• P. Papadakis, Construction de verité terrain d’activités de la vie quotidienne au sein
du Living Lab de l’IMT-Atlantique, Le Couvent des Jacobins - Centre des Congres
de Rennes Métropole, Journee ”Connecter les Usages” - Connectathon, 2019

• Tébéo - television channel, Chemins de Traverse series, episode 20 − 03 − 2019,
AMUSAAL (Analyse automatique de Mouvements hUmains par décomposition en
mouvements Simples pour l’Ambient Assisted Living) project interview

2.3.1 Human interactions representation and mapping

1. We employ non-stationary, skew-normal probability den-
sity functions for representing dominant proxemic models of
atomic social sensitivity.

2. We calculate a social map of human spatial interactions of
varying size, shape and cardinality, by an implicit function of
proxemics relying on one-class density estimation.

Highlights

Problem summary Human presence and activity alongside robot operation leads to a
shared workspace between the robot and the human. If treated adequately, this can create
conditions for synergistic operation between humans and robots, otherwise antagonistic
behaviors will emerge leading unavoidably to failures, discomfort or worstly, accidents.

Favoring synergy between humans and robots is a two-fold problem as the robot needs
to be sufficiently competent to perceive and analyze human behavior and by extension,
robot behavior should be sufficiently legible and unambiguous to be apprehended by
humans. This involves the development of robot perception and action skills that model
the factors which govern humans positioning in the shared workspace, in order to enable
a robot to either initiate a human-robot interaction or avoid disturbing. Finally, these
skills should be applicable to individuals but also generalize to groups of arbitrary size.

Contribution summary Based on studies on social sensitivity (cf. proxemics theory
[62]) and its expression in distance preservation among individuals [63], we proposed the
use of non-stationary, skew-normal probability density functions [64, 65] for a probabilistic
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Figure 2.13: Top row; main spacing models for individuals, namely, (a) concentric cir-
cles, (b) egg-shape, (c) ellipse and (d) smaller in dominant lateral side. Bottom row;
corresponding statistic representation by controlling the parameters of a bi-variate skew-
normal probability density function.

treatment of the social spacing models adopted in the majority of human-robot interac-
tion studies, namely: (i) concentric circles [62], (ii) egg-shape [66], (iii) ellipse [67] and
(iv) dominant-side [68]. These functions constitute a super-set of the normal distribution
N (µ,Ω), while being further parameterized by the shape parameter α = (α1, α2)T that
controls the amount of skewness (see Figure 2.13) and are denoted as :

Ñ (u) = 2φ(u)Φ(αTu) (2.3)

where u ∈ RN (in our case N = 2), φ(.) denotes the normal probability density function
N (0,Ω) with covariance matrix Ω and Φ(.) is the cumulative distribution function of φ.

Our approach allows to express the dominant factors that bias an individual’s social
spacing by a single smooth probability distribution function, in contrast to earlier ap-
proaches that were only piece-wise continuous and thus did not necessarily conserve the
probabilistic properties of the constituents.

As a means for allowing smooth transitions between pairs of spacing models, we then
proposed to linearly combine a skewed, ellipsoidal model (either (b),(c) or (d) of Fig-
ure 2.13) with the most generic, non-skewed, circular model, using a smooth transition
function (cf. eq.(2) in [9]) that quantified the certainty of perception.
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Figure 2.14: Left: Proxemic contours obtained as level-sets of an implicit function of global
social sensitivity, obtained via one-class density estimation. Right: Superposition of social
map on RGB-D point-cloud containing co-located humans.

Based on the previous formalism of individual social sensitivity, we then devised a
framework for representing spatial interactions of multiple people, in the form of what
we called social map [8]. This was done by drawing an analogy between implicit func-
tion learning and human social interaction mapping. In essence, co-located people where
treated as sources of social sensitivity whose sum was modeled as an implicit probability
density function of arbitrary form. The implicit function was obtained via one-class den-
sity estimation and the application of Kernel PCA (Principal Component Analysis) for
novelty detection [69]. Our motivation resided on finding socially charged areas from areas
where the robot could navigate without disturbing. Depending on the intention/task of
the robot to either engage in an human-robot interaction or avoid disturbing, the obtained
implicit function could then be employed as a potential-field based or navigation-function
based approach [70]. Finally, groups of people were identified by delimiting this density
through level-sets corresponding to proxemic distances of individuals (see Figure 2.14).

Results The usefulness of the previous contributions can be qualitatively evaluated in
the supplementary videos # 6 and #7 of the Appendix - Multimedia, also part of the
corresponding articles.

In terms of perception, the merits of representing atomic social sensitivity via non-
stationary, skew-normal probability density functions was demonstrated through the as-
sociation of articulated human motion cues (such as speed, posture and proximity to the
nearest obstacle) to corresponding social spacing models. Finally, the social map values
were shown useful as features for discriminating human interactions, using sequences of
human activities from the CMU dataset of Motion Capture (MOCAP) [71]. The ultimate
usage though of the social map was related to the development of socially-compliant robot
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behaviors, a subject treated in Chapter 3, section 3.3.

2.3.2 Activity recognition

Problem summary Human action or activity recognition is one of the most challenging
applications in the field of computer vision and amounts to inferring a label for each
element of a data sequence that captures a human performing a task.

Among the multiple constituents of the problem (refer to [72] or [73] for a global pre-
sentation), we restrict our focus to the task of labelling sequences of captured articulated
human motion, also known as motion capture (MOCAP), without consideration of con-
text in the form of objects or of human interactions. After nearly two decades focused
on video-based analysis, analysing the articulated human motion became massively ac-
cessible to researchers thanks to the advent of affordable RGB-D sensing technology and
the seminal work of Shotton et al. [39] on human body recognition, followed by deep-
learning based approaches [74]. Still, even when the human skeletal pose can be tracked,
challenges such as variability in execution speed and style, segmentation among actions,
self-occlusions or robot ego-motion interference, temporal context, etc. altogether make
action recognition difficult to model and latent in its representation.

Contribution summary Due to the high number of articulations of the human body
which leads to a skeletal representation of increased dimensionality, we studied the degree
of correlation between the various joints within three major benchmarks of MOCAP
sequences [60], namely, HDMO5 [75], CMU [71] and Mocapdata Eyes Japan (MEJ) http:
//mocapdata.com/. This was done via a PCA decomposition to principal components
with their corresponding eigenvalues, allowing to conclude that around 95% of the total
energy of each activity can be expressed by a total of 10 principal components, among a
total of 70 dimensions (see Figure 2.15). Through the same analysis, we also inspected the
variable degree of correlation among different classes in order to quantify their complexity.

Following the previous observation, we proposed a Gaussian-process based, latent vari-
able model for representing MOCAP sequences wherein actions of the same category were
non-linearly mapped to a lower-dimensional manifold that (i) preserved real-world dis-
tances of the original data and (ii) reduced intra-class distances and increased inter-class
distances. Our method [59, 61] was thus focused on supervised representation learning
that could be afterwards used with any conventional classification scheme. It was then
evaluated in benchmarks HDMO5 and CMU and was found superior in terms of accuracy

32

http://mocapdata.com/
http://mocapdata.com/


2.3. Dynamic environment mapping

Figure 2.15: From left to right, principal component eigenvalues in decreasing order for a
total of 70 MOCAP dimensions from CMU, HDM05 and MEJ datasets respectively.

against discrete time warping (DTW) and V-GPDS [76]. These works were performed in
the context of the M.Sc. thesis of Ntouskos [77].

Secondly, we addressed the classification of activities of daily living (ADL) [78] that are
more contextual and hierarchical in nature. Towards this goal, we devised a hierarchical
deep-neural network architecture [15] composed of two levels of Long-Short Term Memory
(LSTM) networks [79], the first fed with motion features of short, temporal sliding win-
dows and the second operating on their hypothesized labels. The proposed approach was
evaluated in the Watch-n-Patch benchmark [80] and was found superior against state-of-
the-art approaches in terms of per frame accuracy of temporal segment, as in contrast to
our previous contribution, this method does not need to know beforehand the segments
of the sequence to be classified and was thus better suited for real-world application. The
per-class performance of the contributed methods is shown in Figure 2.16.

Figure 2.16: Left: confusion matrix for method [59] in CMU dataset. Right: confusion
matrix for method [15] in Watch-n-Patch dataset.
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Chapter 3

NAVIGATION IN 3D ENVIRONMENTS

Autonomous Vehicle (AV) technology is nowadays becoming a reality as manufacturers
are empowering modern cars with capabilities of autonomous driving in urban areas.
Prior to consumer cars, systems exhibiting 3D navigation capabilities had been sought
in applications such as military, space or natural environment exploration, mining and
urban search and rescue (USAR). Even so, 3D robot navigation is a relatively recent field
considering the birth year of mobile robots to the seventies with robot Shakey and robots
with legged or more sophisticated locomotion being gradually introduced in the following
two decades [81].

Irrespective of the application, enabling a specific robotic vehicle to navigate au-
tonomously in a given 3D environment in an optimized and safe manner, requires the
treatment of problems lying at the forefront of various disciplines. The difficult to model
dynamics of a vehicle (and perhaps of the environment) in motion, the specificities of
terrain interaction in 3D and the various inherent uncertainties of perception, altogether
contribute to a risk of accident that can undermine testing and data acquisition.

The contributions presented in this chapter concern applications where mobile robots
are destined to navigate in semi-structured indoor environments either for USAR or social
robotics applications. Among diverse types platform types and robot locomotions, we
focus on articulated tracked robots thanks to their elevated traction and low center of
mass which prioritizes robot safety at the expense of reduced maneuverability.

We begin the chapter by presenting in Section 3.1 our extensive literature survey on
terrain traversability analysis for unmanned ground vehicles (UGV) [5], which provided
an in-depth understanding of the challenges associated to the problem of 3D navigation in
diverse environments as well as the main categories of methodologies. As perception and
action are tightly coupled, the various methods that were reported are always conditioned
on a robot with specific control and navigation characteristics.

On this basis, in Section 3.2 we unfold our contributions to the problem of 3D nav-
igation in static environments, namely, for the problem of negotiating negative obstacles
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or gaps and positive obstacles in the form of staircases, for ascent and descent, under
various degrees of freedom of the platform and constraints. Depending on the case, we
adopt conventional planning and control or reinforcement learning (RL)-based control.

Finally, in Section 3.3 we address the problem of socially-compliant navigation in the
presence of humans, on the basis of the previously presented framework of social-mapping
(cf. Section 2.3).

3.1 Essay on terrain traversability analysis for UGVs

A systematic and spherical presentation of the problem of safe and effective navigation
in 3D environments was lacking, in contrast to the existence of numerous earlier works in
various for various applications and robotic platforms. The lack of a central framework
and approach to the problem resulted in redundancy in methodology, terminology, lack of
insight and potentially conflicting findings. The dispersion of the various contributions in
seemingly different domains made difficult to assess the current level of progress and open
challenges. Indicatively, 8 terms in total were identified in the literature to refer to the
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Figure 3.1: Taxonomy of terrain traversability methods for 3D navigation according to [5]
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same theme, namely: (i) drivability, (ii) trafficability, (iii) navigability, (iv) coverability,
(v) terrainability, (vi) maneuverability, (vii) mobility and (viii) traversability.

In view of that dispersion, we performed a state-of-the-art survey [5] identifying the
most suited term, proposed a general definition and a taxonomy of different levels for
the main streams of research (see Figure 3.1) and appointed seminal works into their
corresponding class. The essay covers a total of 96 seminal articles that were selected from
a period of more than 2 decades while our definition of traversability was the following:

The capability of a ground vehicle to reside over a terrain region under an
admissible state wherein it is capable of entering given its current state, this
capability being quantified by taking into account a terrain model, the robotic
vehicle model, the kinematic constraints of the vehicle and a set of criteria
based on which the optimality of an admissible state can be assessed.

