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INFORMATIQUE
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Problèmes inverses de potentiel et applications à l’éléctromagnétique
quasi-statique

Résumé : Les problèmes de potentiels inverses imprègnent de nombreuses branches des
sciences et de l’ingénierie, en particulier en imagerie non destructive, leur étude est donc
importante pour leur avancement. Les problèmes inverses que nous étudions dans la thèse
sont régis par l’approximation quasi-statique des équations de Maxwell.

Dans la première partie de cette thèse, nous nous intéressons à la caractérisation de sources
silencieuses pour des domaines homogènes connexes avec de faibles conditions de régularité.
La caractérisation que nous donnons repose sur la décomposition de Helmholtz. Pour les
domaines Lipschitz réguliers, on montre que les sources silencieuses ont une décomposition
de Helmholtz. Pour ces domaines, des sources équivalentes minimisant la norme sont car-
actérisées, ce qui conduit à une décomposition des champs de vecteurs équivalente à la
décomposition de Helmholtz lorsqué cette derniére existe. Pour les domaines lisses simple-
ment connexes, un algorithme de minimisation alternée pour calculer la source équivalente
de minimale norme à toute source donnée est présenté, dont l’implémentation numérique est
faisable.

La problématique de l’imagerie cérébrale fonctionnelle et clinique via les problèmes inverses
de l’électroencéphalographie (EEG), de la stéréo-EEG (sEEG) et de la magnétoencéphalographie
(MEG) sur un modèle de tête non homogène avec des géométries réalistes est étudiée dans
la deuxième partie de la thèse. Chacun de ces problèmes inverses est couplé au problème
inverse de transmission. Le couplage du problème inverse de localisation de source inverse
avec le problème inverse de transmission rend également relativement simple le couplage de
modalités, c’est-à-dire la combinaison de données EEG, sEEG et/ou MEG lors de la résolution
de problèmes inverses. Pour chaque problème inverse résultant, un problème de Tikhonov
régularisé est résolu avec le régularisateur conçu pour exploiter les éléments structurels dans
ces problèmes. Pour cela, un algorithme de minimisation alternée est utilisé pour résoudre le
problème de Tikhonov en alternant entre le problème d’identification de source et le problème
de transmission de potentiel électrique pour la source identifiée.

Dans la dernière partie de la thèse nous étudions les spectres des opérateurs de Toeplitz.
Il est bien connu que pour les problèmes de point fixe, la vitesse de convergence des méthodes
itératives est gouvernée par les rayons spectraux des opérateurs impliqués. De plus, la rapidité
avec laquelle la méthode itérative atteint ce vitesse de convergence est régie par les résolvantes
des opérateurs. Les méthodes itératives nécessitent généralement moins de mémoire que les
méthodes directes. L’étude des spectres des opérateurs dans les problèmes de point fixe est
donc primordiale pour la mise en œuvre de méthodes itératives. Nous avons montré que
sous certaines conditions les spectres des opérateurs Hardy-Toeplitz (HT) et des opérateurs
Bergman-Toeplitz (BT) sont les mêmes. Les opérateurs HT et BT sont utiles dans l’étude
des problèmes potentiels inverses dans le plan.
Mots-clés : Analyse harmonique, équation de Poisson-Laplace, problème inverse de potentiel.



Inverse potential problems, with applications to quasi-static electromagnetics.

Abstract: Inverse potential problems permeate many branches of science and engineering
especially in non-destructive imaging hence their study is important to the advancement of
science and engineering. The inverse problems we study in the thesis are governed by the
quasi-static approximation of Maxwell’s equations.

In the first part of this thesis we look at characterising silent sources for connected ho-
mogeneous domains with mild smoothness conditions. The characterisation we give relies
on the Helmholtz decomposition. For Lipschitz domains it is shown that silent sources have
a Helmholtz decomposition and norm-minimising equivalent sources are characterised which
leads to a decomposition of vector-fields that is equivalent to the Helmholtz decomposition
when the the latter exists. For smooth simply connected domains an alternating minimisa-
tion algorithm for computing the norm-minimising equivalent source of any given source is
presented whose numerical implementation is feasible.

The problem of functional and clinical brain imaging via the inverse problems of elec-
troencephalography (EEG), stereo-EEG (sEEG) and magnetoencephalography (MEG) on
non-homogeneous head model with realistic geometries is studied in the second part of the
thesis. Each of these inverse problems is coupled with the inverse cortical mapping problem.
The coupling of the inverse source localisation problem with the inverse cortical mapping prob-
lem makes it relatively straight forward to also couple modalities, that is, combining EEG,
sEEG and/or MEG data when solving inverse problems. For each resulting inverse problems,
a regularised Tikhonov problem is solved with the regulariser designed to exploit structural
elements in the problems. To fully exploit this information an alternating minimisation algo-
rithm is used to solve the Tikhonov problem by alternating between the source identification
problem and the electrical potential transmission problem for the identified source.

In the last part of the thesis we study the spectra of Toeplitz operators. When solving
fied point problems is well known that the rates of convergence of iterative methods are
governed by the spectral radii of the operators involved. Further it is also known that how
quickly the iterative method settles to these convergence rates is governed by the resolvents
of the operators. Iterative methods typically have less memory requirement compared to
direct methods. Hence a study the of spectra of the operators in the fixed point problems is
paramount to the implementation of iterative methods. We showed that the under certain
conditions the essential spectra of Hardy-Toeplitz (HT) operators and Bergman-Toeplitz (BT)
operators coincide. Both HT and BT operators are useful in the study of inverse potential
problems on the plane.
Keywords: harmonic analysis, Poisson-Laplace equation, inverse potential problem.
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Résumé long

L’étude des problèmes inverses est répandue parmi le monde scientifique, particulièrement
dans les technologies ayant trait à l’imagerie non-destructive. Celle-ci peut être mise en
œuvre de diverses manières, les plus communes relevant de l’éléctromagnétisme : CT
scan (tomodensitométrie) avec le rayonnement X, l’imagerie par résonance magnétique
(IRM), qui utilise le champ magnétique, ou la tomographie par impédance électrique
(EIT), qui utilise le champ électrique. Ces exemples proviennent de l’imagerie médicale,
ce qui semble raisonnable car c’est l’un des points de contact importants d’une partie de
la société avec les questions d’imagerie. Ce n’est cependant pas une limitation, d’autres
exemples proviennent des sciences de l’ingénieur (détection de défauts non-destructive
dans les machines ou les structures), ou de la géologie, de la physique des planètes,
du paléo-magnétisme (étude d’échantillons de roches pour comprendre l’apparition et
l’évolution du champ magnétique de la Terre et de la Lune dans le passé).

Dans ce travail, nous nous concentrons sur certaines questions d’imagerie utilisant les
mesures de champs éléctromagnétiques afin de retrouver les aimantations et/ou densités
de courant qui les produisent, en lien avec le paléomagnétisme et l’imagerie cérébrale,
fonctionnelle et clinique. En imagerie cérébrale, l’objectif est de retrouver une densité
de courant dans le cerveau (qui indique les régions d’activité), étant données des en-
registrements du potentiel éléctrique ou/et du champ magnétique générés par l’activité
cérébrale. Ces zones d’activité peuvent être reliées à des tâches effectuées pour un exa-
men fonctionnel ou à des évènements anormaux, comme des crises d’épilepsie, pour un
examen clinique. Nous considérons ici les dispositifs tels que l’éléctoencéphalographie
(EEG), la stéréo-éléctoencéphalographie (sEEG), et la magnétoencéphalographie (MEG).
Les problèmes inverses sous-jacents sont modélisés par les équations de Maxwell et leur
approximation quasi-statique, et sont ainsi fortement reliés entre eux. Un point com-
mun particulièrement important entre ces problèmes est que, même dans la situation
de mesures complètes et exactes hors du domaine contenant l’aimantation ou la den-
sité de courant, l’inversion est fortement mal posée, et leur solution n’est pas unique ;
nous résolvons ainsi des versions régularisées (par la méthode dite de Tikhonov) de ces
problèmes.

Les deux premiers chapitres constituent le corps de la thèse, le troisième contient
un résultat sur le spectre d’opérateurs de Toeplitz, qui a des applications à l’étude de la
vitesse de convergence de méthodes itératives de résolution de systèmes linéaires. Dans
le premier chapitre, nous caractérisons les sources silencieuses, à l’origine de la non-
unicité des solutions des problèmes inverses, ainsi que les sources équivalentes (dont la
différence est silencieuse) à une source donnée, de norme minimale. Le second chapitre
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est dédié à l’étude des problèmes inverses EEG, sEEG and MEG, en particulier à
la manière de les résoudre constructivement et d’exploiter les propriétés du potentiel
électrique pour parvenir à une solution acceptable.

Aimantations Lp silencieuses

Nous supposons que Ω ⊂ Rn, n ≥ 3, est un ensemble ouvert borné avec un nom-
bre fini de composantes connexes dont le bord, ∂Ω, n’est pas nécéssairement connexe.
Nous supposons que les aimantations, M , ont un support contenu dans Ω areet sont
des champs de vecteurs appartenant à [Lp(Ω)]n, 1 < p < ∞ (chaque composante de
M appartient à Lp(Ω)). Étant donnée une aimantation M ∈ [Lp(Ω)]n, son potentiel
magnétique, PM , satisfait :

divM = ∆PM .

Nous définissons une aimantation silencieuse comme M ∈ [Lp(Ω)]n telle que PM est con-
stant presque partout dans chaque composante connexe de Rn\Ω, les valeurs constantes
pouvant différer selon les composantes connexes.

Pour M ∈ [Lp(Ω)]n, soit M̃ ∈ [Lp(Rn)]n l’extension de M par 0 sur Rn. En utilisant
la décomposition de Helmholtz sur [Lp(Rn)]n pour 1 < p < ∞, et pour un ensemble
ouvert général Ω dont le bord est de mesure nulle, nous avons prouvé que M ∈ [Lp(Ω)]n

est silencieuse si et seulement si M̃ = ∇ψ +D où D est à divergence nulle sur Rn et

ψ(x) =
1

ωn

∫
Rn
M̃(y) · (x− y)

|x− y|n
dy, x ∈ Rn,

avec ∇ψ et D identiquement nulle sur Rn\Ω.
Si le bord de Ω est de mesure nulle et si deux composantes connexes de Rn\Ω

ont une intersection “épaisse” au sens de la capacité dans chaque composante, alors
M ∈ [Lp(Ω)]n est silencieuse si et seulement si M = ∇ψ +D, où

∇ψ ∈ {∇ϕ : ϕ ∈ C∞(Rn),∇ϕ ∈ [C∞c (Ω)]n}
[Lp(Ω)]n

:= Gp
0(Ω)

et D̃ est à divergence nulle sur Rn.
Cette caractérisation provient du fait que, sous les hypothèses ci-dessus concernant

le domaine, certains résultats de la théorie du potentiel permettent de montrer que si,
pour Ω ⊂ Rn, nous définissons

Gp(Ω) := {∇ψ : ψ ∈ W 1,p
loc (Ω), ∇ψ ∈ [Lp(Ω)]n},

alors
Gp

0(Ω) = {F ∈ Gp(Ω) : F̃ ∈ Gp(Rn)}.

En supposant que Ω est un domaine Lipschitz régulier, nous avons prouvé que
M ∈ [Lp(Ω)]n est silencieuse si et seulement si M = ∇ψ +D avec ∇ψ ∈ Gp

0(Ω) et

D ∈ {u ∈ [C∞c (Ω)]n : div u = 0}
[Lp(Ω)]n

:= Divp,0(Ω),
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ce qui provient de l’équivalence bien connue sur les domaines Lipschitz réguliers :

Divp,0(Ω) := {u ∈ [Lp(Ω)]n : div u = 0 and u · ν = 0},

où ν est le vecteur normal unitaire extérieur à ∂Ω.
Les caractérisations ci-dessus sont reliées à la décomposition de Helmholtz. Lorsque

p = 2 cette décomposition existe en général, pout tout M ∈ [L2(Ω)]n et tout Ω. Lorsque
Ω est de classe C1, tout M ∈ [Lp(Ω)]n pour 1 < p < ∞ admet une décomposition de
Helmholtz. Finalement, lorsque Ω est Lipschitz régulier, tout M ∈ [Lp(Ω)]n pour
3
2
≤ p ≤ 3 admet aussi une décomposition de Helmholtz. La caractérisation des sources

silencieuses sur des domaines Lipschitz réguliers établit que toute M ∈ [Lp(Ω)]n silen-
cieuse pour 1 < p < ∞ admet une décomposition de Helmholtz, une extension des
résultats précédemment connus concernant cette décomposition sur de tels domaines.

Deux champs de vecteurs M1,M2 ∈ [Lp(Ω)]n sont dit Ω-équivalents si PM1 = PM2 +γ
p.p. sur Rn\Ω pour

γ ∈ spanR{χO : O est une composante connexe de Rn\Ω}.

L’existence d’aimantations silencieuses soulève la question naturelle suivante : quelle
est l’aimantation de norme minimale équivalente à une aimantation donnée M ∈
[Lp(Ω)]n ? La question a d’autant plus d’intêret que les problèmes inverses sont résolus
en pratique en utilisant leur régularisation de Tikhonov. Les données disponibles étant
bruitées, les paramètres de régularisation doivent être choisis pour atténuer l’influence
du bruit sur le problème. On peut montrer que lorsque le bruit et le paramètre de
régularisation tendent vers zéro de manière appropriée et combinée, la solution du
problème de Tikhonov converge vers la source équivalent de norme minimale. Dans
ce but, nous avons pu prouver que si Ω est Lipschitz régulier, l’aimantation de norme
minimale équivalente à M ∈ [Lp(Ω)]n est la suivante :

〈M,∇φ〉|∇φ|q−2∇φ, (1)

où 1
p

+ 1
q

= 1 et ∇φ satisfont

∇φ = arg max
∇ψ∈(Gp0(Ω))⊥,‖∇ψ‖[Lq(Ω)]n=1

|〈M,∇ψ〉|.

Cette caractérisation des sources équivalentes de norme minimale provient de ce que
pour trouver une aimantation de norme minimale équivalente à M ∈ [Lp(Ω)]n, nous
devons trouver la projection de M sur Sp, l’ensemble des sources Ω-silencieuses dans
[Lp(Ω)]n, c’est à dire :

MS = arg min
M0∈Sp

‖M −M0‖[Lp(Ω)]n .

Nous avons montré de plus que les ∇ψ ∈ (Gp
0(Ω))⊥ tel que ψ est harmonique avec

∂νψ de moyenne nulle sur chaque composante connexe de ∂Ω constituent exactement
les éléments de (Sp)

⊥.
La caractérisation ci-dessus des aimantations équivalentes de norme minimale con-

duit à l’observation suivante. Soit Ω Lipschitz régulier, pour tout M ∈ [Lp(Ω)]n,
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1
p

+ 1
q

= 1, il existe un unique ∇ψ ∈ Gp
0(Ω), D ∈ Divp,0(Ω) et un unique ∇h ∈ (Gp

0(Ω))⊥

tels que
M = ∇ψ +D + |∇h|q−2∇h,

ce qui est une extension de la décomposition de Helmholtz, équivalente à celle-ci
lorsqu’elle existe pour M ∈ [Lp(Ω)]n.

Lorsque Ω est Lipschitz régulier, nous pouvons exploiter les opérateurs de simple
et double couche et les espaces de traces de Sobolev afin de caractériser la fonction
harmonique φ dans (1), utilisant PM(x) pour x ∈ ∂Ω. Ceci peut-être relié aux “duality
mappings” sur les espaces de traces de Sobolev et utilisé pour calculer les aimantations
équivalentes de norme minimale dans [Lp(Ω)]n.

Constructivement, si n = 3 et Ω est un domaine C1,1 ou Lipschitz polyhédral,
une procédure de minimisation alternée peut être utilisée pour calculer l’aimantation
de norme minimale équivalente à une aimantation donnée M ∈ [Lp(Ω)]3 en résolvant
alternativement un problème “q-curl-curl” et un problème de q-laplacien. les itérées
convergent fortement vers l’aimantation de norme minimale équivalente dans M ∈
[Lp(Ω)]3.

Imagerie cérébrale et potentiels de couches

Nous avons examiné la question pratique de la localisation (récupération) de sources
cérébrales (densités de courant) à l’aide de l’EEG, de la sEEG et/ou de la MEG. Nous
avons supposé que la source est un champ de vecteur dont les composantes sont des
fonctions ou des distributions intégrables et que la source est localisée dans le cerveau.
Nous avons considéré la tête comme un conducteur formé de m couches non homogènes
embôıtées, chaque couche ayant une conductivité électrique constante. Nous désignons
par Σi, i = 1, 2, . . . ,m + 1 les interfaces où la conductivité électrique change. Le
potentiel électrique, φ, est localement Hölder continu et les courants normaux, σi∂νiφ,
sont continus à travers chaque Σi, avec νi la normale unitaire pointant vers l’extérieur
de Σi, puisque φ est gouverné par l’EDP elliptique

∇ · (σ∇φ) = ∇ · ξ,

ξ étant la densité de courant générant le potentiel électrique. Avec la régularité
indiquée, le potentiel électrique associé à la densité de courant peut être exprimé
comme une combinaison linéaire des expansions de potentiel à double couche. De plus,
l’induction magnétique associée à la densité de courant peut être exprimée comme
une combinaison linéaire des potentiels à simple couche. Ces expressions servent de
”modèles directs” pour le potentiel électrique et la densité de flux magnétique. L’expres-
sion du potentiel électrique et de la densité de flux magnétique nécessite la connais-
sance de la densité de courant et des potentiels électriques de surface, φi, sur les Σi.
Par conséquent, pour que le problème inverse de localisation de source soit fidèle aux
données fournies, il est utile de résoudre également le problème inverse de transmission
des données jusqu’au cortex, ce qui améliore la précision de la récupération. Le problème
de la localisation des sources depuis le potentiel électrique ou l’induction magnétique
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est connu pour être mal posé en raison de la non-unicité induite par l’existence de
sources silencieuses. De plus, seule une poignéequantité restreinte de mesures bruitées
sont disponibles pour être utilisées en vue localiser la source. Nous proposons donc de
résoudre un problème régularisé par Tikhonov, en utilisant la norme de la source et les
potentiels électriques sur les surfaces, Σi, i = 1, 2, . . . ,m + 1, comme régularisateurs,
c’est-à-dire :

Problem 1. Étant donné des données mesurées f et α, β, λj > 0, trouver
(ξ, φ1, φ2, . . . , φn+1)λ tel que

(ξ, φ1, φ2, . . . , φn+1)λ = arg inf
(ξ,φ1,φ2,...,φn+1)

Tf,α,β,λ0,...,λn+1(ξ, φ1, φ2, . . . , φn+1),

où

Tf,α,β,λ0,...,λn+1(ξ, φ1, φ2, . . . , φn+1) := α‖F1(ξ, φ1, φ2, . . . , φn+1)− f‖2

+ β‖F2(ξ, φ1, φ2, . . . , φn+1)‖2 + λ0R(‖ξ‖) +
n+1∑
j=1

λj‖φj‖2
L2(Σj)

,

où R : [0,∞) → [0,∞) est une fonction convexe, F1 (modèle direct) et F2 sont
des opérateurs liés à la composante électromagnétique des données mesurées et à la
régularité du potentiel électrique, respectivement. Nous montrons que pour tout ensem-
ble donné de paramètres de régularisation positifs, α, β, λj > 0, le problème de Tikhonov
a une solution unique. Ceci est démontré pour Σi au moins Lipschitz réguliers et pour ξ
des champs de vecteurs depuis des sous-espaces fermés ou faiblement fermés des espaces

suivants : [W 1− 1
p
,p(Σ0)]3, [W 1− 1

p
,p(intΣ0)]3, [(W 1− 1

p
,p(Σ0))∗]3 ou [(W 1,p(intΣ0))∗]3. La

densité de courant étant membre des espaces précités, le potentiel électrique est mem-
bre de W r,l(R3) et l’induction magnétique est membre de [W r,l(R3)]3 pour différentes
valeurs de r, l dansR+. La continuité des modèles directs pour le potentiel électrique et
la densité de flux magnétique dans les topologies faible et/ou faible∗ sur ces espaces per-
met alors de montrer l’existence et l’unicité des solutions aux problèmes de Tikhonov. Il
est important de noter que la source peut être modélisée comme une distribution et que
le potentiel électrique est toujours membre d’un espaces de fonctions ; par conséquent,
les méthodes optimales de récupération des sources et du potentiel électrique ne sont
pas toujours les mêmes pour un problème donné. Pour tenir compte de cela, nous avons
proposé de résoudre le problème en utilisant une procédure de minimisation, qui résout
alternativement pour la source et les potentiels électriques de surface φi’s, c’est-à-dire,
pour l ∈ N résoudre :

ξ
{l+1}
λ = arg inf

ξ
Tf,α,β,λ0,...,λn+1(ξ, φ

{l}
1 , φ

{l}
2 , . . . , φ

{l}
m+1)

(φ
{l+1}
1 , φ

{l+1}
2 , . . . , φ

{l+1}
m+1 )λ = arg inf

(φ1,...,φm+1)

Tf,α,β,λ0,...,λn+1(ξ{l}, φ1, φ2, . . . , φm+1).

Nous avons montré que la procédure de minimisation alternée converge linéairement vers
le minimum de la fonction de Tikhonov Tf,α,β,λ0,...,λn+1 . La convergence vers le minimum
a lieu par construction. La convergence linéaire vers le minimum est due au fait que
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les espaces de Banach que nous utilisons sont des espaces uniformément convexes et
que les modèles directs induisent des opérateurs linéaires sur ces espaces, donc leurs
dérivées de Fréchet sont Lipschitz régulières. Nous avons mis en œuvre la procédure de
minimisation alternée avec des expressions des potentiels à double et simple couche qui
sont exactes pour les domaines triangulés. Cela permet de contourner les imprécisions
numériques associées aux approximations des intégrales singulières qui ont affecté les
méthodes basées sur les potentiels à double couche. Cela permet également d’utiliser
des géométries réalistes dans les calculs numériques.

Spectre des opérateurs de Toeplitz

Lors de la résolution de problèmes de points fixes à l’aide de méthodes itératives, le
taux de convergence est déterminé par le rayon spectral de l’opérateur et la rapidité
avec laquelle les méthodes itératives convergent est déterminée par la croissance du
résolvant de l’opérateur. Il est donc intéressant d’étudier les spectres des opérateurs,
ici nous étudions les spectres des opérateurs Toeplitz.

Soit D le disque unité dans le plan complexe C et soit T = ∂D. Nous montrons
que le spectre essentiel d’un opérateur de Toeplitz de symbole φ ∈ W 1,2(T) est égal au
spectre essentiel d’un opérateur de Bergman-Toeplitz avec le symbole qui est l’extension
harmonique de φ à D. Ceci a été réalisé en utilisant le théorème de Weyl sur les
opérateurs de pertubation. En utilisant le fait que pour les opérateurs bornés leur
spectre discret de multiplicité finie converge vers le spectre essentiel et un résultat de
Favorov et Golinskii nous avons donné un résultat de vitesse de convergence pour le
spectre discret d’un opérateur Toeplitz-Bergman dans la composante non bornée du
domaine de Fredholm de l’opérateur de Hardy-Toeplitz associé.
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Summary

The study of inverse problems permeates throughout the scientific world especially in
non-destructive imaging technologies. There are varied ways in which imaging is done
but by far the most common techniques involve electromagnetism. One can think of
computed tomography (CT) which uses X-ray radiation, magnetic resonance imaging
(MRI) which uses magnetic fields or electrical impedance tomography (EIT) which uses
electric fields. The example given are all from medical imaging which is reasonable as
this is the point of contact much of society has with imaging. It turns out though
that imaging is not limited to the medical field; in engineering sciences it is important
for example in checking components of machinery for defects in a non destructive way.
Other areas of science like geology, paleo-magnetism and planetary sciences have also
benefited from imaging for instance in the study of magnetism in rock samples to track
how the magnetic fields of the earth and the moon have evolved over time and in forming
hypotheses on how planets developed their magnetic fields.

In the work presented here, we focus on imaging using electromagnetic fields to
recover magnetisations and/or current densities that produce the observed fields. This
makes contact with the imaging requirements of paleo-magnetism and brain imaging,
both functional and clinical. In paleo-magnetism, the aim is to recover a magnetisation
within a rock sample using measurements of the magnetic fields that are made at a
distance away from the rock. In brain imaging, the aim is to find a current density in
the brain (which indicates active regions of the brain) given measurements of the electric
potential or magnetic flux density generated by brain activity. This activation of parts
of the brain could be related to tasks being done for functional brain imaging or an
abnormal neurological event such as an epileptic seizure for clinical brain imaging. For
functional and clinical brain imaging we will focus on electroencephalography (EEG),
stereo-electroencephalography (sEEG) and magnetoencephalography (MEG). All these
inverse problems are governed by the quasi-static approximation of Maxwell’s equation
hence their studies have strong relations that they share. A key feature of the problems
is that even with the knowledge of the entire measured field or component of the field
outside the domain containing the magnetisation or current density, recovery of the
magnetisation or current density whose effects are being observed is not unique. This
makes these problems ill-posed hence Tikhonov regularised version of the problem is
solved.

The first two chapters form the core of the thesis, the third chapter is a result on the
spectrum of Toeplitz operators which have applications to studying convergence rates
of iterative methods for solving linear problems. In the first chapter, we characterise

2



silent sources which result in the inverse source recovery problems have non-unique
solutions. We also characterise norm-minimising equivalent sources to given sources.
The second chapter, is devoted to studying EEG, sEEG and MEG inverse problems,
particularly how to solve these problems and how to exploit certain properties of the
electric potential to arrive at a reasonable solution.

Silent Lp magnetisations

We assume that Ω ⊂ Rn, n ≥ 3, is a finitely connected bounded open set whose
boundary, ∂Ω, is not necessarily connected. We assume that the magnetisations, M ,
supported in Ω are [Lp(Ω)]n vector-fields, 1 < p < ∞, that is, each component is an
element of Lp(Ω). For a given magnetisation M ∈ [Lp(Ω)]n, its magnetic potential, PM ,
satisfies

divM = ∆PM .

We define a silent magnetisation as M ∈ [Lp(Ω)]n such that PM is constant a.e. in each
connected component of Rn\Ω, we allow the constants to differ between the different
connected components.

For M ∈ [Lp(Ω)]n we let M̃ ∈ [Lp(Rn)]n be the extension by zero of M on Rn. Using
the existence of the Helmholtz decomposition on [Lp(Rn)]n, for 1 < p <∞, we showed
that for a general open set Ω with boundary of zero Lebesgue measure, M ∈ [Lp(Ω)]n

is silent if and only if M̃ = ∇ψ +D where D being divergence-free on Rn and

ψ(x) =
1

ωn

∫
Rn
M̃(y) · (x− y)

|x− y|n
dy, x ∈ Rn,

with ∇ψ and D both identically zero on Rn\Ω.
Under the mild conditions on Ω that its boundary be of zero Lebesgue measure and

if two connected components of Rn\Ω have an intersection, the intersection is “thick
in the capacitory sense” in each component then M ∈ [Lp(Ω)]n is silent if and only if
M = ∇ψ +D where

∇ψ ∈ {∇ϕ : ϕ ∈ C∞(Rn),∇ϕ ∈ [C∞c (Ω)]n}
[Lp(Ω)]n

:= Gp
0(Ω)

and D̃ is divergence-free on Rn. This characterisation is due to the fact that under these
mild conditions of the domain it can be shown using results from non-linear potential
theory that if for any Ω ⊂ Rn we define

Gp(Ω) := {∇ψ : ψ ∈ W 1,p
loc (Ω), ∇ψ ∈ [Lp(Ω)]n},

then
Gp

0(Ω) = {F ∈ Gp(Ω) : F̃ ∈ Gp(Rn)}.

Assuming that Ω is a Lipschitz smooth domain, we showed that M ∈ [Lp(Ω)]n is
silent if and only if M = ∇ψ +D where ∇ψ ∈ Gp

0(Ω) and

D ∈ {u ∈ [C∞c (Ω)]n : div u = 0}
[Lp(Ω)]n

:= Divp,0(Ω),
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which follow from the well-known equivalence that hold on Lipschitz domains that

Divp,0(Ω) := {u ∈ [Lp(Ω)]n : div u = 0 and u · ν = 0},

where ν is the unit outer normal to ∂Ω.
The above characterisations of silent sources are reminiscent of the Helmholtz de-

composition. In general when p = 2 the Helmholtz decomposition exists for any
M ∈ [L2(Ω)]n for any Ω. When Ω is C1 smooth, any M ∈ [Lp(Ω)]n for 1 < p <∞ has
a Helmholtz decomposition. Finally when Ω is Lipschitz smooth, any M ∈ [Lp(Ω)]n for
3
2
≤ p ≤ 3 also has a Helmholtz decomposition. The characterisation of silent sources on

Lipschitz domains states that any silent M ∈ [Lp(Ω)]n for 1 < p <∞ has a Helmholtz
decomposition which extends what was known about the Helmholtz decomposition on
Lipschitz domains.

We say that two vector-fields M1,M2 ∈ [Lp(Ω)]n are Ω-equivalent if PM1 = PM2 + γ
a.e. on Rn\Ω for some

γ ∈ spanR{χO : O is a connected component of Rn\Ω}.

Because of the existence of silent magnetisations the natural question is: what is
the norm-minimising equivalent magnetisation to a given magnetisation M ∈ [Lp(Ω)]n.
This is a question of interest since in practice inverse problems are solved using reg-
ularised Tikhonov problems. The data that is used is noisy hence regularisation pa-
rameters have to be chosen to mitigate the influence of noise on the problem. It can
be shown that by taking the noise in the data and the regularisation parameters to
zero in a specified combined fashion, the solution of the Tikhonov problem converge to
the norm-minimising equivalent source. To that end, we managed to show that if Ω is
Lipschitz smooth, the norm-minimising equivalent magnetisation to M ∈ [Lp(Ω)]n is

〈M,∇φ〉|∇φ|q−2∇φ, (2)

where 1
p

+ 1
q

= 1 and ∇φ satisfies

∇φ = arg max
∇ψ∈(Gp0(Ω))⊥,‖∇ψ‖[Lq(Ω)]n=1

|〈M,∇ψ〉|.

The above characterisation of norm-minimising equivalent sources comes about as a
result of noting that to find the norm-minimising equivalent magnetisation to M ∈
[Lp(Ω)]n we need to find the projection of M in Sp, the set of Ω-silent sources in
[Lp(Ω)]n, that is to find

MS = arg min
M0∈Sp

‖M −M0‖[Lp(Ω)]n .

It immediately follow that M −MS is the norm-minimising equivalent magnetisation
to M . By looking at the problem dual to minimisation problem above and using the
duality mappings of [Lq(Ω)]n, 1

p
+ 1

q
= 1, we get that

M −MS = 〈M,∇φS〉|∇φS|q−2∇φS.
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Further, we showed that ∇ψ ∈ (Gp
0(Ω))⊥ such that ψ is harmonic with ∂νψ having

mean value zero on each connected component of ∂Ω are exactly the elements of (Sp)
⊥.

The above characterisation of norm-minimising equivalent magnetisations leads to
the following observation; let Ω be Lipschtz smooth, given any M ∈ [Lp(Ω)]n with Ω,
1
p

+ 1
q

= 1, there exists uniquely ∇ψ ∈ Gp
0(Ω), D ∈ Divp,0(Ω) and ∇h ∈ (Gp

0(Ω))⊥ such
that

M = ∇ψ +D + |∇h|q−2∇h,
which is an extension of the Helmholtz decomposition and is equivalent to it when it
exists for M ∈ [Lp(Ω)]n.

When Ω is Lipschitz smooth, we can exploit double and single layer potential oper-
ators and trace Sobolev spaces to give a characterisation of the harmonic function φ in
(2) using PM(x) for x ∈ ∂Ω. This can be related to duality mappings on trace Sobolev
spaces and this can be used to compute the norm-minimising equivalent magnetisation
in [Lp(Ω)]n.

Constructively, when n = 3 and Ω is C1,1 smooth or Lipschitz polyhedral domain,
an alternating minimisation procedure can be used to compute the norm-minimising
equivalent magnetisation to a given M ∈ [Lp(Ω)]3 by solving a q-curl-curl problem and a
q-Laplace problem alternatively. The iterates strongly converge to the norm-minimising
equivalent magnetisation in [Lp(Ω)]3.

A layer potential approach to brain imaging

Here we looked at the practical issue of source (current density) localisation (recovery)
using EEG, sEEG and/or MEG. We assumed that the source is a vector-field whose
components are integrable function or distributions and that the source is supported
with the brain. We took the head to be a nested non-homogeneous layered conductor
of m layers with each layer having constant electric conductivity, we denote by Σi,
i = 1, 2, . . . ,m + 1 the interfaces where the electric conductivity changes. The electric
potential, φ, is locally Hölder continuous and normal currents, σi∂νiφ, are continuous
across each Σi, with νi, being the outward pointing unit normal to Σi, since φ is governed
by the elliptic partial differential equation

∇ · (σ∇φ) = ∇ · ξ,

with ξ being the current density generating the electric potential. It is well known that
an the electric potential with the stated regularity associated with the current density
can be expressed as a linear combination of the well-known double layer potential
expansions. Further the magnetic flux density associated with the current density can
be expressed as a linear combination of the well-known single layer potentials. These
expressions serve as forward models for the electric potential and magnetic flux density.
Both the expression of the electric potential and the magnetic flux density require the
knowledge of both the current density and the surface electric potentials, φi, on the
Σi’s. Hence for the inverse source localisation problem to be faithful to the data given
it is useful for one to also solve the inverse cortical mapping problem there by improving
accuracy in the recovery.
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The problem of source localisation using the electric potential or magnetic flux
density is known to be ill-posed due to the non-uniqueness induced by the existence of
silent sources. Further only a handful of noisy measurement are available to use in the
source localisation. Hence we propose to solve a Tikhonov regularised problem, we use
the norm of the source and the electric potentials on the surfaces, Σi, i = 1, 2, . . . ,m+1,
as regularisers, that is:

Problem 2. Given measured data f and α, β, λj > 0 find
(ξ, φ1, φ2, . . . , φn+1)λ such that

(ξ, φ1, φ2, . . . , φn+1)λ = arg inf
(ξ,φ1,φ2,...,φn+1)

Tf,α,β,λ0,...,λn+1(ξ, φ1, φ2, . . . , φn+1),

where

Tf,α,β,λ0,...,λn+1(ξ, φ1, φ2, . . . , φn+1) := α‖F1(ξ, φ1, φ2, . . . , φn+1)− f‖2

+ β‖F2(ξ, φ1, φ2, . . . , φn+1)‖2 + λ0R(‖ξ‖) +
n+1∑
j=1

λj‖φj‖2
L2(Σj)

,

where R : [0,∞) → [0,∞) is a convex function, F1 (forward model) and F2 are
operators related to electromagnetic component of the measured data and the regular-
ity of the electric potential, respectively. We show that for any given set of positive
regularisation parameters, α, β, λj > 0, the Tikhonov problem has a unique solution.
This is shown for Σi that are at least Lipschitz smooth and for ξ that are vector-

fields from closed or weakly closed subspaces of the following spaces [W 1− 1
p
,p(Σ0)]3,

[W 1− 1
p
,p(intΣ0)]3, [(W 1− 1

p
,p(Σ0))∗]3 or [(W 1,p(intΣ0))∗]3. With the current density be-

ing a member of the above stated spaces the electric potential is a member W r,l(R3) and
magnetic flux density is a member of [W r,l(R3)]3 for various values of r, l ∈ R+. The
continuity of the forward models for the electric potential and magnetic flux density
in the weak and/or weak ∗ topologies on these spaces then allows to show the existence
and uniqueness of the solutions to the Tikhonov problems. It is important to note that
the source can be modelled as a distribution and the electrical potential are always
member of function spaces hence the optimal methods for recovery of the sources and
electrical potential may not always the same for a given problem. To account for this,
we proposed to solve the problem using a minimisation procedure, that alternatively
solves for the source and the surface electrical potentials φi’s, that is, for l ∈ N solve

ξ
{l+1}
λ = arg inf

ξ
Tf,α,β,λ0,...,λn+1(ξ, φ

{l}
1 , φ

{l}
2 , . . . , φ

{l}
m+1)

(φ
{l+1}
1 , φ

{l+1}
2 , . . . , φ

{l+1}
m+1 )λ = arg inf

(φ1,...,φm+1)

Tf,α,β,λ0,...,λn+1(ξ{l}, φ1, φ2, . . . , φm+1).

