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Résumé

Les catégories d’applications distribuées et décentralisées telles que l’internet des objets,
l’industrie 4.0 ou la santé connectée imposent de nouveaux défis à la fois théoriques et
pratiques pour l’apprentissage automatique. La dynamicité des déploiements, l’hétéro-
généité des sources de données, la quantité de données disponibles, l’évolution des mod-
èles de capteurs, les différences de perspectives, leurs chevauchements ainsi que leurs
incohérences relatives sont autant d’éléments qui impactent fortement les performances
des modèles d’apprentissage lorsqu’ils sont déployés dans le monde réel. Nous adop-
tons dans cette thèse le cadre du métaapprentissage et ses capacités à apprendre les
biais inductifs appropriés. Contrairement aux modèles classiques qui fixent ces biais
a priori, les modèles qui apprennent à apprendre offrent une flexibilité et un niveau
de généralisation prometteurs pour pallier aux exigences du monde réel. Nous inves-
tiguons notamment l’apport des connaissances du domaine afin de guider le processus
d’apprentissage : topologies des déploiements, lois de la physique, modèles analytiques, et
dépendances entre les concepts à apprendre font partie des éléments incorporés explicite-
ment dans le processus d’apprentissage. De nouveaux principes alliant, notamment, les
représentations latentes universelles, les frontières de décision, les topologies des régions
de classification ou la structuration des concepts à apprendre sont proposés.

Après avoir exposé le contexte applicatif et un état de l’art du méta-apprentissage
et de l’apprentissage fédéré, nous présenterons les contributions qui s’articulent autour
de trois axes. Nous proposons, dans un premier temps, deux nouvelles approches qui
tirent parti des connaissances du domaine pour sélectionner et augmenter les exem-
ples d’apprentissage. Les principaux problèmes traités dans cet axe sont l’hétérogénéité
des sources de données et le coût des mesures effectuées par les capteurs et de leur
transmission. Ensuite, nous proposons deux approches qui tirent parti de la séman-
tique de l’espace des labels (concepts à apprendre) afin de mieux organiser le processus
d’apprentissage. L’idée est de décomposer le processus d’apprentissage en plusieurs
sous-problèmes plus faciles à résoudre tout en maximisant la notion de réutilisation, de
partage, et de transfert entre ces sous-problèmes. Enfin, nous nous concentrons sur les
aspects collaboratifs des capteurs massivement distribués et sur les moyens d’améliorer la
conciliation des apprenants décentralisés. Nous étudions des approches qui sont capables
de fusionner efficacement les vues relatives fournies par les déploiements de capteurs, les
abstraire de leurs biais contextuels et réconcilier les décisions prises par les apprenants
décentralisés tout en tenant compte de leur relativité.

Toutes nos contributions sont validées par le développement d’approches pratiques
évaluées sur des jeux de données provenant d’applications concrètes du monde réel telles
que la reconnaissance d’activités humaine, le suivie du phénomène vibratoire dans les
turbines industrielles et la reconnaissance des pleurs du nourrisson. Nos approches sont
en mesure d’améliorer de manière significative les performances et la robustesse des
modèles d’apprentissage sous des contraintes du monde réel, contribuant à surpasser les
barrières menant au déploiement de tels modèles dans le monde réel.
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Abstract

The category of distributed and decentralized applications, including the Internet of
Things, Industry 4.0, and Connected Health, imposes new theoretical and practical
challenges for machine learning. The dynamic nature of deployments, the heterogeneity
of data sources, the amount of data available, the evolution of sensors models, the dif-
ferences in perspectives, their overlaps, and their relative inconsistencies are all elements
that have a substantial impact on the performance of learning models when deployed in
the real world. We adopt in this thesis the framework of metalearning and its ability to
learn appropriate inductive biases. Unlike classical models that fix these biases a priori,
learning-to-learn models offer flexibility and a promising level of generalization to over-
come the specificities of the real world. In particular, we investigate the contribution of
domain knowledge in order to guide the learning process: topology of the deployments,
laws of physics, analytical models, and dependencies between the concepts to learn are
explicitly incorporated into the learning process. New principles combining universal
latent representations, decision boundaries, the topology of the classification regions, or
the structuring of concepts to learn are proposed.

After describing the applicative context and state of the art around meta-learning
and federated learning, we will present our contributions which revolve around three
axes. We first propose two novel approaches that leverage domain knowledge to select
and augment learning examples. The main problems dealt with in this axis are the
heterogeneity of the data sources and the cost of the measurements made by the sensors
and their transmission. Then, we propose two approaches that take advantage of the
semantics of the label space for organizing the learning process. The idea is to decompose
the learning process into several sub-problems that are easier to solve while maximizing
the notions of reuse, sharing, and transfer between these sub-problems. Finally, we focus
on the collaborative aspects of the massively distributed sensing nodes and the ways the
conciliation of decentralized learners can be improved. We investigate approaches that
can efficiently fuse the relative views provided by the sensing environments, abstract
them from their contextual bias, and conciliate the decisions taken by decentralized
learners while considering their relativity.

All our contributions are validated by developing practical approaches evaluated
on real-world datasets from diverse applications such as human activity recognition,
monitoring the vibration phenomenon in industrial turbines, and infant cry recognition.
Our approaches can significantly enhance the performance and robustness of learning
models under real-world constraints, therefore contributing to lifting the limits for the
deployments of learning models into the real world.
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Chapter 1

Introduction

1.1 Motivation
With the ever-increasing quantities of sensing devices that surround every aspect
of life, data is shifting from being fully centralized to massively distributed and de-
centralized. Current learning paradigms need to adapt to cope with the challenges
that stem from this evolution. This is the case, for example, with Internet of Things
(IoT) applications, which constitute very important societal, economic, and envi-
ronmental challenges: smart sensors (data sources or data generators) equipped
with ever-increasing computational capabilities are spreading very quickly and
their adoption is only just beginning at the time of writing this thesis. Put simply,
the Internet of Things is defined as an evolution of the Internet as we know it
today, consisting in linking (everyday) objects endowed with perception, actua-
tion, and computing capabilities, to the network of interconnections, the Internet.
These capabilities then become accessible from everywhere.

The miniaturization tendency that characterizes today’s sensor design is among
the precursors and facilitating factors for the rapid development of pervasive tech-
nologies and their massive spread in many different areas. Sensing devices are
becoming highly integrated, e.g., amplifiers, microcontrollers, radio chips, and an-
tennas can be grouped into a unique and small surface (See Figure 1.1). This
miniaturization facilitates the adoption of sensor deployments, e.g., wireless sen-
sor networks, at large scales for monitoring and learning various phenomena. The
ubiquity of these objects opens perspectives for developing a wide range of ap-
plications, such as smart homes, connected cars, smart health, and smart cities,
to name a few. Sensing environments are key enablers driving, for example, the
promotion of sustainable energy and health care delivery. In these environments,
sensors (or data generators) are deployed on a massive scale following pre-defined
structures to monitor industrial equipment, environmental factors, and ambient

1



2 1.1. Motivation

Figure 1.1: The miniaturization tendency of sensing devices pushes
forward the adoption of IoT-enabled applications. Here is a flexible
electrocardiograph ECG sensor with its components (amplifier, mi-
crocontroller, radio chip, and antenna) on a unique and small surface
(courtesy of IMEC).

assisted living [Kim+22; Han+21; Lon+19].
The generalization and widespreadness of IoT devices’ capabilities are accom-

panied nevertheless by some quite difficult challenges, especially when it comes to
learning in the sensing environments they form. Beyond the classical difficulties
faced by learning processes, other challenges stemming from the specificities of the
sensing environments lead to significant impacts on performance. For example, the
objects (or devices) that make up these sensing environments vary substantially
in terms of their sensing characteristics, transmission models, and exact position
in space. This leads, in particular, to differences in the data distributions across
these objects and, ultimately, the inconsistency of the final learning objective.
Additionally, the energy and computational constraints imposed on the individual
sensing nodes shape the way the measurement process is performed (sampling fre-
quency, quantization, etc.) and determine the availability of data. Furthermore,
the entanglement between the cyber and physical domains, the relativity of the
perspectives (or viewpoints) featured by the spatial disposition of the devices, and
the dynamical factors of these environments make the sensing and learning con-
figuration constantly evolve. They introduce a particular dimension of challenges
that highlight the susceptibility of the learning process to domain specificities.
Ethical and legal requirements, as well as the increasing need for model inter-
pretability, are becoming increasingly prominent nowadays as machines take more
significant roles in the process of decision-making, which is to the detriment of
humans [Lip18; Gil+18; CPC19]. Because of the ubiquity, pervasiveness, and vul-
nerability of the connected objects, these requirements are even more exacerbated
in distributed sensing environments. These are fundamental and widespread chal-
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lenges that preclude the effective adoption of such applications. They need to be
considered during the learning process and necessitate going beyond the classical
paradigm of learning from data only.

Decentralized learning is a paradigm that naturally applies in this context.
The distributed optimization setting was presented in [Kon+16] motivated by an
increasingly spreading learning scenario consisting of a large number of mobile
devices (also called clients) generating and holding training data locally instead of
being aggregated into a unique centralized site. The goal is still to learn a unified
theory while conciliating the diversity of clients in terms of the quantities of train-
ing data each individual client holds and the representativeness of the training
samples of each client regarding the overall data distribution of the whole popu-
lation. The general description of the federated learning setting was popularized
by McMahan and Ramage in [MR17], while its theory was laid down in [Kon+16;
McM+17]. Note that by the term distributed, we mean that the components of
the system and the data they generate are in different places, and by decentral-
ized, we mean that the decisions are not made by a single entity. Commonly, in
decentralized systems, no node in the system is solely responsible for making deci-
sions. Instead, it is the set of decisions at the node levels that leads a fortiori to a
global decision. Decentralization imposes the notion of collaboration between the
different nodes in order to achieve the overall objective.

In the decentralized learning paradigm, even if some of the proposed techniques
handle issues related to distribution [McM+17], the heterogeneity of data distribu-
tions across clients [Hsi+17; Hsi+20], the aggregation from several sources [Lin+18],
the inconsistency of computing capabilities across the components of the sys-
tem [Wan+20b], transmission channel-awareness [Ren+20], and asynchronous com-
munication constraints [Mis+18] to name a few, current learning approaches do
not go as far as the IoT applications require. Still, these approaches are spread
out and lack an integrated perspective that can handle all these aspects at once,
i.e., an orchestrating entity (or mechanism) that can optimize all these aspects in
a coordinated manner.

In parallel, tremendous efforts have been made to solve these challenges at dif-
ferent levels of the processing stack (or pipeline), either at the level of the learning
process directly or at the local levels where these constraints emerge, e.g., sensing
and processing, networking and transmission, or computing and scheduling levels.
For example, regarding the variations in terms of the sensing characteristics across
sensing devices, various approaches have been devised to temper the impact of het-
erogeneous components on the learning performances [Sti+15; KRM18; Yeo+21].
These strategies are efficient at solving very precise domain-specific problems but
provide improvements at a particular level or to the aspects being considered at the
expense of a joint optimization or reasoning, which would provide further improve-
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ments. Indeed, it ends up that all these constraints are tightly linked together,
and the interplay between them and, in particular, with the learning process, is
significant. It is, therefore, not suitable to continue treating each of these aspects
in isolation as they often impact each other.

This thesis investigates how to learn efficiently in the context of generalization
and the widespreadness of sensing, actuation, and computing capabilities, with all
domain specificities and constraints surrounding it. More precisely, we propose
to build a unifying framework where all the aforementioned domain specificities
and constraints are expressed in suitable forms and integrated into the learning
pipeline. The idea is to be able to reason about the interplay between these aspects
and optimize their corresponding learning mechanisms in the learning pipeline.
Ultimately, the goal is to improve the performance of the learning processes while
complying with the various requirements and constraints, e.g., ethical and legal
requirements and physical constraints. At first, it may seem that integrating all
these aspects and treating them at once will lead to further complexifying the
problems at hand. Basically, one seeks to decompose the problems into small
subproblems that can be easily solved. We are not contradicting this principle.
However, we aim to handle these problems at a higher level of processing, which
has the potential to lead to a “bigger picture” of the seemingly isolated but highly
correlated and interacting problems. This idea is rooted in rather philosophical
considerations related to the notion of complexity that characterizes the multi-
dimensional interplay between the components of a given system or model at a local
level and leading ultimately to the emergence of properties that the components
taken individually do not posses [Joh02]. As Juignet frames the philosophical
concept of “complex thinking” presented by Morin in [Mor15; Mor07]: “Complexity
requires trying to understand the relationships between the whole and the parts.
But knowledge of the parts is not enough for knowledge of the whole; we have to
go back and forth in a loop to bring together the knowledge of the whole and that
of the parts.”

This led us to pursue two complementary axes. On the one hand, studying
regularities that emerge across problems (and more broadly, across learning tasks,
environmental conditions, situations, sensor configurations, sensing characteristics,
etc.) and ways to leverage past experience gained on past tasks in order to improve
the way we deal with current ones. For this, we build upon the learning-to-learn
framework [Sch87; BBC91; Fin18], which, unlike classical models that fix these
biases a priori, offers flexibility and a promising level of generalization to overcome
the specificities of the real world. These models basically look at how to put the
learning process in appropriate conditions to pursue the learning. This involves
exhibiting hyperparameters of the learning process—that is, the underlying learn-
ing mechanisms like the architecture of a neural network or the preprocessing steps
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applied to the inputs—that can be acted upon based on past learning experience
(or knowledge about the learning itself) in order to improve the performance of
the learning process at the current learning task or future never-seen tasks. On
the other hand, modeling (or expressing/representing) the various domain-specific
requirements and constraints, as well as the interplay between the different parts of
the systems using appropriate tools, and then finding the correspondence between
these domain specificities and the learner’s hyperparameters (exhibited above) so
that these aspects can be optimized together with the learning process. These are
further detailed in Section 1.3.

In the rest of this chapter, we will discuss in more detail the precise research
questions arising from these kinds of environments and summarize the contribu-
tions and broader impact of the thesis.

1.2 Domain-specific requirements and constraints
In this section, we enumerate the problems arising in distributed sensing envi-
ronments, exemplified by concrete real-world applications. A detailed overview of
these problems can be found in one of our previous contribution [HO21b]. These
problems form the core components of the research questions that we are aiming
to answer in this thesis. If familiar with these aspects, the reader can skip this
section and go straight to the research questions summarized in Section 1.2.1.

Characteristics of the sensing devices and induced data het-
erogeneity
Data acquisition is determined by various factors, including the intrinsic char-
acteristics of the sensors, which depend on the different components involved in
transforming the sensed phenomenon into an electrical signal (See Figure 1.2).
Each of these components exhibits, in turn, various characteristics related to their
designs which ultimately shape the resulting electrical signal. In particular, as
depicted in Figure 1.3, the design of analog-to-digital (ADC) converters obeys a
trade-off involving simultaneously conversion accuracy, transformation speed, and
power, which leads ultimately to mitigating the overall sensor’s performance.

The performance characteristics of a sensor are just as important as its basic
function, which is to detect and gauge the phenomenon of interest [Ida14]. In ad-
dition to the type of sensing modality, the choice of an appropriate sensing device
and its performance characteristics for a given application is one of the most impor-
tant issues distributed sensing environment designers are faced with. The transfer
function defines the relation between the input of the sensing device and its out-
put. Depending on many different factors, sensing characteristics defined by this
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Sensor Front-end/
Transducermeasurand Amplifier ADC Postcorrection DSPS/H Quantizer

ADC

Clock

Continuous in time
Continuous in amplitude

Discrete in time
Continuous in amplitude

Discrete in time
Discrete in amplitude

hifi gi

Vref

measure

Figure 1.2: The measurement of a phenomenon as simple as temper-
ature through a sensor is in itself an inductive process involving many
biases. The action of the physico-electrical process of the sensor gen-
erates an electrical signal proportional to the physical phenomenon
being measured. We, actually, do not have access to the physical phe-
nomenon itself but to a representation provided through a transfer
function deduced mathematically and which is specific to the physico-
electrical process of the sensor. The choice of this process constitutes
a bias similarly to the elaboration of the transfer function.

Figure 1.3: Trade-offs in conventional analog-to-digital architectures
between (a) speed and accuracy, (b) speed and power, (c) accuracy
and energy, as reported in [Bor]. (d) Spider diagram of analog-to-
digital architectures (different color lines), design trade-off, and asso-
ciated applications (in blue). (from [Dan+18]).

transfer function may vary substantially. Besides, depending on the application or
the phenomenon being monitored, many different properties are considered with
varying importance by the designers, including span, accuracy, frequency response,
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sensitivity, repeatability, resolution, and reliability. Other factors such as the cost
are also considered. In particular, in the case of mobile computing and applications
based on the use of smartphones, the considered sensors are often low-cost leading
on many occasions to poor calibration, inaccuracies, and limitations in the granu-
larity and range compared to using dedicated inertial measurement units [Tru+13;
Sti+15; Sti+15; CD15]. For example, in the specific case of accelerometer sensors,
a number of important factors are evaluated in [Alb+08]. The important ones are
the sensitivity, which defines the ratio of its electrical output to its mechanical
input, the amplitude limit specifying the maximum range of acceleration that can
be measured, the shock limit, the natural frequency, the resolution, the frequency
range, and the phase shift defining the time delay between the mechanical input
and the corresponding electrical output signal of the instrumentation system. The

Figure 1.4: A concrete example of how varying device characteristics
lead to substantial differences in the sensor outputs. From [Alb+08]:
Here are shown the measured acceleration responses by different
MEMS accelerometers (A, B, and C) and the reference (PCB) ac-
celerometer at 53Hz for the excitation amplitude 0.15g.

responses generated by four MEMS accelerometers with various characteristics
were investigated according to the aforementioned factors. Figure 1.4 summarizes
the measured acceleration responses with various characteristics compared to a
reference accelerometer and indicate that, in some configurations, there is a lot of
noise, including extra un-interpretable peaks when compared against the reference
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accelerometer and against the remaining ones. A substantial noise and shift in
phase are also observed.

These characteristics were also investigated regarding their tangible impact on
various applications, noticeably human activity recognition (HAR) from sensor-
enabled smartphones. Device-instance diversity, i.e., variations in the sensor obser-
vations of the same phenomenon across different device instances, and its system-
atic impact on the learning process is another form of diversity exhibited in real-
world applications (e.g., human activity recognition [Dey+14; Jan+17; KRM18],
autonomous vehicles [Yeo+21]). For example, authors in [Sti+15] investigated in
a systematic manner sensor-, device- and workload-specific heterogeneities using
smartphones and smartwatches, consisting of different device models from various
manufacturers. Beyond the obtained results indicating that these heterogeneities
significantly impair the performances of activity recognition models, this leads to
asking a set of research questions noticeably: “How characteristics of sensing de-
vices impact the learning process (heterogeneity, distribution skew, etc.)? How to
account for the characteristics of the sensing devices and their evolution during
deployment in real-life settings?”

Some approaches in the literature are often focused on grouping the devices
based on their characteristics prior to the learning process. Indeed, to mitigate
the impact of device heterogeneity on machine learning models (HAR, specifically),
Stisen et al., for example, proposed an approach that, first, clusters the devices
based on their characteristics, then builds a model for each obtained cluster. In the
same vein, other approaches indicate the advantages of performing such prior mod-
eling on the learning pipeline. Even if this is clearly an example of leveraging prior
knowledge to mitigate the impact of device diversity, these kinds of approaches
are limited to the construction personalized (or cluster-specific) models and do
not consider the collective dimension of the sensing environments to learn unified
theories. This being said, there exist potential avenues for integrating additional
knowledge about the characteristics of the sensing devices and their evolution for
learning such unified theories. This ultimately can alleviate the need for building
specific models for devices exhibiting similar heterogeneities.

Physical constraints
Domain-specific constraints, including energy, transmission, and computational
constraints, can be inherent to the deployed end-devices, imposed by regulatory
requirements, or related to contextual and environmental factors.

Among the existing domain specificities, the energetic autonomy of the de-
ployed end devices is probably one of the most important, as it also has an impact
on the transmission and computational aspects of the entire deployment. Indeed,
it results in numerous restrictions imposed on the operations of the deployment
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and ultimately on the learning process. Autonomy generates trade-offs involving
the capacity of the nodes to sense and monitor the phenomenon being considered.
Energy constraints influence the computing capacities of the end devices and have
direct consequences on the data sampling frequency, transmission frequency, and
local signal processing pipeline.

The impact that the energy constraints impose on the learning process is sig-
nificant. For example, during the conciliation step performed in the decentralized
learning setting, the heterogeneity in terms of computational capabilities exhib-
ited by the distributed end devices leads to a major problem, which is learning
objective inconsistency. A problem studied, for example, in [Wan+20b]. Basically,
when running the decentralized model’s updates locally, the local nodes exhibiting
heterogeneous computational capabilities lead to diverging local models.

Various approaches have been proposed in the literature to account for these
energy constraints. For example, authors in [MAL12] presented an energy-efficient,
thermal- and power-aware routing algorithm for on-body sensor deployments which
considers the node’s temperature, energy level, and received power from adjacent
nodes in the objective function design. Even by increasing battery capacities
and optimizing hardware components and signal processing pipelines, e.g., the
development of low-power hardware designs for the architectures, processors, or
transceivers [SK10; Bha+20], the problem is only shifted.

Furthermore, the spatial disposition of sensors and their transmissions are sub-
ject to dynamical factors such as path loss and the vulnerability of the radio
channel, which is used to connect, in a wireless fashion, the various on-body sen-
sors together. This radio channel is impacted by noise and interference, which, in
addition, evolve with time as a result, in the case of on-body sensor deployments,
of the body movements and the environment (e.g., reflections of the radio waves
on the walls) leading eventually to path loss and the impossibility to transmit
data [Gol05]. Figure 1.5 illustrates the impact of the transceivers’ on-body lo-
cations on the path loss. Furthermore, authors in [Gor+09] studied the problem
of path loss with respect to the underlying network topology, noticeably star vs.
multi-hope mesh, where a reduction of the emitter-receiver distance could counter-
act this problem. In addition to the impact of the on-body sensors placement on
the path loss, the body movements as well as the surrounding environment have a
big influence on signal propagation and subsequently on the packets transmissions.
Authors in [For+05], for example, studied the influence of arm motions, while au-
thors in [DO09] considered the impact of various types of activities (still, walking,
and running) on the path loss depending on the location of the transceivers. Simi-
larly, the impact of the surrounding environment has been investigated by authors
in [For+05] who studied signal propagation by taking into account factors related
to the environment in which the user operates. These include, for example, the
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(a)(b)

(c)

Figure 1.5: Illustration of the impact that physical constraints and
environmental factors impose on the data transmissions (here the
path loss). Figure from [For+05]: on-body placement of the sensing
nodes (a) along the torso and (b) around the torso. (c) Measurement
of the path loss (dB) as a function of the distance (m) between the
sensing nodes around the torso (top line) and along the torso (bottom
line).

influence of ground reflections, considered more reliable to be exploited during
transmission, as well as reflections from surrounding environments on received
signals.

Due to these constraints, transmissions have to be performed sparsingly. Again,
in the decentralized learning setting, the necessary updates and conciliation phases
performed between the local devices and the central parameters server are thus im-
pacted, which could eventually lead the central server to completely ignore the up-
dates (or contributions) made by a given device or group of devices. Scheduling the
most informative local learning updates by taking into account transmission chan-
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nel diversity is one avenue that has been pursued in [Ren+20]. And in [Rau+17],
authors investigate the selection of network interfaces, where the radio used to
transmit is selected depending on the environment opportunities (bandwidth, link
quality, energy).

Therefore, the questions that we can ask here are: “How to account for the
heavy cost of performing sensing operations when facing energy and computational
constraints? How representative are the end results of sensing operations w.r.t.
the example space? Can we leverage prior knowledge about, e.g., the phenomena
being monitored and how they propagate, in order to reinforce representativeness
of the example space?” Furthermore, “can we organize the learning process in
a way that accounts for the heterogeneous computational capabilities? How do
energy and computational constraints shape data acquisition and transmissions,
which ultimately impact data quality as well as data availability (the problem of
partial or incomplete views)? And how to account for the constraints imposed
on transmitting data over networks (e.g., energy and computational constraints,
limited bandwidth, path loss, etc.)?”

Entanglement between the cyber and physical domains
The notion of intrication between the cyber and physical worlds can be illustrated
by the single-sensor deployment depicted in Figure 1.6. We can see in this figure
the tight link that exists between the sensing devices (the cyber-dimension, in this
case, the optical sensor) and the entity being monitored (the physical dimension,
in this case, the human body via its skin).

This entanglement is of utmost importance and has a substantial impact on the
subsequent signal analyses and learning process. For example, one of the problems
that raises here is related to the heat generated by the sensors, which sometimes
modify the collected data by increasing, e.g., the temperature of the body. More
concretely, in the case of a fingertip pulse oximeter, the author in [Ban12] points
out the substantial effects of the dissipated heat from the device on the human
body temperature depending on the sampling frequency. Similarly, mobility, phys-
iological condition, mood, and time of the day are additional contextual factors
that affect human body parameters and, ultimately, the data acquisition pro-
cess [Ban12]. For example, in the case of the photoplethysmograph (PPG), which
measures the heart rate via the variations of intensity of reflected fraction LED-
emitted light (see Figure 1.7(a)), the measured PPG signals are found in [Anz+20]
to be extremely vulnerable to body movements: body movements affect the shape
of blood vessels and surrounding tissues which lead to low-accuracy measurements,
which are further accentuated by the low power constraints (see Figure 1.7(b)).

One can notice how entangled the sensing environments that we are dealing
with. The amount of components that interact in a seemingly simple learning
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Figure 1.6: Illustration of the entanglement between the cyber and
physical domains and how the interplay between various aspects of
the deployments leads to impairments in the end results of the sens-
ing processes. From [AMK20]: here are depicted (a) an optical sensor
mounted on skin, (b) a basic diagram of a wireless photoplethysmog-
raphy (PPG) sensor, (c) a PPG signal collected from three different
locations, (d) a comparison of the PPG signal with ECG signal.

task like temperature monitoring is tremendously important, likewise the impact
that all these aspects have on the learning process. The entanglement can take
different forms, e.g., the impact of the sensing devices on the phenomena being
monitored or the impact of various contextual elements like the current mood on
the modality being analyzed. This translates perfectly the concept of “complexity”
mentioned previously and leads to the research questions: “How to account for the
entanglement between the cyber and physical domains and its impact on the sens-
ing process? Furthermore, how to organize computations (learning problems and
sub-problems) in order to account for the energy and computational constraints
of the deployment-end computing devices? how to account for the impact of the
computing devices on the phenomena being monitored? how to account for the
various contextual elements that alter the considered learning problems?”

Various languages and formalisms have been devised in order to model this
entanglement and capture the mutual effects between the physical units used to
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(a) (b)

(c) (d) (e)

Figure 1.7: Another example of the entanglement between the cyber
and physical domains. From [Anz+20]: (a) Disposition of the physi-
cal sensing device (photoplethysmograph) on the area of interest and
(b) an example of the signal being generated. (bottom) Illustration of
the PPG signal quality samples collected from a fingertip in different
configurations (electric current/physical activity): (c) high current,
sleeping, (d) low current, sleeping, and (e) high current, running.

sense a region of interest and the physical property of interest. For example, the ar-
chitecture analysis and design language (AADL) [FGH06] is an industry-standard
specifically addressed to mission- and safety-critical systems where the physical
system, computer hardware, software, and their interactions are expressed using
textual and graphical notation. Similarly, Banerjee in his thesis proposed abstract
modeling of the cyber-physical systems, which takes into account the intentional
and unintentional interactions between the cyber components (e.g., sensors, med-
ical devices) and the physical environment (e.g., human body). Figure 1.8 illus-
trates a hierarchical view of the modeling constructs proposed by [Ban12].

Likewise, various approaches have been devised to take into account the en-
tangled nature of distributed and decentralized systems. Some works [Mau+06;
Wan+13; Rau+17] considered the direct link between energy/computational con-
straints with the performances of the activity recognition models. Authors in
[Wan+13] investigated the trade-offs between classification accuracy and energy
efficiency by comparing on- and off-node schemes. An empirical energy model
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Figure 1.8: Hierarchical view of the modeling constructs proposed
by [Ban12] to specify cyber-physical systems.

was presented and used to evaluate the energy efficiency of both systems, and a
practical case study (monitoring the physical activities of office workers) was de-
veloped to evaluate the effect on classification accuracy. The results show that
40% energy saving can be obtained with a limited 13% reduction in classification
accuracy. Similarly, with the goal of analyzing the trade-off between recogni-
tion accuracy and computational complexity, authors in [Mau+06] investigated
the impact of different sampling rates and other parameters on the performance
of activity recognition models. For example, in [OM13], the authors presented a
temperature-sensitive routing protocol in wireless body sensor networks for which
temperature and heat production are fundamental. These routing protocols take
the temperature of the node as a metric in the decision of the routing path. The
purpose is to keep the temperature of the node below the safe level and slow down
the rate of temperature rise so that it does not harm the human body [OM13].

Although these trade-offs have a direct impact on the learning phase, they
are often solely considered at the specific level where they arise. This makes it
necessary to propagate these trade-offs, linked to hardware and application aspects,
to the level of learning processes.

Relativity of viewpoints
The collective dimension of sensors is important in many situations in order to
monitor phenomena of interest. Sensors distributed in various positions of the
space provide rich perspectives and contribute in different ways to the learning
process. The heterogeneity brought by these configurations in term of views is
beneficial but require to be explicitly handled. Indeed, how to reconcile these
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different points of view, each having its own perspective which can potentially
be redundant or even seemingly contradictory with those of other nodes in the
system? How to leverage the relativity between these different perspectives and
their relativity with the considered phenomena?

The spatial structure (or disposition) of the sensors deployment and the induced
views, the phenomena being monitored are accentuated by the sensors’ capabilities,
and the perspectives (views) through which the data is collected (position in space,
position on the body, video capture modalities, acceleration, gravity, etc.) [AC09;
WKA10; HO20]. Moreover, the incomplete and redundant perspectives can lead to
confusion of the concepts between them and reduce the performance of the learning
independently of the algorithm used. In the case of human activity monitoring
from on-body sensor deployments, the sensing devices are generally placed on the
following body positions: waist, thigh, necklace, wrist, chest, hip, lower back, trunk,
shanks, ankle, pocket, hand, back pack, torso, ear, etc.

A long line of research has focused on the problem of optimal placement and
combination of sensors on the body to achieve satisfactory levels of recognition, and
many reviews report on this, such as [Ata+11; Att+15]. As an example, Gjoreski et
al. [GG11] studied the optimal location of accelerometers among the waist, chest,
thigh, and ankle for posture recognition and fall detection. The authors found
that a number of sensor configurations are sufficient to correctly recognize most
of the postures and fall events. More generally, as reviewed in [Att+15], several
works (e.g., [Kar+06; Mat+04; Par+06; YWC08]) provided empirical evidence of
the substantial improvements obtained using an accelerometer placed on the waist
for the recognition of many activities such as sitting, standing, walking, lying in
various positions, running, stairs ascent and descent, vacuuming and scrubbing.

This leads to the research questions: “How to efficiently fuse the relative views
provided by the sensing environments? How to efficiently consider the relativity
(precisely, the relative positions) of views provided by the sensing environments?
How to isolate and temper the exact impact that the sensor’s position bias has on
the learning process?” It is necessary to meta-model how the views (and, more
generally, decentralized learners) interact with each other and incorporate this
into the learning process. Therefore, another question that we pursue is: can prior
knowledge, e.g., a topological coverage model (see Figure 1.9), be exploited to
guide the learning process?

Ethical, privacy, and regulatory constraints
Various regulatory constraints can be found, for example, in the particular case of
body area networks and health applications based on on-body sensors deployments,
e.g., constraints limiting the exposure to low-frequency fields, circumscribing the
risks and potential performance issues that might be associated with wireless co-
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Figure 1.9: Example of prior knowledge about the sensing environ-
ment that can be leveraged to improve conciliation of relative views
and decentralized learners. From [MC13]: A topological coverage
model in the case of a camera network. The model is represented as
a graph, where the vertices correspond to the cameras, and the edges
indicate pairwise overlap between the cameras.

existence in a shared wireless environment, and ensuring the wireless quality of
service. In these kinds of applications, distributed sensing devices often have lim-
ited size and computational capabilities imposed by regulatory constraints. For
example, IEEE standard 802.15.6 [Sal+16], European Union medical device reg-
ulation requirements [Eur17], and ISO 13485:2016 [ISO+16]. A comprehensive
review on the regulatory requirements in the specific case of wearable sensors in
preclinical and clinical testing can be found in [Rav+19b]. Furthermore, these con-
straints around physical aspects require a certain adaptation in the processing and
transmission paradigms that are used in these devices. Indeed, limited capabilities
mean that the sensing devices need to constantly centralize the generated data
via short-range transmissions into some kind of gateway. These transmissions, in
turn, involve a number of constraints related, this time, to the health issues that
they would produce if performed in profusion. In this sense, various standards
like [Sal+16] have been set specifically to constrain the transmissions in terms of,
e.g., transmission power, latency, packet error rate, network density, body-specific
absorption rate, and interference.

A long line of research exists around these types of constraints, and various
approaches have been proposed to optimize transmissions. For example, in [OM13],
the authors presented an investigation of temperature-sensitive routing protocols
in wireless body sensor networks for which temperature and heat production are
fundamental. These routing protocols take the temperature of the node as a metric
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in the decision of the routing path. The purpose is to keep the temperature of the
node below the safe level and slow down the rate of temperature rise so that it
does not harm the human body [OM13].

Although providing some substantial improvement in the specific case of trans-
missions, the particularity of these approaches is that they are ad-hoc and cir-
cumscribed to the particular level of transmission. Noticeably, the other levels
of processing, e.g., learning processes, are not considered explicitly with regard to
these issues. In other words, the different processing levels are compartmentalized.
So how to learn while still complying and accounting for the aforementioned legal
requirements and regulatory constraints?

1.2.1 Research questions
Following the previously reviewed domain-specific regulation and constraints, which
allowed us to further refine the thesis scope, we end up with the following chal-
lenging research questions that we aim to tackle so as to build the unifying and
integrated framework described earlier.

Research questions: integrating domain knowledge via inputs’ struc-
tural constraints

• How do characteristics of sensing devices impact the learning process (het-
erogeneity, distribution skew, etc.)? How to account for the characteristics
of the sensing devices and their evolution during deployment in real-life set-
tings?

• How can learners adapt rapidly to the evolution of sensing environments and
to the dynamical factors impacting them? Are there representative learning
examples that sustain the evolution of the learned models in terms of their
decision boundaries?

• How to conciliate different perspectives that exhibit redundancy, contradic-
tory objectives, etc.? How to follow the evolution of the environment, the
context, the reglementary constraints, etc.? How to handle the fact that the
learned models are often tied to the physical phenomenon it monitors?

• How to account for the heavy cost of performing sensing operations? how
to account for the constraints imposed on transmitting data over networks
(e.g., energy and computational constraints, limited bandwidth, path loss,
etc.)?

• How representative are the end results of sensing operations w.r.t. the ex-
ample space?
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• How do energy and computational constraints shape data acquisition and
transmissions, which ultimately impact data quality as well as data avail-
ability (the problem of partial or incomplete views)?

Research questions: structuring the learning process guided by the con-
cepts to learn

• How to account for the entanglement between the cyber and physical domains
and its impact on the sensing process?

• How to organize computations (learning problems and sub-problems) in order
to account for the energy and computational constraints of the deployment-
end computing devices?

• How does the semantics of the label space can help to organize these com-
putations?

Research questions: abstracting the context and modeling relativity

• How to efficiently fuse the relative views provided by the sensing environ-
ments? how to do so while taking into account legal requirements and regu-
latory constraints, e.g., privacy-preservation issues and health standards?

• How to efficiently consider the relativity (precisely, the relative positions) of
views provided by the sensing environments?

• How to isolate and temper the exact impact that the sensor’s position bias
has on the learning process?

• How to leverage domain knowledge, e.g., about the structure of the sensing
environment, in order to improve the way we isolate and temper the impact
of the sensor’s position bias?

1.2.2 Aim and Scope
After refining the research questions, we can specify further the concrete objec-
tives that we pursue in order to build the unifying and integrated framework we
are aiming at. To this aim, we are set in this research to develop the core building
blocks of the proposed unifying framework along with its corresponding methods
(or modules), which can efficiently deal with the various issues stemming from
distributed sensing environments, like the heterogeneity of data sources, the dy-
namicity of the deployments, and the heavy cost of sensing and transmitting data.
Specifically, this research is divided into four objectives. (1) The development of
methods that are robust to the heterogeneity of the end devices in terms of their
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sensing characteristics, physical constraints, and the particular contexts they are
surrounded by; (2) The development of methods that are able to adapt rapidly to
the dynamicity of the deployments and are data-efficient; (3) The development of
learning methods that can take into consideration the computing constraints by
organizing the learning process in terms of difficulty and can minimize the trans-
missions; (4) The development of methods that are able to conciliate efficiently
between different relative views or different decentralized learners.

1.3 Meta-learning guided by domain knowledge
This thesis takes place in the context of the generalization and pervasiveness of
sensing, actuation, and computing capabilities in an effort to enhance the learn-
ing process by equipping it with a structural and integrated dimension based on
domain knowledge.

In the traditional learning paradigm, learning models typically take the fol-
lowing general form: the learner is supplied with a hypothesis space and training
data drawn independently according to some underlying distribution. Based on
the information contained in the training data, the learner’s goal is to select a
hypothesis from the hypothesis space which minimizes some measure of expected
loss with respect to the underlying distribution. In such models, the learner’s bias
corresponds to the choice of the hypothesis space. This is basically how the learn-
ing process is viewed from the standpoint of the probably approximately correct
(PAC) model, which allows the analysis of the conditions under which learning
can be successfully achieved [VC82; Val84; Blu+89]. In this model, the choice of
inductive biases is among the most important components.

The inductive biases form the ground upon which the learner can choose one
hypothesis that explains the examples it sees. Indeed, the choice of the problem
representation or deciding that the hypotheses space takes the form of a class
of linear functions or neural networks are a form of bias. The selection of an
appropriate set of features to represent the inputs is also in itself a bias. In
a sense, the biases guide the learner in electing one hypothesis at the expense
of another. Indeed, although difficult, finding the right learning bias makes the
actual learning process straightforward. This, however, supposes that the biases
are fixed in advance and for the entire course of the model deployment, precluding
any form of flexibility and adaptation.

Existing approaches trying to account for the constraints that emerge in the
context of the generalization of sensing and actuation capabilities are circum-
scribed to the processing levels where they arise and often involve the traditional
bias-fixing paradigm. The traditional bias-fixing paradigm is not appropriate in
these situations. Rather, the learning process has to be equipped with suitable
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mechanisms allowing it to be flexible enough and able to accompany the evolution
dynamics. As we mentioned previously, this requires us to develop new strategies
and, ultimately, a unifying (or integrated) framework for leveraging these domain-
related constraints, the existing approaches which have been devised for these
specific constraints, and the interplay between all these aspects. There is a need
to (i) explicitly consider these aspects within the learning process and ultimately
(ii) optimize them in a joint manner and account for their evolution dynamics.

Learning-to-learn models [Sch87; BBC91; Fin18] offer flexibility and a promis-
ing level of generalization to overcome the specificities of the real world. To this
aim, we will take a meta-modeling approach where we leverage various forms of
structures originating from the domain in order to guide the learning process and
place the learner in appropriate conditions to carry the learning process. We adopt
in this thesis the metalearning paradigm and its ability to learn appropriate induc-
tive biases. Unlike classical models that fix these biases a priori, learning-to-learn
models offer promising flexibility and a level of generalization to overcome the
specificities of the real world. In particular, we investigate how domain knowledge
can be leveraged in order to guide the learning process. For example, the topology
of sensor deployments, laws of physics, analytical models describing the phenom-
ena of interest, and dependencies between the concepts to learn can be explicitly
incorporated into the learning process in a way that reduces the search space or
makes it affordable. The idea is that neglecting prior knowledge about the learning
problem at hand unnecessarily makes the learning problem significantly harder.

Naturally, the proposed framework encompasses two complementary pillars: on
the one hand, finding appropriate representations that can capture domain knowl-
edge and, on the other hand, exhibiting the corresponding learning mechanisms in
the learning processes on which one can act. Let’s describe, in more detail, these
two pillars.

Meta-learning
Meta-learning can be viewed as a means of reasoning about the learning process
and acting on it by providing better inductive biases. Reasoning involves observing
how the learning process behaves on different related (or similar) learning prob-
lems and how the learning problems are related to each other. More appropriate
inductive biases are then devised so as to guide the learner toward certain solu-
tions by further reducing the size of the hypothesis space, adapting the hypothesis
space, or providing an ordering on the exploration of the hypotheses. For example,
contemporary meta-learning approaches, particularly gradient-based ones, try to
act on the learning process by choosing a more efficient initialization [FAL17], gen-
erating more efficient optimizers [Bel+17], generating model descriptions [ZL16;
SSZ17], choosing an appropriate loss function and evaluation strategy [Sun+18;
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KSS19; Bec+21], tuning the learning rate [KBT19], or devising a better met-
ric space [Vin+16]. Ultimately, the goal of meta-learning includes improving the
speed of learning and convergence rates, leading the learner to better solutions in
terms of performance and robustness, and also equipping the models with explain-
ability with the emergence of higher-level human-interpretable features. Basically,
learning to learn boils down to answering the question as Vilalta and Drissi put it:
“how can we exploit knowledge about learning (i.e., meta-knowledge) to improve
the performance of learning algorithms?”.

Often, meta-learning approaches try to reason about their own learning pro-
cess (or knowledge about learning) by leveraging past experience and exhibiting
hyperparameters that can be optimized in order to improve the learning process
when facing new tasks or learning configurations. Domain specificities inherent to
the generalization of sensing and actuation capabilities bring genuine axes along
which meta-learning can be extended, as well as new challenges to further cope
with. Meta-learning, as defined, does not fully encompass this notion of taking
into account the contextual information that surrounds the data generation pro-
cess in the context of distributed sensing environments. Existing meta-learning
approaches need to be extended following various axes:

• Consideration of the cost of sensing and transmission;

• Consideration of deployment evolution dynamics;

• Consideration of the heterogeneity induced by significant differences across
distributed sensing devices in terms of characteristics, physical constraints,
and interlacing (or interplay) with cyber-physical elements;

• Organization of calculations related to learning so that this process can be
decomposed into several sub-problems that are easier to solve while maximiz-
ing the notion of reuse and sharing (transfer) between these sub-problems;

• Allow to reconcile relative perspectives (redundant, missing, seemingly con-
tradictory) or learners carrying out decentralized learning.

On the one hand, there are the base learning processes encompassing the classi-
cal learning pipeline and its common building blocks, e.g., pre-processing, segmen-
tation, feature extraction, learning algorithms, and evaluation techniques. This is
the lower-level processing layer which is widely studied in the literature and used
practically in various applications. On the other hand, the upper-level layer is con-
cerned with the choice of the appropriate learning parameters, the explicitation
of the hyperparameters, the definition of the system’s boundaries, etc. In sum, at
this level of the framework, we are concerned with what to learn? and how to learn
it?. As the base learning setting is widely spread and commonly discussed in the
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literature, we will elaborate mainly on the upper-level layer aspects and particu-
larly the meta-learning literature, discuss its key principles, and propose avenues
for extending it according to the enlightenments that we get from the massively
distributed and decentralized applications reviewed earlier as well as the various
domain-related constraints. In Chapter 2, we will review the literature around
meta-learning from the early work of [Sch87] to the popular learning to learn with
gradients framework proposed in [Fin18]. We will expose the different formalisms
of meta-learning and introduce an extended set of approaches that ambition to ac-
count for the challenges raised by the widespreadness of the sensing and actuation
capabilities.

Leveraging domain knowledge
Very often, prior knowledge is available about the learning problems at hand.
For instance, images are known to exhibit spatial dependencies, natural language
reveals rich structures, and molecules include graph structures. At the risk of
unnecessarily making the learning problem particularly harder, learning processes
should therefore take into account domain knowledge.

In the context of the generalization of sensing and actuation capabilities, for
instance, we are not without the presence of such domain knowledge. Noticeably:

• Availability of equational models that partly describe the phenomena, the
topology of deployments, generative models of sensors, models describing
the dynamics of deployments, etc. These models would make it possible to
reduce the dependence vis-à-vis the real training examples since one can base
oneself on these proven models and simply supplement them with parsimo-
nious sampling;

• Availability of semantics in the label space, e.g. atomic (or groups of) labels
(or concepts) are related to each other with rich structures. These seman-
tics can be leveraged in order to organize the concepts to learn into differ-
ent groups according to their proximity (the learning of semantically close
concepts is known to be more affordable) then into semantically plausible
hierarchies. This would make it possible to exploit what is learned at each
level of the hierarchies and facilitate transfer between groups while reducing
the quantities of data needed to learn;

• Availability of a priori knowledge describing dependency structures between
components of deployments, e.g., geometry of deployments, the way different
users perform a given activity (in the case of human activity recognition ap-
plications), bio-physical equational models describing the interplay between
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different characteristic points of the human body (in the case of monitoring
human activities using on-body sensor deployments), etc.

These constitute additional data that have to be integrated into the learning
process. These types of data are different in nature from the data manipulated in
the classical learning framework and basically describe the phenomena of interest
(or problems at hand). They correspond instead to meta-data, which provide
contextual information related to the basic data used in the classical learning
framework, such as the quality of the data, the importance of the data source used
to generate the data, the dependence between various data sources, the dependence
across the atomic (or groups of) concepts to learn from the data, etc. These
types of data do not have the same status as regular data and, therefore, cannot
be directly manipulated in basic learning processes. Instead, these types of data
intervene in a higher-level process analogous to the one that is performed in existing
meta-learning approaches, where the idea is to reason about the regularities that
appear across learning problems in order to improve learning performances on new
(never-seen) problems. Here, instead of only relying on mere statistical regularities,
domain knowledge constitutes explicit regularities that can be additionally used
to guide the learning process.