For each individual work, we further identified the targeted application and the degree
to which it corresponded to our definition of traversability, alongside a comprehensive
description of the methodology. Finally, based on a critical inspection of the state-of-the-
art, we were able to highlight open problems, limitations and advantages of sensors or
families of methods and highlight promising directions of research.

Indicatively, Figure 3.1 allows the extraction of a key finding, i.e. that the bulk of earlier
methods were concerned with geometry-based approaches, namely, active perception of
the terrain using LIDAR sensors. On the other hand, appearance-based (or spectroscopic)
approaches using passive sensors were largely understudied or overlooked. This changed
drastically in the following years driven by the advent of deep-learning and the abundance
of annotated image data that could used for training. Other key findings (cf. Fig. 2,
[5]) showed that most geometry-based methods quantified traversability only based on
a terrain model with little or no account for robot characteristics (kinematics, model or
safety criteria), or that applications mostly concerned planetary exploration and natural,
off-road environments compared to urban settings (cf. Table 1, [5]).

3.2 Navigation in static environment

Approaches dealing with the problem of navigation can be traced back to the resolution
to the renowned Piano-Mover’s problem [82]. In the various approaches that have been
proposed, a component is tasked with determining whether a given configuration of the
robot is admissible, i.e. whether it can be attained while reaching for the goal. This
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can be trivially solved for robot configuration spaces of low dimensionality and simple
environments but it may require computationally expensive calculations for robots with
multiple DOFs that physicially interact with an environment of arbitrary complex form,
under the influence of gravity and the dynamics of robot motion.

This is in particular the case for articulated tracked robots that are commonly used
in USAR, the inspection of buildings or for surveillance, etc. For such mobile robots
to fully exploit the available workspace in a 3D environment, they need to negotiate
negative obstacles (gaps) as well as positive obstacles (staircases or steps), when possible.
In contrast to ordinary, 2D free space where robot pose can be arbitrary without particular
incidence to safety or effectiveness, successful negotiation of such obstacles is a necessary
condition for the use of any planner.

The contributions presented in the sequel originate from publications [83], [6], [84],
[85], [13] and [14] and were further partially covered in the next webinar :

• P. Papadakis, Robotic Skill Learning and Development in Personal Assistance, CRNS
Webinar of the University of Plymouth, England, 2021, youtu.be/yNEqckC1MJI

3.2.1 Negative obstacle negotiation

1. We propose a method for effective negative obstacle detection
in USAR.

2. We compute the safest traversal path for negotiable obstacles.

Highlights

Problem summary By definition, identifying a negative obstacle is a contextual task
that requires to determine the space where data should have normally been captured but
they are lacking. The absence of sensory data can however be due to various situations
depending on the sensor modality and the environment, such as occlusions, field-of-view
(FOV) limits or the properties of the sensed material. If certain hypotheses can facilitate
the treatment of the problem for ordinary gaps in urban areas, the detection of an arbi-
trary gap and the question of its traversability by a given robot in USAR applications is
not straightforward (see Figure 3.2 for an example of conditions in the case of a tunnel
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Figure 3.2: Tunnel car accident scenario conditions for USAR operations

car accident scenario). Earlier research was thus very scarce and solely concerned with
binary classification of negative obstacles, completely disregarding the question of opti-
mal negotiation of negative obstacles. Finally, no previous work had dealt with conditions
representative of USAR missions.

Contribution summary We developed an effective and efficient signal processing
framework that performed negative obstacle localization and contour extraction, along
with an assessment of its traversability via an optimally extracted path [6], as summa-
rized in Figure 3.3.

The pipeline is composed of two main blocks of operation, the first assigned with gap
perception that is performed by the following steps : (i) obtain a slice of the entire 3D
point cloud parallel to the robot footprint, (ii) transform sensor coordinates to 2D image

Filter Point Cloud Binary Image Formation

{I_{width}, I_{height}, Pl_{th}}{x_{min}, R}

Morphological operation

Contour Detection

{n_o}

Contour?
YES

NO

Generate uniform Point cloud within
Each contour

PCA

Convex hull

Transform to direction space

NPCA

Traversability Analysis

GAP TraversabilityGAP Perception

Figure 3.3: Pipeline for gap perception and traversability analysis (cf. Figure 2. [6])
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Figure 3.4: The result of employing NPCA to a negative obstacle, in order to determine
the starting and ending point of the path to be traversed (cf. Figure 5 [6])

space to account for non-uniform scanning, (iii) filter noise by morphological operations
and (iv) compute contours of clusters via border-following. The hypothesis is thus that
we deal with relatively planar gaps in the immediate vicinity of the robot since even if it
can navigate in 3D over longer distances, the space can be assumed locally planar in the
proximity of the robot and tangent to the robot footprint.

The second main block of operation is concerned with calculating a straight path
for traversing the negative obstacle that minimizes the loss of contact of the robot with
the terrain and therefore its exposure to an accident. Our hypothesis here was that the
majority of gaps have a mostly convex, ellipsoidal shape to which we can associate a pri-
mary (major) and secondary (minor) principal axis, using Principal Component Analysis
(PCA). We then advocated the use of Normals PCA (NPCA) [86] for computing the po-
sition and the orientation of the start and end point of the path for negotiating the gap.
This idea is illustrated in Figure 3.4.

Results The framework was evaluated on small, middle and big-sized gaps of a simu-
lated tunnel car accident scene and of a building’s inner yard, perceived from different
viewpoints and distances of the robot. All true gaps were consistently detected yielding
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Figure 3.5: Negative obstacle detection and traversability analysis examples. Detected
gaps and their traversability is shown by arrows indicating the path to be traversed.

a 100% true positive rate though occasionally false positives could be detected. Those
were attributed to errors in the estimated robot state which resulted in erroneous plane
estimation and search for gaps. Otherwise, the framework could easily filter out fictitious
gaps due to occlusions. Figure 3.5 shows the output of detected gaps accompanied with
the corresponding traversability analysis.

3.2.2 Off-line traversability learning

Problem summary The high number of degrees of freedom of articulated tracked
robots combined with the dynamics and stochasticity of robot-terrain interaction, can
severely hamper real-time operation and safe deployment of such systems. Even if a com-
plete and accurate knowledge of the robot and environment state could be assumed,
searching for plans and controlling such robots is subject to particularly costly operations
for collision detection and assessment of optimality criteria due to the increased dimen-
sionality of the state, action and search space. Even if the calculation of optimal paths
in high-dimensional configuration spaces can be accelerated by sampling-based planners,
still, obtaining the pose of an articulated tracked robot on a given 3D terrain patch is
computationally demanding.

More concretely, when searching for an optimal path between a start and a goal state
for a robot, each state is typically associated with a cost that quantifies the difficulty of
visiting that state. This cost is then used when aggregating to obtain the total cost of
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Figure 3.6: Top row; snapshots of robot while settling on top of a 3D terrain patch. Bottom
row; adjustment of tracked flippers until ground contact

a candidate solution path, as is conventionally done in graph-search algorithms. Besides
binary costs that simply assess the admissibility of a state, for articulated tracked robots
that can actively adapt to the terrain it is more pertinent and necessary to regress a
single, optimal robot configuration among many alternatives, for a given support terrain.

Contribution summary To mitigate the prohibitive, on-line cost of calculating an
optimal robot state and the corresponding cost, we pre-calculated off-line via physics-
based simulation the optimal robot pose over a large diversity of terrain patches and
learnt to regress the associated cost as a function of terrain complexity [83].

To obtain the ground-truth pose over a given 3D terrain patch, we proposed a two-
stage, physics-based robot pose estimation designed to increase the stability and surface
contact of the robot footprint with the terrain. In particular, the simulated robot model
was left to gently settle on the terrain patch under the influence of gravity until reaching

Figure 3.7: Traversability costs as a function of terrain complexity. From left to right, we
show the evolution of the Ground clearance G, Orientation O and Angle-stability cost A.
The blue lines correspond to the regressed traversability.
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3.2. Navigation in static environment

stability due to friction (see video # 9 of the Appendix - Multimedia). Once the robot
became static, the second stage consisted in pushing its articulated flippers until reaching
contact with the ground, yielding the final full articulated pose of the robot (see Figure
3.6).

In terms of criteria allowing to quantify the quality of the optimal pose, we augmented
the standard formulations of ground clearance, orientation and force angle stability margin
[87] with geometrically better suited estimates for articulated tracked robots (cf. eq. (1)-(3)
[83]). By obtaining the ground-truth robot pose over 5000 random 3D terrain patches, we
could then trace the mean value of the above measures (see Figure 3.7 with the intention
of using it as a cost or heuristic in conventional path planning algorithms.

3.2.3 Reinforcement-learning based staircase negotiation

1. Reinforcement-learning based formalization and treatment of
staircase ascent and descent for tracked robot manipulators.

2. Transfer of behaviors learnt in simulation to a real robot and
staircases and application to a second simulated robot of sim-
ilar skills.

3. A publicly available software framework for navigation learn-
ing and evaluation in 3D indoor environments.

Highlights

Problem summary Staircase negotiation concerns the capacity of a robot to traverse a
staircase in an ascending or descending direction while respecting certain criteria. Formu-
lated as a planning problem, the task consists in calculating and executing a best motion
path from a starting point to a goal point. For the types of robots that are designed to
address this task, the configuration space has high dimensionality as these robots have
additional actuators for locomotion (e.g. flippers) and are often equipped with an arm
for object manipulation. Still, even if the additional DOFs can in principle contribute in
making negotiation more effective, developing a controller from scratch to be used either
in a reactive or a planning process, is neither obvious nor trivial for multiple reasons:
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• During staircase traversal a robot is subjected to stochastic perturbations such as
sliding or loss of traction that are difficult to be sensed and compensated.

• The dynamics and the motion model of the robot might be unknown and difficult
to establish, due to the high number of DOF of the robot and the variation of the
3D surface of a staircase.

• Collision checking in 3D between a highly articulated robot and a staircase is a
computationally costly operation.

• Real data collection is costly as errors can severely damage the robot thus training
data might be very scarce or impossible to obtain.

• There exists a high plurality of locomotion types and robot platforms, each one
requiring its own custom controller.

Contribution summary The problem was addressed in the context of the PhD thesis
[88] supervision using the commercial tracked robot manipulator Jaguar V4 with arm1

and concerned the following main contributions:

1. A reinforcement-learning based formalization and treatment of the com-
plete staircase negotiation task for an actively articulated robot equipped
with an arm. In particular, we successfully tackle the problem of staircase ascent
and descent by satisfying the primary goal of traversing the staircase as well as
the secondary goal associated to safety constraints, using congruent control of the
degrees of freedom associated to the tracks, flippers and arm joints.

2. Demonstrated, zero-shot transfer of the behaviors learnt in simulation
to a real robot and staircases, along with an application to a second
simulated robot of similar mobility skills. The transfer to reality and the
application to two robots corroborate the generality and robustness of contribution
# 1.

3. A publicly available software framework for navigation learning and eval-
uation in 3D indoor environments. Its architecture allows a user to interface
between different RL libraries and algorithm implementations. At the same time,

1http://jaguar.drrobot.com/specification_V4Arm.asp

44



3.2. Navigation in static environment

learning can be customized to endow specific properties within a control skill. To
show its utility, we focus on the case of staircase ascent and descent using depth
sensory data while respecting safety via reward function shaping.

