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Abstract

Characterising how a species responds to its environment is of central interest in ecology. Species-

environment relationships (SERs) are studied, for instance, in community ecology, for species

distribution modelling, and to guide conservation or management actions. Statistical models

that link species distribution data (e.g., presence/absence or counts) to environmental data (e.g.,

temperature) are often used to estimate SERs. Standard statistical models assume that the data

are representative of the SER. However, in many cases the available data represent only a partial

description of the SER. In this work, we investigated the effects on modelling SERs of three kinds

of partially observed data:

1. Partially observed response data, e.g., species sampled occurrences may only represent a

partial observation of the occupancy status due to missing species present (i.e., imperfect

detection).

2. Partially observed environmental data, e.g., environmental descriptors may represent aver-

aged conditions at a coarser spatial scale than the one at which the SER is studied (i.e.,

area-to-point spatial misalignment).

3. Partially observed relationship, e.g., the gradient of environmental conditions that describe

the SER are not entirely surveyed (i.e., truncated gradient).

Hierarchical Bayesian models, allowing multi-species inferences and disentangling ecological from

observational processes, have been developed and tested in three case studies, each involving a

particular type of partially observed data. In the first case study, we emphasized that even a

robust sampling design that involves multiple sampling replicates and detection techniques can

lead to species detection probabilities lower than one in an insect community. We then advocated

for the use of Multi-Species Occupancy Models to account for imperfect detection in insect studies.

In the second case study, we showed how using area-to-point misaligned covariate can flatten

SERs estimated by generalized linear models and how fitting a Berkson error model can lower

the bias. In the third case study, we developed a hierarchical model that explicitly estimates

optimum shifts. By constraining estimated SERs to concave shapes (following ecological theory),

the new model improved estimates relative to past methods, especially in the case of truncated

gradients. The methods and insights developed in these case studies contribute new knowledge

to both the statistical and ecological research communities. They can also be used to inform

ecological practice.

Key-words: species-environment relationships, hierarchical Bayesian model, partially observed

data, gradient truncation, imperfect detection, spatial scales, spatial misalignment



Résumé

Décrire comment les organismes sont affectés par l’environnement des habitats qu’ils occupent

est un des principaux sujets d’étude de l’écologie. Par exemple, l’étude des relations espèces-

environnements permet une meilleure compréhension de la structuration des communautés, de la

répartition spatiotemporelle des espèces et des effets des changements globaux sur la biodiversité.

Les modèles statistiques sont souvent utilisés pour estimer les relations espèces-environnements à

partir de données décrivant la réponse d’une espèce, par exemple des données de présence/absence

ou d’abondance, le long de gradients environnementaux, comme des gradients de températures. La

qualité de l’estimation repose néanmoins sur l’hypothèse de représentativité de l’échantillonnage,

les données doivent décrire correctement la relation espèce-environnement étudié. Cependant, du

fait de la difficulté d’échantillonner la totalité de la relation, celle-ci est souvent partiellement

observée.

Dans ce travail, nous avons étudié les effets de trois types de données partiellement observées sur

l’estimation des relations espèces-environnements:

1. La réponse de l’espèce est partiellement observée en cas de détection imparfaite: les données

décrivant la présence d’une espèce représentent seulement une portion des vraies occurrences

du fait de potentielles non-détections.

2. Les données environnementales ne sont pas spatialement alignées avec les données de réponse:

l’environnement décrit représente les conditions moyennes sur une surface plus grande que

celle où la réponse de l’espèce a été échantillonnée, et non les conditions locales responsables

de la réponse observée.

3. La relation espèce-environnement est partiellement observée: le gradient de conditions

environnementales décrivant la relation n’est pas entièrement échantillonné, la relation

observée est tronquée.

Des modèles hiérarchiques Bayésiens, qui permettent la modélisation de plusieurs espèces et de

distinguer les processus écologiques des processus d’observations, ont été développés pour étudier

les relations espèces-environnements de trois cas d’études, chacun étant confronté aux problèmes

engendrés par un des trois types de données partiellement observées. Le premier cas d’étude

nous a permis de mettre en évidence la nécessité de prendre en compte d’éventuels problèmes de

détection lors de l’étude des relations espèces-environnements au sein de communautés d’insectes,

via l’utilisation de “modèle d’occupation multi-espèces”, même lorsque les données sont récoltées

en suivant un protocole maximisant la détection des espèces. Le second cas d’étude a permi

de caractériser les biais que pouvait engendrer un non-alignement spatial des données sur les



estimations de relations espèces-environnements. Un modèle linéaire hiérarchique pouvant limiter

ces biais a également été présenté. Le dernier cas d’étude présente un nouveau modèle permettant

d’estimer explicitement les déplacements d’optimums le long de gradients environnementaux, y

compris lorsque ces derniers sont partiellement observés.

Mots-clefs: relations espèces-environnement, modèles hiérarchiques Bayésien, données par-

tiellement observées, réponse tronquée, détection imparfaite, échelle spatiale, non-alignement

spatial
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1 Introduction

1.1 What are species-environment relationships?

Any living organism, whether a bacteria, a plant, or an animal, can survive only a finite range

of environmental conditions due to physiological constraints. At the species level, this means

that a species can occupy only a limited number of habitats in which environmental conditions

fall in the species’ physiological tolerance range. Within this set of environmental conditions,

often called an environmental or ecological niche (Hutchinson, 1957; McInerny & Etienne, 2012),

certain conditions might better suit the species than others. Hence, the species’ response (e.g.,

presence/absence or the number of individuals) to the environment will vary along the gradient of

conditions. How it varies is referred to as the Species-Environment Relationship (SER). When one

environmental variable is studied, a curve, called a Species Response Curve (SRC), can represent

the SER. Ecologists often assume that SRCs can take five different shapes depending on the

SER studied (Figure 1); Austin (2002); Oksanen & Minchin (2002); Huisman et al. (1993)): 1) a

flat curve, i.e., the environment does not influence species presence; 2) a sigmoidal curve, i.e.,

a monotone increase (or decrease) in species occupancy probabilities along the environmental

gradient; 3) a sigmoidal curve with a plateau; 4) a symmetric unimodal curve, i.e., bell-shaped

curve with a peak and occupancy probabilities decreasing at the same rate at both side of the peak;

and 5) an asymmetric unimodal curve, i.e., occupancy probabilities decreasing at different rates

depending on the side of the optimum. In addition, bimodal responses can occur in particular

conditions (e.g., exclusion of the species on one part of its physiological tolerance range by

competitors) but are seldom considered (see Jansen & Oksanen, 2013 for a counter example).

1.2 Why are species-environment relationships studied?

SERs give essential knowledge of the ecological characteristics of species. Describing a particular

SER provides information about the range of conditions that the species can occupy (i.e., the

environmental range/tolerance/breadth/width; Heegaard (2002); Hernandez et al. (2006); Clavel

et al. (2011)). Species environmental tolerance can be used to assess the sensitivity of species to

some disturbance gradient (Russell et al., 2009) or to expected changes in environmental conditions

(e.g., changes induced by climate change, Bellard et al., 2012), and then guide conservation actions

(Watson et al., 2012). Furthermore, it can be related to the ecological specialization type (i.e.,

generalist or specialist species), which can inform about community structure and functioning

(Devictor et al., 2008). SERs also form the foundation of species distribution models (SDMs) that

have been used for many purposes, including guiding conservation actions (Guisan et al., 2013;

Zurell et al., 2021), assessing biological invasion risks (Elith et al., 2010) and evaluating global
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Figure 1: Examples of the five potential shapes of species response to environmental gradient
mentioned in the text.

change impacts (Guillera-Arroita, 2017). In addition to indirectly leading to the assessment of

global change impacts through species distribution modelling, the study of SERs and their changes

along geographical (e.g., latitudinal or elevational) gradients has allowed direct investigations

into climate change-induced range shifts (Shoo et al., 2006; Lenoir et al., 2008). Hence, the study

of SERs can improve our knowledge of global change effects on biodiversity, which is one of the

principal challenges tackled by modern ecology (Bellard et al., 2012; Mouquet et al., 2015; Pecl et

al., 2017).

1.3 How to describe species-environment relationships?

As in many ecological studies, the description of SER is based on a sample of data from the

studied system. A statistical model is then used to fit the sampled data and make inference

about the SER. However, accuracy of inference is conditioned by the quality of the sample. Thus,

proper sampling designs have to be developed (Yoccoz et al., 2001; Kermorvant et al., 2019).

Ideally, the design should address three questions: “why?”, “what?”, and “how?” (Yoccoz et al.,

2001). When studying SER, the answer to “why?” should be to describe how the species respond

to the environmental gradient. Thus the aim is define the species environmental range (i.e., the

environmental limits distinguishing suitable from unsuitable conditions) and how the species

response fluctuates within this range (i.e., the shape of the SRC). The “what?” refers to the type

of data to collect to describe both response and explanatory (i.e., environmental) variables. The

latter is directly induced by the SER under study. The former depends on the ecological quantity



of interest (Guillera-Arroita et al., 2015). Here, we consider studies in which the response is

quantified by presence probabilities or abundance. Thus, presence/absence or count data should

be recorded (see Guillera-Arroita et al., 2015 for an explanation on why presence-only data should

be avoided when studying probability of species presence). Finally, the “how?” raises many

questions, for instance relative to statistical assumptions about sample properties (Kermorvant

et al., 2019). These questions can not be all presented here but, specifically for SER studies

particular attention should be paid to define: 1) control for detection issues (Yoccoz et al., 2001;

Guillera-Arroita et al., 2010; Banks-Leite et al., 2014); 2) the spatial scale at which to describe

the SER and thus at which resolution to measure the environment (Dormann, 2007; Connor et al.,

2018); and, 3) the length of the environmental gradient to sample (Thuiller et al., 2004; Faurby &

Araújo, 2018; Chevalier et al., 2021). Hence, an ideal sampling design should lead to the sampling

of multiple spatial units distributed along a gradient of environmental conditions, long enough to

describe both suitable and unsuitable conditions, in which species presence/absence or counts are

collected without error (perfect detection).

1.4 Partially observed species-environment relationships

In the previous section it was argued that an ideal survey should be designed to answer “why?”,

“what?” and “how?”. Failing to answer those questions can lead to unrepresentative data (Yoccoz

et al., 2001), thus bias in inference, even if the model is well-specified. However, answering those

questions is not straightforward in SER studies, especially the “how?” which requires extensive

knowledge about the system. We present below three situations that can prevent answering this

question:

• species detection patterns are unknown, i.e., the probability of detecting a species when it

is present can vary with unknown external factors, which prevents controlling for detection

issues (Guillera-Arroita et al., 2014);

• measuring the environment at each sampling location is impossible, constraining to use

of existing environmental data, e.g., when interests lie in the effect of climate on species

response (Lembrechts et al., 2019);

• the entire range of environmental conditions that species can survive is not available for

sampling, e.g., a species is adapted to conditions that are unavailable on earth at the time

of sampling (Faurby & Araújo, 2018).

Each of these situations can lead to what we call partially observed data. Imperfect detection can

arise from the first situation, which leads to false-absence and thus partially observed presence.

Relying on existing environmental data can force the modeller to describe the environment by



average conditions available at a coarser resolution than the ecological resolution, leading to

partially observed environmental data. Finally, not sampling the entire range of environmental

conditions can lead to a partially observed relationship.

1.4.1 Imperfect detection

Decades of research on species detectability Devarajan et al. (2020) have shown that individuals

and species are seldom perfectly detected. Imperfect detection leads to false absences (i.e.,

incorrectly considering a species absent when it is present but undetected; Tyre et al. (2003)).

In such a situation, the partially observed presence/absence data no longer allow inference on

the presence probability but instead on the probability of observing the species, i.e., the joint

probability of presence and detection events (Guillera-Arroita et al., 2015). This confusion

can lead to significant bias in SER estimates (Tyre et al., 2003; Lahoz-Monfort et al., 2014),

especially if species detectability varies along the environmental gradient in different ways than

the occupancy (Lahoz-Monfort et al., 2014).

In the early 2000s, site-occupancy models were developed to deal with imperfect detection of

species (MacKenzie et al., 2002; Tyre et al., 2003) and the number of species individuals (i.e.,

N-mixture models; Royle (2004)). These models distinguish the ecological process (i.e., species

occupancy or abundance at a site) from the observational process (i.e., species or individual

detection given its presence), allowing for simultaneous estimates of species occupancy (or

abundance) and detection probabilities. They can be used to model the effects of environmental

covariates on occupancy probabilities (i.e., estimate SER) while accounting for detection issues.

Estimating detection probabilities requires replicated sampling at the surveyed locations (Bailey

et al., 2007). Replication can involve multiple visits, observers, observation techniques, or spatial

replicates (Guillera-Arroita, 2017).

Despite the quantity of literature on imperfect detection issues and the development of models to

deal with them, imperfect detection often continues to be overlooked in SER studies (Kellner

& Swihart, 2014; Devarajan et al., 2020). Furthermore, geographical and taxonomic biases

have been observed in the use of site-occupancy models (Kellner & Swihart, 2014; Devarajan

et al., 2020). Several explanations exist. One is the belief that a robust sampling design can

prevent imperfect detection issues (Welsh et al., 2013), which can be true if detection patterns

are well-known. However, such knowledge is often lacking (Kellner & Swihart, 2014), precluding

the control of unknown external factors that could influence detectability (Guillera-Arroita et al.,

2014). Moreover, the extra sampling effort required for sampling replication can be perceived as

not worthwhile (Welsh et al., 2013), preventing the use of site-occupancy models. Finally, a lack

of studies in specific domains (e.g., entomology or marine environment; Kellner & Swihart (2014);



Devarajan et al. (2020)) can also constrain the use of site-occupancy models. Thus, broadly

promote the use and advantages of site-occupancy models may improve the study of SERs.

1.4.2 Area-to-point spatial misalignment

When studying a SER, ideally, environmental data should be collected at the spatial resolution at

which it acts on the species response (i.e., at its scale of effect; Chandler & Hepinstall-Cymerman

(2016)). Indeed, using environmental covariates at scales that differ from the scale of effect can

lead to bias in SER estimates (Connor et al., 2018). However, at least two common situations

can prevent the sampling of environmental covariates at the appropriate scale:

• The scale of effect is not known beforehand. The presence of a species at specific locations

can by explained by the environmental conditions at those locations, but also by particular

features of the surrounding landscape (De Knegt et al., 2010; Chandler & Hepinstall-

Cymerman, 2016).

• Depending on the environment of interest, it can be infeasible to collect environmental data

at all sampling units. For instance, studying effects of temperature on species occupancy

implies recording temperature data during months or years. Indeed, temperatures collected

during species sampling alone will not represent the range of conditions that the species

actually experienced. Deployment of sensors at all sampling units seem unreasonable.

Thus, many studies have used existing/available environmental data to describe species-

environment relationships.

Many environmental data used to estimate SERs come from outputs of numerical global climate

models (e.g., WorldClim, Hijmans et al., 2005). In these situations, the spatial resolution of

environmental covariates is imposed by the resolution of the model outputs. This often leads to

a scale (i.e., a resolution) mismatch between environmental and species response data (Potter

et al., 2013). A particularly common situation, referred as area-to-point spatial misalignment in

the geostatistics literature (Gotway & Young, 2002), occurs when environmental conditions are

described at coarser resolutions than the species response data (Latimer et al., 2006; McInerny &

Purves, 2011; Potter et al., 2013). Area-to-point spatial misalignment is known to induce bias

in regression estimates (Gotway & Young, 2002). However, for a long time, ecologists did not

consider area-to-point spatial misalignment as a problem in SER studies (Potter et al., 2013).

They assumed that large-scale climate was the main driver of species response (Pearson & Dawson,

2003) and thus, that coarsely-resolved climate data represented the scale of effect. While this

might be true when SER is studied at large-scale or for mobile species (Guisan et al., 2007), it can

be otherwise (Meineri & Hylander, 2017; Lembrechts et al., 2019). For instance, micro-climate



variability is known to play an important role for fine-scale species distribution, especially in forest

ecosystems (Zellweger et al., 2020) or for sessile species (Chauvier et al., 2022). Thus, fine-scale

environment might only be partially described by coarse-scale environment which represents

averaged conditions less variable than the true conditions (McInerny & Purves, 2011).

Partial description of fine-scale environmental variability induced by area-to-point spatial mis-

alignment is also recognized to bias SRC (Latimer et al., 2006; McInerny & Purves, 2011;

Martínez-Minaya et al., 2018). However, there have been only a few attempts to address this

problem (Latimer et al., 2006; McInerny & Purves, 2011). For instance, McInerny & Purves (2011)

proposed to use a Berkson measurement-error model (BEM), in which the observed covariate

w is considered as an error-prone representation of an unoberseved error-free variable x. The

observed covariate is a less variable version of the error-free variable: x = w + u, with u the

amount of error (i.e., the variance error). McInerny & Purves (2011) showed through simulations

that BEM improve estimates of SRC compared to a model omitting the error, but assuming a

known variance error. This information is, however, unavailable in most studies. Latimer et al.

(2006) advocated for the use of spatial generalized linear models to account for area-to-point

misalignment but without providing any external evidence of accuracy or predictive power of this

method. Thus, no “general” method is currently used to address or even detect area-to-point

misalignment.

1.4.3 Truncated relationships

In some studies, sampling design is defined geographically and not environmentally (e.g., in SDM).

Instead of capturing the entire gradient of values that a species could occupy, environmental

gradients can be only partially observed (Thuiller et al., 2004) or partially available during the

survey (Faurby & Araújo, 2018). Such situations, lead to a partial observation of the SER. Such

a partially observed relationship is also referred as truncated niche (Chevalier et al., 2021) or

truncated response (Austin, 2007).

Partially observed SER can lead to severe in SRC estimates (Thuiller et al., 2004; Citores et al.,

2020; Chevalier et al., 2021). For instance, simulation studies have shown that regression methods

can fit a sigmoidal curve instead of a unimodal curve when optimum is near the end of the

observed gradient (e.g., generalised linear models (GLMs): ter Braak & Looman, 1986; Coudun

& Gégout, 2006; generalised additive models (GAMs): Citores et al., 2020; Huisman-Olff-Fresco

(HOF) models: Jansen & Oksanen, 2013). Such bias can lead to inaccuracies in predictions

outside the sampled gradient (Thuiller et al., 2004). In addition, optimum estimates can not

be derived from the SRCs in those situations (ter Braak & Looman, 1986; Coudun & Gégout,

2006). This is particularly prejudicial when optimum is the ecological parameter of interest, e.g.,



in climate change studies in which optimum shifts are estimated (Lenoir et al., 2008).

In optimum shift modelling, accurately estimate optimum shifts for edge species is crucial as

such species can be close to their environmental limits and thus particularly sensitive to change

(Freeman et al., 2018). However, the current most two widely used methods, GLM-based (e.g.,

Lenoir et al., 2008) and mean comparison based approaches (e.g., Shoo et al., 2006), can not

accurately estimate optima near gradient edges (ter Braak & Looman, 1986). Hence, a method

allowing accurate optimum shift estimates for edge species can enhance studies of SRC optimum

shifts.

1.5 Hierarchical Bayesian Modelling of SERs

GLM is a very popular method for studying SERs (Guisan et al., 2002; Austin, 2007). GLMs

are commonly used to link presence/absence or count data to a linear combination of predictors

by means of a link-function (Guisan et al., 2002). Usually, for the study of SER, GLMs include

a combination of linear and quadratic terms to model unimodal symmetrical response curves

expected to occur for many SERs (Austin, 2007). Sometimes, asymmetric responses are expected,

and more flexible approaches (e.g., GAMs or HOF models) are preferred (Oksanen & Minchin,

2002). However, flexibility comes with a loss of simplicity in interpretation and high-quality

data requirements (Merow et al., 2014). As in SER studies, the main goal is often ecological

interpretation and that partially observed data might lead to low-quality data, so we chose to

consider only GLM-based approaches in this work.

GLMs can be too simple and unsuitable for most ecological data’s complex structure. As

mentioned earlier, in the case of partially observed SER, data collected represent a tangle between

ecological and observational processes rather than the description of the SER (e.g., in case of

imperfect detection, Tyre et al., 2003). In such situations, GLMs are expected to produce biased

estimates of the SER (Lahoz-Monfort et al., 2014) (see also a simulated example in Figure 2).

However, they can be extended into Hierarchical Models (HMs; also called mixed models (Bolker

et al., 2009) or multi-level models (McElreath, 2016)) that allow the decomposition of complex

systems into hierarchical sequences of simpler models (Wikle, 2003). Such decomposition allows

disentangling ecological processes from observational processes (Cressie et al., 2009), making

HMs valuable to study SER with partially observed data (Royle & Dorazio, 2008; Hefley &

B. Hooten, 2016). In addition, HMs provide a flexible approach to modelling multiple SERs

simultaneously (Ovaskainen et al., 2017; Poggiato et al., 2021). Multi-species HMs assume that

species within a community respond similarly but not equally to the environment (Bolker et al.,

2009), i.e., specific SERs are described by a combination of shared community-level parameters



and species-level variability (McElreath, 2016; Pedersen et al., 2019). Hence, data information

is shared among species which can improve SER estimates, especially for data-poor species

(Ovaskainen & Soininen, 2011).
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Figure 2: Effects of partially observed data on modelling of species-environment relationships. In
all panels, the dashed green line shows the true relationship between the probability of presence
and the environment. Black lines represent the relationships predicted by fitting a generalized
linear model on different types of observed data: a) fully observed data, i.e., data come from an
error-free sampling; b) partially observed response data, i.e., species imperfectly detected and
detection probability decreases across the gradient; c) partially observed environmental data, i.e.,
measured environment describes average conditions at a coarser resolution than conditions the
species experience; d) partially observed relationship, i.e., environmental gradient not entirely
sample.

Hierarchical models can be fitted with either Bayesian or frequentist approaches (Cressie et al.,

2009). There are pros and cons associated with both paradigms (Lele & Dennis, 2009; Dorazio,

2016). For example, among the cons against Bayesian analysis, there are : computational costs of

Markov chain Monte Carlo (MCMC) methods used for estimation, and the subjectivity induced

by the choice of priors (Lele & Dennis, 2009). Among the pros for Bayesian analysis, there

are: clear and intuitive estimates of modelling uncertainties (Ellison, 2004) and applicability

for data with low sample size (Dorazio, 2016). The elements that led to my choice to adopt

Bayesian methods are subjective and linked to: my conception of modelling and how I have been

taught statistics as an ecologist. Bayesian inference provides a probabilistic measure of a model

being true given the data observed (P (model|data)). This better fits my point of view that a

model is always a simplified and subjective representation of the reality chosen by a modeller.



Model selection methods may seem objective, however, they still depend on the models and on

the comparison techniques chose by the modeller. Then, it seems more appropriate to have a

probability statement about the degree of support for a model given the observed data, rather

than how likely it is to observe the data given the model. Besides, in my experience, ecologists

are trained to use frequentist methods by the prism of specific software and the functions within.

Thus, an ecologist can be constrained by the models available in the software she/he is using.

In contrast, once an ecologist has acquired a little background in Bayesian statistics, MCMC

samplers and flexible software such as WinBUGS (Lunn et al., 2000) or JAGS (Plummer, 2003),

which is feasible thanks to some great books (Royle & Dorazio, 2008; e.g., Kéry, 2010; Kéry &

Royle, 2015, 2021), she/he can build any sort of hierarchical model.

1.6 Organisation of the Thesis

This thesis investigates potential bias and related issues that can arise when using partially

observed data to estimate species-environment relationships (SERs). Specifically, we focus on

particular case studies involving three types of partially observed data:

1) partially observed response data produced by imperfect detection of species;

2) partially observed covariate data related to a specific case of spatial misalignment;

3) partially observed relationship in the particular context of optimum shift modelling.

We are also interested in potential solutions that hierarchical Bayesian models (HBMs) can offer

in the presence of such partially observed data.

This work is organised in 3 chapters, each dedicated to a specific type of partially observed data

that may lead to bias in SER modelling.

The first chapter of this thesis highlights the need to account for imperfect detection in the

study of insect communities. While it is known that imperfect detection often occurs during

field surveys, it is widely overlooked by entomologists. Through a case study on an Orthoptera

communities, we show that even with a robust sampling design specific detection probabilities are

likely to be less than one. Thus, we advocate for using an HBM, called multi-species occupancy

model (MSOM), that accounts for imperfect detection by estimating both species occupancy and

detection probabilities. In addition, we test a method to investigate sampling efficiency and the

corresponding effects of potential optimisation to overcome reservations about the relatively high

sampling effort required for the use of MSOM. This chapter is composed of an article published

in Ecological Entomology.

The second chapter of this work investigates the effects of spatial misalignment on models’



performance using covariates averaged across scales that are coarser than the scale of the

ecological process. We compare the accuracy of three models (a GLM, a spatial GLM and a

Berkson measurement Error Model (BEM)) through simulations and application to a real case

study of the Manila clam in Arcachon Bay. We find that the GLM and the spatial GLM produce

biased SER estimates, with bias increasing with the coarsening of the environmental data. Thus,

we advocate for not interpreting GLM estimates if environmental data are available at a resolution

that may be coarser than the species response scale. In contrast, the BEM give promising results,

with almost no bias in SER estimates even for very coarse environmental data, but needs further

investigations for broad applications. This chapter is composed of an article in preparation for

submission in Journal of Applied Ecology.

In the third chapter, we propose a new ecological formulation of a hierarchical Bayesian model

to explicitly estimate optimum shifts along environmental gradients for multiple species. We

demonstrate through simulations that this model, called Explicit Hierarchical Model of Optimum

Shifts (EHMOS), is more accurate than a GLM-based approach and the mean comparison

method (two widely used methods). Furthermore, the ecological formulation of EHMOS allows

accurate optimum shift estimates for edge species (i.e., species having a partially observed SER) in

opposition to the mean comparison method and the GLM-based approach. In addition, EHMOS

has better accuracy under unbalanced sampling design relative to the mean comparison method.

Finally, we discuss further developments of the method to investigate ecological mechanisms

underlying observed optimum shift variability among species. This chapter is composed of an

article under review in Journal of Biogeography.



2 Chapter 1: Multi-species occupancy models: an effective

and flexible framework for studies of insect communities

The core of this chapter is a paper published in Ecological Entomology: Mourguiart, B., Couturier,

T., Braud, Y., Mansons, J., Combrisson, D., & Besnard, A. (2021). Multi-species occupancy

models: an effective and flexible framework for studies of insect communities. Ecological En-

tomology, 46(2), 163-174. I also made a Shiny application available online (https://bastien-

mourguiart.shinyapps.io/shiny_MSOM/) to facilitate species-specific results dissemination, espe-

cially for entomologists with low statistical knowledge.

2.1 Synopsis

Studies of insect communities often aim to estimate species distributions, community composition,

or species-richness patterns. False absences (i.e., noted an absence while the species was present

but missed due to imperfect detection) can, however, bias estimates of models that do not account

for imperfect detection (Tyre et al., 2003; Lahoz-Monfort et al., 2014; Tingley et al., 2020).

Multi-species occupancy models (MSOMs) seem to afford a flexible solution to cover the main

topics of ecological entomology while dealing with imperfect detection issues (Mata et al., 2014;

Tingley et al., 2020). However, MSOMs are still rarely used in insect studies (Devarajan et al.,

2020), and imperfect detection issues are often overlooked (Kellner & Swihart, 2014).

MSOMs require specific sampling designs to distinguish the ecological process (i.e., species

occupancy) from the observational process (i.e., species detection). Sampling has to occur at

multiple sites to estimate occupancy probabilities and sampling on each site has to be replicated

to estimate detection probabilities (Guillera-Arroita, 2017). Replication could be conducted by

visiting the site during multiple visits, at different locations inside it, by multiple observators or

by using multiple detection techniques (Guillera-Arroita, 2017). This sampling replication can be

costly, which could explain the little use of MSOMs in insect studies.

