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ABSTRACT

Deep learning for automatic detection and quantification of the disease areas of
the myocardium from DE-MRI after myocardial infarction

Zhihao Chen
University Bourgogne Franche-Comté, 2021

Supervisors: Raphaël Couturier, Michel Salomon and Alain Lalande

Myocardial Infarction (MI) has become one of the most common cardiovascular diseases.

An MI occurs when the blood flow decreases or stops in a part of the heart which can

cause damage to the myocardium due to ischemia. The MI can lead to persistent mi-

crovascular obstruction (PMO) even after the reperfusion therapy of an occluded coro-

nary artery, which affects a significant proportion of patients. To assess the MI and the

extended PMO, Delayed Enhancement MRI (DE-MRI) has become the gold standard.

However, to precisely quantify the pathology, physicians have to first manually draw the

delineations of different myocardial tissues on the short-axis MRI slices then the volume

of normal and pathological tissues will be calculated to evaluate the severity of the attack.

The manual annotation procedures are highly time-consuming and subjective, which re-

inforces the potential interest in an automatic evaluation approach for the MI assessment.

Current automatic delineation methods on DE-MRI are mostly probabilistic approaches

such as the Mixture Models while more and more deep learning applications achieve

state-of-the-art performances compared to the probabilistic approaches. Therefore, in

this thesis, the different aspects of deep learning-based approaches have been investi-

gated for the automatic MI evaluation from DE-MRI.

To develop the deep learning-based MI assessment pipeline, three major aspects consist-

ing of the pre-processing, the deep learning models, and the post-processing have been

investigated or proposed. The pre-processing aims at preparing more consistent and

clearer inputs for deep learning models using image normalizations, cropping, etc. To

design well-adaptive deep learning models, many parts (building blocks, loss functions,

segmentation models, etc.) were proposed or compared. Moreover, the post-processing
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methods including morphological treatments and prior information-based filters were ap-

plied to the coarse segmentations to eliminate false positive contours. Apart from the

automatic assessment by segmentation, merging the MRI and textual patient features, a

machine learning-based approach was proposed to obtain quantitative estimates of MI

using only the clinical and pathological features for a quick cardiological assessment in

the cardiac emergency department.

KEYWORDS: Deep learning, MRI (Magnetic resonance imaging), Clinical characteris-

tics, Automatic detection, Image segmentation, Myocardial infarction.



RÉSUMÉ

Apprentissage profond pour la détection et la quantification automatiques des
zones pathologiques du myocarde à partir de l’IRM DE après un infarctus.

Zhihao Chen
Université Bourgogne Franche-Comté, 2021

Encadrants: Raphaël Couturier, Michel Salomon et Alain Lalande

L’infarctus du myocarde (IM) est devenu l’une des maladies cardiovasculaires les plus

courantes. L’infarctus se produit lorsque le flux sanguin diminue ou s’arrête dans une

partie du cœur, ce qui peut endommager le myocarde en raison de l’ischémie. L’infarctus

peut entraı̂ner une obstruction microvasculaire persistante (PMO) même après le traite-

ment de reperfusion d’une artère coronaire occluse, ce qui touche une proportion im-

portante de patients. Pour évaluer l’infarctus et l’obstruction microvasculaire persistante,

l’IRM avec rehaussement tardif (IRM-RT) est devenue la référence. Cependant, pour

quantifier précisément la pathologie, les médecins doivent d’abord tracer manuellement

les délimitations des différents tissus myocardiques sur les tranches d’IRM à petit axe.

Ensuite, le volume des tissus normaux et pathologiques sera calculé pour évaluer la

gravité de l’attaque. Les procédures d’annotation manuelle sont très chronophages et

subjectives, ce qui renforce l’intérêt potentiel d’une approche d’évaluation automatique

pour l’évaluation de l’IM. Les méthodes actuelles de contourage automatique en IRM-RT

sont principalement des approches probabilistes telles que les modèles de mélange de

distributions gaussiennes, alors que de plus en plus d’applications d’apprentissage pro-

fond atteignent des performances de pointe par rapport aux approches probabilistes.

Par conséquent, dans cette thèse, les différents aspects des approches basées sur

l’apprentissage profond ont été étudiés pour l’évaluation automatique du MI à partir de

l’IRM-RT.

Pour développer le pipeline d’évaluation de l’IM basé sur l’apprentissage profond, trois

aspects majeurs, à savoir le prétraitement, les modèles d’apprentissage profond et le

post-traitement, ont été étudiés ou proposés. Le prétraitement vise à préparer des
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entrées plus cohérentes et plus claires pour les modèles d’apprentissage profond en

utilisant des normalisations d’images, des recadrages, etc. Pour concevoir des modèles

d’apprentissage profond bien adaptés, de nombreux éléments (blocs de construction,

fonctions de perte, modèles de segmentation, etc.) ont été proposés ou comparés. En

outre, les méthodes de post-traitement, y compris les traitements morphologiques et les

filtres basés sur l’information préalable, ont été appliquées aux segmentations grossières

afin d’éliminer les contours faussement positifs. En plus de l’évaluation automatique par

segmentation, en fusionnant l’IRM et les caractéristiques physiologiques du patient, une

approche basée sur l’apprentissage automatique a été proposée pour obtenir des es-

timations quantitatives de l’IM en utilisant uniquement les caractéristiques cliniques et

pathologiques pour une évaluation cardiologique rapide dans le service des urgences

cardiaques.

Mot clé : Apprentissage profond, IRM (Imagerie par résonance magnétique), Car-

actéristiques cliniques, Détection automatique, Segmentation de l’image, Infarctus du

myocarde.
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INTRODUCTION

This thesis focuses on the automatic assessment of myocardial infarction (MI) from multi-

variate medical diagnoses with machine learning methods. Delayed-enhancement Mag-

netic Resonance Imaging (DE-MRI) and 12 pieces of physiological, clinical and para-

clinical features are selected as the experimental data. To process the medical data

collected in the University Hospital of Dijon (CHU Dijon), deep learning-based segmen-

tation methods are employed on DE-MRI and machine learning-based classification and

regression models are performed on patient features. The goal of the automatic assess-

ment is to provide qualitative and quantitative evaluation of the severity of the myocardial

infarction, offering physicians a quick and subjective reference of the pathology. The pre-

sented research was carried out in the Department of Computer Science and Complex

Systems (DISC in French) of FEMTO-ST laboratory, in collaboration with ImViA (Imag-

ing and Artificial Vision) laboratory, CHU Dijon and CASIS company. More precisely, it

took place and was funded in the context of the ADVANCES (Automatic Detection of Vi-

able myocArdiac segmeNts Considering dEep networkS) project, which was successfully

submitted to the Second ISITE-BFC call for proposals.

1.1/ MYOCARDIAL INFARCTION

Myocardial infarction has become one of the most common cardiovascular diseases [64].

Myocardial infarction occurs as a result of myocardial distress leading to the death of my-

ocardial tissue. In the clinical context, myocardial infarction is usually due to thrombotic

occlusion of a coronary artery, most commonly caused by the rupture of an atheroscle-

rotic plaque. Ischaemia induces perturbations in the myocardium and leads to a rapid

depression of cardiac functions, and then in case of prolonged ischemia, necrosis of

the myocardial tissue may occur. If the revascularization is delayed or fails, the exten-

sive damage can lead to persistent microvascular obstruction (PMO), also known as the

no-reflow phenomenon [58]. Therefore, emergency revascularization therapy to restore

perfusion is crucial as soon as the disease is diagnosed.

3



4 CHAPTER 1. INTRODUCTION

1.2/ MEDICAL DIAGNOSES

A variety of medical diagnosis methods can be proposed to detect or evaluate the ex-

tent of myocardial infarction. DE-MRI is a powerful predictor of myocardial viability after

coronary artery surgery, suggesting an important role for this technique in clinical viability

assessment [29]. From cardiac MRI, the viability can be evaluated thanks to the assess-

ment of left ventricular end-diastolic wall thickness, the evaluation of contractile reserve,

and the extent and the transmural nature of the infarction [17, 35]. Indeed, DE-MRI can

precisely indicate the severity of the MI, especially in the area of cardiac necrosis. The

infarct area has usually a higher intensity than the normal myocardium due to the difficulty

in draining the contrast agent in time. The PMO can be characterized by the low-intensity

area wrapped by the infarct and touching the endocardium [39].

However, the accuracy is often in conflict with the time required for different diagnosis

techniques, which remains a therapeutic emergency. Although DE-MRI is the gold stan-

dard for the diagnosis and the evaluation of myocardial infarction [56], the MI diagnosis

with DE-MRI cannot be widely applied in the emergency department because of its re-

quired time for the acquisition and post-processing. In current practice, simple tools such

as ECG, troponin assay and echocardiography are used to validate the emergency diag-

nosis of MI. ST segment analysis on ECG (especially in case of ST persistent elevation),

the intensity of troponin elevation and LVEF (left ventricular ejection fraction) assessment

from transthoracic echocardiography (TTE) have been shown highly correlated with MI

[51, 76, 104, 140]. Given these facts, when patients arrive in the emergency department

complaining of chest pain, generally a series of indicators will be first listed with the help

of the above-mentioned simple tools. If the examinations reveal the possibility of MI, the

DE-MRI could be achieved in the next few days to have a more accurate evaluation of

the myocardial impairment, after the acute phase and the early therapeutic management

including revascularization and medications. Until the ultimate diagnosis based on the

MRI exam is available, physicians mainly rely on the obtained physiological, clinical and

paraclinical characteristics to determine the severity of a patient’s condition and to give

sound treatment advice.

1.3/ MACHINE LEARNING-BASED MYOCARDIAL INFARCTION AS-

SESSMENT

In light of the above-mentioned facts, automatic assessment methods are proposed on

the basis of the type of the experimental data.

The MI evaluation on DE-MRI with its manual annotations is first studied. To quantify the



1.4. OUTLINE 5

severity of MI, deep learning-based segmentation approaches are proposed, consisting

of data preprocessing, U-Net-like [69] segmentation models and post-processing. The

data preprocessing aims at preparing consistent and high-contrast input MRI slices for

the following segmentation networks. The segmentation networks are based on U-Net

while adaptive configurations are proposed and compared, including the building blocks

and networks, the in-layer normalization, the gradient optimization, the loss function and

the framework. The post-processing then eliminates false segmentation areas in raw

segmentation masks according to prior information. The final output of the segmentation

proposal is the corresponding mask, indicating the category (cavity, normal myocardium,

infarct, PMO) of tissue at each area of the segmented DE-MRI slice. The proposal is eval-

uated on a private DE-MRI dataset. Individual tests are performed on subsets consisting

of pathological slices or mixed normal and pathological slices.

The classification of MI is secondly executed on multivariate data, combining the DE-

MRI and patient features. The DE-MRI is encoded to the same dimension of the patient

features, then the encoded DE-MRI is concatenated to patient features and the concate-

nation is fed into the classification models to predict if a patient suffers from MI. The goal

of this study is to evaluate the impact of additional data sources and the fusion technique

of multivariate medical diagnoses.

The severity quantification of MI is finally performed on the 12 pieces of patient fea-

tures. This proposal also associates the DE-MRI and the patient features but the DE-MRI

only participates in the training stage as the ground truth of the quantification. Machine

learning-based regression models take the patient features as the input and try to fit the

quantification of the severity of the MI. The severity of the MI is calculated from the anno-

tations of the DE-MRI, hence the DE-MRI is not necessary for the inference stage. The

proposal aims at obtaining a precise evaluation of MI before the cardiac MRI is available

in case of emergency, and it could be the first work that achieves the qualitative prediction

of the MI from only patient features.

1.4/ OUTLINE

This thesis is divided into the following chapters:

• Chapter 2 - Clinical context: myocardial infarction. This chapter introduces the clin-

ical context associated with MI. The cardiovascular system will be introduced, the

causes and the definition of MI will be then given. The mechanism of conventional

MI diagnosis techniques will be also presented.

• Chapter 3 - Challenges for automatic myocardial infarction assessment and avail-

able data. After presenting the clinical context of MI, this chapter explains the mo-
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tivation of the work and cites the major difficulties and limits of current automatic

MI assessment approaches on different medical diagnoses. The experimental data

collected in CHU Dijon, which are composed of two datasets: a private one and a

public one, are also described.

• Chapter 4 - Related works: Segmentation models and automatic myocardial in-

farction assessment from MRI. This chapter introduces different aspects of the re-

lated works concerning the MI segmentation on cardiac MRI, from the conceptions

of statistical models and deep learning models to the segmentation applications

on cardiac MRI. Nevertheless, the explicitly studied and evaluated state-of-the-art

techniques are presented in the next chapters of contributions.

• Chapter 5 - Contribution 1: Automatic myocardial infarction assessment from MRI

with 2D deep learning models. This chapter details the first contribution of this

thesis, namely the proposed DE-MRI segmentation approach for MI assessment

with 2D deep learning models. This proposal consists of the image preprocess-

ing method, an adaptive U-Net-based model with proposed loss function and well-

validated configurations and the prior information-based post-processing. Experi-

ments are performed on all-pathological slices then on slices of all patients, and

their performance is compared with a statistical model and the manual annotation

variance.

• Chapter 6 - Contribution 2: Automatic myocardial infarction assessment from MRI

with 3D deep learning models. 3D models are then proposed to interpret both the

intra-slice and inter-slice information in DE-MRI. The backbone of the 3D models

refers to the best 2D model introduced in the previous chapter. Three 3D models

that have different receptive fields are proposed and a loss function for multi-class

segmentation is proposed. The comparative experiments are performed on slices

of all patients between the proposed 3D models and the 2D baseline model. Ad-

ditionally, in this proposal, the persistent microvascular obstruction is individually

segmented.

• Chapter 7 - Related works: Automatic myocardial infarction assessment from multi-

variate diagnoses with machine learning. This chapter introduces the related works

concerning the approaches and applications of the MI assessment from multivari-

ate data, mainly the cardiac MRI and the patient features. The objective of these

assessment works is the quantification or classification of the MI.

• Chapter 8 - Contribution 3: Automatic myocardial infarction assessment from mul-

tivariate diagnoses with machine learning. This chapter describes the third contri-

bution which consists of a MI assessment based on patient features and DE-MRI.

Two approaches that make use of multivariate data in distinct ways are proposed.
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The first approach predicts the presence of MI from the fused data of the DE-MRI

and patient features. The second approach takes the MI volume calculated from the

DE-MRI as the ground truth and the MI quantification is made only from the patient

features. Besides the infarct, the volume of the persistent microvascular obstruction

is also predicted, which was very difficult without the diagnosis of cardiac imaging.

• Chapter 9 - Conclusions and perspectives.





2

CLINICAL CONTEXT: MYOCARDIAL

INFARCTION

2.1/ INTRODUCTION

In this chapter, the clinical context related to the myocardial infarction will be presented,

including the anatomy and the physiology of the heart, the mechanism of the myocardial

infarction and its clinical diagnosis. Understanding the anatomy, physiology and pathology

helps to improve the design of automatic assessment models for the disease prediction

and the segmentation of the myocardial infarction. The introduction about the funda-

mental cardiology is mainly based on references from the books Anatomy & Physiology:

OpenStax [108] and Medical Terminology for Health Care Professionals [114].

This chapter is organized as follows:

• Cardiovascular system: the heart. The anatomy and the functionalities of the heart

will be introduced. This section provides a global view of the heart.

• Myocardial infarction. The coronary circulation will be presented, followed by the

pathophysiology of myocardial infarction.

• Medical diagnosis of myocardial infarction. Myocardial infarction diagnoses that are

commonly used in medicine will be given, including imaging, clinical and physiolog-

ical features.

2.2/ CARDIOVASCULAR SYSTEM: THE HEART

The human heart suggests a powerful engine: it keeps the body continually supplied with

blood. This section will introduce the fundamental anatomy and functions of the heart.

9
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2.2.1/ LOCALIZATION OF HEART

The human heart is located within the thoracic cavity on the inside of the lungs, in the

space known as the mediastinum. The posterior surface of the heart is close to the

vertebrae, and its anterior surface sites deep into the sternum and costal cartilage. The

great veins, the superior and inferior venae cavae, the great arteries, the aorta as well as

the pulmonary artery, are attached to the superior surface of the heart, which is known as

the base. The base can be found at the level of the third costal cartilage and the inferior

tip of the heart called apex lies left of the sternum between the junction of the fourth and

fifth ribs [108]. Figure 2.1 shows the coronal and sagittal views of the heart in the thoracic

cavity.

Figure 2.1: The coronal and sagittal views of the heart. (See [108])

The size of the heart has been proven to be proportional to body surface area [12]. A

typical heart has approximately the size of a fist, that is on average 12 cm in length,

8 cm in width and 6 cm in thickness. The heart weight differs between sexes: it weighs
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approximately 250-300 grams for females and 300-350 grams for males. Meanwhile, the

heart can be observed as enlarged for some people. This tendency can be attributed

to aerobic sports: the heart responds to activity by expanding the size of individual cells

without increasing the number of cells, a phenomenon known as hypertrophy. However,

an enlarged heart can result from pathologies, such as hypertrophic cardiomyopathy. The

cause of such anomalies is unclear but they could trigger sudden death [108].

2.2.2/ BLOOD CIRCULATION THROUGH CHAMBERS

The four chambers of the human heart are the two atria and the two ventricles. The

left and the right atria on the upper of the heart receive blood from organs and contract

to push blood into the lower chambers, the right ventricle and the left ventricle. The

ventricles are the primary pumps of the heart, blood is then propelled from the ventricles

into the arteries.

The extracardiac organs are linked by two distinct circuits, the pulmonary and systemic

circuits. The pulmonary circuit transports blood within the lungs so that carbon dioxide

can be expelled and oxygen can be picked up. The systemic circuit transports the oxygen-

rich blood to all tissues and returns back deoxygenated blood to the heart. The heart

connects the two circuits. Deoxygenated blood is transported to the right atrium from

the superior and the inferior vena cava and is then propelled to the lungs by the right

ventricle via pulmonary arteries. The left atrium receives oxygenated blood from the

lungs via pulmonary veins and is then propelled to all tissues by the left ventricle via the

aorta. Figure 2.2 illustrates the flow of deoxygenated and oxygenated blood between the

pulmonary and systemic circuits.

Figure 2.2: Blood flows inside the heart. In blue the deoxygenated blood and in red
the oxygenated blood. The upper chambers receive and the lower chambers propel the
blood. (Modified from [108])
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2.2.3/ ANATOMY OF THE HEART

Knowing that the heart consists of four chambers, more details will be introduced about

the internal anatomical structures of the heart.

SEPTA OF THE HEART

The heart is divided by septa (septum in singular) to form the four individual chambers.

The septa are physical extensions of the myocardium lined with the endocardium. The in-

teratrial septum separates the two atria and the interventricular septum separates the two

ventricles. The interventricular septum is significantly thicker than the interatrial septum

to support the higher pressure in ventricles when they contract.

The septum between the atria and ventricles is called the atrioventricular septum. Four

valves are presented in the atrioventricular septum to allow a one-way flow of blood be-

tween chambers and blood circuits. Due to the weakened structure caused by the pres-

ence of the valves, a high-density connective tissue forms and anchors the valves, termed

the cardiac skeleton. The cardiac skeleton is formed by four rings surrounding the valves

and serves as the point of attachment for the valves. The anatomical structure of septa

and valves can be refereed in Figure 2.3.

Figure 2.3: Internal anatomical structure of the heart. This anterior view shows the four
chambers, the major vessels as well as the valves, and the septa. (See [108])
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THE LEFT VENTRICLE

Since in this work, we focus on the assessment of the myocardial infarction in the left

ventricle, among the four chambers only the left ventricle is detailed. The left ventricle

is the major pumping chamber, dedicated to the systemic circuit. Although the left side

and the right side pump the same quantity of blood, the myocardium of the left ventricle

is substantially thicker than the one of the right ventricle (Fig. 2.3). Below the opening,

several connective tissue called chordae tendineae attaches to the flaps of the mitral

valve. The chordae tendineae are composed of collagenous fibers, elastic fibers and

endothelium. The other side of the chordae tendineae connects to the papillary muscles.

Three papillary muscles are located in the left ventricle, called the anterior, posterior, and

septal muscles. When the left ventricle contracts, the pressure within the cavity rises so

that the blood flow tends to flow toward the aorta and the atrium. Meanwhile, the blood

circuit should be unidirectional. The papillary muscles, along with the chordae tendineae,

prevent the mitral valve from inverting or prolapsing during systole: the papillary muscles

contract, generating tension on the chordae tendineae during the systole so that the mitral

valve is closed. Moreover, on the inner side of the ventricle, rounded or irregular muscular

columns called trabeculae carneae protrude from the ventricular wall. One important

function of the trabeculae carneae is similar to the papillary muscle: their contraction

pulls the chordae tendineae to avoid the backflow. The anatomy of chordae tendineae,

papillary muscles and trabeculae carneae can be found in Figure 2.4.

Figure 2.4: Posterior view of the ventricles. The papillary muscles are attached to the
tricuspid valve on the right as well as the mitral valve on the left via chordae tendineae.
(Credit: modification of work by “PV KS”/flickr.com)
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2.2.4/ CARDIAC CYCLE

The cardiac cycle is defined as the period between the beginning of the contraction of

the atria and the end of the ventricular relaxation. A cardiac cycle consists of two sub-

periods, the systole and the diastole. During systole, the heart contracts and pumps

blood into circulation, and during diastole, the heart relaxes and the chambers are filled

with blood. Figure 2.5 shows a cardiac cycle including atrial systole, ventricular systole,

atrial diastole and ventricular diastole.

Figure 2.5: A period of the cardiac cycle. The cardiac cycle begins with atrial systole
at the end of the ventricular diastole, and then progresses to ventricular systole, atrial
diastole, and finally ventricular diastole when the cycle begins again. Correlations to the
ECG are highlighted. (See [108])

2.2.5/ BLOOD PRESSURES

The blood, like all fluids, follows the pressure gradients that it moves from high-pressure

regions to the ones of lower pressure. In a heart cycle, when all the chambers are relaxed
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(early ventricular diastole), blood flows from the veins into the atria. At this stage, due to

the higher pressure in the atria, the blood will initially move passively from the atria into

the ventricles. When the action potential triggers the muscles in the atria to contract, the

atrial pressure will be further increased and the blood will be actively pumped into the

ventricles, then the tricuspid and the mitral valves close and the cardiac cycle passes

to ventricular systole. The ventricular contraction further increases the pressure in the

ventricles so that the blood will be ejected into the pulmonary trunk and the aorta.

Blood pressure changes during a cardiac cycle, which is one of the vital signs. Blood

pressure often refers to the aortic pressure. The systolic blood pressure is the highest

pressure in a cardiac cycle and the diastolic pressure is the lowest.

2.3/ MYOCARDIAL INFARCTION

Myocardial infarction (MI) has become one of the most common cardiovascular diseases

in the emergency department [64]. In 2015, about 15.9 million cases of MI were reported

worldwide [84]. The management of MI is also complex. According to a Statistical Brief

of the year 2011, MI was one of the top five most expensive conditions during inpatient

hospitalizations in the US, with a cost of about $11.5 billion for 612,000 hospital stays

[33]. MI occurs as a result of myocardial distress leading to a death of myocardial tissue,

usually caused by the lack of blood flow and oxygen to a region of the heart. When a

coronary artery is blocked, it frequently results in a heart attack. Therefore, the coronary

circulation and the mechanism of MI are introduced in this section.

2.3.1/ CORONARY CIRCULATION

The heart is majorly composed of cardiac muscle cells, hence a reliable supply of oxygen

and nutrients are critical to the cardiomyocytes. The coronary circulation is dedicated

to providing the necessary supplies for cardiomyocytes and removing wastes from them.

The coronary circulation shares the same rhythm as the heartbeat: the coronary circula-

tion reaches a peak when the myocardium is relaxed and ceases while it is contracting.

In coronary circulation (Figure 2.6), the coronary arteries transport oxygenated blood to

the myocardium and other components of the heart within the two main coronary arteries.

The left and right coronary arteries are supplied from the aorta. The aortic sinuses in the

wall of the aortic root give rise to the coronary arteries. The epicardial coronary arteries

are the vessel branches of the coronary arteries that remain on the surface of the heart

and follow the heart sulcus.

The left coronary artery transports blood to the left side of the heart and to the interven-
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Figure 2.6: Anterior and posterior views of prominent coronary surface vessels.

tricular septum. From the left coronary artery, the circumflex artery is arisen and follows

the heart sulcus to left, and eventually gives rise to one or more left marginal arteries. The

second major branch arising from the left coronary artery is called the anterior interven-

tricular artery. The right coronary artery’s major branch is the posterior interventricular

artery. It runs along the posterior part of the interventricular sulcus towards the apex of

the heart. The anterior and posterior interventricular arteries give rise to numerous minor

branches that interconnect with each other, forming anastomoses. In anastomoses, the

vessels interconnect and blood from different branches may circulate to a specific region.

The coronary veins, which run parallel to the main surface arteries, return deoxygenated

blood from the heart to the right atrium. It can be concluded that venous blood flow in

the coronary veins is of three types: draining into the coronary sinus, direct draining into

the right atrium, and direct draining into four chambers (venae cordis minimae). Most

venous blood is circulated to the coronary sinus, which is a large, thin-walled vein on the

posterior surface of the heart, located in the atrioventricular sulcus and draining directly

into the right atrium. The great cardiac vein, middle cardiac vein, small cardiac vein

and posterior vein of the left ventricle are the principal coronary veins connected to the

coronary sinus. The anterior cardiac veins parallel the small cardiac arteries and drain the

anterior surface of the right ventricle into the right atrium bypassing the coronary sinus.
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2.3.2/ MECHANISM OF MYOCARDIAL INFARCTION

According to the Fourth Universal Definition of Myocardial Infarction (2018) [116], MI is

clinically defined as the presence of acute myocardial injury detected by abnormal cardiac

biomarkers in the setting of evidence of acute myocardial ischaemia. Pathologically, MI

occurs when myocardial cells die due to prolonged ischaemia. Patients who suffer from

typical MI may have the symptoms of fatigue, chest pain or malaise in the days or weeks

preceding the event, and typical ST-elevation myocardial infarction (STEMI) may occur

more rapidly without showing any symptoms.

Although most of MI results from blocking, the mechanism can be different. Therefore, MI

is divided into five types by the Fourth Universal Definition of Myocardial Infarction:

• Type 1 (spontaneous MI): MI caused by atherothrombotic coronary artery disease.

Atherosclerosis and thrombosis are the culprits of the MI type 1. Atherosclerotic

plaque disruption or intraluminal thrombus in one or more of the coronary arteries

decreases or even obstructs the blood flow and thereby results in myocyte necrosis.

Figure 2.7 shows plaque disruption and thrombus in a coronary artery.

Figure 2.7: Cause of MI type 1: Plaque disruption and thrombus in a coronary artery.
(See [116])

• Type 2 (MI related to an ischemic imbalance): a mismatch between oxygen supply

and demand leads to ischaemic myocardial injury. The culprit diseases of MI type

2 may be coronary endothelial dysfunction, coronary artery spasm, coronary artery

embolus, tachyarrhythmias/bradyarrhythmias, anaemia, respiratory failure, hyper-

tension, or hypotension.
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• Type 3 (MI resulting in death when biomarker values are unavailable): patients suf-

fering from MI type 3 can manifest a typical presentation of myocardial ischaemia

or infarction, including ischaemic electrocardiogram (ECG) changes or ventricular

fibrillation, while the elevation of biomarker values can not be detected before the

death of patients. The relative biomarker is not available because the patient suc-

cumbs before values are measured or is struck by sudden death with evidence of

MI by autopsy.

• Type 4a (MI related to percutaneous coronary intervention): elevation of biomarker

values (cardiac troponin (cTn) is recommended) to more than 5 times the 99th per-

centile of the upper reference limit (URL) in patients with normal baseline values (<

99th percentile URL) or a rise of values over 20% if the baseline values are elevated

but stable or falling. In addition, any of the following are required: (1) symptoms

suggestive of myocardial ischemia; (2) new ischemic ECG changes or new bundle

branch block; (3) angiographic loss of patency of a major coronary artery or a side

branch or persistent slow flow or no flow or embolization; or (4) demonstration of the

new loss of viable myocardium or new regional wall motion abnormality by cardiac

imaging [127].

• Type 4b (MI related to stent thrombosis): MI associated with stent thrombosis as

detected by coronary angiography or autopsy in the setting of myocardial ischemia

in combination with a rise and/or fall of cardiac biomarkers with at least one value

above the 99th percentile URL.

• Type 5 (MI related to coronary artery bypass grafting): elevation of cardiac

biomarker values more than 10 times the 99th percentile URL in patients with nor-

mal baseline cTn values. In addition, either (1) new pathologic Q waves or new BBB,

(2) angiographic-documented new graft or native coronary artery occlusion, or (3)

evidence of new loss of viable myocardium or new regional wall motion abnormality

by cardiac imaging is required.

2.4/ MEDICAL DIAGNOSIS OF MYOCARDIAL INFARCTION

MI is diagnosed when either of the following two criteria is met [116]:

• Detection of a significant change of cardiac biomarker values and with at least one

of the findings including symptoms of ischemia, new or presumed new significant

ST-segment-T wave (ST-T) changes or new left bundle branch block, development

of pathological Q waves, evidence of new myocardium damage with imaging, or

identification of an intracoronary thrombus by angiography or autopsy.
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• Cardiac death with symptoms suggestive of myocardial ischaemia, with presumed

new ischaemic changes or injury on ECG or new bundle branch block, but death

occurs before cardiac biomarker levels are obtained or before cardiac biomarker

values increase.