As far as contribution #1 is concerned [84, 85], this was performed via a neural-network
based, reactive controller obtained via reinforcement-learning in simulation. The proposed
solution consisted in using the entire action space of the robot composed of the various
joint angles of the flippers and the arm, as well as the platform velocity. With respect to
the state, controllers were learnt by using either local estimates of robot-step distances or
raw depth-image features, an approach more reminiscent to end-to-end learning. Finally,
along with the primary reward function appropriate penalty functions were devised for
attaining secondary goals pertaining to the safety of the robot, according to the direction
of traversal. In particular, for the ascending direction the safety criterion that was used
was designed to respect both the stability margin (SM) [89] and the normalized energy
stability margin (NESM) [90]. Conversely, for the descending direction the safety criterion
was designed to reduce drop impacts incurred when the platform transitioned between
step edges. Figure 3.8 shows the simulated model that was developed and the environment
using for training the controller.

With respect to contribution #2 [13], the policies learnt in simulation were transferred
to the robot Jaguar V4 with arm and tested in staircases of different dimensions, allowing
the robot to safely perform the task while actively using its flippers and arm, under the

Figure 3.8: Coordinate frames used for the state space of the simulated robot model and
training environment used for reinforcement-learning based controller development
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Figure 3.9: Overview of the software framework allowing to train 3D navigation policies
via reinforcement-learning in simulation and incremental domain randomization

potential influence of a transported object. The transfer was made possible by training in
a diverse range of staircases while adding noise to the state to reduce overfitting. Finally,
the developed framework was used in a second, simulated robot of similar locomotion2 but
of different geometry and mass. This allowed to validate the effectiveness of the approach
in a second example and to quantitatively compare the obtained policies between the
robots by the Kullback-Leibler divergence of the controller actions for same inputs.

Contribution #3 amounted to the development and dissemination of an open-source,
software pipeline for learning navigation of tracked robots in 3D environments. Its novel
features concerned: (i) the stochastic generation of 3D environments (corridors or stair-
cases) of different complexity that could be used for incremental learning of policies, an
approach known as domain randomization, (ii) the provision of two models of tracked
robots and (iii) examples of policies learnt in an end-to-end fashion using depth images.
Figure 3.9 shows the structure and components of the developed framework (cf. [14]).

Results Qualitative results of the trained robot behaviors in simulation can be viewed
in the videos # 3 and # 2 of the Appendix - Multimedia, attached to publications [84]
and [85] respectively. Figure 3.10 shows consecutive snapshots of the real robot Jaguar
while performing the ascent and descent task, using the controller learnt previously in
simulation. Qualitative results of the robot behavior in reality can be viewed in videos

2https://github.com/mariogianni/trav_nav_indigo_ws
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Figure 3.10: Snapshots of staircase negotiation with congruent control of 5 DOF

Figure 3.11: Reward evolution during training for ascent (left) and descent (right) and
robots Absolem and Jaguar.

# 1 of the Appendix - Multimedia, accompanying publication [13]. Figure 3.11 shows
the obtained rewards while training in simulation for the two different robots, for ascent
as well as for descent. Extensive quantitative results provided in the dissertation [88],
demonstrated the successful convergence of control policies learnt for variations of the
staircase negotiation task, namely, in terms of number of DOFs, direction of negotiation,
robot model, levels of noise and reward function used. Figure 3.12 shows samples of
environment configurations used for training via incremental domain randomization (DR)
[14] and Figure 3.13 shows snapshots of the robot ascending a staircase by employing and
policy learned in an end-to-end fashion, using as input depth-image samples.

3.3 Socially-compliant navigation

Problem summary Navigating in a dynamic environment generalizes the problem of
navigation in a static environment, a key difference being the time-varying nature of the
robot configuration space. The added time dimension implies that motion models need
to be employed and updated for the moving obstacles while planning for optimal paths.
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Figure 3.12: Sample environment configurations used in incremental domain randomiza-
tion for 3D navigation learning

Figure 3.13: Snapshots of robot ascent of a staircase using a policy learned in an end-to-
end fashion

Going even further to suppose a similar agency for the moving obstacles, be it humans or
robots, i.e. identifying and responding to an agent’s own motion in order to navigate in a
conformal way, this introduces the criterion of comprehensibility of navigation.

On this basis, a socially-compliant robot navigation in a dynamic environment need
not only be optimal with respect to robot constraints but be further transparent and
understood from collocated humans. In essence, this means that robot navigation should
respect human conventions of navigation and social spacing.
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Figure 3.14: Result of mapping the social sensitivity of collocated humans, overlaid with
a path plan that would minimally interfere with proxemic levels (cf. Figure 6 of [9])

Contribution summary On the basis of our earlier description in Chapter 2.3 and
earlier works [8, 9], we used the dynamically updated social-map that was generated by
the collective social sensitivity [9], in order to plan socially-compliant 2D paths in scenes
populated by arbitrary numbers of interacting humans.

In detail, the problem consisted in calculating a path from a start to a goal using a
baseline trajectory planner that could operate in total on 3 distinct levels of increasing
degree of interference to human social sensitivity, from public until personal. As these levels
of the social map could be obtained via the level-sets of the implicit function (recall Figure

Figure 3.15: Egocentric views of a robot bypassing a human along a corridor, using the
concept of adaptive spacing by considering certainty and social cues (cf. Figure 5 of [9])
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Figure 3.16: Scenarios considered for evaluating a leader-follower platoon robot system
denoted by robots r1 and r2 while encountering dynamic obstacles o1 and o2. Red-dotted
lines indicate obstacle directories, unknown to the platoon.

2.14), path planning was performed to the free space lying on the exterior of a level-set,
starting from the first level until the third until a feasible path could be obtained. Figure
3.14 provides characteristic examples of human-interactions at different time moments
and the corresponding path plan obtained from the application of the previous algorithm.
Figure 3.15 shows an example application of socially-compliant navigation of a robot that
traverses a corridor while encountering a human. The entire demonstration sequences can
be viewed in video # 6 of the Appendix - Multimedia.

The aforementioned works targeted the navigation of a single robot in dynamic envi-
ronments possibly populated by multiple colocated humans in different interaction sce-
narios. In subsequent works, the navigation of multiple robots alongside multiple people
was studied. In particular, in [91] we set the foundations of a layered robot architecture to
allow coordinated multi-robot deployment alongside humans. Our focus was on the task
of item delivery and optimal route finding in conditions that could lead to congestion be-
tween robots and the synergies that could be envisioned with ambient intelligence services
(see section 4.3).

In a more extensive work [92], the goal consisted in developing a multi-robot system
employing a leader-follower control scheme moving indoors, while encountering dynamic
obstacles in scenarios such as those shown in Figure 3.16. In essence, the scenarios varied
the configuration of static obstacles and the extent of maneuvering to avoid collision.

A PID controller was developed for the follower robot with the leader robot using
the standard ROS-navigation stack, although this aspect was transparent to the follower
which could instead be asked to follow a human walker. The results of this work allowed
to assess the portability of baseline algorithms for leader and obstacle detection and
avoidance when deployed on the TurtleBot2 robot, using as a measure of performance

50



3.3. Socially-compliant navigation

Figure 3.17: Leader-follower path along a corridor in the presence of a dynamic obstacle.

the proximity of the follower to the leader along the obtained trajectories. Figure 3.17
shows a series of snapshots of the leader-follower robot team safely bypassing another
robot that crosses its path. Overall, however, the experiments revealed that tackling the
problem of platooning in a dynamic environment required considerable more attention as
a result of unexpected motions, loss of line-of-sight during narrow turns and lack of direct
communication between the leader and the follower.
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Chapter 4

TRANSVERSAL WORKS

This chapter pertains to earlier works concerned with the integration of several individual
modules into a single robotic system, capitalizing on vision and navigation skills for 3D
environments. During a development life-cycle, the alternation of research with integration
and deployment phases, or training and testing, is essential as it allows to evaluate the
validity of the hypotheses made during design and to assess the limits of the previously
developed methods. Therefore, the essence and importance of such works is that they
are interdisciplinary and that they repose on the contributions of several authors and/or
partners employing domain-specific terminologies, which renders the harmonization of the
total set of constraints into a single, operational system particularly challenging.

4.1 Emulated USAR exercises

In the context of EU project NIFTi (Natural Human Robot Cooperation in Dynamic En-
vironments), highly realistic exercises were conducted consisting of human first-responders
(fire-fighters), central-control operators, ground and aerial robots.

A first prototype of a semi-automated, human-robot team was described in [93], pre-
senting the architecture of a differential-drive mobile robot that was capable of car de-
tection, SLAM, topological mapping, high-level human-robot dialogue and task planning,
deployed in a parking-lot exploration mission. My role in the respective work consisted
in the coordination of the integration efforts between the high-level, logic-based robot
control, dialogue and the perception and actuator components of the mobile robot among
a total of 4 European partners. Figure 4.1 illustrates the key aspects behind the corre-
sponding framework. The underlying architecture allowed a human operator to provide
high-level vocal commands to the robot, such as go here, move left, right or forward,
approach an object or perform coverage planning.

That system served as a baseline for subsequent developments with a custom-made,
articulated tracked robotic platform (Absolem-TRADR robot) and a more challenging,
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Figure 4.1: Key components of the human-robot architecture of [93]. In row-major or-
der, car-detection in omni-directional images and 3D localization, human-robot interface,
planning-engine and topological mapping.

tunnel-car accident scenario in the MonteLibretti firefighter training facility in Italy. Com-
pared to the outdoor, parking lot mission the tunnel-accident scenario was characterized
by more harsh conditions of operation for both humans and robots, which underlined the
need for more transparent, effective and efficient communication between humans and
robots. In this sense, a user-centric design methodology was followed so as to instill as
much as possible trust and transparency with regards to the robot operation from the
point of view of the humans [94].

This consisted in the directed involvement of end-users from German and Italian fire-
fighter brigades during the entire development cycle, i.e. specifications, development and
testing. In this manner, the vision and navigation skills of the robot were developed so
as to reflect as best as possible the actual operation protocols of first responders and
hence orientate the autonomy and intelligence of the robot accordingly. For example, a
command of the type go to the car did not merely imply to approach a particular car but
to position the robot to a particular vantage point, that would allow its camera to look
through its windows and detect potential human victims. This supposes the detection of
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Figure 4.2: Topological mapping and path planning examples from [35]. From left to
right: Topological map of a parking lot, topological map of tunnel car accident scenario,
topological map and node-level paths of an office environment.

the car along with its pose while further assessing the navigational capacity of the robot
to approach that particular area. In doing so, the robot could employ off-line learned,
functions of 3D traversability [83], traverse negative obstacles by following an optimal
path in terms of safety [6] or plan and execute a path within a topological map of the
environment [35].

Aside the first two works presented previously in Chapter 3, our work [35] on topolog-
ical mapping proposed an approach for obtaining in parallel the topological map of the
environment and a set of local, node-level paths allowing to connect any pair of points
within the metric map. The idea consisted in employing the mean-shift algorithm for
clustering non-occupied cells to a set of clusters and tracing the mean-shift path of each
pixel while ensuring that its feasibility by a real robot. Figure 4.2 illustrates the concept
on some characteristic examples.

