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W communications are experiencing an unprecedented demand for communication band- width. It is not only the volume of data tra c exploding, but also the characteristics and nature of communicating objects are diversifying. In addition, new applications and use cases are emerging, each one with stringent requirements, making the management of radio, computing, and storage resources complex, requiring advanced, exible, scalable, and low complexity solutions.

This thesis focuses on distributed learning approaches for e ective and e cient radio resource management in the context of 5G networks and beyond. Distributed solutions have the advantage of being exible, scalable, and robust to environmental artifacts. Furthermore, they reduce signaling overhead and strongly limit cumbersome centralized computations. However, distributed learning faces several challenges, especially in dense 5G networks deployments, due to an uncertain wireless environment and limited radio and computing resources. Motivated by these challenges, we propose new distributed learning frameworks based on multi-agent reinforcement learning, which consider environment dynamics, including radio channel variations, intra-and inter-cell interference, users' tra c, and mobility for dynamic radio resource management. Speci cally, our approach models user devices as independent agents, collaborating with (or competing against) each other for radio and/or computing resources to optimize network utility functions. To do so, the agents rely on their local observations (and global observations if available) to make autonomous decisions, thereby signi cantly reducing signaling and computational overhead.

Following this approach, we propose a fully distributed and decentralized user association framework for the optimal assignment of user equipments to base stations. Then, we extend this study to propose a new architecture, which conveniently combines neural attention mechanisms and multi-agent reinforcement learning to build fully transferable user association policies with zero generalization capability. In other words, with the proposed new framework, the knowledge acquired in one speci c scenario is transferable to another without requiring any additional training procedure. We show that the proposed mechanism adapts well and by design to variations in the number and positions of users. These conclusive results allow us to address the problem of energy-e cient dynamic computation o oading, where multiple users compete for radio and computing resources to o oad data generated dynamically at the user's devices to an edge server. We formulate this problem as a long-term energy minimization problem with end-to-end delay constraints to meet user quality of service. Using Lyapunov stochastic optimization tools, we decouple this problem into a per slot frequency allocation problem and a radio resource allocation problem, which we jointly solve with a proposed fast iterative algorithm and the proposed transferable user association solution. The resulting framework exhibits near-optimal performance, improving the network's energy e ciency while signi cantly reducing its complexity. Finally, to further enhance the system's performance, in the last part of this thesis, we explore the opportunity o ered by semantic communications. In this paradigm, whenever communication occurs to convey meaning between two agents, what matters is the receiver's understanding of the transmitted message and not necessarily their correct reconstruction. Transmitting only relevant information su cient for agents to capture the meaning intended can save signi cant communication bandwidth. Therefore, we propose a new architecture that enables representation learning of semantic symbols. Our preliminary numerical results are promising, making semantic communications a good candidate to improve the e ciency and sustainability of future 6G networks.

Résumé

L communications sans l connaissent une demande sans précédent de débit et de bande passante.

Non seulement le volume du tra c de données explose, mais les spéci cités et la nature des objets communicants se diversi ent. De plus, l'apparition de nouvelles applications et de nouveaux cas d'utilisation, chacun avec des exigences strictes, complexi e la gestion des ressources radio, de calcul, et de stockage, qui nécessite désormais des solutions avancées, exibles, évolutives et peu complexes.

Cette thèse se focalise sur les approches d'apprentissage distribué pour une gestion e cace et e ciente des ressources radio des réseaux mobiles 5G et au-delà. Les solutions distribuées ont l'avantage d'être exibles, évolutives et robustes face aux perturbations ambiantes. En outre, elles réduisent la surcharge de signalisation et limitent des calculs centralisés laborieux. Cependant, l'apprentissage distribué fait face à plusieurs dé s, notamment dans les réseaux 5G denses, en raison d'un environnement sans l incertain et des ressources radio et de calcul limitées. Motivés par ces dé s, nous proposons de nouveaux cadres d'apprentissage distribué basés sur l'apprentissage par renforcement multi-agent, tenant compte de la dynamique de l'environnement (variations des canaux sans l, interférences intra et intercellulaires, tra c et mobilité des utilisateurs) pour une gestion dynamique des ressources radio. Plus précisément, notre approche modélise les équipements utilisateur comme des agents indépendants, qui collaborent (ou rivalisent) pour accéder à des ressources radio et/ou computationnelles a n d'optimiser des fonctions d'utilité du réseau. Pour cela, les agents s'appuient sur leurs observations locales (et sur d'éventuelles observations globales) pour prendre des décisions autonomes, réduisant ainsi considérablement les coûts de signalisation et de calcul.

Ce faisant, un cadre d'association d'utilisateurs entièrement distribué et décentralisé est d'abord proposé pour l'a ectation optimale des équipements utilisateurs aux stations de base, et pour gérer la mobilité. Nous étendons ensuite cette étude pour proposer une nouvelle architecture combinant judicieusement des mécanismes d'attention neuronale et d'apprentissage par renforcement multi-agent. Les solutions obtenues sont entièrement transférables et généralisables : les connaissances acquises dans un scénario spéci que sont applicables à d'autres sans nécessiter de procédure d'apprentissage supplémentaire. Nous montrons que cette solution s'adapte bien aux variations du nombre et des positions des utilisateurs. Cela nous permet ensuite d'aborder le problème du déchargement dynamique des calculs à faible coût énergétique, où plusieurs utilisateurs se disputent des ressources radio et computationnelles pour décharger des tâches sur un serveur périphérique. Il s'agit d'un problème de minimisation d'énergie à long terme sous des contraintes strictes de délai. Avec des outils d'optimisation stochastique de Lyapunov, nous traduisons ce problème en un problème d'allocation conjointe de fréquence et de ressources radio par slot, que nous résolvons de manière quasi-optimale avec un algorithme itératif rapide combiné à notre solution d'association d'utilisateurs transférable. En n, la dernière partie de cette thèse explore les communications sémantiques. Dans ce paradigme, lorsqu'une communication a lieu pour véhiculer un sens entre deux agents, ce qui importe est la compréhension par le récepteur du message transmis et non sa reconstruction correcte. Transmettre uniquement les informations pertinentes su santes pour que les agents saisissent le sens voulu permet d'énormes économies de bande passante. Nous proposons donc une méthode permettant l'apprentissage de la représentation des symboles sémantiques. Nos résultats numériques préliminaires sont prometteurs et montrent le potentiel des communications sémantiques pour des futurs réseaux 6G e caces et durables.

Mots-clés -Réseaux sans Fils, Réseaux 5G mobile, Apprentissage Distribué, Apprentissage par Renforcement Multi-Agents, Gestion de Ressources Radio, Association d'Utilisateurs, Gestion de la Mobilité, Informatique mobile de Périphérie, Communications Sémantiques, Communications axées sur les Objectifs. A j Cartesian product of ensemble A j , j = 1 . . .
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An agent policy (or strategy). π : S × A → [0, 1] speci es a probability distribution over joint state space S and action space A. For a given state s and action a, π (s, a) = P(a|s). We use the notation π θ , when the policy is parameterized by θ γ Agent reward discounting factor ϵ Probability that an agent takes an action a given state s in an ϵ-greedy policy

1 Cond(x)
Indicator function: equals 1 if x satis es condition "Cond" and 0 otherwise Introduction "La vie est une sou rance continuelle pour celui qui l'a ronte avec son coeur et un passe temps agréable pour celui qui l'a ronte avec son intelligence. "

"Life is a continuous su ering for the one who faces it with his heart and a pleasant pastime for the one who faces it with his intelligence. "

-Proverbe Africain W the proliferation of smart and connected devices, the cyber and physical spaces are fusing, turning humans, objects, and events into an exponentially growing source of digital information [3]. As a result, wireless networks are witnessing an unprecedented demand for communication bandwidth, and an explosion of connected devices. At the same time, new applications and services are emerging with stringent requirements in terms of reliability and/or latency. Examples of these range from eXtended Reality (XR), including augmented, virtual, and mixed reality to telemedicine, autonomous vehicles, ying vehicles, Internet of Things (IoT) high-precision manufacturing, smart cities. This pushes the wireless network toward constant evolution and revolution to address these challenges. The recent introduction of Fifth Generation (5G) networks is a perfect example [4]. 5G technology represents a breakthrough in the design of communication networks. It provides a communication infrastructure able to deliver, simultaneously, high reliability, low latency, and high data rates, thus supporting a variety of services or verticals. These services are usually split into three mains categories:

1. enhanced Mobile Broadband (eMBB): driven by the need to provide higher data throughput, eMBB services aim at enhancing the network capacity to support stable connections with very high peak data rates (up to 20 Gbps in downlink [5]) as well as moderate data rates for cell-edge users (overall providing a user's experienced data rate of 100 Mbps anytime, anywhere).

2. massive Machine-Type Communication (mMTC): this service aims to support a massive number of connected devices with sporadic communications (sending small data payloads) and low energy consumption such as IoT devices. Other use cases include smart grids, tactile internet as well as services involving machine-to-machine communications.

3. Ultra-Reliable Low-Latency Communications (URLLC): this service aims to support applications with low-latency short-packets transmission and extremely high reliability (10 -5 -10 -9 packet error rate). Such applications range from telesurgery to autonomous vehicles and high precision manufacturing.

5G keys enablers: why these choices?

To accommodate all these stringent requirements, 5G adopts mainly millimeter-wave (mmWave) communications together with massive Multiple-Input/Multiple-Output (MIMO) and (ultra) dense deployment of network Access Points (APs) [6]. The reasons behind these choices are easy to understand. Historically, wireless networks evolution has been driven by the need for higher and higher data rates. Back in 1948's, Shannon-Hartley Theorem (named after Claude Shannon and Ralph Hartley) has established the link between the maximum achievable rate C on a given communication link experiencing an interference I and the received signal power P Rx as well as the communication bandwidth B:

C = B log 2 1 + P Rx N 0 B + I , (1.1) 
where N 0 denotes the noise power spectral density. Using Friis formula for free-space model, the received power can be expressed as follows:

P Rx = G Tx G Rx c 4π f 0 d 2 P Tx .
(1.2)

Here, P Tx is the transmit power, f 0 is the signal carrier frequency, d is the distance between transmitter and receiver, c is the light speed, and G Tx , G Rx the transmit and received antenna gain respectively. From Eqn. (1.1), an immediate solution to increase the maximum achievable rate C is to increase the communication bandwidth. This is the idea behind the adoption of mmWave bands, which o er large spectrum resources. Meanwhile, adopting mmWave bands means going to higher frequencies, which implies increasing the signal carrier frequency f 0 . However, transmissions at higher frequencies su er from severe attenuation due to rain, atmospheric, and molecular absorption, thus, limiting the range of communication [START_REF] Rappaport | Millimeter Wave Mobile Communications for 5G Cellular: It Will Work![END_REF]. One solution to compensate for signal loss due to attenuation is to increase the antenna directivity gains. This is the idea introduced by massive MIMO, which consists in increasing the number of antenna elements to provide high directivity antenna gain. Furthermore, the shortwavelength characteristics of mmWave allow for compact design of MIMO antenna array as the size of the antenna element is reduced. Therefore, massive MIMO can help improve coverage performance with directional beamforming techniques. Another solution to combat path loss and increase channel capacity is to reduce the distance between transmitter and receiver. This can be achieved by densifying network APs. Indeed, by increasing the number of APs in a given geographical area, the distance to the end-users eventually gets reduced. However, network capacity does not systematically increase with densi cation of APs due to e.g., (co-)channel interference I and ine cient resource allocation. Hence, despite their enormous potential, these key enablers also pose new challenging problems, which need to be addressed for e cient and e ective 5G and beyond communications.

Remark 1. Although the transmission with more power can also increase the network capacity, it has the main drawback of increasing the energy consumption.

Remark 2. Another way to increase the network capacity consists to act directly on the channel pathloss. This alternative implies being able to shape the wireless propagation channel, which can be achieved with the recently introduced Re ective Intelligent Surfaces (RIS) and meta-surfaces technologies [START_REF] Strinati | Wireless Environment as a Service enabled by Recon gurable Intelligent Surfaces: The RISE-6G Perspective[END_REF]. The fundamental idea behind these technologies is to turn the wireless environment into a smart recon gurable and controllable space capable of actively transferring and processing information [START_REF] Basar | Wireless Communications Through Recon gurable Intelligent Surfaces[END_REF].

New challenges for radio resource management

In wireless communications, Radio Resource Management (RRM) involves all strategies, procedures, and algorithms used to manage radio resources (beamforming, power allocation, modulation and channel coding scheme, etc.). An e cient RRM adjusts network parameters to system dynamics including base stations density and load, users tra c loads, users positions and mobility, as well as their Quality of Service (QoS) to optimize network spectral e ciency. However, with the adoption of the aforementioned advanced technologies i.e., mmWave communications, massive MIMO and network densi cation in 5G, RRM is becoming more and more complex. This complexity is further accentuated by an exponentially growing number of users or smart devices in wireless networks, with heterogeneous service requirements and variable tra c loads, making RRM even more challenging. Some of these challenges are listed below:

Interference management. Intra-and inter-cell interference are detrimental to wireless networks. They are exacerbated in large-scale networks with the dense deployment of APs. Dynamic management of interference w.r.t. varying network topology, tra c, as well as channel dynamics is a very challenging task, yet crucial for e cient RRM.

User association or cell selection and handover management. User association is the process of associating User Equipments (UEs) with network APs. It is a fundamental task, which is also crucial in mobile communications as it directly a ects the network spectral e ciency as well as the users' perceived QoS. E cient user association can help mitigate interference. Conversely, a wrong user association can lead to signi cant interference, which can be detrimental to wireless system performance. User association performance may also vary w.r.t. wireless channel dynamics (fading, shadowing), base stations load, users mobility (handover), as well as their QoS requirements. Heterogeneous QoS. One major innovation of 5G is its ability to support on the same communication infrastructure, di erent services, or verticals (e.g., autonomous driving vehicles, smart industry, etc.). Consequently, users in wireless networks are becoming heterogeneous, each with its characteristics and communications requirements, thus, requiring specialized and customized radio resources.

Energy management. Energy e ciency in wireless communication is primordial to reduce network energy consumption. In the context of IoT with limited battery lifetime devices, this becomes a must. Yet, designing RRM algorithms taking into account both radio resource allocation and network energy consumption is challenging.

Multi Access Edge computing. Today, many mobile applications (e.g., surveillance and video analytics in IoT) rely on cloud services (with a virtually in nite capacity) to process data generated on users' devices. As the amount of generated data is becoming more and more important, o oading it to the cloud through Radio Access Network (RAN) becomes intractable as it can lead to excessive network congestion and signi cant communication overhead. A solution to handle this is to process data close to end-users at the network edge, which leads to a brand-new paradigm: mobile edge computing or Multi-Access Edge Computing (MEC) in its standardized version [10]. By bringing native cloud functionalities (storage and computing capabilities) to the network edge e.g., within the RAN or the Core Network (CN), MEC promises low communication delay, reduced backbone congestion as well as distributed computing and storage. However, all these bene ts do not come for free. RRM is becoming extremely complex as now, radio resources need to be jointly optimized with limited computing resources at the edge.

Distributed Learning for Radio Resource Management

Conventionally, solutions to resource allocation problems are obtained by solving complex optimizations based on, e.g., (instantaneous) Channel-State Information (CSI) and tra c load, QoS requirements of the users, base stations load, and under speci c constraints on, e.g., users energy consumption, end-to-end (E2E) latency, etc. In general, these optimization problems are integer (or mixed-integer) programming problems, which are non-convex and NP-hard. Therefore, traditional solutions generally work in a centralized manner. Indeed, centralized approaches yield better results as information from multiple nodes are collected and processed in a uni ed way. However, they lead to signi cant signaling overhead and require excessive computation, impractical for 5G networks due to dense deployment of UEs and Base Station (BSs). In addition, as aforementioned, RRM involves many optimization variables not always well-de ned mathematically (e.g., due to the dynamic nature of the wireless environment, the mobility patterns of the users), making it di cult to formulate the optimization problem. This motivates the exploration of more advanced solutions for RRM.

Among di erent solutions under consideration, a pervasive introduction of Arti cial Intelligence (AI) at the network edge (edge intelligence) is envisioned [START_REF] Park | Wireless Network Intelligence at the Edge[END_REF]. In this context, multiple distributed AI-powered devices can learn and possibly share their knowledge to optimize some network utility functions and achieve common goals [3,[START_REF] Peltonen | 6G White Paper on Edge Intelligence[END_REF]. This approach is currently made possible by endowing mobile devices with AI algorithm computing capabilities [START_REF] Deng | Deep Learning on Mobile Devices: a Review[END_REF][START_REF] Lee | On-device Neural Net Inference with Mobile GPUs[END_REF]. Hence, this thesis focuses in adopting distributed arti cial intelligence, namely distributed Machine Learning (ML) techniques to solve RRM problems.

Machine learning for communications and networking

With its ability to infer knowledge from randomly distributed data or observations, ML, especially Deep Learning (DL) has gained popularity and widespread interest in wireless communications [START_REF] Chen | Arti cial neural networks-based machine learning for wireless networks: A tutorial[END_REF], in particular for RRM problems. This includes optimal power allocation, beamforming or beam selection, interference mitigation, joint source and channel coding, etc. One reason for this craze towards datadriven RRM solution is the growing complexity of wireless networks and the di culty of deriving accurate and tractable mathematical models [START_REF] Zappone | Model-aided wireless arti cial intelligence: Embedding expert knowledge in deep neural networks for wireless system optimization[END_REF]. Moreover, when no expert database is available for training DL algorithms, Reinforcement Learning (RL) appears as a good option, since it enables learning through trial-and-error, i.e. by interaction with the wireless environment. One particular advantage of RL methods is that there is no need for a priori knowledge about environment dynamics, which can be stochastic and/or non-linear [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]. Combined with DL, Deep Reinforcement Learning (DRL) becomes a powerful tool, which is particularly suitable for solving complex problems in wireless communications, especially when no tractable theoretical model of the environment dynamics is available [START_REF] Mnih | Human-level Control through Deep Reinforcement Learning[END_REF].

Our focus in this thesis is on distributed (possibly decentralized) learning approach. Adopting such an approach o ers several potential bene ts.

Speeding up computation. By distributing learning, computation can be speed up. Moreover, each agent decisions can be made locally, avoiding excessive communications between e.g. users and a central orchestrator.

Scalability. In general, distributed approaches are scalable, with linear complexity. This aspect is particularly important in dense networks.

Accuracy and robustness. Another practical feature of distributed learning is robustness against environment artifacts. Each agent has a local perspective (or database) of the environment, thus enriching the learning procedures.

Important note 1 (Communications for Machine Learning). Recently, many studies have started to explore how to perform e ciently distributed training over wireless networks [START_REF] Deng | Edge Intelligence: The Con uence of Edge Computing and Arti cial Intelligence[END_REF][START_REF] Chen | A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks[END_REF]. One prominent example is Federated Learning, which enables a group of agents to collaboratively execute a common learning task (e.g., image classi cation) by exchanging only their model parameters, rather than their raw data [START_REF] Bonawitz | Towards Federated Learning at Scale: System Design[END_REF][START_REF] Chen | Distributed Learning in Wireless Networks: Recent Progress and Future Challenges[END_REF][START_REF] Amiri | Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air[END_REF]. Note that this distributed learning setting is di erent from the one covered in this thesis. Our focus is on how to leverage distributed learning for solving problems directly related to RRM rather than how to optimize RRM to perform distributed learning.

Related challenges and complexity

Unfortunately, there are still many challenging issues related to distributed learning, especially in the context of wireless communications. The rst challenge is the loss of theoretical guarantees of convergence. Indeed, in the general setting of distributed learning, multiple agents cooperate with (or compete against) each other for radio resources to optimize prede ned network utility functions. Such cooperation (or competition) can lead to the non-stationarity of the environment from a single agent's perspective. That is particularly true for multi-agent systems and is known to be a di cult task [START_REF] Busoniu | A Comprehensive Survey of Multiagent Reinforcement Learning[END_REF]. The second challenge is that RRM problems are generally NP-hard with non-convex objective function and multiple constraints. Hence, it becomes di cult to de ne a good learning goal for multiple distributed agents, enabling e cient coordination amongst them. Another challenge is the information exchange bottleneck. While inter-agent communications can reduce some undesirable e ects of locality and help ensure coordination of distributed agents, this is not always possible (or tolerable) due to limited communication bandwidth and communication constraints (e.g., latency, energy consumption, privacy). Moreover, even when information exchange between agents is required, it must be relevant and e cient for both learning and communications. Finally, the limited computation capability of edge devices is also challenging and requires consideration when designing distributed learning mechanisms and communication frameworks.

How to design exible, scalable and low complex radio resource management?

We claim for user-centric distributed solutions.

• Chapter 1 and 2

• Reduce signaling and computation overhead.

• Speed up computation.

• Improve robustness against environment artifact.

• Preserve privacy.

Designing fully distributed, decentralized and adaptive RRM solutions

We address the problem of user association policy scalability and adaptiveness: a non-convex and NP-hard problem.

• Chapter 3

• We model users as distributed and autonomous reinforcement learning agents for RRM.

• Users make autonomous decisions based only on their local observations to reduce computational costs.

• ere is no inter-agents communication to limit signaling overhead.

• We incorporate intra-and inter-cell interference, channel variability, user tra c and mobility in decision-making processes so that learned policies are self-reorganized w.r.t. environment dynamics.

Designing fully transferable and exible user association policies

We tackle the problem of policy transferability, which allows a user association knowledge acquired in one speci c scenario to be transferred to another one.

• Chapter 4

• We de ne a transferable policy network architecture with zero-shot generalization capabilities: transferability without additional training procedure.

• e proposed framework allows new users to bene t from learned knowledge already available.

•

e learned policy adapts well by design to change in the number and position of users as well as a change in network geometry.

•

e proposed architecture can be implemented in a distributed, centralized or hybrid manner.

Addressing the problem of energy e cient dynamic computation o loading

With above transferable solutions we address the problem of energye ciency mobile edge computing.

• Chapter 5

• We combine Lyapunov stochastic optimization and deep reinforcement learning to handle long-term optimization constraints.

• Our solution learns to dynamically allocate computational and radio resources to edge devices.

• e proposed solution simultaneously minimizes the duty cycles of all the network elements under delay constraints and manages radio interference.

Exploring new fundamentals for beyond 5G communications: the opportunity of semantic communications.

Inter-agent communication can help achieve convergence but need to be relevant and e cient.

• Chapter 6

• We provide an overview of the opportunity o ered by semantic communications to beyond 5G network services.

• We present and detail a novel end-to-end architecture for semantic representation learning.

• We propose a semantic-aware adaptive mechanism, which dynamically optimizes the number of symbols of each transmi ed message.

• We study an example, which shows promising results in the context of text transmission between two agents.

Our propositions Figure 1.1: Thesis summary, starting from the initial question on how to build exible, scalable and low complex radio resource management solutions.

Main Contributions and Outline

This thesis aims to address the above challenges associated with both radio resource management and distributed learning. We start by focusing on user association problems. The reason is that many RRM problems take a similar form as user association problems. Accordingly, in Chapter 2, we rst review the user association problem and the associated challenges and complexities. In particular, in this chapter, we motivate the need for user-centric distributed approaches for exible, scalable, and low complex RRM. Starting from this, our research work follows the roadmap of Figure 1.1, where our technical contribution begins in Chapter 3.

Chapter 3: Designing fully distributed and decentralized user association policies. In Chapter 3, we propose a novel distributed algorithm based on Multi Agent Reinforcement Learning (MARL), which enables fully distributed and decentralized user association. More speci cally, we model each user as an autonomous agent that, at each time step, maps its local observations of the radio environment to an action, corresponding to an association request towards a base station in its coverage range. The novelty of the proposed solution also lies in the fact that there is no information exchange amongst users. Thus, we limit inter-agent communications, hence signaling overhead, while still being able to ensure coordination between users. In addition, our proposed solution incorporates the environment dynamics (channel interference, fast fading, and network tra c) during the learning phase so that the user association is self-reorganized toward the optimal association when a relevant change occurs in the environment. Therefore, we further reduce signaling overhead as well as computational complexity. This is in contrast to current state-of-the-art solutions, which do not consider the dynamic nature of wireless networks, thus, requiring to re-compute periodically or whenever a notable change has occurred in the environment to correct possible drifts from the optimal association. The proposed approach is validated in the context of user association in dense 5G networks with mmWave communications subject to severe path-loss, blockage, and deafness, which make the problem even more complex. We also propose an application of the proposed scheme to distributed handover management by considering users' mobility. Overall, the novelty of this chapter is validated in the following contributions.

[C1] M. (10):6520-6534, 2020.

[P1] M. Sana, A. De Domenico, "Method for associating user equipment in a cellular network via multi-agent reinforcement learning, " Issued in May 20, 2021, US17099922.

Chapter 4: Designing transferable policies for dynamic and scalable user association. One major limitation of RRM algorithms is that they are often grounded on quite rigid assumptions, such as pre-sized and xed sets of BSs and static UEs, favorable channel conditions, absence of intra-or inter-cell interference, full-bu er network tra c. Yet, in dynamic mmWave networks, especially in dense networks, the number of UEs, their position w.r.t. each other and BSs, and the performance requirements of the services they access are likely to change over time and are characterized by a high dynamicity. Even in relatively stable scenarios from the radio channel and data tra c points of view, the arrival in the network or the departure from the network of one or more users has an impact on the overall network performance, which requires a constant adaptation of the user association to dynamically guarantee the best possible quality of service. To address these issues, in Chapter 4, we propose a scalable and easily manageable user association policy. Speci cally, our solution focuses on the central aspect of transferability. It allows applying a user association's strategy or policy acquired in a speci c scenario (e.g., a network deployment) to a distinct but related one without needing a substantial redesign, recomputation, or relearning of a new policy. Moreover, our proposed solution has zero shot generalization capability: it adapts well by design to variations in the number of users and their positions without requiring additional training. This feature signi cantly reduces the computational complexity of user association during the network operations and makes the policy suitable to distributed and dynamic scenarios. Overall, the novelty of this chapter is validated in the following contributions.

[C3] M. Chapter 5: Addressing the problem of energy e cient dynamic computation o loading. So far, we have studied user association mechanisms to improve network spectral e ciency. We propose now to consolidate all these achievements to solve the problem of energy-e cient computation o oading enabled by edge computing. Indeed, with the deployment of computing and storage capabilities at the network edge, Edge Computing (also known as Multi-Access Edge Computing (MEC)) was conceived to enable energy-e cient, low-latency, highly reliable services by bringing cloud resources close to end-users. In this context, dynamic computation o oading allows resource-poor devices to transfer application execution to Edge Servers (ESs) to reduce energy consumption and latency. In the considered scenario, multiple users simultaneously compete for limited radio and edge computing resources to get o oaded tasks processed under a delay constraint, with the possibility of exploiting low-power sleep modes at all network nodes to reduce energy consumption. From a network management perspective, this task is complex and requires jointly optimizing radio and computation resources. In Chapter 5, we formulate the underlying problem as a dynamic long-term optimization aiming to reduce long-term energy consumption under strict delay constraints. Then, based on Lyapunov stochastic optimization tools, we show that this problem can be decoupled into a per-slot CPU scheduling problem and a radio resource allocation problem, namely a user association problem. Hence, we propose a fast iterative algorithm, particularly e cient to solve the rst problem and hinge on the previously proposed user association scheme to solve the second one. Overall the originality of the resulting framework lies in its capacity to simultaneously: i) minimize the duty cycles of all the network elements under delay constraints; ii) e ectively manage radio interference; iii) be low-complexity; i ) combine Lyapunov optimization with MARL; ) be distributed and compatible with UE's mobility. The novelty of this work has been validated by the following conference paper.

[C4] M. Chapter 6: Exploring the opportunity of semantic and goal communications. We have shown in Chapter 4 and 5 that inter-agent communication, although limited, may be necessary for some scenarios to guarantee convergence. Back to Shannon's information theory, the goal of communication has long been to ensure the correct reception of transmitted messages irrespective of their meaning. However, in general, whenever communication occurs to convey a meaning, what matters is the receiver's understanding of the transmitted messages and not necessarily their correct reconstruction. This paradigm refers to semantic communications: transmitting only relevant information su cient for agents to capture the intended meaning (the targeted objective) can notably reduce communication bandwidth. Therefore, in the last contribution of this thesis, we propose to explore the opportunity o ered by semantic communications to beyond 5G networks services. To this end, in this preliminary work, we focus on semantic compression. In our study, we refer to semantic as a "meaningful" message (a sequence of well-formed symbols, which are possibly learned from data) that has to be interpreted at the receiver. This requires a reasoning unit, here arti cial, based on a knowledge base, i.e., a symbolic knowledge representation of the speci c application. Thus, in Chapter 6, we propose and detail a novel E2E architecture that enables representation learning of semantic symbols for e ective semantic communications. We discuss theoretical aspects and successfully design objective functions, which help learn e ective semantic encoders and decoders. Also, we propose an adaptive mechanism, which dynamically optimizes the number of symbols of each transmitted message. Finally, we present some preliminary numerical results for a scenario of text transmission. In this scenario, a sender -an AI agent -transmits sentences in a given language by mapping each word to a sequence of semantic symbols that the receiver -another AI agent -must decode and understand in another language. We show that our proposed E2E framework can e ectively address this problem, providing signi cant semantic compression gain. The novelty of this work has been validated by the following conference paper.

[C5] M. 

Introduction

U association is the process of assigning user equipment to network access points. It is a fundamental task, which is crucial in mobile communications as it directly a ects the network spectral e ciency as well as the users' perceived QoS. However, the user association is a di cult task as it usually involves non-convex and NP-hard optimizations. In addition, optimal user association may require joint consideration of radio resources (e.g., bandwidth, spectrum, power), computing resources (e.g., computation power at a server) as well as learning resources (e.g., distribution of data across users' devices in Federated Learning). This chapter aims to provide a global overview of the user association problem. We rst present a general review of the literature on this problem. Then, focusing on the main characteristics of 5G networks, we formulate the user association problem in the context of mmWave networks and discuss its challenges and complexity. Finally, we explain our motivations and approach to address this problem using distributed learning mechanisms.

User Association Taxonomy

Scope Metrics

Topology

Orchestration

Model

User Association In the literature, numerous solutions have been proposed to address the problem of user association. These solutions utilize di erent models, i.e. approaches, depending on the scope, the used metrics, the network topology as well as the orchestration mechanism. In Figure 2.1, we summarize the di erent facets of the user association problem based on its taxonomy.

• Machine Learning • Game theory • Combinatorial optimization • Stochastic geometry • Massive MIMO networks • mmWave networks • HetNets • Centralized • Hybrid • Distributed • Fairness • QoS • Spectrum e iciency

Scope

The scope refers to the type of network on which the user association is to be implemented. A non-exhaustive list of these networks spans from Heterogeneous Networks (HetNets) to massive Multiple-Input/Multiple-Output (MIMO) and millimeter-wave (mmWave) networks or combination of them. The challenges and complexities of the user association vary accordingly.

HetNets. They are characterized by the deployment of small cell base stations (e.g., picocells, femtocells, relays) together with overlaying macro cell base stations, all possibly operating at di erent frequencies. In HetNets, cell densi cation is also considered to boost the network capacity by spatially reusing the spectrum across a geographical area, thereby improving coverage quality and the performance of cell-edge users [START_REF] Lopez-Perez | Enhanced Intercell Interference Coordination Challenges in Heterogeneous Networks[END_REF]. However, densi cation poses a serious challenge to user association. As the number of network nodes increases, the orchestration of radio resources becomes complex. Moreover, network capacity does not increase systematically with the densi cation of network access points as this also ultimately leads to co-channel interference. In addition, in HetNets, backhaul links typically connect small cells and macro cells to the core network, which can limit the user association performance when they are not provisioned su ciently [START_REF] De Domenico | A Backhaul-Aware Cell Selection Algorithm for Heterogeneous Cellular Networks[END_REF][START_REF] Sapountzis | User Association in HetNets: Impact of Tra c Di erentiation and Backhaul Limitations[END_REF]. Therefore, e cient resource allocation is required to take full advantage of HetNets.

Massive MIMO networks. Thanks to beamforming techniques, massive MIMO allows base stations with large antenna arrays to support multiple UEs simultaneously over the same time and frequency range. It can achieve high multiplexing gain, thus, substantially improving spectrum e ciency. Moreover, massive MIMO achieves high antenna gain, signi cantly increasing received signal power or equivalently reducing transmit power to meet a targeted QoS. In addition, thanks to the extra diversity a orded by massive MIMO large antenna arrays, channel estimation errors, small-scale fading e ects are averaged out, vanishing undesirable instantaneous uctuations [START_REF] Hoydis | Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need?[END_REF]. However, from a RRM point of view, user association in massive MIMO networks is di cult due to the complex design of channel precoding and complex beam management. For example, there are 35960 possibilities to set up 4 beams out of 32 possible beams. Determining the optimal set is very challenging [START_REF] Ye | User Association and Interference Management in Massive MIMO HetNets[END_REF][START_REF] Xu | User Association in Massive MIMO HetNets[END_REF]. mmWave networks. Due to the large spectrum resources available between 28 -90 GHz, the adoption of mmWave communications in 5G, enables signi cant improvement of the network capacity [6]. Indeed, mmWave technology enables highly directional communications using narrow beams, thus achieving high beamforming gain. In addition, due to the short wavelength characteristics of mmWave, the size of the antenna element is reduced, thus allowing the compact design of antenna array [6]. However, mmWave transmissions su er from severe path-losses and are highly sensitive to blockages [START_REF] Bai | Analysis of Blockage E ects on Urban Cellular Networks[END_REF], which challenges user association especially in the context of mobility (e.g. for handover management [START_REF] Semiari | Mobility Management for Heterogeneous Networks: Leveraging Millimeter Wave for Seamless Handover[END_REF]).

Metrics

Di erent metrics are used to assess the performance of the user association. Here we list the main metrics:

Fairness. Fairness here, refers to how the user association strategy treats di erent UEs depending on e.g. their QoS. Main fairness criteria are:

• Max-min fairness, where the optimization of the user association is meant to maximize for e.g. the lowest achievable rate amongst users.

• Proportional fairness, which maintains a balance between maximizing the network throughput and allowing all users a chance to be connected instead of prioritizing best users (e.g. users with good Signal-to-Noise-plus-Interference Ratio (SINR) or high data request) at the expense of the others.

