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R É S U M E

I. INTRODUCTION

Cette thèse porte sur les marchés électroniques modernes et développe des modèles

mathématiques sur mesure pour le trading à haute fréquence. Observées à la résolution

la plus fine (transaction par transaction), la formation des prix et les transactions intra-

journalières présentent des propriétés fondamentalement différentes de celles du trading

à plus basse fréquence. En effet, plusieurs “frictions de marché” semblent désormais être

la norme plutôt que l’exception, ce qui remet en question l’hypothèse de l’efficience des

marchés. Par conséquent, les modèles mathématiques établis de longue date et appliqués

à une dynamique de prix à basse fréquence, inadaptés au contexte actuel de trading à

haute fréquence, ne parviennent plus à expliquer l’environnement complexe généré par

les frictions de microstructure des marchés.

L’un des défis majeurs réside dans les propriétés statistiques des données de trading,

notamment l’irrégularité des intervalles inter-évènements, l’évolution des prix sur une

grille discrète et la nature asynchrone des transactions. Les propriétés traditionnelles, telles

que la discrétisation du temps, la continuité des prix, et l’observation de l’information

alignée en coupe transversale ne correspondent plus à la réalité. Par conséquent, plusieurs

modèles bien établis ne peuvent être appliqués inconditionnellement. En effet, l’approche

privilégiée dans la littérature est une sorte d’algorithme de “pseudo-agrégation” à basse

fréquence, mais étant donné qu’un certain type de phénomène de négociation à haute

fréquence, comme l’arbitrage à faible latence, se produit en fractions de seconde, cet éclair-

cissement des données entraîne inévitablement une perte d’informations.

Modélisation de la dynamique des prix multivariés en temps continu

L’information asymétrique, la durée de vie des informations, et les effets d’avance-retard sur une

dynamique de formation des prix multivariés

Pour remédier à ces lacunes, nous développons dans la première partie de cette thèse

une dynamique généralisée de formation des prix, basée sur l’idée que l’information et

le temps sont intrinsèquement liés, considérant que l’information a une durée de vie et

qu’elle se dégrade avec le temps. Plus précisément, nous proposons une extension du

modèle classique “martingale plus bruit” et permettons un traitement plus structurel de la

dynamique à haute fréquence qui reflète les sources d’information asymétrique, la durée

de vie de l’information (résiduelle) et l’ajustement des prix retardé dans le temps. Pour

effectuer des inférences économétriques sur le modèle, nous utilisons un proxy statistique

précis pour la décroissance de l’information, dérivé des fonctions décroissantes d’un pro-

cessus de Hawkes multivarié, et utilisé pour représenter, de manière disjointe, des pro-

cessus de changement de prix sur une grille discrète. Ceci permet d’estimer l’ajustement

(croisé) des prix retardé sur plusieurs actifs à chaque instant, sans nécessairement ob-

server l’arrivée d’un événement. Cette propriété atténue le problème de l’asynchronisme
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et de la discrétisation temporelle, et permet d’estimer la corrélation croisée instantanément,

à n’importe quelle échelle de temps. Une application empirique sur les actions du DJIA

étaye ces postulats théoriques.

Modélisation multivariée du risque de marché en temps continu.

Outre la modélisation de la dynamique du marché, la gestion des risques (risque de

marché) est sans aucun doute l’une des activités les plus importantes du praticien des

marchés financiers. Les deuxième et troisième parties de la thèse contribuent ainsi à la

mesure du risque multivarié à haute fréquence, mesure développée à partir de la dy-

namique des prix exposée en première partie.

La matrice de variance-covariance basée sur l’intensité.

En particulier, la deuxième partie de la thèse introduit un nouvel estimateur de la struc-

ture des moments de second ordre pour le rendement d’actifs, combinant deux approches

bien établies sur les mesures de la volatilité à haute fréquence : les approches basées sur

la covariation quadratique et les approches basées sur les processus ponctuels. D’une part,

avec sa structure paramétrique parcimonieuse basée sur l’intensité conditionnelle, qui est

au coeur de l’approche par processus ponctuel, notre modèle préserve les caractéristiques

supérieures des estimateurs de volatilité basés sur des processus ponctuels univariés, tout

en intégrant les propriétés prépondérantes des données à ultra-haute fréquence. D’autre

part, le modèle est défini dans une structure générique d’(auto)covariation temporelle

croisée de l’approche par covariation quadratique, ce qui facilite l’estimation de la corréla-

tion croisée entre actifs. Dans une certaine mesure, notre nouvel estimateur de la matrice

de variance-covariance basé sur l’intensité n’est pas affecté par les corrélations parasites

et l’effet Epps, contrairement aux estimateurs de covariation quadratique, et tient compte

simultanément des effets d’avance-retard et des temps endogènes dans les transactions

asynchrones. De plus, grâce à sa structure paramétrique, cet estimateur a la capacité de

fournir une inférence sur la volatilité locale dans des intervalles intra-journaliers relative-

ment courts, surmontant les limites de la propriété de convergence qui assure la cohérence

des mesures de volatilité réalisées sur de telles périodes. Nous testons la robustesse de cet

estimateur à l’aide de simulations Monte Carlo étendues.

Value-at-Risk intra-journalier multivariée basée sur l’intensité.

Enfin, la troisième partie de la thèse contribue à un autre aspect de la mesure du risque

à haute fréquence, en se concentrant sur la modélisation directe de la queue de la distribu-

tion des rendements. Nous proposons une Value-at-Risk (IVaR) intra-journalière multivar-

iée qui généralise les IVaR univariées existantes et prend en compte la structure de cor-

rélation croisée des rendements extrêmes. Notre généralisation multivariée est basée sur la

modélisation de l’occurrence de changement de prix bidirectionnels par des intensités con-

ditionnelles stochastiques, ainsi que la prévision des arrivées de transactions futures par

simulation Monte Carlo. Notre estimateur surmonte les limites des précédentes approches

IVaR basées sur des processus ponctuels et offre une mesure efficace du risque de marché

qui tient compte du regroupement de l’arrivée des extrêmes à la fois dans le temps et en

coupe transversale. Plus précisément, cet estimateur capture non seulement la corrélation

concomitante, mais aussi un autre type de corrélation caractérisé par les données à haute

viii



fréquence, à savoir la corrélation temporelle de type avance-retard. Alors que le premier

type de corrélation peut être attribué à la valeur fondamentale des actifs, le second type ré-

sulte de la présence de transactions asynchrones, d’informations asymétriques, de trading

stratégique et d’apprentissage des prix dans la microstructure du marché. Par conséquent,

notre modèle IVaR multivarié, en incorporant fructueusement ces caractéristiques dans ses

métriques de risque, donnerait une mesure meilleure et plus informée de l’IVaR pour un

seul actif mais également de manière combinée pour un portefeuille intra-journalier.

II. MOTIVATION ET APPROCHES

Cette thèse est motivée à l’origine par le désir de fournir une approche originale aux

divers phénomènes qui ont émergé des marchés de trading à haute fréquence et de fournir

également des modèles de dynamique des prix et des mesures de risque qui reflètent

étroitement les réalités de la microstructure de marché. Nous sommes convaincus que

la clé de l’approche de modélisation au niveau microscopique des données de trading à

haute fréquence réside dans les temps d’arrivée des événements liés au prix. Lorsque le

niveau d’intérêt se situe à la fréquence la plus fine, c’est-à-dire transaction par transaction,

la microstructure du marché a un impact significatif sur la manière dont l’information

est incorporée dans le prix et, de manière plus importante encore, sur le moment pré-

cis où elle l’est. L’intensité de l’arrivée des événements, c’est-à-dire l’inverse des temps

d’attente, est le point de rencontre de deux forces fondamentales de la dynamique du

marché, l’information et la liquidité, qui constituent le matériau synthétique de la form-

ation des prix O’Hara (1998). L’idée est que le temps joue un rôle dans la mesure de la

résolution de l’information, et, plus précisément, dans la mesure de la vitesse à laquelle

l’information arrive sur le marché et est progressivement incorporée dans le processus de

formation des prix. Par conséquent, un modèle économétrique raisonnable peut être con-

struit de manière à prendre en compte l’arrivée d’événements de prix, à la fois dans les di-

mensions temporelles et de prix, et à donner la probabilité à chaque instant de l’occurrence

d’un mouvement de prix conditionnant l’historique des réalisations. Cette probabilité est

appelée intensité conditionnelle.

Nous nous inspirons de la théorie des processus ponctuels, en particulier du processus

de Hawkes, pour modéliser directement l’intensité conditionnelle de l’arrivée d’un événe-

ment en fonction des informations historiques sur les événements passés. Le processus

de Hawkes présente de manière naturelle un système de génération de données basé sur

l’intensité conditionnelle, rendant compte de la coexistence et de l’interaction entre les

arrivées exogènes et endogènes de nouveaux événements à l’intérieur du système. Les

événements exogènes du processus de Hawkes sont déclenchés de la même manière que

les événements de prix sont déclenchés par une nouvelle information, tandis que le mécan-

isme endogène "d’excitation" ressemble à la manière dont le marché apprend et ajuste

l’écart de prix dû aux frictions naturelles de la fréquence de transaction par transaction.

Outre la modélisation de l’arrivée d’événements de prix, notre objectif est de disposer

de modèles robustes dans toutes les dimensions des actifs, un aspect devenu de plus en

plus important dans la mesure du risque. D’une part, l’univers des actifs disponibles pour

le trading n’a cessé de s’étendre et, à des fins de diversification, les traders et les investis-
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seurs ont désormais de plus en plus d’actifs dans leur portefeuille. Pour détenir ou vendre

un actif, il faut prendre en compte non seulement les risques de l’actif lui-même, mais

aussi la corrélation avec les risques d’autres actifs. Par conséquent, il n’est pas possible

de refléter fidèlement la réalité en supposant que la dynamique des prix de deux actifs

apparentés est indépendante, et une modélisation raisonnable de la dynamique doit tenir

compte de l’interaction entre eux, en particulier lorsque le trading croisé (également connu

dénommé “pricing” croisé ou apprentissage croisé) fait partie intégrante de la microstruc-

ture du marché (voir Harford and Kaul, 2005; Hasbrouck, 2001; Pasquariello and Vega,

2013; Tookes, 2008). D’autre part, la relation entre les actifs ne peut pas rester constante,

mais change au fil du temps, d’où la nécessité de l’examiner en détail. Le reflet de cette

relation est une exigence essentielle, car elle permet non seulement une meilleure mesure

du risque, plus informée pour un actif univarié, mais aussi une évaluation correcte des

risques de manière combinée pour un portefeuille intra-journalier.

Dans cette thèse, nous tentons de donner des éléments qui contribuent à l’approche

mentionnée ci-dessus. Chaque chapitre de cette thèse contribue à cette tâche, la motivation

de chacun d’entre eux est présentée ci-dessous.

Dans le chapitre 3, nous sommes motivés par des études antérieures sur l’asymétrie de

l’information (Amihud and Mendelson, 1987; Glosten and Milgrom, 1985; Kyle, 1985) et

l’apprentissage imparfait (voir en particulier Hasbrouck, 1996 pour une revue des modèles

univariés et Buccheri, Corsi and Peluso, 2020 pour le tout premier modèle multivarié) dans

un marché à comportement rationnel. Alors que l’asymétrie de l’information génère une

certaine hétérogénéité dans la croyance des participants au marché quant à la véritable

valeur sous-jacente et déclenche des erreurs de prix, l’apprentissage imparfait conduit à

une récupération partielle de l’information résiduelle. En raison de ces deux sources de fric-

tion sur le marché, les processus de fixation des prix n’intègrent pas les informations pertin-

entes immédiatement, mais progressivement sur un intervalle de temps effectif, en contra-

diction avec les modèles mathématiques classiques de dynamique des prix qui suggèrent

un monde parfait et des marchés financiers sans arbitrage. Nous abordons ces restrictions

en relaxant l’hypothèse plutôt stricte présente dans toutes les approches précédentes selon

laquelle l’information n’est présente qu’au moment de la réalisation. Au contraire, nous

introduisons le concept “information résiduelle”, en considérant que l’information a une

durée de vie et se désintègre au fil du temps. Nous utilisons un proxy statistique précis

pour cette information résiduelle décroissante, dérivé de la fonction décroissante d’un pro-

cessus de Hawkes multivarié utilisé pour représenter de manière disjointe le processus

multivarié de changement de prix intra-journalier. Les processus de Hawkes multivariés

de changement de prix disjoints permettent de calculer l’estimation de l’ajustement des

prix sur chaque actif à chaque instant. Cette propriété atténue la complication qui résulte

de l’asynchronisme et de l’irrégularité du temps. La durée de vie de l’information permet

également l’existence temporelle de corrélations croisées, appelée effet “avance-retard”,

qui, en bref, est un phénomène fondamental de la microstructure du marché dans lequel

certains actifs ont tendance à suivre les mouvements d’autres actifs avec un certain re-

tard. Ces effets de décalage fournissent une explication alternative pour la tendance vers
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zéro de la corrélation croisée entre actifs, illustrée par les effets Epps lorsque la fréquence

d’échantillonnage se réduit à la fréquence de transaction. En résumé, ce chapitre apporte

une réponse aux questions suivantes: existe-t-il un mécanisme multivarié de formation

des prix à la fréquence des transactions? Et si tel est le cas, comment les corrélations

croisées entre actifs liés apparaissent-elles naturellement à cette fréquence, en tant que

résultat de la nature fondamentalement multivariée du processus de formation des prix

?

Dans le chapitre 4, nous portons notre attention sur la structure des moments de second

ordre du rendement des actifs. En partant du principe que la dynamique multi-actifs

de formation des prix décrite au chapitre 3 permet de capturer les dépendances tem-

porelles entre actifs liés, nous sommes motivés par le développement d’un cadre général

qui fournit efficacement une inférence intra-journalière sur la covariance intégrée. Nous

nous inspirons de la façon dont l’approche basée sur les processus ponctuels, c’est-à-dire

l’estimateur de volatilité basé sur la durée des prix (Andersen, Dobrev and Schaumburg,

2009; Engle and Russell, 1998; Gerhard and Hautsch, 2002; Hong et al., 2021; Li, Nolte

and Nolte-Lechner, 2015; Tse and Yang, 2012), peut fournir une mesure instantanée de la

volatilité univariée grâce à sa structure paramétrique. Ce type d’estimateur de volatilité

enregistre de très bonnes performances par rapport à d’autres estimateurs volatilité réal-

isée bien établis, et est simple à mettre en œuvre. Cependant, son application est limitée

à l’estimation de la volatilité univariée car le caractère discret de la modélisation de la

durée des prix ne permet qu’un cheminement fixe de l’intensité conditionnelle, incapable

de mettre à jour de manière continue les dépendances entre actifs liés et empêchant les

modèles de volatilité de la durée des prix de capturer la co-volatilité dans un contexte

de trading asynchrone. Au lieu de modéliser la durée des prix, nous proposons de mod-

éliser explicitement l’intensité conditionnelle du mouvement des prix en utilisant le pro-

cessus multivarié de Hawkes. Nous cherchons également à développer un estimateur qui

surmonte les limites des estimateurs basés sur la covariation quadratique, c’est-à-dire la

volatilité réalisée, appuyé sur un large échantillon de données pour assurer une estimation

cohérente grâce à sa propriété de convergence, et qui fournit une estimation efficace pour

un intervalle de temps très court à niveau intra-journalier. Notre généralisation multivar-

iée, l’estimateur de volatilité basé sur l’intensité, fusionne les approches par covariation

quadratique et par processus ponctuel. Elle fournit un cadre général qui non seulement

préserve les caractéristiques supérieures de l’estimateur de volatilité basé sur la durée du

prix en fournissant une inférence intra-journalière sur la variation locale, mais capture

également efficacement une caractéristique supplémentaire de la structure de second mo-

ment dans l’analyse de portefeuille : la corrélation croisée locale entre actifs. Ce chapitre

donne une réponse aux questions suivantes : un estimateur qui tient compte des effets

d’avance-retard fournit-il une estimation plus efficace de la volatilité ? Et est-il possible

de capturer une véritable structure de second moment locale à partir de l’observation

de processus de prix très “bruyants”, transaction par transaction ?

Le chapitre 5 cherche un autre développement dans la mesure du risque à haute

fréquence, basé sur la dynamique de la formation des prix multi-actifs décrite dans le
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chapitre 3, et aborde la question de la définition de mesures de risque pratiques pour les

traders ou les praticiens qui opèrent leurs activités sur une base intrajournalière. Sur les

marchés financiers à haute fréquence, les échanges se caractérisent par leur extrême rapid-

ité et la durée de vie des informations est très courte, puisqu’elle est de quelques secondes,

voire de quelques millisecondes (Goldstein, Kumar and Graves, 2014; Hasbrouck and Saar,

2013; Menkveld, 2018; O’Hara, 2015). À de tels horizons, il devient irréalisable de refléter

précisément l’ensemble de la distribution des rendements d’actifs. Une solution plus ef-

ficace et réalisable consiste à ne considérer que la queue de la distribution, qui caractérise

la probabilité des événements extrêmes, plutôt que de prendre en compte inutilement

l’ensemble de la distribution de tous les événements de prix. Nous sommes motivés par

la littérature sur les mesures de Value-at-Risk intra-journalières (Dionne, Duchesne and

Pacurar, 2009; Giot, 2005; Liu and Tse, 2015) qui capturent la queue de la distribution

conditionnelle des rendements d’actifs en examinant les temps d’attente avant que des

mouvements de prix extrêmes ne se produisent. Jusqu’à présent, la littérature adéquate

s’est limitée au cas univarié. Les mesures IVaR univariées étaient à l’origine basées sur la

modélisation de la dépendance sérielle de la durée des changements de prix dépassant un

seuil. Nous nous écartons de cette modélisation discrète de la durée des prix et modélisons

une interdépendance continue dans l’occurrence possible des événements de changement

de prix par les intensités conditionnelles stochastiques du processus de Hawkes, ce qui

constitue une approche de modélisation par processus ponctuels compatible avec un as-

pect multivarié. Notre généralisation multivariée est efficace sur des échelles de temps

intra-journalières pour des actifs multiples, mais surtout elle prend en compte la structure

de corrélation croisée de leurs rendements extrêmes. Elle répond aux questions suivantes

: existe-t-il un moyen efficace d’incorporer les corrélations temporelles de type avance-

retard dans la prédiction des rendements extrêmes à haute fréquence ? De plus, la prise

en compte de ces caractéristiques dans les mesures de risque permettrait-elle d’obtenir

une mesure du risque meilleure ou plus informée ?

III. VUE D’ENSEMBLE ET ETENDUE DES TRAVAUX

Il s’agit ici d’une thèse cumulative qui s’appuie sur une série de documents de travail.

Tous les chapitres sont autonomes, et le plan détaillé de la thèse est le suivant :

Chapitre 2, Revue de littérature sur la dynamique des prix à haute fréquence et les

mesures de risque, fournit une revue critique de la littérature existante pertinente pour

le domaine de recherche de cette thèse. Nous discutons des principaux développements

théoriques récents et des études empiriques entourant les thèmes de la dynamique des

prix à haute fréquence, de l’estimateur de volatilité et de la « mesure de queue » du risque

intra-journalier dans le contexte de la microstructure de marché. Nous mettons également

en évidence la littérature qui a contribué aux principales questions relatives à ces trois

sujets. Dans la dynamique des prix à haute fréquence, nous discutons de l’irrégularité du

temps, de la nature discrète des prix, du trading asynchrone et des effets de décalage. Dans

les deux sujets relatifs à la mesure du risque à haute fréquence, nous passons en revue les

principales méthodes pour la volatilité réalisée, la volatilité basée sur la durée du prix, et

la mesure de queue du risque. Tout au long de notre discussion, nous essayons d’établir
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différences et similitudes et essayons également de souligner les points d’intérêt communs

dans la littérature et les liens avec notre étude.

Chapitre 3, Information asymétrique, durée de vie de l’information et effets de re-

tard sur la dynamique de formation des prix à plusieurs variables, se concentre sur

les données de prix de transaction à haute fréquence de plusieurs actifs et cherche un

modèle mathématique capable de capturer les complications intégrées aux marchés de

trading à haute fréquence et les caractéristiques spéciales des données relevées. Plus pré-

cisément, nous étendons le modèle classique “martingale-plus-bruit” pour la dynamique

de la formation des prix à haute fréquence afin d’intégrer les erreurs de prix des vraies

valeurs sous-jacentes et un mécanisme d’ajustement retardé des prix. Les erreurs de

prix sont déclenchées par une information asymétrique, inhérente à la microstructure

du marché, et les ajustements de prix retardés sont dus à un apprentissage imparfait de

l’information résiduelle. Nous identifions le “pricing” de l’information asymétrique et ce-

lui de l’information résiduelle comme des sources séparées du processus de formation

des prix. Nous proposons un modèle d’agents multi-types dotés d’informations hétéro-

gènes, et des actifs multiples avec différents degrés d’efficacité du marché et différentes

vitesses d’ajustement des prix. La dynamique de formation des prix comporte trois com-

posantes : le prix efficient latent, le prix de quotation ajusté et le prix contaminé observ-

able. En raison des caractéristiques particulières des données transaction-par-transaction,

à savoir un espacement temporel irrégulier, des transactions asynchrones et une structure

de changement de prix sur grille discrète avec une limite maximale, le modèle ne peut

pas être estimé directement par les approches économétriques traditionnelles. Pour tirer

des conclusions sur le modèle, nous établissons une liaison entre la dynamique des prix

développée et le processus de Hawkes en utilisant une représentation disjointe des change-

ments de prix lors du processus de transaction. La représentation disjointe tire avantage

de l’espace d’états discrets dénombrables du changement de prix, alors que les processus

de Hawkes multivariés encodent la notation de la causalité entre les états de changement

de prix. Les corrélations avance-retard peuvent ensuite être simplement récupérées en in-

tégrant ces interdépendances entre les états discrets de changement de prix. La présence

d’effets avance-retard au niveau des actifs peut être mesurée sur tout intervalle arbitraire.

En séparant les sources motrices en liquidité d’une part et en contenu informationnel des

transactions d’autre part, nous révélons l’impact de chaque composant sur la force des cor-

rélations d’avance-retard entre actifs. Le modèle est testé sur une section transversale des

actions du DJIA avec des estimations non-paramétriques et paramétriques pour soutenir

nos postulats théoriques.

Chapitre 4, Estimation de la matrice de covariance des rendements d’actifs multivar-

iés avec une représentation par martingale de l’intensité de Hawkes. Outre la formation

du processus de prix à la fréquence la plus fine, la compréhension de la dynamique de la

matrice de variance-covariance est également nécessaire pour les traders et les praticiens

du trading à haute fréquence, car elle détermine l’exposition des actifs à une variété de

facteurs de risque, ce qui ouvre des possibilités pour construire des mesures de risque

efficaces et des portefeuilles optimaux. Le deuxième chapitre de cette thèse développe un
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estimateur basé sur l’intensité de la matrice de variance-covariance intégrée avec des don-

nées tick-by-tick bruyantes et asynchrones. Nous établissons le lien entre la théorie de la

covariation quadratique des rendements des actifs et celle de la structure des moments

de second ordre des processus ponctuels. Plus précisément, l’estimateur est conçu pour

avoir une structure générique d’autocovariance (croisée) temporelle, puis ces autocovari-

ances (croisées) peuvent être formulées en termes de moments conditionnels de premier

ordre et de second ordre des processus de comptage associés à des états de changement de

prix disjoints. Nous prouvons que dans le cas particulier d’une fonction de décroissance

fixe exponentielle, il existe une forme analytique de ces moments dérivant d’une struc-

ture de martingale de l’intensité conditionnelle de Hawkes. Ainsi, nous pouvons obtenir

une spécification entièrement paramétrique de l’estimateur de covariance intégrée basé sur

l’intensité, exprimée en termes de paramètres estimés du processus de Hawkes multivarié

de changements de prix disjoints. La correspondance entre la covariation quadratique des

rendements des actifs et les processus ponctuels de changements de prix disjoints est

placée sous une hypothèse de semi-martingale contaminée par le bruit pour le prix de

transaction observable. En supposant raisonnablement que les bruits de microstructure ne

sont mis à jour qu’au moment de la transaction et indépendamment des prix efficients,

nous proposons un moyen efficace, également basé sur les intensités des processus ponc-

tuels disjoints, d’estimer directement le biais encouru par les bruits, ce qui complète la

robustesse de notre estimateur de variance-covariance intégré basé sur l’intensité

La performance de l’estimateur est évaluée à l’aide d’une étude de simulation. Nous

découvrons l’impact sur l’estimateur des caractéristiques de microstructure telles que

l’activité de trading, la non-synchronicité des transactions et le bruit de microstructure.

Plus important encore, nous démontrons la performance relative en échantillon fini de

notre estimateur basé sur l’intensité par rapport aux autres estimateurs de référence de la

littérature.

Chapitre 5, Processus ponctuels disjoints de Hawkes sur l’extension multivariée de

Value-at-Risk intra-journalière. Un autre volet de la mesure du risque à haute fréquence

que nous trouvons utile pour appliquer notre dynamique de formation des prix multi-

actifs est la modélisation directe de la queue de la distribution des rendements d’actifs.

Parmi les mesures “de queue” du risque, la plus simple mais largement applicable et uni-

verselle étant la Value-at-Risk intra-journalière (IVaR). Nous constatons que la littérature

existante manque encore d’un cadre multivarié de la mesure IvaR, aussi nous proposons

un modèle qui peut combler l’absence d’un modèle de Value-at-Risk (IVaR) intra-journalier

pour de multiples actifs. Notre généralisation multivariée est basée sur la modélisation de

la probabilité des événements de changement de prix, et sur la prévision des trajectoires

futures des rendements par simulation de type Monte Carlo. Pour étudier la queue de

la distribution des rendements, nous nous concentrons sur la réalisation d’événements

de mouvements de prix bidirectionnels, qui sont déclenchés si le changement de prix cu-

mulatif à la hausse (à la baisse) est égal ou supérieur à un seuil. Nous modélisons la

probabilité d’occurrence de ces événements par un modèle multivarié de Hawkes avec un

noyau exponentiellement décroissant. Contrairement aux modèles à durée discrète, les in-
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tensités conditionnelles de Hawkes multivariées mettent à jour leur set d’informations de

manière continue, ce qui permet de prendre en compte les effets temporels propres et les

effets croisés induits par tout nouvel événement arrivant dans la dynamique des prix.

Pour faciliter les prévisions d’événements futurs, nous développons également un al-

gorithme de détection d’arrivée basé sur un compensateur conditionnel autorégressif, qui

estime les intensités conditionnelles cumulatives attendues lors d’un nouvel événement de

changement de prix. Nous évaluons la mesure multivariée dans la prévision de l’IVaR à

l’aide de trois backtests bien connus sur les réalisations de violations : le test de couverture

inconditionnelle de Kupiec (1995), le test de séquence de “hits” corrélés d’Engle and Man-

ganelli (2004), et le test de violation aléatoire de Candelon et al. (2010). Nous appliquons

l’estimateur IVaR à une sélection de deux paires d’actions à forte et à faible activité de

trading cotées dans l’indice Dow Jones Industrial Average et nous étudions l’impact du

choix du seuil de changement de prix et de l’intervalle de prévision sur la performance de

l’estimateur.

Chapitre 6 conclut cette thèse. Tout d’abord, nous résumons la contribution princip-

ale comprenant : une extension du modèle standard univarié d’ajustement retardé des

prix dans un cadre multi-actifs, qui fournit une dynamique de formation des prix tenant

compte de manière plus complète des caractéristiques spéciales de la microstructure de

marché à la fréquence transaction-par-transaction ; un estimateur efficace de la matrice

de variance-covariance réalisée qui résiste aux effets d’avance-retard, au bruit de micro-

structure et à l’asynchronisme des transactions ; et enfin une généralisation multivariée

de la Value-at-Risk intra-journalière. Nous soulignons ensuite certaines implications im-

portantes de ces développements pour les chercheurs universitaires et les praticiens des

marchés de trading à haute fréquence. Enfin, nous soulignons les aspects intéressants que

nous n’avons pas entièrement couverts dans cette thèse et nous fournissons une discussion

approfondie des sujets et domaines potentiels, en ce qui concerne la modélisation mul-

tivariée de la dynamique des prix, les estimateurs de volatilité réalisée et la Value-at-Risk

intra-journalière, qui pourraient être intéressants pour de futures activités de recherche.
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A B S T R A C T

The thesis focuses on modern electronic markets and develops tailor-made mathematical

models of high-frequency trading. When focusing on the finest frequency trading, such

as transaction-by-transaction, intraday price formation and trading exhibit fundamentally

different properties compared to lower trading frequencies. Several “market frictions” ap-

pear to be the norm, rather than the exception, and this poses a great challenge to the

efficient market hypothesis. Consequently, long-established mathematical models, that are

applied to lower-frequency price dynamics, are no longer adequate in the context of high-

frequency trading and fail to explain the complex environment generated by the frictions

of market microstructure.

A primary challenge of doing so is the statistical properties of the recorded trading data,

including irregular spacing time, discrete grid-like price, and asynchronous trading. The

traditional properties, the discreteness of time, the continuity of price, and the aligned

observation of cross-sectional information do not hold, and, thus, several well-established

models cannot be applied unconditionally. The preferred approach in the literature is some

kind of “pseudo-aggregation” algorithm at lower frequency, but given that some kinds

of high-frequency trading phenomena, like low-latency arbitrage, occur in fractions of a

second, this data thinning inevitably results in information loss.

Modelling Multivariate Price Dynamics in Continuous Time

Asymmetric Information, Information Life Span, and Lead-Lag Effects on a Multivariate Price

Formation Dynamics

To address this shortcoming, in the first part of this thesis, we develop a generalized

price formation dynamic based on a view that information and time are inherently linked,

considering that information has a lifespan and decays over time. More precisely, we ex-

tend the classic “martingale-plus-noise model” and allow for a more structured treatment

of high-frequency dynamics that capture the sources of asymmetric information, inform-

ation life span, and temporally lagged price adjustment. To draw econometric inferences

from the model, we use a precise statistical proxy for the decay of information derived

from the decaying functions of a multivariate Hawkes process, which is used to represent,

in a disjointed manner, grid-like price change processes. This is the main contribution of

this work and enables estimations of lagged price (cross-)adjustment on multiple assets to

be computed at every point in time, without necessarily observing the arrival of an event.

This property alleviates the issue of asynchronicity and time discretization and enables

the estimation of cross-correlation instantaneously and at any time scale. An empirical

application on DJIA stocks supports these theoretical postulations.

Modelling Multivariate Market Risk in Continuous Time

Alongside modelling market dynamics, managing risks (market risk) is undoubtedly

one of the most important activities of the practitioner on the financial market. The second
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and third parts of the thesis thus contribute to high-frequency risk measurement, de-

veloped on the ground of high-frequency trading price dynamics in the first part.

Intensity-Based Variance-Covariance Matrix

In particular, the second part of the thesis introduces a novel estimator of second-order

moment structure of asset returns, combining two well-established approaches on high-

frequency volatility measures, that is, quadratic covariation and point process-based ap-

proaches. On the one hand, with its parsimonious parametric structure based on condi-

tional intensity, which is the core of point process approach, our model preserves superior

features of univariate point process-based volatility estimators in addressing salient prop-

erties of ultra-high-frequency data. On the other hand, the model is defined within a

generic temporal cross-(auto)covariation structure of the quadratic covariation approach,

decomposing the cross-(auto)correlation between assets into contemporaneous and correl-

ation, facilitating the estimation of the second-order moment structure in the context of

high-frequency trading with irregular and non-synchronous transaction times. To some

extent, our novel intensity-based variance-covariance matrix estimator is not affected by

spurious correlations and Epps effects, in contrast to quadratic covariation estimators, and

accounts for simultaneous lead-lag effects and endogenous times in asynchronous trading.

In addition, with a parametric structure, the estimator has the ability to provide inference

on local volatility over relatively short intraday intervals, overcoming the limitations of

convergence property ensuring consistently realized volatility measures in such periods.

We test the robustness of the estimator with extensive Monte Carlo simulations.

Intensity-Based Multivarite Intraday Value-at-Risk

Finally, the third part of the thesis contributes to another strand of high-frequency risk

measurement, focusing on direct modelling of the tail distribution of asset returns. We

propose a multivariate intraday Value-at-Risk (IVaR) that generalizes previous univariate

IVaR and takes into account the cross-correlation structure of asset extreme returns. Our

multivariate generalization is based on modelling the occurrence of bidirectional price

change events by stochastic conditional intensities and forecasting arrivals of future trans-

actions by Monte Carlo simulation. The estimator overcomes the limitations of previous

IVaR based on point process approaches and offers an efficient market risk measure that

accommodates the clustering of the arrival of extremes both in time and cross-sectionally.

More specifically, the new intraday market risk measure captures not only the risk from

contemporaneous correlation, but also from another type of correlation characterized by

high-frequency data, that is, the temporal lead-lag correlation. While the former can be

attributable to fundamental asset values, the latter arises as a consequence of the presence

of asynchronous trading, asymmetric information, strategic trading, and price learning in

the market microstructure. Therefore, our multivariate IVaR model, by successfully incor-

porating these features into its risk metrics, would give a better/more informed measure

of IVaR in one asset and in a combined way for an intraday portfolio.

xviii



C O N T E N T S

Declaration of Authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Résume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiii

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 From low-frequency to high-frequency trading . . . . . . . . . . . . . 1

1.1.2 The failure of classical models at the microscopic level of market

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 The challenging features of high-frequency trading data . . . . . . . . 3

1.2 Motivation and Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview and Scope of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 literature review on high frequency price dynamics and risk

measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Transaction price dynamics and market microstructure . . . . . . . . . . . . . 11

2.1.1 Models for the timing of trades . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Models for the discreteness of prices . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Models for the non-synchronicity and the lead-lag effects . . . . . . . 20

2.2 High Frequency Data and Market Risk measure . . . . . . . . . . . . . . . . . 23

2.2.1 Realized volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Instantaneous volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Intraday Value-at-Risk measures . . . . . . . . . . . . . . . . . . . . . . 30

3 asymmetric information, information life span, and lead-lag ef-

fects on a multivariate price formation dynamics . . . . . . . . . . . 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 The multi-asset asymmetric lagged adjustment model . . . . . . . . . 37

3.2.2 Lead-lag effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xix



3.2.3 Generalization of previous multi-asset lagged adjustment model . . . 46

3.3 An equivalent Hawkes point process representation and estimation . . . . . 47

3.3.1 Hawkes processes representation of disjoint observed price change

dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Parameterization and estimation of Hawkes processes . . . . . . . . . 53

3.4 Empirical findings: the interdependence of price changes . . . . . . . . . . . . 54

3.4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Disjoint price change transaction point processes . . . . . . . . . . . . 55

3.4.3 Statistical interdependence between price change levels . . . . . . . . 58

3.5 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Non-parametric estimation . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.2 Parametric estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 multivariate covariance variance matrix estimation with mar-

tingale representation of hawkes intensity . . . . . . . . . . . . . . . . 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Quadratic Covariation and Integrated Covariance . . . . . . . . . . . . . . . . 86

4.3 Quadratic covariation and Intensity Based Covariance Estimator . . . . . . . 89

4.3.1 Conditional Estimator of Quadratic Covariation . . . . . . . . . . . . . 89

4.3.2 Intensity Based Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Martingale Representation and Conditional Covariance of Point Processes . . 96

4.4.1 Multivariate Hawkes Point Processes . . . . . . . . . . . . . . . . . . . 96

4.4.2 Martingale Representation of Hawkes Intensities . . . . . . . . . . . . 97

4.4.3 Conditional Covariance of Point Processes . . . . . . . . . . . . . . . . 98

4.4.4 Towards a fully parametric closed-form conditional covariance of

point processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.1 Simulation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.2 Estimator and Tuning Parameters . . . . . . . . . . . . . . . . . . . . . 104

4.5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 disjoint hawkes point processes on multivariate extension of in-

traday value-at-risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Review existing Intraday Value-at-Risk models . . . . . . . . . . . . . . . . . . 117

5.2.1 The Giot model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.2 The Dionne-Duchesne-Pacurar model . . . . . . . . . . . . . . . . . . . 119

5.2.3 The Liu-Tse model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.4 Limitations of existing univariate IVaR models for a multivariate ex-

tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Multivariate intensity-based Intraday Value-at-Risk model . . . . . . . . . . . 121

xx



5.3.1 Disjointing Hawkes point processes of price dynamics . . . . . . . . . 122

5.3.2 The compensator of counting function. . . . . . . . . . . . . . . . . . . 123

5.3.3 The autoregressive conditional compensator - ACC model. . . . . . . . 124

5.3.4 Evaluation of IVaR by Monte Carlo simulation . . . . . . . . . . . . . . 125

5.4 Back-testing IVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.1 Unconditional coverage test . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.2 Dynamic quantile test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.3 Duration-based GMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 Empirical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5.2 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1 Summary and Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 Limitations and Future Researches . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

a appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

a.1 Hawkes process models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

a.1.1 Point Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

a.1.2 Hawkes Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

a.2 The disjoint representation and marked Hawkes point processes . . . . . . . 157

a.3 Parameter estimation and goodness-of-fit test . . . . . . . . . . . . . . . . . . 160

a.4 Additional Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xxi



L I S T O F F I G U R E S

Figure 3.1 An illustration about the shape of lagged adjustment kernels Ψ . . . 40

Figure 3.2 Transaction point processes marked by price changes of six selected

DJIA stocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.3 Average excitement kernel norms
R ∞

0 Φ(t)dt amongst observed dis-

crete price change states of pairwise stocks. . . . . . . . . . . . . . . . 64

Figure 3.3 Average excitement kernel norm
R ∞

0 Φ(t)dt amongst observed dis-

crete price change states of pairwise stocks (cont.) . . . . . . . . . . . 65

Figure 3.3 Average excitement kernel norm
R ∞

0 Φ(t)dt amongst observed dis-

crete price change states of pairwise stocks (cont.) . . . . . . . . . . . 66

Figure 3.4 Average cross-adjustment of all the pairs formed by six selected

stocks (non-parametric estimation). . . . . . . . . . . . . . . . . . . . . 68

Figure 3.5 Average self-adjustment of all six selected stocks in different pair-

wise relations (non-parametric estimation). . . . . . . . . . . . . . . . 69

Figure 3.6 Self-adjustment of all six selected stocks in different pair-wise rela-

tions over all trading days in the sample (non-parametric estimation). 72

Figure 3.7 Estimated η normalized per second of each asset in different pair-

wise relation over all trading day. . . . . . . . . . . . . . . . . . . . . . 74

Figure 3.8 Average cross-adjustment of all the pairs formed by six selected

stocks (parametric estimation) . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 3.9 Average self-adjustment of all six selected stocks in different pair-

wise relations (parametric estimation). . . . . . . . . . . . . . . . . . . 77

Figure 3.10 The lead-lag correlation within one second for different pairwise

assets over all trading days (parametric estimation). . . . . . . . . . . 79

Figure 5.1 Price change duration processes over a trading week . . . . . . . . . 131

Figure 5.2 5-min IVaR out-of-sample forecasts with 2, 3, and 4 ticks thresholds 133

Figure 5.3 15-min IVaR out-of-sample forecasts with 2, 3, and 4 ticks thresholds 134

Figure 5.4 30-min IVaR out-of-sample forecasts with 2, 3, and 4 ticks thresholds 135

Figure 5.5 60-min IVaR out-of-sample forecasts with 2, 3, and 4 ticks thresholds 136

xxii



L I S T O F TA B L E S

Table 3.1 Descriptive statistics for six selected stocks listed on DJIA index . . . 55

Table 3.2 Empirical results of pair-wise interdependence for six selected DJIA

stocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 3.3 Empirical results of pair-wise interdependence for six selected DJIA

stocks (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 3.4 Empirical results of pair-wise interdependence for six selected DJIA

stocks (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 3.5 The average daily estimate of the lead-lag correlation within one

second for different pairwise assets (non-parametric estimation). . . 71

Table 3.6 Statistical testing for the random walk of exogenous information. . . 75

Table 3.7 Average daily parametric estimation of lead-lag correlations within

one second for different pairwise assets (parametric estimation). . . 78

Table 3.8 The means and standard deviations of the estimated decay para-

meters bd for the asset d. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 4.1 Parameters values for simulating the efficient price vectors. . . . . . 103

Table 4.2 Simulation results for integrated volatility estimators. . . . . . . . . . 106

Table 4.3 Simulation results for integrated volatility estimators. . . . . . . . . . 107

Table 4.4 Simulation results for integrated covariance/correlation estimators. . 109

Table 5.1 Descriptive statistics for four selected stocks listed on the DJIA index.128

Table 5.2 Descriptive statistics for OUB and OLB point processes . . . . . . . . 130

Table 5.3 Probability of observing IVaR failures for two selected pairs of stocks 132

Table 5.4 5-min IVaR backtesting results for two selected pairs of stocks . . . . 138

Table 5.5 15-min IVaR backtesting results for two selected pairs of stocks . . . 138

Table 5.6 30-min IVaR backtesting results for two selected pairs of stocks . . . 139

Table 5.7 60-min IVaR backtesting results for two selected pairs of stocks . . . 139

Table 5.8 5-min IVaR backtesting results for two selected pairs of stocks . . . . 140

Table 5.9 15-min IVaR backtesting results for two selected pairs of stocks . . . 141

Table 5.10 30-min IVaR backtesting results for two selected pairs of stocks . . . 143

Table 5.11 60-min IVaR backtesting results for two selected pairs of stocks . . . 144

Table A.1 Empirical results of pair-wise interdependence for selected DJIA

stocks (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Table A.2 Empirical results of pair-wise interdependence for selected DJIA

stocks (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Table A.3 Empirical results of pair-wise interdependence for selected DJIA

stocks (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Table A.4 Empirical results of pair-wise interdependence for selected DJIA

stocks (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xxiii



Table A.5 Empirical results of pair-wise interdependence for selected DJIA

stocks (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

xxiv



A B B R E V I AT I O N S

AACD Two-state Asymmetric Autoregressive Conditional Duration Model

ACC Autoregressive Conditional Compensator Model

ACD Autoregressive Conditional Duration Model

ACI Autoregressive Conditional Intensity Model

ACM Autoregressive Conditional Multinominal Model

BSM Black-Scholes-Merton Model

CAPM Capital Asset Pricing Model

EMH Efficient Market Hypothesis

GMM Generalized Method of Moments

Hawkes-POT Hawkes-Peak Over Threshold Model

INAR Integer-valued Autoregressive Time Series

IIVaR Intensity-based Intraday Value-at-Risk

IRC Intensity-based Realized Covariance

IVaR Intraday Value-at-Risk

MALA Multi-asset Asymmetric Information Lagged Adjustment Prices Model

MLA Multi-asset Lagged Adjustment Prices Model

NYSE The New York Stock Exchange

OLB Over-Lower Bound Price Change Point Process

OUB Over-Upper Bound Price Change Point Process

PDV Price Duration-based Volatility

SCI Stochastic Conditional Intensity Model

RC Realized Covariance

RK Realized Kernel

VAR Vector of Autoregressive Processes

VaR Value-at-Risk

xxv





1
I N T R O D U C T I O N

1.1 research context

1.1.1 From low-frequency to high-frequency trading

In the early days of the 1970s, Fisher Black envisaged the future of a stock exchange:

A stock exchange can be embodied in a network of computers, and the costs of trading

can be sharply reduced, without introducing any additional instability in stock prices,

and without being unfair either to small investors or to large investors. (Black 1971b,

p. 87)

Back in his days, trading floors with trading desks were crowded by people, rushing to ex-

ecute hand-carried orders to intermediate for a vast majority of transactions in the financial

market. Today, the world of trade that Fisher had in mind is very close. The old-fashioned

trading floors of most major stock exchanges have been largely replaced by automated

electronic trading machines. The modern facility is no longer a place, but an alternative

computer system over which transactions are entered, routed, executed, and cleared elec-

tronically with little or no human intervention.

A new type of trader, the high-frequency algorithmic trader, has emerged and became

the main participant in the market, accounting for much more than half of the total trad-

ing volume 1. These traders harness their technical advantages, encode their strategy into

computer algorithms, and beat the market by being extremely fast. Their trades are typic-

ally characterized with odd lots, that is, trades for less than 100 shares of stock (O’Hara,

Yao and Ye, 2014), and with very short-lived positions, that is, the trade lifespan can be

measured in microseconds or even on the order of nanoseconds (Hasbrouck, 2019; Men-

kveld, 2016, 2018). While much has been made of high-frequency traders, the behaviour

of traditional, non high-frequency traders is also radically different, as is the market in

which their trading occurs (O’Hara, 2015). The technological advancements behind high-

frequency trading pervade the marketplace, with algorithmic trading as the mechanism for

virtually all trading. Services previously provided by brokers, dealers, and specialists are

now largely executed by a sub-human-attention speed of computer algorithms. Not only

high-frequency traders, but also non high-frequency traders, or even everybody else in the

1 Aitken, Cumming and Zhan (2015) document that high-frequency traders are responsible for between 50%
and 70% of all trades in financial markets or even up to 75% on some occasions. O’Hara (2015) and O’Hara,
Yao and Ye (2014) indicate that 50% or more of the total volume of financial transactions can be attributed to
this group of traders

1
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market, are now relying on increasingly sophisticated trading algorithms to optimize their

transactions.

Therefore, financial markets have been transformed from traditional “human, low-

frequency” to modern “electronic, high-frequency” markets. This transformation leads to

fundamental changes, from the way traders trade to the way markets are structured. With

markets and trading being radically different, the classical models used in the past are no

longer adequate, and the traditionally employed methodologies are also no longer applic-

able. Therefore, the modelling of price dynamics and risk measures must also evolve to

reflect the new realities of the high-frequency world.

1.1.2 The failure of classical models at the microscopic level of market structure

Before the realm of high-frequency trading, classical mathematical finance models, such

as the Efficient Market Hypothesis (EMH), the Capital Asset Pricing model (CAPM), and

the Black-Scholes-Merton framework (BSM), play a central role in describing asset price

formation dynamics in financial markets. These long-established models were built on

perfect-world settings where information related to the true asset values is immediately

disseminated and is equally interpreted among market participants. Financial markets are

all-powerful computational engines capable of aggregating and processing all the beliefs

and demands of all market participants, and immediately reflecting in price processes

the full set of information currently available. The fundamental mechanism of traditional

financial markets, indeed, supports this notion in the context that market observations

are simply closing prices of lower frequencies, such as daily, weekly, monthly, or annually

(Fama, 1998).

However, the modern high-frequency world operates differently. In this world, market

participants always have some kinds of heterogeneity with respect to their endowment

of information. Price formation dynamics is the game of a multitude of interconnected

agents, each trading is heterogeneously characterized by imperfect and partial information

of the agents, confined by specific institutional and regulatory constraints (see, e.g. Admati

and Pfleiderer, 1988; Easley and O’hara, 1992; Kyle, 1985). The movements of the game

are observed and recorded with the highest frequency ever, where each event represents

the action of the agents at the transaction. At this frequency, various “market frictions”

arise, including asymmetric information, strategic trading, and price learning, as natural

phenomena (Glosten and Milgrom, 1985; Holden and Subrahmanyam, 1992; Kyle, 1985;

Vives, 1995), in contradiction to the perfect world implied by the classical models. In other

words, in the context of high-frequency trading, the traditional price formation dynamics is

simply inadequate and fails to explain the complex environment generated by the frictions

of this modern market microstructure.

The modern market is different and so are recorded high-frequency trading data. It is

inherently characterized by several special features such as irregular spacing time, discrete

grid-like price, and asynchronous trading and the traditional properties of low-frequency

data, such as the discreteness of time, the continuity of price, and the aligned observation
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of cross-sectional information do not hold, and, thus, several well-established models can-

not be applied unconditionally. The preferred approach in the literature is some kind of

“pseudo-aggregation” algorithm at a lower frequency, but given that some kind of high-

frequency trading phenomena, like low-latency arbitrage, occurs in fractions of a second,

this data thinning inevitably results in information loss.

Therefore, the classical models are lagging behind the development of the financial mar-

ket and are no longer applicable to high-frequency trading. One of the fundamental ques-

tions is, if the classical models are not valid, then how are the prices formulated in terms

of information revelation over time? The answer to this question is to develop a new price

formation dynamic that is tailor-made to accommodate the special features of the market

microstructure and efficiently capture the information-revelation process embedded in the

transaction-by-transaction frequency data.

1.1.3 The challenging features of high-frequency trading data

In a rational expectations market, the trading behaviours of market participants are het-

erogeneously characterized by their endowment of information and reflect on their corres-

ponding executed trading process. The information revelation is then successively embed-

ded in the special features of recorded high-frequency transaction data: irregularly spacing

transaction time, discrete observable price, and non-asynchronous trading. Thus, the tailor-

made model of price formation dynamics in high-frequency trading necessarily accounts

for these features.

First, high-frequency trading data are inherently characterized by irregular trading inter-

vals. The time elapsed between observations is not of fixed duration, and the discreteness

of timing, which is essential in traditional econometrics, no longer holds unconditionally.

However, the timestamps of the trading events are not random and mutually independ-

ent. Instead, the trading events are chronologically ordered by a matching engine, and are

time-stamped by a single clock (Aquilina, Budish and O’Neill, 2021). More importantly,

the timing of trades can potentially be informative about the price process. The trading

duration is well recognized as a consistent proxy of liquidity, as it carries significant in-

formation about the state of the market (see, e.g. Dufour and Engle, 2000; Easley and

O’hara, 1992; Glosten and Milgrom, 1985; Gouriéroux, Jasiak and Le Fol, 1999; O’Hara,

2015). Dufour and Engle (2000) documents strong evidence of the effect of trade duration

on price adjustment based on historical trades, while Engle (2000) and Engle and Russell

(1994) finds significant co-movement between trading intensity (the inverse of trade dura-

tion) and price volatility. Therefore, the role of trading times cannot be ignored in the price

formation process and treated as an independent series as in the classical framework on

lower frequency data.

However, explicitly modelling the time process is not an easy task, as it requires mod-

elling not only the behaviour of traders and, in particular, how much of the information

known by insiders has been made public (Glosten and Milgrom, 1985), but also any fric-

tion and imperfection that may be present in the trading mechanism (Easley and O’hara,
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1992). Most traditional econometric models constructed on a calendar-time framework are

not capable of doing this. Traditional approaches convert “event time” to calendar time,

aggregating all this meaningful information and its respective impact on price discovery

to a single time point, thus neglecting the economic significance of each event.

Second, when modelling comes to analyze multivariate data sets, the time discretization

of recorded transaction-by-transaction data turns out to be even more complicated. Trading

activities of different instruments are observed at different time points, raising a barrier in

observing the same information cross-sectionally at the same time. This is the root of the

Epps effect, that is, the bias toward zero of cross-correlation observed when shrinking the

sampling frequency to zero (see, e.g. Epps, 1979; Hayashi and Yoshida, 2005).

Finally, the observable transaction price is not continuous, as the classical assumptions

of traditional price dynamic models, and the price movements must fall onto the grid

due to the rule of a minimum unit of price measurement. The discrete minimum tick

size is a necessary feature of a modern automated market to prevent an explosion of

message under the current market design and to artificially constrain the liquidity cost

of the market (see, in particular, Chao, Yao and Ye, 2017, 2018; Li, Wang and Ye, 2021;

Yao and Ye, 2018, among others). Furthermore, because the institution implements some

rules restricting the maximum amount that the price can move from one event to another,

observable price movements often take only a handful of values (Darolles, Gouriéroux and

Fol, 2000; Engle and Manganelli, 2004). Thus, at the transaction-by-transaction frequency,

the price discreteness with limited maximal becomes another dominant feature of the data.

As price changes are quoted as multipliers of a smallest divisor, the use of traditional

continuous distributions to characterize the price process is far from being appropriate.

At the transaction-by-transaction level, the price changes also have a nontrivial probability

mass only at zero and close-to-zero levels. The conventional formulation relying on con-

tinuous probability distributions with non-bounded support cannot accommodate these

features of high-frequency transaction prices.

1.2 motivation and approaches

This thesis was originally motivated by the desire to provide an original approach to vari-

ous phenomena that have emerged from high-frequency trading markets and to provide

models of price dynamics and risk measures that closely mirror the realities of the market

microstructure. Considering a multivariate, cross-sectional price formation that incorpor-

ates well-embedded features of high-frequency trading data, the thesis also aims to address

shortcomings of previously mentioned traditional modelling.

We review previous literature and we recognize that irregular times and asynchronous

trading are major challenges that introduce bias or results in loss of information in in-

traday estimates. We address exactly these issues, considering that at a microscopic level,

the time of trading (business times or event times) appears to be inextricably bounded to

the evolution of prices and other microstructure phenomena. In other words, the arrival

times of price events play a key role for modelling the price formation at the microscopic
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level of high-frequency trading data. When the level of interest is at the finest frequency

of transaction-by-transaction, the microstructure of the market has a significant impact on

how and, more importantly, on when information is incorporated into prices. The intensity

of event arrival, the inverse of waiting times, is where two fundamental forces of market

dynamics, information and liquidity, meet and constitute the synthetic material for the

formation of prices (O’Hara, 1998). The idea is that time plays a role in measuring inform-

ation resolution, and more precisely, in measuring the speed at which the information hits

the market and is gradually incorporated into the price process. Consequently, a reason-

able econometric model can be constructed in the way of accounting for the arrival of price

events, both in time and price dimensions, and give the probability at every instant of time,

the so-called conditional intensity, of when a price movement conditioning occurs on the

historical realizations.

We are inspired by point processes theory, in particular, the Hawkes point process, in the

way of directly modelling the conditional intensity of event-arrival conditioning on histor-

ical information of past event occurrences. The Hawkes process features in a natural way

a data-generating system based on conditional intensity, accounting for the co-existence

and the interplay between the exogenous and endogenous arrivals of new events inside

the system. The exogenous events of the Hawkes process are triggered in a similar way

that price events are triggered by a new release of information, whereas the endogenous

mechanism “excitation” resembles the manner in which the market learns and adjusts the

deviation of price due to the natural frictions of the transaction-by-transaction frequency.

In addition to modelling the arrival of price events, our target is to have models that

are robust across asset dimensions, which has become increasingly important in risk meas-

urement. On the one hand, the universe of available trading assets has been continuously

expanding, and, for diversification purposes, traders and investors have more and more

assets in their portfolio. Holding or selling one asset is required to take into account not

only the risks of the asset itself but also the correlation with the risks of other assets. As a

result, it is not a true reflection of reality to assume that the price dynamics of two related

assets are independent and reasonable dynamic modelling needs to take into account the

interaction between them, especially when cross-asset trading (also known as cross-asset

pricing and cross-asset learning) is an inherent part of the market microstructure (see Har-

ford and Kaul, 2005; Hasbrouck, 2001; Pasquariello and Vega, 2013; Tookes, 2008). On the

other hand, the relationship among trading assets cannot remain constant, but will change

over time, which gives rise to the need to look at it in detail. Capturing this relationship

is an essential requirement, as it not only allows a better and more informed risk measure

of a univariate asset, but also provides a proper assessment of risks in a combined way for

an intraday portfolio.

In this thesis, we attempt to give elements that contribute to the above-mentioned ap-

proach. Each chapter of this thesis has a place in this venture. In the following, we present

the motivation behind each of them.

In Chapter 3, we are motivated by previous studies on asymmetric information (Amihud

and Mendelson, 1987; Glosten and Milgrom, 1985; Kyle, 1985) and imperfect learning (see,
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in particular, Hasbrouck, 1996 for a review of univariate models and Buccheri, Corsi and

Peluso, 2020 for the very first multivariate model) in a rationally behaving market. While

the former generates some kinds of heterogeneity in the belief of market participants with

respect to the true underlying value and triggers pricing errors, the latter leads to partial

recovery in the residual information. Due to these two sources of market friction, the price

processes do not immediately incorporate price-relevant information but instead gradu-

ally over an effective time interval, in contradiction to a perfect world and arbitrage-free

financial market implied by classical mathematical price dynamics models. We address

these frictions by relaxing the rather strict assumption present in all previous approaches

that information is present only at realization times. In contrast, we introduce the concept

of “residual information”, considering that the information has a lifespan and decays over

time. We use a precise statistical proxy for this decaying residual information derived from

the decaying function of a multivariate Hawkes process, which is used to represent, in a

disjoint manner, the intraday multivariate price-change process. The multivariate Hawkes

processes of disjoint price change allow for the estimation of price adjustment on each asset

to be computed at every point in time. This property alleviates the complication that arises

as a consequence of the asynchronicity and the irregularity of time. The lifespan of inform-

ation also allows for the temporal existence of cross-correlations, which is termed “lead-lag

effect”, that, in short, is a fundamental phenomenon of a market microstructure in which

some assets tend to follow the movements of other assets with a time delay. The lead-lag

effects provide an alternative explanation for the bias towards zero of cross-correlation

between related assets documented by Epps effects when the sampling frequency shrinks

to the transaction frequency. In summary, this chapter provides an answer to the follow-

ing questions. Does a multivariate price formation mechanism exist at transaction-by-

transaction frequency?. If so, then how do the cross-correlations among related assets

naturally arise at this frequency, as a result of the multivariate fundamental of the price

formation process.

In Chapter 4, we turn our attention to the second-order moment structure of asset re-

turns. On the ground that the multi-asset price formation dynamics in Chapter 3 has

favourable results in capturing temporal dependencies between related assets, we are mo-

tivated to develop a general framework that efficiently provides an intraday inference on

integrated covariance. We are inspired by the way the point process-based approach, i.e.

price duration-based volatility estimator (Andersen, Dobrev and Schaumburg, 2009; Engle

and Russell, 1998; Gerhard and Hautsch, 2002; Hong et al., 2021; Li, Nolte and Nolte-

Lechner, 2015; Tse and Yang, 2012), with its parametric structure, can provide an instant-

aneous measure of univariate volatility. This type of volatility estimator is documented

with a very nice performance against a well-established realized volatility estimator, and

is simple to implement. However, its application is confined to only univariate volatility

estimation because the discreteness of price duration modelling allows only fixed path

conditional intensity, which is unable to update the dependencies between related assets

continuously and deters the price duration volatility models from capturing co-volatility in

a setting with asynchronous trading. Instead of modelling the price duration, we suggest
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modelling explicitly the conditional intensity of the price movement using the multivariate

Hawkes process. We also aimed at developing an estimator that overcomes the limitations

of quadratic covariation-based estimators, i.e. realized volatility, which must rely on a large

sample of data to ensure consistency estimation by its convergence property, and provides

an efficient estimation for a very short time interval at the intraday level. Our multivariate

generalization, the intensity-based volatility estimator, amalgamates both quadratic cov-

ariation and point-process approaches. It provides a general framework which not only

preserves a superior feature of the price duration-based volatility estimator in providing

intraday inference on local variation, but also efficiently captures an additional feature of

the second-moment structure in portfolio analysis: local cross-correlation between assets.