4.2 Human-robot USAR mission in Italy

Two major earthquakes stroke the Emilia-Romagna region in Northern Italy in 2012
followed by further aftershocks and earthquakes in June of the same year, causing multi-
ple casualties and widespread damage to numerous historical buildings. The Italian Fire
Brigade deployed disaster response and recovery of people and buildings while in June,
they requested the aid of the EU-funded project NIFTi, in order to assess damage of
historical buildings and cultural artifacts located therein. The project partners deployed
a human-robot team composed of terrestrial and aerial robots in the red-area of Miran-
dola, Emilia-Romagna, from Tuesday July 24 until Friday July 27, 2012, that worked in
collaboration with the rescuers involved in the red area [7] (see Figure 4.3).

In the context of this mission, I was tasked with the coordination and piloting of the
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Figure 4.3: Left; project members and firefighters that participated to the USAR mission
[7]. Right; snapshot of the tracked robot during operation.

terrestrial vehicle Absolem, in order to perform the mapping of two historical buildings.
Figure 4.4 gives an idea of the degree of damage and rubble of the two sites, together
with the 3D reconstruction that was obtained via the robot operation. That endeavor was
characterized by numerous challenges :

• The robot and the entire system infrastructure had never been tested in such ex-
treme conditions in terms of terrain and heat https://ec.europa.eu/commission/
presscorner/detail/en/MEMO_12_620

• The area to be explored was blocked to access even to the rescuers due to the
elevated accident danger. If the robot got damaged or were unable to safely return
to base it would have to be abandoned, scraping an equipment worth of several tens
of thousands of euros.

• Timely intervention was critical as the NIFTi team was given a limited time window
during which the robots could operate, in order to avoid interference with other
ongoing disaster response tasks.

Micro-managing a robot on the rubble of ruined buildings under the above constraints
while mapping the environment was pioneering in Europe http://www.vigilfuoco.it/
aspx/Notizia.aspx?codnews=16185. The success of the mission resided on the orches-
tration of human experts together with the various functionalities of a highly articulated,
tracked robotic vehicle https://spectrum.ieee.org/robot-to-human-trust-me.

Besides the inspection of damaged cultural heritage art-work via the 3D reconstruction
of the corresponding sites, the mission further provided invaluable, real-world training
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4.3. Assistive robot and smart space integration

Figure 4.4: Snapshots of the two destructed historical sites in which the robot navigated
and corresponding 3D maps.

data that could be used for developing controllers for navigating 3D terrain, notably via
3D mobility learning and regression by simulated, physics-based optimization [83].

4.3 Assistive robot and smart space integration

A more recent line of work seeks to leverage the advantages of assistive mobile robots
or manipulators and of smart spaces, so as to develop more sophisticated services and
technologies for professional or common end-users. Such a synergy seems formidable as
smart spaces seek to offer general-purpose services based on a high-level and globally
consistent understanding of human activity, while robot mobility and dexterity can be
more easily and directly customized according to more specific needs.

Accordingly, we identified in [91] the main functionalities that such an integrated sys-
tem could provide in connection to previous works and the way by which synergy could be
accomplished, from low-level behavioral to higher-level task planning of a multi-layered
system architecture (see left of Figure 4.5). The examined scenario concerned a smart hos-
pital equipped with mobile robots operating within it for performing tasks such as meal
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Figure 4.5: From left to right, proof-of-concept schemas for integration of robots with
ambient intelligence from [91] and [96] respectively.

or medication delivery, while accounting for human presence during navigation and re-
solving possible congestions. This pilot study consisted in bridging dispersed methods and
systems into a single framework, while accounting for constraints relevant to a potential
commercialization, such as inter-operability standards [95] or socio-technical aspects.

More recently in [96], we sought a more generic approach to model the synergy of
smart spaces and mobile robots, via the notion of the digital twin (DT). In this regard,
we were not concerned with a specific scenario or development of technology for personal
assistance but rather with the establishment of a procedure that would allow to create
a digital replica of the entire set of physical assets (e.g. smart apartment, mobile robot,
human, etc). Such a digital replica could be then used for faster prototyping, training and
testing, particularly in what concerns the development of vision and navigation skills of
mobile robots, e.g. for object detection and classification, scene segmentation or low-level
robot control. The right of Figure 4.5 depicts the structure of the developed DT alongside
the physical assets that are modeled. Finally, a correlated work was performed in [97]
in the context of the project TwinCobot, with the aim of developing AI-enabled digital
twins of human operators collaborating with a robot manipulator. The emphasis here was
mostly put on the software engineering aspects of the DT and system integration between
different hardware and software components.

58



Chapter 5

RESEARCH PERSPECTIVES

My perspectives for further research are orientated towards new paradigms for robot
vision, navigation, and by extension to manipulation, that increase the autonomy and ro-
bustness of robots in the 3D world whenever they are destined to cooperate with human
professionals or provide assistance to individuals. The advent of machine-learning bears
particular promise for developing such systems, yet, there is a balance to be sought be-
tween data-driven and symbolic approaches as well as between simulated and real-world
training and testing. As a matter of fact, systems that attain state-of-the-art performance
in predefined benchmarks can easily fall short when faced with the diversity and stochas-
ticity of real-world situations referred to as open-set conditions [98], [99].

In this context, via my involvement in a number of ongoing and upcoming projects I
seek to address central technological and scientific questions in the domain of vision and
navigation in 3D environments, as presented by category in the sequel. For each project,
the involved partners and domains of application are further noted so as to highlight the
various collaboration initiatives with academic as well as industrial partners.

5.1 Axis I - Meta-learning

Learning to learn or meta-level learning is concerned with learning properties of functions,
i.e. learning entire function spaces [100]. Reposing on conventional, base-level learning
(such as supervised learning for classification, regression, etc), meta-learning would allow
a robot to share knowledge between seemingly different tasks, adapt its knowledge in
the light of new evidence, learn continually, i.e. incrementally and hierarchically. Such
capacities are crucial for the deployment of robots in the real-world alongside human
presence, as base-level learning proves severely limiting in practical applications. The
following projects address such challenges for computer vision and robot manipulation
tasks:
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• Project ILCOI - Incremental Learning for Classification of Objects of Interest
(2020-2023): We focus on the problem of catastrophic forgetting of neural networks
[51] in the process of incremental learning of objects or events belonging to new
categories and/or new instances of objects or events, not already included in a pre-
trained discriminative model. This project aims to develop more robust incremental
learning methods for embedded systems in a terrestrial, marine or underwater con-
text, characterized by hard constraints on memory and computational resources.
Promising first results have been obtained via joint, incremental contrastive repre-
sentation and classification learning [19].
Partners: ENSTA Bretagne, Naval Group. Domain: Generic & sea vessel images

• Project ECFvisuL - Évaluation automatique continuelle de la capacité fonction-
nelle humaine à domicile à l’aide de la vision par ordinateur (2022-2024): We seek
to develop an automatic solution for continuous Functional Capacity Evaluation
(FCE) [101] of individuals in a domestic environment, on the basis of a computer
vision system that tracks human body posture. Such a system would acquire more
temporal data on the musculoskeletal capacity of a human than a typical FCE ses-
sion, producing more robust evaluation results. The problem to be addressed can
be posed as a meta-learning problem since automating FCE suggests a continual
learning problem as the user capacity changes over time, while each individual con-
stitutes a class per se, implying that training data acquired from others to track
and analyze human pose might not be directly exploitable or relevant.
Partner: CHU Brest. Domain: RGB-D images & human skeleton trajectories

• Project ABYSSES - Annotation Boostée des modèles 3D de monts hYdrothermaux
Sous-marins par apprentiSsage profond dadaptation de domainES (2022-2023): In
the domain of hydrothermal ecosystems mapped by underwater drones, this project
aims the development of new digital tools allowing to accelerate the capacity of se-
mantic annotation of very large surfaces of biological, environmental and topograph-
ical characteristics of marine depths. The core challenges pertain to the absence of
sufficient training data that hinder the application of deep-learning while the partic-
ularities of the domain result in annotation protocols that were not designed for use
by machine-learning algorithms. This calls for research in meta-learning methodolo-
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gies such as self-supervised learning, domain adaptation or transfer learning, so as
to exploit abundant, unlabeled data of very high resolution in order to expedite and
assist the tedious task of manual annotation by human experts.
Partner: Ifremer. Domain: Seabed images

• Project ROGAN - Robot Manipulation Learning Using Generative Adversarial Im-
itation Learning (2020-2023): This project aims at developing robot manipulation
skills for assistive services, capitalizing on the power of Generative Adversarial Net-
works (GAN) [102] in order to artificially generate task demonstrations so as to
enable more efficient learning while relying less on human experts. The expected
contributions reside at the crossroads of reinforcement learning, imitation learning
and contrastive learning using as experimental platform a state-of-the-art robot ma-
nipulator (Robotnik RB1) [18].
Partner: Australian Institute of Machine Learning (AIML). Domain: Robot tra-
jectories

5.2 Axis II - SLAM and Navigation

Metric mapping of an unknown environment resides at the core of numerous applications
that range from search & rescue, autonomous cars and digital buildings up to human
guiding and assistance. The problem has been at the focus of robotics research by more
than 3 decades now, giving rise to a plurality of open-source SLAM libraries. On the other
hand, algorithm efficiency, robust performance in challenging environment conditions and
employment of deep-learning on resource-constrained hardware can constitute major bot-
tlenecks for the deployment of state-of-the-art SLAM methodologies. A complete SLAM
system is typically composed of several components, e.g. feature extraction and matching,
data association, loop closure, graph optimization, etc. that need to interact in real-time
while the agent is moving. While deep-learning can be auxiliary in different phases of the
entire pipeline, it is a computationally-intensive process that can undermine the capacity
of the entire system to perform on-line.

Along with the emergence of deep-learning, a new paradigm of navigation known as
end-to-end navigation [103] aspires to accelerate the perception-action loop via bypassing
the stage of mapping and directly map raw sensor readings to control and navigation
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commands. This presupposes however massive training and a neural network architecture
that is unlikely to be explainable to humans, raising the question of trust and performance
guarantees that cannot be obtained. The trade-off between using conventional SLAM with
planning-based navigation and the exploitation of DL is thus an active research topic that
calls for further research depending on the environment of deployment and the platform
into consideration. The following projects investigate such questions either for aerial or
terrestrial USAR robots and humans with disabilities.

• Project HIT - Handicap Innovation Territoire (2020-2027): This multi-partner and
multiannual project seeks to capitalize ICT technologies in the development of ser-
vices and technologies that palliate human impairments/handicaps at various scales
and locations, from a person’s residence and urban activities upto a psycho-medical
institution environment. Among the various project actions, we will be treating the
problem of localization and navigation for people with visual impairments, either
via wearable sensors or a robot companion.
Partners: Handicap Innovation Territoire consortium. Domain: Indoor/outdoor
images

• Project REMED - REconstruction Métrique 3D en temps réel (2020-2023): We are
interested in the improvement of metric SLAM solutions for 3D environments, under
computational power constraints and by using only passive sensors. Of particular
interest is the contribution of deep learning in recovering incomplete 3D models due
to occlusions, errors, dynamic objects or luminosity problems while being comple-
mentary to conventional geometric SLAM.
Partners: ENIB, Thales Palaiseau, Thales Research & Technology Canada. Do-
main: USAR, aerial images

• Project LEASARD - Low-Energy deep neural networks for Autonomous Search-
And-Rescue Drones (2022-2025): The project will develop more energy-efficient
drones with obstacle avoidance and SLAM algorithms that can better exploit the
potential of Deep Neural Networks (DNN) in two phases: first, by using energy-
efficient imaging sensors whose input is fed to specialized DNNs and second, via
energy-efficient DNN processing implemented on energy-friendly hardware as FP-
GAs and System-on-Chips (SoCs). We will be particularly concerned with develop-
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ing energy-aware DNN-improved algorithms for navigation and SLAM for USAR
missions, using event-cameras and neuromorphic vision.
Partners: LS2N, IRL CROSSING. Domain: USAR, event data & color images

5.3 Axis III - Digital Twin

The definition of the digital twin (DT) can vary depending on the field of application,
nevertheless, it refers at its core to a cyber-physical system (CPS) endowed with intel-
ligence and composed of physical and digital entities or processes that are integrated to
each other. It is thus a complex digital representation of a physical system which precisely
models and is able to predict how the real system will perform. In this respect, it can
serve as a tool to bridge the gap between the physical and digital worlds. Crucially, the
connection of the DT to the real-world is bidirectional, meaning that real-world changes
and effects are propagated to the DT.

