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Problémes inverses de potentiel et applications a 1’éléctromagnétique
quasi-statique

Résumé : Les problemes de potentiels inverses impregnent de nombreuses branches des
sciences et de l'ingénierie, en particulier en imagerie non destructive, leur étude est donc
importante pour leur avancement. Les problemes inverses que nous étudions dans la these
sont régis par ’approximation quasi-statique des équations de Maxwell.

Dans la premiere partie de cette thése, nous nous intéressons a la caractérisation de sources
silencieuses pour des domaines homogenes connexes avec de faibles conditions de régularité.
La caractérisation que nous donnons repose sur la décomposition de Helmholtz. Pour les
domaines Lipschitz réguliers, on montre que les sources silencieuses ont une décomposition
de Helmholtz. Pour ces domaines, des sources équivalentes minimisant la norme sont car-
actérisées, ce qui conduit & une décomposition des champs de vecteurs équivalente a la
décomposition de Helmholtz lorsqué cette derniére existe. Pour les domaines lisses simple-
ment connexes, un algorithme de minimisation alternée pour calculer la source équivalente
de minimale norme a toute source donnée est présenté, dont 'implémentation numérique est
faisable.

La problématique de I'imagerie cérébrale fonctionnelle et clinique via les problemes inverses
de I’électroencéphalographie (EEG), de la stéréo-EEG (SEEG) et de la magnétoencéphalographie
(MEG) sur un modele de téte non homogene avec des géométries réalistes est étudiée dans
la deuxieme partie de la these. Chacun de ces problemes inverses est couplé au probléeme
inverse de transmission. Le couplage du probléme inverse de localisation de source inverse
avec le probleme inverse de transmission rend également relativement simple le couplage de
modalités, c’est-a-dire la combinaison de données EEG, sEEG et/ou MEG lors de la résolution
de problemes inverses. Pour chaque probléme inverse résultant, un probleme de Tikhonov
régularisé est résolu avec le régularisateur congu pour exploiter les éléments structurels dans
ces probléemes. Pour cela, un algorithme de minimisation alternée est utilisé pour résoudre le
probleme de Tikhonov en alternant entre le probleme d’identification de source et le probleme
de transmission de potentiel électrique pour la source identifiée.

Dans la derniere partie de la theése nous étudions les spectres des opérateurs de Toeplitz.
Il est bien connu que pour les problemes de point fixe, la vitesse de convergence des méthodes
itératives est gouvernée par les rayons spectraux des opérateurs impliqués. De plus, la rapidité
avec laquelle la méthode itérative atteint ce vitesse de convergence est régie par les résolvantes
des opérateurs. Les méthodes itératives nécessitent généralement moins de mémoire que les
méthodes directes. L’étude des spectres des opérateurs dans les problemes de point fixe est
donc primordiale pour la mise en ceuvre de méthodes itératives. Nous avons montré que
sous certaines conditions les spectres des opérateurs Hardy-Toeplitz (HT) et des opérateurs
Bergman-Toeplitz (BT) sont les mémes. Les opérateurs HT et BT sont utiles dans I’étude
des problemes potentiels inverses dans le plan.

Mots-clés : Analyse harmonique, équation de Poisson-Laplace, probléme inverse de potentiel.




Inverse potential problems, with applications to quasi-static electromagnetics.

Abstract: Inverse potential problems permeate many branches of science and engineering
especially in non-destructive imaging hence their study is important to the advancement of
science and engineering. The inverse problems we study in the thesis are governed by the
quasi-static approximation of Maxwell’s equations.

In the first part of this thesis we look at characterising silent sources for connected ho-
mogeneous domains with mild smoothness conditions. The characterisation we give relies
on the Helmholtz decomposition. For Lipschitz domains it is shown that silent sources have
a Helmholtz decomposition and norm-minimising equivalent sources are characterised which
leads to a decomposition of vector-fields that is equivalent to the Helmholtz decomposition
when the the latter exists. For smooth simply connected domains an alternating minimisa-
tion algorithm for computing the norm-minimising equivalent source of any given source is
presented whose numerical implementation is feasible.

The problem of functional and clinical brain imaging via the inverse problems of elec-
troencephalography (EEG), stereo-EEG (SEEG) and magnetoencephalography (MEG) on
non-homogeneous head model with realistic geometries is studied in the second part of the
thesis. Each of these inverse problems is coupled with the inverse cortical mapping problem.
The coupling of the inverse source localisation problem with the inverse cortical mapping prob-
lem makes it relatively straight forward to also couple modalities, that is, combining EEG,
sEEG and/or MEG data when solving inverse problems. For each resulting inverse problems,
a regularised Tikhonov problem is solved with the regulariser designed to exploit structural
elements in the problems. To fully exploit this information an alternating minimisation algo-
rithm is used to solve the Tikhonov problem by alternating between the source identification
problem and the electrical potential transmission problem for the identified source.

In the last part of the thesis we study the spectra of Toeplitz operators. When solving
fied point problems is well known that the rates of convergence of iterative methods are
governed by the spectral radii of the operators involved. Further it is also known that how
quickly the iterative method settles to these convergence rates is governed by the resolvents
of the operators. Iterative methods typically have less memory requirement compared to
direct methods. Hence a study the of spectra of the operators in the fixed point problems is
paramount to the implementation of iterative methods. We showed that the under certain
conditions the essential spectra of Hardy-Toeplitz (HT) operators and Bergman-Toeplitz (BT)
operators coincide. Both HT and BT operators are useful in the study of inverse potential
problems on the plane.

Keywords: harmonic analysis, Poisson-Laplace equation, inverse potential problem.
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Résumé long

L’étude des problemes inverses est répandue parmi le monde scientifique, particulierement
dans les technologies ayant trait a l'imagerie non-destructive. Celle-ci peut étre mise en
ceuvre de diverses manieres, les plus communes relevant de 1’éléctromagnétisme : CT
scan (tomodensitométrie) avec le rayonnement X, 'imagerie par résonance magnétique
(IRM), qui utilise le champ magnétique, ou la tomographie par impédance électrique
(EIT), qui utilise le champ électrique. Ces exemples proviennent de I'imagerie médicale,
ce qui semble raisonnable car ¢’est I'un des points de contact importants d’une partie de
la société avec les questions d’imagerie. Ce n’est cependant pas une limitation, d’autres
exemples proviennent des sciences de 'ingénieur (détection de défauts non-destructive
dans les machines ou les structures), ou de la géologie, de la physique des planetes,
du paléo-magnétisme (étude d’échantillons de roches pour comprendre I'apparition et
I'évolution du champ magnétique de la Terre et de la Lune dans le passé).

Dans ce travail, nous nous concentrons sur certaines questions d’imagerie utilisant les
mesures de champs éléctromagnétiques afin de retrouver les aimantations et /ou densités
de courant qui les produisent, en lien avec le paléomagnétisme et I'imagerie cérébrale,
fonctionnelle et clinique. En imagerie cérébrale, I'objectif est de retrouver une densité
de courant dans le cerveau (qui indique les régions d’activité), étant données des en-
registrements du potentiel éléctrique ou/et du champ magnétique générés par I'activité
cérébrale. Ces zones d’activité peuvent étre reliées a des taches effectuées pour un exa-
men fonctionnel ou a des évenements anormaux, comme des crises d’épilepsie, pour un
examen clinique. Nous considérons ici les dispositifs tels que 1’éléctoencéphalographie
(EEG), la stéréo-éléctoencéphalographie (SEEG), et la magnétoencéphalographie (MEG).
Les problemes inverses sous-jacents sont modélisés par les équations de Maxwell et leur
approximation quasi-statique, et sont ainsi fortement reliés entre eux. Un point com-
mun particulierement important entre ces problemes est que, méme dans la situation
de mesures completes et exactes hors du domaine contenant I’aimantation ou la den-
sité de courant, 'inversion est fortement mal posée, et leur solution n’est pas unique ;
nous résolvons ainsi des versions régularisées (par la méthode dite de Tikhonov) de ces
problemes.

Les deux premiers chapitres constituent le corps de la these, le troisieme contient
un résultat sur le spectre d’opérateurs de Toeplitz, qui a des applications a 1’étude de la
vitesse de convergence de méthodes itératives de résolution de systemes linéaires. Dans
le premier chapitre, nous caractérisons les sources silencieuses, a l'origine de la non-
unicité des solutions des problemes inverses, ainsi que les sources équivalentes (dont la
différence est silencieuse) a une source donnée, de norme minimale. Le second chapitre
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est dédié a 1’étude des problemes inverses EEG, sEEG and MEG, en particulier a
la maniere de les résoudre constructivement et d’exploiter les propriétés du potentiel
électrique pour parvenir a une solution acceptable.

Aimantations L? silencieuses

Nous supposons que 2 C R™ n > 3, est un ensemble ouvert borné avec un nom-
bre fini de composantes connexes dont le bord, 02, n’est pas nécéssairement connexe.
Nous supposons que les aimantations, M, ont un support contenu dans {2 areet sont
des champs de vecteurs appartenant a [LP(Q)]", 1 < p < oo (chaque composante de
M appartient & LP(Q2)). Etant donnée une aimantation M € [LP(Q)]", son potentiel
magnétique, Py, satisfait :

div M = APy,.

Nous définissons une aimantation silencieuse comme M € [LP(Q2)]" telle que Py, est con-
stant presque partout dans chaque composante connexe de R™\(, les valeurs constantes
pouvant différer selon les composantes connexes.

Pour M e [LP(2)]™, soit M € [LP(R™)]™ l'extension de M par 0 sur R”. En utilisant
la décomposition de Helmholtz sur [LP(R™)]" pour 1 < p < oo, et pour un ensemble
ouvert général () dont le bord est de mesure nulle, nous avons prouvé que M € [LP(Q)]"

est silencieuse si et seulement si M = Vi + D ou D est a divergence nulle sur R” et

v =+ [ i) =0

dy, r € R",
Wn JRrn ‘ZL‘ - y‘n

avec V1) et D identiquement nulle sur R™\ ).

Si le bord de Q est de mesure nulle et si deux composantes connexes de R™\(2
ont une intersection “épaisse” au sens de la capacité dans chaque composante, alors
M € [LP(Q)]™ est silencieuse si et seulement si M = Vi + D, ou

Lr@)
Vi € {Vp:pe C=(R"), Vyp € [C=(Q)"} :

et D est & divergence nulle sur R".

Cette caractérisation provient du fait que, sous les hypotheses ci-dessus concernant
le domaine, certains résultats de la théorie du potentiel permettent de montrer que si,
pour €2 C R", nous définissons

GP(Q) = {Vy: ¥ € W, 2(Q), Vi € [LP(Q)]"},

alors
Gh(Q) ={F € G(Q): F € G"(R")}.

En supposant que €2 est un domaine Lipschitz régulier, nous avons prouvé que
M € [LP(Q)]™ est silencieuse si et seulement si M = Vi) + D avec Vi € G{(Q) et

[LP ()"

D e {ue|[Cx(Q)]":divu =0} := Div,,0(Q),



ce qui provient de I’équivalence bien connue sur les domaines Lipschitz réguliers :
Div, o(?) := {u € [LP()]" : divu = 0 and u - v = 0},

ou v est le vecteur normal unitaire extérieur a 0f).

Les caractérisations ci-dessus sont reliées a la décomposition de Helmholtz. Lorsque
p = 2 cette décomposition existe en général, pout tout M € [L*(Q)]" et tout Q. Lorsque
Q est de classe C', tout M € [LP(2)]" pour 1 < p < oo admet une décomposition de
Helmholtz. Finalement, lorsque  est Lipschitz régulier, tout M € [LP(2)]™ pour
% < p < 3 admet aussi une décomposition de Helmholtz. La caractérisation des sources
silencieuses sur des domaines Lipschitz réguliers établit que toute M € [LP(€Q)]" silen-
cieuse pour 1 < p < oo admet une décomposition de Helmholtz, une extension des
résultats précédemment connus concernant cette décomposition sur de tels domaines.

Deux champs de vecteurs My, My € [LP(€2)]" sont dit Q-équivalents si Py, = Py, +7
p.p. sur R™\Q pour

v € spang{xo : O est une composante connexe de R™\Q}.

L’existence d’aimantations silencieuses souleve la question naturelle suivante : quelle
est I'aimantation de norme minimale équivalente a une aimantation donnée M &
[LP(€2)]™ ? La question a d’autant plus d’intéret que les problemes inverses sont résolus
en pratique en utilisant leur régularisation de Tikhonov. Les données disponibles étant
bruitées, les parametres de régularisation doivent étre choisis pour atténuer 'influence
du bruit sur le probleme. On peut montrer que lorsque le bruit et le parametre de
régularisation tendent vers zéro de maniere appropriée et combinée, la solution du
probleme de Tikhonov converge vers la source équivalent de norme minimale. Dans
ce but, nous avons pu prouver que si ) est Lipschitz régulier, I’'aimantation de norme
minimale équivalente & M € [LP(Q)]" est la suivante :

(M, V¢)|Vo|" Ve, (1)
ol % + % =1 et V¢ satisfont

Vo = arg max (M, Vip)|.
VYe(GHE) LIV lliLaayn=1

Cette caractérisation des sources équivalentes de norme minimale provient de ce que
pour trouver une aimantation de norme minimale équivalente & M € [LP(2)]™, nous
devons trouver la projection de M sur .S, I'ensemble des sources (2-silencieuses dans
[LP(Q2)]™, c’est a dire :
Mg = argmin || M — Mol| 7 (q)n -
Mo€S,

Nous avons montré de plus que les Vi € (G5(2))* tel que 9 est harmonique avec
0,% de moyenne nulle sur chaque composante connexe de 02 constituent exactement
les éléments de (S,)*.

La caractérisation ci-dessus des aimantations équivalentes de norme minimale con-
duit a Pobservation suivante. Soit §2 Lipschitz régulier, pour tout M € [LP(Q)]",
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5+ =1, il existe un unique Vi) € Gg(Q), D € Div,(Q) et un unique Vi € (G5(Q))*
tels que
M =V + D + |Vh|?2Vh,

ce qui est une extension de la décomposition de Helmholtz, équivalente a celle-ci
lorsqu’elle existe pour M € [LP(Q)]™.

Lorsque €2 est Lipschitz régulier, nous pouvons exploiter les opérateurs de simple
et double couche et les espaces de traces de Sobolev afin de caractériser la fonction
harmonique ¢ dans (1)), utilisant Py (x) pour z € 9. Ceci peut-étre relié aux “duality
mappings” sur les espaces de traces de Sobolev et utilisé pour calculer les aimantations
équivalentes de norme minimale dans [LP(2)]".

Constructivement, si n = 3 et Q est un domaine C'!' ou Lipschitz polyhédral,
une procédure de minimisation alternée peut étre utilisée pour calculer I’aimantation
de norme minimale équivalente & une aimantation donnée M € [LP()]® en résolvant
alternativement un probleme “g-curl-curl” et un probléeme de ¢-laplacien. les itérées
convergent fortement vers l'aimantation de norme minimale équivalente dans M €

[LP(Q)F.

Imagerie cérébrale et potentiels de couches

Nous avons examiné la question pratique de la localisation (récupération) de sources
cérébrales (densités de courant) a 'aide de 'EEG, de la sEEG et/ou de la MEG. Nous
avons supposé que la source est un champ de vecteur dont les composantes sont des
fonctions ou des distributions intégrables et que la source est localisée dans le cerveau.
Nous avons considéré la téte comme un conducteur formé de m couches non homogenes
emboitées, chaque couche ayant une conductivité électrique constante. Nous désignons
par X;, ¢ = 1,2,...,m + 1 les interfaces ou la conductivité électrique change. Le
potentiel électrique, ¢, est localement Holder continu et les courants normaux, 0;0,,¢,
sont continus a travers chaque Y;, avec v; la normale unitaire pointant vers I’extérieur
de Y;, puisque ¢ est gouverné par 'EDP elliptique

£ étant la densité de courant générant le potentiel électrique. Avec la régularité
indiquée, le potentiel électrique associé a la densité de courant peut étre exprimé
comme une combinaison linéaire des expansions de potentiel a double couche. De plus,
I'induction magnétique associée a la densité de courant peut étre exprimée comme
une combinaison linéaire des potentiels a simple couche. Ces expressions servent de
"modeles directs” pour le potentiel électrique et la densité de flux magnétique. L’expres-
sion du potentiel électrique et de la densité de flux magnétique nécessite la connais-
sance de la densité de courant et des potentiels électriques de surface, ¢;, sur les ;.
Par conséquent, pour que le probleme inverse de localisation de source soit fidele aux
données fournies, il est utile de résoudre également le probleme inverse de transmission
des données jusqu’au cortex, ce qui améliore la précision de la récupération. Le probleme
de la localisation des sources depuis le potentiel électrique ou I'induction magnétique
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est connu pour étre mal posé en raison de la non-unicité induite par 'existence de
sources silencieuses. De plus, seule une poignéequantité restreinte de mesures bruitées
sont disponibles pour étre utilisées en vue localiser la source. Nous proposons donc de
résoudre un probleme régularisé par Tikhonov, en utilisant la norme de la source et les
potentiels électriques sur les surfaces, ¥;, ¢ = 1,2,...,m + 1, comme régularisateurs,
c’est-a-dire :

Problem 1. Etant donné des données mesurées feta,B,\; >0, trouver

(57 ¢17 ¢27 R ¢n+1))\ tel que

(67 ¢17 ¢27 v 7¢n+1))\ = arg inf 7},(1,,3,)\0,...,>\n+1 (ga gbh ¢2a v 7¢n+1)7
(&,01,025..,Pn+1)

ou

7},04,,87)\0,...,/\71_‘_1 (€> ¢17 ¢27 cee 7¢n+1) = O'/H"F'l(gv ¢17 ¢27 ce 7¢n+1) - f“2
n+1

+ 5”-7:2(57 (bla ¢27 s 7¢n+1)H2 + )\OR(HSH) + Z )\J'H¢]'H%2(Ej)7

Jj=1

ou R : [0,00) — [0,00) est une fonction convexe, F; (modele direct) et Fo sont
des opérateurs liés a la composante électromagnétique des données mesurées et a la
régularité du potentiel électrique, respectivement. Nous montrons que pour tout ensem-
ble donné de parametres de régularisation positifs, a, 8, A; > 0, le probleme de Tikhonov
a une solution unique. Ceci est démontré pour X; au moins Lipschitz réguliers et pour &
des champs de vecteurs depuis des sous-espaces fermés ou faiblement fermés des espaces
suivants : [W' 5P (So)], W2 P (intSo)]3, (W' #7(S0))* ]2 ou [(W#(int%,))*]®. La
densité de courant étant membre des espaces précités, le potentiel électrique est mem-
bre de W"{(R3) et I'induction magnétique est membre de [W™(R3)]* pour différentes
valeurs de r,l dansR, . La continuité des modeles directs pour le potentiel électrique et
la densité de flux magnétique dans les topologies faible et /ou faible* sur ces espaces per-
met alors de montrer I'existence et ['unicité des solutions aux problemes de Tikhonov. Il
est important de noter que la source peut étre modélisée comme une distribution et que
le potentiel électrique est toujours membre d’un espaces de fonctions ; par conséquent,
les méthodes optimales de récupération des sources et du potentiel électrique ne sont
pas toujours les mémes pour un probleme donné. Pour tenir compte de cela, nous avons
proposé de résoudre le probleme en utilisant une procédure de minimisation, qui résout
alternativement pour la source et les potentiels électriques de surface ¢;’s, c’est-a-dire,
pour [ € N résoudre :

I+1 . l l l
§+ } = argglnf 7},04,5,)\0,...)\71.4.1 (Ev Qﬁ }7 g }7 CI gbini—l)
+1 +1 I+1 .
(Qbi{ " }7 §+ }7 R jnj;l})% = arg inf 7},a75,>\07~-~¢\n+1 <€{l}> (bl? ¢27 R ¢m+1)'

(@150 Pm+1)

Nous avons montré que la procédure de minimisation alternée converge linéairement vers
le minimum de la fonction de Tikhonov T4 ,.... 0.4 - L@ convergence vers le minimum
a lieu par construction. La convergence linéaire vers le minimum est due au fait que
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les espaces de Banach que nous utilisons sont des espaces uniformément convexes et
que les modeles directs induisent des opérateurs linéaires sur ces espaces, donc leurs
dérivées de Fréchet sont Lipschitz régulieres. Nous avons mis en ceuvre la procédure de
minimisation alternée avec des expressions des potentiels a double et simple couche qui
sont exactes pour les domaines triangulés. Cela permet de contourner les imprécisions
numériques associées aux approximations des intégrales singulieres qui ont affecté les
méthodes basées sur les potentiels a double couche. Cela permet également d’utiliser
des géométries réalistes dans les calculs numériques.

Spectre des opérateurs de Toeplitz

Lors de la résolution de problemes de points fixes a 1'aide de méthodes itératives, le
taux de convergence est déterminé par le rayon spectral de I'opérateur et la rapidité
avec laquelle les méthodes itératives convergent est déterminée par la croissance du
résolvant de 'opérateur. Il est donc intéressant d’étudier les spectres des opérateurs,
ici nous étudions les spectres des opérateurs Toeplitz.

Soit D le disque unité dans le plan complexe C et soit T = 0ID. Nous montrons
que le spectre essentiel d'un opérateur de Toeplitz de symbole ¢ € WH2(T) est égal au
spectre essentiel d'un opérateur de Bergman-Toeplitz avec le symbole qui est 1’extension
harmonique de ¢ a . Ceci a été réalisé en utilisant le théoreme de Weyl sur les
opérateurs de pertubation. En utilisant le fait que pour les opérateurs bornés leur
spectre discret de multiplicité finie converge vers le spectre essentiel et un résultat de
Favorov et Golinskii nous avons donné un résultat de vitesse de convergence pour le
spectre discret d'un opérateur Toeplitz-Bergman dans la composante non bornée du
domaine de Fredholm de 'opérateur de Hardy-Toeplitz associé.
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Summary

The study of inverse problems permeates throughout the scientific world especially in
non-destructive imaging technologies. There are varied ways in which imaging is done
but by far the most common techniques involve electromagnetism. One can think of
computed tomography (CT) which uses X-ray radiation, magnetic resonance imaging
(MRI) which uses magnetic fields or electrical impedance tomography (EIT) which uses
electric fields. The example given are all from medical imaging which is reasonable as
this is the point of contact much of society has with imaging. It turns out though
that imaging is not limited to the medical field; in engineering sciences it is important
for example in checking components of machinery for defects in a non destructive way.
Other areas of science like geology, paleo-magnetism and planetary sciences have also
benefited from imaging for instance in the study of magnetism in rock samples to track
how the magnetic fields of the earth and the moon have evolved over time and in forming
hypotheses on how planets developed their magnetic fields.

In the work presented here, we focus on imaging using electromagnetic fields to
recover magnetisations and/or current densities that produce the observed fields. This
makes contact with the imaging requirements of paleo-magnetism and brain imaging,
both functional and clinical. In paleo-magnetism, the aim is to recover a magnetisation
within a rock sample using measurements of the magnetic fields that are made at a
distance away from the rock. In brain imaging, the aim is to find a current density in
the brain (which indicates active regions of the brain) given measurements of the electric
potential or magnetic flux density generated by brain activity. This activation of parts
of the brain could be related to tasks being done for functional brain imaging or an
abnormal neurological event such as an epileptic seizure for clinical brain imaging. For
functional and clinical brain imaging we will focus on electroencephalography (EEG),
stereo-electroencephalography (sEEG) and magnetoencephalography (MEG). All these
inverse problems are governed by the quasi-static approximation of Maxwell’s equation
hence their studies have strong relations that they share. A key feature of the problems
is that even with the knowledge of the entire measured field or component of the field
outside the domain containing the magnetisation or current density, recovery of the
magnetisation or current density whose effects are being observed is not unique. This
makes these problems ill-posed hence Tikhonov regularised version of the problem is
solved.

The first two chapters form the core of the thesis, the third chapter is a result on the
spectrum of Toeplitz operators which have applications to studying convergence rates
of iterative methods for solving linear problems. In the first chapter, we characterise



silent sources which result in the inverse source recovery problems have non-unique
solutions. We also characterise norm-minimising equivalent sources to given sources.
The second chapter, is devoted to studying EEG, sEEG and MEG inverse problems,
particularly how to solve these problems and how to exploit certain properties of the
electric potential to arrive at a reasonable solution.

Silent L” magnetisations

We assume that €2 C R", n > 3, is a finitely connected bounded open set whose
boundary, 0f2, is not necessarily connected. We assume that the magnetisations, M,
supported in Q are [LP(2)]™ vector-fields, 1 < p < oo, that is, each component is an
element of LP(€2). For a given magnetisation M € [LP(2)]", its magnetic potential, Py,
satisfies

We define a silent magnetisation as M € [LP(§2)]™ such that P is constant a.e. in each
connected component of R™\(2, we allow the constants to differ between the different
connected components. .

For M € [LP(Q)]" we let M € [LP(R™)]" be the extension by zero of M on R". Using
the existence of the Helmholtz decomposition on [LP(R™)]™, for 1 < p < 0o, we showed
that for a general open set 2 with boundary of zero Lebesgue measure, M € [LP(Q)]"

is silent if and only if M = Vi 4+ D where D being divergence-free on R and

vw = [ W) Ty sew
Wn JRrr |z —yl
with Vi) and D both identically zero on R™\(.

Under the mild conditions on €2 that its boundary be of zero Lebesgue measure and
if two connected components of R™\{) have an intersection, the intersection is “thick

in the capacitory sense” in each component then M € [LP(€2)]" is silent if and only if
M = V¢ + D where

[LP ()"

Vi € {Vyp:p e C°(R"), Vp € [Ce(Q)]"} = Gp(2)

and D is divergence-free on R". This characterisation is due to the fact that under these
mild conditions of the domain it can be shown using results from non-linear potential
theory that if for any 2 C R" we define

GP(Q) = {Vy: ¥ e W2(Q), V¥ € [LP(Q)]"},

then
GE(Q) = {F € G*(Q) : F € G*(R")}

Assuming that € is a Lipschitz smooth domain, we showed that M € [LP(Q)]|" is
silent if and only if M = V¢ + D where Vi € G{(2) and

]n

Defuclcx@) dva=0}" """ .= Div,,(Q),
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which follow from the well-known equivalence that hold on Lipschitz domains that
Div, o(?) := {u € [LP()]" : divu = 0 and u - v = 0},

where v is the unit outer normal to 0f2.

The above characterisations of silent sources are reminiscent of the Helmholtz de-
composition. In general when p = 2 the Helmholtz decomposition exists for any
M € [L*(2)]" for any 2. When €2 is C! smooth, any M € [LP(Q)]" for 1 < p < oo has
a Helmholtz decomposition. Finally when € is Lipschitz smooth, any M € [LP(Q)]" for
% < p < 3 also has a Helmholtz decomposition. The characterisation of silent sources on
Lipschitz domains states that any silent M € [LP(Q2)]" for 1 < p < oo has a Helmholtz
decomposition which extends what was known about the Helmholtz decomposition on
Lipschitz domains.

We say that two vector-fields My, My € [LP(Q)]" are Q-equivalent if Py, = Py, + 7y
a.e. on R™\() for some

v € spang{xo : O is a connected component of R™\Q}.

Because of the existence of silent magnetisations the natural question is: what is
the norm-minimising equivalent magnetisation to a given magnetisation M € [LP(Q)]".
This is a question of interest since in practice inverse problems are solved using reg-
ularised Tikhonov problems. The data that is used is noisy hence regularisation pa-
rameters have to be chosen to mitigate the influence of noise on the problem. It can
be shown that by taking the noise in the data and the regularisation parameters to
zero in a specified combined fashion, the solution of the Tikhonov problem converge to
the norm-minimising equivalent source. To that end, we managed to show that if €2 is
Lipschitz smooth, the norm-minimising equivalent magnetisation to M € [LP(Q)]" is

(M,V¢)|Ve|"*V e, (2)
where 113 + % = 1 and V¢ satisfies

Vo= arg max |<Ma VT/)>|
VYe(GH ()L IVYlliLa)n=1

The above characterisation of norm-minimising equivalent sources comes about as a
result of noting that to find the norm-minimising equivalent magnetisation to M €
[LP(€2)]" we need to find the projection of M in S,, the set of Q-silent sources in
[LP(€2)]™, that is to find

Mg = argmin || M — Mol| ;7 (q)n -
MOGSp

It immediately follow that M — Mg is the norm-minimising equivalent magnetisation
to M. By looking at the problem dual to minimisation problem above and using the
duality mappings of [L9(2)]™, % + é =1, we get that

M — Mg = (M,V¢s)|Vos|'*Vs.
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Further, we showed that V¢ € (G5(£2))* such that ¢ is harmonic with 9,1 having
mean value zero on each connected component of 9 are exactly the elements of (S,)*.
The above characterisation of norm-minimising equivalent magnetisations leads to
the following observation; let Q2 be Lipschtz smooth, given any M € [LP(Q)]" with ©,
% + % = 1, there exists uniquely V¢ € G5(Q), D € Div,(Q) and Vi € (GH(Q2))* such
that
M =V + D + |Vh|*>Vh,

which is an extension of the Helmholtz decomposition and is equivalent to it when it
exists for M e [LP(Q2)]™.

When (2 is Lipschitz smooth, we can exploit double and single layer potential oper-
ators and trace Sobolev spaces to give a characterisation of the harmonic function ¢ in
using Pys(z) for x € 092. This can be related to duality mappings on trace Sobolev
spaces and this can be used to compute the norm-minimising equivalent magnetisation
in [LP(Q)]".