The problem shifts from simply learning using data to leveraging domain knowl-
edge to put the learner in optimal conditions to carry out learning. The proposed
framework comes with a lot of challenging problems that have to be solved, no-
ticeably: Explicitly considering domain specificities within the learning process
subsequently poses concrete issues regarding the way we can integrate these as-
pects into the learning process. How to integrate domain knowledge into the
learning process? Indeed, constraints do not all have a direct equivalent in terms
of hyperparameters in learning processes. So, how to express (or represent) domain
knowledge in a way that it can be easily integrated into the learning process?

This could be related in some ways to the path being undertaken to bridge
the gap between knowledge representation and reasoning approaches, on the one
hand, and machine learning, on the other hand [Mit+18; DKT07; De +19]. In-
deed, it is more appropriate to see it as the different ways a priori knowledge (or
the representation of it) is “translated operationally” into the deployed models and
which hyperparameters could be exhibited to ease this process. In this matter,
one question that remains is, in the concrete case of neural networks, for example,
the link (or relation) between prior knowledge and the weights or the structure
of the neural networks. Integrating prior knowledge, in a principled fashion, into
deployed models also remains an open question, as is the case for the other as-
pects we are investigating. Additionally, this correspondence has the advantage
of paving the way for interpretability and explainability both for the traditional
goal of complying with legal constraints and also for the goal of mechanizing the
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evolution of the base models to remain in compliance when these legal constraints
evolve. In other words, provide this correspondence with a more “productive”
dimension. These questions are discussed throughout the entire thesis. For ex-
ample, one approach that is investigated in Chapter 6 consists in using elements
from the special Euclidean group to represent the relative geometry of the sensor
deployments and simultaneously act on the structure of the neural architectures
to enforce such prior knowledge.

Furthermore, considering the various domain-related constraints in a joint man-
ner raises, for its part, challenges related to how to optimize and reason (in relation
to the learning process) about the prior knowledge that can be integrated into the
learning process. For example, Chapter 5 investigates different approaches to con-
struct hierarchical structures that are suitable for organizing the learning process,
i.e., optimizing the structure w.r.t. the learning process to maximize transfer and
the learning performances. Also, in Chapter 4, the interplay between different
prior models from the domain (physicochemical models of the reactants) and their
impact on the learning process are investigated.

This research is organized around three axes. (1) The development of methods
that leverage domain knowledge to guide the learning process by selecting appro-
priate learning examples and augmenting the example space in suitable regions;
(2) The development of methods that leverage the semantics of the label space to
organize the learning process; and (3) The development of methods that efficiently
conciliate different relative views provided by distributed sensing environments, us-
ing domain knowledge, e.g., in the form of prior geometrical information about the
structure of the deployment. In the next section, we provide a detailed overview
of our core contributions in the sense of building the proposed framework.

1.4 Contributions
The thesis is organized around three axes where we describe and evaluate different
strategies for structuring the learning process in the context of generalized sensing
capabilities. The presentation of these axes is preceded by a background chapter
on meta-learning approaches. Implications of the work and its future directions are
discussed in a concluding chapter. A summary of the proposed axes and specific
contributions are described in the following subsections.

Integrating domain knowledge via structural constraints
In Chapter 4, we will be concerned with the way one can control the internals of
the learning processes according to the domain-related constraints. In this chapter,
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we propose two novel approaches that leverage domain knowledge to select and
augment learning examples.

The main bottlenecks being dealt with in this chapter are the heterogeneity
of the data sources and the cost of sensing and transmitting learning examples.
We take into account the heterogeneity induced by significant differences across
distributed sensing devices in terms of characteristics, physical constraints, and
interleaving (or interplay) with cyber-physical elements.

For this, we exploit the availability of equational models, which partly describe
the phenomena, the topology of the deployments, the generative models of the
sensors, models describing the dynamicity of the deployments, etc. The idea is to
reduce the dependence on real training examples since we can build on these proven
models and simply supplement them with parsimonious sampling. In particular,
we will investigate different strategies for incorporating domain knowledge into
the learning processes by imposing structural constraints on the base models, i.e.,
constraining the inner workings of the base model and its structure. The interplay
between different prior models from the domain and their impact on the learning
process are investigated. The approaches presented in this chapter are based on
the following works [OHB19; HO20; OHB21; HO23].

Structuring the learning process guided by the concepts to
learn
In Chapter 5, we will investigate ways of organizing the learning process so that
it can be broken down into several sub-problems that are easier to solve while
maximizing the notion of reuse and sharing (transfer) between these sub-problems.

We build upon the possibility of exploiting the semantics of the label space
in order to organize the concepts to be learned into different groups according
to their proximity (the learning of semantically close concepts is more affordable)
then their hierarchization which would make it possible to exploit what is learned
at each level and facilitate transfer between groups. We will focus on different
strategies devised specifically to structure the concepts to learn, i.e., the semantics
of the label space.

The other axe that we pursue to guide (or control) the learning process is
structuring what to learn in a way that the traversal of the hypothesis spaces
becomes fragmented according to the a priori knowledge. The idea of structuring
the concepts to learn draws a lot of similarities with the way humans learn new
concepts and acquire knowledge. Specifically, we will investigate two different
approaches for structuring the learning process. Both approaches are based on
optimizing the structure of the atomic concepts to learn first before proceeding
to the actual learning. This way, the more general groups of concepts are first
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learned together before more specific groups of concepts and, ultimately, the atomic
concepts are learned. The approaches presented in this chapter are based on the
following works [OHA21a; OHA22].

Abstracting the context and modeling relativity
In Chapter 6, we will focus on the collaborative aspects of the massively distributed
sensing nodes and the ways conciliation of decentralized learners can be improved.
We investigate approaches that can efficiently fuse the relative views provided
by the sensing environments and conciliate the decisions taken by decentralized
learners while considering their relativity. Relative perspectives can be redundant,
missing, or seemingly contradictory to each other, and naive conciliation in the
decentralized learning setting leads to poor learning performances.

To improve this process, we explore how to leverage prior knowledge about
the sensing deployments. Noticeably, leveraging topological models describing the
disposition of the sensing devices and equational models describing the phenomena
considered for learning. For example, in the case of HAR applications considered
in the empirical evaluations of the chapter, we exploit the geometrical information
about the on-body disposition of sensors as well as bio-physical models describing
the spatio-temporal dynamics of the movements, i.e., how the body parts interact
with each other while the activities are performed.

These additional prior models are expressed in appropriate mathematical oper-
ators, which are further used to constrain the architectures of the neural networks.
This ultimately acts on the hypothesis space that the learner has to explore by
reducing the admissible set of hypotheses to only those satisfying the constraints
expressed above. The approaches presented in this chapter are based on the fol-
lowing works [OH22; HO22].

1.5 Impact and applications
Throughout this thesis, we will approach the problem of learning in the context
of distributed and decentralized data using concrete IoT applications, namely,
infant cries recognition, turbocompressor vibration monitoring, synthesis of new
materials in the industry, and human activity recognition from wearable sensor
deployments. In the following, we provide a concise description of each of these
applications and the problems being tackled.

Infant cries recognition This application is concerned with the monitoring
of infant comfort using an IoT-based solution encompassing a set of distributed
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and decentralized elements, including a voice activity detector, environment mon-
itoring module, and soothing module [OHC17b]. The goal is to train the main
module to learn infant cries signatures and their corresponding comfort situation
(e.g., hungry, need attention, or afraid). The main module processes the infant’s
vocalizations, and the additional modules provide contextual information to the
main module, which uses them to guide the learning process. A number of val-
idated signatures of pre-cry episodes are provided by pediatricians and domain
experts [Dun09; Coo+12]. Additionally, deployed devices, their functioning, and
their transmissions are strictly regulated by health constraints and domain-specific
standards. The idea is to maintain a required level of exact predictions while pro-
hibiting a high burden on the deployed devices. We are witnessing increasingly
higher demands for health monitoring, ambient intelligence, and assisted living
applications, which is due, for example, to the aging population and societal evo-
lutions. Providing answers to the aforementioned challenges is key to the wider
adoption of such applications, and the integrated perspective we undertake toward
these challenges is promising.

Turbocompressor vibration monitoring In this application, we explore the
problem of condition monitoring of large industrial equipment from deployments
of vibration sensors. Different approaches are used for monitoring these kinds of
industrial equipment and can be categorized into model-based, data-driven, and
experience-based approaches [Tob+12]. The applicability of these approaches is
usually assessed based on three criteria including cost, precision, and complex-
ity. This application involves a set of expert-defined domain specifications such
as deployment specification, which describes the disposition of vibration sensors
and the way they are mounted on specific parts of the industrial equipment, and
domain standards, which define the different thresholds that the system must re-
main within. This is probably one of the areas that witness large efforts toward
the integration of domain knowledge into the learning processes. The integrated
meta-modeling approach pursued in this thesis provides some concrete answers to
the inherent challenges encountered in this area.

Synthesis of new materials In this application, we investigate the problem
of material design in the industry, where the core function is to accelerate the
synthesis of new materials with good properties [Ayk+19; Sev+19; Tab+18]. We
focus in particular on the distributed and decentralized scenario featured by these
kinds of applications where concrete data (corresponding to real experiments) are
distributed over the experimental state space and scarce (due to the costly efforts
required to produce these examples). The goal is to build approximation models
for the entire state space from these distributed partial views. The study of this
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application sees the opportunity to leverage domain analytical models describing
the kinetics and thermodynamics of the chemical phenomenon involved.

Human activity recognition In this application, we study the classification of
human activities like running or biking using data generated from on-body sensor
deployments. Learning in this context imposes to conciliate the views provided by
each type of sensing modality (like accelerometers and gyroscopes, which provide
different information) and the respective on-body location of each sensor (the lo-
cation on its own and its relative position w.r.t. other sensors and w.r.t. on-body
referential). Activity recognition is addressed traditionally according to the fol-
lowing predefined chain [BBS14]: the labeled examples generated from the sensors
are (i) segmented into short sequences; which are (ii) pre-processed; and (iii) from
which discriminative features are extracted; (iv) before being fed into a machine
learning algorithm responsible of finding the mapping towards the activities. This
is the HAR pipeline that we investigated from the perspective of the integrated
framework in one of our previous works [OH19; HO21b]. We noticeably exhibited a
set of hyperparameters from the HAR pipeline as well as the corresponding domain
aspects, which are then optimized and assessed in a systematic manner. Overall,
this application brings into play many different aspects of the domain, such as the
notion of deployment topology, biomechanical models of the movements, and the
relative importance of the sensing modalities. The broader impact of HAR models
is a key enabler for the development of more effective assisted living and ambi-
ent intelligence applications. The integrated perspective for which we are laying
down the foundations in this thesis is appropriate for dealing with the inherent
challenges facing HAR.
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Chapter 2

Preliminaries, Notations, and
Meta-learning Models

This chapter discusses learning-to-learn (or meta-learning), its key components,
and the recently proposed lines of predominant approaches inspired by gradient-
based meta-learning. Besides introducing the key concepts of meta-learning, through-
out this chapter, we contextualize our core contributions and provide pointers to
the corresponding chapters.

F

Broadly speaking, as framed by Mitchell et al., “a computer program is said to
learn from experience E with respect to some class of tasks T and performance
measure P , if its performance at tasks in T , as measured by P , improves with expe-
rience E”. To make a machine solve a learning problem, one must therefore identify
the class of tasks, the measure of performance to be improved, and the source of
experience [Mit+97]. Operationally, a learning process is then defined to guide
the learner towards a solution to the learning problem. The idea of meta-learning,
in a nutshell, is to automate (or abstract away) the design choices of the learning
process so as to continuously improve upon experience and guide the learner to
attain better solutions more rapidly. In the following, we will provide essential
background about meta-learning. Whereas we refer the reader to [Mit+97; Bis06],
and many other excellent resources for a more detailed presentation of machine
learning aspects. Note that we refer in the following indiscriminately to learning-
to-learn and to meta-learning and that we concentrate on the risk minimization
framework as a formal model for machine learning.

The rest of this chapter is organized as follows. After reviewing the basics of the
learning process (§ 2.1), we will dig into the learning-to-learn (or meta-learning)
paradigm (§ 2.2): we will take a look at the way it is defined in the literature, how
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is it formalized, and what concrete implementations were proposed alongside the
way it relates to other closely related domains. In Section 2.3, we will describe
one of the prominent approaches of learning-to-learn, gradient-based meta-learning
(GBML). This type of approach, which relies on the notion of gradient, was popu-
larized recently by the model-agnostic meta-learning (MAML) algorithm proposed
by Finn, Abbeel, and Levine. The remaining sections concentrate on the key com-
ponents of the learning-to-learn paradigm. In Section 2.4, we discuss the literature
around the emergence of a fundamental distinction between domain-agnostic and
domain-specific parameters in the learning-to-learn models. Links between do-
main expert knowledge and these elements are established, which will be further
investigated in the following chapters. Furthermore, data and meta-data are two
important components that determine how training at a meta-level is performed.
We will evoke how domain expert knowledge is incorporated into the learning pro-
cess via the meta-level training phase. These are discussed in Section 2.5. We
elaborate in Section 2.6 on an important aspect of learning-to-learn, which is task-
relatedness. The task-relatedness aspects allow us to make the connection with
federated learning via the various structures that emerge in the distributed and
decentralized applications at different levels.

The introduction to the federated learning setting is deferred to Chapter 3,
where we focus on the induced heterogeneity across clients and objective incon-
sistency. We also review how these phenomena are dealt with in the literature.
These constitute the key challenges that we propose to solve in this thesis. For
an in-depth introduction to the federated learning field, we refer the reader to the
excellent recent entries [Kai+19] and [Wan+21].

Of course, this chapter does not substitute itself to the excellent book “ learning
to learn” [TP98] by Thrun and Pratt as an introduction to the fundamental princi-
ples of meta-learning. Also, note the excellent review of the recent state-of-the-art
in [Hos+21], which presents meta-learning and related fields from an interesting
taxonomy.

2.1 Learning process basics
According to the PAC model of machine learning and its variants [VC82; Val84;
Blu+89], supervised learning models typically take the following general form: the
learner is supplied with a hypothesis spaceH and training data {(x1, y1), (x2, y2), ...}
drawn independently according to some underlying distribution P onX×Y . Based
on the information contained in the training data, the learner’s goal is to select a
hypothesis h : X −→ Y from H minimizing some measure erP (h) of expected loss
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with respect to P , i.e., erP := E(x,y)∼P ℓ(h(x), y)
1. In such models, the learner’s

bias is represented by the choice of H; if H does not contain a good solution to
the problem, then, regardless of how much data the learner receives, it cannot
learn [Bax00]. In general, models of supervised learning include the following: an
input space X and an output space Y , a probability distribution P on X × Y , as
well as a loss function ℓ : Y ×Y −→ R. One also has to define a hypothesis space H,
i.e., how to represent the hypotheses (or functions). For example, the hypotheses
can be represented as a space of linear functions hθ(x) = θ0 + θ1x1 + θ2x2+. . . ,
mapping inputs x = (x1, x2, . . .). Notice that the hypotheses are now subscripted
with θ = {θ0, θ1, θ2, . . .} which are basically the weights parameterizing the space
of linear functions mapping X to Y .

For example, in the case of human activity recognition, one possible mapping
is that X would be the set of observations generated by the on-body sensor nodes,
Y would be the set of target activities (walk, run, etc.), and the distribution P
would be peaked over different episodes during which users perform one of the
target activities. The learner’s hypothesis space H would be a class of neural
networks mapping the input space X to Y . This is a classification problem, and
the loss, in this case, would be as simple as a discrete loss ℓ(h(x), y) = 1[h(x) ̸=y],
where 1[π] equals 1 if the predicate π is true and 0 otherwise. This is called the
0/1 loss and looks for accuracy, i.e., how many times the learner got the right
predictions. In the case of multi-class classification, this loss does not care about
how the errors are made. Besides explicitly considering how the errors are made
(in the categorical form of the loss function), cross-entropy can be thought of as
a relaxation of the 0/1 loss and is a convex function (as opposed to the 0/1 loss
for which authors, e.g., in [NS13], provide direct optimization methods). In the
regression framework, ℓ can be some measure of distance between the prediction
and the target, e.g., squared loss ∥·∥2 = 1

2

(
h(x)− y

)2.
The biases constitute the ground upon which the learner can choose one hy-

pothesis that explains the examples it sees. Indeed, the choice of the problem
representation or deciding that the hypotheses space takes the form of a class of
linear functions or neural networks are a form of bias. The selection of an appro-
priate set of features to represent the inputs is in itself a bias. In a sense, the
biases guide the learner in electing one hypothesis at the expense of another. In-
deed, although difficult, finding the right learning bias makes the actual learning
process straightforward. Therefore, two important features of bias are strength
(reduction factor of hypothesis space) and correctness [Utg86a]. Besides the fact
that bias selection generally involves the inputs of domain experts via its design

1Alternatively to empirical risk minimization, maximum likelihood estimation tries to solve
a probability density estimation problem, where the goal is to approximate, for example, the
unknown density P (y|x) given observed data.
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choices, both features of bias are subject to trade-offs, making picking the right
inductive bias often one of the hardest problems in machine learning [Bax00].

In addition to the definition of the space of hypothesis and the learning exam-
ples, the learner is supplied with an algorithm that searches for the optimal hy-
pothesis. For example, when the hypotheses are parameterized and the errors are
differentiable w.r.t. these parameterizations, gradient descent can be used to search
through the hypothesis space. This is the case with neural networks. According to
the choice made for the components of the learning process, the resulting optimiza-
tion landscape varies in terms of their properties to greater extents. Indeed, apart
from differentiability aspects, the optimization landscape can be convex or non-
convex [BV04]. In this thesis, we mainly use gradient-based learners as it has been
proven to be practically efficient in a wide variety of contexts. Although efficient,
these kinds of learners define complex non-convex optimization landscapes which
are highly challenging to explore, as the efficient optimization algorithms designed
for convex optimization are discarded. Besides being non-convex, the complex-
ity of the optimization landscape is characterized by many challenging properties
which have been the center of attention of the community [SMG13; FB17; Fle21].
For example, it was observed in the optimization landscape the presence of low
curvature regions and many local minima, which have been found to be relatively
low cost compared to the global minima [SMG13] or the fact that all local minima
are global [LB18]. These models also suffer from high instability where ϵ-small per-
turbations can completely modify the optimization landscape [Sze+15]. Inspired
by these observations and the properties of the optimization landscape, first-order
methods like gradient descent and their derivatives have been proposed to tackle
the exploration of such landscapes. Gradient descent starts with a random ini-
tialization, θ(0), of the learner’s parameters which is then continuously updated
during the learning process as

θ(t) = θ(t−1) − η(t−1)∇ℓ
(
θ(t−1), B(t−1)

)
(2.1)

where {η(t)}t∈N is a sequence of learning rates and ∇ℓ is the gradient w.r.t. θ
evaluated at θ(t−1) with (a subset of) data B(t−1). Here, design choices involving
either the learning rates (or their sequencing) or the way data are presented to the
learner (batch, mini-batch, using a particular sequencing, etc.) have major impacts
on the learning process. More broadly, inductive biases are the core components
of any machine learning system and, as such, can be similarly subject to learning,
i.e., choosing them appropriately can lead to better solutions, rapidly.
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2.2 Learning to learn: improve with experience
Learning to learn (or meta-learning) can be viewed as a means of reasoning about
the learning process and acting on it by providing better inductive biases. Rea-
soning involves observing how the learning process behaves on different related
(or similar) learning problems and how the learning problems are related to each
other. More appropriate inductive biases are then devised so as to guide the
learner toward certain solutions by further reducing the size of the hypothesis
space, adapting the hypothesis space, or providing an ordering on the exploration
of the hypotheses. In this sense, early systems, including Shift to a Better Bias
(STABB) [Utg86b] or Variable Bias Management System (VBMS) [RST87], tried
to look for dynamic forms of bias, while contemporary approaches, particularly
gradient-based ones, try to act on the learning process by choosing a more efficient
initialization [FAL17], generating more efficient optimizers [Bel+17], generating
model descriptions [ZL16; SSZ17], choosing an appropriate loss function and eval-
uation strategy [Sun+18; KSS19; Bec+21], tuning the learning rate [KBT19], or
devising a better metric space [Vin+16] (see illustrative approaches bellow for
more details). Ultimately, the goal of meta-learning includes improving the speed
of learning and convergence rates, leading the learner to better solutions in terms
of performance and robustness, and also equipping the models with explainability
with the emergence of higher-level human-interpretable features. Basically, learn-
ing to learn boils down to answering the question as Vilalta and Drissi frame it
in [VD02]: “how can we exploit knowledge about learning (i.e., meta-knowledge)
to improve the performance of learning algorithms?”.

Predominantly, learning to learn (or meta-learning) is tightly linked to hu-
man learning and how humans acquire knowledge from a continual stream of
tasks [TP98]. It is suggested by Lake et al. as a fundamental component to achiev-
ing human-level intelligence, along with compositionality and causality. Indeed,
the streams of tasks may encompass highly dissimilar tasks nevertheless, humans
are able to make correct inferences that go far beyond what they have encoun-
tered. This is possible thanks to the strong inductive biases (or prior knowledge)
which are accumulated throughout experiences [Gri+10]. Humans acquire this
prior knowledge via “learning-to-learn,” i.e., they learn how to generalize [TP98].
More precisely, they learn how to compare and make parallels, how to continually
learn, how to evaluate, etc. This knowledge can thus be used flexibly in various
ways so as to match new situations or new tasks. Often, learning a particular task
can benefit from making parallels with how other related tasks were learned before,
which is even more actual as inductive biases are often shared to some extent with
other related tasks [Lak+17]. As a result, besides accelerating the way new tasks
are learned, humans are able to generalize correctly from fewer examples as well
as learn richer representations.
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For Thrun and Pratt, given (i) a family of tasks, each of which comes with
(ii) a training experience, and (iii) a family of performance measures (e.g., one
for each task), meta-learning algorithms are defined as those capable of improving
their performance at each task while accumulating experience with the number of
tasks. In this definition, the notion of task takes a prominent position as it discards
algorithms that do not leverage the presence of other learning tasks. We discussed
above about the advantages of learning from streams of tasks from the perspective
of how humans learn. The ability of a learner to accumulate strong inductive biases
while encountering different tasks is crucial to improving artificial intelligence and
has been studied theoretically, e.g., [Bax00; MPR16]. Indeed, while studying ap-
proaches for learning data representations from multiple tasks, authors in [MPR16]
establish theoretical conditions whereby representation learning is more advanta-
geous in multi-task regimes than in independent task regimes. Convergence and
generalization rates are provided, which, besides the sample size and the intrinsic
data dimensionality, depend on the number of tasks (see discussion in § 3.6 about
the impact of task-relatedness on convergence and generalization rates and in § 2.3
about feature learning vs. feature reuse and how observing multiple tasks helps in
finding and refining such features) 2.

With this definition, machine learning sees the introduction of the notion of
families of (diverse) tasks that the learner should leverage in order to generalize
well and adapt easily to new unseen tasks. Inspired by the formalism in [Sch16],
rather than considering a unique set of training data (§ 2.1), we consider a domain
D of possible experiences s ∈ D, each having a probability p(s) associated with
it. Let T be the available training experience at any given moment. Training
experience is a subset of D, i.e., T ∈ DT ⊂ P(D), where P(D) is the powerset of
D 3. To highlight the notion of a learner encountering a series of learning tasks
one after the other, a learner is referred to as an agent πθ which is parametrized
by θ ∈ Θ. A task associates a performance measure 4 ϕ : (Θ, D) −→ R with the

2Multi-task learning (MTL) consists in learning several related tasks jointly so as to improve
the generalization capabilities of the resulting model on these same tasks during testing. Meta-
learning, on the other hand, aims at improving generalization capabilities on totally new tasks
that have never been encountered before. Recent efforts towards bridging the gap between
multi-task learning and meta-learning have been pursued in [WZL21]. In particular, the authors
investigated ways of combining fast adaptation characteristics of meta-learning and the efficient
training procedures of the multi-task learning approaches. In this sense, the authors show that
from an optimization perspective, multi-task learning and the particular class of gradient-based
meta-learning algorithms can be expressed using the same optimization formulation.

3As we can notice, this formalism is convenient for streaming applications where data is
available incrementally and not in a batch fashion.

4Note in this formalism that the performance measure is not fixed but flexible and can be
assigned at runtime, which is convenient in continual (or incremental) learning settings such as
streaming data.
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agent’s behavior for each experience. The expected performance, denoted by Φ,
of an agent on D corresponds to:

Φ(θ) = Es∈D[ϕ(θ, s)] (2.2)

A learning algorithm L : (θ,DT ) −→ θ is defined as a function that changes the
agent’s parameters θ based on training experience so that its expected perfor-
mance Φ increases5. More formally, we define the learning algorithm’s expected
performance gain δ to be:

δ(L) = Eθ∈Ω,T∈DT
[Φ(L(θ, T ))− Φ(θ)] (2.3)

Any learning algorithm must satisfy δ > 0 in its domain. That is, it must improve
expected performance. Who says tasks also says transfer learning. With this
formulation, one may be tempted to set up mechanisms that simply carry out the
transfer from one task to another. Indeed, transfer learning proved efficient for
few-shot learning, where the idea is to exploit inductive biases leaned on one task
so as to perform better on a different task. As Schmidhuber states, while making
an analogy with how even simple neural networks exhibit the ability to learn
new images faster through pre-training on other images, learning-to-learn is not
just transfer learning. The notion of how meta-knowledge (or inductive biases)
are meta-learned should be explicitly highlighted and handled with appropriate
mechanisms.

The notion de metaknowledge is fundamental in any meta-learning system. It
corresponds to particular aspects of the learning algorithm (or process) that can be
modified to improve its performance on a given learning problem (or a succession
of these). The modified version of the learning algorithm should become better
than the original version. This meta-knowledge is gained through experiences and
the succession of tasks the learner is confronted with. Hospedales et al. in [Hos+21]
categorize meta-knowledge, also referred to as across-task knowledge, as the answer
to “what to meta-learn?” While authors in [LBG15] highlight two sources from
which a meta-learning system can gain experience: meta-knowledge extracted from
previous learning episodes on a single dataset (or task) or from different domains
or problems (see Sections 2.5 and 2.4 for more details). Mathematically, meta-
knowledge is formalized by Schaul and Schmidhuber in [SS10] by what they refer

5Note that the learning algorithm may also be assumed to be an atomic (one-shot) process
that is executed until completion going from an initial configuration of the parameters θ(i) to
another configuration θ(j). Of course, there are intermediary configurations that correspond, for
example, to the configuration of parameters at the end of an epoch in the case of neural network
training.
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to as meta-parameters (or hyperparameters) 6. These are the learning algorithm’s
modifiable components, µ. The learning algorithm is now parameterized by µ ∈M ,
i.e., Lµ : (θ,DT ) −→ θ 7. A meta-learning algorithm, ML : (M,DT ) −→ M , is
defined to be a function that changes the meta-parameters of a learning algorithm
based on training experience so that its expected performance gain δ increases:

Eµ∈M,T∈DT
[δ
(
LML(µ,T )

)
− δ

(
Lµ

)
] > 0, (2.4)

where µ′ = ML(µ, T ) are the updated meta-parameters. For example, ensemble
methods like Bagging [Bre96] and Boosting [Sch90], which proceed by combining
the outputs of multiple-base-level classifiers, can be represented in the formalism
of Schaul and Schmidhuber as follows: D: input/class samples; DT : P(D); ϕ:
classification errors; πθ: set of base-level classifiers; θ: parameters of each classifier;
Lµ: supervised learning; µ: number of classifiers, data subsets with sample weights;
ML: Boosting.

Besides determining which aspects of the learning algorithm are essential in
improving the performance, there is a need to provide appropriate mechanisms to
reason about past experiences and run useful modifications on the suitable aspects.
Indeed, as Schmidhuber frames it: “true learning-to-learn (L2L)” is not just about
learning to adjust a few hyperparameters.

“Radical L2L is about encoding the initial learning algorithm in a universal
language (e.g., on an RNN), with primitives that allow to modify the code itself in
arbitrary computable fashion. Then surround this self-referential, self-modifying
code by a recursive framework that ensures that only “useful” self-modifications are
executed or survive”

Although very often used to process time series, recurrent neural networks (RNNs)
have been proposed for meta-learning. Indeed, their sequential and recursive fash-
ion of processing inputs makes them biased toward these types of data, which
allows them to capture temporal dependencies. The recursive processing of RNNs

6Note that meta-learning and hyperparameter optimization approaches, e.g., Bayesian opti-
mization, basically boil down to solving a nested optimization problem. However, they differ in
terms of the experimental settings in which they are evaluated [Fra+18]. Often in hyperparame-
ter optimization approaches, data is sampled from a single task, while in meta-learning, we deal
with a succession of tasks.

7It is more convenient to think about the meta-parameters of the learning algorithms as those
controlling the dynamics of the learning process, such as the learning rate or weight decay. In this
case, along with the actual model’s parameters, we will have the definition of the model’s archi-
tecture, such as the number of layers, number of neurons per layer, or type of activation function.
However, this leads to discarding some aspects from being considered as hyperparameters such
as the architecture of the learning model (i.e., the parameters θ).
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allows them to learn how to update their own weights. Indeed, they can be ex-
pressed in the above formalism as follows: D: input-target samples; DT : P(D); ϕ:
MSE; πθ: RNN; θ: network activations; Lµ: RNN; µ: network weights; ML: back-
propagation through time. This is one reason they are often used as controllers
in different meta-learning approaches, as we will see in the following. Note that
various improvements have been brought to RNNs since they appeared, noticeably
to deal with one of their major drawbacks, i.e., the poor performances when con-
fronted with very large time lags between significant events. Improvements to these
models include, for example, Long short-term memory (LSTM) networks [HS97]
and gated recurrent units (GRU) [Cho+14]. Besides displaying self-referential and
self-modifying capabilities, RNNs and their related models have been leveraged
to build a long line of meta-learning approaches ranging from meta-learning the
learning rate and the initialization of the learner’s weights to the description of
the learner’s model (or architecture).

Recurrent networks are used to learn more appropriate learning rates and ini-
tialization of the learner’s weights. For instance, a long line of approaches was
constructed around recurrent neural networks (and their derived models such as
LSTMs [HS97] and transformers [Vas+17]) as meta-level, which are trained to
predict the control parameters of the learners at the base level. Figure 2.1 illus-
trates this principle exemplified on the approach proposed by Ravi and Larochelle.
Indeed, in this work [RL16], authors train a meta-learner LSTM to learn an up-

Figure 2.1: Computation graph of the LSTM controller highlighting
how it provides the base learner with appropriate learning rates and
initialization of the base learner’s weights. Figure from [RL16].

date rule for training a base-level neural network. They leverage the observation
that the update of the gradient descent, used to train deep neural networks, i.e.,
θ(t) = θ(t−1) − η(t)∇ℓ(θ(t−1)) (see Eq. 2.1), resembles the update of the cell state
in an LSTM, i.e. ct = ft ⊙ ct−1 + it ⊙ ĉt. Concretely, the correspondence is made
by setting the parameters of the LSTM cell, i.e., f , c, i and ĉ, as follows: ft = 1,
ct−1 = θ(t−1), it = η(t), and ĉt = −∇ℓ(θ(t−1)). With this, authors set the hyper-
parameters of the base-level learner to be the cell state of the meta-level LSTM
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model, i.e., ct = θ(t), and the candidate cell state as ĉt = ∇ℓ
(
θ(t−1)

)
. meaning that

the learning rate is a function of the current parameter value θ(t−1), the current
gradient ∇ℓ(θ(t−1)), the current loss ℓ, and the previous learning rate it−1. With
this information, the meta-learner should be able to finely control the learning
rate so as to train the learner quickly while avoiding divergence. Furthermore,
by leveraging other gates of the LSTM cell the learner can escape from bad lo-
cal optima by shrinking its parameters. Indeed, if the learner struggles to escape
from a bad local optimum, i.e., the loss is high, but the gradient is close to zero,
forgetting parts of its previous weights would allow it to explore other parts of the
optimization landscape. This can be done using the LSTM’s forget gate.

Recurrent networks are also used to generate the computation graph of optimiz-
ers used to train neural networks. A growing number of more complex optimizers
other than the well-known SGD were proposed in the deep learning literature,
each of which tries to cope efficiently with the optimization landscape generated
by such models, e.g., RMSProp [HSS12] which exploits the magnitudes of recent
gradients of a given weight to correct the learning rate 8, or Adam [KB14]. The
idea is to meta-learn these optimizers in the same fashion as the learning rate,
or the base level learner’s initialization is meta-learned. Authors in [Bel+17] pro-

Figure 2.2: Example of using recurrent networks to generate the com-
putation graph of optimizers. From [Bel+17]: here are depicted the
computation graphs of (from left to right) SGD, RMSProp, and Adam
(entire and decomposed graph). g: gradient — m̂: bias-corrected run-
ning estimate of the gradient — v̂: bias-corrected running estimate
of the squared gradient.

posed an approach based on an RNN controller that is trained to generate the
computation graph of an optimizer. The operands and the (unary and binary)
operators of the optimizer are first modeled in the form of a computation graph
(see Figure 2.4). This process is repeated recursively until the full computation

8Each component of the learning rate vector corresponding to a weight of the model is divided
by an accumulator which aggregates the recent gradients of that weight.
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graph of the optimizer is constructed. This process is carried out by the successive
outputs of the RNN controller. Figure 2.3 illustrates the process.

Figure 2.3: Schematic representation of the RNN controller used
in [Bel+17] to generate the computation graphs of the optimizers
depicted above.

Recurrent models are used again as meta-level model controllers but now to
generate the model descriptions of the base-level neural network in a similar way
as neural architecture search approaches. For example, Zoph and Le [ZL16] pro-
posed to train a recurrent network as a meta-level model to generate the model
description of base-level neural networks. The idea is to predict the values of what
we usually refer to in neural architecture search as models’ hyperparameters, in-
cluding, in the case of convolutional neural network models, filter height, filter
width, stride height, and the number of filters. Again here, the values of these
hyperparameters correspond to the successive outputs of the RNN controller (see
Figure 2.4). More broadly, these approaches that generate the models’ descrip-

Figure 2.4: An example of using recurrent networks to generate the
computation graph of convolutional networks. From [ZL16]: depicted
here is an overview of the RNN controller used to sample a simple
convolutional network by predicting the hyperparameters of these
kinds of models like filter height, filter width, stride height, stride
width, and the number of filters for one layer.
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tions essentially boil down to the problem of neural architecture search. In the
case of the model proposed by Zoph and Le, the problem is typically modeled as
a hyperparameter optimization problem where the meta-knowledge corresponds
to the hyperparameters (or architecture) being optimized 9. In a nutshell, neu-
ral architecture search works by iteratively sampling architectures from a search
space using a given sampling strategy, e.g., Bayesian optimization of hyperparam-
eters or evolutionary algorithms, and training that architecture. The obtained
validation performance is used to update the search strategy towards better re-
gions of the search space. According to the taxonomy proposed by Hospedales et
al. in [Hos+21], the search space corresponds to the space of meta-knowledge, the
search strategy to the meta-optimization strategy, and the performance estimation
strategy to the meta-objective.

The learning objective can also be meta-learned in the same way as the param-
eters of the models or the learning rate. Several works also proposed to meta-learn
the objective function ℓ and generally proceed by parameterizing the loss function
with a set of learnable parameters [Yu+18; KSS19; Bec+21]. For example, au-
thors in [Bec+21] proposed a framework where both the model’s parameters and
the meta-loss (a parameterized loss function) are optimized. Similarly, authors
in [KSS19] studied this problem in a reinforcement learning setting. They investi-
gated ways of improving a parameterized objective function ℓα which is intended,
in turn, to improve the policy of the agents. They proposed a differentiable critic
which measures the effect of updating the policy as a function of the objective
parameters α.

In the same vein as the parameterization which is applied to the optimized loss
function, the evaluation strategy for assessing the resulting learning models can
also be parameterized and, thus, meta-learned. Indeed, model evaluation based
on cross-validation usually relies on a random partitioning process. The random
partitioning used in the case of segmented time series introduces a neighborhood
bias [HP15]. This bias consists of the high probability that adjacent and overlap-
ping sequences, typically obtained with a segmentation process, which share a lot
of characteristics, fall into training and validation folds simultaneously. This leads
to an overestimation of the validation results and goes often disregarded in the
literature. We investigated in our previous works [OHC17b; OHC17a] the impact
of such bias. To alleviate the overestimation problem, various approaches were
proposed, such as meta-segmented partitioning [HP15]. The idea is to circumvent
this bias by, first, grouping adjacent frames into meta-segments of a given size.
These meta-segments are then distributed on each fold. The size of these meta-

9Note that in [HKV19], neural architecture search is considered, along with and at the same
level as meta-learning and hyperparameter optimization, as an approach of the family of autoML
methods.
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segments could be learned and contextualized by the type of processing pipeline
being used to process the data and time series specifically. Figure 2.5 illustrates
an example of the resulting partitioning obtained using random partitioning (often
used with regular cross-validation) vs. meta-segmented partitioning [HP15].
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Figure 2.5: Partitioning of a portion of the dataset’s frames (or seg-
ments) over 10 folds using: (top) regular random partitioning used
in traditional cross-validation procedures; (bottom) meta-segmented
partitioning algorithm proposed in [HP15]. A segment length of
one corresponds to the partitioning produced by the regular cross-
validation procedure. The illustrated frames are temporally ordered.
Each color corresponds to a different fold.

Other approaches employ a parameterized meta-learner to generate a non-
parametric base-level model. Examples of such approaches are [Vin+16; SSZ17;
Sun+18] This is often referred to as “learning to compare” [Sun+18] where the idea
is to devise an appropriate metric space to perform comparisons between examples
and make better predictions. Figure 2.6 illustrates the common process for learning
a metric space. Basically, as authors in [HRP21] frame it, the idea of metric-

Figure 2.6: Overview of the metric learning pipeline. From [BHS13]:
the principle of this pipeline is to devise a genuine metric from a given
data distribution that can be used by a learning algorithm to output a
predictor (or non-parametric base-level model) which is more adapted
to the considered data distribution.

based approaches is to learn meta-knowledge in the form of an appropriate feature
(or metric) space where new inputs (that we want to classify, for example) can
be compared efficiently with examples (which corresponding true label is already
known), in other words, the higher similarity between a new input and a known
example w.r.t. the learned feature space the more likely they will get the same
label.

What emerges from all the approaches that we reviewed above is that, in con-
trast to traditional machine learning, meta-learning consists of two nested learn-
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ing problems that are often referred to as an inner loop and an outer loop (or a
meta-level and a base-level) [Sch87; FAL17]. On the one hand, the inner loop (or
base-level) refers to the regular learning setting, such as supervised learning. It
solves a specific task (or learning problem), which is determined by a given ob-
jective, a data distribution, a hypothesis space, and a learning algorithm. On the
other hand, the outer loop (or meta-level) is rather concerned with, as Thrun and
Pratt put it, “learning properties of functions”, i.e., finding meta-knowledge that
makes it easier to solve the base-level problems. Framed differently, the idea is to
solve a meta-problem at a higher level in order to put the learner in better condi-
tions to solve basic-level problems. For example, as we reviewed above, meta-level
models like the RNN controllers are used to provide appropriate learning rates,
computational graphs of optimizers, and architectures of convolutional networks,
able to solve base-level problems efficiently. From another perspective, the outer
loop consists of learning inductive biases from data, also referred to as “data-driven
inductive bias” in [Jer+19] or “inductive bias learning” in [Bax00].

We saw in this section different examples of meta-learning approaches. Gradient-
based meta-learning approaches are probably among the most representative ap-
proaches, which clearly implement this nested bi-level learning problem. We take
a closer look at this type of approach in the following.

2.3 Gradient-based meta-learning
These are probably among the prominent approaches which recently revitalized
the meta-learning community. Gradient-based meta-learning methods aim to learn
inductive biases in the form of an appropriate initialization so that the learner can
adapt rapidly, i.e., within a few gradient steps, to a new task. From an optimization
landscape perspective, GBML approaches try to find meta-parameters that lie
within a few SGD steps from a wide range of task-specific minima, i.e., these
meta-parameters are optimized for fast adaptability to new tasks within a few
gradient steps. Formally, we consider in this setting a collection of T tasks τ ,
indexed by i, drawn from a task distribution ρ(τ). Each task τi has an associated
dataset Dτi = {(xj, yj)}

nτi
j=1 from which we sample two disjoint sets: Dtrainτi

, used
to fit a model on task τi and Dtestτi

, used to evaluate how well this adapted model
generalizes on that task.

GBML approaches are often cast as a bi-level optimization problem:

min
θ(0)

Eτ [ℓ
(
θ(L)τi

,Dtest
τi

)
] (2.5)

s.t. θ(t+1)
τi

= θ(t)τi − η∇θℓ(θ
(t)
τi
,Dtrain

τi
) θ(0)τi = θ(0) and ∀τi ∼ ρ(τ), (2.6)
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where the inner-loop solves a specific task, here by adapting task-specific parame-
ters θτi ∈ Θ (or θi) by minimizing a loss function ℓ

(
θτi ;Dτi

)
using a local optimizer

in L steps. Whereas the outer loop optimizes for fast adaptability by aggregat-
ing the task-specific gradient steps into a set of meta-parameters θ(0)τi ∈ Θ (or ϕ)
used to initialize the task-specific parameters 10. Figure 2.7 illustrates conceptu-
ally how the bi-level optimization process takes place in the parameter space (or
optimization landscape).

Figure 2.7: Overview of how the model-agnostic meta-learning algo-
rithm proposed by [FAL17] performs the optimization process in the
parameter space. The representation ϕ the approach optimizes for,
and usually referred to as universal representation, is one that can
quickly adapt to new tasks.

10Note that θ and ϕ correspond to the same set of parameters, i.e., there is no distinction
apart from the fact that they are treated differently in the inner and outer loops (see § 2.4 for
alternative configurations).
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Algorithm 1: From [Che+19]: Meta-learning pseudocode.
TaskAdapt as well as ∆τi can take various forms as described
in the text.
Input : Size of the task batch B, number of inner loop

adaptation steps L, and learning rate η
1 Initialize ϕ
2 while not done do
3 {τ1, . . . , τB} ← sample mini-batch of tasks
4 for each task τi in {τ1, . . . , τB} do
5 Initialize θτi ← ϕ (≡ θ

(0)
τi )

6 for step l = 1 . . . L do
7 θτi ← TaskAdapt(Dτi , ϕ, θτi)
8 end
9 end

10 // Meta update
11 ϕ← ϕ− η · 1

B

∑
τi
∆τi(D, ϕ, θτi)

12 end

The above procedure, encompassing the original MAML and its derivatives
such as implicit MAML (iMAML) and Reptile, is summarized, as suggested in
[Che+19], in Algorithm 1, where TaskAdapt executes one step of optimization
of the task-specific parameters, and ∆τi , referred to as the meta-update, corre-
sponds to the contribution of a task τi to the meta-parameters. These contribu-
tions are computed, in the case of MAML, by gradient descent on the test loss
ℓtestτi

(θτi) = ℓ(Dtest
τi

; θτi), resulting in the meta-update ∆MAML
τi

= ∇ϕℓ
test
τi

(θτi(ϕ)).
Alternative approaches to MAML were proposed in the literature to alleviate the
computation burden that stems from the necessity to backpropagate through the
task adaptation process. These approaches rely on the possibility of computing the
meta-gradient based solely on the result reached by the inner loop (or adaptation
process). Reptile for example optimizes θτi on the entire dataset Dτi , and moves
ϕ towards the adapted task parameters, yielding ∆Reptile

τi
= ϕ − θτi . Conversely,

iMAML introduces an L2 regularizer λ
2
∥θτi − ϕ∥

2 and optimizes the task parame-
ters on the regularized training loss. Figure 2.8 illustrates the differences between
how differentiation is made in MAML, first-order MAML, and iMAML. Besides
the burden brought by the cost of the second-order derivative of MAML, the au-
thors in [AES19, §3.1] enumerate other issues such as “training instability” and
“Shared Inner Loop (across steps and across parameter) Learning Rate”. Various
strategies have been proposed to deal with these issues.

GBML approaches have witnessed tremendous advances in recent years, leading
to spectacular results in various applications. Various works have tried to under-
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Figure 2.8: Illustration in the parameter space between the way
differentiation is performed (from left to right) MAML, first-order
MAML, and iMAML. Differentiation through the entire optimization
path, as done by MAML, is prohibitive, especially when confronted
with long paths: first-order MAML perform an approximation while
iMAML derives an analytic expression for the meta-gradient. Figure
from [Raj+19].

stand the reasons behind these performances. From a landscape optimization per-
spective, as we said above, meta-learning approaches try to find meta-parameters,
referred to as universal parameters in [FAL17], that lie close to a wide range of
task-specific minima. However, the existence of such meta-parameters depends
entirely on the curvature of the optimization landscape, i.e., task-specific minima
would not necessarily lie close together, and consequently, no meta-parameters
would satisfy the within-few-SGD-steps closeness that such approaches rely on.
Authors in [Fle+19] advocate for a view where meta-learning corrects the natu-
ral ill-conditioned curvature of the optimization landscape over the distribution of
learning problems (or tasks) (see the top row in Figure 2.9) 11. These corrections
are intended to prevent gradient descent from struggling in low-interest regions of
the optimization landscape (see black curves in Figure 2.9), thus facilitating learn-
ing 12. More formally, Flennerhag et al. suggest materializing this inductive bias in
the way the meta-learned update rule is performed, i.e., θτi = θτi−αΩϕ(θτi)∇ℓ(θτi),
where an additional projection, Ωϕ, is introduced. This projection operator is pa-
rameterized by ϕ, which controls how the projection corrects the optimization
landscape curvature.

Performances of meta-learning approaches can also be interpreted from the
11This view can be equivalently seen as metric space learning or feature learning. The difference

is the space where meta-learning is performed, i.e., parameter optimization space versus feature
space.

