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2 Chapter 1. Introduction

1.1 Context

Any industrial product, whatever its purpose and its application field, must meet several
criteria based on performance and safety in order to be viable. The former requirement may
rely on many different interpretations as it is jointly and freely defined by the entities related
to the creation or the follow-up of the product. However, a generic feature is that it must pro-
vide added value compared to what already exists. Moreover, the permanent human demand
for technological and societal improvements creates a state of industrial competitivity and the
necessity to always perform better. This environment naturally leads to the emergence of more
and more complex systems.

Breakthrough technologies in terms of performance rarely arise without safety concerns: in-
ternational highly interconnected financial networks may lead to economical crises, information
technology is accompanied by intensified security threats, civil nuclear activity could lead to
catastrophic consequences if it was not controlled, etc. In addition, this evolving life environ-
ment must cohabitate with natural phenomena (natural by essence but not totally disconnected
to human activity) for which the potentially disastrous impacts increase together with techno-
logical improvements if not controlled. This said, new technologies may also enable to limit
disasters.

In order to pursue the global performance of industrial systems while guaranteeing accept-
able safety levels, safety standards have for a long time been established in different forms. In
most cases, such requirements are requested by higher institutions at national or even interna-
tional levels such as the ASN (Autorité de Sûreté Nucléaire) and the IRSN (Institut de Radio-
protection et de Sûreté Nucléaire) for the civil nuclear activities in France, mainly operated by
Électricité de France (EDF) company.

Depending on the complexity of the studied industrial system, the performance and safety
quantities of interest (QoI) may be multiple. For instance, the general performance of an air-
plane will depend on many factors such as its fuel consumption, its cost, its passenger capac-
ity, etc. Similarly, a system may contain several critical components that possibly interact with
each other on which individual safety requirements must be met. Commonly, the whole system
is divided into subsystems on which more specific requirements are identified and evaluated.
Whether it is for the performance or the safety assessments, it is therefore vital to find trustwor-
thy ways to evaluate the QoIs of the system. Such evaluations may take place during the design
phase as much as during the operating phase for decision making. To do so, the most straightfor-
ward option is to build prototypes and directly evaluate their behaviors under real conditions.
Obviously, this approach faces some limits such as high costs and feasibility issues. As a conse-
quence, digital twins based on physical and mathematical models as well as numerical solvers
are needed (Tao et al., 2019).

In practice, simulation models represent idealizations of reality. Indeed, they face the pres-
ence of uncertainty in two different aspects (Oberkampf and Roy, 2010). The first one concerns
the numerical model itself which evaluates one or several variables of interest. The current
knowledge of physical laws is insufficient to model all sorts of engineering problems in an ex-
act theoretical framework. Complex interactions are often simplified into behaviors for which
models exist. In addition, even if the theoretical frawework is available, its evaluation often re-
lies on approximate numerical solvers. The second aspect is related to the identification and the
quantification of the input quantities that play a role on the evaluation of the variables of inter-
est. It is clear that the presence of such uncertainties strongly interferes with performance and
safety assessments of the system. Solutions must be found in order to take high-stake industrial
decisions in this context of uncertainty.

A first deterministic approach to guarantee the safety of a system in such an uncertain con-
text is to evaluate its response at worst-case scenarios or to apply penalized values. However,
this implies that we know the configurations that correspond to these scenarios, which is not
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always straightforward. Moreover, such a methodology may lead to overconservative systems
since the worst-case scenario may be very dimensioning but hardly feasible in reality. Addi-
tionaly, being in an uncertain context does not mean that no information is available, strictly
speaking. Subjective information such as expert knowledge is generally available to guide the
analysis. Also, real data from experiments may narrow the quantification of some input vari-
ables. In that aspect, a very large amount of works have focused on ways to quantify and prop-
agate uncertainty through simulation models in order to take decisions based on performance
and safety in a meaningful way (Morio and Balesdent, 2015). The following section summarizes
such framework.

1.2 The general uncertainty quantification framework

The framework of uncertainty quantification of simulation models is often represented as
the so-called “ABC diagram” as depicted in Figure 1.1 (De Rocquigny et al., 2008). The first
step (Step A) corresponds to the specification of the problem on which a decision must be taken.
Safety-related decisions are generally based on codified norms which define the QoIs that are
directly related to the variables of interest. As mentioned in the previous section, quantifying
theses variables of interest often requires a simulation model which must find a balance between
an acceptable idealization of the real (and potentially unknown) input-output relations and the
required computational time. Moreover, the form of a simulation model may vary from accessi-
ble analytical expressions to so-called “black-box model” (e.g. containing solvers of differential
equations) for which only the input-output dataset is available.

As a simulation model basically corresponds to a function, its evaluation is naturally condi-
tioned to the considered values of the input variables. These input variables describe relevant
properties of the system itself (e.g. geometrical and material properties) as well as the environ-
ment in which the system is expected to operate (e.g. external sollicitations). It is obviously
critical but not always straightforward to identify all of these input variables that play a role
in the evaluation of the variables of interest. This is particularly true when simulating excep-
tional failures of critical systems that have never occurred. Many unprecedented catastrophies
are caused by scnenarios that never had been identified. A first categorization is made between
uncertain input variables denoted by X and known deterministic input variables denoted by ννν.

The next natural step (Step B) is the quantification of the uncertain input variables. As it will
be shown in Chapter 2, different representations of uncertainty have been considered depend-
ing mainly on the quantity and the type of the available information, and on their ease to be
propagated and interpretated.

Uncertainty in the input variables leads to uncertain variables of interest. However, a simu-
lation model requires fixed values of X and ννν to be run. The following step (Step C) is therefore
to find techniques that propagate uncertainty through the simulation model. These techniques
are multiple as their use depends on the analyst’s choice of the QoIs which themselves depend
on the involved decision criteria. One frequently encountered technique is the use of surrogate
models (also called “metamodels”) that are constructed through statistical learning in order to
substitute the potentially time-greedy simulation model (Fang et al., 2005). The path from the
variables of interest to the QoI is directed by the function denoted as ψ (·) whose evaluation may
be of various difficulty.

Finally, inverse analyses (Step C’) are often also of high interest. The idea is to use the infor-
mation from samples (either simulated or experimental) of the QoI to gain more information on
parameters of the simulation model and on the quantification of the input variables. A very com-
mon example is the quantification of each input variable’s influence on the QoI. This is referred
to as sensitivity analysis. It enables, either to identify the most influential and the noninfluential
inputs (screening), or to rank the variables.
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FIGURE 1.1: General uncertainty quantification and propagation framework.

Once again, this global framework represents an idealization of reality given a state of knowl-
edge. The consideration of each box comes along with questions for which the analyst must
provide answers. Depending on the analysis, some of these questions that are listed hereafter
may be more or less relevant.

• ?1: Have all the relevant input variables that play a role on the variables of interest been
identified ?

• ?2: How representative of the real input-output relations is the simulation model ?

• ?3: How representative of the available information on the input variables and how con-
venient to propagate are the chosen uncertainty representations ?

• ?4: How precise is the QoI estimator ?

• ?5: What is the degree of additional error brought from the metamodel ?

• ?6: How robust is the chosen decision w.r.t. all the previous questions ?

The last point introduces very broadly the notion of robustness of a decision w.r.t. to any addi-
tional uncertainty arising from the listed questions.

1.3 Industrial motivations

This thesis was conducted through a CIFRE industrial research agreement in partnership
with EDF R&D and the Department of Applied Mechanics of the FEMTO-ST Institute (CNRS,
Univ. Bourgogne Franche-Comté). This collaboration represents a typical example of the indus-
trial need for a better understanding and a better control of uncertainty affecting the idealized
representation of a system, out of which high-stakes decisions are justified.

In order to remain a world leader in the production of electricity, EDF can count on a panel of
high performance and complex systems (e.g. nuclear and hydroelectric plants). These powerful
facilities come along with identified risks that could potentially lead to disastrous consequences
if they were not correctly handled. Therefore, the beginning and the extension of their operation
represent a decision with societal repercussions that requires very strong justifications.

The complexity of the involved industrial systems and the unsimulable nature of many iden-
tified risk scenarios that may never have been observed are two main reasons that have led EDF
to develop methodologies related to the uncertainty framework presented in Figure 1.1. These
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methodologies have progressively included the use uncertainty quantification techniques as a
more informative and less conservative way to confront uncertainty and to perform reliability
risk assessments.

However, justifications based on probabilistic concepts generally bring up concerns such as:

• the acceptance and the interpretability of probabilistic QoIs that often consider a non-zero
risk (e.g. very small but non zero failure probabilities);

• the more complex mathematical background required for conducting and justifying prob-
abilistic uncertainty propagation;

• the justification of probabilistic hypotheses on which rare event quantification is very de-
pendent and based, by definition, on very little information.

It is within this industrial context that the motivation of this thesis lies. The info-gap frame-
work (Ben-Haïm, 2006) is investigated and adapted to probabilistic-based reliability assessments
in order to quantify the robustness of these types of studies w.r.t. a lack of knowledge. Indeed, it
offers the possibility to evaluate the immunity of a configuration as a function of ignorance and
provides valuable insights to the decision maker. In particular, methodologies for applying the
info-gap robustness framework are proposed on two real industrial applications: the mechanical
integrity of penstocks involved in hydroelectric facilities and a loss-of-coolant nuclear accident
scenario. As it will be described in Chapter 3, these applications are complementary in the
sense that they bring forward various scientific and numerical challenges which, consequently,
requires adapted methodologies for robustness evaluations.

1.4 Objectives and outline of the thesis

The main objective of this thesis is to bring insights on how to interpretate and perform an
info-gap robustness analysis applied to reliability-based QoIs in order to take safe decisions.
These general objectives are as follows:

• O1: Perform reliability analysis under multiple sources of uncertainty (aleatory and epis-
temic);

• O2: Illustrate how the info-gap and reliability assessment frameworks can be joined to-
gether for enhancing the safety-oriented decision process;

• O3: Quantify the impact of the choice of an epistemic uncertainty representation on the
info-gap robustness evaluation;

• O4: Propose methodological and numerical solutions for applying info-gap robustness
analysis to small failure probabilities with complex limit-state functions;

• O5: Propose methodological and numerical solutions for applying info-gap robustness
analysis to high-order quantiles with time demanding numerical models.

In accordance with the objectives listed above, this manuscript is divided into several chap-
ters whose contents are summarized hereafter.

Chapter 2 brings an overview of the reliability framework under different representations
of uncertainty. After shortly describing the needs for modeling different sources of uncertainty,
the general reliability framework with probabilistic random variables is presented. A few well-
known techniques that are used for estimating small failure probabilities are reviewed. Then,
other uncertainty representations that are less informative than probability theory are intro-
duced together with their impact on the way to conduct a reliability analysis.
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As this thesis is highly motivated by two industrial applications, Chapter 3 aims at present-
ing their industrial context and challenges for robustness evaluations. First, the framework as-
sociated to the reliability assessment of penstocks is presented together with the available tools
for estimating the small failure probabilities induced from complex limit-state functions. Then,
a nuclear-related safety application focusing on the loss of coolant in the primary system of a
nuclear plant is considered. The thermal-hydraulic code CATHARE2 is briefly described before
presenting the statistical methodology used for propagating uncertainty.

Chapter 4 presents the info-gap robustness method. The formulations for quantifying the
notions of robustness and opportunity to uncertainty are introduced together with the notion
of “value of information”. In addition, some criticisms about the method are reviewed and
discussed w.r.t. the objectives of this thesis and the opportunities it offers. In addition, insights
about the application of info-gap and its placement within other metrics in different uncertainty
contexts are given. Finally, numerical aspects involved in the application of the procedure are
addressed.

As different uncertainty representations will be jointly considered in this thesis, Chapter 5
presents the context of hybrid reliability and the theory of random sets as a unifying framework
for uncertainty propagation. Under this formalism, a methodology combining random set and
info-gap theories is proposed for evaluating the impact of the choice of an epistemic uncertainty
representation on the robustness assessment.

In Chapter 6, a methodology is proposed for efficiently evaluating the robustness related to
the reliability assessments for penstocks. Adapted line sampling algorithms are implemented
for estimating small failure probabilities described through complex intersection-based limit-
state functions. Then, artificial neural networks are applied for accelerating the evaluation of
the info-gap robustness metrics.

Finally, Chapter 7 presents the application of info-gap to the loss-of-coolant accident. As the
CATHARE2 simulation code is time-greedy to evaluate, techniques based on metamodels and a
unique sample dataset are tested for assessing the robustness of a quantile estimation.

The relevance of the chapters w.r.t. the different objectives is described in Table 1.1 with
associated keywords. The content present in each chapter is either described as state of the art
(SOA) or as a contribution (NEW).

TABLE 1.1: Summary of the thesis’ content.

Keywords Chapter Content Objectives

Aleatory uncertainty / Epistemic uncertainty / Reliability Chapter 2 SOA O1
Penstocks / LOCA / Failure probability / Quantile Chapter 3 SOA O4, O5
Info-gap / Reliability Chapter 4 SOA/NEW O2
Hybrid reliability / Random sets / IG Value of information Chapter 5 NEW O1, O3
Line sampling / Neural networks / IG robustness Chapter 6 NEW O4
Quantile / Superquantile / Thermal-hydraulic code Chapter 7 NEW O5
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1.5 Publications and communications

The research contributions presented in this manuscript have also led to the published works
listed herebelow.

Jour. Pap. A. Ajenjo, E. Ardillon, V. Chabridon, B. Iooss, S. Cogan and E. Sadoulet-Reboul (2022). “An
info-gap framework for robustness assessment of epistemic uncertainty models in hybrid
structural reliability analysis”. In: Structural Safety 96, pp. 102196.

A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2022). “Robustness
evaluation of the reliability of penstocks combining line sampling and neural networks”.
Preprint / Under Review.

Int. Conf. A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2021). “Info-gap
robustness evaluation of a line-sampling-based reliability assessment of penstocks”. In:
Proc. of the 13th International Conference on Structural Safety and Reliability (ICOSSAR 2021),
Shanghai, China. (proceedings + talk)

A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2021). “Robustness
Evaluation of Reliability Assessments of Pensotcks Using Info-Gap Method”. In: Proc. of
the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment
and Management Conference (ESREL 2020 PSAM 15), Venice, Italy. (proceedings + talk)

A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2021). “An info-
gap framework for comparing epistemic uncertainty models in hybrid structural reliability
analysis”. In: Proc. of the 12th International Symposium on Imprecise Probability: Theories and
Applications (ISIPTA 2021), Granada, Spain. (proceedings + talk)

Nat. Conf. A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2022). “Application
de la méthode info-gap aux analyses de fiabilité des conduites forcées”. In: 11èmes Journées
Fiabilité des Matériaux et des Structures (JFMS 2022), Clermont Ferrand, France. (proceed-
ings + talk)

A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2021). “Adapted
line sampling and neural networks for evaluating the info-gap robustness of reliability
estimates for penstocks”. In: MASCOT-NUM 2022, Clermont Ferrand, France. (summary
+ poster)

1.6 Code development

The contributions of this work have been implemented using Python language. Moreover, it
mainly relies on the following open-source packages:

• OpenTURNS for the definition of random variables, the use of failure probability estima-
tion techniques and the use of global optimization algorithms;

• Numpy and Scipy for basic mathematical operations and for root finding in the context of
line sampling (see Chapter 6);

• Keras and Tensorflow for the use of artificial neural networks (see Chapter 6 and Chapter
7).
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2.1 Motivations

Robustness analysis is performed throughout this manuscript on reliability quantities of in-
terest. As it will be illustrated in Chapter 3, this framework can be seen as a process composed
of two nested layers where the inner layer corresponds to the reliability assessment. Being at
the core of the entire analysis and as it is potentially perilous to evaluate in the context of rare
events, it is necessary to describe the underlying definition of structural reliability and the avail-
able tools to assess it. This state-of-the-art-based chapter, although not exhaustive, aims at doing
so.

After describing in Section 2.2 the different sources of uncertainty that need to be taken into
account, the definition of structural reliability and some available tools to assess it are given
in both the probabilistic and epistemic frameworks in Section 2.3 and Section 2.4 respectively.
A simple reliability example is used to illustrate the way uncertainty is represented, how it is
propagated and the resulting quantity of interest within the different frameworks.

2.2 Different sources of uncertainty

From a practical point of view, there are two key matters on which a balance should be found
in order to guide the choice of the uncertainty representation:

• it must describe in the most representative and objective way the state of knowledge (and
conversely of uncertainty) of all the parameters involved in the evaluation of the QoI;

• it must be propagated through the numerical model in a convenient way and yield an
interpretable QoI in order to make an informed decision.

The first matter is quite obvious as it seems counter-intuitive to evaluate the impact of uncer-
tainty through a non-representative description of the available knowledge. However, it is still
of common use to translate uncertainty with (non-representative) pessimistic values in order
to guarantee a safe decision. Sometimes, checking that a decision is satisfactory in a penalized
configuration might bring enough information for the analyst. Thus, this first matter is condi-
tioned to the decision at stake and the performance requirements. The second matter is also of
high importance as only results that are interpretable for all the decision-makers can be used in
order to make a decision and to justify it, especially for safety concerns. Yet, agreeing on the
right uncertainty representation that meets both considerations is not straightforward as many
configurations are possible based on the amount of information, the quality of information and
the different sources of uncertainty.

The main reason that leads to the consideration of different representations is that uncer-
tainty may take different forms (Hacking, 1975). There have been ongoing discussions on the
nature of uncertainty and, therefore, the manners to treat it. More specifically, the attempts to
distinguish between aleatory uncertainty (viewed as inherent variablity) and epistemic uncer-
tainty (viewed as subjective uncertainty as a reflect of lack of knowledge) have been numerous.
Many works such as in Fox and Ülkümen (2011) have enabled to better characterize some prop-
erties that separate both types of uncertainty. The work presented in Ülkümen et al. (2016) also
claims that the distinction seems rather intuitive from a linguistic point of view by affecting the
terms of confidence to epistemic uncertainty and likelihood to aleatory uncertainty.

However, discussions remain on the manner to treat both concepts. Although probability
theory has convinced the community for the treatment of aleatory uncertainty, the numerous
representations of epistemic uncertainty testify to a divergence of opinions. In addition, Der Ki-
ureghian and Ditlevsen (2009) notice that the type of uncertainty may go from one to the other
depending on the different phases of a same analysis. Still in Der Kiureghian and Ditlevsen
(2009), a more global investigation is led by introducing the notion of “model universe” as the
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analyst’s mathematical idealizations of reality. Such idealization is necessary in practice for
conducting the process of decision-making although proned to uncertainty. Seven sources of
uncertainty are identified, namely inherent uncertainty in the basic probabilistic random vari-
ables, uncertainty in the choice of the probability density function (pdf) used to describe the
random variables, uncertainty in the physical sub-models used to derive variables from others
(the computer modelM (·) for instance), uncertainty in the parameters of the pdf, uncertainty
in the parameters used in the physical sub-models, uncertainty in measurement and finally un-
certainty in the mathematical or numerical tools used for estimating the quantity of interest.

Although being an important subject of research, this thesis presents no intention of fur-
ther developing the distinctions between aleatory and epistemic uncertainties. Rather, it aims
at evaluating how robust a decision is w.r.t. any hypothesis proned to errors. In this thesis, the
probabilistic random vector X will contain all the random variables for which the probabilis-
tic definition is fully trusted. The term “epistemic variable” will be used for any variable Yi
that presents one or several modeling hypotheses on which a robustness analysis is performed.
Therefore, Yi may also be a random variable whose probabilistic description is somehow con-
sidered as uncertain. As pointed out above, many sources of errors may arise in the model
universe. In this thesis, robustness analysis will be concentrated on the input variables (rather
than on model errors for example).

2.3 Structural reliability in the probabilistic framework

2.3.1 Core concepts of probability theory

Probability theory represents a well established and powerful framework for tackling aleatory
uncertainty. It is based on the definition of a random vector X that contains nX random variables
such that X = (X1, · · · , XnX)

>. A random vector is constructed through a probability space com-
posed of the triplet (Ω,B (Ω) , P) where Ω is the sample space, B is the Borel σ-algebra and P

is a probability measure P : B (Ω)→ [0, 1]. It follows the definition of a random vector X as the
measurable function X : Ω → DX, ω → X (ω) = x where x is called a realization of X and DX is
called the support (or domain) of X.

A random vector is commonly caracterized by its cumulative distribution function (cdf) FX(·)
expressed as:

FX :
∣∣∣∣

RnX −→ [0, 1]
x −→ P (X ≤ x) = P (X1 ≤ x1, · · · , XnX ≤ xnX)

(2.1)

and, when it exists, its related joint probability density function (pdf) fX defined such that fX(x) =
∂nX FX(x)

∂x1···∂xnX
. Characterizing these two functions is a key point as they enable to define the moments

of a random vector such as the mean vector µX which reads:

µX = E [X] =
∫

DX

x fX (x) dx = (E [X1] , · · · , E [XnX ])
> (2.2)

and the variance-covariance matrix ΣX which reads:

ΣX = E
[
(X− µX) (X− µX)

>
]
=
∫

DX

(x− µX) (x− µX)
> fX (x) dx. (2.3)

The variance Var [Xi] = E
[
(Xi −E [Xi])

2
]
, the standard deviation σXi =

√
Var [Xi] and the coef-

ficient of variation (for a non-zero mean value) δXi = σXi /µXi are related quantities that are also
often used.

As the joint pdf represents the core definition of X, methods are needed for its choice. They
are based on multiple sources of information that may be combined such as experimental data,
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measurements, numerical data and expert judgments. A first class of methods aims at finding
the parametric distribution among a family of distributions (e.g. normal distribution, uniform
distribution) that best fits the information. Parametric statistics (Wasserman, 2004) are used
in that matter in order to identify the parameters of an assumed parametric distribution. A
second class of methods based on nonparametric statistics assumes no underlying distribution
family. Methods such as kernel density estimation (Silverman, 1986) have been proposed for
directly approximating the unknown distribution. In this thesis, robustness analysis will often
be performed by perturbing a nominal parametric distribution. The perturbations will either
concern the parameters of a distribution while keeping its parametric definition or will directly
address the parametric assumption.

2.3.2 Reliability quantities of interest

The probabilistic definition of the input variables is only a first step. Indeed, it becomes
necessary to propagate the uncertainties model through the computer code M (·) in order to
quantify the variable of interest Z = M (X), supposed scalar in this thesis. The nature of uncer-
tainty is conserved during the propagation through the computer code which implies that Z is
also a random variable that may be quantified by its cdf FZ.

This quantification is generally not straighforward as complex behaviors may be induced
from the relationship between the input pdf fX(x) and the computer codeM (·). However, the
complete probabilistic knowledge of the variable of interest is rarely required. Instead, statisti-
cal quantities are computed in order to bring knowledge about the variable of interest w.r.t. a
decision criteria. On the one hand, one might be interested in its general probabilistic behav-
ior by computing its mean, variance or median for example. On the other hand, one might be
interested in more specific zones of the pdf such as its tails in order to quantify its extreme be-
havior. For instance, small failure probabilities or high-order quantiles are common quantities used
for safety assessments. Such statistical quantities will be referred to as the Quantities of Interest
(QoI). As this thesis focuses on the robustness of safety assessments, the last two QoIs will be
studied, in particular small failure probabilities.

By conventionally defining failure as the event that the variable of interest z exceeds a given
threshold zth ∈ R, the limit-state function (LSF) g (·) is defined as follows:

g(x) = zth − z. (2.4)

The LSF separates the input domain into a failure domain Fx and a safety domain Sx such that:

Fx = {x ∈ DX | g (x) ≤ 0} (2.5a)
Sx = {x ∈ DX | g (x) > 0} . (2.5b)

The frontier between both domains, referred to as the limit-state surface (LSS), represents a hy-
persurface in RnX defined by F 0

x = {x ∈ DX | g (x) = 0}. The failure probability Pf can then be
defined, in an equivalent manner, as:

Pf = P (g (X) ≤ 0) = P (X ∈ Fx) =
∫

Fx

fX (x) dx =
∫

RnX
1Fx (x) fX (x) dx = E fX [1Fx (X)] . (2.6)

The common “Resistance - Sollicitation” (R− S) example is used here and in the next sub-
section in order to compare uncertainty propagation techniques in the different frameworks.
This example simply represents the failure event as a resistance variable X1 = R being lower
than a load variable X2 = S. The limit-state function is therefore described as g (R, S) =
R − S. Here, it is considered that both variables follow normal distributions such that R ∼
N (µR = 100, σR = 10) and S ∼ N (µS = 70, σS = 7). In this trivial case, the failure probability
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can be evaluated analytically such that:

Pf = Φ


 µS − µR√

σ2
R + σ2

S


 = Φ (−βc) (2.7)

where Φ (·) is the cdf of the Gaussian distribution and βc is called the Cornell reliability index
(Lemaire et al., 2009). The numerical application gives Pf = 6.99× 10−3.

However, the possibility of such analytical evaluation is rarely encountered in real engineer-
ing problems. Instead, several techniques have been developed in the past decades in order to
estimate Eq. (2.6). The following subsection aims at presenting the most encountered ones when
evaluating small failure probabilities associated to rare failure events.

2.3.3 Rare-event probability estimation techniques

Many different study configurations may be encountered in reliability analyses. Indeed, the
estimation of failure probabilities depends on many factors such as:

• the (unknown) order of magnitude of the targeted failure probability;

• the computational time of the simulation modelM (·);

• the number of random variables nX;

• the complexity of the dependency between the nX random variables;

• the degree of nonlinearity of the LSF and the possibility for multiple failure regions;

• the possibility of parallelizing the computation of the simuation model.

As a consequence, there exists quite a large panel of techniques for estimating small failure
probabilities (Morio and Balesdent, 2015). What follows only represents a reduced description of
the techniques that will be involved in the next chapters. After introducing the notion of trans-
formation into the standard normal space, the basic technique of Crude Monte Carlo sampling is
described. Then, four advanced techniques are presented, namely most-probable-failure-point-
based techniques, importance sampling, subset simulation and line sampling.

Physical space to standard normal space mapping

The original physical space, called “X-space”, may contain a mixture of different marginal
distributions that possibly represent quantities with different scales. Although it will rarely be
the case in this thesis, there can also be more or less complex dependencies among the random
variables to be accounted for which can be modeled through the use of various copulas (see
Nelsen (2006) and Lebrun (2013)). All put together, working directly in the X-space may be
a challenging task for uncertainty propagation techniques and, therefore, for reliability assess-
ments.

In that view, transformations have been considered and applied in order to map the X-space
into the so-called standard normal space, also called “U-space”, in which each random variable
is independent from the others and follows a standard Gaussian distribution (such that its mean
is 0 and its standard deviation is 1). Selecting Gaussian distributions gives interesting mathe-
matical properties to the U-space and the transformation must be isoprobabilistic to ensure that
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the probabilities of the failure event are identical in both spaces. This transformation T is defined
as the C1-diffeomorphism:

T : RnX → RnX

X→ T (U) .
(2.8)

This transformation is invertible such that one may switch back to the X-space applying
X = T−1 (U). Depending on the characteristics of the joint pdf fX, there exists several transfor-
mations, the most famous ones being the Nataf (Nataf, 1962) and Rosenblatt (Rosenblatt, 1952)
transformations. When the physical variables are independent, this transformation is unique
and expresses simply as:

T = Tvu ◦ Txv : DX → [0, 1]nX → RnX

x → v = FX (x) → u = Φ−1 (v) .
(2.9)

Therefore, reliability analysis can also be performed in the standard normal space by consid-
ering the failure event Fu = {u ∈ RnX , G(u) ≤ 0} where G = g ◦ T−1 and by keeping in mind
that P (X ∈ Fx) = P (U ∈ Fu). This standard normal space plays an important role for some
sampling and approximation techniques presented hereafter, which either use this space intrin-
sically (FORM-importance sampling, line sampling, directional simulation) or are implemented
preferentially in it (subset simulation).

Crude Monte Carlo sampling

Crude Monte Carlo (CMC) sampling (Metropolis and Ulam, 1949) is probably the most
straightforward and natural method to estimate a failure probability as it only requires a random
number generator and the ability to evaluate the computer code. The method aims at estimating
Eq. (2.6) by generating samples from the joint pdf fX. The estimation P̂f can be obtained by gen-
erating nCMC i.i.d. samples

(
x(i)
)

1≤nCMC
according to fX and evaluating the proportion of failure

samples by the following empirical mean:

P̂f =
1

nCMC

nCMC

∑
i=1

1Fx

(
x(i)
)

. (2.10)

Let us note that this estimator is a random variable itself which asymptotically tends to the
true failure probability as nCMC gets larger. This is a result of the law of large numbers. The
convergence rate of the estimator can be assessed through its corresponding variance estimator:

V̂ar
[

P̂f

]
=

1
nCMC

P̂f

(
1− P̂f

)
. (2.11)

An illustration of CMC is given in Figure 2.1 in the X-space (A) and in the U-space (B) with
104 generated samples. The isoprobabilistic nature of the “X to U” transformation implies the
same number of failure points (the six red points) in both spaces. Let us note that, although
giving the same results, there is no practical benefit in applying CMC to the standard normal
space. Generally, CMC is performed in the physical space.

This basic technique has been widely applied in many different fields (Liu, 2001). However,
CMC blindly explores the probabilistic space and is therefore not adapted for rare event simula-
tions as a huge number of samples is required. As a rule of thumb, a failure probability of order
of magnitude 10−m requires around 10m+2 samples to be estimated with a targeted coefficient of
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FIGURE 2.1: Crude Monte Carlo in the X-space (A) and in the U-space (B).

variation of 10%. This issue is particularly limiting for assessing small failure probabilities (e.g.
< 10−6) even when the computer code is fast to evaluate.

Most-Probable-Failure-Point-based estimators

Unlike sampling methods, most-probable-failure-point (MPFP) techniques aim at addressing
the failure domain by determining the point belonging to the LSS with the highest probability
density in the standard normal space. When working in the standard normal space, this point
simply corresponds to the closest one from the origin that belongs to Fu. Therefore, the MPFP
of coordinates u∗ is obtained by solving the following optimization problem:

u∗ = arg min
u∈RnX

(
u>u

)
s.t. G (u) ≤ 0. (2.12)

Note that the corresponding point in the physical space is obtained by x∗ = T−1(u∗). The
optimization problem is more or less challenging depending mainly on the nonlinearity of the
limit-state function. Different solvers have been proposed in that matter (Rackwitz and Fiessler,
1978; Zhang and Der Kiureghian, 1994). The distance of u∗ to the origin is the so-called Hasofer-
Lind reliability index βHL = ‖u∗‖ (Hasofer and Lind, 1974). Moreover, the unit vector that
points towards the MPFP is defined as:

α = − ∇uG (u∗)
||∇uG (u∗)|| =

u∗

βHL
(2.13)

where ∇ (·) is the gradient operator.
The MPFP plays a central role in many failure probability estimators and in particular in the

first order reliability method (FORM) and the second order reliability method (SORM). FORM
consists in linearizing the LSF through its first-order Taylor series expansion around the MPFP
such that:

G(u) ≈ G1(u) = G(u∗) +∇uG (u∗)> (u− u∗) . (2.14)

Recalling that G(u∗) = 0 by definition, one obtains the FORM estimator Pf as:

Pf ≈ PFORM
f = P (G1(U) ≤ 0) = P

(
G1(U)

||∇uG (u∗)|| ≤ 0
)
= P

(
βHL − α>U ≤ 0

)
. (2.15)
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FIGURE 2.2: Graphical representation of FORM.

Finally, by noticing that α>U follows the standard Gaussian distribution, the approximation of
the true failure probability yields:

PFORM
f = Φ (−βHL) . (2.16)

An illustration of FORM is given in Figure 2.2. The accuracy of the approximation naturally
depends on the degree of nonlinearity of the LSF.

SORM was proposed as an extension of FORM for reducing its approximation error due the
nonlinearity of the LSF. Similarly, the LSF is approximated through its Taylor series expansion
but truncated at the second-order. The SORM approximation is not as straightforward as the
FORM estimator and is therefore not presented here. However, the reader is referred to the
three SORM estimation methods proposed by Tvedt (1990), Breitung (1984) and Hohenbichler
and Rackwitz (1988).

In addition to the nonlinearity issue, the FORM and SORM approximations, as presented
above, focus on a single MPFP. However the MPFP may not be unique in some applications.
More generally, the probabilistic space may contain several failure domains in different loca-
tions. This information is often not available as it requires knowledge about the LSF (and
therefore about the potentially expensive-to-evaluate compute code). In such cases, FORM and
SORM may perform poorly. Procedures based on repeated FORM analyses have been proposed
in that case in order to identify the different failure regions (Der Kiureghian and Dakessian,
1998).

Importance sampling

The idea of importance sampling is to reduce the variance of CMC by sampling according to
an instrumental distribution hX which will yield more failure samples than the initial distribu-
tion fX. This instrumental distribution can simply be integrated into the expression of the failure
probability in Eq. (2.6) as follows:

Pf =
∫

RnX
1Fx (x) fX (x) dx =

∫

RnX
1Fx (x)

fX (x)
hX (x)

hX (x) dx = EhX [1Fx (X)wX(X)] (2.17)
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FIGURE 2.3: Importance sampling in the X-space (A) and in the U-space (B).

where wX(x) = fX (x) /hX (x) is called the likelihood ratio. As with CMC, the expectation for-
mulation can be estimated with nIS samples generated from hX:

P̂f =
1

nIS

nIS

∑
i=1

1Fx

(
x(i)
)

wX

(
x(i)
)

. (2.18)

This estimator is unbiased and its corresponding variance may also be estimated as:

V̂ar
[

P̂f

]
=

1
nIS − 1

(
1

nIS

nIS

∑
i=1

1Fx

(
x(i)
)

wX

(
x(i)
)2
− P̂2

f

)
. (2.19)

It is important to note that the same formulations hold in the standard normal space. Figure
2.3 illustrates the samples generated by an instrumental distribution based on the MPFP in the
physical and standard normal spaces. There is almost as many failure samples as safe samples
which enables to considerably accelerate the convergence of the estimator compared to the one
obtained from CMC.

The performance of this technique totally depends on the choice of the instrumental pdf hx.
The theoritical optimal pdf in the physical space h∗X is given as (Bucklew, 2004):

h∗X (x) =
1Fx (x) fX (x)

Pf
. (2.20)

An equivalent expression holds in the standard normal space. This formulation is not directly
usable in practice as it depends on the failure probability to be estimated. Instead, sub-optimal
densities may be constructed based on three main categories:

• nonadaptive IS density based on the MPFP (see Figure 2.3);

• parametric adaptive IS based on the MPFP or using cross-entropy (Rubinstein and Kroese,
2004);

• nonparametric adaptive IS (Morio, 2011).

Throughout this thesis, IS will be performed considering an instrumental distribution con-
structed around the MPFP point, more precisely a standard multinormal distribution. This
method is usually called FORM-IS (Melchers, 1989) since the MPFP is obtained via FORM.
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FIGURE 2.4: Graphical representation of the subset simulation procedure.

Subset simulation

The subset simulation (SS) technique (Au and Beck, 2001) is one of the multiple variants
of multilevel splitting designed for reliability assessment. This technique consists in reducing
the variance of the failure probability estimator by splitting the failure event into a series of
failure nested events with higher probabilities of occurrence. Thus, each probability is easier to
estimate.

Formally, by working in the U-space, the initial failure domain Fu is split into m nested
failure subdomains Fu,n with n = 1, · · · , m such that Fu,n ⊂ Fu,n−1. Each failure subdomain is
defined with an intermediate threshold such that Fu,n = {u ∈ RnX , G(u) ≤ zn} with z1 > z2 >
· · · > zm = 0. By considering successive conditional probabilities, the failure probability reads:

Pf = P (Em)

= P (Em|Em−1)P (Em−1)

= p1

m

∏
n=2

pn

(2.21)

where En = {u ∈ Fu,n} is the event associated to Fu,n, p1 = P (E1) = EϕnX

[
1Fu,1 (U)

]
with ϕnX

being the nX-dimensional standard Gaussian pdf and pn = P (En|En−1) = EϕnX (·|En−1)

[
1Fu,n (U)

]

is an intermediate failure probability.
The estimator of Eq. (2.21) is given by:

P̂f = p̂1

m

∏
n=2

p̂n. (2.22)

Dedicated Monte Carlo Markov Chains algorithms, such as the standard Metropolis-Hastings
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(Metropolis et al., 1953; Hastings, 1970), are used for efficiently sampling the conditional events
En|En−1. Figure 2.4 illustrates an example of three intermediate LSFs with corresponding sam-
ples that lead to the true LSF (in red). In Au et al. (2007), variants of SS are proposed and tested
on specific reliability problems. More recently, the possibility to combine SS with different types
of metamodels has been particularly explored (Bourinet et al., 2011; Papadopoulos et al., 2012;
Huang et al., 2016; Bect et al., 2017; Bourinet, 2016).

