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Introduction (en frangais)

La théorie des fonctions L joue un role crucial dans la théorie des nombres. De maniére générale, une
fonction L est une série de Dirichlet L(s) = anl 9 qui converge lorsque Re(s) est assez grand et se
prolonge en une fonction méromorphe sur le plan complexe, satisfaisant & une équation fonctionnelle et &

: ’ ) 215 : A : _ 1
la formule du produit d’Euler. L’exemple le plus célebre est la fonction zéta de Riemann ((s) = an1 o5
une fonction méromorphe sur C qui satisfait a I’équation fonctionnelle

50 (3) ¢ls) =0 (52 )¢ - 9),

prédite par Euler en 1748. De plus, elle satisfait la formule du produit d’Euler {(s) = Hp 177;;—3' Comme
les fonctions L sont des objets analytiques, elles nous permettent d’étudier des objets arithmétiques a
l’aide d’outils de I'analyse. Par exemple, le fait que {(s) ait un pole simple implique qu’il existe une
infinité de nombres premiers, et le fait que les valeurs des fonctions L de Dirichlet soient non nulles en
1 implique le théoréeme de Dirichlet sur les progressions arithmétiques. En outre, les valeurs spéciales
des fonctions L en des nombres entiers pourraient étre liées aux périodes [KZ01, §1.1].

On peut associer une fonction L a certaines sommes exponentielles. Les sommes de Kloosterman
sont des sommes exponentielles sur des corps finis, définies pour chaque puissance de nombres premiers

q=p" et a € Fy, par
. a
Kla(a; q) == E exp (27T2/p - Trp, /e, (:U + ;>) ’

xEF;

ot Try, /g, () est la trace de F, a F),. Si a n’est pas nul, Weil a montré dans [Weid8] que Kla(a;q) =
—(aq + B4) pour deux nombres algébriques «, et 3, de norme p/2. En particulier, on obtient une
borne supérieure |Kly(a,q)] < 2p'/2. Pour chaque entier k > 1, les k-iémes moments de puissance
symétrique des sommes de Kloosterman sont des entiers de la forme m5(q) = > acF, Zf:o ol =1 Dans
[Brol6, Brol7], les fonctions L attachées aux k-iémes moments de puissance symétrique des sommes
de Kloosterman, notées L(s), sont définies comme des produits d’Euler, ou les facteurs locaux aux

nombres premiers p sont produits & partir de la série génératrice

exp<2””‘2':€1f),Tr>_

r>1

Ces fonctions L sont définies & priori sur un domaine {s € C | Re(s) > 1 + £t} par construction et
d’apreés les travaux de Fu-Wan [FW05]. Broadhurst et Roberts ont conjecturé que ces fonctions L se
prolongent méromorphiquement & C, et ils ont prédit les formules précises des équations fonctionnelles.

Il n’est pas toujours facile de montrer qu’'une fonction L a un prolongement méromorphe dans le plan
complexe. Par exemple, on peut montrer que les fonctions L des formes modulaires sont des fonctions
holomorphes sur C directement par des outils de I'analyse, comme dans le cas de la fonction zéta de
Riemann. Cependant, pour montrer les mémes choses pour les fonctions L des courbes elliptiques, le
seul moyen connu est de les identifier & des fonctions L de formes modulaires. Le lien entre ces deux
types de fonctions L est établi par le théoréme de modularité (la conjecture de Taniyama-Shimura)
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[BCDTO1], dont la version plus faible a conduit a la preuve du dernier théoréme de Fermat par Wiles
[Wil95].

Dans [FSY22], Fresan, Sabbah et Yu ont construit une famille de représentations galoisiennes
provenant de la géométrie, dont les fonctions L sont exactement Lg(s). Ensuite, ils ont utilisé la
philosophie de Langlands pour prouver la conjecture de Broadhurst et Roberts, en montrant que les
fonction L des représentations galoisiennes sont égales a des fonctions L automorphes via un théoréme
de Patrikis-Taylor [PT15]. Pour résumer, ils ont prouvé le théoréme suivant.

Theorem (Fresan-Sabbah-Yu). La fonction Li(s) a un prolongement méromorphe dans le plan complexe.
De plus, on peut compléter Li(s) en une fonction L compléte Ag(s) telle que

Ai(s) = exAp(k +2 — s),
ou € € {1} et e est égal a 1 si k est impair.

Dans un article suivant de Freséan, Sabbah, et Yu [FSY20a], ils expliquent également une certaine
relation entre les valeurs spéciales des fonctions L aux entiers critiques et certains déterminants des
moments de Bessel

o _a pdz
/ Io(z)“Ko(z)k Ly
0 z

ou Iy(z) et Ko(z) sont les fonctions de Bessel modifiées de premiére et deuxiéme espéce (solutions de
(20,)? — 22 =0).

Cette thése vise a généraliser le théoréme ci-dessus aux fonctions L attachées aux moments (pas
nécessairement ceux de puissance symétrique) des sommes de Kloosterman en plusieurs variables.

Résultats principaux

Les fonctions L des faisceaux de Kloosterman

Les sommes de Kloosterman en n variables sont les sommes exponentielles sur les corps finis définies,
pour chaque puissance de nombres premiers ¢ = p” et chaque a € IF‘qX, par

) a
Kln_t,_l(a;Q) = Z exp (27TZ/p-TI‘]Fq/]FP <x1++xn+w>)
n

X
Z1,...,2n€Fg

Elles sont les analogues sur un corps fini des fonctions de Bessel

z dxq dx,
explx1+...+2p+—m—7-— | — - —,
(S1)n Il Tp I In

satisfaisant aux équations différentielles de Bessel (20,)" ! — 2 = 0.

En fixant un nombre premier £ # p et un plongement ¢: Q, — C, Deligne a construit dans [Del77,
Sommes. Trig. Th. 7.8] des faisceaux f-adiques lisses Kl, 11 de rang n + 1, appelés les faisceaur de
Kloosterman, tels que pour chaque ¢ = p", a € F; = Gy, (Fy), et chaque point géométrique a
au-dessus de a, les normes complexes des valeurs propres de Frob, soient q"/?
qu’on ait

via 'immersion ¢, et

¢ o Tr(Froby, (Kly4+1)a) = (—1)"Kly41(a; q).

Comme conséquence directe, on a la borne supérieure |Kl, 1 (a;q)| < (n + 1)¢"™/2.

Si 'on considére les faisceaux f-adiques lisses Kl,, 11 sur G, comme des représentations £-adiques
continues pki,,, du groupe fondamental étale Wft(Gm,]Fq), le groupe de monodromie arithmétique (resp.
géométrique) est défini comme la fermeture de Zariski de I'image de " (G, r,) (resp. Wft(Gm’Fq)) dans



GLy11(Qp) sous PKl,,- Dans [Kat88|, Katz a montré que les groupes de monodromie arithmétique et
les groupes de monodromie géométrique de Kl,, ;1 coincident, et égaux aux groupes

SP,4+1 n+1 pair,

SLn+1 p(n+ 1) impair,

SOpt1 p =2, n+ 1 impair et n # 6,
G p=2,n=6.

L’apparition du groupe exceptionnel G2 semble assez surprenante. Katz a demandé dans [Kat90] si tous
les groupes semisimples apparaissent comme des groupes de monodromie de faisceaux f-adiques lisses.

Dans [HNY13], Heinloth, Ngo et Yun ont construit des faisceauz de Kloosterman pour les groupes
réductifs de maniére uniforme en utilisant des méthodes du programme de Langlands géométrique.
Plus précisément, on peut attacher & toute paire, constituée d’un groupe réductif scindé G et d’une
représentation V' de dimension finie de G, un faisceau f-adic lisse sur Gy, ,, d'une maniére fonctorielle.
Ils ont trouvé que les groupes exceptionnels F7, Fg, Go, Fy apparaissent parmi les groupes de monodromie
des faisceaux de Kloosterman pour les groupes réductifs. Comme cas particulier, on retrouve le faisceau
de Kloosterman classiques Kln“(—%) en prenant G = SL, 11 et V la représentation standard de SLj 1.

On s’intéresse uniquement aux cas ot G = SL,41 et V est la représentation de plus haut poids
A de SLyt1. Pour un poids A, on désigne par [A| = >0, \;, et par K1)} le faisceau Klgﬁn+1(_%k)
pour simplifier. Si V' est la k-iéme puissance symétrique de la représentation standard, c’est-a-dire
A= (k,0,...,0) (on identifie A et k dans ce cas), le faisceaix Klf‘H_l coincide avec la k-iéme puissance
symétrique de Kl,, 11, notée Sym*Kl, 1.

Pour chaque faisceau de Kloosterman .# = K1) 41, en suivant la construction dans [FSY22|, on
introduit une fonction L comme produit d’Euler, oil les facteurs locaux sont construits en utilisant les
moments de K1) 11, c’est-a-dire les entiers de la forme.

myi(g) = — > Tr(Froby, (KI),,),).

aEF;

La série génératrice Z(A,n+1,p;T) de m),, (q) est définie comme exp(d_,>1 mp, 1 (p")/r-T"). Par
la formule des traces de Grothendieck [Del77, Rapport. Th. 3.1], on a

2
Z(\n+1,p;7) =[] det(1 — Frob, T | HY, (G, 5, KN 1))V

ét,c
=0

qui est une fonction rationnelle. Cependant, les normes complexes des racines et des poles de Z (A, n +
1,p; T) appartiennent a ensemble {p~%2 | 0 < i < nk}. C’est pourquoi Z(\,n + 1,p; T) n’est donc
pas un candidat idéal pour les facteurs locaux du produit d’Euler. De maniére similaire au travail de
Fu-Wan [FW05, FWO08] pour les faisceaux Sym*Kl, 1, on peut définir

M\ n+ 1,p;T) = det(1 = FrobyT | Hy ia(Gy g, KL 1)),
ou

Hiﬁt,mid(Gm,va Kli\z—i—l) = im(Hét,c(G K17>7\,+1) - Hét(Gm,Fpa Kli:—‘,—l))

m,Fp?
est la cohomologie f-adique intermédiaire. Le polyndéme M (A, n + 1,p;T) est, en fait, un facteur de
Z(An+1,p;T), et on va prouver dans le théoréme 5.4 qu’il existe un ensemble fini S(A,n + 1) de
nombres premiers tel que le degré de M (A, n + 1,p;T) est constant pour p € S(A\,n + 1).

On construit maintenant une fonction L partielle L%(\,n + 1;5) de .% en considérant le produit
d’Euler,

LY\ n+ 1; s) = H M\ n+1,p;p %)L,
s¢S
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qui est a priori une fonction holomorphe sur le domaine {s € C | Re(s) > 1+ %} Mais la définition
ne nous donne pas plus d’information. Un cas particulier de cette construction, celui ot .% = Sym*Kl,
n’est rien d’autre que la fonction attachée a la k-iéme puissance symétrique des sommes de Kloosterman.
On peut se demander si la fonction L partielle L% (), n + 1;s) peut se prolonger en une fonction
méromorphe sur le plan complexe et satisfait & une équation fonctionnelle. Le théoréme de Fresan-
Sabbah-Yu répond aux cas des faisceaux Sym”*Kls. Voici le résultat principal de cette thése.

Théoréme A. Soit % dans l'un des deuxr ensembles suivants :
(1). {Sym*Klz | k < 9},
(2). {Sym*Kls, Sym?Kl, Sym*Kl,, Sym*Kls, KIV K12},

Alors la fonction L partielle L°(\,n + 1;5) de .F se prolonge en une fonction méromorphe sur C, et
peut étre complétée en une fonction A(\,n+ 1;) qui satisfait a ’équation fonctionnelle

AN n+1;s) =AM n+1L;n|A+2—s).

Conjectures de type Evans

Le deuxiéme cas du théoréme A est lié aux conjectures de type Evans de [YV15], qui prédit certaines
relations entre les moments de certains faisceaux de Kloosterman K1) 11 et les coefficients de Fourier
de certaines formes propres cuspidales normalisées. Lorsque . = Sykalg pour 5 < k < 8, on a les
exemples connus suivants.

e Lorsque k = 5, il existe une forme propre cuspidale normalisée f € S3(I'o(15), (ﬁ)) telle que
L 5
ag(p) = —?(mg(p) +1)
si pt 15, prouvée par Peters et al. [PTvdV92] et Livné [Liv95|.
e Lorsque k = 6, il existe une forme propre cuspidale normalisée f € S4(I'0(6)) telle que
L
ag(p) = —ﬁ(mz(p) +1)

si pt 6, prouvée par Helek et al. [HSvGvSO01].

e Lorsque k£ = 7, il existe une forme propre cuspidale normalisée f € S3(I'9(525),€¢), ott €f = (—1) -€5
et €5 est un caractére quartique avec conducteur 5, telle que

- L /p

2 1.2 7
ar(pVes(p) " " =~ (g5) (m3w) + 1)
si p > 7, conjecturée par Evans [EvalOa| et prouvée par Yun [YV15].

e Lorsque k = 8, il existe une forme propre cuspidale normalisée f € Sg(I'0(6)), telle que

w@:ny@@+u

si p 1 6, conjecturée par Evans [EvalOb] et prouvée par Yun et Vincent [YV15].



En particulier, on peut déterminer toutes ces formes modulaires en calculant suffisamment de valeurs
de moments. En raison des identités entre moments et coefficients de Fourier des formes modulaires, on
peut identifier les fonctions L de Sym”*Kly et les fonctions L des formes modulaires correspondantes.
Ainsi les fonctions L se prolongent en des fonctions méromorphes sur C et satisfont des équations
fonctionnelles.

Yun a prédit de nouveaux résultats de cette forme dans [YV15] sur les faisceaux de Kloosterman
pour les groupes réductifs. On prouvera ces conjectures de type Evans pour les faisceaux dans le
deuxiéme cas du théoréme A.

Théoréme B. Les fonctions L des faisceauz de Kloosterman Sym*Kls, Sym3Kly, Sym*Kly, Sym3Kls,

Kng’l) et Klgz’Q) proviennent de formes modulaires. On présente un résumé des informations sur ces
formes modulaires f € Si(T'o(N),€) dans le tableau suivant. Ici LMFDB [LMF'22] est la base de données
des fonctions L et des formes modulaires.

faisceaur Nk € étiquettes dans LMFDB
Sym*Kl; 14 4 1 14.4.a.b
Sym’Kly 15 3 (5%) 15.3.a.b.
Sym?Kl, 10 6 1 10.6.a.a.
Sym®Kls 33 4 1 33.4.a.b
K1Y 4 2 1 14.2.0.a
KIP? 6 4 1 6.4.0.a

En particulier, on a des égalités similaires entre moments des faisceaux de Kloosterman et les
coefficients de Fourier des formes modulaires dans les théorémes 5.22, 5.23, 5.26, 5.28, 5.30 et 5.31, qui
implique que les fonctions L de ces faisceaux sont les fonctions L des formes modulaires correspondantes.
Ainsi le théoréme B fournit une preuve pour le second cas du théoréme A.

Remarque. Un corollaire intéressant du théoréme ci-dessus est que pour p { 6, les moments des
faisceaux SymC®Kly et K1§2’2) sont les mémes, car ils sont égaux aux coefficients de Fourier de la forme

modulaire de I'étiquette 6.4.a.a.

Idée de la preuve

Représentations galoisiennes provenant de la géométrie

La stratégie pour prouver le théoréme A est de construire des familles de représentations galoisiennes
(d’origine géométrique) et de montrer que leurs fonctions L sont automorphes.

Dans [FSY22], inspirés par 'analogie entre les sommes de Kloosterman et les fonctions de Bessel,
les auteurs considérent la connexion de Kloosterman, aussi notée Kl,41, qui est une connexion sur
Gy.c de rang n + 1 correspondant a 'équation différentielle de Bessel (29,)" ™! — z = 0. Ils interprétent
la cohomologie de de Rham intermédiaire de la connexion Kl, 41, c’est-a-dire I'image du morphisme
d’oubli des supports

im(H}g o(Gpm,c, Sym"Kly41) = Hig (Gi,c, Sym Kl 11)),

comme la réalisation de de Rham d’un motif exponentiel sur Q au sens de |FJ]. Ce motif exponentiel
est classique, c’est-a-dire isomorphe a un motif de Nori Mfl 11 sur Q. Ce motif est isomorphe a
un sous-quotient de H?~1(K)(—1), oit K est I'hypersurface définie par le polynéme de Laurent!
gy = S (5 vig + 1/ 1=y 9i) dans le tore Gif.

1C’est la somme de Thom-Sebastiani itérée k fois du polynéme de Laurent g, 1 = Z?:l y; +1/ H;‘:l Y-
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En suivant la construction de [FSY22], pour chaque A, on construit dans la définition 2.1 un motif

M) 41 comme un sous-quotient de Hnw*l(lC)(—l) ot K est ’hypersurface définie par le polynéme de

Laurent gzﬂr‘ll = Zw (>_5=19ij + 1/ I1=1 vij) dans le tore G,

De maniére similaire au cas des faisceaux de Kloosterman pour les groupes réductifs, on peut attacher
aux paires (G, V) des connexions sur G,, ¢ de maniére fonctorielle, voir [FG09| et la remarque 2.7. Si
G = SL,41 et V est la représentation de plus haut poids A, la connection est également notée Klf‘Z 41- 51
on prend A = (k,0,...,0), on retrouve Sym*Kl,, ;.

Ensuite, pour chaque motif MQ 1

e sa réalisation de de Rham (M) )qr est isomorphe & la cohomologie de de Rham intermédiaire
de KIQH, c’est-a-dire,
(M), 1) Hig id (G, K1V, )
n+1)dR = Har mid\"#m,C) Blny1),

e ses réalisations (-adiques (Mj, ;)¢ sont des représentations (-adiques continues de Gal(Q/Q) avec
coeflicients dans @@y, isomorphes a des sous-quotients de H”|/\|_1(IC@7 Qp)(—1).

Le théoréme suivant nous indique que ces motifs MQ 41 conviennent a notre but.

Théoréme C. Soient p # { des nombres premiers, et (, une racine de l'unité primitive dans Q. Il
existe un ensemble fini S(A\,n+1) de nombres premiers tel que, sip ¢ S(A\,n+1), la réalisation ¢-adique
est non ramifiée et il existe un isomorphisme des représentations de Gal(Qp/Qp)

( n+1) [CP] et mld(Gm,F 7K1n+1)

Gréace au théoréme ci-dessus, on appelle Mf‘l 11 le motif attaché au faisceau Klf‘I +1- Cet ensemble
S(A\,n + 1) est le méme que celui que l'on a utilisé pour définir les fonctions L. Les réalisations
f-adiques des motifs M;\L 41 sont des familles de représentations galoisiennes, dont les fonctions L
partielles L ((Mﬁﬂ)e, s) sont les fonctions L des Klf; 11, car les facteurs locaux en p € S des premieres
coincident avec les facteurs locaux des secondes. Yun a également construit des motifs dans [YV15,
§3.2], dont les réalisations ¢-adiques ont les mémes fonctions L, d’une maniére différente en utilisant
des Grassmanniennes affines.

La preuve du théoréme C se déroule comme suit. Par le théoréme 2.17, on peut exprime la
cohomologie (-adique H., mid(GmF,» K1), ;) comme un sous-quotient de H’?lM*l(leFp, Qe(¢p))(—1), de

ét,c
la méme maniére qu’on exprime (M;), ;)¢ comme un sous-quotient de HZt‘ﬁ_l(KQp’ Qe(¢p))(—1). Via le
morphisme de spécialisation,

HAN T (g, Qo) (—1) > H Y (K, , Qo) (1)

on peut en déduire un morphisme

L: Hét,mid(Gm,]Fp?Kli\z—i—l) ( n+1) [CP]

On peut montrer que ¢ est une inclusion. De plus, on déduit on peut déduire des dimensions de la
source et du but de ¢ que ¢ est un isomorphisme tant que ’CFP est lisse en p. On prend alors S comme
un ensemble fini de nombres premiers contenant tous les nombre premiers p tels que ¢ ne soit pas un
isomorphisme.

On peut montrer que les représentations galoisiennes (Mﬁ +1)¢ sont au plus faiblement ramifiées aux
nombres premiers p € S lorsque p{ n+ 1 dans le théoréme 5.12. Le point clé est que la réduction mod p
de 'hypersurface K ne posséde que des singularités isolées, qui sont quadratiques ordinaires si p{n + 1.
On peut donc utiliser la formule de Picard-Lefschetz [DK73, Exp. XV., Thm. 3.4| pour Kz, — Spec(Zy).

Lorsque l'on traite des conjectures de type Evans, on a besoin de mieux comprendre 1’ensemble S.
Dans le cas de Sym”*Kl, 11, on peut décider si p & S lorsque p fn+ 1 en calculant les dimensions de la



source et du but de ¢. Grace aux travaux de Fu-Wan [FW05, FWO08|, on peut calculer la dimension de
Hflét,mid(Gm,va Sym*Kl, ;1) lorsque p { n + 1, voir Proposition 4.27. Quant a la dimension de (MfH_l)g,
puisqu’elle est indépendante de p, on peut choisir un nombre premier p suffisamment grand pour que la
dimension de (M¥_ ), soit égale & celle de H} (G, Sym*Kl,,41).

ét,mid

Remark. Dans ce qui précéde, on impose la condition p{n+ 1 car on n’a pas pu calculer la dimension

de Hi’t,mid(Gm,va Sym*Kl,;1). Lorsque n = 1, Yun a calculé la dimension de Hét,mid (- Sym*Kly)
[YV15, Cor. 4.3.5]. Suivant sa méthode, on donne une formule de dimension de HY, mid (G Fy SymFKl3)

dans le corollaire 4.40.

L’idée du calcul est d’utiliser la classification compléte des sous-groupes finis de SL3 pour trou-
ver le groupe de monodromie local a co de Kls, ce qui nous permet de calculer le conducteur de
Swan de Sym*Kls a oo, voir Théoréme 4.30. Par la formule de Grothendieck-Ogg-Shafarevich [Gro77,
X. Théoréme 7.1], la dimension de Hét,mid(Gm,Fg’ Sym*Kl3) est égale au conducteur de Swan de Sym*Kls.
En conséquence, le nombre premier p = 3 n’est pas dans S(k,3) si 31 k. On utilisera cette conséquence
dans la preuve de théoréme 5.12 et celle du théoréme 5.22.

La filtration de Hodge irréguliére

Pour appliquer le théoréme de Patrikis-Taylor & la famille {(M) 41)e}e, la seule condition non triviale
a vérifier est appelée régularité, c’est-a-dire que tous les nombres de Hodge des réalisations de de Rham
(M2 1)ar sont 0 ou 1. Contrairement au cas des motifs M5 dans [FSY22], ot la condition de régularité
est toujours satisfaite, on a les résultats suivants.

Théoréme D. (1). La réalisation de de Rham (M§)qr est lespace sous-jacent @ une structure de
Hodge pure de poids 2k + 1, dont les nombres de Hodge sont

- L%J —dy p=0.1,2,4 mod 6;
pp2ktlp

BB | 1~ d,y p=3,5mod 6,

ot dyy est1l si3 |k etp=k, et 0 sinon. En particulier, tous les nombres de Hodge de (ME)ar
sont 0 oul si k <9.

(2). Soit M l’'un des motifs M3, M3 et M§’2’1), La réalisation de de Rham (M)qr est Uespace sous-jacent
a une structure de Hodge pure, dont les nombres de Hodge sont soit O soit 1.

Remarque. 1. Le premier cas ayant des nombres de Hodge supérieurs a 1 que 1'on a trouvé est le
cas de M;)O, ol les nombres de Hodge sont donnés par

(RP217P)o o1 = (0,0,0,1,0,1,1,1,1,2,1,1,2,1,1,1,1,0,1,0,0,0).

Ceci explique pourquoi on ajoute la restriction £ < 9 dans I’énoncé du théoréme A. Bien que I'on
ne puisse pas appliquer le théoréme de Patrikis-Taylor lorsque k& > 10, il serait trés intéressant de
voir si certains des développements récents sur 'automorphie (potentielle), par exemple, un travail
de Boxer-Calegari-Gee-Pilloni [BCGP21], nous permettent d’établir de nouveaux cas au-dela de
cette limite sur les nombres de Hodge.

2. Les nombres de Hodge des réalisations de de Rham de M7 et M§2’2) sont également soit 0 soit 1, ce
qui peut étre déduit du théoréme 5.26 et du théoréme 5.31, voir remarque 5.27 et remarque 5.32.

En particulier, notre méthode de calcul des nombres de Hodge n’est pas valable pour le cas de

M3,

3. En utilisant les mémes méthodes de calcul des nombres de Hodge irréguliers, on peut trouver une
alternative au travail de Sabbah-Yu [SY19] pour calculer les nombres de Hodge irréguliers des
connexions hypergéométriques [QX].
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Pour prouver le théoréme D, on suit les méthodes de [FSY22].

e En utilisant I'isomorphisme

(Milﬂ)dR = HcliR,mid(va Klﬁﬂ)a

la réalisation de de Rham est I’espace sous-jacent & une structure de Hodge mixte exponentielle,
défini par Kontsevich et Soibelman [KS11], désignée par H! . (G,,, K1), ). En étendant une idée
de Deligne dans [Del07], Sabbah a associé une filtration de Hodge irréguliére a chaque structure
de Hodge mixte exponentielle dans [Sab10].

e Puisque le motif M%‘ 41 est un motif de Nori, la réalisation de de Rham est également I’espace
sous-jacent a une structure de Hodge classique. Par [FSY22, A.13], les deux filtrations de Hodge
sur (Mf‘L +1)dr coincident. Par conséquent, pour prouver le théoréme D, il suffit de calculer la
filtration de Hodge irréguliére sur HéR,mid(Gm7 KL, ).

e On plonge la cohomologie de Rham HéRmid (G, K12 +1) dans la cohomologie de Rham tordue

Hzlé\ H'1(((321|M+1, fin)), de maniére compatible a la filtration de Hodge irréguliere. Ici

Al

- z
f'A—Z@“’”m)-

=1

e On peut obtenir une base {w} de la cohomologie de Rham Hl . .4(Gm, Kl ;) pour les cas du
théoréme D, voir le théoréme 3.13 et la section 3.4.1.

e Si pged(|Al,n + 1) = 1 (dans le théoréme D, seul les M3* ne satisfont pas cette condition),
fin est non dégénéré par rapport au polyédre de Newton A(f)y), voir la section 1.3. Par les
travaux d’ Adolphson-Sperber [AS97], Esnault-Sabbah-Yu [ESY17], et Yu [Yul4], la filtration sur
la cohomologie de de Rham tordue a une interprétation géométrique en termes de ce que 'on
appelle la filtration du polyédre de Newton, qui peut étre calculée en utilisant la combinatoire des
polyédres. Il s’ensuit que les éléments w dans la base se trouvent dans

FY Hig i (G, KL )

pour certains entiers p(w) dépendant de w. Grace a nos choix particuliers de bases, on conclut par

la symétrie de Hodge que chaque w a une classe non nulle dans gr%(w)H(liR,mid(Gm, K1) 41)- Par
conséquent, les éléments des bases sont adaptés a la filtration de Hodge.

e Cependant, si pged(|A[,n + 1) > 1, comme dans le cas ou k est pair dans [FSY22, SY21], on a
besoin d’informations supplémentaires pour terminer le calcul, voir les sections 3.3.1, 3.3.2 et
3.3.5.

Remarque. Par rapport a la preuve de [FSY22, Th. 1.8], la difficulté principale dans celle du théoréme D
est I’étape de calcul des bases. Ceci est dt & la complexité des actions de monodromie locale des
connexions de Kloosterman Kl;\L 11 en 0. Par exemple, la partie nilpotente de I’action de monodromie
locale en 0 de Sym”*Kly n’a qu’un seul bloc de Jordan pour chaque %, mais celles de Sym*Kls, Sym3Kly,
Sym*Kly, Sym>®Kls, Klg’l) ont plusieurs blocs de Jordan (de tailles différentes). Ce phénoméne cause
les difficultés principales pour trouver des bases.



Preuve des conjectures de type Evans

Soit M un motif attaché a I'un des faisceaux du théoréme B. Pour prouver les conjectures de type
Evans, il suffit de montrer que My ~ p,(h) pour une forme propre de Hecke cuspidale normalisée
f et un nombre entier h. Ici, ps, est une représentation galoisienne de dimension deux de Gal(Q/Q)
attachée & f, construite par les travaux de Eichler-Shimura pour k = 2, Deligne pour k > 2 [Del71], et
Deligne-Serre [DS74] pour k = 1.

L’argument de la preuve est di originellement & Serre [Ser87, §4.8|, et on peut trouver des arguments
similaires dans [Kis07, Th. 1.4.3] et [YV15, Th.4.6.1]. On esquisse une preuve dans le théoréme 1.17 du
chapitre 1. L’ingrédient clé de la preuve est la conjecture de modularité de Serre [Ser87] (prouvée dans
[KW09a] et [KW09D]).

Pour appliquer les théorémes ci-dessus, on doit vérifier que My est impair, c¢’est-a-dire que la valeur
du déterminant de la conjugaison complexe est —1, ce qui est garanti par le théoréme ci-dessous et le
théoréme de densité de Chebotarev.

Théoréme E. Soit M, l'un des motifs apparaissent dans le Théoréme A.

(1). Lorsque n|\| est pair et p & SU{L}, on a

A

n|A[+1 im
det((MQ_,_l)g)(Frobp):p 2 dimMoy,

(2). Lorsque p & {2,3,5}U¥, on a

det((M})e) (Froby) = (£ p'*.

La premiére partie du théoréme ci-dessus est facile & prouver, car la représentation (MQ 41)e est
symplectique par la proposition 2.3. En revanche, la deuxiéme partie nécessite plus d’efforts. On esquisse
la preuve comme suit.

e Grace au théoréme C, les valeurs des déterminants des représentations galoisiennes de Frob,
lorsque p & S U {¢} sont les facteurs e du faisceau de Kloosterman Sym?3Kly, c’est-a-dire,
2 ( 1)i+1
e(Pg, . jSym®Kly) := | [ det(—Froby | Hy; (Pg , j.Sym®Kly)) :
i=0
ot j: G,, — P! est I'inclusion.

e On calcule le facteur € en utilisant un argument similaire & celui de [FW10| pour les faisceaux
Sym*Kly. L'idée est d'utiliser la formule du produit de Laumon [Lau87] pour obtenir

(B, Sym™Kla) =p'® T e(Pley s Sym™Klaley, . dtley ).
z€[Pg |

ol }P’%z) est la localisation stricte de P! en x, dt est une forme différentielle méromorphe sur P!, et

5([?%36), Sym3Kl4|P% ),dthp% )) sont des facteurs epsilon locaux, définis dans [Del73, 4.1].

e On peut calculer les facteurs epsilon locaux par les axiomes et les propriétés des facteurs epsilon
locaux [Lau87, (3.1.3.2), (3.1.5.4), (3.1.5.5)&(3.1.5.6)|, voir la section 1.4.4. On a donc besoin des
structures locales du faisceau Sym®Kly en 0 et en oo, qui peuvent étre déduites de celles de Kly.
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Katz a déterminé la structure locale de Kly en 0 dans [Kat88, 7.0,7]. Cependant, les structures
locales de Klg en oo ne sont déterminées qu’aprés un changement de base vers une certaine
extension finie de F), par Fu et Wan [FWO05], car la racine de I'unité {4 n’est pas toujours dans
[F,,. Notre solution s’inspire de la méthode de [F'W10] pour la structure local du faisceau Kl en
00, qui utilise le principe de la phase stationnaire [Lau87, Proposition 2.3.2.1], c’est-a-dire que la
structure locale de la transformée de Deligne-Fourier d'un faisceau . sur A! 4 oo est déterminée
par les structures locales de .% en ses points de non-lissités et en oo.

Pour notre propos, il suffit de caractériser les structures locales du faisceau R" (g, 1)1Q; aux
valeurs critiques de gn41, 00 gnt1 = 2 iy ¥i + 1/ [[yi. Lorsque p { n+ 1, tous les points critiques
de g sont quadratiques ordinaires. On utiliser la formule de Picard-Lefschetz |[DK73, Exp. XV.,
Th. 3.4] pour montrer que R"~! g!@ghp(lx) est une extension d’un faisceau localement constant et

de la somme directe de plusieurs faisceaux de rang 1 supportés au point générique de ]P’%gg).

Aprés avoir montré la modularité, on connait ’existence des formes modulaires. Il ne reste plus
qu’a déterminer les formes modulaires de maniére aussi explicite que possible. On calcule les traces de
Frobenius de M, pour un nombre suffisant de nombres premiers (les coefficients de Fourier de la forme
modulaire correspondante) en utilisant Sagemath [The22|. Ensuite, on utilise les informations de la
géométrie (poids, conducteur, déterminant) et les calculs des traces de Frobenius pour rechercher la
forme modulaire dans la base de données LMFDB.

Organisation de la thése

Dans le chapitre 1, nous rappelons quelques résultats qui seront utilisés dans les preuves des
théorémes principales.

Dans le chapitre 2, on construit les motifs attachés aux faisceaux de Kloosterman et étudie leurs
réalisations. On définit les motifs dans la section 2.1. Puis, dans la section 2.2, on montre que les
réalisations de de Rham de tels motifs sont les espaces sous-jacents & des structures de Hodge
mixtes exponentielles, isomorphes & des structures de Hodge classiques. Dans la section 2.3, on
résume les propriétés d’autres réalisations en caractéristique p > 0.

Dans le chapitre 3, on prouve théoréme D. Dans la section 3.1, on étudie la structure formelle locale
des connexions Sym*Kls en 0 et en oo et donne la formule pour la dimension de la cohomologie
de de Rham intermédiaire. Ensuite, dans la section 3.2, on détermine une base de classes de
cohomologie de la réalisation de de Rham de (M5)4qr dans le théoréme 3.13. Ensuite, dans la
section 3.3, on prouve le théoréme 3.33, qui implique la premiére partie du théoréme D. Enfin,
dans la section 3.4, les cas de la deuxiéme partie du théoréme D sont prouvés au cas par cas.

Dans le chapitre 4, on étudie les propriétés des faisceaux de Kloosterman (principalement celles qui
apparaissent dans le théoréme A), par exemple, les structures locales a 0 et & oo dans la section 4.2
et la section 4.3. Dans la section 4.4, on donne la formule de dimension de la cohomologie ¢-adique
intermédiaire de tels faisceaux lorsque ged(p,n + 1) = 1, et la formule pour la dimension de
cohomologie f-adic intermédiaire de Sym*Kls lorsque p = 3. Dans la section 4.5, on prouve le
théoréeme E.

Dans le chapitre 5, on étudie les rafimications des representations galoisiennes (M;\L +1)¢ dans la
section 5.1 et on prouve le théoréme C. Dans la section 5.2, on prouve la premiére partie du
théoréme A. Dans la section 5.3, on prouve le théoréme B. En conséquence, le théoréme A est
prouvée.

Dans 'appendice A, on explique le calcul des moments des faisceaux de Kloosterman et en inclut
le code de Sagemath [The22].
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The theory of L-functions plays a crucial role in number theory. Generally speaking, an L-function
is a Dirichlet series L(s) = ) - %= converging for Re(s) big enough, extending to a meromorphic
function on C, satisfying a functional equation, and having an Euler product. The most famous example
is the Riemann zeta function ((s) = Y, -, a meromorphic function on C (with a simple pole at

s = 1) [Rie59] that satisfies a functional equation

50 () ¢ls) =70 (52 )¢ - 9),

predicted by Euler in 1748. Moreover, it has the Euler product ((s) = Hp ﬁ. Since L-functions are
analytic objects, they provide us with a way to study arithmetic objects using tools from analysis. For
example, the fact that ((s) has a simple pole implies that there are infinitely many prime numbers, and
the nonvanishing of the values of Dirichlet L-functions at 1 implies the Dirichlet’s theorem on arithmetic
progressions. Besides, the special values at integers of L-functions could be related to periods [KZ01,
§1.1].

One can associate L-functions with certain exponential sums. The Kloosterman sums are exponential
sums over finite fields, defined for each power of prime numbers ¢ = p” and each a € Iy, by

Kla(a;q) :== Z exp (27Ti/p - Trg, /¥, (m + g)) ,

z€Fy

where Trg_/p, is the trace from Fy to Fy,. If a # 0, Weil showed in [WeidS] that Kla(a; q) = —(aq+08,) for
some algebraic numbers y, B, of norm p'/2. In particular, one gets an upper bound |Kly(a, q)| < 2p'/2.
For each k > 1, the k-th symmetric power moments of Kloosterman sums are integers of the form
mk(q) = _ack, Zf:o ol ¥~ In [Brol6, Brol7], the L-functions Ly (s) attached to the k-th symmetric
power moments of Kloosterman sums are defined as Euler products, where the local factors at p are

made from the generating series
k(T
m
eXP( E 2?(}) ) -TT>.

r>1

These L-functions are a priori defined on the domain {s € C | Re(s) > 1 + %} by construction
and the work of Fu-Wan [FWO05|. Broadhurst and Roberts conjectured that these L-functions extend
meromorphically to C, and they predicted the precise formulas of the functional equations of Lg(s).

It is not always easy to show that an L-function has meromorphic continuation to the complex plane.
For example, one can show that the L-functions of modular forms are holomorphic functions on C
directly by tools from analysis, similar to the case of the Riemann zeta function. However, to show the
same things for L-functions of elliptic curves, the only know way is to identify them with L-functions
of modular forms. The link between two kinds of L-functions is established by the modularity theorem
(Taniyama-Shimura Conjecture) [BCDTO01]|, whose weaker form led to the proof of Fermat’s last theorem
by Wiles [Wil95].

In [FSY22], Fresan, Sabbah, and Yu constructed a family of Galois representations of geometric
origin, whose L-functions are exactly L (s). Then, they used the Langlands philosophy to prove the

11
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conjecture of Broadhurst and Roberts, by showing that the L-functions of Galois representations are
equal to automorphic L-functions via a theorem of Patrikis-Taylor [PT15|. To summarize, they proved
the following theorem.

Theorem (Fresan-Sabbah-Yu). The L-function Li(s) can be extended meromorphically to the complex
plane. And we can complete Li(s) to a complete L-function Ag(s) such that

Ak(s) = EkAk(k +2— S),
where €, € {£1} and € is 1 if k is odd.

In a sequel paper of Fresan, Sabbah, and Yu [FSY20a|, they also explain some relations between
special values of the L-functions at critical integers and certain determinants of Bessel moments

o0 d
/ To(2)? Ko (2)F220 <2,
0

z

where Iy(z) and Ky(z) are the modified Bessel functions of the first and the second kind (solutions of
(20,)? — 22 =0).

This thesis aims to generalize the above theorem to L-functions attached to moments (not necessarily
symmetric power moments) of Kloosterman sums of many variables.

Main results

The L-functions of Kloosterman sheaves

The Kloosterman sums in n variables are the exponential sums over finite fields defined, for each
power of prime numbers ¢ = p” and each a € F, by

. a
Kl 1 (a; q) := Z exp <2m/p - Try, /m, <J:1 +.. 4z, + M))

x
T1,...,2n€FG

They are the finite field analogs of the Bessel functions

z dxq dx,
exp @1+ tag+——— ) L
(S1)n Tl Tp I In
satisfying the Bessel differential equations (20,)"T! — z = 0.
Fixing a prime number ¢ # p and an embedding ¢: Q; — C, Deligne constructed in [Del77,
Sommes. Trig. Thm. 7.8] some lisse f-adic sheaves Kl 1 of rank n+ 1 over G,,, r, = Alqu\{O}’ called the

Kloosterman sheaves, such that for every a € Fy = Gy, (Fq) and every geometric point a localized at

a, the complex norms of eigenvalues of Frob, are q"/?