Constructively, when n = 3 and € is C%! smooth or Lipschitz polyhedral domain,
an alternating minimisation procedure can be used to compute the norm-minimising
equivalent magnetisation to a given M € [LP(2)]? by solving a g-curl-curl problem and a
g-Laplace problem alternatively. The iterates strongly converge to the norm-minimising
equivalent magnetisation in [LP(Q)]3.

A layer potential approach to brain imaging

Here we looked at the practical issue of source (current density) localisation (recovery)
using EEG, sEEG and/or MEG. We assumed that the source is a vector-field whose
components are integrable function or distributions and that the source is supported
with the brain. We took the head to be a nested non-homogeneous layered conductor
of m layers with each layer having constant electric conductivity, we denote by 3,
1 =1,2,...,m+ 1 the interfaces where the electric conductivity changes. The electric
potential, ¢, is locally Holder continuous and normal currents, 0;0,,¢, are continuous
across each X;, with v;, being the outward pointing unit normal to ¥;, since ¢ is governed
by the elliptic partial differential equation

V- (oVp) =V ¢,

with & being the current density generating the electric potential. It is well known that
an the electric potential with the stated regularity associated with the current density
can be expressed as a linear combination of the well-known double layer potential
expansions. Further the magnetic flux density associated with the current density can
be expressed as a linear combination of the well-known single layer potentials. These
expressions serve as forward models for the electric potential and magnetic flux density.
Both the expression of the electric potential and the magnetic flux density require the
knowledge of both the current density and the surface electric potentials, ¢;, on the
Y;’s. Hence for the inverse source localisation problem to be faithful to the data given
it is useful for one to also solve the inverse cortical mapping problem there by improving
accuracy in the recovery.



The problem of source localisation using the electric potential or magnetic flux
density is known to be ill-posed due to the non-uniqueness induced by the existence of
silent sources. Further only a handful of noisy measurement are available to use in the
source localisation. Hence we propose to solve a Tikhonov regularised problem, we use
the norm of the source and the electric potentials on the surfaces, »;, 1 =1,2,...,m+1,
as regularisers, that is:

Problem 2. Given measured data f and o, B,\; > 0 find
(&, P1, 02, ..., Gny1)r such that

(57 ¢17 ¢27 s 7¢n+1))\ = arg inf 7},&,5,)\0,...,)\”4_1 (Ea ¢17 ¢2a R 7¢n+1)7
(&,01,92,-s0n+1)

where
7}705,69\0 ----- Ant1 ('57 ¢17 ¢27 o 7¢n+1) = O‘Hf'l(€7 (blv 9252, s 7¢n+1) - f||2
n+1
+ BIFa(&, 61,62, bnr) I+ Mo RUEDN + D Nil16501 725,
j=1

where R : [0,00) — [0,00) is a convex function, F; (forward model) and F, are
operators related to electromagnetic component of the measured data and the regular-
ity of the electric potential, respectively. We show that for any given set of positive
regularisation parameters, a, 3, A; > 0, the Tikhonov problem has a unique solution.
This is shown for Y; that are at least Lipschitz smooth and for & that are vector-
fields from closed or weakly closed subspaces of the following spaces [Wk%’p (Z0)]3,
1—2.p 3 1—4p 13 Lp(; E - :

(W2 P(intXg)]?, [(W2P(20))*]? or [(W'P(intXy))*]°. With the current density be-
ing a member of the above stated spaces the electric potential is a member W™!(R?) and
magnetic flux density is a member of [W™!/(R3)]? for various values of r,l € R,. The
continuity of the forward models for the electric potential and magnetic flux density
in the weak and/or weak™ topologies on these spaces then allows to show the existence
and uniqueness of the solutions to the Tikhonov problems. It is important to note that
the source can be modelled as a distribution and the electrical potential are always
member of function spaces hence the optimal methods for recovery of the sources and
electrical potential may not always the same for a given problem. To account for this,
we proposed to solve the problem using a minimisation procedure, that alternatively
solves for the source and the surface electrical potentials ¢;’s, that is, for [ € N solve

+1 . l l l
f\+ } = argglnf 7},&,5,)\0,...,>\n+1 (E: Qbi }7 é }7 R gb;{ni-l)
l l l .
(Qbi{ +1}7 §+1}7 SRR inii}))\ = arg inf 7}»047/87)\0:--~7/\n+1 (é{l}a ¢17 ¢2> R ¢m+1)'

(P15 sPm+1)

We showed that the alternating minimisation procedure converges linearly to the
minimum of the Tikhonov functional T; 4 5 x,...A,4:- The convergence to the minimum
is by construction. The linear convergence to the minimum is through the fact that the



Banach spaces we look using are uniformly convex spaces and the forward models are
linear operators on these spaces hence they are Fréchet derivatives are Lipschitz.

We implemented the alternating minimisation procedure with expressions for the
double and single layer potentials that are exact for triangulated domains. This cir-
cumvents the numerical inaccuracies that are associated with the approximations of
the singular integrals that had plagued methods based on double layer potentials. This
also allows for the use of realistic geometries in the numerical computations.

Spectra of Toeplitz operators

When solving fixed point problems using iterative methods, the rate of convergence
is determined by the spectral radius of the operator and how quickly the iterative
methods settle to the convergence rates is determined by the growth of the resolvent of
the operator. It is therefore of interest to study the spectra of operators, here we study
the spectra of Toeplitz operators.

Let D be the unit disk in the complex plane, C and let T = JD. We show that
the essential spectrum of a Toeplitz operator with symbol ¢ € W'2(T) is equal to
the essential spectrum of a Bergman-Toeplitz operator with symbol that is the har-
monic extension of ¢ in to . This was achieved using Wely’s Theorem on pertubation
operators. Using the fact that for bounded operators their discrete spectrum of finite
multiplicity converge to the essential spectrum and a result of Favorov and Golinskii we
gave a rate of convergence rate result for the discrete spectrum of a Toeplitz-Bergman
operator in the unbounded component of the Fredholm domain of its Hardy-Toeplitz.



Chapter 1

Silent sources and equivalent
LP-magnetisations.

1.1 Introduction

Inverse source problems arising in static electromagnetism have various applications:
for instance to medical and brain imaging, in particular, electroencephalography (EEG)
and magnetoencephalography (MEG), where the primary cerebral current is to be es-
timated, or to geosciences where the remanent magnetisation of rocks and the Earth,
or other celestial bodies, is studied to document their past history and study their
structure. In magnetostatic aplications, one measures the magnetic field generated by
a magnetisation away from its support and one seeks to reconstruct the magnetisation.
Under the quasi-static assumption on Maxwell’s equations [I], the scalar magnetic po-
tential P); generated by the magnetisation M is subject to the Poisson-Laplace partial
differential equation in R3:

APy = div M, (1.1)

where Py is zero at infinity (see Equation (1.39), Sec. [L.5), and the magnetic field is
given by VPy,.

In EEG, one measures the electric potential P, generated by the primary cerebral
current M away from its support and one seeks to reconstruct that current. A common
feature to both problems is that the source term is the divergence of a vector field: the
magnetisation in the former case, and the primary current in the latter. Hereafter, we
use the magnetostatic terminology to fix ideas, but everything applies without change
to the electrostatic setting.

Such questions are severely ill-posed, due to the existence of nonzero silent magneti-
sations; i.e., magnetisations that produce no field outside the body supporting them.
Adding to a given magnetisation a silent one yields an equivalent magnetisation gener-
ating the same field as the original one, whence a fundamental uncertainty attaches to
the solution of these inverse problems. As a consequence, further assumptions on the
unknown magnetisation are needed in order to set up consistent regularising schemes.
In order to derive such schemes, one needs a working characterisation of silent and
equivalent magnetisations; this is the subject of the present chapter.



Silent magnetisations supported on a plane in R? are described in [2] under weak
(distributional) regularity assumptions, and a similar characterisation can be obtained
on the 2D sphere by the same method, only replacing Riesz transforms by their spherical
analogs defined in terms of layer potentials, see Sec. In this connection, we note
that silent magnetisations of L2-class on the sphere have long been characterised in
terms of their expansion in spherical harmonics, see for instance [3]. Because one
deals here with closed surfaces (the plane being a sphere of infinite radius), one has
to distinguish between silence from one side or from both sides. On the plane or the
sphere, being silent from one side is equivalent to the property that, in the so-called
Hardy-Hodge decomposition of the field representing the magnetisation, the component
which is a harmonic gradient from the other side is identically zero. More generally, for a
magnetisation carried by a closed Lipschitz surface, silence from one side is equivalent to
the double layer potential of the normal component being equal to minus the single layer
potential of the divergence of the tangential component; see [4, Thms 3.3 & 3.16] for
an analysis in L?-classes that does carry over, using results from [5], to magnetisations
of LP-class for restricted range of p around 2, and in fact for all p € (1, 00) when the
surface is C'-smooth. Moreover, being silent from both sides is equivalent to being
divergence-free, as a distribution in ambient Euclidean space. In another connection,
silent magnetisations supported on a slender set (i.e. a set of measure zero whose
complement has all its connected components of infinite measure) were characterised
in [6] as being divergence-free, in the setting of vector-valued measures (that subsumes
LP-classes). Slender sets include general open surfaces, whose complement is connected
and for which there is no notion of silence from one side. From this discussion, one can
get a sense of what it means to be silent for magnetisations carried by a surface in R3.

In contrast, silent magnetisations supported in a volume seem not to have been stud-
ied systematically, and the goal of this chapter is to undertake such a study. Specifically,
we show that silent magnetisations of LP-class carried by a bounded open set €2 are, for
1 < p < 00, the (restriction to €2 of the) sum of a gradient and a divergence-free field on
R", each of which vanishes outside of {2. If moreover €2 has a boundary which is locally
a Lipschitz graph, then the previous characterisation amounts to say that silent mag-
netisations are the sum of a gradient vector field on €2 with zero tangential boundary
component and of a divergence free field with zero normal boundary component.

As can be surmised from this description, the Helmholtz decomposition of vector
fields plays a central role in our analysis. Using this description of silent sources, we
can characterise the magnetisation of minimum LP-norm equivalent to a given magneti-
sation. This gives rise to a non-classical decomposition of LP-vector fields, as the sum
of a gradient with zero tangential boundary component and a divergence-free field with
zero normal boundary component, plus the duality mapping of a harmonic gradient.
When p = 2 it coincides with the Helmholtz decomposition in degree 1, but unlike
the Helmholtz decomposition the non-classical decomposition exists for all p € (1, 00)
on any bounded Lipschitz open set and it is nonlinear. Computing the magnetisation
of minimum L?-norm equivalent to a given one amounts to solve a Dirichlet problem
for the Laplacian. When p # 2, computing an equivalent magnetisation of minimum
LP-norm is more difficult.

The chapter is organized as follows. In Sec. we set up notation and recall a



number of properties of Sobolev functions on Lipschitz domains and Lipschitz surfaces,
as well basic facts concerning divergence-free vector fields. Sec. is a quick review of
Helmholtz decompositions and Riesz transforms, while Sec. [1.4] compiles known facts
on layer potentials. In Sec. we characterise silent vector fields on bounded open
sets with minimal assumptions on the regularity of the sets and use this in Sec.
to describe equivalent sources which are norm-minimal. The Appendix to this chapter
contains some auxiliary information need to ground the ideas discussed in the present
chapter.

1.2 Notation, definitions and preliminaries

Let R™ denote the Euclidean space of dimension n. Hereafter, we assume that n > 3.
We write x = (21, ,2,)" to display the coordinates of x € R™, with superscript “t”
to mean “transpose”, and x -y for the scalar product of z,y € R"; |z| = = - T2 is
the Euclidean norm of z. We let B(z,r) be the open ball centered at z of radius r,
and S(z,r) the boundary sphere. We put xg for the characteristic function of £, and
d(E1, Es) for the distance between Ei, F; C R™. We designate the set {x +¢: e € E}
by x + F, and for ¢ > 0 we set E. := {x € R": d(z, F) < ¢} for the e-neighborhoud
of K.

1.2.1 Maxwell’s equations

Central to the work that will be shown here are Maxwell’s equations. There are a set
of equations that state the relationship between primary currents (J € R?), magneti-
sations (M € R3), electric fields (E € R?), magnetic fields (H € R?), displacements
(D € R3), polarisation (P € R3), charge density (p € R), magnetic permeability
(n € Ry) and electric permittivity (¢ € Ry). By taking the following constitutive
relations,

D=e¢E+P and B=u(H+ M),

we have according to [7, Appendix on Units and Dimensions| that Maxwell’s equations
are given in differential form as follows

0B oD
VXE——E, VXH—J—FE, VD—p, V-B=0.

If the partial derivatives with respect to time in the above expressions are negligible
then we can use a quasi-static approximation of the Maxwell’s equations given as follows

VxE=0 and Vx H=J.

If we assume that J = 0 then we have that H = —V Py, where Py, : R® — R. Hence
the constitutive relations for B becomes

B = u(—VPM+M)

and taking divergence on both sides leads to (|1.1)).
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1.2.2 Function spaces
In what follows F C R" is Lebesgue-measurable and 1 < p < oo.

Definition 1. LP(FE) is the space of (equivalence class of a.e.. coinciding) R-valued
measurable functions on E whose absolute value to the p-th power is integrable, with
norm

lollvey = ([ latwldn)”  (ess. supelal f p=cc)

For1 <p < oo and % + % = 1, the dual of LP(E) is LI(E), isometrically under the

pairing
)= [ fo

We set L} (E) to consist of functions f whose restriction fix lies in LP(K) every
compact K C E.

Given a functional space X, we write [X|™ for the corresponding space of vector-
fields with m components, each of which lies in X. Further, the dual of X will in general
be denoted X, if the dual space is explicitly known it will be given as an explicit space.
Of particular interest is the following space of vector-fields

Definition 2. [LP(E)|™ is the space of R™-valued vector-fields M on E whose compo-
nents belong to LP(E), with norm

1
Ml = ([ 1P d0)" (ess supelMl i p=0) (12

and for 1 < p < oo the dual of [LP(E)|™ is [L1(E)]™,
the pairing

Jlg i % = 1, isometrically under

(F.6) = [ F) -Gy (13)

If FC R"and f: F — R™, we designate by f: R"™ — R™ the extension of f by
zero outside E. The notation stands irrespective of m, n and F.

When solving partial differential equations, classical solutions are sort after. How-
ever, it is well-known that conditions that are set for classical solutions are typically
too restrictive to be satisfied hence the concept of weak solutions has been introduced
where the problem is converted into a variational problem. These variational problems
have bigger solution sets that contains the classical solution set, hence when a classical
solution exists it is also a weak solution. At the heart of weak solutions is a space of
functions for which the notion of derivatives is weaker than the classical derivative. In
what follows 2 C R" is an open set and let a = (g, @, ..., q,) is a multi-index with

n
cach a; > 0 and |a] = ) a;.
i=1

Definition 3. Let u: 2 — R be a function, we use the notation

olely

D%y = .
aalxlaOQxZ e aanxn
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We denote by C*(Q) the linear space of all real functions, u, defined in Q which together
with all their derivatives D*u of order |a| < k are continuous in Q. We set

C>(Q) = () ().

Further, we set Ck(Q) and C>(Q) to be linear subspaces of C*(Q) and C*°(Q), respec-
tively, of all functions having compact support in Q.

Note that since @ C R is open, functions in C*(2) need not be bounded. If
u € C*(Q) is bounded and uniformly continuous, then it possesses a unique, bounded
continuous extension to the closure, €2, of 2. Hence we have the following definitions,

Definition 4. C*(Q) is the linear subspace of C*(QQ) of all functions u for which D%u
is bounded and uniformly continuous on Q0 for all || < k. Further for 0 < X\ < 1,
C*A(Q) is the subspace of C*(Q) consisting of all functions u for which D%u satisfies
in ) the Holder condition with exponent X, that is,

[Du(z) — Du(y)| < Klz —y|*,  wz,y€Q,
for all |a] < k.
Remark 1. Functions in C%'(Q) are called Lipschitz functions.
Definition 5. Let f € L'(Q), we say that f has an a-th distributional (weak) derivative,
fa, if and only if
/prw = (1)l /Q fat forall € CZ().

Definition 6. For 1 < p < oo, WH?(Q) is the Sobolev space of functions lying in LP()
together with their first distributional derivatives, with the norm

1
lolwisey = (lolsey + 199 iniaey)

where Vg = (019, -+ ,0ng)" denotes the gradient of g and 0;g the derivative with respect
to the j-th variable. We let Wy (Q) stand for the closure in W(Q) of C°(Q) under

the above norm.

Remark 2. (i) W'P(Q) is a Banach space under the given norm. A function belongs
to WyP(Q) if and only if its extension by zero outside Q belongs to W'P(R™), see
[8, Thm 9.1.3].

(ii) The definition above of Sobolev functions can be generalised to g € W™P(Q),
m € N where the p-integrability is required to hold for all distributional derivatives
D%g for all |a| < m. W™P is endowed with the norm

S =

lgllwro@) = [ gley + D IDglf0ym

laj<m
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A special property of members of I/VO1 P(Q) satisfy is an equivalence of the WP-norm
and the LP-norm of the gradients. This is given in the following theorem, see [9, Thm.
15.4.1] for a more general result:

Theorem 1 (Poincaré inequality, [I0, Ch. VI, Sec. 6.26]). Let Q@ C R™ be bounded and
let 1 <p<oo. Then
lellri) < ClIVelliwe@), (1.4)

where C depends only on the diameter of §2.

We have the following result that gives the equivalence of the W!P-norm and the
LP-norm of the gradients:

Theorem 2 (Poincaré-Wirtinger inequality, [II, Comments on Ch. 9]). Let  C R"
be bounded of class C' and let 1 < p < oo. Then

lp = Pllze@) < ClIVOllLr@ym, (1.5)

where C' depends only on the diameter of Q) and

- 1
0= @/ng (1.6)

The space W27 (£2) is comprised of functions lying in L? () together with their first
order derivatives; it is a Fréchet space, with seminorms the Sobolev norms on relatively
compact open subsets of {2 exhausting the latter.

We put W”’(Q) for the quotient space, modulo constants, of distributions on 2
whose derivatives belong to LP(2). Such a distribution, say ¢, necessarily lies in
WLP(Q), see for example [9, Sec. 1.1.2], and we write ¢y € W'?(Q) for the equiva-
lence class of ¥. Endowed with the norm

19lliro) = IVl ey,

one can see that T/» () is a Banach space called homogeneous Sobolev space (of index
p), see [9, Sec. 1.1.13, Thm 1]. It can be shown that WP(R") is the closure of C>°(R")
with respect to ||.[lyi1.pgn) for 1 < p < oo, see the discussion in Sec. |1.3|

We introduce here a subspace of [LP(2)]™ that depends on homogeneous Sobolev
spaces.

Definition 7. GP(2) is the subspace of [LP(2)]" defined by
G(Q) = {Ve: ¥ e WI(Q), Vo€ [L(Q)"} (17)

GH(Q) is the subspace of [LP(Q)]™ defined as closure of [C2°(2)]™ in GP(2):

[LP ()"

Go(Q) :={Vy: ¢ e C=(Q), Vi € [C(Q)]"}
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In other words, GP(Q) comprises gradients of members of W'?(€). When Q is
bounded, G§(£2) consists of vector fields in [LP(2)]™ whose extension by zero outside
is the gradient of some member of W'?(R"), see Lemma [19| below.

For 1 < p < oo, the dual space of Wol’p(Q) is denoted by W~14(Q), with % + % =1;
it may be realised as the completion of L?(2) with respect to the norm

HSOHWM(Q) = sup

[ st dy', (19)

see [10, Sec. 3.12]. Note that members of W=19(Q) are generally not functions but
rather distributions on Q, and that f — V[ is continuous from L?(Q) to [W~14(Q)],
by . The support of a function or a distribution 7" will be denoted by supp 7.

Members of LP(€2) in general do not have point-wise values hence point-wise descrip-
tions of these functions are meaningless in general. However under certain conditions
point-wise values can be assigned to members of W1?(Q). Since WP(Q) C Lr(Q),
every f € W1P(Q) is such that a.e.. z € Q is a Lebesgue point where f can be defined
in the strict sense:

1
fla) =tim s [ pw,
r—0 m(B(x, T)) B(z,r)
with m to indicate Lebesgue measure. Beyond the point-wise definition of Sobolev
functions at Lebesgue points we can turn to the smoothness of Sobolev functions in
order to assign point-wise values. To that end we recall the Sobolev embedding theorem,
we will only quote the part of the theorem that we need for what follows immediately,

Theorem 3 (Sobolev embedding theorem, [10, Ch. V, Sec. 5.4]). Let Q@ C R" have
a strong local Lipschitz property, see the Sec. J and m be non-negative integers
and let 1 < p < c0.

(1) Suppose mp >n > (m — 1)p. Then

Witme(Q) c C9MNQ),  0<A<m——.
p

(2) Suppose n = (m — 1)p. Then

Witme(Q) ¢ ¢9(Q), 0<A<l

By setting j = 0 and m = 1 we conclude that f € W1P(Q) for p > n is continuous so
that every point is Lebesgue hence the function has point-wise values. There however
remains something to be said when 1 < p < n since non-Lebesgue points form a set of
zero (1, p)-Bessel capacity. To define Bessel capacities we introduce the following space.

Definition 8. .7 (R") denotes the Schwartz class which consists of C*°(R"™) functions
such that, for every pair of multi-indices (a, ), there ezists a positive constant Cp p <
oo for which

Pap(f) = sup 2D f(2)] < Cop.
TER™
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We need to state the following theorem as it will be used in what follows,

Theorem 4 (Young, [1T, Thm 4.15]). Let f € L*(R"™) and g € LP(R™) with 1 < p < co.
Then for a.e. © € R™ the function y — f(x —y)g(y) is integrable on R™ and we define

(f xg)(x) = . Sz —y)g(y) dy.
In addition f x g € LP(R"™) and
1f = gHLP(R”) < HfHLl(Rn) ||g”LP(R")'
For functions in the Schwartz class we define the following operator,
G.=({I—-A)3,  keR,
for which the Bessel potential representation of f € ./ (R™),
f=Gk*g,
where g € .7 (R").
Definition 9. L"P(R") is the Bessel potential space defined by
L"P(R") ={f: f=0u*xg,9€ L"(R")}, reR
The Bessel potential space is endowed with the norm || f|l, , = [lg/l o(gn) -
Definition 10. Let K C R" be compact and set
wg ={pe SR"):p>1o0n K},

so that wg is a convex subset of the Schwartz class. Let k > 0 and 1 < p < oo, then
the (k,p)-Bessel capacity of K, Cy,(K), is defined as

Cep(K) = inf{|lo[l}, - ¥ € wic}-
For Q C R™ an open set,
Crp(Q2) = sup{C,,(K) : K C Q, K compact}.

Finally, if a property holds everywhere expect on a set of (k,p)-Bessel capacity zero, the
property is said to hold (k,p)-quasi everywhere ((k,p)-q.e.).

More details on Bessel capacities can be seen in [8, Ch. 2] and [8, Sec. 6.2] for
capacitary properties of Lebesgue points of Sobolev functions. We turn to the following
result of Calderon.

Theorem 5 ([12, Ch. V, Sec. 3, Thm 3]). Forxk € N, W*P(R") = L*P(R"), 1 <p < 00

with the equivalence of norms, that is, there is a constant A such that for all f

AT Ny < I lwnsny < All £l -
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We rephrase here [§, Thm 6.2.1], we need the following definition first.

Definition 11. A function f is said to be (k,p)-quasi-continuous if for every e > 0
there ezists an open set G such that Cy. ,(G) < € and f|ge € C(G°).

Theorem 6 ([8, Thm 6.2.1)). Let f = G, xg € W*P(R"), 1 < p < o0, 0 < kp < n.

Let q be such that 1 < q < p* where p* = nfﬁp if kp <m, and for all q, 1 < q < oo, if

kp =n. Then (k,p)-q.e. x is a Lebesque point for f in the Li-sense, that is,

1
lim —/ fy)dy = f(x) exists,
B(z,r)

75 m(B(z. 1))

and
1

}E}ém /B(x,r) |f(y) — f(z)|dy = 0.

Moreover, the convergence is uniform outside an open set of arbitrarily small (K, p)-
Bessel capacity, f is a (K, p)-quasi-continuous representative for f, and

f(z) =G, xg(x) (k,p)-q.e.

The above results show that (1,p)-q.e., for 1 < p < n, f € WH(R") has point-wise
values. Sets of zero (1, p)-Bessel capacity are very thin. Thinness is defined as follows.

Definition 12. Let E CR" and let 1 <p < %, ]%—1— % = 1. Then E is (k,p)- thin at a

point x € R™ if
1 C 71
/ ( wp(E N B(x,r)))q dr .
0 rnf/ip r

The above definition is a generalisation of the following definition of thinness which
is given for k = 1 and p = 2,

Definition 13. Let E C R" be an arbitrary set. Then E is thin at © € R™ if there
exists a positive measure p such that

Gy * p(r) < a—>13},I£l€11r§’l\f{x} Go * p(a).

Thinness plays the following role. Let 2 C R"™ be an open bounded domain and 02
have finitely many connected components, say I'y,--- ,I';. Moreover, let the connected
components of R” \ Q consist of [ open sets O1,---,0;, and with a suitable ordering
O, is the exterior of I'y while O; is the interior of I'; for j # 1. If there exists a pair
[, T% i # i* such that T'; N T # () with either O; or O;« thin on this intersection or
both then there exists a function f € W'P(R") such that Vf vanishes on each O; but
Vila ¢ Go(Q). By setting f = ¢; on O; we have that Vf is compactly supported in
1. Further f = ¢; on each I'j, however we can set ¢; # ¢;«, because of the thinness of
either O; or O;« on I'; N[y« It thus follows that there is no C*°(R™) that approximates
f. In Sec. [1.9.3] we give an example of a domain (2 that is open and bounded with a
R™\Q that is connected and function f € W,2*(R") such that Vf vanishes on R™\Q

oc
but f attains two different constant values on R™\(.
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1.2.3 Lipschitz open sets

The work we present here is valid for open sets in R™ with few restrictions on their
geometry. However, for a particular class of open sets, their geometry makes it possible
to have well behaved functions defined on their boundaries making computations pos-
sible. We discuss the geometry of such sets in this section. We will devote this section
to sets that have the Lipschitz property, we will briefly discuss other classes of sets that
may be referred to in later sections and chapters.

Definition 14. Let ® be a one-to-one transformation of a domain Q C R™ onto a
domain G C R", having inverse ¥ = ®~1. We call ® m-smooth if writing y = ®(x)
and x = V(y) as

1 =¢1(931,$2,---,33n), x Z%Zil(yl,yz,---,yn),
y2:¢2(111,$2,---,xn), $2=¢2(y1,y2>---,yn),

yn=¢n($1,$2,-.-,$n), xn:wn<yluy27'--7yn)7

the functions ¢1, ¢a, ..., ¢, € C™(Q) and the functions ¥q1,vs, ... 1, € C™(G).

Definition 15. Let  : R™ — R™ we write the Jacobian matriz (total derivative) of @
at r as

o) ) W
po = | B0 HE )
%(m) %(w) o gﬂ%(x)

Given X CR" and let ® : U C R™ — X be a local parametrization around x € X where
U is open. We may assume that ®(0) = x. The best approximation of ® : U C R™ — X
at 0 us the map

u— ®(0) + DP(0)u = z + DP(0)u.

The tangent space of X at x, T, X, is range of the map D®(0) : R™ — R".
Definition 16. For a smooth ® : X — Y, a point x € X is called a regular point for
O if DO(z) : T,X — T,Y is surjective. Otherwise, x is critical point. For a smooth

Q:X =Y, apointy €Y is called a reqular value for ® if DO(z) : T,X — T,Y is
surjective at every point x such that ®(x) =y. Otherwise y is a critical value.

Remark 3. The moral of the above definition is y is a reqular value if ®~(y) = x is
a regular point and y is a critical value if ®~(y) = x is a critical point.

Theorem 7 (Sard’s theorem, [13, Ch. 1, Sec. 7].). If & : X — Y is any smooth map
of manifolds, then almost every point in 'Y is a reqular value of ®.

Definition 17. An open set Q C R"™ is of class C™, is there ewists a locally finite open
cover {U;} of the boundary of Q, 052, and a corresponding sequence {®;} of m-smooth
one-to-one transformations with ®; taking U; onto B(0,1) C R, such that:
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(i) For some 6 >0, |J ¥;(B(0, 3)) D Qs, where U; = &1

7=1

(ii) For some finite R, every collection of R+ 1 of the sets U; has empty intersection.
(iii) For each j, ®;(U; NQY) ={y € B(0,1) : y,, > 0}.

(w) If (d14, P25 Onj) and (Y1j,02, ...,y ) denote the components of ®; and
U,, respectively, the there is a finite M such that for all o, |a] < m for every

1,1 <1 <n and for every j, we have

|D%¢;q(w)] < M, reU; and |D%;i(y)| < M, y € B(0,1).