We showed that the alternating minimisation procedure converges linearly to the
minimum of the Tikhonov functional Tf,α,β,λ0,...,λn+1 . The convergence to the minimum
is by construction. The linear convergence to the minimum is through the fact that the
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Banach spaces we look using are uniformly convex spaces and the forward models are
linear operators on these spaces hence they are Fréchet derivatives are Lipschitz.

We implemented the alternating minimisation procedure with expressions for the
double and single layer potentials that are exact for triangulated domains. This cir-
cumvents the numerical inaccuracies that are associated with the approximations of
the singular integrals that had plagued methods based on double layer potentials. This
also allows for the use of realistic geometries in the numerical computations.

Spectra of Toeplitz operators

When solving fixed point problems using iterative methods, the rate of convergence
is determined by the spectral radius of the operator and how quickly the iterative
methods settle to the convergence rates is determined by the growth of the resolvent of
the operator. It is therefore of interest to study the spectra of operators, here we study
the spectra of Toeplitz operators.

Let D be the unit disk in the complex plane, C and let T = ∂D. We show that
the essential spectrum of a Toeplitz operator with symbol φ ∈ W 1,2(T) is equal to
the essential spectrum of a Bergman-Toeplitz operator with symbol that is the har-
monic extension of φ in to D. This was achieved using Wely’s Theorem on pertubation
operators. Using the fact that for bounded operators their discrete spectrum of finite
multiplicity converge to the essential spectrum and a result of Favorov and Golinskii we
gave a rate of convergence rate result for the discrete spectrum of a Toeplitz-Bergman
operator in the unbounded component of the Fredholm domain of its Hardy-Toeplitz.
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Chapter 1

Silent sources and equivalent
Lp-magnetisations.

1.1 Introduction

Inverse source problems arising in static electromagnetism have various applications:
for instance to medical and brain imaging, in particular, electroencephalography (EEG)
and magnetoencephalography (MEG), where the primary cerebral current is to be es-
timated, or to geosciences where the remanent magnetisation of rocks and the Earth,
or other celestial bodies, is studied to document their past history and study their
structure. In magnetostatic aplications, one measures the magnetic field generated by
a magnetisation away from its support and one seeks to reconstruct the magnetisation.
Under the quasi-static assumption on Maxwell’s equations [1], the scalar magnetic po-
tential PM generated by the magnetisation M is subject to the Poisson-Laplace partial
differential equation in R3:

∆PM = div M , (1.1)

where PM is zero at infinity (see Equation (1.39), Sec. 1.5), and the magnetic field is
given by ∇PM .

In EEG, one measures the electric potential PM generated by the primary cerebral
current M away from its support and one seeks to reconstruct that current. A common
feature to both problems is that the source term is the divergence of a vector field: the
magnetisation in the former case, and the primary current in the latter. Hereafter, we
use the magnetostatic terminology to fix ideas, but everything applies without change
to the electrostatic setting.

Such questions are severely ill-posed, due to the existence of nonzero silent magneti-
sations; i.e., magnetisations that produce no field outside the body supporting them.
Adding to a given magnetisation a silent one yields an equivalent magnetisation gener-
ating the same field as the original one, whence a fundamental uncertainty attaches to
the solution of these inverse problems. As a consequence, further assumptions on the
unknown magnetisation are needed in order to set up consistent regularising schemes.
In order to derive such schemes, one needs a working characterisation of silent and
equivalent magnetisations; this is the subject of the present chapter.
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Silent magnetisations supported on a plane in R3 are described in [2] under weak
(distributional) regularity assumptions, and a similar characterisation can be obtained
on the 2D sphere by the same method, only replacing Riesz transforms by their spherical
analogs defined in terms of layer potentials, see Sec. 1.4. In this connection, we note
that silent magnetisations of L2-class on the sphere have long been characterised in
terms of their expansion in spherical harmonics, see for instance [3]. Because one
deals here with closed surfaces (the plane being a sphere of infinite radius), one has
to distinguish between silence from one side or from both sides. On the plane or the
sphere, being silent from one side is equivalent to the property that, in the so-called
Hardy-Hodge decomposition of the field representing the magnetisation, the component
which is a harmonic gradient from the other side is identically zero. More generally, for a
magnetisation carried by a closed Lipschitz surface, silence from one side is equivalent to
the double layer potential of the normal component being equal to minus the single layer
potential of the divergence of the tangential component; see [4, Thms 3.3 & 3.16] for
an analysis in L2-classes that does carry over, using results from [5], to magnetisations
of Lp-class for restricted range of p around 2, and in fact for all p ∈ (1,∞) when the
surface is C1-smooth. Moreover, being silent from both sides is equivalent to being
divergence-free, as a distribution in ambient Euclidean space. In another connection,
silent magnetisations supported on a slender set (i.e. a set of measure zero whose
complement has all its connected components of infinite measure) were characterised
in [6] as being divergence-free, in the setting of vector-valued measures (that subsumes
Lp-classes). Slender sets include general open surfaces, whose complement is connected
and for which there is no notion of silence from one side. From this discussion, one can
get a sense of what it means to be silent for magnetisations carried by a surface in R3.

In contrast, silent magnetisations supported in a volume seem not to have been stud-
ied systematically, and the goal of this chapter is to undertake such a study. Specifically,
we show that silent magnetisations of Lp-class carried by a bounded open set Ω are, for
1 < p <∞, the (restriction to Ω of the) sum of a gradient and a divergence-free field on
Rn, each of which vanishes outside of Ω. If moreover Ω has a boundary which is locally
a Lipschitz graph, then the previous characterisation amounts to say that silent mag-
netisations are the sum of a gradient vector field on Ω with zero tangential boundary
component and of a divergence free field with zero normal boundary component.

As can be surmised from this description, the Helmholtz decomposition of vector
fields plays a central role in our analysis. Using this description of silent sources, we
can characterise the magnetisation of minimum Lp-norm equivalent to a given magneti-
sation. This gives rise to a non-classical decomposition of Lp-vector fields, as the sum
of a gradient with zero tangential boundary component and a divergence-free field with
zero normal boundary component, plus the duality mapping of a harmonic gradient.
When p = 2 it coincides with the Helmholtz decomposition in degree 1, but unlike
the Helmholtz decomposition the non-classical decomposition exists for all p ∈ (1,∞)
on any bounded Lipschitz open set and it is nonlinear. Computing the magnetisation
of minimum L2-norm equivalent to a given one amounts to solve a Dirichlet problem
for the Laplacian. When p 6= 2, computing an equivalent magnetisation of minimum
Lp-norm is more difficult.

The chapter is organized as follows. In Sec. 1.2, we set up notation and recall a
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number of properties of Sobolev functions on Lipschitz domains and Lipschitz surfaces,
as well basic facts concerning divergence-free vector fields. Sec. 1.3 is a quick review of
Helmholtz decompositions and Riesz transforms, while Sec. 1.4 compiles known facts
on layer potentials. In Sec. 1.5 we characterise silent vector fields on bounded open
sets with minimal assumptions on the regularity of the sets and use this in Sec. 1.6
to describe equivalent sources which are norm-minimal. The Appendix to this chapter
contains some auxiliary information need to ground the ideas discussed in the present
chapter.

1.2 Notation, definitions and preliminaries

Let Rn denote the Euclidean space of dimension n. Hereafter, we assume that n ≥ 3.
We write x = (x1, · · · , xn)t to display the coordinates of x ∈ Rn, with superscript “t”

to mean “transpose”, and x · y for the scalar product of x, y ∈ Rn; |x| = x · x 1
2 is

the Euclidean norm of x. We let B(x, r) be the open ball centered at x of radius r,
and S(x, r) the boundary sphere. We put χE for the characteristic function of E, and
d(E1, E2) for the distance between E1, E2 ⊂ Rn. We designate the set {x+ e : e ∈ E}
by x + E, and for ε > 0 we set Eε := {x ∈ Rn : d (x,E) < ε} for the ε-neighborhoud
of E.

1.2.1 Maxwell’s equations

Central to the work that will be shown here are Maxwell’s equations. There are a set
of equations that state the relationship between primary currents (J ∈ R3), magneti-
sations (M ∈ R3), electric fields (E ∈ R3), magnetic fields (H ∈ R3), displacements
(D ∈ R3), polarisation (P ∈ R3), charge density (ρ ∈ R), magnetic permeability
(µ ∈ R+) and electric permittivity (ε ∈ R+). By taking the following constitutive
relations,

D = εE + P and B = µ(H +M),

we have according to [7, Appendix on Units and Dimensions] that Maxwell’s equations
are given in differential form as follows

∇× E = −∂B
∂t
, ∇×H = J +

∂D

∂t
, ∇ ·D = ρ, ∇ ·B = 0.

If the partial derivatives with respect to time in the above expressions are negligible
then we can use a quasi-static approximation of the Maxwell’s equations given as follows

∇× E = 0 and ∇×H = J.

If we assume that J = 0 then we have that H = −∇PM where PM : R3 → R. Hence
the constitutive relations for B becomes

B = µ(−∇PM +M)

and taking divergence on both sides leads to (1.1).
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1.2.2 Function spaces

In what follows E ⊂ Rn is Lebesgue-measurable and 1 ≤ p ≤ ∞.

Definition 1. Lp(E) is the space of (equivalence class of a.e.. coinciding) R-valued
measurable functions on E whose absolute value to the p-th power is integrable, with
norm

‖g‖Lp(E) =
(∫

E

|g(y)|pdy
) 1
p

(ess. supE |g| if p =∞).

For 1 ≤ p < ∞ and 1
p

+ 1
q

= 1, the dual of Lp(E) is Lq(E), isometrically under the
pairing

〈f, g〉 =

∫
E

fg.

We set Lploc(E) to consist of functions f whose restriction f|K lies in Lp(K) every
compact K ⊂ E.

Given a functional space X, we write [X]m for the corresponding space of vector-
fields with m components, each of which lies in X. Further, the dual of X will in general
be denoted X∗, if the dual space is explicitly known it will be given as an explicit space.
Of particular interest is the following space of vector-fields

Definition 2. [Lp(E)]m is the space of Rm-valued vector-fields M on E whose compo-
nents belong to Lp(E), with norm

‖M‖[Lp(E)]m =
(∫

E

|M |p dy
) 1
p

(ess. supE |M | if p =∞), (1.2)

and for 1 ≤ p < ∞ the dual of [Lp(E)]m is [Lq(E)]m, 1
p

+ 1
q

= 1, isometrically under
the pairing

〈F,G〉 =

∫
E

F (y) ·G(y) dy. (1.3)

If E ⊂ Rn and f : E → Rm, we designate by f̃ : Rn → Rm the extension of f by
zero outside E. The notation stands irrespective of m, n and E.

When solving partial differential equations, classical solutions are sort after. How-
ever, it is well-known that conditions that are set for classical solutions are typically
too restrictive to be satisfied hence the concept of weak solutions has been introduced
where the problem is converted into a variational problem. These variational problems
have bigger solution sets that contains the classical solution set, hence when a classical
solution exists it is also a weak solution. At the heart of weak solutions is a space of
functions for which the notion of derivatives is weaker than the classical derivative. In
what follows Ω ⊂ Rn is an open set and let α = (α1, α2, . . . , αn) is a multi-index with

each αi ≥ 0 and |α| =
n∑
i=1

αi.

Definition 3. Let u : Ω→ R be a function, we use the notation

Dαu =
∂|α|u

∂α1x1∂α2x2 · · · ∂αnxn
.
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We denote by Ck(Ω) the linear space of all real functions, u, defined in Ω which together
with all their derivatives Dαu of order |α| ≤ k are continuous in Ω. We set

C∞(Ω) =
∞⋂
k=0

Ck(Ω).

Further, we set Ck
c (Ω) and C∞c (Ω) to be linear subspaces of Ck(Ω) and C∞(Ω), respec-

tively, of all functions having compact support in Ω.

Note that since Ω ⊂ Rn is open, functions in Ck(Ω) need not be bounded. If
u ∈ Ck(Ω) is bounded and uniformly continuous, then it possesses a unique, bounded
continuous extension to the closure, Ω, of Ω. Hence we have the following definitions,

Definition 4. Ck(Ω) is the linear subspace of Ck(Ω) of all functions u for which Dαu
is bounded and uniformly continuous on Ω for all |α| ≤ k. Further for 0 < λ ≤ 1,
Ck,λ(Ω) is the subspace of Ck(Ω) consisting of all functions u for which Dαu satisfies
in Ω the Hölder condition with exponent λ, that is,

|Dαu(x)−Dαu(y)| ≤ K|x− y|λ, x, y ∈ Ω,

for all |α| ≤ k.

Remark 1. Functions in C0,1(Ω) are called Lipschitz functions.

Definition 5. Let f ∈ L1(Ω), we say that f has an α-th distributional (weak) derivative,
fα, if and only if ∫

Ω

fDαψ = (−1)|α|
∫

Ω

fαψ for all ψ ∈ C∞c (Ω).

Definition 6. For 1 ≤ p <∞, W 1,p(Ω) is the Sobolev space of functions lying in Lp(Ω)
together with their first distributional derivatives, with the norm

‖g‖W 1,p(Ω) =
(
‖g‖pLp(Ω) + ‖∇g‖p[Lp(Ω)]n)

) 1
p
,

where ∇g = (∂1g, · · · , ∂ng)t denotes the gradient of g and ∂jg the derivative with respect
to the j-th variable. We let W 1,p

0 (Ω) stand for the closure in W 1,p(Ω) of C∞c (Ω) under
the above norm.

Remark 2. (i) W 1,p(Ω) is a Banach space under the given norm. A function belongs
to W 1,p

0 (Ω) if and only if its extension by zero outside Ω belongs to W 1,p(Rn), see
[8, Thm 9.1.3].

(ii) The definition above of Sobolev functions can be generalised to g ∈ Wm,p(Ω),
m ∈ N where the p-integrability is required to hold for all distributional derivatives
Dαg for all |α| ≤ m. Wm,p is endowed with the norm

‖g‖W 1,p(Ω) =

‖g‖pLp(Ω) +
∑
|α|≤m

‖Dαg‖p[Lp(Ω)]n)

 1
p

.
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A special property of members of W 1,p
0 (Ω) satisfy is an equivalence of the W 1,p-norm

and the Lp-norm of the gradients. This is given in the following theorem, see [9, Thm.
15.4.1] for a more general result:

Theorem 1 (Poincaré inequality, [10, Ch. VI, Sec. 6.26]). Let Ω ⊂ Rn be bounded and
let 1 < p <∞. Then

‖ϕ‖Lp(Ω) ≤ C‖∇ϕ‖[Lp(Ω)]n , (1.4)

where C depends only on the diameter of Ω.

We have the following result that gives the equivalence of the W 1,p-norm and the
Lp-norm of the gradients:

Theorem 2 (Poincaré-Wirtinger inequality, [11, Comments on Ch. 9]). Let Ω ⊂ Rn

be bounded of class C1 and let 1 < p <∞. Then

‖ϕ− ϕ‖Lp(Ω) ≤ C‖∇ϕ‖[Lp(Ω)]n , (1.5)

where C depends only on the diameter of Ω and

ϕ =
1

|Ω|

∫
Ω

ϕ. (1.6)

The space W 1,p
loc (Ω) is comprised of functions lying in Lploc(Ω) together with their first

order derivatives; it is a Fréchet space, with seminorms the Sobolev norms on relatively
compact open subsets of Ω exhausting the latter.

We put Ẇ 1,p(Ω) for the quotient space, modulo constants, of distributions on Ω
whose derivatives belong to Lp(Ω). Such a distribution, say ψ, necessarily lies in
W 1,p
loc (Ω), see for example [9, Sec. 1.1.2], and we write ψ̇ ∈ Ẇ 1,p(Ω) for the equiva-

lence class of ψ. Endowed with the norm

‖g‖Ẇ 1,p(Ω) := ‖∇g‖[Lp(Ω)]n ,

one can see that Ẇ 1,p(Ω) is a Banach space called homogeneous Sobolev space (of index
p), see [9, Sec. 1.1.13, Thm 1]. It can be shown that Ẇ 1,p(Rn) is the closure of C∞c (Rn)
with respect to ‖.‖Ẇ 1,p(Rn) for 1 < p <∞, see the discussion in Sec. 1.3.

We introduce here a subspace of [Lp(Ω)]n that depends on homogeneous Sobolev
spaces.

Definition 7. Gp(Ω) is the subspace of [Lp(Ω)]n defined by

Gp(Ω) := {∇ψ : ψ ∈ W 1,p
loc (Ω), ∇ψ ∈ [Lp(Ω)]n}. (1.7)

Gp
0(Ω) is the subspace of [Lp(Ω)]n defined as closure of [C∞c (Ω)]n in Gp(Ω):

Gp
0(Ω) := {∇ψ : ψ ∈ C∞(Ω), ∇ψ ∈ [C∞c (Ω)]n}

[Lp(Ω)]n

. (1.8)
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In other words, Gp(Ω) comprises gradients of members of Ẇ 1,p(Ω). When Ω is
bounded, Gp

0(Ω) consists of vector fields in [Lp(Ω)]n whose extension by zero outside Ω
is the gradient of some member of Ẇ 1,p(Rn), see Lemma 19 below.

For 1 < p <∞, the dual space of W 1,p
0 (Ω) is denoted by W−1,q(Ω), with 1

p
+ 1

q
= 1;

it may be realised as the completion of Lq(Ω) with respect to the norm

‖ϕ‖W−1,q(Ω) := sup
‖g‖

W
1,p
0 (Ω)

=1

∣∣∣∣∫
Ω

ϕ(y)g(y) dy

∣∣∣∣ , (1.9)

see [10, Sec. 3.12]. Note that members of W−1,q(Ω) are generally not functions but
rather distributions on Ω, and that f 7→ ∇f is continuous from Lp(Ω) to [W−1,q(Ω)]n,
by (1.4). The support of a function or a distribution T will be denoted by suppT .

Members of Lp(Ω) in general do not have point-wise values hence point-wise descrip-
tions of these functions are meaningless in general. However under certain conditions
point-wise values can be assigned to members of W 1,p(Ω). Since W 1,p(Ω) ⊂ Lp(Ω),
every f ∈ W 1,p(Ω) is such that a.e.. x ∈ Ω is a Lebesgue point where f can be defined
in the strict sense:

f(x) = lim
r→0

1

m(B(x, r))

∫
B(x,r)

f(y)dy,

with m to indicate Lebesgue measure. Beyond the point-wise definition of Sobolev
functions at Lebesgue points we can turn to the smoothness of Sobolev functions in
order to assign point-wise values. To that end we recall the Sobolev embedding theorem,
we will only quote the part of the theorem that we need for what follows immediately,

Theorem 3 (Sobolev embedding theorem, [10, Ch. V, Sec. 5.4]). Let Ω ⊂ Rn have
a strong local Lipschitz property, see the Sec. 1.2.3, j and m be non-negative integers
and let 1 ≤ p <∞.

(1) Suppose mp > n > (m− 1)p. Then

W j+m,p(Ω) ⊂ Cj,λ(Ω), 0 < λ ≤ m− n

p
.

(2) Suppose n = (m− 1)p. Then

W j+m,p(Ω) ⊂ Cj,λ(Ω), 0 < λ < 1.

By setting j = 0 and m = 1 we conclude that f ∈ W 1,p(Ω) for p > n is continuous so
that every point is Lebesgue hence the function has point-wise values. There however
remains something to be said when 1 < p ≤ n since non-Lebesgue points form a set of
zero (1, p)-Bessel capacity. To define Bessel capacities we introduce the following space.

Definition 8. S (Rn) denotes the Schwartz class which consists of C∞(Rn) functions
such that, for every pair of multi-indices (α, β), there exists a positive constant Cα,β <
∞ for which

ρα,β(f) := sup
x∈Rn
|xαDβf(x)| ≤ Cα,β.
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We need to state the following theorem as it will be used in what follows,

Theorem 4 (Young, [11, Thm 4.15]). Let f ∈ L1(Rn) and g ∈ Lp(Rn) with 1 ≤ p ≤ ∞.
Then for a.e. x ∈ Rn the function y → f(x− y)g(y) is integrable on Rn and we define

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y) dy.

In addition f ∗ g ∈ Lp(Rn) and

‖f ∗ g‖Lp(Rn) ≤ ‖f‖L1(Rn) ‖g‖Lp(Rn) .

For functions in the Schwartz class we define the following operator,

Gκ = (I −∆)−
κ
2 , κ ∈ R,

for which the Bessel potential representation of f ∈ S (Rn),

f = Gκ ∗ g,

where g ∈ S (Rn).

Definition 9. Lκ,p(Rn) is the Bessel potential space defined by

Lκ,p(Rn) = {f : f = Gκ ∗ g, g ∈ Lp(Rn)}, κ ∈ R.

The Bessel potential space is endowed with the norm ‖f‖κ,p = ‖g‖Lp(Rn) .

Definition 10. Let K ⊂ Rn be compact and set

wK = {ϕ ∈ S (Rn) : ϕ ≥ 1 on K},

so that wK is a convex subset of the Schwartz class. Let κ > 0 and 1 < p < ∞, then
the (κ, p)-Bessel capacity of K, Cκ,p(K), is defined as

Cκ,p(K) = inf{‖ϕ‖pκ,p : ϕ ∈ wK}.

For Ω ⊂ Rn an open set,

Cκ,p(Ω) = sup{Cκ,p(K) : K ⊂ Ω, K compact}.

Finally, if a property holds everywhere expect on a set of (κ, p)-Bessel capacity zero, the
property is said to hold (κ, p)-quasi everywhere ((κ, p)-q.e.).

More details on Bessel capacities can be seen in [8, Ch. 2] and [8, Sec. 6.2] for
capacitary properties of Lebesgue points of Sobolev functions. We turn to the following
result of Calderon.

Theorem 5 ([12, Ch. V, Sec. 3, Thm 3]). For κ ∈ N, W κ,p(Rn) = Lκ,p(Rn), 1 < p <∞
with the equivalence of norms, that is, there is a constant A such that for all f

A−1 ‖f‖κ,p ≤ ‖f‖Wκ,p(Rn) ≤ A ‖f‖κ,p .
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We rephrase here [8, Thm 6.2.1], we need the following definition first.

Definition 11. A function f is said to be (κ, p)-quasi-continuous if for every ε > 0
there exists an open set G such that Cκ,p(G) < ε and f |Gc ∈ C(Gc).

Theorem 6 ([8, Thm 6.2.1]). Let f = Gκ ∗ g ∈ W κ,p(Rn), 1 < p < ∞, 0 < κp ≤ n.
Let q be such that 1 ≤ q ≤ p∗ where p∗ = np

n−κp if κp < n, and for all q, 1 ≤ q < ∞, if

κp = n. Then (κ, p)-q.e. x is a Lebesgue point for f in the Lq-sense, that is,

lim
r→0

1

m(B(x, r))

∫
B(x,r)

f(y)dy = f̃(x) exists,

and

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f̃(x)| dy = 0.

Moreover, the convergence is uniform outside an open set of arbitrarily small (κ, p)-
Bessel capacity, f̃ is a (κ, p)-quasi-continuous representative for f , and

f̃(x) = Gκ ∗ g(x) (κ, p)-q.e.

The above results show that (1, p)-q.e., for 1 < p ≤ n, f ∈ W 1,p(Rn) has point-wise
values. Sets of zero (1, p)-Bessel capacity are very thin. Thinness is defined as follows.

Definition 12. Let E ⊂ Rn and let 1 < p < n
κ

, 1
p

+ 1
q

= 1. Then E is (κ, p)- thin at a
point x ∈ Rn if ∫ 1

0

(Cκ,p(E ∩B(x, r))

rn−κp

)q−1 dr

r
<∞.

The above definition is a generalisation of the following definition of thinness which
is given for κ = 1 and p = 2,

Definition 13. Let E ⊂ Rn be an arbitrary set. Then E is thin at x ∈ Rn if there
exists a positive measure µ such that

G2 ∗ µ(x) < lim inf
a→x, a∈E\{x}

G2 ∗ µ(a).

Thinness plays the following role. Let Ω ⊂ Rn be an open bounded domain and ∂Ω
have finitely many connected components, say Γ1, · · · ,Γl. Moreover, let the connected
components of Rn \ Ω consist of l open sets O1, · · · , Ol, and with a suitable ordering
O1 is the exterior of Γ1 while Oj is the interior of Γj for j 6= 1. If there exists a pair
Γi,Γ

∗
i i 6= i∗ such that Γi ∩ Γi∗ 6= ∅ with either Oi or Oi∗ thin on this intersection or

both then there exists a function f ∈ W 1,p(Rn) such that ∇f vanishes on each Oj but
∇f |Ω /∈ Gp

0(Ω). By setting f = cj on Oj we have that ∇f is compactly supported in
Ω. Further f = cj on each Γj, however we can set ci 6= ci∗ , because of the thinness of
either Oi or Oi∗ on Γi ∩Γi∗ . It thus follows that there is no C∞(Rn) that approximates
f . In Sec. 1.9.3 we give an example of a domain Ω that is open and bounded with a
Rn\Ω that is connected and function f ∈ W 1,2

loc (Rn) such that ∇f vanishes on Rn\Ω
but f attains two different constant values on Rn\Ω.

16



1.2.3 Lipschitz open sets

The work we present here is valid for open sets in Rn with few restrictions on their
geometry. However, for a particular class of open sets, their geometry makes it possible
to have well behaved functions defined on their boundaries making computations pos-
sible. We discuss the geometry of such sets in this section. We will devote this section
to sets that have the Lipschitz property, we will briefly discuss other classes of sets that
may be referred to in later sections and chapters.

Definition 14. Let Φ be a one-to-one transformation of a domain Ω ⊂ Rn onto a
domain G ⊂ Rn, having inverse Ψ = Φ−1. We call Φ m-smooth if writing y = Φ(x)
and x = Ψ(y) as

y1 = φ1(x1, x2, . . . , xn), x1 = ψ1(y1, y2, . . . , yn),
y2 = φ2(x1, x2, . . . , xn), x2 = ψ2(y1, y2, . . . , yn),

...
...

yn = φn(x1, x2, . . . , xn), xn = ψn(y1, y2, . . . , yn),

the functions φ1, φ2, . . . , φn ∈ Cm(Ω) and the functions ψ1, ψ2, . . . , ψn ∈ Cm(G).

Definition 15. Let Φ : Rm → Rn we write the Jacobian matrix (total derivative) of Φ
at x as

DΦ(x) =


∂φ1

∂x1
(x) ∂φ1

∂x2
(x) . . . ∂φ1

∂xm
(x)

∂φ2

∂x1
(x) ∂φ2

∂x2
(x) . . . ∂φ2

∂xm
(x)

...
...

...
∂φn
∂x1

(x) ∂φn
∂x2

(x) . . . ∂φn
∂xm

(x)

 .

Given X ⊂ Rn and let Φ : U ⊂ Rm → X be a local parametrization around x ∈ X where
U is open. We may assume that Φ(0) = x. The best approximation of Φ : U ⊂ Rm → X
at 0 is the map

u 7→ Φ(0) +DΦ(0)u = x+DΦ(0)u.

The tangent space of X at x, TxX, is range of the map DΦ(0) : Rm → Rn.

Definition 16. For a smooth Φ : X → Y , a point x ∈ X is called a regular point for
Φ if DΦ(x) : TxX → TyY is surjective. Otherwise, x is critical point. For a smooth
Φ : X → Y , a point y ∈ Y is called a regular value for Φ if DΦ(x) : TxX → TyY is
surjective at every point x such that Φ(x) = y. Otherwise y is a critical value.

Remark 3. The moral of the above definition is y is a regular value if Φ−1(y) = x is
a regular point and y is a critical value if Φ−1(y) = x is a critical point.

Theorem 7 (Sard’s theorem, [13, Ch. 1, Sec. 7].). If Φ : X → Y is any smooth map
of manifolds, then almost every point in Y is a regular value of Φ.

Definition 17. An open set Ω ⊂ Rn is of class Cm, is there exists a locally finite open
cover {Uj} of the boundary of Ω, ∂Ω, and a corresponding sequence {Φj} of m-smooth
one-to-one transformations with Φj taking Uj onto B(0, 1) ⊂ Rn, such that:
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(i) For some δ > 0,
∞⋃
j=1

Ψj(B(0, 1
2
)) ⊃ Ωδ, where Ψj = Φ−1

j .

(ii) For some finite R, every collection of R+ 1 of the sets Uj has empty intersection.

(iii) For each j, Φj(Uj ∩ Ω) = {y ∈ B(0, 1) : yn > 0}.

(iv) If (φ1,j, φ2,j, . . . , φn,j) and (ψ1,j, ψ2,j, . . . , ψn,j) denote the components of Φj and
Ψj, respectively, the there is a finite M such that for all α, |α| ≤ m for every
i, 1 ≤ i ≤ n and for every j, we have

|Dαφj,i(x)| ≤M, x ∈ Uj and |Dαψj,i(y)| ≤M, y ∈ B(0, 1).

The rest of this section is devoted to the definition of Lipschitz sets. We take an
approach slightly different from the one above in order to better get access to objects
defined on ∂Ω that are useful for later computations. One of the objects that we will
need access to is the Hausdorff measure defined on ∂Ω

Definition 18. Let E ⊂ Rn be an arbitrary set, 0 ≤ s <∞, 0 < δ ≤ ∞. We write

Hs
δ(E) = inf

{ ∞∑
j=1

π
s
2

Γ( s
2

+ 1)

(diam Cj
2

)s
: E ⊂

∞⋃
j=1

Cj, diam Cj ≤ δ
}
.

The s-dimensional Hausdorff measure (Hausdorff s-measure) of E on Rn, Hs(E), is
defined as

Hs(E) = lim
δ→0
Hs
δ(E) = sup

δ>0
Hs
δ(E).

We say that an open set Ω ⊂ Rn is Lipschitz if ∂Ω is compact and locally isometric
to the graph of a Lipschitz function; see e.g. [10, 14]. More precisely, to each x ∈ ∂Ω
there should exist an open set U ⊂ Rn containing x and a rigid tranformation T of Rn

such that, for some open set V ⊂ Rn−1 and some Lipschitz map Ψ : V → R+, one has:

T (U) ∩ Ω = {y ∈ Rn, (y1, · · · , yn−1)t ∈ V, 0 < yn < Ψ(y1, · · · , yn−1)}.

One can cover ∂Ω by finitely many (say N ≤ 1) open sets Uj as above, with corre-
sponding Tj, Vj and Ψj for 1 ≤ j ≤ N . Now, if we define maps Φj : Uj ∩ ∂Ω → Vj as
Φj := Pn−1 ◦ Tj where Pn−1 is the projection on the first (n − 1) components, we get
an atlas on ∂Ω making it a compact Lipschitz manifold. Note that the parametriza-
tions Φ−1

j : Vj → Uj ∩ ∂Ω ⊂ Rn are themselves Lipschitz as they are given by

Φ−1
j = T−1

j ◦ (In−1 × Ψj), where In−1 is the identity map on Rn−1. Since ∂Ω is lo-

cally the image of an open subset of Rn−1 by a Lipschitz function (e.g., Φ−1
j : Vj → Rn),

the volume measure σ coincides with the restriction to ∂Ω of Hausdorff (n−1)-measure,
see [15, Sec. 3.2]. Integration of functions on ∂Ω is always understood with respect to
σ.

For a Lipschitz open set Ω ⊂ Rn, we say that x ∈ ∂Ω is singular if there is j ∈
{1, · · · , N} such that x ∈ Uj and Φ−1

j : Vj → Rn is not differentiable at Φj(x). A point
which is not singular is called regular. We denote the set of regular points by Reg ∂Ω
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and put RegVj = Φj(Reg ∂Ω∩Uj). So defined, the set of regular points depends on the
atlas, but we shall fix the latter. As Φ−1

j is Lipschitz, the set Ej ⊂ Vj where it is not
differentiable has Lebesgue measure zero, by Rademacher’s theorem [16, Thm 2.2.1].
Hence, σ(Φj(Ej)) = 0 [16, Rem. 1.4.3], implying that singular points have σ-measure
zero.

The tangent space of ∂Ω at x is the subspace Tx∂Ω ⊂ Rn equal to {0} if x is singular
and to RanDΦ−1

j (Φj(x)) if x ∈ Uj ∩ Reg ∂Ω, where DΦ−1
j denotes the total derivative

of Φ−1
j . By the chain rule, the definition does not depend on j such that x ∈ Uj. At

x ∈ Reg ∂Ω, the outward pointing unit normal to ∂Ω is well-defined, and we denote it
as ν(x).

The connected components of ∂Ω are connected compact Lipschitz hypersurfaces in
Rn. For Γ any such hypersurface, Rn \Γ has two connected components: its interior de-
noted by int Γ which is bounded, and its exterior denoted by ext Γ which is unbounded,
see [17, Cor. 3.45].

The connected components of a Lipschitz open set Ω ⊂ Rn are finite in number.
Otherwise indeed, there would exist a sequence Ok of such components, k ∈ Z, with
Ok ∩ Oj = ∅ for k 6= j. Then, we could construct a sequence xk ∈ Ok such that
xk remains at bounded distance from ∂Ok ⊂ ∂Ω, hence xk would be bounded and
extracting a subsequence if necessary we might assume that xk converges in Rn to some
y. However, this is impossible for y cannot lie in Ω since the connected components are
open, nor can it lie in Rn \Ω, and it cannot belong to ∂Ω either because, by definition
of a Lipschitz open set, each member of ∂Ω has a neighborhood whose intersection with
Ω is connected. For the same reason, distinct connected components of Ω cannot have
a common boundary point, hence they lie at strictly positive distance from each other.

A Lipschitz domain is a connected Lipschitz open set. We record for later use an
“obvious” topological lemma:

Lemma 1. Let Ω ⊂ Rn be a bounded Lipschitz domain. Then, ∂Ω has finitely many
connected components, say Γ1, · · · ,Γl. Moreover, the connected components of Rn \ Ω
consist of l open sets O1, · · · , Ol, and with a suitable ordering O1 is the exterior of Γ1

while Oj is the interior of Γj for j 6= 1.

Proof. Since ∂Ω is a compact Lipschitz manifold which is locally a Lipschitz graph, each
x ∈ ∂Ω has a neighborhood whose intersection with ∂Ω is connected. Consequently, by
compactness, ∂Ω has finitely many connected components, say Γ1, · · · ,Γl, and each Γj
is a connected compact Lipschitz hypersurface in Rn. As Ω is connected by assumption,
for each j ∈ {1, · · · , n} either Ω ⊂ int Γj and then ext Γj ⊂ Rn \ Ω, or else Ω ⊂ ext Γj
and then int Γj ⊂ Rn \ Ω. Since there is exactly one unbounded connected component
of Rn \Ω, say O1, it must contain ext Γj for all j such that Ω ⊂ int Γj; let us enumerate
these j as j1, · · · , jm. For 1 ≤ i, k ≤ m, it holds that int Γji ∩ int Γjk 6= ∅ because Ω
lies in this intersection, and since the Γj are disjoint one of these interiors is included
in the other, say int Γji ⊂ int Γjk . But if ji 6= jk, then Γjk ⊂ ext Γji and the latter is
contained in O1, a contradiction. Consequently, m = 1 and Ω lies interior to exactly
one of the Γj, say Γ1. Necessarily then, O1 = ext Γ1 because O1 cannot strictly contain
ext Γ1 without containing a point of Γ1, which is impossible. Likewise, Ω ⊂ ext Γj for
j 6= 1 and then int Γj is a connected component of Rn \Ω. Finally, the closure of every
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bounded connected component of Rn \Ω must meet some Γj, and necessarily j 6= 1 for
each point of Γ1 has a neighborhood included in O1 ∪ Ω, by the local Lipschitz graph
property. Hence, this connected component meets int Γj for some j 6= 1, therefore it
must coincide with int Γj.