The core functionality of the DT that I am interested in concerns its potential to
be used as a training environment for robotic tasks pertaining to 3D vision, navigation
or manipulation, pertaining to environments such as iGibson [104], AI2THOR [105] or
Habitat [106]. This bears enormous advantages in robotic applications as it allows the
generation of limitless data, that would otherwise be impossible to obtain or subjected
to hardware and various other limitations and costs. Rather than building an ordinary
simulated environment that is detached from the real counterpart, I am thus interested in
the process of building a DT by observation of the real-system, together with the estab-
lishment of metrics for assessing the quality of the DT, be it for 3D vision or navigation
tasks. These questions are investigated in the following projects:

• Project SSS3D - Segmentation Sémantique d’une Scène Industrielle 3D (2020-
2023): The scope of the project is the recognition of objects within 3D, colored
point clouds obtained from industrial sites, as a step of a DT building process with
the goal of inspection for degradations or problems by human experts [16]. The
main challenge reposes on the absence of sufficient volume of annotated training
data that are mostly proprietary, which hinders the employment of deep-learning.
At the same time, the particularities of the scenes of interest challenge the use of
transfer learning techniques from other applications where data are more abundant.
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Partners: Segula Technologies, ENIB. Domain: Industrial areas, 3D point clouds

• Project undisclosed (2023-2026): The goal consists in updating in real-time a CAD
model of a scene that had been earlier mapped by an agent (human or robot), via
observations captured from an augmented reality system. To develop such an appli-
cation, recent advancements in the field of 3D model representation and rendering
could be explored such as Neural Radiance Fields (NERF) [107], [108] and multi-
view data fusion.
Partner: undisclosed. Domain: Color images, 3D point clouds

It is worth noting that research performed under the theme of DT and its use as train-
ing environment for robots is tightly linked to the research theme SLAM and Navigation
(recall section 5.2). Indeed, through extensive training and/or testing in representative
digital-twin models of robots and the real-world we can develop robotic systems whose
SLAM and navigation capabilities are more robust and generalizable to real-world con-
ditions. At the same time, we can better assess the limits of designs to conditions that
would otherwise be risky or hard to access realistically, e.g. for USAR missions.

Conversely, research developments under the theme of SLAM and navigation can con-
tribute to the construction and maintenance of DTs of real-environments via the acquisi-
tion and processing of various data modalities. Effective SLAM is particularly important
for the constitution of a precise 3D representation of the physical asset with as little
human-supervision as possible but also for the update of the DT, as for example in appli-
cations pertaining to inspection of remote sites (industrial infrastructures, mines, sea-beds,
etc) by specialized robots.
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Chapter 6

CONCLUSION

Following decades of research, development and successful deployment of robotics in in-
dustrial assembly lines and more generally in confined workspaces, the use of robots has
attracted the interest of several other sectors where human workforce remained domi-
nant, be it to necessity or simply to superior human capacity. In the light of different
technological advances in computing and driven by the evolving society needs, however,
a number of indicators signal that robots have the potential to match or surpass human
performance in cognitive tasks, further beyond manual labor.

Apart from purely tele-operated robots, (semi)autonomous robots inevitably need to
rely on proprioceptive and exteroceptive sensing so as to continuously detect and track
their state as well as that of the environment in which they operate in. Admittedly, vision
is the primary skill required to capture the robot surroundings and, for many, the driving
force in artificial intelligence research. 3D robotic vision in particular encompasses fields
that range from simultaneous localization and mapping (SLAM) [109], semantic scene
segmentation, object detection [110] or human activity recognition , altogether allowing
a robot to interpret the static as well as the dynamic components of the environment. In
the earliest and also preponderant paradigm of robot architecture design, 3D vision serves
at building internal, higher-level representations of the real world wherein planning and
decision can take place before acting. Irrespective of the underlying robot design, sensing
and understanding the 3D environment in a reliable and robust manner is the sine qua non
for a successful robot deployment. 3D vision is thus highly concerned with the resolution
of inverse problems of elevated dimensionality that stems from the geometry of a changing
and potentially growing environment. The latter point is a direct consequence of robot
mobility that allows to expand its workspace and therefore its utility.

Navigating in 3D thus opens new opportunities but also poses challenges related
to the integrity of the environment, the surrounding people and the robot itself, not to
mention user acceptability concerns. The diversity in robot platforms and designs adds
another factor of complexity to the aforementioned problems, as 3D navigation inevitably
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adds more degrees of freedom to a robot and increases its exposure to collisions. It fur-
ther reposes on effective 3D environment sensing coupled with planning and/or control
and machine learning, in order to minimize the risk of accidents and energy consump-
tion, increase compliance to human interactions, etc while accounting for stochasticity.
Conversely, 3D navigation may deliberately influence the task of 3D vision following the
paradigm of active perception [111] which highlights the interest for the understanding
and treatment of the two tasks.

Thanks to the advent of affordable graphical processing units (GPU) and realistic sim-
ulators combined with the emergence and establishment of deep-learing (DL), the fields
of vision and navigation have been brought even closer since the last decade via the
paradigm of end-to-end learning [103]. This paradigm bypasses altogether the intermedi-
ate step of constructing observable abstractions of the real-world wherein planning and
decision take place, allowing raw sensor readings to be directly mapped to actions. Finally,
the use of RGB-D sensors that have become commonplace in robotics has even further
boosted research in 3D vision and control be it for navigation or manipulation.

In the previous chapters, I have presented my contributions in the fields of computer
vision and robot navigation in 3D environments covering a period of 13 years in total, in
domains of application pertaining to urban search and rescue, assistive and field robotics
together with digital libraries and information-communication technology (ICT) more
broadly. During this course, I had the privilege to discover different styles and practices
for pursuing research and innovation, to work with diverse software tools, robot platforms
and sensors while developing a spirit of teamwork, extroversion and pursuit of scientific
excellence. The reported results were thus to a large extent attained thanks to coordinated
and persistent work of various other people that were either directly involved or on whose
earlier work I could build upon.
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TEACHING

This annex lists my current and earlier teaching activities dating since the beginning
of my PhD thesis. During this period, in 2015, I received the Qualification from CNU
(Conseil National des Universités) for the section 61 - Génie informatique, Automatique
et Traitement du Signal.

I. University of Athens, Department of Informatics and Telecommunications,
Greece In the period 2005−2009, I supervised laboratory sessions (TP) of the following
undergraduate course:

• Computer Graphics I1

Covered topics: Rendering, visualization, geometric transformations, animation.
Technical skills: OpenGL, C++. Types of training: project-based. Total volume: 45
h.

II. University of Rome ”La Sapienza”, Rome, Italy Between 2010− 2012, I real-
ized theoretic sessions (CS) and supervised laboratory sessions (TP) of the following two
courses of the M. Sc. in Artificial Intelligence and Robotics:

• Computer Vision and Perception2

Covered matter: Multi-view Geometry in Computer Vision. Technical skills: Matlab.
Types of training: project-based. Total volume: 45 h.

• Pattern Recognition2

Covered matter: Linear and non-linear classification, probabilistic graphical models.
Types of training: Lecturing. Total volume: 23 h.

III. ENSTA ParisTech, Paris, France Between 2015 and 2016, I supervised labora-
tory sessions (TP) of the following two courses:

1Teaching language : Greek
2Teaching language : English
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• Programmation et Algorithmique en Python3 : Types of training: project-
based. Total volume: 21 h.

• Projet Informatique2 : Types of training: project-based. Total volume: 21 h.

IV. IMT Atlantique, Brest, France

Course responsible Since 2017 I have been the coordinator of the following two courses
at M.Sc. level :

• C programming language2 (MSC-INF101B): The course is part of the 1st semester
of the MSc IT (Information Technology) of IMT Atlantique, Brest Campus, contain-
ing 18 hours in total that are divided into ordinary classes and laboratory sessions.
Technical skills : C, gcc, gdb, Make. Types of training : lecturing, project-based.
Total volume : 115 h

• Programming of Robotic Systems2 (PA-DI-BOT-B): The course is provided
as an option to the second or third year students of TAFs DCL and OPE, with 40
hours in total divided into ordinary classes and laboratory sessions. The syllabus
of the course contains the following themes : (i) Representation & Modeling fun-
damentals, (ii) Sensing & Observation, (iii) State Estimation, Robot Localization,
(iv) Planning, Graph Search, (v) Image representation, features, motion estimation
and (vi) Robotic manipulation principles. Each of these is accompanied by a corre-
sponding laboratory project where students learn to program using the ROS (Robot
Operating System) middle-ware, in simulation as well as with real mobile robots.
Technical skills : ROS, 3D physical simulation, Python/C++. Types of training :
lecturing, project-based. Total volume : 226 h

Participation to other courses and diverse implications Apart from the previ-
ously mentioned, recurrent responsibilities, I have been implicated at various degrees in
the teaching of courses of other departments, in particular :

• Realization of prescribed TP/TD/CS sessions - I have contributed in the re-
alization of sessions of the following courses (ordered by decreasing order of volume):

3Teaching language: French
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– Génie logiciel et programmation objet3 (INF-205, resp. Julien MALLET),
dept. INFO. Technical skills : Java, UML. Types of training : project-based.
Total volume : 62 h.

– Bases de données3 (INF-206, resp. Laurent BRISSON), dept. LUSSI.
Technical skills : SQL, Java. Types of training : lecturing, project-based.
Total volume : 58 h.

– Articulation machine-langage-OS3 (SIT-151, resp. André THEPAUT), dept.
INFO. Technical skills : C. Types of training: project-based. Total volume : 20
h.

– Linux & environnement informatique3 (TC131C, resp. Eric COUSSIN),
dept. INFO. Technical skills : System programming, bash. Types of training :
Directed work, Total volume : 7 h.

– Intelligence Artificielle2 (PA-DI-IAIMP-B, resp. Nicolas FARUGGIA), dept
ELEC. Technical Skills : Python, deep-learning frameworks. Types of training
: Lecturing. Volume totale : 2 h.

• Creation of new TP/TD/CS sessions: Since 2019, I have been contributing
to the course Computer Vision2 (PA-DI-COMPVISIO-B) and since 2022 to the
course RAUG - Réalité Augmentée2. The topics covered are monocular and
stereoscopic vision and more particularly, single-camera modeling, calibration, two-
view geometry and camera-motion estimation. Technical Skills : Python, OpenCV.
Types of training : lecturing, project-based. Total volume : 71 h.

• Student project supervision: Proposed and (co)supervised diverse projects of
the common education program since 2016, namely: (i) Projet Filière - Systèmes
Logiciels et Réseaux - SLR), (ii) Projet (Co)Développement - FISE, (iii) Projet
Bibliographique - MSc-IT-Brest, (iv) Projet S4, (v) Projet Recherche. Total volume
: the equivalent of 20 h of TP per year.