QoS. The QoS gives an indication of the service quality experienced by users in the network. It is often quantitatively expresses in terms of latency, user throughput or SINR, packet loss, etc.

Spectrum and Energy e ciency. Spectrum e ciency is an important performance indicator. It measures the total throughput achievable in the network for a given allocated bandwidth. For example, one of the main targets of 5G is to provide eMBB services, which are characterized by high data rate requirements [5]. On the other hand, energy e ciency measures the energy-saving capability of a given user association algorithm.

Coverage/Outage probability. The coverage (outage) probability de nes the probability that the SINR of a randomly chosen user in the network goes above (drops below) a certain threshold [START_REF] Bai | Analysis of Blockage E ects on Urban Cellular Networks[END_REF]. It is often used to characterize the probability of satisfying users QoS.

Topology

The two mains topologies used in the literature are the Grid model and the random spatial model. In the Grid model, the APs are assumed to be uniformly distributed in the center of regular grids. In a random spatial model, the APs are randomly distributed in the network (usually according to a Poisson Point Process (PPP)). The later model is often used in conjunction with stochastic geometry analysis to capture the randomness of network geometry [START_REF] Baccelli | Stochastic Geometry and Wireless Networks[END_REF].

Orchestration

In general, user association algorithms can be classi ed into three main categories: i) centralized algorithms, which usually provide near-optimal solutions. However, they require to collect and process information (such as CSI) from multiple network nodes in a uni ed way, which induces a large amount of signaling, ii) distributed algorithms, which generally lead to sub-optimal solutions but have low computational complexity and low signaling overhead due to local decisions, and nally, iii) hybrid algorithms, which exploit the advantages of both centralized and distributed algorithms.

Model

Solutions to user association problems are diverse and range according to the above taxonomy. Some works investigate combinatorial optimization using Lagrangian tools [START_REF] Athanasiou | Optimizing Client Association for Load Balancing and Fairness in Millimeter-Wave Wireless Networks[END_REF] or fractional programming [START_REF] Shen | Fractional Programming for Communication Systems-Part I: Power Control and Beamforming[END_REF]. Other approaches include game theory [START_REF] Alizadeh | Load Balancing User Association in Millimeter Wave MIMO Networks[END_REF][START_REF] Liu | Decentralized Beam Pair Selection in Multi-Beam Millimeter-Wave Networks[END_REF] and stochastic geometry [START_REF] Ghatak | Coverage Analysis and Load Balancing in HetNets With Millimeter Wave Multi-RAT Small Cells[END_REF]. Most recent works on user association involve Machine Learning and Reinforcement Learning to cope with user association complexities and the radio environment dynamics [START_REF] Zhou | Deep Learning-Based Beam Management and Interference Coordination in Dense mmWave Networks[END_REF][START_REF] Zhao | Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Cellular Networks[END_REF][START_REF] Liu | User association for millimeter-wave networks: A machine learning approach[END_REF].

User Association in HetNets with mmWave Communications

To better understand the user association problem, we propose to formulate the underlying optimization problem. This problem formulation will help understand its central complexities and why this requires further research. To this end, in this chapter, we focus on downlink mmWave communications for eMBB services, which are characterized by high data rate and are at the core of the performance improvement expected in 5G [5]. Accordingly, we focus on the objective to maximize the total network sum-rate. This objective also considers the data requirement of di erent eMBB UEs to devise optimal user association strategies. However, in Chapter 5, we will show how the proposed solutions can be leveraged for MBS SBS 1 energy-e cient uplink communications in the context of dynamic computation o oading enabled by edge computing.
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General system model

We consider a downlink network consisting of N s mmWave small cells and one macro cell In this architecture with multi-radio access technologies, a UE may receive control signals from multiple BSs. Therefore, we de ne A j = {i, d i, j ≤ ϕ i /2, i ∈ A} ⊆ A 2 as the set of BSs the UE j could connect to, where ϕ i /2 is the cell radius of the BS i and d i, j is the distance between BS i and UE j. Note that A j Ø, ∀j as a UE can always be associated with the MBS. Let x i, j ∈ {0, 1} be the binary association variable such that x i, j = 1 when UE j is served by the BS i and x i, j = 0 otherwise. Here we assume that each UE can only receive data from one BS at a time. Moreover, due to limited resource and hardware complexity, we consider that each mmWave Small cell Base Station (SBS) cannot serve more than N i UEs simultaneously, where N i is the maximum number of beams available at the SBS i.

Assumptions. In our system model, we consider that the SBSs allocate all the available mmWave's band to each served UE using Spatial Division Multiple Access (SDMA); in contrast, the MBS equally shares its band across the served UEs. Finally, we consider that the SBSs and the UEs have already performed beam training and alignment mechanisms in advance and therefore are able to con gure the appropriate beams when a data connection is set up. For instance, an initial access protocol based on the SINR can be used to complete this task [START_REF] Li | Design and Analysis of Initial Access in Millimeter Wave Cellular Networks[END_REF].

Channel model

For simplicity of analysis, and since we consider a dense regime, following [START_REF] Bai | Analysis of Blockage E ects on Urban Cellular Networks[END_REF], we denote with R 0 the size of the coverage range of SBSs. Thus, a UE can only be associated with a SBS located at most at a distance R 0 . Moreover, we consider that each communication link experiences a small scale m-Nakagami fading. We use h to denote the fading coe cient, which follows a normalized Gamma distribution Γ(m, 1 m ). We assume Rayleigh fading for UE-MBS links, which is a special case of m-Nakagami fading by taking m = 1. In addition, we adopt the commonly used Friis propagation loss model [START_REF] Bai | Coverage and Rate Analysis for Millimeter-Wave Cellular Networks[END_REF], where the received power P Rx is given as a function of the distance d between the UE and its serving BS:

P Rx (d) = hP Tx s G Tx s G Rx s C s d -η s , s ∈ {MBS, SBS}. (2.1)
Here, C s denotes the path-loss constant, η s is the path-loss exponent, and, P Tx s is the transmit power w.r.t. BS s. Later, we denote with G Ch s (d) = hC s d -η s the channel gain. The transmitter and receiver antennas' gain w.r.t. BS s are G Tx s and G Rx s respectively. In addition, we assume that the UEs and the BSs perform beam steering in advance such that when a communication is set up, the useful received power in absence of interference is maximized, i.e., G Tx s = G Tx max and G Rx s = G Rx max , where G Tx max and G Rx max are the maximum antenna gain at the transmitter and the receiver, respectively.

Cell interference

Since we assume the presence of a single MBS, which orthogonalizes the UEs it serves by sharing its band across them, the communication links between the MBS and its served UEs experience neither intra-cell nor inter-cell interference. Therefore, interference is only due to the communications between mmWave SBSs and UEs, as a result of overlapping beams. Indeed, let us consider a typical UE (say UE j 0 ) placed at a distance d 0 from its serving SBS (say SBS i 0 ). Given an interfering SBS i that is located at a distance d i with a relative angle ψ i w.r.t. the typical UE, which is serving n i ≤ N i other UEs in n i random directions de ned by their relative angle ϕ i, j (see Figure 2.3), we use I i, j to denote the interference caused by its j-th beam towards the typical UE. Thus, I i = n i j=1 I i, j is the total interference engendered by this SBS on the typical UE. For sake of simplicity, we assume that the receiver and the transmitter use the same antenna radiation pattern denoted by G(θ, α), where θ is the beam width and α is the azimuthal angle to the main lobe (see Figure 2.3). Hence, the interference induced by the communication between the i-th SBS and its j-th UE is:

I i, j = P Tx h i G(θ,ψ i )G(θ, ϕ i, j )Cd -η i .
(2.

2)

The total interference induced by SBS i on the typical UE can be classi ed into two categories:

Inter-cell interference. If i i 0 , meaning the typical UE experiences interference coming from a BS di erent from its serving BS, then As we assume spatial reuse of the spectrum across the di erent small cells, inter-cell interference mainly a ects cell edge users, which can be detrimental to their performance, especially in dense networks.

I i = P Tx h i C n i j=1 G(θ,ψ i )G(θ, ϕ i, j )d -η i , i i 0 (2.3) × θ G max ξ Interfering SBS i Typical UE Beam toward UE j Serving SBS of the typical UE d i ψ i ϕ i,j × UE j d 0 R 0 R I : Interference range
Intra-cell interference. If i = i 0 , meaning that the interference perceived by the typical UE comes from its serving BS resulting from the communications of the other UEs associated with this BS.

I i 0 = P Tx h i 0 CG Rx max n i 0 j=1, j j 0 G(θ, ϕ i 0 , j )d -η 0 .
(2.4)

Although additional beamforming techniques can help to mitigate intra-cell interference, we do not assume speci c numerical beamforming. Therefore, both intra-and inter-cell interference result from the overlapping of di erent beams serving di erent UEs. Hence, the signal-to-interference-plus-noise ratio SINR i 0 , j 0 between the typical UE j 0 and its serving BS i 0 , which comprises both intra-cell and inter-cell interference is de ned as:

SINR i 0 , j 0 = P Tx h 0 G Tx max G Rx max Cd -η 0 i ∈A I i + N 0 B i 0 , j 0 , (2.5) 
where B i, j is the bandwidth allocated to the UE j by BS i, and N 0 is the noise power spectral density. The generic nature of our system model makes it easily transposable to other radio technologies. Eventually, to improve the network spectral e ciency, we focus on optimizing the user association.

The user association problem: challenge and complexity

From the above de nitions, the achievable communication rate between BS i and UE j is given by the Shannon capacity: R i, j (t) = B i, j log 2 1 + SINR i, j (t) .

(2.6)

In our model, we take into account the UEs tra c request to devise user association strategies. Accordingly, let denote with D j (t), the data rate demand of UE j at time step t. We assume that follows D j (t) a Poisson distribution with intensity D j = E D j (t) . Therefore, given a UE j with a tra c demand

D j (t)
, the e ective data rate exchanged with BS i at the time t is min D j (t), R i, j (t) . Next, let R(t) be the α-fair network utility function, which is de ned as follows:

R(t) = i ∈A j ∈U x i, j U α min R i, j (t), D j (t) , (2.7) 
= i ∈A j ∈U x i, j U α min 1, R i, j (t) D j (t) D j (t) , = i ∈A j ∈U x i, j U α κ i, j (t)D j (t) ,
where x i, j = 1 indicates that UE j is associated with BS i; otherwise x i, j = 0 and κ i, j (t) = min 1,

R i, j (t ) 
D j (t ) ∈ [0, 1] indicates the QoS satisfaction of UE j w.r.t. its associated BS i, which is fully satis ed when κ i, j = 1. Here, U α (•) is the α-fair utility function given in [START_REF] Srikant | Communication Networks: An Optimization, Control and Stochastic Networks Perspective[END_REF] as follows:

U α (x) = (1 -α) -1 x 1-α , for some α ≥ 0 and α 1, log(x), α = 1. (2.8) 
User association problem. Following above de nitions, we formulate the user association problem to maximize the network utility as follows:

maximize {x i, j } R(t) = i ∈A j ∈U x i, j U α κ i, j (t)D j (t) , (2.9) 
subject to x i, j ∈ {0, 1}, ∀i, j, (2.10)

j ∈U i x i, j ≤ N i , ∀i ∈ A\{0}, (2.11) 
i ∈A j

x i, j = 1, ∀j ∈ U.

(2.12)

The constraint (2.10) ensures that the decision variables x i, j are binary. The constraint (2.11) highlights that a given SBS i can serve at most N i UEs at the same time. Finally, constraint (2.12) indicates that, in our setting, each UE is associated with exactly one BS. Note that additional constraints can also be considered, such as limited transmit power, strict end-to-end delay constraints, which we will discuss in Chapter 5.

User association fairness. Depending on the value of α, this optimization problem guarantees di erent fairness criteria in the user association. Indeed, we have the following Lemma: Lemma 1 (from [START_REF] Srikant | Communication Networks: An Optimization, Control and Stochastic Networks Perspective[END_REF], Section 2.2.1). When α = 0, U α (x) = 1 and problem (2.9)-(2.12) is equivalent to the network sum-rate maximization problem. When α → 1, U α (•) converges to the proportional fair utility function as lim α →1 U α (x) = log(x) and problem (2.9)-(2.12) falls into network sumlog-rate maximization, also known as proportional fairness user association. As α → ∞, U α (x) approaches max-min fairness utility function and problem (2.9)-(2.12) is equivalent to max-min fairness user association.

Complexity analysis. The formulated problem (2.9)-(2.12) is non-convex. Indeed, the association of a given UE j with a given BS i depends on its SINR i, j value. However, by observing Eqn. (2.5), the expression of the SINR also depends on the association of other users through the interference terms in the denominator. These cross-dependencies combined with the binary decision variables make the optimization problem non-convex and NP-hard, hence, di cult to solve with conventional optimization frameworks [START_REF] Liu | User Association in 5G Networks: A Survey and an Outlook[END_REF]. The di culty is exacerbated when considering the UEs tra c as it introduces a non-linearity through the min(., .) function. A naive algorithm, which may nd the optimal solution of problem (2.9)-(2.12) through an exhaustive search, has a complexity equal to O N s K(1 + N s ) K .

Proof. For UE j there are card(A j ) possible choices of BSs. The optimal association {i, s.t. x i, j = 1 ∀i ∈ A} is an element of × j ∈U A j . That is, for all UEs, there are j ∈U card(A j ) possible combinations in which only some of them satisfy the constraint (2.11). For each combination, checking if constraint (2.11) is satis ed required O i ∈A card(U i ) iterations. In the worst case, when each UE can associate with any BS, card(A j ) = N s + 1. Hence, noting that i ∈A card(U i ) ≤ N s K, the complexity of running this naive algorithm will be therefore

O i ∈A card(U i ) j ∈U card(A j ) = O N s K(1 + N s ) K . (2.13)
This complexity is function of the number of UEs K and BSs N s ; and in particular, it has a polynomial complexity w.r.t. the number of BSs and an exponential complexity w.r.t. the number of UEs. Therefore, such an approach based on exhaustive search is infeasible especially in 5G context due to dense deployment of network access points and UEs with di erent service requirements. In this heterogeneous ecosystem, there is a need for exible, scalable and adaptive network design and orchestration mechanism to meet challenges and requirements of 5G and beyond networks.

On Distributed Approach for E cient User Association

In existing 5G networks (as well as in Long Term Evolution (LTE) networks), the user association takes place at the Radio Resource Control (RRC) sub-layer, which decides how users are associated depending on their QoS requirements, their priority or the availability of radio resources to maximize the radio exploitation [46]. In conventional cellular systems, the user association is centralized and based on the max-SNR or the max-RSS solution, i.e., a UE is associated with the BS providing either the maximum Signal-to-Noise Ratio (SNR) or the maximum Received Signal Strength (RSS). While these rudimentary solutions have the advantage of low computational complexity, they do not take cellular interference into account and are therefore ine cient in dynamic 5G networks with mmWave communications. Moreover, in a mobility context, solutions based on max-SNR or max-RSS are ine cient due to frequent handovers. In addition, network-centric solutions require a periodic collection and processing of information (e.g., SNR, RSS, CSI) in a uni ed way, ultimately leading to signi cant signaling overhead. Also, with network densi cation, it becomes infeasible for one central orchestrator to nd an optimal association among multiple deployed APs and UEs due to the aforementioned complexities of the user association problem. Hence, as 5G and beyond technologies become more and more sophisticated, the range of services to be supported increases, the QoS requirements become more stringent with a variety of services that needs to coexist on the same network infrastructure, the user association problem calls for more advanced solutions.

Among the various solutions under consideration, distributed user-centric solutions can overcome excessive communications and computation by implementing RRM algorithms at the user side [START_REF] Liu | User Association in 5G Networks: A Survey and an Outlook[END_REF][START_REF] Nguyen | Evaluating Performance of RAT Selection Algorithms for 5G Hetnets[END_REF]. In particular, the adoption of distributed AI at the network edge (edge intelligence) is envisioned. In this scenario, multiple distributed AI-powered devices can learn and possibly share their knowledge to optimize some network utility functions and achieve some common goals [3,[START_REF] Peltonen | 6G White Paper on Edge Intelligence[END_REF]. This approach is currently made possible by endowing mobile devices with AI algorithm computing capabilities.

Although training a deep neural network on mobile devices in a computation and energy e cient way is an ongoing research topic, notable e orts have already been made both in terms of hardware design and software accelerators (see [START_REF] Deng | Deep Learning on Mobile Devices: a Review[END_REF][START_REF] Lee | On-device Neural Net Inference with Mobile GPUs[END_REF] and references therein). This makes it possible to move part of the optimization process to the user devices. Therefore, this thesis adopts a user-centric approach and aims to investigate distributed learning approaches to address radio resource management problems. Very recently, the work [START_REF] Caso | User-Centric Radio Access Technology Selection: A Survey of Game Theory Models and Multi-Agent Learning Algorithms[END_REF] has surveyed user-centric radio access technology selection. They have focused on the user association problem and have highlighted multi-agent learning together with game-theoretical approaches as promising tools to address this problem. Also, the work [START_REF] Mollel | A Survey of Machine Learning Applications to Handover Management in 5G and Beyond[END_REF] have recently investigated applications of machine learning to handover management problem in 5G and beyond. All these recent works further support our motivation towards distributed radio resource management.

Conclusion

In this chapter, we introduced the user association problem. We reviewed its general taxonomy and formulated the main problem in an HetNet with millimeter-wave communications enabled. We also highlighted the central challenges and complexities of the user association problem, which we showed to be non-convex and NP-hard. This leads us to look for scalable, exible, and low complexity solutions. In particular, we call for distributed user-centric solutions instead of cumbersome centralized algorithms, which become infeasible in dense networks such as in 5G networks. Now that we have motivated the need for distributed user-centric solution, in the next chapter, we will discuss our proposed solution to address the user association problem based on distributed multi-agent reinforcement learning approach. T solve the user association problem in a distributed way, our approach focuses on distributed Multi Agent Reinforcement Learning (MARL). In this chapter, we describe our proposed solution to solve the user association problem in a static and dynamic environment. First, to limit the complexity of the proposed solution, we cast this problem to a MARL framework, where each user independently learns the optimal policy. The proposed solution is distributed, which alleviates computation burdens. In addition, we do not allow inter-agent communications, thus limiting signaling overhead, which we characterize with the signaling messages required to implement the solution in a practical system.

Motivations

In the previous chapter, we have motivated the need for distributed solutions for e cient radio resource management. In particular, we argue that the (entirely) network-centric approaches used so far are no longer suitable in the current generation of wireless networks due to the signaling and computation complexity involved in centralized orchestration. Moreover, 5G and beyond technological solutions (e.g., adoption of mmWave communications, massive MIMO and network densi cation technologies) are becoming extremely sophisticated, with stringent QoS requirements and a variety of services, which must coexist together. This requires the search for advanced solutions for e cient Radio Resource Management (RRM). In this thesis, our approach focuses on distributed MARL. By using MARL framework, there is no need for an expert database or modeling of the radio environment. Moreover, MARL can be used to model environments with complex interactions where it is di cult to obtain tractable mathematical models. To show this, consider the following well-known riddle example [START_REF] Wu | 100 prisoners and a lightbulb[END_REF]. Example 1 (n = 100 prisoners and a light bulb). One hundred prisoners have been newly ushered into prison (see Figure 3.1 for illustration). The warden tells them that starting tomorrow, each of them will be placed in an isolated cell, unable to communicate amongst each other. Each day, the warden will choose one of the prisoners uniformly at random with replacement, and place him in a central interrogation room containing only a light bulb with a toggle switch. The prisoner will be able to observe the current state of the light bulb. If he wishes, he can toggle the light bulb. He also has the option of announcing that he believes all prisoners have visited the interrogation room at some point in time. If this announcement is true, then all prisoners are set free, but if it is false, all prisoners are executed. The warden leaves and the prisoners huddle together to discuss their fate. Can they agree on a protocol that will guarantee their freedom?

Although this problem does not appear at rst as directly linked to a wireless communication problem, there exist some similarities. Indeed, to make the parallel, let consider the one hundred prisoners as one hundred deployed user devices in a wireless network, which aim to collaborate to optimize an objective function, here, to get freed. For this, they share a common communication resource, the interrogation room. Also, they are allowed to communicate through a light bulb (by observing its state and being able to switch it o /on), which is a one-bit communication means, without direct exchange amongst users. Finding the optimal protocol that guarantees prisoners' freedom as fast as possible is a di cult task, which becomes extremely complex when the number of participating users (the prisoners) in the protocol establishment increases. Additional complexity is that the decision of one user can be detrimental to other users (either they get freed or executed). Same constraints also exist in wireless communications, where e.g. the interference resulting from one user's wrong association can severely a ect the throughput of other users. Whereas it is di cult to come out with a mathematical formulation of such a complex problem, it can be cast to and successfully solved using MARL [START_REF] Foerster | Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks[END_REF]. In the sequel, we propose to use MARL approaches to address RRM problems, namely user association.

Related work

Several works have investigated distributed learning for the user association problem [START_REF] Liu | User Association in 5G Networks: A Survey and an Outlook[END_REF][START_REF] Caso | User-Centric Radio Access Technology Selection: A Survey of Game Theory Models and Multi-Agent Learning Algorithms[END_REF]. In [START_REF] Athanasiou | Optimizing Client Association for Load Balancing and Fairness in Millimeter-Wave Wireless Networks[END_REF], Athanasiou et al. have designed a distributed algorithm to manage the user association using Lagrangian tools. Their solution is sub-optimal as it intentionally ignores interference and does not consider the environment dynamics. Similarly, Lui et al. have formulated a decentralized non-cooperative game with local interactions to manage the beam pair selection between UEs and BSs to maximize the network sum-rate [START_REF] Liu | Decentralized Beam Pair Selection in Multi-Beam Millimeter-Wave Networks[END_REF]. However, this proposal requires information exchange among UEs, thus, inducing large signaling overhead. Moreover, this work also does not consider the environment dynamics. A load-balancing user association is proposed in [START_REF] Ye | User Association for Load Balancing in Heterogeneous Cellular Networks[END_REF][START_REF] Alizadeh | Load Balancing User Association in Millimeter Wave MIMO Networks[END_REF] to balance the radio resources across BSs. Leveraging a game-theoretical approach, the user association is formulated as a matching game in [START_REF] Alizadeh | Distributed User Association in B5G Networks Using Early Acceptance Matching Game[END_REF] and as a multi-armed bandit problem in [START_REF] Alizadeh | Multi-Armed Bandit Load Balancing User Association in 5G Cellular HetNets[END_REF]. These studies share a common point: the proposed user association solutions are sensitive to the deployment of users and BSs as well as the environment dynamics (fading, interference, tra c) and need to be run continuously to keep tracking of relevant changes in the network. This introduces a signi cant signaling and computational overhead. Recently, advances in machine learning and reinforcement learning [START_REF] Mao | Deep Learning for Intelligent Wireless Networks: A Comprehensive Survey[END_REF][START_REF] Busoniu | A Comprehensive Survey of Multiagent Reinforcement Learning[END_REF] have enabled the design of more exible algorithms for optimizing the user association. In this context, a Deep Neural-Network (DNN) architecture is introduced in [START_REF] Zhou | Deep Learning-Based Beam Management and Interference Coordination in Dense mmWave Networks[END_REF] that predicts the user association and power allocation. Similarly, authors in [START_REF] Liu | User association for millimeter-wave networks: A machine learning approach[END_REF] have formulated the problem of user association with multi-connectivity as a multi-label classi cation problem. All these works are based on cumbersome databases, which in practice, are di cult to acquire. To address this problem, Zhao et al. have proposed a distributed user association based on deep MARL algorithm [START_REF] Zhao | Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Cellular Networks[END_REF]. Nevertheless, [START_REF] Zhao | Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Cellular Networks[END_REF] has not focused on mmWaves networks and has considered a fully observable environment. Besides that, the solution proposed in [START_REF] Zhao | Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Cellular Networks[END_REF] is not scalable as the architecture of the proposed DNN depends on the total number of interacting UEs. In contrast, the main goal of the investigation conducted in this chapter focuses on the design of scalable and dynamic user association strategies able to self-reorganize w.r.t. the network dynamics (fading, tra c, and interference).

Contributions

The contributions of this chapter can be summarized as follows:

• Sum-rate maximization in dense mmWave networks: we rst formulate a user association problem to maximize the sum-rate of mmWave networks. In contrast to the existing works, we take into consideration both inter-cell and intra-cell interference and environment dynamics, which are characterized by the time-varying nature of the mmWave channels and the evolving data rate demand of UEs by using only local observations at each UE.

• Multi-agent reinforcement learning based user association scheme: we cast the formulated user association problem into a multi-agent reinforcement learning task, where UEs, modeled as agents, collaborate to maximize the network sum-rate. To limit both signaling and computational complexity, the agents act as independent learners i.e., their decisions are independent of each other. We force UEs to act based only on partial observations and perceived rewards by avoiding inter-agent communications. Such a constraint brings the bene t that a UE does not need to collect and process information related to other users. In this setting, we propose a Deep Recurrent Q-Network (DRQN) architecture and the associated signaling protocol, which enable UEs to learn an e cient association policy for network sum-rate maximization.

• Mobility management: we further show that the proposed framework can also be extended to account for mobility in applications for handover management. In these scenarios, the learning goal is to minimize the handover frequency while maximizing the total network sum-rate.

The technical content of this chapter is based on the published journal paper [START_REF] Sana | Multi-Agent Reinforcement Learning for Adaptive User Association in Dynamic mmWave Networks[END_REF], conference papers [START_REF] Sana | Multi-Agent Deep Reinforcement Learning based User Association for Dense mmWave Networks[END_REF][START_REF] Sana | Multi-Agent Deep Reinforcement Learning For Distributed Handover Management In Dense MmWave Networks[END_REF], and patent [START_REF] Sana | Method for Associating User Equipment in a Cellular Network via Multi-Agent Reinforcement Learning[END_REF].

The remainder of this chapter is organized as follows. Section 3.2 brie y introduces MARL framework. Section 3.3 details the proposed distributed algorithm and the associated signaling protocol. Section 3.4 discusses the extension of the proposed framework to handover management. Numerical results are provided in each section and conclusions are drawn in Section 3.5.

Background on Multi-Agent Reinforcement Learning

Markov Decision Processes

In a fully observable environment, single agent decisions making can be formalized as a Markov Decision Process (MDP). Basically, an MDP is de ned as tuple (S, A, T , R), in which S denotes the state space, A is the action space, T (s, a, s ) = P(s |s, a) the probability of transitioning from state s to state s after taking action a, which results in an immediate reward R(s, a). The problem for agent in an MDP is to nd the optimal policy π * : S → A that maximizes the expected sum of the perceived rewards (possibly discounted), namely the action-value (or Q-value), which is de ned as follows:

Q π (s, a) = E [R t |s(t) = s, a(t) = a] . (3.1)
Here, R t = T τ =t γ τ -t r (t) is the γ -discounted return from time t, and r (t) = R(s(t), a(t)) is the instantaneous reward perceived by the agent. Hence, the optimal policy is such that Q π * (s, a) = max π Q(s, a).

Partially Observable Processes

In real environment (as in wireless networks), agent has only access to observations o of the latent state s. In this case, we speak of a Partially Observable Markov Decision Process (POMDP), which is formalized as (S, A, T , R, Ω, O), in which O(o, a, s ) = P(s |o, a) denotes now the transition probability to state s after observing o ∈ Ω and taking action a. Hence, an agent in POMDP learns to map observations to actions that yield the best (long-term) rewards.

Reinforcement learning

A RL agent learns by interacting with an environment following a MDP to devise the optimal policy π * , without an explicit provision of the environment model. In model-based RL (e.g. multi-armed bandits), the transition probability T and the reward function R are rst estimated and then used to derive Q π * . In contrast, model-free approaches directly estimate the Q-values Q π (value-based approach) or the policy π (policy gradient-based approach), which can be memory and computation e cient. In the latter case, Q-learning is a widely use model-free value-based approach particularly e cient for problems with small states/actions space [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]. Coupled with Neural-Network (NN), Q-learning allows to address complex problems using Deep Q-Network (DQN): Q(s, a) ≈ Q(s, a; θ ), where θ is the set of neural network parameters used to approximate the Q-function [START_REF] Mnih | Human-level Control through Deep Reinforcement Learning[END_REF]. DQN relies on experience replay to speed up and stabilize the training process [START_REF] Mnih | Human-level Control through Deep Reinforcement Learning[END_REF]. At each time t, from a state s(t), agent takes an action a(t) following a policy (e.g., ϵ-greedy), which brings it to a new state s(t + 1) with an immediate reward r (t). The resulting experience e(t) = {s(t), a(t), r (t), s(t + 1)} is stored into an experience replay memory M from which a mini batch of experiences B is sampled every iteration to perform the learning phase. In this phase, the weights of the DQN are iteratively updated using Stochastic Gradient Descend (SGD) on mini batches in order to minimize the following loss function:

L(θ ) = E e(t )∼B δ (t) 2 . (3.2) In Eqn. (3.2), δ (t) = (t) -Q(s(t)
, a(t); θ ) denotes the Temporal Di erence (TD) error where the γ -discounted target value is computed as follows:

(t) = r (t) + γ max a Q(s(t + 1), a ; θ ). (3.3) 
Finally, knowing the optimal parameters θ * , the optimal policy is given by:

π * : S → A s → arg max a ∈A Q(s, a; θ * ).
In general, there can be some states where the outcome is the same regardless of the action the agent could take; therefore, it is not always necessary to determine the state action value at a given state s, Q(s, a; θ ), for every action. For instance, when playing a video game consisting in moving left or right to avoid objects, trying to decide whether the optimal action is to move left or right is totally useless if there is no threatening object in sight. Another example is when a UE is located at the same distance from two BSs that can provide it with the same throughput. In that case, there is not a single optimal action as the result will be the same whatever BS is selected Based on this intuition, Wang et al. have introduced the notion of dueling network where Q(s, a; θ ) is decomposed into a state value V (s; θ ) = E[Q(s, a; θ )] and the advantage of the corresponding action A(s, a; θ ) [START_REF] Wang | Dueling Network Architectures for Deep Reinforcement Learning[END_REF]. That is,

Q(s, a; θ ) = V (s; θ ) + A(s, a; θ ). (3.4)
The rst term is action-less and is inherent to the state while the second measures the goodness of the action in that state. Dueling network shows that learning the DQN by estimating separately the state value and the advantage values can enable notable improvement in the agent policy.

Multi-agent reinforcement learning

In MARL, agents learn by interacting with a shared environment. In particular, usually in distributed MARL, each agent maintains its own policy, while sharing its environment with other agents. Typically, in this context, either each agent acts in a sel sh way (concurrent MARL), learning a policy that optimizes its own performance, or aims to determine a global optimal policy, which maximizes the system performance (cooperative MARL). One major issue that arises with MARL is the problem of nonstationarity due to multiple agents interacting simultaneously with the environment. This is especially true in the case of independent learners, where agents see each other as part of the environment, which becomes non-stationary from an agent's point of view, as the actions of its teammates change over time.

In addition, environment non-stationarity can lead to shadowed equilibria.

De nition 1 (From [START_REF] Matignon | Independent Reinforcement Learners in Cooperative Markov Games: a Survey Regarding Coordination Problems[END_REF]). An equilibrium is shadowed by another one if there exists one agent i which receives a very low gain by unilaterally deviating from this equilibrium and if this gain is lower than the minimal gain when deviating from the other equilibrium.

In other words, in the presence of shadowed equilibria, an agent's locally optimal action could end up being globally sub-optimal [START_REF] Matignon | Independent Reinforcement Learners in Cooperative Markov Games: a Survey Regarding Coordination Problems[END_REF]. Moreover, during the learning process, an RL agent may face two UE j
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Request Connection to a j (t) con icting interests: either it exploits an action knowing the (expected) return or reward based on the knowledge acquired so far or it explores new actions with uncertain outcomes but which can help it improve or consolidate its current knowledge. The trade-o between exploration and exploitation is crucial for learning e cient policies in RL, especially in MARL [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]. However, in MARL, the exploration of one agent induces noise on the other agents exploiting their policy. This noise may cause other agents to deviate from their current, albeit optimal, knowledge. Such a behavior is called alter-exploration and can be quanti ed using the notion of global exploration [START_REF] Matignon | Independent Reinforcement Learners in Cooperative Markov Games: a Survey Regarding Coordination Problems[END_REF]. The global exploration measures the probability ψ that during learning process, at least one agent explores. It can be formulated using the individual exploration rate of each agent.
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Lemma 2 (from [START_REF] Matignon | Independent Reinforcement Learners in Cooperative Markov Games: a Survey Regarding Coordination Problems[END_REF]). Let a K-agents system in which each agent explores according to a probability ϵ ∈ [0, 1]. Then the probability that at least one agent explores is

ψ = 1 -(1 -ϵ) K .
In particular, note that as K increases, ψ converges to 1 (ψ → 1): alter-exploration impact becomes worst as the number of agents increases.

In the following, we focus on cooperative MARL, meaning that agents also share a common joint reward and propose a solution to deal with shadowed equilibria as well as alter-exploration.

Proposed Dynamic User Association

Proposed solution via multi-agent reinforcement Learning

In this section, we de ne the proposed MARL framework to solve the optimization problem (2.9)-(2.12) de ned in previous chapter. Here, following enhanced Mobile Broadband (eMBB) service requirements, we focus on network sum-rate maximization. Accordingly we set α = 0 in Eqn. (2.7). Thus, the utility function R(t) de ned in Eqn. (2.7) corresponds to total network sum-rate:

R(t) = i ∈A j ∈U x i, j min R i, j (t), D j (t) , (3.5) 
where D j (t) is the data-demand of UE j and R i, j (t) is its experienced w.r.t. BS i.

In our proposed framework, we model UEs as agents and assign them a common objective to maximize the network throughput. In our setting, a UE, based on its local observations, selects and requests service from a target BS, which accepts or rejects the connection request by sending an Acknowledgment (ACK) signal depending on the available resources.