In this chapter, we developed an MSOM to estimate species-specific occupancy and detection

probabilities of Orthoptera species. In addition, we used the MSOM to estimate species richness

and inventory completeness. The chapter’s goals were to highlight (1) the need to account for

imperfect detection in insect studies, even for easily detectable species such as Orthoptera sampled

following a robust sampling design, and (2) the use of MSOM to investigate sampling efficiency

and potential sampling optimisation.

2.2 Publication

https://bastien-mourguiart.shinyapps.io/shiny_MSOM/
https://bastien-mourguiart.shinyapps.io/shiny_MSOM/
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Abstract. 1. Entomological studies often aim to estimate species distribution, commu-
nity composition, or species-richness patterns. False absences can, however, bias these
estimates and should consequently not be overlooked in insect studies. Multi-species
occupancy models (MSOMs) afford a flexible solution to cover the main topics in eco-
logical entomology while dealing with detectability issues.

2. We sampled Orthoptera communities at 81 mountain grasslands sites in France,
using three sampling techniques: sighting, listening, and sweep netting. Five plots were
sampled per site. This sampling design allowed MSOMs to be used to estimate richness,
occupancy, and detection probabilities while accounting for the effect of covariates. We
also used MSOMs to evaluate the efficiency of the survey design and to assess the effects
of sampling optimisation.

3. The estimates obtained for altitudinal distribution were reliable, with known species
distributions confirming the relevance of MSOMs to model the effects of covariates on
Orthoptera communities. The species-specific detection probability was often less than
one and varied with the detection technique used and the grass height, confirming the
need to deal with detection issues in orthopteran studies.

4. We estimated an inventory completeness superior to 0.80 for 93% of the sites, and
an overall detection probability superior to 0.95 for 52% of the species, suggesting
the sampling design was suitable for studying occupancy in Orthoptera communities.
We also found that the sweep netting step may be omitted or the number of plots
reduced without affecting species detectability or inventory completeness. Those
recommendations may help to optimise future sampling strategies.

Key words. Hierarchical model, imperfect detection, orthoptera communities, sam-
pling optimisation, sampling efficiency, species distribution modelling.

Introduction

The study of species distribution and its determinants is of
central interest in theoretical and applied ecology (Rush-
ton et al., 2004; Guisan & Thuiller, 2005; Vaughan &

Correspondence: Bastien Mourguiart, CNRS/UNIV PAU PAYS
ADOUR/E2S UPPA, Laboratoire de Mathématiques et de leurs Appli-
cations – MIRA, UMR5142, 1 allée du parc Montaury, 64600 Anglet,
France. E-mail: bastien.mourguiart@etud.univ-pau.fr

Ormerod, 2005). By acquiring information on species occu-
pancy patterns in a set of sampling locations and/or sampling
periods (Guillera-Arroita, 2017), ecologists are, for instance,
able to make inferences about the environmental drivers
behind species distribution (Guisan & Thuiller, 2005; Zipkin
et al., 2009). This information can in turn be used to plan
appropriate management actions given conservation aims or to
understand species range dynamics (Moritz et al., 2008; Pecchi
et al., 2019).

© 2020 The Royal Entomological Society 1
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Over the last decade, species distribution models (SDMs),
relying on the modelling of occurrence data together with
environmental covariates, have become the central tool used
to study species distribution range or dynamics (Guisan &
Thuiller, 2005). Yet most classically used SDMs are based
on presence-only data (Guisan & Zimmermann, 2000;
Guillera-Arroita et al., 2015). They should be used with
caution as their results could be highly biased with sam-
pling effort (Phillips et al., 2009) or with imperfect detection
(Guillera-Arroita et al., 2015). Besides, these models allow
inference about indices of species occurrence and not about
probability of species presence, which is the common purpose
of ecologists (Guillera-Arroita et al., 2015). SDMs based
on presence-absence data are considered as more flexible,
but inferences about probability of species presence depend
on the assumptions that the species detectability is almost
perfect and remains constant between sites (Guillera-Arroita
et al., 2015). Violating those assumptions may induce high bias,
especially for species characterised by a limited detectability
(Lahoz-Monfort et al., 2014). However, decades of studies
on detection issues in ecological monitoring have shown that
species probabilities of detection are often less than one and
may vary with environmental features (Tyre et al., 2003;
Lahoz-Monfort et al., 2014).

Detection issues generate false absences that in turn may
result in strong bias when modelling species distribution (Tyre
et al., 2003; Lahoz-Monfort et al., 2014). For instance, detec-
tion issues can lead to the systematic underestimation of the
distribution range (MacKenzie et al., 2002) or can overes-
timate occupancy turnover (MacKenzie et al., 2003). In the
early 2000s, so-called ‘site-occupancy models’ were specifi-
cally developed to solve this issue by simultaneously estimat-
ing detection and species occupancy probability (MacKenzie
et al., 2002; Tyre et al., 2003). Since then, they have been rapidly
extended to allow modelling the effects of covariates on occu-
pancy and detection probabilities (MacKenzie et al., 2006), to
model range dynamics (Moritz et al., 2008), or to take advan-
tage of information on species states at study locations (Nichols
et al., 2007). Initially developed to model occupancy of one
focal species, site-occupancy models have been extended to
study the occupancy patterns of several species simultaneously
(Dorazio & Royle, 2005). These models, called multi-species
occupancy models (MSOMs), increase precision in occupancy
estimations compared to single-species models, especially for
rare species, by borrowing information from data-rich species
(Zipkin et al., 2009; Ovaskainen & Soininen, 2011). The hierar-
chical structure of these models also allows making inferences
about the true species richness at study locations, a result that
cannot be achieved by species-by-species analysis (Dorazio &
Royle, 2005; Guillera-Arroita et al., 2019). MSOMs thus appear
to have potential as robust tools for biodiversity analysis or bio-
logical assessment (Mata et al., 2014; Devarajan et al., 2020;
Tingley et al., 2020). However, despite these models were devel-
oped 15 years ago, only 106 published studies have relied on
their use, according to a recent review (Devarajan et al., 2020).
Among them, MSOMs have mainly been used for vertebrates,
and only marginally in other taxa such as plants (see Roth
et al., 2018) or insects (Devarajan et al., 2020; but see Mata

et al., 2014; Brodie et al., 2019; Dorazio et al., 2006), even
though these taxa may pose specific detection issues because of
their ecology (phenology, for instance). Accordingly, the rele-
vance of MSOMs appears to be still overlooked for a large range
of taxa.

As has been previously highlighted by other authors (Mata
et al., 2014; Brodie et al., 2019), since many entomological
studies look for changes in insect communities, it is crucial
that they take into account imperfect detection. In this context,
MSOMs present some clear advantages. First, this approach
makes it possible to estimate the occupancy probability even
for data-poor taxa, considering for instance the numerous rare,
cryptic, or elusive species in insect communities, often difficult
to detect in the field (Coddington et al., 2009; Silva et al., 2019).
These taxa are usually excluded in common analyses, such as
multivariate methods, in which species found at less than 5% of
sites are usually removed (Ter Braak & Smilauer, 2002; Pierik
et al., 2017). Secondly, both the species- and community- levels
can be simultaneously studied with MSOMs (Mata et al., 2014),
thanks to the hierarchical structure of their models. The bio-
diversity estimators provided by MSOMs, such as species
richness, have the advantage of accounting explicitly for the
effects of survey-, site-, and species-level covariates that may
affect detectability, in contrast with most usual estimators (Tin-
gley et al., 2020). This is of particular interest in entomological
studies, since the activity rate and the density of insects–and
thus detection probability–are strongly affected by survey and
site conditions (Wolda, 1988; Bale et al., 2002).

Orthoptera is an insect group intensively studied in ecology
and regularly used as ecological indicator (Marini et al., 2009;
Bazelet & Samways, 2011). Detectability issues are expected
to occur in orthopteran field surveys because of their small size
and the strong variations in abundance related to their phenol-
ogy (Badenhausser et al., 2009). Detectability is also expected
to vary greatly among species (Badenhausser et al., 2009) due
to the high diversity in their ecological traits (e.g. mobility,
singing activity, mimicry, etc.) and in their habitat preferences
(e.g. closed forests vs open grasslands). Orthoptera detection
also strongly depends on the sampling techniques used, the
effectiveness of which is often influenced by species-specific
traits. For instance, highly mobile Orthoptera may flush out
when the observer approaches, becoming easily detectable by
sight, but hardly detectable using the sweep net or the box
quadrat methods. Conversely, sweep netting and box quadrats
may increase the detectability of cryptic Orthoptera living close
to the ground, often hardly detectable simply by sight. Despite
these detection issues, only two studies conducted on single
orthopteran species have explicitly dealt with imperfect detec-
tion by using site-occupancy models (MacKenzie et al., 2003;
Veran et al., 2015). A third research applied site-occupancy
models on orthopteran communities, but using single-species
site-occupancy models for each species, without using a stan-
dardised sampling design (Malinowska et al., 2014).

Site-occupancy models require a specific survey design, usu-
ally based on temporal replication conducted on a set of sam-
pling sites (MacKenzie et al., 2006). Replication at the site scale
can be obtained through repeated visits, but also by using spatial
replicates, multiple observers, or multiple sampling techniques

© 2020 The Royal Entomological Society, Ecological Entomology, doi: 10.1111/een.12991
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depending on the study (Guillera-Arroita, 2017). A constraint of
this method is that this replication increases the sampling effort
and the associated costs, precluding the use of this approach
by practitioners, notably when the monitoring budget is lim-
ited (Field et al., 2005). On the other hand, this replication
is needed to explicitly deal with detection issues and thus to
develop robust monitoring (Yoccoz et al., 2001). Hence, there is
a crucial need to develop monitoring that optimises the trade-off
between sampling effort, techniques, and effectiveness when
designing site-occupancy surveys (Field et al., 2005).

Most existing grasshopper-sampling protocols are based on
estimates of the abundance index or raw presence–absence
(Gardiner et al., 2005). To our knowledge, none were designed
to use multispecies site-occupancy models. In this study, we
therefore investigated the effectiveness of MSOMs in estimating
the occupancy probability of Orthoptera at community level,
while accounting for imperfect detection. We also evaluated the
ability of MSOMs to assess the efficiency of the survey design
under different sampling optimisation scenario.

Materials and methods

Sampling method and design

Field surveys were conducted between 9th August and
5th October 2018 in the Mercantour National Park, located
in the southern French Alps. We selected 81 sampling sites
among 179 locations already studied between 1983 and
1988 (Gueguen, 1990), in order to encompass all the altitu-
dinal and exposure gradients, ranging from 928 to 2614 m
(mean = 1869 m) above the sea level. Each sampling site con-
sisted in a circle (70 m radius) placed in relatively homogeneous
grasslands (Fig. 1), and distanced at least 30 m from woodland
areas in order to avoid edge effects (Bieringer & Zulka, 2003).

Within each sampling site, we defined five spatial replicates
(hereafter ‘plots’), placed on two lines perpendicular to the

mountain slope and spaced at least 30 m from each other, to
avoid potential double counts among plots (Fig. 1). In few cases
(N = 5 sites), this spatial design had to be slightly adapted
depending on the sampling site configuration, notably when the
grassland area was too small. Thus, some replicates were placed
less than 30 m apart or from the forest edge. However, as a
minimum distance of 20 m was maintained between plots and
from the forest edge, we considered close plots as independent
and no effect of the forest proximity on species composition.

Each plot consisted of a 30 m2 area, measured by means of
a cord, circular or rectangular in shape, depending on ground
cover and slope steepness within the sampling site. In particular,
circular plots were preferred in sites characterised by gentle
slopes and/or shrubby vegetation, while rectangular plots were
surveyed on steep slopes and/or in short-sward sites.

Samplings were carried out by a single trained observer
(Y.B.), when the weather conditions were optimal for diurnal
Orthoptera activity, i.e. no rain, low to moderate wind speed,
and sunshine (or temperature exceeding 18∘C if cloudy). Species
identification was conducted in the field for almost all species,
except for Anonconotus occidentalis Carron & Wermeille, 2002
and Anonconotus ligustinus Galvagni, 2002 which cannot be
distinguished without the examination of genitalia morphology.
Hence, individuals that could be both A. occidentalis and
A. ligustinus were captured and identified in the laboratory,
only A. occidentalis was detected in our inventories. In each
plot, orthopteran assemblages were surveyed following three
successive steps: (1) 1 min of listening to species stridulating
in the plot by standing close to its edge, (2) 6 min of sighting
species by walking across the entire plot, and (3) two 45-s
sweep netting sessions across the entire plot. We chose this
execution order for the different sampling techniques because
we expected that it would optimise the number of species
encountered. Beginning by the listening step leads to record
singing species before disturbing them. Then, we expected that
walking across the plot will make the mobile species flush away

Fig. 1. Schematic representation of the sampling design conducted at each sampling site (dashed circle), placed in relatively homogenous grasslands
(hatched area) and spaced at least 30 m from the closest forested habitat (black area). Orthoptera were sampled in five plots (solid circles) within each
site using three sampling techniques (sighting, listening, and sweep netting).
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making them easily detectable by sight. Finally, sweep netting
sessions aimed to capture the remnant less mobile species that
did not flush away in step 2. By means of this sampling design,
detection/non-detection data were available for each sampling
technique in each plot at each site.

Multi-species occupancy modelling

We then modelled the detection/non-detection data of the 15
replicates per sampling site (i.e. 5 plots× 3 sampling techniques)
using site-occupancy models (MacKenzie et al., 2002; Tyre
et al., 2003). These models estimate the occupancy probability
while modelling imperfect detection through the use of sampling
replication conducted at each site. The sampling replication
at one site can be achieved with multiple visits, multiple
detection methods or multiple observers, as well as with spatial
replicates if samplings occur at different locations within a
site in a single visit (MacKenzie et al., 2006). In addition,
different types of replication are available, depending on the
characteristics of the target species, the study area and the
objectives (Guillera-Arroita, 2017). Among these options, the
spatial replicates method was selected in this study, due to
field constraints related to the mountain environment (which
required long travel to access the sampling sites). When based on
spatial replicates, the model assumes that the occupancy status
of sampling sites does not change between site replicates (in our
case, plots), i.e. closure assumption (Kendall & White, 2009).
Because the plots were closed in space and set up in sites
of homogeneous vegetation cover, we considered that this
assumption was met. We also assumed no false positives, i.e.
only zero can be reported for a species at a site where it is absent,
considering the observer’s identification skills.

Site-occupancy models disentangle the ecological process,
i.e. the true occupancy state for a species in a site, from
the observational process, i.e. the detection/non-detection of a
species at a site given it is present. In order to distinguish a
true absence from a non-detection, we modelled the raw data for
species i at replicate k of site j, denoted Xi, j, k, as the outcome of
a Bernoulli random variable, defined by:

Xi,j,k ∼ Bernoulli(pi,j,k × Zi,j)

where pi, j, k is the detection probability of species i at replicate
k of site j, and Zi, j is a binary variable corresponding to the
occupancy state of site j by species i (latent state). The model
for occurrence is specified as:

Zi,j ∼ Bernoulli(𝜓i,j) (1)

where 𝜓 i, j is the probability that species i occurs at site j.
We estimated the occupancy (𝜓 i, j) and the detection

(pi, j, k) probabilities of all the species using a multi-species
site-occupancy model (MSOM) with single-species occu-
pancy models as building blocks (Dorazio & Royle, 2005;
Zipkin et al., 2009). The species-specific intercepts and slopes
from occupancy and detection models were drawn from a
shared, community-level distribution via random effects.
Through such hierarchical structure, species with less data

“borrow” information from other species that are data-rich,
which improves precision in estimates (Zipkin et al., 2009;
Ovaskainen & Soininen, 2011). The linking of species via ran-
dom effects also allows inferences to be made about the number
of species Nj present at each site j, including species never
detected (Dorazio et al., 2006; Guillera-Arroita et al., 2019). In
this modelisation process, we followed the ‘data augmentation’
method described by Royle et al. (2007), also including N0

hypothetical species to the dataset, all with zero detection.
The species-specific effect on the occupancy and the detec-

tion probabilities was integrated into the model using the logit
link function. Furthermore, covariates supposed to influence the
occupancy and the detection probabilities were also considered
(altitude and grass height), and the occurrence probability for
species i at site j was modelled by incorporating site-specific
characteristics. We developped a relatively simple model includ-
ing just few covariates in order to show MSOMs potential
rather than explaining ecologically Orthoptera distribution or
detectability. In particular, linear and quadratic effects of alti-
tude, varying across species, were included to study the alti-
tudinal distribution of Orthoptera. We could assume that grass
height affects Orthoptera occurrence, but we did not add this
occupancy covariate as the results and the interpretations were
virtually identical, and it complexified the model (see ESM S1
for results comparison). The occupancy model was defined as:

logit(𝜓i,j) = 𝛼0i
+ 𝛼1i

× altitudej + 𝛼2i
× altitudej

2

where 𝛼0i
is the species-level intercept and (𝛼1i

, 𝛼2i
) are the

species-specific covariate effects.
The detection probability for species i was assumed to vary

depending on the detection technique used (sighting, listening
or sweep netting). We coded the sampling technique covariates
as dummy variables, with the intercept corresponding to the
sighting technique. We also added the linear effect of grass
height on the probability of detecting species i using the sighting
technique. The grass height was standardised to have mean equal
to zero:

logit(pi,j,k) = 𝛽0i
+ 𝛽1i

× listeningj,k + 𝛽2i
× nettingj,k

+ 𝛽3i
× heightj,k × sightingj,k

with 𝛽0i
, 𝛽1i,

and 𝛽2i
the species-specific effects of the sampling

techniques, and 𝛽3i
the species-specific covariate effects.

Each random parameter (𝛼 ′s and 𝛽 ′s) was modeled as drawn
from a normal distribution described by the community mean
(𝜇) and the variance between species (𝜎2):

𝛼0i
∼ N(𝜇𝛼0

, 𝜎2
𝛼0
), 𝛼1i

∼ N(𝜇𝛼1
, 𝜎2

𝛼1
), …

A latent variable Wi was incorporated in the model to estimate
overall species richness. It represents whether species i belongs
or not to the community of N species. This binary variable
was modeled as the outcome of a Bernoulli random variable,
defined by:

Wi ∼ Bernoulli(𝛺)

where 𝛺 describes the probability of belonging to the com-
munity. Species detected at least once during the study belong
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to the community (Wi = 1, with i from 1 to Nobs), but species
never encountered (i from Nobs to Nobs +N0) could occupy the
sampling area and remain undetected (Wi = 1 and

∑
Xi, j, k = 0)

or not belong to the community (Wi = 0). Therefore, the variable
Wi is incorporated in the occupancy model (1):

Zi,j ∼ Bernoulli(𝜓i,j × Wi)

We implemented the model in a Bayesian framework using the
BUGS language and running it in JAGS (Plummer et al., 2003),
through the jagsUI package (Kellner, 2018) in the R soft-
ware (R Core Team, 2018). The code is available in Elec-
tronic Supplementary Material S2 (ESM S2). Given the lack
of prior knowledge of a parameter’s true value, parameters and
hyper-parameters were implemented with non-informative pri-
ors, following common practice. We used uniform distributions
from 0 to 1 for the community level parameter 𝛺, and for the
species-level intercepts of occurrence and detection probabil-
ities (𝛼0 and 𝛽0). We used wide normal priors (with mean 0
and variance 1000) for the means of hyper-distributions of the
site-specific and survey-specific effects (the 𝜇𝛼

′s and 𝜇𝛽
′s). We

used inverse-gamma priors (Inv-gamma(0.1, 0.1)) for the com-
munity variances (the 𝜎2 ′s) of all these parameters. We ran the
analysis for three chains of 15 000 iterations with a burn-in of
15 000 iterations and a thinning rate of 15. Convergence was
assessed by examining the Gelman-Rubin statistic (R̂) for each
parameter estimate, with R̂ > 1.1 suggesting a lack of conver-
gence (Gelman & Hill, 2006). Model fit was checked graphically
and using the Bayesian P-value (Kéry & Schaub, 2011).

Sampling effectiveness and optimisation

May we reduce the number of spatial replicates?. We investi-
gated the effectiveness of the sampling design in reaching inven-
tory completeness using three, four, or five plots. To this end,
the inventory completeness (Cj, K) at site j after K plots (K = {3,
4, 5}) was calculated as the ratio between the observed num-
ber of species (Nobsj,K

, raw data) and the true number of species

estimated by the MSOM (N̂j). We used the median values of the
posterior distributions of the estimated number of species at each
sampling site as point estimates for the true species richness. We
reduced the number of plots per site by randomly selecting one
to four plots among the five samples from the raw data to assess
how reducing the number of plots affected the completeness.

We assessed the effectiveness of the sampling design in
detecting species through the site-level probability of detecting
a species given it is present. We computed for each iteration
of the Markov chain Monte Carlo (MCMC) sample the overall
detection probability (Pi, K) for species i to be detected at least
once in K plots using the three detection techniques:

Pi,K = Pr

(
K∑

k=1

Xi,j,k > 0|Zi,j = 1

)

Pi,K = 1 − (1 − pi(sighting))K × (1 − pi(listening))K

× (1 − pi(nettting))K

where pi(technique) is the plot-level detection probability for
species i using the technique cited. We also calculated the
site-level detection probability for an “average” species, using
estimates of the community-level parameters.

Are the three detection techniques necessary?. The complete-
ness and the overall detection probability (i.e. combining the
five plots and the three techniques) were also used to investigate
if the sampling techniques were complementary or redundant.
Therefore, in order to assess if the sampling protocol could be
optimised, the species-specific detection probabilities at site
level for each technique were calculated, also verifying the effect
of omitting the sweep netting technique. The detection proba-
bility without sweep netting was obtained from the expression
of Pi, K above, in which we removed the term involving sweep
netting. We did not try to investigate the effects of removing the
listening technique because this is necessary to identify certain
species that are tricky to distinguish visually, even for Orthoptera
experts (Walker, 1964), e.g. Chorthippus sp. Fieber, 1852.

Results

As a result of field surveys, we collected 2222 presence data at
the plot level (from the three sampling techniques combined)
in 405 plots within the 81 sampling sites, belonging to 56
Orthoptera species (ESM S3, Table S1). Eight species repre-
sented more than 50% of the presence data, while almost half
(N = 26) of the observed Orthoptera were detected on less than
5% of the plots. Besides, the true number of species estimated
by the model was 75 (CrI95% = [61, 98]).

Species-by-species results concerning estimations of occu-
pancy and detection probabilities can be consulted on the
shinyapps web application (see details in ESM S4).

Effects of environmental parameters on the occupancy and the
detection probabilities

The MSOM method allowed us to investigate the effects
of environmental covariates on the occupancy and detection
probabilities at both community and species level (Fig. 2; see
details in ESM S4; ESM S3, Tables S2 and S3). The overall
trends at the community level are represented by the average
species response curves (Fig. 2, top panels). They informed us
that species tend to have their distribution optimum in the middle
altitudinal range (Fig. 2a) and their detectability influenced
positively, but not significantly, by the grass height (Fig. 2d).
MSOM enabled us to characterise species response along the
altitudinal gradient (Fig. 2, left panels; see details in ESM S4),
giving us predictions of the altitudinal optimum of each species.
Although the precision decreased for species with low presence
data (wider credible intervals: Fig. 2c), the prediction was still
informative in terms of optimum position. In addition, the effect
of grass height on the probability of detecting a species by sight
was also estimated (Fig. 2, right panels; ESM S4 for details),
highlighting variations among species, with some Orthoptera
more detectable in tall grass (Fig. 2e), and others less detectable
with increasing grass height (Fig. 2f).
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Fig. 2. Effect of altitude on the occupancy probability for (a) an average species at the community level, (b) Gomphocerus sibiricus sibiricus, and (c)
Antaxius pedestris; and the effect of grass height on the probability of sighting for (d) an average species at the community level, (e) Podisma dechambrei,
and (f) Euthystira brachyptera. The solid lines represent the posterior means, and the dashed lines correspond to the 95% credible intervals.

Sampling effectiveness and optimisation

Considering all the detection techniques, the average number
of species observed at site level was 9.54 (CrI95% = [8.77,
10.32]), varying from 2 to 17 among sampling sites. Besides, the
estimated site-level species richness obtained from the median
of posterior distributions of each site was 10.31 (CrI95% =
[9.46, 11.16]) on average. The completeness (the ratio between
the observed number of species and the estimated number of
species) increased with the number of plots (Fig. 3). With five
plots, 76 sites (94%) had completeness superior to 80%, while
considering four plots, this decreased to 70 sites (86%), and it
further decreased to 41 sites (51%) when a survey in only three
plots was simulated.

The overall detection probability of an ‘average’ species
with all the detection techniques rose sharply when increasing
from one to three plots, from 0.45 (CrI95% = [0.34, 0.56])
to 0.83 (CrI95% = [0.71, 0.92]), then grew slightly from 0.91
(CrI95% = [0.81, 0.96]) to 0.95 (CrI95% = [0.87, 0.98]) when
adding a fourth and fifth plot, respectively. The detection
probabilities estimated at the site level for each detection
technique highlighted the importance of sighting in overall
detection and the marginality of the two other techniques (see

ESM S4 for details). The detection probability of an ‘average’
species at the site level (five plots) was 0.89 (CrI95% = [0.79,
0.95]) with the sighting technique only. The average detection
probabilities at the site level when considering only the listening
or the sweep netting technique were much lower: 0.22 (CrI95%

= [0.10, 0.38]) and 0.40 (CrI95% = [0.26, 0.54]), respectively.
Hence, the detection probability of an ‘average’ species without
the sweep netting step (0.91, CrI95% = [0.82, 0.97]) was only
slightly lower than the detection probability combining the three
techniques.

Detection probability varied consistently among species, rang-
ing from 0.07 (CrI95% = [0.01, 0.22]) to 0.98 (CrI95% = [0.96,
1]) at the plot level and from 0.29 (CrI95% = [0.07, 0.71]) to 1
at the site level when all the techniques were used (Fig. 4; see
ESM S4 for details). Some species (38%) had a high probability
of being detected after having surveyed a first plot (Pi, 1 > 0.60).
For these species, the overall detection probability followed an
asymptotic curve approaching 1 after three or four plots. In con-
trast, there were species (27%) with low detection probability in
one sampling plot (Pi, 1 < 0.30) for which each additional plot
sampled sharply increased the overall detection probability at
the site level. For almost all species, the differences in detection
probability with or without the netting step were not significant,
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Fig. 3. Inventory completeness at site level according to the number of plots sampled and the detection techniques used. Black dots represent the
medians, and black segments represent the first and third quartiles.

except for Oecanthus pellucens (Scopoli, 1763) and Leptophyes
punctatissima (Bosc, 1792). In these two species, the detection
probability decreased from 0.95 (CrI95% = [0.87, 0.99]) to 0.66
(CrI95% = [0.41, 0.88]) for O. pellucens, and from 0.61 (CrI95%

= [0.34, 0.87]) to 0.45 (CrI95% = [0.20, 0.73]) for L. punctatis-
sima when removing the sweep netting technique.

Discussion

Using the data from our survey, we were able to estimate
the occupancy probabilities of 56 Orthoptera species along
an elevation gradient in the Mercantour National Park, while
accounting for imperfect detection through a multi-species
occupancy model. The species-specific detection probabilities
varied widely between species, from 0.29 to 1 at the site level.
This could be affected, positively or negatively, or unaffected
by the grass height, depending on the species. The inventory
completeness was more than 0.80 for 94% of the sites, and
the overall detection probability at the community level was

0.95 (CrI95% = [0.87, 0.98]) when using all of a site’s five
plots and the three sampling techniques. These values slightly
decreased when we hypothetically reduced the sampling effort
by omitting the netting step or by removing one plot, suggesting
that the sampling effort could be reduced with minimal impact
on estimate quality.