Before stating the next result concerning Lipschitz domains we will state a result of
Whitney that ensures the existence of a C1 extension, f̃ , of a given function f defined
on a closed subset E ⊂ Rn. Let f : E → R and d : E → Rn be given functions and

R(x, y) =
f(x)− f(y)− d(y) · (x− y)

|x− y|
x, y ∈ E, x 6= y,

and for K ⊂ E a compact set, and for δ > 0

ρK(δ) = sup{|R(x, y)| : 0 < |x− y| ≤ δ, x, y ∈ K}.

Theorem 8 (Whitney extension theorem, [18, Thm 6.10]). Assume that f, d are con-
tinuous, and for each compact set K ⊂ E,

ρK(δ)→ 0 as δ → 0.

Then there exists a function f̃ : Rn → R such that

(i) f̃ ∈ C1.

(ii) f̃ = f and ∇f̃ = d on E.

At some point, we also need the following “trivial” fact:

Lemma 2. For Ω a bounded Lipschitz domain and ε > 0, there exists a simply connected
Lipschitz domain O such that Ω ⊂ O ⊂ O ⊂ Ωε.

Proof. In fact, one can design O so that it is smooth. For this, we use the notation of
Lemma 1 and observe that O1 is the zero set of a non-negative C∞-smooth function
f : Rn → R from the Whitney extension theorem. Adding to f a smooth non-negative
function which is 0 in a neighborhoud of Ω and 1 in a neighborhoud of ∞, we may
assume that f(x) ≥ 1 for |x| large enough. So, if η > 0 is a sufficiently small regular
value of f , then f−1(η) is a smooth compact (n− 1)-dimensional manifold and we can
take O := int ∂V with V the unbounded component of f−1(η,+∞); see, e.g. [13, Ch.
1, sec. 7] for a definition of regular values and Sard’s theorem that non-regular values
have 1-dimensional Lebesgue measure zero.

Definition 19. We say that a domain D is a special Lipschitz domain if there is a
ϕ : Rn−1 → R which satisfies the Lipschitz condition

|ϕ(x)− ϕ(x′)| ≤M |x− x′|, for all x, x′ ∈ Rn−1,

such that
D = {(x, y) ∈ Rn : y > ϕ(x)}.

The smallest M such that the Lipschitz condition holds is called the bound of the special
Lipschitz domain D.
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Definition 20. Let Ω ⊂ Rn be open. We say that ∂Ω is minimally smooth, if there
exists ε > 0, N ∈ Z, M > 0 and a sequence {Uj} of open sets such that:

(i) For x ∈ ∂Ω, there is a Uj such that B(x, ε) ⊂ Uj.

(ii) No point of Rn is contained in more than N of the Uj.

(iii) For each j there is a special Lipschitz domain Dj whose bound does not exceed M
such that

Uj ∩ Ω = Uj ∩Dj.

1.2.4 Boundary traces of functions and fields

When Ω ⊂ Rn is a Lipschitz open set, W 1,p(Ω) coincides with the restrictions to Ω of
W 1,p(Rn)-functions as a consequence of the following theorem.

Theorem 9 ([12, Ch. VI, Thm 5]). Let Ω ⊂ Rn be a domain with a minimally smooth
boundary. Then there exists a linear operator E mapping functions on Ω to functions
on Rn with the properties

(i) E(f)|Ω = f , that is, E is an extension operator.

(ii) E maps Wm,p(Ω) continuously into Wm,p(Rn), 1 ≤ p ≤ ∞ and all non-negative
m ∈ Z.

Moreover, when 1 < p < ∞, each f ∈ W 1,p(Ω) has a trace on ∂Ω, say ψ. These
traces are members of the so called fractional Sobolev spaces which we define as follows.

Definition 21. A function ψ ∈ W s,p(∂Ω), 0 < s < 1, 1 < p <∞ if

‖ψ‖W s,p(∂Ω) := ‖ψ‖Lp(∂Ω) +

(∫
∂Ω

∫
∂Ω

|ψ(x)− ψ(y)|p

|x− y|n−1+sp
dσ(x)dσ(y)

) 1
p

(1.10)

is finite.

For f ∈ W 1,p(Ω), 1 < p <∞ its trace ψ on ∂Ω lies in the fractional Sobolev space

W 1− 1
p
,p(∂Ω). This means that the restriction to ∂Ω, initially defined for functions

in C∞c (Rn)|Ω, extends to a continuous map W 1,p(Ω) → W 1− 1
p
,p(∂Ω). Membership in

W 1− 1
p
,p(∂Ω) characterises traces of Sobolev functions on the boundary of Lipschitz

domains [19, Ch. VII, Thm 1], moreover the trace operator is surjective W 1,p(Ω) →
W 1− 1

p
,p(∂Ω) [14, Thm. 1.5.1.3]. In particular, traces on ∂Ω of C∞c (Rn)-functions on Rn

are dense in W 1− 1
p
,p(∂Ω). Also, W 1,p

0 (Ω) coincides with the space of W 1,p(Ω)-functions
with zero trace [20, Prop. 3.3].

For 1 < l <∞, we let W− 1
p
,l(∂Ω) indicate the fractional Sobolev space of negative

order −1
p

and exponent l which is the dual space of W
1
p
,l′(∂Ω), 1

l
+ 1

l′
= 1; W− 1

p
,l(∂Ω)

may be realised as the completion of Ll(∂Ω) with respect to the norm

‖ϕ‖
W
− 1
p ,l(∂Ω)

:= sup
‖u‖

W
1
p ,l
′
(∂Ω)

=1

∫
∂Ω

ϕu dσ. (1.11)
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Members of W− 1
p
,l(∂Ω) are distributions on Rn, supported on ∂Ω.

Note that we defined the fractional Sobolev space W s,p(∂Ω) without resorting to
the integral Sobolev space W 1,p(∂Ω), that may be defined as those f : ∂Ω → R such
that f ◦ Φ−1

j ∈ W 1,p(Vj) for all j, where Vj and Φj are as in Sec. 1.2.3. In fact
W s,p(∂Ω) = [Lp(∂Ω),W 1,p(∂Ω)]s,p, where [., .]s,p is the so-called real interpolation func-
tor, see Appendix for a brief discussion. Functions f ∈ W 1,p(∂Ω) have a well-defined
gradient ∇Tf ∈ [Lp(∂Ω)]n, valued at a.e.. x ∈ Ω in the tangent space Tx∂Ω, see (1.78).

Functions ψ ∈ W 1− 1
p
,p(∂Ω) also have a well-defined gradient ∇Tψ, but the latter is now

a (n− 2)-current on ∂Ω lying in the space W
− 1
p
,p

1 (∂Ω), see Appendix for details.
We are now in a position to introduce and study a second subspace of [Lp(Ω)]n.

Definition 22. For Ω a bounded domain and 1 < p < ∞, consider next the subspace
Divp(Ω) of [Lp(Ω)]n defined by

Divp(Ω) := {u ∈ [Lp(Ω)]n : div u ∈ Lp(Ω)};

here div u =
∑n

j=1 ∂ju stands for the Euclidean (distributional) divergence of u, that
we also denote sometimes as ∇ · u.

Of particular interest is the following subspace of Divp(Ω):

Divp,0(Ω) = {u ∈ [C∞c (Ω)]n : div u = 0}
[Lp(Ω)]n

, (1.12)

that is, Divp,0(Ω) is the closure, with respect to the Divp(Ω)-norm, (which coincides on
Divp,0(Ω) with the [Lp(Ω)]n-norm) of those fields in [C∞c (Ω)]n that are divergence-free,
see for example the exposition given in [22, Ch. III].

When Ω is taken to be Lipschitz more can be said about Divp(Ω) we state an
important result here

Theorem 10 ([21, Lem. 1.2.2]). Let Ω be Lipschitz, Divp(Ω) endowed with the norm

‖u‖Divp(Ω)) := (‖u‖p[Lp(Ω)]n + ‖div u‖pLp(Ω))
1
p ,

is a Banach space. There exists a bounded linear operator

Γν : u 7→ Γνu, u ∈ Divp(Ω),

from Divp(Ω) to W− 1
p
,p(∂Ω) such that Γνu coincides with the functional

ϕ 7→ 〈ϕ, u · ν〉 =

∫
∂Ω

(u · ν)ϕdσ, ϕ ∈ W 1,q(Ω).

In what follows whenever we use u · ν we mean the normal trace operator, in each
case ν is the exterior normal field on ∂Ω which coincides with the unit outer normal
vector-field when it exists. The theorem above states that the normal component u·ν of

each u ∈ Divp(Ω), with Ω Lipschitz smooth, is well-defined as a member of W− 1
p
,p(∂Ω)

and the divergence formula holds:

〈ϕ, u · ν〉 =

∫
Ω

∇ϕ(y) · u(y) dy +

∫
Ω

ϕ(y)div u(y) dy, ϕ ∈ W 1,q(Ω). (1.13)
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Theorem 11 ([22, Thm III.2.3]). If Ω Lipschitz smooth then the following equality is
valid

Divp,0(Ω) = {u ∈ [Lp(Ω)]n : div u = 0 and u · ν = 0}. (1.14)

Moreover, on domains Ω smooth enough such that (1.13) holds for all u ∈ [L1
loc(Ω)]n ∩

[Lp(Ω)]n with ‖div u‖Lp(Ω) <∞ then equality (1.14) holds.

Remark 4. An example of domains that satisfy the conditions outlined in Theorem
11 is domains of finite perimeter. We can arrive at this conclusion by using [16, Thm
5.8.2], the density of C∞(Ω)∩W 1,p(Ω) in W 1,p(Ω) and the density of C∞c (Ω) in Lp(Ω).

When 1 < p < ∞ and 1
p

+ 1
q

= 1, we observe that Divp,0(Ω) and Gq(Ω) are

the orthogonal spaces to each other via the pairing (1.3), for every open set Ω ⊂
Rn. Indeed, Divp,0(Ω) and Gq(Ω) are certainly orthogonal, since smooth compactly
supported divergence-free fields are orthogonal to distributional gradients.

Moreover, if F ∈ [L1
loc(Ω)]n is orthogonal to all divergence free fields in [C∞c (Ω)]n,

then it is known that F = ∇Ψ where Ψ ∈ W 1,1
loc (Ω);

Theorem 12 ([22, Lem. III.1.1]). Let Ω ⊂ Rn be open and suppose F ∈ [L1
loc(Ω)]n

verifies ∫
Ω

F · u = 0, for all u ∈ [C∞c (Ω)]n with div u = 0.

Then, there exists a single-valued scalar function Ψ ∈ W 1,1
loc (Ω) such that F = ∇Ψ.

We further have the following result.

Theorem 13 ([23, Thm 6.74]). Let Ψ be a distribution on Ω ⊂ Rn open, then

∇Ψ ∈ Lploc(Ω) =⇒ Ψ ∈ W 1,p
loc (Ω).

Moreover, if Ω is bounded and of class C1, then

∇Ψ ∈ Lp(Ω) =⇒ Ψ ∈ W 1,p(Ω).

Thus, if moreover, F in [Lq(Ω)]n, we get that Ψ in Theorem 12 is in W 1,q
loc (Ω), so that

F belong to Gq(Ω). Thus, Gq(Ω) = (Divp,0(Ω))⊥ and therefore, by the Hahn-Banach
theorem, a member of [Lp(Ω)]n which does not lie in the closed subspace Divp,0(Ω) can-
not be orthogonal to Gq(Ω). Hence, it holds that Divp,0(Ω) = (Gq(Ω))⊥, as announced.

1.3 The Helmholtz Decomposition

It was initially proved by Helmholtz that if u ∈ R3 is a smooth vector-field that vanishes
sufficiently fast at infinity, then it can be decomposed uniquely into the sum of a gradient
and a curl, that is:

u = ∇ϕ+∇×A

where ϕ and A are the so-called scalar and vector potentials respectively, see [24]. This
type of decomposition was subsequently extended to any dimension to function spaces
that are useful for partial differential equations, see the account in [22, Ch. III].
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Definition 23. On a domain Ω ⊂ Rn, we say that M ∈ [Lp(Ω)]n has a Helmholtz
decomposition if there uniquely exist ∇ψ ∈ Gp(Ω) and D ∈ Divp,0(Ω) such that

M = D +∇ψ. (1.15)

We say that a Helmholtz decomposition holds in [Lp(Ω)]n if, for each M ∈ [Lp(Ω)]n,
there uniquely exist ∇ψ ∈ Gp(Ω) and D ∈ Divp,0(Ω) such that (1.15) is valid.

Note that when Ω is bounded, a decomposition like (1.15) is unique as soon as it
exists. The existence of the Helmholtz decomposition is equivalent to the existence of
a unique solution ψ ∈ W 1,p(Ω) to the following Neumann problem

∆ψ = divM, in Ω

∇ψ · ν = M · ν, on ∂Ω.
(1.16)

Since [L2(Ω)]n is a Hilbert space in which G2(Ω) is the orthogonal space to Div2,0(Ω),
a Helmholtz decomposition holds at exponent 2 for any domain Ω hence we have the
topological direct sum

[L2(Ω)]n = G2(Ω)⊕Div2,0(Ω).

Alternatively, it can shown that a solution to the Neumann problem exists always exists
when p = 2. For p 6= 2 the situation becomes complicated. When Ω is Lipschitz, we
turn to the following result,

Theorem 14 ([25, Thm 11.1]). For each Lipschitz domain Ω ⊂ Rn, with arbitrary
topology, there exists ε(Ω) > 0 such that

[Lp(Ω)]n = Gp(Ω)⊕Divp,0(Ω),

is a topological direct sum for p ∈ [3
2
−ε(Ω), 3+ε(Ω)]. In the class of Lipschitz domains,

this result is sharp. If however Ω of class C1 we may take 1 < p <∞.

Moreover, if Ω is convex, then a Helmholtz decomposition exists for all p ∈ (1,∞),
see [26, Thm 1.3]. More about domains on which a Helmholtz decomposition holds for
1 < p < ∞ may be found in [27]. Note that if a Helmholtz decomposition exists in
[Lp(Ω)]n, then

‖D‖[Lp(Ω)]n + ‖∇ψ‖[Lp(Ω)]n ≤ C(Ω, p) ‖M‖[Lp(Ω)]n , (1.17)

by the open mapping theorem. Hence, the Helmholtz decomposition is Lp-continuous
whenever it exists. Observe also that if a Helmholtz decomposition holds in [Lp(Ω)]n

for some p ∈ (1,∞), then it holds in [Lq(Ω)]n with 1
p

+ 1
q

= 1, by duality.
For the remainder of this section we look at the Helmholtz decomposition on Rn.

On Rn, a Helmholtz decomposition exists for 1 < p < ∞. We review this classical
result below, as it is important for our purposes. The standard proof is based on Riesz
transforms:
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Definition 24. For f ∈ Lp(Rn) with 1 ≤ p <∞, its j-th Riesz transform is defined as

Rj(f)(x) = lim
ε→0

cn

∫
|x−y|>ε

xj − yj
|x− y|n+1

f(y) dy, j ∈ {1, 2, . . . , n}, (1.18)

where

cn =
Γ
(
n+1

2

)
π
n+1

2

.

The pointwise limit in (1.18) exists for a.e.. x ∈ Rn, moreover Rj(f) is a bounded
operator from Lp(Rn) to Lp(Rn) for 1 < p <∞.

Definition 25. For f ∈ S (Rn) the Fourier transform of f , denote f̂ is defined as

f̂(ξ) =

∫
Rn
f(y)e2πiξ·y dy, ξ ∈ Rn.

We extend the notation F 7→ F̂ to designate the Fourier transform componentwise
[S (Rn)]n → [S (Rn)]n.

The Fourier transform, f 7→ f̂ , maps S (Rn) into itself. The Riesz transforms and
the Fourier transform have a special relationship, the Riesz transform is what is called
in [12] a multiplier of the Fourier transform, that is, for j ∈ {1, 2, . . . , n}, it follows
from see [12, Ch. II, III] that

R̂j(f)(ξ) = i
ξj
|ξ|
f̂(ξ), f ∈ S (Rn). (1.19)

Much more closely related to the Riesz transforms are the Riesz potentials which
are defined as follows :

Definition 26. The Riesz potential of f , for f which is sufficiently smooth and for
0 < κ < n is defined by

(Iκf)(x) =
1

γ(κ)

∫
Rn
|x− y|−n+κf(y) dy, (1.20)

where

γ(κ) =
π
n
2 2κΓ(κ

2
)

Γ(n
2
− κ

2
)
.

From [12, Lem. 1] we have that if f ∈ S (Rn), n ≥ 3 and 2 ≤ κ ≤ n then
∆Iκ(f) = Iκ(∆f) = −Iκ−2(f). Thus if κ = 2 then f = −I2(∆f). Now, for p ∈ (1,∞),
every M ∈ [Lp(R)]n has a Helmholtz decomposition:

M = D +∇ψ, (1.21)

where D ∈ [Lp(Rn)]n is divergence-free and ψ ∈ Ẇ 1,p(Rn), and in fact

∇ψ = −
(
Rj

( n∑
k=1

Rk(Mk)
))t

(1.22)
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where Mk indicates the k-th component of M .
Indeed, the right-hand side of (1.22) lies in [Lp(Rn)]n because of the Lp-boundedness

of Riesz transforms. Moreover, when M ∈ [L2(Rn)]n and f ∈ S (Rn), it follows from
(1.19) and the isometric character of the Fourier transform in L2(Rn) that

〈Rj

( n∑
k=1

Rk(Mk)
)
, ∂lf〉 − 〈Rl

( n∑
k=1

Rk(Mk)
)
, ∂jf〉

= 〈 ξj
|ξ|2

n∑
k=1

ξkM̂k , 2iπξlf̂〉 − 〈
ξl
|ξ|2

n∑
k=1

ξkM̂k , 2iπξj f̂〉 = 0, (1.23)

whence the first term in (1.23) is zero for M ∈ [Lp(Rn)]n, by density of L2(Rn)∩Lp(Ω)
in Lp(Rn). That is, the right hand side of (1.22) satisfies the (distributional) Schwarz
rule and so it is a distributional gradient, which must be the gradient of some W 1,p

loc -
function ψ. Consequently, this right hand side belongs to Gp(Rn). Finally, one verifies
by an argument similar to the one in (1.23) that M −∇ψ is orthogonal to gradients of
Schwartz-functions, and therefore is divergence-free, see [28, Sec. 10.6]. Uniqueness of
the decomposition comes from the fact that no nonconstant harmonic function on Rn

can have a gradient in [Lp(Rn)]n.
The mechanism behind formula (1.22) is made transparent by the following, formal

observation. Let ωn denote the surface area of the unit ball in Rn, and R2 indicate the
Riesz kernel of order 2:

R2(x) :=
1

(n− 2)ωn|x|n−2
. (1.24)

If we put U(x) = −R2 ∗ divM for the harmonic potential of divM , then ∆U = divM
where ∆ :=

∑n
j=1 ∂

2
j is the Euclidean Laplacian, whenceD := M−∇U is divergence-free

and so M = ∇U + D is the Helmholtz decomposition, provided that ∇U ∈ [Lp(Rn)]n.
As the Fourier transform of divM is −2iπ

∑n
k=1 ξkM̂k(ξ) while R̂2(ξ) = (2π|ξ|)−2 [12,

Ch. V, Lem. 1], one has Û(ξ) = i(2π)−1|ξ|−2
∑n

k=1 ξkM̂k(ξ) and therefore ∇U has

Fourier transform (ξ1, · · · , ξn)t|ξ|−2
∑n

k=1 ξkM̂k(ξ), which is equivalent to (1.22) in view
of (1.19). What precedes suggests that ψ = −R2∗divM is a natural candidate in (1.21),
and the lemma below gives a rigorous argument to this effect when M ∈ Lp(Rn)∩Lq(Rn)
for some q ∈ (1, n). However, we trade R2 ∗ divM for ∇R2 ∗M (a formal integration
by parts), as it will serve our purposes.

Lemma 3. For M ∈ [Lp(Rn)]n ∩ [Lq(Rn)]n with 1 < p < ∞ and 1 < q < n, let us
define

ΨM(x) :=
1

ωn

∫
Rn
M(y) · (x− y)

|x− y|n
dy, x ∈ Rn. (1.25)

Then:

(i) the integral (1.25) converges absolutely for a.e.. x and M 7→ ΨM is continuous

from [Lq(Rn)]n into L
nq

(n−q) (Rn);

(ii) ∇ΨM ∈ Lp(Rn), and decomposition (1.21) holds with ψ = ΨM .
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Proof. Since | x|x|n | ≤ |x|
1−n, assertion (i) follows from properties of Riesz potentials, see

[12, Ch. V, Thm. 1]. We claim that it is enough to prove (ii) when M ∈ [S (Rn)]n.
Indeed, if M ∈ [Lp(Rn) ∩  Lq(Rn)]n then there is a sequence Fn ∈ [S (Rn)]n converging
to M both in [Lp(Rn)]n and in [Lq(Rn)]n, by mollification. Hence, if M = D + ∇ψ
and Fn = Dn +∇PFn are the Helmholtz decompositions of M and Fn respectively, we
know from (1.17) that limn∇PFn = ∇ψ in [Lp(Rn)]n and from (i) that limn PFn = ΨM

in Lnq/(n−q)(Rn). Because the latter limit implies that ∇PFn converges to ∇ΨM as a
distribution, and since Lp-convergence implies convergence in the distributional sense,
we conclude that ∇ΨM = ∇ψ, thereby proving the claim.

We now show that (ii) holds when M ∈ [S (Rn)]n. In this case, the integral (1.25)
converges absolutely for every x, and using Fubini’s theorem and integration by parts
one checks that ΨM = −R2 ∗ divM , with R2 as in (1.24). Hence, ∆ΨM = divM and,
by the discussion before the lemma, it remains to prove that ∇ΨM ∈ [Lp(Rn)]n. Note
that if M ∈ [S (Rn)]n, then

Ψ̂M(ξ) =
i

2π|ξ|2
n∑
k=1

ξkM̂k(ξ) (1.26)

as a tempered distribution, by [12, Ch. V, Lem. 1]. Let S0(Rn) ⊂ S (Rn) consist
of functions whose Fourier transform vanishes at 0; i.e., functions in S (Rn) with zero
mean on Rn. Let further Σ(Rn) ⊂ S0(Rn) comprise those f such that f̂ vanishes in a
neighborhoud of the origin. For M ∈ [Σ(Rn)]n, it is clear from (1.26) that Ψ̂M ∈ S (Rn),
hence also ΨM ∈ S (Rn) and a fortiori ∇ΨM ∈ [Lp(Rn)]n, as desired. The conclusion
in fact extends to every M ∈ [S0(Rn)]n, because Σ(Rn) is Lp ∩ Lq-dense in S0(Rn)
(see Lemma 8) and we may resort to a limiting argument resembling the one we used
to reduce the proof to the case where M ∈ [S (Rn)]n. Thus, in order to prove that
∇ΨM ∈ [Lp(Rn)]n for all M ∈ S n, it is enough to show this is true when M = hv
for any v ∈ Rn and some particular h ∈ S \S0, because the space of such functions
complements [S0]n in [S ]n. Since the function R2 ∗ h is locally bounded and for
k ∈ {1, · · · , n} the function x 7→ R2(x − y) is absolutely continuous on each line
Lk := {x : xj = cj, j 6= k} except when cj = yj for all j 6= k, we get on differentiating
under the integral sign that Phv = −

∑n
k=1 vk∂k(R2 ∗ h). So, we are left to check there

exists h ∈ S \S0 such that R2 ∗ h has all its second derivatives in Lp(Rn). Lemma 9
provides us with such a h, thereby concluding the proof.

As alluded to earlier, given a bounded open domain Ω ⊂ Rn, a Helmholtz decom-
position does not always exist in [Lp(Ω)]n for 1 < p < ∞, even if Ω is Lipschitz. In
Section 1.6, we will prove there is a related, three-term decomposition that exists in
[Lp(Ω)] for all 1 < p <∞ as soon as Ω is Lipschitz. We state the result here.

Theorem 15. Let Ω be a bounded Lipschitz open set and M ∈ [Lp(Ω)]n a nonzero
vector-field with 1 < p < ∞ and 1

p
+ 1

q
= 1. Then, there exists uniquely ∇ψ ∈ Gp

0(Ω)

and D ∈ Divp,0(Ω), together with a harmonic function h in Ω meeting
∫

Γi
(∂h
∂ν

) dHn−1 = 0
for each connected component Γi of ∂Ω, such that

M = ∇ψ +D + |∇h|q−2∇h. (1.27)
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The above theorem can be stated for a larger class of open sets as :

Corollary 1. Let 1 < p < ∞, 1
p

+ 1
q

= 1 and Ω ⊂ Rn be a bounded open set whose

boundary ∂Ω has zero Lebesgue measure, with {Oj}j∈J the connected components of
Rn \Ω. Assume that whenever Oj

⋂
∪i∈IOi 6= ∅ for some index j ∈ J and some subset

of indices I ⊂ J , then B1,p

(
Oj

⋂
∪i∈IOi

)
> 0. Suppose in addition that Oj is non-thin

at B1,p-quasi every point of ∂Oi (which is no restriction if n < p) and that for all
u ∈ [L1

loc(Ω)]n ∩ [Lp(Ω)]n with ‖div u‖Lp(Ω) <∞ the equality

〈ϕ, u · ν〉 =

∫
Ω

∇ϕ(y) · u(y) dy +

∫
Ω

ϕ(y)div u(y) dy, ϕ ∈ W 1,q(Ω),

holds. Then for M ∈ [Lp(Ω)]n a nonzero vector-field there exists uniquely ∇ψ ∈ Gp
0(Ω),

D ∈ Divp,0(Ω) and h ∈ W 1,q(Ω), a function harmonic in Ω satisfying ∇h ∈ (Gp
0(Ω))⊥

such that
M = ∇ψ +D + |∇h|q−2∇h. (1.28)

1.4 Double and Single layer potentials

In this section we look at layer potentials which will play some role in this work in
relation to their use in the representation of solutions of problems such as (1.16). This
section consists in mostly listing interesting properties of the layer potentials with the
main references being two papers [29, 25]. Assume that Ω ⊂ Rn is a bounded Lipschitz
domain whose boundary is either connected or disconnected. Hence, Rn\∂Ω has at least
two connected components. For any bounded connected set O we take the convention
O = int ∂O and O− := ext ∂O.

Definition 27. The double and single layer potentials of a function ψ defined on ∂Ω,
whose smoothness will be made precise later on, are defined by

Kψ(x) = − 1

ωn

∫
∂Ω

ψ(y)
(x− y)

|x− y|n
· ν(y) dσ(y), x ∈ Rn\∂Ω, (1.29)

and

Sψ(x) = − 1

(n− 2)ωn

∫
∂Ω

ψ(y)
1

|x− y|n−2
dσ(y), x ∈ Rn\∂Ω, (1.30)

respectively. We call ψ the density of the double or single layer potential.

It is well-known that Kψ and Sψ are harmonic in Rn\∂Ω.

Definition 28. For x ∈ ∂Ω, the double layer potential is defined as the singular integral

Kψ(x) = p.v.− 1

ωn

∫
∂Ω

ψ(y)
(x− y)

|x− y|n
· ν(y) dσ(y)

= lim
ε→0
− 1

ωn

∫
|x−y|>ε

ψ(y)
(x− y)

|x− y|n
· ν(y) dσ(y).

(1.31)

28



and

K∗ψ(x) = p.v.
1

ωn

∫
∂Ω

ψ(y)
(x− y)

|x− y|n
· ν(x) dσ(y)

= lim
ε→0

1

ωn

∫
|x−y|>ε

ψ(y)
(x− y)

|x− y|n
· ν(x) dσ(y).

(1.32)

Theorem 16 ([29, Thms 1.10, 1.11]). If ψ ∈ Lp(∂Ω) then Kψ(x) and K∗ψ(x) exist in
Lp(∂Ω) and point-wise for a.e.. x ∈ ∂Ω. Also

lim
y→x
Kψ(y) =

{
(1

2
Id+K)ψ(x) y ∈ Ω

(−1
2
Id+K)ψ(y) y ∈ Rn\Ω

,

lim
y→x

ν(x) · ∇Sψ(y) =

{
(−1

2
Id+K∗)ψ(x) y ∈ Ω

(1
2
Id+K∗)ψ(y) y ∈ Rn\Ω

,

for almost every x ∈ ∂Ω where the convergence y → x is non-tangential.

It follows that the non-tangential limits on ∂Ω of the double layer potential from
inside and outside, differ by the density ψ of the potential. For appropriate range
of exponents, the double layer potential on Ω is a famous tool to solve the Dirichlet
problem for the Laplace equation, which is to find w : Ω→ R such that

∆w = 0 in Ω,

w = g on ∂Ω.
(1.33)

In fact, (1
2
Id + K) : W

1
q
,p(∂Ω) → W

1
q
,p(∂Ω) is invertible for p ∈ [3

2
, 3] and 1

p
+ 1

q
= 1,

see [25, Thm 8.1]. Hence, the solution to (1.33) when g ∈ W
1
q
,p(∂Ω) with p ∈ [3

2
, 3] is

given by w = K(1
2
Id+K)−1g and belongs to W 1,p(Ω). Here, the boundary condition in

(1.33) is satisfied both as a Sobolev trace and as a non-tangential limit a.e.. Likewise,
the double layer potential on Ω− is a tool to solve the exterior Dirichlet problem, which
is to find w : Ω− → R such that

∆w = 0 in Rn\Ω ∪ {∞},
w = g on ∂Ω,

(1.34)

here, as n ≥ 3, harmonicity at infinity means that lim|x|→∞w(x) = 0 [30, Thm 4.8]. In

fact, (−1
2
Id+K) : W

1
q
,p(∂Ω)/〈1〉 → W

1
q
,p(∂Ω)/〈1〉 is invertible for p ∈ [3

2
, 3], where the

quotient by 〈1〉 means “modulo constants”, see [25, Thm 8.1]. Hence, w = K(−1
2
Id +

K)−1g will solve the exterior Dirichlet problem up to a constant when g ∈ W
1
q
,p(∂Ω) and

p ∈ [3
2
, 3], with w|Ω−∩B(0,R) ∈ W 1,p(Ω−∩B(0, R)) for all R > 0 and ∇w ∈ [Lp(Ω−)]n. To

account for constant boundary conditions, observe that the exterior Dirichlet problem
with constant data on ∂Ω can be solved using the single layer potential of the Newtonian
equilibrium measure of Ω [31, Ch. IV, Sec. 5, §20] (the latter has L2 density with
respect to σ after [32, Cor. to Thm 3], so that its single layer potential has gradient in
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[Lp(Ω−)]n). Altogether, the exterior Dirichlet problem with data g ∈ W
1
q
,p(∂Ω) with

p ∈ [3
2
, 3] can be solved using a combination of double and single layer potentials.

Unlike the double layer potential, the single layer potential is continuous across ∂Ω,
though its normal derivative is not. Note that the gradient of the single layer potential
is given by

∇Sψ(x) =
1

ωn

∫
∂Ω

(x− y)

|x− y|n
ψ(y) dσ(y), x ∈ Rn\∂Ω. (1.35)

For 1 < p <∞ and ψ ∈ Lp(∂Ω), it holds for a.e.. y ∈ ∂Ω that ν(y) · ∇Sψ(x) converges
to −(1

2
Id−K∗)ψ(y) (resp. (1

2
Id+K∗)ψ(y)) as x→ y non-tangentially in Ω (resp. Ω−),

where K∗ operates on Lq(∂Ω) for 1 < q <∞ and is the adjoint of K:

K∗ψ(x) = p.v.
1

ωn

∫
∂Ω

ψ(y)
(x− y)

|x− y|n
· ν(x) dσ(y) , (1.36)

see [29, Thm 1.11] for a statement and further references.
For appropriate range of exponents, the single layer potential on Ω allows one to

solve the Neumann problem for the Laplace equation:

∆w = 0 in Ω,

∇w · ν = g on ∂Ω,
(1.37)

where the boundary condition in (1.37) is meant to satisfy the divergence formula; i.e.
(1.13) holds when u gets replaced by ∇w and (u · ν) by g. Likewise, the single layer
potential on Ω− can be used to solve the exterior Neumann problem:

∆w = 0 in Rn\Ω ∪ {∞},
∇w · ν = g on ∂Ω.

(1.38)

More precisely, it follows from [25, Thm 8.1] that (±1
2
Id+K∗) extends to an invertible

map W̃− 1
p
,p(∂Ω)→ W̃− 1

p
,p(∂Ω) for p ∈ [3

2
, 3], where we have set

W̃− 1
p
,p(∂Ω) := {f ∈ W− 1

p
,p(∂Ω) :

∫
∂Ω

f(y) dσ(y) = 0} ,

Thus, by [25, Thm 9.2], the solution to (1.37) (resp. (1.38)) can be written as w =
S(∓1

2
Id + K∗)−1g, up to an additive constant, under the (necessary) condition that∫

∂Ω
g(y) dσ(y) = 0. Moreover, w belongs to W 1,p(Ω) (resp. w|Ω−∩B(0,R) ∈ W 1,p(Ω− ∩

B(0, R)) for all R > 0 and ∇w ∈ [Lp(Ω−)]n).

1.5 Silent magnetic sources

Let us represent a magnetisation carried by a bounded domain Ω ⊂ R3 as a vector-
field M ∈ [Lp(Ω)]3, with 1 < p < ∞. Under the quasi-static assumption of Maxwell’s
equations, it is known (see [1]) that the scalar magnetic potential PM generated by M
is related to the latter by

∆PM = ∇ ·M, (1.39)
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where PM is zero at infinity. It follows from (1.39) and the vanishing of PM at infinity
(recall Ω is bounded by assumption) that

PM(x) = − 1

4π

∫
R3

∇ ·M(y)

|x− y|
dy, (1.40)

that can be rewritten, since Ω is bounded, as

PM(x) =
1

4π

∫
Ω

M(y) · (x− y)

|x− y|3
dy. (1.41)

A magnetisation is said to be Ω-silent, or a silent source in R3 \Ω, if it generates the
zero field there. Although the main physical interest attaches to dimension 3, nothing
gets simpler if we restrict to this setting, and perspective is gained if we extend the
terminology to any dimension strictly greater than 2 by making the following, formal
definition:

Definition 29. For Ω ⊂ Rn a bounded open set, we say that M ∈ [Lp(Ω)]n is Ω-silent
if

∇PM(x) = ∇x

(
1

ωn

∫
Ω

M(y) · (x− y)

|x− y|n
dy

)
= 0, a.e. x ∈ Rn\Ω. (1.42)

Note that PM is harmonic in Rn \ Ω. In particular, if ∂Ω has Lebesgue measure 0
then Definition 29 says that M is Ω-silent if and only if PM is locally constant in Rn\Ω.

Note that PM defined in (1.41) coincides with ΨM̃ given by (1.25). As a consequence,
Lemma 3 provides us at once with a criterion for M to be Ω-silent:

Theorem 17. Let Ω ⊂ Rn be a bounded open set. A field M ∈ [Lp(Ω)]n is Ω-silent if

and only if the Helmholtz decomposition of M̃ on Rn, say M̃ = ∇ψ + D, is such that
both ∇ψ and D are zero a.e. on Rn \ Ω.