Lo TI“(FI‘Obq, (Kln—i-l)c‘u) = (_1)nK1n+1(a§ Q)'

via the embedding ¢, and we have

As a direct consequence, we have the upper bound [Kl,41(a; q)| < (n + 1)¢™/2.

Viewing lisse (-adic sheaves Kl,, 11 on Gy, as continuous f-adic representations pxy,,, of the étale
fundamental group Wft(Gm,Fq% the arithmetic (resp. geometric) monodromy groups are defined as the
Zariski closures of the images of 7{'(Gy,, r,) (resp. wft(Gm,Fq)) in GLy41(Qy) under pky,,,,. In [Kat8g],
Katz showed that the arithmetic monodromy groups and the geometric monodromy groups of Kl,, 1
coincide, and are equal to groups

SPp+1 n+1 even,

SLpy1 p(n+1) odd,

SOpt1 p=2, n+1odd and n # 6,
Gy p=2,n=6.
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The appearance of the exceptional group Gy seems quite surprising. Katz raised the question [Kat90]
that if all semisimple groups appear as monodromy groups of lisse ¢-adic sheaves.

In [HNY13], Heinloth, Ngo, and Yun constructed Kloosterman sheaves for reductive groups in a
uniform way using methods from the geometric Langlands program. More precisely, we can attach to
each pair (G, V), consisting of a split reductive group G and a finite-dimensional representation V' of
G, a lisse f-adic sheaf Klg on Gy, functorially. They found that the exceptional groups E7, Eg, Ga, Fy
appear among the monodromy groups of Kloosterman sheaves for reductive groups. As a special case,
we recover the classical Kloosterman sheaf Kln+1(—%) by taking G = SL,+1 and V to be the standard
representation of SLj 1.

We will mainly be interested in the case that G = SLyy; and V = V), is the finite-dimensional
representation of the highest weight A = (A1,...,\,) of SL,4+1. For a weight A\, we denote by
Al =", \i, and by K1), | the sheaf Klgﬁn+l(—”7k) for simplicity. If V' is the k-th symmetric power
of the standard representation, i.e., A = (k,0,...,0) (we identify A and k in this case), the sheaf Klf‘LH
is the k-th symmetric power of Kl, 1, denoted by Sym*Kl,, ;.

For each Kloosterman sheaf .% = K1\ 41, following the construction in [FSY22], we introduce an
L-function L(s) as an Euler product, where the local factors are constructed using the moments of
K1), |, i.e., the integers of the form

;\L+1(q Z Tr(Frobg, (K 1n+1) )-

aEFX

The generating series Z(A\,n + 1,p; T) of m),,;(q) is defined as exp(d_,>1 mp1(p")/r - T"). By the
Grothendieck trace formula [Del77, Rapport. Thm. 3.1|, we have

2
Z(\n+1,p;T) = [ [ det(1 — Frob,T' | H, (G
=0

KA

n+1))(71)i+1

m,Fp» )
which is a rational function. However, the complex norms of roots and poles of Z(\,n + 1,p;T) ranges
within the set {p~%2 | 0 <i < n|A|}. So Z(A\,n + 1,p;T) is not an ideal candidate for the local factors
of the Euler product. Similar to the work of Fu-Wan [FW05, FW08] for sheaves Sym*Kl, |1, we can
define

M()‘7 n -+ 11pa ) det(l - FrOb T | Het mld(Gm,]Fp? Klv)\z—i—l))?

where
Het mld(Gm,Fp K1n+1) im(Hét,c(G K1n+1) - Hét(Gm,Fp K1n+1))

is the middle ¢-adic cohomology. The polynomial M (A, n+1,p;T) is, in fact, a factor of Z(A\,n+1,p;T),
and we will prove in Theorem 5.4 that there exists a finite set S(A\, n+ 1) of primes such that the degree
of M(A\,;n+1,p;T) is constant for p ¢ S. For simplicity, we denote by S the set S(\,n + 1) if there is
no confusion.

We now build a partial L-function LS (A\,n+ 1;s) of .7, by considering the Euler product

m,Fps

LY\ n+1;s): HM)\n—i-lpps)_l,
SES

which is a priori a holomorphic function on the domain {s € C | Re(s) > 1+ n|>\\+1

}. But we do not know
more information from the definition. In particular, when .# = Sym*Kls, the function L° (An+1;s)
is nothing but the function Lf(/\, n + 1; s) attached to k-th symmetric power of Kloosterman sum.
One can ask if the partial L-function L°(X,n + 1;5) can be extended meromorphically to the
complex plane and satisfies a functional equation. The Theorem of Fresan-Sabbah-Yu answers the cases

of Sym*Kly. Here is the main result of this thesis.
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Theorem A. Let .Z be in one of the following two set:
(1). {Sym*Kl | k < 9},
(2). {Sym*Kls, Sym?Kly, Sym*Kly, Sym®Kl;, K1Y K13},

Then the partial L-function L°(\,n + 1;5) of F can be extended meromorphically to the complex plane,
and can be completed to a function A(\,n + 1;s) which satisfies a functional equation

AN n+1;s) =AM n+ L;n|A+2—s).

Conjectures of Evans type

Theorem A.2 is related to the conjectures of Evans type from [YV15], which predicts some relations
between moments of some Kloosterman sheaves K1 11 and Fourier coefficients of some normalized
Hecke eigenforms. When .% = Sym*Kl, for 5 < k < 8, we have the following known examples.

e When k = 5, there exists a normalized cuspidal Hecke eigenform f € S3 (F0(15), (ﬁ)) such that

af(p) = ——(m3(p) + 1)

if pt 15 proved by Peters et al. [PTvdV92] and Livné [Liv95].

e When k = 6, there exists a normalized cuspidal Heck eigenform f € S4(I'¢(6)) such that

w@zny@@+w

if pt 6, proved by Helek et al. [HSvGvSO1].

e When k = 7, there exists a normalized cuspidal Hecke eigenform f € S3(I'9(525),€s), where
€f = (ﬁ) - €5 and €5 is a quartic character with conductor 5, such that

0o (p) 7 =1 = =5 (155 (i) + 1)

for p > 7, conjectured by Evans [EvalOa| and proved by Yun [YV15].
e When k = 8, there exists a normalized cuspidal Hecke eigenform f € Sg(I'o(6)), such that

w@:ny@@+u

for p 1 6, conjectured by Evans [EvalOb| and proved by Yun and Vincent [YV15].

In particular, we can determine all these modular forms by computing enough values of moments.
Because of the identities between moments and Fourier coefficients of modular forms, we can identify L-
functions of Sym*Kl, and L-functions of corresponding modular forms. So the L-functions of Sym*Kl,
for 5 < k < 8 have meromorphic continuations to C and satisfy functional equations.

Yun predicted some new results of this form in [Y'V15] for Kloosterman sheaves for reductive groups.
We will prove these conjectures of Evans type for the sheaves listed in the second case of Theorem A.

Theorem B. The L-functions of the Kloosterman sheaves Sym*Klz, Sym®Kly, Sym*Kly,Sym3Kls,

KléQ’l) and Kng?) arise from modular forms. We summarize the information of these modular forms
f € Sp(To(N),¢€) in the following table. Here LMFDB [LMF22] is the database of L-functions and
modular forms.



15

Sheaves N k € labels in LMFDB
Sym?*Kls; 14 4 1 14.4.a.b
Sym*Kly 15 3 (%) 15.3.a.b.
Sym*Kl, 10 6 1 10.6.a.a.
Sym®Kls; 33 4 1 33.4.a.b
K1Y 4 2 1 1/.2.0.a
Kk 6 41 6.4.0.a

In particular, we have similar equalities between moments of Kloosterman sheaves and Fourier
coefficients of modular forms in Theorems 5.22, 5.23, 5.26, 5.28, 5.30 and 5.31, which implies that
the L-functions of these sheaves are L-functions of the corresponding modular forms. So Theorem B
provides a proof for Theorem A.2.

Remark. One interesting corollary of the above theorem is that for p t 6, the moments of the sheaves
Sym®Kl, and K1§2’2) are the same, because they are both equal to the Fourier coefficient of the modular

form of label 6.4.a.a.

Idea of the proof

As explained before, the strategy to prove Theorem A is to construct families of Galois representations
(of geometric origins), and show that their L-functions are automorphic.

Galois representations arising from geometry

In [FSY22], inspired by the analogy between Kloosterman sums and Bessel functions, the authors
consider the Kloosterman connection, also denoted by Kl,, 1, which is the rank n + 1 connection on
Gum.c corresponding to the Bessel differential equation (20,)"*! — 2z = 0. They interpret the middle de
Rham cohomology of the connection Sym*Kl, 1, i.e., image of the forget supports morphism from the
cohomology with compact support to the usual cohomology

im(HtliR,c(Gm,(C) Sykaln-‘rl) — H(ljR(Gmﬂj, Syka1n+1)),

as the de Rham realization of an exponential motive over Q in the sense of [F'J|. This exponential
motive is classical, i.e., isomorphic to a Nori motive M,]i 41 over Q. This motive is isomorphic to
a subquotient of H?~1(IC)(—1), where K is the hypersurface defined by the Laurent polynomial®
Initr = ZL(Z}L yij +1/I1j=1vi;) in the torus Gy

Following the construction in [FSY22], for each A, we define in definition 2.1 a motive M, ; as

a subquotient of HZI/\l_l(IC)(—l), where K is the hypersurface defined by the Laurent polynomial

g = S (0 wig + 1/ Ty i) inside the torus G,

Similar to the case of Kloosterman sheaves for reductive groups, one can attach connections on
Gm,c to pairs (G, V) consisting of a simple group G and a finite dimensional representation V' of G in
a functorial way, see [FG09] and Remark 2.7. If G = SL,,41 and V is the representation of the highest
weight A, the connection is also denoted by Kl;\L 41- If we take A = (k,0,...,0), we recover SykalnH.

Then, for each motive M),
e its de Rham realization (M ;)4r is isomorphic to the middle de Rham cohomology of KL, ;.
e its (-adic realizations (M, ;) are continuous (-adic representations of Gal(Q/Q) with coefficients

in Qy, isomorphic to subquotients of Hnw*l(lC@, Qe)(—1).

ét,c

2This is the k-th iterated Thom-Sebastiani sum of the Laurent polynomial g, = Z;”:l y; +1/ H?:1 Y-
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The following theorem tells us that these motives M)\ satisfy our need.

Theorem C. Let p # { be two prime numbers, and ¢, be a primitive p-th root of unity in Qq. There
exists a finite set S(A\,n + 1) of primes such that, if p & S(A\,n + 1), the (-adic realization (M} ), is
unramified, and there is an isomorphism of Gal(Q,/Qy)-representations

( n+1) [Cp] et mld(Gm,F 7K1n+1)

Thanks to Theorem C, we also call M, the motive attached to the sheaf K1\ +1- Here the set
S(A,n+ 1) is the same as the set that we used to define the L-functions. The f-adic realizations of the
motives M2 11 form families of Galois representations, whose partial L-functions Lo ((Mf{_,_l)e, S) are the
L-functions L¥(\,n + 1;s) of K1, |, because the local factors at p & S of L* (M), 1)e, s) agree with
local factors of L°(\,n 4 1;s). Yun also constructed motives in [YV15, §3.2], whose f-adic realizations
have the same L-functions, differently using affine Grassmannians.

The proof of Theorem C goes as follows. By Theorem 2.17, we can express the f-adic cohomology
of Kloosterman sheaves Hétymid(((}mjp,Kl;\LH) as a subquotient of Hm/\‘fl(lCFp,Qg(Cp))(—l), in the

ét,c
same way as expressing (M}, ;), as a subquotient of HZJf;l_l(lC@p, Qe(¢p))(—1). Via the specialization
morphism,
H T (K, @o)(—1) = B (g, Q)(-1)
we can derive a morphism
L: Het mld(Gm,IFp Kln—i—l) ( n+1) [Cp]

We can show that ¢ is an inclusion. Moreover, we can infer from the dimensions of the source and the
target of ¢ that ¢ is an isomorphism as long as ICpr is smooth at p. We then take S to be a finite set of
primes containing all primes p such that ¢ fails to be an isomorphism.

We can show that the Galois representation (M%‘ +1)¢ are at most tamely ramified at primes p € S
when p{n + 1 in Theorem 5.12. The key point is that the mod p reduction of the hypersurface I only
has isolated singularities, which are ordinary quadratic if p t n 4+ 1. So we can use the Picard-Lefschetz
formula [DK73, Exp. XV., Thm. 3.4] to Kz, — Spec(Z,).

When we deal with conjectures of Evans type, we need to know the set S better. In the cases
of Sym*Kl, 41, we can decide if p ¢ S when p f n+ 1 by computing the dimensions of both the
source and the target of ¢. By the work of Fu-Wan [FW05, FW08|, we can compute the dimension
of Hit mid (G F, ,Sym*Kl,,, 1) when p{n -+ 1, see Proposition 4.27. As for the dimension of (M n+1)g,

since it is independent of p, we can choose a prime p large enough such that the dimension of (M; +1) ;
equals that of Het mid(Gm.F,» Sym*Kl,,,1).

Remark. In the above, we impose the condition p { n + 1 because we could not compute the dimension
of HY, . (G, Fyo Sym*Kl,,;1). When n = 1, Yun computed the dimension of H., . .(G Sym*Kly)

ét,mid
[YV15, Cor.4.3.5]. Following his method, we give a dimension formula of H,  +1(G,, 7, Sym*Kl3) in
Corollary 4.40.

The idea of the computation is to use the complete classification of finite subgroups of SL3 to find
the local monodromy group at oo of Kls, enabling us to compute the Swan conductor of Sym*Kls3 at oo,
see Theorem 4.30. By the Grothendieck-Ogg-Shafarevich formula [Gro77, X. Thm. 7.1], the dimension of
Hét Imd((@rmﬁ37 Sykalg) is equal to the Swan conductor Kls. As a consequence, the prime p = 3 is not

in S(k: 3) if 31 k. We will use this consequence in the proof of Theorem 5.12 and that of Theorem 5.22.

ét,mid m,Fg?

Irregular Hodge filtration

To apply the theorem of Patrikis-Taylor to the family {(M; +1) ¢}e, the only nontrivial condition
to check is called regularity, i.e., all Hodge numbers of the de Rham realizations (M%‘ +1)dr are 0 or 1.
Different from the case of motives M& in [FSY22|, where the Hodge numbers of the de Rham realizations
are always 0 or 1, we have the following results.
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Theorem D. (1). The de Rham realization (M%)qr underlies a pure Hodge structure of weight 2k + 1,
whose Hodge numbers are

L%J —dyy, p=0,1,2,4 mod 6;

pP2k+1-p _

L%J +1—dpr p=3,5mod 6,

where dyy is 1 if 3 | k and p =k, and 0 otherwise. In particular, all Hodge numbers of (M§)ar
are 0 or 1 if k < 9.

(2). Let M be one of the motives M3, M3 and M:(gZ’l). The de Rham realization (M)qr underlies a pure
Hodge structure, whose Hodge numbers are either 0 or 1.

Remark. 1. The first case having Hodge numbers bigger than 1 that we found is the case of M2,
where the Hodge numbers are given by

(RP217P)o o1 = (0,0,0,1,0,1,1,1,1,2,1,1,2,1,1,1,1,0,1,0,0,0).

This explains why we add the restriction k < 9 in the statement of Theorem A. Although we
cannot apply the theorem of Patrikis-Taylor when k£ > 10, it would be very interesting to see
if some of the recent developments on (potential) automorphy, for example, a work of Boxer-
Calegari-Gee-Pilloni [BCGP21], allow us to establish some new cases beyond this bound on Hodge
numbers.

2. The Hodge numbers of the de Rham realizations of M} and M§2’2) are also either 0 or 1, which

can be deduced from Theorem 5.26 and 5.31, see Remark 5.27 and Remark 5.32. In particular,

our methods for computing Hodge numbers is not valid for the case of M§2’2).

3. Using the same methods of computing irregular Hodge numbers, we can find an alternative way
to the work of Sabbah-Yu [SY19] to calculate the irregular Hodge numbers of hypergeometric
connections in [QX].

To prove Theorem D, we use the irregular Hodge filtration, following the methods in [FSY22].

e Using the isomorphism
A A
(M7 11)dr =~ H}iR,mid(va Kl 41),

the de Rham realization underlies an exponential mized Hodge structure, as defined by Kontsevich
and Soibelman [KS11], denoted by HL . (G, Kl ). By extending an idea of Deligne in [Del07],
Sabbah associated an irregular Hodge filtration to each exponential mixed Hodge structure in
[Sab10].

e Since the motive M) 41 is a Nori motive, the de Rham realization also underlies a classical Hodge
structure. By [FSY22, A.13], the two Hodge filtration on (Mj, ;)ar coincide. Therefore, to prove
Theorem D, it suffices to compute the irregular Hodge filtration on Hig . .4(Gm, KL, ;).

e Then we embed the de Rham cohomology H(liR,mid(Gm’ Kl),,) into the twisted de Rham coho-

mology HZ'I?‘+1(G21|/\‘+1, f|>\|), compatible with the irregular Hodge filtration. Here
Al .
o= (L )
i=1 Sj=1 J

o We can get a basis {w} of the de Rham cohomology Hlp . .4(Gm, K1), ;) for the cases in Theorem D,
see Theorem 3.13 and Section 3.4.1.
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e If ged(|A|,n+1) =1 (in Theorem D only these motives M3* do not satisfy this condition), f|
is non-degenerate with respect to the Newton polytope A(fw), see Section 1.3. By the work of
Adolphson-Sperber [AS97], Esnault-Sabbah-Yu [ESY17], and Yu [Yul4], the filtration on twisted
de Rham cohomology has a geometric interpretation in terms of the so-called Newton polyhedron
filtration, which can be computed using polyhedral combinatorics. It follows that the elements w
in the basis lie in

Fp(w)HéR,mid (G, KIQ-H)

for some integers p(w) depending on w. Thanks to our particular choices of bases, we conclude by

the Hodge symmetry that each w has a nonzero class in gr]}(w)HéR,mid (G, K1 4+1). Hence, the
elements of the bases are adapted to the Hodge filtration.

e If ged(|A|,n + 1) > 1, f| is not non-degenerate with respect to the Newton polytope A(f)y).
Similar to the case that k is even in [FSY22, SY21|, we need extra information to finish the
calculation, see Sections 3.3.1, 3.3.2 et 3.3.5.

Remark. Compared to the proof of [FSY22, Thm. 1.8], the main difficulties in that of Theorem D are
to compute bases, given in Theorem 3.13 and Section 3.4.1. The reason is that the local monodromy
actions of Kloosterman connections K1 11 at 0 become more complicated as soon as the size of n and
|A| grows. For example, the nilpotent part of the local monodromy action at 0 of Sym*Kl, only has a
single Jordan block for each k. However, those of Sym”*Kls, Sym3Kly, Sym*Kl, Sym3Kls, Kng’l) have
several Jordan blocks (of different sizes).

Proof of conjectures of Evans type

Let M be a motive attached to one of the sheaves in Theorem B. To prove the claimed conjectures
of Evans type, it suffices to show that M, ~ p,(h) for some normalized cuspidal Hecke eigenform f
and some integer h. Here ps, is a two-dimensional Galois representation of Gal(Q/Q) attached to f,
constructed by the work of Eichler-Shimura for k£ = 2, Deligne for £ > 2 [Del71], and Deligne-Serre
[DS74] for k = 1.

The argument is originally due to Serre [Ser87, §4.8], and one can find similar arguments in [Kis07,
Thm.1.4.3] and [YV15, Thm.4.6.1]. We sketch a proof in Theorem 1.17 in Chapter 1. The key
ingredient in the proof is Serre’s modularity conjecture [Ser87] (proved in [KW09a] and [KW09b]).

To apply the above theorems, we need to check that My is odd, i.e. the value of the determinant at
the complex conjugation is —1, guaranteed by the Theorem below and Chebotarev’s density theorem.

Theorem E. Let Mf‘LH be one of the motives in Theorem A.

(1). When n|A| is even and p ¢ S U {¢}, we have

det((M2,,),) (Frob,) = p™ 3 dimM.,

(2). When p & {2,3,5} UL, we have

det((M3)) (Frob,) = ({5 ) ™"

The first part of the above Theorem is easy to prove, because the representation (Mﬁ 41)e is
symplectic by Proposition 2.3. On the contrary, the second part needs more efforts. We sketch the
proof as follows.
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e By our construction, the values of the determinants of the Galois representations at Frob, when
p & SU{} are the e-factors of the Kloosterman sheaf Sym3Kly, i.e.,

2 .
(P ,7.Sym* K1) = [ ] det (~Froby | Hi, (B ,7.Sym*K1,)) """,
=0

where j: G,, < P! is the inclusion.

e We compute the e-factors using a similar argument as that in [FW10] for sheaves Sym*Kly. The
idea is to use Laumon’s product formula [Lau87] to get

e(Pk,, o Sym’Kla) =p® ] e (Pl).5:Sym’Klfpr_dtlp ),
xGUP’%p|

where ]P’%I) is the strict localization of ]P)%p at x, dt is a meromorphic differential form on ]P’I%-p, and

E(P%I), Sym3K14|P% ),dt‘]p% )) are local epsilon factors, define in [Del73, 4.1].

e We can compute the local epsilon factors by axioms and properties of local epsilon factors [Lau87,
(3.1.3.2),(3.1.5.4), (3.1.5.5)&(3.1.5.6)], see Section 1.4.4. So we need the local structures of the
sheaf Sym3K14 at 0 and at oo which can be deduced from those of Klg.

e Katz determined the local structure of Kly at 0 in [Kat88, 7.0,7]. However, the local structures of
Kl at oo were only determined after a base change to some finite extension of F,, by Fu and Wan
[F'WO05], because the root of unity (4 is not always in [F,,. Our solution is inspired by the method
in [FW10] for the local structure of the sheaf Kly at oo, which uses the stationary phase principle
[Lau87, Prop.2.3.2.1], i.e., the local structure of the Deligne-Fourier transform of a sheaf .% on
Al at 0o is determined by the local structures of .# at its non-lisse points in A' and infinity.

e For our purpose, it suffices to characterize the local structures of the sheaf R" !(g,41)1Q/ at
critical values of gn11, where gn41 =Y 1y yi +1/[[yi. When p{n+1, all critical points of g are
ordinary quadratic. So we can use the Picard-Lefschetz formula [DK73, Exp. XV., Thm. 3.4] to
show that R"~! g;@ghpgz) is an extension of a locally constant sheaf and the direct sum of several

rank one sheaves supported on the generic point of IP’%Q:).

After showing the modularity, we know the existence of modular forms, whose Fourier coefficients
are related to moments of Kloosterman sheaves. All that remains is to determine the information of
modular forms as explicitly as possible. We compute the traces of Frobenius of My at sufficiently many
primes (the Fourier coefficients of the corresponding modular form) using Sagemath [The22|. Then we

use the information from geometry (weight, conductor, determinant) and the computations of traces of
Frobenius to search the modular form in the database LMFDB.

Organization of the thesis
e In Chapter 1, we recall some results that will be used in the proofs of main theorems.

e In Chapter 2, we construct the motives attached to Kloosterman sheaves and study their
realizations. We define the motives in Section 2.1. Then, in Section 2.2 we show that the de
Rham realizations of such motives underlie exponential mixed Hodge structures, and is isomorphic
to a classical Hodge structure. In Section 2.3, we summarize properties of other realizations in
characteristic p > 0.
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e In Chapter 3, we give the proof of Theorem D. In Section 3.1, we study the formal local structure of

connections Sym*Klz at 0 and at oo and provide a dimension formula of the de Rham cohomology.
Next, in Section 3.2, we determine a basis of cohomology classes of the de Rham realization
(Mlgf)dR in Theorem 3.13. Then, in Section 3.3, we prove Theorem 3.33, which implies the first
part of Theorem D. Finally, in Section 3.4, the cases in the second part of Theorem D are proved
case by case.

In Chapter 4, we will study the properties of Kloosterman sheaves (mainly for those appearing in
Theorem A), e.g., local structures at 0 and oo in Section 4.2 and Section 4.3. In Section 4.4, we
give the dimension formulas of the ¢-adic cohomology of such sheaves when ged(p,n + 1) = 1,
and dimension formulas for Sym*Kls when p = 3. In Section 4.5, we prove Theorem E.

In Chapter 5, we study the ramifications of the Galois representations (M} +1)¢ in Section 5.1 and
prove Theorem C. In Section 5.2, we prove Theorem A.l. In Section 5.3, we prove Theorem B.
Then the Theorem A is completely proven.

In the Appendix A, we explain the calculation of moments of Kloosterman sheaves and include
the code of Sagemath [The22].



Chapter 1

Preliminaries

In this chapter, we recall some results that will be used in the proof of the main theorems.

1.1 Weyl’s construction

We recall some preliminaries from [FHO04, §6, §15 & §17].

1.1.1 Young diagrams

A partition of an integer N is a sequence of non-negative integers of the form p := (1, p2, - . -, fim)
such that g1 > po -+ > py and ), p; = N. For such a partition, we can associate a Young diagram,
such that u; are the lengths of the i-th rows. For example the Young diagram of the partition (3,2, 1)
is as follows:

EEE

1.1.2 Schur functors

For a partition p as above, we will define two elements a, and b, in the permutation group Sy
in N symbols. First we label each block in the Young diagram by indexes in {1,...,N}. Then we
take P, := {0 € Sy | o preserves each row} and @, := {7 € Sy | 7 preserves each column}. Let
sign: Sy — {£1} be the sign character of Sy. Then we define

a, =Y oandb,:= Y sign(r)r

oceP, TEQL
in the group ring Z[Sn].

Let K be a field of characteristic 0 and V be a K-vector space. The group Sy acts on the tensor
product VN by

ov1 @ QUN = Vg(1) @+ * @ Vg(N)-

Then we have the endofunctor S, of the category of finite dimensional representations of SLj, 41
SMV = aubuV®N — (V®N)PNXQu,id,sign’
where the exponent (P, x @, id,sign) means taking the isotypic component.

21
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1.1.3 Construction of irreducible representations of SL,,

Let A = (A1,...,A,) be a sequence of nonnegative integers. Let V' be the standard representation
K"t of SL,, .1, i.e., equipped with the action of SL, 1 by left multiplication, and V) be the unique
irreducible subrepresentation of

SymMV @ Sym™ A2V @ -+ @ Sym™ A"V,

whose highest weight is ) . A\i(L1 + ...+ L;). In the case of SL3, the representation with the highest
weight A1 L1 + Aa(L1 + Lo) can be described as

ker(Sym™MV ® Sym™ A2 V T, Sym™M ™'V ® Sym*2 7! A2 V), (1.1)

where 7y, ), sends vy ---v), @ w1 @ wy, to

1
009! Do <) We1) > V() V(ar) @ Wr2) Wriny)

TESN;,TESN,

where < -,- >: V x A2V — K is the natural pairing.
In general, we can construct the representation V) by Schur functors. Let

/L()\):(/\1+...—l-)\n,)\g—l-...—i-/\n,...,/\n)

and apply S,y to V@Al The resulting representation S|un|V is nothing but Vj, i.e., the (unique)
finite dimensional irreducible representation of SL,1 of the highest weight ) . A;(L1 + ...+ L;), see
[FHO4, Prop 15.15].

1.2 A review of Exponential mixed Hodge structures

1.2.1 Notation for D-modules

We recall some facts in the theory of Z-modules. For detail, see for example [HTT07].

Let X be a complex variety. We denote by Zx the sheaf of differential operators on X, which is
a subsheaf of Endc, (Ox), generated by Ox (acting on Ox by left multiplication) and the sheaf of
vector fields ©x = (2%)V. For example, if X = Al the sheaf Zx is associated with the C-algebra
C[t](Oy), satistying Oy -t —t -0y = 1. A left (resp. right) Zx-module is an Ox-module with a left
(resp. right) action of Zx. When X is affine, we identify Z-modules with their global sections. For
example, Z,1-modules are identified with C[t](d;)-modules. We denote by Mod(Zx) the category of
(left)-Zx-modules on X, and by D?(Zx) the bounded derived category of Zx-modules.

Let f: X — Y be a morphism between smooth complex varieties. Let Zx_,y and Py x be transfer
modules. For a complex of Dx-modules M and a complex of Dy-modules N, the direct image and
inverse image are defined by

f+M =Rf.(Dyx ®p, M) € D"(Dy)

and
fTN =Dx_y ®-1p, f'N € D"(Dx)

respectively. Let Dx and Dy be the duality functor. We put f; = Dy o fy o Dx. Then there is a
canonical forget supports morphism f;M — fy M, which is an isomorphism if f is proper.

A Zx-modules is called holonomic if the dimension of its characteristic variety is smaller or equal
to dim X. We denote by D?(Zx) the full subcategory of D?(Zx), whose objects are complexes
with holonomic cohomologies. The categories D%(.@X) are stable under the six functor formalism of
Z2-modules.



1.2. A review of Exponential mixed Hodge structures 23

De Rham cohomology

For a Zx-module, we denote by DR(M) the (analytic) de Rham complex Q3" ®I(¢)X M?#. The de
Rham cohomology HJj (X, M) of a Z-module M is the hypercohomology of the de Rham complex of
M, which is finite dimensional if M is holonomic.

Now let j: U — X be an inclusion of an open subvariety U in a projective smooth variety X, whose
complement is a divisor D. For a connection on U, i.e., a locally free Z-module M, the de Rham
cohomology with compact support HQR’C(U , M) is the hypercohomology of DR(j;M). We denote by
j++M the intermediate extension of M, i.e. a Zx-module N such that j%*N = M and N admits no
subobjects or quotient objects supported on X\U.

If X is a curve, we denote by Hjjp .4(U, M) the middle de Rham cohomology of M, i.e., the image
of the de Rham cohomology with corﬁpaet support in the usual de Rham cohomology. It is identified
with the de Rham cohomology Hlg (X, ji+ M) of the intermediate extension ji M [FSY20b, (3.1)].

The Fourier transform

Let pr; and pr, be the projections of A} x Al to the first and the second factors respectively. We
denote by &7 = (Op1xar,d+d(tr)) the rank 1 connection on A} x AL. Then the Fourier transform of

a P-module M on A} is given by

FTM =pr,, (prfM ®0 5”).

Alxal
If M is a holonomic Z-module on A}, its Fourier transform is a complex with holonomic cohomologies,
concentrated on degree 0.

The nearby cycle and the vanishing cycle functors

Let f: X — A! be a regular function. If M is a holonomic Z-module, the nearby cycle functor vy
and the vanishing cycle functor ¢y send M to holonomic Zx-modules supported on f ~1(0), which are
defined in terms of the Kashiwara-Malgrange filtration of M. Up to a shift, the de Rham functor sends
Yy M and ¢ M to the nearby cycle and vanishing cycle of the perverse sheaf DRM [dim X].

By construction, there is an automorphism 7" on both ¢ ;M and ¢ M. So we can decompose them,
and denote by 1¢ \M and ¢y » the generalized eigencomponents corresponding to an eigenvalue A € C*.
If A # 1, there is an isomorphism s \xM ~ ¢ M compatible with the automorphism 7', and if A =1,

there is a quiver
can

P |

YraM draM
X< _—

var

such that the maps exp(2mivar o can) and exp(2mican o var) equal to the unipotent automorphism 7T
on ¢y 1M and ¢y 1M respectively. We denote by NN the nilpotent part of T'.

1.2.2 Exponential mixed Hodge structure

We recall the basic definitions of exponential mixed Hodge structures from [FSY22, Appx.|.

The category MHM(X) of mized Hodge modules on a smooth complex variety X is an abelian
category. In particular, if X is a point, the category is nothing but the category of mixed Hodge
structures MHS. The bounded derived categories D?(MHM(X)) admit the six functor formalism. We
put a subscript for functors of Mixed Hodge modules to distinguish them with functors of Z-modules,
for example g f*. For more details about mixed Hodge modules, see [Sai90].

The category EMHS of exponential mized Hodge structures is defined in [KS11] as the full subcategory
of MHM(A'), whose objects NH have vanishing cohomology on Al, i.e., satisfying gm.N% = 0 for
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7: Al — Spec(C) the structure morphism. There is a projector IT: MHM(A!) — EMHS defined by
NT s ps (NP R yiOg ) (1.2)

where j: G,, — A! is the inclusion and s: A x A! — A! is the summation map. With the help of this
functor, if we view the category of mixed Hodge structures MHS as MHM({0}), the category of mixed
Hodge modules at the point 0, it can be seen as a full subcategory of EMHS, by the functor

V= I ( uig)V). (1.3)

We can define for each object N in the category EHMS a weight filtration WEMHS on NH in terms of
that on N1, viewed as a mixed Hodge module on A
The de Rham fiber functor from EMHS to Vectc is defined by

(N — Hig (AL TI(NV) © £9), (1.4)

where 6 is the coordinate of A, and &€ denotes the rank 1 connection (O41,d + df). Each de Rham
fiber is equipped with a weight filtration W,. Moreover, one can associate an irreqular Hodge filtration
E?. on every de Rham fiber by methods in [Sab10, SY15, ESY17].

rr
For a regular function f: U — A' on an affine complex smooth variety U of dimension d, we define

exponential mixed Hodge structures
H (U, f) o= TH(H™ 0 f.QW), HI(U, f) == I (-~ w fiQ}})
and
mia(U. f) = M(im(H~" g fiQ — 1~ uf.Ql))).
In particular, the de Rham fiber of Hy(U, f) is Hig (U, f).

1.3 The irregular Hodge filtration on twisted de Rham cohomology

We recall the definition of the irregular Hodge filtration on twisted de Rham cohomologies from
[Yul4], compatible with the irregular filtration mentioned in §1.2.2. Let U be a complex smooth
quasi-projective variety and f be a regular function on U. Let j: U — X be a compactification and
S := X\U be the boundary divisor. The pair (X, S) is called a good compactification of the pair (U, f),
if S is normal crossing and f extends to a morphism f: X — I%.

Let P be the pole divisor of f. For the twisted de Rham complex (Q(X)®(xS),V = d + df), there
is a decreasing filtration FA(V) := FO(A\)Z*| indexed by non-negative real numbers, where FO()\) is
the complex

O([=AP]) 5 Q' (log $)(L(1 = A)P]) = -+- = QP(log S)(L(p = N)P) = -+ .
Definition 1.5. The irreqular Hodge filtration of the de Rham cohomology HQR(U, V) is defined by
FHip(U, V) = im(H' (X, FA(V)) = Hgg (U, V)).

The filtration is independent of the choice of the good compactification (X, S) (see [Yul4, Thm. 1.7]).

Newton polyhedral filtration

When U is (C*)", a regular function f =5  c(a)z® on U is a Laurent polynomial. We say that
f is non-degenerate with respect to A(f)(:= convex hull of {0} U Supp(f)), if for each face § of A(f)
not containing 0, the function f5 = )" .5 c(a)z® has no critical point in U. In this case the irregular
Hodge filtration can be computed differently (see [AS97, Thm 1.4], [Yul4, Thm 4.6]).
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We view A(f) as a subset of the character lattice M := Hom(U,C*), and denote M ®z R by Mg.
Let F := F(A) be the normal fan of the Newton polytope A on the dual space Ng = Hom(Mg,R), i.e.
each ray of the normal fan corresponds to a codimension 1 face of A, pointing inward with respect to
the paring Ng x Mr — R. We refine the fan F' to F such that the corresponding toric variety Xiop is
smooth proper and the toric boundary S := X, \U is simple normal crossing. We again denote by P
the pole divisor of f. Then each ray in F (resp. F') corresponds to an irreducible component of S (resp.
P).

In [Yul4], the filtration FQp(V) and the filtration Fp(Hig (U, V)) are defined similarly as that
in definition 1.5 by replacing the good compactification (X,S) with (Xior, S), and agree with those
defined by a good compactification. In particular, we have

T (Xtora F&P(V)) =H’ (P (Xtor7 FQP(V)))’

which makes the computation easier.

1.4 Some results on /-adic sheaves

Let p # ¢ be two prime numbers, g a power of p, and X a variety over F,. We denote by E be
either Q or a finite extension of Q, inside Q. We can define f-adic sheaves with coefficients in E (or
E-sheaves) on X, as well as the bounded category of constructible E-sheaves D%(X, E), see [Del80,
§1.1].

The ¢-adic sheaves behave like constructible étale sheaves with coefficients in E, and lisse ¢-adic
sheaves .# are like locally constant étale sheaves with coefficients in £ on X. Assume that X is
irreducible, and we take a geometric point 77 above the generic point of X. There is an equivalence
between the category of lisse f-adic sheaves with coefficients in &£ on X and the category of continuous
l-adic representations of the étale fundamental group Trft(X ,7) with coefficients in E.

1.4.1 Grothendieck-Ogg-Shafarevich formula

We recall the statement of the formula from [Lau87, (2.2)], see also [Gro77, X. Théoréme 7.1|. Let C
be a geometrically connected smooth projective curve over F,. For each closed point = € |C|, we denote
by C(z) (resp. C(z)) the localization (resp. striction localization) of C' at x (vesp. 7). The special points
and generic points of C,) and C(z) are denoted by sz, 7, and sz, 1z respectively.

Let .7 be an f-adic sheaf on C, then #|,  is a continuous f-adic representation of Gal(ij; /1), to
which one can associate the Swan conductors. We denote by

o tk(F) = k(%) and rk,(F) = rk(Fs, ),
o Sw.(F) = Sw(T,).
o a4, (F) =1k(F) — 1k (F) + Sw(F).
Theorem 1.6. If .% is an {-adic sheaf on C, then
X(Cr,, F) = (2—29) - Tk(F) — > deg(z) - az(F).
z€|C|
1.4.2 An exact sequence

Let C' be a smooth projective curve over F,, U be an open subvariety, j: U < C be the open
immersion, and 1 be the generic point of C. For a lisse ¢-adic sheaf .# on U, we denote by pz the
corresponding continuous f-adic representation of ﬂft(U ;7), and by Ggeom be the geometric monodromy
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group of .Z#, i.e., the Zariski closure of the image of Wft(Uqu, ) in GL(%5) under pg. By [Kat88, 2.0,7],
we have a long exact sequence

0— gGgeom — 69:1?€|C\U\, T over T (y‘nz)li - Hét,c(Gm,FPJ ﬁ)

1.7)
; (

- Hét (Gm,ﬂj‘wﬂ\) — @JJE|C’\U\, T over T (9‘771)[5:(_1) — ngeom(_l) —0
where 1z are the generic point of the strict henselization of P! at Z, the groups I are the inertia groups
at Z, (F|,, )" is the invariants of I; and (.Z|,, ), is the coinvariants of I;. Assume that .Z is pure of
weight w. By considering the Frobenius weight, we conclude that

gty 1 He (UIF‘q"gZ) = grz‘iJVHHét(U]qug)

ét,c

is isomorphic to the middle Z-adic cohomology Hét mid(UI_Fq’ F ), i.e., the image of the cohomology with
compact support in the usual cohomology. The dimension of the middle ¢-adic cohomology is given by
dimHy, . (Ug,, ) — > dim(#|,, )™ + dim F Feeom, (1.8)

z€|C\U|, Z over «

1.4.3 Laumon’s Product formula of s-factors

Let .Z be an (-adic sheaf over a variety X over Fy, the epsilon factor e(X,.#) is the f-adic number

—1)itl

2
e(X, 7) =[] det(~Frob, | H, (Xz,, F))"
=0

Inspired by Langland’s program for function fields, i.e. a correspondence between certain ¢-adic
Galois representations and certain automorphic forms over function fields, Deligne constructed in [Del73]
local e-factors satisfying some reasonable axioms. These local factors are analogs of local e-factors of
automorphic representations. Moreover, he conjectured that the global e-factor was product of local
e-factors and some power of p, and gave a geometrical proof for tamely ramified f-adic sheaves. The
complete proof was given by Laumon [Lau87].