Reliability of MSOM estimates

Reliability of MSOMs estimates first relies on the respect of
the two major assumptions implied by the model: site-closure
and no false-presence. The closure assumption indicates that if
a plot is occupied, all plots within the site are also occupied.
Violating this assumption involves underestimation of detection
probabilities and then an overestimation of occupancy probabili-
ties (Kendall & White, 2009). In our study, as we sampled homo-
geneous grasslands, we were confident about the respect of this
assumption. False presences due to misidentification also induce
overestimation of occupancy probabilities if not addressed in the

© 2020 The Royal Entomological Society, Ecological Entomology, doi: 10.1111/een.12991
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Fig. 4. Distribution of the species-specific overall detection probabilities at the site level depending on the number of sampled plots and the detection
techniques used. Black dots represent the medians, and black segments represent the first and third quartiles.

model (Royle & Link, 2006). This assumption is likely to be vio-
lated in unexeperienced observer. Yet in our case, the observer is
highly skilled. Hence, we were confident about the respect of the
assumptions, but readers should remember those assumptions
when planning to use MSOM.

As expected, the distribution of Orthoptera in our study
was structured according to the elevation with (i) maximum
in occupancy probabilities of thermophile species such as
Pezotettix giornae (Rossi, 1794) estimated at low elevations,
(ii) wide estimated distribution for generalist species such as
Stauroderus scalaris (Fischer von Waldheim, 1846), and (iii)
arctic-alpine species such as Gomphocerus sibiricus (Linnaeus,
1767) having their estimated elevation optimum at high eleva-
tions. These results are consistent with what is known about
Orthoptera species distribution in the Mercantour National Park
area (Gueguen, 1990; Lemonnier, 1999); Braud, com. Pers.).
This reliability in the estimated distribution range confirms the
relevance of MSOMs to model the effects of biotic or abiotic
factors on Orthoptera communities.

MSOM estimates also proved to be useful to assess the inven-
tory completeness reached at each site, referring in particular to
the true number of species present, which is rarely known despite
its importance in biological studies. However, in some cases,
MSOMs may produce unreliable species richness estimates
(Guillera-Arroita et al., 2019), especially when detection and/or
occupancy are low, inducing a lack of observation and a large
number of missing species. Aside from these cases, MSOMs
seem to produce reliable estimates in most scenarios and often
outperform commonly used estimators such as iChao2 or Jack-
nife (Tingley et al., 2020). In this study, the total species richness
estimated by MSOM (75 species, CrI95% = [61, 98]) is consis-
tent with the 95 Orthoptera species known to be present above an
altitude of 900 m in the Mercantour National Park in grasslands
and ecotone habitats (Braud com. Pers.). We chose to integrate
ecotone species in the list of known species as we encountered
some of those during sampling, such as Nemobius sylvestris
(Bosc, 1792) or Pholidoptera griseoaptera (De Geer, 1773). We
are thus confident about the reliability of the MSOM estimates
at the site level and of the derived inventory completeness.

© 2020 The Royal Entomological Society, Ecological Entomology, doi: 10.1111/een.12991
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Importance of detectability in orthopteran studies

Even with the inclusion of the full sampling process (all
five plots per sampling site and all three sampling techniques),
the overall detection probabilities we estimated were less than
one for most species. In some cases, it was quite low: for
example, 0.29 for Eupholidoptera chabrieri (Charpentier, 1825)
or 0.48 for Calliptamus italicus (Linnaeus, 1758), confirming
the importance of using methods that explicitly correct for
imperfect detection. Our results also indicate that detection
probability is affected by certain environmental covariates. For
instance, we found that Orthoptera detectability by sight may
vary with grass height, and that this relationship differs between
species. Such a correlation was expected as less mobile species
or those living close to the ground, such as Podisma dechambrei
Chopard, 1952, are likely to be less detectable with increasing
grass height. In contrast, the abundance of some Orthoptera,
such as Euthystira brachyptera (Ocskay, 1826), increases with
grass height (Gardiner, 2018), which in turn may increase their
detectability (McCarthy et al., 2013). A positive relationship
between grass height and species detectability could also be
explained by an effect of the higher abundance expected at lower
elevations, where grass is slightly higher. Such a correlation
between detectability and habitat covariate is likely to generate
strong bias when studying the distribution of a species and its
relationship with habitat if detection is not modelled explicitly
(Lahoz-Monfort et al., 2014). When detection is affected by
a habitat covariate, a model that does not include the effect
of this covariate on the detection probability may incorrectly
identify this habitat covariate as affecting the occupancy rate
of the species (Lahoz-Monfort et al., 2014). Such a bias could
have huge repercussions in comparative approaches (Archaux
et al., 2012), which are commonly used for Orthoptera (e.g.
Bomar, 2001; Marini et al., 2009; Löffler et al., 2019).

Some authors have questioned the benefits of modelling
imperfect detection (Welsh et al., 2013). They argue that in
some cases, i.e. when occupancy is low and detectability is high,
‘simple models’ perform similarly or better than site-occupancy
models. However, this is true only in limited scenarios and
assumes high a priori knowledge on the detectability and
occupancy of the studied species (Guillera-Arroita et al., 2014).
Little is known about the detectability of insects, as there are
very few studies accounting for imperfect detection (Kellner
& Swihart, 2014; Devarajan et al., 2020). The results obtained
studying the orthopteran community in the Mercantour National
Park show that occupancy probability is not systematically low,
detection probability is not systematically high, and detection
probability is highly affected by habitat covariates. These results
advocate for the systematic use of MSOMs when studying
orthopteran distribution.

Sampling effectiveness and optimisation

The proportion of species richness detected by a survey is a
metric commonly used as an indicator of inventory complete-
ness (Moreno & Halffter, 2000; Foggo et al., 2003). Foggo
et al. (2003) used a completeness threshold of 0.8 to indicate

that an inventory is representative of the community composi-
tion in a given site. In our study, 94% of the sites exceeded this
threshold with five plots sampled and with the three sampling
techniques used. Hence, the composition of the Orthoptera com-
munity seems to be well described at the site scale with our
sampling design. Our results also suggest that sampling effort
may be reduced, notably by omitting one plot or by removing
the sweep netting step, while still maintaining a completeness
higher than 0.8 for 86% of the sites.

Overall detection probability at the species scale may also be
seen as an indicator of sampling efficiency (Moore et al., 2014;
Smart et al., 2016). According to the usual detection probability
threshold of 0.95 (see e.g. Moore et al., 2014; Smart et al., 2016),
the sampling design we used was effective for 31 of the 56
species observed (55%). The number of species above this
threshold would decline by three species by omitting the sweep
netting step or by six species by removing one plot. The
overall detection probability of an ‘average’ species would also
decrease, but slightly and not significantly, from 0.95 (CrI95% =
[0.87, 0.98]) with complete sampling, to 0.91 (CrI95% = [0.82,
0.97]) without sweep netting, or 0.91 (CrI95% = [0.81, 0.96])
with four plots. These results confirm that reducing the field
effort is possible with a weak impact on detectability.

The best way to optimise the sampling effort, either by
removing a detection technique or by reducing the number of
plots, may depend on the local species composition, the study
objectives and the specific characteristics in the field. In our case,
whether we chose to remove a plot or the sweep netting step,
the loss in detection probability and in inventory completeness
was almost the same. Moreover, in each sampling site the time
required to perform five sweep netting steps is quite similar to
that needed to fulfil a complete survey in a single plot, around
10 minutes each. Hence, in our case there is not really one
choice that is better, especially since the costs are associated
mainly with the travel time between sampling sites. However,
this could be different in other studies. For example, if we
had chosen temporal rather than spatial replicates, removing a
plot would have been much more worthwhile than omitting the
sweep netting. In the same way, while in our study missing some
species was not problematic, as our aim was not to obtain an
exhaustive inventory of the entire orthopteran community, other
study aims may be different. It should be noted that we found
that certain species such as Oecanthus pellucens may be missed
without the sweep netting technique. It is also important to
consider that efficiency of detection techniques depends on their
execution order. For instance, walking across the plot during the
sighting step made individuals flushing away and so reduced
the efficacity of sweep netting sessions. Hence, execution order
for the different techniques should be chosen accordingly with
the behaviour of the species of interest. Thus, we advocate for
implementing a pilot study to help identify how sampling can be
best optimised depending on the study objectives.

Conclusion

In this paper, we developed a multi-species occupancy model
to demonstrate the need to account for imperfect detection in
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insect studies and highlight the potential use of MSOM to inves-
tigate the sampling efficiency and optimisation. As our aim was
not to explain ecologically Orthoptera distribution or detactabil-
ity, we developed a relatively simple model including just few
covariates in order to show MSOMs potential. However, our
model could be easily adapted, with a minimal knowledge in
Bayesian computation, to other environmental gradients or pres-
sures commonly investigated in entomological studies, such as
management practices (Marini et al., 2009), urbanization levels
(Penone et al., 2013), land use intensity (Weking et al., 2016),
or climate change (Löffler et al., 2019). Similarly, the effects
of other potential covariates on detection probability, such as
meteorological (temperature, wind, irradiance, etc.) or pheno-
logical variables (date), can easily be implemented in MSOMs.
Species traits known to influence detectability, such as mobility
capacity, could also be incorporated in MSOMs, for example,
by grouping species a priori (Pacifici et al., 2014). However,
adding species traits in the model can be tricky when using
‘data augmentation’ approach to estimate species richness as
the traits are unknown for species never detected. The unob-
served species traits have to be integrated through the hierarchi-
cal structure of MSOMs as latent variables, which could how-
ever be complicated for non-Bayesian experts. MSOM can also
be extended in a dynamic approach to estimate the probability
of the colonization or extinction of sites (Dorazio et al., 2010)
and thus to study temporal variations in occupancy probabil-
ity at the community scale. Potential extensions of MSOMs
are numerous. Existing model selection methods adapted to
Bayesian hierarchical models (Hooten & Hobbs, 2015), thus
MSOMs (Broms et al., 2016), may help ecologists to choose
the most appropriate model. Bayesian computation can become
time-consuming when dealing with large datasets or numerous
covariates, and can be a constraint to perform model or variable
selection. Yet, alternatives, such as indicator variable selection
(Kuo & Mallick, 1998), exist to facilitate variable selection in
Bayesian regression models (see: O’Hara & Sillanpää, 2009;
for a review), thus in MSOMs (Dorazio et al., 2011). Model
selection in MSOMs may be done using information criterion
(Drouilly et al., 2018), such as deviance information criterion
(DIC; Spiegelhalter et al., 2002) or Watanabe-Akaike informa-
tion criterion (WAIC; Watanabe, 2013), or describing predic-
tive performance, with cross-validation, for example, (Zipkin
et al., 2012). Current MSOMs are now highly flexible and offer
an effective framework to model the state or dynamics of insect
communities. They can also be used to optimise the efficiency
of the sampling design, which could be of interest to many ento-
mologists. We advocate for their systematic use in entomologi-
cal studies.
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Results comparison between model with grass height as occupancy covariate and

model without this covariate.

The aim of the study was to show MSOMs potential  in  entomological  study.  Hence,  we

developed a relatively simple MSOMs, with just few covariates. However, omitting potential

important predictors of Orthoptera occupancy or detectability could bias the results. We

could  assumed  that  grass  height  influence  Orthoptera  occupancy.  Therefore,  we  fitted

another model, similar in the detection model, but with the effect of grass height added in

the occupancy model:

l o gi t (ψ i , j )=α0i+α 1i×altitude j+α2i×altitude j
2
+α3i×height j

with α 3i the linear effect of grass height on the occupancy probability of species i.

We  compared  the  principal  results  found  with  this  model  to  those  presented  in  the

manuscript.  The relationship  between the environmental  parameters  and the detection

and occupancy probabilities did not change meaningfully between the two models (Figure

S1). May be because the effect of grass height on the occupancy at the community-level and

for most of the species was not significant (Figure S2). The estimated species richness was

77.6 (I C95%=[62.975,  102]),  which is  not signficantly different than the estimate  of the

simpliest model (N̂=74.62,  I C95%=[61, 98]). At the site level, the completeness estimates



were very similar between the two models (Figure S3). With the simpliest model, 76 sites

have completeness superior to 80%, while the second model estimated 77 sites above this

threshold. The overall detection probabilities were also very similar (Figure S4). 31 species

had an overall detection probability at the site level upper than 95% when considering that

grass height influence both detection and occupancy, against 30 species when accounting

only for grass height effect on detectability. Results did not change meaningfully, neither

did our inferences and interpretations.  Hence,  we kept the simpliest  model  to facilitate

readers understanting.



Figure S1: Effect of the altitude on the occupancy probability for (a) an average species at

the community-level, (b) Gomphocerus sibiricus sibiricus, (c) Antaxius pedestris, and effect of

the grass height on the probability of sighting (d) an average species at the community-

level,  (e)  Podisma dechambrei,  and (f)  Euthystira brachyptera.  The colors correspond to



model specification, with one model with grass height as occupancy covariate (grey lines)

and one without (black lines). The solid lines represent the posterior mean, and the dashed

lines correspond to the 95% credible interval. 



Figure S2: Estimates on the logit scale of the linear grass height effect on species-specific

occupancy probabilities for the 56 Orthoptera species detected. Black points correspond to

medians of posterior distributions,  and the segment to the credible interval  associated.

Segments with solid lines represent significant effects. 



Figure S3: Inventory completeness at site level according to the model used, the number of

plots sampled and the detection techniques used. Black dots represent the medians, and

black segments represent the first and third quartiles. 



Figure S4: Distribution of the species-specific overall detection probabilities at the site level

depending  on the  number  of  sampled  plots,  the  model  specification  and  the  detection

techniques used. Black dots represent the medians, and black segments represent the first

and third quartiles. 
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Multi-species occupancy model JAGS code

model{

    

    ## Prior distributions for community-level model parameters ##

    omega ~ dunif(0,1)                            #probability of species inclusion

# Community means #

    a0.mean ~ dunif(0,1)

    mu.a0 <- log(a0.mean) - log(1-a0.mean)   

    mu.a1 ~ dnorm(0, 0.001)                 

    mu.a2 ~ dnorm(0, 0.001)             

    mu.b0 ~ dnorm(0, 0.001)     

    mu.b1 ~ dnorm(0, 0.001)

    mu.b2 ~ dnorm(0, 0.001)

    mu.b3 ~ dnorm(0, 0.001)

  

# Community precisions (inverse variances) #

    tau.a0 ~ dgamma(0.1,0.1)                      

    tau.a1 ~ dgamma(0.1,0.1)                     

    tau.a2 ~ dgamma(0.1,0.1) 

    

    tau.b0 ~ dgamma(0.1,0.1)

    tau.b1 ~ dgamma(0.1,0.1)

1



    tau.b2 ~ dgamma(0.1,0.1)

    tau.b3 ~ dgamma(0.1,0.1)

    for (i in 1:(n+nzeroes)) {

    

    ## Prior distributions for species level model parameters ##

    w[i] ~ dbern(omega)  #latent variable: species i belongs (w[i]=1) or not (w[i]=0) to the 

community

# Parameters for occupancy model #    

    a0[i] ~ dnorm(mu.a0, tau.a0)     #random intercepts, occupancy at mean elevation

    a1[i] ~ dnorm(mu.a1, tau.a1)          #random linear effects of altitude

    a2[i] ~ dnorm(mu.a2, tau.a2)          #random quadratic effects of altitude

# Parameters for occupancy model #    

    b0[i] ~ dnorm(mu.b0, tau.b0)          #random intercept, sighting detection

    b1[i] ~ dnorm(mu.b1, tau.b1)          #random effect of listening

    b2[i] ~ dnorm(mu.b2, tau.b2)          #random effect of sweep netting

    b3[i] ~ dnorm(mu.b3, tau.b3)          #random linear effect of grass height on sighting   

    

    ## Occupancy model specification ## 

    for (j in 1:J) {

    logit(psi[j,i]) <- a0[i] + #species occupancy at mean elevation

                              a1[i]*covSite1[j] + a2[i]*pow(covSite1[j],2) #altitude effects

    mu.psi[j,i] <- psi[j,i]*w[i]          #site j could be occupied by species i only if it belongs to the 

community

2



    #if species i belongs to the community: mu.psi=psi, else: mu.psi=0

    Z[j,i] ~ dbern(mu.psi[j,i])           #latent variable: true occurrence status of species i at site j

    

    ## Detection model specification ##   

    for (k in 1:K[j]) {  

    logit(p[j,k,i]) <-  b0[i] + #sighting intercept

                               b1[i]*covDetection1[j,k] + #listening effect

                               b2[i]*covDetection2[j,k] + #sweep netting effect

                               b3[i]*covDetection0[j,k]*covDetection3[j,k] #grass height effect on sighting    

    mu.p[j,k,i] <- p[j,k,i]*Z[j,i]    #species i could be detected in site j during survey k only if site j 

is occupied

    #if j is occupied: mu.p=p, else: mu.p=0

    X[j,k,i] ~ dbern(mu.p[j,k,i])     #binary indicator: observed occurrence status for species i in 

site j on plot k

    

## Assess model adjustement ##

    #Create simulated dataset to calculate the Bayesian p-value

    Xnew[j,k,i] ~ dbern(mu.p[j,k,i])

    

    #Pearson residuals

    d[j,k,i]<-  abs(X[j,k,i] - mu.p[j,k,i])

    dnew[j,k,i]<- abs(Xnew[j,k,i]- mu.p[j,k,i])

    d2[j,k,i]<- pow(d[j,k,i],2)

    dnew2[j,k,i]<- pow(dnew[j,k,i],2)

    

3



    }   

    

    dsum[j,i]<- sum(d2[j,1:K[j],i]) 

    dnewsum[j,i]<- sum(dnew2[j,1:K[j],i])

    

    }

    }

    

    

    #Calculate the discrepancy measure

    p.fit<-sum(dsum[1:J,1:(n)])

    p.fitnew<-sum(dnewsum[1:J,1:(n)])

    

           ## Species diversity estimates ##

    #Sum all species observed (n) and unobserved species (n0) to estimate the 

    #true richness

    n0 <- sum(w[(n+1):(n+nzeroes)])

    N <- n + n0

    

    #Create a loop to determine site level richness estimates for the 

    #whole community.

    for(j in 1:J){

      Nsite[j]<- sum(Z[j,1:(n+nzeroes)])

    }

}
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Estimates of occupancy, detection, effects of altitude on occupancy and effects of grass height on 

occupancy, detection, effects of altitude on occupancy and effects of grass height on sighting 

detection of the Orthoptera community at species- and community-levels. 

sighting detection of the Orthoptera community at species- and community-levels. Estimates of
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Table S1: Mean and 95% credible intervals for species-specific probabilities of occupancy at a medium altitude of 1869 m and, species-specific 
detection probabilities at the plot level for each technique and at the site level considering the three techniques combined or without the sweep netting. 
Also included is the naive occupancy, i.e. the ratio between the number of sites where the species was detected and the total number of sites (81 
sampled sites).

Species

Plot-level detection probability Site-level detection probability

Sighting Listening Netting Complete sampling

Mean Q2.5 Q97.5 Mean Q2.5 Q97.5 Mean Q2.5 Q97.5 Mean Q2.5 Q97.5 Mean Q2.5 Q97.5 Mean Q2.5 Q97.5

Anonconotus baracunensis occidentalis 0.02 0.02 0 0.11 0.18 0.03 0.51 0.01 0 0.11 0.02 0 0.16 0.67 0.19 0.99 0.63 0.17 0.98

Anonconotus ghiliani 0.25 0.29 0.15 0.47 0.3 0.2 0.41 0 0 0.02 0.05 0.02 0.09 0.86 0.72 0.95 0.83 0.67 0.93

Anonconotus mercantouri 0.1 0.06 0.02 0.17 0.43 0.24 0.64 0.01 0 0.05 0.07 0.02 0.18 0.95 0.8 1 0.93 0.76 0.99

Antaxius pedestris 0.1 0.21 0.08 0.49 0.15 0.06 0.3 0 0 0.03 0.03 0.01 0.09 0.63 0.3 0.88 0.57 0.26 0.84

Arcyptera fusca 0.36 0.48 0.34 0.62 0.4 0.32 0.48 0.25 0.19 0.33 0.06 0.03 0.1 0.99 0.97 0.99 0.98 0.96 0.99

Bicolorana bicolor 0.14 0.23 0.12 0.39 0.33 0.21 0.47 0.18 0.09 0.31 0.06 0.02 0.14 0.96 0.88 0.99 0.94 0.85 0.99

Calliptamus italicus 0.02 0.02 0 0.22 0.09 0.01 0.34 0 0 0.07 0.01 0 0.09 0.47 0.09 0.93 0.43 0.08 0.9

Calliptamus siciliae 0.22 0.1 0.04 0.21 0.54 0.43 0.65 0 0 0.03 0.16 0.09 0.25 0.99 0.97 1 0.98 0.94 1

Chorthippus apricarius 0.46 0.64 0.5 0.76 0.63 0.56 0.69 0.28 0.22 0.35 0.45 0.38 0.53 1 1 1 1 1 1

Chorthippus biguttulus 0.26 0.28 0.17 0.42 0.48 0.38 0.57 0.38 0.29 0.47 0.22 0.15 0.3 1 1 1 1 0.99 1

Chorthippus brunneus brunneus 0.01 0.02 0 0.21 0.12 0.01 0.49 0 0 0.14 0.02 0 0.17 0.58 0.09 0.99 0.54 0.08 0.98

Chorthippus dorsatus 0.14 0.12 0.05 0.24 0.88 0.79 0.94 0.51 0.37 0.64 0.71 0.59 0.82 1 1 1 1 1 1

Chorthippus saulcyi daimei 0.37 0.52 0.38 0.66 0.77 0.7 0.84 0.34 0.27 0.43 0.53 0.44 0.61 1 1 1 1 1 1

Chorthippus vagans vagans 0.09 0.01 0 0.06 0.71 0.53 0.85 0.4 0.23 0.6 0.23 0.11 0.4 1 1 1 1 1 1

Decticus verrucivorus verrucivorus 0.37 0.58 0.42 0.73 0.26 0.19 0.34 0.1 0.06 0.15 0.03 0.01 0.06 0.89 0.8 0.94 0.87 0.77 0.93

Depressotetrix depressa 0.02 0.04 0.01 0.19 0.15 0.03 0.41 0 0 0.08 0.06 0.01 0.24 0.69 0.22 0.98 0.58 0.16 0.94

Ephippiger terrestris 0.6 0.78 0.64 0.88 0.54 0.48 0.6 0.27 0.22 0.33 0.18 0.14 0.24 1 1 1 1 0.99 1

Euchorthippus declivus 0.51 0.64 0.47 0.78 0.78 0.71 0.83 0.26 0.2 0.32 0.59 0.52 0.66 1 1 1 1 1 1

Euchorthippus elegantulus 0.04 0.01 0 0.04 0.67 0.39 0.87 0.19 0.06 0.46 0.29 0.11 0.57 1 0.98 1 0.99 0.96 1

Eupholidoptera chabrieri 0.06 0.15 0.02 0.62 0.04 0.01 0.18 0 0 0.02 0 0 0.03 0.27 0.06 0.69 0.25 0.05 0.65

Euthystira brachyptera 0.16 0.22 0.11 0.38 0.29 0.17 0.45 0.01 0 0.04 0.04 0.01 0.09 0.86 0.67 0.97 0.82 0.62 0.95

Gomphocerus sibiricus sibiricus 0.25 0.05 0.01 0.14 0.6 0.45 0.73 0.4 0.26 0.55 0.25 0.15 0.39 1 1 1 1 0.99 1

Gryllus campestris 0.02 0.02 0 0.09 0.27 0.08 0.57 0.01 0 0.11 0.06 0.01 0.22 0.83 0.43 0.99 0.78 0.36 0.99

Leptophyes punctatissima 0.11 0.05 0.01 0.23 0.09 0.03 0.2 0 0 0.02 0.05 0.02 0.13 0.52 0.26 0.82 0.38 0.16 0.68

Metrioptera saussuriana 0.04 0.05 0.01 0.14 0.43 0.21 0.66 0.17 0.04 0.42 0.05 0.01 0.19 0.97 0.86 1 0.96 0.84 1

Myrmeleotettix maculatus 0.12 0.05 0.01 0.14 0.35 0.17 0.58 0.16 0.06 0.34 0.2 0.08 0.4 0.97 0.85 1 0.93 0.75 1

Nemobius sylvestris 0.17 0.15 0.06 0.32 0.05 0.02 0.12 0.24 0.13 0.38 0.01 0 0.03 0.8 0.59 0.95 0.79 0.58 0.94

Oecanthus pellucens 0.1 0.01 0 0.05 0.17 0.09 0.31 0 0 0.04 0.32 0.19 0.49 0.94 0.82 0.99 0.63 0.37 0.85

Naive 
occupancy

Occupancy probability at 
1869 m of elevation Sampling without netting 

step
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Psophus stridulus 0.1 0.14 0.06 0.27 0.34 0.21 0.5 0.06 0.02 0.15 0.05 0.02 0.13 0.93 0.8 0.99 0.9 0.75 0.98

Roeseliana roeselii 0.14 0.16 0.07 0.29 0.4 0.27 0.54 0.17 0.09 0.29 0.06 0.02 0.13 0.98 0.93 1 0.97 0.9 0.99

Sepiana sepium 0.01 0.01 0 0.07 0.31 0.06 0.76 0.01 0 0.23 0.05 0 0.35 0.83 0.29 1 0.8 0.26 1

Stauroderus scalaris 0.64 0.82 0.7 0.9 0.75 0.7 0.8 0.6 0.54 0.66 0.33 0.27 0.38 1 1 1 1 1 1

Stenobothrus cotticus 0.1 0.01 0 0.06 0.52 0.3 0.73 0.38 0.19 0.62 0.2 0.08 0.4 1 0.97 1 0.99 0.95 1

Stenobothrus lineatus 0.6 0.73 0.6 0.84 0.61 0.55 0.67 0.27 0.22 0.33 0.18 0.14 0.23 1 1 1 1 1 1

Stenobothrus nigromaculatus 0.32 0.33 0.19 0.49 0.55 0.45 0.65 0.22 0.15 0.31 0.28 0.2 0.37 1 1 1 0.99 0.98 1

Stenobothrus rubicundulus 0.01 0.02 0 0.17 0.12 0.01 0.46 0 0 0.13 0.02 0 0.15 0.58 0.09 0.98 0.54 0.07 0.97

Tessellana tessellata 0.02 0 0 0.03 0.43 0.2 0.7 0.01 0 0.13 0.13 0.03 0.36 0.95 0.78 1 0.92 0.68 1

Tettigonia cantans 0.06 0.09 0.03 0.22 0.29 0.14 0.5 0 0 0.05 0.05 0.01 0.14 0.85 0.59 0.98 0.81 0.54 0.97

Tettigonia viridissima 0.06 0.06 0.01 0.19 0.19 0.08 0.38 0 0 0.04 0.03 0.01 0.09 0.71 0.39 0.94 0.67 0.34 0.92

Tylopsis lilifolia 0.04 0 0 0.02 0.81 0.59 0.93 0.35 0.13 0.66 0.32 0.13 0.6 1 1 1 1 1 1

Yersinella beybienkoi 0.2 0.12 0.04 0.24 0.55 0.42 0.67 0 0 0.02 0.09 0.04 0.17 0.99 0.95 1 0.98 0.93 1
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Species

