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Abstract

Time is the physical quantity that is measured with the greatest precision, far ahead of

all the others. Recent advances in atomic clocks have made it possible to achieve relative

stabilities of the order of a few 10−18, thus corresponding to an uncertainty of about one

second in the age of the Universe. However, it is not because these uncertainties become

ridiculously small that they should be neglected, quite the contrary. The aim of this work

is to contribute to improving the determination of these uncertainties. It is divided in

two parts and concerns the fine characterization and improvement of a set of estimation

methods.

In the present work we first describe a procedure to determine the jumps which can

affect the time links used in the Coordinated Universal Time (UTC), calculated by the

BIPM. This tool, based on a Kalman filter, should correctly determine the date of the

steps and their magnitude, mainly for time steps, and give a warning to the BIPM Time

Department about this unexpected problem. This warning will help to understand the

nature of the steps which, in some cases, can affect the behavior of UTC. A critical

example is the receiver calibration causing a step in time links and potentially impacting

UTC behavior. To ensure the long-term stability of UTC, it is crucial to verify the data

and identify problems.

The second part of the work mainly concerns a detailed analysis of frequency insta-

bilities in terms of Bayesian statistics. In particular we want to obtain reliable confidence

intervals around the measurements of the power spectrum of red noise processes at the

lowest frequencies, e.g. the observation of millisecond pulsars in radio astronomy. Thus

it is only possible to average on simultaneous observation of multiple instruments. We

compare 95% upper limit of the red noise parameter using the spectrum average and

cross-spectrum. Checked by massive Monte Carlo simulations, the cross-spectrum esti-

mator leads to the variance-Gamma distribution with two instruments and a generalization

to n instruments based on the Fourier transform of characteristic functions is provided.



Résumé en Français

Le temps est la grandeur physique qui se mesure avec la plus grande précision,

loin devant toutes les autres. Les progrès récents des horloges atomiques ont permis

d’atteindre des stabilités relatives de l’ordre de quelques 10−18, correspondant ainsi à une

incertitude d’environ une seconde sur l’âge de l’Univers. Cependant, ce n’est pas parce

que ces incertitudes deviennent dérisoires qu’il faut les négliger, bien au contraire. Le

but de ce travail est de contribuer à améliorer la détermination de ces incertitudes. Il est

divisé en deux parties et porte sur la caractérisation fine et l’amélioration d’un ensemble

de méthodes d’estimation.

Dans ce travail, nous décrivons d’abord une procédure pour déterminer les sauts

qui peuvent affecter les liens de transfert de temps utilisés dans le calcul de l’échelle

du Temps Universel Coordonnée (UTC), calculé par le BIPM. Cet outil, basé sur un

filtre de Kalman, devrait déterminer correctement la date des sauts et leur grandeur,

principalement pour les sauts de temps, et avertir le service du temps du BIPM de ce

problème inattendu. Cet avertissement aidera à comprendre la nature des étapes qui,

dans certains cas, peuvent affecter le comportement d’UTC. Un exemple critique est

l’étalonnage du récepteur qui provoque un saut dans les transfert de temps et qui a

potentiellement un impact sur le comportement d’UTC. Pour assurer la stabilité à long

terme d’UTC, il est crucial de vérifier les données et d’identifier les problèmes.

La deuxième partie du travail concerne principalement une analyse détaillée en termes

de statistiques bayésiennes des instabilités de fréquence. En particulier, nous voulons

obtenir des intervalles de confiance fiables autour des mesures du spectre de puissance des

processus de bruit rouge aux fréquences les plus basses, par ex. l’observation des pulsars

millisecondes en radioastronomie. Ainsi, il n’est possible de faire la moyenne que sur

l’observation simultanée de plusieurs instruments. Nous comparons la limite supérieure

à 95% sur le paramètre de bruit rouge en utilisant la moyenne du spectre et le spectre

croisé. Vérifié par des simulations massives de Monte Carlo, l’estimateur à spectre croisé

conduit à la distribution variance-Gamma avec deux instruments et une généralisation à n

instruments basée sur la transformée de Fourier des fonctions caractéristiques est fournie.
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CHAPTER 1

From clocks . . .

1.1 Time and Frequency Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Before the atomic era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The atomic time era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Towards a new redefinition of the second . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Time and Frequency Standards

The most recurring question of all eras is undoubtedly what time is it? It is thus necessary

to measure time by defining standards of time and frequency based on a periodic event

which is repeated at a constant rate. This device is called a resonator, e.g. the pendulum

for a pendulum clock but also the rotation of the earth! This resonator requires a source

of energy to operate, the whole then forms an oscillator. This operates at a rate called

the resonant frequency. In the case of the pendulum, the clock may be set to swing back

and forth at the rate of one second. Counting the number of swings then creates a time

scale that can be set for much longer durations, e.g. minutes, hours or even days. The

device counting and displaying the result is called a clock. The relationship between the

frequency uncertainty of a clock’s resonator and the corresponding timing uncertainty of

the clock is given in Table 1.1.

1.2 Before the atomic era

Throughout history [1–3], clock designers have sought more stable resonators. The

first time scales were based on the repeatability of celestial events. Ancient Egyptian

obelisks, built around 3500 B.C., are also among the earliest sundials. Sundials were

the first devices used to measure the parts of a day. Apparent solar time was defined as

the hour angle of the Sun. The inconstancy of these natural celestial frequencies with

This chapter does not constitute original work and the author does not lay any claim
to anything discussed here.
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Frequency Uncertainty Measurement Period Time Uncertainty
±1.00× 10−3 1 s ±1 ms
±1.00× 10−6 1 s ±1 µs
±1.00× 10−9 1 s ±1 ns
±2.78× 10−7 1 h ±1 ms
±2.78× 10−10 1 h ±1 µs
±2.78× 10−13 1 h ±1 ns
±1.16× 10−8 1 day ±1 ms
±1.16× 10−11 1 day ±1 µs
±1.16× 10−14 1 day ±1 ns

Table 1.1: Relationship of frequency uncertainty to time uncertainty. From [1].

the highlighting of irregularities was well understood at the time of Ptolemy. The laws

of planetary motions showed that the orbit of the earth around the sun is elliptical and

inclined with respect to the plane defined by the rotation of the Earth. The improvement

of clocks as shown in Table 1.2, e.g. the pendulum invented by Christian Huygens in

1656, contributed to the demonstration of the irregularities of the apparent solar time.

The correction effects of the ellipticity of the orbit associated to the concept of local

meridian, led to a uniform time called mean solar time. In October 1884, the Washington

International Conference adopted the Greenwich meridian as the prime meridian for

measuring longitude. It is from this meridian that the time zones were also defined

giving the Greenwich Mean Time (GMT). A day lasts 24 hours, thus the terrestrial

globe was divided into 24 time zones. GMT time is the mean solar time calculated at

noon in Greenwich. This in in 1948 that the International Astronomical Union (IAU)

formally recommended the use of universal time (UT). The determination of universal

time required astronomical observations to measure the sidereal time. The sidereal time

is not time in the usual sense, it is the measure of the angle between the vernal point

and the meridian plane but this angle varies proportionnaly to time (to a very small

approximation). The instants of stars’ meridian transits were detected and corrections to

the reference clock were derived with the help of transit instruments.

In order to determine very accurately the sidereal time, many observatories were

equipped with meridian telescopes from the 18th century. In 1885, Gautier’s meridian

telescope with a diameter of 18 cm shown in Figure 1.1 was installed in Besançon and

had a central role in chronometric activities. More details on time measurement in Be-

sançon can be found in [4]. The time-scale of the observatory was controled very precisely

by noting the moment of passage through the meridian of each fundamental star whose

position is known with great accuracy. This time was measured using a second reference

instrument: the astronomical pendulum with electric switches built by Auguste Fénon
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Figure 1.1: The meridian telescope of the Observatory of Besançon in 1892. From [4].

which was one of the best clocks at the time. Thus the comparison between the theoreti-

cal time of crossing the meridian of the observed star and the time noted on Fénon’s clock

directly gave the rate of this clock. The unit of rotational time was defined as a fraction of

the mean solar day. The second of mean solar time was 1/86 400 (24h x 60min x 60s) of

its duration. The clocks had the role of timekeepers and through extrapolation provided

real time UT. The clocks produced time signals broadcast by telegraph to the city of Be-

sançon, which had installed a network of electrically synchronized public clocks in 1880.

Like all the other observatories involved in the measurement of time, Besançon ob-

servatory successively installed constant pressure clocks (early 20th century), then quartz

clocks (1950s). The widespread use of this type of clock highlighted the irregularities of
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the rotation of the Earth. In the 30’s, it was noticed that the rotation of the Earth slows

down as the Moon moves away from the Earth (about 4 cm per year): there is transfer

of angular momentum via dissipation tides. In 1948 Gerald Maurice Clemence [5]

proposed Ephemeris Time (ET), adopted as standard in 1952. It was originally designed

as an approach to a uniform time scale, to be freed from the effects of irregularity in

the rotation of the Earth. It is defined as the argument in the dynamical equations of the

bodies of the Solar System and specifically as the geometrical mean longitude of the Sun

in Newcomb’s theory. It was convenient for astronomers and other scientists, for example

for use in ephemerides of the Sun, the Moon, and the planets. In order to define the unit

of time more precisely, the 11th Conference Generale des Poids et Mesures (CGPM)

adopted ephemeris time in 1960.

The creation of the Bureau International de l’Heure (BIH) was decided upon during

the 1912 Conférence internationale de l’heure radiotélégraphique. The following year, an

attempt was made to regulate the international status of the bureau through the creation

of an international convention. The mission of the BIH was to construct a time reference

based on astronomical observations and time signals provided by the astronomers. This

time reference was a form of universal time. There are several versions of universal time:

UT1 proportional to the rotation angle of the Earth in space and UT2 which overcomes

the seasonal variations of UT1.

1.3 The atomic time era

ET was built retrospectively, set as a fraction of the tropical year 1900, and could not be

replicated which is a major drawback. A redefinition of the second was then necessary.

In 1955, Essen and Parry [6] developed the first operational cesium frequency standard

at the National Physical Laboratory (NPL, UK), characterized by an accuracy of the

order of 10−10, the highest at that time. Subsequently in 1958, the United States Naval

Observatory (USNO) determined the frequency of cesium in terms of ephemeris seconds.

Considering that a very precise definition of the unit of time is essential for science and

technology, the 13th CGPM (1967-1968) chose cesium to provide the new definition

of the second [7, 8]. It is now called the SI second, referenced to the frequency of the

ground state hyperfine transition in the cesium-133 atom as a function of the ephemeris

second determined by Markowitz et al. [9]. Cesium standards were then built or bought
1 in a number of laboratories, e.g. Besançon observatory (1969) [4], to give independent

atomic times. This has led to new challenges: comparing them to the performance level

1The first commercial Cesium clocks became available at the end of the 50’s.
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Timing Frequency
Standard Resonator Date of origin Uncertainty (24h) Uncertainty (24h)
Sundial Apparent motion of 3500 B.C. NA NA

the sun
Verge escapement Verge and foliet 14th century 15 min 1× 10−2

mechanism
Pendulum Pendulum 1656 10s 1× 10−4

Harrison Spring and balance 1759 350ms 4× 10−6

chronometer (H4) wheel
Shortt pendulum Two pendulums, 1921 10ms 1× 10−7

slave and master
Quartz crystal Quartz crystal 1927 10µs 1× 10−10

Rubidium gas cell 87Rb resonnance 1958 100ns 1× 10−12

(6, 834, 682, 608 Hz)
Cesium beam 133Cs resonance 1952 1ns 1× 10−14

(9, 192, 631, 770 Hz)
Hydrogen maser Hydrogen resonance 1960 1ns 1× 10−14

(1, 420, 405, 752 Hz)
Cesium fountain 133Cs resonance 1991 100ps 1× 10−15

(9, 192, 631, 770 Hz)

Table 1.2: The Evolution of Time and Frequency Standards. The uncertainties listed for
modern standards represent year 2001 devices, and not the original prototypes. From [1].

of standards and averaging them to produce a mean atomic scale that is more uniform

and reliable than the individual ones.

In 1961, the BIH began coordinating the Coordinated Universal Time (UTC) process

internationally, but the name UTC was not formally adopted by the IAU until 1967. Ini-

tially, before the establishment of the International Atomic Time (TAI), the atomic time

delivered by the atomic clocks was modified in frequency to follow the Earth’s rotation

and to ensure the difference |UT1−UTC| < 0.9s. This system quickly became cumber-

some and too complicated to implement. To remedy all these problems the IAU (1967),

the International Union of Radiosciences (URSI 1969) and the International Radio Con-

sultative Committee of the International Telecommunication Union (CCIR 1970) recom-

mended the adoption of the BIH atomic time scale. It was during the 14th CGPM that TAI

was officially adopted in 1971. The BIH time scale relied on a non-negligible number of

atomic clocks in time laboratories; these time laboratories provided access to the scale and

the time community enlarged and started a period of fruitful cooperation that continues

today. During the 1980s, the BIH was split into two units:

• in 1985, part of the BIH was integrated into the Bureau International des Poids et
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Mesures2 (BIPM), working on the development of the international atomic time

scale;

• in 1988, the rest of the BIH was integrated as the central office of the International

Earth Rotation and Reference Systems Service (IERS), while maintaining its activ-

ity of determining the Earth’s rotation.

1.4 Towards a new redefinition of the second

A revised more precise wording of the same definition of the second was adopted in

Resolution 1 of the 26th CGPM (2018). It is now in terms of a fixed numerical value of

the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom,

∆νCs.

TAI achieves its stability over 420 atomic clocks worldwide. Aiming at realizing

the SI second with the smallest uncertainty, a small number of Primary and Secondary

Frequency Standards (PSFS) [10] steers TAI to increase its accuracy. The BIPM publishes

every month in Section 3 of Circular T [11], an estimation of the TAI frequency accuracy

as measured by those individual frequency standards. The BIPM also provides the

result of the computation of an ensemble average. In November 2021, sixteen different

frequency standards operated in eleven laboratories contributed to this estimation, includ-

ing ten Cs fountains, one Rb fountain, one Sr optical lattice and two Yb optical lattice

clocks, in addition to the two legacy Cs beams operated by the Physikalisch-Technische

Bundesanstalt (PTB). The number of different laboratories as well as the number of

different standards constitutes a record of participation.

The present Cs fountains have been surpassed by two orders of magnitude by optical

clocks, which are now reaching an accuracy of order 10−18 in term of relative frequency.

That is why the Consultative Committee for Time and Frequency (CCTF) initiated in

2020 work towards a redefinition of the second. Before changing the definition, a number

of mandatory criteria have to be achieved. Thus a task force on the roadmap for the

redefinition of the second has been set-up by the CCTF. One of the mandatory criteria

states that optical standards should regularly contribute to TAI, with a goal of at least

three contributions per month, with a total uncertainty not larger than 2 × 10−16. Based

2The BIPM was created by the Meter Convention signed in Paris on 20 May 1875 by seventeen States,
during the last session of the Diplomatic Conference of the Meter. Originally limited to measurements of
length and mass and metrological studies related to these quantities, the activities of the BIPM were ex-
tended to electrical (1927), photometric and radiometric measurement standards. (1937), ionizing radiation
(1960), time scales (1988) and chemistry (2000).
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Figure 1.2: Graphical representation of all evaluation of Primary and Secondary Fre-
quency Standards reported since Circular T 190. Enhance color dots indicate evaluation
carried out within the month of TAI computation. From [12].

on a robust set of optical frequency standards, the criterion ensures that the accuracy of

TAI is maintained and hopefully improved, so that the redefinition benefits TAI. After the

redefinition, the uncertainty of optical standards will be reduced while the Cs fountains

will become secondary standards with enlarged uncertainty.

Figure 1.2 shows significant progress in the operational capabilities, with optical

clock uptime exceeding 90% in some cases. This allows longer operating periods and

reduced frequency transfer uncertainty, key factors to achieve contributions of optical

standards to TAI. The CCTF’s current goal is to redefine the second in 2030.

The clock comparisons for the TAI calculation are based on different time transfer

techniques. Among these, one uses the comparison between the time scale of the Global

Navigation Satellite System (GNSS) with the local clock of a laboratory. However, it

is possible that anomalies occur, e.g. time or frequency steps. In order to ensure the

reliability of TAI, we have carried out a study on this specific problem and propose an

algorithm for an automatic detection which is presented in Part II of this Thesis.
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2.1 Pulsar time scale

A pulsar is a dead dense spinning remnant of a formerly massive star. It is the result

of the explosion of a supernova leaving behind dense material consisting mainly of

neutrons, thus called a neutron star. Its internal structure is complex, but its composition

with the relationship between the density and pressure is well adressed by Oppenheimer

and Volkov [13] before the discovery of pulsar. The typical mass of a neutron star is

about 1.4 M⊙ (solar mass) and up to a maximum of about two M⊙ [14]. The reader

can refer to [15] for a more detailed description of pulsars. Constant radio waves are

emitted out of the magnetic poles which are misaligned with the spin axis. If the beam

sweeps by the line of sight of the Earth, the pulses are detected. There is still not a

consensus on the mechanism behind the emission of the pulses [16, 17]. Millisecond

pulsars (MSPs) [18], whose rotation periods are of order of milliseconds, are the most

stable natural astronomical clocks. The possibility of using the exceptional rotational

stability of millisecond pulsars to generate a time scale had long been of interest. MSPs

have been [19–33] considered to be the best clocks in the universe in the past. This

assertion is definitively not true nowadays, artificial clocks have substantially better

performance than natural astrophysical clocks, at least out to timescales of a few years

as shown in Figure 2.1. However a ensemble of clocks can be considered to define a

time scale [27, 34] which might prove to be very useful if it were to provide a universally

accessible and highly stable time scale over the longest times.

This chapter does not constitute original work and the author does not lay any claim
to anything discussed here.
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Figure 2.1: Fractional frequency stability of millisecond pulsars compared to atomic
clocks. From [35].

Figure 2.1 presents the fractional frequency stability of a selection of the best artificial

clocks and frequency standards in 2010 [35]. Since then, at least one more order of

magnitude has been reached by the best optical clocks, i.e. in the order of 10−18 [36].

The trend in Figure 2.1 shows that to achieve stability of the same order of magnitude

would require measurements of the best milisecond pulsars over hundreds of years.

However, even by averaging an ensemble of pulsars over such long times, the clocks will

have undergone improvements also in terms of stability. In fact, since the development

of Cesium atomic clocks, the stability of clocks has improved by more than an order of

magnitude per decade. While the stability of the best millisecond pulsars has only seen

an improvement of less than an order of magnitude in 20 years [37].

The stability of these natural clocks also makes it possible to test Einstein’s theory

of general relativity [38]. As a consequence of Einstein’s theory and according to cer-

tain cosmological theories [39], the universe would contain a substantial energy density

in the form of a stochastic background of gravitational waves (GWs), analogous to the

known cosmic microwave background [40]. Therefore a GW passing the pulsar during

time of pulse emission, or passing the earth during reception, would cause changes in
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Figure 2.2: Comparison of the sensitivity curves and sources of GWs for the three major
running astronomy experiments: PTA, LISA and LIGO using the the amplitude spectral
density, produced using the Gravitational Wave Sensitivity Curve Plotter [42].

the rates of local clocks relative to distant clocks [41], decreasing the expected long term

stability of the pulsars. Thus by means of pulsar timing observations, the gravitational

background could be detected. The interest of such a research program is then twofold:

on the one hand, it has a metrological dimension and, on the other hand, it has important

astrophysical consequences.

2.2 Gravitational Waves and Pulsars

GW detection using pulsars combines two fields with a rich history dating back to

the 1960s. At that time Antony Hewish built his experiment called “Interplanetary

Scintillation Array” which led to the unexpected detection of the first pulsar by Jocelyn

Bell in 1967 [43]. At about the same time, a pioneer called Joseph Weber announced

the evidence of GWs measured with his experiment the “Weber bar” [44]. These two

discoveries led to discord in the scientific community. Antony Hewish was awarded

the Nobel Prize in Physics in 1974 for his pioneering research in radio astronomy and

his decisive role in the discovery of pulsars. However his student Jocelyn Bell who

made the observation was not awarded and Weber’s detection could not be replicated.

GWs also have a spectrum, in particular due to the different categories of sources.
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Subsequently, several experiments have emerged with the ground-based detectors like

LIGO [45] measuring the higher frequency, Pulsar Timing Arrays (PTA) [46–49] mea-

suring the lower frequency with approximately 100 millisecond pulsars using the largest

telescopes in the world and space-borne detectors like eLISA [50] measuring stuff in the

middle. Figure 2.2 shows the square root of the Power Spectral Density (PSD), i.e. the

amplitude spectral density, which gives an indication of the sensitivity of the detectors.

Ground-based detectors have detected GWs with frequencies of 10 − 100 Hz from the

mergers of stellar mass black holes [51], while the IPTA will probe GW frequencies

roughly 10 orders of magnitude smaller. Their primary source of gravitational waves is

supermassive black-hole binaries (billions of solar masses) [52, 53], presumed to exist

in abundance number in the universe at the centers of galaxies, resulting from previous

mergers of those galaxies. The phenomenon should be detected through the interaction

with the millisecond pulsar signals by introducing a correlated red noise in the time of

arrival series. The PTAs enable the simultaneous measurement of the same pulsar with

several radio-telescopes (RTs), especially the Large European Array for Pulsars (LEAP)

project [54].

Extracting a weak signal from noise with simultaneous measurements is a well-known

method in the case of measurements of oscillators and atomic clocks. For more than 50

years, statistical tools have been developped using the PSD and wavelet variance for this

purpose [55–58]. Among them, the cross-spectrum method [59] particularly interests us

with its ability to reject the uncorrelated background noise and converge to the common

part of the signal even if it is significantly lower than the background. This tool has al-

ready been partially characterized in terms of signal processing, but a detailed analysis in

terms of Bayesian statistics remains to be done, in particular to obtain reliable confidence

intervals around the measurements made by this estimator. We present this study in Part

III of this Thesis, starting with the common case, i.e. the cross-spectrum with two mea-

surement instruments and generalizing it to any number taking as an example the LEAP

experiment comprising five RTs.
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3.1 Time scales at the BIPM

After the adoption of the atomic definition of the second by the 13th General Conference

on Weights and Measures (CGPM) [7, 8], the Consultative Committee for the Definition

of the Second (CCDS) created International Atomic Time (TAI) [60]. It is the basis of

the disseminated reference time scale Coordinated Universal Time (UTC) and both are

equally stable and accurate. However while TAI is continuous, UTC is affected by one

second discontinuites (leap seconds) as a result of its definition in [61]. The algorithms

for the calculations of TAI and UTC are optimized for a time scale that is both accurate

and stable over the long term. It relies on clock readings and it is highly dependent on

the quality of the clock comparisons. The BIPM, in a coordinated effort with the world

timing community, works to develop and improve these methods. UTC [62] is calculated

as a weighted average of about 420 atomic clocks located in 85 laboratories spread word-

wide. The BIPM disseminates UTC by publishing monthly the Circular T [11], whereas

the rapid solution of UTC called UTCr [63] is published weekly. Another time scale main-

tained at the BIPM and published yearly is the Terrestrial Time (TT(BIPM)). A scheme of

the different time scales and their relation is represented in Figure 3.1. All the presented

This chapter is the result of close collaboration with Gianna Panfilo.
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Time scales are a service provided by the BIPM to the National Metrological Institutes

(NMIs), observatories and international organizations that contribute to its computation.

UTC

EAL

TAI

TT(BIPM)

weighted average

TT(BIPM)

weighted average

steering

leap seconds

UTC(k)

Figure 3.1: Representation of EAL, TAI, UTC, UTC(k), TT(BIPM) and their relations.

3.2 Properties of time scales

Ideally for the basis of a time scale the frequency must be constant and the construction

of this one reproducible. However, this is never the case and it is necessary to be able to

identify the causes of frequency variations in order to minimize or even eliminate them.

The definition of the second, International System (SI) base unit of time, is as follows [64]:

Definition 3.2.1. The second, symbol s, is the SI unit of time. It is defined by taking the

fixed numerical value of the caesium frequency ∆νCs, the unperturbed ground-state hy-

perfine transition frequency of the caesium 133 atom, to be 9 192 631 770 when expressed

in the unit Hz, which is equal to s−1.

However the realization of the second differs from its definition. Subsequently these

differences should be reproducible during the construction of the time scale, thus the

reliability of the time scale is directly linked to the reliability of the clocks and at the

same time the redundancy is required as in the case of national time scale (UTC(k)) as for

UTC. Considering the characteristics of a time scale as UTC, a large number of clocks is

required which is the case today with around 420, most of them being high-performance

commercial caesium atomic standards and active hydrogen masers. Important properties

of a time scale are referenced in [65] as

Definition 3.2.2. The frequency stability of a time scale represents its capacity to main-

tain a fixed ratio between its unitary scale interval and its theoretical counterpart. The
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frequency accuracy represents the aptitude of its unitary scale interval to reproduce its

theoretical counterpart.

Definition 3.2.3. The accessibility of a time scale represents its capability to provide a

way of dating events for everyone.

The primary frequency standards (PFS) are stable oscillators which generate a funda-

mental frequency at a high degree of accuracy and precision and is generally used as a

reference for frequency calibration [66]. The PFSs are used in the national metrological

institues as frequency references to steer the H-Maser used for the generation of the time

scale. In the case of UTC, the PFSs are used in the steering algorithm used to maintain its

frequency close to SI second frequency.

3.3 Coordinated Universal Time

UTC requires high reliability and long-term frequency stability by relying on a wide clock

network spread all over the world as shown in Figure 3.2. Each month the differences

between the international time scale UTC and its local representation UTC(k), with k

referring to a laboratory, are reported in the Circular T [11] as shown in Table 3.1. As

UTC(k), these laboratories realize a stable local time scale based on individual atomic

clocks or a clock ensemble.

Date 2021/22 0h UTC DEC 31 JAN 5 JAN 10 JAN 15 JAN 20 JAN 25 JAN 30 Uncertainty/ns Notes
MJD 59579 59584 59589 59594 59599 59604 59609 uA uB u

Laboratory k [UTC-UTC(k)]/ns

GGO (La Plata) 370.8 370.5 378.0 390.6 402.5 412.8 423.9 1.0 20.0 20.0
AOS (Borowiec) -0.9 -1.3 -2.3 -3.2 -4.2 -5.2 -6.4 0.3 3.0 3.0
APL (Laurel) 3.6 5.0 3.8 2.2 2.6 2.9 3.3 0.3 19.7 19.7
AUS (Sydney) -560.0 -560.5 -562.0 -550.4 -557.0 -557.9 -543.2 0.3 11.2 11.2
BEV (Wien) -29.6 -15.3 5.1 14.4 40.1 61.3 67.5 0.3 3.5 3.5
BFKH (Budapest) 3994.6 4017.2 4051.1 - 4113.4 4149.4 4181.1 1.5 20.0 20.1
BIM (Sofiya) 15646.8 15687.2 15704.7 15719.0 15725.7 15754.4 15770.4 0.3 7.1 7.1
BIRM (Beijing) 4.8 13.7 16.2 16.9 15.4 13.9 11.3 0.3 2.9 2.9 (1)
BOM (Skopje) - -28.9 -194.9 -340.3 -501.1 -657.6 -813.2 0.3 3.5 3.5
BY (Minsk) -1.2 0.5 3.7 3.9 2.2 0.7 0.6 1.5 2.8 3.2
- Notes on section 1:
(1) BIRM : Time step of UTC(BIRM) of about -8 ns on MJD 59579.37.

Table 3.1: Difference between UTC and its local realizations UTC(k) and corresponding
uncertainties.

The BIPM receives the clock readings reported by each laboratory k and combines

them into an algorithm designed to optimize frequency stability and accuracy as well as

time scale reliability beyond the level of performance that can be achieved by any individ-

ual clock in the ensemble. Thus each month at the BIPM time department an appropriate

algorithm called ALGOS [62, 65, 67–72] is used to generate the international reference

UTC. The calculation of UTC using ALGOS is then carried out in three successive steps:
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• The free atomic time scale EAL is computed as a weighted average of free-running

atomic clocks distributed world-wide. A clock weighting procedure has been de-

signed to optimize the long-term frequency stability of the scale. The number of

participating clocks today is about 420.

• The frequency of EAL is steered to maintain agreement with the definition of the

SI second. The steering correction is determined by comparing the EAL frequency

with that of the PFS/SFS. The number of PFS/SFS maintained in contributing lab-

oratories and contributing to the accuracy of TAI amounts currently to 17 and the

ensuing time scale is TAI.

• To maintain agreement with the non-uniform time derived from the rotation of the

Earth, leap seconds are inserted and the resulting time scale is UTC.

To guarantee the continuity of EAL the clocks participating should not be affected by time

and frequency steps as well as change in the frequency drift.

Figure 3.2: Geographical distribution of the laboratories that contribute to UTC and time
transfer equipment in 2021. From [73].
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3.4 Time transfer applied for clock comparisons

As a time scale is built using clocks disseminated world-wide, it is essential to have a way

of comparing distant clocks. The most important requisite is that the time transfer method

does not affect the frequency stability of the signal, which was in the past the strongest

limitation to establish a time scale. The construction of UTC is based on the contribution

of 85 laboratories spread world-wide, so the design of the algorithm needs a well defined

strategy. The current time link network is treated in UTC as non redundant and consists of

star-like scheme linked by a selected pivot. Therefore all time laboratories are compared

to this pivot. As different comparison methods are maintained in different laboratories, the

pivot has to be selected amongst the laboratories that have at their disposal all the different

methods, running on a continuous basis, as represented in Figure 3.2. This condition

is fulfilled by several laboratories and currently the pivot is the Physikalisch-Technische

Bundesanstalt (PTB) in Germany. The pivot laboratory can be changed in case of need but

due to calibration procedures can seriously affect UTC. All the contributing laboratories

provide their time transfer data as a comparison of their UTC(k) with another time scale,

e.g. the internal time scale of Global Navigation Satellite System (GNSS) or to another

UTC(k) in the case of Two-Way Satellite Time and Frequency Transfer (TWSTFT). We

will now present these major techniques.

3.4.1 Use of GNSS

The signal broadcast by the GNSS containing the timing and positioning information al-

low time transfert methods. It relies on a one way method by emitting a signal from the

GNSS which is received by a laboratory with specific equipment. The first generation

evolved from single-frequency and signel-channel to single-frequency and multi-channel.

At the begining of the 2000’s, the development of geodetic-type receivers enhanced the

time comparison with the laboratory by performing dual-frequency measurement correct-

ing the ionospheric delays. The progress of these developments is described in [74].

3.4.1.1 Common View

The Common-View (CV) method, proposed in 1980 by Allan and Weiss [75] relies on

reception of the same emitted signal by several receivers. The signal is composed by time

and position information and thus the time transfer is affected by the position error of

the satellite and the instability of the satellite clock. The satellite, i.e. the emitter, has

to be observable from all the station receivers. The advantage of this method relies on

the elimination of the error sources common to the two observing stations, i.e. originated
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from the satellite clocks and orbits. However the drawback of this method is the needs of

the satellite to be observable from all the receivers at the same time. This is a disadvantage

especially when the distance between the different laboratories increases and the number

of satellites simultaneously observable decreases. This method was used by the BIPM

for the calculation of UTC until 2006 with the common-view satellites of the US Global

Positioning System (GPS).

GPS receiver

GPS receiver

Time interval 

counter

Station 1

Station 2

Time interval 

counter

UTC(k1)

UTC(k2)

UTC(k1) - GPS

 measurement

UTC(k2) - GPS

 measurement

Figure 3.3: GNSS Common View time transfer method. The only satellites that can be
used are the ones observable by both laboratories and each laboratory is equipped with a
single channel receiver.

3.4.1.2 All in View

To overcome the problem of simultaneous observation, the All in View (AV) [76] method

eliminates this constraint. Resulting in an independency of the length of the baseline

for having suitable observed satellites. Thus all satellites in view at a station are used.

Then the single-channel, single-frequency receivers have been gradually substituted with

multi-channel receivers minimizing the impact of the error coming from satellite orbits

and clocks. Resulting in an improvement of time links uncertainty by adding data from

satellites at high elevations. Consequently the GPS links obtained using dual-frequency

receivers, termed GPS P3 [74–78], supply ionosphere-free data and allow clock compar-

isons with nanosecond statistical uncertainty or better. However the tropospheric delay is

still present in the data by adding short-term noise. The Precise Point Positioning tech-

nique (PPP) [79, 80] takes into account from geodetic-type receivers the phase measure-
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ments. The dual-frequency phase and code measurements are then used for comparing

via GPS the reference clock in a station to a reference time scale.

GPS receiver

GPS receiver

Time interval 

counter

Station 1

Station 2

Time interval 

counter

UTC(k1)

UTC(k2)

UTC(k1) - GPS

 measurement

UTC(k2) - GPS

 measurement

Figure 3.4: GNSS All in View time transfer method. Each laboratory is equipped with
multi-channel receivers allowing reception of signals from all the satellites in the labora-
tory horizon.

3.4.2 Two-Way Satellite Time and Frequency Transfer

From the end of the 1980’s, another satellite-based time transfer technique for clock com-

parison has been studied, called the Two-Way Satellite Time and Frequency Transfer

(TWSTFT) [81, 82]. It relies on a telecommunications geostationary satellite compar-

ing clocks located in two receiving-emitting stations. Two laboratories equipped with

receiving-emmitting stations schedule measurements at the same time to simultaneously

compare their clocks. So the information relative to the clock of each laboratory is sent

forward to the other laboratory, both receiving and sending their data simultaneously at

both ends of the baseline. Compared to the one-way method, it has the advantage to

eliminate or at least reduce some sources of systematic errors, e.g. ionospheric and tropo-

spheric delays, and also the position uncertainty of the satellite and the ground stations.

Before the 2000’s, the comparisons obtained only once per week were not enough to give

a number of observation statistically meaningful. After that the sampling rate was in-

creasing and now gives data every two hours. The accuracy of this time transfer links is

excellent due to the long-term stability of the hardware.
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Figure 3.5: Two-Way Satellite Time and Frequency Transfer. Each laboratory is equipped
both a receiver and a transmitter. The signal is sent from one laboratory to the satellite,
that forwards it to the other laboratory and vice versa.

3.4.3 Link uncertainties

The time links always have an uncertainty component, despite the characteristics de-

scribed in the time transfer methods. Those uncertainties arise from different sources

such as the laboratory equipment, the satellites or even physical processes. Therefore the

error types affecting the time links should be estimated and reduced as much as possible.

In the last column of Circular T (see Table 3.1), the combined standard uncertainty of

[UTC-UTC(k)] is reported for any laboratory k. It is obtained by the combination of two

types of uncertainties indicated by uA and uB corresponding to two different characteris-

tics of the measurements. These uncertainties are obtained by an appropriate algorithm

and depend on the uncertainties of the links (reported in Section 5 of Circular T) and in

the global weight of the laboratory contributing in UTC. Section 5 of Circular T provides

information on the time links used in the elaboration of each Circular T, including equip-

ment and calibration identifiers, uncertainties and alignment corrections applied by the

BIPM, if any. The parameter uStb is the standard uncertainty representing the link in-

stability and accounting for measurement noise and random effects with typical duration

between one and 30 days. Concerning the link uncertainties the uA component reflects

the noise affecting the link and takes into acount the contribution of the clocks at 30 days,

the uB component corresponds to the calibration uncertainties [83,84]. The value uA and
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uB are the components of the combined standards uncertainty u [85] defined as,

u =
√

u2
a + u2

b . (3.1)

Regarding the physical processes, the most significant errors arise from the ionospheric

delay, especially in the case of a long baseline. However it can be reduced by means of

dual-frequency receivers for the laboraties equipped with the capability.

3.5 Statement of the problem

Regularly, the time transfer links used in UTC calculations are affected by time and fre-

quency steps for various reasons, for example, calibrations or malfunctioning hardware.

Considering the number of laboratories participating in UTC, it is normal to experience

more than four time links being affected by this kind of event in each monthly calculation.

In Figure 3.6 a typical example of time step visible in time link data can be observed. In

the red box the time step is highlighted.
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Figure 3.6: Example of a phase jump in a time transfer link. This anomaly is framed by a
red box.

To ensure the stability of UTC, it is essential to know when the steps appear and

the magnitude of the steps in order to check the corresponding clocks and to contact the

concerned laboratories. These time steps are announced to the community by reporting a

Note in the last column of Circular T as shown in Table 3.1. An automatic procedure of

jump detection should be developed on the one hand to give a warning and on the other
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hand to provide the necessary information (dates and magnitude). In [86] a tool to detect

steps in clock data based on a Kalman Filter has been developed and presented. The tool

was optimized for real-time calculation with clocks being affected by frequency steps.

As UTC is calculated in post processing, the detector presented in [86] has to be adapted

to guarantee a reliable and extremely precise answer. Due to impressive amount of data

available at BIPM, it is possible to test the detector in a variety of situations to guarantee

a complete optimization of the parameters. The final scope of the work is to develop an

automatic procedure allowing the detection of the time steps affecting the time links used

to compare clocks in UTC. The tool presented in [86] will be adapted to UTC in terms

of the detector definition and in terms of parameter configuration. The analysis will start

with a description of the clock model and its relationship with the Allan variance, needed

to subsequently define the Kalman filter with the appropriate parameters.
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In this chapter, the mathematical model of the atomic clock with its errors will be

presented. The reader can refer to the literature [87–89] for further details about the clock

model. The description will embed some concepts from stochastic process theory. The

reader can refer to [90] for a full description of Brownian motion and its properties as

well as [91] for white noise and [92] for the Integrated Brownian Motion processes. The

clock errors can be modeled by the Stochastic Differential Equation (SDE) [93–95]; an

essential approach to using the Kalman filter. By using the SDE approach to describe the

clock behaviour we can easily relate the clock noise parameters with the variances of the

Wiener processes [96, 97] present in the SDE. In time and frequency metrology these

parameters are related to the Allan Variance [98], the most common statistical tool used to

characterize clocks. Other tools exist such as the structure functions [99], the Hadamard

variance [57] or a combination of some of them [100,101]. Thus it is necessary to give the

relation between the diffusion coefficients and such variances as expressed in [87,94,102].

We address in Section 4.1 the basics of the clock model involved in time and frequency

metrology and we describe in Section 4.2 the different kinds of noise affecting clocks.

Then we present the three-state clock model described by means of the SDE in Section

4.3. Finally we give the relationship between the diffusion coefficients and the Allan

variance and its estimation for a pratical application in Section 4.4.

This chapter does not constitute original work and the author does not lay any claim
to anything discussed here.
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4.1 The metrological clock model

An atomic clock is an oscillator whose ideal signal is defined by [88, 103]

u(t) = U0 sin(2πf0t), (4.1)

where U0 is the nominal amplitude and f0 the nominal frequency. However in real clocks

both the amplitude and frequency are affected by random fluctuations. Then a more real-

istic model is given by

u(t) = (U0 + ε(t)) sin(2πf0t+ ϕ(t)) (4.2)

where ε(t) and φ(t) are respectively the random fluctuations of the amplitude and phase.