• EU project SmartSoc - Education of Future ICT Experts based on Smart
Society Needs, 2021−2022. Technical supervisor of students developing entrepreneurial
cases. Total volume : 15 h.

• Seminars2
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– Implicated to the realization of the winter school entitled WASAA - West-
ern Alliance for Scientific Actions with Australia, editions 2019, 2020, 2023,
organized by IMT Atlantique. My contribution consisted to the realization
of theoretic sessions and the proposition and supervision of research projects.
Total volume : 30 h.

– Chaire M@D (Maintien en Domicile) - 2018 : TP on the middleware ROS
(Robot Operating System) to engineers of ENSIBS. Total volume : 3 h.

• Science popularization2: Participation to the event Journée Métiers du numérique
organized by UBL in 2016, by introducing the field of computer science to high-
school students via interactive workshops. Total volume : 3 h.

Perspectives and links between teaching and research
The synergy between my teaching and research activities is articulated within the
general-engineer curriculum prescribed by IMT Atlantique. The course “Program-
ming of Robotic Systems” serves as initiation to the fundamentals of mobile robotics
and will serve as entry to a new course, oriented towards robot-learning and probably
more dependent on 3D physical simulation, in order to concentrate more onto the
algorithmic and data aspects of robotics. In a more direct connection to my research
activities, the monocular and stereo-vision parts of the courses “Computer Vision”
and “Augmented Reality” can serve as a basis for the introduction of the theme of
SLAM - Simultaneous Localization and Mapping - using passive sensors. Further
beyond the perimeter of IMT Atlantique, a second objective of valorization and of
promotion of the synergy between teaching and research concerns the publications
of tutorials, namely, the publication of a special type of article that is pedagogical
and more general public, potentially accompanied by open-source code. Finally, in
the upcoming years I will be led to develop the collaboration of IMT Atlantique and
the NTUA - National Technical University of Athens - in the domain of education
and research on the basis of the underlying mutual engagements.
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DIRECTION

Coordination

This section lists activities for which I have been involved as (co)supervisor/(co)responsible.

Responsibilities

• RAMBO (Robot interaction, Ambient system, Machine learning, Behavior, Opti-
mization) team co-leader, Lab-STICC, UMR 6285, France, 2020-...
The team consists of 8 faculty and 11 doctoral and post-doctoral researchers, reunit-
ing IMT Atlantique, ENIB and UBS www.imt-atlantique.fr/en/research-innovation/
teams/research-team-rambo. Members of the team have a longstanding implica-
tion/participation in the international contest RoboCup, having won RoboCup@home
education 2020 Standard Platform/Open Category and its co-leader Prof. Dominique
Duhaut is the organizer of RoboCup 2023. The team disposes state-of-the-art re-
search facilities and equipment, notably a LivingLab in eHealth www.imt-atlantique.
fr/sites/default/files/recherche/plateformes/en/experiment_haal.pdf.

• Founding member and associate of International Research Lab (IRL) CROSS-
ING (frenCh austRalian labOratory for humanS / autonomouS agents teamING),
CNRS - Naval Groupe - Australia, crossing.cnrs.fr/, 2018-...
I was among the IMT Atlantique delegation for the launching of the lab and I am
currently co-supervising a joint PhD thesis with University of Adelaide.

Post-doc (co)supervision

– Maxime Devanne, IMT Atlantique, Brest, 2018, Project AMUSAAL
Analyse automatique de Mouvements hUmains par décomposition en mouve-
ments Simples pour l’Ambient Assisted Living (publication: 19.), cosupervised
with Sao Mai Nguyen, completed
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Direction

– Alireza ASVADI, IMT Atlantique, Brest, 2020-2022, Project HERON
Habitat intelligent Et RObotique d’assistance basés sur le jumeau Numérique
(publications: 14., 48.), cosupervised with Christophe Lohr, completed

– Pedro Juan SOTO VEGA, Ifremer, Brest, 2022-2023, Project ABYSSES
Annotation Boostée des modèles 3D de monts hYdrothermaux Sous-marins par
apprentiSsage profond d’adaptation de domainES, cosupervised with Marjo-
laine Matabos, ongoing

– Ikram KOURBANE, IMT Atlantique, Brest, 2022-2024, Project ECFvi-
suL, Évaluation automatique continuelle de la capacité fonctionnelle humaine à
domicile à l’aide de la vision par ordinateur, cosupervised with Mihai Andries,
ongoing

– Hajer FRADI, IMT Atlantique, Brest, 2023-2024, Project LEASARD
Low-Energy deep neural networks for Autonomous Search-And-Rescue Drones
, cosupervised with Guillaume Moreau, ongoing

Ph.D. thesis (co)supervision

– Andrei MITRIAKOV, IMT Atlantique, Brest, 2018-2022, Thesis: Re-
inforcement Learning-based Control for Safe 3D Navigation of Articulated Tracked
Robot Manipulators. Director: Serge GARLATTI (IMT Atlantique), Lab-Sticc
(publications: 1., 2., 14., 17., 18., 47.), completed

– Mohamed-Khalil JABRI, IMT Atlantique, Brest, 2020-2023, Thesis:
RObot Manipulation Learning by Demonstration using Generative Adversarial
Networks. Director: Gilles COPPIN (IMT Atlantique) & Javen SHI (Univer-
sity of Adelaide, AU), co-supervisor: Ehsan ABBASNEJAD (University of Ade-
laide, AU), Lab-Sticc & Australian Institute of Machine Learning (publication:
[18]), ongoing

– Yassine HABIB, IMT Atlantique, Brest, 2020-2023, Thesis: Dense and
Real-time 3D Metric Mapping. Director: Cédric BUCHE (ENIB), co-supervisor:
Cédric LE BARZ (Thales Palaiseau), Lab-Sticc (publications: 12., 46.), ongoing

– Cédric LE BONO, IMT Atlantique, Brest, 2020-2023, Thesis: Proac-
tive Assistance to ADLs by Contextual Robotic Interaction. Director: Cédric
BUCHE (ENIB), co-supervisor: Christophe LOHR (IMT Atlantique) (publi-
cation: 45.), ongoing
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– Romain CAZORLA, ENIB, Brest, 2020-2023, Thesis: Semantic Segmen-
tation of Industrial 3D Scenes. Director: Cédric BUCHE (ENIB), co-supervisor:
Line POINEL (Segula Technologies) (publications: 13., 16.), ongoing

– Quentin FERDINAND, ENSTA Bretagne, Brest, 2020-2023, Thesis:
Incremental Learning for Classification of Objects of Interest. Director: Benoît
CLEMENT (ENSTA Bretagne), co-supervisors: Gilles LE CHENADEC (EN-
STA Bretagne), Quentin OLIVEAU (Naval Group) (publication: 15.), ongoing

– Nacer DJERADA, IMT Atlantique, Brest, 2023-2026, Thesis: Travel
assistance for visually impaired people based on computer vision. Director:
Panagiotis PAPADAKIS (IMT Atlantique), co-supervisor: Christophe LOHR
(IMT Atlantique), ongoing

M.Sc. thesis (co)supervision

– Valsamis NTOUSKOS, University of Rome “La Sapienza”, 2011-
2012, Thesis: Classification of Human Actions from Motion Capture Sequences
(publications: 24., 30., 31.), completed

– Aimenallah SAIAD-SAHRAOUI, IMT Atlantique, 2017-2018, Thesis:
Dynamic Obstacle Avoidance for Indoor Robot Platooning, completed

– Andreea-Oana PETAC, ENIB, 2017-2018, Thesis: Robot detection and
localization by machine learning and computer vision algorithms, completed

Tutoring : From 2017 up to date, I have been tutor for the final year internships
(SFE) of the following M.Sc. students :

Fei Zhao, Michael Matyn, Sekou Traore, Chen Zhen, Thomas Dambricourt, Ro-
main Namyst, Cédric Le Bono, Hanyuan Zhang, Mao Yuan, Mohamed Amine Ben
Amira, Quentin Duffeau

(Co)chairing - event organization

– Fête de la science 2015, ENSTA ParisTech

– AAAI Fall Symposium on Robot Human Teamwork on Dynamic Adverse En-
vironments, Arlington, USA, 2011, [112]
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Direction

– International Conference on Computer Vision Theory and Applications, Italy,
2012

– International Conference on Pattern Recognition Applications and Methods,
Portugal, 2012

– EU Robotics Week - 2011, University of Rome “La Sapienza”

– Web-site development for 1st Eurographics workshop on 3D Object retrieval
2008 diglib.eg.org/handle/10.2312/313.

Expertise

This section lists my implication in providing scientific expertise.

Mentorship

– Doctorate thesis committee representative (CSI): ENSTA Bretagne & Orange
Lannion (CIFRE), 2019-2022, Thesis: Moteur de dialogue multimodal adaptatif
multicapteurs et multi-actionneurs appliqué à une plateforme robotique

– Doctorate thesis committee member (CSI): IMT Atlantique & CHRU Brest,
2023-2025, Thesis: Longitudinal follow-up of liver metastases from colorectal
cancer using artificial intelligence

– Technical expert for Entrepreneurial Cases : IMT Atlantique, 2021-2022, EU
Project SmartSoc - Education of Future ICT Experts based on Smart Society
Needs:

∗ Case 2021: Safe, effective and sustainable COVID-19 protection operations
in congested areas

∗ Case 2022: Google Street Map-based Route Analysis for People with Dis-
abilities

– Robotics & Automation Society, YRP Senior Reviewer

Research proposals reviewer

– Croatian Science Foundation (HRZZ), 2013 Call for Research Projects
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– CNRS INS2I, International Research Project (IRP) 2022

– Thesis proposal reviewer: Region of Brittany, France, 2022

Public tender evaluator

– Evaluator of public tenders for robots acquired by Télécom-Bretagne, in the
context of project CPER (Contrat Plein État Région) - VITAAL (Vaincre
l’Isolement par les TIC par l’ “Ambient Assisted Living”), 2016-2019. Tasked
with assessing the quality of received offers for the acquisition of : (i) a tracked
robot manipulator, (ii) a humanoid robot, (iii) a tele-presence robot and (iv)
a fleet of small robot manipulators https://www.imt-atlantique.fr/fr/
recherche-innovation/equipe/rambo?arg=5846_7.

