
HAL Id: tel-04086284
https://theses.hal.science/tel-04086284

Submitted on 2 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Learning for 5G and Beyond Network
Management and Orchestration

Mohamed Sana

To cite this version:
Mohamed Sana. Distributed Learning for 5G and Beyond Network Management and Orchestra-
tion. Artificial Intelligence [cs.AI]. Université Grenoble Alpes [2020-..], 2021. English. �NNT :
2021GRALM043�. �tel-04086284�

https://theses.hal.science/tel-04086284
https://hal.archives-ouvertes.fr


THÈSE

Pour obtenir le grade de
DOCTEUR DE L' UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques et Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Mohamed SANA
Thèse dirigée par Emilio Calvanese Strinati

Préparée au sein du Laboratoire CEA Grenoble - LETI
dans l’École Doctorale Mathématiques, Sciences et Technologies de 
l’Information, Informatique (MSTII)

Apprentissage Distribué pour
la Gestion et l’Orchestration

des Réseaux 5G et au-delà

Distributed Learning for
5G and beyond Networks

Management and Orchestration

Thèse soutenue publiquement le 26 Octobre 2021,
devant le jury composé de :
Pr. Mérouane DEBBAH

Professeur à CentralSupelec, Paris, Examinateur
Pr. Sergio BARBAROSSA

Professeur à Sapienza Università di Roma, Italie, Rapporteur
Pr. Petar POPOVSKI

Professeur à Aalborg University, Danemark, Examinateur
Pr. Deniz GÜNDÜZ

Professeur à Imperial College of London, Royaume Uni, Rapporteur Pr. 
Denis TRYSTRAM
Professeur à Grenoble-INP, France, Président du Jury
Dr. Emilio CALVANESE STRINATI
Directeur de recherche, CEA-LETI Grenoble, France, Directeur de thèse



À mes parents
Souleymane et Rasmata,

− v17.24



À la mémoire de mon oncle
Ousmane Sana,

Je vous espère à présent reposé,
�er de voir germer les graines que vous avez semé.



ii

Abstract

W ireless communications are experiencing an unprecedented demand for communication band-
width. It is not only the volume of data tra�c exploding, but also the characteristics and

nature of communicating objects are diversifying. In addition, new applications and use cases are
emerging, each one with stringent requirements, making the management of radio, computing, and
storage resources complex, requiring advanced, �exible, scalable, and low complexity solutions.

This thesis focuses on distributed learning approaches for e�ective and e�cient radio resource
management in the context of 5G networks and beyond. Distributed solutions have the advantage
of being �exible, scalable, and robust to environmental artifacts. Furthermore, they reduce signaling
overhead and strongly limit cumbersome centralized computations. However, distributed learning
faces several challenges, especially in dense 5G networks deployments, due to an uncertain wireless
environment and limited radio and computing resources. Motivated by these challenges, we propose
new distributed learning frameworks based on multi-agent reinforcement learning, which consider
environment dynamics, including radio channel variations, intra- and inter-cell interference, users’
tra�c, and mobility for dynamic radio resource management. Speci�cally, our approach models user
devices as independent agents, collaborating with (or competing against) each other for radio and/or
computing resources to optimize network utility functions. To do so, the agents rely on their local
observations (and global observations if available) to make autonomous decisions, thereby signi�cantly
reducing signaling and computational overhead.

Following this approach, we propose a fully distributed and decentralized user association frame-
work for the optimal assignment of user equipments to base stations. Then, we extend this study to
propose a new architecture, which conveniently combines neural attention mechanisms and multi-agent
reinforcement learning to build fully transferable user association policies with zero generalization
capability. In other words, with the proposed new framework, the knowledge acquired in one speci�c
scenario is transferable to another without requiring any additional training procedure. We show that
the proposed mechanism adapts well and by design to variations in the number and positions of users.
These conclusive results allow us to address the problem of energy-e�cient dynamic computation
o�oading, where multiple users compete for radio and computing resources to o�oad data generated
dynamically at the user’s devices to an edge server. We formulate this problem as a long-term energy
minimization problem with end-to-end delay constraints to meet user quality of service. Using Lyapunov
stochastic optimization tools, we decouple this problem into a per slot frequency allocation problem
and a radio resource allocation problem, which we jointly solve with a proposed fast iterative algorithm
and the proposed transferable user association solution. The resulting framework exhibits near-optimal
performance, improving the network’s energy e�ciency while signi�cantly reducing its complexity.
Finally, to further enhance the system’s performance, in the last part of this thesis, we explore the
opportunity o�ered by semantic communications. In this paradigm, whenever communication occurs
to convey meaning between two agents, what matters is the receiver’s understanding of the transmitted
message and not necessarily their correct reconstruction. Transmitting only relevant information
su�cient for agents to capture the meaning intended can save signi�cant communication bandwidth.
Therefore, we propose a new architecture that enables representation learning of semantic symbols. Our
preliminary numerical results are promising, making semantic communications a good candidate to
improve the e�ciency and sustainability of future 6G networks.

Keywords – Distributed Learning, 5G and beyond Networks, Radio Resource Management, Reinforcement
Learning, Wireless Networks, User Association, Handover Management, Mobile Edge Computing, Semantic
Communications, Goal-Oriented Communications.
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Résumé

Les communications sans �l connaissent une demande sans précédent de débit et de bande passante.
Non seulement le volume du tra�c de données explose, mais les spéci�cités et la nature des

objets communicants se diversi�ent. De plus, l’apparition de nouvelles applications et de nouveaux cas
d’utilisation, chacun avec des exigences strictes, complexi�e la gestion des ressources radio, de calcul,
et de stockage, qui nécessite désormais des solutions avancées, �exibles, évolutives et peu complexes.

Cette thèse se focalise sur les approches d’apprentissage distribué pour une gestion e�cace et
e�ciente des ressources radio des réseaux mobiles 5G et au-delà. Les solutions distribuées ont l’avantage
d’être �exibles, évolutives et robustes face aux perturbations ambiantes. En outre, elles réduisent la
surcharge de signalisation et limitent des calculs centralisés laborieux. Cependant, l’apprentissage
distribué fait face à plusieurs dé�s, notamment dans les réseaux 5G denses, en raison d’un environnement
sans �l incertain et des ressources radio et de calcul limitées. Motivés par ces dé�s, nous proposons
de nouveaux cadres d’apprentissage distribué basés sur l’apprentissage par renforcement multi-agent,
tenant compte de la dynamique de l’environnement (variations des canaux sans �l, interférences
intra et intercellulaires, tra�c et mobilité des utilisateurs) pour une gestion dynamique des ressources
radio. Plus précisément, notre approche modélise les équipements utilisateur comme des agents
indépendants, qui collaborent (ou rivalisent) pour accéder à des ressources radio et/ou computationnelles
a�n d’optimiser des fonctions d’utilité du réseau. Pour cela, les agents s’appuient sur leurs observations
locales (et sur d’éventuelles observations globales) pour prendre des décisions autonomes, réduisant
ainsi considérablement les coûts de signalisation et de calcul.

Ce faisant, un cadre d’association d’utilisateurs entièrement distribué et décentralisé est d’abord
proposé pour l’a�ectation optimale des équipements utilisateurs aux stations de base, et pour gérer
la mobilité. Nous étendons ensuite cette étude pour proposer une nouvelle architecture combinant
judicieusement des mécanismes d’attention neuronale et d’apprentissage par renforcement multi-agent.
Les solutions obtenues sont entièrement transférables et généralisables : les connaissances acquises
dans un scénario spéci�que sont applicables à d’autres sans nécessiter de procédure d’apprentissage
supplémentaire. Nous montrons que cette solution s’adapte bien aux variations du nombre et des
positions des utilisateurs. Cela nous permet ensuite d’aborder le problème du déchargement dynamique
des calculs à faible coût énergétique, où plusieurs utilisateurs se disputent des ressources radio et
computationnelles pour décharger des tâches sur un serveur périphérique. Il s’agit d’un problème de
minimisation d’énergie à long terme sous des contraintes strictes de délai. Avec des outils d’optimisation
stochastique de Lyapunov, nous traduisons ce problème en un problème d’allocation conjointe de
fréquence et de ressources radio par slot, que nous résolvons de manière quasi-optimale avec un
algorithme itératif rapide combiné à notre solution d’association d’utilisateurs transférable. En�n, la
dernière partie de cette thèse explore les communications sémantiques. Dans ce paradigme, lorsqu’une
communication a lieu pour véhiculer un sens entre deux agents, ce qui importe est la compréhension
par le récepteur du message transmis et non sa reconstruction correcte. Transmettre uniquement les
informations pertinentes su�santes pour que les agents saisissent le sens voulu permet d’énormes
économies de bande passante. Nous proposons donc une méthode permettant l’apprentissage de la
représentation des symboles sémantiques. Nos résultats numériques préliminaires sont prometteurs et
montrent le potentiel des communications sémantiques pour des futurs réseaux 6G e�caces et durables.

Mots-clés – Réseaux sans Fils, Réseaux 5G mobile, Apprentissage Distribué, Apprentissage par Ren-
forcement Multi-Agents, Gestion de Ressources Radio, Association d’Utilisateurs, Gestion de la Mobilité,
Informatique mobile de Périphérie, Communications Sémantiques, Communications axées sur les Objectifs.
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Chapter 1

Introduction

“La vie est une sou�rance continuelle pour celui qui l’a�ronte avec son coeur et un
passe temps agréable pour celui qui l’a�ronte avec son intelligence.”

“Life is a continuous su�ering for the one who faces it with his heart and a pleasant
pastime for the one who faces it with his intelligence.”

− Proverbe Africain
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1.1 5G Networks: A Technological Breakthrough

W ith the proliferation of smart and connected devices, the cyber and physical spaces are fusing,
turning humans, objects, and events into an exponentially growing source of digital information

[3]. As a result, wireless networks are witnessing an unprecedented demand for communication
bandwidth, and an explosion of connected devices. At the same time, new applications and services
are emerging with stringent requirements in terms of reliability and/or latency. Examples of these
range from eXtended Reality (XR), including augmented, virtual, and mixed reality to telemedicine,
autonomous vehicles, �ying vehicles, Internet of Things (IoT) high-precision manufacturing, smart cities.
This pushes the wireless network toward constant evolution and revolution to address these challenges.
The recent introduction of Fifth Generation (5G) networks is a perfect example [4]. 5G technology
represents a breakthrough in the design of communication networks. It provides a communication
infrastructure able to deliver, simultaneously, high reliability, low latency, and high data rates, thus
supporting a variety of services or verticals. These services are usually split into three mains categories:

1. enhanced Mobile Broadband (eMBB): driven by the need to provide higher data throughput,
eMBB services aim at enhancing the network capacity to support stable connections with very
high peak data rates (up to 20 Gbps in downlink [5]) as well as moderate data rates for cell-edge
users (overall providing a user’s experienced data rate of 100 Mbps anytime, anywhere).
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2. massive Machine-Type Communication (mMTC): this service aims to support a massive
number of connected devices with sporadic communications (sending small data payloads) and
low energy consumption such as IoT devices. Other use cases include smart grids, tactile internet
as well as services involving machine-to-machine communications.

3. Ultra-Reliable Low-Latency Communications (URLLC): this service aims to support appli-
cations with low-latency short-packets transmission and extremely high reliability (10−5 − 10−9

packet error rate). Such applications range from telesurgery to autonomous vehicles and high
precision manufacturing.

1.1.1 5G keys enablers: why these choices?

To accommodate all these stringent requirements, 5G adopts mainly millimeter-wave (mmWave) commu-
nications together with massive Multiple-Input/Multiple-Output (MIMO) and (ultra) dense deployment
of network Access Points (APs) [6]. The reasons behind these choices are easy to understand. Histori-
cally, wireless networks evolution has been driven by the need for higher and higher data rates. Back
in 1948’s, Shannon-Hartley Theorem (named after Claude Shannon and Ralph Hartley) has established
the link between the maximum achievable rate C on a given communication link experiencing an
interference I and the received signal power PRx as well as the communication bandwidth B:

C = B log2

(
1 + PRx

N0B + I

)
, (1.1)

where N0 denotes the noise power spectral density. Using Friis formula for free-space model, the
received power can be expressed as follows:

PRx = GTxGRx
(

c

4π f0d

)2
PTx. (1.2)

Here, PTx is the transmit power, f0 is the signal carrier frequency, d is the distance between transmitter
and receiver, c is the light speed, and GTx, GRx the transmit and received antenna gain respectively.

From Eqn. (1.1), an immediate solution to increase the maximum achievable rateC is to increase the
communication bandwidth. This is the idea behind the adoption of mmWave bands, which o�er large
spectrum resources. Meanwhile, adopting mmWave bands means going to higher frequencies, which
implies increasing the signal carrier frequency f0. However, transmissions at higher frequencies su�er
from severe attenuation due to rain, atmospheric, and molecular absorption, thus, limiting the range of
communication [7]. One solution to compensate for signal loss due to attenuation is to increase the
antenna directivity gains. This is the idea introduced by massive MIMO, which consists in increasing
the number of antenna elements to provide high directivity antenna gain. Furthermore, the short-
wavelength characteristics of mmWave allow for compact design of MIMO antenna array as the size of
the antenna element is reduced. Therefore, massive MIMO can help improve coverage performance
with directional beamforming techniques. Another solution to combat path loss and increase channel
capacity is to reduce the distance between transmitter and receiver. This can be achieved by densifying
network APs. Indeed, by increasing the number of APs in a given geographical area, the distance to the
end-users eventually gets reduced. However, network capacity does not systematically increase with
densi�cation of APs due to e.g., (co-)channel interference I and ine�cient resource allocation. Hence,
despite their enormous potential, these key enablers also pose new challenging problems, which need
to be addressed for e�cient and e�ective 5G and beyond communications.
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Remark 1. Although the transmission with more power can also increase the network capacity, it
has the main drawback of increasing the energy consumption.

Remark 2. Another way to increase the network capacity consists to act directly on the channel
pathloss. This alternative implies being able to shape the wireless propagation channel, which can
be achieved with the recently introduced Re�ective Intelligent Surfaces (RIS) and meta-surfaces
technologies [8]. The fundamental idea behind these technologies is to turn the wireless environment
into a smart recon�gurable and controllable space capable of actively transferring and processing
information [9].