The rest of this section is devoted to the definition of Lipschitz sets. We take an
approach slightly different from the one above in order to better get access to objects
defined on 0f) that are useful for later computations. One of the objects that we will
need access to is the Hausdorff measure defined on 0f2

Definition 18. Let E C R"™ be an arbitrary set, 0 < s < 00, 0 < § < oo. We write

T3 (dz’am C;
+1) 2

mwmeX%(

=1

\J v

>5EcDQMmmqg@.
j=1

The s-dimensional Hausdorff measure (Hausdorff s-measure) of E on R™, H*(E), is
defined as
H(FE) =limH;(E) = sup H3(E).
6—=0 §>0

We say that an open set {2 C R™ is Lipschitz if 0€2 is compact and locally isometric
to the graph of a Lipschitz function; see e.g. [10, [14]. More precisely, to each x € 92
there should exist an open set U C R" containing x and a rigid tranformation 7" of R”
such that, for some open set V' C R"! and some Lipschitz map ¥ : V — R*, one has:

T<U) NQ = {y € Rna (yla e 7yn71)t € V7 0< UYn < \I](yla e 73/7171)}'

One can cover 02 by finitely many (say N < 1) open sets U; as above, with corre-
sponding 73, V; and ¥; for 1 < j < N. Now, if we define maps ®, : U; N 92 — V; as
Q; := P, oT; where P,_; is the projection on the first (n — 1) components, we get
an atlas on 0f) making it a compact Lipschitz manifold. Note that the parametriza-
tions @;1 Vo = U; N0 C R™ are themselves Lipschitz as they are given by
<I>j_1 = Tj_1 o (I,_1 x ¥;), where I,,_; is the identity map on R"™!. Since 99 is lo-
cally the image of an open subset of R"~! by a Lipschitz function (e.g., @;1 :V; = R"),
the volume measure o coincides with the restriction to 092 of Hausdorff (n—1)-measure,
see [I5], Sec. 3.2]. Integration of functions on Jf2 is always understood with respect to
0.

For a Lipschitz open set 2 C R", we say that x € 0 is singular if there is j €
{1,---, N} such that = € U; and ®;' : V; — R is not differentiable at ®;(x). A point
which is not singular is called regular. We denote the set of regular points by Reg 0f)
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and put RegV; = ®;(RegdQ2NU;). So defined, the set of regular points depends on the
atlas, but we shall fix the latter. As (IDj’l is Lipschitz, the set £; C V; where it is not
differentiable has Lebesgue measure zero, by Rademacher’s theorem [16, Thm 2.2.1].
Hence, o(®;(E;)) = 0 [16, Rem. 1.4.3], implying that singular points have o-measure
zZero.

The tangent space of 92 at z is the subspace 7,02 C R" equal to {0} if x is singular
and to Ran D®;'(®;(z)) if « € U; N Reg &2, where D} denotes the total derivative
of <I>j_1. By the chain rule, the definition does not depend on j such that x € U;. At
x € Reg 092, the outward pointing unit normal to 0€) is well-defined, and we denote it
as v(x).

The connected components of 0€2 are connected compact Lipschitz hypersurfaces in
R™. For I' any such hypersurface, R™\I" has two connected components: its interior de-
noted by int I' which is bounded, and its exterior denoted by ext I' which is unbounded,
see [17, Cor. 3.45].

The connected components of a Lipschitz open set {2 C R" are finite in number.
Otherwise indeed, there would exist a sequence Oy of such components, k € Z, with
Or N O; = 0 for k # j. Then, we could construct a sequence z; € Oy such that
xp, remains at bounded distance from 00, C 0f), hence z; would be bounded and
extracting a subsequence if necessary we might assume that x; converges in R” to some
y. However, this is impossible for y cannot lie in €2 since the connected components are
open, nor can it lie in R™ \ , and it cannot belong to 9 either because, by definition
of a Lipschitz open set, each member of 02 has a neighborhood whose intersection with
Q) is connected. For the same reason, distinct connected components of {2 cannot have
a common boundary point, hence they lie at strictly positive distance from each other.

A Lipschitz domain is a connected Lipschitz open set. We record for later use an
“obvious” topological lemma:

Lemma 1. Let 2 C R" be a bounded Lipschitz domain. Then, 0S) has finitely many
connected components, say I'y,--- ,T;. Moreover, the connected components of R™ \ Q
consist of | open sets Oy, ---, 0y, and with a suitable ordering O, is the exterior of I'y
while Oj; is the interior of I'; for j # 1.

Proof. Since 0 is a compact Lipschitz manifold which is locally a Lipschitz graph, each
x € 0f) has a neighborhood whose intersection with 02 is connected. Consequently, by
compactness, 02 has finitely many connected components, say I'y,--- ,I';, and each I';
is a connected compact Lipschitz hypersurface in R". As € is connected by assumption,
for each j € {1,--- ,n} either Q C intT; and then extT; C R™\ Q, or else ) C ext T
and then intI'; C R” \ Q. Since there is exactly one unbounded connected component
of R™\ Q, say Oy, it must contain ext I'; for all j such that  C intT';; let us enumerate
these j as ji,- -+, jm. For 1 < i,k < m, it holds that intT';, NintT";, # O because
lies in this intersection, and since the I'; are disjoint one of these interiors is included
in the other, say intI';, C intI'j,. But if j; # ji, then I'j, C extD';, and the latter is
contained in Oq, a contradiction. Consequently, m = 1 and € lies interior to exactly
one of the I';, say I';. Necessarily then, O; = extI'; because O; cannot strictly contain
extI'y without containing a point of I';, which is impossible. Likewise, {2 C extI'; for
j # 1 and then intI'; is a connected component of R" \ . Finally, the closure of every
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bounded connected component of R™ \  must meet some T';, and necessarily j # 1 for
each point of I'; has a neighborhood included in Oy U €2, by the local Lipschitz graph
property. Hence, this connected component meets intI'; for some j # 1, therefore it
must coincide with int I';. O]

Before stating the next result concerning Lipschitz domains we will state a result of
Whitney that ensures the existence of a C' extension, f, of a given function f defined
on a closed subset £ C R™. Let f: E — Rand d: E — R" be given functions and

flx) = fly) = dy) - (z —y)
|z =yl
and for K C E a compact set, and for § > 0

R(z,y) = r,y€ B, x#y,

px(6) =sup{|R(z,y)| : 0 < |z —y| <0, v,y € K}.

Theorem 8 (Whitney extension theorem, [I8, Thm 6.10]). Assume that f,d are con-
tinuous, and for each compact set K C E,

pr(0) =0 asd— 0.
Then there exists a function f : R™ — R such that
(i) fecC
(ii) f=f and Vf=d on E.
At some point, we also need the following “trivial” fact:

Lemma 2. For ) a bounded Lipschitz domain and e > 0, there exists a simply connected
Lipschitz domain O such that Q2 C O C O C §2..

Proof. In fact, one can design O so that it is smooth. For this, we use the notation of
Lemma [If and observe that O; is the zero set of a non-negative C*°-smooth function
f:R"™ — R from the Whitney extension theorem. Adding to f a smooth non-negative
function which is 0 in a neighborhoud of © and 1 in a neighborhoud of oo, we may
assume that f(z) > 1 for |z| large enough. So, if n > 0 is a sufficiently small regular
value of f, then f~1(n) is a smooth compact (n — 1)-dimensional manifold and we can
take O := int V with V the unbounded component of f~1(n, +c0); see, e.g. [13, Ch.
1, sec. 7] for a definition of regular values and Sard’s theorem that non-regular values
have 1-dimensional Lebesgue measure zero. O

Definition 19. We say that a domain D is a special Lipschitz domain if there is a
@ : R"! — R which satisfies the Lipschitz condition

lo(z) — (@) < Mlz —a/|,  for all z,2" € R",

such that

D ={(z,y) e R" : y > o(x)}.
The smallest M such that the Lipschitz condition holds is called the bound of the special
Lipschitz domain D.
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Definition 20. Let Q@ C R"™ be open. We say that 02 is minimally smooth, if there
evists e >0, N € Z, M > 0 and a sequence {U;} of open sets such that:

(i) For x € 0%, there is a U; such that B(z,e) C Uj.
(i) No point of R" is contained in more than N of the Uj.

(iii) For each j there is a special Lipschitz domain D; whose bound does not exceed M
such that
Uj N Q - Uj N Dj.

1.2.4 Boundary traces of functions and fields

When Q C R" is a Lipschitz open set, W1?(Q) coincides with the restrictions to € of
WP (R")-functions as a consequence of the following theorem.

Theorem 9 ([12, Ch. VI, Thm 5]). Let Q C R™ be a domain with a minimally smooth
boundary. Then there exists a linear operator € mapping functions on € to functions
on R™ with the properties

(i) €(f)|la = f, that is, € is an extension operator.

(i) € maps W™P(Q) continuously into W"P(R"), 1 < p < oo and all non-negative
m € Z.

Moreover, when 1 < p < oo, each f € WP(Q) has a trace on 052, say 1. These
traces are members of the so called fractional Sobolev spaces which we define as follows.

Definition 21. A function ¢ € WP(00), 0 < s <1, 1 <p < oo if

[olwsony = [l + ([ [ OB aoyiot))” (110)

is finite.

For f € WP(Q), 1 < p < oo its trace 1 on 9N lies in the fractional Sobolev space
Wi (02). This means that the restriction to 0f2, initially defined for functions
in C°(R™)jq, extends to a continuous map W'?(Q) — Wl‘%ﬂ”(am. Membership in
WioeP (092) characterises traces of Sobolev functions on the boundary of Lipschitz
domains [19, Ch. VII, Thm 1], moreover the trace operator is surjective W'?(Q2) —
Wi 2P (0Q) [14 Thm 1.5.1.3]. In particular, traces on 052 of C'2°(R™)-functions on R"

are dense in W' #?(99Q). Also, W, ?(Q) coincides with the space of W*(Q)-functions
with zero trace [20, Prop. 3.3].

For 1 <l < o0, we let W_%’l(c?Q) indicate the fractional Sobolev space of negative
order —1—1) and exponent [ which is the dual space of Wl (092), % + ll, =1 WﬁE’l@Q)
may be realised as the completion of L!(99) with respect to the norm

||go|| = sup /gpuda. (1.11)
o Ty o0

WP (99)
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Members of Wﬁi’l(ﬁﬁ) are distributions on R", supported on 0f2.

Note that we defined the fractional Sobolev space W*P(9§2) without resorting to
the integral Sobolev space W1P(9€), that may be defined as those f : 9Q — R such
that f o (IDJ-_l e Whr(V;) for all j, where V; and ®; are as in Sec. In fact
We2(9) = [LP(09Q), WP (9Q)]s p, where [.,.]s, is the so-called real interpolation func-
tor, see Appendix for a brief discussion. Functions f € WP(9Q) have a well-defined
gradient Vo f € [LP(9Q)]", valued at a.e.. x € Q in the tangent space 7,09, see (L.78).

Functions ¢ € Wi (092) also have a well-defined gradient V71, but the latter is now

1
a (n — 2)-current on 02 lying in the space W, ”’p(é?Q), see Appendix for details.
We are now in a position to introduce and study a second subspace of [LP(2)]".

Definition 22. For Q a bounded domain and 1 < p < oo, consider next the subspace
Div,(Q2) of [LP(Q)]" defined by

Div,(Q) := {u € [LP(Q)]" : divu e LP(Q)};

here div u = 37, Oju stands for the Euclidean (distributional) divergence of u, that
we also denote sometimes as V - u.

Of particular interest is the following subspace of Div,(€2):

[Lr (Q]

Div,(Q) = {u € [C=(Q)]" : divu = 0} (1.12)

that is, Div,(12) is the closure, with respect to the Divp(Q)—norm, (which coincides on
Div,0(92) with the [LP(€2)]"-norm) of those fields in [C2°(£2)]™ that are divergence-free,
see for example the exposition given in [22] Ch. III].

When 2 is taken to be Lipschitz more can be said about Div,(€) we state an
important result here

Theorem 10 (21, Lem. 1.2.2]). Let Q be Lipschitz, Div,(Q2) endowed with the norm

: 1

Hu”Divp(Q)) = (HUHI[)LP(Q)}” + HdWUHiP(Q))",
18 a Banach space. There exists a bounded linear operator
[,:uw—Thu, u € Div, (),

from Div,(Q) to Wﬁé’p(ﬁQ) such that I'yu coincides with the functional

o (o) =/ (-v)pdo, o€ WHI(Q).
o0

In what follows whenever we use u - ¥ we mean the normal trace operator, in each
case v is the exterior normal field on 02 which coincides with the unit outer normal
vector-field when it exists. The theorem above states that the normal component u-v of

each u € Div,(€2), with © Lipschitz smooth, is well-defined as a member of W™ » »P (082)
and the divergence formula holds:

(p,u-v) /W dy+/so(y)div u(y) dy, ¢ € WH(Q). (1.13)
Q
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Theorem 11 ([22, Thm I11.2.3]). If Q Lipschitz smooth then the following equality is
valid
Div,o(Q) ={u € [LP(Q)]" : divu =0 and u - v = 0}. (1.14)

Moreover, on domains 0 smooth enough such that (1.13)) holds for all u € [L}, (9)]™ N
[LP()]™ with ||divu|| ) < 0o then equality (1.14) holds.

Remark 4. An example of domains that satisfy the conditions outlined in Theorem
is domains of finite perimeter. We can arrive at this conclusion by using [16, Thm
5.8.2], the density of C=(Q)NWLP(Q) in W'P(Q) and the density of C°(Q) in LP().

When 1 < p < oo and %—l—é = 1, we observe that Div,(€2) and G%(f2) are
the orthogonal spaces to each other wvia the pairing , for every open set 2 C
R”. Indeed, Div,((€2) and G?(£2) are certainly orthogonal, since smooth compactly
supported divergence-free fields are orthogonal to distributional gradients.

Moreover, if F' € [L}, .(Q)]" is orthogonal to all divergence free fields in [C°(2)],
then it is known that F' = V¥ where ¥ € W21 (Q);

Theorem 12 (22, Lem. IIL.1.1)). Let Q C R" be open and suppose F € [Li, ()"
verifies

/ F-u=0, for all uw € [C2°(Q)]" with divu = 0.
Q

Then, there exists a single-valued scalar function ¥ € Wl’l(Q) such that FF' = VW.

loc

We further have the following result.
Theorem 13 ([23, Thm 6.74]). Let ¥ be a distribution on Q@ C R™ open, then

VU €I} (Q) = Ve W.P(Q).

loc

Moreover, if Q is bounded and of class C*, then

VU € LP(Q) = ¥ e W (Q).

loc

F belong to G4(£2). Thus, G%(Q) = (Div,(Q2))* and therefore, by the Hahn-Banach
theorem, a member of [L?(£2)]" which does not lie in the closed subspace Div,((2) can-
not be orthogonal to G?((2). Hence, it holds that Div,((Q) = (G%(Q))*, as announced.

Thus, if moreover, F'in [L9(€2)]", we get that ¥ in Theoremis in W9(Q), so that

1.3 The Helmholtz Decomposition

It was initially proved by Helmholtz that if u € R? is a smooth vector-field that vanishes
sufficiently fast at infinity, then it can be decomposed uniquely into the sum of a gradient
and a curl, that is:

u=Vep+VxA

where ¢ and A are the so-called scalar and vector potentials respectively, see [24]. This
type of decomposition was subsequently extended to any dimension to function spaces
that are useful for partial differential equations, see the account in [22, Ch. III].
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Definition 23. On a domain Q@ C R™, we say that M € [LP(Q)]" has a Helmholtz
decomposition if there uniquely exist Vip € GP(2) and D € Div,o(S2) such that

M = D + Vi (1.15)

We say that a Helmholtz decomposition holds in [LP(2)|" if, for each M € [LP(92)]",
there uniquely exist Vip € GP(2) and D € Div, o(2) such that (1.15)) is valid.

Note that when € is bounded, a decomposition like ([1.15) is unique as soon as it
exists. The existence of the Helmholtz decomposition is equivalent to the existence of
a unique solution 1 € WH?(Q) to the following Neumann problem

Ay = div M, in €
(1.16)
Vy-v=M-v, on 0f).

Since [L?(2)]" is a Hilbert space in which G?(2) is the orthogonal space to Divg (),
a Helmholtz decomposition holds at exponent 2 for any domain 2 hence we have the

topological direct sum
[L2(Q)]" = G*(2) ® Diva(Q).

Alternatively, it can shown that a solution to the Neumann problem exists always exists
when p = 2. For p # 2 the situation becomes complicated. When (2 is Lipschitz, we
turn to the following result,

Theorem 14 ([25, Thm 11.1)). For each Lipschitz domain Q@ C R™, with arbitrary
topology, there exists (2) > 0 such that

[LP()]" = GP(Q) © Divy,0(),

is a topological direct sum forp € [% —e(2),3+e(Q)]. In the class of Lipschitz domains,
this result is sharp. If however Q of class C' we may take 1 < p < oo.

Moreover, if € is convex, then a Helmholtz decomposition exists for all p € (1, 00),
see [20, Thm 1.3]. More about domains on which a Helmholtz decomposition holds for
1 < p < oo may be found in [27]. Note that if a Helmholtz decomposition exists in
[LP(£2)]™, then

Dl zo @y + IVl oy < CEP) 1Moy » (1.17)

by the open mapping theorem. Hence, the Helmholtz decomposition is LP-continuous
whenever it exists. Observe also that if a Helmholtz decomposition holds in [L?(€2)]"
for some p € (1, 00), then it holds in [L(2)]™ with i + é = 1, by duality.

For the remainder of this section we look at the Helmholtz decomposition on R"™.
On R”, a Helmholtz decomposition exists for 1 < p < oo. We review this classical
result below, as it is important for our purposes. The standard proof is based on Riesz
transforms:
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Definition 24. For f € LP(R™) with 1 < p < 00, its j-th Riesz transform is defined as

. T —Yj .
R;(f)(x :hmcn/ —LF_f)dy, j€{1,2,...,n}, 1.18)
@ =tme [ { } (
where
r(=)
Cn = — Qg
T 2

The pointwise limit in (1.18)) exists for a.e.. z € R”, moreover R;(f) is a bounded
operator from LP(R") to LP(R") for 1 < p < oc.

Definition 25. For f € .#(R") the Fourier transform of f, denote f is defined as
f& = fwemvdy,  cern
R

We extend the notation F +— F to designate the Fourier transform componentwise

[ (R™)]" = [ (R™)]".

The Fourier transform, f — f, maps .% (R™) into itself. The Riesz transforms and
the Fourier transform have a special relationship, the Riesz transform is what is called
in [12] a multiplier of the Fourier transform, that is, for j € {1,2,...,n}, it follows
from see [12, Ch. II, III] that

— & .

R;(f)(€) = @Ef(ﬁ), feZRY. (1.19)

Much more closely related to the Riesz transforms are the Riesz potentials which
are defined as follows :

Definition 26. The Riesz potential of f, for f which is sufficiently smooth and for
0 < Kk <n is defined by

(I f)(z) = S0 L |z — 7" f(y) dy, (1.20)
where 2w
/7(/'@) 71222 _(2))

From [12, Lem. 1] we have that if f € (R"), n > 3 and 2 < k < n then
AL(f) = L (Af) = =1, 5(f). Thusif kK = 2 then f = —I,(Af). Now, for p € (1,00),
every M € [LP(R)]™ has a Helmholtz decomposition:

M =D+ Vy, (1.21)
where D € [LP(R")]" is divergence-free and ¢ € W'P(R"), and in fact

v — (B (Y R08))’ (122
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where M}, indicates the k-th component of M.

Indeed, the right-hand side of lies in [LP(R™)]™ because of the LP-boundedness
of Riesz transforms. Moreover, when M € [L*(R™)]" and f € .(R"™), it follows from
and the isometric character of the Fourier transform in L?(R™) that

(3 o). ) - <Rl(ijk<Mk>) 8)

ZékMk , 2im& f) — Z@Mk , 2 f) = (1.23)

|§|2 |§|2

whence the first term in (|1.23) is zero for M 6 [LP(R”)] by density of L*(R™) N LP(Q)
in LP(R™). That is, the right hand side of (| satisfies the (distributional) Schwarz
rule and so it is a distributional gradient, Wthh must be the gradient of some W,-"-
function ¢. Consequently, this right hand side belongs to GP(R™). Finally, one verifies
by an argument similar to the one in that M — V4 is orthogonal to gradients of
Schwartz-functions, and therefore is divergence-free, see [28, Sec. 10.6]. Uniqueness of
the decomposition comes from the fact that no nonconstant harmonic function on R”
can have a gradient in [LP(R™)]"™.

The mechanism behind formula is made transparent by the following, formal
observation. Let w, denote the surface area of the unit ball in R”, and R, indicate the

Riesz kernel of order 2: i

(n = 2)wnz|"=>
If we put U(z) = —Rs * divM for the harmonic potential of div M, then AU = divM
where A := Z?Zl af is the Euclidean Laplacian, whence D := M —VU is divergence-free
and so M = VU + D is the Helmholtz decomposition, provided that VU e [LP(R™)]".
As the Fourier transform of divM is —2im S0, & My(€) while Ry(€) = (27]¢])~2 [12
Ch. V, Lem. 1], one has U(£) = i(2m)7Y¢| 7200, &M;(€) and therefore VU has
Fourier transform (&, -+ ,&,)" ¢ 72>, €M, (€), which is equivalent to in view
of . What precedes suggests that ¢y = —RyxdivM is a natural candidate in ,
and the lemma below gives a rigorous argument to this effect when M € LP(R")NL(R™)
for some ¢ € (1,n). However, we trade Ry * divM for VR * M (a formal integration
by parts), as it will serve our purposes.

NRo(x) := (1.24)

Lemma 3. For M € [LP(R™)]" N [LYR™)]" with 1 < p < 00 and 1 < q¢ < n, let us
define

Uy () = wi / M(y)- |(x - y|ldy, v R, (1.25)
Then:

(i) the integral (1.25) - converges absolutely for a.e.. x and M — Wy is continuous
from [LY(R™)|™ into Lo (R™);

(i1)) VU, € LP(R™), and decomposition (1.21)) holds with 1 = W .
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Proof. Since |ﬁ] < |z|'™", assertion (i) follows from properties of Riesz potentials, see
[12, Ch. V, Thm. 1]. We claim that it is enough to prove (ii) when M € [ (R™)]".
Indeed, if M € [LP(R™) N LY(R™)]™ then there is a sequence F,, € [ (R™)]™ converging
to M both in [LP(R™)]" and in [L?(R™)]™, by mollification. Hence, if M = D + V)
and F,, = D,, + V Py, are the Helmholtz decompositions of M and F}, respectively, we
know from that lim,, VPg, = V1 in [LP(R™)]" and from (i) that lim,, Pr, = ¥y,
in L"?/("=9)(R"). Because the latter limit implies that V Pg, converges to V¥, as a
distribution, and since LP-convergence implies convergence in the distributional sense,
we conclude that VWU ,, = V1, thereby proving the claim.

We now show that (i) holds when M € [./(R")]™. In this case, the integral
converges absolutely for every x, and using Fubini’s theorem and integration by parts
one checks that Wy, = —MR, x divM, with Ry as in ((1.24]). Hence, AV,, = divM and,
by the discussion before the lemma, it remains to prove that VW,, € [LP(R™)]". Note
that if M € [ (R")]", then

A

ar(e) = W S 6 (€) (1.26)

as a tempered distribution, by [12, Ch. V, Lem. 1]. Let A (R") C .(R") consist
of functions whose Fourier transform vanishes at 0; i.e., functions in .%/(R") with zero
mean on R™. Let further 3(R") C .#(R") comprise those f such that f vanishes in a
neighborhoud of the origin. For M € [E(R™)]", it is clear from that W), € .7 (R"),
hence also ¥y, € .(R") and a fortiori VW, € [LP(R™)]", as desired. The conclusion
in fact extends to every M € [#(R")]", because £(R") is LP N Li-dense in .#H(R™)
(see Lemma [8)) and we may resort to a limiting argument resembling the one we used
to reduce the proof to the case where M € [.(R")]™. Thus, in order to prove that
VW, € [LP(R™)]" for all M € ., it is enough to show this is true when M = hv
for any v € R™ and some particular h € . \ %, because the space of such functions
complements [#]" in [.]". Since the function MRy * h is locally bounded and for
k € {1,---,n} the function z — Ry(x — y) is absolutely continuous on each line
Ly :={z: z; =c¢j, j # k} except when ¢; = y; for all j # k, we get on differentiating
under the integral sign that Py, = — > 7, vs0k(R2 * h). So, we are left to check there
exists h € %\ . such that Ry  h has all its second derivatives in LP(R"). Lemma [J
provides us with such a h, thereby concluding the proof.

O

As alluded to earlier, given a bounded open domain 2 C R", a Helmholtz decom-
position does not always exist in [LP(2)]™ for 1 < p < oo, even if Q is Lipschitz. In
Section (1.6} we will prove there is a related, three-term decomposition that exists in
[LP(€2)] for all 1 < p < oo as soon as (2 is Lipschitz. We state the result here.

Theorem 15. Let 2 be a bounded Lipschitz open set and M € [LP(Q)]" a nonzero
vector-field with 1 < p < oo and % + % = 1. Then, there exists uniquely Vi € G5(Q)
and D € Div,¢(Q2), together with a harmonic function h in Q meeting fri(g—’;) dH" 1 =0
for each connected component I'; of OS2, such that

M =V + D + |Vh|*2Vh. (1.27)
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The above theorem can be stated for a larger class of open sets as :

Corollary 1. Let 1 < p < o0, ]1) + % =1 and Q C R" be a bounded open set whose
boundary 0SY has zero Lebesgue measure, with {O;};e; the connected components of
R™\ Q. Assume that whenever O; (\Uie;O; # 0 for some index j € J and some subset
of indices I C J, then By (6j N UieIOi) > 0. Suppose in addition that O; is non-thin
at By ,-quasi every point of 00; (which is no restriction if n < p) and that for all
u € [Ly, ()] N [LP(Q)]™ with ||div ul| ey < 0o the equality

loc

(p,u-v) Z/QVsO(y)-U(y) dy+/ﬂs0(y)diVU(y) dy, ¢ e Wh(Q),

holds. Then for M € [LP(Q)]™ a nonzero vector-field there exists uniquely Vi € GH(£2),
D € Div,o(Q) and h € W4(Q), a function harmonic in Q satisfying Vh € (G5(Q))*
such that

M =YV + D + |Vh|*>Vh. (1.28)

1.4 Double and Single layer potentials

In this section we look at layer potentials which will play some role in this work in
relation to their use in the representation of solutions of problems such as . This
section consists in mostly listing interesting properties of the layer potentials with the
main references being two papers [29, 25]. Assume that Q C R" is a bounded Lipschitz
domain whose boundary is either connected or disconnected. Hence, R™\ 02 has at least
two connected components. For any bounded connected set O we take the convention

O = int 00 and O~ := ext 00.

Definition 27. The double and single layer potentials of a function v defined on 0f),
whose smoothness will be made precise later on, are defined by

Ko@) = [ v v doty), weRNOL, (129
Wn Jan |z —y|
and
1 1 i
Sip(x) = —m/m@/}(y)m do(y), =€ R"\0, (1.30)

respectively. We call ¢ the density of the double or single layer potential.
It is well-known that K1 and St are harmonic in R™\9€.

Definition 28. For x € 0€), the double layer potential is defined as the singular integral

Ky(z) =pv. — wi Y(y) ‘f__yy‘l v(y)do(y)
L o0 (o) (1.31)
= lim —— . w(y)|x_y|n -v(y) do(y).
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and

Ko@) =po [ )0 v oty

1 (z —y)
= lim — v(x)do(y).
[ e (@) do(y)

e—=0 Wy, y |z —y|» .

(1.32)

Theorem 16 ([29, Thms 1.10, 1.11)). If¢ € LP(0Q) then K (x) and K*(x) exist in
LP(0Q2) and point-wise for a.e.. x € 0. Also

(L1d+ K)y(x) ye
(—3ld+ K)p(y)  yeR™NQ’

Yy—x

1mnww={

lim v(z) - VSY(y) =

Yy—x

(—31d + K*)¢(x) y €
(31d+ K*)i(y) y € RM\Q’

for almost every x € 0X) where the convergence y — x is non-tangential.

It follows that the non-tangential limits on 02 of the double layer potential from
inside and outside, differ by the density v of the potential. For appropriate range
of exponents, the double layer potential on 2 is a famous tool to solve the Dirichlet
problem for the Laplace equation, which is to find w : 2 — R such that

Aw =0 in €,

1.33
w = g on Of). ( )

In fact, (31d + K) : W%’p((?Q) — Wé’p(aﬁ) is invertible for p € [2,3] and % + % =1,
see [25, Thm 8.1]. Hence, the solution to (1.33|) when g € Wé’p(aQ) with p € [2,3] is
given by w = K(3/d+ K) g and belongs to W*P(Q2). Here, the boundary condition in
(1.33) is satisfied both as a Sobolev trace and as a non-tangential limit a.e.. Likewise,

the double layer potential on 2~ is a tool to solve the exterior Dirichlet problem, which
is to find w : 2~ — R such that

Aw =0 in R"\Q U {00},

1.34
w = g on 0f), ( )

here, as n > 3, harmonicity at infinity means that lim;|. w(z) = 0 [30, Thm 4.8]. In
fact, (—3/d+ K) : W%’p(ﬁﬂ)/<1> — W%’p(aQ)/ﬂ) is invertible for p € [2, 3], where the
quotient by (1) means “modulo constants”, see [25, Thm 8.1]. Hence, w = K(—31d +
K)~'g will solve the exterior Dirichlet problem up to a constant when g € WP (0€2) and
p € [2,3], with wio-npo,r) € WP(Q NB(0, R)) for all R > 0 and Vw € [LP(Q27)]". To
account for constant boundary conditions, observe that the exterior Dirichlet problem
with constant data on 02 can be solved using the single layer potential of the Newtonian
equilibrium measure of  [3I, Ch. IV, Sec. 5, §20] (the latter has L? density with
respect to o after [32, Cor. to Thm 3], so that its single layer potential has gradient in
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[LP(£27)]™). Altogether, the exterior Dirichlet problem with data g € WP (09)) with
pE [%, 3] can be solved using a combination of double and single layer potentials.