Line sampling

Line sampling (LS) technique (Koutsourelakis et al., 2004; Koutsourelakis, 2004), also known
as “Axis-Orthogonal Simulation” (Tvedt, 2005), belongs to the family of directional techniques
(similarly to directional sampling (Bjerager, 1988) which is not reviewed in this manuscript).
It consists in dividing the nX-dimensional failure probability evaluation problem into nLS one-
dimensional failure probability evaluation problems. Firstly, samples belonging to a hyperplane
orthogonal to a direction α that points towards the LSS are generated. The technique is per-
formed in the standard normal space. By applying an isoprobabilistic rotation R such that
V = RU, where V1 is a standard random variable whose outcome is parallel to α and V2:n = U⊥α
is a random vector (of size (nX− 1)) whose realization lies in the hyperplane orthogonal to α, the
failure probability can be expressed as follows:

Pf =
∫

RnX−1

∫

G⊥(v1,u⊥α )≤0
ϕ (v1) dv1ϕU⊥α

(
u⊥α
)

du⊥α (2.23)

where G⊥
([

v1, u⊥α
])

is the LSF in the rotated space and ϕ (·) = is the pdf of the standard normal
distribution. Assuming that, for any u⊥α , r

(
u⊥α
)

(“r” standing for “root”) is the unique solution
of G⊥

(
v1; u⊥α

)
= 0 , the failure probability can finally be expressed as:

Pf =
∫

RnX−1
Φ
(
−r
(

u⊥α
))

ϕU⊥α

(
u⊥α
)

du⊥α = EU⊥α

[
Φ
(
−r
(

u⊥α
))]

. (2.24)

When sampling nLS points that belong to the orthogonal hyperplane, the estimation of the failure
probability and its corresponding variance can be estimated as follows:

P̂f =
1

nLS

nLS

∑
i=1

p(i)f (2.25)

V̂ar
(

P̂f

)
=

1
nLS (nLS − 1)

nLS

∑
i=1

(
p(i)f − P̂f

)2
(2.26)

where p(i)f = Φ
(
−r
(

u⊥,(i)
α

))
= Φ

(
−r(i)

)
is the conditional failure probability along the (i)th-

line. A graphical representation of the LS procedure is given in Figure 2.5 which presents 50
orthogonal samples and, therefore, 50 lines parallel to α. Each root r(i) separates the correspond-
ing line into the one-dimensional safe domain (in green for v1 < r(i)) and the one-dimensional
failure domain (in red for v1 ≥ r(i)).

The selected direction α plays a key role on the convergence speed of the LS estimator. The
optimal direction is generally the one that points towards the MPFP already defined as the vector
α in the paragraph related to MPFP-based estimators. Therefore, performing a FORM analysis is
common before applying the LS technique. However, it is important to mention that assessing
the optimal direction is not a requirement but only a way to accelerate the convergence, in the
same idea that IS can be performant (in the sense of variance reduction) even without the true
optimal instrumental density function. Moreover, the direction α can be updated during the
LS process which is one of the features proposed by De Angelis et al. (2015) and referred to
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FIGURE 2.5: Graphical representation of the LS procedure.

as “Advanced Line Sampling” (ALS). The update simply consists in calculating the distance of
each estimated root r(i) from the origin. If the distance is smaller than the one calculated with
the current estimated MPFP, then the estimated MPFP is updated as such as the direction α.

Synthesis on failure probability estimators

In this section, a non-exhaustive list of failure probability estimators has been presented. The
range of the different techniques employed with all of their numerous adaptations reflects the
variety of challenges that the analyst may face when evaluating the probability of rare events.
The recommendation of one technique over others is very application-based. Although its im-
plementation is very straightforward, direct CMC is very limited as soon as failure probabilities
become very small (e.g. smaller than 10−5) even when the LSF is fast to evaluate.

FORM approximation is very efficient in both cases where the LSF has a high degree of linear-
ity in the standard normal space or when only an order of magnitude of the failure probability is
sufficient to the analyst. However, the optimization process does not always guarantee the ob-
tention of the MPFP especially when the LSF is highly nonlinear. In addition, the approximation
around a unique MPFP renders the analysis very localized which may lead to strong underes-
timations of the failure probability in the case of multiple failure regions. However, this risk
can be significantly reduced if appropriate techniques are employed. The main disadvantage of
FORM is that, contrary to the simulation methods, it does not propose any error estimation.

Importance sampling has proven itself highly efficient for reducing the variance of CMC with
the use of an instrumental density. Indeed, sampling according to a well-chosen density enables
to better reach the failure domain and reduce the number of required simulations. A popular
simple choice is to use FORM information and construct a density centered on the MPFP. How-
ever, its performance strongly depends on how close the instrumental density is to the unknown
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optimal density. A bad choice on the instrumental density can even yield a variance worse than
the one obtained with CMC.

Subset simulation enables to transform the initial distant failure region into closer condi-
tional failure regions. As such, it is particularly insensitive to the spread of the failure region
over the entire design space. However, it has generally proven to still require a relatively high
amount of simulations for reaching small variance values for low failure probabilities.

Finally, line sampling, as part of the conditional methods, intelligently transforms the nX-
dimensional failure probability expression into the expectation of a one-dimensional conditional
failure probability. Its convergence improves with the degree of linearity of the LSF. However,
its performance is highly dependent on the direction α and the number of LSF calls necessary
for finding the roots. More specifically, this technique becomes also limited when undetected
failure regions exist.

2.4 Structural reliability within extra-probabilistic frameworks

The probabilistic framework is a very mature and powerful way to model and propagate
aleatory uncertainty. However, the exact knowledge of the joint pdf fX is generally an assump-
tion. Indeed, the definition of the pdf relies on more or less strong hypotheses depending on the
richness of the available information (through expert judgments or experimental data). In that
matter, other uncertainty representations, referred to as extra-probabilistic, have been developed
for cases where information is limited.

Many types of extra-probabilistic models can be found in the literature depending on the na-
ture of the uncertainty and the available information. The following subsections aim at present-
ing some that are considered in this thesis, namely convex models, evidence theory, possibility
distributions and probability box (p-box) models. Their main properties and their application to
reliability analysis are described. The reader is also referred to (Beer et al., 2013; Zio and Pedroni,
2013) for a clear overview of the different uncertainty models that exist and to the references in
each subsection for more details about each of them. In order to maintain a coherence with the
rest of the thesis, the variables that are modeled by such representations are described by the
vector Y = (Y1, · · · , YnY)

>.

2.4.1 Convex model

Convex models (Ben-Haïm and Elishakoff, 1990) are a non-probabilistic representation of
uncertainty in the sense that they consider sets without any assigned notion of measure. Their
use is justified through the fact that only limited information is needed to construct them which
is, in many engineering applications, more relevant than adding probability assumptions (Wang
et al., 2008).

The construction of a convex set relies on the marginal intervals IYi of each epistemic variable
Yi plus some correlation information which will define the shape of the set. When no correlation
is considered, the convex set reduces to the interval representation. Different types of convex
sets have been developed in order to account for correlations such as the ellipsoid model (Zhu
et al., 1996; Luo et al., 2008; Kang and Zhang, 2016). More recently, the multidimensional paral-
lelepiped model (Jiang et al., 2014; Ni et al., 2016; Zheng et al., 2018) has been proposed in order
to model uncorrelated and correlated variables in a common framework.

In this thesis, a convex model is denoted as C (IY, ρY) where IY is the Cartesian product of
each marginal interval IYi and ρY quantifies the correlation between each epistemic variable. As
the input variables are modeled through a non-probabilistic convex set, the output QoI is a non-
probabilistic interval which may be obtained through optimization, discretization or applying
the “vertex” method (Dong and Shah, 1987).
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FIGURE 2.6: Illustration of the interval and parallelepiped convex models on the R− S problem.

The R− S example is treated by considering the parallelepiped model C (IY, ρY) with IR =
[80, 120], IS = [50, 90] and ρRS = 0 (interval model) or ρRS = 0.2. The shapes of both sets
are shown in Figure 2.6. One can see that the interval model contains the failure domain F as
IR−S = [−10, 70] while the reduced set corresponding to ρRS = 0.2 escapes the failure domain
with IR−S = [3.33, 57.67].

2.4.2 Evidence theory

Evidence theory (also called Dempster-Shafer (DS) theory) (Dempster, 1967; Shafer, 1976)
aims at relaxing the probabilistic framework by assigning probability masses to subsets of the
uncertain variables instead of singletons. The subsets Ai of the power set Ω (Yi) are called “fo-
cal sets” on which the basic probability assignment (BPA) is applied through the following mass
function m:

m :
∣∣∣∣

Ω (Yi) −→ [0, 1]
Ai −→ m (Ai) s.t. ∑A∈Ω(Yi) m (Ai) = 1. (2.27)

Two measures can then be defined, namely the “belief function” Bel (·) and the “plausibility
function” Pl (·), that bound the realization of any event E:

Bel (E) = ∑
Ai⊆E

m (Ai) (2.28a)

Pl (E) = ∑
Ai∩E 6=∅

m (Ai) . (2.28b)

The belief measure can be seen as a lower probability of the event E as it adds up all the masses
of each focal set that is entirely contained in E. The plausibility measure, on the other hand, can
be seen as an upper probability as it adds up all the masses of each focal set that has at least one
element in E. When the focal sets are singletons, the belief measure is equal to the plausibility
measure and evidence theory reduces to probability theory. When there is only one focal set, it
reduces to the interval representation.

Evidence theory has been widely used for reliability analysis such as in Jiang et al. (2013)
or in Zhang et al. (2014) where it is combined with FORM and SORM methods. Indeed, when
considering the failure event F = {Z ∈ ]−∞, 0]}, the belief and plausibility measures yield
bounds on the failure probability. To estimate these bounds, the focal sets Z of the LSF are
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obtained by evaluating its extreme values in each interval obtained from the joint BPA of the
inputs. Then, the bounds on the failure probability are calculated as follows:

Pf = Bel (F ) = ∑
Z⊆F

m (Z) (2.29a)

Pf = Pl (F ) = ∑
Z∩F 6=∅

m (Z) . (2.29b)

The procedure is illustrated on the R − S example. Table 2.1 presents the focal sets and
corresponding BPA of both input variables and of the LSF. The maximum probability is then

TABLE 2.1: BPA of R (top line), BPA of S (left column) and extreme values of g (R, S) at each joint BPA
(all the rest).

S
R [80, 85]

0.05
[85, 90]

0.05
[90, 100]

0.4
[100, 110]

0.4
[110, 115]

0.05
[115, 120]

0.05
[50, 60]

0.1
[20, 35]
0.005

[25, 40]
0.005

[30, 50]
0.04

[40, 65]
0.04

[50, 65]
0.005

[55, 70]
0.005

[60, 70]
0.3

[10, 25]
0.015

[15, 30]
0.015

[20, 40]
0.12

[30, 55]
0.12

[40, 55]
0.015

[45, 60]
0.015

[70, 80]
0.5

[0, 15]
0.025

[5, 20]
0.025

[10, 30]
0.2

[20, 45]
0.2

[30, 45]
0.025

[35, 50]
0.025

[80, 85]
0.09

[−5, 5]
0.0045

[0, 10]
0.0045

[5, 20]
0.036

[15, 35]
0.036

[25, 35]
0.0045

[30, 40]
0.0045

[85, 90]
0.01

[−10, 0]
0.0005

[−5, 5]
0.0005

[0, 15]
0.004

[10, 30]
0.004

[20, 30]
0.0005

[25, 35]
0.0005

obtained by summing all the probability masses for which the corresponding interval has at
least one element that belongs to the failure domain (which corresponds to the lower bound
being lower or equal to zero) and the minimum probability is obtained by summing all the
probability masses for which all the elements of the corresponding interval belong to the failure
domain (which corresponds to the upper bounds being lower or equal to zero). Here, the results
are Pf = 0.025 + 0.0045 + 0.0045 + 0.0005 + 0.0005 + 0.004 = 3.9× 10−2 and Pf = 5× 10−4.

2.4.3 Possibility theory

Possibility theory (Zadeh, 1967; Dubois and Prade, 1980) is a special case of evidence theory
where focal sets are nested. In analogy with probability theory, it is defined with the following
possibility distribution function π:

π : Ω (Y)→ [0, 1] s.t. sup
y∈Ω(Y)

π (y) = 1. (2.30)

It follows the definition of the possibility Pos (·) (also denoted as Π (·) in the literature) and
necessity Nec (·) (also denoted as N (·) in the literature) measures for any subset A ⊂ Ω (Y):

Pos (A) = sup
y∈A

π(y) (2.31a)

Nec (A) = inf
y/∈A

(1− π (y)) = 1− Pos (Ac) (2.31b)
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FIGURE 2.7: Illustration of the possibility distributions for the R− S problem.

where Ac is the complementary event of A. So-called α-cuts are commonly associated to a pos-
sibility distribution as they represent nested confidence intervals with the following expression:

[
y

α
, yα

]
= {y, π (y) ≥ α} . (2.32)

The extension principle developed by Zadeh (1967) enables to propagate possibility distribu-
tions through M (·) in order to evaluate the possibility distribution on the variable of interest
Z =M (Y):

πZ (z) =

{
sup {min (π1(y1), · · · , πnY(ynY))|M (y1, · · · , ynY) = z} ifM−1 (z) 6= ∅,
0 otherwise.

(2.33)

Therefore, possibility distributions may also be propagated through the LSF in the context of
reliability analysis. The variable of interest is also described with its corresponding possibility
function on which the bounds of the failure probability are estimated as follows:

Pf = Pos
(
Fy
)
= sup

z∈Fy

πZ(z) (2.34a)

Pf = Nec
(
Fy
)
= inf

z/∈Fy
(1− πZ (z)) (2.34b)

The R − S example is considered by assigning a triangular possibility function to R and
a trapezoidal possibility function to S. As shown in Figure 2.7, this elementary case yields a
trapezoidal possibility distribution of the LSF. The bounds on the failure probability are Pf ∈
[0, 0.29].
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2.4.4 Probability boxes

The probability box (p-box) framework assigns an imprecise cdf to the uncertain variable Yi.
The true, yet uncertain cdf FY, is bounded by an upper one FY and a lower one FY such that:

FY (y) ≤ FY (y) ≤ FY (y) . (2.35)

Two groups of p-boxes are distinguished, namely “free p-boxes” and “parametric p-boxes”. Free
p-boxes do not make any further assumptions other than the bounds on the true cdf. Any shape
that respects the bounds and the properties of a cdf is possible. Parametric p-boxes assume that
the distribution type is known or, at the very least, belongs to a parametric family. The uncer-
tainty lies in the parameters of the distribution (e.g. mean and variance) that are modeled using
simple intervals. Therefore, at equal cdf bounds, parametric p-boxes are more informative than
free p-boxes by adding the information concerning the distribution type. A comparison between
free and parametric p-boxes in the context of surrogate modeling for reliability assessment is
given in Schöbi and Sudret (2017).

Many uncertainty models can be represented as free p-boxes. Indeed, by considering the
event {Y ≤ y}, plausibility and necessity measures can be seen as lower cdfs while belief and
possibility measures can be seen as upper cdfs. Probability theory is retrieved when FY = FY.

Monte Carlo sampling with free p-box variables can be performed by using inverse sampling
as shown by Zhang et al. (2010). With parametric p-box variables, the bounds on the failure prob-
ability are obtained through optimization in the uncertain space of the distribution parameters
(Balesdent et al., 2016). A review on more advanced techniques used to reduce the computa-
tional burden when propagating free and parametric p-box variables is available in Faes et al.
(2021).

The R − S example is taken here by considering that R ∼ N (µR ∈ [95, 100] , σR = 10) and
S ∼ N (µS = 70, σS ∈ [5, 9]). The induced p-boxes are depicted in Figure 2.8 as well as the
resulting p-box on Z = R− S considering both free and parametric cases. The p-box obtained
from the parametric representation is contained in the one obtained from the free representation.
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FIGURE 2.8: Illustration of the probability boxes for the R− S problem.
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The reason here is that the free representation allows to consider the upper and lower cdf on S
which do not correspond to parametric Gaussian cdf (but rather to the combination of both
Gaussian cdf at σS = 5 and σS = 9). In this case, Pfree

f ∈
[
6.90× 10−4, 3.18× 10−2] and Ppara.

f ∈[
8.73× 10−4, 3.16× 10−2].

2.5 Links between the various uncertainty representations

As already mentioned in the case of p-box representation, many of these uncertainty models
are closely related in the context of structural reliability. Figure 2.9 (originally proposed in Ajenjo
et al. (2022)) summarizes these links that either represent a gain of information or a path from a
model to another. Each number has the following meaning:

1. Bounding Y in
[
Y, Y

]
;

2. Add the information of dependency with a convex model and its coefficient of correlation;

3. Assigning weights to subsets of the interval with the mass function m (·);
4. Assigning a possibility distribution π (·) in the interval;

5. YL = YU ;

6. Bounding the cdf FY in
[
FY, FY

]
;

7. Add the information about the probability law;

8. FY = FY;

9. FY = Pl (Y ≤ y) and FY = Bel (Y ≤ y) (see Baudrit and Dubois (2006) for more informa-
tion);

10. Discretizing the support of the distribution into disjoint intervals of weight m (]yi, yi+1]) =
mi = P (Y ∈ ]yi, yi+1]) (see Baudrit and Dubois (2006) for more information).;

11. FY = Nec (Y ≤ y) and FY = Pos (Y ≤ y) (see Baudrit and Dubois (2006) for more infor-
mation);

12. Discretizing the possibility distribution into nested intervals by equally discretizing the
α-axis and assigning the weight mi = αi − αi+1 to the corresponding interval

[
yi, yi

]
which

is the αi-cut (see Baudrit and Dubois (2006) for more information).

The figure can be read from top to bottom in terms of added information where a solid line
represents the path from a less informative model to a more informative one. The dotted lines
represent a path from a model to another without adding information. Note that a solid line
could be added from the interval to the probability boxes but has been removed here to make
the diagram easier to read.

Two groups of models may be distinguished in the diagram. On the left side, the uncertainty
representations are interval-based. If no information is added to the bounds of the epistemic
variables, the interval model and more generally the convex model may be used. DS struc-
tures and possibility distributions enable to divide the initial interval into more or less plausible
smaller intervals based on expert knowledge. These representations reduce to a determinis-
tic value with no epistemic uncertainty. On the right side, the uncertainty representations are
probability-based. The path of information goes from the free to the parametric p-box represen-
tations and finally reduces to the purely probabilistic representation. Although these two groups
of models seem to be built on different theoretical frameworks, the dotted lines show how they
may be related in the context of reliability. These relations will be further discussed in Chapter
5.
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FIGURE 2.9: Diagram of the links between various uncertainty representations (solid lines ≡ added in-
formation, dotted lines ≡ no information added).

2.6 Synthesis

The framework of structural reliability in which this thesis falls has been presented. Al-
though the overall formulation of structural reliability is well identified, the consideration of
different sources and treatments of uncertainty has led to multiple uncertainty representations
and, consequently, to different uncertainty propagation methods.

The probabilistic framework appears to be very mature with a panel of advanced failure
probability estimation techniques which enables the analyst to tackle many different challenges
involved in the evaluation of rare events. However, choosing the right estimation technique is
not always straightforward especially when poor information about the LSF is available. QoIs
such as failure probabilities and quantiles are increasingly considered in safety standards.

Nevertheless, their values remain the end part of an idealized framework with successive
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assumptions. In particular, the probabilistic assumptions involved in the uncertainty quantifica-
tion step have been pointed out leading to alternative representations, some of which have been
succintly introduced in this chapter. Although bringing alternatives, the variety of available
methods might confuse the analyst. Indeed, it does not seem trivial to identify unambiguously
which uncertainty model and uncertainty propagation tool should be chosen.

In addition, multiple sources of uncertainty often exist within a same analysis which leads
to the consideration of hybrid reliability analysis (HRA). There is therefore a need for a common
uncertainty propagation framework. Some links between different uncertainty models have
already been discussed. Chapter 4 will enhance these links with the use of a unifying framework
referred to as random set theory. Before that, the next chapter aims at presenting the reliability
analyses relevant to the two industrial application cases which motivated the work presented in
this thesis.
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3.1 Objectives

As mentioned in the introduction, this thesis is motivated by two industrial application cases
that are relevant to the energy supplier EDF. Indeed, the large panel of industrial assets operated
by EDF provides examples of physical systems for which both performance and safety are of
major concerns. Moreover, the general complexity of these systems together with the rareness
of the events for which safety analyses are conducted represent typical cases for which multiple
sources of uncertainty, as introduced in Chapter 2, need to be accounted for.

This chapter is divided into two main sections that correspond to the presentations of the
reliability of penstocks and the reliability of nuclear plant thermal-hydraulic systems w.r.t. a
loss-of-coolant accident scenario, respectively. The main objectives are:

1. to describe in detail the industrial contexts that lead to the deployment of robustness anal-
ysis on the reliability assessments;

2. to describe in detail the reliability framework relevant to each analysis and the tools that
are currently used for evaluating the corresponding QoIs. This is important in order to
identify the challenges that the robustness analyses will have to face and, consequently, to
justify the different methodologies that will be proposed in the next chapters.

3.2 Reliability of penstocks

3.2.1 Industrial context

The first industrial application case concerns the reliability study of penstocks for which the
interested reader is referred to Ardillon et al. (2018), Bryla et al. (2020), and Ardillon et al. (2022)
for further details than those provided in this section. Penstocks represent an assembly of pipes
made of steel used to transport water under pressure from the water dam to the hydroelectric
turbine. An example of such structure is given in Figure 3.1. EDF operates more than 500
penstocks in France representing a total length of over 300 km. Most of them were industrialized
during the 20th century after the use of many different manufacturing processes.

Due to thickness loss resulting from corrosion and to the propagation of structural defaults
resulting from the welding process, their mechanical integrity must be justified at all time. The
usual justification relies on diagnoses involving non-destructive thickness measurements and
material properties characterizations. Then, a deterministic margin factor (MF) is evaluated as
the ratio of an allowable mechanical stress over the mechanical stress present in the pipe during
operation. The penstock is considered as “fit for service” if this ratio is greater that one.

The evaluation of MF depends on many variables which mainly pertain to mechanical and
geometrical properties which are very sparse due to the different manufacturing processes.
Therefore, the mechanical integrity needs to be justified for a very large panel of penstocks with
different characteristics which justifies the need of a numerical mechanical model.

3.2.2 Mechanical model for penstocks

The MF is evaluated as the ratio between the allowable stress σa and the operational stress σo
both expressed as:

σa = min
(

Re

1.5
;

Rm

2.4

)
(3.1a)

σo =
PR
e

(3.1b)
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FIGURE 3.1: Example of a penstock operated by EDF.

where Rm is the tensile strength, Re is the yield strength, P is the real-time controlled operating
pressure in the pipe, R is the radius of the pipe and e is the thickness of the pipe. As mentioned
previously, the thickness decreases through the years due to corrosion such that the resulting
thickness at year N can be expressed as:

e(N) = enom + ∆eextra − ∆ecorr(N) (3.2)

where enom is the targeted manufacturing thickness, ∆eextra is the extra thickness brought by
the manufacturing process and ∆ecorr(N) is the thickness lost after N years due to corrosion. A
linear relationship is considered between the yield strength Re and the tensile strength Rm such
that:

Rm = ARe − B + ε (3.3)

where A and B are two positive real numbers and ε represents the error due to the linear ap-
proximation.

Despite non-destructive measurements being performed, the values of Rm (and consequently
Re), e and ε are not precisely known for each penstock. These variables are modeled through
probabilistic distributions built upon the data obtained from these measurements and expert
judgment. The historical approach to treat these uncertainties is to evaluate MF in a penalized
configuration by affecting to all three variables the value Xpen = µX − γσX where µX is the
mean of the random variable, σX is the standard deviation of the random variable and γ is the
penalization coefficient. In practice, the value γ = 2 is often used which corresponds to the 2.5%
quantile.

3.2.3 The reliability model of penstocks

The approach described above considers uncertainty but propagates it through the mechan-
ical model in a deterministic and conservative way. Hence, a reliability assessment model was
developed for estimating failure probabilities at different values of γ. This semi-probabilistic
approach aims at determining, for a given configuration of penstock, the value of γ that leads
to a specific failure probability (e.g. 10−6) in order to evaluate the degree of conservatism (or
potential overestimated safety) obtained with the value γ = 2. The reliability analysis is divided
through the consideration of two failure modes:



32 Chapter 3. Motivating industrial application cases

TABLE 3.1: Input probabilistic modeling of X for the penstock use-case.

Xi Distribution param. 1 param. 2 param. 3
X1 = Rm (MPa) Lognormal µRm σRm -
X2 = ε (MPa) Normal µε µε.ω -
X3 = ∆ecorr (mm) Normal µ∆ecorr σ∆ecorr -
X4 = ∆eextra (mm) Normal µ∆eextra σ∆eextra -
X5 = a (mm) Uniform 0 amax -
X6 = KIC (MPa.

√
m) Weibull Min βKIC αKIC γKIC

• the plastic collapse affecting parent metal;

• the brittle failure affecting welds.

Both are described in more details hereafter.

The plastic collapse failure mode

This failure mode, taken from the standard in (BS7910, 2015), is defined as the operating
circumferential stress σo taking higher values than the flow stress σf expressed as:

σf = min
(

Rm + Re

2
; 0.85Rm

)
. (3.4)

The following LSF that was made independent from the in-service pressure and the pipe radius
is defined at year N as:

GN (X, ν) = σf −
σa (enom + ∆epen)

MF (enom + ∆e(N))
(3.5)

where ∆e(N) = ∆eextra − ∆ecorr(N), X = [Rm, ∆eextra, ∆ecorr, ε]> is the vector of random variables
and ννν is the vector of deterministic input variables.

The brittle failure mode

The criterion that describes brittle failure is taken from the norm in BS7910 (2015) which
defines an admissible diagram based on the two variables LR = σc/Re and KR = KI/KIC where
KI is the stress intensity factor that depends on the height of the default a and KIC is the tenacity
of the material. The corresponding LSF is expressed at year N as:

GN (X, ν) = KR (X, ν, N)− f (LR (X, ν, N)) (3.6)

where more information about the specific function f (·) can be found in (BS7910, 2015). This
failure mode considers two additional random variables such that X = [Rm, ∆eextra, ∆ecorr, ε, a, KIC]

>.
The distribution characteristics of each random variable is given in Table 3.1.

The failure event is defined as the annual failure probability which means that failure has
not yet occurred at year N but occurs at year N + 1 where the loss of thickness from year
N to year N + 1 is expressed through the variable ∆ean. Therefore, one gets ∆e(N + 1) =
∆eextra − ∆ecorr(N) − ∆ean. By simplifying the notations such that Gi = Gi (X, ννν), the annual
failure probability is expressed as:

Pf = P (GN+1 ≤ 0∩ GN > 0) = P (GN+1.GN ≤ 0) . (3.7)
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FIGURE 3.2: Illustration of typical failure domain encountered in the penstock use case in the standard
normal space and principle of Multiconstraint-FORM used in the FISTARR algorithm.

The equality between the intersection and product formulations comes from the fact that the
failure domain at year N is contained in the failure domain at year N + 1 due to the monotonic
behavior of the LSF w.r.t. time.

It has also been added to the analysis the fact that some penstocks are confronted to a hy-
draulic pressurized test before being operated. Therefore, the annual failure probability becomes
conditioned to the event that the penstock successfully passed the test which is expressed as
GHPT > 0. The conditional failure probability at year N + 1 therefore becomes:

Pf = P (GN+1 ≤ 0∩ GN > 0 | GHPT > 0) (3.8)

which leads to:

Pf =
P (GN+1 ≤ 0∩ GN > 0∩ GHPT > 0)

P (GHPT > 0)
. (3.9)

The numerator in Eq. (3.9) corresponds to the probability of an intersection of three events which
is depicted as the red hatched band in Figure 3.2.

This probability is usually very small (e.g. smaller than 10−6) as a result of a complex nar-
rowed failure domain. Consequently, a panel of failure probability estimators have been imple-
mented to efficiently evaluate the annual failure probability and the annual conditional failure
probability associated to both failure modes.

3.2.4 A panel of dedicated failure probability estimation techniques

The G-functions are a combination of analytical expressions which makes them fast to eval-
uate. Nevertheless, the fact that the failure probabilities to estimate are very small and that they
must be evaluated for a very large number of configurations of penstocks prevents from the di-
rect use of CMC. The techniques of FORM-IS and SS have therefore been used and compared
with CMC results only for “high” (e.g. greater than 10−5) probabilities.

The FORM-IS technique is generally preferred and SS is rather used as a backup technique
for when FORM-IS gives unsufficient precision. When considering the annual failure event
represented as a unique intersection between the events GN+1 ≤ 0 and GN > 0, the FORM
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analysis is applied on GN+1 in order to get the MPFP u∗ in the standard normal space. Then, the
IS instrumental density is defined as a Gaussian distribution centered on the MPFP with unitary
variance.

When considering the conditional annual failure event, the numerator in Eq. (3.9) involves a
double intersection. In this case, sampling around the same MPFP as previously is inefficient as
this point might be far from the failure domain. Instead, a multi-constraint FORM (MCF) analysis
is performed in order to find the closest point u∗MCF which satisfies GN+1 ≤ 0 and GHPT > 0. An
illustration of such a point is given in Figure 3.2. The MCF algorithm is an important part of
the method denoted “FISTARR” (for FORM-IS-Tested Automatically-Rapid seaRch). As the
convergence of the MCF algorithm is not ensured, FISTARR consists in automatically testing an
ordered list of optimization algorithms until the convergence of FORM-IS becomes acceptable.

The optimization algorithms for the MCF analysis are taken from the NLopt Python Library
implemented in OpenTURNS (Baudin et al., 2017). More generally, the different estimation tech-
niques have been implemented in a dedicated software named Persalys Penstock (Ardillon et
al., 2022), which relies on the OpenTURNS library as a numerical background for the reliability
assessment techniques, and which enables to define the different configurations of penstocks
and the reliability analysis. For a majority of configurations, convergence is achieved within a
few seconds. However, the failure probability of some configurations remains challenging to
evaluate. In Chapter 5, FISTARR will be widely used while Chapter 6 will present an adaptation
of LS algorithm.

3.2.5 Challenge and motivations

The info-gap (IG) robustness framework will be applied on the reliability assessment of pen-
stocks in Chapter 5 and in Chapter 6. Indeed, some variables, especially parameters of probabil-
ity distributions are not always straightforward to quantify. Interesting information would be to
evaluate if some configurations of penstocks are more robust than others to these uncertainties.

Just as the standard penstock reliability analyses, these robustness analyses will imply many
estimations of failure probabilities. Therefore, it will be necessary for the failure probability
estimation technique to be performant both in terms of precision of the estimation and in terms
of computational time.

3.3 Reliability of thermal-hydraulic systems during a loss-of-coolant
accident

3.3.1 Industrial context

France is certainly one of the countries that has the most invested in civil nuclear facilities
for electricity production as it is responsible for around 70% of the total national production.
EDF, being the historical French electricity producer, operated nowadays 56 nuclear reactors of
different capacities. This industrial sector is clearly at the center of many societal, political and
scientific debates as it offers an unparalleled carbon-free way of generating electricity at potential
risks that have already proven to be devastating. The commissioning and decommissioning of
nuclear power plants are therefore strongly regulated, in particular, in France, by the ASN which
imposes safety requirements that EDF must prove to meet with consequent justifications.

One of these requirements concerns the study of the peak cladding temperature of fuel rods
in case of an Intermediate Break Loss-Of-Coolant Accident (IBLOCA) in the primary loop of a
nuclear pressurized water reactor. This accidental scenario is characterized by the rapid depres-
surization of the primary circuit and the loss of a large mass of water in the boiler. Although
the nuclear reactions in the core are automatically stopped, thermal power is still generated af-
ter the shutdown phase, mainly due to the the fission products that remain in the fuel. In this
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FIGURE 3.3: Scheme of the Large Scale Test Facility

situation, a saturation state can be reached in the primary water through the combined effect
of the loss of coolant at the break and the continuous heat production. The main risk from this
temperature rise is the possibility of fusion of the nuclear core if a certain temperature threshold
is reached. The maximum temperature reached during the scenario must therefore be proven to
remain below a critical value to prevent any deterioration of the reactor state.

In this thesis, this accidental scenario will be considered on a reduced model, named LSTF
(Large Scale Test Facility) (Liu et al., 1997) and presented in Figure 3.3. This Japenese facility
aims at simulating a pressurized water reactor that presents a reduced 1/48 volume scale. The
pressure vessel is electrically heated so that it is possible to carry out physical experiments of an
IBLOCA scenario (Mazgaj et al., 2016). The studied use case is related to the ROSA-2/LSTF test
2 which considers a 17% cold leg IBLOCA.

3.3.2 CATHARE2 black-box model

Nuclear systems are typical cases for which performing real experiments becomes quickly
limited. However, they also represent typical systems with many interactions and complex
physics. Conservative simplifications have been used during a long time to justify their op-
erational safety. Yet, the improvements in the modeling of nuclear systems together with the
increasing availability of data enabled to develop numerical simulators that are more represen-
tative of the actual behavior of nuclear installations. This lead to the intensive use of so called
Best Estimate (BE) physical models (D’auria et al., 2006). In France, this resulted in the devel-
opment of the BE code CATHARE (Code Avancé de ThermoHydraulique pour les Accidents de
Réacteurs à Eau) which is jointly developed by the CEA, EDF, Framatome and the IRSN. The
modularity of this code allows the simulation of a wide variety of accidental nuclear transients
and thermal-hydraulic systems (Geffraye et al., 2011).

CATHARE2 is a system code meaning that it can represent a whole installation such as a
nuclear power plant by means of different macroscopic components. These components are
grouped into four main modules, namely pipes (1D flow), volumes (0D flow), a 3D vessel and
boundary conditions. The thermal-hydraulic state of the system during a specific scenario is
simulated by meshing the different components and solving, through an iterative Newton algo-
rithm, a discretized six-equation model based on mass, momentum and energy conservations.
The IBLOCA scenario will therefore be simulated using the code CATHARE2 that provides time
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depending temperature and pressure profiles of the nuclear core assemblies as depicted in Fig-
ure 3.4.
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FIGURE 3.4: Temperature (A) and pressure (B) profiles in the primary during an IBLOCA scenario.

The CATHARE2 code will be referred to as a black-box model due to the complexity of the
mapping between the studied scenario and the resulting variable of interest (the PTC). Moreover,
the required computational time for one IBLOCA scenario can go from half an hour to several
hours. Consequently, useful information such as monotonic behaviors of the PTC w.r.t. to some
variables or sensitivity analysis is not available. The analysis is only based on generated inputs
samples and correspondind evaluated PTCs.

3.3.3 Best-estimate plus uncertainty methodology

The availability of BE models brings along the possibility to treat uncertainty in a more infor-
mative way in order to quantify the safety level of a system. This methodology is called BEPU
(Best Estimate Plus Uncertainty) analysis (D’auria et al., 2012; Wilson, 2013) and has been widely
considered (Iooss and Marrel, 2019; Marrel and Chabridon, 2021; Rollón De Pinedo, 2021).

The modeling of an IBLOCA scenario in pressurized water reactors can involve more than a
hundred input variables which can be classified into three main categories, namely initial and
limit conditions, parameters for physical models and physical correlations and finally scenario
parameters. In the following BEPU analyses applied to the reduced LSTF model, the number of
uncertain input variables is limited to 27 physical correlation parameters. Truncated probabilis-
tic distributions are affected to all random variables based on data and expert knowledge. These
are described in Table 3.2. The safety-related QoI generally consists in estimating a high-order
quantile of the PTC which can be interpreted as a pessimistic value:

qβ = qβ (Z) = inf
{

t ∈ R, FZ (t) ≥ β

100

}
. (3.10)

3.3.4 Challenge and motivations

Although the BEPU methodology represents a step forward in the modeling, the comprehen-
sion and the decision-making process related to nuclear studies, it also brings along assumptions
for which regulatory authorities ask to quantify the impact. In the particular case of IBLOCA sce-
narios, the principal concern lies on the justification of the chosen probabilistic distributions for
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TABLE 3.2: Characteristics of the 27 random variables for the LSTM IBLOCA scenario.