As described in Figure 3.2, each UE j starts by identifying the set of BSs A j it may connect to. Note that, in practical systems, the size of this set is limited to reduce complexity on mobile devices. Here, A j also de nes the UE action space, meaning that the action a j (t) ∈ A j denotes the index of the BS to which the UE j requests a connection at time t. Then, in every time step, each UE j takes an action a j (t) and informs the MBS of its choice. If the UE is requesting a connection from the MBS, i.e., a j (t) = 0, the request is automatically granted1 and the communication is set up. Otherwise, the MBS forwards the connection request to the corresponding SBS. Depending on the overall received requests and the constraint (2.12), the SBS noti es both the UE and the MBS with an ACK j (t) signal. If ACK j (t) = 1, the SBS grants a connection to the UE; otherwise, the MBS establishes the default data link with the UE j. Next, each UE j evaluates the perceived data rate, i.e., min D j (t), R a j (t ), j (t) and forwards this value to the MBS. Then, the MBS computes the network sum-rate R(t). Finally, the MBS broadcasts R(t) to each UE, which uses it to evaluate the goodness of its policy π j (t) and to update it accordingly.

Following this process, we de ne the history H j (t) of UE j as the set of all actions, observations, and measurements collected up to time t [START_REF] Naparstek | Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access[END_REF] :

H j (t) = a j (τ ), ACK j (τ ), RSS a j (t ), j (τ ), D j (τ ), R a j (t ), j (τ ), R(τ ) t τ =1 . (3.6)
Hence, the policy of UE j at time t, π j (t), is a mapping from its history H j (t -1) to a probability mass function over its action space A j . Therefore, each UE takes its actions following its own strategy without being aware of the actions taken by the other UEs.

A key feature of the proposed approach is that in contrast to MDPs, here, the decision of the j-th UE is based only on its local state observation:

o j (t) = a j (t -1), R a j (t -1), j (t -1), R(t -1), ACK j (t -1), RSS a j (t -1), j (t), D j (t) . (3.7) 
It is worth to note that o j (t) carries information related to the previous action/reward, already available at the UE side, and new local information (the RSS and the data demand D j (t)). Speci cally, each UE makes association decisions based on how well its previous actions performed. The only observation that implicitly coordinates the actions of the multiple UEs is the network sum rate, which serves as a signal to each UE as to whether their local actions are bene cial to the overall network objective. Note that the overall network objective may increase or decrease due to the actions of multiple UEs, thus it is not a perfect signal in the sense that it does not tell each UE exactly the consequence of its own speci c action. Yet, our goal is that, using DRL, each UE is able to learn over time its optimal policy. It is noteworthy that the size of the state observation of a given UE does not scale with the number of UEs in contrast to other works in the literature, as [START_REF] Zhao | Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Cellular Networks[END_REF]. This allows us to build general DQNs that can be used in di erent network scenarios; that is, if a UE leaves or joins the network, there is no need to change the DQN architecture. Moreover, o j (t) is a partial observation of the true state s(t), which includes all the observations of other agents. In the literature, the optimization in partially observable environments is addressed as a multi-agent POMDP [START_REF] Omidsha Ei | Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability[END_REF]. Partial observability, in addition
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Hidden layer to non-stationarity issues, make MARL an even more complex task. To tackle this problem, Omidsha ei et al. successfully applied hysteretic Q-learning ( rst introduced by Matignon et al. [START_REF] Matignon | Hysteretic Q-Learning: An Algorithm for Decentralized Reinforcement Learning in Cooperative Multi-agent Teams[END_REF]) with partial observability [START_REF] Omidsha Ei | Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability[END_REF]. They empowered the DQNs with Reccurent Neural Network (RNN) to obtain deep recurrent Q-networks (DRQNs), which serves as a basis for our proposed algorithm.

Hysteretic deep recurrent Q-network

In the Hysteretic Deep Recurrent Q-Network (HDRQN) algorithm 2 , each UE j acts as an independent learner and maintains its own DRQN Q j (o j (t), h j (t -1), a j (t); θ j ). Figure 3.3 describes the proposed DRQN, which is composed of one input layer, two fully connected hidden layers, one RNN hidden layer, a dueling layer, and an output layer. The UE's local state information o j (t) and the estimated state action value Q j (•; •) de ne respectively the input layer and the output layer of the DRQN (Section 3.3.4 provides more details on the proposed DQRN). We use h j (t -1) to represent the internal state of the RNN hidden layer and θ j to de ne the UE's local DRQN weights. The use of RNNs allows to aggregate past information (previous observed states, i.e., the history H j (t)) in the agent decision-making process, which is shown to improve the average reward perceived when dealing with partial observability [START_REF] Hausknecht | Deep Recurrent Q-Learning for Partially Observable MDPs[END_REF]. Indeed, in a partially observable environment, each agent makes its decision relying on the observation o j (t) instead of the true state s j (t), which is unknown. From o j (t) solely, the agent may have a partial perspective of the environment. In this case, the commonly used Vanilla DQN may not be e ective [START_REF] Hausknecht | Deep Recurrent Q-Learning for Partially Observable MDPs[END_REF], speci cally in multi-agent scenarios, where each agent is unaware of the behavior of its teammate. Hence, we extend the baseline Vanilla DQN with RNN to infer the underlying state s j (t) from agent past observations, i.e., its history H j (t) [START_REF] Hausknecht | Deep Recurrent Q-Learning for Partially Observable MDPs[END_REF].

The experience of the j-th UE e j (t) = o j (t), a j (t), r j (t), o j (t + 1) is stored into a local memory bu er M j . In order to further stabilize the learning process, synchronized sampling strategy (called concurrent experience replay trajectories (CERTs)) is adopted [START_REF] Omidsha Ei | Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability[END_REF]. In other words, during the training, mini batches of experiences of the same time steps are sampled across agents to update the local DRQN weights in order to minimize the hysteretic loss function:

L j (θ j ) = E e b j (t )∼B j w b j δ b j (t) 2 , (3.8) 
where b indexes an entry in the mini batch of experiences

B j , δ b j (t) = b j (t) -Q j (o b j (t), h b j (t -1), a b j (t); θ j ) is the TD error with respect to the target value b j (t) = r b j (t) + γ max a Q j (o b j (t + 1), h b j (t), a ; θj ). (3.9) 
Here, θj represents the weights of the target DRQN, which are updated less frequently to improve the learning stability [START_REF] Mnih | Human-level Control through Deep Reinforcement Learning[END_REF].

In MARL, the agents' reward is the result of their joint actions. Accordingly, an agent experience e j (t) is positive, if the associated TD error δ b j (t) in Eqn. (3.8) is positive, i.e., the perceived global reward is better than the previous rewards independently of the optimality of the agent local action. A positive experience does not necessarily imply that the agent's strategy is converging toward the optimal solution, but the network performance is improving over time. In contrast, a negative experience results in an agent receiving a lower reward after taking an action that was fruitful in the past. A negative experience can be caused by the agent's action being non-optimal or more likely by the others agents' behavior. That is, an agent that has taken a local optimal action may receive a lower reward because of the bad choices of other agents. Such events may be exacerbated by the increase in the number of agents. Therefore, negative experiences can be very detrimental in MARL as they may mislead the agent to change its optimal strategy. Consequently, an agent may stabilize its strategy by paying less attention to negative experiences. This is the idea introduced by hysteretic Q-learning: the neural network weights are updated via SGD with two distinct learning rates α µ and β µ (β α ≤ 1), where µ is a based learning rate and α and β are control factors. When the TD error is positive, the learning rate α µ is used; otherwise, β µ is considered. This leads to optimistic updates that give more importance to positive experiences [START_REF] Matignon | Hysteretic Q-Learning: An Algorithm for Decentralized Reinforcement Learning in Cooperative Multi-agent Teams[END_REF]. To implement the hysteretic learning in conventional machine learning libraries, we set µ as the xed learning rate and scale the TD error δ b j (t) in Eqn. (3.8) as follow:

w b j = α, if δ b j (t) ≥ 0 β, otherwise. (3.10) 

De nition of the reward function

The maximum value of the network sum-rate, and hence, the optimal user association is unknown to the agents at the beginning of the learning phase. In other words, there is no explicit or prede ned terminal state that agents are aware of and toward which they have to converge to. Accordingly, we treat this learning problem as a continuing task over a time horizon T e . That is, the agents keep updating their policies as long as it improves the perceived reward.

De nition 2. We de ne the beam collision as the event corresponding to a given SBS i receiving more requests than the number of beams N i it can set up i.e., there is a beam collision if j ∈U i x i, j > N i .

Requests collision may occur since all UEs are requesting connections simultaneously. However, our proposed framework aims to e ectively train agents to distribute the network load and to properly leverage the advantages of network densi cation. Consequently, when a collision happens during the training phase, we punish all UEs by setting the instantaneous reward to zero, which discourages agents from colliding. However, during execution time, a practice implementation of this framework may choose between the colliding UEs, which UEs to serve. This selection can be made either randomly or based on RSS. As a result, we de ne the reward function of UE j in Eqn. (3.9) as:

r j (t) = R(t), if there is no collision 0, otherwise. (3.11)
During the learning, each UE j builds its policy π j depending on its data rate requirement, the experienced SINR, the network sum-rate, and whether its requests cause a collision to maximize the accumulated discounted reward:

G j (t) = T e τ =t +1 γ τ -t -1 r j (τ ), (3.12) 
where the discounting factor γ is such that 0 ≤ γ < 1. Taking γ = 0 leads to myopic (instantaneous) network throughput maximization. In the case of dynamic scenarios, it is better to consider γ 0 to take into account the dynamic nature of the environment: there is no need to change the current user association at time step t due to a low reward perceived because of the environment dynamics if at the next time step the system will recover its equilibrium. This consideration also makes sense in a practical system where changing the association too often can also induce excessive overhead. As de ned, the reward perceived by the agents continuously varies with the environment stochasticity viz. fading, shadowing, interference, tra c, and noise. Accordingly, this reward setting can lead to many optimal or quasi-optimal equilibria, which is a major issue as it results in agents laboriously trying to converge [START_REF] Matignon | Independent Reinforcement Learners in Cooperative Markov Games: a Survey Regarding Coordination Problems[END_REF]. Algorithm 1 presents the proposed training procedure to deal with these challenges. Note that parts of this algorithm (highlighted in gray) can be executed in parallel across all UEs.

Algorithm 1: User Association: Training Procedure

1 while t < T e do 2 for j ∈ U do 3 Observe state o j (t). 4 a j (t) ← arg max a ∈A j Q j (o j (t), h j (t -1)
, a ; θ j ) following the ϵ-greedy policy. // the UE is requesting a connection to a SBS. Measure R a j (t ), j (t). Observe the new state o j (t + 1).

for i ∈ A do 15 if j 1 a j (t )=i > N i then 16 R(t) = 0. // collision. 17 Break. 18 else 19 R(t) = R(t) + j ∈U i 1 a j (t )=i min(R i, j (t), D j (t)).

24

Store experience e j (t) into M j .

25

Samples a batch of experiences from M j .

26

Compute the target value b j (t) in Eqn. (3.9).

27

Performs a gradient descent step on δ b j (t) in Eqn. (3.8) with respect to θ j .

28

Periodically reset θj ← θ j . 

Numerical results

In this section, we demonstrate the e ectiveness of the proposed HDRQN-based user association by comparing its performance with the exhaustive search algorithm obtained via brute force and two other centralized benchmarks of the literature:

• Max-SNR: Each UE is associated with the BS, which provides the maximum SNR taking into account the constraint on the number of beams per BS (see Eqn. (2.12)). Since this method does not consider interference, it has limited performance, especially in dense networks.

• Heuristic: Proposed in [START_REF] Zhou | Deep Learning-Based Beam Management and Interference Coordination in Dense mmWave Networks[END_REF], this algorithm starts by ordering all the possible associations according to their respective SNR values, which do not consider interference. Then, following this order, the algorithm goes from one potential association to the following one and validates it if it increases the network sum-rate R(t) in Eqn. (3.5). Although the evaluation of R(t) takes the interference and UEs tra c into account, the performance of this algorithm depends mainly on the SNRs ordering, which may prevent reaching a global optimum. This approach is recalled in Algorithm 2 with minor modi cations compared to the original one since power and beamwidth constraints are not considered in this study.

In the following, we start by analyzing the complexity of the proposed method compared to the two baselines. Then, we study the e ect of the hysteretic parameter on both convergence speed and achievable sum-rate. Also, we evaluate the e ectiveness of collision cost in limiting collision events and improving network sum-rate. We continue assessing the performance of our scheme in both static and dynamic scenarios. Finally, we conclude the evaluation by demonstrating the adaptive property of the proposed algorithm.

We consider that UEs and SBSs communicate in the mmWave band at a carrier frequency of 28 GHz using the same phased array antenna. To evaluate three di erent interference scenarios, we consider distinct antenna gain radiation patterns (see Figure 3.4), which correspond to a distinct number of antenna elements in the phased array. Larger the array, thinner the beam 3 . In all tests, three small cells Algorithm 2: Heuristic scheme: Centralized User Association

1 Set x i, j = 0, ∀j ∈ U, i ∈ A j .
2 Get the SNR i, j and sort it in descending order into Z = {z 1 , z 2 , . . . , z P } with P = j card(A j ). 3 Let δ be the transformation (de ned by the sort) such that δ (i, j) = p: z p = z δ (i, j) ← SNR i, j . 4 Set R 1 (t) = 0. 

if R p (t) > R p-1 (t)
5 m Beam number, N i N 1 = 2; N 2 = N 3 = 3 (1)
We use as a path loss model, [START_REF]Evolved Universal Terrestrial Radio Access (E-UTRA) -Further advancements for E-UTRA physical layer aspects (Release 9)[END_REF]. Then, we compute the equivalent reference distance in meter for equation (3). are deployed inside the macro cell. UE and small cell locations follow the 3GPP recommendations [START_REF]Small Cell Enhancements for E-UTRA and E-UTRAN -Physical layer aspects (Release 12)[END_REF]. Table 3.1 summarizes the network parameters.

G Ch i, j (dB) = 128.1 + 37.6log 10 (d i, j ), d i, j in Km from Table A.2.1.1.2-3 in
To learn the user association policy, we use the DRQN described in Figure 3.3. This architecture comprises 2 Multi Layer Perceptron (MLP) of 32 hidden units, one RNN layer (a Long Short-Term Memory (LSTM) layer 4 ) with 64 memory cells followed by another 2 MLPs of 32 hidden units. The network then branches o in two MLPs of 16 hidden units to construct the dueling network. All layers use a recti er linear unit (ReLU) except the nal layer, which has a linear activation function. For the hysteretic learning, we set the base learning rate µ = 0.001 and α = 1, and then we optimize β ∈ [0, 1] to strike a balance between convergence speed and network sum-rate. The DRQNs are trained o ine using an ϵ-greedy policy. The hyper-parameters values summarized in Table 3.2 are selected via informal search. Finally, unless speci ed, all results are average over N runs of Monte-Carlo simulations. At each run, UE positions are randomly reset.

We evaluate the performance of the proposed solution and the related baselines using either the network sum-rate or the sum-rate ratio w.r.t. the brute force approach. Speci cally, for these metrics, we compute the average and the standard deviation as follows:

R = 1 N N n=1 1 T e T e t =1 R (n) (t), (3.13) 
σ 2 R = 1 N N n=1 1 T e T e t =1 R (n) (t) -R 2 , (3.14) 
where R (n) (t) is either the sum-rate or the sum-rate ratio at the time step t of run n.

Complexity analysis.

We analyze both the computational and signaling complexity of the proposed algorithm and compare it to the two baselines. Since our framework is based on deep Q-learning, a practical implementation completely conducts the learning o ine as with the Vanilla DQN initially proposed for Atari games [START_REF] Mnih | Human-level Control through Deep Reinforcement Learning[END_REF], and then, it transfers to each UE the corresponding weights. In this scenario, UEs simply conduct the inference on their local states to nd the optimal action, alleviating the computational and power burdens. That is to say, the computational complexity of the proposed framework during its execution is limited to the inference complexity of each local DQRN. Let L h be the size of hidden layers and L c the number of cells in the LSTM layer. Each DQRN has six inputs 5 , thus the complexity is in the order of

O 6L h + 2L 2 h + L h L c + 2L 2 h + L h (card(A j )) ≈ O 6L 2 h + L h L c
. This is very straightforward compare to a naive algorithm, which may nd the optimal solution of problem (2.9)-(2.12) through an exhaustive search, which has a complexity O N s K(1

+ N s ) K as shown in Eqn. (2.3.4) of Chapter 2.
The complexity of both max-SNR and heuristic algorithms during execution is related to sorting the SNR values. Considering a quicksort algorithm, this complexity in the worst case (card(A j ) = N s + 1) is around O (nlog(n)) for max-SNR and O (n + nlog(n)) for the heuristic algorithm 6 where n = K(1 + N s ). However, the need to collect the SNR values globally is the most notable disadvantage of these centralized approaches. In terms of signaling overhead, compared to the existing standard (e.g. 5G), the additional complexity introduced by our framework is due to the broadcasting of the total network sum-rate. The rest of the information used by a UE to take a decision is already either measured by the UEs R j (t), RSS j , a j (t) or sent by its serving BS ACK j . Speci cally, the number of messages exchanged in 5 For practical implementation, we encode the entry a j (t) in Figure 3.3 as a one-hot vector leading to 5 + card(A j ) inputs. 6 One pass to sort the SNR values and another to nd the association.

the sequence chart of Figure 3.2 is a function of the UE's action a j (t). If a j (t) = 0, the association is set up in two messages with the MBS. Otherwise, four messages are required to connect to either a SBS or a MBS, depending on the ACK signal. Overall, for each UE to connect to the serving BS, the system needs to exchange at most four messages. Then, two additional messages are required to get the total network sum-rate from the MBS. Therefore, at most six messages are needed to complete one training step. Convergence and e ect of hysteretic parameter β. Here, we study the impact of the hysteretic parameter β on the performance of the proposed solution in terms of network sum-rate and convergence speed. Speci cally, Figure 3.5a shows the evolution of the loss function during the training process for di erent values of β, and Figure 3.5b describes the sum-rate ratio of the proposed scheme w.r.t. the optimal solution as a function of β.

First, Figures 3.5a and 3.5b show that despite the few pieces of information available locally to each agent, they can successfully learn a user association policy that performs close to the optimal strategy in less than 5 • 10 3 iterations/associations if β ≤ 0.6. In addition, Figure 3.5a shows that lowering β increases the convergence speed of the algorithm. However, this also results in limited sum-rate performance. For instance, when β = 0, the proposed scheme achieves only 70% of the optimal performance (see Figure 3.5b). This is because, from Eqn. (3.10), we know that selecting very low values of β makes the agents too optimistic i.e., they tend to neglect actions that produce negative TD errors. This leads agents to potentially select sub-optimal actions. In contrast, when β = 1, the agents give equal importance to positive and negative TD errors, i.e., they become pessimists. In this setting, a UE may change its (optimal) strategy after taking an action that results in a negative error, although this error is simply the result of the other agents' behaviors. These continuous changes limit the learning performance, and, in fact, Figure 3.5a shows that the loss function diverges for β = 1. Hence, there is a trade-o between convergence speed, successful coordination of the agents, and network sum-rate. Impact of the collision cost on network performance. Here we assess the e ectiveness of the collision cost in Eqn. (3.11), to limit the collision events. For this purpose, we consider a setting in which there is no collision cost. In this case, during the training phase, if a SBS receives more requests than the ones that it can accept, it randomly chooses the serving UEs among the received requests; the remaining UEs are therefore associated with the MBS. Figure 3.6a shows the frequency of the collision event during the test phase. We can observe that the collision frequency increases with the number of UEs as the cell load increases. However, we can see that by introducing the collision penalty, we signi cantly reduce the collision events up to 97%, which leads to an improvement of the overall network throughput7 by 4.7% (see Figure 3.6b). This demonstrates that, with the proposed solution, UEs learn to distribute their association requests among the di erent BSs, balancing the cell load and maximizing the network sum-rate.

Performance of the proposed algorithm in static scenario. We now compare the performance of the proposed user association solution with the one achieved by the two baselines in a static scenario where there is no fading (i.e., α i, j = 1) and with full bu er tra c. Consequently, in Eqn. ( set D j = +∞, ∀j and disable the corresponding input in the DRQNs 8 . Figures 3.7a and 3.7b show the performance of the di erent approaches compared to the optimal user association in terms of network sum-rate, using antenna diagrams diag 1 and diag 3 respectively. We rst note that the sum-rate ratio performance of our solution, as well as the heuristic approach, barely changes between the two antenna diagrams (less than 0.5% change), in contrast to the max-SNR algorithms, which does not consider interference. Speci cally, when K = 13 the performance of the max-SNR decreases by 12.2% when switching from diagram diag 1 to diag 3, which has lower directivity and thus results in a lower SINR. In addition, we note that, on average, our proposed scheme achieves up to 98.7% of the optimal sum-rate, hence outperforming both the max-SNR and the heuristic approaches. For example, when K = 6, by using diag 3, the proposed solution exhibits a performance gain of 3.1% and 37.8% over the heuristic and the max-SNR algorithm, respectively. As soon as the number of UEs increases, the performance of our scheme slightly decreases. This is because ensuring coordination becomes more complex when the number of interacting agents increases. For instance, with diag 3, our solution only achieves 94.5% of the optimal performance for K = 13. However, it still outperforms the two baselines showing now a gain of 3% and 64.6% over the heuristic and the max-SNR approaches, respectively. Although the gain of the proposed solution over the heuristic scheme is small, our framework is distributed while the heuristic approach is centralized.

Performance in dynamic scenarios. We now evaluate the performance of the proposed scheme in dynamic environments and considering the three di erent antenna diagrams in Figure 3.4. For this purpose, we de ne two cases: 1) dynamic channels with small scale fading and full bu er tra c, 2) dynamic channels with small scale fading and dynamic tra c. As the optimal user association obtained via exhaustive search requires extensive computation, in the following, unless otherwise stated, we compare only the performance of the proposed scheme with the aforementioned two baselines. To achieve a fair comparison, every time step, we recompute the association solution of the two baselines as this may change due to the environment dynamics.

First, we can highlight from Figures 3.8 and 3.9 that, as expected, the network sum-rate decreases as the antenna diagrams become less and less directive (from diag 1 to diag 3). Also, the gap between our scheme and the two baselines decreases when the antennas are more directive, which is due to the smaller interference perceived at the UE side. Indeed, the two baselines perform better in limited interference scenarios:

• Case 1: in this scenario, we have full bu er tra c, D j = +∞, ∀j and dynamic channels with Nakagami 8 To disable an input, we simply set the corresponding entry in o(t) to zero. small scale fading, characterized by a scale factor m = 3 [START_REF] Chevillon | Spectral and Energy E ciency Analysis of mmWave Communications With Channel Inversion in Outband D2D Network[END_REF]. Figure 3.8 plots the sum-rate achieved by the di erent algorithms for a di erent number of UEs. We remark that our distributed solution performs better than the two centralized baselines. Speci cally, when the number of UEs is equal to 9, the HDRQN improves the network sum-rate by about 1% and 30.3% when using diag 1, 2.8% and 36.2% when using diag 2, and 3.6% and 49.2% when using diag 3, compared respectively to the heuristic and max-SNR schemes. As in the static case, the gain w.r.t. the heuristic is limited when considering only the fast fading e ect.

• Case 2: we evaluate on Figure 3.9, the performance of our framework considering both fast fading and UE tra c. Here, for each UE, the intensity of its tra c Poisson distribution is uniformly chosen between [0, 2] Gbps at the beginning of each Monte Carlo run. Overall, as expected, the e ect of the tra c variations on the rate (see Eqn. (3.5)) is larger than the one related to the fast fading, which leads to small variations on the user-perceived SINR (see Eqn. (3.5)). In addition, our algorithm yields a large performance gain over the two benchmarks. For instance, for K = 13 UEs, the proposed solution improves the sum-rate by 19.4% and 18% when using diag 1, by 19.7% and 28.2% when using diag 2, and by 23.2% and 37.1% with diag 3, compared to heuristic algorithm and the max-SNR algorithms, respectively. 

Concluding remarks

We have presented a novel and distributed approach for solving user association problems based on Multi Agent Reinforcement Learning (MARL). With the proposed MARL algorithm, agent decisions are based on partial and local observations, which limits the signaling overhead and reduces the computational complexity w.r.t. centralized approaches. Our analysis shows that, in the case of full bu er tra c, the proposed scheme achieves up to 98.7% of the optimal performance obtained through exhaustive search.

When considering dynamic fading, the proposed solution outperforms centralized baselines, which require to continuously recompute the user association, leading to excessive complexity. In addition, the proposed approach results in large sum-rate gains when we consider dynamic tra c, achieving nearly 40% of performance gain w.r.t. baseline solutions from the literature. In the next section, we explore how the proposed solution can be leveraged to solve another challenging problem related to user association, namely handover management.

Application to Distributed Handover Management

A close problem to user association is handover or hando management also known as user reassociation. In dynamic environments characterized by mobile users, a UE to maintain or improve its QoS may need to change its current BS association when moving through the network. This process is called Handover (HO). Performing an HO procedure requires signaling between the UE, the serving BS, and the target BS, which induces overhead and energy consumption, thus decreasing the network performance. In 5G network with mmWave communications, the frequency of handover procedures is even accentuated due to severe pathloss, blockage, and deafness. This leads to a deterioration of mobile users' throughput as well as their battery lifetime. In the literature, the HO management problem has received wide attention, and multiple HO algorithms exist, each trying to limit the impact of frequent [START_REF] Koda | Reinforcement learning based Predictive Handover for Pedestrian-aware mmWave Networks[END_REF]. In the same vein, Wang et al. have extended this approach using deep RL with actor-critic methods to avoid state discretization and for better scalability [START_REF] Wang | Handover Optimization via Asynchronous Multi-User Deep Reinforcement Learning[END_REF]. Not all these works consider cell load and limited resource availability when optimizing the HO strategy.

Handover management: system model and problem formulation

We recall the system model from Section 2.3 of Chapter 2. We do not consider UE tra c request, i.e. D j (t) = +∞, ∀j, and focus only on UE mobility. Therefore, given a BS i, the set of UEs in its coverage area U i (t) changes over time as well as the set A j (t) of BSs a UE j could associate with. As UEs move around the network, they may be subject to multiple handovers to maintain or improve their QoE (see Figure 3.10). However, unnecessary HOs lead to large signaling overhead, which increases the energy consumption, lowers the spectral e ciency, and a ects UEs latency. To account for this, we directly introduce a penalty due to the handover in the evaluation of the network performance. Indeed, let ∆τ be the time between two possible handovers, also known as Time-to-Trigger (TTT) interval [70]. That is, a handover process can be triggered every time τ p = τ 0 +p∆τ , where τ 0 is an initial system delay. If UE j want to perform a handover at time τ p , then, a time β∆τ is dedicated to the hando procedure while the time (1β)∆τ is used to communicate data (see Figure 3.11). The coe cient β ∈ [0, 1] allows controlling the cost of an HO process, which depends on the type of implemented handover (soft or hard handover) [START_REF] Park | Handover Mechanism in NR for Ultra-Reliable Low-Latency Communications[END_REF]. Accordingly, the e ective data received by UE j from BS i between time τ p and

τ p+1 is R i, j (τ p , β) = ∫ τ p +(1-β λ j (τ p ))∆τ τ p R i, j (t)dt, (3.15) 
where λ j (τ p ) = 1 indicates that UE j has handed over at time τ p , and λ j (τ p ) = 0 otherwise. Hence, we de ne the network throughput R(τ p ) measured between time τ p and τ p+1 as follows:

R(τ p , β) = 1 ∆τ i ∈A j ∈U R i, j (τ p , β). (3.16)
Let . be the oor operator and P = T ∆τ be the number of TTTs over a time period T . Handover problem. We aim to nd the HO strategy that maximizes the average network throughput R T (β) = 1 T P p=1 R(τ p , β) taking into account the cost associated to hando events. Hence, we formalize this problem as follows:

MBS SBS 1

× u 1 ì 1 × u 4 ì 4 × u 6 × u 7 SBS 2 × u 2 ì 2 SBS 3 × u 3 × u 5 × u K R 0
maximize {x i, j (t )} R T (β) (3.17) s.t. x i, j (τ p ) ∈ {0, 1}, i ∈ A, j ∈ U(t), p ∈ [|1, P |], (3.18) 
j ∈U i x i, j (τ p ) ≤ N i , i ∈ A(t)\{0}, p ∈ [|1, P |], (3.19) i ∈A j x i, j (τ p ) = 1, j ∈ U, p ∈ [|1, P |]. (3.20) 
The constraint (3.18) ensures that the decision variables are binary. The constraint (3.19) indicates that the maximum number of UEs that a SBS can simultaneously support is limited to N i . Finally, the constraint (3.20) indicates that a UE is always associated with a BS. The optimization problem (3.17)-(3.20) is a non-convex integer programming problem. In addition to the complexity of such a problem, the optimal association at time τ p also depends on the association at time step τ p-1 through the handover variable λ j , making the problem (3.17)-(3.20) intractable with conventional optimization frameworks. In the following, we hinge on our proposed multi-agent reinforcement learning framework to solve this problem.

Proposed handover framework

In this subsection, we depict the proposed HO solution. We formalize the optimization problem (3.17)-(3.20) as a multi-agent reinforcement learning (MARL) task where each UE is modeled as an independent agent that learns in a distributed way its handover strategy with the goal of optimizing the network throughput.

UEs action space. At each time step τ p , each UE j takes an action a j (τ p ) to associate with one BS in the network. If the connection request is addressed to the MBS, this is automatically granted. Otherwise, if the requested SBS is able to support the association, an acknowledgment signal is sent (ACK = 1), otherwise ACK = 0 (see the constraint (3.19)). Finally, if UE j's BS at time step τ p di ers from the one at time step τ p-1 , the UE initiates a handover procedure. Later, the MBS collects information from each BS to compute the overall network throughput R(τ p , β), which is broadcast to all UEs to evaluate the goodness of their policy.

UEs state space. To learn their optimal strategy, UEs continuously collect information about their surrounding environment. We assume that at each time step, each UE can measure the RSS of the surrounding BSs i.e., {RSS i , ∀i ∈ A}. In addition, each UE uses the previously perceived data rate R a j (τ p ), j (τ p-1 , β) and network sum-rate R(τ p-1 , β). Hence, at time τ p , UE j acts based on its local observations:

o j (τ p ) = x j (τ p ), j (τ p ), a j (τ p-1 ), R j (τ p-1 , β), R(τ p-1 , β), ACK j (τ p-1 ), {RSS i (τ p )} ∀i ∈A , (3.21) 
where j (τ p ) = ( x j (τ p ), j (τ p )) is the corresponding UE's speed. UEs reward. To optimize the network performance, UEs must learn how to perform association requests, which limit handovers and avoid collisions across service requests. Let c(τ p ) denotes the request collision event. There is a request collision at time step t, i.e., c(τ p ) = 1, if ∃ i such that j ∈U x i, j (τ p ) > N i . Otherwise, we set c(τ p ) = 0. To optimize the handover procedure, we have designed two reward functions taking into account the collision events.

• RHando-F (Fully cooperative RHando): in this strategy, UEs receive the same reward, which favors global network optimization:

r j (τ p ) = (1 -c(τ p ))∆τ R(τ p , β). (3.22) 
• RHando-S (Self interest RHando): here, each UE instantaneous reward only considers the data rate it perceived. Hence,

r j (τ p ) = (1 -c(τ p ))R a j (τ p ), j (τ p , β). (3.23)
It is noteworthy that even in RHando-S, the reward of each UE still depends on other UEs because of the interference and the collision events.

Next, we use the HDRQN architecture proposed in section 3.3.2 to train users' HO policies. 

Performance comparison

To assess the performance of the proposed framework, we consider as a benchmark a simpli ed version of the HO procedure proposed in 3GPP [70] in which each UE is associated to the BS providing the strongest RSS. In case of request collision, each SBS selects the best UEs in terms of RSS while the MBS serves the other UEs. In all tests, ve mmWave SBSs are deployed inside the macro cell. UEs' locations are randomly initialized. To account for heterogeneous mobility, each UE randomly picks a speed between 0 and 10 ms -1 and takes a straight motion with a random direction. In addition, without loss of generality, we suppose that users turn back once they reach the macro cell edge. We set ∆τ = 1s, TTI = 10 ms. The simulation lasts T = 2000 s. For a given UE i associated to a given BS j, we evaluate R i, j (τ p , β) by aggregating the data received during each TTI (see Eqn. (3.15)). We use the antenna radiation pattern diag 3 of Figure 3.4. Additional simulation parameters can be found in Table 3.1.

Collision avoidance. As aforementioned, request collisions may happen when BSs do not have enough beams to support, simultaneously, all the service requests. Figures 3.12a and 3.12b show the performance comparison of the two RHando con gurations compared to the benchmark solution. Unsurprisingly, for lower values of N i , RHando-S exhibits poor performance than RHando-F both in terms of average reward (i.e., (1/P) P p=1 j ∈A r j (τ p )) and HO's frequency. This is because UEs in RHando-F fully cooperate through the common reward they perceive and, as a result, they e ectively learn to avoid request collisions. In contrast, with RHando-S, each UE learns a policy based on a local reward, which does not provide su cient information on the e ect of its action on the other UEs' reward. Inversely, when N i is su ciently large (> 7), RHando-S outperforms both RHando-F and RSS-based HO in terms of average reward. The throughput is increased by about 17.89% by RHando-S and only 10% by RHando-F compared to the benchmark. Regarding the HO events, RHando-F decreases the HO frequency by about 70% and RHando-S by 54% compared to the baseline. Overall, we can observe that the fully cooperative approach limits the handover rate at the cost of lower reward when N i is large.

The handover cost factor β has an impact on performance. Now we evaluate the performance of the proposed solutions w.r.t. the handover cost factor β. Figure 3.13b shows that when the HO cost increases, the network average throughput decreases. The RSS-based solution is characterized by the worst performance as it does not consider the handover cost. Figure 3.13a shows that when the HO becomes more and more costly, the HO rate decreases with Rhando-S while remaining almost constant with Rhando-F. This is because the HO cost variation has a limited impact on the global reward perceived by the agents in RHando-F: after a hando decision, an agent can still perceive a large global reward as this is de ned as the sum of all the other agents' reward. The average throughput varies with Nakagami fading scale factor m. HO events highly depend on the channel conditions viz. path loss and fading. Here, we evaluate the performance gain of the di erent algorithms w.r.t. the Nakagami scale factor m. Figures 3.14b and 3.14a show that the more severe the fading (m → 0), the more pronounced the gain of the proposed solution compared to the benchmark both in terms of average throughput and number of HOs. The performance of the RSS-based HO strongly deteriorates with the fading while RHando-F and RHando-S adapt their policies to the fading characteristics demonstrating therefore the robustness of the proposed framework.