Therefore, a variety of medical diagnoses can be performed according to the patient’s

conditions and symptoms:

• Electrocardiography.

• Echocardiography.

• Cardiac MRI.

• Clinical and physiological features via blood tests.

2.4.1/ ELECTROCARDIOGRAPHY

ELECTRICAL ACTIVITY OF THE HEART

Cardiac muscle cells consist of two types: myocardial contractile cells and myocardial

conducting cells. Contractile cells conduct impulses and contract to pump blood through-

out the body. Myocardial conducting cells initiate and propagate the action potential

throughout the heart.

An individual cardiac muscle cell can generate its own electrical impulses followed by

contraction. The autorhythmicity of a myocardial cell allows it to initiate an electrical

potential at a fixed rate that spreads rapidly from cell to cell. When more cells are joined

and beat together, the pace is set by the cell with the highest inherent rate. The impulse

spreads from the faster to the slower cells to trigger a contraction. The conduction system

of the heart includes the sinoatrial node, the atrioventricular node, the atrioventricular

bundle, the atrioventricular bundle branches, and the Purkinje cells (Figure 2.8).

The sinoatrial node is a group of cells located in the wall of the right atrium, establishing

the normal cardiac rhythm. The sinoatrial node has the highest inherent rate of depolar-

ization and initiates an electrical impulse, which is known as the pacemaker of the heart.

This impulse travels across the atria via internodal routes from the sinoatrial node to the

atrial myocardial contractile cells and the atrioventricular node. Between the two nodes,

the impulse takes around 50 ms. Apart from the internodal routes, the impulse can be

also conducted from the right atrium to the left atrium via the interatrial band. Figure 2.9

illustrates the initiation of the sinoatrial node impulse and its transmission to the atrioven-

tricular node.
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Figure 2.8: Conduction system of the heart. Specialized conducting components of the
heart include the sinoatrial node, the internodal pathways, the atrioventricular node, the
atrioventricular bundle, the right and left bundle branches, and the Purkinje fibers. (See
[116])

The muscular contraction is triggered by the wave of depolarization, beginning from the

right atrium. As the impulse spreads across the superior portions of both atria and then

down through the contractile cells, the contractile cells begin contraction from the superior

to the inferior portions of the atria and pump blood into the ventricles.

The atrioventricular node is the channel for excitation to pass from the atria to the ven-

tricles under normal conditions. Its anterior end emits the atrioventricular bundle and is

positioned in the deep endocardial surface of the Koch triangle in the right atrium. Its

primary role is to quickly convey excitement from the sinoatrial node to the ventricles,

ensuring that the atrial contraction is followed by the onset of ventricular contraction.

The atrioventricular bundle, or bundle of His, begins at the AV node and travels across

the interventricular septum before splitting into two atrioventricular bundle branches, gen-

erally referred to as the left and right bundle branches. There are two fascicles on the

left bundle branch. The left bundle branch provides blood to the left ventricle, while the

right bundle branch provides blood to the right ventricle. The left bundle branch is signif-

icantly larger than the right because the left ventricle is much larger than the right. The

right bundle branch supplies the right papillary muscles and is situated in the moderator

band. Because of this connection, each papillary muscle receives the impulse at about

the same moment, causing them to contract simultaneously just before the remainder of

the myocardial contractile cells in the ventricles.
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Figure 2.9: Cardiac conduction initiated by the sinoatrial node. (1) The rest of the conduc-
tion system is at rest, including the sinoatrial (SA) node. (2) The action potential is started
by the SA node and travels through the atria. (3) After reaching the atrioventricular node,
a 100 ms delay before the impulse is conveyed to the atrioventricular bundle, allowing the
atria to finish pumping blood. (4) The impulse goes through the atrioventricular node after
the delay. The moderator band connects the bundle and bundle to the Purkinje fibers, as
well as the right papillary muscle. (5) The impulse travels to the ventricle’s contractile
fibers. (6) The contraction of the ventricles begins. (See [116])

ELECTROCARDIOGRAM

The electrical signal of the heart can be captured by placing surface electrodes on the

body. The tracing of the heart’s electrical signal is the ECG. Conventional ECG uses 3, 5

or 12 leads while diagnosis is more accurate if a greater number of leads is employed.

The ECG signal has five prominent points: the P wave, the QRS complex, and the T wave

as shown in Figure 2.10. The small P wave represents the depolarization of the atria, i.e.

the membrane potential of atrial myocardium rapidly shifts from negative to positive. The

atria begin contracting approximately 25 ms after the start of the P wave. The large QRS

complex represents the depolarization of the ventricles followed by the ventricular systole.

Due to the larger size of the ventricular myocardium, the depolarization produces a much
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stronger electrical signal. When the QRS reaches the peak of the R wave, the ventricles

begin to contract. The QRS may be conveniently divided into two phases (isovolumic

contraction and ventricular ejection), approximately lasting a total of 270 ms. The T wave

represents the repolarization of the ventricles followed by the ventricular relaxation, that

is, as the positive charge moves out of the cell the potential within the cell decreases and

approaches its resting potential once more (Figure 2.5).

The diagnosis of MI depends on the segments and intervals on ECG tracing. Segments

are defined as the regions between two waves. Intervals include one segment plus one

or more waves (Figure 2.10). An enlarged Q wave may indicate a MI. An elevation of

the ST segment (the segment that connects the QRS complex and the T wave in electro-

cardiogram) above baseline is often seen in patients with an acute MI, and may appear

depressed below the baseline when hypoxia is occurring. Therefore, besides the MI type

definition in Section 2.3.2, another MI classification scheme can be identified according

to the ECG exam: ST-elevated MI (STEMI) and non-elevated MI (non-STEMI).

Figure 2.10: Illustration of waves, intervals and segments on a normal ECG tracing. (See
[108])

2.4.2/ ECHOCARDIOGRAPHY

Echocardiography is the standard ultrasound or Doppler ultrasound exam of the heart.

Depending on the device, maneuver and patient conditions, several different types of

echocardiography can be performed such as transthoracic echocardiography, trans-

esophageal echocardiography, stress echocardiography, three-dimensional echocardio-

graphy and fetal echocardiography. Transthoracic echocardiography is the most common

type that consists of a transducer placed on the patient’s chest. The transducer emits
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ultrasound toward the heart and the reflected ultrasound is interpreted to form images of

the heart. The signal acquisition is performed at high frequency therefore the echocardio-

gram can be visualized in kinetic format. More analyses can then be conducted within the

images that describe the size and shape of the heart, pumping capacity, and the location

and extent of any tissue damage.

From the echocardiogram, one important measurement that can be assessed is the ejec-

tion fraction. The ejection fraction expresses the quantity of blood the left ventricle pumps

out during each contraction. A normal left ventricle ejection fraction (LVEF) may be be-

tween 50 and 65 percent [60], and Maceira et al. [32] calculated the mean LVEF being

67% (± 4.6%) in a sample of 120 subjects with no known risk factors or history of car-

diac disease, and normal physical examination and ECG. Damage to myocardium may

reduce the heart’s performance. The partial loss of the heart function can be reflected

in the ejection fraction value. However, ejection fraction abnormality may be associated

with various pathologies, not only MI but also, for example, cardiomyopathy.

2.4.3/ CARDIAC MRI

MECHANISM OF MRI

MRI is a non-ionizing radiation medical imaging technology, based on nuclear magnetic

resonance (NMR). Knowing that certain atomic nuclei are able to absorb radio frequency

energy when placed in an external magnetic field, the resultant evolving spin polarization

can induce a radio frequency (RF) signal in a radio frequency coil and thereby be de-

tected [15]. NMR results from specific magnetic properties of certain atomic nuclei. The

abundance of certain nuclei differentiates an object’s internal structure, with hydrogen

being the most common nucleus employed to generate signals of the body.

The decay of RF-induced NMR spin polarization, termed relaxation, is another factor

that differentiates tissues. At equilibrium, nuclear spins process randomly around the

direction of the applied field, but suddenly become in a phase when any resulting specific

RF wave is orthogonal to the field. The RF pulses cause the spin-state population to

be perturbed from its equilibrium value. The return of the longitudinal component of the

magnetization to its equilibrium value is known as spin-lattice relaxation, while the loss

of phase coherence of the spins is known as spin-spin relaxation. The longitudinal (spin-

lattice) relaxation time is called T1 and the transverse (spin-spin) relaxation time is called

T2. Higher contrast can be achieved by using suitable weighting on the basis of the

tissue to be examined. Generally, T1 weighting is better for identifying fatty tissue and for

post-contrast imaging, while T2 weighting is useful for detecting edema and inflammation.

Moreover, the MRI sequence is a particular set of pulse sequences and pulsed field

gradients. Different sequences may result in particular image appearances [161].



24 CHAPTER 2. CLINICAL CONTEXT: MYOCARDIAL INFARCTION

To perform a clinical MRI study, the patient is first positioned within an MRI scanner where

the magnetic field is constantly strong (up to 3T for medical purposes). The gradient

coils cause an overlapping gradient magnetic field so that the spatial position can be

determined. Then an oscillating magnetic field is triggered to the patient at the resonance

frequency. The excited atoms emit an RF signal, which is measured by a receiving coil.

The contrast between different tissues is determined by the rate at which excited atoms

return to the equilibrium state (T1 weighting), or by the rate at which excited atoms reach

equilibrium or go out of phase with each other (T2 weighting).

During the image acquisition, each time only one slice can be captured by MRI and a

slice refers to the resonance signal from a narrow 3D space. Therefore, to model the

heart, the position of the heart should be first determined, then the signal of the spacing

covering the heart will be intercepted slice by slice with a small gap between slices.

CARDIAC MRI MODALITIES

Different cardiac MRI (CMRI) modalities can be employed depending on the purpose of

diagnosis. Cine CMRI can capture the movement of the heart. Despite cine CMRI spe-

cializing in reflecting the movement of the heart and examining the cardiac function, MI

can be also characterized by DE-MRI. DE-MRI forms static images, meanwhile, the con-

trast between normal and pathological tissues is hyperenhanced with a contrast agent.

The contrast agent is usually gadolinium-based. Normal, ischemic, and fibrotic or necrotic

myocardial tissues wash out differently the contrast agent. Normal tissue shows lower de-

layed accumulation due to its higher washout rate, whereas ischemic or infarcted tissue

retains higher post-enhancement due to its lower washout rate. Necrotic tissue exhibits

the slowest rate of absorption and little contrast agent can be accumulated. The tissues’

washout characteristics differentiate their vitality when the acquisition is appropriately

timed, which is usually 7 to 10 minutes after the injection of the contrast agent. The

typical pulse sequence for myocardial delayed enhancement is a segmented inversion-

recovery–prepared fast gradient-echo sequence. The imaging occurs in a breath-hold

while some free-breathing techniques can be employed for patients who have difficulty

on breath-holding.

One challenge of the MRI acquisition is the motion caused by respiratory and contraction

of the myocardium [128]. Facing such a challenge, the gating methods should be em-

ployed during the image acquisition. Firstly, to avoid the shift due to the contraction, the

cardiac self-gating [28] or ECG gating approaches synchronize the heartbeat rhythm. The

gating can be prospective (e.g. DE-MRI) or retrospective (e.g. cine CMRI). The prospec-

tive gating captures images by each R-wave and stops once the estimated number of

cardiac phases has been gathered. This gating method, therefore, produces a short
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period of no image acquisition and the achieved images refer to desired phases. The

retrospective gating triggers image acquisition in a continuous way throughout the whole

cardiac cycle. The image segments from the various R-R intervals are interpolated onto

a computed average length R-R interval so that the motion in an entire cardiac cycle can

be assessed. Secondly, to avoid respiratory motion, patients are usually required to hold

their breath. Alternatively, for people who have difficulty holding their breath, respiratory

gating can be performed together with cardiac gating. Moreover, fast pulse sequences

ensure multiple echoes during a single heart cycle such as Steady-state free precession

(SSFP) and its variant of balanced gradients, commercially termed TrueFISP (True fast

imaging with steady-state precession) by Siemens [20].

Cine CMRI can be performed with or without the injection of a contrast agent, while DE-

MRI should be acquired around 10 minutes after the injection. The two modalities can be

performed one after another during the same exam to assess both the heart function and

the extent of MI. The essential difference is the cardiac gating strategy, the prospective

triggering or the retrospective triggering. The cine CMRI consists of a series of static

images that covers a full cardiac cycle to reflect the heart motion and the employed se-

quence is usually SSFP. DE-MRI is usually performed with Phase Sensitive Inversion

Recovery (PSIR) sequence that restores the signal polarity, thus avoiding loss of contrast

and providing a consistent image appearance without polarity artifacts for cases where

the inversion time is set too early. The phase-sensitive reconstruction method dramat-

ically reduces the variation in apparent infarct size which is observed in the magnitude

images as the inversion time is changed [24]. Figure 2.11 shows examples of cine CMRI

and DE-MRI.

CARDIAC IMAGING PLANES

To better visualize the anatomy of the heart via cardiac MRI, the imaging planes should

be correctly adjusted. The cardiac imaging planes are standard orientations for displaying

the heart, in reference to the long axis of the left ventricle.

The initial planes are orthogonal, symmetrically separating the body (Figure 2.12). How-

ever, the initial planes are not optimized to visually assess the MRI. Figure 2.13 shows

MRI at sagittal, coronal and transverse planes covering a part of the heart. To facilitate

the visualization, the MRI acquisition should be adjusted to the cardiac imaging planes

consisting of the short-axis, the horizontal long-axis and the vertical long-axis as shown

in Figure 2.11 and Figure 2.14.
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Figure 2.11: Examples of cine CMRI (A, B, D and E) and DE-MRI (C and F). A, Cine
CMRI, short-axis view at the apical portion of the left ventricle showing both cavities. B,
Cine CMRI, short-axis view at the middle portion of LV showing both cavities. C, DE-
MRI, short-axis view at the middle portion of LV without scar/fibrosis. D, Cine CMRI
four-chamber view at diastole showing both cavities. E, Cine CMRI, four-chamber view
at systole showing the thickening of the lateral wall of the LV 2 . F, DE-MRI, four-chamber
view without scar/fibrosis (See [40]).

2.4.4/ CLINICAL AND PHYSIOLOGICAL FEATURES

Cardiac troponin (cTn) is part of the troponin complex, which binds to actin in fine mus-

cle filaments and holds the actin-myosin complex in place. Damage to the heart muscle

causes cTn to be introduced into the blood, hence measuring changes in the concen-

tration of cTn in the blood can reflect the extent of an acute heart disease. An acute

myocardial infarction was diagnosed in cases of a cTn value increase or decrease pat-

tern with at least 1 value 30 > ng/L (99th percentile upper reference limit) together with

myocardial ischemia. It is important to recognize that cTn is not entirely specific for my-

ocardial damage secondary to infarction [47]. Elevation of cTn without signs or symptoms

indicating overt cardiac ischemia is thought as myocardial injury [82].

The European Society of Cardiology and the American College of Cardiology collaborated

to report that myocardial injury detected by abnormal biomarkers in the setting of acute

myocardial ischaemia should be labeled as MI [19]. Furthermore, elevated cTn value

is frequently encountered and associated with an adverse prognosis [82]. Therefore,

according to the Fourth Universal Definition of MI, cTn value is recommended as the

primary biomarker, which is crucial for identifying non-fatal MI.

N-terminal prohormone of brain natriuretic peptide (NT-proBNP) is a prohormone cleaved

from the molecule to release brain natriuretic peptide. The plasma concentrations of
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Figure 2.12: Initial anatomical planes for medical imaging (See [108]).

NT-proBNP is typically increased in patients with asymptomatic or symptomatic left ven-

tricular dysfunction and is associated with coronary artery disease and myocardial is-

chemia [27]. Although NT-proBNP is not the priority biomarker for MI assessment, its

value change provides an additional indicator for a more comprehensive analysis of sus-

pected MI.

Besides the biomarkers, the Killip classification system is also used to evaluate the risk of

mortality for individuals with an acute MI. Killip evaluates the functional severity based on

clinical evidence of heart failure or shock. Four levels are ranked according to the follow-

ing criteria as the results of treatment of 250 patients with established acute myocardial

infarction [1]:

• Killip I: no heart failure. No clinical signs of cardiac decompensation.

• Killip II: heart failure. Diagnostic criteria include rales, S3 gallop and venous hyper-

tension.

• Killip III: severe heart failure. Frank pulmonary edema.
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Figure 2.13: Cardiac MRI at initial planes. In the first row the sagittal (left) and coronal
(right) planes, at the second row two slices at the transverse plane.

Figure 2.14: Cardiac imaging planes and associated standard views. (a) The three stan-
dard cardiac imaging planes are located along the major axes of the heart: horizontal
long-axis, vertical long-axis and short-axis. AO: aorta, PT: pulmonary trunk, LV: left ven-
tricle, RV: right ventricle. (b) The images acquired along the major axes show all 4 heart
chambers, 2 selected chambers (one ventricle and the associated atrium), or a frontal
view of the myocardium (short-axis view) [63].

• Killip IV: cardiogenic shock. Signs include hypotension (systolic pressure of 90 mm.

Hg or less) and evidence of peripheral vasoconstriction such as oliguria, cyanosis

and diaphoresis. Heart failure, often with pulmonary edema, has also been present

in the majority of these patients.



2.5. CONCLUSIONS 29

2.5/ CONCLUSIONS

This chapter introduced the fundamental of heart and myocardial infarction with its first-

line diagnosis techniques. MI is usually associated with coronary diseases and it has

been one of the most common cardiovascular pathologies. According to guidelines of

cardiology societies, biomarkers and imaging diagnoses are recommended to evaluate

the MI, of which the cardiac troponin and the DE-MRI are considered to be among the

most robust diagnostic techniques.





3

CHALLENGES FOR AUTOMATIC MI
ASSESSMENT AND AVAILABLE DATA

3.1/ INTRODUCTION

The increasing number of patients suffering from MI requires significant clinic resources

for the diagnosis, therapy and follow-up treatment. Therefore, this thesis focuses on the

automatic assessment of MI from different medical diagnosis modalities. With the help of

machine learning algorithms, this work will hopefully improve the diagnosis accuracy and

reduce the workload of the doctors. Particularly in less medically developed countries,

well-proven machine learning algorithms can be effective in improving regional medical

conditions.

According to the Fourth Universal Definition of Myocardial Infarction (2018) [116], the Eu-

ropean Society of Cardiology and the American College of Cardiology [19], biomarkers,

imaging and ECG are recommended to diagnose MI. Therefore, inspired by the recom-

mendation of cardiac societies and current clinical practice, the proposed automatic as-

sessment of MI in this work is based on DE-MRI and patient features obtained from ECG,

transthoracic echocardiogram (TTE) and blood tests and clinical information. Therefore,

in this chapter the challenges to be overcome using the recommended medical diagnosis

data for the automatic MI assessment will be elaborated. Meanwhile, the experimental

datasets consisting of DE-MRI and patient features will be detailed.

3.2/ MYOCARDIAL INFARCTION ASSESSMENT FROM MRI

Cine MRI and DE-MRI are the common CMRI to assess MI. Cine MRI reconstructs the

heart motion within a single heartbeat cycle, while DE-MRI captures static images with

higher contrast between normal and pathological tissues. This work particularly concen-

trates on DE-MRI as the diagnostic imaging.
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Since the heart pumps blood mainly by the contraction of the ventricles, and the left ven-

tricle has a significantly thicker myocardium than the one in the right, the imaging assess-

ment of MI can be better performed on the left ventricle myocardium. In CHU Dijon, about

80% cardiac imaging diagnoses examine the area of the left ventricle. According to the

differential perfusion and washout characteristics on the basis of tissue viability, the con-

centration rate of the contrast agent in different tissues indicates the state of myocardium.

When the image acquisition is performed at an appropriate time, the normal myocardium

will show low agent concentration because of its fast washout rate, the infarct will show

high agent concentration because of its delayed perfusion and the more significant ac-

cumulation of the agent in the expanded space between fibrotic myocardium, and the

persistent microvascular obstruction (PMO) will show low agent concentration because

the agent can not pass through the scar tissue [34, 35].

The severity evaluation of MI on DE-MRI depends on the surface of the infarct and PMO

compared to normal myocardium. The correct delineation is thus crucial to precisely

quantify the severity. In current clinical practice, the delineation is manually performed by

physicians. This procedure is tedious and time-consuming. Furthermore, the accuracy

depends on the expert’s experience and can be biased by some subjective understand-

ings. To reduce the bias caused by subjective factors and free physicians from repetitive

work, an automatic segmentation method should be proposed to delineate myocardial tis-

sues according to the uptake of contrast agents. The automatic delimitation indicates the

position and size of pathological tissues and therefore both the qualitative and quantitative

evaluations of MI can be obtained.

Although DE-MRI is recognized as the gold standard imaging tool for MI assessment [29],

the interpretation of the image is still challenging. The challenges can result from the

vertical position of the slice, the fatty tissue wrapping the epimyocardium, the presence

of PMO, etc. Figure 3.1 shows five selected DE-MRI slices on short-axis orientation,

covering completely left ventricle. The details of each slice are:

1. Slice A is close to the apex. Therefore only a small part of the right ventricle appears

in this slice (blue arrow).

2. Slice B involves an infarct that connects the cavity (blue arrow).

3. Scar tissues in slice C have a broken shape: On the upper side, the scar tissues

and the normal myocardium intersperses.

4. Slice D involves an important PMO area.

5. Slice E involves an artifact (blue arrow).

Apart from the difficulties in the images described in Figure 3.1, the movement due to

breathing or heart contractions may also render the images noisy, despite the use of
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Figure 3.1: Five challenging slices of short-axis DE-MRI with manual annotations of dif-
ferent tissues. Blue arrows specifically highlight difficult areas (low contrast, presence of
artifact, etc.). Cardiac cavity in red, normal myocardium in green, myocardial infarction in
blue and PMO in yellow. Details can be found in the text.

gating techniques based on ECG or the requirement of breath holding. Moreover, the

breath held at different positions may introduce a minor shift between slices, requiring

additional inter-slice alignment to reconstruct the 3D model of the heart.

One more constraint to the development of an automatic assessment model is the an-

notated data if a supervised model is to be employed. Since high-accuracy segmen-

tation approaches are mostly based on supervised deep learning models, the qual-

ity and quantity of MRI data with manual ground truth annotations is essential. Pub-

licly available datasets usually provide up to a thousand CMRI slices with annotations

such as MS-CMR2019 (https://zmiclab.github.io/projects/mscmrseg19/) and MyoPS 2020

(https://zmiclab.github.io/projects/myops20/) [120, 85] while more than tens of thousands

of images are available in the datasets dedicated for human environment applications

such as MS COCO and KITTI datasets [61, 53].

3.3/ MYOCARDIAL INFARCTION ASSESSMENT FROM PATIENT FEA-

TURES

Although the DE-MRI provides the imaging gold standard for MI assessment, the ap-

plication of DE-MRI is constrained by its processing time, material availability and cost

compared to ECG or TTE. Furthermore, when a patient complains about non-traumatic

chest pain, simple tools such as ECG, troponin assay and echocardiography are first per-

formed as the pre-hospital or emergent diagnosis of MI. If the examinations reveal the

possibility of MI, the DE-MRI could be achieved in the next days to have a more accurate

evaluation of the myocardial impairment, after the acute phase and the early therapeutic

management including revascularization and medications. Until the ultimate diagnosis
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based on the MRI exam is available, physicians mainly rely on the obtained physiological,

clinical and paraclinical characteristics to determine the severity of a patient’s condition

and to give sound treatment advice.

In light of the clinical practices, the automatic assessment of MI from patient features

obtained before the performance of DE-MRI is of great value. As defined by the Fourth

Universal Definition of Myocardial Infarction (2018), the cTn value compared to the 99th

percentile of URL is a crucial indicator for non-fatal MI. The cTn assay is thus one impor-

tant patient feature to be taken into account. ST segment analysis on ECG (especially in

case of ST persistent elevation) and LVEF (left ventricular ejection fraction) assessment

from TTE have also been shown highly correlated with MI [51]. Apart from these, physio-

logical features such as BMI and age may be related to MI, which can be additional risk

factors for the MI assessment.

The MI assessment from the patient features can be qualitative or even quantitative. The

qualitative assessment classifies if a patient suffers from MI and the quantitative assess-

ment predicts the extent of the disease area. The data is always one challenge for the

automatic assessment approach. In addition to the data volume, the preparation of the

ground truth is also tough. Although the follow-up of patients can establish the presence

of MI, the severity of acute MI should be evaluated by imaging tools or autopsy. Datasets

incorporating both the patient features and the extent of MI is rare.

Since the patient features are majorly scalar or Boolean, the richness of the clinical in-

formation they contain may be poorer than DE-MRI. Even an acquisition or recording

error of a single piece of feature could inverse the diagnosis conclusion hence the patient

features may be less robust compared to DE-MRI.

Although the patient features are easier to interpret, the fusion of DE-MRI and patient

features could improve the robustness of automatic assessment but introduce technical

challenges in designing multi-variate predictive models and balancing the weight from

different data sources.

3.4/ EXPERIMENTAL DATA

Private datasets Despite the existence of some publicly available datasets involving

DE-MRI, many of them only contain manual annotations of ventricles while the proposal

of the work is to assess MI. Therefore, only two datasets incorporating MI annotations

were employed as the experimental data. The first dataset is private and was collected

in the University Hospital of Dijon (CHU Dijon), consisting of 160 cases with short-axis

DE-MRI covering the left ventricle. Each case has on average 7 slices and the dataset

has 1,201 slices in total. The MRI acquisition was done on 1.5 T and 3 T magnet
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(Siemens Medical Solution, Erlangen, Germany) with a phased thoracic coil. T1-weighted

Phase Sensitive Inversion Recovery (PSIR) images were acquired around 10 minutes

after the injection of a gadolinium-based contrast agent (Gd-DTPA, Magnevist, Schering-

AG, Berlin, Germany). The mean pixel spacing is 1.55 ± 0.20 mm2 and the slice interval

is generally between 11-13 mm. The acquired images have on average a resolution of

200×200 pixel2 and the left ventricle is always smaller than 80×80 pixel2.

In addition to the DE-MRI, the manual annotation on the left ventricle was also provided

by a physician having more than 15 years of experience. The annotation data provide

a total of 5 types of tissue masks, including the cavity, normal myocardium, myocardial

infarction, PMO and the other tissue out of the epicardium. To evaluate the variability of

the manual expert annotation, inter- and intra-observer variation studies were performed

on 30 randomly selected cases. The intra-observer variation study was done by the same

expert two months after the first segmentation, the inter-observer variation study was

performed by another expert. Table 3.1 indicates the variance of inter- and intra-observer

variation studies.

Table 3.1: Segmentation results of inter- and intra-observer variation studies on 30 ran-
domly selected cases. The Dif refers to the volume difference between the tested sample
and the ground truth sample.

Method Myocardium Infarction PMO
Dif(mL) HD(mm) Dice Dif(mL) PIM(%) Dice Dif(mL) PIM(%) Dice

Inter-observer 13.57 2.79 0.8220 6.34 5.29 0.6609 2.12 1.65 0.6014
Intra-observer 8.49 2.25 0.8443 5.16 4.35 0.7231 0.75 0.58 0.7214

The MRI data are saved in the Digital Imaging and Communications in Medicine (DI-

COM) [25] format and all personal information in DICOM header has been anonymized.

The annotation files are saved separately in JavaScript Object Notation (JSON) format.

The contours that delineate each tissue area were drawn with the QIR software (CASIS

company, Quetigny, France). A contour is registered as a set of sequential points, formed

by connecting adjacent points. The coordinates of the points are saved as floating point

numbers due to the manual annotation is usually done on enlarged images.

Public datasets The second employed dataset is publicly available, it is called

EMIDEC. The overall dataset consists of 150 exams. Each exam is divided into two

parts, a DE-MRI exam composed of a series of short-axis slices and the associated clini-

cal information [142]. This dataset was improved from the previous private dataset hence

some MRI cases are shared by both datasets. Along with MRI, the physiological, clin-

ical and paraclinical characteristics are provided. These patient features consisting of

twelve indicators that are potentially related to the acute MI were selected to compose

the patient features. All the patients included in the dataset presented symptoms sug-
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gestive of MI during admittance to an emergency department. The number of infarcted

and non-infarcted cases was not balanced, which reproduced the clinical background

in the cardiac emergency department. Physiological, clinical and paraclinical data were

recorded during the arrival of the patients. Table 3.2 shows the characteristics of the se-

lected features and the independent t-test [50] is performed to evaluate if the difference is

significant between healthy and pathological subjects for each feature. Table 3.3 lists the

percentage of infarcted myocardium (PIM) and the present rate of MI and PMO among

pathological subjects.

Table 3.2: Characteristics of pathological and non-pathological patients (according to the
DE-MRI).