The chapter gives an answer to questions Does an estimator accounting lead-lag effects

provides a more efficient estimation of volatility? and Is it possible to capture a local

true second-moment structure from very noisy observable transaction-by-transaction

price processes?.

Chapter 5 searches for another development in high-frequency risk measurement based

on the dynamics of multi-asset price formation dynamics in Chapter 3, and addresses the

question of how to define practical risk measures for traders or practitioners who operate

their activities on an intraday basis. In high-frequency financial markets, trading is char-

acterized by being extremely fast and information has very short lifespans, living in time

frames of seconds to seconds or even a few milliseconds (Goldstein, Kumar and Graves,

2014; Hasbrouck and Saar, 2013; Menkveld, 2018; O’Hara, 2015). Within these horizons,

accurately capturing the entire distribution of asset returns becomes impracticable and

unfeasible. A more efficient and feasible solution is to consider only the tail of the dis-

tribution, which characterizes the probability of extreme events, rather than unnecessarily

account for the whole distribution of all price events. We are motivated by the literature on

intraday Value-at-Risk measures (Dionne, Duchesne and Pacurar, 2009; Giot, 2005; Liu and

Tse, 2015) that capture the tail of the conditional distribution of asset returns by looking

at the waiting times for extreme price movements to occur. So far, the literature on this

topic has been confined to the univariate case. The univariate IVaR measures were origin-

ally based on the modelling of serial dependence in duration for price change exceeding a

threshold. We deviate from this discrete price-duration modelling and model continuous

interdependence in the likelihood of price change events occurring by stochastic condi-

tional intensities of the Hawkes process, which is a “multivariate-friendly” point-process

modelling approach. Our multivariate generalization is effective on intraday time scales

and for multiple assets, and more importantly, it takes into account the cross-correlation

structure of their extreme returns. It answers the following questions: Is there any efficient

way to incorporate temporal lead-lag correlations into the prediction of high-frequency

extreme returns? and Whether accounting for these features into risk metrics would

give a better/more informed risk measure?

In the next section, we will give a more detailed scope of work for each chapter.
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1.3 overview and scope of work

This is a cumulative thesis that is based on a series of working papers. All chapters are

self-contained, and the detailed outline of the thesis is as follows:

Chapter 2, Literature Review on High Frequency Price Dynamics and Risk Measures,

provides a critical review of the major existing literature relevant to the field of research

in this thesis. We discuss the main recent theoretical developments and empirical studies

surrounding the topics of high-frequency price dynamics, the volatility estimator, and

intraday tail risk measure in the context of the market microstructure. We also highlight

the literature contributed on major issues relating to the above three topics. In the high-

frequency price dynamics, we discuss irregular trading time, discrete price, asynchronous

trading, and lead-lag effects. In the two topics on high-frequency risk measurement, we

review the main methods for realized volatility, price duration-based volatility, and the tail-

risk measure. Alongside our discussion, we attempt to draw differences and similarities,

and emphasize points of common interest amongst the literature and connections to our

studies.

Chapter 3, Asymmetric Information, Information Life Span, and Lead-lag Effects on a

Multivariate Price Formation Dynamics, focuses on the high-frequency transaction price

data of multiple assets and seeks a mathematical model that is capable of capturing em-

bedded complications of high-frequency trading markets and special features of the re-

corded data. To be specific, we extend the classic “martingale-plus-noise” model for high-

frequency price formation dynamics to accommodate pricing errors of true underlying

values and a lagged price adjustment mechanism. The pricing errors are triggered by

asymmetric information, an inherent part of the market microstructure, and the lagged

price adjustments are due to imperfect learning of residual information. We identify the

pricing of asymmetric information and residual information as separable sources driving

the price formation process.

We propose a model of multi-type agents with heterogeneous information endowments,

and multi-assets with different degrees of market efficiency and different speeds of price

adjustment. Standing on the viewpoints of market makers who set the prices on the market,

we introduce the price-formation dynamics composed of three components: latent efficient

price, adjusted quote price, and observable contaminated price. Due to special features of

the transaction-by-transaction dataset, i.e. irregular spacing time, asynchronous trading,

and the discrete grid-like structure of a price change with maximal limit, the model can-

not be directly estimated by traditional econometric approaches. To draw inferences from

the model, we build a bridge between the developed price dynamics and Hawkes point

process using a disjoint price change representation of the transaction process. The disjoint

representation takes advantage of the countable discrete state space of the price change,

and the multivariate Hawkes processes encode the notation of causality between the price

change states. Then, the lead-lag correlations can be simply recovered by taking integra-

tion of this interdependence among discrete price change states. The presence of lead-lag

effects at the asset level can be measured over any arbitrary interval. By separating the
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driving sources into liquidity and the information content of trade, we reveal the impacts

of each component on the strength of lead-lag correlations between assets.

The model is tested on a cross-section of DJIA stocks with both non-parametric and

parametric estimation to support theoretical postulations.

Chapter 4, Multivariate Variance Covariance Matrix Estimation with Martingale Rep-

resentation of Hawkes Intensity, contributes to the estimation of second-order moment

structure of high-frequency trading asset returns. In addition to the formation of the price

process at the finest frequency, understanding the dynamics of the variance-covariance mat-

rix is also necessary for high-frequency traders and practitioners, since it determines asset

exposures to a variety of risk factors, opening up possibilities to construct efficient risk

measures and optimal portfolios. The second chapter of this thesis develops an intensity-

based estimator of integrated variance-covariance matrix with noisy and asynchronous

tick-by-tick data. We establish the link between the theory on quadratic covariation of as-

set returns and that on the second-order moment structure of the point process. In detail,

the estimator is designed to have a generic structure of temporal (cross-)autocovariance.

Then, this (cross-)autocovariance can be formulated in terms of the conditional first- and

second-order moments of counting processes associated with disjoint price change states.

We prove mathematically that in a particular case of exponential fixed decay function, there

exists a closed form of these moments deriving from a martingale structure of Hawkes

conditional intensity. Thus, we can obtain a fully parametric specification of the intensity-

based integrated covariance estimator, expressed in terms of the estimated parameters

from the multivariate Hawkes process of disjoint price change states.

The mapping between the quadratic covariation of asset returns and the point processes

of disjoint price changes is placed under a noise-contaminated semi-martingale hypothesis

for the observable transaction price. And by a reasonable assumption that the microstruc-

ture noises are only updated at transaction times and independent of the efficient prices,

we propose an efficient way, also based on the intensities of the disjoint point processes,

to estimate directly the bias incurred by the noises, which complements the robustness of

our intensity-based integrated variance-covariance estimator.

The performance of the estimator is evaluated using a simulation study. We uncover how

the impacts of microstructure features such as trading activity, non-synchronicity trading,

and microstructure noise to the estimator. More importantly, we demonstrate the relative

finite sample performance of our intensity-based estimator compared to other benchmark

estimators in the literature.

Chapter 5, Disjoint Hawkes Point Processes on Multivariate Extension of Intraday

Value-at-Risk, contributes to another strand of high-frequency risk measurement. To be

more specific, we apply our multi-asset price formation dynamics in a direct modelling

of tail distribution of asset returns. Amongst tail-risk measures, with the greatest simpli-

city but wide applicability and universality is intraday Value-at-Risk (IVaR). We recognize

that the existing literature still lacks a multivariate framework of the IVaR measure. Thus,

we propose a model that can fill the gap of an intraday Value-at-Risk (IVaR) model for

multiple assets. Our multivariate generalization is based on modelling the likelihood of
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price change events occurring, and forecasting the future paths of returns by a Monte

Carlo simulation. To study the tail of return distributions, we focus on the realizations of

bidirectional price movement events, which are triggered if the cumulative price change

on the upward (downward) equals or exceeds a threshold. We model the likelihood of

occurring these events by multivariate Hawkes with exponential decay kernel. Contrast-

ing with discrete duration-type models, the multivariate Hawkes conditional intensities

update their information set continuously, thus accounting for both temporal self- and

cross-asset effects induced by any new event arriving in the price dynamics.

To facilitate future events forecasts, we also develop an arrival detection algorithm based

on an autoregressive conditional compensator, which estimates expected cumulative con-

ditional intensities to arrive at a new price change event. Then, the Monte Carlo simulation

is adopted to simulate the return distribution, from which the IVaR is calculated for any

arbitrary intraday time interval.

We evaluate the multivariate measure in IVaR forecasting using three well-known

backtests on violation realizations: unconditional coverage test by Kupiec (1995), correl-

ated hit sequence test by Engle and Manganelli (2004), and random violation test by Can-

delon et al. (2010). We apply the multivariate IVaR estimator to two selected pairs of stocks

with high- and low-trading activities listed on the Dow Jones Industrial Average index and

investigate the impact of choosing the price change threshold and the forecast interval on

the performance of the estimator.

Chapter 6 concludes this thesis. First, we summarize the main contribution, includ-

ing an extension of standard univariate lagged price adjustment model to a multi-asset

framework that provides more comprehensive price formation dynamics to accommodate

special features of the market microstructure at transaction-by-transaction frequency; an

efficient estimator realized variance-covariance matrix that robust to lead-lag effects, micro-

structure noise, and asynchronous trading; and a multivariate generalization of intraday

Value-at-Risk. Then, we highlight some important implications of these developments for

both academic researchers and practitioners on high-frequency trading markets. Finally,

we point out interesting aspects that we did not fully cover in this thesis and provide a

thorough discussion of potential topics and areas, with respect to multivariate price dy-

namics modelling, a realized volatility estimator, and intraday Value-at-Risk, that may be

interesting for future research activities.
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L I T E R AT U R E R E V I E W O N H I G H F R E Q U E N C Y

P R I C E D Y N A M I C S A N D R I S K M E A S U R E S

2.1 transaction price dynamics and market microstructure

In the early 1900s, a French doctoral student Louis Bachelier defended his thesis “Théorie

de la Spéculation” (Theory of Speculation) which is today recognized as the birth certi-

ficate of modern mathematical finance. In his thesis, he set the very first footprint on the

mathematics of Brownian motion and applied its trajectory to stock price dynamics and

option price modelling. He wrote the main idea of his work in the following sentence: “The

mathematical expectation of the speculator is zero”. Later, in 1973, Nobel prize winners

- Fischer Black, Myron Scholes, and Robert Merton introduced a major breakthrough in

mathematical finance with their new methodology for the pricing of financial instruments,

the so-called Black-Scholes-Merton model. In the same spirit with Bachelier’s work, the

asset prices are supposed to be Brownian diffusion, which is as the notion of risk. This

diffusion dynamic consistently coheres with a hypothesis: current asset prices incorporate

all relevant information, and if any subsequent price change happened, it is the result

of the arrival of new information, which arrives randomly and cannot be predicted. This

hypothesis is often known as the Efficient Market Hypothesis (EMH). In both Bechelier’s

and Black-Scholes-Merton frameworks, EMH play a central role and the market is a per-

fect world. In this full information setting, new information, which leads the investor to

revise their estimate of future cash flows, would be immediately disseminated and inter-

preted by all market participants, and then, the prices would immediately adjust to a new

equilibrium value.

Over the past decades, the introduction of available massive ultra-high frequency data-

sets into market microstructure research has opened up questions about the validity of the

EMH. In contrast to the world of EMH, in the modern financial market there are always

informed agents who are endowed with superior knowledge of price-relevant informa-

tion over other uninformed agents (Glosten and Milgrom, 1985; Kyle, 1985). The informed

trader only transacts when there is superior information available and would like to cap-

italize on that information before it becomes public. Their actions are watched by other

market participants through their excessive supply or demand for liquidity (Bloomfield,

O’Hara and Saar, 2005; O’Hara, 1998). Meanwhile, uninformed agents, by observing the

market, try to extract private information signals and use them as advantages. The revela-

tion of information and the corresponding price adjustment are not likely to be immediate

11
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but gradual through transitions that are governed by the trading strategies of the agents

(O’Hara, 1998, 2003). Thus, the EMH does not seem to hold unconditionally when the

market is considered at the microscopic level. However, if the EMH is not valid, then one

of the fundamental questions is how the prices adjust to new information and what role

the above trading setups play in the price adjustment.

In a rational expectations market, the agents have some kind of heterogeneity with re-

spect to their level of information, and their trading behaviours heterogeneously character-

ize their corresponding executed transaction processes. The recorded transaction processes

then successively reveal privately informed information on the price processes. The prac-

tical implications are empirically testable hypotheses, and thereupon, dynamic models on

the price formation process by studying recorded ultra-high frequency data. As a complete

description of the market, which contains all transactions and transaction-associated char-

acteristics like transaction time, transaction price, posted bid/ask prices, and volumes are

recorded, the ultra-high frequency trading data allow for a detailed analysis of the trading

activity and its price discovery characteristics, which enables a study of market dynam-

ics at the lowest possible scale. However, these new datasets come with new challenges

characterized by their special features, irregular temporal spacing, price discreteness, and

non-synchronicity with complex lead-lag effects. Therefore, the implementation of econo-

metric analysis and modelling must take these into account.

The primary roots of our modelling price dynamics are classified into three main fields

of work according to the challenges posed by ultra-high frequency data: the time of trades,

the discreteness of price, and the asynchronisity with complex lead-lag effects. These three

lines of inquiry evolved sufficiently in the literature, so that it is possible to summarize

them separately. The following discussion proceeds to do this, but also attempts to draw

differences and connections and emphasize points of common interest.

2.1.1 Models for the timing of trades

Economic questions on trading activity in the market microstructure, i.e. how price pro-

cesses adjust given the characteristics of order flows, should be studied at the transaction-

by-transaction frequency. At this level, the constructed economic models are driven not

only by the question at hand, but also by assumptions on the role of the trading times.

2.1.1.1 The sampling of time and the information loss

Most of the classical financial econometric analyses are implemented in regular, fixed-

time frameworks. The frequencies of these time intervals were previously yearly, monthly,

weekly, or daily, but with the availability of ultra-high frequency data sets, the intervals of

hours, minutes, seconds, or even milliseconds are being used for the econometric model-

ling. A sceptical approach is to convert the data by imposing an artificially regular spacing

time series on natural irregular spacing realizations. Thus, the econometric analysis typic-

ally proceeds without considering the original form of the data, or in other words, ignoring

the role of the timing of events. The simplest way of this approach is to use the most re-
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cent price at the end of a time interval as the observation for that interval. Huang and

Stoll (1994) use this way for the prevailing mid-quote prices in their prediction of stock

short-run price change on the basis of micro-structure factors. Andersen et al. (2001) use

the last trade price to construct a model-free estimate of daily exchange rate volatility

and correlation. To reduce the sensitivity to measurement errors in prices, perhaps a more

sophisticated way is to introduce a sampling scheme which is appropriate to the context

of an economic question. For example, for the purpose of estimating ex-post integrated

volatility, Andersen et al. (2001) and Andersen et al. (2003) uses a weighted average to

interpolate the first and last prices of small intervals, Hayashi and Yoshida (2005) ana-

lyzes overlapping tick-by-tick returns, Jacod et al. (2009) and Podolskij and Vetter (2009)

propose a pre-averaging scheme in their modulated realized covariance. Another way of

time sampling is to use the finest frequency to set a time clock so that there is at most

one observation per time interval. The problem of this way is the possibility of missing

values when the inter-trade duration is larger than the presetting time period. The calen-

dar price is either the next price or the stale price. Hasbrouck (2001) takes this approach

to record the time of a trade to the nearest second in his proposed random walk efficient

price augmented by trade-related effects. Later, Aït-Sahalia, Fan and Xiu (2010), Barndorff-

Nielsen et al. (2011), Hautsch, Kyj and Oomen (2010) and Zhang (2011) adopt the so-called

refresh-time sampling schemes in their multivariate realized kernel estimator. Generally,

although these three ways of artificially discretizing time intervals are very handy and

straightforward in practice, they are not without cost. Indeed, the discretization blurs the

timing of events, causes bias associated with temporally aggregating with variance, and

induces spurious lead-lag correlations or destroys true short-term lead-lag effects (see, e.g.

Huth and Abergel, 2014; Russell and Engle, 2010).

Another simple approach in application is, perhaps, to assume that the arrival times

of past transactions have no impact on the distribution of the marks. This approach is

taken by Hasbrouck (1991) in his bivariate vector regression (VAR) model applied to mid-

quote price and transaction volume data to investigate the price impact of a trade on

future transaction prices. Within his framework, the impact of a trade on the prices comes

from the unexpected component of that trade, i.e. trade innovation, which accounts for

the persistent price impact rather than the total trade, which also includes a predictable,

transient portion conveying no new information. Because the model operates in transaction

time, these price impacts are also measured in transaction time, and the price impact is

measured in units of transactions. Consequently, the measure involves an undesirable loss

of information, since the relations between the price and the timing of trades are lost.

2.1.1.2 The role of trading times

Theoretical frameworks of Admati and Pfleiderer (1988), Diamond and Verrecchia (1987),

Easley and O’hara (1992) and Garman (1976) claim a role for the trade arrival time pro-

cess in market microstructure modelling. They suggest that the timing of trades carries

information. The importance of time is also confirmed by the studies of Engle (2000) and

Engle and Russell (1994) on the co-movement of trading intensity and volatility. This leads
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Dufour and Engle (2000) to consider expanding VAR structure in Hasbrouck (1991) to allow

the time between trades to impact market price behaviour. In their empirical analysis, they

define a liquid market as a market in which trades have a lower impact on prices and,

consequently, it takes a while for new trade-related information to be fully incorporated

into prices. They find strong evidences of the effect of trade duration on the price adjust-

ment process. More precisely, the time between trades is informative, and a higher trading

intensity is associated with a higher price impact of trades, a faster price adjustment to

new trade-related information, and a stronger positive autocorrelation of trades. Thus, the

incorporation of times into the price dynamics allows one to measure the value and the

speed of price change after trades. The corresponding time elapsed from a trade that in-

duces a price revision of a given amount is a natural framework for studying the liquidity

process and assessing the level of liquidity risk.

In their research, Dufour and Engle (2000) accounts for the influence of trade duration

on the price adjustment process, but still maintains the assumption of exogenous times for

both price and trade-relevant information. This assumption may be too restrictive, and one

can certainly visualize situations where price movements would influence the arrival rates

of trades. For example, a sudden drop in the asking price could call forth a series of market

buy orders and thus increase the transaction rate. Similarly, a wider spread should reduce

the transaction rate, given that all else being equal. In fact, many contributions to the

market microstructure literature (see, e.g. Easley and O’hara, 1992; Engle, 2000; Engle and

Russell, 1994) provide some preliminary empirical evidence on the correlation between

prices and inter-trade times.

2.1.1.3 Discrete modelling of trading duration

Building on the previous researches, Engle and Russell (1998) and Russell and Engle (2005)

propose the Autoregressive Conditional Duration - Autoregressive Conditional Multinom-

inal (ACD-ACM), which is the first one jointly modelling the distribution of transaction dur-

ation and transaction prices. They treat transaction price data as the joint distribution of

weakly exogenous inter-trade duration and price changes, which can be decomposed into

the product of the conditional distribution of price changes and the marginal distribution

of inter-trade duration. In other words, if the contemporaneous relationship between the ar-

rival times and price changes is not of interest, the model is simply a marked point process

where the arrival times may depend on the past arrival times and the past marks of price

changes, regardless of the values of the contemporaneous price change. Their modelling

of duration, ACD, has a great advantage of flexibility, which stems from various choices

for parameterizations of the duration’s conditional mean and its identical independent

density. The flexibility drives a diversification to accommodate different characteristics of

analyzed data in the line shape for the event arrival intensity, e.g. exponential distribution

(monotonic) (Engle and Russell, 1998), Weibull distribution (hump-shaped) (Engle and

Russell, 1998), (U-shaped) Gamma distribution (Lunde, 1999), Blurr distribution (a type of

non-monotonic shape) (Grammig and Maurer, 2000), Generalized F distribution (a type of

non-monotonic shape) (Hautsch, 2001), or a mixture of distributions (a mixture of shape)
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(Luca and Gallo, 2004) and also in the auto-regressive conditional mean form, e.g standard

linear ACD (Engle and Russell, 1998), threshold nonlinear ACD (Zhang, Russell and Tsay,

2001), Fractionally Integrated ACD (Jasiak, 1999), logarithmic ACD (Bauwens and Giot,

2000), augemented ACD (Fernandes and Grammig, 2006), stochastic conditional duration

(Bauwens, 2006)1.

Nevertheless, many interesting economic questions concerning the financial market mi-

crostructure can only be addressed using multivariate models. Although ACD-type mod-

els seem particularly well suited to analyze the joint distribution of transaction data for

a single asset, it is difficult to extend to the case of multiple assets due to the discrete

nature of duration modelling in the ACD (Russell, 1999). In the ACD, the information set

is assumed to remain intrinsically unchanged between arrival times. The conditional in-

tensity function, up to an identical duration density, can be time-varying, but it has a fixed

path depending only on past observations. Thus, the intensity is unable to update before

its arrival terminates although new information from other coexisting point processes did

arrive, and thus there is an implicit loss of information. Taking the case of bivariate point

processes of transaction and quote revisions as an illustration, if multiple quote revisions

occur without intervening transactions and in the absence of an information event, then

there is no adjustment, according to the ACD model, in the new transaction arrival rate. On

the contrary, a scenario consistent with asymmetric information models would be that the

change in price quotes chokes off the trading flow and leads the market back to a “normal”

trading level (Dufour and Engle, 2000). From an inventory model perspective, in addition,

a change of quote would immediately attract opposite side traders (O’Hara, 1998). The

problem is that it is difficult to model the distribution of a duration when new informa-

tion can arrive within a duration. A multivariate framework requires another approach of

modelling.

2.1.1.4 Continuous modelling of conditional intensity

A more natural approach is to specify a model directly through the conditional intensity

for each type of market event. The conditional intensity function is a central concept in

point process theory (see, e.g. Daley and Vere-Jones (2006) and Karr (2017)) and is defined

as the conditional instantaneous rate of event occurrence given the information set. Since

the intensity function is defined in continuous time and thus allows for a continuous up-

dating of the information set, it is a more natural concept to overcome the difficulty that the

individual events of a multivariate point process occur asynchronously. More specifically,

the common information set upon which each intensity is conditioned is updated continu-

ously as new information arrives, thus allowing other types of event to have an immediate

impact on the intensity as they occur in continuous time. In a pioneering work, Bowsher

(2007) recognized the flexibility and the advantages of using the class of multivariate point

processes that can be specified by a conditional intensity vector. He introduced bivariate

Hawkes processes in order to model the joint dynamics of trades and quote changes of a

stock.

1 For an in-depth survey of ACD type model we refer to Pacurar (2008) among others.
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The Hawkes process is a class of multivariate point processes that were introduced in the

1970s by Hawkes (1971) and Hawkes and Oakes (1974), notably to model the occurrence of

seismic events. The Hawkes processes feature, in a natural way, a data-generating process

with causal structure, built on the self-excitation and cross-excitation of arrived events,

and thus account simultaneously for the co-existence and interplay between the exogen-

ous impact on the system and the endogenous processes 2. It has also been widely used to

model the role of endogenous activity in the financial market microstructure, where only a

minor fraction of market movements can be explained by relevant news releases (exogen-

ous factors), with important consequences for market stability and risk management (see

e.g Bacry, Mastromatteo and Muzy, 2015; Bowsher, 2007; Chavez-Demoulin and McGill,

2012; Filimonov and Sornette, 2012; Rambaldi, Filimonov and Lillo, 2018). This popular-

ity can be explained, above all, by their great simplicity and flexibility, as anticipated by

Bowsher (2007). The model is amenable to statistical inference, and closed-form formulae

can be obtained in some particular situations. Moreover, since their parameters are very

straightforward in meaning, they lead to a clear interpretation of many aspects of the com-

plex dynamics of market microstructure events. In the case of modelling a discrete-time

point process, the Hawkes modeling approach is mathematically equivalent to the ACD-

based approach in the quantification of endogeneity (Filimonov, Wheatley and Sornette,

2015), but is intuitively more appealing.

Intensity-based modelling in the financial econometric literature has also used the

autoregressive conditional intensity model (ACI) (Russell, 1999) and its extension. Rus-

sell (1999) use ACI model for modelling interdependence in the bivariate processes of

market order and limit order arrivals. In another approach to the limit order book, Hall

and Hautsch (2007) introduce additional explanatory covariates into the bivariate ACI to

model the arrival of buy and sell trades, taking into account the changes in the limit order

book caused by a new limit order, a change in an existing limit order, or a cancellation

of a limit order. Bauwens (2006) propose an stochastic extension of the ACI model which

adds a latent Gaussian autoregressive component to the log-intensity in their stochastic

conditional intensity (SCI). More recently, Li, Nolte and Nolte (2021) proposed a Markov

switching structure to the ACI in their Markov-Switching ACI model. They applied the

model to detect distinct regimes in intraday volume and price duration dynamics, which

support their perspective on the regime-switching behaviour of intraday volatility. The

core component of all of these ACI models is specified in “event time”, which results in a

difficult understanding of the properties of the continuous conditional intensity process, or

equivalently, the distribution of the multivariate point process. Therefore, the model still

lacks extension and thus, remains limited to some applications compared to its opponents,

e.g., ACD and Hawkes processes.

2 See Kirchner (2016b) and Schatz, Wheatley and Sornette (2021) for the extension of Hawkes process for both
endogenous and exogenous dynamics
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2.1.2 Models for the discreteness of prices

Discreteness of prices in modern financial markets poses an additional complication in

the analysis of ultra-high frequency data. For the U.S. markets, the graduation to decimal-

ization is now complete 3, but we still find price changes clustering on only a handful of

values. This discreteness can have an important influence on the analysis of price dynamics,

and thus there exists a vast literature on it. According to the objective interest, we classify

the literature into two lines. The first line mainly focused on the notion of a “true” or effi-

cient price in analysis of discrete prices. The efficient price is defined as the expected value

of the asset given all currently available public information, and it is distinguished from

the observed price, which is the efficient price contaminated by rounding error and market

mirostructure noise. The focus of these studies, therefore, was on the relationship between

the efficient price and the discrete observed prices. The second line, vice versa, is not in-

terested in the structural components of discrete prices. Instead, they directly model the

price dynamics with a reduced-form model with quantally discrete-valued price change

variables.

2.1.2.1 Classical structural price dynamics models

The classic models of discreteness for inferences on efficient price were driven by assump-

tions about the specifications of trading costs and rounding errors. Depending on the spe-

cification used, the models have different implications on the behaviour of a transaction

price: allowing it to evolve as a rounded random walk, a rounded signal-plus-noise, or a

value randomly selected from two rounded random walks (the bid and the ask quotes). Ini-

tially, discrete transaction prices were modelled as random walk processes, rounded to the

nearest grid point (see, e.g. Ball, 1988; Gottlieb and Kalay, 1985). The traders first negotiate

a continuous price, which is then discretized. The continuous efficient price is inherently

unobserved and only discrete contaminated prices are observed. Hence, much emphasis

was placed on how inference about the efficient price is influenced by measurement errors

induced by discreteness. Then, Harris (1990) combine the models of Gottlieb and Kalay

(1985) and Roll (1984) to describe the key features of the observed price, the discreteness,

and the bid-ask spread (the cost of market making), which is a rounded signal-plus-noise

dynamic. The model yields quantitative implications for the biases in the standard variance

and in the serial correlation estimators: the discreteness increases the price variances and

adds negative serial covariance to price change series, but these biases are dependent on

the variance of the true underlying value and on the cost of market-making. Harris (1990)’s

model is still very simplistic because of its restrictive assumption of constant volatilities for

the efficient price and the bid-ask spread. As new information arrives, the volatility of the

efficient price will change and consequently change the risk of holding the asset, which is

somewhat a correlative of bid-ask spread in the sense of the cost of market-making expos-

3 In order to conform to international trading standards and to make it easier for traders to interpret prices
and place trades, the U.S. Securities and Exchange Commission (SEC) mandated all exchanges convert to a
decimalization system no later than April 9, 2001. The minimum tick size was reduced from 1/16th of a US
dollar to one cent for stocks selling at prices greater than or equal to US1$.
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ure. The bid-ask spread will also vary accordingly, violating the assumption of the model.

Hasbrouck (1999a,b), in his research, confirms this correlated stochastic variation of these

two components.

Hasbrouck (1999a,b) extends Harris (1990)’s model by relaxing this assumption with

time-varying volatilities for the efficient price and the bid-ask spread and suggests a frame-

work handling discrete, clustered bid and ask quotes as opposed to only the transaction

prices. The dynamics of his model are of more complex structure and are not suitable for

the type of analysis presented by Harris (1990). Instead, Hasbrouck (1999b) focuses on

characterizing the dynamics of the exposure costs to the quote and, second, estimating

the model for the volatility of the efficient price given only observations of the perturbed

discrete bid and ask prices. The model also allows for asymmetry in the costs of exposure,

which is in line with the practice that the specialist, in some states of the world, may set

quotes more conservatively on one side of the market than the other. However, the asym-

metric costs of exposure incurred by only the rounding effects in Hasbrouck (1999a,b) are

still simple and not sufficient to explain an asymmetric information environment, where

market makers learn about the private information of informed traders from order flows

and subsequently adjust the cost of trading to avoid potential risk to informed traders

(O’Hara, 1998, 2003). Zhang, Russell and Tsay (2008) have appealed to this perspective

of asymmetric information microstructure theory and suggest incorporating the character-

istics of the order flows into the perception of market makers about the exposure costs.

By making distinctions between unexpected volumes initiated by the buyer and the seller,

they find that the ask and bid components of the spread change asymmetrically about the

efficient price as a function of the order flow.

The models mentioned with their structural price dynamics seem to involve many in-

teresting microstructure features. But they are not free of problems. Because the efficient

price and the market-making costs are intrinsically latent variables and only the discrete

bid and ask quotes are observable, the estimation of (Hasbrouck, 1999a,b)’s and (Zhang,

Russell and Tsay, 2008)’s models by traditional methods like likelihood and moment is

difficult. Alternatively, Hasbrouck (1999b) proposes casting the model in a non-Gaussian,

non-linear state-space representation and estimated via maximum likelihood, and Has-

brouck (1999a) proposes another technique, a Markov chain Monte Carlo method and a

Gibbs sampler, treating the price at any given update as an unknown parameter.

2.1.2.2 Reduced-form price dynamics models

If the structural parameters are not of primary interest, then an alternative is to model

transaction prices directly with a reduced-form model for quantally discrete-valued ran-

dom variables. Econometric models of this approach often employ ordered probit models.

Hausman, Lo and MacKinlay (1992) propose modelling the transaction by transaction price

changes where previous structural models linking unobserved continuous efficient price

change to observed discrete price change are replaced by a reduced-form probit mapping

function defined via a set of breakpoints. The effects of the observable explanatory vari-

ables (e.g. irregular timing of trade, volume, future returns, bid-ask spread, and sign of
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trade) flow to a dependent variable of the latent efficient price change via a linear specific-

ation, which then maps into the observed discrete price change. Conditional on particular

values of the explanatory variables, the predictions of the model are given as probabilit-

ies of pre-specified discrete price changes. Hausman, Lo and MacKinlay (1992) apply the

model to analyze the movement of the stock price at NYSE. By incorporating explanatory

variables regarding the content of information in a sequence of trades, they examine the

impact of asymmetric information to price dynamics in his model. In particular, they study

how transaction prices respond to a sequence of buyer-initiated trades versus a sequence

of seller-initiated trades, and find evidence that persistent selling predicts falling prices

and persistent buying predicts rising prices. They also suggest that the relation between

conditional variance of the underlying value may depend on the contemporaneous dura-

tion with evidence that a long waiting time leads to higher variance per transaction. In the

same approach, Bollerslev and Melvin (1994) replace linear regression with a GARCH spe-

cification, the output of which (conditional volatility forecasts) is fed into a probit model

for discrete bid-ask spread at FX markets.

Although the probit-type models and the first line of classic discreteness both allow

the price dynamic to accommodate special features of the market microstructure, i.e. dis-

creteness, market-making costs, rounding errors, and order flow characteristics, there are

several structural differences. Contrary to the latter, the probit-type models require latent

continuous efficient price dependent only on observable data. This helps to incorporate

conditional information much easier but also rules out attractive and basic features of the

classic disreteness models, namely the dependence of the latent price on its prior values.

Also, considered as a reduced-form structure, a probit model of observed price change may

fit well with observed data, but there is no obvious candidate for the underlying efficient

price change structure. Thus, many interesting micro-structure features may not be easily

resolved with the probit models. However, probit models are more general in certain as-

pects. Most notably, the mapping from the latent continuous price change to the observed

discrete price change is described by a probit link with a set of breakpoints that need only

be ordered. This allows for a degree of flexibility in the implicit rounding function that is

not available in the structure models. Broadly speaking, probit models are reduced-form

specifications with robustness and flexibility in modeling data but are difficult in some

respects to interpret structurally.

More recently, Russell and Engle (2005) propose an ACM-ACD, generalizing previous

works on probit models for transaction data to take into account the joint distribution

of discrete price change and irregular trading time. The connection between them arises

from the view that the discrete price grid is predefined as permeable barriers in the out-

come space of the continuous latent price. If transactions are assumed to occur when the

latent price crosses one of these barriers, the observable crossing times can be used to

infer the structural parameters of the latent price processes. Thus, transaction price data

are modelled as the joint distribution of weakly exogenous inter-trade duration and price

changes, which then can be decomposed into the product of the conditional distribution

of price changes and the marginal distribution of inter-trade duration. The price changes
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are treated as a multinomial random variable and modelled by an autoregressive condi-

tional multinominal model (ACM) for the price transition probabilities while the marginal

distribution of the inter-trade duration is captured by the ACD model (Engle and Russell,

1998).

In the same spirit as Russell and Engle (2005), Rydberg and Shephard (1999a,b, 2000,

2003) suggest a trivariate component model, decomposing the transaction price data into

three distinct processes: non-zero price change, direction of price change, and magnitude

of price change. Bien, Nolte and Pohlmeier (2006) and Liesenfeld, Nolte and Pohlmeier

(2008) propose a very close integer count hurdle model to extend the domain of discrete

price change state in the ACM model. All these component models are in the same spirit

as Russell and Engle (2005) that use an autoregressive structure for discrete price change.

Although the decomposition breaks the estimate down into a sequence of simpler prob-

lems, it does come with a cost. To estimate the model sequentially, the first component

cannot depend on lagged values of the components coming afterward. For example, in the

Rydberg and Shephard (2003) model, the non-zero price cannot be a function of past direc-

tion or magnitude of price changes, or the direction can not depend on the past magnitude.

The importance of this restriction surely depends on the economic questions at hand.

Unlike the approach of Russell and Engle (2005), in our approach, we do not focus on

and decompose each transaction into separate components, price change and trading time.

Instead, we “zoom out” from transaction-by-transaction time series and split them into

multivariate transaction time series realized by discrete price change, e.g. the number of

ticks. We follow the spirit of the ordered probit models of Bollerslev and Melvin (1994)

and Hausman, Lo and MacKinlay (1992) to create a mapping between latent efficient price

change and observable discrete price change, but ours has a remarkable improvement.

First, we provide a sophisticated structure of the price dynamics, which accommodates

major features of the market microstructure such as asymmetric information and lead-lag

effects, and its straightforward and precise connection to the dynamics of observed discrete

price change. The dynamics of observed discrete change is also significantly improved by

replacing naive regression by a specification of exogenous-endogenous activities using the

Hawkes process. Second, our model is robust for both univariate and multivariate frame-

works, while existing models are only applicable to the univariate asset. Therefore, our

model is more generalized in terms of structure and dimension, and more importantly, en-

ables more direct and structural interpretation with hypotheses of market microstructure

theory.

2.1.3 Models for the non-synchronicity and the lead-lag effects

A core question that essentially emerges from multivariate price dynamics modelling is

whether correlation among assets naturally arises at the tick-by-tick level as a result of the

multivariate fundamental of the price discovery process, and equivalently, there exists an

indispensable multivariate transaction price generation mechanism. The comprehensive

empirical studies of tick-by-tick stock returns often documented an issue of correlation
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in non-synchronous trading: It has a bias towards zeros, the so-called Epps effects (Epps,

1979). In this context, there exists a difference in the trading activity, one asset can trade

more infrequently than others, and the observed trades are often, if not always, at dif-

ferent timestamps. As a consequence, empirical contemporaneous tick-by-tick correlation

statistics are obtained at null. However, the zeros in the contemporaneous statistics do not

testify to the non-existence of a multivariate price formation mechanism. If one considers

a perfectly frictionless world of Bachelier and Black, Scholes, Merton, where asymmetric

information does not exist and observed prices processes immediately impound all relev-

ant information, then with that being the case the price movements between two assets

are contemporaneously correlated but not cross-autocorrelated. However, in the natural

frictional alternative of market microstructure theory, the prices do not instantaneously

adjust when new information arrives (Amihud and Mendelson, 1987; Glosten and Mil-

grom, 1985; Hasbrouck and Ho, 1987; Kyle, 1985). Instead, the price formation process is

delayed due to various market frictions, such as lagging information dissemination and

price smoothing by informed traders to maximize their information advantages. Thus, the

high-frequency asset price dynamics are often documented to be characterized by a phe-

nomenon, the so-called lead-lag effects, that the price dynamic of one asset tends to follow

the one of other assets with a time delay. (Buccheri, Corsi and Peluso, 2020; Chan, 1992;

Chiao, Hung and Lee, 2004; Huth and Abergel, 2014; Jong and Nijman, 1997).

2.1.3.1 Lead-lag effects in low frequency trading

The manner in which information is incorporated into stock prices and consequently

causes the lead-lag effects has long been of primary concern in financial economics. On

the lower frequency, it was studied under the term “cross-autocorrelation”, the analogue of

lead-lag effects in regularly spaced trading times. Lo and MacKinlay (1990) document an

important difference in the cross-autocorrelation patterns between large- and small-firm

returns. The cross-autocorrelation where the large firm is the leader and the small firm the

lagger is higher than the cross-autocorrelation where the small firm is the leader and the

large firm the lagger. This difference points to some friction that delays information from

being incorporated into all stock prices simultaneously. Brennan, Jegadeesh and Swam-

inathan (1993), Chordia, Roll and Subrahmanyam (2000) and Mech (1993) propose that

the lead-lag patterns arise due to the difference in adjustment speeds amongst stocks to

economy-wide shocks. The shocks should first be incorporated into the prices of the more

actively traded larger stocks, resulting in the observed cross-autocorrelation patterns in

stock returns.

More recently, Bernhardt and Mahani (2007), Boulatov, Hendershott and Livdan (2012)

and Chordia, Sarkar and Subrahmanyam (2011) point out the role of privately observed

systematic information (informed trading) in triggering the lead-lag pattern. In their theor-

etical framework, Chan (1993) show how imperfect learning of signals by market makers

about private information in stock returns leads to positive lead-lag effects in a model

without informed trading factor. Bernhardt and Mahani (2007) and Boulatov, Hendershott

and Livdan (2012) assume that the market makers can only update their pricing function
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condition on the order flow information of the asset they trade only. In other words, there

exist imperfections in the learning of market makers. Both researches employ an informed

trading factor in their model. The former considers short-lived information, whereas in the

latter the information is long-lived. With short-lived information, the informed order flow

is independent across time, and past returns are unrelated to past informed order flow.

In contrast, long-lived information makes informed order flows positively autocorrelated.

We consider that long-lived information in (Boulatov, Hendershott and Livdan, 2012) is a

more realistic scenario, especially in the intraday or transaction-by-transaction level of our

studies.

2.1.3.2 Lead-lag effects in high frequency trading

Investigation of lead-lag effects has been a long story in the economics literature at

various time scales, mostly at daily or longer than daily, but relatively minor for high-

frequency data. The lead-lag patterns in intraday data can expect to be sharply distinct

from those of low-frequency data, and even within intraday time horizons, the patterns at

the transaction-by-transaction level can be very different from those of the other level, such

as minute-to-minute (Hayashi and Koike, 2017, 2018). Indeed, the modern financial market

contains different types of participants, each of which has different perspectives about the

market: different risk appetites, different sources of capital and information, and different

investment/trading horizons. These differences are then incorporated into the formation

of prices on a different time scale (Muller et al., 1993). The practical implication here is the

existence of a distinct structure of lead-lag effects at the transaction-by-transaction level.

At the transaction-by-transaction level, theoretical and empirical justifications for the

lead-lag effects on stocks have been quite scarce compared to those at a lower frequency,

partly due to the difficulties in modelling irregular trading times, and observed discrete

and noise-contaminated prices of ultra-high frequency data that we mentioned in previous

Sections § 2.1.1 and § 2.1.2. To deal with these difficulties, the most common way in model-

ling lead-lag effects is either imposing an artificial regularly spacing time or introducing a

sampling scheme rather than considering modelling endogenous time. For example, Dao,

McGroarty and Urquhart (2018), Hoffmann, Rosenbaum and Yoshida (2013) and Huth

and Abergel (2014) generalize the overlapping tick-by-tick prices method of Hayashi and

Yoshida (2005) to calculate “lead-cross-autocorrelation” and “lag-cross-autocorrelation”

patterns of lead-lag effects. Hayashi and Koike (2017, 2018) impose the finest observable

resolution of the data as time unit of the price realizations and use a wavelet-based method

for a multi-scale analysis of lead-lag effects. Very recently, Buccheri, Corsi and Peluso (2020)

introduce a multi-asset version of the price adjustment model of Hasbrouck and Ho (1987)

to capture lagged dissemination of information across stocks. The model is then cast into

a linear Gaussian state-space representation and can be conveniently estimated through

a standard Kalman-EM algorithm. However, instead of taking into account the roles of

trading times, their model aggregates all high-frequency prices at a one-second frequency

and treats asynchronous observation as a typical missing value problem. Moreover, the
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stringent factor of informed trading, which also invokes lead-lag effects, is not yet taken

into account in their model.

Recognizing this missing gap in the multivariate framework of price dynamics, we are

motivated to derive a novel model that accommodates endogenous trading times, imper-

fect dissemination of information and informed trading, and, more importantly, lead-lag

effects. Our model consists of the features of lagged price adjustment and informed trad-

ing into random walk processes. The dynamics is then mapped into multivariate discrete

state Hawkes point process for convenient parameter estimation and inference. The study

of Bacry et al. (2013) is similar to ours in the way of using Hawkes point processes to model

price movements. However, our model is distinguished by a more generalized framework

supported by a theoretical foundation of price dynamics and thus is a different but more

convenient approach to study lead-lag effects. The non-trivial lead-lag effects derived from

the model is the evidence of the indispensable multivariate transaction price generation

mechanism, which serves as the preliminary purpose of our studies.

2.2 high frequency data and market risk measure

Alongside modeling market dynamics, managing risks (market risk) is undoubtedly one

of the most important activities of the practitioner on the financial market. In truth, the

performance of a financial position is bound tightly with its associated trade-off market

risk. Market risk can be defined as the risk of a change in the value of a financial position

due to changes in the value of the underlying components on which that position depends

(Mcneil, Frey and Embrechts, 2015). A great performance of a position is rewarded only

if the outcome of underlying values adheres to market risk appetites which are measured

clearly, accurately, and practically.

Although the idea and practice of evaluating market risk and trade-off return is not new

to the financial econometric literature, what is novel in the last two decades are newly

developed risk measurement methods relying on harnessing high frequency data. As the

full record of every movement in financial markets, high frequency data offer market

practitioners the ability to study and incorporate into their methodology real-time market

information of the financial market that are impossible to identify with low-frequency data.

In particular, new types of data pave the way for digging up insights about the dynamic

properties of volatility, i.e. the main source of market risk and driving force of extreme

prices movements, i.e. news announcement and their impacts on the financial markets,

from which our knowledge of market risks has gained tremendously. There is a new range

of risk measures developed from high frequency data and they have been emerging as a

new body of financial study, namely high frequency risk measurement.

One of the most successful approaches in the area of high frequency risk measurement

is modelling of the dynamics of the second-order moments of asset returns, which is also

known as realized volatility 4. Realized volatility is simple to compute (it is equal to the

4 Here and throughout, we use the generic term "volatility" in reference both to variance (or standard deviation)
or covariance (standard deviation and correlation). When it is important, the precise meaning will be clear
from the context.
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sum of squared high frequency returns) and is a consistent estimator of integrated volat-

ility under general conditions (see Andersen et al., 2001; Andersen et al., 2003; Andersen,

Bollerslev and Meddahi, 2005; Barndorff-Nielsen et al., 2011; Barndorff-Nielsen and Shep-

hard, 2002a, 2004; Barndorff-Nielsen, Shephard and Winkel, 2006). These models are now

established as one of the most influential and challenging approaches in financial eco-

nometrics, due to its capability of capturing not only traditional stylized effects in asset

returns but also crucial aspects for ultra-high frequency data.

Another strand of high frequency risk measurement focuses on direct modelling of a tail

distribution of asset returns, among which the greatest simplicity but wide applicability

and universality is intraday Value-at-Risk (IVaR). This type of risk measure is very useful,

as it provides extreme loss on the tail given a coverage probability of risk, without requir-

ing knowledge of the main body of the distribution. IVaR is often calculated on very short

intervals, e.g. 15 minutes, 30 minutes... (see Banulescu et al., 2015; Chavez-Demoulin and

McGill, 2012; Dionne, Duchesne and Pacurar, 2009; Giot, 2005; Tse and Yang, 2012) and

thus overcomes the difficulty of traditional daily VaR in providing the practitioner with

forecasts of market risks in (near) real-time basis.

2.2.1 Realized volatility

The most critical feature of asset return is arguably its second-moment structure, and un-

derstanding this feature lies at the heart of options pricing, portfolio selection, and risk

management applications. Therefore, it is not surprising that an enormous number of

volatility models based on daily returns have been developed over the years, including

ARCH (Engle, 1982), GARCH (Bollerslev, 1986), EGARCH (Nelson, 1991), and stochastic

volatility specifications (Taylor, 2008); and their performance has been intensively analyzed

in financial econometrics5. The fact that all these models consider latent conditional volat-

ility, and thus the validity of these models in practice strictly depends upon presumed

distributional properties or specific (parametric) dynamics form of the volatility. Indeed,

Bollerslev (1987), Carnero (2004) and Malmsten and Teräsvirta (2004), among others, point

out in their studies that most of these latent volatility models fail to describe several styl-

ized properties that are observed in financial time series satisfactorily. Additionally, using

a latent variable as a proxy of volatility complicates its forecasting and makes it difficult

to evaluate the performance of volatility models.

The search for an adequate framework for the estimation and prediction of the condi-

tional volatility of financial assets returns has led to the analysis of high frequency data. In

fact, the volatility modelling literature has taken a significant step forward. By introducing

quadratic variation theory into measuring ex-post variation of asset prices, Andersen et al.

(2001) and Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2002a,b), propose

a new approach called “realized” volatility that exploits the information in high-frequency

returns. Basically, the approach is to estimate volatility by summing all intraday high fre-

5 For an substantial literature review on latent volatility literature, we refer to Asai, McAleer and Yu (2006) and
Bauwens, Laurent and Rombouts (2006), among others
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quency squared returns sampled at very short intervals. The idea is that if the sample path

of volatility is continuous, then increasing the sampling frequency yields arbitrarily precise

estimates of volatility at any given time (Merton, 1980). The new proxy of volatility is no

longer latent, but an observable and “realized” process; thus, it can be modelled directly

rather than being treated as a latent variable. The statistical properties of the realized volat-

ility are extensively studied in Barndorff-Nielsen and Shephard (2002b), Meddahi (2002),

Andersen et al. (2003), Mykland and Zhang (2009). It has led to a considerable improve-

ment in our understanding of how the data-generating process of financial prices may be

characterized and how prices can be correlated between different assets (Aït-Sahalia and

Jacod, 2012).

However, using a non-parametric setting, the approach is not without difficulties. Un-

like those low frequency data that are homogeneously spaced, tick-by-tick transactions

occur irregularly and asynchronously. In addition, the observed transaction price of high-

frequency data comes with market microstructure noise (Jacod, Li and Zheng, 2017). Thus,

the realized quantities that can be estimated from high frequency data are not confined to

volatility. There is an upward bias on realized volatility due to the market microstructure

noise and a downward bias on realized co-volatilities in the multivariate framework due

to the asynchronicity. These two biases can partially or even fully offset the incremental be-

nefits of using intraday information, and therefore may render the use of high-frequency

data practically unattractive. The bias from asynchronicity will be mentioned in a later

section on multivariate realized volatility. Now we focus only on the univariate case with

only the bias of microstructure noise.

2.2.1.1 Univariate realized volatility estimators

Several existing studies have already proposed different approaches to mitigate these is-

sues. For example, in the univariate asset framework, Aït-Sahalia, Mykland and Zhang

(2005) propose sampling as frequently as possible at the cost of modelling the microstruc-

ture noise. This paper assumes constant volatility so that it can perform the maximum

likelihood estimation. Xiu (2010) extend Aït-Sahalia, Mykland and Zhang (2005)’s to a

quasi-maximum likelihood estimator, which is consistent, efficient and robust with respect

to stochastic volatility. Also in the context of stochastic volatility, Zhang, Mykland and

Aït-Sahalia (2005) present a nonparametric two-scale realized volatility estimator, which is

the first consistent estimator in the presence of noise. This estimator takes the average of

many RV estimators partially to eliminate the effects of the noise, and the remaining noise

effects are debiased by an estimator on the noise variance. Subsequently, Zhang (2006) ex-

tend his previous two-scale to multi-scale realized volatility, improving the convergence

rate in Zhang, Mykland and Aït-Sahalia (2005) to the optimal rate a model can achieve

as shown by Gloter and Jacod (2001). Barndorff-Nielsen et al. (2008) have designed vari-

ous realized kernels that can be used to deal with endogenous noise and endogenously

spaced data, and their convergence rates are the same as those of the multi-scale realized

volatility. Jacod et al. (2009) and Podolskij and Vetter (2009) introduced the pre-averaging

method, which involves first averaging the observed prices over a moderate number of
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time points to reduce the measurement error. Another side of the research searches for

optimal sampling frequencies and the commonly accepted sampling interval for high fre-

quency data is to sample at 5-minute intervals (Andersen and Bollerslev, 1997; Bandi and

Russell, 2008; Bandi and Russell, 2006; Hansen and Lunde, 2006a; Li et al., 2013; Liu, Patton

and Sheppard, 2015).

We recall that it may not be appropriate to apply these pioneer models directly to

transaction-by-transaction data. Oftentimes, in order to satisfy the conditions assumed,

data cleaning procedures that involve substantial subsampling are necessary, such as re-

ducing the frequency of data from tick-by-tick to minute-by-minute or at best second-

by-second. Moreover, the transaction times are not only irregularly spaced, but also en-

dogenous, depending on the price process. Developments have been made to relax the

assumptions. Among other works, Li et al. (2013) and Li, Zhang and Zheng (2013) studied

endogenous observation times; Li, Xie and Zheng (2016) considered a situation where de-

pendent microstructure noise can be modelled as a function of trading information while

allowing for endogenous observation times and jumps; Jacod, Li and Zheng (2019) propose

an estimator on tick-by-tick data, which achieves the optimal rate of convergence, under

a setting of irregular and endogenous observation times; decaying autocorrelation noise

and jumps.

2.2.1.2 Multivariate realized volatility estimators

When it comes to an application of multiple assets, the estimation of integrated covari-

ance matrix (co-volatility) is even more challenging due to the so-called non-synchronous

trading effect. As pointed out by Buccheri et al. (2019), Dao, McGroarty and Urquhart

(2018), Epps (1979), Huth and Abergel (2014) and Large (2007a), information arrives at

different frequencies for different assets and information related to one asset can affect the

price formation process of another asset, thus inducing additional microstructure effects

among correlated assets, so-called stale prices, and temporal lead-lag effects. The standard

approach of realized measures (Barndorff-Nielsen and Shephard, 2004) relied on an arti-

ficially regularly spaced time scheme and cannot take into account the difference in the

timestamps of the last ticks, thus ignoring these effects and creating an attenuation bias 6.

In this context, pioneering contributions have been made by Hayashi and Yoshida (2005)

and Martens (2004), proposing refresh time sampling and a pseudo-aggregation algorithm

of asynchronous observations, respectively, to correct the realized covariance estimator.

However, their estimators do not consider the microstructure noise that plagues the use of

high frequency data more generally.

Several recent papers have proposed techniques in varying complexity estimators for

simultaneously dealing with asynchronicity and market microstructure noise. Voev and

Lunde, 2006 propose an bias-corrected Hayashi–Yoshida estimator in a more realistic world

of noisy prices, but their estimator does not achieve consistency. Zhang (2011) has demon-

strated theoretically the existence of a bias associated with the standard RC estimator due

6 This attenuation bias was first noted empirically for sample correlation matrices by Epps (1979), and is com-
monly referred to as the Epps effect
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to the asynchronocity of the data and advocates a consistent multivariate version of his two-

scale realized covariance estimator, which is capable of simultaneously eliminating biases

in asynchronous and noisy data. Christensen, Kinnebrock and Podolskij (2010) rely on a

multivariate extension of the univariate pre-averaging approach and the Hayashi-Yoshida

estimator and advocates the (adjusted) modulated realized covariance estimator, which

also have noise robustness and can resolve the asynchronous data problem. However, these

estimators all assume high-level market microstructure noise, for example, exogenous and

i.i.d to achieve their asymptotic properties.

Aware of these missing parts in the noise, Barndorff-Nielsen et al. (2011) introduce their

multivariate realized kernel. Their estimator is the first estimator that simultaneously guar-

antees positive semi-definiteness, accommodates asynchronicity, and is also robust for gen-

eral assumptions on microstructure noise. First, they utilize refresh-time sampling to limit

the effect of non-asynchronicity of a multivariate data set. Then, they employ lead-lag

autocovariance terms to mop up the remaining effects of the noise and asynchronicity.

The autocovariance structure combined with an appropriate weight function allows for a

consistent positive semi-definite estimator. However, the desirable feature of positive semi-

definiteness comes at the cost of substantial data loss in high dimensions. It is shown in

Barndorff-Nielsen et al. (2011) that the multivariate realized kernel works well in moderate

dimensions when all the assets are very frequently traded. Moreover, full multivariate ker-

nels are challenged with heterogeneous liquidity, since the refresh-time sampling scheme

will be limited by the least frequently traded asset. Still, the estimator does not achieve an

optimal rate of convergence and suffers from a bias in non-linear transformations of the

estimated covariance matrix, for example, realized correlations and regression coefficients.

Thus, the use of it is constrained in potential applications.

More recently, there have been several extensions on generalizing multivariate semi-

martingale price dynamics with more complex endogenous noise and asynchronous trad-

ing7. Bibinger (2012) extends the multi-scale volatility estimators to the covariance estima-

tion. Christensen, Podolskij and Vetter (2013) and Koike (2015) combine the pre-averaging

estimator of Christensen, Kinnebrock and Podolskij (2010) with the Hayashi and Yoshida

(2005) method for synchronization. Park, Hong and Linton (2016) extend the work of Man-

cino and Sanfelici (2011) and Mancino and Sanfelici (2008) and develop a Fourier method-

based estimator of realized covariance. Varneskov (2016b) develops a general multivariate

additive noise model for synchronized asset prices and extends Varneskov (2016a)’s uni-

variate flat-top realized kernels to estimate its quadratic covariation. Li et al. (2022) extend

the least squares-based estimators of Curci and Corsi (2012) and Nolte and Voev (2012)

to a multivariate quadratic covariation estimator, which is consistent in the presence of

asynchronicity and endogenous noise.

To sum up, the aforementioned methods all require certain choice to deal with irregular

spacing times and non-synchronicity of trading. In the univariate case, it is a data-cleaning

7 There exists also an extension of realized measures allowing for (co-)jumps in the price processes. However,
we do not concern (co-)jumps in our studies. For the literature on this extension, we refer to Aït-Sahalia and
Jacod (2012), Aït-Sahalia and Xiu (2016), Aït-Sahalia and Yu (2009), Brownlees, Nualart and Sun (2020), Jacod,
Li and Zheng (2019), Koike (2015) and Varneskov (2016a), among others
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procedure that involves substantial subsampling, such as reducing the frequency of data

from tick-by-tick to minute-by-minute or, at best, second-by-second. For multiple assets,

there are two main approaches of dealing with asynchronous observations: firstly, apply

a synchronization scheme and estimate all elements of the covariance matrix jointly; and

secondly, align the observations by a pseudo-aggregation algorithm and estimate the co-

variance matrix element-wise. As such, all paradigms may come with the cost of losing

information. The information lost can be a consequence of either removing valuable data

or ignoring the endogenous impact of trading time. The latter in the multivariate case,

resulting from pseudo-aligning the observations, are even more severe as it additionally

introduces spurious lead-lag correlations or unnecessarily destroys true short-term lead-

lag effects (Buccheri et al., 2019; Curme et al., 2015; Huth and Abergel, 2014). Last but not

least, these estimators, to obtain effective results, require an essential step of prudently

selecting sampling intervals, bandwidths, or other tuning parameters. The selection ne-

cessitates ensuring a solid sample size to invoke the consistency of the estimators, which

often limits the use of realized measures to the finest frequency of only daily integrated

(co)-variation. For short intraday intervals, such as an hour or 15 minutes, it is doubtful

if the sample size is large enough to justify the applicability of the asymptotics of the

realized estimators (Tse and Yang, 2012). Therefore, their implementation can raise subtle

issues, especially, for high frequency or intraday traders who often practise in a real-time

basis.

In Chapter 4, we introduce a multivariate realized estimator that is robust for those

issues. Our proposed volatility estimator has the important advantage of employing all

the information available in all price series, and thereby making use of all the trades of

any asset. Furthermore, in sharp contrast to alternative estimators, our estimator is not af-

fected by spurious correlations and Epps effects, while taken into account simultaneously

the lead-lag effects amongst correlated assets and the endogenous times of trading. Fi-

nally, since the estimator is a point process-based volatility estimator, it has a parametric

structure and ability to provide intraday inference on local volatility, as opposed to an

integrated (co-)variation estimator from the realized measures.

2.2.2 Instantaneous volatility

A potential candidate that has the capability to overcome the above-mentioned problems

of realized volatility is the price duration-based volatility estimator. This type of estimator

was first initiated in the high frequency trading context by Engle and Russell (1998). They

quantify the instantaneous volatility of the price process by modelling the arrival rate

of price duration, i.e. the waiting time for the price process to generate a certain given

price change. The instantaneous volatility is determined by the product of the conditional

price intensity function, which characterizes the probability that a price event will occur in

the next instant conditional on the history of price events, and the price change threshold.

However, their main results concentrate only on the serial dependency found in the process
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of price intensities, and the estimated instantaneous volatility is used as a by-product to

test their relationship to hypotheses emerging from market microstructure literature.