Theorem 1.9 (Laumon’s product formula). Let X be a smooth geometrically connected proper curve
over k =F,, w be a meromorphic 1-form, not identically zero on X, and .# be an (-adic sheaf on X.
Then the global e-factor e(X, K) verifies the product formula

e(X, F) = qL-9k7) H 5(X(w)v'g‘X(z>’w’X<z))’
z€| X|

where g is the genus of X, and 5(X(m), ﬁ|X(z),w]X(z)) are local epsilon factors.

1.4.4 Properties of local epsilon-factors

Now we gather some results about local epsilon factors from [Lau87], especially (3.1.3.2), (3.1.5.4),
(3.1.5.5), and (3.1.5.6). Let (T, K,w) be a triple consisting of a henselian trait 7" of equal characteristic
p > 0 with finite residue field £ D [y, an object K in DIC’(T7 Q¢), and a nonzero meromorphic differential
1-form w € Q}C(n)/k — {0}. To each triple, there is an associated an ¢-adic number e, (T, K,w) € @EX
satisfying axioms (1)-(5) below, called the local e-factor [Del73, Thm.4.1]. We summarize the axioms
and some properties of local e-factors here.

(1). ey(T, K,w) only depends on the isomorphism class of triplets.
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(8).

. For a distinguished triangle

K' - K- K'"— K'[1]

in D4(T,Qy), we have
ep(T, K,w) = ey(T, K',w) - (T, K", w). (1.10)

. If K is supported on the closed point s of T, we have

(T, K,w) = det(—Frobs, K)*. (1.11)

. Let 1 be the generic point of T. If n;/n is a finite separable extension, f : Ty — T is the

normalization of T" in 7, and K is an object in D8(T},Qy) of generic rank 0, we have

5¢(T1,K1,f*w) :Ew(T, f*Kl,w). (1.12)

. We denote by K; the completion of function field k(n) of T, by v, : K;* — Z its discrete valuation,

and by O its integral ring. Then the valuation induces a function vy : Q}{t — {0} — Z by sending
a-db to vi(a) if a,b € K and v(b) = 1. If V is a lisse f-adic sheaf of rank 1 on 7, it induces a
character x : K;* = Q; via the reciprocity map i, : K;* — G from local field theory, whose
conductor is a(V) =1+ Sw(V). Let j: n — T be the inclusion. Then we have

gib(Taj*V?w) :E(Xa ¢w> (113)
where the character ¥, : K — G is defined by the formula
W,y(a) = ¢ o Try s, (Res(a - w))

whose conductor ¢(¥y,) is v¢(w) and where e(x, ¥,,) is the local constant of Tate

f(x T = / N ()W (2)d
(Wx)—a(V)—c(\I/w)ox

where dz is the normalized Haar measure on K3, such that the volume of O is 1.

. For all a € k(n)*, we have

e(T, K, a-w) = xr(a) - #EED V@) o7 K w), (1.14)

where yx : K;* = Q) is the character induced from the lisse f-adic sheaf det(K]|,) of rank 1 on
7, via the reciprocity map.

. If F is a lisse f-adic sheaf of rank rk(F") on T', we have

(T, K @ F,w) = det(Froby, F)¥TK@) . o(T, K, w)*E) (1.15)
where a(T, K,w) = rk(K5) + Sw(K5) — 1k(Ks) + rk(Kp) - v (w).

The local e-factor is 1 if K is lisse at  and w is holomorphic at .



28 Chapter 1. Preliminaries

1.5 Some results about (Galois representations

1.5.1 (Galois representations attached to modular forms

One can attach 2-dimensional Galois representations to normalized cuspidal Hecke eigenform
f € Skp(T'1(N)) of weight k.

Theorem. Let N > 1 and k > 1, f € Sp(I'(N)) be a normalized cuspidal Hecke eigenform, and
K¢ =Q(af(p)) be the number field generated by the Fourier coefficients of f. Then for any place A of
Ky over a prime L1 N, there exists a continuous, odd, irreducible Galois representation

PFX- Gal(@/@) — GLQ(Kf’)\), (1.16)
unramified if pt N, such that for p{ N{, the trace of the arithmetic Frobenius Frob;l at p is ap(f).

Notice that py y has conductor NV and Hodge-Tate weight (0,k—1). Also, it is odd, i.e., det(pf x)(c) =
—1, where ¢ is the complex conjugation.

Given such a py y, we denote by py y: Gal(Q/Q) — GLa(Fy) its mod ¢ reduction. It is obtained by
choosing a Galois stable Oy-lattice in K]% y and reducing modulo the maximal ideal of Oy, where O} is
the ring of integers of K. Although ps ) depends on the choice of the lattice, its semisimplification
does not.

1.5.2 Serre’s modularity conjecture

Serre’s modularity conjecture says that a continuous absolutely irreducible odd mod ¢ representation
p: Gal(Q/Q) — GLo(FFy) is isomorphic to pye for some modular form f, where ps, is the mod ¢
reduction of Galois representations from (1.16).

There is a stronger version, which also predicts the weight and the level of f. Here we will recall
the definition of k(p) and N(p) from [KisO7], which is slightly different from that of [Ser87].

The weight

We denote by w;: I, — F, the character, which sends ¢ to o(p'/®~1)/p!/P*=1)(mod ¢), called the
fundamental character of level ¢. If i = 1, write w; as the mod ¢ reduction of the /-adic cyclotomic
character. By abuse of notation, we denote by w for both w; and the ¢-adic cyclotomic character.

Suppose we are given a representation p: Gal(Q/Q) — GL2(Fy), the restriction p|I, is either of

? . 7 .
the form <08 i) ® w’ for i,j € Z, or (0‘62 WO&) ® w! for some 4,j € Z and p + 11 i. When plj, is
2

semisimple (i.e., tamely ramified), we can choose i, 7 > 0, and such that j € [0,/—2] and i+ 7 € [1,¢—1].
When p|;, is wildly ramified, 4, j € [0, ¢ — 2] are uniquely determined. We set k(p) =1+ 4+ (£+ 1),
unless p|7, = (LS I) ® w’ and this * is trés ramifiée [Ser87, p. 186]. We put k(p) = (£ +1)(j + 1) in

the exceptional case.

The level
Let V' be the underlying space of p. For each p # ¢, the Artin conductor of ﬁ’G@e is
1
a(pla, ) = —  _dimV/VY,
(p| QZ) ; [GO . G'L] /
where {G;} are the ramification subgroups of Gal(Q,/Q,). Then we set

N(p) =TT p" "o,
p#L
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The Strong Serre conjecture

Theorem. Let p: Gal(Q/Q) — GLa(Fy) be odd and absolutely irreducible. Then p** ~ Py for an
eigenform f of weight k(p) and level N(p).

1.5.3 Modularity

In this section, we sketch a proof of the modularity of some Galois representations associated with
certain two-dimensional motives, i.e., isomorphic to one ps, in (1.16). The argument is originally due
to Serre [Ser87, §4.8], and one can find similar arguments in [Kis07, Thm. 1.4.3] and [YV15, Thm. 4.6.1].
The key ingredient in the proof is Serre’s modularity conjecture [Ser87| (proved in [KW09a| and
[KWO09b]). In Section 5.3 we will use this result to prove Theorem B.

Theorem 1.17. Let M be an irreducible pure motive of dimension 2 over Q with coefficients in Q.
Assume that the nonzero Hodge numbers of the de Rham realization of M are h™® = h®" =1 for some
0 <r < s, and the £-adic Galois representations My are odd. Then for some N > 1 and some Dirichlet
character e: Z/NZ>* — C*, there exists an eigenform f € Ss_,41(To(INV),€) such that psge ~ My(s).

Proof. We first give bounds for the possible weights and conductors of py .
Let j = s —r. We write pyy for My(s). The Hodge-Tate number of pyp, is thus (0,5). By
Fontaine-Messing [FM87, 2.3] and Fontaine-Laffaille theory [FL82, §8, Thm.5.3|, if j + 1 < ¢, the

restriction of pyry to the inertia group Iy is either of the form <ué)% ng or (u(})ﬁ T) Moreover, if
j =1, then p M,ﬁ’G@ /2 arises from a finite flat group scheme [FL82, §9], so in the second case the item
* is peu-ramifiée [Ser87, p.186]. It follows that k(pmye) = s — 7 + 1.

As for the conductor, let S be a finite set such that for each p € S, the representation pjry is
unramified if p # ¢. We denote by n(r,£) the Artin conductor of pyse at the prime r € S. By [Ser87,
4.8.8], assuming that

¢ # +1(mod8) if2¢€ S,
¢# +1(mod9) if3 €S, (1.18)
¢ # +t1(modr) ifpe Sandp>5,
we have
n(2,0) <9 if2¢eS,
n(3,0) <5 if3es,
n(p,l) <2 ifpeSandp>5.

It follows that N(pn¢) is a divisor of N := [[,.cg rUrl),
Now assume that there are infinitely many primes ¢ such that py is absolutely irreducible. We let
L be the set of primes ¢ such that

e/>s—r+1land ¢S,
o ( satisfies (1.18),
e Py is absolutely irreducible.

Then L is an infinite set. For each ¢ € L, there exists a modular form fy € I's_,1(I'9(IV),e) for some
Dirichlet character € such that pyj , ~ P, - Since the choices of Dirichlet characters of Z/NZ* are
finite, and the vector space I's—,11(I'o(IN), €) is finite dimensional, the choices of f; lie in a finite set. It
follows that there exists an infinite subset L of L, such that the modular forms f := f; for £ € L are
the same. Then for each p{ N¢, we have

Tr(F]rob;1 | pnye) = Tr(]?‘roblg1 | pmye) = Tr(Frob;1 | pre) = ar(p)(mod?).
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Notice that the left-hand side only depends on p. Since the above identity holds for any ¢ € L and
p1 N/, and any nonzero algebraic integer in Q is only divisible by finitely many primes, conclude that

Tr(Frobgl | pae) = agp(p)-

By Chebotarev density theorem, we have pyj , >~ PFe Since both pnye and py e are irreducible, they are
isomorphic.

At last, we show that there are finitely many ¢ such that pype are absolutely irreducible. Assuming
this is false, then the semisimplification of py, would be the mod £ reduction of e1 © 52ngc, where x is
the f-adic cyclotomic character, and ¢; are Dirichlet characters of conductor dividing N. A finiteness
argument as above implies that the semisimplification of py g is again of the form 1 @ 52X£yc- However,
this contradicts the fact that pM,g(Frob; 1) only has roots of complex norm pi/2. O

1.5.4 Generalities on Deligne-Weil representations

We recall the definition of Weil-Deligne (or simply, WD-) representations from [Tay04].
For each prime p, there is an exact sequence

1— I, » Gal(Q,/Q,) ~ Z — Gal(F,/F,) — 1,

where I, is the inertial group at p. Moreover, there is a surjection t,: I}, — Z,. Let W@p be the Weil
group of Q,, i.e., the inverse image of the subgroup generated by Frobenius of Gal(F,/F,) ~ 7 in
Gal(Q,/Qp) equipped with the induced topology.
A WD-representation on an E-vector space V' (with discrete topology) is a pair (r, N'), consisting
of a representation
r: Wo, — GL(V)

with open kernel, and an endormophism N € End(V), such that

r(@)Nr(¢™")=p~'N

for every lift ¢ € Wg, of Frob,. It is called unramified if N =0 and r(I,) = 1. It is called Frobenius
semisimple if r is semisimple. For a lift ¢ of Frobenius, we can decompose r(¢) = r(¢)**r(¢)* =
r(¢)"r(4)*°, where r(¢4)*® is semisimple and r(¢)" is unipotent. Any WD-representation (r, N) has a
canonical Frobenius semisimplification (7, N)**, by keeping N and r|;, unchanged, and replacing r(¢)
by r(¢)%¢. In the case that E = Qy, we call (r, N) l-integral if all the eigenvalues of 7(¢) have absolute
value 1. This property is independent of the choice of ¢.

If ¢ # p, there is a canonical way to attach a WD-representation WD,,(p) to an ¢-adic representation
p of Gal((@p /Qp) as follows: By Grothendieck’s quasi-unipotency theorem, there exists an open subgroup
H of I, of finite index, and a unique nilpotent endomorphism N satisfying (o) = exp(t¢(c)N) for all
o € H. Let ¢ be a lift of Frob, and o € I,,, one sets

r(¢"0) = p(¢" o) exp(te(@)N). (1.19)

Notice that WD, (p) is unramified if and only if p(I,) =1, ie., p is unramified.
A WD-representation (r, N) on Qy is called pure of weight w [BLGGT14, p.528| if there is an
exhaustive and separated ascending monodromy filtration M; of V' such that

e cach F;V is invariant under r,
e for each lift ¢ of Frob,, all eigenvalues r(¢™) on grlM V are Weil-numbers of weight m - ¢,

e the endormorphism N sends M;V into M;_,V, and induces isomorphisms N7 : grf\f 4 gr%_ jV
for each j > 1.



1.5. Some results about Galois representations 31

1.5.5 Potential automorphy
We first recall the Theorem of Patrikis-Taylor [PT15].

Definition 1.20. A weakly compatible system % = {py} of n-dimensional ¢-adic representations of
Gal(Q/Q) over Q and unramified outside S is a family of continuous semisimple representations

pe: Gal(Q/Q) — GL(V;)
for each prime number ¢, with the following properties.

(1). If p ¢ S, for all £ # p, the representation p, is unramified at p and the characteristic polynomial
of p¢(Frob,) is a polynomial with coefficients in Q, independent of the choice of ¢,

(2). Each representation py is de Rham at ¢, and is crystalline if £ & S,

(3). The Hodge-Tate number of p, is independent of /.

To a weakly compatible system of ¢-adic representations, we can attach a partial L-function

L2, s) = [ ] det(1 — pe(Froby,)p~*)~".
pgS
Moreover, we call Z strictly compatible if for each p, there exists a WD-representation WD, (Z) of
W, over Q such that for each £ # p and each ¢: Q < Qy, the push forward :WD,(Z) is isomorphic to
WD, (p)**. To a strictly compatible family &, we can attach an L-function

L(Z%,s) = Hdet (1 — Frob, -p~* | WDP(%)IP’N:O)_I ’
P

which differs from L%(%, s) only by finitely many Euler factors at p € S.

Theorem 1.21 ([PT15, Thm. A]). Let {p¢} be a weakly compatible system of n-dimensional ¢-adic
representations of Gal(Q/Q) defined over Q and unramified outside S. Suppose that {ps} satisfies the
following properties.

(1). (Purity) There exists an integer w such that, for each prime p ¢ S, the roots of the common
characteristic polynomial of py(Frob,) are Weil numbers of weight w.

(2). (Regularity) The representation py has m distinct Hodge-Tate weights.

(3). (Odd essential self-duality) Either each py factors through a map to GO, (Qy) with even similitude
character, or each py factors through a map to GSp,,(Qy) with odd similitude character. Moreover,
in either case similitude characters form a weakly compatible system.

Then there exists a finite Galois totally real extension F/Q, over which all the py become automophic.
In particular, the partial L-function L° (%, s) has meromorphic continuation to the whole complex plane
and satisfies the expected functional equation.

To describe the complete L-function, we still need the gamma factor at co. Serre described the
conjectural shape of the gamma factors at infinity of the complete L-function of a pure motive over Q
in [Ser70, § 3]. We denote by Loo(Z, s) the gamma factor attached to Z.

Corollary 1.22 ([PT15, Cor.2.2|). Let Z = {p¢} be a weakly compatible system that is pure of
weight w, regular, and odd essential self-dual. Then, for any distinct primes p and £, the Weil-Deligne
representation WD, (%) of Gal(Q,/Qp) associated with py is pure of weight w. Moreover, the completed
L-function

NR#,s) = Loo(Z#,s) - L(Z,s)
satisfies the functional equation A(%,s) = e(%Z,s)AN(Z",1 — s).
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Chapter 2

Motives attached to Kloosterman sheaves

In this chapter, we give the construction of motives attached to Kloosterman sheaves following
[FSY22]. Then we study their de Rham realizations, f-adic realizations, and other realizations in
characteristic p > 0.

2.1 The construction of motives

In [FSY22, §3], the authors constructed the motives M¥ ;. In this section, we use the Weyl
construction (see Section 1.1) to construct the motives M) +1 (Nori motives over Q with rational
coefficients).

Let n be an integer, and V) be the irreducible representation of the highest weight » . A\;(L1+...+L;).

Let K C G%')‘l be the hypersurface defined by the equation

Al

= 1
Z (Z T+ 71_[?:1 %’,j) =0.

i=1 “j=1

The group S|y X pn+1 acts on K by (00 X p) - i := f1- T,(;),;. By abuse of notation, we denote Py and
Qx the groups P,y and Q,(r). We define the group G = Py x @ and the character
pTy, Sign™ x Sign™t1
Xy P)\ X Q)\ X Upa1 i} P)\ X Q/\ L {:bl}

Definition 2.1. The motives attached to K1), | are the Nori motives over Q with rational coefficients,

of the form
M2+1 = grmAHl(Hgl/\'_l(IC)GAXMH’X* (1)),

where the exponent (G X fin41, X, ) means taking the y, -isotypic component, and W, is the (motivic)
weight filtration [HMS17, Thm. 10.2.5].

Remark 2.2. (1). In the first version of [FSY22], the motives M¥ 41 were constructed as exponential

motives
k+1 k+1 Sk X ,
H S (G, fip) ok HntoXn,

mid

which were shown to be isomorphic to classical motives in Definition 2.1.

(2). As explained in the introduction, the name is justified by Theorem C, because the L-functions of
M) 41 coincide with the L-functions attached to Kloosterman sheaves K1\ 11

(3). The action of (,4+1 € pnt+1 on K is not an automorphism defined over Q (only defined over
K = Q((n+1)). But taking the invariants of j,,4+1 on N := gr}f‘/)\'H (H?l’\‘fl(lC)G”LXA (—1)) still
gives rise to a Nori motive over Q. In fact, one can see the Nori motive N as a Q-vector space

33
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together with an action of the motivic Galois group Guet(Q). We restrict N to a Nori motive N
over K, i.e., a Q-vector space with an action of the motivic Galois group Gt (/). Then one can
consider a Nori motive over K

Nt = im(Ng 2 Np),
where ¢ = m > cepns, G- One can check that N#+1 is stable under the action of Gal(K/Q).
By [HMS17, Thm. 9.1.16|, the motive N#»+1 comes from a Nori motive over Q.

When the representation V) is the k-th symmetric power of the standard representation of SLj, 1,
ie., Vigo,..,0- The group G, is Sy and the character x, is sign”. For simplicity, we denote the motive
M., by M%_ . and the character sign™ by xy.

Proposition 2.3. The motives M;\H_l are pure of weight n|A| + 1. Moreover, they are equipped with
(—1)"H 1 symmetric perfect pairings
A A
Mn+1 X Mn+1 - Q(—TL‘)\’ - 1)
r‘ﬁ)\Hl(H?‘M_l(K}(—l)) are pure of weight n|\| + 1. Moreover, they are equipped

with (—1)"A+ 1 symmetric perfect pairings, using a similar proof in [FSY22, Thm. 3.2| for exponential

Proof. The motives gr

mixed Hodge structures. Since the motives MQ_H are subquotients of grr‘/}lfk\ﬂ (Hzllkl—l(lc)(—l)), they

are also pure of weight n|A| 4 1, and have induced (—1)"*+1-symmetric pairings. O
2.2 Realizations in characteristic 0
2.2.1 The de Rham realizations
Kloosterman connections
Consider the diagram
G%Jrl
/ \ (2.4)
Gm,z A;

where o and 7 are the sum and the product map respectively. The Kloosterman connection is defined
by
Kln—i—l = H0W+U+8y,

where 7, and o are direct image and pullback of D-modules, and £Y denotes the rank 1 vector bundle
with connection (Op1,d + dy). It is shown in [FSY22, Prop. 2.4] that Kl,,41 is a free Og, -module of

rank n 4+ 1, whose connection, in terms of some basis {vg, v1,...,v,}, is given by
o o - 0 =z
ain® im0 1 0 o|® 25

where N is the lower triangular Jordan block of size n + 1 with eigenvalue 0, and E is the matrix with
1 at row 1 and column n + 1 and 0 elsewhere. Moreover, we have an isomorphism

\Y, ~ T
Kln-‘rl - Ln+1K1n+1

where K1 41 is the dual of Kl 41, and ¢,,41 is the involution z (—1)"Hz.
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The connection Kl,, ;1 has a regular singularity at 0, and an irregular singularity at oo, with slope
n%rl. To turn it into a connection with slope 0 or 1 at co, we consider the pull-back of Kl, 1 along the

map [n + 1]: Gyt — Gy . given by a — a™™1, denoted by
Kl o= [0+ 1] Kl (2.6)

Moreover, there is an action of j,11 on [n + 1]+R/ln+1, and the invariant part is exactly Kl,11.
For the representation of the highest weight (A1, ..., A,) of SLy 11, we denote by Klf‘H_1 the connection
(Kl%_]ﬁl)Gk’(idXSign). If Vy = Sym”Std, i.e. A = (k,0,...,0), we get Sym*Kl,,1, the k-th symmetric

power of Kl of rank (n;:k) There are similar constructions for ﬁnﬂ.

Remark 2.7. In [FG09, 6.1], there is a functorial way to associate connections V on G, to pairs
(G, V), where G are simple reductive groups and V are finite dimensional representations of G with
coefficients in C.

Let @ be a choice of positive roots of G and A be the set of positive simple roots. Then the Lie
algebra of G can be decomposed as g = ©ngq D h. We choose a generator X_,, of g_,, for each simple
root a, and a generator Xy of gy for the maximal root 6. Let N =3 X_, and F = Xy. Then the
Frenkel-Gross connection associated with the pair (G,V) is

V(V)=d+ N(V)d—; + E(V)dz,

where N (V) and E(V) are the corresponding nilpotent endomorphisms of V' induced by N and E
respectively.
The construction of Frenkel-Gross connection is functorial, i.e., we have a tensor functor

Rep(G) — D.E.(G,)

from the category of finite dimensional representations with coefficients in C of GG, to the category
of flat connections on G,,. One can verify that the Frenkel-Gross connections attached to the pairs
(SLp+1, V) are the connections K1), in the above.

The de Rham cohomologies

In the next proposition, we gather some results about the de Rham cohomologies of Klf; 11 from
[FSY22, Cor.2.11, Cor. 2.15, Thm. 3.8|, which can be proved simply by replacing (Sg X fin+1, Xn) With

(G X fnt1,X,)-

Proposition 2.8. Let {z; ;|1 <i < |A,1 < j < n} and z be the coordinates of G?AMH
n|A|+1 n|A|4+1
m m,(zi’j,t)

. The group G

acts on G by (0 X p) i = To(),; and (0 X p) -z = pu-z. Let }V\AI: G — A} be the Laurent

tn+1

polynomial <Z] xij + Hisc]) Then for ? € {&,c}, we have
g

1 A n|A|+1 A+l 7 a _
Hir,2 (G, Kl i) = Hle,‘? (GpA* s fia) A X

and
—~ A1 _
Hig 2(Gm, K1, 1) ~ HS'R)? (G, Fap &,

Remark 2.9. The meaning of the above isomorphisms is that the de Rham realization (M, )ar of
the motive M) 41 is the middle de Rham cohomology of K1) 11
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2.2.2 Exponential mixed Hodge structures

By [FSY22, Thm. 3.2, for ? € {&, ¢, mid} the (twisted) de Rham cohomologies
HcliR,?(va KIQH) and H(liR,?(Gma R/li—&-l)
underlie the exponential mixed Hodge structures
H} (G, KLy ) = Hy M@, ) b e

and
N)\ "
H%(Gm7Kln+1) = H?WH(GZP‘H,fW)Gmm

respectively. By [FSY22, Thm.3.8|, the exponential mixed Hodge structures H3(G,,,KI},;) and

—~\
H}(G,,, K1, ) are isomorphic to (classical) mixed Hodge structures, i.e., lie in the essential image of
(1.3). More precisely, we have isomorphisms of pure Hodge structures

mid

gl (Gm7K17)\1+1) ~ grglf)\l-&-l (H?|/\|—1(IC)G’AXNn+1»Xn(_1)) ,
and

mid

—~\ _
Hliq (G, Kl ) 2= gnlly o (HEN (10O (-1))

Moreover, they are (mixed) of weights > n|A|+1, < n|A\|+1 and n|A| + 1 respectively. And the natural
forget support morphisms induce isomorphisms

A A
grn 1 He (G, K1 yy) = gy H (G, KLy )

and
—~A —~A
gr}?\/)\|+1H(1: (Gm7 Kln+1) — grr‘?f/\\JrlHl (Gm7 Kanrl)'

2.2.3 The ¢-adic realizations

For a prime £, the f-adic realization
A-1 =
(M3 1)e = gy Hiy (K, @)™ men (<1 (2.10)

of Mf‘l 41 1s a continuous f-adic representation of the absolute Galois group Gal(Q/Q), which is pure of
weight n|A| + 1 and is equipped with a (—1)”"\‘+1—symmetric pairing by Proposition 2.3.

Similar to the situation for motives, we get indeed a representation of Gal(Q/Q). As explained in
Remark 2.2.(3), although the action of j,.1 does not commute with Gal(Q/Q), the invariants of y,, 11

is stable under the action of Gal(Q/Q).

2.3 Other realizations in characteristic p > 0

2.3.1 The ¢-adic case
Kloosterman sheaves

Let p be a prime number and ¢ a prime number different from p. We fix a primitive p-th root of unity
(p in Qp, an (n + 1)-th root of unity (,+1 in Fp, and a nontrivial additive character ¥,: F, — Qg(p)*.
The Artin-Schreier sheaf £y, is a lisse £-adic sheaf with coefficients in Q((,)* defined on Allgp, whose
trace function is given by t¢;,. We denote by £, (r) the inverse image f*.Z, of the Artin-Schreier sheaf
along a regular function f: X — Alle-
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Consider the diagram

G
G Al

where o is the sum of coordinates and 7 is the product of coordinates. We define the Kloosterman
sheaf on Gy, r, by
Klyy1 :=R"mo"Z,,, (2.11)

which is a lisse f-adic sheaf on Gy, r, of rank n 41 and pure of weight n [Del77, Sommes. Trig. Thm. 7.8].
In [HNY13|, the authors constructed Kloosterman sheaves for reductive groups. For a connected
split reductive group G, we get a tensor functor

Klg: Rep(G) = Loc(Gpr,, Qr)

from the category of finite dimensional representations of G to the category of f-adic local systems on
G- In particular, if we take G = SL,,+1, and V' the standard representation, we get the Kloosterman
sheaves Kl 11(%). If we take V' as the irreducible representation of the highest weight A, we get the
local system (Klgﬁl)G*’idXSign(%k). For simplicity, we denote the local system (Kl?ﬁl)G*’idXSign by
K2,

Similar to the computation in [FSY22, Prop. 2.10], we give an alternative description of these sheaves.
Let g: (an’Fp — Alle be the Laurent polynomial » 7 | y; + ﬁ Then we have the following lemma.

Lemma 2.12. We have the isomorphism of £-adic sheaves
[+ 1Kl ~ FTy, (R"ilg!@g)\@,m,

where FTy, is the Deligne-Fourier transform [Lau87[, and [n+1]: G, — Gy, be the (n+ 1)-th
power map.

Proof. Let x1,...,z,41 be the coordinates of G:‘;rﬂ}p in the diagram for (2.11). We do a change of
variable z = [, z;. Let j: Gy p, — A[}p. Then we can rewrite (2.11) as

Kl = j*R(pl"z)!-i”wp( )[n]~

YTt
Let t be the coordinate of the source of the map [n + 1]. Then
n +1]Klyer = "R(pr. )2,

p(Siaserpti) = BRG] (2.13

where we did a change of variable y; = x;/t.
By a calculation of Deligne Fourier transform, we know that

FTy, (RgiQr) ~R(pro)i(priReiQr © Ly (21 [1])



38 Chapter 2. Motives attached to Kloosterman sheaves

where we used the base change theorem in the second isomorphism, and the projection formula in the
third isomorphism. The morphisms in the above calculation are illustrated as follows.

GP, x A}
/ ind
AL x A}
We conclude from the above isomorphisms that [n + 1]*Kl,41 ~ j* FT,, (Rg:Q¢)[n — 1]. O
n|,\\+1 n\A|+1
Consider the torus G,z with coordinates {z;; | 1 <i < |A[,1 < j <n}and z. Let fj\: —

n|/\|+1

m,Fp to

A]Fp be the Laurent polynomlal Zi:l(ijl xij + ﬁ) and pr, be the projection from G
its z-coordinate. Similarly, consider the torus Gnl)‘|:1 with Coordinates {zij 1< i <A1 <j<n}

and z. We let f|,\‘ nl)‘Hl — AF be the Laurent polynomial Z VO i+ H o ) and pr, be the

n|)\|+1

projection from G, to its t-coordinate.

Proposition 2.14. We have the isomorphism of £-adic sheaves

% G)\Xl,x)\
KLy =) (Rm/\‘prz*pr(fm))

and

[+ KD 4 = 5 (R™pr,. 2

G)\XI,X)\
¢p(fm)>

Proof. By [Lau87, (1.2.2.7)], the Deligne-Fourier transform interchanges tensor product and the exterior
product. So

(M+WmmNM:fWM(RMh 1EN) 1]
Ty, (Rgy Qo)) [l A] — 1]
~j R( 1Ly (1gBan [0 A — 1]
~R(pr )2y, ;A = 1),

where we used the Kiinneth formula in the third isomorphism, and we did a change of variable
x; j = t-y;; in the last isomorphism.

Notice that the Deligne-Fourier transform preserves the action of symmetric group )|, and there are
some extra signs coming from the Kiinneth formula on the right-hand side. By taking the corresponding
isotypic component on both sides, we get the second isomorphism.

As for the first isomorphism, similar to Remark 2.2.(3), one has

KIZA & ([ + 1 (fn + 1Kl ) 5F)
Hn+1
~j* (R(or) %y, 7)) A= 1]
~j R(Pr 1Ly, (5 [PIAl = 1].

At last, we add the corresponding isotypic components to both sides, we get the first isomorphism. [
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{-adic Cohomologies

Proposition 2.15. We have

Hi o (G, Kin) = HE (GE, 2

GaXpnt1,Xy,
ét,? m,IFp w(f‘k‘))

)

fori e {0,1,2}. Here the action of pn41 is induced by that on GinFp(Cnsr)s and we can understand the
Un+1-tnvariants similarly as in Remark 2.2.(3).

Proof. We only give the proof for the usual cohomology. The properties for the cohomology with
compact support and the middle cohomology can be proved similarly.

Let pr, be the projection from G:L,l)‘l X G > to the last factor Gy, .. The projection pr, is defined
in a parallel way to pr,. By the isomorphism ([n + 1]*02”%(&‘))””“ ~ Ly, (fn) We have Kl ~
([n + 1u[n + 1]*KL) 1 )#n+1. Then

Hét(Gm,I_F 7K1n+1) NHét(Gm,FP’ ([n + 1]*[” + 1]*KI?L+1)#”+1)
~HE (G, [+ 1KLY )0

an\l—H G"W"Fl ) GAXpn+1,Xy
- m,Fp " p(fia) )

Corollary 2.16. There is a (—1)" "+ -symmetric perfect self-pairing on H}, mld(Gm,F ,K1n+1)

Proof. Similar to the construction of the pairings for de Rham cohomologies [FSY22, (2.12)], we
n|A|l+1 (Gn|kj+1

can construct a pairing on Hg," g mF,

’jib(qu))’ which induces one on its (Gx X pin+1,X,)-

isotypic component. By Proposition 2.15, we get a (—1)"**1-symmetric perfect self-pairing on

H, mia (G, Kly)- O

ét,mid

Theorem 2.17. Assume that n|A\| > 3. We have isomorphisms of £-adic cohomologies
) A =244 G Xpimar,
B iH e (G, KD 1) gy ity (K, Qe(G) (~1) P m s
fOT‘ (S {07 17 2}; and

Al—1
Het mld(vaFp’ KIZ'H) grn|/\\+1 Zt| c‘ (’CIE‘ ) QE(CI») (- )G/\ HHRALX

Grx
n|A|+1 n|)\| AR Hnt1,X
_grn|>\\+1Het Ks, ( m,F, ,@E(Cp)

)

which is also isomorphic to gr'¥ At n|>\\ ! (ICFP,QZ(CP))( 1) G Bt 1X5 when K is smooth.
Proof. By doing a change of variable (t,z; ;) — (t,2;;/t), for i € {0,1}, we have

n|A|+i [ ~nA|+1 B o 1A (A A4
H/ (G = Z¢(f|)\|)) = H/ (G = ,fw(tgﬁﬂﬂ)).

ét,c m,Fp, ét,c m,Fp

Then considering the localization sequence for the triple

((Al X Gm)\tt ' gEH‘)\'% (G%'A‘+17t : gEEHM)a (0 X G?n'/“?())) ’
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we have exact sequences

HiL T (600, 006)) B (G )

ét,c m,Fp’ ét,c m,IFp
(2.18)
n|A|+i n|A n|A|+i n|A
_>I—Iet|c‘Jr <A1 G | | gq/; (t- EE’\)\l)) — I—Iet|c‘Jr ( 7rlIF| 7@ (CP))
for ¢ € {0,1,2}. Next, we consider another triple
(a1 x G, ¢+ g™), (A1 x (GPN), £+ ), (A1 x £,0)) (2.19)

Notice that for any r > 0, we have

Hiye (AL, % (CINK)z, 2oy ) =Hio (AL, x GO, Zy00 )

= Qatv=r H (A]F 73111;)) ® Hetc((G%M\’C)FW@Z(Cp)) =0,

where we did a change of variable in the first identity by (t,z; ;) = (t - (¢~

exact sequences associated with the triple (2.19), we have

, i ;). So by the long

n|\|+i n|A n|\|—2+1i
WA (ah < G 2, gmy) = B T (K, Qi) ) (1), (2.20)

Now we combine (2.18) and (2.20), we get exact sequences for ¢ € {0,1,2}. Then we take the
(G X fn+1, X, )-isotypic component of the sequences, and use Proposition 2.15 to conclude

n|A| =141 G A i
Hél,cl a ( nlIF‘ aQE(CP)> - Het C(Gmf 7K1$+1> (2 21)
SHEA T (G, QulG) (—1)E e o I (] i),

Taking the graded quotient gr of the sequence (2.21), and by the Frobenius weights of terms

in the sequence, we have

w
n|A|+i

w ' =244 X foni,
g iHe o (G, KTy 1) = gty HE T (K, Qu(G)) (— 1) Hmi o,
For the usual cohomology, we use similar localization sequences to get

w ] A Al+ A
grn|/\|+iHét(Gm,vaKln+l) = grn‘)\|+zHZt| ;é;( ;‘117' , Qe(¢p)

I

)GAX#nJrl»X)\

which is also isomorphic to gr’V’ A+ H n|>\\ l(’CvaQf(Cp))( 1)¥ X3 when K is smooth. O

2.3.2 The p-adic case.
Bessel F-isocrystal

Let @p be the algebraic closure of Q,, and we choose an element w such that wP~! = —p. This
gives rise to a unique nontrivial additive character ¢: F, — Q;, satisfying ¢(1) = 1 + @ mod w?.
The Dwork’s F-isocrystal %5 is a rank 1 connection d + wdz with Frobenius structure exp(w(z? — 2))
on the overconvergent structure sheaf of A over K = Q,(w). We denote by %, to be the inverse
image of .%, along a regular function h: X — Al

The Kloosterman crystal is an overconvergent F-isocrystal defined using again the same diagram as
before:

Klp+1 := Rmyigs Lo ).
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Some basic properties of Kl,, ;1 are summarized in [Cre94, 1.5]. In particular, the connection of Kl 41
[Cre94, 1.1.5] is

V= —N% — w" Edz,

where N is lower triangular Jordan block of size n+1 with eigenvalue 0, and E is the matrix Ey ,,1, i.e.
1 at row 1 column n + 1 and 0 at other places. Similar to the connections from [FG09|, there are Bessel

F-crystals for reductive groups from [XZ22]. The connection associated with G = SL,,41 and V = V),
is (K1®k )GAv(ldelgn)(”k) By abuse of notation, we denote by K1} ; the F-crystal (Kl®k )G (idxsign)

Rigid cohomologies

Similar to the ¢-adic case, for 7 = &, ¢, mid, we have

W (Gon /K KDy ) = HL ™ (6504, 2 [].

GAXpn41,X
rig,”? rig,? wfw)

There is also a version of the long exact sequence (1.7) for F-isocrystals, see [Ked06, (2.5.1)], where
the canonical morphism from the cohomology with compact support to the usual cohomology is in the
middle. Use [Ked06, Prop.5.1.4 and Thm. 5.2.3|, we have

[]

Gy X
A Al+1 A AXPn+1,X
Hrlg mld( m/K, K1n+1) grnP\HlHZlg (‘: (Gn‘ |+1/K )

@ x|

Gy X
A+1 Al41 AXHn4+1,X
grn\A|+1Hnl | (Gn‘ /K, & ) [@].

@/l

In the end, we make a change of variable to pass from f| NRCRE g™ and use the localization exact
sequences for rigid cohomologies [Stu07, Prop. 8.2.18(ii)| and the Gysin isomorphism [Tsu99, Thm. 4.1.1]
to conclude that

g amia (G /K KDY y) o oty HET (/) (1) G5t [, (2.22)

rig, mld rig,c

which is also isomorphic to grm“_lHﬁlg)"*l(IC/K)(—l)GAX“"“’XA when K is smooth.
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Chapter 3

Computation of Hodge numbers

In this chapter, we will prove Theorem D. In particular, the first part is proved in Theorem 3.33,
and the second part is proved in Propositions 3.57, 3.58 and 3.59. Except in Section 3.4, our primary
interests will be in Sym”*Kls.

3.1 Properties of Kloosterman connections

The connection Sym*Kls (resp. Symkf{vlg) on Gy, (resp. Gy, ) is of rank (k;rz) In this section,
we study their formal local structures at 0 and oo, and compute the dimensions of their de Rham

cohomologies and their middle de Rham cohomologies.

3.1.1 The local structure at 0

Let V = C3 be the standard representation of SLs, and Vj, := Sym”*V the k-th symmetric power of
the representation V. We denote by {wvg,v1,v2} the standard basis of V', and by N the matrix

0 00
N=1[1 00
010
By construction, we have Nv; = v;41 for i = 0,1 and Nvy = 0. The action of N on V can be enhanced
00 01 020
to a Lie algebra representation p: slo — End(V), such that p ( ) = N and p < ) =(0 0 2
10 00 00 0

Using p we can also view Vj as a representation of sls, such that p <(1) 8) = SymkN . For simplicity,

we denote by Nj, := Sym*N.

Recall that all irreducible representations of sly are of the form Sym™(C?). We can decompose V,
as the direct sum of some irreducible representations of sly [FH04, Ex. 11.14]. In the following lemma,
we make the decomposition more explicit.