The amplitude fluctuations can be neglected, thus an approximated model is

u(t) = U0 sin(2πf0t+ ϕ(t)). (4.3)

The oscillation frequency changes with time, due to the phase fluctuation, its instanta-

neous value is defined by

f(t) = f0 +
1

2π

dϕ(t)

dt
. (4.4)

Removing its nominal frequency dependency leads to the normalized frequency deviation,

y(t) =
f(t)− f0

f0
. (4.5)

The time deviation is then defined as its integral,

x(t) =

∫ t

0

y(θ)dθ. (4.6)

According to Equations 4.4 to 4.6, we have the deviation of the clock reading from an

ideal time reference

x(t) =
1

2πf0
ϕ(t). (4.7)

Thus rewriting Equation 4.3 from substituing Equation 4.7 we obtain

u(t) = U0 sin(2πf0(t+ x(t))). (4.8)

The two fundamentals quantities used to characterized an atomic clock are the time de-

viation x(t) and the frequency deviation y(t). Experimental observation shows that x(t)

and y(t) have a noise-like behavior.
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4.2 The clock noises

The random perturbations affecting the clocks can be characterized in the frequency do-

main as a sum of 1/fα noise components where α is the noise-type exponent. Typically

five types of noise following this power-law are referenced [88, 95]:

• White Phase Modulation (WPM), i.e. white noise on the phase component;

• Flicker Phase Modulation (FPM), i.e. flicker noise on the phase component. It

is characterized by a Power Spectral Density (PSD) inversely proportional to its

frequency, thus an extremely complicated kind of noise related to a fractionally

integrated Brownian motion;

• White Frequency Modulation (WFM), i.e. white noise on the frequency component,

inducing a Random Walk or Brownian motion, on the phase (RWPM);

• Flicker Frequency Modulation (FFM), i.e. a flicker noise on the frequency compo-

nent;

• Random Walk Frequency Modulation (RWFM), i.e. a Random Walk on the fre-

quency.

Table 4.1 reports the presented noises in regards to the phase and frequency. Each

type of clock exhibits a different combination of these noises. For example the caesium

clocks usually have a WFM and RWFM while a hydrogen maser is characterized by a

more complex type of noise, which is the FFM. To identify the kind of noise affecting

the clock errors and more generally to estimate its stability, it comes naturally that the

classical variance of the frequency deviation y(t) would be the candidate. However the

variance of random walk is time-dependent and divergent. Thus the stability would

depend on the length of the time series considered.

In 1966, Allan [104] proposed an approach based on the stationary increments accord-

ing to the random walk properties. It is now commonly used to characterized the stability

of a clock and is defined by

σ2
y(τ) =

1

2
E
[
(ȳk+1 − ȳk)

2
]
, (4.9)

where the average frequency is

ȳk =
1

τ

∫ tk+1

tk

y(t)dt, (4.10)
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Noise Phase Frequency
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Table 4.1: Different type of noise affecting clocks generated with SigmaTheta Software
[105].



4.2. The clock noises 35

f

Sy(f) Fractional frequency spectrum

random
walk freq

flicker
frequency white

frequency
flicker

phase

whit
e

ph
as

eh
−
2 /f 2

h−1/f
h0

h1f

h 2
f
2

τ

σ2
y(τ) Allan variance

flicker &

white PM

whiteFM

flicker FM

random

walk FM

fre
qu

en
cy

dr
ift∝

1/τ 2

h
0/2τ

2 ln(2)h−1

4π
2

6
h−2

τ

1
2
D
2
y
τ
2

/

Figure 4.1: Relation between the power law and the noise type for the frequency fluctua-
tion PSD (top) and the Allan variance (bottom).

and E[·] represents the mathematical expectation of the quantity in the brackets.

It can be proved [104] that the Allan variance is finite and behaves according to a

power-law of the type,

σ2
y(τ) = kατ

α, (4.11)

where kα is a constant depending on the α value. By applying logarithm to Equation 4.11

it follows,

log(σ2
y(τ)) = log(kα) + α log(τ). (4.12)

Thus plotting the Allan variance on a log-log scale, it results as a linear function of slope

α whose values are {−2,−1, 0, 1, 2}. Each of these noises is represented in Figure 4.1
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(bottom) and can be estimated for certain region of τ . In addition to the noise referenced

in Table 4.1, the presence of a frequency drift Dy can be noticed. However a disadvantage

of the Allan variance is that the white and flicker PM noises can not be distinguished and

both have a slop of τ−2.

The same analysis can be carried out on the PSD, the reader can refer to [106] for

the relationship between the PSD and the Allan variance. In this case a log scale applied

on the time interval τ gives symmetrically as the Allan variance but with the distinction

between the white and flicker PM noises the power-law frequency attributed to each kind

of noise as represented on Figure 4.1 (top). Nevertheless the time-domain analysis is

preferred in metrology as the Allan variance provides a quantitative information on the

noise intensity related to the clock deviation in time.

4.3 The three-state clock model

Let us consider a three-state clock model described in [87, 93, 94, 102, 107]. It is a

generalization of the most common two-state clock [95, 108] where the random walk is

referred as a random run in [107] and a linear variation in time of the frequency drift is

added. However the drawback of adding the drift is that the clock signal frequency value

is not given by integration of the frequency value leading to an Allan variance depending

also on time t as well as the observation time τ . Let us notice also that the flicker noise

can not be modeled by a finite order state model, thus we are not considering it. The

reader can refer to [109, 110] where the problem is addressed from the spectral analysis

point of view using transfer function of a white noise to define a colored noise.

The three-state clock is modeled by the SDE as





dX1(t) = (X2(t) + µ1)dt+ σ1dW1(t)

dX2(t) = (X3(t) + µ2)dt+ σ2dW2(t), t ≥ 0

dX3(t) = µ3dt+ σ3dW3(t)

(4.13)

with the initial conditions, 



X1(0) = c1

X2(0) = c2

X3(0) = c3

(4.14)

where W{1,2,3} are the Wiener processes or Brownian motion defined as a Laplace-Gauss

distribution with zero mean and variance t, thus W (t) ∼ LG(0, t) referred as the integral

of white noise. The variables X{1,2,3} respectively represent the phase deviation, a part of
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the frequency deviation (i.e. random walk componant) and the frequency drift or aging.

The white and random walk frequency noises are represented by W1(t) and W2(t). Let

us notice that the frequency deviation y(t) as described in Section 4.1 corresponds to the

derivative of X1 named Ẋ1. The constants σ{1,2,3} are the diffusion coefficients giving

the intensity of the three noise components. Whereas the constants µ{1,2,3} correspond

to the deterministic phenomena driving the clock or called the drift terms of the Wiener

processes. These constants are related to the metrology terminology as c2 + µ1 = y0 the

initial frequency offset; c3 +µ2 = Dy the frequency drift and µ3 corresponds to the linear

coefficient of the time variation of Dy. Rewriting Equation 4.13 in term of a matrix form

gives,

dX(t) = (FX(t) +M )dt+QdW (t), t ≥ 0, (4.15)

with the following matrices:

dX(t) =



dX1(t)

dX2(t)

dX3(t)


 , F =



0 1 0

0 0 1

0 0 0


 , X =



X1(t)

X2(t)

X3(t)


 ,

M =



µ1

µ2

µ3


 , Q =



σ1 0 0

0 σ2 0

0 0 σ3


 , dW (t) =



dW1(t)

dW2(t)

dW3(t)


 .

(4.16)

According to [96, 97], the solution of Equation 4.15 which is strictly linear, is given by

X(t) = Φt,0X(t0) +BtM +Gt, (4.17)

where the transition matrix Φt,0 and Bt are deterministic and described by,

Φt,0 = eF (t−s) =



1 t− s

(t− s)2

2
0 1 t− s

0 0 1


 and Bt =




t
t2

2

t3

6

0 t
t2

2

0 0 t




, (4.18)

where the transition matrix satisfies Φt,s = Φt−s,0. The vector Gt is the innovation of the

stochastic process X(t) given by,

Gt =



σ1W1(t) + σ2

∫ t

0
(t− s)dW2(s) + σ3

∫ s

0

(t− s)2

2
dW3(s)

σ2W2(t) + σ3

∫ t

0
(t− s)dW3(s)

σ3W3(t)


 ∼ LG(0,Σt).

(4.19)
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Gt is a Laplace-Gauss distribution with zero mean and covariance matrix Σt given by,

Σt = E
[
GtG

T
t

]
=




σ2
1t+ σ2

2

t3

3
+ σ2

3

t5

20
σ2
2

t2

2
+ σ2

3

t4

8
σ2
3

t3

6

σ2
2

t2

2
+ σ2

3

t4

8
σ2
2t+ σ2

3

t3

3
σ2
3

t2

2

σ2
3

t3

6
σ2
3

t2

2
σ2
3t




(4.20)

where the superscript T denotes the transposed matrix. Thus Gt is the only stochastic term

of Equation 4.17 and because X(t) is a linear combination of Laplace-Gauss processes it

can be rewritten as a Laplace-Gauss process itself with mean,

E[X(t)] =




c1 + (c2 + µ1)t+ (c3 + µ2)
t2

2
+ µ3

t3

6

c2 + (c3 + µ2)t+ µ3
t2

2

c3 + µ3t




(4.21)

and covariance matrix Γx(t) = Σt. It is important to notice that the covariance matrix is

not dependent of the drifts µ{1,2,3}, thus we can simplify by setting µ1 = µ2 = 0 without

losing of generality leading to





X1(t) = c1 + c2t+ c3
t2

2
+ µ3

t3

6
+ σ1W1(t) + σ2

∫ t

0

(t− s)dW2(s)+

+σ3

∫ t

0

(t− s)2

2
dW3(s)

X2(t) = c2 + c3t+ µ3
t2

2
+ σ2W2(t) + σ3

∫ t

0

(t− s)dW3(s)

X3(t) = c3 + µ3t+ σ3W3(t).

(4.22)

Considering later the Kalman filter it is interesting to rewrite Equation 4.17 discretized.

Thus we consider a fixed interval [0, T ] and subdivised it with M equally spaced points

0 ≡ t0 < t1 < . . . < tN ≡ T and set τ = tk+1 − tk. Equation 4.17 becomes at a time tk,

X(tk+1) = Φtk+1,tkX(tk) +BτM + Jk, (4.23)

whose components are,





X1(tk+1) = X1(tk) +X2(tk)τ +X3(tk)
τ 2

2
+ µ3

τ 3

6
+ Jk,1

X2(tk+1) = X2(tk) +X3(tk)τ + µ3
τ 2

2
+ Jk,2

X3(tk+1) = X3(tk) + µ3τ + Jk,3

(4.24)
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where Jk,1, Jk,2 and Jk,3 are the three components of the vector Jk called the innovation,

Jk =




[
σ1(W1(tk+1)−W1(tk)) + σ2

∫ tk+1

tk
(W2(s)−W2(tk))ds+

+σ3

∫ tk+1

tk
(tk+1 − s)(W3(s)−W3(tk))ds

]

σ2(W2(tk+1)−W2(tk)) + σ3

∫ tk+1

tk
(W3(s)−W3(tk))ds

σ3(W3(tk+1)−W3(tk))




∼ LG(0,Q)

(4.25)

of covariance matrix Q:

Q =



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


. (4.26)

This iterative writing is particularly useful for simulation purposes or data processing.

4.4 Relation between the clock model and the Allan vari-

ance

Now that the clock model is set in terms of different noise components related to the

diffusion coefficients, we give the relationship with the Allan variance defined in Equation

4.9. Thus this makes it possible to identify the nature of the noises affecting the clock.

Different approaches exist in the literature, the first one [94] allows one to trace step by

step the integrated effect of the different noise and the second one [102] simplier which

can be extended easily to others kinds of variances will be presented here. Rewriting

Equation 4.10, i.e. the average frequency deviation, in terms of phase deviation it follows,

ȳk =
1

τ

∫ tk+1

tk

Ẋ1(t)dt =
1

τ
(X1(tk+1)−X1(tk)) (4.27)

and thus the Allan variance,

σ2
y(τ) =

1

2τ 2
E

[(
(X1(tk+2)−X1(tk+1))− (X1(tk+1)−X1(tk))

)2]
. (4.28)

Applying Equation 4.24 we get,

∆ = (X1(tk+2)−X1(tk+1))− (X1(tk+1)−X1(tk))

= τ 3µ3 + τ 2X3(tk) + Jk+1,1 − Jk,1 + τJk,2 +
τ 2

2
Jk,3.

(4.29)
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The quantity ∆ is a Laplace-Gauss distribution of mean and variance,

E[∆] = τ 2[c3 + µ3(tk + τ)]

V[∆] = 2σ2
1τ + 2σ2

2

τ 3

3
+ σ2

3

(
23

30
τ 2 + τ 2tk

)
.

(4.30)

This is due to the fact that the quantities involved in ∆ are independent with the variances,

V[X3(tk)] = σ2
3tk,

V[Jk+1,1] = σ2
1τ + σ2

2

τ 3

3
+ σ2

3

τ 5

20
,

V

[
−Jk,1 + τJk,2 +

τ 2

2
Jk,3

]
=

(
−1 τ

τ 2

2

)
Q




−1

τ
τ 2

2




= σ2
1τ + σ2

2

τ 2

3
+ σ2

3

43

60
τ 5.

(4.31)

Thus Equation 4.28 can be rewritten in term of time-dependent Allan variance,

σ2
y(tk, τ) =

1

2τ 2
E[∆2] =

1

2τ 2
(V[∆] + E[∆]2)

=

(
σ2
1

τ
+

σ2
2τ

3
+

σ2
3τ

3

20

)
+ σ2

3

(
τ 3

3
+

τ 2tk
2

)
+

+
τ 2

2
[c3 + µ3(τ + tk)]

2.

(4.32)

Setting σ3 = µ3 = 0, corresponding to a constant frequency drift, leads to

σ2
y(τ) =

σ1

τ
+

σ2
2τ

3
+

τ 2

2
c23. (4.33)

In practical application, it is interesting to have the relationship between the diffusion

coefficients and the Allan variance as for example to build the Kalman filter with the

appropriate parameters which will be presented in the next chapter. By computing the

Allan variance and looking at a specific region of τ , according the power-law, the noises

affecting the data can be deducted. For example, in a τ region characterized only by WFN,

σ1 can be evaluated and we will get σ2
1 = σ2

yτ .
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In this chapter a new algorithm is developed to improve the reliability of UTC. The

new algorithm is based on the Kalman filter routine. It was presented by Kalman in 1960

in a pioneering article [111] used in many fields, e.g. UTC obtained by using the Kalman

filter [112], because of its ability to smooth out the WFN component considered as a

measurement noise. In this chapter the Kalman filter is presented as a tool to detect time

and frequency steps in the time links (GNSS or TWSTFT) used in UTC calculation. The

predicted state obtained with the Kalman Filter is compared to the real measurement,

called innovation. If this value is larger than a defined threshold an anomaly is detected.

Therefore no additionnal equations are needed as the detector is embedded in the Kalman

filter. Moreover the use of the innovation as a criterion is a known technique [113] which

is mentioned in [114] for the detection of time steps.

In Section 5.1 is presented the Kalman filter with its application to atomic clocks.

Section 5.2 reports the preliminary analysis performed on the data. The results for the

detection of time steps obtained are reported in Section 5.3 and the optimization of the

detection factor is given in Section 5.4. Finally Section 5.5 concludes the chapter.

This chapter is done by the author under the supervision of Gianna Panfilo.
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5.1 Kalman filter

The Kalman filter is based on a linear dynamical system which require the knowledge of

different informations:

1. a state vector X(t) defined by

X(t) = Φt,t−τX(t− τ) +W (t) (5.1)

where Φt,t−τ is the state transition matrix;

2. noises of the system represented by the random vector W (t), defined as a multi-

variate zero-mean Laplace-Gauss distribution with covariance matrix Q;

3. an initial estimate state vector X̂(t0) whose covariance matrix is Γ(t0);

4. the true measurements Z(t) of the observable variables affected by noises.

5.1.1 Algorithm

The Kalman filter algorithm is composed of two different parts. The first, based on the

knowledge of the system, an a priori estimation is performed. In the second this esti-

mation is updated by comparison with the true measurement and called the a posteriori

estimation. Thus the discretized algorithm is described at every time instant tk by four

steps:

S1: Prediction:

The predicted state estimate, given an initial estimate X̂(t0) is,

X̂(tk|tk−1) = Φtk,tk−1
X̂(tk−1|tk−1), (5.2)

whose covariance matrix, initialized by Γ(t0) is given by,

Γ(tk|tk−1) = Φtk,tk−1
Γ(tk−1|tk−1)Φ

T
tk,tk−1

+Q. (5.3)

S2: Innovation:

The measurement vector can be written as Z(tk) = HX(tk) + v(tk) where H

denotes the transformation matrix and v(tk) the measurement noise described by

a zero-mean Laplace-Gauss distribution with covariance R. Then the innovation

process, i.e. the deviation of the new measurement from the predicted state, is

given by

ν(tk) = Z(tk)−HX̂(tk) (5.4)
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with covariance matrix,

σ2
ν
(tk) = HΓ[tk|tk−1]H

T +R. (5.5)

The Kalman gain is then defined by

K(tk) = Γ(tk|tk−1)H
T
(
σ2

ν
(tk)
)−1

. (5.6)

S3: Update:

By using the innovation and the Kalman gain the state estimate is updated such as,

X̂(tk|tk) = X̂(tk|tk−1) +K(tk)ν(tk) (5.7)

whose covariance matrix is

Γ(tk|tk) = (I −K(tk)H)Γ(tk|tk−1) (5.8)

where I is the identity matrix.

S4: Time step detection:

Following the described procedure, the jump in the data is defined if

|ν(tk)| > kσν(tk). (5.9)

where k is a parameter, already described in [86], which must be optimized to UTC

situation.

5.1.2 Kalman filter for atomic clocks

An atomic clock is characterized by fundamental quantities such as the time deviation

x(t) and the normalized frequency deviation y(t). However, only the difference between

two clocks can be measured. We thus define the difference between the time deviation of

a clock from any laboratory j and a referring laboratory i by:

xij(t) = xj(t)− xi(t). (5.10)

Considering an ensemble of two clocks, the state vector will contain the phase, frequency

and drift offsets for each clock. The observation matrix H which exhibits the difference

of the time deviation of two clocks according to Equation 5.10 is written

H =
(
−1 1 0

)
. (5.11)
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The transition matrix Φ according to Equations 4.23 and 4.24 leads to

Φ(τ) =



1 τ τ2

2

0 1 τ

0 0 1


 . (5.12)

According to Equation 4.26, the noise matrix W is a zero-mean Laplace-Gauss distribu-

tion of covariance matrix,

Q =



σ2
1τ + σ2

2
τ3

3
+ σ2

3
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20
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2
τ2

2
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3
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σ2
3
τ3
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σ2
3
τ2

2
σ2
3τ


 . (5.13)

5.2 Preliminary data analysis

We start considering GPS Multi-Channel (MC) technique but the analysis will be

extended to GPS P3 and GPS PPP. The GPS data (in the GGTTS format) provided by the

Time laboratories to the BIPM report the difference between the local time, TL, of the

laboratory and the time of each satellite (identified by PRN in the file). To improve the

stability of the data the BIPM processes the data in two steps; at the first step data are

processed to refer TL to GNSTT (Reference Time scale of the GNSS) and in the second

step a weighted average based on the elevation of the satellite is done and a unique value

is obtained for each epoch of TL-GPST. These last files are internally named respectively

“G1I” and “GPI”. When a significant step is present in the time link the algorithm used

to process data from G1I to GPI causes a loss of a few hours of data because when the

step occurs these data are considered as outliers and automatically eliminated. When the

observed step is not greater than the noise affecting the G1I the data are not eliminated.

In the following sections we start considering an example of step correctly visible in the

GPI data (without missing data) but the analysis will be extended to G1I data in case of

missing data.

Figure 5.1 shows phase data extracted from the G1I file for four different satellite

used to obtain the final data reported in Figure 3.6 (GPI). The different levels of noise

are perfectly visible in the graphics. Figure 5.1 (a) and (d) show a perceptible time step

framed by a red box, whereas it is not the case for the other ones. Let us note also that the

date of the jump will be different for each satellite, because they are not all visible at the

same time.
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Figure 5.1: Example of time transfer link of the same signal represented in Figure 5.1 with four different satellites. The noticeable time step
are framed by a red box.
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Figure 5.2: Allan deviation of the time transfer link. At short sampling times the time
transfer link is dominated by the white frequency noise component.

5.3 Time steps detection

In Figure 3.6 the example of phase jump occurring in a time link used to compute UTC is

reported. The detector, presented in Section 5.1, is tested on this set of data to check his

ability to give a warning and the related information on the jump. These data, as described

in Section 5.2, originated from the “GPI” file are already processed from outliers. The

anomaly occurs after MJD 59480 and should not be confused with the drift observed

after MJD 59460. In order to apply the Kalman filter to this data, we need to define two

parameters: the noise included in the state equation whose covariance matrix Q is given

by Equation 5.13 and the measurement noise or phase noise (in covariance matrix R) that

we want to filter. The clock model described in Section 4.3 is based on three different

noises: the white frequency noise (WFN), the random walk frequency noise (RWFN)

and the random perturbation of the frequency drift that usually is not taken into account

(σ2
3 = 0). We neglect also the RWFN because the variation is very low, so σ2

2 = 0.

In case of WFN the σ1 parameter is directly related to the Allan variance according to

Equation 4.33 by the following relation: σ2
1 = σ2

yτ . According to Figure 5.2, we can

clearly observe that the slope of the Allan deviation decrease as τ−1/2 thus indicating the

presence of WFN. At τ equal to one day, we have approximately:

σ2
y = (1.8× 10−14)2. (5.14)
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Figure 5.3: Detection of a time step in the phase data. The time deviation of the time link
signal (in black) is filtered by the Kalman procedure(in red).

To limit the propagation of numerical errors, the simulations are carried out with param-

eters in ns per day which gives σ1 ≈ 1.56 ns/day. Finally, to determine the parameter R

we consider the uStb value reported in Section 5 of Circular T [11] for the considered time

link. This uncertainty takes in to account the level of phase noise in the raw data. It gives

R = 1.52 ns2 = 2.25 ns2. (5.15)

The Kalman algorithm is processed for few time steps initialized with the first value

in the data set, then the first estimate is taken as the initial value for the true run. Another

method could be to propagate the Kalman filter backwards in time, thus having the last

estimate corresponding to the initial value. Considering that UTC is not computed in

real time we adapt and optimize the detection algorithm by applying the filter forwards

and backwards in time; these filtered data are then combined after stopping both series

at the date of the step. Applying these Kalman filters to the “GPI” data we obtain the

results reported in Figure 5.3 where the black line shows the original data, the green

and the blue lines the filter forwards and backwards respectively. Finally the red line

shows the combination of both. It is clear from the zoomed figure that the combined

solution gives a more correct information concerning the value of the step. According

to [86] we start choosing a value of the parameter k equal to 5. To detect the time

step in the data the Equation 5.9 must be verified. The value of the parameter k is

strictly depending on the amplitude of the jump. An automatic procedure to fix its
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value needs to be implemented. With the described method we detect a phase jump

at MJD 59480.3115. This data corresponds perfectly to the information needed by

the BIPM. The clear advantage to use both filters is for the evaluation of the value of

the step because even if by using only one filter the phase noise is smoothed out very

well, the value of the jump is not perfectly catched. If we stop the filters forwards and

backwards at the date of the step and we combine them, the final solution allows a

better evaluation of the step. This method represents a novelty with respect to the detec-

tor presented in previous publication and is tested to other cases in order to be generalized.

We are now taking another example of jump in the time transfer link using multi-

channel technique. Figure 5.4 (top) and (bottom) respectively show to the “G1I” having

a phase noise level lower than the jump and the “GPI” having a much lower sampling.

The Kalman filter is applied forwards (green curve) and backwards (blue curve) in time

with the combined estimate to give a better value of the jump magnitude. There are just

over 20 satellites implied in this process to obtain the “GPI” data, but some of them have

very few data thus are not exploitable. The “G1I” data represented here correspond to the

one that give the date of the jump which occurs first, i.e. MJD 59 547.6292 whereas it is

detected at MJD 59 548 for the “GPI”. The magnitude of the jump is approximately the

same for both data set close to 202 ns. The detector works with both data sets, but we

then focus only on the “GPI” to have a better probability of detecting phase jumps.

Finally we extend the analysis to other time transfer technique such as GPS P3 and

GPS PPP. Figure 5.5 (top) and (bottom) correspond respectively to GPS P3 and GPS PPP

data sets. Both data sets exhibit a lower phase noise than with the multichannel tech-

nique which greatly increases the probability of detecting jumps when there are any. The

Kalman process is exactly the same as with the multichannel technique with a lower R

value. The magnitude of the jump is not inherent to the time transfer technique but gener-

ally to the laboratory itself. We detect respectively for the GPS P3 and GPS PPP technique

a phase jump at MJD 59 696.2198 and MJD 59 283.99632. It sometimes happens that

the jumps all occur approximately on the same date for different laboratories while their

clocks are totally independent. These anomalies therefore come directly from the satel-

lites involved in the time transfer. However, this has no effect on the links that are made

with the pivot if it exhibits the same kind of problem.
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Figure 5.4: Detection of a time step between “G1I” (top) and “GPI” (bottom) data sets.
The time deviation of the time link signal (in black) is filtered by the Kalman procedure
(in red).
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Figure 5.5: Detection of a time step for GPS P3 and GPS PPP time transfer link. The
time deviation of the time link signal (in black) is filtered by the Kalman procedure (in
red). A zoom on the jump is show enlightening the difference between the Kalman filter
processed forwards and backwards in time.
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5.4 Detection factor optimization

An automatic detection procedure for the parameter k needs to be developped. In order to

determine a procedure for this parameter we simulate the time transfer link accordingly

to Equations 4.23 and 4.24. Thus the simulated data set does not contain anomalies such

as phase jumps, outliers or missing data. According to the data set studied, we apply the

same process as in Section 5.3 to determine the phase noise parameter R and the WFN

parameter σ. The result is presented is Figure 5.6 by the blue curve whereas the Kalman

filter corresponds to the green curve. Therefore we use the same detector as described by

Equation 5.9 and we define the factor k by

max[k] <
|ν(tk)|
σν(tk)

, (5.16)

for each simulation. Finally we performed hundred of simulations and Table 5.1 reports

the mean, standard deviation, minimum and maximum value obtained. We notice that

the value chosen in Section 5.3, i.e. k = 5 corresponds well to the values of the table

for the parameters
√
R = 1.5 ns and σ1 = 1.56 ns/day. Figure 5.7 shows the variation

of the minimum in red, maximum in black and the average in blue of the parameter k

according to the phase noise and the WFN. The threshold of detection determined by k is

very sensitive to the small value of the phase noise. The parameter sigma has also a non

negligible influence on the parameter k. To evaluate correctly this parameter, we calculate

the Allan deviation on a selected sample of data large enough but without anomalies.

5.5 Discussion

In this chapter the use of the Kalman filter to detect jumps in time transfer links used in

UTC computation is presented. The algorithm succeeds in correctly identifying the step

and the magnitude. This information is essential to guarantee the reliability and the stabil-

ity of UTC. The algorithm is extended to different sets of data (GPI and G1I) depending

on the magnitude of the steps and takes into account the already existing algorithms used

to process UTC data at BIPM Time Department. An automatic estimation of the noises

and of the deterministic parameters is essential to build an automatic procedure without

external intervention. A robust algorithm for the estimation of parameters is the key issue

for this kind of tool. The algorithm described in this part is implemented and operational

at the BIPM. To go further, the detector should differentiate the phase jumps from the

outliers. One way to do this is to look not just at the next instant as Kalman’s algorithm

does, but at a window with several data points. In order to increase the precision one can

also add a linear drift needed to have a better description of certain clocks.
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Figure 5.6: Simulation of time transfer link (in blue) without anomalies and the estimated
signal obtained by the Kalman filter (in green).

√
R[ns] σ[ns/day] mean(k) std(k) min(k) max(k)

1.4020 1.0000 6.0408 0.2774 4.8861 7.2498
1.5120 1.0000 5.9821 0.2974 4.9498 7.2784
1.5880 1.0000 5.7620 0.1541 4.9244 6.4338
1.7400 1.0000 5.6712 0.4575 4.7259 7.6655
1.8250 1.0000 5.8547 0.3325 4.7844 7.3041
1.8750 1.0000 5.6663 0.3727 4.9205 7.2909
1.9250 1.0000 5.6292 0.4471 4.4949 7.5779
1.4020 2.0000 7.7639 0.5068 6.3950 9.9731
1.5120 2.0000 7.4682 0.2133 6.7187 8.3980
1.5880 2.0000 7.2434 0.2309 5.9216 8.2498
1.7400 2.0000 7.3639 0.3206 6.2339 8.7614
1.8250 2.0000 7.1116 0.4931 5.8146 9.2611
1.8750 2.0000 7.0653 0.5407 5.9708 9.4220
1.9250 2.0000 7.1270 0.3005 5.8697 8.4368

Table 5.1: One hundred simulated time transfer links giving the mean, standard deviation,
minimum and maximum value of the parameter k according to the WPM and the WFM
parameters.
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6.1 Context

The measurement of power spectra is a classical problem, ubiquitous in numerous

branches of physics, as explained below. Power spectra are efficiently measured using

Fourier transform methods with digitized data. Relevant bibliography is now found in

classic books [115–118].

We are interested in the measurement of weak statistical phenomena, which challenge

the instruments and the mathematical tools, using the cross-spectrum method. This

method consists of the simultaneous measurement of the signal with two separate and

independent instruments [59]. The other approach, consisting on the observation of the

spectral contrast in a chopped signal, broadly equivalent to the Dicke radiometer [119], is

not considered here. Regarding the duration of the data record used to evaluate the Fast

Fourier Transform (FFT), two asymptotic cases arise.

The first case is that of the measurement of fast phenomena, where a large number

of records denoted η is possible in a reasonable observation time. At large η, the

central limit theorem holds and the background noise can be rejected by a factor

approximately equal to 1/
√
p, depending on the estimator. Numerous examples are

found in the measurement of noise in semiconductors [120], phase noise in oscillators

This chapter is done by the author under the supervision of François Vernotte and
Enrico Rubiola.
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and components [121–124], frequency fluctuations and relative intensity noise in

lasers [125, 126], electromigration in thin films [127], etc. Restricting to one bin of

the Fourier transform, the power spectral density integrated over a suitable frequency

range is used in radiometry [128,129], Johnson thermometry [130] and other applications.

The second case is that of slow phenomena, where the fluctuations are very long term

or non ergodic. On one hand the background noise is still rejected as before but with

a very low η which can actually be equal to one. On the other hand, the central limit

theorem does not apply and the statistical uncertainties are not trivial. This case is of great

interest in radio astronomy, where the observations are limited by the available resources

and take a long time. As instance millisecond pulsars (MSP) can be used as very stable

clocks at astronomical distances [30]. The radio pulses times of arrival (TOA) of MSP

are affected by numerous physical process, one of them are gravitational-wave (GW)

perturbations [41, 131]. Like the analysis of the signals provided by the LIGO/VIRGO

interferometers which use cross correlation methods [132, 133], the LEAP experiment

(i.e. Large European Array for Pulsars) [54] could use such methods in order to access

lower frequencies and observe imperceptible phenomena such as early phases well

before the coalescence of black holes or GW of cosmological origin (for example cosmic

strings, inflation, primordial black holes). Red noise originated from GW perturbations

in the signal path common to the radio-telescopes can be detected [52, 53]. The

term red noise refers to a variety of processes sharing the property that the Power Spec-

tral Density (PSD) grows at low frequency as 1/f 2 (Brownian noise) or 1/fα, with α > 2.

We are interested in the estimation of the PSD of such random signals out of the

background noise of the instrument in the specific case of very slow phenomena, which

take too long acquisition time for the average on a sequence of data sets to be visible.

Therefore, averaging out the background is possible only by exploiting simultaneous

measurements of the same signal taken with multiple instruments, under the obvious

hypothesis that they are independent. The frequency stability of the millisecond pulsars is

the example we have in mind. Such rapidly rotating neutron stars, emitting highly stable

periodic pulses out of the magnetic poles, rival the best atomic clocks [25, 28, 35, 134].

Among other fields, slow phenomena are found in climatology [135] and geodesy,

the latter nowadays measured with Very Large Baseline Interferometry [136]. The

measurement of noise and phase noise with fully digital instruments is another appealing

application because increasing the number of channels is reasonably simple. The phase

noise of oscillators can be measured with the multi-channel tracking DDS [137]. An

improved 16-channel version of the Tracking DDS is now a semi-commercial instrument
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(we have recently purchased two beta-test samples), albeit there is still no official

announcement. In Si, Ge and GaAs semiconductors, low 1/f noise is a quality indicator

related to the effective number of defects [138].

This part is intended to put an upper limit on the uncertainty of the cross-spectrum

estimate. The method proposed here is totally general regardless the power law type

of noise. Indeed, even if the pulsar signal would be constituted by white noise, the

realisations of this white noise would be the same, for low frequency, at different

observatories where realisations of measurement white noise are independent. However

this part shows a particular interest to red noise. Gravitational-waves have not been

yet discovered in the TOA of millisecond pulars. Thanks to the very long line of sight

between the pulsars and us (several thousand light-years), we could access very low

frequencies, inaccessible to LIGO/VIRGO, thus revealing much slower astrophysical

phenomena. It is therefore important to develop statistical tools to improve measurement

sensitivity to pulsar timing observations. With these purposes stated in mind, we compare

the efficiency of the spectrum average (s.a) and of the cross-spectrum (c-s) measuring

the signal with n instruments simultaneously. The s.a estimator is the average of the n

observed spectra Si, weighted with the background noise σ2
W,i of the i-th instrument. The

c-s method is the average of the all combinatorial choices of the cross-spectrum Sj,i,

i 6= j. The s.a is the classical estimator used in these cases [139], while the c-s is rather

uncommon. Data are analyzed with the Bayesian statistics, also known as the inverse

problem, which consists of estimating the most probable value of the signal (the slowest

spectral components) from the experimental outcomes and their statistical properties.

We take the 95% upper limit as the efficiency criterion. Accordingly, the most efficient

estimator is the one that provides the most stringent upper limit with the same data set.

We run a simulation with up to five instruments, inspired by the LEAP experi-

ment [54]. Such experiment gathers the five largest European radio telescopes (RTs) in

order to increase the sensitivity of high-precision pulsar timing. Interestingly, Pulsar

Timing Arrays seem a promising option to explore the low-frequency gravity waves

crossing our Galaxy [140, 141]. The c-s estimator commonly used in the frequency

metrology has recently been used in [142] to show the detection limit of correlated red

noise. Hence defining a confidence interval on this estimator and comparing it with the

commonly used s.a will give hints on which estimator has to be privileged to improve the

sensitivity.

In this respect, we propose in this Chapter to define the scheme of the experiment,
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described by a random signal measured by n devices and establish the resulting properties.

This signal of interest is considered to be a red noise and thus simulating this kind of

noise could introduce an artifact which is presented in Chapter 7. Based on the principle

that the experiment is repeated η times, it is important to note that the estimation of the

measurement uncertainty is A-Type as defined by the VIM [143]. Moreover, it raises

questions about the correlation between these different sequences, so we give a description

of it in Chapter 8. Finally Chapters 9 and 10 are intended to compare the s.a and the c-s

estimators respectively for n = 2 instruments and generalized to multiple instruments

measuring a random signal, e.g. a red noise. We will give the probability density function

(i.e. “direct problem”) of these estimators used to compute an upper limit by using a

bayesian inference approach (i.e. “inverse problem”).

6.2 Statement of the problem

6.2.1 Spectral measurement

input 
signal

noise

noise

instrument array 
sp

ec
tra

l e
st

im
at

or

Figure 6.1: Array of n instruments measuring the signal r(t). Each instrument adds a
white noise to the output xi(t) whose Fourier transform is Xi(f). Then the estimate Ŝ is
computed.

Let us consider a red noise r(t) which is measured by an array of n independent

instruments as shown in Figure 6.1. We assume that each instrument adds a white noise

wi(t) to the measurement and that all these white noises are uncorrelated. In the following,

we call the red noise the “signal” and the white noise from the measurement instrument

is referred as the “measurement noise”. The output of each channel is then
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xi = r + wi ↔ Xi = R +Wi (6.1)

where the subscript i corresponds to the i-th instrument, ↔ stands for the Fourier trans-

form and inverse Fourier transform pair, lower case is time domain, upper case is fre-

quency domain, and the variables t and f are implicit. The estimates will be noted with

a “hat” and Ŝ is computed. Figure 6.2 shows the time sequence of the sum of a red and

white noise whereas Figure 6.3 represents its spectrum emphasizing the randomness of

the real and imaginary part. Let us remind that the Fourier transform of a white noise is a

white noise, at least for sampled signals. Indeed, even if continuous pure white noise have

an infinite power, the Fourier transform for discrete simulations can be defined. A realistic

white noise corresponds to a Markov process of the first order, more details about colored

noise are given in [144]. On the other hand, a red noise can be described as a filtered white

noise. Its spectrum is then the product of a white spectrum by a deterministic function;

so the random part of a red noise is uncorrelated for each frequency bin. Consequently in

term of random variable (r.v.), working in the frequency domain gives a precious advan-

tage because the Fourier components (frequency bins) are statistically independent unlike

the time data.

xi(t)

t

Figure 6.2: Time sequence.

6.2.2 Periodogram and Power Spectral Density

First, let us recall some basics of frequency analysis. Using a data record of duration T

sampled at a suitable frequency, the periodogram is

Px(f) =
2

T
|X(f)|2, f > 0 (6.2)
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Xi(f)

log(f)

Real part
Imaginary part

Figure 6.3: Spectrum.

where the factor “2” is needed for energy conservation after deleting the negative frequen-

cies. The expectation of the periodogram is the Power Spectral Density,

Sx(f) = E

[
2

T
|X(f)|2

]
, f > 0. (6.3)

In this part, we aim to measure the mathematical expectation of the amplitude for a

given frequency bin, e.g. f1 as represented by a blue box on Figure 6.4. This amplitude

depends on the frequency and this is what we are looking for. The periodogram is rep-

resented by the orange dots and its expectation the PSD by the green curve. The red and

gray curves correspond respectively to the asymptotes arising from the power law of the

red and white noise. We estimate the PSD as the average periodogram, with the ultimate

goal of expecting the red noise parameters of r out of the measurement noise w. Of course

r is the same for all instruments, while the wi are specific to the i-th instrument and its

environnement. So we can only estimate the periodogram of r. The total duration of the

experiment is the major problem, as the lowest frequency of interest sets T . In turn, a long

T goes with a small number η of averages because the total duration of the experiment is

ηT . In the following chapters we focus on the slowest red noise phenomena, up to years,

for which we have to set η = 1. In other words, the phenomena of interest are so slow

that we cannot average on multiple acquisitions.

6.2.3 Variance of the spectra

In the following we focus solely on one frequency bin and we introduce the notations,

ℜ[Wi] = W ′
i ℑ[Wi] = W ′′

i

ℜ[R] = R′ ℑ[R] = R′′
(6.4)
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Figure 6.4: Periodogram of x (white noise plus red noise). The PSD is the expectation of
the periodogram.

where ℜ[·], ℑ[·] respectively denote the real and imaginary part of the quantity within the

brackets. Furthermore throughout this manuscript the prime and double prime symbols

respectively denote the real and imaginary part of the variable placed before. Then thanks

to energy equipartition it follows,

V[Wi] = 2V[W ′
i ] = 2V[W ′′

i ] = σ2
W,i

V[R] = 2V[R′] = 2V[R′′] = σ2
R

(6.5)

where V[·] denote the variance of the quantity within the brackets.