12Just as the order of the learning examples has an impact on the loss surface (or optimization
landscape), the order of the tasks that the learner (or the system more generally) encounters can
possibly influence the loss surface (as shown in figure 2.9 and explained by so-called “curriculum
learning” approaches.)
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Figure 2.9: Illustration of how meta-leaning acts on the curvature
of the optimization landscape following the interpretation of Flen-
nerhag et al. in [Fle+19]. From [Fle21]: the bottom row illustrates
the optimization landscape defined by each individual task, while the
top row shows how the optimization landscape is got corrected by
leveraging the regularities across tasks. Gradient descent is somehow
facilitated after the meta-learning process corrects the optimization
landscape, also called “meta-geometry”.

perspective of feature learning (or the feature space, in contrast to the optimization
landscape). The learner, by encountering new tasks, e.g., new positions (data
sources), new instances of sensors, new classes, or new contexts, can easily adapt,
as a side effect, due to the generalization capabilities acquired during the learning
process. Besides acting on the curvature of the optimization landscape, meta-
learning approaches are known to optimize for more general features by, again,
leveraging the regularities across tasks. Feature learning is a core component of
the learning process. As Vapnik frames it in [Vap95]: “Real-life problems are such
that there exists a small number of “strong features,” simple functions of which
(say linear combinations) approximate well the unknown function. Therefore, it is
necessary to carefully choose a low-dimensional feature space and then use regular
statistical techniques to construct an approximation.” The question shifts then to
find these sets of strong features. In meta-learning, this is what is referred to as the
bias learning problem (as illustrated in Figure 2.10) [Bax00]. This is formalized
by Baxter as follows. The set of “strong features” may be viewed as a function
f : X −→ V mapping the input space X into some (typically lower) dimensional
space V . Let F = {f} be a set of such feature maps (each f may be viewed as
a set of features (f1; . . . ; fk) if V = Rk). In general, the “simple functions of the
features” may be represented as a class of functions G mapping V to Y . If for each
f ∈ F we define the hypothesis space G ◦ f := {g ◦ f : g ∈ G}, then we have the
hypothesis space family

H := {G ◦ f : f ∈ F} (2.7)
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The problem of “carefully choosing” the right features f is equivalent to the bias
learning problem “find the right hypothesis space H ∈ H.”

Hypothesis Space Family

Bias Learning Problem

Figure 2.10: Feature learning corresponds to the bias learning phase
(or meta-learning), where one seeks to find a feature map (or the
right hypothesis space H ∈ H).

Often in the context of classical learning, what we try to build is a set of dis-
criminatory characteristics (or patterns) in order to be able to distinguish between
different classes. For example, to distinguish between running and walking activi-
ties, we will try to focus on the frequency of foot movements: higher frequency in
the case of running than walking. It is the value of the frequency that is learned
and not the fact that the frequency is a discriminatory characteristic of the learning
problem in question. Indeed, this must be distinguished from the goal of meta-
learning, which, unlike the construction of discriminatory feature sets in the case
of the base machine learning (which is equally important), rather seeks generic (or
invariant as we will see in Chapter 6) in order to generalize to other activities: if
we take the example of the distinction between the activities running and walking,
in conjunction with the learning of discriminatory characteristics (or patterns)—
e.g., frequency of movements, the learning process tries to capture generic aspects
structuring these activities 13. The latter, being by definition generic and therefore
applicable to structurally similar activities, would make it possible to obtain mul-
tiple properties, including better generalization (which is the primary objective of
learning) and, by side effect, easier adaptation to incorporating new instances of
training configurations—e.g., a new class in the case of the illustrative example.

13Vilalta and Drissi, for example, point out to the existence of patterns in each domain and
across domains. Noticeably, across domains patterns are invariant in nature.
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Figure 2.11: Illustration of the concept of “feature reuse” as opposed
to “rapid adaptation” discussed, for example, in [Rag+19; Gol+20].
Here we contextualize the process with the way meta-learning (Fig-
ure 2.7) performs optimization in the parameter space. The features
are learned during the feature learning phase (meta-update) depicted
here and then used in each task with different weighting during the
feature reuse phase (task adaptation). The meta-learned features are
found by Goldblum et al. in [Gol+20] to be qualitatively different
from conventional features, which makes them especially appealing
for few-shot learning.

On the other hand, this distinction makes links with the aspects of data sketch-
ing and modular neural networks (§ 2.4). Indeed, modules such as “Arm”, “Leg”,
and “Eye”, illustrated in blue in Figure 2.11, are typically learned elements in the
context of meta-learning because these are aspects common to all living beings.
On the other hand, what will make it possible to distinguish between the classes
“human” and “cat” (always as illustrated in the same figure) is the contribution
(or activation) of each of the modules characterized by the weights assigned to the
links that connect the different modules (arrows in the figure), and this according
to the class to which the input image belongs 14. Some works, moreover, are inter-

14Note that by extension, these remarks illustrated on classes (activities, more precisely) apply
similarly (under some extra assumptions), for example, to the notion of tasks, perspectives
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ested in this question—e.g., [Rag+19; Gol+20]— whose first results go much more
in the direction of what they call in [Rag+19] “feature reuse”, i.e., a dictionary of
high-level features reused in each task (or domain), rather than features that are
optimal for what they call “rapid learning” (or rapid feature adaptation). Authors
in [Rag+19] investigate the fundamental strength of MAML and ask specifically,
as they framed it: “is the effectiveness of MAML due to the meta-initialization
being primed for rapid learning (large, efficient changes in the representations) or
due to feature reuse, with the meta-initialization already containing high-quality
features?” They find out that feature reuse is mainly behind the effectiveness of
MAML approaches. Furthermore, while investigating this question, the authors
have also pointed out the distinction between different layers of neural networks
with regard to the learned features. Indeed, the earlier layers (the body of the
network) do not change drastically during the adaptation phase, in contrast to
the head (final layer) of the network. This suggests broadly that the body of the
network encodes the features, and the head is responsible for combining them de-
pending on the task at hand. We will discuss these aspects further in the next
section (§ 2.4).

By extension, these aspects are linked, among other things, to neural architec-
ture search approaches and the integration of domain knowledge into the learning
process. Indeed, a growing literature is taking place on training-free neural archi-
tecture search, which searches for structures that do not need full training on data
to match the data distribution (or solve the problem at hand) [CGW20; Lin+21;
Mel+21; Xu+21b; Wan+22]. The idea is that architectures already encode induc-
tive biases per se. Weight adaptation becomes, therefore, trivial in comparison
with the architecture search process, which looks for suitable architectures encod-
ing precise inductive biases, e.g., weight-agnostic neural networks [GH19]. Fig-
ure 2.12 illustrates a perspective on the neural architecture search interpreted as
a bias learning problem followed by a weight adaptation phase allowing the neural
architecture to tackle specific tasks.

Overall, we reviewed in this section the popular GBML approaches with a
special focus on the various intuitive interpretations, i.e., optimization landscape
and feature learning perspectives. The debate around feature reuse and rapid
learning in [Rag+19; Gol+20] led to an interesting question regarding how aspects
of the problems (task-specific and domain-agnostic) are captured and by which
portions of the model’s parameters.

(views), sensor instances (with particular characteristics), position of the data generators in the
space, or (geographical) contexts.
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Weight Adaptation

Architecture Search

Figure 2.12: Neural architecture search can be seen as a bias-learning
process where one looks for the most appropriate way of tying the
neurons together (as opposed to learning their values). This defines
what an architecture is and encodes a particular inductive bias per
se. Weight adaptation is sometimes unnecessary because the obtained
architectures already encode some biases targeted toward the learning
problems. This is particularly the case in the works around weight-
agnostic neural networks, e.g., [GH19].

2.4 Parameters and meta-parameters
Thrun and Pratt evoke in [TP98] the notion of functional decomposition as a design
for the construction of learning-to-learn systems. Basically, this design consists in
building functions of the form h = fi ◦ g, where fi is task-specific whereas g is
shared across all his. In this section, we take a look at approaches that make an
explicit distinction between parameters and meta-parameters, i.e., partitioning the
parameter space according to the aspects of the problem (or data) one is aiming
to capture 15.

In the case of MAML, the meta-parameters ϕ are used to initialize task-specific
parameters θ, meaning that they both correspond to the same set of parameters.
This restricts the capabilities of these kinds of approaches when confronted with
relatively dissimilar tasks, as we discussed previously from an optimization land-
scape perspective. Following the spirit of the functional decomposition approach

15Note here that meta-parameters are not to be confused with hyperparameters. Indeed, in
this context, meta-parameters are special parameters that capture specific aspects of the learning
problem (or data distribution). A hyperparameter here could be the way the space partitioning
is performed between parameters and meta-parameters as well as how each of them is learned.
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in [TP98], a natural alternative to how MAML treats these parameters is to split
them into distinct groups, for example, two-group splits with a first group that
varies across tasks and a second one that is shared (or invariant) across tasks.
Furthermore, these splits can either be explicitly decided a priori or emerge heuris-
tically during the learning process. With this distinction between parameters and
meta-parameters, the meta-learning objective becomes:

min
θ(0),Φ

Eτ [ℓ
(
θ(L)τi

,Φ,Dtest
τi

)
] (2.8)

s.t. θ(t+1)
τi

= θ(t)τi − η∇θℓ(θ
(t)
τi
,Φ,Dtrain

τi
) θ(0)τi = θ(0) and ∀τi ∼ ρ(τ). (2.9)

This formulation makes explicit the notion of meta-parameters Φ (supposed to be
shared across tasks), which are explicitly optimized for, as opposed to the previous
formulation. Following this formulation, MAML does not have any additional
meta-parameter, i.e., (Φ ≡ ∅), as the met-parameters used to initialize the task-
specific parameters coincide.

(a) (b)

Figure 2.13: Two examples of the model partitioning into parameters
and meta-parameters. (a) From [Zin+19] an illustration of a network
layer with network parameters θ (green) augmented with context pa-
rameters ϕ (red). Update procedure during and outside adaptation
step makes these two portions of parameters learn task-specific and
task-agnostic aspects of the learning problem. (b) From [LC18] an-
other network layer featuring an initial set of weights (black arrows)
and weights to be updated (dotted arrows) by task-specific learners.
The weights to be updated are determined by the meta-learner.

Various approaches have been proposed in this direction, e.g., [Zin+19; Rag+19;
Che+19; LC18; KKB18; KBT19]. For example, in ANIL [Rag+19], the explicit
distinction between parameters and meta-parameters arises in neural networks
through the layers, and their depth in the network, e.g., the last layer corresponds
to the parameters (or task-specific parameters), θ, while the shared embedding
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(front-end layers) corresponds to the meta-parameters, Φ 16. In [Zin+19], authors
proposed CAVIA (for fast context adaptation via meta-learning), which augments
each layer of a given model with additional parameters, referred to as context
parameters, and adapted in the inner loop for each task (see Figure 2.13a). Here
the partitioning (which actually corresponds to the augmentation) is hand-crafted,
and the training rule is adapted accordingly, i.e., the network parameters associ-
ated with the context parameters (depicted in blue in Figure 2.13a) are disabled,
i.e., set to 0, before adaptation. Therefore, these parameters do not affect the
output of the layer. After that, they are enabled, allowing them to modulate the
output of the layer depending on the task at hand. This is what makes the two
portions of parameters capture different aspects of the learning problem. Other
approaches, such as MT-Nets [LC18], have also proposed to learn this partitioning
automatically: the meta-learner specifies a mask indicating which parameters to
update in the inner loop and the task-specific learner is responsible for updating
the parameters in question (see Figure 2.13b). This approach has the advantage
of coming up with adaptable modules via the binary mask variables, while CAVIA
has the advantage of being simpler and more interpretable, as the parameters and
meta-parameters are disjoint sets.

Beyond determining this important question of model parameter partitioning,
there is the equally important question of the way each parameter (or partition) is
updated according to this partitioning. This question can boil down, for simplicity,
to the choice of the appropriate learning rate for each parameter (or partition).
Indeed, shared parameters (or meta-parameters) tend to evolve slowly (or stay
quasi-invariant) across tasks, while task-specific parameters are volatile. This ob-
servation has to be reflected in the learning rate, as it is responsible for controlling
the parameter updates. In [KBT19], authors investigated the notion of parameters
and meta-parameters from this perspective and devised algorithms that provably
adapt to task similarity and to dynamic environments by using suitable update
rules for the meta-initialization ϕ ∈ Θ and the learning rate ητi ∈ R. As high-
lighted by [AES19, §3.1], where authors provide best practices for training MAML
models, using a shared learning rate for all parameters without distinction and
all update steps has a major impact on the generalization and convergence rates:
some of the model parameters are consistent across tasks, like the feature extrac-
tors, while others are task-specific, like the classification layers (see Figure 2.14).
Therefore gradient updates must stay consistent regarding this structure. In this
sense, authors in [KBT19, §4] also consider adaptation to a more sophisticated
task-similarity structure by learning a per-coordinate learning-rate η ∈ Rd in or-

16The distinction between the shared embedding and the last layer has been observed empir-
ically in various works and corresponds, for example in multi-task learning, to a fundamental
construction, e.g., in MTL, the last layer (or head) is usually added on top of the shared embed-
ding and fine-tuned to match a new task.
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der to get iteration θ
(t+1)
τi = θ

(t)
τi − ητi ⊙ ∇

(t)
τi , which is more practical and can

leverage multi-task information to adapt the within-task learning rate. These as-

Figure 2.14: Variation of the learning rate across layers of a convolu-
tional neural network trained on a famous image recognition bench-
mark (from [KBT19]). As the lower-level layers tend to be frozen
(share across tasks), the corresponding per-coordinate learning rates
are smaller compared to those of the layers which are closer to the
output (task-specific).

pects are investigated in the continual learning setting, e.g., [GYP20], as well as
in multi-task learning settings, e.g., [Yu+20], where the idea is to minimize gradi-
ent interference, i.e., the gradients for different tasks point away from one another.
This enables a more adaptable and efficient way to mitigate catastrophic forgetting
in the continual learning setting and better generalization overall.

Modularity and data sketching are two notions that participate in pushing
further the parameter partitioning strategy pursued in the meta-learning litera-
ture, e.g., [KKB18; Che+19]. Indeed, the meta-parameters (or universal param-
eters) shared by all the tasks (domain, contexts, etc.) correspond to reusable
(and potentially interpretable) modules. These approaches go a little further
than the simple distinction between parameters and meta-parameters of mod-
els. This family of approaches is designated in [TP98], analogously to the no-
tion of functional decomposition of learning-to-learn systems, as “piecewise func-
tion decomposition approaches” which models functions hi as a collection of func-
tions f1, f2, ..., fM corresponding to the notion of module of data sketch. Fig-
ure 2.15 illustrates the principle via the architecture of the modular layer proposed
in [KKB18] and the Bayesian shrinkage graphical model proposed in [Che+19].
Specifically, the model parameters in [Che+19] are partitioned into M disjoint
modules θτi = (θτi,1, . . . , θτi,m, ..., θτi,M), where θτi,m correspond to the parameters
in module m for task τi and can be materialized by, e.g., feature maps, neural
network layers, or any other building block of the learning models. Shrinkage pa-
rameters attached to each individual module are learned during the process and
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(a) (b)

Figure 2.15: Two examples of modular networks. (a) From [KKB18]
an illustration of a modular network where a controller is responsible
for selecting a set of modules from the available ones. These are then
used to process the input at hand. (b) From [Che+19]: the Bayesian
shrinkage graphical model showing the task-specific parameters θτi
and meta-parameters ϕ. The shrinkage parameters σ control which
subsets of parameters (or modules) to fix and those to adapt and
those to adapt for each individual task.

used to determine which modules are task-independent and thus can be reused
at test time and which are not, to be adapted for each task. Modularity goes
further than simply partitioning the parameter space into basic parameters and
meta-parameters.

In this sense, modularity is a key enabler for the development of transparency
in machine learning models. Indeed, the transparency of a model is linked to
the ability to understand its internal operating mechanisms. In particular, along
with “simulatability” and “algorithmic transparency”, the “decomposability”, i.e.,
“each part of the model—input, parameter, and calculation—admits an intuitive
explanation” as Lipton puts it in [Lip18], is one of three levels around which this
notion of transparency is structured. Modularizing a given model and correlat-
ing them with human-understandable concepts like in data sketching [GPW19]
(see Figure 2.16a) is one way to go about interpretability. This is typically how,
in principle, representation-based methods such as network dissection representa-
tion [Bau+17] and concept activation vectors characterize portions [Kim+18] of
the model’s internals [Gil+18].

For example, we investigated in [HO20] the concept of modularity in the
model’s internals and how the modules correlate with domain knowledge. We
were interested in human activity recognition from on-body sensor deployments,
and the objective was to have control over the influence of data sources (sj in Fig-
ure 2.16b) on the learning process. The meta-learning phase enabled us to exhibit
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(a) (b)

Figure 2.16: (a) From [GPW19]: illustration of a network sketch
used to process an input image. A recursive sketching mechanism
was proposed in their work. (b) From [HO20]: Highlighted in red is
one of the paths that have as source node the data source denoted
by sj, and that is processed by the architectural components C2, C6,
C8, and C10 before joining the architecture’s output node.

modules (Ci in Figure 2.16b) related to domain knowledge, materialized in this
case, by the most influential data sources in the on-body sensor deployments w.r.t.
the final learner’s outputs. Similarly, in Chapter 6, we discuss related aspects from
the perspective of group-invariant representations, where the group action of each
individual data source is constrained to act on specific parts of the latent space.
This allows, in particular, to control the learning process but ultimately to have
interpretable representations and assess the impact of each individual data source
w.r.t. the domain, e.g., impact of the location in the deployment, sensor charac-
teristics, etc.

We reviewed in this section the distinction between the parameters and meta-
parameters that allow meta-learning approaches noticeably to capture task-specific
and task-agnostic aspects in the data. Another distinction of similar importance
in these approaches is that of data and meta-data that the meta-learning models
can learn from. Indeed, meta-learning is not limited to learning from data as in
the standard learning setting. Other forms of data are used, and this is what we
will see in the next section.
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2.5 Data and meta-data
There is a distinction between data and metadata used for learning both at the
meta and base levels. In this part, we will see that meta-learning does not merely
employ data in the traditional meaning of the term: there is no need to recall what
classical data are; we will rather focus on meta-data and give some examples. Data
in the classic sense, however, has an impact on the meta-level, as we will see, and
therefore the elements used for training at the meta-level are not limited to meta-
data. One must also distinguish between what is used for meta-learning, i.e.,
meta-level inputs, and what is meta-learned, e.g., initialization parameters of the
base learner.

Together with the task distribution and the data flow between the meta and
base levels, the choice of the meta-objective constitutes the third axis (or the
“why? ”) of the meta-learning’s design space devised in [Hos+21, §3.2]. Some
meta-learning approaches try to conceive optimizers at the meta-level that lead to
faster convergence rates for the base learner. For example, GBML approaches often
optimize for few-shot learning where data efficiency is a strong requirement, i.e.,
the model must classify data into one of N possible classes, however, there are only
k samples of each class in Dtrain

τ . In this situation, data and meta-data coincide,
and the objective is fulfilled via the evaluation protocol or learning episode design.

The choice of the data used for the adaptation process is of utmost importance,
and in this regard, various works highlighted the problem of sensitivity of the meta-
learning approaches to the support data [GFG20; OBT21; Xu+21a; AYS21]. For
example, authors in [AYS21] studied this problem in image classification and found
that the effectiveness of currently available algorithms is extremely sensitive to the
support set used for adaptation. They show, in particular, that there are images
that, when utilized for adaptation, may produce an accuracy as low as 4% or as
high as 95% on common benchmarks for the classification of few-shot images.

Paying particular attention to the choice of the support set in the case of
approaches optimizing for few-shot adaptation has close ties with sample weighting
and selection strategies, and beyond, with curriculum learning, where data and
meta-data coincide again by taking the form of weighting, selection, and ordering.
Indeed, these links go even further to cover the privileged information proposed
by Vapnik and Izmailov and distilled knowledge of Hinton, Vinyals, and Dean.

On the one hand, in the privileged information framework, Vapnik et al.
in [VI15] make an analogy with the fact that humans learn much faster than
machines and illustrate this with the Japanese proverb “better than a thousand
days of diligent study is one day with a great teacher”. The proposed learning with
privileged information framework consists in considering training data formed by a
collection of triplets {(xi, x∗i , yi)}ni=1 ∼ P (x, x∗, y), where each (xi, yi) is a feature-
label pair, and the privileged information x∗i is an additional supervision term
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about the example (xi, yi) provided by an intelligent teacher (in our case, the
surrogate model) in order to support and guide the learning process. Guiding
the learning process can either be linked to the learning examples supplied to
the learner or the learning configurations (e.g., the topology of the sensor deploy-
ments, characteristics of the sensing devices, etc.) that the learner encounters
during deployment. The privileged information can be, e.g., relevant features or
sample-dependent relevant features [Lop+15]. The selection of suitable hypothesis
spaces can leverage the uncertainty accompanying some configurations of the data
acquisition step.

On the other hand, the distillation framework introduced in [HVD15] tries to
incorporate knowledge, in the form of class-probability predictions, from high-
capacity models into low-capacity models. Rather than training low-capacity,
deployment-ready models using the raw (hard) labels, class-probability predictions
(soft labels) generated by the high-capacity models are used instead. In contrast
to a boosting training strategy where the hard-to-classify examples are weighted so
that the learner can focus on them, in this framework, the easy-to-classify exam-
ples, in the sense of smooth class membership, are supplied during model training
instead. This smoothness in class membership (or class probability predictions) is
controlled by using an additional parameter (temperature ∈]0, 1[), which decides
how to soften the class membership.

Another taxonomy categorizes meta-learning approaches according to the type
of meta-data leveraged for learning-to-learn, from the most general to the most
task-specific [Van19], including meta-data originating from model evaluations,
tasks properties, and the internals of the models themselves. For example, in
the case of model evaluations, meta-data consist of observations about the way
the learning process behaves and how it evolves, e.g., when changing the model’s
architecture or adding more training data, etc. As a parallel, the meta-data used in
the case of neural architecture search to update the hyperparameters of the next
neural architectures consists of the evaluations of the previously sampled neu-
ral architectures. As running a training process until completion is prohibitive,
proxy task performances often more affordable to evaluate are used instead, e.g.,
fewer data and shorter learning epochs, and down-scaled models. The idea is that
starting from these evaluations, the models have to predict the best learning con-
figuration, including the model’s architecture and training process, e.g., authors
in [Bak+17] model learning curves to predict the final performance of a given
model.

Prior machine learning models per se, i.e., the structure of the learned models
and their learned parameters, can also serve as meta-data from which the meta-
learners can learn. Concretely, the meta-learner is supplied with tasks and their
corresponding learned models, which it uses to train a base learner on new un-
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seen tasks. For example, the meta-initialization strategy featured by the GBML
approaches and neural architecture search can be considered as a form of learning
from prior machine learning models. Furthermore, properties or characterization
of the tasks is another source of meta-data and consists of, for example, simple
scalars (e.g., number of instances, number of classes, number of outliers, etc.) or
statistics (e.g., data sparsity, skewness, feature correlation, etc.) (see [Bra+22]
and [Van19, Table 2.1] for a more featured list). The idea is to use these char-
acterizations to measure the distance between tasks and decide whether or not
information can be transferred from one task to another. This type of meta-data
is more related to the notion of task-relatedness discussed in the next section.

Indeed, a common assumption in the meta-learning approaches is that tasks
necessarily have to be related to each other with some kind of structure. In GBML
approaches, this notion of task relatedness is more often assumed or used to derive
tighter learning and convergence bounds rather than used explicitly in the form
of meta-data, as we have illustrated in this section. We will see that some works
try to model and leverage this notion in order to meta-learn and improve the
performance of meta-learning.

2.6 Families of (structurally) related tasks
As Edwards and Storkey frame it: “An efficient learner is one who reuses what they
already know to tackle a new problem. For a machine learner, this means under-
standing the similarities amongst datasets.” In this section, we will take a look at
task-relatedness, a fundamental pillar behind the learning-to-learn machinery 17.
In the following, we will see (i) the different characterizations of task-relatedness
found in the literature; we will see (ii) how taks-relatedness is computed, followed
by (iii) a little theoretical digression; finally, we will see (iv) how it is explicitly
leveraged to improve meta-learning.

A task is defined by Finn in [Fin18] as an entity being learned or adapted
to, which could take the concrete form of an objective, domain, environment, or
any combination of these. Authors in [ES16], for their part, suggested a task as
corresponding simply to the notion of a dataset that could be materialized by
the pictures or speech recordings of a particular individual or a given document
represented in the form of bag-of-words. In robot learning, authors in [Nag+20]

17Alternative views exist on the principle of task-relatedness, e.g., [PL15; SLS21], where the
evaluation of meta-learning approaches goes beyond this principle. Noticeably, authors in [SLS21]
point out the differences between tasks sampled in in-distribution and out-of-distribution config-
urations, e.g., the few-shot learning where the test task can substantially differ from the training
tasks versus federated meta-learning approaches where clients are considered as tasks (see Sec-
tion 3.6 for additional details about this last point).
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considered scenarios where complex robots get damaged and have to adapt their
dynamics rapidly so as to pursue their work. The notion of task here is material-
ized by the different scenarios, i.e., robot damage. Likewise, authors in [HO21b]
studied on-body sensor deployment for human activity recognition, where the con-
sequences of sensor failures and deployment re-configurations have been considered
as generating new tasks, which the activity recognition models have to adapt to,
again rapidly. More broadly, the notion of task can have a wide spectrum of inter-
pretations and vary according to the type of object being considered in a picture
as well as the lighting conditions under which that picture was taken, and even
the objective being pursued by a given task.

The need for tasks to be sampled according to a certain distribution ρ(τ) is a
key assumption in the learning-to-learn environment. Indeed, there must be some
link between observed activities and future unobserved tasks for meta-learning to
occur in a lifelong fashion. This kind of distribution is known as a task family
or task environment and was formalized for the first time by Baxter in [Bax00].
Following that, a huge body of work focused on describing and understanding
the nature of these task distributions and any structures that connect these tasks
together, as well as the conditions under which meta-learning can occur. Vari-
ous approaches were proposed in the literature to measure task similarity, e.g.,
[Zam+18; Ach+19; NDC21; Jia+18; TNH19; Kum+21]. These approaches often
proceed by computing similarity scores between tasks either by modeling their
data-generating process or leveraging semantic information in the label space. For
example, Taskonomy [Zam+18] proposes a computational approach for modeling
the structure of the space of computer-vision tasks, such as texture recognition,
semantic segmentation, reshading, colorization, etc. Task2Vec [Ach+19] projects
(or embed) the parameters of a task-specific model into a (lower-dimensional)
latent space, abstracted from information regarding the number of classes and
class label semantics contained in that given task. Further details are provided in
the literature overview in Chapter 5, where we investigate ways of organizing (or
structuring) the learning process by leveraging the semantics of the label space
and measuring how atomic concepts and group of concepts related to each other.
In this context, the atomic concepts and group of concepts are considered to be
tasks. The goal being to leverage the structuring of concepts in order to maximize
sharing and transfer among these learning tasks.

Indeed, the idea is that after exhibiting the notion of task-relatedness, one can
leverage this prior knowledge in order to improve the learning process. For ex-
ample, one can perform task-clustering in order to devise, in the case of GBML
approaches, task-cluster-specific initialization rather than a unique initialization
for all tasks, which could be inefficient when tasks are slightly distant from each
other [Yao+19]. In the presence of strong dissimilarities among the tasks, find-
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ing, for example, a universal optimization in the case of GBML approaches, be-
comes less likely, and even cluster-specific initializations provided by the above
approaches would not be appropriate. A better understanding of the underlying
structures is of utmost importance, and such structures could be as simple as the
laws of physics, e.g., gravity or Newton’s first law of motion, or simple priors used
in robot learning, e.g., temporal coherence prior, meaning that task-relevant prop-
erties of the world change gradually over time or proportionality prior [Kau20]
(see Chapter 4 for more details). In summary, we can say that there are different
levels of similarities ranging from the most basic—e.g., related to the basic laws of
physics—to the most advanced—e.g., the semantics of the label space—and which
are therefore more specific and could potentially lead to better generalization and
convergence rates.

Various works have investigated the notion of task relatedness, trying to char-
acterize it and analyze it theoretically by providing, for example, information-
theoretic lower bounds on minimax rates of convergence. In particular, this notion
is studied from various perspectives, including multi-task learning [Bax00; BB08],
domain adaptation (or transfer learning) [Ben+10], and meta-learning [Luc+20;
JS21]. One of the first and most important studies to provide theoretical guaran-
tees on generalization and convergence rates for learning-to-learn (and also multi-
task learning) was carried out by Baxter in [Bax00], where the first sample com-
plexity bounds under the framework of VC theory [Vap95] have been proposed. As
mentioned previously, the predictors h considered here factorize as h = g ◦ f and
f ∗ is a feature representation shared across tasks, learned using n samples from
each of the T tasks, and adapted to a target new task using nτ samples from that
task. The primary issue being investigated is determining how many samples, de-
noted by n, are required to learn f ∗, which may then be customized for a new task
that has not been seen before. A large body of theoretical studies following the
work of Baxter provided tighter bounds while still assuming a common generative
model over tasks, referred to as task environment, from which tasks are sampled
IID. Authors in [MPR16] for example provided generalization bounds scaling to
the order of O(1/

√
T ) + O(1/√nτ ). One major concern related to this bound,

highlighted and studied for example in [TJJ20; Du+20], is that the first term,
i.e., O(1/

√
T ), decays only in the number of tasks T but not in n. This does not

seem to match empirical evidence in the literature about the practical efficacy of
these approaches, particularly transfer learning, where very often n≫ T [TJJ20].
For Du et al., the IIDness of the tasks generative model which is often assumed is
not sufficient alone to explain the practical efficacy of these approaches, and the
connections between tasks have to be investigated.

Although being a challenging problem, particularly when the parameter space
of models like neural networks tends to be quite large and complex, modeling
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and leveraging relationships (or structure) among tasks has the potential to im-
prove learning-to-learn by, for example, “fast-track” learning, as Nguyen, Do, and
Carneiro put it in [NDC21], of similar tasks by devising more appropriate cluster-
specific rather than single initializations or detecting outlier tasks which need
much more adaptation efforts [Jer+19]. When the task distribution is heteroge-
neous, relying on single parameter initialization in the case of GBML approaches
was demonstrated empirically to have limits [Vuo+19], the reason is that, as dis-
cussed in the optimization landscape interpretation, few gradient steps are not
likely going to lead the parameter initialization towards task-specific parameters
that satisfy a wide range of tasks.

Multi-task learning (MTL) is perhaps one of the research areas where the no-
tion of structure is leveraged to a greater extent due to the way this problem
is formulated. In the hard parameter-sharing formulation of MTL problems, i.e.,
minW,Λ

∑T
i=1

∑nτi
j=1 ℓτ (θ

⊤
τ xj, yj) +R(W,Λ) 18, one can notice the additional regular-

ization term R, which is actually responsible for imposing this notion of structure.
The matrix Λ ∈ RT×T (containing task pairwise scalars) is intended to model the
structure of the tasks either a priori or while being estimated during the learning
process via the regularization term [Smi+17]. The idea is to control how informa-
tion is shared amongst tasks, i.e., how to bring the weight vectors for each task,
θτi , closer to one another when the tasks are similar to one another and farther
apart when the tasks are dissimilar to one another. For example, many works
assume that the matrix reflects a clustered structure, e.g., [ZCY11; ZY12; JVB08;
EP04], and try to impose that during the learning process. Similarly, probabilistic
priors can be used to model the dependence among the columns of W , which has
the advantage of capturing both positive and negative relationships among the
tasks, which are rather difficult to achieve only with clustering. In each case, the
chosen structure generates a regularization term in which the general principle is
to impose parameter-closeness of the task-specific weight vectors to optimal task
parameters.

Still, regarding approaches that rely on additional regularization terms to im-
pose tasks structures, this time closely related to the online learning setting where
the task-environment changes dynamically, authors in [KBT19] leverage the geo-
metric structure of the tasks using online mirror descent with a regularizer based
on the Bergman divergence, i.e., 1

ητ
BR(·||ϕ) for initialization ϕ ∈ Θ and learning

rate ητ > 0, to impose the notion of parameter closeness as a materialization for
task-relatedness. When the number of tasks T −→∞, the average regret scales with
V , where V 2 = 1

T

∑T
i=1 BR(θ∗τi ||ϕ) and when ϕ = 1

T
θ∗1:T , this means that average

18In the hard parameter-sharing formulation of the multi-task learning, each task has its own
weight vector, i.e., W := [θτ1 , ..., θτT ] ∈ Rd×T is a matrix whose i-th column is the weight vector
for task τi [Smi+17]. The joint learning process is responsible for constraining the whole network
in a way that it leverages commonalities amongst tasks.
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performance improves with task-similarity [KBT19]. Ideally, in GBML approaches
that optimize for few-shot adaptation objectives, the learnt initialization ϕ should
be close to the optimal model parameter θ∗τi of any task τi ∼ ρ(τ), i.e., small
distance Eτi∼ρ(τi)[

∥∥ϕ− θ∗τi∥∥2

2
].

In the same spirit as the MTL approaches, which impose cluster structure to the
task-specific weight vectors, learning multiple initializations, {θ∗c}Cc=1, for C groups
(or clusters) of tasks rather than for all tasks at once is one way to further reduce
this distance. With a better targeted initialization, θ∗c ∈ {θ∗c}Cc=1, for a specific
task τi belonging to cluster c ∈ [C], the optimal parameters for each task (or
task-specific minima) would satisfy the within-few-SGD-steps closeness discussed
in Section 2.3. Various works have been proposed in this sense, e.g., [Jer+19;
Zho+21b], where the idea is to learn task-specific cluster assignments and model
parameters in a joint fashion. Similarly, approaches leverage task embeddings,
i.e., representation of the tasks in a latent space (e.g., Task2Vec [Ach+19]), in
order to modulate (or bias) the parameters of the base learners towards good
initialization for solving a given target task. For example, authors in [Vuo+19]
propose a framework where a modulation network produces modulation vectors,
σi which are applied to each building block (or layer), θ, of a task network so as to
get suitable initialization parameters. The process is formalized as a modulation
operation ϕ = θi ⊙ σi, where ϕi is the modulated prior parameters for the task
network, and ⊙ represents a general modulation operator taking various forms,
including attention-based modulation and feature-wise linear modulation. Using
a well-crafted latent space where similar tasks are projected into the same regions
is a way of implicitly incorporating task structure into the learning process.

We saw in this chapter a summary of the relevant meta-learning background
with a focus on the task-relatedness, a fundamental aspect at the basis of meta-
learning machinery. This is one of the key components that we use to make a
junction with the federated learning models presented in the next chapter.



Chapter 3

Federated learning models

In this chapter, we describe federated learning (FL) models and review strategies
proposed in the literature to take into account the impact of heterogeneity across
clients. A duality between task-relatedness and client heterogeneity is described,
which ultimately lays down the principles upon which we build different approaches
presented in the following chapters 4—6.

F

The standard machine learning setting is usually conducted in a unique cen-
tralized site where a representative sample of the overall data distribution is avail-
able. Conversely, the distributed optimization (or federated learning) setting was
described in [KMR15] motivated by an increasingly spreading learning scenario
consisting of a large number of mobile devices (also called clients) generating and
holding training data locally instead of being aggregated into a unique centralized
site. The goal is still to learn a unified theory while conciliating the diversity
of clients in terms of the quantities of training data each individual client holds
and the representativeness of the training samples of each client regarding the
overall data distribution of the whole population. The general description of the
federated learning setting was popularized by McMahan and Ramage in [MR17],
while its theory was laid down in [Kon+16; McM+17]. This setting fits equally
well with the IoT ecosystem and was often relied upon in the literature. Existing
challenges, including communication efficiency, heterogeneity of data distributions
across clients, and local objectives inconsistency, are obviously interesting but are
pushed further by the learning scenarios introduced by IoT applications. This is
what we focus on in this chapter.

The rest of this chapter is organized as follows. We first present one com-
mon federated learning setting in Section 3.1 before turning into the fundamental
challenges surrounding this learning setting, which are the induced heterogeneity
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and objective inconsistency among clients (§ 3.2): the various domain specificities
presented in the introductory chapter induce heterogeneous components into the
FL setting which brings diversity, beneficial for the learned theories, but impair-
ing the learning performances when they are dismissed or not explicitly handled.
Section 3.3 provides a quick picture of the different datasets used to study the
heterogeneity aspects arising in FL settings, both naturally and artificially. This
is followed in Section 3.5 by the various approaches specifically devised to miti-
gate these heterogeneity aspects. Along with the presentation of these approaches,
we try to draw parallels with the learning-to-learn approaches that we reviewed
in the previous chapter. These parallels are materialized by the duality between
the clients participating in the FL setting and the tasks. This is discussed in
Section 3.6, allowing us to make a case for leveraging the notion of structure at
various levels amongst tasks and clients for both learning-to-learn and federated
learning approaches.

3.1 Federated learning setting
In a common formulation of the decentralized machine learning setting, a set of M
clients, each corresponding, for example, to a sensor in an IoT deployment, aim to
collectively solve the following optimization problem:

min
θ∈Θ

{
f(θ) :=

M∑
i=1

αi · fi(θi)
}
, (3.1)

where fi(θi) = 1
ni

∑
ζ∼Pi(x)

ℓi(ζ; θi) is the local objective function at the i-th client,
with ℓi the loss function and ζ a random data sample of size ni drawn from locally
stored data according to the distribution of client i. At each communication round
r, each client runs independently Ti iterations of the local solver, e.g., stochastic
gradient descent, starting from the current global model (set of weights) θ(r,0)i

until the step θ
(r,Ti)
i to optimize its own local objective. Then the updates of a

subset of clients are sent to the central server, where they are aggregated into
a global model. Only parameter vectors are exchanged between the clients and
the server during communication rounds, while raw data are kept locally, which
complies with privacy-preserving constraints. Various algorithms were proposed
for aggregating the locally learned parameter vectors into a global model, including
FedAvg [McM+17], which updates the shared global model as follows:

θ(r+1,0) − θ(r,0) =
M∑
i=1

αi ·∆(r)
i = −

M∑
i=1

αi · η
Ti−1∑
t=0

∇i(θ
(r,t)
i ) (3.2)
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where θ(r,t)i denotes the model of client i after the t-th local update in the r-th
communication round. Also, η is the client learning rate, ∆(r)

i corresponds to the
weight update from i-th client, and∇i represents the stochastic gradient computed
over a mini-batch of samples.

Besides challenges such as communication efficiency, where the number of com-
munication rounds has to be minimized, the heterogeneity of the data distribu-
tions across an extremely large number of clients and the inconsistency of the local
objectives, which are highly witnessed in the distributed sensing environments, in-
cluding IoT applications, represent the fundamental bottleneck being dealt with
in the literature.

3.2 Induced heterogeneity
One of the major issues in federated learning is the heterogeneity of the clients.
Heterogeneity (or equivalently diversity) goes beyond FL and is defined, for ex-
ample, in ecology by [LR95] as: “the complexity and/or variability of a system
property in space and/or time”, where system property can be anything that is of
(in this context, ecological) interest, complexity refers to qualitative or categorical
descriptors of this property, while variability refers to quantitative or numerical
descriptors of the property. Sampling from a heterogeneous system, i.e., exhibit-
ing variability in one of its properties, yields observations with many differences
between them. The system is said to “diverge from the ground state of perfect
conformity” [Nun20]. Figure 3.1 illustrates one instance of the Yule-Simpson ef-
fect, which is a kind of heterogeneity in a setting encompassing different clients.
Authors in [Kai+19, §3.1] survey some common ways in which data tend to deviate

Figure 3.1: Illustration of the Yule-Simpson effect in a multi-center
analysis setting. The correlations found in the individual sites versus
when aggregating all the sites are reversed. Figure from [Nun20].

from being identically distributed. That is Pi(x) ̸= Pj(x) for different clients i and



68 3.2. Induced heterogeneity

j. By rewriting Pi(x, y) as Pi(y|x)Pi(x) and Pi(x|y)Pi(y), this allowed authors to
characterize different forms of induced heterogeneity including feature distribution
skew (covariate shift), label distribution skew (prior probability shift), same label,
different features (concept drift), same features, different label (concept shift),
and quantity skew or unbalancedness. In the following, we illustrate these types
of heterogeneity with concrete examples which are largely inspired by the IoT
applications studied in this thesis and discussed in the introductory chapter 1.

The heterogeneity induced by the sensor’s characteristics is, contrary to what
could be thought, a major aspect of IoT applications, even if it is often dismissed in
the literature. Indeed, even small variations, e.g., imperfections during the sensor
manufacturing process, can lead to the introduction of impactful heterogeneous
components [HO21b]. For example, in the context of HAR applications, authors
in [KRM18] exhibited, in particular, one type of heterogeneity induced by the sen-
sor characteristics, which is referred to as device-instance diversity where the signa-
tures of the sensors exhibit variations, i.e., switching from one smartphone model
to another (even the same model from the same constructor) while performing the
same activity can lead to perceptible differences in the recorded patterns. These
variations result, according to [Dey+14], from manufacturing flaws in the hardware
that cause every sensor chip to react differently to the identical motion stimulus.
Figure 3.2 illustrates the internal structure of MEMS accelerometer chip and the

Figure 3.2: The internal structure of MEMS accelerometers and var-
ious components that are susceptible to suffering from imperfections
(during manufacturing or deployment) lead to heterogeneity in the
generated data. Figure from [Dey+14].

different components which are susceptible to generating imperfections leading to
different fingerprints and, beyond the ability to track, can ultimately generate
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heterogeneous components for the learning process. These sensor-, device- and
workload-induced variations were investigated in [Sti+15] and have been shown
to significantly impair the performances of activity recognition models. This phe-
nomenon is often referred to, in the federated learning literature, as concept drift,
according to [Kai+19], where the conditional distributions Pi(x|y) may vary across
clients (here exemplified by sensor, device, or workload) even if P (y) (here, the
target activities) is shared. The same label y can have very different features x
for different clients 1. Still, in the HAR applications, concept drift attracted more
attention from the perspective of cross-user diversity where clients correspond, in
this case, to the users who are known to exhibit important variations in the way
they perform a given daily-life activity like running or walking. This is shown, for
example, in [KRM18], to impair activity recognition systems based on a unique
classification model approx. 30% classification accuracy drop.

Due to the pervasiveness of sensors that can be deployed on a massive scale
to monitor diverse phenomena, the heterogeneity induced by the relativity of the
viewpoints constitutes one of the major bottlenecks in learning processes. As
we discussed in Section 6.1.4, the relativity of viewpoints generates variability in
terms of the feature distributions that are captured for a given phenomenon. Al-
though beneficial, this diversity has a perceptible impact on the performances of
the learning processes when naively flattening the data being collected by the de-
ployments. For example, Figure 3.3 illustrates the resulting linear discriminant
analysis of three human activities (standing, running, and walking) captured by
two different accelerometer-enabled devices (smartwatch and smartphone) placed
at different on-body positions (hand and hip). This is typically what is known as
feature distribution skew (or covariate shift). In this case, the marginal distribu-
tions Pi(x) (i.e., the features being captured by each viewpoint) may vary across
clients, even if P (y|x) is shared (here in the case of HAR, the characterization of
the target activities remain unchanged across viewpoints). Moreover, the relativity
of viewpoints does not solely induce variability in terms of the feature distributions
being captured but also has an impact on the forms of the label distributions. For
example, depending on the exact location of the sensors as well as their sensing
capabilities, what is sensed by a given client (sensor) may cover only partially (or
even not at all) the values corresponding to a given concept (or target activity in
the case of HAR applications) 2. This is known as label distribution skew (or prior

1Note that the sensor characteristics do not induce only concept drift but also what is referred
to as quantity skew or unbalancedness where the quantities of data that various clients can store
vary greatly. This can be due, for example, to the diversity in terms of the sampling frequency
across clients and also in terms of the energy and computational constraints (see § 1.2).

2Simiarly, in the case of entanglement between the cyber and physical domains, the sensors
located on particular body locations may not capture (or not exactly) the right phenomena like
temperature rise due for example to an infection.
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Figure 3.3: Linear discriminant analysis (LDA) of three human
activities (standing, running, and walking) captured by two dif-
ferent accelerometer-enabled devices (smartwatch and smartphone)
placed at different on-body positions (hand and hip). Considered
features include: mean, standard deviation, and variance. Figure
from [KRM18].

probability shift), where the marginal distributions Pi(y) (i.e., the labels being
captured by each viewpoint) may vary across clients, even if P (x|y) is the same.

3.3 Datasets for heterogeneity study
In this section, we will briefly review the available datasets in the literature that
are used to study the problems induced by heterogeneity in the federated learn-
ing setting—e.g., HHAR [Sti+15], “heterogenization” of existing datasets such as
MNIST, etc. Datasets differ depending on the type of heterogeneity that is exhib-
ited, and real-world FL datasets often include a combination of these [Kai+19].
Furthermore, there are obviously datasets that exhibit naturally-induced hetero-
geneity, mostly real-world datasets, while other datasets are constructed artificially
to induce such heterogeneity into existing datasets in a controlled manner. This
way, the proposed approaches can be assessed in terms of their robustness to dif-
ferent degrees of client heterogeneity. The idea here is to give a glance of the
techniques used in the literature to construct such datasets and what are the goals
pursued in each case.

On the one hand, synthetic non-IID datasets were, in many cases, trying to
simulate label distribution skew, e.g. [McM+17; Hsi+20]. These non-IID datasets
are formed by partitioning existing datasets like MNIST, CIFAR, or CINIC, based
on their labels. Authors in [He+20, §B.3] provided a summary of the datasets
and models used in the FL literature. Among the non-IID partition methods that
have been listed in [He+20, Table 8], there are: “power-law”, “realistic partition”,
“Pachinko allocation”, and “latent Dirichlet allocation”. On the other hand, many
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examples of datasets exhibiting natural heterogeneity can be found in IoT applica-
tions, particularly in those we consider in the different experimental parts of this
thesis. Beyond the SHL dataset [Gjo+18] for activity recognition which exhibits
heterogeneity 3, other datasets in the literature have been specifically constructed
for the study of the impact of heterogeneity induced by the sensing devices. These
datasets are particularly interesting because of the heterogeneity induced by the
imbalance of classes across clients and the heterogeneity induced by the perspec-
tives provided by each position of the on-body sensor deployments.