After the suggestion of Engle and Russell (1998), price duration-based volatility has re-

ceived so far very little attention in the literature, compared to the realized volatility estim-

ator. The limited number of studies that focus on developing a volatility estimator based

on this approach can be mentioned. For example, Gerhard and Hautsch (2002) consider a

direct specification of the volatility estimator directly on price duration. Andersen, Dobrev

and Schaumburg (2009) introduce a volatility measure in a dual approach of measuring

the duration per unit of price change. Tse and Yang (2012) proposes using augmented

ACD model (Fernandes and Grammig, 2006) for price duration to measure the integrated

volatility over an interval. Li, Nolte and Nolte-Lechner, 2015 incorporate other market mi-

crostructure variables in the parametric structure of ACD model and study of the effect of

inclusion of those variables on the quality of volatility estimates. Li, Nolte and (Lechner)

(2018) derive asymptotic results for the general class of renewal process estimators, in-

cluding also the price duration-based volatility estimator. Very recently, Hong et al. (2021)

improve upon Tse and Yang (2012)’s parametric price duration estimator by replacing the

Exponential distribution with a Burr distribution that can better capture a long-memory

dependence in price duration. In addition, they provide practical ways based on bid/ask

spread to appropriately choose the threshold parameter, which determines the size of the

price change that defines the event times.

As pointed out by Tse and Yang (2012), this estimator enjoys a full parametric assump-

tion for the dynamic price duration process, which can better off the estimator in the

manifold. First, data beyond the volatility estimation window can be used to improve the

estimated parameter, which in turn leads to a more precise volatility estimation. Second,

according to Li, Nolte and Nolte-Lechner (2015), the parametric structure of ACD mod-

els facilitates the inclusion of other market microstructure covariates, which not only can

further improve the quality of volatility estimation, but also provides a framework for ana-

lyzing the relationship between volatility and other market microstructure covariates at

a high frequency level. Moreover, with a parametric assumption, not only an integrated

variance estimator, but also a local volatility estimator (intraday volatility or real-time volat-

ility) can be obtained, as opposed to realized volatility mentioned in the previous section.

By simulation, Tse and Yang (2012) show that the price duration-based volatility estimator

is more efficient than the realized volatility estimators, and Hong et al. (2021) find that it

has a better forecast performance than the realized volatility type estimators. However, this

estimator did not receive equal attention as the realized volatility type estimators, partly

due to its confinement to only a univariate case.

The difficulties of extending above price duration volatility estimators to multivariate

framework are two-fold: on the discreteness of price duration and on the non-decreasing

monotone of integrated volatility. First, the discreteness of price duration, as we pointed

out in Section § 2.1.1, allows only fixed-path conditional intensity, which is unable to up-

date new information arrivals within waiting times and deters the price duration models

from capturing co-volatility in a setting with asynchronous tradings. Second, the price
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duration volatility model has to rely on the non-decreasing monotonic property of integ-

rated volatility to construct a renewal point process in integrated variation time. However,

within a multivariate framework with another concern of co-variation (co-volatility), the

non-decreasing monotone is no longer valid. Therefore, the covariation estimation needs a

tailor-made econometrics model to ameliorate the impact of asynchronous trading between

assets, particularly the Epps and lead-lag effects mentioned in Section § 2.1.3.

Motivated by the above studies of a point process approach-based volatility estimator,

we derive in Chapter 4 a multivariate estimation of integrated (co)-variation based on the

conditional intensities. In order to account for the interdependence between assets, instead

of ACD-type models, we suggest using multivariate Hawkes processes to model the con-

tinuous conditional intensity function of price change transaction, i.e. transaction marked

by the number of ticks it moves the price. With its parsimonious representation of self-cross

exciting effects in the conditional intensity, our model still preserves superior features of

the price duration-based estimator, while it can take into account the interdependence

between assets by addressing salient properties of ultra-high frequency data sets.

2.2.3 Intraday Value-at-Risk measures

Computerized trading, aided by the rise of ultra-high frequency data, has been domin-

ant in the modern financial markets. This type of trading is characterized by a very short

investment horizon, at time frames of minutes to minutes or even a few microseconds

(Hasbrouck, 2019; Menkveld, 2018; O’Hara, 2015). Within these horizons, accurately cap-

turing the entire distribution of price dynamics becomes impracticable and unfeasible.

For example, to invoke consistency through its asymptotic properties, the estimate of the

second-moment structure relying on popular realized volatility requires a large amount of

infilled data which are often difficult to obtain in such small windows (Tse and Yang, 2012).

Meanwhile, a more efficient and feasible way is to consider only the tail, which represents

the probability of extreme events, rather than the whole distribution of price movements.

In the time scales where much of the volatility is evoked by the noise, the measures of

extreme events seem to be more qualified market risk information than the back and forth

bounces or the excessive number of zero movements of price due to market microstructure.

Therefore, a part of the literature on high frequency risk measures has shifted its research

to tail risk measures, and the one of simplicity but wide applicability and universality is

intraday Value-at-Risk (IVaR). According to (Coroneo and Veredas, 2012; Dionne, Duch-

esne and Pacurar, 2009; Giot, 2005; Tse and Yang, 2012), IVaR is a useful tool to define risk

profiles, monitor risk, and measure performance; for market makers, screen traders, high

frequency traders, or anyone else who strategically opens and closes positions during the

day. IVaR provides a more complete picture than a daily VaR measure, accounting for intra-

day information. However, the literature on IVaR measures, to the best of our knowledge,

involves only a univariate framework.

The econometric modelling of intradaily market risk using tick-by-tick data was first

studied in Giot (2005), where the authors recognize the importance of assessing intradaily
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trading risks in a modern financial market. By assuming that the fat-tailed properties of

return distributions on daily data are still valid on intraday data, he resamples the data to

regularly spaced returns and studies the performance of the one-step ahead VaR predicted

by normal GARCH, Student GARCH, RiskMetrics. In addition, to take into account the

information conveyed by the irregularly spaced trading times on IVaR, he uses a price dur-

ation volatility estimator with a log-ACD model (Bauwens and Giot, 2000). Based on his

empirical findings, the IVaR based on price duration volatility surprisingly underperforms

its counterpart using the standard time series models, e.g. the Student-GARCH model.

He also comments that the underperformance might be the consequence of the normal

distribution assumption on the return, and of the time transformations to the regularly

time-spaced world for evaluation purposes with other approaches. Later, Dionne, Duch-

esne and Pacurar (2009) investigate the use of irregularly spaced tick-by-tick data and

propose an IVaR which is based on an ultra high frequency GARCH-type model (Engle,

2000) combining with a Monte Carlo simulation. They demonstrate rather satisfactory res-

ults for their IVaR, which incorporates tick-by-tick information, in their evaluation using

backtesting methods. Coroneo and Veredas (2012) propose an estimate of IVaR based on

a distribution-free quantile regression approach for equidistant sampled high frequency

return. Their approach allows for the construction of conditional return moments meas-

ures simply depending on explanatory variables and without necessary knowledge about

the functional forms of these moments or of the return distribution. More recently, Liu

and Tse (2015) apply a two-state asymmetric auto-regressive conditional duration model

(AACD) (Tay et al., 2011) to model bidirectional price duration events, which are classified

into upward and downward directional price movements. The estimated AACD is then

cast into a Monte Carlo simulation to forecast ex-ante return distribution, from which IVaR

is calculated. The results of the backtest show that IVaR calculated using a sophisticated

bidirectional price duration scheme outperforms previous methods using simply absolute

threshold price duration in Dionne, Duchesne and Pacurar (2009) and Giot (2005).

The common point of the above-mentioned univariate IVaR methods is to look at slices

of the conditional distribution of the transaction point process, i.e. the transactions that

move the price at least a certain price change level, without any reliance on global distri-

bution. Specifically, the strategy pursued in these methods is to concentrate on the waiting

times to occur extreme price transaction events, which is demonstrated to be significantly

serial dependent. The IVaR forecasts are then determined by the conditional expected

duration between the extreme price events, which can be consecutively estimated by the

ACD models. However, as our critical review in Section § 2.1.1 shows, the discreteness of

ACD models hinders the extension of IVaR to a multivariate framework, which requires a

consideration of cross-effects between assets in an asynchronous transaction context. The

problem is that the ACD-type model is unable to adjust the arrival rate of a new price

event when novel information arrives within a duration. It has to wait until the arrival of

the point process terminates, which causes a loss of cross-dependence information between

assets. A more appropriate approach that overcomes the difficulties of ACD models in a

multivariate framework is directly modelling the continuous conditional intensity func-
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tion; thus, it allows for a continuous updating of the information set in the extreme price

event processes.

A predominant model type for this purpose, in temporal settings, is based on multivari-

ate Hawkes processes (Bacry, Mastromatteo and Muzy, 2015; Bowsher, 2007; Hawkes, 1971;

Hawkes and Oakes, 1974). Hawkes processes have also been used to model extreme price

movements at a rather low frequency (Bień-Barkowska, 2020; Chavez-Demoulin, Davison

and McNeil, 2005; Chavez-Demoulin, Embrechts and Sardy, 2014; Embrechts, Liniger and

Lin, 2011; Grothe, Korniichuk and Manner, 2014; Hautsch and Herrera, 2019). In a high fre-

quency trading context, the pioneer work of Chavez-Demoulin and McGill (2012) extends

Chavez-Demoulin, Davison and McNeil (2005)’s Hawkes-Peak Over Threshold (Hawkes-

POT), which models the clustering behaviour of extreme events over a threshold, to intra-

day risk measures. The idea is to couple the Hawkes process and classical extreme value

theory in a model, where the former captures the intensity of threshold exceedance events

and the latter for the clustering of excess size in the occurrences. The Hawkes-POT has the

same spirit as the previously mentioned approach, that is to focus on temporal depend-

ence of extreme price events in the tail, the part directly contributing to the risk, while

ignoring the less important structure of moderate price events. Although the model, using

the Hawkes process, has a lot of flexibility in modelling the occurrences of extreme price

events, the Hawkes-POT still exists only in a univariate framework due to the complexity

of its structure and its exceedance threshold selection (Chavez-Demoulin, Embrechts and

Sardy, 2014).

Considering the recent developments in modelling IVaR, we realize that there is still

a gap for an IVaR model that has the ability of taking into account the temporal cross-

dependence structure, for multiple assets, of extreme price events in the view that they

are clustering in the tail of distributions. Most often, it is not a true reflection of reality to

assume that the price movements of two related assets are independent, especially when

one considers the probability of their extreme moves, which are often the result of common

information (Cousin and Bernardino, 2013; Grothe, Korniichuk and Manner, 2014). For the

univariate case, the marginal probability structure might be sufficient, but when it comes

to the multi-asset framework, they might interact with each other in extreme events, which

consequently cause contagion or simply lead-lag effects, as we mentioned in Section § 2.1.3.

In Chapter 5, we develop a multivariate IVaR model that incorporates these elements

into its risk metrics in a high frequency trading context, which would give a better/more

informed measure of IVaR in one asset and in a combined way in an intraday portfolio.
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A S Y M M E T R I C I N F O R M AT I O N , I N F O R M AT I O N

L I F E S PA N , A N D L E A D - L A G E F F E C T S O N A

M U LT I VA R I AT E P R I C E F O R M AT I O N D Y N A M I C S

Abstract

The information content of trades has a life. We define the life span of trade information

as an effective time scale on which the information lives and contributes to price forma-

tion processes. In terms of long-lived information, the price adjustment turns out to be

sluggish in the sense that it takes time to incorporate the information fully. According

to this logic of information discovery, we introduce a multi-asset price formation model

in transaction frequency, which generalizes previous microstructure models of lagged

price adjustment. The model can be considered as a combination of microstructure mod-

els on lagged price adjustment and on asymmetric information. Econometric inference

from the model proves the indispensability of a multi-asset price formation mechanism

at the finest microscopic frequency. The model also shows its advantage in recovering

the lead-lag structure of the true underlying values not only at the cross-transaction

level, but also for any arbitrary interval. Our application to a set of selected DJIA stocks

provides empirical evidence of the existence of a multi-asset transaction-by-transaction

price formation mechanism and sheds light on its market microstructure determinants.

Keyword: Asymmetric information, information life span, Lagged price adjustment, Lead-

lag effects, Hawkes process, asynchronous trading.
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3.1 introduction

If financial prices are semi-martingales, all relevant information about underlying values

should be immediately disseminated, equally interpreted, and instantaneously incorpor-

ated into price processes. In a modern real financial market, there always exist heterogen-

eous market participants (Glosten and Milgrom, 1985; Kyle, 1985), endowed with different

knowledge regarding the underlying values and capitalizing on their own information

advantages. At the high-frequency trading level, various complications arise, including

asymmetric information, strategic trading, and price learning, as natural phenomena (Glos-

ten and Milgrom, 1985; Holden and Subrahmanyam, 1992; Kyle, 1985; Vives, 1995). The

complex environment generated by such features is in contradiction with the arbitrage-

free efficient market implied by the semi-martingales behaviour. So, if the semi-martingale

prices are not valid, then the fundamental questions are how information is diffused at tick

level and how do prices react to information diffusion. It is to discover a price formation

mechanism that elicits dispersed information from heterogeneously informed agents on

the true value of what underlies it. By this mechanism, the price processes converge to

the true values not immediately, but gradually with a speed, namely the speed of price

adjustment.

To do so, we consider a new property of information: information has a lifespan, that is,

the time it takes for information to be assimilated into the price dynamics. Such a lifespan

converges to zero under the null that the observed price processes impound all available

information and behave as semi-martingales. But under the natural “frictional” alternative

rooted in market microstructure theories, the lifespan of information deviates from zero

and causes sluggishness in the recovery of the true underlying value.

What leads to the existence of the information lifespan? In a rational behaviour market,

informed agents have some kinds of heterogeneity with respect to the underlying value

and trade on their own information with the intermediation of zero-expected profit mar-

ket makers in the presence of noise or a liquidity trader (Glosten and Milgrom, 1985; Kyle,

1985; O’Hara, 1998). Each of the informed traders has some belief about the unknown

underlying values, and their collective beliefs reveal the true efficient prices. They trade

wisely, exploit their advantages in information, and their trading strategies hinder other

traders and market makers from accessing their information. Informed traders submit mar-

ket orders to market makers who set prices efficiently, conditional on the aggregate order

flow. More precisely, the market makers may not buy and sell randomly, but set quoted

prices upon observing the order book and examining their previous transactions. In the

sense that they observe a noisy signal of the aggregate information, the market makers can

make errors in their pricing of order flows, but they can also retrieve improved information

from their historical trades to set better quoted prices. However, their lagged adjustments

are not perfect either, and only partially missing information can be recovered and incor-

porated in future quoted prices. The described imperfection of price adjustment makes the

impacts of trades last for an interval of time, that is, the lifespan of trade (information). In
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other words, there exists a duration after which the information content of trade becomes

obsolete and no longer has an impact on the future price movement.

Motivated by this logic of information discovery, we introduce a multi-asset price forma-

tion mechanism at transaction-by-transaction frequency, which generalizes previous mi-

crostructure models of lagged price adjustment (see Hasbrouck, 1996 for a review on

univariate lagged price adjustment models and Buccheri, Corsi and Peluso, 2020 for a

very first model on multivariate assets). The lagged price adjustment models, also known

as partial price adjustment models, were originally introduced in the market microstruc-

ture to account for temporal own- and cross-correlations, which are also termed lead-lag

effects amongst high frequency returns. Our multivariate generalization, namely multivari-

ate asymmetric lagged adjustment model (MALA), departs from the work of Buccheri, Corsi

and Peluso (2020) which can be considered as the multivariate lagged adjustment (MLA) of

aggregated prices, and decomposes the puzzle of lagged adjustment into two distinct and

subsequent imperfections of the market: inherent asymmetric information at the transac-

tion frequency and partial adjustment to the information content of trade. The MALA, to

a large extent, strengthens the theoretical results in the MLA and provides new insights

into the imperfections of price adjustment which provide a comprehensive description of

price formation in more general settings.

Without modelling informed trading, the classical lagged price adjustment models show

how the imperfect price adjustment arises as a consequence of delaying dissemination of

information, i.e. some assets trade ahead and carry information about other assets. The

prices react in a constant and same manner to all kinds of information without account-

ing for the distinction between the impacts from the information of order flow and the

information of trade. The MALA relaxes these assumptions and takes into account the

distinct impact of asymmetric information. By including informed trading, the MALA al-

lows for an additional and more detailed explanation relating the lead-lag correlation to

asymmetric information and trading. Bernhardt and Mahani (2007), Boulatov, Hendershott

and Livdan (2012) and Chordia, Sarkar and Subrahmanyam (2011) point out the role of

privately observed systematic information, i.e. informed trading, in causing positive cross-

autocorrelation, the analogue of lead-lag effects on lower frequency trading with regularly

spaced time. Also, considering that the information content of trade is long-lived and has

a lifespan, we extend the constancy assumption and apply a fast-decaying impact of trade

over time. If the information content of trade is short-lived, then the trade sequence is inde-

pendent across time, and the returns are uncorrelated in asynchronous trading according

to Epps effects. If information is long-lived, as in our model, then trades across assets

become temporally correlated and give rise to lead-lag effects.

Furthermore, the MALA also contributes to the current literature on lead-lag effects,

which has received some attention (see Bernhardt and Mahani, 2007; Buccheri, Corsi and

Peluso, 2020; Chan, 1992, 1993; Chiao, Hung and Lee, 2004; Hayashi and Koike, 2017, 2018,

2019; Hoffmann, Rosenbaum and Yoshida, 2013; Huth and Abergel, 2014; Jong and Nijman,

1997), but still lacks a well-established econometric framework that describes the existence

of lead-lag effects from the finest microscopic perspective of market microstructure. Eco-
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nometric inference on the MALA allows us to measure lead-lag correlations formally in

the latent underlying values not only at any arbitrary fixed sampling interval but also at

cross-transaction frequency, which provides evidence for the inevitability of multi-asset

price formation processes at transaction-by-transaction level. Furthermore, by separating

two sources demonstrating the strength of lead-lag effects, i.e. trade-carrying information

and liquidity, the MALA provides a comprehensive picture on these two driving sources of

lead-lag correlations. The current literature on lead-lag correlation has mainly considered

only one of the two, the information content of trade or the liquidity, and ignored the

combined effects between them.

Econometric inference of the MALA can be conveniently obtained by casting the model

into a Hawkes system of disjoint price change point processes. The transition dynamics is a

vector of autoregressive processes (VAR) for the observed price changes, which account for

the microstructure noises as additive white-noise error terms. Because the distinguishing

feature of transaction-by-transaction prices is discreteness, i.e. such finely sampled price

changes take on only five or six distinct states, the joint dynamics of trading time and

dependent price movements can be decomposed and modelled as multivariate disjoint

price change processes corresponding to all possible observed discrete states. The count-

ing processes of these disjoint price change states can be viewed as nonzero integer-valued

autoregressive time series (INAR), and thus their conditional distribution can be fed into

the exo(geneous)-endo(geneous) mechanism of multivariate Hawkes processes (Kirchner,

2016b; Wheatley, Wehrli and Sornette, 2019). The Hawkes model was first developed by

Hawkes (1971) and Hawkes and Oakes (1974), highlighting the basic idea of autoregres-

sion in a continuous setting in a compact and meaningful way, and thus has attracted a

considerable amount of interest in financial econometrics (see Bacry, Mastromatteo and

Muzy, 2015; Hawkes, 2017 for recent reviews). This approach allows us to estimate the

parameters using all the information available on the transaction processes and avoid the

limitations of the state-space approach proposed by Buccheri, Corsi and Peluso (2020) to

estimate the MLA. For instance, while the latter has to aggregate the price at an optimal

frequency for feasible estimation by the Kalman-EM algorithm, the former can handle all

observations at the transaction level, at which only one transaction corresponding to the

traded asset is observed at each timestamp, and the latter is not able to manage. Also, es-

timating at the transaction level, the former provides the true correlation incurred by each

transaction, and the lead-lag correlation between assets can be simply recovered for any

arbitrary interval instead of only at a fixed interval in the latter.

Similarly to the MLA, the MALA has a one-to-one correspondence between the matrix

of lead-lag coefficients in the VAR of observed prices and the matrix of adjustment speeds

in the price formation of true underlying values. The statistical significance of lead-lag

correlations at the transaction level can thus prove the indispensability of multi-asset price

formation mechanism at the finest frequency. Together with liquidity level, i.e. trading

activity, we also propose a measure of lead-lag effects amongst assets. The MALA is then

tested on a cross section of DJIA high-frequency transaction data. The significant cross-

asset adjustment kernels recovered from the estimated Hawkes excitement coefficients
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provide empirical evidence for the existence of a multi-asset price formation formation at

transaction-by-transaction frequency. We also examine in detail the relationship between

liquidity level and lead-lag effects amongst selected assets. The results obtained generally

confirm the common empirical finding that high liquid assets often play the role of leaders

in the market. However, there is also the case that some assets are less active in trading

but highly informative, i.e. their trade carries large amount of information on prices, and

can lead the dynamics of more liquid assets. Finally, the robustness of the model is tested

with respect to the random walk of exogenous components.

The chapter continues as follows. Section § 3.2 provides a theoretical framework for

our MALA model. The section also provides a formal formulation of the lead-lag effects

resulting from the price dynamics of the MALA. In Section § 3.3, we put forward a disjoint

price change representation to transition VAR of observed price changes, which we will

cast into multivariate Hawkes point process for estimation. Section § 3.4 studies descriptive

analysis of the data and empirical interdependence between states of price change. In

Section § 3.5, we discuss the results from both methods of estimation: non-parametric and

parametric. Conclusions and directions for future research are contained in Section § 3.6.

3.2 theoretical framework

3.2.1 The multi-asset asymmetric lagged adjustment model

We consider a multivariate price formation framework that features multiple assets with

different price adjustment speeds and multiple agents who own different degrees of in-

formation. The model captures the effects described in the Introduction § 3.1: informed

traders possess superior information about the true underlying values and submit market

orders contingent on their advantages of information. Hypothesized publicly-informed

market makers set quoted prices, conditional on their observation of the aggregate or-

der flows and their revision of historical transaction prices. Finally, the observed prices

taken on the market are prices contaminated by market microstructure noise. Therefore,

the model has three components: efficient price processes, adjusted price quotes, and ob-

served contaminated prices. For coherence with the market microstructure literature, the

former is specified in continuous time, whereas the two latter prices are specified in dis-

crete time.

We assume that the efficient log-price Yt is a D-dimensional vector that evolves as a

Brownian semi-martingale defined on some filtered probability space (ΩY,F , (Ft),P),

where in particular, (Ft) ✓ F is an increasing family of s-fields satisfying P-completeness

and right continuity:

Yt =
Z t

0
Asds +

Z t

0
ΘsdWs, Σt = ΘtΘ

|
t (3.1)

where t 2 [0, T], At is a D-dimensional vector of predictable locally bounded drifts, Θt is

a D ⇥ D-dimensional volatility matrix, and Wt is a D-dimensional vector of independent

Brownian motions. The interval [0, T] can be thought of as representing the trading day.
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Let 0  td
1, ..., td

Nd(T)  T denote the strictly increasing observation times of the transac-

tion process for asset d, with d 2 [1, D], and Nd(t) denote the right continuous counting

function that counts the cumulative number of transactions in the point process d up to

time t. We also denote 0  t1, ..., tN(T)  T as the pooled point process of all D marginal

point processes, which means N(t) = ∑
D
d=1 Nd(t) and the duration between traded in the

pooled transaction process is ti = ti+1 � ti, i 2 [1, N(T)]. In ultra-high-frequency data, the

effect of drift is very minor and negligible. Thus, we assume that the drift term in Eqn. 3.1

is zero for simplicity. Denoting ∆Yti+1 = Yti+1 �Yti the log-returns of the efficient price, we

can write:

∆Yti+1 =
Z ti+1

ti

ΘsdWs (3.2)

These efficient log-returns reflect all information about the underlying values that oc-

curred within the interval [ti, ti+1). They are the returns that, abstracting from microstruc-

ture effects, would only be observable in an imaginary perfect world. In that world, price-

relevant information is distributed and interpreted by all market participants, and when

new information arrives, prices are instantly adjusted to reflect all available information.

However, in a modern real financial market, there always exist heterogeneous informed

traders who have better knowledge of relevant price information and try to capitalize on

the information they have (Glosten and Milgrom, 1985; Kyle, 1985; O’Hara, 1998). Each in-

formed trader has a small piece of information about the efficient price Y , and the collect-

ive information of all informed traders reveals Y . They submit market orders contingent

on the information they have about Y . Moreover, in order to maximize their advantages,

the informed traders also strategically exploit the information by minimizing the inform-

ational impact of his trades. Their trading strategy hinders the market maker’s ability to

access complete information about Y .

Informed traders have an information advantage over market makers because of their

private signals, but market makers observe noisy signals of the aggregate position of in-

formed traders. Market makers cautiously analyze the noisy signals and also examine

their previous transactions, uncovering hidden information, and setting their price quotes.

In response to the noisy signals of the incoming order flows, they adjust the price quotes

by a vector of coefficients γ to the true movements of the underlying values γ∆Y where

γ can be thought of as parameters that reflect the probability of informed traders, the mis-

pricing of market makers, or to a large extent, the efficiency of the market. If the signals

do not contain noise, γ will be the identity vector and the quoted prices will be completely

adjusted to the signals.

Although market makers make errors in their pricing of noisy order flows, they can re-

trieve improved information on previous transaction prices. But these lagged adjustments

of market makers are not perfect either and recover partially missing information. This

feature of imperfect lagged adjustment was studied in partial lagged adjustment models

with constant coefficients by Amihud and Mendelson (1987), Buccheri, Corsi and Peluso

(2020), Damodaran (1993) and Hasbrouck and Ho (1987). We adapt these models to take

into account inherent features at the transaction-by-transaction level, such as informed

trading and decaying information over time, by assuming the imperfection of lagged ad-
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justment processes can be characterized by a function of elapsed time from the occurrence

of transactions.

Denoting Pti , i = 1, ..., N(T) as a D-dimensional vector of quoted prices. To set price

quotes at time ti, in addition to adjusting to the noisy signals by γ∆Yti , market makers

also revise the deviation of the previous quote to the efficient prices with the speed of

adjustment given by functions Ψti�1(ti), where ti = ti � ti�1 is the time elapsed between

two consecutive price quotes and the subscript ti�1 denotes the transaction incurring ad-

justment. The improved information is then reflected in the new quote at time ti by an

amount Ψti�1(ti)(Yti�1 �Pti�1).

At t0, the beginning of the trading day, we assume that the observed prices reflect all

related information. It is a reasonable assumption because, at the opening, there is an

important feature of stock markets that resembles a call auction market. All market and

limit orders are submitted to market makers (in the role of specialists), and market makers

will accumulate them and determine opening prices. We consider the opening prices that

are adjusted to all the demand and supply of the market:

Pt0 = Yt0 (3.3)

where Pt0 denotes the D-dimensional adjustment prices at time t0.

At t1, the first trade on the trading day, traders start submitting their market orders

using the information they have. Observing only noisy signals of order flows in the first

trade, market makers set trading prices cautiously by assigning the probability that the

trade is motivated by informed traders, reflected by a D-dimensional vector of parameters

γ. Note that γ contains non-negative and time-varying coefficients that enable different

uncertainty levels of the market over a trading day. The quoted prices Pt1 are given by:

Yt1 = Yt0 +
Z t1

t0

ΘsdWs (3.4)

Pt1 = Pt0 + γ∆Yt1 (3.5)

Because the efficient prices and the adjustment prices are not observable, we consider

the D-dimensional vector of observed log-price processes Xti that is contaminated by mar-

ket microstructure noise, i.e. transaction costs. It is worth mentioning here that due to

asynchronous trading, only one component of Xti corresponding to the traded asset is

observed at each time ti, while the movements of the remaining assets are not observable.

The vector of prices, Xt1 , contaminated by microstruture noise ut1 are observed as:

Xt1 = Pt1 + ut1 (3.6)

At t2, market makers continue to observe the aggregated order flows of the second trade,

jointly examining the deviation of the previous transaction from the efficient prices, and
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Figure 3.1: An illustration about the shape of lagged adjustment kernels Ψ

Notes: The blue line illustrates adjustments on quoted prices t2, t3, ... incurred by a transaction occurring at t1.
The shaded areas under the blue line, denoted by S(·,·), are innovations recovered from the missing information
(1� g)∆Yt1

accordingly adjusting their second price quotes with improved information. The informed

trading and imperfect learning are accommodated explicitly by the following specification:

Pt2 = Pt1 + γ∆Yt2 + Ψt1(t2)(Yt1 �Pt1) (3.7)

Xt2 = Yt2 + ut2 (3.8)

where the corresponding change in the adjustment price that reflects relevant information

obtained by the market makers is:

∆Pt2 = γ∆Yt2 + Ψt1(t2)(1� g)∆Yt1 (3.9)

Note that Ψt1(t2) in Eqn. 3.9 measures the adjustment that market makers make to improve

their mispricing at t1, that is, missing information on efficient price changes in previous

quotes (1� g)∆Yt1 .

Moving on, let us discuss the trade at t3. Similarly, market makers continue to adjust the

price correspondingly to order flows and previous transactions, including the most recent

t2 but also the transaction t1:

∆Pt3 = γ∆Yt3 + Ψt2(t3)(Yt2 �Pt2)

= γ∆Yt3 +
2

∑
i=1

Ψt2(t3)(∆Yti � ∆Pti)

= γ∆Yt3 + Ψt2(t3)(1� g)∆Yt2 + Ψt2(t3)Ψt1(t2)(1� g)∆Yt1 + Ψt2(t3)(1� g)∆Yt1

= γ∆Yt3 + Ψt2(t3)(1� g)∆Yt2 + Ψt1(t3)(1� g)∆Yt1 (3.10)
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The third equality is obtained by substituting Eqn. 3.9, whereas the last equality is derived

by the following property that we impose on the adjustment function:

Ψt1(t3) = [1� Ψt1(t2)]Ψt2(t3) (3.11)

Recall that the first term on the LHS of the above equation quantifies the remaining amount

of missing information on the changes in the efficient price at the transaction t1. The second

term measures the adjustment to the missing information, but as it occurs at its origin t2.

The product of them, the term on the RHS, measures the innovation recovered during the

interval t3 = t3 � t2 from the mispricing at t1 .

Extending Eqn. 3.11 to multiple periods, the adjustment kernels are defined such that:

Ψti(ti+j) =
j�1

∏
p=1

[1� Ψti+p�1(ti+p)]Ψti+j�1(ti+j) (3.12)

An example of an adjustment kernel satisfying the above property is the integration of

an exponential function, that is, Ψdr
ti
(tj) =

R tj
tj�1

e�bdr(t�ti)dt with bdr being the coefficient

controlling the slope of the function or the adjustment speed based on the transaction of

the asset r to the quoted price of the asset d, d, r 2 [1, D] (see Fig. 3.1).

The choice of adjustment kernels, {Ψ
dr
ti
(t)}d,r2[1,D], is critical for the speed of updating

missing information from previous transactions about the true efficient prices Yti on the

current price quotes Pti . If Ψt(t) = D, then ∆Pti = γ∆Yti , the only missing part of the

current trade is from the asymmetric information component and will be fully recovered

in the next transaction. Instead, if the diagonal element 0 < {Ψdd
ti
(t)}d2[1,D] < 1, the

adjustment process is gradual, and consequently there exists missing information on Pti

not only from informed trading on the current trade, but also from delayed adjustment on

previous trades. It is important to note here that Ψt(t) may be non-diagonal. According to

Buccheri, Corsi and Peluso (2020), the non-diagonal {Ψdr
t (t)}d,r2[1,D],d 6=r implies that the

adjustment process of one asset is affected by the adjustment process of other assets, which

results in lead-lag effects that we will discuss in the next section § 3.2.2.

In addition to the property in Eqn. 3.12, we make the following assumptions about the

adjustment price kernel Ψt(t) = {Ψdr
t (t)}d,r2[1,D]:

(H1) Ψt(t) is component-wise causal, i.e. for t < 0, Ψdr(t) = 0, 8d, r 2 [1, D].

(H2) Ψt(t) is component-wise positive, i.e. Ψdr
t (t) � 0, 8d, r 2 [1, D].

(H3) Ψt(t) is additive, i.e. for ti, ti+1 � 0, Ψt(ti) + Ψt(ti+1) = Ψt(ti�1,i+1) where ti =

ti � ti�1, ti+1 = ti+1 � ti, and ti,i+1 = ti+1 � ti�1.

(H4) limt!∞ ∑
D
r=1 Ψdr

t (t)ds = 1, 8d 2 [1, D].

(H5) Ψdr
t (t) are accelerated decaying functions on t 8d, r 2 [1, D], i.e. for j > i � 1, the

differential (Ψdr
t )

0
(ti) � (Ψdr

t )
0
(tj) where ti = ti � ti�1, and tj = tj � tj�1

(H6) Ψdr
t (ti) � Ψdr

t (ti)Ψ
pq
t (tj) 8d, r, p, q 2 [1, D] for j > i � 1
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The Assumptions (H1), (H2), (H3) and (H4) are natural conditions of the price adjustment

kernels. (H1) indicates that the market makers cannot infer information on the trade that

has not yet arrived. (H2), the more transactions are observed, the more extra signals of the

true underlying values are recovered by market markers to improve the adjustment prices.

(H3) is simply the additive properties of information extracted from past transaction prices

and of price adjustment between two distinct periods. (H4) ensures the maximal retrieved

information is always lower than the true information of the underlying values. The two

remaining assumptions (H5), (H6) determine the shape of the adjustment price functions

over time. Specifically, (H5) is about the amount of information that can be retrieved from

the past prices. The farther away a transaction is, the less impact of that trade’s information

content on the current price quotes. Finally, (H6) is about “obsoleteness” of the information.

If a signal on the true underlying value is already retrieved, that signal is exhausted, and

continuing to dig into that signal does not provide more improved information to the price

processes.

The model is then extended to subsequent transactions. We note that there are a total

of N(T) transactions during the period [0, T] that represents a trading day. We have the

following results:

Proposition 1. Assume that the price adjustment kernel, Ψt(t) = {Ψdr
t (t)}d,r2[1,D], satisfies the

Assumptions (H1-H6). At transaction ti+1, the three components of prices are given by:

Yti+1 = Yti +
Z ti+1

ti

ΘsdWs (3.13)

Pti+1 = Pti + γ∆Yti+1 + Ψti(ti+1)(Yti �Pti) (3.14)

Xti+1 = Pti+1 + uti+1 (3.15)

Eqn. 3.15 is observable transaction prices, which are contaminated by additive micro-

structure noise, taken by traders. Instead, Eqn. 3.14 can be represented as a VAR that

describes the dynamics of the latent quoted price set by market makers. The quoted prices

can be decomposed into three components: (1) Pti , the information incorporated in the

past price, (2) γ∆Yti+1 the current price innovation that is adjusted in response to the noisy

signals of aggregate order flows, and (3) Ψti(ti+1)(Yti �Pti) the price revision after retriev-

ing improved information on the historical transaction prices. The last term accounts for

the additional signals not only from the stock itself but also from other related stocks. The

change in the price quotes can be represented as follows:

∆Pti+1 = γ∆Yti+1 +
i

∑
j=1

(1 � γ)Ψtj(ti+1)∆Ytj (3.16)

The adjustment of market makers on the price quotes ∆Pti+1 starts from (1) their history-

based revisions ∑
i
j=1(1 � γ)Ψtj(ti+1)∆Ytj , which are updated with the speed functions

Ψtj(ti+1), and combine with (2) their interpretation of the noisy signals about the efficient

price changes γ∆Yti+1 , of which the uncertainty of the market markers is reflected in the

parameters γ. Thus, the model assumes that not only can informed traders determine
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prices, but also market makers can set prices based on their own information. The market

makers do not observe information directly, but instead can observe aggregate order flows

of informed traders, revise their belief on historical transactions, and determine prices

conditional on those elements.

Finally, one might question the non-convergence of our model that the quoted prices

always deviate from their true underlying values. Let us assume that there exists a period

without asymmetric information, where the market makers have an entire picture of the

true underlying values. In practice, this period can be at the end of the trading day when a

closing call auction takes place. Similarly to an open-call auction, all orders are aggregated

and matched up with one another at the prices determined by the market makers. These

last transaction price changes can be regarded as those that reflect all relevant information

available and have no uncertainty, i.e γ = 0|. Furthermore, since informed traders would

prefer to act with their superior information before the markets are closed, avoiding the

information that can be published during the overnight period, the markets have a tend-

ency of being significantly more opaque towards the end of a continuous trading session.

Regarding the last transactions of the continuous trading session, the missing information

on the underlying values is trivial, and a shorter duration is required for complete adjust-

ment on these trades. The closing call auction often lasts for a duration that is substantially

longer than the lifespan of trade. Therefore, it is realistic to consider that the last quoted

prices of the close-call auction converge to their efficient ones at the end, i.e. PtN(T)
= YtN(T)

.

3.2.2 Lead-lag effects

In the previous section, we constructed a model of price dynamics for multiple assets in

an environment that allows for asymmetric information and imperfect price adjustment.

For a stock d in a portfolio of D stocks, its price change dynamics is given by the following

corollary:

Corollary 1. Given a portfolio of D stocks following the price dynamics of Proposition 1. The price

dynamics of the stock d, d 2 [1, D] at an observed transaction td
i+1 is as follows:

∆Yd
i+1 =

Z ti+1

ti

sd
s dWd

s (3.17)

∆Pd
i+1 = gd∆Yd

i+1 +
D

∑
r=1

Nr(td
i )

∑
j=1

(1 � gr)Ψdr
j (td

i+1)∆Yr
j +

+
D

∑
r=1

Nr(td
i+1)

∑
j=Nr(td

i )+1

(1 � gr)Ψdr
j (td

i+1 � tr
j )∆Yr

j r 6=d (3.18)

∆Xd
i+1 = ∆Pd

i+1 + ∆ud
i+1 (3.19)

Note that we simplify the notation by denoting subscripts i, j as transaction indexes and

superscripts d, r as the corresponding stock of that transaction, e.g., ∆Yd
i+1, ∆Pd

i+1, ∆Xd
i+1 are

the efficient, adjusted, and observed price changes of stock d over the interval [td
i , td

i+1). The



44 asymmetric information, information life span, and lead-lag effects on a multivariate price forma

indicator function r 6=d in the third term of Eqn. 3.18 indicates adjustments on historical

price changes of other stocks r that occur between two consecutive transactions, [td
i , td

i+1),

of the stock d, while the second term is adjustments of other past price changes that occur

before the transaction td
i .

In general, the corollary implies that when market makers revise their pricing errors

caused by asymmetric information, they retrieve improved information not only in the

previous transaction price changes of the stock itself, but also in those of other related

stocks. Consequently, current adjustments of the quoted prices are correlated with the

past price changes of the other stocks, which can be justified through the adjustment func-

tion Ψt(t) = {Ψdr
t (t)}d,r2[1,D]. The past price changes of some stocks might have greater

impacts on the revision of the other stocks than the other stocks have on themselves, i.e.

Ψdr
t (t) > Ψrd

t (t), 8d, r 2 [1, D], and d 6= r. This feature is contemplated in the micro-

structure literature under the term of “lead-lag” effects (Buccheri, Corsi and Peluso, 2020;

Dao, McGroarty and Urquhart, 2018; Hayashi and Koike, 2017, 2018; Huth and Abergel,

2014). However, there still lacks a framework that formally investigates the mechanism in

which asymmetric information and imperfect lagged adjustment drive serial dependence

in the manner of lead-lag effects, even though the data-generating process was assumed

to be temporally independent. Here, we fill this gap in the context of our multivariate

price dynamics model. In the other way around, the non-trivial (co-)variation recovered

from lead-lag effects is the evidence of the indispensable multivariate transaction price

generation mechanism of our model.

First, let us give some intuition behind the adjustment processes with a simple case of

bivariate stocks. In the first trade, market makers receive a favourable signal about the

first stock, and because the market markers do not have the true underlying informa-

tion, they cautiously adjust the prices of stocks only partially upward in response to the

favourable information. In the subsequent trades, in order to set the prices for the first

stock, they revise previous transactions that are not only of the first stock but also of the

second one. If the second stock’s price also increases in the last transactions, they will

be more confident and adjust the price of the first stock further upward, and, vice versa,

they will revise downward. Following this logic, we consider the autocovariances and the

cross-autocovariances of two assets d, r. Indeed, the literature on realized (co-)variation of

stocks is well documented that the realized (co-)variation can be retrieved by evaluating

the realized (cross-) autocovariation of price changes (see, particularly, Barndorff-Nielsen

et al., 2011; Varneskov, 2016b)

Without loss of generality, we assume that the market microstructure noises ut follow an

independent normal distribution and are exogenous to the efficient price processes. Fur-

thermore, we consider that the transaction costs are significantly smaller than the change

in the true underlying values, and thus the noise variances can be negligible compared

to the variation in the efficient price processes. These assumptions might be unrealistic in

some circumstances of significant asymmetric information where market makers can set

non-trivial transaction costs. However, our main concentration is to discover the impacts
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of lead-lad effects on (co-)variation relationship, and imposing these assumptions smooths

out irrelevant and troublesome impacts of noise components.

By the Corollary 1, the (cross-) autocovariation is weighted by the time-decaying adjust-

ment kernel. To measure the impact of the lead-lag effects on the (cross-) autocovariation

via an information change, we evaluate the difference of conditional (cross-) autocovari-

ation as the results of the change in its conditional information set. Specifically, at two

distinct transactions, e.g. td
i and td

i+h with h denoting a distance in the transaction indexes,

the efficient price changes are defined on two filtrations Ftd
i

and Ftd
i+h

1. For simplicity, we

take h = �1, that is, there is a new signal on the efficient price of the asset d at td
i , and

it is contained in Ftd
i

but not in Ftd
i�1

. We also consider two scenarios. On the one hand,

at td
i market makers observe only information about the transaction td

i on the asset d and

adjust their price quotes. On the other hand, they also observe other information on the

asset r, a transaction tr
j that arrives between [td

i�1, td
i ], and is included in Ftd

i
. Innovation

in conditional (cross-) autocovariation, caused by the difference between two information

sets Ftd
i

and Ftd
i�1

, can be derived from the Corollary 1 for the two scenarios as follows:

First scenario: tr
j < td

i�1

[(∆Xd
i )

2|Ftd
i
]� [(∆Xd

i )
2|Ftd

i�1
] = (gd)2(sd

i )
2 (3.20)

[∆Xd
i ∆Xd

i�1|Ftd
i
]� [∆Xd

i ∆Xd
i�1|Ftd

i�1
] = 0 (3.21)

[∆Xd
i ∆Xr

j |Ftd
i
]� [∆Xd

i ∆Xr
j |Ftd

i�1
] = 0 (3.22)

Second scenario: td
i�1 < tr

j < td
i

[(∆Xd
i )

2|Ftd
i
]� [(∆Xd

i )
2|Ftd

i�1
] = (gd)2(sd

i )
2 + (1 � gr)2[Ψdr

j (tdr
i�j)]

2(sr
j )

2+

+ 2gd(1 � gr)Ψdr
j (tdr

i�j)s
dr
i�j (3.23)

[∆Xd
i ∆Xd

i�1|Ftd
i
]� [∆Xd

i ∆Xd
i�1|Ftd

i�1
] = gd(1 � gr)Ψdr

j (tdr
(i�1)�j)s

dr
(i�1)�j (3.24)

[∆Xd
i ∆Xr

j |Ftd
i
]� [∆Xd

i ∆Xr
j |Ftd

i�1
] = gdgrsdr

i�j + gr(1 � gd)Ψdd
i�1(t

dd
i )sdr

(i�1)�j+

+ gr(1 � gr)Ψdr
j (tdr

i�j)(s
r
j )

2 (3.25)

where sd
(·), sr

(·), sdr
(·) are the variance and covariance components of the efficient price pro-

cesses Θ(·) in Eqn. 3.1. We also denote tdr
i�j = td

i \ tr
j as the intersection2 of two waiting

times for transactions i, j of stocks d, r, i.e. td
i = td

i � td
i�1, tr

j = tr
j � tr

j�1 and sdr
i�j as the

corresponding covariation of efficient prices over that intersected duration.

Our primary goal is to measure the difference in the innovation of (cross-) autocovari-

ation between two scenarios, from which we can determine whether lead-lag effects exist.

It is obvious that there is a significant difference between the two scenarios. When only

information on the asset d is observed (the first scenario), the innovation in the variation

1 We note here that there is also s-algebra generated by noises at different trading times. However, since we
consider only the impact of the lead-lag effects arising from the information on efficient price changes, we
simply assume that we have complete filtration of this component

2 We note that the notation of intersected duration tdr
i�j is distinguished with the one of accumulated duration

ti,i+1 = ti + ti+1 in the previous section
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of the observed price change in Eqn. 3.20 is due to only a new noisy signal in the trans-

action td
i . However, when a piece of (leading) information is observed in asset r between

two consecutive transactions of asset d (the second scenario), the market maker adjusts the

price of asset d not only based on its own noisy signal and trading history, but also based

on additional information about asset r. The innovations in the (cross-) autocovariation

are significantly different from the first scenario. The revisions of (cross-) autocovariation

in Eqn. 3.23, Eqn. 3.24, and Eqn. 3.25 take into account the price variations in the asset d

itself, (sd
i )

2, and the price variations in the related asset r, (sr
j )

2, and also contemporan-

eous price cross-correlations between the two assets, sdr
i�j, sdr

(i�1)�j. Thus, the information

about the efficient price change of one asset leads to two other sources driving the (cross-)

autocovariation: one simply arises as the results of contemporaneous (cross-) correlation

between assets and the other temporal (cross-) correlation incurred by lagged (cross-) ad-

justment. An implication is that market makers can infer additional information using the

price changes of related stocks, even though the true value of the investigated stock is not

observable.

3.2.3 Generalization of previous multi-asset lagged adjustment model

Compared to the previous literature, on the one hand, our results confirm the finding in

the most recent research of Buccheri, Corsi and Peluso (2020). First, some assets leading

others emerge not from the difference in the level of trading activity but from the lagged

adjustment coefficients. These adjustments are measured as time-varying functions of the

time elapsed from the observation of the leading information. Second, there exists another

source of lead-lag effects that are not related to contemporaneous cross-asset correlation.

This source of lead-lag effects arises as a consequence of non-zero diagonal coefficients

in the lagged adjustment kernel rather than the cross-asset pricing. To illustrate this find-

ing, we set sdr
(.) = 0, which means that the efficient prices are independent. Based on

Eqn. 3.23 and Eqn. 3.25, it is obvious that the innovation in the price variation and cross-

autocovariation of the asset d is driven by the variation in the efficient price of the asset r’,

weighted by the lagged adjustment coefficients.

On the other hand, the definition of the lead-lad adjustment in our model generalizes the

one of Buccheri, Corsi and Peluso (2020). In their work, the MLA, Buccheri, Corsi and Pe-

luso (2020) implicitly assume the constancy of the adjustment coefficients. This assumption

is quite simple and restrictive, and as the authors remarked, it confines the MLA model to

account for changes in market volatility and liquidity conditions. Indeed, by using aggreg-

ated transaction prices at one second frequency, the MLA neglects the timing of trades that

might convey information about market volatility and liquidity. The MLA can also destroy

true short-term lead-lag effects by aggregating the price change that occurs over a time

interval of less than one second. In addition, the MLA applies the same adjustment kernel

to all adjustments without distinguishing information on a noisy signal of order flows or

information on historical trades. Thus, the MLA does not accommodate the special feature

of asymmetric information, which is inherent at the transaction-by-transaction level. The
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lagged adjustment in MLA arises as the consequence of delaying in information dissem-

ination between assets, i.e. some assets trade ahead and carry information about others.

Meanwhile, the price dynamics in our model, the MALA, additionally accounts for the

response of market makers to asymmetric information. The lead-lag effects emanate from

two distinct and subsequent imperfections of the market: heterogeneous beliefs on the true

underlying values and temporally lagged adjustment on historical trades. Thus, our model

can be seen as the generalization of Buccheri, Corsi and Peluso (2020)’s model. To illustrate

this point, let us consider the case in which market makers have the same adjustment to

both noisy order flows and historical trades. The price dynamics in Proposition 1 turns

out to be exactly the same as the ones in Buccheri, Corsi and Peluso (2020):

Corollary 2. Assume that γ has D ⇥ D-dimension and γ = Ψt(t) is the matrix of adjustment

coefficients. At transaction ti+1, the three components of prices are given by:

Yti+1 = Yti +
Z ti+1

ti

ΘsdWs (3.26)

Pti+1 = Pti + Ψti(t)(Yti+1 �Pti) (3.27)

Xti+1 = Pti+1 + uti+1 (3.28)

If the matrix Ψti(t) is of constant adjustment coefficients, Ψti(t) = Ψ, the price dynamics turns

out to be the ones in the multi-asset lagged adjustment model.

By taking into account the timing factor, the lagged adjustments, and then lead-lag

effects, are not immediate but last over time. Their functional forms are shaped by the

Assumptions (H1)-(H6) and Eqn. 3.12 in the previous section. Generally, the adjustment

coefficients vary with the time elapsed from the point when the information occurs. A key

implication of taking into account the timing factor is that the longer the waiting time

between transactions, the larger and more precise adjustment should be made.

3.3 an equivalent hawkes point process representation and estimation

While Section § 3.2.1 represented a structural model that is capable of accommodating the

intrinsic features of the market microstructure at the transaction level, its two components,

the quoted and the efficient prices in Eqn. 3.14 and Eqn. 3.15 are not observable but latent

processes. Also, due to asynchronous trading at the transaction level, only one component

of ∆Xti corresponding to the traded asset is observed at each ti, whereas the observations

of other assets are missing. Thus, the parameters in Proposition 1 are not amenable to dir-

ect measurement. It is therefore useful to cast the model into an alternative representation,

that is, from the viewpoint of price change, an observational equivalence.

The triple price dynamics in Proposition 1 can be summarized by the following autore-

gressive dynamics of the observed prices:
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Proposition 2. Let (Xt) be the multivariate observable price time series of D assets from Proposi-

tion 1. Then (Xt) can be represented as a vector of autoregressive processes as follows:

∆Xti+1 = ηti+1 +
i

∑
j=1

ψj(ti+1)∆Xtj � uti+1 �
i

∑
j=1

ψj(ti+1)utj (3.29)

where ηti+1 = γ∆Yti+1 and ψj(ti+1) = γ�1(1 � γ)Ψj(ti+1).

By our Assumptions of exogenous and independent normal white noises and random

walk efficient prices, the above equation is a vector of autoregressive processes on observed

prices, expressing the fact that the knowledge on the past observed price changes is useful

for forecasting the current observed price changes. The D-variate vectors η and u contain

noisy signals and market microstructure noises, which, in principle, can be considered as

all exogenous factors.

The second term of lagged observed prices weighted by time-decaying adjustment ker-

nel ψ encodes long-memory endogenous activities that capture the conditional dynamics

depending on past price changes. The D ⇥ D-matrix yj(·) contains self-adjustments and

cross-adjustments of the next price changes based on historical price changes of the as-

set itself or of other assets. For example, for d 6= r ydr
j (ti+1)∆Xr

j is the cross-adjustments

between assets that quantifies how much the next price change of the asset d at transac-

tion ti+1 in response to a past price change of the asset r at time tj during the interval

ti = ti+1 � ti. Similarly, ydd
j (ti+1)∆Xd

j is a self-adjustments effect of type-d events.

Therefore, Eqn. 3.29 can be seen as endo(geneous) - exo(geneous) activities, and given

the observations of discrete price changes, our statistical problem is to identify the exo

and endo parts in the dynamics of price adjustment. This exo-endo mechanism is actually

very similar to the one underlying “Hawkes processes”, that have attracted a considerable

amount of interest recently (for recent reviews, see Bacry, Mastromatteo and Muzy, 2015;

Hawkes, 2017). For a rigorous theoretical foundation of Hawkes processes, we will discuss

in the Appendix. The Hawkes model highlights the basic idea of the autoregressive process:

given an event, the conditional intensity, the conditional expected number of events in a

unit of time, can be formulated as a linear combination of jumps on past events. By its

definition, the conditional intensity is implemented in continuous setting, and robust to the

irregularly spaced as well as asynchronous trading time. Thus, it is possible to investigate

the conditional distribution of observed price change dynamics through an analogous and

tractable framework of Hawkes processes that address all the above-mentioned issues of

the dataset at the transaction level.

3.3.1 Hawkes processes representation of disjoint observed price change dynamics

Although Eqn. 3.29 is the representation of the unconditional distribution, what is more

primary to our consideration is the conditional distribution of observed price changes,

which unveils the mechanism of price formation processes, conditioning upon a particular

sequence of order flows and historical price changes. To facilitate the formulation of a
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conditional distribution on the observed prices, we assume that the observed prices are

generated by filtration (Ht
�

, the s-algebra generated by (Xs)st. For illustration, if we

assume that the response of a market maker to asymmetric information, γ, is Ft-adapted,

i.e. being driven by the information set of efficient prices, the link between the filtration

of price dynamic components, by the independence of between microstructure noises and

efficient price, is given as: H = F ⇥G,Ht =
T

s>t
Fs ⇥Gs where Gs is the s-algebra generated

by microstructure noises. We follow Christensen, Kinnebrock and Podolskij (2010) and

Varneskov (2016b) for this setup. Because the noises are only updated at exactly the times

of transaction, the conditional distribution of observed price change conditioned on its

historical realizations and new price innovations can be deduced as follows:

h

∆Xti+1

�

�

�
Ht�i+1

i

= ηti+1 +
i

∑
j=1

ψj(ti+1)∆Xtj (3.30)

Denoting ∆N (ti) = N (ti) � N (ti�1) as a D-variate vector of counting functions that

count the number of transactions for each asset d over the interval [ti�1, ti), ti = ti � ti�1

and for some instants dt ⌧ t, t� = limdt!0 t � dt, dNt = limdt!0 N (t)�N (t�). Due to

the Assumptions of singular and ordered transaction point processes (see the Appendix),

dNt can take only a vector of zeros, or an identity vector of which all elements are zeros

except for one entry at the index of the traded asset taking value 1. For each transaction

that occurs at time t, it is marked by a price change value, mt, which can be any number

of discrete minimum tick sizes3, positive and negative. However, in empirical analysis (see

Section § 3.4.2), we find that, for high liquid assets, more than 99% of the price changes

fall on one of just seven different values, that is, 8d 2 [1, D], ∆Xd = 0, ±1 tick, ±2 ticks;

∆Xd  �3 ticks; and ∆Xd � 3 ticks. Therefore, we follow Hausman, Lo and MacKinlay

(1992), Liesenfeld, Nolte and Pohlmeier (2008) and Russell and Engle (2005) and assume

that mt takes values from a finite state space of price change M and denote M as the

number of possible outcomes of M. Eqn. 3.30 can be represented with counting functions

and price change values such as:

h

∆N (ti+1)mti+1

�

�

�Ht�i+1

i

= ηti+1 +
i

∑
j=1

ψj(ti+1)mtj dNtj (3.31)

For each outcome mti+1 in M at transaction ti+1:

h

∆N (ti+1)
�

�

�
Ht�i+1

i

=
ηti+1

mti+1

+
i

∑
j=1

ψj(ti+1)

mti+1

mtj dNtj (3.32)

For some intuitions behind the development of an alternative representation by Hawkes

processes, since the observed transaction price changes usually take only a handful of

discrete values, the transaction process of the asset d can be partitioned into M mar-

3 The discrete minimum tick size is a necessary feature of the modern automated market to prevent an explosion
of messages under the current market design and to constrain the liquidity cost of the market artificially. For
the complexity of the discreteness, we refer to Chao, Yao and Ye (2017, 2018), Li, Wang and Ye (2021) and Yao
and Ye (2018) among others
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ginal transaction process associated with each price change values of its state space M.

In other words, for each element Nd(t) in the D-variate vector, N (t), we can generate a

new M-variate vector of counting processes {Nd,m(t)}m2Md by disjointing the (ground)

transaction process Nd(t) according to its state of price changes. The disjoint price change

processes and the ground transaction process are mapped through the following manner:

Nd(t) = ∑m2M Nd,m(t). The properties of disjoint processes is discussed in the Appendix.

The motivation for the disjointing representation is to simplify the complication of joint

modelling non-synchronous trading times and dependent price movements of multiple

assets4. Intuitively, the problem of marked transaction processes of multiple assets can be

represented as multivariate disjoint price change processes and can be simply treated as

multivariate Hawkes processes. Given an outcome mti+1 at transaction ti+1, the analytical

expression of Eqn. 3.31 for each asset d is:

h

∆Nd,m(ti+1)
�

�

�Ht�i+1

i

=
hd

ti+1

mti+1

+
D

∑
r=1

i

∑
j=1

ydr
j (ti+1)

mti+1

mtj dNr,m
tj

(3.33)

For simplicity, we replace the notation of each combination (d, m) and (r, m), where d, r 2
[1, D] and m 2 M with M states, by k, l, where k, l 2 [1, K] and K = D ⇥ M. Also, for each

value of the price change m 2 M at ti+1 and its previous realized values, mtj , j  i, we can

denote hk
ti+1

=
hd

ti+1
mti+1

and ykl
j (ti+1) =

ydr
j (ti+1)

mti+1
mtj . For all k 2 [1, K], we can express Eqn. 3.33

as:
h

∆Nk(ti+1)
�

�

�Ht�i+1

i

= hk
ti+1

+
K

∑
l=1

i

∑
j=1

ykl
j (ti+1)dNl

tj
(3.34)

Due to the Assumptions of the efficient price and the adjustment function, hk
ti+1

and

fkl
j (ti+1) can be formed by locally integrable functions over the interval [ti, ti+1). Thus,

for t 2 [ti, ti+1), denoting µk =
∂hk

ti+1
∂t and fkl

j (t) =
∂fkl

j (ti+1)

∂t . It is worth noting that muk can

be a function of time t, that is non-homogeneous. However, we assume the constancy of

µk, and hk
ti+1

is restricted to functions of only first-order differential with t. The rationale

for this choice is discussed in the next section. By definition of the conditional intensity:

lk(t|Ht) =
∂
h

∆Nk(ti+1)
�

�

�Ht�i+1

i

∂t
(3.35)

Taking the differentiation of both sides of Eqn. 3.34, we obtain the following proposition:

Proposition 3. Given the multivariate price dynamics for D assets in Proposition 1 and the As-

sumption that the observable price changes of each asset, ∆Xd, take only finite discrete values,

4 The dependence of price change is not only amongst assets, but also between the price change and the time
of trading. For references on the relationship between the trading time and the trading price change, we refer
to Dufour and Engle (2000) and Russell and Engle (2005)
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m 2 M with M states, the conditional probability of a transaction arrived with price change value

m can be represented as the formulation of Hawkes point processes:

lk(t|Ht) = µ
k +

K

∑
l=1

i

∑
j=1

fkl
j (t)dNl

tj
(3.36)

where k, l are the indexes that denote each combination of (d, m) and 1 k,l K, K = D ⇥ M.

The non-negative µk, in Hawkes model, is called baseline intensity and fkl
j (·) is called excitement

coefficient, which corresponds to the exogenous impacts of noisy order flows and the endogenous

impacts of lagged price changes, respectively.