Patient feature Non-pathological subjects(n=50) Pathological subjects(n=100) p-value
Sex 38 females and 12 males 23 females and 77 males 0.000
Age 66 ± 14 years 59 ± 12 years 0.004

Tobacco(yes, no, former smoker) 18%, 22%, 60% 44%, 21%, 35% 0.001
Overweight1 62% 53% 0.296

Arterial hypertension 58% 31% 0.002
Diabetes 20% 10% 0.126

History of coronary artery disease 4% 12% 0.065
ECG(ST elevation) 30% 80% 0.000

Troponin(ng per mL) 7.68 ± 12.91 101.04 ± 101.35 0.000
Killip max(1,2,3,4) 76%, 22%, 2%, 0% 83%, 12%, 2%, 3% 0.916
LVEF2(percentage) 49.62 ± 13.49% 47.74 ± 13.17% 0.423

NTProBNP3(pg per mL) 2136 ± 3696 1314 ± 2109 0.154
1 If BMI > 25
2 Left Ventricular Ejection Fraction, calculated from transthoracic echocardiography
3 N-terminal pro-B-type natriuretic peptide

Table 3.3: Proportion of scar tissues among pathological subjects. PIM refers to the
percent of infarcted myocardium

Pathological tissue PIM Presence (%)
MI (PMO inclusive) 0.1825±0.1152 100

PMO 0.0330 ±0.0360 51

Unlike the first dataset, all slices in one MRI case have been aligned according to their

gravity center obtained from the epicardium so that the potential misalignment has been

corrected. Moreover, the MRI and manual annotations have been standardized into two

separate Neuroimaging Informatics Technology Initiative (NifTi) files that have strictly the

same image shape. Due to the NifTi format, each tissue area is represented by a mask

map other than sequential contour points.

In both datasets, all data are fully anonymized and handled within the regulations set

by the local ethical committee. The ethical committee of the University Hospital of Dijon

checked the compliance of the dataset in accordance with the Declaration of Helsinki.

The retrospectively collected data were completely untraceable. Therefore, according to

French law and the ethical committee of the University Hospital of Dijon, neither the ethics

committee approval nor informed written consent was required.
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3.5/ CONCLUSIONS

In this chapter, the challenges for automatic assessment of MI from MRI and patients

features are elaborated and the available datasets are presented. The major challenges

that come from the DE-MRI are the images of low contrast between normal and scar

tissues. Moreover, the identification of the PMO is even more challenging due to its

similar density to normal myocardium tissue. With the multivariate data, two problems

can be identified: the simplicity of the patient features limits deeper data exploration, and

the difference between the patient features and the DE-MRI requires an efficient data

encoding method.
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RELATED WORKS: SEGMENTATION

MODELS AND AUTOMATIC MI
ASSESSMENT FROM MRI

4.1/ INTRODUCTION

Related works about the automatic MI segmentation will be presented separately for seg-

mentation models and applications. Segmentation models can be grouped by statistical

models and deep learning models. Statistical models have been widely employed on

tasks of medical image segmentation for a long time, while deep learning approaches are

relatively more recent although the number of their applications is expanding rapidly.

Statistical models usually distinguish groups of pixels in an image according to some pre-

defined rules of the feature distribution. Such models are normally non-supervised and

computationally efficient. However, such models are sensitive to noise if the noise shares

similar distribution as a target group of pixels.

Deep learning-based segmentation models have been more frequently performed after

the proposition of the eminent work of Fully Convolutional Network [67] and then U-Net

[69]. Fully Convolutional Network introduces the deconvolution to construct the segmen-

tation in a learnable way with pyramid architecture, and U-Net further adds the skip con-

nection to restore the details in the encoding side for the segmentation. In the context

of U-Net, optimizations are studied such as loss functions, building blocks, auxiliary net-

works, etc. to specifically improve the segmentation results on different medical images

and target tissues.

This chapter is organized as follows:

• Statistical models for segmentation. The common statistical models for segmenta-

tion tasks are introduced.
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• Deep learning models for segmentation. Different aspects of deep learning-based

segmentation models are introduced, mainly around the improvements on U-Net-

based approaches, including preprocessing techniques, network conceptions and

related applications on cardiac MRI.

• Conclusions.

4.2/ STATISTICAL MODELS FOR SEGMENTATION

The statistical models for the segmentation task are usually rule-based, including

threshold-based approaches like Full-Width at Half-Maximum (FWHM) [23] or n-Standard

Deviations (n-SD) (or Signal Threshold versus Reference Mean (STRM)), and clustering-

based approaches like Gaussian Mixture Models (GMM) [37].

Threshold-based segmentation approaches differentiate intensity according to a thresh-

old. The thresholding intensity is crucial to the segmentation accuracy. The appropriate

threshold can be estimated by analyzing the signal distribution in the Region of Interest

(ROI), i.e. the LV myocardium. FWHM value can be employed to differentiate between

the LV myocardium and the whole MRI slice, or between normal myocardium and my-

ocardial scar inside of the LV myocardium. In the intensity distribution of an ROI, FWHM

is the difference between two values of the independent variable, at which the dependent

variable is equal to half its maximum value (Figure 4.1). n-SD is another thresholding

strategy. n-SD sets the bandwidth from the mean value to several standard deviations

(SD). 2, 3, 4, 5, and 6 SDs are the usual threshold range, corresponding to the methods

2-SD, 3-SD, 4-SD, 5-SD and 6-SD.

Figure 4.1: Definition of FWHM bandwidth in a distribution histogram. y0 is the starting
value and yc is the maximum value in the distribution. w1 is the FWHM bandwidth. Credit:
Origin 8, User Guide, OriginLab Corporation.
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A GMM can be seen as a mixture model of K single Gaussian models. The term mixture

model represents the presence of sub-populations within an overall population. In simple

terms, the mixture model represents the probability distribution of the observations in the

aggregate, which is a mixture of K sub-distributions. The mixture model does not require

the observations to provide information about the sub-distributions to calculate the prob-

ability that the observations are in the overall distribution. A mixture model is called GMM

if one assumes that all the sub-distributions conform to Gaussian distributions, or normal

distributions [148]. The probability density function of univariate Gaussian distribution is:

P(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(4.1)

where σ denotes the standard deviation (SD) and µ denotes the mean or expectation of

the observed data. GMM is one of the most common mixture models since Gaussian

distributions are often used in the natural and social sciences to represent real-valued

random variables whose distributions are not known, although other distributions can be

assumed in a mixture model. To identify all the sub-distributions, Maximum Likelihood

Estimation can be employed if each sub-distribution is assumed a univariate Gaussian

distribution. In practice, Maximum Log-Likelihood often replaces Maximum Likelihood

Estimation since the log function amplifies the output variance for an input between 0 and

1 and is monotonic. To solve multivariate GMM, iterative methods should be used such

as Expectation-Maximization algorithm (EM) [3].

Within DE-MRI, the MI can be segmented by GMM because the signal of MI is considered

as a sub-distribution that has its independent distribution characteristics. The DE-MRI can

be described by the GMM of univariate Gaussian distributions since DE-MRI is saved as

greyscale images. However, the segmentation of MI by univariate GMM can not refer to

the morphological information of MI since the spatial information is ignored.

4.3/ DEEP LEARNING MODELS FOR SEGMENTATION

A deep learning model for segmentation tasks covers a series of techniques, typically

including data preprocessing and data augmentation methods, the conception of convo-

lutional neural networks (CNN) and post-processing methods. For medical image seg-

mentation tasks, nnU-Net [153] has been proven a successful adaptive framework for

the automatic analysis of a variety of different types of medical images. This subsection

lists and describes the various relevant methods commonly used for the task of DE-MRI

segmentation.
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4.3.1/ DATA AUGMENTATION

A significant proportion of deep learning models is supervised learning. The supervised

learning models learn to fit the mapping of a target from training data. The amount of

training data directly affects the performance of supervised models. A reasonable data

augmentation method can equivalently expand the size of the training set. Furthermore,

the data augmentation can potentially overcome overfitting in training. In many practices

with deep neural networks, to avoid overfitting in training, the prediction performance on

validation set should be supervised. The training should stop once the metrics on the vali-

dation set no longer decrease or even increase. The decision that stops the training when

it tends to overfit is known as early stopping. The comparison between the overfitting and

the desired convergence in training is shown in Figure 4.2. The data augmentation may

allow for better timing of the early stopping because the augmented data will represent a

more comprehensive set of possible data points, thus minimizing the distance between

the training and validation set, as well as any future testing sets [132].

Figure 4.2: Signs of overfitting compared to desired training convergence. The plot on the
left shows an inflection point where the validation error starts to increase as the training
rate continues to decrease. The increased training has caused the model to overfit the
training data and perform poorly on the testing set relative to the training set. In contrast,
the plot on the right shows a model with the desired relationship between training and
testing error. Credit: C Shorten et al. [132]

For medical imaging especially MRI, basic image manipulations involving flipping, rota-

tion, cropping, translation, interpolation and noise injection can be applied to achieve

extended data volume. The flipping can be performed on either a horizontal or vertical

axis although horizontal flipping is more common. The rotation is done by rotating the

image right or left on an axis between 1◦ and 359◦. Horizontally and vertically shifting

image is useful to avoid positional bias. The interpolation resizes the image to a specific

shape using linear interpolation for example. Noise injection introduces a matrix of ran-

dom values to the original image [112]. The noise matrix of MRI is usually Rice distributed

to simulate the on-site noise of the image acquisition. For example, on DE-MRI, Cama-

rasa et al. [147] performed rotations, elastic deformations, and flips on slices to randomly

produce supplementary training data while Feng et al. [150] forced the model to ignore
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the specificity for different orientation features by the rotations only. Lourenço et al. [155]

adjusted the original semantic information by adding stochastic noise, applying k-space

corruption, small image rotations, intensity scalings, and smooth non-rigid deformations.

Manipulations concerning the color space and color transformation are also common data

augmentation methods such as the adjustment of contrast and white balance, sharpening

and color augmentations in RGB (Red, Green, Blue) or HSV (Hue, Saturation, Value)

space, while they are not applicable for the grayscale MRI.

Mixing images together is a counter-intuitive approach to data augmentation. The mix-up

strategy averages relevant images to create a new image. Employing an image fusion

by affine transformation instead of image averaging, Zhou et al. [160] proposed a mix-

up strategy that fuse two adjacent DE-MRI slices [119]. The mix-up strategy constructs

virtual training examples of both DE-MRI and its annotation mask as follows:

x̃ = λxi + (1 − λ)x j (4.2)

ỹ = λyi + (1 − λ)y j (4.3)

where xi and x j are raw input vectors, yi and y j are one-hot label encodings, x̃ and ỹ

is the pair of artificially created data. λ is a coefficient belonging to [0, 1]. Based on

this approach, Zhou et al. made a targeted improvement to make the generated images

closer to a blend of two adjacent images. The proposed mix-up formula for the MRI

augmentation is:

x̃ = λxi + (1 − λ)T x j (4.4)

where T denotes an affine transformation, and the mask data augmentation was per-

formed accordingly with a similar formula. Given the greater focus on the ROI (Region

Of Interest corresponding to the myocardium), the affine transformation T tries to fit the

transformation from the foreground area (LV+Myocardium) in a randomly chosen slice xi

to the foreground area in another randomly chosen slice x j. In the affine transformation,

the scaling factor, i.e. the linear map is [s, s]⊤ where s = li/l j, li and l j are the average

distances from the foreground pixels to the foreground center for the slice i and the slice

j, respectively. The translation offset is [ci
x − c j

x, ci
y − c j

y]⊤ where cx and cy denote the

coordinates of the foreground area centre. Thus, the matrix of T is:
s 0 ci

x − s · c j
x

0 s ci
y − s · c j

y

0 0 1

 (4.5)

Although data augmentation has been widely used for different image tasks, its safety

should be discussed in the case of DE-MRI. The safety of a data augmentation method

refers to its likelihood of preserving the label post-transformation [132]. The created data



44CHAPTER 4. RELATED WORKS: SEGMENTATION MODELS AND AUTOMATIC MI ASMT

should maintain the same semantic characteristics as the original data, no new feature

should be produced. However, the definition of such a characteristic is vague. Despite

the vagueness, some basic rules can be followed according to the anatomical prior of the

heart. For example, the flipped images never exist in the original dataset while the DE-

MRI on the short-axis may be saved as horizontal or vertical (Figure 4.3). To correct the

image size, cropping can be thought safe if all the ROI is preserved. Meanwhile, transfor-

mations such as interpolations may be dangerous because the voxel spacing becomes

significantly heterogeneous among MRI slices. Shifting can be safe since originally the

position of patients may be slightly different during the examination. When the noise in-

jection is performed, the intensity and distribution type of the introduced noise should be

controlled. Nevertheless, experiments should be more convincing for the evaluation of a

data augmentation method. In response to this issue, Cubuk et al. [122] proposed an

automatic evaluation approach in which an algorithm is designed to find the best policy

such that the neural network yields the highest validation accuracy on a target dataset.

Figure 4.3: Vertical and horizontal views of DE-MRI in short-axis orientation. One vertical
(left) and one horizontal (right) slice are randomly selected from EMIDEC training dataset.
The DE-MRI may be acquired in different orientations but should be never symmetrical
within the same machine and modality.

4.3.2/ ENCODER AND DECODER MODELS

Fully Convolutional Network The segmentation task is equivalent to the sum of clas-

sification tasks for each pixel. However, beyond the classification on a single pair of

input-label, the segmentation task should refer to spatial information between pixels, that

is, the classification result of each pixel depends on both local and global features. To

this end, the milestone work of this task Fully Convolutional Network (FCN) proposes an

encoder-decoder structure that combines the image encoding and segmentation recon-

struction [67].
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The encoding part of FCN just reproduces the usual conception of image classification

networks. According to the evaluation between AlexNet [48], VGG [70] and GoogLeNet

[71], the three well-validated classification architectures at the time, the 16 weight layers

implementation of VGG (VGG-16) is selected as the encoding part of FCN. Figure 4.4

shows the architecture of VGG-16.

Figure 4.4: VGG-16: 16 weight layers implementation of VGG. Credit: [111]

Given that the classifiers such as VGG provide a scalar value as their output, FCN retains

only the convolutional part of VGG to get dense prediction as shown in Figure 4.5 and

the fully connected layers are viewed as convolutions with kernels that cover their entire

input regions. However, the output dimensions are typically reduced by subsampling.

The classification nets subsample to keep filters small and computational requirements

reasonable. This coarsens the output of a fully convolutional version of these nets, reduc-

ing it from the size of the input by a factor equal to the pixel stride of the receptive fields

of the output units [67]. To obtain the segmentation mask that has the same shape as

the input image, the dense predictions can be obtained from coarse outputs by stitching

together outputs from shifted versions of the input. To do so, the generated new input is

the shifted original input with zero padding so that the center of each output equivalently

corresponds to a patch of the original input. This operation is intuitively not efficient due to

the redundant computation on the overlap between each patch. Another way to connect

coarse outputs to dense pixels is an interpolation. In a learnable way, a reversed con-

volution termed backward convolution (or deconvolution) upsamples the coarse outputs.

Passing by a backward convolution of stride f achieves an upsampled output of factor f .

The depth of downsampling layers determines the equivalent receptive field of the out-

put. A deeper downsampling network results in a smaller size dense prediction that
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Figure 4.5: Image segmentation by downsampling and 1x1 convolutions instead of fully
connected layers. FCN produces pixel-wise dense prediction with only convolutional
blocks.

better interprets high-level semantic information (i.e. global features), while a shallower

downsampling network retains more detail in the dense prediction. A pyramid structure

that fuses interpretations on images of different scales with a multiscale convolutional

network was proved efficient [52]. This conception was lately integrated for the object

detection task [92]. To refer to pyramid features for finer segmentation, coarse segmen-

tations from the last three pooling layers are aggregated together as shown in Figure 4.6.

The coarse segmentations from the layers conv7 and pool4 are upsampled by 2x and 4x

respectively. These upsamplings are initialized with bilinear interpolations and the param-

eters are learnable. The qualitative result of FCN justifies that refining fully convolutional

nets by fusing information from layers with different strides improves segmentation detail

(Figure 4.7).

U-Net Inspired by FCN, Ronneberger et al. optimized the multi-scale information ag-

gregation procedure so that the proposed network termed U-Net was more suitable for

medical image segmentation tasks [69]. The major amelioration results from the intro-

duction of the skip connection and the symmetric encoding-decoding structure (Figure

4.8). In FCN each upsampling branch is independent. Between each upsampling scale,

they only interact at the last level, which means the intermediate deconvolution kernels

are not shared while they may refer to each other. To tackle this issue, U-Net creates a

single symmetric upsampling branch in which all the low-scale feature maps are visible

to higher-scale features. Such conception reuses the intermediate deconvolution kernels

and decreases the number of model parameters. Furthermore, to better retain the or-

dinary information, skip connections are introduced between each pair of downsampling
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Figure 4.6: Upsampling and aggregation of fine and coarse segmentation by FCN. The
aggregation learns to combine coarse, high-layer information with fine, low-layer informa-
tion. Pooling and prediction layers are shown as grids that reveal relative spatial coarse-
ness, while intermediate layers are shown as vertical lines. First row (FCN-32s): the
single-stream net upsamples stride 32 predictions back to pixels in a single step. Sec-
ond row (FCN-16s): Combining predictions from both the final layer and the pool4 layer,
at stride 16, lets the net predict finer details while retaining high-level semantic informa-
tion. Third row (FCN-8s): Additional predictions from pool3, at stride 8, provide further
precision. Credit: [67]

Figure 4.7: Effect of multi-scale output fusion. The first three images show the output from
our 32, 16, and 8-pixel stride nets shown in Figure 4.6. Visually the FCN-8s outperforms
the two other aggregations with less fused scales. Credit: [67]

feature maps and upsampling feature maps of the same shape. The skip connections

copy downsampling feature maps and they are summed to upsampling feature maps.

This conception avoids the loss of detailed information from high-scale downsampling

feature maps.
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Figure 4.8: Architecture of U-Net. Each blue box corresponds to a multi-channel feature
map. The number of channels is denoted on top of the box. The x-y-size is provided at
the lower left edge of the box. White boxes represent copied feature maps. The arrows
denote the different operations. Credit: [69]

U-Net variants After the publication of U-Net in 2015, a number of variants were then

proposed mainly for structural improvements while the symmetrical encoding-decoding

structure was maintained. Much work focuses on the more recent convolutional blocks.

For example, FusionNet [80] replaces the conventional convolution blocks of U-Net with

residual blocks [77]. CE Net [125] introduces the dense atrous convolution and a resid-

ual multi-kernel pooling to retain more high-level semantic information. V-Net replaces

2D convolutions with 3D convolutions so that the volumic segmentation can be obtained.

Some other work proposes additional branches to gain more details. For example, M-Net

[94] adds multi-scale inputs and deep supervision into the U-net architecture. Pohlen et

al. propose a two-stream branch consisting of a pooling stream and a residual stream

[95]. Fourure et al. extend the unidirectional skip connections to a grid so that downsam-

pling feature maps can be perceived by upsampling feature maps of different shapes.

Moreover, the transmitted information via skip connection is fused with the corresponding

feature maps by addition in the vanilla U-Net [88]. In many U-Net variants, the addition

operation at the skip connection is replaced by concatenation so that the number of fea-

ture maps is increased. The concatenation may be more appropriate if the number of

feature maps is different between the downsampling side and the upsampling side, while

both of addition and concatenation should have the same effect if the number of feature
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maps is identical between the two sides.

Autoencoder The autoencoder [31] is a type of artificial neural network. Autoencoder

aims at learning the representation of a set of data. A typical application of the au-

toencoder is to distinguish the common features and the noises in a dataset for further

abnormality detection.

An autoencoder normally has two parts, the encoding and the decoding parts (Figure

4.9), which are quietly similar to U-Net. However, in opposition to U-Net, the autoencoder

usually has no skip connection between the encoder and the decoder, and the training

of an autoencoder is supervised by the input itself, namely in an unsupervised manner.

Therefore, when data are fed to an autoencoder, the encoding part will first reduce the

data dimension and generate the data coding (or termed code). The data coding is the

abstract representation of the input data and the encoder decides which features are

to be retained and squeezed. Then the data coding will be interpreted by the decoder

part and the output will be compared with the input data for the backpropagation. The

encoder is thus responsible for the re-interpretation of the squeezed and extracted code.

The difference between the output and the input can be considered as noise other than

the data distribution.

Figure 4.9: Basic architecture of autoencoder. A basic autoencoder normally consists of
the encoder and the decoder. The compressed data by the encoder is the code of the
input data. Credit: Michela Massi (2019).

In response to some drawbacks of the basic autoencoder, some variants have been pro-

posed. Many variants add regularisation terms in order to capture more important fea-

tures and optimize the representation. For example, Vincent et al. [42] proposed the de-
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noising autoencoder. The principle of the denoising autoencoder is to artificially corrupt

the training data so that the autoencoder can be more robust and potentially overcomes

the overfitting. In practice, in the training stage, noise is first added to the training data.

The output of the autoencoder is then compared to the original, non-corrupted data and

the backpropagation is based on this difference. The sparse autoencoder [45] is another

variant that encourages sparsity of the autoencoder. The purpose of the sparse autoen-

coder is to obtain a sparse data coding that potentially improves the performance on

classification task [54]. The sparsity of the network can be viewed as a small number of

the hidden units that are allowed to be active at the same time so that the code is sparse

and only the unique features can be interpreted. To do so, a regularisation of the units’

sparsity is introduced. Since whether a unit (neuron) is activated or not can be seen as

obeying the Bernoulli distribution (activated or not), the Kullback-Leibler (KL) divergence

between the expected Bernoulli random variable and the Bernoulli random variable of

the units can be employed as a regularisation term. The KL divergence between the ex-

pected Bernoulli random variable ρ and the Bernoulli random variable of a unit ρ̂ j can be

formulated as:

DKL(ρ||ρ̂ j)) = ρlog
ρ

ρ̂ j
+ (1 − ρ)log

1 − ρ
1 − ρ̂ j

(4.6)

The application of autoencoder in the task of MI segmentation can be the input denoising.

The potential noise in DE-MRI is first eliminated by means of a denoising autoencoder.

Another application is the refinement of the segmentation mask obtained from a segmen-

tation network by learning the representation of morphological features. For example,

Yue et al. [135] adds an autoencoder as an annex network to refine the shape of the

segmented LV myocardium. The autoencoder is designed to learn the shape prior of the

myocardium. The difference between the coarse and the refined segmentation masks is

quantified by L2 distance, namely the square root of the sum of the absolute squares of

all vector elements. The L2 distance of the shape prior autoencoder is then weighted as

a part of the final loss function for the segmentation because the autoencoder is also dif-

ferentiable. Figure 4.10 shows the shape prior autoencoder annexed to the U-Net-based

segmentation network.

4.3.3/ BUILDING BLOCKS OF CNN

AlexNet U-Net adopts AlexNet [48] as the backbone CNN. AlexNet won the ImageNet

challenge in 2012 by showing 10.8 percentage points of top-5 error lower than the one

of the runner-up. AlexNet achieved such performance due to the depth of the model

thanks to the computational acceleration of graphics processing units (GPUs). Figure

4.11 shows the architecture of AlexNet. In AlexNet, the first convolutional layer filters the

224×224×3 input image with 96 kernels of size 11×11×3 with a stride of 4 pixels. The
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Figure 4.10: Shape prior autoencoder annexed to a U-Net-based segmentation network.
In the black dashed box on the right is the shape prior autoencoder. The weighted L2
distance between the ground truth segmentation and the segmentation obtained from the
U-Net is the shape loss termed SR Loss. Credit: [135]

second convolutional layer takes as input the (response-normalized and pooled) output

of the first convolutional layer and filters it with 256 kernels of size 5 × 5 × 48. The third,

fourth, and fifth convolutional layers are connected to one another without any intervening

pooling or normalization layers. The third convolutional layer has 384 kernels of size 3

× 3 × 256 connected to the (normalized, pooled) outputs of the second convolutional

layer. The fourth convolutional layer has 384 kernels of size 3 × 3 × 192, and the fifth

convolutional layer has 256 kernels of size 3 × 3 × 192. The fully-connected layers have

4096 neurons each. Such convolution-pooling-normalization structure has become the

routine conception for the following works.

ResNet Since the vanilla U-Net [69] was proposed in 2015, a lot of recently proposed

building blocks outperformed the AlexNet employed by U-Net. ResNet is one of the most

revolutionary work after AlexNet or VGG. ResNet introduces the identity mapping into its

building block the residual block. The identity mapping copies the block’s input and then

is added to the output of the convolution branch. The transformation of a residual block

can be represented by:

y = F (x, {Wi}) + x (4.7)
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Figure 4.11: Architechure of AlexNet. Credit: [48]

where x is the input feature map, {Wi} is the set of transformations thus F (x, {Wi}) repre-

sents the residual mapping to be learned. The residual block in ResNet has two imple-

mentations depending on the depth of the network. Figure 4.12 shows the two implemen-

tations for shorter and longer ResNet. For example, in the case of the left implementation

of Figure 4.12, the transformation can be formulated as F = W2σ(W1x) in which σ de-

notes Rectified Linear Unit (ReLU) activation function. The operation F + x is performed

by a shortcut connection and element-wise addition.

Figure 4.12: Two implementations of residual block. Left: a shorter building block for
ResNet34. Right: a “bottleneck” building block for ResNet-50/101/152. Credit: [77]

ResNet won first place on the ILSVRC 2015 classification task. Its success comes from

the mitigation of the degradation problem. The degradation problem results from the

deeper network architecture. In former CNNs, semantic information may be omitted due

to the excessive depth. The identity mapping provides an option in both forward and back-

ward propagations so that such information can be retained. The authors argued that the

degradation problem can not be confused with the gradient vanishing [16]. During the

backpropagation, layers’ weights are updated in order from back to front according to the

chain rule. The gradient received by a layer is the derivative of all the former layers’ com-

posite. Therefore, the gradients in the backpropagation exponentially decrease and the

gradient vanishing results in very slow training of the front-end layer. Recent work includ-
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ing ReLU and batch normalization [65] etc. have been proven efficient to solve gradient

vanishing. To justify if the residual block mitigates the degradation instead of the gradient

vanishing, the authors designed a plain implementation that has the same architecture

of ResNet including ReLU and batch normalization except that the identity mappings

were removed. Experiments showed that in both plain and residual implementations, the

residual implementation outperformed the plain implementation. Moreover, compared

with former CNNs, the plain implementation achieved competitive results, suggesting that

ReLU and batch normalization works to some extent. Although these explanations may

be empirical, the application of residual block in many CNN implementations does bring

better performance without adding additional computation.

DenseNet DenseNet [89] can be viewed as a successor of ResNet. The major novelty

of DenseNet is the more dense shortcuts between layers in a building block. As in Figure

4.13, each layer obtains additional inputs from all preceding layers and passes on its own

feature maps to all subsequent layers. Each layer is thus receiving a collective interpre-

tation from all preceding layers. Compared with ResNet, the concatenation is used by

DenseNet instead of the addition. DenseNet outperforms ResNet on many classification

datasets while the network parameters are fewer.

Figure 4.13: A 5-layer dense block. Each layer takes all preceding feature maps as input.
Credit: [89]

ResNeXt Xie et al. proposed an aggregated version of ResNet called ResNeXt [103].

The core idea of ResNeXt is the split-transform-merge architecture, that is the transfor-
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mation of a building block can be presented as:

F (x) =
∑
Ti(x) + x (4.8)

where
∑
Ti denotes all parallel splits of transformations and +x denotes the identiy map-

ping. The split-transform-merge architecture can be traced back as far as the proposal

of the first version of InceptionNet [72] (Figure 4.14) while the branches in InceptionNet

are complicated and are designed by artificial means. ResNeXt replaces the different

branches in InceptionNet with more identical 3x3 convolutions - 1x1 convolutions - 3x3

convolutions (Figure 4.15). One important design in ResNeXt is the number of channels

in each transformation branch. Unlike ResNet and InceptionNet, ResNeXt significantly

reduces the number of the 1x1 convolution kernels between the adjacent 3x3 convolution

layers. The fewer feature maps in the middle of each branch force a branch to learn a

specific feature representation. Such conception keeps the independence of features and

the network parameters will not increase.

Figure 4.14: Inception module with dimension reductions. Credit: [72]

ResNeXt is reported as more efficient than InceptionNet with the same parameter quan-

tity. However, the computation complexity is slightly heavier due to an excessive number

of convolution layers despite that such phenomena may be optimized from the underlying

drivers of GPUs.

Attention mechanism and gating blocks The attention mechanism [102] has become

a popular topic from serial data as Natural Language Processing (NLP) to computer vision

tasks. The attention in neural networks mimics cognitive attention: valuable information

should be enhanced and redundant information will be faded out. The attention can be

applied to relatively concrete data such as the skip connections, or inside a convolu-
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Figure 4.15: A block of ResNeXt with cardinality = 32. This architecture roughly has the
same complexity as the building block for ResNet-50/101/152 (Figure 4.12 right). Credit:
[103]

tional block for more abstract gating such as Squeeze-Excitation (SE) block and Inverted

Residual Blocks (IRB).

The attention U-Net [131] introduces the attention gates to self-supervise the attention

on feature maps. The attention highlights prominent image regions and suppresses task-

independent feature recognition. In attention U-Net, the attention gates are inserted in

skip connections between the encoder and the decoder (Figure 4.16). Downsampled

features propagated through the skip connections are filtered by the attention gates. To

extract the information, the signal from the downsampling layer is defined as the input

features and the coarser signal from the last upsampling layer is defined as the gating

features. To obtain the attention vector α, the gating and input signals are first transformed

by two 1x1 convolutions respectively. Then the two transformed signals are summed and

pass through ReLU, 1x1 convolution, sigmoid and resampler in succession. The obtained

vector α represents the attention vector in which αi ⊂ (0 : 1]. A higher value means higher

attention should be paid to the corresponding region. Finally, the original input signal is

element-wisely multiplied with α hence regions are enhanced or faded out. The schematic

of the attention gate is shown in Figure 4.17. It should be notified that in the authors’

attention gate schematic, the functionality of the resampler is unclear. Supposing that an

additional upsampling is applied on the gating signal out of the schematic and therefore

the transformed gating signal and input signal can be element-wisely summed, no more

resampler should be necessary due to the same feature map dimension between the

coefficient vector and the input signal.