Variable Bounds Distribution Description
X1 [0.74, 1.30] N Departure from nuclear boiling
X2 [−44.9, 63.5] U Minimum film stable temperature
X3 [0.4, 2.0] LN Heat transfer coefficient (HTC) for steam convection
X4 [0.627, 1.259] LN Wall-fluid HTC
X5 [0.259, 0.267] N HTC for film boiling
X6 [0.5, 2] LU HTC forced wall-steam convection
X7 [0.236, 1.412] N Liquid-interface HTC for film condensation
X8 [0.5, 2] LU Wall-steam friction in core
X9 [0.1, 10] LN Interfacial friction: steam generators outlet plena
X10 [0.1, 10] LN Interfacial friction: hot legs
X11 [0.1, 10] LN Interfacial friction: bend of the hot legs
X12 [0.1, 10] LN Interfacial friction: steam generators inlet plena
X13 [0.1, 10] LN Interfacial friction: downcomer
X14 [0.235, 3.45] LN Interfacial friction: core
X15 [0.1, 3] LN Interfacial friction: upper plenum
X16 [0.33, 3] LN Interfacial friction: lower plenum
X17 [0.33, 3] LN Interfacial friction: upper head
X18 [0.1, 10] LN Condensation downcomer
X19 [0, 2] U Condensation cold leg (intact)
X20 [0, 2] U Condensation cold leg (broken)
X21 [0.705, 2.075] N Break flow: flashing (undersaturated)
X22 [0, 12.8] N Break flow: wall-liquid friction (undersaturated)
X23 [0.53, 5.75] N Break flow: flashing delay (undersaturated)
X24 [0.456, 0.53] N Break flow: flashing (saturated)
X25 [11, 16.57] N Break flow: wall-liquid friction (saturated)
X26 [0.554, 21.54] N Break flow: global interfacial friction
X27 [0.85, 45] U Condensation jet

the quantile estimation. The use of more complex mathematical tools such as the ones involved
in uncertainty quantification generally increases the difficulty to justify underlying assumptions
in an interpretable way. It is within this context that the field of robustness analysis applied to
BEPU studies has gained importance. In particular, the Perturbed Law-Based sensitivity Indices
(PLI) framework (Lemaître et al., 2015) has been proposed and applied on quantile estimations
(Sueur et al., 2016; Sueur et al., 2017; Gauchy et al., 2022) and more recently on superquantile
estimations (Iooss et al., 2022). This robustness technique is closely related to sensitivity analysis
as it quantifies the QoI variations w.r.t. perturbations on a nominal choice of the inputs’ distribu-
tions. In Stenger et al. (2020), robustness analysis is performed within the framework of optimal
uncertainty quantification (OUQ) (Owhadi et al., 2013). A maximum quantile is evaluated over
a class of measures with constrained moments.

In this thesis, the IG framework will be adopted in order to quantify the robustness of 95%-
order quantile and 75%-order superquantile (denoted Q75) estimations w.r.t. the uncertainty
affecting the inputs probabilistic assumptions. The application of IG to this industrial case can
be seen as in between the works proposed in the PLI and OUQ frameworks. Indeed, the IG and
PLI frameworks are closely related in the sense that perturbations on the nominal probabilistic
configuration are applied progressively. Moreover, IG is related to the OUQ framework by eval-
uating a worst performance (a maximum quantile or superquantile) in a given uncertainty space
(IG uncertainty models and moment classes in the context of OUQ).

The main challenges affecting the consideration of the IG framework to this application case
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are the computational time needed for one simulated transient (around 30 minutes) and the
number of uncertain variables which adds up to 27. Chapter 7 aims at proposing efficient nu-
merical techniques and relevant IG uncertainty models which enable a feasible and interpretable
quantification of the IG robustness.

3.4 Synthesis

This chapter presented the two industrial cases that motivate the application of IG in this the-
sis. Although both studies concern the robustness assessment of reliability-based evaluations,
they face various but complementary challenges. The penstock application case has the nice
feature of using fast-to-evaluate analytical expressions for formulating the LSFs. However, the
rareness and the complexity of the studied failure event require very performant failure proba-
bility estimation techniques and a consequent number of LSFs evaluations. On the contrary, the
reliability assessment of the PTC during an IBLOCA scenario is not confronted to the complexity
of the failure event but rather to the CATHARE2 simulation model considered as a time-greedy
black box code and to its high input dimension. The differences between the two application
cases are summarized in Table 3.3.

TABLE 3.3: Characteristics of both industrial applications.

Type of M (·)
Unitary
comput.

time
nX + nY QoI

Event’s
rareness

Shape of
failure

domain
Penstock Analytical ≈ 0.3 ms 3− 6 Pf high complex
IBLOCA Black box ≈ 30 min 27 q95, Q75 moderate unknown
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4.1 Motivations

Two real industrial application cases on which safety is measured through reliability assess-
ments were presented in Chapter 3. This chapter aims at introducing the IG framework which
will be applied to quantify the robustness of reliability assessments in the next chapters.

First, Section 4.2 presents a general description of the IG method. Then, Section 4.3 shows
how the IG method may be applied in different contexts of uncertainty to two toy-cases with
the resulting interpretations. Section 4.4 considers the placement of IG within the vast world of
robustness and especially within other reliability-oriented metrics. In Section 4.5, elements are
given for a proposed numerical set of guidelines that may be followed when applying the IG
method to reliability assessments.

4.2 Highlight on the info-gap framework

4.2.1 A non-probabilistic view of robustness

Info-gap stands for “information gap” which is defined as the disparity between what is
known and what needs to be known for taking a satisfactory decision (Ben-Haïm, 2004). The
proposed framework aims at quantifying Knight’s concept of “true uncertainty” for which no
objective measure of probability is available as opposed to risk (Knight, 1921). Therefore, decision-
making based on probabilistic concepts such as the expected utility theory (Neumann and Mor-
genstern, 1953) or Laplace’s principle of insufficient reason are considered not suited to igno-
rance. In addition, even when information is available in the shape of historical data, decision-
makers must be aware of the fact that data from yesterday may not be representative of tomor-
row’s behavior (Ben-Haïm and Smithson, 2018). In this context, optimal decisions are based on
the notion of robust-satisficing (Simon, 1959) rather than performance maximization (Takewaki
and Ben-Haïm, 2005; Lempert and Collins, 2007). This translates to the idea of priviledging a
decision that remains satisfactory under strong deviations from an initial consideration of the
system’s environment rather than a decision that presents the best possible outcome based on a
highly uncertain idealization of reality.

Some extra-probabilistic representations of uncertainty have already been introduced in Chap-
ter 2 as alternatives to the probabilistic framework. Non-probabilistic convex models are gener-
ally used in the IG framework (although non-convex models may also be considered, see (Ben-
Haïm, 2006, Chapter 2)). However, one major feature of an IG uncertainty model is that it is
described as a function of a degree of ignorance (referred to as horizon of uncertainty). In that
sense, an IG uncertainty model is not a unique bounded uncertain domain but rather an un-
bounded family of nested non-probabilistic convex sets that describes increasing uncertainty
around an initial estimation.

The formulations implied in IG renders this framework applicable to basically any problem
that faces uncertainty and for which the performance can be evaluated (e.g. through the com-
puter codeM (·)). Indeed, a non-exhaustive list of works related to different fields can be men-
tioned such as environmental-related policies (Hall et al., 2012; Matrosov et al., 2013), financial
risk (Beresford-Smith and Thompson, 2007; Knoke, 2008), earthquake resilience (Takewaki et al.,
2011; Kanno et al., 2017), dynamic studies (Kuczkowiak, 2014; Jaboviste et al., 2019) and many
others. Although the IG framework treats uncertain parameters in a non-probabilistic way, its
application to probability-based frameworks remains pertinent (Ben-Haïm, 2006, Chapter 10).
Indeed, the IG framework brings the possibility to take advantage of the power of probabil-
ity theory in a robust way w.r.t. the underlying hypotheses such as the definition of a pdf. In
Hemez and Ben-Haïm (2004), IG is applied to parameters of a covariance matrix. In Buffe et al.
(2011) and in Maugan (2017), it is applied to probabilistic distribution parameters for robustness
evaluation of failure probabilities.
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4.2.2 Formulation of robustness and opportunity

Let us denote by d ∈ D one decision vector among the set of all possible decisions under
consideration. This vector contains all the quantities that describe a studied system at the corre-
sponding decision candidate. The IG framework proposes to quantitatively measure the notions
of robustness and opportunity of the decision d by introducing the following robustness function
h∗IG and opportuneness function β∗IG, both referred to as immunity functions:

h∗IG (d, rcr) = max
h

{
max

e∈U(h,ẽ)
R (d, e) ≤ rcr

}
(4.1)

β∗IG (d, rrw) = min
h

{
min

e∈U(h,ẽ)
R (d, e) ≤ rrw

}
(4.2)

where h ∈ R+ is the horizon of uncertainty. A closer look at these two functions is taken by
describing their three pillars:

1. the reward function: R (d, e) associates a reward value to the decision d in a given state of
the uncertain variables e. This general definition allows a very broad panel of applications
as the reward can directly refer to the output of a model (what was defined as variable of
interest in this thesis) or to any related quantities (such as the QoIs defined in the context of
reliability). In addition, several reward functions could be jointly considered as robustness
and opportunity may involve different quantities;

2. the performance requirements: rcr ∈ R and rrw ∈ R separate the performance function out-
put space into a tolerated outcome (R (d, e) ≤ rcr), an inadmissible outcome (R (d, e) > rcr)
and a windfall outcome (R (d, e) < rrw). The orientation of the inequality obviously de-
pends on the nature of the problem. If the reward function describes a financial gain, the
inadmissible domain would represent rewards below the critical value. If the reward is
a failure probability, the given formulation holds. The quantification of the performance
requirements is not a necessary condition for conducting an IG analysis. This is shown
soon after;

3. the IG uncertainty model: the non-probabilistic choice of uncertainty representation has
been discussed in the previous subsection. Generally, the IG uncertainty model U (h, ẽ) is
a convex set (as introduced in Chapter 2) of horizon of uncertainty h ∈ R+ containing the
best estimation (also called “nominal value”) ẽ of the uncertain vector e. The horizon of
uncertainty parametrizes, in a modular way, the size of the uncertainty space. The nominal
vector ẽ represents the analyst’s best guess about the values of the uncertain variables. It
represents the deterministic quantification hypothesis of uncertain variables around which
robustness and opportunity are quantified. These uncertain variables may describe differ-
ent quantities such as an input variable directly or the parameters of a probabilistic distri-
bution.

IG robustness, mathematically described in Eq. (4.1), is therefore understood as the maxi-
mum amount of uncertainty (i.e. the “widest” uncertainty space) that can be tolerated, i.e. for
which the worst possible performance is still acceptable. In parallel, opportunity, mathemat-
ically described in Eq. (4.2), is understood as the minimum amount of uncertainty (i.e. the
“smallest” uncertainty space) necessary for a windfall reward to become possible.

Given specific values of the performance requirements rcr and rrw, decision-making can be
performed by assessing the best decision d∗h = arg max

d∈D
h∗IG (d, rcr) in terms of robustness and

the best decision d∗β = arg min
d∈D

β∗IG (d, rrw) in terms of opportunity. The subscripts “h” and “β”

are necessary as they reflect the trade-off between robustness and opportunity. Indeed, the best
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decision in terms of robustness does not necessarily correspond to the best decision in terms of
opportunity (actually it is rarely the case).

Specific values of rcr and rrw are not always available, and even when they are, it is gener-
ally more informative to draw the corresponding robustness curve and opportuneness curve. These
curves are constructed by evaluating the bounds

[
R(h), R(h)

]
at discretized horizons of uncer-

tainty hj ∈ [0, hmax] where hmax is the highest considered horizon of uncertainty set by the ana-
lyst. The notations R(h) = min

e∈U(h,ẽ)
R (d, e) and R(h) = max

e∈U(h,ẽ)
R (d, e) will be used throughout

this thesis.
A key feature of the IG uncertainty models is that they are nested:

U (h1, ẽ) ⊆ U (h2, ẽ) for h1 ≤ h2. (4.3)

The main consequence is that the bounds of the performance function are monotonic w.r.t.
the horizon of uncertainty and, consequently, the robustness and opportuneness functions are
monotonic w.r.t. the performance requirements. To understand this fact in a simpler way, if U2
contains U1, then it also contains the values eR and eR that led to the worst and best perfor-
mances respectively in U1.

An illustration of nested hyperrectangles with the corresponding robustness and opportune-
ness curves is presented in Figure 4.1. This example shows a relatively ideal decision as, for the
given values rcr and rrw, the robustness value is “high” and the opportunity value is “low”.
More generally, verticality is desired on the robustness curve while horizontality is prefered on
the opportuneness curve. The reader may be confused with the choice of plotting h as a func-
tion of the performance bounds as, practically, one chooses the values of h and then estimates
the corresponding bounds. The reason lies in the following simplified questions that IG tries to
answer:

• How wrong can my estimate be w.r.t. to a critical performance?

• How wrong does my estimate need to be w.r.t. to a windfall performance?

Drawing robustness and opportuneness curves may also suffice for the analyst to classify
the best decisions without an exact prior knowledge on the performance requirements. Figure
4.2 illustrates two possible interpretations based on the robustness curves. On the one hand,
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4.2. Highlight on the info-gap framework 43

R̃1 R̃2 R̃3 rcr,∩

R(h)

0

h

d1 � d2 � d3 d2 � d1 � d3

d1

d2

d3

FIGURE 4.2: Different orders of preference w.r.t. robustness.

d3 is permanently the worst decision whether it is at nominal performance (R̃3 > R̃2 > R̃1) or
considering any h > 0. On the other hand, the order of preference is not as straightforward
between decisions d1 and d2. Indeed, both robustness curves cross each other at the intersection
point rcr,∩. This means that d1 is more robust for critical values below the intersection point and
that d2 is more robust otherwise. Such behavior is referred to as reversal of preferences.

4.2.3 Info-gap value of information

If the first analysis of the robustness and opportuneness curves does not conclude on the
best decision to take, the next natural step is to ask oneself whether more information would be
useful for taking the decision. How valuable is information w.r.t. the decision? First, the notion
of informativeness of an IG model is defined through set inclusions. Given a same nominal
vector ẽ, U1 is considered more informative than U2 when the following set inclusion holds:

U1 (h, ẽ) ⊂ U2 (h, ẽ) , ∀h > 0. (4.4)

The same consequence on the bounds of the reward function as the one expressed through Eq.
(4.3) is induced:

RU2(h) ≤ RU1(h) ≤ RU1(h) ≤ RU2(h) (4.5)

where
[

RUi(h), RUi(h)
]

are the bounds of the reward function in Ui (h, ẽ). Finally, these rela-
tions trivially propagate to robustness and opportunity as h∗IG (d, rcr, U2) ≤ h∗IG (d, rcr, U1) and
β∗IG (d, rcr, U1) ≤ β∗IG (d, rcr, U2). These simple mathematical relations are linguistically trans-
lated as the fact that information enhances robustness but impairs opportunity. A more infor-
mative environment is less prone to both negative and positive surprises.
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However, the initial problem remains. Are the efforts that were put into gathering more
information rewarded with more insights on the final decision? Indeed, let us first note that the
strict inclusion in Eq. (4.4) does not yield strict inequalities on the extreme performances and,
therefore, on robustness and opportunity. As seen in Figure 4.3, a reduced uncertainty space has
no impact on the bounds if the values of e that led to the extreme performances in U2 are still
admissible in U1. However, one can expect that the analyst would use the information of the
location of the points in U2 that led to the bounds of the performance to target the request of
new information.

These notions are more precisely defined by the Value of Information (VoI) quantities intro-
duced in Ben-Haïm (2006, Chapter 7) and illustrated in Figure 4.4. The four following metrics
are defined:

• the robustness premium ∆h∗IG (rcr) represents the increment in immunity obtained after gath-
ering more information;

• the demand value ∆rcr (h) represents the increment of additional reward that can be asked
for after gathering more information;

• the opportunity cost ∆β∗IG (rrw) is the extra uncertainty that is needed for a same windfall
value to remain feasible;

• the windfall cost ∆rrw (h) is the increment of windfall that vanishes with the added infor-
mation.

It is also of very useful information to identify on which unknown variables the added in-
formation has the most impact w.r.t. the VoIs. This can be seen as sensitivity of the robust-
ness/opportunity w.r.t. the amount of uncertainty in each uncertain variable. In Ferson and
Tucker (2006), a pinching method is proposed in the context of p-box representation. The idea
is to quantify the proportion between a metric of uncertainty on the QoI (e.g. the volume of a
p-box) obtained from an uncertain representation of all unknown variables with this same met-
ric when one variable is considered with more information (e.g. a constant value). This general
sensitivity framework is compatible with the IG VoIs metrics and will be considered and more
detailed in Chapter 5.

4.2.4 Criticisms addressed to the info-gap framework

The IG framework is a decision-theoretical framework that faces some criticisms, mainly
addressed by Sniedovich (2010), based on two central concerns:
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FIGURE 4.3: Case where added information has no impact on the bounds (left) and case where added
information has an impact (right).
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FIGURE 4.4: Info-gap value of information metrics.

1. IG decision theory is not radically different as it is a reformulation of the well-known
Wald’s maximin formulation,

2. IG is a local robustness method as based on radius of stability which makes it unsuitable
for taking decisions under severe uncertainty as it claims itself to be.

Although it is not in this thesis’ interest to end this vigorous debate, it seems important to ad-
dress these claims based on mathematical proofs and the reasons why they are less relevant in
the proposed context.

Wald’s maximin formulation (Wald, 1950) consists in choosing the decision d∗Wald with the
best worst case. For the sake of the comparison, it is now considered that worse is lower which
yields:

d∗Wald = max
d∈D

min
s∈S(d)

f (d, s) (4.6)

where d is one decision from the decision set D, s is one state from all possible states S allowed
from decision d and f (·) can be considered as the performance function. In order to enhance
his point, Sniedovich rewrites the IG formulation as follows (the reader is referred to Sniedovich
(2010) for the complete derivation):

d∗IG = max
d∈D

h∗IG (d, rcr) = max
d∈D,h≥0

min
e∈U(h,ẽ)

(
h× 1{rcr≤R(d,e)}

)
. (4.7)

The similarities are indeed relevant to be addressed.
In fact, according to Sniedovich, this equivalence simply comes from the fact that IG robust-

ness function is based on the radius of stability (Wilf, 1960) which, for the sake of comparison, is
expressed here as:

ρ∗SR (d|ẽ) = max
ρ≥0
{ρ| c (d, e) , ∀e ∈ B (ρ, ẽ)} (4.8)

where B (ρ, ẽ) is a “ball” centered on ẽ of radius ρ and c (d, e) is a list of constraints to be re-
spected. Again, these criticisms rely on relevant remarks.

From this consideration, Sniedovich (2012) argues that IG is unsuited for decision-making
under severe uncertainty. Conducting a worst-case analysis around a nominal point ẽ chosen in
a vast uncertainty space where no region is supposed to be more likely than another only reflects
local robustness which makes the analyst unaware of what may happen elsewhere. Ben-Haïm
(2012) retorts that IG is not a simple local min-max analysis as it enables to consider unbounded
uncertainty in order to evaluate the amount of error still acceptable w.r.t. to the analyst’s consid-
eration of nominal design.
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As pointed out in Hayes et al. (2013) in the context of ecology, these discussions only empha-
size the general fact that analysts should use such methods precautiously and under awareness
of their underlying hypotheses and limits, especially as they involve critical systems. Consid-
ering the industrial context of this thesis, the IG framework remains very useful for justifying
some decisions based on reliability assessments. The original feature of considering robustness
through progressive horizons of uncertainty brings relatively interpretable insights with few in-
formation needed. Evaluating the robustness around (where “around” is allowed to be more
or less large) a first estimate seems reasonable and practical with the quantities that will be
dealt with in the proposed studies. This thesis does not pretend to solve problems under severe
uncertainties but aims at evaluating how wrong one is allowed to be w.r.t. reliability-based hy-
potheses. Nevertheless, the notion of global robustness remains crucial for safety concerns since
many disasters occur due to unconsidered events. However, this is out of this thesis’ scope as
robustness will be performed under the consideration of well identified failure modes.

4.3 Info-gap applied in different contexts of uncertainty

4.3.1 Two toy-cases

In this section, some first IG results are interpretated within different contexts by considering
two analytical LSFs, usually used in optimization challenges (Molga and Smutnicki, 2005), based
on the two-dimensional Rosenbrock function and the six-hump camel function. The two LSFs
are expressed as:

gr (x1, x2) = 100
(
x2 − x2

1
)2

+ (x1 − 1)2 − 0.1 (4.9)

for the Rosenbrock formulation and as:

gc (x1, x2) = 500−
(

x2
1

(
4− 2.1x2

2 +
x4

1
4

)
+ x1x2 + 4x2

2
(
−1 + x2

2
))

(4.10)

for the six-hump camel formulation. It is clear that these LSFs have no physical meaning and that
they are chosen simply to point out some more general behaviors that could occur in some prac-
tical applications. Here, for the sake of the study, each LSF is viewed as one possible decision,
expressed as “decision 1” for the Rosenbrock formulation and “decision 2” for the six-hump
camel formulation. For example, both formulations could represent two different principal fail-
ure modes (e.g. fatigue failure and buckling failure) for two different designs that depend on the
same variables x1 and x2. The question would then be: is design 1 more robust to uncertainty
w.r.t. the failure mode associated to the Rosenbrock function than design 2 w.r.t the failure mode
associated to the six-hump camel function? Some illustrative results are given considering dif-
ferent uncertainty contexts.

4.3.2 Non-probabilistic robustness analysis on the limit-state functions

Let us first apply the IG method directly to the LSFs w.r.t. x. In this case, the only available
information about the uncertain vector x is its nominal vector set at x̃ = [0, 0]T. Both LSFs are de-
fined such that bad performances correspond to low values. Therefore, worst performances cor-
respond to the minimal values g (h) = min

x∈U(x̃,h)
g (x). In accordance with structural reliability con-

ventions, both decisions are considered to fail for Fr = {x| gr (x) ≤ 0} and Fc = {x| gc (x) ≤ 0}
which sets the critical value gcr = 0.

The failure regions are shown in Figure 4.5. It is clear that two very distinct behaviors are
induced by each LSF. On the one hand, the failure domain Fr defined through gr has a very
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FIGURE 4.5: Failure domains Fr and Fc.

restricted narrowed ellipsoid shape. On the other hand, the failure domain Fc defined through
gc is unbounded and surrounds the nominal value such that the safety domain is bounded.

The nested uncertainty convex models considered in this analysis are simple envelop bounds
U (x̃1,2, h) = {x1,2| − h ≤ x1,2 ≤ +h}. With this uncorrelated interval model, Figure 4.5 suffices
to understand that decision 1 is far less robust than decision 2 given the proposed failure def-
inition. Indeed, the distance between x̃ and the closest point that belongs to Fr is shorter than
the distance considering the closest point that belongs to Fc. However, it is valuable to study
the general evolution of the robustness curves. These are given in Figure 4.6 for h ∈ [0, 3.5].
In accordance with the first visual analysis, the worst performance of gr intersects the failure
criteria faster (i.e. for a smaller h) than the worst performance of gc. Actually, the slopes of the
robustness curves inform that decision 1 is poorly robust before reaching the global minima of
gr at x = [1, 1]T (which becomes feasible for h ≥ 1) and infinitly robust (vertical line) after while
decision 2 seems very robust for h < 2 but less and less robust after. This points out the im-
portance of the choice of the critical value gcr and that drawing robustness curves brings more
information than estimating a unique min-max interval.

4.3.3 Robustness analysis on probabilistic distribution parameters

The analyst may feel frustrated about the previous robustness results of decision 1. Indeed,
the corresponding failure domain is very small compared to the one of decision 2 but its prox-
imity to the nominal point renders the decision poorly robust as viewed from the IG framework.
It is now supposed that the analyst gathered enough information to consider that both variables
follow a normal distribution: X1 ∼ N (µ1, σ1) and X2 ∼ N (µ2, σ2). Uncertainty is considered
either on both means (with fixed standard deviations) or on both standard deviations (with fixed
means). The nominal values are set at µ̃ = [0, 0]T and σ̃ = [1, 1]T. The associated performances
are now defined as the failure probability Pf = P [X ∈ Fr,c] (where Fr,c denotes either Fr or Fc).
Therefore, bad performances are associated to high failure probabilities such that the worst val-
ues are obtained by evaluating the maximum values Pf = max

θ∈U(θ̃,h)
Pf (θ) where θ = [µ1, µ2]

T or

θ = [σ1, σ2]
T. The nested uncertainty models are again envelop bounds defined as U (µ̃1,2, h) =

{µ1,2| − h ≤ µ1,2 ≤ +h} for the means and U (σ̃1,2, h) = {σ1,2| 1− h ≤ σ1,2 ≤ 1 + h} for the stan-
dard deviations with h ∈ [0, 0.5].
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FIGURE 4.6: Robustness curves on the Rosenbrock and six-hump camel limit-state functions.
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FIGURE 4.7: Robustness curves on the failure probability of the Rosenbrock and six-hump camel deci-
sions.

Figure 4.7 presents the corresponding robustness curves. First, one can see that the nominal
performance (at h = 0) is better (i.e. lower failure probability) for decision 2. However, decision
1 is very robust (in the given range of h) to uncertainty on its distribution parameters which is
again a consequence of the narrowness of the failure domain. The uncertainty on the standard
deviations has no impact while the uncertainty on the means has a slight impact as values closer
to the global minima become possible. On the contrary, decision 2 is poorly robust to uncer-
tainty on the standard deviations. Indeed, as the failure domain surrounds the nominal point
x̃, increasing the standard deviation will increase the chances of failure in all directions. Uncer-
tainty on the means also has a non-negligeable impact although less predominant. This smaller
impact can roughly be understood by the fact that getting closer to the failure domain in one
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FIGURE 4.8: DS discretizations on a truncated normal distribution (A) with a zoom on the lower tail (B).

direction will reduce the number of failure samples in the other directions. The main message
here is that IG is compatible with initial probabilistic hypotheses which may totally change the
robustness analysis and, therefore, the associated decision.

4.3.4 Robustness analysis on the shape of the probabilistic distribution

The previous analysis considered the uncertainty on probabilistic distributions as affecting
the hyperparameters. This is equivalent to a series of parametric p-box computations. However,
one may be interested in considering uncertainty on the probabilistic nature of the variables.
What if x1 and x2 do not follow perfectly parametrized normal distributions? There are many
ways of considering uncertainty on a given cdf. In this analysis, two DS discretizations of the
nominal cdf are proposed. This process consists in discretizing the support of the cdf FX of
a random variable X into nDS disjoint intervals [ai, bi] , i = 1, · · · , nDS. Then, the probability
mass mi is attributed to [ai, bi] as mi = FX (bi)− FX (ai). This will typically generate a step non-
parametric p-box that envelopes FX.

Different discretizations may be applied. In this analysis, uniform and normal discretiza-
tions are considered. The uniform type simply means that all the disjoint intervals have the
same length. The normal type means that the lengths become normally wider as the intervals
gets farther from the center of the support. Such discretization considers that the cdf is better jus-
tified around the mean value than around its tails (where usually less information is available).
Figure 4.8 shows the p-box envelopes generated by both discretizations on a truncated normal
distribution. It can be seen that the uniformly generated intervals are wider than the ones nor-
mally generated around the center of the support and that the opposite happens around the tails
(approximately for |x| > 2 in this case). It is important to bare in mind that a uniform (or any
other kind) discretization does absolutely not mean that all intervals have the same probability
masses. The probability masses are defined by the nominal cdf F̃X. In Figure 4.8, the heigths of
the rectangles get smaller as the intervals get farther to the center of the support whatever the
choice of discretization. This is due to the fact that the nominal cdf is normal.

IG can be applied on the proposed uncertainty representation by considering reduced num-
bers of intervals with the increase of h. In this application, it is considered that nDS(h) =
d200(1 − h)e for h ∈ [0, 0.9] (which corresponds to a progressive reduction of intervals from
200 to 20) where d·e is the integer operator. The corresponding robustness curves for both de-
cisions are drawn in Figure 4.9 where “DS-U” and “DS-N” correspond to uniform and normal
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FIGURE 4.9: Robustness curves considering DS discretizations for the Rosenbrock and six-hump camel
decisions.

discretizations respectively. Although some numerical errors seem to disrupt the robustness
curves, their global behaviors remain interpretable. It appears that the most pessimistic dis-
cretization between the uniform one and the normal one depends on the considered LSF. The
uniform one is more pessimistic for the Rosenbrock-based decision while the normal one is more
pessimistic for the six-hump camel-based decision. This is explained by the fact that the failure
region is rather close to the nominal point for decision 1 and rather distant for decision 2 (so that
the tails of the distributions have a high impact).

4.3.5 Robustness analysis on model errors

As mentioned in Chapter 1, uncertainty on the model chosen for relating the output to cor-
responding inputs will not be further analyzed in the following chapters. However, it seems
important to show that IG is also adapted to such robustness analysis and that model errors
may also be crucial to account for. Here, the Rosenbrock-based LSF is reconsidered with the
model M1:

gM1
r (x1, x2) = a

(
x2 − x2

1
)2

+ b (x1 − 1)2 − 0.1 (4.11)

and the model M2:

gM2
r (x1, x2) = 100

(
x2 − x2

1
)2

+ (x1 − 1)2 + c (x1x2)
3 − 0.1. (4.12)

The variables a and b in M1 could be viewed as model calibration parameters. The variable c in
M2 adds (when c 6= 0) a joint cubic term on x1 and x2 and could be understood as an error on
the formulation of the model.

The shapes of the new failure domains for both models are given in Figure 4.10. It can be
seen that the coefficients a and b on M1 only have an effect on the expansion of the ellipsoid
shape. However, the general shape is preserved. On the contrary, the coefficient c on M2 consid-
erably changes the shape of the failure domain. As soon as c 6= 0, the failure domain becomes
unbounded. Positive values of c will reduce the initial ellipsoid shape to almost a point while
adding a failure domain in another region.
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The robustnesses w.r.t. such uncertainties are analyzed. The same envelope models are
considered which yields:

U (ã, h) = {a| ã (1− h) ≤ a ≤ ã (1 + h)} (4.13a)

U
(

b̃, h
)
=
{

b| b̃ (1− h) ≤ b ≤ b̃ (1 + h)
}

(4.13b)

U (c̃, h) = {c| − h ≤ c ≤ h} . (4.13c)

The different robustness curves consider uncertainty on:

• µ1 and µ2 (as in Figure 4.7);

• σ1 and σ2 (as in Figure 4.7);

• a and b (M1);

• c only (M2);

• µ1, µ2, a and b (µ−M1);

• σ1, σ2, a and b (σ−M1);

• µ1, µ2 and c (µ−M2);

• σ1, σ2 and c (σ−M2).

The results are presented in Figure 4.11. The robustness curves show that the model error
M2 itself is more constraining than the calibration type error M1 and its combinations with dis-
tribution parameters errors. Moreover, it can be seen that model errors may amplify the impact
of distribution parameters. It is the case when jointly considering uncertainty on M1 and µ and
it is even more blatant with the joint consideration of M2 and µ.

4.4 Placement of info-gap within other metrics

4.4.1 Different metrics of robustness

The IG framework is far from being the only one to address quantitatively the notion of
robustness. This part does not aim at describing every single robustness metric and all the
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possible links among them, but rather to give a feeling about the variety of robustness measures
and the reasons that push towards the consideration of IG in this thesis.

The fact that the term of “robustness” is considered in many different contexts and for very
different objectives has led to the establishment of a myriad of robustness frameworks. Giuliani
and Castelletti (2016) even question the robustness of robustness analysis by illustrating the
different outcomes induced by different metrics in the context of decision-making under climate
change. Direct comparisons of IG with other frameworks can be found in Matrosov et al. (2013)
and in Roach et al. (2016) both in the context of water resource management.

More generally, recent attempts have helped to illustrate and explain the panel of robustness
metrics in the context of product development and engineering design (Göhler et al., 2016) and
in the context of decision-making under deep uncertainty (McPhail et al., 2018). Let us first note
that Göhler et al. (2016) enumerate up to 38 robustness metrics (with no mention of IG) classified
into four groups, namely:

• sensitivity metrics;

• feasible design space metrics;

• functional expectancy and dispersion metrics;

• probability of functional compliance metrics.

More recently, McPhail et al. (2018) consider 15 robustness metrics (among them 4, including IG,
are considered unsuitable for decision-making under deep uncertainty) that are not all explicitly
considered in the former. The reason for this difference between both reviews is twofold.

First, it seems important to distinguish between the robustness metric itself and the different
quantities involved in its assessment. The robustness metric is the quantity that enables to decide
on the validity of a decision and, in the case of several considered decisions, to order them in
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terms of robustness (i.e. the greatest horizon of uncertainty h∗IG in the IG framework). The other
involved quantities are only calculation metrics (i.e. min-max in the IG framework) that lead to
the robustness metric and to its interpretability. The unifying framework proposed by McPhail
et al. (2018) is very illuminating in that matter. Indeed, three transformations describe the path
from the performance function of a system to the robustness value of the system, namely:

• the performance value transformation;

• the scenario subset selection;

• the robustness metric calculation.

Only when this distinction is not made, the term of robustness ends up being defined through
a very large amount of metrics that have very different formulations and purposes (e.g. local
sensitivity and failure probability in Göhler et al. (2016)).

The second reason is the consideration of very different contexts of uncertainty and perfor-
mance. In Göhler et al. (2016), robustness to epistemic uncertainty is explicitly said not to be
considered in the review. Yet, it seems important to avoid dissociating robustness to the un-
certainty context dimension for such analysis as soon as robustness is viewed as the ability to
guaranty a requirement in an uncertain environment which may take various forms (e.g. local
perturbations, aleatory uncertainty, epistemic uncertainty, combinations of different uncertain-
ties). In McPhail et al. (2018), on the other hand, the review focuses on the context of decision-
making under deep uncertainty to the point that IG is again considered as unsuitable due to the
consideration of a nominal point. The uncertainty characterization is crucial for specifying the
QoI and the robustness metrics that are relevant. Moreover, robustness is intrinsically linked to
the performance requirement defined by the analyst which may take many different definitions.
The metrics that should be involved totally depend on whether the analysis focuses on safety
issues, overall performances, best outcomes or many other concerns.

Under these considerations, the IG framework plays an important role within the field of
robustness. The message is obviously not to prescribe IG as soon as the word robustness is men-
tioned as, once again, the uncertainty context and the performance requirement should carefully
guide the choice of a metric. However, the fact that IG may be applied on any QoI (e.g. variable
of interest, probability-related metrics) and that the path from knowledge to ignorance is de-
scribed through a monotonic function of uncertainty enables to smoothly travel from certainty
to randomness and to lack of knowledge. It makes the application of IG adapted to a wide panel
of problems.

4.4.2 A closer look with other epistemic uncertainty reliability-oriented metrics

This thesis lies in the general scope of epistemic uncertainty affecting risk-oriented reliabil-
ity assessments. Many strategies have been employed in such context. Some works focus on
the manner to describe and propagate this type of uncertainty. A few have been introduced in
Chapter 2 which basically induce more or less wide bounds on the QoI depending on the uncer-
tainty representation. Epistemic uncertainty may also be treated stochastically as in Chabridon
et al. (2017) where a Bayesian approach is considered by affecting to the uncertain distribu-
tion parameters Θ a prior pdf fΘ (θ). Hence, the conditional failure probability Pf (Θ) becomes
itself a random variable on which statistical quantities can be estimated such as its mean de-
fined as the predictive failure probability P̃f = E fΘ

[Pf (Θ)]. Robustness analysis is proposed in
Stenger et al. (2020) through the Optimal Uncertainty Quantification framework (Owhadi et al.,
2013) by assessing a maximum quantile over a set of probability measures under moments con-
straints. Although these frameworks bring valuable insights through different interpretations, it
seems once again that the IG framework differs by its ability to describe immunity progressively
through an increasing degree of ignorance.
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Significant effort has also been put into reliability-oriented sensitivity analysis (ROSA). ROSA
can be seen as an extension of sensitivity analysis of model output (SAMO) to specific QoIs in-
volved in reliability assessments such as a failure probability. The reader is referred to Chabri-
don (2018, Chapter 4) for a thorough review of both sensitivity frameworks. Generally speaking,
ROSA aims at quantifying the role of an input variable or of a distribution parameter on the vari-
ability of the reliability-oriented QoI. The objectives of such analysis are mainly twofold:

1. Qualitatively identifying the random variables or the distribution parameters that have
no impact on the QoI. Such quantities may then be fixed to a specific value which either
simplifies the reliability analysis by reducing the number of random variables (in the case
of sensitivity considering random variables) or simplifies any analysis based on reliability
assessments such as reliability-based design optimization (e.g. in the case of sensitivity on
distribution parameters);

2. Quantitatively measuring the importance of each random variable or distribution param-
eter on the QoI. Such measures bring more precise insights on the impact of variability of
each quantity on the QoI which is particularly fruitful for deciding on which ones more
information should be requested.

ROSA applied to distribution parameters may also be seen as robustness of a reliability QoI w.r.t.
variability on the underlying probabilistic hypotheses. However, the objectives are not quite
the same as the ones brought by the IG framework. This basically comes from the difference
between sensitivity and immunity concerns. The former identifies whose variability is the most
responsible, either locally or globally, for the variability of the QoI. The latter quantifies the
degree of immunity to failure that a nominal idealization of reality has. Nevertheless, both
frameworks are closely linked through the following two reasons:

1. Some identical conclusions are bound to arise from both analyses;

2. Sensitivity results can bring valuable insights for conducting an IG robustness analysis.
Indeed, they may inform on potential monotony of the QoI w.r.t. distribution parameters
or at least narrow the uncertain space in which the extreme performances are to be found.