Furthermore, denoting Kd as a set of the indexes of the disjoint price change processes for the

asset d, the coefficients of the autoregressive representation of ∆Xd, in Eqn. 3.30, are given as:

hd
ti+1

= ∑
k2Kd

Z ti+1

ti

µ
kmkdt (3.37)

ydr
j (ti+1) = ∑

k2Kd
∑

l2Kr

Z ti+1

ti

fkl
j (t)

ml mkdt (3.38)

where mk, ml are the price change values associated with the excitement coefficient fkl
j (t).

The proposition reflects an alternative view on observed price change sequences as a

special exo-endo problem characterized by Hawkes conditional intensities. Basically, for

each component of the K-variate observed price change processes, we observe the arrival of

exogenous events that stems from (in)homogeneous Poisson processes with “immigration”

rates µ1, ..., µk, ..., µK, which can be the representation of new information about aggregate

order flows. This exogenous event in the component l originated at transaction tj triggers

other K inhomogeneous Poisson processes in the components k = 1, ..., K with intensities

fkl
j (t), which can generate subsequent “offspring” price changes events. And each of these

realized “offspring” events again provokes other K inhomogeneous Poisson processes and

produces the “offspring” of its own in the same way; and so on, inducing the clustering

of events as a cascade of inhomogeneous Poisson processes. These so-called endogenous

events are triggered by occurred events rather than by new information, which is in a

similar manner to the lagged adjustment process based on historical transactions. We note

that the terms “immigrant”, “offspring”, and “branching ratio” came from the theory of

branching processes, as the Hawkes process can be considered as a branching-type process.

Following the Hawkes model, we can choose the offspring intensity, i.e. self-excitement

and cross-excitement coefficients, such that fkl
j (t)dNl

tj
= fkl(t � tl

j)dNl
tj

, in which the im-

pact of a previous price change tl
j on the future conditional intensity is weighted by a

function of time distance t � tl
j, completely in accord with previous Assumptions on the

adjustment kernel. In its general form, the equation Eqn. 3.36 is represented by the follow-

ing equation:

λ(t) = µ+ (Φ ? dN )(t) (3.39)
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where Φ(t) = {(fkl(t)} is a K ⇥ K matrix, µ = {µk} is a K-variate vector, N (t) = {N k(t)}

is a K-variate vector of identity or zeros, and ? denotes the “matrix convolution” notation:

(Φ ? dN )(t) =
Z t

0
Φ(t � s)dN (s) (3.40)

The matrix Φ describes the influences between disjoint price change states. More spe-

cifically, the coefficients fkk account for self-excitation effects, encoding the influences of

disjoint states of the asset d on other disjoint states of the asset d itself, and the coefficients

fkl with k 6= l account for cross-excitation effects, encoding the influences of disjoint states

of the asset d on disjoint states of the other counterpart assets r. Thus, it is natural to de-

compose the K ⇥ K matrix Φ into D sub-matrices M ⇥ M. For illustration, we consider D

with only two assets d, r:

Φ(t) =

0

@

Φdd(t) Φdr(t)

Φrd(t) Φrr(t)

1

A (3.41)

where:

• Φdd(t), Φrr(t): accounts for the self-adjustment on the next price changes based on

the price changes of the asset itself.

• Φdr(t), Φrd(t): accounts for the cross-adjustment on the next price changes based on

the price changes of other assets.

In Proposition 3, the vector of autoregressive price change processes in discrete time can

be interpreted as its counterpart Hawkes processes in continuous time. The interpretation

stems from disjointing transaction sequences into sub-transaction sequences associated

with a discrete value of price change. And the counting process of each disjoint price

change sequence can be viewed as 0 valued integer time series (INAR). The close relation

between Hawkes point processes and INAR time series has been investigated in Kirchner

(2016b), and Kirchner (2016a), who propose an approximation of the Hawkes process us-

ing the INAR model. Their studies can be considered as a theoretical foundation of the

existence and uniqueness of the equivalence presented in Proposition 3.

Despite its simplicity, the alternative representation by Hawkes processes can capture the

characterization of the autoregressive observed price dynamics in Proposition 2 with the

presence of asynchronous trading and missing observations. However, the derivation of

adjustment coefficients specifying other components of price dynamics in Proposition 1 is

unfortunately more complex without additional assumptions on asymmetric information

and will not be further developed here. We leave this task for future research. The per-

spective here is to forego precise estimation of structural parameters in hope of achieving

an alternative characterization of price dynamics from which we disentangle the lead-lag

effects embedded in the price formation process.
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3.3.2 Parameterization and estimation of Hawkes processes

From the Proposition 3, the baseline intensities of multivariate disjoint point processes

implicitly defines the arrivals (immigration) of new efficient price innovation. Due to the

independence of efficient price innovations, the baseline intensities should be renewed at

each immigrant point, and the immigration process of new innovations can be described

by a renewal intensity rate. In that sense, the waiting times between the innovations are

independently and identically but arbitrarily distributed. Such a specification can provide

a superior quality of capturing changes in information flows. However, we do not have a

realization on the arrival of information flows, and so the flexibility of the renewal immig-

ration process comes with a cost that makes direct estimation, i.e. by the maximum likeli-

hood method, for multivariate disjoint price change point processes practically impossible

Wheatley, Filimonov and Sornette (2016). In the framework of this thesis, we follow stand-

ard Hawkes processes and assume the constancy of the baseline intensity vector µ within

the period analyzed. This suggests that new innovations about efficient price arrive exo-

genously at each disjoint price change point process of the system in Poisson processes.

As long as the Hawkes representation is re-estimated on a daily basis, the assumption of

constancy of µ is not restrictive.

Next, another problem that implicitly determines the conditional distribution of the ob-

served price dynamics concerns the choice of the excitement function φ. In most cases, φ

of Hawkes processes is a somewhat arbitrary parametric kernel, and the main decision

between exponential or power-law functions. It is easy to show that these two functional

families of φ yield an adjustment price kernel Ψ that satisfies all the requirements in

Assumptions (H1-6). Amongst two kernels, the exponential excitement function yields a

Markovian structure for the conditional intensity Hawkes (2017) and so it is mathematic-

ally more attractive. Also, the likelihood function of exponential decay is easier to handle

by recursive representation Ogata (1988). Thus, in our studies, we chose the exponential

decay function for the excitement kernels, which makes the conditional intensity functions

have the form:

lkl(t) = µ
kl +

K

∑
l=1

Z t

0
akl bkle�bkl(t�s)dNl(s) (3.42)

where α = {akl}k,l2[1,K] is a valued-matrix of impact coefficients, β = {bkl}k,l2[1,K] are de-

cay coefficients. From the theory of branching processes, qkl = akl

bkl , 0  qkl  1 are called

branching coefficients, which are the expected number of offspring at each point, and

Q = {qkl}k,l2[1,K] is the branching matrix. We can infer from Proposition 3 that the amount

of lagged information retrieved by the revision is measured by the branching coefficients

and the speed of adjustment on historical transactions is determined by the decay func-

tion. The impact of the previous transaction (the excitement) decreases exponentially over

time according to the decay parameters. For the purpose of measuring the lead-lag effects

between stocks, it is natural to impose one decay parameter for all disjoint price change

processes belonging to one asset:

bd := bk1 = bk2 = · · · = bkl (3.43)
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for all k that indexes the combinations (d, m) of the asset d with m 2 Md.

Last but not least, we note that exponential or power-law kernels cannot catch the switch-

ing in the regime or the non-monotonicity of the excitement. So, in the first step, we calcu-

late the non-parametric point-wise estimation that can identify the complicated shapes of

excitement in the data. These point-wise estimates also give us some hints to specify the

shape of the excitement kernel, respectively, decay functions as well as the impact coeffi-

cients in our final parametric model. In particular, we use the Expectation-Maximization

algorithm in tick library which was developed in Bacry, Dayri and Muzy (2012), Bacry et

al. (2018), Bacry, Jaisson and Muzy (2016) and Bacry and Muzy (2016). For further details

on the likelihood function of the estimation, we refer the reader to the Appendix.

3.4 empirical findings : the interdependence of price changes

3.4.1 Data description

Our data set in this empirical application includes high-frequency transaction data of

six stocks listed on the Dow Jones Industrial Average (DJIA) index: Apple (ticker sym-

bol AAPL) and International Business Machines (ticker symbol MSFT); American Express

(ticker symbol AXP) and Visa (ticker symbol V); Chevron (ticker symbol CVX) and Exxon

Mobil (ticker symbol XOM). The first two of the selected stocks, namely Group I including

AAPL and IBM, belong to the technology sector, whereas the second two stocks, namely

Group II including AXP and V, belong to the financial services sector and the remaining

two, namely Group III including CVX and XOM, belong to the oil and energy sector. The

data of all stocks are extracted from the Trade and Quote (TAQ) database that recorded

trading information in the three-month period from 01/02/2019 to 30/04/2019, a total of

62 business days. The timestamp precision of each data point is a millisecond. Following

the data-cleaning algorithm employed by (Barndorff-Nielsen et al., 2011) to remove po-

tential errors, we (i) consider transactions in the main trading session from 9:30 to 16:00,

which is considered to ensure maximum liquidity, and (ii) exclude data within the first and

last fifteen minutes of the trading session to eliminate the effects of opening, closing call

auctions, and overnight session. When several simultaneous transactions were observed,

we (iii) used the volume-weighted average price. Next, we (iv) delete non-trade transac-

tions with zero volume, and with negative or zero transaction prices. We also (v) remove

observations that have transaction prices above the ask price plus bid-ask spread or below

bid price minus bid-ask spread. Table 3.1 shows several descriptive statistics related to the

trading activity of the six stocks together.

In particular, amongst six stocks, AAPL has the highest number of trades per day with

the average waiting time between two consecutive trades at 0.3 seconds, which can be

considered as the stock having the most liquidity. Whereas AXP and IBM are considered

as the stocks having less liquidity stocks in terms of the number of trades and the average

duration between two consecutive trades of these stocks are of 1.73 and 1.43 seconds,

respectively. For all six selected stocks, the distributions of transaction price changes are
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Table 3.1: Descriptive statistics for six selected stocks listed on DJIA index

Indicators
Group I Group II Group III

AAPL IBM AXP V CVX XOM

Average Number of Trade 77500 15917 12842 27933 26593 27533

Max Number of Trade 148859 44814 19612 51105 156357 49974

Min Number of Trade 51490 10851 8881 19931 15146 20316

Nonzero Trade 36042 7997 5681 12499 12466 8679

Nonzero Percentage 45.93 50.09 44.29 44.85 47.45 31.47

Positive Extreme Trade 60 70 37 39 68 1

Positive Extreme Percentage 0.07 0.45 0.27 0.13 0.20 0.00

Negative Extreme Trade 64 73 36 39 71 1

Negative Extreme Percentage 0.06 0.43 0.28 0.13 0.20 0.00

Price Average 185.63 139.19 109.65 152.05 121.62 79.58

Trade Duration Average 0.30 1.43 1.73 0.80 0.97 0.81

Notes: For each asset, we show the average statistics per day for some indicators such as
number of trades; number of non-zero trades that move stock price; number of positive
and negative extreme trades that move stock price more than 3 ticks; price average; and the
average trade duration between consecutive observations.

approximately symmetric. The frequencies of two opposite movements but with the same

number of ticks are roughly similar. On average, the non-zero trades that move stock

prices occurred with 40% to 50% frequency, excepting for XOM with the frequency of

only 31.47%. The extreme trades that move prices greater than 3 ticks occurred with very

minor frequencies of less than 0.5%. Especially, XOM has, on average, only 2 transactions

per day that move the price more than 3 ticks. Illustrations and histograms of transaction

point processes by price changes are presented in Figure 3.2. Virtually, all the mass in each

histogram is concentrated in five or seven cells - there are few extreme price movements

of more than 3 ticks, which highlights the importance of discreteness in transaction prices.

3.4.2 Disjoint price change transaction point processes

Given the price discreteness of transaction-by-transaction data and the spareness of ex-

treme price change moves, we assume that transaction point processes are marked with

a finite number Md of discrete price change states. We partition these marked transac-

tion point processes as Md-variate vector of multivariate disjoint price change transaction

point processes. In choosing Md, we have to balance price resolution against the prac-

tical constraint that a too large Md will yield no observation in the extreme states. Using

the descriptive statistics in the previous section as a guide, we set Md = 6, d denoting

the index of the stocks { AAPL, AXP, CVX, IBM, V }, that implies six-states price change

spaces Md = {∆Xd|∆Xd � 3 ticks , ∆Xd = ±2 ticks, ∆Xd = ±1 tick, and ∆Xd  �3 ticks}

. A special case of XOM has a very small frequency of movements greater than 3

ticks, we choose Md = 4 and reduce its discrete price change space to four states

Md = {∆Xd|∆Xd � 2 ticks, and ∆Xd = ±1 tick }. The two extreme states include up-
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Figure 3.2: Transaction point processes marked by price changes of six selected DJIA stocks

Notes: The panels on the left represents transactions marked by different price change states occurred during
14:00:00 - 14:30:00 14/02/2019. The panels on the right displays the histogram of transactions by price changes
on 14/02/2019.
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ward price movements of 3 (2 for XOM) or more ticks and downward price movements of

3 (2 for XOM) or more ticks. The vector of disjoint price change process for asset d, as an

instance with Md = 6, is given by:

dNd(t) =
�

dN1(t), ..., dNm(t), ...
�|

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

[1, 0, 0, 0, 0, 0]| if ∆Xd(t)  �3 ticks.

[0, 1, 0, 0, 0, 0]| if ∆Xd(t) = �2 ticks.
...

...

[0, 0, 0, 0, 0, 1]| if ∆Xd(t) � 3 ticks.

(3.44)

where m 2 [1, Md].

In order to analyze the price dynamics for multiple assets, we proceed by concatenating

the vectors of multivariate disjoint point processes to a new K-dimensional vector with

K = ∑d Md, which is given by:

dN (t) =
�

dN1(t), dN2(t), ..., dNk(t), ...
�|, k 2 [1, K] (3.45)

where k is indexing each combination of the price change state index and the asset in-

dex, (m, d). The K-variate disjoint states correspond to all observable discrete events in

the transaction point processes of the D assets. The interdependence between D assets is

represented by the cross- and self-influencing dynamics between the K disjoint discrete

states. Therefore, the disjointing transaction point processes provide a compact, yet mean-

ingful summary of a transaction price dynamic without specifying complicated price and

time-joint distribution. Instead, the disjoint framework allows us to account for real-time

excitement effects from one state that influences the likelihood of inducing another state

in the system. For the sake of parsimony and simplicity, we consider only a finite discrete

state space of observed price change.

Although the observed price change can be any number of ticks, positive or negative,

our assumption of finite number of states, Md, poses no problems since we let some states

in Md represent a multiple number of states in the observed price change, e.g the states

 �3 ticks, and � 3 ticks. The finite Md also keeps the number of unknown parameters

finite. But this parsimony comes with a cost of losing price resolution as the model cannot

distinguish the price movements of 3 ticks or of greater than 3 ticks, and similarly for price

movements of -3 ticks or fewer than 3 ticks. In principle, we can increase the resolution

of the price by simply adding more states, i.e. increasing Md. However, in practice the

data will impose a limit on the fineness of price resolution simply because there will be

no observations in the extreme states when Md is too large, e.g the case of stock XOM

with Md = 6 in our study. As a result, the subset of coefficients of those states cannot be

identified and cannot be estimated.

Finally, although the definition of the state space of price changes Md does not require

a symmetry between the positive and negative sides, the symmetrical histogram of price

changes in Figure 3.2 suggests a symmetric definition of the state space.
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3.4.3 Statistical interdependence between price change levels

Before moving to a detailed analysis of non-parametric and parametric modelling, we

present here some empirical findings on the interdependence between disjoint point pro-

cesses of price change states, see Tables 3.2, 3.3, and 3.4. These findings give a preliminary

numerical summary of the relations between disjoint point processes in the modelling in

the next section. In Tables 3.2, 3.3, and 3.4, we document the average results over all trad-

ing days separately for 6 pairs of assets with the three former AAPL-IBM, AXP-V, and

CVX-XOM belonging to the same groups and the three latter IBM-XOM, AAPL-AXP, and

CVX-V belonging to different groups. For other asset pair relations, we refer the readers

to the Appendix.

First, we calculate empirical unconditional probabilities of transactions associated with

each state, i.e. r(dNk(ti) = 1), which is documented in the last row Total in each panel.

Next, we calculate empirical conditional probabilities of the occurrence of an event state

k (in row) given that the preceding occurrence is an event of state l (in column), i.e.

r(dNk(ti) = 1|dNl(ti�1) = 1). In each panel, the results of the conditional probability

are documented by values without parentheses on the first line of each cell. In addition, to

illustrate the change in the occurrence probability of one event state k with and without the

influence of the last occurred events state l, we also represent the ratios of the conditional

probabilities to unconditional probabilities for the occurrence of event state k:

Leverage ratio =
r(dNk(ti) = 1|dNl(ti�1) = 1)

r(dNk(ti) = 1)
(3.46)

which are values in parentheses on the second line of each cell. These ratios are called

leverage ratios because they indicate the change in the probability of occurrence for one

state induced by the arrival of other states. For example, denoting k for (AAPL, � 3 ticks)

and l for (AAPL,  3 ticks), the probability of unconditional occurrence for state k in

the next event is only 0.74%. However, given that the last event is state l, the conditional

probability of the occurrence for state k rises to 15.7%, giving the leverage ratio of 34.3. The

leverage ratio greater than 1 can be considered as one state, which actually is triggered by

another state, that can be seen as self- or cross-excitation effects. The significant excitements

are highlighted by bold values, which are greater than 2 for states belonging to the same

asset and greater than 1.2 for states belonging to different assets. On the other hand, a

ratio smaller than 1 can be an indicator of inhibition effects, i.e. the occurrence of one state

prevents other states from occurring. However, such an inhibition effect requires a different

specification of conditional intensities, which is beyond the scope of this thesis, and thus

we do not account for it in the analysis.

We note that each panel in the tables can be divided into four separated quadrants,

which is equivalent to the decomposition of the Hawkes kernel matrix in Eqn. 3.41. The top-

left (Q1) and bottom-right (Q4) quadrants include the cells of excitement that are generated

by the self-adjustment conditional in a previous state of the asset itself. Whereas, the top-

right (Q2) and bottom-left (Q3) ones are of the excitements from the cross-adjustment
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Table 3.2: Empirical results of pair-wise interdependence for six selected DJIA stocks.

AAPL IBM

 -3 -2 -1 1 2 � 3  -3 -2 -1 1 2 � 3

0.57 0.29 0.23 0.71 2.58 15.08 1.34 0.79 0.56 0.40 0.56 0.87 -3
(0.90) (0.44) (0.30) (0.97) (4.47) (35.93) (1.99) (1.25) (0.88) (0.60) (0.87) (1.47)

2.53 2.09 2.19 6.72 20.77 17.57 6.25 5.11 4.20 3.27 3.93 5.26
-2

(0.52) (0.40) (0.41) (1.32) (4.43) (3.83) (1.28) (1.00) (0.80) (0.62) (0.75) (1.04)

16.65 18.00 25.00 49.20 41.11 32.58 29.84 32.10 32.83 27.90 27.11 26.23
-1

(0.48) (0.52) (0.72) (1.42) (1.18) (0.94) (0.86) (0.92) (0.94) (0.80) (0.78) (0.75)

30.75 40.26 49.00 24.27 17.87 17.08 27.56 27.50 28.17 33.70 33.24 31.77
1

(0.89) (1.16) (1.42) (0.71) (0.52) (0.49) (0.80) (0.80) (0.82) (0.98) (0.96) (0.92)

19.73 21.56 6.88 1.94 2.04 2.26 5.04 4.24 3.57 4.64 5.48 6.69
2

(4.25) (4.53) (1.33) (0.36) (0.40) (0.45) (0.96) (0.81) (0.68) (0.88) (1.07) (1.35)

15.70 3.06 0.71 0.20 0.25 0.46 1.25 0.66 0.50 0.69 0.93 1.39

AAPL

� 3
(34.30) (4.99) (0.94) (0.27) (0.35) (0.58) (1.76) (0.86) (0.64) (0.94) (1.42) (1.85)

1.31 0.81 0.58 0.43 0.55 0.81 0.49 0.24 0.19 0.62 1.91 6.62 -3
(2.54) (1.40) (1.02) (0.75) (0.99) (1.46) (0.96) (0.46) (0.32) (1.06) (3.89) (16.25)

2.40 2.02 1.77 1.31 1.33 1.39 1.31 1.20 1.12 2.99 6.89 5.17
-2

(1.39) (1.16) (1.03) (0.76) (0.77) (0.81) (0.77) (0.71) (0.65) (1.76) (4.25) (3.18)

5.05 6.11 6.93 5.34 4.10 3.55 7.17 8.30 10.22 15.24 10.97 8.33
-1

(0.70) (0.86) (0.98) (0.76) (0.58) (0.49) (1.06) (1.22) (1.50) (2.20) (1.57) (1.21)

3.50 4.02 5.06 7.39 6.49 5.77 7.29 11.06 15.30 9.45 7.79 6.22
1

(0.49) (0.57) (0.71) (1.04) (0.92) (0.80) (1.05) (1.59) (2.20) (1.38) (1.15) (0.93)

1.22 1.23 1.23 1.84 2.04 2.25 5.64 6.80 2.75 0.92 0.95 1.13
2

(0.73) (0.73) (0.73) (1.09) (1.21) (1.32) (3.54) (4.27) (1.67) (0.54) (0.56) (0.68)

0.59 0.56 0.43 0.64 0.88 1.21 6.81 2.01 0.58 0.18 0.23 0.31

IBM

� 3
(0.89) (0.92) (0.72) (1.08) (1.57) (2.07) (15.16) (3.79) (0.98) (0.30) (0.36) (0.63)

Total 0.74 5.17 34.75 34.51 5.24 0.78 0.57 1.73 7.10 7.11 1.69 0.59

AXP V

 -3 -2 -1 1 2 � 3  -3 -2 -1 1 2 � 3

0.31 0.28 0.19 0.64 2.27 9.50 1.94 1.25 0.67 0.51 0.86 1.21 -3
(0.43) (0.35) (0.25) (0.87) (3.84) (20.91) (3.04) (2.01) (0.97) (0.71) (1.29) (2.06)

1.58 1.34 1.14 3.31 9.13 6.94 3.75 3.00 2.37 1.75 1.93 2.18
-2

(0.69) (0.56) (0.47) (1.42) (4.25) (3.40) (1.79) (1.36) (1.02) (0.75) (0.87) (0.98)

8.86 10.38 13.11 22.45 15.65 11.30 10.30 11.31 12.46 9.37 7.49 6.25
-1

(0.72) (0.83) (1.06) (1.78) (1.24) (0.90) (0.82) (0.90) (0.99) (0.74) (0.59) (0.50)

11.56 16.43 22.53 12.96 10.82 8.99 6.16 7.59 9.10 12.95 11.94 10.66
1

(0.92) (1.29) (1.77) (1.03) (0.87) (0.72) (0.49) (0.59) (0.71) (1.02) (0.94) (0.85)

7.66 8.85 3.12 0.97 1.28 1.63 2.05 1.79 1.67 2.48 3.18 3.54
2

(3.70) (4.17) (1.35) (0.41) (0.56) (0.73) (0.91) (0.79) (0.73) (1.09) (1.42) (1.60)

8.66 2.34 0.55 0.18 0.26 0.34 1.39 0.72 0.51 0.71 1.20 1.63

AXP

� 3
(18.51) (3.93) (0.76) (0.25) (0.43) (0.50) (1.96) (1.18) (0.75) (1.04) (1.88) (2.74)

2.88 1.50 0.91 0.53 0.87 1.56 0.51 0.44 0.27 0.87 3.32 14.31 -3
(4.14) (1.75) (0.97) (0.56) (0.97) (1.61) (0.55) (0.61) (0.30) (0.96) (4.54) (23.94)

6.60 5.95 4.31 2.90 4.00 5.52 2.75 2.44 2.13 5.75 15.45 14.13
-2

(1.50) (1.35) (0.95) (0.65) (0.92) (1.35) (0.70) (0.56) (0.47) (1.32) (3.84) (3.57)

25.48 27.54 28.58 22.41 20.74 19.53 13.79 17.20 22.53 40.92 33.52 26.93
-1

(0.88) (0.95) (0.99) (0.77) (0.72) (0.67) (0.48) (0.60) (0.79) (1.42) (1.16) (0.93)

20.21 20.95 22.01 28.48 28.04 25.62 25.91 34.22 42.00 22.41 18.41 15.60
1

(0.69) (0.72) (0.75) (0.98) (0.96) (0.88) (0.89) (1.17) (1.44) (0.77) (0.64) (0.54)

4.57 3.59 2.96 4.28 5.48 7.04 16.38 16.49 5.53 2.00 2.32 3.03
2

(1.11) (0.85) (0.67) (0.96) (1.25) (1.69) (4.11) (4.11) (1.29) (0.45) (0.53) (0.73)

1.63 0.84 0.58 0.88 1.46 2.04 15.05 3.53 0.76 0.27 0.39 0.53

V

� 3
(2.05) (0.98) (0.62) (0.97) (1.63) (2.15) (27.98) (5.08) (0.83) (0.31) (0.48) (0.67)

Total 0.71 2.33 12.61 12.73 2.30 0.70 0.92 4.41 28.88 29.16 4.36 0.90

Notes: Conditional probabilities of occurrences of event type k (in rows) given the last occurrence of event type l (in columns):
r(dNk(ti) = 1|dNl(ti�1) = 1). The result is reported in percentage. The last row Total presents the unconditional probabilities

of each type of events.
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Table 3.3: Empirical results of pair-wise interdependence for six selected DJIA stocks (continued).

CVX XOM

 -3 -2 -1 1 2 � 3  -2 -1 1 � 2

0.44 0.23 0.20 0.97 3.27 13.45 3.01 1.56 0.75 1.08 -3
(0.47) (0.21) (0.17) (0.86) (3.10) (12.84) (2.96) (1.44) (0.67) (0.89)

2.05 2.03 1.88 6.21 15.39 12.30 6.73 5.85 3.35 3.63
-2

(0.44) (0.43) (0.39) (1.28) (3.19) (2.63) (1.42) (1.22) (0.69) (0.76)

10.54 12.75 17.90 33.01 24.35 18.95 20.61 23.74 16.54 14.07
-1

(0.48) (0.58) (0.81) (1.47) (1.10) (0.86) (0.93) (1.07) (0.74) (0.63)

18.43 24.97 33.26 18.08 14.09 10.84 12.00 15.51 24.57 20.91
1

(0.83) (1.11) (1.48) (0.82) (0.64) (0.49) (0.53) (0.69) (1.10) (0.94)

12.61 15.52 6.19 1.70 1.87 2.07 2.68 3.11 5.97 7.00
2

(2.68) (3.28) (1.29) (0.36) (0.39) (0.45) (0.55) (0.65) (1.27) (1.52)

13.94 3.57 0.91 0.20 0.21 0.38 1.08 0.74 1.62 2.47

CVX

� 3
(14.52) (3.37) (0.77) (0.17) (0.19) (0.38) (0.93) (0.65) (1.50) (2.32)

1.05 0.56 0.44 0.23 0.30 0.35 0.17 0.09 0.77 9.52 -2
(2.31) (1.26) (1.06) (0.56) (0.67) (0.79) (0.30) (0.20) (1.85) (26.06)

26.28 25.20 23.66 15.88 15.08 14.71 6.59 8.60 38.00 33.57
-1

(1.21) (1.17) (1.11) (0.75) (0.70) (0.68) (0.33) (0.41) (1.84) (1.64)

14.29 14.92 15.39 23.40 24.95 25.99 36.04 40.24 8.35 7.60
1

(0.66) (0.69) (0.72) (1.08) (1.15) (1.18) (1.73) (1.94) (0.40) (0.36)

0.37 0.25 0.18 0.32 0.48 0.97 11.09 0.56 0.06 0.15

XOM

� 2
(1.03) (0.73) (0.51) (0.95) (1.46) (3.03) (41.51) (1.69) (0.17) (0.31)

Total 1.15 4.85 22.27 22.37 4.79 1.15 0.43 21.22 21.42 0.34

IBM XOM

 -3 -2 -1 1 2 � 3  -2 -1 1 � 2

0.90 0.52 0.41 1.28 3.91 13.50 2.33 1.65 1.15 1.28 -3
(0.71) (0.39) (0.27) (0.89) (3.06) (12.35) (1.59) (1.10) (0.80) (0.85)

2.32 2.22 2.31 5.88 13.09 10.42 4.41 4.60 3.42 2.97
-2

(0.53) (0.51) (0.52) (1.35) (3.11) (2.51) (1.01) (1.04) (0.78) (0.68)

11.85 14.06 18.30 26.80 20.17 15.43 13.45 16.69 13.90 10.29
-1

(0.67) (0.79) (1.03) (1.50) (1.13) (0.86) (0.75) (0.93) (0.77) (0.57)

13.91 19.95 27.15 17.96 14.31 11.09 10.19 13.00 17.88 16.31
1

(0.77) (1.11) (1.51) (1.01) (0.80) (0.62) (0.56) (0.72) (0.99) (0.90)

11.21 13.40 5.61 2.11 2.21 2.43 2.81 3.16 4.61 4.50
2

(2.78) (3.28) (1.32) (0.48) (0.51) (0.57) (0.68) (0.74) (1.07) (1.08)

13.71 4.37 1.24 0.40 0.50 0.74 1.57 1.15 1.73 2.61

IBM

� 3
(11.53) (3.34) (0.83) (0.26) (0.33) (0.49) (1.15) (0.77) (1.17) (1.66)

0.84 0.59 0.41 0.28 0.39 0.51 0.34 0.15 0.94 10.72 -2
(1.57) (1.19) (0.78) (0.57) (0.74) (0.91) (0.54) (0.28) (1.86) (23.23)

25.64 25.54 24.88 20.44 19.80 20.18 9.78 12.64 43.86 39.73
-1

(1.00) (1.00) (0.97) (0.80) (0.77) (0.79) (0.38) (0.50) (1.72) (1.57)

19.18 19.03 19.45 24.54 25.25 24.92 42.83 46.28 12.40 11.38
1

(0.74) (0.74) (0.75) (0.95) (0.98) (0.96) (1.67) (1.80) (0.48) (0.44)

0.44 0.32 0.23 0.33 0.37 0.78 12.31 0.68 0.11 0.21

XOM

� 2
(0.88) (0.80) (0.55) (0.83) (0.94) (1.81) (37.45) (1.63) (0.25) (0.45)

Total 1.45 4.39 17.96 18.04 4.28 1.49 0.53 25.60 25.82 0.43

Notes: Conditional probabilities leverage represents the ratio of the conditional occurrence probability of event
type k given the last occurrence of event type l and the unconditional probability of each type of events.
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Table 3.4: Empirical results of pair-wise interdependence for six selected DJIA stocks (continued).

AAPL AXP

 -3 -2 -1 1 2 � 3  -3 -2 -1 1 2 � 3

0.55 0.30 0.24 0.74 2.64 15.55 1.70 0.80 0.57 0.39 0.69 1.00 -3
(0.74) (0.46) (0.32) (0.98) (4.33) (34.64) (2.30) (1.26) (0.86) (0.52) (0.96) (1.51)

2.72 2.16 2.32 7.02 21.42 18.64 7.32 5.35 4.26 3.30 4.41 5.61
-2

(0.53) (0.39) (0.42) (1.30) (4.32) (3.88) (1.45) (1.01) (0.77) (0.60) (0.81) (1.06)

17.71 18.96 26.42 51.46 43.11 33.64 31.59 33.36 33.90 28.83 27.60 26.74
-1

(0.48) (0.52) (0.72) (1.40) (1.17) (0.92) (0.86) (0.91) (0.92) (0.78) (0.75) (0.73)

31.64 42.03 51.13 25.86 18.88 18.35 26.69 28.49 29.43 34.86 34.26 32.42
1

(0.86) (1.15) (1.40) (0.71) (0.52) (0.50) (0.73) (0.78) (0.81) (0.96) (0.94) (0.89)

20.53 22.42 7.16 2.08 2.12 2.48 5.76 4.58 3.72 4.86 5.67 7.14
2

(4.16) (4.46) (1.31) (0.37) (0.39) (0.48) (1.06) (0.85) (0.66) (0.87) (1.04) (1.34)

16.52 3.20 0.74 0.22 0.29 0.56 1.00 0.84 0.49 0.69 1.02 1.50

AAPL

� 3
(35.50) (4.99) (0.93) (0.28) (0.41) (0.75) (1.20) (1.16) (0.62) (0.88) (1.49) (2.35)

0.89 0.48 0.31 0.25 0.32 0.54 0.31 0.18 0.11 0.36 1.36 5.56 -3
(3.51) (1.52) (0.98) (0.75) (1.03) (1.72) (1.93) (0.53) (0.32) (1.03) (5.26) (26.73)

1.19 1.19 1.06 0.82 0.82 0.92 1.03 0.86 0.73 2.03 5.78 4.45
-2

(1.15) (1.16) (1.01) (0.77) (0.78) (0.94) (1.03) (0.87) (0.66) (1.97) (6.04) (4.67)

4.26 4.98 5.56 4.24 3.34 2.47 6.63 7.45 9.14 15.27 10.35 7.69
-1

(0.74) (0.86) (0.96) (0.74) (0.58) (0.44) (1.24) (1.38) (1.68) (2.74) (1.87) (1.39)

2.61 3.19 4.06 5.88 5.31 4.73 7.91 11.19 15.51 8.70 7.89 6.45
1

(0.44) (0.55) (0.70) (1.01) (0.92) (0.80) (1.42) (1.97) (2.74) (1.58) (1.44) (1.20)

0.79 0.79 0.75 1.12 1.28 1.40 4.97 5.62 1.81 0.62 0.81 1.26
2

(0.85) (0.75) (0.73) (1.09) (1.28) (1.38) (5.24) (5.93) (1.73) (0.57) (0.75) (1.31)

0.59 0.29 0.24 0.33 0.48 0.72 5.09 1.26 0.32 0.10 0.15 0.20

AXP

� 3
(2.05) (0.92) (0.76) (1.05) (1.67) (2.76) (23.52) (4.62) (0.97) (0.33) (0.48) (0.64)

Total 0.77 5.44 36.69 36.44 5.52 0.81 0.33 1.06 5.75 5.83 1.04 0.32

CVX V

 -3 -2 -1 1 2 � 3  -3 -2 -1 1 2 � 3

0.42 0.27 0.21 0.88 2.97 12.29 2.68 1.41 0.90 0.70 1.02 1.58 -3
(0.49) (0.32) (0.22) (0.90) (3.35) (14.22) (2.95) (1.55) (0.99) (0.76) (1.07) (1.65)

2.12 2.01 1.83 5.51 13.85 10.63 5.47 4.74 3.94 3.05 3.35 3.58
-2

(0.54) (0.51) (0.46) (1.36) (3.38) (2.70) (1.40) (1.19) (0.99) (0.75) (0.83) (0.87)

10.80 12.53 17.03 29.63 21.77 17.47 13.65 15.95 17.34 14.72 12.09 11.17
-1

(0.59) (0.68) (0.93) (1.58) (1.17) (0.94) (0.74) (0.86) (0.94) (0.78) (0.65) (0.58)

16.73 22.55 30.08 16.49 13.34 10.79 10.54 12.24 14.21 18.07 16.63 13.80
1

(0.90) (1.20) (1.60) (0.89) (0.72) (0.59) (0.55) (0.65) (0.75) (0.97) (0.89) (0.74)

11.35 13.79 5.43 1.60 1.90 2.28 3.92 3.37 3.02 4.04 4.94 5.46
2

(2.88) (3.46) (1.34) (0.41) (0.48) (0.61) (0.99) (0.84) (0.76) (1.02) (1.27) (1.38)

12.10 3.21 0.83 0.20 0.23 0.29 1.49 1.07 0.69 0.97 1.54 2.51

CVX

� 3
(14.56) (3.60) (0.83) (0.21) (0.27) (0.28) (1.55) (1.14) (0.75) (1.05) (1.66) (2.96)

1.74 1.07 0.65 0.47 0.69 1.18 0.38 0.30 0.22 0.70 2.72 11.76 -3
(2.52) (1.49) (0.87) (0.65) (1.01) (1.97) (0.51) (0.42) (0.30) (1.06) (5.28) (27.05)

5.45 4.25 3.14 2.31 2.89 3.51 2.19 1.90 1.73 4.70 12.84 11.82
-2

(1.57) (1.24) (0.90) (0.67) (0.87) (1.06) (0.72) (0.57) (0.50) (1.46) (4.39) (3.99)

19.39 20.61 21.04 17.49 16.71 14.95 11.62 14.26 18.37 33.26 27.81 22.77
-1

(0.87) (0.92) (0.95) (0.79) (0.75) (0.67) (0.54) (0.66) (0.86) (1.56) (1.30) (1.07)

15.24 16.08 16.99 21.59 20.63 19.91 22.34 28.37 34.50 17.99 14.91 12.82
1

(0.68) (0.72) (0.76) (0.96) (0.92) (0.88) (1.01) (1.31) (1.60) (0.83) (0.69) (0.59)

3.61 2.91 2.33 3.17 4.04 4.91 13.24 13.52 4.49 1.58 1.87 2.35
2

(1.10) (0.88) (0.70) (0.92) (1.19) (1.46) (4.45) (4.57) (1.40) (0.47) (0.57) (0.72)

1.04 0.72 0.44 0.66 0.97 1.80 12.49 2.89 0.59 0.21 0.30 0.38

V

� 3
(1.62) (1.14) (0.63) (0.90) (1.36) (2.89) (33.02) (5.66) (0.87) (0.32) (0.44) (0.53)

Total 0.97 4.08 18.74 18.80 4.03 0.98 0.71 3.38 22.03 22.26 3.33 0.69

Notes: Conditional probabilities leverage represents the ratio of the conditional occurrence probability of event type k given the
last occurrence of event type l and the unconditional probability of each type of events.
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based on historical trade of other assets. Also inside each quadrant, we can further divide

into four sub-quadrants: the top-left (SQ1) and bottom-right (SQ4) indicate the excitements

between same-sign states, i.e. from a negative (positive) state to a negative (positive) state,

while the top-right (SQ2) and bottom-left (SQ3) are for the excitements between opposite

sign states, i.e. from a positive (negative) state to a negative (positive) state. Looking at

these (sub-) quadrants, we can shed light on the main characteristics of the multivariate

disjoint point processes as follows:

1. The interdependence is roughly similar across panels of different pairs of stocks and

is centre-symmetric in each quadrant.

2. In self-adjustment quadrants, Q1 and Q4, the significant excitements with remark-

ably high leverage ratios are in the sub-quadrants SQ2 and SQ3, which are composed

of opposite-sign states. This observation indicates that the predominant behaviour of

the price process is price reversion rather than price continuation.

3. Meanwhile, for cross-asset adjustment, Q2 and Q3, the significant excitements are in

the sub-quadrants, SQ1 and SQ4, composed of same sign states, which indicate the

tendency moving in the same direction of two price processes is higher than moving

in the opposite direction. This can be attributed to positive cross-autocorrelation or

lead-lag effects between assets.

4. Amongst the cells, the strongest excitements are between extreme states, e.g (AAPL,

 �3) ⌧ (AAPL, � 3); (IBM,  �3) ⌧ (IBM, � 3); (AAPL,  �3) ⌧ (IBM,  �3);

(AAPL, � 3) ⌧ (IBM, � 3) etc.

5. There are some stocks that consistently lead other stocks, for example, AAPL ! IBM,

AAPL ! AXP. The pairwise leverage ratio in the quadrants representing the impact

of AAPL on other assets is higher than in the quadrant representing the opposite

direction.

6. There is evidence of lead-lag correlations between assets belonging to different

groups, illustrated by strong leverage ratios in the Q2 and Q3 quadrants. These lead-

lag between-groups effects, i.e APPL ⌧ IBM, AXP⌧ V, CVX ⌧ XOM, are in general

stronger than the within-groups effects, i.e APPL ⌧ AXP, IBM ⌧ XOM, CXV ⌧ V.

In general, we can say that there exist temporal dependencies between states of disjoint

price change point processes. Some states stimulate the occurrence of states in the same

asset or in other assets, which can be seen as self-adjustment or cross-adjustment in the

model of Proposition 1. We will address these dependencies with the Hawkes processes

modelling approach in the next section.
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3.5 model calibration

3.5.1 Non-parametric estimation

The goal of this section is to specify a non-parametric Hawkes model for transaction price

data without postulating a specific form for an adjustment (decay) kernel. As we men-

tioned, the parametric specification tends to be oversimplified or even incapable of captur-

ing the adjustment kernel in some scenarios, e.g. the adjustment to information involves

regime-switching or information simply decaying periodically and in an oscillatory way.

In such a case, a data-driven and non-parametric approach is more appropriate to invest-

igate the ground truth of the kernel shape. In our study, non-parametric estimation give

point-wise excitements between disjoint observed discrete price states. On that ground, we

make inferences about the point-wise adjustment of price dynamics. The results also verify

the assumptions and selections of the excitement function that we previously chose for the

parametric estimation in a later section.

In the first step, we estimate the baseline intensities µk and the non-parametric kernel

matrix fkl of the conditional intensities in the Proposition 3 for K-dimensional Hawkes

point processes, which result from disjointing transaction data of pairwise stocks. Since the

Hawkes conditional intensities are an instantaneous representation of the autoregressive

observed price processes in the Proposition 2, we can retrieve the incremental of the noisy

signals from order flows, i.e. hddt, and the point-wise incremental of the adjustment kernel,

i.e. ydrdt, of the autoregressive price dynamics from the obtained estimation in the first

step. All estimations are employed on a daily basis, and we consider transaction time series

to be independent across trading days. Consequently, the estimation procedure described

previously is applied independently every day, and then the daily results are averaged to

get the final estimates.

3.5.1.1 The excitement kernel norms of disjoint price change states

Figure 3.3 shows the average estimate of the matrix-valued excitement kernel norms:

G = {Gkl}k,l2[1,K], Gkl = kfklk1 =
Z ∞

0
fkl(t)dt

We recall that the kernel fkl(t) is only the “bare” point-wise impact of a transaction of

state l on the likelihood of a transaction occurrence with state k. In order to account for

the impact associated with all the cascades triggered by some event, ones have to estimate

the kernel norms Gkl . The kernel norms Gkl illustrate the mean number of transaction

event states k triggered by a single transaction of state l, and measure the total of self-

excitation and cross-excitation between states. Furthermore, in the framework of our price

adjustment dynamics, the kernel norms also represent the total information on the true

underlying level that is retrieved from the trade occurring at one state. For the sake of

simplicity, we represent the norm values using a colour map with more intense blue cells

corresponding to higher kernel norms. In each cell, the value in the first line is the average
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Figure 3.3: Average excitement kernel norms
R ∞

0 Φ(t)dt amongst observed discrete price change states of
pairwise stocks.

Note: The top-left (Q1) and bottom-right (Q4) quadrants include the cells of excitement that are generated by the self-
adjustment conditional on the previous state of the asset per se. The top-right (Q2) and bottom-left (Q3) ones are of the
excitements from the cross-adjustment based on the historical trade of other assets. In each cell, the first line is the average
of the excitement norm over all trading days while the second one is the covariance of the norm.
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Figure 3.3: Average excitement kernel norm
R ∞

0 Φ(t)dt amongst observed discrete price change states of pair-
wise stocks (cont.)

estimate of kernel norms over all trading days, while the value in the second line is the

covariance.

As expected, the overall descriptive analysis in the previous section about the interde-

pendence amongst disjoint price change states is fairly well recovered by the shape of
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Figure 3.3: Average excitement kernel norm
R ∞

0 Φ(t)dt amongst observed discrete price change states of pair-
wise stocks (cont.)

the average kernel norm matrix. In particular, the four quadrants of any pairwise assets

are symmetrical across the centre. For instance, the kernel f(AAPL,�3)!(AAPL,�3) seems to

have the same norm as the kernel f(AAPL,�3)!(AAPL,�3). The blue colour of cells in the

quadrants Q1 and Q4 are stronger than in the other two quadrants Q2 and Q3. Larger ex-

citement norms between within-asset states indicate a stronger tendency of moving price

within one asset than of switching between cross-asset states. As such, the price adjust-

ment is mainly through revising information from the historical trades of the asset itself.

Furthermore, heavy blue cells in the leftmost and rightmost columns in each quadrant

display strong excitements originating from extreme states, i.e. � 3 and  �3. This feature

confirms that the extreme states carry large amounts of information and thus prompt large

adjustments in the price formation.

One can also notice that a striking feature appearing in all pairwise panels is the anti-

diagonal shape of the Q1 and Q4 quadrants and the diagonal shape of Q2 and Q3. The

former indicates that, on the one hand, one movement in the price mainly triggers another
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within-asset movement of similar or smaller magnitude, but with an opposite sign. This

within-asset exciting structure implies a strongly mean-reverting behaviour, which is the

main characteristics of the price dynamics in the market micro-structure and which is also

a potential source that prompts the absence of the price correlation between assets in the

long-range. On the other hand, the latter accounts for the influence of one asset’s state on

transaction intensity of states belonging to other assets. It is found to be less significant

to the former and clearly has an opposite pattern: a price move from one asset triggers a

price move of other assets in the same direction, i.e. an upward to an upward, a downward

to a downward. This co-movement of the assets can be attributed to the positive lead-lag

correlation. Also, we can notice smaller kernel norms in the cells that mark the impact

of opposite direction states between assets, e.g. G(XOM,�2)!(AAPL,1), G(XOM,�2)!(AAPL,�1).

This negative lead-lag correlation can arise as a consequence of combined effects of negat-

ive auto-correlation and positive contemporaneous correlation.

3.5.1.2 The cross-transaction lead-lag effects

A more detailed examination of lead-lag effects can be obtained by looking at the point-

wise price adjustment incurred by each transaction, i.e. ydr with d, r denoting the indexes

at asset level. In Figures 3.4 and 3.5, we plot the step-wise increments accumulated by the

adjustment kernel,
R ti+1

ti
ydr(u)du, within each step of duration ti+1 � ti = 10ms. Figure 3.4

illustrates the cross-adjustment increments from the trade of the cross-asset, and Figure

3.5 illustrates the self-adjustment increments incurred by the trade of the asset itself. The

shaded line denotes the 95% confidence interval. A nonzero estimate of the adjustment

kernel at positive (negative) step points implies the lead-lag relation at the transaction

level generated by the first (second) relationship displayed in the legend. As suggested

in the analysis of the excitement kernel norms, we find strong evidence of positive cross-

adjustment effects and negative self-adjustment effects in all selected pairs. Both cross-

and self-adjustments start from the highest magnitude of approximately 0.1 - 0.3 at the

first 10 ms and decay to zero over the support of about 150 ms. The strongest adjustments

are in the time range of 10 to 50 ms, which is significantly less than the average waiting

time of a trade (see Table 3.1). The magnitude and effective timescale of the adjustments

at the transaction level are relatively close to the relevant literature on lead-lag effects

using transaction data (see, e.g. Dao, McGroarty and Urquhart, 2018; Hayashi and Koike,

2019; Huth and Abergel, 2014). More importantly, the results on the effective timescale

confirm the inevitability of modelling transaction-by-transaction price dynamics and the

advantages of our model over the opposition of an aggregated price (see, in particular,

Buccheri, Corsi and Peluso (2020)). While aggregating prices destroy all correlations that

are exhausted at a rate higher than the sampling frequency, our model can account for true

short-term lead-lag correlations at the finest frequency of transaction level. Thus, the lead-

lag correlation between assets can be simply recovered by integrating for any arbitrary

interval.

We remind the reader that the adjustment kernel increments plotted in Figures 3.4 and

3.5 measure the point-wise price impact of a trade to other trades, and thus can be inter-
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preted as the information content of trade. On the one hand, it is clear from Figure 3.4

that the cross-asset information content is in an inverse relation with the liquidity level.

Figure 3.4: Average cross-adjustment of all the pairs formed by six selected stocks (non-parametric estimation).

Notes: Averages are computed overall the business days in the sample. The line shade denotes 95% confidence intervals.
Correlations at positive time points imply that the second asset displayed in the legend leads the first asset and the other
way around for negative time points.
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For instance, APPL is considered as the highest liquidity asset in term of the number of

trades from Table 3.1, but its trades convey little information to the price adjustment of

Figure 3.5: Average self-adjustment of all six selected stocks in different pair-wise relations (non-parametric
estimation).

Notes: Averages are computed overall the business days in the sample. The line shade denotes 95% confidence intervals.
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other assets compared to the impacts from other assets to AAPL’s price. Meanwhile, AXP

is the lowest liquidity asset and its trade contributes substantially to the price formation

of other assets. The small amount of cross-asset information contained in trades of liquid-

ity assets can be attributed to the extremely short duration between consecutive trades

(Wuensche, Theissen and Grammig, 2011). When fast trading prevails, there remains little

informational change additionally incorporated into trade. Accordingly, the information

role of trade is diminished. Also, to a lesser extent, it can be explained by the splitting of

meta-orders (Gomes and Waelbroeck, 2014)), which also lowers information content per

trade about the correlation with other assets.

On the other hand, Figure 3.5 illustrates that the trade of liquidity assets is in a pos-

itive correlation with the strength of self-adjustment. However, the negative strength of

auto-correlation indicates that the self-adjustment arises merely as a consequence of the

bouncing back and forth of the transaction price between bid and ask prices rather than

a true movement in the efficient price. And because of high trading intensity, this buying

and selling bouncing even dominates in magnitude the actual efficient price movements

and automatically generates strong negative auto-correlation in the trade sequences. Fur-

thermore, we also notice that the negative auto-correlation in the self-adjustment of one

asset remains approximately unchanged in different pairwise relations. This consistency

of autocorrelation can serve as a robustness check to verify that the self-adjustment effects

recovered by our models are not altered in relation to assets of different liquid levels. In

other words, the self-adjustment is independent of the cross-adjustment. Compared to the

cross-adjustment, the self-adjustments in Figure 3.5 are surprisingly not as strong as pre-

viously indicated by the analysis of kernel norms, but even weaker. This might be due to

the symmetric excitation of within-asset price change states, where the price reversal is

dominance. It, thus, leads to offsets between the within-asset excitements and diminishes

the auto-correlation.

3.5.1.3 The cross-asset lead-lag effects

Previously, we examined the adjustment effects across transactions, i.e. the impact from a

trade to the occurrence of other trades, which can be interpreted as the information content

of a trade. The comparison between liquidity levels and the strength of the adjustment ker-

nels shows that high-liquid assets have a low information content per trade. However, this

result cannot determine the lead-lag relationship at the asset level. One asset can be highly

informative per trade but low trading activity, and consequently, incurs a small aggregated

impact on prices of other assets. In the other way around, high liquidity asset with high

number of trade but low information content can stimulate a large price impact in total.

Thus, to uncover the lead-lag correlation at asset level, it is necessary to account for the

liquidity together with the cross-transaction information content. We consider the average

elapsed time between two consecutive trades as a proxy of liquidity and incorporate it into

the measure of cross-asset lead-lag effects by taking the ratio:

Lead-lag correlation =

R ∞

0 ydr(u)du
Average trade duration

(3.47)
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In the above equation, the liquidity of asset is described by the average inter-transaction

time between consecutive trades, which is also the inverse ratio of the number of trades

within a fixed time, i.e. one second in our context. Thus, the term “lead-lag correlation”

quantifies the average adjustment induced by one asset to the formation of the price of

another asset in one second. Figure 3.6 displays the daily dynamics of the one-second

lead-lag correlation for all pairwise assets, and Table 3.5 illustrates the average estimation

over all trading days. We also report in the table the statistics of two sample t-tests, which

test whether there exists a “leader” between two assets. It is clear from Figure 3.6 that all

lead-lag correlations are all nonzero with high significance. We also find strong evidence

of leadership from the results in Table 3.5. For instance, AAPL, the most heavily traded

asset, appears to be the most informative asset since it leads almost all the other assets.

In contrast, IBM and AXP are led by all other assets. The summary of results in Table 3.5

yields the following lead-lag order among all selected assets:

AAPL � XOM ! V � AXP � CVX ! IBM (3.48)

Table 3.5: The average daily estimate of the lead-lag correlation within one second for different pairwise assets
(non-parametric estimation).

Group I Group II Group III

AAPL IBM AXP V CVX XOM

Group I
AAPL 0.237 0.201 0.491 0.240 0.264(ns)

IBM 0.499**** 0.179** 0.303** 0.198* 0.204****

Group II
AXP 0.349**** 0.138 0.246(ns) 0.143(ns) 0.165***

V 0.769**** 0.233 0.221(ns) 0.223 0.243**

Group III
CVX 0.459**** 0.167 0.161(ns) 0.284* 0.492****

XOM 0.284(ns) 0.112 0.100 0.175 0.278

Notes: The column indexes denotes the leading assets and the row indexes are the lagged assets.
The value with superscript are the lead-lag correlation with significant leadership. The significant
levels are obtained based on the p-value of the two-sample t-test: ****:p  0.0001, ***:p  0.001,
**:p  0.01, *:p  0.05, and (ns):p > 0.05. The value without superscript denotes the correlation
provoked by the follower.

We note that, from Table 3.1, APPL is the highest liquid asset in terms of the number

of trades and the duration of trade, but CVX and IBM are not the least traded asset on

average. In fact, CVX, IBM, XOM, and V are relatively similar in the level of liquidity,

whereas AXP is the least liquid asset. It is surprising that XOM has much less liquidity

than AAPL but has a very similar lead correlation. There is no clear distinction about

the leader between these two assets. XOM seems to be highly informative and leads all

remaining assets, although the differences in liquidity are small. Similarly, the lead role of

AXP in relationships with CVX and IBM is not related to their liquidity levels, because CVX

and IBM are considered to have higher liquidity. Thus, the common empirical finding that

highly liquid assets are leaders is not always true in our analysis, and we draw a similar
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conclusion to the work of Buccheri, Corsi and Peluso (2020): The presence of lead-lag

correlation is not only due to its differences in the level of liquidity, which is expressed

in terms of trading activity, but also to the information content of trade that contributes

to the cross-asset price formations. We recall from Proposition 1 that the quote prices are

Figure 3.6: Self-adjustment of all six selected stocks in different pair-wise relations over all trading days in the
sample (non-parametric estimation).
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adjusted based on information retrieved from historical trades of not only the asset itself

but also other assets. The past price change of some stocks d could be more informative

and thus contribute a larger impact on the revision of other stocks r than other stocks r

have on themselves, which emerge from Ψdr
> Ψrd. Such differences, in turn, generate a

higher correlation on the “lead” side than on the “lag” side.

Clearly, there exists statistical evidence of lead-lag correlation between not only within-

group assets but also cross-group assets. On the one hand, in terms of lead correlation, i.e.

the correlation generated by one asset leading another asset, the cross-group effects are

generally weaker than within-group effects. From Table 3.5, AXP, CVX, IBM, and XOM (in

columns) exhibit the highest lead correlations in relation to within-sector assets. In other

cases, we observe smaller correlations. For instance, AXP-V > AXP-AAPL > AXP-IBM >

AXP-CVX > AXP-XOM. On the other hand, in terms of lag correlation, i.e. the correlation

in which one asset is led by another asset, the largest correlations are mostly from the

relationship with the most liquid asset, AAPL. The exceptional case is of group III assets,

energy sector, in which the largest lag correlations of CVX and XOM are still in relation to

within-group assets, XOM and CVX, respectively.

3.5.1.4 The exogenous information

In the next step, it is useful to investigate the remaining estimated component of the ob-

served price dynamics, η. We recall that while Ψ demonstrates adjustment processes of

endogenous lagged information, ηdt = γdYt determines the immigration of exogenous

information interpreted by the market maker. If η is well captured by the Hawkes system,

the process of η should follow a random walk. Figure 3.7 plots the estimate of normalized

η per second for each asset in different pairwise relations over all trading days. We can

notice that the estimation of η are roughly similar in relations with different assets. Table

3.6 provides some statistics of the estimated η and Jarque-Bera test, testing whether the

realization of the estimated η has the skewness and kurtosis that match a normal distribu-

tion. 5 The obtained test statistics confirm that it is not sufficient to reject the null of normal

distribution. This indicates that it is highly likely that the estimated η does not violate the

random walk assumption and thus verifies the robustness of our model.

3.5.2 Parametric estimation

From the previous section, we have identified some ground truth on the price dynamics

using non-parametric estimation of multivariate disjoint Hawkes processes. However, the

point-wise estimation of the adjustment kernel on the time grid by the non-parametric

method is not adequate under some circumstances, i.e. estimating the parametric covari-

ance matrix of multivariate price series (see Chapter 3), or forecasting extreme values (see

Chapter 5). And it is necessary to formulate the kernel over time with a fully paramet-

5 Because this test in a small sample is overly sensitive to extreme observation and consequently often rejects
the null hypothesis when it is true, we eliminate very few outliers, i.e. about 1-4 observations compared to
original sample of 61, before performing the test.
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ric model. It is obvious from the plot of non-parametric point-wise estimates in Figures

3.4 and 3.5 that the adjustment (excitement) kernel is likely to be fast-decaying and non-

increasing. The most potential candidates in the relevant literature are exponential decay

and power decay. In this section, we choose exponential decay for adjustment (excitement)

Figure 3.7: Estimated η normalized per second of each asset in different pairwise relation over all trading day.
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Table 3.6: Statistical testing for the random walk of exogenous information.