SE block [110] is another building block that partially refers to the attention mechanism.

The SE block aims at better modeling the interdependencies between channels of the

convolutional features. To this end, in the SE block, feature maps were first squeezed into
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Figure 4.16: Architecture of attention U-Net. Attention gates filter the features propagated
through the skip connections. Feature selection in the attention gates is achieved by the
use of contextual information (gating) extracted in coarser scales. Credit: [131]

Figure 4.17: Schematic of the additive attention gate (AG). Input features (xl) are scaled
with attention coefficients (α) computed in the attention gate. Spatial regions are selected
by analyzing both the activations and contextual information provided by the gating signal
(g) which is collected from a coarser scale. Grid resampling of attention coefficients is
done using trilinear interpolation. Credit: [131]

a channel descriptor with shape [1, 1, channel] by the global average pooling. Then to

fully capture the aggregated channel-wise information, a simple gating mechanism was

employed with linear transformations and non-linear activation functions:

Fex(z,W) = ρ(W2δ(W1z)) (4.9)

where W1 ∈ R
C
r ×C and W2 ∈ R

C×C
r are linear transformations, C and r are channel size and

reduction rate, δ refers to ReLU and ρ refers to sigmoid activation. To finally emphasize

differently the feature maps, the channel-wise multiplication was operated between the

scaled squeeze-excitation scalar and the feature maps (Figure 4.18 a). The SE block

can be combined with other convolution architectures since it aims at providing additional

interdependencies between the feature maps obtained from convolution blocks.
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The IRB proposed in MobileNetV2 [115] refers to ResNet. It consists in a series of 1 ×

1 convolutions, depth-wise 3 × 3 convolutions and 1 × 1 convolutions, and an identity

mapping. The IRB follows an inverse order of the feature map number compared to the

original residual block [77]. In IRB the network is expanded by the first 1 × 1 convolutions

and squeezed by the second 1 × 1 convolutions (Figure 4.18 b). This conception was

initially intended for the lightweight networks for mobile applications thanks to the reduced

number of parameters of the depth-wise convolution.

Selective Kernel (SK) [126] aims to adaptively adjust the receptive field sizes. To enable

the automatic kernel size selection, three operators are used in SK: split, fuse, and select.

The split operator creates two branches for the next operators where the first branch

passes through conventional 3 × 3 convolutions and another is 3 × 3 dilated convolutions

with a dilation size of 2. Then, in the fuse operator, a third branch is created to store the

multi-kernel information. In this branch, the feature maps obtained by the split operator

are first fused by element-wise summation and then embedded by global average pooling.

A fully-connected layer compacts the fused features into a lower dimension. Finally, in

the select operator, the compact feature guides the selection of different spatial scales of

information for the feature maps of the first and second branches by soft attention across

channels. The definitive output of the SK block is the sum of the first and second branches

considering the attention weights achieved by the soft attention across channels (Figure

4.18 c).

Figure 4.18: Building blocks referring to the attention mechanism for image interpretation.
a. SE-ResNet: the residual SE block, b. MobileNet V2: the IRB from MobileNet V2,
c. SK Net: the SK module can be deployed in the encoding or the decoding phases,
d. Attention Gate: the attention gating from Attention U-Net should be deployed at the
skip connection. The Gating signal comes from the encoding side and the input signal
denotes the up-sampled features from the decoding side. The first two 1x1 convolution
layers ensure the same number of channels for the two signals of the Attention Gate.

CE-Net CE-Net [125] outperforms multiple medical imaging data principally thanks to

its Dense Atrous Convolution (DAC) and Residual Multi-kernel Pooling (RMP) blocks [59].
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These additional manipulations on high-level semantic information aim at improving the

interpretation of the size and form variations in medical images.

In CE-Net, the DAC block is inspired from both the dense block of Inception-ResNet-V2

[100] and the conventional convolution is replaced by the atrous convolution [86]. The

atrous convolution is equivalent to the convolution with an upsampled filter. An atrous fil-

ter of rate r inserts r − 1 zeros between two consecutive filter values on both dimensions.

Rate r of 1 is effectively the standard convolution. Figure 4.19 shows the illustration of

atrous convolution with different rates. The atrous convolution enlarges the receptive

field without adding extra parameters and achieves better performance on different seg-

mentation tasks. The DenseNet of Inception-ResNet-V2 as presented in Figure 4.13 is

proved powerful at the cost of additional parameters. Thus CE-Net combines the atrous

convolution and DenseNet only at the bottleneck to avoid excessive computation (Figure

4.20).

Figure 4.19: Illustration of atrous convolution with different rates. When the rate is 1, the
atrous convolution is equivalent to the conventional convolution.

Feature maps convoluted by DAC block are then pooled by different pooling sizes and

aggregated together as the output of the bottleneck (Figure 4.21). This block aims to

extract context information of different scales. This conception responds to the challenge

in medical images in which the objects may vary considerably. Nevertheless, in the ex-

perimental CE-Net, an input image is down-sampled 4 times as the baseline network, i.e.

the 128 x 128 pixel2 input will become 8 x 8 pixel2 at the entry of the DAC block. Conse-

quently, both DAC and RMP blocks may have little effect on such small feature maps. To

take advantage of DAC and RMP blocks without changing the network’s structure, input

images are interpolated in order to increase their resolution by a factor of 5 using Nearest

Neighbour Interpolation. This method duplicates the nearest neighboring pixels’ values

so that semantic information will not be modified.
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Figure 4.20: Illustration of Dense Atrous Convolution. A DAC block consists of four par-
allel atrous convolution branches. The number of convolutions between each branch
gradually increases.

Figure 4.21: Illustration of Residual Multi-kernel Pooling. Feature maps passed from
DAC are individually pooled by 4 different pooling and then upsampled and concatenated
together.

4.3.4/ IN-LAYER NORMALIZATION

The in-layer normalization methods aim at fastening the velocity of convergence and mit-

igating some problems such as internal covariate shift or gradient vanishing [65]. The

batch normalization is a widely employed in-layer normalization method. Batch normal-

ization normalizes the samples in a batch that fixes the means and variances of each

layer’s inputs. Therefore, its formula can be referred to the image normalization methods,

especially z-score normalization Eq. 5.4. The batch normalization is usually inserted

after convolution, i.e., the feature distribution of each mini-batch should be consistent.
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Other usual in-layer normalization strategies are the instance normalization [83] and

group normalization [117]. The main distinction between these in-layer normalization

methods is the scope of their effect. For example, instance normalization is employed on

every single instance instead of a mini-batch.

4.3.5/ STOCHASTIC OPTIMIZATION

Stochastic Gradient Descent (SGD) is a stochastic approximation of gradient descent

optimization. Its objective is to minimize the distance between the output of a machine-

learning model and the ground truth by updating the model’s weight. The amount and

the direction of each update are calculated according to the gradient of the loss function.

More precisely, to achieve this goal, the following steps are executed by SGD:

1. A sample is randomly selected from the training dataset. The sample is fed to the

model.

2. The gradient of all updateable parameters in the model are calculated according to

the output of the loss function. The calculation follows the chain rule.

3. All the updateable parameters are updated. The update depends on the gradient

and a hyper-parameter learning rate. The learning rate can be further optimized by

some optimization strategies such as Momentum [7] and Adam [66].

The weight update of a parameter (weight) can be formulated as:

w := w − η∇Qi(w) (4.10)

where w is a parameter of the model, Qi(w) is the value of the loss function at i-th sample.

SGD is called ”stochastic” due to the choice of the learning sample. SGD takes a ran-

domly selected sample from the dataset for the gradient optimization in each iteration.

Therefore, the gradient of SGD is an estimate thereof since it is calculated from one sam-

ple instead of the whole dataset. Moreover, if the gradient optimization is based on the

gradient of all samples from a dataset at the same time, such optimization is called batch

gradient descent optimization.

The mini-batch gradient descent optimization is a compromise between SGD and batch

gradient descent. The mini-batch requires a more reasonable computation resource,

especially the memory allocation compared to the batch gradient descent, and is more

robust than SGD. In a big batch, the gradient of noisy samples has little impact on the

weight update. Therefore, a bigger batch size can count more precisely the gradient over

the dataset. Small batch size has a higher risk of misleading the update path. In most
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CNN applications, the mini-batch gradient descent optimization has proved to be more

suitable than the other two gradient optimizations [76].

4.3.6/ ACTIVATION FUNCTIONS

Like in most of the current deep learning models, the activation functions themselves are

all nonlinear equations, their core functionality is to ensure that nontrivial problems can be

fitted by deep neural networks. Sigmoid, rectifier (ReLU) [44] and its leaky variant leaky

ReLU, exponential linear (ELU) [75], Swish [96], etc. are common activation functions for

image-related tasks (Figure 4.22).

Figure 4.22: Common nonlinear activation functions for the image segmentation task.

Among the cited activation functions, sigmoid and ReLU are the ones that have been most

applied. Sigmoid is suitable as the last activation function of a classification CNN since

its output varies between 0 and 1. However, sigmoid risks of gradient vanishing because

its gradient approaches to 0 when the input is at infinity. ReLU has no such problem [44]

while it can not constrain its output. Moreover, ReLU is more computationally efficient

compared to the exponential operations in sigmoid. In an evaluation of usual activation

functions [113], results show that Swish’s overall performance is better, although Swish

may not always lead in every category, and Swish has limited advantages over other

state-of-the-art activation functions.

4.3.7/ LOSS FUNCTIONS

Loss functions evaluate the similarity between the ground truth and the output. The loss

function of a CNN should be differentiable so that the difference can be minimized by
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backpropagation. The loss functions for the segmentation tasks can be classified accord-

ing to the characteristics that are considered. The distribution, region and boundary are

the three most common characteristics of the loss function conception. The compound

of two or even more characteristics is also a frequently used penalization method. Fig-

ure 4.23 shows a summary of existent loss functions for image segmentation and their

classification.

Figure 4.23: Overview and relationship among the existent loss functions. Credit: [156]

Distribution-based loss Cross Entropy (CE) has been widely employed in both medi-

cal imaging and semantic segmentation. CE derives from KL divergence. KL divergence

is interpreted as the average difference of the number of bits required for encoding sam-

ples of a model using a code optimized for an approximation of the model rather than one

optimized for the model. KL divergence of discrete probability distributions P(model) and

Q(approximation) is formulated as:

DKL(P ||Q) =
∑
x⊂χ

P(x)log
P(x)
Q(x)

(4.11)

where χ is the probability space of the two distributions. This formula is equal to:

DKL(P ||Q) =
∑
x⊂χ

P(x)logP(x) −
∑
x⊂χ

P(x)logQ(x) (4.12)

P(x)logP(x) is the entropy of the model P, which is a constant since P is invariant. Hence

to describe the difference between the two distributions P and Q, the term P(x)logP(x) can
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be omitted so that the remaining part is the CE:

H(P||Q) = −
∑
x⊂χ

P(x)logQ(x) (4.13)

For the multiclass segmentation task, the CE loss can thus be formulated as:

LCE = −
1
N

N∑
n

C∑
c

gn,clog(pn,c) (4.14)

where N denotes the number of samples (pixels or patches), C denotes the number of

label classes, gn,c denotes the binary ground truth label of the sample n if it is of the class

c, pn,c denotes the observation of a binary prediction if this sample is predicted as this

label.

Region-based loss Region-based loss quantifies the region similarity between the pre-

diction and the ground truth. The class imbalance is largely mitigated by the fact that the

unit of calculation is an area rather than a pixel. For example, Dice loss is the widely

applied loss for medical image segmentation tasks. The original Dice loss is formulated

as:

LDice = 1 −
2
∑N

n pngn + ϵ∑N
n p2

n +
∑N

n g2
n + ϵ

(4.15)

Indeed, the Dice loss calculates the proportion of the common part compared to the sum

of the individual surface, that is, 2
∑N

n pngn (pn and gn are binary bits) is the surface of the

intersection region between the prediction and the ground truth,
∑N

n p2
n and

∑N
n g2

n are the

surfaces of the prediction and of the ground truth respectively. ϵ is added to avoid the

case where a non-target region is present in a sample.

The Dice loss aims at penalizing binary segmentation problems. For multiclass tasks, it

can be transformed to prediction class by class after the softmax function. However, this

intuitive implementation gives equal weight to each class, potentially resulting in the class

imbalance issue. Despite Dice loss largely solving the pixel-level class imbalance issue,

the instance imbalance should be considered. The instance imbalance issue refers to the

inequality of regions between classes. For example, in a dataset consisting of multi-class

images, the regions of one class may appear in few images. To address this shortcoming

of the vanilla Dice loss, the weighted multi-class Dice loss has been proposed by Carole

H et al. [99], termed Generalized Dice loss:

LGDice = 1 − 2
∑C

c wc
∑

n pcngcn∑C
c wc
∑

n pcn + gcn
(4.16)

The weigh of a class wc is calculated as wc = 1/
(∑N

n=1 gcn
)2

, which is the inverse of the
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square proportion of each class’s pixels quantity in the training dataset.

Boundary-based loss Boundary-based losses are inspired by geometrical metrics that

evaluate the segmentation mask such as the Hausdorff distance [38]. Hausdorff distance

measures how far two subsets of a metric space are from each other. In the case of two

segmentation masks in one image, the greatest of all the distances from a point in mask

A to the closest point in mask B:

DH(A, B) = max{supa⊂Ad(a, B), supb⊂Bd(b, A)} (4.17)

where sup represents the supremum, in f the infimum, d(a, B) = in fb⊂Bd(a, b) quantifies

the distance from a point a in A to the subset B. The loss function based on Hausdorff

distance is then proposed [141] as:

LHD =
1
N

N∑
n

[(pn − gn) ∗ (d2
Pn + d2

Gn)] (4.18)

where dP and dG are distance transformations of the prediction and the ground truth

masks.

Targeted variants for imbalance issue Although pixel imbalance problems have no

effect on most region and boundary-based loss functions in binary segmentation tasks,

the original implementations of these loss functions are insufficient for multi-class seg-

mentation or instance imbalance problems, let alone distribution-based loss functions. A

general solution for the above shortcomings is the weighting technique on the basis of

the abundance of each class in a dataset.

The weighted Cross Entropy loss can be viewed as the baseline solution for both the

challenge of multiclass and instance imbalance conditions. In weight CE loss, each class

is weighted differently according to its abundance in the dataset. Its common implemen-

tation can be formulated as:

LWCE = −
1
N

N∑
n

C∑
c

wcgn,clog(pn,c) (4.19)

where wc denotes the weight of each class c. The weight can be calculated as the in-

verse of the class’s pixel proportion. Since CE naturally calculates the similarity between

two multiclass distributions, the additional weighting allows WCE loss to penalize most

segmentation conditions.

The CE can be weighted in accordance with the sample’s difficulty. The difficulty is de-

fined as whether the prediction of the sample is high enough. Focal loss [93] introduces a



4.3. DEEP LEARNING MODELS FOR SEGMENTATION 65

factor to down-weight the loss assigned to well-classified examples. To do so, the authors

propose the following implementation of Focal CE for the binary classification problem:

FL = −
1
N

N∑
n

(1 − pn)γlog(pn) (4.20)

where γ ⊂ (0,∞) is a configurable factor. The Focal CE has such characteristics to ensure

the down-weighting on easy samples and force to focus on hard samples:

• The additional factor term (1 − pn)γ controls the weighting amplitude. When γ is set

to 0, the Focal loss and the vanilla binary CE are identical. The configuration of this

value is empirical and the authors recommend a factor of 2.

• When the prediction on a sample is wrong, pn should be very small and thus the

term (1 − pn)γ is close to 1 regardless of the value of γ. In this case, the focal factor

has little impact on hard cases since the difference between the focal CE and the

original CE is negligible.

• When the prediction on a sample is satisfying, (1 − pn) is close to 0 and (1 − pn)γ is

smaller than 0. This produces a smaller loss value than the original CE in the case

of a good (easy) prediction.

The above analyses explain the mechanism for reducing the weighting on easy samples.

Moreover, the derivative of the introduced focal term (1− pn)γ exists on [0, 1], therefore the

Focal CE is differentiable. To generalize the Focal CE for multiclass segmentation tasks,

it can be implemented as:

LFCE = −
1
N

N∑
n

C∑
c

(1 − pn,c)γgn,clog(pn,c) (4.21)

TopK loss is another variant of the CE loss that focus more on difficult samples. Similar

to Focal CE, during the training, only the samples whose prediction is not good enough

will be taken into account. To realize such a filter according to the sample’s difficulty, the

formula is:

LTopK = −
1∑N

n
∑C

c 1{gn,c == 1&pn,c < t}

N∑
n

C∑
c

1{gn,c == 1&pn,c < t}gn,clog(pn,c) (4.22)

where 1{gn,c == 1&pn,c < t} is the binary indicator function that returns 1 if the inside

conditions are met, t ⊂ (0, 1] is the threshold value that evaluates if a sample is difficult. If

the prediction value is higher than the threshold, the prediction on such sample is thought

too easy, and thus the binary indicator function returns 0 so that the easy samples are

omitted for the training of the current model.
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Compound loss Combining two or even more loss functions is proven more robust

or efficient in many applications. Some specific combinations have been proposed and

evaluated such as the Combo loss and Exponential Logarithmic loss.

Combo loss combines the weighted CE and the Dice loss [133]. A coefficient is set as a

hyperparameter that weighs between the WCE term and the Dice term. The formula for

binary segmentation tasks is:

Lcombo = α

− 1
N

N∑
n

β(gnlogpn) + (1 − β)[(1 − gn)log(1 − pn)]

 − (1 − α)
2
∑N

n pngn + ϵ∑N
n p2

n +
∑N

n g2
n + ϵ

(4.23)

where in addition to the vanilla CE loss and the vanilla Dice loos, α controls the amount

of Dice term contribution in the entire loss, and when β is set to smaller than 0.5, the

false positive cases are more penalized than the false negative cases due to the heavier

coefficient in (1 − gn)log(1 − pn), and vice versa.

Furthermore, the equation can be extended to multiclass segmentation problems, how-

ever, the coefficient α that penalizes differently the false positive and false negative cases

is no longer necessary:

Lcombo = −α
1
N

N∑
n

C∑
c

wcgn,clog(pn,c) − (1 − α)
2
∑C

c wc
∑

n pcngcn∑C
c wc
∑

n pcn + gcn
(4.24)

Besides the Combo loss, Exponential Logarithmic loss also combines CE and Dice losses

with respectively additional exponential and exponential logarithmic:

Lexp = −α
1
N

N∑
n

β(gnlogpn)γCE − (1 − α)ln(
2
∑N

n pngn + ϵ∑N
n p2

n +
∑N

n g2
n + ϵ

)γDice (4.25)

where γCE and γDice adjust the nonlinearities of the loss. According to the authors’

evaluations, with γ > 1, the loss focuses more on less accurate labels than the Focal loss

while for the multiclass segmentation task, better results are obtained with 0 < γ < 1.

4.3.8/ TRANSFER LEARNING

Transfer learning is a general machine learning technique that gains further knowledge

from a related problem [41]. The idea of this technique is to learn the representation of a

set of targeted characteristics with another similar set. The model is then considered to

be able to transfer knowledge across tasks.

Medical image segmentation tasks are often faced with the limitation of available data vol-

ume. Transfer learning enlarges the quantity of knowledge the model can learn. To do so,

a model can learn from a similar dataset that shares similar features as the target data.
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For example, the training data can be acquired with different scanners or a kind of scan-

ner with different sequences. Although the distribution between different data sources is

different, transfer learning aims at selecting and then learning the shared features. For

example, Huellebrand et al. [152] trained the myocardium delineation model with cine

MRI from the ACDC dataset [105]. The target data is the DE-MRI that has the same

short-axis orientation but different sequences as presented in Chapter 3.

Another common scenario of transfer learning in medical imaging assessment, not lim-

ited to the segmentation is the learning of the same data but for different tasks, such

as the detection of multiple types of abnormalities, where the detection of each type of

abnormality is a binary classification problem. More applications of transfer learning on

medical image tasks have been discussed by Cheplygina et al. [121].

4.3.9/ SEGMENTATION APPLICATIONS ON CARDIAC MRI

The early segmentation work on DE-MRI mostly employed statistical models. Luciano

et al. segmented the infarct on DE-MRI for canine MI. Mikami et al. compared the scar

segmentation performances of FWHM, STRM with different SD and Otsu-auto-threshold

on DE-RMI with hypertrophic cardiomyopathy [62]; Flett et al. studied the reproducibility

of scar segmentation using FWHM and STRM on a dataset consisting of acute myocardial

infarction, chronic myocardial infarction, and hypertrophic cardiomyopathy [43]. Lalande

et al. segmented the challenging peri-infarct area of myocardial infarction with GMM [49].

Previous deep learning-based DE-MRI segmentation work mostly concentrates on the

ventricle delineation. For example, Avendi et al. combined deep learning with a de-

formable model [73]; Yue et al. [135] combined a Shape Reconstruction Neural Network

(SRNN) and a spatial constraint network. The number of the scar segmentation work is

relatively limited. De La Rosa et al. [123] first applied morphology treatment for coarse

infarction segmentation, then CNNs were employed for the false-positive elimination and

segmentation refinement. Fahmy et al. [109] presented an initial proof-of-concept for the

scar segmentation with U-Net. Moccia et al. [129] and Zabihollahy et al. [118] segmented

the scar tissue on the given myocardium mask thanks to semi-automatic approaches. Re-

cently organized challenges,

Some reviews and research compared different segmentation techniques. Based on the

results of a MICCAI challenge in 2016, Karim et al. [78] summarized and investigated

most of the rule-based approaches considering human and animal datasets. This review

indicates that the myocardial infarction segmentation results of rule-based approaches do

not completely satisfy the clinical requirements. Zabihollahy et al. justified the superiority

of the CNN-based myocardial scar segmentation model compared to statistical models

[136] on 3D MRI.
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More recently, a MICCAI challenge in 2020 gathered challengers from all over the world

in the contests of MI assessment [142]. One contest in the challenge was the myocardial

tissue segmentation on LV. The segmentation contest winner proposed a concatenated

two-stage segmentation model [159]. In the model, a 2D U-Net variant segments all the

tissues as the preliminary result. The preliminary segmentation is then concatenated with

3D MRI as the input of a 3D U-Net variant for definitive segmentation. Other challengers

employed or proposed one-stage or two-stage models with U-Net-based segmentation al-

gorithms and specific image preprocessing and post-processing methods. The employed

techniques and highlights are concluded in Table 4.1 and the segmentation results are

shown in Table 4.2 for all the challengers of the segmentation contest in EMIDEC Chal-

lenge 2020 [146, 147, 150, 151, 152, 158, 160, 159].

Table 4.1: Principal concepts of the methods for the segmentation contest.

Challenger(s) Framework Methods Highlights

Brahim et al. Two-stages
Myocardium: 2D U-Net with Attention and IRB

Infarct: 3D U-Net variant 3D Auto-encoder to perfect myocardium shape

Camarasa et al. Two-stages
Myocardium: 3D U-Net variant

Infarct: 3D U-Net variant Uncertainty myocardial area generated by probabilistic auto-encoder for infarct segmentation

Feng et al. One-stage 2D U-Net with dilated convolutions Data augmentation with additional scar tissues

Girum et al. Two-stages
Myocardium: 2D U-Net with SE block

Infarct: 2D U-Net with SE block Independent myocardium and infarct segmentation from non-cropped MRI

Huellebrand et al. Two-stages
Myocardium: 2D U-Net variant

Infarct: mixture model
Transfer learning with cine-MRI

Post-processing with thresholding and morphological closing

Yang et al. One-stage 2D U-Net with SE and SK blocks
RGB channel-like adjacent slices input

Two decoder branches supervised by myocardium and infarct masks

Zhang Two-stages
Preliminary: 2D U-Net variant
Definitive: 3D U-Net variant 3D MRI with cascaded 2D segmentation as 3D input

Zhou et al. One-stage 2D U-Net with Attention
Data augmentation with mix-up strategy

Neighborhood penalty as neighboring loss

Table 4.2: Results of the segmentation contest. The metrics are given by target tissue
(myocardium, infarct and PMO). The table is sorted by the general ranking of the contest,
which is calculated from the nine subranks. Best results in bold.

Challenger(s) Myocardium Infarction PMO
Dice Vol. Diff. (cm3) Hausdorff (mm) Dice Vol. Diff. (cm3) Pct. Diff. (%)1 Dice Vol. Diff. (cm3) Pct. Diff. (%)1 Acc. (case,%)2 Acc. (slice,%)2

Zhang 0.879±0.027 9.26±9.08 13.01±8.81 0.712±0.268 3.12±5.15 2.38±0.031 0.785±0.393 0.63±2.27 0.38±0.012 84.00 94.97
Feng et al. 0.836±0.124 15.19±16.41 33.77±111.63 0.547±0.340 3.97±8.36 2.89±0.045 0.722±0.432 0.88±3.41 0.53±0.017 80.00 90.78
Yang et al. 0.855±0.027 16.54±10.27 13.23±6.80 0.628±0.315 5.34±7.88 4.37±0.062 0.610±0.463 1.85±3.32 1.69±0.033 76.00 81.56

Huellebrand et al. 0.841±0.051 10.87±8.53 18.3±15.74 0.379±0.296 6.17±8.36 4.93±0.059 0.523±0.483 0.95±3.00 0.64±0.015 70.00 85.75
Camarasa et al. 0.757±0.111 17.11±15.45 25.44±21.71 0.308±0.280 4.87±8.49 3.64±0.047 0.605±0.485 0.87±3.27 0.52±0.016 74.00 84.36

Zhou et al. 0.825±0.057 13.29±11.34 83.42±158.97 0.378±0.309 6.10±9.45 4.71±0.06 0.520±0.487 0.88±3.38 0.54±0.017 64.00 86.87
Brahim et al.3 0.791±0.050 12.68±10.59 23.87±11.52 0.274±0.379 7.05±12.73 5.19±0.074 0.641±0.479 0.83±3.109 0.50±0.016 74.00 89.39
Girum et al.3 0.803±0.057 11.81±14.09 51.48±98.15 0.340±0.474 11.52±16.53 8.58±0.101 0.780±0.414 0.89±3.61 0.51±0.018 78.00 89.66

1 Pct. Diff. : Difference between the percentage of the infarcted myocardium.
2 Additional metrics. These metrics were not taken into account in the ranking.
3 Co-author(s) come(s) from the challenge organization team. Do(es) not participate in rankings.

4.4/ CONCLUSIONS

Related works about automatic MI segmentation are presented in this chapter, includ-

ing segmentation models and applications. Statistical models have been employed for

cardiac segmentation tasks for a long time while U-Net-based deep learning models are

showing more and more promising segmentation results on different medical images.
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Popular deep learning-based segmentation models usually employ the backbone of U-

Net in which the skip connection restores more details for the segmentation reconstruc-

tion. The current trends are the optimization of building blocks such as the residual block

or the blocks referring to the attention mechanism, the employment of compound loss

function that aims at solving the class imbalance issue, and diverse improvements in-

cluding the data augmentation, data preprocessing, auxiliary networks, etc.
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CONTRIBUTION 1: AUTOMATIC MI
ASSESSMENT FROM MRI WITH 2D DL

MODELS

5.1/ INTRODUCTION

As discussed in the previous chapters, the automatic assessment of MI from DE-MRI

is challenging but of great clinical potential to improve the efficiency and accuracy of

pathology diagnosis and therapeutic management. The current automatic assessment

is based on image analysis techniques including probabilistic models and deep learning

models.

According to image analysis techniques and anatomical and clinical prior knowledge, the

assessment result can be in form of a delineation of myocardial tissues, or directly a

comprehensive report of the presence/rate of infarct. In this chapter, only the proposed

deep learning-based 2D segmentation approaches will be presented. The deep learning-

based 2D segmentation approaches consist of the preprocessing methods, the design of

networks, the segmentation frameworks and the post-processing methods.

The target of the segmentation is to delineate the contours of myocardial tissues on short-

axis DE-MRI, incorporating the myocardium and the infarct. The PMO is viewed as a

part of infarct and will not be independently assessed in this chapter. The CNN-based

automatic assessment will be evaluated in comparison with the manual annotations and

a popular probabilistic model. Proposed or evaluated segmentation approaches and their

results on the mentioned private and public datasets will be presented.

The 2D deep learning-based myocardial tissues segmentation includes two applications:

the segmentation on all-positive images and the segmentation on mixed datasets. The

all-positive images consist of the DE-MRI involving at least one scar tissue area (with or

without PMO). The mixed dataset consists of all the acquired DE-MRI exams, regardless

71
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of whether the MI presents or not according to the manual annotations. The major differ-

ence between the two proposals is the class imbalance issue. With the mixed dataset, the

image-wise false-positive or false-negative predictions should be specifically addressed.

This chapter is organized as follows:

• Preprocessing. The employment of preprocessing methods including data augmen-

tation, data formatting and image normalization will be first stated.

• 2D segmentation models with deep learning. The conception details of our exper-

imental 2D segmentation models will be presented. Particularly, the motivation for

using a less common optimizer, stochastic gradient descent, will be discussed in

length.

• Framework. Two frameworks for 2D segmentation will be illustrated.

• Post-processing. The proposed prior-based post-processing method incorporating

three criteria will be introduced.

• Experimental results. The experiments are executed on all-pathological slices, then

on all patients mixing normal and pathological slices.

• Discussion.

• Conclusions.