Moreover, a feature of high importance is that sensitivity metrics can be obtained as a by-product
of the QoI estimation meaning that no extra simulation budget is required. This is particurlarly
the case when estimating failure probabilities (Chabridon et al., 2018; Valdebenito et al., 2018;
Zhang et al., 2020).

Among other methods, the Perturbed Law-based Indices (PLI) framework, introduced in
Lemaître et al. (2015), also considers increasing levels of perturbation. It proposes a reliability-
based sensitivity metric and consists in reassessing a QoI after perturbing the pdf fi correspond-
ing to the i-th variable. The latest expression of this sensitivity index reads (Iooss_Verges_2021):

PLIi (δ) =
QoI

(
fX1 , · · · , fXi ,δ, · · · , fXnX

)
−QoI ( fX)

QoI ( fX)
(4.14)

where PLIi (δ) is the relative change of the QoI brought by a perturbation δ on the pdf of the i-th
random variable. Different types of perturbations have been proposed in this framework such
as perturbations based on the Kullback-Leibler divergence measure (Lemaître et al., 2015), per-
turbations based on the Fisher distance (Gauchy et al., 2022), perturbations based on marginal
quantile constraints and Wasserstein loss minimization (Il Idrissi et al., 2022) and perturbations
in the standard normal space (Iooss_Verges_2021). A noticeable similarity with the IG frame-
work is that the PLI is not estimated for a single perturbation but rather in a range of perturba-
tions in order to compare the curves obtained from each perturbed variable. Therefore, the order
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of importance of each variable may depend on the degree of perturbation. The main difference is
that the PLI indice corresponds to a relative change induced by a one-dimensional perturbation
while the IG framework considers the extreme performances in a multidimensional uncertain
space. However, searching for the extreme performances or the extreme relative changes leads
to the same conclusion. Thus, the PLI framework can be seen as a one-dimensional particular
case of IG when the performance function corresponds to a relative change and the uncertainty
model corresponds to one of the different density perturbation methods proposed.

4.5 Numerical procedure for applying info-gap to reliability assess-
ment

Applying the IG framework to reliability assessments may induce very time-greedy compu-
tations which greatly depend on the following considerations:

• the method used for finding the worst QoI at a given horizon of uncertainty hj;

• the convergence speed of one QoI estimation (that may vary for different values of e);

• the possibility to use metamodels and unique-sample-based techniques;

• the number of considered discretized horizons of uncertainty nh.

Some elements relevant to each concern are discussed.

4.5.1 Search of the worst QoI

When the QoI is a failure probability or a quantile, the problem consists in finding its max-
imum value in the uncertain space U

(
hj, ẽ

)
which is of dimension ne. Therefore, the point

e∗ =
[
e∗1 , · · · , e∗k , · · · , e∗ne

]> to be found reads:

e∗ = arg max
e∈U(hj,ẽ)

QoI (e) . (4.15)

Different levels of knowledge (or assumed hypotheses) about the behavior of the QoI w.r.t. ek
allow different strategies:

• the maximum of the QoI is known to be obtained at a specific bound value of ek. This is
always true for monotonic behaviors but may also be true for non-monotonic behaviors. In
this case, each uncertain variable involved by this feature is set to e∗k = ek

(
hj
)

where ek
(
hj
)

is either the minimum or the maximum value of ek
(
hj
)

in U
(
hj, ẽ

)
. The dimension of the

initial optimization problem is reduced by the number of concerned uncertain variables;

• the maximum of the QoI is obtained at an unknown bound value of ek. This is equivalent
to the previous point except that it is not known if it is the maximum or the minimum
of ek that is involved. In this case, the vertex method may be used which evaluates the
QoI at each combination of extreme values of all concerned variables ek. The dimension of
the initial optimization problem is again reduced by the number of concerned uncertain
variables. However, the vertex method can sometimes require more evaluations (i.e. 2ne)
than optimization algorithms for high dimensions;

• the maximum of the QoI is known to be obtained in a specific range of ek that is narrower
than the entire interval. In this case the dimension of the optimization is unchanged but
the optimization domain is reduced;
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• no hypothesis is made. In such case, MC sampling or optimization algorithms should be
used. It is important to recall that, most of the time, the performance QoI (e) is itself a
realization of a random variable. Hence, using gradient-based optimization algorithms
may be tricky. In this thesis, global optimization procedures will be considered.

The reader is referred to Appendix B for some first comparisons between the optimization, the
sampling and the vertex methods.

4.5.2 Performance of the QoI estimator

This concern has already been exposed in Chapter 2 with the introduction of several small
failure probability estimation techniques. Again, such a panel tries to bring solutions to the
many different combinations of possible issues to be faced (e.g. nonlinearity of the LSF, com-
plex geometrical shape of the failure domain, high dimensionality). A good performance of the
QoI estimation technique is vital as it may represent the underlying objective function in an op-
timization algorithm. The performance should be defined in terms of overall precision of the
estimation technique and overall computational time for any e

(
hj
)
∈ U

(
hj, ẽ

)
. Indeed, conse-

quent overestimations or underestimations may cause the optimization algorithm to struggle.
Moreover, even a small reduction of the computational time involved for one estimation will in-
duce a high gain for the cumulated computational time as the QoI may be estimated hundreds
or even thousands of times. However, it may seem unnecessary to estimate with the same level
of convergence every single value of QoI (e), in particular the values that are trusted to be lower
than the final maximum value.

4.5.3 Use of surrogate models and unique-sample-based techniques

For some physical systems, the numerical computer codeM (·) may require more than sev-
eral hours to evaluate the performance of one configuration of inputs. In such cases, even vari-
ance reduction techniques are not directly applicable for assessing small failure probabilities
based on the costly LSF. In that context, significant effort has been put into the use of surro-
gate models for uncertainty propagation. From a general point of view, a surrogate model is
an approximation M̃ of the true relation M between an output and its corresponding input
configuration. It is built upon a certain number of true input-output samples that is consider-
ably smaller than the number of evaluations required for the analysis to be carried out. Various
surrogate-based methods have been adapted and applied in the context of reliability analysis
such as polynomial chaos expansion (Blatman, 2009), Gaussian process (Li, 2012), support vec-
tor machines (Deheeger, 2008) or artifical neural networks (Papadrakakis and Lagaros, 2002;
Papadopoulos et al., 2012).

Other techniques have been proposed for estimating several failure probabilities based on
a unique input-output dataset. In Yuan (2013), weighted approaches combined to MC, SS and
IS are proposed to evaluate failure probabilities from a single reliability analysis very easily as
it only requires the calculation of a ratio of densities. In Yuan et al. (2020), the line sampling
roots obtained given one input distribution parameters are transformed in order to estimate
failure probabilities with different input distribution parameters without having to search for
the new roots. In Yuan et al. (2021) and Chabridon et al. (2017), failure probabilities (or more
precisely, predictive failure probabilities in Chabridon et al. (2017)) are estimated from a unique
set of samples generated in the augmented space (X, Θ) where Θ is an instrumental probabilistic
distribution on the distributional parameters θ. The methods developed in Yuan (2013), Yuan
et al. (2020), and Yuan et al. (2021) are shortly described in Appendix A.
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4.5.4 The discretization of the horizon of uncertainty

From a practical aspect, the robustness curve is built from the values
(
QoI

(
hj
))

1≤j≤nh
where

nh is the number of discretized horizons of uncertainty such that hj ∈ [0, hmax] and hmax is the
highest horizon of uncertainty considered during the analysis. The choice of discretization ba-
sically depends on the degree of nonlinearity of the robustness curve (which is not known in
advance), the degree of precision needed for taking the decision and the computational budget.
One can imagine cases where a single worst case evaluation at hj = hmax suffices to conclude
that the decision is safe enough w.r.t. to a predefined level of requirement. However, more eval-
uations are needed as soon as the analyst is interested in the route taken by robustness or, said
differently, the speed at which very bad performances are attained.

4.6 Synthesis

In this chapter, the IG framework was presented first in its general formulation and appli-
cation. It has been seen how the notions of robustness and opportunity to uncertainty can be
quantified in order to take an informed decision. Moreover, IG VoI metrics have been introduced
as a means to quantify to what extent a more informative uncertainty model simultaneously en-
hances robustness while limiting opportunity. Both the strength and the criticisms attributed to
the IG method rely on the fact that uncertainty is considered as a progressive degree of igno-
rance from the hypothesis of a nominal design (certainty) to a conceptual unbounded uncertain
space (complete ignorance). Some will argue that considering a nominal state of the system in
the analysis reduces IG to local robustness and therefore makes it unsuitable under deep un-
certainty. However, it seems that, in the context of this thesis, this framework is particularly
practical and insightful for either justifying or refuting a decision based on the analyst’s best
idealization of reality which often represents the context of an industrial application.

It is argued in this thesis that IG nonprobabilistic uncertainty models and the probability-
based reliability frameworks must not be seen as antagonistic frameworks. Rather, their combi-
nation offers the possibility to take advantage of the probabilistic framework while justifying its
underlying hypotheses.

The placement of IG within other metrics related to the consideration of epistemic uncer-
tainty has briefly been discussed. The IG framework finds its originality and relevance in its way
to describe uncertainty and its interpretation of robustness and opportunity. However, other
reliability-based metrics with an important literature background, such as reliability-oriented
sensitivity analysis, remain relevant in the context of IG robustness applied to reliability assess-
ments.

Finally, applying IG to reliability assessments implies a possibly challenging numerical frame-
work that combines several inner boxes, as presented in Figure 4.12, that each requires an effi-
cient procedure. The main ones have been presented and their consideration highly depends
on the application case. Chapters 6 and 7 each develop their own procedure relevant to each
industrial case presented in Chapter 3.

However, the considered framework is by nature a typical case of hybrid reliability analysis.
Chapter 5 introduces the random set theory in order to solve the induced uncertainty propaga-
tion challenges. Although the IG method requires very few hypotheses, the robustness analysis
depends on the choice of a nominal configuration and on the employed uncertainty model.
Moreover, it has been seen that several more or less informative uncertainty representations ex-
ist. Chapter 5 aims at evaluating the impact of a choice of epistemic uncertainty representation
on the robustness analysis by combining both the random set and IG frameworks.
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This chapter is adapted from the following reference:
A. Ajenjo, E. Ardillon, V. Chabridon, B. Iooss, S. Cogan and E. Sadoulet-Reboul (2022). “An info-
gap framework for robustness assessment of epistemic uncertainty models in hybrid structural
reliability analysis”. In: Structural Safety 96, pp. 102196.

5.1 Motivations

The general robustness analysis procedure presented in Chapter 4 depends on how the epis-
temic uncertainty is modeled. Two different convex models may lead to different maximum
values of failure probabilities which in turn lead to the following question: to what extent does
the choice of the epistemic uncertainty representation affect a robustness analysis? In this chap-
ter, in the context of HRA, a methodology is proposed to assess, within the IG framework, the
robustness of small failure probabilities w.r.t. the choice of a specific representation of epistemic
uncertainty on the uncertain variables. To do so, the different epistemic uncertainty models
introduced in Chapter 2 are considered using the random set (RS) theory. This methodology
enables to compare the IG metrics presented in Chapter 4 - the robustness and opportuneness
curves and the demand value - obtained from different uncertainty representations, but also to
highlight their implicit relationships.

The chapter is organized as follows: Section 5.2 reviews the LSF formulations involved in
HRA and how RS theory can be used to evaluate them; Section 5.3 describes the framework that
is used and how IG and RS theory are combined to compare uncertainty representations; Section
5.4 shows the results of the methodology applied to two academic examples and the industrial
case that concerns the reliability of penstocks; finally Section 5.5 proposes some discussions
about the presented study.

5.2 Random set for hybrid reliability

5.2.1 Hybrid reliability

This study falls in the scope of rare event estimation under HRA, meaning that the uncertain
vector can be divided into two vectors, namely X and Y where X is a random vector with a fully
determined pdf fX and Y (e) contains the input variables subject to epistemic uncertainty and
described by one of the representations introduced in Chapter 2. The most available literature
involving small failure probability estimation under HRA corresponds to the representation of
Y with interval models. Many works such as in (Yang et al., 2015; Zhang et al., 2018; Xiao et al.,
2019) propose methods to decrease the computational burden of estimating the failure proba-
bility bounds when random and interval variables are associated. The combination of random
variables and convex models have also been considered as in (Kang and Luo, 2010) with el-
lipsoid convex models or in (Liu and Elishakoff, 2020) with multidimensional parallelepiped
convex models. Kriging is used in (Yang et al., 2015) for speeding interval MC analysis when
propagating random and p-box variables together. Multi-level kriging is considered in (Schöbi
and Sudret, 2017) in both contexts of free and parametric p-box. Combinations of random vari-
ables with evidence and possibilistic variables for failure probability estimation are less encoun-
tered. An example with evidence theory is found in (Du, 2006) where FORM is used for solving
a unified uncertainty analysis. It is reminded that the framework of possibility representation
of probabilistic distribution parameters (which creates fuzzy random variables) as performed in
(Valdebenito et al., 2020) is not considered in this thesis.

For a given realization x of the random vector X, the hybrid limit-state function g (x, Y) is no
longer a scalar value but an interval which will depend on the representation of Y. As such, it is
not possible to directly use the techniques introduced in Chapter 2 for estimating a single failure
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probability. Instead, only its bounds denoted by
[
Pf, Pf

]
can be computed with the following

general expressions:

Pf = min
Y∈UY

P [g (X, Y) ≤ 0] (5.1a)

Pf = max
Y∈UY

P [g (X, Y) ≤ 0] (5.1b)

where UY represents the set of intervals that define Y. Estimating these bounds using small fail-
ure probability estimator techniques require a common framework which is brought by random
sets theory.

5.2.2 Random sets

The general definition of a random set (RS) (Molchanov, 2005) relies on a probability space
based from the triplet (Ω, σΩ, P) and a measurable space (A, σA). A RS Γ (·) represents the
following measurable mapping:

Γ :
∣∣∣∣

Ω −→ A
α −→ Γ (α)

. (5.2)

As such, a RS is similar to a random variable whose realization is a set (called focal element)
in A (called focal set), not a scalar (Alvarez, 2006). The probability of an event E can then be
expressed through the probability measure Pr = P ◦ Γ−1 as:

Pr [E] = P {Γ (α) ∈ E, α ∈ Ω} . (5.3)

In the general case, the value of the above probability is not measurable but one can evaluate its
bounds as:

Pr (E) = P ({α ∈ Ω : Γ (α) ⊆ E, Γ (α) 6= ∅}) (5.4a)

Pr (E) = P ({α ∈ Ω : Γ (α) ∩ E 6= ∅}) . (5.4b)

The reader may notice that these expressions are close to the ones introduced in Chapter 2 when
presenting DS evidence theory. Actually, it appears that RS theory is a generalization of evidence
theory for an infinite number of focal elements.

The previous definitions enable to link RS theory with the different uncertainty representa-
tions introduced in Chapter 2 in the special case where (Alvarez et al., 2018):

• Ω = [0, 1]nα ,

• σΩ = B (Ω),

• P = µC for some copula C (Nelsen, 2006) which will be the independent one in this chapter
(see Apendix C for the consideration of the Gaussian copula),

• the focal elements are hyperrectangles of dimension nα.

These links are depicted for nα = 1 in Figure 5.1 which gives the corresponding RS for each type
of uncertainty representation. A RS can also describe a convex set in a similar way as it describes
an interval in the sense that any vector α (of dimension equal to the dimension of the convex set)
yields the same convex set. Therefore, the interval and convex models are special cases where
the RS is actually a constant set as the function does not depend on α. The probability model is
a special case where the random set is a random singleton. The deterministic representation is a
special case where the RS is a constant singleton.
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5.2.3 Random sets in the reliability framework

The RS framework is applicable to reliability analysis by particularizing the previous general
event E to the failure event F . Some first applications involving failure probability estimations
can be found in (Tonon and Bernardini, 2000; Tonon et al., 2000a; Tonon et al., 2000b). In ad-
dition, the works proposed in (Alvarez and Hurtado, 2014; Alvarez et al., 2017; Alvarez et al.,
2018) enable to well relate hybrid reliability analysis to classical probabilistic reliability analysis
through the use of RS. Indeed, the sample space is now composed of the two extreme failure
domains:

F α =
{

α ∈ Ω : Γ (α) ⊆ F(X,Y), Γ (α) 6= ∅
}
=
{

α ∈ Ω : g (α) ≤ 0
}

(5.5a)

F α =
{

α ∈ Ω : Γ (α) ∩ F(X,Y) 6= ∅
}
= {α ∈ Ω : g (α) ≤ 0} (5.5b)

where the extreme LSFs are expressed as:

g (α) = max
Γ(X,Y)(α)

g (α) (5.6a)

g (α) = min
Γ(X,Y)(α)

g (α) . (5.6b)

It follows, in the case of an independent copula, the expressions of the bounds on Pf as:

Pf =
∫

Ω
1g(α)≤0dα (5.7a)

Pf =
∫

Ω
1g(α)≤0dα. (5.7b)

The HRA problem thus reduces to two standard reliability analyses for which standard estima-
tion methods may be used. Figure 5.2 shows the equivalent representations from the original
space to the α-space to the standard normal space for a case where Y1 follows a possibility distri-
bution and Y2 is represented through a p-box (here, there is no random variable X). The original
space has a unique LSF but the samples of the input variables are sets (rectangles here). The
α-space contains the two extreme LSF and the samples are uniformly distributed in the unit hy-
percube. The red rectangle in the physical space corresponds to the red sample in the α-space.
The fact that the rectangle is fully contained within the physical failure domain means that the
maximum of the LSF in the set is negative (g (α) ≤ 0). Similarly, the two orange rectangles in
the physical space correspond to the two orange samples in the α-space. The fact that the rect-
angles intersect with the physical failure domain means that the minimum of the LSF in the set
is negative (g (α) ≤ 0). Naturally, the failure domain defined through the maximum of the LSF
is contained within the failure domain defined through the minimum of the LSF. Finally, as α is
probabilistically defined, classical isoprobabilistic transformations can be used to travel into the
standard normal space.

However, it is important to notice, as pointed out in (Alvarez et al., 2017), that when consid-
ering only interval or parametric p-box models on Y, the bounds obtained using the RS frame-
work are larger than the ones obtained by applying a straightforward search for the maximum
and minimum of the failure probability in the interval domain (on the physical variables or the
distributional parameters). For example, with the interval model, the following equations hold:
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Pr

[
max

Γ(X,Y)(α)
g (α) ≤ 0

]
≤ min

Y∈DY
Pr [g (X, Y) ≤ 0] (5.8a)

Pr

[
min

Γ(X,Y)(α)
g (α) ≤ 0

]
≥ max

Y∈DY
Pr [g (X, Y) ≤ 0]. (5.8b)

Actually, it can be shown that the failure domain associated to g (αX, αY) is the union of all the
sampled failure domains generated from the interval model (on the physical variables or the
distributional parameters) while the failure domain associated to g (αX, αY) is the intersection of
them. Figure 5.3 illustrates this point on a LSF based on the Rosenbrock function where the com-
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FIGURE 5.3: Comparison of the LSS with the RS framework and the LSS sampled from an interval for the
Rosenbrock function.

ponents α1 and α2 are associated to two standard Gaussian distributions and Y is represented as
an interval in [0.8, 1] (which could be associated to a component α3 but it is not necessary here).
The union and intersection of only three LSS samples for Y = {0.8, 0.9, 1} suffice to explain how
both extreme RS-based LSS are constructed. The conditions at which the expressions in Eq. (5.8)
become either equalities or strict inequalities are mathematically formulated in (Alvarez et al.,
2017). Basically, the strict inequality is obtained when the values of Y that lead to the extreme LSF
change for different samples α

(i)
X . This mixture of different epistemic values is not allowed when

directly performing optimization in the epistemic space as each bound of the failure probability
is obtained at a single value Y∗ (one for each bound). In practice, this divergence is intensified
with complex interactions between both probabilistic and epistemic variables within the LSF.
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5.3 Proposed info-gap framework for uncertainty representations com-
parison

5.3.1 Hybrid reliability analysis framework

The goal in this chapter is to analyse the effect of the choice of an epistemic uncertainty model
on the IG robustness and opportunity of a reliability quantity of interest. Hence, the bounds on
the failure probability implied in the HRA framework need to be estimated at each discretized
value of the horizon of uncertainty. In order to compare the effect of each epistemic uncertainty
model, the bounds on the failure probability are estimated considering that all variables in Y
are described by a single epistemic uncertainty representation. The process is then repeated for
all epistemic representations considered for the comparison. The different epistemic models for
which results are shown in this chapter are:

• interval model;

• parallelepiped convex model (see Appendix D);

• possibility triangular distribution;

• possibility trapezoidal distribution;

• DS structures;

• free and parametric p-boxes;

• probabilistic uniform distribution.

In order to estimate the bounds on the failure probability, Eqs. (5.7a) and (5.7b) need to
be evaluated through a double loop process. The inner loop which corresponds to the search
of the minimum and maximum of the limit-state function for one realization of the random
set Γ (α) may be performed using an optimization algorithm. The outer loop corresponds to the
estimation method of the failure probability which may rely on any of the techniques introduced
in Chapter 2. As an inner optimization loop is involved, HRA usually requires more evaluations
of the limit-state function than a standard reliability analysis. Moreover, the lower bound of the
failure probability to be estimated may be very small (e.g. such that Pf < 10−5). Therefore, in this
chapter, the outer loop is mainly performed with FORM-IS. The Subset Simulation algorithm
is also used in order to verify the results. However, let us note that several other advanced
sampling methods could have been used here (e.g. directional sampling, line sampling).

5.3.2 Comparison by means of info-gap robustness and opportuneness curves

As seen in Chapter 4, the IG framework quantifies the notions of robustness and opportune-
ness to uncertainty by building nested convex sets around a nominal state which represents the
analyst’s best guess. An interesting feature is that it enables to compare different possible de-
cisions in view of choosing the one that maximizes the robustness given a critical performance.
IG analysis can also be used to assess the VoI induced by a more informative input model. In-
deed, the different decisions can be directly linked to the choice of different uncertainty models
Ui

(
h, Ỹ

)
that each has its own degree of information. Therefore, it is possible to compare ro-

bustness and opportuneness curves of different uncertainty models for Y by considering the
random set function Γi as the IG uncertainty model as follows:

Ui

(
h, Ỹ

)
= Γi (α, h) (5.9)
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with:

Γi :

∣∣∣∣∣
[0, 1]nY ×R+ −→ DY

(
h, Ỹ

)

(α, h) −→ Γi (α, h)
(5.10)

where [0, 1]nY is the unit hypercube and DY is the support of Y that grows around the nominal
vector Ỹ when the horizon of uncertainty h increases:

DY

(
h, Ỹ

)
=
{

Y : Ỹ (1− h) ≤ Y ≤ Ỹ (1 + h)
}

, h ≥ 0. (5.11)

The robustness and opportuneness functions defined in Chapter 4 translate with the pro-
posed methodology to:

h∗IG = max
h

{
Pf (Γi) ≤ Pcr

f
}

(5.12)

β∗IG = min
h
{Pf (Γi) ≤ Prw

f } (5.13)

where Pcr
f and Prw

f are the critical and reward failure probabilities respectively. Practically, the
robustness and opportunity curves are plotted by estimating Pf and Pf for a certain number nh
of horizons of uncertainty that belong to a chosen interval hj ∈ [0, hmax] , j = 1, · · · , nh. Let us
note that in Eq. (5.10), the random set function is only applied on Y for the sake of conciseness.
In the application cases, the random set function also takes into account the random vector X as
in Eqs. (5.6a) and (5.6b).

Whatever the type of uncertainty model that is used for Y, for a given level of horizon of
uncertainty h, the same support is used to compare bounds obtained from each model which
enables a meaningful comparison. Moreover, the fact that bounds are calculated for increasing
horizons of uncertainty and, therefore, growing supports, enables a comparison in terms of
robustness (upper bound Pf) and opportuneness (lower bound Pf) functions. The larger the
support, the more impact the choice of the uncertainty model has on the bounds of the failure
probability.

The following quantity R(ij)
Pf

is defined in this chapter as the demand value between a less
informative uncertainty model Ui and a more informative uncertainty model Uj and is used as
the VoI metric:

R(ij)
Pf

= 1− Pf (Γi (α, h))
Pf
(
Γj (α, h)

) (5.14)

The value of this metric, which is negative as Pf (Γi (h)) ≥ Pf
(
Γj (h)

)
, shows how the added

information from model Ui to model Uj diminishes, in terms of percentage, the upper bound of
the failure probability. A similar metric could be defined with the lower bound to quantify how
a more informative model reduces the best possible outcome. This last metric is not used in this
chapter since, in the context of a reliability analysis, the main concern is to understand how the
worst possible outcome may be reduced with more information.

5.3.3 Sensitivity to the gain of information

Sensitivity analysis aims at identifying the variables that have a significant impact on the
quantity of interest in order to simplify the numerical model or to help the analyst decide where
to judiciously allocate resources (Ferson and Tucker, 2006). Many metrics exist depending on the
analyst’s objective. In this chapter, a simple metric is defined in order to identify the epistemic
variables where added information contributes the most to the global gain of information on the
bounds of the probability of failure. The idea is then to compare the demand value RPf

obtained
by considering a more informative uncertainty representation on one variable at a time and
compare it with the value obtained when considering all variables at once. The following metric
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is defined:

S(ij)
Yk

=
R(ij)(k)

Pf

R(ij)
Pf

. (5.15)

where:

R(ij)(k)
Pf

= 1− Pf (Γi (α, h))

Pf

(
Γ(k)

j (α, h)
) (5.16)

with Γ(k)
j =

[
Γi (α1, h) , · · · , Γj (αk, h) , · · · , Γi (αnY,h)

]>. This metric gives the contribution of in-
formation gained from an uncertainty model to a more informative one brought by each vari-
able. The metric depends on the horizon of uncertainty which means that a variable may be
informative for some range of horizon of uncertainty and less informative for other values. This
characteristic can contribute valuable knowledge to the decision-making process.

5.3.4 Proposed methodology

This section aims at summarizing the steps that are followed to apply the proposed method-
ology to three reliability problems. The different steps are presented in Figure 5.4 where each
box is detailed as follows:

1. Compute the limit-state function g (X, Y), build a comparison group G that contains differ-
ent uncertainty models Mi to be compared, define the values of the horizon of uncertainty
hj for which the bounds on the failure probability will be estimated, associate the joint
cumulative distribution function FX (x) to X and the nominal values Ỹ to Y;

2. Get the random set function Γi that corresponds to the uncertainty model Mi as presented
in Table 1;

3. Compute the support DY

(
hj, Ỹ

)
as defined in Eq. (5.11) which enables to compute the

random set function Γi
(
α, hj

)
as defined in Eq. (5.10);

4. For each discretized value hj, estimate the bounds on the failure probability where each
random variable αk follows the standard uniform distribution and each corresponding
realization is either the maximum value of the limit-state function in Γi

(
α, hj

)
(estimation

of Pf) or the minimum value (estimation of Pf) obtained with an optimization algorithm.
The privileged method used to estimate the probabilities is FORM-IS but SS is also used as
a verification method;

5. Once the bounds on the failure probability are obtained for each discretized horizon of
uncertainty hj and for each uncertainty model Mi, the VoI metric RPf

, as defined in Eq.
(5.14), is evaluated;

6. Show the robustness (Pf) and opportuneness (Pf) curves obtained with each uncertainty
model Mi and show the surface plot RPf

(h) which is a function of h and the two different
uncertainty models that are compared in terms of information.

Note that the sensitivity analysis is not present in Figure 5.4. The only addition is the estimation
of Pf

(
Γ(k)

j (α, h)
)

in Eq. (5.16) which requires to consider the more informative model Mj on one

variable Yk at a time and compute S(ij)
Yk

as defined in Eq. (5.15).
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1: Initialization
g (X, Y) : limit-state function
M = [M1, · · · , Mi, · · · , MnM ]
h =

[
0, · · · , hj, · · · , hmax

]

X → FX (x)
Y → Ỹ

2: Association of the RS function with the uncertainty model
Mi ←→ Γi

3: Computation of DY

(
hj, Ỹ

)
and Γi

(
α, hj

)

4: Estimation of the bounds on Pf[
Pf
(
Γi
(
α, hj

))
, Pf
(
Γi
(
α, hj

))]

5: Computation of the VoI metric R(ij)
Pf

6: Graphs

Plot Pf (Γi (α, h)), Pf (Γi (α, h)), R(ij)
Pf

j← j + 1

i← i + 1

FIGURE 5.4: Workflow of the proposed methodology.

5.4 Application cases

5.4.1 Test cases and numerical tools used

The methodology that is proposed in this chapter is applied on two academic examples, or
toy-cases, and to the reliability analysis of penstocks. The two academic examples correspond to
modified versions of the three-dimensional Rosenbrock function and a two-degree-of-freedom
oscillator system. The main objective is to compare the robustness and opportuneness curves
obtained from various uncertainty models with increasing level of informativeness. Therefore,
the following groups of comparison are created:

• M1: interval RS, interval DIRECT, trapezoidal possibility distribution, triangular possibil-
ity distribution, probabilistic uniform distribution;
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• M2: interval RS, parallelepiped convex model;

• M3: free p-box, parametric p-box.

The group M1 corresponds to added information represented by the solid lines 4 and 5 in Fig-
ure 2.9 from Chapter 2 and the solid line that could have been plotted between the interval and
probability models. When considering the interval model, a distinction is made between “inter-
val RS” which means that the bounds on the failure probability are estimated using RS theory
and “interval DIRECT” which means that the bounds are estimated by using the global opti-
mization algorithm DIRECT (Jones et al., 1993; Finkel, 2003) directly on the failure probability.
The group M2 corresponds to added information represented by the solid line 2. The group M3
corresponds to added information represented by the solid line 7.

Robustness and opportuneness curves are also presented in order to verify numerically the
links between possibility distributions, DS theory, p-boxes and probability distributions. The
following groups of comparison are defined for that purpose:

• M4: triangular possibility distribution, DS structures, free p-box;

• M5: DS structures, probabilistic uniform distribution.

The group M4 corresponds to the dotted lines 9, 11 and 12 in Figure 2.9. The group M5 corre-
sponds to the dotted line 10.

Parametric p-box results are also obtained using the DIRECT algorithm in the hyperrect-
angle resulting from each uncertain hyperparameter of the distribution law represented as an
interval. For all the other models, the bounds are estimated using the RS framework. Moreover,
hybrid limit-state functions are shown with the Rosenbrock function and the previously defined
VoI metric is computed. The methodology was numerically implemented with Python using
mainly the Scipy package to solve the optimization problems (scipy.optimize module) arising
from the hybrid limit-state functions, and the OpenTURNS software (Baudin et al., 2017) to es-
timate failure probabilities using mainly FORM-IS but also Subset Simulation for verification.
When available, the robustness and opportuneness curves are given with their corresponding
95% confidence interval (which will be depicted with dotted lines).

5.4.2 Toy case 1: the Rosenbrock function

The first toy case has the following limit-state function based on the Rosenbrock function in
three dimensions:

g (X, Y) = 100
(
Y− X2

2
)2

+ (X2 − 1)2 + 100
(
X2 − X2

1
)2

+ (X1 − 1)2 − 3 (5.17)

where X1 and X2 follow standard Gaussian distributions and Y is the only epistemic variable
with a nominal value of Ỹ = 0.9. Robustness and opportuneness curves are obtained by es-
timating the bounds

[
Pf, Pf

]
for nh = 15 horizon levels for h ∈ [0, 0.19]. As Y has a single

component, the convex model reduces to the interval model. The groups of uncertainty models
on which results are provided are M1, M3, M4 and M5. The fact that the input dimension here
is nα = nX + nY = 3 enables to draw the isolines of both LSSs g (α, h) = 0 and g (α, h) = 0 in the
α-space for different values of h and different uncertainty models. Note that the α-space is the
unit hypercube of dimension nX + nY and that αXi represents the quantile order of Xi.

M1 results
The isolines of the limit-state functions for the interval model on Y are shown in Figure 5.5,

where the failure domain lies in the ellipsoid shape. Since, for a given h, Y is a unique interval, its
corresponding random set is the same interval and does not depend on αY. Therefore, for a given
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h, the failure domain is a surface. The isolines are given at increasing horizons of uncertainty
h ∈ [0, 0.19] which is why the plot is three-dimensional. One can see how g (α, h) = 0 (used
for Pf estimation) gradually expands with h while g (α, h) = 0 (used for Pf estimation) gradually
reduces as expected.
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FIGURE 5.5: Illustration of limit-state surfaces g (α, h) = 0 and g (α, h) = 0 for the interval representation
for the Rosenbrock function.

Figure 5.6 compares the isolines of the LSSs between the triangular and trapezoidal distribu-
tions at a given horizon level h = 0.19. In this case, the dimension of α is 3 which means that the
failure domain is a volume which is why it is illustrated for a single value of h. For a given α, the
corresponding random set induced by the triangular distribution is contained in the random set
induced by the trapezoidal distribution. This explains why the failure volume obtained from the
triangular model is contained in the one obtained from the trapezoidal model when considering
the limit-state function g (α, h) = 0 while the opposite happens when considering the limit-state
function g (α, h) = 0.

The analysis of the limit-state functions already gives a strong intuition on the inclusions
of the bounds on the failure probability obtained from the different uncertainty representations
in M1. Figure 5.8.(A) presents the robustness and opportuneness curves for the four different
uncertainty models. The expected inclusions are obtained. One can notice that the extreme
failure probabilities remain close to the nominal result except for the lower failure probabilities
obtained with the interval model and considering RS theory (i.e. interval RS). This could be
expected looking at Figure 5.5 as the ellipses shrink considerably when the horizon of uncer-
tainty grows. Nevertheless, computing the results of the interval model using the optimization
method (i.e. interval DIRECT) yields very different results as the bounds on the failure probabil-
ity become very tight, even tighter than the bounds obtained from the trapezoidal model. This
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FIGURE 5.6: Comparison of g (α) = 0 (A) and g (α) = 0 (B) for the triangular and trapezoidal uncertainty
models.
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FIGURE 5.7: Comparison of g (α) = 0 (A) and g (α) = 0 (B) for the triangular and uniform uncertainty
models.

is probably caused by the strong non-linearity of the limit-state function.

M3 results
Here, the free p-box and parametric p-box models are compared. It is recalled that, for an

equivalent support, the parametric p-box model is more informative than the free p-box model
which implies the bounds on the failure probability of the second model to be contained in the
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FIGURE 5.8: Robustness and opportuneness curves for the groups M1 (A) and M3 (B) for the Rosenbrock
function.

bounds of the first model. The p-box models (free and parametric) are constructed by consider-
ing a Gaussian distribution on Y: Y ∼ N

(
0.9, σ2) with σ ∈ [1− h, 1 + h]. The parametric p-box

results are obtained by performing an optimization using the DIRECT algorithm on σ. Figure
5.8.(B) presents the robustness and opportuneness curves. One can see a strong difference in
behavior as the bounds induced by the parametric p-box model barely expand. This difference
can again be explained by the strong non-linearity of the model.

M4 and M5 results
The M4 comparison aims, firstly, at numerically illustrating the relation between the trian-

gular possibility distribution and its equivalent free p-box representation and, secondly, the link
between the triangular possibility distribution and its discretized DS model. The M5 comparison
aims at numerically illustrating the link between the probabilistic uniform cdf and its discretized
DS model. Figure 5.9 compares the limit-state functions between the triangular model and its
equivalent p-box at h = 0.19. It does seem that the limit-state functions of both representations
have the same volume, though having a different shape. Note that, even if the different scales
make it hard to see, the failure domain g (α) ≤ 0 is still included in the failure domain g (α) ≤ 0
for both representations as expected.

Figure 5.10 compares the robustness and opportuneness curves for both comparisons and
numerically confirms the expected results, despite the noise induced by the failure probability
estimations.

5.4.3 Toy-case 2: a non-linear oscillator system

The second toy-case corresponds to an adapted version of a two-degree-of-freedom oscillator
as shown in Figure 5.11 and seen in (Der Kiureghian and De Stefano, 1991; Chabridon et al.,
2017). The system is composed of two masses mp and ms, two springs of stiffnesses kp and ks,
two damping ratios ζp and ζs and is subjected to a white noise base acceleration of intensity
S0. By denoting Fs as the force capacity of the secondary spring, the reliability of the system is
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FIGURE 5.10: Robustness curves for the groups M4 (A) and M5 (B) for the Rosenbrock function.

expressed through the following limit-state function:

g (X, Y) = Fs − 3ks

√√√√√ πS0

4ζsω3
s


 ζaζs

ζpζs (4ζ2
a + r2) + γζ2

a

(
ζpω3

p + ζsω3
s

)
ωp

4ζaω4
a


 (5.18)

where γ = ms/mp is the mass ratio, ωp =
(
kp/mp

)1/2 and ωs = (ks/ms)
1/2 the natural frequen-

cies, ωa =
(
ωp + ωs

)
/2 the average frequency ratio, ζa =

(
ζp + ζs

)
/2 the average damping
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ratio and r =
(
ωp −ωs

)
/ωa a tuning parameter. The random vector X gathers nX = 3 indepen-

dent random variables whose probabilistic modeling is given in Table 5.1. The epistemic vector
Y is of dimension nY = 5 and its epistemic characteristics are given in Table 5.2. One supposes
here that nominal values are known for the stiffnesses, the damping ratios and the force capacity.