Lemma 3.1. As representations of sly, we have

L%)
Vk _ @ Sym2k74m((c2)’

m=0

where each Sym?*~4"(C?) is of the form @%ﬁg4mN,iv§_2m(v% — 2ugv)™. In particular, the cokernel of
Ny, on Vi has dimension | 52|, spanned by the set {vE=2m (v — 2ugu)™} for m € {0,1,..., 1513

43
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Proof. Observe that we have Nk(v% — 2vgvg) = 0. For each m = 0,1,..., L%J, the subspace W, :=

@?ﬁg4mCN,ivlg_2m(v% — 2vgvg)™ of Vj is stable under the action of Ni. One can check that Wy is also
stable under the action of slo. So W), can be seen as a representation of sly, and is isomorphic to the
irreducible representation Sym?** 4" (C?) of dimension 2k — 4m + 1.

If m # m/, the representations W,,, and W,,,, have different dimensions. So the intersection of W,,

k
and W, is 0. Hence, the direct sum W := @}nio W, is a subrepresentation of Vi, of dimension

k
Z}jzjo(%‘ — 4m + 1). Notice that the dimension of V is (kf), equal to the rank of Sym*Kls. By the
equality

15)

<k;2> = (2k—4m+1),

m=0

we prove that dim W = dim Vj,. Therefore, W = V..
At last, for each m € {0,1,...,| %]}, the cokernel of Nj, on W, = Sym?*~4"(C2) is one-dimensional,
spanned by vlg_Qm (v — 2vgv9)™. So the dimension of the cokernel of Nj on Vj is equal to L%J, and
is generated by elements listed in the lemma. O

The formal structures of the connections Sym*Kls and Symkf(vlg at 0 are isomorphic to
k+2 d
C((2)) AC[z,2~1] Sykalg o~ (Oéj ),d — Nk7z>

and » N
C((1)) @cppgn Sym Ky ~ (052, - 3N )
respectively. Using Lemma 3.1, we have the following corollary.

Corollary 3.2. The formal structures of the connections Sym*Kls and Symkf{vlg at 0 are isomorphic to

NE

| 4]
dz dt

k—4m ke—dm

(Oém m+1 g J2k_4m+1(())7> and n@)((’)ém dm+l g 3J2k—4m+1(0)*)

L
t

m=0
respectively, where each matriz Jog_4m+1(0) represents a Jordan block of size 2k —4m+1 with eigenvalue
0.
3.1.2 The local structure at co

Let [3]: Gyt — Gy 2 be the cubic map, and ¢ be a primitive third root of unity. The formal local
structures of Kl and Klg are determined in the following lemma.

Lemma 3.3. We have isomorphisms of formal connections

C((z_l)) ®(C[z,z_1} K13 = [3]+53t7 (34>
and
C((t™)) @1 Kls ~ @ 5. (3.5)
=0

Proof. Let inv: Gy, » — Gy, » be the inversion map z — 27 g Gm,» — Ai the inclusion map, and
FT the Fourier transform of D-modules on Al. By [FSY22, Lem. 2.5], we have

Kl = jTFT(j,invTKly).
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Let [2]: Gt — Gy . be the square map, and L_; the connection (C((z71)),d + %d;:ll). By the
equation (4.3) in loc. cit., we have an isomorphism of formal connections

C((z7")) Ocpzo-1 Klo = 211 E¥ @ L.

Let joo: G — P\{0} be the inclusion. Applying the formal stationary phase formula [Sab08,
Thm 5.1] t0 jeotKls = jooti FT(j+invTKly), we have the formula (3.4). Then use the identity
3]7[3]+:E% = @7, £t in [Sab08, Lem. 2.4], we get (3.5). O

Now we determine the formal structures of Sym*Kls. For each I = (Io, I1, I2) € N3, we denote by
C71 the complex number Z?:o I;¢'. The element o = (0,1,2) € S3 acts on the set of multi-indices by
ol = (I, 1y, I1). Let By be the set of orbits of multi-indices I such that |I| = Z?:o I; = k under the
action of o.

For each I, if C1 # 0, we have
(83CLt D 53CLCt @ 53C’L42t)u3 — [3]4_53th, (36)
where the action of y € g is given by p-t := ut. Since Cy; = (Cy, we deduce that [3] £3¢1! = [3],£3C1t,
i.e. [3].£3¢1! only depends on the orbit of I in By.

Proposition 3.7. We have isomorphisms of formal connections

Bipjes, [31+E5 31k

C((’Z_l)) ®(C[z,z_1] Sykal?) =
Bes,,c,20Bl+E% & (C((=71)),d(=71)) 3|k

and
N @, e3¢ 31k
C((t™) Qct,t-1] Sym*"Kls = - a0t . .
D,z €71 0 (C((E)), A7) 3k

where [3]E3C1t only depends on the orbit of I in By.

Proof. By taking the symmetric power of (3.5), we have
C((t7Y)) ®cprs-1) Sym"Klz = Sym* (55‘” @ EXt @ 53<2f) = @ &30r,

As long as C; = 0, we get a trivial component (C((t71)),d(¢7!)). This only happens when 3 | k and
I =(k/3,k/3,k/3). Hence, we prove the second isomorphism.

Let pg3 acts on ¢ by multiplication. The local structure of Sym*Kls is the ps-invariant part of that
of Sym*Kl3. If C; # 0, by (3.6), the uz-invariant part of

£3C1t gy £3C1Ct g 3¢t

is [3]. &3¢, If O = 0, then £3¢1t = (C((t71)),d(¢t1)). And the pz-invariant part of (C((¢t71)),d(t™!))
is (C((z71)),d(z71)). Therefore, we deduce the first isomorphism. O

Corollary 3.8. The irreqularities of Sym*Kls and Symkﬁg at oo are ((kf) — d(k, 3)) /3 and (k'f) -
d(k,3) respectively, where d(k,3) is 0 if 31k and 1 if 3 | k.

Proof. The irregularity of M at oo is 1 if A # 0 and 0 if A = 0. Since C1 = 0 only happens when 3 | k
and I = (k/3,k/3,k/3), the irregularity of Sym*Kls at oo is rk Sym*Kls — d(k,3), by Proposition 3.7.

For a D-module V, by [Del70, II. Thm. 2.12], the slopes of [3]+V are 1/3 times the slopes of V.
Therefore, the irregularity of [3]1£3¢1! is 1 if C; # 0. By Proposition 3.7 again, the irregularity of
Sym*Kls at oo is 1/3(rk Sym*Kls — d(k, 3)). O
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3.1.3 The dimension of the de Rham cohomologies

Proposition 3.9. The dimensions of HéR(Gm,Sykalg) and HéR(Gm,Symkf{vlg) are

(7)) o (157)-009)

respectively, where d(k,3) is 1 if 3 | k and 0 otherwise.

Proof. Let M be either Sym*Kls or Symkf{vlg. By the analogue of the Grothendieck-Ogg-Shafarevich
formula [Kat90, 2.9.8.2], we have

X(Gpy M) = —=Trrog(M).
Since Gy, is affine, we have H3 (Gp,, M) = 0. By [FSY22, Prop. 2.7], M is irreducible, which implies

that HYy (G, M) = 0. So the only non-vanishing cohomology of M is Hlg (G,,, M). Therefore, the
dimension of HéR(Gm, M) is equal to the irregularity of M at oo, which is computed in Corollary 3.8. [J

Corollary 3.10. The dimensions of HéR’mid(Gm, Sym*Kl3) and Hg id(Gm, Symkf(vlg) are

{CYRTORTEES
((57)-aww) s[5

Proof. Let M be either Sym*Kl,,;; or SymkkvlnH, and t the coordinate of G,, by abuse of notation.
The number Solng and Soln, are the dimensions of the spaces of formal meromorphic solutions at 0
and oo respectively. More precisely, they are the dimensions

and

respectively.

dim Homp (C((t)) ®cye-1) M, (C((£)),d(1)))

and

dim Homp (C((71)) @y, M, (C((EY)), d(t™)
respectively. Applying [Kat90, Cor.2.9.8.1] to j;+ M, where j: G, — P! is the inclusion, we have
X(P', ji M) = X (G, M) + Solng + Soln.

Let jo: G,, — A! be the inclusion. By the Lemma 3.1 and the Corollary 3.2, we know that the
cokernel of

Jot+ M = jor M

is supported at 0, of rank L%J Hence, Solng = L%J
Let joo: Gy < P\ {0} be the inclusion. The rank of the cokernel of the injective morphism

jooT+M = Joot- M

is d(k, 3) by Proposition 3.7. Hence, Soln,, = d(k, 3). O]
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3.2 Bases of the de Rham cohomologies

The aim of this section is to get bases of the de Rham cohomologies of Sym*Kls and Symkﬁg.
Recall that Kls is the connection (O3, d + N% + Edz) defined in (2.5). We can choose a basis vg, v1
and vg of Kl3 (as a C[z,271](d,)-module) such that

20,(v;) = viq1 for i = 0,1 and 20,(va) = 2w,

i.e., vo,v1 and vy generates C[z, 271(0,)/((20,)3 —z). The set {v;} also serve as a basis of the connection
Klz = (03,d + 3N % + 3t Edt), and satisfies similar conditions

t0(v;) = 3vi41 for i =0,1 and t9(ve) = 3t3vp.

In this way, elements {vL := vl%0T"02||I| = Iy + I + I, = k} for a basis of Sym*Kl3 (resp. Sykalg)
as a C[z]-module (resp. C[t]-module).

Let deg be a grading on Kls (resp. ﬁg) defined by deg(z®v;) = 3a + i (resp. deg(t®v;) =a+1i). It
induces a grading on the symmetric power Sym*Kls (resp. Sykalg) More precisely, the degree is
given by

deg(z“vé%{lvz ) =3a+ I; + Iz (resp. deg(t“vO vy véz) =a+ 1) + I2). (3.11)

The main results of this section are the following theorems.

Theorem 3.12. Assume that k > 4. There exist finite subsets Wy C SymFKls (resp. WN/d C Symkﬁ/lg)
for 0 < d <2k +1 such that

(1). the de Rham cohomology Hig (G, Sym*Kl3) (resp. HéR(Gm,Symkﬁg)) is spanned by the set
UaWy (resp. UWy),

(2) Wy C Wd,
(8). each element in Wy (resp. /V[7d) has degree d,

(4). if d < k, the cardinality of W4 (resp. Wd) is
|

ng =
{L

(5). ifk+1<d<2k+1 and 31k, the cardinality of Wy (resp. W) is nggp1—q — (d+ 1 — 2|4 )
(resp. fgri1-a— (d+1—2[41])).

]+1 61d—1
| 6|d—1

o O

(resp, 7 = [§] +1),

Moreover, we can choose subsets of the bases above to generate the middle de Rham cohomologies.

Theorem 3.13. Assume that k > 4. There exist finite subsets W C Sym*Kly (resp. Wc’l C Symkﬁ/lg)
for 0 < d <2k + 1 such that

(1). the middle de Rham cohomology Hémmid(Gm, SymFKls) (resp. H}iR’mid(Gm, Symkﬁg)) is spanned
by the set UgW}, (resp. U Wc'l),

(2). each element in W, (resp. V[N/é) has degree d if 31 k,

(3). WHc W
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(4). if d < k, the cardinality of W} (resp. Wé} is

| d=0,1,2,4 mod 6,

|
L= —baqk-d(k,3) +
ak - d(k,3) + { |+1 p=3,5mod 6,

,_
Q. ol

(resp, ng = Ld%lj — Oq ) - d(k,3)), where dq be the Kronecker delta symbol,
(5). if k+1<d<2k+1 and 31k, the cardinality of W) (resp. W&) 08 Moy g (TESP. My q_g) if
E+1<d<2k+1.

Remark 3.14. The middle cohomology of Sym*Kls is trivial when k < 3 by Corollary 3.10. So we
only need to deal with the case that & > 4. We also omitted the cardinalities of the sets W} and W,
when d > k + 1 and 3 | k, because we will not use them in the computation of Hodge numbers.

3.2.1 Cohomology classes of the de Rham cohomologies
Some preparations

Let Vi, = Sym*V be the k-th symmetric power of the standard representation V of SLs3. Recall that
in Lemma 3.1, we can decompose V;, as the direct sum of sla-representations

2k am

@@Nk<k2m?)

m=0 =0
where we = v} — 2vgve. We denote by N, = SymkN and E, = SymkE the endormorphisms of V. Let
G = Gy be Vi[z,271] := V, ®c Clz, 27 Y], on which 6, := 20, acts by
0. (2 v0v i) = Lfufovl ol + 24 (N + 2By (vfovl ol?).
Similarly, the operator 6; := t0; acts on G[t] = G ®c[,] C[t] (2 = t3) by

0, (tvlovivl2) = etfolovltol2 4 153(Ny, 4 2B (viv]vd?).

The first de Rham cohomologies Hg (G, Sym*Kl3) and Hig (G, Sykalg) are identified with the
cokernels of the two-term complexes

G % G and Glt] & Gt (3.15)
respectively. We do a reduction following [FSY22, Lem. 4.15].
Lemma 3.16. Let G* := Vi ®c C[z] and G*[t] = G* @cp,) C[t]. Then the two-term complezes

Gt % 6T and G 2 G[y

are quasi-isomorphic to complexes in (3.15) respectively.

Proof. We only give the proof for G*, and the proof for G [t] is the same. Observe that G = J,~, 2 "G™.
It suffices to show that @, is an invertible operator on the quotient z="~1G*/2="G™ for r > 0.

In fact, the induced operator 6, on the quotient z~"~'G* /27 "G™ is now 20, + N. Using the
decomposition with respect to N in Lemma 3.1, we have

15)
TG /TG = Zz "=L(Sym?™(C?)).

m=0

Here the operator 6, acts on 2z~ "~!Sym?™(C?) by an invertible matrix Ja,, 1 1(—r—1), where Jo,, 41 (—7—
1) is the lower Jordan block with diagonal —r — 1 of size 2m + 1. O
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Let deg be the grading (3.11). Then 6, and 6, are (inhomogeneous) of degree 1. We denote by
0, = (N + zFE) and 0; = 3(N + t*E) the induced map on the graded quotient gr G* (resp. gr GT[t]).
We can identify gr Gt (resp. gr GT[t]) with G (resp. GT[t]).

Recall that t3 = 2. For i = 0,1,2, the elements f; = Z?:o Ci(Q_j)tz_jvj are eigenvectors of
0; = 3(Ny, + t3E}), with ei%envalues 3t - ¢*. Moreover, the set {fL := H?zo fjlj }rens |1j=k 18 a basis of
G*[t] as C[t]-module, and 0;(fL) = 3t - C; fL, where Cy is the sum > ¢/ - I;.
Lemma 3.17. If 3t k, the map 0, (resp. 0;) is injective. If 3 | k, the kernel ker 0, (resp. ker ;) is
a free C[z]-module (resp. C[t]-module) of rank 1 generated by n*/?, where n = f(-11) = 503 + 303 +

vg’ — 3t3v9v1v3.

Proof. By the commutative diagram

we observe that ker §; N Gt = ker 0. So it suffices to study ker 6,.
Let Zigl(t)fl be an element in ker ;, then

0= 0, <Z 91@)]”) = 3t-Cr-gr(t) /L.
i T

Since fI are linearly independent, the coefficients C; are 0 as long as gr # 0. So ker ; is @CFO Clt)fL.

If 3 1 k, the numbers C; are always nonzero. If 3 | k, the only I such that C; = 0 is (k/3,k/3,k/3). So
the element n*/3 = f(k/3:k/3k/3) generates the kernel of 6;. O

Now we determine the cokernel of 6;.

Proposition 3.18. Assume that k > 4. There exist finite subsets W; C G (resp. W; C GT [t]) for
0<1i<2k+1 such that

(1). if 31k, then coker ), = span(W; | 0 < i < 2k + 1) (resp. coker f; = span(Wi |0<i<2k+1)),

(1). if 3| k, then coker@, = span(W; | 0 < i < 2k + 1) @ C[z]n*/3 (resp. coker §; = span(W; | 0 < i <
2k + 1) & CltJn*/?),

(2) Wy C Wd,
(3). each element in Wy (resp. Wd) has degree d,

(4). if d < k, the cardinality of Wy (resp. Wd) is

ng = {L JH Ot = 4]+ 1),

d
6
L%J 6]d—1

(5). if k+1<d<2k+1 and 31k, the cardinality of Wy (resp. Wd) is Nogy1—q — (d+1— 2{%”)
(resp. figg—a — (d+1—2[41])).
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Proof. We can decompose G = grG™ as ®4>0G4 where G is generated by elements of degree d, i.e.,
linear combination of zévéovfl 1)2[2 such that 3¢ + I; + 215 = d. Since 0, is homogeneous of degree 1 with

respect to the degree function (3.11), the kernel and cokernel of 6, can be decomposed as
ker 0, = @gker 0, NGy

and

coker 0, = ©yGq/0.(Gq_1)

respectively.
Step 1: We prove the statements (1), (3), (4) and (5) when 3 1 k for z coordinate.

In this case ker , = 0 by Lemma 3.17. We take Wy C G4 such that the image of Wy in Gy/0.(G4_1)
is a basis, which verifies (3). Hence, ng = #Wy = dim G4 — dim G4_; because 0, is injective. By the
construction of G4, we have

dlmGd = #{(a‘7[0aI17[2) ’ IO + Il + 12 = k, 3a + Il + 2]’2 — d}
Notice that if d > 3, the number dim G4 — dim G4_35 = dim G4/2G4—_3 is equal to
#{io | max{0,k — d} <o < k—[4]}

because G4/2G4_3 can be identified with the vector space spanned by elements in G4 whose degree of
z is 0. It follows that

12] +1 d <k,
dim Gy —dimGy3 =<k —[2]+1 k+1<d <2k, (3.19)
0 2k +1<d.

If d > 6, to compute ng = dim Gy — dim G4_1, we can write ng — ng_g as
(dim Gg—dimGy_3 +dimGy_3 — dim Gd—6) — (dim Gyg_1 —dimGy_4 +dimGy_4 — dim Gd_7).
Using (3.19), we deduce that

1 d <k,
0 k+1<d<k—+3
ng — Ndg—e = tlsaskts, (3.20)
-1 k+4<d<2k+2ord=2k+4,
0 d=2k+3or2k+5<d.
. 1 d#1
If d <5 and d < k, we can check directly that ng = #Wy = 0 E It follows that

4] +1 6td—1

nd:#Wd:{LgJ 6ld—1

if d < k. As for the case that k + 1 < d < 2k + 1, we have the following lemma.

Lemma 3.21. Ifk+1<d <2k+1, then ng = nogy1-e — (e +1—2[ <2 )).

Proof. We write e =2k +1—-d=60+s<kand k—e=6m+ 1 for 0 < s,r <5. Then we deduce
from (3.20) that

l+1 s#1(mod6),
Ne =
14 s =1 (mod6).
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On the other hand, we have k = 6(¢ + m) + s + r, and

Nkgr—5 — M 0<r<2 (3.22)
Nd = Nok+1—e =N =n —m = .
d 2k+1—e k+14+6m+r k+1+r Mpr s —m—1 3<7<5
by (3.20). Since k > k+r —5=6({ + m) + 2r + s, we have
C+m+ |2t 2r + s £ 1 (mod 6),
nk'H” 5= 2r+s+1 _ (323)
C+m+ "] -1 2r+s=1(mod6).

By (3.22) and (3.23), we can check that ng = n. — (e — 2| §]) by listing each possibility of 7 and s. [

So we deduce the statements (4) and (5) from the above lemma. To prove statement (1), it suffices
to show that dim Gy = dim G, = --- for any d,e > 2k + 2, or equivalently ngy = 0 for d > 2k + 2. By
the recursive formula of dim G4, we have dim Gy — dim G4_3 = 0 if 2k + 1 < d. So we only need to
check that nogio = nogts = nogsa = 0, which can be checked by (3.20) and Lemma 3.21.

Step 2: We prove the statements (1)’ (3) and (4) when 3 | k for z coordinate

In this case, the kernel of 0, is of rank 1 generated by 1*/3, where n = 22 Uo + 203 4+ v3 — 3zvgv1ve
has degree 2k. We take Wy C G4 such that their image in G4/(0,(Gq—1) + Gq N C[2]n*/3) is a basis
when d < 2k + 1. These sets Wy satisfy (3).

The formula of dim G4 — dim Gy_3 is the same as that in (3.19). Since deg(n*/?) = 2k, the number
ng and the formula of ng — ng_g are the same as those in the case 3 1 k if d < k. So we have again

4] +1 6td—1

nd:#Wd:{LgJ 6ld—1

if d < k, which verifies the statement (4). To conclude the statement (1), it suffices to show that
dim Gogy3e1 = dim Gogq3p12 = dim Gogy3g43 — 1

for any e, f,g > 0. By (3.19), it suffices to show that dim Gog41 = dim Gogio = dim Gogy3 — 1. We

can check this by writing k = 6¢ or 6¢ + 3 and use (3.19).

Step 3: We prove the statements (1) (1)” (3) (4) and (5) for coordinate ¢, and show statement (2).
As before, we decompose G [t] as @Gy, and take Wd C Ggq such that its image in Gd/Ht(Gd 1)

or Ga/(0:(Ga1) + Gq N C[t]n*/3) is a basis. Since Gq/0,(Ga_1) C Ga/0:(Ga_1), we can choose Wy

containing Wy. So (2) and (3) are satisfied. The proof of (1) (1)’ (4) and (5) are similar to those in the

above, by establishing a recursive formula for ng = dim Gy — dim Gg4_1. O

Proof of Theorem 3.12

It suffices to compute the basis of the de Rham cohomologies of Sykalg, because by our choice of
W, and W, we have VV”d ={w e W, | we Wy} =Wy, and

HéR(Gma SykaI?») = H(liR(Gma Symkf{le)W

where the action of 3 is given by p - t5vl := (ut)*v
We have the following spectral sequence

B =~ p+q(gr GH[t ] LN gl"p+1G [t]) = H PTG [t],0;) (p>0,—p+qe{0,1})

associated with the (increasing) filtration by deg on G*[t]. It degenerates at the Eo-page.
If 31k, by Proposition 3.18.(1), we have the identification

coker 0, = @y Dot Cw.
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Since 6y is injective by Lemma 3.17, the spectral sequence is already degenerated at the Ej-page. So

there exists a decreasing filtration F'* on coker 6; such that the graded pieces of coker 0, are & er’dC“}'

So we can take the unioniof these finite sets Wd as a basis coker (6;).
If 3| k, the kernel of §; on G*[t] is C[t]*/® by Lemma 3.17, and we have the identification

coker 0, = @y Dei, Cw e C[t]n’“/g

by Proposition 3.18.(1)".
Lemma 3.24. The morphism 6; induces an injective morphism
0, : kerf, — coker 6.
Moreover, we have 0,(t'n*/3) = pt™n*/3 in coker §, for some p # 0.
Proof. Write k = 3¢. For r > 0, we have
0:(t"n") = rt"n® + 30t" (2t%03 + 303 — 3t3vovive)nt !

Since
2003 + 303 — 3t3vguivg — n = O — v3 = 0, (t3vve — v1v3),

it follows that

_ = _1 (%) = _
="+ 0, (tPvgve — o103 = 0 4 B, ((Pugua — vivg)n" Y.

(2t503 + t30? — 3t3vguive)n
Here (*) is because 0y (g-1n*™") = 0:(g)n ' 4+ (¢ — 1)g- 0:(n)n*=2 = 0:(g)n*~". Therefore, we deduce that
0:(t"n%) = (r + 30) t™n" + 0,(30t" (Pvivg — viv3)nt1),
and 6; is injective. O

The spectral sequence is degenerated at the Fa-page, because all morphisms d5? are already 0 by
Lemma 3.24. So the two vector spaces ker 8; and coker 8, are respectively the kernel and the cokernel
of the induced map 6;: ker #; — coker ;. Therefore, ker §; = 0 and the composition of morphisms

k/3

W= ®a ®,cq7, Cw = ©a D, 577, Cw & C[t]n*/? = coker 6; — coker 6,

is an isomorphism. Hence, Ude form a basis of HéR(Gm, Symkﬁg).
3.2.2 Cohomology classes of the middle cohomologies
Now we want to determine bases for the middle de Rham cohomologies. Since
HiR mid (Gm, Sym*Kls) = Hig 1iq (G, Sym*Kls ),

we only need to determine bases for the latter cohomologies. A key tool for determining the cohomology
classes is the following:

Proposition 3.25 ([FSY20b, Cor.3.5] ). The cohomology with compact support Hig (G, Symkf{vlg)
can be identified with the quotient of the C-vector space

{(mo, mec,w) € GF((8)) x GT((t71)) x GT[t] | e(mo, moo) = (wlo, wleo)}

by the C-vector space {(hlo, hleo,0(h)) | h € GT[t]}.
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Lemma 3.26. The cokernel of 6;: Gt ((t)) — GT((t)) is coker Ng. In particular, each element in
t - GT[t] is in the image of 6.

Proof. By an abuse of notation, we denote by ; the operator 3(Ny + Ext3) on G ((t)). Similar to
Lemma 3.16, the complex G*((¢)) UN GT((t)) is quasi-isomorphic to G*[[t]] LN GT[t]).

We first show that elements in ¢ - GT[t] are in the image of 6;. Consider elements of the form
W= Z?il thwio € t- GT[t], where w; o € Vi. Then

do do 1 do 1
Z t’ww = 9t <Z Z'tZWi’0> — 9,5 (Z itlwip) .

i=1 i=1 i=1

Now write gt(zdol L, o) as 32 tw; 1, we have again

(2
d d1 1 s 1.
Z t’wm = 915 <Z itzwi,1> — 9t (Z itzwzﬂ) .

i=1 i=1

Continuing this operation, we have

ds
Zt Wis = =0, (Z —t' Wi s) - ét <Z itiwi,s>a

=1 i=1
and we write
~ ds dst1
(3 ) - >t
i=1
Since f; is homogeneous of degree 1 with respect to the degree on G*[t], the element Zf;l thwi s is in
t5G*[t] as long as i > 2k + 1+ s. In fact, if i > 2k + 1+ s and w; 5 # 0, then
2k+1+s< deg(tiwijs) =i+deg(wis) <i+2k+1,

which forces s <. So the sum
ds
mo = (=1)° ) twis
s>1 =1

is well-defined as an element in G*[[t]], and we have 6;(mg) = w. So each element in tG™[[t]] is 0 in the
cokernel.

At last, assume that v € Vi, = GT[[t]]/tGT[[t]]. On the one hand, if v = 3Ny (w) for some w € V,
then v = 0;(w) — 3t3Ej,(w). Since t3Eg(w) is also in the image of §; by the above argument, v is in the
image of 6;. On the other hand, if v is in the image of 6y, i.e., v = (3~ t'w;). Then by comparing
the constant term with respect to t, we have v = 3N wp. Therefore, the cokernel of §; is coker N. [

Lemma 3.27. The cokernel of 0;: GT((t™1)) — GT((t™1)) s 0 if 31 k and is CtFof if 3 | k.

Proof. Let u =t"!. Recall that in G*((u)), the subspace of elements of degree 0 with respect to t is
V. If 31k, it suffices to show that for each I, the element u®fL is in 6;(G*((u))). Since

(1) = (—a — Dut L — 30yt fL,

and C1 # 0 for any I, we have
u ft = 0:(g1) + ha,

for some g; and hy in u®T'V},. We repeat this process inductively to get

hi = 0:(gi+1) + hiy1
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for i > 1 and some g;+1 and h;41 in w1V, Therefore, we conclude that the sum Y oi>10i i
well-defined in G*((u)) and u®fL = 0,(3",51 9:)- -
If 3| k, write k = 3(. Let m: Vj, — EBCI;O(CfL be the projection. For each I such that Cj # 0, we
have
u“fl = Gt(gl) + hi (3.28)

for some g; and hy in u*'V,. Moreover, we have hy — w(hy) € un’ - Vi. Then we do similar
operations as those in (3.28) inductively to get

m(hi) = 0:(giv1) + hit1

for 4 > 1 and some g;41 and h;; 1 in w1V, Again, hipq — m(hip1) € w1V, Therefore, we
conclude that the sum ), g; is well-defined in G*((u)) and

ufL =9, (Z gi> + R(u) - 1 (3.29)
i>1

for R(u) = 3,41 t'(hica — m(hi—a)) € u®'C[[u]], i.e. in the cokernel u®fL has the same class as
R(u)n’.

For uang, we have
0, (uane) = —au“né + 3€u“77£_1(2t61)8 + t3v§’ — 3t3v0v1v2)
_ _aa b a, f—1 J
= —au"n" + 3lu'n (n—i- Z )\Jf> (3.30)

=(—a+ 3€)u“7]£ + u® Z ,ulfl
|L|=k,C1#0

for some complex numbers Ay and py. If —a+ 3¢ # 0, let

1 -1
Gy =———u'y’ and H; = ———u° L
1= g amd Hi= e D
Then we have
wnt = 6,(Gr) + H, (3.31)

for G1, Hy € u®Vj,. We do the same operation as that for (3.29) to the component H; and get
Hy = 0,(Gh) + Cruyf

for G1 € u'G*[[u]] and C; € C[[u]]. And then repeat the same process in (3.31) to Cru®t'n! again,
as long as —a + 3¢ # 0.

Doing similar operations to those in (3.29) and (3.31) inductively, we can find G;, H;, G; and C;
inductively, and finally get an identity

u“nf =60,(G) + Cu‘%nf

for some G € G™[[u]] and C € C.
At last, notice that
Buo)" = (fot+ A+ )P =on"+ DY orft
I#(4,4,0)

for a nonzero 9§, and numbers 6;. Then we have udlnt — §tFvf € im(6;). Hence, each element is

cohomologous to an element in Clt]t*vh. Conversely, by (3.29), (3.30) and (3.31), tkvk is not in the
image of ;. Otherwise, u3n’ will be in the image of ;. This verifies our claim when 3 | k. O
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Proof of Theorem 5.13. There are commutative diagrams

GTt] UBENYeRs ] > coker 6y

| ! l

GH[t]] =2~ G*[[t]] — coker Ny

and
GT[t] LBNYel [t] coker 6;

| | |

GHtY] —2 GH[t7Y]) —— TRk or 0

by Lemma 3.26 and Lemma 3.27. We conclude that there exist finite sets X3 C G4 such that the image
of UgXg4 in coker @; form a basis of coker Ny (resp. coker Ny @ CtFvf) if 34k (resp. 3 | k).

When 31k and w = Z?:O thw; € G4, we can decompose w as w’' + w”, where w' is the constant
term wq with respect to t, and w” = Zle t'w;. By Lemma 3.26 and Lemma 3.27, we know that w” is
in the image of both 6;: GT((t)) — G*((t)) and 6;: GH((t™1)) — GH((t™1)).

When 3 | k and w = Z?:o thw; € Gy, we can decompose w as w' + w”, where w' = wy + ytkvk for
some v € C, and w” = Zle thw; — yt*vf. By Lemma 3.26 and Lemma 3.27, we can choose 7 such
that w” is in the image of both 6;: GT((t)) — GT((t)) and 6;: GT((t7 1)) — GH((t™1)).

As a consequence, one can choose finite sets W7, C G such that

e each element in V[N/é has degree d when 3 1 k,

o span(W,) = span(vaé) @ span(Xy),

e clements in W) are in the image of both f;: GT((t)) — GT((t)) and 6;: GT((t71)) — GT((t1)).

We can choose the sets W/ similarly. Since coker N and tFvf = z¥/3vf (if 3 | k) are contained in
G, we can choose Wc'l containing W). This verifies statements (2) and (3).

By Proposition 3.25, span(UWé) - H(liRmid(Gm, Symkﬁ/lg). We use the computation of dimensions
from Lemma 3.10 to conclude that the above inclusions are in fact identities. If we take the us invariance,
we also deduce that span(UW)) C H(liR,mid(Gm7 Sym*Kl3). This verifies statement (1).

At last, we give the formula for the numbers n/; and 72/, in statements (4) and (5). Since the degree
d part of coker N has dimension 1 for d =0,2,..., 2L§J, and 0 otherwise. The degree d part of Ctkvg

has dimension 1 if d = k and 0 otherwise. By Proposition 3.18, the cardinalities #Wc’l are thus numbers
stated in the Theorem. O

Remark 3.32. From the above proof, we see that HéR(Gm,Symkf{\/lg)/HéR mid(Gm,SymkR\/lg) is

isomorphic to coker Nj, if 3  k and coker N, @ t*vf if 3 | k. The same conclusion holds for
H}g (G, Sym*Kls) /HYg 1iq (G, Sym™Klg).

3.3 Calculation of the Hodge numbers of Sym"Kl;
In this section, we will compute the Hodge filtration on the de Rham realizations of some motives

M% 41, using the cohomology classes in Theorems 3.12 and 3.13. The main result in this section is the
following:
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Theorem 3.33. The mized Hodge structure H(G,,, Sym*Kl3) is mized of weight > 2k + 1, whose
Hodge numbers are

[PEED ] = (Op + Gpp)d(,3) p=0,1,2,4m0d 6, p+g=2k+1,

(2] 1 2 (5,04 Gy )ik, 3) p=3.5 mod 6, p-+g = 2h+ L
WPt =< (1+2|5] — k) +d(k,3) p=q=Fk+1,

1 k+2<p=q<2k+1 2{p

L0 else,

where 0,3, 15 the Kronecker symbol. In particular, the first and second line give the Hodge numbers of
the pure Hodge structure HL (G, Sym*Kl3).

Remark 3.34. By Remark 3.32, we know that H'(G,,, Sym*Kl3)/ H! . (G, Sym*Kl3) is isomorphic
to Hl(Gm,Sykalg)/Hmld(Gm,Sykalg). So the third and forth line of the Hodge numbers of
H!'(G,,, Sym*Kl3) is deduced from the second and third line of the Hodge numbers of HY(G,,, Sym*Klj)

in Proposition 3.41. As for the first and second line of the Hodge numbers, they are calculated in
Propositions 3.47 and 3.53.
3.3.1 The inverse Fourier transform

Let jo: G,, — A'! be the inclusion. There is an endofunctor II on the category of regular holonomic
Dy1-modules, defined by sending N to N x jo4+Og,,, where x is the additive convolution on the affine
line. The essential image of this functor is the category of holonomic D-modules with vanishing global
de Rham cohomologies. In particular, the projector II in (1.2) is the lifting of the endofunctor II. Recall
that the Fourier transform FT sends Dy1-modules on the affine line Al to Dyi-modules on the dual

affine line Al. In the proof of [FSY22, Prop.2.10], we have an isomorphism of D-modules
Sykalg s jS“FT(g (’))

where gP%: G2 — Al is defined by sending (y; ;) to >0 v+ #y), and the action of the
1L vis

symmetric group Sy on the coordinates is given by o - y; j = Y, (;),;- By the definition of intermediate
extension, we have a short exact sequence

0— jOT+SymkR-i3 — j0+Symkﬁ3 — 6]€ — 0,
where Cy, is supported at the origin. Let M=FT! j0T+Symk/I€13. By the isomorphism of functors
MoFT ' ~FT ! ojorjf

[Kat90, Prop. 12.3.5], we deduce that H(M) ~ FT_I(j0+Symkﬁ3). We get an exact sequence of regular
holonomic D-modules on the dual affine line Al

0— M —TI(M) — M — 0. (3.35)
The sequence (3.35) can also be lifted to a short exact sequence in MHM(AL)
0— M () — M™ -0,

where MY is a pure Hodge module of weight 2k, and MU i a constant mixed Hodge module of
weight > 2k + 1, see [FSY22, Prop. 2.21|. Moreover, the structure of M’ can be made precise, given in
Corollary 3.37.
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Proposition 3.36. Let S C Al be the set of points x such that there exists a triple I € N® such that
x=3C; = 3(Ip + Iy + (%) and |I| = k. Then:

(1). The inverse Fourier transform M is a regular holonomic Dpi-module. Its generic rank is

w — L%J and its singularity set vs S. The vanishing cycle space at a singularity x € S

has dimension #{I | x = 3Ct and |I| = k} with trivial monodromy. Moreover, the monodromy at
oo 18 unipotent, with one Jordan block of size 2k — 4m, for each m =0,..., L%J ;

(2). H(M) is a regular holonomic Dy1-module. Its generic rank is w and its singularity set is

S. The vanishing cycle space at a singularity x € S has dimension #{I | v = 3Ct and |I| = k}
with trivial monodromy. Moreover, the monodromy at oo is unipotent, with one Jordan block of

size 2k — 4m + 1 for each m =0,. .., L%J,

Proof. Let iy Symkf(vlg be the nearby cycle module at 0 of j0+Symkf{v13. Recall that in Section 3.1.1, we
enhanced the action of the nilpotent part IV} of the local monodromy on Sykalg to an sls-action.
From Corollary 3.2, we conclude that the monodromy of 1, Sym*Kls is unipotent, with one Jordan
block of size 2k — 4m + 1 for each m € {0, ..., Lg]} By [Sai88, Lem. 5.1.4], the vanishing cycle module

o jOHSymkf{\/lg of the intermediate extension jOHSymkf{\/lg is identified with im N. So the monodromy
action of ¢;joi4Sym FKls is unipotent, with one Jordan block of size 2k — 4m for each m € {0,...,|%]}.

By construction, we have M =FT" jOH Sykalg Applylng the (inverse) stationary phase prmmple
[Sab08] to M it follows that the nearby cycle 1, /TM is isomorphic to qﬁt]OHSym K13 ~ im Nj,.
Therefore, the monodromy of /TM is unipotent, with one Jordan block of size 2k — 4m for each

0<m< L%J The primitive parts of the Lefschetz decomposition of /TM are
Pok—1,Pok—5,...,
and each Por_1_4y, is 1-dimensional. By the property of the Lefschetz decomposition, the rank of M is

Z (2% — dm) = (k+1)(/~c+2)_{k+2J.

2 2
2k—1—4m>0

In the end, by applying the stationary phase principle to jOHSymkﬁ;g = FT(M ), we conclude from
the local structure of jOHSymkf{vlg at oo in Proposition 3.7 that the singular set of M is equal to S. In
fact, each singular point a € S corresponds to a component £%. So we proved all claims in the first
statement. The proof for the second statement is similar. O

Corollary 3.37. The graded pieces of M™ with respect to the weight filtration have rank 1 and are of
weight 4k — 4m for each m = 0,1,..., LgJ

Proof. By applying the nearby cycle functor to the exact sequence (3.35), and using the rank formula
of MY and TI MH in Proposition 3.36, we know that M'H has rank LkHJ

To prove the weight property of M M it suffices to compute that of 1, /e M M'H because the constant

mixed Hodge module MM extends smoothly at co. By a similar argument in the proof of Proposition 3.306,
we know that the primitive parts in the Lefschetz decomposition of ¢y /.11 M H are

Poky1,Poky3,. -0,

all being 1-dimensional. Since the weight filtration on ¢y .11 MY is identified with the monodromy
filtration centered at 2k — 1 by [MT13, Prop. A.1|, it follows that Pok41—am is pure of weight 4k — 4m of
rank 1. At last, by the Equation (A.2) in the proof of [MT13, Prop. A.3|, the graded pieces of 1y, M

are identified with the primitive parts in the Lefschetz decomposition of /THM . Therefore, the

graded pieces of gr}f]z_ 4mM M with respect to the weight filtration are Paj_i_4m(—1), of rank 1 and
weight 4k — 4m. O
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3.3.2 The Hodge filtration for Symkﬁg

Before computing the Hodge filtration on H!(G,,, Sym*Kl3), we calculate the Hodge filtration on
HY(Gp, Symkﬁg), which will be useful in the case that 3 | k in §3.3.5.