Regarding the heterogeneity in activity recognition datasets specifically. As
stated in Section 3.4, in activity recognition, the diversity of users, their specific
ways of performing activities, and the varying characteristics of the sensing de-
vices have a substantial impact on performances [Sti+15]. In these cases, the
conditional distributions may vary across clients even if the label distribution
is shared [Kai+19]. The Heterogeneity dataset for human activity recognition
(HHAR) [Sti+15] was specifically constructed to investigate the impact of sensor
heterogeneities on human activity recognition models. This dataset exhibits di-
versity in terms of the sensing modality, i.e., accelerometer and gyroscope, device
type and manufacturer, i.e., smartwatches and smartphones, and workload, i.e.,
device CPU usage 4. A total of 36 different sensors were tested on 9 different
users in the context of activity recognition, e.g., ‘Biking’, ‘Sitting’, and ‘Stand-
ing’. Furthermore, a large-scale aggregation of HAR datasets has been described
in [Jan+17]. As the scale of the aggregated datasets is significant, the variation is
induced by many different factors such as device type, acquisition protocol, users,
sensor location, motion artifacts, and sampling rate. The comprehensive list of
the aggregated datasets can be found in [Jan+17, Table 2].

3.4 Impact of heterogeneity on the FL setting
In this section, we provide an overview of the impact that heterogeneity across
clients has on the FL setting, especially weight divergence and feature similarity
in the learned models.

We saw above typical forms in which data tend to deviate from being identically
distributed, e.g., covariate shift and concept drift. This leads to degradation in
the performance of classical aggregation algorithms like FedAvg, which usually
show strong empirical performance when confronted with IID data. This is due

3The description of the SHL dataset, which is used in the experimental evaluation parts of
this thesis, is deferred to the next chapter.

4In smartphones, high CPU loads occur when a large number of applications are run simul-
taneously which makes the operating system prioritizes other tasks than those related to the
sensing process. This may affect, in particular, the sampling process.
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to objective inconsistency between the local empirical risk fi(θi) and the global
empirical risk f(θ) when the data are non-IID, i.e., f(θ∗) ̸= 1

M

∑M
i=1 fi(θ

∗
i ).

Figure 3.4: Illustration in the weight space of weight divergence in
the federated learning setting. From [Zha+18]: weight divergence
between clients (client 1 and K) and the central server (computed by
SGD and FedAvg) in the IID and non-IID configurations.

In the weight space, the objective inconsistency manifests itself in the dissim-
ilarity between the weights of each local model, more commonly called weight
divergence in the federated learning literature. Figure 3.4 illustrates what weight
divergence looks like in the weight space for non-IID settings. To better under-
stand this phenomenon, various works have studied how weight divergence emerges
across clients and, more precisely, across the layers of deep neural models. For ex-
ample, Figure 3.5 shows the pairwise similarity of three different layers (the first
layer, i.e., input, the middle layer (Layer 4), and the last layer, i.e., classification)
across local models measured by the centered kernel alignment (CKA). Authors

Figure 3.5: From [Luo+21]: pairwise similarity of three different lay-
ers (layers 1, 4, and 7) across locally learned models (clients 0—9).
The centered kernel alignment is used to computed the pairwise sim-
ilarity.

in [Luo+21] observed that the characteristics produced by the deeper layer have
a lower CKA similarity than the ones produced by the upper layers. This sug-
gests that the deeper layers of federated models trained on non-IID data have
a greater degree of variability among various clients as compared to the upper
levels. Moreover, to check the consistency of this result across clients, authors
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Figure 3.6: Figures from [Luo+21] showing a comparison of the CKA
similarities as a function of the layer (1—7) in the IID and non-IID
settings. CKA similarity at round 1 (left) and round 100 (right).
The CKA similarities are obtained by averaging across different local
models.

in [Luo+21] assess the evolution of the layer-wise average of the CKA similarities.
The layer-wise average of the CKA similarities across clients allows for represent-
ing the feature similarity of a given layer across clients with a single value. These
obtained values are depicted in Figure 3.6 and confirm what has been observed at
the pairwise level, i.e., in comparison to the models that were trained using IID
data, the models trained with non-IID data had invariably lower feature similarity
across clients for all layers. Furthermore, weight divergence appears differently

Figure 3.7: Figure from [Zha+18] illustrating the weight divergence
of CNN layers (conv1, conv2, fc1, fc2, and fc3) in different IID and
non-IID settings (IID, 2-class non-IID, and 1-class non-IID). Results
obtained on three different datasets (MNIST, CIFAR-10, and KWS).

depending on the degree of heterogeneity. Figure 3.7 shows how weights diverge
across layers in the case of a convolutional neural network trained on different
datasets (MNIST, CIFAR-10, and KWS) with varying degrees of heterogeneity
(IID, 2-class non-IID, and 1-class non-IID).

Overall, weight divergence is more important in non-IID training settings. Fea-
ture similarity across local models, measured by the CKA, decreases as we move
toward deeper layers (classifier or output layer). Here, one can draw parallels with
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meta-learning where the same phenomenon can be observed, i.e., task-agnostic
and task-specific parameters tend to emerge in the same fashion in the frontend
and backend layers of the learning models, respectively (see § 2.4). Interestingly,
long lines of research try to identify and understand the mechanics of the learning
process through which weight divergence emerges, to ultimately devise appropri-
ate approaches, e.g., [Zha+18; Kar+20; TTN20; Red+20]. For example, Zhao
et al. conducted in [Zha+18] a theoretical analysis on the root causes of weight
divergence in non-IID settings. They proposed the following bounds on the weight
divergence:

Proposition 3.4.1 (Bounds on the weight divergence [Zha+18, §3.1]). Given M
clients, each with ni IID samples following distribution Pi for client i ∈ [M ]. If
∇θiEx|y=j log fi(x; θi) is λx|y=j-Lipschitz for each class j ∈ [Y ] and the synchro-
nization is conducted every T steps, then, we have the following inequality for the
weight divergence after the r-th synchronization,

∥∥∥θ(r+1,T )
(f) − θ(r+1,T )

(c) ≤
M∑
i=1

ni∑M
i=1 ni

(a(i))r
∥∥∥θ(r,T )(f) − θ

(r,T )
(c)

∥∥∥
+ η

M∑
i=1

ni∑M
i=1 ni

Y∑
j=1

∥Pi(y = j)− P (y = i)∥
T−1∑
t=1

(a(i))tgmax(θ
(rT−1−i)
(c) ),

where η is the learning rate, gmax(θi) = maxYj=1

∥∥∇θiEx|y=j log fi(x; θi)
∥∥ and a(i) =

1 + η
∑Y

j=1 Pi(y = j)λx|y=j.

A detailed proof of Proposition 3.4.1 can be found in [Zha+18, Appendix A.3.].
Although this result is specific to the extreme configuration where the data is
sorted by class, and each client receives data partition from only a single class, it
gives insights into the causes of weight divergence. Indeed, the idea behind Propo-
sition 3.4.1, according to the authors, is that beyond the weight divergence at the
previous synchronization step (r− 1), the probability distance for the data distri-
bution on client i compared with the actual distribution for the whole population
constitutes the two predominant components that cause weight divergence during
the learning process. Furthermore, what is highlighted here is that clients’ weight
initialization is important, i.e., starting from different initializations exacerbates
weight divergence, but it is dominated by the difference between the data distri-
bution on client i and the population distribution when clients start from a unique
initialization point. These kinds of results provide insights into how to deal with
the impact that client heterogeneity incurs on the FL conciliation process. This is
what we review in the next section.
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3.5 FL approaches to mitigating heterogeneity
FedAvg sits on the idea of averaging the results of the progress made locally by
clients in minimizing their respective objectives. As Konečnỳ et al. frame it: there
is no reason to expect that, in general, the solution of 3.1 will be a weighted average
of the local solutions unless the local functions are all the same—in which case we
do not need a distributed algorithm in the first place and can instead solve the much
simpler problem minθ∈Θ f1(θ1). Local objectives are necessarily heterogeneous and
need more featured strategies to average them efficiently. Various approaches were
proposed to handle non-IID (or heterogeneous) settings. These approaches can
be categorized according to [Aca+20] into three main axes (or strategies): (i)
modifying server-side updates; (ii) modifying device empirical loss dynamically;
and (iii) using a decreasing learning rate. In the following, we will describe the
principle behind these mitigation strategies and provide examples or approaches
that implement these strategies.

The update of the server-side weights using vanilla FedAvg is performed via
θ ← θ − ∆i, where ∆θ =

∑M
i=1

ni

n
∆θi (ni is the number of examples, ∆θi is

the weight update from i-th client, and n =
∑M

i=1 ni). This update process has
been highlighted to induce convergence issues when confronted with client drift,
for example [Kar+20]. Theoretical results, e.g.,[Li+19a], show that in non-IID
settings, learning rate decay is critical for the convergence of FedAvg, and could
lead to a solution at least Ω(η(E−1)) away from the optimal after E SGD epochs
if the learning rate is fixed. Controlling this update process in an adaptive and
fine-grained fashion constitutes one way of tackling the heterogeneity of clients.
Various methods have been proposed to modify this update rule. For example,
FedAvgM (Federated Averaging with Server Momentum) [HQB19] propose server
momentum, which is an adaptation of the well-known momentum method [Qia99],
as a mitigation strategy to cope with clients heterogeneity. Indeed, momentum
follows the same principle as in the physics of moving objects and works by keeping
a running accumulation of past gradients in v, which is added to the update rule of
SGD. This helps suppress oscillations during gradient descent and has been shown
to have tremendous success in accelerating network training. In the context of
FL, momentum can potentially prevent the server-side weights from diverging a
lot because of largely dissimilar updates. The momentum is updated constantly
with the new gradients as v ← βv +∆θ, which is used then to update the server-
side weights via θr+1 ← θr − v. This seems particularly relevant for FL, where
participating parties may have a sparse distribution of data and hold a limited
subset of labels. Relatedly, the well-known adaptive optimizers in the deep learning
community, including AdaGrad [DHS11], Adam [KB14], and Yogi [Zah+18], have
been adapted in the federated learning setting by Reddi et al. in [Red+20]. The
vanilla FedAvg update rule is augmented using adaptive step sizes, which are
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used to adjust the learning rate (component-wise, i.e., a specific learning rate
for each weight of the model). More precisely, a second-order moment estimate,
vr, of the past iterations is computed and added to scale up, i.e., high learning
rates, or down, i.e., low learning rates, the updates to perform on the server-side
weights. The model on the server is updated as θr+1 = θr + η ∆r√

vr+τ
where vr is

computed following three different strategies: vr = vr − 1 + ∆2
r (FedAdagrad);

vr = vr − 1 − (1 − β2)∆
2
rsign(vr−1 − ∆2

r) (FedYogi); vr = β2vr−1 + (1 − β2)∆
2
r

(FedAdam). Additional aspects around communication costs stemming from the
necessity to maintain an additional state on the server are subject to trade-offs in
these kinds of approaches. Furthermore, to make a parallel with the meta-learning
strategies which specifically target adaptive learning rates (for each individual
layer or module), discussed in § 2.4. Regarding this aspect, there are promising
perspectives regarding bridging FL and GBML throughout adaptive learning rates,
particularly for personalization aspects, because in GBML approaches, the notion
of learning rate is tightly linked with the layers being either universal or specific
to a task (or client).

Following our discussion on meta-learning and modularity (§ 2.4), increasingly
more efforts are put further in the federated community towards the construc-
tion of fine-grained strategies for weight aggregation, similar to the ones presented
in our works [OH22; HO22] and further detailed in Chapter 6. For example,
authors in [Wan+20a] proposed the federated matched averaging (FedMA) algo-
rithm, which uses a layer-wise strategy to construct the shared global model. In
other words, element-wise averaging is often inefficient because of the permutation-
invariance of the hidden neurons therefore, alignment of the neurons to match their
counterparts across the clients before averaging can improve the conciliation step
(see Figure 3.8). Note also that the work in [Wan+20a] makes use of the notion of
permutation invariance of the neural network layers. We think that investigation
could be carried out in the sense of the work in [RSP17] to devise fine-grained and
more controlled strategies for weight aggregation. This aspect, in particular, is
discussed in the conclusion chapter (Chapter 7).

Modifying device empirical loss dynamically is another means of handling client
heterogeneity and is often achieved via regularization. Regularization is used in
the machine learning literature as a way of reducing model complexity and ulti-
mately getting improved generalization. Here, the regularization term serves as a
penalty that pushes the parameters to converge to desired points of the parame-
ter space and eventually prevents the weight divergence phenomena discussed in
Section 3.4 and depicted in Figure 3.4. More precisely, the idea is to perturb the
local function Fk in iteration t, as proposed in [Kon+16], by a quadratic term of
the form −(ati)T θ +

µ
2
∥θ − θt∥2 and make the nodes optimize for the perturbed

problem instead. With this change, the improved method then takes the following
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Figure 3.8: Figure from [Wan+20a] illustrates the permutation in-
variance of hidden neurons across devices (or clients), which requires
an alignment phase before aggregation.

form:

θt+1
i = argminθ∈Θ fi(θ)− (ati)

T θ +
µ

2

∥∥θ − θt∥∥2
,θt+1 =

1

M

M∑
i=1

θt+1
i . (3.3)

From an optimization point of view, as framed by Konečnỳ et al., the underly-
ing idea here is to make each node (or client) i ∈ [M ] to “use as much curvature
information stored in fi as possible.” Drawing inspiration from this form of iter-
ations, various approaches were proposed in the FL literature [Li+20a; Kar+20;
DBJ22]. For example, FedProx [Li+20a] consists of a dynamic regularizer, re-
ferred to as the proximal term, which is supplied by the server to effectively limit
the impact of variable local updates. Far-from-server-model updates are penal-
ized by this regularizer. Similarly, pFedMe [TTN20] also uses a proximal term,
referred to as “reference point”, which is also supplied by the server, and lever-
ages Moreau envelope formulation of the modified local objectives to decouple the
inner-loop optimization problem from the global model learning. Closely related,
SCAFFOLD [Kar+20] tries to correct for this client-drift by estimating the up-
date direction for the server model (c) and the update direction for each client ci.
Then, the difference (c − ci) is used as the estimator of the client drift, which is
used to correct the local update steps 5. The local models are, then, updated as
θ
(r+1,0)
i − θ(r,0)i = −η ·

(
gi(θi) + c − ci

)
. Figure 3.9 illustrates a simplified view of

the update steps performed by SCAFFOLD in the weight (or parameter) space.
Again, drawing parallels with the meta-learning approaches, regularization, as
we discussed in Section 3.6, is similarly praised as a means to take advantage of

5SCAFFOLD is among the works that send extra device variables to the server along with
the models. This leads to extra-communication costs that could be prohibitive depending
on the transmission constraints imposed on the system. Approaches similar to SCAFFOLD
like [Aca+20] try to account for the extra-communication costs when correcting for the client-
drift.
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Figure 3.9: SCAFFOLD local updates. Figure from [Kar+20] il-
lustrating the client drift (the local gradient represented by a black
dashed line points to x∗1—or θ∗1) and the way it is rectified by the
correction term (c − ci) making the client update point to the true
optimum x∗—or θ∗.

task-relatedness (or task similarity) in the same way federated learning leverages
regularization to mitigate heterogeneity. In FL, we mainly talk about mitigating
heterogeneity of clients, while in metalearning, we rather have the goal of exploit-
ing task-relatedness. While using different terminologies to describe strategies
to tackle tasks and clients diversity, both FL and metalearning aim to leverage
knowledge about either tasks or clients to improve the construction of a global
and coherent theory across tasks and clients.

Many different approaches have been proposed to mitigate the impact of client
heterogeneity in the FL setting. We started to notice in the course of the above
sections that there are clear parallels between the federated learning setting and
meta-learning based on the notions of task and client, e.g., the emergence of
domain-agnostic and domain-specific parameters (or representations) § 2.4, tasks
similarity versus clients heterogeneity § 2.6. This is particularly appealing to the
IoT applications (or, more broadly, decentralized and distributed applications) as
there are means to leverage both worlds to improve the learning process and the
resulting models in terms of robustness, interpretability, etc.

3.6 Beyond tasks: families of (structurally) re-
lated clients

In the context of federated learning, as we have seen above, one of the major
problems that the community faces is that of the heterogeneity of the clients
(or data sources). This heterogeneity is linked to the diversity of clients who
participate in the learning of a unified theory and manifests itself through different
types of phenomena (listed in § 3.2). These are more or less exacerbated by the
applicative framework of the Internet of Things considered in this thesis. Federated
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learning approaches very often aim to overcome these phenomena by trying to
identify the components that they induce within the data and circumscribe them.
The ultimate goal is to manage to reconcile the data of the different clients and
minimize their (apparent) discrepancies. In parallel, meta-learning approaches
attempt to exploit the notion of similarity between tasks (or tasks-relatedness) in
order to learn more general theories that are easily and quickly adaptable to new
tasks. We saw in Section 2.6 that the notion of task translates in various ways
in practice, e.g., dataset, user, learning environment, etc. Similarly, the notion of
client can take different forms in practice, similar to those that tasks can take.

In many studies in the literature, this link between tasks (or domains), as
considered in meta-learning, and clients in federated learning, has been investi-
gated in a practical way. Authors in [Jia+19] leverage the connections between
FL and meta-learning to build better personalized models for clients while au-
thors in [CK21] studied convergence and accuracy trade-offs in local update-based
approaches, including simultaneously the FL and meta-learning settings. For ex-
ample, in [Smi+17], authors explored, among different practical problems, human
activity recognition cast in a federated learning setting, where each individual user
was considered to be a separate task allowing to benefit from the application of
multi-task learning strategies. Indeed, the multi-task learning paradigm was con-
sidered in a distributed-compliant form [WKS16; WKS16] even though, as pointed
out by, for example, authors in [Cal+18], in contrast with the standard federated
learning settings, multi-task learning is usually explored in small data regimes (for
adaptation) and a limited number of tasks.

More of a semantic distinction, which, nevertheless, has practical considera-
tions: notice how the meta-learning community considers federated learning to be
fundamentally a matter of personalization where the idea is to devise strategies
to alleviate clients’ heterogeneity, whereas meta-learning approaches look for com-
monalities between tasks and are, thus, fundamentally building upon the notion
of task similarity. We think that this apparent duality deserves to be investigated
further. This is one of the aspects that is discussed in our contributions, notice-
ably in Chapter 4, where the proposed problem formulation makes an explicit
junction between these two aspects. Indeed, in meta-learning approaches, we seek
to exploit the similarities between tasks in order to obtain better abstractions and
better generalization capabilities. Apart from generalization capabilities, which
are sought by all machine learning approaches, it is not exactly the same thing
that is sought in federated learning approaches. Indeed, the latter approaches try
to identify and isolate the components that induce heterogeneity. A form of com-
municating vessels is therefore possible—i.e., leveraging meta-learning approaches
and multi-level modeling to improve FL learning. The idea, as we will show in
the following chapters, is leveraging more featured structures and heterogeneity
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isolation strategies to improve meta-learning approaches—and a fortiori beneficial
for both domains. Beyond the few points of distinction, we, therefore, have a con-
nection that appears between meta-learning and federated learning through the
notions of tasks and clients. This connection is also the subject of numerous in-
vestigations in the literature [CK21; Jia+19; Kai+19; Kon+21; FMO20; Che+18;
Smi+17].

A long line of research developed strategies to leverage meta-learning in the
FL setting from the lenses of personalization—i.e., train an initial shared model
and then adapt it to each client [Che+18; FMO20; KBT19; LYZ20]. In [Kai+19,
§3.3.3] and [Kon+21, §V], authors enumerate works that leverage meta-learning
to improve FL approaches in mitigating the impact of client heterogeneity, enable
personalization, and few-shot learning. As we mentioned above, the idea is to
extend meta-learning to FL by treating each device as a task. The goal then is to
learn a global model shared across clients (just like the FL classical goal) with the
additional property that it can easily be adapted by each client (hopefully, using
only one or few steps of a gradient-based method) to ultimately match the locally
generated data. The local models are said to be personalized and are consequently
different from one another. The global objective of FL is reformulated in a way
that the clients do not longer receive a final model (in the classical FL sense
of the term) but a more appropriate bias (or prior), e.g., a good initialization,
that puts the local learner in better dispositions to carry out learning. The bias
learned globally is shared across clients and benefits, in a way, from the wisdom of
crowds. For example, authors in [Che+18] proposed FedMeta, which implements
this principle, i.e., a parameterized algorithm (or meta-learner) is shared instead
of a global model.

This being said, as we saw, these existing works often tackle this problem pri-
marily from the prism of “multi-model”-based approaches where multiple different
models for different clients are used during inference in place of a single centralized
model. Indeed, in [Kai+19, §3.1.1] authors, when discussing strategies for miti-
gating the impact of data non-IIDness on the learning process, make a legitimate,
although arguable, case for customized models through local training, asking the
question: “But if we have the capability to run training on the local data on each
device (which is necessary for federated learning of a global model), is training a
single global model even the right goal?”. The idea is that given the computing ca-
pabilities that clients are dotted with, fitting individual models is becoming more
feasible and appealing than having a single globally shared model. So, even if hav-
ing a globally shared model may be required in certain scenarios, personalization
turns the problem of heterogeneous data distributions from a bug to a feature,
as Kairouz et al. put it. So, fitting individual personalized models for each local
client is natural in this context.
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Beyond personalization, the construction of a globally shared model in the FL
setting has to take advantage of the similarities among clients (the dual of this
being mitigating heterogeneity across clients). Indeed, as mentioned above (and
discussed in detail in Section 2.6), one of the postulates of learning-to-learn is the
existence of similarities between tasks that can be exploited in order to facilitate
the learning process as well as the adaptation between tasks. In parallel to the
heterogeneous aspects across clients, the similarities underlying the clients are
ubiquitous, e.g., users may have similar behaviors, and sensing devices may capture
the same aspects of the learning problems. Furthermore, very often in distributed
sensing environments, knowledge about the relative geometry of the sensing devices
and domain models describing the dynamics of the phenomena is available and can
be leveraged and incorporated into the learning process. For example, the spatial
structure of the sensors deployment and the induced views, sensors capabilities,
and the perspectives (views) through which the data is collected (sensing model,
range, coverage, position in space, position on the body, and type of captured
modality) [AC09; WKA10; HO20]. For us, this is one of the facets of the problem
that we are pursuing. Indeed, part of this thesis focuses on how to collaboratively
learn a global model (or theory) instead of personalized local models. Noticeably,
modeling the similarities among clients and integrating them via meta-learning
strategies has promising potential for improving performance and boosting the
effective sample size. For this, we take a closer look at how one can leverage
the “meta-learning way” of constructing more general features and capturing local
biases to improve, as a side-effect, FL approaches in mitigating heterogeneity.

Integrating these additional models describing similarities into the learning
process has promising implications noticeably on the conciliation process of de-
centralized machine learning algorithms: one can exhibit the relative contribution
of the individual views to the bigger picture. The primary goal is to develop a
robust approach that integrates knowledge about the structure of sensing devices
in a principled way to achieve better collaboration. The heterogeneity induced
by various effects, in particular those related to distributed sensing environments,
imposes some forms of mitigation. Noticeably, in Chapter 6, inspired by the fun-
damental principle of meta-learning, i.e., leveraging similarities among tasks, we
model the structures underlying the data sources deployments using principled
representation tools—e.g., special Euclidean group, which we use in order to cap-
ture domain symmetries and ultimately mitigate heterogeneity induced by varying
point-of-views. Furthermore, as mentioned in Section 2.6, Chapter 5 leverages a
form of task-relatedness by modeling the semantics of the label space, i.e., how
atomic labels and groups of labels, to organize (or structure) the learning process.
This form of task-relatedness leveraged in that chapter can be viewed from the
perspective of clients, where grouping “semantically close” clients (according to
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high-level criteria or objectives) to organize the learning process.

We saw in this chapter the challenges facing the federated learning paradigm
and how these are dealt with in the literature. We paid special attention to the
duality between the fundamental ideas of task similarity (in meta-learning) and
client heterogeneity (in federated learning). This duality is detailed further in the
next chapters, and structural constraints from the domain are leveraged to propose
novel approaches.



Chapter 4

Integrating domain knowledge via
structural constraints

In this chapter, we propose two novel approaches that leverage domain knowledge
to select and augment learning examples. The main bottlenecks being dealt with
in this chapter are the heterogeneity of the data sources and the cost of sensing
and transmitting learning examples. The approaches presented in this chapter are
based on the following works [OHB19; HO20; OHB21; HO23].

F

Besides naturally reducing the number of required learning examples needed
to learn, providing appropriate learning examples has the potential to improve
the performances of learning processes, i.e., alleviating heterogeneity impact and
enhancing adaptability. In this chapter, we study the problem of providing appro-
priate inputs to guide the learner to reach better solutions in structured sensing
environments and how it can benefit from available prior domain knowledge. Pro-
viding appropriate inputs is fundamental and has received long lines of research,
and has been successfully used in various applications. Different strategies have
been proposed ranging from curriculum learning [Ben+09] to self-paced learn-
ing [KPK10], and more recent works [HW19; Fan+18; Ren+18], where often the
idea is to provide the learner with examples in increasing order of hardness, which
is learned or determined heuristically. Various works have analyzed these strategies
and tried to explain their performances by assuming them to be a particular form
of continuation optimization method [AG12; Ben+09] or viewing it as a means for
reducing the variance of the gradient estimator [Zha+19].

In this chapter, we propose a novel approach for selecting appropriate learning
examples that leverages available domain knowledge. Precisely, our approach takes
advantage of the availability of domain knowledge about the data sources, and the
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way data are related to each other with particular structures. The sensing and
transmission models of the data sources or their disposition in space and evolution
through time are examples of domain knowledge that can be leveraged. These can
be understood as privileged information in the sense of [VV09; VI15] and invariant
predicates in the sense of structural risk minimization of [VI20]. By taking into
account this additional knowledge, we constrain the space of curriculum that can
be explored and has the advantage of accelerating the learning process, improving
adaptation and robustness to unseen new situations, and enhancing data efficiency.
In particular, we use invariants to encode the decision boundaries shared across the
situations, and the learning examples sustaining these decision boundaries are used
to form the curriculum. Portions of the decision boundary remain invariant to the
evolution and heterogeneity of the sensing environments throughout the learning
process and do not need to be adapted. The non-invariant portions, though, can
be adapted using a handful of examples that support the decision boundary and
which have to be identified. Using their distance to the decision boundaries, these
examples ultimately form the curriculum. To some extent, this can be linked to
continual/online learning approaches, e.g., [Alj+19; LR17], where the idea is to
determine the examples to be saved in memory (replay buffer) and which may be
sufficient in order to adapt the model to new tasks without forgetting the past,
i.e., the current model does not degrade compared to old tasks, more commonly
called catastrophic forgetting. Of course, in these contexts, the IID assumption
might not hold anymore.

Specifically, the chapter is organized as follows. In Section 4.1, we formulate
the curriculum selection as a problem where the evolutions of the sensing deploy-
ments are considered to generate new tasks that the learner has to adapt to. In
Section 4.2, we devise a new approach that leverages domain knowledge in the
form of invariants and decision boundary-supporting examples to select appropri-
ate samples susceptible to guide the learning process to reach better solutions.
This approach is empirically studied in Section 4.3 using different real-world in-
dustry 4.0 and IoT applications (Figure 4.4). We noticeably study the problem
of adaptation to dynamic environments and heterogeneity of the data sources.
Obtained promising results validate the benefits of the proposed approach in re-
ducing the problem size and open-up perspectives regarding the incorporation of
domain knowledge to improve learning performances in such environments. In
Section 4.4, we describe the second approach based this time on the augmenta-
tion of learning examples informed by domain knowledge transformations. Again
invariant aspects of the learned models are leveraged to guide the augmentation
process. Ultimately, the universal portions of the learned models are intended to
emerge and be reinforced, thus allowing them to be shared across federated clients,
for example. The proposed approach is evaluated in Section 4.5 on an industrial
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material engineering application introduced in [OHB21], which features various
analytical models describing the chemical reactions involved in the material syn-
thesis and used to constrain the augmentation. Section 4.6 discusses the proposed
approaches in relation to the closely related literature and concludes this chapter.

4.1 Problem Formulation
We formalize this problem as a meta-learning problem [Sch87; TP98; FAL17],
where the learner is constantly adapting its sample selection strategy through-
out the span of the learning process by leveraging past experience and domain
knowledge about the tasks it encounters.

4.1.1 Setting
In this chapter, we focus on learning in structured sensing environments, where a
collection of sensors (also called data sources) are positioned at various locations
of the space, on and around an object (concept or phenomenon) of interest, and
generate streams of observations of a certain modality like acceleration, gravity,
or video. We consider the standard setting of empirical risk minimization with
parameters θ represented as a sum

min
θ∈Rd

{
f(θ) :=

1

n

n∑
i=1

fi(θ)
}
, (4.1)

where the function fi denotes the empirical risks on the ith subset of the training
data, which often correspond to a few examples or to mini-batches. This objective
corresponds also to the one optimized in the FL setting, where distributed clients
collaborate to learn a unified theory. In this case, fi is the local objective function
at the i-th client, and the global objective is updated by aggregating the locally
learned parameters. Similarly, this objective can be viewed in the context of an
online stream of data as in continual learning applications [LR17; Alj+19; De +21]
with no assumption about the distribution, such as IIDness. Therefore, depending
on the application, the subsets of training data are not limited to mini-batches but
can correspond to clients or segments of the data stream.

The ability to leverage past experience along with domain knowledge motivates
framing our problem in a meta-learning setting. These approaches learn a meta-
initialization ϕ ∈ Θ for a class of parametrized functions f(θ) such that one or a
few stochastic gradient steps on a few samples Dtr

i from a new task τi suffice to
learn good task-specific model parameters θi = Alg(ϕ,Dtr

i ), whereAlg corresponds
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for example to one or multiple steps of gradient descent [Raj+19]

ϕ∗
ML := argmin

ϕ∈Θ
f(ϕ),

where f(ϕ) =
1

n

n∑
i=1

L(Alg(ϕ,Dtr
i ),Dtest

i ). (4.2)

This corresponds to a bi-level optimization problem since Alg(ϕ,Dtr
i ) solves an un-

derlying optimization problem. At meta-test (deployment) time, when presented
with a dataset Dtr

j corresponding to a new task τj ∈ ρ(τ), we can achieve good
generalization performance (i.e., low test error) by using the adaptation proce-
dure with the meta-learned parameters as θj = Alg(ϕ∗

ML,Dtr
j ). Here, instead of

optimizing solely for a meta-initialization (biased towards fast adaptation to new
unseen tasks), we propose to meta-learn a minimal subset of learning examples
that can both alleviate the heterogeneity impact of the data sources and enhance
adaptability to the evolution of deployments.

4.1.2 Tasks and task-relatedness
We have seen above that the notion of task translates into standard formulations
in various ways in practice, e.g., datasets, mini-batches, users, clients, or data
segments. Here, the notion of task is extended to embody data sources and portions
(or segments) of the data streams being generated by these data sources.

Since the variations across the data sources can span, as we mentioned above,
their disposition in space, their data generating processes, and their sensing mod-
els, every individual data source in the structured sensing environments that we
consider can be considered to be a different task. Some studies [Smi+17; WKS16]
investigated the link between tasks, as considered in meta-learning, and clients in
FL, in a practical way. For example, [Smi+17] explored human activity recogni-
tion cast in FL setting, where each user was considered as a separate task. More
generally, considering each individual data source as a separate task allows FL
approaches to benefit from the application of multi-task learning strategies. In-
deed, the multi-task learning paradigm was considered in a distributed-compliant
form [WKS16] even though, contrary to the standard FL settings, multi-task learn-
ing is usually explored in small data regimes (for adaptation) and a limited number
of tasks [Cal+18].

For dynamic environments, we assume that the evolutions that sensing deploy-
ments undergo lead to the emergence of new tasks. Works from the online learning
community, e.g., [KBT19], consider meta-learning as the online learning of a se-
quence of losses, each corresponding to a different task. While having practical
functional forms so that one can leverage the existing online convex optimization
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Figure 4.1: Parameter space after 1-shot adaptation (left) and many-
shots (right) [BKT19].

literature, it says nothing about how data streams are partitioned into tasks, as it
is done in reinforcement learning works, e.g., [Nag+19]. Indeed, since the evolution
of the sensing deployments can occur at any time, new tasks can be formed at any
timestep, e.g., in the case of industrial monitoring applications, the turbocharg-
ers’ support which can sag over time or the natural wear of its seals are signs of
deployment’s evolution.

We, therefore, place ourselves in a scheme where the learner is confronted with
a sequence of tasks (τ1, τ2, . . . ) which can actually correspond to different data
sources or to portions of the data streams that these sources generate. Tasks
corresponding to portions of a given data stream are formed whenever a distribu-
tion shift is detected and is assumed to be consistent during the entire segment.
According to this formulation, tasks corresponding to different data sources (or
sensors) arrive in a sequential manner in the form of a stream.

Task-relatedness. The need for tasks to be sampled according to a certain dis-
tribution ρ(τ) is a key assumption in the learning-to-learn setting [Bax00; GL21].
Indeed, there must be some link between observed activities and future unob-
served tasks for meta-learning to occur. The fundamental notion used to make
such an analysis and characterize how tasks are related structurally is the mea-
sure of task-similarity (or task-relatedness). Practically, existing approaches often
measure task-similarity by computing similarity scores between tasks either via
modeling their data-generating process or leveraging semantic information in the
label space. In the case of gradient-based meta-learning approaches, where it is
supposed the existence of a meta-parameter ϕ from which suitable task-specific
parameters θ∗i ∈ Θ are reachable within a few steps, this is formalized via a small
subset Θ∗ ∈ Θ where these task-specific parameters are supposed to lie (see Fig-
ure 4.1). Algorithms scaling with the diameter D∗ of the subset Θ∗ and with
provable guarantees are developed, e.g., in [BKT19]. We assume that the distribu-
tion ρ(τ) shares some common structure. We suppose that tasks are related to each
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other via transformations g : τ −→ τ , assumed to control how the next task of the
sequence is generated. We thus consider a sequence of tasks (τ1, g1, τ2, g2, . . . ) and
the goal is to leverage these transformation to constrain sample selection. While
scaling with the diameter of the subset of the parameters remains something we
pursue, transformation-based relatedness is probably a more precise notion of re-
latedness than closeness in the parameter space.

4.2 Meta-Supervision via Sample Selection
In this section, we first provide a description of the main issues faced, noticeably
the adaptability in dynamic sensing environments and heterogeneity of the data
sources. Then, we motivate the necessity of providing appropriate curriculums
in these kinds of environments, where additional domain knowledge about the
structure of the data sources is available.

Due to the pervasiveness of sensors that can be deployed on a massive scale to
monitor diverse objects, the heterogeneity induced by the relativity of the view-
points constitutes one of the major bottlenecks in learning processes. The relativity
of viewpoints generates variability in terms of the feature distributions that are
captured for a given object. Although beneficial, this diversity has a perceptible
impact on the performances of the learning processes when naively flattening the
data being collected by the deployments. This is typically what is known as fea-
ture distribution skew (or covariate shift). In this case, the marginal distributions,
i.e., the features being captured by each viewpoint, may vary across clients. Sim-
ilarly, the dynamic nature of the sensing environments constitutes a major issue
facing the learners, which have to continuously adapt to the evolution of, e.g.,
the transmission and sensing models of the data sources. Here, dynamic sensing
environments can be understood as an analogous form of streaming setting where
few examples or batches are received at a time. In this matter, the evolution
in dynamic environments can be regarded as a form of heterogeneity but in the
temporal dimension. Furthermore, reducing the number of learning examples is
often a requirement because of the expensive cost to construct them, e.g., material
engineering and chemical experiments, as well as the transmission constraints in
distributed settings, e.g., large-scale IoT deployments.

In this work, we consider the problem of providing base learners in structured
sensing environments with appropriate curriculums. Selecting relevant (or more
appropriate) examples to present to the learner in each situation has the potential
to improve learning performances (alleviating heterogeneity impact and enhancing
adaptability) and naturally reduce the number of examples needed to learn. To do
this, we leverage domain knowledge that is very often at the learner’s disposal in
such environments. This additional knowledge describes the data sources (taken
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in its larger sense, i.e., datasets, mini-batches, users, clients, or data segments)
in terms of their properties. In the simplest case, a property can be an integer
corresponding to the index of a state space partitioning. More featured properties
may include the sensing and transmission models of the data sources and relevant
principles such as temporal coherence [Gol85], i.e., task-relevant properties of the
world change gradually over time or proportionality of change to the magnitude
of applied actions. These properties can be understood in the sense of privileged
information, e.g., [VV09; VI15] and [LR17] in an online continual learning setting
and could be leveraged to construct more appropriate curriculums.

At an abstract level, the idea of curriculum learning is that instead of pre-
senting all examples at once, the learner gets access to the learning examples in
an appropriate order so as to guide the learning process towards better solutions.
The order of the examples is determined by their “easiness,” and often, when the
learning process starts, easier examples or those corresponding to the simplest
concepts are favored. Concretely, curriculum learning may be divided into the
following distinct but related problems: (i) sort the training examples by difficulty
or complexity, referred to as scoring function; (ii) compute a series of mini-batches
that exhibit an increasing level of difficulty, or pacing function, which defines the
rate at which data is presented to the learner [HW19]. The main challenge is that
often we are not provided with a readily computable measure of the easiness of
samples [KPK10]. For example, [WCA18] sort the training examples based on the
performance of a pre-trained network on a larger dataset, fine-tuned to the dataset
at hand, while in [Ren+18; LH15], this is done based on an online approximation
of their gradient directions.

4.2.1 Selection of learning examples constrained by domain-
based transformations

We now specify the first variant of our proposed approach composed of two levels.
As a running example, we illustrate the problem of adaptation on a real appli-
cation, which corresponds to a sensing deployment used for the monitoring of a
turbocompressor in real industrial conditions. Algorithm 2 summarizes the first
variant of the proposed approach.
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Algorithm 2: Selection of learning examples con-
strained by domain-based transformations.

Let Sv be the set of validated examples
Let Sn be the set of nominal examples of size ζ
Pick a first meta-initialization ϕ based on Sn
for task τ ∈ [T ] do

Use the meta-initialization ϕ to perform predictions
if |x− y| < δ + ϵ then
Sv ∪ {x}

end
Update the controller model based on Sv constrained
by D∗’s rate of change

Update the meta-initialization ϕ
Sv ← ∅

end

The algorithm starts by picking a first meta-initialization, ϕ ∈ Θ. When
considering the turbocompressor monitoring application, this meta-initialization
corresponds to the parameters learned during a nominal training period, where
the industrial equipment is supposed to work in optimal conditions. The current
version of the learner trained initially on a nominal period, ζ, is used to monitor
the data streams generated by the data sources, and concurrently makes multi-
step-ahead predictions.

The key step here is sample selection, where the predictions of the learner are
used to validate real examples for the next generation of the controller model.
As the task environment is assumed to be related via domain-based transforma-
tions, the validation of the examples for the next generation of the learner can
be constrained by various forms of principles (e.g., temporal coherence and pro-
portionality prior described previously). Whenever the discrepancy between the
predicted output and the real system at a given time step is within the desired
region of acceptable behavior, the corresponding data is used for the next gen-
eration. Previous steps generate a model of the system from data. During this
process, the average limits between the generated signal from the model and the
real system can be controlled using, for example, a standard defined by domain
experts. Precisely, we ensure that |x − y| < δ + ϵ, where x (resp. y) are real
examples (resp. model’s predictions) corresponding to the current task. Similarly,
abrupt changes caused by a substantial transformation, e.g., a bearing defect, can
be constrained by the proportionality principle, i.e., the amount of change in task-
relevant properties resulting from an action is proportional to the magnitude of
the action. In terms of the diameter of the parameter space, these principles trans-
late into a rate of change of D∗ that is defined by domain knowledge and used to
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constrain the task-specific parameters. After each task, the meta-initialization ϕ
is updated with the validated examples.

4.2.2 Invariance and decision boundary
A learner’s capacity for generalization is strongly affected by how effectively it
learns the true decision boundary between the actual class distributions [CV95;
Bis06]. In this second variant of our approach, explicitly enforcing invariants via
the decision boundaries provides a powerful tool for selecting appropriate learning
examples. The key intuition is that only a handful of examples are essential to
support the decision boundary (see Figure 4.2).

Decision boundaries. The decision boundary of a learner f corresponds to its
level set at zero and is denoted by F = {x : f(x) = 0}, where x are learning exam-
ples. The boundary-supporting examples are defined as samples that lie near the
decision boundary of the learner (see the bolded circles and square in Figure 4.2).
They contain information about both the distance and the path direction from the
base sample to the decision boundary. Authors in [MFF16] propose an algorithm
to compute perturbations that fool deep networks efficiently. This method was
used, e.g., in [Heo+19], in the context of knowledge distillation settings [HVD15]
to provide a more accurate transfer of decision boundary information from teacher
to student models. Here, we leverage this algorithm in order to project learning
examples into the decision boundary. At an abstract level, given a learner that
performs classification via the mapping k̂(x) = argmaxk f

k(x), where fk(x) is the
output of f(x) that corresponds to the kth class, projection is obtained via the
minimal perturbation r that is sufficient to cross the level set and change the
estimated label defined by [MFF16] as:

k̂(x) : ∆(x; k̂) := minr ∥r∥2

subject to k̂(x+ r) ̸= k̂(x), (4.3)

where k̂(x) is the estimated label. ∆(x; k̂) is usually referred to as the robustness
of k̂ at point x and is used to assess the robustness of classifiers to adversarial
attacks, e.g.,[PC22]. In this variant of the proposed approach, we select samples
by leveraging the boundary-supporting examples obtained using their correspond-
ing minimal perturbations. We further exploit invariant portions of the decision
boundary to refine the selected samples.

Invariance. In general, a mapping h(·) is invariant to a set of transformations
G if when we apply any transformation induced by g to the input of h, the output
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Figure 4.2: Invariant (or universal) portions of the decision boundary
remain unchanged to data from new tasks. Only a few boundary-
supporting examples are needed to adapt the non-invariant portions.

remains unchanged. A common example of invariance in deep learning is the
translation invariance of convolutional layers. Formally, if h : A −→ A, and G is a
set of transformations acting on A, h is said to be invariant to G if ∀a ∈ A, ∀g ∈ G,
h(ga) = h(a). In the case of the SHL dataset, which features a structured on-body
sensor deployment to monitor human activities, the elements g (belonging to the
special euclidean group SE(3)) act on the spatial disposition of the data generators
and, ultimately, the heterogeneity of the generated data: the variation of the data
generated by a given data source should be proportional to the evolution of its
location in the deployment. In dynamic environments, the generated data change
in accordance with some given prior knowledge, and the idea is to enforce the
learner to remain (or change) in accordance with prior knowledge.

This translates concretely into decision boundaries and boundary-supporting
examples. Precisely, the portion of the decision boundary F[a;b] bounded by points
a and b is said to remain invariant to the action of the transformation gτi (simply
gi) that takes τi and produces τi+1, i.e., F[a;b](τi) = F[a;b](giτi) = F[a;b](τi+1). The
idea is to capture examples that support (or reinforce) invariant aspects accord-
ing to a priori knowledge, in connection, to a certain extent, with the notion of
k-priors from Khan and Swaroop and replay-based continual learning approaches,
e.g.,[Alj+19], that can make the model adapt while keeping consistency with past
episodes. The portion depicted in green in Figure 4.2 remains invariant to the ac-
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tion of gi, which acts on τi to generate τi+1, on the decision boundary. The other
portions, however, change along with their supporting samples. Over time, accord-
ing to the principle of meta-learning, universal portions of the decision boundary
(which was learned so far) will remain as such (unchanged) throughout the span of
the lifelong learning process. These universal portions can be thought of as the uni-
versal parameters (or meta-parameters) that are optimized for by gradient-based
meta-learning approaches, where only a few (boundary-supporting) examples are
needed to adapt the non-invariant portions.

Algorithm 3: Generic algorithm for learning to select
learning examples. In the FL setting, the local models
transmit the gradient corresponding to the selected learn-
ing examples and receive the updated server’s model.

Pick a first meta-initialization ϕ
for task τ ∈ [T ] do

Project the examples into the decision boundary,
which is based on the initialization ϕ (Eqn. 4.3).

Determine the examples to use in order to update the
parameters.

Compute (exactly or approximately) the best fixed
parameters θ∗τ for task τ .

Update ϕ and the portions invariant to evolution F τinv
to be used for the next task (Eqn. 4.4).

end

Algorithm 3 summarizes the second variant of our proposed approach. It starts
by picking a meta-initialization ϕ, similarly to the first variant. For example, to
illustrate the projection on a simple case, when the learner is an affine function,
∆(x0; f), is equal to the distance from x0 to the separating affine hyperplane
F = {x : w⊤x + b = 0}. The minimal perturbation to change the classifier’s
decision corresponds to the orthogonal projection of x0 onto F (see Figure 4.3).
This projection procedure can be instantiated with, for example, the iterative
process proposed in [MFF16] or [Heo+19]. Even if it is not guaranteed to converge
to the optimal perturbation, it was observed in practice that the algorithm yields
good approximations of the minimal perturbations. Two important details are
extracted from the projection of a new example x0: (1) the distance ∆(x0; f)
between the new example and the decision boundary; and (2) the portion of the
decision boundary on which the new example is projected. The selection of the
examples is based on whether the portion of the decision boundary on which a
given example is projected is invariant or not to the action of the group element
gτ . Optionally, the distance ∆(x0; f) is used to rank the examples projected into
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non-invariant portions of the decision boundary and ultimately select the examples
that are closer to the decision boundary or impose an easy-to-hard order on the
learning examples depending on their distance to the decision boundary, in the
spirit of [Ben+09]. Using the selected learning examples, meta-update ϕ. The
portions of the decision boundary invariant to the evolutions (heterogeneity) are
updated as follows:

F t+1
inv = F t+1 ⊗F t =

⋃
s<t+1

F seff (4.4)

where ⊗ refers to an abstract operation on decision boundaries, which can be
defined as in, e.g., [Heo+19], via magnitude and angle similarity measures between
any two given decision boundaries. This could be a computationally impractical
step. Here, we leverage the notion of effective decision boundary [LL93] which is
defined as the intersection of the decision boundary and the regions where most of
the data are located. This is a more appropriate process that matches the lifelong
and distributed learning setting. Indeed, as we get access to the learning examples
in an incremental fashion, the effective decision boundaries are stored as they get
encountered during the learning process. In the case of FL settings, the model and
the set of invariant portions are transmitted to the local learners. Note that in this
same setting, instead of the learning examples themselves, it is the corresponding
gradients that are transmitted to the central server.