FIGURE 5.11: Two-degree-of-freedom damped oscillator.

The horizon of uncertainty is discretized into 10 values in [0, 0.05]. The groups of comparison
that are studied are M1 and M2.

TABLE 5.1: Input probabilistic modeling of X.

Variable Xi Distribution Mean µXi δ

X1 = mp (kg) Lognormal 1.5 10%
X2 = ms (kg) Lognormal 0.01 10%
X3 = S0 (m.s−2) Lognormal 100 10%

TABLE 5.2: Epistemic characteristics of Y.

Variable Yi Ỹi
Y1 = kp (N.m−1) 1
Y2 = ks (N.m−1) 0.01
Y3 = ζp (1) 0.05
Y4 = ζs (1) 0.02
Y5 = Fs (N) 11

M1 results
Before showing the robustness and opportuneness curves for all representations, Figure 5.12

compares these curves for the trapezoidal representation estimated using the FORM-IS and Sub-
set Simulation algorithms. The curves obtained by evaluating the hybrid limit-state functions
using the vertex method (Dong and Shah, 1987) (which states that the extreme values of the
limit-state function are obtained at combinations of the extreme values of Yi) instead of an opti-
mization algorithm are also given in the same figure. The curves suggest a high confidence in
the results obtained with the FORM-IS algorithm and seem to confirm the hypothesis introduced
with the vertex method.

The robustness and opportuneness curves are given in Figure 5.13.(A) and the corresponding
VoI surface plot in Figure 5.13.(B). Once again, the minimum failure probability with the interval-
RS model quickly decreases compared to the other representations including the interval-DIRECT
model. This is not so much the case for the maximum failure probability for which the highest
values of RPf

are obtained from the triangle representation to the uniform representation.
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FIGURE 5.12: Pf estimators comparison for the oscillator case.
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FIGURE 5.13: Robustness and opportuneness curves (A) and VoI metric (B) considering the M1 group for
the non-linear oscillator case.

M2 results
Here, the multi-parallelepiped uncertainty model is used to model the epistemic vector by

considering an equal coefficient of linear correlation ρkpζp = ρksζs = ρ. Figure 5.14 presents
the robustness and opportuneness curves for different values of the coefficient of correlation.
The 95% confidence intervals are not depicted for the sake of clarity. As expected, the higher
the coefficient of correlation in terms of absolute value, the narrower the bounds on the failure
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probability. Nevertheless, the bounds will shrink significantly as soon as a non-zero coefficient
of correlation is given but the results between a low or high coefficient do not considerably differ.
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FIGURE 5.14: M2 comparison for positive coefficients of correlation (A) and M2 comparison for negative
coefficients of correlation (B).

5.4.4 Reliability assessment of penstocks

In this section, the methodology is applied to the reliability of penstocks associated to brittle
failure mode. Note that this application is illustrative: the choice of epistemic variables should
be further substantiated. It is meant to demonstrate the feasibility of the methodology on a
more complex industrial use-case. The conditional annual failure probability is of interest and
the characteristics of X and Y are given in Tables 5.3 and 5.4 respectively.

TABLE 5.3: Input probabilistic modeling of X for the penstock use-case.

Variable Xi Distribution Param 1 Param 2 Param 3
X1 = Rm (MPa) Lognormal 480 24 -
X2 = ∆eextra (mm) Normal 0 0.25 -
X3 = ∆ecorr (mm) Normal 1 0.4 -
X4 = ε (MPa) Normal 0 16.816 -
X5 = KIC (MPa.

√
m) Weibull Min 90 4 20

TABLE 5.4: Epistemic characteristics of Y for the penstock use-case.

Variable Yi Ỹi
Y1 = enom (mm) 8
Y2 = ∆ean (mm) 0.06
Y3 = a (mm) 2

It should be pointed out that calculating a conditional probability using RS theory is not as
straightforward as in Eqs. (5.7a) and (5.7b). Indeed, one cannot express in a trivial way the
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maximum or the minimum of the failure probability as a function of the maximum or minimum
of both limit-states GN+1× GN and GHPT. Nevertheless in this case, as Y has a greater impact on
GN+1.GN than Ght, the following simplification is performed:

Pf ≈
Pr
[
minΓ(α) (GN+1.GN) ≤ 0∩ GHPT (α

∗) ≥ 0
]

Pr [GHPT (α∗) ≥ 0]
(5.19)

where α∗ = arg min (GN+1.GN). In this industrial use-case, only the maximum failure probabil-
ity Pf will be of interest. The results of the groups of comparison M1, M2 and M3 are given in
the following.

M1 results
The FORM-IS algorithm is, once again, the first choice to estimate the probabilities. Nev-

ertheless, it is necessary to verify the results with another algorithm. Figure 5.15 compares the
robustness curves obtained with the FORM-IS and the Subset Simulation algorithms consider-
ing the interval model on Y. Despite being less smooth, the results obtained with the Subset
Simulation algorithm are very similar to those obtained with FORM-IS.
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FIGURE 5.15: Pf estimators comparison for the penstock use-case.

Figure 5.16.(A) shows the robustness curves of M1 and Figure 5.16.(B) shows the correspond-
ing VoI surface plot of the VoI metric RPf

. Once again, the probabilistic information of a uniform
distribution considerably reduces the maximum failure probability and therefore improves the
robustness. The difference between both interval results is also quite significant.

Figure 5.17 presents the sensitivity results from the interval to the trapezoidal representa-
tions. The classification of the most influential variables on the information is quite clear what-
ever the horizon of uncertainty as the added information on enom has a strong influence, on KIC
a non-negligible influence and on ∆ean a very weak influence.

M2 results
Figure 5.18.(A) presents the results with the multi-parallelepiped model by considering a

coefficient of correlation ρ = ρY1Y2 between enom and ∆ean. It seems that a negative coefficient
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FIGURE 5.16: Robustness curves (A) and VoI metric (B) considering the M1 group for the penstock use-
case.
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use-case.

of correlation has no impact on the robustness while a positive coefficient has a very limited
impact.

M3 results
The p-box model is constructed by considering a Gaussian distribution for Yi: Yi ∼ N

(
Ỹi, σ2

i

)

with σi ∈ [σ̃i (1− h) , σ̃i (1 + h)] and σ̃ = [0.4, 0.003, 0.1]>. For this case, the horizon of uncer-
tainty belongs to h ∈ [0, 0.5]. The parametric p-box results are still obtained by performing an
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FIGURE 5.18: Robustness curves for the groups M2 (A) and M3 (B) for the penstock use-case.

optimization using the DIRECT algorithm on σ. Figure 5.18.(B) presents the robustness curves
for both representations. The added information in the parametric p-box improves the robust-
ness as expected.

5.5 Discussions

This section aims in a first place at summarizing all the results from above w.r.t. the objective
of this work which is to analyse the effect of different models of uncertainty on a robustness
analysis in the context of HRA. The use-cases enable to numerically translate the links presented
in Figure 2.9 by constructing and comparing opportuneness and robustness curves. These links,
and therefore the comparison, are divided into two main groups. The first one, which involves
the comparison groups M1, M2 and M3, shows in what extent a more informative uncertainty
model may affect robustness and opportunity. Indeed, adding information will often lead to a
gain in robustness (the model can tolerate more uncertainty) and a loss in opportunity (more
uncertainty is needed for a positive unexpected outcome). In the context of HRA, this notion is
seen as a narrowing of the bounds of the failure probability until reaching a unique value for
purely probabilistic or deterministic models. The more the support of the epistemic variables
grows the more narrowing is observed. On the other hand, the more informative a model is the
more dependent the quantity of interest is on the hypothesis made. Nevertheless, the benefits of
acquiring information strongly depend on the decision-making context. Indeed, in the case of
safety assessment for which very small failure probabilities are estimated, a gain of information
is way more valuable if it affects the robustness curve rather than the opportuneness curve.

The behavior of the numerical model (i.e. the limit-state functions in the case of HRA)
w.r.t. the epistemic variables also has a key role on the value of information. For example,
a monotonous behavior will yield the same bounds on the failure probability whether free or
parametric p-boxes are considered. A reduced convex set (i.e. more informative) will have no
impact on the robustness curve if the worst performance was initially obtained at a point that
is still contained in the more informative set. In most practical cases, such information may
unfortunately only be available after the robustness analysis.
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The second main group concerns the comparison groups M4 and M5 which emphasize some
links between different uncertainty models in the framework of this chapter. More precisely, it
numerically confirms that possibility distributions and DS structures may also be seen as free
p-boxes and that probability and possibility distributions may be considered as DS structures
(with a loss of information that depends on the discretization process). This is interesting for
two main reasons. The first one is related to the fact that all these uncertainty models with
different interpretations and mathematical foundations may be intimidating for an average de-
cision maker. These links show how different models can be closely related in the context of
HRA. The second reason is that it enables to widen the use of smart numerical methods initially
established for a specific uncertainty framework such as p-boxes for which a lot of content is
proposed.

Additionally, this section wants to clarify the use of the proposed methodology. The IG
framework is initially built for taking robust decisions in the context of strong uncertainty. The
present work does certainly not aim at ranking any uncertainty representation nor does it want
to emphasize the proposed methodology for performing an IG analysis. The choice of an un-
certainty model strongly depends on the available information and on the context in which a
decision must be made (e.g. a safety requirement). The IG method brings an additional tool for
confronting a decision to the hypotheses that were made in order to take that decision. There-
fore, it is complementary with the probabilistic framework for decisions based on reliability
quantities. The possible combination of the different uncertainty models considered through
random set theory together with the IG framework offers a wide range of possibilities for con-
ducting a suitable robustness analysis on reliability quantities.

5.6 Synthesis

In this Chapter, a methodology was proposed in order to analyse the robustness of the upper
bound of a failure probability w.r.t. different epistemic uncertainty representations in input. In
the context of hybrid reliability analysis, the random set framework is suitable to model and
propagate different representations of uncertainty to estimate reliability quantities of interest
such as bounds on a failure probability. An IG robustness analysis was performed by consider-
ing each type of uncertainty model in an increasing support of the epistemic variables.

This methodology enabled to compare robustness and opportuneness curves between uncer-
tainty models that are more or less informative for two academic examples and one industrial
use-case related to the reliability assessment of hydraulic penstocks. As expected, it is seen that
increasing the support of the epistemic variables leads to increasing the effect of the choice of
the uncertainty model on the bounds of the failure probability and therefore on the robustness
analysis. The objective of this study is not to determine the best representation of uncertainty, as
this depends on the available information, but to provide insights about the impact (in terms of
robustness) of the uncertainty model.

In the following chapters, robustness will be performed considering uncertainty on a nomi-
nal probabilistic distribution. Therefore, the p-box representation will be considered.
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This chapter is adapted from the following reference:
A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2022). “Robustness eval-
uation of the reliability of penstocks combining line sampling and neural networks”. Preprint.

6.1 Motivations

The overall motivation of this chapter is twofold. First, an illustrative IG robustness anal-
ysis is applied to the failure mode of penstocks associated to plastic collapse. Line sampling
is adapted to this simpler reliability assessment study before presenting numerical aspects and
typical results induced by the IG analysis. Secondly, robustness applied to the more challenging
conditional brittle failure mode is considered. A numerical procedure that appears to be perfor-
mant for evaluating the IG robustness on the reliability assessment of penstocks is followed. As
already mentioned in Chapter 3, the main challenges that appear when estimating the failure
probability of a penstock is the rareness of the failure event and the particular geometry of the
failure domain defined through event intersections. The last matter becomes even more binding
when considering conditional failure probabilities. However, the bright side is that the involved
LSFs are analytical, and therefore fast to evaluate, and that some knowledge about the LSFs is
available.

Robustness analysis is firstly performed in Section 6.2 on the plastic collapse failure mode
which presents a first implementation of line sampling. Then, Section 6.3 presents adaptations
of line sampling to the brittle failure mode conditional to the success of the hydraulic test. Sec-
tion 6.4 describes the methodology applied for building robustness curves and validates the
line sampling algorithms. Finally, Section 6.5 proposes a combination of two artificial neural
networks with the line sampling algorithm to reduce computational time.

6.2 Robustness analysis applied to the plastic collapse failure mode

6.2.1 First application of line sampling

As a reminder from Chapter 3, the annual failure probability related to the plastic collapse
failure mode is expressed as:

Pf = P (GN+1 (X) ≤ 0∩ GN (X) > 0) = P (GN+1 (X) .GN (X) ≤ 0) . (6.1)

The random vector involved in this failure mode is X = [Rm, ∆ecorr, ∆eextra, ε] for which the
probabilistic characteristics can be retrieved in Chapter 3 in Table 3.1. The monotonic decrease
of the annual LSF over the years due to corrosion implies that the studied failure domain actually
represents a narrowed band (the failure domain at year N + 1 contains the failure domain at year
N). Hence, importance sampling algorithms only based on the MPFP may still generate a lot of
samples outside of the band, at least in their standard version. In this chapter, the line sampling
technique already introduced in Chapter 2 is implemented. Indeed, this technique enables to
tackle directly the LSFs.

However, the formulation proposed in Eq. (2.24) needs to be reconsidered as the underlying
hypothesis of the unicity of the root r

(
u⊥,(i)

α

)
is not met due to the geometry of the failure

domain. Indeed, by denoting G⊥,(i)
N = GN

(
v1, u⊥,(i)

α

)
and G⊥,(i)

N+1 = GN+1

(
v1, u⊥,(i)

α

)
, Figure

6.1 shows the two roots r(i)1 and r(i)2 to be considered which bound the one-dimensional failure
domain along the i-th line. The fact that two roots need to be accounted for simply rewrites the
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FIGURE 6.1: Two roots involved along a sampled line for the plastic failure mode.

failure probability as:

Pf =
∫

RnX−1

[
Φ
(
−r1

(
u⊥α
))
−Φ

(
−r2

(
u⊥α
))]

ϕU⊥α (u
⊥
α )du⊥α (6.2)

which yields the following estimator:

P̂f =
1

nLS

nLS

∑
i=1

p(i)f =
1

nLS

nLS

∑
i=1

Φ
(
−r(i)1

)
−Φ

(
−r(i)2

)
. (6.3)

The generic procedure to estimate the failure probability with the LS estimator is presented in
Algorithm 1. First, the optimal direction α is obtained after a FORM analysis. Then, nLS points
are generated according to the standard Gaussian distribution before being projected into the
orthogonal hyperplane. Finally, the two roots r(i)1 and r(i)2 are assessed along each line using the
“Newton” algorithm proposed in the Python optimization package in SciPy (scipy.optimize).

Algorithm 1 – LS procedure for plastic failure mode.

Pf ← 0
Find α # FORM results
Generate u ∼ N (0, 1)
for i : 1→ nLS do

u⊥,(i)
α ← u(i) −

(
u(i).α

)
α # projection on the orthogonal hyperplane

Search for r(i)1 and r(i)2

p(i)f = Φ
(
−r(i)1

)
−Φ

(
−r(i)2

)
# failure lies in

[
r(i)1 , r(i)2

]

Pf ← Pf + p(i)f

Pf ← Pf/nLS

The procedure for the LS estimator is now tested on four different configurations of pen-
stocks. The convergence of the estimated failure probabilities is compared with the convergence



86 Chapter 6. Line sampling-based algorithms for the robustness assessment of penstocks

0 25 50 75 100 125 150 175 200
nLS, nIS/10

10−8

10−7

10−6

P
f

P
(3)

f

P
(4)

f

P
(1)

f

P
(2)

f

IS ref. (5× 105)

LS

IS

FIGURE 6.2: Comparison of Pf estimation obtained with each LS algorithm and the IS algorithm on four
configurations of penstock.

of the FORM-IS algorithm and the reference value, denoted as “IS ref.” obtained with the FORM-
IS algorithm with nIS = 5× 105 samples. The results are presented in Figure 6.2. The abscissa
axis represents the number of LS iterations nLS and the number of IS iterations nIS divided by
10. This means, for example, that 2× 102 LS iterations correspond to 2× 103 IS iterations. One IS
iteration implies 2 LSF evaluations (one for each LSF) while one LS iteration requires an average
of 9 total LSF evaluations for finding both roots. These first results show that both estimators are
very performant. In particular, the LS algorithm only needs a very few number of iterations for
an acceptable estimation. Such behavior reveals a probable high degree of linearity of the two
LSSs.

6.2.2 Info-gap analysis

The fact that the G-functions are fast to evaluate and that the LS estimator converges rapidly
enables a direct application of the IG framework. The IG uncertain vector is defined as e =[

ẽnom, ∆̃ean, µ̃Rm , µ̃∆ecorr , σ̃∆eextra , ω̃
]
. This illustrative choice jointly considers non-probabilistic in-

put variables and probability distribution parameters. Interesting information is to evaluate the
robustness of different configurations of penstocks in order to detect if some are more robust
than others despite an equal or a lower nominal performance. Figure 6.3.(A) presents the ro-
bustness curves obtained using the GN_ORIG_DIRECT_L optimization algorithm at each of the 10
values of hj ∈ [0, 0.4] for 39 configurations that have a range of nominal performances roughly
between 10−9 and 10−6. It appears that most of these robustness curves reveal same behaviors
such that only a very few of them intersect with others. This is confirmed with Figure 6.3.(B)
which presents the robustness values associated to a critical failure probability set at 10−5 as a
function of the nominal performance. It is expected that the closer the nominal performance to
the critical value, the less robust the configuration. However, it is interesting to look at poten-
tial vertical dispersion at close nominal values. In this application, the maximum dispersion is
around 4% which confirms that no configuration is way more or way less robust to the consid-
ered uncertainty than the others.
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ẽnom

σ̃∆eextra

∆̃ean

µ̃∆ecorr

µ̃Rm

ω̃

(B)

FIGURE 6.4: Robustness curve obtained for each uncertain variable fixed at nominal value (the black
dotted curve corresponds to all variables considered uncertain) (A) and corresponding demand values

(B).



88 Chapter 6. Line sampling-based algorithms for the robustness assessment of penstocks

Figure 6.4.(A) shows the new robustness curves when each uncertain variable is set to its
nominal value while the others remain uncertain and Figure 6.4.(B) quantifies the demand value
introduced in Chapter 5 for each fixed uncertain variable. The added information on enom clearly
stands out and renders the other results almost irrelevant. It seems important to notice that the
IG results are conditioned to the way that the horizon of uncertainty parametrizes the range
of each uncertain variable. In this thesis, the relative error model is mostly used and similarly
applied to each uncertain variable even on variables that have a nominal value very close to zero.
The analyst must make sure that the horizon of uncertainty broadens the uncertainty range of
each variable in a representative way. Let us mention that weights on each uncertain variable
may be applied in that matter.

6.3 A line-sampling-based procedure adapted to the brittle failure mode

6.3.1 Challenge for the application of line sampling

The conditional annual failure probability is recalled:

Pf =
P (GN+1 < 0∩ GN ≥ 0∩ GHPT ≥ 0)

P (GHPT ≥ 0)
(6.4)

In penstock reliability assessments, considering such a conditional probability is particularly
relevant for brittle fracture. The involved random variables are X = [Rm, ∆eextra, ∆ecorr, ε, a, KIC]

>

for which the probabilistic characteristics can also be retrieved in Chapter 3 in Table 3.1. In
the following, only the numerator probability in Eq. (6.4) will be of interest as it is the most
challenging one to estimate. Indeed, the double-intersection-based failure domain becomes even
more restricted than the one involved in Section 6.2. This can be understood in a first place from
Figure 3.2. Depending on the sample u⊥α and the direction α, two cases can be encountered:

• either the failure band is never reached, which results in the fact that there is no root;

• or the failure band is reached in which case there are two roots denoted r1 and r2.

As a consequence, the LS algorithm must again be adapted for taking into account these two
possibilities. First, let us remark that the double intersection may actually be described following
three equivalent mathematical formulations of the same event:

E1 = {max (GN+1,−GN ,−GHPT) ≤ 0},
E2 = {GN+1.GN ≤ 0∩ GHPT > 0},
E3 = {GN+1 ≤ 0∩ GN > 0∩ GHPT > 0}.

(6.5)

In the following, the event Ei is to be understood as the same event E = E1 = E2 = E3 described
by the i-th formulation. The following notations are used: Gmax = max (GN+1,−GN ,−GHPT)
and Gprod = GN+1.GN . Figures 6.5 and 6.6 represent the several LSF G⊥N+1 (v1), G⊥N (v1), G⊥HPT (v1)

and G⊥max (v1) for two different samples u⊥,(i)
α . As the functions G⊥N+1, G⊥N and G⊥HPT are decreas-

ing, the composed function G⊥max first decreases with G⊥N+1 and then increases either with −G⊥N
or −G⊥HPT. Actually, there are three distinguishable cases:

1. the two roots correspond to G⊥N+1 = 0 and G⊥N = 0 as in the example in Figure 6.5;

2. the root of G⊥HPT = 0 is smaller than the root of G⊥N+1 = 0 which implies no solution for
G⊥max = 0 as in the example in Figure 6.6,

3. the two roots correspond to G⊥N+1 and G⊥HPT (much rarer). Typically, this happens when
the root of G⊥HPT = 0 is between the roots of G⊥N+1 = 0 and G⊥N = 0.
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The one-dimensional failure probability associated to the i-th line is now expressed as:

p(i)f =

{
Φ
(
−r(i)1

)
−Φ

(
−r(i)2

)
if r(i)1,2 exist,

0 otherwise.
(6.6)

The LS algorithm must now be able to assess the existence of roots for each sampled line. In the
following section, three algorithms constructed in accordance with the events E1, E2 and E3 are
proposed in order to efficiently solve this zero/multiple root search problem.

6.3.2 Proposition of three adapted line sampling procedures

Algorithm 2 presents the new general LS procedure (in the standard normal space) used
to estimate the failure probability which is very close to 1, except for the fact that the initial
direction α is now obtained from the MCF algorithm and that the roots may not exist. Moreover,

Algorithm 2 – General LS procedure (for possible two roots).

Pf ← 0
Find α, u∗MCF # MCF results
Generate u ∼ N (0, 1)
for i : 1→ nLS do

u⊥,(i)
α ← u(i) −

(
u(i).α

)
α # projection on the orthogonal hyperplane

Search for r(i)1 and r(i)2 # see Algorithms 3 and 4

if r(i)1 and r(i)2 exist then

p(i)f = Φ
(
−r(i)1

)
−Φ

(
−r(i)2

)
# failure lies in

[
r(i)1 , r(i)2

]

if ‖u⊥,(i)
α + r(i)1 α‖ < ‖u∗MCF‖ then # advanced line sampling

u∗ ← u⊥,(i)
α + r(i)1 α

α← u∗/‖u∗‖
else

p(i)f = 0 # failure is never reached

Pf ← Pf + p(i)f

Pf ← Pf/nLS

if valid roots are found and if the point corresponding to the first root has a smaller distance to
the origin than the previous optimal point u∗, then u∗ and the optimal direction α are updated.
This is a feature of the so-called “adaptive line sampling” (De Angelis et al., 2015) which is useful
in this case as the MCF algorithm may not always give the best possible direction.

The procedures used to find the roots when considering the events E1 (related to Gmax) and
E2 (related to Gprod) are both presented in Algorithm 3 as they are quite similar. Algorithm 4 is
proposed to find the roots when considering only the event E3. It is important to keep in mind
that the choice of the event does not impact the position of the roots but only the procedure to
find them. Indeed, the event E1 is only composed of one function which is supposed to be always
decreasing first and then always increasing. As it is formulated as the maximum value of three
different functions, its shape may not be smooth. The corresponding procedure in Algorithm
3 (in blue) aims at estimating the minimum value of the function. If the minimum value is
negative, then the first root and the second root are searched in its neighborhood (before and
after). If the minimum value is positive, then no root exists and pf is set to 0. The procedure
applied for the event E2 and described in Algorithm 3 (in red) is quite similar to the one for the
event E1. E2 is composed of the two functions GHPT which is supposed always decreasing and
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Algorithm 3 – Roots search with the events E1 and E2.

m(i) = min
v1

G⊥max (v1)

m(i) = min
v1

G⊥prod (v1)

if m(i) < 0 then # else case 2
Find r(i)1 < m(i) s.t. G⊥max

(
r(i)1

)
= 0

Find r(i)2 > m(i) s.t. G⊥max

(
r(i)2

)
= 0 # case 1 or 3

Find r(i)1 < m(i) s.t. G⊥prod

(
r(i)1

)
= 0

if G⊥HPT

(
r(i)1

)
> 0 then # else case 2

Find r(i)2 > m(i) s.t. G⊥prod

(
r(i)2

)
= 0 # case 1

if G⊥HPT

(
r(i)2

)
< 0 then

Find r(i)2 s.t. G⊥HPT

(
r(i)2

)
= 0 # case 3

Algorithm 4 – Roots search with the event E3.

Find r(i)1 s.t. G⊥N+1

(
r(i)1

)
= 0

if G⊥HPT

(
r(i)1

)
> 0 then # else case 2

Find r(i)2 > r(i)1 s.t. G⊥N
(

r(i)2

)
= 0 # case 1

if G⊥HPT

(
r(i)2

)
< 0 then

Find r(i)2 s.t. G⊥HPT

(
r(i)2

)
= 0 # case 3

Gprod = GN+1.GN which is supposed always decreasing first and then always increasing. It is
necessary, in this case, to verify the position of the root of GHPT. If it appears before the first
root of Gprod then there is no solution. Otherwise, the second root to be kept is the smallest one
between the root of GHPT and the second root of Gprod.

The event E3 is composed of the three supposed decreasing functions GN+1, GN and GHPT.
These functions taken one by one are generally smoother but may still present discontinuities
in some cases. If the root of GHPT is smaller than the root of GN+1 then there is no solution.
Otherwise, the second root to be kept is the smallest one between the root of GHPT and the root
of GN . This algorithm is therefore based on a sequential roots search strategy. The algorithms
corresponding to the events E1, E2 and E3 are respectively denoted by AE1 , AE2 and AE3 .

6.3.3 Numerical comparison of the three line sampling algorithms

The numerical tools used to perform the minimization and the roots search are taken from the
Python optimization package in SciPy (scipy.optimize). The minimization is conducted with
the “bounded” algorithm which uses the Brent method to find a local minimum in an interval.
The root search is conducted either with the “toms748” algorithm (Alefeld et al., 1995) in AE1

and AE2 or the “newton” algorithm in AE3 as the functions involved are more regular. Each
algorithm must be able to treat the three cases mentioned in Section 6.3.1. The first two cases are
frequent while the third case is rarer. Depending on which algorithm is used, the efforts needed
to find the roots (or to find out that there is no root) to deal with each case will differ. This is
presented in Table 6.1 where “Minimization” corresponds to the search of a minimum either for
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TABLE 6.1: Operations performed for each event.

Algorithm Minimization Roots search GHPT evaluations

AE1

Case 1
Case 2
Case 3

1
1
1

2
0
2

0
0
0

AE2

Case 1
Case 2
Case 3

1
1
1

2
1
3

2
1
2

AE3

Case 1
Case 2
Case 3

0
0
0

2
1
3

2
1
2

TABLE 6.2: Performances of each LS algorithm (AE1 , AE2 , AE3 ).

AE1 AE2 AE3 IS
#GN+1-calls 19162 22524 8484 5× 104

#GN-calls 19162 22524 3062 5× 104

#GHPT-calls 19162 1516 996 5× 104

∑ #Gi 57486 46564 13530 1.5× 105

t(s) 4.13 3.90 2.21 6.10

Gmax or Gprod, “Roots search” corresponds to the number of times a root is searched and “GHPT
evaluations” is the number of evaluations of GHPT at a given root.

From Table 6.1, one can expect the algorithm AE3 to be the least demanding in number of code
evaluations and the algorithm AE2 to be the most demanding one. This conjecture is verified by
estimating 500 failure probabilities corresponding to different input probabilistic distribution
parameters with each LS algorithm for a total number of iterations nLS = 1× 103. The averages
#GN+1-calls, #GN-calls and #GHPT-calls of the number of evaluations #Gi of each single limit-
state function are calculated as well as the average time t required for estimating one failure
probability. The number of evaluations that come from the MCF algorithm used for both the LS
method and the IS method is not given here as it is the same for all the methods and as it is low
compared to the total number of evaluations.

The results are presented in Table 6.2 and confirm what was expected from Table 6.1. AE3

requires more than three times less total evaluations than AE2 and more than four times less
than AE1 . The ratios in terms of computational time are not the same as for the number of
total evaluations as it depends on other factors such as the different functions that are used.
Nevertheless, one failure probability estimation with AE3 seems to be almost twice as fast as the
two others. It cannot yet be said if the LS algorithms are more efficient than the IS algorithm
as it depends on the numbers of iterations nLS and nIS. What can be said is that one IS iteration
implies (in the current version of FISTARR) three limit-state evaluations (one for each single
limit-state function) and one LS iteration implies roughly an average of 57 total evaluations
with AE1 , 46 total evaluations with AE2 and 13 total evaluations with AE3 .

The comparison is now made by looking at the evolution of the estimated failure probability
using the three proposed LS algorithms with the IS algorithm and the reference value, denoted
as “IS ref.” obtained by performing the MCF importance sampling with nIS = 106 samples. The
IS algorithm is again performed using OpenTURNS. The results are presented in Figure 6.7. The
comparison is presented on four different configurations of penstocks. One first interpretable
result is that the three LS algorithms give identical curves for all four probabilities. The seed
of the random generator being set at an identical value, this means that the three algorithms
find exactly the same roots which is what is expected. The comparison with the IS curve shows
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FIGURE 6.7: Comparison of Pf estimation obtained with each LS algorithm and the IS algorithm.

that the three LS algorithms are efficient. Indeed, while the IS curve seems to converge rapidly
towards the reference value for some configurations (see the middle probabilities), it also seems
that the convergence is slower in some cases (see the lowest curve and especially the highest
curve). From this initial comparison whose number of experiments is too small to draw any
final conclusion, the LS algorithms seem relevant for applying IG. In the following, AE3 is chosen
over AE1 and AE2 for the reliability assessment of penstock as it performs faster. The following
section strengthens the comparison by analysing robustness curves obtained using the different
failure probability estimators.

6.4 Methodology for robustness evaluation

6.4.1 Comparison of robustness curves

The IG uncertain variables considered in this study are the following distribution parameters

grouped in the vector e = θ = [µ∆ecorr , µ∆eextra , amax, βKIC ]
>. The uncertainty model U

(
h,
∼
θ

)

considered is again the basic hyperrectangle convex model defined as the Cartesian product
of all intervals of each uncertain parameter. For a given horizon of uncertainty h, the interval
of the parameter θi is defined as Iθi =

[
θ̃i (1− h) , θ̃i (1 + h)

]
if θ̃i is non-zero or Iθi = [−h, h]

otherwise. Moreover, the nominal values are set to θ̃ = [1, 0, 4, 90]>. For this application, it has
been chosen to construct the robustness curves with 10 values hi ∈ [0; 0.2]. The maximum of
the failure probability is searched using again the “GN_ORIG_DIRECT_L” optimization algorithm
implemented in the NLopt Python library with a maximum number of 500 evaluations.

The objective is first to compare on one nominal configuration of penstock the robustness
curves obtained using the AE3 and IS algorithms as failure probability estimators with the refer-
ence curve. The comparison is made in terms of robustness curves (see Figure 6.8), relative error
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ηPf with the reference curve (see Figure 6.9) and cumulative calculation time (see Figure 6.10)
considering nIS ∈

{
2.5× 104, 5.0× 104, 1.0× 105} and nLS ∈

{
1.0× 103, 2.0× 103, 3.0× 103}.

It appears from Figures 6.8 and 6.9 that the IS algorithms perform rather well in general, ex-
cept for the three last values of h for which the robustness curves deviate from the reference
curve. However, even in this less favorable case, the optimization process will automatically
provide conservative results (Pf is overestimated) and the confidence intervals contain the ref-
erence curve: their performance remains acceptable even in this case. Note that these non adap-
tive IS algorithms could be further optimized; moreover, other optimization algorithms than
LD_MMA in the multi-constraint design point may converge better. This deviation does not
seem to happen with the proposed algorithm AE3 for which the robustness curves remain close
to the reference curve. Moreover, the proposed LS algorithms seem also efficient in terms of
cumulative computational time as shown in Figure 6.10. Although no definitive conclusion can
be made regarding the comparative efficiency of the proposed algorithms with the IS ones, the
adapted LS algorithms seem to be well suited in this context of robustness analysis.

6.4.2 Synthesis on the line sampling algorithms

Drawing robustness curves requires an efficient failure probability estimator over the whole
uncertainty space. Indeed, as optimization is performed repeatedly, only a few bad estimations
suffice to make the robustness curve deviate. In addition to a general trend to provide conserva-
tive results that could be observed from FORM-IS in standard penstock reliability evaluations,
the fact that the optimization algorithm used is global and that it searches for a maximum value
will generally tend to make the errors conservative which is preferred for safety assessments.
Moreover, a criterion based on the coefficient of variation of each failure probability estimation
could be used to insure a sufficient convergence at each evaluation.

However, the IG robustness analysis is therefore very instructive on the efficiency of the
failure probability estimator in the considered uncertainty space. The proposed adapted line
sampling algorithms represent an interesting alternative as they manage to better target the
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restricted failure domain and correctly estimate the roots. In this reliability application, the
partial knowledge on the behaviors of each limit-state function is helpful for adapting the root
search. Nevertheless, each LS iteration still requires a large number of G-functions evaluations.
The following section presents a method that aims at training artificial neural networks (ANN)
in order to predict the roots for any sampled line and for any uncertain vector θ during the
robustness analysis.

6.5 Combination of two artificial neural networks for the line sam-
pling roots prediction

6.5.1 Problem statement

As the G-functions involved in Eq. (6.4) are a series and a combination of analytical ex-
pressions, a single failure probability estimation may be obtained within a few seconds. Nev-
ertheless, when considering no information that could simplify the optimization process such
as a monotonic behavior with respect to the epistemic distribution parameters, applying the
IG method as it is done in the previous section requires the evaluation of several thousands
of failure probabilities. Therefore, being able to reduce the computational time of one proba-
bility evaluation remains relevant. Chapter 4 already introduced the potential use of surrogate
models. They often substitute the expensive G-function. This is not relevant in the present appli-
cation as the G-functions are not expensive to evaluate. It is considered here to use the surrogate
models in order to directly evaluate the existence and (when they exist) the values of the roots
for any joint vector (u, θ). As the G-functions are relatively fast to compute, several thousand
training samples may be considered for building predictive surrogate models. Therefore, the
choice made in this application is to use ANNs rather than other types of surrogate models such
as kriging or polynomial chaos expansions.

Chapter 4 also introduced methods that evaluate many failure probabilities using a unique
input dataset. In this application, the method from (Yuan, 2013) called “weighted importance
sampling” (WIS) seems the most appropriate as it only requires the calculation of a ratio of
densities. This method will also be part of the comparison when computing robustness curves.

6.5.2 Generalities on artifical neural networks

This part does not aim at giving an extended description of ANNs but only at presenting the
basic notions necessary to understand how they may be of use for reliability analysis. ANNs
represent a mathematical structure that processes information from an input layer to an output
layer through hidden layers (Jain et al., 1996). The information is passed from one layer to
another with some specific functions called “artificial neurons” as illustrated in Figure 6.11. Each
neuron belonging to the layer l(i) receives as an input, a linear combination on the outputs s(i−1)

k

of the neurons of the previous layer l(i−1) with weights w(i)
k,j and a bias term b(i)j . The input

is then processed with an activation function f (i) whose output s(i)j is passed to the neurons
of the next layer. This simple mechanism is depicted in Figure 6.11. In this application, fully
connected feedforward ANNs are considered which simply correspond to architectures where
the information only goes from all the neurons of layer l(i−1) to all the neurons of layer l(i) (but
not between neurons of a same layer which is the case for recurrent neural networks).

An ANN may learn complex relationships between inputs and outputs by training it with
an available dataset (e.g. composed of inputs-output realizations). Indeed, by performing back-
propagation through gradient descent (Hecht-Nielsen, 1989), the ANN is able to update the
values of the weights wk,j and the biases bj such that the errors (defined through a loss function)
between the output dataset and the ANN outputs are minimized. The application range of such
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FIGURE 6.11: Representation of a single artificial neuron.

networks is very wide as ANNs may be used for classification and regression problems. More-
over, it is able to treat all sorts of information (Liu et al., 2017). Therefore, ANNs also find their
use in reliability analyses as surrogate models, most often to replace an expensive limit-state
function. In Papadrakakis and Lagaros (2002), Papadopoulos et al. (2012) and Zio and Pedroni
(2010), ANNs are combined with Monte Carlo simulation, subset simulation and line sampling
respectively. A review of their use in the context of reliability analysis is proposed in (Chojaczyk
et al., 2015). In the present work, ANNs are combined with LS in order to directly predict the
roots associated to each u⊥α drawn from the LS algorithm.