Applying [FSY22, Exe. A.2 & Thm. A.30] to the short exact sequence (3.35), we have a short exact
sequence of mixed Hodge structures

0 — H'Y(A', joi+ Sym*Kl3) % H'(G,,, Sym*Kl3) — VH — 0, (3.38)
where the mixed Hodge structure Hl(Al,j0T+Symkf{\/13) is
coker (N : wﬂlf\\J/H — wﬂMH(—l)), (3.39)

and V! is the cokernel of +. By applying [FSY22, Cor. A31] to the pure Hodge module MH, we know
that V1 is mixed of weight > 2k + 2, and satisfies

dim gr¥gr)’ VI = 1k gr%_lgrgglM’H (3.40)

for all p, ¢ € Z. In particular, by the above and [FSY22, Prop. 2.21], the weights of the mixed Hodge
structure H! (Al,jOHSykalg) are at least 2k + 1, and we have

H%nid (Gma Symkﬁ/li’)) = grlz/‘]g_HHl (Al,j()f.;_symkavlg).

Proposition 3.41. The Hodge numbers of H(G,,, Symkﬁg) are given by

| =MD (8, + Gppen) - d(k3) g =2k+1

ppa — ) (L+205] — k) +d(k, 3) p=gqg=Fk+1
1 E+2<p=q<2k+1,21p
0 else

where d(k,3) is 1 if 3 | k and 0 otherwise, and 6,y is the Kronecker symbol, which is 1 if a =
b and 0 otherwise. In particular, the first line of Hodge numbers gives the Hodge numbers of
HfllR,mid (G, Sym*Klz).

Proof. We proceed in three steps. .

Step 1: We compute the rank of the Hodge filtration on M. Using a similar argument as in the proof
of Proposition 3.36, the monodromy of the nearby cycle v, M H at oo is unipotent, with one Jordan
block of size 2k —4m for each m =0, ..., {%j Therefore, the primitive parts Pop_ 4,1 in the Lefschetz
decomposition have dimension one and are of Hodge-Tate type. Since M is pure of weight 2k, the
primitive part Pog_4,,_1 is pure of weight 4k — 4m — 2. Hence, Pop_4m_1 = gr%k_4m_2P2k,4m,1. Then
by the Lefschetz decomposition, for each ¢ in Z, the graded quotient grg‘g 1t /TM H is Hodge-Tate of
dimension

#{m |0<2m <k, 4m <2k —(—1}.

By the compatibility of [Sai88, 3.2.1] between the Hodge filtration and the Kashiwara-Malgrange
filtration of the filtered D-modules underlying Hodge modules, we have

rk gr%MH = dim gr’}grwwl/T]\A/fH

in the case of smooth curves. From this formula, we conclude that

(3.42)

rkgrpMH: min{p,2k — 1 —p} + 2
F 2 .
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Step 2: We compute the Hodge filtration on Hl(Al,jOHSymkf(vlg).

If 31k, by Proposition 3.36, 0 is not a singular point of M. Therefore, the Hodge numbers can be
computed using [FSY22, Cor. A31(ii)]. More precisely, the nilpotent part of the monodromy operator
acts on 1/1771MH Uy MH by 0. So H! (Al,]oJH_Sykalg) wTMH( 1) is pure of weight 2k + 1, which
coincides with H! ., (G,,, Sym® Kls). Its Hodge numbers h?25+1=P are the ranks of gr%_lﬁ H given by
(3.42). This gives the first line of the Hodge numbers when 3 1 k.

If 3 | k, the dimension of the formal regular component of Symkf(vlg at oo is 1. Therefore, 7 = 0
is a singular point of M, and the dimension of the vanishing cycle qbt,ll\Al/H is 1. By (3.39), it suffices
to study the monodromy on the nearby cycle ¢T71]T4/ H Since MY is an intermediate extension at
7 =0 and ¢T71M H has dimension 1, the nilpotent part of the monodromy operator, denoted by Ny,
acting on 771)771]\7 H satisfies NV ,? = 0. This forces the primitive parts of the Lefschetz decomposition
of grwwﬂlﬂH to be P, = grg[,gsz,lMH and Py = grg‘,g_li/JTJMH, where dim P; = dim N, P; = 1, and
dim Py = rk M —2. Tn conclusion,

gr'¥cokerN = Py(—1) @ Pi(—1).

Hence, the direct summand Py(—1) is HL. (G, Sym” Klg) Also, the direct summand Pj(—1) is

gr%+2H1 (G, Symkﬁg), whose rank is 1. It is of Hodge-Tate type (k + 1,k + 1). Then using the
equality derived from the Lefschetz decomposition

rkgrh MM = rkgrf g, ) MY = dim gr? (Py(—1)) + grbo(Py(—1)) + gr% (N Py (—1)),

we proved the first line of the Hodge numbers when 3 | k, as well as the d(k, 3) part in the second line
of the Hodge numbers. s

Step 3: We compute the Hodge filtration on VH. By Corollary 3.37, since the graded pieces of M H
with respect to the weight filtration have rank 1, of weight 4k — 4m for m =0,1,..., L%J, they are all
of Hodge-Tate type (2k — 2m, 2k — 2m). Thus, by (3.40), we know that for m =0,..., L%j, we have
dim gr% 2m+1grz‘g_ im Jr2VH = 1, and the remaining graded pieces are 0. Therefore, we get the third

line for the Hodge numbers by using the exact sequence (3.38). O

3.3.3 The irregular Hodge filtration for twisted de Rham cohomologies

To do the concrete calculation, we use the irregular Hodge filtration on twisted de Rham cohomologies
from [Yul4], see Section 1.3. The Kloosterman connection Kls, as a C[z, z~!]-module, equals to the
cokernel of the complex

d+0z, fdx1+0z, fd
Clef, xf, 2%]dz A day @ Claf, of, 2F]d2 A day LT T O Clas, o3, 25)dz A day A das.
In this way, the classes vy, v1 and vo are sent to
dz dx dzo dz dz dx dz dx dx
CANEAN T2 A A 2 and ay— A —2 A 2,
z xr1 T2 z T X9 z 1 €2

and we have q q d q q d
(283)3(—2/\ﬂAﬂ) PRyt

z T T2

Let fp: G281 — Al be the function (in, xig, 2) — >, (xz 1+ zio+

inclusions

= 1112). Then we have
Hlig mid (Gm, Sym*Kls) < Hljp (Gpp, Sym*Kl3) = Hlg (G, KI¥) 5

(3.43)
= Hip (G, KIF") ~ HIFH (G, ).



60 Chapter 3. Computation of Hodge numbers

The first morphism is compatible with the irregular Hodge filtration, because it is compatible with the
classical Hodge filtration, and by [FSY22, Thm. A.24]|, the irregular Hodge filtration coincide with the
classical Hodge filtration. The second morphism corresponds to the inclusion of Sy X us invariant parts
in Hig (G, Klf?jfl), which is compatible with the irregular Hodge filtration by [Yul4, Prop. 1.9(i)].

3.3.4 The Hodge filtration for Sym"Kl; when 31k

Under the last isomorphism in (3.43), an element 27 vé(’vfl vl? is sent to

dZ dl‘lldfblg dﬂjkldxkg
T 1 woos 11 oo ek (3.44)
oc€SE i=+1 i=Ir+1 L1 1,2 k.1 k.2

in Hg’ﬁH(Gq%f“, fi)°F. So each element w € W) from Theorem 3.13 is sent to

( )dZ dJIl 1 diL’l 2 d:L‘k»71 dl‘kg
g(w)— :
Z T11 21,2 Tk1 Tk,2

for a polynomial in z, z;,y; such that deg(g(w)) = d. By abuse of notation, we still denote by w the
image of w under (3.43).

Lemma 3.45. Assume 31 k. Then W) C FPHAR™ (G2, fi) if p < 2k +1 —d.

Proof. The Newton polytope A(fx) defined by fi has only one facet that does not contain the origin,
which is lying on the hyperplane 3z + . (z; 1 + x;2) = 1. So the condition that f; is non-degenerate
with respect to A(fr) is equivalent to the condition that the Laurent polynomial f has no critical
points in G2**!. We can check that the latter condition holds 3 { k. So the irregular Hodge filtration
on Hld“;gl (G2++1 fi) can be computed via the Newton filtration on monomials in R>oA(fy,) by [Yul4,
Thm. 4,6].

The cone R>0A(fx) is given by inequalities

k

f+ Z €01 + Miag2 2 0,
i=1

where (€;,7;) € {(0,0),(1,0),(0,1)}. We take the fan F' generated by rays

R - %( 5+Z€zaz1+nzazz) and R>g = 3ﬁ+zaz1+0¢12)

=1 7

where (€;,7;) € {(0,0),(1,0),(0,1)}. The fan F is a simplicial polytopal fan. So the corresponding toric
variety Xior is smooth projective. In particular, each irreducible component of the pole divisor P of f
has multiplicity 1

G ey d dag, d s
Observe that an element z®[]%_, x5 %, - 42 it k2 LTS FPRZEFL(G2EHL £ if it

belongs to Q%+ 1(log S)(|(2k + 1 — A\)P]), which is equivalent to
ordp(z H r;127) > —(2k+1—p) (3.46)

for all irreducible components D of P. By [Ful93, p.61], the condition (3.46) is equivalent to

szﬁ —(2k+1—-1p),
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where &(2° Hle azflle’Q) =3a+ > (b +¢).
For w € W), we have {(g(w)) = d, where g(w) is a polynomial such that the differential form

d d d d . .
g(w)& ;1111 ;1122 ::11 xi’“; represents the image of w € Wy in Hig ' (G25+1, f,)5k. Therefore, we

conclude the assertion. O

Proposition 3.47. Assume that 31 k. The Hodge numbers of H- . .(G,,, Sym*Kl3) are given by

mid
1§ p#3,5 mod 6;
|B] +1 else,

pp2k+1=p _

if p <k, and hP2RHL=P = p2RFL=PP 4f | < .

Proof. Let W) be the finite sets in Theorem 3.13. We construct an auxiliary filtration G* on
Hig ia(Gm, Sym*Kl3) by letting the subspace GPHY, . 1(G, Sym*Kl3) be generated by elements
w € W} such that p < 2k + 1 —d. Lemma 3.45 shows that

GthliR,mid(Gma Syka13) - FpH(IiR,mid(Gm7 Syka13)

Let dp = dim grh HYg 1 (Gyp,, Sym*Kl3) and 6, = dim gr?,Hl . 4(Gp, Sym*Kl3) be the dimensions
of the graded quotients with respect to the two filtration. Then

Z Op < Z dp, (3.48)
q>p q>p

where the equality holds if ¢ = 0 and ¢ = 2k + 1. By Hodge symmetry, we have d,, = dag41—p. Since 9,
are the numbers n’2k+1_p in Theorem 3.13, we have 0, = dax41—p-
Combining the symmetry properties of dj, and ¢, and (3.48), we find

Yo dy= D dy< D 6= b
q>p q>p 2k+1—g<p 2k+1—q<p a>p

This implies that 6, = d,, for each p. O

3.3.5 The Hodge filtration for Sym*Kl; when 3 | k

We want to find another way to compute the irregular Hodge filtration when 3 | k, because the
function fi is not non-degenerate with respect to its Newton polytope A(fx).
A compactification

Definition 3.49 ([Mocl5, Def.2.6]). Let K be a field of characteristic 0. Let U be a smooth quasi-
projective variety over K and f € Oy(U). A non-degenerate compactification of a pair (U, f) is a
compactification X of U such that

e D = X\U is a strict normal crossing divisor;
e f extends to a rational morphism f: X --» P!

e ¢tale locally or analytical locally near each point in the pole divisor P, there is a coordinate
system {x1,...,Zr, Y1, -, Ym, 21 ..., 21} of X such that

D=V(lxi-I1y;), f=

for some e; € Z~g.



62 Chapter 3. Computation of Hodge numbers

We begin with the pair (G%’f,ggﬂk = ZZ 1Yi1+Yi2 + o 0 2). Let M = &; (Zy;1 ® Zy; 2) be the
lattice of monomials on G?,’f and N = @®; (Ze; 1 ® Ze;2) be the dual lattice where e; ; is dual to y; j. We
consider the toric compactification X of G2* attached to the simplicial fan F in Ng generated by the
rays

R0 - >, €€i1 + niei2
where €;,n; € {0,+1} and (e;,7;); # 0. Each simplicial cone of maximal dimension 2k in F' provides an
affine chart of X, which is isomorphic to A?*. On each chart, the function ggak has the same structure.
For example, we can consider the maximal cone generated by

Yip,1 = E €ij + €ip,1 and ig 2 = E €ij

i<io—1,j 1<i0,j

for 1 < iy < k, where the affine ring associated with the dual cone is the polynomial ring Q[u;, v;] such
vin/yiz  J=1,

that u; ; =  yio/yit11 @ < k,j =2, In this chart, we can rewrite g5* as gl/(ul,lu%g . H2<i<k7j u%j),
Yk,2 i=k,j=2
where
k—1
g =1+ E u11u12 H u ue+11+u11u12 H UJ
e=1 2<i<e,j 2<i<k,j

for a polynomial h. So the toric variety X provides a non-degenerate compactification of (G2*, g?E)ak),
where the closure of the zero locus of g5*, and X\G?¥ form a strict normal crossing divisor.

The product P; x X is a compactification of (G2F+1 ¢ . gik) ~ (G2F+1, fr). Let S1,...,Sx be the
irreducible components of X\G2*. We first do the blow-up along the intersection of 0 x X and S;. And
then we do blow-ups along the intersection of the proper transform of 0 x X and the proper transform
of S;for2<i< N successwely The resulting variety X is a compactification of G%H

We can verify that (X, f,) is a non-degenerate compactification of (G25+1 ¢- gP) if 3 1 k. Otherwise,
we need to do two more blow-ups. First at each closed points of oo x V(yf”l -1, y22 —1,> i1 +
Yiz + Yi 1y .2 )-
proper tranbform of co X X. We denote by Ej, Ey the exceptional divisors of the two steps respectively.
We denote by X the resultlng variety. By a direct computation, we can Verlfy that ordg, fk =1 and
ordg, fir =0, and (X fk) is a non-degenerate compactification of (G2++1 fk)

Then on the intersection of the exceptional divisors from the previous step and the

A lemma

By abuse of notation, for w € Wd, we still denote by w its image in Hg’ﬁ“(@%ﬁ“, fk) under the
inclusion (3.43).

Lemma 3.50. Assume 3 | k. Then Wy C FPH(%’E{H(G%H, fo) ifp<2k+1—dandk—d>0.

Proof. Let X be the compactification as above and D = X \G2k+1 is the boundary divisor. Because
the indeterminacy locus of the rational map fi: X --» P! has codimension at least 2 in X we can take
the pole divisor P as the closure of a representative of fk The exceptional divisors F1 and Fs are not
contained in the support of the pole divisor, because ordg, fr =1 and ord By fi =0.

Similar to (3.44), the image of an element t%v(°v{'vs? of degree d in H2k+1(G2k+1, fr)SF =
HZEFL (G2 ¢ - g8F)Sk is of the form

1 dtdyiidyre  dyka dye2
PSS T s T1 st
€S i=+1 i=Ir+1 yl 1 y1’2 yk’l yk’2
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up to a nonzero constant (compared to (3. 44) we did a change of Varlable ml j = tyi;). By a direct

computation, one finds that ordg, (tavo vitel2) = 2k d and ordg, (tavo vitwl2) = 2k — 2d. Since each

w e Wd is a linear combination of terms t%éovl vy” of degree d, we find

W, C I(X, 9% (log D) (dP — (2k — d) Ey — (2k — 2d)E3)).

We further have . B
Wd - F(X7Q2k+1 (10gD> (L2k + 1- UJP)),

if k—d>0andd<2k+1—mn. In this case, there is a natural map
['(X, 0%+ (log D) (|2k + 1 — | P)) — FTH* (G2 f),
see [Yul4, §4Db)] or [FSY22, §4.3.3]. This finishes the proof of the lemma. O

Proposition 3.51. When p >k + 1, the vector space FPH}g (G, Symkﬁg) is
span(Wd ]p§2k—|—1—d).

Proof. We construct a filtration G* on the de Rham cohomology Hly (G, Symkﬁg) by letting the
subspace GPHL (G, Sym*Kl3) be generated by Wy satisfying p < 2k 4+ 1 — d. Using the map in (3.43)
and Lemma 3.50, we deduce that

GPHg (G, Sym*Kls) C FPH}R (G, Sym"Kl)

ifp>k+1.
Let dy, = dimgrh, and §, = dim gr{,. Then

Z‘Sp < de (3.52)

and d, = Zq hP 1 if p > k 4+ 1, where hP? is defined by Proposition 3.41. By Theorem 3.12, we know
that the number 0, is Ngp41-p = LM%J + 1 =d, for any p > k + 1. This shows that the filtration

G* coincides with the Hodge filtration F'* when p > k + 1. O
The Hodge numbers

Proposition 3.53. Assume that 3 | k. For p < k, the Hodge numbers of the mized Hodge structure
H! . (G, Sym*Kl3) are given by

L&) p# 3,5 (mod 6);
lE]+1 p=3,5 (mod 6).

hP» 2k+1—p __ h2k+1 PP (Sk,p

Proof. The set UW, in Theorem 3.12 serve as a basis of Hig (G, Sym*Kl3). By Lemma 3.50, we know
that w € Wy is in Fpgr%HHéRmid(Gm, SymFKls) if
p<2k+1—dand k—d>0.
By Proposition 3.51 we know that w is a nonzero element in the graded quotient
glr%kJrl deR(Gm,Sykalg)
if K —d > 0. Moreover, by Proposition 3.41 and Remark 3.34, we have

dim gr2F 1= deR mid (G, Sym*Kls) = dim gr¥ ™ 9H1 (G, Sym™Kl3) — 845 — (1 +2[2] — d),
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which is exactly nf, 4+1_q by Theorem 3.13. Therefore, if kK —d > 0, the Hodge numbers
hd 2k+1—d h2k+1 d,d = dim gr2k’+l dH(ljRJnid(Gma SykaIS)

are bigger than or equal to n);. Then

2k+1
dim Hig miq(Gm, Sym*Kls) = Z pd-2kt1=d > QZn' ® dim Hig mid (G, Sym*Kl),

where (*) can be checked by writing & = 6¢ 4 r for r € {0,3}. Therefore, we have h%2k+1-d —
p2k+1-d.d =n/, for d < k, which are exactly numbers stated in the proposition. O

3.4 More examples of computations of Hodge numbers

In this section, we compute more examples of Hodge numbers of motives attached to Kloosterman
sheaves.

3.4.1 More examples of cohomology classes
Similarly to the proof of Theorem 3.12, we can also get expressions of de Rham cohomologies for
three more cases.

The case of the connection Sym?3Kl

When n = 3 and k = 3, the kernel and cokernel of the nilpotent part of the local monodromy of
Sym®Kl, at 0 have dimension 3. They are generated by

{v3, 3v3vy — 20902, Jugu1ve — Iviuz — 4v)

and
{v3, v3(v3 — 2v1v3), V5 — 3ULvv3 + Svgud}

respectively. Therefore, we have

C((2)) ®cls .1 Sym’Kly = (0,d) @ (0%, d + J2(0)L£) & (O?,d + J5(0)%).

Similar to the case of Sym*Klz in Section 3.2, we can use the degree deg(zlvé%h v£2v3 )=4i+ 1 +

215 + 313 to obtain the following proposition.
Proposition 3.54. There exists finite subset Wq, W) C G of degree d, such that

e the de Rham cohomology HéR(Gm,Sym?’KLL) is spanned by Wo U Wo U W3 U Wy U Wy with
#Wo = #Wo = #W3 = #Wy = #Ws =1,

o the middle de Rham cohomology HéR’mid(Gm,Sym‘gKL;) is spanned by Wi U Wy with #W; =
HW, = 1.

The case of the connection Sym>Kls

When n = 4 and k = 3, the cokernel of the nilpotent part of the local monodromy of Sym?®Kls at 0
has dimension 5. It is generated by

3 2 3
¥ = {vy, e, dvgvs — 6vgviv2 + 307, 4, 5},
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where ¢co = 41)(2]2)2 —31)01)%, Ccy = 211(2)1)4 — 2vovlvg+vov§, and c5 = 12vgv9v4 —91)%@4 —6vov§ +6v1v203 —21)%.
Therefore, the formal connection C((2)) ®cys,.-1] Sym3Klj is isomorphic to

(0,d) & (0%, d+ J2(0)%) & (0%, d + J3(0)L) & (0, d + J4(0) L) & (O°,d + Js(0)%£).
Similar to the case of Sym*Kl3 in Section 3.2, we can use the degree deg(zlvéovfl 05211?{31)4 ) =5i+ 1 +
215 4+ 315 + 41, to obtain the following proposition.

Proposition 3.55. There exists finite subset Wq, W) C G of degree d, such that

e the de Rham cohomology HéR(Gm, Sym3Kls) is spanned by Wo U Wo U W3 U Wy U W5 U Wy with
HWo = $Wo = #W3 = #W,y = #Ws =1 and #W5 = 2,

e the middle de Rham cohomology HéR’mid(Gm,Sym?’KlQ is spanned by Wk U W§ with #W} =
#W, = 1.

(3,1)

The case of the connection Kl;

Let V' be the standard representation of SL3, and V51 be the representation of the highest weight
2L1 + (L1 + Lg). By the Weyl construction in Section 1.1, Vay is (V®4)FP*@X) where P and Q
are two subgroups of Sy generated by {(12),(123)} and {(14)} respectively, and x is the character
x: PxQ— P2 st —— {%1}. Let N(V31) and E(V21) be the corresponding nilpotent endomorphisms
of N and F in ( 5).

The associated Kloosterman connection Kl

(2,1) .

is the vector bundle with connection
dim V5 1 dz
(Gm fd= NV - E(vm)dz)

This connection has an extra sign compared to that in [FG09].

Let vg,v1,v2 be the basis of Klg such that Nvyg = v, Nv; = v and Nvy = 0. We also let
wo = vo A vi, w1 = vg A vy and wy = v1 A vy be the basis of A2Kl;. Viewed as the subconnection of
Sym?Kls ® A%Kls, the cokernel of the nilpotent part of the monodromy operator of Klg?”l) at 0 has

dimension 3, whose basis can be taken as
2 2
{vg ® wo, vov1 ® wo — vy ® wi, c3},

where c3 = v% ® wo — Vo2 ® wo — Uo’Ul ® w1 + Uo ® we. Similar to the case of Sykalg in Section 3.2,

we can use the degree deg(z“uéov1 vy” @ wy w‘ljle ) =3i+ I + 2 + Jo + 2J; + 3J2 to obtain the

following proposition.

Proposition 3.56. There exists finite subset Wq, W) C G of degree d, such that

e the de Rham cohomology Hlp (G, Klz(f’l)) 1s spanned by W1 U Wo U W3 U W, U Ws with #W, =
#Wo = #W3 = #Wy = #W5 =1,

e the middle de Rham cohomology HcliR,mid(va Klgg’l)) is spanned by Wi UWY, with #Wj = #W! =
1.

3.4.2 More examples of Hodge filtration

In the end, we give more examples of Hodge filtration on de Rham realization of motives attached to
Kloosterman sheaves. The computations are almost identical to that in Lemma 3.45 and Proposition 3.47.
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The case of the motive M3}

Let f: G},? — Al be the function (1,0, T2, T34, 2) 25’21 T1; + X2 + X3, + m The group

S3 acts on the coordinate by o; j = x,(;) ;. Under a map analogous to (3.43), elements in W and W

are mapped to
9% H dziy and h% H —dzl"j

in H(ll%(G}ﬁ, f), for polynomials g, h in z, z; ; of degree 4 and 6 respectively. Because f is non-degenerate
with respect to A(f), we can use a similar argument as in the proof of Lemma 3.45 and Proposition 3.47
to do the computation

Proposition 3.57. We have
Wé - gr%H}iR,mid(va Sym3K14)

and
Wi C gr%HiR mia(Gm, Sym®Kly).

In particular, the nonzero Hodge numbers of the de Rham realization of (M3)qr are h*® = h64 =1

The Hodge filtration for the motive Mg

Let f: G13 — A be the function (a;li,xgi,xgi,mi, )P—>Z'$1i—|—$2i—|—$3i—|—$4i—|— Z

T1,;T2,;%3,iT4,i
The group S3 acts on the coordinate by oz; ; = x4(;) ;. Under a map analogous to (3. 43), the elements
in W¢ and W{ are mapped to
dz dx; ; dz dx; i
i Joand h=—= YA
I H Tij z H Tij
1,) ]
in Hfﬁ(G}ﬁ’, f), for some polynomial g, in z,x; ; of degree 5 and 8 respectively. Because f is non-

degenerate with respect to A(f), we can use a similar argument as that in the proof of Lemma 3.45
and Proposition 3.47 to do the computation.

Proposition 3.58. We have
W C grHig mia (G, Sym®Kls)

and
W3 C g3 Hag mid (G, Sym®Kls ).

In particular, the nonzero Hodge numbers of the de Rham realization of (M3)qr are h58 = h¥5 = 1.

The Hodge filtration of the motive M(2 b

Let f: G, — A! be the function (x;,y;,2) 23:1 Tty + 5 y . The permutation group Sy acts
on the subindices of the coordinates. Similar to Proposition 2.8, we have

2,1
i (G KU ) = 3 (G5, )7
By considering an analogue of the inclusion (3.43), the elements in W and WY are mapped to

and h—

dz yr deiy dz H dx; ;
z = T 4 z

ij
in HiR (G),, f), for some polynomials in z,z;,y; of degree 4 and 5 respectively.

Because f is non-degenerate with respect to A(f), we can use a similar argument as in the proof of
Lemma 3.45 and Proposition 3.47 to get the Hodge numbers.



3.4. More examples of computations of Hodge numbers 67

Proposition 3.59. We have
W3 € grbHlg g (G, KIS
and

Wi C gryHiR mid (Gm, Kl:(f’l))-

In particular, the nonzero Hodge numbers of the de Rham realization of the motive Mg2’1) are h*? =
ROt = 1.
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Chapter 4

Properties of Kloosterman sheaves

In this chapter, we will gather some results about some Kloosterman sheaves, mainly about sheaves
appearing in Theorem A and B. For simplicity, we regard all Kloosterman sheaves as Q-sheaves.

We will first study the local structure of Kloosterman sheaves at 0 and co. Then we compute
the dimensions of the f-adic cohomologies of Sym”*Kl,, 11 in Proposition 4.27 when p fn+ 1, and the
dimensions of the f-adic cohomologies of Sym*Klz in Corollary 4.40 when p = 3. In Section 4.5, we will
prove Theorem E.

4.1 Notation

Let p # ¢ be two prime numbers, and ¢ = (,41 be a primitive (n + 1)-th root of unity in F,.

(1). (a) We fix a nontrivial additive character 1,: F,, — Q.
(b) If k =F,, we denote by v, or ¢y the additive character 9, o Try .
(c) Let x: {£1} — Q; be the unique nontrivial quadratic character, which can also be seen as
characters X, = xq: Fy — {£1} 5 QY.
(d) We also define 0,: Gal(F,/F,) — Q; to be the character

Frob, g(x,d)p) = - Z X(a)_1¢p(a)-

a€clFy,

(2). (a) The Artin-Schreier sheaf .2y, is the lisse (-adic sheaf of rank 1 on Alqu having trace function
Vg
(b) Let [a]: AIIFq — Alqu be the multiplication by a € F, and we denote by £, (q) the sheaf
la]* Zy,, where t is the coordinate of Alqu-

(c) Let x4 be the character as above. The Kummer sheaf %, is a lisse f-adic sheaf of rank 1 on
Gm,r, whose trace function is xg.

(d) The pullback of 6, along the structure morphism IP’IIFP — Spec(F,) is a lisse sheaf of rank 1
on the projective line, denoted by Zp, .

(3). For multi-indices I € N"*! we denote by
(a) Cr=31i- ¢
(b) mp =32 gi- 1

(4). Let vo, ..., v, be a basis of QZ‘H. We denote by o = (01---n) € Sj,11, acting on v; by ov; := v,;).

For a multi-index I € N+ we denote by vl = véo e U,IL".

69
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(a) Let d(k,n + 1,p) be the cardinality of the set AY := {I | |I| = k, C; = 0}.

(b) We denote by a(k,n + 1, p) the cardinality of the dimension of the Q-vector space spanned
by the set {>,v7L | I € A}

(c) We denote by b(k,n + 1,p) the cardinality of the Qg-vector space spanned by the set
{Zi(=Dhl | e A
(d) We denote by d(k,n + 1), a(k,n + 1) and b(k,n + 1) the minimal values of d(k,n + 1,p),
a(k,n+ 1,p) and b(k,n + 1,p) as p varies respectively.
(5). (a) Let C be the set of orbits of {1,(,...,("} under the action of Gal(F,/F,).
(b) For each a € Z, we denote by p, the point (¢%,...,(%) € G2 (F,).
(c) the field

me) (VU= e ¢) 2

e (W—n? 1) ca) 2| n.

)

(d) the character 6,,,: Gal(F,/F,(¢*) — Q) is trivial if F,,, = Fp((*), otherwise it is the
unique nontrivial character of the Galois group of the quadratic extension F, , over F,(¢%).

(e) the lisse f-adic sheaves %, , on IP)]IFP( ¢ay» defined by the pull-back of the 6,5 via the structure
morphism P]%p(ca) — Spec(F,(¢?)).
4.2 The local structures of Kloosterman sheaves at 0

In this section, we assume that the base field k is the finite field F, of characteristic p.

4.2.1 The Frobenius structure

Let A%o) = {s0,m0} be the henselization of Al at 0. The inertial group Ij acts on the generic

fiber (KI),1)7- By a special case of [Kat88, 7.0.7], the generic fiber V = (Kl,11)7 is an f-adic
representation of Gal(7y/no), which is tamely ramified, and the inertia group Ij acts on V' unipotently
by a single Jordan block. Moreover, there exists a basis {vg, v1,...,v,} on which the nilpotent part of
the monodromy operator N: V — V(—1) and Froby act by

Frobo(v;) = ¢""v; and N(v;) = vi41

for i = 0,...,n (for convenience, we let v,+1 = 0).
The sheaves (K1), )7, can be identified with (V®IM)Gxidxsien,

Symmetric power

Consider the symmetric power Vj, := Sym*V. We can take the set

(o | IeN"and [I] =) I, =k}

as a basis of V. This basis is ordered by the lexicographical order. We define a filtration on V}, indexed
by I, by setting Vkl := Span{vZ | I < .J}. We also denote by

VET o= Span{v? | I < J} = Ure gV
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Let my be the integer >, i - I;. The Frobenius and the monodromy operator N act by
Frobg(vl) = ¢™* ™yl and N(v (ZIU 'UH_1>1) € V

Combining the above discussion, we conclude that
1,1 =
V,;/ij’Jr ~ Q¢(—nk +my),
where my = >""" i - I;. To summarize, we showed the following proposition.

Proposition 4.1. There exists a decreasing filtration on (Sym Klyt1)g,, indexed by multi-indices
{I e N*T1 | |I| = k}, such that the graded quotients at I are isomorphic to Qu(—nk +my).
Two more examples

The representation Va1 and Va2 of SL3 can be seen as subrepresentations of tensor products of

symmetric powers of standard representations, see Section 1.1.3. It follows that Kl§2’1) and Klz(,,2’2) are
subsheaves of Kl%z)4 and Kl?6 respectively. By a direct computation, we have the following proposition.

Proposition 4.2. (1). The semisimplification of Kli(f’l)]m 1s isomorphic to

O 1Qe(—i) ® ®L,Qe(—1) ® B_3Qe(—1),

1(271)

and as a Frobg-module, the Ij-invariants of K157 |, is isomorphic to

Qe(—1) ® Qe(—2) © Qe(-3).
2). As a Frobg-module, the semisimplification of K1Y, s isomorphic to
3 1o

20Q0(—1) ® Bi—3Qe(—1) & BF_,Qe(—i)®* & Qu(—6),

and the Ij-invariants of Kl:(f’z)\no s isomorphic to

4.2.2 The dimension of invariants of the inertia group

Observe that the local monodromy of Kl;\1 +1|no does not depend on the characteristic p of the base
field F,. So the dimension of the Ij-invariants of K1), ;|,, does not depend on p.
In the case of symmetric power, the dimension of the Iy-invariants of (Sym*Kl, 1)z, are computed

in [FW08, Thm 0.1].
Proposition 4.3 (Fu-Wan). As a Froby-module, the Ij-invariants (SykalnH)% is isomorphic to

nk
@L 2] Qe(—w)®™ W) where my(u) are numbers characterized by

n+k

k
ka(u)x“: H (1—2z% H (1—2H)~L. (4.4)
u=0 2

n+1

-~ nk
In particular, the dimension of (Sym* K1n+1)n?) is Z}L OJ mg(u).



72 Chapter 4. Properties of Kloosterman sheaves

4.3 The local structures of Kloosterman sheaves at oo

In [FWO05], Fu and Wan computed the local structures of Kl,, 1 at infinity over Fy forn+1|¢—1
up to a character. Later they completely determined the case when n = 2, as well as the local structures
of Sym*Kly over F, in [FW10]. In this section, our main goal is to prove Propositions 4.23 and 4.25.

4.3.1 Local structures of the pullback [n + 1]*Kl,, 4
We denote by 7, the morphism 7., ® F,((?) = 7o for a € N.

Proposition 4.5. Assume that pfn+ 1. The pullbacks [n 4+ 1]*Kl,,+1 are isomorphic to

Blajec(Ta)s (L, cor(nineen @ Lrsyieoy ® Loy @ L) (552) b 211k
Draec(Ta)x (L, cay(n+1)c0) ®fea,n) (%) I 2| nk

as Gal(Tjoo /Moo ) -modules, where 8., are characters defined in Section /.1.

Remark 4.6. We can get similar results for Sym*Kl,,.; by replacing gn+1 by gi‘fﬂ in the proof below,
which is again a nondegenerate Laurent polynomial. However, some of the characters 6, , might not
be determined in this way. To determine these characters, we can use similar arguments as those in
Lemma 4.19 and Lemma 4.20 for the sheaf Sym>Kl,.

Recall that by Lemma 2.12, we have
[n+ 1]*Klpp1 ~ FTy, R"'9Q0) |, (4.7)

where g = gp+1: G}, — A%Fp is the function (z;) — >, vi + ﬁ For each a, we denote by p, the point
(¢€%); € G (F,). We can check that all critical points of g are exactly p,.

Lemma 4.8. We can find a compactification (X,§: X — Al) of the pair (G, g), such that
(1). g is proper, and is smooth along X\G},,
(2). the complez R (g |X\<G;1n)* Qy is constant,
(3). the complex Rg.Qy is tame at co.

Proof. When n = 1, the map g already satisfies the above requirements. We assume that n > 2
in the following. The Laurent polynomial g is nondegenerate with respect to its Newton Polytope
A(g) := Covex(Supp(g)). It is also convenient, i.e. 0 is an interior point of the Newton Polytope.

Following [DL91, (3.3) & (3.6)], we get a toroidal compactification §: X — Al of g. In fact, let
A = k[t]. Since the Newton polytope of g — ¢ as a Laurent polynomial in coefficient A agrees with the
Newton polytope of g, we have a toric compactification X 4(A(g —t)) ~ Xi(A(g)) x Aj of Gy, 4 with
respect to the Newton polytope. For example, we can take ¥ as a refinement of the dual fan of A(g),
generated by the rays

R>o- ;i€
where ¢; € {0,£1} and (¢;); # 0. Then take X as the scheme-theoretic closure of {¢ = 0} inside
Xa(A(g—1t)), and g as the map X — Xj(A(g)) x AL — Al
Each simplicial cone of maximal dimension n in ¥ provides an affine chart of X, which is isomorphic
to A% = A7 x A} .. On each chart, the function g has the same structure. For example, we can consider
the maximal cone generated by v; :=e; + ... + e;, where the affine ring associated with the dual cone
Yi/yir1 1<id<mn,

is the polynomial ring Q[u;| such that u; = )
Yn i =n.
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In this chart X1, we can rewrite g — ¢ as g1/([];<;<, ul), where
) n
m:1+11uq<§]1m_0.
1<j<n e=11i>e

In particular, the intersection X; N X is the zero locus of g; and the morphism g is the composition
Z(g1) — X1 C Xa(A(g —t)) — Spec (A) = Af. One can check that

Z(0g1/0ur) N Z(u2) = Z(1) = &,

which implies that g has no critical point outside the dense torus T C X; N X. Hence, we deduce that
g is smooth along X\G,.

Moreover, using (3.4), (3.9)(c) and (4.4) in loc. cit., the sheaf R(g |x\Gr, )+Qp is constant, and the
sheaf R, Q| is tame. O

Lemma 4.9. We have an isomorphism of £-adic sheaves on G,

In particular, we can replace the map g by g in (4.7).

Proof. Consider the distinguished triangle over A!

RgiQe — RG.Qr — R(lx\cp, )« Qe T .

Applying the Deligne-Fourier transform, we have

FTy, (RgQe) — FTy, (RG.Qe) — FTy, (R(g]x\cn )«Qr) RENy

Since R(g|x\gn, )«Q¢ is constant, and the Deligne-Fourier transforms of constant sheaves are supported
at the origin [Lau87, 1.2.2.2], we get the isomorphism by restricting the distinguished triangle to
G- O

Let pg be the point ((*);. Since g(ps) = (n + 1)¢?, the critical values of g are elements of the set
{(n+1)¢ [0<a<n}

We can check that each critical point p, is ordinary quadratic, under the assumption p{n + 1. For
each critical value ¢ = (n + 1)¢?, we apply the Picard-Lefschetz formula [DK73, Exp. XV., Thm. 3.4
to g: X Xu1 A%C) — A%C), where A%C) = {5¢, M} is the henselization of A! at c¢. The generic fiber of §
is smooth, and the special fiber has one (ordinary quadratic) singular point p,. So we get an exact
sequence

BN

0— Hgtil(chv @5) ﬁ> H?til(Xﬁcv @K) M @K(_ L%J)a (410)

where J, is the vanishing cycle class attached to the critical points p,.
Lemma 4.11. The sequence (/.10) is right exact.

Proof. The set of critical values of § is a finite subset of F,, on which the Galois group Gal(F,/F,) acts.
We denote by [c] the class of ¢ under this action, and by G, the Galois group Gal(F,/F,(c)). At each
critical value, we denote by M, the cokernel of the morphism ¢. By (4.10), the dimension of M, is at
most 1.
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By a modified version of the stationary phase principle [Kat90, Cor. 7.4.2], the Gal(7joo /1oo )-module
[n + 1]*Kly41 |y is isomorphic to

B1gIndg? (FTloc(0,00") (Me) & Ly(ar)) & FTloc(c0, 00 ) (R, Q) (4.12)

where FTloc(0,00") and FTloc(oco, ) are the local Fourier transformations. Moreover, by [Lau87,
Thm. 2.4.3(i)b) & (iii)b)], we know that

rk (FTloc(0, 00") (M.)) = rk (M)

and
FTloc(oo, oo")(R§1Qy) = 0.