4.3 Experiments
In this section, we empirically evaluate the effectiveness of the proposed approach
on two real-world applications featuring structured sensing environments. In par-
ticular, the quantities of data needed to learn in each experimental configuration
are assessed.

Experimental setup. We evaluate our proposed approach on two real-world
benchmark datasets featuring structured sensing environments: the SHL dataset
[Gjo+18] and the 102J dataset [OHB19].

The SHL dataset features a structured on-body smartphone-based sensors de-
ployment capturing the motions of 3 users in their daily-life routines in the United
Kingdom. It is a highly versatile annotated dataset dedicated to mobility-related
human activity recognition. The dataset consists of motion sensor data recorded
over a period of 7 months in 8 different modes of transportation in a real-life set-
ting in the United Kingdom (1:Still, 2:Walk, 3:Run, 4:Bike, 5:Car, 6:Bus, 7:Train,
and 8:Subway). The dataset contains multi-modal data from a body-worn camera
and from 4 smartphones, carried simultaneously at typical body locations (Hand,
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(i)

(ii)

Figure 4.3: Projections (in purple) of the learning examples into the
decision boundary in the case where the portion is (i) non-invariant
and (ii) invariant to the action gτ : τ −→ τ .

Torso, Hips, and Bag). The SHL dataset contains 3000 hours of labeled locomo-
tion data in total, making it the most important in the literature. It includes 16
modalities such as accelerometer, gyroscope, magnetometer, linear acceleration,
orientation, gravity, ambient pressure, cellular networks, etc.

Furthermore, we introduce a new real-world dataset (102Jdataset) featuring a
structured sensing environment around a turbocompressor in real industrial con-
ditions. Data were collected from a set of 10 sensors that continuously monitor a
102J turbocompressor operating in a real application (industrial conditions). The
deployment topology exhibits, in particular, the location of the 8 vertical and hor-
izontal vibration sensors as well as the 2 axial displacement sensors relative to the
different components of the equipment, which allow us to assess defects that can
appear in any of the three Cartesian directions. Acquisition of vibration data was
carried out for each sensor at a sampling rate of 1 Hz, which is sensitive enough
for capturing vibration trends.
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Figure 4.4: Structured sensor deployments in the SHL dataset for
human activity recognition and the introduced dataset for turbo-
compressor monitoring. Both applications took place in real-world
conditions (see § 4.3 for a detailed description of these datasets).

4.3.1 Evaluation on human activity recognition
In the activity recognition application, the goal is to correctly classify the learn-
ing examples into their corresponding true human activities 1. Evaluation of the
learner’s classification performance is based on the f1 score. We compare our
approach with the following closely related baselines: DeepConvLSTM [OR16],

1In the HAR considered applications, activity recognition is addressed according to the follow-
ing predefined chain [BBS14]: the labeled examples generated from the sensors are (1) segmented
into short sequences; which are (2) pre-processed; and (3) from which discriminative features are
extracted; (4) before being fed into a machine learning algorithm responsible of finding the
mapping towards the activities (concepts).
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Model SHL
F1 score (%)

DeepConvLSTM 65.3 ±.0206
DeepSense 66.5 ±.006
AttnSense 68.4 ±.03

Proportionality 73.6 ±.343
Boundary-supporting 75.3 ±.132

Table 4.1: Activity recognition performances (f1 score) of the baseline
models on the SHL dataset.

DeepSense [Yao+17], and AttnSense [Ma+19].

• DeepConvLSTM [OR16]: a state-of-the-art HAR model encompassing 4
convolutional layers responsible of extracting features from the sensory inputs
and 2 long short-term memory (LSTM) cells used to capture their temporal
dependence.

• DeepSense [Yao+17]: a variant of the DeepConvLSTM model combining
convolutional and a Gated Recurrent Units (GRU) in place of the LSTM
cells.

• AttnSense [Ma+19]: features an additional attention mechanism on top
of the DeepSense model forcing it to capture the most prominent sensory
inputs both in the space and time domains and focus on them to make the
final predictions.

In this application, the heterogeneity aspects stem from various factors, e.g., the
displacement of the smartphones from their pre-defined initial on-body location.
We conduct extensive experiments to evaluate the performance of the proposed
algorithm in the following two settings: (i) we use a proportionality principle
stating that the heterogeneity induced by the displacement of a given smartphone
from its pre-defined initial position should be proportional to that displacement;
(ii) we use the strategy based on boundary-supporting examples.

Table 6.5 summarizes the obtained results and shows that the proposed ap-
proach, in its two declinations, exhibits superior performance (5-7% improvement)
compared to the closely related baselines. Figure 4.5 shows the experimental re-
sults corresponding to the heterogeneity induced by the smartphone displacement
from their pre-defined initial locations. The smartphone displacement ([5− 40%])
is estimated w.r.t. the body segment the smartphone was located on initially, e.g.,
wrist-worn smartphone w.r.t. the entire arm. Both Full and BS are assessed in
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Figure 4.5: Activity recognition performances (f1 score) as a func-
tion of the estimated smartphone’s location displacement from its
pre-defined initial location. Full: training with all available learning
examples; BS: training with boundary-supporting examples.

this set of experiments. As expected, when encountering larger displacements, the
performance of both Full and BS degenerates and becomes near 30% (f1 score)
starting from a displacement of 30% for BS, while Full has a significant drop in f1
score reaching ≤ 15% for a displacement of 40%. The proposed method achieves
satisfactory improvements in terms of f1-score over the baseline methods when
encountering displacements up to 25%. In particular, our proposed approach, BS,
improves recognition performances by nearly 15% over the baseline, Full, using
approx. 60% of available learning examples.

4.3.2 Evaluation on turbocompressor monitoring
We are interested in predicting abnormal vibratory phenomena in gas turbines
that are susceptible to accelerating the deterioration of the system’s components.
Specifically, we model the vibration phenomena using a neural network-based au-
toencoder which is presented first along with the continuous monitoring solution
that we provide.

The way for the autoencoder to learn generalizable encoding and decoding is
to ensure that the number of hidden units is sufficiently restricted. Variants of
the original AE models that make use of sparsity, denoising, or contraction were
proposed [Rif+11] and are a way to free them from the information bottleneck and
use encodings that are not necessarily smaller than the input dimensions. We need
our autoencoder to be sensitive enough to recreate the original observation but
insensitive enough to the training data such that the model learns a generalizable
encoding and decoding. In order to explore various latent space representations
that are more suitable to our particular context, we impose regularization via
the sparsity constraint [Ng11]. It imposes that the activation level of the hidden
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Model Quality Quantity
of reconstructions of examples

Full examples 0.189 ±.032 100%
Temporal coherence 0.091 ±.06 70%

Proportionality 0.079 ±.024 68.3%
Boundary-supporting 0.071 ±.075 63.3%

Table 4.2: Obtained quality of reconstruction along with the quanti-
ties of learning examples required for the different evaluated models.
Quantities of examples are normalized by the total number of exam-
ples in the dataset given a fixed segmentation window.

units remains low most of the time. For this, the average activation level ρ̂j of
a given hidden unit j is computed over all training sequences. The goal is to
enforce ρ̂j to be as close as possible to a target sparsity probability ρ (the sparsity
parameter which is defined to be close to 0). This is done via the minimization of
the Kullback-Leibler (KL) divergence between these two probability distributions

nhu∑
j=1

KL(ρ̂j||ρ) =
nhu∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log 1− ρ

1− ρ̂j
(4.5)

where nhu is the number of hidden units in the LSTM layers. To achieve this, we
will add an extra penalty term to our optimization objective controlled by a param-
eter λ, which imposes the sparsity constraint. The whole model is then trained to
minimize both the discrepancy between the original signal and its reconstruction
and the divergence between ρ and ρ̂j:

Jsparse = J + λ

nhu∑
j=1

KL(ρ̂j||ρ) (4.6)

In the case of turbocompressor monitoring, we assess (i) a baseline where the
old portions are kept in memory, and the model is trained using all available ex-
amples (Full); (ii) the first variant with standard-based example validation; (iii)
the second variant involving the selection of boundary-supporting examples (BS).
Evaluation of the learner is based on the quality of its reconstructions measured
by the mean squared error (MSE) between the true vibration signals and the
reconstructions. The standard-based example validation can be enforced either
using: (a) temporal coherence, which is based on the boundaries defined by the
standard ISO 20816, e.g., threshold limit defined between 7.1 and 18 (mm/s) and
not allowed red limit up to 18 (mm/s); (b) the proportionality principle, which is
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defined for each type of defect that occurs to the turbocompressor, e.g., the rate of
change in natural vibration frequencies becomes observable when the crack depth
ratio becomes greater than 0.30 [Tla+12]. Table 4.2 summarizes the obtained
results in terms of the quality of reconstruction and the quantities of learning ex-
amples needed to attain reconstruction performances comparable to training with
full examples. All the three proposed strategies achieve promising improvements
in terms of reconstruction quality (9-11×10−2 improvement) over the Full strate-
gies. Boundary-supporting shows the most important improvements among the
proposed strategies both in terms of the quality of reconstructions and quanti-
ties of needed examples. This suggests that, compared to enforcing domain-based
transformations, leveraging examples located near the invariant portions of the
decision boundary leads effectively to reinforcing these portions and not others.
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Figure 4.6: Reconstruction results showing the projection of the high
dimensional latent representations of the autoencoder-based learner
to a colored two-dimensional space using t-SNE [MH08]. Gradually-
similar colors correspond to the sequential order of the hidden repre-
sentations generated during contiguous periods of time.

Figure 4.6 shows the latent representations in a two-dimensional space ob-
tained via the t-SNE algorithm [MH08]. The time-sequential order of the windows
is depicted as the gradual variation of the color space where for example, purple
corresponds to more recent windows in the monitoring process. Two distinct re-
gions characterize the resulting latent representation space and correspond to a
shift of the data distribution. It shows that contiguous signal sequences are pro-
jected to a continuous region in the latent space. This is a sign that our model’s
outputs evolve and adapt to the nominal evolution of the monitored system.

We also study the effect of an important part of our proposed approach, the
nominal training period ζ being {200, 500, 1000, 1500, 2000} w.r.t. the ability of
the learner to not drift over time. Table 4.3 summarizes obtained results. Indeed,
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Model@ζ MSE MAE

AE@200 0.1887 0.4259
AE@500 0.0715 0.2006
AE@1000 0.1657 0.3792
AE@1500 0.1829 0.4146
AE@2000 0.0375 0.1498

Table 4.3: Summary of the monitoring performances for various nom-
inal training periods ζ. AE corresponds to an autoencoder, MSE:
mean squared error, and MAE: mean absolute error.

it is expected that for shorter nominal training periods, the reconstruction model
will not be able to consolidate enough its reconstruction capabilities and thus is
susceptible to degenerate rapidly in a free-running configuration (where we do
not have a mechanism for validating examples) and drift over time which will
potentially result in a substantial amount of alarms and model replacements. We
notice that regardless of the size of the nominal training period, the reconstruction
model is able to maintain a negligible discrepancy over time, measured by the
mean square and absolute errors. The same observation can be made regarding
the number of alarms triggered by the controller model and the number of times
it is replaced.

Overall, the proposed approach performs well on the two studied applications
both in terms of classification or reconstruction performances and in terms of the
quantities of data needed to learn.

4.4 Meta-supervision via data augmentation
Augmenting training examples is an important use case motivated by several real
situations in decentralized applications, where real examples generated from real
sensing experiments in the example (or sensing) space are missing or expensive to
produce and transmit. Indeed, as we move far away from the set of real experiments
or increase the distance between them, reconstruction models based exclusively on
real experiments tend to be very unstable. In these regions, real experiments alone
are not sufficient to satisfactorily determine the values of the state variables. From
the perspective of the learning model’s decision boundaries, the frontiers delimiting
classes obtained using examples generated from real (sensing) experiments are
noisy and sensitive to the hazards that are likely to interfere with the course of these
experiments. We will focus in this part on how to account for the instability that
taints models learned in the presence of these issues. Furthermore, in these types
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of situations, the learner often has access to theoretical or analytical models, which
can be used to obtain theoretically limited approximations where real examples
are lacking. These models range from the simplest to the most sophisticated. We
will leverage the available theoretical models describing the phenomena, the data
sources, as well as the deployments in order to generate examples in the regions of
the state space which require it.

In the experimental part illustrating the proposed approach, we will focus on
an application coming from the field of material engineering and the synthesis of
materials in an industrial environment, where real experiments are expensive to
carry out, but theoretical descriptions of the chemical components involved are
available. In this real-world application, we instrument our approach with a set
of kinetics models, which originate from domain knowledge and are described in
Section 4.5. However, the model that we describe here makes it possible not to be
restricted only to analytical models of chemical reactions. We can go further by
exploiting, for example, sensor coverage models, models describing how phenom-
ena propagate in space and time, etc. For example, in wireless sensor networks,
very often, the sensing capabilities of the sensing devices are described by sens-
ing models. These models (or abstractions) encompass many different elements,
including the direction of the sensing range (directional or omnidirectional) and
the shape of the sensing area (deterministic or probabilistic). Figure 4.7 illus-
trates the shape of the sensing area for different sensing models. Furthermore,

Figure 4.7: The shape of the sensing area for different sensing models:
(a) Deterministic sensing model, (b) Elfes sensing model, and (c)
shadow fading sensing model. Figure from [ESS19].

authors in [Mad+14] provide an example illustrating the combined modeling of
a phenomenon and the sensing device used to capture it in the context of visual
localization, mapping, and scene classification for autonomous road vehicles. In
their work, authors model the spectral properties of the camera as well as those
of the scene illumination and ultimately end up with an illumination-invariant
color space that depends only on a single parameter derived from the image sensor
specifications. A drastically reduced problem size. Figure 4.8 shows the interplay
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between scene lighting (reflection geometry, surface reflectivity, material proper-
ties, etc.) and the sensor response (spectral sensitivity). These elements allow
for deriving a good hypothesis space which only depends on the object’s material
properties.

Figure 4.8: Illustration of the joint modeling process of the spectral
properties of an image sensor (camera) as well as those of the scene
illumination. Figure from [Mad+14]: shows three essential elements
in scene processing, including (i) sunlight illumination, (ii) object of
interest, and (iii) image sensor. Sunlight has intensity (denoted I)
and spectral power distribution (E(λ)). The object of interest reflects
light with an unknown surface reflectivity (S(λ)) and geometry term
(a ·n), which depend on the material properties of the object and the
relative angle of the light source and image sensor. The image sensor
has a spectral sensitivity (F (λ)) and produces a response (Rx) at a
particular location (x) on the imaging plane.

Data augmentation techniques consist in applying different operations with
varying parameters on original data in order to generate (or synthesize) new data
with certain properties. In vision applications such as image classification, the
operations that can be applied to the original images include affine (or geomet-
ric) transformations (e.g., random horizontal flip, rotation, crop) and color space
operations (e.g., color jittering) [Li+20b]. These techniques are widely applied in
training deep neural networks and have been proven effective for improving the
performance of learning models, noticeably, image classification models [Cub+19;
Li+20b]. What makes data augmentation techniques work is that, as a result of
increasing the diversity of the training data, the learning model is prevented from
overfitting to the available original set of examples, especially when the quality of
examples is poor and their quantity is not sufficient to generalize well, e.g., in the
considered material engineering application or medical image analysis. Another
reason behind the effectiveness of data augmentation techniques is their ability
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to enforce (or impose) invariances that underly the true data distributions into
the learning model directly. Indeed, in the case of face classification, for example,
different images of a given face are often insensitive to illumination variations.
Similarly, images of objects are often insensitive to horizontal flips or translation.
Providing the learner with augmented images, e.g., using artificially generated illu-
minations or affine transformations, makes it more sensitive to the contents of the
images rather than the variations. Traditionally, the way invariants are enforced
into the learning models is by directly hardcoding them via network architectures:
one such example is the convolutional neural network which encodes in its work-
ing the shift-invariance, for example. However, instead of explicitly hardcoding
invariances into the model’s design, it may be simpler to use data augmentation
to integrate possible invariances [Cub+19]. In addition, the invariants may not be
known and must therefore be learned, i.e., one cannot hardcode into the model
architecture an underlying invariant that one does not know 2

State-of-the-art in data augmentation dates back at least to the work of Beymer
and Poggio [BP95], who built view-based and pose-invariant face recognizers by
generating virtual views of faces from a single real view of a face. Their objective
is to have the learned model capture the potential invariants underlying the dis-
tribution of face views. Since then, various works have been proposed, especially
in computer vision [SK19], and organized into different categories depending on
the way they perform augmentation, including geometric transformations, color
space augmentations, generative adversarial networks, neural style transfer, and
meta-learning. In some data augmentation approaches, the data manipulation op-
erations are manually designed, while in others, this process is automated to better
match the learning problem or dataset at hand. In the category of automatic im-
age manipulation-based approaches, AutoAugment [Cub+19] has been the first to
optimize the combination of augmentation functions through reinforcement learn-
ing. In these types of approaches, the sub-policies correspond to operations on the
images, e.g., translate, rotate, auto-contrast, invert, and solarize, to which are as-
sociated hyperparameters controlling the probability that they are applied and the
magnitude at which they should be. This is referred to as the search space. The
choice of sub-policies is done automatically using, for example, a reinforcement
learning process. Precisely, an RNN-based controller selects an augmentation pol-
icy from the search space. A child network is trained using the augmented data
until convergence, achieving a performance that is used as a reward to update the
controller so that it improves over time. Instead of relying on a discrete search
problem, i.e., discrete selection of sub-policies, which is non-differentiable, im-
provements to this approach, such as Faster-AA [Hat+20] and DADA [Li+20b],

2Neural architecture search approaches correspond actually to learning architectures that
encode specific biases [GH19].
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suggest using a differentiable augmentation optimization strategy where the selec-
tion is smoothed to make it continuous. Furthermore, while AutoAugment and
DADA, for example, do not account for any additional knowledge about the exam-
ples space in order to guide the selection of augmentation sub-policies, Faster-AA
rests on the assumption that data augmentation is a process that fills missing
data points of the original training data. As such, the controller’s reward takes
into account additional signals from the examples space.

4.4.1 Data augmentation based on domain transformations
Here, we propose a data augmentation approach guided explicitly by knowledge
of the sample regions of space that require augmentation. It is formalized in the
form of a bi-level optimization problem and exploits the capacity of this process
to make invariant aspects emerge in the learned models. Figure 4.9 illustrates
the proposed augmentation process informed by invariant aspects of the learned
model.

The problem is formulated as a bi-level optimization process where a controller
responsible for devising an augmentation strategy interacts with the learner so
as to guide it to reach better solutions. Precisely, we propose a meta-learning-
like interplay between the controller and the learner, where instead of learning
an initialization for fast adaptation in downstream tasks, the controller learns to
augment while guiding the learning process of the base learner. The motivation
behind this formulation is similar to [Zho+21a] and consists of the promising abil-
ity of this kind of interplay to extract useful knowledge from related tasks. The
process that we propose is roughly similar, in its spirit, to the GANs [Goo+14]
approaches, where the idea is to try to deceive the learner (especially at the level
of the boundaries between classes) by generating examples via an adversary which
ultimately makes the learner much more robust. Here, we take a slightly different
strategy: we make the controller generate examples related to invariant aspects of
the learner, e.g., portions of the decision boundary or portions of the latent rep-
resentations, which emerge and reinforce throughout along the interplay between
the state (or example) space, the controller, and the learner.

State space partitionning

Here, we describe a generic representation of the example space illustrated using
the real-world application that we consider in the experimental part (§ 4.5). To
make it clearer when necessary, we also illustrate this generic representation with
image-based transformations.

Let us consider a dataset Dreal = {X 1, . . . ,X n} consisting of n sets of experi-
ments conducted at predefined conditions, e.g., specific location in sensor deploy-
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Figure 4.9: The framework of the proposed data augmentation ap-
proach. The portions of the decision boundaries that appear to be in-
sensitive to domain transformations and that are reinforced through-
out the learning process are used to guide the augmentation process.
The idea is that domain transformations used to generate examples
(e.g., image rotation) should translate into portions of the decision
boundaries that remain invariant to these examples.
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ment, lighting conditions or orientation of a face in an image, or ratio of a mixture
of chemical reactants, and indexed by pi, i ∈ {1, . . . , n}. The difference between
τi and τi+1 corresponds, for example, to the percentage difference of a material;
the distance between one client and another in a sensor deployment; the distance
between two configurations of sensor characteristics; the difference from the point
of view of their noise models. Figure 4.10 illustrates a representation of the state
space and its subdivision into partitions. For example, in the case of the consid-

u(t)

p

pi

pj
Ki,j

Figure 4.10: Representation of the state space and the subdivision
into partitions Ki,j, i ∈ {1, n − 1}, delimited by the sets of real
experiments (or examples) X i and X j, in blue and red, respectively.
In the considered application (TGA calcination process), these real
experiments are conducted at pi and pj percentages of additional
calamine oxide, respectively. Note that between any two sets of real
experiments, i.e., inside each partition Ki,j, no real experiment is
available. We only have access to domain knowledge, e.g., in the
form of transformations governed by analytical models, describing
these partitions.

ered application (TGA calcination process), every single real example xij ∈ X i,
corresponds to the process of calcination applied to a given mixture of the consid-
ered chemical reactants (red pigment and calamine oxide) at a specific percentage
pi of the reactants and at a given temperature tj. The result of an experiment
is referred to as a state of the chemical reaction and is described (characterized)
by what is referred to as state variables, e.g., heat flow, sample purge flow, the
temperature of the mixture, and the mass of the mixture. Using the n sequences
of real experiments X i (i ∈ {1, n}), given in the dataset D described previously,
ordered by the index of the predefined condition pi (i ∈ {1, n}) at which the exper-
iments were conducted, we divide the state space into n− 1 contiguous partitions,
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Ki with i ∈ {1, n − 1} such that ∀i ∈ {1, n − 1}, pi < pi+1. These partitions
are used as a search space for the controller from which it can sample augmented
examples governed by transformations.

Outer-loop

The controller learns to generate examples that are intended to make the base
learner capture invariant aspects in the data domain. The learning examples
that can make the base learner capture the invariant aspects in the data domain
should be crafted properly. In the literature, the controller often encompasses two
important components: a search space and a search algorithm. The search space
often consists of domain transformations that are applied to real examples in order
to generate new ones. The search algorithm chooses, from the available search
space, the most appropriate domain transformations to apply to the examples 3.

Here, we generate examples based on analytical models that theoretically ap-
proximate the actual values at particular locations in the example space. Exam-
ples are generated in their traditional form or as bounds. We assume that we have
access to an example generator that can implement principles ranging from the
simplest one, such as temporal coherence or proportionality prior (mentioned in
more detail previously), to the most sophisticated one. In other words, we can
have generators based on different analytical models. The generator is supposed
to provide examples at the given position of the example space.

Illustration on the running example. In the case of the considered applica-
tion, we leverage the kinetic models of the chemical reactions involved in the TGA
calcination process. These models correspond to domain transformations that we
apply to real experiments in order to generate new examples.

These kinetic models describe the time evolution of the mass as well as the
temperature difference of the analyzed components during the thermal degradation
process. The complexity of the chosen model depends on the desired objectives.

The simple method for obtaining kinetic parameters from experimental data is
based on the kinetic equation ∂α

∂t
= k(1−α)n, where ∂α

∂t
is the rate of the reaction

(or decomposition). The constant k is given by

k = Ae−Ea/RT (4.7)

3For example, in AutoAugment, the search algorithm (implemented as a recurrent neural
network) samples a data augmentation policy from the search space, which has information
about what image processing operation to use, the probability of using the operation in each
batch, and the magnitude of the operation.
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where A is the pre-exponential factor, Ea is the activation energy and R is the
gas constant. This is the Arrhenius equation [Lai84] which gives the dependence
of the rate constant of a chemical reaction on the absolute temperature and the
constants of the chemical reaction.

These kinetic models allow us to derive a series of penalty bounds bj =
[∆t1

j , . . . ,∆
tmax
j ] at each applied temperature t1, . . . , tmax using the neighboring

points pi +∆p, pi + 2∆p, pi + 3∆p, and so on (see Figures 4.11 and 4.12).

p

pi

+∆p−∆p

Figure 4.11: The example space is further subdivided using sets of
points beyond and above each set of real experiments pi separated by
a step ∆p, e.g., . . . , pi − 2∆p, pi −∆p, pi +∆p, pi + 2∆p, . . . These
sets of points do not correspond to real experiments. Instead, they
correspond to areas where the example generator is utilized to gen-
erate examples based on domain knowledge.

Invariance to domain transformations. We are interested in the aspects that
are invariant to the transformations gi, acting on task τi to generate another task
τi+1, and how to reinforce them throughout the learning process. Tasks here are
exemplified by the sets of real experiments X ∈ Dreal.

The key element that we introduce here is that the controller should augment
only where it is necessary, i.e., where particular aspects of the base learner need it
most. The reward returned to the controller must therefore guide it to choose where
the examples should be generated. This is equivalent to guiding it to select the best
sub-policy (or transformation) to apply to real examples 4. Here, as we mainly

4In Faster-AA, the proposed approach attempts to generate examples in regions of the example
space where real examples are not available. The goal is, in particular, to increase the diversity
of the data distribution. No additional constraints on the regions to explore are imposed.
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Figure 4.12: Given a set of real experiments (in red), using the neigh-
boring points pi+∆p, pi+2∆p, pi+3∆p (in blue), we derive a series
of penalty bounds bj = [∆t1

j , . . . ,∆
tmax
j ] (in green) at each applied

temperature {t1, . . . , tmax}.

look for strategies that can guide the learner to capture invariants in the data
domain, we seek controllers that learn to generate examples based on the invariant
aspects of the learner’s model. The idea is to craft augmented examples that have
the ability to make these particular aspects emerge and reinforce throughout the
learning process. Ultimately, the invariant aspects that will emerge using this
process can be shared with other tasks: a kind of shareable universal components
(see Chapter 6 where universal components of the data are described in more
detail).

We would like to learn meta-parameters that can effectively capture the trans-
formations underlying the different tasks. Specifically, the components of the
model that are fixed are those related to domain knowledge (e.g., kinetic model)
and whose evolution during the learning process is negligible. The other compo-
nents are related either to the differences across tasks or to the noises tainting the
experimental process during which the examples are generated. These components
are likely to evolve. The meta-parameters are intended to capture the transforma-
tions gi acting on the tasks, precisely, the aspects of the learner that are invariant
to the action of these transformations, which we recall are unknown but simply
supposed to govern the transitions from one task to another.

This objective can again be materialized (as in the previous approach § 4.2) by
the portions of the decision boundaries which remain invariant to the actions of
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Figure 4.13: The idea is to reinforce the invariant portions of the
decision boundary (δ ≤ ϵ) in order to make it more robust, i.e.,
universal components of better quality shared across tasks (or sets of
real experiments).

the transformations (see Figure 4.13). The process starts by picking a first meta-
initialization ϕ based on one of the available sets of real examples, X ∈ Dreal,
corresponding to the end results of real experiments (or sensing processes). This
results in an initial version of the model’s decision boundary depicted in Figure 4.14
(gray color), which is very often impacted by the approximations and noise tainting
the real experiments. The next step is to decide which regions of the example space
(and a fortiori, the domain transformation) should be used to update the model.
Faster-AA, for example, fills missing data points of the original data distribution
by minimizing the Wasserstein distance between this distribution and that of the
augmented examples 5. Here, we use examples supporting the decision boundaries
that remain invariant to the action of the transformation gi (see Figure 4.14). The
controller uses the set of invariant decision boundaries (as defined in the previous
approach § 4.2) to find the corresponding domain transformation j∆p that can be
used to reinforce it.

5Precisely, the authors use adversarial training in order to minimize the distance between the
distributions of the augmented data and the original data. The Wasserstein distance between
these distributions computed via Wasserstein GAN [ACB17] makes the distribution of augmented
data get closer to the distribution of the original data.
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Figure 4.14: Illustration of the interplay between the model’s decision
boundaries and the example space. The model’s decision boundaries
are supported by examples from the example space. The controller
learns to generate examples that make the base learner capture in-
variant aspects in the data domain. These invariant aspects are re-
inforced by generating examples in certain regions of the example
space.

Inner-loop improved with Regularization

After generating the learning examples, the base learner fits its parameters to these
examples. We define a partition where real experiments are conducted in regions
greater than pj but obtained by the extension of the model between two sets of real
experiments X i and X j. We denote this partition Ki,j (i, j ∈ {1, n} and i < j).
Two kinds of models are considered: (1) a model that approximates experiments
in the partition Ki,j circumscribed by two given sets of real experiments; (2) a
model that approximates experiments for the partition beyond a fixed partition
Ki.
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Figure 4.15: Representation of the state space partitioning with re-
spect to the evaluation protocol devised to assess the extent of the
model’s predictions (or reconstructions). Recovering inside circum-
scribed regions Ki,j and Recovering outside a circumscribed region
Kj.

• Recovering inside circumscribed regions. In this configuration, we try
to recover the partition Ki,j from its delimiting sets of real experiments X i

and X j. For this, we train a model θKi,j
using all elements of these two sets,

and we perform validation on the set of experiments X k, with i ≤ k ≤ j.

• Recovering outside a circumscribed region. In this configuration, we
use sets of real experiments X i in order to recover partitions Kk that fall
outside the sets of experiments conducted with X i. In this case, we train
a model θkKi

using all elements of partitions labeled by j such that j <= i,
and we perform validation on the set of experiments X k such that k > i.
Here, we want to assess the ability of these models to extrapolate to other
partitions and to what extent they can do that.

Here, we integrate the augmented examples provided by the controller into the
learning process via a regularization-like process. The regularization process is
known to reduce model complexity by penalizing the learner for choosing complex
models and thus alleviating the model from overfitting the available data. Here, the
idea of using this kind of process is to penalize “structures” that are not consistent
with the examples (or bounds) generated by our controller. This is a weak form of
supervision that has been shown effective in the literature [SE17] and is motivated
by the simplicity it offers for expressing distinct properties of the models to learn,
e.g., physical properties or domain models, instead of a direct input-output form of
examples. This additional regularization-like term is derived from the augmented
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examples and allows the trained models to stay in a theoretically bounded range.
We derive from these models an additional term, R : Θ −→ R, that is plugged into
the original optimization objective, which, then, becomes:

θ∗ = argmin
θ∈Θ

ℓ(θ) + λR(θ) (4.8)

where λ ∈]0; 1] is a weight parameter used to control the impact of the regulariza-
tion term. This term is used precisely at the interfaces between the various sets
of experiments X i that partition the state space. By adding this regularization
term to the standard empirical loss function, the model considers both the mean
squared differences between model prediction and real experiments as well as the
divergence from the governing kinetics models (as reflected by the second term in
Equation 4.8).

Algorithm 4: Generic algorithm for learning to aug-
ment examples.

Pick a first meta-initialization ϕ
for task τ ∈ [T ] do

The controller samples an augmentation policy.
for j ∈ {−p, . . . ,+p} do

Generate examples based on the sampled
augmentation policy (Eqn. 4.9).

Compute (exactly or approximately) the best fixed
parameters θ∗τ for task τ using augmented set of
examples Daug

train (Eqn. 4.8).
end
Get a reward in the form of validation accuracy
(depending on the extent).

Update the controller’s augmentation policy using the
obtained reward.

Meta-update the meta-parameters ϕ.
end

Illustration on the running example. We leverage the pre-exponential factor
and its variations for small increments ∆p of the percentage of the two compo-
nents in the mixture. Additional concentrations of some components imply more
molecule collisions and, thus, an increase in the pre-exponential factor. We com-
pute the pre-exponential factor numerically for these small variations and use them
to encode the desire for the continuity of state variables values for variations of
the mixture percentage.
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At any given calamine percentage pi, we compute numerically the kinetic con-
stant k, which defines the kinetic energy of the reactants. This allows us to derive
a series of penalty bounds

bj = [∆t1
j , . . . ,∆

tmax
j ] (4.9)

at each applied temperature t1, . . . , tmax using the neighboring points pi + ∆p,
pi + 2∆p, pi + 3∆p, and so on. The regularization-like term becomes

R(θ) =
1

P

P∑
j=1

1{|fθ(pi + j∆p)− bj| > ϵ}, (4.10)

where P is the number of neighboring points and depends on both the distance
between the sets of experiments and the extent of the small increments ∆p. This
additional term provides a necessary constraint, which our model must satisfy. We
thus push our model in the direction of better satisfying both terms of the cost
function. At this level, the penalty bounds can be provided, for example, by the
sensor coverage models (see Figure 4.7) or by the spectral properties of the camera
and scene illumination (see Figure 4.8). In the experimental part, we focus on
analytical models describing the dynamics of chemical transformations.

Finding quality solutions

One way to incorporate domain knowledge is through conditional stochastic gra-
dient descent. It constitutes a surrogate which makes it possible to restrict the
size of the space of the hypotheses. Indeed, a given set of parameters, i.e., a point
in the parameter space as shown in Figure 4.16, is in itself an assumption. This
means that the conditional gradient descent as a process implements a form of
restriction on the valid hypotheses. See Figure 4.16.

Within the context of our application (and of the approximation capabilities
that we are targeting), the regularization-like term that is glued to the cost function
(Equation 4.8) is essential in order to force the model to take into account the
continuum between the different pi, and thus obtain optimal solutions. However,
during the optimization process, convergence towards a solution satisfying both
terms of the equation simultaneously is not ensured. The optimality criterion for us
corresponds to finding so-called Pareto-optimal solutions such that none of ℓ(θ) or
R(θ) can be made better without making the other worse. Using the Langrangian
interpretation, Equation 4.8 is the same as the following constrained formulation,

f ∗ = argmin
θ∈Θ

ℓ(θ) s.t. R(θ) ≤ µ, (4.11)



116 4.4. Meta-supervision via data augmentation

Figure 4.16: Illustration of the parameter space and the physical
constraints imposed on it. Furthermore, the optimization process,
which alternated between gradient descent and projection into the
admissible region, is shown. Figure from [Bol+17].

where the soft-constraint problem of Equation 4.8 becomes a hard-constraint one.
Recent advances in neural network optimization demonstrated noticeable successes
in many fields using conditional gradient (CG), which leads to Pareto-optimal so-
lutions and eventually to improved generalization [Rav+19a]. Indeed, formula-
tion (Equation 4.8) falls under the category of “scalarization” technique whereas
(Equation 4.11) is ϵ-constrained technique. It is known that when the problem
is non-convex, ϵ-constrained technique yields Pareto-optimal solutions, whereas
the scalarization technique does not [BV04; Rav+19a]. We ensure the fulfillment
of the additional derived constraints using CG, where gradient steps rely on a
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linear minimization oracle over the set of constraints defined by the additional
regularization term.

4.5 Experiments
The application we use here is part of ongoing efforts to develop sustainable ap-
proaches in iron and steel industry. The goal is to exploit the iron scale produced
by the iron and steel industry in order to obtain a rust-proof paint pigment. This
raw material will be used in a defined proportion mixed with a natural iron oxide
pigment. We are mainly interested in the study of their physicochemical char-
acteristics [Abe18], and particularly, thermal and mass loss analysis as shown in
Figure 4.17.

In this section, we introduce some domain-specific notions that are important
to understand the experimental setup. We present the main materials used in
our experiments: red pigment and calamine oxide and their mixtures. Then, as
the theoretical framework used to control real experiments is based on thermal
analysis and kinetics models, we will give a short description of both of them.

4.5.1 Application description
Binary mixture and target material. The application goal is to characterize
and to synthesize a new paint pigment based on the calamine oxide and red pigment
ensuring desired properties at some given temperatures. Red Pigment is a natural
form of mineral composed mainly of iron oxide; its individual thermal signature is
given in Figure 4.17a. This analysis shows a mass loss which is attributed to the
evaporation of water formation of iron hydroxides corresponding to the dissolution
of goethite FeO (OH) [ABG17]. Calamine Oxide is a steel by-product obtained
during continuous casting or heating of slabs and billets. This product is not a
sterile waste and may have a meaning of raw materials in its own, which can be
valued and marketed. The synthesis of new materials is obtained by the contribu-
tion of the calamine in this process by ensuring a sufficient quantity of Fe2O3 and
increasing the density of the synthesized pigment (Figures 4.17b and 4.17c). In
parallel, the goal of this application is to get materials with some desirable qualita-
tive properties, including optical properties (the size of the pigment particles may
affect the final appearance of the coated surface: paint can be glossy, matte, or
satiny, depending on the particles’ size which affects the phenomena of diffusion,
reflection, and refraction of light), ferromagnetic properties, etc.

The new material synthesis can be viewed from several theoretical models.
Each one uses approved knowledge of the field and predicts the expected theoretical
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Figure 4.17: Simultaneous thermal and mass loss analysis of (a) red
pigment and (b, c) binary mixture of red pigment and additional
calamine percentages. The effect of the temperature augmentation
on the behavior of the red pigment is shown via weight, derivative
weight, temperature difference, and heat flow curves. Further analysis
of mass loss, variation of the dissociation reaction enthalpy, and the
formation of new phases can be found in Section Thermal Analysis.

trajectories. The most prominent models that we leverage in our proposed method
are thermal and kinetics models.
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Dataset description. Our dataset is built from real experiments using the SDT-
Q600 version 20.9 thermogravimetric analyzer. Dataset consists of a thermal anal-
ysis of raw materials. These were collected with an SDT-Q600 industrial instru-
ment that monitors the calcination of the mixtures continuously. The instrument
encompasses a pair of thermocouples within the ceramic beams that provides a
direct sample, reference, and differential temperature measurements from ambient
to 1500 ◦C (using a ramp of 40 ◦C/min). Specifically, various signals are mon-
itored by the instrument, including weight (mg), heat flow (mW), temperature
difference (µV ), sample purge flow (mL/min), etc. The dynamics of the Nitrogen
gas, which constitutes the ambient atmosphere around the mixture, is set to 100
ml/min. The acquisition of the various signals was carried out at a sampling rate
of 2 Hz, which is sensitive enough, in these kinds of applications, for capturing
temperature and mass trends that may indicate regime changes. In total, 3000
measurement points were obtained for each set of experiments. In addition to the
theoretical curves of the red pigment (pig) and the calamine oxide (cala) that were
obtained separately, we perform calcination of mixtures with various percentages,
pi ∈ {5, 10, 15, 20, 25, 35}, of additional calamine oxide.

Training details. We construct neural networks by stacking 3 Fully Connect-
ed/ReLU layers with a dropout probability of 0.5 and two regression outputs (for
weight and temperature). We optimize the neural architectures, including the
number of neurons in each layer, using Bayesian optimization [SLA12] (The com-
plete list of hyperparameters and their range of values can be found in the code
repository). The networks are trained for 1000 epochs on the training data and
evaluated on the test set. The learning rate is set to 0.0001. We perform train-
test splits over different runs by stratifying the learning examples. The model is
trained to reconstruct the weight and the temperature state variables simultane-
ously by minimizing the mean squared loss between the original target signal and
the reconstruction provided by the network. In the case of SGD, weights of the
neural network are optimized using the Adam algorithm [KB14]. As a reference,
we also train a model (referred to as baseline) using the same evaluation setup and
a comparable number of parameters but without any additional derived constraint.

4.5.2 Evaluation of the reconstruction process
In our first set of experiments, (1) we evaluate the reconstructions obtained using
different configurations of the real experiments based on the setting described in
the proposed evaluation protocol; (2) we assess the extent of reconstructions as
a function of the distance to the set of validation experiments and the impact
of using CG on the fulfillment of the additional constraints; (3) we evaluate the
reconstruction performances at specific percentages of additional calamine.
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Figure 4.18: Obtained state space reconstructions for (a) weight and
(b) temperature. We report reconstructions averaged over all eval-
uation setups and their corresponding perplexity. As references, we
also report the reconstructions obtained (under the same evaluation
setups) using the baseline.

Figures 4.18a and 4.18b show the obtained state space reconstructions of weight
and temperature, respectively. Obtained reconstructions are averaged over all eval-
uation settings. We additionally report their corresponding perplexity. These two
figures highlight, in particular, the perplexity of the naive approach (baseline). Our
approach contributes to a substantial reduction of this perplexity (e.g., 2.76±0.09
vs. 3.29±0.15 for weight; 55.7 vs. 59.4 for temperature). The perplexity here can
be related to 2 factors: the spacing of the real experiments; and the presence of
phase transitions, especially in the range [250; 1250] for temperature. To verify
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Figure 4.19: Comparing the performances of SGD vs. CG: (a) evo-
lution of the training loss as a function of the number of training
epochs; (b and c) the extent of the reconstructions as a function of
the distance from the set of training to the set of validation exper-
iments (inside and outside circumscribed regions of the state space,
respectively). We repeat the evaluation 10 times with different ran-
dom seeds and report the median and the best validation performance
of the models.

the impact of experiment spacing, we measure the extent of reconstructions as a
function of the distance from the set of training to the set of validation experi-
ments. We provide numerical evidence in Figure 4.19 with the evaluation protocol
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Figure 4.20: Reconstruction extents depending on the control param-
eter being considered, which is the type of analytical model being used
to augment the real experiments.

defined above. We repeated the evaluation setup for 10 times. We can see that
until 20%, both inside and outside circumscribed regions, our approach provides
controlled perplexity.

Furthermore, Figure 4.19 illustrates also the impact of using CG on the fulfill-
ment of the constraints that are imposed on the models. We can see a noticeable
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effect of CG on the reconstruction performances up to an extent of 25% (Fig-
ure 4.19b) and 30% (Figure 4.19c). This translates the ability of CG to converge
towards solutions that take into account the regularization-like terms, whereas
SGD tends to push towards solely satisfying the first term of the cost function at
the expense of providing constrained reconstructions. After that extent, we can
notice that the performances of CG and SGD are comparable for models trying
to extrapolate far away from the real experiments. This could be explained by
the fact that the penalty bounds are becoming loose from that point, which does
not help the model to reconstruct correctly. Despite the existence of many phase
transitions that span all over the state space, our approach is particularly able to
reconstruct the weight and temperature states. Even when we reduce the number
of real experimental points, the obtained reconstruction quality remains high.

We further investigate the extent of reconstructions at specific percentages of
additional calamine oxide. We report the average reconstruction performances
over all configurations of the sets of training experiments. It is worth noticing
that for some percentages, e.g., reconstructions of temperature curves at 15%,
no matter how far apart the set of training experiments are, the reconstructions
are satisfactory with or without the addition of analytical models. However, the
analytical models contribute substantially to reducing the accompanied perplexity
(0.00192±.00081 vs. 0.0076±.0023). On the other hand, for 35%, for example,
the reconstruction errors are greater using the baseline model. This could also be
explained by the numerous phase transitions that exist around this percentage. In
this case, our approach is able to significantly improve upon the baseline model
and overall in all percentages both in terms of approximation and perplexity (e.g.,
0.00087±.00122 vs. 0.00477±.0021 at 15%; 0.00246±.002 vs. 0.00932±.0056 at
35%).

4.5.3 Trade-off between real experiments and richness of
the domain models

In the previous experiments, we showed the ability of our approach to reconstruct
precisely both the portions of the state space delimited by and those falling outside
sets of experiments. Here, we evaluate the trade-off between the richness of the
domain analytical models, which are plugged into the optimization objective of
the learning models via regularization, and the granularity of real experiments.

For this, we compare reconstruction models trained using different configura-
tions of the kinetic and thermal-based regularization-like terms. Precisely, we use
the Arrhenius and Eyring models, as well as the theoretical curves, pig and cala,
to derive these terms. We distinguish a first configuration where the analytical
models are each plugged individually to guide the learning models and a second
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Figure 4.21: Reconstruction performances at specific percentages of
additional calamine oxide. We compare the reconstructions, of (a)
weight and (b) temperature, obtained using the baseline vs. the
regularized models. Results averaged over all possible distances to
the set of training experiments.

configuration where we combine them together, i.e., Arrhenius and Eyring models
(A+E), pig and cala (P+C), and all these models combined together (A+E+P+C).
Additionally, we provide the best extent of reconstruction (in %) that was achieved
in each configuration. Figure 4.20 summarizes the obtained results.

In both configurations, the analytical models significantly improve the perfor-
mances of the reconstructions generated by the learning models. Very interestingly,
using the theoretical curve of the red pigment, the constructed models are able to
get a substantial gain in terms of reconstruction losses. In particular, for λ = 0.01,
we obtain an improvement factor of 10 over the remaining values of λ of the same
configuration. On the other hand, the models guided by the theoretical curve of



125 4.6. Conclusion

the calamine outperform those guided by the red pigment (except for λ = 0.01,
but there the difference is smaller than for the other values of λ). This observation
shows that some analytical models are more adapted than others, which is further
confirmed when we compare the influence of the Arrhenius and Eyring models
on the generated reconstructions. Besides, we can observe that models guided
by a combination of A+E outperform both A+E+P+C and, by far, P+C while
attaining a reconstruction extent of over 20%.

Overall, these combinations have better reconstruction performances than the
baseline or analytical models taken individually since their impact is adapted to
different regions of the state space. These results give additional insights into
the study of trade-offs between the richness and complexity of domain analytical
models and the amount of real experimental data (or sensor measurements in the
case of real sensors) needed to train learning models.