1.1.2 New challenges for radio resource management

In wireless communications, Radio Resource Management (RRM) involves all strategies, procedures,
and algorithms used to manage radio resources (beamforming, power allocation, modulation and
channel coding scheme, etc.). An e�cient RRM adjusts network parameters to system dynamics
including base stations density and load, users tra�c loads, users positions and mobility, as well as their
Quality of Service (QoS) to optimize network spectral e�ciency. However, with the adoption of the
aforementioned advanced technologies i.e., mmWave communications, massive MIMO and network
densi�cation in 5G, RRM is becoming more and more complex. This complexity is further accentuated
by an exponentially growing number of users or smart devices in wireless networks, with heterogeneous
service requirements and variable tra�c loads, making RRM even more challenging. Some of these
challenges are listed below:

Interference management. Intra- and inter-cell interference are detrimental to wireless networks.
They are exacerbated in large-scale networks with the dense deployment of APs. Dynamic management
of interference w.r.t. varying network topology, tra�c, as well as channel dynamics is a very challenging
task, yet crucial for e�cient RRM.

User association or cell selection and handover management. User association is the process of
associating User Equipments (UEs) with network APs. It is a fundamental task, which is also crucial
in mobile communications as it directly a�ects the network spectral e�ciency as well as the users’
perceived QoS. E�cient user association can help mitigate interference. Conversely, a wrong user
association can lead to signi�cant interference, which can be detrimental to wireless system performance.
User association performance may also vary w.r.t. wireless channel dynamics (fading, shadowing), base
stations load, users mobility (handover), as well as their QoS requirements.

Heterogeneous QoS. One major innovation of 5G is its ability to support on the same communication
infrastructure, di�erent services, or verticals (e.g., autonomous driving vehicles, smart industry, etc.).
Consequently, users in wireless networks are becoming heterogeneous, each with its characteristics
and communications requirements, thus, requiring specialized and customized radio resources.

Energy management. Energy e�ciency in wireless communication is primordial to reduce network
energy consumption. In the context of IoT with limited battery lifetime devices, this becomes a must.
Yet, designing RRM algorithms taking into account both radio resource allocation and network energy
consumption is challenging.

Multi Access Edge computing. Today, many mobile applications (e.g., surveillance and video analytics
in IoT) rely on cloud services (with a virtually in�nite capacity) to process data generated on users’
devices. As the amount of generated data is becoming more and more important, o�oading it to the
cloud through Radio Access Network (RAN) becomes intractable as it can lead to excessive network
congestion and signi�cant communication overhead. A solution to handle this is to process data close to
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end-users at the network edge, which leads to a brand-new paradigm: mobile edge computing or Multi-
Access Edge Computing (MEC) in its standardized version [10]. By bringing native cloud functionalities
(storage and computing capabilities) to the network edge e.g., within the RAN or the Core Network (CN),
MEC promises low communication delay, reduced backbone congestion as well as distributed computing
and storage. However, all these bene�ts do not come for free. RRM is becoming extremely complex as
now, radio resources need to be jointly optimized with limited computing resources at the edge.

1.2 Distributed Learning for Radio Resource Management

Conventionally, solutions to resource allocation problems are obtained by solving complex optimizations
based on, e.g., (instantaneous) Channel-State Information (CSI) and tra�c load, QoS requirements of the
users, base stations load, and under speci�c constraints on, e.g., users energy consumption, end-to-end
(E2E) latency, etc. In general, these optimization problems are integer (or mixed-integer) programming
problems, which are non-convex and NP-hard. Therefore, traditional solutions generally work in a
centralized manner. Indeed, centralized approaches yield better results as information from multiple
nodes are collected and processed in a uni�ed way. However, they lead to signi�cant signaling overhead
and require excessive computation, impractical for 5G networks due to dense deployment of UEs and
Base Station (BSs). In addition, as aforementioned, RRM involves many optimization variables not
always well-de�ned mathematically (e.g., due to the dynamic nature of the wireless environment, the
mobility patterns of the users), making it di�cult to formulate the optimization problem. This motivates
the exploration of more advanced solutions for RRM.

Among di�erent solutions under consideration, a pervasive introduction of Arti�cial Intelligence (AI)
at the network edge (edge intelligence) is envisioned [11]. In this context, multiple distributed AI-powered
devices can learn and possibly share their knowledge to optimize some network utility functions and
achieve common goals [3, 12]. This approach is currently made possible by endowing mobile devices
with AI algorithm computing capabilities [13, 14]. Hence, this thesis focuses in adopting distributed
arti�cial intelligence, namely distributed Machine Learning (ML) techniques to solve RRM problems.

1.2.1 Machine learning for communications and networking

With its ability to infer knowledge from randomly distributed data or observations, ML, especially
Deep Learning (DL) has gained popularity and widespread interest in wireless communications [15], in
particular for RRM problems. This includes optimal power allocation, beamforming or beam selection,
interference mitigation, joint source and channel coding, etc. One reason for this craze towards data-
driven RRM solution is the growing complexity of wireless networks and the di�culty of deriving
accurate and tractable mathematical models [16]. Moreover, when no expert database is available for
training DL algorithms, Reinforcement Learning (RL) appears as a good option, since it enables learning
through trial-and-error, i.e. by interaction with the wireless environment. One particular advantage of
RL methods is that there is no need for a priori knowledge about environment dynamics, which can be
stochastic and/or non-linear [17]. Combined with DL, Deep Reinforcement Learning (DRL) becomes a
powerful tool, which is particularly suitable for solving complex problems in wireless communications,
especially when no tractable theoretical model of the environment dynamics is available [18].

Our focus in this thesis is on distributed (possibly decentralized) learning approach. Adopting such
an approach o�ers several potential bene�ts.

Speeding up computation. By distributing learning, computation can be speed up. Moreover, each
agent decisions can be made locally, avoiding excessive communications between e.g. users and a central
orchestrator.

Scalability. In general, distributed approaches are scalable, with linear complexity. This aspect is
particularly important in dense networks.
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Accuracy and robustness. Another practical feature of distributed learning is robustness against
environment artifacts. Each agent has a local perspective (or database) of the environment, thus
enriching the learning procedures.

Important note 1 (Communications for Machine Learning). Recently, many studies have started
to explore how to perform e�ciently distributed training over wireless networks [19, 20]. One
prominent example is Federated Learning, which enables a group of agents to collaboratively execute
a common learning task (e.g., image classi�cation) by exchanging only their model parameters,
rather than their raw data [21, 22, 23]. Note that this distributed learning setting is di�erent from the
one covered in this thesis. Our focus is on how to leverage distributed learning for solving problems
directly related to RRM rather than how to optimize RRM to perform distributed learning.

1.2.2 Related challenges and complexity

Unfortunately, there are still many challenging issues related to distributed learning, especially in
the context of wireless communications. The �rst challenge is the loss of theoretical guarantees of
convergence. Indeed, in the general setting of distributed learning, multiple agents cooperate with
(or compete against) each other for radio resources to optimize prede�ned network utility functions.
Such cooperation (or competition) can lead to the non-stationarity of the environment from a single
agent’s perspective. That is particularly true for multi-agent systems and is known to be a di�cult task
[24]. The second challenge is that RRM problems are generally NP-hard with non-convex objective
function and multiple constraints. Hence, it becomes di�cult to de�ne a good learning goal for multiple
distributed agents, enabling e�cient coordination amongst them. Another challenge is the information
exchange bottleneck. While inter-agent communications can reduce some undesirable e�ects of locality
and help ensure coordination of distributed agents, this is not always possible (or tolerable) due to
limited communication bandwidth and communication constraints (e.g., latency, energy consumption,
privacy). Moreover, even when information exchange between agents is required, it must be relevant
and e�cient for both learning and communications. Finally, the limited computation capability of edge
devices is also challenging and requires consideration when designing distributed learning mechanisms
and communication frameworks.
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How to design �exible, scal-
able and low complex radio
resource management?

We claim for user-centric dis-
tributed solutions.
• Chapter 1 and 2

• Reduce signaling and computation overhead.
• Speed up computation.
• Improve robustness against environment artifact.
• Preserve privacy.

Designing fully distributed, de-
centralized and adaptive RRM
solutions
We address the problem of user
association policy scalability and
adaptiveness: a non-convex and
NP-hard problem.
• Chapter 3

• We model users as distributed and autonomous reinforcement learn-
ing agents for RRM.

• Users make autonomous decisions based only on their local observa-
tions to reduce computational costs.

• �ere is no inter-agents communication to limit signaling overhead.
• We incorporate intra- and inter-cell interference, channel variability,
user tra�c and mobility in decision-making processes so that learned
policies are self-reorganized w.r.t. environment dynamics.

Designing fully transferable
and �exible user association
policies
We tackle the problem of policy
transferability, which allows a
user association knowledge ac-
quired in one speci�c scenario to
be transferred to another one.
• Chapter 4

• We de�ne a transferable policy network architecture with zero-shot
generalization capabilities: transferability without additional training
procedure.

• �e proposed framework allows new users to bene�t from learned
knowledge already available.

• �e learned policy adapts well by design to change in the number
and position of users as well as a change in network geometry.

• �e proposed architecture can be implemented in a distributed,
centralized or hybrid manner.

Addressing the problem of en-
ergy e�cient dynamic compu-
tation o�loading

With above transferable solutions
we address the problem of energy-
e�ciency mobile edge computing.
• Chapter 5

• We combine Lyapunov stochastic optimization and deep reinforce-
ment learning to handle long-term optimization constraints.

• Our solution learns to dynamically allocate computational and radio
resources to edge devices.

• �e proposed solution simultaneously minimizes the duty cycles of
all the network elements under delay constraints and manages radio
interference.

Exploring new fundamentals
for beyond 5G communica-
tions: the opportunity of se-
mantic communications.

Inter-agent communication can
help achieve convergence but
need to be relevant and e�cient.
• Chapter 6

• We provide an overview of the opportunity o�ered by semantic
communications to beyond 5G network services.

• We present and detail a novel end-to-end architecture for semantic
representation learning.

• We propose a semantic-aware adaptive mechanism, which dynami-
cally optimizes the number of symbols of each transmi�ed message.

• We study an example, which shows promising results in the context
of text transmission between two agents.

Our propositions

Figure 1.1: Thesis summary, starting from the initial question on how to build �exible, scalable and low
complex radio resource management solutions.
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1.3 Main Contributions and Outline

This thesis aims to address the above challenges associated with both radio resource management
and distributed learning. We start by focusing on user association problems. The reason is that many
RRM problems take a similar form as user association problems. Accordingly, in Chapter 2, we �rst
review the user association problem and the associated challenges and complexities. In particular, in
this chapter, we motivate the need for user-centric distributed approaches for �exible, scalable, and
low complex RRM. Starting from this, our research work follows the roadmap of Figure 1.1, where our
technical contribution begins in Chapter 3.

Chapter 3: Designing fully distributed and decentralized user association policies. In Chapter
3, we propose a novel distributed algorithm based on Multi Agent Reinforcement Learning (MARL),
which enables fully distributed and decentralized user association. More speci�cally, we model each
user as an autonomous agent that, at each time step, maps its local observations of the radio environment
to an action, corresponding to an association request towards a base station in its coverage range. The
novelty of the proposed solution also lies in the fact that there is no information exchange amongst
users. Thus, we limit inter-agent communications, hence signaling overhead, while still being able to
ensure coordination between users. In addition, our proposed solution incorporates the environment
dynamics (channel interference, fast fading, and network tra�c) during the learning phase so that the
user association is self-reorganized toward the optimal association when a relevant change occurs in
the environment. Therefore, we further reduce signaling overhead as well as computational complexity.
This is in contrast to current state-of-the-art solutions, which do not consider the dynamic nature of
wireless networks, thus, requiring to re-compute periodically or whenever a notable change has occurred
in the environment to correct possible drifts from the optimal association. The proposed approach
is validated in the context of user association in dense 5G networks with mmWave communications
subject to severe path-loss, blockage, and deafness, which make the problem even more complex. We
also propose an application of the proposed scheme to distributed handover management by considering
users’ mobility. Overall, the novelty of this chapter is validated in the following contributions.

[C1] M. Sana, A. De Domenico, and E. Calvanese Strinati, “Multi-Agent Deep Reinforcement
Learning based User Association for Dense mmWave Networks,” In Proc. IEEE Global Com-
munications Conference (GLOBECOM), HI, USA, pages 1–6., Dec 2019.

[C2] M. Sana, A. De Domenico, E. Calvanese Strinati, and A. Clemente, “Multi-Agent Deep Rein-
forcement Learning for Distributed Handover Management In Dense MmWave Networks,” In
Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Madrid, Spain, pages 8976–8980., May 2020.

[J1] M. Sana, A. De Domenico, W. Yu, Y. Lostanlen, and E. Calvanese Strinati, “Multi-Agent
Reinforcement Learning for Adaptive User Association in Dynamic mmWave Networks,” IEEE
Transactions on Wireless Communications, 19 (10):6520–6534, 2020.

[P1] M. Sana, A. De Domenico, “Method for associating user equipment in a cellular network via
multi-agent reinforcement learning,” Issued in May 20, 2021, US17099922.

Chapter 4: Designing transferable policies for dynamic and scalable user association. One
major limitation of RRM algorithms is that they are often grounded on quite rigid assumptions, such
as pre-sized and �xed sets of BSs and static UEs, favorable channel conditions, absence of intra- or
inter-cell interference, full-bu�er network tra�c. Yet, in dynamic mmWave networks, especially in
dense networks, the number of UEs, their position w.r.t. each other and BSs, and the performance
requirements of the services they access are likely to change over time and are characterized by a
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high dynamicity. Even in relatively stable scenarios from the radio channel and data tra�c points of
view, the arrival in the network or the departure from the network of one or more users has an impact
on the overall network performance, which requires a constant adaptation of the user association to
dynamically guarantee the best possible quality of service. To address these issues, in Chapter 4, we
propose a scalable and easily manageable user association policy. Speci�cally, our solution focuses on
the central aspect of transferability. It allows applying a user association’s strategy or policy acquired in
a speci�c scenario (e.g., a network deployment) to a distinct but related one without needing a substantial
redesign, recomputation, or relearning of a new policy. Moreover, our proposed solution has zero shot
generalization capability: it adapts well by design to variations in the number of users and their positions
without requiring additional training. This feature signi�cantly reduces the computational complexity
of user association during the network operations and makes the policy suitable to distributed and
dynamic scenarios. Overall, the novelty of this chapter is validated in the following contributions.

[C3] M. Sana, N. di Pietro, and E. Calvanese Strinati, “Transferable and Distributed User Asso-
ciation Policies for 5G and Beyond Networks,” In Proc. IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC), Virtual, Sept. 2021.

[P2] M. Sana, N. di Pietro, E. Calvanese Strinati, and B. Miscopein, “Method for associating
user equipment in a cellular network according to a transferable association policy,” Filed in
September 30, 2020, FR2009989.