Unlike the double layer potential, the single layer potential is continuous across 052,
though its normal derivative is not. Note that the gradient of the single layer potential
is given by

VSu(z) = — / @=9) oy doty), @ e RMOO. (1.35)
wn Joq |z =yl
For 1 < p < 0o and ¢ € LP(0R), it holds for a.e.. y € I that v(y) - VSi(x) converges
to —(3/d— K*)i(y) (resp. (21d+ K*)(y)) as  — y non-tangentially in € (resp. Q7),
where K* operates on L?(02) for 1 < ¢ < oo and is the adjoint of K:
1 (z —y)

K*1/}(J7> = p.U.w—n aQ¢(y) |(E _ y|n ’

v(x)do(y), (1.36)

see [29, Thm 1.11] for a statement and further references.
For appropriate range of exponents, the single layer potential on €2 allows one to
solve the Neumann problem for the Laplace equation:

Aw =0 in €,

1.37
Vw - v =g on 0, ( )

where the boundary condition in ([1.37]) is meant to satisfy the divergence formula; i.e.
(1.13) holds when u gets replaced by Vw and (u - v) by g. Likewise, the single layer
potential on 2~ can be used to solve the exterior Neumann problem:

Aw =0 in R"\Q U {00},

1.38
Vw - v =g on 0. ( )

More precisely, it follows from [25, Thm 8.1] that (+37d+ K*) extends to an invertible
map W—%ﬂp(asz) — W—%’p(aﬂ) for p € [2, 3], where we have set

Worn(@9) = {f € Wr(09) : | f(y)do(y) =0},
o0
Thus, by [25, Thm 9.2], the solution to (1.37)) (resp. (1.38))) can be written as w =
S(F31d + K*)"'g, up to an additive constant, under the (necessary) condition that
Jo0,9(y) do(y) = 0. Moreover, w belongs to W'P(Q) (resp. wig-npo,ry € WHP(Q27 N
B(0,R)) for all R > 0 and Vw € [LP(Q27)]").

1.5 Silent magnetic sources

Let us represent a magnetisation carried by a bounded domain Q C R? as a vector-
field M € [LP(Q2)]?, with 1 < p < co. Under the quasi-static assumption of Maxwell’s
equations, it is known (see [1]) that the scalar magnetic potential Py, generated by M
is related to the latter by

APy =V - M, (1.39)
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where Py is zero at infinity. It follows from ([1.39)) and the vanishing of Py, at infinity
(recall  is bounded by assumption) that

1 V- M(y)

Pu(z) = ——
(@) At Jes |z — vy

dy, (1.40)

that can be rewritten, since €2 is bounded, as

Pula) = 1 [ M) = (1.41)

T 4r o -y

A magnetisation is said to be Q-silent, or a silent source in R?\ Q, if it generates the
zero field there. Although the main physical interest attaches to dimension 3, nothing
gets simpler if we restrict to this setting, and perspective is gained if we extend the
terminology to any dimension strictly greater than 2 by making the following, formal
definition:

Definition 29. For Q C R" a bounded open set, we say that M & [LP(Q)]™ is Q-silent
if

va@:wa(liLAaw.FZEQ@):o, ge w €RNQ.  (1.42)

Wn z —y|"

Note that Py is harmonic in R™ \ Q. In particular, if 9 has Lebesgue measure 2 0
then Definition [29|says that M is Q-silent if and only if Py, is locally constant in R™\ €2.

Note that Py defined in ([1.41]) coincides with W3 given by (1.25). As a consequence,
Lemma 3| provides us at once with a criterion for M to be ()-silent:

Theorem 17. Let Q C R" be a bounded open set. A field M € [LP(Q)]™ is Q-silent if

and only if the Helmholtz decomposition of M on R™, say M = Vi + D, is such that
both V1) and D are zero a.e. on R™\ €.

Proof. Since 2 is bounded, M lies in [L4(R™)]" for 1 < ¢ < p. Hence, in the Helmholtz
decomposition M = V¢ + D, we may choose ¢ = VW47, by Lemma . Thus, as
Py = Vg7, the gradient term in the Helmholtz decomposition of M is V Py, and
therefore M is silent if and only if this gradient term is zero a.e.. on R™\ Q, by .

Because M is zero on R” \ ©, this happens if and only if D is zero a.e. on R™\ Q, as
desired. ]

When () is a union of positively separated pieces, the question whether M is {2-silent
reduces to the corresponding question on each piece. This we record as a complement to
Theorem |17} see e.g. [33] and [34, Cor. 3.5] for related, somewhat less general results.

Lemma 4. Let M € [LP(Q)]" for some p € (1,00) with Q = U\_,Q;, where Q; CR™ is a
bounded open set whose boundary has zero measure and d(€2;, ) > 0 for j # k. Then,
M is Q-silent if and only if the restriction Mq, is Q;-silent for each j € {1,---,1}.
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Proof. Let us put Oy := U; ;. For each ¢ € {1,--- ,n}, we have that 6?361PM‘Q is
harmonic in R\ Q; and 9, P, 0, 18 harmonic in R”\Ol, moreover 0, PMIQ +0z, Pu, 0y =
0 on R™\ Q. Because Q; and O; are positively separated, it entails that 8731PM|Q

extends harmonically to the whole of R, and since it vanishes at infinity by inspection
of ([1.42)) it must vanish identically, thanks to Liouville’s theorem. Therefore Py, is

locally constant on R™ \ ©;, as wanted. ]

In the case where € is Lipschitz, Theorem makes contact with the Helmholtz
decomposition in [LP(Q2)]™.
Definition 30. Let () is a bounded Lipschitz domain of arbitrary topology with boundary

0 and
Roa = span{x. : w is a connected component of 02}

we shall denote by W&;’Q(Q) the space of all members of W1P(Q) that have trace in Raq.

Theorem 18. Let @ C R" be a bounded Lipschitz open set, and M € [LP(Q)]" with
p € (1,00). Then, M is Q-silent if and only if M = Dy + V), where Dy € Div, o(£2)
and vy € Wa? (Q).

Ran
Proof. Let QW ... Q@) be the connected components of 2. We adapt the nota-
tion of Lemma [1| by writing I'”, - - ,Fl(;) for the connected components of Q% and
o, ... 7Oz(j) for the components of R™\ Q@ with O = ext I'" and O;i) = int ng) for
j# L
Assume first that M = Dy + V), with Dy and 19 as in the statement. Because
Dy has zero normal component on 0f) by assumption, one can see from (§ - ) that

DO is divergence free on R", as a distribution. Besides, as we suppose that )y is
locally constant on 0f2, to each F there is a constant ¢; ; such that (1/10)|F() = ¢, ; for

ie{l,---,N}and 1 < j <I;. Replacing ¢y by ¢y — ¢;1 on Q0 we may assume that
ci1=0 for all 7 and then one sees from Lemma (1| that the function 1, equal to 1y on
Q and to Cij on O @ , lies in WHP(R™) with Vi, = Vi)y on © and Vi, = 0 outside €.
Thus, M = Do + V¢1 is the Helmholtz decomposition of M on R™, and both terms of
the decomposition vanish outside €2, as desired. .

Conversely, assume that in the Helmholtz decomposition M = D+V1 on [LP(R™)]",
the summands D and V) vanish a.e.. outside €. Then, for any ¢ € C°(R"), we have
that [, D-Ve =[5, D-Vy = 0 and therefore [,,(D-v)edo =0, by (L.13)). Since traces
of C2°-functions are dense in Wlfi’p(ﬁﬁ), we conclude that D - v = 0 in Wﬁi’p(aﬁ)
so that the restriction Djq lies in Div,,¢(£2). Moreover, as Vi) = 0 a.e.. on R™\ €, the
function v is constant on each O](-i) and so it has constant trace on each Ff). Hence, we
can put Dy = Dig and g|an € Rjq. O

Before proceeding, we will discuss more the subspace G§(€2), in particular on the
continuous extension of its members to GP(R™). The main interest in studying more
this subspace is generalise Theorem (18 Recall the spaces GP(2) and G§(2) introduced

in ) and (L.8). We define a subspace GP(Q) € GP(Q) by
GP(Q):={F e G’(Q): FeG'R)}. (1.43)
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Theorem |17] and Lemma [3| imply that GP (Q) consists exactly of the magnetic fields,
generated by a magnetisation in LP(2), that vanish outside 2; i.e., the fields of silent
magnetisations of LP-class. B

Unlike G?(Q) or G5(€2), the space GP(2) only depends on  modulo those z € 99
having a neighbourhood V. such that V,,\ Q has zero Lebesgue measure; for convenience,
we say that such points are Lebesgue isolated in R™ \ €. The union of 2 and of the
Lebesgue-isolated points in R™\(2 is a bounded open set Q D Q such that GP(Q) = GP(Q)
and therefore, when studying G?(£2), we may as well assume that R™\(2 has no Lebesgue-
isolated points. This hypothesis typically eliminates “cracks” from €.

We shall see that in fact GP(2) coincides with G5(Q) when 9 has Lebesgue mea-
sure zero and R™ \ Q has no Lebesgue-isolated points, provided that the connected
components of R™\ Q) are positively separated, meaning that the distance between any
two of them is bigger than a strictly positive constant independent of the components;
this is a consequence of Theorem [19| below. Of course, as ) is bounded, the separa-
tion condition entails that the connected components are finite in number, and then
separation reduces to the property that their closures do not meet. The separation
condition cannot be dispensed with in general, as the example in Sec. shows.
More generally, in Theorem we handle the situation where 2 is a bounded open set
such that 9 has Lebesgue measure zero and the connected components of R™ \ 0 may
only accumulate in a “thick” manner; the case of an arbitrary bounded €2 will not be
considered here. We begin with a lemma:

Lemma 5. Let Q C R" be a bounded open set whose boundary OS2 has zero Lebesgue
measure. Let further {O;}c; designate the connected components of R™ \ Q. For
p € (1,00), a vector field F lies in é’p(Q) if, and only if F' is of the form Y f for some
(necessarily unique) f € WHP(R™) which is constant on each O;.

Proof. By definition, every F' € GP(R™) is of the form Vf with f € VV;?(R”) If
moreover F' = 0 on R™\ €2, then f is constant in each O;; conversely, since 02 has
Lebesgue measure 0, it is equivalent to say that F' vanishes on R" \  and that f
is constant on each O;. Let Oy designate, without loss of generality, the unbounded
connected component of R™ \ €; the latter uniquely exists since Q2 is bounded. Adding
a constant to f if necessary, we may assume that it vanishes on Op, and then f €
WhP(R™). O

Note: if f € W'P(R") is such that Vf € G?(Q), necessarily f vanishes in the
unbounded component of R™ \ Q, for it is constant there and must lie in LP(R™).

Theorem 19. Let 2 C R™ be a bounded open set whose boundary OS2 has zero Lebesgue
measure, with {O;};e; the connected components of R™\ Q. Assume that whenever
Ejmuig()i % () for some index j € J and some subset of indices I C J, then
BLp(aijie[Oi) > 0. Suppose in addition that O; is non-thin at B ,-quasi every
point of dO; (which is no restriction if n < p). Then, GP(Q) = GP(1).

Proof. Without loss of generality, we assume that Oy is the unbounded component
of R"\ Q. Pick ¢ € C®(Q) with Vg € [C.(2)]", and let the U; enumerate, for
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i € I C N, the connected components of R™\supp Vi, with Uy to denote the unbounded
component. The U; N2 are nonempty open sets partitioning 2\ supp V. Assume first
that  is connected, and define B; := Uy.;U, U2 for ¢« € I. Clearly, B; is a connected
open set and U; U B; = R". We contend that U; N B; is connected. Indeed, as R" is
simply connected, the last portion of the Mayer-Vietoris sequence in homology [17, Sec.
2.2] yields (with H; to indicate the {-th homology group):

from which it follows, since Hy(U;) = Ho(B;) = Ho(U; U B;) = Z (because U;, B; and
U; U B; are connected), that Ho(U; N B;) = Z as well. This proves our contention, and
so U;NQ = U; N B; is in turn connected. Hence, ¢ is constant on U; N €2 because
Vi = 0 there, say pjy,nq = ¢;. If we define ® to be ¢ — ¢y on € and ¢; — ¢y on Uy, it
is readily checked that @ is well-defined in C°(R") with V& = %; in fact ¢ is zero
on Uy, in particular it vanishes outside every ball containing €2. To recap, we showed
that if © is connected and ¢ € C*(Q2) with Vi € [C°(2)]™, then there is & € C°(R")
such that V& = % We claim that the same holds even when (2 is not connected.
Indeed, let {€)},c; denote the connected components of €2, where L = {1,2,---} is
an initial segment of natural numbers (finite or infinite). If ¢ € C*°(2) is such that
Vi € [C2(2)]", then supp Vi can meet only finitely many €2, say €, -+, Qx. Thus,
@ is constant on §; for [ > N, and we may as well assume it is zero there because
this does not change V. For 1 <1 < N, the function ¢; := ¢jq, lies in C*°(€);) and
Vo, = (V) is compactly supported in €. Hence, by the first part of the proof,
there is ®; € C°(R"™) such that V@, = Vg, and so ® := Y 1cien i lies in C(R™).
By construction V& = >,y 6\/901 is zero outside U;<;<ny €Y and coincides with Vg

on {2, so that V& = % as claimed.

Next, consider F' € G§(€2) and let ¢; be a sequence in C(Q) such that Vi, €
[C(Q)]™ with Vi, — F in [LP(Q)]". Let further ®; be a sequence in C°(R") with
Vo, = @Tpk and such that ®; is zero on Oyp; such a sequence exists by what precedes.
Applying on a ball containing €2, we deduce that ®; converges in W'?(R"), as
k — 00, to some f such that Vf = F. Hence, F € GP(Q2) so that G£(Q) C GP(9).

Conversely, let F' € GP(Q) so that, according to Lemma , F=V f where f €
WHP(R™) assumes a constant value ¢;(f) on Oy, for every j € J. Note, since ¢o(f) = 0
while Oy is non-thin at quasi every point of 0Oy by assumption, that f(z) = 0 for By ,-
quasi every x € Og: it is so because f is continuous outside a set of arbitrary small B ,-
capacity [8, Proposition 6.1.2]. Suppose for a while that f > 0 and fix § > 0, together
with a sequence {0;};en of strictly positive numbers such that > .9, = 6. Pick e > 0
and then & € (0, ] small enough that f{OSfSa’} |V flPdm < €P; since ||V f||omny < 00,
such a &’ exists, by the monotone convergence theorem. Let Iy C J be the set of indices
i for which ¢;(f) > ¢/, and define Ky := U;ez,O;. Of necessity Ky N Oy = 0, otherwise
By (Ko N 0p) > 0 by assumption and, since f is continuous outside a set of arbitrary
small By ,-capacity, it would imply that f > ¢’ > 0 on aset E C 00, with By ,(E) > 0,
contradicting that f(z) = 0 for By ,-quasi every x € Og. Hence, by [8, Thm 9.1.3],
there is a C* function 7 : R® — [0,1] with 79 = 1 on Ky and = 0 on Oq such that
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If = nfllwir@ny < €. Now, if we let fy := max{nf —¢’,0}, we find that V f, € ép(Q)
with ¢;(fo) = ¢i(f) — € for i € I and ¢;(fo) = 0 for i ¢ I. Moreover, it follows from
[8, Thm 3.3.1] that Vf, = V(nf) a.e.. on {x : n(z)f(x) > &'} and Vfy = 0 a.e.. on
{z :n(z)f(x) < &'}, Therefore,

Inf = follfrogeny = fio IS = folPdm + oo [V 0f) = Vfolrdm — (1.44)
< (VM) + figzyseun IV (0f)Pdm (1.45)

< EPm(S) + (& + Ugzgeey [VIPAm)? )" (146

< (€)Pm(Q) + (¢ + )’ (1.47)

Altogether, as € < e, we get from the triangle inequality that

1 = follwroem < (14 (m() +27)7 ) 2 (1.48)

which is arbitrary small with €. In the general case where f is not signed, we write
f=f"—f with ff:= max{f,0} and f~ = (—f)" and remark that Vf* satisfies
the same assumptions as F [8, Thm. 3.3.1]. So, we can apply what precedes to f*
and f~ to obtain functions fy+ and fy_; we then put fy := fo+ — fo—. To recap,
we constructed fo € WHP(R") such that ||f — fo|lwrsmgn) is arbitrary small and f; is
constant on a neighbourhood of Oy, while it is constant on each Oj; in particular, we
can make || f — fol|[wir@mn) < do. Note also that if f was constant on a neighbourhood of
@ for some j, so is fy on the same neighbourhood (possibly with a different constant,
though). We now proceed inductively: to complete the next step, pick x; € O; and
consider the inversion with center x; given by
Tr — T
L, (x) = Pl
It is a smooth involution of the “sphere” R"™ U {oo} ~ S" that maps z; to oo, with
Jacobian determinant —|x — z;|7" at x # x;; in fact, the Jacobian matrix at z is
conjugate via a unitary matrix to diag {—|r — x1|72, |z — 21|72, -+ ||z — 21|72}, see
[30, Thm 4.2] (the unitary matrix depends on x, though). Clearly, ©y := Z,,(Q2) is a
bounded open set, and the U; := Z, (O;) are the connected components of R™ \ ),
with U; being the unbounded component. From the change of variable formula and the
definition of B ,-capacity, one checks that Z,, preserves sets of B ,-capacity zero in
R™\ {x, 00}, consequently B, (Fjﬂ UieIUi) > 0 whenever U; (" UierU; # 0; also, by
definition of thinness [§, Definition 6.3.7], Z,, preserves thinness of a set at any x # x;.
Thus, U; is non-thin at B; ,-quasi every point of U; for each j. Furthermore, if U is
an open set with compact closure in R™\ {x;} and we put m; := inf,cp | — 21|, we get
from the change of variable formula again that for g € WP (U):
—2n/p  —2(n—p)/p

gllwrr@) < max{m; ", m, Hlg o Zey [lwrwz,, ) (1.49)
As the function hy := fo 0 Z,, — c1(fo) lies in WP(R™) and is constant on U; for each
4§ as well as constant on a neighborhood of Uy, we can argue as we did to construct f;
from f, only with €, instead of {2 and h; instead of f.
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This provides us with a function ¢g; that can be made arbitrary close to h; in
WHP(R"™) while being constant on each U; and constant on a neighborhood of both Uy
and U;. If Ay denotes the constant value assumed by g; on Uy, we get since hy = —c1(/fo)
on Uy that [Ag + cl(f0)|m%(U0) < ||h1 = g1l zr(wy), Whence [Ag 4 ¢1(fo)| can be made
arbitrary small with ||hy — g1|lw1r@nr). Thus, letting fi := (g1 0 Z,; — o), we get in
view of since fo = f1 = 0 on Oy:

1fo = fillwrie@ny = (b1 — g1) © Ly + e1(fo) + Aollwrr@n\on) (1.50)
1

< Ollhs = gallwastens + o -+ ea(fo) s (R \ U) (51)

< |7 = gillwraen, (1.52)

where C and C” are geometric constants depending on €2 and our choice of z; € O;. One
deduces from that || fo — fillw1p@v can be made arbitrary small, in particular
smaller than §;. Iterating the argument, we construct a sequence of functions fi, 0 < k,
such that || f — follwir@r) < 8o and || fo — fes1llwrr@n) < pq1, With fy constant on a
neighborhood Vj, of Oy for ¢ > k. Since > x 0k = 6 < 00, the sequence fj is a Cauchy
sequence in W1P(R™) that converges to some f; clearly Vf is compactly supported
in Q, and || f — f||W1,p(Rn) < 4. By mollification, we can now construct a ¢ € C*°(R")
which is constant on a neighborhood of O; for each j (the constant being 0 when j = 0),
and such that || f — ¢||wie@n) < 20. Since § was arbitrary, we find that F € G{(Q2), as
desired. O]

Hence more generally, we have the following extension of Theorem [I8]

Theorem 20. Let M € [LP(Q)]™ for some p € (1,00), with & C R"™ a bounded finitely
connected open set as in Theorem[19. Then, M is Q-silent if and only if M = D + Vi)
where D is divergence free and 1 € WYP(Q) is such that Vi) € GH(Q).

Proof. The theorem is a direct consequence of Theorem [17] and Theorem [19] O

Theorem raises the issue as to whether, under very mild conditions on € like
those in that theorem, the divergence free character of D implies that D € Div, o();
a positive answer would yield a generalization of Theorem (18| to very rough domains.
We have the following partial answer:

Corollary 2. Let M € [LP(Q)]" for some p € (1,00), with Q& C R™ a bounded finitely
connected open set as in Theorem [19 and the equality

<%ww=AVﬂww@@+Awwmmw@,wewwm,

holds for allu € [L},.(Q)]"N[LP(Q)]" with ||div u||r) < 0o. Then, M is Q-silent if and

only if M = D + Vi where D € Div, () and ¢ € W'P(Q) is such that Vi € G§(Q).

Proof. The corollary is a direct consequence of Theorem [20] and Theorem [I1] O]
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1.6 Equivalent Sources

We now wish to look at 2-equivalent sources which are defined as

Definition 31. Let My, My € [LP(Q)]", we say that My and My are Q-equivalent sources
if
Py () = Py, () +~  for ae. zr € R™\Q,
with B
v € spang{xo : O is a connected component of R™\Q}.
Among all sources {M;} C [LP(Q)]" Q-equivalent to a given M € [LP(Q)]", the one with
with manimum LP-norm is called the norm-minimising equivalent source.

We have the following corollary of Theorem [I8]for the characterisation of Q-equivalent
sources for ) a Lipschitz domain.

Corollary 3. Let Q2 be a bounded Lipschitz set and My, My € [LP(Q)]", 1 < p
then My and My are Q2-equivalent sources if and only we can find a unique Y € Wﬂé
such that

< oo,

oa ()
Q

for all p € WH1(Q) where 5 + . = 1.

Proof. The above corollary is a direct consequence of Theorem [I8] and the Helmholtz
decomposition and the existence of a unique solution to the Neumann problem ([1.16]).
O

Corollary 4. Let Q2 be a bounded Lipschitz set and My, My € [LP(Q)]", 1 < p < o0,
then My and My are Q)-equivalent sources if and only if for

di(z) = —1I [i Ry ((Ml v o)kﬂ (2), (1.54)

[ = 1,2 we have ¥y(x) = o(x) + ¢; for almost every x € R™\Q N O; where ¢; is a
constant for O; a connected component of R™\(2.

Proof. Suppose My, My € [LP(2)]" are Q-equivalent we have from Theorem [1§| that
M; — M5 has the decomposition as stated in the theorem, that is,

M, — My, =D+ Vy € [LP(Q)]",

with D € Div, () and V¢ € G{(€2). Now we can extend M; — M, to (M; — M) V0 on
R"™ so that we can apply the Riesz transform and get that the gradient, V), is obtained
as in ([1.22). Due to the continuity of Riesz transforms on LP(R™) we have that they
vanish identically outside €2. This implies that ¢ is a constant on each connected
component of R™\Q up to the boundary. Now in view of the discussion in [12, Ch. V,

37



Sec. 2.3] and the fact that >, R7 = —I, where I is the identity operator, we have
the formula,

W(x) =1, [i R?(i Rk<(M1 - Mg)km (2)

=1 [Zn:Rk<(M1 V O)k)] (x) + 1h [im((% \% O)kﬂ (z),

where we have abused notation by denoting the components of M; — My extended to
(M; — Ms) vV 0 on R" by (M; — M), k= 1,2,3. Now using the linearity of the Riesz
transform and Riesz potential, and the fact that v is constant on each connected com-
ponent of R™\ up to the boundary we have the desired result.

(1.55)

Conversely, we begin by noting that the Helmholtz decomposition is valid on R"
therefore representing M; V 0 and M, V 0 by M; and M,, respectively, we have that
V(i —1y) = (My — My) — (D1 — Ds), 1y as defined in and D; € Div,(R"),
[ = 1,2. Now letting Vi = V(¢ — 10y) and D = Dy — Dy we that ¢ constant on
each connected component of R™\(2 so that we can extend D by 0 outside €2 so that by
taking restrictions, D € Div,o(Q2) by [22, Exercise I11.2.3]. Now from Theorem [1§] we
have M, — M, is Q-silent as desired. O

The proof of the following result serves to show the use of double layer potentials
in the characterisation of silent sources. The proof relies simply on the isomorphism of
the double layer potential on Lipschitz domains as outlined in [25].

Corollary 5. Let Q C R™ be Lipschitz, for p € [3,3], let My = Dy + Vi1 € [LP(Q)]"
and My = Dy + Vb € [LP(Q)]" with Dy, Dy € Div,(Q) and ¥y, € WHP(Q). We
have that My and My are Q-equivalent if and only if the trace of 11 and the trace of 1
differ by a member of Raq, that is, they differ by constants on each connected component
of the boundary.

Proof. We begin by noting that the potential produced by the divergence of M; outside
Q) is determined only by the trace of the );, hence the potential is a double layer
potential. This is easily seen from taking x € R™\Q and letting Py, (z) be the potential
generated by the divergence of M; at x we have

Py, (x) = _(n _12)wn_ /Q(Dz + Vi) (y) - V, <—|x — ;|(n_2)> dy
" —12)wn 20 ‘bi(y)vy(m) -v(y)do(y),

where we have used that D; € Div,((2) and Green’s identity. It follows from the
remark in [25] after the proof of Theorem 8.1 that if the trace of ¢, and the trace of ¢
differ by a member of Ry then for almost every x € 02

bt
(n —2)w,

1

Py () = Py (7) = Iz — y[=D

[ =, ) v (y) doty)
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is a member of Ry hence we have that Py, and P, differ by a constant in each con-
nected component of R"\Q hence M; and M, are (2-equivalent.

The converse can be shown using a direct computation or arguing directly from
Theorem [I8 O

Remark 5. It suffices that the traces the 1’s in the above corollaries be constants.

We have just shown that the recovery of the vector field M € [LP(Q2)]™ from the
knowledge of the potential outside €) is not unique because of the existence of -
equivalent vector-fields. Popular methods for solving inverse potential problems that
use regularied Tikhonov methods have a feature that if the regularisation parameter
and noise level approach zero in a combined manner the solution that is recovered with
the method is of minimum-norm among all the equivalent solutions, see for example
[35]. We now study norm-miniming equivalent sources given a vector-field. To achieve
this given a vector-field M € [LP(Q2)]", we want to find a silent source Mg that satisfies
the following

Mg = argmin ||[M — Mol| ;7 gy - (1.56)
Mo€ESy

where S, is the set of (2-silent sources in [LP(£2)]™.
Lemma 6. S, is closed in [LP(2)]" for p € (1, 00).

Proof. Let {M,} be a sequence in S, that converges to M. We show that M € S,.
Using notations and definitions from Lemmal3| we have that {],,} converges in [L?(£2)]"
and due to the continuity asserted in Lemma [3]it then follows that

Due to the silence of the sequence {M,} we have that ¥, is zero a.e. on R™\(2 hence
M € S,. O

Now that we have established that S, is closed we will state the characterisation of
norm-minimising 2-equivalent sources given a vector-field M. We begin by noting that
from [37, Cor. of Thm 2], LP(2) is uniformly convex hence strictly convex. Further
from [37, Thm 1] we have that [L?(Q2)]" endowed with the norm given in is also
uniformly convex hence it is strictly convex. Also note that the set of ()-silent sources,
Sp, 1s convex since any linear combination of elements in S, is also in S,,. Thus from
[38, Part 3, Ch. II, Prop. 5| there is a best approximation projection of M on S, that
is if we let Proj be the projection from [LP(£2)]" to S, then the norm-minimising Q-
equivalent sources given a vector-field M is M — Proj(M). Since the objective function
in is strictly convex we have that Mg = Proj(M) is unique. From this, it follows
that M — Mg is the norm-minimising {2-equivalent source.

We note that for p = 2 the Helmholtz decomposition we introduced is an orthogonal
decomposition, hence the sum is an orthogonal sum as can be seen from the following
result

39



Theorem 21 (|21, Lem. 2.5.1]). Let Q C R" be any domain. Then for each M €
[L2(Q)]™ there uniquely exist Vi € G*(Q2) and D € Divyo(Q) such that

M = D + V.

Further,
2 2 2
M z2@pe = 1P z2@ + IV 120 -

When p = 2 from the above theorem, given M € [L?(Q)]" with Helmholtz decompo-
sition M = D+V1, the magnetisation of minimum-norm {2-equivalent to M is the same
as the one Q-equivalent to V; it is so because a Div,,o(€2)-field is a Q-silent source.
Moreover, by the same reason, the magnetisation of minimum-norm {2-equivalent to
V4 is the gradient of a Sobolev function and therefore, the norm-minimising vector
field Q-equivalent to M is Vi — Vu, where Vu is the projection of Vi on G*(Q),
defined in . The latter is not so easy to characterise for general open sets: in this
connection, we shall find it convenient to make the following definition.

Definition 32. For p € (1,00), we say that the complement of a bounded open set
Q2 C R" is p-unstretched if 92 has zero Lebesque measure and if, letting {O;},es denote
the connected components of R™\ €0, the following two properties hold:

(1) O; is non-thin at B ,-quasi every point of 00; for all j;

(1) whenever@ N UicrO; # 0 for some index j € J and some subset of indices I C J
then Bl’p(Oj mUielOi) > 0.