AAPL ⌧ AXP AAPL ⌧CVX AAPL ⌧ IBM AAPL ⌧ XOM AAPL ⌧ V

Sample size 61 60 61 60 61 59 61 59 61 60

Mean ⇥ 100 0.022 0.000 0.022 0.000 0.022 0.001 0.024 -0.003 0.022 -0.001

Std ⇥ 100 0.019 0.006 0.019 0.011 0.019 0.009 0.019 0.005 0.019 0.012

Skewness -0.124 -0.050 -0.109 0.140 -0.183 0.444 -0.125 0.521 -0.109 0.594

Kurtosis -0.907 1.659 -0.827 0.201 -0.867 0.568 -0.687 -0.004 -0.955 -0.183

JB-stat 2.354 5.101 1.985 0.205 2.354 2.277 1.501 2.565 2.531 3.532

p-value 0.308 0.078* 0.371 0.902 0.308 0.320 0.472 0.277 0.282 0.171

AXP ⌧ CVX AXP ⌧ IBM AXP ⌧ XOM AXP ⌧ V CVX ⌧ IBM

Sample size 60 59 59 59 60 57 61 60 59 59

Mean ⇥ 100 0.000 0.001 0.000 0.002 0.001 -0.002 0.000 0.000 -0.0006 0.001

Std ⇥ 100 0.006 0.010 0.005 0.007 0.006 0.004 0.007 0.010 0.010 0.007

Skewness -0.103 -0.456 0.020 0.108 -0.056 0.250 0.286 0.412 -0.499 0.603

Kurtosis 1.523 1.258 1.239 0.996 1.263 -0.031 1.644 -0.108 1.224 0.824

JB-stat 4.333 4.669 2.645 1.734 2.850 0.604 5.886 1.708 4.894 4.449

p-value 0.115 0.097* 0.266 0.420 0.241 0.739 0.053* 0.426 0.087* 0.108

CVX ⌧ XOM CVX ⌧ V IBM ⌧ XOM IBM ⌧ V XOM ⌧ V

Sample size 59 59 60 60 59 58 59 60 58 60

Mean ⇥ 100 0.003 -0.003 0.001 0.000 0.003 -0.003 0.002 0.000 -0.003 0.001

Std ⇥ 100 0.011 0.005 0.011 0.010 0.007 0.004 0.007 0.009 0.004 0.010

Skewness -0.060 0.641 0.242 0.395 0.505 0.240 0.183 0.201 0.470 0.295

Kurtosis 0.562 0.037 1.169 -0.208 1.066 -0.398 0.893 -0.360 -0.113 -0.250

JB-stat 0.458 3.846 2.933 1.691 4.276 1.053 1.586 0.845 2.124 1.094

p-value 0.795 0.146 0.231 0.429 0.118 0.591 0.453 0.655 0.346 0.579

Notes: We report the means and standard deviations of the estimated hd of the asset d in its pairwise relationship with other
assets, as well as the t-values and p-values for the Jarque-Bera test. The first (second) column of each pair illustrates the results
for the first (second) asset in the pair. The Jarque-Bera test measures if the estimated hd follows random walk. The rejection
levels are based on the p-value. ***, **, and * refer to rejections at 1%, 5%, and 10%, respectively.

kernels in our parametric estimation to take advantage of its simplistic likelihood function

(see Section § 3.3.2).

We remind the reader some of the parametric Hawkes terminologies from the previous

section: the strength of an excitement from type-l state to type-k state is measured by a

branching coefficient qkl = akl/bk and this excitement decreases exponentially over time ac-

cording to a decay function fkl(t) = akl bke�bkt, where akl is the impact coefficient and bk is

the decay coefficient. We note that if we estimate a full set of coefficients, the MLE does not

guarantee convergence as results of the non-convex likelihood function and excessive num-

ber of coefficients. Therefore, we first use grid search to determine the decay coefficients,

β, by the least-squares method. Then, the remaining parameters, i.e. baseline intensities µ

and impact coefficients α, are calculated by MLE. Because of the independence amongst

disjoint price change point processes, we can optimize the likelihood function correspond-

ing to each of them separately. Then, the parametric price adjustment at asset level, ydr(t)

can be recovered from the estimated excitement kernels by Proposition 3. The average of

these estimation over all trading days yields the final results.

The purpose of the study on parametric estimation is two-fold. On the one hand, it

serves as a robustness check to verify that the parametric estimation is in line with the

ground truth of non-parametric one, and thus confirms its validity. On the other hand, by
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examining the estimated kernel shape, i.e. the decay coefficients β, we can clarify some fun-

damental properties of the trade information: the life span of the information or the time

Figure 3.8: Average cross-adjustment of all the pairs formed by six selected stocks (parametric estimation)

Notes: Averages are computed over all business days in the sample. The line shade denotes 95% confidence intervals.
Correlations at positive time points imply that the second asset displayed in the legend leads the first asset and the other
way around for negative time points
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Figure 3.9: Average self-adjustment of all six selected stocks in different pair-wise relations (parametric estim-
ation).

Notes: Averages are computed over all business days in the sample. The line shade denotes 95% confidence intervals.

for a trade to be completely incorporated into the price and obsolete; and also, whether

this life span of information can be explained by the liquidity of assets.
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Figures 3.8 and 3.9 illustrate the estimate of the price adjustment ydr(t) on the asset

d incurred by a transaction of the asset r. The former shows the cross-adjustment effects,

which is the case of d 6= r, whereas the latter displays the self-adjustment effects with d = r.

We note that the two current figures in this section, 3.8 and 3.9, capture the development

of price adjustment over time, whereas the previous Figures 3.4 and 3.5 illustrate point-

wise estimates of the effect only, i.e. integrated price adjustment over each step of 10 ms.

Non-zero adjustment effects at positive (negative) points of the time axis imply lead-lag

relations at the transaction level in the first (second) pair displayed in the legend. The line

shade denotes the 95% confidence interval. As done in the previous non-parametric estim-

ation, it is interesting to study the cross-transaction lead-lag correlation through the para-

metric estimated adjustment kernel. The purpose of the study on parametric estimation is

two-fold. On the one hand, it serves as a robustness check to verify that the parametric

estimation is in line with the ground truth of non-parametric one and thus confirms its

validity. On the other hand, examining the kernel shapes, which are determined by decay

coefficients, clarifies the fundamental properties of trade information: how the impact or

the information content of a trade is decayed and then how long that information is to be

completely incorporated into the price and obsolete; and more importantly, whether this

lifespan of information is explained by the liquidity of assets.

Table 3.7: Average daily parametric estimation of lead-lag correlations within one second for different pairwise
assets (parametric estimation).

Group I Group II Group III

AAPL IBM AXP V CVX XOM

Group I
AAPL 0.136 0.118 0.271 0.139 0.147

IBM 0.362**** 0.088(ns) 0.171** 0.105(ns) 0.106***

Group II
AXP 0.257**** 0.077(ns) 0.146** 0.076 0.086**

V 0.524**** 0.123 0.111 0.117 0.117(ns)

Group III
CVX 0.341**** 0.091(ns) 0.083(ns) 0.161** 0.287****

XOM 0.219** 0.061 0.054 0.099(ns) 0.165

Notes: The column indexes denotes the leading assets and the row indexes are the lagged assets. The
value with superscript are the lead-lag correlation with significant leadership. The significant levels
are obtained based on the p-value of the two-sample t-test: ****:p  0.0001, ***:p  0.001, **:p  0.01,
*:p  0.05, and (ns):p > 0.05. The value without superscript denotes the correlation provoked by the
follower.

From Figures 3.8 and 3.9, we notice that taking the integration of adjustment kernels

over the interval of 10 ms yields relatively similar results obtained by the non-parametric

estimation. In other words, imposing the parametric formulation of exponential decay

to adjustment (excitement) kernels does not change significantly the estimation of lead-

lag effects, and our conclusion remains unchanged between the two estimation methods.

Indeed, by looking at Table 3.7 and Figure 3.10, a very similar result on the order of lead-

lag relationship is obtained:

AAPL ! XOM ⌧ V ! AXP ⌧ CVX ⌧ IBM (3.49)
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Similar to non-parametric estimation, the order of lead-lag relationship confirms that

the liquidity level is not only the factor demonstrating the presence of lead-lag correla-

tions but also the information content of trade. However, in this parametric estimation,

the liquidity plays another role in determining the extent over which the correlation exists

Figure 3.10: The lead-lag correlation within one second for different pairwise assets over all trading days
(parametric estimation).
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beyond contemporaneity. We remind the reader that the lead-lag correlation arises as the

consequence of the imperfect lagged adjustment: the price errors are adjusted by revising

signals of historical trades, but the adjustments take time to incorporate fully the informa-

tion content of trade. Otherwise stated, the trade information and its impact on prices have

a lifespan. And it is the difference in the liquidity or transparency level between assets that

the information has a different speed of dissemination and thus a different lifespan.

Table 3.8 reports the the average estimated decay coefficients of all assets over all trad-

ing days and pairwise relationships. We notice that AAPL and XOM, which is proven to

be highly informative securities by leading other assets, have the lowest decaying coeffi-

cients. In addition, the speed of decay increases with the liquidity of the asset. In other

words, the trade information of low-liquid assets takes more time to be assimilated and

incorporated into the price of high-liquid assets. This result can plausibly be explained in

that the transmission of information between assets is influenced by the level of liquidity

and the high liquid assets with a high level of transparency enables a faster transmission

of information. Indeed, highly transparent assets reduce the risk of adverse selection and

the market makers are more confident in initiating an adjustment when receiving a signal

from historical trades of these assets.

Table 3.8: The means and standard deviations of the estimated decay parameters bd for the asset d.

Group I Group II Group III

AAPL AXP CVX IBM XOM V

Mean 117.8 152.1 148.3 151.2 124.4 146.6

Std 10.8 28.6 25.3 20.6 25.0 17.6

Therefore, it is the life span of trade that the information are disseminated gradually

and give rise to the temporal existence of cross-correlation, which is termed as the lead-lag

correlation. In non-synchronous trading, the contemporaneous correlation is often con-

sidered to vanish, which is documented as Epps effects. And the existence of lead-lag

effects beyond the contemporaneous time confirms the inevitability of our framework for

multivariate price dynamics at transaction-by-transaction level.

3.6 conclusion

In this chapter, we extend standard univariate models of lagged price adjustment to a

multi-asset framework, in which asymmetric information and lagged adjustment are form-

ally taken into account. Lagged adjustment emerges in our framework as a revision of

trades to adjust pricing errors caused by asymmetric information. By assuming that lagged

adjustment is not perfect and it takes time to incorporate fully the information from trades,

we introduce into the model a new feature of the trades: the recovered information from

trades has a lifespan and it decays over time. The lead-lag effects naturally arise as a con-

sequence of price revision, which is conditional on not only trades of the asset itself but

also trades of other assets. The strength of adjustment induced by the trades of other assets

is determined by non-zero non-diagonal coefficients in the lagged adjustment matrix Ψ.
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The dynamics of an auto-regressive observed transaction price can be represented as

multivariate disjoint price change point processes. By foregoing the precise specification

of the joint distribution between the price and the time of trades, the disjoint representation

allows us to focus on the evolution of transactions associated with a finite number of the

most frequent price change states. The disjoint price change dynamics then can be cast

into the multivariate Hawkes processes. As a byproduct of the interdependence between

disjoint discrete price change states, we obtain the estimate of the observed price dynamics

that are robust to non-asynchronous trading and microstructure noise.

The model is tested on a cross-section of DJIA stocks. It is first estimated non-

parametrically and the point-wise estimation sheds light on the shape of the parametric

adjustment kernel. The exponential decay function that satisfies all the required assump-

tions about the adjustment kernel shape was chosen for parametric estimation. At the

price change level, the estimation of the model is in line with descriptive analysis, and the

calibrated model seems reasonable from an economic perspective. e.g. the dominant price

movement is to switch amongst within-asset states, and the adjustment of prices is mainly

driven by the information of the historical trades on the asset itself rather than on the cross

assets. The within-asset excitements implies a strongly mean-reverting behaviour, whereas

the cross-asset excitements indicate the co-movement of asset returns in the extreme states.

At asset level, the analysis provides empirical evidence for the existence of a multi-

asset price formation mechanism. In particular, we find significant cross-transaction effects

between assets, that is the impact incurred by a trade to other trades or the information

content of the trade about prices. And it is the lifespan of this trade information giving

rise to the existence of temporal (lead-lag) cross-correlation, which vanishes in contempor-

aneous time of asynchronous trading. Such lead-lag correlation is then normalized by the

factor of average duration to measure the lead-lag relationship between assets. The results

obtained confirm the common empirical finding that highly liquid assets often play the

leader roles. However, there exist some significant exceptions of some low liquid assets,

which contain highly informative trades and carry more information about prices, leading

other stocks with higher levels of liquidity. The results also find that lead-lag correlations

are exhibited not only between assets within a sector but also between assets from different

sectors, though with a smaller strength of correlation.

Finally, with the available parametric specification, it might be tempting to use our

model for building a new measure of covariance matrix that accounts for the temporal

lead-lag correlation. However, at transaction-by-transaction level the observed prices are

presumably seriously biased by market micro-structure noise and this has to be handled

with care. Also, with significant evidence of extreme return co-movement, there will be

promising empirical applications on developing a tail risk measure using our framework.
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E S T I M AT I O N W I T H M A RT I N G A L E

R E P R E S E N TAT I O N O F H AW K E S I N T E N S I T Y

Abstract

In this chapter, we propose a novel estimator of second-order moment structure of asset

returns, combining two well-established approaches towards high-frequency volatility

measures, that is, quadratic covariation and point process-based approaches. On the

one hand, with its parsimonious parametric structure based on conditional intensity,

which is the core of point process approach, our model preserves superior features of

univariate point process-based volatility estimators in addressing salient properties of

ultra-high-frequency data. On the other hand, the model is defined within a generic

temporal cross-(auto)covariation structure of the quadratic covariation approach, facil-

itating the estimation of cross-correlation between assets. To some extent, our novel

intensity-based variance-covariance matrix estimator is not affected by spurious correl-

ations and Epps effects, in contrast to quadratic covariation estimators, and accounts

for simultaneously lead-lag effects and endogenous times in asynchronous trading. In

addition, with a parametric structure, the estimator has the ability to provide inference

on local volatility over relatively short intraday intervals, overcoming the limitations of

convergence property ensuring consistent realized volatility measures on such periods.

We test the robustness of the estimator with extensive Monte Carlo simulations.

Keyword: Variance-covariance matrix, quadratic covariation, Hawkes process, intensity-

based volatility, lead-lag effects, asynchronous trading.
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4.1 introduction

Over the past two decades, the literature on modelling the second-order moment structure

of asset returns has taken a step forward by harnessing high frequency data. A new ap-

proach, “realized” volatility, introduced by Andersen et al. (2001), Andersen et al. (2003)

and Barndorff-Nielsen and Shephard (2002b, 2004), has transformed the measure of (co-

) variation of asset prices by exploiting information on fine-grained returns. Conditional

volatility is no longer a latent variable, but observable, and thus has led to a considerable

improvement in our understanding of the data generating process.

The realized volatility is simply estimated by summing all intraday high frequency re-

turns sampled at very short intervals. The basic idea is that if the sample path of volatility

is continuous, then increasing the sampling yields arbitrarily precise estimates of volatility

at any given point in time. In other words, the realized volatility relies exclusively on the

large sample size of high frequency returns to ensure the efficiency and consistency of the

estimators. However, due to the necessity of solid sample size, the use of realized meas-

ures is often confined to the finest frequency of only daily integrated (co-)variation. For

short intraday intervals, such as an hour or 15 minutes, it is doubtful if the sample size

of the return is large enough to justify the applicability of the asymptotic of the realized

estimators Tse and Yang (2012). Hence, in spite of its simplistic nature, the implementa-

tion of realized volatility can raise subtle issues, especially, for high frequency or intraday

traders who often practise in a real-time basis with a very short investment horizon. Has-

brouck and Saar (2013) document that high-frequency traders can operate with a latency

of only a few milliseconds, while blinking an eye takes a few hundred milliseconds. Even

more extreme, Goldstein, Kumar and Graves (2014) report that it is possible to trade in a

microsecond environment.

This chapter is devoted to address this issue in the high frequency econometric literature

by developing a locally integrated covariation estimator. Our estimator, namely intensity-

based realized covariance (IRC), is built on the disjoint price change point processes for

multi-assets in the previous chapter. The IRC can be considered as a multivariate gener-

alization of the previous univariate realized volatility model based on the point process

approach, i.e. price duration-based volatility (PDV) (see Hong et al., 2021 for the most re-

cent study on PDV estimators). The latter were originally introduced by Engle and Russell

(1998) to account for serial dependency in the price duration process over a threshold,

of which the univariate instantaneous volatility was estimated as a by-product. Our mul-

tivariate generalization, the IRC, amalgamates both quadratic covariation and point pro-

cess approaches. It provides a general framework which not only preserves PDV’s superior

feature of providing intraday inference on local variation but also efficiently captures an

additional feature of second-moment structure in portfolio analysis: local cross-correlation

between assets.

Univariate volatility models based on the point process approach, PDV, were proposed,

among others, by Andersen, Dobrev and Schaumburg (2009), Engle and Russell (1998),

Gerhard and Hautsch (2002), Hong et al. (2021), Li, Nolte and (Lechner) (2018), Li, Nolte
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and Nolte-Lechner (2015) and Tse and Yang (2012). The theoretical concept underlying

these models is that by modelling price duration, i.e. the waiting time to generate a cer-

tain change in the price process, the instantaneous volatility can be represented as the

product of the conditional price intensity, i.e. the inverse of price duration, and the price

change threshold. These estimators have been neglected in the literature, despite being

very simple to implement and Andersen, Dobrev and Schaumburg (2009), Hong et al.

(2021) and Tse and Yang (2012) documenting their very nice performance against realized

volatility estimators. As pointed out by Tse and Yang (2012), this estimator enjoys a full

parametric assumption for the dynamic price duration process, which can improve the

estimator in the manifold. First, data beyond the volatility estimation window can be used

to improve the estimated parameter, which in turn leads to a more precise volatility estim-

ation. Second, according to Li, Nolte and Nolte-Lechner (2015), the parametric structure of

the ACD models facilitates the inclusion of other market microstructure covariates, which

not only can further improve the quality of volatility estimation, but also provides a frame-

work for analyzing the relationship between volatility and other market microstructure

covariates at the high frequency level. Moreover, with a parametric assumption, not only

an integrated variance estimator, but also a local volatility estimator (intraday volatility or

real-time volatility) can be obtained, as opposed to realized volatility. However, this estim-

ator did not receive equal attention as the realized volatility-type estimators, partly due to

its confinement of only univariate variation estimation.

Nevertheless, many interesting economic questions can only be addressed using mul-

tivariate models. Although the PDV estimators seem particularly well suited for estimat-

ing univariate variation, it is difficult to extend them to a multivariate framework. The

reason lies in the nature of price duration volatility: on the discreteness of price duration

and on the non-decreasing monotone of integrated volatility. First, the discreteness of price

duration allows only fixed path conditional intensity, which is unable to update new in-

formation arrivals within waiting times, and deters the price duration models from captur-

ing co-volatility in a setting with asynchronous tradings (Russell, 1999). Second, the price

duration volatility model must rely on the non-decreasing monotonic property of the in-

tegrated volatility to construct a renewal point process in the integrated variation time (Li,

Nolte and (Lechner), 2018). Within a multivariate framework with another concern of co-

variation (co-volatility), the non-decreasing monotone is no longer valid. Furthermore, the

estimation of covariation is even more challenging due to the so-called non-synchronous

trading effect. As pointed out by Buccheri, Corsi and Peluso (2020), Dao, McGroarty and

Urquhart (2018), Epps (1979), Huth and Abergel (2014) and Large (2007b), price-relevant

information arrives at different frequencies for multiple assets, and information related

to one asset can affect the price formation process of another asset, thus inducing addi-

tional microstructure effects among them, the so-called stale prices and temporal lead-lag

effects. The point process approach-based covariation estimation, thus, needs to be tailor-

made to overcome the limitations of univariate estimators and to mitigate the impacts of

asynchronous trading in the multivariate case.
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Motivated by the robustness of disjoint price change point processes in modelling mul-

tivariate price dynamics (see Chapter 3), we continue to apply this approach to estimate

integrated (co-)variation for multiple assets in our IRC. Instead of modelling a discrete

duration of only the transaction price truncated over a threshold, the IRC utilizes mul-

tivariate Hawkes processes to model, in continuous settings, conditional intensities of all

possible observed discrete states of price change, taking advantage of discreteness of the

high frequency transaction-by-transaction price and a finite number of price change states.

We also establish the link between the theory on quadratic covariation of asset returns and

that on the second-order moment structure of the point process. In detail, the conditional

quadratic covariation of semi-martingale prices is reformulated as a sum of conditional

(cross-)autocovariance between disjoint price change point processes. Then, under a mar-

tingale representation of conditional intensity, a parametric structure of the conditional

(cross-)autocovariance can be obtained and expressed in terms of the estimated paramet-

ers from the multivariate Hawkes process.

The mapping between the quadratic covariation of asset returns and the point processes

of disjoint price changes is placed under a noise-contaminated semi-martingale hypothesis

for the observable transaction price. The microstructure noise, justified economically in our

framework, may simply arise as a consequence of bid-ask bound effects and trading on the

spread. And by a reasonable assumption that the microstructure noises are only updated

at transaction times and independent of the efficient prices, we propose an efficient way,

also based on the intensities of the disjoint point processes, to estimate directly the bias

incurred by the noises, which complements the robustness of our IRC estimator.

The structure of this chapter is as follows. Section § 4.2 briefly discusses the theory of

quadratic covariation and links to integrated covariance. In Sections § 4.3 and § 4.4, we put

forward the theoretical framework for the IRC estimator. § 4.5 present the simulations and

analysis of the results. Finally, § 4.6 concludes.

4.2 quadratic covariation and integrated covariance

We start with conditions on the price processes and introduce the theory of quadratic

covariation, which is akin to integrated covariance. We assume a D-dimensional vector

of latent semi-martingale true underlying values or efficient prices which is driven by

Brownian shocks. Postulating the semi-martingale assumption on the efficient prices is

natural and consistent with classical continuous-time modeling in finance (see, e.g. Duffie,

2010). These Brownian semi-martingale efficient prices evolve on a rich enough filtered

probability space (ΩY,F , (Ft)t�0,P), where, in particular, (Ft) ✓ F is an increasing family

of s-fields satisfying P-completeness and right continuity (Protter, 2013), and given by:

Yt =
Z t

0
Asds +

Z t

0
ΘsdWs, Σt = ΘtΘ

|
t (4.1)
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where t 2 [0, T], At is a D-dimensional vector of predictable locally bounded drifts, Θt is

a D ⇥ D-dimensional volatility matrix, and Wt is a D-dimensional vector of independent

Brownian motions. The interval [0, T] can be thought of as representing the trading day.

We wish to capture the erratic behaviour implied by Brownian dynamics, which is rep-

resented by the integrated covariance matrix IC =
R T

0 Σtdt. We note that the assumption

of Brownian semi-martingale efficient prices above admits the presence of leverage effects,

i.e. non-zero correlations between the efficient price Yt and the volatility Θt, but excludes

the discontinuous movements, or jumps. 1

For the sake of our forthcoming presentation about the link between quadratic covari-

ation and integrated covariance, we (temporarily) assume in this section that the noise is

completely modelled, and only the efficient prices remain. It is well established that if the

efficient prices behave as Brownian semi-martingale processes, then the integrated covari-

ance converges to the quadratic covariation, i.e. the summation of increasing finer sampled

cross-products of the efficient returns (see, e.g. Protter, 2013):

hY it := p - lim
h!0

T/h

∑
j=1

[Yjh � Y(j�1)h][Yjh � Y(j�1)h]
| (4.2)

As the properties of Brownian semi-martingale, there exists a unique decomposition of

efficient prices into the sum of two vectors of adapted right-continuous processes, one of

which has a finite variation path, and the other is a local martingale:

Yt = At +Mt (4.3)

where At 2 FV c,A0 = 0 and Mt is a multivariate stochastic volatility process that

satisfies the following:

Mt =
Z t

0
ΘsdWs

with the corresponding instantaneous covariance at time t is as:

Σt = ΘtΘ
|
t with

Z t

0
Σdr

s ds < ∞, 8t < ∞ and d, r 2 {1, ..., D}

Also, by the properties of the local martingale and the continuous finite-variation pro-

cess, the quadratic covariation process of Y equals the quadratic covariation of the martin-

gale components, that is, also the integrated covariance:

hY it =
Z t

0
Σsds (4.4)

This result holds regardless of the presence of jumps in the local martingale component

(see, e.g. Barndorff-Nielsen and Shephard, 2004). From Eqn. 4.2 and Eqn. 4.3, we obtain the

integrated covariance formulation of efficient price processes as their quadratic covariation:

1 In the presence of jumps, the problem of separating the continuous part from the jump part could be pre-
emptively tackled by pre-testing the data for jumps using jump identification tests that are able to locate the
position of jumps inside the day (e.g. Lee and Mykland, 2007). Our methodology can then be applied to the
resulting jump-filtered series.
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IC =
Z T

0
Σsds = p- lim

h!0

n=T/h

∑
i=1

[Yjh � Y(j�1)h][Yjh � Y(j�1)h]
| (4.5)

The quadratic covariation is pivotal in financial economics (see, e.g. the reviews by An-

dersen, Bollerslev and Diebold, 2010; Barndorff-Nielsen and Shephard, 2007) and we thus

take Eqn. 4.5 as defining the target that we are interested in estimating. Andersen et al.

(2001), Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2002b, 2004), amongst

others, suggest constructing an artificially regular spaced high frequency returns time

series by choosing a sufficiently small fixed time interval h, J = T/h, and the ex-post

integrated covariance can be estimated by a “realized” covariance (RC) matrix:

RC(J) =
J�1

∑
j=0

[Y(j+1)h � Yjh][Y(j+1)h � Yjh]
| (4.6)

However, the transaction prices we observe, in reality, are not the efficient prices, Yt, but

the ones, Xt, which are contaminated by market microstructure noises, Ut:

Xt = Yt +Ut (4.7)

Furthermore, due to asynchronous trading, only a component of Xt corresponding to

the traded asset is observed at each time t, while the movements of the remaining assets

are not observable. The transaction timestamps are not regularly spaced and are not syn-

chronous between assets. Thus, the realized quantities that can be estimated from high

frequency data are not confined to quadratic covariation. There is an upward bias on the

realized variation due to the market microstructure noise and a downward bias on the

realized covariation due to the asynchronicity in a multivariate framework. These two

biases can partially or even fully offset the incremental benefits of using intraday inform-

ation, and hence may render the use of high-frequency data practically unattractive. Due

to them, it may not be appropriate to apply directly pioneer realized covariance models to

transaction-by-transaction data, but necessarily involve data cleaning procedures. The tick-

by-tick returns can be substantially resampled to an optimal but much lower frequency of

minute-by-minute or second-by-second at best (see Andersen and Bollerslev, 1997; Bandi

and Russell, 2008; Bandi and Russell, 2006; Corsi, Peluso and Audrino, 2014; Hansen and

Lunde, 2006a; Li et al., 2013; Liu, Patton and Sheppard, 2015); or they can be applied to

an artificial time scheme to pseudo-align observations (Barndorff-Nielsen et al., 2008, 2011;

Jacod et al., 2009; Podolskij and Vetter, 2009; Varneskov, 2016a,b). These paradigms can

improve the robustness and efficiency of the RC estimators, but they also come at the cost

of important information losses. The losses are due not only to removing substantial ob-

servations but also to neglecting and modifying the intrinsic value of a trade-characterized

variable: the transaction time. Indeed, it is widely documented that the transaction time is

not only irregular, but also endogenous and mutually dependent on the transaction price

(Dufour and Engle, 2000; Jacod, Li and Zheng, 2019; Li et al., 2013; Li, Zhang and Zheng,

2013). Moreover, pseudo-aligning observations additionally introduce spurious lead-lag

correlations or unnecessarily destroy true short-term lead-lag effects. (Buccheri, Corsi and

Peluso, 2020; Curme et al., 2015; Huth and Abergel, 2014).
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In the next section, we will propose a new volatility estimator, namely intensity-based

realized covariance (IRC), that has the important advantage of employing all the inform-

ation available in all the transaction price series, thereby making use of all the trades of

any asset and also accounting for the endogenous impact of trading times. Specifically, ac-

cording to the multi-asset price formation mechanism developed in the previous chapter

Chapter 3, we recognize that the information of each observed price series can contain

the information of the other series. By capturing the interdependence amongst assets in

the conditional intensity function, the IRC methodology pulls all the available multivariate

information in computing each single pair of covariance.

4.3 quadratic covariation and intensity based covariance estimator

4.3.1 Conditional Estimator of Quadratic Covariation

To spell out the foregoing model, let X be the D-dimensional vector of the transaction

price. Each component Xd is observed at 0  td
1, ..., td

Nd(T)  T that corresponds to the

transaction process of the asset d, with d 2 [1, D], and Nd(t) denotes the right continuous

counting function that counts the cumulative number of transactions in the point process

d up to time t. We also denote 0  t1, ..., tN(T)  T as the pooled point process of all

D-variate marginal point processes, which means N(t) = ∑
D
d=1 Nd(t) and the duration

between traded in the pooled transaction process is ti = ti+1 � ti, i 2 [1, N(T)].

As we indicated in previous sections, the efficient prices are not directly observable.

Instead, the actual observed prices are contaminated with market microstructure noises.

To facilitate the estimation of the integrated covariance from noisy observed prices, we

describe how the market microstructure noises take place and relate to the efficient prices

given in Eqn. 4.4 by making assumptions as follows:

(H1) The microstructure noises are only updated at exactly the times where there exists

the arrival of trades.

(H2) The microstructure noises are stationary, mutually independent, with mean zero, and

are also uncorrelated with the efficient price.

Assumption (H1) does not require that Ut exists for every t, in other words, our interest in

the microstructure noise is only at observation times ti. In Assumption (H2), we assume

a diagonal covariance matrix of microstructure noise, which means that the microstruc-

ture noises are not correlated across the assets. These settings on microstructure noise

have been studied in many pioneer models of realized volatilty (see Christensen, Kin-

nebrock and Podolskij, 2010; Voev and Lunde, 2006; Zhang, 2006, 2011; Zhang, Mykland

and Aït-Sahalia, 2005). Although Assumption (H2) may be empirically questionable due

to its simplistic nature, it greatly simplifies the methodological implementation of our

integrated covariance estimator. Also, it is feasible to generalize the noise covariance mat-

rix to the non-diagonal but with an additional computational effort. However, due to the
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intrinsic non-synchronicity of market microstructure noise, i.e. Assumption (H1), its em-

pirical covariance matrix tends to be approximately diagonal. In the later section § 4.5, we

will show with the simulation results that even if non-diagonal noise covariance elements

exist, the deterioration of the precision of the estimator is limited and does not affect its

ranking with respect to the competing estimators.

By the assumptions about the microstructure noise, the essence of the setups for the IRC

estimator is that the observed prices Xti are white noise-contaminated fluctuations around

the efficient price Yti and that contamination occurs only at exactly the time of transactions.

Thus, the mapping between the (co-)variation of the two prices can be obtained through

the conditional expectation given the information set generated right before the moment

that the noises are updated and lead to the departure from the efficient prices. To facilit-

ate the conditional expected estimation, we assume that the observed prices are generated

by filtration (Ht
�

, the s-algebra generated by (Xs)st. The link between the filtration of

two price components, by the independence of between the microstructure noises and the

efficient prices, is given as: H = F ⇥ G,Ht =
T

s>t
Fs ⇥ Gs where Gs is the s-algebra gen-

erated by exogenous microstructure noises (see Christensen, Kinnebrock and Podolskij,

2010). We do not observe the two information sets FT, GT separately, but the aggregated

one Ht, which reveals only information about the observed prices. The integrated covari-

ance matrix of the efficient price cannot be estimated directly, but through the information

of observed price processes. Denoting the instantaneous increments of the efficient price

as dY(t) = limd!∞ Yt+h �Yt, we can write the conditional expectation of integrated covari-

ance in Eqn. 4.5 as:

ˆICT = T[
Z T

0
Σ(u)du] =

Z T

0
u[dY (u)dY (u)|] (4.8)

where T[·], u[·] denotes the expectation conditioning on the observed price path at the

endpoint T and at the time point u, respectively. The change from T[·] to u[·] in the

third equality simply due to Hu ⇢ HT with u 2 [0, T] and dY (u) is Fu-measurable, so it

is Hu-measurable.

Estimation of the asset return covariance matrix for this efficient price plus noise model

involves two challenges. First, the contamination by microstructure noises can induce an

explosive behaviour in the estimated variation when the sampling frequency increases

(see Eqn. 4.9). Second, the non-synchronicity makes observation times rarely simultan-

eous and incurs additional microstructure effects amongst correlated assets, the so-called

stale prices, and temporal lead-lag effects (see Chapter 3). The proposed estimator must

be specified to mitigate the upward bias of the noise variation, also to capture cross-

contemporaneous and cross-temporal dependence with the observed price such that ad-

ditional microstructure features are taken into account, for example, bid-ask bounce ef-

fects (Roll, 1984), asymmetric information (Glosten and Milgrom, 1985), strategic learning

(Diebold and Strasser, 2013), and lead-lag information transmission (Buccheri, Corsi and

Peluso, 2020).

Inspired by the (cross-)autocovariation approach in the realized kernel (RK) estimators,

that is, the realized covariance is defined within the realized autocovariation structure (see,
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e.g. Barndorff-Nielsen et al., 2008, 2011; Varneskov, 2016a,b), we propose our estimator

having the structure as follows:

Proposition 4. Let Assumptions (H1) and (H2) be satisfied, and let h < T, we can rewrite Eqn. 4.8

as:

IRCT =
Z T

0

Z u+h

u
v[dX(u)dX(v)|]�

Z T

0
diag( u[dU (u)dU (u)|]) (4.9)

where diag(.) represents the matrix with only non-zero diagonal elements (d, d)-th.

Proof. For each v 2 [u, u + h], 8u 2 [0, T], we have:

T[dX(u)dX(v)|] = v[dY (u)dY (v)|] + v[dY (u)dU (v)|]+ (4.10)

v[dU (u)dY (v)|] + v[dU (u)dU (v)|]

By Assumption (H2) and the properties of the Brownian semi-martingale: dY (u) ?? dU (v)

8u, v; dY (u) ?? dY (v) 8u 6= v; and dUd(u) ?? dUr(v) 8u 6= v, d 6= r 8d, r 2 [1, D] (the

symbol ?? is used to denote stochastic independence). Therefore, we obtain the following

equation:

Z u+h

u
v[dX(u)dX(v)|] = u[dY (u)dY (u)|] + diag( u[dU (u)dU (u)|]) (4.11)

This gives us the complete proof of the Proposition.

Here, we redefine the conditional contemporaneous (cross-) covariation at each instant

time u, i.e. u[dX(u)dX(u)|], to be the integration of all conditional temporal (cross-)

covariation from the return at that instant time, v[dX(u)dX(v)|] over the bandwidth

interval, i.e. v 2 [u, u + h]. At different times within the bandwidth interval, the temporal

term is increasingly limited in covariation when the time difference v � u increases. The

temporal covariation of time differences greater than h, i.e. outside the bandwidth interval,

is assigned to be zero. In other words, the value of h demonstrates the extent to which

the covariation exists beyond contemporaneity. This temporal covariation is akin to cross-

transaction effects, that is, some (price move) information carried by a trade is also carried

by other trades due to lead-lag adjustment (see Chapter 3). And how long the trade lives in

the price formation processes, i.e. the lifespan of trade, gives rise to the temporal existence

of covariation, alongside contemporaneous covariation, which vanishes in asynchronous

trading settings according to Epps effects.

Although the first term of the IRC has a generic structure of (cross-) autocovariance, as in

RK estimators, there are some important differences. We consider a continuous estimator

that replaces the “orders” of autocovariance by the “time differences” of autocovariance.

The time differences determine the impact of a transaction on another transaction and thus

the strength of covariation between them. Meanwhile, the RK, in a discrete setting, weighs

the strength of covariation by a function of the difference in numerical orders between

observed returns (see, in particular, Barndorff-Nielsen et al. (2008)). However, the order

differences are not similar to the elapsed times between transactions. Indeed, the order

of return events is demonstrated by an observation pseudo-aligning scheme, that ignores
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the endogenous role of trading times and that can additionally introduce spurious cross-

transactions effects or unnecessarily exhaust these effects.

The second term, i.e. the de-noise term, in Eqn. 4.9 aims at estimating the second-order

moment of the noise. Because the noise covariance matrix is assumed to be diagonal, this

term is our concern only in estimating integrated variance. Therefore, we can separate

Eqn. 4.9 for the case of integrated variance and covariance as follows:

ˆIC
d,d
T =

Z T

0

Z u+h

u
v[dXd(u)dXd(v)]�

Z T

0
u[dUd(u)2] (4.12)

ˆIC
d,r
T =

Z T

0

Z u+h

u
v[dXd(u)dXr(v)] (4.13)

Utilizing the specifications of microstrucre noise in Assumptions (H1) and (H2), we can

rewrite the de-noise term for the case of integrated variance as:

T[
Z T

0
dUd(u)2] = T[ ∑

td
i T

(dUd(td
i ))

2] = ∑
td
i T

td
i
[(dUd(td

i ))
2]

= � ∑
td
i T

td
i

⇥

lim
d!0

[Xd(td
i + d)� Xd(td

i )][X
d(td

i )� Xd(td
i � d)]

⇤

= � ∑
td
i T

td
i

⇥

dXd((td
i )

+)dXd(td
i )
⇤

(4.14)

where (td
i )

+ = limh!0 td
i + h denotes the instant time immediately after td

i . The first and

second equality are due to the assumption that microstructure noises are updated only at

transaction times and equal to zero elsewhere, i.e. the transaction cost does not exist unless

there occurs a transaction. The remaining equality is due to the independence between the

microstructure noises and the efficient prices.

The intuition of the de-noise method in Eqn. 4.14: The estimation of the de-noise term is

essentially based on differentiating. Taking differences seems redundant if the time series

Ud
i

2 is observable. However, in our framework, the Ud is masked by the efficient price Yd,

and we can observe only Xd
i if the transaction occurs at td

i . A local deviation of the observed

price from the efficient price, e.g. at transaction td
i , can be considered as a temporary and

transitory jump. And after a transaction, the hidden price immediately reverts to its true

value before another jump in the next transaction. Taking differences in an instant d re-

moves the effect of the efficient price. The intuition of such a removal is that the increment

of the efficient price is much smaller than the jump of the noise under instantaneous time

change.

4.3.2 Intensity Based Estimator

In the previous section, the conditional integrated covariance of the efficient price is for-

mulated within the conditional temporal covariation structure of the observed price (see

2 We simplify the notation by denoting the subscript i as the transaction index of the variables and the super-
script d as the corresponding asset of that transaction, e.g. dUd

i . We use this notation interchangeably with
previous ones, e.g. dUd(td

i ).
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Eqn. 4.9 and Eqn. 4.14). Such conditional covariation arises as a consequence of strong

and often complex temporal dependence existing in the high-frequency transaction price.

Motivated by the robustness of the multivariate disjoint price change point processes in

modelling the transaction-by-transaction interdependence of multi-asset price dynamics in

Chapter 3, we continue to apply this approach to the observed transaction prices.

The intuition of the disjointing price change is that the movements of the observed

transaction price are restricted to take a handful of integer values that are multiples of a

smallest non-zero price change, i.e. tick 3. The modelling of finite multinominal probabilit-

ies associated with such disjoint price change states is feasible by the conditional intensity

approach of the Hawkes process without complex specifications on the multivariate dis-

tribution between asset returns and on the joint distribution between trading times and

price changes. The interdependence between multiple assets and between trading times

and price changes can be simply retrieved through temporal cross- and self-excitation in

the conditional intensity dynamics of disjoint price changes.

Following the notation in Chapter 3, we consider an K-dimensional vector of disjoint

point processes {Nk(t)}K
k=1 with K = ∑

D
d=1 Md where Md is the number of price change

states in the state space Md associated with the asset d. The strictly increasing observation

times of the k-th point process tk
1, tk

2, ..., tk
i , ..., indicate the timestamps corresponding to

the state xk. We also set Nk(t) as a right-continuous counting function which counts the

cumulative number of transactions in the point process k up to time t. This counting

function Nk(t) is characterized by its conditional intensity vector lk(t), which measures

the instantaneous quantity of event arrival in the point process k-th conditional on its

information set:

lk(t) = lim
dt!0

r{Nk(t)� Nk(t � dt) > 0|Ht}

dt
(4.15)

The information set Ht realizes the path of observed price processes that also includes

arrival times and transactions counts for all disjoint states. Following Bacry, Jaisson and

Muzy (2016), Engle and Russell (1998), Hawkes (1971), Hawkes and Oakes (1974) and

Russell and Engle (2005) among others, we impose some assumptions on the (ground)

transaction point processes:

(H3) Each ground transaction point process {Nd(t)}D
d=1 is assumed to evolve with “after

effects” and “conditionally orderly”, which leads to the following properties:

r{Nd(t)� Nd(t � dt) = 1|Ht} = ld(t)dt + o(dt) (4.16)

r{Nd(t)� Nd(t � dt) > 1|Ht} = o(dt) (4.17)

On the one hand, a ground transaction point process is considered to evolve with after-

effects if for any t > 0, the likelihood of occurring a transaction at t depends on the

3 The discrete minimum tick size is necessary feature of modern automated market to prevent an explosion of
messaging under the current market design and to constrain the liquidity cost of the market artificially. For
the complexity of price discreteness, we refer to Chao, Yao and Ye, 2017, 2018; Li, Wang and Ye, 2021; Yao and
Ye, 2018 among others
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sequence of transaction occurred only before but not after t, i.e. the interval [0, t). This

means that each past transaction only has impacts on the future transaction occurrence,

after its presence. On the other hand, a ground transaction point process satisfying con-

ditionally orderly is that, for a sufficiently short time interval, there exist at most one

transaction. In other words, conditioned on the information set up to t,Ht, the probabil-

ity of occurring two or more transactions is infinitesimally relative to the probability of

occurring one transaction. These two conditions in Assumption (H3) are fully consistent

with empirical properties of high frequency transaction data. In reality, the transactions,

indeed, are executed sequentially by matching bid and ask orders queuing in a limit order

book according to priority rules (see, e.g. Aquilina, Budish and O’Neill, 2021). Note that

Assumption (H3) avoids only the simultaneity in a single transaction process, but does not

prevent the possibility of simultaneous transaction occurrences between multiple assets.

However, our empirical findings on multiple asset transaction-by-transaction data show

that there is an insignificant number of simultaneous transactions between assets, espe-

cially for transactions that move price in our study. Therefore, it is appropriate to impose

the following assumption when converting the transaction point processes into the mul-

tivariate disjoint price change point processes.

(H4) Each disjoint price change point process evolves conditionally orderly with after-

effects. And the probability of simultaneously transaction occurrences between dis-

joint point processes are negligible, leading to the following properties:

r{[Nk(t)� Nk(t � dt)] = 1)|Ht} = lk(t)dt + o(dt) (4.18)

r{[Nk(t)� Nk(t � dt)] > 1|Ht} = o(dt) (4.19)

r{[Nk(t)� Nl(t � dt)][Nl(t)� Nl(t � dt)] � 1)|Ht} = o(dt) (4.20)

where k, l 2 [0, K], k 6= l indexing the component of K-dimensional vector of disjoint

price change point processes.

As a consequence of Assumption (H4), the counting increment of each disjoint point

process over an instant time takes only two values 0 or 1, and the realization of counting

function can be viewed as non-decreasing valued integer time series. The (Eqn. 4.15) can

be rewritten as:

lk(t) =
r{dNk(t) = 1|Ht}

dt
=

t[dNk(t)]
dt

(4.21)

where dNk(t) = limdt!0 Nk(t)� Nk(t � dt).

Thanks to representing the transaction price as disjoint price change point processes, we

can construct the observed price as follows:

Xd(t) = Xd(0) + ∑
k|mk2Md

Z t

0
mkdNk(u) (4.22)

where mk denotes a disjoint state of price change from the transaction price process of the

asset d.
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And the conditional first- and second-order moments of price increment over infinites-

imal time are:

u[dXd(u)] = ∑
{k : mk2Md}

u[dNk(u)]mk = ∑
{k : mk2Md}

lk(u)mkdu (4.23)

v[dXd(u)dXr(v)] = ∑
{k : mk2Md}

∑
{l : ml2Mr}

v[dNk(u)dNl(v)]mkml (4.24)

where u  v and k, l 2 [0, K]. We note that for d = r and u = v, which is the case of

conditional contemporaneous variation, we can rewrite Eqn. 4.24 as:

u[(dXd(u))2] = ∑
{k : mk2Md}

u[dNk(u)](xk)2 = ∑
{k : mk2Md}

lk(u)(mk)2 (4.25)

which has a similar formulation to the PDV estimator (Andersen, Dobrev and Schaum-

burg, 2009; Engle and Russell, 1998; Gerhard and Hautsch, 2002; Hong et al., 2021; Li,

Nolte and (Lechner), 2018; Li, Nolte and Nolte-Lechner, 2015; Tse and Yang, 2012). By im-

posing a parametric specification on the conditional intensity lk(u), both the IRC and PDV

enjoy the full parametric formulations. As aforementioned advantages in the introduction,

the parametric form assumption, speaking from a practical point of view, guarantees a

feasible estimation even for a short intraday interval, which contains a small number of

observations, and yields an estimate of local intraday volatility. These estimators can even

be better off using data beyond the estimation window or including other market micro-

structure covariates to improve the quality of estimates. Compared to realized volatility

estimators, non-parametric approach makes them relying exclusively on the sample size

to ensure the efficiency and consistency, and thereby, the estimation is often confined to

daily or higher frequency.

The IRC also has a number of important differences from the PDV. On the one hand, the

IRC accounts for variations from all observed states of price change, whereas the PDV con-

siders only one absolute state, a fixed price change threshold, to represent all movements

in the price process. That price change threshold plays a specific role of truncating small

variations, which is assumed coming from micro-structure noises, i.e. bid-ask bounce ef-

fects. The selection of such threshold is an empirically appropriate data-driven preference

rather than a theoretically optimized value (see, e.g. Hong et al., 2021). Therefore, the ap-

plicability of the PDV estimators is still questionable despite their easy implementation

and very nice performance against RV estimators. Our estimator, in a different way, treats

the bias of microstructure noise as separable quantities. Such quantities arise as the con-

sequence of temporary local deviations from the efficient prices at the time of transaction,

and thus can be directly estimated and subtracted from conditional temporal variations of

the signal-plus-noise process (see Eqn. 4.14. On the other hand, the IRC consists of both

contemporaneous and temporal (co-)variations, while the PDV focuses on only the contem-

poraneous part. To some extent (see Chapter 3), the temporal part accounts for the lead-lag

effects and compensates for the loss of the contemporaneous part incurred by asynchron-

ous trading, asymmetric information, and imperfect price formation. Therefore, the IRC
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is not only the multivariate generalization of the PDV estimator but also accommodates a

more general framework of price formation dynamics.

4.4 martingale representation and conditional covariance of point

processes

Taking Eqn. 4.12, Eqn. 4.13 and Eqn. 4.24 together, we have formulated the conditional in-

tegrated covariance in terms of the conditional first- and second-order moments of disjoint

price change transaction point processes. It remains to construct a closed-form of the point

process second-order moments. In order to do so, we will place ourselves in the context of

multivariate Hawkes point processes and discuss the martingale representation of condi-

tional intensity function, from which such closed-form of the point process covariance can

be derived.

4.4.1 Multivariate Hawkes Point Processes

The k-th component in the K-dimensional vector of conditional intensities, lk(t), measures

the instantaneous quantity of the event arrival of the k-th point process conditional on

its information set, and can be formulated as a linear combination of all past events that

occurred before t, not only in the k-th process, but also in the others:

lk(t) = µ
k +

k

∑
l=1

Z t

�∞
fkl(t � s)dNl(s) (4.26)

where {µk}k2[1,K] is a vector of exogenous intensities and {fkl(t)}k,l2[1,K] is a matrix-

valued decay kernel assumed to be positive and causal. By matrix representation and

using convolution notation, we can express the K-dimensional conditional intensity vector,

λ(t) = {lk(t)}k2[1,K] as:

λ(t) = µ+
Z t

�∞
φ(t � s)dN (s) = µ+ (φ ? dN )(t) (4.27)

where µ = {µk}k2[1,K], φ(t) = {fkl(t)}k,l2[1,K] are vector and matrix of sizes K and K ⇥ K

respectively. The operator ? stands for convolution.

Proposition 5. If point processes Nt satisfy Assumptions (H3) and (H4), the vector of conditional

intensities λ(t) has an unconditional mean vector Π as:

(λ(t)) = Π = ( � φ̂0)
�1µ (4.28)

where φ̂z = {f̂kl
z }k,l2[1,K] = {L{f̂kl}(z)}k,l2[1,K] = {

R ∞

0 e�ztfkldt}k,l2[1,K] denotes the Laplace

transform of the decay kernel matrix φ with the frequency parameter z.
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Proof. From the formulation of the conditional intensity, i.e. Eqn. 4.21, we have:

Π = (λ(t)) = (dN (t))/dt (4.29)

Combining with Equation (4.27), we get:

Π = µ+
Z t

�∞
φ(t � s)dsΠ = µ+

Z ∞

0
φ(s)dsΠ = µ+ φ̂0Π (4.30)

So, we obtain the following.

Π = ( � φ̂0)
�1µ (4.31)

where refers to a K ⇥ K identity matrix.

4.4.2 Martingale Representation of Hawkes Intensities

Bacry, Dayri and Muzy (2012) and Bacry and Muzy (2016) prove a martingale repres-

entation of λ(t) by using the Doob-Meyer decomposition to decompose the counting

processes N (t) into finite increasing predictable compensators, Λ(t), and martingale pro-

cesses, M (t). We follow a similar path as follows:

N (t) = Λ(t) +M (t) with Λ(t) =
Z t

0
λ(s)ds (4.32)

or:

dN (t) = λ(t)dt + dM (t) (4.33)

Then λ(t) can be formulated as a stochastic integration with respect to the martingale

processes (M (t))t�0:

Proposition 6. Let (M (t))t�0 be the martingale compensated process of (N (t))t�0, (λ(t))t�0

can be represented as a stochastic integral with respect to the martingale (M (t))t�0 as:

λ(t) = Π + (Φ ? dM )(t) = Π +
Z t

�∞
Φ(t � s)dM (s) (4.34)

where Φ(t) is defined as:

Φ(t) =
∞

∑
n=1

φ(t)(?n) (4.35)

with φ(t)(?n) refers to a nth-times auto-convolution of φ(t).

Proof. Substituting the decomposition of the counting function in Eqn. 4.33 into Eqn. 4.27,

we have the following:

λ(t) = µ+ (φ ? dN )(t) = µ+ (φ ? λ)(t) + (φ ? dM )(t) (4.36)

Denote δ(t) as a Diract delta function, λ(t) = ( δ ? λ)(t). We can rewrite the above equa-

tion as:

(( δ �φ) ? λ)(t) = µ+ (φ ? dM )(t) (4.37)
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We will show that the inverse element of ( δ�φ) for the convolution is ( δ+ Φ). Indeed,

we have the following.

(( δ �φ) ? ( δ + Φ))(t) = ( δ ? δ)(t) + ( δ ? Φ)(t)� (φ ? δ)(t)� (φ ? Φ)(t)

= + ( δ ? (Φ �φ))(t)� (φ ? Φ)(t) = (4.38)

Because Φ(t) = ∑
∞
n=1 φ(t)

(?n):

( δ ? (Φ �φ))(t) = ( δ ? (
∞

∑
n=2

φ(t)(?n)))(t) =
∞

∑
n=2

φ(t)(?n) (4.39)

(φ ? Φ)(t) =
∞

∑
n=2

φ(t)(?n) (4.40)

Thus, convoluting on both sides of Eqn. 4.37 by ( δ + Φ), we get:

λ(t) = (( δ + Φ) ?µ)(t) + (Φ ? dM )(t) (4.41)

Since µ is a constant, and by the definition of convolution:

(( δ + Φ) ?µ)(t) =
Z t

�∞
( δ(t � s) + Φ(t � s))dsµ = ( +

Z ∞

0
Φ(s)ds)µ

= ( + Φ̂0)µ (4.42)

By the convolution theorem, we get: + Φ̂0 = ∑
∞
n=1 φ̂

n
0 = ( � φ̂0)�1. The above equation

turns out to be the unconditional mean vector of the point processes Π, which completes

the proof of the Proposition.

For the k-th point process, we note that dMk(t) only jumps at t if there is also a jump on

dNk(t). Thus, Eqn. 4.34 can be rewritten for each element lk(t) as follows:

lk(t) = Πk +
K

∑
l=1

Z t

0
Φkl(t � u)dMl(u) (4.43)

where Πk
k2[1,K] and Φkl(t)k,l2[1,K] are elements of Π and Φ(t) respectively.

4.4.3 Conditional Covariance of Point Processes

Based on the previous martingale representation of conditional intensity, Bacry, Dayri and

Muzy (2012) and Bacry and Muzy (2016) construct unconditional second-order character-

istics of Hawkes processes, which are used for their non-parametric estimation method.

We deviate from their unconditional approach to a conditional formulation of second-

order moments. These conditional moments, then, are used to complete the missing parts

of temporal co-variations amongst disjoint price change point processes, i.e. Eqn. 4.24 in

the conditional integrated covariance. We obtain the following Proposition:
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Proposition 7. Let N (t), t � 0, be a K-dimensional Hawkes processes with a vector of conditional

intensities λ(t). Given u 2 [0, T], v 2 [u, u + h] with u + h  T and an information set up to T,

HT, meaning that full paths of the point processes are observed. We have the following results:

v
⇥

dNk(u)dNl(v)] = Nk(u) k=l v=u+ v>u

h

Φlk(v � u)dNk(u)dv + ΠkΠl

+
K

∑
p=1

Z u

0
Φkp(u � s)dNp(s)Φlp(v � s)

i

(4.44)

Proof. For v 2 [u, u + h] and 8k, l 2 [1, K], dNk(u), dNl(v) are both Hv-measurable. Then,

if dNk(u) = 0, dNl(v) = 0, we have v
⇥

dNk(u)dNl(v)] = 0. Therefore, we consider only

time points u, v with dNk(u), dNl(v) 6= 0.

For v = u and k 6= l, then u
⇥

dNk(u)dNl(u)
⇤

= 0 because Nk and Nl have no jump in

common, i.e. the non-existence of simultaneous occurrence property of point processes by

Assumption (H4).

For v = u but k = l, we have:

u
⇥

dNk(u)dNk(u)
⇤

= u
⇥

dNk(u)
⇤

= dNk(u) (4.45)

For v > u, thanks to Eqn. 4.33, we can write:

v
⇥

dNk(u)dNl(v)|] = v

h

[dMk(u) + lk(u)dt][dMl(v) + ll(v)ds]
i

= v
⇥

dMk(u)dMl(v)
⇤

+ v
⇥

ll(v)dMk(u)
⇤

dv + v
⇥

lk(u)dMl(v)
⇤

du + v
⇥

lk(u)ll(v)
⇤

dudv

(4.46)

Due to the martingale difference sequence properties, v
⇥

dMk(u)dMl(v)|
⇤

= 0, 8u 6= v.

Substituting the martingale representation of the conditional intensities, i.e. Eqn. 4.43 into

the second term of Eqn. 4.46, we have:

v
⇥

ll(v)dMk(u)
⇤

dv =
K

∑
k=1

Z v

0
s
⇥

Φlk(v � s)dMl(s)dMk(u)
⇤

dsdv

= Φlk(v � u) u
⇥

dMk(u)dMk(u)
⇤

dv = Φlk(v � u) u
⇥

dNk(u)
⇤

dv

= Φlk(v � u)dNk(u)dv (4.47)

Because v > u and the point process evolve with “after-effects”, i.e. Assumption (H4),

the conditional intensity lk(u) does not contain the martingale dMl(v) in its formulation.

Thus, we have the third term:

v
⇥

lk(u)dMl(v)
⇤

dv = 0 (4.48)
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And finally, we continue to utilize Eqn. 4.43, and the last term can be rewritten as:

v
⇥

lk(u)ll(v)
⇤

dudv = v

h

�

Πk +
K

∑
p=1

Z u

0
Φkp(u � s)dMp(s)

�

�

Πl +
K

∑
p=1

Z v

0
Φlp(v � s)dMp(s)

�

i

dudv

= ΠkΠl +
K

∑
p=1

Z u

0
Φkp(u � s)dNp(s)Φlp(v � s) (4.49)

Combining Eqn. 4.45, Eqn. 4.46, Eqn. 4.47, Eqn. 4.48, and Eqn. 4.49 gives us the result in

Eqn. 4.44, which ends the proof of the Proposition 7.

According to Proposition 7, the conditional covariance of the disjoint point processes

can be divided into two parts according to their contribution to the conditional integrated

covariance. The first part, which is the first term of Eqn. 4.44, refers to contemporaneous

self-variations that partially govern the estimation of variance components. The second

part, consisting of temporal self-variations, i.e. the case k = l, and temporal co-variations,

i.e. the case k 6= l, of disjoint processes, accounts for the lead-lag effects between trans-

action events. These lead-lag correlations compensate for the loss in contemporaneous

(co-)variations due to asynchronous trading, asymmetric information, and imperfect price

formation. Moreover, the second part can be further broken down into smaller terms that

accommodate different kinds of effects. The first term encodes the exciting feedback from

a transaction on the occurrence of future events. The second term is driven by exogenous

information (see Eqn. 4.31), while the last captures the endogenous effects incurred by

common historical information.

4.4.4 Towards a fully parametric closed-form conditional covariance of point processes

The previous section provides a formulation of the conditional second moment structure in

terms of parameters from the martingale representation of conditional intensity, i.e. Πk, Φkl ,

which are constructed from the original Hawkes process parameters, i.e. µk, fkl . The for-

mulation still misses a specification on the choice of the excitement function fkl to achieve

a fully parametric closed-form. In most cases, fkl of Hawkes processes is a somewhat

arbitrary parametric kernel, and the main decision is between exponential or power-law

functions. Among the two kernels, the exponential excitement function yields a Markovian

structure for the conditional intensity Hawkes (2017), and its likelihood function is much

easier to handle by recursive representation Ogata (1988). Therefore, the exponential ker-

nel is more mathematically attractive, and we chose the exponential decay function for the

excitement kernel in our studies. The empirical analysis in the previous Chapter 3 also

confirms the validity of our choice. With the exponential decay kernel, the conditional

intensity function (4.26) has the form:

lk(t) = µ
k +

k

∑
k=1

Z t

�∞
akl bkle�bkl(t�s)dNr(s) (4.50)
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where α = {akl}k,l2[1,K] are matrix-valued impact coefficients that specify the mean expec-

ted number of descendant of a given point event. Given that there is a transaction arrival in

the point process l, the conditional intensity of the point process k increases proportionally

to akl . The rate at which this effect decays over time is governed by β = {bkl}k,l2[1,K].

Using Hadamard symbols with ⌦, ↵, � denoting element-wise multiplication, element-

wise division, and element-wise power, respectively, we can rewrite the vector of exponen-

tial kernel intensity function with convolution operator (4.50) as:

λ(t) = µ+α⌦ β⌦ e�(�βt)
? dN (t) (4.51)

With the exponential kernel of fixed decay parameter, we can obtain a closed form of

the conditional intensities under martingale representation as follows:

Proposition 8. Let (N (t))t�0 be an K-dimensional vector of Hawkes processes with intensity vec-

tor λ(t), satisfies Assumptions H3 and H4. Let (Mt)t�0 be the martingale compensation processes

of N (t). Consider that N (t) has an exponential decay kernel φ with the same constant parameter b

for all D point processes. Then, the martingale representation of λ(t) can have the form as follows:

λ(t) = Π +
Z t

�∞
αbe(α� )b(t�s)dM (s) (4.52)

Proof. By the convolution theorem, it is more convenient to rewrite Φ(t) defined by

Eqn. 4.35 in the frequency domain of the Laplace transform:

Φ̂z =
+∞

∑
n=1

φ̂n
z = φ̂z( � φ̂z)

�1 (4.53)

From Eqn. 4.51 and Eqn. 4.53, the Laplace transform of the matrix-valued kernel φ̂z can be

defined as

φ̂z = α⌦ β↵ (β+ z) (4.54)

Giving this result, the other term on the right-hand side of Eqn. 4.53 can also be formulated

as:

( � φ̂z)
�1 =

h

⇥

z � (α� )⌦ β
⇤

↵ (β+ z)
i�1

(4.55)

By fixing a decay parameter for all point processes, β is simplified to a constant, which

leads Φ̂z to be as:

Φ̂z = αb
⇥

z � (α� )b
⇤�1 (4.56)

Applying the inverse Laplace transform, the convolution theorem, and the properties of

the exponential matrix, we obtain the form of Φ in the time domain as:

Φ(t) = αbe(α� )bt (4.57)

which completes the proof of the Proposition 8
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4.5 simulation study

This section presents a simulation study to uncover how the impacts of microstructure

features such as trading activity, non-synchronicity trading, and microstructure noise to

the IRC, and which bandwidth interval to choose when implementing the estimator. More

importantly, it studies the relative finite sample performance of the IRC in comparison

with other benchmark estimators in the literature. We opt to work with the simulation

framework, rather than a real data-set, where we can have the information on the integ-

rated variance-covariance matrix of efficient price that is not observable in empirical data,

and investigate the performance of estimators by their deviations from the true value.