Since rk(Kl,41) = (n + 1), we know that

(n+1) =1k Klyp1 = Y dim(Me)g, < (n+ 1),
e=(n+1)¢*

It follows that the dimension of the generic fiber of M, equals to 1. Therefore, the sequence (4.10) is
right-exact. O

Now we want to determine the Galois action on M,.

Lemma 4.13. For a critical value ¢ = (n + 1)¢* the Iz-module M. is isomorphic to

_(-25) 20n

(-2) 2fn

Proof. Locally around p,, the morphism g is of the form

(n+1)¢*+ ¢ Z(H«“z —(*)(xj — ¢*) + higher degree terms on (z; — (%).
1,J

Step 1: When n is odd. From the Picard-Lefschetz formula, the vanishing cycle class §, satisfy

n—1

(80, 00) = (—1)"F" 2.

So the map ( ,d,) admits a section. It follows that Hgt_l(Xﬁc, Qy) is the direct sum of HZtk_l(ch, Q)
and Qgd,. Therefore, M, is identified with @g(—%)éa.

Let 7. be the uniformizer of O(A%C)). By [DK73, Exp.XV., Prop.2.2.3|, the Galois module
Qo(—"51)Qy6, is identified with the cohomology H"_l((D\C)]pp((WC))), where

ét,c

D= Z(—ﬂa ST yz*yj) C P, (ir)
4,J

and C = DN Z(w). By t_he computation of cohomology of quadrics in projective spaces [DK73,
Exp. XII., Thm. 3.3], then Q(—251)d, is the primitive part of anl(DFp((ﬂc))), identified with the

ét,c

determinant det H? ! (DF,((r.)))- According to [Sail2], the Galois action on det <H"_1(Dfpp((7rc))) (%))

ét,c ét,c
is given by the character corresponding to the quadratic extension

n—1

et (o) (V)T me G ) By () (1.14)
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It follows that Q(—251)0, ~ %, , (—257) ® sy (cay ;
Step 2: When n is even. By the Picard-Lefschetz formula [DK73, Exp. XV. Thm. 3.4], the intersection
pairing for the vanishing cycle classes d, is antisymmetric. By Lemma 4.11, the map ( ,J,) is surjective.
So we can find an element &/, being orthogonal to H’'(Xs,, Q) such that (5,,4,) = 1. It follows
that H, (X7, Q) is the extension of HY, (X5, Q) and Q¢(—%)d,,. Therefore, M, is identified with
@e(—*)(sl

Let 7. be the uniformizer of (’)(A(lc)). By [DK73, Exp.XV., Prop.2.2.3|, the Galois module

Qu(—252)8, is identified with the cohomology HY; 1((D\C)H:-p((7rc))), where

ét,c

D= Z<—7rc w4 (O Zyz‘yj) C P, el
(2]

and C = DN Z(w). By the computation of cohomology of quadrics in projective spaces [DK?& Exp.
XIL, Thm. 3.3], Q¢(—252)é, is the primitive part of HY, . 2(Cq ((r.)))» identified with det Hj; (CJFP(( )
According to [Sail2], the Galois action on det <H" Z(nyp((vrc)))(nTﬂ)) is given by the character corre-

ét,c
sponding to the quadratic extension

Fy(¢%)((me) W (~1)F - D nm,) R (4.15)

Hence, Q, (_7) 0q (g‘ga,n) (_

5 2) ‘ Since the intersection pairing is equivariant with respect
to the Galois group G, it follows that Q ( ) (.,%a n) (—7)

O

ne’

Proof of Proposition J.5. By [Lau87, 2.5.3.1], the local Fourier transform of j;Q, and j!ZXFp(ga) |n. are
given

FTloc(0,00")(Q¢ly.) = Qelyocor, o)

and
FTIOC(O, m,)(ngp(Ca)) = gX]Fp(ga) ® gg(] |7700®Fp(<a)

Step 1: When n is odd. Combining (4.12) and the computation of local Fourier transformations,
we have

N G
n+ 1]"Klpt1|p. = @Indgfp FTloc (0,00") (Mcln.) ® gwwp@) (Cf)‘noo
%
G —
D md/ FTloc (0,00) (L, o) © Lisy, ety © Lo (152) I
%

- @ (Wa)*(fwwp(gw((n-i-l)@t) ® gXFp(ga) ® Lo, ® "%ea,n) (I_Tn) [ -
l[aleC

Step 2: When nk is even. Similarly, we have

* G P ® -n
[+ 1" Klpyi1|ne = @Inde FTloc (0,00")(Qe) ® Ly, () (ct) ® Lha (%) Inee
[c]

= B () (Los, o (minican © L) () e
[aleC
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4.3.2 Local structures of some Sym*Kl, 4
The case of Kl,, 1

Lemma 4.16. If ptn+ 1, the Gal(foo/Noo)-module Klyi1 |y, ([%5]) is isomorphic to

[n + 1]* ($¢((n+1)t) & "?X Y fgg.gojn) ‘ 2 )[ n

Moo

o+ 1 (L © 2| I

Moo

where Oy, is the character defined in Section /.1.

Proof. We can view these representations of Gal(7] /7~ ) as representations of Galois groups of some
finite extensions, and view [n + 1]*, [n + 1], as restrictions and inductions of representations of finite
groups.

Let 7 be Ly (nr1)t) @ Ly @ Lp,0,,, if 211 and be Ly ((ni1)) @ Lo, if 2 | n. By Frobenius
reciprocity [Ser77, §7.2 Thm. 13], we have

LS (ot Kbl # (- [5))| ) = Kt bo+ 0.7 (C18) ] ) @)

By [Kat88, 1.13.2], the representation [n + 1]..% |, (—|5]) is irreducible, because it is totally wild and

its Swan conductor is 1. Since [n + 1]..% |, (—|5]) is of rank n + 1, it coincides with Kl,11[y... O

Remark 4.18. We can also deduce this Lemma by [Ful0, Thm.0.1].

The case of Sym®Kl,

Let {4 be a primitive forth root of unity, and we choose (g such that C82 = (4.

Lemma 4.19. Let q be the cardinality of F,((g). Assume that p # 2,3,5. Then Sym3K14|%o®]Fq (4) is
isomorphic to

4 (Lo © L, © La,) © W (Lyoay © L, © 2,)""
Sl (L acon @ Ly, @ Zo,) ® (4« (Ly(s—acn ® Ly © L) -

as Gal(Too /Moo ® Fy)-modules.

Proof. Step 1: Let Fy(z) be the extension F,(t)[z]/(2* —t) of k(t), and F,(y,w) be the extension
Fo(2)[y, w]/(y? — y — z,w* — 2) of F,(2). The Galois group H = Gal(k(y,w)/k(z)) is isomorphic to
Fyq x Z/2Z. For each (a, ) € Fy x Z/2Z, we denote by g, the corresponding element in H. The action
of ga, on kly,w] is given by

Jau Y=y —aand ggy - w=puw.

Notice that H is a normal subgroup of G = Gal(k(y,w)/k(t)), and the quotient
G/H = Gal(Fy[z]/F,[t]) = Z/4Z.

We choose an element g € G such that g -z = (4z. It follows that the image of g in G/H is 1.
Let W be a one-dimensional Qy-vector space and choose vy as a basis. We define the action of H
on W by

Ga,u - V0 = wq(_4a)X(I(M_1)'UO~

By the construction, W is isomorphic to (.qu(m ® 2y q) ‘77 S,
oo g

Consider the vector space A
Vi=IndGW = &3_g'W,
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which is identified with [4]. (£, 1) ® Zy,) ‘77 or, - Let v; 1= g'vg for i = 0,...,3. The set {v;} form a
oo Wlg

basis of V', and the action of G on V is given by

Ga,u - Vi = 1/)(—4@1(1))((](/1,71)1)7;
gV = Vi41 ('Un-i-l = —Uo).
Step 2: The symmetric power V3 := Sym>V of the vector space V with the induced Galois action is

identified with Sym*[4], (L, at) © Ly Inwer,- We choose the set {vL| I € N* and |I| = 3} as a basis
of V3. With respect to this basis, the action of G on V3 is given by

Ga - VE = P(—4CT)xq (L,
g ok = 7@

where o = (0123) € Sy acts on multi-indices by permuting the sub-indexes.
Now for each I, the set {g'vl | 0 <14 < 3} is the basis of
41 (Ly,aciyo 2, ) neeeFys

which only depends on the classes of I modulo the action of . We divide {vL | I € N* and |I| = 3}
properly into 5 sets corresponding to {(1,0,0,0),(0,1,1,1),(1,0,2,0),(2,1,0,0),(2,0,0,1)}. Adding
back the Tate twist, we get the expression in the lemma. O

Lemma 4.20. Let 7w be the map 1oc @ Fp(Ca) = Moo and assume that p # 2,3, 5.
(1). If p=1(mod 4), the Gal(Too /Moo )-module Sym®Kly(4)|,.. is
[4) (L, (126) © Loy @ Lo,0,,) ® (A4 (L, (— 1) @ Loy ® L6,
DA (Ly,(—ar) ® Ly, @ Loy0,,) B 4 (Lo (81ac) © Dy © Lo,0,,)-
B4 (L (s-1c0n) @ Ly @ Lo, 0,5)
where n; are some characters of Gal(Fy((g)/Fp).
(2). If p= —1(mod 4), the Gal(foo/Noo)-module Sym®Kly(4)],,.. is
41 (L, 120 © Ly, © Liy0,,) @ (L -2y © Ly, © Liy0,,)
O] (L, (-1t © Ly, ® Loyns) & T4 (L (5110000 © Lo @ Loy 0y,)
where 1; are some characters of Gal(Fp((g)/Fp).

Proof. If I is a multi-index such that Cr € Fp, then [4](Z}, (1c,t)) . 15 an irreducible representation of
Gal()oo /o0 ), because [4]. (L, (ac;t))ne 18 totally wild with Swan conductor 1. If I is a multi-index such
that C¢} € Fp for any 0 < i < 3, for similar reason, [4]+(Zy,acyt)) I 18 an irreducible representation
of Gal(7o0/Noc ® Fp(Ca)). By the property of induced representations [Ser87, Prop. 24 in p.61], the
representation

Tel4]: (L, (a0s0)) Inee (4.21)

is also irreducible.

Let 7 be the map 7o ® Fp((g) — noo, and .Z be one of the direct summands in the lemma but
without the characters 7; (for example .F = [4], (L, (12t) ® Ly, © Z5,)). Notice that Z is irreducible.
Using the Frobenius reciprocity,

1< (#.F, 7 (Sym*Kly(4)],..)) = (77" F, Sym*Kly(4)],,..).

Notice that 7, 7*.#% = @,.# ® £, where 1) runs through all characters of Gal(FF,((g)/F,). We conclude
that for each .#, there exists an 7 such that .7 ® %, is a direct summand of Sym?*Kly(4)},,.. -

Hence, for some appropriate characters n;, the direct sum in the lemma is a subrepresentation of
Sym®Klyl,,.. (4). So the direct sums in the lemma is a submodule of Sym*Kl; and have the same ranks
as Sym*Kl,. Therefore, we have an equality. O
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Now it suffices to specify these characters n; to finish conclude the local structure of Sym3Kly at oo.

Lemma 4.22. Let k > 1 be an integer and q = p?. Assume that p = —1(mod 4) and p > k. We denote
by m the map n ® Fp(Ca) = Noo. Then Sym”, (Ewwp(g4)(444t) ® fx) are isomorphic to

{@2b<k T (L, ey (@E—1)cat) D Lk InsceF, ) i 21k
Davar ™ (Lipe, o,y a@b-R)cat) @ Lytlnocsr,) D Qe 2|k

as Gal(7co /Moo ) -modules.

Proof. Step 1: Consider the extension

Fp(Ca)(y, w) = Fp(Ca) (2) [y, w]/ (y? —y — z,w% — 2)

of Fj(C4)(2). The Galois group H = Gal(F,(¢4)(y, w)/Fp(Ca)(2)) is isomorphic to F, x {£1}. For each
(a,p) € Fq x {£1}, we denote by gq,,, the element in H, such that

Gau Y=Yy —a, and g, , - w = pw.
Notice that H is a normal subgroup of G = Gal(F,({4)(y,w)/F,(2)), and the quotient
G/H = Gal(F,(Ci) ) /Fyle]) = Z/22.

We choose an element g € G such that g -a = a? for a € k. It follows that g* = 90,0-
Let W be a one-dimensional Qy-vector space and choose e as a basis. We define the action of H
on W by
Cy — —4 -1
Ga,pu,p’ - V1 wq( C4a)Xq(:u )UO'

By the construction, W is isomorphic to .qu (4¢st) @ Ly ‘17 SF,
oo g

Consider the vector space A
V= IndGW = @l ¢'W,

which is identified with [7]. (.,qu@@t) ® 2y
The action of H on w3 is given by

q‘noo®Fq). Let v3 := gvy. The set {v1,v3} form a basis of V.

o V3 =09 Gapg 01 = - a1 = Yg(—4C1aP) xg (1 Yoz = g (—4Caa)xq (1 s,
and the action of g on V is given by
gv1 = vy and gvg = v1.

Step 2: The symmetric power Vj, := Sym”*V of the vector space V with the induced Galois action is
identified with Sym*[r], (L, acst) @ LyyIneeor, ). We choose the set {vhvE7" | 0 < b < k} as a basis of
Vi. In particular, the action of G is

Ga,u * Ullyv{}gc_b = ¢(—4C4a(25 - k))X];(M_l)Ulfvg_b7

b, k—=b k—b, b
g . ’U1'U3 — Ul 'U3.

Now we have the following cases:
o If 20 — k # 0, the set {v8vh°, g(v2v5)} is the basis of
(7] ($¢q(4C4(2b—k)t) ® ‘Lﬂx’; ’7700®]Fq) = [n]. (gwq(‘lc(o,b,o,kfb)t) ® gx’; ’7700®]Fq)’

where (4a(2b — k) is exactly C(o,0,x—b)-
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e If 2b = k, the action G on the single element vll’vg is trivial. So this element generates @g\nOO@Fp;

So we get a direct summand 7, <$¢Fp(c4)(4(2b—k)<4t) ® $X§|nw®pq) for each b < k/2, and a direct

summand Q, for b = k/2. Since the direct sums in the Lemma has rank k + 1, and is a submodule of
SymP”, (/JwFp (cpnlacat) ® i”x), we have an inclusion up to some Tate twists. O

Proposition 4.23. Assume that p # 2,3,5. We denote by n1,m2,n3 characters of Gal(F,/F,) such that

ni (Frob,) = na(Frob,) = (%) and n3(Frob,) = (772) respectively.

(1). If p=1(mod4), the Gal(foo/1Ne0)-module Sym>Kly(4)|,,. is

[ ]*("g’ﬂ"/’p(ut) ® "E’ﬂXP ® "%‘99'771) ©® [4]*("?@017(*4’5) ® "%Xp ® ggy"ﬂ)
@[4]* (-pr(—#) ® "%Xp ® 399'773) ® [4]* (-pr((8+444)t) ® ZXP ® g‘gg) :
B (L, (s-4c)n) ® Dy, ® L)

i

(2). If p= —1(mod 4), the Gal(foo/Nwo)-module Sym®Kly(4)],,.. is
[4]* (’g"/’p(mt) ® gXﬁ ® 399'771) b [4]* ("E’ﬂwp(—‘lt) ® gXp ® 599'772)
O] (Lo (a) © Ly @ Loymg) & 4] (L (31+ac0t) @ Lre @ L, )-
Proof. We give the proof when p = —1(mod4). The proof of the other case is similar. Let 7w be
the map SpecF,(C4)((t71)) — SpecF,((t71)). Let .Z one of the components in the decomposition in

Lemma 4.20. It suffices to specify these characters 7;.
Notice that we have inclusions

gwp(at) ® ZXP ® Zn - [4]*[4}* (gwp(at) ® gxp & Xn)

and

T (L o (at) @ Lxp ® L) C AT (L ) ® Ly @ L)
So to determine these characters, we can search terms of the form

Lipy(at) @ Ly © Ly or WLy 5 (at) © Ly © L) (4.24)

for some characters 7 within the expression of [4]*Sym>®Kl4(4) for a = 12, —4 and 8 + 4¢4.
Since [4]*Kly(1) is the direct sum of

T1 =Lyt © Ly, @ Loy005 D Ly (—at) © Ly, @ Loy05
and
Ty 1= (L pacat) ® Lxp @ Lo,) = 7Ly pac00) © L) @ Ly,

where we used the projection formula and the fact that ;3 is trivial. So the symmetric power
[4]* (Sym®Kl4(1)) = Sym3([4]*Kl14(1)) is direct sum

Sym>.#, @ Sym%.F| ® F» ® F| @ Sym>.Fy ® Sym>.F,.
Combining Lemma 4.22, and use the projection formula, we find direct sums of the form 4.24 as follows:
e only one direct summand £}(19) ® £y, ® 92”92.93!3 corresponding to a = 12,
e two direct summands £y, (_4y) ® 2y, ® .,%2.9073,9%,3 and 2y (4 @ Ly, @ .,%3,9273 for a = —4,

e only one direct summand 7, ($¢p2((8+4c4)t) ® Lo ® Zgg_gg 3,9173) for a = 8 4+ 4¢{4.

Notice that the characters 6y 3 and 63 send Frob, to (%) and (%) respectively. We can check that
07 - 0873 =11, 07 - 003 - 053 =12, and 07 - 033 = 13. So the characters 7; are determined. O
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4.3.3 More examples

By a similar argument in Lemma 4.19, and use the description of irreducible representations of SLj
n (1.1), we have the local structure of the sheaves Kli(f’l) and K1§2’2) over F,((3).

Proposition 4.25. Let p be a prime, and v be the character p o Trg (5 /F, -
(1). If p# 3, the Gal(fjao /1 © F(C3))-module K1 !noomp(gg)( ) is
31+ L350 © B1+Ly—ot) ® Bl-Loparace)n) © Bl-Lsa—ac)1)-
In particular, the Swan conductor of Klgf’l) atoo is b ifp£2,3,7,isdifp=2and 3 ifp=T7.
(2). If p # 2,3, the Gal(ijo /7 @ Fy(C3))-module KIS |, ar (¢ (6) s

[31:Qe @ [3]«Lyparacsy) © BleLiypon © BleL5a1cn
D [3]*$w(3(4—2§3)t) D [3]*$¢(—9t) D [ ] 369(2(2 Ga)t)”
(2,2)

In particular, the Swan conductor of K13~ at oo is 8.

4.3.4 The invariants of the inertia group at oo
The dimension of (Sym*Kl,,11 |;..)'* is computed in [FW05, Thm. 2.5].
Proposition 4.26 (Fu-Wan). If pfn+1 and 2n | ¢ — 1, we have an isomorphism
Q@a (kntlp) o I n;

(Sym"Kln+1 [peer,)’™ (%) = 0 2k
Q@b kntlp) o fn and 2 | k;

as Frobs, q-modules.

4.4 The dimensions of the middle /-adic cohomology

Let p and ¢ be two different primes. In this subsection, we want to compute the dimension of the
middle ¢-adic cohomology Het mld(G Sym*KIl3). The Corollary 4.27 gives the dimensions when p is
coprime to n + 1.

However, the case that p | n + 1 remains mysterious. When n = 1, the dimension at p = 2 was
computed in [YV15, Cor. 4.3.5]. Following his method, we give a dimension formula when n = 2 and
p = 3. The key idea is to use the complete classification of finite subgroups of SL3 to find the local
monodromy group at oo of Kls.

m,Fp»

4.4.1 When ged(p,n+1)=1

Proposition 4.27. When p is coprime to n + 1, the dimension of the middle £-adic cohomology
Htlét,mid (Gm,ﬁ_?pv Syka1n+1) 18

1%

1 k+n
n+1<< N )—d(k,n+1p> ka ) —b(k,n+1,p) + 3 (k,n+1),

p=2and?2|k,
0 else,
numbers d(k,n 4+ 1,p) and b(k,n + 1,p) are defined in Section /.1.

where the number § (k,n+ 1) is the numbers my(u) are defined in (4.4), the
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Proof. By the long exact sequence (1.7), the dimension of H! ((CN Sym*Kl, ;1) is

ét,mid

HY(G, 5 , Sym"Kl, 1) + dim SymP K175 — dim Sym* K17, | — dim Sym*KI/% .

m,]Fp’ n+1

To compute the dimension of the middle cohomology, it suffices to compute dimension of the
invariants of global monodromy and of inertia groups.

First, combining [Kat88, Thm. 11.1] and [FWO08, Lem. 0.2], the invariants of the monodromy group
is Q¢(nk/2) if p =2 and n even, and is 0 otherwise.

At 0, the dimension of the invariants of the inertia group at 0 is summarized in Proposition 4.3.

At o0, the dimension of the invariants of the inertia group at oo is summarized in Proposition 4.26
if ptn+1. O

4.4.2 When n=2and p=3
The classification of finite subgroups of SL3

Let (9 be a primitive ninth root of unity, and we put w = CS and € = C§~ We define the following
matrices in SL3(C)

1 0 O 010
S=10 w 0], T=10 0 1},
0 0 w? 1 00
e 0 O 1 1 1 1
U=|0 ¢ 0],V= 5 wo w?
0 0 ew wow 1 w? w
Let
Gios =< S, T,V >C SLs,
Gor6 =< S,T,V,UVU ! >C SLs,
and

Geag =< S, T,V,U >C PGLs3.

We summarize the complete classification of solvable finite subgroups of SL3(C) from [MBDG61, Ch.
XII] in the following Theorem.

Theorem 4.28. If G is a finite solvable subgroup of SL3(C), it is isomorphic to one of the following
groups:

(A). Diagonal abelian groups,
(B). Groups arsing from finite subgroups of GLag,
(C). Groups generated by groups of type (A) and the element T,

(D). Groups generated by groups of type (C) and a matriz of the form

a 0 0
Qa,b,c =(0 0 b
0 ¢c O
for some roots of unity satisfying abc = —1,

(E). The group Gios,

(F). The group G,
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(G). The group Geas.

Remark 4.29. The rest possibilities in the classification of finite subgroups of SL3 are groups of types
(H) (I) (J) (K) and (L) in [MBD61], which are not solvable. In particular, the groups of type (H) and
type (I) are the well-known finite simple groups of order 60 and 168 respectively.

The local monodromy at oo when p =3

Restricting the local system Kl3 to 7., we have a representation p: Is, — SL3(Qy) of the inertia
group at co. We want to determine the group Dy = p(I ), which is a finite solvable subgroup of SLs.
The group admits a lower numbering filtration {D;} terminating at Dy, such that #Dy/D; is coprime
to 3, Dy is the 3-Sylow subgroup of Dy, and D;/D; 1 are cyclic abelian of order 3 for i > 1.

Theorem 4.30. The image of I under p is isomorphic Giog, whose lower numbering filtration is
given by
Dyr> Dy =< S,T> >Dy = =Dy =< wlg > I>{1}.

Proof. By [Kat88, 11.5.1], the local monodromy group Dy = p(oco) satisfies the following conditions:
(a). Dg acts on V = Kls |5 irreducibly,
(b). Doy admits no faithful Q-linear representation of dimension smaller than 3,

The groups of type (A) are abelian groups. Since all irreducible representations are all 1-dimensional.
Thanks to the condition (a), the image Dy is not isomorphic to the groups of type (A).

The groups of type (B) are groups induced from subgroups of GLs, which admit faithful Q-linear
representations of dimension 2. The image Dy is not isomorphic to the groups of type (B) because of
the condition (b). Now assume that Dy is of type (C) or type (D). To rule out these possibilities, we
first prove the following lemma.

Lemma 4.31. Let V = Klj3 |5, be the geometric fiber of Kl3 at co. The Swan conductor of Sym?V is
2 + dim(Sym3V) =,

Proof. Since the symmetric power of the standard representation of SLj is irreducible, the invariants
(Sym3Kl3)S™ (which is isomorphic to Hgt(Gm,ngﬂ Sym*Kl3)) is 0. By the Grothendieck-Ogg-Shafarevich
formula, the dimension of H. (G Sym®Kl3) is equal to the Swan conductor of the fiber Sym?V =

m,Fg’
(Sym?’Klg)ﬁoo, The Swan conductor is smaller or equal to L% -tk SymgKlgj = 3 because the breaks of
Sym?®Kl3 are at most %

Consider the long exact sequence (1.7), we have

0 — (Sym®Kl3)5™ — (Sym®Klj |,,)" @ (Sym®Kl; |, )=
— H, (G Sym®Kl3) — HE, (G

ét,c ét,mid

m,Fs) m,Fs) SymSKlg) — 0.

Recall that the dimension of (Sym?Klj |,,,)% is 2 by Proposition 4.3. We deduce from the exact
sequence that

3> dimHL(G,, 5. ,Sym®Kl3) = 2 + dim H}, ., (G

ét,mid

m.Fgr m.Fa> Sym?’Klg) + dim(Sym3Kl3 \7700)]50.

If the middle cohomology is nonzero, it is 1-dimensional. By the computations in Appendix A.1.1, we
know that
Tr(Frob | H. (I Sym®Kl3)) = —(m3(3) + 1 +p?) = 0.

ét,mid

We get a contradiction, because H! (G Sym3Kl3) is pure of weight 10. Therefore, the Swan

ét,mid \"¥m,Fs>

conductor is 2 4 dim(Sym?®V)!=. O
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Now assume that Dy is of type (C) or type (D). The representation Sym3V is the direct sum of
three subrepresentations Vi = span{v3,v$,v3}, Vo = Span{vgvj}#j and V3 = span{vgviva}.

e If Dy is of type (C), the action of Dy has fixed vectors in each V;. So dim(Sym?®V)’= > 3. Hence,
we deduce from Lemma 4.31 that

5= Sw(Sym’V) < 3,
a contradiction.

e If Dy is of type (D), the operators T" and Qg admit no fixed vectors in each V;. So the
invariant subspace (Sym3V)/= has dimension 0 and V; are all totally wild. Hence, we deduce

from Lemma 4.31 that s

2 = Sw(Sym?®V) = ZSW(Vi) > 3,
i=1

a contradiction.

The group Dy is also not isomorphic to groups of type (G), because Ggsg has no normal subgroup
of order 81, i.e. a normal 3-Sylow subgroup. The possible orders of normal subgroups of Ggsg are
1,3,27,54,216 and 648 by a group theoretic computation.

Now the remaining cases are the groups of type (E) and (F). We need the following lemma to
analyze their ramification filtration.

Lemma 4.32. If Dy is of type (E) or (F), the Swan conductor of Sym®V is 6.

Proof. From the above discussion, the group Dy is either the group Gigg or G216. In both cases, the
3-Sylow subgroup D;p of Dy is generated by matrices .S and T, of order 27. The group D; has only 3
subgroups of order 9. They are

Hi =< S,wlzg >, Hy=<T,wl3> and H3=<S8T,wlz>.

Because V is totally wilde, the last nontrivial group Dy in the ramification filtration has no invariant
vectors, i.e. VPN =0. Since S, ST and T have nonzero fixed vectors vq, vi + w?vy + vz and vy + va + v3
respectively, the group Dy is H; or < wlg >.

There exists nonnegative integers a, b, ¢ such that the lower numbering filtration is of the form

Do>Dy=---=Dg>--->Dgip >+ = Dgpppe > {1},
where Dgy1 =+ Dgyp is Hy, Hy or H3 if b# 0, and Dyypr1 = -+ = Dgypre =< wlz > if ¢ # 0.
We know that Sw(V) =1 and Sw(Sym?3V) = 2 or 3 according to (4.31). Then
o . . .
dim V' — dim VP 1 < b c>
1=Sw((V) = = 3xa+3%x - +3*—
( ) ; [DQ N Dl] [DO : Dl] 3 9
and
o . . .
dim Sym3V — dim Sym3V P 1 b c
2 or 3 = Sw(Sym?V) = = 8 6 +0x_|.
or w(Sym°V) ; Do Dyl Do Di] * a + *3—1— *3

If Dy = Gios, the only possibility is (a,b,c¢) = (1,0,3). If Dy = Gaig, we have two possibilities
(a,b,¢) =(2,0,6) or (1,4,3). Since the number ¢ is nonzero, the last nontrivial group Dy = Dgipyc is
< wl3 > of order 3 for all cases. Also, in all cases Sw(Sym?3V) = 2.

Now consider the Swan conductor of Sym®V = Sym®(Kl3);_. In this case Dy acts trivially on
Sym®V, so it suffices to compute dim Sym®VP1 and dim Sym®V 7 (if b # 0, Dyy1 = H; for some
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i € {1,2,3}). Let {v;}i=0.1,2 be the canonical basis of V and f; = v + w'vy +w?vy for i = 0,1,2. Then
the actions of S and T on the basis {f;} are

sz = fi+1 and Tfi = wiifi

where f3:= fp. Consider the set of multi-indexes A := {I = (lo, I1, I2) € Zgo | |I| := 1o+ I + 1o = 6},
on which o = (123) € S3 acts. For any vector f = ZEA arfLin Sym*V, we have

Sf= Zaa—llfl and Tf = Zalwb_hfl.
IcA IcA
Soif f € Sym®VP1 ie., Sf=Tf = f, the vector f will be contained in the span of {Z?:O oL Iy =
I = I mod 3}. The dimension of the invariants (Sym®V)" is 4. Similarly, we can compute that
dim Sym®V i = 10 for i € {1,2, 3}.
In conclusion, the Swan conductor is

1 3 1 6
—(24+%14+18%04+0*x- ) =-(24%24+18x04+0x—- ) =6
4( *1+18 %0+ *9) 8( *2+18 %0+ *9)
if (a,b,¢) = (1,0,3) or (2,0,6) and is
;(24*1—1—18*;1—!-0*3) =6
if (a,b,c) = (1,4,3). O

Lemma 4.33. The dimension of (Sym6V)I® 18 2 if Do = G1os and 1 if Dy = Ga1g.

Proof. Let Dy = p(Ix) be either Gigg or Gaig, which is a normal subgroup of G = Ga16 or G = Geas
respectively. Let a € G/Dg be the image of an element a € G, then

1
Tr(a | (Sym*V)/=) = — Tr(g | V).
x(@] (Sym*V)™=) = 5 Z r(g| V) (4.34)
g€a-Dg
In particular, if we let a = 1, we get
1 -1
dim(Sym* V)= gk = _—
Z ( ) 4Dy gg];o P,y (x) (4.35)

where Py y(x) = det(x-g — 1| V) is the characteristic polynomial of g. This can be easily computed
by Sagemath [The22|, see Appendix A.4. Therefore, we get

P(x) = if Dy = G1os;
( ) (_1 +$3)3(1 +$322(1 +$6) 0 108 (4 36)
P(x) Lo dal—a? ol if Dy = @ '
€Tr) = — 1 = .
(—1 4 23)3(1 + 23)2(1 + 5) 0 2o
In particular, their coefficients of ¢4 is 2 or 1 respectively. O

By Appendix A.1.1, we have

Tr(Frob | H, (G Sym®Kl3)) = —820.

m,Fg’

Combine Proposition 4.3 and [Kat88, Thm. 7.0.7], we deduce that

Tr(Frob | (Sym®Kl3)%) =1+ p? + p* + p® = 820.
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Using again the long exact sequence (1.7), we conclude that

Tr(Frob | HY; 1nia(Gp 5y, Sym®Kls)) = —Tr(Frob | (Sym°Kls)') (4.37)
and
dim HY, 114(G,, 7, Sym°®Kls) = 2 — dim(Sym°Klz)"=.

If Dy = G216, then both dim(Sym°®Kl3)/= and the middle cohomology are 1-dimensional. However,
by (4.37), since (Sym®Kl3)/= is pure of weight 12 and H. (G Sym%Kls) is pure of weight 13,
we get a contradiction. 7

In conclusion, the only possibility is Dy = G1ps. And its ramification filtration is given in terms of
the triple (1,0, 3) in the proof of Lemma 4.32. O

m,Fg’

The dimension of the mid-cohomology

Proposition 4.38. When p = 3, the Swan conductor of the action of Is, on (Sym*Kls) lnee 5 given by

Swans (Sym*Kls) = 3L 2 ’
( 3) {411 ((k;rz) _ d(k,sé3)+2) 3| k.

Proof. 1f 31 k, then there is no fixed vector of Sym*Klj |, under the action of the group < wl3 >. So
the Swan conductor will be

idimSymkV—O _ dim Sym*V Z 3. 1 (k+2
i—1 [D() . Dz] N 3 [D() : Dz] N 3 2 '

If 3 | k, it is similar to the case that k = 6. In this case Dy =< wl3 > acts trivially. The dimension
of Sym*V Pt is computed in terms of invariant vectors under the action of S and 7. We again let
{vi}i=0,1,2 be the canonical basis of V' and f; = vy + Wi + wvy for i =0,1,2. If Sf =Tf = f, the
vector f will be contained in the span of the set {37, 7L | Iy = I = I mod 3}. The dimension of

the invariants of S and T is exactly the number w +1= d(k’g’gﬁ. In conclusion, the Swan
conductor is

i dim Sym*V — dim Sym*VPi 1 //k+2\  d(k,3,3) +2

— [Do : Dy 4 2 3 ‘

Proposition 4.39. The invariance of inertia is

(Sym™ V)= = Qu(—k) P & ZLp(—k) PP,
where 0 is an unramified character zyhz'ch sends Frobenius to —1, and py and qy, are the k-th coefficients
of the generating series P(x) and P(x) from (4.36). In particular, the dimension of (SymkV)Lfo iS Dk-

Proof. Let ¢ be a lifting of the image of Froby, in GL3 and ¢ = %(ﬁ in SL3. Since ¢ normalizes
Dy = Gyps, it is in the normalizer of G1gg in SL3, i.e. Go16. By a direct computation, we know that
G216/ D1 is the quarternion group Qs and Dy/Dj is a cyclic group. Notice that &flgél = ¢3 for g € Qs,
which implies that ¢1 & Dg. In (4.34) we let a = ¢1. Then we get

-1
Pg,V(m),

9] ) s 1
Q(x) := SE%TY(@ | (Sym*V)/=)z* = 108 Z

= g€d1 Do
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where P,y () is again the characteristic polynomial. Since ¢1 ¢ G1os and Gai6 = Giog U ¢1G108, the
series Q(z) is nothing but
; —1+ a2 —af
2P(x) — P(x) = - )
(@) = Pl@) = s 1 a0)

Let py and g be the k-th coefficient of P(z) and P(z) respectively.

Notice that ¢? € Gyos, because [Gaig : Grog] = 2. So the eigenvalues of ¢; acting on (Sym*V)!=
are £1. Assume that the dimensions of eigenspaces of 1 and —1 are A\; and A_; respectively. Then
A+ A = dim(SymkV)I‘fo and \1 — A_1 = 2P, — pr. Therefore, we get the desired decomposition
Proposition 4.39. O

Corollary 4.40. When p = 3 the dimension of the moments will be

1 (k+2y _ LMJ 31 k;
dim Hét,mid(Gm,Fp’ Sym*Kls) = i)( ;iz d(2k33)+2 E+2
HEY) — S 2 3|

4.5 The e-factors of Kloosterman sheaves

Recall that the e-factor of an f-adic sheaf .# on a smooth projective variety X over a finite field k

is the f-adic number
2

e(X, 7) = [ [ det(—Froby, | Hi,(Xz, 7)) Y
=0

i+1

The e-factors of Sym*Kl, are computed by Fu and Wan in [FW10]. In this section, we will prove
the following result.
Theorem 4.41 (Theorem E). Let F = K, be sheaves from Theorem A.

(1). If n|A| + 1 is even, then

nk+1 3 11l oz
53— dimHg, g (Gm,ﬂ«"pv/).

(2). If F = Sym®Kly, and p & {2,3,5}, then

e(Pr,, juF) = (%) P10,

Proof of Theorem /./1(1). By Corollary 2.16, the middle de Rham cohomology H}, ., (G K17)2+1)
is a symplectic representation of Gal(F,/F,). So the determinant of Frob,, is a power of p. Taking into

account the dimension and the weight of HY, ., (G K1) +1)’ we conclude that

m,Fp»

m,Fp>
e(Pg, K1) 1) = det(—Frob,, H, (Pg , K1) 1))
ét,mid

— det(Froby, HY g (G, KI 1)) = p 2 O Hmia (G K1)

To prove the second part, we use Laumon’s product formula, see Section 1.4.3.
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4.5.1 Local e-factors at 0

We compute the local e-factors of Sym*Kl, 1 at 0 here.

Proposition 4.42. We have

. ntk LTJm k(7R 2 LE}J P—
£ (Ploys JeSym* Kl [py o dt [ps ) = (=) (%) P20 e k(T 2700 i)

)

where my(1) are numbers generated by the series in (4.4).

Proof. By abuse of notation, we let i: s — IP’%FP ) and j: ng — IP’]le ) be the inclusions. By (1.11)
and (1.13), we have ) B '
e(Plgy, ixi*Qe(i), dt) = det(—Froby | Qi)' = —p~" (4.43)
and B
£(Ploys Qe(i),dt) = 1.
By the short exact sequence B B B
0= jij"Qe = Q¢ — xi"Qr — 0
and (1.10), we have B 4
&(Ploy, 313 Qe(i), dt) = —p'. (4.44)
Then use (1.10), (4.43), and (4.44) several times we have

e (P(o) J+Sym"Klos1 e, dE L2 )
=& (Py), 13" Sym" Kl [p 1) - (Pl iwi* (G Sym* Kl 1), )
=& (Bfoy Vi ) - (Blgy, i (Sym*KL, ), db)
ZHE(% Vi Vet dt) - det (—Froby | @L%OJ@E( )@y !
—H pemmny - T (=piyme®

0<i<nk/2

nk
AN G I OIS R v &

iy (i)

Notice that »;(nk —my) = ;my, and 3 (nk —my) +> ymp =3 ;nk = nk(n:k) The number
Sy my is nk(™FF) /2. O

4.5.2 Local e-factors at oo

Now we compute the local e-factor of Sym®Kly at co.

Lemma 4.45. Let F, be a finite extension of F,. We denote by x4 the unique nontrivial quadratic
multiplicative character of F .

(1). (P B, (00) 20> A" ) = 0(Frobg)" g~ for any characters  of Gal(F,/Fp),
(2). (PE, (o) J5-Lrar dt) = —g(Xar ) - 42,
(3). 5( j*qu(at),dt) L forae Fx,

(P

(4). €(PL ooy dsLopy(ar)- L) = 4fomeIF;,
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(5)- (P F,,(c0) fxq ®.§qu(a.t),dt) =q 1x,(a) forae Fy,
(6). €(Ps, (00y:Lrxa ® Lipy(a), At) = xq(4a)g™" for a € FY.
Proof. (1). By (1.15), we have
1 A m\ _ a(Pl (o0 ,@e,dtm) ) 1 = m\ Tk %
E(P]Fq,(oo)v(@f ® Lp,dt™) = det(Frobo, £y) \ Fa(=) 5(Pnrq,(oo)»@£,dt )
—=0(Frob, )™ +tg=(m+D)

where a(]P’]%q (o)’ Qy, dtm) =-m-—1.
(2). Here we simply denote by x the character induced by j..Z,,. We can verify that, by [Serl3,
Chap. XIV Prop. §|,

X((E)™ (a0 + art™ +..)) = xq(—ag ).
Then the conductor a(xg) is 1 and vo(dt) = —2. We have

£ ) = / () War(2)dz
(t=D)Fg[[t=1]]
o —1 —1 —1
- / () Wan(tL2)d ()
Fq[[t=1]]*
71
Xy (—a)Wae(t™ a/ dz
Z . ar(t”a) LR [[t=1]]

aGFX

=4q - ZXQ wq ) _g(Xqﬂ/}q) : q_2-

(3). Here we also denote by x the character induced by j.-Zy, (4.t). By [Ser13, Chap. XIV Prop. 15] we

can verify that
1 dz
X(Z) = qu a - Resoo F? .