6.5.3 Proposed methodology based on artificial neural networks

ANNs are combined to the LS-based AE3 algorithm, which has been identified as the most
efficient in Subsection 6.4.1, in order to reduce the computational time required for obtaining a
robustness curve. What makes the AE3 still time consuming is that it requires a large number
of evaluations of the G-functions, first to assess the existence of roots and, second, to evaluate
their values. The objective here is to be able, for any joint sample (u, θ), to predict the answers
of the two previous problems based on training samples (u, θ)train. The fact of considering the
probabilistic standard vector u together with the epistemic uncertain vector θ as the input of the
ANN enables to create a single surrogate model applicable during the whole IG analysis.

Two types of ANNs are jointly proposed. First, a classification ANN, denoted by ANN1, is
necessary in order to predict if roots exist or not for a given sample (u, θ)(i). Then, a regres-
sion ANN, denoted as ANN2, is used to predict the values of both roots when they exist. The
procedure that is followed to build both ANNs is presented hereafter:

1. Generate ntrain training and nval validation samples of u according to the independent
standard Gaussian distribution;

2. Generate ntrain training and nval validation samples of θ according to the uniform distribu-
tion with the bounds

[
θ (hmax) , θ (hmax)

]
with a user-defined hmax;
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3. For each
(

u(i), θ(i)
)train

and
(

u(i), θ(i)
)val

, assess the existence or not of roots using algo-

rithm AE3 . Any joint vector for which no root exists is denoted (u, θ)(0) while the others
are denoted (u, θ)(1);

4. Build and learn the surrogate model ANN1 with the samples (u, θ)train and validate its
performance with the samples (u, θ)val;

5. Build and learn the surrogate model ANN2 with the samples (u, θ)(1),train and validate its
performance with the samples (u, θ)(1),val.

A lot of parameters may be tuned when building ANNs such as the number of layers, the
number of neurons per layer or the type of loss and accuracy metrics. Both ANNs are built
using the Python libraries Keras and Tensorflow. More information about the architectures and
parameters of ANN1 and ANN2 for the penstock use-case is given in Appendix E.

A small number of errors in the roots classification may lead to unfixable errors especially as
less compensation will take place with highly efficient ANNs. One way of treating this issue is
to consider a multi-fidelity approach and to combine the classification surrogate model ANN1
with the initial algorithm AE3 for estimating Pf (θ). Indeed, for a given joint vector (u, θ), the
output of ANN1 corresponds to the probability that roots exist. Therefore, if the output is close
to 0, one can have strong confidence that no root exists. On the contrary, if the output is close
to 1, one can have strong confidence that some roots exist. However, if the output takes a value
close (where close might be quantified by the analyst) to 0.5, then one might want to check the
correct answer with the AE3 algorithm. Consequently, by defining the security value s ∈ [0, 0.5],
the hybrid multi-fidelity method denoted by “AE3-ANN” is proposed. Thus, it simply adds the
following operation:

• if the output ANN1

(
u(i), θ(i)

)
∈ [0.5− s; 0.5 + s], one can estimate the roots using AE3 ;

• otherwise, one can reasonably trust the result obtained from ANN1.

The complete procedure is depicted in Figure 6.12.

6.6 Application cases

6.6.1 Rosenbrock function

The methodology is first applied to a LSF based on the Rosenbrock function in two dimen-
sions:

g (X1, X2) = 100
(
X2 − X2

1
)2

+ (X1 − 1)2 − 0.01 (6.7)

where X1 ∼ N (θ1, 1) and X2 ∼ N (θ2, 1). Indeed, this toy-case has a similar problematic as the
penstock reliability problem in terms of root search. As depicted in Figure 6.13.(A) for θ1 = 1.5
and θ2 = 0, the limit-state function takes on a very narrow elliptic shape. Due to this geometry
and to the fact that the limit-state function is not formulated as an intersection, the LS algorithm
AE1 is best suited. However, Figure 6.13.(B) shows that a large number of LS iterations and IS
samples are needed in order to converge to the reference failure probability.

The ANN-based methodology is applied by considering ntrain ∈
[
1× 103, 3× 104], nval =

0.2ntrain, Θ1 ∼ U (0, 3) and Θ2 ∼ U (−1, 1). The four following metrics relevant to the perfor-
mance of ANN1 and ANN2 are defined:

• “false root” is the proportion of wrongly declared existing roots from ANN1;

• “forgotten root” is the proportion of existing roots forgotten by ANN1;
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FIGURE 6.12: Illustration of the methodology combining ANNs and AE3 for the reliability of penstocks.
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FIGURE 6.13: Illustration of a limit-state function (A) and comparison of the evolution of Pf with AE1 and
with importance sampling (B) for the Rosenbrock function and for θ1 = 1.5 and θ2 = 0.

• Q2(r1) is the coefficient of preditivity calculated on the first root r1 in common between
ANN1 and AE1 ;

• Q2(r2) is the coefficient of preditivity on the second root r2 in common between ANN1 and
AE1

where the coefficient of predictivity has the following expression:

Q2(ri) = 1−
∑

nri
j=1

(
r(j)

i − r̂i
(j)
)2

∑
nri
j=1

(
r(j)

i − ri
(j)
)2 (6.8)

where nri is the number of real roots predicted by ANN1, r(j)
i the roots obtained with AE1 , r̂i

(j)

the roots obtained with ANN2 and ri
(j) the mean on all roots.

The values of these metrics are calculated on 3 × 103 new testing samples (u, θ)test. Note
that the availability of such testing samples is not always present for more time-demanding
applications. Figure 6.14 presents the impact of the number of training samples on the four
metrics. Except for ntrain = 1000 where the proportion of forgotten roots is high (actually it
is equal to the true proportion of existing roots meaning that ANN1 misjudged every single
existing root), the proportions of wrong classifications quickly become very low (typically lower
than 1%). It also appears that the coefficients of predictivity of both roots are very high (typically
greater than 99%) even for ntrain = 1000.

The methodology is now tested with ntrain = 3× 104 at three randomly chosen uncertain
vectors θ(i): θ(1) = [2.37, 0]>, θ(2) = [0.84,−0.99]> and θ(3) = [0.88,−0.08]>. One can see in
Figure 6.15.(A) that ANN1 manages very well to predict the lines for which roots exist and that
ANN2 is very precise on the estimation of r1,2 although the zoom in Figure 6.15.(B) seems to
show that the elliptic shape is simplified by two lines. These good visual performances are
confirmed with the comparison of the failure probabilities estimations presented in Figure 6.16.
In this case, the proportions of forgotten roots (0.44%, 0.1% and 0.18%) and the proportions of
false roots (0.02%, 0.04% and 0%) are very low such that there is no need to apply the security
value s.
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of the number of training samples on the Rosenbrock function.
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FIGURE 6.16: Comparison of the evolution of Pf with AE1 and the ANNs for three distribution parameters
vectors for the Rosenbrock function.

TABLE 6.3: ANNs metric values on θ(1) and θ(2).

false roots (%) forgotten roots (%) Q2(r1) (%) Q2(r2) (%)
θ1 0.16 0.63 99.8 99.7
θ2 1.6 0.06 99.7 99.7

6.6.2 Reliability of penstocks

The ANN methodology is now applied to the reliability assessment of penstocks. The vector
of uncertain distribution parameters is θ = [µ∆ecorr , µ∆eextra , amax, βKIC ]

> with the following nom-
inal vector θ̃ = [1, 0, 4, 90]>. The maximum value of the horizon of uncertainty having been
set at hmax = 0.2, the training is performed considering Θ1 ∼ U (0.8, 1.2), Θ2 ∼ U (−0.2, 0.2),
Θ3 ∼ U (3.1, 4.9) and Θ4 ∼ U (71, 109). Again, the values of the four testing metrics are cal-
culated on 3× 103 new testing samples for ntrain ∈

[
1× 103, 3× 104] and nval = 0.2ntrain. The

results shown in Figure 6.17 reveal good performances but for a higher number of training sam-
ples compared to the results obtained on the Rosenbrock function. One may notice that the
coefficient of predictivity related to r2 is always lower than the one related to r1. A possible ex-
planation is that the first root always corresponds to the limit-state function GN+1 whereas the
second root either corresponds to GN (in most cases) or to GHPT which may be a more challeng-
ing feature to understand for ANN2.

The procedure is now tested on the two distribution parameters samples θ(1) = [1, 0, 4, 90]>

and θ(2) = [1.2, −0.2, 4.8, 108]> as they both represent the nominal point and one of the vertex
points respectively. The results with the AE3 algorithm and the ANNs are compared for ntrain =
3× 104. The values of the four testing metrics are given in Table 6.3 for nLS = 3× 103.

Figure 6.18 compares the values of r(i)1,2 obtained from the ANN and from AE3 at both dis-

tribution parameters vectors θ(1) and θ(2). The comparisons of the evolution of Pf

(
θ(1)
)

and

Pf

(
θ(2)
)

with the two algorithms are presented in Figure 6.19. The evolution of Pf (θ1) with
both algorithms is almost identical. Indeed the number of wrong classifications from ANN1 is
very low and ANN2 seem to predict both roots with high precision. The evolution of Pf (θ2) with
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the ANNs is slightly overestimated which may be caused either by the evaluation of many false
roots or by an overestimation of each single p(i)f . It is hard to tell from Figure 6.18.(F) if the single
failure probabilities are overestimated as most predictions seem slightly underestimated but the
worst predictions correspond to a few overestimated predictions. However, Figure 6.19 clearly
shows a relatively large proportion (1.6%) of false roots which will automatically increase the
estimated failure probability. To improve the estimation of Pf (θ2), the security value s may be
used to reduce the number of false roots. Figure 6.20 presents the evolution of Pf (θ2) for three
different values of s. As expected, increasing the value of s brings the probability estimation
curve closer to the one obtained with AE3 . The side effect is that increasing s automatically in-
creases the number of G-functions evaluations. However, Figure 6.21 reveals that a very large
proportion of the output of ANN1 is either very close to 0 or very close to 1 meaning that the
verification process remains occasional.

6.6.3 Application to the estimation of robustness curves

The proposed methodology is used for estimating the robustness curves. The comparison is
made by considering the following failure probability estimators: “AE3 2× 103” which estimates
Pf with AE3 for nLS = 2× 103, “AE3-ANN” which uses ANN1 and ANN2 applying the security
value s = 0.3 for nLS ∈

[
1× 103, 2× 103], “WIS 1× 105” which uses the Weighted Importance

Sampling algorithm in (Yuan, 2013) with a unique importance sampling of 105 samples consid-
ering θ = θ̃ and “IS ref” as the same reference curve as in the previous robustness comparisons.
Again, the comparison is made in terms of robustness curves (see Figure 6.22), error with the
reference curve (see Figure 6.23) and cumulative computational time (see Figure 6.24).

Figures 6.22 and 6.23 reveal accurate estimations of the robustness curves using the ANNs
and using the WIS approach. Actually, it shows that using the WIS approach by using a unique
importance sampling of 1× 105 samples reduces the errors that were obtained when repeatedly
using the IS algorithm. A further reduction could be achieved by combining WIS with optimized
FORM-IS algorithms leading to a lower sample size. In Figure 6.24, it can be seen how the use
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of ANNs considerably reduces the computational time even when considering a security value
s = 0.3.

Insightful information obtained as a post-processing result from an IG analysis is the val-
ues of the uncertain parameters that led to the worst performances according to the optimiza-
tion algorithm. Figure 6.25 presents these values where h∗ (θ∗i ) is a scaling value such that
h∗ (θ∗i ) = θ∗i /θ̃i − 1 for i = {1, 3, 4} (non-zero nominal value) and h∗ (θ∗i ) = θ∗i for i = 2 (zero
nominal value). This figure shows in a standardised way the relative position of the uncertain
parameters that led to the highest failure probabilities w.r.t. each increasing interval defined by
hj. It is clearly apparent that the failure probability is monotonic w.r.t. the uncertain param-
eters. Therefore, the vertex method could have substituted the DIRECT algorithm. However,
this represents a post-processing information that was not assumed before the IG analysis. This
result may also guide the analyst when searching for more information about the uncertain pa-
rameters. For example, if new information reveals that the uncertain parameter actually lies in
the “good” area w.r.t. robustness, then there is no need to gather more information (unless to
check if it can counterbalance penalizing effects from the other uncertain parameters). On the
contrary, if penalizing values do appear to be very likely, the analyst would want to gather more
information in order to better know how close this penalizing value is to the critical value that
leads to the critical performance.

Finally, the fact that the robustness curves are relatively fast to generate thanks to the use of
ANNs enables to re-estimate robustness curves in order to evaluate the demand value Rẽi when
considering iteratively each uncertain parameter at its nominal value. These results are given
in Figure 6.26. The most impacting uncertain parameter is still quite predominant, although far
less than the one observed considering the plastic collapse failure mode.

6.7 Conclusion

In this chapter, the line sampling technique was adapted to each failure mode for which the
reliability assessment of penstocks is evaluated. The failure domain associated to plastic collapse
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is simpler to tackle and the proposed line sampling algorithm converges very efficiently. Thus,
the IG framework could be applied without needing computational time reduction techniques.
The robustness results on a panel of penstock configurations did not reveal any configuration
that stands out.

Then, the challenging reliability problem induced by brittle failure is tackled by the use of
three customized LS algorithms (AE1 , AE2 and AE3) based on three equivalent formulations of
the complex limit-state function made of a double intersection of events. While considering
the root search differently, each algorithm yields similar estimations of the failure probability.
The good performances of the proposed algorithms are enhanced with their use for estimating
robustness curves. The algorithm AE3 , based on a sequential root search, appears to be more
efficient in this case.

Finally, the root search procedure is improved in terms of computational time with the use
of two artificial neural networks. The first one enables to predict the existence (or not) of roots
for any given line search and for any value of the epistemic uncertain vector θ. The second one
predicts the values of both roots when they exist. Although the ANNs performance metrics
are very good, a few bad predictions may lead to non-negligible errors on the failure probability.
Therefore, a security value is proposed in order to decide whether the classification ANN should
be trusted or whether the initial algorithm should be used. The methodology is then tested and
proven to be very efficient for estimating IG robustness curves.

The use of neural networks is motivated by the fact that the limit-state functions involved in
the industrial use case are relatively fast to evaluate which enables a large dataset for the training
process. In many practical applications, such a large dataset may not be available due to time-
consuming numerical models. In this case, it would be necessary to consider other types of
surrogates models such as Gaussian process regression. In particular, methods based on active
learning such as in (Song et al., 2021) may present a high interest especially if there is a way to
apply it in the augmented space which includes the uncertain distribution parameters.

Moreover, the high computational cost for estimating IG robustness curves is due to the
choice of not making any assumption when successively searching for the maximum failure
probability at each horizon of uncertainty h. The a posteriori results show that the vertex method
could be used in this application case which would considerably reduce the number of failure
probability estimations.

The application of IG on the loss-of-coolant accident presented in the next chapter is a typical
case for which the procedure employed in this chapter becomes intractable.
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7.1 Motivations

In this chapter, the IG framework is applied to the risk analysis related to the IBLOCA sce-
nario as already presented in Chapter 3. The QoIs are the quantile and the superquantile of the
peak cladding temperature evaluated using the CATHARE2 code which simulates the acciden-
tal transient. The main difficulties that arise in this study are the computational time needed
for one simulated transient (around 30 minutes) and the number of uncertain variables which
adds up to 27. The former challenges the application of the IG method for the obvious reason
that many QoI evaluations are involved while each one of them would require several days
to be obtained. The latter is challenging as the pdfs describing all the involved random vari-
ables present various properties which makes the definition of a unique IG uncertainty model
complex. Moreover, high dimensionality very often drives down the performances of some nu-
merical procedures such as metamodels.

The objective motivating the following sections is to propose and compare methodologies
that enable the application of the IG framework despite the aforementioned challenges. In par-
ticular, two original IG uncertainty models based on the standard normal space and DS struc-
tures are proposed as well as two different numerical procedures used for estimating both QoIs
from a unique set of samples. First, Section 7.2 develops the proposed IG methodologies by de-
scribing the studied QoIs, the IG uncertainty models and the numerical procedures for efficiently
estimating the QoIs. Then, Section 7.3 presents the application of the overall methodology to a
toy case and to the IBLOCA risk analysis.

7.2 Info-gap problem statement

7.2.1 Risk-oriented quantities of interest

The usual QoI studied in BEPU analysis is the quantile qβ of order β (Prosek and Mavko,
2007) which takes the following formulation:

qβ = inf{t ∈ R | FZ(t) ≥
β

100
}. (7.1)

By generating N i.i.d. realizations
{

x(n) =
(

x(n)1 , · · · , x(n)nX

)}
1≤n≤N

from the random vector X

and evaluating the corresponding output values
{

z(n) =M
(

x(n)
)}

1≤n≤N
, the empirical esti-

mator of the quantile reads:

qβ
N = inf

{
t ∈ R | 1

N

N

∑
n=1

1z(n)≤t ≥
β

100

}
. (7.2)

In practice, the 95%-order (β = 0.95) is often considered for the IBLOCA application case.
More recently, the superquantile was added as a relevant QoI (Labopin-Richard et al., 2016).

Indeed, by representing the expectation of the variable of interest over a specific range of values
(e.g. the safety-relevant tail of the distribution), it better explains its behavior in the region of
interest than the quantile alone. The superquantile Qβ of order β reads:

Qβ = E

(Z1Z≥qβ
N

1− β
100

)
(7.3)
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with the corresponding empirical estimator:

Qβ
N =

1

N(1− β
100 )

N

∑
n=1

z(n)1z(n)≥qβ
N

. (7.4)

In practice, the 75%-order will be considered (β = 0.75) as in Iooss et al. (2022). It is noted, at
this point, that the quantile and superquantile notations between the theoritical and empirical
formulations are purposely confounded in order to ease the notations defined in the following
sections.

7.2.2 Info-gap uncertainty models

The probabilistic definition of the 27 random variables present in the LSTF reduced model
can be found in Table 3.2 which reveals the presence of four families of parametric distributions:
normal distributions, lognormal distributions, uniform distributions and loguniform distribu-
tions. A common property of all the involved quantities is that they are bounded which implies
that the pdfs are truncated. In the studies related to CATHSBI, the principal concern about the
probabilistic definition of X lies in the choice of the marginal parametric distributions rather than
the bounds of the quantities that are considered to be known (Baccou et al., 2019).

In this study, each random variable will be considered uncertain, although not all at the
same time. In the same way as previously, X will denote the random vector of certain random
variables while Y refers to the uncertain random vector. Therefore, each random variable will
sometimes belong to X and other times to Y. In this chapter, two different IG uncertainty models
are considered.

Case 1: parametric p-box in the standard normal space

The historical way for density perturbations proposed in the context of PLI estimation (Lemaître
et al., 2015; Sueur et al., 2017; Iooss and Le Gratiet, 2019) is to shift specific moments (e.g. the
mean or the variance) of the uncertain pdf by a value δ. As several pdfs may be eligible to such
a perturbed moment, the retained pdf is the one that minimizes the Kullback-Leibler divergence
from the nominal pdf f̃Y. This implies that the perturbed pdf does not necessarily belong to
the same parametric distribution family. For instance, shifting the mean of a nominal uniform
distribution will not result in a uniform distribution as the bounds are fixed. Using such ap-
proach is straightforward in some cases (e.g. perturbing a normal distribution) but may be more
challenging in others (e.g. perturbing lognormal distributions).

In this context, Perrin and Defaux (2019) proposed to apply the perturbations in the standard
normal space. This method presents two main advantages. First, as all nominal distributions
become Gaussian, applying a perturbation on one moment comes back to considering a normal
distribution with the corresponding perturbed moment. Secondly, as all the uncertain random
variables have the same nominal moments, their perturbations are easier to compare. Figure 7.1
shows the perturbed pdfs back in the physical space for the four families of distribution present
in Table 3.2 when perturbing the mean µs of the Gaussian distribution.

This method is used for defining the IG uncertainty model. In the following applications,
only uncertainty on the mean vector µs of the Gaussian distributions related to Y will be con-
sidered. Hence, as in Chapter 6, the IG problem reduces to a succession of parametric p-box
problems as the robustness function becomes:

h∗U1,QoI = max
h∈R+

{
max

µs∈U1(h,µ̃s)
QoI (Z|µs) ≤ QoIcr

}
. (7.5)
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FIGURE 7.1: Perturbed distributions of a normal pdf (A), lognormal pdf (B), uniform pdf (C) and loguni-
form pdf (D) back in the physical space after perturbation of the standard mean µs.
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where QoI (Z|µs) = QoI
(
Z
(
T−1 (U)

)
|µs
)

refers either to the quantile or the superquantile esti-
mators conditional to µs and U1 (h, µ̃s) =×nY

i=1 [−h,+h].

Case 2: free p-box based on Dempster-Shafer structures

The second IG uncertainty model that is considered in this chapter is based on the DS dis-
cretization already introduced in Chapter 4. As a reminder, the idea consists in discretizing the
support of each uncertain random variable Yi into nDS disjoint intervals

[
ai,j, bi,j

]
1≤j≤nDS

with
given mass probabilities:

mi,j = FYi

(
bi,j
)
− FYi

(
ai,j
)

. (7.6)

This method is equivalent to considering a free p-box representation. It enables to smoothly
travel from a perfectly known cdf (i.e. a very high value of nDS) to the unique interval represen-
tation (i.e. nDS = 1). Figure 7.2 shows examples of induced p-box representations for the four
families of distribution present in Table 3.2.
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FIGURE 7.2: Dempster-Shafer discretization of a normal cdf (A), lognormal cdf (B), uniform cdf (C) and
loguniform cdf (D) for nDS = 10 and nDS = 30.

As the cdfs of the uncertain random variables belong to a p-box, the cdf of the output random
variable Z also belongs to a p-box such that FZ (z) ≤ FZ (z) ≤ FZ (z). Therefore, in order to
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apply the IG robustness framework, it is necessary to search for the output cdf that belongs to
this envelop and gives the worst performances (i.e. the highest quantile qβ

FZ
and superquantile

Qβ
FZ

values). When considering the search of the worst quantile, the problem writes:

qβ
FZ

= sup
FZ≤FZ≤FZ

[
inf{t ∈ R | FZ(t) ≥

β

100
}
]

. (7.7)

In the context of quantile optimization over a probability measure µ that belongs to a moment
class A, the following duality was proven in (Stenger et al., 2020):

qβ
µ∈A = inf{t ∈ R | inf

µ∈A
Fµ(t) ≥

β

100
}. (7.8)

Therefore, in the present context, one gets:

qβ
FZ

= inf{t ∈ R | min
FZ≤FZ≤FZ

FZ(t) ≥
β

100
}. (7.9)

Figure 7.3, still inspired from (Stenger et al., 2020), illustrates this point. Moreover, by reminding
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FIGURE 7.3: Illustration of the maximum quantile as the quantile of the lowest CDF of Z.

that FZ(t) = P (Z (X, Y) ≤ t), random set theory as introduced in Chapter 5 can be applied such
that:

min
FZ≤FZ≤FZ

FZ(t) =
∫

[0,1]nα
1{z(α)≤t}dα (7.10)

with:
z (α) = max

(X,Y)∈Γ(X,Y)(α)
z(X, Y). (7.11)

Similarly to the estimation of bounds on the failure probability in Chapter 5, the estimation of
the worst quantile is obtained by generating samples α(n) from the uniform distribution and
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computing the maximum value of z in each corresponding random set Γ
(

α(n)
)

.
However, the previous derivations do not appear to be as straightforward when considering

the superquantile. Therefore, this method will only be applied to the quantile by considering
nDS (h) as a decreasing function of h such that:

h∗U2
= max

h∈R+

{
max

FZ∈FZ(nDS(h))
q95

FZ
≤ q95,cr

}
. (7.12)

7.2.3 Quantile and superquantile estimation methods

The previous proposed IG uncertainty models imply either several searches of the highest
quantile and superquantile w.r.t. µs or many searches of the maximum peak cladding temper-
ature in the corresponding random sets. In both cases, considering the computational time of
one single peak cladding temperature estimation, it is unfeasible to solve these IG problems us-
ing directly the CATHARE2 codeM (·). In this context, two different numerical procedures are
investigated.

Method 1: reverse importance sampling

The idea behind the reverse importance sampling (RIS) (Hesterberg, 1996) technique is to use
a unique set of samples

(
x(n), y(n), z(n)

)
1≤n≤Nr

for estimating QoI (θ) at different values of the

uncertain distribution parameters θ. By considering that
(

x(n), y(n)
)

are generated according to

fX and to the nominal joint pdf f̃Y, the RIS estimation q̂β
Nr (θ) of the quantile is obtained as:

q̂β
Nr (θ) = inf{t ∈ R | F̂Nr

Z (t|θ) ≥ β

100
} (7.13)

where

F̂Nr

Z (t|θ) = ∑Nr

n=1 L(n) (θ) 1z(n)≤t

∑Nr

n=1 L(n) (θ)
(7.14)

with L(n) being the likelihood ratio expressed as:

L(n) (θ) =
fY

(
y(n)|θ

)

f̃Y
(
y(n)

) . (7.15)

Similarly, the estimation Q̂β (θ) of the superquantile reads:

Q̂β
Nr (θ) =

1

Nr(1− β
100 )

Nr

∑
n=1

z(n)1z(n)≥q̂β
Nr (θ)

L(n) (θ) . (7.16)

The performance of this technique reduces as soon as the unique set of samples becomes less
representative of fY (y|θ), i.e. when the values in θ are far away from θ̃. Some practical recom-
mendations are given in Iooss et al. (2022) for that matter.

As this method is based on the likelihood ratio of parametric distributions, it can only be
applied in this application when considering the IG uncertainty model in the standard normal
space and not based on the DS discretization. With θ = µs, the IG robustness function simply
becomes:

ĥ∗U1,QoI = max
h∈R+

{
max

µs∈U1(h,µ̃s)
Q̂oI (µs) ≤ QoIcr

}
. (7.17)
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Method 2: metamodel with artificial neural networks

The idea with this method is to substitute the time-greedy CATHARE2 code M (·) with a

metamodel ̂̂M (·) that approximates its behavior. Artifical neural networks are again chosen for
that task as the input dimension is relatively large and as a few thousand of training samples will
be available. However, other techniques such as Gaussian process could have been chosen (Iooss

and Marrel, 2019). By denoting ̂̂z =
̂̂M (x, y) the estimation of the peak cladding temperature

provided by the ANN trained on Nt samples, the estimation ̂̂qβ

Nt of the quantile reads:

̂̂qβ

Nt = inf

{
t ∈ R | 1

Nt

N

∑
n=1

1̂̂z(n)≤t
≥ β

100

}
(7.18)

and the estimation ̂̂Q
β

Nt of the superquantile reads:

̂̂Q
β

Nt =
1

N(1− β
100 )

Nt

∑
n=1

̂̂z(n)1̂̂z(n)≥̂̂qβ

Nt
. (7.19)

As ̂̂M (·) is fast to compute, it can be used to estimate the IG robustness functions in both
considered uncertainty models such that:

̂̂h∗U1,QoI = max
h∈R+

{
max

µs∈U1(h,µ̃s)

̂̂QoI (µs) ≤ QoIcr
}

. (7.20)

considering the uncertainty model in the standard normal space and

̂̂h∗U2
= max

h∈R+

{
max

FZ∈FZ(nDS(h))

̂̂
q95

FZ
≤ q95,cr

}
(7.21)

considering the DS discretization uncertainty model.

7.3 Application cases

7.3.1 Application to a cantilever tube

This first application case related to the cantilever tube illustrated in Figure 7.4 aims at study-
ing some first IG results on the quantile and superquantile obtained using the RIS technique.
The variable of interest considered in this application case is the maximum von Mises stress
σmax =

√
σ2

x + 3τ2
xz at the support of the tube of diameter d, thickness t, length L1 and subjected

to a torsional moment T, external lateral forces F1 and F2 and an axial force P.
The normal stress σx is expressed as:

σx =
P + F1 sin θ1 + F2 sin θ2

A
+

Md
2I

(7.22)

where A = π
(

d2 − (d− 2t)2
)

/4 is the cross-sectional areal, M = F1L1 cos θ1 + F2L2 cos θ2 is the

bending moment and I = π
(

d4 − (d− 2t)4
)

/64 is the second moment of inertia and the shear
stress τxz is expressed as:

τxz =
Td
4I

. (7.23)
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FIGURE 7.4: Illustration of the cantilever tube.

.
The properties of the ten truncated distributions are given in Table 7.1.

TABLE 7.1: Input probabilistic modeling of X for the cantilever tube model.

Variable Xi Distribution param. 1 param. 2 Bounds
X1 = P (kN) Gumbel β = 12 γ = 1.2 [8, 16]
X2 = t (mm) Normal µ = 5 σ = 0.25 [3.8, 6.2]
X3 = d (mm) Normal µ = 42 σ = 2.1 [32, 52]
X4 = L1 (mm) Uniform a = 115 b = 125 [115, 125]
X5 = L2 (mm) Uniform a = 55 b = 65 [55, 65]
X6 = F1 (kN) Normal µ = 3 σ = 0.3 [2, 4]
X7 = F2 (kN) Normal µ = 3 σ = 0.3 [2, 4]
X8 = θ1 (degrees) Normal µ = 5 σ = 1 [0, 10]
X9 = θ2 (degrees) Normal µ = 10 σ = 2 [5, 15]
X10 = T (N.m) Normal µ = 90 σ = 9 [60, 120]

Figure 7.5 shows the convergence of the nominal quantile and superquantile estimators
when increasing the number of samples. It appears, in this case, that the estimators get close
to their reference value quite soon and that the superquantile estimator is slightly more precise
for a same value N.

Figure 7.6 now shows the convergence of the RIS quantile and superquantile estimators at
four negative values of µs considering Y = [d]. The estimators seem less stable for higher abso-
lute values of µs and require more samples for approaching the reference values. The fact that
the RIS estimators seem to underestimate the reference values is not a behavior to be generalized
as the same set of 104 samples was used for generating all the curves.

Finally, Figure 7.7 compares the quantile and superquantile robustness curves obtained us-
ing the RIS estimators for Nr = 3000 (solid lines) with the reference ones obtained by regen-
erating samples from each perturbed distributions (dotted lines). It appears that the estimated
robustness curves on the quantile are quite close to the reference ones although larger errors are
observed when considering three uncertain variables. The estimated robustness curves on the
superquantile present larger deviations than for the quantile especially for nY = 1 and nY = 2.
In the general case, larger deviations are expected when increasing the number of uncertain vari-
ables. Indeed, adding uncertain variables will necessarily increase the highest values of quantile
and superquantile which makes the unique set of sample less representative (very few samples
are actually above the predicted quantile and superquantile).
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FIGURE 7.6: Convergence of the RIS quantile (A) and superquantile (B) estimators at four values of µs
corresponding to d. The dotted lines are the reference values.
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FIGURE 7.7: Robustness curves obtained using the RIS estimators (solid lines) to be compared with the
reference curves (dotted lines) for the quantile and superquantile considering nY = 1 (A and B), nY = 2

(C and D) and nY = 3 (E and F).
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7.3.2 Application to the intermediate break loss of coolant accident

The complete methodology detailed in Section 7.2 is now applied to the IBLOCA scenario.
The first step is to generate the samples that will be used for the RIS estimators and for training
the ANN. A total of Nr = 3000 MC samples are generated according to the nominal pdf f̃X. Fig-
ure 7.8 shows the convergence of the nominal quantile and superquantile empirical estimators.
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FIGURE 7.8: Convergence of the nominal quantile and superquantile estimated from the 3000 MC sam-
ples.

In order to train the ANN, an additional set of 3000 samples was generated considering a
uniform distribution in the bounds of X. The reason for choosing a uniform distribution is that
the application of the IG framework implies covering the entire uncertain space. Other sam-
pling techniques such as latin hypercube sampling (McKay et al., 2000) could have been more
judicious for a better coverage. Moreover, adaptive sampling could also be of interest as it is
more important to well describe the uncertain areas where the worst QoIs are to be expected
than the rest of the uncertain space. The first 300 realizations of the uniform set of samples are
used for validating the performance of the ANN during the training (but are not used for up-
dating the ANN weights during training). This number is kept the same no matter the number
of training samples Nt in order to compare performances on a same set of validation samples.
However, in the case where, for intance, only 400 samples are available, a more relevant distri-
bution would be recommanded (e.g. 350 training samples and 50 validation samples). Several
ANNs are constructed for Nt ∈ [100, 4700]. When Nt ≤ 2700, only uniformly generated samples
are considered. When Nt > 2700, Monte Carlo samples are added to all the uniformly generated
samples. Note that once the ANN is trained, the number of ANN predicted samples used for

the empirical estimation of ̂̂q95
Nt and ̂̂Q

75

Nt is not necessarily the same as Nt. In the following, this
number will be equal to 3000 no matter the value of Nt.

Figure 7.9 shows how the coefficient of predictivity Q2 evaluated on the validation samples
evolves w.r.t. the number of training samples. It appears that this performance metric improves
rather quickly up to Nt = 1000 and more slowly after.

Figure 7.10.(A) presents the values of the quantile and the superquantile on the 1000 MC
samples that are never used for the construction of the ANNs. The solid lines show both QoIs
estimated from the ANNs w.r.t. the number of training samples and the dotted lines show the
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FIGURE 7.9: Evolution of Q2 for increasing numbers of training samples.

empirical estimators from the MC samples. The estimations obtained from the ANN begin to
be acceptable for Nt > 2000 and get very close to the empirical estimators for Nt > 3000.
Similar trends are observed between the quantile and the superquantile estimation curves. This
is understandable as ANNs that overestimate (respectively underestimate) the higher values of
z will necessarily overestimate (respectively underestimate) the quantile and the superquantile
estimations. The scatter plot between the same 1000 MC peak cladding temperatures z(n) and

their ANN estimations ̂̂z(n) is given in Figure 7.10.(B) for Nt = 500 and Nt = 3100. Clearly,
the better trained ANN yields estimations that are closer to the dotted line representing exact
estimations. Some of these estimations are still quite far from their reference value even for
Nt = 3100. However, although the lower values of z seem to be generally overestimated by
both ANNs, the predictions of the higher values do not appear, in average, to be overestimated
nor underestimated for Nt = 3100 (while they tend to be more often underestimated for Nt =
500). This explains why the quantile and the superquantile estimations are precise despite the
coefficient of predictivity not being that close to 1.
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FIGURE 7.10: Convergence of the ANN estimator at the nominal configuration (A) and scatter plot ob-
tained from the ANN on the 1000 MC samples.
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The RIS and ANN estimators are now compared jointly considering the IG uncertainty
model U1 based on the standard normal space. Before applying the IG framework, Figure 7.11
compares the convergence of the estimators w.r.t. Nr (for the RIS estimator) and Nt (for the
ANN estimator) on four perturbation values of the standard mean related to the variable X22.
Figure 7.11.(A) compares the quantile estimator while Figure 7.11.(B) compares the superquan-
tile estimator. A first interpretation is that the ANN curves relevant to the quantile and the
superquantile all have trends that are similar to the ones observed in Figure 7.10.(A) (equivalent
to µs = 0). This could suggest that the general behaviors of the ANN identified at the nominal
configuration are extendable to any configuration. This could be understood from the fact that
the ANNs are mostly trained and totally validated on uniformly generated samples. Secondly,
the curves obtained from the RIS quantile estimator are quite stable, especially for Nr > 2000.
Moreover, they seem to globally meet the ANN curves, except at µs = −1 which yields more
noticeable deviations. On the contrary, the evolution of the RIS superquantile estimators are
highly chaotic, especially at µs = −0.5 and µs = −1. The potential reasons for this instability,
despite the quantile estimations being stable, are not clearly identified.
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FIGURE 7.11: Convergence of the RIS estimator (solid lines) and the ANN estimator (dotted lines) on the
quantile (A) and the superquantile (B) at four different values of µs related to X22.

The RIS and ANN estimators are now integrated in the IG procedure for estimating robust-
ness curves considering Nr = 3000 and Nt = 3100. As the total number of uncertain variables is
high, considering all of them at once would, most likely, yield very pessimistic temperatures as
worst-case scenarios are cumulated. Instead, robustness curves are first estimated considering
each uncertain variable alone. Then, combinations including the variables that affect the most
the robustness are analyzed. This is a hypothesis as one could imagine that a variable alone
may have very little effect on the robustness but may reveal a strong influence when associated
to other uncertain variables. Figure 7.12 presents the most pessimistic robustness curves rel-
evant to the uncertainty model based on the standard mean for nY = {1, 2, 3}. These results
are again obtained using the DIRECT optimization algorithm. The RIS-based robustness curves
are only given for nY = {1, 2} on the quantile and nY = 1 on the superquantile. Indeed, as it
could be expected from the preliminary results in Figure 7.11.(B), the RIS superquantile results
are quite unstable. The RIS quantile results are more in accordance with the ANN results, at
least for identifying the group of uncertain variables that lead to the most pessimistic curves.
Note that the IG robustness curves for nY = 1 are equivalent to looking at the positive values
(because worse means higher) of the PLI estimators that have been considered many times for
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similar application cases by using the RIS technique. However, noticeable deviations from the
ANN results are observed for higher values of h and when increasing the dimension nY. Yet,
the ANN-based robustness curves, although being stable and coherent, remain estimations and,
therefore, cannot be considered as reference values.