We simulate two independent white noise sequences w1(t) and w2(t) by generating

Gaussian processes and a red noise sequence r(t) by integrating a white noise. After

computing the Fast Fourier Transform (FFT) on these processes, it turns out that the vari-

ances of the real and imaginary part of the red noise are not equal. Figure 6.5 highlights

the ratio of the variance of the imaginary part over the real part of the spectrum. The red

and orange curves correspond to the two white noise sequences and the blue curve to the

red noise sequence. The white noise processes show as expected no important variation

whereas regarding the red noise, the ratio is equal to three for the lowest frequency fmin

and 1/3 for the highest frequency fmax of the sequence. This artefact complicates the

problem insofar as the real and imaginary part of the red noise are no longer Independent

and Identically Distributed (IID) random variables. Let us give more details about this
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artifact in the next chapter.
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In this chapter we will present how to simulate a process of white noise and red noise

by integrating a white temporal sequence. Thus we will explain the dissymmetry intro-

duced between the real and imaginary parts of the variance of such a red noise process.

7.1 Simulation of a realistic white noise

In this section we describe how to simulate a realistic white noise. Let yk, with k ∈
{1, . . . , N}, be a random variable following a LG(0, σ)1, i.e. a Laplace-Gauss distribution

with mathematical expectation zero and standard deviation σ. From this time series, we

introduce a continuous function y(t) in such a way that

yk =
1

τ0

∫ tk

tk−τ0

y(θ)dθ with tk = kτ0 (7.1)

where k is an integer and τ0 the sampling period. Denoting Ry(t) the autocorrelation

function of the process y(t), we assume that

{
Ry(t) = 0 if t ≥ τ0

Ry(t) > 0 if t < ε with 0 < ε ≪ τ0
(7.2)

1In part II, the Laplace-Gauss distribution was defined by LG(0, σ2)

This chapter is the result of close collaboration with François Vernotte.
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in such a way that y(t) is continuous for short term (t < ε). Thanks to the assumption

given on Ry(t) in Equation 7.2, we will consider that the Fourier transform Y (f) of y(t)

exists. The PSD, considered to be “2-sided” according to Equation 6.3 of y(t), Sy(f),

verifies the following properties:





Sy(f) = h0 = σ2τ0 if 0 ≤ f ≤ 1

τ0
lim
f→∞

Sy(f) = 0
(7.3)

where the constant value h0 stands for the white noise level. From these properties, we

can deduce than, for 0 ≤ f ≤ 1/τ0:

E [ℜ[Y (f)]] = E [ℑ[Y (f)]] = 0 ⇒ E [|Y (f)|] = 0 (7.4a)

V [ℜ[Y (f)]] = V [ℑ[Y (f)]] = Nτ0h0/2 ⇒ V [|Y (f)|] = Nτ0h0 (7.4b)

where E[·] stand for the mathematical expectation of the quantity in the brackets and

|z| stand for the modulus of a complex number z. Equation 7.4b must be understood

as ensemble statistics over an infinite number of realizations of the same LG process.

Moreover, this yields an interesting alternative definition of the PSD since

Sy(f) =
V [|Y (f)|]

Nτ0
. (7.5)

The denominator Nτ0 is due to the normalization of the PSD by the duration in order to

have the dimension of power and not energy. This normalization is essential to ensure the

convergence for signal of finite power and infinite energy [145].

7.2 Red noise simulation

7.2.1 Raw red noise

We can easily simulate a red noise, i.e. with a PSD following a f−2 power law, from the

time series {yk}

xk = τ0

k∑

i=1

yi with k ∈ {1, . . . , N} . (7.6)

Here also, we can introduce a continuous function x(t)

x(t) =

∫ t

0

y(θ)dθ. (7.7)
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The time series {xk} may be rewritten as

xk =

∫ tk

0

y(θ)dθ = τ0

k∑

i=1

1

τ0

∫ ti

ti−τ0

y(θ)dθ = τ0

k∑

i=1

yi (7.8)

with ti = iτ0.

7.2.2 Pure red noise and “fake drift”

Let us define ȳ as the mean of the {yk} time series:

ȳ =
1

N

N∑

k=1

yk. (7.9)

Since each yk is a r.v. following a LG(0, σ) distribution, ȳ is a LG(0, σ/
√
N) r.v. There-

fore, ȳ 6= 0 and acts as a continuous background. In the integration of the time series {yk}
to generate the time series {xk}, this continuous background will be transformed into a

drift of slope ȳ. We will call it “fake” drift because it is purely random and not the result

of deterministic effects (for further details about fake or false drift, see [146]). We will

then define the raw red noise as the red noise including this drift, i.e. the time series {xk},

and the pure red noise {xPk} as

xPk = xk − kτ0ȳ = xk − ȳtk. (7.10)

Figure 7.1 shows an example of realization of such a time series. Obviously, the raw

red noise is a realistic time series although the pure red noise is nothing but a theoretical

concept. It will be helpful however to explore the properties of red noises defined by PSD

modelized as power laws.

In the same way as {xPk}, we can define the time series {yPk} by yPk = yk − ȳ and

its extension as yP (t) = y(t)− ȳ. Let YP (f) be the Fourier transform of yP (t). Since the

removal of the mean value only affects the null frequency, we know that

{
YP (0) = 0

YP (f) = Y (f) if f 6= 0.
(7.11)

The continuous extension {xPk} may be written as

xP (t) =

∫ t

0

yP (θ)dθ =

∫ t

−∞
yP (θ)dθ − xP (0). (7.12)

Let us assume that XP (f), its Fourier transform, exists. Thanks to the properties of the
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Fourier transform applied to Equation 7.12, it comes

XP (f) =
1

j2πf
YP (f). (7.13)

Therefore, its statistical properties are, for 0 ≤ f ≤ 1/τ0:





E [ℜ[XP (f)]] = E [ℑ[XP (f)]] = 0 ⇒ E [|XP (f)|] = 0

V [ℜ[XP (f)]] = V [ℑ[XP (f)]] =
Nτ0h0

8π2f 2
⇒ V [|XP (f)|] =

Nτ0h0

4π2f 2
= Nτ0SXP (f)

(7.14)

where SXP (f) =
h0

4π2f2 is the PSD of XP (f). It may be noticed that, if we assume that

y(t) is a frequency, x(t) is a phase and the mean removal in yP (t) is a syntonization

process. In the same way, if we would set x0 to 0, it would be a synchronization process

but we will not consider this setting.

7.2.3 Spectral aliasing effect

Let us define xPs(t) as the sampling of xP (t):

xPs = xP (t) ·X
(

t

τ0

)
(7.15)
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where X (x) stands for a Dirac comb defined by

X (x) ≡
+∞∑

n=−∞
δ(x− n), (7.16)

with δ(x) the Dirac distribution of the variable x ∈ R; so X (x) = 0 for x /∈ Z (i.e., x

is not an integer). In this section, we will not study the windowing effect. The Fourier

transform of xPs(t) is:

XPs(f) = XP (f) ∗ [τ0 ·X (τ0f)] . (7.17)

Its PSD is then

SXPs(f) = τ 20

∣∣∣∣∣

∫ +∞

−∞
XP (ν) ·

+∞∑

n=−∞
δ [τ0 (f − ν)− n] dν

∣∣∣∣∣

2

= τ 20

∣∣∣∣∣
+∞∑

n=−∞

∫ +∞

−∞
XP (ν)δ [τ0 (f − ν)− n] dν

∣∣∣∣∣

2

(7.18)

=

∣∣∣∣∣
+∞∑

n=−∞
XP

(
f − n

τ0

)∣∣∣∣∣

2

=
+∞∑

m=−∞

+∞∑

n=−∞
XP

(
f − m

τ0

)
·XP

(
f − n

τ0

)

where · stands for the complex conjugate of the quantity which is below. Since xp(t) is a

noise, its Fourier Transform is also a noise and the amplitudes separated by at least 1/τ0,

i.e |n−m| ≥ 1, are uncorrelated 2

E

[
XP

(
f − m

τ0

)
·XP

(
f − n

τ0

)]
= 0 if m 6= n. (7.19)

Moreover, the products XP

(
f − m

τ0

)
·XP

(
f − n

τ0

)
may be positive or negative if m 6= n

whereas they are necessarily positive if m = n. Therefore, the sum of the products with

m 6= n may be neglected and we keep only the products with m = n

SXPs(f) =
+∞∑

n=−∞

∣∣∣∣XP

(
f − n

τ0

)∣∣∣∣
2

=
+∞∑

n=−∞
SXP

(
f − n

τ0

)
. (7.20)

Finally, we get

2This property is obvious if xP (t) has a finite support bounded by
[
−1
2τ0

, +1
2τ0

]
, i.e. if it is sampled

acoordingly with the Nyquist-Shannon sampling theorem.
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Figure 7.2: Spectral aliasing caused by sampling. The dashed red line is the infinite sum
of all hyperbolas in accordance with Equation 7.23. The X-axis units are the frequency
divided by the sampling period τ0 and are then dimensionless. The Y-axis units are arbi-
trary.

SXPs(f) = SXP (f) ∗
[
τ 20 ·X (τ0f)

]
=

+∞∑

n=−∞

h0τ
2
0

4π2(τ0f + n)2
. (7.21)

Therefore, this convolution product with a Dirac comb means that the shape of XP (f)

will be infinitely duplicated on each multiple of 1/τ0 (see Figure 7.2). However, thanks to

the following equality [147, Equation 9.47, p. 281]

+∞∑

n=−∞

1

(a+ n)2
=

π2

sin2(πa)
(7.22)

we know that the infinite sum of Equation 7.21 converges and can be rewritten as

SXPs(f) =
h0τ

2
0

4 sin2(πτ0f)
. (7.23)

As for XP (f), the real and imaginary parts of XPs(f) follow the same statistics and their

variances are then equal to

V [ℜ[XPs(f)]] = V [ℑ[XPs(f)]] =
Nτ 30h0

8 sin2(πτ0f)
. (7.24)

Thus, even in the case of a f−2 noise, the sampling process produces a slight but signifi-

cant spectral aliasing (see Figure 7.3).

7.2.4 Fake drift effect

According to the definition of the pure red noise in Equation 7.10, the fake drift d(t) is

nothing but the difference between the raw red noise and the pure red noise:
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Figure 7.3: PSD of a pure red noise. The simulated PSD (red dots) was obtained from
300 realizations of a pure red noise sequence of 256 samples. The 1/f 2 asymptote is the
dashed green line and the model of Equation 7.23 is the blue line. The spectral aliasing
effect induces a discrepancy beween the PSD and the 1/f 2 asymptote, visible for f > 0.2.
The X-axis units are the frequency divided by the sampling period τ0 and the Y-axis units
are arbitrary.

d(t) = x(t)− xP (t) = αt (7.25)

with α is the slope of the drift. As stated in Section 7.2.2, for a given {yk} realization

which generates the corresponding {xk} realization, this slope is α = ȳ, where ȳ is the

mean of the {yk} time series. But we must keep in mind that, considering the ensemble

of all possible realizations (see Figure 7.4), ȳ is a LG(0, σ/
√
N) distribution. Then, since

σ2 = h0/τ0, α is a LG r.v. with the following statistics parameters:

E[α] = 0, V[α] =
h0

Nτ0
. (7.26)

In order to take into account the effect of the fake drift in the spectrum of the raw red

noise, let us calculate the Fourier transform of the following time series:

d(tk) = αtk with k ∈ {1, . . . , N} . (7.27)

This can be rewritten as a continuous function
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Figure 7.4: Realizations of fake drifts d(t) corresponding to 16 realizations of {xk} times
series with the same statistics parameters. In the grey area, the line slopes are within
±σα the standard deviation of the r.v. α. The X-axis units as well as the Y-axis units are
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d(t) =

{[
(αt)(0<t<Nτ0)

]
·X

(
t

τ0

)
− αNτ0

2
δ

(
t

τ0

)}
∗
{

1

Nτ0
X

(
t

Nτ0

)}
(7.28)

where the direct product with X

(
t
τ0

)
accounts for the time sampling and the convo-

lution product with 1
Nτ0

X

(
t

Nτ0

)
accounts for the implicit assumption of the data-run

periodicity imposed by the discrete Fourier transform algorithm. This periodicity induces

a discontinuity: at the beginning as well as at the end of the ramp, d(t) equals αNτ0 as

well as 0 which leads to the mean value αNτ0
2

δ
(

t
τ0

)
. The correction −αNτ0

2
δ
(

t
τ0

)
, which

is applied after sampling, forces d(0) = 0.

Let us first calculate Dc(f), the Fourier transform of the continuous ramp dc(t) =

(αt)(0<t<Nτ0)

Dc(f) = α

∫ Nτ0

0

te−j2πftdt (7.29)

which can be easily solved by using an integration by parts

Dc(f) = j
αNτ0
2πf

e−j2πNτ0f +
αe−j2πNτ0f

4π2f 2
− α

4π2f 2
. (7.30)
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Let us now consider the effect of the time sampling. Let ds(t) be the sampled version

of dc(t):

ds(t) = dc(t) ·X
(

t

τ0

)
. (7.31)

Its Fourier transform is Ds(f) = Dc(f) ∗ [τ0 ·X (τ0f)]

Ds(f) =
+∞∑

n=−∞

[
j

αNτ 20
2π(τ0f − n)

e−j2πN(τ0f−n) +
ατ 20 e

−j2πN(τ0f−n)

4π2(τ0f − n)2
− ατ 20

4π2(τ0f − n)2

]
.

(7.32)

Since n,N ∈ Z and ej2πNn = 1

Ds(f) = j
Nτ 20 e

−j2πNτ0f

2π

+∞∑

n=−∞

1

τ0f − n
+
τ 20 e

−j2πNτ0f

4π2

+∞∑

n=−∞

1

(τ0f − n)2
− τ 20
4π2

+∞∑

n=−∞

1

(τ0f − n)2
.

(7.33)

The expressions in the sums can be simplified since [148, Equation 1.41, p. 33]

π

tan(πz)
=

∞∑

k=−∞

1

z − k
. (7.34)

Thus, from this relationship and [147, Equation 9.47, p. 281], it comes

Ds(f) = j
αNτ 20 e

−j2πNτ0f

2 tan(πτ0f)
+

ατ 20
4 sin2(πτ0f)

[
e−j2πNτ0f − 1

]
. (7.35)

The whole sampled function includes also the end-beginning discontinuity

dd(t) = ds(t)−
αNτ0
2

δ

(
t

τ0

)
(7.36)

whose Fourier transform is

Dd(f) = Ds(f)−
αNτ 20
2

. (7.37)

Finally, let us take into account the time data-run periodicity assumption. Since d(t) =

dd(t) ∗
{

1
Nτ0

X

(
t

Nτ0

)}
, its Fourier transform D(f) = Dd(f) ·X (Nτ0f)

D(fk) = j
αNτ 20 e

−j2πk

2 tan(πk/N)
+

ατ 20
4 sin2(πk/N)

[
e−j2πk − 1

]
− αNτ 20

2
(7.38)

with fk = kτ0. Taking into account that k ∈ Z and then e−j2πk = 1, we obtain the final

expression of D(f):



76 Chapter 7. Red noise simulation artifact

10+0

10+1

10+2

10+3

10+4

10+5

10+6

10+7

10+8

10+9

 0.001  0.01  0.1

S
p

e
c
tr

u
m

 v
a

ri
a

n
c
e

Frequency f

Real[simulation]

Imaginary[simulation]

Real[model]

Imaginary[model]

Figure 7.5: Variance of the spectra of 300 drift realizations (crosses) and theoretical model
of Equation 7.40 (solid lines). The X-axis units are the frequency divided by the sampling
period τ0 and the Y-axis units are arbitrary.





D(f) = −αNτ 20
2

+ j
αNτ 20

2 tan(πk/N)
if f = fk =

k

Nτ0
D(f) = 0 if f 6= fk.

(7.39)

Therefore, in the case of a raw red noise, this drift signature will be added to the pure red

noise signal inducing a dissymmetry between real and imaginary parts.

7.2.5 Raw red noise spectrum

In the case of a raw red noise, i.e. a time series simulated by using Equation 7.6, we will

have to take into account the spectral aliasing effect as well as the adding of the fake drift.

Equation 7.39 gives the Fourier transform of a single drift of slope α. We must now

deduce from this the statistical behavior of the fake drifts of an ensemble of raw noises.

As already stated in Sections 7.2.2 and 7.2.4, the slope of the fake drift of one realization

of a raw red noise is a centered Gaussian r.v of variance h0

Nτ0
. The ensemble statistics of

the fake drifts are then:
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



E [ℜ[D(f)]] = E [ℑ[D(f)]] = 0

V [ℜ[D(f)]] =
Nτ 30h0

4
, V [ℑ[D(f)]] =

Nτ 30h0 cos
2(πτ0f)

4 sin2(πτ0f)
.

(7.40)

Figure 7.5 shows the behavior of both real and imaginary part of D(f).

Therefore, since a pure red noise realization is not correlated with the corresponding

fake drift3, the mathematical expectation and variance of the spectrum of a raw red noise

are the sum the ones of the spectrum of the corresponding pure red noise plus the ones of

the spectrum of the corresponding fake drift. Thus, for 0 ≤ f ≤ 1/τ0:





E [ℜ[X(f)]] = E [ℑ[X(f)]] = 0

V [ℜ[X(f)]] =
Nτ 30h0

8 sin2(πτ0f)
+

Nτ 30h0

4
, V [ℑ[X(f)]] =

Nτ 30h0

8 sin2(πτ0f)
+

Nτ 30h0 cos
2(πτ0f)

4 sin2(πτ0f)
.

(7.41)

It can be observed that the ratio V [ℑ[X(f)]] /V [ℜ[X(f)]] ranges from three at f = 0 to

1/3 at f = 1
2τ0

(see Figure 7.6-B).

7.3 Discussion

The simulation of a red noise by integration of a white time series induces spectral

aliasing as well as a fake drift which modifies the shape of the spectrum, especially in

rising its slope for high frequencies and in introducing a dissymmetry between its real

and imaginary parts (see Figure 7.6-A).

It is very easy to remove the fake drift of the red noise by removing the mean value of

the white time series but is it a good practice? In the true life, would not a real red noise

be the result of an integration process of a white noise? If yes, a raw red noise would

definitely be more realistic than a pure red noise.

3On the other hand, a raw red noise realization is correlated with its fake drift.
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This chapter presents a very simple method ensuring the independence of consecutive

spectra of the phase or frequency noise of an oscillator. This condition is essential for

using cross-spectrum averages.

The best improvement provided by the cross-spectrum method [59] arises from the

average of consecutive cross-spectra. Such average relies on the decorrelation of the

cross-spectra. Are the cross-spectra really uncorrelated? More generally, are not several

consecutive spectra of the same process correlated?

8.1 Theoretical approach

8.1.1 The Fourier transform of a white noise is a white noise

First of all, let us remind that the Fourier transform of a white noise is a white noise [149].

To be convinced, we may recall that the Fourier transformation is an orthogonal transfor-

mation which preserves the non-correlation of the data. Therefore, the periodogram of a

white noise, i.e. the square of the modulus of its Fourier transform divided by the number

This chapter is the result of close collaboration with François Vernotte.
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of samples, is a sequence of χ2 random variables with two degrees of freedom: they are

always positive and fluctuate around the white noise level but they remain fundamentally

random. Only the PSD of a white noise is supposed to be a constant deterministic function

since it is defined as a mathematical expectation. For this very reason, the PSD is an ideal

mathematical quantity which can be only estimated (e.g. by an average of periodograms).

8.1.2 Filtering a white noise preserves the non correlation of the

Fourier components

A colored noise is generally considered as a filtered white noise. For instance, filtering

a white noise with a transfer function ∝ 1/f yields a random walk, i.e. a noise

characterized by a f−2 PSD. Since filtering is nothing but a product by a deterministic

function in the Fourier domain, such a process modulates the initial white spectrum but

does not introduce any correlation between the data of the random part of the spectrum.

For example, the red noise of Figure 6.2 may be obtained by filtering a white noise. Thus,

we retrieve in its Fourier transform (see Figure 6.3) the uncorrelated complex r.v. of the

white noise Fourier transform modulated by an envelope which is the transfer function of

the filter.

Therefore, the amplitudes of the spectrum of a pure colored noise are uncorrelated.

Likewise, by extension, the random part of the spectra of two consecutive sequences of a

pure colored noise are also uncorrelated.

8.1.3 The residual mean of a sequence induces a drift after integra-

tion

Let us consider a finite time series composed of N uncorrelated centered Gaussian r.v. zk
(k ∈ {1, N}), i.e. a white noise, with a standard deviation σ. According to the discussion

in Section 7.2.2, the mathematical expectation of each r.v. is null whereas the arithmetic

mean of the time series is not: it is a centered r.v. with a standard deviation σ0 = σ/
√
N

z0 =
1

N

N∑

k=1

zk = LG(0, σ0) with σ0 =
σ√
N
. (8.1)

If this white noise occurs in an integrator process of an oscillator, this constant z0 will

induce a linear drift of slope z0. Considering a sampling time τ0, the following “fake drift”

will be added to the integrated time series: dk = z0kτ0. Admittedly the mathematical

expectation of the slope z0 decreases as 1/
√
N , but its influence over the whole sequence
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increases as N : at the end of the time series, the mathematical expectation of the drift

reaches

E[dN ] =
σ√
N
Nτ0 = σ

√
Nτ0. (8.2)

Therefore, the influence of the fake drift increases as the square root of the number of

elements in the time series. For large N , this can even overwhelm the random behavior

of the integrated time series.

8.1.4 Only deterministic behaviors induce correlations

Now, let us come back to the main issue of this chapter: are the cross-spectra of

consecutive time series uncorrelated? From Section 8.1.2, we can answer that the random

part of these cross-spectra are uncorrelated. On the other hand, if the filtering corresponds

to an integration (transfer function ∝ 1/f or 1/fn for nth order integration), a fake drift

will appear as described in Section 8.1.3. This drift will add a deterministic component

in the spectrum as described in Chapter 7 which will induce strong correlations between

the frequency data as well as between the spectra of consecutive time series. Throughout

this chapter, “consecutive time series” means consecutive subdivisions of the whole time

series.

Therefore, such an effect completely prohibits the use of consecutive cross-spectra if

a drift, fake or real, spans several consecutive time series.

8.1.5 Syntonizing: a simple but effective way to decorrelate spectra

Nevertheless, the remedy for this major failure is quite obvious: we just have to break the

correlations between spectra of consecutive time series by removing the linear drift of

each consecutive time series or, and this is perfectly equivalent, by forcing the mean of

each consecutive time series to zero before integration.

But, since we are only interested in the decorrelation of the spectra of consecutive

time series and not in the decorrelation of the frequency data within a spectrum, a simpler

way exists: it suffices to force the first data of each time series to zero before integration.

In this case, there will still be a residual drift in each time series after integration but all

these residual drifts will be uncorrelated from one spectrum to another. If we consider

that the final time series corresponds to phase-time data, this means that the initial time

series before integration are frequency deviation data. This forcing at zero corresponds
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therefore to a syntonization process at the beginning of each consecutive time series.

8.2 Monte-Carlo approach

We will first simulate the case of a Random Walk FM noise (f−2 frequency noise ≡ f−4

phase noise) and then extend to other types of noises.

8.2.1 Red noise simulation

In order to simulate a f−4 red noise, we will integrate twice a white noise. Let us define

the aging z(t) as a Laplace-Gauss r.v. of mathematical expectation zero and of standard

deviation 1: z(tk) = LG(0, 1) with k ∈ {1, . . . , N} and tk+1 − tk = τ0, the sampling

time. For the sake of simplification, we set τ0 = 1 s and we denote zk = z(tk). The

top graph of Figure 8.1 represents a sequence of 512 consecutive realizations of such a r.v..

Although z(t) is discontinuous at the scale given by τ0, let us assume that z(t) is

smooth and continuous for very short term, i.e. at a scale ε ≪ τ0 (e.g. z(t) could be a

first order Markov process with a time constant ε [144]). Thanks to this assumption, this

process has a finite power and its Fourier transform Z(f) exists.

Since aging is defined as the time derivative of the frequency deviation y(t), zk =
y(tk+τ0)−y(tk)

τ0
, we can compute the mean frequency deviation between tk−1 and tk, that

we denote ȳk = 1
τ0

∫ tk
tk−1

y(t)dt, as the cumulative sum of the aging samples zk from the

beginning of the sequence:

ȳk = ȳk−1 + zkτ0 = τ0

k∑

j=1

zj. (8.3)

The left hand graph in the middle of Figure 8.1 represents the corresponding 512

frequency deviation samples.

Similarly, we can deduce the phase-time data by integrating the frequency deviation

data-run:

x(tk) =

∫ tk

0

y(t)dt = τ0

k∑

j=1

ȳj. (8.4)

The result of this process is plotted on the left hand graph at the bottom of Figure 8.1.

As stated in Section 8.1.3, the slight residual mean of the aging sequence induces a
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linear drift in the frequency deviation sequence which induces a quadratic drift in the

phase-time sequence. The 512 data sequence are divided in four subsequences of 128

data (see blue, red, green and purple dots in Figure 8.1). It is clear that this effect, and

then the correlations between subsequences, increases drastically with the order of the

subsequence.

On the other hand, as expected in Section 8.1.5, the syntonization breaks the correla-

tions between the subsequences. The right hand side of Figure 8.1 shows the syntonized

frequency deviation sequence (middle) and the induced phase-time sequence (bottom).

The frequency deviation subsequences are the same as the ones without syntonization ex-

cept that they are shifted in such a way that the first sample is null. The changes in the

phase-time subsequences are a little bit more significant since, in addition to the shift of

the subsequences, there is also a change of slope due to a change of the mean-value of the

frequency deviation subsequences.

8.2.2 Spectrum correlation analysis

In order to analyze the correlation between the subsequences spectra, we applied the

method described in Section 8.2.1 to realize a f−4 red noise data-run with 2 095 152

samples, i.e. 16384 subsequences ×128 data. Figure 8.2-top represents such a realization

with a sampling period of one second and then a whole length of T ≈ 24 days.

Within this whole continuous data-run, we define three sequences each containing

four sub-sequences of 128 data:

• Sequence #1 is close to the beginning (from samples 128 000 to 128 511)

• Sequence #2 is close to the center (from samples 1 048 576 to 1 049 087)

• Sequence #3 is close to the end (from samples 1 969, 152 to 1 969 663).

Figure 8.2-middle-left shows these three sequences in the same plot, i.e. an enlarge-

ment of the three areas pointed by the arrows in Figure 8.2-top. The main features are

drifts which range over a few tens of ps over each sequence.

On the other hand, if the syntonization process is done at the beginning of each

128-data subsequence, the curve appearance is quite different (see 8.2-middle-right) and

is limited to less than one ps peak-to-peak: the linear drift is much lower revealing other

features like random behavior as well as quadratic drifts.
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Figure 8.1: From z(t) to x(t) without (left) or with (right) syntonisation.
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We computed the periodograms of the 16 384 subsequences of the rough and

syntonized data-runs. Figure 8.3-top shows the periodograms of 3 × 4 subsequences

defined above. Without syntonization (left), the periodograms are smooth and do

not follow the expected f−4 slopes. Although their shapes are very similar, their

levels are quite different depending of the sequence N#, e.g. the level of Sequence

# 2 is about 15 times higher than the one of Sequence # 3. These features have

to be related to the time curves of Fig 8.2-middle-left: we observe the periodograms

of strong linear drifts which completely mask the random behavior of these subsequences.

With syntonization (see Figure 8.3-top-right), the periodograms are much lower and

the random behavior becomes visible. It is particularly clear on the lowest orange curve

which exhibits a f−4 trend from 0.01 to 0.1 Hz.

The lower part of Figure 8.3 focuses on the behavior of one of the amplitudes of

the Fourier transform of all 16 384 subsequences. We arbitrarily chose the amplitude at

f4 = 4
128τ0

= 31.25 mHz. In other words, the sum of the square of the real part plus the

square of the imaginary part divided by 128 at the blue dotted line gives the amplitude of

the blue periodogram at f4. Figure 8.3-bottom-left shows clearly that the real parts are

strongly correlated from one subsequence to another as well as the imaginary parts. On

the other hand, Figure 8.3-bottom-right shows that with syntonization these correlations

seems to disappear. But before to conclude this theoretical study, let’s analyze more

thoroughly the correlations of these data.

In order to characterize these correlations, let us remind that, for each subsequence,

its Fourier transform at f4 is a complex r.v. The issue consists then to observe how

these r.v. are correlated versus the time shift of the corresponding subsequences. E.

g., with syntonization, 8.3-bottom-left shows a strong correlation between neighboring

sequences. Therefore, we ought to estimate the autocorrelation of all these complex

r.v. versus the N# of the realization (i.e. the N# of the sequence). The easiest way to

perform such an estimation consists in computing the periodogram of these complex

r.v. (the periodogram of periodogram amplitudes at f4!) and then compute its inverse

Fourier transform. This is what is presented on Figure 8.4: above the periodograms

of the amplitudes at f4 without (purple) or with syntonization (cyan), below the cor-

responding autocorrelation functions. These results confirm what we guessed at the

previous paragraph: with syntonization, the autocorrelation function tends toward a

Dirac peak and then the complex r.v. are uncorrelated. On the other hand, it is inter-

esting to notice that, without syntonization, this complex r.v. follows a random walk noise.
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By using a similar study on f−3 red noise, we remarked that the amplitude at f4
without syntonization is also a complex r.v. but follows a flicker noise. For the other three

types of noise generally encountered in time and frequency metrology (white FM, flicker

PM and white PM), syntonization is innocuous though useless.

8.3 Discussion

This study proves that a simple syntonization of an oscillator breaks the memory of the

non stationary processes which are in its phase or frequency noise and then, gives uncor-

related spectra. Using this property allows us to average all the cross-spectra obtained

after syntonization in order to converge to the phase or frequency PSD of the oscillator.
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cross-spectrum estimator, i.e. the covariance of two spectra, with a simple average of

these spectra. We assume that each spectrum is composed of a common red noise, that

we call signal, and an uncorrelated white noise with the same noise level σ2
W . Such a

comparison imposes the perfect knowledge of this parameter σ2
W in order to be able to

evaluate the signal variance σ2
R with the spectrum average method. However, this latter

estimator exhibits a lower estimate variance than the other one, suggesting that it could be

more efficient even if it is biased in essence. In order to get a more objective evaluation

of the performances of these methods, we will compare the confidence intervals given by

each of them by using a Bayesian estimation of the signal parameter σ2
R: the narrower the

confidence interval, the better the estimator.

9.1 Estimators

input 
signal

noise

noise

instrument 1

sp
ec

tra
l e

st
im

at
or

instrument 2

Figure 9.1: Dual channel instruments measuring the signal r(t). Each instrument adds a
white noise to the output x1(t) and x2(t) whose Fourier transform is respectively X1(f)

and X2(f). Then the estimate Ŝ is computed..

Let us consider three statistically independent signals: w1(t), w2(t) and r(t) as shown

in Figure 9.1. On one side the two first w1(t) and w2(t) are respectively the noise of in-

struments 1 and 2. On the other side r(t) is an input signal which we want to characterize.

This signal is stochastic and not necessarily stationary. In the case of pulsar measurement,

this input signal is generally a red noise. The output of each channel is

x1(t) = w1(t) + r(t)

x2(t) = w2(t) + r(t).
(9.1)
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Processing experimental signals, we can assume that white noise is a continuous function

of time, and that the Fourier transform always exists if we look at a very short interval

regarding the sampling period. Applying the Fourier transform on each channel and focus

solely on one frequency bin as stated in Section 6.2.3, it gives

X1 = W1 +R

X2 = W2 +R.
(9.2)

where W1, W2 are uncorrelated normal complex r.v. of variance σ2
W , i.e. the white noise

level, and R a normal complex r.v. of variance σ2
R/f

α, with σ2
R the signal level and α the

red noise exponent.

Our interest is carried out on the PSD rather than the spectrum. Experimentaly we

average over η spectra realizations. When the number of observations is large enough, the

mathematics is made simple by the central limit theorem, by which all the PDF become

Gaussian. More interesting for us is the case of a small number of realizations, each of

which taking long observation time-up to several years in the case of the millisecond pul-

sars as stated in Section 6.2.2 and set η = 1. Let us emphasize on the term periodogram

which designates a unique realization of the red noise since all instruments observe this

red noise realization at the same time. Nevertheless, taking into account the uncorrelated

white noises coming from the instruments, we have to deal with the PSD S for the in-

strument noise. One bin of S represents the power in a given bandwidth, i.e. the second

central moment, or variance. Hereinafter, we work on a generic bin, thus S(f) at that

frequency is replaced with σ2. Then the spectrum average and cross-spectrum estimators

are respectively defined as (see Appendix A for the definition of these estimators)





Ŝcs = ℜ
[
X1 ·X2

]

Ŝsa = ℜ
[
X1 +X2

2

]2
+ ℑ

[
X1 +X2

2

]2
− σ2

W

2
.

(9.3)

We do not take into account the imaginary part for the c-s estimate because it has a zero

expectation (see Appendix A). The s.a estimator is “biased in essence” because, in order

to get an unbiased estimator of the signal level, we must subtract half the noise level from

it, i.e. its bias.

9.2 Expectation and variance of the estimates

One can easily verify that these estimators are unbiased.
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



E

[
Ŝcs

]
= E {[ℜ(W1 +R) + iℑ(W1 +R)] [ℜ(W2 +R)− iℑ(W2 +R)]}
= E [ℜ (R2)] + E [ℑ (R2)] = E [|R|2] = σ2

R

E

[
Ŝsa

]
= 1

4
E
{
ℜ
[
(W1 +W2 + 2C)2

]}
+ 1

4
E
{
ℑ
[
(W1 +W2 + 2C)2

]}
− 1

2
σ2
W

= 1
4
{E [ℜ (W 2

1 )] + E [ℑ (W 2
1 )] + E [ℜ (W 2

2 )] + E [ℑ (W 2
2 )]}+

+E [ℜ (R2)] + E [ℑ (R2)]− 1
2
σ2
W

= 1
4
{E [|W1|2] + E [|W2|2]}+ E [|R|2]− 1

2
σ2
W = σ2

R

(9.4)

since the mathematical expectation of all cross-terms vanish and E [|W1|2] = E [|W2|2] =
σ2
W and E [|R|2] = σ2

R. Furthermore i denotes the imaginary number such as i2 = −1

On the other hand, denoting V[·] the variance of the quantity within the brackets, we

can demonstrate (see Appendix B ) that





V

[
Ŝcs

]
≈ V

[
Ŝsa

]
if σ2

R ≫ σ2
W

V

[
Ŝcs

]
≈ 2V

[
Ŝsa

]
if σ2

R ≪ σ2
W .

(9.5)

This is confirmed by Figure 9.2 (top) which exhibits the variance of the estimates

of both estimators applied to a signal composed of a mixture of uncorrelated white

noise of level one arbitrary unit (a.u) and a common f−8 noise which crosses the

white noise level at f = 8 a.u. At f = 4 a.u, the signal level is 256 times higher

than the white level and the variances of both estimators coincide. On the other

hand, for frequencies higher than 16 a.u, the signal level is less than 256 times lower

than the white level and the variance of the c-s estimates is two times higher than the

variance of the s.a estimates. This seems to indicate a better efficiency of the s.a estimator.

Frequency Cross- Spectrum
(arbitrary spectrum average

units) (%) (%)
4 2.9 3.0
8 25.0 28.4

16 47.1 58.9
32 49.8 62.9

Table 9.1: Proportion of negative estimates vs frequency.

However, the histograms of the estimates of both estimators exhibit a very different
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shape (see Figure 9.2 bottom): a double exponential increasing until 0 then decreasing

being not symmetric for the c-s estimates and a function decreasing exponential for the

s.a estimates. Then, although the negative part are very different, the positive part of

the histograms are quite similar. However, for low positive estimates, the c-s histogram

is a little bit higher. Therefore, this shows the probability to get a positive estimate, i.e.

an informative estimate, is very slightly higher with the c-s estimator than with the s.a

estimator. This property, which seems to point out a benefit in favor of the c-s method, is

clearly visible in Table 9.1. Moreover, this table shows that the lower the signal level, the

higher the discrepancy between the methods. This reinforces then the interest of the c-s

method since we are interested in detecting a low signal in a high measurement noise.

The question is then: which of these methods is the most efficient? The only way to

get an objective answer is to search for the Bayesian upper limit, e.g. at 95 % confidence,

of the σ2
R estimation knowing one estimate: the most efficient method is the one which

provides the most stringent upper limit.

In order to assess the uncertainty over the estimator σ2
R, called the signal level, we will

have to distinguish to main issues:

• The direct problem consists in calculating the statistics of the cross-spectrum Ŝcs

and the spectrum average Ŝsa, knowing the model parameters σ2
W,1, σ

2
W,2, σ

2
R.

• The inverse problem, conversely consists in calculating a confidence interval over

the unknown model parameter σ2
R, from the known parameters σ2

W,1, σ
2
W,2 and re-

spectively the cross-spectrum and spectrum average measurement Ŝcs and Ŝsa.

9.3 Empirical determination of the Probability Density

Function of cross-spectrum data

In this section we focus on the direct problem, i.e. the determination of the Probability

Density Function (PDF) of the cross-spectrum only. Here we carry out an empirical study

to determine the PDF of the cross-spectrum and thus estimate its parameters.

9.3.1 A first approach

It is known that each cross-spectrum datum, i.e. the value obtained for each frequency, is

a sum of three r.v. following a Variance-Gamma (VΓ) statistics [151,152]. Expanding Ŝcs
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from Equation 9.3 and according to Equation 9.2, i.e. the output of each channel, these

three r.v. are the terms within brackets in the following equation:

Ŝcs = [W ′
1W

′
2 +W ′′

1W
′′
2 ] +

+ [W ′
1R

′ +W ′
2R

′ +W ′′
1 +W ′′

2R
′′] +

+ [R′2 +R′′2]

(9.6)

where Ŝcs is a cross-spectrum datum, all W1, W2 and R with ′ or ′′ are independent

normal random variables: W ′
1, W

′′
1 , W ′

2, W
′′
2 are the real parts (′) and imaginary parts (′′)

of the measurement noises introduced by the measuring devices 1 and 2, and R′, R′′ are

the real and imaginary parts of the intrinsic noise of the oscillator, e.g. pulsar, R (it may

be noticed that the χ2 distributions are special cases of the general VΓ distributions).

Moreover, the second term may be rewritten as R′(W ′
1+W ′

2)+R′′(W ′′
1 +W ′′

2 ). Therefore,

these three terms have two Degrees of Freedom (DoF) because they all are complex and

their real parts are independent of their imaginary parts.

It is easy to determine the PDF of each of these three terms but very difficult to calcu-

late the global PDF of the r.v. Ŝcs since the three terms may be not independent. However,

it turns out that with two DoF, the PDF of the VΓ distributions are simple exponential

functions: from [153, p. 182] and [154, p. 326], we know that

pV Γ(x) =
α2 − β2

2α
e−α|x|+βx = κe−α|x|+βx (9.7)

with α, β ∈ R+ and β < α.

We formulate the assumption that the statistics of the sum of the three terms of Equa-

tion 9.6 is also a VΓ with two DoF and, therefore, that the PDF of the r.v. Ŝcs may be

described by Equation 9.7.

• The first step is then to check this VΓ PDF assumption.