Chapter 5: Addressing the problem of energy e�cient dynamic computation o�loading. So
far, we have studied user association mechanisms to improve network spectral e�ciency. We propose
now to consolidate all these achievements to solve the problem of energy-e�cient computation o�oad-
ing enabled by edge computing. Indeed, with the deployment of computing and storage capabilities at
the network edge, Edge Computing (also known as Multi-Access Edge Computing (MEC)) was conceived
to enable energy-e�cient, low-latency, highly reliable services by bringing cloud resources close to
end-users. In this context, dynamic computation o�oading allows resource-poor devices to transfer
application execution to Edge Servers (ESs) to reduce energy consumption and latency. In the considered
scenario, multiple users simultaneously compete for limited radio and edge computing resources to get
o�oaded tasks processed under a delay constraint, with the possibility of exploiting low-power sleep
modes at all network nodes to reduce energy consumption. From a network management perspective,
this task is complex and requires jointly optimizing radio and computation resources. In Chapter 5,
we formulate the underlying problem as a dynamic long-term optimization aiming to reduce long-term
energy consumption under strict delay constraints. Then, based on Lyapunov stochastic optimization
tools, we show that this problem can be decoupled into a per-slot CPU scheduling problem and a radio
resource allocation problem, namely a user association problem. Hence, we propose a fast iterative
algorithm, particularly e�cient to solve the �rst problem and hinge on the previously proposed user
association scheme to solve the second one. Overall the originality of the resulting framework lies in
its capacity to simultaneously: i) minimize the duty cycles of all the network elements under delay
constraints; ii) e�ectively manage radio interference; iii) be low-complexity; iv) combine Lyapunov
optimization with MARL; v) be distributed and compatible with UE’s mobility. The novelty of this work
has been validated by the following conference paper.

[C4] M. Sana, M. Merluzzi, N. di Pietro, and E. Calvanese Strinati, “Energy E�cient Edge Comput-
ing: When Lyapunov Meets Distributed Reinforcement Learning,” in Proc. IEEE International
Conference on Communications (ICC) Workshops, Virtual, Montreal, Canada, June 2021.
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Chapter 6: Exploring the opportunity of semantic and goal communications. We have shown
in Chapter 4 and 5 that inter-agent communication, although limited, may be necessary for some
scenarios to guarantee convergence. Back to Shannon’s information theory, the goal of communication
has long been to ensure the correct reception of transmitted messages irrespective of their meaning.
However, in general, whenever communication occurs to convey a meaning, what matters is the
receiver’s understanding of the transmitted messages and not necessarily their correct reconstruction.
This paradigm refers to semantic communications: transmitting only relevant information su�cient for
agents to capture the intended meaning (the targeted objective) can notably reduce communication
bandwidth. Therefore, in the last contribution of this thesis, we propose to explore the opportunity
o�ered by semantic communications to beyond 5G networks services. To this end, in this preliminary
work, we focus on semantic compression. In our study, we refer to semantic as a “meaningful” message
(a sequence of well-formed symbols, which are possibly learned from data) that has to be interpreted at
the receiver. This requires a reasoning unit, here arti�cial, based on a knowledge base, i.e., a symbolic
knowledge representation of the speci�c application. Thus, in Chapter 6, we propose and detail a
novel E2E architecture that enables representation learning of semantic symbols for e�ective semantic
communications. We discuss theoretical aspects and successfully design objective functions, which
help learn e�ective semantic encoders and decoders. Also, we propose an adaptive mechanism, which
dynamically optimizes the number of symbols of each transmitted message. Finally, we present some
preliminary numerical results for a scenario of text transmission. In this scenario, a sender - an AI agent
- transmits sentences in a given language by mapping each word to a sequence of semantic symbols
that the receiver - another AI agent - must decode and understand in another language. We show
that our proposed E2E framework can e�ectively address this problem, providing signi�cant semantic
compression gain. The novelty of this work has been validated by the following conference paper.

[C5] M. Sana and E. Calvanese Strinati, “Learning Semantics: An Opportunity for E�ective 6G
Communications,” in Proc. IEEE Consumer Communications and Networking Conference
(CCNC), Virtual, Las Vegas, January 2022.
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Chapter 2

The User Association Problem

“On ne tire pas sur une �eur pour la faire pousser. On l’arrose et on la regarde
grandir... patiemment.”

“You don’t pull on a �ower to make it grow. You water it and watch it grow...
patiently.”

− Proverbe Africain
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2.1 Introduction

U ser association is the process of assigning user equipment to network access points. It is a
fundamental task, which is crucial in mobile communications as it directly a�ects the network

spectral e�ciency as well as the users’ perceived QoS. However, the user association is a di�cult task
as it usually involves non-convex and NP-hard optimizations. In addition, optimal user association may
require joint consideration of radio resources (e.g., bandwidth, spectrum, power), computing resources
(e.g., computation power at a server) as well as learning resources (e.g., distribution of data across users’
devices in Federated Learning). This chapter aims to provide a global overview of the user association
problem. We �rst present a general review of the literature on this problem. Then, focusing on the main
characteristics of 5G networks, we formulate the user association problem in the context of mmWave
networks and discuss its challenges and complexity. Finally, we explain our motivations and approach
to address this problem using distributed learning mechanisms.

2.2 User Association Taxonomy

Scope Metrics

Topology

Orchestration

Model

User Association

•Machine Learning
• Game theory
• Combinatorial optimization
• Stochastic geometry

•Massive MIMO networks
• mmWave networks
• HetNets

• Centralized
• Hybrid
• Distributed

• Fairness
• QoS
• Spectrum e�iciency
• Energy e�iciency
• Outage/coverage probability

• Grid model
• Random spatial model

Figure 2.1: General (non-exhaustive) user association taxonomy. This taxonomy is classi�ed given the
scope (see subsection 2.2.1), the used metrics (see subsection 2.2.2), the network topology (see subsection
2.2.3), the orchestration mechanism (see subsection 2.2.4) and the used model (see subsection 2.2.5).
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In the literature, numerous solutions have been proposed to address the problem of user association.
These solutions utilize di�erent models, i.e. approaches, depending on the scope, the used metrics, the
network topology as well as the orchestration mechanism. In Figure 2.1, we summarize the di�erent
facets of the user association problem based on its taxonomy.

2.2.1 Scope

The scope refers to the type of network on which the user association is to be implemented. A
non-exhaustive list of these networks spans from Heterogeneous Networks (HetNets) to massive
Multiple-Input/Multiple-Output (MIMO) and millimeter-wave (mmWave) networks or combination of
them. The challenges and complexities of the user association vary accordingly.

HetNets. They are characterized by the deployment of small cell base stations (e.g., picocells, femtocells,
relays) together with overlaying macro cell base stations, all possibly operating at di�erent frequencies.
In HetNets, cell densi�cation is also considered to boost the network capacity by spatially reusing
the spectrum across a geographical area, thereby improving coverage quality and the performance of
cell-edge users [25]. However, densi�cation poses a serious challenge to user association. As the number
of network nodes increases, the orchestration of radio resources becomes complex. Moreover, network
capacity does not increase systematically with the densi�cation of network access points as this also
ultimately leads to co-channel interference. In addition, in HetNets, backhaul links typically connect
small cells and macro cells to the core network, which can limit the user association performance when
they are not provisioned su�ciently [26, 27]. Therefore, e�cient resource allocation is required to take
full advantage of HetNets.

Massive MIMO networks. Thanks to beamforming techniques, massive MIMO allows base stations
with large antenna arrays to support multiple UEs simultaneously over the same time and frequency
range. It can achieve high multiplexing gain, thus, substantially improving spectrum e�ciency. More-
over, massive MIMO achieves high antenna gain, signi�cantly increasing received signal power or
equivalently reducing transmit power to meet a targeted QoS. In addition, thanks to the extra diversity
a�orded by massive MIMO large antenna arrays, channel estimation errors, small-scale fading e�ects
are averaged out, vanishing undesirable instantaneous �uctuations [28]. However, from a RRM point
of view, user association in massive MIMO networks is di�cult due to the complex design of channel
precoding and complex beam management. For example, there are 35960 possibilities to set up 4 beams
out of 32 possible beams. Determining the optimal set is very challenging [29, 30].

mmWave networks. Due to the large spectrum resources available between 28−90 GHz, the adoption
of mmWave communications in 5G, enables signi�cant improvement of the network capacity [6]. Indeed,
mmWave technology enables highly directional communications using narrow beams, thus achieving
high beamforming gain. In addition, due to the short wavelength characteristics of mmWave, the size
of the antenna element is reduced, thus allowing the compact design of antenna array [6]. However,
mmWave transmissions su�er from severe path-losses and are highly sensitive to blockages [31], which
challenges user association especially in the context of mobility (e.g. for handover management [32]).

2.2.2 Metrics

Di�erent metrics are used to assess the performance of the user association. Here we list the main
metrics:

Fairness. Fairness here, refers to how the user association strategy treats di�erent UEs depending on
e.g. their QoS. Main fairness criteria are:

• Max-min fairness, where the optimization of the user association is meant to maximize for e.g. the
lowest achievable rate amongst users.
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• Proportional fairness, which maintains a balance between maximizing the network throughput
and allowing all users a chance to be connected instead of prioritizing best users (e.g. users with
good Signal-to-Noise-plus-Interference Ratio (SINR) or high data request) at the expense of the
others.

QoS. The QoS gives an indication of the service quality experienced by users in the network. It is often
quantitatively expresses in terms of latency, user throughput or SINR, packet loss, etc.

Spectrum and Energy e�ciency. Spectrum e�ciency is an important performance indicator. It
measures the total throughput achievable in the network for a given allocated bandwidth. For example,
one of the main targets of 5G is to provide eMBB services, which are characterized by high data rate
requirements [5]. On the other hand, energy e�ciency measures the energy-saving capability of a
given user association algorithm.

Coverage/Outage probability. The coverage (outage) probability de�nes the probability that the
SINR of a randomly chosen user in the network goes above (drops below) a certain threshold [31]. It is
often used to characterize the probability of satisfying users QoS.

2.2.3 Topology

The two mains topologies used in the literature are the Grid model and the random spatial model. In
the Grid model, the APs are assumed to be uniformly distributed in the center of regular grids. In a
random spatial model, the APs are randomly distributed in the network (usually according to a Poisson
Point Process (PPP)). The later model is often used in conjunction with stochastic geometry analysis to
capture the randomness of network geometry [33].

2.2.4 Orchestration

In general, user association algorithms can be classi�ed into three main categories: i) centralized
algorithms, which usually provide near-optimal solutions. However, they require to collect and process
information (such as CSI) from multiple network nodes in a uni�ed way, which induces a large amount
of signaling, ii) distributed algorithms, which generally lead to sub-optimal solutions but have low
computational complexity and low signaling overhead due to local decisions, and �nally, iii) hybrid
algorithms, which exploit the advantages of both centralized and distributed algorithms.

2.2.5 Model

Solutions to user association problems are diverse and range according to the above taxonomy. Some
works investigate combinatorial optimization using Lagrangian tools [34] or fractional programming
[35]. Other approaches include game theory [36, 37] and stochastic geometry [38]. Most recent works
on user association involve Machine Learning and Reinforcement Learning to cope with user association
complexities and the radio environment dynamics [39, 40, 41].

2.3 User Association in HetNets with mmWave Communications

To better understand the user association problem, we propose to formulate the underlying optimization
problem. This problem formulation will help understand its central complexities and why this requires
further research. To this end, in this chapter, we focus on downlink mmWave communications for eMBB
services, which are characterized by high data rate and are at the core of the performance improvement
expected in 5G [5]. Accordingly, we focus on the objective to maximize the total network sum-rate. This
objective also considers the data requirement of di�erent eMBB UEs to devise optimal user association
strategies. However, in Chapter 5, we will show how the proposed solutions can be leveraged for
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MBS

SBS 1

×u1

× u4

× u6

× u7

SBS 2

× u2

SBS 3

× u3

×u5

×uK

R0

Figure 2.2: A downlink heterogeneous network with Ns = 3 SBSs operating a mmWave frequencies,
one sub-6 Ghz MBS, and K UEs. Here, as a example, the number of UEs under SBS 1 coverage is
U1 = {1, 4, 5, 7}, and UE 1 action space is A1 = {1, 3}.

energy-e�cient uplink communications in the context of dynamic computation o�oading enabled by
edge computing.

2.3.1 General system model

We consider a downlink network consisting of Ns mmWave small cells and one macro cell1 jointly pro-
viding services to K randomly deployed UEs as shown in Figure 2.2. We denote byA = {0, 1, 2, . . . ,Ns }
the set of Ns + 1 BSs in the network where 0 indexes the Macro Base Station (MBS), which uses sub-6
GHz technology to enable ubiquitous network coverage. Also, we use Ui to indicate the set of UEs

under coverage of the i-th BS; hence, U =
Ns⋃
i=0
Ui = {1, 2, . . . ,K} represents the set of all UEs in the

network.
In this architecture with multi-radio access technologies, a UE may receive control signals from

multiple BSs. Therefore, we de�ne Aj = {i, di, j ≤ ϕi/2, i ∈ A} ⊆ A2 as the set of BSs the UE j
could connect to, where ϕi/2 is the cell radius of the BS i and di, j is the distance between BS i and UE j .
Note that Aj , Ø,∀j as a UE can always be associated with the MBS. Let xi, j ∈ {0, 1} be the binary
association variable such that xi, j = 1 when UE j is served by the BS i and xi, j = 0 otherwise. Here we
assume that each UE can only receive data from one BS at a time. Moreover, due to limited resource
and hardware complexity, we consider that each mmWave Small cell Base Station (SBS) cannot serve

1The limitation to one macro cell is made for simpli�cation reasons. The extension to several macro cells is however trivial.
2Aj can also be derived based on links quality, e.g., the received signal strength indicator between UE j and BS i (RSSIi, j )

should be greater than a prede�ned threshold ζj , i.e., Aj = {i, RSSIi, j ≥ ζj }.
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more than Ni UEs simultaneously, where Ni is the maximum number of beams available at the SBS i .

Assumptions. In our system model, we consider that the SBSs allocate all the available mmWave’s
band to each served UE using Spatial Division Multiple Access (SDMA); in contrast, the MBS equally
shares its band across the served UEs. Finally, we consider that the SBSs and the UEs have already
performed beam training and alignment mechanisms in advance and therefore are able to con�gure the
appropriate beams when a data connection is set up. For instance, an initial access protocol based on
the SINR can be used to complete this task [42].