5.2/ PREPROCESSING

The data preprocessing is the first step to prepare a predictive pipeline. Data prepro-

cessing has two objectives: ensuring a uniform and appropriate input data format, and

enhancing the valuable features. The original DE-MRI images and corresponding manual

annotations should be properly selected and processed to form a uniform format that can

be correctly interpreted by CNN-based segmentation models. Some automatic transfor-

mations, such as the image normalization and denoising, can then be applied to DE-MRI

to possibly enhance the feature interpretation.

5.2.1/ DATA AUGMENTATION

Although in the previous chapter, the relative data segmentation techniques have been

presented and discussed, no data augmentation was employed for the preparation of

this thesis since the generated data should follow the distribution of the original data,

thus completely new features should not be produced. Otherwise, the training of the
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segmentation model may be misguided due to the artificial characteristics. Moreover, the

results of the EMIDEC challenge show that the proposals employing data segmentation

techniques did not outperform others. For these reasons, data augmentation methods

were not evaluated on experimental data in this work.

5.2.2/ DATA FORMATTING

The term formatting here refers to the uniformity of the segmentation model’s input data

format. The image formatting for 2D models naturally produces 2D images as training

and test samples. The essential formatting includes the region selection and cropping.

The region selection depends on the dataset. The private dataset consists of the original

acquisition of DE-MRI, therefore the position of the left ventricle is not necessary on the

middle of the MRI. Indeed, the scanning plan is controlled by technicians and the left

ventricle is just guaranteed to be fully displayed in the MRI. Furthermore, a CNN-based

segmentation model normally requires an invariant input size, and ideally an aspect ratio

of 1. On the basis of these characteristics of data and CNN models, a 128 x 128 image is

cropped at the center of the initial DE-MRI of the private dataset. For the images whose

width or length is less than 128, a zero-padding is added to fill them up. For the 11 images

in which the left ventricle is too close to the image border, the position of the cropping box

was manually shifted to ensure the presence of the entire myocardium in the networks’

input. Although the result of interpolation is also a fixed-size image, this is not an optimal

solution as the spatial information will be modified due to distortion.

For the models employing the public dataset, the cropping is slightly different. Since the

DE-MRI cases in the public dataset have been manually aligned vertically and each slice

has been shifted to the image center, the cropping box can be smaller to cover the left

ventricle in all slices. After examining the minimum size of all the left ventricles, a center-

cropping of 96 x 96 is applied on the public dataset to prepare its corresponding training

and test data.

The side lengths of the two cropping boxes are deliberately set to 128 and 96. Such

configurations assure consistent feature map sizes between the downsampling and up-

sampling. As introduced in Section 4.3.2, the feature maps are encoded and then de-

coded in U-Net-like segmentation models in which the downsampling and upsampling

rates are usually set to 2 by (de)convolution with stride or pooling. At each level of paired

downsampling-upsampling blocks, the skip connection requires an identical feature map

size. However, when the feature maps to be encoded are not divisible by 2, zero-padding

will be added. In the contrast, on the decoder side, the feature map size at all levels

should be divisible by 2. The additional padding at the encoder side differentiates the

feature map size if the same padding is not manually added to a level at the decoder
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side. To avoid this additional manual parameter, the factorization of the side length of

ideal input data should include the power of 2, and its exponent should not be smaller

that the number of downsampling operations. Since the employed U-Net-based models

have 5 downsampling blocks, 128 (27) or 96 (26 × 3) are chosen as the optimal data sizes.

Furthermore, the DE-MRI was acquired at 12-bit (intensity dynamics range: 0-4095). To

keep the same intensity range and avoid the loss of original information, the cropped data

are also registered as 12-bit .npz files. Figure 5.1 shows examples of cropping from the

private and the EMIDEC dataset.

Apart from the image selection and cropping strategies of the DE-MRI, the mask drawing

method is also different between the two datasets. The manual annotation of the private

dataset is registered as JSON files, consisting of a set of points. The contour of each

tissue area is enclosed by consecutive points. Each mask is thus enclosed by consecutive

points. However, the manual annotation was drawn by experts on interpolated MRI to

achieve a higher drawing precision, which makes the coordinates consist of floating point

numbers. To convert the floating point coordinates to masks, the floating point numbers

are rounded.

5.2.3/ IMAGE NORMALIZATION

The MRI signal was registered as a grayscale image after the acquisition. From a physi-

cian’s point of view, the image normalization method could affect the judgment concerning

the lesion area by modifying the contrast of the image. As a result of this observation,

image normalization methods are proposed or evaluated on the input images as a pre-

processing method.

The image normalization aims at correcting the heterogeneous intensity between cases.

Various normalization rules can be followed to correct the expected pixel distribution of

images. The proposed normalization method is defined as follows:

∀i ∈ I, i =


0, i ≤ a

i−a
b−a × 2n − 1, a < i < b

2n − 1, i ≥ b

(5.1)

where i is the intensity level of a pixel in image I. Contrary to the usual linear histogram

normalization, top 5% and bottom 5% of intensity values on the histogram of the initial

image are chosen as the lower and the upper borders (a and b) of the normalization

window. An intensity level that is out of this window is then normalized as 0 or 2n − 1,

where n is the depth of the normalized image (n in bits). All other intensities are linearly

transformed to fill in the dynamic window. The contrast in the dynamic window is thus

enhanced because of the shortened dynamic range. Nevertheless, the scope of the
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Figure 5.1: Examples of cropping from the private and the EMIDEC dataset. The cropped
image from the private dataset is not aligned according to the center of the left ventricle,
therefore its cropping box is larger than the one from the EMIDEC dataset to ensure the
entire presence of the left myocardium.

normalization window can be adjusted, i.e. the top x and bottom y of intensity values on

the histogram of the initial image. The higher the values of x and y, the smaller the scope

of original dynamics and thus the higher the contrast in this window. Figure 5.2 visually

compares three configurations of the scope of original dynamics on the same DE-MRI

slice.

The second normalization method is the equalization which equalizes the intensity distri-
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Figure 5.2: Effect of normalization dynamics scope on DE-MRI. From the left to the right,
the three images are normalized according to Eq. 5.1 with the dynamics scope of 2%-
98%, 5%-95%, 8%-92%, respectively.

bution on the histogram. The most frequent intensity values are spread out and vice versa

[5]. The probability of an occurrence of a pixel of intensity level i can be represented as:

px(i) = p(x = i) =
ni

n
(5.2)

where {x} is a grayscale image, n is the number of pixels whose intensity level is i, and n

is the number of pixels in the image. Furthermore, the cumulative distribution function of

an equalized {x} according to i should be linear:

cd fx(i) =
i∑

j=0

px(x = j) = iK (5.3)

where K is constant.

In practice, since the grayscale image can be considered as a discret distribution, the

intensity level i is usually replaced by a small range to facilitate the processing.

The last normalization method is Z-score normalization:

i =
x − µ
σ

(5.4)

where i is the pixel intensity after the Z-score normalization, µ the mean intensity at the

level of the MR slice and σ the standard deviation of the slice intensity. Normalized

images have a grey level distribution with zero mean and unit standard deviation so that

the inter-case intensity distribution is uniform.

Figure 5.3 shows the normalized images processed with different methods and their orig-

inal image and Figure 5.4 provides the corresponding histograms. The z-score is not

shown in the figures since the obtained image is out of the dynamic range of a normal

n-bit image.
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Figure 5.3: Effect of normalization methods on a DE-MRI slice. From the left to the right,
the three images are equalization, normalization according to Eq. 5.1 with the dynamics
scope 5%-95%, original image.

Figure 5.4: Histograms of different normalization methods on the same DE-MRI slice. a:
equalization. b: normalization according to Eq. 5.1 with the dynamics scope 2%-98%. c:
normalization according to Eq. 5.1 with the dynamics scope 5%-95%. d: normalization
according to Eq. 5.1 with the dynamics scope 8%-92%. e: original image. The histogram
of the equalization is not strictly balanced in every bin due to the discrete distribution.
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5.3/ SEGMENTATION WITH 2D MODELS

The segmentation of MI and related myocardial tissues is more intuitive with 2D model.

To obtain the segmentation of all the tissues in short-axis DE-MRI, a variety of techniques

are proposed or studied, involving preprocessings, network conception details and post-

processings. The proposed segmentation models have been performed on images in

which the myocardium delineation is known or not, and on a dataset that includes only

pathological slices or mixed images. The employed datasets are a private dataset (called

private dataset) and a publically available dataset (called EMIDEC dataset) as introduced

in Section 3.4, thus the methods may depend on the experimental dataset. Although the

configuration of the target network, such as the framework and loss function, may vary

depending on the conditions of the problem, most techniques can be shared for each

specific task.

Therefore, in this part, the conception of the 2D predictive models will be presented with

the motivation and implementation details. The methodology presentation will follow the

stream of a predictive pipeline: the preprocessings of the training and test, then the pre-

dictive model itself including the building blocks, in-layer normalization methods, gradient

optimization, loss function and framework, and finally the post-processing methods.

5.3.1/ BUILDING BLOCKS AND NETWORK

Baseline: U-Net with residual blocks The 2D segmentation networks are modified

from the vanilla U-Net given its remarkable performance in many medical image segmen-

tation tasks. In addition to the network conception, the residual block of ResNet has also

been approved as revolutionary in various CNN-based applications. Therefore, U-Net

with residual blocks is chosen as the baseline network.

After weighing network depth against input image size, the baseline network consists

of 5 (de)convolution blocks. At the stage of the bottleneck block, the feature maps are

downsampled to 1/16 according to the size of the network’s input, i.e., feature maps

of the size 8 × 8 if the input images are 128 × 128. Inspired by the implementation of

Resnet50, The first convolution in the encoder employs a large kernel size of 7 × 7. This

configuration allows to enlarge the receptive field on images of excessive scale. Despite

the kernels of 7 × 7 bring more than 5 times the parameters than the kernels of 3 × 3,

the extra computational overhead is limited as such large kernels are employed only at

the first block. Furthermore, the next convolution blocks also refer to Resnet50. Each

encoder block consists of stacks of residual blocks as shown in Figure 4.12 (right). The

number of stacks is different as the authors of ResNet have proven by experiments after

the trade-off.
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On the decoder side, each deconvolution block consists of 1 × 1 convolution, 3 ×

3 deconvolution with stride 2 and 1 × 1 convolution (Figure 5.5). The first 1 × 1 convo-

lution fuses feature maps transmitted from the skip connection and the last upsampling,

the last 1 × 1 convolution doubles the feature maps from the deconvolution. Each de-

convolution block doubles the feature maps’ size and halves the channel of feature maps.

Figure 5.1 shows all the major parameters of 2D baseline segmentation model in the case

of 128 × 128 input images.

Figure 5.5: Illustration of the deconvolution block at the upsampling side. Each decon-
volution block consists of a series of 1 × 1 convolution, 3 × 3 deconvolution and 1 × 1
convolution.

Table 5.1: Parameters of 2D baseline network. The deconv block consists in 1x1 con-
volution, transposed convolution and 1x1 convolution. The resconv denotes the residual
block of ResNet. Skip connection, nonlinearity and in-layer normalization are not shown
in the table.

Layer Output size Layers

Encoder 1 (16x)64x64
conv2d 7x7, 64

pool2d 3x3
Encoder 2 64x64 {resconv2d 3x3, 64)x3
Encoder 3 32x32 {resconv2d 3x3, 128)x4
Encoder 4 16x16 {resconv2d 3x3, 256)x6
Encoder 5 8x8 {resconv2d 3x3, 512)x3
Decoder 5 16x16 deconv2d 3x3, 512
Decoder 4 32x32 deconv2d 3x3, 256
Decoder 3 64x64 deconv2d 3x3, 128
Decoder 2 64x64 deconv2d 3x3, 64

Decoder 1 (16x)128x128
deconv2d 3x3, 32

conv2d 3x3, 32
conv2d 3x3, 5
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Experimental networks Three experimental networks will be evaluated, consisting of

the baseline residual U-Net, the baseline network with DAC and RMP blocks, and the

baseline network with Attention Gate. The DAC and RMP blocks refer to CE-Net (Section

4.3.3). The Attention Gate refers to Attention U-Net (Section 4.3.3). Figure 5.6 shows

the employed attention gate in the experimental network, which is slightly different to the

original implementation in Figure 4.17. All the three networks share the same backbone

while the specific blocks are different (Figure 5.7).

Figure 5.6: Diagrams of the original and the modified Attention Gate. The modified im-
plementation removes the upsampling from Attention Gate as the gating signal and input
features should have the dimension. Credit of diagram a: [131].

5.3.2/ IN-LAYER NORMALIZATION

As introduced in Section 4.3.4, batch normalization has become the routine in-layer nor-

malization method. The uniformity among mini-batch in every layer intends for decreasing

the distribution shift between feature maps. The such shift may be produced by the ini-

tialization of parameters, or the interval variance of dataset. Instance normalization has a

different scope of the effect and the impact of the application scope may affect the distri-

bution. The independence of a single instance may be diluted by batch normalization as

its distribution will be shifted to the one of the mini-batch. To justify the impact of in-layer

normalization scope, batch normalization and instance normalization will be trained on

the proposed experimental models.
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Figure 5.7: Architecture of the experimental networks. The three networks share a similar
architecture except for the skip connection and the last down-sampling convolutions.

5.3.3/ STOCHASTIC OPTIMIZATION

Stochastic Gradient Descent (SGD) and mini-batch gradient descent optimization are in-

troduced in Section 4.3.5. The major difference between the two stochastic optimizations

is the amount of samples that participate in one calculation of gradient and update of

parameters. Mini-batch gradient descent optimization takes the average gradient of a set

of samples to update a model’s parameters. Considering the important internal variability

among the experimental images, mini-batch gradient descent optimization may omit fea-

tures if few samples are characterized by these features. Therefore, both the SGD and

the mini-batch will be tested together with the in-layer normalization methods.

5.3.4/ LOSS FUNCTION

The common loss functions for medical image segmentation such as the Dice loss, CE

loss, weighted CE loss and their compounds are adopted as the baseline methods. The

formulas of these loss functions have been presented in Section 4.3.7. In addition to

the standard implementations, a variant based on Dice loss is proposed and then experi-

mented with in response to the issue of the class imbalance.

Image-wise Dice loss For recall, the common Dice loss function is:

LDice = 1 −
2
∑N

n=1 pngn + ϵ∑N
n=1 p2

n +
∑N

n=1 g2
n + ϵ

(5.5)
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where N is the batch size, pn and gn stand for one prediction and its ground truth mask.∑
sums the 3-D array of dimension [batch, height, width] and outputs a 1-D integer. ϵ is

added on the numerator and denominator so that in case of true-negative, the loss will be

correctly calculated as 0.

The vanilla Dice loss processes all images in a batch together as a single image. In

contrast, an alternative Dice loss is proposed:

LDice = 1 −
2
∑N

n=1
pn p̂n+ϵ

p2
n+ p̂2

n+ϵ

N
(5.6)

This variant first calculates individually the loss of each sample pn p̂n+ϵ

p2
n+ p̂2

n+ϵ
in the batch, then

the batch loss is counted as the average of all samples’ losses in the batch of size N.

The difference between the common implementation and the proposed variant is the unit

of the calculation. Both implementations will produce a similar loss value in most of cases.

However, assuming that a batch consists of some negative images where no target class

presents, while in the prediction a few false-positive pixels are predicted on these images,

in such case the loss calculated according to Eq. 5.5 should be much lower than the one

of Eq. 5.6 (inversely the Dice value).

5.4/ FRAMEWORK

To segment the myocardial infarction from the DE-MRI without the given myocardium con-

tour, two frameworks are proposed employing 2D models. In Framework A, a CNN first

segments the myocardium then another CNN finds the infarction area on the aforemen-

tioned segmented myocardium. Framework B independently segments the myocardium

and the infarction areas from the whole image by two CNNs, then the in-common seg-

mentation between the predicted myocardium and infarction is kept to remove the false-

positive infarction area out of the myocardium. Figure 5.8 illustrates both frameworks.

5.5/ POST-PROCESSING

The proposed prior information-based filters [138] and the ensemble learning [97] are

employed as post-processing methods. Other post-processing methods such as morpho-

logical transformations including erosion, dilation, opening and closing [162] are tested in

preliminary experiments while the result is not satisfying, and therefore such methods will

not be detailed.
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Figure 5.8: Illustration of both proposed frameworks. At the left, Framework A segments
the myocardium with a first CNN, then another CNN segments the infarct on the ob-
tained delimited myocardium. At the right, Framework B segments the myocardium and
the infarct at the same step with two CNNs, then its final infarction segmentation is the
intersection of the segmented myocardium and infarct.

Prior information-based filters The prior information-based post-processing refers to

the rules that clinical experts employ for manual annotation drawing and inspection.

Based on these rules and relative prior information in the data, criteria are constructed

to eliminate false-positive contours in the CNN’s segmentations. To design such criteria,

we first investigated the image characteristics which can be considered as criteria, then

we inspected the statistics of prior information in the training set to study the relevance

of the proposed criteria. Since our data have significant variations, the criteria should be

universal enough for the whole dataset. On the strength of this inspiration, three criteria

were designed to improve the accuracy of the segmentation.

The first criterion focuses on the infarction size. In clinical practice, a validated myocardial

infarction should have a minimum area. Otherwise, it will be considered a noisy region,

e.g. an artifact. Therefore, this criterion compares the area of every single segmentation

in CNN’s outputs to a threshold value of the area. All segmentation contours which do

not meet the condition:

Area(C) > θarea (5.7)

are removed, where C is one contour belonging to a coarse segmentation and θarea is

the threshold area. Impacts of noises on the CNN’s segmentations such as the partial

volume of fat or cavity, artifacts of the high signal should be eliminated by this criterion.
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The second and third criteria take advantage of the contrast agent’s nature. The gadolin-

ium contrast agent can enhance the signal intensity on our T1-weighted MR images and

agent-enriched tissues show high signals. Blood transports the contrast agent in cardiac

tissues. The absorption and the release rate of the agent depend on the type of tissue,

which allows us to distinguish each tissue in DE-MRI. Therefore, around 10 minutes af-

ter the injection of the contrast agent, infarction tissues and cavity show high signals,

while normal myocardium tissues appear dark. According to the above rules, the second

criterion compares the median signal value of the cavity (signal of the blood) and the

candidate area:

M(C) − M(cavity) > θsignal (5.8)

where M() means the median signal value in the region, C stands for the region of the

candidate contour, and cavity stands for the region of the cavity. If the signal in the region

of the candidate contour is high enough compared to the cavity, this area will be kept. In

this criterion, the intensity signal of the blood inside the cavity indicates the reference of

low intensity. Indeed, the cavity is a reliable reference tissue because its contour is given

in the dataset and the signal in the cavity is relatively homogeneous.

However, the absolute difference between the infarction tissue and cavity is not always

consistent between examination cases as shown in the left part of Fig. 5.9. The delayed

acquisition time (the images are not acquired exactly at the same delay time between ex-

aminations), the patient’s physical state, characteristics of MRI equipment, etc. can affect

the optimal threshold value of our criterion. To reduce the impact of such variations, the

third criterion refers to both intensities of the cavities and non-pathological myocardium

tissues, which constitute a scope of the signal. The candidate infarction area is then

compared to this scope:

(M(C) − M(cav))/(M(cav) − M(myo)) > θ% (5.9)

where M(myo) refers to the median signal of non-infarction myocardium. The threshold

value θ% becomes a percentage of the scope rather than an absolute difference (θsignal)

as in 5.8. Fig. 5.9 calculated on the training set prior information proves that the index of

scope on the right is more consistent that the absolute difference on the left. Neverthe-

less, the contours of healthy myocardium tissues are not given for the infarction segmen-

tation task (only the whole myocardium contour annotation is provided). Reminding that

our neural network ensures high recall, we assume that all the myocardium except the

regions segmented by the neural network is healthy, which means that the non-selected

myocardium is certainly non-pathological. The final segmentation results testify the rele-

vance of this hypothesis.

According to the statistics of the prior information and experiments, our framework em-

ploys the first and third criteria to select true-positive segmentations. The final post-
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Figure 5.9: Prior statistics supporting Criterion (5.8) and Criterion (5.9). The absolute dif-
ference of signal (left) is less consistent than the proportional difference on scope (right).

processing is the summed-up in Algorithm 1. All threshold values are roughly determined

on the training set’s prior information 5.9, and then fine-tuned on the validation set to

obtain the best performance on the test set and avoid data leakage.

Ensemble learning The best training epoch is normally determined by monitoring train-

ing and validation accuracy graphs (Dice metric for our case). Training should be stopped

when validation accuracy does not increase anymore to avoid the overfitting effect. How-

ever, noise could temporally mislead the training path and a single model could not be

the best for the segmentation of all pixels in a particular input image. In such a case the

ensemble method is employed to strengthen the predictions’ robustness.

The ensemble learning can be classified into homogeneous and heterogeneous ensem-

bles. The heterogeneous ensemble learning, i.e. using different feature selection meth-

ods with the same training data, is adopted for further test. In our practice, during the

training stage, several models are saved at different epochs prior to the early stopping

point. Among the results, each model has the same network conception but different

training epochs. During the test stage, all the trained models were used to predict a set

of segmentation. The set of all predictions is then merged as a single segmentation for

each input image. The merged segmentation looks like a heat map, therefore a threshold

value that is determined on the validation set is used to transform the merged one into a

binary segmentation mask.
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Algorithm 1 Prior information-based post-processing
Result: removal of false-positive segmentation contour(s) of one image
Input : Set of infarction contours {S i}
Input : Criterion (5.7) C1; Criterion (5.9) C3
Output: Final segmentation contour(s) S f inal

S ensemble ← Avg({S i}) S ensemble ← Binary(S ensemble)
S f inal ← {}

for aContour ∈ S ensemble do
if aContour fulfills conditions {C1 ∪C3} then

S f inal ← S f inal + aContour
end

end
return S f inal

5.6/ EXPERIMENTAL RESULTS

To justify the performance of the proposed myocardial segmentation approach on DE-

MRI, experiments are conducted on the private dataset (Section 3.4). Data consisting

of all-infarcted slices and consisting of mixed slices are separately trialled with different

strategies, hence subsets are extracted from the private dataset to meet the conditions of

each experiment, and therefore the value is not comparable between experiments.

For all the experiments, the neural networks are implemented with Python 3.6.9 and

Pytorch (the version depends on the experiments). The training and test are executed on

Tesla V100.

5.6.1/ EVALUATION METHODS AND METRICS

To evaluate the segmentation results of different tissues, clinical and geometrical metrics

are employed. The clinical metrics are the most widely used in cardiac clinical practice,

i.e. the average errors for the volume of the myocardium of the left ventricle, the MI (in

cm3), and the average errors of the percentages of MI (according to the myocardium).

The average errors for the volume of a tissue is defined as:

MAE =
1
n

n∑
i=1

|vi − v̂i| (5.10)

where MAE denotes Mean Absolute Error, vi denotes the prediction volume of a target

tissue on slice i, and v̂i denotes the ground truth volume for the same tissue on the same

slice. The average errors of the percentages of MI (or PMO) are then defined as:

ErrorPIM =
1
n

n∑
i=1

|vi − v̂i|

ˆvmi
(5.11)
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where PIM denotes Percentage of Infarcted Myocardium (the infarcted myocardium can

refer to the PMO if the PMO should be independently assessed), ˆvmi denotes the ground

truth volume of the myocardium.

The geometrical metrics are the average Dice index for the different areas and the Haus-

dorff distance (in 3D in case of the segmentation with 3D model) for the myocardium. For

MI, only the Dice is calculated due to the possible presence of multiple instances in an

image. The formulas of Dice index and Hausdorff distance can refer to the corresponding

loss functions.

5.6.2/ SEGMENTATION ON ALL PATHOLOGICAL SLICES

Experiments performed on all-pathological slices majorly examine all the conceptions of

the segmentation models except the prior information-based post-processing. The impact

of the image normalization and all the proposals concerning the CNN model are evaluated

and compared. The post-processing referring to the pathological prior is not trialled on

all-pathological data since the mechanism of this post-processing is the elimination of

false-positive segmentation. The experiments do not distinguish between the MI and

the PMO, therefore PMO is considered as a part of MI for both the segmentation and

evaluation.

Since multiple methods are proposed, the choice of the image normalization method

(Section 5.2.3) must be justified first as well as the gradient descent batch size (Section

4.3.5) and the loss function (Section 5.3.4). Secondly, the chosen methods are adopted

on different CNNs (Section 5.3.1) considering both two frameworks A and B (Section

5.4). The ensemble method (Section 5.5) is then applied to all the trials to get a robust

performance. To show the advantage of the learning-based models, the segmentation

by GMM (Section 4.2) is also evaluated. Finally, the best practices proven by the above

trials are integrated into our proposal and then compared with the inter- and intra-observer

variation studies on different application conditions.

This trail focuses on images that include at least one infarction region. Hence, all the

904 slices with infarcted areas in the entire private dataset are selected for this experi-

ment. These slices are then randomly assorted into 581, 168, and 155 images which,

respectively, belong to the training, validation, and test sets. This splitting is based on the

60-20-20 rule, but as images coming from the same exam are assigned to the same set,

the percentages are not strictly respected. The images of the test set are the same as

those in the inter- and intra-observer study sets.

Image normalizations Table 5.2 reveals the effect of the image normalization method

for the automatic infarction segmentation. The experiments are done on the same MRI
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slices whose myocardium mask was given by an experienced physician. The experimen-

tal model takes the baseline CNN with batch size 1 and Dice loss and the only variable

among the experiments is the image normalization method. The normalization according

to Eq. 5.1 slightly outperforms the equalization for the segmentation task. The per-

formance obtained using both above-mentioned normalizations largely exceeds the one

with non-normalized images. Figure 5.10 provides examples of the infarction segmen-

tation results with the three trials. Visually, Eq. 5.1 and the equalization enhance the

contrast between the normal and the pathological tissues but the equalization markedly

intensifies the noise.

Table 5.2: Impact of image normalizations on infarction segmentation

Model Dice Jaccard PIM Difference(%) Volume Difference(mL)

Normalization using Eq. 5.1 0.805 0.694 7.18 1.196

Equalization 0.804 0.693 7.58 1.310

No normalization 0.775 0.657 8.34 1.392

Batch size and loss functions The comparison of different batch sizes, layer nor-

malization methods and loss function is completed on the normalized images whose my-

ocardium mask is given by an experienced physician. The models’ network is the baseline

CNN. The results are shown in Table 5.3, the best Dice index obtained being 0.805 with

SGD and Dice loss. The SGD converges more rapidly in terms of the training epochs,

however, its total training time is much longer since the model updates more frequently

its weights and the GPU computing resources can not be fully used.

Table 5.3: Impact of batch size, layer normalization methods and loss functions.

Batch size Loss function Layer normalization∗ Dice Jaccard PIM Difference(%) Volume Difference(mL)
1 Binary CE Same effect 0.796 0.683 7.63 1.315
1 Weighted binary CE Same effect 0.794 0.680 7.84 1.348
1 Dice Same effect 0.805 0.694 7.18 1.196
64 Dice (per image) Batch 0.757 0.627 8.73 1.485
64 Dice (per image) Instance 0.748 0.617 8.55 1.473
64 Dice (per batch) Batch 0.750 0.619 8.86 1.508
64 Dice (per batch) Instance 0.755 0.628 8.30 1.452

*: When the batch size is one, the batch normalization and the instance normalization will have the same effect
In bold the best results.

Frameworks and neural networks In Table 5.4, the infarction segmentation perfor-

mance is provided according to each neural network and framework. Contrary to the

above trials, the myocardium mask is not provided for these evaluations. The image pre-

processing and network configurations are adopted from the best practices in the above

subsections, i.e. image normalization with Eq. 5.1, a small batch size of 1 and Dice
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Figure 5.10: Visualization of image normalizations and their segmentation results. For
each MRI slice (one per column), from top to bottom: automatic segmentation of infarc-
tion (in green) on images of normalization according to Eq. 5.1, equalization, and no
normalization. The last line displays the ground truths of myocardial infarction.

index loss. To examine the impact of the receptive field size of convolution, the nearest

neighbor interpolation is applied for the CNNs’ input images. Results reveal that, globally,

framework A gets better precision on Dice and Jaccard but framework B achieves better

prediction of the PIM and volume, interpolated input significantly optimizes the segmenta-

tion and advanced convolution blocks have little impact on our data for the segmentation

task.

Table 5.4: Performance of frameworks and neural networks for infarction segmentation.

Framework Network interpolation Dice Jaccard PIM Difference(%) Volume Difference(mL)
A CE-Net 1x 0.595 0.450 11.06 1.927
A CE-Net 5x 0.662 0.520 9.34 1.600
A Attention 1x 0.551 0.410 12.55 2.175
A Attention 5x 0.648 0.502 9.42 1.616
A Baseline 1x 0.591 0.446 11.29 1.923
A Baseline 5x 0.668 0.524 9.64 1.600
B CE-Net 1x 0.546 0.403 9.93 1.728
B CE-Net 5x 0.614 0.469 8.95 1.487
B Attention 1x 0.521 0.381 10.59 1.899
B Attention 5x 0.587 0.442 9.38 1.641
B Baseline 1x 0.558 0.411 10.09 1.740
B Baseline 5x 0.592 0.450 9.48 1.636

Evaluation results Table 5.5 lists the evaluation results from the proposal, the inter-

and intra-observer variation studies as well as the results from GMM. The proposal is

the model with the best result in the previous trials. Indeed, according to Table 5.4, both
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the Framework A with baseline network and the Framework B with CE-Net achieve the

best results based on different evaluation metrics. We choose the Dice as the principal

analysis metric, therefore the proposal consists of the baseline network (residual U-Net)

trained using SGD (batch size 1) with Dice loss and interpolated input under framework

A. Both the conditions of the given and not given myocardium mask are evaluated. Since

the base and the apex images are more difficult to segment, the results are calculated on

the whole test set and only on the middle images without considering the most basal and

apical slices of the test set.