• If the first step is successful, the second step is to express the parameters κ, α, β

versus σW and σR, respectively the noise standard deviation, i.e. the standard de-

viation of the W ′
1,W

′′
1 ,W

′
2,W

′′
2 r.v., and the “signal” standard deviation, i.e. the

standard deviation of the R′, R′′ r.v.;

• Finally, the third and last step is to check if κ =
α2 − β2

2α
.

We decided to perform these tasks by fitting the histogram of Monte-Carlo simulations of

Ŝcs.
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9.3.2 Fitting the empirical PDF

The logarithm of Equation 9.7 gives a linear combination of the parameters:

ln (pV Γ(x)) = ln(κ)− α|x|+ βx = K − α|x|+ βx (9.8)

where K = ln(κ). We have then discomposed the problem in two parts:

{
if x < 0 fn(x) = K + (α + β)x = Kn +Dnx

if x ≥ 0 fp(x) = K + (−α + β)x = Kp +Dpx
(9.9)

with Kn ≈ Kp ≈ K, Dn = α + β and Dp = β − α. We can thus estimate K,Dn, Dp by

a least square fit.

In order to perform this estimation, we used the following algorithm:

S1: draw 6 · 108 normal pseudo-random data to simulate N = 108 realizations of each

of the data W ′
1,W

′′
1 ,W

′
2,W

′′
2 , R

′, R′′ of Equation 9.6

S2: compute 108 simulated cross-spectrum data Ŝcs according to Equation 9.6

S3: perform the histogram of the Ŝcs data

S4: normalize this histogram by dividing by Nw where w stands for the width of the

histogram bins

S5: calculate the linear regression of the logarithm of the negative part of the histogram

and estimate the coefficient Kn and Dn

S6: calculate the linear regression of the logarithm of the positive part of the histogram

and estimate the coefficient Kp and Dp

S7: estimate K by an average of Kn and Kp weighted by the number of bins of each

part of the histogram, and deduce κ = eK

S8: estimate α and β thanks to the following relatisonships





α =
Dn −Dp

2

β =
Dn +Dp

2
.

(9.10)
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9.3.3 Validation of the VΓ hypothesis

At first, this algorithm was used to simulate Ŝcs data with σR = σW = 1 and the fit of

the histogram was excellent as shown in Figure 9.3. We check with several other ratios

of σR/σW and we observed a perfect agreement between the fit and the histogram at each

time. Therefore, the VΓ hypothesis (first step of Section 9.3.1) was validated.

9.3.4 Estimation of the κ, α, β parameters

Secondly, we set σW = 1 and we varied σR from 0.1 to 10 by using a logarithmic in-

crement of 1/10th of a decade. Then, we set σR = 1 and we varied σW from 0.1 to 10

by using the same logarithmic increment. Figure 9.4 shows the evolution of the κ, α, β

parameters versus σR and versus σW .

From theses graph, it is easy to deduce the dependence of the parameters on the stan-

dard deviations. For instance, the coefficient α on the top graph of Figure 9.4 reaches an

horizontal asymptote at one when σR tends toward zero. On the other hand, it reaches an

other horizontal asymptote at 1/2 when σR tends toward infinity. Between, it is equal to

2/3 when σR = 1. This suggests that α is a ratio of the form (σR + p)/(qσR + r):

• if σR → 0, this ratio becomes p/r = 1 so p = r

• if σR → ∞, this ratio becomes 1/q = 1/2 so q = 2



100 Chapter 9. Uncertainties and detection limit with two devices

10-2

10-1

10+0

 0.1  1  10

P
D

F
 fi

t 
c
o

e
ffi

c
ie

n
ts

Signal level

κ
α
β

10-5

10-4

10-3

10-2

10-1

10+0

10+1

10+2

 0.1  1  10

P
D

F
 fi

t 
c
o

e
ffi

c
ie

n
ts

Noise level

κ
α
β

Figure 9.4: Dependence of the parameters κ, α, β on the standard deviations σR (above)
and σW (below).
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Parameter vs σR vs σW vs σR

(σW = 1) (σR = 1) and σW

κ
1

2(1 + σR)

1

2(σW + 1)

1

2(σW + σR)

α
1 + σR

1 + 2σR

σW + 1

σW (σW + 2)

σW + σR

σW (σW + 2σR)

β
σR

1 + 2σR

1

σW (σW + 2)

σR

σW (σW + 2σR)

Table 9.2: Dependence of the parameters κ, α, β on the standard deviations σR, σW .

• if σR = 1, this ratio becomes (1 + p)/(1 + 2) = 2/3 so p = 1.

Such an analysis has been performed for all parameters, versus σR and σW , and we ob-

tained the two central columns of Table 9.2. From these results, we inferred the right-hand

side column showing the dependence of κ, α, β on σR as well as on σW (second step of

Section 9.3.1).

9.3.5 Theoretical PDF, CDF and confidence interval

From the expression of the parameters κ, α, β given in Table 9.2 we can derivate the

analytical expression of the cross-spectrum data PDF. First, let us calculate the argument

of the exponential:





α + β =
σW + σR

σW (σW + 2σR)
+

σR

σW (σW + 2σR)
=

1

σW

−α + β = − σW + σR

σW (σW + 2σR)
+

σR

σW (σW + 2σR)
=

−1

σW + 2σR

.
(9.11)

We have found that κ =
1

2(σW + σR)
. On the other hand, we have written in Equation

9.7 that κ =
α2 − β2

2α
. The subtitution of α and β by their expression given in Table

9.2 proves these two expressions of κ are fully compatible (third step of Section 9.3.1).

Therefore, the analytical expression of the PDF is:





pV Γ(x) =
1

2(σW + σR)
e

x
σW if x < 0

pV Γ(x) =
1

2(σW + σR)
e

−x
σW+2σR if x ≥ 0.

(9.12)
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Integrating this PDF leads to the CDF:





PV Γ(x) =
σW

2(σW + σR)
e

x
σW if x < 0

PV Γ(x) = 1− σW + 2σR

2(σW + σR)
e

−x
σW+2σR if x ≥ 0

(9.13)

and, especially, we see that PV Γ(0) =
σW

2(σW + σR)
.

The upper graph of Figure 9.5 shows the comparison of the PDF computed from

Equation 9.12 with the histogram of 108 simulations of Ŝcs. Similarly, the middle graph

shows the comparison of the CDF computed from Equation 9.13 with the cumulated

histogram of these 108 simulations of Ŝcs. In both cases, the agreement is excellent. This

is confirmed by the lower graph which shows that the deviation between the CDF and the

cumulated histogram are of the order of a few 10−5.

Finally, we calculated the inverse of the CDF in order to compute confidence intervals.

Taking the logarithm of the CDF yields:





P−1
V Γ(p) = σW ln

[
2(σW + σR)p

σW

]
if p < PV Γ(0)

P−1
V Γ(p) = (σW + 2σR) ln

[
σW + 2σR

2(1− p)(σW + σR)

]
if p ≥ PV Γ(0)

(9.14)

These relationships are useful to find the bounds which ensure a given probability. Table

9.3 shows an example of such a calculation: the probabilities 0.5%, 2.5%, . . . 97.5% are

achieved at the theoretical bounds. The empirical bounds are the probability to be below

these bounds given by the empirical cumulative histogram. The right-hand side table

gives the corresponding confidence intervals by subtracting the probabilities: for instance,

the 95% confidence interval is between the bound at 2.5%, i.e. −2.590 and the bound

at 97.5%, i.e. 6.567; the empirical probability is the probability to get a data within

this interval given by the cumulative histogram (97.51% in Table 9.3). Here also, the

agreement is almost perfect.

9.3.6 Discussion

Although the determination of the PDF and of the CDF have been empirically obtained,

the agreement between the Monte-Carlo simulations and the analytical expression is so

perfect that we are sure to have more than a simple approximation but the exact expres-

sions of the PDF and CDF.
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Figure 9.5: Comparison of the empirical and theoretical PDF (above) and CDF (below).
The deviations between the empirical and the theoretical CDV are given in the bottom
plot. The standard deviations are: σR = 1/2 and σW = 1.
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Probability Theoretical Empirical
(%) bounds prob. (%)

0.5 -4.200 0.51
2.5 -2.590 2.55
5.0 -1.897 5.09

16.0 -0.734 16.26
50.0 0.575 50.37
84.0 2.854 84.11
95.0 5.181 95.03
97.5 6.567 97.51
99.5 9.786 99.50

Theoretical Empirical
intervals intervals

(%) (%)
68.0 67.85
90.0 89.94
95.0 94.97
99.0 98.99

Table 9.3: Comparison of the theoretical bounds (left table) and intervals (right table)
given by Equation 9.14 with empirical probabilities/intervals. The standard deviations
are: σR = 1/2 and σW = 1.

9.4 Direct Problem: the cross-spectrum theoretical PDF

In this section we will give a formalization of the direct problem which leads to the theo-

retical PDF only for the cross-spectrum estimate, the PDF of the spectrum average being

already analytically well-defined.

9.4.1 Measurement and estimates

In Sections 9.4.2 to 9.4.6 we will omit the “hat” for estimates since we deal with the

mathematical models. In the following, the real and imaginary parts of the spectrum

induce two DoFs. According to Equation 9.3 we refer the cross-spectrum measurement at

a given frequency to

Ŝcs = 〈(W1 +R)(W2 +R)〉ν (9.15)

where all W1, W2, R are r.v. which are independent, centered and normal and 〈·〉 is the

average over ν DoFs. In the following, we will assume that W1, W2, R have only one

DoF, their real or their imaginary part, and that Ŝcs does not come from the average of

different spectra. A generalization of this problem to two DoF (real and imaginary parts)

and then 2η DoF (average of η spectra) will be given. To simplify the notation, we will

omit the average over the DoFs as we set ν = 1.

9.4.2 Vector Formalization of the Problem

We will reuse here the formalism we developed in [152], i.e. a vector space of normal

laws. Since we have three normal r.v., we are in a vector space of three dimensions that
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we will denote LG3 and which has the basis ( ~EW,1, ~EW,2, ~ER) defined as





~EW,1 = LGW,1(0, 1)
~EW,2 = LGW,2(0, 1)
~ER = LGR(0, 1)

(9.16)

where LG(0, 1) stands for a Laplace-Gauss (or normal) r.v. with zero-mean (centered) and

unity standard deviation (σ = 1). We assume that LGW,1(0, 1), LGW,2(0, 1), LGR(0, 1)

are independent. We can define the scalar product between the basis vectors of LG3 in

such a way: 



|| ~EW,1||2 = ~EW,1 · ~EW,1 = LGW,1 · LGW,1 = χ2
W,1

|| ~EW,2||2 = ~EW,2 · ~EW,2 = LGW,2 · LGW,2 = χ2
W,2

|| ~ER||2 = ~ER · ~ER = LGR · LGR = χ2
R

(9.17)





~EW,1 · ~EW,2 = LGW,1 · LGW,2 = VΓW1W2

~EW,2 · ~ER = LGW,2 · LGR = VΓW2R

~ER · ~EW,1 = LGR · LGW,1 = VΓRW1

(9.18)

where χ2
W1,W2,R

are three independent χ2 rv with one DoF and VΓW1W2,W2R,RW1 are three

variance-Gamma (VΓ) r.v. [152, 155]. Any vector ~U may be written as

~U =




uW,1

uW,2

uR


 = uW,1

~EW,1 + uW,2
~EW,2 + uR

~ER (9.19)

where uW,1, uW,2, uR are three constant scalars since all the random part is carried by the

basis vectors. The scalar product between two vectors ~U and ~V is then:

~U · ~V =
(
uW,1

~EW,1 + uW,2
~EW,2 + uR

~ER

)
·
(
vW,1

~EW,1 + vW,2
~EW,2 + vR ~ER

)

= uW,1vW,1
~EW,1 · ~EW,1 + uW,2vW,2

~EW,2 · ~EW,2 + uRvR ~ER · ~ER+

+(uW,1vW,2 + uW,2vW,1) ~EW,1 · ~EW,2+

+(uW,2vc + uRvW,2) ~EW,2 · ~ER+

+(uRvW,1 + uW,1vR) ~ER · ~EW,1.
(9.20)

On the other hand, if we consider the mathematical expectation of these expressions, we

obtain

E

[
~EP · ~EQ

]
= δP,Q with P,Q ∈ {W1,W2, R} (9.21)
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where δP,Q is the Kronecker delta. We see that we obtain the classical scalar product by

using the mathematical expectation:

E

[
~U · ~V

]
= uW,1vW,1 + uW,2vW,2 + uRvR. (9.22)

Therefore, we will define that 2 vectors ~U and ~V are orthogonal if E
[
~U · ~V

]
= 0.

9.4.3 From a normal Random Variable Product to a Chi-squared RV

Difference

Following this formalism, Equation 9.15 may be rewritten as

Scs =
(
~W1 + ~R

)
·
(
~W2 + ~R

)
=




σW,1

0

σR


 ·




0

σW,2

σR




= σW,1σW,2VΓW1W2 + σW,1σRVΓW1R + σW,2σRVΓW2R + σ2
Rχ

2
R

(9.23)

where σW,1, σW,2, σR are respectively the standard deviations of the r.v. W1,W2, R. As a

consequence, E[Scs] = σ2
R.

As demonstrated in [151], a product of independent normal r.v. may be expressed as a

difference of χ2 r.v. For this purpose, although we know that (W1 +R) and (W2 +R) are

not independent, we introduce the r.v. V1 = (W1 +W2)/2+R and V2 = (W1 −W2)/2 in

such a way that W1+R = V1+V2, W2+R = V1−V2 and therefore (W1+R)(W2+R) =

V 2
1 − V 2

2 . In this vectorial formalism:

~V1 =




σW,1/2

σW,2/2

σR


 , and ~V2 =




σW,1/2

−σW,2/2

0


 . (9.24)

Therefore, (~V1, ~V2) is the basis of the 2-dimensional subspace of LG3 in which lies our

whole problem. Since the squared modulus of ~V1, ~V2 are:





||~V1||2 =
σ2
W,1

4
χ2
W1

+
σ2
W,2

4
χ2
W2

+ σ2
Rχ

2
R

+
σW,1σW,2

2
VΓW1W2 + σW,1σRVΓW1R + σW,2σRVΓW2R

||~V2||2 =
σ2
W,1

4
χ2
W1

+
σ2
W,2

4
χ2
W2

− σW,1σW2

2
VΓW1W2 ,

(9.25)

their difference is consistent with Equation 9.23 and then Scs = ( ~W1 + ~R) · ( ~W2 + ~R) =
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||~V1||2 − ||~V2||2. Moreover, we can calculate the mathematical expectations of these

squared modulus:

v21 = E

[
||~V1||2

]
=

σ2
W,1 + σ2

W,2

4
+ σ2

R

v22 = E

[
||~V2||2

]
=

σ2
W,1 + σ2

W,2

4
.

(9.26)

On the other hand, since

E

[
~V1 · ~V2

]
=

σ2
W,1 − σ2

W,2

4
(9.27)

the vector ~V1 and ~V2 are not orthogonal unless σW,1 = σW,1, i.e. measurement instruments

1 and 2 have the same variance.

9.4.4 A Particular Case: W1 and W2 have the Same Variance

Let us define σ2
W = σ2

W,1 = σ2
W,2. In this case

E

[
~V1 · ~V2

]
=

σ2
W

4
− σ2

W

4
= 0, (9.28)

~V1, ~V2 are orthogonal which means that their squared modulus are two independent χ2 rv:

||~V1||2 = v21χ
2
v1 and ||~V2||2 = v22χ

2
v2 (9.29)

Thanks to [152, Appendix A], we know that this χ2 r.v. difference is a VΓ r.v. with a PDF,

introduced by [156]:

p(x) =
γ2λ|x− µ|λ−1/2Kλ−1/2 (α|x− µ|)√

πΓ(λ)(2α)λ−1/2
eβ(x−µ) (9.30)

where γ =
√
α2 − β2, Γ(λ) is the gamma function, Kw(z) is a hyperbolic Bessel function

of the second kind (w ∈ R and z ∈ C) and with the following parameters:

µ = 0, α =
v21 + v22
4v21v

2
2

, β =
v21 − v22
4v21v

2
2

, λ =
1

2
(9.31)

where λ is the number of DoF divided by 2. In this particular case, since σ2
W,1 = σ2

W,2 =

σ2
W , v21 and v22 becomes

v21 = E

[
||~V1||2

]
=

σ2
W

2
+ σ2

R and v22 = E

[
||~V2||2

]
=

σ2
W

2
, (9.32)
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and we obtain

α =
σ2
W + σ2

R

σ2
W (2σ2

W + σ2
R)

and β =
σ2
R

σ2
W (2σ2

W + σ2
R)

(9.33)

9.4.5 General Case

If σ2
W,1 6= σ2

W,2, ~V1 and ~V2 are no longer orthogonal and therefore they are two correlated

r.v. We have then to search another set of basis vectors which are orthogonal. For this

purpose, let us use the Gram-Schmidt process.

9.4.5.1 Gram-Schmidt Orthogonalization

Let us keep ~V1 unchanged. Let ~V2P be the projection of ~V2 onto ~V1. In the same way as

the orthogonality between two vectors is defined by the null mathematical expectation of

their scalar product, the angles as well as the other relationships between vectors must be

taken into account as mathematical expectation since they are valid on average but not for

only one particular realization of these vectors. Denoting θ the angle between ~V1 and ~V2,

it comes

~V2P = v2 cos(θ)
~V1

v1
. (9.34)

with

cos(θ) =
E

[
~V1 · ~V2

]

v1v2
(9.35)

and then

~V2P =
E

[
~V1 · ~V2

]

v21
~V1. (9.36)

Therefore, we can build the vector ~V2N which is the component of ~V2 orthogonal to
~V1:

~V2N = ~V2 − ~V2P = ~V2 −
E

[
~V1 · ~V2

]

v21
~V1. (9.37)

Using Equations 9.26 and 9.27 yields
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~V2N =




σW,1/2

−σW,2/2

0


−

σ2
W,1 − σ2

W,2

σ2
W,1 + σ2

W,2 + 4σ2
R




σW,1/2

σW,2/2

σR




=




σW,1(σ
2
W,2 + 2σ2

R)

σ2
W,1 + σ2

W,2 + 4σ2
R

−
σW,2(σ

2
W,1 + 2σ2

R)

σ2
W,1 + σ2

W,2 + 4σ2
R

−
σR(σ

2
W,1 − σ2

W,2)

σ2
W,1 + σ2

W,2 + 4σ2
R




=




v2nW1

v2nW2

v2nR


 .

(9.38)

We have now to express the measurement vectors ~W1 + ~R and ~W2 + ~R as linear combi-

nations of the new basis of orthogonal vectors ~V1 and ~V2N . In order to do this, we must

project these two measurement vectors onto the two basis vectors in the same way that we

have projected ~V2 onto ~V1 in Equation 9.36:

{
~W1 + ~R = kW1R1

~V1 + kW1R2n
~V2N

~W2 + ~R = kW2R1
~V1 + kW2R2n

~V2N

(9.39)

with

kW1R1 =
E

[(
~W1 + ~R

)
· ~V1

]

E

[
||~V1||2

] kW1R2n =
E

[(
~W1 + ~R

)
· ~V2N

]

E

[
||~V2N ||2

]

kW2R1 =
E

[(
~W2 + ~R

)
· ~V1

]

E

[
||~V1||2

] kW2R2n =
E

[(
~W2 + ~R

)
· ~V2N

]

E

[
||~V2N ||2

] .

(9.40)

Therefore, Scs = ( ~W1 + ~R) · ( ~W2 + ~R) may be written as

Scs = kW1R1kW2R1||~V1||2 + kW1R2nkW2R2n||~V2N ||2
+(kW1R1kW2R2n + kW1R2nkW2R1) ~V1 · ~V2N

= kW1R1kW2R1χ̇
2 + kW1R2nkW2R2nχ̈

2

+(kW1R1kW2R2n + kW1R2nkW2R1)VΓ

(9.41)

where χ̇2 and χ̈2 are independent χ2 rv corresponding respectively to the squared norm of
~V1 and ~V2N . Thus, this relationship involves the difference of two χ2 r.v. (it can be proved

that kW1R2nkW2R2n < 0), which is well known [151, 152], plus a VΓ r.v, which makes the

problem more complex. In order to simplify this problem, we should find a representation

of Equation 9.41 in which the cross term is identically null.
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9.4.5.2 Normalization and Rotation of the Basis Vectors

Let (~V ′
1 , ~V

′
2) be the normalized equivalent of the basis (~V1, ~V2N):

~V ′
1 =

~V1

E

[
||~V1||

] and ~V ′
2 =

~V2N

E

[
||~V2N ||

] . (9.42)

With this new basis, Equation 9.41 may be rewritten as

Scs = kW1R1kW2R1E

[
||~V1||

]2
||~V ′

1 ||2

+kW1R2nkW2R2nE

[
||~V2N ||

]2
||~V ′

2 ||2

+kW1R1kW2R2nE

[
||~V1||

]
E

[
||~V2N ||

]
~V ′
1 · ~V ′

2

+kW1R2nkW2R1E

[
||~V1||

]
E

[
||~V2N ||

]
~V ′
1 · ~V ′

2

= k′
11||~V ′

1 ||2 − k′
22||~V ′

2 ||2 + k′
12
~V ′
1 · ~V ′

2

(9.43)

with 



k′
11 = kW1R1kW2R1E

[
||~V1||

]2

k′
22 = −kW1R2nkW2R2nE

[
||~V2N ||

]2

k′
12 = kW1R1kW2R2nE

[
||~V1||

]
E

[
||~V2N ||

]

+kW1R2nkW2R1E

[
||~V1||

]
E

[
||~V2N ||

]
.

(9.44)

We can then consider Equation 9.43 as the expression of a quadratic form Q which asso-

ciate a scalar z0 to any vector ~Z = z1~V
′
1 + z2n~V

′
2 . Such a quadratic form may be described

as

z0 = ~ZT [Q]~Z with [Q] =

(
k′
11 k′

12/2

k′
12/2 −k′

22

)
. (9.45)

The simplification of our problem relies then in a rotation of the basis vectors in such a

way that the quadratic form matrix [Q] is diagonal. The eigenvalues of [Q] are given by

ℓ1 =
k′
11 − k′

22 −
√
∆

2
and ℓ2 =

k′
11 − k′

22 +
√
∆

2
. (9.46)

with ∆ = (k′
11 + k′

22)
2 + k′ 2

12. Thanks to this rotation of the basis vectors, Equations 9.41

and 9.43 become

Scs = ℓ1χ̇
2 + ℓ2χ̈

2. (9.47)

As already stated in Section 9.4.4, Scs is a VΓ rv with the following PDF parameters:

µ = 0, α =
ℓ21 + ℓ22
4ℓ21ℓ

2
2

, β =
ℓ21 − ℓ22
4ℓ21ℓ

2
2

, λ =
1

2
. (9.48)



9.4. Direct Problem: the cross-spectrum theoretical PDF 111

9.4.6 Generalization to Larger Degrees of Freedom

In the case of 2η DoF, i.e. real part + imaginary part multiplied by η averaged uncorrelated

spectra, the only change to apply concerns the parameter λ in Equations 9.31 and 9.48

which becomes λ = η. According to [157, Equation 12 p.80] we have the following

relation:

Kn+ 1
2
(z) =

( π

2z

) 1
2
e−z

n∑

r=0

(n+ r)!

r!(n− r)!(2z)r
(9.49)

with n ∈ N and z ∈ C. Moreover η ∈ N∗ which leads to the relation n = η−1. Therefore

let us expand Equation 9.30 using Equation 9.49:

p(x) =
κ(α, β)ηε(x, µ, α, η)

Γ(η)
e−α|x−µ|+β(x−µ) (9.50)

with the following parameters:

κ(α, β) =
α2 − β2

2α
Γ(η) = (η − 1)!

ε(x, µ, α, η) =

η−1∑

r=0

(η + r − 1)!|x− µ|η−r−1

r!(η − r − 1)!(2α)r

(9.51)

9.4.7 Validation of the Theoretical Probability Laws by Monte Carlo

Simulations

9.4.7.1 Algorithm Description

According to Section 9.4.5.2 the probability density of Ŝcs, equal to the difference of two

independent χ2 r.v, can now be calculated using the function p(x) of the Equation 9.50

by assigning the values to the parameters in Equations 9.31 and 9.48. In order to perform

this comparison we use two algorithms, one for Monte Carlo (MC) simulation and the

other one for computing Equation 9.50.

− MC simulation algorithm

The simulation algorithm follows these six steps

S1: Assignement of the two noise levels σ2
W,1, σ2

W,2, signal level σ2
R and the number of

averaging spectra η.

S2: Drawing of W1, W2, R, following a normal centered distribution with respectively

σW,1, σW,2, σR as standard deviation.

S3: Computation of Ŝcs = (W1 +R)(W2 +R).
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S4: Repetition 2η times of the steps S2 to S3 and sum all Ŝcs values.

S5: Repetition N = 107 times of the steps S2 to S4 of this sequence.

S6: Drawing the histogram of Ŝcs.

In all simulations, we chose a number of DoF ν = 2η in order to have a real and

imaginary part in agreement with the experiment shown in Figure 6.1.

− Modeling algorithm

The modeling algorithm follows also 6 steps:

S1: Assignement of the two noise levels σ2
W,1, σ

2
W,2, signal level σ2

R and the number of

averaging spectra η.

S2: Independent basis

• Computation of coefficients v21 , v22 according to Equation 9.26

• if σ2
W,1 = σ2

W,2 go to step S5 else perform steps S3 and S4

S3: Orthogonalization of the basis

• Computation of coefficients kW1R1, kW1R2n, kW2R1, kW2R2n to determine the

new basis according to Equation 9.41

• Normalization of the basis by determing coefficients k′
11, k′

22, k′
12 according to

Equation 9.43

S4: Vector rotation

• Diagonalization of the matrix Q according to Equation 9.45

• Computation of its roots l1 and l2

S5: Compute the coefficients α, β, and λ = η according to Equations 9.31 and 9.48.

S6: Plotting the probability density with Equation 9.50.

9.4.7.2 When can the Instrument Noises be Assumed to be “About the Same”?

Although the problem is quite simple when the instrument noises σ2
W,1 and σ2

W,2 are the

same (see Section 9.4.4), it becomes more complex when σ2
W,1 6= σ2

W,2. The question is

then how far can we assume that σ2
W,1 ≈ σ2

W,2 and then use the particular case formalism

of Section 9.4.4? In order to answer this question, we use Monte-Carlo simulations which
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were performed according to Section 9.4.7.1.

Afterwards we perform a histogram of these realizations and compare it first with

the PDF obtained from the model without rotation, i.e. by using the VΓ parameters of

Equation 9.31, and next with the PDF obtained from the model with rotation, i.e. by using

the VΓ parameters of Equation 9.48. Figure 9.6 shows an example of such a comparison.

In this case (σ2
W,1 = 2, σ2

W,2 = 1/2, σ2
R = 0), the PDF of the model with rotation is in

perfect agreement with the histogram whereas there are large discrepancies with the PDF

of the model without rotation. We have thus a first result: the model without rotation

should not be used when the ratio σ2
W,1/σ

2
W,2 ≥ 4.

To improve the efficiency of the test, we compute the theoretical quantiles by

using the model without rotation and then deduce from them the theoretical confidence

intervals which are often used (68 %, 90 %, 95 % and 99 %). These quantiles and

intervals are compared to the ones obtained from the simulation histogram. In one

example of Table 9.4, which corresponds to the case plotted in Figure 9.6, the confidence

intervals are strongly overestimated. For instance, the expected 68 % confidence interval

is significantly too large since it encompasses an interval of 76 %. Similarly, the expected

90 % interval is actually a 94 % interval. This reinforces our decision of using the model

with rotation for a noise variance ratio ≥ 4.

We use these two approaches, i.e. PDF curve as well as confidence intervals, for

many different parameter sets (see Table 9.4). In any case, the agreement between the

model with rotation and the Monte-Carlo simulation histograms were perfect, since

the residual deviations can be largely assumed to be due to the finite sample number

of the simulation (less than 0.05 % of the CDF). However, this test is very interesting

for the model without rotation since it allows us to answer to the question which is

the title of this section: when can the instrument noises be assumed to be “about the

same”? Table 9.4 is very useful in this connection. In a first step, let us study the

case where the number of DoF is two and there is no signal since it is the case which

is the most sensitive to the difference between the noise levels. We can see on this

table that the model without rotation is perfect when the two noise levels are equal

(σ2
W,2 = 2), fair when the ratio of the noise levels is equal to 2 (σ2

W,2 = 1), at the

limit of acceptance when the ratio is three but not suitable for a ratio ≥ 4. The other

columns of Table 9.4, obtained with eight DoF and with σ2
R = σ2

W,1/4, confirm that

the model without rotation is acceptable when the ratio of the noise variances is equal to 2.
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CDF are given in the bottom plot. The variances are: σ2
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Table 9.4: Comparison of the expected quantiles and intervals. The expected quantiles
(above) and intervals (below) are computed by using the parameters from Equation 9.31
with empirical probabilities. For all realizations σ2

W,1 = 2.

Expected
probabilities (%)

True probabilities (%)
Degrees of freedom: 2 DoF: 8

σ2
R =0 0 0.5

σ2
W,2 =2 1 2/3 1/2 1 1

Quantiles
0.5 0.50 0.39 0.25 0.16 0.35 0.39
2.5 2.50 2.10 1.58 1.19 1.98 2.13
5.0 5.00 4.36 3.51 2.82 4.18 4.44

16.0 16.00 14.95 13.43 12.05 14.68 15.18
50.0 50.00 50.01 50.00 50.00 50.00 49.99
84.0 84.00 85.07 86.59 87.96 85.32 84.58
95.0 95.00 95.65 96.50 97.19 95.82 95.37
97.5 97.50 97.91 98.43 98.82 98.02 97.73
99.5 99.50 99.62 99.75 99.84 99.65 99.57

Intervals
68.0 68.00 70.12 73.16 75.91 70.64 69.41
90.0 90.00 91.29 92.98 94.37 91.64 90.93
95.0 95.00 95.82 96.84 97.63 96.04 95.60
99.0 99.00 99.23 99.50 99.68 99.30 99.18

Then we recommend to use the vector rotation process if the ratio of the noise variance

greater than 2.

9.5 Inverse Problem

We have already studied the direct problem, i.e. the statistics of the cross-spectrum esti-

mates knowing the signal level (the noise level is assumed to be known). Now, we have to

deduce the inverse problem from the direct problem, i.e. the statistics of the signal level

from a cross-spectrum (or spectrum average) estimate.

9.5.1 Principle of the Method

The bayesian statistician has to solve the inverse problem in order to define a confidence

interval for the true variance σ2
R, given a set of measurements and a priori information.

Thereby the cross-spectrum measurement Ŝcs is now fixed as well as the instrument noise

levels σ2
W,1 and σ2

W,2, whereas the signal true variance σ2
R appears as a random variable.

Now, we have to deduce the inverse problem from the direct problem, i.e. the statistics
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of the signal level from a c-s (or s.a) estimate. In a classical Bayesian formalism, this is

achieved by using the Bayes formula [158–161] which states

{
p(θ|Ŝcs) ∝ p(Ŝcs|θ) · π(θ)∫∞
0

p(θ|Ŝcs)dθ = 1
(9.52)

where π(θ) stands for the “prior” of the argument, i.e. the “a priori” PDF of the argument

before any measurement. Moreover p(Ŝcs|θ) is the PDF which corresponds to Equation

9.30 determined in the direct problem. It remains to determine the prior π(θ) (i.e. the

PDF before any measurement) to compute the a posteriori density.

One of the main issue of Bayesian analysis concerns the choice of this prior. This

prior has to be a PDF and according to the litterature on the study of pulsars [162–164]

log-uniform distributed as we have no a priori knowledge about the behavior of the

parameter θ. We use an improper prior [165] as an uniformative prior [166], so the prior

is the reciprocal function of the parameter θ. This ensures that all order of magnitudes

have the same probability as shown on Figure 9.7 (right).

The choice of θ is subject to discussion and the reader should refer to [161, Appendix

B]. The quantity that can be actually measured is the sum of the signal and the mea-

surement noise. Hence the prior should be accordingly given as a function of this sum.

In other words, it is not possible to have any information on a signal with a level much

smaller than the measurement noise. Hence choosing a prior function of σ2
W +σ2

R ensures

that the corresponding magnitude order of σ2
R do not dominate the a posteriori probability

distribution according to Figure 9.7 (right). The measurement noise level decreases as

η−1, according to [59, Equation 11], when averaging over different spectra realizations η.

So it should depend on the number of DoF ν = 2η (i.e. taking in account the real and

imaginary part). From these considerations, we choose the following prior according to

Figure 9.7 (left):

π(θ) =
1

θ
=

1

σ2
W/ν + σ2

R

, (9.53)

where σ2
W = (σ2

W,1 + σ2
W,2)/2 is the known, “not random” averaged noise level. It also

turns out that θ is the expectation of the s.a estimate according to Equation 9.4 when the

bias is not removed.
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Figure 9.7: Prior of the sum of the noise σ2
W and signal σ2

R levels (left) and its log-
histogram (right) in the case when there is no averaging spectra (i.e. ν = 2).

9.5.2 Check of the Posterior Probability Density Function

According to Equation 9.50, for two DoF or η = 1 spectrum average and the particular

case σ2
W,1 = σ2

W,2 = σ2
W , we know that

p
(
Ŝcs|σ2

R

)
=

eŜcs/σ2
W

2(σ2
W + σ2

R)
. (9.54)

Therefore, the posterior PDF of the cross-spectrum estimator is





p
(
σ2
R|Ŝcs

)
∝ eŜcs/σ2

W

2(σ2
W + σ2

R)(σ
2
W + 2σ2

R)
if Ŝcs ≤ 0

p
(
σ2
R|Ŝcs

)
∝ e−Ŝcs/(σ2

W+2σ2
R)

2(σ2
W + σ2

R)(σ
2
W + 2σ2

R)
if Ŝcs ≥ 0.

(9.55)

It can be noticed that these posterior PDF depend on σ2
R whereas the other parameters

are known. We have checked this posterior PDF by using the inverse problem Monte-

Carlo algorithm we already used in [152, Section IV.B.1)] and [167, Section IV.A.]. The

principle is the following:

S1: Select a target estimate Ŝcs = S0.

S2: Draw at random the signal level σ2
R according to

σ2
R = 10[η+u[0,1](emax−η)] − σ2

W

2
(9.56)

where η = log10(σ
2
W/2) and u[0,1] is a pseudo-random function which is uniform
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within [0, 1]. This draw ensures the parameter follows the prior of Equation 9.53 up

to 10emax . We have chosen emax = 4 which is in accordance with Figure 9.7

S3: Draw at random (Gaussian) the noise and signal estimates W1, W2, R and compute

the measurements X1, X2 according to Equation 9.2.

S4: Compute the estimate Ŝcs.

S5: Compare the estimate Ŝcs with the target S0: if Ŝcs = S0 ± q, store the current σ2
R

value as it is able to generate an estimate equal to the target; otherwise throw this

σ2
R value. We have chosen q = (S0 + σ2

W/2)/50 when S0 > 0 and q = σ2
W/100

when S0 ≤ 0.

S6: Go to step 2.

S7: Stop when a set of 10 000 σ2
R values is reached.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  5  10  15  20

P
D

F
 p

(σ
R

2
)

σR
2

Empirical post-PDF
Theoretical post-PDF

Figure 9.8: Comparison of the empirical and theoretical posterior PDF for a noise level
σ2
W = 1 a.u and a target estimate S0 = 1 a.u.

It must be noticed that such an algorithm is obviously not able to justify the choice of

the prior since this prior is included in the algorithm. It will only ensure that no mistake

has been done in the expression of the posterior PDF.

Figure 9.8 shows the comparison of the posterior PDF computed according to

Equation 9.55 (blue curve) and the histogram obtained thanks to the inverse problem
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Target 5 % bound 95 % bound True prob. (%)
S0 (a.u) Emp Theo Emp Theo L. b. H. b.

-1.00 0.035 0.036 14.04 13.65 5.270 94.90
0.00 0.034 0.036 15.11 13.65 5.220 94.53
0.10 0.035 0.038 14.52 14.27 5.410 94.91
0.20 0.040 0.040 14.98 14.90 4.970 94.96
0.32 0.043 0.043 15.87 15.66 5.060 94.94
0.50 0.050 0.048 17.37 16.90 4.850 94.87
1.00 0.062 0.065 20.40 20.14 5.120 94.93
2.00 0.116 0.118 27.61 28.65 5.060 95.18
3.16 0.225 0.224 38.19 39.08 4.910 95.08
5.00 0.476 0.475 57.15 56.55 4.900 94.91

10.00 1.295 1.306 109.66 104.82 5.090 94.78

Table 9.5: Comparison of the quantiles (5 % and 95 %) obtained by Monte-Carlo simula-
tion (empirical) and by the posterior CDF with a noise level σ2

W = 1 a.u. The 5% bounds
are given here even if they are not relevant (they are generally less than 100 times lower
than the 95% bounds).

Monte-Carlo algorithm (green boxes) with a noise level σ2
W = 1 a.u and a target estimate

S0 = 1 a.u. We can verify that the agreement is excellent.

Table 9.5 compares the quantiles at 5% and 95% obtained by the inverse problem

Monte-Carlo algorithm (denoted “Emp” for empirical) and by the integration of the pos-

terior PDF (denoted “Theo” for theoretical), i.e. the posterior CDF, for different values of

target and for a noise level σ2
W = 1. Here also the agreement is very good whether for the

5% and 95% bounds or for the true probabilities of the theoretical bounds. Moreover, the

fluctuations of the empirical bounds proves that the slight differences between empirical

and theoretical values are due to the fluctuations of the empirical bounds because of the

limited number of realizations (10 000) of the inverse problem Monte-Carlo algorithm.

9.5.3 KLT Method

The KLT method stands for “Karhunen-Loève Tranform” and was developed in [167].

In that paper, KLT has proved to be as efficient as well as a rigorous method, making

the most of the property of “sufficient statistics". However the cross-spectrum estimate

does not have this property (see [168]). The KLT method requires knowledge of spectral

densities in addition to covariances. Therefore, we can have multiple combinations of

KLT estimate in order to get the same cross spectrum estimate. First let us remind the

theory. Then in a second time, we will explain what can bring the KLT method in addition

to the cross-specrum one.
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9.5.3.1 A Posteriori Distribution

The KLT method relies on the use of X1, and X2 measurements according to Equation

6.1, which are Gaussian r.v. instead of the product of W1W2, W1R, W2R and R2, which

are linear combination of Bessel of the second kind functions and χ2 random variables.