Note that when p > n, conditions (i) and (ii) above are always met and so R™ \ Q
is unstretched if and only if 92 has Lebesgue measure zero. Observe also that R™ \
is unstretched as soon as R™\ 2 has finitely many connected components satisfying the
segment condition. In particular, this is the case when €2 is Lipschitz.

When R™ \ Q is unstretched, we can characterise [L?(2)]"-norm minimising -
equivalent sources as solutions to a boundary-value problem:

Theorem 22. Let 2 be a bounded open set and M € [L*(Q)]". If we write M =
D+ Vi € [L*(Q)]" for the Helmholtz decomposition, then the unique norm-minimising
vector field Q2-equivalent to M is Vi) —Vu, where Vu is the projection of Vi on 62(9)
Moreover, Ypm = 1 —u is a WH2(Q)-solution to the following boundary value problem:

Ay = 0 in €,

Vibun — Vi € GX(Q), (1.58)

/ agﬂd}[”—l =0 for all compact C*-hypersurfaces I' C Q) |
r Ov

where H" ™ indicates (n — 1)-Hausdor{f measure. Conversely, if R™\ Q is unstretched,
then Y., is the unique solution to (1.58)), up to an additive constant.
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Proof. As mentioned before the theorem, the norm-minimising vector field Q2-equivalent
to M is Vi) — Vu, where Vu is the projection of Vi) on G?*(Q). Putting ¥y, := 1 —u,
we get that Vb, is orthogonal to G2(Q) and in particular to Vi for all ¢ € C(€).
It implies that 1), is harmonic. Moreover, if I' C €2 is a compact C'*°-hypersurface, we
can find another smooth compact hypersurface I'y C  with I'; NT" = (), close enough
to ' that the open “shell” S between I' and I'; is contained in {2 (using for instance a
tubular neighborhood of T', see [I3, Ch. 2, Sec. 3|). Assume for definiteness that S lies
inside I" (if it lies outside the argument is similar). We can find a function g € C*(R")
which is equal to 1 on extI" and equal to zero on a neighborhood of 'y Uint I';. Then,
Vg € G§(Q) C Gy so that [ Vb, - Vgdm = 0, and by the divergence formula the later
is equal to [, atg%d?—t””. Hence, 1y, satisfies (L.58).

Conversely, assume that holds and pick Vg € G3(2). Let further K C Q be
the support of |Vg|. Since K is compact, there is h € C*°(R") such that h > 0 and K is
the zero set of h; this follows easily from a combination of [12, Chapter VI, Theorem 2]
and [36, Theorem I]. Replacing h with h? we may assume that h > 0, and redefining h(z)
for |z| large we can arrange things so that A — 1 at infinity. Putting L := h~(¢) for €
a sufficiently small regular value of h (almost every positive number is a regular value
by Sard’s theorem), we find that L is a finite union of smooth compact hypersurfaces

I'y,---,I'y included in €2, and we can find I';,, - - - I';, , each of which lies exterior to the
others, with K C Uint I';,; moreover, if for some 4, it holds that intI';, ¢ €2, there are
Lj,---,I;,, each of which lies interior to int I';,, such that K C NgextT';, (recall that

h>mn>0onR"\ Q). By construction ¢ is equal to a constant ¢; on I';, and therefore

asznm -1
V -Vgdm = g ; dH" ™ =
/Q Yam - Vg dm r “ /Fj ov 0,

by (1.58)). Thus, Vb, is orthogonal to G%(Q2), and by Theorem (19| the latter coincides
with G*(Q2) when R™\ €2 is unstretched. We now see from the second equation in (1.58))
that Vi), = Vi — Vu where Vu is the projection of Vi on G*(f2), as desired. O]

When €2 is Lipschitz, Theorem [22] yields a fairly explicit characterization of norm-
minimising Q-equivalent sources in [L?(Q)]". By Lemmald] it is enough to consider the
case where () is connected:

Theorem 23. Let 2 be a bounded Lipschitz domain and I'y,--- ,I'; the connected com-
ponents of Q. Let further M € [L*(Q)]" and write the Helmholtz decomposition as
M = D+ Vv € [LA(Q)]". Then, the norm-minimising vector field Q2-equivalent to M
i8 Vibum, where pm = u + Z;Zl c;w(Ly) with u the WH2(Q2) solution to the Dirichlet
problem:

Au =0 in €, (1.59)
u =1 on 0N, '
and w(T';) the harmonic measure of T'j, while the vector (c1,- -+ , )t € R! is determined,

up to a multiple of (1,--- ,1)" (which will only alter Vn, by a constant and therefore
respect NV, ) by the property that fF, &g%d%"_l =0 for1<i<I.
J
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Proof. As Lipschitz open sets have unstretched complement, Theorem [22|and Corollary
1mply that the norm-minimising vector ﬁeld Q equivalent to M is Vb, with 9, =
u+ 2] L¢jw(T;), where u € WH2() solves and w(I';) is the harmonic measure
of I';, while the ¢; are real numbers. Using the notation of Lemma [I] I and appealing
to the Whitney and Sard theorems as in the proof of Theorem to construct non-
negative functions h; € C°°(R™) whose zero set is int O; for j = 1 and ext O; for j # 1,
we construct smooth compact hypersurfaces ¥; C €2 such that the shell between I'; and
3, is included in . Since ij YWom g1 = ( by (L.59), we get from the Green formula

that fr- %%d?—["’l =0 for 1 < j <. Hence, it holds for j € {1,--- ,l} that

u - dw(Ty)
——dH" T = =gt 1.
—dH ezlce/rj oM (1.60)

To see that (1.60) determines (¢q,--- ,¢) up to a multiple of (1,--- 1), observe that if
we put v = ), apw(I'y) then

/Vv Vuodm = Z/ —dH" ! = Za]ag/ 8ng dH" 1,

so that the quadratic form on R! whose matrix has (j, £)-entry fr O fz dH"! is non-
negative with kernel the multiples of (1,---,1)" (corresponding to a constant v). [

When p # 2, we shall not be able to characterize Q2-equivalent sources of minimum
LP-norm in such an explicit manner. However, when R™ \ € is Lipschitz at least, the
problem can be approached via duality.

For this, recall that S, is a closed subspace of [LP(£2)]" by Lemma @, and let S;- C
[LI()]™, % + é = 1, be the space of annihilators of S,; that is: the space of all

® € [L1(2)]" such that (My, @) = 0 for all My € S,.

Lemma 7. Let Q) be a bounded Lipschitz open set, and p € (1,00) with %—l—% = 1. Then,
S, consists of those vector-fields V¢ € [LY(Q)]" such that ¢ € WH(Q) is harmonic
in Q and (Vo -v,x) = 0 for all x € Ryq, in other words, fr 9 H ' = 0 for each

connected component I'; of 0€).

Proof. By Lemma [i] we may assume that 2 is connected. Let ® € [L9(Q)]" be such
that (Mo, @) = 0 for all My € S,. By Theorem |1 . it means that (®, Viy + Dy) = 0
for 1y € VV]R pQ (Q) and Dy € DIVp70 In particular @ is orthogonal to Div,, whence
it is a gradient, say ® = V¢ with ¢ € Wh4(Q2). Moreover, as V¢ = ® is orthogonal
to all gradients of functions in C°(Q) C Wﬂi’a};(Q), it follows that V¢ is divergence-
free as a distribution; i.e., ¢ is harmonic in ). Using the notation of Lemma [I] so
that the O; are the connected of components R™ \ Q and the T'; are the connected
components of J€ for 1 < j < [, we can argue as in the proof of Theorem and
construct for each j a closed smooth hypersurface ¥; C 2 such that the shell between
I'; and ¥; is included in Q. Then, we can find h; € C*(R"™) such that h; = 1 on
Oj and zero outside a neighborhood of I'; containing ¥;. Then h; € W (Q), and
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we get from the divergence formula applied to h;V¢ on the shell between ¥, and I';
that [, %d%”_l = 0 for 1 < j < [. This proves that the elements of SpL are of the

J
announced type, and the previous arguments are easily reverted to yield the converse.
m

Remark 6. Whenever Q is such that G5(Q2), coincides with GP(Q) and Div, () coin-
cides with divergence-free fields in [LP(R™)|" that vanish off 2, the reasoning in Lemma
@ is easily adapted to yield that Sy consists of those Vo € [LUQ)]" such that ¢ is a
harmonic function in Q and fr 8¢d7—[” L' =0 for all closed C>-hypersurfaces ' C . In
particular, if we knew that Dle,Q(Q) coincides with divergence-free fields in [LP(R™)]"
vanishing off Q when R™\ Q) is unstretched, then the above characterisation of SpL would

hold under very general assumptions. Such is the case for domains Q as in Corollary[
with R™\$) unstretched .

We note that S, is a closed subspace of [L?(Q)]" and let S;- be the set of annihilators
of S,, that is, the set of all ® € [L(Q2)]™ such that (M, @) = 0 for all M, € S,.

Theorem 24 ([39, Thm 7.2]). Let X be a Banach space and S be a closed subspace of
X. Then the space (X/S)* is isometrically isomorphic to S*. Furthermore, for each
fized x € X,
max  [|¢(z)| = inf ||z + y]| .
yeSs

PpesSL, |lylI<1
From Theorem [24] we have that
1nf ||M M| max |(M, D)|
Moe PO ™ ) g oy <195

(1.61)
= max (M, V)|
HV¢H (La(o)n=LVee(GH()+

Remark 7. Note that in in the last equality the constraint on the norm of the gra-
dients of functions harmonic in Q) is saturated. This is easily shown as follows, suppose
the ¢ is such that [|[Vol| . q)n < 1 then fore >0 small enough V(1 +&)¢|| L.y <1
and [(M, V)| < (1+ €)|(M V)|, contradicting that ¢ is a mazimiser.

The existence and uniqueness of a harmonic function ¢g € W14(Q) with Vog €
(G5(£2))* that maximised ((1.61)) is inherited from the existence and uniqueness of Mg.
Further, ¢g satisfies the following

<M - MSa V¢S> = HM - MSH[Lp(Q)}n s (1.62)
and a simple argument based on the equality in Holder’s inequality shows that

|M — Ms‘p_2<M — Ms)

Vs = =
HM - MSHZ[)LPI(Q)}

(1.63)

It thus follows that given M € [LP(Q2)]" then the norm-minimising {2-equivalent source
is given by
M — Mg = (M, V¢s)|Vos|"*Vos. (1.64)

Above we have proven the following theorem which is a generalisation of Theorem [23]

43



Theorem 25. Let Q) be a bounded Lipschitz open set, given a vector-field M € [LP(Q2)]",
1 < p < o0, the norm-minimising Q-equivalent vector-field is given by

(M,V¢s)|Vos|" >V,

where ¢g 1s, up to an additive constant, the unique harmonic function on ) with
IVésa =1 and Vg € (GH(2))* that satisfies

M, Vog) = max M, Vo). 1.65
< s) ||V¢H[Lq(ﬂ)]nzl,vsbsG(Gg(Q))J‘< ) ( )

From Remark [6] we have the following corollary to Theorem

Corollary 6. Let Q) be as in Theorem such that for all u € [L}

ZOC(Q)]n N [LP(Q)]TL
with ||divul|| ey < 0o the equality

(o, u-v) Z/QW?(y)-U(y) dy+/990(y)diVU(y) dy, ¢ e Wh(Q),

holds then given a vector-field M € [LP(Q)]", 1 < p < oo, the norm-minimising )-
equivalent vector-field is given by

(M,V$s)|Vps|T*Vs,

where ¢g is, up to an additive constant, the unique harmonic function on € with

|Vésiza =1 and Vg € (GH(Q))* that satisfies

M, Vog) = max M, Vo). 1.66
< s) ||V¢H[LCI(Q)]’“:LV(#SE(GS(Q))L< ) ( )

We are now in a position to prove Theorem [15| and its corollary.

Proof of Theorem[13 Tt follows from (1.56) and the theorem above that given any
M € [LP(Q)]", 1 < p < oo, the norm-minimising Q-equivalent source to M can be
written uniquely in the form

(M,V$3)|Vos|"*Vos =M — Vo — Dy,

where ¢g is harmonic with V¢, € [L(Q)]" while ¢g € WP(Q) with Vg, € G5(2) and
1

Dy € Div,o(€2). Letting h = (M, Vpg) a1 pg together with ¢ = ¢9 and D = Dy, we

get the decomposition (|1.27]). [

For the remainder of the section we take €2 to be a Lipschitz domain. Note that we
can express the ¢ in (1.65)) as a single layer potential, that is,

o(z) = Sf(x),
for some f € Wﬁé’q(aﬂ) where
Wo9(0Q) = {f € Wo9(9) : (f,x) = 0 for all y € Ryn}
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hence 1
Vv = —<§Id— K*)f.
Thus using Fubini’s theorem we can rewrite the RHS of the last equality of ((1.65)) as

(1,55 = [ 260)- /8 &Y 1) doly) de

Q ’m_y’n

/m / M |> dz f(y) do(y) (1.67)
_ /GQPM<y>f<y>da<y>-

In (1.67) note that Py/(y) is the potential associated with M for y € 02 when ap-
proaching the boundary non-tangentially from outside €2, hence we can express (|[1.67))
as

max /asz Puy(y) f(y) do(y). (1.68)

L1
few a 7q(89)7HV3f||[Lq<Q)]n:1

Note that in the potential Py, € W%’p(ﬁQ) is acting up to additive constants on
each connected component of the boundary; i.e., Py, € WP (092) /Rsq. Note that the
space Wﬁé’q(ﬁﬁ) is the dual of Wa” (89)/]Rag using the arguments of Sec. . Due
to [25, Thm 3.1], we can renorm W~ «9(9) with the norm

£l 4oy = 198 g

We can then renorm W (092) /Roq with the norm

L | ufio

few a ’q(aﬂ)anvsf”[m(m]n:l

- . sup <’LL7 f>

FeW 9 409Q),IVS £l pa(ayn=1

Under the new norm we can relate (1.68) with the norm of Py, on 092. This leads to
the notion of duality mappings.

Definition 33. A duality mapping with gauge function ¢, Jf : X = 2% from X to
subsets of X*, with ¢ : Ry — Ry a continuous and strictly increasing function such
that $(0) =0 and tlirn o(t) = 0o is the set valued map

— 00

Towz = A{z" € X7t (2, 2") = ||zl x 12" -, 2"y = (l|2llx)}-

Thus given a gauge function ¢(t) =t we define the
JtW%’p(aﬁ)/Ran : W%’p(ﬁQ)/Rag - QW_%"I(BQ)
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SRy € W00) < 1) =
1, )

A -

(02) /Ry 160)’

00 = ¥t o0y m,

When the gauge function ¢(t) = ¢ the duality mapping J(‘;( is called the normalised
duality mapping. We refer the interested reader to [40, Ch. 3] and [41, Metric and
Generalized Projection Operators in Banach Spaces: Properties and Applications| for
an exploratory study of duality mappings. Note that inasmuch as the duality mapping
introduced above is set-valued, due to the reflexivity of the spaces we consider, the
duality mapping in this case is a singleton. This leads to the conclusion that the max-
imiser of is a constant multiple of the duality mapping of Py, € WP (092) /Raq
under the duality mapping above. It should be noted though that describing the duality
mapping above of u € Wb (092) /Raq is not a trivial exercise which limits the practical
application of this method to obtaining the maximiser of . Cases where this is
practical is for example in in which the RHS is the [L?(£2)]" normalised duality
mapping of M — Msg.

However, an interesting property of duality mappings is that the duality mapping
J3 " : X* — X is the inverse of the duality mapping J¢ Hence we can look at

the problem in ( as looking for f € W~ ’q(ﬁﬁ) whose duality mapping under

JW 09 Pyy. To begin, it is fairly direct to observe that for a given M € [LP(Q2)]"

a necessary and sufficient condition for
A _l .
feWma9(09) with |[VSf|1aqm =1

to be the maximiser of ([1.68) is that

el / VSIS ) gy = py),  weon. (1.69)
Wnp Q

|z —y|

and in general it is true for x € R™\ Q. Therefore, the LHS of ([1.69) is up a multiplicative

S
constant JtW TOY 1 this case Galerkin methods can be applied to solve the problem

by noting that using and a frame for W~ ’q(aﬁ) the maximiser f* for (1.68)

can be computed up to addltlve constants. A frame for the space of distributions
W (0R2) can be generated using methods such as the one introduced in [42] in which
one perturbs a frame of a separable Hilbert space which has a as a subspace the space
of Schwartz functions.

1.7 Approximation problem when n =3

In this section we restrict to domains, €2, that are simply connected and at least C*! or
Lipschitz polyhedron domains. Given a vector-field M € [W'?(Q)]® we study how one
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can approximate M by a silent gradient and a silent divergence-free vector-field, that
is, given M we wish to solve the following problems

inf M — v¢0 3,
.. lize (e

DeDiigpf’O(Q) [ D||[LP(Q)]3 5

(1.70)

respectively. We will set up these problems in such a way that Galerkin type methods
can be used to solve each problem hence making numerical solution feasible using well-
known techniques.

1.7.1 Approximating by silent gradient

It can be shown that given an M such as above the best approximate silent gradient,
say Vo with ¢ € W, 7(Q), has the following property

M — V¢ = |D|7*D, (1.71)

for some ® € Div, and % + % = 1. This follows from a duality argument Theorem
If we then rewrite © = V x h for some h € [W4(Q2)]* N Div, and take curl in ((1.71))
and impose a tangential boundary condition we have the following ¢-curl-curl problem

V x M=V x <|V><h|q—2th> in Q,
(1.72)
M xv= (\Vxhrﬂvm) x v on 9.

It follows from [43 Proposition 2.1] that given M € [W'?(Q)]? with 1 < p < 6 (1.72)
can be solved weakly , that is, there exists uniquely h € [W'4(Q)]* N Div, o such that

/|V><h|q_2V><h-V><g0dQ:/V><M-gde+ M xv-ypdo, (1.73)
Q Q

for all ¢ € [WH9(Q)]®. The proof of the existence of the solution of (1.73) in [43] used
the the well-known property of monotone operators [44, Thm 2.1]. It was achieved by
considering the function a : R® — R3,

a(u) = [u|"*u,
that has the following properties
(i) a(u) -u = aul
(i) |a(u)] < a*lul™™

(iii) (a(u) —a(v)) - (uw—wv) > 0 for all u # v.

47



Note we can rewrite ([1.73]) as

/a(Vxh)-VXgde:/VxM-gon—i— M xv-pdo
Q Q o9 (1.74)

(Ah, @) = (L, p) for all ¢ € WhHe(Q).
For what follows, we need some definitions.

Definition 34. An operator A : X — X* is hemi-continuous if for all h,g, f € X and
A € R we that
(A(h + Ag), f)

s continuous in A.
The operator A is said to be monotone if for all h,g € X

(Ah — Ag,h — g) > 0.
Further A is said to be coercive if

(Ah, )
|2l

It follows that A : [Wh4(Q)]? — [LP(Q)]® C [(W19(Q))*]® as defined in is

hemi-continuous, monotone and coercive as soon as the semi-norm [V X hf|;qqs 18

— o0 as ||| — oc.

equivalent to the [|[[y1,4(q)s and from [43, Thm 2.1] this is true for ¢ > 2. Hence in
this case we can solve for 1 <p <6.

We note that the result in [43] was given for simply connected C? domains however
it remains true for C*! and bounded convex Lipschitz polyhedron domains. We arrived
at this conclusion as follows, if we consider the following Banach spaces

WP(Vx,Q) ={h€[LP(N)]*:V x h € [LF(N)]*},
WP(div,Q) = {h € [LP(Q)]? : divh € LP(Q)},
XP(Q) = WP(Vx, Q)N WP(div, Q),
X2(Q)={he XP(Q):h-v=0},
X7.(Q,div,0) = {h € XP(Q2) : divh = 0},
we have that if Q is C*! and simply connected then on X%(2) the semi-norm
[V x hH[Lp(Q)]3 ;
is equivalent to the graph norm
12l izo gy + IV X Al pogays + 1div Al 1o gy
and further for all h € [W14(Q)] with h - v = 0 then there is C' > 0 such that

Ellrageys < C (19 % Al + I1div bll ey )

hence as well as on X7.(€2), see [45, Cor. 3.4]. Thus, if we take h € X7(, div,0) which
has div h = 0 then Proposition 2.1 of [43] can be extended to show that can be
solved weakly given any M € [IW!'P(Q)]? for 1 < p < oo as in this case A can be shown
to be hemi-continuous, monotone and coercive for 1 < g < .
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1.7.2 Approximating by silent divergence-free vector-field

In this case the best approximate silent divergence-free vector-field, D € Div, o(2) is
such that
M — D = |Vp|T 2V, (1.75)

for some ¢ € Wh(Q)/(1) again by Theorem [24| and > + o = 1. We then have the
following Neumann problem for the ¢-Laplacian by taking divergence and imposing a
Neumann boundary condition

. — q—2 3
div M = div <|V90| VSO) in €2, (1.76)
M-v=|Vo"*Vp-v ondQ,

for which a weak solution ¢ exists uniquely, that is, there exists uniquely ¢ € WH4(Q) /(1)
such that

q—2 . - ; .
/Q\w\ V- Vi dQ) /de MdQ+ | M -vdo -
(Ap,¥) = (L, ¥).
for all v € W(Q)/(1). To see this we have from that
A WH(Q) /()] — [LP(Q)F C [(WH(Q)/(1))]°

is hemi-continuous, monotone and coercive. To show the coercivity we appeal to the
Poincaré-Wirtinger inequality and by taking each ¢ € W4(Q) /(1) as ¢ — @ with P as

defined in (1.6)).

1.7.3 Iterative procedure to approximate equivalent
norm-minimising source

Given M we iteratively approximate M — Mg by switching between approximating the
iterates with a silent gradient and a silent divergence-free vector-field. As a starting
point one chooses to either begin with approximating with a silent gradient or a silent
divergence-free vector-field. We will start with approximating with a silent gradient.

Algorithm 1: Finding norm-minimising equivalent source
Result: M — Mjs.

11=0;

2 MO = M;

3 while V x (|[MOP2M®) £0 or V- (|[MOP2M®) £ 0 in Q do

4 M) = 1D®]97290) by solving for h with M = M@ and setting
D =V x h;

5 | M2 = |Vt |a-2vp(+hy solving for o with M = MO+D.

6 1 =142

7 end

8 M® = M — Ms.

The previous algorithm is convergent with M € [W1?(Q)]3.
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Theorem 26. Given M € [W'(Q)]3, for 1 < p < oo, the iterative scheme above
converges to the norm-minimising Q-equivalent source in [LP(Q)]?.

Proof. Note that at each iterative step we solve one of the problems in therefore
at each step the norm of the iterates decreases. The sequence of iterates is bounded
by M and since [LP(Q)]?, for 1 < p < oo, are reflexive Banach spaces we have that
the sequence of iterates has a weakly convergent subsequence, see for example [11]
Thm 3.18]. Further, since [LP(Q)]?, for 1 < p < oo, are uniformly convex Banach
spaces we have from the boundedness and monotonicity of the sequence of norms of
the weakly convergent subsequence that the subsequence converges strongly, see for
example [IT, Proposition 3.32]. This subsequence of iterates converges strongly to the
norm-minimising {2-equivalent source otherwise we have that the sequence of the norms
of the iterates does not converge to the norm of the norm-minimising 2-equivalent
source. O

The iterative procedure above can be implemented numerically by using frames of
the spaces WHP(R3) for 1 < p < oo, see for example [46] for their construction. Since
we consider € that is class C™! in this section we have from [23, Thm 2.75] that we
can extend functions in WP(Q) to functions in W1P(R3). Due to the properties of
the functions and vector-fields we seek in the iterative procedure these are extensions
by zero. By expressing functions in W1?(Q) as finite linear combinations of frames we
are able to build systems of non-linear equations, via Galerkin methods, that can be
solved to approximate solutions to (|1.73]) and hence approximating the itera-
tive procedure. This Galerkin approximation indeed provides approximate solutions to
approximate problems of and that have to be solved at each step of the
iterative procedure, see [47, Ch. II, Thm 2.1}, [44, Ch. 2, Thm 2.1, Thm 2.2].

1.8 Conclusion

We have managed to provide a characterisation of silent [LP(€2)]" magnetisations us-
ing the Helmholtz decomposition on R". Further, we have done this with minimal
assumptions on the set 2. Using this characterisation of silent sources we arrived at
a characterisation of norm-minimising equivalent magnetisation to any given magneti-
sation. This allowed to have a decomposition which can be viewed as an extension of
the Helmholtz decomposition on more general domain. On Lipschitz domains we have
managed to propose a method for computing the norm-minimising equivalent magneti-
sation to any given one that makes contact with the duality mapping on the trace
Sobolev dual space, Tl (092), in a sense we have managed to characterise the duality
mapping via Newton potentials, see . The numerical application of this method
is possible but may not be easily achieved. For n = 3 and smooth domains we provided
an iterative procedure that reformulates the problem to problems that are well studied
and for which numerical schemes already exist.

What we presented here can be applied to magnetisations that are assumed to
be distribution vector-fields with the distributions in the Sobolev dual spaces. These
spaces of distributions include spaces of measures. Preliminary thoughts suggest that
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using a decomposition in these spaces that are based on the Stokes problem, see [4§],
leads to a characterisation of silent distributions that is similar to the one presented in
this work. In the Stokes decomposition one take advantage of the fact that the Stokes
volume potential is equivalent to the Newton potential, see [22, Ch. IV]. Future work
can be devoted to answering this question fully.

Another extension of this work would be to give a characterisation of silent [L”(Q2)]|"
magnetisations while allowing the connected components of R™\(2 that have intersec-
tions to be thin at those intersections. This would require to make changes to the
definition of G§(£2) such that the degenerate cases can be accounted for in the set.

1.9 Appendix

1.9.1 More on Sobolev functions

Let Q C R™ be open. For f € W'?(Q) and g € Wy%(Q), it holds for 1 < 4 < n that
fQ Op, fg = — fQ O.,9f, by absolute continuity on a.e. line of Sobolev functions [16]

Thm. 2.1.4]. Thus, ||V f||w-1r@) < nv |/l zr (@), and since WP(Q) is dense in LP()
it follows that f — V f extends to a continuous Inap from LP(2) into [W 5P (Q)]™.

When 2 is a Lipschitz open set and (U;N9S2, ®;) an atlas for 9 as in Sec. the
Sobolev space W(9Q) comprises those f : 9Q — R such that foCIDj_1 e Whe(V;) for all
g, with V; = ®;(U; N 092). The definition does not depend on the atlas, since Lipschitz
changes of variables preserve Sobolev functions [16, Thm 2.2.2]. The tangential gradient
Vorf e [LP(0Q)|" is given on U; N 0§ by

-1

Vrfo® ' =D& ((DP;1)'D®; ") V(fod;); (1.78)

note that the definitions agree a.e. on U;, N Uj, and that Vrf(z) € 1,08 for o-
ae. © € 0f). For ae. x € U; N0 and each X € T,010), we have Vrf(z) - X =
df(z)(X) where the differential df(z) of f at z is the 1-form given by df(z)(X) =
V(f o ®;')(®;(x)) - DP;j(x)(X). One sees that W'P(99Q) is a Banach space for the

norm 1

I llwssion = (1100 + 125 oy )
(max{|[f| o= o0, IV 2 flljzee@aym} if  p=o0)
which is equivalent to Z " 1f o @5 lwirqr,). Observe that W>(09) identifies with
Lipschitz functions on 09
When 1 < p < oo and %%—% = 1, the dual space of W'?(9Q), denoted by W~14(9Q),
can be realised as the completion of L4(052) for the norm

[ollw-ra00) == sup / pg do (1.79)
o0

HQHWLp(aQ):l

by the same argument that leads to (W, 7(Q))* = W—14(Q).
Forms on 02 proceed as in the smooth case: for 1 < k < n — 1, a k-form is a
map = — w(z) where w(z) is an alternating k-linear map on 7,09 (a 0-form is simply
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a function). Its local representative in the chart ®; : U; N 092 — V; is the k-form
(®;')*(w) on V; which the pullback of w under ®;*:

(@) (@) (1) == w(®; () o (DB} (y) x - x DI (y)), y€RegVy.  (1.80)

Rearranging ([1.80]), we get an expression of the form

@) @) = > altd ) dy, A Ady,,  y€RegV,

11 <tg, - ,<lg

where the coefficients a{ J} 4, are functions on Vj that transform naturally under changes

of coordinates. We 1dent1fy forms that agree a.e.. and say that w is of LP-class if the
al®? . lie in LP(V;) for each j. In this case we write w € Fj(092) and

11,42
N
q).
ol = > 1l Nl -

7=1 i1 <ia<--<ip

A change of atlas yields an equivalent norm. The image under ¢; of the restriction o U,
is the measure on Vj, absolutely continuous with respect to Lebesgue measure, with
differential (1 + |V, (y)[?)*/2dy. Since ¥; € L>=(V}), it follows that f € LP(99) if and
only if it is of LP-class as a 0-form, and || f||z»(s0) is equivalent to || f{|zr(aq)-

Integrating (n — 1)-forms on 92 goes as in the smooth case on an oriented Rieman-
nian manifold [49, Sec. 4.10] (note that OS2 is oriented by construction). That is: for w
a (n — 1)-form of L'-class on 9Q and (p;) a Lipschitz partition of unity subordinated
to the U; N 012, if one writes

(@) (ew)(y) = aly)dys A+ Ayns

/BQW = é/vj@j(y)dy

The latter is independent from the atlas and the partition of unity, thanks to the change
of variable formula which is valid for Lipschitz reparametrizations. In particular, if we
define on U; N 052 the (n — 1)-form

then

Z)\é)yl J —/\1>\2"'>\n71Jk(q)j(x))7

where J, is the square root of the sum of the squares of the (n — 1) x (n — 1) minors
of the Jacobian matrix D®;', then w’' = w? a.e. on U;, N U;, N0 and the (n —1)-
form w,e on 0€2 whose restriction to U; N OS2 is w’ (the so-called volume form) satisfies
Joq fdo =[5, fwee for every f e L'(09).