2.3.2 Channel model

For simplicity of analysis, and since we consider a dense regime, following [31], we denote with R0 the
size of the coverage range of SBSs. Thus, a UE can only be associated with a SBS located at most at a
distance R0. Moreover, we consider that each communication link experiences a small scalem-Nakagami
fading. We use h to denote the fading coe�cient, which follows a normalized Gamma distribution
Γ(m, 1

m ). We assume Rayleigh fading for UE-MBS links, which is a special case ofm-Nakagami fading
by takingm = 1. In addition, we adopt the commonly used Friis propagation loss model [43], where the
received power PRx is given as a function of the distance d between the UE and its serving BS:

PRx(d) = hPTx
s GTx

s GRx
s Csd

−ηs , s ∈ {MBS, SBS}. (2.1)

Here, Cs denotes the path-loss constant, ηs is the path-loss exponent, and, PTx
s is the transmit power

w.r.t. BS s . Later, we denote with GCh
s (d) = hCsd

−ηs the channel gain. The transmitter and receiver
antennas’ gain w.r.t. BS s are GTx

s and GRx
s respectively. In addition, we assume that the UEs and the

BSs perform beam steering in advance such that when a communication is set up, the useful received
power in absence of interference is maximized, i.e., GTx

s = G
Tx
max and GRx

s = G
Rx
max, where GTx

max and GRx
max

are the maximum antenna gain at the transmitter and the receiver, respectively.

2.3.3 Cell interference

Since we assume the presence of a single MBS, which orthogonalizes the UEs it serves by sharing its
band across them, the communication links between the MBS and its served UEs experience neither
intra-cell nor inter-cell interference. Therefore, interference is only due to the communications between
mmWave SBSs and UEs, as a result of overlapping beams. Indeed, let us consider a typical UE (say
UE j0) placed at a distance d0 from its serving SBS (say SBS i0). Given an interfering SBS i that is
located at a distance di with a relative angleψi w.r.t. the typical UE, which is serving ni ≤ Ni other UEs
in ni random directions de�ned by their relative angle ϕi, j (see Figure 2.3), we use Ii, j to denote the
interference caused by its j-th beam towards the typical UE. Thus, Ii =

∑ni
j=1 Ii, j is the total interference

engendered by this SBS on the typical UE. For sake of simplicity, we assume that the receiver and the
transmitter use the same antenna radiation pattern denoted by G(θ ,α), where θ is the beam width
and α is the azimuthal angle to the main lobe (see Figure 2.3). Hence, the interference induced by the
communication between the i-th SBS and its j-th UE is:

Ii, j = PTxhiG(θ ,ψi )G(θ ,ϕi, j )Cd−ηi . (2.2)

The total interference induced by SBS i on the typical UE can be classi�ed into two categories:

Inter-cell interference. If i , i0, meaning the typical UE experiences interference coming from a BS
di�erent from its serving BS, then

Ii = PTxhiC
ni∑
j=1

G(θ ,ψi )G(θ ,ϕi, j )d−ηi , i , i0 (2.3)
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×θ
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ξ

Interfering SBS i

Typical UE

Beam toward UE j
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di

ψi
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× UEj

d0
R0

RI : Interference range

Figure 2.3: Cell interference illustration

As we assume spatial reuse of the spectrum across the di�erent small cells, inter-cell interference mainly
a�ects cell edge users, which can be detrimental to their performance, especially in dense networks.

Intra-cell interference. If i = i0, meaning that the interference perceived by the typical UE comes
from its serving BS resulting from the communications of the other UEs associated with this BS.

Ii0 = PTxhi0CG
Rx
max

ni0∑
j=1, j,j0

G(θ ,ϕi0, j )d−η0 . (2.4)

Although additional beamforming techniques can help to mitigate intra-cell interference, we do not
assume speci�c numerical beamforming. Therefore, both intra- and inter-cell interference result from
the overlapping of di�erent beams serving di�erent UEs. Hence, the signal-to-interference-plus-noise
ratio SINRi0, j0 between the typical UE j0 and its serving BS i0, which comprises both intra-cell and
inter-cell interference is de�ned as:

SINRi0, j0 =
PTxh0G

Tx
maxG

Rx
maxCd

−η
0∑

i ∈A Ii + N0Bi0, j0
, (2.5)

where Bi, j is the bandwidth allocated to the UE j by BS i , and N0 is the noise power spectral density.
The generic nature of our system model makes it easily transposable to other radio technologies.

Eventually, to improve the network spectral e�ciency, we focus on optimizing the user association.
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2.3.4 The user association problem: challenge and complexity

From the above de�nitions, the achievable communication rate between BS i and UE j is given by the
Shannon capacity:

Ri, j (t) = Bi, j log2
(
1 + SINRi, j (t)

)
. (2.6)

In our model, we take into account the UEs tra�c request to devise user association strategies. Accord-
ingly, let denote with D j (t), the data rate demand of UE j at time step t . We assume that follows D j (t)
a Poisson distribution with intensity D j = E

[
D j (t)

]
. Therefore, given a UE j with a tra�c demand

D j (t), the e�ective data rate exchanged with BS i at the time t is min
(
D j (t),Ri, j (t)

)
. Next, let R(t) be

the α-fair network utility function, which is de�ned as follows:

R(t) =
∑
i ∈A

∑
j ∈U

xi, jUα
(
min

(
Ri, j (t),D j (t)

) )
, (2.7)

=
∑
i ∈A

∑
j ∈U

xi, jUα

(
min

(
1,
Ri, j (t)
D j (t)

)
D j (t)

)
,

=
∑
i ∈A

∑
j ∈U

xi, jUα
(
κi, j (t)D j (t)

)
,

wherexi, j = 1 indicates that UE j is associated with BS i; otherwisexi, j = 0 andκi, j (t) = min
(
1, Ri, j (t )D j (t )

)
∈

[0, 1] indicates the QoS satisfaction of UE j w.r.t. its associated BS i , which is fully satis�ed when κi, j = 1.
Here, Uα (·) is the α-fair utility function given in [44] as follows:

Uα (x) =
{ (1 − α)−1x1−α , for some α ≥ 0 and α , 1,

log(x), α = 1. (2.8)

User association problem. Following above de�nitions, we formulate the user association
problem to maximize the network utility as follows:

maximize
{xi, j }

R(t) =
∑
i ∈A

∑
j ∈U

xi, jUα
(
κi, j (t)D j (t)

)
, (2.9)

subject to xi, j ∈ {0, 1}, ∀i, j, (2.10)∑
j ∈Ui

xi, j ≤ Ni , ∀i ∈ A\{0}, (2.11)

∑
i ∈Aj

xi, j = 1, ∀j ∈ U. (2.12)

The constraint (2.10) ensures that the decision variables xi, j are binary. The constraint (2.11)
highlights that a given SBS i can serve at most Ni UEs at the same time. Finally, constraint (2.12)
indicates that, in our setting, each UE is associated with exactly one BS. Note that additional constraints
can also be considered, such as limited transmit power, strict end-to-end delay constraints, which we
will discuss in Chapter 5.
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User association fairness. Depending on the value of α , this optimization problem guarantees
di�erent fairness criteria in the user association. Indeed, we have the following Lemma:

Lemma 1 (from [44], Section 2.2.1). When α = 0,Uα (x) = 1 and problem (2.9)-(2.12) is equivalent
to the network sum-rate maximization problem. When α → 1, Uα (·) converges to the proportional
fair utility function as limα→1Uα (x) = log(x) and problem (2.9)-(2.12) falls into network sum-
log-rate maximization, also known as proportional fairness user association. As α → ∞, Uα (x)
approaches max-min fairness utility function and problem (2.9)-(2.12) is equivalent to max-min
fairness user association.

Complexity analysis. The formulated problem (2.9)-(2.12) is non-convex. Indeed, the association of
a given UE j with a given BS i depends on its SINRi, j value. However, by observing Eqn. (2.5), the
expression of the SINR also depends on the association of other users through the interference terms
in the denominator. These cross-dependencies combined with the binary decision variables make the
optimization problem non-convex and NP-hard, hence, di�cult to solve with conventional optimization
frameworks [45]. The di�culty is exacerbated when considering the UEs tra�c as it introduces a
non-linearity through the min(., .) function. A naive algorithm, which may �nd the optimal solution of
problem (2.9)-(2.12) through an exhaustive search, has a complexity equal to O

(
NsK(1 + Ns )K

)
.

Proof. For UE j there are card(Aj ) possible choices of BSs. The optimal association {i, s.t. xi, j =
1 ∀i ∈ A} is an element of ×

j ∈U
Aj . That is, for all UEs, there are

∏
j ∈U card(Aj ) possible combi-

nations in which only some of them satisfy the constraint (2.11). For each combination, checking
if constraint (2.11) is satis�ed required O

(∑
i ∈A card(Ui )

)
iterations. In the worst case, when

each UE can associate with any BS, card(Aj ) = Ns +1. Hence, noting that
∑

i ∈A card(Ui ) ≤ NsK ,
the complexity of running this naive algorithm will be therefore

O
©­«
∑
i ∈A

card(Ui )
∏
j ∈U

card(Aj )ª®¬
= O

(
NsK(1 + Ns )K

)
. (2.13)

�

This complexity is function of the number of UEs K and BSs Ns ; and in particular, it has a poly-
nomial complexity w.r.t. the number of BSs and an exponential complexity w.r.t. the number of UEs.
Therefore, such an approach based on exhaustive search is infeasible especially in 5G context due to
dense deployment of network access points and UEs with di�erent service requirements. In this hetero-
geneous ecosystem, there is a need for �exible, scalable and adaptive network design and orchestration
mechanism to meet challenges and requirements of 5G and beyond networks.

2.4 On Distributed Approach for E�cient User Association

In existing 5G networks (as well as in Long Term Evolution (LTE) networks), the user association takes
place at the Radio Resource Control (RRC) sub-layer, which decides how users are associated depending
on their QoS requirements, their priority or the availability of radio resources to maximize the radio
exploitation [46]. In conventional cellular systems, the user association is centralized and based on the
max-SNR or the max-RSS solution, i.e., a UE is associated with the BS providing either the maximum
Signal-to-Noise Ratio (SNR) or the maximum Received Signal Strength (RSS). While these rudimentary
solutions have the advantage of low computational complexity, they do not take cellular interference
into account and are therefore ine�cient in dynamic 5G networks with mmWave communications.
Moreover, in a mobility context, solutions based on max-SNR or max-RSS are ine�cient due to frequent
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handovers. In addition, network-centric solutions require a periodic collection and processing of
information (e.g., SNR, RSS, CSI) in a uni�ed way, ultimately leading to signi�cant signaling overhead.
Also, with network densi�cation, it becomes infeasible for one central orchestrator to �nd an optimal
association among multiple deployed APs and UEs due to the aforementioned complexities of the user
association problem. Hence, as 5G and beyond technologies become more and more sophisticated, the
range of services to be supported increases, the QoS requirements become more stringent with a variety
of services that needs to coexist on the same network infrastructure, the user association problem calls
for more advanced solutions.

Among the various solutions under consideration, distributed user-centric solutions can overcome
excessive communications and computation by implementing RRM algorithms at the user side [45, 47].
In particular, the adoption of distributed AI at the network edge (edge intelligence) is envisioned. In
this scenario, multiple distributed AI-powered devices can learn and possibly share their knowledge
to optimize some network utility functions and achieve some common goals [3, 12]. This approach
is currently made possible by endowing mobile devices with AI algorithm computing capabilities.
Although training a deep neural network on mobile devices in a computation and energy e�cient way
is an ongoing research topic, notable e�orts have already been made both in terms of hardware design
and software accelerators (see [13, 14] and references therein). This makes it possible to move part of
the optimization process to the user devices. Therefore, this thesis adopts a user-centric approach and
aims to investigate distributed learning approaches to address radio resource management problems.
Very recently, the work [48] has surveyed user-centric radio access technology selection. They have
focused on the user association problem and have highlighted multi-agent learning together with
game-theoretical approaches as promising tools to address this problem. Also, the work [49] have
recently investigated applications of machine learning to handover management problem in 5G and
beyond. All these recent works further support our motivation towards distributed radio resource
management.

2.5 Conclusion

In this chapter, we introduced the user association problem. We reviewed its general taxonomy and
formulated the main problem in an HetNet with millimeter-wave communications enabled. We also
highlighted the central challenges and complexities of the user association problem, which we showed
to be non-convex and NP-hard. This leads us to look for scalable, �exible, and low complexity solutions.
In particular, we call for distributed user-centric solutions instead of cumbersome centralized algorithms,
which become infeasible in dense networks such as in 5G networks.

Now that we have motivated the need for distributed user-centric solution, in the next chapter,
we will discuss our proposed solution to address the user association problem based on distributed
multi-agent reinforcement learning approach.



Chapter 3

Distributed Learning of User
Association Policies

“Do the best you can until you know better. Then when you know better, do better!”

“Faites du mieux que vous pouvez jusqu’à ce que vous ayez une meilleure
connaissance. Et quand vous aurez appris su�samment, faites mieux !”

−Maya Angelou (1918 − 2014)
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3.1 Introduction

T o solve the user association problem in a distributed way, our approach focuses on distributed
Multi Agent Reinforcement Learning (MARL). In this chapter, we describe our proposed solution

to solve the user association problem in a static and dynamic environment. First, to limit the complexity
of the proposed solution, we cast this problem to a MARL framework, where each user independently
learns the optimal policy. The proposed solution is distributed, which alleviates computation burdens.
In addition, we do not allow inter-agent communications, thus limiting signaling overhead, which we
characterize with the signaling messages required to implement the solution in a practical system.

3.1.1 Motivations

In the previous chapter, we have motivated the need for distributed solutions for e�cient radio resource
management. In particular, we argue that the (entirely) network-centric approaches used so far are no
longer suitable in the current generation of wireless networks due to the signaling and computation
complexity involved in centralized orchestration. Moreover, 5G and beyond technological solutions
(e.g., adoption of mmWave communications, massive MIMO and network densi�cation technologies)
are becoming extremely sophisticated, with stringent QoS requirements and a variety of services, which
must coexist together. This requires the search for advanced solutions for e�cient Radio Resource
Management (RRM). In this thesis, our approach focuses on distributed MARL. By using MARL
framework, there is no need for an expert database or modeling of the radio environment. Moreover,
MARL can be used to model environments with complex interactions where it is di�cult to obtain
tractable mathematical models. To show this, consider the following well-known riddle example [50].

Figure 3.1: The Dalton is a French animated tele-
vision series, prisoners of a penitentiary in the
Nevada desert, the Dalton brothers try to escape
from the penitentiary... but without achieving
their ends (src. Wikipédia).