4.6 Conclusion
In this chapter, we have looked at different forms of prior knowledge from the
domain as well as how to integrate them into the learning process in an explicit
way. We focused on the structural constraints on the input data and how they
can guide the learning process to reach regions of the parameter space containing
satisfactory solutions to learning problems. We proposed two approaches: one that
selects learning examples to provide to the learner guided by domain models (§ 4.2)
and another that perform augmentation in appropriate regions of the example
space, based again on domain knowledge (§ 4.4).

The former approach leverages additional information about the way data
sources (or configurations in a broader sense) in a sensing environment are struc-
turally related to each other. Practically, we use invariants to encode the decision
boundaries shared across configurations. The latter approach proposes an augmen-
tation guided explicitly by the knowledge of the regions of the example space that
require an augmentation. It was formalized in the form of a two-level optimiza-
tion problem similar and exploits the capacity of this process to exhibit invariant
aspects in the learned models and reinforce them.

More generally, the main idea behind these approaches was to ensure that the
learner retains important elements throughout the learning process and throughout
the tasks they encounter (whether in a continuous or federated framework). The
type of elements that we have seen in the above approaches is the portions that
remain invariant to the transformations underlying the data distributions. We were
able to achieve this through the selection and generation of relevant examples that
make such invariant portions emerge and reinforce throughout the learning process.
Experiments show promising results in terms of the number of required examples
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to learn in heterogeneous and dynamic environments. The proposed approaches
were shown to be effective in situations where the generation and transmission
of learning examples are constrained, e.g., in federated learning and continual
learning settings.

A high-level motivation for this type of approach finds its roots in the con-
cept of teachability 6, where people investigate how the order in which material
is presented (by a teacher) can lead to qualitatively and quantitatively different
learning outcomes (for a student). Indeed, the approaches proposed in this chap-
ter are analogous, to some extent, to the traditional way the teacher and student
interact at school in the context of education [Fan+18]. The teacher provides the
student with appropriate material about the concept (or set of concepts to learn)
depending on the student’s level of mastery. In that context, material corresponds
to textbooks or exercises and is designed in a way that it targets specific notions
that are lacking or need to be reinforced in the student’s mind (portions of the deci-
sion boundaries in our proposed approaches). In other words, instead of presenting
any learning examples and in any order, the learner should deal with examples that
correspond to its level of mastery. The presentation of the learning examples can
indeed vary according to (i) the sequencing, (ii) the assigned weighting (easiest ex-
amples to classify to the hardest), and (iii) the choice of the examples themselves.
In curriculum learning approaches, the order is often determined by how easy the
learning examples are, but, as one can see from an educational point of view, this
involves much more complex aspects.

As mentioned at the beginning of this chapter, various works have analyzed
these strategies and tried to explain their performances: in particular, some of
them consider these strategies to be a particular form of continuation optimiza-
tion methods, where a given optimization problem, often complex, is dealt with
gradually by starting with simpler versions of the problem until the original prob-
lem is solved [AG12; Ben+09]. This is one of the control parameters that can be
used to act on the learning process. Indeed, among the existing control parameters,
one can find: modifying the hypothesis space (e.g., changing the architecture of a
neural network); adjusting the hypothesis space exploration process (e.g., weight
decay); modifying the optimization landscape (e.g., acting on the order in which
the learning examples are presented). One of the principles underlying the family
of approaches we proposed in this chapter is the impact that the way of present-
ing the learning examples to the learners has on the optimization landscape. If
the presentation of the learning examples is done in a suitable manner, this may
have the effect of modifying the optimization landscape to make it, in some way,
easier to navigate (see Figure 4.22). Identifying the opportune way of showing

6A term found in [Rit+07, Chapter 3] and [Fai16] both of which study aspects related to
education
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Figure 4.22: The order in which the learning examples are pre-
sented to the learner modifies the optimization landscape. Figure
from [Cor07].

the learning examples is a crucial challenge in reducing the size of the learning
problem. From the perspective of the structural risk minimization framework of
Vapnik [Vap92], the ordering of the learning examples is, in a way, introducing a
structure to the set of admissible hypotheses.

Finding a good solution (or hypothesis) to the learning problem requires the
traversal of the optimization landscape, which could be very difficult. Nevertheless,
the very often non-convex optimization landscape is explored using local search
heuristics, as simple as gradient descent, achieving remarkable state-of-the-art re-
sults. The difficulty of this traversal depends on the properties of the optimiza-
tion landscape [Dau+14; Li+18; Ahm+19]. Indeed, the optimization landscape
might be chaotic with shallower regions of convexity, where the gradients provided
by the local search heuristics are likely uninformative [Li+18]. Furthermore, au-
thors in [Dau+14] investigated the prevalence of saddle points in high-dimensional
non-convex optimization problems, which may hinder learning and make the opti-
mization procedure take a long time to escape. The curvature of the optimization
landscape can also vary rapidly, which makes choosing a step size for the optimiza-
tion procedure very difficult [Ahm+19].

As we saw, the order in which existing curriculum approaches provide learning
examples to the learner depends on their easiness, where very often, the easiest
examples go first. This changes the optimization landscape in a particular manner.
In our proposed approaches, the selection (as well as the augmentation process) is
guided by domain models. Therefore, the modification of the optimization land-
scape is tightly linked to domain knowledge. Understanding how the optimization
landscape behaves and exhibiting its geometric properties may help develop better
heuristics that can explore it efficiently. Long lines of research have been dedi-
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cated to the challenging problem of establishing such properties [Dau+14; Ge+15;
Kaw16; GM17; Li+18]. For example, the optimization landscape of many objec-
tive functions has been conjectured to have the geometric property that “all local
optima are (approximately) global optima”. It is this property that makes local
search algorithms perform well on these problems [GM17].

More related to domain knowledge, invariants of the domain or symmetric dis-
tributions have an impact on the optimization landscape and shape the way it
can be explored. For example, symmetries lead to non-convexity, especially saddle
points. In that matter, authors in [ZQW20], for example, highlight that many
real-world learning problems exhibiting symmetries have another kind of geomet-
ric property: “local minimizers are symmetric copies of a single “ground truth”
solution, while other critical points occur at balanced superpositions of symmet-
ric copies of the ground truth and exhibit negative curvature in directions that
break the symmetry.” The idea is that “symmetries of the observation models be-
come symmetries of the optimization problem.” [ZQW20] And ultimately, efficient
methods to traverse the optimization landscape can be obtained.

Figure 4.23: The order of presentation of the examples has an es-
sential impact on the optimization landscape. Fine-grained control
of this procedure can facilitate the exploration of this landscape and
ultimately achieve satisfactory solutions to learning problems. The
question that arises is how to ensure that this procedure makes it
possible to make inductive leaps of quality in the optimization land-
scape and not locally circumscribed modifications. In this chapter,
we have proposed approaches involving domain knowledge and the
invariant portions of decision boundaries to achieve this.

Regarding the traversal of the optimization landscape, alternative approaches
to local optimization methods could probably be to take a high-level (or global)
standpoint on the optimization problem. Having a high-level standpoint on the
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optimization process could be essential in order to make quality inductive leaps
and consequently improve learning performance (see Figure 4.23). Indeed, neu-
ral networks, for example, encode functions, and a high-level standpoint on the
optimization problems could be to reason in terms of the function space rather
than the parameter space. Naturally (and very often), in order to optimize a neu-
ral network, one makes adjustments to its parameters. Various analyses showed,
however, that reasoning in terms of functions is beneficial. Many studies focus on
aspects around inductive jumps in the space of functions, in particular, the works
of [BRK18; Ber+20] on the distance between models in the space of functions but
also, to a certain extent, work around the search for neural architectures (where
it is rather the particular architectures that encode functions) [GH19; FC18].

A challenge in this regard is that an adjustment in the parameters does not
necessarily translate into a change in the function space. In other words, the
relationship between changes in the parameter space and in the function space is
not straightforward. For example, as shown by authors in [BRK18], networks cross
the function space differently compared to how it is done in the parameter space.
Thus a distance of parameters cannot be taken to represent a proportional distance
between functions. More appropriate distances are therefore needed. For example,
many works, such as [BRK18], propose approaches to calculate distances between
functions in well-determined spaces (L2 Hilbert space or change in a network’s
output distribution as measured by the Kullback-Leibler divergence) instead of
the usual space of weights (ℓ2). Precisely, authors in [BRK18] argue that the L2

Hilbert space is useful for analysis and proposed a regularized loss in the context of
multi-task learning: ℓ(θ) = ℓτj(θ)+

λ
2
∥fθτi −fθτj ∥, where regularization term is the

L2 distance between the current function fθτj and the function after training on
task τi, fθτi . To compute the L2 distance between the current version of the model
and the previous one, the authors store a small set of previous examples in working
memory (similar to the replay buffer used in continual learning approaches), as well
as the model’s outputs on those examples. Our proposed approach based on the
selection of appropriate learning examples to update the learning model can be
considered as a form of optimization in the function space (as opposed to the
weight space). The selected examples are assumed (or intended) to update the
learning model in meaningful ways, i.e., in accordance with domain knowledge.

Other related works propose to use output regularizers [Xie+16; Per+17],
which, as their name suggests, put constraints on the output layer of the models
and, as such, penalize various behaviors such as over-confident predictions (often a
symptom of overfitting according to [Sze+16]). We investigated in this chapter the
integration of domain models via constrained gradient descent, which was used to
ensure that the learned models, indeed, satisfy the imposed constraints originating
from the domain. The question that remains, however, is the difference between
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(i) constraining an optimization space defined by the conjunction of data, data
transformations, and loss function (roughly, a posteriori or during the learning
process), with (ii) constructing an optimization space that is itself constrained by
domain knowledge but a priori. This may seem trivial at first sight, but the two
strategies are not totally the same and deserve further investigation (interesting
properties may emerge from this distinction). The approaches that we have seen
until now could be categorized into the former type of strategies: even if the order
in which the learning examples are presented to the learner affects the optimiza-
tion landscape, this is done in the course of the learning process. An alternative
approach that could be categorized in the latter set of strategies is presented in
the next chapter and proceeds by structuring the concepts to learn into hierarchies
as a prior step before the learning can take place at each level of the hierarchies.

We saw in this chapter how to leverage domain knowledge to guide the selection
and augmentation of learning examples. The underlying structures considered in
this chapter are assumed to be available. In the next chapter, we will describe
different approaches to come up with such structures from data.



Chapter 5

Structuring the learning process
guided by the concepts to learn

In this chapter, we propose two approaches that leverage the semantics of the label
space for organizing the learning process. The idea is to decompose the learning
process into several sub-problems that are easier to solve while maximizing the
notion of reuse and sharing (transfer) between these sub-problems. The approaches
presented in this chapter are based on [OHA21a] and [OHA22].

F

In the previous chapter, we were able to see different forms of structures from
the domain as well as how to incorporate them into the learning process through
the selection and generation of learning examples. We have discussed the pros and
cons of the different techniques while looking at their practicality. In particular,
we discussed the links with landscape optimization and the impact of data on the
shape of the latter. In this chapter, we will take a different perspective than that
which is based on the structuring of input data to guide learning. We will rather
exploit the structuring of the concepts (or labels) to be learned, in other words, the
outputs, and more particularly, the structuring of the concepts into hierarchies.
These offer a way to more finely control the sequencing of the learning process
in terms of difficulty, starting by learning the characteristics (patterns, motifs, or
common points) of groups of concepts (a task that is easier) and then moving
towards learning the characteristics of the concepts taken individually. This task
being more specific and, therefore, more difficult. In other words, the separation
of the groups of concepts is based on coarser characteristics than those useful for
separating atomic concepts.

From an application point of view, this perspective is motivated by the ubiquity
of dependencies between concepts, particularly in distributed and decentralized ap-
plications. The discrepancies between the data sources describing the concepts are
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exacerbated in such applications. For example, in IoT applications and particu-
larly in human activity recognition (HAR), some concepts (or activities) naturally
intermingle, and the boundaries between these concepts are not clear, e.g., the
transition from the concept walking to running remains blurred and necessitates
finer attention. These phenomena are further accentuated by the capabilities of
the sensors (sensing models) and the perspectives (views) through which the con-
cepts are captured (e.g., sensor’s position in space, position on the body, type
of modalities, sensor’s characteristics) [AC09; HO20]. Incomplete or redundant
perspectives can lead to further confuse the concepts between them and reduce
the performance of the learning process. Beyond the dependencies (overlap) re-
lating to the perspectives provided by the deployments of sensors, the learning
problems themselves and the concepts which compose them often exhibit intrinsic
dependencies [SF11; EOR15]. Furthermore, this point of view is also motivated
by the natural link with learning in a student (student) where the concepts should
be presented by an increasing degree of difficulty: from the simplest tasks to the
most complex. Indeed, We find that some concepts are easier to distinguish when
grouped with other concepts than when each one is learned on its own. For in-
stance, if we consider analyzing human activities through the accelerometer or
heart rate, it is easier for a given learner to first separate all activities (concepts)
into two main classes, e.g., activities involving large movements of the hand versus
other activities, instead of separating the finer activities belonging to (or lying
within) these two general classes. This general observation shows that inductive
biases needed to separate homogeneous groups of concepts recursively give better
results and build hierarchical concept structure between concepts.

We explore in this chapter different strategies for structuring the considered
concepts into hierarchies such that those very similar concepts are grouped together
and tackled by specialized classifiers. The idea is that classifications at different
levels of the hierarchy may rely on different features or different combinations of
the same features [ZXW11; Yao+19]. Indeed, many real-world classification prob-
lems are naturally cast as hierarchical classification problems [CH04; WCB18;
Yao+19; ZXW11]. Work on the semantic relationships between categories in a
hierarchical structure shows that they are usually of the type generalization/spe-
cialization [ZXW11]. In other words, the lower-level categories are supposed to
have the same general properties as the higher-level categories plus additional,
more specific properties. This can be naturally cast as a meta-learning problem,
where one can pursue a bi-level processing with meta-parameters shared across the
hierarchies and various levels of group-specific parameters. We will start in Sec-
tion 5.1 by formalizing this problem and providing a literature background around
approaches that are intended to characterize and compute how tasks are related
to each other.
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Unlike the previous chapter, where the structures underlying the input data are
available a priori, here we build these structures (or, more precisely, hierarchies)
automatically from the data. This is the bias learning part, or concept group bias
to be more precise: a form of feature learning that is refined on several levels
(from the most general to the most specific) see Figure ??. For this, we have
proposed two approaches: one called top-down, which is based on clustering and
the decomposition of groups of concepts (§ ??) and the other bottom-up, which
is based on the affinity of transfer and the composition of concepts starting from
those which exhibit a weak affinity to the transfer until the strongest (§ ??).

In Section 5.2, We propose two novel measures (dispersion and cohesion) to
assess the quality of clustering solutions regarding concept separability. We pro-
pose an efficient clustering-based classification approach combined with training
strategies that leverage the tree structure to improve the learning process. The
components of the proposed approach, including the theoretical complexity of the
hierarchical learning problem, which is substantially reduced, are analyzed. Exten-
sive experiments are conducted on three HAR datasets to assess the effectiveness
and efficiency of our proposed approach (§ 5.3). The notion of inductive biases
inheritance in the hierarchy of concepts being derived is also investigated. Fur-
thermore, we empirically analyze the notion of intrinsic concept dependency and
its relativity w.r.t. the various perspectives (views) provided by the sensors de-
ployments and how the proposed measures capture these two kinds of dependency.

In Section 5.4, we propose an approach based on transfer affinity to determine
an optimal organization of the concepts that improve both learning performances
and accelerates the learning process; We leverage for this a powerful technique
based on transfer which showed interesting empirical properties in various do-
mains [Zam+18; PRS19]. Taking a bottom-up approach allows us to leverage
learning the complete hierarchy (including the classifiers assigned to each non-leaf
node) incrementally by reusing what was learned on the way. Extensive experi-
ments show the effectiveness of organizing the learning process. We noticeably get
a substantial improvement in recognition performances over a baseline that uses
a flat classification setting; we perform a comprehensive comparative analysis of
the various stages of our approach, which raises interesting questions about con-
cept dependencies and the required amount of supervision (§ 5.5). The approaches
presented in this chapter are based on the following works [OHA21a; OHA22].

5.1 Problem Statement
The main idea explored in this chapter comes from the fact that the concepts to be
learned are not totally independent, as is the case in human activity recognition
where, for example, learning the concept running is closer to learning the concept
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walking than learning the concept still. Thus, grouping some concepts to learn
them against other groups of concepts, using more adapted biases or characteris-
tics, can considerably improve the learning process quality for each concept.

Let’s consider Y = {Y1, . . . , Yn} a set of atomic concepts (or classes) to learn.
In this chapter, we show that for a given specific a priori knowledge on these
concepts, the quality of the learned hypothesis improves by grouping the con-
cepts recursively. We assume that atomic concepts are not decomposable, i.e.,
∀i ̸= j ∈ {1, . . . , n}, Yi ̸⊂ Yj), and any group of concepts GYi is a subset of Y .
Since the atomic concepts have partial dependencies in many cases, a top-down
approach tries to structure the atomic concepts into different combinations and
based on different biases. It gives a better loss function than the one used in the
flat case. This idea is close to the decision tree [Qui86] but more general. It is
applied to the separability of the groups of concepts rather than to atomic con-
cepts. This formalization follows the idea presented in [Kos+15], which defines
a three-dimensional setting: (1) single-label classification as opposed to multi-
label classification; (2) concepts are organized into trees as opposed to directed
acyclic graphs; (3) instances are classified into leaves (mandatory leaf node predic-
tion [SF11]), as opposed to the setting where instances can be classified into any
node of the hierarchy.

Therefore, the problem at hand is twice difficult as we have to first find the
most appropriate hierarchical structure and, second, find optimal learners assigned
to the nodes of the hierarchical structure. Some works have tackled this problem
by exploiting a priori knowledge and structures of the domain [SBH20; Sch+20].
However, such a priori knowledge is not always available. One of the main problems
to solve, in this case, is finding the best tree structure of groups of concepts to
learn together in order to optimize the learning rate of each atomic concept. A
naive approach consists in building all the combinations of concepts to check for
which groups of classes the quality of the learning is optimal and to start again
recursively this approach until the concepts are totally separated from each other.
However, this approach faces a combinatorial explosion of the number of cases that
should be treated.

To better illustrate the complexity of this problem, we propose a recurrence
relation involving binomial coefficients for calculating the total number of tree
hierarchies for a total number of n concepts.

Theorem 1. Let L(n) be the total number of trees for the n atomic concepts.
The search space size for these concepts satisfies a recurrence relation defined as:

L(n) =

(
n− 1

n− 2

)
L(n− 1)L(1) + 2

n−3∑
i=0

(
n

i

)
L(i+ 1)L(n− i− 1)
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Because of the exponential size of the search space, the exact approaches can-
not tackle this problem in terms of time/space complexity for large sets of (fine
or coarse-grained) concepts like those featured by the SHL dataset [Gjo+18] (de-
scribed in Section 4.3), which we consider throughout this chapter as a running
example to illustrate the problem formulation and the proposed approach on a
concrete real-world example. In this dataset for example, with 8 coarse-grained
concepts, the size of the search space is L(8) = 660, 032.

To take advantage of the power of this search space traversal approach and
to avoid combinatorial explosion, we propose data-driven approaches for selecting
the best concept structuring.

Concept structuring as a meta-learning problem. The case of concept
hierarchy is an instance of the meta-learning problem and as such it can be seen in
several ways: (i) as illustrated in Figure 5.1, where the upper level corresponds to
the stages of construction of the most suitable (optimal) hierarchy, the lower level
consisting of a process whose final goal is to adapt the weights of (or what is learned
by) each of the nodes of the hierarchy; (ii) the upper level does not correspond to
the construction of an optimal hierarchy but is subdivided into several other levels
which correspond to the different levels (groupings of concepts) of a given hierarchy
(available a priori or built beforehand). In each of these levels, bias learning takes
place on a group of concepts which puts the following level in a good position to
learn the bias of the level which follows it up to the level of atomic concepts. In
both cases, the higher level(s) correspond(s) to bias learning.

Concepts Structuring

Adapted Biases for
Groups of Concepts

Figure 5.1: Optimizing for more adapted concepts structuring to
tackle group biases.
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Computing task-relatedness: a literature overview. As we already dis-
cussed in the literature review (Chapter 2), various works in the literature pro-
pose approaches intended to characterize how tasks are structurally related to each
other. The fundamental notion used to make such an analysis and characterize how
tasks are related structurally is the measure of task similarity (or task-relatedness).
The characterization of such structures has different purposes, e.g., in the context
of multi-task learning, the structures are used to find out how tasks transfer to
each other [Zam+18], which tasks should and should not be learned together in one
network when employing multi-task learning [Sta+20], and devise cluster-specific
meta-initializations in the case of GBML approaches [Jer+19; Zho+21b]. Overall,
the idea is that after exhibiting the notion of task-relatedness, one can perform,
for example, task-clustering in order to devise, in the case of GBML approaches,
task-cluster-specific initialization rather than a unique initialization for all tasks,
which could be inefficient when tasks are slightly distant to each other [Yao+19].

Existing approaches often measure task similarity by computing similarity
scores between tasks either via modeling their data-generating process or lever-
aging semantic information in the label space. In approaches based on modeling
the data-generating process, the computation of the task similarity relies heavily
on task-specific models (or networks) such as auto-encoders trained exclusively on
a given task used then to quantify its relatedness with other tasks. For example,
Taskonomy [Zam+18] proposes a computational approach for modeling the struc-
ture of the space of computer-vision tasks, such as texture recognition, semantic
segmentation, re-shading, colorization, etc. A task-specific auto-encoder is com-
puted for each of these tasks, and the transfer-affinity of these auto-encoders to
other tasks is used to quantify task relatedness. Task2Vec [Ach+19] projects (or
embed) the parameters of a task-specific model into a (lower-dimensional) latent
space, abstracted from information regarding the number of classes and class label
semantics contained in that given task. While Task2Vec uses a pre-trained net-
work to embed a given task into the latent space, the probabilistic task modeling
approach proposed in [NDC21] represents a task by a variational distribution of
Gaussian task-theme mixture without the need for a pre-trained network (See Fig-
ure 5.2 where a given task is represented in the latent task-theme simplex according
to the inferred task-theme mixture vectors). In a slightly different fashion, task
similarity is computed by looking at the semantics of the target classes in order to
capture class dependencies. For example, authors in [Jia+18] try to capture the
class dependencies and make use of structured information provided by the label
space, such as the images of cat and dog being closer than cat and truck. Similarly,
Tran, Nguyen, and Hassner in [TNH19] measure task similarity by examining the
correlation of the label distributions between the tasks of interest. In a reinforce-
ment learning setting, authors in [Kum+21] generate learning environments using
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Figure 5.2: From [NDC21]: tasks are represented in a task-theme
simplex by a 3-dimensional mixture vector.

explicit rule-based structure generators, i.e., simple rules comparable to the task-
theme of Nguyen, Do, and Carneiro, control the recursive composition of learning
environments. This way, the authors know exactly the task environment gener-
ating process and can evaluate exactly how meta-learning behaves precisely on a
broad family of structured tasks.

5.2 Clustering-Based Concepts Structuring
In order to implement our hierarchical-based model for predicting different con-
cepts, we follow two directions: (i) organize the considered concepts into hierarchies
such that the learning process accounts for the dependencies existing among these
concepts; (ii) characterize optimal classifiers that are associated to each non-leaf
node of the hierarchies. Structuring the concepts can be performed using two dif-
ferent approaches: a top-down approach, where we seek to decompose the learning
process; and a bottom-up approach, where the specialized models are grouped to-
gether based on their affinities. In this part, we start by describing an approach
that follows the former direction. We propose an efficient clustering-based classifi-
cation approach combined with training (or sample selection) strategies that lever-
age the tree structure to improve the learning process. To overcome the complexity
limitation stemming from the optimal hierarchy construction, we propose an orig-
inal approach combining clustering and classification of groups of concepts based
on two original measures. Precisely, we propose two novel measures (dispersion
and cohesion) to assess the quality of clustering solutions regarding concept sepa-
rability. These measures are optimized throughout the process until the derivation
of an optimal learning hierarchy. Furthermore, we design a set of training strate-
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gies inspired by curriculum learning that leverage the structural organization of
the concepts. The proposed training strategies are specifically designed to leverage
the hierarchical structure of the learning process and reduce the amount of super-
vision required in low-data regimes. It allows a substantial decrease in the number
of required learning examples in order to achieve comparable, sometimes better
recognition performances compared to the full-data regime and flat classification
setting. In this section, we detail the different parts of our approach, which are
illustrated in Figure 5.3.

5.2.1 Dispersion and cohesion measures
Let’s consider C = {C1, . . . , Cm}, a clustering result (or solution) obtained in an
unsupervised setting (using only the input features X of the instances). Instances
of the same concept may be grouped in distinct clusters of the clustering solution.
This clustering result can be represented as G = (Y, C, E) a bipartite graph whose
partition has the parts Y (the classification domain or label space) and C (the
clustering domain), with E denoting the edges of the graph (see Figure 5.3). Each
edge eij ∈ E represents the percentage of the instances from the input space
X in class Yi, properly covered by the cluster Cj. As a consequence the basic
normalization property holds: ∀ 1 ≤ i ≤ n,

∑m
j=1 eij = 1.

Clustering on the running example. Let’s consider a small subset from the
SHL dataset containing 365 instances distributed as follows: still (Y1): 40, walk
(Y2): 55, run (Y3): 51, bike (Y4): 43, car (Y5): 22, bus (Y6): 25, train (Y7): 62,
subway (Y8): 67. Table 5.1 illustrates the distribution of the instances within a
single clustering solution.

Clust# still walk run bike car bus train subway Cohes.

C1 15 0 3 12 1 3 0 6 0.20
C2 8 50 45 3 2 2 6 7 0.42
C3 12 3 1 19 1 0 5 9 0.228
C4 5 2 2 9 18 20 51 45 0.376

Disp. 0.75 1 1 0.75 1 1 1 1

Table 5.1: Distribution of the instances within a clustering solution
containing 4 clusters. The corresponding cohesion (cohes.) and dis-
persion (disp.) scores are depicted.

We define two measures, namely dispersion and cohesion between clusters and
classes. The main idea is to evaluate how a given clustering result (obtained in an
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Figure 5.3: The framework of the proposed approach. Based on
the dispersion and cohesion score obtained for each cluster, the best
clustering solution is selected (step 0), and the process is repeated
recursively on each group of concepts within the selected clustering
solution (subsequent steps 1, 2, etc.). The process ends as soon as
we get individual concepts on the leaves of the decomposition hier-
archy. The final hierarchy is being assigned with specialized learners
at every non-leaf node. These learners will be trained on the groups
of concepts within their descendant leaves.
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unsupervised manner) captures the dependencies between the considered concepts
(or the assigned labels according to the labeling process used in the dataset). The
goal is to use the clustering result to select the best groups of concepts in a way that
they can be separated effectively by means of concepts cohesion and dispersion.
The subsequent learning steps are applied on these groups of concepts.

Definition 5.2.1 (Dispersion χ). The dispersion of a class Yi related to a cluster
Cj denoted as χij defines how the cluster Cj represents the class Yi. χij measures
the distribution of the instances labeled by the class Yi in the Cj ∈ C clustering.

There exist different approaches for defining the class distribution in each clus-
ter. However, in our proposed approach, we consider the basic one χij = eij. We
denote this distribution with χij. Consequently, the Yi instances distribution w.r.t.
the C clustering should satisfy the following boundaries for the worst and the best
cases:

χC(Yi) =

{
0 if ∀j ∈ {1, . . . ,m} χij < 1

m
+ ϵ

1 if ∃j ∈ {1, . . . ,m} χij ≥ 1− ϵ

where ϵ is the given small value. If for each class Yi, χC(Yi) = 0, then the dispersion
is total and no cluster represents this class. However, if χC(Yi) = 1 because of
χiw ∼ 1 then the cluster Cw represents totally the class Yi.

The dispersion measure can be computed in several ways. In fact, if a given
concept is represented by a clustering solution, it can be measured using statistical
or a priori known properties. We propose here a simple measure defined as follows.
Assume a class Yi and a cluster Cj in the clustering result C, for a given threshold
α are given. We define R as an auxiliary measure for the dispersion as following:

R(Yi, Cj) =

{
1 χij >

α
m
, (Assume 1 ≤ α ≤ m)

0 otherwise

With these simplifications, we can define the dispersion measure between the clus-
tering result C and a given class Yi as:

χC(Yi) =

{
1−

∑j=m
j=1 R(Yi,Cj)−1

m
if

∑j=m
j=1 R(Yi, Cj) ̸= 0

0 Otherwise
(5.1)

And finally, the dispersion between the classification result and the clustering one
can be defined as follow:

χC(Y1, · · ·Yn) =
1

n

n∑
i=1

χC(Yi) (5.2)
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Dispersion on the running example. In Table 5.1, the dispersion score of
each given concept w.r.t. the clustering results is computed using equation 5.1
and α = 1. Based on the table, concepts still and bike have a dispersion score less
than 1, because their instances are distributed widely across the different clusters
than it is the case for the other concepts. The lower the dispersion scores are, the
more difficult to handle the next level of the hierarchy. According to equation 5.2,
the total dispersion is χC(Y1, . . . , Y8) = 0.937.
Definition 5.2.2 (Cohesion κ). The cohesion of classes Y1, . . . , Yn w.r.t. to a
given clustering C measures the co-appearance of classes together in each cluster.

This measure satisfies the following conditions for the worst and best cases:

κC(Y1, .., Yn) ={
1 if ∀c, d, i ∈ {1, .., k} |χic − χid| = ±ϵ
0 if ∀c, d ∈ {1, .., k},∃i ∈ {1, ..,m} |χic − χid| = 1± ϵ

where ϵ is a given small value. From a statistical point of view, there exist sev-
eral possibilities to compute the dispersion measure. The following one gives the
empirical and simplest one. For a given cluster Cl ∈ C (where |C| = m), the co-

hesion of two classes is computed as: κCl
(Yi, Yj) =

min(χil, χjl)
max(χil, χjl)

. Accordingly, the

simplest cohesion expression between two given classes can be written:

κC(Yi, Yj) =

∑l=m
l=1 κCl

(Yi, Yj)

m
(5.3)

And finally, the cohesion of a given set of concepts as {Y1, . . . , Yi} w.r.t. a
cluster C ∈ C and clustering C (where |C| = m), are computed as following respec-
tively:

κCj
(Y1, . . . , Yi) =

1

i(i− 1)

i−1∑
k=1

i∑
l=k+1

κCj
(Yk, Yl)

κC(Y1, .., Yi) =
1

m

l=m∑
l=1

1

i(i− 1)

i−1∑
k=1

i∑
j=k+1

κCl
(Yk, Yj) (5.4)

Cohesion on the running example. The pairwise cohesion scores for the
given clustering example κC(Yi, Yj), can be computed using equation 5.3 as in
Table 5.1. The cohesion score of all concepts w.r.t. the clusters, i.e. κCi

(Y1, . . . , Y8)
is computed in Table 5.1. The table 5.1 also shows that for this application, it
is interesting to learn the following concepts together: still and bike (Clusters
C1 and C3), walk and run (C2), and car, bus, train, and subway (C4). This
corresponds to clear semantic biases learned during the clustering step and not
explicitly introduced.
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5.2.2 Hierarchy derivation and optimization
Thanks to the two proposed measures, it is no longer necessary to enumerate and
evaluate all the possible groupings of the search space. This task is delegated to
the clustering problem. Therefore, the problem can be reformulated as the search
for the best clustering that generates the best grouping of classes. Algorithm 5 de-
scribes the recursive process of hierarchy construction from the set of concepts and
annotated training examples. It proceeds recursively: given the set of annotated
examples X and the set of concepts Y considered at a given node of the hierarchy
(starting from the root), the algorithm computes different clustering solutions for
a varying number of clusters (from 2 to |Y | − 1, the two other extremes being
obviously useless). To select the best clustering solution, a natural optimization
model based on the two proposed measures can be stated as:

maxC γ1 ∗ χC(Y1, . . . , Yn) + γ2 ∗ κC(Y1, . . . , Yn) (5.5)

where γ1 and γ2 are additional parameters controlling the trade-off between dis-
persion and cohesion. This optimization model depends on the selected clustering
method and its related distance measure.

5.2.3 Leveraging the hierarchy for efficient training
The non-leaf nodes of the derived hierarchy are assigned with learners trained to
discriminate between the concepts or groups of concepts found within their descen-
dant leaves. This implies a bi-level optimization problem with C (the clustering
solution at each step) and θt (the weights assigned to each non-leaf node t of the
derived hierarchy) as the inner optimization problem. Evaluating the learners’
weights exactly can be prohibitive due to the expensive inner optimization. Here
we propose a simple approximation scheme. We take advantage of the structur-
ing of learners and the inheritance property of inductive biases in hierarchies to
effectively drive the learning process by circumscribing the search space for each
group of concepts. The idea is to approximate the weights by selecting the most
appropriate learning examples to train with the learners of the subsequent levels in
the hierarchy, without solving the inner optimization completely util convergence.
We investigate for this two strategies that are designed to improve the learning
process, namely, (1) boosting strategy: the hard examples are weighted so that
the learners located in the descendant nodes focus on them; (2) student-teacher
strategy [HVD15]: the easy-to-classify examples are selected for training the sub-
sequent learners. We use an additional parameter (temperature T ∈ (0, 1)) which
decides how hard or easy it is to classify the examples. Algorithm 6 details the
learning process in each node of the derived hierarchy.



143 5.3. Experiments

Algorithm 5: computeHierarchy
Input : (i) {(xi, yi)}Ni=1 set of annotated training examples;

(ii) Y = {Y1, . . . , Yn} denotes the set of concepts; (iii) Distance
measure D to compute the linkage

1 D ← { }
2 for t ∈ 2, . . . , |Y | − 1 do
3 C = {C(1), . . . , C(t)} ← cluster(X, D)
4 Compute dispersion χC(Y ) ; % using Eqn. 5.2
5 Compute cohesion κC(Y ) ; % using Eqn. 5.4
6 D ← D ∪ {(C, χC − κC)}
7 end
8 C∗ ← bestClustering(D) ; % using Eqn. 5.5
9 foreach C ∈ C∗ do

10 A ← getClasses(C)
11 X ← getData(Y )
12 if |A| = 1 then
13 Childi ← Y ; % ith child of the current node
14 else
15 Childi ← computeHierarchy(X, Y )
16 end
17 end

Result: Hierarchy T

Regarding the class predictions, in classical multi-label classification settings,
these can be done in non-leaf nodes [BK12; SF11]. In our case, we use leaf-
mandatory classification, i.e., the examples are assigned to an atomic concept
(leaf of the hierarchy). Algorithm 7 describes how predictions are performed given
the trained hierarchy, Tθ∗1 ,...,θ∗t , obtained using Algorithm 6.

5.3 Experiments
The empirical evaluation of our approach is organized into three axes: (1) we
evaluate the recognition performances of the derived hierarchies (§ 5.5.1); (2) we
evaluate the impact of the proposed measures on the derived hierarchies and the
separability of the considered concepts (§ 5.3.3); finally, (3) we provide a prelimi-
nary assessment of the interplay of inductive biases inside the derived hierarchies
via the analysis of the importance of the learners’ hyperparameters (§ 5.3.4).
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Algorithm 6: Hierarchy training
Input : (i) {(xi, yi)}Ni=1 set of annotated training examples

1 T ← computeHierarchy(X, Y )
2 Tθ1,...,θt ← initialize() ; % Initialize the weights of the learners assigned to

the hierarchy
3 S1, . . . ,St ← ∅ ; % Sets of easy/hard-to-classify examples of each learner

of the hierarchy
4 while not done do
5 foreach θt do
6 Let the super-scripted concepts, y(t) ∈ Y (t), be those grouped in

node t
7 if St ̸= ∅ then
8 Sample mini-batch from {(xi, y(t)i )}Nt

i=1

9 else
10 Sample mini-batch from St
11 end
12 Evaluate ∇θtℓ(θt) with respect to the mini-batch
13 Compute adapted parameters with gradient descent:

θ′t = θt − η∇θtℓ(θt)
14 pred ← θ′t.predict

(
{xi}Nt

i=1

)
; % Make predictions with the newly

adapted parameters
15 foreach prediction predi ∈ pred do
16 if H(predi) < T then

; % T is a temperature parameter. The lower the entropy of
the predictions, the higher the confidence and
easy-to-classify the example

17 St+1 ← St+1 ∪ (Xi, A
(t)
i )

18 end
; % Alternatively use H(predi) ≥ T (the higher the entropy, the
lower the confidence), for the hard-to-classify case

19 end
20 end
21 end

Result: Trained hierarchy Tθ∗1 ,...,θ∗t

5.3.1 Experimental Setup
Representative related datasets. We evaluate the proposed approach mainly
on the SHL dataset (see § 4.3 for details). For comparison, we also evaluate our
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Algorithm 7: Prediction
Input : (i) x an example to be classified into one of the atomic concepts;

(ii) T the hierarchy of concepts
1 i← 0
2 Let ChildT (i) be the set of children for the node i in the hierarchy T
3 while ChildT (i) ̸= ∅ do
4 i← argmaxj∈ChildT (i) θj(x)

5 end
Result: Leaf node i corresponding to an atomic concept

proposed approach on two additional representative datasets, the USC-HAD and
HTC-TMD.

• USC-HAD [ZS12] containing body-motion modalities of 12 daily activities
collected from 14 subjects (7 male, 7 female) using MotionNode, a 6-DOF
inertial measurement unit, that integrates a 3-axis accelerometer, 3-axis gy-
roscope, and a 3-axis magnetometer;

• HTC-TMD [Yu+14] containing accelerometer, gyroscope, and magnetometer
data all sampled at 30Hz from smartphone built-in sensors in the context of
energy footprint reduction;

Baselines. we evaluate the flat classification setting using neural networks, which
constitute our baseline for the rest of the empirical evaluations. To compare our
baseline with the proposed hierarchical model, we make sure to get the same com-
plexity, i.e., a comparable number of parameters as the largest hierarchies, while
including the weights of the learners. We also use Bayesian optimization based on
Gaussian processes as surrogate models to select the optimal hyperparameters of
the baseline model [SLA12]. In addition, we compare our proposed approach with
the closely related baselines from the HAR literature: DeepConvLSTM [OR16],
DeepSense [Yao+17], and AttnSense [Ma+19] (a detailed description of these ap-
proaches was provided in Section 4.3.1).

Evaluation and neighborhood bias. Model evaluation based on cross-validation
usually relies on a random partitioning process. The random partitioning used in
the case of segmented time series introduces a neighborhood bias [HP15]. This bias
consists of the high probability that adjacent and overlapping sequences (which
are typically obtained with a segmentation process and that share a lot of char-
acteristics) fall into training and validation folds at the same time. This leads
to an overestimation of the validation results and goes often disregarded in the
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Model USC-HAD HTC-TMD SHL

DeepConvLSTM 65.8±.0028 68.2±.0016 65.3±.012
DeepSense 67.0±.017 68.5±.0032 66.5±.005
AttnSense 68.5±.04 70.1±.005 68.4±.002

Feature fusion 67.2±.001 69.2±.0074 66.8±.0042
Corr. align. 69.5±.004 70.5±.0026 69.1±.06

Proposed 71.8±.001 74.5±.0017 73.7±.006

Table 5.2: Recognition performances of various state-of-the-art mod-
els on different representative related datasets.
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Figure 5.4: Per-node performance gains are averaged over the entire
derived architectures (similar nodes are grouped, and their perfor-
mances are averaged). The appearance frequency of the nodes is also
illustrated.

literature. To alleviate the overestimation problem, we rely in our experiments
on the meta-segmented partitioning approach proposed in [HP15], which tries to
circumvent this bias by first grouping adjacent frames into meta-segments of a
given size. These meta-segments are then distributed on each fold.

5.3.2 Performances of the derived hierarchies
Table 5.2 compare the recognition performances obtained with the baseline models
on the considered representative datasets. As shown in the table, our proposed
approach performs well on the three considered datasets. Note also that perfor-
mance of the related baselines as reported in the literature confirm the significant
issues, analyzed in [HP15], when using regular cross-validation which are likely
leading to overly optimistic performance
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Training the learners assigned to the hierarchy. Figure 5.5 shows the re-
sulting per-node performances averaged over the entire derived hierarchies, i.e.,
how accurately the learners assigned to the non-leaf nodes can predict the cor-
rect groups of concepts associated with them. Each bar in the figure represents
the gained accuracy of each node in our hierarchical approach. For example, the
8th bar corresponds to the concepts 2:walk-3:run-4:bike grouped together. Fig-
ure 5.5a illustrates the amount of supervision on average used at each node of the
derived hierarchies using different training strategies (See § 5.2.3). For reference,
the amount of supervision required in the flat learning setting is illustrated. The
amounts of supervision illustrated in the hierarchical learning settings are those
required to attain a comparable accuracy with the flat learning setting. In addi-
tion, the amount of supervision is also assessed on (i) randomly picked hierarchies,
(ii) the set of domain expert-defined hierarchies, and (iii) hierarchies derived using
the approach defined in [OHA21b], which is based on the transfer-affinity between
concepts to build the hierarchies. It is worth noticing that the hierarchies derived
using our proposed approach achieve competitive performances while using far
fewer training examples (approx. 2× 10−3 examples) compared to the other hier-
archies. This suggests that the concept grouping proposed by our measures reflects
the actual concept dependence exhibited in the data. On the other hand, the need
for supervision is more pronounced when using the regular training strategy.

5.3.3 Proposed measures and concept separability
Here we study the correlation between the proposed measures (cohesion and dis-
persion) and the separability of the grouped concepts. How do the measures of
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cohesion and dispersion change when we go down the hierarchy? And above all,
what is the impact of all this on the derived hierarchies? Are they deeper, i.e., are
the best clustering solutions the ones that very quickly decompose the groups of
concepts into atomic ones? Or, on the contrary, those trying to keep the concepts
grouped until the leaves? How does this affect the learning of groups? How does
this ultimately affect the recognition of atomic concepts? Which concepts really
benefit from being grouped together? And, which concepts benefit from being
rather learned on their own? We assess some of these questions here.

Figure 5.6, illustrates the link between the proposed measures and the prop-
erties of the derived hierarchies in terms of depth and arity along with the final
per-concept recognition performances. We particularly focus on the effect of vari-
ous scores of the cohesion and dispersion measures on the derived hierarchies and
what does this imply in terms of concept grouping and how accurately the atomic
concepts are recognized. In theory, optimal hierarchies would be those keeping the
concepts grouped while going down the hierarchy, which results in deeper hierar-
chies in a way that the biases of groups are leveraged to a greater extent. Indeed,
this is what we can see for high values of the optimized measures (≥ 0.8), where
we get a fairly large number of deep hierarchies which are accompanied by fair
recognition performances (approx. 70%). An increase in the computed measures
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Groups of concepts
Hyperparam. [0][1-7] [1,2,3][4-7] [1][2][3] [4][5][6][7]

First layer
Kernel size 0.496 0.021 0.026 0.079
# of filters 0.325 0.078 0.014 0.124
Stride 0.852 0.745 0.752 0.664

Second layer
Kernel size 0.147 0.578 0.454 0.125
# of filters 0.452 0.327 0.273 0.368
Stride 0.662 0.491 0.765 0.054

Third layer
Kernel size 0.654 0.584 0.027 0.041
# of filters 0.076 0.025 0.581 0.031
Stride 0.324 0.558 0.754 0.017

Table 5.3: Hyperparameters’ importance obtained through the
fANOVA analysis of the hierarchy depicted in Figure 5.6.

results in a slight augmentation in the recognition performances globally.

5.3.4 Hyperparameters and inductive biases
The hierarchical structuring of the concepts allows us to circumscribe the search
space for each group of concepts. The bias learned at each non-leaf node is conse-
quently more adapted to each group. However, one question that remains unclear
and could open room for further improvement is the link between these various
biases. In other words, is there a way to go beyond and structure the biases such
that a given learner can share them with its descendant in the hierarchy? Indeed,
various works touched on this aspect from the operational point of view, such
as [TMF07; ZXW11] which leveraged the transfer of orthogonal representation
between children and parents in hierarchies and the second approach that we pro-
pose (see § 5.4), where we will use transfer-affinity between concepts and groups
of concepts, but this time to simultaneously build the hierarchy of concepts.

An interesting way to tackle this question is related to the works around weight-
agnostic neural architectures and those around the interpretation of the hyperpa-
rameters as inductive biases [LJ09; FC18; GH19]. Here, we provide a solution
to investigate the link between the inductive biases used by the learners assigned
to one of the derived hierarchies. For this, we design an experimental setting in
which the architectures (hyperparameters) of the learners assigned to the non-
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leaf nodes are optimized in a weight-agnostic fashion. This learning paradigm
allows us to shift the focus from the set of weights toward the hyperparameters
of the architectures. In a second step, we perform hyperparameter importance
assessment following the methodology in [HHL14] and in one of our previous con-
tributions [HO20] in order to check how inductive biases behave in the learned
hierarchy of concepts.

Table 5.3 summarizes the obtained results from the hyperparameters assess-
ment process. It illustrates the importance of each of the optimized hyperparame-
ters at each node of the considered hierarchy. In particular, among the optimized
hyperparameters that define the architecture of the learners assigned to the hier-
archy, there are the kernel size, number of filters, and stride of convolution-base
neural network layers. Their predefined ranges can be found in the code reposi-
tory. It is worth noting the appearance, at each level of the hierarchy, of a specific
set of hyperparameters that exhibit high importance as captured by the fANOVA
framework. In particular, the stride of all three layers has the highest importance
among this set. This hyperparameter determines the portion of the signal the
convolution layers process at a time. The size of this portion is specific to each
group of concepts, e.g., smaller for dynamic activities and bigger for static ones.