Effect of altitude on occupancy probability

Linear Quadratic

Mean Q2.5 Q97.5 Mean Q2.5 Q97.5 Mean Q2.5 Q97.5
Anonconotus baracunensis occidentalis 2.26 0.15 4.81 -0.62 -1.46 0.26 0.04 -1.04 1.14
Anonconotus ghiliani 1.8 0.79 3.01 -0.96 -1.7 -0.3 -0.66 -1.21 -0.18
Anonconotus mercantouri 2.39 0.92 4.19 -0.92 -1.76 -0.17 -0.27 -1.2 0.61
Antaxius pedestris -1.6 -3.31 -0.19 -1.19 -2.13 -0.44 -0.27 -0.9 0.32
Arcyptera fusca -0.25 -0.88 0.33 -0.67 -1.18 -0.22 -0.04 -0.25 0.16
Bicolorana bicolor 0.13 -0.98 1.27 -1.29 -2.26 -0.56 0.19 -0.19 0.59
Calliptamus italicus -2.92 -5.64 -0.67 -0.63 -1.46 0.23 -0.19 -1.22 0.8
Calliptamus siciliae -2.91 -4.47 -1.58 -0.5 -1.16 0.18 0.04 -0.31 0.39
Chorthippus apricarius 0.2 -0.41 0.83 -1.02 -1.6 -0.53 0.16 -0.01 0.33
Chorthippus biguttulus -0.72 -1.42 -0.09 -0.31 -0.76 0.13 0.14 -0.15 0.41
Chorthippus brunneus brunneus 0.77 -1.6 3.37 -0.86 -1.78 -0.01 -0.01 -1.09 1.05
Chorthippus dorsatus -1.76 -3.07 -0.64 -0.7 -1.37 -0.1 0.92 0.4 1.49
Chorthippus saulcyi daimei 0.09 -0.54 0.72 -0.89 -1.45 -0.39 -0.78 -1.01 -0.56
Chorthippus vagans vagans -3.47 -5.58 -1.6 -0.66 -1.38 0.05 0.49 0.02 0.98
Decticus verrucivorus verrucivorus -0.02 -0.7 0.64 -0.92 -1.5 -0.42 -0.15 -0.44 0.13
Depressotetrix depressa -1.3 -3.63 0.72 -1 -1.96 -0.19 -0.45 -1.57 0.58
Ephippiger terrestris -2.1 -3.01 -1.33 -0.96 -1.52 -0.46 0 -0.16 0.16
Euchorthippus declivus -3.19 -4.51 -2.1 -1.23 -1.91 -0.63 -0.02 -0.2 0.16
Euchorthippus elegantulus -3.14 -5.41 -1.11 -0.54 -1.27 0.26 0.67 -0.05 1.43
Eupholidoptera chabrieri -2.78 -6.03 -0.58 -0.93 -1.9 -0.04 0.65 -0.05 1.35
Euthystira brachyptera -1.38 -2.6 -0.31 -0.86 -1.53 -0.26 0.79 0.36 1.25
Gomphocerus sibiricus sibiricus 4.33 2.54 6.32 -0.56 -1.39 0.33 -0.48 -1.09 0.11
Gryllus campestris -2.42 -4.71 -0.39 -0.86 -1.72 -0.08 -0.6 -1.67 0.4
Leptophyes punctatissima -3.87 -6.67 -1.82 -0.8 -1.7 0.11 0.47 -0.04 0.98
Metrioptera saussuriana 0.56 -1.22 2.44 -1.03 -1.97 -0.24 -0.36 -1.16 0.41
Myrmeleotettix maculatus 2.86 1.31 4.69 -0.75 -1.56 0 -0.82 -1.73 0.03
Nemobius sylvestris -2.9 -4.65 -1.48 -1.06 -1.81 -0.38 0.38 -0.07 0.81
Oecanthus pellucens -3.9 -6.18 -1.89 -0.55 -1.29 0.25 0.25 -0.3 0.8
Oedipoda caerulescens caerulescens -3.59 -6.24 -1.56 -0.54 -1.3 0.26 -0.74 -1.5 -0.02
Oedipoda germanica -0.92 -1.88 -0.07 -0.53 -1.09 0.02 -0.46 -0.94 0
Omocestus haemorrhoidalis 0.46 -0.08 1.05 -0.05 -0.52 0.38 -0.45 -0.88 -0.05
Omocestus raymondi raymondi -1.23 -2.87 0.16 -0.53 -1.26 0.19 0.61 0.02 1.23
Omocestus rufipes -2.97 -5.38 -0.76 -0.35 -1.08 0.52 0.33 -0.4 1.11
Omocestus viridulus 1.4 0.46 2.51 -0.95 -1.67 -0.33 -0.23 -0.52 0.05
Pezotettix giornae -4.07 -6.23 -2.1 -0.49 -1.23 0.31 0.44 -0.01 0.91
Pholidoptera aptera 0.68 -1.28 2.83 -1.01 -1.99 -0.21 0.66 -0.04 1.35
Pholidoptera fallax -2.23 -4.33 -0.43 -0.99 -1.87 -0.26 0.74 -0.02 1.51
Pholidoptera griseoaptera -2.2 -3.98 -0.73 -0.55 -1.29 0.26 0.38 -0.33 1.16
Platycleis albopunctata -3.02 -4.75 -1.78 -0.72 -1.39 -0.01 -0.19 -0.48 0.11
Podisma dechambrei 1.64 0.74 2.7 -0.58 -1.24 0.04 -0.59 -1.01 -0.21
Podisma pedestris 0.41 -2.09 3.05 -0.91 -1.88 -0.08 0.08 -0.94 1.09
Polysarcus denticauda 0.06 -1.94 2.15 -1 -1.94 -0.21 0.2 -0.81 1.05
Pseudochorthippus parallelus -0.78 -1.53 -0.07 -0.87 -1.46 -0.37 0.37 0.14 0.6
Psophus stridulus -0.9 -2.22 0.25 -0.94 -1.75 -0.27 0.25 -0.33 0.78
Roeseliana roeselii -1.32 -2.53 -0.3 -0.79 -1.47 -0.2 0.42 0.04 0.8
Sepiana sepium -1.89 -4.36 0.36 -0.82 -1.71 -0.01 0.23 -0.66 1.14
Stauroderus scalaris -0.47 -1.03 0.06 -0.94 -1.4 -0.53 0.08 -0.07 0.24
Stenobothrus cotticus 3.65 1.73 5.87 -0.53 -1.36 0.32 -0.36 -1.21 0.51
Stenobothrus lineatus -1.05 -1.66 -0.48 -0.63 -1.04 -0.23 -0.2 -0.37 -0.03
Stenobothrus nigromaculatus 2.16 1.16 3.33 -1.03 -1.8 -0.38 -0.83 -1.18 -0.5
Stenobothrus rubicundulus -1.76 -4.47 0.71 -0.87 -1.77 -0.05 0 -1.12 1.14
Tessellana tessellata -2.95 -5.33 -0.77 -0.34 -1.07 0.52 0.33 -0.47 1.17
Tettigonia cantans -1.15 -2.8 0.36 -1.13 -2.11 -0.39 0.73 0.08 1.41
Tettigonia viridissima -2.17 -4.06 -0.56 -0.98 -1.86 -0.27 0.74 -0.09 1.61
Tylopsis lilifolia -3.3 -5.87 -1.01 -0.22 -0.99 0.66 -0.26 -1.07 0.56
Yersinella beybienkoi -2.9 -4.41 -1.57 -0.87 -1.54 -0.23 0.69 0.29 1.11

Effect of grass height on 
sighting detection probability

Table S2: Mean and 95% credible intervals for the species-specific effects of the habitat covariates on the logit-scale,
as estimated by the MSOM.
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Table S3: Community-level means and 95% credible intervals for the occupancy and 
detection parameters on the logit-scale.

Hyper parameters Mean Q2.5 Q97.5
µα0 Occupancy at average altitude -3.09 -4.42 -2.09
µα1 Linear effect of altitude -0.87 -1.47 -0.31
µα2 Quadratic effect of altitude -0.8 -1.04 -0.59
µβ0 Sighting detection at average grass height -0.62 -1.08 -0.21
µβ1 Listening detection -2.67 -3.47 -2.01
µβ2 Netting detection -1.84 -2.18 -1.53
µβ3 Linear effect of grass height on sighting 0.06 -0.13 0.24
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Description: An interactive and dynamic application to visualize species-by-species: the detection

map,  the altitudinal  distribution,  the detection  probability  for  each sampling technique,  and the

effect of grass height on the sighting detection. 



2.3 Conclusion

In this chapter, we highlighted the need to account for imperfect detection when studying insect

communities. We showed that even relatively highly detectable species, such as Orthoptera,

sampled with an efficient sampling design, could have detection probabilities lower than one.

Thus, estimates of occupancy probabilities for these species could be biased if imperfect detection

is not addressed (Lahoz-Monfort et al., 2014). We then encourage entomologists to systematically

use MSOMs when studying distribution of insect communities. To do so, they can use the model

developed in the paper. The model can also help to evaluate sampling efficiency and potential

optimisation scenarios. Besides, the sampling design presented in the paper could be used in other

areas. Thus, this chapter provides a full methodology to study SER of Orthoptera communities

in grassland habitats in the presence of partially observed response data.



3 Chapter 2: Modelling species-environment relationships

using coarse scale and spatially misaligned environmental

data

This work is in preparation for submission to Journal of applied ecology: B. Mourguiart, M.

Chevalier, M. Marzloff, N. Caill-Milly, F. Ganthy, K. Mengersen, B. Liquet. Modelling fine-scale

species-environment relationships using coarse-scale and spatially-misaligned environmental data.

This work also resulted in oral presentations:

• “Determining abundance-environment relationships of manila clam using misaligned envi-

ronmental data”. Journées du GdR Ecologie Statistique (April 2022)

• “A comparison of hierarchical models to estimate species-environment relationships using

spatially misaligned data”. Seminar for the statistics research team of the Institut de

recherche mathématique de Rennes (May 2022)

• “Modelling abundance-environment relationships using spatially misaligned data” Seminar

for the DYNECO research team of Ifremer (June 2022)

3.1 Synopsis

Describing the environment at a coarser resolution than the scale at which the species experiences

the environment (i.e., the scale of effect) leads to bias in estimates of species-environment

relationships (McInerny & Purves, 2011; Connor et al., 2018). For instance, environmental data

are often characterised by average conditions at a coarser resolution than the scale of effect

(Potter et al., 2013). In such situations, the coarse-scale covariate only partially describes the

environment experienced by the species (McInerny & Purves, 2011). Such an error in covariate

leads to bias in SER estimates and should be accounted for (McInerny & Purves, 2011; Foster

et al., 2012). Two methods have been proposed in the context of SER modelling: point-level

spatial GLMs (Latimer et al., 2006) and Berkson measurement Error Models (BEMs, McInerny

& Purves, 2011). However, to our knowledge, the efficiency of these two models has not been

thoroughly tested.

In this study, we investigated the effect of partially observed covariate when environmental data

are averaged at a larger scale than the scale of effect on the performance of three models (a

GLM, a spatial GLM and a BEM). In addition, we evaluated models’ performances regarding

their explanatory and predictive power. This assessment was performed through simulations and

application to a real case example of the commercially-harvested mollusc (i.e. the Manila clam

Ruditapes philippinarum) in Arcachon Bay (southwestern France).



3.2 Publication



Modelling fine-scale species-environment

relationships using coarse-scale and

spatially-misaligned environmental data.

Abstract

• Species distribution models (SDMs) are extensively used in conservation

ecology. Given that SDMs estimate species-environment relationships to

predict species distribution across space and time, it is key to choose a

relevant spatio-temporal scale to study species-environment relationships at

the onset of the modelling process. However, this choice is usually constrained

by data availability rather than driven by ecological knowledge. For instance,

environmental descriptors are often derived from global climate models, which

only resolve environmental variability at a given resolution (e.g. 1 km2) that

does not necessarily correspond to the scale at which climate influences

organisms (i.e. the scale of effect). Thus, spatial (and temporal) misalignment

between ecological and environmental data is a common challenge in SDMs.

Such a misalignment can bias estimates of species-environment relationships

and hence jeopardise the robustness of predicted species distribution.

• We used simulation to study the effect of spatial misalignment on SDMs’

performance using covariates averaged across scales that are coarser than the

scale of the ecological process. We applied a classic GLM, a spatial GLM,

and a GLM with a Berkson error structure in covariates to simulated data.

Performances of models were evaluated on species-environment relationship

estimates (i.e. response curves), abundance fit, and prediction performance

both within and beyond the range of environmental data (i.e., interpolation



and extrapolation). We also fitted the three models to a real case exam-

ple of the commercially-harvested mollusc (i.e. the Manila clam Ruditapes

philippinarum) in Arcachon Bay (southwestern France).

• In the simulation, species response curves estimated by the classic and

the spatial GLMs were flattened when using coarsened environmental data

(i.e. averaged at larger scales than the scale of effect). While the GLM with

a Berkson error structure improved estimates of species response curves, it

did not improve predictions that were poor for all models. Results from the

case study were similar to those obtained with simulations.

• Biases in estimated species-environment relationships and species distribution

seem inevitable when environmental data are available at coarser scales

than the scale at which ecological processes influence the study system.

Thus, estimated species response curves should be interpreted with care if

uncertainty exists on the scale at which a species experiences its environment.

While Berkson error models performed better than other models in estimating

species response curves, further investigations on their accuracy in more

complex settings (e.g. more complex settings with additional covariates) are

required before advocating for their use for broader application.

• Managers generally require a fine-scale understanding of species-environment

relationships and species distribution to guide effective conservation actions.

While SDM outputs can theoretically provide such worthy information, it

is crucial that predictor variables are available at the scale at which the

managed species experienced the environment before using model estimates

to support fine-scale management actions. Using a Berkson error model can

indicate mis-estimated variability in environmental descriptors and prevent

the use of SDM estimates to guide management actions when it occurs.

Introduction

Since their emergence several decades ago (Guisan and Zimmermann 2000), species

distribution models (SDMs) have been broadly used to guide management or



conservation actions (Guisan et al. 2013). By estimating species-environment rela-

tionships (i.e. response curves) SDMs have made it possible to characterise suitable

environmental conditions for a species of interest and hence guide management

plans to maintain favourable conditions over a given study area (Greenwood et

al. 2016). SDMs have also been used to predict species distribution ranges both

under current and future environmental conditions and therefore helped managers

prioritise areas for conservation actions (Zurell et al. 2021). For such purposes,

SDM species-environment relationships and associated species distribution need

to be estimated at fine scales to scope ecologically-relevant management areas

(McPherson, Jetz, and Rogers 2006).

So far, SDMs have mostly been fitted with coarse-scale environmental covariates

(Austin and Van Niel 2011), with the underlying assumption that species distribu-

tions are mainly driven by global or regional climate (Pearson and Dawson 2003).

However, recent evidence questioned this hypothesis (Rebaudo, Faye, and Dangles

2016) with a number of studies showing that species distribution can also vary

locally, owing to micro-climate variability (Meineri and Hylander 2017; Lenoir,

Hattab, and Pierre 2017). For instance, Ashcroft, Chisholm, and French (2009)

highlighted the importance of fine-scale climate variability on the distribution of

mountainous species. Similar studies conducted in forest systems revealed that

canopy protection from sun radiation can buffer the effect of regional climate

conditions by acting as a micro-refugia for some species (Zellweger et al. 2020;

Stark and Fridley 2022). Hence, only relying on coarsely-resolved environmental

variables as covariates for SDMs can produce a mismatch between the scale at

which the environment influences a species (i.e., the scale of effect; Chandler and

Hepinstall-Cymerman (2016)) and the scale at which the environment is described

by covariates (Potter, Arthur Woods, and Pincebourde 2013). Such a mismatch

might lead to mis-estimated response curves and lower predictive power of SDMs

(Seo et al. 2009; McInerny and Purves 2011), particularly if the scale of effect is

finer than the resolution of environmental covariates (Connor et al. 2018).

Ideally, the relevant scale for environmental covariates/predictors in SDM should

be defined by ecological knowledge regarding the study species to avoid a mismatch

between the scale at which the environment is considered in the model and the



scale of effect (Dormann et al. 2007). However, SDM studies commonly rely on

existing species and environmental data, which largely limits the choice of scales.

For example, many species data used in SDMs come from previous scientific surveys

(Zipkin et al. 2010), citizen science (e.g., GBIF; Faurby and Araújo (2018)), or

museum records (Marcer et al. 2012). Associated environmental covariates are

often derived from free-to-use datasets, which usually come from climate models

Liu et al. (2017) or remote sensing data (Pettorelli et al. 2014). Thus, combining

existing data from heterogeneous datasets is likely to induce spatial misalignment

(Gotway and Young 2002), which often includes a scale mismatch, between the

response variable (i.e., species data) and the covariates (i.e., environmental data).

Three types of spatial misalignments can occur in species distribution modelling: 1)

point-to-point misalignment when response and explanatory variables are collected

at similar scales but in different locations (e.g. using data from nearest weather

stations as a proxy for the environmental conditions experienced by ecological

communities in the vicinity; Foster, Shimadzu, and Darnell (2012)), 2) point-to-

area misalignment when response variables are available at coarser scales than

environmental data (e.g. when species data come from museum records available

within coarsely-resolved spatial units, such as 5 km by 5 km grid cells; Marcer et

al. (2012)), 3) area-to-point misalignment when covariates are observed at coarser

scales than the response (e.g., species records collected at multiple georeferenced

locations during a scientific survey are associated a posteriori to climate data;

Latimer et al. (2006)).

Spatial misalignment is well recognized as a crucial issue in SDMs (Martínez-

Minaya et al. 2018) and has been shown to induce bias in coefficient estimates

and predicted species distribution if not accounted for (Foster, Shimadzu, and

Darnell 2012; Stoklosa et al. 2015; Latimer et al. 2006). Several techniques exist

to address spatial misalignment between species and environmental data. For

instance, predicting environmental conditions in locations where species data is

available using interpolation techniques (Foster, Shimadzu, and Darnell 2012), can

help overcome point-to-point misalignment. For point-to-area and area-to-point

misalignments, heterogeneous datasets can be spatially matched by either upscaling

or downscaling the resolution of certain variables (i.e. response and/or covariates)



(Latimer et al. 2006; Keil et al. 2013). Upscaling methods inevitably lead to a

loss of information and downscaling might be privileged when the analysis aims

to predict fine-scale species distribution. While methods for downscaling species

data exist (Keil et al. 2013; McPherson, Jetz, and Rogers 2006), downscaling of

environmental data, which is a time-consuming task mostly performed by physicists,

is beyond most ecologists’ expertise (Hewitson and Crane 1996). Thus, area-to-point

misalignment is sometimes overlooked when interest lies in describing fine-scale

species distribution, which leads to association of spatially-discrete and distinct

species records to identical environmental covariates within coarse environmental

spatial cells (Latimer et al. 2006). This “naïve” downscaling may introduce errors

in model covariates, which can compromise SDM accuracy (Latimer et al. 2006).

For instance, environmental data are often characterised by average conditions at a

scale larger than the scale of effect (Potter, Arthur Woods, and Pincebourde 2013).

In such situations, the observed environment is a smoothed (less variable) version

of the environment experienced by the species (Latimer et al. 2006; McInerny and

Purves 2011). McInerny and Purves (2011) showed that such errors in covariate

estimates could flatten unimodal species-environment relationships estimated by

SDM with consequences on SDM’s predictive performance. Two methods have

been previously proposed to account for misestimated fine-scale variability in the

coarse-scale environmental covariates that could arise from area-to-point misaligned

data: point-level spatial GLMs (Latimer et al. 2006) and Berkson error models

(BEMs, McInerny and Purves (2011); Martínez-Minaya et al. (2018)).

While BEMs and spatial GLMs can be used to account for area-to-point spatial

misalignment, they do so in a different way. BEMs estimate species response

curves by fitting the response variable to an unobserved (error-free) covariate

that is assumed to be more variable than the available (error-prone) covariate

(see, e.g., Muff et al. (2015) for more details). Alternatively, spatial GLMs

include a random spatial effect that accounts for the fine-scale variability that

is unexplained by coarse descriptors (Latimer et al. 2006). To our knowledge,

the efficiency of these two models in accounting for area-to-point misalignment in

species-environment relationship estimates has not been thoroughly tested. Indeed,

although McInerny and Purves (2011) investigated the ability of BEM for estimating



species-environment relationships, they assumed that the variance error between the

unobserved error-free and the observed error-prone environment was known. This

information is however unavailable for most climatic datasets. Regarding spatial

GLMs, Latimer et al. (2006) advocated for their use to account for area-to-point

misalignment but without providing any external evidence of accuracy or predictive

power of this method.

In this study, we investigated the effect of area-to-point misalignment when en-

vironmental data are averaged at a larger scale than the scale of effect on the

performance of three alternative SDMs: a GLM (a frequently used SDM; Norberg

et al. (2019)), a spatial GLM and a BEM (two potential solutions to address

area-to-point misalignment; Latimer et al. (2006); Martínez-Minaya et al. (2018)).

This assessment was performed both through simulations and application to a real

case study.

Materials and methods

Data structure

Area-to-point misalignment describes the case where we observe a response variable

(e.g., species counts) at n spatial point locations, while associated explanatory

variables (e.g., environmental descriptors) are available at a coarser scale, typically

across a grid of I cells that can contain multiple sampling points. Importantly,

environmental variability is usually neglected within each grid-cell (i.e. all points

are assumed to have the same value within a given cell), potentially leading to an

area-to-point misalignment problem (i.e., a mismatch between the species point-

scale and the covariate grid-scale). We denote Yj(i) the observed count at sampling

point j(i) which is included in grid-cell i, for i = 1, . . . , I and j(i) = 1, . . . , Ji,

with ∑
Ji = n. W i represents a vector of misaligned explanatory environmental

variables associated with grid-cell i. Xj(i) is the value of the environmental variable

at sampling point j(i).



Modelling framework

Three models were considered: a Generalized Linear Model (GLM), a spatial

Generalized Linear Model (sp-GLM), and a Berkson Error Model (BEM). All

models assume that counts of the target species (e.g. clams in our case study)

Yj(i) at sampling point j(i) included in cell i relies on the expected abundance

λj(i): Yj(i) ∼ f(λj(i), ϕ), where f(·) is the “Poisson” or the “Negative Binomial”

probability distribution function with mean parameter λj(i) and variance parameter

phi (for the Negative Binomial). We describe the observation data as an outcome

of a Poisson trial in the simulation. In the case study, we chose a Negative Binomial

distribution to model overdispersed counts. We assumed that expected abundance

is related to the environment through different formulations depending on the

model. We fitted all models using scaled covariates (with mean 0 and standard

deviation 1). In the following, we present the model formulations using a unique

misaligned covariate for simplicity, but this can be extended to more covariates.

The GLM considers that the environment at the grid-scale, Wi, is the only driver

of variation in expected abundance which is measured at the point-scale. It

assumes that the grid is the environmental scale of effect on the species. Thus the

species-environment relationship is modelled as follows:

log(λj(i)) = β0 + β1Wi + β2W
2
i

where β0 is the expected abundance in log-scale in average environmental conditions

(i.e., when the scaled covariate is null), β1 and β2 are the coefficients representing

respectively the linear and the quadratic effects of the grid-scale environmental

covariate W . Note that we used a log-link function as we modelled counts, but

other link functions can be used depending on the type of species data (e.g. a

logit-link function can be used for presence-absence data).

The spatial GLM is a mixed model that incorporates a spatial random effect,

γj(i), that allows variability between spatial points within a given grid-cell. It

assumes that expected abundance not only depends on the grid-scale environment

(as for the classic GLM) but also varies depending on a fine-scale latent spatial

field. This spatial random effect allows capturing spatial signals not explained



by the predictors (Zurell et al. 2021). For example, unobserved spatial patterns

could result from missing spatially coherent or biological predictors (e.g., dispersal

ability). Here, the spatial random effect is supposed to capture variability within

environmental grid cells. The model is written as follows:

log(λj(i)) = β0 + β1Wi + β2W
2
i + γj(i)

γ ∼ MV N(0, Σ)

where γ is a vector of dimension n, Σ is the spatial covariance structure whose

generic element is Σu,v = σ2
γ × Matern(du,v, κ) where σ2

γ is the variance component,

Matern(·, ·) is the Matérn function which describes how the correlation between

two points (here u and v) decreases with the Euclidean distance separating them

(denoted du,v), and where κ is a scaling parameter related to the spatial range r,

i.e., the distance at which the spatial correlation becomes almost null. Generally,

the range is defined as the distance at which the spatial correlation is close to

0.1. It could be derived from κ by: r =
√

8ν
κ

, with ν representing the degree of

smoothness of the spatial process and usually fixed to one (Zuur, Ieno, and Saveliev

(2017), p197).

The BEM jointly estimates the covariate and abundance at the point-scale. It

considers that the observed environment at the grid-scale Wi is a smoothed version

of the environment at the point-scale Xj(i), which is assumed to be the “true” driver

of abundance. This latent variable is modelled as follows:

Xj(i) ∼ N(Wi, σ2
X)

with σ2
X the variance parameter that describes the fine-scale variability lost by

averaging the environment at grid-scale. The expected abundance modelled as a

function of the latent variable X:

log(λj(i)) = β0 + β1Xj(i) + β2X
2
j(i).



Parameter estimation

We fitted the GLM and the BEM within a Bayesian framework using MCMC

sampling with the software JAGS (Plummer 2003) and the R package jagsUI Team

(2018). We ran three chains for each analysis with a burn-in of 20,000 and an

additional 20,000 iterations with a thinning rate of 20. For prior distributions

of parameters β1 and β2, we used normal distribution with a zero mean and a

precision of 0.1. For the intercept, β0, we specified a prior distribution on a

derived ecologically meaningful parameter, λ⋆ = exp(β0), representing the expected

abundance in average environmental conditions. We used a uniform prior bounded

between 0 and 50 for this derived parameter, assuming that expected abundance

in average environmental conditions should lay between those values. We used

inverse gamma priors with shape 0.1 and rate 0.1 for precision variances. When we

used the Negative Binomial distribution to model abundances for the case study,

we set a uniform prior bounded between 0 and 50 for the dispersion parameter

phi. We assessed convergence by examining the Gelman-Rubin statistic (R̂) with

a threshold fixed to 1.1 (Gelman et al. 2013). We fitted the spatial GLM using

the INLA and SPDE approaches which were applied using the R package R-INLA

(Rue, Martino, and Chopin 2009). We did not use MCMC sampling due to the

known “big n problem” in spatial analysis that prevents the use of JAGS when

sample size (i.e. number of locations) exceeds 100 (Kéry and Royle 2020). We kept

the default priors specified by INLA for this model.

Simulation study

We tested the effect of spatial misalignment on models’ explanatory and predictive

performances using a virtual species approach where abundance distribution was

explained by one unique covariate. The simulation design, represented in Fig. 1,

consisted of four steps: (1) simulate an ecological process with a known species-

environment relationship at the point-scale, (2) simulate an observation process

with a measured environment at the grid-scale representing averaged point-scale

environmental conditions at different spatial resolutions, (3) fit three models to

the different simulated datasets, and (4) assess the ability of models to explain,

interpolate and extrapolate simulated abundances.



We simulated a grid of 2000 x 2000 points representing a virtual sampling area.

For simplicity, we assumed that sampling points were separated by one meter but

any type of distance can be considered. We simulated the virtual environment as a

Gaussian spatial random field using a Matérn covariance matrix to represent spatial

dependencies between points. We set the spatial range and variance parameters

of the Matérn function to 40 meters and 1 respectively. From those point-scale

environmental values we calculated virtual expected abundance at the point-scale

using a quadratic linear relationship: λj = β0 + β1Xj + β2X
2
j . We chose the

coefficients (β0 = 3, β1 = 1, β2 = -1.5) of the species-environment relationship to

describe a sharp bell-shaped species response curve. We then simulated the observed

counts, Nj, using random draws from a Poisson distribution with parameter λj.