Proof. Since Ω is bounded, M̃ lies in [Lq(Rn)]n for 1 < q ≤ p. Hence, in the Helmholtz

decomposition M̃ = ∇ψ + D, we may choose ψ = ∇ΨM̃ , by Lemma 3. Thus, as

PM = ΨM̃ , the gradient term in the Helmholtz decomposition of M̃ is ∇PM , and

therefore M̃ is silent if and only if this gradient term is zero a.e.. on Rn \Ω, by (1.42).

Because M̃ is zero on Rn \ Ω, this happens if and only if D is zero a.e. on Rn \ Ω, as
desired.

When Ω is a union of positively separated pieces, the question whether M is Ω-silent
reduces to the corresponding question on each piece. This we record as a complement to
Theorem 17, see e.g. [33] and [34, Cor. 3.5] for related, somewhat less general results.

Lemma 4. Let M ∈ [Lp(Ω)]n for some p ∈ (1,∞) with Ω = ∪lj=1Ωj, where Ωj ⊂ Rn is a
bounded open set whose boundary has zero measure and d(Ωj,Ωk) > 0 for j 6= k. Then,
M is Ω-silent if and only if the restriction M|Ωj is Ωj-silent for each j ∈ {1, · · · , l}.
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Proof. Let us put O1 := ∪j 6=1Ωj. For each i ∈ {1, · · · , n}, we have that ∂xiPM|Ω1
is

harmonic in Rn\Ω1 and ∂xiPM|O1
is harmonic in Rn\O1, moreover ∂xiPM|Ω1

+∂xiPM|O1
=

0 on Rn \ Ω. Because Ω1 and O1 are positively separated, it entails that ∂xiPM|Ω1

extends harmonically to the whole of Rn, and since it vanishes at infinity by inspection
of (1.42) it must vanish identically, thanks to Liouville’s theorem. Therefore PM|Ω1

is

locally constant on Rn \ Ω1, as wanted.

In the case where Ω is Lipschitz, Theorem 17 makes contact with the Helmholtz
decomposition in [Lp(Ω)]n.

Definition 30. Let Ω is a bounded Lipschitz domain of arbitrary topology with boundary
∂Ω and

R∂Ω = span{χω : ω is a connected component of ∂Ω}
we shall denote by W 1,p

R∂Ω
(Ω) the space of all members of W 1,p(Ω) that have trace in R∂Ω.

Theorem 18. Let Ω ⊂ Rn be a bounded Lipschitz open set, and M ∈ [Lp(Ω)]n with
p ∈ (1,∞). Then, M is Ω-silent if and only if M = D0 +∇ψ0, where D0 ∈ Divp,0(Ω)
and ψ0 ∈ W 1,p

R∂Ω
(Ω).

Proof. Let Ω(1) · · · ,Ω(L) be the connected components of Ω. We adapt the nota-
tion of Lemma 1 by writing Γ

(i)
1 , · · · ,Γ

(i)
li

for the connected components of ∂Ω(i) and

O
(i)
1 , · · · , O(i)

li
for the components of Rn \Ω(i), with O

(i)
1 = ext Γ

(i)
1 and O

(i)
j = int Γ

(i)
j for

j 6= 1.
Assume first that M = D0 + ∇ψ0, with D0 and ψ0 as in the statement. Because

D0 has zero normal component on ∂Ω by assumption, one can see from (1.14) that

D̃0 is divergence free on Rn, as a distribution. Besides, as we suppose that ψ0 is
locally constant on ∂Ω, to each Γ

(i)
j there is a constant ci,j such that (ψ0)|Γ(i)

j
= ci,j for

i ∈ {1, · · · , N} and 1 ≤ j ≤ li. Replacing ψ0 by ψ0 − ci,1 on Ω(i), we may assume that
ci,1 = 0 for all i and then one sees from Lemma 1 that the function ψ1, equal to ψ0 on

Ω and to ci,j on O
(i)
j , lies in W 1,p(Rn) with ∇ψ1 = ∇ψ0 on Ω and ∇ψ1 = 0 outside Ω.

Thus, M̃ = D̃0 +∇ψ1 is the Helmholtz decomposition of M̃ on Rn, and both terms of
the decomposition vanish outside Ω, as desired.

Conversely, assume that in the Helmholtz decomposition M̃ = D+∇ψ on [Lp(Rn)]n,
the summands D and ∇ψ vanish a.e.. outside Ω. Then, for any ϕ ∈ C∞c (Rn), we have
that

∫
Ω
D·∇ϕ =

∫
Rn D ·∇ϕ = 0 and therefore

∫
∂Ω

(D·ν)ϕdσ = 0, by (1.13). Since traces

of C∞c -functions are dense in W 1− 1
p
,p(∂Ω), we conclude that D · ν = 0 in W− 1

p
,p(∂Ω)

so that the restriction D|Ω lies in Divp,0(Ω). Moreover, as ∇ψ = 0 a.e.. on Rn \ Ω, the

function ψ is constant on each O
(i)
j and so it has constant trace on each Γ

(i)
j . Hence, we

can put D0 = D|Ω and ψ0|∂Ω ∈ Rn
∂Ω.

Before proceeding, we will discuss more the subspace Gp
0(Ω), in particular on the

continuous extension of its members to Gp(Rn). The main interest in studying more
this subspace is generalise Theorem 18. Recall the spaces Gp(Ω) and Gp

0(Ω) introduced

in (1.7) and (1.8). We define a subspace G̃p(Ω) ⊂ Gp(Ω) by

G̃p(Ω) := {F ∈ Gp(Ω) : F̃ ∈ Gp(Rn)}. (1.43)
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Theorem 17 and Lemma 3 imply that G̃p(Ω) consists exactly of the magnetic fields,
generated by a magnetisation in Lp(Ω), that vanish outside Ω; i.e., the fields of silent
magnetisations of Lp-class.

Unlike Gp(Ω) or Gp
0(Ω), the space G̃p(Ω) only depends on Ω modulo those x ∈ ∂Ω

having a neighbourhood Vx such that Vx\Ω has zero Lebesgue measure; for convenience,
we say that such points are Lebesgue isolated in Rn \ Ω. The union of Ω and of the

Lebesgue-isolated points in Rn\Ω is a bounded open set Ω̃ ⊃ Ω such that G̃p(Ω) = G̃p(Ω̃)

and therefore, when studying G̃p(Ω), we may as well assume that Rn\Ω has no Lebesgue-
isolated points. This hypothesis typically eliminates “cracks” from Ω.

We shall see that in fact G̃p(Ω) coincides with Gp
0(Ω) when ∂Ω has Lebesgue mea-

sure zero and Rn \ Ω has no Lebesgue-isolated points, provided that the connected
components of Rn \Ω are positively separated, meaning that the distance between any
two of them is bigger than a strictly positive constant independent of the components;
this is a consequence of Theorem 19 below. Of course, as Ω is bounded, the separa-
tion condition entails that the connected components are finite in number, and then
separation reduces to the property that their closures do not meet. The separation
condition cannot be dispensed with in general, as the example in Sec. 1.9.3 shows.
More generally, in Theorem 19, we handle the situation where Ω is a bounded open set
such that ∂Ω has Lebesgue measure zero and the connected components of Rn \Ω may
only accumulate in a “thick” manner; the case of an arbitrary bounded Ω will not be
considered here. We begin with a lemma:

Lemma 5. Let Ω ⊂ Rn be a bounded open set whose boundary ∂Ω has zero Lebesgue
measure. Let further {Oj}j∈J designate the connected components of Rn \ Ω. For

p ∈ (1,∞), a vector field F lies in G̃p(Ω) if, and only if F̃ is of the form ∇f for some
(necessarily unique) f ∈ W 1,p(Rn) which is constant on each Oj.

Proof. By definition, every F ∈ Gp(Rn) is of the form ∇f with f ∈ W 1,p
loc (Rn). If

moreover F = 0 on Rn \ Ω, then f is constant in each Oj; conversely, since ∂Ω has
Lebesgue measure 0, it is equivalent to say that F vanishes on Rn \ Ω and that f
is constant on each Oj. Let O0 designate, without loss of generality, the unbounded
connected component of Rn \Ω; the latter uniquely exists since Ω is bounded. Adding
a constant to f if necessary, we may assume that it vanishes on O0, and then f ∈
W 1,p(Rn).

Note: if f ∈ W 1,p(Rn) is such that ∇f ∈ G̃p(Ω), necessarily f vanishes in the
unbounded component of Rn \ Ω, for it is constant there and must lie in Lp(Rn).

Theorem 19. Let Ω ⊂ Rn be a bounded open set whose boundary ∂Ω has zero Lebesgue
measure, with {Oj}j∈J the connected components of Rn \ Ω. Assume that whenever
Oj

⋂
∪i∈IOi 6= ∅ for some index j ∈ J and some subset of indices I ⊂ J , then

B1,p

(
Oj

⋂
∪i∈IOi

)
> 0. Suppose in addition that Oj is non-thin at B1,p-quasi every

point of ∂Oi (which is no restriction if n < p). Then, Gp
0(Ω) = G̃p(Ω).

Proof. Without loss of generality, we assume that O0 is the unbounded component
of Rn \ Ω. Pick ϕ ∈ C∞(Ω) with ∇ϕ ∈ [Cc(Ω)]n, and let the Ui enumerate, for
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i ∈ I ⊂ N, the connected components of Rn\supp∇ϕ, with U0 to denote the unbounded
component. The Ui∩Ω are nonempty open sets partitioning Ω\ supp∇ϕ. Assume first
that Ω is connected, and define Bi := ∪k 6=iUk ∪ Ω for i ∈ I. Clearly, Bi is a connected
open set and Ui ∪ Bi = Rn. We contend that Ui ∩ Bi is connected. Indeed, as Rn is
simply connected, the last portion of the Mayer-Vietoris sequence in homology [17, Sec.
2.2] yields (with Hl to indicate the l-th homology group):

0 = H1(Ui ∪Bi)→ H0(Ui ∩Bi)→ H0(Ui)⊕H0(Bi)→ H0(Ui ∪Bi)→ 0

from which it follows, since H0(Ui) = H0(Bi) = H0(Ui ∪ Bi) = Z (because Ui, Bi and
Ui ∪Bi are connected), that H0(Ui ∩Bi) = Z as well. This proves our contention, and
so Ui ∩ Ω = Ui ∩ Bi is in turn connected. Hence, ϕ is constant on Ui ∩ Ω because
∇ϕ = 0 there, say ϕ|Ui∩Ω ≡ ci. If we define Φ to be ϕ − c0 on Ω and ci − c0 on Ui, it

is readily checked that Φ is well-defined in C∞c (Rn) with ∇Φ = ∇̃ϕ; in fact Φ is zero
on U0, in particular it vanishes outside every ball containing Ω. To recap, we showed
that if Ω is connected and ϕ ∈ C∞(Ω) with ∇ϕ ∈ [C∞c (Ω)]n, then there is Φ ∈ C∞c (Rn)

such that ∇Φ = ∇̃ϕ. We claim that the same holds even when Ω is not connected.
Indeed, let {Ωl}l∈L denote the connected components of Ω, where L = {1, 2, · · · } is
an initial segment of natural numbers (finite or infinite). If ϕ ∈ C∞(Ω) is such that
∇ϕ ∈ [C∞c (Ω)]n, then supp∇ϕ can meet only finitely many Ωl, say Ω1, · · · ,ΩN . Thus,
ϕ is constant on Ωl for l > N , and we may as well assume it is zero there because
this does not change ∇ϕ. For 1 ≤ l ≤ N , the function ϕl := ϕ|Ωl lies in C∞(Ωl) and
∇ϕl = (∇ϕ)|Ωl is compactly supported in Ωl. Hence, by the first part of the proof,

there is Φl ∈ C∞c (Rn) such that ∇Φl = ∇̃ϕl, and so Φ :=
∑

1≤l≤N Φl lies in C∞c (Rn).

By construction ∇Φ =
∑

1≤l≤N ∇̃ϕl is zero outside ∪1≤l≤NΩl and coincides with ∇ϕl
on Ωl, so that ∇Φ = ∇̃ϕ as claimed.

Next, consider F ∈ Gp
0(Ω) and let ϕk be a sequence in C∞(Ω) such that ∇ϕk ∈

[C∞c (Ω)]n with ∇ϕk → F in [Lp(Ω)]n. Let further Φk be a sequence in C∞c (Rn) with

∇Φk = ∇̃ϕk and such that Φk is zero on O0; such a sequence exists by what precedes.
Applying (1.4) on a ball containing Ω, we deduce that Φk converges in W 1,p(Rn), as

k →∞, to some f such that ∇f = F̃ . Hence, F ∈ G̃p(Ω) so that Gp
0(Ω) ⊂ G̃p(Ω).

Conversely, let F ∈ G̃p(Ω) so that, according to Lemma 5, F̃ = ∇f where f ∈
W 1,p(Rn) assumes a constant value cj(f) on Oj, for every j ∈ J . Note, since c0(f) = 0
while O0 is non-thin at quasi every point of ∂O0 by assumption, that f(x) = 0 for B1,p-
quasi every x ∈ O0: it is so because f is continuous outside a set of arbitrary small B1,p-
capacity [8, Proposition 6.1.2]. Suppose for a while that f ≥ 0 and fix δ > 0, together
with a sequence {δi}i∈N of strictly positive numbers such that

∑
i δi = δ. Pick ε > 0

and then ε′ ∈ (0, ε] small enough that
∫
{0≤f≤ε′} |∇f |

pdm ≤ εp; since ‖∇f‖Lp(Rn) < ∞,

such a ε′ exists, by the monotone convergence theorem. Let I0 ⊂ J be the set of indices
i for which ci(f) ≥ ε′, and define K0 := ∪i∈I0Oi. Of necessity K0 ∩ O0 = ∅, otherwise
B1,p(K0 ∩ O0) > 0 by assumption and, since f is continuous outside a set of arbitrary
small B1,p-capacity, it would imply that f ≥ ε′ > 0 on a set E ⊂ ∂O0 with B1,p(E) > 0,
contradicting that f(x) = 0 for B1,p-quasi every x ∈ O0. Hence, by [8, Thm 9.1.3],
there is a C∞ function η0 : Rn → [0, 1] with η0 = 1 on K0 and η = 0 on O0 such that
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‖f − ηf‖W 1,p(Rn) ≤ ε′. Now, if we let f0 := max{ηf − ε′, 0}, we find that ∇f0 ∈ G̃p(Ω)
with ci(f0) = ci(f) − ε′ for i ∈ I and ci(f0) = 0 for i /∈ I. Moreover, it follows from
[8, Thm 3.3.1] that ∇f0 = ∇(ηf) a.e.. on {x : η(x)f(x) > ε′} and ∇f0 = 0 a.e.. on
{x : η(x)f(x) ≤ ε′}. Therefore,

‖ηf − f0‖pW 1,p(Rn) =
∫
Rn |ηf − f0|pdm+

∫
Rn |∇(ηf)−∇f0|pdm (1.44)

≤ (ε′)pm(Ω) +
∫
{0≤ηf≤ε′} |∇(ηf)|pdm (1.45)

≤ (ε′)pm(Ω) +
(
ε′ + (

∫
{0≤f≤ε′} |∇f |

pdm)
1
p

)p
(1.46)

≤ (ε′)pm(Ω) + (ε′ + ε)p . (1.47)

Altogether, as ε′ ≤ ε, we get from the triangle inequality that

‖f − f0‖W 1,p(Rn) ≤
(

1 + (m(Ω) + 2p)
1
p

)
ε (1.48)

which is arbitrary small with ε. In the general case where f is not signed, we write
f = f+ − f− with f+ := max{f, 0} and f− = (−f)+ and remark that ∇f± satisfies

the same assumptions as F̃ [8, Thm. 3.3.1]. So, we can apply what precedes to f+

and f− to obtain functions f0,+ and f0,−; we then put f0 := f0,+ − f0,−. To recap,
we constructed f0 ∈ W 1,p(Rn) such that ‖f − f0‖W 1,p(Rn) is arbitrary small and f0 is

constant on a neighbourhood of O0, while it is constant on each Oj; in particular, we
can make ‖f−f0‖W 1,p(Rn) < δ0. Note also that if f was constant on a neighbourhood of

Oj for some j, so is f0 on the same neighbourhood (possibly with a different constant,
though). We now proceed inductively: to complete the next step, pick x1 ∈ O1 and
consider the inversion with center x1 given by

Ix1(x) :=
x− x1

|x− x1|2
.

It is a smooth involution of the “sphere” Rn ∪ {∞} ∼ Sn that maps x1 to ∞, with
Jacobian determinant −|x − x1|−2n at x 6= x1; in fact, the Jacobian matrix at x is
conjugate via a unitary matrix to diag {−|x − x1|−2, |x − x1|−2, · · · , |x − x1|−2}, see
[30, Thm 4.2] (the unitary matrix depends on x, though). Clearly, Ω1 := Ix1(Ω) is a
bounded open set, and the Ui := Ix1(Oj) are the connected components of Rn \ Ω1,
with U1 being the unbounded component. From the change of variable formula and the
definition of B1,p-capacity, one checks that Ix1 preserves sets of B1,p-capacity zero in
Rn \ {x1,∞}, consequently B1,p

(
Uj
⋂
∪i∈IUi

)
> 0 whenever Uj

⋂
∪i∈IUi 6= ∅; also, by

definition of thinness [8, Definition 6.3.7], Ix1 preserves thinness of a set at any x 6= x1.
Thus, Uj is non-thin at B1,p-quasi every point of ∂Uj for each j. Furthermore, if U is
an open set with compact closure in Rn \ {x1} and we put m1 := infx∈U |x−x1|, we get
from the change of variable formula again that for g ∈ W 1,p(U):

‖g‖W 1,p(U) ≤ max{m−2n/p
1 ,m

−2(n−p)/p
1 }‖g ◦ Ix1‖W 1,p(Ix1 (U)). (1.49)

As the function h1 := f0 ◦ Ix1 − c1(f0) lies in W 1,p(Rn) and is constant on Uj for each
j as well as constant on a neighborhood of U0, we can argue as we did to construct f0

from f , only with Ω1 instead of Ω and h1 instead of f .
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This provides us with a function g1 that can be made arbitrary close to h1 in
W 1,p(Rn) while being constant on each Uj and constant on a neighborhood of both U0

and U1. If λ0 denotes the constant value assumed by g1 on U0, we get since h1 = −c1(f0)

on U0 that |λ0 + c1(f0)|m
1
p (U0) ≤ ‖h1 − g1‖Lp(U0), whence |λ0 + c1(f0)| can be made

arbitrary small with ‖h1 − g1‖W 1,p(Rn). Thus, letting f1 := (g1 ◦ Ix1 − λ0), we get in
view of (1.49) since f0 = f1 = 0 on O0:

‖f0 − f1‖W 1,p(Rn) = ‖(h1 − g1) ◦ Ix1 + c1(f0) + λ0‖W 1,p(Rn\U1) (1.50)

≤ C‖h1 − g1‖W 1,p(Rn) + |λ0 + c1(f0)|m
1
p (Rn \ U1) (1.51)

≤ C ′‖h1 − g1‖W 1,p(Rn) , (1.52)

where C and C ′ are geometric constants depending on Ω and our choice of x1 ∈ O1. One
deduces from (1.50) that ‖f0 − f1‖W 1,p(Rn) can be made arbitrary small, in particular
smaller than δ1. Iterating the argument, we construct a sequence of functions fk, 0 ≤ k,
such that ‖f − f0‖W 1,p(Rn) ≤ δ0 and ‖fk − fk+1‖W 1,p(Rn) ≤ δk+1, with f` constant on a

neighborhood Vk of Ok for ` ≥ k. Since
∑

k δk = δ < ∞, the sequence fk is a Cauchy

sequence in W 1,p(Rn) that converges to some f̃ ; clearly ∇f̃ is compactly supported

in Ω, and ‖f − f̃‖W 1,p(Rn) ≤ δ. By mollification, we can now construct a ϕ ∈ C∞(Rn)
which is constant on a neighborhood of Oj for each j (the constant being 0 when j = 0),
and such that ‖f − ϕ‖W 1,p(Rn) ≤ 2δ. Since δ was arbitrary, we find that F ∈ Gp

0(Ω), as
desired.

Hence more generally, we have the following extension of Theorem 18.

Theorem 20. Let M ∈ [Lp(Ω)]n for some p ∈ (1,∞), with Ω ⊂ Rn a bounded finitely
connected open set as in Theorem 19. Then, M is Ω-silent if and only if M = D+∇ψ
where D̃ is divergence free and ψ ∈ W 1,p(Ω) is such that ∇ψ ∈ Gp

0(Ω).

Proof. The theorem is a direct consequence of Theorem 17 and Theorem 19.

Theorem 20 raises the issue as to whether, under very mild conditions on Ω like
those in that theorem, the divergence free character of D̃ implies that D ∈ Divp,0(Ω);
a positive answer would yield a generalization of Theorem 18 to very rough domains.
We have the following partial answer:

Corollary 2. Let M ∈ [Lp(Ω)]n for some p ∈ (1,∞), with Ω ⊂ Rn a bounded finitely
connected open set as in Theorem 19 and the equality

〈ϕ, u · ν〉 =

∫
Ω

∇ϕ(y) · u(y) dy +

∫
Ω

ϕ(y)div u(y) dy, ϕ ∈ W 1,q(Ω),

holds for all u ∈ [L1
loc(Ω)]n∩[Lp(Ω)]n with ‖div u‖Lp(Ω) <∞. Then, M is Ω-silent if and

only if M = D +∇ψ where D ∈ Divp,0(Ω) and ψ ∈ W 1,p(Ω) is such that ∇ψ ∈ Gp
0(Ω).

Proof. The corollary is a direct consequence of Theorem 20 and Theorem 11.
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1.6 Equivalent Sources

We now wish to look at Ω-equivalent sources which are defined as

Definition 31. Let M1,M2 ∈ [Lp(Ω)]n, we say that M1 and M2 are Ω-equivalent sources
if

PM1(x) = PM2(x) + γ for a.e. x ∈ Rn\Ω,

with
γ ∈ spanR{χO : O is a connected component of Rn\Ω}.

Among all sources {Mi} ⊂ [Lp(Ω)]n Ω-equivalent to a given M ∈ [Lp(Ω)]n, the one with
with minimum Lp-norm is called the norm-minimising equivalent source.

We have the following corollary of Theorem 18 for the characterisation of Ω-equivalent
sources for Ω a Lipschitz domain.

Corollary 3. Let Ω be a bounded Lipschitz set and M1,M2 ∈ [Lp(Ω)]n, 1 < p < ∞,
then M1 and M2 are Ω-equivalent sources if and only we can find a unique ψ ∈ W 1,p

R∂Ω
(Ω)

such that ∫
Ω

(∇ψ − (M1 −M2)) · ∇ϕ = 0, (1.53)

for all ϕ ∈ W 1,q(Ω) where 1
p

+ 1
q

= 1.

Proof. The above corollary is a direct consequence of Theorem 18, and the Helmholtz
decomposition and the existence of a unique solution to the Neumann problem (1.16).

Corollary 4. Let Ω be a bounded Lipschitz set and M1,M2 ∈ [Lp(Ω)]n, 1 < p < ∞,
then M1 and M2 are Ω-equivalent sources if and only if for

ψl(x) = −I1

[ n∑
k=1

Rk

(
(Ml ∨ 0)k

)]
(x), (1.54)

l = 1, 2 we have ψ1(x) = ψ2(x) + ci for almost every x ∈ Rn\Ω ∩ Oi where ci is a
constant for Oi a connected component of Rn\Ω.

Proof. Suppose M1,M2 ∈ [Lp(Ω)]n are Ω-equivalent we have from Theorem 18 that
M1 −M2 has the decomposition as stated in the theorem, that is,

M1 −M2 = D +∇ψ ∈ [Lp(Ω)]n,

with D ∈ Divp,0(Ω) and ∇ψ ∈ Gp
0(Ω). Now we can extend M1−M2 to (M1−M2)∨0 on

Rn so that we can apply the Riesz transform and get that the gradient, ∇ψ, is obtained
as in (1.22). Due to the continuity of Riesz transforms on Lp(Rn) we have that they
vanish identically outside Ω. This implies that ψ is a constant on each connected
component of Rn\Ω up to the boundary. Now in view of the discussion in [12, Ch. V,
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Sec. 2.3] and the fact that
∑n

k=1 R
2
k = −I, where I is the identity operator, we have

the formula,

ψ(x) = I1

[ n∑
j=1

R2
j

( n∑
k=1

Rk

(
(M1 −M2)k

))]
(x)

= −I1

[ n∑
k=1

Rk

(
(M1 ∨ 0)k

)]
(x) + I1

[ n∑
k=1

Rk

(
(M2 ∨ 0)k

)]
(x),

(1.55)

where we have abused notation by denoting the components of M1 −M2 extended to
(M1 −M2) ∨ 0 on Rn by (M1 −M2)k k = 1, 2, 3. Now using the linearity of the Riesz
transform and Riesz potential, and the fact that ψ is constant on each connected com-
ponent of Rn\Ω up to the boundary we have the desired result.

Conversely, we begin by noting that the Helmholtz decomposition is valid on Rn

therefore representing M1 ∨ 0 and M2 ∨ 0 by M1 and M2, respectively, we have that
∇(ψ1 − ψ2) = (M1 −M2) − (D1 − D2), ψl as defined in (1.54) and Dl ∈ Divp(Rn),
l = 1, 2. Now letting ∇ψ = ∇(ψ1 − ψ2) and D = D1 − D2 we that ψ constant on
each connected component of Rn\Ω so that we can extend D by 0 outside Ω so that by
taking restrictions, D ∈ Divp,0(Ω) by [22, Exercise III.2.3]. Now from Theorem 18 we
have M1 −M2 is Ω-silent as desired.

The proof of the following result serves to show the use of double layer potentials
in the characterisation of silent sources. The proof relies simply on the isomorphism of
the double layer potential on Lipschitz domains as outlined in [25].

Corollary 5. Let Ω ⊂ Rn be Lipschitz, for p ∈ [3
2
, 3], let M1 = D1 +∇ψ1 ∈ [Lp(Ω)]n

and M2 = D2 + ∇ψ2 ∈ [Lp(Ω)]n with D1, D2 ∈ Divp,0(Ω) and ψ1, ψ2 ∈ W 1,p(Ω). We
have that M1 and M2 are Ω-equivalent if and only if the trace of ψ1 and the trace of ψ2

differ by a member of R∂Ω, that is, they differ by constants on each connected component
of the boundary.

Proof. We begin by noting that the potential produced by the divergence of Mi outside
Ω is determined only by the trace of the ψi, hence the potential is a double layer
potential. This is easily seen from taking x ∈ Rn\Ω and letting PMi

(x) be the potential
generated by the divergence of Mi at x we have

PMi
(x) =

1

(n− 2)ωn

∫
Ω

(Di +∇ψi)(y) · ∇y

( 1

|x− y|(n−2)

)
dy

=
1

(n− 2)ωn

∫
∂Ω

ψi(y)∇y

( 1

|x− y|(n−2)

)
· ν(y) dσ(y),

where we have used that Di ∈ Divp,0(Ω) and Green’s identity. It follows from the
remark in [25] after the proof of Theorem 8.1 that if the trace of ψ1 and the trace of ψ2

differ by a member of R∂Ω then for almost every x ∈ ∂Ω

PM1(x)− PM2(x) =
1

(n− 2)ωn

∫
∂Ω

(ψ1 − ψ2)(y)∇y

( 1

|x− y|(n−2)

)
· ν(y) dσ(y)
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is a member of R∂Ω hence we have that PM1 and PM2 differ by a constant in each con-
nected component of Rn\Ω hence M1 and M2 are Ω-equivalent.

The converse can be shown using a direct computation or arguing directly from
Theorem 18.

Remark 5. It suffices that the traces the ψ’s in the above corollaries be constants.

We have just shown that the recovery of the vector field M ∈ [Lp(Ω)]n from the
knowledge of the potential outside Ω is not unique because of the existence of Ω-
equivalent vector-fields. Popular methods for solving inverse potential problems that
use regularied Tikhonov methods have a feature that if the regularisation parameter
and noise level approach zero in a combined manner the solution that is recovered with
the method is of minimum-norm among all the equivalent solutions, see for example
[35]. We now study norm-miniming equivalent sources given a vector-field. To achieve
this given a vector-field M ∈ [Lp(Ω)]n, we want to find a silent source MS that satisfies
the following

MS = arg min
M0∈Sp

‖M −M0‖[Lp(Ω)]n , (1.56)

where Sp is the set of Ω-silent sources in [Lp(Ω)]n.

Lemma 6. Sp is closed in [Lp(Ω)]n for p ∈ (1,∞).

Proof. Let {Mn} be a sequence in Sp that converges to M . We show that M ∈ Sp.
Using notations and definitions from Lemma 3, we have that {Mn} converges in [Lq(Ω)]n

and due to the continuity asserted in Lemma 3 it then follows that

‖ΨMn −ΨM‖Lnq/(n−q)(Rn) ≤ C ‖Mn −M‖[Lq(Rn)]n . (1.57)

Due to the silence of the sequence {Mn} we have that ΨM is zero a.e. on Rn\Ω hence
M ∈ Sp.

Now that we have established that Sp is closed we will state the characterisation of
norm-minimising Ω-equivalent sources given a vector-field M . We begin by noting that
from [37, Cor. of Thm 2], Lp(Ω) is uniformly convex hence strictly convex. Further
from [37, Thm 1] we have that [Lp(Ω)]n endowed with the norm given in (1.2) is also
uniformly convex hence it is strictly convex. Also note that the set of Ω-silent sources,
Sp, is convex since any linear combination of elements in Sp is also in Sp. Thus from
[38, Part 3, Ch. II, Prop. 5] there is a best approximation projection of M on Sp, that
is if we let Proj be the projection from [Lp(Ω)]n to Sp then the norm-minimising Ω-
equivalent sources given a vector-field M is M−Proj(M). Since the objective function
in (1.56) is strictly convex we have that MS = Proj(M) is unique. From this, it follows
that M −MS is the norm-minimising Ω-equivalent source.

We note that for p = 2 the Helmholtz decomposition we introduced is an orthogonal
decomposition, hence the sum is an orthogonal sum as can be seen from the following
result
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Theorem 21 ([21, Lem. 2.5.1]). Let Ω ⊂ Rn be any domain. Then for each M ∈
[L2(Ω)]n there uniquely exist ∇ψ ∈ G2(Ω) and D ∈ Div2,0(Ω) such that

M = D +∇ψ.

Further,
‖M‖2

[L2(Ω)]n = ‖D‖2
[L2(Ω)]n + ‖∇ψ‖2

[L2(Ω)]n .

When p = 2 from the above theorem, given M ∈ [L2(Ω)]n with Helmholtz decompo-
sition M = D+∇ψ, the magnetisation of minimum-norm Ω-equivalent to M is the same
as the one Ω-equivalent to ∇ψ; it is so because a Divp,0(Ω)-field is a Ω-silent source.
Moreover, by the same reason, the magnetisation of minimum-norm Ω-equivalent to
∇ψ is the gradient of a Sobolev function and therefore, the norm-minimising vector
field Ω-equivalent to M is ∇ψ − ∇u, where ∇u is the projection of ∇ψ on G̃2(Ω),
defined in (1.43). The latter is not so easy to characterise for general open sets: in this
connection, we shall find it convenient to make the following definition.

Definition 32. For p ∈ (1,∞), we say that the complement of a bounded open set
Ω ⊂ Rn is p-unstretched if ∂Ω has zero Lebesgue measure and if, letting {Oj}j∈J denote
the connected components of Rn \ Ω, the following two properties hold:

(i) Oj is non-thin at B1,p-quasi every point of ∂Oj for all j;

(ii) whenever Oj

⋂
∪i∈IOi 6= ∅ for some index j ∈ J and some subset of indices I ⊂ J

then B1,p

(
Oj

⋂
∪i∈IOi

)
> 0.

Note that when p > n, conditions (i) and (ii) above are always met and so Rn \ Ω
is unstretched if and only if ∂Ω has Lebesgue measure zero. Observe also that Rn \ Ω
is unstretched as soon as Rn \Ω has finitely many connected components satisfying the
segment condition. In particular, this is the case when Ω is Lipschitz.

When Rn \ Ω is unstretched, we can characterise [L2(Ω)]n-norm minimising Ω-
equivalent sources as solutions to a boundary-value problem:

Theorem 22. Let Ω be a bounded open set and M ∈ [L2(Ω)]n. If we write M =
D+∇ψ ∈ [L2(Ω)]n for the Helmholtz decomposition, then the unique norm-minimising

vector field Ω-equivalent to M is ∇ψ−∇u, where ∇u is the projection of ∇ψ on G̃2(Ω).
Moreover, ψnm := ψ−u is a W 1,2(Ω)-solution to the following boundary value problem:

∆ψnm = 0 in Ω,

∇ψnm −∇ψ ∈ G̃2(Ω),∫
Γ

∂ψnm
∂ν

dHn−1 = 0 for all compact C∞-hypersurfaces Γ ⊂ Ω ,

(1.58)

where Hn−1 indicates (n− 1)-Hausdorff measure. Conversely, if Rn \Ω is unstretched,
then ψnm is the unique solution to (1.58), up to an additive constant.
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Proof. As mentioned before the theorem, the norm-minimising vector field Ω-equivalent
to M is ∇ψ−∇u, where ∇u is the projection of ∇ψ on G̃2(Ω). Putting ψnm := ψ− u,

we get that ∇ψnm is orthogonal to G̃2(Ω) and in particular to ∇ϕ for all ϕ ∈ C∞c (Ω).
It implies that ψnm is harmonic. Moreover, if Γ ⊂ Ω is a compact C∞-hypersurface, we
can find another smooth compact hypersurface Γ1 ⊂ Ω with Γ1 ∩ Γ = ∅, close enough
to Γ that the open “shell” S between Γ and Γ1 is contained in Ω (using for instance a
tubular neighborhood of Γ, see [13, Ch. 2, Sec. 3]). Assume for definiteness that S lies
inside Γ (if it lies outside the argument is similar). We can find a function g ∈ C∞(Rn)
which is equal to 1 on ext Γ and equal to zero on a neighborhood of Γ1 ∪ int Γ1. Then,
∇g ∈ G2

0(Ω) ⊂ G̃2 so that
∫
∇ψnm ·∇gdm = 0, and by the divergence formula the later

is equal to
∫

Γ
∂ψnm
∂ν

dHn−1. Hence, ψnm satisfies (1.58).
Conversely, assume that (1.58) holds and pick ∇g ∈ G2

0(Ω). Let further K ⊂ Ω be
the support of |∇g|. Since K is compact, there is h ∈ C∞(Rn) such that h ≥ 0 and K is
the zero set of h; this follows easily from a combination of [12, Chapter VI, Theorem 2]
and [36, Theorem I]. Replacing h with h2 we may assume that h ≥ 0, and redefining h(x)
for |x| large we can arrange things so that h→ 1 at infinity. Putting L := h−1(ε) for ε
a sufficiently small regular value of h (almost every positive number is a regular value
by Sard’s theorem), we find that L is a finite union of smooth compact hypersurfaces
Γ1, · · · ,ΓN included in Ω, and we can find Γi1 , · · ·Γik , each of which lies exterior to the
others, with K ⊂ ∪`int Γi` ; moreover, if for some i` it holds that int Γi` 6⊂ Ω, there are
Γj1 , · · · ,Γjm , each of which lies interior to int Γi` , such that K ⊂ ∩kext Γjk (recall that
h > η > 0 on Rn \Ω). By construction g is equal to a constant cj on Γj, and therefore∫

Ω

∇ψnm · ∇g dm =
∑
j

cj

∫
Γj

∂ψnm
∂ν

dHn−1 = 0,

by (1.58). Thus, ∇ψnm is orthogonal to G2
0(Ω), and by Theorem 19 the latter coincides

with G̃2(Ω) when Rn \Ω is unstretched. We now see from the second equation in (1.58)

that ∇ψnm = ∇ψ −∇u where ∇u is the projection of ∇ψ on G̃2(Ω), as desired.