4.5.1 Simulation Design

The simulation framework is constructed to reproduce rich specifications of (i) efficient

prices evolving with correlated stochastic volatility, (ii) independent and uncorrelated mi-

crostructure noises versus those with general properties, and (iii) asynchronous trading

times. Throughout, we work with a bivariate stochastic volatility model over the interval

t 2 [0, 1] that we think of as a day and contains 6.5 hours of trading. The simulation

design follows that of Barndorff-Nielsen et al. (2011), Christensen, Kinnebrock and Podol-

skij (2010), Hansen and Lunde (2006a) and Li, Nolte and (Lechner) (2018).

4.5.1.1 Efficient Price

The efficient price diffusion is simulated using a bivariate stochastic volatility model. Each

price process d = 1, 2 has the following specifications:

dYd(t) = sd(t)
h
q

1 � (gk)2dWd(t) + gddZd(t)
i

(4.58)

sd(t) = exp
⇥

qd + hdnd(t)
⇤

(4.59)

dnd(t) = kdnd(t)dt + zddZd(t) (4.60)

where W1 and Z1, W1 and Z2, and Z1 and Z2 are pairwise independent Brownian motions.

The correlation between Y1(t), Y2(t) is determined by r = i
p

1 � (g1)2
p

1 � (g2)2 with

i = dhW1, W2it . The stochastic component of volatility is correlated with the efficient

price change by gdzd. Thus, gdzd controls the leveraged effect on the volatility of asset

prices.

The efficient price processes are generated using a Euler scheme, where a trading day

interval [0, 1] is discretized into M = 23, 400 intervals corresponding to the total seconds

per trading day. We follow Li, Nolte and (Lechner) (2018) to set the parameters values

for our simulation (see Table 4.1). With this configuration, the unconditional mean of daily

volatility is roughly 0.0002. The first value of nd(t) is drawn from its stationary distribution

nd(0) ⇠ N
�

0,� (zd)2

2kd

�

.
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Table 4.1: Parameters values for simulating the efficient price vectors.

qd hd kd gd zd i

�5/
p

2 1/
p

2 �1/10
p

2 �0.3 1 1

4.5.1.2 Asynchronous transaction times

To simulate the asynchronousity of observed transactions, we use two independent Poisson

process sampling schemes to generate the time of transaction arrivals {td
i }d=1,2. The arrival

rates for the two Poisson processes are {ld
0}d=1,2, so the expected number of transactions

within a trading day is [Nd(t)] =
R 1

0 ld
0ds = 23400ld

0. This means that the simulated num-

ber of observed transactions will differ between repetitions but on average two simulated

assets will have 23400l1
0 and 23400l2

0 observations, respectively.

We vary (l1
0, l2

0) through the following configurations (1/3, 1/6), (1/4, 1/8), (1/5, 1/10)

to simulate different scenarios of liquidity.

4.5.1.3 Market microstructure noise

Market microstructure noise is an additive component to the efficient price. Empirically,

we can not observe the efficient price because of the presence of market microstructure

noise, and the following decomposition is frequently used in the literature:

X(ti) = Y (ti) +U (ti) (4.61)

in which U (ti) is modelled as identical independent stationary processes. We simulate

the microstructure noise at observed transaction times generated above with the following

settings:

U (ti)|s1, s2,Y i.i.d⇠ N
⇣

0,

0

@

w2
1 $w1w2

$w1w2 w2
2

1

A

⌘

with w2
d = j

v

u

u

t[Nd(1)]�1
M

∑
i=1

s4
d,i (4.62)

The noise-to-signal ratio, j, takes values 0, 0.001, and 0.01 which represent non-, moderate

and high microstructure noise scenarios. This means that the variance of the noise can

be set so that it increases with the volatility of the efficient price by a noise-to-signal

ratio (Bandi and Russell, 2006). To examine our independent assumption between the

microstructure noises, i.e. Assumptions (H1) and (H2), the correlation between two noise

terms ,$, is set at 0 and 0.5 for the case of no and significant correlation between them.

4.5.1.4 Rounding error

The observed price process of asset d is decomposed as X̃d(ti) = Ỹd(ti)Ũd(ti) where

Ỹd(ti) = ln
�

Yd(ti)
�

and Ũd(ti) = ln
�

Ud(ti)
�

. The observed prices are forced to stay on

the grid as follows:

X̃d(ti) = x
⌅exp

⇥

Yd(ti) + Ud(ti)
⇤

x

⌥

(4.63)
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where bze returns the nearest integer of a real number z. We set x = 0.01 to emulate

rounding errors on a grid. We note that the rounding will introduce additional flat trades,

i.e. the transaction price does not move, to the observed price processes when the price is

rounded to zero. The actual amount of flat trades depends on the initial observed price

X̃d(0) since the rounding error is smaller when X̃d(0) is large and vice versa. We set

(X̃1(0), X̃2(0)) = (30, 30) and the resulting proportion of flat trades is mostly around

60 � 70%, which is in line with empirical finding in the literature (see, e.g. Jacod, Li and

Zheng, 2017; Liesenfeld, Nolte and Pohlmeier, 2008).

4.5.2 Estimator and Tuning Parameters

We compare the performance of the intensity-based ex-post covariance estimator to both

groups of quadratic covariation and point process estimators. The former includes real-

ized covariance (RC) (Andersen et al., 2001; Andersen et al., 2003; Barndorff-Nielsen and

Shephard, 2002a, 2004) of different sampling frequencies and multivariate realized kernel

covariance (RK) (Barndorff-Nielsen et al., 2008, 2011) which is a state-of-the-art integrated

covariance estimator, known to be highly efficient and robust to microstructure noise. The

latter contains the non-parametric price duration volatility (PDV) estimator Engle and Rus-

sell, 1998; Hong et al., 2021; Li, Nolte and (Lechner), 2018; Tse and Yang, 2012 which is the

closest one to the IRC.

The choice of tuning parameters for these estimators is non-trivial, as they have a very

large impact on the performance of their performances. For the RC estimator, the choice

of sampling frequency entails a bias-variance trade-off because the bias caused by the

microstructure noise is most significant at high-frequency sampling, while the variance of

the estimator increases as the sampling frequency is lowered. The recommendation in the

literature has been to sample sparely at some lower frequency (see, e.g. Bandi and Russell,

2008; Bandi and Russell, 2006; Hansen and Lunde, 2006b; Li et al., 2013; Liu and Tse, 2015.

In our simulation, we chose the sampling frequencies of 1 min, 5 min, and 15 min for the

RC estimator. For the RK estimator, the optimal choice of bandwidth is obtained following

the implementation in Barndorff-Nielsen et al. (2011) and then the estimation is calculated

using the Parzen kernel.

For the second group based on point process approach, the choice of sampling price

change threshold is very important, since it plays the main role in eliminating the micro-

structure noise bias. Following Hong et al. (2021), Li, Nolte and (Lechner) (2018) and Tse

and Yang (2012), we apply this estimator to the thresholds of 1 tick, 2 ticks, and 3 ticks.

Finally, for our intensity-based covariance estimator (IRC), we set a tolerance to determ-

ine the bandwidth interval h. We remind the reader that with the exponential decay kernel,

the excitement effects from one event to others only converge to zero in infinity. But after

an elapsed time interval, such effects decay to a trivial level, namely tolerance, and the

magnitude smaller than the tolerance can be assumed to be negligible. The tolerance is

chosen so that it is minor to the true value of the integrated covariance, i.e. less than
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10�5. Then the bandwidth interval h can be simply computed, with the estimated Hawkes

parameters, as the time it takes for the excitement effects to decay to such a tolerance level.

4.5.3 Simulation results

The simulations are performed with 200 replications. In each replication, we calculate

the bias as the difference of the estimated results with respect to the true value of the

integrated variance-covariance matrix, and the squared error as the square of the difference

for each of the estimators with respect to various tuning parameters. We then take the

mean of biases and the root mean of squared errors over all replications. The final results

are reported in Tables 4.2, 4.3, and 4.4, where the first two tables illustrate the results of

the diagonal elements of the variance-covariance matrix estimation, variances, and the last

are the non-diagonal elements, covariance/correlation . In each table, we report the results

for different scenarios of microstructure noises, i.e. only pure rounding noise; moderate

additive independent white noises and rounding error; strong additive independent white

noises and rounding error; and strong additive correlated white noises and rounding error,

and for different scenarios of high, moderate and low level of trading activities.



Table 4.2: Simulation results for integrated volatility estimators.

Integrated variance

Asset 1

RC1m RC5m RC15m RK PDV1tick PDV2ticks PDV3ticks IRC

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

j2 = 0, $ = 0

l0 = (1/3, 1/6) 6,17E-06 2,06E-05 -3,00E-06 4,33E-05 -5,72E-06 7,32E-05 5,33E-07 2,11E-05 -5,54E-05 1,53E-04 -4,69E-05 1,04E-04 -4,00E-05 8,11E-05 8,37E-07 3,44E-05

l0 = (1/4, 1/8) 5,40E-06 1,89E-05 -4,31E-06 4,18E-05 -6,52E-06 7,13E-05 1,09E-06 2,49E-05 -7,45E-05 1,63E-04 -5,73E-05 1,15E-04 -4,66E-05 9,02E-05 -1,92E-06 3,58E-05

l0 = (1/5, 1/10) 7,54E-06 2,03E-05 -2,70E-06 4,36E-05 -4,60E-06 7,48E-05 -8,63E-07 2,60E-05 -8,89E-05 1,73E-04 -6,46E-05 1,23E-04 -5,10E-05 9,57E-05 -4,54E-06 3,85E-05

j2 = 0.001, $ = 0

l0 = (1/3, 1/6) 6,09E-06 2,07E-05 -2,94E-06 4,32E-05 -5,82E-06 7,32E-05 5,38E-07 2,11E-05 -5,53E-05 1,53E-04 -4,69E-05 1,04E-04 -4,03E-05 8,14E-05 1,77E-06 3,55E-05

l0 = (1/4, 1/8) 5,31E-06 1,89E-05 -4,20E-06 4,21E-05 -6,56E-06 7,13E-05 1,03E-06 2,50E-05 -7,44E-05 1,63E-04 -5,73E-05 1,15E-04 -4,65E-05 9,01E-05 -2,06E-06 3,68E-05

l0 = (1/5, 1/10) 7,56E-06 2,03E-05 -2,60E-06 4,37E-05 -4,67E-06 7,48E-05 -9,07E-07 2,60E-05 -8,88E-05 1,73E-04 -6,48E-05 1,23E-04 -5,09E-05 9,57E-05 -4,59E-06 3,91E-05

j2 = 0.01, $ = 0

l0 = (1/3, 1/6) 6,22E-06 2,06E-05 -3,01E-06 4,37E-05 -5,91E-06 7,34E-05 5,76E-07 2,12E-05 -5,48E-05 1,53E-04 -4,66E-05 1,04E-04 -3,97E-05 8,05E-05 1,54E-06 3,38E-05

l0 = (1/4, 1/8) 5,53E-06 1,92E-05 -4,09E-06 4,22E-05 -6,54E-06 7,13E-05 9,63E-07 2,50E-05 -7,41E-05 1,63E-04 -5,71E-05 1,14E-04 -4,63E-05 9,03E-05 -1,28E-06 3,47E-05

l0 = (1/5, 1/10) 7,56E-06 2,03E-05 -2,42E-06 4,34E-05 -4,58E-06 7,53E-05 -8,54E-07 2,62E-05 -8,85E-05 1,73E-04 -6,47E-05 1,23E-04 -5,07E-05 9,58E-05 -4,19E-06 3,86E-05

j2 = 0.01, $ = 0.5

l0 = (1/3, 1/6) 4,26E-06 1,98E-05 -3,71E-06 4,41E-05 -4,66E-06 7,26E-05 1,49E-07 2,04E-05 -5,47E-05 1,53E-04 -4,74E-05 1,04E-04 -3,91E-05 8,11E-05 1,20E-06 3,50E-05

l0 = (1/4, 1/8) 6,43E-06 1,96E-05 -2,65E-06 4,24E-05 -3,70E-06 7,60E-05 -2,61E-08 2,22E-05 -7,38E-05 1,63E-04 -5,69E-05 1,14E-04 -4,54E-05 8,93E-05 -1,37E-06 3,68E-05

l0 = (1/5, 1/10) 4,57E-06 1,93E-05 -2,56E-06 4,39E-05 -6,08E-06 7,35E-05 -1,73E-06 2,61E-05 -8,88E-05 1,73E-04 -6,59E-05 1,23E-04 -5,19E-05 9,70E-05 -2,40E-06 3,51E-05

Notes: Simulation results for estimating integrated variance of asset 1 using realized covariance (RC), multivariate realized kernel covariance (RK) with Parzen type, and price duration volatilty (PDV) and intensity based
realized covariance (IRC) estimators. The simulation framework is constructed with non-synchronous observations, microstructure noises and measurement error. The results are based on 200 repetitions.
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Table 4.3: Simulation results for integrated volatility estimators.

Integrated variance

Asset 2

RC1m RC5m RC15m RK PDV1tick PDV2ticks PDV3ticks IRC

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

j2 = 0, $ = 0

l0 = (1/3, 1/6) 4,72E-06 1,92E-05 -4,86E-06 3,98E-05 -6,07E-06 6,96E-05 -4,46E-07 1,73E-05 -9,57E-05 1,77E-04 -6,83E-05 1,28E-04 -5,41E-05 1,01E-04 -2,56E-06 3,22E-05

l0 = (1/4, 1/8) 5,53E-06 1,97E-05 -5,61E-06 3,88E-05 -5,48E-06 6,56E-05 2,45E-07 2,14E-05 -1,11E-04 1,89E-04 -7,97E-05 1,40E-04 -6,16E-05 1,11E-04 -8,46E-06 3,64E-05

l0 = (1/5, 1/10) 4,86E-06 2,04E-05 -5,19E-06 4,13E-05 -4,63E-06 7,02E-05 -2,36E-06 2,31E-05 -1,22E-04 1,98E-04 -8,78E-05 1,50E-04 -6,93E-05 1,21E-04 -9,85E-06 3,86E-05

j2 = 0.001, $ = 0

l0 = (1/3, 1/6) 4,70E-06 1,94E-05 -4,77E-06 3,98E-05 -6,08E-06 6,92E-05 -3,90E-07 1,73E-05 -9,56E-05 1,77E-04 -6,81E-05 1,27E-04 -5,38E-05 1,00E-04 -2,40E-06 3,26E-05

l0 = (1/4, 1/8) 5,49E-06 2,00E-05 -5,68E-06 3,86E-05 -5,57E-06 6,55E-05 2,25E-07 2,15E-05 -1,11E-04 1,89E-04 -7,97E-05 1,40E-04 -6,16E-05 1,11E-04 -8,14E-06 3,63E-05

l0 = (1/5, 1/10) 4,92E-06 2,06E-05 -5,21E-06 4,11E-05 -4,76E-06 7,01E-05 -2,37E-06 2,32E-05 -1,22E-04 1,98E-04 -8,77E-05 1,49E-04 -6,94E-05 1,21E-04 -1,05E-05 3,94E-05

j2 = 0.01, $ = 0

l0 = (1/3, 1/6) 4,70E-06 1,92E-05 -4,98E-06 3,98E-05 -6,16E-06 6,91E-05 -4,20E-07 1,74E-05 -9,53E-05 1,77E-04 -6,81E-05 1,27E-04 -5,37E-05 1,00E-04 -2,48E-06 3,21E-05

l0 = (1/4, 1/8) 5,74E-06 1,99E-05 -5,45E-06 3,84E-05 -5,48E-06 6,57E-05 2,27E-07 2,15E-05 -1,11E-04 1,89E-04 -7,95E-05 1,40E-04 -6,15E-05 1,10E-04 -8,06E-06 3,52E-05

l0 = (1/5, 1/10) 4,93E-06 2,04E-05 -5,13E-06 4,08E-05 -4,67E-06 7,04E-05 -2,27E-06 2,33E-05 -1,22E-04 1,98E-04 -8,77E-05 1,49E-04 -6,95E-05 1,21E-04 -1,04E-05 3,85E-05

j2 = 0.01, $ = 0.5

l0 = (1/3, 1/6) 3,60E-06 2,00E-05 -5,47E-06 3,98E-05 -5,45E-06 6,95E-05 -5,80E-07 1,80E-05 -9,55E-05 1,77E-04 -6,85E-05 1,26E-04 -5,38E-05 1,01E-04 -2,00E-06 2,94E-05

l0 = (1/4, 1/8) 4,73E-06 2,03E-05 -5,89E-06 3,90E-05 -5,15E-06 6,99E-05 -1,00E-06 1,94E-05 -1,11E-04 1,89E-04 -7,94E-05 1,41E-04 -6,16E-05 1,12E-04 -6,73E-06 3,46E-05

l0 = (1/5, 1/10) 3,86E-06 2,06E-05 -4,06E-06 3,79E-05 -5,38E-06 6,88E-05 -2,47E-06 2,36E-05 -1,22E-04 1,98E-04 -8,73E-05 1,49E-04 -6,82E-05 1,19E-04 -8,04E-06 3,36E-05

Notes: Simulation results for estimating integrated variance of asset 2 using realized covariance (RC), multivariate realized kernel covariance (RK) with Parzen type, and price duration volatilty (PDV) and intensity based
realized covariance (IRC) estimators. The simulation framework is constructed with non-synchronous observations, microstructure noises and measurement error. The results are based on 200 repetitions.
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Let us first analyze the estimated results of the integrated variance in Tables 4.2 and 4.3.

For the first asset, the IRC estimator tends to outperform the RC and the PDV estimators

in almost all scenarios of noise and trading activity. In the case with high transaction rates

and only rounding noise, the performance of IRC estimator even is on par with the RK,

which is a very well-known consistent quadratic covariation-type estimator. In the second

asset, the IRC does not perform as well as the RK and suffers from large biases and RMSE.

This might be due to the low level of the trading rate simulated on the second asset, which

is always half that of the first asset. In addition, it is noticeable that the IRC’s estimation

performance in both assets is increasing with the simulated trading rates. The trading rate

illustrates the degree to which the information set is available. We remind the reader that

the IRC is a parametric designed estimator based on fitting a Hawkes exponential kernel

to the realizations of disjoint price change states. Thus, the performance of the estimator

is very sensitive to the size of the information set on which it is conditioning. In this study,

it is the activity of the trading or the level of liquidity. The higher the liquidity of the

asset, the better the volatility estimation can be obtained by the IRC. In sharp contrast,

this pattern seems to be not valid for the remaining non-parametric estimators. The results

obtained on the bias do not change much as the number of observed transactions increases.

We continue with Table 4.4 that illustrates the estimated results on the integrated cov-

ariance and correlation between two assets. Compared to other non-parametric estimators,

we might expect an inferior performance for the IRC due to its intrinsic of parametric es-

timation. The parametric feature of the IRC, which relies on conditional expectation, might

yield on-average or mean-reverting results, so it might exhibit a more modest performance

compared to unconditional non-parametric estimators. However, we surprisingly observe

that the IRC consistently over-performs the RC and is not significantly different from the

RK. Moreover, similar to the integrated variance estimation, we also observe, amongst es-

timators, a tendency of increasing biases incurred by decreasing transaction rates. This

tendency is most obvious in the RC with higher frequency subsampling, i.e. 1 minute and

5 minutes, of which the bias predominantly drives the RMSE. This tendency in the IRC is

less severe but still significant.

On the right-hand side of Table 4.4, we report the estimated results on the correlation

between assets. Interestingly, the IRC delivers very precise estimates of the correlation,

and its estimations are much sharper than those of the RK in terms of bias. All quadratic

covariation-type estimators deliver very precise estimates of the wrong quantity because

their biases are the dominant components of the RMSE. But that is not the case for the IRC.

Surprisingly, both the IRC and the RK estimators perform better when transaction rates

decrease, indicating that there is less information available. It can be plausibly explained

that the correlation is a nonlinear function of noise-contaminated integrated variance es-

timates and that the contamination is more severe in higher frequency transaction data, e.g.

due to trading on the spread. Because the noise only exists when there is a transaction, it

is clearly that a higher simulated transaction rate leads to a higher proportion of variance

bias from the noise.



Table 4.4: Simulation results for integrated covariance/correlation estimators.

Integrated covariance/correlation

Covariance Correlation

RC1m RC5m RC15m RK IRC RC1m RC5m RC15m RK IRC

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

j2 = 0, $ = 0

l0 = (1/3, 1/6) -1,75E-05 2,97E-05 -8,26E-06 4,08E-05 -7,88E-06 6,90E-05 -3,01E-06 1,90E-05 -4,32E-06 3,29E-05 -1,27E-01 1,33E-01 -3,01E-02 4,11E-02 -1,96E-02 4,89E-02 -2,27E-02 2,88E-02 -1,15E-02 3,85E-02

l0 = (1/4, 1/8) -2,28E-05 3,56E-05 -1,03E-05 3,98E-05 -8,10E-06 6,52E-05 -2,17E-06 2,25E-05 -6,92E-06 3,40E-05 -1,53E-01 1,59E-01 -3,52E-02 4,54E-02 -1,88E-02 4,78E-02 -2,05E-02 2,62E-02 -6,38E-03 3,48E-02

l0 = (1/5, 1/10) -2,69E-05 4,12E-05 -1,04E-05 4,25E-05 -7,01E-06 7,03E-05 -4,33E-06 2,42E-05 -7,89E-06 3,67E-05 -1,75E-01 1,80E-01 -4,08E-02 5,07E-02 -2,19E-02 5,17E-02 -1,94E-02 2,43E-02 -1,63E-03 3,40E-02

j2 = 0.001, $ = 0

l0 = (1/3, 1/6) -1,75E-05 2,98E-05 -8,14E-06 4,05E-05 -7,92E-06 6,89E-05 -2,97E-06 1,90E-05 -4,05E-06 3,38E-05 -1,27E-01 1,33E-01 -3,00E-02 4,11E-02 -1,96E-02 4,88E-02 -2,26E-02 2,87E-02 -1,28E-02 3,93E-02

l0 = (1/4, 1/8) -2,28E-05 3,57E-05 -1,02E-05 3,99E-05 -8,11E-06 6,50E-05 -2,21E-06 2,26E-05 -6,85E-06 3,52E-05 -1,54E-01 1,59E-01 -3,53E-02 4,54E-02 -1,85E-02 4,78E-02 -2,06E-02 2,63E-02 -7,85E-03 3,31E-02

l0 = (1/5, 1/10) -2,69E-05 4,12E-05 -1,03E-05 4,25E-05 -7,15E-06 7,01E-05 -4,37E-06 2,43E-05 -8,22E-06 3,72E-05 -1,75E-01 1,80E-01 -4,10E-02 5,10E-02 -2,21E-02 5,19E-02 -1,95E-02 2,44E-02 -3,16E-03 3,55E-02

j2 = 0.01, $ = 0

l0 = (1/3, 1/6) -1,76E-05 2,98E-05 -8,38E-06 4,08E-05 -8,00E-06 6,88E-05 -2,99E-06 1,91E-05 -4,78E-06 3,30E-05 -1,28E-01 1,33E-01 -3,02E-02 4,12E-02 -1,95E-02 4,90E-02 -2,28E-02 2,88E-02 -1,48E-02 3,97E-02

l0 = (1/4, 1/8) -2,27E-05 3,54E-05 -1,02E-05 4,00E-05 -8,00E-06 6,52E-05 -2,25E-06 2,26E-05 -6,84E-06 3,50E-05 -1,54E-01 1,59E-01 -3,58E-02 4,60E-02 -1,80E-02 4,73E-02 -2,06E-02 2,63E-02 -8,93E-03 3,50E-02

l0 = (1/5, 1/10) -2,70E-05 4,12E-05 -1,02E-05 4,22E-05 -7,06E-06 7,03E-05 -4,31E-06 2,44E-05 -7,95E-06 3,66E-05 -1,76E-01 1,80E-01 -4,07E-02 5,04E-02 -2,18E-02 5,11E-02 -1,95E-02 2,43E-02 -3,00E-03 3,48E-02

j2 = 0.01, $ = 0.5

l0 = (1/3, 1/6) -1,91E-05 3,23E-05 -8,85E-06 4,06E-05 -6,68E-06 6,83E-05 -3,32E-06 1,89E-05 -4,92E-06 3,24E-05 -1,29E-01 1,35E-01 -2,97E-02 4,03E-02 -1,62E-02 4,67E-02 -2,29E-02 2,85E-02 -1,88E-02 3,86E-02

l0 = (1/5, 1/10) -2,25E-05 3,52E-05 -9,98E-06 3,95E-05 -6,81E-06 6,89E-05 -3,42E-06 2,04E-05 -5,05E-06 3,31E-05 -1,53E-01 1,58E-01 -3,61E-02 4,58E-02 -1,97E-02 4,95E-02 -2,12E-02 2,67E-02 -4,24E-03 3,37E-02

l0 = (1/10, 1/20) -2,82E-05 4,30E-05 -8,04E-06 3,36E-05 -7,82E-06 6,61E-05 -4,82E-06 2,44E-05 -6,22E-06 3,35E-05 -1,74E-01 1,78E-01 -3,80E-02 4,79E-02 -1,95E-02 5,04E-02 -1,98E-02 2,46E-02 -7,04E-03 3,78E-02

Notes: Simulation results for estimating integrated variance of asset 2 using realized covariance (RC), multivariate realized kernel covariance (RK) with Parzen type, and price duration volatilty (PDV) and intensity based realized covariance (IRC) estimators. The simulation
framework is constructed with non-synchronous observations, microstructure noises and measurement error. The results are based on 200 repetitions.
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Last but not least, we study the impact of noise components on the performance of

the IRC in all the tables, which can verify the robustness of the estimator to the micro-

structure noise. Across different levels of noise, the results obtained by the IRC do not

change much, except for the estimation of the integrated variance with the highest transac-

tion rate of l0 = 1/3, where positive biases are observed. The positive biases might arise

due to increasing the transaction frequency simultaneously adding more noise, leading to

an upward bias in the estimation. Moreover, it is not, surprisingly, the design with pure

rounding error producing the best performance in estimating integrated variance and co-

variance. It could be that IRC benefits from a significant additional layer of noise, which

is the case of f2 = 0.01, and delivers the best performance in terms of bias and RMSE.

Meanwhile, the worst performance is found in the case of moderate noise f2 = 0.001. We

note that adding a significant additional layer of noise prior together with rounding error

introduces an upward bias in the integrated variance estimation. This bias might com-

pensate for attenuation biases incurred by the absence of observation in the observable

price, and thereby turns out to improve the IRC’s performance. However, in the case of a

moderate or light layer of noise, this noise can be cancelled out by the rounding error if

the deviation from the efficient price is not large enough to be a minimum price change

unit, i.e. tick. Such a rounding error, due to discreteness, can also eliminate true small

movements of the efficient price, thereby generating more significant downward biases. Fi-

nally, in the last simulation scenario, we add a correlation between additive microstructure

noise with $ = 0.5. However, correlated noise does not worsen the performance of the IRC.

The other way around, it helps to improve the estimation in terms of both bias and RMSE.

This finding confirms the validity of our previous statements pointing out the adequacy

of independent uncorrelated white noise assumptions.

4.6 conclusion

This chapter develops an intensity-based estimator (IRC) of integrated variance-

covariance/correlation with noisy and asynchronous tick-by-tick data. The IRC is so far

the first point process-based estimator that deals with covariation between multiple assets.

It amalgamates both quadratic covariation and point process approaches by introducing

the logic that the quadratic covariation of the price processes can be represented by the

second-order moments of non-decreasing valued integer processes counting transactions

associated with price change states. Via a martingale representation of conditional intens-

ity, a closed-form of such second-order moments can be obtained, and thereby leads to a

fully parametric specification of the IRC.

Compared to the realized covariance (RC) and the previous univariate point process

(price duration) volatility estimator (PDV), the IRC has a number of outstanding features.

First, thanks to its parametric form, the IRC allows for a feasible estimation for any arbit-

rary interval, even the short one, which lacks observations. Such a property overcomes the

limitation of non-parametric realized volatility, which is often confined to only daily es-

timates. Second, the IRC does not need a pseudo-aligning scheme, which is necessary for
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realized volatility to synchronize observations. Instead, it employs all transactions and util-

izes all of transaction-related information, i.e. transaction price and time. Being designed

to have a generic structure of temporal (cross-)autocovariation instead of ordered (cross-

)autocovariation, the IRC accounts for the transaction time as an endogenous variable

determining the strength of covariation. Moreover, to some extent, the temporal (cross-

)autocovariation accounts for lead-lag effects and compensates for the loss of contempor-

aneous correlation incurred by asynchronous trading, asymmetric information, and imper-

fect price formation, which is still missing in the framework of PDV. Therefore, the IRC is

not only the multivariate generalization of the PDV estimators but also accommodates a

more general framework of price formation dynamics.

Our study has several limitations that provide ample room for future research. First, our

simulation study is based on a relatively small number of repetitions due to the computa-

tionally intensive estimation of the model. It is therefore important to verify the robustness

of our estimator in a more comprehensive simulation framework. Second, the current spe-

cification of the price dynamics in our theoretical framework can be further generalized

for our estimator to account for any additional feature of the market micro-structure, e.g.

asymmetry information, imperfect price formation and lead-lag effect and a more general

version of microstructure noise. Finally, the estimator can be useful in various empirical

applications, such as volatility forecasting and factor analysis, and is worth pursuing in

empirical investigations.





5
D I S J O I N T H AW K E S P O I N T P R O C E S S E S O N

M U LT I VA R I AT E E X T E N S I O N O F I N T R A D AY

VA L U E - AT- R I S K

Abstract

We propose a multivariate intraday Value-at-Risk (IVaR) model which generalizes

previous univariate intraday Value-at-Risk models. Our multivariate generalization,

IIVaR, is based on modelling the occurrence of two-state directional price change events

by stochastic conditional intensities and forecasting the paths of future returns by

Monte Carlo simulation. The arrival times of future transactions are calculated by

the cumulative conditional intensities between two consecutive events, which are pre-

dicted by an autoregressive conditional compensator. The performance of the IIVaR is

illustrated in an empirical application with selected stocks listed on the Dow Jones

Industrial Average index. Back-testing results show that the IIVaR forecasts can ac-

curately capture multivariate market risk, and provide an empirical guide for optimal

choice of forecasting interval lengths and sampling price change thresholds.

Keyword: Multivariate intraday value-at-risk, intensity-based risk measure, Hawkes pro-

cess, back-testing.
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5.1 introduction

In the high-frequency financial world, trading is characterized by being extremely fast and

information has a very short lifespan, living in the time frames of seconds-to-seconds or

even only a few milliseconds (Goldstein, Kumar and Graves, 2014; Hasbrouck and Saar,

2013; Menkveld, 2018; O’Hara, 2015). Within these horizons, accurately capturing the en-

tire distribution of asset return becomes impracticable and unfeasible. For example, to

achieve a consistent estimate of the second-order moment through realized volatility, a

large amount of data is needed, which is impossible in such small time windows (Tse

and Yang, 2012). A more efficient and feasible solution is to consider only the tail of the

distribution, which characterizes the probability of extreme events, rather than unneces-

sarily accounting for the whole distribution of all price events. The intuition is that in the

time scales where much of the volatility is evoked by the market microstructure noise, the

measures of extreme events seem to be more qualified market risk information than zero

movements, or back-and-forth bounces of the prices due to the noise.

However, while the literature is full of efforts to develop sophisticated tail risk models,

i.e. Value at Risk (VaR), for daily data and longer horizons, the issue of intraday market

risk measurement has been less explored. The trading has been going at an extremely fast

speed, so risk measures are now obliged to keep pace with the market. With increasingly

available high-frequency financial databases and advanced computing power, it is now

possible to address the question of how to define practical risk measures for traders or

market makers operating on an intraday basis.

Consistent with this intuition, we are motivated to develop a new risk measure, ef-

fective on intraday time scales and for multiple assets, taking into account the cross-

correlation structure of their extreme returns. Our multivariate intraday risk measure,

namely intensity-based intraday value-at-risk (IIVaR), relies on the favorable results of

multi-asset price dynamics modelling by the disjoint point process approach in Chapter 3.

So far, the IIVaR can be considered as the first multivariate generalization of previous uni-

variate intraday Value-at-Risk (IVaR) models based on the point process approach (see Liu

and Tse, 2015 for a review on univariate IVaR). The univariate IVaR measures introduced in

high-frequency financial econometrics literature was originally based on the modelling of

serial dependence in duration for price change exceeding a threshold, i.e. price duration.

We deviate from these discrete price duration measures and model continuous interde-

pendence in the likelihood of occurring directional price change events by stochastic con-

ditional intensities, which is a “multivariate-friendly” point process modelling approach.

The cross- and auto-correlation in the tails of multivariate asset returns naturally arises as

a result of the self- and cross-excitement mechanism in the conditional intensity formation

process.

The econometric modelling of IVaR was first studied in Giot (2005), where the author

recognizes the indispensability of the intradaily market risk measure. Reckoning on the

importance of the information conveyed by irregularly spaced trading times, he employs a

price duration volatility estimator with a log-ACD model (Bauwens and Giot, 2000), from



5.1 introduction 115

which the IVaR of the returns is estimated for a fixed time interval. Later, Dionne, Duch-

esne and Pacurar (2009) propose an IVaR for any arbitrary time interval using tick-by-tick

data. The model is based on a log-ACD-ARMA-GARCH model (Engle, 2000) combining

with Monte Carlo simulation. The log-ACD model yields the consecutive steps in time,

while the ARMA-EGARCH model allows one to simulate the corresponding conditional

tick-by-tick returns. The Monte Carlo simulation enables forecasting returns for any ar-

bitrary interval length, and thus avoids complicated time manipulations, for the sake of

obtaining results on a convenient regularly spaced framework. In another strand, Coroneo

and Veredas (2012), by using a distribution-free approach of quantile regression, also pro-

pose an estimate of IVaR for equidistant sampled high-frequency return. Their approach

of quantile regression allows one to construct conditional measures for return moments

simply depending on explanatory variables and without necessary knowledge about the

functional forms of these moments or of the distribution. More recently, Liu and Tse (2015)

apply a two-state asymmetric auto-regressive conditional duration model (AACD) (Tay et

al., 2011) to model bidirectional price duration events, which are duration events classified

into upward and downward directional price movement. The estimated AACD then feeds

into a Monte Carlo simulation to forecast ex-ante return distribution, from which IVaR

is calculated. The results of the backtest show that the IVaR calculated using a sophistic-

ated bidirectional price duration outperforms previous methods using simply the absolute

threshold price duration in Dionne, Duchesne and Pacurar (2009) and Giot (2005).

The theoretical concept underlying the above-mentioned univariate IVaR methods is

to look at slices of the conditional distribution of the transaction point process, that is,

the transactions that move the price at least a certain level, to derive the risk, without

any reliance on global distribution. Specifically, the strategy pursued in these methods is

to concentrate on the waiting times for price change transaction events to occur, which is

demonstrated to be significantly serial dependent. The IVaR forecasts are then given by the

conditional expected duration between price change events, which can be consecutively

estimated by the ACD-type models. However, the discreteness of ACD models hinders

the extension of these univariate IVaR to a multivariate framework where the cross-effects

between assets in an asynchronous transaction context need to be account for. The problem

is that the ACD-type model cannot adjust the arrival rate of a new price event when

novel information arrives within a duration. It has to wait till the arrival of point process

terminates, which causes a loss of cross-correlation information between assets.

Moreover, it is usually not a true reflection of reality to assume that the price move-

ments of two related assets are independent, especially when one considers the probab-

ility of their extreme moves, which are often the results of common information (Cousin

and Bernardino, 2013; Grothe, Korniichuk and Manner, 2014). For the univariate case, the

marginal probability structure might be sufficient, but when it comes to a portfolio of mul-

tiple assets, one would need to take into account the interaction between assets in extreme

events. Furthermore, while such contemporaneous correlation can be attributable to funda-

mental asset values, another type of correlation characterized by high-frequency data, that

is, the temporal lead-lag correlation, arises as a consequence of the presence of asynchron-
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ous trading, asymmetric information, strategic trading, and imperfect price adjustment in

the market microstructure (see Chapter 3). Therefore, a multivariate IVaR model that reli-

ably incorporates these features into its risk metrics would give a better/more informed

measure of IVaR in one asset and in a combined way for an intraday portfolio.

Our proposed multivariate IIVaR deviates from the ACD-based IVaR models by directly

modelling stochastic conditional intensity, and allows for an interdependence between as-

sets in the likelihood of extreme price events’ occurring. A predominant point process

approach for this purpose, in temporal settings, is the Hawkes process (Bacry, Mastromat-

teo and Muzy, 2015; Bowsher, 2007; Hawkes, 1971; Hawkes and Oakes, 1974). The Hawkes

process has also been used to model extreme price movements at a rather low frequency

(Bień-Barkowska, 2020; Chavez-Demoulin, Davison and McNeil, 2005; Chavez-Demoulin,

Embrechts and Sardy, 2014; Embrechts, Liniger and Lin, 2011; Grothe, Korniichuk and

Manner, 2014; Hautsch and Herrera, 2019). In an intra-daily trading context, the pion-

eer work of Chavez-Demoulin and McGill (2012) extends Chavez-Demoulin, Davison and

McNeil (2005)’s Hawkes-Peak Over Threshold (Hawkes-POT), which models the clustering

behaviour of extreme events over a threshold, to intraday risk measures. The Hawkes-POT

has the same spirit as the IIVaR, which both focus on the temporal dependence of extreme

price events in the tail and ignore the less important structure of moderate price events.

However, the Hawkes-POT still exists only in a univariate framework due to the com-

plexity of its structure and the selection of the exceedance threshold (Chavez-Demoulin,

Embrechts and Sardy, 2014).

Working in the framework of the Hawkes process, we first partition multi-asset price

dynamics into multivariate point processes of price change events. Using a price threshold

d as a filter, we develop a sample scheme to split the transaction-by-transaction data of

each asset into bidirectional point processes associated with two states, that is, an over-

upper bound (OUB) and over-lower bound (OLB). The OUB and OLB events are triggered if

the cumulative price change on the upward (downward) equals or exceeds the threshold

d. The conditional intensities of all OUB and OLB transaction processes is then cast into

multivariate Hawkes with an exponential decay kernel. The validity of this type of ex-

citement kernel in modelling multi-asset disjoint price change dynamics has been proven

in Chapter 3. Contrasting with discrete duration-type models, the multivariate Hawkes

conditional intensities update their information set continuously, thus accounting for both

temporal self- and cross-asset effects induced by any new event arriving in the price dy-

namics. However, the conditional intensity provides rather a measure of event-occurrence

probability than an indicator of certain transaction arrival. To facilitate future events fore-

casts, we propose an arrival detection mechanism based on an autoregressive conditional

compensator, which estimates expected cumulative conditional intensities to arrive at a

new price change event. Then, the Monte Carlo simulation is adopted to simulate the

return distribution, from which the IVaR is calculated for any arbitrary intraday time in-

terval.

To access the performance of the IIVaR, we use three well-known backtests: the LR

test of Christoffersen (1998) based on a Markov chain model; the duration-based test of



5.2 review existing intraday value-at-risk models 117

Christoffersen (2004); and the generalized method of moments (GMM) duration-based test

proposed by Candelon et al. (2010). We apply the IIVaR to two selected pairs of stocks

with high and low trading activities listed on the Dow Jones Industrial Average index.

Additionally, to investigate the impact of choosing the price change threshold and the fore-

cast interval on the performance of the IIVaR, we examine different scenarios of sampling

thresholds and forecast intervals. The IVaR forecast performance is sensitive to both the

selection of the sampling threshold and the forecast intervals, which is different from the

previous findings in Liu and Tse (2015). The back-testing results also show that filtered by

the 4-ticks threshold, the IIVaR can capture accurately extreme price change dynamics of

30 or 60-minute forecast intervals.

The remainder of this chapter is organized as follows. In the next section 5.2 we sum-

marize the existing univariate IVaR methods in the literature. Section 5.3 presents our

proposed multivariate IVaR model consisting of the disjoint Hawkes point process of price

dynamics, autoregressive conditional compensator modelling, and the forecast algorithm

with the Monte Carlo simulation. Section 5.4 describes three backtesting methods for the

evaluation of our IVaR model. In Sections 5.5, we describe the data and report the empirical

results. The last section 5.6 concludes and suggests further research.

5.2 review existing intraday value-at-risk models

Value-at-Risk (VaR) model has emerged as a benchmark for the assessment of downside

risk between practitioners (see, e.g. Basel Committee on Banking Supervision, 2011, 2021)

and has been widely studied in the financial market literature (Basak and Shapiro, 2001;

Jorion, 2006). It was implemented to quickly interpret, using a single value, the information

about the risk of a portfolio. This value measures the minimal amount of accumulated loss

and indicates how the value of the portfolio is likely to decrease over a certain period of

time. Statistically, it is defined as the conditional quantile of the asset return distribution

for a given shortfall probability x (typically chosen to be between 1% and 5%). Denoting

Ft�1(rt) as the cumulative distribution function associated with portfolio return rt during

period [t � 1, t), the ex-ante VaR forecast with target probability x, denoted by VaRt(x), is

mathematically written as:

VaRt(x) := inf{rt 2 : Ft�1(rt) � x} (5.1)

and, equivalently:

rt�1(rt < �VaRt(x)) := x (5.2)

Consequently, VaR can be viewed as the boundary of the set {rt 2 : Ft�1(rt) � x} where

Ft�1 denotes the conditional cumulative probability function given the information up to

time t � 1. Note that rt�1 denotes the conditional probability and the negative sign in

Eqn. 5.2 is due to the convention of reporting VaR as a positive number.

In this chapter, our objective is to propose multivariate market risk using the concept

of intraday VaR (IVaR), which is an extension of VaR to intraday returns. As mentioned



118 disjoint hawkes point processes on multivariate extension of intraday value-at-risk

in the Introduction, unlike the calculation of VaR for daily or longer horizons1, the issue

of intraday market risk measurement has been less explored (see, e.g. Banulescu et al.,

2015; Dionne, Duchesne and Pacurar, 2009; Giot, 2005; Liu and Tse, 2015), and the current

measures of IVaR are at one’s disposal with only univariate case of a single asset.

The limitation of use is due to some challenges posed by the features embedded in high-

frequency returns. First, while it is naturally equidistant observations of return for daily

VaR, the IVaR is characterized by using irregularly spaced transaction data. The market mi-

crostructure literature suggests that such irregular inter-trade durations are related to the

existence of new information on the market and thereby interact with the price dynamics,

leading to temporal clustering of the likelihood of extreme events occurring (see, e.g. Ad-

mati and Pfleiderer (1988), Diamond and Verrecchia (1987) and Easley and O’hara (1992)

amongst others)2. Consequently, a reliable measure of IVaR should take into account the

mutual dependence between arrival times and extreme events.

In addition to clustering within a time series, the second challenge, which appears in

multivariate IVaR, is the tendency of extreme event clusters to occur across assets. The

reason for this tendency is not only contemporaneous correlations between assets but also

temporal lead-lag correlations. While the former comes from fundamental analysis of true

underlying values, the second arises as a consequence of the presence of asynchronous

trading, asymmetric information, strategic trading, and imperfect price adjustment in the

market microstructure (see Chapter 3), preventing the use of traditional multivariate tech-

niques designed for aggregated low-frequency data.

Now, we will first briefly describe the univariate IVaR models in the literature and dis-

cuss the pros and cons of their approach to dealing with the first challenge. Then, our

multivariate generalization, the IIVaR model, extending these univariate IVaR and capable

of accommodating issues of the second challenge, will be developed in the next section.

5.2.1 The Giot model

Let ri be the return over the given regular interval [ti�1, ti) of the same duration. Giot (2005)

assumes ri follows an AR(1)-GARCH(1,1) model, which can be written as:

ri = µ + hri�1 + ei, ei = zi

p

hi (5.3)

where ei are iid with unit variance and hi is given by the GARCH(1,1) model:

hi = w + az2
i�1 + bhi�1 (5.4)

1 This is motivated by the fact that financial institutions generally produce their market risk at the end of the
business day to measure their total risk exposure over the next day. For minimum capital adequacy ratio
requirements, banks usually calculate the VaR daily and then rescale it to a 10-day horizon (see, e.g. Basel
Committee on Banking Supervision, 2019, 2021)

2 In Easley and O’hara (1992), informed traders only trade if they are endowed with superior price-relevant
information. Therefore, in their model, long waiting times between trades are associated with no news and,
as a consequence, with low volatility. The opposite relation between duration and volatility is suggested by
Admati and Pfleiderer (1988). In their model, frequent trading is provoked by liquidity traders. Therefore,
low trading corresponds to a high proportion of informed traders on the market, which can be interpreted as
higher volatility
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Upon estimating the parameters, the one-step-ahead IVaR at time ti for period [ti, ti+1) is

calculated as follows:

IVaRi+1(x) = �
⇣

µ̂ + ĥri + zx

q

ĥi+1

⌘

(5.5)

where zx is the x-quantile of ei. Based on the empirical results in Giot (2005) 3, the t-

GARCH model was found to be the one that has the best performance.

In the Giot method, the returns are first aggregated over a desired horizon to retrieve a

regular spacing sample, to which traditional GARCH-type models can be applied. Thus,

his approach does not only require finding an optimal aggregating scheme but also in-

evitably incurs a loss of information, lying in the observations removed and in the time

intervals between transactions. Furthermore, speaking of practicality, since the interval is

fixed, the GARCH model has to be re-estimated each time a different time interval is de-

sired for the IVaR calculation. If market conditions change during the day, for example, the

change in transaction observation frequency, a market practitioner might want to shorten

the time horizon of his VaR. With the Giot method, she would need to resample the data

on the new horizon and estimate a new model.

5.2.2 The Dionne-Duchesne-Pacurar model

Later, Dionne, Duchesne and Pacurar (2009) proposed a log-ACD-ARMA-GARCH model

combining with a Monte Carlo simulation to forecast IVaR for any arbitrary interval length.

Their method avoids complicated time manipulations and instead makes use of all tick-by-

tick transaction data. In their method, a log-ACD part, originally proposed by Bauwens

and Giot (2000), is used to forecast irregular waiting times between consecutive trades and

an ARMA-GARCH part, which is also a UHF-GARCH-type model (Engle, 2000), is used

to simulate the corresponding conditional distribution of tick-by-tick returns.

Let t0, t1, ..., tN denote the sequence of times at which the trades occur with the prices

p0, p1, ..., pN , respectively, xi = ti � ti�1 for i = 1, 2, ..., N are the duration between two

consecutive trades, and ri = log(pi/pi�1) is the corresponding continuously compounded

return. Denote by yi = (xi|Hi�1) the conditional duration, where Hi�1 is the information

set on the event at time ti�1. The log-ACD model assumes that all temporal dependencies

between inter-trade duration are captured by the conditional mean function in the way

that the standardized duration ei = xi/yi is independently and identically distributed

positive random variable with unit mean.

yi = exp

(

w +
m

∑
j=1

ajei�j +
q

∑
j=1

b j ln yi�j

)

(5.6)

The most common distribution choices for the standardized duration ei are generalized

gamma distribution types.

3 Giot (2005) also proposes an IVaR measure based on a log-ACD model for irregularly spaced data. However,
this IVaR is then cast onto a regularly time-spaced grid for back-testing purposes, and is not found to perform
well.
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The return ri corresponding to the duration xi is modelled using the ARMA (1,1) spe-

cification:

ri = c + f1ri�1 + zi

p

hi + q(zi�1
p

hi�1) (5.7)

where the standardized return zi is an independent and identically distributed standard

normal variable. The conditional volatility per transaction is given by hi, which has the

following specification:

ln hi = g ln(xi) + w̃ +
P

∑
j=1

b̃ j
�

ln hi�j � g ln xi�j
�

+
Q

∑
j=1

⇥

aj
�

|zi�j|+ (|zi�j|)
�

+ ãjzi�j
⇤

(5.8)

By assuming xi to be weakly exogenous to ri, the parameters of each component, i.e.

log-ACD and ARMA-GARCH, are obtained separately by maximizing their log-likelihood

functions. Using the estimated parameters, the inter-trade durations are generated using

Eqn. 5.6, and the obtained durations are then used to generate the conditional volatility

and thus the returns. The duration and the returns are generated iteratively until the

accumulated duration reaches the intraday forecasting interval length. The simulation runs

are repeated to obtain a distribution of the returns over the forecast period, from which

the x-quantile of the returns is computed as IVaRi+1(x).

5.2.3 The Liu-Tse model

Similar to the DDP method, the Liu and Tse (2015) model is also based on simulation to

forecast IVaR for any arbitrary interval length. However, instead of considering the inter-

trade duration as exogenous to return, the Liu and Tse method investigates the dynamics

of price movements and duration jointly using a two-state asymmetric autoregressive con-

ditional duration model (AACD) (Tay et al., 2011). With a predefined threshold d, the two

states are associated with possible price movements of d ticks up and d ticks down. Unlike

the traditional ACD used in the DDP method that focuses on transaction duration, waiting

times between consecutive transactions, the two states AACD focus on price change dura-

tion, waiting times such that the magnitude of price change since the previous event first

equals or exceeds d. These two states of price movements each follow a latent stochastic

point process with independent exponential distributed inter-arrival times. Then, the ob-

served price movement is the outcome of a competition between the two underlying point

processes to be the first arrival.

Denote by xi = ti � ti�1 the price duration where ti�1, ti are the occurrence times of the

two consecutive price change events i � 1 and i-th. These price change events are said to

occur if the cumulative price change since the last threshold price change event is at least

equal to the threshold d, regardless of whether it is downward or upward. Let xji, j = �1, 1

be the two latent duration variables associated with the two possible states of downward

and upward, respectively, yji = (xji|Hi�1) be the conditional price change duration of xji,

and eji = xji/yji be the standardized price change duration. Liu and Tse (2015) propose

yji having the following specification:
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logyji = ∑
k=�1,1

⇥

wjk + ajklogxi�1
⇤

dNk(ti�1) + b jlogyj,i�1 (5.9)

where dNk(ti�1) denotes the counting function that counts the last event of type �1 or 1

corresponding to the upward or downward price change, respectively. It takes the value 1

if the last event is of type k and 0 otherwise. The standardized price change duration, e1i

and e�1i, are assumed to be independently Weibull distributed with unit mean.

Based on the estimated AACD model, price change events are generated with simulated

independent Weibull-standardized duration. Note that while there are two possible states

with waiting times x1i, x�1,i, respectively, at each ex-ante price change event ith, there is

only one state realized. Only the shortest of the two possible latent durations is observed

and xi is the outcome of the function xi = min(x1i, x�1,i). The price change duration is

generated iteratively to obtain the simulated return over the forecasting interval length.

Repeated simulation runs produce the return distribution over the intraday period, from

which the IVaR(x) is computed.

5.2.4 Limitations of existing univariate IVaR models for a multivariate extension

The theoretical concept underlying the VaR method is to look at slices of the conditional

distribution of returns to derive the market risk, without any reliance on global distribu-

tion. Therefore, the strategy pursued in the above univariate IVaR methods is to focus on

the waiting times to occur transactions associated with extreme price changes. And the

widely adopted model is the ACD-type model. However, as we aforementioned in the in-

troduction, although the ACD-type models are well suited to capture serially dependent

properties of the price change duration for single asset in a discrete price duration setting,

they are not compatible with a multivariate framework where the cross-effects between as-

sets exist continuously. To be more specific, when new price-relevant information arrives

within waiting times, the ACD-type model cannot update instantly but has to wait to ad-

just the conditional intensity of future event occurrence. Only when the arrival of a point

process terminates, the latent conditional intensity of the ACD-type model starts updating

the new information arriving in the cross-correlated point process, and this delay causes a

potential loss of cross-correlation between assets.

Therefore, the ACD and its extensions cannot capture the cross-asset dependency and

thus are inadequate for the multivariate IVaR measure. There is still a need for a model

that can take into account the cross-dependence structure, in particular, in the context of

intraday data for multiple assets in view of their clustering in extreme returns. In what

follows, we will propose a new method to overcome these difficulties.

5.3 multivariate intensity-based intraday value-at-risk model

Following Dionne, Duchesne and Pacurar (2009), and Liu and Tse (2015), we propose an

IVaR method also based on a Monte Carlo simulation but for multiple assets. Instead

of using duration models, our multivariate generalization, namely IIVaR, directly models
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the stochastic conditional intensities of two-state price change transaction point processes.

To do so, we continue applying the disjointing price change method that has been used

to investigate multi-asset price formation processes and realized covariance in previous

chapters. For our objective of forecasting IVaR, we concentrate on the tails of return dis-

tributions and, thus, on transaction events that lead to extreme price change. First, using

a price threshold as filter, we split each asset’s tick-by-tick transaction data into two point

processes associated with two states of price change as follows:

Definition 1. Given an observed transaction-by-transaction price process of asset d, Xd
i , 0 = td

0 <

td
1 < · · · < td

i < · · · < T, i = 0, 1, · · · , Nd(T), and a price change threshold d, an over-upper

bound price transaction event (OUB), {td+
i }i=0,1,...,Nd+(T), is triggered if the cumulative upward

price change equals or greater than d. And vice versa, an over-lower bound price transaction (OLB),

{td�
i }i=0,1,...,Nd�(T), is triggered if the cumulative downward price change exceeds d. Thus, the

two-state price change point processes for each asset d can be constructed as follows:

1. Set a new event at i = 0 : td+
0 = 0, Xd+

0 = Xd
0 for the OUB point process and td�

0 = 0,

Xd�
0 = Xd

0 for the OLB point process.

2. For j = 1, 2, ..., Nd(T), if Xd
j � Xd+

i � d, if td+
i+1 = td

j , Xd+
i+1 = Xd

j , we set a new event in the

OUB point process. Else if Xd
j � Xd+

i  0, we update a new dip to the price, i.e. Xd+
i = Xd

j

and remain the entry time td+
i unchanged. Otherwise, both the time and the price remain

unchanged.

Vice versa, for the OLB point process, we also set a new event td�
i+1 = td

j , Xd�
i+1 = Xd

j if

Xd
j � Xd�

i  �d. Else if Xd
j � Xd�

i � 0 a new peak is updated to the price Xd�
i = Xd

j

but the entry time, td�
i , is still remaining. Otherwise, there is no update on the OLB point

process.

Iterate until the sample is depleted.

We note that in the OUB and LOB point processes, ∆Xd+
i � Xd(td+

i ) � Xd(td+
i�1) and

∆Xd�
i  Xd(td�

i ) � Xd(td�
i�1). In our sampling scheme, we take into account directional

price movements that are not only from the entry to the exit events, but also from a point in

between and the exit event, i.e. the steps “Else if”. This is different from previous sampling

schemes in the literature (see, e.g. Banulescu et al., 2015; Liu and Tse, 2015) that consider

only price movements starting from the entry point. Our scheme is more extensive and

entails the previous ones, avoiding dropping significant price movements in between. In

what follows, we continue applying multivariate Hawkes point processes to models expli-

citly the vector of conditional intensities of two states, OUB and LOB, price change point

processes for multiple assets.

5.3.1 Disjointing Hawkes point processes of price dynamics

We denote (X1, ..., Xd, ...)| for 1  d  D as a vector of transaction price realizations for

D assets. For each asset, we obtain two-state disjoint point processes, OLB and OUB, as-

sociated with two states of price change (Xd+, Xd�)|, using the algorithm in Definition
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1. We compose a new vector by concatenating all marginal bivariate vectors of the OLB

and OUB processes and denote it as (X1, ..., Xk, ...) for 1  k  K with K = 2 ⇥ D, that

is, X1 ⌘ X1+, X2 ⌘ X1�, ..., XK�1 ⌘ XD+, XK ⌘ XD�. Then we denote by tk
1, ..., tk

i�1, tk
i the

sequence of clock times at which a transaction associated with the price change state k-th

occurs and by Nk(t) and lk(t) the conditional counting and conditional intensity functions

associated with the state k-th at time t. Note that if we let tj, ..., tj�1, tj
4 denote a pooled

process of all K states, then its counting function is N(t) = ∑
K
k=1 Nk(t). Following mul-

tivariate Hawkes point processes, we model the conditional intensity lk(t), measuring the

instantaneous quantity of event arrival of the state k-th point process conditional on its

information set Ht, as a linear combination of past jumps of all K price change states of D

assets:

lk(t) = µ
k +

K

∑
l=1

Z t

�∞
fkl(t � s)dNl(s) (5.10)

where {µk}k2[1,K] is a vector of exogenous intensities and {fkl(t)}k,l2[1,K] is a matrix-valued

decay kernel.

Unlike duration models (e.g. ACD and its extension), this formulation, namely Hawkes

point processes, parameterizes the conditional intensities as a measurable function condi-

tional on a multivariate information set and thus allows for the interdependence between

all point processes. The information set Ht is common for all conditional intensities

lk(t), k 2 [1, K] and accounts for any continuous change in the multi-asset price dynamics.