Concluding remarks

We have shown in this Section an application of our proposed MARL framework for handover management, a di erent problem, but related to user association. In particular, in this problem, we have optimized the network sum-rate considering the delay induced by handover events. The proposed solution is also distributed among mobile users with limited signaling overhead. We have shown its ability to reduce the handover events by 50% and increase the sum-rate by 10% compared to the baseline solution based on maximum-RSS.

Conclusion and Perspectives

In this chapter, we have presented our main framework based on distributed MARL, which allows successfully solving the user association problem. In particular, we modeled each user equipment as an independent agent, which takes autonomous decisions based on its local observations. Despite the proposed solution is distributed, we have shown that by observing only a few local parameters, our solution is able to achieve near-optimal performance. Moreover, our proposed solution incorporates environment dynamics viz. fading, user tra c and mobility, intra-and inter-cell interference, so that the optimal solution is self-reorganized when a relevant change occurs. Finally, we have shown that the proposed solution can successfully address handover management, a close problem to user association with additional complexity as it involves user mobility.

Despite all these appreciable features, our proposed solution still lacks, to some extent, exibility and adaptability. Indeed, our proposed framework, as present solutions in the literature, optimizes the user association by considering either 1) a xed set or position of users, 2) a xed distribution of tra c, or 3) in the context of mobility, xed directions (prede ned trajectories). In other words, whenever i) the number of users changes due to the arrival or departure of UEs, or ii) their positions arbitrarily change e.g. due to random mobility, or iii) their service requirements change due to e.g. a UE switching from a vocal call to online gaming, the solution of the user association has to be recomputed. This involves frequent signaling to report changes in the radio environment and frequent learning processes to adapt to these changes. Therefore, the following questions are still open: can we build user association policies able to accommodate all these changes? can we come out with transferable user association policies in which knowledge gained in a given scenario can be transferred to another scenario, preventing frequent learning processes? Solving these problems opens new perspectives to build fully transferable user association knowledge or policies.

In the next chapter, we will investigate solutions to address these issues, which require rethinking the architecture design of the user association policies as well as the associated learning mechanism.

The technical contributions of this chapter have been validated by the following conference papers, journal paper, and patent.

On the Transferability of User Association Policies

"La connoissance de certains principes supplée facilement à la connoissance de certains faits. "

"The knowledge of certain principles easily compensates the lack of knowledge of certain facts. "

-Claude Adrien Helvétius, De l'esprit (1715 -1771)
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Introduction

T chapter addresses the problem of transferability of the user association policy. Here, we focus on a solution of user association, which allows the learned policy to cope with environment dynamics, including changes in the number and/or position of users, variation in tra c dynamics as well as variation in wireless channels. To this end, we rst propose a policy distillation mechanism that builds on the user association solution previously proposed in Chapter 3 to consolidate the knowledge gained in di erent scenarios into one global knowledge. Although this solution is able to cope with the variation of network tra c, it is limited in terms of scalability. Therefore, we propose a novel Proximal Policy Optimization (PPO) and learning mechanism to derive a transferable user association strategy based on Multi Agent Reinforcement Learning (MARL) and neural attention mechanisms. The resulting framework is able to address changes in the radio environment, including channel dynamics, mobility of UEs as well as the variability of the number of UEs over time.

Motivations

Current state-of-the-art solutions for user association are, in general, not scalable and tangibly lack adaptability. In particular, they are often grounded on quite rigid assumptions, such as pre-sized and xed sets of BSs and static UEs, favorable channel conditions, absence of inter-cell or intra-cell interference, full-bu er network tra c. Yet, in dynamic mmWave networks, especially in dense networks, the number of UEs, their position to each other and BSs, and the performance requirements of the services they access are likely to change over time and are characterized by a high dynamicity. Even in relatively stable scenarios, from the radio channel and data tra c points of view, the arrival in the network or the departure from the network of one or more users has an impact on the overall network performance, which requires a constant adaptation of the user association to dynamically guarantee the best possible quality of service. To tackle these problems, we propose transferable user association policies. Transferability is an important key feature. It allows transferring the user association knowledge acquired in one speci c scenario to another one [START_REF] Pan | A Survey on Transfer Learning[END_REF], thus, resulting in a signi cant gain in terms of signaling and computation overhead.

Related work

Very few works in the literature have addressed knowledge transfer for user association [START_REF] Nguyen | Transfer Learning for Future Wireless Networks: A Comprehensive Survey[END_REF]. In [START_REF] Zhao | Agent Transfer Learning for Cognitive Resource Management on Multihop Backhaul Networks[END_REF], authors propose a transfer learning scheme, which enables base stations to share learning knowledge to improve system QoS. A transfer learning algorithm is developed in [START_REF] Zhao | Transfer learning for QoS aware topology management in energy e cient 5G cognitive radio networks[END_REF], which allows transferring the expertise knowledge learned from spectrum assignment to formulate a knowledge base for user association. Similarly, [START_REF] Zhao | Transfer Learning and Cooperation Management: Balancing the Quality of Service and Information Exchange overhead in Cognitive Radio Networks[END_REF] proposes to apply transfer learning for spectrum sensing. In [START_REF] Wu | Apprenticeship Learning Based Spectrum Decision in Multi-Channel Wireless Mesh Networks with Multi-Beam Antennas[END_REF], an apprenticeship learning mechanism is proposed for spectrum decision, namely for channel selection and hando . None of these works apply to user association in 5G networks or to the distributed multi-agent system. In this new chapter, we address the problem of transferability of the user association policy. We propose a novel Policy Network Architecture (PNA) and learning mechanism to derive a transferable user association strategy able to address changes in the radio environment, including channel dynamics, mobility of UEs as well as the variability of the number of UEs over time.

Contributions

The contribution of this chapter can be summarized as follows:

• Policy distillation in small-scale dynamics: we design an o ine distillation procedure consisting of integrating experiences related to di erent scenarios in a single one so that the users can adjust their association policy to abrupt changes in the radio environment. In particular, this is the case when the dynamic of the UE tra c requests changes in time and that the user association must be updated accordingly to avoid performance losses.

• knowledge transferability: unlike approaches in the literature [START_REF] Zhou | Deep Learning-Based Beam Management and Interference Coordination in Dense mmWave Networks[END_REF][START_REF] Zhao | Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Cellular Networks[END_REF], which require reconstructing the PNA (i.e., the NN architecture) and a completely new learning process each time the number or the position of UEs changes, our new proposed solution has the advantage of being transferable. In other words, both the PNA and the learned association skills can be transferred to a new scenario or to a new UE that joins the coverage area without any additional changes.

To do this, instead of having one speci c policy per UE as in the previous chapter, we come out with a single global PNA based on neural attention mechanisms, which can be trained e ciently with the experiences of all UEs. Thanks to the attention mechanism, our proposed architecture is transferable without any additional loss in performance.

• hysteretic proximal policy optimization: to optimize the proposed user association PNA, we use a Multi Agent Reinforcement Learning (MARL) framework with policy gradient algorithm, in particular, the PPO framework. However, dynamic channels and network tra c combined with the simultaneous interaction of agents make the radio environment highly non-stationary, which challenges MARL systems. Therefore, as in the previous chapter, to stabilize the learning process and improve the convergence, we rely on the concept of the hysteretic Q-learning [START_REF] Matignon | Hysteretic Q-Learning: An Algorithm for Decentralized Reinforcement Learning in Cooperative Multi-agent Teams[END_REF][START_REF] Omidsha Ei | Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability[END_REF]. We modify the PPO algorithm by introducing two clipping factors that induce a hysteretic behavior in policy updates. By doing so, agents become optimistic by giving less importance to the low reward received (e.g., because of environment noise) from actions that were successful in the past. We show through numerical simulations the bene t of such a method both on the convergence and the system performance.

• zero-shot generalization: in addition and in sharp contrast with existing solutions, the proposed mechanism has zero-shot learning capability, i.e., it can actively adapt to the variations due to the departure or arrival of UEs without requiring additional training iterations. For this purpose, we introduce a UE dropout mechanism, which consists in masking some UEs during the learning process to enable robustness of the learned policy w.r.t. the variation of the number of UEs in the network. We show that the dropout mechanism further stabilizes the learning process and enables better knowledge transferability.

• adaptability w.r.t. to channel and tra c dynamic: our learning mechanism also incorporates channel dynamics (fast fading, shadowing) and network tra c dynamic allowing the proposed solution to quickly adapt to uctuations of these parameters in practical implementations.

• distributed, centralized or hybrid architecture: as we come out with a solution involving only one global model shared by all UEs, another salient feature of the proposed architecture is that both the learning process and the execution can be either distributed or centralized or even be implemented in an hybrid way. In the case of a centralized implementation, the PNA may be located at a central controller, which assigns BSs to UEs based on their feedback. In a distributed setting, instead, each UE has a copy of the PNA and can take its association decisions locally. Finally, for a hybrid implementation, we show that parts of the PNA can be located at the UEs and at the central controller to leverage the advantage of both the centralized and distributed solutions.

The technical content of this chapter is based on the published journal paper [START_REF] Sana | Multi-Agent Reinforcement Learning for Adaptive User Association in Dynamic mmWave Networks[END_REF] and conference paper [START_REF] Sana | Transferable and Distributed User Association Policies for 5G and Beyond Networks[END_REF].

The remainder of this chapter is organized as follows. Section 4.2 presents the proposed adaptive user association based on policy distillation mechanism. Section 4.3 details our transferable user association solution. We provide numerical results in Section 4.5 and draw conclusions in Section 4.6. 4.1). This increases the non-stationarity of our system and makes the learning process more challenging. To deal with this, the agents may keep updating their policies online, to adapt them to an eventual drastic change in the environment's dynamics. This approach may lead to good performance if the convergence time of the algorithm is su ciently shorter than the time during which the system is stationary. However, in a multi-agent system, this condition is unlikely satis ed and thus, we design an o ine training strategy that allows the agents to perform well during the execution time even in strong non-stationary conditions. Let us assume that the time horizon T e can be divided into P time intervals T p such that P p=1 T p = T e , where the intensities D j (t), ∀j ∈ U remain constant. Accordingly, we denote by D (p) j the average data rate requested by UE j in the time interval p. Then, we de ne a task T p as the set of the UEs' tra c requests during the time interval p:

T p = D (p) 1 , D (p) 2 , ..., D (p) K . ( 4.1) 
In our setting, each agent does not have the global knowledge of each task speci cations; in fact, a UE is unaware of the data rate demands of the other UEs. However, we aim to derive, for each user, a unique policy that performs well in any task. This problem falls in the context of the so-called Multi-Task Reinforcement Learning (MTRL) [START_REF] Rusu | Policy Distillation[END_REF], where policy distillation consolidates multiple taskspeci c policies into a single policy. Indeed, policy distillation enables to transfer one or more action policies (learned knowledge) from expert Q-networks to an untrained network. Speci cally, with this mechanism, for every task, we run Algorithm 1 to collect the agents task-speci c policies π (T p ); that is, we derive as many policies as there are tasks for any single agent. Then, for every agent j and task p, we execute the related policy for a time T p and we store all the collected observations/action values o j (t), Q j (o j (t); θ j ) p into a memory M j (see Algorithm 3). Later, for each UE j, we conduct supervised learning on the generated database M j to learn a distilled policy π D j through a single Deep Recurrent Q-Network (DRQN) (having the same architecture as in Figure 3 Observe the new state o j (t).
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Using the expert policy π j (T p ) takes a j (t).
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Get Q j (o j ; θ j ). Store o j (t), Q j (o j (t); θ j ) into a memory M j . 9 end 10 end 11 Initialize the distilled DRQN weights θ D j . 12 Perform supervised learning using M j .

tempered Kullback-Leibler (KL) divergence loss function:

L(θ D j ) = E M j        so max Q j τ log so max Q j τ so max Q D j        , (4.2) 
where the temperature τ controls the way the knowledge is transferred from the expert policies to the distilled policy [START_REF] Rusu | Policy Distillation[END_REF]. Increasing the temperature softens the Q-values, which may prevent the distilled agent from taking the same actions as the expert. In contrast, when the temperature decreases, Q-values becomes more and more sharpened ensuring more knowledge distillation. Therefore, τ is typically set as a small positive value [START_REF] Rusu | Policy Distillation[END_REF].

Performance comparison

Here, we show the capacity of our scheme to adapt the association policy with respect to time-varying service requests in the network. As the service request (and its corresponding data rate) at each UE change during time, the user association has to adapt to keep optimizing the network performance i.e., balancing the cell load. To achieve this property, we use the aforementioned distillation mechanism.

Let us consider three services rate requirements denoted as 1, 2, and 3, corresponding respectively to an average data rate demand of D s1 = 5 Mbps, D s2 = 200 Mbps, and

D s3 = 1.5 Gbps.
1 may be related to web browsing or voice call services, 2 to online video streaming, and 3 to augmented reality or virtual reality applications. In the following, we focus on three time periods during which the UEs randomly change their service requests and we apply the distillation procedure (i.e., Algorithm 3 with P = 3). Figure 4.2 shows a sample of the performance of the proposed HDRQN with and without distillation. Speci cally, the agent policies without distillation are obtained through a single training phase over the three time periods. The upper part of this gure highlights the data rate changes for each of the 9 UEs in the network. The middle part of the gure describes the corresponding user association 1 . Finally, the lower part shows the evolution of the network sum-rate. Overall, Figure 4.2 shows that the proposed algorithm using distillation mechanism can e ectively adapt the user association to service request dynamics thus, outperforming the two baselines. For example, we see that UE 4 is served by SBS 1 in the rst two time intervals when it is requiring 3; in contrast, in the last interval, when it demands for 1, which is characterized by a lower data rate request, its access is provided by the MBS. Meanwhile, in the last interval, UE 5 asks for We set the loss temperature to τ = 0.01 via informal search. Here, D j (t) is expressed in Gbps.

R(t) (Gbps) Max-SNR Heuristic With-Distill. No-Distill. SBS1 × u1 × u4 × u3 SBS2 × u5 × u6 × u7 SBS3 × u2 × u8 × u9 UEs' association SBS1 × u1 × u4 × u3 SBS2 × u5 × u6 × u7 SBS3 × u2 × u8 × u9 SBS1 × u1 × u4 × u3 SBS2 × u5 × u6 × u7 SBS3 × u2 × u8 × u9
3; therefore, it hands o from the MBS to SBS 2, which can satisfy its demand for a higher data rate. Moreover, we can highlight that in the absence of distillation, the proposed solution shows poor performance during the rst two time periods. This is due to the forgetting e ect inherent to neural networks training: at the end of the third period, the agents have forgotten what they have learned in the rst two periods. The resulting policy is therefore only appraised to handle the last service for which it exhibits the best performance.

Concluding remarks

Despite that the solution based on policy distillation can adapt the user association decision to the environment's dynamics, like most of the state-of-the-art mechanisms, it optimizes the user association for a xed number and/or position of UEs in the network. This has two implications:

• Whenever the position or the number of UEs change, the solution of the user association has to be recomputed.

• Transferring the knowledge (association policy) from a given user already in the network to a new incoming user is not a trivial task. Indeed, each user learns its own DRQN, i.e., it has its own association policy, which is speci c to its location and requirements.

Design of Transferable Policy Network Architecture

Taking into account the targeted optimization objective (2.7), we derive in this section an adaptive association policy capable of solving the user association problem regardless of the location and the number of UEs in the network. The desired policy must be able to adapt to the departure or arrival of UEs from and in the network, as both events have an impact on the optimal user association. To do so, we propose to construct a transferable user association PNA, invariable with the number of UEs, which can be e ciently trained and then transferred to any UE that arrives in the cell. This policy leverages UEs' local information and if available global information to optimize the association decisions using a MARL framework.

System model

Let us recall the system model de ned in Section 2.3 of Chapter 2 (see Figure 2.2). Now we assume that the number K(t) of UEs varies over time e.g. due to arrival or departure of UEs or change of network deployment. We call a network deployment D(t), a collection of positions of all UEs in the network:

D(t) = x j (t), j (t) , j ∈ U(t) , (4.3) 
where x j (t) and j (t) denote respectively the two coordinates of UE j in deployment D(t), expressed w.r.t. a reference system common to all UEs and BSs. Accordingly, the set of UEs U(t) = {1, 2, . . . , K(t)} varies with time as well as the action space A j (t) of each UE j. Our goal is still to solve the optimization problem (2.9)-(2.12). However, we focus on association policies, which are also transferable and capable of solving problem (2.9)-(2.12) at each time t regardless of the location and the number of UEs in the network, i.e., regardless of the deployment D(t). This policy must adapt to the departure or arrival of UEs without requiring any additional learning procedure, as both events impact the optimal user association. Thus, a policy learned, e.g., in a scenario of K 1 UEs has to be e ectively applicable to a scenario of K 2 K 1 UEs without additional training. To achieve this, the architecture of the association policy needs to be transferable, so does the learned policy.

Policy network architecture: general framework

In this section, we provide a general description of the PNA illustrated in Figure 4.3, whose component design details will be speci ed in Section 4.3.3. For now, let us denote by o L j (t) and o G j (t) the local and global observation of UE j respectively. o L j (t) comprises the set of measurement signals directly accessible to (or measurable by) the user's device. Instead, depending on the optimization objective and constraints, o G j (t) embeds higher-level information (macro observations), which can be collected
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a j (t) and forwarded to UEs by the central controller. Then, in our proposed framework, each UE starts by building its local state encoding u j (t) = f (o L j (t)) and global state encoding v j (t) = (o G j (t)) using di erentiable and learnable functions f (•) and (•)2 (i.e., functions with learnable parameters like NNs). Next, the local and global state encoding are combined together to form the agent context encoding c j (t) using a combiner function h(•), e.g., a concatenation operator, or a neural network. The role of this combiner function is to build UE context understanding vector, as a representation of its local and global observations. Now, given the context vector c j (t), the goal of the learning agent j at each time instant t, is to de ne an association probability vector p j (t) = [p 0, j , . . . , p N s , j ] ∈ [0, 1] N s +1 with i ∈A p i, j = 1 and p i, j = 0 ∀ i A j . Then, UE's action a j (t), which corresponds to a connection request towards the BS indexed by a j (t) in A j , is sampled from the distribution characterized by the p i, j . Thus, the learning problem here consists in deriving an association policy that optimizes the corresponding association probability vector p j (t), so that sampling from it maximizes the network utility function (3.5).

Figure 4.3 describes the proposed PNA. Note that in this architecture, UEs' agents share the same model, i.e., f (•), (•), and h(•) are common to all UEs. This setting does not preclude UEs from taking di erent actions as they do not observe the same inputs. In contrast, sharing the parameters among UEs enables a better skill transfer since there is only a unique policy (in contrast to having one policy per UE as in the previous chapter), which can be e ciently and simultaneously trained with all UEs' experiences.

On transferable policy architecture: PNA components design

For the policy architecture to be transferable, a proper design of the PNA components is required. Our objective is to construct a policy architecture whose size does not vary with the number of UEs in the network, which is bound to change over time. In the following, we will describe the main components of the proposed PNA, including the contents of local and global observations, as well as the characteristics of encoding functions f (•), (•) and h(•), which allow the transferability of the policy architecture.

UE local observation encoding

In this study, we assume that at each time step, each UE j can estimate the Received Signal Strength (RSS) and the corresponding Angle of Arrival (AoA) w.r.t. its surrounding BSs, which enables UEs to have a broad perspective of their environment. We denote with RSS i, j and ϑ i, j the estimated RSS and AoA of UE j w.r.t. BS i, respectively. Moreover, as in the previous chapter, a UE receives an acknowledgment (ACK/NACK) signal whenever its connection request succeeds (ACK j = 1) or fails (ACK j = 0), which may happen due to the limited resources available at each BS (2.11) inducing requests collision. Hence, we de ne the local state of a UE, o L j (t), as follows 3 :

o L j (t) = a j (t -1), R a j (t -1), j , R(t -1), ACK j , RSS i, j i ∈A j , ϑ i, j i ∈A j . (4.4) 
Here, R a j (t -1), j represents the achievable communication rate when UE j is associated with the BS indexed by a j (t -1). Note that the size of o L j (t) does not depend on the number of UEs, in sharp contrast with [START_REF] Zhao | Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Cellular Networks[END_REF]. Then, we obtain the n-dimensional local encoding vector u j (t) = f (o L j (t)), where f : R l → R n is a neural network, and l is the size of the vector obtained after the concatenation of the elements in o L j (t).

Remark 3 (Collision events handling). Collisions may occur when a BS receives more connection requests than it can support. In the previous Chapter, we severely discouraged collisions by zerorewarding UEs when collision events occurred; however, here, as the positions of UEs change over time, the collision management is considerably more complex. Agents must learn that the collision events depend not only on their actions but also on their relative positions. To handle such complexity, we consider a softer solution: when a collision occurs, the BSs send a NACK signal to notify UEs of the collision event, then each BS selects among the colliding UEs the best ones to associate with, according to their association probability. In this way, we do not severely set the reward to zero to punish UEs, and we directly relate the collision events to the training performance.

UE global observation encoding

After an action, a j (t), the controller can encode for UE j some meaningful information about the global state (i.e. macro observations) o G j (t) such as the estimated position of UEs of interfering links, i.e., of active mmWave links, the load of each BS, etc. However, note that incorporating more information does not necessarily imply performance improvement as it also increases the agent's state space, thus requiring more exploration to discover the intrinsic state/action relation at the risk of misleading the agent. In our scenario, we consider the information about the actual rate perceived by each UE j and the position of the potential interferers of UE j, i.e., the set of UEs N j , susceptible to impact the association decision of UE j through the interference resulting from their communications 4 . Thus, we de ne o G j (t) as:

o G j (t) = ς l = x l , l , R a l (t -1),l , l ∈ N j . (4.5)
Then, in the sequel, we propose two solutions to construct UE j global state encoding vector v j (t) = (o G j (t)). Fixed-size encoding. A naive solution to construct v j (t) is to rst concatenate all elements in o G j (t) resulting in a vector of size m = 3 × card(N j ). Then, we obtain the local encoding vector v j (t) = (o G j (t)), where : R m → R n is also a NN. However, such an approach i) has limited scalability as the size of o G j (t) varies with the number of UEs, especially in the neighborhood, and ii) requires ordering elements before concatenation, preventing transferability.

Attention mechanism for order-agnostic and variable-size encoding. An e cient solution to the problem should be agnostic of the ordering in o G j (t). Moreover, to build a scalable and transferable architecture, the size of v j should be independent of the length of o G j (t), i.e., the number of UEs in UE j neighborhood. To satisfy these properties, we adopt ideas from the dot-product attention mechanisms developed in [START_REF] Vaswani | Attention is all you need[END_REF]. Considering this approach, let k j = k ς j , q j = q ς j , and ν j = ν ς j , where k , q , ν : R 3 → R n are also encoding functions (e.g., neural networks), and k j , q j , ν j denote the key, the query and the value associated with UE j, respectively. For a given UE j, we compute for each UE in its neighborhood N j a weight (or score) α k, j α k, j = so max

q k k T j √ n k ∈N j . (4.6) 
Here, so max(•) is the softmax function also known as the normalized exponential function. Let α j = α k, j , k ∈ N j . The vector α j represents the interaction of UE j with its neighbors. Then, we compute the encoding v j by aggregating all values' information from the neighborhood as follows:

v j = k ∈N j α k, j ν k . (4.7) 
Remark 4. By construction, the size of v j in Eqn. (4.7) is invariable with the size of N j . That is to say, whenever the number of UEs varies, there is no need to change the PNA.

Remark 5. The above process can also be viewed as a message-passing between UEs. In this case, UEs only need to exchange their queries and values with each other in the neighborhood.

Local and global information combining. Now, once we obtain the UE local and global encoding vector, they are merged to build its context understanding vector c j , i.e., its perception of the radio environment. This is done thanks to the combiner function h(•) introduced in Section 4.3.2. Here, we propose two design solutions for the combiner function: the simple combiner and the attention-based combiner.

Simple combiner. A simple combiner rst concatenates u j and v j to form a 2n-dimensional embedding vector z j (t) = u j (t) ⊕ v j (t), where ⊕ denotes the concatenation operation. The agent's context encoding c j (t) is nally obtained from z j (t) as:

c j (t) = h z j (t) , (4.8) 
where h : R 2n → R n is also taken here, as a NN.

Self-attention combiner. For the UE to be able to selectively weight the importance of local or global information, the combiner is constructed using a self-attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF]:

c j (t) = β T j u j (t) v j (t) . (4.9)
Here, the combiner function h : R n × R n → R 2 and β j = so max h(u j (t), v j (t)) ∈ R 2 . The intuition here is that there may be some scenarios where either local or global information is su cient for the UE to understand its context. Worse still, the UE can be misled in trying to always consider all the information it receives.

Proximal Policy Optimization

Our solution relies on MARL. In a MARL system, agents learn by interacting with a shared environment by making decisions following a Markov Decision Process (MDP). In MDP, the action a j (t) of an agent j in a given state s j (t) leads it to the next state s j (t + 1) and results in a reward r j (t). From the underlying experience e j (t) = {s j (t), a j (t), r j (t), s j (t + 1)}, the agent learns its policy π j,θ (•|•), parameterized by θ , the set of PNA parameters, where π j,θ (a j |s j ) is the probability that agent j takes action a j in state s j5 , to maximize an accumulated long-term γ -discounted reward G j (t) = T e τ =t +1 γ τ -t -1 r j (τ ) over an episode -a new network deployment -of duration T e : π * j,θ = arg max

π j E t G j (t) . (4.10) 
In our study, we consider the particular case of cooperative MARL [START_REF] Buşoniu | Multi-agent Reinforcement Learning: An Overview[END_REF], i.e., UEs share the same reward, hence, they are assigned to the same objective of maximizing the network utility function: r j (t) = R(t), ∀j. Moreover, UEs also share the same policy, i.e., π j,θ = π θ , ∀j.

In general MARL, an agent has only access to a partial observation o j (t) = o L j (t), o G j (t) of the actual state s j (t), which is unknown, resulting in Partially Observable Markov Decision Process (POMDP) [START_REF] Omidsha Ei | Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability[END_REF]. Moreover, MARL is subject to non-stationarities due to simultaneous interactions of agents with the environment, which make the learning process more complex. In the literature, policy gradient algorithms are used to solve this problem [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF], by iteratively updating the policy parameters θ as follows:

θ t +1 = θ t + µ ρt (4.11) ρt = E π ∇ π θ t (a j |o j ) π θ t -τ (a j |o j ) Â(a j , o j ) , (4.12) 
= E π ∇ζ (θ t ) Â(a j , o j ) .

Here, the expectation E π [•] is taken under the stochastic policy π . µ denotes the learning rate, ρt is the gradient estimator, ζ (θ t ) = π θ t (a j |o j ) π θ t -τ (a j |o j ) is the ratio between the estimate probability at time t and time tτ , and Â(•, •) denotes the advantage estimator, which measures the advantage of selecting a given action in a given state. Â(a j , o j ) can be estimated using one step Temporal Di erence (TD) error [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] or Generalized Advantage Estimation (GAE) [START_REF] Schulman | High-dimensional continuous control using generalized advantage estimation[END_REF]. Hence, at each iteration, the update of θ is proportional to the advantage estimator to favor actions that yield the highest advantages and inversely proportional to the action probability to encourage exploration by enabling actions of lowest probability to be sampled. However, policy gradient updates su er from high variability as ρt can take large values from one iteration to another, leading to large updates. To tackle this problem, the PPO approach introduces a constraint in policy updates preventing large discrepancies between iterations [START_REF] Schulman | Proximal Policy Optimization Algorithms[END_REF]. This is done by minimizing the ϵ-clipped surrogate objective function6 

L(θ ) = E π min ζ (θ ) Â, clip (ζ (θ ), 1 -ϵ, 1 + ϵ) Â , (4.13) 
where clip(x, a, b) = min (max (x, a) , b). It is noteworthy that the quantity in the expectation is a lower, hence, pessimist bound of ζ (θ ) Â so that agent pessimistically ignores updates that will lead to a high change in its policy.

Proposed hysteretic proximal policy optimization

In multi-agent environments, an agent should not be pessimistic in the same way for both "positive" (ζ (θ ) > 1) and "negative" (ζ (θ ) < 1) experience. Indeed, due to the interaction of multiple agents with the environment and the common reward of the cooperative framework, an agent may receive a lower reward because of the bad behavior of its teammates. This may cause the user to change its policy at the risk to misleading it. To overcome this issue, following the concept of hysteretic Q-learning in [START_REF] Matignon | Hysteretic Q-Learning: An Algorithm for Decentralized Reinforcement Learning in Cooperative Multi-agent Teams[END_REF], we introduce hysteretic proximal policy optimization, where we modify the surrogate loss as follows:

L(θ ) = E π min ζ (θ ) Â, clip (ζ (θ ), 1 -ϵ 1 , 1 + ϵ 2 ) Â , (4.14) 
where  is estimated using one step TD error; we use ϵ 1 for negative updates and ϵ 2 for positive updates, where ϵ 1 < ϵ 2 . In this way, an agent gives more importance to updates that improve its policy rather than to ones that worsen it. This setting is particularly important when agents do not have equal contribution to the team's reward and for decentralized learning.

Note that the association policy can be e ciently trained in a centralized way with the experience of all agents or in a decentralized way, e.g., by leveraging the decentralized and distributed PPO approaches presented in [START_REF] Wijmans | DD-PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion Frames[END_REF].

Training with variable number of UEs: proposed UE dropout mechanism

To further enhance the robustness of the learning to the variability of the number of UEs over time, we introduce a UE dropout mechanism 7 . Let K 0 be the initial number of UEs in the network. Between episodes of the learning phase, some UEs are randomly selected and masked out (dropped out) to simulate a dynamic environment w.r.t. the number of UEs. To mask a UE j at a given time without impacting the learning, we make its agent's observations o j correspond to those of a UE located very far from the BSs (e.g. "in nitely far"), so that it can be no more associated with any of the SBSs. As a result, its impact on the other UEs (in terms of interference, thus, in terms of association decisions) becomes negligible. In this way, the masked UE seemingly appears as non-existent in the cell for the other UEs.

To this end, during the learning phase, we randomly select the UEs to be masked, by assigning to each UE j an independent Bernoulli variable B j ∈ {0, 1}. Event B j = 0 in a given episode represents the masking of UE j and happens with probability 1p j . As a result, the average number m K of UEs per episode that are not masked and the associated variance

σ 2 K are m K = E K 0 j=1 B j = K 0 j=1 p j . (4.15) 
σ 2 K = E       K 0 j=1 B j -m K 2      = K 0 j=1 p j (1 -p j ). (4.16) 
As we assume no di erence between UEs, i.e. they have the same priority, without lost of generality, we set p j = p 0 , ∀j. Accordingly, K 0 j=1 B j follows a Binomial distribution with mean m K = K 0 p 0 and variance σ 2 K = K 0 p 0 (1p 0 ) (see Figure 4.4). σ 2 K measures the variability of the number of UEs in the cell between episodes. Although high variability may suggest better generalization, it leads to a large disparity in the number of UEs between episodes, which may prevent the convergence of the learned policy. Therefore, a careful choice of the value of the hiding probability p 0 must be made to achieve the expected improvement in learning robustness via the dropout mechanism.

Important note 2 (Practical implementation of the proposed solution). In contrast to [START_REF] Zhao | Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Cellular Networks[END_REF], we come out with a solution with only one global policy shared by all UEs. Consequently, it can be exibly adapted to the speci c design constraints of di erent practical implementations:

• Centralized user association: in a centralized deployment, the PNA can be located at the central controller responsible for assigning a BS to each UE, based on their feedback. This solution reduces the computational complexity at the UEs' side. However, it may result in a large signaling overhead as it requires collecting information from all UEs to take the association decisions.

• Distributed user association: in a fully distributed setting, each UE has a full copy of the weights of the PNA, and can take locally its association decisions. Although this solution alleviates the computation burdens due to its distributed nature, it is also subject to an increased downlink signaling overhead, especially when the global information o G j (t) has to be sent to each UEs.

• Hybrid user association: to nd a hybrid compromise, part of the PNA (like the encoding function (•)) can remain at the central controller and the rest is deployed at the UE's level. In this case, the central controller makes sure to provide each user with the computed vector v j (t) to derive its association policy, taking into account local observations o L j (t) (see Figure 4.3). As a result, the signaling overhead is limited, as well as the computation complexity both on the UEs' and the controller's sides.

In the Appendix B, we provide some details on a practical implementation of the propose mechanism in a distributed setting. 

Simulation Results

In this section, we evaluate the e ectiveness of our approach in di erent simulation settings. We assess both the impact of the training parameters and the dynamics of the radio environment on the system performance. We also evaluate the zero-shot generalization capacity of the proposed framework and, consequently, its transferability.

Radio Environment. In our simulations, we consider K 0 = 15 UEs randomly located in a bidimensional region, under the coverage of N s = 3 SBSs working at mmWave frequencies with a carrier frequency of 28 GHz, and one MBS communicating at 2 GHz. We assume that when UEs and SBSs communicate together, they use the same antenna radiation pattern obtained through the analog beamforming (see diag 2 in Figure 3.4). In contrast, the MBS transmits via a 17 dBi omnidirectional antenna. In addition, we assume that the error in the estimation of the AoA follows a normal distribution with a mean equal to 2°. Also, in our simulations, we consider three types of service corresponding to an average data rate demand D j ∈ {5, 200, 1500} Mbps . We assume that the tra c request of a UE j is a random variable, which follows a Poisson distribution with intensity D j = E D j (t) . Simulation parameters are summarized in Table 4.1. Additional simulation parameters can be founded in Table 3.1.

UE action space.

Since all UEs share the same policy network, A coincides with the action space. In this way, we guarantee a xed action space for all UEs irrespective of their positions. However, a UE j can only be associated with BSs in A j ⊆ A. Accordingly, unauthorized actions or connection requests a j (t) A j are redirected towards the MBS, i.e., they appear as connection requests to the MBS.