When Ω is Lipschitz, Theorem 22 yields a fairly explicit characterization of norm-
minimising Ω-equivalent sources in [L2(Ω)]n. By Lemma 4, it is enough to consider the
case where Ω is connected:

Theorem 23. Let Ω be a bounded Lipschitz domain and Γ1, · · · ,Γl the connected com-
ponents of ∂Ω. Let further M ∈ [L2(Ω)]n and write the Helmholtz decomposition as
M = D +∇ψ ∈ [L2(Ω)]n. Then, the norm-minimising vector field Ω-equivalent to M
is ∇ψnm, where ψnm = u +

∑l
j=1 cjω(Γj) with u the W 1,2(Ω) solution to the Dirichlet

problem:

∆u = 0 in Ω,

u = ψ on ∂Ω,
(1.59)

and ω(Γj) the harmonic measure of Γj, while the vector (c1, · · · , cl)t ∈ Rl is determined,
up to a multiple of (1, · · · , 1)t (which will only alter ψnm by a constant and therefore
respect ∇ψnm) by the property that

∫
Γj

∂ψnm
∂ν

dHn−1 = 0 for 1 ≤ i ≤ l.
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Proof. As Lipschitz open sets have unstretched complement, Theorem 22 and Corollary
5 imply that the norm-minimising vector field Ω-equivalent to M is ∇ψnm with ψnm =
u+

∑l
j=1 cjω(Γj), where u ∈ W 1,2(Ω) solves (1.59) and ω(Γj) is the harmonic measure

of Γj, while the cj are real numbers. Using the notation of Lemma 1 and appealing
to the Whitney and Sard theorems as in the proof of Theorem 22 to construct non-
negative functions hj ∈ C∞(Rn) whose zero set is intO1 for j = 1 and extOj for j 6= 1,
we construct smooth compact hypersurfaces Σj ⊂ Ω such that the shell between Γj and
Σj is included in Ω. Since

∫
Σj

∂ψnm
∂ν

dHn−1 = 0 by (1.59), we get from the Green formula

that
∫

Γj

∂ψnm
∂ν

dHn−1 = 0 for 1 ≤ j ≤ l. Hence, it holds for j ∈ {1, · · · , l} that

−
∫

Γj

∂u

∂ν
dHn−1 =

L∑
`=1

c`

∫
Γj

∂ω(Γ`)

∂ν
dHn−1. (1.60)

To see that (1.60) determines (c1, · · · , cl) up to a multiple of (1, · · · , 1), observe that if
we put v =

∑
` a`ω(Γ`) then∫

Ω

∇v · ∇v dm =
l∑

j=1

∫
Γj

v
∂v

∂ν
dHn−1 =

l∑
j,`=1

aja`

∫
Γj

∂ω(Γ`)

∂ν
dHn−1,

so that the quadratic form on Rl whose matrix has (j, `)-entry
∫

Γj

∂ω(Γ`)
∂ν

dHn−1 is non-

negative with kernel the multiples of (1, · · · , 1)t (corresponding to a constant v).

When p 6= 2, we shall not be able to characterize Ω-equivalent sources of minimum
Lp-norm in such an explicit manner. However, when Rn \ Ω is Lipschitz at least, the
problem can be approached via duality.

For this, recall that Sp is a closed subspace of [Lp(Ω)]n by Lemma 6, and let S⊥p ⊂
[Lq(Ω)]n, 1

p
+ 1

q
= 1, be the space of annihilators of Sp; that is: the space of all

Φ ∈ [Lq(Ω)]n such that 〈M0,Φ〉 = 0 for all M0 ∈ Sp.

Lemma 7. Let Ω be a bounded Lipschitz open set, and p ∈ (1,∞) with 1
p
+ 1

q
= 1. Then,

S⊥p consists of those vector-fields ∇φ ∈ [Lq(Ω)]n such that φ ∈ W 1,q(Ω) is harmonic

in Ω and 〈∇φ · ν, χ〉 = 0 for all χ ∈ R∂Ω; in other words,
∫

Γi

∂φ
∂ν
dHn−1 = 0 for each

connected component Γi of ∂Ω.

Proof. By Lemma 4, we may assume that Ω is connected. Let Φ ∈ [Lq(Ω)]n be such
that 〈M0,Φ〉 = 0 for all M0 ∈ Sp. By Theorem 18, it means that 〈Φ,∇ψ0 + D0〉 = 0
for ψ0 ∈ W 1,p

R∂Ω
(Ω) and D0 ∈ Divp,0. In particular Φ is orthogonal to Divp,0 whence

it is a gradient, say Φ = ∇φ with φ ∈ W 1,q(Ω). Moreover, as ∇φ = Φ is orthogonal
to all gradients of functions in C∞c (Ω) ⊂ W 1,p

R∂Ω
(Ω), it follows that ∇φ is divergence-

free as a distribution; i.e., φ is harmonic in Ω. Using the notation of Lemma 1 so
that the Oj are the connected of components Rn \ Ω and the Γj are the connected
components of ∂Ω for 1 ≤ j ≤ l, we can argue as in the proof of Theorem 23 and
construct for each j a closed smooth hypersurface Σj ⊂ Ω such that the shell between
Γj and Σj is included in Ω. Then, we can find hj ∈ C∞(Rn) such that hj = 1 on
Oj and zero outside a neighborhood of Γj containing Σj. Then hj ∈ W 1,p

R∂Ω
(Ω), and
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we get from the divergence formula applied to hj∇φ on the shell between Σj and Γj
that

∫
Γj

∂φ
∂ν
dHn−1 = 0 for 1 ≤ j ≤ l. This proves that the elements of S⊥p are of the

announced type, and the previous arguments are easily reverted to yield the converse.

Remark 6. Whenever Ω is such that Gp
0(Ω), coincides with G̃p(Ω) and Divp,0(Ω) coin-

cides with divergence-free fields in [Lp(Rn)]n that vanish off Ω, the reasoning in Lemma
7 is easily adapted to yield that S⊥p consists of those ∇φ ∈ [Lq(Ω)]n such that φ is a

harmonic function in Ω and
∫

Γ
∂φ
∂ν
dHn−1 = 0 for all closed C∞-hypersurfaces Γ ⊂ Ω. In

particular, if we knew that Divp,0(Ω) coincides with divergence-free fields in [Lp(Rn)]n

vanishing off Ω when Rn \Ω is unstretched, then the above characterisation of S⊥p would
hold under very general assumptions. Such is the case for domains Ω as in Corollary 2
with Rn\Ω unstretched .

We note that Sp is a closed subspace of [Lp(Ω)]n and let S⊥p be the set of annihilators
of Sp, that is, the set of all Φ ∈ [Lq(Ω)]n such that 〈M0,Φ〉 = 0 for all M0 ∈ Sp.

Theorem 24 ([39, Thm 7.2]). Let X be a Banach space and S be a closed subspace of
X. Then the space (X/S)∗ is isometrically isomorphic to S⊥. Furthermore, for each
fixed x ∈ X,

max
ψ∈S⊥, ‖ψ‖≤1

|ψ(x)| = inf
y∈S
‖x+ y‖ .

From Theorem 24 we have that

inf
M0∈Sp

‖M −M0‖[Lp(Ω)]n = max
‖Φ‖[Lq(Ω)]n≤1,Φ∈S⊥p

|〈M,Φ〉|

= max
‖∇φ‖[Lq(Ω)]n=1,∇φ∈(Gp0(Ω))⊥

|〈M,∇φ〉|.
(1.61)

Remark 7. Note that in (1.61) in the last equality the constraint on the norm of the gra-
dients of functions harmonic in Ω is saturated. This is easily shown as follows, suppose
the φ is such that ‖∇φ‖[Lq(Ω)]n < 1 then for ε > 0 small enough ‖∇(1 + ε)φ‖[Lq(Ω)]n ≤ 1
and |〈M,∇φ〉| < (1 + ε)|〈M,∇φ〉|, contradicting that φ is a maximiser.

The existence and uniqueness of a harmonic function φS ∈ W 1,q(Ω) with ∇φS ∈
(Gp

0(Ω))⊥ that maximised (1.61) is inherited from the existence and uniqueness of MS.
Further, φS satisfies the following

〈M −MS,∇φS〉 = ‖M −MS‖[Lp(Ω)]n , (1.62)

and a simple argument based on the equality in Hölder’s inequality shows that

∇φS =
|M −MS|p−2(M −MS)

‖M −MS‖p−1
[Lp(Ω)]n

. (1.63)

It thus follows that given M ∈ [Lp(Ω)]n then the norm-minimising Ω-equivalent source
is given by

M −MS = 〈M,∇φS〉|∇φS|q−2∇φS. (1.64)

Above we have proven the following theorem which is a generalisation of Theorem 23,
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Theorem 25. Let Ω be a bounded Lipschitz open set, given a vector-field M ∈ [Lp(Ω)]n,
1 < p <∞, the norm-minimising Ω-equivalent vector-field is given by

〈M,∇φS〉|∇φS|q−2∇φS,

where φS is, up to an additive constant, the unique harmonic function on Ω with
‖∇φS‖[Lq(Ω)]n = 1 and ∇φS ∈ (Gp

0(Ω))⊥ that satisfies

〈M,∇φS〉 = max
‖∇φ‖[Lq(Ω)]n=1,∇φS∈(Gp0(Ω))⊥

〈M,∇φ〉. (1.65)

From Remark 6 we have the following corollary to Theorem 25:

Corollary 6. Let Ω be as in Theorem 19 such that for all u ∈ [L1
loc(Ω)]n ∩ [Lp(Ω)]n

with ‖div u‖Lp(Ω) <∞ the equality

〈ϕ, u · ν〉 =

∫
Ω

∇ϕ(y) · u(y) dy +

∫
Ω

ϕ(y)div u(y) dy, ϕ ∈ W 1,q(Ω),

holds then given a vector-field M ∈ [Lp(Ω)]n, 1 < p < ∞, the norm-minimising Ω-
equivalent vector-field is given by

〈M,∇φS〉|∇φS|q−2∇φS,

where φS is, up to an additive constant, the unique harmonic function on Ω with
‖∇φS‖[Lq(Ω)]n = 1 and ∇φS ∈ (Gp

0(Ω))⊥ that satisfies

〈M,∇φS〉 = max
‖∇φ‖[Lq(Ω)]n=1,∇φS∈(Gp0(Ω))⊥

〈M,∇φ〉. (1.66)

We are now in a position to prove Theorem 15 and its corollary.

Proof of Theorem 15. It follows from (1.56) and the theorem above that given any
M ∈ [Lp(Ω)]n, 1 < p < ∞, the norm-minimising Ω-equivalent source to M can be
written uniquely in the form

〈M,∇φS〉|∇φS|q−2∇φS = M −∇φ0 −D0,

where φS is harmonic with ∇φs ∈ [Lq(Ω)]n while φ0 ∈ W 1,p(Ω) with ∇φ0 ∈ Gp
0(Ω) and

D0 ∈ Divp,0(Ω). Letting h = 〈M,∇φS〉
1
q−1φS together with ψ = φ0 and D = D0, we

get the decomposition (1.27).

For the remainder of the section we take Ω to be a Lipschitz domain. Note that we
can express the φ in (1.65) as a single layer potential, that is,

φ(x) = Sf(x),

for some f ∈ Ŵ− 1
q
,q(∂Ω) where

Ŵ− 1
q
,q(∂Ω) = {f ∈ W− 1

q
,q(∂Ω) : 〈f, χ〉 = 0 for all χ ∈ R∂Ω}
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hence

∇φ · ν = −
(1

2
Id−K∗

)
f.

Thus using Fubini’s theorem we can rewrite the RHS of the last equality of (1.65) as

〈M,∇Sf〉 =

∫
Ω

M(x) ·
∫
∂Ω

(x− y)

|x− y|n
f(y) dσ(y) dx

=

∫
∂Ω

∫
Ω

M(x) · (x− y)

|x− y|n
dx f(y) dσ(y)

=

∫
∂Ω

PM(y)f(y) dσ(y).

(1.67)

In (1.67) note that PM(y) is the potential associated with M for y ∈ ∂Ω when ap-
proaching the boundary non-tangentially from outside Ω, hence we can express (1.67)
as

max
f∈Ŵ−

1
q ,q(∂Ω),‖∇Sf‖[Lq(Ω)]n=1

∫
∂Ω

PM(y)f(y) dσ(y). (1.68)

Note that in (1.68) the potential PM ∈ W
1
q
,p(∂Ω) is acting up to additive constants on

each connected component of the boundary; i.e., PM ∈ W
1
q
,p(∂Ω)/R∂Ω. Note that the

space Ŵ− 1
q
,q(∂Ω) is the dual of W

1
q
,p(∂Ω)/R∂Ω using the arguments of Sec. 1.2. Due

to [25, Thm 3.1], we can renorm Ŵ− 1
q
,q(∂Ω) with the norm

‖f‖
Ŵ
− 1
q ,q(∂Ω)

= ‖∇Sf‖[Lq(Ω)]n .

We can then renorm W
1
q
,p(∂Ω)/R∂Ω with the norm

‖u‖
W

1
q ,p(∂Ω)

:= sup

f∈Ŵ−
1
q ,q(∂Ω),‖∇Sf‖[Lq(Ω)]n=1

∫
∂Ω

uf dσ

= sup

f∈Ŵ−
1
q ,q(∂Ω),‖∇Sf‖[Lq(Ω)]n=1

〈u, f〉.

Under the new norm we can relate (1.68) with the norm of PM on ∂Ω. This leads to
the notion of duality mappings.

Definition 33. A duality mapping with gauge function φ, JXφ : X → 2X
∗
, from X to

subsets of X∗, with φ : R+ → R+ a continuous and strictly increasing function such
that φ(0) = 0 and lim

t→∞
φ(t) =∞ is the set valued map

JXφ(t)x := {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖X ‖x
∗‖X∗ , ‖x

∗‖X∗ = φ(‖x‖X)}.

Thus given a gauge function φ(t) = t we define the

J
W

1
q ,p(∂Ω)/R∂Ω

t : W
1
q
,p(∂Ω)/R∂Ω → 2Ŵ

− 1
q ,q(∂Ω)
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by

J
W

1
q ,p(∂Ω)/R∂Ω

t u := {f ∈ Ŵ− 1
q
,q(∂Ω) : 〈u, f〉 = ‖u‖

W
1
q ,p(∂Ω)/R∂Ω

‖f‖
Ŵ
− 1
q ,q(∂Ω)

,

‖f‖
Ŵ
− 1
q ,q(∂Ω)

= ‖u‖
W

1
q ,p(∂Ω)/R∂Ω

}.

When the gauge function φ(t) = t the duality mapping JXφ is called the normalised
duality mapping. We refer the interested reader to [40, Ch. 3] and [41, Metric and
Generalized Projection Operators in Banach Spaces: Properties and Applications] for
an exploratory study of duality mappings. Note that inasmuch as the duality mapping
introduced above is set-valued, due to the reflexivity of the spaces we consider, the
duality mapping in this case is a singleton. This leads to the conclusion that the max-

imiser of (1.68) is a constant multiple of the duality mapping of PM ∈ W
1
q
,p(∂Ω)/R∂Ω

under the duality mapping above. It should be noted though that describing the duality

mapping above of u ∈ W
1
q
,p(∂Ω)/R∂Ω is not a trivial exercise which limits the practical

application of this method to obtaining the maximiser of (1.68). Cases where this is
practical is for example in (1.63) in which the RHS is the [Lp(Ω)]n normalised duality
mapping of M −MS.

However, an interesting property of duality mappings is that the duality mapping
JX

∗

φ : X∗ → X is the inverse of the duality mapping JXφ . Hence we can look at

the problem in (1.68) as looking for f ∈ Ŵ− 1
q
,q(∂Ω) whose duality mapping under

J
Ŵ
− 1
q ,q(∂Ω)

t is PM . To begin, it is fairly direct to observe that for a given M ∈ [Lp(Ω)]n

a necessary and sufficient condition for

f ∈ Ŵ− 1
q
,q(∂Ω) with ‖∇Sf‖[Lq(Ω)]n = 1

to be the maximiser of (1.68) is that

〈M,∇Sf〉
ωn

∫
Ω

|∇Sf |q−2∇Sf(y) · (x− y)

|x− y|n
dy = PM(x), x ∈ ∂Ω, (1.69)

and in general it is true for x ∈ Rn\Ω. Therefore, the LHS of (1.69) is up a multiplicative

constant J
Ŵ
− 1
q ,q(∂Ω)

t . In this case Galerkin methods can be applied to solve the problem

by noting that using (1.69) and a frame for W− 1
q
,q(∂Ω), the maximiser f ∗ for (1.68)

can be computed up to additive constants. A frame for the space of distributions

W− 1
q
,q(∂Ω) can be generated using methods such as the one introduced in [42] in which

one perturbs a frame of a separable Hilbert space which has a as a subspace the space
of Schwartz functions.

1.7 Approximation problem when n = 3

In this section we restrict to domains, Ω, that are simply connected and at least C1,1 or
Lipschitz polyhedron domains. Given a vector-field M ∈ [W 1,p(Ω)]3 we study how one
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can approximate M by a silent gradient and a silent divergence-free vector-field, that
is, given M we wish to solve the following problems

inf
∇φ0, φ0∈W 1,p

0 (Ω)
‖M −∇φ0‖[Lp(Ω)]3 ,

inf
D∈Divp,0(Ω)

‖M −D‖[Lp(Ω)]3 ,
(1.70)

respectively. We will set up these problems in such a way that Galerkin type methods
can be used to solve each problem hence making numerical solution feasible using well-
known techniques.

1.7.1 Approximating by silent gradient

It can be shown that given an M such as above the best approximate silent gradient,
say ∇φ0 with φ0 ∈ W 1,p

0 (Ω), has the following property

M −∇φ0 = |D|q−2D, (1.71)

for some D ∈ Divq and 1
p

+ 1
q

= 1. This follows from a duality argument Theorem 24.

If we then rewrite D = ∇× h for some h ∈ [W 1,q(Ω)]3 ∩ Divq,0 and take curl in (1.71)
and impose a tangential boundary condition we have the following q-curl-curl problem

∇×M = ∇×
(
|∇ × h|q−2∇× h

)
in Ω,

M × ν =
(
|∇ × h|q−2∇× h

)
× ν on ∂Ω.

(1.72)

It follows from [43, Proposition 2.1] that given M ∈ [W 1,p(Ω)]3 with 1 < p ≤ 6 (1.72)
can be solved weakly , that is, there exists uniquely h ∈ [W 1,q(Ω)]3 ∩Divq,0 such that∫

Ω

|∇ × h|q−2∇× h · ∇ × ϕdΩ =

∫
Ω

∇×M · ϕdΩ +

∫
∂Ω

M × ν · ϕdσ, (1.73)

for all ϕ ∈ [W 1,q(Ω)]3. The proof of the existence of the solution of (1.73) in [43] used
the the well-known property of monotone operators [44, Thm 2.1]. It was achieved by
considering the function a : R3 → R3,

a(u) = |u|q−2u,

that has the following properties

(i) a(u) · u ≥ a∗|u|q

(ii) |a(u)| ≤ a∗|u|q−1

(iii) (a(u)− a(v)) · (u− v) > 0 for all u 6= v.
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Note we can rewrite (1.73) as∫
Ω

a(∇× h) · ∇ × ϕdΩ =

∫
Ω

∇×M · ϕdΩ +

∫
∂Ω

M × ν · ϕdσ

〈Ah, ϕ〉 = 〈L, ϕ〉 for all ϕ ∈ W 1,q(Ω).

(1.74)

For what follows, we need some definitions.

Definition 34. An operator A : X → X∗ is hemi-continuous if for all h, g, f ∈ X and
λ ∈ R we that

〈A(h+ λg), f〉
is continuous in λ.

The operator A is said to be monotone if for all h, g ∈ X

〈Ah−Ag, h− g〉 ≥ 0.

Further A is said to be coercive if

〈Ah, h〉
‖h‖

→ ∞ as ‖h‖ → ∞.

It follows that A : [W 1,q(Ω)]3 → [Lp(Ω)]3 ⊂ [(W 1,q(Ω))∗]3 as defined in (1.74) is
hemi-continuous, monotone and coercive as soon as the semi-norm ‖∇ × h‖[Lq(Ω)]3 is

equivalent to the ‖h‖[W 1,q(Ω)]3 and from [43, Thm 2.1] this is true for q > 6
5
. Hence in

this case we can solve 1.71 for 1 < p ≤ 6.
We note that the result in [43] was given for simply connected C2 domains however

it remains true for C1,1 and bounded convex Lipschitz polyhedron domains. We arrived
at this conclusion as follows, if we consider the following Banach spaces

W p(∇×,Ω) = {h ∈ [Lp(Ω)]3 : ∇× h ∈ [Lp(Ω)]3},
W p(div,Ω) = {h ∈ [Lp(Ω)]3 : div h ∈ Lp(Ω)},

Xp(Ω) = W p(∇×,Ω) ∩W p(div,Ω),

Xp
T (Ω) = {h ∈ Xp(Ω) : h · ν = 0},

Xp
T (Ω, div, 0) = {h ∈ Xp

T (Ω) : div h = 0},

we have that if Ω is C1,1 and simply connected then on Xp
T (Ω) the semi-norm

‖∇ × h‖[Lp(Ω)]3 ,

is equivalent to the graph norm

‖h‖[Lp(Ω)]3 + ‖∇ × h‖[Lp(Ω)]3 + ‖div h‖Lp(Ω) ,

and further for all h ∈ [W 1,q(Ω)]3 with h · ν = 0 then there is C > 0 such that

‖h‖[W 1,q(Ω)]3 ≤ C
(
‖∇ × h‖[Lp(Ω)]3 + ‖div h‖Lp(Ω)

)
hence as well as on Xp

T (Ω), see [45, Cor. 3.4]. Thus, if we take h ∈ Xp
T (Ω, div, 0) which

has div h = 0 then Proposition 2.1 of [43] can be extended to show that (1.72) can be
solved weakly given any M ∈ [W 1,p(Ω)]3 for 1 < p <∞ as in this case A can be shown
to be hemi-continuous, monotone and coercive for 1 < q <∞.
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1.7.2 Approximating by silent divergence-free vector-field

In this case the best approximate silent divergence-free vector-field, D ∈ Divp,0(Ω) is
such that

M −D = |∇ϕ|q−2∇ϕ, (1.75)

for some ϕ ∈ W 1,q(Ω)/〈1〉 again by Theorem 24 and 1
p

+ 1
q

= 1. We then have the
following Neumann problem for the q-Laplacian by taking divergence and imposing a
Neumann boundary condition

divM = div
(
|∇ϕ|q−2∇ϕ

)
in Ω,

M · ν = |∇ϕ|q−2∇ϕ · ν on ∂Ω,
(1.76)

for which a weak solution ϕ exists uniquely, that is, there exists uniquely ϕ ∈ W 1,q(Ω)/〈1〉
such that ∫

Ω

|∇ϕ|q−2∇ϕ · ∇ψ dΩ =

∫
Ω

divMψ dΩ +

∫
∂Ω

M · νψ dσ,

〈Aϕ, ψ〉 = 〈L, ψ〉.
(1.77)

for all ψ ∈ W 1,q(Ω)/〈1〉. To see this we have from (1.77) that

A : [W 1,q(Ω)/〈1〉]3 → [Lp(Ω)]3 ⊂ [(W 1,q(Ω)/〈1〉)∗]3

is hemi-continuous, monotone and coercive. To show the coercivity we appeal to the
Poincaré-Wirtinger inequality and by taking each ϕ ∈ W 1,q(Ω)/〈1〉 as ϕ− ϕ with ϕ as
defined in (1.6).

1.7.3 Iterative procedure to approximate equivalent
norm-minimising source

Given M we iteratively approximate M −MS by switching between approximating the
iterates with a silent gradient and a silent divergence-free vector-field. As a starting
point one chooses to either begin with approximating with a silent gradient or a silent
divergence-free vector-field. We will start with approximating with a silent gradient.

Algorithm 1: Finding norm-minimising equivalent source

Result: M −MS.
1 i = 0;

2 M (0) = M ;

3 while ∇× (|M (i)|p−2M (i)) 6= 0 or ∇ · (|M (i)|p−2M (i)) 6= 0 in Ω do
4 M (i+1) = |D(i)|q−2D(i) by solving (1.72) for h with M = M (i) and setting

D = ∇× h;

5 M (i+2) = |∇ϕ(i+1)|q−2∇ϕ(i+1)by solving (1.76) for ϕ with M = M (i+1);
6 i = i+ 2;

7 end

8 M (i) = M −MS.

The previous algorithm is convergent with M ∈ [W 1,p(Ω)]3.
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Theorem 26. Given M ∈ [W 1,p(Ω)]3, for 1 < p < ∞, the iterative scheme above
converges to the norm-minimising Ω-equivalent source in [Lp(Ω)]3.

Proof. Note that at each iterative step we solve one of the problems in (1.70) therefore
at each step the norm of the iterates decreases. The sequence of iterates is bounded
by M and since [Lp(Ω)]3, for 1 < p < ∞, are reflexive Banach spaces we have that
the sequence of iterates has a weakly convergent subsequence, see for example [11,
Thm 3.18]. Further, since [Lp(Ω)]3, for 1 < p < ∞, are uniformly convex Banach
spaces we have from the boundedness and monotonicity of the sequence of norms of
the weakly convergent subsequence that the subsequence converges strongly, see for
example [11, Proposition 3.32]. This subsequence of iterates converges strongly to the
norm-minimising Ω-equivalent source otherwise we have that the sequence of the norms
of the iterates does not converge to the norm of the norm-minimising Ω-equivalent
source.

The iterative procedure above can be implemented numerically by using frames of
the spaces W 1,p(R3) for 1 < p < ∞, see for example [46] for their construction. Since
we consider Ω that is class C1,1 in this section we have from [23, Thm 2.75] that we
can extend functions in W 1,p(Ω) to functions in W 1,p(R3). Due to the properties of
the functions and vector-fields we seek in the iterative procedure these are extensions
by zero. By expressing functions in W 1,p(Ω) as finite linear combinations of frames we
are able to build systems of non-linear equations, via Galerkin methods, that can be
solved to approximate solutions to (1.73) and (1.77) hence approximating the itera-
tive procedure. This Galerkin approximation indeed provides approximate solutions to
approximate problems of (1.73) and (1.77) that have to be solved at each step of the
iterative procedure, see [47, Ch. II, Thm 2.1], [44, Ch. 2, Thm 2.1, Thm 2.2].

1.8 Conclusion

We have managed to provide a characterisation of silent [Lp(Ω)]n magnetisations us-
ing the Helmholtz decomposition on Rn. Further, we have done this with minimal
assumptions on the set Ω. Using this characterisation of silent sources we arrived at
a characterisation of norm-minimising equivalent magnetisation to any given magneti-
sation. This allowed to have a decomposition which can be viewed as an extension of
the Helmholtz decomposition on more general domain. On Lipschitz domains we have
managed to propose a method for computing the norm-minimising equivalent magneti-
sation to any given one that makes contact with the duality mapping on the trace

Sobolev dual space, Ŵ− 1
q
,q(∂Ω), in a sense we have managed to characterise the duality

mapping via Newton potentials, see (1.69). The numerical application of this method
is possible but may not be easily achieved. For n = 3 and smooth domains we provided
an iterative procedure that reformulates the problem to problems that are well studied
and for which numerical schemes already exist.

What we presented here can be applied to magnetisations that are assumed to
be distribution vector-fields with the distributions in the Sobolev dual spaces. These
spaces of distributions include spaces of measures. Preliminary thoughts suggest that
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using a decomposition in these spaces that are based on the Stokes problem, see [48],
leads to a characterisation of silent distributions that is similar to the one presented in
this work. In the Stokes decomposition one take advantage of the fact that the Stokes
volume potential is equivalent to the Newton potential, see [22, Ch. IV]. Future work
can be devoted to answering this question fully.

Another extension of this work would be to give a characterisation of silent [Lp(Ω)]n

magnetisations while allowing the connected components of Rn\Ω that have intersec-
tions to be thin at those intersections. This would require to make changes to the
definition of Gp

0(Ω) such that the degenerate cases can be accounted for in the set.

1.9 Appendix

1.9.1 More on Sobolev functions

Let Ω ⊂ Rn be open. For f ∈ W 1,p(Ω) and g ∈ W 1,q
0 (Ω), it holds for 1 ≤ i ≤ n that∫

Ω
∂xifg = −

∫
Ω
∂xigf , by absolute continuity on a.e. line of Sobolev functions [16,

Thm. 2.1.4]. Thus, ‖∇f‖[W−1,p(Ω)]n ≤ n
1
p‖f‖Lp(Ω), and since W 1,p(Ω) is dense in Lp(Ω)

it follows that f 7→ ∇f extends to a continuous map from Lp(Ω) into [W−1,p(Ω)]n.
When Ω is a Lipschitz open set and (Uj∩∂Ω,Φj) an atlas for ∂Ω as in Sec. 1.2.3, the

Sobolev space W 1,p(∂Ω) comprises those f : ∂Ω→ R such that f◦Φ−1
j ∈ W 1,p(Vj) for all

j, with Vj = Φj(Uj ∩ ∂Ω). The definition does not depend on the atlas, since Lipschitz
changes of variables preserve Sobolev functions [16, Thm 2.2.2]. The tangential gradient
∇Tf ∈ [Lp(∂Ω)]n is given on Uj ∩ ∂Ω by

∇Tf ◦ Φ−1
j = DΦ−1

j

(
(DΦ−1

j )tDΦ−1
j

)−1∇(f ◦ Φ−1
j ); (1.78)

note that the definitions agree a.e. on Uj1 ∩ Uj2 and that ∇Tf(x) ∈ Tx∂Ω for σ-
a.e. x ∈ ∂Ω. For a.e. x ∈ Uj ∩ ∂Ω and each X ∈ Tx∂Ω, we have ∇Tf(x) · X =
df(x)(X) where the differential df(x) of f at x is the 1-form given by df(x)(X) =
∇(f ◦ Φ−1

j )(Φj(x)) · DΦj(x)(X). One sees that W 1,p(∂Ω) is a Banach space for the
norm

‖f‖W 1,p(∂Ω) =
(
‖f‖pLp(∂Ω) + ‖∇Tf‖p[Lp(∂Ω)]n)

) 1
p

(max{‖f‖L∞(∂Ω), ‖∇Tf‖[L∞(∂Ω)]n)} if p =∞)

which is equivalent to
∑N

j=1 ‖f ◦ Φ−1
j ‖W 1,p(Vj). Observe that W 1,∞(∂Ω) identifies with

Lipschitz functions on ∂Ω.
When 1 < p <∞ and 1

p
+ 1

q
= 1, the dual space of W 1,p(∂Ω), denoted by W−1,q(∂Ω),

can be realised as the completion of Lq(∂Ω) for the norm

‖ϕ‖W−1,q(∂Ω) := sup
‖g‖W1,p(∂Ω)=1

∫
∂Ω

ϕg dσ (1.79)

by the same argument that leads to (W 1,p
0 (Ω))∗ = W−1,q(Ω).

Forms on ∂Ω proceed as in the smooth case: for 1 ≤ k ≤ n − 1, a k-form is a
map x 7→ ω(x) where ω(x) is an alternating k-linear map on Tx∂Ω (a 0-form is simply
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a function). Its local representative in the chart Φj : Uj ∩ ∂Ω → Vj is the k-form
(Φ−1

j )∗(ω) on Vj which the pullback of ω under Φ−1
j :

(Φ−1
j )∗(ω)(y) := ω(Φ−1

j (y)) ◦ (DΦ−1
j (y)× · · · ×DΦ−1

j (y)), y ∈ RegVj. (1.80)

Rearranging (1.80), we get an expression of the form

(Φ−1
j )∗(ω)(y) =

∑
i1<i2,··· ,<ik

a
{Φj}
i1,··· ,ik(y) dyi1 ∧ · · · ∧ dyik , y ∈ RegVj,

where the coefficients a
{Φj}
i1,··· ,ik are functions on Vj that transform naturally under changes

of coordinates. We identify forms that agree a.e.. and say that ω is of Lp-class if the

a
{Φj}
i1,··· ,ik lie in Lp(Vj) for each j. In this case we write ω ∈ F p

k (∂Ω) and

‖ω‖F pk (∂Ω) :=
N∑
j=1

∑
i1<i2<···<ik

‖a{Φj}i1,··· ,ik‖Lp(Vj) .

A change of atlas yields an equivalent norm. The image under φj of the restriction σ|Uj
is the measure on Vj, absolutely continuous with respect to Lebesgue measure, with
differential (1 + |∇Ψj(y)|2)1/2dy. Since Ψj ∈ L∞(Vj), it follows that f ∈ Lp(∂Ω) if and
only if it is of Lp-class as a 0-form, and ‖f‖Lp(∂Ω) is equivalent to ‖f‖F p0 (∂Ω).

Integrating (n− 1)-forms on ∂Ω goes as in the smooth case on an oriented Rieman-
nian manifold [49, Sec. 4.10] (note that ∂Ω is oriented by construction). That is: for ω
a (n − 1)-form of L1-class on ∂Ω and (ϕj) a Lipschitz partition of unity subordinated
to the Uj ∩ ∂Ω, if one writes

(Φ−1
j )∗(ϕjω)(y) = a(y)dy1 ∧ · · · ∧ yn−1

then ∫
∂Ω

ω =
N∑
j=1

∫
Vj

aj(y)dy .

The latter is independent from the atlas and the partition of unity, thanks to the change
of variable formula which is valid for Lipschitz reparametrizations. In particular, if we
define on Uj ∩ ∂Ω the (n− 1)-form

ωj(x)(
n−1∑
i=1

λi∂yiΦ
−1
j ) := λ1λ2 · · ·λn−1Jk(Φj(x)) ,

where Jk is the square root of the sum of the squares of the (n − 1) × (n − 1) minors
of the Jacobian matrix DΦ−1

j , then ωj1 = ωj2 a.e. on Uj1 ∩ Uj2 ∩ ∂Ω and the (n − 1)-
form ωvol on ∂Ω whose restriction to Uj ∩ ∂Ω is ωj (the so-called volume form) satisfies∫
∂Ω
fdσ =

∫
∂Ω
fωvol for every f ∈ L1(∂Ω).

Let us define W1,p
k (∂Ω) to consist of k-forms ω ∈ F p

k (∂Ω) for which there exists a
(k + 1)-form dω ∈ F p

k+1(∂Ω) with the property that, for each j ∈ {1, · · · , N},∫
Vj

(Φ−1
j )∗(ω) ∧ dµj = (−1)k+1

∫
Vj

(Φ−1
j )∗(dω) ∧ µj
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whenever µj is a C∞-smooth (n − k − 1)-form compactly supported on Vj. Here, the
exterior derivative dµj is the usual one for smooth forms. Though not obvious at first

glance, this definition is consistent, for if dω exists then (Φj1 ◦ Φ−1
j2

)∗
(

(Φ−1
j1

)∗(ω)
)
∈

W1,p
k (Φj2(Uj1 ∩ Uj2 ∩ ∂Ω)) and on Φj2(Uj1 ∩ Uj2 ∩ ∂Ω) it holds a.e. that

d
(

(Φj1 ◦ Φ−1
j2

)∗
(

(Φ−1
j1

)∗(ω)
))

= (Φj1 ◦ Φ−1
j2

)∗
(

(Φ−1
j1

)∗(dω)
)
,

see [50, Thm 2.2]. We endow W1,p
k (∂Ω) with the norm

‖ω‖W1,p
k (∂Ω) = (‖ω‖p

F pk (∂Ω)
+ ‖dω‖p

F pk+1(∂Ω)
)

1
p .

It is easy to see that f ∈ W 1,p(∂Ω) if and only if f ∈ W1,p
0 (∂Ω) and that

(Φ−1
j )∗(df) =

∑
i

∂yi(f ◦ Φ−1
j ) dyi .