5.3.2 The compensator of counting function.

The disjointing point processes provide an efficient way to describe multi-asset price dy-

namics through the interdependence of their price change states. The most fundamental

application of the model is to measure and forecast future transaction arrivals associated

with those states. However, because the modelling involves solely conditional intensities,

it provides rather the likelihood of a price change event’s occurring than the indicator of

a certain arrival. The model is short of a variable that exactly indicates the arrival time

of new events in the disjoint processes. A natural candidate is the compensator of the

counting function. By its definition, the conditional intensity measures the conditional ex-

pected instantaneous quantity of event arrival. Under the submartingale assumption of the

counting process, the expected number of events can be well represented by the so-called

compensator, which is the cumulative conditional intensity over an interval 5:

Definition 2. Given a Ht�submartingale point process Nk(t) with [Nk(t)] < ∞, there is a

unique Ht predictable cumulative process Λk(t) =
R t

0 lk(u)du called the compensator with the

property:

[Nk(t)|Hs] = [Λk(t)|Hs] =
⇥

Z t

0
lk(u)du|Hs

⇤

, almost surely. (5.11)

4 j denotes the index of the pooled point process while i denotes the index of the marginal price change state
process

5 See, e.g, Daley and Vere-Jones (2006), Theorem A3.4.III; Hautsch (2012), Section 4.1.2
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Thus, the expected number of events in the interval (s, t], given Hs, is computed as the

conditional expectation of the so-called integrated intensity function defined as:

[Nk(t)� Nk(s)|Hs] =
⇥

Z t

s
lk(u)du|Hu

⇤

:= [Λk(s, t)|Hs], almost surely. (5.12)

The forecasting of a new event arrival based on the compensator is similar to simulating

a new point process (see, e.g. Hautsch (2012) Section 4.1.7). Substituting estimated condi-

tional intensities with the corresponding parameters obtained from the calibrated model

yields a conditional compensator of the point process k over the interval (s, t], Λ̂k(s, t). The

next price change event is predicted to occur in the point process k at time t if Λ̂k(s, t) is

greater than a given level. Once a new event is predicted to arrive, the conditional (integ-

rated) intensities are updated immediately, taking into account the self- and cross-exciting

impacts incurred by the arrival of that event.

To determine the level of Λk(t) to have a new event, one way is to exploit the fact

that Λk(tk
i�1, tk

i ) ⇠ i.i.d. Exp(1) due to random time change argument (see, in particular,

Hautsch (2012) Theorem 4.5). However, this way ignores the temporal dependence in the

occurrence of price change events induced by intraday periodicity. In the empirical ap-

plication, we document that the two states of price duration processes exhibit a strong

periodicity during the same day (see Figure 5.1). This pattern must be taken into account

to avoid distortions in the results. One traditional way is to remove the periodicity from

the transaction duration data prior to fitting the model. However, either increasing or de-

creasing the inter-trade duration will change the self- and cross-exciting between events

(see Eqn. 5.10) and thus distort the interdependence between assets. Another solution is

to adjust the periodicity on the estimated compensator without touching the original data.

Thereby, in the next section we propose a statistical model for the estimated compensator

time series given by the calibrated conditional intensities. The model is specified to take

into account the temporal dependence of the occurrence over time and can explicitly fore-

cast the future compensator.

5.3.3 The autoregressive conditional compensator - ACC model.

Because the compensator is closely linked to the duration between price change events

by its definition, the most convenient way is to model the compensator with the same

formulation to the duration. Denote by Λk
i = Λk(tk

i )� Λk(tk
i�1) the compensator between

two consecutive price change events associated with the marginal state k-th, and by yk

the conditional expectation of the compensator Λk
i such that yk

i = (Λk
i |H

k
i�1). Let ek

i =

Λk
i /yk

i be the standardized compensator that is an independently standard exponential

distributed variable. Our basic model for the compensator is as follows:

Λk
i = yk

i ek
i (5.13)

yk
i = w + ãΛk

i�1 + b̃yk
i�1 (5.14)
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Because the filtration of Λk
i , Hk

i�1 only includes information on the marginal com-

pensator process k-th to tk
i�1, that is, the previous marginal compensator Λk

i�1 and the

lagged expected marginal compensator yk
i�1, tt is independent of the filtration of other

marginal processes. Thus, the iterative forecast on the compensator for each future trans-

action i-th can be calculated independently and directly using Eqn. 5.13 and Eqn. 5.14. We

recall that the interdependence between price change processes is captured by the dynam-

ics of conditional intensities, from which the marginal compensator is composed.

5.3.4 Evaluation of IVaR by Monte Carlo simulation

We now describe the Monte Carlo simulation procedure for computing the IVaR based

on calibrated Hawkes point processes and the estimated ACC model. Suppose that we

want to estimate the IVaR of the ex-ante period (T1, T2] given the ex-post sample period

[0, T1], T1 < T2. We begin by estimating the matrix-valued parameters for K-price change

point processes, µ̂, φ̂ based on the historical data up to T1 and calculate the corresponding

historical conditional intensities and compensator. Using the information of the calibrated

historical compensator in the period [0, T1], we forecast the values of {Λ̂k
i }1kK. From the

compensator forecasts, we can calculate future transaction arrival times tk
i , T1  tk

i  T2.

The simulation algorithm is as follows:

1. Simulate K (independent) sequences ek
1, ...ek

n, ..., 1  k  K, of standard i.i.d. exponential

random variables.

2. For 1  k  K, setting tk
0 as the last transaction time in the process k-th prior to T1, we

calculate the initial values for yk
0, Λk

0. Then using the simulated sequences of innovations ek
i ,

we iteratively calculate the compensator forecast of each future transaction Λ̂k
i .

3. Set T1 = 0. If Wk
1 = Λk(0, tk

1) =
R tk

1
0 lk(u)du = Λ̂k

1 � Λk(tk
0, 0) with Wk

(·) denotes the

integrated conditional intensity between two consecutive transactions of the pooled point

process, we can express as tk
1 = Λk(0, Wk

1 )
�1 with Λk(·)�1 denoting the inverse function of

Λk depending only on Λ̂k
1 and T1.

4. Set a new point in the pooled process that occurs at t1 = min{t1
1, ..., tk

1, ...} and its price

change state index i1 = argmink{t1
1, ..., tk

1, ...} for 1  k  K.

5. For all 1  k  K, k 6= i1, we compute Λk(0, t1). Then, let Λk(0, tk
2) = Λk(0, t1) +

Λk(t1, tk
2). Because there is no transaction before t1 in the marginal process k-th, we can

write Λk(0, tk
2) = Λ̂k

1 and Λk(t1, tk
2) = Λ̂k

1 � Λk(0, t1) = Wk
2 . Therefore, we can compute

tk
2 = Λk(t1, Wk

2 )
�1.

For k = i1: Because there is a transaction at t1 of the marginal process k-th, we can express

Λk(t1, tk
2) = Λ̂k

2 and compute tk
2 = Λk(t1, Λ̂k

2)
�1.

6. Set a new point in the pooled process that occurs at t2 = min{t1
2, ..., tk

2, ...} and its price

change state index i2 = argmink{t1
2, ..., tk

2, ...} for 1  k  K.
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7. Continue this procedure until the first event tj such that tj � T2, at which a simulation of

multivariate price change states point processes over the interval (T1, T2] is obtained.

This simulation algorithm is repeated to obtain a distribution of returns over the interval

(T1, T2], from which the x-quantile of the return over the forecasting interval is computed

as IVaR(x).

5.4 back-testing ivar

The standard assessment method of IVaR consists of back-testing or reality check proced-

ures. As defined by Jorion (2006), backtesting is a formal statistical framework that verifies

if the actual trading losses are in line with projected losses. This involves a systematic com-

parison of the history of IVaR forecasts generated by the model with the actual returns.

The assessment is generally based on the concept of violation (also called Hit) (Candelon

et al., 2010). An violation is said to occur if the ex-post realization of the portfolio returns

is more negative than the IVaR forecast. Following the literature, we consider three well-

known tests on violation realizations to assess the performance of our multivariate IVaR

forecasts: unconditional coverage test by Kupiec (1995), correlated hit sequence test by

Engle and Manganelli (2004), and random violation test by Candelon et al. (2010).

5.4.1 Unconditional coverage test

The test proposed by Kupiec (1995) considers exclusively the property of unconditional

coverage. Under the unconditional coverage hypothesis, the expected frequency of ob-

served IVaR violation is precisely equal to the coverage rate x. If the unconditional prob-

ability of violation is significantly higher than x, it means that the IVaR model under-

states the actual risk level of the portfolio. The opposite finding of too few IVaR violations

would alternatively signal an overly conservative IVaR measure. Suppose that there are

D-multivariate sequences of IVaRd
t , 1  d  D, t 2 [1, T] corresponding to D assets and T

denoting the number of forecast intervals. The sequence of violations Id
t (x) for each asset

with a target coverage probability x is defined as follows:

Id
t (x) =

8

>

<

>

:

1, if rd
t < �IVaRd

t (x)

0, otherwise.
(5.15)

The probability of observing IVaR failures regardless of order in a sample of T forecasting

intervals for asset d is:

x̂ =
1
T

Id(x) =
1
T

T

∑
t=1

Id
t (x) (5.16)

Under the null hypothesis H0, x̂ = x. To test that the underlying potential failure estimates

are consistent with the null hypothesis, Kupiec (1995) proposes using the likelihood ratio
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(LR) test procedure. Specifically, given a realization size T for x̂, the LR statistic at target

probability x is as follows:

LRd
T(x) = 2

⇥

log[(1 � x̂)T�Id(x) x̂ Id(x)]� log[(1 � x)T�Id(x)x Id(x)]
⇤

(5.17)

Under the null hypothesis, which means that the estimated IVaR achieves the target prob-

ability x, LRd
T(x) has a chi-square distribution with 1 degree of freedom c2

1.

5.4.2 Dynamic quantile test

The unconditional coverage is a very useful and straightforward test to evaluate whether

the IVaR model reflects, overestimates, or underestimates the true level of risk. However,

unconditional coverage cannot shed light on the possible dependence of IVaR violations.

The serial correlation of violations in a marginal IVaR sequence and the cross-correlation

of violations between assets can lead to the clustering of failures even if the IVaR model

can reflect the true level of risk. IVaR violations at different dates or different assets must

be distributed independently regardless of the coverage rate considered. Following Engle

and Manganelli (2004), we use a linear regression model of current violations on a set of

explanatory variables to test if the violations are serial or cross-correlated. Additionally,

we consider tests for the cross-correlation of IVaR violations between assets by including

the violation variables of other assets in the regression of Engle and Manganelli (2004).

Let Hitt(x) = It(x)� x be the de-meaned sequence of It(x). We consider a regression as

follows:

Hitd
t (x) = ad + gdIVaRt(x) +

D

∑
r=1

bdrHitr
t(x) +

Q

∑
q=1

bd
qHitd

t�q(x) + et (5.18)

We test the following two null hypotheses for asset d: ad = gd = bd1 = ...bdr = ...bd
1 =

... = bd
q = 0. Under the null, the accompanying Wald statistic, denoted by DQd

T(x) is

asymptotically chi-square distributed with Q + D + 2 degree of freedom, c2
Q+D+2.

5.4.3 Duration-based GMM

Another method considered in the backtesting literature (see, e.g. Candelon et al., 2010;

Christoffersen, 2004) uses the statistical properties of the duration between two consecut-

ive hits in examining whether the IVaR violations occur randomly. The baseline idea is that

if the IVaR correctly predicts the true level of coverage a, the duration between two consec-

utive hits associated with x must be geometrically distributed. Denote td
i as the number

of intervals between the violations (i � 1)th and ith of the asset d with i = 1, ..., Id(x). The

GMM test proposed by Candelon et al. (2010), denoted by G, is given by:

G =

 

1
p

Id(x)

Id(x)

∑
i=1

Ξ(td
i ; x)

! 

1
p

Id(x)

Id(x)

∑
i=1

Ξ(td
i ; x)

!|

(5.19)
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where Ξ(di, x) denotes a v ⇥ 1 vector whose components are orthonormal polynomials

associated with the geometric distribution. Under the null hypothesis that the violations

are randomly distributed, G must be asymptotically distributed as c2
v.

5.5 empirical application

5.5.1 Data description

Table 5.1: Descriptive statistics for four selected stocks listed on the DJIA index.

Indicators
Group I Group II

AAPL MSFT AXP TRV

Panel A: Trades

Average No. Trade 70886 58537 12231 6779

Max No. Trade 100837 80278 15865 8391

Min No. Trade 51490 47578 9437 5070

Nonzero Trade 31477 19653 5195 3842

Nonzero Percentage 44.20 33.56 42.69 56.89

Positive Extreme Trade 19 2 21 142

Positive Extreme Percentage 0.03 0.00 0.18 2.24

Negative Extreme Trade 19 2 20 149

Negative Extreme Percentage 0.02 0.00 0.19 2.16

Price Avg 174.01 109.61 107.45 129.88

Panel B: Price Changes

Price Change Avg 7E-06 6E-06 3E-05 4E-05

Price Change SD 0.009 0.007 0.011 0.019

Price Change Skewness 18.486 11.613 9.647 4.485

Price Change Kurtosis 7108.059 4363.876 1892.687 715.584

Panel C: Duration

Trade Duration Avg 0.317 0.376 1.802 3.236

Trade Duration SD 0.510 0.618 3.135 5.485

Trade Duration Skewness 3.106 3.124 3.280 3.110

Trade Duration Kurtosis 14.929 15.123 17.142 14.395

Notes: For each asset, we show the average statistics per day for some indicators such
as number of trades; number of non-zero trades that move stock price; number of
positive and negative extreme trades that move stock price more than 3 ticks; price
average; and the average trade duration between consecutive observations.

Our dataset used in this empirical application, similar to the one in § 3.4 of the previous

Chapter 3, is extracted and compiled from the Trade and Quote (TAQ) database and con-

tains the high-frequency transaction data of four stocks listed on the Dow Jones Industrial

Average (DJIA) index: Apple (ticker symbol AAPL) and Microsoft Corporation (ticker sym-

bol MSFT); American Express (AXP) and The Traveler (TRV). The first pair of the selected

stocks, namely Group I, including AAPL and MSFT belongs to the technology sector and

also represents the stocks with the highest trading activities in the DJIA. Meanwhile, the

second pair of the selected stocks, namely Group II, including AXP and TRC, is from the
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financial services sector and represents the stocks with the lowest trading activity in the

DJIA. The data used are in the period from 01 February 2019 to 15 March 2019, a total

of 42 business days. The timestamp precision is in milliseconds. Prior to use, we perform

data cleaning procedures of Barndorff-Nielsen et al. (2011) as in the previous chapter. The

average of key statistics related to the trading activities of four selected stocks over all

trading days is summarized in Table 5.1.

Amongst the four stocks, the AAPL are the most active trading stocks with the highest

number of trades per day. Following AAPL, the other stock in the technology sector, MSFT,

also has very high trading activities. These two stocks are considered high-liquidity stocks

in our empirical study. In contrast, the two stocks of the financial services sector have

the lowest number of trades per day and are considered low-liquidity stocks. On average,

the trade duration is 0.317 seconds for AAPL, 0.376 seconds for MSFT, 1.802 seconds for

AXP, and 3.235 for TRV. Nonzero trades that move stock prices occurred with a frequency

of 30% to 50%, while extreme trades that move prices greater than 3 ticks occurred with

very minor frequencies of less than 0.5%, except for TRV with a frequency of 4.4%. All the

trade returns series display kutorsis and skewness much higher than normal distribution,

especially the kurtosis. The leptokurticity arises as a consequence of the mass distribution

mostly concentrated around zero ticks.

We then construct two-state price change point processes, OUB and OLB, from the trans-

action price data according to Definition 1. We let the price change thresholds take three

values: 2 ticks, 3 ticks, and 4 ticks. We note that these values include the choice of threshold

recommended by Hong et al. (2021), which is three times a measure of the average bid/ask

spread. Detailed statistics on the OUB and OLB are reported in Table 5.2.

For all stocks, the average price duration is longer than the trade duration and increases

with the price change threshold d. The larger the price change, the more time it takes

to move the price by this amount. The price changes associated with the OUB and OLB

point processes display much lower kutorsis and skewness than the price changes from the

transaction data. But these kutorsis and skewness do not decrease with increasing price

change threshold d. The mass distribution of the price change events seems to concentrate

at 3 ticks, as this price change threshold displays the highest kutorsis and the lowest

standard deviation.

We also present an example of the OUB and OLB price duration processes in Figure 5.1.

The figure shows that there is a clear diurnal pattern in the two-state price duration pro-

cesses, as documented in Engle and Russell (1998) for an absolute price duration process.

Virtually, market activity (respectively, duration of price change) is higher (respectively,

shorter) at the opening and lower (respectively, longer) at the closing of the trading day.

5.5.2 Empirical results

5.5.2.1 Out-of-sample IVaR forecasts

We calibrate the parameters of the conditional intensity functions and the ACC model

using the OUB and OLB constructed from transaction data for one trading day (estima-
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Table 5.2: Descriptive statistics for OUB and OLB point processes

Indicators
Group I Group II

AAPL MSFT AXP TRV

OUB OLB OUB OLB OUB OLB OUB OLB

d = 2 ticks

Average No. of Events 3704 3675 1129 1135 597 598 848 842

Max No. of Events 5633 5617 1307 1372 667 702 773 756

Min No. of Events 3635 3495 1218 1152 740 716 836 838

Price Change Avg (ticks) 2.353 -2.354 2.599 -2.593 2.779 -2.784 3.056 -3.054

Price Change SD 0.522 0.526 0.497 0.497 0.644 0.652 1.134 1.134

Price Change Skewness 1.542 -1.678 0.015 -0.055 1.007 -1.062 2.040 -1.971

Price Change Kurtosis 6.432 9.502 -0.037 0.080 4.333 4.357 8.409 6.735

Price Duration Avg 6.387 6.426 20.224 20.174 37.626 37.614 26.302 26.561

Price Duration SD 7.927 8.303 25.128 24.904 42.512 43.893 28.921 29.336

Price Duration Skewness 3.046 3.197 3.268 2.971 2.637 2.693 2.400 2.501

Price Duration Kurtosis 15.590 16.272 17.738 14.222 10.613 11.081 8.861 10.281

d = 3 ticks

Average No. of Events 2093 2076 828 823 460 459 634 627

Max No. of Events 3177 3175 933 986 536 556 660 629

Min No. of Events 2027 1921 842 782 553 526 603 599

Price Change Avg (ticks) 3.127 -3.128 3.088 -3.088 3.221 -3.229 3.638 -3.647

Price Change SD 0.358 0.363 0.284 0.287 0.506 0.521 1.039 1.042

Price Change Skewness 3.701 -3.947 3.678 -3.766 2.897 -3.014 2.572 -2.469

Price Change Kurtosis 24.749 31.984 17.930 18.728 11.144 12.652 10.912 9.098

Price Duration Avg 11.261 11.330 27.763 27.947 49.154 49.195 35.305 35.745

Price Duration SD 13.180 14.074 33.485 33.362 54.455 57.455 39.646 39.496

Price Duration Skewness 2.866 3.036 3.105 2.816 2.500 2.719 2.729 2.640

Price Duration Kurtosis 14.272 14.323 15.590 12.170 9.044 11.200 12.471 11.933

d = 4 ticks

Average No. of Events 916 904 407 406 236 233 331 326

Max No. of Events 1318 1351 441 481 273 280 406 399

Min No. of Events 871 779 417 372 277 269 309 308

Price Change Avg (ticks) 4.690 -4.701 4.373 -4.367 4.524 -4.542 5.085 -5.103

Price Change SD 0.540 0.546 0.486 0.487 0.638 0.656 1.070 1.062

Price Change Skewness 0.549 -0.690 0.850 -0.916 1.256 -1.323 1.949 -1.778

Price Change Kurtosis 4.701 7.096 0.146 0.584 2.901 3.028 8.507 6.109

Price Duration Avg 25.594 25.961 56.639 57.002 96.134 97.287 68.677 69.735

Price Duration SD 29.506 32.104 67.718 66.828 104.893 111.954 79.951 79.629

Price Duration Skewness 2.782 3.071 2.987 2.784 2.460 2.525 2.744 2.588

Price Duration Kurtosis 12.072 15.009 14.214 12.848 8.613 8.988 11.486 9.911

Notes: For each price change threshold, we show the average statistics over all trading days for some indicators
such as number of events; highest and lowest number of events per day; average price change and average price
duration between consecutive events.
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Figure 5.1: Price change duration processes over a trading week

Notes: The sample is extracted from the dataset of AAPL from 04/02/2019 to 08/02/2019, consisting of a
trading week. The three upper panels are OUB price change processes and the three lower panels are OLB
price changes processes, corresponding to 2, 3, and 4 ticks thresholds.



132 disjoint hawkes point processes on multivariate extension of intraday value-at-risk

tion period) with price change thresholds of 2 ticks, 3 ticks, and 4 ticks. The calibrated

parameters are used to simulate one-step-ahead price movements within next intervals

of 5 minutes, 15 minutes, 30 minutes, and 1 hour. All the irregular simulated returns

are summed up to give final returns over the fixed-time intervals. The simulation is run

with 500 independent repetitions to simulate a full distribution of returns, from which the

IVaR is extracted. After completing the IVaR forecast for an interval, we move the estim-

ation period by including one interval forward and excluding the first interval, keeping

the length of the estimation period to one day, and proceed with the next interval IVaR

forecasting.

Table 5.3 displays the probability of observing failures of the IVaR out-of-sample forecast

for two selected pairs of stocks. The results are reported for three levels of risk: 5%, 2.5%

and 1% and for all selected intervals and sampling thresholds. The details of each case are

illustrated in Figures 5.2 to 5.5. Entries in boldfaces denote the frequency of violation that

is within 0.5% deviation from the nominal risk values.

Table 5.3: Probability of observing IVaR failures for two selected pairs of stocks

5-min 15-min 30-min 60-min

IVaR level 5,0% 2,5% 1,0% 5,0% 2,5% 1,0% 5,0% 2,5% 1,0% 5,0% 2,5% 1,0%

Low
liquidity

pair

Threshold: 2 ticks

AXP 0.079 0.061 0.046 0.067 0.046 0.026 0.073 0.052 0.038 0.076 0.047 0.035
TRV 0.075 0.057 0.039 0.057 0.048 0.032 0.050 0.026 0.020 0.065 0.047 0.035
Threshold: 3 ticks

AXP 0.066 0.051 0.038 0.064 0.046 0.024 0.060 0.039 0.027 0.073 0.061 0.042
TRV 0.066 0.049 0.032 0.054 0.039 0.025 0.030 0.021 0.015 0.055 0.042 0.030
Threshold: 4 ticks

AXP 0.052 0.034 0.025 0.044 0.032 0.025 0.032 0.025 0.011 0.057 0.050 0.043
TRV 0.044 0.029 0.022 0.030 0.021 0.018 0.025 0.018 0.018 0.050 0.043 0.028

High
liquidity

pair

Threshold: 2 ticks

AAPL 0.051 0.042 0.029 0.045 0.032 0.027 0.052 0.034 0.023 0.040 0.023 0.023
MSFT 0.065 0.044 0.030 0.050 0.034 0.023 0.055 0.037 0.020 0.046 0.017 0.017
Threshold: 3 ticks

AAPL 0.055 0.041 0.031 0.055 0.039 0.023 0.049 0.032 0.017 0.040 0.023 0.011
MSFT 0.055 0.041 0.027 0.050 0.039 0.026 0.052 0.037 0.023 0.040 0.029 0.017
Threshold: 4 ticks

AAPL 0.051 0.041 0.028 0.049 0.040 0.027 0.052 0.043 0.029 0.029 0.023 0.011
MSFT 0.041 0.028 0.019 0.040 0.029 0.019 0.049 0.040 0.026 0.034 0.017 0.011

Notes: The figures are the unconditional probability of observing failures of IVaR out-of-sample forecast. Entries in bold-faces
denote the frequency of violation within 0.5% deviation from the nominal risk values.

At first glance, we can observe that the violation frequency of IVaR tends to be closer to

its nominal levels, e.g. 5%, 2.5% and 1%, when the forecasting interval length and the price

change threshold are increased. For example, at the high risk level of 1%, the best IVaR

performance of AAPL and MSFT, i.e. the frequency of IVaR violations is not significantly

different from 1%, is achieved at 60-minute interval and 4-tick threshold, while for AXP

and TRV it is at 30-minute and 4-tick.
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Figure 5.2: 5-min IVaR out-of-sample forecasts with 2, 3, and 4 ticks thresholds

Notes: IVaR out-of-sample forecasts for AXP and TRV, AAPL and MSFT. The figure of each asset displays the
forecasts of the intraday IVaR with 5% (in yellow), 2.5% (in green) and 1% (in red), the ex-post returns (in
blue), as well as the violations series corresponding to each level of risks.
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Figure 5.3: 15-min IVaR out-of-sample forecasts with 2, 3, and 4 ticks thresholds

Notes: IVaR out-of-sample forecasts for AXP and TRV, AAPL and MSFT. The figure of each asset displays the
forecasts of the intraday IVaR with 5% (in yellow), 2.5% (in green) and 1% (in red), the ex-post returns (in
blue), as well as the violations series corresponding to each level of risks.
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Figure 5.4: 30-min IVaR out-of-sample forecasts with 2, 3, and 4 ticks thresholds

Notes: IVaR out-of-sample forecasts for AXP and TRV, AAPL and MSFT. The figure of each asset displays the
forecasts of the intraday IVaR with 5% (in yellow), 2.5% (in green) and 1% (in red), the ex-post returns (in
blue), as well as the violations series corresponding to each level of risks.
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Figure 5.5: 60-min IVaR out-of-sample forecasts with 2, 3, and 4 ticks thresholds

Notes: IVaR out-of-sample forecasts for AXP and TRV, AAPL and MSFT. The figure of each asset displays the
forecasts of the intraday IVaR with 5% (in yellow), 2.5% (in green) and 1% (in red), the ex-post returns (in
blue), as well as the violations series corresponding to each level of risks.
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In addition, Figures 5.2 to 5.5 illustrate the realizations of the out-of-sample IVaR forecast

results with different price change thresholds and different forecast intervals. The corres-

ponding IVaR violations are also displayed in the panels below. From the figures, IVaR

violations seem to cluster only in the cases of 5-minute and 15-minute one-step-ahead

forecasting. For the longer forecasting intervals, i.e. 30 minutes and 60 minutes, they are

not clustered and accurately capture the extreme return dynamics.

Finally, high liquid stocks, i.e. AAPL and MSFT, generally perform better in both as-

pects of IVaR violation probability and clustering than low liquid stocks, AXP and TRV.

We remind the reader that our IIVaR estimator, basically, is a parametric-designed estim-

ator based on fitting conditional intensities to the historical realizations of two-state price

change processes. The performance of the estimator is very sensitive to the size of the in-

formation set on which it is conditioned, that is, in this study, the trading activity or the

liquidity level. Therefore, the higher the liquid the asset, the better the IVaR estimation can

be obtained by the IIVaR.

So far, we have presented the results obtained “upon the first glance” on the coverage

and the serial independence of IVaR forecasts. In the next section, we will verify these

findings using the back-testing methods mentioned in § 5.4.

5.5.2.2 Backtesting results

Tables 5.4 and 5.7 present the backtest results of the IVaR out-of-sample forecasts. For

each forecast interval, sampling threshold, and level of risk, we perform Kupiec, dynamic

quantile, and duration-based GMM tests on the realization of IVaR violations (hits) to

test for unconditional coverage, independence, and random occurrence of IVaR forecast

failures. To further examine the dependence of IVaR forecast failures, Tables 5.8 to 5.11

illustrate regressions of IVaR violation time series on relevant variables, i.e. lagged IVaR

violations, IVaR violations of related stocks, IVaR magnitude, and trend. The t-test on the

regression coefficient is performed to verify the correlation between the IVaR violation and

its covariates. The entries reported in all tables are the corresponding p-values of the tests.

The entries in boldfaces denote failures of the model at the 99% confidence level, as the

p-values are less than 0.01, and the ones in italics denote failures at the 95% confidence

level, as the p-values are less than 0.05.

From Table 5.4, the IIVaR model performs poorly in the 5-minute forecast interval. Espe-

cially, for low liquid stocks, AXP and TRV, p-values are rejected in almost all tests, except

one case of the Kupiec test for IVaR forecasts at 5% risk level with 4-tick threshold. For high

liquid stocks, significant p-values are obtained at the 5% risk level from the Kupiec test

and the duration-based GMM test. Still, the null hypotheses of independence violations in

the dynamic quantile test are all rejected.

Moving to IVaR forecasting over longer interval lengths, IIVaR tends to perform better.

At 15 minutes, IVaR forecasts of the 2.5% risk level do not reject the null hypotheses of

unconditional coverage in the Kupiec test and randomly distributed occurrences in the

duration-based GMM test at all sampling thresholds for high liquid stocks, whereas for
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Table 5.4: 5-min IVaR backtesting results for two selected pairs of stocks

Kupiec test Dynamic quantile test Duration GMM test

IVaR level 5,0% 2,5% 1,0% 5,0% 2,5% 1,0% 5,0% 2,5% 1,0%

Low
liquidity

pair

Threshold: 2 ticks
AXP 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
TRV 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Threshold: 3 ticks
AXP 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
TRV 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Threshold: 4 ticks
AXP 0,353 0,014 0,000 0,000 0,000 0,000 0,000 0,000 0,000
TRV 0,278 0,307 0,000 0,000 0,001 0,000 0,000 0,000 0,000

High
liquidity

pair

Threshold: 2 ticks
AAPL 0,798 0,000 0,000 0,000 0,000 0,000 0,846 0,005 0,000
MSFT 0,003 0,000 0,000 0,000 0,000 0,000 0,066 0,000 0,000
Threshold: 3 ticks
AAPL 0,345 0,000 0,000 0,000 0,000 0,000 0,323 0,000 0,000
MSFT 0,345 0,000 0,000 0,000 0,000 0,000 0,905 0,009 0,000
Threshold: 4 ticks
AAPL 0,787 0,000 0,000 0,000 0,000 0,000 0,951 0,006 0,000
MSFT 0,142 0,180 0,000 0,000 0,001 0,000 0,118 0,672 0,010

Notes: The figures are the p-values of the backtests. Entries in boldfaces denote the p-values are less than
0.01 and italics ones denote the p-values are less than 0.05. The dynamic quantile test uses 3 lags of the IVaR
as explanatory variables, and the duration-based GMM test tests for conditional coverage with 5 moment
conditions.

Table 5.5: 15-min IVaR backtesting results for two selected pairs of stocks

Kupiec test Dynamic quantile test Duration GMM test

IVaR level 5,0% 2,5% 1,0% 5,0% 2,5% 1,0% 5,0% 2,5% 1,0%

Low
liquidity

pair

Threshold: 2 ticks
AXP 0,054 0,001 0,000 0,000 0,000 0,000 0,222 0,021 0,001
TRV 0,436 0,001 0,000 0,001 0,000 0,000 0,945 0,051 0,001
Threshold: 3 ticks
AXP 0,100 0,001 0,002 0,000 0,000 0,004 0,377 0,019 0,085
TRV 0,642 0,032 0,001 0,002 0,000 0,001 0,882 0,489 0,062
Threshold: 4 ticks
AXP 0,541 0,306 0,003 0,001 0,000 0,000 0,000 0,000 0,007
TRV 0,021 0,570 0,094 0,000 0,000 0,002 0,000 0,000 0,000

High
liquidity

pair

Threshold: 2 ticks
AAPL 0,501 0,283 0,000 0,001 0,023 0,001 0,132 0,619 0,000
MSFT 0,972 0,129 0,003 0,002 0,001 0,000 0,590 0,185 0,039
Threshold: 3 ticks
AAPL 0,583 0,031 0,003 0,000 0,008 0,021 0,977 0,436 0,126
MSFT 0,972 0,031 0,000 0,003 0,005 0,003 0,789 0,473 0,031
Threshold: 4 ticks
AAPL 0,896 0,018 0,000 0,005 0,003 0,000 0,989 0,327 0,014
MSFT 0,225 0,533 0,040 0,003 0,027 0,000 0,443 0,958 0,495

Notes: The figures are the p-values of the backtests. Entries in bold-faces denote the p-values are less than
0.01 and italics ones denote the p-values are less than 0.05. The dynamic quantile test uses 3 lags of the IVaR
as explanatory variables, and the duration-based GMM test tests for conditional coverage with 5 moment
conditions.
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Table 5.6: 30-min IVaR backtesting results for two selected pairs of stocks

Kupiec test Dynamic quantile test Duration GMM test

IVaR level 5,0% 2,5% 1,0% 5,0% 2,5% 1,0% 5,0% 2,5% 1,0%

Low
liquidity

pair

Threshold: 2 ticks
AXP 0,068 0,004 0,000 0,023 0,017 0,013 0,231 0,100 0,002
TRV 0,970 0,884 0,089 0,064 0,392 0,081 0,717 0,465 0,505
Threshold: 3 ticks
AXP 0,399 0,124 0,010 0,002 0,004 0,000 0,012 0,212 0,033
TRV 0,075 0,645 0,385 0,003 0,025 0,002 0,482 0,971 0,406
Threshold: 4 ticks
AXP 0,147 0,992 0,901 0,057 0,706 0,932 0,785 0,931 0,992
TRV 0,035 0,425 0,231 0,103 0,436 0,414 0,000 0,000 0,218

High
liquidity

pair

Threshold: 2 ticks
AAPL 0,883 0,284 0,037 0,030 0,073 0,227 0,991 0,906 0,439
MSFT 0,698 0,168 0,095 0,023 0,067 0,340 0,971 0,818 0,629
Threshold: 3 ticks
AAPL 0,921 0,448 0,218 0,166 0,022 0,007 0,980 0,865 0,832
MSFT 0,883 0,168 0,037 0,126 0,122 0,045 0,967 0,811 0,433
Threshold: 4 ticks
AAPL 0,883 0,049 0,004 0,282 0,084 0,111 0,911 0,355 0,107
MSFT 0,921 0,094 0,013 0,074 0,036 0,098 0,949 0,387 0,133

Notes: The figures are the p-values of the backtests. Entries in bold-faces denote the p-values are less than
0.01 and italics ones denote the p-values are less than 0.05. The dynamic quantile test uses 3 lags of the IVaR
as explanatory variables, and the duration-based GMM test tests for conditional coverage with 5 moment
conditions.

Table 5.7: 60-min IVaR backtesting results for two selected pairs of stocks

Kupiec test Dynamic quantile test Duration GMM test

IVaR level 5,0% 2,5% 1,0% 5,0% 2,5% 1,0% 5,0% 2,5% 1,0%

Low
liquidity

pair

Threshold: 2 ticks
AXP 0,140 0,100 0,010 0,194 0,296 0,166 0,686 0,548 0,173
TRV 0,399 0,100 0,010 0,037 0,089 0,027 0,943 0,691 0,115
Threshold: 3 ticks
AXP 0,208 0,013 0,002 0,163 0,089 0,025 0,716 0,272 0,045
TRV 0,792 0,192 0,035 0,030 0,015 0,022 0,998 0,919 0,640
Threshold: 4 ticks
AXP 0,719 0,098 0,004 0,202 0,080 0,045 0,296 0,438 0,043
TRV 0,985 0,224 0,073 0,066 0,108 0,087 0,000 0,022 0,242

High
liquidity

pair

Threshold: 2 ticks
AAPL 0,541 0,863 0,141 0,231 0,888 0,744 0,987 0,895 0,678
MSFT 0,805 0,488 0,384 0,226 0,000 0,000 0,701 0,360 0,874
Threshold: 3 ticks
AAPL 0,541 0,863 0,847 0,356 0,888 0,965 0,903 0,939 0,980
MSFT 0,541 0,758 0,384 0,084 0,106 0,002 0,580 0,823 0,592
Threshold: 4 ticks
AAPL 0,163 0,863 0,847 0,440 0,891 0,976 0,833 0,989 0,928
MSFT 0,321 0,488 0,847 0,165 0,000 0,959 0,710 0,448 0,999

Notes: The figures are the p-values of the backtests. Entries in bold-faces denote the p-values are less than
0.01 and italics ones denote the p-values are less than 0.05. The dynamic quantile test uses 3 lags of the IVaR
as explanatory variables, and the duration-based GMM test tests for conditional coverage with 5 moment
conditions.
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low liquid stocks, these two tests start to be significant at the 4-tick threshold. However,

rejections of dynamic quantile tests still persist at all thresholds and risk levels.

Table 5.8: 5-min IVaR backtesting results for two selected pairs of stocks

2 ticks 3 ticks 4 ticks
IVaR level 5,0% 2,5% 1,0% 5,0% 2,5% 1,0% 5,0% 2,5% 1,0%

Regression: HitAXP
t = c + dIVaR + aHitTRV

t + b1HitAXP
t�1 + b2HitAXP

t�2 + b3HitAXP
t�3 + et

TRV 0,000 0,000 0,002 0,858 0,460 0,898 0,359 0,398 0,345
IVaR 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

AXP-3 0,345 0,960 0,310 0,782 0,902 0,751 0,698 0,423 0,290
AXP-2 0,586 0,599 0,427 0,790 0,496 0,104 0,032 0,100 0,981
AXP-1 0,560 0,742 0,685 0,971 0,589 0,521 0,509 0,568 0,324
const 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Regression: HitTRV
t = c + dIVaR + aHitAXP

t + b1HitTRV
t�1 + b2HitTRV

t�2 + b3HitTRV
t�3 + et

AXP 0,000 0,000 0,002 0,909 0,535 0,867 0,485 0,454 0,334
IVaR 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

TRV-3 0,226 0,440 0,681 0,715 0,557 0,125 0,930 0,742 0,810
TRV-2 0,626 0,435 0,817 0,601 0,579 0,411 0,839 0,911 0,679
TRV-1 0,762 0,307 0,032 0,449 0,408 0,401 0,225 0,514 0,135
const 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Regression: HitAAPL
t = c + dIVaR + aHitMSFT

t + b1HitAAPL
t�1 + b2HitAAPL

t�2 + b3HitAAPL
t�3 + et

MSFT 0,824 0,790 0,542 0,093 0,994 0,894 0,123 0,838 0,525
IVaR 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

AAPL-3 0,175 0,560 0,427 0,569 0,398 0,150 0,160 0,199 0,321
AAPL-2 0,573 0,538 0,990 0,080 0,250 0,591 0,887 0,456 0,887
AAPL-1 0,254 0,949 0,297 0,055 0,087 0,790 0,898 0,977 0,771

const 0,001 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000

Regression: HitMSFT
t = c + dIVaR + aHitAAPL

t + b1HitMSFT
t�1 + b2HitMSFT

t�2 + b3HitMSFT
t�3 + et

AAPL 0,935 0,768 0,521 0,079 0,905 0,991 0,151 0,927 0,584
IVaR 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

MSFT-3 0,147 0,418 0,934 0,084 0,326 0,559 0,528 0,413 0,271
MSFT-2 0,604 0,424 0,582 0,614 0,083 0,287 0,807 0,560 0,328
MSFT-1 0,703 0,339 0,549 0,829 0,215 0,770 0,749 0,992 0,293

const 0,000 0,000 0,000 0,000 0,000 0,000 0,068 0,000 0,000

Notes: The figures are the p-values of t-test on the regression’s parameters. Entries in bold-
faces denote the p-values are less than 0.01 and italics ones denote the p-values are less
than 0.05.
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Table 5.9: 15-min IVaR backtesting results for two selected pairs of stocks

2 ticks 3 ticks 4 ticks
IVaR level 5,0% 2,5% 1,0% 5,0% 2,5% 1,0% 5,0% 2,5% 1,0%

Regression: HitAXP
t = c + dIVaR + aHitTRV

t + b1HitAXP
t�1 + b2HitAXP

t�2 + b3HitAXP
t�3 + et

TRV 0,010 0,000 0,000 0,081 0,011 0,011 0,007 0,000 0,000

IVaR 0,000 0,000 0,017 0,000 0,000 0,013 0,001 0,013 0,019
AXP-3 0,581 0,224 0,628 0,571 0,675 0,516 0,271 0,437 0,571
AXP-2 0,745 0,237 0,889 0,244 0,807 0,567 0,498 0,578 0,236
AXP-1 0,098 0,232 0,638 0,977 0,916 0,715 0,389 0,420 0,660
const 0,000 0,000 0,002 0,001 0,000 0,002 0,107 0,022 0,004

Regression: HitTRV
t = c + dIVaR + aHitAXP

t + b1HitTRV
t�1 + b2HitTRV

t�2 + b3HitTRV
t�3 + et

AXP 0,008 0,000 0,000 0,114 0,012 0,015 0,008 0,000 0,000

IVaR 0,000 0,001 0,004 0,000 0,001 0,004 0,003 0,026 0,032
TRV-3 0,917 0,710 0,603 0,366 0,256 0,409 0,523 0,707 0,769
TRV-2 0,690 0,405 0,864 0,768 0,869 0,390 0,337 0,434 0,714
TRV-1 0,523 0,784 0,621 0,268 0,469 0,647 0,656 0,750 0,823
const 0,020 0,000 0,000 0,012 0,001 0,000 0,711 0,374 0,022

Regression: HitAAPL
t = c + dIVaR + aHitMSFT

t + b1HitAAPL
t�1 + b2HitAAPL

t�2 + b3HitAAPL
t�3 + et

MSFT 0,058 0,201 0,022 0,097 0,326 0,342 0,163 0,246 0,010
IVaR 0,000 0,001 0,003 0,000 0,001 0,008 0,000 0,001 0,006

AAPL-3 0,638 0,309 0,381 0,282 0,860 0,535 0,749 0,375 0,662
AAPL-2 0,567 0,836 0,642 0,267 0,840 0,370 0,977 0,557 0,065
AAPL-1 0,745 0,721 0,464 0,115 0,357 0,628 0,289 0,435 0,609

const 0,272 0,018 0,000 0,014 0,001 0,001 0,097 0,001 0,000

Regression: HitMSFT
t = c + dIVaR + aHitAAPL

t + b1HitMSFT
t�1 + b2HitMSFT

t�2 + b3HitMSFT
t�3 + et

AAPL 0,092 0,189 0,053 0,190 0,448 0,557 0,260 0,316 0,023
IVaR 0,000 0,000 0,003 0,000 0,001 0,014 0,001 0,006 0,019

MSFT-3 0,834 0,993 0,381 0,813 0,243 0,569 0,245 0,517 0,768
MSFT-2 0,415 0,379 0,018 0,493 0,521 0,037 0,088 0,080 0,001

MSFT-1 0,066 0,009 0,240 0,229 0,227 0,690 0,851 0,650 0,846
const 0,037 0,003 0,001 0,042 0,001 0,001 0,422 0,046 0,016

Notes: The figures are the p-values of t-test on the regression’s parameters. Entries in bold-
faces denote the p-values are less than 0.01 and italics ones denote the p-values are less
than 0.05.

To investigate the failures of the independent violation hypothesis further in the dy-

namic quantile test at 15-minute forecasting, we examine t-tests for each estimated para-

meter of the IVaR Hits regression in Table 5.9. We note that p-values less than 0.05 indicate

a significant dependence of IVaR Hits on the explanatory variables, which leads to the

failures of the independence hypothesis. From Table 5.9, the failures are mainly caused by

a trend illustrated by the constant coefficient and the correlation between IVaR values and

IVaR violations. There still exists a correlation in IVaR violations between two less liquid

stocks, TRV and AXP, while this correlation of the violations is not significant between

high liquid stocks, AAPL and MSFT. Furthermore, IVaR violations are not serially correl-

ated with its lagged variables. In other words, IVaR violations do not trace each other and

are temporally independent.
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The results of the backtest on 30- and 60-minute IVaR presented in Tables 5.6 and 5.7

continue to support the better performance of IIVaR in forecasting longer interval lengths.

Overall, the 30-minute IVaR backtest results are satisfactory, and only a few cases are re-

jected even at the extreme risk level of 1 %. The 60-minute IVaR performs even better,

especially with the pair AAPL and MSFT. In all the cases considered, the p-values associ-

ated with the Kupiec tests and the duration of the GMM tests exceed 15%. In other words,

the null hypotheses of unconditional coverage and duration-based GMM tests can not be

rejected, all the violations are randomly duration distributed and covered by nominal risk

levels of the IVaR. However, in the dynamic quantile test, there are some rejections for

MSFT. Further investigation on the t-test results in Table refc-3:tab11 indicates that these

failures of the independent violation hypothesis are caused by the correlation with the

third-order lagged violation variable. But there is no significance for the first- and second-

order lagged coefficients. The significant third-order serial correlation in IVaR violations

might plausibly arise as a consequence of the regression with a small sample at 60 minutes

interval, i.e. 175 observations in this study. Moving back to the t-test results for shorter in-

terval forecasts, that is, in Tables 5.8 to 5.10, it is evident that there is no serial correlation

in IVaR violations of MSFT.

In other words, for high-liquidity assets, the IIVaR model accurately measures intraday

market risks over the 60-minute forecast interval. This result provides evidence to support

a reasonable choice of the IVaR forecast interval length. Indeed, when there is an abnormal

deviation, that is, a shock to the true underlying values, it takes time for the market to

correct and make the observable return converging to its mean (Brogaard, Hendershott

and Riordan, 2014; O’Hara, 2015). Too frequently, IVaR forecasting cannot capture such

an abnormal deviation and thereby fails more often. Meanwhile, with a reasonably long

forecast interval, the IIVaR focuses on true price movements rather than noisy fluctuations

around the underlying value, resulting in better IVaR performance. This is evidenced by

the increasing performance of the IIVaR in all three backtests with increasing forecast

interval length.

Finally, the performance of the IIVaR also depends on the choice of price change

threshold from which the OUB and OLB point processes are constructed. Comparing the

backtesting results on the IVaR forecasts associated with the different thresholds, the per-

formance of IVaR is improved significantly when we increase the number of ticks on the

threshold. Also, this tendency is stronger in the low-liquid stocks, AXP and TRV, than in

the high-liquid stocks, AAPL and MSFT. This finding is slightly different from the one in

the univariate AACD approach of Liu and Tse (2015) about the effects of the threshold

choice. In their empirical analysis, the IVaR is not sensitive to the selection of a threshold.

The difference in the finding can be due to the existence of a correlation structure in ex-

treme returns of multiple assets, especially low liquidity. In fact, low liquid stocks are

usually observed with heavy-tailed returns (see Section § 5.5.1). And the cross-correlation

between stocks increases substantially with a large price move (see, e.g. Brogaard et al.,

2018; Cizeau, Potters and Bouchaud, 2001; Longin and Solnik, 2001). In other words, the

correlation structure of extreme returns is more pronounced in IVaR forecasts of low liquid
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stocks. A high price change threshold better generates the realizations of interdependence

in the tail, which, as a result, produces better IVaR forecasts.

Table 5.10: 30-min IVaR backtesting results for two selected pairs of stocks

2 ticks 3 ticks 4 ticks
IVaR level 5,0% 2,5% 1,0% 5,0% 2,5% 1,0% 5,0% 2,5% 1,0%

Regression: HitAXP
t = c + dIVaR + aHitTRV

t + b1HitAXP
t�1 + b2HitAXP

t�2 + b3HitAXP
t�3 + et

TRV 0,610 0,541 0,171 0,779 0,503 0,657 0,559 0,599 0,743
IVaR 0,001 0,003 0,020 0,000 0,001 0,002 0,025 0,082 0,197

AXP-3 0,765 0,762 0,534 0,499 0,828 0,749 0,124 0,681 0,875
AXP-2 0,567 0,790 0,629 0,187 0,249 0,159 0,554 0,816 0,971
AXP-1 0,367 0,627 0,794 0,009 0,005 0,000 0,118 0,772 0,953
const 0,004 0,000 0,001 0,007 0,004 0,002 0,986 0,296 0,355

Regression: HitTRV
t = c + dIVaR + aHitAXP

t + b1HitTRV
t�1 + b2HitTRV

t�2 + b3HitTRV
t�3 + et

AXP 0,723 0,529 0,158 0,654 0,526 0,651 0,719 0,846 0,944
IVaR 0,020 0,107 0,211 0,001 0,003 0,004 0,078 0,030 0,031

TRV-3 0,854 0,097 0,017 0,140 0,031 0,001 0,642 0,731 0,739
TRV-2 0,811 0,634 0,754 0,201 0,743 0,697 0,546 0,576 0,589
TRV-1 0,015 0,707 0,817 0,438 0,675 0,787 0,686 0,766 0,777
const 0,341 0,417 0,139 0,835 0,181 0,025 0,233 0,502 0,026

Regression: HitAAPL
t = c + dIVaR + aHitMSFT

t + b1HitAAPL
t�1 + b2HitAAPL

t�2 + b3HitAAPL
t�3 + et

MSFT 0,823 0,369 0,712 0,972 0,351 0,020 0,256 0,088 0,173
IVaR 0,005 0,006 0,028 0,014 0,055 0,131 0,034 0,038 0,086

AAPL-3 0,026 0,327 0,613 0,650 0,706 0,905 0,251 0,709 0,514
AAPL-2 0,228 0,384 0,616 0,298 0,330 0,454 0,947 0,626 0,604
AAPL-1 0,765 0,261 0,712 0,104 0,003 0,003 0,774 0,557 0,665

const 0,166 0,027 0,009 0,312 0,152 0,164 0,293 0,028 0,008

Regression: HitMSFT
t = c + dIVaR + aHitAAPL

t + b1HitMSFT
t�1 + b2HitMSFT

t�2 + b3HitMSFT
t�3 + et

AAPL 0,961 0,519 0,653 0,940 0,350 0,020 0,322 0,127 0,164
IVaR 0,000 0,004 0,038 0,003 0,015 0,041 0,005 0,011 0,045

MSFT-3 0,360 0,464 0,674 0,900 0,421 0,747 0,257 0,400 0,542
MSFT-2 0,967 0,338 0,620 0,981 0,495 0,619 0,369 0,448 0,555
MSFT-1 0,274 0,474 0,693 0,355 0,534 0,720 0,965 0,647 0,561

const 0,030 0,006 0,017 0,109 0,016 0,014 0,142 0,010 0,008

Notes: The figures are the p-values of t-test on the regression’s parameters. Entries in bold-
faces denote the p-values are less than 0.01 and italics ones denote the p-values are less
than 0.05.
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Table 5.11: 60-min IVaR backtesting results for two selected pairs of stocks

2 ticks 3 ticks 4 ticks
IVaR level 5,0% 2,5% 1,0% 5,0% 2,5% 1,0% 5,0% 2,5% 1,0%

Regression: HitAXP
t = c + dIVaR + aHitTRV

t + b1HitAXP
t�1 + b2HitAXP

t�2 + b3HitAXP
t�3 + et

TRV 0,853 0,322 0,107 0,661 0,453 0,068 0,391 0,166 0,067
IVaR 0,018 0,095 0,123 0,011 0,030 0,054 0,024 0,068 0,131

AXP-3 0,258 0,444 0,597 0,496 0,535 0,623 0,589 0,394 0,640
AXP-2 0,745 0,669 0,763 0,636 0,421 0,139 0,644 0,350 0,132
AXP-1 0,806 0,716 0,812 0,640 0,683 0,734 0,366 0,245 0,855
const 0,021 0,035 0,025 0,022 0,006 0,012 0,132 0,074 0,037

Regression: HitTRV
t = c + dIVaR + aHitAXP

t + b1HitTRV
t�1 + b2HitTRV

t�2 + b3HitTRV
t�3 + et

AXP 0,646 0,510 0,208 0,766 0,602 0,096 0,399 0,187 0,056
IVaR 0,004 0,012 0,020 0,001 0,001 0,003 0,002 0,008 0,027

TRV-3 0,037 0,194 0,148 0,275 0,109 0,942 0,727 0,783 0,791
TRV-2 0,272 0,431 0,521 0,433 0,585 0,511 0,310 0,438 0,569
TRV-1 0,525 0,649 0,725 0,869 0,993 0,982 0,408 0,553 0,711
const 0,051 0,028 0,011 0,107 0,020 0,013 0,156 0,033 0,026

Regression: HitAAPL
t = c + dIVaR + aHitMSFT

t + b1HitAAPL
t�1 + b2HitAAPL

t�2 + b3HitAAPL
t�3 + et

MSFT 0,608 0,811 0,819 0,582 0,765 0,810 0,618 0,689 0,826
IVaR 0,026 0,169 0,182 0,059 0,172 0,266 0,100 0,173 0,304

AAPL-3 0,226 0,753 0,751 0,180 0,820 0,867 0,716 0,742 0,864
AAPL-2 0,545 0,706 0,710 0,602 0,734 0,814 0,711 0,706 0,841
AAPL-1 0,560 0,778 0,772 0,533 0,670 0,823 0,621 0,693 0,844

const 0,694 0,602 0,082 0,768 0,582 0,435 0,349 0,631 0,481
Regression: HitMSFT

t = c + dIVaR + aHitAAPL
t + b1HitMSFT

t�1 + b2HitMSFT
t�2 + b3HitMSFT

t�3 + et

AAPL 0,570 0,919 0,905 0,366 0,682 0,789 0,644 0,845 0,856
IVaR 0,023 0,159 0,167 0,098 0,074 0,163 0,062 0,290 0,240

MSFT-3 0,187 0,000 0,000 0,078 0,006 0,000 0,049 0,000 0,867
MSFT-2 0,797 0,880 0,867 0,390 0,927 0,842 0,522 0,825 0,878
MSFT-1 0,499 0,805 0,805 0,049 0,668 0,768 0,608 0,821 0,851

const 0,513 0,508 0,157 0,967 0,468 0,222 0,894 0,646 0,393

Notes: The figures are the p-values of t-test on the regression’s parameters. Entries in bold-
faces denote the p-values are less than 0.01 and italics ones denote the p-values are less
than 0.05.

5.6 conclusion

In this chapter, we introduced IIVaR, a multi-asset intraday market risk model that extends

the previous univariate intraday Value-at-Risk model. The model is based on modelling

the occurrence of price change events by stochastic conditional intensities and forecasting

arrivals of future transactions by Monte Carlo simulation. Tick-by-tick transaction data is

first filtered by a threshold into two-state directional price change point processes, OUB

and OLB. The conditional intensities of the OUB and OLB transaction processes are cast

into multivariate Hawkes with exponential decay kernel. Contrasting to discrete duration-

type models previously used in the literature, the multivariate Hawkes conditional intens-
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ities update their information set continuously and thus account for both temporal self-

and cross-asset effects induced by any new event arriving in the price change dynamics.

Therefore, the IIVaR overcomes the limitations of the discrete model in updating cross-

correlation information arriving within transaction waiting times. To facilitate forecasting

future transactions, we propose an arrival detection mechanism by an autoregressive condi-

tional compensator, estimating expected cumulative conditional intensities to have a new

price change event arriving. Then a Monte Carlo simulation is adopted to simulate the

return distribution, from which IVaR is calculated for any arbitrary intraday interval.

We applied our methodology to four stocks listed on the DJIA index. The results of the

backtests indicate that IIVaR constitutes a real approach to measure intraday multivari-

ate market risk. To investigate how the choice of price change threshold and forecasting

intervals impact the performance of the IIVaR, we also compared the results of different

scenarios for the thresholds and forecasting intervals. The model performs better in fore-

casting reasonably long intervals and with high price change thresholds. In our study, the

30-minute and 60-minute IVaR forecasts associated with the 4-tick threshold deliver the

best performance.

Our study has several limitations that provide ample room for future research. First,

our study can be further complemented by a comprehensive simulation framework and a

comparison with other standard (univarite) IVaR models in the literature. It helps verify-

ing the robustness of our estimator by additionally accounting for the cross-correlation in

forecasting IVaR. Second, since the conditional intensity can be broken down into different

factors, i.e. self-excitation, cross-excitation, and exogenous effects, it would be interesting

to decompose the IVaR forecasts into the corresponding components. By doing so, the

separated measures on the decomposed components would shed light on the structure of

total IVaR by viewing it from different sources of risk. Finally, our current empirical applic-

ation deals only with bivariate assets. Therefore, another natural development would be

an extension to a larger number of assets and the development of an IIVaR for a portfolio.
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C O N C L U S I O N S

6.1 summary and main findings

This thesis introduces a new mathematical formulation of intraday price changes that

relaxes the EMH assumption that new information is incorporated instantaneously into

prices. In a high-frequency trading setup, with inter-transaction times well under the

human-attention span, it is unrealistic to assume that there is enough time for new inform-

ation to be assimilated instantaneously. Instead, we introduce the concept of “information

lifespan”, which enables a more structural formulation of price in term of information dif-

fusion over time. Using this concept, we extend existing microstructure models and intro-

duce generalizations of the following aspects: (1) a comprehensive multi-asset price forma-

tion dynamics at the transaction-by-transaction frequency accommodating microstructure

complications of asymmetric information, strategic trading, and imperfect learning (2) an

intensity-based estimator of locally integrated variance-covariance matrix accounting for

lead-lag correlation and robust to microstructure noise, and asynchronous trading; and

(3) a multivariate intraday Value-at-Risk (IVaR) generalizing previous univariate IVaR and

taking into account cross-correlations of extreme asset returns.

In Chapter 3, motivated by the intuition that information and time are inherently linked,

we propose that information has a life span, decaying over time. Then we extend the classic

“martingale plus noise” model and introduce a multi-asset price formation dynamic, gen-

eralizing previous microstructure models of lagged price adjustment to accommodate vari-

ous complications of asymmetric information, information lifespan, and temporal lagged

price adjustment. Our multivariate generalization, the MALA model, strengthens the the-

oretical results of previous lagged price adjustment models by decomposing the driving

sources of the adjustment as two distinct and subsequent imperfections of the market:

pricing errors due to asymmetric information inherent in transaction-by-transaction fre-

quency and partial adjustment due to imperfect learning of residual (trade) information

over time. The MALA relaxes constancy and analogy assumptions on the impacts of order

flows and historical trade; and thus accounts for the distinct roles of informed trading in

causing the delayed assimilation of information. Also, as long-lived residual information

has a lifespan, the MALA allows trades across assets to become temporally lead-lag cor-

related. This lead-lag correlation gives an alternative explanation to Epps effects, which

documents the bias towards zero of cross-correlation between related assets when the

sampling frequency shrinks to the transaction-by-transaction level.

147
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We also built a bridge between the microstructure price dynamics model and Hawkes

point process. In a disjoint manner, the instantaneous increment of the observable price

can be represented by the Hawkes stochastic conditional intensity. Then, the multivariate

Hawkes process allows the estimation of price adjustments to be computed at every point

in time. This property alleviates the complications that arise from the embedded features

of high-frequency trading data. The obtained parameters of the MALA are robust to asyn-

chronous trading, irregular spacing time, and microstructure noise.

Using transaction data on a cross section of DJIA stocks, we provide empirical evidence

for the indispensability of a price formation mechanism for multiple assets at a transaction-

by-transaction frequency. We found the significance of the cross-asset effects at all levels,

the level of price change, the level of transaction, and the level of asset. In particular, at the

price change level, there exists strong excitement amongst states belonging to within-asset

as well as cross-asset. The within-asset excitements mainly exhibit a mean-reverting beha-

viour, whereas the cross-asset excitements implies co-movement in the extreme returns. At

the transaction level, the life-span of the residual information gives rise to the temporal

lead-lag correlation, which is, by Epps effects, considered to vanish in contemporaneous

time in asynchronous trading settings. This temporal lead-lag correlation is then normal-

ized by the factor of liquidity, resulting in a measure of the lead-lag relationship at the

asset level which takes into account the combined effects from the information content of

trade and liquidity.

Furthermore, the MALA shows its advantage in recovering the lead-lag structure of the

true underlying values over previous models of aggregating prices. The empirical analysis

provides evidence of the existence of lead-lag correlations over a time interval less than the

duration of a trade. While the models of aggregating prices destroy all correlations that

are exhausted at a rate higher than the sampling frequency, the MALA model can account

for true short-term lead-lag correlations at the finest frequency of transaction level. Thus,

the lead-lag correlation between assets can be simply recovered by integrating for any

arbitrary interval.