The segmentation results of middle slices are more precise since basal and apical slices

have more uncertainties. Without providing the myocardium mask, the infarction segmen-

tation is much more challenging since the error of the myocardium segmentation is added

to the infarction segmentation.

The dependent t-test for paired samples [50] is used to check if the difference between

our proposal’s results and other approaches is significant. A p-value inferior to 0.05 can

be considered a significant difference between the results from both approaches. Results

reveal that our proposal has a very similar performance to the inter-observer variation

study. Compared to the intra-observer variation study, the gap is not always significant.

The results from GMM are significantly inferior to those of our proposal.

Table 5.5: Proposal’s results, inter-observer study and intra-observer study variations,
and GMM’s results.

Method Myocardium Mask∗ Image position Dice Jaccard PIM Difference(%) Volume Difference(mL)
Proposal Unknown All 0.668 0.524 9.64 1.600

Intra-observer study Unknown All 0.711∗∗ 0.572∗∗ 8.82 1.361∗∗

Inter-observer study Unknown All 0.681 0.538 10.98 1.694
Proposal Unknown Middle 0.694 0.549 8.61 1.604

Intra-observer study Unknown Middle 0.734∗∗ 0.595∗∗ 6.81∗∗ 1.257∗∗

Inter-observer study Unknown Middle 0.707 0.562 7.95 1.500
Proposal Known All 0.843 0.746 5.89 1.014

Intra-observer study Known All 0.845 0.751 4.63∗∗ 0.763∗∗

GMM Known All 0.699∗∗ 0.566∗∗ 13.14∗∗ 2.118
Proposal Known Middle 0.845 0.748 5.38 1.000

Intra-observer study Known Middle 0.855 0.763 3.47∗∗ 0.636∗∗

GMM Known Middle 0.693∗∗ 0.559∗∗ 12.90∗∗ 2.244∗∗

*: Whether the manual delimitation of the myocardium is provided
**: p-value < 0.05 between our proposal and the compared approach under the same application conditions

Figure 5.11 shows the methods’ segmentation results on typical images including api-

cal images, images with important no-reflow tissue, images with artifacts, high contrast

images and low contrast images.

5.6.3/ SEGMENTATION ON ALL PATIENTS

The experiment on all patients with 2D models majorly examines the impact of gradi-

ent optimisation methods, the 2.5D input (detailed in Section 6.2.1), CE-Net and the prior



5.6. EXPERIMENTAL RESULTS 91

Figure 5.11: Myocardial infarction segmentation results on typical DE-MRI. For each row:
a image to segment, b ground truth, c proposal with given myocardium mask, d intra-
observer with given myocardium mask, e proposal without providing myocardium mask,
f intra-observer without providing myocardium mask. For each column: 1 apical slices, 2
presence of important no-reflow tissue, 3 presence of artefact, 4 high contrast images, 5
low contrast images.

information-based post-processing. 888, 241, and 194 pathological images that were ran-

domly selected from the private dataset are respectively used as the training, validation

and test data. Intra- and inter-observer variation studies are performed by experienced

cardiologists on the test set.

The mask of the myocardium is given in these experiments, therefore a simple one-stage

framework is employed with different configurations. The vanilla Dice loss is the only

loss function due to the single target class (PMO in considered as a part of MI and not

be specifically segmented). The input is center-aligned according to the myocardium
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and only the ROI (area of the myocardium) is kept in the input. Figure 5.12 shows the

experimental framework of the tests on slices of all patients.

Figure 5.12: Illustration of the experimental framework with given mask of the myocardium
on all patients. For a 2.5D input, three neighbouring images replace the single input
image.

Table 5.6 shows the results between the baseline network or CE-Net, SGD or mini-batch

SGD, 2D or 2.5D inputs, and with or without the prior information-based post-processing.

In addition to the common metrics, recall (sensitivity) and accuracy are also calculated to

emphasize the impact of the prior information-based post-processing. Values in brackets

stand for the results before post-processing.

Table 5.6: Experiments results on all patients with given myocardium mask. 2D and 2.5D
stand for input images format; BL and CE stand for BaseLine and CE-Net; B1 and B32
stand for the batch size of the training and inference.

Model1 Dice(%) Dif. PIM(%) Recall(%) Accuracy(%)

Intra-observer 0.810 4.14 85.45 71.20
Inter-observer 0.774 8.66 90.26 67.50

2D BB B1 0.742 (0.663) 7.72 (8.29) 83.20 (85.62) 65.00 (56.28)
2D BB B32 0.718 (0.579) 8.87 (11.65) 77.41 (81.69) 61.32 (46.61)
2.5D BB B1 0.757 (0.690) 7.70 (7.83) 84.72 (86.80) 66.41 (59.15)

2.5D BB B32 0.711 (0.591) 8.09 (11.22) 75.94 (81.20) 60.29 (42.62)
2D BB 5x B1 0.780 (0.652) 5.33 (7.93) 88.93 (90.34) 68.39 (55.97)

2D BB 5x B32 0.731 (0.595) 7.25 (11.98) 79.40 (85.97) 63.34 (48.73)
2D CE 5x B1 0.779 (0.657) 5.47 (7.64) 89.13 (90.56) 68.07 (56.38)

2D CE 5x B32 0.732 (0.599) 7.39 (11.19) 78.86 (84.96) 63.57 (49.17)

The following conclusions can be obtained from the data in Table 5.6. First, no evident

improvement is achieved from the 2.5D input. Then, CE-Net does not bring us a better

result. The additional dense convolution and multi-kernel pooling on high-level semantic

information do not provide useful information to the final segmentation. Third, interpolated

images slightly improve the performance after post-processing. Indeed, the interpolation

equivalently changes the size of the receptive field of convolution kernels.

Moreover, by observing between the high recall and relatively low accuracy, it can be

inferred that most of the healthy images are wrongly segmented as false-positive by

the CNN. The best CNN (according to Dice metric, before the post-processing) obtains
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55.97% on accuracy and 90.34% on recall (2D interpolated inputs, baseline network,

SGD), which means that most pathological images are segmented, whereas without the

post-treatment many of the healthy test images are segmented as infarcts. The prior

information-based post-processing obtains significant improvement in the segmentation

results, especially on healthy images. This improvement majorly comes from the removal

of false-positive contours from noisy areas as shown in the base image in Fig 5.13. No-

tice that the threshold values of the criteria can affect the post-treatment results: more

strict thresholds decrease the rate of false-positive segmentation, but increase the false-

negative and vice versa. The threshold values are fine-tuned on the validation set by in-

specting the Dice values and the difference of proportion. Two metrics that can increase

or decrease differently depending on the threshold values.

The results according to the categories of the slice position are also evaluated as shown

in Tab. 5.7. Apex and base images result in more failed segmentation because of their

higher uncertainty and less agreement between clinical experts. Focusing on middle

images, the results are quite satisfying compared to the annotation’s internal variations.

Table 5.7: Results On Different Image Positions
Middle Apex + Base

Dice(%) Dif. PIM(%) Dice(%) Difference(%)

Proposal 81.37 (69.70) 4.29 (6.03) 65.63 (48.86) 9.21 (14.36)
Intra-observation 81.96 3.89 76.72 6.19

The qualitative results are provided as well. Fig.5.13 shows a segmentation result of an

MRI exam. The result is globally satisfying in the middle images.

5.7/ DISCUSSION

Gradient optimisation method The results on both pathological-only and all-patients

datasets with 2D models demonstrate that the SGD gets dramatically better results on

our data. Indeed, since our dataset has considerable internal variability among images,

the images’ characteristics could not be so uniform. Indeed, the characteristics of basal

and apical images could be very different from those of the images in the middle of the left

ventricle. Moreover, the signal can be different among exams due to many factors such

as renal clearance and contract media dose. As mini-batch gradient descent tends to

ignore noisy features during the backpropagation, the internal variation of our data could

be identified as noises. Some useful information is dropped out during training because

of the mini-batch, which could explain why the recall of mini-batch gradient descent is

lower. However, one drawback of SGD is its computation efficiency. A batch size of

value 1 updates the model’s weights more frequently than a big batch. Each update
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Figure 5.13: Segmentation result from the 2D baseline network. From left to right, a
whole examination is segmented (base to apex). From top to bottom, the contours are re-
spectively the merged segmentation (the set of predictions, without the post-processing),
post-treated segmentation, and their labels. Dice values are given at the bottom of each
slice (Dice value without post-processing in bracket). The artifact due to the MRI ac-
quisition on the first image is wrongly segmented as an infarction by CNN, then the
post-processing successfully removes this false-positive segmentation so that its Dice
improves from 59.7% to 76.3%.

includes more noise so that the path of the weight updating is more rugged during the

back-propagation. Although SGD learns both features of internal variation and noise and

decelerates the training, SGD outperforms mini-batch gradient descent on our dataset.

Deep learning and statistical models for MI segmentation All the CNN-based mod-

els’ results are significantly superior to the commonly used GMM. Compared to the state-

of-the-art CNN models, the baseline network slightly outperforms them. This could be

explained by the fact that the level of semantic information in our data is relatively low.

The additional blocks that aim at improving the information interpretation could not dig

further useful semantic information. As mentioned by Isensee et al. [153], a better adap-

tive model could be more efficient than a heavy and complex neural network for automatic

medical image analysis.

Prior information-based post-processing The prior information-based post-

processing provides a remarkable improvement, particularly on mixed healthy-infarcted

data. A related segmentation strategy can be proposed where the model focuses on

recall as the first metric. Then the post-processing eliminates the false-positive areas
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from the high recall segmentation.

To generalize the prior information-based post-processing on other kinds of medical imag-

ing, first, two (or more) labeled or region-confirmed tissues would be chosen to create a

dynamics window. Second, the region signal in the candidate contour would be com-

pared to a proportional threshold on this window. Only the conformed contours would

be finally kept as the result of the segmentation. The representative value of the region

could be the median of its histogram. The difficulty of this approach is the selection of

characteristic tissues.

5.8/ CONCLUSIONS

The 2D segmentation approaches obtain very satisfying results on the automatic MI as-

sessment. With the provided myocardium mask, the highest Dice metric of the segmented

infarct is 0.843 on all-pathological slices, and 0.780 on slices of all patients. Without the

provided myocardium mask, the highest Dice metric is 0.668 on all-pathological slices.

Comparing the proposals and the variance of the manual annotations, the proposed 2D

segmentation approach incorporating the proposed image normalization method, base-

line network, SGD optimization, interpolated input images and proposed prior-based

post-processing outperforms the inter-observer study on all patients (Table 5.6), and the

same model conception without the post-processing achieves comparable result as the

inter-observer study on all-pathological slices (Table 5.5).

The proposed image normalization and the prior-based post-processing methods are

proved efficient (Table 5.6 and Table 5.10) without the requirement of additional heavy

computation. The SGD is proved more convenient than the more popular mini-batch,

which is counter-intuitive. Feeding interpolated images as networks’ input increases the

segmentation performance while the training and inference are slower due to the ex-

cessive operation on larger feature maps. However, the employment of more complex

convolutional blocks has no convincing improvement on the DE-MRI segmentation.
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CONTRIBUTION 2: AUTOMATIC MI
ASSESSMENT FROM MRI WITH 3D DL

MODELS

6.1/ INTRODUCTION

Since DE-MRI can be viewed as a tomographic imaging approach, the spatial information,

i.e. the inter-slice relation can be potentially referred to enhance the image interpretation.

To this end, 3D deep learning-based segmentation models are proposed to assess the

MI in the left ventricle. The results are also compared to the 2D baseline method of the

previous chapter to evaluate the effect of the introduced spatial information on the MI

segmentation.

To take spatial information into account for the MI segmentation, three strategies are

proposed. The first one feeds 3 adjacent MRI slices as the CNN’s input where all the

convolutions are 2D, termed 2.5D network. The second strategy takes the baseline 2D

network (Section 5.4) as the backbone while all the convolutions at the encoding side are

replaced by 3D convolutions, termed a fully 3D network. The last strategy is our original

proposal, termed 3D network with Constrained Receptive Field (CRF). The CRF network

integrates 3D and 2D convolutions at the encoding side to better control the impact of the

inter-slice information.

To evaluate the proposed CRF network and other strategies, the tissues of interest in-

cluding the LV myocardium, the LV infarct and LV PMO are segmented. The PMO will be

independently segmented in this chapter, instead of being considered as part of the in-

farct as in the previous chapter. Therefore, loss functions for multi-class (more than two)

should be considered. The segmentation results of the three tissues will be evaluated

with the same employed metrics in the previous chapter.

This chapter is organized as follows:

97
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• Segmentation with 3D models. Three variants of 3D models are proposed and a

two-stage cascaded framework is introduced. Then a variant of generalized Dice

loss is proposed.

• Experimental results. The multi-class segmentation loss functions are evaluated

with the 2D baseline model. Then the best loss function is applied to the experi-

ments comparing between proposed 3D models, 2D model and manual annotation

variance.

• Discussion.

• Conclusions.

6.2/ SEGMENTATION WITH 3D MODELS

Although the DE-MRI is constituted of 2D slices, adjacent images are related to each

other. Therefore, the inter-slice correlation can be potentially explored to optimize the

segmentation result. With different input formats and network configurations, 2.5D and 3D

models are proposed. Depending on the vertical alignment of the experimental dataset,

a two-stage framework is also proposed where the first model segment the myocardium

from 2D slices and aligns the 3D inputs according to the center of the obtained ROI.

6.2.1/ 2.5D MODEL

The 2.5D model inherits the same architecture of the 2D models (Section 5.3.1) except

that the input layer receives 3 channels instead of 1. Three adjacent images are put

into 3 channels as a single input and only 2D convolutions are performed in the CNN

segmentation model. For the first and the last slice of a MRI case, the slice is copied

to the former or later channel to form the 3-channel input. At the end of the model, only

one segmentation mask is produced and compared to the image of the middle channel.

Figure 6.1 illustrates the 2.5 input on an experimental network.

The model is called 2.5D because the inter-slice information can not be fully utilized. The

2D convolution interprets the correlation between channels without learning the charac-

teristics of spatial information. In other words, exchanging the order of the three channels

has no impact on the 2D convolution.
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Figure 6.1: Illustration of experimented 2.5D CE-NET. ResConv doubles the number of
feature maps and halves their resolution. Skip connection concatenates corresponding
encoder feature maps and decoder feature maps. Relative to 2D input, the 1D convolution
layer is additional to 2.5D input.

6.2.2/ 3D MODELS

The 3D models is fed by 3D inputs: each input of the size 16x128x128 consists of an

entire MRI case. For cases having less than 16 slices, zero-padding is performed to

ensure a uniform input size. Considering the impact of the size of the receptive field, two

configurations are proposed with 3D convolutions.

The first variant is intuitively transformed from the baseline (Section 5.3.1) where all the

2D operations are replaced by 3D ones, including the kernel, stride and padding sizes,

namely a fully 3D network. This network is very similar to V-Net [79] except that there

is no down-sampling along the z-axis due to the inconsistency of the scale of the input

data in the plane and z-axis. The second 3D variant is the proposed 3D Constrained

Receptive Field network. As the name implies, the receptive field is limited to in-plane

in the low semantic layers. In other words, in the first two down-sampling and the last

two up-sampling layers, the convolution and pooling operations have the size of 1 at the

z-axis for their kernel, stride, padding etc.. This conception aims at limiting the inter-

slice interference on low semantic layers for a finer segmentation result and taking the

advantage of 3D information on high semantic layers from the aligned 3D DE-MRI. Table

6.1 shows the parameters of the baseline, fully 3D and 3D CRF networks.

6.2.3/ LOSS FUNCTION FOR MULTI-CLASS SEGMENTATION

Since in this chapter, the target is to segment multi-class tissues (myocardium, infarct

and PMO), loss functions for multi-class segmentation should be employed, such as the

Cross-Entropy (CE) loss and the generalized Dice loss. Therefore, a variant of the gen-

eralized Dice loss is proposed to better address the class imbalance issue by optimizing
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Table 6.1: Parameters of 2D and 3D networks. The deconv layer consists in 1x1 convolu-
tion, transposed convolution and 1x1 convolution. The resconv denotes the residual block
of ResNet. Skip connection, LeakyReLU and batch normalization are not shown in the
table. In bold the major conception difference between the Fully 3D and CRF networks.

Layer Output size baseline Fully 3D 3D CRF

Encoder 1 (16x)64x64
conv2d 7x7, 64 conv3d 3x7x7, 64 conv3d 1x7x7,64

pool2d 3x3 pool3d 3x3x3 pool3d 1x3x3
Encoder 2 (16x)64x64 {resconv2d 3x3, 64}x3 {resconv3d 3x3x3, 64}x3 {resconv3d 1x3x3, 64}x3
Encoder 3 (16x)32x32 {resconv2d 3x3, 128}x4 {resconv3d 3x3x3, 128}x4 {resconv3d 3x3x3, 128}x4
Encoder 4 (16x)16x16 {resconv2d 3x3, 256}x6 {resconv3d 3x3x3, 256}x6 {resconv3d 3x3x3, 256}x6
Encoder 5 (16x)8x8 {resconv2d 3x3, 512}x3 {resconv3d 3x3x3, 512}x3 {resconv3d 3x3x3, 512}x3
Decoder 5 (16x)16x16 deconv2d 3x3, 512 deconv3d 3x3x3, 512 deconv3d 3x3x3, 512
Decoder 4 (16x)32x32 deconv2d 3x3, 256 deconv3d 3x3x3, 256 deconv3d 3x3x3, 256
Decoder 3 (16x)64x64 deconv2d 3x3, 128 deconv3d 3x3x3, 128 deconv3d 3x3x3, 128
Decoder 2 (16x)64x64 deconv2d 3x3, 64 deconv3d 3x3x3, 64 deconv3d 1x3x3, 64

Decoder 1 (16x)128x128
deconv2d 3x3, 32 deconv3d 3x3x3, 32 deconv3d 1x3x3, 32
conv2d 3x3, 32 conv3d 3x3x3, 32 conv3d 1x3x3, 32
conv2d 3x3, 5 conv3d 3x3x3, 5 conv3d 1x3x3, 5

the way of the class weighting.

Generalized Dice loss with different weighting The original generalized Dice loss

[99] is formulated as:

1 − 2
∑L

l=1 wl
∑

n gln pln∑L
l=1 wl

∑
n gln + pln

(6.1)

where l denotes the class label, n denotes the pixel and wl denotes the weight of the

class label l that is calculated as wl = 1/
(∑N

n=1 gln
)2

, g and p are the ground truth and the

prediction. With a different weighting method, we propose a variant of the generalized

Dice loss:

1 − 2
L∑

l=1

wl

∑
n rln pln + ϵ∑

n rln + pln + ϵ
(6.2)

In the proposed Eq. 6.2, the weight is wl = 1/
∑N

n=1 rln, which is the same as in the cross-

entropy loss. The proposal aims at reducing the difficulty of tuning the weighting.

6.2.4/ FRAMEWORK FOR NON-ALIGNED IMAGES

In a 3D volume, the connectivity between adjacent slices should be assured so that the

inter-slice information can be correctly interpreted by the 3D network. For the experi-

ments on non-aligned data, the 2D network is thus first employed to correct the potential

misalignment of the heart between slices due to consecutive breath-hold at different po-

sitions.

In detail, in the two-stage framework, a 2D network segments the myocardium from the

single MRI slices. The original MRI slices vary in resolution between exams, therefore all

the slices were center-cropped at the size of 128x128 corresponding to the 2D network’s
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input. The gravity center of the segmented myocardium by the 2D network helps to

relocate the slices of one MRI case so that the aligned MRI volume for each patient can

be reconstructed. The cascaded 3D network then takes the volumes of the aligned MRI

and the 2D segmentation mask as its 2-channel 3D input [159]. The volumes are made

up of zero padding to have a fixed size of 16x128x128. The complementary input channel

of the 2D segmentation mask provides pure in-plane information to the 3D network.

Figure 6.2 illustrates the proposed framework. The 3D network can either be the fully 3D

network or the novel 3D CRF network, the two configurations of the proposed 3D network.

Figure 6.2: Framework of cascaded multidimensional networks for non-aligned DE-MRI.

6.3/ EXPERIMENTAL RESULTS

The evaluation metrics are the same as the proposed 2D segmentation methods (Section

5.6.1). One major difference compared to the evaluations in the previous chapter is the

segmentation of the PMO.

The evaluation between 2D baseline (Section 5.3.1) and 3D models (Section 6.2.2), dif-

ferent binary and multi-class loss functions (Section 5.3.4), and configurations of the

cascaded framework (Section 6.2.4) are performed on a subset of the private dataset,

containing 100, 30and 30 cases respectively for the training, validation and test. With 3D

models, the inputs are processed into a set of 16-layer volumes (Section 6.2). The batch

size is set to 1 and the images are normalized by histogram normalization according to

Eq. 5.1.

Different to the previous experiments, the evaluation with 3D models counts the PMO

as an independent class, which brings more challenge due to its small size and low

occurrence.
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Loss functions The CE loss, Dice loss, both variants of generalized Dice loss (GD ac-

cording to Eq.6.1 and Eq.6.2), as well as combinations of CE with Dice and GD losses

(CE+Dice and CE+GD Eq.6.2) are trialled for a single-class and multiple-class segmen-

tation tasks with the 2D baseline network. Tests are also performed on 5x interpolated

MR images by nearest interpolation to demonstrate if the segmentation precision can be

optimized. Table 6.2 shows that CE and CE+GD Eq.6.2 obtain better results than the

GD Eq.6.2. The GD Eq. 6.1 loss does not pass the test because all the five classes of

target tissues can not be segmented at the same time with the recommended weighting

wl = 1/
(∑N

n=1 rln
)2

of Eq. 6.1 or other tuned weighting.

Table 6.2: Results of single target and multiple target segmentation with different loss
functions on 2D baseline network.

Loss Interpolation Myocardium Infarction PMO
Dif(mL) HD(mm) Dice Dif(mL) PIM(%) Dice Dif(mL) PIM(%) Dice

CE 1x 19.26 3.380 0.8114 19.26 5.89 0.6058 1.75 1.34 0.3774
GD Eq.6.1 1x Failed
GD Eq.6.2 1x 23.68 3.545 0.7954 23.68 7.28 0.6037 1.84 1.40 0.4866

CE+GD Eq.6.2 1x 16.60 3.071 0.8143 16.60 5.16 0.6001 1.72 1.31 0.2915
CE 5x 10.17 2.256 0.8199 10.17 5.41 0.5714 1.74 1.32 0.4498

GD Eq.6.2 5x 26.76 3.704 0.7849 26.76 7.95 0.5658 1.874 1.39 0.4453
CE+GD Eq.6.2 5x 11.98 2.21 0.8166 11.98 6.54 0.5943 1.86 1.43 0.4453

BinaryCE 5x 43.10 3.15 0.7915 - - - - - -
Dice 5x 29.60 2.62 0.8100 - - - - - -

BinaryCE+Dice 5x 42.25 3.37 0.7901 - - - - - -

Framework and networks To configure the framework, different cascaded 2D segmen-

tation masks are tested as the second input channel of the 3D network. Then the fully 3D

network and the proposed CRF network are compared for single-class and multi-class

segmentations under the same framework and loss functions. Results in Table 6.3 indi-

cate that CRF outperformed the Fully 3D network on the primary metrics for the infarction

and the PMO prediction. The 2D segmentation of all the tissues is a better choice for

the 3D network’s second input channel. The CRF with interpolated MR images achieves

significant improvement in the volume prediction of the infarction. Compared to the 2D

method and inter- and intra-observer variations, the proposed cascaded framework with

CRF is more preferable to the 2D backbone, and even outperforms the inter-observer on

the primary metrics. Figure 6.3 shows the segmentation result of different methods on an

MRI case. By referring to the adjacent images, the 3D methods avoid the false positive

PMO segmentation, which is generated by the 2D method. However, 3D methods extend

the infarction segmentation to the suspected peri-infarction zone on the following slices,

which may also explain the drop of Dice index compared to the results of the 2D network.
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Table 6.3: Results of different frameworks and 3D networks. The second channel is the
predicted mask from the 2D backbone network. 3D networks share the same CE+GD
loss and the same weighting for multi-class segmentation, and Dice loss for the single-
class (myocardium) segmentation. 2x and 5x stand for interpolation rate.

Method 2nd channel Myocardium Infarction PMO
Dif(mL) HD(mm) Dice Dif(mL) PIM(%) Dice Dif(mL) PIM(%) Dice

Fully 3D Myocardium 11.92 3.78 0.7867 6.65 5.42 0.5625 1.96 1.48 0.6705
CRF Myocardium 15.45 3.76 0.7935 6.44 5.21 0.5792 1.84 1.35 0.6634
CRF Non 15.60 3.84 0.7872 6.79 5.51 0.6171 1.95 1.46 0.5604
CRF All tissues 14.56 3.91 0.7867 6.40 5.21 0.5874 1.44 1.01 0.6153

CRF 2x All tissues 19.74 3.46 0.7838 5.57 4.65 0.5401 1.94 1.50 0.5081
Fully 3D Myocardium 30.24 4.31 0.7785 - - - - - -

CRF Myocardium 21.22 3.89 0.7948 - - - - - -
2D CE 5x - 10.17 2.256 0.8199 10.17 5.41 0.5714 1.74 1.32 0.4498

Inter-observer - 13.57 2.79 0.8220 6.34 5.29 0.6609 2.12 1.65 0.6014
Intra-observer - 8.49 2.25 0.8443 5.16 4.35 0.7231 0.75 0.58 0.7214

Figure 6.3: Segmentation results on one case. Green mask stands for the infarction
and blue stands for the PMO. Red arrow points to a suspected peri-infarction zone; blue
arrows point to the extended infarction segmentation by 3D networks.

6.4/ DISCUSSION

Input dimension and spatial information The 2.5D does not improve the segmenta-

tion results compared to 2D input under the same segmentation model. A crucial issue of

2.5D is the absence of the spatial information concerning the order of channels. Exchang-

ing the channel order will have no effect on the feature extraction by the model, which is

not logical. In such conditions, the network can not recognize between the essential im-
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age (the middle one) and the supporting images that provide adjacent information. The

final segmentation result on a 2.5D may be an average confusion of all the input channels.

The segmentation of 3D networks can be considered as a compromise between adjacent

slices, which improves the volume prediction but sometimes weakens the Dice index.

Under the cascaded framework, 3D CRF shows a better performance than the fully 3D

network due to the constrained receptive field to intra-slice at low semantic layers. One

possible reason for this is that although inter-slice information is meaningful, overly de-

tailed inter-slice information can interfere with the reconstruction of segmentation details.

Given the more coarse voxel size at the z-axis, this detailed inter-slice information intro-

duces more bias relative to the gains.

Loss functions of multi-class segmentation The original generalized Dice loss (Eq.

6.1) fails the experiments due to its sensitivity of the class weighting ratio. Since the

squaring operation is performed during the ratio calculation, the variance of the loss is

enlarged when the class distribution is different between the samples in a batch and the

whole training set. In case of important class imbalance, this formula is unstable, and as

the result on our experimental data, no matter how this ratio is fine-tuned, there is always

one class that is completely ignored in the segmentation mask. The proposed variant of

generalized Dice loss (Eq. 6.2) refers to the weighting method of the cross entropy loss.

The weighting is a more linear way and inaccuracy of the class weighting ratio will not

result in a completely ignored class in the segmentation result.

6.5/ CONCLUSIONS

In this chapter, we presented the multiple class segmentation on DE-MRI with 3D CNN-

based models. A new 3D segmentation model is proposed with a constrained receptive

field (CRF network) and a variant of generalized Dice loss (Eq. 6.2) are proposed. The

CRF network incorporates 2D convolutions at layers of large feature maps and 3D con-

volutions at layers of small feature maps. This conception forces the network only refers

to inter-slice information for high-level (more abstract) semantic information. The CRF

network obtains better scar tissue quantification since all slices are considered as a sin-

gle entity, while the Dice metric is not improved due to the bias introduced from adjacent

slices since the Dice is calculated on each slice. The proposed variant of generalized

Dice loss obtains satisfying results when combined with cross-entropy loss. The orig-

inal implementation of generalized Dice loss can not pass the experiments due to the

non-linear way of the weighting ratio calculation.
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RELATED WORKS: AUTOMATIC

MYOCARDIAL INFARCTION

ASSESSMENT FROM MULTIVARIATE

DIAGNOSES WITH MACHINE LEARNING

7.1/ INTRODUCTION

The automatic assessment of MI is not limited to the use of DE-MRI. Multiple medical

diagnoses (Section 2.4) can be performed according to the progression of the condition.

This chapter introduces the related works about the automatic MI assessment with differ-

ent medical diagnoses.

Two types of automatic MI assessment works are investigated. The first works focus

on the MI prediction from multivariate data. The difficulty for such works is to fuse the

textual and image data: the image has higher dimension than the text hence their feature

encoding should be operated differently. The second works aim at making a MI evaluation

within feature patients other than imaging diagnoses. The application of these works

are valuable in case of cardiac emergency when the imaging diagnosis has not been

available.

This chapter is organized as follows:

• Prediction with multivariate data. The MI assessment works incorporating both tex-

tual and image data are presented. The machine learning-based prediction algo-

rithms will be briefly described, then the data fusion and the prediction pipelines will

be introduced.