We let W−1,q
k (∂Ω) be the completion of F q

k (∂Ω) for the norm

‖ω‖W−1,q
k (∂Ω) := sup

‖µ‖
W1,p
n−1−k(∂Ω)

=1

∫
∂Ω

ω ∧ µ,

so that W−1,q
k (∂Ω) consists of linear forms on W1,p

n−1−k; i.e., of (n − 1 − k)-currents on

∂Ω. When f ∈ W 1,p(∂Ω) and µ ∈ W1,q
n−2(∂Ω), it holds that

∫
∂Ω

df ∧ µ = −
∫
∂Ω
fdµ, as

can be checked in local coordinates from the absolute continuity on a.e. line of Sobolev
functions [16, Thm 2.1.4]. Thus, ‖df‖W−1,p

1 (∂Ω) ≤ C‖f‖Lp(Ω), and since W 1,p(∂Ω) is

dense in Lp(∂Ω) it follows that f 7→ df extends to a continuous map from Lp(∂Ω) into
W−1,p

1 (∂Ω).
Since the gradient defines a continuous map ∇ : Lp(Vj)→ [W−1,p(Vj)]

n−1 as pointed
out at the begining of this section, (1.78) implies on using a Lipschitz partition of unity
subordinated to the Uj that ∇T : Lp(∂Ω)→W−1,p

1 (∂Ω) is continuous.
It is known that W s,p(∂Ω) = [Lp(∂Ω),W 1,p(∂Ω)]s,p, where [., .]s,p is the so-called

real interpolation functor, see [51, Ch.4] for a definition of the latter. This fact
follows from the analogous result on Rn−1 [51, Ch. 4, Cor. 4.13] and [25, Lem.
1.1] which allows one to localize the statement in the charts (Uj,Φj), using a Lip-
schitz partition of unity on ∂Ω. Hence, by duality [52, Thm 3.7.1], we get that

W− 1
p
,p(∂Ω) ∼ [Lp(∂(Ω),W−1,p(∂Ω)] 1

p
,p = [W−1,p(∂Ω), Lp(∂(Ω)]1− 1

p
,p with equivalence

of norms, and since taking the gradient maps Lp(∂Ω) into [W−1,p(∂Ω)]n and W 1,p(∂Ω)
into [Lp(∂Ω)]n continuously, we see by interpolation upon setting s = 1 − 1

p
that the

tangential gradient ∇Tψ of ψ ∈ W 1− 1
p
,p(∂Ω) exists as a member of W

− 1
p
,p

1 (∂Ω).

1.9.2 Auxiliary lemmas

Lemma 8. To every f ∈ S on Rn, there is a sequence φn ∈ S such that
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• limn→∞ φn = f in Lp(Rn) for all p ∈ [1,∞),

• to each n there is a nonempty neighborhoud Vn of 0 with the property that φ̂n(ξ) =
f̂(0) for ξ ∈ Vn.

Proof. We adapt the proof of [53, Lem. 9.2.]. Pick g ∈ S such that ĝ = 1 in some ball
B(0, r), r > 0. For λ > 0, put gλ(x) := λ−ng(x/λ) and define

hλ(x) := f̂(0)gλ(x)− f ∗ gλ(x), x ∈ Rn. (1.81)

Clearly, hλ ∈ S , and since ĝλ = 1 in some neighborhood Vλ of 0 we see from (1.81) that
ĥλ(ξ) = f̂(0) − f̂(ξ) for ξ ∈ Vλ. Thus, letting φλ := f + hλ, we get that φ̂λ(ξ) = f̂(0)
for ξ ∈ Vλ. It remains to show that limλ→+∞ hλ = 0 in Lp(Rn) for 1 < p <∞, for then
φn will satisfy our requirements. Now, since |f | is summable because f ∈ S , we get by
convexity that

|hλ(x)|p =

∣∣∣∣∫
Rn
f(y)

(
gλ(x)− gλ(x− y)

)
dy

∣∣∣∣p ≤ ∫
Rn
|f(y)|

∣∣gλ(x)− gλ(x− y)
∣∣pdy.

Therefore, by Fubini’s theorem and the change of variable x = λz,

‖hλ‖pLp(Rn) ≤
∫
Rn
|f(y)|

(∫
Rn

∣∣g(z)− g(z − y/λ)
∣∣pdz) dy. (1.82)

The inner integral in (1.82) is at most 2‖g‖pLp(Rn) and it tends to zero for fixed y as

λ→ +∞, by the continuity of argument translation in Lp(Rn). Hence, the right hand
side of (1.82) goes to zero when λ→ +∞, by dominated convergence.

Lemma 9. Let ϕ : [0,∞) → [0,∞) be C∞-smooth and supported in (0, 1). Then,
h(x) := ϕ(|x|n) lies in S (Rn) and its Newton potential

N(x) := − 1

(n− 2)ωn

∫
Rn

ϕ(|y|n)

|x− y|n−2
dy, x ∈ Rn,

is a C∞-smooth function with gradient given by

∇N(x) = − x

|x|n
Φ(|x|n)

n
, (1.83)

where Φ : [0,∞)→ R is the indefinite integral of ϕ satisfying Φ(0) = 0. Moreover, the
second derivatives ∂2

i,jN lie in Lp(Rn) for 1 ≤ i, j ≤ n.

Proof. Since ϕ is C∞-smooth and vanishes in a neighborhood of 0 and ∞, it is clear
that h ∈ S . Integrating in polar coordinates, we get

N(x) =
1

(n− 2)ωn

∫ 1

0

rn−1ϕ(rn)dr

∫
S(0,1)

dσ(ζ)

|x− rζ|n−2
.

When |x| > r the mean value property for harmonic functions yields that

1

ωn

∫
S(0,1)

dσ(ζ)

|x− rζ|n−2
=

1

|x|n−2
,
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and when |x| ≤ r it holds that

1

ωn

∫
S(0,1)

dσ(ζ)

|x− rζ|n−2
=

1

rn−2ωn

∫
S(0,1)

dσ(ζ)

|x/r − ζ|n−2
=

1

rn−2
(1.84)

because σ/ωn is the Newtonian equilibrium measure of B(0, 1) which is a regular set,
whence (1.84) is independent of x ∈ B(0, 1), see [31, Ch. II, Sec. 13]. Altogether, we
obtain:

N(x) =
1

n− 2

∫ min{|x|,1}

0

rn−1ϕ(rn)
dr

|x|n−2
+

1

n− 2

∫ 1

min{|x|,1}
rϕ(rn)dr,

implying that

N(x) =
1

n(n− 2)|x|n−2
Φ(|x|n) +

1

(n− 2)

∫ 1

|x|
rϕ(rn)dr, (1.85)

where the integral is interpreted as zero for |x| ≥ 1. Since ϕ and Φ vanish in a neigh-
borhoud of 0 while ϕ also vanishes in a neighborhood of 1, one can see thatN ∈ C∞(Rn).
Differentiating (1.85) we get that

∇N(x) = −xΦ(|x|n)

n|x|n
+

1

n− 2

x

|x|
(|x|ϕ(|x|n)− |x|ϕ(|x|n)) ,

which is (1.83). Differentiating once more gives us:

∂2
i,jN(x) =

Φ(|x|n)

n

(
− δi,j
|x|n

+ n
xixj
|x|n+2

)
− xixj
|x|2

ϕ(|x|n),

and using that ϕ is compactly supported while Φ is bounded and vanishes in a neigh-
borhoud of 0, one verifies that ∂2

i,jN ∈ Lp(Rn).

1.9.3 Example of Sobolev function on a thin set

We begin by considering the set E ⊂ R3 that we define as

E = {(x, y, z) : z ≥ 2− e−(x2+y2)α} ∩B(0,
√

2)

with 0 < α < 1. Let Ω ⊂ R3 be the set

Ω = (B(0,
√

2)\E)\B(0, 1),

we let O0 = (R3\Ω)\B(0, 1) and O1 = B(0, 1). We will call Ω0 the intersection of Ω
and the closed cone with vertex at (0, 0, 0) that passes through the points (x, y, z) on
S(0,
√

2) that satisfy x2 + y2 + z2 = x2 + y2 + (2 − e−(x2+y2)α)2. Let f : R3 → R be
defined as follows
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Figure 1.1: The domain Ω is contained in the grey part, α = 1
4
. The subset of O0 in

red thin at (0, 0, 1). Below is close up of the region around (0, 0, 1)
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f(x, y, z) =



1 on O0\{(0, 0, 1)}
x2 + y2 + z2 − 1 on Ω\Ω0

x2 + y2 + z2 − 1

x2 + y2 + (2− e−(x2+y2)α)2 − 1
on Ω0

0 on O1

.

We claim that f ∈ W 1,2(R3) for some α. We note that the gradient of f on Ω0 is given
by

∇f =


2x

x2+y2+(2−e−(x2+y2)α )2−1
− 4αx(x2+y2)α−1e−(x2+y2)α (2−e−(x2+y2)α )+2x

(x2+y2+(2−e−(x2+y2)α )2−1)2(x2+y2+z2−1)−1

2y

x2+y2+(2−e−(x2+y2)α )2−1
− 4αy(x2+y2)α−1e−(x2+y2)α (2−e−(x2+y2)α )+2y

(x2+y2+(2−e−(x2+y2)α )2−1)2(x2+y2+z2−1)−1

2z

x2+y2+(2−e−(x2+y2)α )2−1

 .

To show that f ∈ W 1,2
loc (R3) we need only show that the following integrals associated

with the L2-norm of the partial derivatives are finite for some α. In what follows we
need to recall the following series representations

2− e−r2α

= 1 + r2α − r4α

2
+
r6α

6
− r8α

24
+
r10α

120
+O(r12α)

√
1− r2 = 1− r2

2
− r4

8
− r6

16
+O(r8)

. (1.86)

We begin with the following integrals associated with the partial derivatives with
respect to x and y:∫

(x2+y2)<R2

∫ z=2−e−(x2+y2)α

z=
√

1−(x2+y2)

4(x2 + y2)

(x2 + y2 + (2− e−(x2+y2)α)2 − 1)2
dz dx dy

= 4

∫ 2π

0

∫ R

0

r2(2− e−r2α −
√

1− r2)

(r2 + (2− e−r2α)2 − 1)2
r dr dθ

= 4

∫ 2π

0

∫ R

0

r2

(2− e−r2α −
√

1− r2)(2− e−r2α +
√

1− r2)2
r dr dθ,

using the series expansions in (1.86) that near r = 0 the integrand is dominated by r3−2α,
hence if 3− 2α > −1 the integral is finite, which is necessarily true for 0 < α < 1. To
finish the discussion for integrals associated with the partial derivatives with respect to
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x and y we look at∫
(x2+y2)<R2

∫ z=2−e−(x2+y2)α

z=
√

1−(x2+y2)

(4α(x2 + y2)α−1e−(x2+y2)α(2− e−(x2+y2)α) + 2)2

(x2 + y2 + (2− e−(x2+y2)α)2 − 1)4

(x2 + y2)(x2 + y2 + z2 − 1)2 dz dx dy

=

∫ 2π

0

∫ R

0

r2(4αr2α−2e−r
2α

(2− e−r2α
) + 2)2

(r2 + (2− e−r2α)2 − 1)4[
(2− e−r2α −

√
1− r2)(r4 − 2r2 + 1)+

(2− e−r2α
)3 − (

√
1− r2)3

3
(2r2 − 2) +

(2− er2α
)5 − (

√
1− r2)5

5

]
r dr dθ,

using the series expansions in (1.86) we have that[
(2− e−r2α −

√
1− r2)(r4 − 2r2 + 1)+

(2− e−r2α
)3 − (

√
1− r2)3

3
(2r2 − 2) +

(2− er2α
)5 − (

√
1− r2)5

5

]
is dominated by r6α near r = 0. We can show that the integrand near r = 0 is
dominated by r6α−1 hence integrable for 0 < α < 1. Using the fact that for a, b ∈ R,
(a + b)2 ≤ 2(a2 + b2) and the above integrals we have that the partial derivatives
with respect to x and y are in L2(R3). Finally the integral associated with the partial
derivative with respect to z:∫

(x2+y2)<R2

∫ z=2−e−(x2+y2)α

z=
√

1−(x2+y2)

4z2

(x2 + y2 + (2− e−(x2+y2)α)2 − 1)2
dz dx dy

=
4

3

∫ 2π

0

∫ R

0

(2− e−r2α
)3 − (

√
1− r2)3

(r2 + (2− e−r2α)2 − 1)2
r dr dθ,

using the series expansions in (1.86) the integrand is dominated by r1−2α near r = 0
hence for 0 < α < 1 the integral is finite. Hence we have shown that for any α with
0 < α < 1, f ∈ W 1,2

loc (R3) and is not constant on R3\Ω.
It remains only to show that the set O0 is thin at (0,0,1). We use [54, Thm 7.2.5] to

show that the set E0 such that (x, y, z) ∈ E0 with 0 < z < 1− ε(α) for some ε(α) > 0

satisfy
√

(x2 + y2) < ln( 1
1−z )

1
2α is thin at (0,0,0). By letting

f(t) = ln
( 1

1− t

) 1
2α

for 0 < t < 1− ε(α)

then continuously and boundedly extending f in 1−ε(α) ≤ t ≤ 1 we study the following
integral ∫ 1

0

1

t
(

1 + ln+
(

t
f(t)

)) dt.
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We can choose ε(α) to be such that t
f(t)

> 1 in 0 < t < 1 − ε(α), such an ε(α) exits

since t
f(t)
→ ∞ as t → 0. Further we can show that for t ln

(
t

f(t)

)
→ 0 as t → 0. It

thus follows that

ln
(
t
(

1 + ln+
( t

f(t)

)))
> ln(t), for all 0 < t < 1− ε(α).

Since ln(t) < 0 in 0 < t < 1 − ε(α) it follows that we can find ρ with 0 < ρ < 1 such
that

ln
(
t
(

1 + ln+
( t

f(t)

)))
> ρ ln(t) > ln(t), for all 0 < t < 1− ε(α).

Hence, for 0 < t < 1 − ε(α) the integrand is dominated by 1
tρ

for 0 < ρ < 1 and the
integral is finite implying that E0 is thin at (0, 0, 0). By noting that (x, y, z) ∈ O0 with√

(x2 + y2) < 1 and 1 < z < 2− ε is just (0, 0, 1) +E0 we conclude the that O0 is thin
at (0, 0, 1).
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Chapter 2

A layer potential approach to
inverse problems in brain imaging

2.1 Introduction

In this chapter, we look at the problem of identifying active regions of the brain using
the electric potential and/or the magnetic flux density associated with brain activity.
This is done using the modalities of EEG, MEG and sEEG. To further study how EEG,
MEG and sEEG work we invite the reader to look into [55], [56] and [57], respectively.
We will give a brief explanation of these modalities here. EEG and sEEG are brain
imaging modalities that use the electric potential associated with brain activity. In
EEG the electrical potential is measured on the scalp whereas in sEEG the electrical
potential is measured inside the head. MEG is a modality that used the magnetic
flux density measured typically using Superconducting QUantum Interference Devices
(SQUIDs) placed at a distance away from the head and around the head. Recently,
Optically Pumped Magnetometers (OPMs) have been used to measure the magnetic
flux density, see for example, [58].

The inverse source localisation problem using these modalities entails a lot into how
the electric potential and magnetic flux density are transmitted in the head. However,
the problem of source localisation and the inverse transmission problem have largely
been solved separately. For source localisation see for example [59], and [60]. The
problem of the transmission of the electric potential in the head has been studied be-
fore notably in [61] and [62] where the so-called boundary elements symmetric method
(sBEM) was employed. The sBEM uses the single and double layer potentials, the nor-
mal derivative of the double layer potential and the adjoint of the trace of the double
layer potential, and an application of Galerkin methods to solve the problem of the
transmission of electromagnetic fields associated with brain activity. Instead, we aim
to use only the single and double layer potentials with an application of boundary ele-
ments methods (BEM). In some cases the application of the BEM can be replaced with
a method of fundamental solutions, see for example [63], [64] for details on the theory
and applications of the method of fundamental solutions. We model brain activity,
which may also be referred to as a source or primary cerebral current, as a vector-field
whose components are elements of a Banach space supported on the grey/white mat-
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ter interface, which is in accordance with the neurophysiological structure of pyramidal
neurons in the cerebral cortex, see for example [57]. We give a special focus to [W 1/2,2]3-
vector-fields as sources as a way to clearly demonstrate the use of layer potentials in this
endeavour. We use the formulations introduced by Geselowitz for the electric potential
and magnetic flux density, see for example [65], which results in expressions of the for-
ward models of the electric potential and the magnetic flux density that have strong
relations with single and double layer potentials. When considering simple approxi-
mations of the head geometry such as a spherical head model, the expressions for the
electrical potential and magnetic flux density have explicit analytic expressions. Such
analytic expressions are difficult to obtain when considering realistic head geometries
such as those that can be obtained via segmentation of MRI images, see for example
[66]. In this case appropriate discretisations of the brain structures and the vector-fields
are required. On any meshed surface we can obtain exact expressions for the single and
double layer potentials associated defined on the surface hence exact expressions for
the electric potential and magnetic flux density, see [67]. This offers improved numer-
ical accuracy and the versatility of applying the forward model of electric potential
to both EEG and intra-cranial recordings as in sEEG. When considering the inverse
source localisation problem, we solve a Tikhonov regularised problem where we find the
source that minimises a functional which involves the forward model. Hence, improved
accuracy of the forward models in turn improves the source identification. In addition
to source identification, the forward models that we employ can be co-opted to solve
the so-called inverse cortical mapping problem, see [68], which is an inverse problem
of the transmission of the electric potential within the head. In [68] a method based
on the sBEM for solving the inverse cortical mapping problem was presented. The key
difference between the method in [68] and the one we present here is that the unknown
source is required in the computations. Further, the method we present is such that the
inverse cortical mapping problem can be solved given either electric or magnetic data
associated with brain activity. Coupling the problems of source localisation and corti-
cal mapping should in principle improve the accuracy of the source localisation. The
forward models we use provide a natural coupling of electric potential and magnetic
flux density and we use this coupling to solve the inverse source localisation problem
with simultaneous sEEG and MEG data which has interesting practical applications.

The chapter is organised as follows. In Sec. 2.2, we give an overview on layer
potentials and Maxwell’s equation to motivate their later applications. In Sec. 2.3, we
look at the forward models for the electric and magnetic potential in inhomogeneous
domains, which forms the bedrock of this paper. In Sec. 2.4, we apply the forward
models to [W 1/2,2]3-vector-fields normally oriented to the grey/white matter interface to
illustrate the use of the layer potentials. We will also look at how to build the discrete
version of the problem which is largely applicable with minor changes when the source
is taken from other Banach spaces. In Sec. 2.5, we discuss the inverse problems for
sEEG, EEG and MEG together with the inverse cortical mapping problem. We show
that a solution always exists and propose an algorithm to solve the problem. In Sec.
2.6, we present numerical examples of the algorithm with the sources taken as [W 1/2,2]3-
vector-fields and as dipoles to show the versatility of the algorithm and what we are
aiming for. We provide a conclusion and outlook in Sec. 2.7.
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2.2 Preliminaries

Notation and definitions introduced in Chapter 1 will be carried over into the present
chapter with new notation and definitions being introduced as needed. In this chapter
n = 3.

2.2.1 Maxwell’s equations

Recall the discussion in Section 1.2.1. We make the notational change of bolding all R3-
valued quantities. In the constitutive relationships we assume that P = 0 and M = 0.
For EEG and MEG the quasi-static approximation can be made for the electromagnetic
dynamics. In the quasi-static regime ∇ × E = 0, thus it follows that E = −∇φ for
some scalar potential φ. The total current density is of the form J = Ji − σ∇φ where
Ji is the impressed primary current, −σ∇φ is the ohmic current and σ is the electric
conductivity which needs not be uniform in the domain. The elliptic equation

∇ · (σ∇φ) = ∇ · Ji, (2.1)

can be derived from the quasi-static approximation and we shall use it in this work.
The similarities of (1.1) and (2.1) ensures that the analysis done in Chapter 1 remains
valid for problems governed by (2.1) when σ is uniform in the domain.

2.3 Forward Models

2.3.1 Unbounded homogeneous domain

Suppose that the source is an element of [Ξ]3 for some Banach space Ξ, that will be
precised later. Thus, it follows from (2.1) that the electrical potential associated with
the source ξ ∈ [Ξ]3 satisfies

∇ · (σ∇φ) = ∇ · ξ. (2.2)

From (2.2) in an infinite homogeneous medium the electric potential, φ, is given by

σφ(ξ)(x) =
1

4π

∫
∇ · ξ(y)

|x− y|
dy, x /∈ supp ξ, (2.3)

and the gradient of the potential, ∇φ, is given by

σ∇φ(ξ)(x) =
1

4π

∫
ξ(y)

|x− y|3
dy − 3

∫
(x− y)

(x− y)

|x− y|5
· ξ(y) dy, x /∈ supp ξ. (2.4)

Since the magnetic flux density, B, is divergence free it is the curl of the vector
magnetic potential which we denote by A, that is,

B = −∇×A.

Given a primary current ξ then

A(ξ)(x) =
µ

4π

∫
ξ(y)

|x− y|
dy, x /∈ supp ξ. (2.5)
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Using the relationship above between the vector magnetic potential and the magnetic
flux density we have that

B(ξ)(x) =
µ

4π

∫
ξ(y)×∇y

1

|x− y|
dy, x /∈ supp ξ. (2.6)

2.3.2 Non-homogeneous bounded domains

Figure 2.1: An example cross-section of a non-homogeneous domain and the place-
ment of intra-cranial electrodes for sEEG, in red; the blue arrows represent the normal
orientation of the source term on its support.

We now study the transmission of the electric potential and magnetic flux density in
a bounded non-homogeneous conductor. Figure 2.1 is an example of such a conductor.
To that end we consider the following bounded domain; let Ω ⊂ R3 be a nested non-
homogeneous bounded Lipschitz domain such that Ω0,Ω1, . . . ,Ωm are nested Lipschitz
domains with Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ωm and Ω = ∪iΩi. We let the boundaries ∂Ωi∩∂Ωi+1 =
Σi+1 with νi+1, i = 0, 1, 2, . . . ,m − 1 being the outward pointing unit normal to Σi+1,
i = 0, 1, 2, . . . ,m−1, respectively. For consistency of notation the outer boundary of Ωm

shall be called Σm+1 with νm+1 as the outward pointing unit normal to Σm+1. We will
assume that the support of ξ ∈ [Ξ]3 is a proper subset of Ω0. The electric conductivities
of the different domains are constant in each domain but different between domain, we
call them σ0, σ1, . . . , σm for Ω0,Ω1, · · · ,Ωm, respectively. The conductivity outside Σm+1

will be set to zero, hence σm+1 = 0. On any of the interfaces Σi, i = 1, 2, . . . ,m+ 1, let
σ−i and σ+

i be the conductivities inside and outside, respectively.
The electric potential at the interfaces is denoted by φ−i and φ+

i depending on
whether the electric potential is taken as a non-tangential limit approaching the inter-
face Σi, i = 1, 2, . . . ,m + 1 from inside or outside, respectively. On each interface Σi,
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the electric potential satisfies

φ−i = φ+
i ,

σ−i ∂νiφ
− = σ+

i ∂νiφ
+,

(2.7)

since φ is a solution to the elliptic problem (2.2), see for example [69, Chap. II, Sec.
8.3, Prop. 9]. Henceforth we will denote by φi the electric potential on the surface Σi.

This regularity of the electric potential and normal currents leads to the well-known
fact that the electric potential at any point x ∈ R3 is given by :

σ(x)φ(x) = σ0φ(ξ)(x)−
m+1∑
i=1

σ−i − σ+
i

4π

∫
Σi

φi(y)νi(y) · ∇y

( 1

|x− y|

)
dHi(y) (2.8)

where Hi is the 2-dimensional Hausdorff measure on the surface Σi, see for example
[65]. Note the above formula is valid for x ∈ Σi and whenever x ∈ Σi we take the non-
tangential limit approaching from int Σi. Using (2.8) we have that on each interface
Σk, k = 1, 2, . . . ,m+ 1 the first regularity condition of (2.7) can be rewritten as

σ+
k + σ−k

2
φ±k (x) = σ0φ(ξ)(x)−

m+1∑
i=1,i 6=k

(σ−i − σ+
i )Kiφi(x)− (σ−k − σ

+
k )Kkφk(x), (2.9)

where Ki is the double layer potential defined on the interface Σi. Once (2.9) is satisfied
the continuity of the normal derivatives of the double layer potentials across the inter-
faces ensures that the second condition of (2.7) is also satisfied. Due to the condition
that the electric conductivity outside Ω is zero, the electric potential has to satisfy,

σm∂νm+1φ
−(x) = 0, (2.10)

for x ∈ Σm+1.

Remark 8. It is important to note that for one to be able to obtain the electric potential
associated with ξ, it is sufficient to solve a system of equations with (2.9) on the surfaces
Σk, k = 1, 2, . . . ,m + 1. Alternatively, the equality (2.10) can be used on the surface
Σm+1 instead.

Note that the electric potentials on the surfaces Σi, also produce magnetic fields
that have to be considered when looking at the magnetic flux density associated with
the primary current ξ. At any point x ∈ R3, have the following expression for the
magnetic flux density associated with the primary current ξ,

B(x) = B(ξ)(x)− µ
m+1∑
i=1

σ−i − σ+
i

4π

∫
Σi

νi(y)×∇y
1

|x− y|
φi(y) dHi(y), (2.11)

see for example [65, Eq. (17)], where the φi’s on the surfaces, Σi, i = 1, 2, . . . ,m+1, are
the same as the surface potentials in (2.8). Note that in (2.11) care need to be taken
when x ∈ Σi, see for example in the proof of Proposition 1 below.

We briefly discuss about the sBEM to highlight the main differences with BEM
approach we are going to take here. We first need to recall that for each point x ∈ R3,
we can represent it using the spherical coordinate system (r, θ, φ) with r = |x|. Then
sBEM is based on the following observation:
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Theorem 27 ([70, Thm 3.1.1], Representation Theorem). Let u be a harmonic function
in R3\∂Ω satisfying the decay condition lim

r→∞
r|u(x)| <∞,

lim
r→∞

r∂ru(x) = 0,

where ∂ru(x) is the partial derivative of u in the radial direction. Then on ∂Ω

−∂νu± = ± [∂νu]∂Ω

2
+N [u]∂Ω −K∗[∂νu]∂Ω

u± = ∓ [u]∂Ω

2
−K[u]∂Ω + S[∂νu]∂Ω

,

where [u]∂Ω = u− − u+ of u : R3 → R on ∂Ω and N is the normal derivative of K on
∂Ω.

In the sBEM the source is decomposed as follows

∇ · ξ =
m∑
i=0

∇ · ξΩi
such that ∇ · ξΩi

= (∇ · ξ)χΩi

and on each Ωi we define for each i = 0, 1, . . . ,m

vΩi = −R2 ∗ (∇ · ξΩi
).

It follows that each vΩi is harmonic in R3\Ωi, i = 0, 1, . . . ,m. Further, define on each
Ωi the harmonic function

uΩi =

φ−
vΩi

σi
in Ωi

−vΩi

σi
in R3\Ωi

.

For each uΩi , i = 0, 1, . . . ,m the following is true,

[uΩi ]Σi = −φi, [uΩi ]Σi+1
= φi+1

and
[∂νiuΩi ]Σi = −∂νiφi, [∂νi+1

uΩi ]Σi+1
= ∂νı+1φi+1.

Using the Representation Theorem, one obtains on each Σi, i = 1, 2, . . . ,m + 1 the
expressions for

u−Ωi−1
, u+

Ωi
, (∂νiuΩi−1

)−, (∂νiuΩi)
+

then by taking

u−Ωi−1
− u+

Ωi
and σi−1(∂νiuΩi−1

)− − σi(∂νiuΩi)
+,

on each Σi expressions for φi and ∂νiφ are obtained. These expression are then used
to build the linear system to be solved to obtain the surface electric potentials, φi,
and normal currents, ∂νiφ. See [61] for more details on the method. The method we
implement in this paper is equivalent to the “Double-Layer Approach” of the paper
[61]. The approach we take differs from the sBEM in that our approach only computes
the surface potentials while the sBEMs computes both the surface potentials and the
normal currents.
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2.4 [W 1/2,2]3 sources

In what follows Σ0 denotes a closed Lipschitz surface inside Ω0, which is the support of
the sources. We now take [Ξ]3 to be the subspace of [W 1/2,2(Σ0)]3 composed of vector-
fields normally oriented to Σ0, that is we take vector-fields MΣ0 ∈ [W 1/2,2(Σ0)]3 of the
form MΣ0 = MΣ0ν0, with MΣ0 ∈ W 1/2,2(Σ0). Both the orientation and magnitude
of MΣ0 are encoded by MΣ0 ∈ W 1/2,2(Σ0), we take MΣ0 to be oriented in the same
direction as ν0 when MΣ0 is positive and in the opposite direction otherwise. Note that
(2.3) can be rewritten as

σ0φ(MΣ0)(x) =
1

4π

∫
Σ0

MΣ0(y) · (x− y)

|x− y|3
dH0(y),

=
1

4π

∫
Σ0

MΣ0(y)
(x− y)

|x− y|3
· ν0(y) dH0(y),

= K0MΣ0(x),

(2.12)

for x ∈ R3\Σ0. From [25, Thm 4.1] we have that φ ∈ W 1,2(intΣ0) and φ ∈ W 1,2(extΣ0).
For x ∈ Σ0, we have that by approaching x non-tangentially

σ0φ(MΣ0)(x) = ±MΣ0(x)

2
+K0MΣ0(x) , (2.13)

where the − and + are from approaching the boundary from interior and exterior of
Σ0, respectively.

2.4.1 Forward model for electric potential

We can now rewrite (2.8) as

σ(x)φ(x) = σ0φ(MΣ0)(x)−
m+1∑
i=1

σ−i − σ+
i

4π

∫
Σi

φi(y)νi(y) · ∇y

( 1

|x− y|

)
dHi(y)

= K0MΣ0(x)−
m+1∑
i=1

(σ−i − σ+
i )Kiφi(x),

(2.14)

We can therefore rewrite (2.9) as

σ+
k + σ−k

2
φ±k (x) = K0MΣ0(x)−

m+1∑
i=1,i 6=k

(σ−i − σ+
i )Kiφi(x)− (σ−k − σ

+
k )Kkφk(x). (2.15)

We now discuss the numerical implementation of (2.14) and (2.15) on triangular
meshes of the surfaces Σi, i = 0, 1, . . . ,m+ 1. Since we have made the assumption that
Ωi, i = 0, 1, . . . ,m is a Lipschitz domain then K : L2(Σi+1) → L2(Σi+1) fails generally
to be compact, see for example [29]. When K : L2(Σi+1) → L2(Σi+1) is compact we
have that (±1

2
I +K) : L2(Σi+1)→ L2(Σi+1) has a canonical representation, that is,(

± 1

2
I +K

)
f =

∑
j≥1

αj〈f, uj〉uj, (2.16)
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where {αj} and {uj} are the eigenvalues and an orthonormal basis of eigenfunctions
of (±1

2
I + K), respectively. This is true for example when Σi+1 is a sphere in which

case the uj are spherical harmonics, see for example [71], hence we can derive explicit
expressions for (2.14). In general, if Σi+1 is C1 smooth then K is a compact operator, see
for example [29], hence a canonical representation as was given above is achievable. It
then is possible to numerically approximate the eigenvalues and eigenfunctions in these
smooth cases, see for example [72]. In these cases we can use the method of fundamental
solutions to build (2.14) and (2.15), see [64] for an example of this application of the
method.

For Σ a Lipschitz surface we propose the following use of BEM for (2.14) and (2.15).
Given a surface Σ, we begin by triangulating the surface to obtained ΣT . On ΣT we
will represent each function f ∈ W 1/2,2(Σ) by considering its values on the vertices
of ΣT . We assume that on each triangle the function can be represented by linear
shape functions, that is, on each triangle there are three linear basis functions each of
which has value one on one vertex and zero on the other two. Thus, given a function
f ∈ W 1/2,2(Σ), on each triangle Tk of ΣT we write,

f(y) =
3∑
j=1

fkjψkj(y), (2.17)

where y ∈ Tk, fkj is the value of f on the j-th vertex of the triangle Tk and ψkj is
the linear shape function on Tk that has value one on the j-th vertex of the triangle.
Now given a point x ∈ R3 we wish to compute the double layer potential Kf(x) for
f ∈ W 1/2,2(Σ). We use the analytic formulation proposed in [67], which enables us
to numerically compute exactly the double layer potential defined on ΣT even when
x ∈ ΣT . With this formulation we write

Kf(x) = H(x)f , (2.18)

where

1) H(x) is a row vector in which the l-th element of H(x) is the sum of the contri-
bution to the double layer potential of each triangle that has the l-th vertex of
the triangulation as a vertex

2) f is a column vector of the values of f on the vertices of ΣT with the l-th element
of f is the value of f on the l-th vertex of the triangulation.

Note that depending on where x is located, H(x)f is either Kf(x) or (−1
2
I + K)f(x),

with a “−” for x ∈ ΣT as we assume that the approach is from the interior. Using this
notation, (2.14) can then be written as

σ(x)φ(x) = σ0H0(x)Φ0 −
m+1∑
i=1

(σ−i − σ+
i )Hi(x)Φi, (2.19)

where Hi(x) is as described above and also depends on the surface Σi,T , the triangulation
of Σi and Φi are the values of φi at the vertices of Σi,T , i = 0, 1, 2, . . . ,m+1, respectively.
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For x ∈ Σk,T , k = 1, 2, . . . ,m+ 1, (2.15) becomes

σ−k (x)φ(x) + (σ−k − σ
+
k )Hk(x)Φk = σ0H0(x)Φ0 −

m+1∑
i=1,i 6=k

(σ−i − σ+
i )Hi(x)Φi. (2.20)

We can use the same idea as above to compute the gradient of the double layer
potential at any point x for any function f ∈ W 1/2,2(Σ). To be able to solve the
forward cortical mapping problem we only need the normal derivatives of the double
layer potential at the outer most surface. We will have the following formulation

∂νKf(x) = N(x)f , (2.21)

where N(x) is constructed in the same manner as H(x). It then follows that the normal
derivative of (2.14) for x ∈ Σm+1,T becomes

σ0N0(x)Φ0 =
m+1∑
i=1

(σ−i − σ+
i )Ni(x)Φi, (2.22)

In view of Remark 8, given the surfaces Σi,T , i = 1, 2, . . . ,m+ 1, Φ0 and letting Xi

the set of all vertices on all surfaces Σi,T , we can build the linear system{(
σ−k I + (σ−k − σ

+
k )Hk(Xk)

)
Φk +

m+1∑
i=1,i 6=k

(σ−i − σ+
i )Hi(Xk)Φi

= σ0H0(Xk)Φ0

}
k=1,2,...,m+1

(2.23)

or {(
σ−k I + (σ−k − σ

+
k )Hk(Xk)

)
Φk +

m+1∑
i=1,i 6=k

(σ−i − σ+
i )Hi(Xk)Φi

= σ0H0(Xk)Φ0

}
k=1,2,...,m

m+1∑
i=1

(σ−i − σ+
i )Ni(Xn+1)Φi = σ0N0(Xm+1)Φ0.

and solving either of the above linear systems for Φk, k = 1, 2, . . . ,m + 1, solves the
forward cortical mapping problem.