In the virtual observation process, we averaged the point scale environment at four

horizontal grid sizes (10 m, 20 m, 40 m, 80 m) to obtain the misaligned grid-scale

environment. We defined the environmental spatial resolutions as multiplications

(0.25, 0.5, 1, 2) of the environmental spatial range that we fixed at 40 m earlier in the

simulation. By doing so, we assumed that the effect of misalignment depends on the

ratio between the environmental spatial heterogeneity and the environmental spatial

resolution rather than the absolute spatial resolution. We based this assumption on

previous studies that found a positive relationship between the magnitude of spatial

misalignment effect on regression models and spatial autocorrelation in covariates

(Gotway and Young 2002; Naimi et al. 2014). We then virtually sampled the

simulated survey area by randomly selecting 100, 300, or 500 points. We simulate

no bias in species sampling (i.e., perfect detection). Observed counts were thus

equal to the simulated abundance at the sampling points. For each sampling point,

we allocated the environmental value of the grid containing the point to represent

the observed coarse-scale environment. Finally, we replicated the virtual sampling

10 times, resulting in 120 simulated datasets (4 spatial resolutions x 3 sampling

sizes x 10 replications).

Model performance assessment

To assess the accuracy of the three models, we fitted them to each of the 120 simu-

lated datasets. We then compared the estimated species-environment relationships



and fitted counts to the true values (those simulated). We also assessed the models’

predictive ability with regards to interpolation and extrapolation using a data

splitting strategy (appendix 1 in Roberts et al. (2017)). First, we estimated model

parameters for each of the 120 simulated datasets (train datasets). Then, we used

two test datasets, one for interpolation (predicting in the same environment as

the train dataset) and one for extrapolation (predicting in another environment

than the train dataset). For the interpolation test dataset, we virtually sampled

100 new points for each replication in the same environment that the one used

to fit the models. We then simulated virtual abundance at those 100 new points

using the same species-environment relationship as for the train dataset. For the

extrapolation test dataset, we applied the same scheme but environmental values at

the 100 new points were increased by 1.5 relative to the interpolation test dataset

to simulate a new environment. For both interpolation and extrapolation test

datsets, we used the species-environment relationships estimated by the models

using the train datasets to predict the abundance in the 100 new points using

observed grid-scale environmental values at those new sampling points. We then

compared predicted abundance (λ̂) to the true simulated abundance (λ) by calculat-

ing root-mean-square errors (RMSE =
√

1
R

∑R
r=1(λ − λ̂r)2, with R the number of

replications) and Spearman correlation coefficients. We chose the Spearman corre-

lation coefficient to investigate the models’ ability to accurately predict abundance

patterns.
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Figure 1: Representation of the simulation design used to investigate the effect
of area-to-point spatial misalignment on models explanatory and predictive per-
formances of a generalized linear model (GLM), a spatial GLM (sp-GLM) and a
Berkson error model (BEM).



Case study

As a complement to the virtual simulation-based study, we applied the three models

to a real case study. We estimated abundance-environment relationships of Manila

clam, Ruditapes philippinarum (Adams & Reeve, 1980), in Arcachon Bay (SW of

France). We used count data collected at 491 sampling points in June 2008 and

466 sampling points in June 2018 to fit and test the three models. We splitted

the 2008 dataset into train and test datasets containing respectively 393 and 98

sampling points (75% and 25% of the sampling size). Models were fitted on the

train dataset. We then used parameter estimates to predict abundance on the 2008

test dataset (to assess interpolation accuracy) and on the full 2018 dataset (to

assess extrapolation accuracy).

Sampling points were spatially distributed within the study area following a

generalized random tessellation stratified sampling design which is spatially balanced

and particularly appropriate for patchy species such as clams (Kermorvant et al.

2019). Clams were captured by a Hamon grab, collecting a sediment core of 0.25

m2 on a 0.2 m depth. We assumed no sampling bias as Manila clams bury no

more than 0.12 m depth. Individuals captured were counted and measured. We

only kept individuals longer than 30 mm in the counts, removing individuals that

fisheries could target. We chose the threshold length to be smaller by 5 mm than

the current regulatory catch size.

As the goal is to investigate the misalignment effects on models performance rather

than select environmental drivers of Manila clam distribution, we chose to pre-

select three covariates assumed to influence Manila clam’s abundance (Tezuka

et al. 2013; Yin et al. 2017; Bae et al. 2021): water salinity (psu), water

temperature (◦C) and immersion time (h.day−1). We extracted those variables

from the MARS3D numerical model (Lazure and Dumas 2008). This hydrodynamic

model was implemented on Arcachon Bay by Plus et al. (2009) and improved

by Kombiadou et al. (2014). The numerical model used an empirically-based

tide (FES2012 solution, Carrere et al. 2013) to capture the natural variability

of tidal forcing. Freshwater inputs were set as constants equal to yearly average

values. We used a 2-dimensional version with a horizontal resolution of 235 m. A



fourteen-month simulation was performed before the survey, e.g., between April

2007 and May 2008 for the 2008 dataset, a period corresponding to the life span of

larvae and juvenile phases of Manila clam (Caill-Milly 2012).

Results

Simulation study

Sample size only had a marginal effect on models’ explanatory performances and

almost no impact on models’ predictive performance (Appendix 1). We only

observed a slightly lower bias in species-environment relationship estimates with

increasing sampling size, but that virtually did not modify the relative effect of

area-to-point misalignment on alternative models’ accuracy. Thus, we here only

present the results for the intermediate scenario with 300 simulated sampling sites.

Extended results with all sampling scenarios can be found in Appendix 1.

Estimation of species-environment relationships (SER)

All three models showed lower accuracy in Species-Environment Relationship (SER)

estimates with increasing spatial scale (i.e. decreasing resolution) in environmental

covariates, but responses varied across models (Fig. 2). SER estimated by the GLM

were increasingly flattened with increasing spatial scale of covariates compared to

the true curve, i.e. with lower maximums (see Appendix 2 for results on maximum

estimates) and larger widths (Fig. 2 second row and Appendix 2). Similar effects

of area-to-point misalignment were observed for the spatial-GLM (Fig. 2 third

row). In the most severe scenario, where the observed scale (i.e., 80 m) is twice

the spatial range of the simulated environmental variable (i.e., 40 m), both GLMs

(classic and spatial) failed to retrieve the correct shape of species response in some

replications, estimating U-shaped or exponential curves (Fig. 2, fourth column of

the second and third rows). The BEM had much better accuracy, with almost no

difference between estimated and simulated curves in the first two scale scenarios

(Fig. 2, first row of the first and second columns) and slight departures from the

simulated optimum in the most two severe scenarios (i.e., optimum positions biased

toward zero; see Appendix 2 for results on bias in optimum estimates).
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Figure 2: Species response curves estimated by the three models for the ten
replications (orange curves) compared to simulated species response curves (green
curves) in four scenarios with different spatial scales at which environmental
covariates were used.

Abundance predictions

GLM explanatory power was lower than the two other models for all the simulated

spatial scales (Table 1). Even under the highest 10 m grid-size resolution (i.e., the

lowest misalignment), GLM had much lower explanatory performance than the

two other models with, for instance, an average RMSE 2.5 and 1.9 times higher

than for the BEM and the spatial GLM, respectively. GLM fit accuracy decreased

rapidly with increasing grid-size (i.e., lowering spatial resolution of covariates) from

10 m to 80 m. Predicted abundance became almost uncorrelated to the observed

counts for the third scale scenario with an average correlation coefficient of 0.33

(SD = 0.07). In contrast, the explanatory power of the BEM and the spatial GLM

was only marginally affected by coarsening spatial resolution of descriptors. Their

average RMSE remained almost constant across all scale scenarios, ranging from

1.79 to 1.93 for BEM and from 2.30 to 2.48 for spatial GLM, while the correlation



coefficients with observed abundance constantly being around 0.94.

The three models were very sensitive to the increase of spatial scales regarding

the accuracy of their predictions for both interpolation and extrapolation (Table

1). Surprisingly, predictive performances were slightly better but still low for

extrapolation datasets, except in the coarsest 80 m scale scenario for the GLM and

the spatial GLM. This last result is related to the estimation of incorrect shapes

of SER under the GLM and the spatial GLM in some replications scenario (Fig.

2). Indeed, both models estimated SER predicting unrealistic high counts at both

extremes of the environmental gradient.



Table 1: RMSE and Spearman correlation coefficients between predicted and simulated counts for the three models on the three types of
data used for prediction depending on the scale of observed environment.

Scale size
Performance metric Data type Model 10 m 20 m 40 m 80 m

BEM 1.79 (0.1) 1.9 (0.14) 1.92 (0.14) 1.93 (0.14)
GLM 4.49 (0.22) 6.09 (0.29) 7.08 (0.28) 7.51 (0.26)Train

sp-GLM 2.3 (0.09) 2.43 (0.15) 2.47 (0.16) 2.48 (0.16)
BEM 4.4 (0.43) 6.52 (0.55) 8.37 (0.51) 9.63 (0.69)
GLM 4.63 (0.27) 6.26 (0.32) 7.26 (0.21) 7.54 (0.2)Test (interpolation)

sp-GLM 4.49 (0.43) 6.58 (0.48) 8.08 (0.67) 8.33 (0.68)
BEM 3.18 (0.5) 4.75 (0.45) 5.86 (0.66) 6.21 (0.83)
GLM 3.43 (0.51) 5.01 (0.51) 6.73 (1.22) 28.4 (34.36)

RMSE

Test (extraplotation)
sp-GLM 3.46 (0.48) 5.14 (0.65) 8.09 (4.83) 28.88 (50.58)

BEM 0.95 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)
GLM 0.76 (0.03) 0.55 (0.05) 0.33 (0.07) 0.18 (0.06)Train

sp-GLM 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)
BEM 0.74 (0.05) 0.51 (0.08) 0.26 (0.09) 0.11 (0.11)
GLM 0.74 (0.05) 0.51 (0.08) 0.25 (0.08) 0.16 (0.08)Test (interpolation)

sp-GLM 0.73 (0.05) 0.5 (0.07) 0.24 (0.08) 0.16 (0.1)
BEM 0.86 (0.03) 0.71 (0.03) 0.5 (0.04) 0.31 (0.08)
GLM 0.86 (0.03) 0.71 (0.03) 0.43 (0.17) 0.02 (0.33)

Spearman correlation

Test (extraplotation)
sp-GLM 0.86 (0.02) 0.7 (0.05) 0.38 (0.31) 0.09 (0.28)



Case study

We observed similar patterns as in species-environment relationships estimated by

the three models on Manila clam counts as those described above in the simulation

context as both GLMs estimated flatter SER relative the BEM (Fig. 3). Still, all

models predicted that Manila clam abundance is unimodally related to the three

covariates with an optimum abundance estimated around an immersion time of 12

hours, a mean salinity of 31 psu and a mean temperature of 14.4 ◦C.
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Figure 3: Estimates of abundance-environment relationships of the three models
used (GLM, spatial GLM and Berkson error model) to fit Manila clam counts
collected at 437 sampling sites during spring 2008 with three covariates obtained
from hydrodynamical model MARS3D at an horizontal resolution of 235 m in
Arcachon Bay.

Case study results of explanatory or predictive (interpolation and extrapolation)

performances of the three models aligned with those obtained in the simulation

study (Table 2). The BEM outperformed the two GLMs in explanatory power, and

in particular the classic GLM that showed the lowest power. However, the three

models had very low predictive power, especially regarding extrapolation given

that, predicted counts were almost unrelated to observed counts (Table 2).



Table 2: RMSE and Spearman correlation coefficients between predicted and
observed counts of Manila clam for the three alternative models, namely GLM,
spatial GLM (sp-GLM) and Berkson Error Model (BEM), as estimated using the
three different datasets, namely the training 2008 datset, the thest 2008 dataset
(spatial interpolation) and the 2018 dataset (space and time extrapolation).

Data type Model RMSE Spearman correlation
BEM 1.84 0.91
GLM 3.47 0.25Train (2008)

sp-GLM 2.40 0.68
BEM 5.00 0.30
GLM 3.07 0.26Test (2008)

sp-GLM 2.87 0.39
BEM 7.69 0.22
GLM 6.90 0.19Test (2018)

sp-GLM 6.76 0.33

Discussion

Summary of major results

Species response curves (i.e., estimates of Species-Environment Relationships; or

SER hereafter) are flattened in GLM and spatial GLM when environmental data

is available at a coarser scale than the scale of effect. This bias increases with

decreasing environmental data resolution (i.e. when spatial misalignment increases).

Relative to the GLM and the spatial GLM, the Berkson Error Model (BEM) more

accurately estimates SERs even in the worst case scenarios, despite a slight bias

optimum conditions estimating (i.e. the response curve is slightly shifted) when

the spatial resolution of environmental covariates is too coarse. All three models’

predictive performances (in terms of both interpolation and extrapolation) rapidly

decrease with coarsening of environmental data spatial resolution, and become

poor in the worst case scenario.

Regression dilution precludes the interpretation of model coefficients

and variable importances in GLMs

As expected, in our simulations, the area-to-point misalignment led to a diminu-

tion of heterogeneity in covariates, thus to an erroneously smoothed environment

(Appendix 3). This error is known as the regression dilution problem and leads



to flattened unimodal SER estimated by GLMs (McInerny and Purves 2011).

We highlighted in the simulations that adding point-level spatial random effects

that allow for fine-scale heterogeneity in species response does not solve but can

actually worsen the regression dilution problem. Our results may provide some

insights on previously-observed differences between GLMs and spatial GLMs fitted

to area-to-point misaligned data (Latimer et al. 2006). Latimer et al. (2006)

correlated fine-scale plant species distribution in the Cape Floristic Region of South

Africa to coarse-scale environmental factors in a GLM and a point-level spatial

GLM. They obtained a better fit relying on fewer significant variables with a

spatial GLM than with a classic GLM, which they interpreted as a better and

larger estimation of coefficient variance in spatial GLMs (Dormann et al. 2007).

However, our results suggest that this could also result from the attenuation effect

of area-to-point misalignment which is stronger in spatial GLMs than in GLMs. For

instance, they found differences between GLM and spatial GLM in the significance

of model coefficients for edaphic variables (i.e. soil properties of samples). Those

variables probably act at fine scales and thus may be subject to area-to-point

misalignment inducing a more significant attenuation effect in spatial GLM than

in GLM, which can decrease the effect size of the edaphic variables. Comparison of

relative covariate effects based on a unique model can be misleading when exposed

to area-to-point misalignment in variables. For instance, a (spatial) GLM including

two covariates A and B observed at the same scale, which corresponds to the

scale of effect of covariate A but is coarser than the scale of effect of covariate B,

might underestimate the effect size of the covariate B. Thus, when the ecological

process varies at fine scales, the consideration of coarse environmental covariates

to model fine-scale species data should be avoided not only in GLMs, as previously

highlighted (McInerny and Purves 2011), but also in spatial GLMs, a result that

contradicts previous findings (Latimer et al. 2006).

Berkson error model as a potential solution to account for area-to-point

misalignment when estimating fine-scale SER.

The BEM appeared as an interesting candidate model to overcome bias in SER

estimates induced by area-to-point misalignment in GLMs. When applied to both



simulated data and a real-world case study, the BEM outperformed the GLM

and the spatial GLM in terms of fit. Simulations also highlighted that the BEM,

conversely to the two GLMs, accurately estimated fine-scale SER shape using coarse

environmental data. The ability of the BEM to accurately estimate fine-scale SER

using smoothed error-prone covariate has already been highlighted in particular

settings where error variance was known (McInerny and Purves 2011). We showed

in our simulation study that it is not necessary to specify the error variance in

BEM to estimate SER accurately. This result could significantly improve the range

of applications of BEM. Note, however, that in the BEM we developed, we assumed

that error variance within a given cell is constant across grid cells and depends on

the variability between coarse-grid cells, with the underlying assumption of spatial

stationarity in covariates (Dormann et al. 2007). This assumption may not always

be reasonable, especially in broad-scale studies. Further research is needed to

investigate the effect of departure from this assumption. Potential solutions around

this my include incorporating local environmental values to describe cell-specific

variance error between coarse and fine-scale environments.

In the Manila clam case study, differences observed between estimates of GLMs

and BEM could be related to area-to-point misalignment, as observed in the simu-

lation study, but they may also flow from other sources of variability unexplained

by the covariates. For instance, in our application, we found better explanatory

performance for BEM than spatial GLM, which contrasts with simulation-based

results that revealed equivalent goodness-of-fit for both. Hence, we could have

expected comparable explanatory performances in BEM and spatial GLM for the

Manila clam application if area-to-point misalignment was the only unobserved

source of uncertainty. However, other sources of heterogeneity induce by non-spatial

patterns and not describe by the covariates can affect Manila clam distribution

and thus explain the better performance of BEM. Temporal misalignment can, for

instance, lead to unobserved variability in covariates. We chose to use summary

statistics of environmental conditions over a period of fourteen months before the

survey according to the life span of larvae and juvenile phases potentially affected

by the environment (Tezuka et al. 2013). However, as juveniles and adults have

a relatively high environmental tolerance (Dang 2009), we could have assumed



environment filtering on the larval phase only. Thus, using summarised environ-

mental conditions over a longer period may have induced temporal misalignment.

Further research should therefore assess how BEM responds to multiple sources

of variability unexplained by covariates. In addition, further work is required to

investigate if model selection between GLMs and different formulations of BEMs

can be used to discriminate environmental variables that have a finer scale of effect

than the observed scale. We showed that BEM better fitted the data if one variable

was assumed to explain fine-scale species distribution and was observed at a coarser

scale than its scale of effect. Does this result stand when considering more than

one variable? For instance, if two effective descriptors of species distribution are

observed at the same scale, which corresponds to the effect scale of one covariate

but is coarser than the scale of effect of the other; then, does a BEM modelling

one error-free and one error-prone covariate, better fit such data than a misaligned

GLM or a BEM assuming two error-prone covariates? Will the misspecified BEM

with two error-prone covariates accurately estimate a zero variance error for the

error-free covariate, or will it share the variance error induced by the error-prone

covariate between the two covariates? Answers to those questions are required

before interpreting the case study results. If error variance is shared between

covariates, even if there is only one error-prone covariate, our results could be

misleading. Hence, further research on BEM behavior, especially regarding various

sources of unexplained variability and multiple scales of effects in the descriptors,

is needed before advocating for the broad use of BEMs in species distribution

modelling.

Low predictive power may limit the applicability of BEM in SDM

Another salient problem limiting BEM’s use in SDM is its low predictive power.

While improving estimates of species-environment relationships is interesting, plan-

ning conservation actions also needs accurate predictions of species distribution

(Zurell et al. 2021). Unfortunately, neither of the two candidate models (BEM

and spatial GLM) fulfilled this task under area-to-point misalignment, and GLM

performed even worse. While it is not surprising that a GLM trained with coarse

data failed to predict fine-scale species distribution, we expected the spatial GLM



to perform better, at least for interpolation in simulation-based examples. However,

the spatial GLM over-fitted the data and failed to estimate the environmental

spatial pattern. Further investigations will be performed before submission of this

chapter to a peer-reviewed journal to understand the behaviour of the spatial GLM.

It is easier to understand why BEM and non-spatial GLM produced inaccurate

predictions. Inaccurate predictions by the BEM and the non-spatial GLM are

likely due to averaging of environment values at the grid-scale. This produced a

shrinkage in the observed environmental gradient, where grid-scale observed values

become concentrated around the mean value of the gradient. Hence, the range of

predictions made by GLM and BEM with coarse-scale environmental data is also

shrunk around the estimated count at the environmental mean (i.e. exp(β0), see

Methods and Appendix). Solutions may be developed to improve predictions in

BEM. For instance, instead of using the environment available at the grid-scale,

we could have used the posterior distribution of the spatial point environmental

variable with the closest coarse environmental value in the training dataset.

Conclusions - Perspectives

Managers may require fine-scale information on species-environment relationships

and species distribution (Guisan et al. 2013). While, due to data availability

constraints, it is tempting to allocate coarse environmental variables to describe

fine-scale distributional data, this widely used practice should be avoided. Allocating

coarse-scale environmental variables might lead to bias in estimates of fine-scale

species-environment relationships and predictions of species distribution. At the

moment, SDMs should only be used to inform conservation and management

actions if evidence demonstrates that descriptors were observed at their scale of

effect. Further research is needed to define those scales of effect. New advances in

environmental data collection techniques, e.g. remote sensing, may help by in this

regard by increasing the availability of fine-scale environmental data (Lembrechts,

Nijs, and Lenoir 2019). When exposed to a scale mismatch between the observed

environment and its scale of effect, the Berkson error model offers a better alternative

to GLMs and deserves further investigation to study the extent to which scale

mismatches can affect SDMs inferences.
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Supplementary materials

Appendix 1: Extended results with all sampling sizes
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Figure 4: Species response curves estimated by the three models (orange curves)
compared to simulated species response curves (green curves) in four scenarios
according to different spatial scales at which environmental covariates were used.
Each orange curve corresponds to one of the ten replications ran in the simulation
analysis. (Sampling size = 100 sites)
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Figure 5: Species response curves estimated by the three models (orange curves)
compared to simulated species response curves (green curves) in four scenarios
according to different spatial scales at which environmental covariates were used.
Each orange curve corresponds to one of the ten replications ran in the simulation
analysis. (Sampling size = 300 sites)
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Figure 6: Species response curves estimated by the three models (orange curves)
compared to simulated species response curves (green curves) in four scenarios
according to different spatial scales at which environmental covariates were used.
Each orange curve corresponds to one of the ten replications ran in the simulation
analysis. (Sampling size = 500 sites)



Table 3: RMSE between predicted and simulated counts for the three models on the three types of data used for prediction depending on
the scale of observed environment.

Scale size

Sampling size Data type Model 10 m 20 m 40 m 80 m

BEM 1.79 (0.13) 1.85 (0.19) 1.86 (0.2) 1.86 (0.2)

GLM 4.32 (0.31) 6.09 (0.4) 6.96 (0.54) 7.34 (0.54)Train

sp-GLM 2.21 (0.19) 2.33 (0.23) 2.36 (0.25) 2.39 (0.25)

BEM 4.37 (0.23) 5.97 (0.61) 7.86 (0.88) 8.92 (0.64)

GLM 4.52 (0.21) 6.03 (0.45) 7.23 (0.46) 7.68 (0.34)Test (interpolation)

sp-GLM 4.51 (0.32) 6.4 (1.01) 8.3 (2.16) 9.27 (1.88)

BEM 3.38 (0.47) 4.67 (0.83) 5.77 (0.82) 6.24 (0.9)

GLM 3.44 (0.4) 4.68 (0.55) 6.85 (2.4) 40.05 (87.95)

100

Test (extraplotation)

sp-GLM 3.53 (0.41) 5.19 (0.79) 17.03 (30.57) 47556147.47 (127843173.2)

BEM 1.79 (0.1) 1.9 (0.14) 1.92 (0.14) 1.93 (0.14)

GLM 4.49 (0.22) 6.09 (0.29) 7.08 (0.28) 7.51 (0.26)Train

sp-GLM 2.3 (0.09) 2.43 (0.15) 2.47 (0.16) 2.48 (0.16)

BEM 4.4 (0.43) 6.52 (0.55) 8.37 (0.51) 9.63 (0.69)



GLM 4.63 (0.27) 6.26 (0.32) 7.26 (0.21) 7.54 (0.2)Test (interpolation)

sp-GLM 4.49 (0.43) 6.58 (0.48) 8.08 (0.67) 8.33 (0.68)

BEM 3.18 (0.5) 4.75 (0.45) 5.86 (0.66) 6.21 (0.83)

GLM 3.43 (0.51) 5.01 (0.51) 6.73 (1.22) 28.4 (34.36)

300

Test (extraplotation)

sp-GLM 3.46 (0.48) 5.14 (0.65) 8.09 (4.83) 28.88 (50.58)

BEM 1.81 (0.07) 1.93 (0.12) 1.95 (0.12) 1.95 (0.12)

GLM 4.54 (0.19) 6.11 (0.21) 7.15 (0.19) 7.55 (0.17)Train

sp-GLM 2.3 (0.05) 2.45 (0.1) 2.49 (0.1) 2.5 (0.1)

BEM 4.34 (0.4) 6.68 (0.57) 8.34 (0.79) 10.01 (0.92)

GLM 4.43 (0.22) 6.12 (0.36) 7.06 (0.31) 7.55 (0.38)Test (interpolation)

sp-GLM 4.5 (0.3) 6.54 (0.59) 7.68 (0.68) 8.13 (0.72)

BEM 3.03 (0.28) 4.64 (0.42) 5.56 (0.48) 6.31 (0.45)

GLM 3.18 (0.29) 4.84 (0.36) 6.48 (0.73) 19.59 (16.49)

500

Test (extraplotation)

sp-GLM 3.14 (0.28) 4.87 (0.38) 6.49 (1.31) 14.06 (10.83)



Table 4: Spearman correlation coefficients between predicted and simulated counts for the three models on the three types of data used for
prediction depending on the scale of observed environment.

Scale size

Sampling size Data type Model 10 m 20 m 40 m 80 m

BEM 0.95 (0.01) 0.95 (0.01) 0.94 (0.01) 0.94 (0.01)

GLM 0.77 (0.05) 0.54 (0.07) 0.32 (0.1) 0.24 (0.09)Train

sp-GLM 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)

BEM 0.74 (0.02) 0.55 (0.06) 0.29 (0.14) 0.14 (0.14)

GLM 0.75 (0.03) 0.56 (0.07) 0.31 (0.14) 0.15 (0.1)Test (interpolation)

sp-GLM 0.74 (0.04) 0.54 (0.08) 0.27 (0.14) 0.12 (0.11)

BEM 0.86 (0.02) 0.72 (0.06) 0.54 (0.05) 0.35 (0.1)

GLM 0.86 (0.01) 0.72 (0.06) 0.42 (0.34) 0.14 (0.35)

100

Test (extraplotation)

sp-GLM 0.86 (0.02) 0.71 (0.06) 0.31 (0.39) -0.31 (0.12)

BEM 0.95 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)

GLM 0.76 (0.03) 0.55 (0.05) 0.33 (0.07) 0.18 (0.06)Train

sp-GLM 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)

BEM 0.74 (0.05) 0.51 (0.08) 0.26 (0.09) 0.11 (0.11)



GLM 0.74 (0.05) 0.51 (0.08) 0.25 (0.08) 0.16 (0.08)Test (interpolation)

sp-GLM 0.73 (0.05) 0.5 (0.07) 0.24 (0.08) 0.16 (0.1)

BEM 0.86 (0.03) 0.71 (0.03) 0.5 (0.04) 0.31 (0.08)

GLM 0.86 (0.03) 0.71 (0.03) 0.43 (0.17) 0.02 (0.33)

300

Test (extraplotation)

sp-GLM 0.86 (0.02) 0.7 (0.05) 0.38 (0.31) 0.09 (0.28)

BEM 0.95 (0) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)

GLM 0.75 (0.02) 0.55 (0.04) 0.31 (0.06) 0.18 (0.05)Train

sp-GLM 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)

BEM 0.73 (0.07) 0.49 (0.07) 0.28 (0.09) 0.09 (0.11)

GLM 0.73 (0.07) 0.5 (0.05) 0.27 (0.1) 0.12 (0.12)Test (interpolation)

sp-GLM 0.71 (0.07) 0.48 (0.07) 0.27 (0.07) 0.14 (0.06)

BEM 0.87 (0.03) 0.7 (0.06) 0.5 (0.09) 0.32 (0.12)

GLM 0.87 (0.03) 0.7 (0.06) 0.5 (0.09) -0.06 (0.34)

500

Test (extraplotation)

sp-GLM 0.86 (0.04) 0.69 (0.06) 0.48 (0.08) 0.09 (0.23)



Appendix 2: Bias in ecological parameters

We also calculated the bias for three ecological meaningful parameters derived

from model parameters: optimum θ = − β1
2β2

; maximum of abundance λmax =

exp(β0 − β2
1

4β2
); ecological tolerance τ =

√
− 1

2β2
.
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Figure 7: Bias of ecological parameters (optimum, tolerance, maximum of abun-
dance) derived from model coefficients (the betas) estimated by the three models
fitted at four different spatial scales at which environmental data was averaged
prior to analysis. Grey points indicate bias at the replication level. Blue points
represent average bias on ten replications. Blue errorbars represent departure from
the mean by one standard-deviation.