Let us define W, ?(99) to consist of k-forms w € FF(9Q) for which there exists a
(k + 1)-form dw € FY,,(09) with the property that, for each j € {1,---, N},

[ @y nde = 0= [ @7 ) A

j Vj
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whenever p; is a C*-smooth (n — k — 1)-form compactly supported on V. Here, the
exterior derivative dj; is the usual one for smooth forms. Though not obvious at first

glance, this definition is consistent, for if dw exists then (®;, o @;;)*(((I)j_ll)*(w)) €
WP (@, (U;, N U, NAN)) and on &, (U;, N U, N Q) it holds a.e. that

d (@ 0039 (@51 @) ) = (@5 0 @3)" ((271)"(dw))
see [50, Thm 2.2]. We endow W, *(9) with the norm
1
HWHWI" Q) (HUJH ?(90) + ||de ))p~

It is easy to see that f € W'P(9Q) if and only if f € Wé’p(ﬁﬂ) and that
Z Oy, ( Y dy; .
We let Wi "4(09Q) be the completion of F(09) for the norm

Hw||W;1,q(m) = sup / wA
o0

el 1, =1
WPy 09)

so that W, "%(09) consists of linear forms on W}*, . i.e., of (n — 1 — k)-currents on
9Q. When f € W'(9Q) and pu € WL, (99), it holds that fdﬂ df Ap=— [, fdu, as
can be checked in local coordinates from the absolute continuity on a.e. line of Sobolev
functions [16, Thm 2.1.4]. Thus, [[df[[,-10p0) < CllfllLr@), and since WP (0Q) is
dense in LP(09) it follows that f — df extends to a continuous map from LP(0€2) into
Wy P(99).

Since the gradient defines a continuous map V : LP(V;) — [W~5P(V;)]"! as pointed
out at the begining of this section, implies on using a Lipschitz partition of unity
subordinated to the U; that Vy : LP(9Q) — Wy "P(99) is continuous.

It is known that W*P(9Q) = [LP(0Q), W'P(0Q)]s,, where [.,.]s, is the so-called
real interpolation functor, see [5I, Ch.4] for a definition of the latter. This fact
follows from the analogous result on R"™! [51, Ch. 4, Cor. 4.13] and [25, Lem.
1.1] which allows one to localize the statement in the charts (U, ®;), using a Lip-
schitz partition of unity on 0X2. Hence, by duality [52, Thm 3.7.1], we get that

WTrP(99) ~ [LP(D(Q), W 2(dQ)]1, = [Wr(8Q), LP(A(Q)],_1, with equivalence
of norms, and since taking the gradient maps LF(99) into [W~5?(9Q)]" and Wlp(ﬁﬁ)
into [LP(OQ)]™ continuously, we see by interpolation upon setting s = 1 — = that the

tangential gradient V1 of ¢ € WP (09) exists as a member of W, b (8Q)

1.9.2 Auxiliary lemmas

Lemma 8. To ecvery f € . on R", there is a sequence ¢, € . such that
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o lim, oo ¢, = f in LP(R™) for all p € [1,00),

e to eachn there is a nonempty neighborhoud V,, of 0 with the property that gzgn(f) =
f(0) for £ €V,.

Proof. We adapt the proof of [53, Lem. 9.2.]. Pick g € .¥ such that ¢ = 1 in some ball
B(0,7), 7 > 0. For A > 0, put gx(z) := A"g(x/)\) and define

ha(z) :== f(0)ga(z) — f * ga(z), z € R™ (1.81)
Clearly, hy € -, and since g, = 1 in some neighborhood V) of 0 we see from - ) that
h,\(f) f(()) f(f) for £ € V). Thus, letting ¢, := f + hy, we get that qﬁ)\(ﬁ) f(O)
for £ € V). It remains to show that limy_, ., hy = 0 in LP(R™) for 1 < p < oo, for then
¢n, will satisfy our requirements. Now, since | f| is summable because f € .7, we get by
convexity that

[ha(z)]P = . FW) (gr(z) — gr(z —y))dy

< [ Ul - oate = )Py

Therefore, by Fubini’s theorem and the change of variable x = Az,

ey < [ 15601 ([ Jote) = ot = w0z (182

The inner integral in (1.82) is at most 2||g[[7, gy and it tends to zero for fixed y as
A — 400, by the continuity of argument translation in LP(R™). Hence, the right hand
side of (|1.82)) goes to zero when A — +o00, by dominated convergence. m

Lemma 9. Let ¢ : [0,00) — [0,00) be C*-smooth and supported in (0,1). Then,
h(z) := @(|z|™) lies in .#(R™) and its Newton potential

N(z) := e _12)wn / ¢(|y|n)_ dy, r € R",

rn [T =y 2
is a C*°-smooth function with gradient given by

r_ ®(lx]")
jz[*

VN(z) = —

, (1.83)
where ® : [0,00) — R is the indefinite integral of ¢ satisfying ®(0) = 0. Moreover, the
second derivatives 8%]\7 lie in LP(R™) for 1 <i,7 <mn.

Proof. Since ¢ is C*°-smooth and vanishes in a neighborhood of 0 and oo, it is clear
that h € .. Integrating in polar coordinates, we get

B 1 ! . " do ()
Ne) = (n —2)w, /0 ' lgo(r Jdr /5(0,1) |z —r(|n=2

When |z| > r the mean value property for harmonic functions yields that

1 do(¢) 1

Wn Js(0,1) |z —r¢n2 |z
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and when |z| <r it holds that

1 do () 1
- /S - (1.84)

5(0,1) |$ - 7’C|" 2 =2, (0,1) lz/r —¢|n2 n2

because o /w, is the Newtonian equilibrium measure of B(0,1) which is a regular set,
whence ((1.84]) is independent of = € B(0, 1), see [31, Ch. II, Sec. 13]. Altogether, we

obtain:
1 min{|z|,1} d 1 1
N =g [ e s [ et
0

[Z["72 " n =2 g1y

implying that

N(z) = L () + —— / ro(r™Vdr, (1.85)

n(n —2)[x|2 (n=2) Jiy

where the integral is interpreted as zero for |z| > 1. Since ¢ and ® vanish in a neigh-
borhoud of 0 while ¢ also vanishes in a neighborhood of 1, one can see that N € C*°(R").

Differentiating (1.85]) we get that

z®(|z|") 1 =z
n|z|® n—2|z|

VN(z) = - (o (l2]™) = |zl (l2]™))

which is ((1.83)). Differentiating once more gives us:

aijN(ac): _ Y —|—n|x|ni2 — |I|23g0(|x\ ),

n |

and using that ¢ is compactly supported while ® is bounded and vanishes in a neigh-
borhoud of 0, one verifies that 97 ;N € LP(R"). O

1.9.3 Example of Sobolev function on a thin set

We begin by considering the set £ C R? that we define as
E={(z,y,2):2>2—e @)Y 1 B(0,V2)
with 0 < a < 1. Let  C R? be the set
= (B(0, V2)\E)\B(0, 1),

we let Oy = (R*\Q)\B(0,1) and O; = B(0,1). We will call ) the intersection of
and the closed cone with vertex at (0,0,0) that passes through the points (x,y, z) on
5(0,/2) that satisfy 22 + 32 4+ 22 = 22+ 92 + (2 — e @H))2 Let f: R® - R be
defined as follows
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Figure 1.1: The domain ) is contained in the grey part, a =
red thin at (0,0,1). Below is close up of the region around (0,
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(

1 on Op\{(0,0,1)}
Pyt -1 on O\
f(l',y,Z): $2+y2+22—1
ERENCRY on €
Pt (2 e @) ]
0 on O

\

We claim that f € W12(R3) for some . We note that the gradient of f on Qg is given
by

2z 4o¢az(x2+y2)o"le*(z2+92)a (2—@*(12+y2)°‘)+2x
224y2+(2—e— @22 21 (224424 (2—e— (@2 HUD)¥)21)2(22 442422 1)1
2 2 2 2
Vf = 2y . 4o¢y(ar;2+y2)o‘*1@*(z +y) (2_6*(8c +y )Q)+2y

@242+ (2—e— @+ N)2 1 (a24y2 4 (2—e— (@ D)) 2 1)2 (22492422 1) 1
2z

224y +(2—e— @ Hy2)™)2 1

To show that f € W?(R?) we need only show that the following integrals associated

loc
with the L?-norm of the partial derivatives are finite for some «. In what follows we

need to recall the following series representations

5 20 ) oo 4o 7,.604 T8a 7,1004 O 1%
mel Sl e g g PO 6
L2 S (o)
VIefZ=1———— — — 40
' 5 =5 1600

We begin with the following integrals associated with the partial derivatives with
respect to  and y:

2=2—e— (=2 +yHe 2 2
4
/ / 5 5 (v —|—y2) Tong 5 dzdzdy
V1 (@2 +42) (22 + 9% + (2 — e @ H07)2 — 1)

(z2+y?)<R?
_ 2
:4/ / rR-c 2;1 r)rdrdﬁ
o Jo (+ (2 —e )2 —1)2

R 2
r
=4 / / rdrdf,
0 0 (2—677"2CK —\/1 —7“2)<2—€7T2a +\/1—T2>2
using the series expansions in (1.86]) that near r = 0 the integrand is dominated by r*=22,

hence if 3 — 2a > —1 the integral is finite, which is necessarily true for 0 < a < 1. To
finish the discussion for integrals associated with the partial derivatives with respect to
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x and y we look at

z:2—e—(m2+y2)a (40&(1‘2 + y )a 1 7(x2+y )a(2 . e*(12+y2)°‘) I 2)2
2=/1—(27+2) (22 + 42 + (2 — e~ @H¥7)™)2 _ )4

(w2+y )<R?
(2% +v*)(2® + y° + 2 1)2dzdxdy

/ /R r? 4ar2°‘ 2077 (2 — 7Y 4 2)2
_ 6*7"%)2 _ 1)4
[ s m>< o2 1)

(2= - (VTP 2™y - (VT=P)
3 5

(2r* —2) + rdrdb,

using the series expansions in ([1.86]) we have that

[(2 —e T VT =) =2+ 1)+

(2= — (VTP 2=y — (VT

w2 —92
3 (2r° =2) + E

is dominated by r% near r = 0. We can show that the integrand near r = 0 is
dominated by r%~! hence integrable for 0 < o < 1. Using the fact that for a,b € R,
(a + b)* < 2(a® + b*) and the above integrals we have that the partial derivatives
with respect to  and y are in L?(R?). Finally the integral associated with the partial
derivative with respect to z:

z=2—e —(@%+y*)* 422
dzdxd
/ / - (12+y .Z’2 + yQ + (2 _ e—(x2+y2)a>2 _ ]_)2 2 adxray

(z2+y?)<R?

27 3
P = (VI=)
/ / . 7‘2°‘>2 “ 1y rdrdf,

using the series expansions in (1.86)) the integrand is dominated by r'=2% near r = 0
hence for 0 < a < 1 the integral is finite. Hence we have shown that for any a with
0<a<l1,feW-(R? and is not constant on R*\Q.

It remains only to show that the set Oy is thin at (0,0,1). We use [54, Thm 7.2.5] to
show that the set EO such that (x,y,2) € By with 0 < z < 1 —¢(a) for some e(a) > 0

satisfy /(2% +y?) < In(:= 2a is thin at (0,0,0). By letting

2c

1 N\
1—t>2 for 0<t<1—c¢(a)

f(t) =1In (

then continuously and boundedly extending f in 1 —e(«) <t < 1 we study the following
integral

dt.

/o t<1+1n1 (7))

f(®)
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We can choose () to be such that % >1in0 <t <1—¢e(a),such an e(a) exits

since -4 — oo as t — 0. Further we can show that for t1n <L> —~0ast — 0. It

@ £
thus follows that

In (t(1 +Int (ﬁ))) >In(t), forall0<t<1—¢(a)

Since In(t) < 0in 0 < t < 1 —e(a) it follows that we can find p with 0 < p < 1 such
that

In (t(l +In”" (%))) > pln(t) > In(t), forall0<t<1—e(a).

Hence, for 0 < t < 1 — e(«) the integrand is dominated by tip for 0 < p < 1 and the
integral is finite implying that Fjy is thin at (0,0,0). By noting that (x,y, z) € O with

(x24+y?)<land 1<z <2—¢eisjust (0,0,1)+ Ey we conclude the that Oy is thin
at (0,0,1).
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Chapter 2

A layer potential approach to
inverse problems in brain imaging

2.1 Introduction

In this chapter, we look at the problem of identifying active regions of the brain using
the electric potential and/or the magnetic flux density associated with brain activity.
This is done using the modalities of EEG, MEG and sEEG. To further study how EEG,
MEG and sEEG work we invite the reader to look into [55], [56] and [57], respectively.
We will give a brief explanation of these modalities here. EEG and sEEG are brain
imaging modalities that use the electric potential associated with brain activity. In
EEG the electrical potential is measured on the scalp whereas in SEEG the electrical
potential is measured inside the head. MEG is a modality that used the magnetic
flux density measured typically using Superconducting QUantum Interference Devices
(SQUIDs) placed at a distance away from the head and around the head. Recently,
Optically Pumped Magnetometers (OPMs) have been used to measure the magnetic
flux density, see for example, [5§].

The inverse source localisation problem using these modalities entails a lot into how
the electric potential and magnetic flux density are transmitted in the head. However,
the problem of source localisation and the inverse transmission problem have largely
been solved separately. For source localisation see for example [59], and [60]. The
problem of the transmission of the electric potential in the head has been studied be-
fore notably in [61] and [62] where the so-called boundary elements symmetric method
(sBEM) was employed. The sBEM uses the single and double layer potentials, the nor-
mal derivative of the double layer potential and the adjoint of the trace of the double
layer potential, and an application of Galerkin methods to solve the problem of the
transmission of electromagnetic fields associated with brain activity. Instead, we aim
to use only the single and double layer potentials with an application of boundary ele-
ments methods (BEM). In some cases the application of the BEM can be replaced with
a method of fundamental solutions, see for example [63], [64] for details on the theory
and applications of the method of fundamental solutions. We model brain activity,
which may also be referred to as a source or primary cerebral current, as a vector-field
whose components are elements of a Banach space supported on the grey/white mat-
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ter interface, which is in accordance with the neurophysiological structure of pyramidal
neurons in the cerebral cortex, see for example [57]. We give a special focus to [IW1/22]3-
vector-fields as sources as a way to clearly demonstrate the use of layer potentials in this
endeavour. We use the formulations introduced by Geselowitz for the electric potential
and magnetic flux density, see for example [65], which results in expressions of the for-
ward models of the electric potential and the magnetic flux density that have strong
relations with single and double layer potentials. When considering simple approxi-
mations of the head geometry such as a spherical head model, the expressions for the
electrical potential and magnetic flux density have explicit analytic expressions. Such
analytic expressions are difficult to obtain when considering realistic head geometries
such as those that can be obtained via segmentation of MRI images, see for example
[66]. In this case appropriate discretisations of the brain structures and the vector-fields
are required. On any meshed surface we can obtain exact expressions for the single and
double layer potentials associated defined on the surface hence exact expressions for
the electric potential and magnetic flux density, see [67]. This offers improved numer-
ical accuracy and the versatility of applying the forward model of electric potential
to both EEG and intra-cranial recordings as in sEEG. When considering the inverse
source localisation problem, we solve a Tikhonov regularised problem where we find the
source that minimises a functional which involves the forward model. Hence, improved
accuracy of the forward models in turn improves the source identification. In addition
to source identification, the forward models that we employ can be co-opted to solve
the so-called inverse cortical mapping problem, see [68], which is an inverse problem
of the transmission of the electric potential within the head. In [68] a method based
on the sSBEM for solving the inverse cortical mapping problem was presented. The key
difference between the method in [68] and the one we present here is that the unknown
source is required in the computations. Further, the method we present is such that the
inverse cortical mapping problem can be solved given either electric or magnetic data
associated with brain activity. Coupling the problems of source localisation and corti-
cal mapping should in principle improve the accuracy of the source localisation. The
forward models we use provide a natural coupling of electric potential and magnetic
flux density and we use this coupling to solve the inverse source localisation problem
with simultaneous sEEG and MEG data which has interesting practical applications.

The chapter is organised as follows. In Sec. [2.2] we give an overview on layer
potentials and Maxwell’s equation to motivate their later applications. In Sec. [2.3] we
look at the forward models for the electric and magnetic potential in inhomogeneous
domains, which forms the bedrock of this paper. In Sec. we apply the forward
models to [W1/22]3-vector-fields normally oriented to the grey /white matter interface to
illustrate the use of the layer potentials. We will also look at how to build the discrete
version of the problem which is largely applicable with minor changes when the source
is taken from other Banach spaces. In Sec. [2.5, we discuss the inverse problems for
sEEG, EEG and MEG together with the inverse cortical mapping problem. We show
that a solution always exists and propose an algorithm to solve the problem. In Sec.
[2.6] we present numerical examples of the algorithm with the sources taken as [W1/22]3-
vector-fields and as dipoles to show the versatility of the algorithm and what we are
aiming for. We provide a conclusion and outlook in Sec. [2.7]
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2.2 Preliminaries

Notation and definitions introduced in Chapter [1] will be carried over into the present
chapter with new notation and definitions being introduced as needed. In this chapter
n = 3.

2.2.1 Maxwell’s equations
Recall the discussion in Section [1.2.1] We make the notational change of bolding all R3-

valued quantities. In the constitutive relationships we assume that P =0 and M = 0.
For EEG and MEG the quasi-static approximation can be made for the electromagnetic
dynamics. In the quasi-static regime V x E = 0, thus it follows that E = —V¢ for
some scalar potential ¢. The total current density is of the form J = J* — 0V ¢ where
J? is the impressed primary current, —oV¢ is the ohmic current and o is the electric
conductivity which needs not be uniform in the domain. The elliptic equation

V- (oVe)=V-J, (2.1)

can be derived from the quasi-static approximation and we shall use it in this work.
The similarities of ((1.1)) and (2.1)) ensures that the analysis done in Chapter [1| remains
valid for problems governed by (2.1)) when ¢ is uniform in the domain.

2.3 Forward Models

2.3.1 Unbounded homogeneous domain

Suppose that the source is an element of [Z]* for some Banach space Z, that will be
precised later. Thus, it follows from ({2.1)) that the electrical potential associated with
the source & € [Z]? satisfies

V.- (6Vp)=V-E&. (2.2)
From ([2.2)) in an infinite homogeneous medium the electric potential, ¢, is given by
1 [V-£(y)
=— [ ——=d 2.3
op(€)(x) = P ¢ supp§, (2.3)

and the gradient of the potential, V¢, is given by

000l = 3 [y [0 TN e dy o ¢ swpe (2

|z —yp°

Since the magnetic flux density, B, is divergence free it is the curl of the vector
magnetic potential which we denote by A, that is,

B=-VxA.
Given a primary current & then

A@) - L [

|z — 9|

dy, x ¢ suppé. (2.5)
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Using the relationship above between the vector magnetic potential and the magnetic
flux density we have that

1

BE)(w) = 1= [ €)X Vyr=—dn. o ¢ sum€ (26)

2.3.2 Non-homogeneous bounded domains

Figure 2.1: An example cross-section of a non-homogeneous domain and the place-
ment of intra-cranial electrodes for sSEEG, in red; the blue arrows represent the normal
orientation of the source term on its support.

We now study the transmission of the electric potential and magnetic flux density in
a bounded non-homogeneous conductor. Figure is an example of such a conductor.
To that end we consider the following bounded domain; let Q C R? be a nested non-
homogeneous bounded Lipschitz domain such that €y, €24, ..., €, are nested Lipschitz
domains with Qy C 0y C --- C Q,, and Q = U;€2;. We let the boundaries 0€2; N0, =
i1 with v1, 0 =0,1,2,...,m — 1 being the outward pointing unit normal to >,
1=20,1,2,...,m—1, respectively. For consistency of notation the outer boundary of €2,,
shall be called *3,,,1 with v, 1 as the outward pointing unit normal to >,,,,. We will
assume that the support of & € [Z]? is a proper subset of Qy. The electric conductivities
of the different domains are constant in each domain but different between domain, we
call them o, o1, ..., 0., for Qp, Qq, - -+ Q,,, respectively. The conductivity outside >, 11
will be set to zero, hence 0,,,1 = 0. On any of the interfaces >;, i = 1,2,...,m+1, let
o; and o, be the conductivities inside and outside, respectively.

The electric potential at the interfaces is denoted by ¢; and ¢; depending on
whether the electric potential is taken as a non-tangential limit approaching the inter-
face ¥;, 1 = 1,2,...,m + 1 from inside or outside, respectively. On each interface 3;,
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the electric potential satisfies
¢ = b7,
o; 00" =a; 0,0,
since ¢ is a solution to the elliptic problem (2.2)), see for example [69, Chap. II, Sec.
8.3, Prop. 9]. Henceforth we will denote by ¢; the electric potential on the surface ;.

This regularity of the electric potential and normal currents leads to the well-known
fact that the electric potential at any point x € R3 is given by :

(2.7)

m+1  _
o; + 1

—0
o(@)ole) = udl©)(@) ~ > T [ ) V() i) (29)
; Am by} ! |1’ - y|
where H; is the 2-dimensional Hausdorff measure on the surface ¥;, see for example
[65]. Note the above formula is valid for z € ¥; and whenever z € ¥; we take the non-
tangential limit approaching from int 3;. Using (2.8) we have that on each interface
Ye,k=1,2,...,m+ 1 the first regularity condition of (2.7)) can be rewritten as

o, ;—%ﬁ@f(@ =00p(&)(z) — Z (07 — oHKidi(z) — (05 — 07 ) K (z),  (2.9)
i=1,ik

where IC; is the double layer potential defined on the interface ;. Once ([2.9)) is satisfied
the continuity of the normal derivatives of the double layer potentials across the inter-
faces ensures that the second condition of is also satisfied. Due to the condition
that the electric conductivity outside €2 is zero, the electric potential has to satisfy,

OOy, @ () =0, (2.10)
forx € ¥,,41.

Remark 8. It is important to note that for one to be able to obtain the electric potential
associated with &, it is sufficient to solve a system of equations with on the surfaces
Yk, k=1,2,....,m+ 1. Alternatively, the equality can be used on the surface
Yimi1 instead.

Note that the electric potentials on the surfaces 3J;, also produce magnetic fields
that have to be considered when looking at the magnetic flux density associated with
the primary current €. At any point z € R3, have the following expression for the
magnetic flux density associated with the primary current &,

m+1

B(r) = B(&)(x) ~ ) T /Z viy) x Vy’x—iy’@(y) PHiy), (211

see for example [65, Eq. (17)], where the ¢;’s on the surfaces, ¥;,i = 1,2,...,m+1, are
the same as the surface potentials in . Note that in (2.11]) care need to be taken
when z € ¥;, see for example in the proof of Proposition (1| below.

We briefly discuss about the sSBEM to highlight the main differences with BEM
approach we are going to take here. We first need to recall that for each point x € R3,
we can represent it using the spherical coordinate system (r, 6, ¢) with r = |z|. Then
sBEM is based on the following observation:
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Theorem 27 ([70, Thm 3.1.1], Representation Theorem). Let u be a harmonic function
in R3\OQ satisfying the decay condition

lim rju(x)| < oo,
r—00

lim r0,u(z) = 0,

r—00

where O,u(x) is the partial derivative of w in the radial direction. Then on Of)

0 = £ N — K Dol

ut =T [u];g — Klulaq + S[0,u]aq

where [ulpq = u~ —ut of u: R* = R on 9N and N is the normal derivative of K on
0.

In the sBEM the source is decomposed as follows

)

ngivém such that VéQl = (v€>XQz

i=0
and on each €2; we define for each i =0,1,...,m
It follows that each vg, is harmonic in R3\Q;, i = 0,1,...,m. Further, define on each
(); the harmonic function
VQ.
d— -2 inQ
0'.
uQ, = T .
— el in RB\QZ
a;
For each ug,, 7 =0,1,...,m the following is true,
[uQi]Zi = _¢i7 [uQi]Zi+l = gbi-ﬁ-l
and
[al’iuﬂi]zi - _aVi¢i7 [aVi+1uQi]Ei+1 - al/1+1¢i+1‘
Using the Representation Theorem, one obtains on each ¥;, ¢ = 1,2,...,m + 1 the
expressions for
Us_sz ugp (8Viuﬂi71)_7 (aViuQi)+
then by taking
(N ugl and 0, 1(0,,uq, )" — 0i(0,,uq,)T,

on each ¥; expressions for ¢; and J,,¢ are obtained. These expression are then used
to build the linear system to be solved to obtain the surface electric potentials, ¢;,
and normal currents, d,,¢. See [61] for more details on the method. The method we
implement in this paper is equivalent to the “Double-Layer Approach” of the paper
[61]. The approach we take differs from the SBEM in that our approach only computes
the surface potentials while the SBEMs computes both the surface potentials and the
normal currents.
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2.4 [W'Y223 sources

In what follows Yy denotes a closed Lipschitz surface inside 2y, which is the support of
the sources. We now take [Z]? to be the subspace of [W1/22(%)]® composed of vector-
fields normally oriented to ¥, that is we take vector-fields My, € [W1/22(34)]? of the
form My, = Ms, vy, with My, € W1/22(3;). Both the orientation and magnitude
of My, are encoded by My, € W/2%(%), we take My, to be oriented in the same
direction as vy when My, is positive and in the opposite direction otherwise. Note that

([2.3) can be rewritten as
1 (z—y)

00¢(Ms,) () = — g M, (y) - r— dHo(y),
1 (z—y) (2.12)
“in ), M, (y)m - vo(y) dHo(y),
= ICOMEO(:E)>

for x € R3\Xg. From [25, Thm 4.1] we have that ¢ € W?(int¥g) and ¢ € WH2(extXy).
For x € Xy, we have that by approaching = non-tangentially

706(M,)(2) = £ 720 | Ko (), (2.13)

where the — and + are from approaching the boundary from interior and exterior of
Y, respectively.

2.4.1 Forward model for electric potential
We can now rewrite as

m+1 _

7()(z) = oup(Ms,)() = 3 2L o [t v ()
- (2.14)
= KoMs,(z) — Z(Uf — 0 )Kigi(x),
i=1
We can therefore rewrite as
o +on . w
5 % (z) = KoM, (z) — Y (07 — 0)Kiti(z) — (o, — o7 ) Kign().  (2.15)
i=1,ik
We now discuss the numerical implementation of and on triangular
meshes of the surfaces ¥;, 2 =0,1,...,m~+ 1. Since we have made the assumption that

Qi =0,1,...,m is a Lipschitz domain then K : L*(3;y1) — L?(X;;1) fails generally
to be compact, see for example [29]. When K : L*(3;y1) — L*(3;41) is compact we
have that (£37 4+ K) : L*(3;41) — L*(3;41) has a canonical representation, that is,

@;HK> =" ay{fus)uy, (2.16)

j>1
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where {«;} and {u;} are the eigenvalues and an orthonormal basis of eigenfunctions
of (j:%f + K), respectively. This is true for example when ¥, is a sphere in which
case the u; are spherical harmonics, see for example [71], hence we can derive explicit
expressions for . In general, if ¥;; is C'! smooth then K is a compact operator, see
for example [29], hence a canonical representation as was given above is achievable. Tt
then is possible to numerically approximate the eigenvalues and eigenfunctions in these
smooth cases, see for example [72]. In these cases we can use the method of fundamental
solutions to build and , see [64] for an example of this application of the
method.

For ¥ a Lipschitz surface we propose the following use of BEM for (2.14]) and ({2.15)).
Given a surface >, we begin by triangulating the surface to obtained 7. On ¥ we
will represent each function f € W1'/22(X) by considering its values on the vertices
of ¥7. We assume that on each triangle the function can be represented by linear
shape functions, that is, on each triangle there are three linear basis functions each of
which has value one on one vertex and zero on the other two. Thus, given a function
f € WY22(%), on each triangle T} of Y7 we write,

fly) = kaj¢kj(y)a (2.17)

where y € Ty, fi; is the value of f on the j-th vertex of the triangle T}, and y; is
the linear shape function on T} that has value one on the j-th vertex of the triangle.
Now given a point x € R® we wish to compute the double layer potential K f(z) for
f € W'22(%). We use the analytic formulation proposed in [67], which enables us
to numerically compute exactly the double layer potential defined on ¥ even when
x € Y. With this formulation we write

Kf(x) =H(x)f, (2.18)
where

1) H(x) is a row vector in which the [-th element of H(z) is the sum of the contri-
bution to the double layer potential of each triangle that has the [-th vertex of
the triangulation as a vertex

2) f is a column vector of the values of f on the vertices of ¥ with the [-th element
of f is the value of f on the [-th vertex of the triangulation.