Then the conductor a(x) is 2 and v (dt) = —2. We have
e(X, thw) = / X (2)War(2)dz
Fqfe=H]]*

= Z X Ha+t713) g (a+t 1[3/ dz

2F 1
aEFy BEF, LH2E )]

—QZw (—) e, (—B)
ST () =

(4). Since d(t*) = (4¢3)dt, by (1.14) and the description of the character x associated with JxZLp(4ar) 0
(3), we have

1 : 4 -3 1 - —4
e(PF, (0o)r J+-Lig(aty At*) = a7 - €(Pr, (00 F+-Lipy(at), At) = a7

(5). Let x be the character induced by £\, ® £y, (q.1), then combine the two propositions we used in
(2) and (3), we have

X((t7H™ (a0 + art™" +...)) = xq(—ag ") - %(_a ' al)-

ao
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Then the conductor a(y) is 2 and v (dt) = —2. We have
et = [ T Tal)d:
Fo[ft=11)%
= ¥ et vatarets) [ az

1+t—2F,[[t—1
acF AeE, +2F, [t 1]]

= S, (—f) b, (=)
=q? qu @Z)Fq ( B (Z + 1)) = xq(a g™t

(6). Similar to (4).
O

Lemma 4.46. Let j: G,, — P! be the inclusion. Let k be a finite extension of Fy, and mg: Noo @k — Noo-
(1). We have the decomposition

T Qe = © L,
6: Gal(k/F,)—»Q

(2) E(]P)[%Tq’(oo)aﬂ-k*@fadt) = #k_2;

(3) 6(P11Fq,(oo)777k*@€,dtn+l) _ #k_(”“),

[Fq:Fp]
(4). We have £(P; By (00)’ ,[4].Qy, dt) = (%) - g(x, 1) 3 EaFr] . g8

Proof. Assertions (1) can be proved by the definition of Induction of representation of finite cyclic
groups and Galois theory.
(2). Use (1) and Lemma 4.45(1), we have

e(IP)Iqu,(oo)77Tk*@fadt Hg m),f@,dt Hq FI’Ob #k'_Q’

where we used the fact that ([]6)? =
(3). Similar to the proof of (2).
(4). Use (2), (1.12), and Lemma 4.45(6), we have
-1
(PF [ J« det) (P]IFQ,(OO)v (4] (Lpyat) @ Lyy), t)
:E( Fq,(oo)7(@€7dt4) 'E(PFQ,(OO):g%(M) ®-$><qadt4)
=q¢ ¢ =q "
Apply Laumon’s product formula in Theorem 1.9 to Kls, we have

1=¢* 5(1@[}%(0),]’*3114, dt) - z—:(P[qu,(oo),j*Ku, dt).

On the one hand, by Proposition 4.42, we have E(P]%‘q (0),j*Kl4, dt) = —¢% On the other hand, by
Lemma 4.16 and (1.15), we have

& (P, (o0)s [ (Lpan) @ Liy) © Lo,00,5(—1), dt)

1 _
=¢(Pg, (00)» 41+ (Lpary ® Z,),dt) " - (8 - Oo3(Froby) - ¢)
=g~ - 003(Frobg) - g(x, vp) Tl e (Ph (o) [ (Lypan ® Z,), dt).
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Combining the above identities, we deduce that
E(Pllb‘q,(oo)v [4) (Lpary ® Ly, ), dt) = —q~ 7 - 0y 3(Froby) - g(x, vp) 2 E Tl

By the definition of 63 in Section 4.1, it sends Frob, to (—* 2). At last, by (1.12) and Lemma 4.45(6),
we have

B =2 [Fq:Fy) . B
E<P]%‘p,(oo)7 [4]*Q€7dt) = —(?) . g(X7Q/)p)3[]FQ'FP} - q 8'

Remark 4.47. For simplicity, we can let
9\ [Fq:Fp] 3[Fq:Fp]
0g,3 = —(?) o (9(X7¢p)/p1/2> o

Lemma 4.48. Notations are as the above. Let § be a character of the Gal(F,/F,) and q € Fy. Letw
be the map IP’]% (o) IP’]IF ( We have

(1). ( Fg,(c0)? ' g ®'$97dt) eil(Fmbq)ﬂ(Xqﬂbq) q 7,
(2).
(3).

e (P F, (00) “Libg(4at) @ Lo, dt 1) = 0(Froby) 3 - ¢4,
(

(4). €(Ph ooy Tel41e(Lo, (10t @ Lo, 1)) = O(Froby) 36,5 ¢~ %,
(
(

Iqu,(oo)7 [4]*o§/ﬂ¢q(4at) X gg, dt) = Q(Frobq)*ii . 5(1’3 . q_7,

(5)- €(Ph, (0o0)» Lra @ Lg(aar) ® Lo, dt*) = §(Frobg) = - xq(a) - ¢~*,
(6). €

(7). € (B, ooy T4l (Ly, @ Loy, acp) @ Lo), dt) = O(Frobg) ™ - xg(a) - g3 g2 -
Proof. (1). By (1.15) and Lemma 4.45(2), we have

]P)Iqu,(oo)’ [4](ZLxy ® Ly, (4at) @ L), dt) = 0(Frob,) =3 - x4(a) - 643 - ¢ 2,

( (oo)’ZXq ®$9,dt) det(Fl“Obq,f@)_l -5(P11Fq7(oo),fxq,dt)l
== 9_1(Fr0bq) - (9(Xq>1q)) - g >
(2). By (1.15) and Lemma 4.45(4), we have
6(1[‘)11%(00),3%(4@) ® L, dt4) = H(Frobq)_3 . 5([?11%(00),%%(4@), dt4) = H(Frobq)_?’ g4
(3). By (1.12), Lemma 4.46(4) and (2), we have
&(Ph, (o0) [+ (L, (ar) @ Z5), dt)
=<(Ph, (oc)s 41+ (L, 10y ® Z0), ) - £(Ph, (o, [41:Qe, d8) " - 83472
=¢(P, (00 .qu(m ® Lp,dtt) - e(Ph () Qo dt) T Ggs g7
:Q(Frobq) gt 0g.3 " q*7d :0(Frobq) -5q,3‘q*%
(4). By (1.12), Lemma 4.46(4) and (3), we have
&(Pk, (00 T+ 415 (Lo (aat) ® Z0), 1)
=¢(Ph (o) T l41:(Losy 1) © Lo, 1) - (PE (o), mQf,dt) g8
=& (P, (00> g¢q(4at)®°%vdt) e(P Fq,(oo)’@?dt)_l'qis
0(Frob,) 38,3 - q -2 ¢® - q7% = O(Frob,) 35,3 - q_%.
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(5). By (1.15) and Lemma 4.45(6), we have

(P, qu<4at> ® L, ® Zp,dt’)
=9(Fr )  €(P, (00) Loy (dat) ® Ly, L")
=0(Frobg) > - xq(a) - ¢~*

(6). By (1.12), Lemma 4.46(4) and (5), we have

e(IP’]Fq (Lyy @ Ly (1) © L), dt)
=¢(Py Fy (00> fxq ® Ly (1at) ® L), dt) - e (P} ¥, (00)r [41xQe, dt) s
=e(Ph, (00 Laa ® Lypytaary ® Lo, dtY) - e(Ph (o). Qe dt!) ™ 6,577
=9<Frob > Xo(@) a7t g0y a7
=0(Frobg) ™ - xg(a) - g3 -4 2
(7). By (1.12), Lemma 4.46(3) and (6), we have
€ (P, (o) T[4l (Lrg ® Loy, 4at) ® Zp), 1)
:5( IlF ($Xq ® Ly, (dat) ® L), dt) ( 00)77&@;}7(%)71 g8
=e(P J%‘ 7[4 (Lrg ® Ly (1at) © L), dt) - ¢ - q -5
:5( Fy, (o0 ,[4 «( g ® Ly, (4at) ®.,%),dt) -a(IP’ (00)° , [4]« Qe,dt) ! .q8
=6(Froby) * - xg(a) g5~ 7 ¢
=0(Frobg) ™ - xg(a) - g3 -~ .
O
Proposition 4.49. If p & {2,3,5} U {¢}, we have
E(PE ooy e Sym®Kly, dt) = —p~% (—p15>
Proof. Assume first that (_71) = —1. In this case the 4-th primitive root of unity is not contained

in F,. Let m: Pﬂl?p(@),(oo) — Plle,(oo) be the morphism induced from the inclusion F, — F,({4). By
Proposition 4.23, the local structure at infinity of Sym3Kly(3) is the direct sum of

41+ (L, 120 ® Ly @ Loymy) © (A (L ca) © Ly © Liys)

and
(41 (L (-at) © Ly @ Loyny) & Tl (Lo (340000 © Lo @ 20,),

where 604, 11,12 and 73 send Frob, to —g(xp, ¥p), (%), (%) and (_72) respectively.

By Lemma 4.48, the local e-factors of the above direct summands are

o &(Ph, (o) [4+ (L0120 @ L5, ® Liyg,, ), ) = —(57) - 075

. 5( [4]4 (L (—at) @ Ly, @ Loyp),dt) = —p~7;

* 5( *(gwp —at) ® Ly, ® L, ns) dt) (—?1)])—77

. E(lep,,,(oo)aﬂ* [41: (Zy o (4400 @ Dro ® L), dt) = —(3)p~™
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Then, the local e-factor E(]P’]}p (Oo),j*SymgKL;(Zl), dt) is

G2 G ) (O
v () ()

Therefore, we have
E(P]%-p’(oo), 7:Sym®Kly, dt) = s(]P’Ile’(OO), 7+Sym®Kly(3)(—3), dt)

; - o5/ —15
:5(Pﬂrp’(oo),]*Sym3Kl4(3), dt) . (p4) B_ 95(7)

Assume that (771) = 1. In this case the 4-th primitive root of unity is in IF,. The only difference is
that we have now 5 direct summands. We replace

e [4l (L, (s44c0t) © Zxp © L)

by
41 (Lo (s+ac0n) © L@ Lo,) @ e (Lip(s-aci) @ Ly @ L, )-

Again we use Lemma 4.48 to get

o (L (sracon @ Ly ® Zp,) = — (LT,

i [4]*(92”%((8—4(4),:) ® %y, ® feg) = —(72(2,){4))2977.

Therefore, the local e-factor E(IP)Ile’(OO),j*Symi%KM(KL), dt) is
(-G) ) & (H(5))
(_ ( _2(2p+ 2 )p_7> ' <_ ( _2(219_ = )p_7>
S (B ()
The rest is similar to the first case. O

4.5.3 Proof of Theorem 4.41.

Proof of 2. By Laumon’s product formula 1.9, property (8) in Section 1.4.4, Proposition 4.42 and
Proposition 4.49, we have

e(Pk, , j.Sym?Kly)

20 1 . 3 . 1 : 3
=p €(P(0),]*Sym Kly |P%o)’dt |on)) e(IP’(OO),j*Sym Kly ‘P%m)vdt ‘Péoo))

=p20 . (—1)2 . p%5. <_p_95 (;B))

b
() (2,

where we used the quadratic reciprocity in the last identity. O



Chapter 5

L-functions of Kloosterman sheaves

The purpose of this chapter is to prove Theorem A and Theorem B.

5.1 Galois representations attached to Kloosterman sheaves

In this section, we prove Theorem 5.4, which implies Theorem C. Moreover, we describe the Galois
representations attached to Sym*Kls in detail in Theorem 5.12.

5.1.1 A compactification of

Let k be an integer and p a prime number not dividing n 4+ 1. The Laurent polynomial g;'?fl =
Sk (Z?Zl vij + ﬁ) on the torus G”m"j(@ defines a hypersurface K. We choose a toric compactifi-
cation Xio of (G}Zf as the one in Section 3.3.5 now.

We begin with the pair (G"*, g% ). Let M = @; ;Zy; ; be the lattice of monomials on G and
N = ®; ;Ze; j be the dual lattice. We consider the toric compactification X of Gﬁf attached to the
simplicial fan F' in Ng generated by the rays

R>o -2, €i5€i5

where ¢;; € {0,£1} and (¢; ;)i ; # 0. Each simplicial cone of maximal dimension nk in F' provides an
affine chart of X, which is isomorphic to A™. On each chart, the function g;'?fl has the same structure.
For example, we can consider the maximal cone generated by

Yio,jo ‘= Z €ij + Z Cig,j
1<i<io—1,1<j<n 1<j<jo
for 1 <ig < k and 1 < jg < n, where the affine ring associated with the dual cone is the polynomial
Yij/Yijy1 1<j<n
ring Q[u; ;] such that w;j = ¢y j/yit11 i <k,j=n
Yk,n i:k,j:n..
In this chart, we can rewrite g=F, as gl/(ngjgn ujl’j Tlo<ick uzj), where

k—1
go=1+> [T wi; II iy T1 wid;+ I1 @iy I1 w0

e=11<j<n 2<i<e 1<j<n 1<j<n 2<i<k,j
1<j<n

for a polynomial h. The toric variety X provides compactification of (G”k,g§f1), where the closure of
the zero locus of g&%,, and X\GJ¥ form a strict normal crossing divisor.

93
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We take the zariski closure of the hypersurface Z (giﬂfl) inside X, denoted by K. One can check that

r—1
Z(g1) N Z(ur,s) = @, Z(g1) N Z(urs) = V<1 + ZHU{] : H ujj - H“ZJrfg)

e=l j 2<i<e,j J

and

r—1
Z(0g1/0ui1) N Z(uys) = V(Z Hu{j . H ug' - H“Z;fg/uls)
e=1 j 2<i<e,j j
for 1 < s <mand 2 <r <k It follows that for 1 < s < nmand 1 < r < k, we have Z(g1) N
Z(0g1/0u11) N Z(uys) = . We deduce that K is smooth along the divisor Z([] u; ;). Moreover, one
can check that Z([]u; ;) N K satisfies the strict normal crossing property.

As for K = KNG™*, one can check that K is smooth if gcd(k,n+41) = 1 and has isolated singularities
inside G™* if ged(n + 1,k) > 1. In the latter case, the singular locus ¥y of K has only finitely many
Q-points or Fp—points, which are all ordinary quadratic. We do blow-ups of G"* along the singular
locus ¥y and denote by K’ the strict transform of . For convenience, we also put K’ = K in the case
ged(k,n + 1) = 1. We denote by K’ the closure of K’ in X.

Lemma 5.1. Let F be either Q or F,. Assume that ged(k,n+1) > 1, nk >3 and ptn+ 1. Then we
have

an—l

ét,c

iy = {HET () @ Qu(=fEH) S22 4k
. (Kr) 2 | nk.
Proof. Let T be the preimage of ¥ along the blow-up morphism K’ — KC, which is a disjoint union of
quadrics. Then consider the commutative diagram of exact sequences

HEP2(Tr) —— Hy (KT )p) —— HEH(Kg) —— Hy ()

lg lﬁ (5.2)

Hy 2 (Bo)p) —— HEH((K\Zo)s) —— Hy' 7 (Kp) —— HE' ™ ((So)s)-

ét,c ét,c

By the assumption that nk > 3, the cohomology Hgf*((zo)w) and Hgt’“*l((zo)ﬂr) are 0. In particular,
~ will be surjective if we extend the diagram by one more column on the right.
If nk is odd, we have Hgtkfl(TF) = QZ(%)@#%(F) since T is disjoint union of quadrics. Moreover,
we have a short exact sequence
0 — HZFH((K\T)p) < HZE S (Kg) & HEFH(Tk) — 0.

ét,c ét,c

Since Hgfc_l((lC’ \T)p) ~ HZZTC_I(ICF), the morphism /5 becomes a retraction of o. Hence, we have a

direct sum decomposition

L k) = M3 (0Cs) © Qi) 24500
If nk is even, the cohomology He’f‘tk_l(TF) = 0, because T is disjoint union of quadrics. From this we
conclude that H2F (kL) = HZF 71 (Ky). O

ét,c ét,c

5.1.2 The /-adic case in general

Let X be a sequence of integers and G be the finite group from Section 2.1. Let ¥/(p) = ¥/(|A|, n+1, p)
be the singular set of IC]%, . If ptn+ 1, the singular points in ¥/(p) are ordinary quadratic in the sense
P

of [DK73, XII 1.1].
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Assuming ptn + 1. We let n|\| = 2m + 1 (resp. n|A| = 2m + 2) and apply the Picard-Lefschetz
formula [DK73, XV 3.4] to I@ZP — Spec(Zy). For each z € ¥'(p), there is a vanishing cycle class
0z € HZJ)‘lfl(IC(’@p)(m), well-defined up to a sign. These vanishing cycle _classes are orthogonal to each
other and < d;, 6, >= (—1)™2 (resp. < 6,0, >=0). We fix a place of Q over p, and denote by I, the

corresponding inertia group. To each element o € I,,, the action on HZJM_I(IC{@) is given by

o(v) =

{v+<—1>mzx€z/<p> P (0,8:)0 240N 53)

v—(=1)™ Z:pezf(p) €(0) (v, 0z) 0z 2 | n|Al

where € is the character I, - {£1} of order 2 if n|A| odd, and is the fundamental tame character
Iy = Jm puen (Qy) if n|A| is even. Moreover, we have an exact sequence

0— HZ'MA(ICI’—F ) — H"w Y Z Q¢(m
zeX/(p)

where 7 is the sum of the intersections with the vanishing cycle classes ;.

Theorem 5.4. Let p # { be two different primes. Then there exists a finite set of primes S = S(\,n+1),
such that

(1). (Mp, )¢ is unramified at primes p € S, and (M), )¢[(p] is isomorphic to H., mid G 7, K )
as Gal(Q,/Q,)-representations, which is in particular unramified.

(2). Ifn|A| is odd, pt2(n+1) and p € S, then (M), is tamely ramified.
(3). Ifn|A| is even, pt (n+1) and p € S, then (M, )¢ is tamely ramified.

Proof. Let S be a finite set of primes containing all primes p such that p | n + 1 or the variety K’ has
bad reductions at p. We show that .S satisfies our need.

For simplicity, we denote by G = G X pupy1 and by x = x) the groups and characters from
Section 2.1, and we omit the coefficient @y in the cohomology. Set KO = K’, and let K be the
disjoint union of all i-fold intersections of distinct irreducible components of K'\K' for ¢ > 1. Let F be
either Q or IF,,. Consider the spectral sequence

, - +
(B ") = HY(KY) = HE(CE).
For the case F = Q, since all the K(® are proper smooth, morphisms in the Es-page are 0 for the reason

of weights. Therefore, the spectral sequence is degenerated at the Fo-page. It follows from the spectral
sequence that

n|A n n)\ n)\ =
gl T HANT () = (BYNY) g = ke (M (K) — BN (KY))

:lm( n|)\\ 1(/C/) a n|)\\ I(IC/ ))7

ét,c

where the second map is the quotient HZJ’?J 1(IC’ ) — EO "1 induced from the abutment on
n|>\| 1
etc
using the 1somorphism in (5.1) we conclude that

(IC’ ). Notice that the above spectral sequence is equivariant with respect to the action of G. So

im(a)@X ~ {(M;\Hrl)@(l) & (Qu(m)®#R@)Ex 2|y, (5.5)

(M7 4 1)e(1) 2 [ nfA].
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For the case in characteristic p, i.e. F = Fp, similar to the characteristic 0 case, we conclude that

Al—1 Al—1 Al—1
el e () = ety (B PI)g, = grld i (H2 0k, ) S HEPTHRE, ),

which is equivariant under the action of G. Recall that by Theorem 2.17, we have

n|\
HY pmia (G, K1) = ety HEA T (g, Qe(€)) (—1)CX,

Therefore, gr m(3)%X(—1)[¢p] is isomorphic to

Wi
n|A|+1

{Hét mld(Gm,Fp7 Klé-&—l) D (@E[CP} (m)@#ZO(Fp))07X 2 'f 7”L|)\|, (56)

Hit mld(Gm,Fp7 Kli\L+1) 2 ‘ n|)\|

Assume from now that p{ n + 1. Consider the G-equivariant commutative diagram with exact rows

Al—1 L Al—1
A (g ) —— HE T (K)

lg la (5.7)

n|A|—1, - L n|A|—1,
0 —— Hétl | (Ks,) — Hét| | (Kg) — 5 Buesy(p)Qe(—m),

where the middle row is given by the Picard-Lefschetz formula. Notice that each class d, is a generator

fH?l/;| 1(IC' RY(m)), with support {z}. So A = ©Qy(—m)d, are contained in im(c). If we take the

G isotypic component on the second row, we have an exact sequence
(G, x)-isotyp p : q
=1, A—1,+
0 — HTH(RG )% 5 HENTH(KR) X D @es (Qu(—m)) X (5.8)

By a diagram chasing argument, we get an inclusion ng‘l/)\'Him(ﬁ)(GW) < im(a)®X from (5.8). When
K’ has good reduction at p, the variety IC]/F is smooth proper and the morphisms ¢ and ¢, in (5.7) are

isomorphisms. As a consequence of (5.5) and (5.6), we have an isomorphism

( n+1) KP] et mld(Gm,va K12+1)

of unramified Gal(Q,/Q,)-representations. So according to our choice of S, the first statement is
verified.

If p e S, for example when A% X is nonzero, the Galois representation (Mﬁ +1)¢ is indeed ramified at
p. By Picard-Lefschetz formula, (M), is tamely ramified if (p + 1) - n|A| even, and is possibly wildly
ramified if p = 2 and n|A| odd'. In conclusion, we proved the second and the third statement. O

Remark 5.9. In the above, the set S is not the smallest one, because we omit the case that p | n + 1.
When p divides n + 1, the singular points of I@Fp are isolated but not ordinary quadratic. So the
Picard-Lefschetz formula is not valid in this case. However, the vanishing cycles with respect to
I@Zp — Spec(Zy) are still 0 if 4 # n|A| — 1 [11103, Cor. 2.10]. By the long exact sequence associated with
vanishing cycles [DK73, XIII(1.4.2.2)], the cospecialization morphism

ét

HM T (Kg,) — HY T (Kg)

is an injection. Hence, the diagram

e (Ke,) —— WG ()

“l 1

0 —— HZM™ 1(1cF ) —— HIN N (Kg)

!This is because the character e: I, — {41} has order 2.
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induces an injection

im (B (R,) & B (Kg)) N (-1) ey (I ) O (-1) = M )e (5.10)

ét ét,c

As long as (5.10) is an isomorphism, i.e. the dimension of the source and the target are the same, we
can conclude that (M) 41)¢ is unramified at p.

The morphism (5.10) is an isomorphism for Sym*Kl, ;1 when ged(p,n + 1) = 1 when n < 2, see
[YV15, Cor.4.3.5] and Corollary 4.40.

Inspired by these cases, we conjecture that the morphism (5.10) is an isomorphism for any n and A
when N (V)) + E(V)) is invertible. Here N(V)) and E(\) are matrices in Remark 2.7.

To finish this section, we give the dimension formula in the case of Symmetric powers of Kloosterman
sheaves as a Corollary of Theorem 5.4.

Corollary 5.11. The dimension of (MF ), is

L%¢)

1 k+n
n+1<< n) dkn—i—l) ka S(k,n+1)

where the numbers d(k,n + 1) are defined in Section /.1, the numbers my(u) are defined in (4.4), and

alk,n+1) 2|n,
d(k,n+1)=1<0 21 nk,
b(k,n+1) 2t{n and?2|k.

Proof. For p large enough, the numbers d(k,n + 1,p),a(k,n+ 1,p) and b(k,n + 1,p) are constants and
are equal to d(k,n +1),a(k,n + 1) and b(k,n + 1) respectively. Moreover, the sequence (5.8) induces
the isomorphism im(3)%X ~ im(a)%X. So the dimension of (M%), coincides with the dimension of
Hét,mid(Gm,va Sym*Kl,,11) in Proposition 4.27. O

5.1.3 The (-adic case for Sym"Kls

Let (3 be either a third primitive root of unity in IF or Qy. Recall that each singular point x of IC’
is of the form = = (z; ;) = (¢3")i; for some a; € {0,1,2}. The action of Sy x pu3 on ¥'(p) = ¥'(k, 3, p)

is given by
(0,¢3) - (wig) = (G5 - To(i) 5)
and there is also an action of the Galois group Gal(F,/F,) given by Frob,(z; ;) = (xf i)
One can identify the Sg-orbits in ¥'(p) with the set of multi-indices
{LeN’ ||| =k, Cr=0R\{(k/3,k/3,k/3)},
by sending x = (¢5");; to I such that I; = #{i | a; = j}. On multi-indices, the actions of y3 and
Gal(IF'p/]Fp) are given by €3 . (I(), Il,IQ) = (Iz, I[), Il) and FI‘Obp(Io,Il,IQ) = (IQ, IQ, 11).

Theorem 5.12. Let k > 2 be an integer, and p # £ be two different prime numbers. We take S = S(k,3)

tO’ be the set of primes {p # 3| d(k,3,p) # d(k,3)} if 31k, and {p # 3 | d(k,3,p) # d(k,3)} U{3} if
3k.

(1). If p & S, the Galois representation (M%), is unramifed at p, and we have an isomorphism

( ) [CP] et ,mid (Gm,Fp> Sykaln+1)'
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(2). The conductor N is [[, p®, where

Ak 3.p)—d(k3) p£2.3,
o= ) k215 p=,

0 3tk andp =3,

an undetermined integer 3|k and p=3.

(3). If p # 3, the inertia group I, C Gal(Q,/Q,) acts unipotently on (M%), such that (¢ —1)% =0
for any o € I,. Let N be the nilpotent part of the monodromy operator. With respect to the
intersection pairing, the image U = N((M§),) is totally isotropic. The orthogonal complement
of U is (M’g)ﬁp, and the induced map o — 1: (ME), — (M5)y/U is zero. At last, we have an
isomorphism of Gal(F,/F,)-modules

I
(M5),”[6p] = H; (G, , Sym™Kl3) /E[G3],
where E is mized of weight < 2k, whose dimensions of graded quotients are given by

T+205 - k) + (1432 — k) w=2k,
2 3
1 4<w<2kand 4| w,
2 w=2
0 else.

Proof. We take the notation from those in the proof of Theorem 5.4. If p = 3, by Remark 5.9, the
Galois representation (M, 1) is unramified at p when 31 k. If p ¢ S and p # 3, by Theorem 5.4.(1),
the Galois representation (My+1), is unramified at p. So part (1) is justified.

Assume that p # 3. In this case, all singularities of E]Fp are ordinary quadratic. Consider again the
spectral sequence used in Theorem 5.4

(B e = HG () = HE(KY).

Since K@ are smooth proper over both Q and [F, if © > 1, we have the isomorphisms Hgt(KFp) ~ Hgt(l@
for i > 1 and any a € Z. By the Picard-Lefschetz formula, we have isomorphisms Hgt(légz) ~ Hgt(le

for 0 < a <2k —2. So we have (Eé’%_l_i)@ o~ (E;’%_i_l)p and

P

(ESR=Nyp — (Bl = (B2, (5.13)

P

for 7 > 1.
Let A =3 s Q(—m)d, be the subspace of Hzf_l(ﬁb) generated by vanishing cycle classes. We
have a diagram

im ()%

[

0 — im(a)@XNHZ (KL ) —— im(e) X ————— C (5.14)

(@:{:EE’(p) Qf (m))G’X

where C' is the image of the map ~.
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Lemma 5.15. In the diagram (5.14), the vertical map i1 is an isomorphism. If p =2 and k is even,
the cokernel of the vertical map is is one dimensional. Otherwise, the map is is an isomorphism.

Let us first assume this lemma. By the Picard-Lefschetz formula, the action of o € I, acting on a
cohomology class v € Hszl(K@) is given by

o(v) =v— (=1)" (o Z<v(5 > 0y,
€Y
which implies that (o — 1)? = 0. It follows that the Galois representation (M%), is tamely ramified at p,
and the Swan conductor is 0 at p. In particular, the invariants of the inertia group I, acting on (M’g) )
is im(8)9X(—1). So the exponent of p of the Artin conductor of (M%), is dim C. So we conclude the

second part.
Finally, by (5.6), (5.13) and (5.14), we know that

(ME)[Gp] = im(B)FX(=1)[¢] = (B Vg, (1) ~ HY, (G, 5, Sym"Kl3)/E

where E = W<2kH6t C(ijp, Sykalg). The structure of £ can be made more explicit. Recall that in

Theorem 3.33, we computed the Hodge numbers of Hiy (G, Sym*Kl3). By a similar argument to
that of (2.21), we have the exact sequence

0= Q = Hig (G, Sym"Kls) — HI ! (Kc)“X(~1) = Q(—1) = 0

from which we deduce the weight filtration of Hgf;l(lC@)(—l). We conclude that

(4205 — k) + (1 +3[E| k) w=2k
1 4 < 2k and 4
gry, WeapHZ 1 (K) “X(—1) = Sw <2k and 4w,
- ’ 2 w =2
0 else
and
2k—1 1 A2
: 2k—1 a, i,2k—1—i\G, 2
dim W, <ok HZ' ™ (Kg) ™ X( ; dim(EY: )Qx =1+ {QJ + (1 +3 {3J — 4k ) . (5.16)

Because E is the successive extensions of (E. i’%_i_l)y (—1), and W<2ngfc Y(Kg)®X(—1) is the succes-

sive extensions of (Eéfk_i_l)@( 1) for i > 1. By (5.13), dimgr!V £ = dim ngHng L(Kg)9X(~1). So
part (3) is verified.

Proof of Lemma 5.15. By (5.5) and (5.11), we have

2k—1
dimim(« )GX = dlmHgfc ! (Kg) — Z dim(Eé’ng_l_i)g’X
i=1
k+2
(*3)

0[] ] -w).

where the last term (1 + 3L4k2 — 4k?) is in fact d(k,3). As for the dimension of im(B8)%X, by the
property of spectral sequences, (5.13) and (5.16), we know that

2k—1
dimim(ﬂ)GX = dim H%*~ 1 Z dim( EZ 2k—1— Z)GX
P

ét,c

= dimH}, (G, 7, Sym"Klz) — 1 — EJ —d(k,3).
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Moreover, by the Grothendieck-Ogg-Shafarevich formula, we have

k+2
— d(k,3,
dimHY, (G, 5, Sym*Kls) = (o) —dk.3,p)

ét,c

3 + dim Hgt,c(Gm,Fp , Sym*Kl3).

By a direct computation, the dimension of A®X is w, the number of classes of singular
points of Kr,. Combine the formula in Proposition 4.27, we get the identity
.. G .. G . G . k
dimim(a)“X = dimim ()X + dim A®X — dim H2 (Gyy 5, Sym™Kls).

ét,c

If p # 2 or k is odd, we have dim Hgm(Gm’FP, SymFKl3) = dim Hgt((G Sym*Kl3) = 0. So

m,Fpo
dim im(8)%X + dim €' = dim im ()X = dim im(8)%X + dim A%X,

It follows that dim C' = dim A%X. So the two vertical maps i; and 45 are isomorphisms.
If p = 2 and k is even, we have dimHgtc(Gm,Fp,Sykalg) = dimHgt(ijp,Sykalg) = 1.
Consider the rest of the diagram (5.7), i.e.,

H2k

ét,c(lc/_ ) B H2’k

Fyp

A

i (Kg) —— @oewpQu(m) —— HE(Kg ) —— HE(Kg) —— 0

where the two vertical maps are the surjective edge map from the abutment Hgfc(lC’) to E%2¢ By the
same argument for the cohomology of degree 2k — 1, we have im(a/) = grl¥ H2¥ (Kb), and by (2.21) an

ét,c
exact sequence
HZ, o(Gm, Sym*Kls) — HZ (K, ) "X (1) [Gp] = Qu(G) (=2)“, (5.17)

Assume temporarily that p is outside the set S, then im(8’) = im(). Since HZ, (G,,, Sym*Kl3) = 0

ét,c
and im(f3') is pure of weight 2k, we have im(8')%X = 0. This forces im(a/)%X = 0, which does not
depend on the choice of p.
By the property of the spectral sequence above, we have

8194287 (G, Sym*Kly) & grjp HHEF (Kp )X (—1) = im(8) (1)

ét,c

By (5.17), the image of 8’ is nonzero, because gr%Hzﬁc

(/CFP)G’X #£ 0. Since im(8)%X is mapped to
im(a/)%X = 0, the image of & is nonzero. Therefore, in (5.14), the cokernel of iy has dimension at least
1. By the inequality

dimim ()X 4 dim C' = dim im(a)%X > dim im(8)%X + dim A9X — 1,

we know that dim C' = dim A®X — 1. So the vertical map 41 is an isomorphism, and the cokernal of iy
is 1-dimensional. O

O

5.1.4 The p-adic case

We study the p-adic Galois representations (M) 41)p in this section.
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Proposition 5.18. The p-adic representation (Mf‘lﬂ)p is de Rham. Let S a finite set of primes
containing all primes p such that p | n+1 or K' has bad reduction at p. If p € S, the representation
(M. 1)p is crystalline and there is an isomorphism of Frobenius modules

Hrlg mid(Gm/ K, Kl”+1) ((Mn—i-l) ® Bcrys)Gal(Qp/Qp) ® K.

Proof. As in Section 5.1.1, we let K’ be K if ged(n 4+ 1,k) = 1 and the blow up of K along singular
locus otherwise. By [BL113, §3.3(i) and §3.4], since the p-adic representation H’gtk Y(K~,Q,) comes
from a proper smooth variety, it is de Rham. Then we conclude the first assertion by the fact that the
subquotient of a de Rham representation remains de Rham.

Now assume that ged(p,n+ 1) = 1 and K’ has good reduction at p. Then by the p-adic comparison
theorem, the representation He’f‘tk_l (IC(’@ ) is crystalline. Therefore, as a subquotient of H?f_l (IC(’@ ), the

D p

representation (M), remains crystalline.

Recall that we have an isomorphism

Hlg ia (G / K KD 1) = gy HE (K B)(—1) S0 o]

rig,c

from Section 2.3.2. We have results similar to those in Lemma 5.1, by simply replacing étale cohomology
by rigid cohomology everywhere. Consider the spectral sequence [Stu07, Prop.8.2.17 and 8.2.18(ii)]

E Hljflg( fﬁg;)/(@?) = H;g],c(lcfﬁ‘p/(@p)y

and we denote by

a: HYNTH(KG /Qy) — H'PI- LKy /Q)

0,n|A|—1 1n|A|-1

the differential from F; to B . Since the varieties £ (9 are smooth proper for all i > 1, the
only contribution of Welght n|A| — 1 to the abutment of the spectral sequence comes from the kernel of
a. So

n)\ 1
ngVL[fAl " r1|g|c (K& /Qp):grmk‘_lkera. (5.19)

Then use the analog of (5.5), (5.19) and the p-adic comparison theorem, we get the isomorphism of
Frobenius modules

Hrlg m1d( m/K Kanrl) ((MnJrl) X Bcrys)Gal(Qp/Qp) QK.

5.2 The functional equations of L-functions attached to Sym"Kl;
For a prime p not in the finite set S = S(k, 3) from Theorem 5.12, we put
L(k,3,p;T) := det(1 — Frob, T | (M§),)~"
The partial L-function is defined by the Euler product
L5(k,3;s) == [[ L(k,3,pip™°).
pES

By considering the weight of Frobenius, we can show that it converges absolutely on the domain
{s|R(s) > 1+ 2EHL}. The aim of this section is to prove Theorem A.1, i.e., the function L(k,3,p; T)
extends to a meromorphic function on C, and satisfies a functional equation. Although we do not give a
precise formula of the functional equation, we can try to use similar computations as those in [FSY22,
§5] to get as much information as possible.
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Proof of Theorem A.1. Let S be the set of bad primes in Proposition 5.18. We first consider the
L-function of the family of semisimplifications of ¢-adic Galois representations % = {(M’g)js }, i.e., by
replacing (M%), with (M’g);’s in the definition of local factors L(k,3,p;T). The goal is to prove the
potential automorphy of Z.

We can verify that the family & is weakly compatible. In fact, it suffices to show that the conditions
(1), (2), and (3) in Definition 1.20 hold for {(M&%),}. The condition (1) is guaranteed by Theorem 5.12,
and the condition (2) also holds because of Proposition 5.18. As for the condition (3), we choose an
embedding Q, < C and use the p-adic comparison theorem. More precisely, we have

((Mlg)p ® BdR)Gal(@p/Qp) RC = (gr%+1H2k_l(K:@p7 QP)G,X(_l) ® BdR)Gal(Qp/QP) ®C

ét,c
= gry HA L (g, Qp) X (1) @ C = (M5)ar.

To apply Theorem 1.21 to %, we need to check the conditions in Theorem 1.21. The purity is
satisfied because the Galois representations (M%), (as well as their semisimplifications) are pure of
weight 2k 4 1. The regularity is also satisfied under the condition £ < 9, because by Theorem D and
the comparison isomorphism above, we know that the multiplicities of Hodge-Tate numbers of (Mé‘f) )
(as well as their semisimplifications) are 0 or 1. So it suffices to check the odd essential self-duality.

By the perfect pairing in Proposition 2.3, the representations (M%), factor through GSP((M%),)
or GSO((M%),) with similitude character X%’;jl. Choose a generator of Qy(—2k — 1), and regard the
perfect paring as a compatible nondegenerate bilinear form on the module (M'g)g on the group ring of
Gal(Q/Q) with the involution g XC_yQCk_l(g)g_l. By [Ser18, Thm.4.2.1], the semi-simplification also
factors through GSP or GSO with the same character. So we proved the odd essential self-duality.

It follows from Theorem 1.21 that Z is potential automophic, and the partial L-function L%(%, s)
can be extended to a meromorphic function on C, and satisfies the expected functional equation.

By Theorem 5.12 and the Lemma 5.20 below, the local factors of the semisimplifications of (M%),
coincide with those of (M%), for each p & S. So L%(%,s) = L°(k,3;s). By Corollary 1.22 the partial
L-function L%(k, 3;s) can be completed to

Ak(s) = LOO(‘@7 S) L (‘@7 S) )
which extends meromorphically to the whole complex plane, and satisfies a functional equation
Ai(s) = (%, s)A\p(2k +2 — s).

Lemma 5.20 ([FSY22, Lem.5.40]). Let p and ¢ be distinct prime numbers, and p: Gal(Q,/Qp) an
L-adic representation. Suppose that there exists an increasing sequence

o=VWwWcWc.---cV.=V

of Gal((@p/@p)—stable subspaces such that the WD-representation associated with the induced representa-
tion p on V = &5_,Vi/Vi_1 is pure. Then the WD-representation associated with p is also pure, and p
and p have the same L-functions and e-factors.

O

Remark 5.21. Yun constructed motives attached to Kloosterman sheaves for reductive groups [YV15].
When G = SL;,11, and for primes p outside a finite set of primes, the trace of Frob, of the (-adic
realizations of these motives equals to the trace of Frob, on M;\L +1- By Chebotarev density theorem,
the two families of Galois representations have the same semi-simplification. Hence, they have the same
Hodge-Tate numbers. So to prove Theorem A, we can also use the L-functions of motives constructed
by Yun.
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5.3 Conjectures of Evans type

In this section, we apply the computations of moments of Kloosterman sums to get some explicit
information of the modular forms associated with Kloosterman sheaves in Theorem B, using an argument
similar to that in [YV15, §4 & Appx.| with the help of the database LMFDB [LMFE22].