The main advantage of this approach lays in the property of the Gaussian r.v. which

remain Gaussian when they are linearly combined. However, these measurements are not

independent. That is why we aim to determine two linear combinations of these r.v. that

are independent one of each other. Hence we define the covariance matrix between X1

and X2 given by

M =

(
σ2
W,1 + σ2

R σ2
R

σ2
R σ2

W,2 + σ2
R

)
. (9.57)

The KLT consists in using the r.v. corresponding to the diagonalization of this matrix. In

order to simplify the equations we study solely the case where σ2
W,1 = σ2

W,2 = σ2
W . The

eigenvalues of M are

λ1 = σ2
W + 2σ2

R

λ2 = σ2
W

(9.58)

with the following normalized eigenvectors,

V1 =
1√
2

(
1

1

)
V2 =

1√
2

(
1

−1

)
(9.59)

The likelihood function is then given by

p(ŜKLT |σ2
R) =

2∏

i=1

1

λ
ν/2
i

exp

(
−
∑ν

j=1 ẑ
2
i,j

2λi

)
(9.60)

The numerator of the exponential argument is then the only term that depends on the

actual measurements:

ẑ2i,j = V 2
i,1X

2
1,j + V 2

i,2X
2
2,j + 2Vi,1Vi,2ŜKLT,j (9.61)

where ||Vi||2 =
∑

j V
2
i,j . So the KLT method involve the spectral density X2

1 , X2
2 in

addition to the cross-spectrum. Keeping the same prior defined in Equation 9.53 we have

the following a posteriori density,
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



p(σ2
R|ŜKLT ) ∝

1

σ2
W/2 + σ2

R

· p(ŜKLT |σ2
R)

∫

R

p(σ2
R|ŜKLT )dσ

2
R = 1.

(9.62)

9.5.3.2 Validation of the Method by Monte Carlo Simulation

In order to validate the KLT method, we have compared its results to Monte Carlo sim-

ulations. In comparison to the c-s method the spectral densities have to be chosen. The

algorithm is as follows:

S1: Select a noise level σ2
W = σ2

W,1 = σ2
W,2, a target ŜKLT = S0 and a combination

X1 = X1,0, X2 = X2,0 = S0/X1,0 for all the DoF.

S2: Draw at random the signal level σ2
R according to Equation 9.56. This draw ensures

that the parameter follows the prior of Equation 9.53 up to 10emax . We have chosen

emax = 4.

S3: Draw at random (Gaussian) the noise and signal estimates W1, W2, R and compute

the measurements X1, X2 according to Equation 9.2.

S4: Compare the estimates X1, X2 with the targets X1,0, X2,0 for all the DoF: if X1 =

X1,0±q, X2 = X2,0±r, store the current σ2
R value as it is able to generate an estimate

equal to the target; otherwise throw this σ2
R value. We have chosen a precision q, r

of tenths of respectively X0,1 and X2,0.

S5: Go to step 2.

S6: Stop when a set of N σ2
R values is reached. The number of values N depending on

the computation time.

9.5.3.3 Results and Discussion

Figure 9.9 shows the comparison between the PDF of VΓ method developed in Section

9.4 and the PDF of KLT method for two different realizations. The theoretical post-PDF

fits very well the empirical histogram for each method. Different combinations of the

spectral density X1 and X2 were tested and are given in Table 9.6. Indeed KLTr1 and

KLTr2 realizations do not give the same PDF unlike the VΓ method for a given c-s

estimate. KLTr1 has then a peak which is higher than the VΓ method whereas KLTr2 has

a smaller one. This is explained by a more stringent confidence interval for KLTr1 than
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Figure 9.9: Comparison of the empirical and theoretical posterior PDF for VΓ and KLT
methods with a noise level σ2

W = 1 a.u and a target estimate S0 = 5 a.u. KLTr1 and KLTr2

are the same method but differ by their combination of spectral density X2
1 and X2

2 which
are fixed, see Table 9.6, whereas they are r.v. for the VΓ method.

VΓ, and a less stringent for KLTr2 as refered in Table 9.6. The 95 % quantiles obtained

with MC simulations are in a good agreement with the theoretical ones, especially for

KLTr1 and VΓ methods. It is explained by the number of data which is not the same for

all of these simulations. VΓ, KLTr1 and KLTr2 have respectively 1 000 000; 500 000 and

245 000 data. VΓ MC simulations takes only two minutes whereas it needs respectively

54 hours and 35 days using 17 cores, for KLTr1 and KLTr2. KLTr1 is chosen to have

the spectral density combination which leads to the most stringent confidence interval.

Whereas KLTr2 is chosen to be more defavourable than the general case VΓ using only

the knowledge of the cross-spectrum measurement.

The KLT method can then have a slightly more stringent confidence interval than

the cross-spectrum method using VΓ for certain case. However it requires to have the

knowledge of both spectral density of each channel. So the KLT method is preferred

when the spectral densities are known.
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Table 9.6: Comparison of the 95 % quantiles obtained by Monte-Carlo simulation (empir-
ical) and by the posterior CDF. The 95 % quantiles are computed for a noise level σ2

W = 1
and a target estimate S0 = 5 a.u.

Method Measurement 95 % bound
X ′

1 X ′′
1 X ′

2 X ′′
2 Emp Theo

VΓ rv rv rv rv 56.4 56.6
KLTr1 1.6 1.6 1.6 1.6 48.4 48.3
KLTr2 4.0 0.6 2.5 1.0 82.3 80.8
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9.5.4 Comparison of the 95 % confidence limits: cross-spectrum vs

spectrum average

The PDF of a s.a estimate knowing the signal level is a classical χ2-PDF with two degrees

of freedom (real and imaginary parts) shifted by −σ2
W/2:

p
(
Ŝsa|σ2

R

)
=

exp

[
− Ŝsa + σ2

W/2

σ2
W + 2σ2

R

]

σ2
W + 2σ2

R

. (9.63)

Choosing the prior of Equation 9.53 yields the following posterior PDF

p
(
σ2
R|Ŝsa

)
∝

exp

[
− Ŝsa + σ2

W/2

σ2
W + 2σ2

R

]

(σ2
W + 2σ2

R)
2

. (9.64)

Thanks to the posterior PDFs of both estimators, we can compute the 95% bounds

for both estimators by integrating these PDF. In order to compare the efficiency of the

estimators Ŝcs and Ŝsa, we used the following process:

S1: Choose the noise and the signal levels.

S2: Draw at random (Gaussian) the noise and signal estimates W1,W2, R and compute

the measurements X1, X2 according to Equation 9.2.

S3: Compute the estimates Ŝcs and Ŝsa.

S4: Compute the 95% bounds for both estimators by integrating the posterior PDF ac-

cording to Equations 9.55 and 9.64.

S5: Compute the difference between these 95% bounds.

S6: Go to step 2.

S7: Stop the process after 10 000 iterations.

An example of result of such a process is given in Figure 9.10 for σ2
W = 1 a.u and

σ2
R = 1. The upper graph shows that the 95% bounds obtained by both estimators have a

relatively high dispersion (between 10 and 100 a.u) and are generally very close together.

Moreover, in some cases the c-s bound is the most stringent and in other cases, which

seems a little be more frequent, the s.a bound is the most stringent. The lower graph of

Figure 9.10 plots the histograms of the bounds of both estimators. The only differences

between them are concentrated in the three first bins, the following bins being quite the
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σ2
R Best % Min % Mean % Max %

0.00 19.90 -85.52 16.56 27.72
0.10 23.80 -93.56 16.10 27.73
0.20 27.30 -139.87 16.10 27.75
0.32 28.00 -149.70 16.24 27.75
0.50 30.60 -145.66 16.14 27.74
0.71 32.40 -168.26 16.81 27.71
1.00 33.51 -209.98 14.35 27.74
1.41 36.00 -210.22 13.26 27.66
2.00 37.60 -169.03 12.52 27.59
3.16 35.40 -203.49 10.91 27.70
5.00 37.30 -187.15 8.60 27.67

10.00 40.00 -132.69 5.31 26.70

Table 9.7: Comparison of the 95% bounds given by the c-s and s.a estimators for a noise
level σ2

W = 1 a.u. The second column (“Best”) exhibits the percentage of cases where the
95% bound from the c-s estimator is more stringent (lower) than the 95% bound obtained
by the s.a estimator. The following columns show respectively the minimum, the mean
and the maximum values of the relative differences between the 95% bounds of both
estimators: (B95cs − B95sa)/B95cs.

same. The first bin of the c-s estimator is particularly high: this is due to the negative

estimates which yields all the same minimal bound. Indeed, Equation 9.55 shows that

for a negative estimate, the argument of the exponential of the PDF does not depend on

the signal level σ2
R which means that its scale factor, i.e. its horizontal dimension, is

constant and only the amplitude, i.e. its vertical dimension, is affected. But, since the

PDF is normalized in such a way that its integral from 0 to +∞ is equal to one, it remains

the same for all negative Ŝcs estimate. From these considerations, we can deduce that

the main differences between the bounds of both estimators will appear for the negative

estimates, the other ones being of the same order of magnitude.

A more quantitative analysis can be found in Table 9.7: for different signal level

values (the noise level is set to one a.u), this table gives the proportion of most stringent

bound given by the c-s estimator. This percentage increases from 20% when there is no

signal to 40% when the signal level is 10 times the noise level, i.e. when the number of

negative estimates decreases, which is consistent with the considerations we formulated

from the histogram of Figure 9.10. It is highly probable that the percentage tends toward

50% when σ2
R ≫ σ2

W , i.e. when the probability to get a negative Ŝcs estimate tends

toward 0. On the other hand, Table 9.7 shows that the mean deviation between the bounds

obtained by both estimator is as low as 10 ∼ 15% and that the maximum deviation, i.e.

when the c-s bound is higher the s.a bound, does not exceed 28%. However, the minimum
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deviation can be of the order of −200% meaning that in some rare cases the s.a 95%

bound can be two times higher than the c-s bound. Such an occurrence is visible on the

top graph of Fig. 9.10, at realizations 9373 and 9445.

Nevertheless, these results definitely show that the difference between the spectrum

average estimator and the cross-spectrum estimator is really small.

9.6 Conclusion

The method developed, VΓ, provides the Probability Density Function of the signal level

studied when using the cross-spectrum method. It allows the determination of confidence

intervals through numerical integration, where only the high bound has a physical

meaning. It is especially relevant for one or several measurements of the cross-spectrum

as the PDF will tend to a Gaussian distribution for many DoF.

VΓ is a rigorous method since it is the exact density solution of the cross-spectrum

real part statistics, with no approximation. We shall notice that the noise level of each

measurement instruments has to be known. If these noise levels are the same except at a

factor of four and smaller, we can assume that all the theoretical part of orthogonalizing

and the rotation of the basis is not necessary. This method works whatever the number of

measurement spectra and noise level.

However using KLT method to compute the confidence interval is a more rigorous

method because it uses the knowledge of the spectral density in addition to the cross-

spectrum. That is why we recommend to use the KLT method which turns out to be a

slightly better estimator than VΓ.

In order to compare the efficiency of the cross-spectrum estimator and the spectrum

average estimator to assess the signal level, we first calculated the variances of these

estimators and observed that the variance of the latter estimator is lower than the variance

of the former one, suggesting that the spectrum average estimator is the best. We decided

then to compare the Bayesian limit at 95% of confidence of the signal level given by both

estimators. Here also we found a slight advantage for the spectrum average estimator.

This estimator is then the winner of this trial, at least for two degrees of freedom. An

extension of this study will be presented for higher degrees of freedom in the next chapter.

Nevertheless, considering on one hand the very small differences between the
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efficiencies of these estimator and on the second hand the significant discrepancies

between the 95% bounds that may occasionally appear, the wiser solution could be to

systematically compute the bounds given by both estimators and choose the lower one.

Finally, we must also remind that the second estimator implies a perfect knowledge of

the noise level since half of it has to be subtracted from the spectrum average. The least

uncertainty about this noise level knowledge could drastically decrease the efficiency of

the spectrum average method. The estimator of the c-s does not require the knowledge of

the noise variances however the c-s posterior PDF does.
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In this chapter we are focusing on one bin of the periodogram of a single simultane-

ous measurement with n instruments as represented on Figure 6.1. We will compare the

Bayesian confidence interval of the red noise parameter using two estimators, the spec-

trum average and the cross-spectrum. We have shown in chapter 9 in the case of two

instruments that the cross-spectrum estimator leads to the Variance-Gamma distribution.

A generalization to n devices based on the Fourier transform of characteristic functions is

provided here, with the example of the observation of millisecond pulsars with five radio

telescopes.

10.1 Two estimators of the PSD

According to Figure 6.1 the noises of each instrument Wi are all different. Then it is ap-

propriate to use a weighted average, where the weights αi are to be found for the optimum

detection of R. Thus it comes

This chapter is done by the author under the supervision of François Vernotte, Éric
Lantz and Enrico Rubiola. It is based on an article published as [169].
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M̂ =

∑n
i αiXi∑n
i αi

, (10.1)

where n is the number of instruments and Xi = R + Wi. Given that we have only one

realization of the red noise collected on n instruments, σ2
R can not be estimated from the

fluctuations between instruments: R appears here as a deterministic signal to be estimated,

which does not influence the fluctuations of the estimator from one telescope to another.

The variance of the estimate M̂ is

V

[
M̂
]
= σ2

R +

∑n
i α

2
iσ

2
W,i

[
∑n

i αi]
2 . (10.2)

An optimal choice is obtained by solving,

∂V
[
M̂
]

∂αi

= 0 (10.3)

which leads to the solution,

αi =
1

σ2
W,i

. (10.4)

Therefore the inverse-variance weighted average, described in [170] with applications ex-

amples, has the least variance among all weighted averages. Then Equation 10.2 becomes

V

[
M̂
]
= σ2

R +

(
n∑

i

1

σ2
W,i

)−1

= σ2
R + σ2

µ. (10.5)

Let us define now the two estimators of interest: the spectrum average weighted by the

noise variance σ2
W,i and the cross-spectrum,

Ŝsa =

{
ℜ
[
σ2
µ

n∑

i

Xi

σ2
W,i

]}2

+

{
ℑ
[
σ2
µ

n∑

i

Xi

σ2
W,i

]}2

Ŝcs = 〈ℜ
[
Xi ·Xj

]
〉m with i 6= j.

(10.6)

Moreover σ2
µ corresponds to the noise weight normalization factor defined in Equation

10.5. Finally 〈·〉 stands for the m average over the different combinations of instruments

with m =

(
n

2

)
. For better readability, we have omitted in Equation 10.6 a factor 2/T ,

where T is the measurement time (acquisition of the data record for one FFT), necessary

for S(f) to have the dimension of a PSD, and the factor fix the total power after deleting

the negative frequencies. In addition, only the random part has a direct influence on the

probability density function. Denoting E[·] the mathematical expectation of the quantity
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within the brackets,





E

[
Ŝsa

]
= σ2

R + σ2
µ

E

[
Ŝcs

]
= σ2

R

(10.7)

which means that the spectrum average estimator is biased. Usually one removes the bias

to have the s.a estimate average over realizations which tends towards the sought signal

level σ2
R. This gives a clear advantage to the c-s estimator. However, we will see that the

computation of the confidence interval over the signal level σ2
R requires an estimation of

this bias σ2
µ whatever the chosen estimator, s.a or c-s. Therefore we want to estimate the

PSD and we assume it follows a 1/fα power law, then we only have to estimate a level

and exponent of the first frequency bins.

We now compare the estimator defined in Equation (10.6) by determining their vari-

ance. We can demonstrate provided that ∀i, σ2
W,i = σ2

W (see Appendix B),

V

[
Ŝcs

]
≈





V

[
Ŝsa

]
if σ2

R ≫ σ2
W

n

n− 1
V

[
Ŝsa

]
if σ2

R ≪ σ2
W .

(10.8)

This seems to indicate a better efficiency of the s.a estimator. Indeed the spectrum average

estimator is a sufficient estimator which means of minimal variance. However what about

the PDF of the estimates knowing the parameter σ2
R for a given frequency?

10.2 Probability Density Function

10.2.1 Spectrum Average Method

The spectrum average estimator leads to the following χ2 distribution with two degrees of

freedom resulting from the real and imaginary part of the spectrum,

p(Ŝsa|σ2
R) =

e−
Ŝsa
2σ2

2σ2
(10.9)

where,

σ2 = 1
2

(
σ2
µ + σ2

R

)
. (10.10)

where σ2
µ is the weighted noise level according to Equation 10.5 and σ2

R the signal level

of interest.
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10.2.2 Karhunen-Loève Transform

The KLT method, denoting to the Karhunen-Loève transform, has been developed in

[167]. It uses the statistics of the data themselves instead of the statistics of the estimates.

This method has the advantage to combine linearly independent Gaussian estimates. Fur-

thermore it also forms a sufficient statistics like the s.a method. It is based on determining

the covariance matrix M associated to the real or imaginary part of the measurement Xi

obtained by the n instruments,





Mii =
1

2

(
σ2
W,i + σ2

R

)

Mij =
1

2
σ2
R with i 6= j

(10.11)

where the extra factors 1/2 come from Equation 6.5. This covariance matrix has to be

diagonalized and we denote the eigenvalues λi. Their associated normalized eigenvectors

are Vi and the PDF is then given by

p(ŜKLT|σ2
R) =

n∏

i=1

1

(2πλi)
ν/2

e

(
−

∑ν
j=1 z2ij
2λi

)

(10.12)

where j highlights the real and imaginary part obtained through the Fourier transform

therefore ν = 2. Let us remind that X corresponds to the matrix containing the set of

Fourier transform of the measurements at the output of each instrument. The numerator

of the exponential argument is then

z = X · V (10.13)

where V are the eigenvectors obtained from the diagonalized covariance matrix.

10.2.3 Cross-spectrum

The cross-spectrum estimator leads to the variance-gamma (VΓ) distribution for two in-

struments as described in chapter in 9 but for more than two instruments it is no longer

the case. Having no exact solution known nowadays, we propose a solution based on the

characteristic functions. Expanding the model from the case of 2 instruments, we define

a basis such as in [150],
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B =




σW,1/2 σW,1/2 . . . . . . σW,1/2

σW,2/2 −σW,2/2 0 . . . 0

0 0 −σW,3/2 . . . 0
...

...
...

. . . −σW,n/2

σR 0 0 . . . 0




. (10.14)

We apply an orthogonalization algorithm, the DGEQRF LAPACK subroutine, on B. The

outputs enable the computation of the product of elementary reflectors which is a matrix

Q(n+ 1, n+ 1). Then we define W the matrix where each column contains the standard

deviation of the spectrum according to Equation 6.1 as

W =
1√
2




σW,1 0 . . . . . . 0

0 σW,2 0 . . . 0

0 0 σW,3 . . . 0
...

...
...

. . . σW,n

σR σR σR . . . σR




. (10.15)

All the measurement noises are independent, as assumed, whereas the signal is common.

Then the columns of W are projected onto the orthogonal basis Q and each pair of cross-

spectra according to Equation 10.6 is determined. Finally we compute the eigenvalues λj

of the resulting components by using the DSYEV LAPACK subroutine. This leads to a

linear combination of χ2 distribution as follows,

Ŝcs =
n∑

j

λjχ
2
k (10.16)

where k is the number of degrees of freedom corresponding to each eigenvalue, e.g. equal

to two for the real and imaginary part without degeneration. In the special case of two

instruments we obtain the subtraction of two χ2 random variables with the same number

of degrees of freedom. The characteristic function of the λjχ
2
k distribution is defined by

φj(t) = (1− 2iλjt)
−k/2 (10.17)

where i is the imaginary unit and we apply a variable change of −t for the negative eigen-

values. Let us notice that The parameter t is the dual random variable of the measurement

random variable in the same way that the Fourier frequency is the dual variable of time in

a Fourier transform. The χ2 distributions according to Equation 10.16 being independent,

the characteristic function of the c-s becomes
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Figure 10.1: Comparison of the empirical (red boxes) and theoretical (green line) PDF of
the c-s for five instruments where the variances are σ2

R = 6 a.u. and σ2
W = 10 a.u.

φ(t) =
n∏

j

φj(t). (10.18)

It leads to the moment generating function of the VΓ distribution for two instruments but

it is no longer the case for more instruments. When all the instruments have the same level

of intrinsic noise σ2
n, the diagonalization of the matrix W defined by Equation 10.15 leads

to two eigenvalues. One is unique and the second one has a degeneration of n − 1 with

n the number of instruments. Consequently, it leads to the difference of two χ2 random

variables with different degrees of freedom. However even if it looks like the case with

two instruments, the difference in the degrees of freedom of the χ2 distributions has no

analytical solution. Therefore the probability density function of the c-s for any noise

level is defined as

p(Ŝcs|σ2
R) =

1

2π

∫

R

e−itŜcs φ(t)dt. (10.19)

We perform the integration of the real part of the function by using the Simpson method

only on the positive reals because the real part of this function is even whereas the imag-

inary part is odd. Figure 10.1 shows that the theoretical probability density function fits

very well the histogram obtained by 107 Monte Carlo simulations for five instruments.

The variance of each white noise is the same σ2
W = 10 a.u. whereas the signal level is

σ2
R = 6 a.u.
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10.2.4 Bayesian inference

10.2.4.1 A posteriori distribution

We seek to determine a confidence interval on σ2
R, but Equations 10.9, 10.12 and 10.19

define the PDF of a set of measurement X given the sought parameter σ2
R. So we have to

solve the inverse problem which means to determine the PDF of σ2
R given a set of mea-

surement X called the posterior distribution. The Bayes theorem leads to the following

relation,





p(σ2
R|X) ∝ p(X|σ2

R) · π(σ2
R)

∫∞
0

p(σ2
R|X)dσ2

R = 1
(10.20)

where π(σ2
R) is the prior, i.e. the PDF before any measurement. One of the main issue of

Bayesian analysis concerns the choice of this prior.

10.2.4.2 Choice of the prior

In order to be as general as possible, we will assume a total ignorance of the signal level. In

such a case, it is generally considered that any order of magnitude has the same probability

which suggests a constant prior in a logarithmic scale, i.e π (σ2
R) = 1/σ2

R. However, our

perfect knowledge of the measurement noise level induces an implicit scale factor. In

other words, since we did not remove the “bias” σ2
µ in Equation 10.7, the s.a estimator

is shifted by σ2
µ. In a very similar case [161], we decided that the true parameter should

be the sum of both levels θ = σ2
µ + σ2

R. Moreover according to Equation 10.5 higher

noise will have lower weight and in our case, since the mathematical expectation of the

s.a estimator is σ2
µ + σ2

R, it comes naturally that the true parameter should be:

θ = σ2
µ + σ2

R. (10.21)

From these considerations, we will choose π(θ) = 1/θ =
1

σ2
µ + σ2

R

and then, our prior for

the s.a estimator will be

π(σ2
R) ∝

1

σ2
µ + σ2

R

. (10.22)

In order to be fair in the trial of c-s against s.a, the same prior will be used for both

estimators.

In the following we will compare the different methods, starting with the spectrum

average and KLT in Sec. 10.3.
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10.3 Spectrum average and KLT comparison

10.3.1 A particular case: all the instruments have the same variance

Let us define ∀i, σ2
W,i = σ2

W , i.e. all the n instruments have the same noise level. At a

first step we determine the s.a PDF, in this case according to Equations 10.5 and 6.5, the

variance defined by Equation 10.10 leads to the following expression,

σ2 =
1

2

(
σ2
W

n
+ σ2

R

)
. (10.23)

From Equation 10.6, the estimate Ŝsa now becomes

Ŝsa =

{
ℜ
[
σ2
µ

n∑

i

Xi

σ2
W,i

]}2

+

{
ℑ
[
σ2
µ

n∑

i

Xi

σ2
W,i

]}2

=
1

n2



{
ℜ
[

n∑

i

Xi

]}2

+

{
ℑ
[

n∑

i

Xi

]}2



(10.24)

According to Equation 10.9, the s.a PDF is given by

p(Ŝsa|σ2
R) =

e
−

1
n2{ℜ[

∑n
i Xi]

2
+ℑ[

∑n
i Xi]

2}
σ2
W
n +σ2

R

σ2
W

n
+ σ2

R

. (10.25)

In a second step let us define the KLT PDF. The eigenvalues of the covariance matrix

resulting from Equation 10.11 are given by

λ1 =
1

2

(
σ2
W + nσ2

R

)

λi =
1

2
σ2
W with i ∈ {2, ..., n}

(10.26)

The first and highest eigenvalue being the only one to depend of σ2
R, we solely define its

associated eigenvector

V1 =
Jn,1√
n

(10.27)
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where Jn,1 is the all-ones column vector. Then the numerator in the exponential in Equa-

tion 10.12 is ∑ν
j ẑ

2
1,j =

∑ν
j [Xj · V1]

2

=
1

n

ν∑

j

[Xj · Jn,1]2

=
1

n

ν∑

j

[
n∑

i

Xij

]2

=
1

n



ℜ

[
n∑

i

Xi

]2
+ ℑ

[
n∑

i

Xi

]2
 .

(10.28)

The KLT PDF defined by Equation 10.12 is given by

p(ŜKLT|σ2
R) = C

e
−

1
n{ℜ[

∑n
i Xi]

2
+ℑ[

∑n
i Xi]

2}
σ2
W

+nσ2
R

π (σ2
W + nσ2

R)
(10.29)

where C is the Gaussian remaining product with a variance depending only on the mea-

surement noise level. However what we want to characterize is not the estimates but the

parameter σ2
R. According to Equation 10.20, the PDF of the true parameter σ2

R is propor-

tional to the prior π(σ2
R) multiplied respectively by Equations 10.25 and 10.29 for the s.a

and KLT estimates. The Bayes theorem leads then to

p(σ2
R|Ŝsa) ∝ π(σ2

R)
e
−

1
n

{
ℜ [
∑n

i Xi]
2
+ ℑ [

∑n
i Xi]

2
}

σ2
W + nσ2

R

σ2
W + nσ2

R

(10.30)

and

p(σ2
R|ŜKLT) ∝ π(σ2

R)
e
−

1
n

{
ℜ [
∑n

i Xi]
2
+ ℑ [

∑n
i Xi]

2
}

σ2
W + nσ2

R

σ2
W + nσ2

R

. (10.31)

Multiplying respectively Equations 10.30 and 10.31 by a factor 1/n and π does not change

the PDF since it is normalized. It is exactly the same for Equation 10.31 where C does

not depend on σ2
R and vanish through the normalization. Therefore both expressions are

exactly the same. It should also be noted that the noise level σ2
W is necessary in both cases

and the bias does not influence the sought parameter density whereas it does regarding

the estimates. This implies a very interesting consequence: both PDF for the s.a and KLT
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leads to the exact same confidence interval for the same noise level.

10.3.2 General case

In this part any number of instruments and different noise level for each of them can

be considered. In Section 10.3.1, we showed analytically that both methods lead to the

same PDF of the signal level knowing the estimates in the event that all noise levels

are the same. However when each noise level is different Equation 10.26 giving the

relation between the eigenvalues and the signal becomes much more complicated without

degeneration. In this case, let us consider a number of instruments solely up to five,

refering as instance to the number of radio telescopes (RTs) part of the LEAP project.

Then we make several empirical comparisons by computing the upper limit at 95% for

the spectrum average and KLT methods. It should be noticed that the 5% lower bound has

no interest since we are more particularly interested in the case where the signal is weaker

than the noise level. This bound then greatly depends on the prior and is very close to zero.

Table 10.1 gives the average over 1 000 realizations of the 95% upper bound for two

to five RTs. The signal and noise levels are respectively σ2
R = 1 a.u. and σ2

W,i = i a.u.

where i is the i-th RT. Then the second and third RT are respectively two and three times

more noisy than the first one and so forth.

First, these comparisons show as expected that the 95% bounds obtained by both es-

timators as in Section 10.3.1 for the same noise variance, are exactly the same. Second,

the mean and median of the 95% upper limit of the s.a and KLT estimates obtained over

1 000 realizations are decreasing as the number of RTs increases. Therefore adding a new

instrument to the array, as long as we have a perfect knowledge of its noise level, neces-

sarily contributes to lowering the upper limit and then improve the parameter estimation.

The maximum value is not really significant since the tail of the distribution is very long

and thin. Finally, it should be noticed that both methods require the knowledge of the

noise level, for the expression of the probability density function. The spectrum average

method being the fastest way to compute the confidence interval is then to be privileged.

Therefore we will only compare the spectrum average method with the cross-spectrum in

the next section.
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Table 10.1: Upper limit average of the parameter σ2
R taking into account two to five RTs.

These data were obtained from a set of 1 000 simulated spectra. The signal and noise level
used for the computation are σ2

R = 1 and σ2
W,i = i where i is the index of the RT.

Spectrum average / KLT 95% upper limit
RTs number Mean Median Std Min Max

2 17.44 12.88 3.10 6.30 115.32
3 16.32 11.78 2.39 5.16 91.78
4 15.66 11.10 2.95 4.54 108.82
5 14.84 10.67 2.28 4.14 86.99

10.4 95% upper limit: spectrum average vs cross-

spectrum

We have set the direct problem, i.e. the statistics of the s.a or c-s knowing the signal

level and noise level (which is assumed to be known), respectively in Sections 10.2.1 and

10.2.3. Now we tackle the inverse problem from the direct problem, i.e. the statistics of

the signal level knowing the s.a or c-s estimate. The Bayes theorem enables us to establish

this link as described in Section 10.2.4. The posterior distribution of the s.a and c-s are

given by

p(σ2
R|Ŝsa) ∝ 1

(σ2
µ+σ2

R)2
e

−Ŝsa
σ2
µ+σ2

R (10.32)

and

p(σ2
R|Ŝcs) ∝ 1

2π(σ2
µ+σ2

R)

∫
R
e−itŜcs φ(t)dt (10.33)

where σ2
µ is the noise variance weighting according to Equation 10.5. Let us describe our

simulation algorithm in order to assess the 95% upper limit.

First simulation (S1 to S3): simulate a set of real data from q instruments, assuming the

red noise level is known (as well as, of course, the measurement noise levels).

S1: Assign the number of RTs, the noise variance of each one and the sought true signal

level.

S2: Generate a set of spectral measurement according to Equation (6.1)

S3: Compute the s.a and c-s estimates, as stated in Equation (10.6), which are now fixed

as parameters.

Second simulation: we no longer modify the data (these are acquired measurement re-

sults) and we look for a confidence interval on the red noise, assuming the level of the
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measurement noise is known.

S4: Define any basis and perform an orthogonalization and normalization of it by using

the DGEQRF subroutine from LAPACK

S5: Establish, from Equation 10.15, one W matrix for each signal level varying from

0 to an upper limit for which Equations 10.32 and 10.33 are close enough to zero

according to the required precision.

S6: Peform S7 to S11 for each σ2
R value.

S7: Project the W matrix onto the orthogonal basis.

S8: Compute the c-s denoted Z from the result of S6.

S9: Determine the eigenvalues of Z by using the DSYEV subroutine from LAPACK

which has now the form of Equation 10.16.

S10: Define the product of each characteristic function defined by Equation 10.17.

S11: Compute the posterior distribution respectively of the s.a and c-s estimates accord-

ing to Equations 10.32 and 10.33. For the c-s, we perform a numerical integration

of one signal value by using the Simpson method.

S12: Normalize the s.a and c-s posterior PDF.

S13: Determine the cumulative distribution function (cdf) by integrating the s.a and c-

s posterior PDF and find the 95% upper limit corresponding onto the cdf value

associated to the signal level.

The loops for the different values of the signal are computed in parallel in order to save

computing time. Let us give an example of such a process. We set the number of RTs to

five and the variances of the signal and noise are respectively σ2
R = 6 a.u, σ2

W = 10 a.u.

Then we produce two sets of random measurement with these parameters, shown in Table

10.2. The first measurement set gives respectively Ŝsa,1 = 14.886 a.u. and Ŝcs,1 = 13.226

a.u. for the s.a and c-s estimates whereas the second one gives Ŝsa,2 = 20.730 a.u. and

Ŝcs,2 = 18.564 a.u. It leads for the first set to the 95% upper limit on the signal σ2
R

following value, 125.8 for the s.a and 127.3 for the c-s. Furthermore the second set gives

us 167.1 for the s.a and 164.8 for the c-s. These results show that either the c-s or the

s.a can be the most efficient even with the same parameters, then it only depends on the

measurement set. However, the difference between the 95% upper limit for both methods

is relatively low.
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Table 10.2: Measurement set for the outputs of each RT (five in total) where σ2
R = 6 a.u.

and σ2
W = 10 a.u.

measurement set 1 measurement set 2
Real part Imaginary part Real part Imaginary part

X1 -3.8947 -1.7994 -0.1494 8.9456
X2 -5.0950 -3.9125 -0.5275 4.4659
X3 -2.5133 -5.5431 0.2176 5.7742
X4 0.6433 -1.9566 1.6044 3.2146
X5 -0.2294 -2.5738 -0.5284 0.3563

Let us now compare the s.a and c-s 95% upper limit over 100 simulations as shown

in Table 10.3 for the sought signal level set to 6 a.u. and a noise level equal to 10 a.u. for

each RT. The 95% upper limit is given respectively for, from the top of the Table to the

bottom, the spectrum average, the cross-spectrum and the ratio of the 95% bound of s.a

over c-s. The mean and median are decreasing when the number of RTs is increasing.

However for four RTs the results are much lower but it is just an artefact of “luck". Indeed

the maximum value is 1.4 times lower than for five RTs and the standard deviation (std) is

also very much lower. The sample size can have a significant effect on the values obtained

but is necessary to have a good precision with a reasonable computation time. However,

the minimum value of the 95% bound obtained for both methods permits to override

this randomness. Indeed when the cross-spectrum estimate is negative or the spectrum

average estimate tends towards zero it leads to the smallest 95% bound. Whereas the

maximum 95% bound obtainable for a reasonable amount of simulations can “wriggle"

a lot as the tail of the posterior PDF is very long especially with higher noise level than

signal level which is of interest. The minimum value of the upper bound decreases as

the number of RTs increases. The differences between the s.a and c-s methods are not

significant.

Figure 10.2 shows the histogram of the 95% limit with five RTs for 10 000 realiza-

tions, σ2
R = 6 a.u. and σ2

W = 10 a.u. Both histograms exhibit a similar distribution

which extend up to high values. However the first bin corresponding to the lowest 95%

bound shows a high number of realizations for the c-s method. This can be explained

by a negative estimate for the cross-spectrum which may corresponds to a spectrum

average estimate having a not so small value and so a higher 95% bound. Figure 10.3

shows the comparison of the 95% upper limit for the s.a and c-s methods for a window

of hundred data among the same set of realizations. The 6 620-th realization framed by a

blue rectangle highlights the fact that the c-s can sometimes be much more stringent than
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the s.a method. However in most of the other realizations we notice that the 95% limit is

almost the same.

Figure 10.4 depict the 95% upper bound median among 1 000 simulations with five

RTs, for the s.a over c-s ratio depending on the signal-to-noise level ratio (with σ2
W = 1

a.u). When σ2
R ≪ σ2

W then the s.a seems to be the most stringent most of the time.

However when the signal level becomes higher than the noise level, both the s.a and the

c-s methods give in median the same 95% limit.

Considering all these observations it is wiser to compute both estimators and use the

most restrictive one. Even if most of the time both estimators give a very close upper

bound, sometimes the gap is clearly significant.

Table 10.3: 95% upper limit statistics for the s.a (top), c-s (middle) and the ratio of the
s.a by the c-s over 100 simulations where σ2

R = 6 a.u. and σ2
W = 10 a.u. Each rows

respectively from the left to the right corresponds to the number of RTs, the mean, median,
standard deviation, minimun and maximum value of the 95% upper bound.

Spectrum average 95% upper limit
RTs number Mean Median Std Min Max

2 112.99 79.45 32.93 48.50 440.60
3 98.41 72.60 35.66 31.70 453.20
4 78.00 51.50 18.30 23.80 260.10
5 90.11 67.95 28.47 19.00 373.40

Cross-spectrum 95% upper limit
RTs number Mean Median Std Min Max

2 116.49 83.00 27.38 67.90 388.90
3 99.74 79.65 34.54 41.00 443.40
4 76.37 54.10 18.03 28.50 255.80
5 91.87 65.35 28.98 22.20 380.20

s.a/c-s 95% upper limit
RTs number Mean Median Std Min Max

2 0.97 0.90 0.12 0.71 2.21
3 0.98 0.94 8.13 ×10−2 0.74 1.79
4 1.02 0.98 4.86 ×10−2 0.74 1.50
5 0.97 0.96 3.73 ×10−2 0.78 1.34
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10.5 Conclusion

First, we demonstrated that the spectrum average variance is n/(n − 1) lower than the

cross-spectrum variance for n ≥ 2.
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Second, in order to assess the confidence interval of the signal level we defined

its probability density function knowing the s.a and c-s estimates but also the noise of

each instruments (radio telescopes). In addition a method directly using the statistics of

the measurement (KLT) has also been compared. It turns out that the KLT and the s.a

methods lead to the exact same PDF of the signal level σ2
R knowing the estimates, so

the precision is the same. Furthermore whereas the cross-spectrum has a well-defined

analytic probability density function for two instruments called VΓ, there is no equivalent

for more than two instruments. We proposed then a generalized method based on a

numerical integration of the characteristic function product. This method works very well

according to the Monte Carlo simulations.

Finally the efficiency of both estimators, the spectrum average versus the cross-

spectrum, is highlighted through the comparison of the 95% Bayesian upper limit. We

found a slight advantage for the spectrum average estimator when the noise level is higher

than the signal level. However we showed that sometimes the c-s gives the most stringent

confidence interval but above all a little more often than the s.a for the lowest upper limit.

Nevertheless it is the s.a method which gives us the minimum 95% limit reachable. To

conclude it is wiser to compute both estimates and use the most stringent.
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General conclusion

In this part, we remind the reader some of the global questioning and partly describe

the timeline of the presented work. We present our approach to solve the problems

encountered and the main results already discussed in depth individually. Furthermore

we provide general insights and discuss what could be the role of the tools we have

developed for time and frequency metrology but also in astronomy.

In this study, we have presented the work carried out at both the BIPM in Sèvres and

at FEMTO-ST in Besançon. The objective of the work at the BIPM was to develop a

procedure to determine the jumps which can affect the time links used in UTC calcu-

lation. This tool, based on the Kalman filter, had to correctly determine the date of the

steps and their magnitude (mainly for time steps) and give a warning to the BIPM Time

Department about this unexpected problem. This warning should help us to understand

the nature of the steps which, in some cases, can affect the behavior of UTC. A critical

example is the receiver calibration causing a step in time links and potentially impacting

UTC behavior. To ensure the long-term stability of UTC, it is crucial to verify the data

and identify problems. The second part of the work, carried out at FEMTO-ST, concerns

a Bayesian statistics development on the cross-spectrum estimator, in particular to obtain

reliable confidence intervals. This estimator is commonly used in the time and frequency

community with its advantage to reject most of the measurement noise in order to better

highlight the instabilities of the clocks. It is based on the use of signal covariances which

makes it possible to keep only the common part of the signals. This study has a particular

interest when the observations take so long that only few measurements are available as

it is the case in radio-astronomy.

The first aspect of the work focused on adapting the algorithm defined in [86]

based on a Kalman filter to detect time steps that affect time transfer links used in the

calculation of UTC. We used the already defined 3-state clock model, thus modeling

the phase, the frequency and the drift. Nevertheless we restricted the study only to the

phase difference, with the possibility of being able to generalize the study thereafter

to the frequency and drift if necessary. A jump is detected by the algorithm if the

absolute value of the innovation, i.e. the difference between the measurement and a

prediction of it, is greater than its standard deviation multiplied by a certain coefficient.

This parameter has notably been optimized by carrying out numerous simulations of

UTC. Given the large quantity of data accessible to the BIPM, tests were carried out on
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very different data sets from different types of clocks and time transfer methods. The

parameters used in the algorithm require a detailed study of clock noise. A stability

study using the Allan variance made it possible to analyze and extract the diffusion

coefficients. Only the WPM and WFM were considered, and other types of noise

were neglected. Considering that UTC is not computed in real time, we adapted and

optimized the detection algorithm by applying the filter forwards and backwards in

time; these filtered data are then combined after stopping both series at the date of the

step. The outliers having already been eliminated, the detector works very well and an

automatic procedure has been set up to analyze the data received each month at the BIPM.