Note that depending on where z is located, H(z)f is either Kf(z) or (—31 + K)f(z),
with a “—” for x € ¥ as we assume that the approach is from the interior. Using this
notation, (2.14) can then be written as

m-+1

o()p(x) = ooHo()®o — Y (0] — 0] )Hy(2)®;, (2.19)

=1

where H; () is as described above and also depends on the surface ¥; 7, the triangulation
of 3J; and ®; are the values of ¢, at the vertices of X; 7, ¢ = 0, 1,2, ..., m+1, respectively.
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Forz e Xy, k=1,2,...,m+1, (2.15) becomes

m+1
oy ()6(z) + (0 — 0 ) Hi(2)®) = ooHo(2)®0 — Y (07 — 0 )Hy(2)®;.  (2.20)
i=1,i#k

We can use the same idea as above to compute the gradient of the double layer
potential at any point z for any function f € W¥22(X). To be able to solve the
forward cortical mapping problem we only need the normal derivatives of the double
layer potential at the outer most surface. We will have the following formulation

9,Kf(z) = N(2)f, (2.21)

where N(z) is constructed in the same manner as H(z). It then follows that the normal
derivative of (2.14) for x € ¥,,41 7 becomes

m+1
O'()No(l’)@o = Z(O'Z_ - O':_)NZ(ZL’)@“ (222)
i=1
In view of Remark [8| given the surfaces ;7,1 =1,2,...,m + 1, ®¢ and letting X;
the set of all vertices on all surfaces X; 7, we can build the linear system

m+1
{ (o—,;I + (o — a,j)Hk(Xk)>«I>k - Z (o0, — o ) Hi(Xy)®;
i=1,i#k

(2.23)
= UoHo(Xk)‘I’o}
k=1,2,...,m+1
or
m+1
{(akl + (o), — a,j)Hk(Xk))i)k + Z (o, — o ) Hi(Xy)®;
i=1,itk
= UoHo(Xk)‘I’o}
k=1,2,....m
m—+1
Z(Uf — 0 )N (Xp41) @i = 00No(Xp+1) Lo
i=1
and solving either of the above linear systems for ®;, k = 1,2,...,m + 1, solves the

forward cortical mapping problem.

As alluded to earlier to compute the matrices H and N we will implement a method
suggested in [67] which results in exact expressions for the quantities that are required
to build the matrices for the meshed surfaces, ¥; . This allows to compute these
matrices for any arbitrary point x € R? hence allowing the numerical approximations
required for either EEG or sEEG with a high accuracy.
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2.4.2 Forward model for magnetic flux density

We now turn our attention to the magnetic flux density associated with vector-fields
in [W1/22(5))]? that were introduced in the previous subsection. It follows from (2.5))
that the magnetic vector potential of My, is given by

AMs)(@) = 22 [ TR0 an) — s, o), weRAE, 229

with the integral being taken in the principal value sense for x € ¥, see for example [7,
Eq. (5.32)]. Note that the last equality of is a direct application of the single layer
potential hence A(My,) has components that are equal to the single layer potentials
of the corresponding components of My,. Since W/22(%,) C L?*(Xy) € W1/22(%)
we have from [25, Thm 3.1] A(Mg,) € [WH?(Q)]? and A(Mg,) € [WH2(R*\Q)2.

Since B = —V x A it follows that B(My,) € [L?(Q)]? and B(My,) € [L*(R*\Q)]?
and the magnetic flux density associated with a vector-field My, € [W1/22(3,)]? is
given by

dH(y)

B(Ms, )(z) = - | Ma(4) x Yy (2.25)

47
= ,uV X SMEO(Z‘),

with z € R*\Xg .Since My, = My, 1y we can rewrite the above equation as

B(Mz)(#) = 1% [ ) x ¥y M) M) = i) (@), (220)

with z € R3\X,.
Note that the last equality of (2.26]) is how we define the operator S : W/22(3,) —
R3, which will be carried over to the dlscrete case. It follows from (2.11] - that

m+1

B(z) = B(Mxg,)(7) — u Z / i(y) % Vyﬁ@(?/) dHi(y)

l

m—+1 _ +
o — o 1
— SMEO(-T) — U Z 24—71-2 /Z Vz(y) X Vquﬁl(y) d?—[z(y),

i=1

(2.27)

where the ¢;’s on the surfaces are surface potentials obtained from the forward model
of the electric potential associated with My, .

Remark 9. Note that MEG measures B - v, for some known vector-field v. Typically,
v s taken to be a radial vector-field, hence if all of the ¥; above are spherical, all the
vector-field of the form My, vy will result in null MEG measurements, see [63, Eq. (20)],
which make a spherical head model uninteresting for MEG in this context.

We now look at how to numerically compute (2.27)) for Lipschitz surfaces 3;. To that
end we need to be able to express SMs,, as a linear combination of the SMy,,’s where
the Ms,,, € W1/22(5) are elements of the basis of W/22(3). Note that it only suffices
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that we look at how to numerically compute the expression given in (2.26) because to
compute ([2.27)) we repeatedly apply the same idea. We begin with a triangulation of the
surfaces and discretisation of My, € W/22(X) as was done in the previous subsection.

Note that (2.26)) on X is given by

Ba) = 345 [ on0) x ¥y Mslo) (o) (2.28)

since vy, is taken to be constant on each triangle hence we have that

1 1
B(z)=p) vp x— [ V,———Ms(y)dH(y)
%: Am Jr, e =yl (2.29)

= S(I)ME,

where S(z) is a row vector which is generated in a similar manner as H(z) and My is
a column vector of the values of My, on the vertices of ¥, where we use the formula
given in [67] to compute the integral above on each triangle. Hence is written in
discrete form as

m+1
B(z) = So(2)®o — Y (0, — 07)S(2)®;, (2.30)
i=1
where the ®;, + = 1,2,...,m + 1, are obtained from the forward model for electrical

potential.

2.4.3 Silent Sources

We will conclude this section by discussing silent sources. We begin with a definition:

Definition 35. Let E C R*\supp(€) then a non-zero vector-field € € [Z]? is electrically
(magnetically) silent in E if it produces an identically zero electric potential (magnetic
flux density) in E.

The existence of silent sources results in the non-uniqueness of solutions to the source
identification problems we aim to solve. It is therefore important to understand the
nature of the silent sources as this may help to mitigate their impact on the uniqueness
of solutions.

As an example, take [Z]® to be the subspace of [W/22(%()]® composed of vector-
fields of the form My, vy, with My, € W1/22(%,). We will now explore the silent sources
among these vector-fields.

Proposition 1. Vector-fields of the form Ms, vy, with My, € W/%%(3) such that My,
is constant are both electrically and magnetically silent in R3\ Q.

Proof. From (2.12) we have that
00(25(1\/[20)(1') = KoMEO(QZ'), x € Rg\Qo,
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and from [73, Ex. 6.14] we have that the above equation is identically zero in R*\Q) if
My, is a constant. Hence the proposition is proved for the electric silence.
It also follows from [74, Lem. 4.3] that

B(Msy, )(z) = SMy, () = V x S(Ms,v)(z) = S(v x V My, )(), (2.31)

where V My, is the gradient of My, on ¥y. It follows from [29, Thm 3.3] that all
S L*(3g) — L3*(X) is injective. Hence, if S(M) is identically zero in R3\(2y then its
non-tangential limit to g is identically zero on ¥y thus M = 0 on ¥,. We can therefore
conclude that, if My, € L*(%) is such that V My, vanishes on ¥, then the resulting
magnetic flux density is identically zero. Hence, all My, vy such that My, is constant
are magnetically silent in R\ (). O

Remark 10. From [73, Ex. 6.14] we observe that if My, € W/%%(X) is constant then
qub(MEo)(x) = KOMEO('I) = My, « €t X,

hence these vector-fields, My, vy, are not silent in . We can exploit this fact by
combining FEG or MEG data with SEEG data. The SEEG data will in principle allow
to eliminate the silent sources outlined in Proposition |1 in the source recovery.

As a second example take a closed set S C int ¥y and let S be a slender set, that
is, m3(S) = 0, where mj is the Lebesgue measure on R* and m3(R*\S) = co. We will
take [Z]® = [M(S)]® C [M(int X)]?, that is, vector-valued measures supported on the
slender set S. For & € [M(int 3o)]* we define V - £ in the sense of distributions and
when V - € = 0 (divergence-free) we mean

3
ou

Vu-d€ = —d¢; =0,

At %o int 2o ]Zl Oz

for all u € C2°(int ).

Proposition 2. Every & € [M(int £0)]® that has a slender support and is divergence-
free is electrically silent in R3\Qy.

Proof. This is a direct application of [0, Thm 2.2]. ]

Examples of divergence-free vector-fields on slender sets in R® can be constructed
as follows. Let ~ : [0,1] — R3 be a Lipschitz mapping and let S := ~([0,]). If v is such
that

H (v([a,0])) =b—a, V[a,b] C[0,1],

then ~ is an orientable rectifiable curve. Note that S is slender and on S define the
vector measure R, through the relation

(R, £) = / F(y(6) -~ () dt, for £ € [C(RY)?
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where ' is the unit tangent vector of 7. Let the endpoints of S be s,t € R3?, it follows
that Ry, = 4’H! and the divergence of R., is given as

I
/0 Vu(y(t)) -+ (t) dt = /ud'hl1 =u(s) —u(t), Yue C(int Xy),

where © is the derivative of u along «. Hence if s =t then R, is divergence free and by
the proposition above is electrically silent. Concretely, take S to be a circle embedded
on R? by taking
sint
v := | cost |,
0

with ¢ € [0, 27]. More details and examples can be found in [75].
These two examples show the particularity of silent sources to the assumptions on
the sources.

2.5 Inverse problems

In this section we consider the general situation when elements of [Z]* are vector-fields
with components that are elements of a Banach space, =, supported in €. When solving
the inverse problems for MEG, EEG and sEEG, we need that the electric potential, ¢,
associated with the recovered source satisfies the conditions and . We recall

£:9) and (2:10) here

{ — 00¢(§)(z) + ﬁ%% + "il (07 — 07" )Kigi()
ik , (2.32)
— (0}, — 0} ) Kiohi(2) = O}k:m ..... -
or
{ — 00¢(§)(z) + U;%Uk_% + mZH (07 — o7 )Kigi(x)
e , (2.33)
— (0, — 0y ) Kiow(z) = O}k:1,2 ..... -
OOy @) =0
and let

C:[EP x L*(Z1) x -+ x L*(Zpg1) — L*(B1) x L*(B3) X - X L*(Zpg1)

be the LHS of (2.32). Note that the null space of C, which we denote Cy, consists of

those surface electric potentials and their associated sources that satisfy the conditions
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(2.7) and (2.10)). In other words, we look for solutions to inverse problem of MEG, EEG
and/or sEEG in Cy. For the discrete setting we rewrite (2.23]) as

{ — 0o®(§)(Xi) + <Ok_I + (o — U;)Hk(Xk:D D),
(2.34)

m—+1

+ ) (o H,(X,)®; = 0}

i=1,i#k

- 72’“~»

or

{ — 0o ®(&)(Xy) + (UEI + (op — U?)Hk(XkD‘I’k

m+1

+ > (o H,(X,)®; = 0}
k=1,2,....m

i=1,1#k
m+1

000, B () (Xms1) + > (07 — 07 INY(X 1), = O,

1Ly

where oo ®(&)(X}) and 0¢0,,,,, (E)(Xmﬂ) are appropriate discretisation of and
000y, ¢(x), respectively. Hence, gives the discrete version of C on the discretised
surfaces X; 1, = 1,2,...,m + 1. The LHS of will be denoted C and the null
space of C by C,.

We briefly discuss the sBEM for the inverse cortical mapping problem so as to
compare it with what we have just discussed above. The fact that the electric potential
is harmonic outside the support of the source &, allows Theorem [27]to be used to express
the electric potential in a manner that excludes the unknown source. A linear system
can be built from the Theorem [27] see [68], that imposed the required regularity on
the electric potential and the normal currents. In [68] EEG data is used to perform
the inverse cortical mapping problem and in order to use this data they introduce an
operator that can reproduce the EEG data using the surface potentials, ¢;, and normal
currents, 0,,¢, 1 = 1,2, ..., m~+1. Note that this operator excludes the unknown source
as well.

The approach we have taken to impose the desired regularity of the electric potential
and the normal currents involves the unknown source. Hence, we can use forward
models and in solving the inverse cortical mapping problem to express the
electric potential and magnetic flux density, respectively, at the points where data is
captured.

2.5.1 EEG and sEEG problems

In the inverse source localisation problems that use the electric potential, there are two
regimes, one that uses the electrical data measured on the scalp as is done for EEG
and another that uses intra-cranial electric potential recording as is done for SEEG. In
both these instances, we wish to solve the problem that given point-wise measurements
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of the electric potential, ¢, in some subset of R3, find £ € [Z]® and ¢; € L*(%;),
1=1,2,...,m+ 1, such that is satisfied.

Due to the existence of silent sources for EEG and sEEG as highlighted in Sec.
2.4.3] we can only recover € € [Z]® up to silent sources. Further, since we only have
point-wise data for EEG and sEEG, the unique recovery of € € [Z]? is also negatively
impacted by the existence of ¢ € [Z]® that generate an electric potential that vanishes
at the measurement points. Due to the non-uniqueness of solutions highlighted here
these inverse problems are ill-posed, hence we solve Tikhonov regularised problems.

Keeping in mind that the electric potential that is reconstructed from the point-wise
measurements has to have the regularity stipulated in and . As indicated
earlier we look for solutions in the null space of Cy, which is exactly solving the cortical
mapping problem. We build the problems in such a way that they incorporate the
regularity requirements of the potential and normal current. There are a multitude of
ways this can be achieved, for example, in [68] the authors used a projector onto Cy
and looked for solutions directly in Cy. In our case we will use the projection onto C
as a regulariser in the associated Tikhonov problems.

2.5.2 MEG problem

In the simplest terms the inverse source localisation problem of MEG can be stated as
follows, given B on R3\Q find & € [Z]® and ¢ in Q such that holds. Again in this
case, due to the existence of silent sources for MEG as highlighted in Sec. we
can only recover the source, & € [Z]?, up to silent sources. In practice, B is known only
point-wise and only a component of it is considered with the additional issue that the
electric potential ¢ in Q is also unknown. Similar observation and consideration about
cortical mapping can be made here and appropriate changes akin to those made to the
source localisation problem for EEG and/or sEEG can also be made to the MEG source
localisation problem. All these considerations greatly increases the non-uniqueness of
the problem and hence we have to solve a Tikhonov regularised problem as well.

2.5.3 Existence of solutions to the sEEG, EEG and MEG prob-
lems

As highlighted above when solving the inverse problems for sEEG, EEG and MEG
we aim to recover the source & € [Z]* and by extension the surface electric potentials
¢ € L*%;), i =1,2,...,m+ 1. We now mathematically set up these problems and
show that the solutions exist. To that end let & be the product Banach space

[Z]? x L*(31) x L*(82) X - X L*(Zpp1)
endowed with the norm
I e + 1 2y + 1 e+ + 1 - llz2@mg)

and let
D, = L*(D),
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be the Hilbert space which corresponds to the data measured with EEG, MEG and
sEEG measurements with D C R? depending on the measurement modalities used.
Finally we would let the product Hilbert space

Dy = L*(X)) x L*(3g) x -+ x L*(Bn) X L*(Zimi1),

endowed with the norm

(- Wz + 1 W2y + -+ 1 12
which is useful in the study of (2.32)). Let F; : & — ®, for i = 1,2 be linear operators

with F; as the forward model of EEG, MEG and/or sEEG, that is, the formulas given
in by (2.8), (2.11)) and/or (2.8]), respectively and Fs = C. Thus, given f as data and

R : [0,00) — [0,00) a convex function, when solving the inverse problems for MEG,
EEG and/or sEEG we consider the appropriate functional

7},@,5)\0 ..... >\m+1(€7 ¢1a ¢27 BRI ¢m+1) = a||f1(£7 ¢1a ¢27 BRI ¢m+1) - f||2®1

m+1
(2.35)
+ BIF2(E, b1, 62, Dmar) I, + AoR(IEN =) + Y Ailldsllzas,).
j=1
Remark 11. Since it is cumbersome to write Tagx,.. s RETE after we will simply

write T keeping in mind the dependence of T on f,a, 8, Aoy Amat-
Thus we solve the following problem :

Problem 3. Given data f € ©1 and o, 5, \; > 0 find (&, ¢1, 02, ..., Pmi1)r € & such
that

(& 01,02,y Prny1)a = arg inf T(& b1, 02, Prmy1)- (2.36)
(&:91,02;,6m+1)€ES
Remark 12. We will prove the existence of a solution to Problem [3 in Theorem
below keeping in mind that we are mostly interested in [Z]* that is either [W/22(%)]? or
[M(Z0)]® or [M(int 3)]?, with M being the Banach space space of measures endowed
with the total variation norm. By using embeddings of various Sobolev space into the
space of continuous function we view spaces of measures as being contained in the duals
of certain Sobolev spaces. We take the view that [M(int o) € (Wh4|[(int ¢))*]?
for ¢ > 3 from the Sobolev embedding theorem, see for example [10, Thm 5.4, Part
II] hence we will discuss about the Newton potential in these spaces. We also have
[M(3Z0)]? C [(Wlf%’q(Zo))*]?’ for appropriate choices of q, see for example [23, Thm
4.57, Thm 4.58] states that W14() embeds into a space of functions continuous on
hence the traces Wl_%’q(Eo) are continuous. In the case of [WY/22(30)]? and [M(%)]?
we need only look at how the layer potentials behave.

Theorem 28. A unique solution to Problem [J exists.

Proof. We use the result [35, Thm 3.1] to make this conclusion hence we need only
show that Problem [3| satisfies the assumptions of [35, Thm 3.1].
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(1) We note that the duals of & and D, are isometric to ([Z]?)* x L*(3;) x L*(X,) X
oo X LA(S41) and L2(X)) x L2(33) x -+ X L*(Z,,41), respectively, and we will
associate & with its weak® topology, ®; and ®, with their weak topologies.

(2) From [11), Prop. 3.5] we have that norms are weakly lower semi-continuous hence
the norm of ®; and ®, are weakly lower semi-continuous.

(3) We will discuss the continuity of F; and Fs.

(i) We discuss the continuity of F; corresponding to (2.8]) and Fy which corre-
sponds to (2.32)) because of the similarities.

(a)

(b)

When = = WP(0Q2) for 0 < s < 1, 1 < p < oo, the double layer
potential from W*?(0S2) into WH%_S”’(Q) for0<s<1,1<p<oo,is
continuous, see [25, Thm 4.1].

For the case = = (W!'™*?(0Q))*, we begin by noting that can be

rewritten
_ 1 [ &) -(z—y)
AT Jaq |$ - y|3

o¢(§)(x)

which can be seen as the sum of the quantities

1 &(y)(x —y)i
il U VA VP Y]
Am Joo |z —yl? ),

dH(y),

for i = 1,2, 3, each of the which is the i-th component of the gradient
of the single layer potential S&;(x). The single layer potential maps
W=P(0Q) into WH%_S’Z’(Q) for0 < s < 1,1 < p < oo continuously and
V maps W*P?(Q) to W*=1?(Q) continuously for s > 0, 1 < p < co. Hence
(&) maps (W'=*2(9Q))* to W%S’q(Q) for0 <s<1,1<p,q< oo,
110 + % = 1, continuously.

When = = (W9(Q))* for —1 < s < 2, 1 < p,q < oo, 1174— 1 _
1, from the continuity of the Newton potential from the distributions
(Wrsa(Q))* to W=5P(Q), see [25, Prop. 2.1], and the continuity of
the double layer potential from W#®P(0Q) into WH%_S”’(Q) with Q a
bounded Lipschitz domain.

(ii) We now discuss the continuity of F; corresponding to (2.11)).

()

When = = WP(0Q) for 0 < s <1 and 1 < p < oo, we begin by noting
that
{(vx V)f: feWsP(0Q)} C W5P(09),

see [74l, (4.7)]. From [74], Lem. 4.3] and its proof we conclude that each
component of the terms that appear in the sum of (2.11)) is continuous
since [25, Thm 3.1] shows the single layer potential is continuous from

W—=P(99) into W”%‘“’(Q) for0<s<1,1<p<oo.
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(b) When Z = (W!=%7(9Q))*, we note that (2.5 can be rewritten as

AE)(z) = £(y)

_E aQ|$—y|

dH(y),

thus each component is a single layer potential. Since the single layer
potential maps W~*?(0Q) into WH%_‘”’(Q) for0<s<1,1<p<oo
continuously, we have that B(£) maps (W!'*P(9Q))* to Wéfs’q(Q) for
0<s<1,1<p,q< o0, 110 + % = 1, continuously in each component.

(c) For the case = = (W'9(Q))* for —1 < s <2, 1 < p,q < 00, é—l—é =1,
note that the first term on the RHS of is the curl of the Newton
potential. From and it follows that B(&) is continuous from
(W+s4(Q))* to W—*2(Q) in each component for —1 < s <2, 1< p,q <
00, zl:» + % =1.

By choosing s and p appropriately we can conclude that F; and Fs, are con-
tinuous from & to ®; and P, respectively in their weak topologies precised in

(1).

(4) In what follows we denote by dom(Fy,Fz), dom(Fy) N dom(Fz) C &S, where
dom(F) denotes the domain of F in &. Note that

m+1

R = MoR(I€ll=p) + D Ailloslias,)

j=1

is weak® lower semi-continuous in & from [I1, Prop. 3.13]. Note that the zero
element, 0, of & is in dom(F1, Fz), hence we have that 9%(0) = 0 hence R is
finite for at least one element of dom(F7, Fs), that is, R is proper. Finally, fR is
convex since it is sum of convex function of norms.

(5) We now show the that dom(Fy, Fz) is weak® closed. We will again do this in
two steps, first for the electrical potential and then for the magnetic flux density.

(i) Note that for the electric potential, the domain [Z]* is [(W!T*49(2))*]* or

[(W*s*%’p(aQ))]?’ for —1 < s<2, 1< p,q< oo and these are weak® closed,
see for example [I1, Thm 3.33].

(ii) For the magnetic flux density we require that [Z]? is the set of elements & €
[(Wtsa(Q))*]? for —1 < s < 2,1 < p,q < oo with V x & € [(W5(Q))*]?
which is a closed subspace of [(IW!T*4(Q))*]* or [Z]? is £ € [(Wﬁsf%’p((‘?ﬂ))]?’.
In either case we have weak” closed sets, see for example [11, Thm 3.33].

Hence dom(Fy,F,) C & is weak* closed.

(6) Let v > 0 and k > 0 and set one of a, 3, Ao, . .., Aur1 equal to v define the set

D ={ue dom(F,Fz) C &:T(u) <k}
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Since 7 (u) is continuous on dom(Fy, Fp) C & it follows that © is a bounded
set hence weak* compact from Banach-Alaoglu-Bourbaki Thm, see for example
[T, Thm 3.16].

Conditions (1)-(6) above show that Problem [3|satisfies the assumption of [35, Thm
3.1] hence a solution exists and the solution is unique due to the convexity of 7. [

Remark 13. Note that Problem[3 does not discuss the contamination of the data with
noise. In practice f € D1 is contaminated with noise and we assume that the noisy
data f° € ®, and ||f — f’llo, < 0, 6 > 0. The stability and convergence of Problem
@ with respect to noise and regularisers a, 3, Xo, - . ., Ama1 1S also discussed in [35], see
especially [35, Thm 8.4 and 3.5].

2.5.4 Alternating minimisation algorithm for solving inverse
problems

We wish to solve Problem [3| by splitting it into a problem that solves for the source
¢ € [Z] and a problem that solves for the surface electric potentials ¢ € L*(3;). We
iteratively solves these problems to obtain the solution we desire as discussed in the
introduction of [76]. The alternating minimisation procedure is as follows, beginning
with some initial guess

0} {0 0
(E{O}v i }7 Qg }a s 7¢;{n-}§:1)7
then generate a sequence of solutions

l l l
{(E{l}vgbi}v é}a-'-v ini—l)k} ’
leN

by solving the following problems
l . NERT !
§\+1} — agrg[l]gf T(&a gbi }’ é}a e 7¢jni—1)
€=

N A Y i) (237)

= al"ginf T(€{Z}7¢17¢27' - 7¢m+1)'

(150, Pm+1)ED2

A closer inspection of F; and F5 as we proposed be taken reveals that

Fi(& b1,02, - bmg1) = F11(§) + Fra(dr, b2, - -, dms1)

Fo(& 1, P2, .., Omi1) = F2,1(&) + Foo(1, P2, - - o 1),
hence the problems that we solves in ([2.37)) have the variables € € [Z]® and (¢1, ¢a, ..., Pmy1) €
D, well separated in F; and F, hence we can implement methods that best recover

each variable.
We now show that the sequence

l l l l
{(5{ },Qb{ }’ g}’ ceey ;{nil)k}leNv

generated by the above alternating minimisation algorithm results in the objective
function converging linearly to the minimum of Problem [3| The result below is valid
for all [Z]® outline in Remark [I2] and Theorem 28|

(2.38)
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Theorem 29. The sequence generated by the alternating minimisation algorithm con-
verges linearly to the minimum of the Tikhonov functional T .

Proof. Take
B, =[],
with
D=1 e
and
By =Dy,
with

|- fl2= (Il ||2L2(21) +1- ||%2(23) +o ||%2(2m+1))1/2-

Further take functions h, g1, go defined on & as

h = CYH.7:1(€,¢1,¢2, . '7¢m+1) - fH%l +BH]:2<€7¢17¢27 . '7¢m+1)”2©27
g1 = MoR(||€]l=p),

m+1

92 =Y _ Msill72s,)-
=1

Note that the above problem ([2.35)) can equivalently be written as the following problem

min {H(Zl, Zg) = h(Zl, ZQ) + 91(21) + 92(2’2)|(21, 22) S %1 X %2}, (239)

where B1,B9, h, g1, g2 satisfy the following conditions from [77]:

(P1)

(P2)

The feasible sets (B, - ||;) are Banach spaces with duals (B}, || - ||;«) and the
duality pairing (-, -);, i = 1, 2.

Since norms of uniformly convex spaces are (Fréchet) differentiable, see (A2) be-
low, the function g, : B; — RU{oo} is proper convex, (Fréchet) subdifferentiable
with subdifferential dg; on dom ¢;, @ = 1,2. Let D : dom g; x dom gs.

The function h : By, x By — R is convex and (Fréchet) differentiable over D.
For our problems this follows from the fact that norms are convex and norms of
Hilbert spaces are (Fréchet) differentiable. Let Vh denote the (Fréchet) derivative
of h.

Since a solution to Problemexists, the optimal set of the problem ({2.39)), denoted
by O* C B, x B,, is non-empty, and the corresponding optimal value is denoted
by H*.

B, x B, is equipped with a separate norm || - || which we can take to be the graph
norm and [y, fs > 0, satisfying

(21, 22)|1* > Billzl|?  for all (21, 22) € By x By,
by definitions given above. Furthermore, we equip 2, x 2B, with the duality
pairing <'7 > = <'7 '>1 + <'7 '>2-
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(P5) For any (21, 22) € D, the following problems have minimizers

min H(z,2%), and min H(Z, 29),
21€B1 22€B2

as a consequence of Theorem [2§]

(A2) The partial (Fréchet) derivative of h with respect to the i-th component, denoted
by V;h € B}, is Lipschitz continuous with Lipschitz constant L; € (0,00],i = 1,2.
with min{L;, Lo} < oo; exemplarily, for ¢ = 1 (analogously for ¢ = 2) it holds
that |Vih(z1 + v1, 22) — Vih(z1, 22)||1+ < Lil|ya ]l for all (21, 22) € D,y € By,
such that z; +y; € dom ¢,
as a consequence of the chain rule of Fréchet differentiation and the fact that
LP, 1 < p < oo are uniformly convex hence uniformly smooth, see for example
[38, Part 3, Chap. II, Sec. 1, Prop. 8 and Part 3, Chap. II, Sec. 2, Prop. 2],
hence their norms are uniformly Fréchet differentiable [38, Part 3, Chap. II, Sec.
2, Prop. 1] and that F;, F, are bounded linear operators hence they are their
Fréchet derivatives with respect to € and (¢1, ¢a, ..., Ppi1)-

(A3a) Recall that a function h is strongly convez if there exists o > 0 such that
(Vh(z) = Vh(2),Z — z) > o]z = Z|I%,

for all z € dom h. The function A : By x By — R is quasi-strongly convex with
respect to O*, with modulus o > 0, that is, for all z € D and Z := arg min{||z —
yllly € O*}, the projection of z onto O*, it holds

h(Z) 2 h(z) + (VA(z),7 = 2) + 2]z = 2|1,

as a consequence of h being the sum of squares of Hilbert norms each of which is
strongly convex function with modulus o > 0 and the boundedness of F;, F» in

€ and (41, d2, ..., Oms1).

We have shown that Problem (3] satisfies the assumption of [77, Thm 1], hence the
sequence generated by the alternating minimisation algorithm converges linearly to the
minimum of the Tikhonov functional 7. O

Remark 14. For the discrete version of Problem[3 we have that the alternating min-
imisation sequence converges to a solution of the problem as a consequence of the results
provided in [7§].