Learning parameters speci cation. We xed the size of the encoding functions n = 128. All encoding functions are composed of only one hidden multi-layer perceptron (MLP) of n neurons. The network parameters are optimized using actor-critic PPO [START_REF] Schulman | Proximal Policy Optimization Algorithms[END_REF], where both actor and critic comprise also one hidden layers with 2n neurons. All layers use a recti er linear unit (ReLU) activation. We set the learning rate µ to 10 -4 and the discounting factor γ = 0.6. Unless speci ed, we empirically x the clipping factors to ϵ 1 = 0.01, ϵ 2 = 0.5, the time horizon to T e = 250 and the dropout probability to p 0 = 0.95. Also, we limit the neighborhood of a UE to its k-nearest neighbors, where k ≤ 15.

Benchmarks. As a comparison, we consider the same benchmarks as in the previous chapter, i.e., the Max-SNR algorithm, which associates UEs based on links with the maximum SNR, and the centralized heuristic algorithm, which consists in associating UEs, starting from the links with the maximum SNR, and in an iterative way as long as it increases the network utility. Originally proposed in [START_REF] Zhou | Deep Learning-Based Beam Management and Interference Coordination in Dense mmWave Networks[END_REF], the centralized heuristic algorithm is shown to exhibit good performance, speci cally in an interferencelimited network. Therefore, we use it as a baseline solution in place of the optimal solution, infeasible, due to the network size and complexity.

To assess the convergence performance of the proposed algorithm, we de ne

r d (t) = R Trans. RL (t) -R Heur. (t), (4.17) 
which corresponds to the di erence of the average reward over an episode reached by the proposed algorithm (denoted Trans. RL) compared to the centralized heuristic approach (denoted Heur.). For sake of clarity, we plot the associated rolling average and standard deviation on a 100-sized window, with a logarithmic scale on the x-axis. Also, unless otherwise speci ed, we represent on the histograms, the average performance over N = 500 random deployments of UEs.

Convergence properties

In this section, we evaluate the algorithm's convergence w.r.t. the above learning parameters. 

E ect of hysteretic clipping factors on convergence

Let us start by evaluating the impact of the clipping factors ϵ 1 and ϵ 2 on the convergence. Figure 4.5 shows the evolution of r d (t) in two settings: ϵ 1 = ϵ 2 = 0.2, corresponding to the setting of the vanilla PPO proposed in [START_REF] Schulman | Proximal Policy Optimization Algorithms[END_REF], and our empirically optimized hysteretic setting ϵ 1 = 0.01, ϵ 2 = 0.5. We show that by simply introducing a hysteretic e ect in the clipping factors, we notably improve the stability and the learning performance, reaching the same performance as the heuristic algorithm (as r d (t) converges on average to zero). 4.5.1.2 Impact of the global information o G j (t) on convergence Here, we assess the add-on impact of the global information o G j (t) for the learning convergence. Figure 4.6 shows the evolution of r d (t) when UEs have or do not have access to global information. We remark that o G j (t) can e ectively help accelerate the convergence of the algorithm. However, after 5 × 10 3 episodes, the two curves eventually end up with the same performance. This last result comes from the fact that the information (i.e., ς k , k ∈ N j ) carried on o G j (t) is also embedded in o L j (t) through the RSSI and R(t), although this information is "drowned". By separating each piece of information in o G j (t), we further improve UEs' context understanding, thus the learning speed. We can see that with the attention-based encoding, we obtain the same learning curve as the xed-size encoding, with a slight improvement in learning stability. Therefore, by empowering our proposed architecture with an attention mechanism, we gain transferability without loss in performance. Attention-based combiner. The attention-based combiner has a di erent role in our framework. It enables each UE to weigh the importance of local or global information. The simple combiner can be viewed as a particular case of the attention combiner, where we set β T j = [0.5, 0.5] in Eqn. (4.9). Figure 4.8 shows the learning curves for sum-rate maximization in two scenarios corresponding to full-bu er tra c, i.e., D j (t) = ∞ (see Figure 4.8a) and dynamic network tra c, i.e., D j (t) ∞ and the tra c dynamic follows a Poisson Distribution (see Figure 4.8b). Whereas the attention-based combiner and the simple combiner exhibit almost the same performance when there is no tra c (see Figure 4.8a), we can observe in Figure 4.8b, an improvement of the attention-based combiner over the simple one in the case of dynamic tra c, which is more realistic. This is because, in our particular setting, UE's local observation is more informative than the global one as it embeds the UE's tra c request D j (t). 
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Figure 4.9: E ect of dropout mechanism for di erent p 0 . The policy was trained with the following con guration K 0 = 15, N i = 3, γ = 0.9. Then we evaluate the performance for di erent number of UEs.

E ect of UE dropout mechanism

Here, we evaluate the impact on the system performance of UE random dropout. Figure 4.9 shows the average network performance for di erent values of dropout rate p 0 . For each dropout rate, we train the network for K 0 UEs and then evaluate the performance on a set of K ∈ {10, 20, 25, 30} UEs. We can observe that by playing with the dropout probability p 0 , one can improve the network performance. For instance, by taking p 0 = 0.95 instead of p 0 = 1 (i.e., no dropout), we observe 4% performance improvement when K = 30. However, as we decrease p 0 to 0.8, the performance decreases as well to 3% compared to p 0 = 1. This is mainly because decreasing p 0 also increases the variance as shown in Figure 4.4, leading to a large discrepancy between episodes. In conclusion, a p 0 close but not equal to 1 is bene cial in this scenario. Therefore, for the rest of the paper, we x p 0 = 0.95. 

Impact of the discounting factor γ

The discounting factor also impacts the learning convergence. Lowering γ accelerates the convergence to the detriment of performance. Increasing γ may improve the performance at the risk of miscoordination. As Figure 4.10 shows, when γ = 0.6, the convergence is much faster than for γ = 0.9, which eventually ends up yielding better performance. Here, we aim to prove the advantage of the proposed transferable user association compared to solutions of the literature, including our previous Hysteretic Deep Recurrent Q-Network (HDRQN) algorithm for user association in Chapter 3. Recall that the HDRQN solution is conceived and optimized for networks in which the UEs' position does not vary. Therefore, applying a policy trained for a given set of xed UEs to a di erent network geometry does not work satisfactorily, in general. To illustrate this aspect, we train the HDRQN algorithm in a given deployment of 15 UEs and then evaluate its performance in 500 randomly chosen deployments. The average performance is showed in Figure 4.11 and compared with the new proposed transferable solution and the two baselines solutions. We can observe that the sum-rate performance of the HDRQN falls below the Max-SNR. This exempli es that the HDRQN algorithm is deployment-speci c and its generalization to scenarios with mobility is not straightforward. Indeed, in the HDRQN setting, a new training step is required whenever a new deployment is speci ed. In contrast, our new proposed solution is adapted to any deployment, even when the number of UEs varies and with zero-shot generalization capability. Moreover, we will show in the following that the performance of our proposed scheme outperforms even more tangibly the other state-of-the-art solutions, speci cally when considering dynamic network tra c and UEs' mobility. 

Policy transferability property

To assess how transferable the proposed algorithm is, we consider training the PNA for a reference number of users, K 0 = 15 and for a xed number of beams per BS, N i = 3, ∀i. Then we evaluate the performance of the algorithm for di erent network deployments with a variable number of UEs K ∈ {10, 20, 25, 30}, including changes in the UEs' position. 

N i = 3, ∀i).
Testing con guration: K is kept xed and equal to K 0 , N i varies.

Zero shot generalization capacity

To evaluate the generalization capability of the proposed algorithm, we train the PNA to optimize the network sum-log-rate, i.e., α = 1. We remark that the proposed architecture can e ectively and e ciently adapt to change in the number of UEs and the number of beams available per BS, without requiring additional training steps. In particular, in Figure 4.12, when the number of UEs doubles w.r.t. the reference training point i.e.from K 0 = 15, to K = 30, the proposed transferable PNA exhibits 14.5% and 15.5% increase in network sum-rate compared to max-SNR and the heuristic approach respectively. Moreover, an additional feature of the proposed architecture, is that even when the number of beams available per BS later changes, which impacts the collision events, the algorithm still adapts to maintain the system's performance. Indeed, in Figure 4.13 where we evaluate the performance of the algorithms for di erent N i ∈ {2, 3, 4, 5, 10, 15}, we can observe that as N i increases, implying less and less collisions since K is xed, the algorithm keeps outperforming the two benchmarks. When N i becomes greater than 5, i.e., 3 i=1 N i > K = 15, there is no improvement in the sum-rate as there are enough beams to serve all UEs.

Performance w.r.t. network tra c

Now we evaluate the system performance w.r.t. network tra c. Here again, the PNA is trained for K 0 = 15 to optimize the network sum-rate (α = 0). Figure 4.14a shows the case of full-bu er tra c (i.e., D j (t) = ∞) and Figure 4.14b the case of dynamic tra c. We remark that in case of full-bu er tra c, the proposed method performs better than the two benchmarks but performs slightly worse 8 than the heuristic algorithm when generalized to K = 10 and K = 30. However, when we consider the network tra c, the proposed transferable solution clearly outperforms the two benchmarks, yielding 102.1%, 66.66% network sum-rate increase for K = 30, w.r.t. the max-SNR and heuristic algorithms, respectively.

QoS satisfaction

In this section, we evaluate the QoS satisfaction of users (denoted κ i, j in Eqn. 2.7) for a network of K = 15 UEs under two con gurations: N i = 15, ∀i and N i = 3, ∀i beams. association becomes complex as there are fewer beams than UEs, the performance of the two baselines algorithm falls down in comparison to our proposed solution. For example, 75% of the UEs get fully satis ed with our solution, whereas only 65% is satis ed with the Max-SNR algorithm and 70% with the heuristic approach. However, it is worth noting that UE's satisfaction does not necessarily re ect the global network performance we are interested in. Indeed, two UEs can experience the same QoS satisfaction, whereas they do not have the same contribution to global network performance. For example, for two UEs with a data request of 100 Mbps and 1 Gbps respectively, if there is only one beam, our algorithm will give more importance to the most demanding UE as it contributes most to the global network objective.

Conclusion and Perspectives

In this chapter, we investigated the problem of transferability of user association policies for 5G and beyond networks. To this end, we proposed a policy network architecture and a learning mechanism that enable users to learn a robust and transferable user association policy. The latter is adapted to withstand the environment dynamics, including fast fading, evolving tra c requirements, and time-varying number and position of UEs. Our proposed solution is based on deep multi-agent reinforcement learning, where agents leverage local and possibly global observations to optimize a network utility function.

With our proposed novel architecture, the learned policy has zero-shot generalization capabilities, and can directly be transferred to new incoming UEs, which can start making decisions without requiring additional training steps. Moreover, our solution is exible as it can be implemented in a centralized, distributed, or hybrid way. Numerical results showed that the proposed solution can achieve large network sum-rate gains especially when we consider network tra c and mobility, indeed, doubling the network sum-rate compared to baseline approaches available in the literature. Eventually, our proposed framework does not only apply to the user association problem but can be exploited to solve other complex radio resource management problems involving decision making.

In the next chapter, we will investigate how the proposed solution can be exploited for uplink communications for dynamic computation o oading enabled by edge computing, which involves optimization of both radio and computing resources.

The technical contributions of this chapter have been validated by the following paper and patent.

[C3] M. Sana, N. di Pietro, and E. Calvanese Strinati, "Transferable and Distributed User Association Policies for 5G and Beyond Networks, " IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Virtual, Sept. 2021.

[P2] M. Sana, N. di Pietro, E. Calvanese Strinati, and B. Miscopein, "Method for associating user equipment in a cellular network according to a transferable association policy, " Filed in September 30, 2020, FR2009989.

Introduction

I this chapter, we study the problem of dynamic computation o oading for energy-e cient edge computing. In this problem, the User Equipments (UEs) continuously generate data (possibly with unknown statistics), which require bu ering before transmission and processing at a distant Edge Server (ES) through a set of Access Points (APs). In general, this process introduces a queuing delay both from a communication and computation point of view. Accordingly, meeting the quality of service of UEs requires usually imposing average or probabilistic latency constraints on the queuing delay. The resulting problem is challenging, as it requires e ective management of limited radio and computation resources in complex and time-varying environments, including channels' dynamic and UEs' mobility. In this work, we focus on the energy-delay trade-o . To this end, UEs, APs, and ES exploit low-power sleep operations: they can activate sleep states in which they cannot communicate and/or calculate for a limited period, thus consuming less energy. In this context, our goal is to minimize the long-term system energy consumption under strict end-to-end delay constraints at each UE. By using Lyapunov stochastic optimization tools, we show that this long-term optimization can be reduced to a per slot problem, where solving the latter in a per slot fashion guarantees the expected long-term goal. Moreover, we show that the new problem can be decoupled into a CPU scheduling and a user association problem. We e ciently and optimally solve the former using a fast iterative algorithm and hinge on our proposed scheme in Chapter 4 to solve the latter.

Motivations

Wireless communication networks are experiencing an unprecedented revolution, evolving from pure communication systems towards a tight integration of communication, computation, caching, and control [3]. Such a heterogeneous ecosystem requires a exible network design and orchestration, able to accommodate, on the same network infrastructure, all the di erent services with their requirements in terms of energy, latency, and reliability. This requires an enhancement of the radio access network, e.g., through the adoption of millimeter-wave (mmWave) communications, densi cation of APs, and exible management of the physical layer [START_REF] Ahmadi | Architecture, Technology, Implementation, and Operation of 3GPP New Radio Standards[END_REF]. In addition, the deployment of computing and storage capabilities at the network edge will enable network function virtualization and fast processing of the myriad of data collected by sensors, cars, mobile devices, etc. For this, Multi-Access Edge Computing (MEC) was conceived to enable energy-e cient, low-latency, highly reliable services by bringing cloud resources close to the users. In this context, dynamic computation o oading allows resource-poor devices to transfer application execution to ESs to reduce energy consumption and/or latency. From a network management perspective, this task is complex and requires the joint optimization of radio and computation resources. To address this problem, we introduce L2OFF: Learning to O oad, a framework built on top of the transferable user association policy architecture proposed in Chapter 4 that successfully addresses the problem of computation o oading.

Related work

The problem of dynamic computation o oading has received wide attention from academia and industry [START_REF] Pham | A Survey of Multi-Access Edge Computing in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art[END_REF]. In [START_REF] Li | Resource Allocation and Task O oading for Heterogeneous Real-Time Tasks With Uncertain Duration Time in a Fog Queueing System[END_REF], a scheduling strategy is proposed to counterbalance task completion ratio and throughput, hinging on Lyapunov optimization. [START_REF] Chen | Energy E cient Mobile Edge Computing in Dense Cellular Networks[END_REF] aims at minimizing the long-term average delay under a longterm average power consumption constraint. In [START_REF] Wang | Cooperative Edge Computing with Sleep Control under Non-uniform Tra c in Mobile Edge Networks[END_REF], the long-term average energy consumption of a MEC network is minimized under a delay constraint, using a MEC sleep control. Also, [START_REF] Chang | Resource Provision for Energy-E cient Mobile Edge Computing Systems[END_REF] minimizes the energy consumption under a mean service delay constraint, optimizing the number of active base stations and the ESs' computation resource allocation, leveraging sleep modes for APs and ESs. In [START_REF] Nan | Adaptive Energy-Aware Computation O oading for Cloud of Things Systems[END_REF], Lyapunov optimization is used to reduce the energy consumption of a fog network, guaranteeing an average response time. In [START_REF] Yu | U-MEC: Energy-E cient Mobile Edge Computing for IoT Applications in Ultra Dense Networks[END_REF], the authors exploit Lyapunov optimization, Lagrange multipliers, and sub-gradient techniques are exploited to optimize devices' and APs' energy consumption under latency constraints, with AP sleep states.

Recently, the advances of Machine Learning (ML) and Deep Reinforcement Learning (DRL) in wireless networks have opened up new possibilities for low-complexity and e cient algorithms for MEC [3], especially when model-based optimization is challenged by the di culty or even impossibility of deriving mathematical models that accurately predict the networks' behavior. In this sense, the authors of [START_REF] Bi | Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation O oading in Mobile-Edge Computing Networks[END_REF] propose to couple model-based Lyapunov optimization with model-free DRL and formulate a sum-rate maximization problem under queue stability and long-term device energy constraints. However, their reference scenario considers a single AP, and no CPU scheduling is optimized at the ES.

[99] also considers the same approach, intending to minimize the sum of the power consumption of the edge nodes, and a cost charged by a central cloud to help the edge node in processing the tasks under stability constraints. However, they do not consider the energy consumption of end UEs and APs.

Contributions

The contribution of this chapter is as follows:

• A long-term energy minimization problem: we consider a scenario in which multiple UEs perform computation o oading and compete for radio and computation resources in a network with many APs deployed with one ES, all exploiting low-power sleep operation modes. In this work, we target to minimize the long-term system's cost measured in terms of money spent on energy consumption. Accordingly, we treat the underlying problem as a long-term system energy minimization under strict delay constraints. We do not assume any knowledge of radio channels and data arrival statistics. Despite this, we come out with an online solution, which in each time slot, optimizes the UE-AP association in a distributed way using Multi Agent Reinforcement Learning (MARL), and the ES's CPU scheduling via a fast iterative algorithm whose solution's complexity scales linearly in the number of UEs. The resulting framework provides near-optimal performance.

• Lyapunov meets distributed reinforcement learning: we combine the convenience of a model-based solution that exploits Lyapunov stochastic optimization, with the power of model-free solutions based on MARL, aiming at energy-e cient computation o oading from an overall network perspective.

• A uni ed framework for joint radio and computing resource management: compared to the state-ofthe-art works, the originality of our strategy lies in the capability of simultaneously: i) minimizing the duty cycles of all the network elements under delay constraints; ii) e ectively managing radio interference; iii) being low-complexity; i ) combining Lyapunov optimization with DRL;

) being distributed and compatible with UE's mobility. The latter point, in sharp contrast with [START_REF] Bi | Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation O oading in Mobile-Edge Computing Networks[END_REF], results from the zero-shot generalization capability of our solution: it optimizes the learned computation o oading policy for all possible deployments of UEs using attention neural networks, and adapts when the number of UEs di ers from the initial training point.

The technical content of this chapter is based on the published conference paper [START_REF] Sana | Energy E cient Edge Computing: When Lyapunov Meets Distributed Reinforcement Learning[END_REF]. The remainder of this chapter is organized as follows. Section 5.2 introduces the system model and formulates the computation o oading problem as a long-term optimization. Section 5.3 details the proposed solution to e ciently address the formulated problem. We provide numerical results in Section 5.4 and draw conclusions in Section 5.5.
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Energy-E cient Edge Computing: System Model

We consider the scenario depicted in Figure 5.1, where K UEs o oad computational tasks to an ES, via one out of N possible APs. Let U and A be the sets of UEs and APs, respectively. Also, let A j be the set of APs UE j can be associated with, which depends on the UE's coverage. In this dynamic system, we divide time into slots of equal duration τ . Speci cally, we assume that a fraction β ∈ (0, 1) of each slot is devoted to controlling signaling and (1β) to data transmission from the UEs to the ES through APs and to data computation at the ES, which can simultaneously occur because they operate on separate data. At each time slot t, the dynamic of the radio channels and data arrivals at the UEs varies with a priori unknown statistics. Consequently, the achievable data rate over the radio channels and the computation rate at the ES vary with time. These variations also depend on UEs' mobility and the dynamic of the interference resulting from the communication of multiple UEs that we describe in the sequel.

Radio access and data rate model

In this work, we consider uplink communications for computation o oading. More speci cally, we assume Spatial Division Multiple Access (SDMA). The APs serve the UEs over the same time-frequency resources but with di erent beams. In this scenario, uplink communications are a ected by both intraand inter-cell interference. Indeed, suppose that UE j is served by AP i at time t. Let p u,Tx j (t) be the uplink transmit power of UE j, G Ch j,i (t) the channel gain between UE j and AP i, G Tx j,i (t) the transmit antenna gain towards the direction of AP i, G Rx j,i (t) the receive antenna gain, B the allocated bandwidth, and N 0 the noise power spectral density. Then, the Signal-to-Noise-plus-Interference Ratio (SINR) is given by

SINR j (t) = p u,Tx j (t)G Tx j,i (t)G Ch j,i (t)G Rx j,i (t) I j,i (t) + N 0 B , (5.1) 
where

I j,i (t) = j ∈U\{j } p u,Tx j (t)G Tx j ,i (t)G Ch j ,i (t)G Rx j ,i (t)
is the overall interference. Then, the achievable rate of UE j at time t is given by the Shannon formula as R j (t) = B log 2 (1 + SINR j (t)).

If the j-th UE's o oadable data unit is encoded into S j bits, the number of data units transmitted in the uplink direction at time t is

N u j (t) = (1 -β)τ R j (t) S j . (5.2)
Here, • denotes the Floor operator.

Computation model

We assume that the ES has one core CPU, for which UEs compete for the CPU time in each time slot. In particular, given a CPU core frequency f c (t) (measured in CPU cycles per second), each UE is allocated a portion f j (t) of f c (t) such that K j=1 f j (t) ≤ f c (t). Then, denoting by j the number of processed data units per CPU cycle, the number of data units processed over one slot is

N c j (t) = (1 -β)τ f j (t) j .
(5.3)

Delay and queuing model

In our setting, computation o oading involves two steps: i) an uplink transmission phase of input data from the UEs; ii) a computation phase at the ES. New data units are continuously generated from an application at the UE's side and consequently o oaded and processed at the ES. In particular, generated data are queued locally at the UEs, then uploaded to the ES through one AP with timevarying data rate as in Eqn. (5.2). At the ES, received data are queued, waiting to be processed with a time-varying computational rate as in Eqn. (5.3). Thus, we represent the overall system through a simple queuing model involving both queues, synthetically depicted in Figure 5.1. Accordingly, each data unit experiences two di erent delays: i) a communication delay, including bu ering at the UE;

ii) a computation delay, including bu ering at the ES. As shown later, we take into account these two delays jointly, as in [START_REF] Merluzzi | Dynamic Computation O oading in Multi-Access Edge Computing via Ultra-Reliable and Low-Latency Communications[END_REF]. UE j's uplink communication queue evolves as

Q l j (t + 1) = max 0, Q l j (t) -N u j (t) + D j (t), (5.4) 
where D j (t) is the number of newly arrived o oadable data units generated by the application that runs at the UE at time t. It is the realization of a random process whose statistics are unknown a priori.

The remote computation queue at the ES evolves as

Q s j (t + 1) = max 0, Q s j (t) -N c j (t) + min Q l j (t), N u j (t) . ( 5 

.5)

End-to-end delay constraints. We know from Little's law that given a stationary queueing system, the average overall service delay is proportional to the average queue length [START_REF] Little | A Proof for the Queuing Formula: L = λW[END_REF]. Then, in our system, the overall delay is directly related to the sum of the uplink communication queue and the computation queue

Q tot j (t) = Q l j (t) + Q s j (t).
In particular, if Dj = E D j (t)/τ is the average data unit arrival rate, the long-term average end-to-end delay L avg j experienced by a data unit generated by UE j is given by the ratio between the average of Q tot j and the average arrival rate. Thus, our rst aim is to guarantee a long-term average delay L avg j , which gives the following constraint: lim

T →∞ 1 T T t =1 E Q tot j (t) ≤ Q avg j = L avg j Dj , ∀j. (5.6) 
Note that Dj is not known a priori, but can be estimated online e.g., using moving average window.

Energy consumption model

We exploit low-power operation modes at UEs, APs, and ES: they can activate sleep states in which they cannot communicate and/or calculate for a limited period, thus consuming less energy. However, due to control signaling, UEs, APs, and ES are active for at least βτ seconds in each slot, consuming active power. Hence, we model the energy consumption of each entity as follows:

5.2.4.1 UE Energy Consumption.

Let x j,i (t) ∈ {0, 1} be an association variable such that x j,i (t) = 1 if and only if UE j o oads its data via AP i at time t, and x j,i (t) = 0 otherwise. Also, Let p u,o j and p u,on j be UE j's sleep and active power, respectively. Then, the total UEs' energy consumption at time t is:

E u (t) = j ∈U τ (1 -β) I u j (t) p u,on j + p u,Tx j (t) + (1 -I u j (t))p u,o j + βp u,on j , (5.7) 
where

I u j (t) = max i ∈A j {x j,i (t) 
} indicates if UE j is active or not. Indeed, in a given time slot, a UE j can decide to not associate with any AP, hence, to not transmit. In this case, I u j (t) = 0, and p u,Tx j (t) = 0.

AP Energy Consumption.

Let p a,o i and p a,on i be the i-th AP's sleep and active power consumption, respectively. The total APs' energy consumption at time t is

E a (t) = N i=1 τ (1 -β) I a i (t)p a,on i + (1 -I a i (t))p a,o i + βp a,on i , (5.8) 
where I a i (t) = max j ∈U {x j,i (t)} indicates whether AP i is active (I a i (t) = 1) or not (I a i (t) = 0).

ES Energy Consumption.

To reduce the energy consumption, we adopt both a low-power sleep mode for the ES, when no computation is performed at a given slot t, and a scaling of the CPU frequency f c (t), when the CPU is active and computing [START_REF] Sueur | Dynamic Voltage and Frequency Scaling: The Laws of Diminishing Returns[END_REF]. Namely, the CPU core consumes a power p on s in active state, and a power p o s < p on s in sleep state. When the ES is active, the dynamic power spent for computation is

p c s (t) = κ f 3 c (t)
, where κ is the e ective switched capacitance of the processor [START_REF] Burd | Processor design for portable systems[END_REF]. In particular, we assume that f c (t) can be dynamically selected from a nite set F = {0, . . . , f max }. Therefore, the ES's energy consumption at time t is

E s (t) = (1 -β)τ I s (t) p on s + p c s (t) + (1 -I s (t))p o s + βτp on s , (5.9) 
where I s (t) = 1 f c (t )>0 , with 1 f c (t )>0 the indicator function, which equals 1 if f c (t) > 0 and 0 otherwise. Hence, I s (t) indicates whether the ES is active (I s (t) = 1) or not (I s (t) = 0). From (5.7), (5.8), (5.9), the total system energy consumption at time t is E tot (t) = E s (t) + E a (t) + E u (t). Next, our objective function is a convex combination of UEs, APs, and ES energy consumption:

E w (t) = α 1 E u (t) + α 2 E a (t) + α 3 E s (t), (5.10) 
with 3 i=1 α i = 1. Di erent α i lead to di erent strategies. For example, α 1 = 1 models a user-centric strategy, where only UEs' energy consumption is optimized. α i = 1/3, ∀i yields a holistic strategy that includes the whole network's energy. Remark 6. From an optimization point of view, we can drop the fraction β from equations (β = 0). This is possible since we do not optimize β as the fraction of time dedicated to signaling and controlling is prede ned and xed. Accordingly, for simplicity, in the following, we consider β = 0 when deriving equations.

Proposed long-term energy minimization problem

Following the above de nitions, we formulate the following minimization problem on the weighted network energy consumption, subject to (5.6) and instantaneous constraints on the optimization variables:

Long-term energy minimization problem under end-to-end delay constraints. minimize

{Ψ(t )} lim T →∞ 1 T T t =1 E [E w (t)] , ( P 0 ) 
subject to lim

T →∞ 1 T T t =1 E Q tot j (t) ≤ Q avg j , ∀j; (C1) x j,i (t) ∈ {0, 1}, ∀j, i, (C2) 
j ∈U x j,i (t) ≤ N i , ∀i, (C3) 
i ∈A j x j,i (t) ≤ 1, ∀j, (C4) 
f j (t) ≥ 0, ∀j, t, (C5) 
f c (t) ∈ F , ∀t, (C6) 
j ∈U f j (t) ≤ f c (t), ∀t, (C7) 
where Ψ(t) = {x j,i (t)} j,i , f c (t), { f j (t)} j and the expectation in Eqns. (P 0 ) and ( C1) is taken with respect to the random input data unit generation and radio channels, whose statistics are unknown. The constraint (C1) is the delay constraint. The constraint (C2) highlights that the UE-AP association variables are binary. The constraints (C3) and (C4) respectively ensure that the number of UEs assigned to each AP cannot exceed a maximum N i UEs, and that each UE is assigned to at most one AP. Finally, the constraints (C5)-(C7) indicate that the computation frequencies assigned to each user are non negative and their sum cannot exceed the total CPU frequency of the ES, chosen from the nite set F .

Directly solving the problem (P 0 ) is very challenging due to i) the unavailability of the statistics, ii) non-convexity and NP-hardness of the problem in particular due to binary variables, iii) the long-term nature of the objective function as well as the delay constraint (C1). Therefore, to address this problem, we hinge on Lyapunov stochastic optimization tools [START_REF] Neely | Stochastic Network Optimization with Application to Communication and Queueing Systems[END_REF].

Lyapunov meets MARL for Energy E cient Edge Computing

A Lyapunov-aided problem decomposition

To handle the constraint (2.10), following [START_REF] Neely | Stochastic Network Optimization with Application to Communication and Queueing Systems[END_REF], we introduce virtual queues Z j (t), which evolve as

Z j (t + 1) = max(0, Z j (t) + Q tot j (t + 1) -Q avg j ), ∀j ∈ U. (5.11) 
Here, Z j (t) is a state variable that measures how the system behaves w.r.t. the constraint (C1). In particular, it increases if the instantaneous value of Q tot j (t) violates the constraint, and decreases otherwise. From [START_REF] Neely | Stochastic Network Optimization with Application to Communication and Queueing Systems[END_REF], we know that the constraint (C1) is guaranteed if the virtual queue Z j (t), ∀j is mean rate stable, i.e., lim

T →∞ E{Z j (T )} T = 0. (5.12) 
To ensure this, we introduce the Lyapunov function L(Z(t)) and the drift-plus-penalty function ∆ p (Z(t)), which we de ne as follows:

L(Z(t)) = 1 2 K j=1 Z j (t) 2 , (5.13) 
∆ p (Z(t)) = E [L(Z(t + 1)) -L(Z(t)) + Ω • E w (t)|Z(t)] . (5.14) 
Here, L(Z(t)) represents a measure of overall system's congestion, whereas the drift-plus-penalty function ∆ p (Z(t)) is the conditional expected variation of L(Z(t)) over one slot, plus a penalty factor weighted by Ω, which trades o queue backlogs and the objective function of Eqn. (P 0 ) [START_REF] Neely | Stochastic Network Optimization with Application to Communication and Queueing Systems[END_REF].

Proposition 1. If the radio channel states and the input data generation are i.i.d. over time slots, we obtain the optimal solution of Eqn. (P 0 ) by optimally and jointly solving the following two sub-problems for a su ciently high value of Ω.

Sub-problem 1: CPU scheduling. At time t, solve the following optimization problem:

minimize {f c (t ), {f j (t )} j } G 1 (t) = Ωα 3 E s (t) + j ∈U -2Q s j (t)τ f j (t) j + max 0, Q s j (t) -τ f j (t) j + 1 Z j (t) (P 1 )
subject to (C5)-(C7) of (P 0 ).

Sub-problem 2: UE-AP association. At time t, solve the following optimization problem:

minimize {x j, i (t )} j, i G 2 (t) = Ω • (α 1 E u (t) + α 2 E a (t)) + j ∈U - 3 2 Q l j (t) + Q s j (t) N u j (t) + max 0, Q l j (t) -N u j (t) Z j (t) (P 2 )
subject to (C2)-(C4) of (P 0 ).

Sketch of proof.

From [START_REF] Neely | Stochastic Network Optimization with Application to Communication and Queueing Systems[END_REF], we know that an algorithm, which minimizes the drift-plus-penalty function ∆ p (Z(t)) in Eqn. (5.14) under the constraints (C2)-(C7), which we later refer to as the drift-plus-penalty algorithm, guarantees that the virtual queues Z j (t)'s are mean rate stable and therefore also guarantee that the constraint (C1) is satis ed. However, directly minimizing ∆ p (Z(t)) is complex due to its non-convexity and non-di erentiability. Hence, we hinge on the concept of Γ-approximation of the drift-plus-penalty algorithm.

De nition 3. For a given constant Γ, a Γ-additive approximation of the drift-plus-penalty algorithm is one that, for a given state Z(t) at slot t, chooses a (possibly randomized) action Ψ(t) that yields a conditional expected value of the objective function in Eqn. (5.14) that is within a constant Γ from the in mum over all possible control actions.

Hence, following this concept of Γ-approximation, our policy proceeds by minimizing a proper upper bound of the drift-plus-penalty (5.14) to "push" the queues towards lower congestion states, i.e. towards system stability. In particular, it can be shown that (5.14) enjoys the following upper-bound:

∆ p (Z(t)) ≤ ζ + E K j=1 χ j (t) -2Q s j (t)τ f j (t) j + max 0, Q s j (t) -N c j (t) + max 0, Q l j (t) -N u j (t) Z j (t) + - 3 2 Q l j (t) + Q s j (t) N u j (t) + Ω • E w (t) Z(t) , (5.15) 
where ζ > 0 is a constant and χ j (t) does not depend on the optimization variables. We defer full derivations of Eqn. (5.15) 

T →∞ 1 T T t =1 E [E w (t)] ≤ E opt w (t) + ζ + Γ Ω , (5.16) 
where E opt w (t) is the in mum time average energy achievable by any policy that meets the required constraints (C2)-(C7). Thus, the long-term solution of Eqn. (P 0 ) is obtained by optimality minimizing Eqn. (5.15) for su ciently large value of Ω. Finally, the decomposition into two subproblems is straightforward because radio and computing optimization variables are decoupled in Eqn. (5.15) and can be treated independently.

Summary. We summarize the objective of the above mathematical manipulations. First, to ensure the long-term delay constraint (C1), from [START_REF] Neely | Stochastic Network Optimization with Application to Communication and Queueing Systems[END_REF], we need to guarantee the mean rate stability of the virtual queues. For this, it is su cient to guarantee that the Lyapunov drift-plus-penalty function (5.14) is upper-bounded. Now, assuming that radio channel states and input data generation are i.i.d. over slots, we show that minimizing a proper upper bound of Eqn. (5.14) and letting Ω → ∞ under the constraints (C2)-(C7) is equivalent to solving the problem (P 0 ). Finally, this new problem can be cast into two sub-problems to be solved in a per slot fashion by observing that radio and computing optimization variables are decoupled in the derived bound (5.15).

Proposed fast iterative algorithm for CPU scheduling

Here, our aim is to propose an optimal algorithm to solve the CPU scheduling problem.