5.3.1 Sym?Kl,

The motive M% from definition 2.1 is defined over Q, pure of weight 9 and equipped with a skew-
symmetric perfect pairing in Proposition 2.3. It is of dimension 2 and the Hodge numbers h?9~P of
its de Rham realization are 1 if p = 3 or 6 and 0 otherwise by Theorem D. We want to show that the
compatible system of Galois representations {(M31)¢(6)} is modular.

Theorem 5.22. There exists a (unique) normalized cusp Hecke eigenform f in S4(I'o(14)), such that
for all primes p & {2,7}, the Fourier coefficient ay(f) satisfies

1
af(p) = —Z;(mé(p) +14+p2+pY,

where mg(p) is the symmetric power moments of Sym*Kls. In particular, the label of this modular form
in the database LMFDB s 14.4.a.b.

Proof. We know that the motive M% is of dimension 2, pure of weight 9, whose Hodge numbers are
given by h3¢ = k%3 = 1. Thus, the Hodge-Tate weight of (M3),(6) is (0,3), with multiplicity 1 by the
p-adic comparison theorem.

By Theorem 4.41, we have

ngc(p) ’ E(Gm,Fp7 Sym4Kl3) = p3

for p # 2,7. By Chebotarev density theorem, the determinant det((M3),(6)) is ngc. Since Xeyee(€) =
—1, the representations (M3),(6) are odd. So {(M3)¢(6)} is modular by Theorem 1.17. By the exact
sequence (1.7) and Proposition 4.3 and Proposition 4.26, we deduce that

Tr(Froby | (M3)e) = —(m3(p) + 1+ p+p?).
It follows that for any p & S U {/(},

a7(p) = Tr(Frob, " | (M3)¢(6))
= det((M3)¢(6)) " - Tr(Frob, | (M3)e(6))

1
= —ﬁ(mé(p) +14+p+p?).

It suffices to determine the modular form. According to Theorem 5.12, the ¢-adic representation
(M3), is unramified at p if and only if there dim H} (G Sym4K13) = 2, and the representation is

ét,mid m,Fp
at most tamely ramified at every prime. If p = 3, the represerﬁta‘cion (M3), is unramified by Remark 5.9.
If p # 3, then (M3), is unramified if d(4,3,p) = 0, i.e., p # 2,7. Moreover, by Theorem 5.12, the
dimensions of (M%)ép are 1 for p = 2 and 7. Therefore, the conductor of the compatible family {(M3),},
is 14.

In conclusion, the weight and the level of the corresponding modular form is k = 4, Ny = 14. By
computing the Fourier coefficient as(3) in Appendix A.1.1, we know that this f is labeled 14.4.a.b in

the database LMFDB. O
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5.3.2 Sym®’Kl,

The motive M3 is defined over Q, pure of weight 10 and equipped with a symmetric perfect pairing
in Proposition 2.3. It is of dimension 2 and the Hodge numbers h?19=P of its de Rham realization are
1if p =4 or 6 and 0 otherwise by Proposition 3.57. We want to show that the compatible family of
Galois representations {(M3),(6)} is modular.

Theorem 5.23. There exists a (unique) normalized cusp Hecke eigenform f in S3(To(15), (15)) with
complex multiplication, such that for all primes p & {2,5}, the Fourier coefficient af(p) satisfies

as(p) = = (15) 23 (mie) + 14+ 1) (5:24)

Here m3(p) is the symmetric power moments of Sym®Kly. In particular, the label of the corresponding

modular form is 15.3.d.a in the database LMFDB.

Proof. By the p-adic comparison theorem and our computation on the Hodge numbers of the motive Mf’17
we know that the Hodge-Tate weight of {(M3),(6)} is (0,2). Notice that these Galois representations
are orthogonal, because we have a symmetric perfect paring on the motive M3 in Proposition 2.3.
By [Liv95, 1.4(2)], the associated Galois representation {(M3)y(6)} corresponds to a normalized cusp
Hecke eigenform f = g+ Y .7, anq" € S3(Ny,ef) of complex multiplication for some characters
ef: Z/NZ — C*. Now it suffices to determine the information of the modular form.

By the computation of e-factors in Proposition 4.41, the values of the determinants of the Galois
representations (M3), at Frob, are

Xee(D) - €(Gmyr,, Sym®Kly) = (1%) p?

if p > 5. Hence, the determinants of the representations (M3),(6) are (ﬁ)xc_y% by the Chebotarev

density theorem. It follows that the Nebentypus character ¢ of the modular form is
Moreover, for any p ¢ {2,3,5} U {¢} we deduce that

15)-

ay(p) = Tr(Frob, ' | (M3)e(6))
-1
= det ((M3)¢(6)) " - Tr(Frob, | (M})(6))
_ PN 1. 3 2, .3
= - (ﬁ) F(”M(P) +1+4p”+p°).

By Proposition 4.27, we can compute the dimension of middle ¢-adic cohomology at p # 2. We
know that (M3), is unramified if p # 2,3,5, and tamely ramified if p = 3,5. Moreover, (Mi)ép ~
Hétmid (vaﬁp, Sym®Kly) has dimension 1. Then Theorem 5.4 ensures that the conductor N of {(M3)}
is of the form 2% - 15 for some s € Zx>o.

Lemma 5.25. The representations (M3), are unramified at p = 2. In particular, the level Ny of the
modular form is 15.

Proof. At p = 2, the Swan conductor of Sym>Kly is at most 5. Since the monodromy group of Kly is Spy
and the symmetric power of standard representation of SP4 remains irreducible, the 0-th cohomology
Hgt(ijp, Sym3Kly) is 0. By (1.7) and Grothendieck-Ogg-Shafarevich formula, we know that
dim Hy, 134 (G,y, 7, Sym®Kly) = Sw(Sym®Kly) — 3 — dim(Sym?Kly)"=.
Hence, we have 3 < Sw(Sym3Kl4) < 5.
By Appendix A.2.1, the trace of Frobenius at p = 2 on H! (ijp, Sym3Kl4) is

ét,mid

—(mi(p) +1+p* +p’ + Tr(Frob, | (Sym’Kly)™)) = —16 — Tr(Frob, | (Sym’Kls)'=).
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e If Sw(Sym3Kly) = 5, the sheaf Sym®Kly only has one slope (=1/4) at oo, which implies that
(Sym®Kly)’= = 0. So the dimension of the middle f-adic cohomology is 2. By Remark 5.9, the
representation (M3), is unramified at 2.

o If Sw(Sym?®Kly) = 4, then dim(Sym3Kly)/= < 1.

— Assume that dim(Sym?3Kl,)/= = 1, the middle f-adic cohomology is 0. The trace of Froby
on Hét,mid (ijp, Sym3Kl,) is 0. So we have

0 = —16 — Tr(Frob, | (Sym®*Kly)'=).

This is impossible because (Sym3Kly)'= is pure of weight 9 and of dimension 1.

— Assume that dim(Sym3Kl,)/= = 0, the middle ¢-adic cohomology is 1. The trace of Froby

on Hénmid (ijp, Sym3Kl4) is —16. Since Héumid (ijp, Sym3Kl4) is pure of weight 10 and
of dimension 1, this is impossible.

e If Sw(Sym3Kly) = 3, then dim(Sym3Kl;)’= = 0. So the dimension of the middle ¢-adic cohomol-

ogy is 0. However, the trace of Frobs on Hét mid (ijp, Sym3Kl4) is at the same time 0 and —16,

which is absurd.

In conclusion, we have Sw(Sym®Kl;) = 5 and the representation (M3), is unramified at 2. As a
consequence, the conductor N is 2°-15 = 15, which implies that the level of the modular form is 15. [

In conclusion, the modular form that we want is of weight k = 3, level 15, and with nebentypus
er = (75). At last, we search the modular form in the database LMFDB, using the level, weight,
character, and the trace af(2) = —1 of (M3)(6) in section A.1.1. There is only one modular form left,
labeled 15.3.d.b in LMFDB. O

5.3.3 Sym*Kl,

The motive M4 is defined over Q, pure of weight 13 and equipped with an antisymmetric perfect
self-pairing. It is of dimension 2.

Theorem 5.26. There exists a (unique) normalized cusp Hecke eigenform f in Sg(To(10)), such that
for all primes p & {2,5}, the Fourier coefficient ay(p) satisfies

1
ar(p) = —E(mi(p) +1+p* +p® +p* +2p9),

where mj(p) is the symmetric power moments of Sym*Kly. In particular, the label of the corresponding

modular form is 10.6.a.a. in the database LMFDB.
Proof. There exists an integer h € {0,1,...,6} such that the Hodge numbers of M} are

0 else

by the Hodge symmetry. The Hodge-Tate numbers of (M$)¢(13 — h) are (0,13 — 2h). The determinant
of the Galois representations (M$),(13 — h) is an odd character XJ;SC_ 21 by Theorem 4.41 and Chebotarev
density theorem. We use Theorem 1.17 to show the existence of the modular form.

Let S be the set of bad reductions of (M}),(13 — k). It follows that for any p & S U {¢},
ay(p) = Tr(Frob, ™ | (M1)e(13 — h))

= det(Mj)¢(13 — h)) ™" - Tr(Froby | (Mj)e(13 — h))

1
=~ (mip) + 149" +9° +p* +2°).
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One can compute that the dimension of the middle ¢-adic cohomology of Sym*Kly is 1 when p = 5
by 5.11. By Theorem 5.4, the representation (Mg)g is tamely ramified at p = 5, and possibly wildly
ramified at p = 2. So the conductor of {(M2),},is N =2°-5 for some 0 < s < 8.

At last, we can compute the Fourier coefficients ay(3) = —26 - 3*~" and a;(7) = —22- 74" by
results in Appendix A.2.2. We try 0 < h < 6 and 0 < s < 8 one by one.If (s,h) = (8,0),(8,1),(8,2)
(8,3), (8,4), (7,0), (7,1), (7,2), (7,3), (6,0) or (6,1), we compute the space of cuspidal new modular
symbols over the finite field F,. We find that for some primes p, the numbers as(p) are not roots of
the characteristic polynomials of the Hecke operators T, see the table in Appendix A.2.2. Otherwise,
we can use LMFDB. We find two modular forms left of weight 6 and having the prescribed Fourier
coefficients. By the information of the level, there is only one left with label 10.6.a.a. in LMFDB,
because the other one is of level 400. O

Remark 5.27. We deduce from the above proof that the nonzero Hodge numbers of the de Rham
realization of M} are h*® = h%* = 1. Although we did not compute the Hodge numbers directly, they
can still be calculated by an argument similar to that of Mgk in section 3.3.5.

5.3.4 Sym®Kl;

The motive Mg is defined over QQ, pure of weight 13 and equipped with an antisymmetric perfect
pairing. It is of dimension 2. By Proposition 3.58, the Hodge numbers h?*'3P of its de Rham realization
are 1 if p = 5 or 8 and 0 otherwise. We want to show that the compatible family of Galois representations
{(M2),}4(8) is modular.

Theorem 5.28. There exists a (unique) normalized cusp Hecke eigenform f in S4(I'0(33)), such that
for all primes p & {3,11}, the Fourier coefficient af(p) satisfies
1
ag(p) = 5 (ms(p) + 140" +9” +p" 4%,

where m3(p) is the symmetric power moments of Sym®Kls. In particular, the label of the corresponding

modular form is 33.4.a.b in the database LMFDB.

Proof. Consider the Galois representations (M3 ),(5). Their determinants are the odd characters Xc_ygc
by Theorem 4.41 and the Chebotarev density theorem. We use Theorem 1.17 to show the existence of
the modular form. Let S be the set of bad reductions of M2. It follows that for any p ¢ SU {¢} we have
ag(p) = Tr(Froby, ' | (Mj)e(9))
= det((M{)e(9)) - T(Froby | (M3).(9))

1
=~ a(mi(p) + 149" +9° + " +9°).

One can compute that the set of primes of bad reduction of M2 is a subset of {3, 5,11} by Theorem 5.4,
which implies that the conductor of {(M3)y(5)} is 3% - 5¢ - 11¢ for some 0 < s,e <2 and 0 < ¢.

Lemma 5.29. The representations (M%)g are unramified at p = 5.

Proof. At p = 5, the Swan conductor of Sym>Klj is at most 7. Since the monodromy group of Kls is SLs
and the symmetric power of standard representation of SLs remains irreducible, the 0-th cohomology
HY, (G Sym?Kl5) is 0. By (1.7) and Grothendieck-Ogg-Shafarevich formula, we know that

é m,Fp»

dim H! (G, Sym®Kl5) = Sw(Sym®Kls) — 5 — dim(Sym?Kl;).

ét,mid
Hence, we have 5 < Sw(Sym®Kls) < 7. By Appendix A.3, the trace of Hét mid (ijp,Sym?’Klg)) at
prime p =5 is

—(mg(p) +14+p2+p3+p*+ 0 + Tr(Frob, | (SymSKlg))I@)) = 4.5 _ Tr(Frob, | (Sym3Kl5)I5°).
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e If Sw(Sym3Kls) = 7, the sheaf Sym®Kls only has one slope (=1/5) at oo, which implies that
dim(Sym®Kls)’= = 0. So the dimension of the middle ¢-adic cohomology is 2. By Remark 5.9,
the representation (M2), is unramified at 5.

e If Sw(Sym?Kl5) = 6, then dim(Sym?Klz)/= < 1.

1. Assume that dim(Sym®Kls)’~ = 1, the middle f-adic cohomology is 0. The trace of
HY, ia (G, Sym®Kl5) at prime p =5 is 0. So we have

0= —4-5— Tr(FrObp | (Sym3K15)I®)-

Since (Sym®Kls)/= is pure of weight 12 and of dimension 1, this is impossible.

2. Assume that dim(Sym®Kl;)/* = 0, the middle f-adic cohomology is 1. The trace of
H! (G Sym3K15) at prime p = 5 is —4 - 5°. Since H? (G Sym3Kl5) is pure of

ét,mid \'m,F,» ét,mid
weight 13 and of dimension 1, this is impossible.

m,Fp»

e If Sw(Sym>Kl;) = 5, then dim(Sym?®Kl5)/= = 0. So the dimension of the middle ¢-adic cohomol-
ogy of Sym>®Kls is 0. The trace of Hét’mid (Gm’ﬂ?p, Sym3Kl5) at prime p = 5 is at the same time 0
and —4 - 5°, which is absurd.

In conclusion, we have Sw(Sym®Kls) = 7 and the representation (M3), is unramified at 5. O

So the modular form is of weight 4, of level Ny = 3%-11° < 1089, and of nebentypus the trivial

character. Moreover, we compute the Fourier coefficients as = —1 and a5 = —4 in Appendix A.3. By
this information, there is only one modular form left, of weight 3 and of level N = 33, whose label is
33.4.a.b in LMFDB. O

5.3.5 KI

The motive M:(f’l) is defined over Q, pure of weight 9 and equipped with a skew-symmetric perfect
pairing in Proposition 2.3. It is of dimension 2 and the Hodge numbers h?%~P of its de Rham realization
is 1if p =4 or 5 and is 0 otherwise. We want to show that the compatible family of Galois representations

{(Mg2,1))€(5)} is modular.

Theorem 5.30. There exists a (unique) normalized cusp Hecke eigenform f € Sa(I'o(14)), such that
for all primes p & {2,3,7}, the Fourier coefficient a, satisfies

1
af(p) = o (m§2’1)(p) +p+p*+ p3>,

where m:(f’l)(p) s the moments of the sheaf KléQ’l). In particular, this modular form is labeled 14.2.a.a

in the database LMFDB.

Proof. The sheaf Klg’l) is tamely ramified at 0 and wildly ramified at co. By Grothendieck-Ogg-
Shafarevich formula, the dimension of the ¢-adic cohomology equals to the Swan conductor at oo.

Similar to Proposition 4.38, the Swan conductor at oo is 5, because Kli(f’l) C Kl?4 and (3 acts on

(K15%),,. freely. Combining Proposition 4.25, we conclude that

5 p#27 5 p#27
Swoo (KIPY) =44 p=2  and dim(KI*V) = =4 p=2
3 p="7 3 p=7
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by a direct computation. By the exact sequence (1.7) and Proposition 4.2, we have
N ) @1\ _ )2 p#2T7
dim Hyy 34 (G 5,, K37 ) = {

ét,mid 1 p= 2’ 7

and
Tr (Frob,, (MgQ’l))z(ﬁl)) = —p_4(m§2’1)(p) +p+p*+1°).
By Theorem 5.4, the set of bad primes S is a subset of {2,3,7} and the conductor of {(M:(f’l))e}g is 14.

By Proposition 3.59, the Hodge numbers h??~P of its de Rham realization is 1 if p =4 or 5 and is 0

otherwise. By Theorem 4.41 and the Chebotarev density theorem, the determinant of (Mgz’l)) 6(5) is

Xc_ylc, which is an odd character. Then use Theorem 1.17 to show the existence of the modular form. It
follows that for any p ¢ S U {¢},

ar(p) = T1"(F1“0b;1 | (MgQ’l))Z(5))
= det (M) ,(5)) - Tr(Froby | (M$)e(5)))

1, (21
= —palms” 'p)+p+0*+ 7).

At last, by computations of Fourier coefficients af(p) in Appendix A.1.2 for p < 23, we can determine
the modular form in the database LMFDB. O

5.3.6 KI{?

The motive MgZ’Q) is defined over Q, pure of weight 13 and equipped with an antisymmetric perfect
pairing in Proposition 2.3. We want to show the following:

Theorem 5.31. There exists a (unique) normalized cusp Hecke eigenform f = q + 22022 anq" €
S4(T'o(6)), such that for all primes p & {2,3}, the Fourier coefficient af(p) satisfies

1 2,2
af(p) = —];<m§, )+ % +p* +2p* + 2106),

where mi>? (p) is the moments of the sheaf Klg2’2). In particular, this modular form is labeled 6.4.a.a
in the database LMFDB, the same as the modular form corresponding to Sym°Kl,.

Proof. The sheaf K1§2’2) is tamely ramified at 0 and wildly ramified at co. By Proposition 4.2,
Proposition 4.25, and the long exact sequence (1.7), we know that

e The dimension of the f-adic cohomology equals to the Swan conductor at oo, which is 8 if p £ 2, 3.

1 p=2

. . 1 2,3
e dim(KI2?)0 — 5 and dim(KIZ?)'= = {1 P73,
1o Moo 2 p=2
2 2,3
o dimHY, 14(G,, 5, KIP?) = { P#23

e Tr(Frob,, (M?’Q))Z(S)) = —p—5(mé2’2) (p) +p? + p3 + 2p* + 2p°%) if p # 2, 3.
By Theorem 5.4, the set of bad primes S is a subset of {2, 3}, and dim(MéZ’Z))Z = 2. Because (Méz’z))g

is at most tamely ramified at 2 and dirn(l\/lz(,)Q’Q))é~2 > 1, the conductor of {(MéQ’Q))E}g is of the form
N =2%.3 for some 0 < s <8.
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1 =h,13—h
There exists an integer h € {0,1,...,6} such that the Hodge numbers h?!3~P are {0 pl
else

by the Hodge symmetry. The Hodge-Tate numbers of (M:(f’?))e(l?) — h) are (0,13 — 2h).
By Theorem 4.41, we know that

det (Frob,, (M$?),) = p'

for p ¢ {2,3}. It follows from the Chebotarev density theorem that det (M?’Q))e = X;}f. Thus, the
determinant of (M§2’2))Z(13 — h) is x2272" which is an odd character.

cyc

By Theorem 1.17, there exists a modular form of weight 14 — 2h and of level 2° - 3 such that
(M§2’2))€(13 — h) ~ pse. It follows that for any p ¢ SU {(},

ag(p) = Tr(Froby ! | (M$7*)¢(13 - h))

= det((M$?),(13 = h)) " - Tr(Frob, | (M$?),(13 - )

1 2,2
= _ﬁ( ;(3 )(p)+p2+p3+2p4+2p6).

¢

To get the modular form, we compute the traces of Frob, for 3 < p <13 by the computations in
Appendix A.1.2. We try 0 < h <6 and 0 < s < 8 one by one. If (s,h) # (8,0),(8,1),(8,2) or (7,0),
we can use LMFDB, and the only modular form left is of weight 4 and of level 6, where (s, h) = (1,5)
in this case. If (s,h) = (8,0),(8,1),(8,2) or (7,0), we compute the space of cuspidal new modular
symbols over the finite field F,.We find that for some primes p, the numbers a¢(p) are not roots of the
characteristic polynomials of the Hecke operators T}, see the table in Appendix A.1.2. O

Remark 5.32. The nonzero Hodge numbers of the de Rham realization of M:(,)2’2) are h58 = p¥5 = 1.
This one cannot be calculated by our methods in Chapter 3, because the nilpotent part of the local
monodromy of the connection Klg2’2) at 0 is not direct sum of Jordan blocks of different sizes (we have

two blocks of size 4).

5.3.7 A conjecture

One interesting corollary of Theorem 5.31 is that for p { 6, the moments of the sheaves Sym®Kl,

and Klgz’Q) are the same, because they are both equal to the Fourier coefficients of the modular form of
label 6.4.a.a. As a direct consequence, we have the identity

2,2
m$? (p) — pPmS(p) = —2p° — 2p* — p°.

In fact, we have isomorphisms of f-adic Galois representations (M$)y(—3) ~ (MgQ’Q)) 4+ which suggests
us the following conjecture.

Conjecture 5.33. The two motives M§(—3) and M§2’2) are isomorphic.
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Appendix A

Sagemath code

In our proof, we used several results computed by the software Sagemath [T115722]. This appendix
includes the Sagemath codes and explains the algorithms. We fix an embedding Qy — C and identify
{-adic numbers with their images in C via ¢.

(271)(

A.1 Computations of m}(p), my " (p) and m(2’2)(p)

A.1.1 mk(p)

For a prime number p, after Deligne [Del77, Somme. Trig.|, we know that for each a € Fy, there
exist 3 algebraic numbers «q, 5, and 7y, of absolute value p, such that

Sl(a) =aq + Bq + Ya = K13(a;p)

and
s3(a) = g Ba Y =D

Then the degree two elementary symmetric polynomials is

52(a) 1= a4Ba + BaYa + Yata = P (gt + B+ 75 0)
= p(aa + Ba +7a) = p - Kls(a; q).
The k-th symmetric power moments of Kls are integers of the form
mi(p) ==Y D LBk,

a€Fy i+j+hk=k

which can be computed using the value of elementary symmetric polynomials. For example, the 3-rd,
4-th and 6-th symmetric power moments can be computed by

mi(p) =Y _(s1(a)* —2s1(a)sa(a) +p%),

a

m3(p) = Z(Sl(a)4 — 3s1(a)?s2(a) + s2(a)® + 2p’s1(a)),

a

m§(p) = Z(Sl(@)ﬁ —5s1(a)*sy + 6s1(a)’s2(a)? — s2(a)® 4 4p°s1(a)® — 6p’si1(a)s2(a) + p°.
a
respectively. At last, let

1
a3(p) = —];(mé(p) +14+p%+ph

be the trace of the middle cohomology Hl’t,mid(Gm,va Sym*Kly).

€
Part of the numerical results are the following:

111
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Primes
3 5
m3(p) -10
ad(p) -2 12
m$(p) -820

A.1.2 mgz’l)(p) and m§2’2)(p)
Since the representation V3 is identified with the kernel of
Sym?Std ® A%Std — Std,

we have an induced short exact sequence
0 — KI$Y — Sym?Kls @ A%Kls — Klg(—3) — 0.

The moment of Klgigl is therefore the difference of the moment of Sym?Kls ® A2Kls and the moment
of Kl3(—3). So

m$V(p) = 3 (s1(a)%s2(a) — s3(a) — p*s1(a)).

a

Let a:(f’l)(p) be the traces of the middle cohomology H} (Gf,» Klgf’l)). Then

ét,mid
alM(p) = —p~ V() + p+ P> + 7).

Similarly, we have an induced short exact sequence

0 — KI$® — Sym?Kl3 @ Sym? (A?Kl3) — Klz @ AZKl3(—3) — 0.

Therefore, the moment of Kl§2’2) is

méZ,Q)(p) _ Z ((81(a>2 _ Sg(a))<82(a)2 _ p331<a)) —p3s1(a) . SQ(G)) .

a

Let a§2’2) (p) be the traces of the middle cohomology H} (G, Kl:(32’3)). Then

ét,mid
2,2 _ 2,2
ai*? (p) = =p =2 (m*? () +p* +p* + 2" + 2°)

Part of the numerical results are the following:

Primes

5 7 11 13 17 19 23

al®M 0 0 4 6 2 0

a6 -16 12 38 -126 20 168

If N - k%> 40000, the database LMFDB is not enough for us. So we follow the appendix in [YV15] to
compute the space of cuspidal new modular symbols over some finite fields Fy. Then we check if the
prescribed traces are roots of the characteristic polynomials of T},. Here are some numerical results.

Level N weight £ Prime p Finite field Fy T),(ar(p))

28.3 14 17 Fi1 1
28.3 12 5 Fi3 9
28.3 10 7 Fi3 4
27.3 14 17 Fi3 9
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A.1.3 Sagemath code

p=3; #choose a prime p

import math;
#define K13
def K1l(a):
import sage.rings.all as rings
sum = O;
for x in range(1,p):
for y in range(1,p):
sum = sum + exp (2 * pi * I/p * (x + y + (a * x * y).inverse_mod(p)));
return sum

def s2(a):
v = conjugate(CC(K1(a))) * p;
return v

# moment of Sym~3K1_3
mom3=0;
for a in range(1l,p):
a = 7Z(a);
mom3 = mom3 + CC(K1(a))"3 - 2 * CC(K1(a)) * CC(s2(a)) + CC(p)~3;
a3= -(mom3 + 1 + p~2)
print(a3)

# moment of Sym~4K1l_3

mom4 = 0;
for a in range(1,p):
a = ZZ(a);
mom4 = mom4 + CC(Kl(a))~4 - 3 * CC(K1(a))~2 * CC(s2(a)) + CC(s2(a))~2 + 2 x CC(K1(a)) =*
CC(p)~3;
ad = -p~(-3) * (mom4 + 1 + p~2 + p~4)
print (a4)

# moment of Sym~6K1_3
mom6=0;
for a in range(1,p):
a = 7Z(a);
mom6 = mom6 + CC(K1l(a))~6 + 4 * CC(K1(a))~3 * p~3 + p™6 - 5 * CC(K1(a))~4 * CC(s2(a)) -
6 * CC(K1(a)) * p~3 * CC(s2(a)) + 6 * CC(K1l(a))~2 * CC(s2(a))~2 - CC(s2(a))"3;
print (mom6)

# moment of K1_{SL_3}~{V_{2,1}}

mom21 = 0;
for a in range(1,p):
a = ZZ(a);

mom21 = mom21 +(CC(K1l(a))~2 * CC(s2(a)) - CC(s2(a))~2 - p~3 * CC(K1l(a)));
a2l = -p~(-4) * (mom2l1 + p + p~2 + p~3)
print(a21)

# moment of K1_{SL_3}~{V_{2,2}}
mom22=0;
for a in range(1l,p):
a = ZZ(a);
mom22 = mom22 + (CC(K1(a))~2 - CC(s2(a))) * (CC(s2(a))~2 - p~3 * CC(K1(a)))- p~3 *
CC(K1l(a)) * CC(s2(a)) ;
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a22 = - p~(-5) * (mom22 + p~2 + p~3 + 2 * p~4 + 2 * p~6)
print(a22)

# when N*k~2 is too big

M = ModularSymbols (GammaO(N) ,k,sign=1,base_ring=GF(13))

Hp = M.new_subspace() .cuspidal_subspace() .hecke_polynomial (p)
print (Hp(a22))

A.2 Computation of mj(p) and mj(p)

A2.1 md(2)

Here we only compute the 3-rd symmetric power moment at p = 2. By Sagemath [The22|, we know
that Kly(1;2) = 1 and Klg(1;4) = 11. Let ag,...,as be the eigenvalues of Froby acting on (Kly)7 and
let s1,...,s4 be the elementary symmetric polynomials on «;. By the definition of Kls, we have

= i =-Kly(1;2) = -1
and
51— 25 =Y af = —Kly(1;4) = —11.

Therefore, s1 = —1 and sp = 6. Furthermore, since det Kl; = Qy(—6), we have

so=[Jai =9
From this, and notice that a; - & = p3, we have

s3 = p5 — 8.

Then the moments can be computed by

mi(2) = Zaiajak =57 — 25159 + 53 = 3.
i7j7k
It follows that )
aj(2) = —— (mi(p) + 1 +p° +p°) = —1.

p
A.2.2 mi(p)
Let a1(a), ..., as(a) be the eigenvalues of Frob, acting on (Kly)z for a € F;. We also denote by
s1(a),...,s4(a) the elementary symmetric polynomlals on «;(a). By the deﬁmtlon of Kly, we have
= Z ai(a) = —Kly(a; p) and s1(a)” — 2s2(a Zal = —Kly(a; p?).

Furthermore, since det K1y = Q(—6), we have

:Hai =P6-

From this, and notice that a;(a) - a;(a) = p?, we have

s3(a) = pso(a).
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Then the moments can be computed as

mip) =Y Y ala)aj(a)ay(a)ar(a)

a€F ) i<i<k<r

= (s1(a)" = 3s1(a)*s2(a) + s2(a)* + 2 s1(a)s1(a) — p°).

a
At last the traces of the middle cohomology H}, ., (ijp, Sym?Kly) are

1
ai(p) = —F(mi(p) +1+p% +p° +p* +2p%).

Some numerical results are listed below.

Primes
2 3 7
aj(p) -1
ai(p) 26 -22

If N - k2> 40000, the database LMFDB is not enough for us. So we follow the appendix in [YV15]
to compute the space of cuspidal new modular symbols over some finite fields Fy,. Then we check if the
prescribed traces are roots of the characteristic polynomials of T},. Here are some numerical results.

Level N weight £ Prime p Finite field F, T,(as(p))

28.5 14 7 Fi1 3
28.5 12 3 Fi7 15
28.5 10 7 Fi 3
28.5 8 7 Fi1 5
28.5 6 7 Fi1 4
27.5 14 3 Fi7 8
27.5 12 7 Fi7 8
27.5 10 3 Fi1 5
27.5 8 7 Fi1 3
20. 5 14 3 Fi7 3
26.5 12 7 Fis 7

A.2.3 Sagemath code

#choose a prime
p=7;

import math

#compute K1_4(a;p), as a list Klp
k = GF(p,’r?)

Klp = [-1];
for a in range(1l,p):
klp = 0O;
for x in k:
for y in k:

for z in k:
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if xxy*xz!=0:

klp
Klp.append(klp);

#compute K1_4(a;p~2),
K = GF(p~2,°r’)
Klp2 = [-1];
for a in range(1,p):
klp2 = 0;
for x in K:
for y in K:
for z in K:

X

+y+z+a/(x*y*z);

u.lift(Q);

klp + exp(2 * pi * I/p * u);
n(klp);

as a list Klp2

if x*xy*xz!=0:
x+ty+tz+allxx*xyx*xz);
(u.trace());

u.lift();

1=
u
u
k1lp2
Kk1p2

K1p2.append(klp2)

I

klp2 + exp(2 * pi * I/p * u);
n(klp2);

#compute s_1(a) and s_2(a) as lists S1 and S2

S1 = [1];

S2 = [1];

for a in range(1,p):
sl = - Klp[al;
s2 = - Klp2[a];
s2 = (s172 - s2)/2
S1.append(sl);
S2.append(s2);

#compute moments

#compute moments m
mom3=0
for a in range(1,p):

B

mom3 = mom3 + S1[a]~3 - 2 * Si[a] * S2[a] + p~3 * conjugate(Si[al);

mom4=0;
for a in range(1l,p):

mom = mom + S1[a]~4 - 3 * Si[a]~2 * S2[a] + S2[a]l~2 + 2 * p~3 * Si[a] *
conjugate(Si[al) - p~6;
print ("mom_4~3(p) =",mom3,"and mom_4"3(p) =",mom4)

#compute trace a

a3 = -(mom+1 + p~2 + p~3)/p~4;
a4 = -(mom+1 + p~2 + p~3 + p~4 + 2 * p~6)/p~4;
print("a_43(p) =",a3, "and a_4"4(p) =",ad )

# when N*k~2 is too bi

M = ModularSymbols(GammaO(N) ,k,sign=1,base_ring=GF(13))
Hp = M.new_subspace() .cuspidal_subspace() .hecke_polynomial (p)

print (Hp(a44))

g
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A.3 Computation of m3(p)

Let ai(a),...,as(a) be the eigenvalues of Frob, acting on (Kls)z for a € F. We also denote by
s1(a),...,ss(a) the elementary symmetric polynomials on «;(a). By the definition of Kls, we have

ZO% = Kl5(a;p) and s1(a)” — 2s2(a Zal = Kls(a;p )

Furthermore, since det Kls = Q(—10), we have

:Hai :Plo

From this, and notice that a;(a) - @;(a) = p*, we have

s3(a) = p®sa(a) and s4 = pPs1(a).

Then the moments can be computed as

= > Y wla)aj(a Zsl 3 — 2s1(a)s2(a) + 3s3(a).

a€Fy i<j<k

At last the traces of middle cohomology HY, mld(Gm,va Sym3Kls) are

1
ai(p) = ——=(mi(p) + 1+p° +p° +p* +p°).

Primes

A.3.1 Sagemath code

#choose a prime
pP=2;

#compute K1_5(a;p) and K1_5(a;p~2), then print s_1(a) and s_2(a)
import math

#compute K1_5(a;p) as the list Klp

= GF(p,’r’)
Klp = [1;
for a in range(1l,p):
klp =
for x in k:
for y in k:

for z in k:
for w in k:
if x*xy*xzxw!=0:
u=xt+ty+tz+t+uwtalxxyx*xz*w,;
u = (u.trace());
u=u.lift();
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klp = klp + exp(2 * pi * I/p * u);
klp = n(klp);
Klp.append(klp);

#compute K1_5(a;p~2) as the list Klp2
k = GF(p~2,°r’)
Klp2 = [1;
for a in range(1,p):
klp2 = 0;
for x in k:
for y in k:
for z in k:
for w in k:
if x*xy*xz*w!=0:
u=x+y+tz+w+al(xxy*z*w;
u = (u.trace());
u.1iftQ;
klp2 + exp(2 * pi * I/p * u);
n(k1lp2);

Il

u
klp2
klp2

K1p2.append (klp2)

#compute s_1(a) and s_2(a) as lists S1 and S2
s1 = [1;
s2 = [1;
for a in range(1l,p):
b = a-1;
sl = Klp[b]l;
s2 = Klp2[b];
s2 (s172 - s2)/2;
S1.append(sl);
S2.append(s2);

#compute moments m

mom=0;
for a in range(1l,p):
b=a-1;

mom = S1[b]~3 - 2 * S1[b]*S2[b] + p~2 * conjugate(S2[b]l);
print ("mom_5-3(p) =",mom)

#compute trace a
a=-(mom + 1+ p~2+ p~3 +p4+ p-6)/p5;
print("a_5"3(p) =",a)

A.4 The computation of P(z) and P(s)

# define the groups of orders 108 and 216
K = CyclotomicField(9);

a = K.gen();

w = a’6;

e = a"4;

l=w-w'2;

s = matrix(X, [[1,0,0],[0,w,0],[0,0,w"2]])
t = matrix(K, [[0,1,0],[0,0,1]1,[1,0,011)
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u = matrix(X, [[e,0,0],[0,e,0],[0,0,exw]])

v = matrix(X,[[1/1,1/1,1/1]1,[1/1,w/1,w"2/1]1,[1/1,w"2/1,w/1]1]1)
G = MatrixGroup(s,t,u,v);

G216 = G.subgroup([s,t,u * v * u.inverse(),v]);

G108 = MatrixGroup(s,t,v);

sum108=0;

#compute P(x) and tildeP(x)
for a in G108:
A = (a).matrix(Q);
sum108 = sum108 - 1/A.charpoly();
print ("P(x) =",suml08);
sum216=0;

for a in G216:

A = (a).matrix();

sum216 = sum216 - 1/A.charpoly();
print("tildeP(x) =",sum216)
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Titre : Fonctions L des faisceaux de Kloosterman

Résumeé : Les faisceaux de Kloosterman classiques
sont des systemes locaux (-adiques sur G, r, dont
les traces de Frobenius sont des sommes de Kloos-
terman. Ce sont des cas particuliers des faisceaux de
Kloosterman pour les groupes réductifs introduits par
Heinloth, Ng6, et Yun. Cette thése vise a généraliser le
travail de Fresan, Sabbah et Yu sur les fonctions L des
faisceaux de Kloosterman pour SLs. On montre que
les fonctions L de plusieurs faisceaux de Kloosterman
pour SL,,.1 admettent un prolongement méromorphe
au plan complexe et satisfont a une équations fonction-
nelle. En particulier, certaines fonctions L proviennent
de formes modulaires, comme des conjectures de type
Evans prédissent.

On construit d’abord des motifs sur Q tels que leurs
réalisations ¢-adiques ont les mémes fonctions L que

Mots clés : Fonctions L, Faisceaux de Kloosterman, Motifs, Théorie de Hodge, Represéntations galoisiennes

les faisceaux de Kloosterman pour SL,, 1. On calcule
ensuite les nombres de Hodge des réalisations de
Rham de ces motifs en calculant la filtration de Hodge
irréguliere. Tant que 'on trouve un motif tel que les
nombres de Hodge de sa réalisation de Rham soient
soit zéro soit un, on peut appliquer un théoréme de
Patrikis et Taylor pour montrer 'automorphie poten-
tielle des représentations galoisiennes. Contrairement
au cas des faisceaux de Kloosterman pour SLo, les
nombres de Hodge peuvent étre supérieurs a un.
Lorsque les motifs des faisceaux de Kloosterman sont
de dimension deux, on peut utiliser la conjecture de
modularité de Serre pour montrer que les fonctions
L des faisceaux de Kloosterman coincident avec des
fonctions L de formes modulaires.

Title : L-functions of Kloosterman sheaves

Abstract : The classical Kloosterman sheaves are
(-adic local systems over G,,, r, whose traces of Fro-
benius are Kloosterman sums. They are special cases
of Kloosterman sheaves for reductive groups introdu-
ced by Heinloth, Ngd, and Yun. This thesis aims to
generalize the work of Fresan, Sabbah, and Yu on the
L-functions of Kloosterman sheaves for SL,. We show
that the L-functions of several Kloosterman sheaves
for SL,+1 can be extended meromorphically to the
complex plane and satisfy functional equations. In par-
ticular, some L-functions arise from modular forms, as
predicted by conjectures of Evans type.

We first construct motives over Q such that their /-adic
realizations have the same L-functions as Klooster-

Keywords : L-functions, Kloosterman sheaves, Motives, Hodge Theory, Galois representations

man sheaves for SL,,, ;. Then we compute the Hodge
numbers of the de Rham realizations of these motives
by computing the irregular Hodge filtration. As long as
we find a motive such that the Hodge numbers of its de
Rham realization are either zero or one, we can apply
a theorem of Patrikis and Taylor to show the potential
automorphy of Galois representations. Contrary to the
case of Kloosterman sheaves for SL,, the Hodge num-
bers can be bigger than one.

When the corresponding motives of Kloosterman
sheaves have dimension 2, we can use Serre’s modula-
rity conjecture to show that the L-functions of Klooster-
man sheaves coincide with the L-functions of modular
forms.
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