Example 1 (n = 100 prisoners and a light bulb). One hundred prisoners have been newly ushered into
prison (see Figure 3.1 for illustration). The warden tells them that starting tomorrow, each of them will be
placed in an isolated cell, unable to communicate amongst each other. Each day, the warden will choose
one of the prisoners uniformly at random with replacement, and place him in a central interrogation room
containing only a light bulb with a toggle switch. The prisoner will be able to observe the current state of the
light bulb. If he wishes, he can toggle the light bulb. He also has the option of announcing that he believes
all prisoners have visited the interrogation room at some point in time. If this announcement is true, then
all prisoners are set free, but if it is false, all prisoners are executed. The warden leaves and the prisoners
huddle together to discuss their fate. Can they agree on a protocol that will guarantee their freedom?

Although this problem does not appear at �rst as directly linked to a wireless communication
problem, there exist some similarities. Indeed, to make the parallel, let consider the one hundred
prisoners as one hundred deployed user devices in a wireless network, which aim to collaborate to
optimize an objective function, here, to get freed. For this, they share a common communication
resource, the interrogation room. Also, they are allowed to communicate through a light bulb (by
observing its state and being able to switch it o�/on), which is a one-bit communication means, without
direct exchange amongst users. Finding the optimal protocol that guarantees prisoners’ freedom as fast
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as possible is a di�cult task, which becomes extremely complex when the number of participating users
(the prisoners) in the protocol establishment increases. Additional complexity is that the decision of one
user can be detrimental to other users (either they get freed or executed). Same constraints also exist in
wireless communications, where e.g. the interference resulting from one user’s wrong association can
severely a�ect the throughput of other users. Whereas it is di�cult to come out with a mathematical
formulation of such a complex problem, it can be cast to and successfully solved using MARL [51]. In
the sequel, we propose to use MARL approaches to address RRM problems, namely user association.

3.1.2 Related work

Several works have investigated distributed learning for the user association problem [45, 48]. In [34],
Athanasiou et al. have designed a distributed algorithm to manage the user association using Lagrangian
tools. Their solution is sub-optimal as it intentionally ignores interference and does not consider the
environment dynamics. Similarly, Lui et al. have formulated a decentralized non-cooperative game with
local interactions to manage the beam pair selection between UEs and BSs to maximize the network
sum-rate [37]. However, this proposal requires information exchange among UEs, thus, inducing
large signaling overhead. Moreover, this work also does not consider the environment dynamics.
A load-balancing user association is proposed in [52, 36] to balance the radio resources across BSs.
Leveraging a game-theoretical approach, the user association is formulated as a matching game in
[53] and as a multi-armed bandit problem in [54]. These studies share a common point: the proposed
user association solutions are sensitive to the deployment of users and BSs as well as the environment
dynamics (fading, interference, tra�c) and need to be run continuously to keep tracking of relevant
changes in the network. This introduces a signi�cant signaling and computational overhead. Recently,
advances in machine learning and reinforcement learning [55, 24] have enabled the design of more
�exible algorithms for optimizing the user association. In this context, a Deep Neural-Network (DNN)
architecture is introduced in [39] that predicts the user association and power allocation. Similarly,
authors in [41] have formulated the problem of user association with multi-connectivity as a multi-label
classi�cation problem. All these works are based on cumbersome databases, which in practice, are
di�cult to acquire. To address this problem, Zhao et al. have proposed a distributed user association
based on deep MARL algorithm [40]. Nevertheless, [40] has not focused on mmWaves networks and has
considered a fully observable environment. Besides that, the solution proposed in [40] is not scalable
as the architecture of the proposed DNN depends on the total number of interacting UEs. In contrast,
the main goal of the investigation conducted in this chapter focuses on the design of scalable and
dynamic user association strategies able to self-reorganize w.r.t. the network dynamics (fading, tra�c,
and interference).

3.1.3 Contributions

The contributions of this chapter can be summarized as follows:

• Sum-rate maximization in dense mmWave networks: we �rst formulate a user association problem
to maximize the sum-rate of mmWave networks. In contrast to the existing works, we take into
consideration both inter-cell and intra-cell interference and environment dynamics, which are
characterized by the time-varying nature of the mmWave channels and the evolving data rate
demand of UEs by using only local observations at each UE.

• Multi-agent reinforcement learning based user association scheme: we cast the formulated user
association problem into a multi-agent reinforcement learning task, where UEs, modeled as
agents, collaborate to maximize the network sum-rate. To limit both signaling and computational
complexity, the agents act as independent learners i.e., their decisions are independent of each
other. We force UEs to act based only on partial observations and perceived rewards by avoiding
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inter-agent communications. Such a constraint brings the bene�t that a UE does not need to
collect and process information related to other users. In this setting, we propose a Deep Recurrent
Q-Network (DRQN) architecture and the associated signaling protocol, which enable UEs to learn
an e�cient association policy for network sum-rate maximization.

• Mobility management: we further show that the proposed framework can also be extended to
account for mobility in applications for handover management. In these scenarios, the learning
goal is to minimize the handover frequency while maximizing the total network sum-rate.

The technical content of this chapter is based on the published journal paper [56], conference papers
[57, 58], and patent [59].

The remainder of this chapter is organized as follows. Section 3.2 brie�y introduces MARL frame-
work. Section 3.3 details the proposed distributed algorithm and the associated signaling protocol.
Section 3.4 discusses the extension of the proposed framework to handover management. Numerical
results are provided in each section and conclusions are drawn in Section 3.5.

3.2 Background on Multi-Agent Reinforcement Learning

3.2.1 Markov Decision Processes

In a fully observable environment, single agent decisions making can be formalized as a Markov Decision
Process (MDP). Basically, an MDP is de�ned as tuple (S,A,T ,R), in which S denotes the state space,
A is the action space, T(s,a, s ′) = P(s ′ |s,a) the probability of transitioning from state s to state s ′ after
taking action a, which results in an immediate reward R(s,a). The problem for agent in an MDP is
to �nd the optimal policy π ∗ : S → A that maximizes the expected sum of the perceived rewards
(possibly discounted), namely the action-value (or Q-value), which is de�ned as follows:

Qπ (s,a) = E [Rt |s(t) = s,a(t) = a] . (3.1)

Here, Rt =
∑T
τ=t γ

τ−tr (t) is the γ -discounted return from time t , and r (t) = R(s(t),a(t)) is the instanta-
neous reward perceived by the agent. Hence, the optimal policy is such that Qπ ∗(s,a) = maxπ Q(s,a).

3.2.2 Partially Observable Processes

In real environment (as in wireless networks), agent has only access to observations o of the latent state s .
In this case, we speak of a Partially Observable Markov Decision Process (POMDP), which is formalized
as (S,A,T ,R,Ω,O), in which O(o,a, s ′) = P(s ′ |o,a) denotes now the transition probability to state s ′
after observing o ∈ Ω and taking action a. Hence, an agent in POMDP learns to map observations to
actions that yield the best (long-term) rewards.

3.2.3 Reinforcement learning

A RL agent learns by interacting with an environment following a MDP to devise the optimal policy π ∗,
without an explicit provision of the environment model. In model-based RL (e.g. multi-armed bandits),
the transition probability T and the reward function R are �rst estimated and then used to derive Qπ ∗ .
In contrast, model-free approaches directly estimate the Q-values Qπ (value-based approach) or the
policy π (policy gradient-based approach), which can be memory and computation e�cient. In the latter
case, Q-learning is a widely use model-free value-based approach particularly e�cient for problems
with small states/actions space [17]. Coupled with Neural-Network (NN), Q-learning allows to address
complex problems using Deep Q-Network (DQN): Q(s,a) ≈ Q(s,a;θ ), where θ is the set of neural
network parameters used to approximate the Q-function [18]. DQN relies on experience replay to speed
up and stabilize the training process [18]. At each time t , from a state s(t), agent takes an action a(t)
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following a policy (e.g., ϵ-greedy), which brings it to a new state s(t + 1) with an immediate reward r (t).
The resulting experience e(t) = {s(t),a(t), r (t), s(t + 1)} is stored into an experience replay memoryM
from which a mini batch of experiences B is sampled every iteration to perform the learning phase. In
this phase, the weights of the DQN are iteratively updated using Stochastic Gradient Descend (SGD) on
mini batches in order to minimize the following loss function:

L(θ ) = Ee(t )∼B
[
δ (t)2] . (3.2)

In Eqn. (3.2), δ (t) = y(t) − Q(s(t),a(t);θ ) denotes the Temporal Di�erence (TD) error where the
γ -discounted target value is computed as follows:

y(t) = r (t) + γ max
a′

Q(s(t + 1),a′;θ ). (3.3)

Finally, knowing the optimal parameters θ ∗, the optimal policy is given by:

π ∗ : S → A
s → arg max

a∈A
Q(s,a;θ ∗).

In general, there can be some states where the outcome is the same regardless of the action the agent
could take; therefore, it is not always necessary to determine the state action value at a given state
s , Q(s,a;θ ), for every action. For instance, when playing a video game consisting in moving left or
right to avoid objects, trying to decide whether the optimal action is to move left or right is totally
useless if there is no threatening object in sight. Another example is when a UE is located at the same
distance from two BSs that can provide it with the same throughput. In that case, there is not a single
optimal action as the result will be the same whatever BS is selected Based on this intuition, Wang et
al. have introduced the notion of dueling network where Q(s,a;θ ) is decomposed into a state value
V (s;θ ) = E[Q(s,a;θ )] and the advantage of the corresponding action A(s,a;θ ) [60]. That is,

Q(s,a;θ ) = V (s;θ ) +A(s,a;θ ). (3.4)

The �rst term is action-less and is inherent to the state while the second measures the goodness of the
action in that state. Dueling network shows that learning the DQN by estimating separately the state
value and the advantage values can enable notable improvement in the agent policy.

3.2.4 Multi-agent reinforcement learning

In MARL, agents learn by interacting with a shared environment. In particular, usually in distributed
MARL, each agent maintains its own policy, while sharing its environment with other agents. Typically,
in this context, either each agent acts in a sel�sh way (concurrent MARL), learning a policy that
optimizes its own performance, or aims to determine a global optimal policy, which maximizes the
system performance (cooperative MARL). One major issue that arises with MARL is the problem of non-
stationarity due to multiple agents interacting simultaneously with the environment. This is especially
true in the case of independent learners, where agents see each other as part of the environment, which
becomes non-stationary from an agent’s point of view, as the actions of its teammates change over time.
In addition, environment non-stationarity can lead to shadowed equilibria.

De�nition 1 (From [61]). An equilibrium is shadowed by another one if there exists one agent i
which receives a very low gain by unilaterally deviating from this equilibrium and if this gain is
lower than the minimal gain when deviating from the other equilibrium.

In other words, in the presence of shadowed equilibria, an agent’s locally optimal action could end
up being globally sub-optimal [61]. Moreover, during the learning process, an RL agent may face two
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UEj MBS SBS

Find the surrounding BSs i.e., Aj

Request Connection to aj(t)

if aj(t) = 0, MBS Transmit Data

if aj(t) > 0, Request Access for UE j

ACKj(t)

if ACKj(t) = 0, MBS Transmit Data

if ACKj(t) = 1, SBS Transmit Data

Evaluate Rj(t)

Forward min
(
Dj(t),Rj(t)

)

Compute R(t)

Broadcast R(t)

Figure 3.2: Message sequence chart of the proposed mechanism for user association.

con�icting interests: either it exploits an action knowing the (expected) return or reward based on the
knowledge acquired so far or it explores new actions with uncertain outcomes but which can help it
improve or consolidate its current knowledge. The trade-o� between exploration and exploitation is
crucial for learning e�cient policies in RL, especially in MARL [17]. However, in MARL, the exploration
of one agent induces noise on the other agents exploiting their policy. This noise may cause other agents
to deviate from their current, albeit optimal, knowledge. Such a behavior is called alter-exploration
and can be quanti�ed using the notion of global exploration [61]. The global exploration measures the
probabilityψ that during learning process, at least one agent explores. It can be formulated using the
individual exploration rate of each agent.

Lemma 2 (from [61]). Let aK-agents system in which each agent explores according to a probability
ϵ ∈ [0, 1]. Then the probability that at least one agent explores isψ = 1 − (1 − ϵ)K .

In particular, note that as K increases,ψ converges to 1 (ψ → 1): alter-exploration impact becomes
worst as the number of agents increases.

In the following, we focus on cooperative MARL, meaning that agents also share a common joint
reward and propose a solution to deal with shadowed equilibria as well as alter-exploration.

3.3 Proposed Dynamic User Association

3.3.1 Proposed solution via multi-agent reinforcement Learning

In this section, we de�ne the proposed MARL framework to solve the optimization problem (2.9)-(2.12)
de�ned in previous chapter. Here, following enhanced Mobile Broadband (eMBB) service requirements,
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we focus on network sum-rate maximization. Accordingly we set α = 0 in Eqn. (2.7). Thus, the utility
function R(t) de�ned in Eqn. (2.7) corresponds to total network sum-rate:

R(t) =
∑
i ∈A

∑
j ∈U

xi, jmin
(
Ri, j (t),D j (t)

)
, (3.5)

where D j (t) is the data-demand of UE j and Ri, j (t) is its experienced w.r.t. BS i .
In our proposed framework, we model UEs as agents and assign them a common objective to

maximize the network throughput. In our setting, a UE, based on its local observations, selects and
requests service from a target BS, which accepts or rejects the connection request by sending an
Acknowledgment (ACK) signal depending on the available resources.

As described in Figure 3.2, each UE j starts by identifying the set of BSs Aj it may connect to. Note
that, in practical systems, the size of this set is limited to reduce complexity on mobile devices. Here,
Aj also de�nes the UE action space, meaning that the action aj (t) ∈ Aj denotes the index of the BS to
which the UE j requests a connection at time t . Then, in every time step, each UE j takes an action aj (t)
and informs the MBS of its choice. If the UE is requesting a connection from the MBS, i.e., aj (t) = 0,
the request is automatically granted1 and the communication is set up. Otherwise, the MBS forwards
the connection request to the corresponding SBS. Depending on the overall received requests and the
constraint (2.12), the SBS noti�es both the UE and the MBS with an ACKj (t) signal. If ACKj (t) = 1, the
SBS grants a connection to the UE; otherwise, the MBS establishes the default data link with the UE j.
Next, each UE j evaluates the perceived data rate, i.e., min

(
D j (t),Raj (t ), j (t)

)
and forwards this value to

the MBS. Then, the MBS computes the network sum-rate R(t). Finally, the MBS broadcasts R(t) to each
UE, which uses it to evaluate the goodness of its policy πj (t) and to update it accordingly.