The second aspect of this work concerns a Bayesian analysis on the cross-spectrum

method. We chose as a relevant estimator only the real part of the cross-spectrum since

the imaginary part contains only the measurement noise. Two cases arise, the first when a

large number of measurements can be made and the second when only few measurements

are available. In the first case, the statistics are simple since a Gaussian approximation

can be realized. The main interest is the study of red noise at the lowest frequencies,

which should occur in the TOAs of millisecond pulsars. We simulated this red noise

by integrating white noise. Given Parseval’s theorem, when performing the Fourier

transform of our real signal, the variance should be the same for the real part and the

imaginary part of the spectrum. However, it was observed that this was not true with the

way chose to simulate the red noise. We showed that a spectral aliasing as well as a fake

drift modifies the shape of the spectrum especially for the highest frequencies, which

introduces a dissymmetry between the real and imaginary parts. We demonstrated that

it is easy to remove the fake drift by removing the mean value of the white time series.

In the event that we could perform several measurements in order to average them to

remove the white noise, however our spectra must be uncorrelated. We have shown that

a tuning of the oscillators breaks the memory of non-stationary processes which are in

the phase or frequency noise. This process allows the analysis to converge to the phase

or frequency PSD of the oscillator. An experimental confirmation is however necessary

in order to confirm the simulations carried out. In the case where spectrum averaging is

not possible, we have demonstrated that the PDF of the cross-spectrum estimator is a VΓ

function in the case where there are two measuring instruments. This exact analytical

solution was computed with Monte-Carlo simulations validating the PDF. If there are

more than two devices, this distribution no longer corresponds to the exact PDF and

there is no analytical solution to date. We proposed a numerical approach based on the

Fourier transform of a characteristic function. Monte-Carlo simulations showed excellent

agreement with the proposed distribution. A Bayesian analysis was then carried out in
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order to obtain a confidence interval on the signal level knowing the noise level of the

measuring instruments. We chose a non-informative prior since we had no idea of the

behavior of the parameter sought. Finally we compared this confidence interval with a

commonly used estimator, the simple average of the spectra weighted by the noise of

the devices. We found an upper limit of the signal level slightly in the advantage of

the spectrum average, however this is biased and requires the noise to be removed. In

addition, we noticed that the upper limit on the cross-spectrum could be much more

restrictive in certain cases. The difference in the confidence intervals given by the two

estimators is reduced when the number of devices is increased.

In conclusion, an automatic phase skip detection procedure in the time transfer link

is operational at the BIPM. This algorithm nevertheless requires an improvement to dif-

ferentiate phase jumps from outliers, especially when there are many of them. The exact

PDF of the cross-spectrum is a VΓ distribution for two devices and a solution using the

Fourier transform of the characteristic function product gives excellent results for more

than two devices. Our approach provides access to the real PDF of the estimator, which

so far in the literature has been approximated by Gaussians. It would be interesting to

compare the cross-spectrum and the spectrum average estimators on an experiment with

real data and then verify whether or not the millisecond pulsars could be used as time

references.
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APPENDIX A

The cross-spectrum method

Measuring a device under test (DUT), the observed spectra contains the noise of the DUT

called the signal and the background noise of the instruments. The two-channel mea-

surement is modeled as the block diagram in Figure A.1 where a(t) and b(t) are the

background noise of the two instruments and c(t) the DUT noise. We consider a(t), b(t)

and c(t) statistically independent. The two instruments’ outputs are

x(t) = a(t) + c(t) ↔ X = A+ C

y(t) = b(t) + c(t) ↔ Y = B + C.
(A.1)

where ↔ denotes the Fourier transform and the frequency f is implicit. The Fourier

transform can be rewritten as

X = ℜ[X] + ℑ[X] = X ′ + iX ′′

Y = ℜ[Y ] + ℑ[Y ] = Y ′ + iY ′′.
(A.2)
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Figure A.1: Basics of the cross-spectrum method.
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The one-sided PSD given a measurement X of an instrument can be calculated as

Sx =
2

T
XX̃ = (ℜ[X]2 + ℑ[X]2) for f > 0, (A.3)

where T is the acquisition time, ·̃ stands for the complex conjugate and the factor 2 is

due to energy conservation after surpressing the negative frequencies. Consequently, the

one-sided cross-PSD is defined by

Syx =
2

T
Y X̃ for f > 0. (A.4)

The expectation value of Equation A.4 is given by

E[Syx] =
2

T
E[Y X̃]

=
2

T
E[(B + C)(A+ C)]

=
2

T
E[(B′ + iB′′ + C ′ + iC ′′)(A′ − iA′′ + C ′ − iC ′′)]

=
2

T
E[(B′A′ +B′′A′′ +B′′ +B′C ′ +B′′C ′′ + C ′A′ + C ′′A′′ + C ′2 + C ′′2)

+i(B′′A′ − B′A′′ +B′′C ′ − B′C ′′ + C ′′A′ − C ′A′′)].

(A.5)

Looking at Equation A.5 and considering that A, B and C are zero-mean Laplace-Gauss

random variable, we identify the following classes in Table A.1

terms E comment

B′A′, B′′A′′, B′′A′, B′A′′ 0
product of zero-mean
Laplace-Gauss processes

B′C ′, B′′C ′′, C ′A′, C ′′A′′,
0

product of zero-mean
B′′C ′, B′C ′′, C ′′A′, C ′A′′ Laplace-Gauss processes

C ′2 + C ′′2 V[C]
sum of zero-mean square
Laplace-Gauss processes.

Table A.1: Expected value of product of Laplace-Gauss processes contained in the cross-
spectrum estimator.

Therefore ℑ[Syx] contains only the background noise of the observation. According to

[59], an unbiased estimator of the cross-spectrum can be defined by

Scs =
2

T
ℜ[Y X̃] (A.6)

and can give sometimes negative values.
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B.1 Definitions

B.1.1 Measurements

Let us define n instruments’ measurements X1, X2, . . . and Xn as

Xj = W ′
j + iW ′′

j +R′ + iR′′ (B.1)

where W ′
j ,W

′′
j are independent Gaussian centered random variables of variance σ2

W/2,

and R′, R′′ are independent Gaussian centered random variables of variance σ2
R/2.

B.1.2 Estimates

The estimator Ŝcs is defined by Equation 10.6 as

Ŝcs =
1(
n
2

)
n−1∑

j=1

n∑

k=j+1

ℜ[(W ′
j + iW ′′

j +R′ + iR′′)×

×(W ′
k − iW ′′

k +R′ − iR′′)].

(B.2)
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On the other hand, Ŝsa is defined by Equation 10.6 as

Ŝsa =

(
n∑

j

W ′
j + nR′

n

)2

+

(
n∑

j

W ′′
j + nR′′

n

)2

. (B.3)

B.1.3 Statistics reminder

If A and B are 2 independent random Gaussian variables of zero expectation

V[AB] = V[A]V[B] (B.4)

according to Equation (a) from [171] where V[·] stands for the variance of the quantity

within the brackets. Moreover according to the Isserlis’ theorem [172],

V[A2] = E[A4]−
{
E[A2]

}2
= 3

{
E[A2]

}2 −
{
E[A2]

}2

= 2V2[A],
(B.5)

where E[·] stands for the mathematical expectation of the quantity within the brackets. It

is also useful to consider the covariances. If A,B,C, and D are four Gaussian centered

random variables,

E[ABCD] = E[AB] · E[CD] + E[AC] · E[BD] + E[AD] · E[BC]. (B.6)

If A,B,C, and D are four independent Gaussian centered random variables, this can be

derived to the following particular cases (Isserlis’ theorem [172]):

• E[ABCD] = E[AB] · E[CD] + E[AC] · E[BD] + E[AD] · E[BC] = 0 since each

mathematical expectation product E[XY ] is null

• E[A2BC] = E[A2] · E[BC] + 2E[AB] · E[AC] = 0 since the only mathematical

expectation which is not null, E[A2], is multiplied by E[CD] = 0

• E[A3B] = 3E[A2] · E[BC] = 0 since E[BC] = 0

• E[A2B2] = E[A2] · E[B2] + 2E2[AB] = E[A2] · E[B2] 6= 0.

• Cov[A2B2] = E[A2B2]− E[A2] · E[B2] = E[A2] · E[B2]− E[A2] · E[B2] = 0.
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B.2 Variance of the estimators

B.2.1 Variance of the cross-spectrum

From (B.2), we find

Ŝcs =
1(
n
2

)
[
n−1∑

j=1

n∑

k=j+1

(WjWk +W ′
jW

′
k)×

×(n− 1)
n∑

j=1

(WjS +W ′
jR

′)×

×
(
n

2

)
(R2 +R′2)

]
.

(B.7)

Then,

V[Ŝcs] =
1
(
n
2

)2

[
n−1∑

j=1

n∑

k=j+1

(V[WjWk] + V[W ′
jW

′
k])×

×(n− 1)2
n∑

j=1

(V[WjR] + V[W ′
jR

′])×

×
(
n

2

)2

(V[R2] + V[R′2])

]
,

(B.8)

where all covariance terms are null thanks to Isserlis’theorem. From the properties (B.4)

and (B.5), we find

V[Ŝcs] =
1
(
n
2

)2

[
n−1∑

j=1

n∑

k=j+1

(V[Wj]V[Wk] + V[W ′
j ]V[W

′
k])×

×(n− 1)2
n∑

j=1

(V[Wj]V[R] + V[W ′
j ]V[R

′])×

×
(
n

2

)2

(2V2[R] + 2V2[R′])

]
.

(B.9)

Therefore,

V[Ŝcs] =
1
(
n
2

)2

[
2

(
n

2

)
σ4
W

4
+ 2n(n− 1)2

σ2
Wσ2

R

4
+ 4

(
n

2

)2
σ4
R

4

]

=
1

n(n− 1)
σ4
W +

2

n
σ2
Wσ2

R + σ4
R.

(B.10)
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B.2.2 Variance of spectrum average

From (B.3), we find

Ŝsa =
1

n2

[
n∑

j=1

(W 2
j +W ′2

j ) + n2(R2 +R′2)+

+ 2
n−1∑

j=1

n∑

k=j+1

(WjWk +W ′
jW

′
k)+

+ 2n
n∑

j=1

(WjR +W ′
jR

′)

]
.

(B.11)

Then,

V[Ŝsa] =
1

n4

[
n∑

j=1

(V[W 2
j ] + V[W ′2

j ]) + n4(V[R2] + V[R′2])+

+ 4
n−1∑

j=1

n∑

k=j+1

(V[WjWk] + V[W ′
jW

′
k])+

+ 4n2

n∑

j=1

(V[WjR] + V[W ′
jR

′])

]
,

(B.12)

where all covariance terms are null thanks to Isserlis’theorem. From the properties (B.4)

and (B.5), it comes

V[Ŝsa] =
1

n4

[
n∑

j=1

(2V2[Wj] + 2V2[W ′
j ]) + n4(2V2[R] + 2V2[R′])+

+ 4
n−1∑

j=1

n∑

k=j+1

(V[Wj]V[Wk] + V[W ′
j ]V[W

′
k])+

+ 4n2

n∑

j=1

(V[Wj]V[R] + V[W ′
j ]V[R

′])

]
.

(B.13)

Therefore,

V[Ŝsa] =
1

n4

[
4n

σ4
W

4
+ 4n4σ

4
R

4
+ 8

(
n

2

)
σ4
W

4
+ 8n3σ

2
Wσ2

R

4

]

=
1

n2
σ4
W +

2

n
σ2
Wσ2

R + σ4
R.

(B.14)
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B.3 Variance ratios

Let us compare the cross-spectrum and spectrum average estimates’ variances for limit

signal to noise ratio values.

If σ2
R ≪ σ2

W ,

V[Ŝcs] ≈
1

n(n− 1)
σ4
W and V[Ŝsa] ≈

1

n2
σ4
W . (B.15)

Consequently,

V[Ŝcs] ≈
n

n− 1
V[Ŝsa]. (B.16)

If σ2
W ≪ σ2

R,

V[Ŝcs] ≈ σ4
R and V[Ŝsa] ≈ σ4

R. (B.17)

Consequently,

V[Ŝcs] ≈ V[Ŝsa]. (B.18)





APPENDIX C

Numerical results of the estimation of

the parameters by fitting the

cross-spectrum empirical PDF

For σW = 1:
σR κ ± ∆κ α ± ∆α β ± ∆β

1.00 · 10−1 4.95 · 10−1 ± 3.3 · 10−4 9.67 · 10−3 ± 2.4 · 10−4 9.90 · 10−1 ± 2.9 · 10−4

1.26 · 10−1 4.92 · 10−1 ± 2.5 · 10−4 1.56 · 10−2 ± 2.7 · 10−4 9.85 · 10−1 ± 2.3 · 10−4

1.58 · 10−1 4.88 · 10−1 ± 2.1 · 10−4 2.38 · 10−2 ± 4.3 · 10−4 9.76 · 10−1 ± 1.2 · 10−4

2.00 · 10−1 4.81 · 10−1 ± 6.1 · 10−4 3.68 · 10−2 ± 5.2 · 10−4 9.63 · 10−1 ± 4.9 · 10−4

2.51 · 10−1 4.70 · 10−1 ± 3.9 · 10−4 5.60 · 10−2 ± 2.5 · 10−4 9.44 · 10−1 ± 3.2 · 10−4

3.16 · 10−1 4.55 · 10−1 ± 4.5 · 10−4 8.32 · 10−2 ± 5.0 · 10−4 9.17 · 10−1 ± 4.3 · 10−4

3.98 · 10−1 4.32 · 10−1 ± 5.2 · 10−4 1.20 · 10−1 ± 2.1 · 10−4 8.80 · 10−1 ± 4.0 · 10−4

5.01 · 10−1 4.00 · 10−1 ± 3.6 · 10−4 1.67 · 10−1 ± 4.3 · 10−4 8.33 · 10−1 ± 4.4 · 10−4

6.31 · 10−1 3.58 · 10−1 ± 3.4 · 10−4 2.22 · 10−1 ± 5.5 · 10−5 7.78 · 10−1 ± 2.7 · 10−4

7.94 · 10−1 3.07 · 10−1 ± 3.9 · 10−4 2.79 · 10−1 ± 4.4 · 10−4 7.21 · 10−1 ± 4.9 · 10−4

1.00 2.50 · 10−1 ± 3.4 · 10−4 3.33 · 10−1 ± 3.0 · 10−4 6.67 · 10−1 ± 3.9 · 10−4

1.26 1.93 · 10−1 ± 1.6 · 10−4 3.80 · 10−1 ± 4.5 · 10−4 6.20 · 10−1 ± 4.4 · 10−4

1.58 1.42 · 10−1 ± 7.4 · 10−5 4.17 · 10−1 ± 2.1 · 10−4 5.83 · 10−1 ± 2.2 · 10−4

2.00 1.00 · 10−1 ± 7.1 · 10−5 4.45 · 10−1 ± 4.7 · 10−4 5.56 · 10−1 ± 4.7 · 10−4

2.51 6.84 · 10−2 ± 7.1 · 10−5 4.63 · 10−1 ± 8.1 · 10−4 5.37 · 10−1 ± 8.0 · 10−4

3.16 4.54 · 10−2 ± 2.0 · 10−5 4.76 · 10−1 ± 3.0 · 10−4 5.24 · 10−1 ± 3.1 · 10−4

3.98 2.97 · 10−2 ± 2.1 · 10−5 4.85 · 10−1 ± 9.2 · 10−4 5.16 · 10−1 ± 9.1 · 10−4

5.01 1.91 · 10−2 ± 2.5 · 10−5 4.90 · 10−1 ± 1.4 · 10−3 5.10 · 10−1 ± 1.4 · 10−3

6.31 1.22 · 10−2 ± 8.9 · 10−6 4.93 · 10−1 ± 7.5 · 10−4 5.06 · 10−1 ± 7.4 · 10−4

7.94 7.80 · 10−3 ± 6.8 · 10−6 4.95 · 10−1 ± 7.2 · 10−4 5.03 · 10−1 ± 7.1 · 10−4

1.00 · 10+1 4.95 · 10−3 ± 6.9 · 10−6 4.97 · 10−1 ± 1.8 · 10−3 5.02 · 10−1 ± 1.8 · 10−3
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Appendix C. Numerical results of the estimation of the parameters by fitting the

cross-spectrum empirical PDF

For σR = 1:
σW κ ± ∆κ α ± ∆α β ± ∆β

1.00 · 10−1 4.97 · 10−1 ± 7.5 · 10−4 4.97 · 10+1 ± 1.7 · 10−1 5.02 · 10+1 ± 1.7 · 10−1

1.26 · 10−1 4.93 · 10−1 ± 5.1 · 10−4 3.13 · 10+1 ± 9.1 · 10−2 3.18 · 10+1 ± 9.1 · 10−2

1.58 · 10−1 4.88 · 10−1 ± 5.0 · 10−4 1.96 · 10+1 ± 6.7 · 10−2 2.01 · 10+1 ± 6.6 · 10−2

2.00 · 10−1 4.81 · 10−1 ± 1.0 · 10−3 1.23 · 10+1 ± 5.2 · 10−2 1.28 · 10+1 ± 5.2 · 10−2

2.51 · 10−1 4.71 · 10−1 ± 6.3 · 10−4 7.69 ± 1.7 · 10−2 8.17 ± 1.7 · 10−2

3.16 · 10−1 4.55 · 10−1 ± 1.5 · 10−4 4.76 ± 8.3 · 10−3 5.24 ± 8.0 · 10−3

3.98 · 10−1 4.32 · 10−1 ± 6.0 · 10−4 2.92 ± 7.0 · 10−3 3.38 ± 7.0 · 10−3

5.01 · 10−1 4.00 · 10−1 ± 6.5 · 10−4 1.77 ± 3.6 · 10−3 2.21 ± 3.6 · 10−3

6.31 · 10−1 3.58 · 10−1 ± 2.0 · 10−4 1.05 ± 6.5 · 10−4 1.46 ± 6.6 · 10−4

7.94 · 10−1 3.07 · 10−1 ± 2.0 · 10−4 6.03 · 10−1 ± 4.6 · 10−4 9.83 · 10−1 ± 5.2 · 10−4

1.00 2.50 · 10−1 ± 1.9 · 10−4 3.33 · 10−1 ± 2.3 · 10−4 6.67 · 10−1 ± 3.0 · 10−4

1.26 1.94 · 10−1 ± 1.7 · 10−4 1.76 · 10−1 ± 2.2 · 10−4 4.55 · 10−1 ± 2.6 · 10−4

1.58 1.42 · 10−1 ± 4.3 · 10−5 8.82 · 10−2 ± 5.3 · 10−5 3.10 · 10−1 ± 5.4 · 10−5

2.00 1.00 · 10−1 ± 5.4 · 10−5 4.20 · 10−2 ± 1.9 · 10−5 2.09 · 10−1 ± 6.2 · 10−5

2.51 6.84 · 10−2 ± 1.9 · 10−5 1.91 · 10−2 ± 2.1 · 10−5 1.39 · 10−1 ± 4.0 · 10−5

3.16 4.55 · 10−2 ± 2.6 · 10−6 8.34 · 10−3 ± 2.1 · 10−5 9.17 · 10−2 ± 1.2 · 10−5

3.98 2.97 · 10−2 ± 5.6 · 10−6 3.52 · 10−3 ± 2.1 · 10−5 5.96 · 10−2 ± 2.3 · 10−5

5.01 1.91 · 10−2 ± 3.0 · 10−6 1.48 · 10−3 ± 1.6 · 10−5 3.84 · 10−2 ± 1.2 · 10−5

6.31 1.23 · 10−2 ± 1.3 · 10−6 6.10 · 10−4 ± 3.3 · 10−5 2.45 · 10−2 ± 2.5 · 10−5

7.94 7.80 · 10−3 ± 2.8 · 10−6 2.14 · 10−4 ± 2.5 · 10−5 1.56 · 10−2 ± 3.0 · 10−5

1.00 · 10+1 4.95 · 10−3 ± 2.6 · 10−6 9.49 · 10−5 ± 3.3 · 10−5 9.89 · 10−3 ± 5.1 · 10−5
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Cross-Spectrum Measurement Statistics:
uncertainties and detection limit
Antoine Baudiquez, Éric Lantz, Enrico Rubiola, François Vernotte

Abstract—The cross-spectrum method consists in measuring
a signal c(t) simultaneously with two independent instruments.
Each of these instruments contributes to the global noise by its
intrinsic (white) noise, whereas the signal c(t) that we want to
characterize could be a (red) noise.

We first define the real part of the cross-spectrum as a relevant
estimator. Then, we characterize the probability density function
(PDF) of this estimator knowing the noise level (direct problem)
as a Variance-Gamma (VG) distribution. Next, we solve the
“inverse problem” thanks to Bayes’ theorem to obtain an upper
limit of the noise level knowing the estimate. Checked by massive
Monte Carlo simulations, VG proves to be perfectly reliable for
any number of degrees of freedom (dof).

Finally we compare this method with an other method using
the Karhunen-Loève transform (KLT). We find an upper limit
of the signal level slightly different as the one of VG since KLT
better takes into account the available information.

Index Terms—Bayesian statistics, confidence interval, cross-
spectrum, Karhunen-Loève transform, probability density func-
tion.

I. INTRODUCTION

THE measurement of power spectra is a classical problem,
ubiquitous in numerous branches of physics, as explained

below. Power spectra are efficiently measured using Fourier
transform methods with digitized data. Relevant bibliography
is now found in classic books [1], [2], [3], [4].

We are interested in the measurement of weak statistical
phenomena, which challenge the instruments and the mathe-
matical tools, using the cross-spectrum method. This method
consists of the simultaneous measurement of the signal with
two separate and independent instruments [5]. The other
approach, consisting on the observation of the spectral contrast
in a chopped signal, broadly equivalent to the Dicke radiometer
[6], is not considered here. Regarding the duration of the data
record used to evaluate the Fast Fourier Transform (FFT), two
asymptotic cases arise.

The first case is that of the measurement of fast phenomena,
where a large number of records denoted m is possible in
a reasonable observation time. At large m the central limit
theorem rules and the background noise can be rejected by

A. Baudiquez and E. Rubiola are with FEMTO-ST, Department of Time
and Frequency, UMR 6174, Université Bourgogne Franche-Comté, France.
Antoine’s ORCID is 0000-0002-7007-5273

E. Lantz is with FEMTO-ST, Département d’Optique P.M. Duffieux, UMR
6174 CNRS, Université Bourgogne Franche-Comté, France.

E. Rubiola is also with the Division of Quantum Metrology and Nanotech-
nology, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Turin, Italy.
Enrico’s ORCID is 0000-0002-5364-1835

F. Vernotte is with FEMTO-ST, Department of Time and Frequency,
Observatory THETA, UMR 6174 CNRS, Université Bourgogne Franche-
Comté, France. François’s ORCID is 0000-0002-1645-5873

a factor approximately equal to 1/
√
m, depending on the

estimator. Numerous examples are found in the measurement
of noise in semiconductors [7], phase noise in oscillators and
components [8], [9], [10], [11], frequency fluctuations and
relative intensity noise in lasers [12], [13], electromigration
in thin films [14], etc. Restricting to one bin of the Fourier
transform, the power spectral density integrated over a suitable
frequency range is used in radiometry [15], [16], Johnson
thermometry [17] and other applications.

The second case is that of slow phenomena, where the
fluctuations are very long term or non ergodic. On one hand
the background noise is still rejected as before but with a
very low m which can actually be equal to one. On the
other hand, the central limit theorem does not apply and the
statistical uncertainties are not trivial. This case is of great
interest in radio astronomy, where the observations are limited
by the available resources and take a long time. As instance
millisecond pulsars (MSP) can be used as very stable clocks at
astronomical distances [18]. The radio pulses times of arrival
(TOA) of MSP are affected by numerous physical process, one
of them are gravitational-wave (GW) perturbations [19], [20].
Red noise originated from GW perturbations in the signal path
common to the radio-telescopes can be detected [21], [22].
Like the analysis of the signals provided by the LIGO/VIRGO
interferometers which use cross correlation methods [23],
[24], the LEAP experiment (i.e. Large European Array for
Pulsars) [25] could use such methods in order to access lower
frequencies and observe imperceptible phenomena such as
early phases well before the coalescence of black holes or GW
of cosmological origin (for example cosmic strings, inflation,
primordial black holes).

This article is intended to put an upper limit on the uncer-
tainty of the cross-spectrum estimate. The method proposed
here is totally general regardless the power law type of noise.
Indeed, even if the pulsar signal would be constituted by
white noise, the realisations of this white noise would be
the same, for low frequency, at different observatories while
the realisations of measurement white noise are indepen-
dent. However this paper shows a particular interest to red
noise. Gravitational-waves have not been yet discovered in
the TOA of millisecond pulars. Thanks to the very long line
of sight between the pulsars and us (several thousand light-
years), we could access very low frequencies, inaccessible
to LIGO/VIRGO, thus revealing much slower astrophysical
phenomena. It is therefore important to develop statistical
tools to improve measurement sensitivity to pulsar timing
observations [26]. In this respect, we propose in Section
II to state the cross-spectrum problem to define a proper
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Fig. 1. Basics of the cross-spectrum method.

estimate. Based on the principle that the experiment is repeated
m times, it is important to note that the estimation of the
measurement uncertainty is A-Type as defined by the VIM
[27]. Then in Section III we define the probability density
function (i.e. “direct problem”) of the cross-spectrum estimate
which is used in Section IV to compute an upper limit by
using a bayesian inference approach (i.e. “inverse problem”).
The results obtained are compared to an another method
using the Karhunen-Loève transform developed in [28] and
the conclusions are presented in Section V.

II. STATEMENT OF THE PROBLEM

A. Spectral Measurement

This paper aims to measure the mathematical expectation of
the amplitude for a frequency bin. This amplitude obviously
depends on the frequency and this is what we are looking
for as shown in Fig. 2. Let us remind at that the Fourier
transform of a white noise is a white noise. Fourier transform,
random signals have generally infinite energy so the real
Fourier transform can not be generally defined. A description
of a realistic white noise actually corresponds to a Markov
process of the first order and the reader can report to [29] for
discrete simulation of colored noise and stochastic processes.
The random part of the amplitude of each frequency bin is
then uncorrelated from each bin. Considering a red noise as
a filtered white noise means that the red noise spectrum is
the product of the white spectrum by a deterministic function
and, therefore, the uncorrelation property of the random part
of the red noise spectrum is perserved. Working directly in
the frequency domain therefore changes absolutely nothing in
terms of a random variable. Consequently it does not matter
to know if the signals are stationary, uncorrelated or not since
we are interested in the spectrum and in a bin of frequency in
particular.

B. Cross-spectrum Method

Let us consider 3 statistically independent signals: a(t),
b(t) and c(t) as shown in Fig. 1. On one side the two first
a(t) and b(t) are respectively the instrument noise of A and
B. On the other side c(t) is an input signal which we want
to characterize. This signal is stochastic and not necessarily
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Fig. 2. This is a plot of a PSD estimate magnitude obtained via a discrete
Fourier transform. The red and green dashed lines correspond to the power
law frequency asymptotes related to the signal.

stationary. In the case of pulsar measurement, this input signal
is generally a red noise. The output of each channel is

x(t) = a(t) + c(t)

y(t) = b(t) + c(t).
(1)

Processing experimental signals, we can assume that white
noise is a continuous function of time, and that the Fourier
Transform (FT) always exists if we look at a very short interval
regarding the sampling period. The reader can refer to [30] for
a more detailed model of realistic white noise. Applying the
FT on each channel gives

X(f) = A(f) + C(f)

Y (f) = B(f) + C(f)
(2)

where f is the frequency, X(f), Y (f), A(f), B(f) and C(f)
stand respectively for the Fourier Transform of x(t), y(t), a(t),
b(t) and c(t). Our interest is carried out on the power spectral
density (PSD) rather than the spectrum. The cross-spectrum is
defined as

Syx(f) =
1

T
E [Y (f)X∗(f)] , (3)

where the cross-spectrum is actually a cross-PSD and E[·]
stands for the mathematical expectation of the quantity within
the brackets. The factor T is the measurement time which is
necessary for because the power calculated in time domain and
in frequency domain must be the same (Parseval theorem), and
also for Syx(f) to have the dimension of power per unit of
frequency. The ∗ denotes the complex conjugate of the quantity
placed before it. Eq. 3 is the two-sides PSD, which contains
positive and negative frequencies. Experimentaly averaging
over m spectra realizations leads to the following cross-PSD
estimator

〈Syx〉m =
1

T
〈Y (f)X∗(f)〉m . (4)

C. Cross Power Spectral Density

Averaging on a large number of observations, the mathe-
matics is made simple by the central limit theorem, by which
all the probability density functions (PDF) become Gaussian.
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More interesting for us is the case of a small number of
realizations, each of which taking long observation time-up
to several years in the case of the millisecond pulsars.
The random variables (rv) a(t), b(t) and c(t) follow a centered
normal distribution whatever the kind of noise. Even red noise
(e.g. random walk) follows a normal distribution not on the
time average but regarding its ensemble average over the
probability space which means it is a non ergodic process.
Moreover a stochastic process with zero-mean Gaussian distri-
bution has a FT which is also a random process with centered
Gaussian distribution.
The rv A(f), B(f) and C(f) can then be decomposed into a
real and imaginary part

A(f) = A′(f) + iA′′(f)

B(f) = B′(f) + iB′′(f)

C(f) = C ′(f) + iC ′′(f).

(5)

The real and imaginary part are statistically independent rv
with equal variance following a zero-mean Gaussian distribu-
tion. For an ensemble average, or a time sequence sufficiently
long to ensure a good spectral resolution, the samples at
different frequencies are independent of each other. Hence, all
the results of this paper are given for a given frequency that we
do not mention explicitely. Of course, there is a deterministic
relation between the results and this frequency, except in the
case of a signal constituted by white noise, which is not the
most common assumption in the envisioned applications. Let
us now expand Eq. 4,

〈Syx〉m =
1

T
〈Y X∗〉m .

=
1

T

[〈
A′B′ +B′C ′ + C ′A′ + C ′ 2〉

m

+
〈
A′′B′′ +B′′C ′′ + C ′′A′′ + C ′′ 2〉

m

+ i 〈A′B′′ +B′′C ′ + C ′′A′〉m
− i 〈A′′B′ +B′C ′′ + C ′A′′〉m] .

(6)

The terms in the imaginary part have a zero expectation,
while the expectation in the real part is proportional to the
PSD of the signal, i.e. what we are looking to characterize.
As a consequence, the next sections focus solely on the real
part ℜ{Syx},

〈ℜ {Syx}〉m =
1

T

〈
(Ak + Ck)(Bk + Ck)

〉
ν

(7)

where ν = 2m the number of degree of freedom (dof). The
superscript k means real or imaginary part because they are
independent rv.

D. Statement of the Problem

1) Measurements, and Estimates: In the following, in order
to simplify the notation, we will omit the superscript k.
Thereby the real and imaginary part will be treated as 2 dof.
Moreover to simplifiy the notations, we will omit the factor 1

T
which does not affect the PDF. The estimates will be noted
with a “hat” and we refer the cross-spectrum measurement for
a given frequency to

Ẑ = (Â+ Ĉ)(B̂ + Ĉ) (8)

where all Â, B̂, Ĉ are rv which are independent, centered
and normal. In the following, we will assume that Â, B̂, Ĉ
have only 1 dof, their real or their imaginary part, and that
Ẑ does not come from the average of different spectra. A
generalization of this problem to 2 dof (real and imaginary
parts) and then 2m dof (average of m spectra) will be given.

2) Direct and Inverse Problem: In order to assess the
uncertainty over the estimator σ2

C , called the signal level, we
will have to distinguish to main issues:

• The direct problem consists in calculating the statis-
tics of the cross-spectrum measurement Ẑ, knowing the
model parameters σ2

A, σ2
B , σ2

C .
• The inverse problem, conversely consists in calculating

a confidence interval over the unknown model parameter
σ2
C , from the known parameters σ2

A, σ2
B and the cross-

spectrum measurement Ẑ.

III. DIRECT PROBLEM

In Sections III-A to III-E we will omit the “hat” for
estimates since we deal with the mathematical models.

A. Vector Formalization of the Problem

We will reuse here the formalism we developed in [31], i.e.
a vector space of normal laws. Since we have 3 normal rv,
we are in a vector space of 3 dimensions that we will denote
LG

3 and which has the basis ( ~EA, ~EB , ~EC) defined as





~EA = LGA(0, 1)
~EB = LGB(0, 1)
~EC = LGC(0, 1)

where LG(0, 1) stands for a Laplace-Gauss (or normal) rv.
with zero-mean (centered) and unity standard deviation (σ =
1). We assume that LGA(0, 1), LGB(0, 1), LGC(0, 1) are
independent. We can define the scalar product between the
basis vectors of LG3 in such a way:





|| ~EA||2 = ~EA · ~EA = LGA · LGA = χ2
A

|| ~EB ||2 = ~EB · ~EB = LGB · LGB = χ2
B

|| ~EC ||2 = ~EC · ~EC = LGC · LGC = χ2
C





~EA · ~EB = LGA · LGB = VΓAB

~EB · ~EC = LGB · LGC = VΓBC

~EC · ~EA = LGC · LGA = VΓCA

where χ2
A,B,C are 3 independent χ2 rv with 1 dof and

VΓAB,BC,CA are 3 variance-Gamma (VΓ) rv [31], [32]. Any
vector ~U may be written as

~U =




uA

uB

uC


 = uA

~EA + uB
~EB + uC

~EC
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where uA, uB , uC are 3 constant scalars since all the random
part is carried by the basis vectors. The scalar product between
2 vectors ~U and ~V is then:

~U · ~V =
(
uA

~EA + uB
~EB + uC

~EC

)
·

(
vA ~EA + vB ~EB + vC ~EC

)

= uAvA ~EA · ~EA + uBvB ~EB · ~EB + uCvC ~EC · ~EC

+(uAvB + uBvA) ~EA · ~EB

+(uBvc + uCvB) ~EB · ~EC

+(uCvA + uAvC) ~EC · ~EA.

On the other hand, if we consider the mathematical expec-
tation of these expressions, we obtain

E

[
~EP · ~EQ

]
= δP,Q with P,Q ∈ {A,B,C}

where δP,Q is the Kronecker delta. We see that we obtain the
classical scalar product by using the mathematical expectation:

E

[
~U · ~V

]
= uAvA + uBvB + uCvC .

Therefore, we will define that 2 vectors ~U and ~V are orthog-
onal if E

[
~U · ~V

]
= 0.

B. From a normal Random Variable Product to a Chi-squared

RV Difference

Following this formalism, Eq. (8) may be rewritten as

Z =
(
~A+ ~C

)
·
(
~B + ~C

)
=




a
0
c


 ·




0
b
c




= abVΓAB + acVΓAC + bcVΓBC + c2χ2
C

(9)

where a, b, c are respectively the standard deviations of the rv
A,B,C. As a consequence, E[Z] = c2. In the following, we
will use the noise variances σ2

A = a2, σ2
B = b2 and the signal

variance σ2
C = c2.

As demonstrated in [33], a product of independent normal
rv may be expressed as a difference of χ2 rv. For this
purpose, although we know that (A + C) and (B + C) are
not independent, we introduce the rv V1 = (A + B)/2 + C
and V2 = (A − B)/2 in such a way that A + C = V1 + V2,
B+C = V1−V2 and therefore (A+C)(B+C) = V 2

1 −V 2
2 .

In this vectorial formalism:

~V1 =




a/2
b/2
c


 , and ~V2 =




a/2
−b/2
0


 .

Therefore, (~V1, ~V2) is the basis of the 2-dimensional subspace
of LG

3 in which lies our whole problem. Since the squared
modulus of ~V1, ~V2 are:





||~V1||2 =
a2

4
χ2
A +

b2

4
χ2
B + c2χ2

C

+ab
2 VΓAB + acVΓAC + bcVΓBC

||~V2||2 =
a2

4
χ2
A +

b2

4
χ2
B − ab

2
VΓAB ,

their difference is consistent with Eq. (9) and then Z = ( ~A+
~C) · ( ~B + ~C) = ||~V1||2 − ||~V2||2. Moreover, we can calculate
the mathematical expectations of these squared modulus:

v21 = E

[
||~V1||2

]
=

a2 + b2

4
+ c2

v22 = E

[
||~V2||2

]
=

a2 + b2

4
.

(10)

On the other hand, since

E

[
~V1 · ~V2

]
=

a2 − b2

4
(11)

the vector ~V1 and ~V2 are not orthogonal unless a = b, i.e. A
and B have the same variance.

C. A Particular Case: A and B have the Same Variance

Let us define σ2
N = σ2

A = σ2
B = n2, i.e. n = a = b. In this

case

E

[
~V1 · ~V2

]
=

n2

4
− n2

4
= 0,

~V1, ~V2 are orthogonal which means that their squared modulus
are 2 independent χ2 rv:

||~V1||2 = v21χ
2
v1 and ||~V2||2 = v22χ

2
v2

Thanks to [31, Appendix A], we know that this χ2 rv differ-
ence is a VΓ rv with a Probability Density Function (PDF),
introduced by [34]:

p(x) =
γ2λ|x− µ|λ−1/2Kλ−1/2 (α|x− µ|)√

πΓ(λ)(2α)λ−1/2
eβ(x−µ) (12)

where γ =
√
α2 − β2, Γ(λ) is the gamma function, Kw(z) is

a hyperbolic Bessel function of the second kind (w ∈ R and
z ∈ C) and with the following parameters:

µ = 0, α =
v21 + v22
4v21v

2
2

, β =
v21 − v22
4v21v

2
2

, λ =
1

2
(13)

where λ is the number of dof divided by 2. In this particular
case, since a2 = b2 = n2, v21 and v22 becomes

v21 = E

[
||~V1||2

]
=

n2

2
+ c2 and v22 = E

[
||~V2||2

]
=

n2

2
,

and we obtain

α =
n2 + c2

n2(2n2 + c2)
and β =

c2

n2(2n2 + c2)

D. General Case

If σ2
A 6= σ2

B , ~V1 and ~V2 are no longer orthogonal and
therefore they are 2 correlated rv. We have then to search
another set of basis vectors which are orthogonal. For this
purpose, let us use the Gram-Schmidt process.
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1) Gram-Schmidt Orthogonalization: Let us keep ~V1 un-
changed. Let ~V2P be the projection of ~V2 onto ~V1. Denoting
θ the angle1 between ~V1 and ~V2, it comes

~V2P = v2 cos(θ)
~V1

v1
.

with

cos(θ) =
E

[
~V1 · ~V2

]

v1v2

and then

~V2P =
E

[
~V1 · ~V2

]

v21
~V1. (14)

Therefore, we can build the vector ~V2N which is the
component of ~V2 orthogonal to ~V1:

~V2N = ~V2 − ~V2P = ~V2 −
E

[
~V1 · ~V2

]

v21
~V1.

Using Eq. (10) and (11) yields

~V2N =




a/2
−b/2
0


− a2 − b2

a2 + b2 + 4c2




a/2
b/2
c




=




a(b2 + 2c2)

a2 + b2 + 4c2

− b(a2 + 2c2)

a2 + b2 + 4c2

− c(a2 − b2)

a2 + b2 + 4c2




=




v2nA
v2nB
v2nC


 .