Table 5: Average bias and RMSE of the three models for the ecological parameters
derived from coefficient estimates in four scale scenarios after ten simulated repli-
cations. Numbers in brackets indicate standard-deviations. Sampling size in each
replication was 300 sites.

scale param model True Estimate Bias RMSE
BEM 23.73 23.62 (0.61) -0.11 (0.61) 0.58
GLM 23.73 18.69 (0.62) -5.04 (0.62) 5.07max
sp-GLM 23.73 17.14 (0.79) -6.58 (0.79) 6.63
BEM 0.33 0.32 (0.02) -0.02 (0.02) 0.03
GLM 0.33 0.32 (0.03) -0.01 (0.03) 0.03opt
sp-GLM 0.33 0.32 (0.03) -0.01 (0.03) 0.03
BEM 0.58 0.58 (0.02) 0.01 (0.02) 0.02
GLM 0.58 0.75 (0.03) 0.17 (0.03) 0.17

10 m

tol
sp-GLM 0.58 0.67 (0.03) 0.09 (0.03) 0.10

BEM 23.73 23.6 (0.48) -0.12 (0.48) 0.47
GLM 23.73 15.72 (0.69) -8.01 (0.69) 8.04max
sp-GLM 23.73 12.89 (0.92) -10.84 (0.92) 10.88
BEM 0.33 0.27 (0.05) -0.06 (0.05) 0.08
GLM 0.33 0.34 (0.05) 0.01 (0.05) 0.05opt
sp-GLM 0.33 0.33 (0.05) 0 (0.05) 0.05
BEM 0.58 0.62 (0.05) 0.04 (0.05) 0.07
GLM 0.58 0.91 (0.09) 0.33 (0.09) 0.34

20 m

tol
sp-GLM 0.58 0.73 (0.07) 0.16 (0.07) 0.17

BEM 23.73 23.38 (0.41) -0.35 (0.41) 0.52
GLM 23.73 13.69 (0.61) -10.04 (0.61) 10.05max
sp-GLM 23.73 9.89 (0.83) -13.84 (0.83) 13.86
BEM 0.33 0.22 (0.07) -0.11 (0.07) 0.13
GLM 0.33 0.5 (0.44) 0.17 (0.44) 0.45opt
sp-GLM 0.33 0.43 (0.37) 0.1 (0.37) 0.37
BEM 0.58 0.65 (0.07) 0.07 (0.07) 0.10
GLM 0.58 1.22 (0.48) 0.64 (0.48) 0.78

40 m

tol
sp-GLM 0.58 0.86 (0.3) 0.29 (0.3) 0.40

BEM 23.73 23.22 (0.63) -0.51 (0.63) 0.79
GLM 23.73 12.02 (6.04) -11.71 (6.04) 13.03max
sp-GLM 23.73 7.72 (3.05) -16.01 (3.05) 16.27
BEM 0.33 0.11 (0.06) -0.22 (0.06) 0.23
GLM 0.33 -0.16 (1.88) -0.49 (1.88) 1.85opt
sp-GLM 0.33 -3.27 (11.61) -3.6 (11.61) 11.59
BEM 0.58 0.62 (0.1) 0.04 (0.1) 0.11
GLM 0.58 1.3 (0.67) 0.72 (0.67) 0.95

80 m

tol
sp-GLM 0.58 0.81 (0.16) 0.23 (0.16) 0.27



Appendix 3: Visualize misalignment effect
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Figure 8: Observed relationships between point-scale counts and environmental
variable collected at different spatial scales. Green curves represent the simulated
fine-scale relationship.

Appendix 4: Bias in coefficients

GLM and sp-GLM had in average all their coefficients biased towards zero with

increasing following spatial scales. BEM had almost no bias for β0, to note however

a slight increase, but had minor bias in β2 and major bias in β1.
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Figure 9: Bias of coefficients estimated by the three models in four scenarios of
different spatial scales at which environmental data was averaged prior to analysis.
Grey points indicate bias at the replication level. Blue points represent average
bias on ten replications. Blue errorbars represent departure from the mean by one
standard-deviation.



Table 6: Average bias and RMSE of the three models for the coefficient estimates in
four scale scenarios after ten simulated replications. Numbers in brackets indicate
standard-deviations. Sampling size in each replication was 300 sites.

scale param model True Estimate Bias RMSE
BEM 3.0 3.02 (0.02) 0.02 (0.02) 0.03
GLM 3.0 2.83 (0.03) -0.17 (0.03) 0.17β0
sp-GLM 3.0 2.73 (0.04) -0.27 (0.04) 0.28
BEM 1.0 0.93 (0.08) -0.07 (0.08) 0.11
GLM 1.0 0.58 (0.08) -0.42 (0.08) 0.43β1
sp-GLM 1.0 0.72 (0.1) -0.28 (0.1) 0.30
BEM -1.5 -1.47 (0.11) 0.03 (0.11) 0.11
GLM -1.5 -0.9 (0.07) 0.6 (0.07) 0.60

10 m

β2
sp-GLM -1.5 -1.13 (0.1) 0.37 (0.1) 0.38

BEM 3.0 3.06 (0.04) 0.06 (0.04) 0.07
GLM 3.0 2.68 (0.04) -0.32 (0.04) 0.32β0
sp-GLM 3.0 2.45 (0.07) -0.55 (0.07) 0.55
BEM 1.0 0.71 (0.1) -0.29 (0.1) 0.30
GLM 1.0 0.43 (0.1) -0.57 (0.1) 0.58β1
sp-GLM 1.0 0.62 (0.1) -0.38 (0.1) 0.40
BEM -1.5 -1.33 (0.23) 0.17 (0.23) 0.28
GLM -1.5 -0.62 (0.13) 0.88 (0.13) 0.89

20 m

β2
sp-GLM -1.5 -0.95 (0.18) 0.55 (0.18) 0.58

BEM 3.0 3.09 (0.04) 0.09 (0.04) 0.10
GLM 3.0 2.53 (0.07) -0.47 (0.07) 0.47β0
sp-GLM 3.0 2.17 (0.14) -0.83 (0.14) 0.84
BEM 1.0 0.53 (0.17) -0.47 (0.17) 0.49
GLM 1.0 0.32 (0.13) -0.68 (0.13) 0.69β1
sp-GLM 1.0 0.53 (0.12) -0.47 (0.12) 0.48
BEM -1.5 -1.23 (0.28) 0.27 (0.28) 0.38
GLM -1.5 -0.43 (0.2) 1.07 (0.2) 1.09

40 m

β2
sp-GLM -1.5 -0.8 (0.3) 0.7 (0.3) 0.75

BEM 3.0 3.12 (0.04) 0.12 (0.04) 0.13
GLM 3.0 2.42 (0.1) -0.58 (0.1) 0.59β0
sp-GLM 3.0 1.99 (0.15) -1.01 (0.15) 1.02
BEM 1.0 0.31 (0.22) -0.69 (0.22) 0.72
GLM 1.0 0.36 (0.19) -0.64 (0.19) 0.66β1
sp-GLM 1.0 0.59 (0.18) -0.41 (0.18) 0.44
BEM -1.5 -1.38 (0.39) 0.12 (0.39) 0.39
GLM -1.5 -0.12 (0.45) 1.38 (0.45) 1.45

80 m

β2
sp-GLM -1.5 -0.76 (0.38) 0.74 (0.38) 0.82



Appendix 5: Graphs of prediction results - simulation study
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Figure 10: Root-mean-squared-errors (RMSEs) of models predicted counts com-
pared to the simulated ones for each type of prediction and spatial scale at which
environmental covariate was used for model fitting. Grey points indicate RMSE at
the replication level. Blue points represent average RMSE on the ten replications.
Blue errorbars represent departure from the mean by one standard-deviation.
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Figure 11: Spearman correlation of models predicted counts compared to the
simulated ones for each type of prediction and spatial scale at which environmental
covariate was used for model fitting. Grey points indicate correlation at the
replication level. Blue points represent average corralation on the ten replications.
Blue errorbars represent departure from the mean by one standard-deviation.



Appendix 6: Graph of predictions - Case study
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Figure 12: Relationship between predicted counts by the three models and observed
counts of Manila clam at the same locations in Arcachon Bay. Rows correspond
to different type of environmental data on which predictions had been done (see
Materials and Methods part for further informations). The grey dashed lines
represented estimated abundance at average environmental conditions.



3.3 Conclusion

In this study, we showed that partially observing the covariate, when environmental data are

averaged at a larger scale than the scale of effect, leads to low accuracy in SER estimates and

predictions produced by GLMs and spatial GLMs. In addition, we found that a hierarchical GLM

with a Berkson error structure improved estimates of SERs. However, the Berkson error model

(BEM) did not improve predictions and thus needs further investigations for broad applications.

In conclusion, we advised ecologists not to interpret GLMs estimates of SERs when environmental

data may describe the environment at a coarser scale than the scale of effect. In addition,

we discussed the potential use of BEM to indicate misestimated variability in environmental

descriptors and prevent the use of SER estimates to guide management actions when it occurs.



4 Chapter 3: A new method to explicitly estimate the shift

of optimum along gradients in multispecies studies

The core of this chapter is a paper under revision in Journal of Biogeography: B. Mourguiart,

B. Liquet, K. Mengersen, T. Couturier, J. Mansons, Y. Braud, A. Besnard. A new method to

explicitly estimate the shift of optimum along gradients in multispecies studies. In revision in

Journal of Biogeography. I also made an online oral presentation, “Explicitly estimating shifts in

optimum positions of multiple species along environmental gradient”, for the 52èmes Journées de

Statistique de la Société Française de Statistique (7 June 2021).

4.1 Synopsis

Optimum shifts in species-environment relationships are intensively studied in a wide range of

ecological topics, including climate change, species invasion, or theoretical ecology. In our case,

we were motivated by a case study in the context of climate change. We wanted to estimate

species-specific optimum shifts in Orthoptera communities between two surveys conducted 30

years apart along an elevation gradient in the French Alps.

Different modelling frameworks were developed to estimate optimum shifts between two surveys

but, to our knowledge, none explicitly. Maybe the two most widely used methods are based on

the mean comparison (such as Student t-test) (Chen et al., 2009; Menéndez et al., 2014; Freeman

et al., 2018) and regression (such as GLMs or GAMs) methods (Lembrechts et al., 2017). The

mean comparison method compares the mean values of occupied sites on the gradient between

the two samples. Such optimum estimates could be biased when sampling effort is uneven along

the gradient (ter Braak & Looman, 1986; Shoo et al., 2006), which is common in ecology (Rumpf

et al., 2018; Veen et al., 2021). Regression methods fit two GLMs (or GAMs), one for each

survey, and use coefficient estimates to calculate optima and derive shifts (Coudun & Gégout,

2005). Such a separate analysis makes it difficult to estimate uncertainty around the shift, so this

uncertainty is often omitted (e.g. Lembrechts et al. (2017); Urli et al. (2014)). This approach

also raises issues for species with an optimum close to the edge of the sampled gradient. For these

species, the regression can not accurately estimate the optimum (ter Braak & Looman, 1986;

Coudun & Gégout, 2006), and edge species are usually withdrawn from the analysis (e.g. Lenoir

et al., 2008). Hence, none of the two methods appeared satisfying to us.

We formulated a new model to explicitly estimate optimum shifts of multiple species, which we

called the Explicit Hierarchical Model of Optimum Shifts (EHMOS). We compared the accuracy

of optimum shifts, and precision estimates of EHMOS to the mean comparison mean and a



generalised linear mixed model through simulations. Specifically, we investigated the effects

of sampling design, species ecological specialisation and marginality (i.e., partially observed

relationship) on the accuracy of the three methods. We also fitted the three methods to the

motivating case of study.

4.2 Publication
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Abstract

Aim

Optimum shifts in species–environment relationships are intensively studied in a

wide range of ecological topics, including climate change and species invasion. Nu-

merous statistical methods are used to study optimum shifts but, to our knowledge,

none explicitly estimate it. We extended an existing model to explicitly estimate

optimum shifts for multiple species. We called this new Bayesian hierarchical model

the Explicit Hierarchical Model of Optimum Shifts (EHMOS).

Location

All locations

Taxon

All taxa

Methods

In a simulation study, we compared the accuracy of EHMOS to a mean comparison

method and a Bayesian generalized linear mixed model (GLMM). Specifically, we

tested if the accuracy of the methods was sensitive to (1) sampling design, (2)

species optimum position, and (3) species ecological specialization. In addition, we

compared the three methods using a real dataset of investigated optimum shifts in

24 Orthopteran species between two time periods along an elevation gradient.

Results

Of all the simulated scenarios, EHMOS was the most accurate method. GLMM

was the most sensitive method to species optimum position, providing unreliable

estimates in the presence of marginal species, i.e. species with an optimum close

to a sampling boundary. The mean comparison method was also sensitive to

species optimum position and ecological specialization, especially in an unbalanced

sampling design, with high negative bias and low interval coverage compared to

EHMOS. The case study results obtained with EHMOS were consistent with what



is expected considering ongoing climate change, with mostly upward shifts, which

further improved confidence in the accuracy of the EHMOS method.

Main conclusions

Our findings indicate that EHMOS could be used for a wide range of topics and

extended to produce new insights, especially in climate change studies. Explicit

estimation of optimum shifts notably allows investigation of ecological assumptions

that could explain interspecific variability of these shifts.

Keywords: Bayesian hierarchical modelling, Generalized Linear Mixed Model

(GLMM), mean comparison method, optimum shift, sampling design, species

distribution, species ecological specialization, species response curve

Introduction

Understanding changes in relationships between species and environmental, geo-

graphical or temporal gradients is of central interest in biogeography. For instance,

assessing changes in species distribution along latitudinal (Thorson et al., 2016),

elevational (Maggini et al., 2011) or climatic (Tayleur et al., 2015) gradients in

response to ongoing climate change is crucial for developing relevant biodiversity

change scenarios (Taheri et al., 2021) and predicting its impact on ecosystem

health and human well-being (Pecl et al., 2017). Modelling these changes is also

central in the study of invasive species to predict the area of potential colonization

(Elith et al., 2010). The shifts in species phenology, i.e. changes along a temporal

gradient, in response to climate change are also well-studied to obtain a mechanistic

understanding of climate change impacts on species distributions (Moussus et al.,

2010; Strebel et al., 2014; Vitasse et al., 2021).

All this research aims at modelling the relationship between species characteristics

– such as occurrence probability (Maggini et al., 2011), abundance (Thorson et al.,

2016) or singing activity (Strebel et al., 2014) – and linear covariates describing

the studied gradient. These modelled relationships, often named “species response

curves” (Tayleur et al., 2015), are usually unimodal curves (Oksanen & Minchin,

2002). They are characterized by a width, a maximum, an optimum (i.e. the value



on the gradient where the maximum abundance or occurrence probability of the

species is reached), and a lower and upper limit. Changes in the relationship could

then occur in each of these parameters, providing different and complementary

information on the way species are affected by change over the gradient. However,

these changes may be difficult to estimate. Changes in width or range limits of the

species response curve may for instance be more difficult to estimate than optimum

shifts due to sampling design or detectability issues linked to lower abundance near

range limits (Shoo et al., 2006). Hence, studying optimum shifts is often favoured

over shifts at range limits to disentangle ecological changes from potential sampling

artifacts (Shoo et al., 2006; Lenoir et al., 2008; Moussus et al., 2010).

Different modelling frameworks have been developed to study optimum shifts. The

simplest, and probably the most widely used, is the mean comparison method

(e.g. Shoo et al., 2006; Freeman et al., 2018), also known as the weighted average

method (ter Braak & Looman, 1986; Thorson et al., 2016), in which mean values

of occupied sites on the gradient are compared between two or more samples.

However, such optimum estimates could be biased when sampling effort is uneven

along the gradient (ter Braak & Looman, 1986; Shoo et al., 2006). Such uneven

sampling is common in ecology (Shoo et al., 2006; Rumpf et al., 2018), especially

in cases of sampling difficult-to-access terrains such as mountains. Designing a

random sample of a species distribution requires knowing the species distribution

prior to sampling it, which is almost never the case. Regression methods, such as

generalized linear models (GLMs), are also commonly used to estimate optimum

shifts (Coudun & Gégout, 2005; Lenoir et al., 2008; Urli et al., 2014) and are known

to be more robust to unbalanced sampling design (ter Braak & Looman, 1986).

In this approach, two regressions are conducted to estimate the species optimum

for each sample separately (Coudun & Gégout, 2005). Shift is then calculated

as the difference between the two estimated optima (as in Lenoir et al., 2008).

Such a separate analysis makes it difficult to estimate uncertainty around the

shift, so this uncertainty is often omitted (Urli et al., 2014; e.g. Lembrechts et al.,

2017). This absence of uncertainty is particularly prejudicial when post-hoc tests

are performed on shift point estimates (Felde et al., 2012). This approach also

raises issues for species with an optimum close to the edge of the sampled gradient,



hereafter referred to as edge species, also called marginal species (Hernandez et al.,

2006). In these cases, the regression follows a logistic relationship and does not

provide an optimum (Citores et al., 2020). As a consequence, such edge species

are usually withdrawn from analysis (Felde et al., 2012; e.g. Rumpf et al., 2018);

however, they may be particularly sensitive to changes as they are limited by

certain constraints (physiological, environmental, etc.) and subject to extirpation

phenomenon, i.e. local extinctions caused by a lack of remaining suitable areas

(Freeman et al., 2018). Moreover, estimates of the mean shift at the community

level could be biased by the removal of edge species, as the optimum shift could

depend on the position along the gradient (Rumpf et al., 2018). A model robust to

unbalanced sampling design, providing estimates of uncertainties and including all

species whatever the location of their optimum would be a substantial improvement

for modelling shift in optima.

We developed an extension of the Gaussian logistic model (ter Braak & Looman,

1986; Jamil et al., 2014) that explicitly estimates shifts in optima for several species

simultaneously, with their uncertainties. We also fitted a Bayesian Generalized

Linear Mixed Model to simultaneously analyse both sampling occasions and all

species and use the posterior distributions of the estimated coefficients to compute

posterior distributions of species optimum shifts. The performance of these models

was evaluated and compared to the estimates provided by a simple mean comparison

method. The comparison was undertaken through a simulation study involving

different sampling designs and ecological scenarios. The primary goal of the

simulation study was to determine if the tested methods accurately estimate

the optimum shifts of multiple species along a virtual environmental gradient.

Specifically, we tested if the accuracy of the methods was sensitive to (1) sampling

design, i.e. how sampling sites are distributed along the gradient, (2) species

marginality, i.e. the location of the species optimum on the gradient, and (3) species

ecological specialization, i.e. the width of the species–environment relationship. We

finally applied the three methods to 24 Orthoptera species sampled twice 30 years

apart in the French Alps along an elevation gradient.



Materials and methods

Shift modelling

We used a mean comparison method based on the Student t-test (hereafter, t-test)

that compares species’ average positions along a gradient between two sampling

occasions, e.g. two periods or two regions. In this approach, species’ optima are

estimated as the mean of environmental values at which the species have been

observed. We performed unpaired two-sample Student t-tests between surveys for

each species separately. This provided species-specific shift estimates and associated

confidence intervals.

We developed and fitted two hierarchical models: a ‘classic’ Generalized Linear

Mixed Model (hereafter, cGLMM) and a new Explicit Hierarchical Model of

Optimum Shifts (EHMOS). Both models assumed that the occurrence state (present

or absent) observed for species i at site j during sampling occasion k, Yi,j,k, relies

on the probability ψi,j,k that species i can occupy site j during sampling occasion

k. In both models, we described the observation data as an outcome of a Bernoulli

trial:

Yi,j,k ∼ Bernoulli(ψi,j,k).

We assumed that species occupancy probability is related to the gradient through

a symmetric bell-shaped curve, with an optimum where the maximum occupancy

probability is reached. However, the two models differ in the formulation of the

species–environment relationship. cGLMM allows five shapes of species-environment

relationships (flat, monotone, ‘plateau’, U-shaped or bell-shaped unimodal symmet-

ric response curves) some of which could be ecologically meaningless (e.g. U-shaped

curves). EHMOS by its ecological formulation models only symmetric unimodal

response curves. However, note that if EHMOS estimates optimum outside the

sampling range, then the estimated SRC will look like a monotone or a ‘plateau’

relationship. EHMOS ecological formulation also allows direct interpretation of

its model coefficients, especially about optimum and shift values. Note that both

models assumed that unimodal species response curves are symmetrical, i.e. occu-



pancy probabilities decrease at the same rate on both sides of the optimum. We

discuss this potential limitation further in the manuscript.

Classic Generalized Linear Mixed Model (cGLMM) – The occupancy probability

was modelled on the logit scale as a regression of linear and quadratic effects

of environment. To allow for species-specific occurrence relationships with the

gradient, we added a random intercept and random slope effects for the species ID.

Changes in species distribution along the gradient between sampling occasions were

assessed including a binary covariate, Sk, taking the value of 0 for one sampling

occasion and 1 for the other, and its interaction with the linear and quadratic

effects of the environment. As the same sites were included in the two samples,

we added a random intercept term for the site ID, γsite
j ∼ N(0, σ2

γ), to account for

data dependencies. Hence, in our cGLMM the occupancy model was formulated as

follows:

logit(ψi,j,k) = β0i+β1i×Xj +β2i×Xj
2+β3i×Sk+β4i×Sk×Xj +β5i×Sk×Xj

2+γsite
j

(1)

where βi represents the coefficients related to the species-specific effects mentioned

above and Xj is the value of the environmental variable at site j. Hence, β0i,

β1i and β2i describe the relationship between species occurrence and elevation

during the first sampling for species i, while β3i, β4i and β5i denote the changes

in the species-specific occurrence–gradient relationship between the two sampling

occasions. We calculated the species-specific optimum positions of each sampling

occasion, denoted by θi,k, from these regression coefficients (see Equation 2 in ter

Braak & Looman, 1986). We then calculated species shifts by subtracting optimum

values of each sampling occasion as follows:

δi = θi,2 − θi,1

= −(β1i + β4i)
2 × (β2i + β5i)

− −β1i

2 × β2i

(2)



where δi is the optimum shift of species i.

Explicit Hierarchical Model of Optimum Shifts (EHMOS) – We extended the multi-

species Gaussian logistic model developed to describe species unique unimodal

response curves (Jamil et al., 2014) to explicitly estimate shift in optimum positions

between two sampling occasions. This model, we called Explicit Hierarchical Model

of Optimum Shifts (EHMOS), describes multiple species–environment relationships

simultaneously for two samples:

logit(ψi,j,k) = αi,k − [Xj − (θi + (Sk × δi))]2
2 × τi,k

2 + γsite
j (3)

where αi,k represents the maximum occupancy probability on the logit scale reached

by species i in sampling occasion k; θi is the environmental optimum of species i

for the first sampling occasion (as the binary variable Sk is coded as S1 = 0 and

S2 = 1); δi is the shift between the two optima for species i; τi,k is the species’

ecological tolerance, a measure of the gradient portion length on which the species

could occur (see Appendix S1 in Supporting Information).

In both models (Eq. (1) and (3)), the gradient covariate was standardized to have

a mean equal to zero and variance equal to one. Each species-specific parameter

(Θi ∈ {βi, θi, δi}) was modelled as a random species effect drawn from a normal

distribution: Θi ∼ N(µΘ, σ
2
Θ) described by the community mean (µΘ) and the

variance between species (σ2
Θ). Those community parameters are shared between

the two sampling occasions for all the GLMM parameters (βi’s), and for the

optimum (θi) and the shift (δi) in the EHMOS model. For the species-specific

and occasion-specific parameters αi,k and τi,k, the community means could vary

between sampling occasions (e.g. τi,k ∼ N(µτk
, σ2

τ )).

We implemented the two models in a Bayesian context. We then obtained posterior

distributions for each species-specific parameter. Assuming a lack of prior knowledge

of a parameter’s true value, hyper-parameters were afforded default priors. We used

wide normal priors (with mean 0 and variance 1000) for the means of community-

level effects (the µ’s) and inverse-gamma priors (Inv-gamma(0.1, 0.1)) for the

community-level variances (the σ2’s). In the cGLMM, we computed posterior



distributions of the shifts from MCMC samples of the regression coefficients (Eq.

(2)). Hence, for both models we had posterior distributions for the species-specific

shifts in optimum position. We used medians as point estimates and symmetric

95% credible intervals as corresponding measures of uncertainty. Symmetric 95%

credible intervals were computed based on 0.025 and 0.975 quantiles of the MCMC

posterior distributions.

We coded the two hierarchical Bayesian models in BUGS language and ran them

in JAGS (Plummer, 2003), using the jagsUI package (Kellner & Meredith, 2021)

in R software (R Core Team, 2018). The code is available on GitHub. We ran the

analysis with the function autojags(), which updates the number of iterations

within the burn-in phase until all parameters have a Gelman-Rubin statistic (R̂)

less than 1.1, suggesting satisfactory convergence (Gelman et al., 2013), or when

the total number of iterations reached a maximum set at 250,000 iterations. We

ran three MCMC chains with a thinning rate of 10 and with an initial burn-in

phase of 15,000 iterations that was updated by 15,000 iterations until the specified

convergence level was met or the maximum number of iterations was reached.

Simulation study

We simulated the sampling of a community of 20 species during two sampling

occasions at 300 sampling sites distributed along an elevational gradient ranging

from 1000 m to 3000 m. We used two sampling design sub-scenarios: the distribution

along the virtual elevation gradient of the sampling sites was either uniform, in

sampling sub-scenario A1, or unbalanced, in sampling sub-scenario A2 (Fig. 1a).

In the unbalanced design, the simulated sampling sites followed a truncated normal

distribution of mean 1970 m, standard-deviation 335 m restricted between 1000

m and 3000 m. We chose the mean and standard deviation according to those

observed in the motivating example (see below).

We then positioned on the virtual gradient the optima of each species for the two

virtual sampling occasions. We defined two optimum sub-scenarios (coded B1 and

B2). In optimum sub-scenario B1, 100% of species had both their optima in the

middle of the sampling range, hereafter ‘middle species’ (green points in Fig. 1b),

while in B2 30% of species (six species) were considered as ‘edge species’, i.e. had



their optima close to the boundaries of the sampled gradient (red points in Fig.

1b). We defined the middle of the sampling range as the part of the gradient that

contains 80% of the sampling sites (green areas in Fig. 1ab), the upper and lower

parts of the remaining sampling range were considered the sampling edges (orange

areas in Fig. 1ab). We simulated half of the optima of the edge species close to

the upper edge, and the other half close to the lower edge. Simultaneously with

the optimum of the first sampling occasion (full points in Fig. 1b), we simulated

the optimum shift, thus obtaining the second optimum (circles in Fig. 1b), to

respect percentages of edge and middle species in both sampling occasions. For

all optimum sub-scenarios, we computed 60% of upward shifts, 20% of downward

shifts and 20% of no shift to test all kinds of response while keeping the majority

of upward shifts as expected in conditions of ongoing climate change. The values

of upward and downward shifts were sampled from a uniform distribution bounded

between 80 m and 250 m, and -250 m and -80 m respectively.

We used two ecological specialization sub-scenarios (C1 and C2). In sub-scenario

C1, we simulated only specialist species, i.e. species having a narrow ecological

niche and high maximum occurrence probability (Fig. 1c). In sub-scenario C2, we

simulated 50% of specialist and 50% of generalist species having a wider ecological

niche and lower maximum occurrence probability than specialist species (Fig. 1c).