Following this process, we de�ne the historyHj (t) of UE j as the set of all actions, observations,
and measurements collected up to time t [62] :

Hj (t) =
{
aj (τ ), ACKj (τ ), RSSaj (t ), j (τ ), D j (τ ), Raj (t ), j (τ ), R(τ )

}t
τ=1 . (3.6)

Hence, the policy of UE j at time t , πj (t), is a mapping from its historyHj (t − 1) to a probability mass
function over its action space Aj . Therefore, each UE takes its actions following its own strategy
without being aware of the actions taken by the other UEs.

A key feature of the proposed approach is that in contrast to MDPs, here, the decision of the j-th
UE is based only on its local state observation:

oj (t) =
{
aj (t − 1),Raj (t−1), j (t − 1),R(t − 1),ACKj (t − 1),RSSaj (t−1), j (t),D j (t)

}
. (3.7)

It is worth to note that oj (t) carries information related to the previous action/reward, already available
at the UE side, and new local information (the RSS and the data demand D j (t)). Speci�cally, each UE
makes association decisions based on how well its previous actions performed. The only observation
that implicitly coordinates the actions of the multiple UEs is the network sum rate, which serves as a
signal to each UE as to whether their local actions are bene�cial to the overall network objective. Note
that the overall network objective may increase or decrease due to the actions of multiple UEs, thus
it is not a perfect signal in the sense that it does not tell each UE exactly the consequence of its own
speci�c action. Yet, our goal is that, using DRL, each UE is able to learn over time its optimal policy.

It is noteworthy that the size of the state observation of a given UE does not scale with the number
of UEs in contrast to other works in the literature, as [40]. This allows us to build general DQNs that
can be used in di�erent network scenarios; that is, if a UE leaves or joins the network, there is no
need to change the DQN architecture. Moreover, oj (t) is a partial observation of the true state s(t),
which includes all the observations of other agents. In the literature, the optimization in partially
observable environments is addressed as a multi-agent POMDP [63]. Partial observability, in addition

1Note: we assume that the MBS is able to simultaneously serve all the active UEs by equally sharing its band across them.
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Figure 3.3: Illustration of the architecture of the proposed DRQN.

to non-stationarity issues, make MARL an even more complex task. To tackle this problem, Omidsha�ei
et al. successfully applied hysteretic Q-learning (�rst introduced by Matignon et al. [64]) with partial
observability [63]. They empowered the DQNs with Reccurent Neural Network (RNN) to obtain deep
recurrent Q-networks (DRQNs), which serves as a basis for our proposed algorithm.

3.3.2 Hysteretic deep recurrent Q-network

In the Hysteretic Deep Recurrent Q-Network (HDRQN) algorithm2, each UE j acts as an independent
learner and maintains its own DRQN Q j (oj (t),hj (t − 1),aj (t);θ j ). Figure 3.3 describes the proposed
DRQN, which is composed of one input layer, two fully connected hidden layers, one RNN hidden layer,
a dueling layer, and an output layer. The UE’s local state information oj (t) and the estimated state
action value Q j (·; ·) de�ne respectively the input layer and the output layer of the DRQN (Section 3.3.4
provides more details on the proposed DQRN). We use hj (t − 1) to represent the internal state of the
RNN hidden layer and θ j to de�ne the UE’s local DRQN weights. The use of RNNs allows to aggregate
past information (previous observed states, i.e., the historyHj (t)) in the agent decision-making process,
which is shown to improve the average reward perceived when dealing with partial observability [65].
Indeed, in a partially observable environment, each agent makes its decision relying on the observation
oj (t) instead of the true state sj (t), which is unknown. From oj (t) solely, the agent may have a partial
perspective of the environment. In this case, the commonly used Vanilla DQN may not be e�ective
[65], speci�cally in multi-agent scenarios, where each agent is unaware of the behavior of its teammate.
Hence, we extend the baseline Vanilla DQN with RNN to infer the underlying state sj (t) from agent
past observations, i.e., its historyHj (t) [65].

The experience of the j-th UE ej (t) =
{
oj (t),aj (t), r j (t), oj (t + 1)} is stored into a local memory

bu�erMj . In order to further stabilize the learning process, synchronized sampling strategy (called
concurrent experience replay trajectories (CERTs)) is adopted [63]. In other words, during the training,
mini batches of experiences of the same time steps are sampled across agents to update the local DRQN
weights in order to minimize the hysteretic loss function:

Lj (θ j ) = Eebj (t )∼Bj
[(
wb
j δ

b
j (t)

)2
]
, (3.8)

whereb indexes an entry in the mini batch of experiencesBj , δbj (t) = ybj (t) −Q j (obj (t),hbj (t − 1),abj (t);θ j )
is the TD error with respect to the target value

ybj (t) = rbj (t) + γ max
a′

Q j (obj (t + 1),hbj (t),a′; θ̂ j ). (3.9)

2In the following, we use HDRQN to refer to the proposed algorithm, and DRQN to refer to the related NN architecture.
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Here, θ̂ j represents the weights of the target DRQN, which are updated less frequently to improve the
learning stability [18].

In MARL, the agents’ reward is the result of their joint actions. Accordingly, an agent experience
ej (t) is positive, if the associated TD error δbj (t) in Eqn. (3.8) is positive, i.e., the perceived global reward
is better than the previous rewards independently of the optimality of the agent local action. A positive
experience does not necessarily imply that the agent’s strategy is converging toward the optimal
solution, but the network performance is improving over time. In contrast, a negative experience results
in an agent receiving a lower reward after taking an action that was fruitful in the past. A negative
experience can be caused by the agent’s action being non-optimal or more likely by the others agents’
behavior. That is, an agent that has taken a local optimal action may receive a lower reward because
of the bad choices of other agents. Such events may be exacerbated by the increase in the number of
agents. Therefore, negative experiences can be very detrimental in MARL as they may mislead the
agent to change its optimal strategy. Consequently, an agent may stabilize its strategy by paying less
attention to negative experiences.

This is the idea introduced by hysteretic Q-learning: the neural network weights are updated via
SGD with two distinct learning rates αµ and βµ (β � α ≤ 1), where µ is a based learning rate and α
and β are control factors. When the TD error is positive, the learning rate αµ is used; otherwise, βµ is
considered. This leads to optimistic updates that give more importance to positive experiences [64].
To implement the hysteretic learning in conventional machine learning libraries, we set µ as the �xed
learning rate and scale the TD error δbj (t) in Eqn. (3.8) as follow:

wb
j =

{
α , if δbj (t) ≥ 0
β , otherwise. (3.10)

3.3.3 De�nition of the reward function

The maximum value of the network sum-rate, and hence, the optimal user association is unknown to the
agents at the beginning of the learning phase. In other words, there is no explicit or prede�ned terminal
state that agents are aware of and toward which they have to converge to. Accordingly, we treat this
learning problem as a continuing task over a time horizon Te . That is, the agents keep updating their
policies as long as it improves the perceived reward.

De�nition 2. We de�ne the beam collision as the event corresponding to a given SBS i receiving more
requests than the number of beams Ni it can set up i.e., there is a beam collision if

∑
j ∈Ui xi, j > Ni .

Requests collision may occur since all UEs are requesting connections simultaneously. However,
our proposed framework aims to e�ectively train agents to distribute the network load and to properly
leverage the advantages of network densi�cation. Consequently, when a collision happens during the
training phase, we punish all UEs by setting the instantaneous reward to zero, which discourages agents
from colliding. However, during execution time, a practice implementation of this framework may
choose between the colliding UEs, which UEs to serve. This selection can be made either randomly or
based on RSS. As a result, we de�ne the reward function of UE j in Eqn. (3.9) as:

r j (t) =
{
R(t), if there is no collision

0, otherwise. (3.11)

During the learning, each UE j builds its policy πj depending on its data rate requirement, the experienced
SINR, the network sum-rate, and whether its requests cause a collision to maximize the accumulated
discounted reward:

G j (t) =
Te∑

τ=t+1
γ τ−t−1r j (τ ), (3.12)
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where the discounting factor γ is such that 0 ≤ γ < 1. Taking γ = 0 leads to myopic (instantaneous)
network throughput maximization. In the case of dynamic scenarios, it is better to consider γ , 0 to
take into account the dynamic nature of the environment: there is no need to change the current user
association at time step t due to a low reward perceived because of the environment dynamics if at
the next time step the system will recover its equilibrium. This consideration also makes sense in a
practical system where changing the association too often can also induce excessive overhead.

As de�ned, the reward perceived by the agents continuously varies with the environment stochas-
ticity viz. fading, shadowing, interference, tra�c, and noise. Accordingly, this reward setting can lead to
many optimal or quasi-optimal equilibria, which is a major issue as it results in agents laboriously trying
to converge [61]. Algorithm 1 presents the proposed training procedure to deal with these challenges.
Note that parts of this algorithm (highlighted in gray) can be executed in parallel across all UEs.

Algorithm 1: User Association: Training Procedure
1 while t < Te do
2 for j ∈ U do
3 Observe state oj (t).
4 aj (t) ← arg max

a′∈Aj

Q j (oj (t),hj (t − 1),a′;θ j ) following the ϵ-greedy policy.

5 if aj (t) , 0 and connection granted then
6 ACKj (t) ← 1. // the UE is requesting a connection to a SBS.

7 else
8 ACKj (t) ← 0.
9 Automatically redirect to the MBS.

10 end
11 Measure Raj (t ), j (t).
12 end
13 R(t) ← 0.
14 for i ∈ A do
15 if

∑
j 1aj (t )=i > Ni then

16 R(t) = 0. // collision.

17 Break.
18 else
19 R(t) = R(t) +

∑
j ∈Ui

1aj (t )=imin(Ri, j (t),D j (t)).

20 end
21 end
22 for j ∈ U do
23 Observe the new state oj (t + 1).
24 Store experience ej (t) intoMj .
25 Samples a batch of experiences fromMj .
26 Compute the target value ybj (t) in Eqn. (3.9).
27 Performs a gradient descent step on δbj (t) in Eqn. (3.8) with respect to θ j .
28 Periodically reset θ̂ j ← θ j .
29 end
30 t = t + 1.
31 end
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Figure 3.4: Simulated TX/RX antenna gain radiation pattern for an array of 20 × 20 (diag 1), 10 × 10
(diag 2), 5 × 5 (diag 3) elements operating at 28 GHz [1].

3.3.4 Numerical results

In this section, we demonstrate the e�ectiveness of the proposed HDRQN-based user association by
comparing its performance with the exhaustive search algorithm obtained via brute force and two other
centralized benchmarks of the literature:

• Max-SNR: Each UE is associated with the BS, which provides the maximum SNR taking into
account the constraint on the number of beams per BS (see Eqn. (2.12)). Since this method does
not consider interference, it has limited performance, especially in dense networks.

• Heuristic: Proposed in [39], this algorithm starts by ordering all the possible associations
according to their respective SNR values, which do not consider interference. Then, following
this order, the algorithm goes from one potential association to the following one and validates it
if it increases the network sum-rate R(t) in Eqn. (3.5). Although the evaluation of R(t) takes the
interference and UEs tra�c into account, the performance of this algorithm depends mainly on
the SNRs ordering, which may prevent reaching a global optimum. This approach is recalled in
Algorithm 2 with minor modi�cations compared to the original one since power and beamwidth
constraints are not considered in this study.

In the following, we start by analyzing the complexity of the proposed method compared to the
two baselines. Then, we study the e�ect of the hysteretic parameter on both convergence speed and
achievable sum-rate. Also, we evaluate the e�ectiveness of collision cost in limiting collision events
and improving network sum-rate. We continue assessing the performance of our scheme in both static
and dynamic scenarios. Finally, we conclude the evaluation by demonstrating the adaptive property of
the proposed algorithm.

We consider that UEs and SBSs communicate in the mmWave band at a carrier frequency of 28 GHz
using the same phased array antenna. To evaluate three di�erent interference scenarios, we consider
distinct antenna gain radiation patterns (see Figure 3.4), which correspond to a distinct number of
antenna elements in the phased array. Larger the array, thinner the beam3. In all tests, three small cells

3Note that increasing the number of antenna elements also increases the antenna’s size, thus, the hardware complexity.
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Algorithm 2: Heuristic scheme: Centralized User Association
1 Set xi, j = 0, ∀j ∈ U, i ∈ Aj .
2 Get the SNRi, j and sort it in descending order intoZ = {z1, z2, . . . , zP } with P =

∑
j card(Aj ).

3 Let δ be the transformation (de�ned by the sort) such that δ (i, j) = p: zp = zδ (i, j) ← SNRi, j .
4 Set R1(t) = 0.
5 while p ≤ P do
6 Set xp = 1.
7 Compute Rp (t). // Rp (t) is the sum-rate at iteration p.
8 if Rp (t) > Rp−1(t) and a beam is available then
9 Let xp unchanged. // means that activating this link improves the sum-rate.

10

11 else
12 Reset xp = 0.
13 end
14 end
15 Apply δ−1 to recover which links (i, j) are active.

Table 3.1: Simulations parameters.

Macro cell [66] Small cell [67]
Parameters Values
Carrier frequency, fs 2.0 GHz 28 GHz
Bandwidth, B 10 MHz 500 MHz
Thermal noise, N0 -174 dBm/Hz -174 dBm/Hz
Noise �gure 5 dB 0 dB
Shadowing variance, σ 2

s 9 dB 12 dB
TX power, PTx 46 dBm 20 dBm
Antenna gain, GTx/GRx 17 dBi / 0 dBi Fig.5
Radius, r 35 m
Back-lobe gain -20 dBi
Path-loss coe�cient, ηs 3.76 2.5
Inter-cell distance 1.2 × r
Reference distance, d0,s 20.7 m(1) 5 m
Beam number, Ni N1 = 2; N2 = N3 = 3
(1) We use as a path loss model, GCh

i, j (dB) = 128.1 + 37.6log10(di, j ), di, j in Km from Table A.2.1.1.2-3 in [68]. Then, we
compute the equivalent reference distance in meter for equation (3).

are deployed inside the macro cell. UE and small cell locations follow the 3GPP recommendations [66].
Table 3.1 summarizes the network parameters.