We have now to express the measurement vectors ~A+ ~C and
~B + ~C as linear combinations of the new basis of orthogonal
vectors ~V1 and ~V2N . In order to do this, we must project these
2 measurement vectors onto the 2 basis vectors in the same
way that we have projected ~V2 onto ~V1 in Eq. (14):

{
~A+ ~C = kAC1

~V1 + kAC2n
~V2N

~B + ~C = kBC1
~V1 + kBC2n

~V2N

with

kAC1 =
E

[(
~A+ ~C

)
· ~V1

]

E

[
||~V1||2

] kAC2n =
E

[(
~A+ ~C

)
· ~V2N

]

E

[
||~V2N ||2

]

kBC1 =
E

[(
~B + ~C

)
· ~V1

]

E

[
||~V1||2

] kBC2n =
E

[(
~B + ~C

)
· ~V2N

]

E

[
||~V2N ||2

] .

Therefore, Z = ( ~A+ ~C) · ( ~B + ~C) may be written as

Z = kAC1kBC1||~V1||2 + kAC2nkBC2n||~V2N ||2

+(kAC1kBC2n + kAC2nkBC1) ~V1 · ~V2N

= kAC1kBC1χ̇
2 + kAC2nkBC2nχ̈

2

+(kAC1kBC2n + kAC2nkBC1)VΓ (15)

1In the same way as the orthogonality between 2 vectors is defined by
the null mathematical expectation of their scalar product, the angles as well
as the other relationships between vectors must be taken into account as
mathematical expectation since they are valid on average but not for only
one particular realization of these vectors.

where χ̇2 and χ̈2 are independent χ2 rv corresponding re-
spectively to the squared norm of ~V1 and ~V2N . Thus, this
relationship involves the difference of 2 χ2 rv (it can be proved
that kAC2nkBC2n < 0), which is well known [31], [33], plus
a VΓ rv, which makes the problem more complex. In order to
simplify this problem, we should find a representation of Eq.
(15) in which the cross term is identically null.

2) Normalization and Rotation of the Basis Vectors: Let
(~V ′

1 ,
~V ′
2) be the normalized equivalent of the basis (~V1, ~V2N ):

~V ′
1 =

~V1

E

[
||~V1||

] and ~V ′
2 =

~V2N

E

[
||~V2N ||

] .

With this new basis, Eq. (15) may be rewritten as

Z = kAC1kBC1E

[
||~V1||

]2
||~V ′

1 ||2

+kAC2nkBC2nE

[
||~V2N ||

]2
||~V ′

2 ||2

+kAC1kBC2nE

[
||~V1||

]
E

[
||~V2N ||

]
~V ′
1 · ~V ′

2

+kAC2nkBC1E

[
||~V1||

]
E

[
||~V2N ||

]
~V ′
1 · ~V ′

2

= k′11||~V ′
1 ||2 − k′22||~V ′

2 ||2 + k′12~V
′
1 · ~V ′

2 (16)

with





k′11 = kAC1kBC1E

[
||~V1||

]2

k′22 = −kAC2nkBC2nE

[
||~V2N ||

]2

k′12 = kAC1kBC2nE

[
||~V1||

]
E

[
||~V2N ||

]

+kAC2nkBC1E

[
||~V1||

]
E

[
||~V2N ||

]
.

We can then consider Eq. (16) as the expression of a
quadratic form Q which associate a scalar w0 to any vector
~W = w1

~V ′
1+w2n

~V ′
2 . Such a quadratic form may be described

as

w0 = ~wT [Q]~w with [Q] =

(
k′11 k′12/2
k′12/2 −k′22

)
. (17)

The simplification of our problem relies then in a rotation of
the basis vectors in such a way that the quadratic form matrix
[Q] is diagonal. The eigenvalues of [Q] are given by

ℓ1 =
k′11 − k′22 −

√
∆

2
and ℓ2 =

k′11 − k′22 +
√
∆

2
.

with ∆ = (k′11 + k′22)
2
+ k′ 212. Thanks to this rotation of the

basis vectors, Eq. (15) and (16) become

Z = ℓ1χ̇
2 + ℓ2χ̈

2.

As already stated in § III-C, Z is a VΓ rv with the following
PDF parameters:

µ = 0, α =
ℓ21 + ℓ22
4ℓ21ℓ

2
2

, β =
ℓ21 − ℓ22
4ℓ21ℓ

2
2

, λ =
1

2
. (18)
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E. Generalization to Larger Degrees of Freedom

In the case of 2m dof, i.e. real part + imaginary part mul-
tiplied by m averaged uncorrelated spectra, the only change
to apply concerns the parameter λ in Eq. (13) and (18) which
becomes λ = m.
According to [35, Eq. 12 p.80] we have the following relation:

Kn+ 1
2
(z) =

( π

2z

) 1
2

e−z
n∑

r=0

(n+ r)!

r!(n− r)!(2z)r
(19)

with n ∈ N and z ∈ C. Moreover m ∈ N∗ which leads to the
relation n = m − 1. Therefore let us expand Eq. (12) using
Eq. (19):

p(x) =
κ(α, β)mǫ(x, µ, α,m)

Γ(m)
e−α|x−µ|+β(x−µ) (20)

with the following parameters:

κ(α, β) =
α2 − β2

2α
Γ(m) = (m− 1)!

ǫ(x, µ, α,m) =
m−1∑

r=0

(m+ r − 1)!|x− µ|m−r−1

r!(m− r − 1)!(2α)r

F. Validation of the Theoretical Probability Laws by Monte

Carlo Simulations

1) Algorithm Description: According to § III-D2 the
probability density of Ẑ, equal to the difference of two
independent χ2 rv, can now be calculated using the function
p(x) of the Eq. (20) by assigning the values to the parameters
in Eq. (13) and (18). In order to perform this comparison we
use two algorithms, one for Monte Carlo (MC) simulation
and the other one for computing Eq. (20).

− MC simulation algorithm

The simulation algorithm follows these 6 steps

S1: Assignement of the 2 noise levels σ2
A, σ2

B , signal level
σ2
C and the number of averaging spectra m.

S2: Drawing of Â, B̂, Ĉ, following a normal centered
distribution with respectively σA, σB , σC as standard
deviation.

S3: Computation of Ẑ = (Â+ Ĉ)(B̂ + Ĉ).
S4: Repetition 2m times of the steps S2 to S3 and sum all

Ẑ values.
S5: Repetition N = 107 times of the steps S2 to S4 of this

sequence.
S6: Drawing the histogram of Ẑ.

In all simulations, we chose a number of dof ν = 2m in
order to have a real and imaginary part in agreement with the
experiment shown in Fig. (1).

− Modeling algorithm

The modeling algorithm follows also 6 steps:

S1: Assignement of the 2 noise levels σ2
A, σ2

B , signal level
σ2
C and the number of averaging spectra m.

S2: Independent basis

• Computation of coefficients v21 , v22 according to Eq.
(10)

• if σ2
A = σ2

B go to step S5 else perform steps S3 and
S4

S3: Orthogonalization of the basis
• Computation of coefficients kAC1, kAC2n, kBC1,
kBC2n to determine the new basis according to Eq.
(15)

• Normalization of the basis by determing coefficients
k′11, k′22, k′12 according to Eq. (16)

S4: Vector rotation
• Diagonalization of the matrix Q according to Eq. (17)
• Computation of its roots l1 and l2

S5: Compute the coefficients α, β, and λ = m according to
Eq. (13) and (18).

S6: Plotting the probability density with Eq. (20).

2) When can the Instrument Noises be Assumed to be

“About the Same”?: Although the problem is quite simple
when the instrument noises σ2

A and σ2
B are the same (see §

III-C), it becomes more complex when σ2
A 6= σ2

B . The question
is then how far can we assume that σ2

A ≈ σ2
B and then use

the particular case formalism of § III-C? In order to answer
this question, we use Monte-Carlo simulations which were
performed according to § III-F1.

Afterwards we perform a histogram of these realizations and
compare it first with the PDF obtained from the model without
rotation, i.e. by using the VΓ parameters of Eq. (13), and next
with the PDF obtained from the model with rotation, i.e. by
using the VΓ parameters of Eq. (18). Fig. 3 shows an example
of such a comparison. In this case (σ2

A = 2, σ2
B = 1/2, σ2

C =
0), the PDF of the model with rotation is in perfect agreement
with the histogram whereas there are large discrepancies with
the PDF of the model without rotation. We have thus a first
result: the model without rotation should not be used when
the ratio σ2

A/σ
2
B ≥ 4.

To improve the efficiency of the test, we compute the
theoretical quantiles by using the model without rotation and
then deduce from them the theoretical confidence intervals
which are often used (68 %, 90 %, 95 % and 99 %). These
quantiles and intervals are compared to the ones obtained
from the simulation histogram. In one example of Table I,
which corresponds to the case plotted in Fig. 3, the confidence
intervals are strongly overestimated. For instance, the expected
68 % confidence interval is significantly too large since it
encompasses an interval of 76 %. Similarly, the expected 90 %
interval is actually a 94 % interval. This reinforces our decision
of using the model with rotation for a noise variance ratio ≥ 4.

We use these 2 approaches, i.e. PDF curve as well as
confidence intervals, for many different parameter sets (see
Table I). In any case, the agreement between the model
with rotation and the Monte-Carlo simulation histograms were
perfect, since the residual deviations can be largely assumed
to be due to the finite sample number of the simulation (less
than 0.05 % of the CDF). However, this test is very interesting
for the model without rotation since it allows us to answer to
the question which is the title of this section: when can the
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Fig. 3. Comparison of the empirical and theoretical PDF (above) with and
without rotation of the basis vectors. The deviations between the empirical
and the theoretical CDF are given in the bottom plot. The variances are:
σ2
C = 0, σ2

A = 2, σ2
B = 1/2 and there are 2 dof.

TABLE I
COMPARISON OF THE EXPECTED QUANTILES AND INTERVALS

Expected
probabilities
(%)

True probabilities (%)
Degrees of freedom: 2 dof: 8

σ2
C =0 0 0.5

σ2
B =2 1 2/3 1/2 1 1

Quantiles
0.5 0.50 0.39 0.25 0.16 0.35 0.39
2.5 2.50 2.10 1.58 1.19 1.98 2.13
5.0 5.00 4.36 3.51 2.82 4.18 4.44

16.0 16.00 14.95 13.43 12.05 14.68 15.18
50.0 50.00 50.01 50.00 50.00 50.00 49.99
84.0 84.00 85.07 86.59 87.96 85.32 84.58
95.0 95.00 95.65 96.50 97.19 95.82 95.37
97.5 97.50 97.91 98.43 98.82 98.02 97.73
99.5 99.50 99.62 99.75 99.84 99.65 99.57

Intervals
68.0 68.00 70.12 73.16 75.91 70.64 69.41
90.0 90.00 91.29 92.98 94.37 91.64 90.93
95.0 95.00 95.82 96.84 97.63 96.04 95.60
99.0 99.00 99.23 99.50 99.68 99.30 99.18

The expected quantiles (above) and intervals (below) are computed by using
the parameters from Eq. (13) with empirical probabilities. For all realizations
σ2
A = 2.

instrument noises be assumed to be “about the same”? Table I
is very useful in this connection. In a first step, let us study the
case where the number of dof is 2 and there is no signal since
it is the case which is the most sensitive to the difference
between the noise levels. We can see on this table that the
model without rotation is perfect when the 2 noise levels are
equal (σ2

B = 2), fair when the ratio of the noise levels is equal

to 2 (σ2
B = 1), at the limit of acceptance when the ratio is 3

but not suitable for a ratio ≥ 4. The other columns of Table
I, obtained with 8 dof and with σ2

C = σ2
A/4, confirm that

the model without rotation is acceptable when the ratio of the
noise variances is equal to 2.

Then we recommend to use the vector rotation process if
the ratio of the noise variance greater than 2.

IV. INVERSE PROBLEM

A. Principle of the Method

The bayesian statistician has to solve the inverse problem in
order to define a confidence interval for the true variance σ2

C ,
given a set of measurements and a priori information. Thereby
the cross-spectrum measurement Ẑ is now fixed as well as the
instrument noise levels σ2

A and σ2
B , whereas the signal true

variance σ2
C appears as a random variable. According to the

Bayes theorem the a posteriori density of an unknown true
value θ given the measurements, here the cross-spectrum Ẑ,
is

{
p(θ|Ẑ) ∝ p(Ẑ|θ) · π(θ)∫∞
0

p(θ|Ẑ)dθ = 1
(21)

where π(θ) is the a priori density, named prior and p(Ẑ|θ)
is the PDF which corresponds to Eq. (12) determined in the
direct problem. It remains to determine the prior π(θ) (i.e.
the PDF before any measurement) to compute the a posteriori
density.

One of the main issue of Bayesian analysis concerns the
choice of this prior. We have no a priori knowledge about the
behavior of the parameter θ. A total ignorance of knowledge
leads to a prior equal to θ−1 which means all order of
magnitudes have the same probability. The choice of θ is
subject to discussion and the reader should refer to [36,
Appendix B].

The quantity that can be actually measured is the sum
of the signal and the measurement noise. Hence the prior
should be accordingly given as a function of this sum. In
other words, it is not possible to have any information on a
signal with a level much smaller than the measurement noise.
Hence choosing a prior function of σ2

N + σ2
C ensures that

the corresponding magnitude order of σ2
C do not dominate

the a posteriori probability distribution. The measurement
noise level decreases as m−1, according to [5, Eq. 11], when
averaging over different spectra realizations m. So it should
depend to the number of dof ν = 2m (i.e. taking in account
the real and imaginary part). From these considerations, we
choose the following prior according to Fig. 4:

π(θ) =
1

θ
=

1

σ2
N/ν + σ2

C

, (22)

where σ2
N = (σ2

A + σ2
B)/2 is the known, “not random” aver-

aged noise level. Thus small level of σ2
C are distributed roughly

uniformly on a linear scale and large values are distributed
with equal probability for equal logarithmic intervals.
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σ2
C

−σ2
N/2

π(θ)

0

π(σ2
C)

Fig. 4. Prior of the sum of the noise σ2
N and signal σ2

C levels for the case
when there is no averaging spectra (i.e. ν = 2).

B. Check of the Posterior Probability Density Function

According to Eq. (20), for 2 dof or m = 1 spectrum average
and the particular case σ2

A = σ2
B = σ2

N , we know that

p
(
Ẑ|σ2

c

)
=

eẐ/σ2
N

2(σ2
N + σ2

C)
.

Therefore, the posterior PDF of the cross-spectrum estimator
is



p
(
σ2
C |Ẑ

)
∝ eẐ/σ2

N

2(σ2
N + σ2

C)(σ
2
N + 2σ2

C)
if Ẑ ≤ 0

p
(
σ2
C |Ẑ

)
∝ e−Ẑ/(σ2

N+2σ2
C)

2(σ2
N + σ2

C)(σ
2
N + 2σ2

C)
if Ẑ ≥ 0.

(23)
We have checked this posterior PDF by using the inverse

problem Monte-Carlo algorithm we already used in [31, §
IV.B.1)] and [28, § IV.A.]. The principle is the following:

S1: Select a target estimate Ẑ = Z0.
S2: Draw at random the signal level σ2

C according to

σ2
C = 10[η+u[0,1](emax−η)] − σ2

N

2

where η = log10(σ
2
N/2) and u[0,1] is a pseudo-random

function which is uniform within [0, 1]. This draw ensures
the parameter follows the prior of Eq. (22) up to 10emax .
We have chosen emax = 4 which is in accordance with
Fig. 4

S3: Draw at random (Gaussian) the noise and signal estimates
Â, B̂, Ĉ and compute the measurements X̂ , Ŷ according
to Eq. (8).

S4: Compute the estimate Ẑ.
S5: Compare the estimate Ẑ with the target Z0: if Ẑ = Z0±

p, store the current σ2
C value as it is able to generate

an estimate equal to the target; otherwise throw this σ2
C

value. We have chosen p = (Z0+σ2
N/2)/50 when Z0 > 0

and p = σ2
N/100 when Z0 ≤ 0.

S6: Go to step 2.
S7: Stop when a set of 10 000 σ2

C values is reached.

TABLE II
COMPARISON OF THE QUANTILES 95 % OBTAINED BY MONTE-CARLO

SIMULATION AND BY THE POSTERIOR CDF

Target Z0 (a.u.) 95 % bound True prob. (%)
Emp Theo

-1.00 14.04 13.65 94.90
0.00 15.11 13.65 94.53
0.10 14.52 14.27 94.91
0.20 14.98 14.90 94.96
0.32 15.87 15.66 94.94
0.50 17.37 16.90 94.87
1.00 20.40 20.14 94.93
2.00 27.61 28.65 95.18
3.16 38.19 39.08 95.08
5.00 57.15 56.55 94.91
10.00 109.66 104.82 94.78

The quantiles 95 % are computed for a noise level σ2
N = 1 a.u. The theoretical

bounds (denoted “Theo”) are obtained by numerical integration and then
correspond to the true probabilities (denoted “True prob.”).
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Fig. 5. Comparison of the empirical and theoretical posterior PDF for a noise
level σ2

N = 1 a.u and a target estimate Z0 = 1 a.u.

It must be noticed that such an algorithm is obviously not
able to justify the choice of the prior since this prior is included
in the algorithm. It will only ensure that no mistake has been
done in the expression of the posterior PDF.

Fig. 5 shows the comparison of the posterior PDF computed
according to Eq. (23) (blue curve) and the histogram obtained
thanks to the inverse problem Monte-Carlo algorithm (green
boxes) with a noise level σ2

N = 1 a.u and a target estimate
Z0 = 1 a.u. We can verify that the agreement is excellent.

Table II compares the 95% quantiles obtained by the inverse
problem Monte-Carlo algorithm (denoted “Emp” for empir-
ical) and by the integration of the posterior PDF (denoted
“Theo” for theoretical), i.e. the posterior CDF, for different
values of target and for a noise level σ2

N = 1. Here also
the agreement is very good whether for the 95% bounds or
for the true probabilities of the theoretical bounds. Moreover,
the fluctuations of the empirical bounds prove that the slight
differences between empirical and theoretical values are due to
the fluctuations of the empirical bounds because of the limited
number of realizations (10 000) of the inverse problem Monte-
Carlo algorithm.

C. KLT Method

The KLT method stands for “Karhunen-Loève Tranform”
and was developed in our previous paper [28]. In that paper,
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KLT has proved to be as efficient as well as rigorous method,
making the most of the property of “sufficient statistics”.
However the difference with [28] is that we don’t have the
“sufficient statistics” property (see [37]). It means that KLT
method will not give the same result as the cross-sprectrum
method whereas it should have in the case of “sufficient

statistics”. First let us remind the theory. Then in a second
time, we will explain what can bring the KLT method in
addition to the cross-specrum one.

1) A Posteriori Distribution: The KLT method relies on
the use of X̂ , and Ŷ measurements according to Eq. (2),
which are Gaussian rv instead of the product of ÂB, ÂC,
B̂C and Ĉ2, which are linear combination of Bessel of the
second kind functions and χ2 random variables. The main
advantage of this approach lays in the property of the Gaussian
rv which remain Gaussian when they are linearly combined.
However, these measurements are not independent. That is
why we aim to determine two linear combinations of these rv
that are independent one of each other. Hence we define the
covariance matrix between X̂ and Ŷ given by

M =

(
σ2
A + σ2

C σ2
C

σ2
C σ2

B + σ2
C

)
. (24)

The KLT consists in using the rv corresponding to the diago-
nalization of this matrix. In order to simplify the equations we
study solely the case where σ2

A = σ2
B = σ2

N . The eigenvalues
of M are

λ1 = σ2
N + 2σ2

C

λ2 = σ2
N

(25)

with the following normalized eigenvectors,

V1 = 1√
2

(
1
1

)
V2 = 1√

2

(
1
−1

)
(26)

The likelihood function is then given by

pKLT (Ẑ|σ2
C) =

2∏

i=1

1

λ
ν/2
i

exp

(
−
∑ν

j=1 ŵ
2
i,j

2λi

)
(27)

The numerator of the exponential argument is then the only
term that depends on the actual measurements:

ŵ2
i,j = V 2

i,1X̂
2
j + V 2

i,2Ŷ
2
j + 2Vi,1Vi,2Ẑj (28)

where ||Vi||2 =
∑

j V
2
i,j . So the KLT method involve the

spectral density X̂2, Ŷ 2 in addition to the cross-spectrum.
Keeping the same prior defined in Eq. (22) we have the

following a posteriori density,





pKLT (σ
2
C |Ẑ) ∝ 1

σ2
N/2 + σ2

C

· pKLT (Ẑ|σ2
C)

∫

R

pKLT (σ
2
C |Ẑ)dσ2

C = 1.

(29)
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Fig. 6. Comparison of the empirical and theoretical posterior PDF for VΓ and
KLT methods with a noise level σ2

N = 1 a.u and a target estimate Z0 = 5
a.u. KLTr1 and KLTr2 are the same method but differ by their combination
of spectral density X̂2 and Ŷ 2 which are fixed, see Table III, whereas they
are rv for the VΓ method.

2) Validation of the Method by Monte Carlo Simulation: In
order to validate the KLT method, we have compared its results
to Monte Carlo simulations. The algorithm is as follows:

S1: Select a noise level σ2
N = σ2

A = σ2
B , a target Ẑ = Z0

and a combination X̂ = X0, Ŷ = Y0 = Z0/X0 for all
the dof.

S2: Draw at random the signal level σ2
C according to

σ2
C = 10[η+u[0,1](emax−η)] − σ2

N

2

where η = log10(σ
2
N/2) and u[0,1] is a pseudo-random

function which is uniform within [0, 1]. This draw ensures
the parameter follows the prior of Eq. (22) up to 10emax .
We have chosen emax = 4.

S3: Draw at random (Gaussian) the noise and signal estimates
Â, B̂, Ĉ and compute the measurements X̂ , Ŷ according
to Eq. (8).

S4: Compute the estimates X̂ and Ŷ .
S5: Compare the estimates X̂ , Ŷ with the targets X0, Y0 for

all the dof: if X̂ = X0±p, Ŷ = Y0± q, store the current
σ2
C value as it is able to generate an estimate equal to the

target; otherwise throw this σ2
C value. We have chosen a

precision p, q of tenths of respectively X0 and Y0.
S6: Go to step 2.
S7: Stop when a set of n σ2

C values is reached. The number
of values n depending on the computation time.

3) Results and Discussion: Fig. 6 shows the comparison
between the PDF of VΓ method developed in § III and the PDF
of KLT method for two different realizations. The theoretical
post-PDF fits very well the empirical histogram for each
method. The “sufficient statistics” property being not valid,
different combinations of the spectral density X̂ and Ŷ were
tested and are given in Table III. Indeed KLTr1 and KLTr2

realizations do not give the same PDF unlike the VΓ method.
KLTr1 has then a peak which is higher than the VΓ method
whereas KLTr2 has a smaller one. This is explained by a more
stringent confidence interval for KLTr1 than VΓ, and a less
stringent for KLTr2 as refered in Table III. The 95 % quantiles
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TABLE III
COMPARISON OF THE 95 % QUANTILES OBTAINED BY MONTE-CARLO

SIMULATION (EMPIRICAL) AND BY THE POSTERIOR CDF

Method Measurement 95 % bound
X̂′ X̂′′ Ŷ ′ Ŷ ′′ Emp Theo

VΓ rv rv rv rv 56.4 56.6
KLTr1 1.6 1.6 1.6 1.6 48.4 48.3
KLTr2 4.0 0.6 2.5 1.0 82.3 80.8

The 95 % quantiles are computed for a noise level σ2
N = 1 and a target

estimate Z0 = 5 a.u.

obtained with MC simulations are in a good agreement with
the theoretical ones, especially for KLTr1 and VΓ methods. It
is explained by the number of data which is not the same for all
of these simulations. VΓ, KLTr1 and KLTr2 have respectively
1 000 000; 500 000 and 245 000 data. VΓ MC simulations
takes only 2 minutes whereas it needs respectively 54 hours
and 35 days using 17 cores, for KLTr1 and KLTr2. KLTr1 is
chosen to have the spectral density combination which leads
to the most stringent confidence interval. Whereas KLTr2 is
chosen to be more defavourable than the general case VΓ using
only the knowledge of the cross-spectrum measurement.

The KLT method can then have a slightly more stringent
confidence interval than the cross-spectrum method using VΓ
for certain case. However it requires to have the knowledge
of both spectral density of each channel. It then uses more
information, the “sufficient statistics” property being not valid.
So the KLT method is preferred when the spectral densities
are known.

V. CONCLUSION

The method developed, VΓ, provides the Probability Den-
sity Function of the signal level studied when using the cross-
spectrum method. It allows the determination of confidence
intervals through numerical integration, where only the high
bound has a physical meaning. It is especially relevant for one
or several measurements of the cross-spectrum as the PDF will
tend to a Gaussian distribution for many dof.

VΓ is a rigorous method since it is the exact density
solution of the cross-spectrum real part statistics, with no
approximation. We shall notice that the noise level of each
measurement instruments has to be known. If these noise level
are the same except at a factor of 4 and higher, we can assume
that all the theoretical part of orthogonalizing and the rotation
of the basis is not necessary. This method works whatever the
number of measurement spectra and noise level.

However using KLT method to compute the confidence in-
terval is a more rigorous method because it uses the knowledge
of the spectral density in addition to the cross-spectrum. That
is why we recommend to use the KLT method which turns
out to be a slightly better estimator than VΓ.

VI. ACKNOWLEDGEMENT

This work was partially funded by the ANR Programmes
d’Investissement d’Avenir (PIA) Oscillator IMP (Project 11-
EQPX-0033) and FIRST-TF (Project 10-LABX-0048).

REFERENCES

[1] R. B. Blackman and J. W. Tuckey. The Measurement of Power Spectra.
Dover, 1959.

[2] Gwilym M. Jenkins and Donald G. Watts. Spectral Analysis and its

Applications. Holden Day, San Francisco, CA, 1968.
[3] O. E. Brigham. The Fast Fourier Transform and its Applications.

Prentice-Hall, 1988.
[4] D. B. Percival and A. T. Walden. Spectral Analysis for Physical

Applications. Cambridge, Cambridge, UK, 1993.
[5] E. Rubiola and F. Vernotte. The cross-spectrum experimental method.

arXiv:1003.0113v1, March 2010.
[6] R. H. Dicke. The measurement of thermal radiation at microwave

frequencies. Rev. Sci. Instrum., 17(7):268–275, July 1946.
[7] M. Sampietro, L. Fasoli, and G. Ferrari. Spectrum analyzer with noise

reduction by cross-correlation technique on two channels. Rev. Sci.

Instrum., 70(5):2520–2525, May 1999.
[8] A. Hati, C. W. Nelson, and D. A. Howe. Cross-spectrum measurement of

thermal-noise limited oscillators. Rev. Sci. Instrum., 87:034708, March
2016.

[9] Y. Gruson, V. Giordano, U. L. Rohde, A. K. Poddar, and E. Rubiola.
Cross-spectrum pm noise measurement, thermal energy, and metamate-
rial filters. IEEE Trans. Ultras. Ferroelec. Freq. Contr., 64(3):634–642,
March 2017.

[10] A. C. Cárdenas-Olaya, E. Rubiola, Friedt J.-M., P.-Y. Bourgeois, M. Or-
tolano, S. Micalizio, and C. E. Calosso. Noise characterization of analog
to digital converters for amplitude and phase noise measurements. Rev.

Sci. Instrum., 88:065108 1–9, June 2017.
[11] G. Feldhaus and A. Roth. A 1 MHz to 50 GHz direct down-conversion

phase noise analyzer with cross-correlation. In Proc. Europ. Freq. Time

Forum, York, UK, April 4-7 2016.
[12] T. M. Fortier, C. W. Nelson, A. Hati, F. Quinlan, J. Taylor, H. Jiang,

C. W. Chou, T. Rosenband, A. Lemke, N. Ludlow, D. Howe, C. W.
Oates, and S. A. Diddams. Sub-femtosecond absolute timing jitter
with a 10 ghz hybrid photonic-microwave oscillator. Appl. Phys. Lett.,
100:231111 1–3, June 7 2012.

[13] E. Rubiola. The measurement of am noise of oscillators.
arXiv:physics/0512082, December 2005.

[14] A. H. Verbruggen, H. Stoll, K. Heeck, and R. H. Koch. A novel tech-
nique for measuring resistance fluctuations independently of background
noise. Appl. Phys. A, 48:233–236, March 1989.

[15] C. M. Allred. A precision noise spectral density comparator. J. Res.

NBS, 66C:323–330, October-December 1962.
[16] J. A. Nanzer and R. L. Rogers. Applying millimeter-wave correlation

radiometry to the detection of self-luminous objects at close range. IEEE

Trans. Microw. Theory Tech., 56(9):2054–2061, September 2008.
[17] D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbel-

dam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and Gallop J. C.
The status of Johnson noise thermometry. Metrologia, 33(4):325–335,
August 1996.

[18] J. P. W. Verbiest, M. Bailes, W. A. Coles, G. B. Hobbs, W. Van Straten,
D. J. Champion, F. A. Jenet, R. N. Manchester, N. D. R. Bhat, J. M.
Sarkissian, et al. Timing stability of millisecond pulsars and prospects
for gravitational-wave detection. Month. Not. Roy. Astronom. Soc.,
400(2):951–968, 2009.

[19] S. Detweiler. Pulsar timing measurements and the search for gravita-
tional waves. Am. Astronom. Soc., 234:1100–1104, December 1979.

[20] R. W. Hellings and G. S. Downs. Upper limits on the isotopic
gravitational radiation background frompulsar timing analysis. Am.

Astronom. Soc., 265:39–42, February 1983.
[21] S. R. Taylor, M. Vallisneri, J. A. Ellis, C. M. F. Mingarelli, T. J. W. Lazio,

and R. van Haasteren. Are we there yet? time to detection of nanohertz
gravitational waves based on pulsar-timing array limits. Astrophys. J.

Lett., 819(1):6, 2016.
[22] D. Perrodin and A. Sesana. Radio Pulsars: Testing Gravity and

Detecting Gravitational Waves, volume 457 of Astrophysics and Space

Science Library. Springer, Cham, 2018.
[23] S. Drasco and E. E. Flanagan. Detection methods for non-gaussian

gravitational wave stochastic backgrounds. Phys. Rev. D, 67(8):082003,
2003.

[24] N. J. Cornish and J. D. Romano. Towards a unified treatment of
gravitational-wave data analysis. Phys. Rev. D, 87(12):122003, 2013.

[25] C. G. Bassa, G. H. Janssen, R. Karuppusamy, M. Kramer, K. J. Lee,
K. Liu, J. McKee, D. Perrodin, M. Purver, S. Sanidas, R. Smits, and
B. W. Stappers. Leap: the large european array for pulsars. Month. Not.

Roy. Astronom. Soc., 456(2):2196–2209, December 2015.



11

[26] S. Chen, F. Vernotte, and E. Rubiola. Applying clock comparison
methods to pulsar timing observations. MNRAS, 2020.

[27] International vocabulary of basic and general terms in metrology (VIM).
International Organization for Standardization (ISO), 2004.

[28] E. Lantz, C. E. Calosso, E. Rubiola, V. Giordano, C. Fluhr, B. Dubois,
and F. Vernotte. KLTS: A rigorous method to compute the confidence
intervals for the three-cornered hat and for Groslambert covariance.
IEEE Trans. Ultras. Ferroelec. Freq. Contr., 66(12):1942–1949, Decem-
ber 2019.

[29] N. J. Kasdin. Discrete simulation of colored noise and stochastic
processes and 1/f power law noise generation. Proceedings of the IEEE,
83(5):802–827, May 1995.

[30] F. Vernotte, G. Zalamansky, and E. Lantz. Time stability characterization
and spectral aliasing part i: a time-domain approach. Metrologia,
35:723–730, 1998.

[31] F. Vernotte and E. Lantz. Three-cornered hat and Groslambert covari-
ance: A first attempt to assess the uncertainty domains. IEEE Trans.

Ultras. Ferroelec. Freq. Contr., 66(3):643–653, March 2019.
[32] M. Haas and C. Pigorsch. Financial Economics, Fat-Tailed Distribu-

tions, pages 3404–3435. Springer New York, New York, NY, 2009.
[33] B. Sorin and P. Thionet. Lois de probabilités de bessel. Rev. Stat. App.,

16(4):65–72, 1968.
[34] D. Madan and E. Seneta. The variance gamma (v.g.) model for share

market returns. J. Business, 63(4):511–524, 1990.
[35] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge

University Press, 1922.
[36] M. P. McHugh, G. Zalamansky, F. Vernotte, and E. Lantz. Pulsar timing

and the upper limits on a gravitational wave background : a Bayesian
approach. Phys. Rev. D, 54(10):5993–6000, November 1996.

[37] G. Saporta. Probabilités, analyse des données et statistique. Technip,
1990.



176 Appendix D. Publications



1

The Statistics of the Cross-Spectrum and the
Spectrum Average: Generalization to Multiple

Instruments
Antoine Baudiquez, Éric Lantz, Enrico Rubiola, François Vernotte

Abstract—This article addresses the measurement of the power
spectrum of red noise processes at the lowest frequencies, where
the minimum acquisition time is so long that it is impossible
to average on a sequence of data record. Therefore, averaging
is possible only on simultaneous observation of multiple instru-
ments. This is the case of radio astronomy, which we take as the
paradigm, but examples may be found in other fields such as
climatology and geodesy.
We compare the Bayesian confidence interval of the red noise
parameter using two estimators, the spectrum average and the
cross-spectrum. While the spectrum average is widely used, the
cross-spectrum using multiple instruments is rather uncommon.
With two instruments, the cross-spectrum estimator leads to
the Variance-Gamma distribution. A generalization to q devices
based on the Fourier transform of characteristic functions is
provided, with the example of the observation of millisecond
pulsars with 5 radio telescopes. The simulations show that the
spectrum average is by a small amount more efficient than the
cross-spectrum, chiefly when the background exceeds the signal.
However some notable differences between their upper limit
indicate that it should be wiser to compute both estimators.

Index Terms—Bayesian statistics, Monte Carlo simulation, con-
fidence interval, cross-spectrum, spectrum average, Karhunen-
Loève transform, QR decomposition, characteristic function,
probability density function.

I. INTRODUCTION

The term red noise refers to a variety of processes sharing
the property that the power spectral density (PSD) grows

at low frequency as 1/f2 (Brownian noise) or 1/fα, with
α > 2. We are interested in the estimation of the PSD of such
random signals out of the background noise of the instrument
in the specific case of very slow phenomena, which take too
long acquisition time for the average on a sequence of data
sets to be viable. Therefore, averaging out the background
is possible only by exploiting simultaneous measurements of
the same signal taken with multiple instruments, under the
obvious hypothesis that they are independent. The frequency
stability of the millisecond pulsars is the example we have
in mind. Such rapidly rotating neutron stars, emitting highly
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E. Rubiola is also with the Division of Quantum Metrology and Nanotech-
nology, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Turin, Italy.
Enrico’s ORCID is 0000-0002-5364-1835

F. Vernotte is with FEMTO-ST, Department of Time and Frequency,
Observatory THETA, UMR 6174 CNRS, Université Bourgogne Franche-
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stable periodic pulses out of the magnetic poles, rival the best
atomic clocks [1]–[4]. Among other fields, slow phenomena
are found in climatology [5] and geodesy, the latter nowadays
measured with Very Large Baseline Interferometry [6]. The
measurement of noise and phase noise with fully digital in-
struments is another appealing application because increasing
the number of channels is reasonably simple. The phase noise
of oscillators can be measured with the multi-channel tracking
DDS [7]. An improved 16-channel version of the Tracking
DDS is now a semi-commercial instrument (we have recently
purchased two beta-test samples), albeit there is still no official
announcement. In Si, Ge and GaAs semiconductors, low 1/f
noise is a quality indicator related to the effective number of
defects [8].
With the purposes stated in mind, we compare the efficiency
of the spectrum average (s.a) and with the cross-spectrum (c-
s) measuring the signal with q instruments simultaneously.
The s.a estimator is the average of the q observed spectra
Si, weighted with the background noise σ2

N,i of the i-th
instrument. The c-s method is the average of the all com-
binatorial choices of the cross-spectrum Sj,i, i 6= j. The s.a
is the classical estimator used in these cases [9], while the
c-s is rather uncommon. Data are analyzed with the Bayesian
statistics, also known as the inverse problem, which consists of
estimating the most probable value of the signal (the slowest
spectral components) from the experimental outcomes and
their statistical properties. We take the 95% upper limit as the
efficiency criterion. Accordingly, the most efficient estimator
is the one that provides the most stringent upper limit on the
variance of the signal with the same data set.
Our previous article [10] shows that the Variance-Gamma
(V Γ) distribution is the exact solution for the probability
density function (PDF) of the cross-spectrum in the case of
two instruments. We generalize the result to the case of the
cross spectrum of q instruments, each with its own background
noise σ2

Ni
, assessing the confidence interval on the signal level

σ2
R. Of course, the PDF is no longer a V Γ, and can only be

calculated numerically. The case of equally noisy instruments
is simpler, and at first sight similar to that of q = 2, but it has
no analytical solution.
We run a simulation with up to five instruments, inspired to
the LEAP experiment [11]. Such experiment gathers the five
largest European radio telescopes (RTs) in order to increase
the sensitivity of high-precision pulsar timing. Interestingly,
Pulsar Timing Arrays seem a promising option to explore the
low-frequency gravity waves crossing our Galaxy [12], [13].
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Fig. 1: Array of q instruments measuring the signal r(t). Each
instrument adds a white noise to the output x(t) whose Fourier
transform is X(f). Then the estimate Ŝ is computed.

The c-s estimator commonly used in the frequency metrology
has recently been used in [14] to show the detection limit
of correlated red noise. Hence defining a confidence interval
on this estimator and comparing it with the commonly used
s.a will give hints on which estimator has to be privileged to
improve the sensitivity.
This article is intended to compare the s.a and the c-s
estimators generalized to multiple instruments measuring a
random signal, e.g. a red noise. In this respect, we define
both estimators of the power spectral density and describe
their statistical properties in Section II. Then in Section III
we gives their probability density function. Sections IV and V
compare the confidence interval of the red noise respectively
between the s.a and the Karhunen-Loève transform (KLT), and
between the s.a and the c-s. Conclusions are presented in Sec.
VI.

II. TWO ESTIMATORS OF THE PSD

A. Spectral Measurement

Let us consider a red noise r(t) which is measured by q
independent instruments as shown in Fig. 1. We assume that
each instrument adds a white noise ni(t) to the measurement
and that all these white noises are uncorrelated. In the follow-
ing, we call the red noise the “signal” and the white noise from
the measurement instrument is referred as the “measurement
noise”. The output of each channel is then

xi = r + ni ↔ Xi = R+Ni (1)

where the subscript i corresponds to the i-th instrument, ↔
stands for the Fourier transform and inverse Fourier transform
pair, lower case is time domain, upper case is frequency
domain, and the variables t and f are implied. Let us remind
that the Fourier transform of a white noise is a white noise, at
least for sampled signals. Indeed even if continuous pure white
noise have an infinite power, the Fourier transform for discrete
simulation can be defined. A realistic white noise corresponds
to a Markov process of the first order, more details about
colored noise are given in [15].
On the other hand, a red noise can be described as a filtered
white noise. Its spectrum is then the product of a white
spectrum by a deterministic function; so the random part of a
red noise is uncorrelated for each frequency bin. Consequently
in term of random variable, working in the frequency domain
gives a precious advantage because the Fourier components
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[|
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i(
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|2
]

log(f)

Periodogram
PSD

Fig. 2: Periodogram of x (white noise plus red noise). The
PSD is the expectation of the periodogram.