As alluded to earlier to compute the matrices H and N we will implement a method
suggested in [67] which results in exact expressions for the quantities that are required
to build the matrices for the meshed surfaces, Σi,T . This allows to compute these
matrices for any arbitrary point x ∈ R3 hence allowing the numerical approximations
required for either EEG or sEEG with a high accuracy.
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2.4.2 Forward model for magnetic flux density

We now turn our attention to the magnetic flux density associated with vector-fields
in [W 1/2,2(Σ0)]3 that were introduced in the previous subsection. It follows from (2.5)
that the magnetic vector potential of MΣ0 is given by

A(MΣ0)(x) =
µ

4π

∫
Σ0

MΣ0(y)

|x− y|
dH(y) = µSMΣ0(x), x ∈ R3\Σ0, (2.24)

with the integral being taken in the principal value sense for x ∈ Σ0, see for example [7,
Eq. (5.32)]. Note that the last equality of (2.24) is a direct application of the single layer
potential hence A(MΣ0) has components that are equal to the single layer potentials
of the corresponding components of MΣ0 . Since W 1/2,2(Σ0) ⊂ L2(Σ0) ⊂ W−1/2,2(Σ0)
we have from [25, Thm 3.1] A(MΣ0) ∈ [W 1,2(Ω)]3 and A(MΣ0) ∈ [W 1,2(R3\Ω)]3.

Since B = −∇×A it follows that B(MΣ0) ∈ [L2(Ω)]3 and B(MΣ0) ∈ [L2(R3\Ω)]3

and the magnetic flux density associated with a vector-field MΣ0 ∈ [W 1/2,2(Σ0)]3 is
given by

B(MΣ0)(x) =
µ

4π

∫
Σ0

MΣ0(y)×∇y
1

|x− y|
dH(y)

= µ∇× SMΣ0(x),

(2.25)

with x ∈ R3\Σ0 .Since MΣ0 = MΣ0ν0 we can rewrite the above equation as

B(MΣ0)(x) =
µ

4π

∫
Σ0

ν0(y)×∇y
1

|x− y|
MΣ0(y) dH(y) = µSMΣ0(x), (2.26)

with x ∈ R3\Σ0.
Note that the last equality of (2.26) is how we define the operator S : W 1/2,2(Σ0)→

R3, which will be carried over to the discrete case. It follows from (2.11) that

B(x) = B(MΣ0)(x)− µ
m+1∑
i=1

σ−i − σ+
i

4π

∫
Σi

νi(y)×∇y
1

|x− y|
φi(y) dHi(y)

= SMΣ0(x)− µ
m+1∑
i=1

σ−i − σ+
i

4π

∫
Σi

νi(y)×∇y
1

|x− y|
φi(y) dHi(y),

(2.27)

where the φi’s on the surfaces are surface potentials obtained from the forward model
of the electric potential associated with MΣ0 .

Remark 9. Note that MEG measures B · v, for some known vector-field v. Typically,
v is taken to be a radial vector-field, hence if all of the Σi above are spherical, all the
vector-field of the form MΣ0ν0 will result in null MEG measurements, see [65, Eq. (20)],
which make a spherical head model uninteresting for MEG in this context.

We now look at how to numerically compute (2.27) for Lipschitz surfaces Σi. To that
end we need to be able to express SMΣ0 as a linear combination of the SMΣ0i

’s where
the MΣ0i

∈ W 1/2,2(Σ0) are elements of the basis of W 1/2,2(Σ0). Note that it only suffices
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that we look at how to numerically compute the expression given in (2.26) because to
compute (2.27) we repeatedly apply the same idea. We begin with a triangulation of the
surfaces and discretisation of MΣ ∈ W 1/2,2(Σ) as was done in the previous subsection.
Note that (2.26) on ΣT is given by

B(x) =
∑
Tk

µ

4π

∫
Tk

νTk(y)×∇y
1

|x− y|
MΣ(y) dH(y), (2.28)

since νTk is taken to be constant on each triangle hence we have that

B(x) = µ
∑
Tk

νTk ×
1

4π

∫
Tk

∇y
1

|x− y|
MΣ(y) dH(y)

= S(x)MΣ,

(2.29)

where S(x) is a row vector which is generated in a similar manner as H(x) and MΣ is
a column vector of the values of MΣ on the vertices of ΣT , where we use the formula
given in [67] to compute the integral above on each triangle. Hence (2.27) is written in
discrete form as

B(x) = S0(x)Φ0 −
m+1∑
i=1

(σ−i − σ+
i )Si(x)Φi, (2.30)

where the Φi, i = 1, 2, . . . ,m + 1, are obtained from the forward model for electrical
potential.

2.4.3 Silent Sources

We will conclude this section by discussing silent sources. We begin with a definition:

Definition 35. Let E ⊂ R3\supp(ξ) then a non-zero vector-field ξ ∈ [Ξ]3 is electrically
(magnetically) silent in E if it produces an identically zero electric potential (magnetic
flux density) in E.

The existence of silent sources results in the non-uniqueness of solutions to the source
identification problems we aim to solve. It is therefore important to understand the
nature of the silent sources as this may help to mitigate their impact on the uniqueness
of solutions.

As an example, take [Ξ]3 to be the subspace of [W 1/2,2(Σ0)]3 composed of vector-
fields of the form MΣ0ν0, with MΣ0 ∈ W 1/2,2(Σ0). We will now explore the silent sources
among these vector-fields.

Proposition 1. Vector-fields of the form MΣ0ν0, with MΣ0 ∈ W 1/2,2(Σ0) such that MΣ0

is constant are both electrically and magnetically silent in R3\Ω0.

Proof. From (2.12) we have that

σ0φ(MΣ0)(x) = K0MΣ0(x), x ∈ R3\Ω0,
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and from [73, Ex. 6.14] we have that the above equation is identically zero in R3\Ω0 if
MΣ0 is a constant. Hence the proposition is proved for the electric silence.

It also follows from [74, Lem. 4.3] that

B(MΣ0)(x) = SMΣ0(x) = ∇× S(MΣ0ν)(x) = S(ν ×∇MΣ0)(x), (2.31)

where ∇MΣ0 is the gradient of MΣ0 on Σ0. It follows from [29, Thm 3.3] that all
S : L2(Σ0) → L2(Σ0) is injective. Hence, if S(M) is identically zero in R3\Ω0 then its
non-tangential limit to Σ0 is identically zero on Σ0 thus M = 0 on Σ0. We can therefore
conclude that, if MΣ0 ∈ L2(Σ0) is such that ∇MΣ0 vanishes on Σ0 then the resulting
magnetic flux density is identically zero. Hence, all MΣ0ν0 such that MΣ0 is constant
are magnetically silent in R3\Ω0.

Remark 10. From [73, Ex. 6.14] we observe that if MΣ0 ∈ W 1/2,2(Σ0) is constant then

σ0φ(MΣ0)(x) = K0MΣ0(x) = MΣ0 , x ∈ int Σ0,

hence these vector-fields, MΣ0ν0, are not silent in Ω0. We can exploit this fact by
combining EEG or MEG data with SEEG data. The SEEG data will in principle allow
to eliminate the silent sources outlined in Proposition 1 in the source recovery.

As a second example take a closed set S ⊂ int Σ0 and let S be a slender set, that
is, m3(S) = 0, where m3 is the Lebesgue measure on R3 and m3(R3\S) =∞. We will
take [Ξ]3 = [M(S)]3 ⊂ [M(int Σ0)]3, that is, vector-valued measures supported on the
slender set S. For ξ ∈ [M(int Σ0)]3 we define ∇ · ξ in the sense of distributions and
when ∇ · ξ = 0 (divergence-free) we mean∫

int Σ0

∇u · dξ =

∫
int Σ0

3∑
j=1

∂u

∂xj
dξj = 0,

for all u ∈ C∞c (int Σ0).

Proposition 2. Every ξ ∈ [M(int Σ0)]3 that has a slender support and is divergence-
free is electrically silent in R3\Ω0.

Proof. This is a direct application of [6, Thm 2.2].

Examples of divergence-free vector-fields on slender sets in R3 can be constructed
as follows. Let γ : [0, l]→ R3 be a Lipschitz mapping and let S := γ([0, l]). If γ is such
that

H1(γ([a, b])) = b− a, ∀[a, b] ⊂ [0, l],

then γ is an orientable rectifiable curve. Note that S is slender and on S define the
vector measure Rγ through the relation

〈Rγ , f〉 =

∫ l

0

f(γ(t)) · γ ′(t) dt, for f ∈ [Cc(R3)]3,
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where γ ′ is the unit tangent vector of γ. Let the endpoints of S be s, t ∈ R3, it follows
that Rγ = γ ′H1 and the divergence of Rγ is given as∫ l

0

∇u(γ(t)) · γ ′(t) dt =

∫
γ

u̇ dH1 = u(s)− u(t), ∀u ∈ C∞c (int Σ0),

where u̇ is the derivative of u along γ. Hence if s = t then Rγ is divergence free and by
the proposition above is electrically silent. Concretely, take S to be a circle embedded
on R3 by taking

γ :=

sin t
cos t

0

 ,

with t ∈ [0, 2π]. More details and examples can be found in [75].
These two examples show the particularity of silent sources to the assumptions on

the sources.

2.5 Inverse problems

In this section we consider the general situation when elements of [Ξ]3 are vector-fields
with components that are elements of a Banach space, Ξ, supported in Ω0. When solving
the inverse problems for MEG, EEG and sEEG, we need that the electric potential, φ,
associated with the recovered source satisfies the conditions (2.7) and (2.10). We recall
(2.9) and (2.10) here

{
− σ0φ(ξ)(x) +

σ+
k + σ−k

2
φk +

m+1∑
i=1,i 6=k

(σ−i − σ+
i )Kiφi(x)

− (σ−k − σ
+
k )Kkφk(x) = 0

}
k=1,2,...,m+1

, (2.32)

or {
− σ0φ(ξ)(x) +

σ+
k + σ−k

2
φk +

m+1∑
i=1,i 6=k

(σ−i − σ+
i )Kiφi(x)

− (σ−k − σ
+
k )Kkφk(x) = 0

}
k=1,2,...,m

σm∂νm+1φ(x) = 0

, (2.33)

and let

C : [Ξ]3 × L2(Σ1)× · · · × L2(Σm+1)→ L2(Σ1)× L2(Σ2)× · · · × L2(Σm+1)

be the LHS of (2.32). Note that the null space of C, which we denote C0, consists of
those surface electric potentials and their associated sources that satisfy the conditions
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(2.7) and (2.10). In other words, we look for solutions to inverse problem of MEG, EEG
and/or sEEG in C0. For the discrete setting we rewrite (2.23) as{

− σ0Φ(ξ)(Xk) +
(
σ−k I + (σ−k − σ

+
k )Hk(Xk)

)
Φk

+
m+1∑

i=1,i 6=k

(σ−i − σ+
i )Hi(Xk)Φi = 0

}
k=1,2,...,m+1

(2.34)

or {
− σ0Φ(ξ)(Xk) +

(
σ−k I + (σ−k − σ

+
k )Hk(Xk)

)
Φk

+
m+1∑

i=1,i 6=k

(σ−i − σ+
i )Hi(Xk)Φi = 0

}
k=1,2,...,m

−σ0∂νm+1Φ(ξ)(Xm+1) +
m+1∑
i=1

(σ−i − σ+
i )Ni(Xm+1)Φi = 0,

where σ0Φ(ξ)(Xk) and σ0∂νm+1Φ(ξ)(Xm+1) are appropriate discretisation of (2.3) and
σ0∂νm+1φ(x), respectively. Hence, (2.34) gives the discrete version of C on the discretised
surfaces Σi,T , i = 1, 2, . . . ,m + 1. The LHS of (2.34) will be denoted C and the null
space of C by C0.

We briefly discuss the sBEM for the inverse cortical mapping problem so as to
compare it with what we have just discussed above. The fact that the electric potential
is harmonic outside the support of the source ξ, allows Theorem 27 to be used to express
the electric potential in a manner that excludes the unknown source. A linear system
can be built from the Theorem 27, see [68], that imposed the required regularity on
the electric potential and the normal currents. In [68] EEG data is used to perform
the inverse cortical mapping problem and in order to use this data they introduce an
operator that can reproduce the EEG data using the surface potentials, φi, and normal
currents, ∂νiφ, i = 1, 2, . . . ,m+1. Note that this operator excludes the unknown source
as well.

The approach we have taken to impose the desired regularity of the electric potential
and the normal currents involves the unknown source. Hence, we can use forward
models (2.14) and (2.27) in solving the inverse cortical mapping problem to express the
electric potential and magnetic flux density, respectively, at the points where data is
captured.

2.5.1 EEG and sEEG problems

In the inverse source localisation problems that use the electric potential, there are two
regimes, one that uses the electrical data measured on the scalp as is done for EEG
and another that uses intra-cranial electric potential recording as is done for sEEG. In
both these instances, we wish to solve the problem that given point-wise measurements
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of the electric potential, φ, in some subset of R3, find ξ ∈ [Ξ]3 and φi ∈ L2(Σi),
i = 1, 2, . . . ,m+ 1, such that (2.8) is satisfied.

Due to the existence of silent sources for EEG and sEEG as highlighted in Sec.
2.4.3, we can only recover ξ ∈ [Ξ]3 up to silent sources. Further, since we only have
point-wise data for EEG and sEEG, the unique recovery of ξ ∈ [Ξ]3 is also negatively
impacted by the existence of ξ ∈ [Ξ]3 that generate an electric potential that vanishes
at the measurement points. Due to the non-uniqueness of solutions highlighted here
these inverse problems are ill-posed, hence we solve Tikhonov regularised problems.

Keeping in mind that the electric potential that is reconstructed from the point-wise
measurements has to have the regularity stipulated in (2.7) and (2.10). As indicated
earlier we look for solutions in the null space of C0, which is exactly solving the cortical
mapping problem. We build the problems in such a way that they incorporate the
regularity requirements of the potential and normal current. There are a multitude of
ways this can be achieved, for example, in [68] the authors used a projector onto C0

and looked for solutions directly in C0. In our case we will use the projection onto C0

as a regulariser in the associated Tikhonov problems.

2.5.2 MEG problem

In the simplest terms the inverse source localisation problem of MEG can be stated as
follows, given B on R3\Ω find ξ ∈ [Ξ]3 and φ in Ω such that (2.27) holds. Again in this
case, due to the existence of silent sources for MEG as highlighted in Sec. 2.4.3, we
can only recover the source, ξ ∈ [Ξ]3, up to silent sources. In practice, B is known only
point-wise and only a component of it is considered with the additional issue that the
electric potential φ in Ω is also unknown. Similar observation and consideration about
cortical mapping can be made here and appropriate changes akin to those made to the
source localisation problem for EEG and/or sEEG can also be made to the MEG source
localisation problem. All these considerations greatly increases the non-uniqueness of
the problem and hence we have to solve a Tikhonov regularised problem as well.

2.5.3 Existence of solutions to the sEEG, EEG and MEG prob-
lems

As highlighted above when solving the inverse problems for sEEG, EEG and MEG
we aim to recover the source ξ ∈ [Ξ]3 and by extension the surface electric potentials
φ ∈ L2(Σi), i = 1, 2, . . . ,m + 1. We now mathematically set up these problems and
show that the solutions exist. To that end let S be the product Banach space

[Ξ]3 × L2(Σ1)× L2(Σ2)× · · · × L2(Σm+1)

endowed with the norm

‖ · ‖[Ξ]3 + ‖ · ‖L2(Σ1) + ‖ · ‖L2(Σ3) + · · ·+ ‖ · ‖L2(Σm+1),

and let
D1 = L2(D),

74



be the Hilbert space which corresponds to the data measured with EEG, MEG and
sEEG measurements with D ⊂ R3 depending on the measurement modalities used.
Finally we would let the product Hilbert space

D2 = L2(Σ1)× L2(Σ2)× · · · × L2(Σm)× L2(Σm+1),

endowed with the norm

(‖ · ‖2
L2(Σ1) + ‖ · ‖2

L2(Σ3) + · · ·+ ‖ · ‖2
L2(Σm+1))

1/2,

which is useful in the study of (2.32). Let F i : S→Di for i = 1, 2 be linear operators
with F1 as the forward model of EEG, MEG and/or sEEG, that is, the formulas given
in by (2.8), (2.11) and/or (2.8), respectively and F2 = C. Thus, given f as data and
R : [0,∞) → [0,∞) a convex function, when solving the inverse problems for MEG,
EEG and/or sEEG we consider the appropriate functional

Tf,α,β,λ0,...,λm+1(ξ, φ1, φ2, . . . , φm+1) := α‖F1(ξ, φ1, φ2, . . . , φm+1)− f‖2
D1

+ β‖F2(ξ, φ1, φ2, . . . , φm+1)‖2
D2

+ λ0R(‖ξ‖[Ξ]3) +
m+1∑
j=1

λj‖φj‖2
L2(Σj)

.
(2.35)

Remark 11. Since it is cumbersome to write Tf,α,β,λ0,...,λm+1 here after we will simply
write T keeping in mind the dependence of T on f, α, β, λ0, . . . , λm+1.

Thus we solve the following problem :

Problem 3. Given data f ∈ D1 and α, β, λj > 0 find (ξ, φ1, φ2, . . . , φm+1)λ ∈ S such
that

(ξ, φ1, φ2, . . . , φm+1)λ = arg inf
(ξ,φ1,φ2,...,φm+1)∈S

T (ξ, φ1, φ2, . . . , φm+1). (2.36)

Remark 12. We will prove the existence of a solution to Problem 3 in Theorem 28
below keeping in mind that we are mostly interested in [Ξ]3 that is either [W 1/2,2(Σ0)]3 or
[M(Σ0)]3 or [M(int Σ0)]3, with M being the Banach space space of measures endowed
with the total variation norm. By using embeddings of various Sobolev space into the
space of continuous function we view spaces of measures as being contained in the duals
of certain Sobolev spaces. We take the view that [M(int Σ0)]3 ⊂ (W 1,q[(int Σ0))∗]3

for q > 3 from the Sobolev embedding theorem, see for example [10, Thm 5.4, Part
II] hence we will discuss about the Newton potential in these spaces. We also have

[M(Σ0)]3 ⊂ [(W 1− 1
q
,q(Σ0))∗]3 for appropriate choices of q, see for example [23, Thm

4.57, Thm 4.58] states that W 1,q(Ω) embeds into a space of functions continuous on Ω

hence the traces W 1− 1
q
,q(Σ0) are continuous. In the case of [W 1/2,2(Σ0)]3 and [M(Σ0)]3

we need only look at how the layer potentials behave.

Theorem 28. A unique solution to Problem 3 exists.

Proof. We use the result [35, Thm 3.1] to make this conclusion hence we need only
show that Problem 3 satisfies the assumptions of [35, Thm 3.1].
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(1) We note that the duals of S and D2 are isometric to ([Ξ]3)∗×L2(Σ1)×L2(Σ2)×
· · · × L2(Σm+1) and L2(Σ1)× L2(Σ2)× · · · × L2(Σm+1), respectively, and we will
associate S with its weak∗ topology, D1 and D2 with their weak topologies.

(2) From [11, Prop. 3.5] we have that norms are weakly lower semi-continuous hence
the norm of D1 and D2 are weakly lower semi-continuous.

(3) We will discuss the continuity of F1 and F2.

(i) We discuss the continuity of F1 corresponding to (2.8) and F2 which corre-
sponds to (2.32) because of the similarities.

(a) When Ξ = W s,p(∂Ω) for 0 < s < 1, 1 < p < ∞, the double layer

potential from W s,p(∂Ω) into W 1+ 1
p
−s,p(Ω) for 0 < s < 1, 1 < p <∞, is

continuous, see [25, Thm 4.1].

(b) For the case Ξ = (W 1−s,p(∂Ω))∗, we begin by noting that (2.3) can be
rewritten

σφ(ξ)(x) =
1

4π

∫
∂Ω

ξ(y) · (x− y)

|x− y|3
dH(y),

which can be seen as the sum of the quantities

1

4π

∫
∂Ω

ξi(y)(x− y)i
|x− y|3

dH(y),

for i = 1, 2, 3, each of the which is the i-th component of the gradient
of the single layer potential Sξi(x). The single layer potential maps

W−s,p(∂Ω) into W 1+ 1
p
−s,p(Ω) for 0 < s < 1, 1 < p <∞ continuously and

∇maps W s,p(Ω) to W s−1,p(Ω) continuously for s > 0, 1 < p <∞. Hence

φ(ξ) maps (W 1−s,p(∂Ω))∗ to W
1
q
−s,q(Ω) for 0 < s < 1, 1 < p, q < ∞,

1
p

+ 1
q

= 1, continuously.

(c) When Ξ = (W 1+s,q(Ω))∗ for −1 ≤ s ≤ 2, 1 < p, q < ∞, 1
p

+ 1
q

=
1, from the continuity of the Newton potential from the distributions
(W 1+s,q(Ω))∗ to W 1−s,p(Ω), see [25, Prop. 2.1], and the continuity of

the double layer potential from W s,p(∂Ω) into W 1+ 1
p
−s,p(Ω) with Ω a

bounded Lipschitz domain.

(ii) We now discuss the continuity of F1 corresponding to (2.11).

(a) When Ξ = W s,p(∂Ω) for 0 ≤ s ≤ 1 and 1 < p <∞, we begin by noting
that

{(ν ×∇)f : f ∈ W 1−s,p(∂Ω)} ⊆ W−s,p(∂Ω),

see [74, (4.7)]. From [74, Lem. 4.3] and its proof we conclude that each
component of the terms that appear in the sum of (2.11) is continuous
since [25, Thm 3.1] shows the single layer potential is continuous from

W−s,p(∂Ω) into W 1+ 1
p
−s,p(Ω) for 0 < s < 1, 1 < p <∞.
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(b) When Ξ = (W 1−s,p(∂Ω))∗, we note that (2.5) can be rewritten as

A(ξ)(x) =
µ

4π

∫
∂Ω

ξ(y)

|x− y|
dH(y),

thus each component is a single layer potential. Since the single layer

potential maps W−s,p(∂Ω) into W 1+ 1
p
−s,p(Ω) for 0 < s < 1, 1 < p < ∞

continuously, we have that B(ξ) maps (W 1−s,p(∂Ω))∗ to W
1
q
−s,q(Ω) for

0 < s < 1, 1 < p, q <∞, 1
p

+ 1
q

= 1, continuously in each component.

(c) For the case Ξ = (W 1+s,q(Ω))∗ for −1 ≤ s ≤ 2, 1 < p, q <∞, 1
p

+ 1
q

= 1,

note that the first term on the RHS of (2.11) is the curl of the Newton
potential. From (2.5) and (2.6) it follows that B(ξ) is continuous from
(W 1+s,q(Ω))∗ to W−s,p(Ω) in each component for −1 ≤ s ≤ 2, 1 < p, q <
∞, 1

p
+ 1

q
= 1.

By choosing s and p appropriately we can conclude that F1 and F2, are con-
tinuous from S to D1 and D2, respectively in their weak topologies precised in
(1).

(4) In what follows we denote by dom(F1,F2), dom(F1) ∩ dom(F2) ⊂ S, where
dom(F) denotes the domain of F in S. Note that

R = λ0R(‖ξ‖[Ξ]3) +
m+1∑
j=1

λj‖φj‖2
L2(Σj)

is weak∗ lower semi-continuous in S from [11, Prop. 3.13]. Note that the zero
element, 0, of S is in dom(F1,F2), hence we have that R(0) = 0 hence R is
finite for at least one element of dom(F1,F2), that is, R is proper. Finally, R is
convex since it is sum of convex function of norms.

(5) We now show the that dom(F1,F2) is weak∗ closed. We will again do this in
two steps, first for the electrical potential and then for the magnetic flux density.

(i) Note that for the electric potential, the domain [Ξ]3 is [(W 1+s,q(Ω))∗]3 or

[(W−s− 1
p
,p(∂Ω))]3 for −1 ≤ s ≤ 2, 1 < p, q <∞ and these are weak∗ closed,

see for example [11, Thm 3.33].

(ii) For the magnetic flux density we require that [Ξ]3 is the set of elements ξ ∈
[(W 1+s,q(Ω))∗]3 for −1 ≤ s ≤ 2, 1 < p, q <∞ with ∇× ξ ∈ [(W 1+s,q(Ω))∗]3

which is a closed subspace of [(W 1+s,q(Ω))∗]3 or [Ξ]3 is ξ ∈ [(W−s− 1
p
,p(∂Ω))]3.

In either case we have weak∗ closed sets, see for example [11, Thm 3.33].

Hence dom(F1,F2) ⊂S is weak∗ closed.

(6) Let γ > 0 and κ > 0 and set one of α, β, λ0, . . . , λm+1 equal to γ define the set

D = {u ∈ dom(F1,F2) ⊂S : T (u) ≤ κ}.
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Since T (u) is continuous on dom(F1,F2) ⊂ S it follows that D is a bounded
set hence weak∗ compact from Banach-Alaoglu-Bourbaki Thm, see for example
[11, Thm 3.16].

Conditions (1)-(6) above show that Problem 3 satisfies the assumption of [35, Thm
3.1] hence a solution exists and the solution is unique due to the convexity of T .

Remark 13. Note that Problem 3 does not discuss the contamination of the data with
noise. In practice f ∈ D1 is contaminated with noise and we assume that the noisy
data f δ ∈ D1 and ‖f − f δ‖D1 ≤ δ, δ > 0. The stability and convergence of Problem
3 with respect to noise and regularisers α, β, λ0, . . . , λm+1 is also discussed in [35], see
especially [35, Thm 3.4 and 3.5].

2.5.4 Alternating minimisation algorithm for solving inverse
problems

We wish to solve Problem 3 by splitting it into a problem that solves for the source
ξ ∈ [Ξ]3 and a problem that solves for the surface electric potentials φ ∈ L2(Σi). We
iteratively solves these problems to obtain the solution we desire as discussed in the
introduction of [76]. The alternating minimisation procedure is as follows, beginning
with some initial guess

(ξ{0}, φ
{0}
1 , φ

{0}
2 , . . . , φ

{0}
m+1),

then generate a sequence of solutions{
(ξ{l}, φ

{l}
1 , φ

{l}
2 , . . . , φ

{l}
m+1)λ

}
l∈N
,

by solving the following problems

ξ
{l+1}
λ = arg inf

ξ∈[Ξ]3
T (ξ, φ

{l}
1 , φ

{l}
2 , . . . , φ

{l}
m+1)

(φ
{l+1}
1 , φ

{l+1}
2 , . . . , φ

{l+1}
m+1 )λ

= arg inf
(φ1,...,φm+1)∈D2

T (ξ{l}, φ1, φ2, . . . , φm+1).

(2.37)

A closer inspection of F1 and F2 as we proposed be taken reveals that

F1(ξ, φ1, φ2, . . . , φm+1) = F1,1(ξ) + F1,2(φ1, φ2, . . . , φm+1)

F2(ξ, φ1, φ2, . . . , φm+1) = F2,1(ξ) + F2,2(φ1, φ2, . . . , φm+1),
(2.38)

hence the problems that we solves in (2.37) have the variables ξ ∈ [Ξ]3 and (φ1, φ2, . . . , φm+1) ∈
D2 well separated in F1 and F2 hence we can implement methods that best recover
each variable.

We now show that the sequence{
(ξ{l}, φ

{l}
1 , φ

{l}
2 , . . . , φ

{l}
m+1)λ

}
l∈N
,

generated by the above alternating minimisation algorithm results in the objective
function converging linearly to the minimum of Problem 3. The result below is valid
for all [Ξ]3 outline in Remark 12 and Theorem 28.
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Theorem 29. The sequence generated by the alternating minimisation algorithm con-
verges linearly to the minimum of the Tikhonov functional T .

Proof. Take
B1 = [Ξ]3,

with
‖ · ‖1 = ‖ · ‖[Ξ]3 ,

and
B2 = D2,

with
‖ · ‖2 = (‖ · ‖2

L2(Σ1) + ‖ · ‖2
L2(Σ3) + · · ·+ ‖ · ‖2

L2(Σm+1))
1/2.

Further take functions h, g1, g2 defined on S as

h = α‖F1(ξ, φ1, φ2, . . . , φm+1)− f‖2
D1

+ β‖F2(ξ, φ1, φ2, . . . , φm+1)‖2
D2
,

g1 = λ0R(‖ξ‖[Ξ]3),

g2 =
m+1∑
i=1

λ‖φi‖2
L2(Σi)

.

Note that the above problem (2.35) can equivalently be written as the following problem

min
{
H(z1, z2) ≡ h(z1, z2) + g1(z1) + g2(z2)|(z1, z2) ∈ B1 ×B2

}
, (2.39)

where B1,B2, h, g1, g2 satisfy the following conditions from [77]:

(P1) The feasible sets (Bi, ‖ · ‖i) are Banach spaces with duals (B∗i , ‖ · ‖i,∗) and the
duality pairing 〈·, ·〉i, i = 1, 2.

(P2) Since norms of uniformly convex spaces are (Fréchet) differentiable, see (A2) be-
low, the function gi : Bi → R∪{∞} is proper convex, (Fréchet) subdifferentiable
with subdifferential ∂gi on dom gi, i = 1, 2. Let D : dom g1 × dom g2.

(P3) The function h : B1 × B2 → R is convex and (Fréchet) differentiable over D.
For our problems this follows from the fact that norms are convex and norms of
Hilbert spaces are (Fréchet) differentiable. Let ∇h denote the (Fréchet) derivative
of h.

(P4) Since a solution to Problem 3 exists, the optimal set of the problem (2.39), denoted
by O∗ ⊂ B1 ×B2, is non-empty, and the corresponding optimal value is denoted
by H∗.

(A1) B1×B2 is equipped with a separate norm ‖ ·‖ which we can take to be the graph
norm and β1, β2 ≥ 0, satisfying

‖(z1, z2)‖2 ≥ βi‖zi‖2
i for all (z1, z2) ∈ B1 ×B2,

by definitions given above. Furthermore, we equip B1 ×B2 with the duality
pairing 〈·, ·〉 := 〈·, ·〉1 + 〈·, ·〉2.
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(P5) For any (z̃1, z̃2) ∈ D, the following problems have minimizers

min
z1∈B1

H(z1, z̃2), and min
z2∈B2

H(z̃1, z2),

as a consequence of Theorem 28.

(A2) The partial (Fréchet) derivative of h with respect to the i-th component, denoted
by∇ih ∈ B∗i , is Lipschitz continuous with Lipschitz constant Li ∈ (0,∞], i = 1, 2.
with min{L1, L2} < ∞; exemplarily, for i = 1 (analogously for i = 2) it holds
that ‖∇1h(z1 + y1, z2) − ∇1h(z1, z2)‖1,∗ ≤ L1‖y1‖1 for all (z1, z2) ∈ D, y1 ∈ B1,
such that z1 + y1 ∈ dom g1,
as a consequence of the chain rule of Fréchet differentiation and the fact that
Lp, 1 < p < ∞ are uniformly convex hence uniformly smooth, see for example
[38, Part 3, Chap. II, Sec. 1, Prop. 8 and Part 3, Chap. II, Sec. 2, Prop. 2],
hence their norms are uniformly Fréchet differentiable [38, Part 3, Chap. II, Sec.
2, Prop. 1] and that F1, F2 are bounded linear operators hence they are their
Fréchet derivatives with respect to ξ and (φ1, φ2, . . . , φn+1).

(A3a) Recall that a function h is strongly convex if there exists σ > 0 such that

〈∇h(z)−∇h(z), z − z〉 ≥ σ‖z − z‖2,

for all z ∈ dom h. The function h : B1 ×B2 → R is quasi-strongly convex with
respect to O∗, with modulus σ > 0, that is, for all z ∈ D and z := arg min{‖z −
y‖|y ∈ O∗}, the projection of z onto O∗, it holds

h(z) ≥ h(z) + 〈∇h(z), z − z〉+
σ

2
‖z − z‖2,

as a consequence of h being the sum of squares of Hilbert norms each of which is
strongly convex function with modulus σ > 0 and the boundedness of F1, F2 in
ξ and (φ1, φ2, . . . , φm+1).

We have shown that Problem 3 satisfies the assumption of [77, Thm 1], hence the
sequence generated by the alternating minimisation algorithm converges linearly to the
minimum of the Tikhonov functional T .

Remark 14. For the discrete version of Problem 3 we have that the alternating min-
imisation sequence converges to a solution of the problem as a consequence of the results
provided in [78].

2.5.5 EEG, sEEG and cortical mapping

Numerically, we solve discretised versions of the continuous problems of the previous
subsection. Note that in what follows ξ is discretised. In the discrete problem we
introduce regularisation matrices Γj that discretise the regularisers in the continuous
problem. For EEG or sEEG we solve the following problem:
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Problem 4. Given point-wise recordings of electric potential, {φ(Y )}, α, β, λj > 0,
find (ξ∗,Φ∗) such that

(ξ∗,Φ∗) = arg min
ξ∈[Ξ]3,Φ∈Rm∗

(
α‖FE(Y )(ξ,Φ)− σ(Y )φ(Y )‖2

2 + β‖C(ξ,Φ)‖2
2

+ λ0R(‖Γ0ξ‖[Ξ]3) +
m+1∑
j=1

λj‖ΓjΦ‖2
2

)
,

(2.40)

where FE is an appropriate discretisation of the forward model of the electric potential
(2.8) and φ(Y ) is a vector of the potentials at the points Y = {yj} and m∗ is the total
number of vertices in the triangulation of the cortex, skull and scalp, Σ1,T ,Σ2,T ,Σ3,T ,
respectively.

2.5.6 MEG and cortical mapping

Numerically, for MEG we will solve the following problem:

Problem 5. Given point-wise measurements of components of the magnetic flux den-
sity, B(Y ) · v(Y ), α, β, λj > 0 find (ξ∗,Φ∗) such that

(ξ∗,Φ∗) = arg min
ξ∈[Ξ]3,Φ∈Rm∗

(
α‖FB(Y )(ξ,Φ) · v(Y )−B(Y ) · v(Y )‖2

2 + β‖C(ξ,Φ)‖2
2

+ λ0R(‖Γ0ξ‖[Ξ]3) +
m+1∑
j=1

λj‖ΓjΦ‖2
2

)
,

(2.41)

where FB is an appropriate discretisation of the forward model of the magnetic flux
density (2.11) and B(Y ) · v(Y ) is a vector of the v components of the magnetic flux
density at the points Y = {yj} andm∗ is the total number of vertices in the triangulation
of the cortex, skull and scalp, Σ1,T ,Σ2,T ,Σ3,T , respectively.

2.5.7 EEG, sEEG, MEG and cortical mapping

There is an obvious connections among the EEG, sEEG and MEG source localisation
problem and cortical mapping as can be seen in (2.14) and (2.27) hence these problems
can be solved in a unified way by making appropriate changes to either (2.40) and (2.41)
if simultaneous recordings of EEG, sEEG and MEG are available.

2.5.8 Resolving the discrete problems

In [78] weaker assumptions than those stated in Theorem 29 are given that ensure
the discrete problems have unique solutions, in particular the omission of the Fréchet
subdifferentiability of g1 and g2 in (P2). This weaker set of assumptions ensures sub-
linear convergence of the objective function to the minimum when the Banach spaces
Bi are Rni for some ni ∈ N, i = 1, 2. This is particularly useful once we have discretised
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the problem such as in the case measure being discretised, as a collection of dipoles.
This discretisation of measures results in the total variation norm of the measures being
the ‖·‖[`1(N)]3 of the sequence of Euclidean norms of the dipole moments and this norm is
not Fréchet subdifferentiable. This leads to the conclusion that applying an alternating
minimisation procedure to the discrete problems for sEEG, EEG and MEG results in
obtaining the minimisers that we seek. Note that the solutions we obtain for these
problems depend on the regularisation parameters α, β, λj. The parameters, α, β, λj
are chosen such that the influence of the noise in the measured data on the solution is
minimimal. Hence, the choice of the parameters α, β, λj is of great importance. Since in
practise there may be no information on the properties of the noise corrupting data we
propose the use of the L-hypersurface technique for choosing appropriate regularisation
parameters, see for example [79], for an exploratory study of this technique. The L-
hypersurface approach is a generalisation of the L-curve technique, see for example
[80]. In short, in the L-hypersurface technique one aims to find the point of maximum
Gaussian curvature on a hypersurface that is generated by plotting the data discrepancy
of a solution against the regularisation parameters generating the solution; the plotted
values are scaled appropriately. It has to be noted that this a computationally expensive
technique and other less computationally expensive techniques can be implemented such
as one called the minimal distance function technique which is studied in [79].