To learn the user association policy, we use the DRQN described in Figure 3.3. This architecture
comprises 2 Multi Layer Perceptron (MLP) of 32 hidden units, one RNN layer (a Long Short-Term
Memory (LSTM) layer4) with 64 memory cells followed by another 2 MLPs of 32 hidden units. The
network then branches o� in two MLPs of 16 hidden units to construct the dueling network. All layers
use a recti�er linear unit (ReLU) except the �nal layer, which has a linear activation function. For the
hysteretic learning, we set the base learning rate µ = 0.001 and α = 1, and then we optimize β ∈ [0, 1] to

4Note that it is also possible to use a Gated Recurrent Unit (GRU) layer. During simulations, both LSTM and GRU layer
have shown similar performance.
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Table 3.2: Deep Recurrent Q-networks training parameters

Discount factor, γ 0.9
Time horizon, Te 7000
Batch size, |B| 32
CERTs memory size, |M| 500
ϵ (follows a negative Gompertz function(1)) 1→ 0.1
Target network update frequency 10
Number of Monte-Carlo simulations, N 400
(1)ϵ(t) = 1 − ae−e−b(t−c ) , with a = 0.9, b = 10−3, c = 800.

strike a balance between convergence speed and network sum-rate. The DRQNs are trained o�ine using
an ϵ-greedy policy. The hyper-parameters values summarized in Table 3.2 are selected via informal
search. Finally, unless speci�ed, all results are average over N runs of Monte-Carlo simulations. At
each run, UE positions are randomly reset.

We evaluate the performance of the proposed solution and the related baselines using either the
network sum-rate or the sum-rate ratio w.r.t. the brute force approach. Speci�cally, for these metrics,
we compute the average and the standard deviation as follows:

R =
1
N

N∑
n=1

1
Te

Te∑
t=1

R(n)(t), (3.13)

σ 2
R =

1
N

N∑
n=1

(
1
Te

Te∑
t=1

R(n)(t) − R
)2

, (3.14)

where R(n)(t) is either the sum-rate or the sum-rate ratio at the time step t of run n.

Complexity analysis. We analyze both the computational and signaling complexity of the proposed
algorithm and compare it to the two baselines. Since our framework is based on deep Q-learning, a
practical implementation completely conducts the learning o�ine as with the Vanilla DQN initially
proposed for Atari games [18], and then, it transfers to each UE the corresponding weights. In this
scenario, UEs simply conduct the inference on their local states to �nd the optimal action, alleviating
the computational and power burdens. That is to say, the computational complexity of the proposed
framework during its execution is limited to the inference complexity of each local DQRN. Let Lh be
the size of hidden layers and Lc the number of cells in the LSTM layer. Each DQRN has six inputs5, thus
the complexity is in the order of O

(
6Lh + 2L2

h + LhLc + 2L2
h + Lh(card(Aj ))

)
≈ O

(
6L2

h + LhLc
)
. This

is very straightforward compare to a naive algorithm, which may �nd the optimal solution of problem
(2.9)-(2.12) through an exhaustive search, which has a complexity O

(
NsK(1 + Ns )K

)
as shown in Eqn.

(2.3.4) of Chapter 2.
The complexity of both max-SNR and heuristic algorithms during execution is related to sorting the

SNR values. Considering a quicksort algorithm, this complexity in the worst case (card(Aj ) = Ns + 1) is
around O (nlog(n)) for max-SNR and O (n + nlog(n)) for the heuristic algorithm6 where n = K(1 + Ns ).
However, the need to collect the SNR values globally is the most notable disadvantage of these centralized
approaches. In terms of signaling overhead, compared to the existing standard (e.g. 5G), the additional
complexity introduced by our framework is due to the broadcasting of the total network sum-rate.
The rest of the information used by a UE to take a decision is already either measured by the UEs(
R j (t),RSSj ,aj (t)

)
or sent by its serving BS

(
ACKj

)
. Speci�cally, the number of messages exchanged in

5For practical implementation, we encode the entry aj (t) in Figure 3.3 as a one-hot vector leading to 5 + card(Aj ) inputs.
6One pass to sort the SNR values and another to �nd the association.
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the sequence chart of Figure 3.2 is a function of the UE’s action aj (t). If aj (t) = 0, the association is set
up in two messages with the MBS. Otherwise, four messages are required to connect to either a SBS or a
MBS, depending on the ACK signal. Overall, for each UE to connect to the serving BS, the system needs
to exchange at most four messages. Then, two additional messages are required to get the total network
sum-rate from the MBS. Therefore, at most six messages are needed to complete one training step.
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Figure 3.5: Convergence speed and e�ect of the hysteretic parameter β (using diagram 1). Figure (a)
shows loss function for di�erent values of β and for K = 9. For the sake of readability, a 20-sized moving
average window is applied on plotted data. Figure (b) shows the sum-rate ratio and the associated
variance between the proposed scheme and the optimal UE association for di�erent values of β .

Convergence and e�ect of hysteretic parameter β . Here, we study the impact of the hysteretic
parameter β on the performance of the proposed solution in terms of network sum-rate and convergence
speed. Speci�cally, Figure 3.5a shows the evolution of the loss function during the training process
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for di�erent values of β , and Figure 3.5b describes the sum-rate ratio of the proposed scheme w.r.t. the
optimal solution as a function of β .

First, Figures 3.5a and 3.5b show that despite the few pieces of information available locally to
each agent, they can successfully learn a user association policy that performs close to the optimal
strategy in less than 5 · 103 iterations/associations if β ≤ 0.6. In addition, Figure 3.5a shows that
lowering β increases the convergence speed of the algorithm. However, this also results in limited
sum-rate performance. For instance, when β = 0, the proposed scheme achieves only 70% of the optimal
performance (see Figure 3.5b). This is because, from Eqn. (3.10), we know that selecting very low values
of β makes the agents too optimistic i.e., they tend to neglect actions that produce negative TD errors.
This leads agents to potentially select sub-optimal actions. In contrast, when β = 1, the agents give
equal importance to positive and negative TD errors, i.e., they become pessimists. In this setting, a UE
may change its (optimal) strategy after taking an action that results in a negative error, although this
error is simply the result of the other agents’ behaviors. These continuous changes limit the learning
performance, and, in fact, Figure 3.5a shows that the loss function diverges for β = 1. Hence, there is a
trade-o� between convergence speed, successful coordination of the agents, and network sum-rate.
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Figure 3.6: Impact of the collision cost on network performance in static scenario (using diag 1).

Impact of the collision cost on network performance. Here we assess the e�ectiveness of the
collision cost in Eqn. (3.11), to limit the collision events. For this purpose, we consider a setting in
which there is no collision cost. In this case, during the training phase, if a SBS receives more requests
than the ones that it can accept, it randomly chooses the serving UEs among the received requests;
the remaining UEs are therefore associated with the MBS. Figure 3.6a shows the frequency of the
collision event during the test phase. We can observe that the collision frequency increases with the
number of UEs as the cell load increases. However, we can see that by introducing the collision penalty,
we signi�cantly reduce the collision events up to 97%, which leads to an improvement of the overall
network throughput7 by 4.7% (see Figure 3.6b). This demonstrates that, with the proposed solution,
UEs learn to distribute their association requests among the di�erent BSs, balancing the cell load and
maximizing the network sum-rate.

Performance of the proposed algorithm in static scenario. We now compare the performance of
the proposed user association solution with the one achieved by the two baselines in a static scenario
where there is no fading (i.e., αi, j = 1) and with full bu�er tra�c. Consequently, in Eqn. (3.5), we

7We have considered the case of K = 13 UEs to highlight how, in networks with a large number of users, the collision
events impact the network sum-rate.



3.3. Proposed Dynamic User Association 36

6 9 13

60

80

100

79.5

71.7

65.4

94.9
93.1 91.7

98.7
96.3

94.4

Number of UEs

Su
m
-r
at
e
ra
tio

(%
w.
r.t
.o

pt
im

al
) Max-SNR heuristic HDRQN

(a) Case 1: Using diagram 1

6 9 13

60

80

100

71.4

65

57.4

95.4 93.9
91.8

98.4 96.8
94.5

Number of UEs

Su
m
-r
at
e
ra
tio

(%
w.
r.t
.o

pt
im

al
)

Max-SNR Heuristic HDRQN

(b) Case 2: Using diagram 3

Figure 3.7: Performance comparison in static scenario using diagrams 1 and 3.

set D j = +∞,∀j and disable the corresponding input in the DRQNs8. Figures 3.7a and 3.7b show the
performance of the di�erent approaches compared to the optimal user association in terms of network
sum-rate, using antenna diagrams diag 1 and diag 3 respectively. We �rst note that the sum-rate
ratio performance of our solution, as well as the heuristic approach, barely changes between the two
antenna diagrams (less than 0.5% change), in contrast to the max-SNR algorithms, which does not
consider interference. Speci�cally, when K = 13 the performance of the max-SNR decreases by 12.2%
when switching from diagram diag 1 to diag 3, which has lower directivity and thus results in a
lower SINR. In addition, we note that, on average, our proposed scheme achieves up to 98.7% of the
optimal sum-rate, hence outperforming both the max-SNR and the heuristic approaches. For example,
when K = 6, by using diag 3, the proposed solution exhibits a performance gain of 3.1% and 37.8%
over the heuristic and the max-SNR algorithm, respectively.

As soon as the number of UEs increases, the performance of our scheme slightly decreases. This is
because ensuring coordination becomes more complex when the number of interacting agents increases.
For instance, with diag 3, our solution only achieves 94.5% of the optimal performance for K = 13.
However, it still outperforms the two baselines showing now a gain of 3% and 64.6% over the heuristic
and the max-SNR approaches, respectively. Although the gain of the proposed solution over the heuristic
scheme is small, our framework is distributed while the heuristic approach is centralized.

Performance in dynamic scenarios. We now evaluate the performance of the proposed scheme in
dynamic environments and considering the three di�erent antenna diagrams in Figure 3.4. For this
purpose, we de�ne two cases: 1) dynamic channels with small scale fading and full bu�er tra�c, 2)
dynamic channels with small scale fading and dynamic tra�c. As the optimal user association obtained
via exhaustive search requires extensive computation, in the following, unless otherwise stated, we
compare only the performance of the proposed scheme with the aforementioned two baselines. To
achieve a fair comparison, every time step, we recompute the association solution of the two baselines
as this may change due to the environment dynamics.

First, we can highlight from Figures 3.8 and 3.9 that, as expected, the network sum-rate decreases
as the antenna diagrams become less and less directive (from diag 1 to diag 3). Also, the gap
between our scheme and the two baselines decreases when the antennas are more directive, which is
due to the smaller interference perceived at the UE side. Indeed, the two baselines perform better in
limited interference scenarios:

• Case 1: in this scenario, we have full bu�er tra�c, D j = +∞,∀j and dynamic channels with Nakagami
8To disable an input, we simply set the corresponding entry in o(t) to zero.
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Figure 3.8: Performance comparison when considering only dynamic channels with fast fading.

small scale fading, characterized by a scale factorm = 3 [69]. Figure 3.8 plots the sum-rate achieved
by the di�erent algorithms for a di�erent number of UEs. We remark that our distributed solution
performs better than the two centralized baselines. Speci�cally, when the number of UEs is equal to
9, the HDRQN improves the network sum-rate by about 1% and 30.3% when using diag 1, 2.8%
and 36.2% when using diag 2, and 3.6% and 49.2% when using diag 3, compared respectively to
the heuristic and max-SNR schemes. As in the static case, the gain w.r.t. the heuristic is limited when
considering only the fast fading e�ect.

• Case 2: we evaluate on Figure 3.9, the performance of our framework considering both fast fading
and UE tra�c. Here, for each UE, the intensity of its tra�c Poisson distribution is uniformly chosen
between [0, 2] Gbps at the beginning of each Monte Carlo run. Overall, as expected, the e�ect of the
tra�c variations on the rate (see Eqn. (3.5)) is larger than the one related to the fast fading, which
leads to small variations on the user-perceived SINR (see Eqn. (3.5)). In addition, our algorithm yields a
large performance gain over the two benchmarks. For instance, for K = 13 UEs, the proposed solution
improves the sum-rate by 19.4% and 18% when using diag 1, by 19.7% and 28.2% when using diag
2, and by 23.2% and 37.1% with diag 3, compared to heuristic algorithm and the max-SNR algorithms,
respectively.



3.3. Proposed Dynamic User Association 38

6 9 13

4

6

8

10

5.6

7
7.6

5.6

7.2
7.8

5.7

7.7

9

Number of UEs

Su
m
-r
at
e
(G
bp

s)
Max-SNR Heuristic HDRQN

(a) Using diagram 1

6 9 13

4

6

8

10

5.4

7.1
7.3

5.5

7.3
7.7

5.7

8

9.1

Number of UEs

Su
m
-r
at
e
(G
bp

s)

Max-SNR Heuristic HDRQN

(b) Using diagram 2

6 9 13

4

6

8

10

4.8

6 6.2

5.1

6.4
6.9

5.4

7.2

8.5

Number of UEs

Su
m
-r
at
e
(G
bp

s)

Max-SNR Heuristic HDRQN

(c) Using diagram 3

Figure 3.9: Performance comparison when considering both dynamic channels with fast fading and
dynamic tra�c.

3.3.5 Concluding remarks

We have presented a novel and distributed approach for solving user association problems based on Multi
Agent Reinforcement Learning (MARL). With the proposed MARL algorithm, agent decisions are based
on partial and local observations, which limits the signaling overhead and reduces the computational
complexity w.r.t. centralized approaches. Our analysis shows that, in the case of full bu�er tra�c, the
proposed scheme achieves up to 98.7% of the optimal performance obtained through exhaustive search.
When considering dynamic fading, the proposed solution outperforms centralized baselines, which
require to continuously recompute the user association, leading to excessive complexity. In addition,
the proposed approach results in large sum-rate gains when we consider dynamic tra�c, achieving
nearly 40% of performance gain w.r.t. baseline solutions from the literature. In the next section, we
explore how the proposed solution can be leveraged to solve another challenging problem related to
user association, namely handover management.
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3.4 Application to Distributed Handover Management

A close problem to user association is handover or hando� management also known as user re-
association. In dynamic environments characterized by mobile users, a UE to maintain or improve its
QoS may need to change its current BS association when moving through the network. This process is
called Handover (HO). Performing an HO procedure requires signaling between the UE, the serving
BS, and the target BS, which induces overhead and energy consumption, thus decreasing the network
performance. In 5G network with mmWave communications, the frequency of handover procedures is
even accentuated due to severe pathloss, blockage, and deafness. This leads to a deterioration of mobile
users’ throughput as well as their battery lifetime. In the literature, the HO management problem has
received wide attention, and multiple HO algorithms exist, each trying to limit the impact of frequent
HOs in UEs Quality of Experience (QoE). In general, HO decisions are based on measurement signals
such as RSS, Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), or
Word Error Indicator (WEI) [70]. 3GPP standard suggests that a UE triggers an HO process when the
RSS of the target BS exceeds the one of the serving BS by a certain amount to avoid ping pong e�ect
[70]. This procedure may induce large signaling overhead, which prevents from meeting the latency
requirements of future wireless communication services [71]. To improve the HO performance, Yan
et al. have proposed to limit the time consumed in the HO process by designing a machine learning
algorithm that predicts HO decisions [72]. Koda et al. have proposed to limit HO frequency by designing
a reinforcement learning (RL) framework that uses a Q-learning algorithm to maximize the network
throughput [73]. In the same vein, Wang et al. have extended this approach using deep RL with
actor-critic methods to avoid state discretization and for better scalability [74]. Not all these works
consider cell load and limited resource availability when optimizing the HO strategy.