2.5.5 EEG, sEEG and cortical mapping

Numerically, we solve discretised versions of the continuous problems of the previous
subsection. Note that in what follows & is discretised. In the discrete problem we
introduce regularisation matrices I'; that discretise the regularisers in the continuous
problem. For EEG or sEEG we solve the following problem:
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Problem 4. Given point-wise recordings of electric potential, {¢p(Y)}, o, B,A; > 0,
find (€7, ®*) such that

(£, ®7) = argmin (aHFE(Y)(& @) — o (Y)o(Y)l; + BIC(E, ®)lI2

£e[=]3,@cR™”
mt1 (2.40)
#XoR(ITl) + 3 M, ®|13).

where Fg is an appropriate discretisation of the forward model of the electric potential
and ¢(Y) is a vector of the potentials at the points Y = {y;} and m* is the total
number of vertices in the triangulation of the cortex, skull and scalp, X1 7, Xo 7, X3 7,
respectively.

2.5.6 MEG and cortical mapping

Numerically, for MEG we will solve the following problem:

Problem 5. Given point-wise measurements of components of the magnetic flur den-

sity, B(Y) - v(Y), a, 8, \; > 0 find (§*, ®*) such that

(@) = argmin _(al[Fp(Y)(€ @) v(Y) = B(Y)-v(V)[} + BIC(E @[3

£c[E)3, PcR™”
m—+1
+ MoR(ITo€ ) + D AlIT; @11 ).
j=1

(2.41)

where Fpg is an appropriate discretisation of the forward model of the magnetic flux
density and B(Y) - v(Y) is a vector of the v components of the magnetic flux
density at the points Y = {y; } and m* is the total number of vertices in the triangulation
of the cortex, skull and scalp, ¥ 7, o7, X3 7, respectively.

2.5.7 EEG, sEEG, MEG and cortical mapping

There is an obvious connections among the EEG, sEEG and MEG source localisation
problem and cortical mapping as can be seen in and hence these problems
can be solved in a unified way by making appropriate changes to either (2.40]) and (2.41))
if simultaneous recordings of EEG, sEEG and MEG are available.

2.5.8 Resolving the discrete problems

In [78] weaker assumptions than those stated in Theorem are given that ensure
the discrete problems have unique solutions, in particular the omission of the Fréchet
subdifferentiability of ¢g; and g in (P2). This weaker set of assumptions ensures sub-
linear convergence of the objective function to the minimum when the Banach spaces
B, are R™ for some n; € N, 7 = 1, 2. This is particularly useful once we have discretised
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the problem such as in the case measure being discretised, as a collection of dipoles.
This discretisation of measures results in the total variation norm of the measures being
the |||z, vy of the sequence of Euclidean norms of the dipole moments and this norm is
not Fréchet subdifferentiable. This leads to the conclusion that applying an alternating
minimisation procedure to the discrete problems for sEEG, EEG and MEG results in
obtaining the minimisers that we seek. Note that the solutions we obtain for these
problems depend on the regularisation parameters o, 3, \;. The parameters, o, 3, ;
are chosen such that the influence of the noise in the measured data on the solution is
minimimal. Hence, the choice of the parameters a, 3, A; is of great importance. Since in
practise there may be no information on the properties of the noise corrupting data we
propose the use of the L-hypersurface technique for choosing appropriate regularisation
parameters, see for example [79], for an exploratory study of this technique. The L-
hypersurface approach is a generalisation of the L-curve technique, see for example
[80]. In short, in the L-hypersurface technique one aims to find the point of maximum
Gaussian curvature on a hypersurface that is generated by plotting the data discrepancy
of a solution against the regularisation parameters generating the solution; the plotted
values are scaled appropriately. It has to be noted that this a computationally expensive
technique and other less computationally expensive techniques can be implemented such
as one called the minimal distance function technique which is studied in [79].

2.6 Numerical Results

We now present some numerical results of the inverse source localisation problem us-
ing EEG, sEEG and MEG data, we also used combined sEEG and MEG data. These
numerical results were obtained using code written in MATLAB and the graphics were
produced using a MATLAB add-on Toolbox Graph [81]. The meshes used were pro-
cessed using the MATLAB add-on Iso2Mesh [82]. Iso2Mesh was used to fix defects
within the mesh structures such as intersection between meshes and within meshes.
The forward problem can be solved satisfactorily with disregard to such defects but the
inverse problem is very sensitive to such defects. The processing done in Iso2Mesh re-
sulted in meshes that differed from the ones used in the forward problem thus helping in
avoiding the inverse crime. The data we use was generated using OpenMEEG, see [61]
and [83], which is based on the boundary elements symmetric method. OpenMEEG
uses current dipoles as the elementary electromagnetic object. The dipoles used in
OpenMEEG to generate the data were outwardly normally oriented to the grey/white
matter interface. In the source recovery problem we attempt to recover the locations
of the current dipoles associated with these data by using either W'/%2 functions or
a finite collection of dipoles. We attempt the recovery with [W1/22]3 vector-field that
are normally oriented to the grey/white matter interface or with a collection of dipoles
whose locations can only possibly be on the barycentres of the triangles of the meshes
hence we need only recover the moments of the dipoles placed on the barycentres all
triangles. With these source recovery problems we also solve the cortical mapping prob-
lem. Note that for the W/?2 recovery we can use direct inversion methods to solve
the inverse problems however for completeness we used the alternating minimisation
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procedure to solve these problems as well.

Head Model sEEG electrodes

EEG electrodes MEG SQUIDs

LA
.. “ .O

CRd
. o

Figure 2.2: Head model and sensor positioning.

In Figure we show a head model with4 surfaces, the inner most red surface
represents the grey/white matter interface, the dark blue surface represents the cortical
surface, the light blue surface represents the outer surface of the skull and the outer
most yellow surface represents the scalp. In the same figure we show the location of the
198 sEEG electrodes as blue dots, the majority of them being in the region enclosed
by the grey/white matter interface. The 64 EEG electrodes are represented as green
dots on the scalp and the locations of the 151 Superconducting QUantum Interference
Devices (SQUIDs) for recoding MEG measurements are shown as black dots outside
the head.

Figures , and show the ground truth (OpenMEEG
data) and recovery results obtained from using sEEG, MEG , combined sEEG and MEG
and EEG data, respectively. In each figure the first column shows the ground truth
data generated by OpenMEEG using the dipoles represented as red dots in the bottom
most figure of the first column. The second column of each Figure shows the recovery
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results when the source is assumed to be [W'/%2]3 vector-field normally oriented to the
grey/white matter interface and the third column shows the recovery results when the
source is assumed to a finite collection of dipoles, the dots representing the dipoles are
colour coded by the magnitude of their moments. In the case of [W'/22]3 sources, the
source is interpreted as being located within a neighbourhood of the maximal valued
of the recovered W1/22 function supported on the grey/white matter interface. For
dipoles, the area with the highest concentration of dipoles with moments of largest
magnitude is taken to be the area supporting the true source.

From Figures [2.3|and [2.7| we see that the placement of SEEG electrodes has a higher
influence on the source recovery compared to EEG and MEG. The figures suggest
that the closer the sEEG electrodes are to the true source the better the recovery
of the source. We also observe that the recovered surface electrical potentials are
overestimated on the skull and the scalp while being underestimated on the cortex
however their distribution is in accordance with the recovered source. It seems that
the sharper the recovered source the more accurate the recovered surface electrical
potentials in terms of their distribution of the surfaces.

In Figures [2.4) and we immediately note that the surface electrical potential are
underestimated however their distributions are more representative of the ground truth
compared to the recovery managed using sEEG data. With MEG data the localisation
of the sources is closer to the true sources and also more spatially localised than the
ones recovered with SEEG data when the SEEG electrodes are far from the true source.
This suggests that for source localisation MEG is more robust than sEEG. That we
managed to recover surfaces electric potentials that have the correct distribution with
MEG data is short of impressive, especially when look at the recovery of the surface
electric potentials with a [IW1/%2]3 source in both figures.

Observing that a better source localisation leads to be a better recovery of the surface
electric potentials, it is of interest to see if the robustness of the source localisation of
MEG can be complimented with the electric data of sSEEG for a better recovery of the
source and the surface electric potentials. Figures 2.5 and [2.9 show results obtained by
using simultaneous MEG and sEEG data. We can observe that the recovered source
and the recovered surface electrical potentials have properties that are shared between
the solutions from each modality hence represent a better and more robust recovery.
The source recovered with combined MEG and sEEG data is more spatially localised
than with standalone modalities and it is located closer to the true source. Further,
the recovered surface potential are much more representative of the ground truth than
had been previously seen with standalone modalities.

It is evident from Figures and that the recovery done with EEG data
outperforms the other recoveries. The method we implemented here makes the recovery
with EEG data robust as it managed a near perfect recovery of both sources and surface
electrical potential. In Figure we see that the source recovered for [W?1/22]3 is not
as spatially localised as the dipolar source, however, with the interpretation of source
we are using, the source location of the [W1/22]3 overlaps with the true source location.
We think that the “depth” of the source in this case resulted in the poor spatial location
we observed here.

What is evident from the numerical results presented here is that the surface electri-

84



cal potential on the cortex was poorly recovered across all the modalities. We put this
to the complicated geometry of the surface in which it folds on itself and when meshed
these folds have the potential to creates self intersections in the mesh. Even though
we could not show it in the graphics, the maxima of the surface electric potential on
the cortex are located on the “sulci” of the cortex in these examples. We managed to
recreate these maxima in approximately the correct locations on the sulci of the cortex.
The above mentioned self intersections of the meshed cortex introduce numerical errors
that the methods we implemented here struggled with handling. Much of the work we
put into the numerical implementation of inverse problems was to correct these defects
in the meshes which helped in solving the inverse problems; the regularisation helped
in minimising the impact of these self intersections that could not be corrected. Some
of the intersections of the meshes occur between meshes, in our case there were some
between the surface carrying the sources and the cortex and these where much more
difficult to correct and had to be taken care of with the regularisation. The extremely
negative values of the surface electric potential observed on the cortex in the recovery
is due to the intersection of meshes of the grey/white matter interface and the cortex.
We did not discuss much about the numerical implementation of the forward model as
it was not the major focus of this work, we however observed though that the forward
problem is much more resilient to such defects.
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Figure 2.3:
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Figure 2.4: Recovery with MEG data.
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Figure 2.5: Recovery with combined MEG and sEEG data.
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Figure 2.6: Recovery with EEG data.
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Figure 2.7: Recovery with SEEG data.
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Figure 2.8: Recovery with MEG data.
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Figure 2.9: Recovery with combined MEG and sEEG data.
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Figure 2.10: Recovery with EEG data.
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2.7 Conclusions

We have presented a method that uses the double and single layer potentials only in the
transmission of the electric potential and the magnetic flux density associated with a
source which allows to solve the inverse source recovery problem and the inverse corti-
cal mapping problem using either electric potential data or magnetic flux density data.
The simultaneous resolution of these problems allow to capture the full behaviour of
the source which aids in having better solutions for the inverse problems. The method
is also less computationally complex as it involves fewer boundary integral operators
than the symmetric method that has been used previously in inverse cortical mapping.
The method also allows for using realistic geometries of the head and making exact
computations at arbitrary points in space which allows for exact placement of sensors
in the models. The method also takes advantage of the formulas of [67] for improved
numerical accuracy for building and solving the discretised problems. The manner in
which the discretised problems are built allows for the use of numerical frames/bases
of Banach spaces defined on surfaces hence allowing the numerical implementation of
the method to the Banach spaces in which the problem is solvable as was demonstrated
in Theorem |28 The alternating minimisation procedure employed allows to use dis-
cretisations that offer the best accuracy for the source coupled with the freedom to use
the best and efficient methods for recovering the source. This in principle should offer
a better recovery of the source and the surface potentials. Further the method offers
a natural coupling of the electric data and magnetic flux density making it easier to
combine these data for the recovery as demonstrated in the combined use of sSEEG and
MEG data.

Future work on this subject includes making performance comparisons with existing
methods for source recovery and inverse cortical mapping, testing the method on real
data and implementing this method on a wider range of source classes such as models
for sources that are assumed to be supported on the white matter fibres.
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Chapter 3

On discrete spectra of
Bergman—Toeplitz operators with
harmonic symbols

3.1 Introduction

Various problems of modern analysis require the study of certain classes of “model”
operators. One of the important families is the class of Toeplitz operators and operators
related to them. Probably, the most classical objects of this kind are Toeplitz operators
on Hardy spaces of analytic functions, see Nikolski [92] for a complete account on the
subject. The applications of operators of this class can be found in Nikolski [93].
Another “similar” class is the family of Toeplitz operators on Bergman spaces. Their
study started in late 80’s of the last century, see Zhu [99] for a nice overview of the
topic. In connection to inverse problems, this chapter deals with iterative methods for
solving forward and inverse problems. When solving fixed point problems using iterative
methods, the rate of convergence is determined by the spectral radius of the operator
and how quickly the iterative methods settle to the convergence rates is determined by
the growth of the resolvent of the operator, see for example. It is therefore of interest
to study the spectra of operators, here we study the spectra of Toeplitz operators.

We proceed with some definitions. Let the complex plane be denote by C, for
each z € C we can write z = = + iy and the conjugate of z as Z = x — iy then let
|2| = V2Z = \/22 + y? be the absolute value of z € C. Let D = {z € C: |2| < 1} with
its boundary T = {z € C: |z| = 1}.

Definition 36. LP(T), 1 < p < oo is the space of C-valued measurable functions, p,
whose absolute value is p-integrable with respect of the normalised Lebesgue measure on
T, with norm,

lelly = / [plPdm,  (llello = ess. sup-er{lp(2)]} < 00),
T

where m is the normalised Lebesque measure on T.
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Definition 37. Let ¢, € L*(T) the inner product of ¢, is

(%WR(T) Z/TSOEdm-

Using the inner product we can show that {2"},cz is an orthonormal basis in L?(T)
and each function ¢ € L?(T) may be represented by its Fourier series with respect to
{2"}nez as )

f=>_fm)e",
ne”Z
where

~

f(n) = (/, Zn)L2(T)-
This allows to identify L*(T) with the space of sequences
1*(Z) = {(an)nez say, € C,Z an|? < oo}.
nez

Definition 38. H*(T) is the subspace of L*(T) defined as
H*(T) = {f € L*(T) : f(n) =0,n < 0}.
It 1s called the Hardy space of the unit circle.
Definition 39. For a function ¢ € L>(T), the Hardy—Toeplitz operator T,, : H*(T) —
H?(T) is defined as
T,h = Py(ph), he H(T), (3.1)
where Py is the well-known Riesz othogonal projection from L*(T) to H*(T), see Garnett

[88]. The function ¢ is called a symbol of the operator. For the sake of brevity, we call
operator T, (3.1) an HT-operator.

The definition of a Bergman-Toeplitz operator T, (a BT-operator, for short), is
rather similar to the above one.

Definition 40. LP(D), 1 < p < oo is the space of C-valued measurable functions, h,
whose absolute value is p-integrable with respect of the normalised Lebesgue measure on
D, with norm,

dxdy
1215 = /D A== (llhllee = ess. supzen{lp(2)|} < o0).

Definition 41. Let h,h € L*(D) the inner product of h, g is

dxdy
h = [ hg .
( »g>L2(]D)) /D g o

Definition 42. Let L?(D) be the closed subspace in L*(D) of analytic on D functions.
Given 1p € L>®(D), set

T, : L2(D) — LA(D), Tyh = Pi(sh), (3.2)

where Py is the orthogonal projection acting from L*(D) to L2(D), see Zhu [99, Ch. 17].
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For a function ¢ € L*°(T), it is sometimes convenient to consider a harmonic func-
tion ¢ on I, the harmonic extension of ¢ to D, given by

/ |t__|j||2¢ m(t), =€ D. (3.3)

Certainly, ¢ € L>®(D) and [|@||oc < ||¢]]co-

Given an HT-operator T, (with its symbol defined on T), we consider its associated
BT-operator T;; with symbol ¢ given by . Notice that even though we use “similar-
looking” notation for an HT-operator 7, and a BT-operator T, the confusion is not
possible since the functions ¢ and ¢ are defined on T and D), respectively. The domains
of definitions of corresponding symbols will be always clear from the context of the
discussion.

We shall be concerned with Toeplitz operators T,,,T; having symbols defined as
follows. Set

o(t):=gt)+ f(t), teT, f,ge HT). (3.4)
Clearly, we have L
P(2) == ¢(2) = g(2) + f(2), z€D. (3.5)

It is plain that ¢ has the non-tangential boundary values on the unit circle
o(t) = lim ¢(rt), fora.e.teT,
r—1-

and these boundary values coincide with ¢ a.e. on T.

Despite the similarity of definitions , (3.2)), the BT- operators exhibit consider-
ably reacher spectral behavior as compared to HT-operators. For instance, the essential
spectrum of HT-operator T, is connected, see Widom [97], while, in general, the essen-
tial spectrum of BT-operator Ty, is not. There are non-trivial compact BT-operators
with quite simple (even radial) symbols [99, Sec.s 7.2, 7.3], while a compact HT-operator
is necessarily zero [92, Part B, Ch. 4].

Sundberg—Zheng [96] showed that there are BT-operators with harmonic symbols
having isolated eigenvalues in their spectrum. In subsequent papers, Zhao—Zheng [98§],
Guan—Zhao [89] and Guo—Zhao—Zheng [90] presented a class of BT-operators with har-
monic symbols posessing “rather big” discrete spectrum, that is, the set of isolated
eigenvalues of finite algebraic multiplicity.

So, in contrast to HT-operators, the notion of the discrete spectrum of a BT-operator
with harmonic symbol makes sense. The study of the properties of the discrete spec-
trum for BT-operators with symbols is the core of the present paper. Unlike the
articles [89] 00, 98], our results are essentially based on the perturbation techniques from
operator theory and function-theoretic results of Borichev—Golinskii-Kupin [85], [86] and
Favorov—Golinskii [87].

Definition 43. We say that a function h : T — C is absolutely continuous if h is an
indefinite integral of a locally Lebesgue-integrable function, we write h € AC.

The Sobolev space WY2(T) of absolutely continuous functions on the unit circle T
with derivative in L*:

W12(T):={h:T = C, h€ AC, b’ € L*(T)}.
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For further purposes, we would like to introduce two closely related characteristics
of compact sets on the complex plane C. The following definitions are borrowed from
Perkal [95], Sec. 2] and Peller [94, Sec. 4], respectively.

Definition 44. Let r > 0. A closed set E C C s called r-convex if

C\E = U{B(m,r) . B(z,r) C C\E},

that is, the complement to E can be covered with open disks of a fized radius r > 0,
which lie in that complement.

Definition 45. A compact set K C C is called circularly convex, if there is v > 0 such
that for each A € C\K with dist(\, K) < r there are points p € OK and v € C\K so
that

—vl=r, Ae(uvl, {C:lv—Cl<r}cOK

For example, if K is a convex set, or the boundary dK is of C?-class (without
intersections and cusps), then K is a circularly convex set.

Note that the later definition is a bit more stringent than the former one. When
K is a (closed) Jordan curve (a rectifiable continuous curve with no self-intersections),
one can also see that the above definitions are equivalent.

A short reminder on standard notions and notations from operator theory is given in
Subsection below. For instance, see for the notion of the unbounded (outer)
open component of the Fredholm domain Fy(7").

The main result of this note is the following theorem.

Theorem 30. Let T, be an HT-operator with the symbol ¢ (3.4) from W2(T), ¢ its
harmonic extension (3.3)), and T, be the BT-operator associated to T,. Assume that
the spectrum o(T,) is a circularly convex set. Then, for each ¢ >0

Yo dist?™ (A 0(T,) < Clp,0) 1415 (3.6)
AEJd(T¢)ﬁf0(T¢)

Corollary 7. Let q and p be algebraic polynomials, ¢ = G+p be a harmonic polynomaial,
and assume that the image o(T) is a Jordan curve without cusps. Then (3.6) holds for
the discrete spectrum of BT-operator Ty.

3.2 Some preliminaries

3.2.1 Generalities from operator theory

In this section, we recall some well-known notions of the classical operator theory, see
Kato [91), Sec. IV. 5].

Let T be a bounded linear operator on a (separable) Hilbert space H. As usual, the
resolvent set of T is

p(T):={ e C: (T'—\): H— H is bijective }. (3.7)
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It follows that (7' — \)~! is bounded for A € p(T'). The spectrum of T is defined as

o(T) = C\p(T). (3-8)

Furthermore, we say that a bounded operator 1" is Fredholm, if its kernel and co-
kernel are of finite dimension where the co-kernel of T' is defined as

co-kernel T' = H\T'(H).
The essential spectrum of T is defined as
Oess(T) = {A € C: (T — \) is not Fredholm}.

One can see that o.s5(T") is a closed subset of o(T"). One considers also the Fredholm
domain of T, F(T') = C\oess(T'). Clearly, p(T) C F(T). We represent F(T) as

F(1) = JF(D). (39

where F;(T) are disjoint (open) connected components of the set. We agree that Fo(7")
stays for the unbounded connected component of F (7).

The discrete spectrum oy4(7") of T' is the set of all isolated eigenvalues of T" of finite
algebraic multiplicity. For convenience, we put

00(T) == 0a(T) N Fo(T) C 0u(T). (3.10)

Let Ay, A be bounded operators on a Hilbert space such that A — Ay is compact.
The operators A and Ay are called compact perturbations of each other. The celebrated
Weyl’s theorem states that

Oess(A) = Uess(AO)v (311)

see Kato [91) Sec. IV.5.6].
We shall be interested in the situation when 0y(A) is at most countable set, o(A) =
{\;}j>1 and it accumulates to the essential spectrum o.ss(Ag) only.

3.2.2 Reminder on Hilbert-Schmidt operators

In this subsection, we recall briefly the notion of a Hilbert-Schmidt operator and its
simplest properties, see Birman-Solomyak [84] Sec. 11.3].

Let A be a compact operator. The sequence of singular values {s;(A)};>1 is defined
as

s;(A) = A\;(ATA)2, sj(A) >0,

where \;(A*A) are eigenvalues of the compact operator A*A. Without loss of generality
one can suppose that {s;(A)},;>1 forms a decreasing sequence, and, moreover

lim s;(A) =0.

Jj—+o00o
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One says that A € Sy, the Hilbert-Schmidt class of compact operators, iff
AN, =) s5(A4)° < oo
Jj=21

Equivalently, A € S, if and only if {s;(A)};>1 € 2. Alternatively, the Sy-norm of the
operator can be computed as

14Nz, = D I(Aej en)l?,

Jk>1

where {e;},>1 is an arbitrary orthonormal basis in the given Hilbert space.

3.2.3 On the discrete spectrum of a perturbed operator: a
result of Favorov—Golinskii

Some useful quantitative bounds for the rate of convergence of the discrete spectrum of
a perturbed operator are given in Favorov—Golinskii [87, Sec. 5]. A special case of [87,
Thm 5.1] (cf. a remark right after its proof and formula (5.8)) looks as follows.

Theorem 31 ([87]). Let Ay be a bounded linear operator on a Hilbert space, which
satisfies the conditions:

1. The spectrum o(Ag) is an r-conver set.

2. The resolvent R(z, Ag) = (Ao — 2)~' 1s subject to the bound

IRz, A < ~— o)

Ap). 12
~ dist?(z,0(4))’ p>0, #€Fold) (312

Let B be a Hilbert—Schmaidt operator, and A = Ag + B. Then for each € > 0

Y dist”T (N 0(Ag)) < C(o(Ag), p.e) || BIf5. (3.13)
/\Ead(A)ﬂfo(Ao)

If 0.s5(Ag) does not split the plane, and (3.12]) holds for all A € C\o(Ay), then
(3.13]) is true for the whole discrete spectrum o4(A). For the class of (non-selfadjoint)
HT-operators Ay = T, ¢ in (3.4), the essential spectrum, in general, splits the plane.

3.3 Proof of the main result

Let ¢ be as in (3.4). Consider the HT-operator T, (3.1]) and the associated BT-operator
T5 (3.2). The technical way to compare these operators is to look at their matrices in
appropriately chosen bases. Namely, define

enn(t) =1t", epn(z) =vn+12", n>0. (3.14)
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It is plain that the systems {ep,, }n>0 and {ep , }n>0 are the orthonormal bases in H?(T)
and L2(DD), respectively. Set

To = [(Tpoenis emj)mzmlij=o.  To = [(Tpem,i €B,5)r2(m))ij>0- (3.15)

The operators 7T, and 7T are unitarily equivalent to original operators T, and T}, and
they both act on ¢*(Z,). So, one can argue on the operators 7, and 75 being “close”
in a certain sense.

Rewriting relation in more detailed form, we have

¢(z) = g(z) + f(2),

Flz) = kz:%sz’“ € H™(T), 9(z) = ;Wk € H>(T), (3.16)

| . ; L j>0
p(e”) = p(e”) =) be’, bjz{fj’ Tl

= 95, j<Oo.

Proposition 3. Assume that the symbol ¢ (3.4) belongs to WY*(T). Then Ty — T, is
a Hilbert-Schmidt operator and

2
7r
176 = Tells, < 57 19111 (3.17)
Proof. The matrix representation of T, is obvious: T, = [bi—;]ij>0. So let us compute
the matrix 73 = [7; ;i j>0 in the orthonormal basis {ep, }n>0 (3.14). For [,k >0

1 R -
Tigott = (TpeB it €B,k)Lg(]D>) = / P(2)eprti(2) epr(z) drdy
D

:w%ﬂ+w%+n/ﬂ@W5mMy

™

or, in polar coordinates,

1 2m
Thikil = \/(k + 1+ 1)(k + 1) / / Z bnr\n\+2k+l+1 6i(n+l)9 drdb.
™ o Jo

neL

[ k+1
Tk k+1 — m b—l, k‘,l > 0.

The same formula holds for 7444, k,1> 0, and so

Finally,

min(z,5) + 1

Tog = max(i,7) + 1

bij, 4,5 >0. (3.18)

Let us estimate the Hilbert-Schmidt norm

1T = Tolld, = > Imig —bisg* = > by ?

4,520 1,520

2

min(i, j) + 1

1— | — /-
max(i,7) + 1
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o o o o
§ az‘jZE E ak,k+l+§ E Atk

1,70 =0 k=0 =1 k=0

we have

ITo = Tollz, = > P[>+ -] >
=0

= 1
2
k=0 (k+l+1)<¢k+l+1+\/l~c+1>

> 1
= Z L bl|2 Z 2
=7 pae (k+|l|+1)<\/k+|l|+1+\/k+1>
> 1
< Z |lbz‘2> <Z )
(leZ = (k+1)2Vk+1)2
> 1 2 2
— 2 — nm2 — - /112
I€Z k=0
as claimed. O

Weyl’s theorem concerning spectra of compact perturbations, mentioned above,
leads to the following

Corollary 8. Let the symbol ¢ satisfy hypothesis of the above Proposition. Then the
essential spectrum of BT-operator Ty is

0658<T¢>) = 0658<T¢) =p(T) =T,

and the discrete spectrum oq(Ty) is at most countable set of eigenvalues of finite alge-
braic multiplicity with all its accumulation points on T'.

We go on with the proof the quantitative version of the above corollary.

Theorem . Let Ay = T,, A = T3, see . We only have to ensure that the
conditions of Theorem 1] are met.

It is clear that ¢ € W12(T) implies that ¢ € W, the Wiener algebra of absolutely
convergent Fourier series. By [04, Thm 4], the resolvent (Ay — z)~' admits the linear
growth, that is, holds with p = 1. Next, by Proposition |3 the difference A — Aq
is the Hilbert-Schmidt operator with the norm bound . The proof is complete. [

3.4 Conclusion

We have just shown that the essential spectra of a BT-operator and an HT-operator
with symbols that coincide on T and in W'%(T) are identical. This allow to use well
known properties of the essential spectrum of HT-operators to make conclusions on the
essential spectrum of BT-operators and hence on the entire spectrum of BT-operators.

We also gave a convergence rate for the discrete spectrum of the BT-operator that is
contained in the unbounded component of the Fredholm domain of the the HT-operator.
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Contributions

In this work we made the following main contributions:

e In the first chapter, we provided a characterisation of silent [LP(€2)]" vector-fields,
n>31<p< oo, for  C R of mild smoothness, see Theorem [20] This
characterisation and the methods used can be a launching point to characterise
silent [W~1P(Q)]" vector-fields for 2 C R™ Lipschitz smooth using the decompo-
sitions of such vector-fields given in [I00]. The characterisation of silent sources
led to a characterisation of norm-minimising equivalent vector-fields in [LP(Q)]",
for €2 C R™ which are domains of finite perimeter with mild smoothness, see The-
orem [25) and Corollary [6] In turn this characterisation led to a decomposition of
vector-fields on € which is valid for [LP(Q2)]", 1 < p < oo, see Theorem |15 and
Corollary
This work is in preparation for publicaton.

e In the second chapter we introduced an alternating minimisation procedure to
solve the inverse source localisation for sEEG, EEG and/or MEG simultaneously
with the inverse cortical mapping problem using realistic head geometries, see
Section [2.5.4, We managed to show that this method can be implemented for
sources that are assumed to be distributions as well rather than functions only,
see Theorems and This opens up the possibility of using sources in the
inverse source localisation problem that can closely respects known biological
constraints such as brain connectivity by using the white matter tractography as
a support for the sources.

This work is in preparation for publication.

e We gave a convergence rate result for the discrete spectrum of Bergman-Toeplitz
operators in the unbounded component of the Fredholm domain of their cor-
responding Hardy-Toeplitz operators. This result was given for those Bergman-
Toeplitz operators whose essential spectrum coincides with the essential spectrum
of Hardy-Toeplitz operators.

This work is to appear as On discrete spectra of Bergman-Toeplitz operators with
harmonic symbols in Birkhauser Memorial Volume in honor of Sergey Naboko.
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