Jury/committee

– Homi Bhabha Institute, India, 2016, Ph.D thesis of Mr. V. Satish Kumar
Reddy: Mobile Robot Navigation in an Outdoor Environment, dissertation re-
viewer

– Electrical Engineering Department of Cybernetics, Czech Technical University
in Prague, 2022, Ph.D thesis of Mr. Vojtěch Šalanský: Robot Learning and
Perception in Sensory Deprived Environment, dissertation reviewer

– Electrical Engineering Department of Cybernetics, Czech Technical University
in Prague, 2023, Ph.D thesis of Mr. Teymur Azayev: Robotic control with
deep-learned structured policies, dissertation reviewer

– ENSTA Bretagne, Brest, France, 2023, Ph.D thesis of Mr. Rémi RIGAL:
Moteur de dialogue multimodal adaptatif multicapteurs et multi-actionneurs
appliqué à une plateforme robotique, dissertation examiner

– Recruitment of Assoc. Professor in the department of Informatics, IMT Atlan-
tique, team RAMBO, 2020, jury member

– Recruitment of Assoc. Professor in the department of Informatics, IMT Atlan-
tique, team RAMBO, 2023, jury member

– INSA Rennes, Master Research Internship - (SIF) - of Mr. Lucas Pélerin: Sim-
ulation de foule par apprentissage, M.Sc. thesis reviewer
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Direction

– Member of Commission de Qualification des Promotions et Changement
d’Appellations - MC/CR/CER/IE for IMT Atlantique, 2023-2026

– Department of Production Engineering and Management, Demokritos Univer-
sity of Thrace, Greece - external registry member, 2023

Article reviewer

– Conferences: International Conference on Intelligent Robots and Systems
(IROS), International Conference on Robotics and Automation (ICRA), Safety
Security and Rescue Robotics (SSRR), Field and Service Robotics (FSR), In-
ternational Conference on Systems, Man and Cybernetics (SMC)

– Journals: Journal of Field Robotics (JFR), Pattern Recognition (PR), IEEE
Transactions on Intelligent Vehicles (TIV), Mechanism and Machine Theory
(MMT), IET Computer Vision, Transactions on Image Processing (TIP), En-
gineering Applications of Artificial Intelligence (EAAI), Transactions on Cog-
nitive and Developmental Systems (TCDS), Robotics and Autonomous Sys-
tems (RAS), Transactions on Multimedia (TM), Image and Vision Computing
(IVC), Robotica, International Journal of Digital Earth, International Journal
of Machine Vision and Applications, Computer-Aided Design (CAD)
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INVITED TALKS & SEMINARS

- 3D terrain perception of mobile robots based on shape and appearance: state-of-
the-art, challenges and future trends, 2012, Foundation for Research and Technology
(FORTH), Institute of Computer Science, Crete, Greece

- Semantic Mapping for Indoor Environments, 2015, Journées Nationales de la
Recherche en Robotique (JNRR), Cap Hornu, France

- From shape descriptors to real world object-based mapping in robotics, 2015, LAAS-
CNRS, Toulouse, France

- Object Classification in Indoor RGB-D Scenes using Projective Light Diffusion Im-
age Expansion, 2016, GDR-ISIS, Télécom ParisTech, Paris, France

- Object Classification in Indoor RGB-D Scenes using Projective Light Diffusion Im-
age Expansion, 2016, Télécom Bretagne, Brest, France, Lab-STICC Seminar

- Generic Object Discrimination for Mobile Assistive Robots using Projective Light
Diffusion & Binding Human Spatial Interactions with Mapping for Enhanced Mobil-
ity in Dynamic Environments, University of Adelaide, Adelaide, Australia, FASIC
Workshop 2018.

- Construction de vérité terrain d’activités de la vie quotidienne au sein du Living
Lab de l’IMT-Atlantique, Le Couvent des Jacobins - Centre des Congrès de Rennes
Métropole, Journée “Connecter les Usages” - Connectathon, 2019

- Project interview, AMUSAAL (Analyse automatique de Mouvements hUmains par
décomposition en mouvements Simples pour l’Ambient Assisted Living), Tébéo - tele-
vision channel, Chemins de Traverse series, episode 20− 03− 2019

- Robotic Skill Learning and Development in Personal Assistance, CRNS@Webinar
of the University of Plymouth, England, 2021.
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Journal articles

1. A. Mitriakov, P. Papadakis, S. Garlatti, An Open-Source Software Framework
for Reinforcement Learning-based Control of Tracked Robots in Simulated Indoor En-
vironments, Advanced Robotics, vol. 36, no. 11, pp. 519-532, 2022, Impact Factor
(JCR)=2.057

2. A. Mitriakov, P. Papadakis, J. Kerdreux, S. Garlatti, Reinforcement Learning
based, Staircase Negotiation Learning in Simulation and Transfer to Reality for Ar-
ticulated Tracked Robots, IEEE Robotics & Automation Magazine, vol. 28, no.
4, pp. 10-20, 2021, Impact Factor (JCR)=5.229, also presented in IEEE ICRA 2022

3. P. Papadakis, P. Rives, Binding Human Spatial Interactions with Mapping for
Enhanced Mobility in Dynamic Environments, Autonomous Robots, vol. 41, no.
5, pp. 1047–1059, 2017, Impact Factor (JCR)=3.255

4. P. Papadakis, Enhanced Pose Normalization and Matching of Non-Rigid Objects
based on Support Vector Machine Modelling, Pattern Recognition, vol. 47, no. 21,
pp. 216-227, 2014, Impact Factor (JCR)=8.518

5. A. Sinha, P. Papadakis, Mind the Gap: Detection and Traversability Analysis of
Terrain Gaps using LIDAR for Safe Robot Navigation, Robotica, vol. 31, no. 7, pp.
1085-1102, 2013, Impact Factor (JCR)=2.406, 33 citations

6. P. Papadakis, Terrain Traversability Analysis Methods for Unmanned Ground
Vehicles; a Survey, Engineering Applications in Artificial Intelligence, vol. 26,
no. 4, pp. 1373-1385, 2013, Impact Factor (JCR)=7.702, 242 citations

7. S. Blisard, T. Carmichael, L. Ding, T. Finin, W. Frost, A. Graesser, M. Hadzikadic,
L. Kagal, G.J.M. Kruijff, P. Langley, J. Lester, D.L. McGuinness, J. Mostow, P. Pa-
padakis, R. Prasad, S. Stoyanchev, P. Varakantham, Reports of the AAAI 2011 Fall
Symposia, AI Magazine, vol. 33, no. 1, pp. 71-78, 2012 Impact Factor (JCR)=2.524

4JCR stands for “Journal Citation Reports” metrics. The number of citations is provided for a selected
subset of publications. 81
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8. P. Papadakis, I. Pratikakis, T. Theoharis, S. Perantonis, PANORAMA: A 3D
Shape Descriptor based on Panoramic Views for Unsupervised 3D Object Retrieval,
International Journal of Computer Vision, Special Issue on: 3D Object Re-
trieval, vol. 89, no. 2, pp. 177-192, 2010, Impact Factor (JCR)=13.369, 239 citations

9. A. Agathos, I. Pratikakis, P. Papadakis, N. Sapidis, F. Azariadis, 3D Articulated
Object Retrieval using a Graph-based Representation, Visual Computer, Special
Issue for 3D Object Retrieval, vol. 26, no. 1, pp. 1301-1319, 2010, , Impact Factor
(JCR)=2.835, 36 citations

10. P. Papadakis, I. Pratikakis, T. Trafalis, T. Theoharis, S. Perantonis, Relevance
Feedback in Content-based 3D Object Retrieval: A Comparative Study, Computer-
Aided Design and Applications Journal, vol. 5, no. 5, pp. 753-853, 2008, Impact
Factor (JCR)=0.557

11. P. Papadakis, I. Pratikakis, S. Perantonis, T. Theoharis, Efficient 3D Shape
Matching and Retrieval using a Concrete Radialized Spherical Projection Represen-
tation, Pattern Recognition, vol. 40, no. 9, 2007, pp. 2437-2452. Impact Factor
(JCR)=8.518, 242 citations

Articles in proceedings

12. Y. Habib, P. Papadakis, C. Le Barz, A. Fagette, T. Gonçalves, C. Buche,
Densifying SLAM for UAV navigation by fusion of monocular depth prediction,
IEEE International Conference on Automation, Robotics and Applications
(ICARA), 2023

13. R. Cazorla, L. Poinel, P. Papadakis, C. Buche, Reducing domain shift in syn-
thetic data augmentation for semantic segmentation of 3D point clouds, IEEE In-
ternational Conference on Systems, Man and Cybernetics (SMC), 2022,
doi, B

14. A. Asvadi, A. Mitriakov, C. Lohr, P. Papadakis, Digital Twin Driven Smart
Home: A feasibility study, IEEE International Conference On Smart Living
and Public Health, 2022, doi 82
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15. Q. Ferdinand, B. Clement, Q. Oliveau, G. Le Chenadec, P. Papadakis, Attenu-
ating Catastrophic Forgetting by Joint Contrastive and Incremental Learning, IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR), Workshop on Continual Learning, 2022, doi, A*

16. R. Cazorla, L. Poinel, P. Papadakis, C. Buche, Bottleneck Identification to
Semantic Segmentation of Industrial 3D Point Cloud Scene via Deep Learning, In-
ternational Joint Conference on Artificial Intelligence (IJCAI), 2021, doi,
A*

17. A. Mitriakov, P. Papadakis, S. M. Nguyen, S. Garlatti, Staircase Negotiation
Learning for Articulated Tracked Robots with Varying Degrees of Freedom, IEEE
International Conference on Safety, Security and Rescue Robotics (SSRR),
2020, doi

18. A. Mitriakov, P. Papadakis, S. M. Nguyen, S. Garlatti, Staircase Traversal
via Reinforcement Learning for Active Reconfiguration of Assistive Robots, IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), 2020, doi, A

19. M. Devanne, P. Papadakis, S. M. Nguyen, Recognition of Activities of Daily
Living via Hierarchical Long-Short Term Memory Networks, IEEE International
Conference on Systems, Man and Cybernetics (SMC), 2019, doi, B

20. P. Papadakis, D. Filliat, Generic Object Discrimination for Mobile Assistive
Robots using Projective Light Diffusion, IEEE Winter Conference on Applica-
tions on Computer Vision (WACV), Workshop on Computer Vision for Active
and Assisted Living (CV-AAL), 2018, doi, A

21. P. Papadakis, C. Lohr, M. Lujak, A.-B. Karami, I. Kanellos, G. Lozenguez, A.
Fleury, System Design for Coordinated Multi-Robot Assistance Deployment in Smart
Spaces, IEEE International Conference on Robotic Computing, 2018, doi

22. M. Lujak, P. Papadakis, A. Fernandez, Endowing Mobile Robot Teams with
Ambient Intelligence for Improved Patient Care, International Workshop on Ar-
tificial Intelligence and Robotics, 2017, uri
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23. P. Papadakis, A Use-Case Study on Multi-View Hypothesis Fusion for 3D Object
Classification, IEEE International Conference on Computer Vision (ICCV),
Multi-View Relationships in 3D Data workshop, 2017, doi, A*

24. V. Ntouskos,P. Papadakis, F. Pirri, Probabilistic Discriminative Dimensionality
Reduction for Pose-Based Action Recognition, Advances in Intelligent Systems
and Computing (selected papers from ICPRAM 2013), 2015, doi

25. R. Drouilly, P. Papadakis, P. Rives, B. Morisset, Local Map Extrapolation in
Dynamic Environments, IEEE International Conference on Systems, Man and
Cybernetics (SMC), 2014, doi, B

26. A. Sinha, P. Papadakis, M.-R. Elara, A staircase detection method for 3D point
clouds, IEEE International Conference on Control Automation Robotics &
Vision (ICARCV), 2014, doi

27. P. Papadakis, P. Rives, A. Spalanzani, Adaptive Spacing in Human-Robot Inter-
actions, IEEE International Conference on Intelligent Robots and Systems
(IROS), 2014, doi, A, 41 citations

28. P. Papadakis, The Canonically Posed 3D Objects Dataset, Eurographics
Workshop on 3D Object Retrieval, 2014, doi

29. P. Papadakis, A. Spalanzani, C. Laugier, Social Mapping of Human-Populated
Environments by Implicit Function Learning, IEEE International Conference on
Intelligent Robots and Systems (IROS), 2013, doi, A, 40 citations

30. V. Ntouskos, P. Papadakis, F. Pirri, Discriminative Sequence Back-Constrained
GP-LVM for MOCAP Based Action Recognition, International Conference on
Pattern Recognition Applications and Methods, 2013, doi