In Chapter 4, on the ground that the price formation dynamics captures well the lead-

lag correlations, we continue to estimate the integrated covariation for multiple assets,

taking into account this temporal cross-correlation. Our estimator, the IRC, combines fea-

tures of both quadratic covariation, e.g. RK, and point process-based approaches, e.g. PDV.

It not only preserves superior features of the PDV by providing local estimations on the

intraday variation of asset returns, but also accommodates a generic temporal (cross-) auto-

covariation structure of RK estimators, facilitating the estimation of local cross-correlation

between assets. To some extent, the temporal (cross-) autocovariation structure accounts

for lead-lag effects and compensates for the loss of contemporaneous correlation incurred

by asynchronous trading, asymmetric information, and imperfect price formation.

To overcome the limitation of discrete price duration modelling in the PDV, the IRC

utilizes multivariate Hawkes processes to model stochastic conditional intensities of all

possible observable disjoint states of a price change, taking advantage of the discreteness

of the transaction-by-transaction price and a finite number of price change states. We con-
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struct a link between the quadratic covariation of the return process and the second-order

moment structure of the disjoint price change counting process. Under a martingale repres-

entation, a parametric structure of the quadratic covariation can be obtained and expressed

in terms of the estimated parameters of the conditional intensities corresponding to these

counting processes.

We placed the mapping between the quadratic covariation and the disjoint price change

process under a noise-contaminated semi-martingale hypothesis for the observable price.

And by a reasonable assumption that the microstructure noises are only updated at trans-

action times and independent of the efficient prices, we propose an efficient way, also based

on the intensities of the disjoint point processes, to directly estimate the bias incurred by

the noises, which complements the robustness of our IRC estimator.

We examine the properties of the IRC estimator in detail, and analyze its bias with the

presence of microstructure noise, time discretization, and price discretization. The simu-

lation results illustrate that the IRC estimator is robust to these elements. Compared to

the PDV and RC estimators, the IRC outperforms them in estimating all elements of the

variance-covariance matrix. More importantly, the results also show that the IRC delivers a

much sharper estimation of the correlation than the consistency, noise-robust RK estimator.

In Chapter 5, we develop an intensity-based intraday Value-at-Risk, motivated by the

favourable results on the extreme returns co-movements of multi-asset prices dynamics

modelling in Chapter 3. Our IIVaR model nests previous univariate IVaR models based

on modelling of the price duration. The IIVaR uses stochastic conditional intensities to

model the occurrence of price change events and adopts a Monte Carlo simulation to fore-

cast arrivals of future price-change transactions. Contrasting with discrete duration-type

models previously used in the literature, the multivariate stochastic conditional intensities

are adjusted to newly arrived information continuously and thus account for both tem-

poral self- and cross-asset effects induced by any new event arriving at the price change

dynamics. Therefore, the IIVaR overcomes the limitations of the discrete models in con-

tinuously updating cross-correlation information. In order to facilitate forecasting future

transactions, we also propose an arrival detection mechanism by an autoregressive condi-

tional compensator, estimating expected cumulative conditional intensities to have a new

price-change event arriving. Then a Monte Carlo simulation is utilized to simulate the

return distribution, from which IVaR is calculated for any arbitrary intraday interval.

We applied our methodology to four stocks listed on the DJIA index. The results of

the backtest indicate that IIVaR constitutes a reliable approach to measure intraday mul-

tivariate market risk. To investigate how the choice of the price change threshold and

the forecast intervals impact the performance of the IIVaR, we compare the results of dif-

ferent scenarios for the thresholds and forecast intervals. The model performs better in

forecasting reasonably long intervals and with a high price change threshold. In our study,

30-minute and 60-minute IVaR forecasts associated with the 4-tick threshold deliver the

best performance.
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6.2 implications

This thesis has several important implications for both academic researchers and practi-

tioners.

First, the model in Chapter 3 has demonstrated a strong deviation from the traditional

null assumption of semi-martingale prices in market micro-structure. A coherent altern-

ative assumption is one in which a role is given to the asymmetries in information, as

well as to the life span of information in determining asset prices. This natural alternative

hypothesis assumes that the price process is driven by imperfect semi-martingales price

adjustment plus noise processes, an assumption of which the lead-lag effects arise as a

consequence.

The empirical results on measuring lead-lag effects provide theoretical and empir-

ical evidence for the existence of a multi-asset price formation mechanism at the finest

transaction-by-transaction frequency. The presence of a lead-lag correlation is due not

only to the information content of trade that contributes to the cross-asset price forma-

tions, but also to the level of liquidity, which can be expressed in terms of trading activity.

One asset can be highly informative per trade but low trading activity, and consequently

incurs a small aggregated impact on prices of other assets. In the other way around, a high-

liquidity asset with a high number of trades but low information content can stimulate a

large price impact in total. Thus, to uncover the lead-lag correlation at asset level, it is ne-

cessary to account for the liquidity together with the cross-transaction information content.

Moreover, the empirical results document that the cross-adjustments between assets live on

effective time scales less than the average waiting time of a trade. This result confirms the

inevitability of modelling lead-lag effects from the transaction-by-transaction level. While

the previous model of aggregating prices destroys all correlations that are exhausted at a

rate higher than the sampling frequency, our model on transaction-by-transaction data can

account for true short-term lead-lag correlations.

Furthermore, the model also provides a formal treatment of second-moment structure

of price process, which enables separable estimation of contemporaneous, lead, and lag

correlations at different time scales and the possibility of developing an efficient estimator

of locally integrated covariance over any time interval.

Second, Chapter 4 shows that the second-order moment structure of the true underly-

ing values on the coarse scale can be recovered from the temporal (cross-)autocovariance of

intraday observable price movements. This chapter presents a new methodology, the IRC,

that aims to obtain better estimates of such second-order moments by using high-frequency

data. While the stylized facts of high-frequency transaction data, i.e. the random time ar-

rival of price moves, discreteness of prices, non-synchronous price changes, are partially

or wholly discarded in previous RV and PDV estimators, the IRC illustrates the import-

ant contributions of all these elements to the dynamics of quadratic covariation. We also

propose that not only the contemporaneous covariation should be captured but also the

temporal (cross-)covariation. To do so, we advocate the combination of both quadratic

covariation and point process approaches in a parametric structure of the IRC. The new
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methodology overcomes difficulties of its predecessors and can be used for a wider set of

applications, from locally realized estimates to future forecasts of the intraday portfolio

covariance-variance matrix.

Finally, Chapter 5 presents other possibilities for the application of point process-based

price change dynamics to market risk measurement. Although a complete description of

the return distribution is desirable but impracticable and unfeasible with the time frames

of intraday trading, the more efficient solution is to analyze only the tail of the distribution,

which characterizes the probability of extreme events. The stochastic conditional intensit-

ies modelling provides a convenient way to capture the occurrence of price change events

and, at the same time, accounts for a multi-asset interdependence relationship in the price

dynamics. Our methodology, IIVaR, extends the previous univariate IVaR and enables mul-

tivariate intraday market risk measures. It also helps researchers understand the structure

of IVaR from different sources of risk. Last but not least, the IIVaR are efficient at the re-

latively short time interval of the intraday level and can render empirical applications in

defining practical risk measures for traders or practitioners operating their activities on an

intraday basis.

6.3 limitations and future researches

As with all studies, this thesis has various limitations that provide grounds for future

research.

One of the limitations that applies to all chapters is a similar kernel shape for all decay

functions of disjoint price change processes, which is determined by decay coefficients β.

In Chapter 3 and Chapter 5, we choose the same decay coefficients for each asset for simpli-

city and reducing the computation burden, which increases exponentially with the number

of different decay coefficients. In Chapter 4, we impose only a single decay coefficient for

all disjoint price change point processes to derive conveniently a fully parametric closed

form of conditional intensity function under martingale representation. One would then

need to introduce, for each asset, different decay kernels that account for cross-adjustments

of other assets on that asset and the kernels that account for self-adjustments of that as-

set on itself (see Eqn. 3.41). The estimation of the kernels contains additional components

and requires much more computational capacity but still follows the same procedure. By

imposing different decaying kernel shapes, one could quantify the difference in the cross-

asset effects of an asset in the lead-lag relationship with other assets. In addition, the

effective time scale of the effects, directly determined by the decay coefficients, measures

the life span of information, a criterion for market efficiency. More importantly, this exten-

ded framework would open the door to precise estimation and obvious interpretations in

order to get better insights into the multi-asset price formation dynamics.

Another limitation is the simple structure of the microstructure noise u in all the

chapters. We assumed that microstructure noises follow an independent normal distri-

bution and are also uncorrelated with efficient price processes. In general, the transaction

costs are significantly smaller than the change in the true underlying values, the noise
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variation can be negligible compared to the variation in the efficient price processes, and

thus the simplistic nature of microstructure noise is acceptable. However, the assumption

may be empirically questionable in some circumstances of significant asymmetric inform-

ation where market makers can set nontrivial transaction costs. The large microstructure

noise (transaction cost) can be induced by a large amount of informed trading, represen-

ted by the coefficients γ. The idea is that the market maker would respond to significant

asymmetric information by increasing the transaction cost to compensate for their adverse

selection risks.

Finally, our current application in all chapters deals only with bivariate assets. Therefore,

another natural development would be an extension to a larger number of assets.

We have drawn the potential limitations that can be applied to all chapters. In the fol-

lowing, we will give details on the specific limitation in each chapter and attempt to detail

potential further researches:

In Chapter 3, we do not provide a comparison with other traditional price formation dy-

namics. This result is actually derived in the work of Buccheri, Corsi and Peluso (2020) and

our model is the generalized version of their work. In the following paper, we will cover

this comparison with a simulation study. Chapter 3 also leaves some interesting questions

that call for future research. First, the model can be more generalized by allowing the ad-

justment speed of the price quotes to the efficient price to depend on the pricing errors

due to asymmetric information. The larger the pricing errors, the higher the proportion

of informed trading in the market. And the higher the informed trading, the faster the

market maker learns. Second, it would be interesting to address the measure of market

efficiency by parameter γ, together with the information lifespan.

Chapter 4 also leaves some open questions to be addressed. First, we need to extend

the theoretical framework and provide the asymptotic properties of the estimator in terms

of the number of price-change states. The impact of the truncated state spaces of price

changes can be further examined. In addition, the method we used to correct for the bias

of the microstructure noise is still unclear. The precision of the denoise term we derived

in Eqn. 4.14 needs to be investigated in detail. Second, it would be interesting to apply

the estimator to real data in an empirical analysis. Although one of the difficulties in

accessing the performance of the volatility estimator with empirical analysis is that we

do not observe the true value of the variance-covariance matrix, we can still compare

the estimation to the outer products of the open-to-close returns, which when averaged

over many days provide an estimator of the average covariance between asset returns

(see, in particular, Barndorff-Nielsen et al., 2011). Finally, the estimator can be useful in

various empirical applications, such as volatility forecasting and factor analysis, and is

worth further investigation.

Chapter 5 also has several limitations that provide ample space for further research. First,

the evaluation of the IIVaR performance can be further complemented by a comprehens-

ive simulation framework and a comparison with other standard (univariate) IVaR models

existing in the literature. It helps verify the robustness of the estimator by additionally

accounting for the cross-correlation in forecasting IVaR. Second, since the conditional in-
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tensity can be broken down into different factors, i.e. self-excitation, cross-excitation, and

exogenous effects, it would be interesting to decompose the IVaR forecasts into the corres-

ponding components. By doing so, the separated measures on the decomposed compon-

ents would shed light on the structure of total IVaR by viewing it from different sources of

risk.

6.4 final remarks

In summary, this thesis presents tailor-made mathematical models that contribute to the

literature on price dynamics and risk measurement in the high-frequency trading mar-

ket. The findings show that our proposed model on multi-asset price formation dynamics

and multivariate intraday risk measures can overcome limitations of classical models and

provide a more structured framework to capture special properties of the high-frequency

market embedded at transaction-by-transaction frequency. This thesis establishes the the-

oretical foundation on these models and advocates the use of them in future researches on

the themes of asset pricing and empirical market microstructure.





A
A P P E N D I X

a.1 hawkes process models

In this section of the Appendix, we recall some essential definitions and estimations on

the point process theory, and particularly interesting class of the Hawkes point process

introduced in Hawkes (1971) and Hawkes and Oakes (1974).

a.1.1 Point Process

Point process is a useful mathematical tool for describing phenomena occurring at random

locations and/or times. A point process is a random element whose values are point pat-

terns in a set S. Here we present useful results on the temporal point process where the

set S is the interval [0, T) and the points are timestamps of events. The book of Daley and

Vere-Jones (2006) is regarded as the main reference on point process theory.

Every realization w of a point process d, i.e. the transaction arrival time series of asset

d, can be represented by a counting process Nd
t =

R t
0 w(s)ds = ∑

n
i=1 td

i t, where n is an

integer-valued random variable, and td
i are random elements of [0, T). The usual charac-

terization of the point process is done using the conditional intensity function, which is

defined as the infinitesimal rate at which events are expected to occur after t, given the

history of Nd(s) prior to t:

ld(t|Ft) = lim
dt!0

r{Nd(t)� Nd(t � dt) > 0|Ft}

dt
(A.1)

where Ft is the filtration of the process that encodes information available up to (but not

including) the time t. The most simple temporal point process is the Poisson process, which

assumes that events arrive at a constant rate, which corresponds to a constant intensity

function ld(t) = l > 0. Note that temporal point processes can also be characterized by

the distribution of inter-event times (the duration between two consecutive events).

The temporal point process we consider in this thesis is the Hawkes point process, which

models how past events increase the probability of future events.

155
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a.1.2 Hawkes Point Processes

In order to model joint dynamics of several point processes (for example, transaction ar-

rivals of different assets), we will consider the multidimensional Hawkes point process

model, introduced in Hawkes (1971) and Hawkes and Oakes (1974). The model implemen-

ted the idea that the point processes are tractable with self- and cross-exciting behaviour

between different processes. By definition, the conditional intensity, ld(t), measuring the

instantaneous quantity of the event arrival of the point process d conditional on its inform-

ation set Ft, can be formulated as a linear combination of past jumps of all D processes:

ld(t) = µ
d +

D

∑
r=1

Z t

�∞
fdr(t � s)dNr(s) (A.2)

where:

• {µd}d2[1,D] is a vector of exogenous intensities, or also called immigration intensities.

The immigrant of type d, 1  d  D arrives at a Poisson process with intensity of

immigration µd.

• {fdr(t)}d,r2[1,D] is a matrix-valued decay kernel assumed to be positive and causal.

Whenever a point event occurs, be it an immigrant or descendant, the intensity is tem-

porarily increased. This intensity increase causes the arrival of point events, which

in turn can spawn descendants of their own. The occurrence in time t of the d-type

descendant of a point event type r, who was born or migrated in time s, is governed

by fdr(t � s).

This formulation of the conditional intensity yields a natural way to measure the caus-

ality between events. Let us define a projection t ! Gdr(t) with each element Gdr(t) com-

puted as the truncated L1 norm of the kernels fdr(t):

Gdr(t) := kfdrkt :=
Z t

0
fdr(s)ds � 0 for 1  i, j  D (A.3)

As in the clustering representation of Hawkes processes Hawkes and Oakes (1974), Gdr(t)

weights the direct influence of an event type r on the point process d within t seconds after

its arrival. Thus, Gdr(∞) can be interpreted as the mean total number of events of type d

directly triggered by an event of type r. To ensure that the intensity processes ld(t) are

not explosive and that the point process Nd
t has asymptotically stationary increments, the

following stability conditions needs to be hold:

The point processes Nd
t admits a version of stationary intensities if the following conditions are

satisfied:

(A.H.1) fdr(t) 8d, r 2 [1, D] are bounded functions;

(A.H.2) ∑d,r
R ∞

0 fdr(s)ds < 1 8d, r 2 [1, D].

Through this thesis, we will always consider that the Assumption (A.H.1) and (A.H.2)

holds. In addition, following Bacry, Jaisson and Muzy (2016), Engle and Russell (1998),
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Hawkes (1971), Hawkes and Oakes (1974) and Russell and Engle (2005), among others, we

also impose the following assumptions on the point process:

(A.H.3) It is assumed that each point process {Nd(t)}D
d=1 evolves with “after effects” and “condition-

ally orderly”, having the following properties:

r{Nd(t)� Nd(t � dt) = 1|Ht} = ld(t)dt + o(dt) (A.4)

r{Nd(t)� Nd(t � dt) > 1|Ht} = o(dt) (A.5)

On the one hand, a point process is considered to evolve with after-effect if for any t > 0,

the likelihood of occurring an event at t depends on the sequence of historical events that

occurred only before but not after t, i.e. the interval [0, t). This means that each past event

arrival only has impacts on the future event arrivals after its presence. On the other hand,

a point process satisfying conditionally orderly is that, for a sufficiently short time interval,

there exists at most one event arrival. In other words, conditioned on the information set

up to t,Ht, the probability of occurring two or more events is infinitesimal relative to the

probability of occurring one event.

Let us define that Nt and λ(t) are D-dimensional vectors of stationary processes. By mat-

rix representation and using convolution notation, we can express the conditional intensity

vector, λ(t) = {ld(t)}d2[1,d] as:

λ(t) = µ+ (φ ? dN )(t) (A.6)

where µ = {µd}d2[1,D], φ(t) = {fdr(t)}d,r2[1,D] are vector and matrix sizes D and D ⇥ D,

respectively. The operator ? stands for convolution.

a.2 the disjoint representation and marked hawkes point processes

The intensity process given above is a time-intensity process. It only describes the dynamic

of the ground process of the component index d, i.e. the transaction arrival process with

the form (time, index) without (price) marks. We consider here marked-point processes

with each point event being triples of the form (time, index, mark).

For a full specification of a marked-point process, we need to specify the distribution

of the mark. However, the mark distribution is often complicated since it depends on the

past of the processes, i.e. the history of the ground process and also the historical marks.

To model a point process and its marks jointly, Engle and Manganelli (2004) assume the

independence between the conditional distribution of marks and the marginal distribution

of arrival times. But this assumption is quite strict, and empirical high-frequency data show

that there exists an interdependence between inter-event duration and price changes. Here,

we will propose an alternative representation to a marked-point process with finite mark

spaces as a multidimensional vector of new disjoint point processes.

Definition 3. A marked point process with time on the real line + and marks in the complete

separable metric space Md is a point process {td
i , md

i } on ⇥Md with i 2 I, I countable, d 2
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[0, D] is the component index, td
i 2 is the time, and md

i is the mark value of the ith point type-d.

The unmarked process {td
i } on is a point process in its own right, called the ground process

denoted by Nd(·)

When Md is a finite set, we say that the point process is marked with a finite mark

space. Intuitively, one may think of a marked point process as follows: (a) consists of

events occurring at random points in continuous time; (b) every time an event occurs, one

assigns a mark to these events by drawing a sample from a distribution which may very

well depend on time, as well as the history of the ground process and/or past marks.

Given that a point event i-th is part of component d, the associated mark md
i may depend

on the history of the ground process Nd or the past marks. We denote by ld(t, m|Ft), 1 
d  D, as a family of multivariate marked intensity functions. We will show that a marked

point process with finite mark space can be represented by new disjoint multivariate point

processes and ld(t, m|Ft) can be rewritten as a vector {ld,m(t|Ft)}m2Md .

Let Md be the number of possible outcomes of Md at time t. We define new point

processes, {Nd,m(t)}m2Md as disjoint outcomes of Nd(t). That is, each component Nd,m(t)

is a counting process for one and only one of the Md outcomes of Nd(t). Due to the

singularity of the Hawkes point process, for any t, the vector {dNd,m(t)}m2Md has at most

one nonzero element, and this nonzero element (if any) is an indicator that at time t an

outcome of dNd(t) occurs. Denoting 0 < td
1 < ... < td

i < ...  T as the event arrival

times of ground process d, where dNd(td
i ) = 1, in the observation period [0, T]. Then we

can express a ground process dNd(t) with its Md dimensional mark space as multivariate

disjoint marked processes {ti, dNd,m(ti)}i2I . The mark, which is denoted by m, indicates

exactly which outcome in the mark space Md occurs at ti. We define the conditional

intensity function of Nd,m(t) as:

ld,m(t|Ft) = lim
dt!0

r{Nd,m(t)� Nd,m(t � dt) > 0|Ft}

dt
(A.7)

The Ft is the information set that includes all the information about the history of the

ground process and the past marks. In other words, the conditional intensity at time t is

not independent of these factors. We call dNd,m(t) and ld,m(t|Ft) a disjoint process and its

conditional intensity.

Proposition 9. The disjoint processes and the ground process are mapped via the following proper-

ties:

Nd(t) = ∑
m2Md

Nd,m(t) (A.8)

ld(t|Ft) = ∑
m2Md

ld,m(t|Ft) (A.9)

Proof. The Eqn. A.8 simply follows the decomposition of the ground process based on a

finite mark state space.
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By definition of the conditional intensity:

ld(t|Ft) = lim
dt!0

r[dNd(t) = 1|Ft]

dt
(A.10)

We have the following:

r[dNd(t) = 1|Ft] = r[
[

m2Md

dNd,m
t = 1|Ft] =

[

m2Md

r[dNd,m(t) = 1|Ft] + o(dt) (A.11)

where the second equality is from the property Eqn. A.5 and that {dNd,m1 = 1 \ dNd,m2 =

1} = ∅, 8(m1, m2) 2 Md given a complete history. Substituting this into A.10, we obtain

Eqn. A.9.

Proposition 10. The probability of the marks is given by the multinominal probability mass func-

tion:

r[dNd,m(t) = 1|dNd(t) = 1,Ft] =
ld,m(t|Ft)

ld(t|Ft)
(A.12)

Proof. By Bayes’ Theorem, we have the following:

r[dNd,m(t) = 1|dNd(t) = 1,Ft] = lim
dt!0

r
[dNd,m(t) = 1 \ dNd(t) = 1|Ft]

[dNd(t) = 1|Ft]
(A.13)

= lim
dt!0

r
[dNd,m(t) = 1|Ft]

[dNd(t) = 1|Ft]
(A.14)

=
ld,m(t|Ft)

ld(t|Ft)
(A.15)

where the equality between Eqn. A.13 and Eqn. A.14 follows the singularity assumption

of Eqn. A.5. So, the marks follow a multinomial distribution with probabilities given as

above.

The disjoint representation provides an efficient way to describe a marked point process

without specifying the distribution of the marks. The probability of arriving an event is

governed by the conditional intensity function ld(t|Ft) of the ground process, while the

marks are drawn from a Md-dimensional multinomial distribution to produce the corres-

ponding event in Nd,m. Note that if we have D-dimensional marked point processes and

for each component d 2 [1, D], we can disjoint into new Md point processes. So, in total,

we have the K = ∑
D
d=1 Md dimensional vector of disjoint processes from the D-dimensional

marked point processes. Instead of estimating the joint distribution of the marks and the

ground point processes, we will concentrate on the estimation of these disjoint processes.

To simplify the notation, we will use Nk(.) and lk(.) with k 2 [1, K] denoting the index of

the disjoint process component, substituting for Nd,m(.) and ld,m(.).
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a.3 parameter estimation and goodness-of-fit test

The standard way to estimate the parameters of the Hawkes process is the maximum

likelihood method. In order to define the likelihood function, we fix an observation period

of [0, T] as the time interval during which empirical data have been collected.

Definition 4. For all t 2 [0, T], the compensator is defined as:

Λk(t) =
Z t

0
lk(s)ds, where 1  k  K (A.16)

The log-likelihood of given intensities (lk(t))k2[1,K] with a sample of a pooled point pro-

cess, i.e. the single process is formed by pooling all the point events of disjoint processes,

{ti}i2[1,N(T)] =
S

k2[1,K]{tk
i }i2[1,Nk(T)] where N(t) denoting its right-continuous counting

function of the pooled point process, is defined as:

L(q) =
K

∑
k=1

Ld(qk) =
K

∑
k=1

h

Z T

0
log lk(t)dNk(t)�

Z T

0
lk(t)dt

i

(A.17)

=
K

∑
k=1

h

∑
tk
i <T

log
⇣

µ
k +

k

∑
l=1

∑
tl

j<tk
i

akl bkle�bkl(tk
i �tl

j)
⌘

� µ
kT �

Z T

0

k

∑
l=1

∑
tl

j<t

akl bkle�bkl(t�tl
j)dt
i

(A.18)

The log-likelihood can be separated into K independent sub-problems with goodness of

fit Lk(qk) that correspond to the intensity of each asset k. A straightforward computation

gives the following:

Lk(qk) = ∑
tk
i <T

log
⇥

µ
k +

k

∑
l=1

∑
tl

j<tk
i

akl bkle�bkl(tk
i �tl

j)
⇤

� µ
kT �

k

∑
l=1

∑
tl

j<T

akl⇥1 � e�bkl(T�tl
j)
⇤

(A.19)

Standard numerical maximization algorithms can now be used to estimate the parameters

of a corresponding exponential Hawkes model. It then remains to access goodness-of-

fit of an estimated Hawkes model, which is what we will discuss now. The basic idea

is to construct the residual process and compare the observed residual process with its

theoretically expected counterpart.

Definition 5. Let {ti}i2[1,N(T)] =
S

k2[1,K]{tk
i }i2[1,Nk(T)] be the pooled point process. The residual

process is a transformed time sequence {tk
i }i2[1,N(T)] that is computed as:

tk
i := Λk(ti) (A.20)

According to Daley and Vere-Jones (2006), we have the following property:

Proposition 11. Let {Nk(t)}k2[1,K] be a multivariate disjoint point processes defined on [0, ∞)

with a finite set of components, filtration Ft, and the corresponding K dimensional vector of left-

continuous Ft-intensity lk(t|Ft). 8k 2 [1, K], suppose that the conditional intensities are strictly
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positive and that limt!∞ Λk(t) = ∞. Then, under simultaneous random-time transformations, the

residual processes {tk
i }i2[1,N(T)], k 2 [1, K] are independent Poisson processes with unit intensity.

This property is used to test the goodness-of-fit of the model to the data by drawing

Q-Q plots of empirical quantiles with respect to the theoretical exponential distribution

quantiles.

a.4 additional tables and figures

Table A.1: Empirical results of pair-wise interdependence for selected DJIA stocks (continued)

AAPL XOM

-3 -2 -1 1 2 3 -2 -1 1 2

0.58 0.27 0.23 0.70 2.54 14.87 1.25 0.62 0.47 1.10
-3

(0.95) (0.40) (0.33) (0.99) (4.54) (36.24) (1.52) (0.87) (0.66) (1.51)

2.58 2.05 2.16 6.63 20.37 17.63 4.53 4.40 3.58 4.27
-2

(0.54) (0.40) (0.41) (1.32) (4.43) (3.96) (0.89) (0.85) (0.70) (0.84)
16.81 17.91 24.73 48.15 40.53 32.12 26.27 31.28 27.88 23.75

-1
(0.49) (0.53) (0.73) (1.41) (1.19) (0.94) (0.77) (0.92) (0.82) (0.70)
30.34 39.51 48.00 24.17 17.91 17.22 25.11 27.30 32.37 28.56

1
(0.89) (1.17) (1.42) (0.72) (0.53) (0.51) (0.74) (0.81) (0.96) (0.84)
19.43 21.21 6.76 1.95 1.98 2.31 4.08 3.77 4.87 4.94

2
(4.27) (4.54) (1.33) (0.37) (0.39) (0.48) (0.80) (0.72) (0.93) (0.99)
15.80 3.00 0.70 0.20 0.25 0.48 0.83 0.55 0.79 1.04

AAPL

3
(36.82) (5.01) (0.93) (0.27) (0.36) (0.65) (0.90) (0.76) (1.06) (1.32)

0.30 0.22 0.18 0.14 0.17 0.26 0.23 0.07 0.50 7.23
-2

(1.24) (1.01) (0.89) (0.70) (0.81) (1.02) (1.12) (0.31) (2.55) (42.56)

8.59 9.07 9.58 8.10 6.83 6.38 5.35 5.65 23.90 22.82
-1

(0.85) (0.91) (0.96) (0.81) (0.69) (0.63) (0.57) (0.58) (2.45) (2.38)

5.40 6.65 7.55 9.81 9.24 8.46 24.77 25.99 5.59 6.16
1

(0.54) (0.66) (0.75) (0.98) (0.92) (0.84) (2.55) (2.64) (0.57) (0.62)
0.16 0.11 0.11 0.15 0.18 0.28 7.56 0.38 0.05 0.14

XOM

2
(0.79) (0.61) (0.65) (0.91) (1.02) (1.43) (59.18) (2.36) (0.30) (0.74)

Total 0.72 5.08 34.04 33.81 5.16 0.76 0.21 9.97 10.07 0.17
Notes: Conditional probabilities of occurrences of event type k (in rows) given the last occurrence of event
type l (in columns): r(dNk(ti) = 1|dNl(ti�1) = 1). The result is reported in percentage. The last row Total
presents the unconditional probabilities of each type of events.
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Table A.2: Empirical results of pair-wise interdependence for selected DJIA stocks (continued)

AAPL CVX

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

0.58 0.27 0.21 0.67 2.45 14.56 1.35 0.67 0.48 0.38 0.53 1.00
-3

(1.02) (0.45) (0.33) (1.02) (4.70) (38.06) (2.35) (1.06) (0.78) (0.56) (0.94) (2.32)

2.48 1.94 2.09 6.37 19.53 16.62 5.56 4.62 3.76 3.13 3.56 4.22
-2

(0.56) (0.41) (0.43) (1.37) (4.57) (3.98) (1.21) (0.98) (0.78) (0.66) (0.76) (0.90)
16.44 17.28 23.74 46.03 38.88 30.39 27.56 28.40 28.72 25.61 24.71 24.17

-1
(0.52) (0.55) (0.75) (1.46) (1.23) (0.96) (0.85) (0.88) (0.90) (0.80) (0.77) (0.75)
29.28 38.06 46.00 22.81 16.97 16.54 24.14 24.77 25.68 29.59 28.95 27.28

1
(0.92) (1.21) (1.46) (0.73) (0.54) (0.52) (0.76) (0.78) (0.81) (0.93) (0.91) (0.85)
19.09 20.44 6.46 1.84 1.88 2.15 5.34 4.06 3.32 4.16 4.92 5.33

2
(4.53) (4.71) (1.37) (0.37) (0.39) (0.47) (1.14) (0.85) (0.68) (0.85) (1.04) (1.12)
15.28 2.90 0.67 0.19 0.25 0.45 0.82 0.63 0.46 0.59 0.86 1.55

AAPL

3
(37.99) (5.21) (0.96) (0.28) (0.42) (0.65) (1.12) (0.93) (0.65) (0.85) (1.40) (2.82)

1.10 0.67 0.48 0.36 0.50 0.70 0.28 0.15 0.12 0.51 1.85 8.30
-3

(2.37) (1.43) (1.01) (0.74) (1.03) (1.48) (0.61) (0.33) (0.23) (0.99) (3.97) (17.45)

2.51 2.38 2.06 1.61 1.60 1.82 1.25 1.26 1.15 3.45 9.35 7.04
-2

(1.22) (1.15) (0.98) (0.76) (0.75) (0.85) (0.58) (0.61) (0.56) (1.62) (4.26) (3.33)

6.70 7.93 9.07 7.78 6.33 5.46 7.70 8.86 11.58 20.41 14.72 11.61
-1

(0.68) (0.80) (0.92) (0.78) (0.63) (0.54) (0.82) (0.94) (1.23) (2.07) (1.51) (1.20)
4.49 6.05 7.32 9.67 8.51 7.61 10.99 15.53 20.80 11.09 9.28 7.76

1
(0.45) (0.60) (0.72) (0.97) (0.86) (0.76) (1.13) (1.58) (2.12) (1.17) (0.98) (0.82)
1.46 1.59 1.54 2.15 2.41 2.50 7.18 9.06 3.43 0.96 1.14 1.50

2
(0.65) (0.75) (0.73) (1.04) (1.18) (1.25) (3.39) (4.25) (1.61) (0.47) (0.56) (0.76)
0.58 0.50 0.36 0.51 0.68 1.19 7.84 2.00 0.49 0.12 0.13 0.24

CVX

3
(1.19) (1.01) (0.73) (1.05) (1.43) (2.81) (17.64) (4.17) (0.90) (0.22) (0.25) (0.45)

Total 0.67 4.74 31.90 31.68 4.81 0.71 0.52 2.16 10.06 10.10 2.14 0.52

AAPL V

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

0.50 0.24 0.20 0.65 2.39 13.95 1.85 0.93 0.55 0.39 0.58 1.18
-3

(0.92) (0.41) (0.30) (0.98) (4.57) (36.11) (4.74) (1.51) (0.90) (0.62) (0.96) (2.02)

2.29 1.84 1.96 6.25 19.40 16.33 5.93 5.18 4.03 3.12 3.60 4.46
-2

(0.53) (0.39) (0.40) (1.35) (4.58) (3.95) (1.32) (1.15) (0.85) (0.66) (0.79) (0.97)
14.77 16.05 22.58 45.33 37.96 29.94 26.92 28.83 29.98 25.32 23.17 20.02

-1
(0.47) (0.51) (0.72) (1.45) (1.21) (0.96) (0.86) (0.92) (0.96) (0.81) (0.74) (0.64)
27.91 37.16 45.24 21.72 15.73 15.33 22.37 23.48 25.08 30.97 30.06 28.55

1
(0.89) (1.19) (1.45) (0.70) (0.51) (0.49) (0.72) (0.75) (0.81) (0.99) (0.97) (0.92)
18.21 20.17 6.34 1.69 1.71 1.84 4.67 3.99 3.38 4.47 5.70 6.81

2
(4.31) (4.69) (1.35) (0.34) (0.37) (0.40) (0.98) (0.84) (0.70) (0.94) (1.23) (1.57)
15.00 2.81 0.64 0.17 0.21 0.41 1.30 0.71 0.47 0.69 1.11 1.88

AAPL

3
(38.13) (5.10) (0.91) (0.24) (0.34) (0.59) (1.97) (1.02) (0.68) (1.04) (1.86) (3.48)

1.12 0.65 0.37 0.24 0.34 0.52 0.15 0.16 0.10 0.37 1.42 7.09
-3

(3.18) (1.89) (1.03) (0.67) (1.04) (1.46) (0.35) (0.49) (0.27) (1.10) (4.76) (33.81)

2.81 2.25 1.81 1.21 1.32 1.51 1.29 0.92 0.88 2.65 7.76 6.63
-2

(1.63) (1.30) (1.05) (0.71) (0.79) (0.87) (0.85) (0.55) (0.50) (1.62) (5.10) (4.42)

10.04 10.52 11.35 8.59 6.95 5.97 7.17 8.31 10.71 20.95 16.94 14.16
-1

(0.88) (0.93) (1.01) (0.76) (0.62) (0.53) (0.65) (0.77) (0.99) (1.89) (1.52) (1.28)
5.34 6.73 8.13 11.90 11.16 10.17 13.23 17.84 21.94 10.21 8.65 7.92

1
(0.47) (0.59) (0.72) (1.05) (0.98) (0.89) (1.20) (1.59) (1.96) (0.93) (0.79) (0.72)
1.41 1.24 1.14 1.88 2.25 3.24 7.82 8.04 2.55 0.76 0.86 1.07

2
(0.84) (0.74) (0.68) (1.10) (1.34) (1.88) (5.19) (5.21) (1.56) (0.45) (0.51) (0.67)
0.60 0.33 0.23 0.38 0.57 0.78 7.30 1.61 0.32 0.09 0.14 0.23

V

3
(1.70) (1.01) (0.67) (1.08) (1.72) (2.40) (35.17) (6.34) (0.84) (0.26) (0.38) (0.49)

Total 0.67 4.69 31.35 31.14 4.76 0.71 0.36 1.70 11.25 11.35 1.69 0.35
Notes: Conditional probabilities of occurrences of event type k (in rows) given the last occurrence of event type l (in columns):

r(dNk(ti) = 1|dNl(ti�1) = 1). The result is reported in percentage. The last row Total presents the unconditional probabilities
of each type of events.
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Table A.3: Empirical results of pair-wise interdependence for selected DJIA stocks (continued)

AXP CVX

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

0.43 0.34 0.22 0.68 2.40 10.43 1.71 1.13 0.72 0.50 0.72 1.10
-3

(1.00) (0.44) (0.26) (0.91) (4.13) (22.56) (2.50) (1.56) (0.97) (0.68) (1.04) (1.51)

1.86 1.49 1.28 3.61 9.83 7.58 3.59 3.07 2.41 1.77 2.09 2.52
-2

(0.79) (0.63) (0.53) (1.53) (4.44) (3.41) (1.50) (1.27) (0.97) (0.72) (0.87) (1.07)
10.38 11.68 14.70 23.95 16.46 11.95 11.26 12.34 13.17 10.18 8.99 8.37

-1
(0.80) (0.92) (1.17) (1.86) (1.26) (0.93) (0.80) (0.89) (0.95) (0.74) (0.65) (0.60)
12.70 17.80 24.16 14.32 12.15 10.01 8.35 8.98 10.06 13.60 12.82 11.52

1
(0.96) (1.35) (1.85) (1.12) (0.95) (0.79) (0.60) (0.64) (0.73) (0.98) (0.91) (0.82)
8.27 9.74 3.33 1.14 1.49 1.99 2.33 2.12 1.84 2.46 3.14 3.66

2
(3.78) (4.49) (1.41) (0.46) (0.60) (0.87) (1.02) (0.88) (0.75) (1.01) (1.28) (1.53)

9.86 2.49 0.61 0.19 0.27 0.39 1.24 0.82 0.54 0.69 1.11 1.76

AXP

3
(19.69) (4.11) (0.85) (0.24) (0.38) (0.59) (1.72) (1.20) (0.75) (0.93) (1.61) (2.72)

3.65 2.27 1.25 0.83 1.31 2.29 0.75 0.43 0.32 1.22 4.04 16.13
-3

(2.95) (1.83) (0.95) (0.65) (1.05) (1.66) (0.67) (0.36) (0.25) (0.93) (3.29) (13.81)

8.59 7.09 5.22 3.86 5.04 6.21 3.07 2.91 2.56 7.36 18.06 14.29
-2

(1.59) (1.27) (0.93) (0.68) (0.90) (1.12) (0.55) (0.53) (0.45) (1.30) (3.23) (2.63)

20.03 22.89 24.52 19.82 18.31 16.23 14.20 16.61 22.19 37.60 28.15 22.23
-1

(0.77) (0.88) (0.95) (0.76) (0.70) (0.62) (0.55) (0.65) (0.86) (1.44) (1.08) (0.86)
16.45 18.20 19.86 24.96 23.75 21.16 21.75 29.20 37.78 21.99 17.77 14.55

1
(0.62) (0.69) (0.76) (0.96) (0.91) (0.81) (0.84) (1.12) (1.44) (0.85) (0.69) (0.56)
5.69 4.63 4.00 5.37 6.97 8.01 15.21 17.83 7.26 2.31 2.72 3.29

2
(1.04) (0.83) (0.72) (0.97) (1.27) (1.45) (2.80) (3.25) (1.30) (0.42) (0.50) (0.62)
2.07 1.37 0.86 1.27 2.02 3.73 16.54 4.55 1.16 0.31 0.36 0.59

CVX

3
(1.72) (1.02) (0.64) (0.98) (1.68) (3.11) (14.75) (3.72) (0.86) (0.23) (0.29) (0.46)

Total 0.74 2.46 13.72 13.81 2.44 0.73 1.34 5.66 26.03 26.15 5.59 1.35

AXP IBM

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

0.46 0.40 0.26 0.83 2.93 12.15 2.37 1.39 0.85 0.68 0.96 1.70
-3

(0.46) (0.42) (0.25) (0.86) (3.66) (20.37) (2.84) (1.46) (0.90) (0.71) (1.08) (2.02)

1.84 1.82 1.53 4.18 11.50 9.31 4.77 3.78 3.07 2.24 2.77 3.28
-2

(0.61) (0.60) (0.46) (1.35) (4.04) (3.46) (1.60) (1.23) (0.98) (0.72) (0.90) (1.15)
11.11 12.56 16.48 27.05 18.85 13.90 13.87 15.41 16.80 12.52 10.91 10.14

-1
(0.67) (0.75) (0.99) (1.61) (1.12) (0.84) (0.82) (0.91) (0.99) (0.74) (0.65) (0.60)
13.98 20.10 27.25 15.98 13.51 10.79 10.28 11.10 12.47 17.21 16.05 14.75

1
(0.83) (1.18) (1.61) (0.95) (0.80) (0.64) (0.60) (0.65) (0.73) (1.01) (0.94) (0.87)
9.92 11.18 3.97 1.34 1.73 2.06 3.14 2.64 2.26 3.20 4.08 4.72

2
(3.53) (3.99) (1.29) (0.41) (0.57) (0.72) (1.06) (0.85) (0.72) (1.04) (1.38) (1.59)

11.00 3.09 0.73 0.24 0.32 0.39 1.83 1.06 0.64 0.92 1.42 2.59

AXP

3
(17.03) (4.01) (0.73) (0.25) (0.38) (0.38) (2.26) (1.17) (0.69) (0.97) (1.66) (2.96)

5.04 2.94 1.62 1.20 1.85 3.13 0.96 0.70 0.51 1.61 4.87 15.98
-3

(3.09) (1.66) (0.88) (0.67) (1.03) (2.11) (0.60) (0.44) (0.28) (0.93) (3.14) (11.77)

7.80 6.88 5.32 3.66 4.29 5.34 2.91 2.78 2.75 7.07 15.73 12.48
-2

(1.47) (1.30) (0.98) (0.68) (0.81) (1.00) (0.55) (0.53) (0.51) (1.33) (3.08) (2.46)

17.08 20.32 21.62 16.29 14.72 12.98 13.07 16.01 20.90 31.16 23.83 18.05
-1

(0.77) (0.93) (0.99) (0.74) (0.67) (0.59) (0.60) (0.74) (0.96) (1.43) (1.09) (0.83)
13.63 14.39 16.41 22.11 20.52 17.66 16.09 24.02 31.50 20.44 16.18 12.39

1
(0.62) (0.66) (0.75) (1.01) (0.93) (0.81) (0.73) (1.10) (1.44) (0.94) (0.74) (0.57)
5.11 4.38 3.67 5.31 6.63 7.21 13.94 15.77 6.66 2.46 2.61 2.94

2
(0.98) (0.84) (0.70) (1.01) (1.27) (1.41) (2.83) (3.17) (1.29) (0.46) (0.50) (0.57)
3.04 1.95 1.14 1.80 3.15 5.07 16.76 5.36 1.58 0.49 0.60 0.97

IBM

3
(1.82) (1.11) (0.63) (0.95) (1.78) (2.89) (11.53) (3.34) (0.87) (0.26) (0.33) (0.57)

Total 0.96 3.13 16.89 17.03 3.10 0.95 1.77 5.34 21.87 21.92 5.21 1.83
Notes: Conditional probabilities of occurrences of event type k (in rows) given the last occurrence of event type l (in columns):

r(dNk(ti) = 1|dNl(ti�1) = 1). The result is reported in percentage. The last row Total presents the unconditional probabilities
of each type of events.
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Table A.4: Empirical results of pair-wise interdependence for selected DJIA stocks (continued)

CVX IBM

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

0.69 0.37 0.27 1.06 3.63 14.76 2.72 1.56 1.10 0.78 1.20 2.04
-3

(0.70) (0.34) (0.24) (0.90) (3.31) (14.07) (2.37) (1.40) (0.96) (0.68) (1.03) (1.83)

2.81 2.55 2.29 6.53 16.29 12.65 7.37 5.87 4.62 3.63 4.32 5.51
-2

(0.57) (0.52) (0.46) (1.30) (3.28) (2.62) (1.50) (1.18) (0.92) (0.72) (0.88) (1.12)
12.53 14.88 19.99 34.18 25.32 20.05 18.36 20.78 21.85 18.25 16.90 15.96

-1
(0.55) (0.65) (0.88) (1.47) (1.10) (0.87) (0.80) (0.90) (0.95) (0.79) (0.73) (0.69)
19.39 26.20 34.59 19.45 15.78 13.08 15.55 16.81 18.10 22.56 21.04 19.21

1
(0.84) (1.13) (1.49) (0.85) (0.69) (0.57) (0.67) (0.72) (0.78) (0.98) (0.91) (0.83)
13.56 16.19 6.47 2.01 2.27 2.88 4.96 4.20 3.70 4.84 5.98 6.48

2
(2.80) (3.32) (1.30) (0.41) (0.46) (0.62) (1.03) (0.85) (0.75) (0.98) (1.23) (1.34)

14.53 3.94 1.03 0.26 0.33 0.44 2.04 1.21 0.83 1.12 1.60 2.48

CVX

3
(14.37) (3.59) (0.84) (0.22) (0.31) (0.36) (1.87) (1.03) (0.72) (1.00) (1.43) (2.11)

2.81 1.94 1.22 0.87 1.21 1.89 0.74 0.46 0.38 1.17 3.57 12.31
-3

(2.09) (1.52) (0.95) (0.69) (0.98) (1.45) (0.63) (0.39) (0.30) (0.95) (3.35) (13.34)

5.65 4.63 3.82 2.78 3.02 3.28 2.25 2.06 2.08 5.31 12.04 9.35
-2

(1.49) (1.20) (0.99) (0.73) (0.80) (0.88) (0.61) (0.56) (0.55) (1.46) (3.45) (2.66)

13.20 14.24 15.00 11.96 10.59 9.22 10.84 12.81 16.64 24.32 18.12 13.82
-1

(0.83) (0.90) (0.96) (0.77) (0.67) (0.58) (0.74) (0.86) (1.12) (1.64) (1.21) (0.92)
9.37 10.67 11.70 15.79 14.95 13.06 12.79 18.25 24.58 15.85 12.86 9.96

1
(0.59) (0.68) (0.75) (1.00) (0.94) (0.81) (0.84) (1.22) (1.65) (1.06) (0.86) (0.67)
3.45 3.13 2.71 3.83 4.61 5.26 10.01 12.07 5.02 1.84 1.89 2.25

2
(0.96) (0.85) (0.73) (1.02) (1.22) (1.41) (2.99) (3.51) (1.41) (0.49) (0.51) (0.63)
2.03 1.25 0.91 1.29 2.00 3.44 12.37 3.92 1.11 0.34 0.46 0.62

IBM

3
(1.77) (0.97) (0.71) (0.99) (1.53) (2.72) (12.15) (3.55) (0.89) (0.26) (0.35) (0.42)

Total 1.20 5.03 23.11 23.23 4.97 1.20 1.25 3.80 15.57 15.62 3.71 1.29

IBM V

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

0.67 0.43 0.32 1.05 3.32 11.38 2.85 1.88 1.21 0.87 1.15 1.81
-3

(0.65) (0.40) (0.26) (0.89) (3.18) (13.14) (2.69) (1.63) (1.01) (0.74) (1.03) (1.77)

1.95 1.86 1.89 4.98 11.28 8.85 4.90 4.49 3.70 2.61 2.86 3.01
-2

(0.56) (0.53) (0.52) (1.41) (3.32) (2.61) (1.39) (1.26) (1.04) (0.73) (0.80) (0.85)
9.68 11.64 15.23 23.22 17.19 13.13 10.95 12.99 14.45 11.15 9.41 8.11

-1
(0.68) (0.81) (1.06) (1.60) (1.18) (0.90) (0.76) (0.89) (0.99) (0.76) (0.64) (0.55)
11.55 17.48 23.52 14.44 11.49 8.96 7.84 9.09 10.75 15.30 13.78 12.17

1
(0.79) (1.19) (1.61) (1.00) (0.79) (0.62) (0.53) (0.62) (0.73) (1.05) (0.94) (0.83)
9.41 11.33 4.68 1.61 1.64 1.79 3.43 2.85 2.54 3.71 4.56 4.82

2
(2.85) (3.40) (1.35) (0.45) (0.47) (0.51) (1.01) (0.83) (0.73) (1.07) (1.34) (1.44)

11.28 3.61 1.04 0.31 0.38 0.55 1.78 1.28 0.87 1.27 1.90 3.01

IBM

3
(11.68) (3.38) (0.85) (0.25) (0.30) (0.45) (1.82) (1.07) (0.72) (1.05) (1.62) (2.91)

2.02 1.19 0.76 0.50 0.76 1.22 0.45 0.38 0.23 0.79 3.04 13.13
-3

(2.83) (1.48) (0.92) (0.60) (1.01) (1.68) (0.49) (0.55) (0.28) (0.99) (4.67) (24.36)

6.20 5.06 3.81 2.60 3.09 4.13 2.58 2.08 1.87 5.22 14.27 13.02
-2

(1.60) (1.29) (0.95) (0.65) (0.81) (1.07) (0.71) (0.53) (0.46) (1.35) (3.99) (3.70)

23.44 24.63 25.83 20.30 19.10 17.97 12.05 15.29 20.16 37.39 30.40 24.32
-1

(0.91) (0.95) (1.00) (0.79) (0.74) (0.70) (0.47) (0.60) (0.79) (1.45) (1.18) (0.94)
18.28 19.01 19.83 26.31 25.59 24.18 24.24 31.38 38.52 19.74 16.29 13.53

1
(0.70) (0.73) (0.76) (1.01) (0.98) (0.93) (0.94) (1.21) (1.48) (0.77) (0.63) (0.52)
4.23 3.05 2.60 3.91 5.00 5.66 15.04 15.10 5.01 1.72 2.00 2.62

2
(1.14) (0.80) (0.66) (0.99) (1.29) (1.47) (4.19) (4.24) (1.31) (0.44) (0.51) (0.71)
1.30 0.70 0.50 0.76 1.17 2.20 13.89 3.20 0.68 0.22 0.34 0.45

V

3
(1.75) (0.90) (0.59) (0.93) (1.59) (2.85) (28.67) (5.22) (0.83) (0.28) (0.48) (0.57)

Total 1.18 3.57 14.61 14.67 3.48 1.22 0.83 3.93 25.79 26.03 3.89 0.81
Notes: Conditional probabilities of occurrences of event type k (in rows) given the last occurrence of event type l (in columns):

r(dNk(ti) = 1|dNl(ti�1) = 1). The result is reported in percentage. The last row Total presents the unconditional probabilities
of each type of events.
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Table A.5: Empirical results of pair-wise interdependence for selected DJIA stocks (continued)

AXP XOM

-3 -2 -1 1 2 3 -2 -1 1 2

0.57 0.32 0.24 0.80 2.87 11.24 1.46 0.98 0.72 0.76
-3

(1.36) (0.34) (0.24) (0.88) (3.91) (20.55) (1.94) (1.11) (0.80) (0.85)
2.03 1.70 1.49 4.06 11.06 8.42 2.73 3.10 2.23 1.98

-2
(0.75) (0.57) (0.48) (1.39) (4.09) (3.21) (0.96) (1.05) (0.76) (0.68)
10.87 12.84 16.42 26.44 18.63 13.13 11.98 14.75 11.84 9.39

-1
(0.69) (0.82) (1.05) (1.66) (1.16) (0.83) (0.76) (0.92) (0.74) (0.59)
13.32 19.41 26.55 16.39 13.87 10.76 8.47 11.11 15.71 12.97

1
(0.83) (1.21) (1.65) (1.04) (0.88) (0.68) (0.52) (0.69) (0.97) (0.79)
9.44 10.65 3.89 1.34 1.68 1.82 2.14 2.14 3.25 3.51

2
(3.58) (4.00) (1.34) (0.45) (0.58) (0.64) (0.79) (0.73) (1.12) (1.23)
10.89 2.86 0.70 0.22 0.29 0.45 0.83 0.70 1.04 1.49

AXP

3
(18.75) (3.78) (0.79) (0.22) (0.40) (0.49) (1.10) (0.81) (1.20) (2.14)

0.99 0.57 0.48 0.33 0.52 0.79 0.41 0.16 1.04 11.77
-2

(1.56) (1.00) (0.82) (0.55) (0.86) (1.24) (0.66) (0.25) (1.78) (22.80)

29.78 29.12 28.19 22.78 22.38 22.65 11.45 14.84 49.31 45.03
-1

(1.01) (0.99) (0.96) (0.77) (0.76) (0.77) (0.39) (0.51) (1.68) (1.54)
21.71 22.16 21.77 27.28 28.20 29.89 47.14 51.50 14.75 12.82

1
(0.73) (0.75) (0.73) (0.92) (0.95) (1.01) (1.60) (1.74) (0.50) (0.44)
0.40 0.37 0.28 0.38 0.51 0.85 13.39 0.73 0.12 0.27

XOM

2
(0.65) (0.76) (0.61) (0.81) (0.99) (1.71) (34.18) (1.52) (0.25) (0.54)

Total 0.89 2.95 16.02 16.13 2.92 0.88 0.60 29.43 29.69 0.49

XOM V

-2 -1 1 2 -3 -2 -1 1 2 3

0.30 0.10 0.80 9.95 0.84 0.46 0.33 0.26 0.29 0.46
-2

(0.68) (0.24) (2.02) (27.70) (2.05) (1.10) (0.84) (0.66) (0.67) (1.16)
8.62 9.95 36.98 35.08 18.63 18.83 19.23 16.33 14.63 14.36

-1
(0.44) (0.50) (1.85) (1.76) (0.93) (0.94) (0.96) (0.81) (0.73) (0.71)
36.95 39.44 9.63 9.40 14.08 13.92 15.31 19.24 19.53 18.34

1
(1.84) (1.96) (0.48) (0.47) (0.70) (0.69) (0.76) (0.96) (0.97) (0.91)
10.53 0.59 0.08 0.17 0.33 0.26 0.20 0.26 0.34 0.55

XOM

2
(39.78) (1.81) (0.25) (0.44) (0.74) (0.83) (0.61) (0.83) (1.02) (1.59)

1.60 0.86 0.60 0.66 0.36 0.37 0.23 0.75 2.86 12.27
-3

(1.85) (1.07) (0.76) (0.77) (0.40) (0.61) (0.30) (0.97) (4.59) (24.12)

3.74 3.85 2.81 2.53 2.34 2.07 1.84 5.06 13.84 12.95
-2

(0.99) (0.99) (0.74) (0.66) (0.67) (0.56) (0.48) (1.36) (4.01) (3.82)

19.68 23.41 20.05 16.37 12.37 15.52 20.01 36.14 29.69 23.97
-1

(0.79) (0.94) (0.81) (0.65) (0.50) (0.63) (0.81) (1.46) (1.19) (0.96)
15.41 18.65 24.25 20.31 23.05 30.74 37.30 19.99 16.48 14.07

1
(0.61) (0.74) (0.97) (0.81) (0.92) (1.22) (1.49) (0.80) (0.66) (0.56)
2.46 2.62 3.94 3.82 14.63 14.74 4.88 1.74 2.02 2.58

2
(0.64) (0.70) (1.03) (1.03) (4.32) (4.30) (1.32) (0.46) (0.54) (0.73)
0.71 0.54 0.87 1.70 13.37 3.09 0.66 0.23 0.32 0.45

V

3
(0.93) (0.68) (1.11) (2.32) (29.41) (5.21) (0.85) (0.31) (0.45) (0.68)

Total 0.41 20.04 20.21 0.33 0.79 3.78 24.86 25.08 3.74 0.77
Notes: Conditional probabilities of occurrences of event type k (in rows) given the last occurrence of event
type l (in columns): r(dNk(ti) = 1|dNl(ti�1) = 1). The result is reported in percentage. The last row Total
presents the unconditional probabilities of each type of events.
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Titre :  Dynamique de formation des prix à haute fréquence et mesures multivariées du risque de 
marché intra-journalier. 

Mots clés : Dynamique de formation des prix, matrice de variance-covariance, IVaR multivariée. 

Résumé : Cette thèse porte sur les marchés 
électroniques modernes et développe des 
modèles mathématiques sur mesure pour le 
trading à haute fréquence. Observées à la 
résolution la plus fine, la formation des prix et 
les transactions intra-journalières présentent 
des propriétés fondamentalement différentes de 
celles du trading à plus basse fréquence. En 
effet, plusieurs "frictions de marché" semblent 
désormais être la norme plutôt que l'exception, 
ce qui remet en question l'hypothèse de 
l'efficience des marchés. Par conséquent, les 
modèles mathématiques établis de longue date 
et appliqués à une dynamique de prix à basse 
fréquence, inadaptés au contexte actuel de 
trading à haute fréquence, ne parviennent plus 
à expliquer l'environnement complexe généré 
par les frictions de microstructure des marchés. 

Pour remédier à ces lacunes, nous 
développons dans la première partie de cette 
thèse une dynamique généralisée de formation 
des prix, basée sur  l'idée que  l'information et le  

temps intrinsèquement liés, considérant que 
l'information a une durée de vie et qu'elle se 
dégrade avec le temps. Plus précisément, 
nous proposons une extension du modèle 
classique “martingale plus bruit” et permettons 
un traitement plus structurel de la dynamique à 
haute fréquence qui reflète les sources 
d'information asymétrique, la durée de vie de 
l'information et l'ajustement des prix retardé 
dans le temps. 

Les deuxième et troisième parties de la thèse 
contribuent à la mesure du risque multivarié à 
haute fréquence, mesure développée à partir 
de la dynamique des prix exposée en première 
partie. En particulier, la deuxième partie de la 
thèse introduit un nouvel estimateur de la 
structure des moments de second ordre pour 
le rendement d'actifs. La troisième partie de la 
thèse contribue à la modélisation directe de la 
queue de la distribution des rendements en 
développant propose une nouvelle Value-at 
Risk intra-journalière multivariée. 
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Abstract : This thesis focuses on modern 
electronic markets and develops tailor-made 
mathematical models of high-frequency trading. 
When focusing on the finest frequency of 
trading, such as transaction-by-transaction, 
intraday price formation and trading exhibit 
fundamentally different properties compared to 
lower trading frequencies. Several “market 
frictions” appear to be the norm, rather than the 
exception and this poses a great challenge to 
the efficient market hypothesis. Consequently, 
long-established mathematical models that are 
applied on lower-frequency price dynamics, are 
no longer adequate in the context of high- 
frequency trading and fail to explain the complex 
environment generated by the frictions of market 
microstructure. 
To address these shortcomings, in the first part 

of  this  thesis, we  develop  a generalized  price 

formation dynamics based on the view that 
time and information are inherently linked, 
considering that information has a life span and 
decays over time. More precisely, we extend 
the classic “martingale-plus-noise” model and 
allow for a more structural treatment of high- 
frequency dynamics that capture the sources 
of asymmetric information, information life 
span, and temporal lagged price adjustment. 

The second and third parts of the thesis 
contribute to high-frequency multivariate risk 
measurement, developed on the ground of the 
price dynamics in the first part. In particular, 
the second part of the thesis introduces a novel 
estimator of second-order moment structure of 
asset returns and the third part of the thesis 
contributes on direct modelling of the tail 
distribution of asset returns by developing a 
new multivariate intraday Value-at-Risk. 
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