5.4 Concepts structuring based on transfer affin-
ity

In this part, we propose a data-driven approach to structure the considered con-
cepts in a bottom-up process instead of the top-down one presented above. Again,
with the goal of maximizing transfer, sharing, and reuse across the constructed
structures. This approach is based on transfer affinity to determine an optimal
organization of the concepts. This is a powerful technique based on transfer learn-
ing, which showed interesting empirical properties in various domains [Zam+18;
PRS19]. Our approach starts by computing concept dependencies that exist in the
data domain using the transfer affinity scores. The closest concepts are then fused
hierarchically with each other. When taking a bottom-up process, the complete
hierarchy, including the parameters assigned to each non-leaf node, can be learned
incrementally by reusing what was learned on the way, i.e., while computing the
transfer affinity scores (see details in the following). We perform experiments to
show the effectiveness of the proposed approach and a comprehensive comparative
analysis of its various stages. This raises noticeably interesting questions about
concept dependencies and the required amount of supervision. In the following,
we detail the different parts of our approach, which are illustrated in Figure 5.7.
Specifically, we introduce the three stages of our approach in detail: Concept sim-
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ilarity analysis, Hierarchy derivation, and Hierarchy refinement.
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Figure 5.7: Our solution involves several repetitions of 3 main steps:
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affinity score). (2) Hierarchy derivation: based on the obtained affin-
ity scores, a hierarchy is derived using the hierarchical agglomerate
clustering approach. (3) Hierarchy refinement : each non-leaf node of
the derived hierarchy is assigned with a model that encompasses an
appropriate representation as well as additional dense layers which
are optimized to separate the considered concepts.

5.4.1 Concept similarity analysis
In order to define concept similarity, we leverage two measures of similarities among
concepts as transferability and dependency. Aside from the nice empirical prop-
erties of this measure, including quality, gains, and universality, it allows us to
reuse what has been learned so far at the lower levels of the hierarchies. Indeed,
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Figure 5.8: Concept similarity analysis: encoders are trained to out-
put, for each source concept, an appropriate representation which is
then fine-tuned to serve target concepts.

we leverage the models that we learned during this step and use them with a few
additional adjustments in the final hierarchical learning setting.

Transfer-based affinity. Given the set of concepts Y , we compute during this
step an affinity matrix that captures the notion of transferability and similarity
among the concepts (see Figure 5.9).

For this, we first compute for each concept Yi ∈ Y an encoder fYiφ (parame-
terized by φ) that learns to map the Yi labeled inputs, to a latent vector as zci .
Learning the encoder’s parameters consists in minimizing the reconstruction error,
satisfying the following objective function [Vin+10]:

ψ∗, φ∗ = argmin
ψ,φ∈Θ

Ex,y∼X,Y |y=Yiℓ(g
Yi
ψ (fYiφ (x)), x), (5.6)

where gyψ is a decoder (parameterized by ψ) that maps back the learned representa-
tion into the original input space. We propose to leverage the learned encoder for
a given concept Yi, to compute the affinities in comparison to other concepts via
fine-tuning of the learned representation. Precisely, we fine-tune the encoder fYiφ
to account for a target concept Yj ∈ Y , Yi ̸= Yj. This process consists, similarly,
of minimizing the reconstruction error, however rather than using the decoder gYiψ
learned above, we design a genuine decoder gYjψ that we learn from scratch. The
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Figure 5.9: Example of the obtained similarity scores using the SHL
dataset. The arrows in red have the higher similarity scores.

corresponding objective function is

ψ∗ = argmin
ψ∈Θ

Ex,y∼X,Y |y=Yjℓ(g
Yj
ψ (fYiφ (x)), x), (5.7)

where the parameters of the encoder φ are frozen, i.e., only parameters of the
genuine decoder ψ for the target concept Yj are updated during this process.

We use the performance of this process as a similarity score from Yi to Yj which
we denote by pYi−→Yj ∈ [0, 1]. We refer to the number of examples belonging to the
concept Yj used during fine-tuning as the supervision budget, denoted as b, which
is used to index a given measure of similarity. It allows us to have an additional
indicator as to the similarity between the considered concepts. Finally, the affinity
similarity score is computed as

α·pYi−→Yj
+β·b

α+β
. We set α and β to be equal to 1

2
.

Figure 5.9, provides an example of the obtained similarity scores using the SHL
dataset.

Properties. In many applications, e.g., computer-vision [Zam+18] and natu-
ral language processing [PRS19], several variants of the transfer-based similarity
measure have been shown empirically to improve three aspects: (i) the quality of
transferred models (wins against fully supervised models), (ii) the gains, i.e., win
rate against a network trained from scratch using the same training data as trans-
fer networks, and more importantly (iii) the universality of the resulting structure.
Indeed, the affinities based on transferability are stable despite the variations of
a big corpus of hyperparameters. We provide similarly some empirical evidence
(Section 5.5.2) for the appropriateness of the transfer-based affinity measure for
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the separability of similar concepts and the difficulty of separating concepts that
exhibit low similarity scores.

5.4.2 Hierarchy derivation
Given the set of affinity scores obtained previously, we derive the most appropri-
ate hierarchy, following an agglomerative clustering method combined with some
additional constraints (see Figure 5.10). The agglomerative clustering method
proceeds by a series of successive fusions of the concepts into groups and results
in a structure represented by a two-dimensional diagram known as a dendrogram.
It works by (1) forming groups of concepts that are close enough and (2) updat-
ing the affinity scores based on the newly formed groups. This process is defined
by the recurrence formula proposed by [LW67]. It defines a distance between
a group of concepts (k) and a group formed by fusing i and j groups (ij) as
dk(ij) = αidki + αjdkj + βdij + γ|dki − dkj|, where dij is the distance between two
groups of concepts i and j. By varying the parameter values αi, αj, β, and γ, we
expect to get clustering schemes with various characteristics.

In addition to the above updating process, we propose additional constraints
to refine further the hierarchy derivation stage. Given the dendrogram produced
by the agglomerative method above, we define an affinity threshold δ such that
if the distance at a given node is dij ≥ δ, then we merge the nodes to form a
unique subtree. In addition, as we keep track of the quantities of data used to
train and fine-tune the encoders during the transfer-based affinity analysis stage,
this indicator is exploited to inform us as to which nodes to merge. Let T be
the derived hierarchy (tree), and let t index the non-leaf or internal nodes. The
leaves of the hierarchy correspond to the considered concepts. For any non-leaf
node t, we associate a model θt encompassing (1) an encoder obtained using the
previously described process and (2) additional dense layers (on top of the encoder)
for classification that output decision boundaries based on the representations
produced by the encoder (see Figure 5.11).

5.4.3 Hierarchy refinement
After explaining the hierarchy derivation process, we will discuss (1) which repre-
sentations are used in each individual model; and (2) how each individual model
(including the representation and the additional dense layers) is adjusted to ac-
count for both the local errors and also those of the hierarchy as a whole.

Which representations to use? The question discussed here is related to the
encoders to be used in each non-leaf node. For any non-leaf node t we distinguish
two cases: (i) all its children are leafs; (ii) it has at least one non-leaf node. In



155 5.4. Concepts structuring based on transfer affinity

Figure 5.10: An example of the hierarchy derivation process applied
to the SHL. The steps of the derivation process are depicted with
circles that group each time a subset of the considered concepts.

the first case, the final considered representation, associated with the non-leaf
node, is the representation learned in the concept affinity analysis step (first-order
transfer-based affinity) (see Figure 5.11). In the second case, we can either fuse
the nodes (for example, in a case of classification between 3 concepts, we get all
3 together rather than, first {1} vs. {2,3}, then {2} vs. {3}) or keep them as
they are and leverage the affinities based on higher-order transfer where, rather



156 5.4. Concepts structuring based on transfer affinity

Encoder Additional dense layers to output decision boundaries

Figure 5.11: For any non-leaf node of the derived hierarchy, we as-
sociate a learning model that encompasses an encoder that maps
inputs to their corresponding latent representations and additional
dense layers that output decision boundaries based on the represen-
tations produced by the encoder.

than accounting for a unique target concept, the representation is then fine-tuned.
Figure 5.12 illustrates how transfers are performed between non-leaf nodes models.
We index the models with the encoder θ[Yi]. In the case of higher-order transfer,
the models are indexed using all concepts involved in the transfer, i.e., θ[Yi,j,...].

θ[Yj ]

Yj Yk

θ[Yi,j ]

Yi

(a)

Yj Yk

θ[Yi,j,k]

Yi

(b)

θ[Yj ]

Yj Yk

θ[Yi,j ]

θ[Yj ]

...

(c)

Figure 5.12: The transfer is performed between non-leaf node models.
The hierarchy in (a) can be kept as it is merged to form the hierarchy
in (b). (b): a high-order transfer between the concepts Yi, Yj, and Yk
is performed. (c): no transfer can be made.
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Adjusting weights of the models. Given the encoder fφ assigned to any non-
leaf node t, the additional dense layers ω parameterizing the function g are trained
to output a hypothesis based on the most appropriate representations learned
earlier. The parameters of the encoder are frozen while the additional dense layers
are trained as

argmin
ω∈Θ

Ex,y∼X,Y |z=fφ(x)ℓ(gω(z), y). (5.8)

The parameters are adjusted to account for local errors as well as for global errors
related to the hierarchy as a whole.

5.5 Experiments
Empirical evaluation of this second approach is performed following three steps:
we evaluate classification performances in the hierarchical setting (Section 5.5.1);
then, we evaluate the transfer-based affinity analysis step and the properties related
to the separability of the considered concepts (Section 5.5.2); finally, we evaluate
the derived hierarchies in terms of stability, performance, and agreement with their
counterparts defined by domain experts (Section 5.5.3). A similar experimental
setup as the previous experimental part (Section 5.3.1) is used in the following.

Implementation details. We use Tensorflow for building the encoders/decoders.
We construct encoders by stacking Conv1d/ReLU/MaxPool blocks. These blocks
are followed by a Fully-Connected/ReLU layers. The encoder’s performance esti-
mation is based on the validation loss and is framed as a sequence classification
problem. As a preprocessing step, annotated input streams from the SHL dataset
are segmented into sequences of 6000 samples which correspond to a duration of 1
min. given a sampling rate of 100 Hz. For weight optimization, we use stochastic
gradient descent with a Nesterov momentum of 0.9 and a learning rate of 0.1 for
a minimum of 12 epochs (we stop training if there is no improvement). Weight
decay is set to 10−4. Furthermore, to make the neural networks more stable, we
use batch normalization on top of each convolutional layer.

5.5.1 Evaluation of the hierarchical classification perfor-
mances

In these experiments, we evaluate the flat classification setting using neural net-
works which constitute our baseline for the rest of the empirical evaluations. To
compare our baseline with the hierarchical models, we make sure to get the same
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Algorithm 8: Hierarchical learning of dependent concepts based on
transfer affinity. Summary of the concept structuring process starting
from an empty tree (T = ∅) until a full hierarchy with trained models
(Tθ∗1 ,...,θ∗T ) is returned.

Input : (i) X = {(xi, yi)}Ni=1 set of annotated training examples;
(ii) Y = {Y1, . . . , Yn} denotes the set of concepts.

1 begin
2 T ← ∅
3 i← 1
4 B ← subset of X as a supervision budget ; % |B| = b.
5 repeat
6 Compute ith order concept affinity (Sect. 5.4.1)

; % i.e., for the combinations of i+ 1 concepts among the set of
concepts

; % Initialize the weights of the learners being assigned to the hierarchy
7 if T is empty then
8 Derive the concept hierarchy T (Sect. 5.4.2)

; % select the pairs of encoder-decoder with the highest affinity scores
; % given the supervision budget, fine-tune the encoders to account
for the target concept

; % Initialize the weights of the learners assigned to the hierarchy
9 Tθ1,...,θT ← initialize()

10 else
11 Update the hierarchy T (Section 5.4.3)
12 end

; % Update the weights of the models (Algorithm 6)
13 Tθ1,...,θT ← trainHierarchy(B, T )

; % Evaluate hierarchy globally
14 error ← evaluate(X, T )
15 i← i+ 1 ; % increase affinity order

; % increase supervision budget, where B̂ is a subset of X.
16 B ← B ∪ B̂

17 until convergence (error < ϵ);
18 end

Result: Trained hierarchy Tθ∗1 ,...,θ∗T

complexity, i.e. comparable number of parameters as the largest hierarchies in-
cluding the weights of the encoders and those of the additional dense layers. We
also use Bayesian optimization based on Gaussian processes as surrogate models
to select the optimal hyperparameters of the baseline model [SLA12; HOA20b].
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Per-node performances. Figure 5.13 shows the resulting per-node performances,
i.e. how accurately the models associated with the non-leaf nodes can predict the
correct subcategory averaged over the entire derived hierarchies. The nodes are
ranked according to the obtained per-node performance (top 10 nodes are shown)
and accompanied by their appearance frequency. It is worth noticing that the
concept 1:still learned alone against the rest of the concepts (first bar) achieves
the highest gains in terms of recognition performances while the appearance fre-
quency of this learning configuration is high (more than 60 times). We see also
that the concepts 4:bike, 5:car, and 6:bus grouped together (5th bar) occur very
often in the derived hierarchies (80 times) which is accompanied by fairly signifi-
cant performance gains (5.09± 0.3%). At the same time, as expected, we see that
the appearance frequency gets into a plateau starting from the 6th bar (which
lasts after the 10th bar). This suggests that the most influential nodes are often
exhibited by our approach.
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Figure 5.13: Per-node performance gains averaged over the entire
derived architectures (similar nodes are grouped, and their perfor-
mances are averaged). The appearance frequency of the nodes is also
illustrated. Each bar represents the gained accuracy of each node in
our hierarchical approach. For example, the 8th bar corresponds to
the concepts 2:walk-3:run-4:bike grouped together.

Per-concept performances. We further ensure that the performance improve-
ments we get at the node levels are reflected at the concept level. Experimental
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Figure 5.14: Recognition performances of each individual concept,
averaged over the entire derived hierarchies. For reference, the recog-
nition performances of the baseline model are also illustrated.

results show the recognition performances of each concept, averaged over the whole
hierarchies derived using our proposed approach. We indeed observe that there
are significant improvements for each individual concept over the baseline (flat
classification setting). We observe that again 1:still has the highest classification
rate (72.32 ± 3.45%) and an improvement of 5 points over the baseline. Concept
6:bus also exhibits a roughly similar trend. On the other hand, concept 7:train has
the least gains (64.43± 4.45%) with no significant improvement over the baseline.
Concept 8:subway exhibits the same behavior suggesting that there are undesirable
effects that stem from the definition of these two concepts.

5.5.2 Evaluation of the affinity analysis stage
These experiments evaluate the proposed transfer-based affinity measure. We as-
sess, the separability of the concepts depending on their similarity score (for both
the transfer-affinity and supervision budget) and the learned representation.

Appropriateness of the transfer-based affinity measure. We reviewed
above the nice properties of the transfer-based measure, especially the universality
and stability of the resulting affinity structure. The question that arises is related
to the separability of the concepts that are grouped together. Are the obtained
representations, are optimal for the final models used for the classification? This is
what we investigate here. Figure 5.15b shows the decision boundaries generated by
the considered models, which are provided with the learned representations of two
concepts. The first case (top right) exhibits a low-affinity score, and the second
case (bottom right) shows a high-affinity score. In the first case, the boundaries
are unable to separate the two concepts while it gets a fairly distinct frontier.
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θ[zi]

Yi Yj

(a) (b)

Figure 5.15: (a) Non-leaf node grouping concepts Yi and Yj. (b)
Decision boundaries generated by the additional dense layers plugged
into the non-leaf node using an encoder (representation) fine-tuned to
account for (top) the case where Yi and Yj are dissimilar (low-affinity
score) and (bottom) the case where Yi and Yj are similar (high-affinity
score).
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Figure 5.16: Decision boundaries obtained by the additional dense
layers trained on the representations zt as a function of the distance
between the concepts (y-axis) and the supervision budget (x-axis).

Impact on the models’ decision boundaries. We train different models with
various learned representations in order to investigate the effect of the initial affini-
ties (obtained solely with a set of 100 learning examples) and the supervision bud-
get (additional learning examples used to fine-tune the obtained representation) on
the classification performances of the models associated with the non-leaf nodes of
our hierarchies. Figure 5.16a shows the decision boundaries generated by various
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models as a function of the distance between the concepts (y-axis) and the super-
vision budget (x-axis). Increasing the supervision budget to some larger extents
(more than ∼ 300 examples) results in a substantial decrease in the classification
performances of the models. This suggests that, although our initial affinity scores
are decisive (e.g. 0.8), the supervision budget is tightly linked to generalization.
This shows that a trade-off (controlled by the supervision budget) between sepa-
rability and initial affinities arises when we seek to group concepts together. In
other words, the important question is whether to increase the supervision budget
indefinitely (in the limits of available learning examples) in order to find the most
appropriate concepts to fuse with, while expecting good separability.

5.5.3 Universality and stability
We demonstrated in the previous section the appropriateness of the transfer-based
affinity measure to provide distance between concepts as well as the existence of
a trade-off between concepts separability and their initial affinities. Here we eval-
uate the universality of the derived hierarchies as well as their stability during
adaptation with respect to our hyperparameters (affinity threshold and supervision
budget). We compare the derived hierarchies with their domain experts-defined
counterparts, as well as those obtained via a random sampling process. Figure 5.17
shows some of the hierarchies defined by the domain experts (first row) and sam-
pled using the random sampling process. For example, the hierarchy depicted in
Figure 5.17d corresponds to a split between static (1:still, 5:car, 6:bus, 7:train,
8:subway) and dynamic (2:walk, 3:run, 4:bike) activities. The difference between
the hierarchies depicted in Figure 5.17a and 5.17b is related to 4:bike activity which
is linked first to 2:walk and 3:run then to 5:car and 6:bus. A possible interpretation
is that in the first case, biking is considered as “on feet” activity, while in the sec-
ond case as “on wheels” activity. What we observed is that the derived hierarchies
tend to converge towards the expert-defined ones.

Method Agree. perf. avg.± std.

Expertise - 72.32±0.17
Random 0.32 48.17±5.76
Proposed 0.77 75.92±1.13

Table 5.4: Summary of the recognition performances obtained with
our proposed approach compared to randomly sampled and expert-
defined hierarchies.

We compare the derived hierarchies in terms of their level of agreement. We
use for this assessment, the Cohen’s kappa coefficient [Coh60] which measures
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Figure 5.17: Examples of hierarchies: (a) defined via domain exper-
tise, (b-c) derived using our approach, and (d) randomly sampled.
Concepts 1—8 from left to right.

the agreement between two raters. The first column of Table 5.4 provides the
obtained coefficients. We also compare the average recognition performance of the
derived hierarchies (second column of Table 5.4). In terms of stability, as we vary
the design choices (hyperparameters) defined in our approach, we found that the
affinity threshold has a substantial impact on our results with many adjustments
involved (12 hierarchy adjustments on avg.), whereas the supervision budget has
a slight effect, which confirms the observations in Sec. 5.5.2.

5.6 Conclusion
We explored in this chapter different approaches for guiding the learning pro-
cess by structuring the concepts to learn into hierarchies. We have proposed two
approaches: one corresponding to a top-down strategy based on the clustering
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and the decomposition of concept groups (§ 5.2); and another corresponding to a
bottom-up strategy based on the calculation of transfer-affinity between concepts
followed by the composition of concepts starting from those exhibiting a weak
affinity to the transfer until the strongest (§ 5.4).

The former approach starts by determining a suitable structure for the con-
cepts according to a transfer affinity-based measure. The latter approach starts
by clustering groups of atomic concepts close enough to be learned together using
cohesion and dispersion measures. The clustering approach substantially reduces
the number of tree candidates for grouping the atomic concepts. Afterward, op-
timal representations and classifiers are characterized, which are then refined to
account for both local and global errors.

The two approaches are distinguished by the fact that learning in the top-down
approach is done in two stages, unlike the bottom-up approach. Indeed, in the top-
down approach, the models are assigned to the nodes of the hierarchy only when
the construction phase of the hierarchy is completed. Whereas in the bottom-up
approach, the learning is done in parallel because the transfer models are learned
at the same time as the groups of concepts are formed, based moreover on the
transfer affinity calculated from these models.

Empirical evaluations demonstrated superior results using the hierarchies de-
rived using our proposed approaches on a dataset collected in real-life settings,
which is susceptible to concept overlaps (in addition to the intrinsic multi-inheritance
of the featured concepts). The proposed approaches allow us to reduce the expo-
nential theoretical complexity of basic hierarchical learning settings drastically. As
we started to analyze and discuss in § 5.3.4 and as explored in some works, such
as [TMF07; ZXW11], the inductive biases learned at each node of the hierarchy
can be exhibited and leveraged in a way that some aspects will no longer require to
be learned again from scratch. We provide theoretical bounds for the problem and
empirically show that using our approach, we are able to improve the performances
and robustness of activity recognition models over a flat classification baseline.

Moreover, from a purely operational point of view, the hierarchical learning of
concepts would, among other things, make it possible to implement collaborative
and decentralized processing mechanisms. For example, learning sub-problems
at the higher levels of the hierarchies can be (pre-)processed at the levels of the
final extremities of the system. The more specific sub-problems require heavier
processing and, therefore, more substantial infrastructures. The (pre-)processing
that is carried out at the levels of the final extremities of the system serves to
facilitate learning at the central and intermediate levels. This can be enabled by
mechanisms for transferring and sharing (or structuring) inductive biases.

Even if the hierarchical structuring of the concepts allows us to circumscribe
the search space for each group of concepts and consequently get inductive biases
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that are more adapted to each group, the proposed model can be further improved
to get even better results on the final atomic concepts while using less supervision.
In addition to supporting the necessity of organizing concept learning, our experi-
ments raise interesting questions for future work. Noticeably, Sec. 5.5.2 asks what
is the optimal amount of supervision for deriving the hierarchies. Future work
follows various axes: (1) Explore other structures other than hierarchies, including
the study of different approaches for searching and exploring the search space of
different hierarchical types, noticeably lattices; (2) Explore strategies that do not
rely on fixing any type of structure and consider it as a parameter that can be
learned. Some works in this sense are [KT08; Ten+11]. Ultimately, one goal is
to make the whole process trainable in an end-to-end fashion, which involves for-
mulating the clustering and hierarchy derivation steps in a continuous relaxation
scheme; (3) Express the transformations underlying the various groups of concepts
via invariants and enforce them while training the different learners assigned to
the structure. This is what we started to explore in § 5.3.4, where we assessed how
inductive biases are inherited from one node to another; (4) Building on the way
inductive biases are shared from one node to another, future works include leverag-
ing the parameter-sharing scheme, introduced in [RSP17], to ensure in a principled
way that the domain invariants are reproduced in the final learned model.

We saw in this chapter how to leverage the semantics of the label space to
organize (or structure) the learning process. Hierarchical structures were explored
in this sense, and the learning process benefited from the proposed transfer and
sharing mechanisms across the levels of the hierarchies.
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Chapter 6

Abstracting the context and
modeling data relativity

In this chapter, we focus on the collaborative aspects of the massively distributed
sensing nodes and the ways the conciliation of decentralized learners can be im-
proved. We investigate approaches that can efficiently fuse the relative views
provided by the sensing environments, abstract them from their contextual bias,
and conciliate the decisions taken by decentralized learners while considering their
relativity. The content of this chapter is based on [OH22] and [HO22].

F

We have reviewed, in the two previous chapters, various strategies for the
integration of structural constraints in the learning process. Some focused on the
input data (inputs), and others on the concepts to learn (outputs). The main
advantage of such strategies lies in the possibility of having finer control over the
learning process.

In this chapter, we will approach the abstraction of the heterogeneity induced
by various effects, in particular those related to the relative positions of the data
sources as well as to the contexts which surround them. The idea is to be able to
identify and isolate the components linked to the effects of heterogeneity. Similarly
to the previous chapters, we seek to put the learner in a good position to learn.
Indeed, the strategies that we develop in this chapter aim to learn (in the sense of
bias learning) transformations that project the data into spaces abstracted from
various biases (those linked to the position of the data generators in particular).

In IoT applications, data generated from different sensing devices and locations
are embodied with varying contexts. The devices offer specific perspectives on the
problem of interest depending on their location, e.g., on-body sensor deployment
for activity recognition. Furthermore, in applications involving moving targets
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encompassing different parts, such as human activity recognition from on-body
sensor deployments, the sensing devices are tightly linked with the dynamics of
the parts of the target they are located on [BBS14; Shi+20; BY20; HO20; HO21b;
Car+18; MSB20]. As a consequence, the movements of the area on which the
sensing devices are positioned generate data of two different but complementary
natures. For instance, in Figure 6.1, the data of the movement collected from the
hand sensors combines data of the whole body intertwined with data related to the
movement of the hand in relation to the body. The first concerns the movement of
the position relative to the target itself, and the second concerns the movement of
the target relative to its surroundings. In the case of human activity recognition,
we notice, for example, that the kinetics of the hand movements during a race can
be decomposed into a circular movement (CM) of the hand relative to the shoulder
and a translation movement (TM) associated with the whole body [MSB20]. At
least three practical implications can be devised from this: (i) CM data are enough
to learn some target concepts, e.g., the hand kinetics movement is enough to de-
termine if a person is at rest or running; (ii) CM data from different positions, e.g.,
hand and torso, cannot be shared and mixed together. Otherwise, this generates
noise and confusion during the learning process; (iii) only TM data can be shared
among the different positions as these data are of the exact same nature but taken
from different points of view (positions or perspectives).

For this, we will draw inspiration from two key principles: (1) abstraction in
parameters and meta-parameters (feature learning and reuse) where the princi-
ple is to be able to capture the heterogeneous components with the parameters
and the common components in the meta-parameters; and (2) the exploitation of
similarities between tasks where the idea is (i) to exhibit different forms of struc-
tures (e.g., symmetries), (ii) to represent them with adapted tools (e.g., special
Euclidean group) and (iii) to incorporate them into the learning process. The idea
is to capture the context of each data source in specific components of the learn-
ing model. This way of proceeding will therefore have the additional consequence
of facilitating model adaptation since the components that evolve because of the
context, in reality, are isolated and controlled. Remember that the context here
does not simply refer to the position of the data sources but can encompass both
the specificities of the data sources, their positions relative to the phenomenon of
interest, their position relative to other data sources, etc.

We begin this chapter by describing structured environments and the basic
federated learning approaches used in these types of environments. Also, we will
discuss the impact of context on the learning process and present the formaliza-
tion of the position abstraction problem as a latent representation learning problem
(Section ??). First, we investigate in Section 6.2 the emergence of such “compart-
mentalizations” into parameters and meta-parameters (mentioned previously in
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Figure 6.1: (left) The hand sensor undergoes two types of movements.
One is of the same nature as the torso and linked to the translational
movement of the body. The other is linked to the movement of the
hand locally relative to the body. (right) Phase plan showing the
dynamics of the thigh and foot during gait cycle (GC) ( 1%GC)
extracted from the biomechanics works of [Car+18].

Section 2.4). In particular, using the so-called “disentanglement” approaches. In
this part, we leverage the data decomposition into universal and position-specific
components to improve activity recognition models. These components have dis-
tinctive contributions concerning the target concepts to learn. This brings an
interesting property that allows us to fuse the universal components as seen from
different points of view (positions) while identifying the position-specific compo-
nents, which could serve as additional knowledge in situations when the position-
specific components are not sufficient to recognize an activity. Without this data
decomposition process, the local part of the data adds noise, which is challeng-
ing to manage when relying solely on standard aggregation techniques. Indeed,
to integrate data from different positions (or clients), it is necessary to separate
the data of the same nature (shareable) from the pure local ones linked to the
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specific kinetics of the position. Similar data can and should be shared to improve
recognition rates. However, the specific data must be processed locally, otherwise
impacting the learning process.

In Section 6.4, we propose to exploit the structure of data source deployments,
in particular their relativity. We leverage in this part the recent advances in ma-
chine learning literature, e.g., [VI20], which seek to integrate invariants in the form
of, e.g., symmetries within the phenomena of interest, into the learning process.
Symmetry is one of the invariants that is leveraged for its powerful properties
and its promising ability to drastically reduce the problem size [CGF19; Fin+20;
QBC20] by requiring fewer training examples than standard approaches for achiev-
ing the same performance. Group theory provides a useful tool for reasoning about
invariance and equivariance. In particular, we introduce the notion of relativity
between data generators and model it via the special Euclidean group, denoted by
SE(3), which encompasses arbitrary combinations of translations and rotations.
The relative contribution of a data generator in the description of the phenom-
ena of interest is expressed using elements of this group and used to constrain
the separation process. This allows us to leverage further the notion of sharing,
which is reflected in the conciliation process of the decentralized learning setting
by promising improvements.

6.1 Problem formulation
Here we motivate and formalize the problem of context abstraction and relativity
modeling to improve collaboration in massively distributed sensing environments.
We first study the impact that the context surrounding the distributed data sources
imposes on the learning process. In particular, the position bias that taints the
data generated, for example, in distributed sensing deployments. The problem of
abstraction is looked at from the lenses of data disentanglement. Domain knowl-
edge about the geometrical relativity of data sources is also motivated as a means
to further improve collaboration.

6.1.1 Setting
We consider settings where a collection S of M sensors (also called data sources),
denoted {s1, . . . , sM}, are positioned respectively at positions {p1, . . . , pM} on
the object of interest, e.g., human body. Each sensor si generates a stream
xi = (xi1, x

i
2, . . . ) of observations of a certain modality like acceleration, gravity,

or video, distributed according to an unknown generative process. Furthermore,
each observation can be composed of channels, e.g., three axes of an accelerometer.
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In the case of the SHL dataset, the goal is to continuously recognize a set of hu-
man activity target concepts Y like running or biking. Data are generated from 4
smartphones, carried simultaneously at (hand, torso, hips, and bag body locations
(see detailed description in Section 4.3). Sensors distributed in various positions of
the space provide rich perspectives and contribute in different ways to the learn-
ing process, and decentralization has the potential to offer better generalization
performances.

6.1.2 Sensing deployments and impact of the context
Long lines of research studied the impact of the varying contexts on machine learn-
ing algorithms and showed their fragility to viewpoint variations, e.g., [Hsi+20] in
an FL setting. For example, basic convolutional networks are found to fail when
presented with out-of-distribution category-viewpoint combinations, i.e., combina-
tions not seen during training [Mad+20]. Similarly, in activity recognition, the di-
versity of users, their specific ways of performing activities, and the varying charac-
teristics of the sensing devices have a substantial impact on performances [Sti+15;
HO21b]. In these cases, the conditional distributions may vary across clients even
if the label distribution is shared [Kai+19]. In decentralized approaches, several
theoretical analyses bound this drift by assuming bounded gradients [YYZ19],
viewing it as additional noise [KMR20], or assuming that the client optima are
ϵ-close [Li+20a].

The impact of varying contexts is not limited to a skewed distribution of la-
bels but is rather predominantly related to the aspects of the phenomenon being
captured by the sensing devices depending on their intrinsic characteristics and
locations. Depending on their disposition w.r.t. to the phenomena of interest,
the sensing devices generate different views of the same problem. The diversity
brought by these configurations in terms of views is beneficial but must be explic-
itly handled. Reconciling the various perspectives offered by these deployments
using decentralized learning approaches requires several relaxations limiting their
potential capabilities when the impact of the context on the data generation pro-
cess is essential. Indeed, how to reconcile these different points of view, which can
potentially be redundant or even seemingly contradictory to each other? When
additional knowledge is available about the structure of the sensing environment,
these challenges can be handled efficiently.

Traditional HAR approaches [BBS14; OR16; Yao+17] often consider the sen-
sory inputs to be flattened therefore disregarding the significant impact of the
various positional biases. Some approaches consider these problems from the per-
spective of deployment optimization, mainly focusing on the study of the optimal
on-body sensors placement and its impact on the recognition of target activi-
ties [Ban+14; Shi+20; BY20]. There are also rare approaches offering pipelines
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that include recognition of the position of the data generator followed by the ac-
tivity recognition [YW16] or including an explicit model of the context [Eha+20;
Asi+20]. Other approaches, e.g., [KL08], try to develop heuristics to improve
the robustness of activity recognition models to sensor displacements. Regardless
of the devised techniques, these approaches rely on centralized processing of the
data, which does not match the intrinsic complementary nature of the data, thus
limiting their potential capacities.

6.1.3 Abstraction of the position
As described previously, each sensor produces two types of orthogonal data. This
problem can be formally defined as the construction of a factorized representa-
tion z being a composition of (i) position-invariant (abstract or universal) compo-
nents vector zA, and (ii) a position-specific (local) components vector zP . On the
one hand, the position-invariant components vector captures the features that are
shared across all positions. On the other hand, the position-specific components
vector captures specific and complementary insights with regard to the target con-
cepts. The first problem to solve in our model is to build this data decomposition
process for each sensor automatically.

Thanks to this process, for each sensor si located in position pi, the associ-
ated local model will have the ability to disentangle the data interlaced between
the local and universal components by projecting them into two separate repre-
sentations ziA and ziP (or simply zpi). Components zP will be useful only in a
local model, while zA can be used in the local model or shared with the same
kind of components originating from all other models in a global model (or cen-
tral server). This process has the potential to allow fine-grained control of the
inference process. Indeed, one can leverage different configurations in order to get
optimal recognition performances, while traditional HAR approaches often con-
sider the inputs to be flattened and disregard the bias related to the position.
We notice, for example, that in certain situations, the position-specific compo-
nents alone are enough to recognize the activity, e.g., the circular movements of
the hand are enough to distinguish between running and walking. In addition,
since only position-independent data is shared, this process greatly reduces data
heterogeneity. It, therefore, improves data aggregation techniques for clients in
federated learning settings by sharing only the position-invariant data. When the
data are not decomposed, the position-specific part of the data represents noise
for the global system.

To deal with these two challenging complementary representations, we propose
a model based on multi-level processing to abstract the position as described below.
In this model, we suppose that the position-invariant components share the data
with the central learner.
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6.1.4 Relativity of viewpoints in structured sensing envi-
ronments

Very often, knowledge about the relative geometry of the sensing devices and do-
main models describing the dynamics of the phenomena is available and can be
leveraged and incorporated into the learning process. For example, the spatial
structure of the sensors deployment and the induced views, sensors capabilities,
and the perspectives (views) through which the data is collected (sensing model,
range, coverage, position in space, position on the body, and type of captured
modality) [AC09; WKA10; HOA20a]. A long line of research work around activ-
ity recognition reviewed in, e.g. [YWC08; HO20], has focused on the problem of
optimal placement and combination of sensors on the body in order to improve
a priori models’ performance. Additionally, domain models derived from biome-
chanical studies like [MSB20; Car+18] are often used to describe body movements
and the relative interactions between various body parts in a structured manner.
Alternatively, considering the structure of the sensing devices explicitly during the
learning process is more promising but challenging. An approach close to ours
for the relativity of perspectives is that of [Est+19] which describes the different
perspectives by discrete subgroup of the rotation group.

Integrating these additional models into the learning process has promising im-
plications noticeably for the conciliation process of decentralized machine learning
algorithms: one can exhibit the relative contribution of the individual views to the
bigger picture. The primary goal of this chapter is to develop a robust approach
that integrates knowledge about the structure of sensing devices in a principled
way to achieve better collaboration.

6.2 Multi-level abstraction of the source position
Here, we propose an instantiation of the proposed problem formulation composed
of local learners and a central model. To perform the separation of the position-
specific components from the universal ones, we use a family of models based
on variational autoencoders (VAEs) [KW13] (§ 6.2.1). The central model is re-
sponsible for aggregating the progress made by the local learners (§ 6.2.2). This
instantiation is described in the following. Figure 6.2 summarizes the proposed
instantiation. Algorithm 10 outlines the complete learning process.

6.2.1 Position-specific learners
The position-specific (or local) learners, denoted Lp, pursue their own learning
steps locally using their own generated data (see the black arrows depicted in
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Figure 6.2: The framework of the proposed multi-level abstraction ar-
chitecture. The global learner LS (or Lref) starts with an initial set of
weights that are distributed to the local learners. The local learners
Lp, one for each position pi, learn the two vector components zA and
zP by independently performing a set of gradient steps which allows
getting newer versions. These new versions are used during the con-
ciliation step, which results in a new version of the global learner and,
subsequently, a more robust position-independent representation.
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Figure 6.2). Their goal is to decompose the contents of the data into different
factors of variations, particularly those related to the position itself.

The task here is to learn these factors of variation, commonly referred to as
learning a disentangled representation (or transformation). It corresponds to find-
ing a representation where each of its dimensions is sensitive to the variations of
exactly one precise underlying factor and not the others. We construct at the level
of each client i a representation that maps the observation space X to a latent
space V with hA : X −→ V (universal) and hpi : X −→ V (position-specific). The
universal representation has to remain invariant to the relative location of the de-
centralized nodes. We also ensure during the learning process that the universal
and location-specific transformations are orthogonal to each other (hA ⊥ hpi). In
other words, we want these two transformations to capture completely different
factors of variations in the data. To do that, we enforce hpi to be insensitive to the
factors of variations linked to the representation hA using representation disentan-
glement techniques. The local objective function is constructed using a family of
models based on VAEs for their ability to deal with entangled representations.

VAE-based objective. Depending on the availability of explicit knowledge
about the underlying factors of variation, different strategies are pursued to learn
the disentangled representation. For example, in video prediction [DB17; Hsi+18],
temporal-invariance is often leveraged with a content representation that captures
structure that is shared across all video frames and a pose representation capturing
content that varies over time. These strategies require devising complex architec-
tures and intricate loss functions to enforce prior knowledge. Alternatively, the
disentanglement can be performed using separate representations for each fac-
tor of variation, which are jointly learned by different encoders, e.g. [Sad+20;
Qia+21]. Although the representations are explicitly separated and learned by
different encoders, getting exact correspondence with the factors of variation, i.e.,
non-overlapping dimensions, is not ensured and can lead to identical representa-
tions.

Recent advances in unsupervised disentangling based on VAEs demonstrated
noticeable successes in many fields using the β-VAE, which leads to improved
disentanglement [Hig+17]. It uses a unique representation vector and assigns an
additional parameter (β > 1) to the VAE objective, precisely, on the Kullback
Leibler (KL) divergence between the variational posterior and the prior, which
is intended to put implicit independence pressure on the learned posterior. The
improved objective becomes:

ℓpi(x
i;ψi, φi) =EQφi (zi|xi)[logPψi(xi|zi)] ←− autoencoder reconstruction term

− βDKL(Qφi(zi|xi)||Pψi(zi))− αDKL(Qφi(zi)||P (zi)),
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where the inference model Qφi(zi|xi) corresponds to an encoder, and the likelihood
model Pψi(xi|zi) corresponds to a decoder. φi and ψi are the parameters of the
encoder and decoder, respectively. The term controlled by α allows specifying a
much richer class of properties and more complex constraints on the dimensions of
the learned representation other than independence. Indeed, the proposed concil-
iation step is challenging due to the dissimilarity of the data distributions across
the local learners, leading to discrepancies between their respective learned repre-
sentations. One way to deal with this issue is by imposing sparsity on the latent
representation in a way that only a few dimensions get activated depending on
the learner and activities. We ensure the emergence of such sparse representations
using the appropriate structure in the prior P (z) such that the targeted underlying
factors are captured by precise and homogeneous dimensions of the latent repre-
sentation. We set the sparse prior as P (z) =

∏
d(1− γ)N (zd; 0, 1) + γN (zd; 0, σ

2
0)

with σ2
0 = 0.05 and d denotes the latent dimension. This distribution can be in-

terpreted as a mixture of samples being either activated or not, whose proportion
is controlled by the weight parameter γ [Mat+19].

6.2.2 Referential learner
Each local learner pursues its own version of the universal representation but has
not to diverge from the universal representation zref

A aggregated at the level of the
referential learner, denoted ref. The referential universal representation constitutes
a consensus among all local learners. In our setting, we build the referential (or
central) universal representation by making every learner contributes to it via a
weighted aggregation defined as follows: given the objectives fi(θi) of the local
learners, the referential learner objective function is formulated as:

min
θ∈Θ

{
f(θ) :=

1

M

M∑
i=1

αi × fi(θi)

}
with

M∑
i=1

αi = 1, (6.1)

where αi is used to weigh the contribution of every learner to the universal repre-
sentation. After a predefined number of local update steps, we conduct a concilia-
tion step (see the dotted arrows in Figure 6.2). Each conciliation step t produces
a new version of the referential learner θ(t)ref and, a new version of the referen-
tial universal representation zref

A . The conciliation step has to be performed on
the learned representations zpA via regularization, for example. In our approach,
the conciliation step is performed via representation alignment, e.g., correlation-
based alignment [And+13]. More formally, we instrument the objective function
of the local learners with an additional term derived from the representation align-



177 6.3. Experiments

ment [TTN20]. The optimization problem (3.1) becomes:

min
θ∈Θ

{
f(θ) =

1

M

M∑
i=1

αi
(
fi(θi) + λR(θi)

)}
, (6.2)

where R is a regularization term responsible for aligning the locally learned uni-
versal components with the ones learned by the referential learner and λ ∈ [0, 1] is
a regularization parameter that balances between the local objective and the reg-
ularization term. Precisely, in multi-view representation learning, representation
alignment is defined as follows:

f(xa; θf )↔ g(xb; θg)

where each view has a corresponding transformation (f or g) that takes the original
space into a multi-view aligned space with certain constraints, and ↔ denotes the
alignment operator. In the case of correlation-based alignment, which relies on
the canonical correlation analysis (CCA) [Hot92], this operator is concerned with
finding a pair of linear transformations such that one component within each set
of transformed variables is correlated with a single component in the other set.
This makes the corresponding examples in the two views maximally correlated in
the projected space,

ρ = max
f,g

corr
(
f(xa), g(xb)

)
where corr(·) denotes the sample correlation function. Maximizing the correla-
tions between the projections of the examples allows obtaining an embedding that
compensates for the pairwise deficiencies of the different views. The regularization
term in (6.2) is defined as follows:

R(θ) = max
θ
corr

(
zref
A , h

pi
A (x

i; θ)
)
, (6.3)

the first part being fixed to be the referential universal representation. Position-
specific and universal components will still be learned separately but locally. Then,
the conciliation can be performed, where the weights of the local universal com-
ponents are aggregated and used to update the referential learner.

6.3 Experiments
Here, we perform an empirical evaluation of the proposed approach, consisting of
two major stages. In the first stage, we evaluate the quality of the data separation
into position-specific and universal components which is performed by the local
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Algorithm 9: Multi-level abstraction of sensor position
Input : {xi}Mi=1 streams of annotated observations from the sensors

1 θ ← initWeights() ; % Init. referential learner weights
2 distributeWeights(θ, S) ; % Weights distribution
3 while not converged do

; % Local updates
4 foreach position pi ∈ S do
5 for t ∈ Ti steps do
6 Sample mini-batch {xj}ni

j=1 from the stream of data xi

7 Evaluate ∇θiℓpi(θi) with respect to the mini-batch
8 Compute adapted parameters: θ(t)i ← θ

(t−1)
i − η∇θiℓpi(θi)

9 end
10 end

; % Central updates
11 Update central model’s weights LS by aggregating the incoming

weights from the local models Li, i ∈ {1, . . . ,M}.
12 end

Result: LS and Li, i ∈ {1, . . . ,M}, the trained referential and local
learners

learners and how each of these components contribute individually, with and with-
out the conciliation process, to the recognition performances (§ 6.3.2); We, then,
evaluate various inference configurations where the position-specific and universal
components are combined together to improve the recognition performances. We
also provide a comparative analysis against baselines (§ 6.3.3).

6.3.1 Experimental setup
Datasets description. We evaluate our proposed approach on three large-scale
real-world wearable benchmark datasets featuring multi-location and heteroge-
neous sensors: SHL, HHAR, and Fusion datasets.

• The Heterogeneity Dataset for Human Activity Recognition (HHAR) [Sti+15]
provides data from smartphones and smartwatches built-in sensors specifi-
cally devised to investigate sensor-, device- and workload-specific hetero-
geneities on HAR models. The dataset features 2 types of modalities, i.e.,
accelerometer and gyroscope, sampled according to the highest sampling rate
of the respective devices. A total of 6 activities carried by 9 different users
were recorded, including Biking, Sitting, Standing, Walking, Stair Up and
Stair down.
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• Fusion dataset [Sho+14] containing accelerometer, gyroscope, linear acceler-
ation and magnetometer from smartphones placed on right upper arm, right
wrist, belt, right and left jean pocket. Data collection from all 5 positions
was performed in a synchronized manner at a sampling rate of 50Hz. This
dataset considers 8 different activities, including walking, running, sitting,
standing, jogging, biking, walking upstairs and walking downstairs, which
were performed by 10 participants.

Baselines. Similar to the previous chapters, we compare our proposed approach
with the following closely related baselines: DeepConvLSTM, DeepSense, and At-
tnSense (see § 4.3.1 for details). For the ablation study, we also compare our ap-
proach with two baselines that do not perform the separation nor conciliation steps.
For each position, the architecture of these basic models consists of convolution-
based circuits which are then fused together and trained jointly. We implemented
two types of fusion schemes: concatenation-based and alignment-based fusion.

• Concatenation-based alignment: the outputs of the convolution-based
circuits of each position are fused using a simple concatenation layer.

• Correlation-based alignment: the circuits’ outputs are fused using a
correlation-based conciliation layer [And+13] which allows the circuits to
compensate for each other’s deficiencies.

To make these baselines comparable with the models based on our proposed solu-
tion, we make sure to get the same complexity, i.e., comparable number of param-
eters.

Implementation details. For the closely related baselines, the available imple-
mentation is used otherwise, we reproduce them. We use Tensorflow [Aba+16] for
building the architecture of the VAE used to model the learners in our proposed
approach. This architecture is illustrated in Figure 6.3. As a preprocessing step,
the annotated input streams are segmented into sequences, e.g., in the case of the
SHL dataset, we obtain sequences of 6000 samples which correspond to a duration
of 1 min. given a sampling rate of 100 Hz. To model the temporal dependencies in
the considered sequences, we use LSTM cells [HS97]. For weight optimization, we
use stochastic gradient descent with Nesterov momentum of 0.9 and a learning rate
of 10−1. Weight decay is set to 10−5. The number of update steps τp performed
by each local learner before the conciliation step is set to 100.
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Figure 6.3: Example of VAE architectures used to model the learners.
All convolutions are 1D with their hyperparameters (kernel size and
stride) shown. All layers are preceded by batch normalization and a
ReLU activation. conv⊤ stands for transposed convolution. LSTM
cells are used to capture the temporal dependencies in the considered
sequences. The final states generated by the LSTM cell are used to
model the latent distribution’s mean and variance. The number of
layers and their hyperparameters are optimized.