We allowed for changes in shape parameters between sampling occasions in both

sub-scenarios, but not in ecological specialization type: i.e. a generalist species

remains a generalist species, but could have slightly different species response

curves in the two sampling occasions. Niche width and maximum occurrence

probability were sampled from uniform distributions, independently for the two

sampling occasions, with the distribution parameters depending on the ecological

specialization type. Specialist species had widths ranging from 400 m and 600 m,

while generalists’ width ranged between 1200 m and 1400 m. Maximum probability

was set between 0.9 and 0.99 for specialist species, and between 0.75 and 0.85

for generalist species. These distribution parameter values were chosen to clearly

separate the two types of species and match the values observed in the motivating

example.

We ran all possible combinations of the sub-scenarios, resulting in eight simulated



scenarios. In each, we considered each species to have a symmetric unimodal

response curve in both sampling occasions (Fig. 1d). We produced site-specific

probability of occupancy for each species in each scenario following:

logit(ψs
i,j,k) = αs

i,k − [Xs
j − (θs

i + (Sk × δs
i ))]2

2 × τ s
i,k

2

with ψs
i,j,k the occurrence probability of species i at site j during sampling occasion

k simulated in scenario s, Xs
j is the value on the elevation gradient of site j

under scenario s, θs
i and δs

i are respectively the optimum and shift of species i in

scenario s, and αs
i,k and τ s

i,k are related to niche width and maximum probability of

occupancy (see Appendix S1). Observed presence or absence of species i at site j

during sampling occasion k under scenario s, Y s
i,j,k, was then drawn from a Benoulli

distribution: Y s
i,j,k ∼ Bernoulli(ψs

i,j,k). We replicated the Bernoulli trials 30 times

for each of the 8 scenarios, resulting in 240 simulated datasets.
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Figure 1: Example of the simulation process for two scenarios each broken down
in three categories of sub-scenarios: (a) the sampling design either uniform (A1)
or unbalanced (A2) (b) the optimum positions for the first (full points) and
second (circles) sampling occasions of the 20 species, which is either in the middle
(green area) or close to the edges (orange areas) of the sampling range in variable
proportions depending on sub-scenario category (B1: 100% middle, B2: 70%
middle) (c) the ecological specialization of species, which can be specialist (dark
curves) or generalist species (purple curves) in variable proportions depending on
the sub-scenario category (100% in C1 or 50% in C2 of specialist species). The
bottom panel represents (d) the species response curves for the first and second
sampling occasion (solid and dashed lines) of the two scenarios that results in the
combination of the three sub-scenarios above.



Model performance assessment

We assessed estimation accuracy and precision through four metrics (i) bias, the

difference between true and estimated absolute optimum shifts, (ii) root mean

squared error, which combines bias and imprecision, (iii) interval coverage, i.e. the

proportion of estimated credible/confidence intervals that contain the true op-

timum shifts, and (iv) interval score, which combines information on width of

credible/confidence intervals and on interval coverage. Details on the calculation

of the four metrics are provided in Appendix S2. We also compared the computing

performance of the Bayesian models. We counted the number of times when at

least one parameter failed to converge after the maximum of iterations was reached.

Due to the number of runs and parameters, we just looked at the Gelman-Rubin

statistic threshold of 1.1 (Gelman et al., 2013) and did not make visual diagnostics.

We also computed the average running time for each model.

Motivating example

Our goal when starting this study was to find an appropriate modelling approach

that produces estimates, and associated uncertainties, of shifts in elevation optima

of an Orthoptera community studied during two periods separated by 30 years. This

study was conducted in 134 sampling sites distributed along an elevation gradient

ranging from 928 m to 2614 m (mean = 1869 m) above sea level in Mercantour

National Park in the southern French Alps. The first survey was carried out during

the summers between 1983 and 1988 (Gueguen 1990). At each site, the density of

Orthoptera species was assessed based on multiple counts made using box quadrats

that trapped individuals. The second survey was conducted during the summers of

2018 and 2019. Each sampling site consisted of a circle with a 70-m radius where

five spatial replicates (hereafter, plots) 30 m2 in area were surveyed following three

successive steps: (1) one minute of listening to species stridulating in the plot by

standing close to its edge, (2) six minutes of sighting species by walking across

the entire plot, and (3) two 45-second sweep netting sessions across the entire

plot (see Mourguiart et al., 2021 for a full description of the sampling design).

To minimize the effect of varying sampling effort and detection methods between

surveys, we reduced the Orthoptera records to the presence/absence data at the



site level and only kept species detected in at least 5% of sampling sites. We pooled

some species’ data in a species complex when species confusion was possible. Thus,

we aggregated data for species in the genuses Yersinella, Calliptamus, Podisma

and in the complex Chorthippus biggutulus-brunneus-mollis-daimei. We fitted the

three methods to the 24 taxa kept after data processing.

Results

Before analysing the results, we checked for convergence issues and running times

of cGLMM and EHMOS. In the R̂ statistics check, we observed that 50% of runs

failed to converge (at least one parameter had R̂ higher than 1.1) for cGLMM (see

in Appendix S3 as Table S3.1). Due to the running time, 26 hours (SD = 15 hours)

on average for cGLMM (see in Appendix S3 as Table S3.2), we chose not to re-run

more iterations of models that did not converge. All models converged for EHMOS

and took on average 5 hours (SD = 1 hour) for this process (see in Appendix S3 as

Table S3.2). In the motivating example, both models converged: EHMOS ran in

82 minutes and cGLMM in 26 minutes.

Simulation

Averaging performance metrics for all species in the eight scenarios, we found that

EHMOS performed better than cGLMM and t-test whatever the performance

metrics. EHMOS had the smallest average RMSE (mean = 23, SD = 1), bias

(mean = 0, SD = 1), interval score (mean = 115, SD = 7), and the largest interval

coverage (mean = 0.96, SD = 0). cGLMM had similar interval coverage to EHMOS

(mean = 0.95, SD = 0), but relatively high positive bias (mean = 12, SD = 3),

the largest RMSE of all three methods (mean = 37, SD = 4), and interval score

(mean = 1402, SD = 478). The t-test had an intermediate RMSE (mean = 28, SD

= 2) and interval score (mean = 207, SD = 24) between cGLMM and EHMOS,

with bias as high as cGLMM, but negative (mean = -12, SD = 2), and the smallest

interval coverage of the three methods (mean = 0.85, SD = 0.02).

At the scenario level, EHMOS was still the most accurate method. It performed

as well as cGLMM in scenarios with only middle species, i.e. scenarios including

sub-scenario B1 (Fig. 2 upper panels), and was much more accurate than cGLMM



in scenarios with edge species, i.e. scenarios including sub-scenario B2 (Fig. 2

lower panels). Averaging performance metrics for only edge species, we obtained an

average RMSE almost three times larger for cGLMM than for EHMOS. cGLMM

estimates of the quadratic effect of environment on species occurrence could be close

to zero for edge species, yielding an unreliably high ratio of linear and quadratic

coefficients, thus unreliable optimum and optimum shift estimates (Eq. 2). Hence,

on average for edge species, cGLMM had larger positive bias (79 m) and interval

score (8820) compared to EHMOS (mean bias = -6 m; mean interval score = 268).
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Figure 2: Distribution of species specific performance metrics for the eight simulated
scenarios after 30 replications. The colour of the points represents species optimum
position along the simulated gradient (in the edge, orange points, or in the middle,
green points). Shape of points corresponds to species ecological specialization
type relative to the width of their ecological niche (generalist species with broad
ecological niche, represented by inverted triangles, or specialist species with narrower
ecological niche, represented by circles).

The t-test method had comparable results to EHMOS in scenarios A1xB1xC1 and

A1xB1xC2, with only slightly larger average RMSEs and interval score (Fig. 2,



Table 1). For scenarios including edge species, i.e. scenarios including sub-scenario

B2, there was only a slight difference in RMSEs between EHMOS and the t-test

method (Fig. 2). However, the t-test method, in scenarios with edge species, had

on average negative bias that was at least two times larger than EHMOS bias

(Fig. 2). The t-test method also had poorer interval metrics than EHMOS, with

interval coverage never reaching the expected threshold of 95%, in contrast to

EHMOS, which always reached this threshold (Fig. 2), and with interval scores

30% to 150% larger than EHMOS in scenarios with edge species (Table 1). The

t-test method also resulted in poorer performance than EHMOS in scenarios with

unbalanced sampling design (sub-scenario A2), with negative bias, smaller interval

coverage and larger interval score (Fig. 2, Table 1). Differences between the

EHMOS and t-test method performances in scenarios with unbalanced sampling

design were exacerbated by the presence of generalist species (scenario A2xB1xC2

and A2xB2xC2 in Fig. 2 and Table 1). The t-test had a high average negative

bias of -30 m and -22 m, small average interval coverage of 68% and 83%, and

large interval scores of 360 and 217 in scenarios A2xB1xC2 and A2xB2xC2. In

comparison, EHMOS is relatively unbiased, with an average bias of 3 m and 0 m,

had average interval coverage superior to 95% for both scenarios, and had smaller

interval scores: 117 and 150 for scenarios A2xB1xC2 and A2xB2xC2 respectively.

Table 1: Average species specific interval scores for the eight simulated scenarios
after 30 replications. Numbers in brackets represent standard deviations.

Scenario EHMOS cGLMM t-test
Uniform sampling

A1xB1xC1 69.48 (3.5) 72.32 (3.58) 100.63 (4.01)
A1xB1xC2 113.39 (12.56) 116.17 (11.72) 148.46 (22.83)
A1xB2xC1 136.17 (24.66) 4558.69 (1929.05) 346 (120.27)
A1xB2xC2 192.37 (31.53) 5054.91 (3201.19) 281.66 (90.63)

Unbalanced sampling
A2xB1xC1 53.57 (2.61) 53.28 (2.62) 90.11 (10.58)
A2xB1xC2 117.07 (14.94) 125.35 (16.29) 359.86 (90.49)
A2xB2xC1 85.46 (14.41) 288 (179.88) 109.22 (13.4)
A2xB2xC2 150.14 (24.76) 945.45 (507.25) 216.9 (55.42)



Application

On average, species shifted upslope (Fig. 3), with the mean shift ranging from

124 m (SD = 95 m) and 173 m (SD = 127 m) to 183 m (SD = 80 m) based on

the estimates from the t-test, cGLMM and EHMOS respectively. All significant

shifts were upslope for the three methods, with 11, 8 and 10 species having

significant shifts based respectively on EHMOS, cGLMM and t-test credible or

confidence intervals. However, we observed heterogeneity between species, with

estimated shifts ranging from 19 m (Stauroderus scalaris) to 344 m (Bicolorana

bicolor) based on EHMOS, -124 m (Platycleis albopunctata) to 419 m (Omocestus

harmorrhoidalis) based on cGLMM estimates and, -30 m (Platycleis albopunctata)

to 356 m (Bicolorana bicolor) based on t-test results.

The three methods provided heterogeneous shift estimates (Fig. 3). T-test estimates

seemed to be smaller than those estimated by cGLMM or EHMOS. To verify

this observation, we performed a paired t-test on species point estimates between

methods. We found significant differences between the t-test and cGLMM estimates

(mean difference = -49, t(23) = -2.62, p = 0.02) and EHMOS estimates (mean

difference = -60, t(23) = -5.51, p < 0.01), confirming our observation on the

graph. Methods also differed in the precision of estimates. The t-test had on

average narrower confidence intervals with a mean confidence interval width of

271 m, compared to EHMOS (371 m) and cGLMM (4701 m). This high value for

cGLMM is due to unreliably wide credible intervals for nine species (Fig. 3). Those

unrealistic estimates could be explained by quadratic coefficients, the denominator

in optimum formulae (Eq. 2), estimated close to zero and generating unreliable

optimum estimates and thus shift estimates. This seemed to occur for taxa having

their optimum close to the sampling edge (before the 10th or beyond the 90th

percentile of the sampling site elevations, depicted as orange rectangles in Fig. 3),

for example, Yersinella sp. and Gomphocerus sibiricus sibiricus, or species having

low maximum occupancy probability, e.g. Omocestus haemorrhoidalis.



−500

0

500

Ye. com
plex*

C
a. com

plex*
Eu. declivus*
O

e. germ
anica*

Pl. albopunctata*

Eu. brachyptera

Ep. terrestris*
An. pedestris
Bi. bicolor
Ps. stridulus
C

h. com
plex*

St. lineatus*
Ps. parallelus
Ar. fusca*
St. scalaris*
O

m
. haem

orrhoidalis*

D
e. verrucivorus*

C
h. apricarius*

St. nigrom
aculatus*

O
m

. viridulus
An. alpinus
M

y. m
aculatus

G
o. sibiricus*

Po. com
plex*

E
st

im
at

ed
 s

hi
ft

Model

EHMOS

cGLMM

t−test

Figure 3: Shift estimates following three statistical methods on 24 Orthoptera
species optimum positions between 1980–1988 and 2018–2019 along an elevational
gradient in Mercantour National Park (French Alps). The points correspond to
the mean estimates and the segments to the associated 95% credible or confidence
intervals. The black horizontal lines represent graphical range, segments reaching
those lines indicate intervals wider than the graphical range. Species are ordered
by increasing optimum estimates of the first period. Species names are coloured
depending on the optimum position types with edge species coloured in orange
and middle species in green. Presence (or absence) of asterisk indicates species
ecological type as defined in the simulation study (presence: generalist, absence:
specialist).

Discussion

In this study, we performed simulations to test the accuracy of optimum shift

estimates of a new model, the Explicit Hierarchical Model of Optimum Shifts

(EHMOS), compared to a more standard GLMM and method based on the compar-

ison of the mean. The simulation study provides evidence that EHMOS generally

performed better than the two other methods. cGLMM performed identically to

EHMOS when species had their optimum in the middle of the sampling gradient,



but was inaccurate and very imprecise when some species had their optimum close

to the sampling limits. We also found that the mean comparison method tended to

be negatively biased, with low interval coverage in scenarios involving edge species

or unbalanced sampling design, especially when generalist species were included.

The case study confirmed that the three methods provide different results. cGLMM

provided unreliable estimates for nine of the 24 Orthoptera species, and the mean

comparison method had on average smaller shift estimates than the other two

methods. On average, we found that species had shifted upslope by 124 m (SD =

95 m) and 173 m (SD = 127 m) to 183 m (SD = 80 m) based on estimates from

the t-test, cGLMM and EHMOS respectively.

EHMOS always performed better than the t-test-based method. Differences between

these two methods were particularly large under unbalanced sampling design, and

especially in the presence of generalist species. It is predictable that mean estimates

are biased by unbalanced sampling designs, in particular in scenarios where a part

of the gradient is preferentially sampled leading to bias in optimum estimates

towards this part (ter Braak & Looman, 1986). We simulated one example where

the middle part of the gradient was preferentially sampled, but similar results are

expected in other preferential sampling design, e.g. preferential sampling towards

low elevations due to the reduction in surface area with elevation (Lenoir et al.,

2008). In such situations, both optima estimates could be biased towards the

preferentially sampled part of the gradient and shift estimates could be biased

towards zero. This explains the negative bias produced by t-test method in our

simulated scenarios involving unbalanced sampling design. It is also not surprising

that bias due to unbalanced sampling design is larger for generalist species than

for specialist species. Bias is more influenced by the distribution of sampling

sites occupied by the species rather than by the entire distribution of sampling

sites. Occupied sites of a specialist species with a narrow range could be uniformly

distributed even if the entire distribution of sampling sites is uneven. In contrast,

the larger the species range, the more the occupied site distribution on the gradient

will match the entire sampling site distribution, leading to biased shift estimates.

A slightly larger bias with the t-test than with EHMOS was also observed in

scenarios involving edge species, even with balanced sampling. This could be



explained by the sensitivity of t-tests to species response curve truncation (ter

Braak & Looman, 1986). In this case, the species–environment relationship is only

partially observed, and the optimum is underestimated as the species range is not

entirely covered (ter Braak & Looman, 1986). Bias will thus increase with the

magnitude of truncation. Hence, edge species that shifted towards the sampling

range margins will have their second optimum more severely biased than the first,

inducing underestimation in the shift estimates. Such a bias that depends on the

species type could lead to misleading conclusions when comparing magnitudes

of shifts between species types. Previous studies found that edge species shifted

less than middle species (Rumpf et al., 2018). While this finding is ecologically

consistent, it could have been exacerbated by the bias associated to the use of the

mean comparison method.

Generalized linear models have been extensively used in species distribution mod-

elling (Elith et al., 2010), and also in optimum shift modelling (e.g. Coudun &

Gégout, 2005; Lenoir et al., 2008). Usually, multiple GLMs are conducted sepa-

rately for each species and each survey that is to be compared (but see Lembrechts

et al., 2017 using GLMM). This approach has the inconvenient of losing infor-

mation and thus precision in estimation by splitting the data into multiple data

sets. Estimates for data-poor species may for instance be improved with a GLMM,

by borrowing information from data-rich species (Ovaskainen & Soininen, 2011).

Hence, one could assume that GLM would have, at best equal and probably worse

performances than cGLMM. We thus chose to compare EHMOS only with cGLMM

to show that EHMOS has advantages against classical GLM-based approaches. We

worked with a Bayesian framework that allows us to derive uncertainty measures

associated with shift estimates. Note that it would have been possible to compute

the asymptotic variance of optima or shift estimates using a frequentist approach,

e.g. the delta method (Urli et al., 2014). The Bayesian GLMM we developed here

performed as well as the EHMOS and better than the mean comparison method

in scenarios where all species have optima in the middle of the sampling range.

However, as expected, for edge species, the standard GLMM failed to estimate

bell shape curves, fitting sigmoid curves instead and making derived optima and

shifts unreliable (ter Braak & Looman, 1986; Citores et al., 2020). In contrast,



EHMOS, thanks to its ecological formulation and its explicit modelling of optimum

shifts, allowed estimates of optimum shifts for edge species. Hence, edge species

could be kept if one is using EHMOS, while they should be removed in t-test or

GLM-based analysis. Ecological formulation of EHMOS, especially explicit mod-

elling of shift, will also allow easier choice of prior in a Bayesian setting. cGLMM

parameters should be transformed to be ecologically interpretable (see Appendix

S1). Such a transformation may change an uninformative prior on the parameter

scale into an informative prior on the ecological scale, making the choice of prior

more complicated (see Lemoine, 2019 for an example in logistic regression). Hence,

the standard GLMM appeared to be less flexible than EHMOS.

In addition to having more robust point estimate accuracy whatever the sampling

design, ecological marginality and specialization than a t-test or cGLMM, EHMOS

also seemed to produce more precise estimates. cGLMM was very sensitive to

ecological marginality in terms of precision, providing very wide and uninformative

credible intervals for edge species. The interval coverage of the t-test was also very

sensitive to ecological marginality, sampling design and ecological specialization.

Having informative precision estimates and reporting them is important when

studying species shifts (Bates et al., 2015; Taheri et al., 2021). Some authors use

the overlap of confidence intervals as a surrogate for a test of significant difference

(Lenoir et al., 2008; Urli et al., 2014), so low interval coverage could lead to

misleading conclusions, and the t-test method should be avoided.

In our case study, we studied optimum shifts between two surveys conducted 30

years apart of 24 Orthoptera species along an elevational gradient in the French Alps.

All methods suggested that on average Orthoptera species shifted their optimum

towards higher elevations, and that the magnitude of the shift varies between species.

These results are consistent with previous findings on other insect taxa, which

on average have shifted upslope, but at different paces depending on the species

(Vitasse et al., 2021). Even if the magnitude of shifts varied between methods,

our estimates are in line with the estimated warming rate of 0.36 ◦C.decade-1 in

the Alps between 1970 and 2019, which roughly corresponds to a mean shift of

about +62–71 m decade–1 (Vitasse et al. 2021), leading to an expected mean shift

of around +186–213 m between the two surveys. Thus, the average shift estimated



by EHMOS (183 m) is closer to what is expected than the t-test, suggesting it may

provide a more reliable estimate of optimum shift. Yet this observation has to be

taken carefully, as the warming rate could vary between regions, and species might

respond at a slower rate than expected (Vitasse et al., 2021). However, as the case

study is close to the scenario A2xB2xC2 of our simulations, with the presence of

both generalist and edge species sampled with an unbalanced sampling design, we

could suspect an underestimation of optimum shifts by the t-test as observed in

these simulations. It was also not surprising to obtain unreliable wide credible

intervals for most of the edge species with the GLMM, as the simulations provide

such evidence.

Notwithstanding its demonstrated comparative advantages, EHMOS could have

some limitations. It might produce optimum estimates outside the sampling range

and thus, depending on the sampling design, outside the environmental range.

This property could be an advantage in the case of niche truncation. However,

optimum estimates should be limited to the environmental range: for example,

by imposing an appropriate prior. One potential other limitation, also valid for

cGLMM, is the assumption that species response curves are symmetric. While this

assumption could stand for numerous species (Rydgren et al., 2003), some species

could have asymmetrical relationships with environment gradients (Oksanen &

Minchin, 2002). We found through a simulation study that the three methods could

be biased in presence of asymmetrical species response curves (see Appendix S4).

More precisely, the three methods provided biased optimum shift estimates when

species response curves changed of shapes between the sampling occasions. For

instance, the three methods produced positively biased optimum shift estimates

for species having a symmetrical response curve in the first sampling occasion and

a right-skewed species response curve in the second sampling occasion, situations

that could arise due to range margin contraction or expansion for instance. In

contrast, optimum shift should be accurately estimated by the three methods for

species having the same degree of skewness in both sampling occasions. Hence,

shape of species response curves should be inspected carefully prior to analysis. In

case where response curves are asymmetric, some alternative modelling methods

have been proposed, such as generalized additive models (GAM, e.g. Heegaard,



2002) or Huisman-Olff-Fresco approach (HOF, e.g. Oksanen & Minchin, 2002),

and applied in optimum shift modelling (Maggini et al., 2011; Urli et al., 2014).

However, previous simulation studies have shown that both methods could fail to

retrieve the true shape of species response (Jansen & Oksanen, 2013; Michaelis &

Diekmann, 2017). Both methods appeared to be sensitive to gradient truncation

and sampling intensity (Jansen & Oksanen, 2013; Citores et al., 2020), limiting

their use in unbalanced sampling design and for edge species. Further research is

thus needed to find more robust methods to detect and deal with asymmetrical

response curves. Finally, we present the EHMOS within a hierarchical model that

did not incorporate observation process. It is well known that imperfect detection

could bias occupancy estimates, and that this should be addressed in modelling

whenever it is possible. While our example does not allow the use of multi-species

occupancy models, hierarchical linear models estimating both species occupancy

and detection (Dorazio & Royle, 2005), due to the absence of sampling replication

in historical data, it is straightforward to extend our framework in a MSOM by

adding the observation process in the hierarchy of the model.

EHMOS presents some advantages and potential extensions that we did not explore

through our simulation analysis that may be interesting for future research. Its

explicit formulation of optimum shifts could allow direct testing of ecological

assumptions about inter-specific variability: for example, assumptions about species

traits that may affect the magnitude of shifts. Species trait effects could be added

directly in the model through the random effect specification of shift (Jamil et

al., 2014). The potential effects of species ecological marginality or ecological

specialization on magnitude of shift could also be tested by adding the correlation

between optimum and shift, or tolerance and shift parameters respectively. Finally,

while we focused on the particular case of sampling the same sites at two sampling

occasions, we assumed that EHMOS would perform equally in the case of different

sites sampled at each sampling occasion. It could also be easily extended to deal

with more than two sampling occasions, and test for changes in rates of optimum

shifts between multiple sampling occasions. EHMOS thus appears a highly flexible

method that could be used in various fields.
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Appendix S1: Description of EHMOS’ parameters

In the occupancy model of EHMOS (see Eq. (3) in the main text), the four

parameters (α, θ, δ and τ) represent ecological descriptors of the species-environment

relationship (Fig. S1):

• α corresponds to the maximum probability of occurrence, ψmax, on the

logit scale. Indeed, the maximum probability of occurrence is reached when

gradient value is equal to the optimum, i.e. we have ψj = ψmax when Xj = θ.

Thus, Eq. (3) in the main text becomes:

log( ψmax

1 − ψmax

) = α ⇐⇒ ψmax = 1
1 + exp(−α) ; (4)

• θ is the species optimum, the environmental value at which species reached

its maximum probability of occupancy;

• δ is the species shift between two optima;

• τ represents the environmental tolerance of a species, i.e. the gradient range

that a species can occupy. It can be related to the width, ω, of the species

response curve at a specified occupancy probability threshold, pω, by:

ω = 2 × τ
√

2 × (α− logit(pω)) ⇐⇒ τ = 0.5 × ω√
2 × (α− logit(pω))

(5)

with a pω usually specified at 0.05 to estimate the suitable range of a species

(Michaelis & Diekmann, 2017).

Those four EHMOS parameters can also be derived from cGLMM coefficient

estimates (Jamil et al., 2014):



α = β0 − β1
2

4β2

θ = − β1

2β2

δ = − β1

2β2
− (− β1 + β4

2(β2 + β5)
)

τ =
√

− 1
2β2

Figure S1.1: Schematic representation of ecological parameters that describes

species-environment relationship.
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Appendix S2: Description of performance metrics used in

the simulation study

The four performance metrics used (bias, RMSE, interval coverage and interval

score) are computed for each model at different levels (species, scenario, overall).

First, for each species i included in a particular scenario s, we computed average

perfomance metrics over the thirty replications:

• Bias of species i in scenario s based on method m is defined as the average

of differences between absolute1 estimates based on method m and absolute

true shift over the thirty replications:

Biasi,s,m = 1
R

R∑

r=1
|δ̂i,s,m,r| − |δi,s| ;

• The RMSE at species-specific level is defined by:

RMSEi,s,m =

√√√√ 1
R

R∑

r=1
(δ̂i,s,m − δi,s)2 ;

• The interval coverage for a species in a particular scenario is the ratio between

the number of replciations in which confidence interval estimate contain the

true shift and the total number of replications;

• The interval score of species i in scenario s based on method m is defined as

the average of interval scores obtained at each replication r. At the replication

level, interval score is computed as follows:

ISi,s,m,r(li,s,m,r, ui,s,m,r; δi,s) =





(ui,s,m,r − li,s,m,r) + 2
α
(li,s,m,r − δi,s) if δi,s < li,s,m,r

(ui,s,m,r − li,s,m,r) if ui,s,m,r > δi,s > li,s,m,r

(ui,s,m,r − li,s,m,r) + 2
α
(δi,s − ui,s,m,r) if δi,s > ui,s,m,r

where α is the confidence level of the interval, here set at 0.05, li,s,m,r and ui,s,m,r

1Absolute values are took because true shifts could either be positive or negative, thus a
negative bias always represents an underestimation of the true shif magnitude whatever its
direction.



are the lower and upper limits of the interval estimated by model m for species i

in scenario s and replicate r.

At the scenario level, metrics are averaged over the twenty species:

Biass,m = 1
N

N∑

i=1
Biasi,s,m

RMSEs,m = 1
N

N∑

i=1
RMSEi,s,m

Coverages,m = 1
N

N∑

i=1
Coveragei,s,m

ISs,m = 1
N

1
R

N∑

i=1

R∑

r=1
IS(l̂i,s,m,r, ûi,s,m,r; δi,s)



Appendix S3: Complementary results of the simulation

study

Table S3. 1: Number of simulation replications per scenario that at least one model
parameter had an R-hat higher than 1.1 after the maximum of iterations was
reached

Scenario EHMOS cGLMM
Uniform sampling

A1xB1xC1 0 26
A1xB1xC2 0 2
A1xB2xC1 0 30
A1xB2xC2 0 30

Unbalanced sampling
A2xB1xC1 0 0
A2xB1xC2 0 0
A2xB2xC1 0 26
A2xB2xC2 0 5

Table S3. 2: Average computation times in hours.