(frequency bins) are statistically independent unlike the time
data.
In the following we focus solely on one frequency bin, thanks
to energy equipartition it follows,

V [Ni] = 2V [ℜ [Ni]] = 2V [ℑ [Ni]] = σ2
N,i

V [R] = 2V [ℜ [R]] = 2V [ℑ [R]] = σ2
R

(2)

where V[·], ℜ[·], ℑ[·] respectively denote the variance, the real
and imaginary part of the quantity within the brackets.

B. Periodogram and Power Spectral Density

First, let us recall some basics of frequency analysis. Using
a data record of duration T sampled at a suitable frequency,
the periodogram is

Px(f) =
2

T
|X(f)|2, f > 0 (3)

where the factor “2” is needed for energy conservation after
deleting the negative frequencies. The expectation of the
periodogram is the Power Spectral Density (PSD),

Sx(f) = E

[
2

T
|X(f)|2

]
, f > 0. (4)

Figure 2 shows the periodogram and the PSD. We estimate
the PSD as the average periodogram, with the ultimate goal of
expecting the red noise parameters of r out of the measurement
noise n. Of course r is the same for all instruments, while the
ni are specific to the i-th instrument and its environnement.
The total duration of the experiment is the major problem, as
the lowest frequency of interest sets T . In turn, a long T goes
with a small number p of averages because the total duration
of the experiment is pT . In this paper we focus on the slowest
red noise phenomena, up to years, for which we have to set
p = 1. In other words, the phenomena of interest are so slow
that we cannot average on multiple acquisitions.

C. Estimators

We are now focusing on one bin of the periodogram
of a single simultaneous measurement with q instruments,
e.g. f0 as represented on Fig. 2. Let us emphasize on the
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term periodogram which designates a unique realization of
the red noise since all instruments observe this red noise
realization at the same time. Nevertheless, taking into account
the uncorrelated white noises coming from the instruments,
we have to deal with the PSD S. One bin of S represents the
power in a given bandwidth, i.e. the 2-nd central moment, or
variance. Hereinafter, we work on a generic bin, thus S(f) at
that frequency is replaced with σ2.
Because the Ni are all different, it is appropriate to use a
weighted average, where the weights αi are to be found for
the optimum detection of R. We denote the estimates with a
“hat”, then

µ̂ =

∑q
i αiXi∑q
i αi

, (5)

where q is the number of instruments. The variance of the
estimate µ̂ is

V [µ̂] =

∑q
i α

2
i

(
σ2
N,i + σ2

R

)

[
∑q

i αi]
2 . (6)

An optimal choice is obtained by solving,

∂V [µ̂]

∂αi
= 0 (7)

which leads to the solution,

αi =
1

σ2
N,i

. (8)

Therefore the inverse-variance weighted average, described in
[16] with applications examples, has the least variance among
all weighted averages. Then Eq. (6) becomes

σ2
µ = V [µ̂] =

(
q∑

i

1

σ2
N,i

)−1

. (9)

Let us define now the two estimators of interest: the spectrum
average weighted by the noise variance σ2

N,i and the cross-
spectrum,

Ŝsa =

{
ℜ
[
σ2
µ

q∑

i

Xi

σ2
N,i

]}2

+

{
ℑ
[
σ2
µ

q∑

i

Xi

σ2
N,i

]}2

Ŝcs = 〈ℜ
[
Xi · X̃j

]
〉m with i 6= j.

(10)

Moreover σ2
µ corresponds to the noise weight normalization

factor defined in Eq. (9). Finally 〈·〉 stands for the m average

over the different combinations of instruments with m =

(
q

2

)

and ·̃ stands for the complex conjugate of the quantity which
is below. For better readability, we have omitted in Eq. (10)
a factor 2/T , where T is the measurement time (acquisition
of the data record for one FFT), necessary for S(f) to have
the dimension of a PSD, and the factor fix the total power
after deleting the negative frequencies. In addition, only the
random part has a direct influence on the probability density
function. Denoting E[·] the mathematical expectation of the
quantity within the brackets,





E

[
Ŝsa

]
= σ2

R + σ2
µ

E

[
Ŝcs

]
= σ2

R

(11)

which means that the spectrum average estimator is biased.
Usually one removes the bias to have the s.a estimate average
over realizations which tends towards the sought signal level
σ2
R. This gives a clear advantage to the c-s estimator. However,

we will see that the computation of the confidence interval
over the signal level σ2

R requires an estimation of this bias σ2
µ

whatever the chosen estimator, s.a or c-s. Therefore we want
to estimate the PSD and we assume it follows a 1/fα power
law, then we only have to estimate a level and exponent of
the first frequency bins.
We now compare the estimator defined in Eq. (10) by de-
termining their variance. We can demonstrate provided that
∀i, σ2

N,i = σ2
N (see Annexe A),

V

[
Ŝcs

]
≈





V

[
Ŝsa

]
if σ2

R ≫ σ2
N

q
q−1V

[
Ŝsa

]
if σ2

R ≪ σ2
N .

(12)

This is confirmed by Fig. 3 which exhibits the variance of
the estimates of both estimators applied to a signal composed
of a mixture of uncorrelated white noise of level 1 arbitrary
unit (a.u.) and a common f−4 noise of level 4096 a.u. for 2
instruments. Therefore the variance decreases in f−8 and Fig.
3 compares these variances to the square of the PSD. At f = 4
a.u., the signal PSD is 16 times higher than the white level
and therefore its square is 256 times higher. In this case, the
variances of both estimators coincide. On the other hand, for
frequencies higher than 16 a.u., the signal PSD is less than 16
times lower than the white level (256 for their squares) and
the variance of the c-s estimates is 2 times higher than the
variance of the s.a estimates. This seems to indicate a better
efficiency of the s.a estimator. Indeed the spectrum average
estimator is a sufficient estimator which means of minimal
variance.
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Fig. 3: Variance of the estimate with the signal variance which
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α)2, where σ2

R = 4096 a.u. is the signal
level and α = 4 the red noise exponent. The noise model is a
white noise of level σ2

N = 1 a.u. with 2 instruments.
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However what about the PDF of the estimates knowing the
parameter σ2

R for a given frequency?

III. PROBABILITY DENSITY FUNCTION

A. Spectrum Average Method

The spectrum average estimator leads to the following χ2

distribution with 2 degrees of freedom resulting from the real
and imaginary part of the spectrum,

p(Ŝsa|σ2
R) =

e−
Ŝsa
2σ2

2σ2
(13)

where,

σ2 = 1
2

(
σ2
µ + σ2

R

)
. (14)

where σ2
µ is the weighted noise level according to Eq. (9) and

σ2
R the signal level of interest.

B. Karhunen-Loève Transform

The KLT method, denoting to the Karhunen-Loève trans-
form, has been developed in [17]. It uses the statistics of the
data themselves instead of the statistics of the estimates. This
method has the advantage to combine linearly independent
Gaussian estimates. Furthermore it also forms a sufficient
statistics like the s.a method. It is based on determining the
covariance matrix M associated to the real or imaginary part
of the measurement Xi obtained by the q instruments,





Mii =
1

2

(
σ2
N,i + σ2

R

)

Mij =
1

2
σ2
R with i 6= j

(15)

where the extra factors 1/2 come from Eq. (2). This covariance
matrix has to be diagonalized and we denote the eigenvalues
λi. Their associated normalized eigenvectors are Vi and the
PDF is then given by

p(ŜKLT|σ2
R) =

q∏

i=1

1

(2πλi)
ν/2

e

(
−

∑ν
j=1 w2

ij
2λi

)

(16)

where j highlights the real and imaginary part obtained
through the Fourier transform therefore ν = 2. Let us
remind that X corresponds to the matrix containing the set
of Fourier transform of the measurements at the output of
each instrument. The numerator of the exponential argument
is then

w = X · V (17)

where V are the eigenvectors obtained from the diagonalized
covariance matrix.

C. Cross-spectrum

The cross-spectrum estimator leads to the variance-gamma
(VΓ) distribution for 2 instruments as described in Section III
in [10] but for more than 2 instruments it is no longer the
case. Having no exact solution known nowadays, we propose
a solution based on the characteristic function. Expanding the
model from the case of 2 instruments, we define a basis such
as in [10],

B =




σN,1/2 σN,1/2 . . . . . . σN,1/2
σN,2/2 −σN,2/2 0 . . . 0

0 0 −σN,3/2 . . . 0
...

...
...

. . . −σN,q/2
σR 0 0 . . . 0




. (18)

We apply the DGEQRF LAPACK subroutine on B. The
outputs enable the computation of the product of elementary
reflectors which is a matrix Q(q+1, q+1). Then we define W
the matrix where each column contains the standard deviation
of the spectrum according to Eq. (1) as

W =
1√
2




σN,1 0 . . . . . . 0
0 σN,2 0 . . . 0
0 0 σN,3 . . . 0
...

...
...

. . . σN,q

σR σR σR . . . σR




. (19)

All the measurement noises are independent, as assumed,
whereas the signal is common. Then the columns of W
are projected onto the orthogonal basis Q and each pair of
cross-spectra according to Eq. (10) is determined. Finally we
compute the eigenvalues λj of the resulting components by
using the DSYEV LAPACK subroutine. This leads to a linear
combination of χ2 distribution as follows,

Ŝcs =

q∑

j

λjχ
2
k (20)

where k is the number of degrees of freedom corresponding
to each eigenvalue, e.g. equal to 2 for the real and imaginary
part without degeneration. In the special case of 2 instruments
we obtain the subtraction of two χ2 random variables with
the same number of degrees of freedom. The characteristic
function of the χ2

k distribution is defined as

φj(t) = (1− 2iλjt)
−k/2 (21)

where i is the imaginary unit and we apply a variable change of
−t for the negative eigenvalues. The χ2 distributions according
to Eq. (20) being independent, the characteristic function of
the c-s becomes

φ(t) =

q∏

j

φj(t). (22)

It leads to the moment generating function of the VΓ dis-
tribution for 2 instruments but it is no longer the case for
more instruments. When all the instruments have the same
level of intrinsic noise σ2

n, the diagonalization of the matrix W
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defined by Eq. (19) leads to two eigenvalues. One is unique
and the second one has a degeneration of q − 1 with q the
number of instruments. Consequently, it leads to the difference
of two χ2 random variables with different degrees of freedom.
However even if it looks like the case with 2 instruments, the
difference in the degrees of freedom of the χ2 distributions
has no analytical solution. Therefore the probability density
function of the c-s for any noise level is defined as

p(Ŝcs|σ2
R) =

1

2π

∫

R

e−itŜcs φ(t)dt. (23)

We perform the integration of the real part of the function by
using the Simpson method only on the positive reals because
the real part of this function is even whereas the imaginary
part is odd. Figure 4 shows that the theoretical probability
density function fits very well the histogram obtained by 107

Monte Carlo simulations for 5 instruments. The variance of
each white noise is the same σ2

N = 10 a.u. whereas the signal
level is σ2

R = 6 a.u.

D. Bayesian inference

1) A posteriori distribution: We seek to determine a con-
fidence interval on σ2

R, but Eq. (13), (16) and (23) define the
PDF of a set of measurement X given the sought parameter
σ2
R. So we have to solve the inverse problem which means

to determine the PDF of σ2
R given a set of measurement X

called the posterior distribution. The Bayes theorem leads to
the following relation,

{
p(σ2

R|X) ∝ p(X|σ2
R) · π(σ2

R)

∫∞
0

p(σ2
R|X)dσ2

R = 1
(24)

where π(σ2
R) is the prior, i.e. the PDF before any measure-

ment. One of the main issue of Bayesian analysis concerns
the choice of this prior.

2) Choice of the prior: In order to be as general as possible,
we will assume a total ignorance of the signal level. In such
a case, it is generally considered that any order of magnitude
has the same probability which suggests a constant prior in a
logarithmic scale, i.e π

(
σ2
R

)
= 1/σ2

R. However, our perfect

knowledge of the measurement noise level induces an implicit
scale factor. In other words, since we did not remove the ”bias”
σ2
µ in Eq. (11), the s.a estimator is shifted by σ2

µ. In a very
similar case [18], we decided that the true parameter should
be the sum of both levels θ = σ2

µ + σ2
R. Moreover according

to Eq. (9) higher noise will have lower weight and in our
case, since the mathematical expectation of the s.a estimator
is σ2

µ + σ2
R, it comes naturally that the true parameter should

be:

θ = σ2
µ + σ2

R. (25)

From these considerations, we will choose π(θ) = 1/θ =
1

σ2
µ+σ2

R

and then, our prior for the s.a estimator will be

π(σ2
R) ∝

1

σ2
µ + σ2

R

. (26)

In order to be fair in the trial of c-s against s.a, the same prior
will be used for both estimators.
In the following we will compare the different methods,
starting with the spectrum average and KLT in Sec. IV.

IV. SPECTRUM AVERAGE AND KLT COMPARISON

A. A particular case: all the instruments have the same

variance

Let us define ∀i, σ2
N,i = σ2

N , i.e. all the q instruments have
the same noise level. At a first step we determine the s.a PDF,
in this case according to Eq. (9) and (2), the variance defined
by Eq. (14) leads to the following expression,

σ2 =
1

2

(
σ2
N

q
+ σ2

R

)
. (27)

From Eq. (10), the estimate Ŝsa now becomes

Ŝsa =

{
ℜ
[
σ2
µ

q∑

i

Xi

σ2
N,i

]}2

+

{
ℑ
[
σ2
µ

q∑

i

Xi

σ2
N,i

]}2

=
1

q2



{
ℜ
[

q∑

i

Xi

]}2

+

{
ℑ
[

q∑

i

Xi

]}2



(28)
According to Eq. (13), the s.a PDF is given by

p(Ŝsa|σ2
R) =

e

−
1
q2
{ℜ[

∑q
i

Xi]
2+ℑ[

∑q
i

Xi]
2}

σ2
N
q

+σ2
R

σ2
N

q + σ2
R

. (29)

In a second step let us define the KLT PDF. The eigenvalues
of the covariance matrix resulting from Eq. (15) are given by

λ1 = 1
2

(
σ2
N + qσ2

R

)

λi = 1
2σ

2
N with i ∈ {2, ..., q}

(30)

The first and highest eigenvalue being the only one to depend
of σ2

R, we solely define its associated eigenvector

V1 =
Jq,1√
q

(31)
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where Jq,1 is the all-ones column vector. Then the numerator
in the exponential in Eq. (16) is

∑ν
j ŵ

2
1,j =

∑ν
j [Xj · V1]

2

= 1
q

∑ν
j [Xj · Jq,1]2

= 1
q

∑ν
j [
∑q

i Xij ]
2

= 1
q

{
ℜ [
∑q

i Xi]
2
+ ℑ [

∑q
i Xi]

2
}
.

(32)

The KLT PDF defined by Eq. (16) is given by

p(ŜKLT|σ2
R) = C

e
−

1
q{ℜ[

∑q
i

Xi]
2+ℑ[

∑q
i

Xi]
2}

σ2
N

+qσ2
R

π (σ2
N + qσ2

R)
(33)

where C is the Gaussian remaining product with a variance
depending only on the measurement noise level. However what
we want to characterize is not the estimates but the parameter
σ2
R. According to Eq. (24), the PDF of the true parameter σ2

R

is proportional to the prior π(σ2
R) multiplied respectively by

Eq. (29) and (33) for the s.a and KLT estimates. The Bayes
theorem leads then to

p(σ2
R|Ŝsa) ∝ π(σ2

R)
e
−

1
q{ℜ[

∑q
i

Xi]
2+ℑ[

∑q
i

Xi]
2}

σ2
N

+qσ2
R

σ2
N + qσ2

R
(34)

and

p(σ2
R|ŜKLT) ∝ π(σ2

R)
e
−

1
q{ℜ[

∑q
i

Xi]
2+ℑ[

∑q
i

Xi]
2}

σ2
N

+qσ2
R

σ2
N + qσ2

R

. (35)

Multiplying respectively Eq. (34) and (35) by a factor 1/q and
π does not change the PDF since it is normalized. It is exactly
the same for Eq. (35) where C does not depend on σ2

R and
vanish through the normalization. Therefore both expressions
are exactly the same. It should also be noted that the noise level
σ2
N is necessary in both cases and the bias does not influence

the sought parameter density whereas it does regarding the
estimates. This implies a very interesting consequence: both
PDF for the s.a and KLT leads to the exact same confidence
interval for the same noise level.

B. General case

In this part any number of instruments and different noise
level for each of them can be considered. In Section IV-A,
we showed analytically that both methods lead to the same
PDF of the signal level knowing the estimates in the event
that all noise levels are the same. However when each noise
level is different Eq. (30) giving the relation between the
eigenvalues and the signal becomes much more complicated
without degeneration. In this case, let us consider a number of
instruments solely up to 5, refering as instance to the number
of radio telescopes (RTs) part of the LEAP project. Then we
make several empirical comparisons by computing the upper
limit at 95% for the spectrum average and KLT methods. It

TABLE I: Upper limit average of the parameter σ2
R taking into

account 2 to 5 RTs. These data were obtained from a set of
1 000 simulated spectra. The signal and noise level used for
the computation are σ2

R = 1 and σ2
N,i = i where i is the index

of the RT.

Spectrum average / KLT 95% upper limit
RTs number Mean Median Std Min Max

2 17.44 12.88 3.10 6.30 115.32
3 16.32 11.78 2.39 5.16 91.78
4 15.66 11.10 2.95 4.54 108.82
5 14.84 10.67 2.28 4.14 86.99

should be noticed that the 5% lower bound has no interest
since we are more particularly interested in the case where
the signal is weaker than the noise level. This bound then
greatly depends on the prior and is very close to zero.
Table I gives the average over 1 000 realizations of the 95%
upper bound for 2 to 5 RTs. The signal and noise levels are
respectively σ2

R = 1 a.u. and σ2
N,i = i a.u. where i is the i-th

RT. Then the 2-nd and 3-rd RT are respectively 2 and 3 times
more noisy than the first one and so forth.
First, these comparisons show as expected that the 95% bounds
obtained by both estimators as in Sec. IV-A for the same noise
variance, are exactly the same.
Second, the mean and median of the 95% upper limit of
the s.a and KLT estimates obtained over 1 000 realizations
are decreasing as the number of RTs increases. Therefore
adding a new instrument to the array, as long as we have
a perfect knowledge of its noise level, necessarily contributes
to lowering the upper limit and then improve the parameter
estimation. The maximum value is not really significant since
the tail of the distribution is very long and thin.
Finally, it should be noticed that both methods require the
noise level knowledge for the expression of the probability
density function. The spectrum average method being the
fastest way to compute the confidence interval is then to
be privileged. Therefore we will only compare the spectrum
average method with the cross-spectrum in the next section.

V. 95% UPPER LIMIT: SPECTRUM AVERAGE VS

CROSS-SPECTRUM

We have set the direct problem, i.e. the statistics of the
s.a or c-s knowing the signal level and noise level (which
is assumed to be known), respectively in Sections III-A and
III-C. Now we tackle the inverse problem from the direct
problem, i.e. the statistics of the signal level knowing the s.a
or c-s estimate. The Bayes theorem enables us to establish this
link as described in section III-D. The posterior distribution
of the s.a and c-s are given by

p(σ2
R|Ŝsa) ∝ 1

(σ2
µ+σ2

R
)2
e

−Ŝsa
σ2
µ+σ2

R (36)

and
p(σ2

R|Ŝcs) ∝ 1
2π(σ2

µ+σ2
R
)

∫
R
e−itŜcs φ(t)dt (37)

where σ2
µ is the noise variance weighting according to Eq. (9).

Let us describe our simulation algorithm in order to assess the
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95% upper limit.
First simulation (S1 to S3): simulate a set of real data from
q instruments, assuming the red noise level is known (as well
as, of course, the measurement noise levels).

S1: Assign the number of RTs, the noise variance of each
one and the sought true signal level.

S2: Generate a set of spectral measurement according to Eq.
(1)

S3: Compute the s.a and c-s estimates, as stated in Eq. (10),
which are now fixed as parameters.

Second simulation: we no longer modify the data (these are
acquired measurement results) and we look for a confidence
interval on the red noise, assuming the level of the measure-
ment noise is known.

S4: Define any basis and perform an orthogonalization and
normalization of it by using the DGEQRF subroutine
from LAPACK

S5: Establish, from Eq. (19), one W matrix for each signal
level varying from 0 to an upper limit for which Eq.
(36) and (37) are close enough to zero according to the
required precision.

S6: Peform S7 to S11 for each σ2
R value.

S7: Project the W matrix onto the orthogonal basis.
S8: Compute the c-s denoted Z from the result of S6.
S9: Determine the eigenvalues of Z by using the DSYEV

subroutine from LAPACK which has now the form of
Eq. (20).

S10: Define the product of each characteristic function defined
by Eq. (21).

S11: Compute the posterior distribution respectively of the s.a
and c-s estimates according to Eq. (36) and (37). For
the c-s, we perform a numerical integration of one signal
value by using the Simpson method.

S12: Normalize the s.a and c-s posterior PDF.
S13: Determine the cumulative distribution function (cdf) by

integrating the s.a and c-s posterior PDF and find the 95%
upper limit corresponding onto the cdf value associated
to the signal level.

The loops for the different values of the signal are computed
in parallel in order to save computing time. Let us give an
example of such a process. We set the number of RTs to
5 and the variances of the signal and noise are respectively
σ2
R = 6 a.u., σ2

n = 10 a.u. Then we produce 2 sets of random
measurement with these parameters, shown in Table II. The
first measurement set gives respectively Ŝsa,1 = 14.886 a.u.
and Ŝcs,1 = 13.226 a.u. for the s.a and c-s estimates whereas
the second one gives Ŝsa,2 = 20.730 a.u. and Ŝcs,2 = 18.564
a.u. It leads for the first set to the 95% upper limit on the
signal σ2

R following value, 125.8 for the s.a and 127.3 for the
c-s. Furthermore the second set gives us 167.1 for the s.a and
164.8 for the c-s. These results show that either the c-s or the
s.a can be the most efficient even with the same parameters,
then it only depends on the measurement set. However, the
difference between the 95% upper limit for both methods is
relatively low.

Let us now compare the s.a and c-s 95% upper limit over
100 simulations as shown in Table III for the sought signal

TABLE II: Measurement set for the outputs of each RT (5 in
total) where σ2

R = 6 a.u. and σ2
N = 10 a.u.

measurement set 1 measurement set 2
Real part Imaginary part Real part Imaginary part

X1 -3.8947 -1.7994 -0.1494 8.9456
X2 -5.0950 -3.9125 -0.5275 4.4659
X3 -2.5133 -5.5431 0.2176 5.7742
X4 0.6433 -1.9566 1.6044 3.2146
X5 -0.2294 -2.5738 -0.5284 0.3563

level set to 6 a.u. and a noise level equal to 10 a.u. for each
RT. The 95% upper limit is given respectively for, from the top
of the Table to the bottom, the spectrum average, the cross-
spectrum and the ratio of the 95% bound of s.a over c-s. The
mean and median are decreasing when the number of RTs is
increasing. However for 4 RTs the results are much more lower
but it is just an artefact of “luck”. Indeed the maximum value
is 1.4 times lower than for 5 RTs and the standard deviation
(std) is also very much more lower. The sample size can have
a significant effect on the values obtained but is necessary to
have a good precision with a reasonable computation time.
However, the minimum value of the 95% bound obtained
for both methods permits to override this randomness. Indeed
when the cross-spectrum estimate is negative or the spectrum
average estimate tends towards zero it leads to the smallest
95% bound. Whereas the maximum 95% bound obtainable
for a reasonable amount of simulations can “wriggle” a lot
as the tail of the posterior PDF is very long especially with
higher noise level than signal level which is of interest. The
minimum value of the upper bound decreases as the number
of RTs increases. It seems that the s.a method gives the most
stringent confidence interval.
Figure 5 shows the histogram of the 95% limit with 5 RTs
for 10 000 realizations, σ2

R = 6 a.u. and σ2
N = 10 a.u. Both

histograms exhibit a similar distribution which extend up to
high values. However the first bin corresponding to the lowest
95% bound shows a high number of realizations for the c-s
method. This can be explained by a negative estimate for the
cross-spectrum which may corresponds to a spectrum average
estimate having a not so small value and so a higher 95%
bound. Figure 6 shows the comparison of the 95% upper limit
for the s.a and c-s methods for a window of hundred data
among the same set of realizations. The 6 620-th realization
framed by a blue rectangle highlights the fact that the c-s
can sometimes be much more stringent than the s.a method.
However in most of the other realizations we notice that the
95% limit is almost the same.
Figure 7 depict the 95% upper bound median among 1 000
simulations with 5 RTs, for the s.a over c-s ratio depending
on the signal-to-noise level ratio (with σ2

N = 1 a.u.). When
σ2
R ≪ σ2

N then the s.a seems to be the most stringent most
of the time. However when the signal level becomes higher
than the noise level, both the s.a and the c-s methods give in
median the same 95% limit.
Considering all these observations it is wiser to compute both
estimators and use the most restrictive one. Even if most of the
time both estimators give a very close upper bound, sometimes
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TABLE III: 95% upper limit statistics for the s.a (top), c-s
(middle) and the ratio of the s.a by the c-s over 100 simulations
where σ2

R = 6 a.u. and σ2
N = 10 a.u. Each rows respectively

from the left to the right corresponds to the number of RTs,
the mean, median, standard deviation, minimun and maximum
value of the 95% upper bound.

Spectrum average 95% upper limit
RTs number Mean Median Std Min Max

2 112.99 79.45 32.93 48.50 440.60
3 98.41 72.60 35.66 31.70 453.20
4 78.00 51.50 18.30 23.80 260.10
5 90.11 67.95 28.47 19.00 373.40

Cross-spectrum 95% upper limit
RTs number Mean Median Std Min Max

2 116.49 83.00 27.38 67.90 388.90
3 99.74 79.65 34.54 41.00 443.40
4 76.37 54.10 18.03 28.50 255.80
5 91.87 65.35 28.98 22.20 380.20

s.a/c-s 95% upper limit
RTs number Mean Median Std Min Max

2 0.97 0.90 0.12 0.71 2.21
3 0.98 0.94 8.13 ×10−2 0.74 1.79
4 1.02 0.98 4.86 ×10−2 0.74 1.50
5 0.97 0.96 3.73 ×10−2 0.78 1.34
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the gap is clearly significant.

VI. CONCLUSION

First, we demonstrated that the spectrum average variance
is q/(q−1) lower than the cross-spectrum variance for q ≥ 2.

Second, in order to assess the confidence interval of
the signal level we defined its probability density function
knowing the s.a and c-s estimates but also the noise of each
instruments (radio telescopes). In addition a method directly
using the statistics of the measurement (KLT) has also been
compared. It turns out that the KLT and the s.a methods lead
to the exact same PDF of the signal level σ2

R knowing the
estimates, so the precision is the same. Furthermore whereas
the cross-spectrum has a well-defined analytic probability
density function for 2 instruments called VΓ, there is no
equivalent for more than 2 instruments. We proposed then a
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generalized method based on a numerical integration of the
characteristic function product. This method works very well
according to the Monte Carlo simulations.

Finally the efficiency of both estimators, the spectrum
average versus the cross-spectrum, is highlighted through the
comparison of the 95% Bayesian upper limit. We found a
slight advantage for the spectrum average estimator when the
noise level is higher than the signal level. However we showed
that sometimes the c-s gives the most stringent confidence
interval but above all a little more often than the s.a for the
lowest upper limit. Nevertheless it is the s.a method which
gives us the minimum 95% limit reachable. To conclude it is
wiser to compute both estimates and use the most stringent.
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APPENDIX

Glossary of symbols

q Number of instruments
r(t) Common signal measured by q RTs (red noise)
R(f) Fourier transform of r(t)
Sr(f) Power spectral density of r(t)
ni(t) Intrinsic white noise of the i-th RT
Ni(f) Fourier transform of ni(t)
Sn,i(f) Power spectral density of ni(t)
xi(t) xi(t) = r(t) + ni(t), received at the output of

the i-th RT
Xi(f) Fourier transform of xi(t)
Sx,i(f) Power spectral density of xi(t)

̂ estimate as in Ŝ. Here we consider three estimators,
Ŝsa Spectrum average

ŜKLT Karhunen-Loève transform
Ŝcs Cross-spectrum
σ2
R Variance of R in a bandwidth, i.e. the power in

one bin of S(f). It takes three different flavors:
s.a, KLT or c-s

σ2
N,i Same as above, with the noise of the i-th RT

σ2
µ Noise weight factor, inverse of the sum of the

inverse of σ2
N,i

Variance of the estimators Ŝsa and Ŝcs

1) Measurements: Let us define q instruments measure-
ments X1, X2, . . . and Xq as

Xj = Nj + iN ′
j +R+ iR′ (38)

where Nj , N
′
j are independent Gaussian centered random vari-

ables of variance σ2
N/2 and R,R′ are independent Gaussian

centered random variables of variance σ2
R/2.

2) Estimators: The estimator Ŝcs is defined by Eq. (10) as

Ŝcs =
1(
q
2

)
q−1∑

j=1

q∑

k=j+1

ℜ[(Nj + iN ′
j +R+ iR′)×

×(Nk − iN ′
k +R− iR′)].

(39)

On the other hand, Ŝsa is defined by Eq. (10) as

Ŝsa =




q∑

j

Nj + qR

q




2

+




q∑

j

N ′
j + qR′

q




2

. (40)

3) Statistics reminder: If A and B are 2 independent
random variables of zero expectation

V[AB] = V[A]V[B] (41)

according to Eq. (a) from [19] where V[·] stands for the vari-
ance of the quantity within the brackets. Moreover according
to the Isserlis’ theorem [20],

V[A2] = E[A4]−
{
E[A2]

}2
= 3

{
E[A2]

}2 −
{
E[A2]

}2

= 2V2[A]
(42)

where E[·] stands for the mathematical expectation of the
quantity within the brackets. It is also useful to consider the
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covariances. If A,B,C,D are 4 Gaussian centered random
variable

E[ABCD] = E[AB]·E[CD]+E[AC]·E[BD]+E[AD]·E[BC].
(43)

If A,B,C,D are 4 independent Gaussian centered random
variables, this can be derived to the following particular cases
(Isserlis’ theorem [20]):

• E[ABCD] = E[AB] ·E[CD]+E[AC] ·E[BD]+E[AD] ·
E[BC] = 0 since each mathematical expectation product
E[XY ] is null

• E[A2BC] = E[A2] · E[BC] + 2E[AB] · E[AC] = 0
since the only mathematical expectation which is not null,
E[A2], is multiplied by E[CD] = 0

• E[A3B] = 3E[A2] · E[BC] = 0 since E[BC] = 0

•
E[A2B2] = E[A2] · E[B2] + 2E2[AB]

= E[A2] · E[B2] 6= 0.

•
Cov[A2B2] = E[A2B2]− E[A2] · E[B2]

= E[A2] · E[B2]− E[A2] · E[B2] = 0.

4) Variance of Ŝcs: From (39), it comes

Ŝcs =
1(
q
2

)



q−1∑

j=1

q∑

k=j+1

(NjNk +N ′
jN

′
k)×

×(q − 1)

q∑

j=1

(NjR+N ′
jR

′)×

×
(
n

2

)
(R2 +R′2)

]
.

(44)

Then,

V[Ŝcs] =
1
(
q
2

)2



q−1∑

j=1

q∑

k=j+1

(V[NjNk] + V[N ′
jN

′
k])×

×(q − 1)2
q∑

j=1

(V[NjR] + V[N ′
jR

′])×

×
(
q

2

)2

(V[R2] + V[R′2])

]
.

(45)

where all covariance terms are null thanks to Isserlis’theorem.
From the properties (41) and (42), it comes

V[Ŝcs] =
1
(
q
2

)2



q−1∑

j=1

q∑

k=j+1

(V[Nj ]V[Nk] + V[N ′
j ]V[N

′
k])×

×(q − 1)2
q∑

j=1

(V[Nj ]V[R] + V[N ′
j ]V[R

′])×

×
(
q

2

)2

(2V2[R] + 2V2[R′])

]
.

(46)
According to the binomial formula,

(
q

2

)
=

q!

2!(q − 2)!
=

q(q − 1)

2
. (47)

Therefore,

V[Ŝcs] =
1
(
q
2

)2

[
2

(
q

2

)
σ4
N

4
+ 2q(q − 1)2

σ2
Nσ2

R

4
+ 4

(
q

2

)2
σ4
R

4

]

=
1

q(q − 1)
σ4
N +

2

q
σ2
Nσ2

R + σ4
R.

(48)
5) Variance of Ŝsa: From (40), it comes

Ŝsa =
1

q2




q∑

j=1

(N2
j +N ′2

j ) + q2(R2 +R′2)+

+ 2

q−1∑

j=1

q∑

k=j+1

(NjNk +N ′
jN

′
k)+

+ 2q

q∑

j=1

(NjR+N ′
jR

′)




(49)

Then,

V[Ŝsa] =
1

q4




q∑

j=1

(V[N2
j ] + V[N ′2

j ]) + q4(V[R2] + V[R′2])+

+ 4

q−1∑

j=1

q∑

k=j+1

(V[NjNk] + V[N ′
jN

′
k])+

+ 4q2
q∑

j=1

(V[NjR] + V[N ′
jR

′])




(50)
where all covariance terms are null thanks to Isserlis’theorem.
From the properties (41) and (42), it comes

V[Ŝsa] =
1

q4




q∑

j=1

(2V2[Nj ] + 2V2[N ′
j ]) + q4(2V2[R] + 2V2[R′])+

+ 4

q−1∑

j=1

q∑

k=j+1

(V[Nj ]V[Nk] + V[N ′
j ]V[N

′
k])+

+ 4q2
q∑

j=1

(V[Nj ]V[R] + V[N ′
j ]V[R

′])




(51)
Therefore,

V[Ŝsa] =
1

q4

[
4q

σ4
N

4
+ 4q4

σ4
R

4
+ 8

(
q

2

)
σ4
N

4
+ 8q3

σ2
Nσ2

R

4

]

=
1

q2
σ4
N +

2

q
σ2
Nσ2

R + σ4
R.

(52)
6) Variance ratios: Let us compare the cross-spectrum and

spectrum average estimates variances for limit signal to noise
ratio values.
If σ2

R ≪ σ2
N ,

V[Ŝcs] ≈
1

q(q − 1)
σ4
N and V[Ŝsa] ≈

1

q2
σ4
N . (53)

Consequently,
V[Ŝcs] ≈

q

q − 1
V[Ŝsa]. (54)
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If σ2
N ≪ σ2

R,

V[Ŝcs] ≈ σ4
R and V[Ŝsa] ≈ σ4

R. (55)

Consequently,
V[Ŝcs] ≈ V[Ŝsa]. (56)
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Title: Metrology and statistics: From clocks to millisecond pulsars
Keywords: atomic clocks, bayesian statistics, confidence interval, cross-spectrum, metrology, phase jump, probability
density function, spectrum average, time-frequency analysis, time stability

Time is the physical quantity that is measured with the
greatest precision, far ahead of all the others. Recent advances
in atomic clocks have made it possible to achieve relative sta-
bilities of the order of a few 10−18, thus corresponding to an
uncertainty of about one second in the age of the Universe.
However, it is not because these uncertainties become ridicu-
lously small that they should be neglected, quite the contrary.
The aim of this work is to contribute to improving the deter-
mination of these uncertainties. It is divided in two parts and
concerns the fine characterization and improvement of a set of
estimation methods.
In the present work we first describe a procedure to determine
the jumps which can affect the time links used in the Coor-
dinated Universal Time (UTC), calculated by the BIPM. This
tool, based on a Kalman filter, should correctly determine the
date of the steps and their magnitude, mainly for time steps,
and give a warning to the BIPM Time Department about this
unexpected problem. This warning will help to understand the

nature of the steps which, in some cases, can affect the behavior
of UTC. A critical example is the receiver calibration causing a
step in time links and potentially impacting UTC behavior. To
ensure the long-term stability of UTC, it is crucial to verify the
data and identify problems.
The second part of the work mainly concerns a detailed anal-
ysis of frequency instabilities in terms of Bayesian statistics.
In particular we want to obtain reliable confidence intervals
around the measurements of the power spectrum of red noise
processes at the lowest frequencies, e.g. the observation of mil-
lisecond pulsars in radio astronomy. Thus it is only possible to
average on simultaneous observation of multiple instruments.
We compare 95% upper limit of the red noise parameter using
the spectrum average and cross-spectrum. Checked by massive
Monte Carlo simulations, the cross-spectrum estimator leads to
the variance-Gamma distribution with two instruments and a
generalization to n instruments based on the Fourier transform
of characteristic functions is provided.

Titre : Métrologie et statistiques : de l’horlogerie aux pulsars millisecondes
Mots clés : analyse temps-fréquence, densité de probabilité, horloges atomiques, intervalle de confiance, métrologie,
moyenne du spectre, saut de phase, spectre croisé, stabilité temporelle, statistiques bayésiennes

Le temps est la grandeur physique qui se mesure avec la
plus grande précision, loin devant toutes les autres. Les pro-
grès récents des horloges atomiques ont permis d’atteindre des
stabilités relatives de l’ordre de quelques 10−18, correspon-
dant ainsi à une incertitude d’environ une seconde sur l’âge de
l’Univers. Cependant, ce n’est pas parce que ces incertitudes
deviennent dérisoires qu’il faut les négliger, bien au contraire.
Le but de ce travail est de contribuer à améliorer la détermina-
tion de ces incertitudes. Il est divisé en deux parties et porte sur
la caractérisation fine et l’amélioration d’un ensemble de méth-
odes d’estimation.
Dans ce travail, nous décrivons d’abord une procédure pour
déterminer les sauts qui peuvent affecter les liens de transfert
de temps utilisés dans le calcul de l’échelle du Temps Universel
Coordonnée (UTC), calculé par le BIPM. Cet outil, basé sur un
filtre de Kalman, devrait déterminer correctement la date des
sauts et leur grandeur, principalement pour les sauts de temps,
et avertir le service du temps du BIPM de ce problème inat-
tendu. Cet avertissement aidera à comprendre la nature des
étapes qui, dans certains cas, peuvent affecter le comportement

d’UTC. Un exemple critique est l’étalonnage du récepteur qui
provoque un saut dans les transfert de temps et qui a poten-
tiellement un impact sur le comportement d’UTC. Pour assurer
la stabilité à long terme d’UTC, il est crucial de vérifier les don-
nées et d’identifier les problèmes.
La deuxième partie du travail concerne principalement une
analyse détaillée en termes de statistiques bayésiennes des in-
stabilités de fréquence. En particulier, nous voulons obtenir
des intervalles de confiance fiables autour des mesures du spec-
tre de puissance des processus de bruit rouge aux fréquences
les plus basses, par ex. l’observation des pulsars millisecon-
des en radioastronomie. Ainsi, il n’est possible de faire la
moyenne que sur l’observation simultanée de plusieurs instru-
ments. Nous comparons la limite supérieure à 95% sur le
paramètre de bruit rouge en utilisant la moyenne du spectre
et le spectre croisé. Vérifié par des simulations massives de
Monte Carlo, l’estimateur à spectre croisé conduit à la distri-
bution variance-Gamma avec deux instruments et une général-
isation à n instruments basée sur la transformée de Fourier des
fonctions caractéristiques est fournie.
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