31. V. Ntouskos, P. Papadakis, F. Pirri, A Comprehensive Analysis of Human Mo-
tion Capture Data for Action Recognition, International Conference on Com-
puter Vision Theory and Applications, 2012, doi, B
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32. G.J.M. Kruijff, M. Janicek, S. Keshavdas, B. Larochelle, H. Zender, N.J.J.M.
Smets, T. Mioch, M.A. Neerincx, J. van Diggelen, F. Colas, M. Liu, F. Pomerleau,
R. Siegwart, V. Hlavac, T. Svoboda, T. Petricek, M. Reinstein, K. Zimmermann,
F. Pirri, M. Gianni, P. Papadakis, A. Sinha, P. Balmer, N. Tomatis, R. Worst, T.
Linder, H. Surmann, V. Tretyakov, S. Corrao, S. P. Wanczura, M. Sulk, Experience in
System Design for Human Robot Teaming in Urban Search & Rescue, International
Conference on Field and Service Robotics (FSR), 2012, doi, A, 127 citations

33. G.-J. Kruijff, F. Pirri, M. Gianni, P. Papadakis, M. Pizzoli, A. Sinha, E. Pianese,
S. Corrao, F. Priori, S. Febrini, S. Angeletti, V. Tretyakov, T. Linder, Rescue Robots at
Earthquake Hit Mirandola, Italy, a Field Report, IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR), 2012, doi, 157 citations

34. P. Papadakis, M. Gianni, M. Pizzoli, F. Pirri, Constraint-free Topological Map-
ping and Path Planning by Maxima Detection of the Kernel Spatial Clearance Density,
International Conference on Pattern Recognition Applications &Methods,
2012, doi

35. M. Gianni, P. Papadakis, F. Pirri, M. Liu, F. Pomerleau, F. Colas, K. Zim-
mermann, T. Svoboda, T. Petricek, G. Kruijff, H. Zender, H. Khambhaita, A Unified
Framework for Planning and Execution Monitoring of Mobile Robots, AAAI Work-
shop on Automated Action Planning for Autonomous Robots, 2011, uri

36. M. Gianni, P. Papadakis, F. Pirri, M. Pizzoli, Awareness in Mixed Initiative
Planning, AAAI Fall Symposium on Robot-Human Teamwork in Dynamic
Adverse Environments, 2011, uri

37. P. Papadakis, F. Pirri, Consistent Pose Normalization of Non Rigid Shapes
using One-class Support Vector Machines, IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), Workshop on Non Rigid
Shape Analysis and Deformable Image Alignment, 2011, doi, A*

38. H. Khambhaita, G.-J. Kruijff, M. Mancas, M. Gianni, P. Papadakis, F. Pirri,
M. Pizzoli Help Me to Help You: How to Learn Intentions, Actions and Plans, AAAI
Spring Symposium, 2011, uri
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39. A. Agathos, I. Pratikakis, P. Papadakis, S. Perantonis, P. Azariadis, N. Sapidis,
Retrieval of 3D Articulated Objects Using a Graph-based Representation,Eurograph-
ics Workshop on 3D Object Retrieval, 2009, doi, 56 citations

40. P. Papadakis, I. Pratikakis, T. Theoharis, S. Perantonis, CIL3D: A content-
based 3D model search engine, ACM International Conference on Digital In-
teractive Media in Entertainment and Arts, 2008, doi

41. P. Papadakis, I. Pratikakis, T. Theoharis, G. Passalis, S. Perantonis, SHREC’08
Entry: Hybrid IIT-NCSR-Demokritos, IEEE International Conference on Shape
Modeling and Applications, 2008, doi

42. P. Papadakis, P. Papadakis, I. Pratikakis, T. Theoharis, G. Passalis, S. Peran-
tonis, 3D Object Retrieval using an Efficient and Compact Hybrid Shape Descriptor,
Eurographics Workshop on 3D Object Retrieval, 2008, doi, 118 citations

International Patents

43. P. Papadakis, G. Passalis, I. Pratikakis, T. Theoharis, S. Perantonis, Hybrid
Method and System for Content-based 3D Model Search, US 11/957,518, 30 citations

44. P. Papadakis, I. Pratikakis, T. Theoharis, S. Perantonis, Method and system
for content-based search of 3D models using panoramic views, EP/09386018.7-2218

Posters

45. C. Le Bono, P. Papadakis, C. Buche, Assessment of Conformal Use of Personal
Protective Equipment by Object and Human Pose Recognition, IEEE International
Conference on Safety, Security and Rescue Robotics (SSRR), 2020, HAL
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46. Y. Habib, P. Papadakis, C. Le Barz, C. Buche, A. Fagette, Metric, dense and
real-time 3D Reconstruction for drone autonomous navigation, Journées des Je-
unes Chercheurs en Robotique (JJCR 2021), 2021, HAL

47. A. Mitriakov, P. Papadakis, S.M. Nguyen, S. Garlatti, Learning-based modelling
of physical interaction for assistive robots, Plateforme Française de l’Intelligence
Artificielle (PFIA), 2019, HAL

48. A. Asvadi, G. Bechu, A. Beugnard, C. G. L. Cao, C. Lohr, P. Papadakis, Q.
Perez, C. Urtado, S. Vauttier, Model-driven deployment of Digital Twins for Smart
Environments - The HUman at home projecT case study, Journées nationales du
GDR GPL, France, 2022, HAL

Accepted or under review

- R. Cazorla, L. Poinel, P. Papadakis, C. Buche, Enhancing Synthetic Data Gener-
ation for Semantic Segmentation of Point Clouds, Geospatial Informatics XIII,
Proceedings of SPIE, 2023, to be presented

- Y. Habib, P. Papadakis, A. Fagette, T. Gonçalves, C. Buche, Densifying SLAM
for UAV navigation, Geospatial Informatics XIII, Proceedings of SPIE, 2023,
to be presented

- P. J. Soto Vega, P. Papadakis, M. Matabos, L. V. Audenhaege, A. Ramiere, J.
Sarrazin, G. A. O. P. da Costa, Hydrothermal Vents Substrate Classification using
Convolutional Neural Networks, IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 2023, under review

- Undisclosed author list for anonymity, Undisclosed title for anonymity, IEEE In-
ternational Conference on Computer Vision (ICCV), 2023, under review
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Technical Reports

- D. Filliat, P. Papadakis, Context aware obstacle avoidance : spécifications, Livrable
5.5.10, Project ROMEO2, 2015

- M. Gianni, P. Papadakis, F. Pirri, M. Pizzoli, DR 5.1.1: Domain analysis and
specifications: context scenario and skill primitives, EU FP7 NIFTi / ICT-247870,
Deliverable Report, 2011, url

- M. Gianni,P. Papadakis, F. Pirri, M. Pizzoli, DR 5.1.2: Methods and paradigms for
skill learning based on affordances and action-reaction observation, EU FP7 NIFTi
/ ICT-247870, Deliverable Report, 2011, url

- M. Gianni, P. Papadakis, F. Pirri, M. Pizzoli, A. Sinha, DR 5.2.3: Hierarchical
Structure of Learned Skills, Scan-paths, Saliency Map of Activities and Communica-
tion Interfaces, EU FP7 NIFTi / ICT-247870, Deliverable Report, 2011, url

- P. Papadakis, I. Pratikakis, S. Perantonis, T. Theoharis, A concrete radialized
spherical projection descriptor for 3D shape retrieval, SHREC2006: 3D Shape
Retrieval Contest, 2006, Technical Report UU-CS-2006-030, ISSN: 0924-3275, url
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- UGV pilot of the team dispatched to the earthquake-hit area of Emilia Romana in
Italy in 2012, which was the pioneering mission of a human-robot team for USAR
in Europe [7]. Press articles: IEEE Spectrum, European Commission, Italian Fire
Brigade, Swiss SRF

- Top rank of shape descriptor (PANORAMA) [28] in : (i) computer vision bench-
mark [113] and (ii) retrieval of macromolecular surfaces [114] by generic descriptors

- Invited by IEEE Robotics & Automation journal for oral presentation of [13] in
IEEE International Conference on Robotics and Automation (ICRA) 2022

- Honorary exemption of conference registration for presentation of article [84]

- Ranked third in International SHape REtrieval Contest [115], 2006

- Third best 2021 entrepreneurial case in EU SmartSoc project, video

- Earned grants of 600K € in total as principal investigator (PI) or project partner

PUBLIC SOFTWARE, OPEN-SOURCE & DATA

- NPCA rotation normalization, publication 11 :
drive.google.com/file/d/0ByzqyOSOUr6RRFdNX3JuWmdMSHc/view?usp=sharing
- PANORAMA 3D shape descriptor, publication 8 :
drive.google.com/file/d/0ByzqyOSOUr6RbTBEOTFITVlra3c/view?usp=sharing
- CAPOD dataset, publication 28 :
drive.google.com/file/d/0ByzqyOSOUr6RT0kwTGhXTVRwSEU/view?usp=sharing
- Reinforcement-learning based robot control, publication 1 :
github.com/gwaxG/robot_ws
- Data augmentation for semantic point cloud segmentation, publication 13 :
github.com/RomainCazorla/Synthetic3DPointCloudDomainShiftReduction
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first problem, a rotation normalization method was proposed that computes the ob-
ject’s principal axes using the orientation of the object’s surface and a hybrid rotation
normalization scheme than combines both the surface distribution and the surface
orientation distribution. Considering the second problem, a set of 3D shape descrip-
tors was proposed, namely, the Concrete Radialized Spherical Projection (CRSP),
the Hybrid and Panoramic Object Representation for Accurate Model Attributing
(PANORAMA) shape descriptor. The CRSP descriptor is formed by computing a
spherical function-based representation and using the spherical harmonic transform.
The Hybrid descriptor is formed by combining the CRSP descriptor with a depth
buffer-based representation. The PANORAMA descriptor is formed by projecting the
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APPENDIX - MULTIMEDIA

The following videos have been produced to demonstrate the behavior of developed
systems and promote the associated research to the community.

Video # 1: bit.ly/3NgUdSb Video # 2: bit.ly/3yhjS99

Video # 3: bit.ly/3tY9VuK Video # 4: youtu.be/iBDop_BykcA

Video # 5: youtu.be/8SSDdBm5sRo Video # 6: youtu.be/u0_5MEDC57s
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Title: Computer Vision and Robot Navigation in 3D Environments

Keywords: Object recognition, obstacle negotiation, unmanned ground vehicles, robot

learning

Abstract: This dissertation presents contribu-
tions to research problems in the domains of
computer vision and navigation in 3D environ-
ments for ground robots.

Specifically, Chapter 2 is dedicated to 3D
vision and presents machine-learning based
methodologies for the semantic understanding
of geometric and color data, for applications
pertaining to digital libraries of 3D objects
and semantic mapping of static or dynamic
environments populated by humans and ex-
plored by robots. We contribute more robust
and effective 3D perception methods inspired
from the fields of novelty detection, incremen-
tal learning and intelligent, multi-modal data
fusion.

In the sequel, Chapter 3 addresses the
problem of safe and effective navigation of

ground robots operating in 3D outdoor or in-
door environments, focusing on the negoti-
ation of negative and positive obstacles by
leveraging the power of robot learning via
physics-based simulation. We establish a gen-
eral framework for modeling robot traversabil-
ity in 3D terrains that is instantiated to the mo-
tion control of articulated, tracked robot ma-
nipulators. Diverse motion control behaviors
are developed for the purpose of staircase
ascent/descent, gap traversal upto socially-
compliant navigation, leveraging on advances
in the fields of reinforcement learning, end-to-
end learning and potential fields.

Finally, Chapter 4 describes the deploy-
ment of terrestrial robots from a system en-
gineering perspective in the context of in-field
experiments and Chapter 5 unfolds future re-
search directions.
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