6.3.2 Evaluation of the data decomposition process
In this part, we evaluate the ability of the local learners to decompose the sensor
data into the position-specific components and the universal ones. We evaluate
this process with and without the conciliation phase, then we show the impact
of this step on the recognition performances. We measure the sparsity of a given
representation using the Hoyer extrinsic metric [HR09] which is formally defined
for a vector y ∈ Rd to be:

Hoyer(y) =

√
d− ∥y∥1/∥y∥2√

d− 1
∈ [0, 1]

yielding 0 for a fully dense vector and 1 for a fully sparse vector. Table 6.1
summarizes the average normalized sparsity of the obtained representations. Fig-
ure 6.4 illustrates the average latent magnitude computed for each dimension of
the learned representations.

Config. Bag Hand Hips Torso

w/o concil. 0.42±.072 0.77±.002 0.71±.029 0.68±.024
w/ concil. 0.44±.0145 0.91±.0521 0.87±.038 0.727±.033

Table 6.1: Summary of the per-position average normalized sparsity
measured using the Hoyer extrinsic metric. Results with and without
the conciliation step are shown.

From Table 6.1, we can observe, as expected, that the representations learned
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by the local learners of the Hand and Hips have high sparsity compared to Bag
and Torso. The sparsity increases further when the conciliation is performed as the
dimensions that are less important are being pushed more and more towards zero.
Regarding the latent magnitudes, during conciliation, we can observe that some
dimensions of the latent representation of the central learner are getting more and
more activated (e.g., dimensions 30, 35, 39, and 40 with an average magnitude of
0.0134, 0.146, 0.0138, and 0.138, resp.) corresponding to the universal components,
while the remaining dimensions having low activation and some noticeable picks
(e.g., at 3, 12, 18, and 24) corresponding to the position-specific components.

Evaluation of the recognition performances. As demonstrated above, the
dimensions of the learned representations have a meaningful interpretation with
regard to the activities that we seek to recognize. To further assess the useful-
ness of the separated components per se (without a conciliation step), we leverage
them in a traditional discriminative setting. In other words, we take the learned
representation and add, on top of it, a simple dense layer. This additional layer is
trained to minimize classification loss while the rest of the circuit is kept frozen.
Note that the additional Dense layer has a low VC dimension so that we ensure
it has no capacity to improve the representation by itself. Table 6.5 compare
the recognition performances obtained with the baseline models on the considered
representative datasets. Furthermore, to better understand how the process of
conciliation among the learners, attached to the different positions, impacts the
quality of both the universal and position-specific components, we leverage sim-
ilarly the separated components but this time, after performing the conciliation
process. Table 6.3, summarizes obtained results. We compare the results with
baseline models trained on data generated from specific positions without apply-
ing the separation nor conciliation processes. This configuration is referred to as
Baseline (no sep.) in Table 6.3.

Model HHAR Fusion SHL

DeepConvLSTM 70.1±.0018 68.5±.002 65.3±.0206
DeepSense 72.0±.0022 69.1±.0017 66.5±.006
AttnSense 76.2±.0074 70.3±.0027 68.4±.03

Feature fusion 72.9±.004 68.7±.001 66.8±.009
Corr. align. 75.8±.0014 70.2±.04 69.1±.015

Proposed 78.3±.0045 72.8±.002 74.5±.0133

Table 6.2: Recognition performances of the baseline models on dif-
ferent representative related datasets.
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Figure 6.4: Average latent encoding magnitude computed over differ-
ent steps of the conciliation process.

We observe from Table 6.3 that, overall, the recognition performances obtained
using the position-specific and universal components are better than those obtained
using the baseline (without separation nor conciliation). In theory, with the con-
ciliation step, optimal representations would emerge in particular for the universal
components. Indeed, this is achieved by the additional alignment term in Eq. 6.2
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Config. Bag Hand Hips Torso

Baseline (no sep.) 63±.0089 63±.0014 65±.0126 60±.0072
Universal comp.

w/o conciliation 66±.0224 65±.0147 66±.0035 62±.013
w/ conciliation 66±.016 67±.0015 67±.0354 63±.01

Pos.-specific comp.
w/o conciliation 64±.3 66±.007 67±.0026 61±.087
w/ conciliation 65±.029 68±.03 70±.07 61±.029

Table 6.3: Summary of the recognition performances obtained using
either the universal or the position-specific components learned in
each position by the local learners. Recognition performances with
and without the conciliation process are reported. For reference, the
recognition of a baseline model which do not perform separation (nor
conciliation) are additionally shown.

which should make them interchangeable regardless of the position from which
they have been generated. This should nevertheless be harder in the case of the
position-specific components which may activate very diverse dimensions of the
learned representation (as described in the experimental results above). Surpris-
ingly, this has a mild impact on the recognition performances which stay compara-
ble. This could potentially be explained by the importance of the position-specific
components for the recognition of many of the activities that are considered in the
SHL dataset. It is worth noticing though that the universal components achieve
remarkable improvements in the case of Bag and Torso.

6.3.3 Inference configurations
Here we evaluate the robustness of the proposed approach to the evolution of the
sensors deployments via the flexibility that it offers for the inference step. Depend-
ing on the activity, the right prediction can be achieved by using either components
zA or zP taken individually or a combination of the universal component zA and
the most appropriate position-specific component. In this part, we take a fine-
grained look at the previously obtained recognition performances by assessing the
optimal configuration, which allows the correct prediction of each of the individual
activities we are interested in. For this, we evaluate the predictions obtained using
basic inference configurations, i.e., the combination of the universal components
with Torso-specific components [zA; zTorso]; Hand -specific components [zA; zHand];
Bag-specific components [zA; zBag]; and with Hips-specific components [zA; zHips].
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Figure 6.5 shows the confusion matrices obtained using each of these configura-
tions.

(a) zA; zTorso (b) zA; zHand

(c) zA; zBag (d) zA; zHips

Figure 6.5: Confusion matrices obtained using different inference con-
figurations. Combination of the universal components zA and: (a)
Torso-specific components; (b) Hand -specific components; (c) Bag-
specific components; (d) Hips-specific components. The activities are
numbered as 1:Still—8:Subway.

Compared to the baseline models, the evaluated inference configurations yield
better recognition performances in general. For example, the combination of the
universal and most of the position-specific components help discriminate activities
like Walk, Run, and Bike efficiently. On the other hand, some activities like Car,
Bus, or Train suffer from confusion and do no show significant improvements
over the baseline (approx. 2% on avg.). Also, activity Subway exhibits the same
behavior with less proportion suggesting that this “on-wheels” group of activities
needs an elaborate combination of points of view. This issue could potentially be
circumvented by using more featured inference configurations where other position-
specific representations (or learners), rather than a single one, can be leveraged to
infer these problematic or hard-to-infer activities.

Table 6.4 summarizes the evaluation results of the inference configurations fea-
turing the combination of various position-specific components. We observe an
increase in terms of the correct predictions for most of the activities compared
to the previous setting. In particular, the “on-wheels” group of activities, i.e.,
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Activities Best Config. Perf.±std. mean±std.

Still zhi; zt 85.77±0.016 83.26±0.7
Walk zA; zha 88.54±0.07 86.74±0.058
Run zha 90.51±0.016 89.46±0.03
Bike zA; zhi 85.62±0.2 83.22±0.086
Car zA; zha 78.24±0.058 77.14±0.2
Bus zha 78.08±0.022 75.17±0.004

Train zhi; zhi 76.13±0.175 74.88±0.08
Subway zA; zha; zt 75.89±0.009 74.07±0.006

Table 6.4: Recognition performances (mean and std.) of the best con-
figurations is shown, along with the recognition performances (mean
and std.) averaged over all evaluated ones (repeated 7 times). The
ubscripts of the position-specific representations are shortened as zb
(Bag), zha (Hand), zhi (Hips), and zt (Torso).

car, bus, train, and subway, get improved substantially. At the same time, as
expected, we see now that the inference configurations, which yield the highest
recognition performances for these activities, use genuine combinations like Hand -
specific components alone in the case of Bus or a combination of the universal,
Hand - and Torso-specific components in the case of Subway. On the other hand,
Still gets the least improvement compared to the previous setting, while the best
configuration to infer it is a combination of the Hand - and Torso-specific compo-
nents (85.77±0.016). It is worth noticing that activities like Walk and Bike still
achieve competitive performances (88.54±0.07 and 85.62±0.2, resp.) while using
the same inference configuration, i.e., a combination of the universal and Hand -
specific components for Walk and Hips-specific for Bike, as in the previous setting.
In the case of Run, the highest recognition performances are achieved using only
the Hand -specific components, which supports the observations presented in the
introduction to this chapter.

6.4 FedAbstract algorithm
In this part, we present a novel approach that abstracts the exact context sur-
rounding the data generators. Local learners are trained to decompose, as before,
the learned representations into (i) universal components shared across devices and
locations and (ii) local components that capture the specific device- and location-
dependent context. Besides this decomposition process, we leverage knowledge
about the structure of the sensing deployment by representing the relative geom-
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etry of the sensing devices with group transformations. Indeed, we introduce the
notion of relativity between data generators and model it via the special Euclidean
group, denoted by SE(3). It encompasses arbitrary combinations of translations
and rotations, which are used to express the relative contribution of a data gen-
erator to describing (or learning) a phenomenon of interest. This way, the learner
is constrained using principled mathematical tools, and the symmetry structure
induced by the relative data generators is reflected effectively in the latent space.

In the following, we describe this approach in detail. At a given decentral-
ized location, there are three different elements that are learned: (1) the universal
(or group-invariant) and (2) position-specific representations (§6.4.1), and (3) the
group of relative geometry representation (§6.4.2), The generalization capabilities
of the universal representation are improved collaboratively across the decentral-
ized sensing devices via the conciliation (or aggregation) process (§??). Figure 6.6
summarizes the proposed approach. Extensive experiments on two large-scale real-
world wearable benchmark datasets featuring structured sensing environments are
presented to assess the effectiveness of the proposed approach.

6.4.1 Learning group-invariant and position-specific repre-
sentations

The idea is to express the data generated from a decentralized device (e.g., hand
sensors in the case of on-body sensor deployments) relative to the coordinate sys-
tem of a referential (e.g., torso.) This way, the exact relative contribution of the
sensing device is captured without the contextual artifacts. To do this, we have to
capture the variations due to the relative location of the decentralized device w.r.t.
a global coordinate system and capture invariant aspects that are shared across
the devices. The latter aspects are universal components that are shared with the
central model, while the former ones are considered as specific components which
add noise to the learning process, thus requiring to be discarded from it.

Learning hA and hpi locally

The data xi captured at a given location pi are generated from two underlying
factors: one reflecting the position-specific components and the other the position-
invariant (or universal) components. The task here is to learn these factors of
variation, commonly referred to as learning a disentangled representation. In other
words, we want these two transformations to capture completely different factors
of variations in the data. To do that, we enforce hpi to be insensitive to the factors
of variations linked to the representation hA using representation disentanglement
techniques. It corresponds to finding a representation where each of its dimensions
is sensitive to the variations of exactly one precise underlying factor and not the
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Figure 6.6: The framework of the proposed approach. Explicitly
representing the relative geometry of the decentralized devices and
their symmetries using elements of the special Euclidean group SE(3)
and leveraging them to constrain the learning process with the goal
of reducing the problem size and improving data efficiency.
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others. Note that the inputs to hA in the local learners are the raw sensory data
xi generated locally.

At this point, we are again left with two alternatives for jointly learning the
universal transformation hA and the position-specific transformation hpi at the
local learner level: (1) using a separate VAE for each transformation and training
each one of them jointly using the raw sensory data as inputs; (2) using a single
VAE and train it to automatically factorize the learned representation so that each
axis captures specific components. We use the same objective as (6.1).

Now, we have to represent the concept of data generator relativity and its
induced symmetries in the form of group elements whose action on the data leaves
the universal component of the learned representation invariant.

6.4.2 Relative geometry for data generators
We model the relative geometry of sensors and the perspectives they provide via
the special Euclidean group SE(3). Let xi and xj be the stream of observations
generated by the data sources si and sj. At each time step t, the observations
xi and xj generated by these data sources are related together via an element
gij ∈ SE(3) of the group of symmetries, i.e., the observation xi is obtained by
applying gij on xj. Here, we want to learn a mapping hgi for each decentralized
device so that the biases that stem from the context (exact position) are corrected
before its contribution is communicated to the global model.

Special Euclidean group SE(3). The special Euclidean group, denoted by
SE(3), encompasses arbitrary combinations of translations and rotations. The el-
ements of this group are called rigid motions or Euclidean motions and correspond
to the set of all 4 by 4 matrices of the form P (R,

−→
d ) =

(
R

−→
d

0 1

)
, with

−→
d ∈ R3 a

translation vector, and R ∈ R3×3 a rotation matrix. Members of SE(3) act on
points z ∈ R3 by rotating and translating them:

(
R

−→
d

0 1

) (
z
1

)
=

(
Rz +

−→
d

1

)
.

Relative geometry representation. Given a pair of sensing devices si and
sj located at positions pi and pj, each having its own local coordinate system
attached to it. We represent the relative geometry of this pair by expressing
each of the devices in the local coordinate system of the other (see Figure 6.7).
Similarly to [VAC14], the local coordinate system attached to pi is the result of a
translation

−→
d j,i and a rotation Rj,i, where the subscript j, i denotes the sense of

the transformation being from pj to pi. While the translation corresponds to the
alignment of the origins of the two coordinate systems, the rotation is obtained by
rotating the global coordinate system such that the x-axis of the two coordinate
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systems coincide:

(
gij1(t) gij2(t)
1 1

)
=

(
Rj,i(t)

−→
d j,i(t)

0 1

)
0 lij
0 0
0 0
1 1

 . (6.4)

The relative geometry of the data generators is considered to be elements of
SE(3) and supposed to capture the transformations acting on the data genera-
tors. Without explicit information about the exact locations of the data gener-
ators, these transformations have to be learned. For this, we parameterize the
transformation matrices used to represent the relative geometry of the data gen-
erators with learnable weights. In particular, we parameterize as in [QBC20] the
n-dimensional representation of a rotation R as the product of n(n−1)

2
rotations, de-

noted Rv,w, each of which corresponds to the rotation in the v, w plane embedded
in the n-dimensional representation. For example, a 3-dimensional representation
has three learnable parameters, g = g(θ1,2, θ1,3, θ2,3), each parameterizing a single
rotation, such as R1,3(θ1,3) =

(
cos θ1,3 0 sin θ1,3

0 1 0

− sin θ1,3 0 cos θ1,3

)
.

Learning hA and hg in the central server

The referential learner (or central server) happens also to be a learner similar to
the local learners. The main difference is that the referential learner is located in
a particular position of the sensors deployment, i.e., the referential coordinate sys-
tem, which imposes it to perform additional processing. Let’s denote the referential
learner with subscript ref (the orange data source in Figure 6.7). The referential
learner maintains the specific hg’s corresponding to each individual position of the
sensors deployment and ensures that:

hA(hgi(xref)) = hA(xi),∀i (6.5)

where hgi is the learned representation corresponding to the group action acting
on the data xi generated by the sensor located at position i and xref is the data
generated by the sensor located at the referential point. The hgi transformation is
learned by the referential learner using the raw data generated at the central server
level. The constraint imposing the invariance, i.e., hA(hgi(xref)) = hA(xi),∀i, is the
pivotal element that makes it possible to effectively learn this transformation.

By drawing a parallel with the construction of manifolds in latent spaces, this
transformation can be interpreted as an operator projecting the data, generated
by the data source positioned on ref, towards a latent space shifted by the action of
the group elements so that the universal components learned by the transformation
hA (at the referential) coincide with those transformations (hiA,∀i) learned by the
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local learners attached to the other positions. hg must therefore act on different
subgroups of the latent space. We ensure that the learned universal transformation
hA is invariant to the action of the group SE(3), i.e., hA(gx) = hA(x), g ∈ SE(3).
For this we map the group SE(3) to a linear representation GL on V , i.e., ρ :
SE(3) −→ GL(V ). Our goal is to map observations to a vector space V and
interactions to elements of GL(V ) to obtain a disentangled representation of the
relative geometry.

As there are many different group representations (one for each position of the
deployment of the sensors) at the referential learner’s level, we have to ensure that
the learned representation hg acts on specific subspaces of the latent space. At the
central server, each client is considered to generate a subgroup of relative geometry.
During the learning process, each subgroup of the symmetry group is made to act
on a specific subspace of the latent space. Formally, let · : G × X −→ X be a
group action such that the group G decomposes as a direct product G = G1×G2.
According to [Hig+18], the action is disentangled (w.r.t. the decomposition of G)
if there is a decomposition X = X1×X2, and actions ·i : Gi×Xi −→ Xi, i ∈ {1, 2}
such that: (g1, g2) · (v1, v2) = (g1 ·1 v1, g2 ·2 v2), where · denotes the action of the
full group, and the actions of each subgroup as ·i. An G1 element is said to act on
X1 but leaves X2 fixed, and vice versa. We end up here in the same situation as
in the disentanglement of universal and position-specific components, i.e., either
we use a separate VAE for each group transformation or a single one for all the
groups with the additional constraint stating that the action of each subgroup act
on specific regions of the latent space manifold and leave the other regions fixed.
This can be achieved via clustering of the latent space using a Gaussian mixture
prior [Mat+19] P (z) =

∑C
c=1 π

c
∏

dN (zd|µcd, σcd), with C the number of desired
clusters and πc the prior probability of the c-th Gaussian.

At the local learner’s level, the proposed model is trained in an end-to-end fash-
ion. The generalization capabilities of the representation hA are improved via the
conciliation process performed across the nodes of the deployment. Algorithm 10
summarizes the process of the proposed approach and Figure 6.7 illustrates its
bigger picture.

6.5 Experiments
We perform an empirical evaluation of the proposed approach, consisting of two
major stages: (1) we verify the effectiveness of the proposed approach in the
HAR task via a comparative analysis which includes representative related base-
lines (§6.5.1); (2) we also conduct extensive experiments and ablation analysis to
demonstrate the effectiveness of the various components of our proposed approach
(§6.5.2).
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Figure 6.7: Network architecture of FedAbstract. The local learners
(red and blue) perform a set of updates on their proper version of the
universal representation. The referential learner at position pref (in
orange) maintains the specific hg’s corresponding to each individual
position of the sensors deployment and ensures that: hA(hgi(xref)) =
hA(xi),∀i where hgi is the learned representation corresponding to the
group elements acting on the data xi generated at position i and xref

the data generated at the referential point. Notice that only gradient
updates are shared to the central server and the data generated at a
given location is processed exclusively by the local learner.

Experimental setup. We evaluate our proposed approach on two large-scale
real-world wearable benchmark datasets featuring structured sensing environments:
SHL [Gjo+18] and Fusion [Sho+14] datasets. Here, we focus our evaluations on the
SHL and Fusion datasets, which feature geometrical aspects related to the location
of the data sources. Besides the closely related baselines used in the previous ex-
perimental part (§ 6.3), we compare our current approach against GILE [Qia+21].
GILE proposes to explicitly disentangle domain (or position)-specific and domain-
agnostic features using two encoders. To constrain the disentanglement process,
their proposed additional classifier is trained in a supervised manner with labels
corresponding to the actual domain to which the learning examples belong. By
analogy to GILE, in our approach, the domain labels correspond to the exact
location of the data sources. In addition, we use our previous approach as a base-
line. We refer to it as FedAbstract, no SE(3) as it does not consider the relative
geometry of the data generators.

To make these baselines comparable with our models, we make sure to get the
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Algorithm 10: FedAbstract Algorithm
Input : {xi}Mi=1 streams of annotated observations

1 θ ← initWeights() ; % Initialize global learner’s weights
2 distributeWeights(θ, S) ; % Weights distribution
3 while not converged do
4 foreach position pi do
5 for t ∈ Ti steps do
6 Sample mini-batch {xj}ni

j=1

7 Evaluate ∇θiℓpi(θi) w.r.t. the mini-batch
8 Subject to R(ziA, zref

A ) (e.g., correlation-based
alignment [And+13])

9 θ
(t)
i ← θ

(t−1)
i − η∇θiℓpi(θi)

10 Ensure hA ⊥ hpi (see §6.4.1)
11 end
12 Communicate θiA (with θi = [θA, θpi ])
13 end
14 θA ← θA +

∑M
i=1 αi ·∆θiA ; % Central updates

15 Enforce group action disentaglement (6.5)
16 end

Result: Globally shared universal representation hA

same complexity, i.e., a comparable number of parameters. We use the f1-score in
order to assess the performances of the architectures. We compute this metric fol-
lowing the method recommended in [FS10] to alleviate bias that could stem from
unbalanced class distribution. In addition, to alleviate the performance overesti-
mation problem, we rely in our experiments on the meta-segmented partitioning
proposed in [HP15] (see § 5.3.1).

6.5.1 Performance comparison
We conduct extensive experiments to evaluate the performance of the proposed
algorithm in the following two settings: activity recognition (or classification) task
and representation disentanglement. For the activity recognition setting, Table 6.5
summarizes the performance comparison of the baselines in terms of the f1-score
obtained on the SHL and Fusion datasets. Here we assess the usefulness of the
separated components per se by leveraging them in a traditional discriminative
setting. In other words, we take the learned representation and add a simple
dense layer on top of it. This additional layer is trained to minimize classification
loss while the rest of the circuit is kept frozen. Experimental results show that
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Model Fusion SHL (Acc.) SHL

DeepConvLSTM 68.5 ±.002 64.4 ±.0078 65.3 ±.0206
DeepSense 69.1 ±.0017 64.8 ±.0033 66.5 ±.006
AttnSense 70.3 ±.0027 69.6 ±.0072 68.4 ±.03

GILE 71.7 ±.014 71.1 ±.035 69.0 ±.001

FedAbstract 75.7 ±.047 75.7 ±.047 77.3 ±.017

Table 6.5: Recognition performances (f1-score) of the baseline models
on different representative related datasets. Evaluation based on the
meta-segmented cross-validation.

the proposed approach exhibits superior performance compared to the baselines.
The proposed method achieves promising improvements in terms of f1-score over
the baseline methods. In particular, our proposed approach improves recogni-
tion performances by approximately 7-9% on Fusion and SHL, while the improve-
ment of attention-based methods is only about 1-2%. Compared to GILE, our
approach shows consistent improvement on the considered configurations. This
demonstrates that leveraging knowledge about the structure of the deployment,
instead of simply using domain labels corresponding to the exact location of the
data sources, improves disentanglement and ultimately activity recognition.

In the representation disentanglement setting, we assess the separation quality
between the universal and position-specific components as well as those related to
the actions of each subgroup. For this, the average latent magnitude computed
for each dimension of the learned representations constitutes an appropriate mea-
sure. Figure 6.8 illustrates the average latent magnitude computed for the group
of relative geometry representation. It shows the activated latent dimensions de-
pending on the subgroup of transformations (among Bag, Hand, and Hips) acting
on the data sources. We can see in particular that specific dimensions are acti-
vated depending on the subgroup of transformations that are used to stimulate
the learned representation. These dimensions are also independent of each other.
Furthermore, in complementary experiments, one can observe the evolution of the
dimensions of the central learner’s latent representation where some of them are
getting more activated than others, which is a sign of the emergence of the desired
universal components shared across the learners.

6.5.2 Ablation study
To demonstrate the generalization and effectiveness of each component of our pro-
posed approach, we further design and perform ablation experiments on the SHL
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Figure 6.8: Average latent encoding magnitude in the SHL dataset.
It shows the repartition of the latent dimensions being activated be-
tween the different subgroups of transformations acting on the data
sources (Bag, Hand, and Hips positions).

and Fusion datasets. We compare FedAbstract to FedAvg [McM+17] and advanced
solutions which try to correct for client-drift including SCAFFOLD [Kar+20]. Fe-
dAvg and SCAFFOLD do not perform explicit separation of the local data and
thus constitute suitable baselines to assess the impact of each of FedAbstract’s
components. The experimental results illustrated in Figure 6.9 (top) are obtained
using FedAbstract with both the relativity and decomposition constraints. These
results suggest that the evolution of the loss in the case of FedAvg gets slower as we
increase the number of local steps, which corresponds to the common observation
that client drift increases proportionally to the number of local steps, hindering
progress. At the same time, we observe that FedAbstract has excellent perfor-
mance, slightly better than SCAFFOLD, suggesting a close connection between
the estimate of the client-drift ci and the position-specific components obtained
via our proposed separation process.

Furthermore, we evaluate the effectiveness of explicitly representing the data
generators’ relativity via group actions while learning the universal and position-
specific transformations. For this, we evaluate the performance of our proposed
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Figure 6.9: Evolution of the loss during decentralized learning.
(top) FedAbstract with both the relativity and decomposition con-
straints. (bottom) FedAbstract without the relativity representation
constraints (FedAbstract, no SE(3)).

approach against a setting that does not specifically consider the relative geom-
etry of the data generators (FedAbstract, no SE(3)). Basically, in this setting,
the constraint imposing the relative geometry is not enforced during the learning
process. Figure 6.9 (bottom) illustrates the obtained results in terms of the loss
evolution on both SHL and Fusion datasets. We notice that compared to the basic
setting, enforcement of the relative geometry consistently improves the conver-
gence by 5% on SHL and 3% on Fusion. We see that these differences correspond
to the gap between SCAFFOLD and our proposed approach. This demonstrates
that the separation process constrained by the explicit representation of relativity
ultimately leads to improving collaboration across the decentralized devices.

6.6 Conclusion
We studied in the chapter the emergence of universal and context-specific com-
ponents in the data generated in structured sensing environments. Sensors dis-
tributed in various positions of the space provide rich perspectives that need to
be leveraged properly during the learning process. The information conveyed by
these perspectives is not of the same nature, e.g., the sensor’s position bias in-
duces information of different types. Context-specific components correspond to
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the context surrounding the data generators. For example, the relative location of
a given data source in the sensor deployment or its corresponding sensing model
(or characteristics) induces a context that has to be handled explicitly in order for
the learning process to be effective.

At first, we proposed a multi-level processing framework, where local learners
perform a disentanglement-based operation to separate the data into its consti-
tuting components, and a conciliation process at the central server allows for
reinforcing the universal components via the aggregation of the locally learned
universal components. The broader idea behind this framework is that universal
components of the data are not directly accessible. However, it can be attained
through various decentralized points of view. Collaboration is, therefore, not a
confrontation but rather the accumulation of relevant symmetries and comple-
mentary information from each viewpoint whose contribution can be determined
precisely. The model we propose achieves this. Indeed, experimental results show
that the proposed approach substantially improves recognition rates and has many
advantages, including the reduction of the heterogeneity impact, which is induced
by the particular context within which the data sources are embodied. The data
decomposition process allows a better recognition rate in several ways: (i) by re-
ducing the noise induced by the data linked to the position itself, e.g., the local
component of the movement of the hand constitutes noise for the local component
of the movement of the feet; (ii) by aggregating only data of the same nature pre-
senting different points of view and; (iii) for certain activities, the local component
alone is sufficient to ensure recognition, e.g., the movement of a hand during the
activity Running.

After that, building upon the multi-level framework for separating the local and
universal components of the data, we proposed to further guide this process by
explicitly enforcing a priori knowledge about the relativity of the data generators.
We leverage for this additional knowledge in terms of symmetries and invariants
that appear in these kinds of environments. These symmetries and invariants
are explicitly represented in the form of group actions and incorporated into the
learning process. In particular, we introduced the notion of relativity between
data generators, and we modeled it via the special Euclidean group, denoted by
SE(3), which encompasses arbitrary combinations of translations and rotations.
The relative contribution of a data generator in the description of the phenomena
of interest is expressed using elements of this group and used to constrain the
separation process. In particular, building on symmetry-based disentanglement
learning, the symmetry structure induced by the relativity of the data generators
is reflected in the learned latent space. This allows us to further leverage the notion
of sharing, which is reflected in the conciliation process of the decentralized learn-
ing setting by promising improvements. Further, the proposed separation process
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of the data into universal and position-specific components improves collaboration
across the decentralized devices materialized by the conciliation (or aggregation)
process. Obtained results on activity recognition, an example of real-world struc-
tured sensing applications, are encouraging and open-up perspectives for studying
more symmetries, invariants, and also equivariants that emerge in these environ-
ments.

A direct extension of the work presented in this chapter includes leveraging
these symmetries and invariants from a theoretical perspective like Lie group and
corresponding algebra, a special and large class of continuous groups that includes
many valuable transformations like translations, rotations, and scaling, and which
also proposes a principled way for handling operations on the transformations such
as composition, inversion, differentiation, and interpolation. Future work follows
two axes: (1) improving the quality of the model, in particular, having a fine-
grained control of the data decomposition process by adding additional domain
knowledge-based models, e.g., representing explicitly the dynamics of the body
movements in the latent space as done in [Kar+16; Wat+15] in the case of human
activity recognition case; (2) the conducted research raises interesting questions to
pursue, noticeably the improvement of multi-sources approaches where the various
perspectives are entangled with local components, which could improve federated
approaches by reducing the noise, especially by sharing only the mutualisable
components.

We investigated in this chapter the collaborative aspects of the massively dis-
tributed sensing nodes (or data generators) by abstracting the biases induced by
their surrounding context and integrating models of their relativity into the con-
ciliation phase. The next chapter concludes this thesis.
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Chapter 7

Conclusion

We conclude this study by summarizing the key research findings in relation to the
research aims and questions we set in the introduction. We also discuss possible
direct extensions to the proposed approaches, open problems, along with directions
for future research.

Thesis summary
We addressed in this research the problem of learning in the context of the gen-
eralization and widespreadness of sensing, actuation, and computing capabilities,
materialized, for example, by Internet of Things and Industry 4.0 applications.
This context brings both practical and theoretical challenges that we proposed to
address via meta-learning and modeling of the domain constraints.

We set up in the introductory chapter a long list of research challenges that
we aimed to answer in this research. To name a few, we provided answers to the
research questions regarding how to take into account domain-specific requirements
and constraints in the learning process and how quantities of data needed to learn
can be reduced so as to account for the transmission constraints and the cost of
generating data. We also investigated ways to answer urging challenges related
to the robustness of the learned models towards dynamical factors of the real-
world deployments: for example, how to accelerate adaptation to these dynamical
factors, and what do they induce in terms of deployment and monitored phenomena
evolution? Similarly, aspects related to the transparency of the learning models
in the context of generalized sensing, actuation, and computing capabilities have
been discussed.

Let’s reflect on the research we conducted in this thesis following different as-
pects: (i) collaboration in the massively distributed and decentralized context; (ii)
domain knowledge that is leveraged and the way it is represented; (iii) modularity,
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interpretability, and transparency of the learned models; and (iv) structural risk
minimization, the introduction of structure in the set of admissible functions, and
optimization landscape.

Collaboration in the massively distributed and decentralized context.
Collaboration across the data sources (or, more generally, tasks) encompassing
the distributed sensing environments is a natural process in this context and has
been investigated, in this thesis, from different viewpoints. In Chapter 4, collabo-
rative mechanisms during the learning process were implemented at the level of the
learning examples used to learn. Indeed, the example selection and augmentation
approaches proposed in this chapter are guided by domain knowledge and were
particularly motivated to cope with variations across data sources in the sensing
environments. We have seen that the variations across the data sources can be
related to their disposition in space, their data-generating processes, and their sens-
ing models. Knowledge about the way these data sources are structurally related
to each other was ultimately leveraged to control how they collaborate with each
other to learn a unified theory. In Chapter 5, collaboration materialized through
the principles of transfer, sharing, and reuse across the levels of the hierarchies of
concepts (or sub-problems) and between groups of concepts. For example, during
the hierarchy derivation process implemented in our proposed approaches, the de-
gree to which concepts and groups of concepts are ready to be learned together
is evaluated recursively until we end up with atomic concepts at the leaf nodes.
The evaluated degree translates how well collaboration via transfer, sharing, and
reuse can be performed across concepts and groups of concepts. In Chapter 6, col-
laboration was pursued by determining which components of the locally learned
models should be kept locally and those that can be shared with other clients
and aggregated into the central server in particular. The components that can be
shared are referred to as universal components and are assumed to be abstracted
from any bias that could stem from the context surrounding the data generators
(or unbiased).

Additional domain knowledge that is leveraged and the way it is rep-
resented. Throughout the thesis, we explored various forms of domain models
that we represented via different strategies. In Chapter 4, we leveraged sensing
and transmission models of the data sources along with relevant principles such
as temporal coherence or proportionality prior, which describe how the relevant
properties of these data sources change over time. The way this knowledge was
translated operationally into the learning process was, for example, via the diame-
ter of the parameter space, where the rate of change of that diameter is defined by
domain knowledge. In Chapter 5, we leveraged the semantics of the label space,
which is used to organize the concepts to learn into appropriate structures. The
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learning problems we dealt with are naturally cast as hierarchies with a relation of
generalization/specialization. We investigated the use of hierarchies as a typical
structure to organize the concepts. These structures are learned from data with
the idea of maximizing transfer and sharing across the levels and nodes of the
hierarchies. In Chapter 6, we leveraged topological models describing the disposi-
tion of the sensing devices as well as equational models describing the phenomena
considered for learning. In particular, we proposed to express the geometry of
the sensing devices and how they relate to each other (in terms of the views they
provide) using group elements (belonging to the special Euclidean group SE(3)).
In Chapter 4 and Chapter 6, the considered domain models were assumed to be
available, while in Chapter 5, the structuring of the concepts was derived from
data.

Modularity of the model’s internals As we began to discuss in Chapter 2,
modularity is a key enabler for the development of transparency in machine learn-
ing models. In this sense, our proposed approaches involve and promote modular
aspects and, as such, open perspectives in terms of transparency in the context
of distributed sensing environments. Two principles are of crucial importance for
this: exhibiting components of the learning models, like portions of the decision
boundaries or latent representation, and ensuring that they vary consistently with
domain knowledge. In Chapter 4, modularity is materialized noticeably by the
portions of the model’s decision boundaries as well as the learning examples that
sustain these portions. Some of these portions remain invariant while others change
according, for example, to the evolution of the sensing environments or the sensing
characteristics of the sensing devices. Our proposed approaches provide means for
controlling in a fine-grained manner these portions of the model’s decision bound-
aries by identifying the learning examples that are relevant w.r.t. the knowledge
available about the sensing environment. In Chapter 5, modules correspond to
the models (or neural networks) assigned to the nodes of the derived hierarchies.
Depending on the level of the hierarchy to which a module is assigned to, dif-
ferent features (or biases) with varying levels of abstraction are captured. These
are consequently more adapted to the concepts or groups of concepts involved in
that specific level. Additionally, the hierarchical structuring of the concepts al-
lows the emergence of inheritance mechanisms of inductive biases across the levels
of the structure. In Chapter 6, modularity was explored from the perspective of
learning group-invariant representations w.r.t. the different views provided by the
distributed sensing environment. These correspond to the universal components
that we have shown to be invariant across the clients of the sensing environment.
Also, the way we ensure that each position-specific action sub-group acts precisely
on specific regions of the latent space allows the emergence of modularity. Visual-
izations of the latent space showed the emergence of components that are activated
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only by particular position-specific action sub-groups.

Structural risk minimization, the introduction of structure in the set
of admissible functions, and optimization landscape. Structural risk mini-
mization [Vap91] from Vapnik works by introducing a nested structure of subsets
Sp = {f(x, θ), θ ∈ Θp}, such that S1 ⊂ S2 ⊂ ... ⊂ Sn and their corresponding VC-
dimensions of each subset increases with inclusion. In his paper, Vapnik suggested
many different ways to implement this principle. For example, the structure can
be given by the architecture of the neural network, where the number of units
of a given layer is monotonically increased. In this case, the subsets formed as
the number of hidden units is increased introduce a structure into the admissible
functions implemented by the neural network. As we discussed in the conclusive
comments in Chapter 4, the way learning examples are presented to the learner,
as well as how the example space is augmented in specific regions, shape the op-
timization landscape. This curriculum-like strategy transforms the optimization
problem into smaller sub-problems of increasing difficulty, similar to continuation
optimization methods. In Chapter 5, by organizing the learning process in a way
that it can be decomposed into several sub-problems, there is a specific ordering
that is imposed over the exploration of the hypothesis space. In Chapter 6, Re-
striction of the space of the hypotheses to the regions which satisfy the constraints
resulting from the domain. These constraints have been expressed in the form of
mathematical operators and serve to explore the space of hypotheses more effi-
ciently. This was translated operationally into the regularization term based on
representation alignment.

In terms of relevance, the approaches that we proposed allow:

• Reducing the quantities of data needed to learn;

• Improve robustness against the heterogeneity and dynamicity of structured
sensing environments; Ultimately, a broader impact would be that the de-
ployment of models in real-world environments can be facilitated. Moreover,
their adaptability can be improved by simply using additional descriptions
from experts in the field and describing the new deployment constraints;

• First steps towards explainable and transparent models through the incor-
poration of domain knowledge. Transparency aspects go hand in hand with
the adaptability of models deployed in real-world environments: modularity,
which is one of the principles of model transparency, is also a key element
that facilitates model evolution. This brings model building (or the pro-
cess of learning models) closer to the language used by domain experts to
describe domain constraints. In particular, the emergence of universal and
context-specific components is a first step towards this.
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What is next?
In addition to the direct extensions that we proposed in the conclusive sections of
our contribution chapters, we hope that this thesis will enable the development of:

• a brand new family of meta-learning approaches that integrate the under-
lying transformations from the domain into their internals. For example,
leverage explicit representation of task-relatedness in principled ways, more
featured structures, and heterogeneity isolation strategies to improve ab-
straction strategies;

• new federated learning approaches by explicitly leveraging client-relatedness
and domain knowledge describing various aspects of the deployments. In ad-
dition to fine-grained and principled conciliation strategies to achieve better
collaboration;

• a new family of approaches that optimizes simultaneously for modularity
and correspondence with the domain to ultimately endow models with trans-
parency.

In the following, we provide some open problems and interesting directions to
pursue.

Conciliation phase and collaboration. Collaboration in the context of mas-
sively distributed and decentralized data is an important aspect of the learning
process. As we reviewed it above, we investigated throughout this thesis various
strategies for making the different parts of the distributed environments collaborate
with each other to achieve a common goal, i.e., learn a unified theory. Either by
making clients learn to exhibit parts of the data that can be shared with their coun-
terparts or by constructing appropriate structures allowing a targetted transfer,
sharing, and reuse across sub-groups that compose a learning problem. Unfortu-
nately, the problem of collaboration in the massively distributed and decentralized
context is challenging, with many interesting questions remaining to answer. In
particular, the operational part of it, i.e., the conciliation phase responsible for
aggregating what was learned locally and, by extension, the transfer, sharing, and
reuse performed across sub-groups that compose a learning problem.

(i) Which elements of the locally learned models should be shared globally
with others, and which should be kept locally? how to achieve this separation
process? and ultimately, how to do it in a principled way? For example, like
what we proposed in chapter 6 where we exploit the representation of the domain
and the transformations that govern the clients’ geometry in order to control the
conciliation process, in particular with the emergence of universal components and
others specific to the clients or to the context surrounding these clients.
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(ii) How to aggregate what was learned locally? and with whom to aggregate,
i.e., how to organize clients so that they collaborate together on particular as-
pects and potentially at different levels of abstraction? In particular, fine-grained
aggregation strategies, like the FedMA algorithm [Wan+20a] (mentioned in Sec-
tion 3.5) featuring a layer-wise permutation-invariant aggregation strategy, are to
be privileged. Especially when there is semantics underlying the structure of the
architecture of the locally learned models, e.g., position-specific and universal com-
ponents that we proposed in Chapter 6. In this chapter precisely, we proposed a
conciliation strategy ensuring that the relative geometry of the clients, represented
in the form of group elements, acts on specific regions of the learned latent space,
making it robust and flexible. More principled strategies are needed to make this
process even more robust. One promising direction could be to rely on the un-
derlying theory of Lie group and corresponding algebra. Lie groups are a special
and large class of continuous groups that includes many valuable transformations
like translations, rotations, and scaling, and which also proposes a principled way
for handling operations on the transformations such as composition, inversion,
differentiation, and interpolation. These operations are of utmost importance for
representing more complex phenomena in a fine-grained manner. The idea is that
they offer better parameterizations for certain problems, e.g., optimizing problems
involving rotations or translations can be solved faster via a parameterization
based on Lie group.

Correspondance between domain knowledge and model’s parameters.
Exhibiting particular parts of the learning models and ensuring that they consis-
tently capture precise aspects from the domain is essential. This allows building
robust learners that comply with the various constraints they are surrounded with
and flexibly evolve when these constraints mutate. Similar in spirit to the corre-
spondence between models of computation and proof systems established by Curry
and Howard [How80], one rich avenue that is of great interest to explore is to lay
down the foundations for a correspondence between the learning models (with their
computational capabilities) and domain knowledge (expressed in an appropriate
language). In other words, designing models that encode, within their internal
mechanisms and components, inductive biases corresponding effectively to domain
knowledge. Various works have been undertaken in the sense of bridging the gap
between connectionist models, on the one hand, and knowledge representation and
reasoning approaches, on the other hand. For example, works under the umbrella
of neuro-symbolic artificial intelligence [DKT07; De +19; Hit+22]. Modularity,
i.e., each component of the connectionist models is responsible for a specific piece
of knowledge, is a key characteristic of such systems. Our contributions, espe-
cially [HO20] and Chapter 6, partially deal with this issue. Unfortunately, while
it is a key enabler for our target framework, building this correspondence remains
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a challenging open problem that needs careful attention.
A possible avenue that could be explored would be to express domain knowl-

edge represented in the form of group-invariance/equivariance and integrate it into
the learning models via parameter-sharing schemes as outlined by [RSP17]: given
a group G (corresponding to available domain knowledge) that acts discretely on
the input and output of a standard neural network layer, the weights of the layer
are equivariant with respect to G-action iff G explains the symmetries of the net-
work parameters. In other words, priors on the input/output structure of neural
networks can be encoded through parameter-sharing. Indeed, parameter-sharing is
concerned with how the nodes of the neural networks are linked to each other (not
to the values of the weights which link them) and how these specific parameter-
sharing patterns encode specific domain invariants and equivariants. For example,
convolutional neural networks implement inductive biases (local sensitivity, invari-
ance, etc.) via the notion of parameter-sharing concretely implemented by the
convolution operation. This kind of strategy bears a resemblance to neural ar-
chitecture search approaches (weight-agnostic neural networks [GH19], lottery hy-
pothesis [FC18], etc.), which optimize for the most appropriate tying of the neurons
(not the weights themselves). The weight-tying (or parameter-sharing) scheme is
what defines an architecture and, by extension, an inductive bias. Similarly, Trans-
formers [Vas+17] can be explored for their flexibility in terms of parameter-tying.
Indeed, transformers are general computing machines that do not have fixed in-
ductive biases and instead, in some sense, learn appropriate inductive biases. The
mechanism underlying transformers is attention. It is a quadratic operation that
tries to make its components (tokens) attend to the entire input sequences and
also attend to each other. Ultimately, this process tries to create specific relations
by tying specific tokens to each other.

How domain knowledge shapes exactly the optimization landscape. We
have seen throughout this thesis that the way we act on the learning process by
integrating domain knowledge has a substantial impact on the optimization land-
scape. It has the notable ability to shape the optimization landscape in ways that
facilitate its exploration. For example, we leveraged in Chapter 6 invariants from
the domain in the form of symmetries between the different views provided by the
distributed sensing devices in order to constrain the learning process. As we dis-
cussed previously, summarized as: “symmetries of the observation models become
symmetries of the optimization problem” [ZQW20], symmetries of the domain
are widely studied in terms of the impact that they induce on the optimization
landscape. For example, as outlined in [Li+19b], the rotational symmetry group
induces many nonisolated saddle points and equivalent global minima. Similarly,
the way the learning process in Chapter 5 is organized into structured sets of
sub-problems that interact with each other via transfer, sharing, and reuse, also
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translates into particular forms of the optimization landscape with potentially in-
teresting properties. These potential properties could be leveraged for efficient
traversal of the optimization landscape.

Characterization of the optimization landscape in the presence of
domain invariants. How does domain knowledge shape the optimization land-
scape? which properties do invariants from the domain bring to this landscape?
One axe of development could be the characterization of the links between domain
models (like invariants) with the optimization landscape. The idea is to exhibit in-
teresting properties that could be leveraged for better traversal of the optimization
landscape.

Inductive leaps in the optimization space. How can we leverage the op-
timization landscape’s properties to make substantial inductive leaps? and accel-
erate convergence toward good solutions? One perspective regarding the traversal
of the optimization landscape is to devise and make use of global optimization
methods instead of local ones. The idea is to leverage the potential properties
of the optimization landscape shaped by domain knowledge to make substantial
inductive leaps. As we discussed in the conclusive comments of Chapter 4, a chal-
lenge in this regard is that an adjustment in the parameters does not necessarily
translate into a change in the function space.

Optimization on Riemannian manifolds. As proposed above, using more
principled strategies to express the relative geometry of data sources, e.g., in
the form of Lie groups, generalizes the learning problem to manifolds, requir-
ing optimization with respect to parameters in curved spaces [TO20]. Indeed,
another promising avenue to pursue is the optimization on smooth or Rieman-
nian manifolds, which boils down basically to optimizing on a known manifold
structure [RW12]. This has the potential to accelerate the optimization process
as there is a vast literature on optimization methods that are more adapted to
these manifolds, e.g., the classical convergence results and algorithms from the
Euclidean setting have been adapted to the Riemannian one [AMS09; Bon13;
BAC19; ZJS16; Liu+17; SKM19; LM19]. Similarly, smooth optimization of func-
tions on Lie groups, e.g., [TO20], can be pursued as many aspects from the domain
can be encoded in these kinds of mathematical operators.
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