Lemma 3 (Maximum frequency constraint). An optimal frequency scheduler should be such that any time t, for any UE j, it guarantees that f j (t) ≤ min

Q s j (t )+1 τ j , f c (t) .
Proof. From Eqn. (5.5), max 0, Q s j (t) -N c j (t) is the remaining data in the processing queue after each time slot. Now, we know that N c j (t) = τ f j (t) j (where we have dropped

β following Remark 6) thus, τ f j (t) j -1 ≤ N c j (t) ≤ τ f j (t) j . Hence, we have max 0, Q s j (t) -N c j (t) ≤ max 0, Q s j (t) -τ f j (t) j + 1 .
Then, the proof is straightforward and follows by observing that for a given UE j, Q s j (t)τ f j (t) j + 1 < 0 means that the allocated CPU frequency exceeds what is needed to empty the queue Q s j (t), which is ine cient. Indeed, at maximum, the allocated frequency is the one that empties the processing queue, i.e. Q s j (t)τ f j (t) j + 1 ≥ 0. Noting that f j (t) ≤ f c (t), ∀j completes the proof.

Then by injecting the maximum frequency constraint in Eqn. (P 2 ) and replacing E s (t) by its expression in Eqn. (5.9), we can write:

G 1 (t) = Ωα 3 τ I s (t) p on s + p c s (t) + (1 -I s (t))p o s + j ∈U -2Q s j (t)τ f j (t) j + Q s j (t) -τ f j (t) j + 1 Z j (t) = Ωα 3 τ I s (t) p on s + p c s (t) -p o s + p o s + j ∈U -2Q s j (t) + Z j (t) τ f j (t) j + Q s j (t) + 1 Z j (t) . (5.17) 
Now minimizing G 1 (t) under the constraints (C5)-(C7) is equivalent to minimizing a new objective G1 (t) under the same constraints, where

G1 (t) = Ωα 3 τ I s (t) p on s -p o s + κ f c (t) 3 - j ∈U 2Q s j (t) + Z j (t) τ f j (t) j . (5.18) 
Here, G1 (t) is obtained from G 1 (t) by dropping the terms, which do not depend on the optimization variables. Solution of the problem (P 1 ) follows by rst observing that if f c (t) is xed, G1 (t) is linear w.r.t. the optimization variables { f j (t)} j . Hence it can be solved using fast iterative algorithm with a complexity of at most O (K × |F |) iterations.

Lemma 4. Let us de ne Qj (t) = 2Q s j (t) + Z j (t). At a given time t, the scheduler rst needs to choose the frequency f c (t) ∈ F = {0, . . . , f max } to be used. If there exists a solution f c (t) ∈ F \{0}, i.e. such that f c (t) > 0 then necessarily we have:

Ωα 3 (p on s -p o s ) j ∈U Qj (t) j < f c (t) ≤ min j ∈U Qj (t) j κΩα 3 , f max . (5.19) 
Thus we only need to search f c (t) within this interval.

Proof. First note that,

• if f c (t) = 0, then I s (t) = 0 ⇐⇒ f j (t) = 0, ∀j ∈ U =⇒ G1 (t) = 0. • if f c (t) > 0 =⇒ G1 (t) = Ωα 3 τ p on s -p o s + κ f c (t) 3 -j ∈U Qj (t)τ f j (t) j
Thus, there exists a solution f c (t) > 0 i Ωα 3 τ p on s -

p o s + κ f c (t) 3 -j ∈U Qj (t)τ f j (t) j < 0. ⇐⇒ Ωα 3 κ f c (t) 3 < j ∈U Qj (t)f j (t) j -Ωα 3 p on s -p o s < f c (t) j ∈U Qj (t) j -Ωα 3 p on s -p o s as f j (t) ≤ f c (t) Since f c (t) > 0, it implies f c (t) j ∈U Qj (t) j -Ωα 3 p on s -p o s > 0 ⇐⇒ f c (t) > Ωα 3 (p on s -p o s ) j ∈U Qj (t ) j .
Also, as p on s > p o s we have,

Ωα 3 κ f c (t) 3 < f c (t) j ∈U Qj (t) j , thus, f c (t) ≤ min j ∈U Qj (t) j κΩα 3 , f max . Algorithm 4: ES CPU Scheduling 1 In each time slot t, observe Q s j (t), Q l j (t), Z j (t)
, and compute Qj (t) = 2Q s j (t) + Z j (t), ∀j. while

Ωα 3( p on s -p o s ) j ∈U Qj (t ) j < f k c (t) ≤ min j ∈U Qj (t ) j κ Ωα 3 , f max do 8 j = arg max j ∈U Qj (t) j . 9 F k, j = min Q s j (t) + 1 τ j , f k c (t) . 10 U = U\{ j}. 11 f k c (t) = f k c (t) -F k, j .
12 if U = ∅ then 13 break. 

* c (t) = F k * , f * j (t) = F k * , j ∀j.
The overall procedure to select the optimal CPU frequency f c (t) and the optimal scheduling frequencies { f j } j ∈U is described in Algorithm 4. In particular, in Algorithm 4, steps 7-15 nd the optimal CPU resource allocation for a given f c (t) that minimize G1 (t). For this, it iteratively allocates the maximum available CPU to the UE with the highest Qj j . This is because of the sign minus in front of Qj j in Eqn. (5.18). This Algorithm 4 requires, in the worst case, at most K × |F | iterations.

Proposed MARL framework for UE-AP association

Sub problem (P 2 ) is more complex as it is non-convex and NP-hard [START_REF] Sana | Multi-Agent Reinforcement Learning for Adaptive User Association in Dynamic mmWave Networks[END_REF]. However, note that it takes a similar form as the user association problem in previous chapters except for the change in the form of the objective function. Therefore, we propose to use our transferable solution presented in 4, where UEs, modeled as autonomous agents, learn to o oad tasks over multiple episodes of random deployments to maximize a long-term γ -discounted reward T e τ =t +1 γ τ -t -1 r (τ ), where r (t) = -G 2 (t) is the common reward perceived by each UE at time t and T e is the length of an episode. From a Lyapunov optimization perspective, the long-term goal (minimization of the long-term average energy) is guaranteed when Eqn. (P 2 ) is solved optimally slot by slot. Here, this is achieved by myopically maximizing the instantaneous reward instead of the long-term reward, i.e., by setting γ = 0. Remark 7. During an episode, r (t) can drop to -∞ due to the presence of queues in the expression of the objective G 2 (t), which is not bounded. To solve this problem, note that in a feasible scenario, the queues growing to in nity result from UEs deciding systematically to not o oad (which is a wrong policy). Hence, we de ne two clipping values Q

clip j = (1 + α 1 )Q avg j and Z clip j = (1 + α 2 )(Q avg j ) 2 ,
parameterized by α 1 , α 2 , which we consider as the maximum tolerable value of physical and virtual queues respectively, above which an episode terminates with a failure. In this way, we improve the learning convergence, as UEs are quickly noti ed of their failure. Thus, as in Chapter 4, let o R j (t) denote the set of "radio observations" of UE j: o R j (t) = a j (t -1), R j,a j (t -1) , R(t -1), ACK j , RSS j,i i ∈A j , ϑ j,i i ∈A j .

(5.20) a j (t -1) ∈ A j denotes UE j's action (i.e., connection request to an AP) at time t -1, R j,a j (t -1) is the perceived rate, R(t -1) the total network sum-rate, and ACK j the received connection acknowledgment signal. RSS j,i I ∈A j , ϑ j,i i ∈A j indicate the received signal strength and corresponding angles of arrival (AoA) from UE j to AP n. Similarly, we denote with o C j (t) represents the set of "MEC observations", related to task o oading:

o C j (t) = (x j , j ), f j (t), Q l j (t), Q s j (t), Z j (t) , (5.21) 
where Q l j (t), Q s j (t), Z j (t) are the queues de ned above, (x j , j ) are UE j's geographical coordinates, and f j (t) its allocated CPU frequency at the ES. Learning to o load (L2OFF) computational tasks. To learn to o oad computational tasks, our solution relies on the transferable solution proposed in Chapter 4. In this framework, after observing o R k (t), UE k builds its local state encoding u k , which represents its "perception" of the radio environment, using an encoding function f (•), e.g., a neural network. Then, based on the aggregated MEC observations of its whole neighborhood, it constructs an encoding vector v k , which characterizes its perception of the network from a computation viewpoint. UE k then builds its overall context encoding vector c k to represent its global understanding of the environment, using an encoding function h(•), e.g., a concatenation operator or a neural network. For each UE, the goal of the MARL framework is to learn an association policy π θ with learnable parameters θ , where π θ (a k (t)|o k (t)) = p a k (t ),k indicates the probability of taking action a k (t)

after observing o k (t) = {o R k (t), o C k (t)}. Note that the probability vector p k (t) = [p 0,k , . . . , p N ,k ] ∈ [0, 1] N +1
, from which the action a k (t) of the UE will be sampled, is such that A UE decides to o oad its computation tasks based on its radio observations and after aggregating computation observations from its neighborhood, including its observations. All UEs share the same policy.

n ∈A p n,k = 1 and p n,k = 0 for all n A k . (•) o C K (t) Message Aggregator m K (t) . . . (•) o C 1 (t) m 1 (t) f (•) PPO h(•) Actor/Critic Action Selector v k (t) o R k (t) u k (t) c k (t) p k (t) a k (t)
Message passing service. Let θ k , θ q , and θ ν : R 6 × R m be learnable weights, describing the set of parameters of the encoding function (•), which we later refer to as the message generator. For each UE

l, let k l = θ T k o C l (t), q l = θ T q o C l (t), ν l = θ T ν o C l (t)
, and m l = {q l , ν l } be the key, the query, the value, and the message associated with UE l. Then, each UE k, after aggregating the messages from its neighbors N k , computes its encoding vector v k = l ∈N k α l,k ν l , where the score α l,k represents the interaction between UEs l and k (in achieving the underlying optimization goal). This score is calculated using dot-product attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF]:

α l,k = so max q l k T k √ m l ∈N k . (5.22) 
Here, so max(•) denotes the normalized exponential function. Note that computing v k only involves the queries and the values from others UEs in N k and not their keys, which are UE-speci c and do not need to be transmitted. Such a message-passing service enables the scalability and the transferability of the learned policy, which is optimized for all possible UE deployments, in sharp contrast with [START_REF] Bi | Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation O oading in Mobile-Edge Computing Networks[END_REF], which requires xed UEs. In other words, in our framework, a change in the number or position of UEs in the network does not require a new policy training and does not impact the architecture of the policy network. Only the number of exchanged messages varies, depending on the variation of a UE's neighborhood. Both, the input variables and the number of neurons of the encoding functions remain xed. This enables curriculum learning, where a policy obtained from e.g. 6 UEs can be leveraged as a starting point to train another policy for K > 6 UEs. Finally, all the encoding functions, including the message generator, are optimized through end-to-end learning procedure using proximal policy optimization (PPO) and an actor-critic framework [START_REF] Schulman | Proximal Policy Optimization Algorithms[END_REF]. 

Simulation results

In this section, we assess the e ectiveness of the proposed framework in a network of 3 APs operating at 28 GHz mmWave frequencies and for K ∈ {6, 9, 12, 15} UEs. We use p u,o = 0.346 W, p u,on = 0.9 W, p a,o = 0.278 W, p a,on = 2.2 W, p s,o = 10 W, p s,on = 20 W. Each UE transmits with power p u,Tx (t) = min p tg j (t), p max over a bandwidth B = 10 MHz, where p tg j (t) is the power to meet a prede ned target SNR of 15 dB and p max = 0.1 W. Each slot lasts 10 ms and we set β = 0.1, N i = 15, κ = 10 -27 , j = 10 -3 , S j = 1500 bits ∀j and F = {0, 0.1, . . . , 1} × f max , where f max = 10 9 cycle/s. UEs' data generation rate follows a Poisson distribution with mean D j = 50 × S j bits ∀j. In our setup, all encoding functions are composed of one multi-layer perceptron (MLP) of m = 128 neurons with a recti er linear unit (ReLu) activation. Both the actor and the critic module comprise 2m neurons and we empirically set the learning rate to 10 -4 , α 1 = 10 and α 2 = 0. Simulation parameters are summarized in Table 5.1. Additional parameters, including pathloss and antenna diagrams, can be found in Table 3.1 of Chapter 3. To foster the learned policy and enable better generalization, during training, we consider random CPU scheduling 1 . This is possible since the problems (P 1 ) and (P 2 ) are completely decoupled, therefore, the policy learned to solve the problem (P 2 ) must be independent of the ES frequency allocation. We compare our L2OFF solution to two benchmarks:

• Exhaustive search: at each t, we perform an exhaustive search over all possible solutions of (P 2 ).

• Max-SNR: each UE is associated with a Bernoulli random variable with probability p of being in active state (which models the average duty cycle of UEs). Then, at each t, an active UE gets associated with the AP providing the maximum SNR.

Energy-delay trade-o

Here, we evaluate the performance of our proposed framework for di erent values of Ω (cf. Eqn. (5.14)), and compare the results to the performance obtained via exhaustive search in Figure 5.3. First, we observe that our method can e ectively adapts the duty cycle to minimize energy consumption. Indeed, the results in Figure 5.3 follow our theoretical expectations: when Ω increases, optimally solving the problems (P 1 ) and (P 2 ) lowers the duty cycle, consequently leading to a lower energy consumption. Meanwhile, the average delay increases and caps to 100 ms, which is the xed delay constraint (C1). Interestingly, the proposed scheme exhibits performance close to exhaustive search approach (for Ω = 10 9 ), reaching up to 96.5% of its performance, for the same delay constraint. 

Performance comparison

To fairly compare the proposed framework with the heuristic based on Max-SNR, we rst determine exhaustively the optimal lowest duty cycle that enables the Max-SNR algorithm to guarantee an average delay constraint of 100 ms. Then, the comparison is made for the same delay in Figure 5.4. We can notice how, even by optimally computing the duty cycle for the Max-SNR algorithm, our solution still outperforms, reducing the energy by 10% for 15 UEs compared to Max-SNR solution, as we consider interference, and intelligently orchestrate UEs. Moreover, under the same delay constraint, with our strategy, the network consumes 246 mJ on average for 15 UEs, whereas for the same energy consumption, the Max-SNR can only serve 12 UEs.

Conclusion and Perspectives

In this chapter, we proposed a novel approach for delay constrained energy-e cient dynamic computation o oading services in dense mmWave networks impaired by interference. We rst formulated the computation o oading as a long-term optimization. Then, we applied Lyapunov optimization tools to split the problem into a CPU scheduling problem and a UE-AP association problem. While the rst one is easily solvable via an e cient fast iterative algorithm, we solved the second one using multi-agent reinforcement learning with a distributed and transferable policy. The proposed solution reaches up to 96.5% of the optimal solution obtained via exhaustive search and can reduce energy consumption up to 10% compared to a heuristic approach based on SNR maximization.

Eventually, if direct information exchange is allowed between users, the performance of our proposed framework can be further improved, which would help to unwind confusing situations. Indeed, consider the example of two users with similar requirements located very close to each other. In this case, each of these users may have the same perception of the radio environment and thus observe the same inputs. As a result, these users may eventually converge to the same behavior, taking the same actions (or resulting in a ping-pong e ect) as they share the same knowledge. Thus, in the absence of explicit communication between these users (or priority level), they will tend to connect to the same base station, hence, will experience strong interference from each other. In such a case, a good policy might be to let one of the users communicates or to connect both users to di erent base stations. However, our proposed mechanism cannot induce such concurrent behavior because users share the same global knowledge. Therefore, in this scenario, an external arbitration is required. Although rare, this example illustrates the need for inter-agent communications in some situations to reach optimal convergence. However, due to bandwidth constraints, communications between agents must be limited. In addition, only relevant information, su cient for agents to complete the targeted optimization task must be exchanged. This gives rise to a new paradigm: the semantic communications, which we explore in the next chapter as a new fundamental for beyond 5G networks.

The technical contributions of this chapter have been validated by the following paper.

[C4] M. Sana R , semantic communications are envisioned as a key enabler of future Sixth Generation (6G) networks. Back to Shannon's information theory, the goal of communication has long been to guarantee the correct reception of transmitted messages irrespective of their meaning or the intended goal. However, in general, whenever communication occurs to convey a meaning or to accomplish a goal, what matters is the receiver's understanding of the transmitted message or how the received message help in achieving the targeted goal of the communication (e.g., completing a speci ed task) and not necessarily the correct reconstruction of transmitted messages. Hence, semantic and goal-oriented communications introduce a new paradigm: transmitting only relevant information su cient for the receiver to capture the meaning intended or ful ll the targeted goal of communication (e.g., dictated by the application). This can help in saving a lot of communication bandwidth. This chapter provides a global overview of the opportunity o ered by semantic and goal-oriented communications for beyond 5G networks. To this end, we present and detail a novel architecture that enables representation learning of semantic symbols for e ective semantic communications. We rst discuss theoretical aspects and successfully design objective functions, which help learn e ective semantic encoders and decoders. Eventually, we show promising preliminary numerical results for the scenario of text transmission, especially when sender and receiver speak di erent languages.

Motivations

Academia and industry have kicked o research on the future 6G of wireless networks. Speculation about the possible evolution of current 5G technology as well as radical new architectures, approaches, and technologies are being intensely discussed [3,[START_REF] Chowdhury | 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions[END_REF][START_REF] Popovski | A Perspective on Time towards Wireless 6G[END_REF]. The expectation is that by 2030 rst commercial 6G solutions will be available. This is driven by the current trend, witnessing an unprecedented demand for communication bandwidth to accommodate burgeoning new services like eXtended Reality (XR) or autonomous driving. To meet these challenges, historically in wireless communications, a solution has been to explore higher frequencies to bene t from the available large spectrum resources. Such solutions cyclically face an inevitable bottleneck, represented by the hardware's cost, complexity and energy e ciency of wireless communications. For example, as frequency increases new challenges arise in communication such as blockage, severe pathloss, atmospheric absorption, and power ampli er e ciency [START_REF] Belot | Spectrum Above 90 GHz for Wireless Connectivity: Opportunities and Challenges for 6G[END_REF]. This calls for new paradigms shift for the e ective design of 6G communications [START_REF] Strinati | 6G networks: Beyond Shannon towards Semantic and Goal-Oriented Communications[END_REF].

In addition, 6G will o er a radical step ahead to Arti cial Intelligence (AI) in general and to Machine Learning (ML) in particular. ML and AI are already cornerstones of 5G, allowing to improve operational and service performance. However, 5G has not been designed speci cally to support e ective interactions between AI agents but rather to collect, exchange, and process data to feed ML applications. In contrast, 6G will be built on the native inclusion of AI as a fundamental component of the connect-compute-control network [START_REF] Letaief | The Roadmap to 6G: AI Empowered Wireless Networks[END_REF]. This will enable the intertwining of di erent kinds of intelligence (natural and arti cial), requiring a radically new approach in the design of communication systems [START_REF] Strinati | 6G networks: Beyond Shannon towards Semantic and Goal-Oriented Communications[END_REF]. In our view, future 6G systems should be engineered to e ectively recreate or infer the meaning of what has been communicated rather than to "just" optimize opaque data pipes that aim at reproducing exactly exchanged sequences of symbols [START_REF] Strinati | 6G networks: Beyond Shannon towards Semantic and Goal-Oriented Communications[END_REF]. E ective communication of meanings can be achieved through exchanges of semantics. Today fundamental open question to answer is how to bring the notion of semantic from human understanding to machine understanding? In our view, this requires a radically innovative approach to communications: the semantic and goal-oriented communications [START_REF] Strinati | 6G networks: Beyond Shannon towards Semantic and Goal-Oriented Communications[END_REF]. This approach can achieve a signi cant source data compression gain, which saves a lot of communication bandwidth. Multi-level communication system [START_REF] Strinati | 6G networks: Beyond Shannon towards Semantic and Goal-Oriented Communications[END_REF]. Here, KB S and KB D denote the knowledge base available at the source and destination, respectively.

Related work

In their seminal work [START_REF] Shannon | A Mathematical Theory of Communication[END_REF][START_REF] Weaver | Recent Contributions to the Mathematical Theory of Communication[END_REF], Shannon and Weaver identi ed three levels of communication (see Figure 6.1):

• Level A -the technical problem: how accurately can the symbols of communication be transmitted?

• Level B -the semantic problem: how precisely do the transmitted symbols convey the desired meaning?

• Level C -the e ectiveness problem: how e ectively does the received meaning a ect conduct in the desired way?

Shannon deliberately focused on the technical problem and the communication systems that we know so far are engineered to optimize the level A of communication. Then in 1953, Weaver provided a rst attempt for the inclusion of semantics in the communication problem [START_REF] Weaver | Recent Contributions to the Mathematical Theory of Communication[END_REF]. Bar-Hillel and Carnap provided also outlines of a theory of semantic information, focusing mainly on measuring how informative transmitted message is (informativity measurement) [START_REF] Bar-Hillel | Language and information: Selected essays on their theory and application[END_REF]. Recently with the growing interdependence between communication systems and AI, new attempts to include the Level B (the semantic problem) in the communication system has started [START_REF] Strinati | 6G networks: Beyond Shannon towards Semantic and Goal-Oriented Communications[END_REF][START_REF] Bao | Towards a Theory of Semantic Communication[END_REF][START_REF] Xie | Deep Learning Enabled Semantic Communication Systems[END_REF][START_REF] Shi | A new communication paradigm: from bit accuracy to semantic delity[END_REF]. The ontology for semantics is still evolving in the state-of-the-art. In the Internet of Things (IoT) and semantic web contexts, semantic refers to the capability of enriching data and support interoperability mechanism between hardware and software applications belonging to di erent domains [START_REF] Berners-Lee | The Semantic Web[END_REF]. The semantic is indeed a way to associate documents, collected or processed data (a le, an image, a text, a sensed physical measure, etc.) to information and metadata. This enables to constitute of a knowledge-based decision-making database that can communicate in prede ned semantic languages. In application-driven mechanisms, semantic refers to an abstraction at higher Open Systems Interconnection (OSI) layers, used for autonomous con guration and recon guration of network states leveraging on the principle of information-centric networking [START_REF] Ahlgren | A survey of Informationcentric Networking[END_REF]. In contrast, as indicated in [START_REF] Strinati | 6G networks: Beyond Shannon towards Semantic and Goal-Oriented Communications[END_REF], the end goal of semantic communication is di erent. Semantic communications are shaped to e ectively compress the exchanged data between communicating parties, improve the communication robustness by incorporating semantic information to the classical Level A communication scheme. This is possible by exploiting the knowledge shared a priori between communicating parties, such as a shared language or logic, shared background and contextual knowledge, and possibly a shared view on the goal of communication. In [START_REF] Bao | Towards a Theory of Semantic Communication[END_REF], the authors provide tentative de nitions of semantic capacity, semantic noise, and a semantic channel from the perspective of Shannon's statistical measurement of information. Our work focuses on the potential bene ts of semantic compression. In [START_REF] Kountouris | Semantics-Empowered Communication for Networked Intelligent Systems[END_REF] the authors refers to semantic as the semantics of information, addressing the signi cance and usefulness of messages by considering the contextual attributes (semantics) of information [START_REF] Kosta | Age of Information: A New Concept, Metric, and Tool[END_REF]. In this approach, the Age of the Information (AoI) is key to identify the relevance of the semantic information for the e ectiveness of the exchange between communicating parties. Nevertheless, AoI does not necessarily de ne the meaning of a message in many applications, but rather how a message is still pertinent for an application given its age. Indeed, di erent de nitions of semantic carry di erent measures of semantic information.

Here in this chapter, we focus on semantic communications and particularly on the bene t of semantic compression. We refer to semantic as a "meaningful" message (a sequence of well-formed symbols, which are possibly learned from data) that have to be interpreted at the receiver. This requires a reasoning unit (natural or arti cial) able to interpret based on a knowledge base: a symbolic knowledge representation of the speci c application. Here, we focus on applications for AI and neural networks that exchange, communicate and intertwine. We do not apply this research only to level A, but we jointly design a full end-to-end (E2E) communication-intelligence chain with level A, jointly to Level B. This requires creating an overlay on top of Level A to enable interaction and communication between intelligent machines. In this context, an E2E neural architecture is presented in [START_REF] Xie | Deep Learning Enabled Semantic Communication Systems[END_REF], enabling semantic transmission of sentences. However, their proposed architecture is limited in exibility: they represent each word in a transmitted sentence with the same and xed number of semantic symbols irrespective of the conveyed meaning. Authors in [START_REF] Weng | Semantic Communications for Speech Signals[END_REF] apply the same architecture to speech signals transmission. Similarly, the work in [START_REF] Jiang | Deep Source-Channel Coding for Sentence Semantic Transmission with HARQ[END_REF] presents a deep source-channel coding scheme, which exploits hybrid automatic repeat request (HARQ) to reduce semantic transmission error.

Contributions

The contribution of this chapter is as follows:

• An E2E semantic communication architecture: we propose a novel E2E semantic communication architecture incorporating level B to classical level A communications. In this architecture, information from a binary source is encoded with semantic information extracted using neural attention mechanisms [START_REF] Vaswani | Attention is all you need[END_REF], to produce sequence of semantic symbols. In contrast to very recent state-of-the-art works [START_REF] Xie | Deep Learning Enabled Semantic Communication Systems[END_REF][START_REF] Weng | Semantic Communications for Speech Signals[END_REF], which propose an E2E system for semantic text and speech transmission, we formally de ne a new loss function, which captures the e ects of semantic distortion to communication. This enables to dynamically trade semantic compression losses with semantic delity [START_REF] Bao | Towards a Theory of Semantic Communication[END_REF] (i.e., the semantic interpretation correctness).

• An adaptive mechanism for dynamic semantic symbols representation at the source: we design a semantic adaptive mechanism, which dynamically optimizes the number of symbols per semantic message based on the trade-o between semantic compression and semantic delity that we formally express.

• A toy example in the scenario of text transmission: we provide a detailed numerical evaluation that shows the bene ts of our proposed adaptive E2E semantic system. Results are provided for the context of Natural Language Processing (NLP), especially when transmitter and receiver speak a di erent language. In this context, messages are formed and communication parameters are set to maximize the correct interpretation of semantic messages rather than error-free bit decoding at the receiver.

The technical content of this chapter is based on the conference paper [START_REF] Sana | Learning Semantics: An Opportunity for E ective 6G Communications[END_REF]. The remainder of this chapter is organized as follows. Section 6.2 introduces the basic concepts of semantic communications. Section 6.3 details the proposed E2E architecture for semantic representation learning. We provide numerical results in Section 6.4 and draw conclusions in Section 6.5. 

Semantic Communications

Semantic Encoder f θ (•) Channel p( |x) x Semantic Decoder ϑ (•) y m ∈ M t m ∈ M r

General introduction

A semantic communication system de nes a communication framework in which sender and receiver exchange semantic information to create a common understanding of exchanged messages.

De nition 4. We refer to the term semantic information as the meaning underlying the data (which can be discrete or continuous) that a sender wants to convey to a receiver.

Example of data ranges from (random) numbers to texts, audios, images or videos. Formally de ning the semantic content (or the meaning) of data is not a trivial task. In [START_REF] Floridi | Philosophical Conceptions of Information[END_REF], the author proposes a de nition of semantic content based on data as follows:

De nition 5. An instance of semantics is de ned, if and only if:

• the instance consists of at least one datum • the data are well-formed (i.e., data are organized in a correct way according to the rules (syntax) of a speci c system)

• the well-formed data is meaningful (i.e., the data must comply with the meaning of the chosen system, code or language).

For example, human language uses a structured set of signs, gestures, writings, or words associated with real-world things or abstract thoughts, and rules to convey meanings. Each language has its own structure, which depends on the set of rules used to convey meaningful information. This de nition of meaning and language can be extended to arti cial languages, such as a computer programming language, after proper identi cation of language's concepts, rules, and constraints. Here, we focus on applications where AI agents exchange, communicate and intertwine. For this, we adopt semantic symbols as a means to represent semantics. Thus, in our scenario, agents exchange semantic symbols depending on the meaning associated with the exchanged data. To do so, agents can also rely on their respective knowledge base (KB), a symbolic knowledge representation of the speci c application [START_REF] Chein | Graph-Based Knowledge Representation: Computational Foundations of Conceptual Graphs[END_REF], possibly shared among agents, from which semantic symbols can be inferred or interpreted (see Figure 6.1). A knowledge base can be manually constructed or learned from the ontology, rules, constraints that govern a speci c application. This can be achieved using for e.g., graph-based knowledge representation [START_REF] Chein | Graph-Based Knowledge Representation: Computational Foundations of Conceptual Graphs[END_REF], where relationships, rules between entities, or concepts are organized over a graph. Example 2 (A gira e drinking water). Consider the following example of a picture of a gira e drinking water (see Figure 6.3). A knowledge base of this picture can be represented as follows: i) this is an image of an animal, ii) the animal is a gira e, iii) the gira e is standing on grass, iv) the gira e is drinking water, v) there is a fence behind the gira e etc.

The knowledge base extracted from one speci c application can be used to solve related problems [START_REF] Chein | Graph-Based Knowledge Representation: Computational Foundations of Conceptual Graphs[END_REF]. From the above example, to the question "is the gira e in a zoo?", one may answer "yes" because "there is a fence behind the gira e". However answering such a question requires reasoning capabilities (here for e.g., nding the relationship between the concept "zoo" in the question and the knowledge base, in particular, the word "fence"). This example also points out a central aspect of the knowledge base, which cannot answer all questions due to a limited and nite set of symbolic structures used to represent knowledge [START_REF] Chein | Graph-Based Knowledge Representation: Computational Foundations of Conceptual Graphs[END_REF]. For example, the knowledge base of the above example cannot answer the question "is the gira e male or female?". In addition, the knowledge base can be static or dynamic (introduction of new concepts or entities, the evolution of relationships or rules for e.g. in a multi-level video game.). Here, for sake of simplicity, we consider a scenario where knowledge bases are static and are inferred from the underlying data available at the source and destination. Hence, we refer to semantic messages as a sequence of well-formed symbols generated1 from the source and destination knowledge bases. Our goal is then to propose a framework, which enables representation learning of semantic symbols. Figure 6.2 presents our proposed E2E adaptive semantic communication system. It is composed of a semantic encoder f θ (•) and a semantic decoder ϑ (•), which we describe in the following.

Semantic source and channel coding

The semantic encoder transforms input sequence into semantic symbols to be transmitted through the channel. Let M t denotes the source alphabet. Each message m emitted by the source is associated with a symbol x ∈ X (possibly a discrete or continuous space) such that x = f θ (m), where f θ (•) denotes the semantic encoder with (trainable) parameters θ . This encoder is characterized by the probability distribution p θ (x |m). Thus, if the source emits a message m with a probability p M t (m), the probability that the encoder emits symbol x is:

p θ (x) = m:x =f θ (m) m ∈M t p M t (m) = m ∈M t δ (x -f θ (m)) p M t (m), (6.1) 
where δ (•) is the Dirac distribution. Next, our objective is to de ne the adequate symbols probability distribution p θ (x) (or equivalently p θ (x |m)), which ensures semantic " delity" of interpreted messages at the receiver. Note that the mapping from m to x is not always bijective [START_REF] Basu | Preserving Quality of Information by using Semantic Relationships[END_REF]. Indeed, it can be one-to-many: a message can be mapped to di erent symbols, each conveying the same information.

In this case, the encoder introduces semantic redundancy, i.e., the conditioned entropy H θ (X |M) 0.

Conversely, the mapping can be many-to-one, i.e., many messages are mapped to the same symbol: there is a semantic ambiguity, and H θ (M |X ) 0. As in the rate-distortion Theory [START_REF] Shannon | Coding Theorems for a Discrete Source with a Fidelity Criterion[END_REF], such an encoder has a complexity equals to I θ (X ; M), which corresponds to average number of bits needed to represent message m. Hence, as we focus on semantic compression, our rst objective is to nd f θ (•), which minimizes this complexity i.e., arg min θ I θ (X ; M) (6.2) Lemma 5. If there is no redundancy introduced by the semantic encoder, i.e., M determines X as the mapping f θ : M t → X is unique, then,

I θ (X ; M) = H θ (X ), (6.3) 
in which case, minimizing I θ (X ; M) is equivalent to minimizing H θ (X ).

Proof. First note I θ (X ; M) = H (X ) -H θ (X |M). Thus, proof follows as H θ (X |M) = 0 if there is no redundancy.

Semantic decoder

The role of the decoder is mainly to infer the meaning intended by the source 2 . In contrast to Shannon's communications paradigm, an exact reconstruction of the transmitted messages is not necessary. Given the receiver alphabet M r and the semantic decoder ϑ (•) with (trainable) parameters ϑ, the decoded message m from a received symbol is the one that maximizes the estimated posterior probability q ϑ (m| ) conditioned on the received symbol at the receiver:

m = arg max m ∈M r q ϑ (m | ), (6.4) 
Hence, given the semantic encoder and decoder, a natural measure of the semantic distortion between m and m is the expected Kullback-Leibler (KL) divergence between the "true" posterior probability p θ (m| ) at the encoder and the one captured by the decoder q ϑ (m| ),

E {KL (p θ (m| )||q ϑ (m| ))} = m ∈M r ∫ p θ ( )p θ (m| )log q ϑ (m| ) p θ (m| ) d . (6.5)
Our second objective is then to nd f θ (•) and ϑ (•) which minimize the semantic distortion between the intended message m and the decoded message m, i.e., Eqn. (6.5).

arg min θ,ϑ E {KL (p θ (m| )||q ϑ (m| ))} (6.6)

Semantic channel and noise

To illustrate the notion of semantic channel, let us consider the following example of a conversation between three persons [START_REF] Bao | Towards a Theory of Semantic Communication[END_REF].

Example 3 (A conversation between Linda, Pheobe, and Aïda). Here, Linda is trying to convey meaningful information to Phoebe through Aïda, who serves as a semantic channel.

-Linda: "Aïda, would Phoebe like to go for hiking in the Bastille's mountain?" -Aïda: "Pheobe, you want to climb the Bastille?" -Phoebe: "No, I'm not available today. "

In this example, Aïda conveys to Pheobe a message completely di erent from one transmits by Linda, which may result in an engineering failure from classical level A communication's perspective if we compare e.g., transmit and receive sentence character by character. However, there is no semantic failure as Linda's message to Aïda is semantically equivalent to Aïda's message to Phoebe.