2.6 Numerical Results

We now present some numerical results of the inverse source localisation problem us-
ing EEG, sEEG and MEG data, we also used combined sEEG and MEG data. These
numerical results were obtained using code written in MATLAB and the graphics were
produced using a MATLAB add-on Toolbox Graph [81]. The meshes used were pro-
cessed using the MATLAB add-on Iso2Mesh [82]. Iso2Mesh was used to fix defects
within the mesh structures such as intersection between meshes and within meshes.
The forward problem can be solved satisfactorily with disregard to such defects but the
inverse problem is very sensitive to such defects. The processing done in Iso2Mesh re-
sulted in meshes that differed from the ones used in the forward problem thus helping in
avoiding the inverse crime. The data we use was generated using OpenMEEG, see [61]
and [83], which is based on the boundary elements symmetric method. OpenMEEG
uses current dipoles as the elementary electromagnetic object. The dipoles used in
OpenMEEG to generate the data were outwardly normally oriented to the grey/white
matter interface. In the source recovery problem we attempt to recover the locations
of the current dipoles associated with these data by using either W 1/2,2 functions or
a finite collection of dipoles. We attempt the recovery with [W 1/2,2]3 vector-field that
are normally oriented to the grey/white matter interface or with a collection of dipoles
whose locations can only possibly be on the barycentres of the triangles of the meshes
hence we need only recover the moments of the dipoles placed on the barycentres all
triangles. With these source recovery problems we also solve the cortical mapping prob-
lem. Note that for the W 1/2,2 recovery we can use direct inversion methods to solve
the inverse problems however for completeness we used the alternating minimisation
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procedure to solve these problems as well.

Head Model sEEG electrodes

EEG electrodes MEG SQUIDs

Figure 2.2: Head model and sensor positioning.

In Figure 2.2, we show a head model with4 surfaces, the inner most red surface
represents the grey/white matter interface, the dark blue surface represents the cortical
surface, the light blue surface represents the outer surface of the skull and the outer
most yellow surface represents the scalp. In the same figure we show the location of the
198 sEEG electrodes as blue dots, the majority of them being in the region enclosed
by the grey/white matter interface. The 64 EEG electrodes are represented as green
dots on the scalp and the locations of the 151 Superconducting QUantum Interference
Devices (SQUIDs) for recoding MEG measurements are shown as black dots outside
the head.

Figures 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 and 2.10 show the ground truth (OpenMEEG
data) and recovery results obtained from using sEEG, MEG , combined sEEG and MEG
and EEG data, respectively. In each figure the first column shows the ground truth
data generated by OpenMEEG using the dipoles represented as red dots in the bottom
most figure of the first column. The second column of each Figure shows the recovery
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results when the source is assumed to be [W 1/2,2]3 vector-field normally oriented to the
grey/white matter interface and the third column shows the recovery results when the
source is assumed to a finite collection of dipoles, the dots representing the dipoles are
colour coded by the magnitude of their moments. In the case of [W 1/2,2]3 sources, the
source is interpreted as being located within a neighbourhood of the maximal valued
of the recovered W 1/2,2 function supported on the grey/white matter interface. For
dipoles, the area with the highest concentration of dipoles with moments of largest
magnitude is taken to be the area supporting the true source.

From Figures 2.3 and 2.7 we see that the placement of sEEG electrodes has a higher
influence on the source recovery compared to EEG and MEG. The figures suggest
that the closer the sEEG electrodes are to the true source the better the recovery
of the source. We also observe that the recovered surface electrical potentials are
overestimated on the skull and the scalp while being underestimated on the cortex
however their distribution is in accordance with the recovered source. It seems that
the sharper the recovered source the more accurate the recovered surface electrical
potentials in terms of their distribution of the surfaces.

In Figures 2.4 and 2.8 we immediately note that the surface electrical potential are
underestimated however their distributions are more representative of the ground truth
compared to the recovery managed using sEEG data. With MEG data the localisation
of the sources is closer to the true sources and also more spatially localised than the
ones recovered with sEEG data when the sEEG electrodes are far from the true source.
This suggests that for source localisation MEG is more robust than sEEG. That we
managed to recover surfaces electric potentials that have the correct distribution with
MEG data is short of impressive, especially when look at the recovery of the surface
electric potentials with a [W 1/2,2]3 source in both figures.

Observing that a better source localisation leads to be a better recovery of the surface
electric potentials, it is of interest to see if the robustness of the source localisation of
MEG can be complimented with the electric data of sEEG for a better recovery of the
source and the surface electric potentials. Figures 2.5 and 2.9 show results obtained by
using simultaneous MEG and sEEG data. We can observe that the recovered source
and the recovered surface electrical potentials have properties that are shared between
the solutions from each modality hence represent a better and more robust recovery.
The source recovered with combined MEG and sEEG data is more spatially localised
than with standalone modalities and it is located closer to the true source. Further,
the recovered surface potential are much more representative of the ground truth than
had been previously seen with standalone modalities.

It is evident from Figures 2.6 and 2.10 that the recovery done with EEG data
outperforms the other recoveries. The method we implemented here makes the recovery
with EEG data robust as it managed a near perfect recovery of both sources and surface
electrical potential. In Figure 2.10 we see that the source recovered for [W 1/2,2]3 is not
as spatially localised as the dipolar source, however, with the interpretation of source
we are using, the source location of the [W 1/2,2]3 overlaps with the true source location.
We think that the “depth” of the source in this case resulted in the poor spatial location
we observed here.

What is evident from the numerical results presented here is that the surface electri-
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cal potential on the cortex was poorly recovered across all the modalities. We put this
to the complicated geometry of the surface in which it folds on itself and when meshed
these folds have the potential to creates self intersections in the mesh. Even though
we could not show it in the graphics, the maxima of the surface electric potential on
the cortex are located on the “sulci” of the cortex in these examples. We managed to
recreate these maxima in approximately the correct locations on the sulci of the cortex.
The above mentioned self intersections of the meshed cortex introduce numerical errors
that the methods we implemented here struggled with handling. Much of the work we
put into the numerical implementation of inverse problems was to correct these defects
in the meshes which helped in solving the inverse problems; the regularisation helped
in minimising the impact of these self intersections that could not be corrected. Some
of the intersections of the meshes occur between meshes, in our case there were some
between the surface carrying the sources and the cortex and these where much more
difficult to correct and had to be taken care of with the regularisation. The extremely
negative values of the surface electric potential observed on the cortex in the recovery
is due to the intersection of meshes of the grey/white matter interface and the cortex.
We did not discuss much about the numerical implementation of the forward model as
it was not the major focus of this work, we however observed though that the forward
problem is much more resilient to such defects.
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Ground truth [W 1/2,2]3 Dipoles
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Figure 2.3: Recovery with sEEG data.
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Ground truth [W 1/2,2]3 Dipoles
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Figure 2.4: Recovery with MEG data.
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Ground truth [W 1/2,2]3 Dipoles
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Figure 2.5: Recovery with combined MEG and sEEG data.
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Ground truth [W 1/2,2]3 Dipoles
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Figure 2.6: Recovery with EEG data.
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Ground truth [W 1/2,2]3 Dipoles
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Figure 2.7: Recovery with SEEG data.
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Ground truth [W 1/2,2]3 Dipoles
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Figure 2.8: Recovery with MEG data.
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Ground truth [W 1/2,2]3 Dipoles
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Figure 2.9: Recovery with combined MEG and sEEG data.
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Ground truth [W 1/2,2]3 Dipoles
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Figure 2.10: Recovery with EEG data.
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2.7 Conclusions

We have presented a method that uses the double and single layer potentials only in the
transmission of the electric potential and the magnetic flux density associated with a
source which allows to solve the inverse source recovery problem and the inverse corti-
cal mapping problem using either electric potential data or magnetic flux density data.
The simultaneous resolution of these problems allow to capture the full behaviour of
the source which aids in having better solutions for the inverse problems. The method
is also less computationally complex as it involves fewer boundary integral operators
than the symmetric method that has been used previously in inverse cortical mapping.
The method also allows for using realistic geometries of the head and making exact
computations at arbitrary points in space which allows for exact placement of sensors
in the models. The method also takes advantage of the formulas of [67] for improved
numerical accuracy for building and solving the discretised problems. The manner in
which the discretised problems are built allows for the use of numerical frames/bases
of Banach spaces defined on surfaces hence allowing the numerical implementation of
the method to the Banach spaces in which the problem is solvable as was demonstrated
in Theorem 28. The alternating minimisation procedure employed allows to use dis-
cretisations that offer the best accuracy for the source coupled with the freedom to use
the best and efficient methods for recovering the source. This in principle should offer
a better recovery of the source and the surface potentials. Further the method offers
a natural coupling of the electric data and magnetic flux density making it easier to
combine these data for the recovery as demonstrated in the combined use of sEEG and
MEG data.

Future work on this subject includes making performance comparisons with existing
methods for source recovery and inverse cortical mapping, testing the method on real
data and implementing this method on a wider range of source classes such as models
for sources that are assumed to be supported on the white matter fibres.
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Chapter 3

On discrete spectra of
Bergman–Toeplitz operators with
harmonic symbols

3.1 Introduction

Various problems of modern analysis require the study of certain classes of “model”
operators. One of the important families is the class of Toeplitz operators and operators
related to them. Probably, the most classical objects of this kind are Toeplitz operators
on Hardy spaces of analytic functions, see Nikolski [92] for a complete account on the
subject. The applications of operators of this class can be found in Nikolski [93].
Another “similar” class is the family of Toeplitz operators on Bergman spaces. Their
study started in late 80’s of the last century, see Zhu [99] for a nice overview of the
topic. In connection to inverse problems, this chapter deals with iterative methods for
solving forward and inverse problems. When solving fixed point problems using iterative
methods, the rate of convergence is determined by the spectral radius of the operator
and how quickly the iterative methods settle to the convergence rates is determined by
the growth of the resolvent of the operator, see for example. It is therefore of interest
to study the spectra of operators, here we study the spectra of Toeplitz operators.

We proceed with some definitions. Let the complex plane be denote by C, for
each z ∈ C we can write z = x + iy and the conjugate of z as z = x − iy then let
|z| =

√
zz =

√
x2 + y2 be the absolute value of z ∈ C. Let D = {z ∈ C : |z| ≤ 1} with

its boundary T = {z ∈ C : |z| = 1}.

Definition 36. Lp(T), 1 ≤ p ≤ ∞ is the space of C-valued measurable functions, ϕ,
whose absolute value is p-integrable with respect of the normalised Lebesgue measure on
T, with norm,

‖ϕ‖pp =

∫
T
|ϕ|p dm, (‖ϕ‖∞ = ess. supz∈T{|ϕ(z)|} <∞),

where m is the normalised Lebesgue measure on T.
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Definition 37. Let ϕ, ψ ∈ L2(T) the inner product of ϕ, ψ is

(ϕ, ψ)L2(T) =

∫
T
ϕψ dm.

Using the inner product we can show that {zn}n∈Z is an orthonormal basis in L2(T)
and each function ϕ ∈ L2(T) may be represented by its Fourier series with respect to
{zn}n∈Z as

f =
∑
n∈Z

f̂(n)zn,

where
f̂(n) = (f, zn)L2(T).

This allows to identify L2(T) with the space of sequences

l2(Z) =
{

(an)n∈Z : an ∈ C,
∑
n∈Z

|an|2 <∞
}
.

Definition 38. H2(T) is the subspace of L2(T) defined as

H2(T) = {f ∈ L2(T) : f̂(n) = 0, n < 0}.

It is called the Hardy space of the unit circle.

Definition 39. For a function ϕ ∈ L∞(T), the Hardy–Toeplitz operator Tϕ : H2(T)→
H2(T) is defined as

Tϕh = P+(ϕh), h ∈ H2(T), (3.1)

where P+ is the well-known Riesz othogonal projection from L2(T) to H2(T), see Garnett
[88]. The function ϕ is called a symbol of the operator. For the sake of brevity, we call
operator Tϕ (3.1) an HT-operator.

The definition of a Bergman–Toeplitz operator Tψ (a BT-operator, for short), is
rather similar to the above one.

Definition 40. Lp(D), 1 ≤ p ≤ ∞ is the space of C-valued measurable functions, h,
whose absolute value is p-integrable with respect of the normalised Lebesgue measure on
D, with norm,

‖h‖pp =

∫
D
|h|p dxdy

2π
, (‖h‖∞ = ess. supz∈D{|ϕ(z)|} <∞).

Definition 41. Let h, h ∈ L2(D) the inner product of h, g is

(h, g)L2(D) =

∫
D
hg

dxdy

2π
.

Definition 42. Let L2
a(D) be the closed subspace in L2(D) of analytic on D functions.

Given ψ ∈ L∞(D), set

Tψ : L2
a(D)→ L2

a(D), Tψh = P̂+(ψh), (3.2)

where P̂+ is the orthogonal projection acting from L2(D) to L2
a(D), see Zhu [99, Ch. 7].
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For a function ϕ ∈ L∞(T), it is sometimes convenient to consider a harmonic func-
tion ϕ̂ on D, the harmonic extension of ϕ to D, given by

ϕ̂(z) =

∫
T

1− |z|2

|t− z|2
ϕ(t) dm(t), z ∈ D. (3.3)

Certainly, ϕ̂ ∈ L∞(D) and ‖ϕ̂‖∞ ≤ ‖ϕ‖∞.
Given an HT-operator Tϕ (with its symbol defined on T), we consider its associated

BT-operator Tϕ̂ with symbol ϕ̂ given by (3.3). Notice that even though we use “similar-
looking” notation for an HT-operator Tϕ and a BT-operator Tϕ̂, the confusion is not
possible since the functions ϕ and ϕ̂ are defined on T and D, respectively. The domains
of definitions of corresponding symbols will be always clear from the context of the
discussion.

We shall be concerned with Toeplitz operators Tϕ, Tϕ̂ having symbols defined as
follows. Set

ϕ(t) := g(t) + f(t), t ∈ T, f, g ∈ H∞(T). (3.4)

Clearly, we have
ψ(z) := ϕ̂(z) = g(z) + f(z), z ∈ D. (3.5)

It is plain that ϕ̂ has the non-tangential boundary values on the unit circle

ϕ̂(t) = lim
r→1−

ϕ̂(rt), for a. e. t ∈ T,

and these boundary values coincide with ϕ a.e. on T.
Despite the similarity of definitions (3.1), (3.2), the BT- operators exhibit consider-

ably reacher spectral behavior as compared to HT-operators. For instance, the essential
spectrum of HT-operator Tϕ is connected, see Widom [97], while, in general, the essen-
tial spectrum of BT-operator Tψ is not. There are non-trivial compact BT-operators
with quite simple (even radial) symbols [99, Sec.s 7.2, 7.3], while a compact HT-operator
is necessarily zero [92, Part B, Ch. 4].

Sundberg–Zheng [96] showed that there are BT-operators with harmonic symbols
having isolated eigenvalues in their spectrum. In subsequent papers, Zhao–Zheng [98],
Guan–Zhao [89] and Guo–Zhao–Zheng [90] presented a class of BT-operators with har-
monic symbols posessing “rather big” discrete spectrum, that is, the set of isolated
eigenvalues of finite algebraic multiplicity.

So, in contrast to HT-operators, the notion of the discrete spectrum of a BT-operator
with harmonic symbol makes sense. The study of the properties of the discrete spec-
trum for BT-operators with symbols (3.5) is the core of the present paper. Unlike the
articles [89, 90, 98], our results are essentially based on the perturbation techniques from
operator theory and function-theoretic results of Borichev–Golinskii–Kupin [85, 86] and
Favorov–Golinskii [87].

Definition 43. We say that a function h : T → C is absolutely continuous if h is an
indefinite integral of a locally Lebesgue-integrable function, we write h ∈ AC.

The Sobolev space W 1,2(T) of absolutely continuous functions on the unit circle T
with derivative in L2:

W 1,2(T) := {h : T→ C, h ∈ AC, h′ ∈ L2(T)}.
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For further purposes, we would like to introduce two closely related characteristics
of compact sets on the complex plane C. The following definitions are borrowed from
Perkal [95, Sec. 2] and Peller [94, Sec. 4], respectively.

Definition 44. Let r > 0. A closed set E ⊂ C is called r-convex if

C\E =
⋃{

B(x, r) : B(x, r) ⊂ C\E
}
,

that is, the complement to E can be covered with open disks of a fixed radius r > 0,
which lie in that complement.

Definition 45. A compact set K ⊂ C is called circularly convex, if there is r > 0 such
that for each λ ∈ C\K with dist(λ,K) < r there are points µ ∈ ∂K and ν ∈ C\K so
that

|µ− ν| = r, λ ∈ (µ, ν], {ζ : |ν − ζ| < r} ⊂ C\K.

For example, if K is a convex set, or the boundary ∂K is of C2-class (without
intersections and cusps), then K is a circularly convex set.

Note that the later definition is a bit more stringent than the former one. When
K is a (closed) Jordan curve (a rectifiable continuous curve with no self-intersections),
one can also see that the above definitions are equivalent.

A short reminder on standard notions and notations from operator theory is given in
Subsection 3.2.1 below. For instance, see (3.9) for the notion of the unbounded (outer)
open component of the Fredholm domain F0(T ).

The main result of this note is the following theorem.

Theorem 30. Let Tϕ be an HT-operator with the symbol ϕ (3.4) from W 1,2(T), ϕ̂ its
harmonic extension (3.3), and Tϕ̂ be the BT-operator associated to Tϕ. Assume that
the spectrum σ(Tϕ) is a circularly convex set. Then, for each ε > 0∑

λ∈σd(Tϕ̂)∩F0(Tϕ)

dist3+ε (λ, σ(Tϕ)) ≤ C(ϕ, ε) ‖ϕ′‖2
2. (3.6)

Corollary 7. Let q and p be algebraic polynomials, ϕ = q+p be a harmonic polynomial,
and assume that the image ϕ(T) is a Jordan curve without cusps. Then (3.6) holds for
the discrete spectrum of BT-operator Tϕ̂.

3.2 Some preliminaries

3.2.1 Generalities from operator theory

In this section, we recall some well-known notions of the classical operator theory, see
Kato [91, Sec. IV. 5].

Let T be a bounded linear operator on a (separable) Hilbert space H. As usual, the
resolvent set of T is

ρ(T ) := {λ ∈ C : (T − λ) : H → H is bijective }. (3.7)
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It follows that (T − λ)−1 is bounded for λ ∈ ρ(T ). The spectrum of T is defined as

σ(T ) = C\ρ(T ). (3.8)

Furthermore, we say that a bounded operator T is Fredholm, if its kernel and co-
kernel are of finite dimension where the co-kernel of T is defined as

co-kernelT = H\T (H).

The essential spectrum of T is defined as

σess(T ) = {λ ∈ C : (T − λ) is not Fredholm}.

One can see that σess(T ) is a closed subset of σ(T ). One considers also the Fredholm
domain of T , F(T ) = C\σess(T ). Clearly, ρ(T ) ⊂ F(T ). We represent F(T ) as

F(T ) =
∞⋃
j=0

Fj(T ), (3.9)

where Fj(T ) are disjoint (open) connected components of the set. We agree that F0(T )
stays for the unbounded connected component of F(T ).

The discrete spectrum σd(T ) of T is the set of all isolated eigenvalues of T of finite
algebraic multiplicity. For convenience, we put

σ0(T ) := σd(T ) ∩ F0(T ) ⊂ σd(T ). (3.10)

Let A0, A be bounded operators on a Hilbert space such that A − A0 is compact.
The operators A and A0 are called compact perturbations of each other. The celebrated
Weyl’s theorem states that

σess(A) = σess(A0), (3.11)

see Kato [91, Sec. IV.5.6].
We shall be interested in the situation when σ0(A) is at most countable set, σ0(A) =

{λj}j≥1 and it accumulates to the essential spectrum σess(A0) only.

3.2.2 Reminder on Hilbert-Schmidt operators

In this subsection, we recall briefly the notion of a Hilbert-Schmidt operator and its
simplest properties, see Birman-Solomyak [84, Sec. 11.3].

Let A be a compact operator. The sequence of singular values {sj(A)}j≥1 is defined
as

sj(A) = λj(A
∗A)1/2, sj(A) ≥ 0,

where λj(A
∗A) are eigenvalues of the compact operator A∗A. Without loss of generality

one can suppose that {sj(A)}j≥1 forms a decreasing sequence, and, moreover

lim
j→+∞

sj(A) = 0.
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One says that A ∈ S2, the Hilbert-Schmidt class of compact operators, iff

‖A‖2
S2

:=
∑
j≥1

sj(A)2 <∞.

Equivalently, A ∈ S2 if and only if {sj(A)}j≥1 ∈ `2. Alternatively, the S2-norm of the
operator can be computed as

‖A‖2
S2

=
∑
j,k≥1

|(Aej, ek)|2,

where {ej}j≥1 is an arbitrary orthonormal basis in the given Hilbert space.

3.2.3 On the discrete spectrum of a perturbed operator: a
result of Favorov–Golinskii

Some useful quantitative bounds for the rate of convergence of the discrete spectrum of
a perturbed operator are given in Favorov–Golinskii [87, Sec. 5]. A special case of [87,
Thm 5.1] (cf. a remark right after its proof and formula (5.8)) looks as follows.

Theorem 31 ([87]). Let A0 be a bounded linear operator on a Hilbert space, which
satisfies the conditions:

1. The spectrum σ(A0) is an r-convex set.

2. The resolvent R(z, A0) = (A0 − z)−1 is subject to the bound

‖R(z, A0)‖ ≤ C(A0)

distp(z, σ(A0))
, p > 0, z ∈ F0(A0). (3.12)

Let B be a Hilbert–Schmidt operator, and A = A0 +B. Then for each ε > 0∑
λ∈σd(A)∩F0(A0)

dist2p+1+ε (λ, σ(A0)) ≤ C(σ(A0), p, ε) ‖B‖2
2. (3.13)

If σess(A0) does not split the plane, and (3.12) holds for all λ ∈ C\σ(A0), then
(3.13) is true for the whole discrete spectrum σd(A). For the class of (non-selfadjoint)
HT-operators A0 = Tϕ, ϕ in (3.4), the essential spectrum, in general, splits the plane.

3.3 Proof of the main result

Let ϕ be as in (3.4). Consider the HT-operator Tϕ (3.1) and the associated BT-operator
Tϕ̂ (3.2). The technical way to compare these operators is to look at their matrices in
appropriately chosen bases. Namely, define

eH,n(t) = tn, eB,n(z) =
√
n+ 1 zn, n ≥ 0. (3.14)
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It is plain that the systems {eH,n}n≥0 and {eB,n}n≥0 are the orthonormal bases in H2(T)
and L2

a(D), respectively. Set

Tϕ = [(TϕeH,i, eH,j)H2(T)]i,j≥0, Tϕ̂ = [(Tϕ̂eB,i, eB,j)L2
a(T)]i,j≥0. (3.15)

The operators Tϕ and Tϕ̂ are unitarily equivalent to original operators Tϕ and Tϕ̂, and
they both act on `2(Z+). So, one can argue on the operators Tϕ and Tϕ̂ being “close”
in a certain sense.

Rewriting relation (3.4) in more detailed form, we have

ϕ̂(z) = g(z) + f(z),

f(z) =
∞∑
k=0

fkz
k ∈ H∞(T), g(z) =

∞∑
k=1

gkz
k ∈ H∞(T),

ϕ(eiθ) = ϕ̂(eiθ) =
∑
j∈Z

bje
ijθ , bj =

{
fj, j ≥ 0,

g−j, j < 0.

(3.16)

Proposition 3. Assume that the symbol ϕ (3.4) belongs to W 1,2(T). Then Tϕ̂ − Tϕ is
a Hilbert-Schmidt operator and

‖Tϕ̂ − Tϕ‖2
S2
≤ π2

24
‖ϕ′‖2

2. (3.17)

Proof. The matrix representation of Tϕ is obvious: Tϕ = [bi−j]i,j≥0. So let us compute
the matrix Tϕ̂ = [τi,j]i,j≥0 in the orthonormal basis {eB,n}n≥0 (3.14). For l, k ≥ 0

τk,k+l = (Tϕ̂eB,k+l, eB,k)L2
a(D) =

1

π

∫
D
ϕ̂(z)eB,k+l(z) eB,k(z) dxdy

=

√
(k + l + 1)(k + 1)

π

∫
D
ϕ̂(z)zk+l zk dxdy,

or, in polar coordinates,

τk,k+l =

√
(k + l + 1)(k + 1)

π

∫ 1

0

∫ 2π

0

∑
n∈Z

bnr
|n|+2k+l+1 ei(n+l)θ drdθ.

Finally,

τk,k+l =

√
k + 1

k + l + 1
b−l, k, l ≥ 0.

The same formula holds for τk+l,k, k, l ≥ 0, and so

τi,j =

√
min(i, j) + 1

max(i, j) + 1
bi−j, i, j ≥ 0. (3.18)

Let us estimate the Hilbert-Schmidt norm

‖Tϕ̂ − Tϕ‖2
S2

=
∑
i,j≥0

|τi,j − bi−j|2 =
∑
i,j≥0

|bi−j|2
∣∣∣∣∣1−

√
min(i, j) + 1

max(i, j) + 1

∣∣∣∣∣
2

.
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As ∑
i,j≥0

aij =
∞∑
l=0

∞∑
k=0

ak,k+l +
∞∑
l=1

∞∑
k=0

ak+l,k,

we have

‖Tϕ̂ − Tϕ‖2
S2

=
∞∑
l=0

l2
[
|bl|2 + |b−l|2

] ∞∑
k=0

1

(k + l + 1)
(√

k + l + 1 +
√
k + 1

)2

=
∑
l∈Z

|l bl|2
∞∑
k=0

1

(k + |l|+ 1)
(√

k + |l|+ 1 +
√
k + 1

)2

≤

(∑
l∈Z

|lbl|2
) (

∞∑
k=0

1

(k + 1) (2
√
k + 1)2

)

=
∑
l∈Z

|lbl|2
∞∑
k=0

1

4 (k + 1)2
=

π2

4 · 6
‖ϕ′‖2

2 =
π2

24
‖ϕ′‖2

2.

as claimed.

Weyl’s theorem concerning spectra of compact perturbations, mentioned above,
leads to the following

Corollary 8. Let the symbol ϕ satisfy hypothesis of the above Proposition. Then the
essential spectrum of BT-operator Tϕ̂ is

σess(Tϕ̂) = σess(Tϕ) = ϕ(T) =: Γ,

and the discrete spectrum σd(Tϕ̂) is at most countable set of eigenvalues of finite alge-
braic multiplicity with all its accumulation points on Γ.

We go on with the proof the quantitative version of the above corollary.

Theorem 30. Let A0 = Tϕ, A = Tϕ̂, see (3.15). We only have to ensure that the
conditions of Theorem 31 are met.

It is clear that ϕ ∈ W 1,2(T) implies that ϕ ∈ W , the Wiener algebra of absolutely
convergent Fourier series. By [94, Thm 4], the resolvent (A0 − z)−1 admits the linear
growth, that is, (3.12) holds with p = 1. Next, by Proposition 3, the difference A−A0

is the Hilbert-Schmidt operator with the norm bound (3.17). The proof is complete. �

3.4 Conclusion

We have just shown that the essential spectra of a BT-operator and an HT-operator
with symbols that coincide on T and in W 1,2(T) are identical. This allow to use well
known properties of the essential spectrum of HT-operators to make conclusions on the
essential spectrum of BT-operators and hence on the entire spectrum of BT-operators.

We also gave a convergence rate for the discrete spectrum of the BT-operator that is
contained in the unbounded component of the Fredholm domain of the the HT-operator.
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Contributions

In this work we made the following main contributions:

• In the first chapter, we provided a characterisation of silent [Lp(Ω)]n vector-fields,
n ≥ 3, 1 < p < ∞, for Ω ⊂ Rn of mild smoothness, see Theorem 20. This
characterisation and the methods used can be a launching point to characterise
silent [W−1,p(Ω)]n vector-fields for Ω ⊂ Rn Lipschitz smooth using the decompo-
sitions of such vector-fields given in [100]. The characterisation of silent sources
led to a characterisation of norm-minimising equivalent vector-fields in [Lp(Ω)]n,
for Ω ⊂ Rn which are domains of finite perimeter with mild smoothness, see The-
orem 25 and Corollary 6. In turn this characterisation led to a decomposition of
vector-fields on Ω which is valid for [Lp(Ω)]n, 1 < p < ∞, see Theorem 15 and
Corollary 1.
This work is in preparation for publicaton.

• In the second chapter we introduced an alternating minimisation procedure to
solve the inverse source localisation for sEEG, EEG and/or MEG simultaneously
with the inverse cortical mapping problem using realistic head geometries, see
Section 2.5.4. We managed to show that this method can be implemented for
sources that are assumed to be distributions as well rather than functions only,
see Theorems 28 and 29. This opens up the possibility of using sources in the
inverse source localisation problem that can closely respects known biological
constraints such as brain connectivity by using the white matter tractography as
a support for the sources.
This work is in preparation for publication.

• We gave a convergence rate result for the discrete spectrum of Bergman-Toeplitz
operators in the unbounded component of the Fredholm domain of their cor-
responding Hardy-Toeplitz operators. This result was given for those Bergman-
Toeplitz operators whose essential spectrum coincides with the essential spectrum
of Hardy-Toeplitz operators.
This work is to appear as On discrete spectra of Bergman-Toeplitz operators with
harmonic symbols in Birkhauser Memorial Volume in honor of Sergey Naboko.

103



Bibliography

[1] J. D. Jackson. Classical electrodynamics. John Wiley & Sons, Inc., New York-
London-Sydney, second edition, 1975.

[2] L. Baratchart, D. P. Hardin, E. E. Lima, E. B. Saff, and B. P. Weiss. Character-
izing kernels of operators related to thin-plate magnetizations via generalizations
of Hodge decompositions. Inverse Problems, 29(1):015004, 2012.

[3] C. Gerhards. On the unique reconstruction of induced spherical magnetizations.
Inverse Problems, 32, 2016.

[4] L. Baratchart, C. Gerhards, and A. Kegeles. Decomposition of L2-vector fields on
Lipschitz surfaces: characterization via null-spaces of the scalar potential. arxiv.
org/pdf/2009.05337.pdf, 2020.

[5] L. Baratchart, T. Qian, and D. Pei. Hardy-Hodge decomposition of vector fields
on compact Lipschitz hypersurfaces. hal.inria.fr/hal-02936934, 2020.

[6] L. Baratchart, C. Villalobos-Guillén, D. Hardin, M. Northington, and E. B. Saff.
Inverse potential problems for divergence of measures with total variation regular-
ization. Foundations of Computational Mathematics, 20:1273–1307, 2020.

[7] J. D. Jackson. Classical electrodynamics. Wiley, New York, NY, 1962.

[8] D. R. Adams and L. I. Hedberg. Function spaces and potential theory. Grundlehren
der mathematischen Wissenschaften. Springer, 1996.

[9] V. Maz’ya. Sobolev spaces, volume 342 of Grundlehren der matematischen wis-
senshaften. Springer, 2d edition, 2011.

[10] R. A. Adams. Sobolev spaces / Robert A. Adams. Academic Press New York, 1975.

[11] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Universitext. Springer New York, 2010.

[12] E. M. Stein. Singular Integrals and Differentiability Properties of Functions (PMS-
30). Princeton University Press, 1970.

[13] V. Guillemin and A. Pollack. Differential topology. Prentice-Hall, 1974.

[14] P. Grisvard. Elliptic problems in nonsmooth domains. Pitman, 1985.

104

arxiv.org/pdf/2009.05337.pdf
arxiv.org/pdf/2009.05337.pdf
hal.inria.fr/hal-02936934


[15] H. Federer. Geometric measure theory. Springer, 1996.

[16] W. P. Ziemer. Weakly differentiable functions, volume 120 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1989.

[17] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[18] L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of Functions.
Taylor & Francis, 2015.

[19] A. Jonsson and H. Wallin. Function spaces on subsets of Rn. Harwood Academic
Publishers, 1984.

[20] D. A. Jerison and C. E. Kenig. The inhomogeneous Dirichlet problem in Lipschitz
domains. Journal of Functional Analysis, 130:161–219, 1995.

[21] H. Sohr. The Navier-Stokes Equations: An Elementary Functional Analytic Ap-
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Elliptic Partial Differential Equations. Universitext. Springer London, 2012.

[24] H. Bhatia, G. Norgard, V. Pascucci, and P. T. Bremer. The Helmoltz-Hodge
decomposition-a survey. IEEE Trans. on Visualization and Computer Graphics,
19(8), 2013.

[25] O. Fabes, O. Mendez, and M. Mitrea. Boundary Layers on Sobolev–Besov Spaces
and Poisson’s Equation for the Laplacian in Lipschitz Domains. Journal of Func-
tional Analysis, 159(2):323 – 368, 1998.

[26] J. Geng and Z. Shen. The Neumann problem and Helmholtz decomposition in
convex domains. Journal of Functional Analysis, 259:2147–2164, 2010.

[27] M. Bogovskii. Decomposition of Lp(Ω;Rn) into the direct sum of subspaces of
solenoidal and potential vector fields. Doklady Mathematics, 33:161–165, 03 1986.

[28] T. Iwaniec and G. Martin. Geometric Function Theory and Non-linear Analysis.
Oxford mathematical monographs. Oxford University Press, 2001.

[29] G. Verchota. Layer potentials and regularity for the Dirichlet problem for Laplace’s
equation in Lipschitz domains. Journal of Functional Analysis, 59(3):572 – 611,
1984.

[30] S. Axler, P. Bourdon, and W. Ramey. Harmonic Function Theory. Graduate Texts
in Mathematics. Springer New York, 2006.

105



[31] N. S. Landkof. Foundations of modern potential theory. Number 180 in
Grundlehren der Mat. Wiss. Springer, 1972.

[32] B. E. Dahlberg. Estimates of harmonic measure. Ark. Rat. Mec. Anal., 65:278–288,
1977.

[33] K. Fabian and L. V. de Groot. A uniqueness theorem for tomography-assisted
potential-field inversion. Geophysical Journal International, 216:760–766, 2019.

[34] L. Baratchart, C. Gerhards, A. Kegeles, and P. Menzel. Unique reconstruction of
simple magnetizations from their magnetic potential. in preparation, 2021.
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linéaires. Dunod, 1969.

[45] C. Amrouche and N. E. H. Seloula. Lp-Theory for vector potentials and Sobolev’s
inequalities for vector fields: Application to the Stokes equations with pressure
boundary conditions. Mathematical Models and Methods in Applied Sciences,
23(01):37–92, 2013.

106



[46] L. Borup, R. Gribonval, and M. Nielsen. Tight wavelet frames in Lebesgue and
Sobolev spaces. Journal of function spaces and applications, 2, 01 2004.

[47] R.E. Showalter and American Mathematical Society. Monotone Operators in Ba-
nach Space and Nonlinear Partial Differential Equations. Mathematical surveys
and monographs. American Mathematical Society, 1997.

[48] G. Galdi, C. Simader, and H. Sohr. On the stokes problem in lipschitz domains.
Annali di Matematica Pura ed Applicata, 167:147–163, 12 1994.

[49] F. Warner. Foundations of differential manifolds and Lie groups. Springer, 1983.

[50] V. M. Gol’dshtein, V. I. Kuz’minov, and I. A. Shvedov. Differential forms on
Lipschitz manifolds. Siberian Mathematical Journal, 23(2):151–161, 1982.

[51] C. Bennett and R. Sharpley. Interpolation of Operators. Academic Press, 1988.
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[56] M. Hämäläinen, R. Hari, R. Ilmoniemi, J. Knuutila, and O. Lounasmaa. Mag-
netoencephalography: Theory, instrumentation, and applications to noninvasive
studies of the working human brain. Rev. Mod. Phys., 65:413–, 04 1993.
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