• Classification and quantification of myocardial infarction from patient features. The

MI classification or quantification works from patient features are presented.
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7.2/ PREDICTION WITH MULTIVARIATE DATA

7.2.1/ BASIC DATA INTERPRETATION ALGORITHMS

Textual and image data should be processed to a similar dimension for further prediction

as an ensemble. Provided with the MRI, a simple down-sampling CNN as AlexNet en-

codes the images to regression or classification outputs ([157, 155]), or optionally U-Net-

based down-sampling up-sampling models yield the segmentation of different myocardial

tissues so that the volume of each tissue can be quantified ([155, 151]).

To interpret the textual data of the clinical and physiological information, the choice of pre-

dictive models is more diverse. A crucial function of the common predictive models is their

ability to solve non-linearly separable problems. For example, the MultiLayer Perceptron

(MLP) ([30]) is a feedforward artificial neural network. Inputs are passed through multiple

layers in which data are mapped with non-linear activation functions in the forward stage

([154, 157]). The decision tree ([9]) and the random forest ([13]) are flow-chart-like deci-

sion models that consist of nodes ([157, 154]). In the decision tree, each node examines

an attribute and each branch represents the output of a test. Therefore, the branch where

all the nodes are satisfied points to the prediction of the input. As its name suggests, the

random forest is an optimization of the decision tree consisting of a stack of trees. The

random forest corrects the overfitting habit of the decision trees by training uncorrelated

trees and the final decision is made by individual trees. Boosting methods are the en-

semble of sequentially connected weak learners ([14]). In the context of decision trees,

the gradient boosting decision trees build a series of trees, which are the weak learners

in this boosting method. Errors are passed between trees, with each tree attempting to

reduce the errors passed from the previous tree ([21, 154]). Moreover, usual statistical

models such as Support Vector Machine with non-linear kernel ([22]), k-Nearest Neigh-

bors ([11]), the logistic regression ([26]) were investigated by Sharma et al., Girum et al.

and Ivantsits et al. ([157, 151, 154]).

7.2.2/ DATA FUSION AND DECISION OF THE PRESENCE OF MYOCARDIAL IN-
FARCTION

The different format and dimensions between the images and the textual data constrain

the decision with a single predictive model. Data fusion is therefore a challenging issue

to achieve the maximum semantic information. Lourenço et al. [155], Girum et al. and

[151] deployed the same strategy of predicting the volumes of different tissues as addi-

tional textual features alongside the 12 clinical and physiological features. Nevertheless,

the volume estimation and the decision-making models are different among these ap-

proaches, e.g. Lourenço et al. and Girum et al. employed U-Net-based models to get
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the segmentation. Apart from the surface regression methods, the concatenation of the

surface information to other textual features was also variable. Lourenço et al. added the

volumes of all myocardial tissues as four additional textual features. Girum et al. only

considered if the case is pathological as one additional Boolean feature. Ivantsits et al.

[154] tried to interpret the DE-MRI as textual information that the obtained textual infor-

mation was radiomic features [106]. The radiomic features interpreted from the DE-MRI

were intended to model the myocardial features such as the intensity, shape, and spatial

characteristics. In practice, Ivantsits et al. investigated the shape and the Gray Level

Co-occurrence Matrix (GLCM) that described the second-order joint probability function

of an image region as the experimental radiomic features. Sharma et al. [157] proposed

a stacked multi-modal approach without obtaining intermediate data such as the infarct

volume or the radiomics features. The classifications were first achieved by a series of

statistical models and a multi-modal CNN. Then the individual classifications were fed

into an MLP to get the final decision. The application of the series of classification mod-

els could be thought as a boosting method and the models inside played the role of weak

classifiers since their decisions would be judged together with the CNN’s output by the

MLP at the end of the proposal. Figure 7.1 concludes the above-mentioned classification

pipelines that fuse both patient features and DE-MRI.

7.3/ CLASSIFICATION AND QUANTIFICATION OF MYOCARDIAL IN-

FARCTION FROM PATIENT FEATURES

Research on the correlation between the physiological, clinical and paraclinical data and

the symptoms of MI have been conducted for decades. More than 30 years ago, Goldman

et al. [10] developed a computer protocol to diagnose related diseases when a patient re-

ceived by an emergency department complained of chest pain unexplained by trauma or

chest film abnormalities. Their decision protocol was based on a recursive partitioning

approach [4]. About 50 potential predictive variables from the clinical history of the pa-

tient, physical examination, and ECG were incorporated into the decision protocol and

the ultimate diagnosis of MI depended on three criteria namely the serum enzyme level,

the comparison of the Q and R waves with the first ECG and the cardiac scintigraphy. In

the case of a sudden unexplained death within 72 hours of receiving the patient, Than et

al. [134] also predicted the likelihood of acute MI with decision trees afterward. Their pre-

diction model incorporated the age, sex, and serial cardiac troponin 1 concentration and

the ultimate diagnosis was adjudicated according to the Universal Definition of MI [116].

Similarly, Romero-Farina et al. [144] tried to predict the risk score for cardiac events.

The gated SPECT metrics were considered with other clinical features for the prediction,

which is the major highlight of the work.
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Figure 7.1: Multi-input classification pipelines for the classification.

Other works were dedicated to developing classification models of the presence of MI

or other cardiac events. Al-Zaiti et al. [137] made the acute coronary syndrome pre-

diction with temporal-spatial features of the 12-lead ECG. This work aimed at increas-

ing the quality of pre-hospital ECG diagnosis. Faced with a huge number of features,

Gárate-Escamila et al. [139] applied Principal Component Analysis (PCA) to reduce the

dimensionality of the data, Daraei et al. [87] used Evolutionary Algorithms for the feature

selection, then they classified the heart disease with Machine Learning models. Unlike

the features studied in previous articles, Melillo et al. [68] proved that the heart rate

variability-based classifier showed higher predictive values than the conventional echo-

graphic parameters for the cardiovascular event prediction.
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7.4/ CONCLUSIONS

The works of MI assessment from multivariate data usually encoded the image data to

a low dimension so that the final prediction was based on the fused textual and image

data. The format of the encoded image is diverse, such as the radiomics features and the

Boolean variable of the presence of MI.

Most of the works rely on patient features aimed at predicting the likelihood or classi-

fying the presence of the MI and related cardiac events. Especially in pre-hospital or

emergency cases, automatic predictive models have been shown to be of great clinical

relevance. However, few researchers have attempted to develop predictive models of the

MI based on clinical features in conjunction with medical imaging. Moreover, few works

mentioned the automatic assessment of the PMO given that its clinical diagnosis mostly

relies on invasive or imaging techniques [39]. The review of the literature reveals that no

study has tried to train a predictive model through the quantitative data of MI provided by

CMRI to obtain a prediction of its severity.
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CONTRIBUTION 3: AUTOMATIC MI
ASSESSMENT FROM MULTIVARIATE

DIAGNOSES WITH MACHINE LEARNING

8.1/ INTRODUCTION

A variety of medical diagnosis methods can be proposed to detect or evaluate the extent

of acute MI. However, the accuracy is often in conflict with the time required for the di-

agnosis, which remains a therapeutic emergency. For example, the DE-MRI is the gold

standard for the diagnosis and the evaluation of the MI. The previous section also pro-

posed and evaluated the automatic MI assessment approaches on DE-MRI that relied on

Deep Learning and image processing methods. Nevertheless, the MI diagnosis with DE-

MRI cannot be widely applied in the emergency department because of its required time

for the acquisition and post-processing. In current practice, simple tools such as ECG,

troponin assay and echocardiography are used to validate the emergency diagnosis of

MI. ST segment analysis (Section 2.4.1) on ECG (especially in case of ST persistent el-

evation), intensity of troponin elevation, or LVEF assessment from TTE have been shown

highly correlated with MI. Given these facts, when patients arrive in the emergency de-

partment complaining of chest pain, generally a series of indicators will be first listed with

the help of the above-mentioned simple tools. If the examinations reveal the possibil-

ity of MI, the DE-MRI could be achieved in the next few days to have a more accurate

evaluation of the myocardial impairment, after the acute phase and the early therapeutic

management including revascularization and medications. Until the ultimate diagnosis

based on the MRI exam is available, physicians mainly rely on the obtained physiological,

clinical and paraclinical characteristics to determine the severity of a patient’s condition

and to give sound treatment advice.

In light of the above-mentioned facts, automatic prediction approaches are proposed to
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precisely classify or quantify the severity of the acute MI only taking into account the phys-

iological, clinical and paraclinical features. Standard machine learning algorithms involv-

ing linear models, Random Forest and Decision Trees, Support-Vector Machines (SVMs),

Multilayer Perceptron and boosting models are employed for classification or quantifica-

tion. Furthermore, the prediction from multivariate data involving both the patients fea-

tures and DE-MRI are evaluated. An additional CNN branch encodes the DE-MRI and

the encoded DE-MRI is concatenated to patient features for the MI classification by ma-

chine learning models. The fusion of data aims to investigate how different dimensions

of data can be understood simultaneously and to quantify the gain in predictive accuracy

that DE-MRI brings. The investigated data for the experiments come from the EMIDEC

Challenge database, which consists of 150 cases of paired physiological, clinical and

paraclinical features, and annotated DE-MRI (Section 3.4).

It is important to note that the proposal aims at providing early prediction to better orient

patients in the emergency department. Therefore, the automatic prediction should only

be used as an aid to clinical diagnosis and the associated risk of mispredictions should

be taken into account by physicians.

This chapter is organized as follows:

• Classification of myocardial infarction from multivariate data. A classification model

of MI from both DE-MRI and patient features is proposed. The data fusion strategy

is proposed and the employed image encoding method and classification model are

presented.

• Quantitative prediction of myocardial infarction from patient features. A quantitative

and qualitative prediction model of the MI from patient features is proposed. The

DE-MRI only participates in the training stage, interpreted as the ground truth of the

MI volume.

• Experimental results. The experimental results of the above two proposals. The

classification of the presence of MI is made from fused DE-MRI and patient features,

and both the classification and the quantification of MI are predicted from patient

features.

• Discussion.

• Conclusions.
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8.2/ CLASSIFICATION OF MYOCARDIAL INFARCTION FROM MULTI-

VARIATE DATA

Classification of myocardial infarction from multivariate data The classification of MI from

multivariate data refers to both patient features and DE-MRI with machine learning meth-

ods. In order to deal in an efficient way with the correlation between these data of different

dimensions and semantic information, a mixed classification model is proposed. In the

mixed model, a 3D CNN encodes the MRI as the surface of infarction then the surface is

fed to Random Forest with other clinical characteristics to make the final decision. The

proposal is designed for the application on the EMIDEC challenge dataset, where each

exam consists of 12 pieces of 1D patient features, and a set of DE-MRI with manual

annotations.

Each DE-MRI exam has multiple slices of 2D image but the clinical physiological informa-

tion includes 12 pieces of 1D features. In order to handle these data that have different

dimensions and semantic information for the classification of the myocardial infarction,

the proposal contains two stages as shown in Figure 8.1: the encoding of DE-MRI then

the classification on the fusion of encoded images and their paired clinical physiological

features. The image encoding is realized by a 3D CNN and the classification of the my-

ocardial infarction is done by Random Forest [13]. This conception aims at taking the

advantage of the correlation between both types of data so that the classification result is

more robust than on one single type of data.

Figure 8.1: Overview of the proposed architecture of prediction combining CNNs and
Random Forest. A set of three-slice images that come from the same MRI case are fed
successively to the CNN. The output of the CNN is the regression of the predicted infarct
surface of the middle slice in the input. Volume is calculated based on the predicted
surfaces and the provided voxel spacing. Predicted volume and the clinical physiological
information are concatenated as the input of the Random Forest classifier for the final
classification.
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8.2.1/ IMAGE PREPROCESSING

In order to fully catch semantic information from the DE-MRI, the image preprocessing

is executed on each MRI case. To learn the spatial information between adjacent slices

and ensure a fixed-size of CNN’s inputs, three successive slices are taken as a single

3D input for the CNN. Assuming that an original MRI has N slices, the first and the last

slice of the MRI are copied at the top and at the bottom side, hence N new 3D images

are obtained and each 3D image is formed by three adjacent slices. Knowing that in the

EMIDEC dataset the left ventricle myocardium is centered on the middle of each slice,

to reduce the background’s size, a center cropping of size (96,96) is performed on each

slice. Therefore, each CNN’s input has the same shape of (3,96,96). Figure 8.2 illustrates

the way that the three-slice inputs are created. Despite a 3D input that may have more

slices, three adjacent slices are sufficient to provide enough spatial information. With

more slices, more bottom and top slices should be copied, which is not efficient for the

surface regression.

Figure 8.2: Preparation of three-slice input for the 3D CNN. For each center-cropped MRI
case, firstly the top and the bottom slice are copied (dark gray). Secondly, every three
consecutive slices are chosen to form a 3D input for the CNN.

8.2.2/ CNN WITH 3D MULTI-KERNEL CONVOLUTION BLOCK

The 3D convolution is added only at the first layer in the CNN since each input has only

three slices. To expand the receptive field, multiple 3D convolution kernels of the size

(3,3,3), (3,5,5) and (3,7,7) encoded the input image in parallel. This conception is inspired
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by Inception structures [100] and the objective is to flexibly extract features for objects of

various sizes. For the 3D convolutions, the zero padding is performed only at the width

and length dimension in light of the thickness of 3 at the dimension Z. Hence, the feature

maps generated by each 3D kernel are in the same size (96,96).

The 2D feature maps obtained by the 3D multi-kernel convolutional layer are then passed

to residual modules which are similar to ResNet [77]. Each residual module performs 4

times of convolution + down-sampling + batch normalization + ReLU activation on feature

maps. To reinforce the semantic information interpretation, the DAC block [125] is added

at the last layer before the fully connected layers, motivated by the Inception-ResNet-

V2 block [100] and atrous convolution. DAC has four cascade branches with a gradual

increment of the number of atrous convolution, from 1 to 1, 3, and 5. Therefore, the

network can extract high-level semantic information of different scales.

At the end of the CNN, the surface of the pathological tissue is predicted through the

two fully connected layers as the CNN’s final output. Smooth L1 loss is employed to

penalize the error between the predicted surface and the ground truth. Figure 8.3 shows

the structure of the proposed encoding CNN for the surface regression.

8.2.3/ VOLUME CALCULATION

The output of the CNN is the predicted surface of the infarct in one MRI slice. In order

to calculate the predicted volume of the infarct in one MRI case, the sum of the surfaces

multiplying the pixel spacing (provided as the MRI metadata) is calculated. The predicted

volume is used as an additional feature of the subsequent Random Forest model for the

definitive classification of the myocardial infarction. The volume calculation is illustrated

in Figure 8.4.

8.2.4/ RANDOM FOREST CLASSIFIER

Random forest, developed by Breiman [13], is a classification algorithm that uses the en-

semble of classification trees. Each of the classification trees is built using a bootstrap

sample of the data, and at each split, the candidate set of variables is a random subset

of the variables. Thus, random forest uses both bagging (Bootstrap Aggregation), a suc-

cessful approach for combining unstable learners, and random variable selection for tree

building.

As the predicted volume of infarct from the CNN is obtained during the first stage, at the

second stage, the predicted volume is concatenated to the 12 clinical and physiological

features. The Random Forest is trained on these 13 features and the output is binary that

indicates if the case is pathological or not.
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Figure 8.3: The structure of the neural network. The 3D convolution is adopted only at
the first layer. Before the fully connected layers, the DAC block enhances the cognition
for both large and small areas.

8.3/ QUANTITATIVE PREDICTION OF MYOCARDIAL INFARCTION

FROM PATIENT FEATURES

An automatic prediction approach is proposed to precisely classify and quantify the sever-

ity of the acute MI only taking into account the physiological, clinical and paraclinical fea-

tures. Furthermore, experimental attempts are also made to estimate the PMO individ-

ually with the same approach. The predictions are based on standard machine learning

algorithms involving linear models, Random Forest and Decision Trees, SVMs, Multilayer

Perceptron and boosting models. For each patient, the annotated DE-MRI provides the

quantitative ground truth of the infarction and the selected patient features are thought

as the input data. For the training stage, the features are the inputs of an appropriate
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Figure 8.4: The algorithm of volume calculation. The CNN predicts the surface of each
slice. The predicted volume of an MRI case is calculated based on the predicted surfaces
and the voxel spacing provided by the MRI metadata.

machine learning model. Depending on the classification or the quantification task, the

state of the myocardium or the PIM calculated from the DE-MRI are the target output of

the model. For the inference stage, once the model is well-trained with the paired patient

features and DE-MRI, it can predict the severity of the patient’s infarction only according

to the patient features. The investigated data for the experiments come from the EMIDEC

Challenge database, which consists of 150 cases of paired physiological, clinical and

paraclinical features, and annotated DE-MRI.

More precisely, the proposal targets two prediction problems: the quantification of PIM

and the classification of the state of the myocardium. Predictions are carried out with

classification and regression algorithms. Each training case incorporates the 12 patient

features shown in Table 3.2, and the PIM or the state of the myocardium is evaluated

from the DE-MRI and its annotations. The machine learning models are first trained with

paired input data i.e. patient features and the ground truth. During the inference stage,

only the clinical features are fed to a trained predictive model and the model’s output is

the predicted PIM or the state of the myocardium. Figure 8.5 shows the workflow of the

proposal during the inference stage.

8.3.1/ DATA PREPROCESSINGS

Physiological, clinical and paraclinical data should be first preprocessed so that the ma-

chine learning models can manage the features correctly. The data format of model’s

input should be numerical, therefore, the categorical features, i.e. Tobacco and Killip

max are converted to one-hot encoding, and Boolean features are encoded as 0 or 1.
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Figure 8.5: Workflow of the proposal. This figure presents the inference stage for the
quantification task and the classification task of the automatic MI prediction. On the left
part, selected patient features are first preprocessed to 17 pieces of numerical or Boolean
features. For the quantification task, the features are incorporated through a regression
model so that the obtained value is the PIM ranging from 0 to 1. In the case of the
classification task, the prediction can be obtained by either a regression model followed
by a thresholding or a classification model. During the training stage, the regression
model is supervised by the ground truth PIM, and the classification model is supervised
by the ground truth state of the myocardium. Both ground truths are defined from the
DE-MRI and manual annotations.

Gradient descent-based and distance-based algorithms are sensitive to the feature scal-

ing. Therefore, normalizing the features to a universal interval may improve the predictive

performance of such models [145]. To address this fact, in addition to the numerical

encoding, normalization is also applied on the features of age, troponin, LVEF and NT-

ProBNP.

Being the ground truth of the machine learning models for the quantification task, the

PIM is calculated from the manual annotations of myocardium and scar contours. Given

that the voxel size is constant for each DE-MRI case, the calculation of the volumes of

myocardium and infarcted areas only relies on the manually drawn contours of all the

myocardial tissues. Thus, the PIM of one patient is calculated as

PIM = Volume(scartissue)/Volume(myocardium) (8.1)

where the volume refers to the voxel quantity of a scar tissue in the DE-MRI case. The

scar tissue can be either MI or PMO. For the MI evaluations, the PMO is considered as a

part of MI area. The PIM value, which is theoretically ranged from 0 to 1, describes the
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severity of MI. For the classification task, the state of myocardium denotes the presence

of the infarction. Therefore, the data format of the state of myocardium is Boolean: the MI

or the PMO is detected or not from the DE-MRI.

8.3.2/ MACHINE LEARNING ALGORITHMS

The employed predictive models include regression models and classification models.

Regression models estimate the relationships between the dependent variable of numer-

ical values, i.e. the predicted PIM and the input patient features, while for the classification

models, their dependent variable is the binary state of the myocardium. For the quantifi-

cation task, regression models should be applied since the expected output is the PIM.

Therefore, the target label during the training stage for the regression model is the cal-

culated PIM according to the DE-MRI. For the classification task, both regression and

classification models are feasible. Indeed, a regression model followed by a thresholding

can also provide a binary classification result of the state of the myocardium.

For the regression task, the linear model is first studied. Linear regression tries to es-

tablish a linear function that links the input features and the regression label [8, 2]. Al-

though the linear model can predict the PIM with the scalar patient features, non-linear

models may be of more interest since the PIM regression task may be a non-linearly

separable problem due to the complexity of the input features. Therefore, more learn-

ing algorithms using non-linear models including Support-Vector Machines (SVMs) with

non-linear kernel function, Random Forest and Decision Trees, Multilayer Perceptron and

boosting models were investigated. SVM is not necessarily a non-linear model, however,

with a non-linear kernel function that maps the data to a higher dimension, the SVM can

solve the non-linearly separable problem [22]. Decision Trees algorithm has a flowchart-

like structure that consists of nodes [9]. Optimized from Decision Trees, Random Forest is

trained on uncorrelated Decision Trees as its name suggests, and the inference is made

by the individual trees. Random Forest is by definition more robust to overfitting so it

generally outperforms Decision Trees [13]. Boosting methods are the ensemble of se-

quentially connected weak learners [14]. For example, Gradient Boosting Decision Trees

consist of a series of trees, which are the weak learners in this boosting method. Errors

are passed between trees, with each tree attempting to reduce the errors passed from

the previous tree [21]. Gradient Boosting Decision Trees algorithm tends to outperform

Random Forest in practice, however, the sequential structure results in its longer com-

putation time than the parallel structure in Random Forest. Multilayer Perceptron is a

kind of feedforward artificial neural network. Inputs are passed through multiple layers

in which data are mapped with nonlinear activation functions in the forward stage [30].

Moreover, knowing that a regression model and a classification model could share the

same learning algorithm but different optimization functions, the widely used SVM (with
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linear kernel function) and Random Forest were selected as the learning algorithm for the

classification models.

In addition to the predictions obtained from an individual model, the ensemble method is

also investigated. The ensemble method is used to improve the predictive reliability by

combining the predictions from all individual models into a single set of predictions [18].

In this work, for each prediction target, the ensemble method’s prediction is derived by

adding up and then averaging all the models’ predictions.

8.3.3/ STATISTICAL ANALYSIS

PRIMARY ANALYSIS

The quantitative prediction of the severity of the MI, i.e. the quantification of the PIM in-

cluding MI (PMO inclusive) and PMO (MI exclusive), is the main objective of the work. The

absolute scar tissue volume, which is another possible severity indicator, is not adopted

since its severity evaluation can be biased by patient’s physiological conditions. The pro-

posal’s performance can be described as the absolute quantification error between the

inference result of machine learning models and the PIM calculated from DE-MRI for each

scar tissue. Multiple machine learning-based regression models were compared with the

ground truth PIM. The comparison results are presented as the mean absolute difference.

In order to make the best use of the available data, given the limitations of available data

cross-validation is used for the experiment evaluations.

SECONDARY ANALYSIS

In addition to the quantitative analysis, a qualitative analysis is also performed as the

secondary analysis, i.e. the classification of the state of the myocardium. As in the

primary analysis, MI and PMO are the two assessed scar tissues. The classification can

be carried out by both classification and regression models. However, the data formats of

the training labels and the predicted values are different when both the models are applied

to the classification task. The classification carried with regression models consists of the

regression models and a thresholding. The regression models are the same as in the

primary analysis: the training is supervised with the PIM therefore the model’s output

is the PIM. A discrimination threshold differentiates if the patient is pathological from

the prediction of the regression model. Differently, when the classification is carried out

with classification models, the classification models are trained with Boolean target labels

which are annotated if the case is normal or pathological. Therefore the predictive value of

the classification models is also Boolean. Both the classification methods can be refereed

in Figure 8.5.
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For classification models, the classification performance could adequately be evaluated

by the sensitivity (or recall), specificity (or selectivity), precision and accuracy metrics.

However, the discrimination threshold used in the regression model could impact the con-

fusion matrix, thus, the Receiver Operating Characteristic curve (ROC) was also adopted

to plot the true positive rate (TPR) against the false positive rate (FPR) to intuitively com-

pare between classification and regression models by considering the Area Under Curve

(AUC) [36].

ADDITIONAL ANALYSES

Additional analyses are investigated under the contests of the quantification of the PIM

and the classification of the state of the myocardium. Training database size is crucial for

machine learning models. Therefore, the quantification performance with different train-

ing data volumes is compared. Then the quantification error is studied according to the

severity of MI with the help of Bland–Altman plot [6]. Moreover, the importance of individ-

ual features for different predictive models is extracted. The quantification of scar tissues

with limited selected features is also investigated. Finally, cases who has important in-

consistencies between the prediction and the ground truth are listed to undertake further

medical interpretations.

8.4/ EXPERIMENTAL RESULTS

8.4.1/ CLASSIFICATION OF MYOCARDIAL INFARCTION FROM MULTIVARIATE DATA

The CNN and random forest classifiers are implemented by Pytorch and Scikit-learn.

The CNN has been trained for 500 epochs and the predicted volume is the ensemble of

multiple models’ prediction of different epochs, ı.e. using the ensemble method. To show

the advantage of the classification on merged MRI and clinical physiological information,

the classifications made only on the CNN and only on Random Forest are also performed.

The comparative tests use the same method from stage one or stage two and the data

repartition is identical to that of the above two-stage method, which can be considered as

the baseline approaches.

The experiments are executed on two different subsets from the EMIDEC dataset. The

first experiment employs five-fold cross-validation on the training set of the EMIDEC

dataset. Table 8.1 shows the results using 80 cases of training data. The two-stage

method achieves 95 % ± 3 % accuracy, which is respectively 4 % and 8 % superior to the

CNN only and Random Forest only approaches.

The second experiment takes the entire training set of 100 cases for training and the
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Table 8.1: Classification accuracy of three approaches on the training set of EMIDEC
dataset. The five-fold cross-validation is employed.

Random Forest CNN Random Forest + CNN

Accuracy (%) 87 91 95
Standard deviation (%) 3 2 3

prediction is made on the test set of 50 cases. This experiment result is released by the

classification contest of EMIDEC challenge. Table 8.2 shows the proposal’s result with

other participants. The proposal obtains the best result in EMIDEC challenge and only 4

cases among the 50 cases of the test set are wrongly classified.

Table 8.2: Results of the classification contest. Best results in bold. Results in brackets
are obtained from predictions based solely on textual data.

Challengers Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)
Lourenço et al. 87.88 70.59 85.29 82 (70)
Ivantsits et al. 72.73 82.35 88.89 76
Sharma et al. 72.73 41.18 70.59 62
Girum et al. 78.79 88.24 92.86 82 (78)

Proposal 90.91 94.12 96.77 92 (74)

8.4.2/ QUANTITATIVE PREDICTION OF MYOCARDIAL INFARCTION FROM PATIENT

FEATURES

The machine learning models are implemented with scikit-learn [46], XGBoost [74] and

lightGBM [91] libraries, and Python 3.6.9. The training and the inference are only con-

ducted with CPU and since the operation time is in the order of seconds, the compu-

tational time is not specifically listed. The experiments are conducted on the EMIDEC

Challenge (2020) dataset. Except for the tests of the training set volume in Section 8.4.2,

all other experiments employ 10-fold cross-validation, i.e. the training set volume of each

split is 135 patients.

REGRESSION MODELS FOR THE PIM QUANTIFICATION

The performance of different regression models is presented in Table 8.3. Linear re-

gression model of the ordinary least squares and other non-linear regression models are

evaluated. The ensemble of all the models’ predictions is also examined. Using the mean

PIM calculated from the ground truth as the predicted PIM, the assumed quantification is

achieved as the baseline.

Multilayer Perceptron and SVM (with non-linear kernel function) respectively obtain the
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lowest mean PIM difference for the MI and PMO prediction, and Random Forest achieves

relatively low mean quantification error with a small variance. Results also reveal that

the ensemble of all the prediction outperforms each single regression model for the MI

quantification. The satisfying regression performance of SVM and Random Forest and

their much shorter processing time compared to Multilayer Perceptron justify the choice

of experimental learning algorithms for the classification task. Random Forest will be per-

formed in all following experiments concerning the classification, SVM will be employed

only for the classification in the analysis of the importance of patient features.

Table 8.3: Prediction error of regression models for the PIM quantification. In bold the
best result of a single model. The ensemble is the average prediction of all the regression
models.

Regression model Predicted PIM error
MI1 PMO

Linear Regression 0.0639±0.0677 0.0152±0.0214
Support Vector Regression 0.0579±0.0632 0.0116±0.0238
Decision Tree Regressor 0.0679±0.0741 0.0162±0.0293

Random Forest 0.0587±0.0597 0.0149±0.0227
Multilayer Perceptron 0.0578±0.0609 0.0179±0.0229

Gradient Boosting Regressor 0.0602±0.0584 0.0152±0.0228
XGBoost 0.0646±0.0572 0.0172±0.0199

Light Gradient Boosting 0.0590±0.0616 0.0161±0.0227
Ensemble 0.0555±0.0594 0.0141±0.0210

Mean predicted PIM 2 0.1070±0.0693 0.0162±0.0206
1 PMO inclusive
2 Calculated from the ground truth

CLASSIFICATION OF THE STATE OF THE MYOCARDIUM

The classification of the state of the myocardium is performed on both the presence of

MI and PMO in two ways. Figure 8.6 shows the classification results of the presence of

the infarction and the PMO. The results shown in Table 8.4 present the statistical metrics

of the same methods as in Figure 8.6. For the thresholding, the best threshold value is

obtained by iterating from 0 to 1 with a step of 0.001 and observing the best accuracy.