De nition 6. Two messages are semantically equivalent if they convey the same meaning. In other words, the received message m and the transmitted message m are semantically equivalent if m is interpreted accurately by the receiver as the meaning intended by the transmitter.

From the above de nition, formally de ning the notion of semantic equivalence is not trivial, as it can take di erent forms depending on the purpose of the communication and the type of data manipulated by the source and the destination. For example, in NLP, two words may be semantically equivalent if they are synonyms. A semantic error may occur during communication as the result of a mismatch between m and m: the two messages are not semantically equivalent. This error can be introduced by Level A channel noise and/or interference, the di erence of the level of knowledge available at the source and destination or its incompleteness (at Level B) and, by limitation of semantic encoder/decoder not being able to learn the correct semantic representation, i.e., a limitation of the representation space of f θ (•) and ϑ (•). To design an e cient communication system, given the semantic channel with probability density p( |x), our proposed solution maximizes the mutual information I θ (X ; Y ) between the input and output of the channel: arg max θ I θ (X ; Y ) (6.7)

Proposed semantic representation learning

To optimize our semantic communication system, we adopt an E2E learning mechanism, where our objective is to jointly achieve Eqns. (6.2), (6.6) and (6.7). Overall, we propose to minimize the following objective function L α, β θ,ϑ :

L α, β θ,ϑ = I θ (X ; M) -(1 + α)I θ (X ; Y ) + βE {KL (p θ (m| )||q ϑ (m| ))} , (6.8) 
where α ≥ 0 and β ≥ 0 are some hyperparameters that trade-o the optimization. To minimize L α, β θ,ϑ , we hinge on the well-known cross-entropy (CE) loss de ned as:

L CE θ,ϑ ∆ = E m∼p M (m), ∼p θ ( |m) {-log(q ϑ (m| )} .
(6.9) Indeed, we have the following Lemmas: Lemma 6. Assuming the RX and the TX are sharing the same background i.e., M t = M r = M, the cross-entropy loss can be decomposed as follows:

L CE θ,ϑ = H θ (X ) -I θ (X ; Y ) + E {KL (p θ (m| )||q ϑ (m| ))} . (6.10)
Proof of Lemma 2 Eqn. (6). 

L CE θ,ϑ ∆ = E m∼p M (m), ∼p θ ( |m) {-log(q ϑ (m| )} (a) = - m ∈M p M (m) ∫ p θ ( |m)log(q ϑ (m| ))d , (b) = - m ∈M ∫ p θ ( )p θ (m| )log(q ϑ (m| )d , (c) = - m ∈M ∫ p θ ( )p θ (m| )log q ϑ (m| ) p θ (m| ) d - m ∈M ∫ p θ ( )p θ (m| )log(p θ (m| ))d (d ) = E {KL (p θ (m| )||q ϑ (m| ))} - m ∈M ∫ p M (m) ∫ x p( |x)δ (x -f θ (m))log(p θ (m| ))dxd (e) = E {KL (p θ (m| )||q ϑ (m| ))} - ∫ x ∫ p θ (x)p( |x)log(p θ (x | ))dxd = E {KL (p θ (m| )||q ϑ (m| ))} - ∫ x ∫ p θ (x, )log(p θ (x | ))dxd = E {KL (p θ (m| )||q ϑ (m| ))} - ∫ x ∫ p θ (x, )log p θ (x, )p θ (x) p θ ( )p θ (x) dxd = E {KL (p θ (m| )||q ϑ (m| ))} -I θ (X ; Y ) + H θ (X ), ( 
L α, β θ,ϑ ≤ L CE θ,ϑ -αI θ (X ; Y ). (6.11) 
In particular, equality holds if β = 1 and if there is no semantic redundancy at the source.

Proof. The proof follows by noting that

L α =0, β =1 θ,ϑ = L CE θ,ϑ -H θ (X |M) and that H θ (X |M) ≥ 0.
Thus, to minimize L α, β θ,ϑ , we can minimize this upper-bound, where I θ (X ; Y ) can be estimated using mutual information neural estimator [START_REF] Belghazi | Mutual Information Neural Estimation[END_REF].

Remark 8. Note that in [START_REF] Xie | Deep Learning Enabled Semantic Communication Systems[END_REF], the authors have considered minimizing L CE θ,ϑ -αI θ (X ; Y ), where 0 ≤ α ≤ 1. However, the paper fails in providing a justi cation on how the proposed loss optimizes the semantic representation learning. In contrast, our Lemma (7) speci es that the semantic representation loss (6.8) admits L CE θ,ϑ -αI θ (X ; Y ) as an upper-bounded. Hence, minimizing this upper bound also minimizes the loss function L 

Transformers Enabled Semantic Communications

Our semantic communication system relies on Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF]. Transformer networks have been introduced as the rst transduction model entirely built using self-attention mechanisms able to learn context representation of its input and output. In contrast to solutions based on recurrent and convolution neural networks, Transformer models in general have i) lower computational complexity, ii) more parallelizable computations, and iii) can learn long-range dependencies in input sequence [START_REF] Vaswani | Attention is all you need[END_REF].

Background on transformers

The key components of Transformers are self attention and multi-head attention mechanisms [START_REF] Vaswani | Attention is all you need[END_REF]. Self attention mechanism. Given a sequence of size N , let K, Q, and V be the associated key, query, and value matrices respectively, where K, Q ∈ R N ×d k , V ∈ R N ×d , ∀i, and d k , d are the dimensions of the key, value, respectively. The output A of the attention function can be computed in a matrix form as follows: .12) where so max(•) denotes the normalized exponential function.

A = Attention(Q, K, V ) = so max QK T √ d k V . ( 6 
Multi-head attention mechanism. Consider the following d m -dimensional key, query, and value matrices K , Q , V ∈ R N ×d m . For each head h, a multi-head attention proceeds by rst projecting each row in andθ V i are learnable weights, describing the set of parameters of the attention head i. Thus, for each head i, the projections gives

K , Q , V into d k , d k , d dimensional subspace, using linear projectors θ K i , θ Q i ∈ R d m ×d k and θ V i ∈ R d m ×d . Here, θ K i , θ Q i ,
K i = K θ K i ∈ R N ×d k , Q i = Q θ Q i ∈ R N ×d k , V i = V θ K i ∈ R N ×d ,

and the associated attention value is

A i = Attention(Q i , K i , V i ).
Finally, we obtain the output of the multi-head attention mechanism by concatenating the attention's value of all heads and projecting into another linear subspace as follows:

MultiHead(Q, K, V ) = concat(A 1 , . . . , A h )θ O , (6.13) 
where θ O ∈ R hd ×d m is another learnable parameter, h is the number of attention heads, and concat(•) is the concatenation operator. Hence, the fundamental idea behind multi-head attention is that each attention head, through its projectors, can extract speci c characteristics of inputs sequences. Doing so allows the model to jointly attend to information from di erent representation subspaces at di erent positions. This aspect of multi-head attention mechanisms makes them particularly suitable for semantic information extraction. Channel encoder. It encodes the message S(m) generated by the source coding block (e.g., using Hu man source coding), with the semantic information provided by the semantic generator G(m):

Architecture description

x = E(z, S(m)). Here, E(•) is composed of a feed-forward neural network (FNN), followed by a power normalization layer such that E[ x ] = 1 to average the energy of the symbols constellation. Then, each message m i is encoded in n complex symbols to be transmitted through the wireless channel.

Wireless channel. The channel outputs y = hx + n, where h is the fading coe cient matrix, and n ∼ CN (0, σ 2 n I) is an additive Gaussian noise with power σ 2 n and I denotes the identity matrix. Channel decoder. The decoder performs a channel equalization e.g., using Zero Forcing (ZF) method and decodes the received symbols into the semantic representation subspace, z = D(y) using a feedforward neural network.

Semantic interpreter. It plays the inverse role of the generator. it interprets the decoded semantic symbols in the space of possible messages of the receiver alphabet M r . As the generator, the interpreter is composed of a multi-head attention network. For each decoded message z i , the output of the interpreter is a probability distribution over all possible messages in M r : [q(m|z i ), ∀m ∈ M r ]. Each z i is then interpreted as the message m ∈ M r that maximizes q(m|z i ):

mi = arg max m ∈M r q(m |z i ), ∀i. (6.14) 
Remark 9. Note that the semantic interpreter can also adopt an auto-regressive model, where the previously interpreted message is consumed as an additional input when interpreting the next one. In other words, given a sequence of decoded symbols z = [z 1 , . . . , z N ], if the rst symbol z 1 is interpreted as m1 , then the second symbol z 2 is interpreted given z and m1 , then z 3 given z , m1 and m2 , and so on. mi = arg max m ∈M r q(m |z 1 , . . . , z i ). (6.15)

Auto-regressive models are particularly suitable when there is a strong correlation between di erent messages in the sequence (e.g., text translation). However, it requires interpreting symbols one after the other, thus can result in a large decoding overhead.

Performance measure

To assess the performance of the proposed semantic communication system, we de ne the following metric and trade-o parameter: Average transmission rate (bits/s). Let T s denotes the transmission duration of each symbol. We de ne the average transmission rate R as the ratio between the amount of transmitted information I (X ; Y ) and T s , i.e., R = I θ (X ; Y ) T s (bits/s). (6.16)

Accuracy vs. complexity trade-o . Moreover, we also consider the following metric:

τ = 1 E[n] × (1 -ψ θ,ϑ (M, M)), (6.17) 
where E[n] is the average number of symbol per transmitted message. Here, ψ θ,ϑ (M, M) measures the semantic error between transmitted message M and interpreted message M. This error takes di erent forms depending on the context [START_REF] Kountouris | Semantics-Empowered Communication for Networked Intelligent Systems[END_REF] (e.g., mean square error, cross-entropy or BLEU score in NLP [START_REF] Papineni | BLEU: A Method for Automatic Evaluation of Machine Translation[END_REF]). Thus, τ measures the trade-o between "transmission accuracy" and model complexity in terms of average number of symbols (E[n]) used to represent each message.

Numerical Results

We provide a detailed evaluation of the performance of our proposed adaptive E2E semantic communication system in the context of natural language processing. Numerical results are reported for text transmission as in [START_REF] Xie | Deep Learning Enabled Semantic Communication Systems[END_REF]. Our reference scenario considers a transmitter communicating with a receiver by sending a block of sentences (sequence of words) through the wireless channel using the previously described semantic communication system. To this end, the transmitter learns to map each word to a sequence of semantic symbols that the receiver has to interpret. Note that such a mapping is learned from the data available at the source. Hence a word can have di erent symbols representation depending on the sentence it belongs to and the underlying meaning conveyed by both the word and the sentence. In this scenario, once received symbols are interpreted back to words, we measure the transmission accuracy in terms of Bilingual Evaluation Understudy (BLEU) Score, which counts the di erence of words (or group of words -n-grams) between the intended sentence and interpreted one [START_REF] Papineni | BLEU: A Method for Automatic Evaluation of Machine Translation[END_REF]. Its value range from zero to one, with one indicating that the interpreted message is the one as the reference. We consider averaging the BLEU score over 1-gram to 4-grams. We use the dataset from Tatoeba Project (translation from English to French data available at http://www.manythings.org/anki/). All FNNs are composed of one multi-layer perceptron with 128 neurons and we use 6 attention heads. Unless otherwise speci ed, we set M = 64, T s = 1s (normalized), n = 6, α = 0.01 and β = 1. Then we train the proposed E2E network for a reference signal-to-noise ratio (SNR) of 7 dB using a batch-size of 256 and then performs tests for di erent value of SNR.

Impact of the SNR and the source entropy. We rst show in Figure 6.5, the impact of SNR and the source entropy on transmission accuracy. We change the source entropy by modifying the distribution p M (M). We observe in Figure 6.5 that the performance slightly decreases when H M (M) increases since there is more information to convey to the receiver. Also, we observe that the proposed scheme achieves a BLEU score of 1 for SNR ≥ 5 dB. In particular, we observe that this threshold varies with the reference SNR for the training, which we set here to 7 dB. Impact of α. Here, we assess the performance of the proposed scheme w.r.t. the trade-o parameter α of the objective function (6.8). Figure 6.6 shows the BLEU score and the mutual information of the channel for di erent α. As α increases we give more importance to I (X ; Y ) term (6.8), thus increasing the mutual information at the risk of degrading the accuracy.

Impact of the number of symbols per word. Authors in [START_REF] Xie | Deep Learning Enabled Semantic Communication Systems[END_REF] consider a xed number of symbols per word sent through the channel. However, depending on the length of the words (e.g., the number of characters) and/or the conveyed semantic information, di erent words may not use the same number of symbols. To show this e ect, let m = [m 1 , m 2 , . . . , m N ] be a sequence of words to be transmitted and l(m i ) the length of each word m i on a character basis. Let L m = i l(m i ) be the total number of characters in sequence m. we rst construct the probability vector p = [p 1 , . . . , p N ] such that

p i = l (m i ) L m , ∀i.
Hence, p i de nes the weight of the word m i in the sequence in terms of number of characters. Now, let n max be the maximum number of symbols admissible for each word. Then, we encode each word m i in n i (instead of xed n = n max as considered in [START_REF] Xie | Deep Learning Enabled Semantic Communication Systems[END_REF]) symbols where,

n i = min max n min , n max Np i + 1 2 , n max . (6.18) 
Hence, n i ∈ [n min , n max ], ∀i. In Figure 6.7, we show the impact of the adaptive vs. xed encoding on the metric τ , where we arbitrary x n min = 1 and let n max ∈ [1,[START_REF] Zappone | Model-aided wireless arti cial intelligence: Embedding expert knowledge in deep neural networks for wireless system optimization[END_REF]. We rst note that in both cases, there is a trade-o between accuracy and complexity, i.e., there is an optimal value (n * ) of n max depending on the SNR. In particular, for the xed case (n = n max ), and for lower SNR (8dB) we have n * = 4. As the SNR increases to 14dB, only n * = 3 symbols are su cient to encode each word. In the adaptive case, the number of symbols per word is adapted to the words' length such that on average, E[n] ≤ n max . Therefore, in Figure 6.7, we clearly see that when n max ≤ 4, the adaptive method outperforms the xed one, exhibiting 21.7% increase in τ . This means that for the same accuracy, the adaptive encoding uses a lower number of symbols than the xed encoding to represent each word. When n max ≤ 3, the adaptive method is slightly less e cient: this suggests that there is a minimum number of symbols per word to meet a given accuracy, here e.g., n min = 2.

Impact of languages mismatch. We now show a scenario where the transmitter speaks French and the receiver must understand in English. In this case, the sender and the receiver have di erent alphabets. This further introduces complexity in symbols interpretation. Indeed, many words in French are written the same way in English leading to semantic ambiguity. The result is 30% decrease in BLEU score performance as show in Figure 6.8. In the same gure, we also show the performance of the classical approach using Hu man/6-bits coding and a 64 QAM modulation. Note that as there is no way to infer English words from decoded symbols in the classical approaches, we rely on Google Translator, although its alphabet is larger than that of our receiver. The proposed semantic communication clearly outperforms the two benchmarks, especially in the low SNR regime. 

Conclusion and Perspectives

In this work, we focused on showing the potential of semantic compression considering static knowledge bases at the source and destination. To this end, we proposed a novel E2E architecture for an e cient semantic communication system. We started by analyzing theoretical aspects to formulate an objective function for semantic representation learning. Then, we proposed a new metric and trade-o parameter to assess the performance of the proposed system in terms of transmission accuracy and model complexity. Eventually, we proposed a toy example on text transmission, which shows a signi cant semantic compression gain, especially when sender and receiver speak di erent languages. In this example, the sender learns to map transmitted sentences into a sequence of well-formed symbols, exploiting the semantic, i.e., the meaning conveyed by these sentences. Then, we proposed a mechanism that adapts the number of symbols per word based on the conveyed semantic, providing up to 21% extra gain compared to state-of-the-art approaches. Importantly, this gain can be signi cantly extended when applied to multi-modal and data-angry applications such as video-to-text or text-to-video.

Eventually, the work of this last chapter can be extended to fully take advantage of the potential gain of semantic communications for e ective and e cient 6G communications. A possible extension rst considers dynamic knowledge bases. In this scenario, the knowledge available at the source and destination evolves during the exchanges and according to the shared semantic channels. For example, this is the case when the rules that govern an application change with time, and the source and the destination must dynamically update their reasoning unit accordingly. Another perspective is to study how the obtained semantic compression gain translates into bandwidth saving gain. This would require rst de ning the semantic capacity, which is still an open research issue. Finally, as in [START_REF] Bao | Towards a Theory of Semantic Communication[END_REF], our work focused only on jointly optimizing level A with level B. It is therefore interesting to study how to incorporate level C, i.e., the goal-oriented aspect. One solution is to specify a communication goal: for e.g., the receiver may interpret sentences to execute an action. Then we can optimize the resulting new E2E architecture after a proper de nition of the new loss function.

The technical contributions of this chapter have been validated by the following paper.

[C5] M. Sana I this thesis, we have designed and analyzed novel distributed learning frameworks for radio re- source management in 5G and beyond networks. Our proposed approach models user equipments as independent agents, which cooperate or compete for radio or computing resources to optimize network utility functions. To do so, agents learn to make autonomous decisions in a distributed way, based only on their local observations (and global observations if available) using a Multi Agent Reinforcement Learning (MARL) framework. Our proposed method eliminates the need for a cumbersome database or a priori modeling, which in practice are infeasible, thus reducing signaling and computational costs. Our proposed solutions jointly incorporate environment's dynamics during learning, including large and small scale fading, intra-and inter-cell interference, users tra c and mobility, as well as radio and computing resources, resulting in near-optimal performance. In addition, by properly designing agent policy network architecture, we ensure exible, scalable, and transferable solutions. In other words, the learned policies adapt well by design to change in the number of users and their positions and can be transferred to new deployments without requiring substantial additional training. Thus, with the proposed approaches, new users can bene t from the knowledge available in the cell without requiring new learning. Moreover, when a relevant change occurs in the radio environment (e.g., due to fading), our proposed solution is self-reorganized toward the optimal solution.

To come out with all these valuable features, we rst proposed a fully distributed and decentralized user association framework in Chapter 3. In this context, we proposed a learning and orchestration mechanism based on hysteretic deep recurrent Q network, which allows coordination between users to achieve near-optimal performance without inter-agent communications, thus limiting signaling overhead. We have validated the proposed solution in millimeter-wave networks with static and dynamic channels, as well as in a mobility context for handover management. However, despite its valuable features, this solution lacks exibility: it requires a new learning procedure each time a change in the number or position of users occurs w.r.t. initial training point. To address this issue, we introduced in Chapter 4, a transferable policy architecture, which allows a user association strategy or policy acquired in a speci c scenario (e.g., a network deployment) to be applied to distinct but related scenarios, without having to rede ne, recompute, or relearn a new policy. To achieve transferability, our proposed novel architecture conveniently combines neural attention mechanisms and multi-agent reinforcement learning and has zero shot generalization capacity: a policy learned in a speci c deployment can be transferred to another one without requiring substantial additional training procedure. Therefore, as desired, the proposed mechanism adapts well and by design to variations in the number of UEs or changes in the geometry of the network. Such a feature signi cantly reduces the computational complexity of user association during the network operations and makes the policy suitable for distributed and dynamic scenarios.

Next, based on previous results, we addressed the problem of dynamic computation o oading in Chapter 5. In the considered scenario, multiple users compete for radio and computing resources to o oad tasks to an edge server, to reduce energy consumption and/or latency. We rst formulated the underlying problem as a long-term minimization problem of system energy consumption under strict end-to-end delay constraints. Then, based on Lyapunov stochastic optimization tools, we decoupled the formulated problem into a per slot frequency allocation problem and a radio resource allocation problem, namely a user association problem, which are to be jointly solved. Accordingly, we proposed a fast and e cient iterative algorithm to solve the former problem and we hinged on our transferable user association solution to solve the latter. The resulting framework exhibits near-optimal performance by improving the energy e ciency of the network while signi cantly reducing complexity.

Finally, our analysis showed that inter-agent communication, although limited, may be necessary for some scenarios to ensure convergence. Thus, in our last study in Chapter 6, we explored the opportunity o ered by semantic communications to beyond 5G network management. In this context, what matters in communication between agents is their understanding of the meaning conveyed by exchanged messages and not their correct reconstruction. To this end, in this preliminary work, we focused on semantic compression. In our study, we referred to semantic as "meaningful" message (a sequence of well-formed symbols, which are possibly learned from data) that have to be interpreted at the receiver. This required an arti cial reasoning unit based on a knowledge base, i.e., a symbolic knowledge representation of the speci c application. Therefore, we have proposed and detailed a novel E2E architecture, which allows representation learning of semantic symbols for e ective semantic communications. We have discussed theoretical aspects and have designed objective functions, which allow learning an e cient semantic encoder and decoder. Our preliminary results have shown signi cant semantic compression gain, which suggests that semantic communications can bring a signi cant leap forward to the current 5G networks by enabling e cient and sustainable communications.

Future Work

Here we present the perspectives of our work, which require further investigation.

UAV assisted wireless networks

An immediate extension of our work concerns application with mobile base stations, namely Unmanned Aerial Vehicles (UAVs) also referred to as drones. Recently UAV applications have gained central interest in the wireless communication community [START_REF] Fotouhi | Survey on UAV Cellular Communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges[END_REF]. With their ability to y, UAVs can be leveraged in a variety of ways to enhance wireless networks. They can be deployed to provide ubiquitous network coverage by assisting the existing wireless communication infrastructure or serve as relays to provide wireless connectivity between users with no line-of-sight links with surrounding base stations [START_REF] Zeng | Wireless Communications with Unmanned Aerial Vehicles: Opportunities and Challenges[END_REF]. In this context, an interesting study investigates optimal UAVs deployment and trajectory optimization w.r.t. static ground base stations load, UAVs' battery level, and users tra c demand and mobility. Then, a solution to this problem exploits the idea introduced by our proposed user association solution in Chapter 4 to build adaptive and fully transferable Radio Resource Management (RRM) policies. Here, the interaction between multiple UAVs and UEs can be formulated as two distinct MARL problems, where the former optimizes UAVs placement, and the latter optimizes user association.

Explainable policies

Policy explainability is an interesting direction of study [START_REF] Puiutta | Explainable Reinforcement Learning: A Survey[END_REF]. Indeed, the agents in our MARL framework learn to take autonomous decisions, which have an impact on the network performance. It is therefore primordial to understand and to be able to explain the underlying reasoning behind every decision as well as exchanged messages. Doing so will help gain con dence in the learning performance and recover from failure situations, which can occur due to the uncertainties of wireless channels. In the context of user association, an attempt to explain the learned policies in Chapter 3 and 4, may rst identify how the di erent components of UEs' observations impact the output association request. This can be achieved using e.g., classi cation methods or principal component analysis, which will enable to construct a table mapping the resulting key components to association requests.

Communications for machine learning

Another interesting line of research is to study the impact of wireless communications on machine (or edge) learning applications. One prominent example is federated learning over-the-air, where multiple distributed devices collaboratively perform common learning tasks by exchanging their model parameters rather than raw data, using wireless communication links [START_REF] Chen | Convergence Time Optimization for Federated Learning Over Wireless Networks[END_REF]. In this context, many challenges arise, ranging from learning convergence to optimizing communication and computation resources for communication-e cient learning. Our work in Chapter 5 can be extended, considering that o oaded tasks are now learning tasks (e.g., federated learning) and jointly optimizing learning performance with computation and communication constraints.

Semantic and goal oriented communications

Our preliminary results on semantic communications are promising. In particular, we have shown in Chapter 6 that a signi cant semantic compression gain can be obtained by transmitting only relevant information, which allow the receiver to correctly extract and understand the intended meaning rather than trying to reproduce the information exactly from one point to another [START_REF] Strinati | 6G networks: Beyond Shannon towards Semantic and Goal-Oriented Communications[END_REF]. However, our work did not focus on how a semantic compression gain translates into bandwidth saving. As we mentioned in Chapter 6, this would require rst de ning the semantic capacity, which is still an open research issue. In addition, as our work focused on applications with the source and destination sharing static knowledge bases, a possible extension considers dynamic knowledge base systems. Such applications require the source and destination to dynamically update their reasoning unit, as their knowledge bases evolve during the exchange of messages and according to the shared semantic channels. Finally, our work focused on jointly optimizing level A with level B. The interesting study to incorporate level C, i.e., the goal-oriented aspect, requires specifying a communication goal. For instance, following our examples of Chapter 6, the receiver may now interpret sentences to execute actions. Then we can optimize the resulting new E2E architecture after a proper de nition of the new loss function. We believe that semantic communications together with goal-oriented communications may be one of the cornerstones of sixth-generation (6G) networks [START_REF] Uusitalo | Hexa-X The European 6G agship project[END_REF], thus requiring further research. pour avoir des gains d'antenne important et des communications directives, ainsi qu'un déploiement (ultra) dense des points d'accès mobiles pour booster la capacité du réseau [6]. Cela n'est pas sans complexités additionnelles. En e et, les communications dans les bandes millimétriques sou rent d'une sévère atténuation du canal et sont très sensibles au blocage et aux absorptions atmosphériques. La densi cation des points d'accès mobile quant à elle, augmente le nombre de stations à gérer, entraînant également des interférences intercellulaires tandis que la gestion simultanée des utilisateurs devient complexe avec le MIMO massif (formation et choix des faisceaux optimaux trop complexes). À cela se rajoutent une complexité liée à la croissance exponentielle du nombre d'utilisateurs connectés, des services hétérogènes et exigeants, des données de tra c variables, des canaux sans l dynamiques. De ce fait, la gestion des ressources radio devient de plus en plus complexe, nécessitant désormais des solutions avancées, exibles, évolutives et peu complexes que nous étudions dans cette thèse.

Des solutions distribuées pour la gestion des ressources radio

Dans les communications sans l, la gestion des ressources radio (RRM) implique toutes les stratégies, procédures et algorithmes utilisés pour gérer e cacement les ressources radio (par exemple la formation de faisceaux, l'allocation de puissance, le choix de la modulation et du schéma de codage de canal, etc.). Traditionnellement, ces algorithmes sont obtenus en résolvant des problèmes d'optimisation basés par exemple sur le tra c de données (instantané), la dynamique des canaux sans ls, les exigences dynamiques de qualité de service des utilisateurs, la charge des stations de base, et cela, sous des contraintes spéci ques de consommation d'énergie des utilisateurs, de latence, de débit, etc. En général, ces problèmes d'optimisation sont des problèmes de programmation en nombres entiers (ou en nombres mixtes), qui sont non convexes et NP-di cile. Par conséquent, les solutions traditionnelles fonctionnent généralement de manière centralisée. En e et, les approches centralisées donnent de meilleurs résultats car les informations provenant de plusieurs noeuds du réseau sont collectées et traitées de manière uni ée. Cependant, elles entraînent une surcharge importante de signalisation et nécessitent un calcul excessif, ce qui n'est pas pratique pour les réseaux 5G en raison du déploiement dense d'utilisateurs et de stations de base. De plus, comme souligné, la gestion des ressources radio fait intervenir de nombreuses variables d'optimisation qui ne sont pas toujours bien dé nies mathématiquement (en raison de la nature dynamique de l'environnement de propagation, de la mobilité des utilisateurs), ce qui rend di cile la formulation et la résolution de problèmes d'optimisation. Cela motive davantage l'exploration de solutions plus avancées pour la gestion des ressources radio. Cette thèse fait le choix des approches d'apprentissage distribué pour une gestion e cace et e ciente des ressources radio des réseaux mobiles 5G et au-delà. Les solutions distribuées ont l'avantage d'être exibles, évolutives et robustes face aux perturbations ambiantes. En outre, elles réduisent la surcharge de signalisation et évitent des calculs centralisés laborieux. Cependant, l'apprentissage distribué fait face à plusieurs dé s, notamment dans les réseaux 5G denses, en raison d'un environnement sans l incertain et des ressources radio et de calcul limitées. Motivés par ces dé s, nous proposons de nouveaux cadres d'apprentissage distribué basés sur l'apprentissage par renforcement multi-agent, tenant compte de la dynamique de l'environnement (variations des canaux sans l, interférences intra et intercellulaires, tra c et mobilité des utilisateurs) pour une gestion dynamique des ressources radio. Plus précisément, notre approche modélise les équipements utilisateur comme des agents indépendants, qui collaborent (ou rivalisent) pour accéder à des ressources radio et/ou computationnelles a n d'optimiser des fonctions d'utilité du réseau. Pour cela, les agents s'appuient sur leurs observations locales (et sur d'éventuelles observations globales) pour prendre des décisions autonomes, réduisant ainsi les coûts de signalisation et de calcul. 

Une gestion dynamique basée sur l'apprentissage par renforcement multi-agent

En se basant sur cette approche distribuée, nous proposons dans un premier temps, un cadre d'association d'utilisateurs entièrement distribué et décentralisé pour l'a ectation optimale des équipements utilisateurs aux stations de base, ainsi que pour gérer la mobilité. L'association optimale des utilisateurs aux stations de base est une tâche fondamentale, qui est cruciale dans les communications mobiles car elle a ecte directement l'e cacité spectrale du réseau ainsi que la qualité de service perçue par les utilisateurs. Cependant elle est di cile à résoudre car c'est un problème combinatoire qui implique généralement des optimisations non convexes et NP-di cile. Pour résoudre ce problème, notre solution associe des mécanismes d'apprentissage par renforcement aux méthodes d'apprentissage machine (et d'apprentissage profonds). En utilisant ce mécanisme, il n'est nullement besoin de bases de données experts labélisés ou de modèles de l'environnement radio, intraitable mathématiquement le plus souvent. Dans notre solution, les agents apprennent leur politique d'association par interaction avec l'environnement radio, de manière à maximiser des fonctions d'utilité du réseau.

Chaque équipement d'utilisateur est modélisé comme un agent indépendant qui prend des décisions autonomes basées sur ces observations locales o j (t). Ces observations locales sont choisis avantageusement à l'instant t comme suit : o j (t) = a j (t -1), R a j (t -1), j (t -1), R(t -1), ACK j (t -1), RSS a j (t -1), j (t), D j (t) .

(A.1) où a j (t -1) est l'action ayant été e ectuée par l'utilisateur j à l'instant précédent, ACK j (t -1) est la réponse à la requête d'association renvoyée par la station de base à laquelle elle a été transmise (par exemple ACK j (t -1) = 1 si l'association était acceptée et ACK j (t -1) = 0 si elle était refusée). RSS a j (t -1), j (t) est à la mesure à l'instant t de la puissance reçue de la station de base à laquelle le terminal mobile s'est associé, D j (t) est le débit demandé par le terminal mobile à l'instant t, R a j (t -1), j (t -1) est une estimation de la capacité de canal de la liaison descendante à l'instant précédent t -1 (autrement dit R i, j (t) = B i, j log 2 1 + SINR i, j (t) où B i, j et SINR i, j sont respectivement la bande passante et le rapport signal à bruit plus interférence lorsque l'utilisateur j est associé à la station de base i). La capacité totale du réseau obtenue à l'instant précédent est alors calculée sur l'ensemble des utilisateurs comme suit :

R(t) = i ∈A j ∈U
x i, j U α min R i, j (t), D j (t) , (A. Ainsi par exemple si α = 1, nous avons une équité proportionnelle entre les utilisateur. L'action d'un équipement utilisateur à l'instant t est dé nie par la requête d'association de cet utilisateur, soit a j (t) = i, où i désigne l'index de la station de base demandée. Ainsi, après que l'agent associé à l'utilisateur j ait observé le vecteur o j (t) et pris l'action a j (t), celui-ci reçoit une récompense r (t), dé nie sur la base de la fonction d'utilité du réseau, et commune à tous les utilisateurs. Les équipements utilisateur apprennent ainsi de manière indépendante une stratégie (politique) d'association π j qui décide pour chaque observation, l'action à e ectuer permettant de maximiser la somme de récompenses au cours du temps.

Il est important de noter que dans le cadre proposé, la taille des observations n'évolue pas avec le nombre d'utilisateurs, contrairement à d'autres travaux de la littérature [START_REF] Zhao | Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Cellular Networks[END_REF]. Aussi, les utilisateurs ne sont pas conscients de leur présence mutuelle dans le réseau et les observations de chaque utilisateur informent partiellement de l'état du réseau. Ce faisant, malgré la bonne association d'un utilisateur donné, la fonction d'utilité résultante peut décroître du fait du mauvais comportement des autres utilisateurs générant ainsi de fortes interférences. Cela peut pousser cet utilisateur à changer sa stratégie bien qu'étant bonne. Ce problème de non-stationnarité de l'environnement dû à l'interaction de multiple agents est fondamental dans l'apprentissage par renforcement multi-agent [START_REF] Omidsha Ei | Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability[END_REF].

L'approche que nous proposons résous ce problème en introduisant le principe d'hystérésis dans l'apprentissage, permettant de traiter di éremment les récompenses positives et négatives perçues par les utilisateurs au cours du temps [START_REF] Matignon | Hysteretic Q-Learning: An Algorithm for Decentralized Reinforcement Learning in Cooperative Multi-agent Teams[END_REF]. Plus précisément, un utilisateur, décidant d'être optimiste, accorde moins d'importance à la faible récompense reçue après son action, faisant l'hypothèse que cela est probablement dû au mauvais comportement des autres utilisateurs. Il ignore donc de ce fait cette récompense, en maintenant sa stratégie apprise. Nous montrons qu'en choisissant bien le degré d'optimisme de chaque utilisateur, nous améliorons considérablement les performances d'apprentissage. Outre cela, la solution que nous proposons intègre la dynamique de l'environnement (interférence des canaux, évanouissement rapide et tra c réseau) pendant la phase d'apprentissage, de sorte que l'association des utilisateurs se réorganise d'elle-même vers l'association optimale lorsqu'un changement pertinent se produit dans l'environnement. Par conséquent, nous réduisons davantage les coûts de signalisation ainsi que la complexité de calcul. Ceci est en contraste avec les solutions actuelles de l'état de l'art, qui ne prennent pas en compte la nature dynamique des réseaux sans l, nécessitant ainsi de recalculer périodiquement ou à chaque fois qu'un changement notable se produit dans l'environnement pour corriger les dérives possibles de l'association optimale. Nous validons cette approche à la fois dans un réseau hétérogène statique et dynamique, comprenant des stations de base millimétriques et sub-6 GHz. Nous montrons notamment que notre approche permet d'atteindre jusqu'à 98.7% de la performance optimale obtenue par une recherche exhaustive, augmentant les gains de performance de 40% comparés à des solutions de l'état de l'art. Dans le cas de la mobilité, notre solution permet de réduire de 70% la fréquence de transfert d'un utilisateur d'une station de base à une autre, très coûteux aussi bien énergétiquement que matériellement.