Scenario EHMOS cGLMM
Uniform sampling

A1xB1xC1 5.7 39.9
A1xB1xC2 5.0 17.8
A1xB2xC1 5.1 42.9
A1xB2xC2 4.4 34.4

Unbalanced sampling
A2xB1xC1 5.6 8.5
A2xB1xC2 5.6 6.7
A2xB2xC1 5.7 35.8
A2xB2xC2 3.8 19.2

Table S3. 3: Average of species specific performance metrics for the eight simulated
scenarios after 30 replications. Numbers in brackets represent standard deviations.

Scenario EHMOS cGLMM t-test

Bias

A1xB1xC1 1.26 (1.3) -0.49 (1.61) -0.64 (3.86)

A1xB1xC2 0.25 (2.48) -0.29 (2.65) 2.1 (5.3)

A1xB2xC1 -3.52 (3.99) 42.59 (18.76) -12.72 (7.61)



A1xB2xC2 -5.52 (6.58) 21.84 (11.52) -13.05 (8.45)

A2xB1xC1 1.47 (0.98) 1.02 (1.08) -9.26 (3.28)

A2xB1xC2 2.91 (2.29) 3.31 (2.5) -29.87 (7.74)

A2xB2xC1 3.15 (1.85) 6.21 (4.41) -10.41 (3.85)

A2xB2xC2 0.1 (5.11) 25.15 (11.47) -21.78 (6.96)

Coverage

A1xB1xC1 0.94 (0.01) 0.94 (0.01) 0.96 (0.02)

A1xB1xC2 0.96 (0.01) 0.95 (0.01) 0.96 (0.03)

A1xB2xC1 0.96 (0.01) 0.95 (0.01) 0.76 (0.09)

A1xB2xC2 0.97 (0.01) 0.96 (0.01) 0.82 (0.07)

A2xB1xC1 0.95 (0.01) 0.96 (0.01) 0.9 (0.04)

A2xB1xC2 0.95 (0.01) 0.92 (0.01) 0.68 (0.08)

A2xB2xC1 0.96 (0.01) 0.96 (0.01) 0.9 (0.04)

A2xB2xC2 0.96 (0.01) 0.96 (0.01) 0.83 (0.06)

IS

A1xB1xC1 69.48 (3.5) 72.32 (3.58) 100.63 (4.01)

A1xB1xC2 113.39 (12.56) 116.17 (11.72) 148.46 (22.83)

A1xB2xC1 136.17 (24.66) 4558.69 (1929.05) 346 (120.27)

A1xB2xC2 192.37 (31.53) 5054.91 (3201.19) 281.66 (90.63)

A2xB1xC1 53.57 (2.61) 53.28 (2.62) 90.11 (10.58)

A2xB1xC2 117.07 (14.94) 125.35 (16.29) 359.86 (90.49)

A2xB2xC1 85.46 (14.41) 288 (179.88) 109.22 (13.4)

A2xB2xC2 150.14 (24.76) 945.45 (507.25) 216.9 (55.42)

RMSE

A1xB1xC1 14.84 (0.49) 15.08 (0.53) 20.58 (1.44)

A1xB1xC2 23.97 (2.43) 24.68 (2.44) 28.58 (3.23)

A1xB2xC1 26.23 (4.23) 78.62 (25.04) 30.42 (4.99)

A1xB2xC2 35.22 (5.41) 59.91 (14.12) 36.45 (5.38)

A2xB1xC1 11.38 (0.43) 11.34 (0.43) 17.69 (1.8)

A2xB1xC2 24.66 (3.25) 25.88 (3.32) 39.65 (5.91)

A2xB2xC1 16.89 (2.46) 25.45 (7.24) 20.3 (2.55)



A2xB2xC2 29.42 (4.43) 55.86 (14.2) 33.68 (5.1)
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Figure S3.1: Distribution of species specific interval scores (IS) for the eight

simulated scenarios after 30 replications, and for the three methods (top graph) or



without cGLMM (bottom graph). Colored points represent average IS in species

group depending on their optimum position (placed in the edge or in the middle of

sampling range) along the simulated gradient, and their ecological specialization

type relative to the width of their ecological niche (generalist species with broad

ecological niche or specialist species with narrower ecological niche).



Appendix S4: Departure from symmetric assumption

Models used in the manuscript make the assumption that species have symmetric

unimodal relationships with environmental gradient (i.e. occupancy probabilities

decrease at the same rate on both side of optimum, see Fig. S4.1). Species-

environment relationships could however have other forms (Oksanen & Minchin,

2002; Jansen & Oksanen, 2013). For instance, species response curve (SRC) could

be unimodal but skewed to one part of the gradient (i.e. asymmetric). Here we

propose to investigate the effect of departure from models’ assumption of symmet-

ric unimodal species-gradient relationships on models accuracy by conducting a

simulation study.
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Fig S4.1: Three types of species response curves sharing a same optimum (dashed

vertical segment).

Simulated datasets

We defined three potential shapes of species response curves: symmetric, asymmetric

with a longer left tail and asymmetric with a longer right tail (Fig. S4.1). We

simulated 9 species to describe all possible combinations of SRC that could occur



when two sampling occasions are considered (Fig. S4.2). To keep it simple we

chose to only simulate specialist species, shifting upward and having their optima

of both sampling occasions in the middle of the sampling range. We simulated

curve widths ranged from 400 m to 600 m. Maximum occupancy probabilities were

obtained by random draws from a uniform distribution bounded between 0.85 and

0.99. Species optima were randomly positioned between 1490 m and 2460 m, in

the middle range of the unbalanced sampling design (i.e. sampling scenario A2 of

the manuscript). We assigned only upward shifts following random draws from a

uniform distribution bounded between 80 and 120 m (Fig. S4.2).
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Fig S4.2: Species response curves of the nine simulated species. Blue curves

represent the SRCs of the first sampling occasion. Panel titles indicates the shapes

of the two SRCs, with sym, r_skd and l_skd standing for symmetric, right-skewed

and left-skewed.

Species response curves were simulated using a mixture of two normal distributions

with a common mean and two variance parameters (see Eq. (1) bellow). The

common mean represents the species optimum. The two variances are related to



the width of the SRC at each side of the species optimum. The first distribution

(resp. second) is used to simulate the left (resp. right) side of the optimum of the

SRC. Hence, if the first normal distribution has a greater standard deviation than

the second normal distribution, the curve will be left-skewed. If both distribution

have the same standard deviation, the SRC is symmetric. Note that we used

the density function of the normal distribution multiplied by a scaling parameter

to reach a specified probability. The scaling parameter is defined as the ratio of

the maximum occupancy probability intended and the maximum density of the

normal distribution. We simulated the site-specific probability of occupancy for

each species as follows:

ψs
i,j,k =





ai

exp(−
(xs

j
−(θi+(Sk×δi)))2

2σ1i2 )

σ1i
√

2π
for xs

j ≤ θi

bi

exp(−
(xs

j
−θi+(Sk×δi))2

2σ2i2 )

σ2i
√

2π
for xs

j > θi

(6)

with ai and bi the scaling parameters related to the maximum probability, θ the

species optimum, δ the species shift and σ the standard deviations related to the

width.

Once SRCs were simulated for each species and sampling occasion, we generated

presence/absence data, Y s
i,j,k, from random draws of a Bernoulli distribution: Y s

i,j,k ∼
Bernoulli(ψs

i,j,k). We replicated the process 30 times for the two sampling scenarios.

Contrary to the manuscript simulation design, here the simulated parameters of

the SRCs (ai, θi, δi, σi) were identical for the two sampling scenarios.

Accuracy of optimum shift estimates under violiation of the symmetry

assumption

In our simulations, all three methods respond in the same way to departure from

assumption of symmetric unimodal species-gradient relationships (Fig. S4.3, Table

S4.1). More than the departure of symmetry assumption, the models are sensitive

to changes in SRC shapes between the two sampling occasions. The more difference

between SRC shapes, the larger the bias for all methods. For instance, the highest

bias were obtained for species having a SRC skewed toward one side of the gradient



at the first sampling occasion and a SRC skewed toward the other side in the next

sample (e.g. left-skewed to right-skewed). In contrast, methods produced accurate

optimum shift estimates for species having same skewness during the two sampling

occasions (e.g. species 5).

Table S4. 1: Average of bias in optimum shift estimates for the two simulated
scenarios after 30 replications. Numbers in brackets represent standard deviations.

SRC 1 SRC 2 True shift EHMOS cGLMM t-test

Sampling scenario A2

Symmetric Symmetric 80 -1 (18) -2 (16) -8 (16)

Right-skewed Symmetric 98 -36 (20) -31 (18) -34 (19)

Left-skewed Symmetric 80 36 (21) 39 (20) 40 (22)

Symmetric Right-skewed 87 37 (21) 30 (20) 23 (18)

Right-skewed Right-skewed 118 3 (18) 1 (17) -8 (14)

Left-skewed Right-skewed 107 69 (13) 62 (14) 62 (13)

Symmetric Left-skewed 100 -29 (14) -36 (15) -51 (16)

Right-skewed Left-skewed 99 -75 (17) -71 (20) -80 (16)

Left-skewed Left-skewed 88 0 (17) -3 (17) -9 (18)

Sampling scenario A1

Symmetric Symmetric 80 2 (21) -1 (17) -13 (19)

Right-skewed Symmetric 98 -40 (17) -37 (14) -37 (18)

Left-skewed Symmetric 80 40 (21) 30 (17) 34 (20)

Symmetric Right-skewed 87 38 (19) 27 (19) 56 (20)

Right-skewed Right-skewed 118 -1 (15) -7 (14) 19 (16)

Left-skewed Right-skewed 107 70 (23) 52 (24) 65 (22)

Symmetric Left-skewed 100 -35 (22) -33 (19) -33 (26)

Right-skewed Left-skewed 99 -66 (22) -54 (21) -74 (18)

Left-skewed Left-skewed 88 0 (17) -1 (15) 4 (20)
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Figure S4.3: Bias in optimum shift estimates with simulated species having different

kinds of unimodal species response curves (symmetric, right-skewed or left-skewed).

Grey points correspond to results from one replication. Mean bias are represented

with their standard deviations by red points and red segments.

Detection of departure from model assumption

We tried two approaches to test the departure from the symmetry assumption

made by the three presented models: 1) a Bayesian P-value approach that is often

used by ecologists to detect a lack-of-fit in Bayesian models (Conn et al., 2018),

and 2) a HOF approach previously used to test for the symmetry assumption in

range shift studies (Wilson et al., 2005).

Goodness-of-fit We assess quality of model fit using a Bayesian P-value approach

(Gelman et al., 2013) for each species. We used the discrepancy measure defined by

Zipkin et al. (2009): D(yi) = ∑
k(yik − ψ̂ik)2 for the presence-absence observations

yik of species i and their expected values ψ̂ik under the model at MCMC replication

k. This discrepancy statistic is computed independently for each species i. A

reference distribution is computed by simulating data sets from the posterior

distribution, ysim
ik ∼ p(θik|y), and computing the discrepancy measure, D(ysim

ik ),



for the simulated data sets. The Bayesian p-value for species i is defined as the

probability: pBi = Pr(D(yi) > D(ysim
i )). Extreme values (e.g. less than 0.05 or

greater than 0.95) are interpreted as a lack of fit.

Table S4. 2: Number of times where lack-of-fit were detected after 30 replications
for the 9 species simulated with different shapes of response.

SRC.1 SRC.2 cGLMM EHMOS

Symmetric Symmetric 1 0

Right-skewed Symmetric 0 0

Left-skewed Symmetric 0 0

Symmetric Right-skewed 0 0

Right-skewed Right-skewed 0 0

Left-skewed Right-skewed 0 0

Symmetric Left-skewed 0 0

Right-skewed Left-skewed 0 0

Left-skewed Left-skewed 0 0

We detected no lack-of-fit according to the Bayesian p-value approach, except for

one species in one replication of the simulation (Table S4.2).

Bayesian p-value approach seems conservative in regards of skewed species response.

Thus, it should not be used to investigate departure from model assumption on

shape of species response.

HOF approach HOF approach consists in applying seven models and select

the model that best fit the data (Huisman et al., 1993; Jansen & Oksanen, 2013).

The five models describe five shapes of response curves assumed to be ecologically

meaningful (Oksanen & Minchin, 2002; Jansen & Oksanen, 2013): I) flat, II)

monotone, III) plateau, IV) unimodal symmetric, V) unimodal skewed, VI) bimodal

symmetric and VII) bimodal skewed. This approach has been used to determine

the shape of species response along environmental gradients in many studies (e.g.

Oksanen & Minchin, 2002; Jansen & Oksanen, 2013; Michaelis & Diekmann, 2017),

and especially in range shift studies Wilson et al. (2005). For instance, Wilson et



al. (2005) used the HOF approach to verify the assumption of symmetrical species

response curves made by their two-GLMs approach. We tested this method on our

simulated data sets. We applied the HOF approach on each replicated data set and

each species for sampling occasion one using the HOF function of the R-package

eHOF (Jansen & Oksanen, 2013).

Table S4. 3: Model choices of the HOF approach for the 9 simulated species after
30 replications.

HOF models

species true shape IV V VII

1 Symmetric (IV) 23 7 0

2 Right-skewed (V) 20 10 0

3 Left-skewed (V) 22 8 0

4 Symmetric (IV) 25 5 0

5 Right-skewed (V) 19 11 0

6 Left-skewed (V) 20 8 2

7 Symmetric (IV) 25 5 0

8 Right-skewed (V) 16 14 0

9 Left-skewed (V) 18 12 0

The HOF approach failed to retrieve the correct shape for numerous species

and iterations (Table S4. 3). It estimated symmetrical response in majority of

replications even for species having skewed response. Species with symmetrical

responses had been misclassified in at least 15% of the replications.

Discussion

We found that departure from assumption of symmetry in species response could

induce bias in optimum shift estimates of the three methods. The estimates

were biased when degree of skewness in species response changed between the two

sampling occasions. Thus, readers should be cautious regarding the shape of species

response curves, and more importantly in the potential changes in shapes of SRC

between the samples studied, before applying any of the three methods presented



here.

We tried two approaches in order to detect departure from model assumption of

symmetry in SRC: 1) Bayesian p-value approach as a measure of goodness-of-fit

(Gelman et al., 2013) and 2) HOF approach that were used by Wilson et al. (2005)

in this context. None was found to be a reliable evaluation of the symmetry

assumption based on our simulations. This could be due to the relatively low

degree of skewness of the simulated SRCs, but previous works have also shown that

HOF approach could misclassify SRC shapes even with high degree of skewness

(Jansen & Oksanen, 2013; Michaelis & Diekmann, 2017). Jansen & Oksanen (2013)

found for instance that HOF approach could be sensitive to optimum position along

the environmental gradient. Their results indicate numerous misclassifications of

HOF approach (see Table 4 and Fig. A3 in Jansen & Oksanen (2013)), especially

(but not only) for species having their optimum close to sampling limits (i.e. edge

species). These results also stand for GAMs (Jansen & Oksanen, 2013; Citores et

al., 2020). Besides, Oksanen & Minchin (2002) pointed out that defining symmetry

or asymmetry with GAMs could be subjective and thus advice to use of HOF

approach. For these reasons we do not used GAMs for testing the symmetry

assumption.

Conlusion

It appears important to thoroughly inspect SRC shape before analysis due to

potential bias when SRC shapes change over sampling occasions. More researches

are needed to be able to test for asymmetrical SRC, especially simulation studies.

Ecologists could also rely on more precise data, e.g. abundance data, when they

are available to test the assumption of symmetrical speceis response curves.
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4.3 Conclusions

In this study, we developed a new Bayesian hierarchical model, the Explicit Hierarchical Model of

Optimum Shifts (EHMOS). Using simulations, we showed that EHMOS was more accurate than

two widely used methods to estimate optimum shifts (i.e., the mean comparison method and

GLM-based approach). In addition, EHMOS only allowed accurate optimum shift estimates for

species having a partially observed relationship with the gradient. EHMOS estimates of optimum

shifts of 24 true Orthoptera species were consistent with what is expected under ongoing climate

change, with mostly upward shifts, which further improved confidence in the accuracy of the

EHMOS method. We finally discussed EHMOS potential extensions that can lead to new insights

about ecological processes driving inter-specific variability in observed optimum shifts.



5 Discussion

This thesis aimed to investigate potential bias and related issues that can arise when using partially

observed data to estimate species-environment relationships (SERs). We placed our research in

the context of three particular studies with different types of partially observed data: 1) partially

observed response data linked to imperfect detection issues, 2) partially observed covariate data

related to a specific case of spatial misalignment, and 3) partially observed relationship in the

particular context of optimum shift modelling.

In the first study, we fitted a multi-species occupancy model (MSOM) to Orthopera species

along an altitudinal gradient to estimate SER accounting for imperfect detection. We showed

that despite a robust sampling design involving five spatial replicates, each surveyed with three

sampling techniques, most species and most sampling sites had respectively detection probability

and inventory completeness lower than one, indicating that the issue of imperfect detection

remained even after an intensive sampling. In addition, we found that detection probability varied

among species and with grass height. Both results suggest that imperfect detection might be

unavoidable, even under well-designed sampling schemes (Guillera-Arroita et al., 2014). It can be

particularly true when studying species communities, as we can expect species to have different

detectability patterns depending on their behaviour (Veech et al., 2016). For instance, in our case

study, some species were highly detectable with the sweep netting technique while most of them

were undetectable with this method. We thus recommend designing monitoring schemes that

allow the use of site occupancy models. To overcome reservations about those sampling designs

due to the potential increase in sampling effort (Welsh et al., 2013), we also proposed a method

to investigate sampling efficiency and the corresponding effects of potential optimisation.

In the second study, we investigated the effect of area-to-point spatial misalignment (i.e., when

environmental covariates are described at a coarser spatial resolution than the resolution at

which they affect the species response) on fine-scale SER estimates of three models: a GLM, a

spatial GLM and a Berkson measurement error model (BEM). We found that the BEM gave

more accurate estimates of SERs relative to the GLM and the spatial GLM which produced

flattened SER estimates under area-to-point spatial misalignment. The BEM thus appeared to

be a potential solution to deal with area-to-point misalignment when estimating fine-scale SER.

Moreover, GLM estimates should not be interpreted if the environmental data are only available

at coarse spatial resolutions. Those insights might help to better guide management actions by

encouraging and facilitating more accurate fine-scale SER estimates.

In the third study, we developed a new formulation of a Bayesian linear model that explicitly

estimates optimum shifts along environmental gradients for multiple species. This model named



the Explicit Hierarchical Model of Optimum Shifts (EHMOS) proved to be more accurate in

simulations than a GLMM and the mean comparison method, i.e. two methods currently in use.

The EHMOS especially improved estimates of optimum shifts for edge species, i.e. species for

which the environment that they can occupy had only been partially sampled. This advantage

was accompanied by better accuracy under an unbalanced sampling design, relative to the mean

comparison method. Finally, by explicitly estimating optimum shifts, the EHMOS can allow the

investigation of ecological hypotheses (e.g., effects of ecological traits on the magnitude of shifts)

and thus help to explain observed optimum shift variability among species (Lenoir & Svenning,

2015). These improvements in optimum shift modelling can lead to new insights into the effects

of climate change that species are already experiencing.

5.1 Contribution

The first study concerned the imperfect detection of species presence. While bias can arise when

detectability issues are not accounted for, models dealing with imperfect detection are seldom

used, especially in entomological studies. Thus, we promoted the use of multi-species occupancy

models (MSOMs) specifically for the study of insect communities. We provided an example

code that could be easily adapted to specific entomological studies. In addition, we propose a

methodology to investigate the effects of sampling optimisation scenarios on sampling efficiency.

This method can offset the common belief that occupancy models require too much sampling

effort and improve the dissemination of MSOMs.

The second study investigated the effects of mismatch between covariate and response scales on

SER estimates. Such a spatial misalignment is known to bias SER estimates but, in practice,

no method is currently in use to deal with it and spatial misalignment can be overlooked. We

investigated the accuracy of two potential solutions, a spatial GLM and a Berkson error model,

to estimate SERs under area-to-point misalignment. The Berkson error model gave promising

results but needs further investigation for broad applications. However, we can already advise

ecologists not to overlook spatial misalignment and not to interpret SER estimates produced by

GLMs or spatial GLMs under spatial area-to-point misalignment.

The third study focused on modelling optimum shifts along environmental gradients, particularly

for species having an observed gradient truncated (i.e., edge species). We formulated a new

model, called the Explicit Hierarchical Model of Optimum Shifts (EHMOS), that improved the

accuracy of estimated optimum shifts relative to two common methods (a GLM-based and a mean

comparison method), especially for edge species. With this study, we improved the estimation of

optimum shifts in SER that are especially studied in the very popular domain of climate change



effects on species.

Finally, all the models built during this work will be made available on GitHub, along with

tutorials to facilitate their dissemination.

5.2 Perspectives

5.2.1 Making more of the Bayesian framework

I stated earlier (see Introduction) that I preferred Bayesian models over frequentist models for

conceptual reasons. I am attached by priors in the Bayesian formulation. It was an anathema to

always consider that we have no knowledge about the system studied, while ecological systems

have been studied for centuries. Hence, incorporating past knowledge in the model through prior

distributions seemed interesting.

Using more informative priors seems appealing. In many cases, the assumption of no knowledge

about parameter values is inconsistent with reality. For instance, in chapter 2, we followed

common practices in ecology (Banner et al., 2020) and chose default, wide normal priors for GLM

coefficients. However, we had some knowledge about values that the coefficients could or could

not take. For instance, there was no ecological evidence supporting the possibility that a species

can have a convex (i.e., U-shaped) response curve along an environmental gradient. Thus, even

if we knew that the quadratic coefficient (i.e., β2) could not be negative, our choice of priors

said otherwise. Given evidence showing an increase in estimate precision when choosing more

informative priors (Morris et al., 2015), further investigations on how the choice of priors can

improve (or not) our results present an interesting avenue for future research.

Investigations about the choice of priors should be made in any Bayesian analysis (i.e., prior

sensitivity analysis; Banner et al. (2020)). More consideration about the choice of priors is

required in general (Depaoli et al., 2020), and in ecological modelling in particular (Lemoine,

2019). A common practice in ecology is to use wide normal distributions as default priors for

location parameters (Banner et al., 2020). This choice is often motivated by a search for relative

objectivity, but it can induce the opposite (Lemoine, 2019; Wesner & Pomeranz, 2021). For

example, in logistic regression (often used to model presence/absence data), putting a normal

prior with a very large variance on the intercept in the logit scale, which seems a non-informative

prior, translates to a very informative prior in the probability scale (see fig. 1 in Northrup &

Gerber, 2018). That is why Lemoine (2019) advocated for the use of weakly-informative priors

informed by ecological knowledge in parameter potential values. However, in some cases, it can

be difficult to translate ecological knowledge into parameter potential values. When studying

species-environment relationships, knowledge is often about optimum or ecological tolerance values.

https://github.com/bmourgui?tab=repositories


Translating this kind of knowledge to model parameters of GLMs may not be straightforward as

an optimum, for instance, depends on two GLM parameters (linear and quadratic coefficients).

Ecologically formulated models, such as the one we developed in the third study, should make the

use of more informative priors easier for the study of species-environment relationships. Further

investigations of the benefits of using such models, with appropriate priors, on the precision of

SER estimates and accuracy of prediction might be interesting.

5.2.2 Effects of species traits on SERs

In the first and third chapters, we modelled SERs for multiple species simultaneously with

multi-species hierarchical models. In those models, we considered that all the observed species

came from the same community and shared common attributes represented by the model hyper-

parameters. However, some situations can question this assumption. For instance, a community

can be composed of multiple (functional) groups in which a species may have a response to the

environment similar to species belonging to the same group but different from species in other

groups (Pacifici et al., 2014). Thus, considering a unique community level may not represent reality

and lead to biased estimates (Poggiato et al., 2021). In addition, species sharing ecological traits

may have more similar responses to the environment than species with different characteristics

(Pollock et al., 2012; Valente & Betts, 2019). In such situations, we can expect better estimates if

the multi-species model includes trait effects on species response (e.g., Pollock et al., 2012) or

a priori grouping species in functional guilds (e.g., Pacifici et al., 2014). Indeed, closely related

species should share more information with each other than with species not sharing the same

trait or not belonging to the same guild (Pollock et al., 2012; Valente & Betts, 2019). However,

the advantages and limitations of such hierarchical models are not yet defined (Pacifici et al.,

2014; Poggiato et al., 2021) and need further investigation.

Incorporating species traits or species groups in the hierarchy of the multi-species models we

built also has the potential to bring new ecological knowledge (Estrada et al., 2016; Yates et al.,

2018; Valente & Betts, 2019). For instance, including trait effects on detection in the MSOM

can shed new insights on species detection patterns. To my knowledge, how species traits affect

species detection has received little attention. However, we can expect that detection patterns

vary with the ecological characteristics of species. For instance, in our study, we can assume that

two Orthoptera species with high flying capacity might be less detectable by sweep netting than

species with no wings and thus no escape. Furthermore, investigations on the effect of traits on

species detection can improve functional diversity assessment (Jarzyna & Jetz, 2016; Si et al.,

2018; Palacio et al., 2020), a popular field of research (Sutherland et al., 2009).

In chapter 3, allowing the shift parameter of EHMOS to vary in function of species traits



can improve our understanding of inter-specific variability of observed optimum shifts. Strong

ecological assumptions propose species traits as candidates for explaining differences in species

range shifts (Kearney & Porter, 2009). However, a recent review highlighted a lack of consistency

in empirical evidence about trait effects on range shifts (Beissinger & Riddell, 2021). Beissinger

& Riddell (2021) proposed a series of potential explanations, but they neglected to mention

statistical uncertainty in shift estimates that could blur the signal when testing for trait effects in

post-hoc analysis (e.g., Felde et al., 2012). The EHMOS can overcome this issue by allowing direct

tests for trait effects on optimum shifts and thus account for the uncertainty of the estimates.

5.2.3 Room for more complexity

The hierarchical Bayesian models developed in this work assumed symmetrical unimodal species

responses to environmental gradients. While this facilitates ecological interpretation of model

estimates and can improve estimates in case of a partially observed gradient (see Chapter 3),

observed SER can be asymmetric (i.e., skewed). For instance, a competitor can exclude the

species from one part of its suitability range, leading to skewed observed SER (e.g., see Figure 1

in Poggiato et al., 2021). One solution is to use more flexible models, such as GAM (Pedersen et

al., 2019) or HOF models (Oksanen & Minchin, 2002). However, more flexible models can better

describe the observed SER but not explain the underlying ecological processes. For instance, such

models can not distinguish a true skewed SER, due to particular physiological constraints (e.g.,

plants’ response to temperature can be asymmetric Austin, 2007), from an observed skewed SER

that results from the effect of an external factor than the environmental covariate studied (e.g.,

the presence of competitors or interactions between environmental factors). Failing to understand

the ecological processes that drive the observed response may lower the transferability (i.e., the

ability to predict in new environments) of such models (Bell & Schlaepfer, 2016; Yates et al.,

2018). In addition, concerns have arisen about the sensitivity of such flexible models to data

quality (Michaelis & Diekmann, 2017) and sampling bias (Merow et al., 2014), especially in the

presence of truncated gradients (Bell & Schlaepfer, 2016; Citores et al., 2020). Thus, further

investigation is needed to distinguish estimated skewed responses due to data specificity from

actual skewed responses before interpreting SER estimated by flexible models. Another solution

is to increase the complexity of the hierarchical structure to describe ecological processes leading

to skewed responses (e.g., including species interactions; Poggiato et al. (2021)). HBM can be

extended to allow for such external effects (e.g., joint SDM Warton et al., 2015). These HBMs

have received much attention regarding their predictive ability in SDM (Poggiato et al., 2021).

However, to my knowledge, little is known about their ability to estimate SER accurately. Further

investigation into how external factors (e.g., biotic interactions) can shape observed SER is crucial



to explain SER better and improve SDM predictions.
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