Table 8.4 reveals that with the regression model and thresholding, the infarction classifi-

cation error mostly results from the false-negative predictions according to the relatively

low recall. Moreover, classifying on the ground truth of MI and PMO with the retained

threshold values, the sensitivity of the infarction classification is correct (87.00%) while

many cases suffering from PMO (sensitivity=56.86%) may be omitted. It also implies

that with the classification report, physicians should pay particular attention to the missed

suspected patients in case of negative prediction.



124 CHAPTER 8. CONTRIBUTION 3: AUTOMATIC MI ASSESSMENT WITH ML

The obtained results reveal that for the classification of the presence of a particular target

tissue, the regression model significantly outperforms the classification model that shares

the same learning algorithm. A relatively high threshold value (PIM below 0.064) obtains

the best accuracy for the infarction classification when the classification is done with the

regressor followed by thresholding.

Figure 8.6: Receiver operating characteristic curves of classification results. The classi-
fication of different tissues is realized with Random Forest (RF) algorithms with different
optimization functions.

Table 8.4: Classification results under different metrics. Threshold value θ is derived when
the best classification accuracy is achieved from the RF regressor. RF: Random Forest

Prediction model Target tissue Sensitivity Specificity Precision Accuracy

RF Regressor
Infarction, θ = 0.064 85.00% 96.00% 97.70% 88.67%

PMO, θ = 0.013 70.59% 80.81% 65.45% 77.33%

RF Classifier
Infarction 89.00% 84.00% 91.75% 87.33%

PMO 50.98% 84.85% 63.41% 73.33%

GT with thresholding
Infarction, θ = 0.064 87.00% 100.00% 100.00% 91.33%

PMO, θ = 0.013 56.86% 100.00% 100.00% 85.33%

IMPACT OF TRAINING SET VOLUME

Supervised machine learning models are sensitive to the volume of training data. To

justify if the quantity of cases in the dataset is the bottleneck for the proposal, and to

estimate the potential of the predictive models if more training data could be available,

a Random Forest regression model of 5000 estimators is trained several times feeding

different quantities of training cases into the model each time. To ensure that the results

are comparable, the cross-validation of different folds is applied to control the difference

in the training data quantity.
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Figure 8.7: Impact of the training set volume on the mean and the standard deviation of
quantification error. The dataset of 150 cases is randomly split into multiple folds to have
different amounts of training data. The training set volume ranged from 10 to 149 for each
cross-validation.

Figure 8.7 shows the improvement of the PIM prediction as the training set gets larger.

Both the mean error and standard deviation of the PIM quantification decrease along

with the increasing evolution of the training set volume. However, as the amount of data

increases, the performance improvement becomes less and less obvious.

PERFORMANCE ON CASES OF DIFFERENT SEVERITY OF THE MI

To show the accuracy of the PIM quantification on the cases of different severity of MI, in

Figure 8.8 the prediction error between the ensemble model and the PIM calculated from

the MRI is presented as a Bland-Altman plot only considering the cases with visible MI on

DE-MRI. Prediction error rises gradually with the increasing PIM, i.e. the prediction error

is larger in the more severe cases.

IMPORTANCE OF PATIENT FEATURES

The importance of physiological features for the prediction result can be visualized on

some regression and classification algorithms. The feature importance for linear or non-

linear, regression or classification models, for both the infarction and PMO predictions

are presented in Table 8.5. Random Forest is selected as the non-linear regression and

classification models, the ordinary least squares Linear Regressor is the compared linear

regression model, and the SVM classifier with the linear kernel is the selected linear clas-

sifier. The regression models are trained with PIM as the target, while the classification
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Figure 8.8: Prediction error on cases of different severity according to the infarction.
Normal cases were not considered in this figure.

models are trained with the presence of infarction.

The importance of features in the case of linear models is signed, indicating the direction

of influence (positive or negative correlation) of the feature on the prediction. To simplify

the results, the absolute normalized importance is kept for the linear models. The mean

importance for all the models of each feature is also calculated at the bottom of the table.

Table 8.5: Feature importance to linear and non-linear models for classification and quan-
tification tasks. Categorical features are converted to one-hot encoding. Classification
models are trained with the Boolean values, quantification models are trained with PIM.
The importance of each model and task is normalized therefore the sum of importance
is 100%. A higher importance shows a closer relationship between the feature and the
disease. In bold, the four most important features for each model.

Target Task Model1
Feature importance(%)2

Sex Age SK N-SK F-SK OW HT DB HD ST+ Troponin KL1 KL2 KL3 KL4 LVEF NTp

Infarction
Quantification

RFR 2.91 5.55 1.04 0.67 0.73 1.06 1.73 0.55 0.61 1.70 63.01 0.45 0.26 0.28 0.10 10.80 8.55
LR 6.50 3.64 0.00 0.00 0.00 1.17 5.68 1.77 10.21 8.42 46.80 0.00 0.00 0.00 0.00 11.72 4.08

Classification
RFC 10.30 11.90 2.44 1.65 2.18 2.02 3.21 1.37 2.70 9.94 30.60 1.18 1.22 0.17 0.10 9.29 9.71

SVCL 15.84 0.93 4.57 5.71 1.14 2.13 1.14 5.22 21.86 14.53 21.99 0.87 0.72 0.50 0.35 0.99 1.50

PMO
Quantification

RFR 1.48 20.09 2.58 0.70 1.92 2.31 1.67 0.18 0.17 0.43 37.38 1.24 0.46 0.81 0.67 17.82 10.11
LR 1.30 9.40 0.00 0.00 0.00 2.30 12.95 2.02 2.61 10.63 40.70 0.00 0.00 0.00 0.00 3.55 14.54

Classification
RFC 4.04 13.23 2.57 1.79 2.37 3.42 2.73 1.64 0.88 6.14 28.88 1.21 0.99 0.57 0.47 12.83 16.24

SVCL 4.90 5.88 1.17 2.27 3.44 0.99 2.13 9.24 3.81 11.71 21.75 5.71 7.55 8.08 5.19 5.16 1.02

Mean 5.91 8.83 1.80 1.60 1.47 1.93 3.90 2.75 5.36 7.94 38.38 1.33 1.40 1.30 0.86 9.02 8.22
1 RFR: Random Forest Regression; RFC: Random Forest Classifier; LR: Ordinary least squares Linear Regression; SVCL: Support

Vector Classifier with Linear Kernel
2 SK: Smoker; N-SK: Non-smoker; F-SK: Former Smoker; OW: Overweight; HT: Arterial hypertension; DB: Diabetes; HD: History of

coronary artery disease; KL1: Killip max=1; KL2: Killip max=2; KL3: Killip max=3; KL4: Killip max=4; NTp: NTProBNP

The results reveal that for different algorithms and predicted tissues, the feature impor-

tance can be slightly inconsistent. Combining all the results, the most important features

in order of significance are troponin, sex, history of coronary artery disease and ST+ MI

for the infarction, and troponin, age, NTProBNP and ST+ MI for the PMO. It should be
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noted that the ground truth the prediction models learned between the regression and

classification models is different, which explains the difference of the feature importance

between Random Forest Classifier and Random Forest Regressor.

Furthermore, using Random Forest Regressor as the experimental model, the PIM pre-

diction results are trialled with only selected important features according to Table 8.5.

Results in Table 8.6 show that the impact of the feature quantity is inconsistent between

the MI and the PMO. The PIM of the MI is generally more reliable with complete features

according to its relatively low mean error and lowest standard deviation, while the PMO

achieves the opposite results. Nevertheless, the high p-values (> 0.05) between the pre-

diction relying on selected features and the prediction of all 12 features proves that even

with the sole feature Troponin, the prediction is already reasonable.

Table 8.6: PIM prediction error with selected important features using Random Forest
Regressor

Selected features
PIM

MI PMO
Troponin 0.0634±0.0615 * 0.0128±0.0226 *

Troponin, LVEF 0.0585±0.0620 * 0.0122±0.02121 *
Troponin, LVEF, NTP, Age 0.0645± 0.0598 * 0.0145±0.0230 *

All 12 features 0.0587±0.0597 0.0149±0.0227

*: If the t-test between the selected features model and the all 12 features model obtains
p-value>0.05: the difference is not significant.

DISCORDANT CASES

Even though the results are in general very encouraging, the proposal still provides inac-

curate predictions on a few specific cases (Table 8.7). Incorrect predictions are divided

into two categories: the predictions with an important difference in the quantification of

the PIM and the wrong classifications. Several clinical reasons can explain these mis-

matches. Firstly, the automatic quantification of the PIM is sometimes underestimated

when the troponin was relatively high and associated with ST+ MI but with normal ejec-

tion fraction (cases 22, 69 and 119). In these cases, discordance between the level of

troponin and the LVEF can be observed, certainly due to an overestimation of the ejec-

tion fraction acquired at the acute phase. Indeed, a decrease of this value between the

acute phase and a measurement carried out at an early moment after the revasculariza-

tion can be produced, and then the lowest ejection fraction may increase the PIM value.

Sometimes the proposal underestimates the PIM despite a relatively high troponin level

and low ejection fraction (cases 1, 19 and 105) and it can be considered as a limit of the

method. In particular, for the case 105, previous cardiovascular events can explain a high

PIM. Sometimes, the results are incomprehensible and maybe the ground truth obtained

from DE-MRI underestimates the PIM (as for the cases 7 and 110 where with a high
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troponin level and altered ejection fraction, a PIM higher than 25% seems to be correct)

or provides a value higher than expected, maybe due to a pre-existing necrosis (such as

for the case 94). Counterexamples can also be found in the classification task, suggest-

ing that the patient may suffer from another cardiovascular disease without reflection on

DE-MRI and with preserved cardiac function (such as cases 16, 65, 68 or 117) or without

preserved cardiac function (such as cases 34, 114 and 145, suggesting for these cases

the presence of a chronic disease).

Table 8.7: Cases with incorrect prediction. Incorrect predictions are presented as the im-
portant quantification error and the wrong classification (false positive and false negative).
The ground truth (GT) and the prediction values are the PIM. Classification results in the
table are obtained by regression model and thresholding.

Case2 Feature values1
GT Prediction

Sex Age TB OW HT DB HD ST+ MI Troponin KL LVEF NTp
Cases with an important PIM Quantification error

1 0 32 0 0 0 0 0 1 130 1 35 447 51.64% 23.25%
7 0 66 0 0 0 0 0 0 200 1 45 532 9.33% 25.64%

19 0 52 0 1 0 0 0 0 87 3 20 7139 48.04% 14.84%
22 0 53 0 0 0 0 0 1 170 1 60 43 42.56% 23.81%
69 1 45 0 0 0 0 0 1 120 1 55 649 39.06% 18.62%
94 0 61 0 0 1 1 0 1 3.9 1 46 5810 29.75% 12.94%
105 0 54 2 1 0 0 1 1 25 1 21 4153 46.41% 16.52%
110 0 49 0 1 0 0 0 1 200 1 45 29 7.54% 27.95%
119 0 66 2 1 0 0 0 1 73 1 70 159 31.79% 9.86%

Wrongly Classified Cases
16 0 76 0 1 0 0 0 1 14 1 60 192 0.00% 9.32%
34 1 78 2 1 0 0 0 1 1.8 1 35 22577 0.00% 11.20%
65 0 57 1 1 0 0 0 1 19 1 60 71 0.00% 8.06%
68 0 39 0 1 0 0 0 1 9 1 60 23 0.00% 10.40%
114 1 54 0 1 1 0 1 0 1 1 45 68 0.00% 7.98%
117 0 53 1 1 0 0 0 1 83 1 60 94 0.00% 18.83%
145 1 66 2 1 0 0 0 0 2.5 2 45 6209 14.93% 1.38%
1 TB: Tobacco; OW: Overweight; HT: Arterial hypertension; DB: Diabetes; HD: History of coronary artery disease;

KL Killip max; NTp: NTProBNP. For Boolean features, 0 stands for negative (man for Sex) and 1 stands for
positive (woman for Sex)

2 Case number of the EMIDEC dataset. Complete data (patient features and MRI) can be accessed on the official
website.

8.5/ DISCUSSION

Classification of MI from multivariate data Despite the classification accuracy is cor-

rect with sole textual data or MRI, the fusion of both types of the data obtains a more

satisfying result. These results proves the fact that the DE-MRI is the gold standard of

the MI assessment. The proposal can be further applied on other classification task with

both image and textual diagnosis data, in which the image should be first encoded as the

information of volume.
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Quantitative prediction of MI from patient features The prediction results are very

satisfying for both the quantification task and the classification task. For the quantifi-

cation task, the ensemble method achieves the best predicted PIM, which shows only

0.056 of error for the PIM comparing with the DE-MRI ground truth. For the classification

task, with the Random Forest regressor followed by a thresholding, 133 and 112 of the

150 cases are correctly predicted for the presence of infarction and PMO respectively,

representing accuracies of 88.67% and 75.33%. As the data are collected from daily clin-

ical practice and not specifically selected, the prediction accuracy is encouraging given

the effect of data collection inaccuracies. Thanks to the statistical analyses, the machine

learning brings a more comprehensive interpretation of multiple scalar indicators. It is

not straightforward for a standard statistical model to construct such well-fitted non-linear

model considering multiple features in a comprehensive manner, and meanwhile to anal-

yse the importance of each feature.

For the automatic PIM quantification, all the regression models involved in the tests obtain

satisfying results. Contrary to the findings in the literature studies, Boosting models do not

significantly outperform the Random Forest, even though the Boosting models are com-

putationally intensive. This fact reveals that the predictive model’s complexity is not the

key issue in improving the prediction performance. The training set volume does have an

obvious impact on the prediction error. Indeed, once the volume of data reaches approx-

imately 100 cases, the predictive accuracy of the model struggles to increase further as

the volume of data increases. Comparing the regression results with few training samples

(Figure 8.7) and the prediction error when the mean ground truth PIM is used to predict

all cases (Table 8.3), the smaller prediction error in Figure 8.7 justifies the efficient use of

very small sample data. Besides the data volume, the analysis of the discordant cases

may reveal the biggest bottleneck in this method for improving performance: ambiguity

that originates at the time of data collection. These inaccuracies both increase the bias

of the model training and reduce the reliability of the label data during the performance

evaluations.

To classify the presence of MI or PMO, the regression models trained with the PIM label

followed by a thresholding slightly outperform the classification models trained with the

Boolean label (Tab. 8.4). This fact demonstrates that even for the classification task,

the inference results may benefit from richer information provided by the DE-MRI and

annotations in the ground truth label. It also justifies the advantage of this work, namely

a DE-MRI-guided physiological, clinical and paraclinical feature learning system.

When the regression results are taken for the classification task, a relatively high threshold

value (PIM of 0.064) for the infarction is observed. This observation reveals that cases

close to the critical hyperplane have higher predictive instability. For cases where the

regression prediction is around this threshold value, additional complementary clinical
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exams should be conducted to achieve greater certainty.

In terms of the importance of features for predictive models, the troponin is proven to

be the dominant factor in the automatic prediction. This finding echoes the recommen-

dations of The American College of Cardiology/American Heart Association (ACC/AHA)

and the European Society of Cardiology (ESC) guidelines that cardiac troponin is the

only biomarker for the diagnosis of acute MI due to its superior sensitivity and accuracy

[57, 55, 81, 90]. Age, ST elevation on ECG, LEVF from cardiac TTE and NTProBNP

level also demonstrated their obvious contributions. Between the infarction and the PMO,

models rely more on the age and NTProBNP for the PMO prediction. This fact indicates

a higher relationship between these factors and the presence of the PMO. The history

of coronary artery disease only has a noticeable effect on linear models for the infarction

prediction. This exception could be explained as the drawback of the linear models: linear

models attempt to find a linear combination of the clinical features to distinguish the prob-

lem. However, the ideal critical hyperplane for the tasks is apparently not linear, which

produces exceptional importance to some features. The observation on the prediction

performance with selected features may suggest that the evaluation of the infarction and

the available features are well linked, thus the PIM for MI increases when more features

participate in the prediction. The opposite results on the PMO may indicate a weaker link

between it and the available features.

Techniques employing artificial intelligence can become essential to improve cardiolo-

gists’ work and performances in all aspects of cardiovascular diseases. In clinical prac-

tice, the prediction of the presence or not of a MI and the quantification of myocardial

necrosis have a certain interest, first and foremost to confirm or invalidate a diagnosis,

and therefore to provide information to guide treatment. In the case of an important extent

of necrosis with a reduction in LVEF, treatment adapted to heart failure can immediately

be introduced, a LifeVest wearable defibrillator can be proposed and the doses of diuret-

ics can be better adjusted. Saving time is also important for physicians, and reducing

delays with the help of artificial intelligence can allow more patients to benefit from high-

performance exams and increase the global quality of care.

The major limitation of the proposal is the reliability of the data. Erroneous predictions

may be produced because of the measurement inaccuracies, or the interference from

other diseases like myocarditis, coronary spasms or the Tako Tsubo syndrome. In future

work, to improve the proposal’s performance with the given data, the confidence level can

be estimated while making the predictions. Since most of the discordant cases can be

explained as suspected feature acquisition error, the confidence level can be predicted by

analyzing the correlation between features that have strong consistency. Then, in clinical

practices, doctors should review the patient reports more thoroughly when the proposed

confidence level is relatively low.
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8.6/ CONCLUSIONS

The proposal that fuses DE-MRI and patient features achieves the first place in the clas-

sification contest of EMIDEC challenge. The classification accuracy in the challenge is

92%, which shows an important improvement over the classification based only on pa-

tient features (accuracy of 78%). This proposal proves the benefit of combining various

data types for a more robust MI classification.

The proposal incorporates basic physiological, clinical and paraclinical features to provide

a rapid and accurate physiological prediction of the severity of acute MI with the help

of machine learning approaches. In clinical applications, an automatic assessment of

the state of the myocardium and the PIM quantification can be obtained with just these

minimal tests including the blood test, ECG and echocardiography. The MI classification

and quantification results are promising, and the PMO prediction also shows the value of

reference since the PMO evaluation was very difficult without cardiac imaging diagnosis.

The study of the feature importance shows the highest correlation between the MI and the

troponin, while age, ST elevation on ECG, LEVF from cardiac TTE and NTProBNP level

are also proven to be associated with the MI. This proposal can thus potentially speed up

the disease diagnosis of the acute MI in the emergency cardiology and can also indicate

a rethinking of each patient feature’s importance for the diagnosis of the disease.
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CONCLUSIONS AND PERSPECTIVES

9.1/ CONCLUSIONS

This thesis concentrates on the automatic assessment of MI from multivariate medical

diagnoses employing machine learning algorithms. The diagnosis relying on DE-MRI

with deep learning methods intends to provide a more robust prediction (Chapters 5 and

6), while the diagnosis relying on patient features aims at achieving a quick and accurate

analysis of the pathology with the minimum medical information in case of emergency

(Section 8.3). Moreover, the classification of MI from both DE-MRI and patient features

demonstrates the benefit of data fusion for a more reliable prediction (Section 8.2).

MI segmentation with 2D and 3D models The results of the DE-MRI segmenta-

tion task are globally satisfying compared to the human variance of the inter- and the

intra-observer studies. The segmentation of myocardium and infarct in the majority of

high-quality slices is comparable to that of cardiological specialists. The 2D segmenta-

tion model incorporating the proposed image normalization method, baseline network,

SGD optimization, interpolated input images and proposed prior-based post-processing

achieves comparable results (Dice metric of 0.843 on all-pathological slices, and 0.780

on slices of all patients for the infarct segmentation when the myocardium delineation is

known, and 0.668 on all patients when the myocardium mask is not known) to the inter-

observer study (0.845, 0.774 and 0.681, respectively). Compared with statistical models,

the proposal significantly outperforms Gaussian Mixture Model on infarct segmentation

task, showing an obvious advantage of deep learning-based segmentation approaches.

The 3D network with constrained receptive field obtains lower MI volume prediction dif-

ference relative to 2D models. Compared with 2D approaches, the volume prediction of

scar tissues is significantly improved due to the reference from the adjacent slices, while

the Dice metric is not improved due to the introduced bias on local segmentation.

However, the recognition of the PMO is still challenging regardless the proposal or other
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state-of-the-art work, and human and computer assessments disagree even more on

fuzzy images. Nevertheless, the present results of the segmentation appear to be ready

for assisting physicians, providing a baseline for the contours of each tissue. The pro-

posal will be soon integrated to the cardiac MRI delineation software QIR (CASIS Com-

pany, Quetigny, France) and hopefully will share the workload of manual annotation by

physicians.

MI assessment from multivariate data The results of the proposals incorporating

both DE-MRI and patient features for MI classification and quantification are also proved

promising. The proposal that identifies the presence of MI from both DE-MRI and pa-

tient features won the EMIDEC challenge and a great improvement is obtained compared

to the classification with sole patient features (classification accuracy of 92% compared

to 78%). This proposal confirms the advantage of the fusion of multivariate data, and

proposes a generalized fusion technique for medical imaging and clinical data.

The other proposal based on the patient features provides a subject and comprehensive

MI assessment from all the available characteristics at the first stage of the pathology

management. Besides the classification of MI, a quantification of the infarct volume can

be also estimated from patient features, which was not possible without imaging diag-

noses. This proposal achieves 0.0578 the error of PIM quantification and 88.67% the

accuracy of classification for the MI prediction. The prediction of the PMO is also of value

for reference since its evaluation was difficult without imaging diagnosis. Moreover, the

study of the discordant cases has indicated that the prediction errors majorly result from

the inaccuracy during the acquisition of clinical characteristics, while the comprehensive

way of taking into account all the available features mitigates the error. For further clinical

applications, the qualitative and quantitative predictions relying on patients features pro-

vide cardiologists with a subject index for the subsequent management before the gold

standard DE-MRI is performed.

9.2/ PERSPECTIVES

PMO segmentation The PMO takes up only a small part of area in myocardium and its

density is often similar to the normal myocardium tissue. According to this study and the

results of the EMIDEC challenge, the improvement of the MI segmentation on DE-MRI

originates from more adaptive configurations instead of blindly applying more complex

networks. Therefore, one of the next work will focus on the optimization of the loss func-

tion to better respond to the class imbalance issue since the segmentation of PMO is still

challenging.
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Comprehensive study of 3D models Although the proposed 3D CRF model obtains

an improvement on the scar volume prediction, the local segmentation result evaluated

by Dice metric is not satisfying due to the bias from adjacent slices. Therefore, a more

efficient way should be designed to control the fusion of the inter-slice information so that

both the Dice metric and volume prediction is increased.

MI segmentation with alternative deep learning approaches During the preparation

of the thesis, all segmentation work was based on fully convolutional U-Net networks.

Meanwhile, the Generative Adversarial Network (GAN) [107] is showing promising re-

sults on medical image segmentation tasks. The GAN can be employed as the seg-

mentation network [98, 143], or as the data augmentation generator [130]. Furthermore,

the Transformer [101], initially proposed the attention mechanism for Natural Language

Processing (NLP), has been expanded to the domain of computer vision. Recent works

have integrated the Transformer into U-Net [149] for medical image segmentation tasks.

Therefore, the GAN and the Transformer U-Net that replaces the vanilla U-Net should be

further studied for the MI segmentation on DE-MRI.

MI segmentation with image denoising techniques The image denoising techniques

[124] have been a popular computer vision topic. The objective is to remove the noise

from the image and retain the essential features. Image denoising techniques have been

studied by researchers on medical images to improve the visual evaluation by physi-

cians. However, many related works evaluated the denoising approaches from the ratio

of noise-to-signal, which limits their translational value. In our further work, state-of-the-

art denoising approaches will be optimized and compared according to the automatic

segmentation results, providing an end-to-end evaluation of the denoising techniques.

Expanded applications of the segmentation proposals Despite the proposed seg-

mentation approaches intend for the assessment of MI on cardiac MRI, some of these

techniques can be expanded to other tissues on similar medical images. For example,

the stochastic gradient descent optimization and the image normalization method can be

trialled on most medical images. Then the proposed variants of Dice loss and General-

ized Dice loss can be employed if the quantity of instances of each tissue is significantly

unequal. The prior-based post-processing can be also fine-tuned if the density distribu-

tion of the target tissue is consistent. And finally, the 3D models can be employed on

tomographic images if the voxel size is inconsistent between the x-y plane and the z-axis.

Therefore, new applications can be further evaluated using relevant proposed techniques

on images like MRI and computerized tomographic imaging (CT), as well as microscopic

images.
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Confidence estimation of MI prediction from patient features For the assessment

of patient features, in order to give physicians a more complete result for their reference,

confidence estimates should be obtained in complement to the severity prediction. Since

the study of discordant cases proves that an important amount of MI prediction error

comes from the inaccuracy of the patient features acquisition, the confidence level can

be obtained by examining the correlation between patient features. For clinical applica-

tions, physicians should pay more attention if the automatic prediction indicates a low

confidence level.
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Abstract:

Myocardial Infarction (MI) has become one of the most common
cardiovascular diseases. The MI occurs when the blood
flow decreases or stops in a part of the heart so that the
myocardium gets damaged due to ischaemia. The MI can
lead to persistent microvascular obstruction (PMO) where the
myocardium dysfunctions because of the no-reflow phenomenon
after the reperfusion therapy of an occluded coronary artery in
a proportion of patients. To assess the MI and the extended
PMO, Delayed Enhancement MRI (DE-MRI) has become the
gold standard. However, to precisely quantify the pathology,
physicians have to manually draw the delineations of different
myocardial tissues on the short-axis MRI slices then the volume
of normal and pathological tissues will be calculated to obtain the
severity evaluation. The manual annotation procedures are highly
time-consuming and subjective, which shows a great potential
of an automatic evaluation approach for the MI assessment.
Current automatic delineation methods on DE-MRI are mostly
probabilistic approaches such as the Mixture Models etc. while
more and more applications with deep learning achieve state-of-

the-art performance compared to the probabilistic approaches.
Therefore, in this thesis, the different aspects of deep learning-
based approaches have been investigated for the automatic MI
evaluation from DE-MRI.
This dissertation mainly focuses on the automatic MI assessment
using the MRI and the clinical and physiological features. With
the MRI, three major aspects consisting in the pre-processing,
the deep learning models and the post-processing have been
investigated or proposed. The pre-processing aims at preparing
more consistent and clear inputs for deep learnings models using
image normalizations, cropping etc. To design well-adaptive
deep learning models, many parts (building blocks, loss functions,
segmentation models, etc.) have been proposed or compared.
Moreover, the post-processing methods including morphological
treatments and prior information-based filters have been applied
to the coarse segmentations to eliminate false positive contours.
Furthermore, merging the MRI and textual patient features, a
machine learning-based approach was proposed to obtain a
quantitative estimate of MI incorporating only the clinical and
pathological features for emergency cardiological assessment.

Titre : Deep learning for automatic detection and quantification of the disease areas of the myocardium
from DE-MRI after myocardial infarction

Mots-clés : Imagerie par résonance magnétique), Caractéristiques cliniques, Détection automatique,
Segmentation de l’image, Infarctus du myocarde

Résumé :

L’infarctus du myocarde (IM) est devenu l’une des maladies
cardiovasculaires les plus courantes. L’infarctus se produit lorsque
le flux sanguin diminue ou s’arrête dans une partie du cœur, ce qui
peut endommager le myocarde en raison de l’ischémie. L’infarctus
peut entraı̂ner une obstruction microvasculaire persistante
(PMO) même après le traitement de reperfusion d’une artère
coronaire occluse, ce qui touche une proportion importante de
patients. Pour évaluer l’infarctus et l’obstruction microvasculaire
persistante, l’IRM avec rehaussement tardif (IRM-RT) est devenue
la référence. Cependant, pour quantifier précisément la
pathologie, les médecins doivent d’abord tracer manuellement
les délimitations des différents tissus myocardiques sur les
tranches d’IRM à petit axe ; ensuite, le volume des tissus
normaux et pathologiques sera calculé pour évaluer la gravité
de l’attaque. Les procédures d’annotation manuelle sont très
chronophages et subjectives, ce qui renforce l’intérêt potentiel
d’une approche d’évaluation automatique pour l’évaluation de
l’IM. Les méthodes actuelles de contourage automatique en IRM-
RT sont principalement des approches probabilistes telles que les
modèles de mélange de distributions Gaussiennes, alors que de
plus en plus d’applications d’apprentissage profond atteignent des
performances de pointe par rapport aux approches probabilistes.

Par conséquent, dans cette thèse, les différents aspects des
approches basées sur l’apprentissage profond ont été étudiés
pour l’évaluation automatique du MI à partir de l’IRM-RT.
Pour développer le pipeline d’évaluation de l’IM basé sur
l’apprentissage profond, trois aspects majeurs, à savoir le
prétraitement, les modèles d’apprentissage profond et le post-
traitement, ont été étudiés ou proposés. Le prétraitement
vise à préparer des entrées plus cohérentes et plus claires
pour les modèles d’apprentissage profond en utilisant des
normalisations d’images, des recadrages, etc. Pour concevoir
des modèles d’apprentissage profond bien adaptés, de nombreux
éléments (blocs de construction, fonctions de perte, modèles
de segmentation, etc.) ont été proposés ou comparés. En
outre, les méthodes de post-traitement, y compris les traitements
morphologiques et les filtres basés sur l’information préalable,
ont été appliquées aux segmentations grossières afin d’éliminer
les contours faussement positifs. En plus de l’évaluation
automatique par segmentation, en fusionnant l’IRM et les
caractéristiques physiologiques du patient, une approche basée
sur l’apprentissage automatique a été proposée pour obtenir
des estimations quantitatives de l’IM en utilisant uniquement les
caractéristiques cliniques et pathologiques pour une évaluation
cardiologique rapide dans le service des urgences cardiaques.
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