Finally, Figure 7.13 presents the ANN-based robustness curves considering the uncertainty
model based on a DS discretization for nDS ∈ [5, 100]. The maximum value in each sampled
random set is estimated using the DIRECT algorithm. The group of most impacting uncertain
variables is similar to the one obtained from the uncertainty model based on the standard mean,
although the most penalizing variable changes from X22 to X12. It can be observed from ev-
ery robustness curve that the maximum quantile is not affected much for numbers of intervals
higher than 40. Yet, robustness worsens much faster for lower numbers of intervals. This point
can be seen again in Figure 7.14 which gives the most part (for β in [5, 95]) of the predicted peak
cladding temperature p-box envelop for nDS = {5, 20, 50} and for Y = [X12, X22]. The envelop
for nDS = 5 is very wide with a temperature range of around 100 degrees for the predicted 95%-
order quantile. On the contrary, the envelop for nDS = 50 is almost reduced to a unique cdf (the
predicted nominal output cdf).

7.4 Conclusion

In this chapter, G was applied in different ways for assessing the robustness of two new
reliability estimates for the peak cladding temperature during an IBLOCA scenario. Although
95%-order quantiles and 75%-order superquantiles are generally easier to estimate than very
low failure probabilities, the computational time required for a CATHARE2 simulation makes
the reliability analysis, and therefore its IG application, challenging. Two original IG uncertainty
models were proposed. The first one, based on the perturbation of moments in the standard
normal space, enables an easier application and interpretation of a unique horizon of uncertainty
affecting all uncertain variables. The second one, based on a DS discretization of the nominal
cdf, enables to consider comparable perturbations in a non-parametric way. This uncertainty
representation which comes back to considering free p-box required to reuse the random set
theory framework.

The computational burden associated to CATHARE2 simulations implied the investigation
of two substitution procedures. First, the RIS method, already used for PLI estimations, enables
to reevaluate perturbed QoIs from a unique set of realizations. Additionally, ANN-based meta-
models were trained in order to substitute the CATHARE2 model with predictive models that
are much faster to evaluate. These two methods were then applied for estimating robustness
curves. Comparable results were obtained for the robustness of the quantile as both methods
identified the same group of impacting uncertain variables. Yet, some deviations appear espe-
cially for higher values of h and for increasing numbers of considered uncertain variables. On
the contrary, the robustness of the superquantile obtained with the RIS estimator is quite chaotic
and difficult to interpretate. The curves obtained from the ANN estimator are much smoother.

The main limitation of the employed methodology is the lack of confidence intervals on the
final results. The fact that the highly trained ANNs revealed precise quantile and superquantile
estimations at the nominal configuration does not imply equivalent performances for perturbed
configurations. However, the fact that the robustness curves are smooth and that the same im-
pacting variables are identified shows the stability of the estimator. Nevertheless, there is no
guarantee that the metamodel did not miss any particular uninditified feature of the real input-
output relation. Note that confidence intervals could have been obtained on the RIS estimations
using the bootstrap technique as in Iooss et al. (2022). Moreover, more conservative results can
be obtained using Wilks formula.
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FIGURE 7.12: Robustness curves relevant to the standard mean on the quantile (A,C,E) and the su-
perquantile (B,D,F) obtained with the RIS and ANN estimators for increasing numbers of uncertain vari-

ables.
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FIGURE 7.13: Robustness curves (ANN estimators) relevant to the DS discretization on the quantile with
a zoom on lower values of nDS (B,D,F).
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Another identified perspective for the use of RIS would be to investigate if the considera-
tion of an augmented space for generating the unique set of samples would enable better per-
formances at higher horizons of uncertainty and in higher dimensions. Indeed, such an aug-
mented space should yield more samples above the real pertubed quantile and superquantile
values. Moreover, it would be interesting to analyze results obtained from metamodels that fo-
cus their learning on specific regions of the uncertain space. Indeed, the proposed application
tends to show that well predicting in average the highest values of the variable of interest may
be sufficient for good estimations on the quantile and the superquantile.



CHAPTER8
General conclusion and perspectives

General conclusion

The central motivation leading to the realization of this thesis was to develop methodologies
that could evaluate the robustness of reliability estimates w.r.t. lack of knowledge that may
influence safety-related industrial decisions. Indeed, although probability theory offers quite
a powerful framework for quantifying and propagating uncertainty through computer codes,
it remains crucial to confront high-stakes decisions to their underlying assumptions. In that
matter, the info-gap framework was investigated as it proposes a generalizable framework that
quantifies the notion of robustness.

After a general description of the IG method, its adaptation to reliability-based quantities of
interest was formulated. In particular, it was shown in Chapter 4, through the consideration of
different uncertainty contexts, how the IG framework may bring valuable insights. Although a
key aspect of the IG theory is its non-probabilistic representation of uncertainty, it should not be
viewed as an opponent to the use of probabilistic concepts, but rather as a complementary frame-
work. Indeed, the modular characteristic of IG uncertainty models offers many possibilities for
perturbing nominal configurations. Moreover, the notion of horizon of uncertainty creates a
progressive path from probabilistic representations to non-probabilistic ones. However, despite
using relatively approachable mathematical concepts for quantifying the notion of robustness,
the application of IG on reliability QoIs may imply a burdensome numerical procedure.

A first challenge that appears when applying IG to reliability QoIs is the possible coexistence
of several uncertainty representations that can be listed into three categories: purely probabilis-
tic, extra-probabilistic and non-probabilistic. Although they each have their specific propagation
framework as described in Chapter 2, their joint consideration is more complex especially for
rare-event evaluation as advanced techniques are needed. In that matter, it was shown in Chap-
ter 5 how random set theory enables to transform a hybrid reliability analysis into two standard
reliability analyses. More specifically, random set functions were used as info-gap uncertainty
models in order to evaluate the impact of different uncertainty representations on the robustness
evaluation and, therefore, on the decision. An IG value of information metric was proposed to
quantify this impact. The results show that the choice of an uncertainty representation may have
a great influence on the robustness curves. This paradoxically confirms the interest in conduct-
ing robustness evaluations at the same time as it shows that the robustness evaluation itself is
subject to the choice of uncertainty representation.

The application of the IG framework on reliability QoIs was supported by two real and com-
plementary industrial use cases. First, IG was applied in Chapter 6 to small failure probability
estimations assessing the reliability of penstocks. In this application, the rareness of the con-
ditional failure event and the complex geometrical shape of the failure domain challenged the
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estimation of failure probabilities and, consequently, its robustness assessment. As the applica-
tion of IG implies global optimization over the failure probability, its estimator must be efficient
all over the IG uncertainty space. In that matter, the line sampling technique was investigated.
The original binary roots search problem was expressed considering three equivalent formula-
tions to which algorithms were proposed. Finally, the robustness evaluation was accelerated by
combining two artificial neural networks trained in an augmented space composed of the stan-
dard and the IG uncertainty spaces. The ANNs proved their efficiency in assessing the existence
and predicting the values of the line sampling roots for any sampled line and for any perturbed
distribution parameters. Precise robustness curves were therefore obtained at a reasonable com-
putational time.

The second application of IG described in Chapter 7 was related to reliability assessments
on a nuclear accidental scenario. As opposed to the reliability of penstocks, the challenge for
estimating the involved QoIs does not lie in the rareness and complexity of the event but di-
rectly in the time needed for computing the variable of interest. Hence, only a limited amount of
inputs-output realizations had to be considered for the entire IG analysis. First, two original IG
uncertainty models were proposed: one based on perturbations in the unifying standard normal
space and the other one based on a Dempster-Shafer discretization of the nominal cdfs. They
both enable a comparable interpretation of the IG horizon of uncertainty but require different
numerical procedures for evaluating worst performances. Finally, two techniques based on lim-
ited sets of realizations were employed for estimating the QoIs; one used the reverse importance
sampling trick and the other one substituted the computer code with artifical neural networks.
The robustness curves on the quantile and the superquantile obtained from both methods were
compared. While the ANN-based robustness curves appear to be smooth and coherent, the RIS
ones seem hardly interpretable on the superquantile and limited to low horizons of uncertainty
and to very small dimensions (up to 2) of uncertain variables on the quantile.

In this thesis, IG was applied in many different ways for evaluating the robustness of re-
liability assessments. The safety-related performance functions went from very small failure
probabilities to 95%-order quantiles and 75%-order superquantiles. The IG uncertainty models
also took various forms, namely based on random set functions, parametric p-box in the physi-
cal space, parametric p-box in the standard normal space and free p-box from a Dempster-Shafer
discretization. Many numerical techniques were used to facilitate the IG application. Artificial
neural networks were implemented either to directly substitute the computer model or during
an intermediary step of failure probability estimations. Re-estimation techniques were also con-
sidered with weighted importance sampling and reverse importance sampling. This variety of
mathematical concepts only goes to show the modularity of the IG framework and how its nu-
merical implementation is conditioned to the considered use case. Finally, the expansion of the
general numerical toolbox offered from the literature in various relevant scientific fields, such
as advanced QoIs estimation techniques, efficient optimization algorithms, sensitivity analysis,
metamodels or high performance computing, makes the application of IG on reliability assess-
ments more and more feasible.

However, the numerous scientific fields involved in the application of IG on reliability es-
timates also means that this thesis alone does not suffice to cover all the different paths that
could be explored. A few of them, that seem particularly relevant in the author’s view, are listed
hereafter.

Perspectives

Placing IG within other metrics.
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The original features that distinguish IG to other frameworks were already discussed. How-
ever, a deeper comparison, both theoretically and numerically, would provide better insight
into the similarities and dissimilarities of IG with other metrics in the context of reliability-based
decision making. In particular, the notion of VoI in reliability studies (Straub et al., 2022; Ali-
brandi et al., 2022) and the notion of reliability-oriented sensitivity under epistemic uncertainty
(Chabridon et al., 2018; Schöbi and Sudret, 2019; Sarazin et al., 2021) are gaining much interest.
An interesting study would be to analyze when these different frameworks lead to the same
conclusions, or, on the contrary, diverge.

Taking into account the dependency structure on the inputs.

The potential presence of dependency was mostly omitted in this thesis, although represent-
ing a fundamental topic. In the context of hybrid reliability, dependency can be present either
between random variables, between epistemic variables or between both. Note that the use of
convex models in IG is a first way to deal with correlation between the uncertain variables. The
random set framework, as shown in (Alvarez et al., 2018) and shortly in Appendix C, enables to
represent the three dependency cases through the use of copulas. However, it seems that more
work is still needed to better interpret these dependency structures. Another related interesting
topic to pursue would be to apply IG uncertainty models directly on the dependency structure
as it is often not well known in real engineering studies. A first application can be found in
Hemez and Ben-Haïm (2004). The use of imprecise copulas can also be found in Zhang and
Shields (2020).

Investigating the application of IG on model errors.

Both applications of IG to real industrial reliability studies present in this thesis focused
on uncertainty affecting input variables and assumed a deterministic model to represent the
relation between the inputs and the variable of interest. However, as it was briefly illustrated in
Chapter 4, model errors can actually by more damaging to the reliability esimation than errors
on the input variables. The choice of models often relies on hypotheses both on the real physical
behavior and on the equations resolutions. Therefore, it would be interesting to analyze how the
modularity of IG uncertainty models may be of use in that matter. Some first applications can
be found (Atamturktur et al., 2015) in the context of model calibration and in (Ben-Haïm and
Hemez, 2020) where IG is applied to an appriximation model used to solve partial differential
equations.

Investigating the contribution of sensitivity analysis to compute robustness curves.

Although representing a very mature and important field of the general UQ framework,
sensitivity analysis was not the object of this thesis (except through VoI metrics). The different
objectives involved in sensitivity and IG immunity analyses were briefly discussed in Chapter 4.
However, it seems that sensitivity analysis could be of great help when conducting IG robustness
evaluations in two main aspects:

1. Identifying non-influential uncertain variables in order to reduce both the reliability prob-
lem dimension and the IG uncertainty model dimension and to ease some numerical tech-
niques such as the construction of metamodels;

2. Guiding the search of the worst performance value in each uncertainty space.

A large panel of sensitivity metrics is available in the literature both for SAMO and ROSA pur-
poses. This field is also gaining interest in the context of imprecise probabilities such as in Schöbi
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and Sudret (2019) where imprecise Sobol indices are defined. It seems therefore interesting to
investigate to what extent these metrics could be of use, especially as some can be obtained
together with the QoI estimation (Valdebenito et al., 2018; Zhang et al., 2020)

Combining adaptive numerical procedures between optimization algorithms and approxi-
mation techniques.

The performance of the numerical scheme involved in the application of IG to reliability
quantities depends on three main components that are connected: the successive optimization
problems, the potential need for a metamodel and the QoI estimator. The nested iterative na-
ture of IG uncertainty models together with the specific metric of interest (a worst performance)
makes the IG framework very prone to the use of adaptive techniques. The optimization pro-
cess at a given horizon of uncertainty should use the results from the previous horizons of un-
certainty. One could perform the optimizations considering increasing horizons of uncertainty
by only searching in the added uncertainty space. One could also perform optimization in the
largest uncertainty space first which means that the contained uncertainty spaces (for decreas-
ing horizons of uncertainty) have already been partially explored. The same idea could also
be investigated for the estimation of failure probabilities. The fact that the succesive maximum
failure probabilities are by definition higher than the nominal failure probability means that the
“hardest” (i.e. rarest event) estimation has already been performed. Finally, adaptive metamod-
els would also be of interest as better predictions are needed in specific zones of the uncertainty
space than in others (e.g. values around the penalizing LSSs for failure probabilities and ex-
treme values for extreme quantiles). All of these considerations treated in a joint framework
could considerably improve the estimation of robustness curves.

Extending IG’s paradigm to less conservative robustness assessments.

The context of deep uncertainty in which the IG framework places itself leads to consider-
ing non-probabilistic uncertainty models and, consequently, worst and best performances. As
such, it clearly quantifies the notion of immunity. From another angle, the analysis may seem
overconservative in some cases (e.g. high number of uncertain variables, conservatism already
included in other forms, availability of some information). In this case, it would seem interest-
ing to keep the notion of horizon of uncertainty but to investigate other metrics than the extreme
performances such as quantiles of different orders. This implies a probabilistic representation
of the epistemic variables. When the performance function is a failure probability and the epis-
temic variables are distribution parameters, the Bayesian hierarchical model is retrieved such
that the failure probability is a random variable itself. This context was particularly studied in
(Chabridon, 2018) for efficiently estimating predictive failure probabilities (i.e. the expectation
of the failure probability) and could be extended with the notion of horizon of uncertainty.

Improving the probability of failure estimators.

This perspective is general and not specific to the application of the IG method. However,
as it was seen in Chapter 6, the performance of the reliability estimator plays an important role
in the precision of the robustness curve and in the cumulated computational time. Even a small
reduction of the unitary computational time can lead to a non-negligible gain at the end of the
IG process.
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APPENDIXA
Formulations of weighted importance
sampling, augmented space integral and
augmented line sampling

All three methods introduced in this appendix have in common the idea of using a single set
of samples for estimating several failure probabilities at different values of uncertain distribution
parameters. Therefore, their use is particularly relevant when applying the IG method. This
appendix reviews their formulations and presents some first results on two toy cases. It will be
denoted by fX,Y (x, y|θ) the joint pdf which is the product (as considering independent random
variables) of the pdf fX (x) of certain random variables and the pdf fY (y|θ) of random variables
conditional to uncertain distribution parameters θ.

Weighted Importance Sampling

In Yuan (2013), the objective is to use the failure probability result obtained at a specific value
of the distribution parameters θ̃ to estimate failure probabilities at different values θ without
having to generate new samples. This framework is referred to as the weighted importance
sampling (WIS) approach.

The basic idea is similar to classical importance sampling and to reverse importance sam-
pling used in Chapter 7. For any θ, the failure probability is expressed as follows:

Pf (θ) =
∫

RnX+nY

1Fx,y (x, y) fX,Y (x, y|θ) dxdy =
∫

RnX+nY

1Fx,y (x, y)
fX,Y (x, y|θ)

H (x, y)
H(x, y)dxdy (A.1)

where H (x, y) is the importance sampling instrumental pdf to be defined by the user. Eq. A.1
may be rewritten as an expectation under H (x, y):

Pf (θ) = EH

[
1Fx,y (x, y)

fX,Y (x, y|θ)
H (x, y)

]
(A.2)

which may be estimated by generating NWIS samples
(

x(j), y(j)
)

from H (x, y) as follows:

Pf (θ) =
1

NWIS

NWIS

∑
j=1

1Fx,y

(
x(j), y(j)

) f
(

x(j), y(j)|θ
)

H
(
x(j), y(j)

) . (A.3)
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Therefore, it can be seen that, no matter the value of θ, the indicator function (which is generally
expensive to evaluate as it involves the computer model) is calculated with the same samples(

x(j), y(j)
)

generated from H which is chosen at a fixed value of θ. Only the conditional pdf

f
(

y(j)|θ
)

needs to be reevaluated for each θ.
The performance of the method highly depends on the choice of the instrumental pdf. In-

deed, the estimation in Eq. A.3 is considered as a local approximation as a better convergence
will be achieved for values of θ that are representative of the instrumental pdf H. However, such
framework is compatible with the info-gap robustness analysis for relatively small horizons of
uncertainty h as maximum failure probabilities are searched for around a nominal value θ̃.

Augmented Line Sampling

In the Augmented Line Sampling (ALS) approach introduced in Yuan et al. (2020), the idea is
to reuse the nALS line sampling roots obtained from an instrumental distribution without having
to search for them again at each value θ. The failure probability is again expressed first with Eq.
A.1. The corresponding LS estimator thus becomes:

Pf (θ) =
1

nALS

nALS

∑
j=1

p(j)
f (θ)

f
(

x(j), y(j)|θ
)

H
(
x(j), y(j)

) (A.4)

where p(j)
f (θ) = Φ

(
−r(j) (θ)

)
is the conditionnal failure probability calculated from the roots

that depend on θ.
By denoting u∗,(j) the points that intersect the lines with the LSF in the standard normal space

obtained through the isoprobabilistic transformation TH where X, Y ∼ H (x, y), the intersection
points in the physical space are obtained as

(
x∗,(j), y∗,(j)

)
= T−1

H

(
u∗,(j)

)
. Then, by denoting Tθ

the isoprobabilistic transformation considering that X, Y ∼ f (x, y|θ), the new intersection points
are obtained as u∗,(j)

θ = Tθ

(
x∗,(j), y∗,(j)

)
. Finally, the corresponding roots are simply obtained

from the scalar product r(j) (θ) = 〈u∗,(j)
θ , α〉.

Augmented Space Integral

The objective of the work proposed in Yuan et al. (2021) is to estimate the conditional failure
probability Pf (θ) by considering an augmented space where the uncertain distribution param-
eters follow an instrumental distribution such that Θ ∼ hΘ (θ). Indeed, by considering F the
failure event in the augmented space formed of (X, Y, Θ), the failure probability given θ writes:

Pf (θ) = P (F|Θ = θ) =
hΘ (θ|F)P (F)

hΘ (θ)
(A.5)

where P (F) is the failure probability in the augmented space expressed as:

P (F) =
∫

Rnθ

∫

RnX+nY
IF (x, y) f (y|θ) h (θ) f (x) dθdxdy (A.6)

After mathematical derivations to which the reader is referred to Yuan et al. (2021), the con-
ditional failure probability finally reads:

Pf (θ) =
1

h (θ)

∫

RnX+nY

IF (x, y) f (y|θ)
∆ (y)

f (x, y) dxdy =
1

h (θ)
E f

[
IF (x, y) f (y|θ)

∆ (y)

]
(A.7)
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where:

∆ (y) =
∫

Rnθ

fY (y|θ) dθ = EΘ

[
fY (y|θ)
hΘ (θ)

]
. (A.8)

Eq. A.8 can be solved either with integral numerical solvers, by sampling or even analytically in
some configurations. It is important to notice that attributing a probability distribution to θ only
represents a numerical trick and not an added hypothesis. However, the choice of the instru-
mental distribution hΘ has an impact on the performance of the estimator. A simple choice is to
assign uniform distributions to Θ considering relevant bounds w.r.t. the epistemic uncertainty
and w.r.t. the study.

In Yuan et al. (2021), Eq. A.7 is adapted to the Monte Carlo, importance sampling and subset
simulation techniques. In the following, only the importance sampling technique is considered.
In this case, as the random vector Y is already conditionned to Θ, an instrumental density is
considered on X such that H (x, y) = H (x) f (y|θ) which transforms the failure proability ex-
pression to:

Pf (θ) =
1

h (θ)

∫

RnX+nY

IF (x, y) f (y|θ)
∆ (y)

f (x)
H (x)

H (x, y) dxdy =
1

h (θ)
EH

[
IF (x, y) f (y|θ)

∆ (y)
f (x)
H (x)

]
.

(A.9)
In practice, the instrumental density H (x) can be chosen based on the design point x∗ obtained
at a fixed value of θ.

Application to a front axle

The proposed toy case, also used in Yuan et al. (2020) and in Yuan et al. (2021), corresponds
to an automobile front axle represented as an I-beam profile as depicted in Figure A.1.

𝑏

𝑎

𝑡

ℎ

FIGURE A.1: I-beam profile of the automobile front axle.

The LSF is defined as:

g (x, y) = σs −
√

M
Wx

2
+

T
Wρ

2
(A.10)

where σs = 600 Mpa is the yield stress, M is the bending moment, T is the torque and Wx and
Wρ are expressed as:

Wx =
a (h− 2t)3

6h
+

b
6h

[
h3 − (h− 2t)3

]
(A.11)

and

Wρ = 0.8bt2 + 0.4
a3 (h− 2t)

t
. (A.12)
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The characteristics of the six considered random variables are given in Table A.1 such that
X = [M, T]> and Y (θ) = [a, t, b, h]>. The nominal values of the uncertain means are set to
θ̃ = [13, 15, 65, 85]>.

TABLE A.1: Input probabilistic modeling for the front axle.

Random variable Distribution Mean µXi Standard deviation σXi

a (mm) Normal θa 0.65
t (mm) Normal θt 0.75
b (mm) Normal θb 3.25
h (mm) Normal θh 4.25
M (N.m) Normal 3500 175
T (N.m) Normal 3100 155

The three techniques, named WIS (Weighted Importance Sampling), ASI-IS (Augmented
Space Integral with Importance Sampling) and ALS (Augmented Line Sampling), are used for
estimating and comparing robustness curves with θi ∈

[
θ̃i (1− h) , θ̃i (1 + h)

]
and h ∈ [0, 0.1].

WIS is applied by considering the instrumental pdf HWIS (x, y) = HWIS (x) HWIS (y) composed
of normal distributions centered around the design point x∗ and y∗ obtained from a FORM anal-
ysis at θ = θ̃. The standard deviations are chosen as 10% of the design point values. ASI-IS is
applied by attributing uniform distributions to θ such that Θi ∼ UΘi

(
0.85θ̃i, 1.15θ̃i

)
. The same

importance sampling instrumental pdf as with WIS is used. The unique set of roots used for the
application of ALS are the ones obtained for θ = θ̃.

Figure A.2 presents the robustness curves (left) obtained using each method for N = NWIS =
NASI-IS = NALS =

{
1× 103, 5× 103, 20× 103} and their relative error (right) w.r.t. the reference

curve. The results are globally very precise even for N = 1 × 103. However, it can be seen,
especially with the WIS and ALS techniques, that the relative error becomes more important at
higher horizons of uncertainty. This is less the case with the ASI-IS approach.

Application to a cantilever beam

The second toy case considers the same cantilever beam as in Chapter 7 where the LSF is
based on the maximum Von Mises stress. The failure event is defined as the maximum Von
Mises stress exceeding the yield strength set at σy = 400 MPa. The distributions parameters are
given in Table A.2 with θ̃ = [5, 42, 3, 3]>. The same IG uncertainty models as in the previous toy
case are used but the horizon of uncertainty goes up to 0.2. Therefore, the uniform distributions
on the uncertain distribution parameters are now chosen as Θi ∼ UΘi

(
0.75θ̃i, 1.25θ̃i

)
.

The same type of results as for the first toy case are presented in Figure A.3. In this case
where the maximum horizon of uncertainty is twice as big as in the first toy case, the loss in
precision with the increase of the horizon of uncertainty gets even more striking for all three
techniques. Moreover, the ASI-IS approach brings poorer performances.

The two studied toy cases do not aim at ranking the three different techniques as their per-
formances highly depend on their implementation, especially on the choices of instrumental
distributions. Moreover, their performances also depend on the nominal performance of the
failure probability estimator technique which itself depends on the studied case. However, these
techniques seem very relevant to the application of IG on failure probabilities, especially when
considering the lower values of the horizon of uncertainty.
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FIGURE A.2: Robustness curves (left) and relative erros (right) obtained from each approximation tech-
nique for N = 13 (top), N = 53 (middle) and N = 203 (bottom).
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FIGURE A.3: Robustness curves (left) and relative erros (right) obtained from each approximation tech-
nique for N = 13 (top), N = 53 (middle) and N = 203 (bottom).
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TABLE A.2: Input probabilistic modeling of X.

Variable Xi Distribution param. 1 param. 2
X1 = P (kN) Gumbel β = 12 γ = 1.2
X2 = t (mm) Normal µ = θ1 σ = 0.25
X3 = d (mm) Normal µ = θ2 σ = 2.1
X4 = L1 (mm) Uniform a = 115 b = 125
X5 = L2 (mm) Uniform a = 55 b = 65
X6 = F1 (kN) Normal µ = θ3 σ = 300
X7 = F2 (kN) Normal µ = θ4 σ = 300
X8 = θ1 (degrees) Normal µ = 5 σ = 1
X9 = θ2 (degrees) Normal µ = 10 σ = 2
X10 = T (N.m) Normal µ = 90 σ = 9





APPENDIXB
Search for the worst performances

The IG framework requires to search for a worst performance in each considered uncertainty
space defined by the discretization of the horizon of uncertainty. There are multiple ways of
finding these values and different techniques may be adapted and interchangeable during the
process. Three main groups of techniques can be listed (see Chapter 4):

• the vertex method: the worst performance is supposed to be obtained at an unknown
combination of extreme values of the uncertain parameters (vertices of the IG uncertainty
space). This method requires 2ne evaluations where ne is the number of uncertain param-
eters.

• the sampling method: random or selected samples from the uncertainty space are gener-
ated and evaluated. Then, the minimum or the maximum value is kept.

• the optimization method: an optimization algorithm, local or global, is used for efficiently
reaching the minimum or the maximum value in the uncertainty space. This method is
generally used when no hypothesis is made on the behavior of the QoI w.r.t. the uncertain
parameters.

In this thesis, the optimization method was privileged mostly using the DIRECT algorithm
available in the NLopt Python module. This choice was made in order to propose methodolo-
gies in the most penalizing IG framework, i.e. when strictly no hypothesis is considered. This
appendix firstly describes how the DIRECT algorithm operates. Then, some numerical compar-
isons of the three mentionned searching techniques are analyzed on two toy cases.

DIRECT algorithm

The DIRECT algorithm was initially introduced in Jones et al. (1993) and its variants are well
identified in Jones and Martins (2021). It is a deterministic optimization algorithm that only
requires the bounds of the optimization space and a limit number of evaluations. After scaling
the optimization space into the unit hypercube, the algorithm divides it into a series of smaller
hyperrectangles. This process is illustrated in Figure B.1 where the maximum of the Ishigami
function (see Eq. B.2) is searched for x1 ∈ [0, 1] and x3 ∈ [0, 1]. The key point in the DIRECT
algorithm, after performing the first iteration which is always the same, lies in the choice of
the “potentially optimal” hyperrectangles to be divided into smaller hyperrectangles in which
each center point is to be evalueted. This is performed based on Lipschitzian optimization. By
denoting m the number of current hypperrectangles, ci each corresponding center point and
di the distance from ci to its corresponding vertices, a hyperrectangle is said to be potentially
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optimal if there exists some K > 0 such that (Jones and Martins, 2021):

f
(
cj
)
− Kdj ≤ f (ci)− Kdi, for all i = 1, · · · , m (B.1a)

f
(
cj
)
− Kdj ≤ fmin − ε | fmin| (B.1b)

where f is the objective function (to be minimized here), fmin the current minimum value and
ε a small positive constant. In this sense, there may be several hyperrectangles that are poten-
tially optimal during a same iteration. DIRECT presents several advantages and drawbacks.
The main advantage is that it guarantees convergence to the global minimum for continuous
functions without the need of gradient calculations. The main drawback is that, although the
global zone containing the solution is quickly identified, its local refinement requires rather a
lot of evaluations as other global searches are performed at the same time. It is often suggested
to use DIRECT as a first global search and then a local optimizer in the identified zones from
DIRECT.
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FIGURE B.1: Illustration of the first 5 iterations performed by the DIRECT algorithm on the Ishigami
function.

Ishigami function

The use of the DIRECT algorithm for estimating robustness curves w.r.t. a failure probability
is now compared with the use of the vertex method and a sampling method based on Latin
Hypercube Sampling (LHS) (McKay et al., 2000). First, the following LSF based on the Ishigami
function (Ishigami and Homma, 1990) is considered:
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g(X) = sin (X1) + 7 sin2 (X2) + 0.1X4
3 sin (X1) + 3 (B.2)

where X1 ∼ N (θ1, 1), X2 ∼ N (θ2, 1) and X3 ∼ N (θ3, 1). The failure probabilities are es-
timated with 50 × 103 MC samples. The nominal values of the uncertain means are given as
θ̃ = [−1.5, 0.5, 0.5]>. 10 values of the horizon of uncertainty are considered for h ∈ [0.1, 1]. When
applying the vertex method, only 8 failure probability evaluations are performed at a given h.
Therefore, only 80 (plus the evaluation of the nominal failure probability) total evaluations are
needed for estimating the entire robustness curve. The LHS-based method is performed by gen-
erating NLHS samples once in the largest uncertainty space, i.e. for θ1 ∈ [−3, 0] , θ2 ∈ [0, 1] and
θ3 ∈ [0, 1] . This unique set of samples is used for estimating the entire robustness curve by se-
lecting the maximum values in each uncertainty space contained in the largest one. In order to
be comparable with the LHS-based method, the use of DIRECT is limited by a maximum num-
ber NOPT of evaluations for the entire robustness curve. Therefore, each optimization process at
a given h is allowed a maximum of NOPT/10 evaluations.

Figure B.2 presents the robustness curves obtained with the three techniques for NLHS =
NOPT = 200 and NLHS = NOPT = 1000. Except for the lower values of h (h < 0.3) for which
there are less LHS candidates, the LHS and DIRECT-based methods give comparable curves.
The robustness curve obtained using the vertex method coincides with the reference curve up to
h = 0.4. Then, it progressively underestimates the robusntess. This means that there is at least
one uncertain mean for which the maximum failure probabilites are not obtained at an extreme
value.
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FIGURE B.2: Robustness curves for the Ishigami toy case using the vertex, the LHS-based and the
DIRECT-based methods.

Cantilever beam

The same study is performed on the cantilever beam introduced in Chapter 7 considering
the LSF based on the maximum Von Mises stress. The failure event is defined as the maximum
Von Mises stress exceeding the yield strength set at σy = 450 MPa. The distributions parameters
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are given in Table B.1 with θ̃ = [12, 5, 42, 0.3, 0.3, 9]>. The maximum failure probabilities are
evaluated at 10 value of h ∈ [0, 0.15].

TABLE B.1: Input probabilistic modeling of X.

Variable Xi Distribution param. 1 param. 2
X1 = P (kN) Gumbel β = θ1 γ = 1.2
X2 = t (mm) Normal µ = θ2 σ = 0.25
X3 = d (mm) Normal µ = θ3 σ = 2.1
X4 = L1 (mm) Uniform a = 115 b = 125
X5 = L2 (mm) Uniform a = 55 b = 65
X6 = F1 (kN) Normal µ = 3 σ = θ4
X7 = F2 (kN) Normal µ = 3 σ = θ5
X8 = θ1 (degrees) Normal µ = 5 σ = 1
X9 = θ2 (degrees) Normal µ = 10 σ = 2
X10 = T (N.m) Normal µ = 90 σ = θ6

The robustness curves obtained with each technique are given in Figure B.3 for NLHS =
{1000, 2000, 6000} and NLHS = {500, 1000, 2000}. The vertex method requires this time a total
of 64 × 10 = 640 evaluations. In this case, using the vertex method yields the same robust-
ness curve as the reference one. The DIRECT-based method performs better overall than the
LHS-based method. From a general point of view, increasing the dimension of the uncertainty
space affects the performances of the LHS and the DIRECT-based methods. It also increases
exponentially the number of evaluations used by the vertex method.
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FIGURE B.3: Robustness curves for the cantilever toy case using the vertex, the LHS-based and the
DIRECT-based methods.



APPENDIXC
Dependence in hybrid reliability analysis
with random set theory

This thesis generally treated hybrid reliability problems by considering independency among
and between the precise random variables X and the epistemic variables Y (except when con-
sidering the parallelepiped convex model). However, the random set framework is compatible
with probabilistic dependency. Indeed, by transforming the HRA problem into a standard re-
liability analysis with unit uniform distributions, copulas are directly applicable for modeling
dependency. In Alvarez et al. (2018), Frank and Gaussian copulas are used to model dependency
between precise random variables and variables represented with free p-boxes.

However, dependency between random variables and epistemic variables has been much
less studied than within the purely probabilistic framework. This appendix aims at providing
some preliminary insights into the impact of dependency represented through copulas on the
sampled random sets and, consequently, on the robustness.

To do so, the same two-degree-of-freedom damped oscillator introduced in Chapter 5 is con-
sidered where Table 5.1 and Table 5.2 recall the characteristics of the random variables and
the epistemic variables respectively. The only difference is that dependency is considered be-
tween the random variable ms and the epistemic variable Fs through the use of a normal copula
C (αms , αFs , ρmsFs) where ρmsFs is the coefficient of correlation between ms and Fs.

First, Figure C.1 presents 1000 sampled random sets obtained when Fs is represented through
a possibilistic triangular distribution, a possibilistic trapezoidal distribution and a free p-box
composed of normal-based extreme cdfs. The samples are obtained for ρmsFs = −0.7 (left) and
ρmsFs = 0.7 (right). These results are quite intuitive from a numerical point of view. Indeed, a
positive coefficient of correlation means that values of αms closer to one (respectively closer to
zero) will also yield values of αFs closer to one (respectively closer to zero). Hence, for triangu-
lar and trapezoidal distributions, a higher (respectively lower) value of ms will yield intervals
around the nominal value that are narrower (respectively wider). The opposite happens for a
negative coefficient of correlation. Considering the p-box representation on Fs, higher values of
αms will naturally lead to higher quantiles on both extreme cdfs bounding Fs. The interpretation
seems less straightforward from a linguistic point of view. A positive coefficient of correlation
with possibility distributions would mean that higher (respectively lower) values of ms enhances
(reduces) the confidence that Fs is closer to its nominal value.

Figure C.2 shows how the considered dependence may affect the robustness curve. In con-
trast to the results presented in Chapter 5, the fact of adding information to the IG uncertainty
model does not automatically improve the robustness. However, when considering the possi-
bilistic distributions on Fs, the impact of dependency increases with the horizon of uncertainty
and vanishes when h tends to 0 as Fs reduces to its nominal value. When considering the p-box
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FIGURE C.1: Sampled random sets considering ρms Fs = −0.7 (left) and ρms Fs = 0.7 (right) with a triangu-
lar distribution (top), a trapezoidal distribution (middle) and a p-box representation (bottom).
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representation on Fs, the nominal configuration (h = 0) represents a unique cdf on Fs. Therefore,
the dependency still has an impact even at h = 0.