La nouveauté de cette contribution est ensuite validée dans les articles de conférence, de journal et de brevet suivants:

[C1] M. Sana Dans l'ensemble, l'originalité de la solution résultante réside dans sa capacité à simultanément : i) minimiser les rapports cycliques de mise en veille de tous les éléments du réseau sous contraintes de délai; ii) gérer e cacement les interférences radio; iii) être peu complexe; i ) combiner les méthodes d'optimisation stochastique de Lyapunov avec l'apprentissage par renforcement multi-agent (MARL);

) être distribué et compatible avec la mobilité des UE. Nos résultats de simulation montrent alors que la méthode proposée atteint 96.5% des performances optimales obtenues par recherche exhaustive onéreuse et permet de réduire la consommation d'énergie de 10% comparée à un algorithme heuristique proposée. La nouveauté de cette contribution est validée par l'article de conférence suivant:

[C4] M. Sana, M. Merluzzi . Now, note that for A, b ≥ 0 we have from [START_REF] Neely | Stochastic Network Optimization with Application to Communication and Queueing Systems[END_REF]: Next, applying the following inequalities • D j (t) ≤ D max j , • The frequency allocated to each UE j is such that f j (t) ≤ f max ,

(max(0, Q -b) + A) 2 ≤ Q 2 + A 2 + b 2 + 2Q(A -
• N c j (t) ≤ N c,max j = τ f max j , where j is the number of processed data units per CPU cycle,

• N u j (t) ≤ N u,max j = τ R max j S j

, where R max j is the maximum rate of UE j.

we have, ∆Z j (t) 

+ (Q s j (t)) 2 -2Q s j (t)N c j (t) + 1 2 Q avg j 2 + Z j (t) Q tot j (t + 1) -Q avg j . (C.9)
Now, recalling the de nition of the total queue and utilizing the fact that τ f j (t) j -1 ≤ N c j (t) = τ f j (t) j ≤ τ f j (t) j , and after rearranging terms, we have ∆Z j (t) 2 2 ≤ D j (t) -2Q s j (t)τ f j (t) j + max 0, Q s j (t)τ f j (t) j + 1 Z j (t)

+ K k=1 - 3 2
Q l j (t) + Q s j (t) N u j (t) + max 0, Q l j (t) -N u j (t) Z j 

χ (t) = E K k =1 5 4 Q l j (t) 2 + Q s j (t) 2 + Q s j (t)Q l j (t) + 2Q s j (t) + 2Q l j (t)D j (t) -Z j (t)Q avg j
+ min Q l j (t), N u j Z j (t) + Z j (t)D j (t)

= K k=1 5 4 
(Q l j (t)) 2 + (Q s j (t)) 2 + 2Q s j (t) + Q s j (t)Q l j (t) + 2Q l j (t)D j (t) + min Q l j (t), N u j Z j (t) + Z j (t)D j (t) -Z j (t)Q avg j (C.13)

Here, ζ is constant and independent of time t and χ (t) is constant at time t and does not depend on the optimization variables.
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 221 Figure 2.2: A downlink heterogeneous network with N s = 3 SBSs operating a mmWave frequencies, one sub-6 Ghz MBS, and K UEs. Here, as a example, the number of UEs under SBS 1 coverage is U 1 = {1, 4, 5, 7}, and UE 1 action space is A 1 = {1, 3}.
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 23 Figure 2.3: Cell interference illustration
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 31 Figure 3.1: The Dalton is a French animated television series, prisoners of a penitentiary in the Nevada desert, the Dalton brothers try to escape from the penitentiary... but without achieving their ends (src. Wikipédia).
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 32 Figure 3.2: Message sequence chart of the proposed mechanism for user association.
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 33 Figure 3.3: Illustration of the architecture of the proposed DRQN.
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 5 a j (t) 0 and connection granted then 6 ACK j (t) ← 1.
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else 8 ACK

 8 j (t) ← 0. 9 Automatically redirect to the MBS.
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 34 Figure 3.4: Simulated TX/RX antenna gain radiation pattern for an array of 20 × 20 (diag 1), 10 × 10 (diag 2), 5 × 5 (diag 3) elements operating at 28 GHz [1].

  5 while p ≤ P do 6 Set x p = 1.
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  Compute R p (t).

  // R p (t) is the sum-rate at iteration p.
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( 1 )

 1 ϵ(t) = 1ae -e -b(t -c ) , with a = 0.9, b = 10 -3 , c = 800.
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 35 Figure 3.5: Convergence speed and e ect of the hysteretic parameter β (using diagram 1). Figure (a) shows loss function for di erent values of β and for K = 9. For the sake of readability, a 20-sized moving average window is applied on plotted data. Figure (b) shows the sum-rate ratio and the associated variance between the proposed scheme and the optimal UE association for di erent values of β.
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 36 Figure 3.6: Impact of the collision cost on network performance in static scenario (using diag 1).
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 37 Figure 3.7: Performance comparison in static scenario using diagrams 1 and 3.
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 38 Figure 3.8: Performance comparison when considering only dynamic channels with fast fading.
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 39 Figure 3.9: Performance comparison when considering both dynamic channels with fast fading and dynamic tra c.
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 3 Figure 3.10: A downlink network with N s = 3 SBSs, one MBS, and K UEs taking straight motion.

Figure 3 . 11 :

 311 Figure 3.11: HO process timeline. TTI is the Transmission Time Interval.
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 312 Figure 3.12: Average reward w.r.t. to number of beams N i . Here, K = 15, m = 0.5, β = 1.
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 313314 Figure 3.13: Impact of the cost factor β on network performance. Here, N i = K = 15, m = 0.5.
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 41 Figure 4.1: Example of the variation of UE j service request with time.
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 42 Figure 4.2: Dynamic behavior of the proposed adaptive user association scheme.We set the loss temperature to τ = 0.01 via informal search. Here, D j (t) is expressed in Gbps.
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 43 Figure 4.3: UE association policy network architecture. This model is shared across all UEs and is trained using proximal policy optimization with an actor-critic framework.
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 9544 Figure 4.4: Probability density function of K 0 j=1 B j for di erent values of p 0 .
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 45 Figure 4.5: E ect of the hysteretic clipping factors on the system's convergence. Here we maximize network sum-rate, i.e., α = 0 and D j (t) = ∞, ∀j.
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 46 Figure 4.6: Impact of global observations on the system's convergence. Here, we optimize network sum-log-rate, i.e., α = 1 and D j (t) = ∞, ∀j.
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 47 Figure 4.7: Fixed-size encoding Vs. attention-based encoding. We use a simple combiner.
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 48 Figure 4.8: Simple combiner Vs. attention-based combiner. We use an attention-based encoding. The learning curves concern the sum-rate maximization problem, i.e., we set α = 0 in Eqn. (2.7).
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 410 Figure 4.10: Impact of discounting factor γ .
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 411 Figure 4.11: Comparison between the proposed transferable user association and the previously proposed solution based on hysteretic deep recurrent Q network (HDRQN).
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 52 Performance comparison 4.5.2.1 Comparison of the proposed solution w.r.t. previous works
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 412 Figure 4.12: Generalization capability of the PNA w.r.t. K. Training con guration: (K 0 = 15 UEs, N i = 3, ∀i). Testing con guration: N i is kept xed, K varies.
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 413 Figure 4.13: Generalization capacity of the PNA w.r.t. N i . Training con guration: (K 0 = 15 UEs,
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 414 Figure 4.14: Performance of the proposed solution w.r.t. network tra c.
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 4415 Figure 4.15: UEs' QoS satisfaction when (a) N i = 15 , and (b) N i = 3. Here, we consider α = 0.
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 2 De ne a vector F = [0, . . . , f max ] of ES CPU frequencies available. 3 De ne a matrix F = {F k, j } k, j of size |F | × K, and a |F |-sized vector G 1 = {G k 1 } k =1... | F | . 4 Initialize F and G 1 with zeros i.e., set F k,l = 0 ∀k, l, and G k 1 = 0 ∀k. 5 for k = 1, . . . , |F | do 6 Let f k c (t) = F k , and U = {k = 1, . . . , K }.

7

 7 

16 Compute the objective function G k 1 =

 161 G1 (t) of Eqn. (5.18) with f c (t) = F k and f j (t) = F k, j , ∀j.

17

 17 

  end 18 Find k * = arg min k {G k 1 }, and then set f
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 52 Figure 5.2: Dynamic computation o oading policy network architecture.A UE decides to o oad its computation tasks based on its radio observations and after aggregating computation observations from its neighborhood, including its observations. All UEs share the same policy.
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 51 Mobile edge computing parameters UEs sleep and active power, γ p u,o = 0.346 W, p u,on = 0.9 W APs sleep and active power p a,o = 0.278 W, p a,on = 2.2 W ES sleep and active power p s,o = 10 W, p s,on = 20 W Target Signal-to-noise ratio (SNR) 15 dB UEs max transmit power 0.1 W Hysteretic parameter ϵ ϵ 1 = 0.01, ϵ 2 = 0.5 Number of MLP neurons, m 128 Number of Monte-Carlo simulations, N 200
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 53 Figure 5.3: Energy-delay trade-o w.r.t. Ω for K = 6 UEs and for a xed delay constraint of 100 ms.
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 54 Figure 5.4: Average energy for a xed average delay of 100 ms. Due to complexity, results for K ∈ {12, 15} UEs cannot be obtained for the exhaustive search.

  Figure 6.1: Multi-level communication system[START_REF] Strinati | 6G networks: Beyond Shannon towards Semantic and Goal-Oriented Communications[END_REF]. Here, KB S and KB D denote the knowledge base available at the source and destination, respectively.
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 62 Figure 6.2: Simpli ed semantic communication system model.
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 63 Figure 6.3: A gira e drinking water.

Lemma 7 .

 7 a) comes from the de nition of the expectation Eqn. (6.9); (b) is straightforward noting that p( |m)p(m) = p(m| )p( ); Note that the rst term in (c) is the expectation of the KL-divergence between p θ (m| ) and q ϑ (m| ). Then, we use p θ ( |m) = ∫x p( |x)δ (xf θ (m))dx in (d) and apply Eqn. (6.1) in (e), which completes the proof. If α ≥ 0 and 0 ≤ β ≤ 1, then, the objective function (6.8) admits an upper-bound as follows:
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 64 Figure 6.4: Transformer-based semantic communication system architecture

Figure 6 .

 6 Figure 6.4 shows our attention-based E2E semantic communication system. Our proposed architecture is composed of a source coder S(•), a semantic generator G(•), a channel encoder E(•), a channel decoder D(•), and a semantic interpreter I (•). Semantic generator. The key component of the semantic generator is multi-head attention block (see Figure 6.4). It allows features extraction and to nd intrinsic relationships between pair of messages (m i , m j ) in an input sequence m = [m 1 , m 2 , . . . , m N ] generated by the source, where m i ∈ M t . It outputs z = G(m) ∈ R N ×M , in the semantic representation subspace, where each message m i is mapped into R M .
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 65 Figure 6.5: Impact of the SNR and H M (M) on the accuracy. Here we use n = 6 symbols/word over AWGN channel.
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 66 Figure 6.6: Impact of the trade-o parameter α on performances.
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 67 Figure 6.7: Impact of Adaptive vs Fixed number of symbols/word.

Figure 6 .

 6 Figure 6.8: 1-gram BLEU Score vs. SNR for French-to-(French/English) translation in the presence of AWGN channel.

  Figure A.1: Illustration du cadre d'apprentissage par renforcement proposé.

  2)où A et U désignent respectivement l'ensemble des stations de base et des utilisateurs dans le réseau. Ici, U α (•) est une fonction d'utilité permettant d'introduire une équité dans l'association selon le paramètre α[START_REF] Srikant | Communication Networks: An Optimization, Control and Stochastic Networks Perspective[END_REF]. Elle est dé nie comme suit :U α (x) = (1α) -1 x 1-α , si α ≥ 0 et α 1, log(x), α = 1. (A.3)
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 3 and a beam is available then / means that activating this link improves the sum-rate. Apply δ -1 to recover which links (i, j) are active. 1: Simulations parameters.

	10		
	11 12 13 14 end else Reset x p = 0. end		
	15 Macro cell [66]	Small cell [67]
	Parameters Carrier frequency, f s Bandwidth, B Thermal noise, N 0 Noise gure Shadowing variance, σ 2 s TX power, P Tx Antenna gain, G Tx /G Rx Radius, r Back-lobe gain Path-loss coe cient, η s Inter-cell distance Reference distance, d 0,s	2.0 GHz 10 MHz -174 dBm/Hz 5 dB 9 dB 46 dBm 17 dBi / 0 dBi 3.76 20.7 m (1)	Values -174 dBm/Hz 28 GHz 500 MHz 0 dB 12 dB 20 dBm Fig.5 35 m -20 dBi 2.5 1.2 × r
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Let x p unchanged. /
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 3 

	2: Deep Recurrent Q-networks training parameters	
	Discount factor, γ Time horizon, T e Batch size, |B| CERTs memory size, |M | ϵ (follows a negative Gompertz function (1) ) Target network update frequency Number of Monte-Carlo simulations, N	0.9 7000 32 500 1 → 0.1 10 400

  HOs in UEs Quality of Experience (QoE). In general, HO decisions are based on measurement signals such as RSS, Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), or Word Error Indicator (WEI) [70]. 3GPP standard suggests that a UE triggers an HO process when the RSS of the target BS exceeds the one of the serving BS by a certain amount to avoid ping pong e ect [70]. This procedure may induce large signaling overhead, which prevents from meeting the latency requirements of future wireless communication services [71]. To improve the HO performance, Yan et al. have proposed to limit the time consumed in the HO process by designing a machine learning algorithm that predicts HO decisions [72]. Koda et al. have proposed to limit HO frequency by designing a reinforcement learning (RL) framework that uses a Q-learning algorithm to maximize the network throughput

  Let consider the system model de ned in Section 2.3 of Chapter 2 (see Figure2.2). We now focus on a more realistic scenario, where the service requests of the UEs can change over time, e.

	4.2 Proposed Adaptive solution via Policy Distillation
	4.2.1 Policy distillation

g., from video streaming to Virtual Reality (VR) applications. We model this change by abruptly modifying the intensity of the Poisson distribution that characterizes the UE tra c, i.e., for UE j, D j (t) is now time-dependent (see Figure
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	1: Transferable policies training parameters	
	Discount factor, γ Time horizon, T e UE dropout probability, p 0 Actor and critic learning rate, µ Initial number of user K 0 Hysteretic parameter ϵ Number of MLP neurons, n Number of Monte-Carlo simulations, N	0.6 250 0.95 10 -4 15 ϵ 1 = 0.01, ϵ 2 = 0.5 128 500

  including expressions of ζ and χ j (t) to Appendix C. Next, assuming that the radio channel states and the input data generation are i.i.d. over time slots and that L(Z(0)) < ∞, greedily minimizing Eqn. (5.15) under (C2)-(C7) guarantee that the virtual queues are mean rate stable. Moreover from [105, Th. 4.8], we have also that: lim

  , M. Merluzzi, N. di Pietro, and E. Calvanese Strinati, "Energy E cient Edge Computing: When Lyapunov Meets Distributed Reinforcement Learning," IEEE International Conference on Communications (ICC) Workshops, Virtual, Montreal, Canada, June 2021.

	6.1 Introduction
	Part III
	Exploring new Fundamentals for beyond 5G Networks: The Opportunity of Semantic Communications

  and E. Calvanese Strinati, "Learning Semantics: An Opportunity for E ective 6G Communications," in Proc. IEEE Consumer Communications and Networking Conference (CCNC), Virtual, Las Vegas, January 2022.

	Conclusions and Future Perspectives
	"Le sage n'évite pas toujours les erreurs. "
	"The wise man does not always avoid mistakes. "
	-Adage Mossi (Burkina Faso)
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  , A. De Domenico, and E. Calvanese Strinati, "Multi-Agent Deep Reinforcement Learning based User Association for Dense mmWave Networks, " In Proc. IEEE Global Communications Conference (GLOBECOM), HI, USA, pages 1-6., Dec 2019.De l'association d'utilisateur au déchargement à faible consommation d'énergie de tâches de calcul sur des périphéries distantesJusqu'à présent, nous avons étudié les mécanismes d'association des utilisateurs pour améliorer l'e cacité spectrale du réseau. Nous proposons maintenant de consolider tous ces acquis pour résoudre le problème du déchargement de calcul e cace en énergie sur des serveurs distants. En e et, avec le déploiement de capacités de calcul et de stockage à la périphérie du réseau, l'informatique de périphérie (également connue sous le nom d'informatique périphérique mobile multi-accès (MEC)) a été conçue pour permettre des services à faible latence, hautement ables et économes en énergie, en rapprochant les ressources et les capacités de calcul du "cloud" au plus près des utilisateurs naux. Dans ce contexte, le déchargement dynamique de tâches de calcul permet aux dispositifs pauvres en ressources de calcul, de transférer l'exécution des applications à des serveurs distants a n de réduire la consommation d'énergie et la latence. Dans le scénario envisagé, plusieurs utilisateurs se disputent simultanément des ressources radio et de calcul en périphérie limitées pour obtenir le traitement des tâches déchargées sous des contraintes de délai. Pour cela, nous exploitons les modes de veille à faible consommation à tous les noeuds du réseau. Autrement dit, les utilisateurs, tout comme les stations de base et les serveurs distant peuvent décider de se mettre en "mode veille" pour réduire la consommation d'énergie. Il s'agit ensuite de déterminer quand éteindre ou rallumer un noeud. Du point de vue de la gestion du réseau, cette tâche est complexe et nécessite une optimisation conjointe des ressources radio et de calcul. Dans le chapitre 5, nous formulons le problème sous-jacent comme un problème d'optimisation dynamique à long terme visant à réduire la consommation d'énergie à long terme sous des contraintes strictes de délai. Ensuite, en se basant sur les outils d'optimisation stochastique de Lyapunov, nous montrons que ce problème peut être découplé en un problème d'ordonnancement de fréquence CPU et un problème d'allocation des ressources radio, à savoir un problème d'association d'utilisateurs. Nous proposons donc un algorithme itératif rapide, particulièrement e cace pour résoudre le premier problème et nous nous appuyons sur le cadre d'association d'utilisateurs proposé précédemment pour résoudre le second.

  , N. di Pietro, and E. Calvanese Strinati, "Energy E cient Edge Computing: When Lyapunov Meets Distributed Reinforcement Learning," IEEE International Conference on Communications (ICC) Workshops, Virtual, Montreal, Canada, June 2021.Vers des communications sémantiques pour des réseaux au-delà de la 5G encore plus performants voulu (l'objectif visé) permet d'économiser beaucoup de bande passante de communication. Dans cette dernière contribution, nous proposons d'explorer l'opportunité des communications sémantiques comme nouveau fondamental pour les réseaux au-delà de la 5G. Pour cela, dans le chapitre 6, nous proposons et détaillons une nouvelle architecture qui permet l'apprentissage de la représentation des symboles sémantiques pour des communications e caces entre agents. Nous discutons des aspects théoriques et concevons avec succès des fonctions objectives qui permettent d'apprendre des codeurs et des décodeurs sémantiques e caces. Nous proposons également un mécanisme adaptatif, qui optimise dynamiquement le nombre de symboles de chaque message transmis. En n, nous validons notre approche dans un scénario de transmission de texte, où un expéditeur -un agent IA -transmet des phrases dans une langue que le récepteur doit décoder et comprendre dans une autre langue. Nos résultats numériques préliminaires sont prometteurs et montrent le potentiel des communications sémantiques pour les futurs réseaux 6G. Les résultats de cette contribution ont été acceptés pour publication dans la conférence suivante:[C5] M.Sana and E. Calvanese Strinati, "Learning Semantics: An Opportunity for E ective 6G Communications, " in Proc. IEEE Consumer Communications and Networking Conference (CCNC), Virtual, Las Vegas, January 2022. Conclusion Dans cette thèse, nous avons conçu et analysé de nouveaux cadres d'apprentissage distribué pour la gestion des ressources radio dans les réseaux mobiles 5G et au-delà. L'approche que nous proposons modélise les équipements des utilisateurs comme des agents indépendants, qui coopèrent ou rivalisent pour des ressources radio ou de calcul a n d'optimiser les fonctions d'utilité du réseau. Pour ce faire, ils apprennent à prendre des décisions autonomes de manière distribuée, en se basant uniquement sur leurs observations locales (et les observations globales si elles sont disponibles) en utilisant un cadre d'apprentissage par renforcement multi-agent. Cette méthode élimine le besoin d'une base de données onéreuse à constituer ou d'une modélisation a priori de l'environnement radio, qui en pratique sont infaisables, réduisant ainsi les coûts de signalisation et de calcul. Les solutions que nous proposons intègrent conjointement la dynamique de l'environnement pendant l'apprentissage, y compris les évanouissements à grande et petite échelle des canaux, les interférences intra et intercellulaires, le tra c et la mobilité des utilisateurs, ainsi que les ressources radio et computationnelles, ce qui permet d'obtenir des performances quasi-optimales. De plus, en concevant correctement l'architecture neuronale de la politique des agents, nous garantissons des solutions exibles, évolutives et transférables. En d'autres termes, les politiques apprises s'adaptent bien par conception aux changements du nombre d'utilisateurs et de leurs positions et peuvent être transférées à de nouveaux déploiements sans nécessiter de procédures d'entrainement substantielles. Ainsi, avec les approches proposées, les nouveaux utilisateurs peuvent béné cier des connaissances disponibles dans la cellule sans nécessiter un nouvel apprentissage. De plus, lorsqu'un changement pertinent se produit dans l'environnement radio (par exemple, en raison de l'évanouissement des canaux sans l), notre solution proposée s'auto-réorganise vers la solution optimale. En n, dans notre dernière étude, nous avons exploré l'opportunité des communications sémantiques comme nouveau fondamental pour les communications au-delà des réseaux 5G. Dans ce contexte, ce qui importe dans la communication entre agents est leur compréhension du sens véhiculé par les messages échangés et non leur reconstruction correcte. Par conséquent, nous avons proposé et détaillé une nouvelle architecture, qui permet l'apprentissage de la représentation des symboles sémantiques pour des communications sémantiques e caces. Nos résultats préliminaires se sont avérés prometteurs et suggèrent que les communications sémantiques apporteront un bond en avant signi catif aux réseaux 5G actuels. To simplify notations, let ∆X (t) 2 = X (t + 1) 2 -X (t) 2 . By applying (C.7) to the virtual queue Z j (t) de ned in (C.1) and noting that (x + ) 2 ≤ 2x 2 + 2 2 , we can write

	∆Z j (t) 2 2	≤ = ≤ Q l Q tot j (t + 1) -Q 2 1 2 Q tot j (t + 1) 2 j (t + 1) 2 + Q s avg j -Q tot 2 + Z j (t) Q tot j (t + 1) -Q j (t + 1)Q avg j + 1 2 Q avg j 2 avg j + Z j (t) Q tot , j (t + 1) -Q j (t + 1) 2 + 1 2 Q avg j 2 + Z j (t) Q tot avg j (t + 1) -Q j	avg j	,

  Then, by summing over all UEs and taking the expectation, we have,∆ p (Θ(t)) ≤ ζ + χ (t) + E Ω • E tot (t)

		K											
	+													
		k=1											
			2 +	1 2	Q	avg j	2	+	5 4	N u,max j	2	+ N c,max j	2	+	5 4	Q l j (t)
	-	3 2	Q l j (t)N u											

2 + Q s j (t)Q l j (t) + 2Q l j (t)D j (t) + Q s j (t) 2 -Z j (t)Q avg j + min Q l j (t), N u j (t) Z j (t) + Z j (t)D j (t) -2Q s j (t) τ f j (t) j -1 + max 0, Q s j (t) -(τ f j (t) j -1) Z j (t) j (t) + Q s j (t)N u j (t) + max 0, Q l j (t) -N u j (t) Z j (t).

(C.10)

The limitation to one macro cell is made for simpli cation reasons. The extension to several macro cells is however trivial.

A j can also be derived based on links quality, e.g., the received signal strength indicator between UE j and BS i (RSSI i, j ) should be greater than a prede ned threshold ζ j , i.e., A j = {i, RSSI i, j ≥ ζ j }.

Note: we assume that the MBS is able to simultaneously serve all the active UEs by equally sharing its band across them.

In the following, we use HDRQN to refer to the proposed algorithm, and DRQN to refer to the related NN architecture.

Note that increasing the number of antenna elements also increases the antenna's size, thus, the hardware complexity.

Note that it is also possible to use a Gated Recurrent Unit (GRU) layer. During simulations, both LSTM and GRU layer have shown similar performance.

We have considered the case of K = 13 UEs to highlight how, in networks with a large number of users, the collision events impact the network sum-rate.

Note that the UEs not served by a mmWave beam are receiving data through the MBS.

One can view this process as a ltering stage, which consists in building a state representation of the input observations.

Note that in this work, for the sake of simplicity, we consider N j as the k-nearest neighbors of UE j however, solutions based on local interaction graphs can be considered, where potential interferers can be identi ed on the basis of an interference threshold following approaches in[START_REF] Liu | Decentralized Beam Pair Selection in Multi-Beam Millimeter-Wave Networks[END_REF].

Note that, π j,θ (a j |s j ) = p a j (t ), j , where p k,l is the probability de ned in Section 4.3.2.

We write  instead of Â(a j , o j ) for notation clarity.

This idea is similar to the dropout mechanism in neural networks.

Note that when the network dynamic deviates too much from the reference training point, it is possible to retrain the policy, e.g., by utilizing a curriculum learning approach[START_REF] Bengio | Curriculum Learning[END_REF], where the already trained policy can be used as a starting point.

We randomly select f c (t) ∈ F and allocate ω j f c (t) to each UE j such that j ω j = 1, where {ω j } j follow a symmetric Dirichlet distribution.

Note that before being able to produce semantic symbols, the source and the destination may rst agree on a common mechanism (e.g., a logic). This can be achieved through our proposed E2E learning.

The decoder can also recover an equivalent meaning from Level C perspective, i.e., w.r.t. to the targeted goal of the communication.

Nous avons montré dans les travaux précédents que la communication entre agents, bien que limitée, peut être nécessaire dans certains scénarios pour garantir la convergence. Si l'on revient à la théorie de l'information de Shannon, l'objectif de la communication a longtemps été d'assurer la réception correcte des messages transmis, indépendamment de leur signi cation. Cependant, pour que la communication soit e cace, ce qui importe est que les agents comprennent le sens véhiculé par les messages échangés et non leur reconstruction correcte. Ce paradigme fait référence aux communications sémantiques : transmettre uniquement les informations pertinentes su santes pour que les agents saisissent le sens
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Part II L travaux de thèse présentés dans ce manuscrit portent sur les mécanismes d'apprentissage distribués pour la gestion et l'orchestration des réseaux mobiles 5G et au-delà. Plus spéci quement, nous étudions comment gérer de manière e ciente et e cace les ressources radio et computationnelles des réseaux mobiles en se basant sur des approches d'apprentissage distribuées et sur l'intelligence arti cielle. Dans ce qui suit nous résumons brièvement les principaux résultats de nos travaux de recherches. Pour cela nous commençons par situer le contexte d'étude, puis nous décrivons les principaux challenges associés avant de décliner les méthodes proposées pour adresser ces problèmes.

Design of Distributed and Transferable Intelligence

Introduction et contexte d'étude

Les communications sans l connaissent une demande sans précédent de débit et de bande passante. Non seulement le volume du tra c de données explose, mais les spéci cités et la nature des objets communicants se diversi ent. Dans le même temps, de nouvelles applications et de nouveaux cas d'utilisation apparaissent, chacun avec des exigences strictes en termes de abilité et/ou de latence. Il s'agit par exemple de la réalité augmentée, virtuelle et mixte, de la télémédecine, des véhicules autonomes, des véhicules volants, de l'Internet des objets (IoT), des usines 4.0 et des villes intelligentes. Cela pousse le réseau sans l à se réinventer constamment pour relever ces dé s. L'introduction récente de la cinquième génération (5G) de réseaux mobiles en est un parfait exemple [4]. La technologie 5G représente une avancée considérable dans la conception des réseaux de communication. Elle fournit une infrastructure de communication capable de délivrer simultanément des communications hautement ables, à faible latence et à débits de données élevés, prenant ainsi en charge une variété de services. Ces services sont généralement répartis en trois grandes catégories :

1. Les communications à haut débit (eMBB) : poussés par la nécessité de fournir un débit de données plus élevé, les services eMBB visent à améliorer la capacité du réseau à prendre en charge des connexions stables avec des débits de données de pointe très élevés (jusqu'à 20 Gbps en liaison descendante [5]) ainsi que des débits de données modérés pour les utilisateurs en bordure de cellule (fournissant globalement un débit de données perçu de 100 Mbps à tout moment et en tout lieu).

2. Les communications massives entre-machines (mMTC): ce service vise à prendre en charge un nombre massif de dispositifs connectés ayant des communications sporadiques (envoi de petits paquets de données) et une faible consommation d'énergie, comme les dispositifs IoT. Parmi les autres cas d'utilisation gurent les réseaux intelligents, l'internet tactile ainsi que les services impliquant des communications de machine à machine.

3. Les communications ultra-ables à faible latences (URLLC): ce service vise à prendre en charge les applications nécessitant une transmission de paquets courts à faible latence et une abilité extrêmement élevée (avec des taux d'erreur des paquets autour de 10 -5 -10 -9 ). Ces applications vont de la télé-chirurgie aux véhicules autonomes en passant par les usines 4.0.

Pour répondre à toutes ces exigences strictes, la 5G adopte principalement des communications dans les bandes millimétriques, l'approche MIMO massif en augmentant le nombre d'antennes par station de base

Training transferable policies

We provide in this Appendix, the sequence diagram and the algorithm used to derive transferable user association policies of Chapter 4.

UE j MBS SBS

Find the surrounding BSs i.e., A j

Compute and report v j (t)

Process o L j (t) and v j (t)

Request connection to a j (t) Here, we assume a central controller collocated with the MBS. Each UE j rst identi es the set of BSs A j it could connect to, which also represents its action space, i.e. , an action a j (t) ∈ A j denotes the index of the BS to which the UE j requests connection at time t. Accordingly, at each time step, UE j observes its local observations o L j (t) and computes the local encoding vector u j (t). Then given the available global information, the central controller computes for each UE j, the global encoding vector v j (t). Based on u j (t) and v j (t), UE j selects an action a j (t) and informs the MBS of the association request. If a j (t) = 0, the MBS grants the connection request and sets up communication. Otherwise, the MBS forwards the connection request to the corresponding SBS. Depending on the overall received requests, the SBS sends an acknowledgement signal (ACK j (t)) to the MBS. If ACK j (t) = 1, the SBS grants a connection to the UE; otherwise, the MBS establishes the default data link with the UE j. Next, each UE j evaluates the perceived data rate, i.e. , R j (t) = B a j (t ), j log 2 (1 + SINR a j (t ), j ) and forwards this value to the MBS. Then, the MBS computes the total network utility R(t) and sends it each UE, which use this information to evaluate the goodness of the action selection strategy, and to de ne future actions accordingly. In Algorithm 5 we summarizes the main steps used for training the proposed transferable user association policies using Proximal Policy Optimization (PPO). Free global memory M.

Use the actor and compute the association probability vector p j (t) = [p 0, j , . . . , p N s , j ].

Sample action a j (t) in A j from distribution p j (t).

if a j (t) == 0 then MBS grants access.

ACK j (t) ← 1.

// the UE is requesting a connection to the MBS.

Admit only the best N i UEs w.r.t. their p j (t) and set ACK j ← 1 for these UEs.

Redirect the others UEs towards the MBS and set ACK j ← 0 for these UEs.

else ACK ← 1 for all SBS' UEs.

// compute network utility.

for j ∈ U do

// UEs are equally rewarded.

Observe the new state o j (t + 1) = {o L j (t + 1), o G j (t + 1)}.

Store experience e j (t) = o j (t), a j (t), r j (t), o j (t + 1) into global memory M.

end Sample a batch of experiences from M.

Update actor network to minimize the PPO loss:

Update critic network to minimize the TD error:

end Note that the "gray parts" can be computed in parallel.

A C

Upper bound of the Lyapunov drift-plus-penalty function

In this Appendix, we provide full derivations of the Lyapunov drift-plus-penalty's upperbound used for Proposition 1 in Chapter 5. For this let us recall the de nition of the virtual queues, which evolve as:

is the sum of the uplink communication queue Q l j (t) and the computation queue Q s j (t, which evolve as follow:

where D j (t) is the number of newly arrived o oadable data units generated by the application that runs at the UE at time t, N u j (t) and N c j (t) are the number of data units o oaded and processed over one slot respectively.

Lyapunov function

Our initial objective is to ensure the mean rate stability of the virtual queues Z j (t) ∀j. For this, we introduce the Lyapunov function L(Z(t)) as:

Note that the lower is L(Z(t)), the lower the virtual queues. Also, we introduce the associated Lyapunov drift-plus-penalty function, which is de ned as follows: Here, ∆ p (Z(t)) is the conditional expected change of the Lyapunov function over one slot plus a penalty factor that weights the objective function of (P 0 ) using parameter Ω. Now, if ∆ p (Z(t)) is bounded ∀t, all virtual queues are mean rate stable [START_REF] Neely | Stochastic Network Optimization with Application to Communication and Queueing Systems[END_REF]. Thus, our objective is to de ne an upperbound of ∆ p (Z(t)).

Upperbound derivation

To derive an upper bound of ∆ p (Z(t)), rst note that from [105, p. 59], given a generic queue X (t) evolving as X (t + 1) = max(0, X (t) + (t + 1) -¯ ), (C.6)

we have, X (t + 1) 2 -X (t) 2 2 ≤ ( (t + 1) -¯ ) 2 2 + X (t) (t + 1) -X (t) ¯ .