It was shown in Chapter 5, in the context of no dependence, cases where different uncer-
tainty representations are actually equivalent when applying random set theory. In particular,
considering a symmetrical triangular possibilistic distribution with support

[
Y, Y

]
and nominal

value Ỹ is equivalent to considering a p-box built from two uniform distributions in
[
Y, Ỹ

]
and

in
[
Ỹ, Y

]
. The objective is now to verify, only on the same considered toy case, if dependency

affects this equivalence. Figure C.3 compares the sampled random sets obtained from the trian-
gular representation and the uniform-based p-box one. It appears that the lower bounds of the
random sets are identical between both representations. This is due to the fact that the upper
uniform cdf coincides with the increasing part of the triangular distribution. The upper bounds
are different, yet presenting a symmetrical behavior, as it is also the case with no dependence.
Therefore, each upper bound has the same probability of occurence wether the triangular or
the p-box representations are considered. The only difference is that the corresponding lower
bounds are not the same. Hence, as it can be seen from Figure C.4, the robustness curves ob-
tained from both representations also coincidence. Indeed, in this toy case, the lower value of
the limit-state function (which leads to the estimation of the upper failure probability) is always

obtained at Fs = Fs
(j) no matter if Fs ∈

[
Fs

Tri,(j), Fs
(j)
]

or if Fs ∈
[

Fs
pbox,(j), Fs

(j)
]
.
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FIGURE C.2: Robustness curves considering dependency with a triangular distribution (top), a trape-
zoidal distribution (middle) and a p-box representation (bottom).
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FIGURE C.3: Sampled random sets considering ρms Fs = −0.7 (left) and ρms Fs = 0.7 (right) with a triangu-
lar distribution and its corresponding p-box representation.
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representation considering dependency.





APPENDIXD
Multidimensional parallelepiped convex
model

This appendix briefly presents the formulations implied in the construction of multidimen-
sional parallelepiped (MP) convex models. The MP convex model was first introduced in Jiang
et al. (2014) and then improved in Ni et al. (2016). Figure D.1 illustrates the shape of this type of
convex model in two dimensions which results in a parallelogram.
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0

𝑌2

𝑌1

FIGURE D.1: Illustration of two-dimensional parallelepiped convex model.

It is used in Chapter 5 as it has the advantage of representing dependent and independent
variables in a joint framework. Moreover, a sample that belongs to this convex set can directly
be obtained from a sample v = (v1, · · · , vnY)

> of the hypercube V = [−1, 1]nY with the following
transformation:

Yi =
LYi

∑nY
j=1

∣∣ρij
∣∣

nY

∑
j=1

ρijvj + Ỹi, i = 1, 2, ..., nY (D.1)

where Ỹi is the center point of the interval, LYi is half the width of the interval and ρ is the

correlation matrix composed of the coefficients of correlation ρij =
d(ij)2 −d(ij)1

d(ij)2 +d(ij)1

where d(ij)1 and d(ij)2

are half the diagonal lengths as depicted in Figure D.1. Figure D.2 shows the impact of the
coefficient of correlation on the obtained convex set.
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FIGURE D.2: Two-dimensional parallelepiped convex model for different negative (A) and positive (B)
coefficients of correlation.

An example of hybrid representation with random and MP convex variables can be found
in Liu and Elishakoff (2020) where bounds on the failure probability are estimated using the im-
portance sampling technique. Indeed, the fact that samples from the MP convex set are obtained
direcly by sampling in the bounded hypercube [−1, 1]nY without having to define any constraint
function makes the optimization process easier.



APPENDIXE
Artificial neural networks architectures

This appendix explains in more details how the artificial neural networks (ANN) used in
Chapter 6 were built. The first tuning parameters to be set when constructing ANNs are the
number of hidden layers, the corresponding number of neurons and the activation functions
to be used. There is no precise rule for assessing the right numbers of hidden layers and neu-
rons. Generally, the higher the input dimension and the complexity of the response behavior,
the more hidden layers and neurons are needed. Table E.1 presents the chosen architectures for
ANN1 and ANN2 which are the same except for the output layer as the output of ANN1 is a
single classification probability (p1 ≤ 0.5 means that there is no root and p1 > 0.5 means that
are roots) and the output of ANN2 corresponds to the two predicted roots. The activation func-

TABLE E.1: Architectures of ANN1 and ANN2.

Layer Number of neurons Activation function
ANN1 ANN2 ANN1 ANN2

Input layer 10 10 − −
Hidden layer 1 64 64 ReLU ReLU
Hidden layer 2 32 32 ReLU ReLU
Hidden layer 3 16 16 ReLU ReLU
Output layer 1 2 sigmoid linear

tions are also the same with the use of “ReLU” except for the output layer where “sigmoid” is
used for generating the classification probability and “linear” is used for the regression problem.
Different architectures have not been tested as high performances of both ANNs were quickly
achieved.

The next parameters to define are the ones directly involved for the training process, namely
the loss function, the loss function optimizer, the metric used for validation and the number of
epochs. The choices made in the present paper are given in Table E.2. Both loss functions “binary

TABLE E.2: Training parameters of ANN1 and ANN2.

Parameters ANN1 ANN2

Loss function binary crossentropy mean squared error
Loss optimizer Adam Adam
Validation metric accuracy mean squared error
Epochs 50 50

crossentropy” and “mean squared error” are the most considered ones for classification and re-
gression problems respectively. The loss optimizer “Adam” is very common in deep learning
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and is known to converge efficiently. The validation metric is used to quantify the quality of
the trained ANNs on the validation samples. It is very important as the trained ANNs that are
saved are the ones that correspond to the epoch with the best validation metric. “Accuracy” (the
proportion of correct classifications) and “mean squared error” are very common for classifica-
tion and regression purposes respectively. The number of epochs plays an important role on the
learning process. Too few epochs might lead to an underfit model which means that the train-
ing process did not enable the model to understand well all the features. Conversely, too many
epochs might lead to an overfit model which means that it only performs well on the training
inputs but not on new inputs. However, there are ways to circumvent this issue. In the present
paper, a checkpoint is applied so that the model that is saved is the one that performs best on the
validation data. Figure E.1 presents the convergence of the accuracy of ANN1 and of the loss of
ANN2. The fact that the best configuration of ANN2 is obtained at the last epoch suggests that
more epochs might have improved the metric. However, both metrics are satisfactory.
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FIGURE E.1: Evolution of the accuracy of ANN1 (A) and the loss of ANN2 (B) on the training and valida-
tion samples for ntrain = 3× 104.



APPENDIXF
Résumé étendu de la thèse

Contexte

Contexte méthodologique.

Tout produit ou système industriel doit répondre à des critères de performance et de sûreté
durant leur cycle complet de fonctionnement. De plus, la demande permanente d’améliorations
technologiques et sociétales entraîne la création de systèmes de plus en plus complexes dont
il faut maîtriser les risques accrus. La complexité de ces systèmes ainsi que le caractère non
simulable de certains scénarios en conditions réelles ont mené au développement de codes de
calcul basés sur des modèles physiques et mathématiques et sur des méthodes de résolution
numérique. Ces codes de calcul permettent donc de simuler le comportement réel d’un sys-
tème dans un certain environnement et donc de simuler ses niveaux de performance et de
sûreté. Cependant, cette méthodologie fait appel à un certain nombre d’hypothèses de mod-
élisation pour lesquelles la quantité d’information disponible permet rarement leur justification
de manière triviale. C’est dans ce contexte que né la notion de prise en compte des incertitudes
dans les modèles numériques afin de pouvoir quantifier un niveau de performance et de sûreté
satisfaisant.

Le schéma dit ABCC’ est souvent utilisé pour décrire le cadre de la prise en compte des
incertitudes dans les modèles numériques. Ce schéma se décompose en les étapes suivantes :

• Etape A → Spécification du problème : identification des variables d’entrée et de sortie
du système, définition d’un code numérique reliant les sorties aux entrées et choix d’une
quantité d’intérêt en fonction de l’analyse ;

• Etape B→Modélisation des incertitudes : identification des différentes sources d’incertitude
et choix du formalisme à adopter pour décrire ces incertitudes ;

• Etape C → Propagation des incertitudes : utilisation de techniques spécifiques afin de
caractériser l’incertitude sur les variables de sorties à partir de la modèlisation des incerti-
tudes en entrée ;

• Etape C’ → Analyse inverse : utilisation de l’information sur les sorties du modèles afin
d’obtenir de l’information sur les entrées du modèles.

Ce cadre général représente une idéalisation de la réalité nécessaire afin de mener des analy-
ses de sûreté. Par conséquent, les décisions de sûreté qui en découlent se doivent d’être robustes
par rapport aux hypothèses fortes de modélisation. C’est dans ce contexte que la méthode info-
gap est investiguée. En particulier, il s’agit dans cette thèse d’évaluer la robustesse de quantités
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d’intérêt fiabilistes décrivant la sûreté de systèmes critiques face aux hypothèses de modélisation
des incertitudes des variables en entrée du code numérique.

Contexte industriel.

Cette thèse a été réalisée sous la forme d’une convention CIFRE en parteneriat avec le Dé-
partement de Mécanique Appliquée du laboratoire FEMTO-ST (CNRS, Univ. Bourgogne Franche-
Comté) et EDF R&D. Cette collaboration représente un example typique du besoin industriel
pour une meilleure compréhension et une meilleure maîtrise de l’incertitude pouvant affecter
des décisions propres à des systèmes industriels critiques.

Afin de demeurer un leader mondial de la production d’électricité, EDF peut compter sur
un panel de systèmes hautement performants et complexes (e.g. centrales nucléaires et hy-
droélectriques). Ces systèmes industriels introduisent des risques à conséquences humaines,
environnementales et économiques potentiellement graves qui se doivent d’être maîtrisés. Par
conséquent, leur opérabilité représente une décision à responsabilité sociétale qui requiert des
justifications rigoureuses.

La complexité des systèmes étudiés ainsi que la rareté et l’aspect non simulable des scé-
narios accidentels considérés ont poussé EDF à développer des méthodologies en lien avec le
schéma classique du traitement des incertitudes dans les modèles numériques. De ce fait, la
représentation probabiliste des incertitudes a progressivement pris place dans le but d’évaluer
des quantités fiabilistes qui soient mieux représentatives de l’état de connaissances.

Cependant, les justifications provenant d’analyses probabilistes amènent souvent des préoc-
cupations telles que :

• l’acceptabilité et l’interprétabilité de probabilités faibles mais non nulles ;

• l’utilisation de notions mathématiques plus complexes pour mener et justifier une propa-
gation probabiliste des incertitudes ;

• la justification d’hypothèses probabilistes sur lesquelles l’estimation d’événements rares
est très dépendante et pour lesquelles l’information est réduite.

C’est dans ce contexte que se place la motivation industrielle principale de cette thèse. La
méthode info-gap (IG) est investiguée et adaptée à des quantitités fiabilistes afin de quanti-
fier leur robustesse vis-à-vis de méconnaissances. En particulier, deux cas réels liés à EDF sont
étudiés, à savoir l’étude de fiabilité des conduites forcées et l’étude d’un scénario accidentel de
perte de réfrigérant dans le circuit primaire d’un réacteur à eau pressurisée.

Objectifs de la thèse

L’objectif principal de cette thèse est d’apporter des éléments méthodologiques afin de mener
et d’interpréter des analyses de robustesse IG appliquées à des quantités fiabilistes dans le but
de prendre des décisions sûres. Cet objectif général se décline en les objectifs suivants :

• O1 : Mener des analyses de robustesse confrontées simultanément à plusieurs sources
d’incertitude ;

• O2 : Illustrer comment la méthode IG et le contexte d’évaluations fiabilistes peuvent être
entremêlés dans le but de prendre des décisions sûres ;

• O3 : Quantifier l’impact du choix de la réprésentation des incertitudes épistémiques sur
l’évaluation de la robustesse IG ;
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• O4 : Proposer des solutions pour mener une analyse de robustesse IG appliquée à l’évaluation
de probabilités de défaillance faibles liées à des domaines de défaillance complexes ;

• O5 : Proposer des solutions pour mener une analyse IG appliquée à l’estimation de quan-
tiles d’ordre élevé issus de modèles numériques coûteux en temps de calcul.

En accord avec les objectifs listés ci-dessus, ce manuscrit est divisé en plusieurs chapitres
dont le contenu est résumé dans la section suivante.

Etat de l’art

Chapitre 2 – Fiabilité des structures sous différentes sources d’incertitude.

L’application de la méthode IG à des quantités fiabilistes implique un processus composé de
deux boucles imbriquées dont la boucle interne représente l’estimation de la quantité d’intérêt fi-
abiliste. Etant donc un point central de l’analyse de robustesse et étant potentiellement un prob-
lème complexe à résoudre pour des événements rares, ce chapitre vise à définir le contexte pro-
pre à la fiabilité des structures et à présenter une partie des différentes techniques d’estimation
mises à disposition.

Une étape clé de l’analyse fiabiliste est la modélisation de l’incertitude qui peut prendre dif-
férentes formes (Hacking, 1975). En particulier, deux types d’incertitude sont communément
dissociés, à savoir l’incertitude aléatoire (variabilité intrinsèque non réductible) et l’incertitude
épistémique (liée à un manque de connaissances potentiellement réductible) (Der Kiureghian
and Ditlevsen, 2009). Ce contexte a motivé le développement et l’application de plusieurs
modélisations de l’incertitude en fonction de l’information considérée. Ce chapitre en présente
quelques-unes ainsi que leur intégration dans le contexte de la fiabilité des structures à travers
un example illustratif.

Dans un premier temps, les notions mathématiques principales de la fiabilité des structures
sont introduites dans le cadre probabiliste, c’est à dire lorsque les grandeurs incertaines sont
modélisées par des variables aléatoires. Les définitions de la fonction d’état limite et du domaine
de défaillance permettent d’exprimer la quantité fiabiliste principalement étudiée dans cette
thèse, à savoir une probabilité de défaillance. Les principales techniques numériques permettant
l’estimation de la probabilité de défaillance sont présentées (Morio and Balesdent, 2015). Ces
techniques incluent le passage de l’espace physique à l’espace standard, la méthode de Monte-
Carlo, les méthodes FORM et SORM, le tirage d’importance, la simulation multi niveaux et le
line sampling.

Dans un second temps, des modélisations alternatives (Beer et al., 2013; Zio and Pedroni,
2013) au cadre probabiliste sont décrites, à savoir les modèles convexes, la théorie de l’évidence,
la théorie des possibilités et les p-box (probability box) paramétriques et non paramétriques. Un
schéma synthétique est proposé permettant de décrire les liens entre ces différentes représenta-
tions de l’incertitude.

Chapitre 3 – Cas d’application industriels.

Ce chapitre vise à présenter plus en détail les deux cas d’application industriels qui mo-
tivent cette thèse. Le contexte industriel et l’étude fiabiliste propres à chacun d’eux sont donnés.
Cela permet notamment d’apporter un cadre réel quant au besoin d’effectuer des analyses de
robustesse.

La première application industrielle concerne l’étude de fiabilité des conduites forcées (Bryla
et al., 2020; Ardillon et al., 2022) qui acheminent l’eau d’un barrage à une usine hydroélectrique.
EDF en opère un grand nombre qui présentent des caractéristiques géométriques et mécaniques
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variées. Ces structures vieillissantes subissent une perte d’épaisseur dû au phénomène de corro-
sion. Par conséquent, leur tenue mécanique se doit d’être justifiée à chaque instant et pour tout
type de configuration. En particulier, les modes de défaillance relatifs à l’instabilité plastique et
à la rupture en présence de défauts plans sont étudiés. Au modèle mécanique s’ajoute le cadre
fiabiliste par la considération de certaines grandeurs physiques par des variables aléatoires. Dès
lors, la quantité d’intérêt considérée est la probabilité de défaillance annuelle d’une configu-
ration de conduite forcée que l’on souhaite inférieure à une probabilité de défaillance seuil.
L’objectif est alors d’estimer la robustesse IG de cette estimation fiabiliste face aux hypothèses
en entrée, notamment les valeurs de certains paramètres des distributions probabilistes. En
particulier, la méthode IG permet de comparer la robustesse de différentes conduites forcées à
performances nominales proches afin d’analyser si certaines configurations sont plus robustes
que d’autres.

La deuxième application industrielle s’intéresse à un scénario accidentel hypothétique de
perte de réfrigérant dans le circuit primaire d’un réacteur nucléaire à eau préssurisée causée par
la présence d’une brèche. La chute de pression au primaire et la diminution de la quantité d’eau
induisent alors une élévation de la température des crayons combustibles. Par conséquent, il
est impératif de vérifier que cette température ne dépasse pas une valeur critique synonyme
d’endommagement trop important du combustible. Les avancées dans la compréhension des
phénomènes physiques en jeu ainsi que l’augmentation de la puissance de calcul informatique
ont permis le développement de codes numériques dits de "Best Estimate models" permettant
de simuler des transitoires thermohydrauliques. En France, cela a mené au code de calcul
CATHARE développé conjointement par le CEA, EDF, Framatome et l’IRSN. Ce code permet
donc, entre autres, de simuler le transitoire causé par la perte de réfrigérant afin d’en déduire la
température maximale de la gaine du combustible. La disponibilité d’un tel code a alors permis
de mettre en place le schéma numérique relatif à la quantification et propagation des incerti-
tudes aléatoires. Cette méthodologie globale est dénomée par "Best Estimate Plus Uncertainty".
En particulier, la modélisation probabiliste des paramètres considérés incertains donne lieu à
l’estimation d’un quantile élevé (d’ordre 95% dans cette étude) à être comparé avec la tempéra-
ture seuil. Cependant, la justification du choix des distributions paramétriques affectées aux
variables aléatoires peut être remise en cause, notamment par l’Autorité de Sûreté Nucléaire.
C’est ce contexte qui a poussé EDF a mener des analyses de robustesse afin d’évaluer l’impact
des hypothèses probabilistes sur l’évaluation fiabiliste. Cette thèse propose d’utiliser la méthode
IG afin de quantifier cette robustesse.

Chapitre 4 – Le contexte de robustesse info-gap.

Ce chapitre a pour but de présenter les éléments principaux relatifs au contexte IG (Ben-
Haïm, 2006) et notamment son adaptation à des évaluations fiabilistes. Les fonctions qui sont
centrales à la méthode sont introduites, à savoir les fonctions de robustesse et d’opportunité.
La première permet de quantifier le niveau maximal d’incertitude autour d’une configuration
nominale d’un système pour lequel une performance acceptable est garantie. La deuxième quan-
tifie le niveau minimal d’incertitude autour d’une configuration nominale permettant d’espérer
une performance particulièrement positive (ces critères de performance acceptable et de perfor-
mance particulièrement positive sont à définir par l’analyste). Ce niveau d’incertitude, consid-
érée comme épistémique, se traduit par la notion d’horizon d’incertitude qui est un nombre réel
positif. Il permet de construire des ensembles convexes imbriqués autour d’une valeur nomi-
nale des paramètres considérés incertains. La recherche des performances extrêmes du système
dans chacun de ces domaines d’incertitude permet la construction des courbes de robustesse et
d’opportunité. Ces courbes permettent alors de classer différentes décisions en fonction de leur
robustesse et de leur opportunité. La notion de valeur de l’information définie dans le contexte
IG ainsi que certaines critiques addressées à cette méthode sont également discutées.
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Ce chapitre permet également de comparer des analyses de robustesse dans différents con-
textes d’incertitude. En effet, la modularité de la méthode IG offre la possibilité de confronter
des hypothèses de nature différente. Ici, les robustesses associées à deux fonctions d’état limite
jouet sont évaluées et comparées en considérant l’incertitude épistémique sur :

• les variables d’entrée des fonction d’état limite directement ;

• des paramètres des distributions probabilistes affectées aux variables d’entrée ;

• la forme des distributions probabilistes affectées aux variables d’entrée ;

• la formulation des fonctions état limite (erreur de modèle).

Cette analyse a pour but principal d’illustrer la compatibilité et la pertinence de la méthode IG
avec des analyses fiabilistes issues d’un formalisme probabiliste.

Cependant, la mise en relation de ces deux cadres méthodologiques implique un schéma
numérique potentiellement challengeant à résoudre sans la considération de certaines hypothèses.
Le coût numérique engendré par l’estimation de courbes de robustesse repose particulièrement
sur les considérations suivantes :

• la méthode utilisée pour la recherche des performances extrêmes dans chaque ensemble
convexe ;

• la performance globale de la technique utilisée pour l’estimation de la quantité d’intérêt
fiabiliste (quantile ou probabilité de défaillance) ;

• la possibilité d’utiliser des métamodèles et des techniques à base d’échantillon unique avec
un certain niveau de confiance ;

• le nombre d’horizons d’incertitude considéré pour approximer la courbe de robustesse.

Apports méthodologiques et applications

Chapitre 5 – Comparaison de la robustesse info-gap obtenue sous différentes réprésentations
de l’incertitude.

Cette thèse se place dans un contexte présentant différentes sources d’incertitude. Par con-
séquent, différentes représentations de l’incertitude, telles que celles introduites au Chapitre 2,
peuvent cohabiter dans une même étude fiabiliste. Il est souvent mention de fiabilité hybride
pour décrire ce contexte.

Ce chapitre vise dans un premiers temps à poser le cadre théorique de la fiabilité hybride.
Les variables aléatoires sont dissociées des variables épistémiques. Dans ce contexte, la prob-
abilité de défaillance n’est plus unique mais est bornée par une probabilité minimale et une
probabilité maximale. La considération simultanée de plusieurs modélisations de l’incertitude
rend l’utilisation des techniques classiques d’estimation de probabilité de défaillance non triv-
iale. Par conséquent, la théorie des random sets est appliquée afin d’uniformiser le problème
hybride. En effet, cette théorie offre la possibilité de décrire une multitude de réprésentations
de l’incertitude (probabiliste et autres) sous un même cadre probabiliste. En particulier, le prob-
lème de fiabilité hybride peut alors être ramené à deux problèmes de fiabilité ne considérant
que des variables aléatoires probabilistes. Les techniques avancées d’estimation de probabilité
de défaillance peuvent alors être employées pour évaluer les bornes de cette probabilité.

L’objectif principal de ce chapitre est d’évaluer l’impact qu’a le choix d’une modélisation de
l’incertitude épistémique sur l’analyse de robustesse. Une méthodologie combinant la méth-
ode IG et la modélisation par random sets est proposée dans ce but. Au lieu de ne considérer
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que des ensembles convexes, le modèle d’incertitude IG est directement relié à la fonction ran-
dom set pouvant décrire différentes réprésentations de l’incertitude. En particulier, les fonctions
random sets considérées sont celles décrivant les réprésentations par des intervalles, par des
ensembles convexes, par des distributions possibilistes, par des p-box et par des distributions
probabilistes précises. Cette méthodologie permet notamment d’évaluer à quel point le passage
d’une réprésentation de l’incertitude moins informative à une réprésentation plus informative
(en passant d’une modélisation intervalle à une distribution possibiliste par exemple) resserre
les bornes de la probabilité de défaillance en fonction de l’horizon d’incertitude IG considéré.
Pour quantifier cet impact de manière plus précise, une métrique relative à la notion de valeur
de l’information est définie.

Cette méthodologie est appliquée sur deux cas jouets ainsi que sur l’étude de fiabilité des
conduites forcées. Différents groupes de comparaison sont analysés. Certains groupes permet-
tent d’évaluer l’impact d’un ajout d’information sur les courbes de robustesse et d’opportunité
tandis que d’autres permettent d’illustrer certaines équivalences entre différentes réprésenta-
tions de l’incertitude.

Chapitre 6 – Algorithmes basés sur la technique du line sampling pour l’évaluation robuste
de la fiabilité des conduites forcées.

Ce chapitre développe un schéma méthodologique performant pour l’évaluation de la ro-
bustesse appliquée à la fiabilité des conduites forcées. En effet, les difficultés principales liées
à cette application proviennent de la rareté des événements de défaillance pour lesquels des
probabilités sont estimées ainsi que la particularité géométrique des domaines de défaillance
induits. Par conséquent, des techniques avancées offrant un estimateur de la probabilité de dé-
faillance globalement performant en termes de convergence et de temps de calcul sont requises
afin d’obtenir des courbes de robustesse précises en un temps raisonnable. Ce chapitre inves-
tigue l’utilisation du line sampling dans ce but.

Dans un premier temps, l’étude de robustesse est appliquée au mode de défaillance par in-
stabilité plastique en considérant l’incertitude épistémique à la fois sur des variables d’entrée
et sur des paramètres de distribution probabiliste. Le domaine de défaillance associé à ce cas
correspond de manière illustrative à une bande. Par conséquent, la technique du line sampling
est adaptée du fait que chaque ligne présente deux racines (dont dépend le calcul de la prob-
abilité de défaillance avec cette technique présentée dans le Chapitre 2). La recherche de ces
racines n’impliquant qu’un faible nombre d’évaluations des fonctions d’état limite, l’estimateur
proposé permet d’obtenir des courbes de robustesse en un temps réduit. De ce fait, il est pos-
sible d’estimer des courbes de robustesse pour une multitude de configurations nominales dif-
férentes afin d’évaluer si certaines d’entre elles se démarquent malgré des performances nomi-
nales proches.

Dans un deuxième temps, le mode de défaillance par rupture conditionnelle au succès d’une
épreuve hydraulique est étudié. Ce cas d’étude est plus contraignant d’un point de vue de
l’estimation de la probabilité de défaillance pour deux raisons :

• les fonctions d’état limite peuvent présenter des discontinuités ;

• la condition apportée par l’épreuve hydraulique implique un événement de défaillance
composé d’une double intersections de trois événements.

L’impact majeur sur l’utilisation du line sampling est que certaines lignes ne présentent aucune
racine tandis que d’autres en contiennent toujours deux. Dans ce contexte, trois algorithmes
correspondant à trois formulations équivalentes de l’événement de défaillance sont proposés
pour résoudre ce problème complexe de recherche de racines. En particulier, l’algorithme à base
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de recherches séquentielles des racines permet de limiter le nombre total d’appels aux fonctions
d’état limite.

Malgré la bonne performance des algorithmes proposés, la recherche des racines implique
un nombre d’appels aux fonctions d’état limite relativement important. Ce nombre devient con-
séquent lors de l’application de la méthode IG qui requiert l’estimation de plusieurs centaines
de probabilités de défaillance. Afin de réduire le nombre total de recherches de racines, une
méthodologie à base de réseaux de neurones est adoptée. Un premier réseau de classification
est utilisé dans le but de prédire l’existence ou non de racines pour une ligne donnée. Un deux-
ième réseau de régression prédit les valeurs des deux racines lorsque le premier estime qu’elles
existent. Pour que les deux mêmes réseaux soient utilisés durant toute l’analyse IG, leur ap-
prentissage s’effectue dans l’espace augmenté composé de l’espace probabiliste standard et de
l’espace épistémique des paramètres de distribution. La méthodologie est appliquée sur un cas
jouet représentatif et sur la fiabilité des conduites forcées. Les courbes de robustesse obtenues
sont très précises pour un temps de calcul cumulé fortement réduit.

Chapitre 7 – Evaluation robuste d’un scénario accidentel propre à un système thermohy-
draulique industriel.

Ce chapitre applique la méthode IG sous différentes formes pour évaluer la robustesse des
estimations du quantile d’ordre 95% et du superquantile d’ordre 75% de la température maxi-
male de gaine lors d’une perte de réfrigérant au primaire. Bien que ces deux quantités fiabilistes
soient en général plus simples à estimer que des probabilités de défaillance très faibles, le temps
de calcul unitaire d’une simulation CATHARE d’environ 30 minutes rend l’étude fiabiliste, et
donc l’application d’IG, challengeantes. De plus, le modèle considère 27 variables aléatoires
représentées par des distributions paramétriques différentes.

Dans un premier temps, deux modèles d’incertitude IG originaux sont proposés. Le premier
considère l’incertitude épistémique sur les paramètres de distribution dans l’espace standard.
Cela permet une application et une interprétation plus aisées d’un unique horizon d’incertitude
sur toutes les variables aléatoires. Le deuxième modèle considère une discrétisation de type
Dempster-Shafer de la fonction de répartition nominale de chaque variable aléatoire ce qui
permet de perturber la forme de la loi plutôt que ses paramètres. Cette représentation de
l’incertitude revient à considérer des p-box non paramétriques et donc nécessite le retour au
cadre des random set.

Dans un second temps, deux méthodes numériques sont investiguées afin de substituer
le modèle coûteux CATHARE. La première méthode, dénomée Reverse Importance Sampling
(RIS) et similaire au tirage d’importance, permet de réestimer le quantile et le superquantile per-
turbés de manière paramétrique à partir d’un unique jeu de données. Par conséquent, le code
CATHARE n’est appelé que pour ce jeu de données et la seule opération à considérer est un ratio
de densités qui n’est pas coûteux à évaluer. Pour l’utilisation de cette méthode, 3000 réalisations
des variables aléatoires sont générées suivant leur distribution jointe nominale et les tempéra-
tures maximales correspondantes sont évaluées avec CATHARE. La deuxième méthode utilise
à nouveau un réseau de neurones afin de simuler le comportement CATHARE. Ce réseau est
entraîné à l’aide de 3000 nouvelles réalisations générées en considérant des lois uniformes sur
les variables aléatoires dans leur support respectif.

Ces deux méthodes sont donc utilisées et comparées pour générer des courbes de robustesse
sur un cas jouet et sur le cas de perte de réfrigérant au primaire. Des résultats comparables sont
obtenus pour la robustesse du quantile pour laquelle les deux méthodes identifient le même
groupe de variables les plus pénalisantes. Cependant, des écarts apparaissent pour les hauts
horizons d’incertitude et quand le nombre de variables épistémiques considérées augmente.
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Par contre, les robustesses du superquantile obtenues avec la méthode RIS sont particulière-
ment chaotiques et difficiles à interpréter. Les courbes obtenues avec l’utilisation du réseau de
neurones s’avèrent bien plus stables.

Conclusion générale et perspectives

A travers cette thèse, IG est appliquée de plusieurs manières pour un même objectif : quan-
tifier la robustesse d’évaluations fiabilistes face à certaines hypothèses. Les quantités d’intérêt
fiabilistes sont passées d’une probabilité de défaillance très faible à un quantile d’ordre 95% et un
superquantile d’ordre 75%. Les modèles d’incertitude IG ont été décrits à la fois par des fonc-
tions random set, des p-box paramétriques dans l’espace physique et dans l’espace standard
ainsi que des p-box non paramétriques basés sur une discrétisation de type Dempster-Shafer.
Enfin, différentes techniques numériques ont été employées afin de faciliter l’application d’IG à
des quantités fiabilistes. Des réseaux de neurones artificiels sont utilisés soit pour remplacer di-
rectement le code de simulation soit pour remplacer une étape intermédiaire durant l’estimation
d’une probabilité de défaillance. Des méthodes de réestimation sont également considérées avec
le "Weighted Importance Sampling" et le "Reverse Importance Sampling". Ce panel de concepts
mathématiques montre la modularité du cadre IG ainsi que la dépendance de son implémen-
tation avec le cas d’étude considéré. De plus, l’expansion constante offerte par la littérature de
la boite à outils numériques couvrant divers domaines scientifiques rend l’application d’IG de
moins en moins contraignante.

Finalement, les perspectives suivantes sont adressées :

• le placement d’IG par rapport à d’autres métriques ;

• la prise en compte d’une structure de dépendance dans les entrées ;

• l’application d’IG à des erreurs de modèles ;

• la contribution de l’analyse de sensibilité pour évaluer des courbes de robustesse ;

• l’utilisation de méthodes numériques adaptives ;

• l’extension d’IG à des mesures de robustesse moins conservatives.

Publications et communications

Les contributions présentées dans ce manuscrit ont donné lieu aux publications suivantes :

Jour. Pap. A. Ajenjo, E. Ardillon, V. Chabridon, B. Iooss, S. Cogan and E. Sadoulet-Reboul (2022). “An
info-gap framework for robustness assessment of epistemic uncertainty models in hybrid
structural reliability analysis”. In: Structural Safety 96, pp. 102196.

A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2022). “Robustness
evaluation of the reliability of penstocks combining line sampling and neural networks”.
Preprint.

Int. Conf. A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2021). “Info-gap
robustness evaluation of a line-sampling-based reliability assessment of penstocks”. In:
Proc. of the 13th International Conference on Structural Safety and Reliability (ICOSSAR 2021),
Shanghai, China. (+Talk)



Appendix F. Résumé étendu de la thèse 173

A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2021). “Robustness
Evaluation of Reliability Assessments of Pensotcks Using Info-Gap Method”. In: Proc. of
the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment
and Management Conference (ESREL 2020 PSAM 15), Venice, Italy. (+Talk)

A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2021). “An info-
gap framework for comparing epistemic uncertainty models in hybrid structural reliability
analysis”. In: Proc. of the 12th International Symposium on Imprecise Probability: Theories and
Applications (ISIPTA 2021), Granada, Spain. (+Talk)

Nat. Conf. A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2022). “Application
de la méthode info-gap aux analyses de fiabilité des conduites forcées”. In: 11èmes Journées
Fiabilité des Matériaux et des Structures (JFMS 2022), Clermont Ferrand, France. (+Talk)

A. Ajenjo, E. Ardillon, V. Chabridon, S. Cogan and E. Sadoulet-Reboul (2021). “Adapted
line sampling and neural networks for evaluating the info-gap robustness of reliability
estimates for penstocks”. In: MASCOT-NUM 2022, Clermont Ferrand, France. (+Poster)







Résumé

Les systèmes de production d’électricité tels que les centrales nucléaires et hydroélectriques représentent des
exemples typiques de systèmes complexes pour lesquels un haut niveau de sûreté est attendu. Ces évaluations de
sûreté impliquent généralement l’utilisation de modèles numériques permettant de simuler le comportement du sys-
tème étudié dans des conditions opérationnelles particulières. Cependant, ce contexte représente une idéalisation
de la réalité confrontée à la présence de plusieurs sources d’incertitude généralement divisées en deux catégories
: l’incertitude aléatoire (liée à une variabilité naturelle de certains phénomènes) et l’incertitude épistémique (liée à
un manque de connaissance). Par conséquent, la quantification des incertitudes à travers les modèles numériques
représente un intérêt grandissant dans la communauté scientifique dans le but d’évaluer la fiabilité d’un système.
En particulier, des techniques de propagation de l’incertitude aléatoire permettent d’évaluer des quantités fiabilistes
telles que des probabilités de défaillance faibles et des quantiles d’ordre élevé sur lesquelles des décisions liées à
la sûreté sont justifiées. Cependant, ces évaluations impliquent généralement des hypothèses liées à un manque
d’information qui est caractéristique des systèmes complexes et des événements rares. Dans ce contexte, il est im-
pératif de considérer ces hypothèses dans la décision prise. Dans cette thèse, cela est fait en considérant le cadre
info-gap permettant d’évaluer la robustesse d’estimations fiabilistes face à l’incertitude épistémique.

La méthode info-gap quantifie la notion de robustesse en évaluant le niveau maximal d’incertitude épistémique
pour lequel le système garantit toujours une performance acceptable. Dans cette thèse, la méthode est appliquée
à deux cas industriels : l’étude de fiabilité des conduites forcées et un scénario nucléaire accidentel lié à une perte
de réfrigérant dans le circuit primaire. Dans un premier temps, les cadres méthodologiques et numériques associés
à l’application d’info-gap sur des quantités fiabilistes sont présentés. Le contexte de fiabilité hybride est traité. En
particulier, l’utilisation de la théorie des random sets permet d’évaluer l’impact de différentes représentations de
l’incertitude sur l’évaluation de la robustesse. Dans un second temps, des méthodologies numériques dédiées, telles
qu’une adaptation séquentielle du line sampling ou l’utilisation de réseaux de neurones artificiels, sont proposées
afin d’appliquer efficacement la méthode info-gap aux deux cas industriels. Les solutions proposées apportent des
arguments sur la compatibilité du cadre info-gap avec le cadre fiabiliste dans le but de prendre des décisions sûres.

Abstract

Power generation facilities such as nuclear and hydroelectric power plants are typical examples of complex in-
dustrial systems for which high safety standards must be met. These safety assessments generally rely on the use of
computer models that simulate the real behavior of the studied system under specific operational conditions. How-
ever, this framework represents an idealization of reality as it faces various sources of uncertainty that are commonly
separated into aleatory uncertainty (due to natural variability of physical phenomena) and epistemic uncertainty
(due to lack of knowledge). As a consequence, uncertainty quantification in computer models gained much consid-
eration over the past decades in order to evaluate the reliability of a system. In particular, techniques considering
the propagation of aleatory uncertainty enable to evaluate risk-oriented quantities of interest such as low failure
probabilities or high-order quantiles on which safety-related decisions are justified. However, these evaluations in-
corporate assumptions as, in practice, information is limited especially when considering complex systems and rare
events. Therefore, it is crucial to address these assumptions. In this thesis, it is done by considering the info-gap
framework in order to evaluate the robustness of reliability estimations to epistemic uncertainty.

The info-gap framework quantifies the notion of robustness by evaluating the highest level of epistemic un-
certainty for which the system still guarantees an acceptable performance. In this thesis, it is applied to two real
industrial cases, namely the reliability assessment of penstocks and the risk assessment of a nuclear accident related
to a loss-of-coolant scenario. First, the methodological and numerical frameworks associated to the application of
info-gap to reliability assessments are described. The context of hybrid reliability analysis is addressed. In particular,
the use of random set theory enables to evaluate the impact of different uncertainty representations on the robustness
evaluation. Secondly, dedicated numerical methodologies, such as a sequential line sampling technique and artificial
neural networks, are proposed in order to efficiently apply the info-gap framework to both industrial cases. The
proposed solutions bring insights on the compatibility of the info-gap framework with reliability estimates in order
to take safe decions.
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