3.4.1 Handover management: system model and problem formulation

We recall the system model from Section 2.3 of Chapter 2. We do not consider UE tra�c request,
i.e. D j (t) = +∞, ∀j , and focus only on UE mobility. Therefore, given a BS i , the set of UEs in its coverage
areaUi (t) changes over time as well as the set Aj (t) of BSs a UE j could associate with.

As UEs move around the network, they may be subject to multiple handovers to maintain or improve
their QoE (see Figure 3.10). However, unnecessary HOs lead to large signaling overhead, which increases
the energy consumption, lowers the spectral e�ciency, and a�ects UEs latency. To account for this, we
directly introduce a penalty due to the handover in the evaluation of the network performance. Indeed,
let ∆τ be the time between two possible handovers, also known as Time-to-Trigger (TTT) interval [70].
That is, a handover process can be triggered every time τp = τ0+p∆τ , where τ0 is an initial system delay.
If UE j want to perform a handover at time τp , then, a time β∆τ is dedicated to the hando� procedure
while the time (1 − β)∆τ is used to communicate data (see Figure 3.11). The coe�cient β ∈ [0, 1] allows
controlling the cost of an HO process, which depends on the type of implemented handover (soft or
hard handover) [75]. Accordingly, the e�ective data received by UE j from BS i between time τp and
τp+1 is

Ri, j (τp , β) =
∫ τp+(1−βλj (τp ))∆τ

τp
Ri, j (t)dt , (3.15)

where λj (τp ) = 1 indicates that UE j has handed over at time τp , and λj (τp ) = 0 otherwise. Hence, we
de�ne the network throughput R(τp ) measured between time τp and τp+1 as follows:

R(τp , β) = 1
∆τ

∑
i ∈A

∑
j ∈U

Ri, j (τp , β). (3.16)

Let b.c be the �oor operator and P =
⌊ T
∆τ

⌋
be the number of TTTs over a time period T .
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Figure 3.11: HO process timeline. TTI is the Transmission Time Interval.

Handover problem. We aim to �nd the HO strategy that maximizes the average network
throughput RT (β) = 1

T
∑P
p=1 R(τp , β) taking into account the cost associated to hando� events.

Hence, we formalize this problem as follows:

maximize
{xi, j (t )}

RT (β) (3.17)

s.t. xi, j (τp ) ∈ {0, 1}, i ∈ A, j ∈ U(t), p ∈ [|1, P |], (3.18)∑
j ∈Ui

xi, j (τp ) ≤ Ni , i ∈ A(t)\{0}, p ∈ [|1, P |], (3.19)

∑
i ∈Aj

xi, j (τp ) = 1, j ∈ U, p ∈ [|1, P |]. (3.20)

The constraint (3.18) ensures that the decision variables are binary. The constraint (3.19) indicates
that the maximum number of UEs that a SBS can simultaneously support is limited to Ni . Finally,
the constraint (3.20) indicates that a UE is always associated with a BS. The optimization problem
(3.17)-(3.20) is a non-convex integer programming problem. In addition to the complexity of such a
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problem, the optimal association at time τp also depends on the association at time step τp−1 through
the handover variable λj , making the problem (3.17)-(3.20) intractable with conventional optimization
frameworks. In the following, we hinge on our proposed multi-agent reinforcement learning framework
to solve this problem.

3.4.2 Proposed handover framework

In this subsection, we depict the proposed HO solution. We formalize the optimization problem (3.17)-
(3.20) as a multi-agent reinforcement learning (MARL) task where each UE is modeled as an independent
agent that learns in a distributed way its handover strategy with the goal of optimizing the network
throughput.

UEs action space. At each time step τp , each UE j takes an action aj (τp ) to associate with one BS in the
network. If the connection request is addressed to the MBS, this is automatically granted. Otherwise,
if the requested SBS is able to support the association, an acknowledgment signal is sent (ACK = 1),
otherwise ACK = 0 (see the constraint (3.19)). Finally, if UE j’s BS at time step τp di�ers from the one at
time step τp−1, the UE initiates a handover procedure. Later, the MBS collects information from each
BS to compute the overall network throughput R(τp , β), which is broadcast to all UEs to evaluate the
goodness of their policy.

UEs state space. To learn their optimal strategy, UEs continuously collect information about their
surrounding environment. We assume that at each time step, each UE can measure the RSS of the
surrounding BSs i.e., {RSSi ,∀i ∈ A}. In addition, each UE uses the previously perceived data rate
Raj (τp ), j (τp−1, β) and network sum-rate R(τp−1, β). Hence, at time τp , UE j acts based on its local
observations:

oj (τp ) =
{
vxj (τp ),vyj (τp ),aj (τp−1),R j (τp−1, β),R(τp−1, β),ACKj (τp−1), {RSSi (τp )}∀i ∈A

}
, (3.21)

where vj (τp ) = (vxj (τp ),v
y
j (τp )) is the corresponding UE’s speed.

UEs reward. To optimize the network performance, UEs must learn how to perform association requests,
which limit handovers and avoid collisions across service requests. Let c(τp ) denotes the request collision
event. There is a request collision at time step t , i.e., c(τp ) = 1, if ∃ i such that

∑
j ∈U xi, j (τp ) > Ni .

Otherwise, we set c(τp ) = 0. To optimize the handover procedure, we have designed two reward
functions taking into account the collision events.

• RHando-F (Fully cooperative RHando): in this strategy, UEs receive the same reward, which
favors global network optimization:

r j (τp ) = (1 − c(τp ))∆τR(τp , β). (3.22)

• RHando-S (Self interest RHando): here, each UE instantaneous reward only considers the
data rate it perceived. Hence,

r j (τp ) = (1 − c(τp ))Raj (τp ), j (τp , β). (3.23)

It is noteworthy that even in RHando-S, the reward of each UE still depends on other UEs because
of the interference and the collision events.

Next, we use the HDRQN architecture proposed in section 3.3.2 to train users’ HO policies.
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Figure 3.12: Average reward w.r.t. to number of beams Ni . Here, K = 15, m = 0.5, β = 1.

3.4.3 Performance comparison

To assess the performance of the proposed framework, we consider as a benchmark a simpli�ed version
of the HO procedure proposed in 3GPP [70] in which each UE is associated to the BS providing the
strongest RSS. In case of request collision, each SBS selects the best UEs in terms of RSS while the
MBS serves the other UEs. In all tests, �ve mmWave SBSs are deployed inside the macro cell. UEs’
locations are randomly initialized. To account for heterogeneous mobility, each UE randomly picks a
speed between 0 and 10 ms−1 and takes a straight motion with a random direction. In addition, without
loss of generality, we suppose that users turn back once they reach the macro cell edge. We set ∆τ = 1s ,
TTI = 10 ms. The simulation lasts T = 2000 s. For a given UE i associated to a given BS j, we evaluate
Ri, j (τp , β) by aggregating the data received during each TTI (see Eqn. (3.15)). We use the antenna
radiation pattern diag 3 of Figure 3.4. Additional simulation parameters can be found in Table 3.1.

Collision avoidance. As aforementioned, request collisions may happen when BSs do not have enough
beams to support, simultaneously, all the service requests. Figures 3.12a and 3.12b show the performance
comparison of the two RHando con�gurations compared to the benchmark solution. Unsurprisingly, for
lower values of Ni , RHando-S exhibits poor performance than RHando-F both in terms of average reward
(i.e., (1/P)∑P

p=1
∑

j ∈A r j (τp )) and HO’s frequency. This is because UEs in RHando-F fully cooperate
through the common reward they perceive and, as a result, they e�ectively learn to avoid request
collisions. In contrast, with RHando-S, each UE learns a policy based on a local reward, which does
not provide su�cient information on the e�ect of its action on the other UEs’ reward. Inversely, when
Ni is su�ciently large (> 7), RHando-S outperforms both RHando-F and RSS-based HO in terms of
average reward. The throughput is increased by about 17.89% by RHando-S and only 10% by RHando-F
compared to the benchmark. Regarding the HO events, RHando-F decreases the HO frequency by about
70% and RHando-S by 54% compared to the baseline. Overall, we can observe that the fully cooperative
approach limits the handover rate at the cost of lower reward when Ni is large.

The handover cost factor β has an impact on performance. Now we evaluate the performance
of the proposed solutions w.r.t. the handover cost factor β . Figure 3.13b shows that when the HO
cost increases, the network average throughput decreases. The RSS-based solution is characterized
by the worst performance as it does not consider the handover cost. Figure 3.13a shows that when
the HO becomes more and more costly, the HO rate decreases with Rhando-S while remaining almost
constant with Rhando-F. This is because the HO cost variation has a limited impact on the global reward
perceived by the agents in RHando-F: after a hando� decision, an agent can still perceive a large global
reward as this is de�ned as the sum of all the other agents’ reward.
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Figure 3.13: Impact of the cost factor β on network performance. Here, Ni = K = 15, m = 0.5.
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Figure 3.14: Impact of the fading on system performance. Here, Ni = K = 15 , β = 1.

The average throughput varies with Nakagami fading scale factorm. HO events highly depend
on the channel conditions viz. path loss and fading. Here, we evaluate the performance gain of the
di�erent algorithms w.r.t. the Nakagami scale factor m. Figures 3.14b and 3.14a show that the more
severe the fading (m → 0), the more pronounced the gain of the proposed solution compared to the
benchmark both in terms of average throughput and number of HOs. The performance of the RSS-based
HO strongly deteriorates with the fading while RHando-F and RHando-S adapt their policies to the
fading characteristics demonstrating therefore the robustness of the proposed framework.

3.4.4 Concluding remarks

We have shown in this Section an application of our proposed MARL framework for handover man-
agement, a di�erent problem, but related to user association. In particular, in this problem, we have
optimized the network sum-rate considering the delay induced by handover events. The proposed
solution is also distributed among mobile users with limited signaling overhead. We have shown its
ability to reduce the handover events by 50% and increase the sum-rate by 10% compared to the baseline
solution based on maximum-RSS.
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3.5 Conclusion and Perspectives

In this chapter, we have presented our main framework based on distributed MARL, which allows
successfully solving the user association problem. In particular, we modeled each user equipment as
an independent agent, which takes autonomous decisions based on its local observations. Despite the
proposed solution is distributed, we have shown that by observing only a few local parameters, our
solution is able to achieve near-optimal performance. Moreover, our proposed solution incorporates
environment dynamics viz. fading, user tra�c and mobility, intra- and inter-cell interference, so that
the optimal solution is self-reorganized when a relevant change occurs. Finally, we have shown that the
proposed solution can successfully address handover management, a close problem to user association
with additional complexity as it involves user mobility.

Despite all these appreciable features, our proposed solution still lacks, to some extent, �exibility
and adaptability. Indeed, our proposed framework, as present solutions in the literature, optimizes the
user association by considering either 1) a �xed set or position of users, 2) a �xed distribution of tra�c,
or 3) in the context of mobility, �xed directions (prede�ned trajectories). In other words, whenever
i) the number of users changes due to the arrival or departure of UEs, or ii) their positions arbitrarily
change e.g. due to random mobility, or iii) their service requirements change due to e.g. a UE switching
from a vocal call to online gaming, the solution of the user association has to be recomputed. This
involves frequent signaling to report changes in the radio environment and frequent learning processes
to adapt to these changes. Therefore, the following questions are still open: can we build user association
policies able to accommodate all these changes? can we come out with transferable user association policies
in which knowledge gained in a given scenario can be transferred to another scenario, preventing frequent
learning processes? Solving these problems opens new perspectives to build fully transferable user
association knowledge or policies.

In the next chapter, we will investigate solutions to address these issues, which require rethinking
the architecture design of the user association policies as well as the associated learning mechanism.

The technical contributions of this chapter have been validated by the following conference papers,
journal paper, and patent.
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Chapter 4

On the Transferability of User
Association Policies

“La connoissance de certains principes supplée facilement à la connoissance de
certains faits.”

“The knowledge of certain principles easily compensates the lack of knowledge of
certain facts.”

− Claude Adrien Helvétius, De l’esprit (1715 − 1771)
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4.1 Introduction

T his chapter addresses the problem of transferability of the user association policy. Here, we focus
on a solution of user association, which allows the learned policy to cope with environment

dynamics, including changes in the number and/or position of users, variation in tra�c dynamics as
well as variation in wireless channels. To this end, we �rst propose a policy distillation mechanism that
builds on the user association solution previously proposed in Chapter 3 to consolidate the knowledge
gained in di�erent scenarios into one global knowledge. Although this solution is able to cope with the
variation of network tra�c, it is limited in terms of scalability. Therefore, we propose a novel Proximal
Policy Optimization (PPO) and learning mechanism to derive a transferable user association strategy
based on Multi Agent Reinforcement Learning (MARL) and neural attention mechanisms. The resulting
framework is able to address changes in the radio environment, including channel dynamics, mobility
of UEs as well as the variability of the number of UEs over time.

4.1.1 Motivations

Current state-of-the-art solutions for user association are, in general, not scalable and tangibly lack
adaptability. In particular, they are often grounded on quite rigid assumptions, such as pre-sized
and �xed sets of BSs and static UEs, favorable channel conditions, absence of inter-cell or intra-cell
interference, full-bu�er network tra�c. Yet, in dynamic mmWave networks, especially in dense
networks, the number of UEs, their position to each other and BSs, and the performance requirements
of the services they access are likely to change over time and are characterized by a high dynamicity.
Even in relatively stable scenarios, from the radio channel and data tra�c points of view, the arrival
in the network or the departure from the network of one or more users has an impact on the overall
network performance, which requires a constant adaptation of the user association to dynamically
guarantee the best possible quality of service. To tackle these problems, we propose transferable
user association policies. Transferability is an important key feature. It allows transferring the user
association knowledge acquired in one speci�c scenario to another one [76], thus, resulting in a
signi�cant gain in terms of signaling and computation overhead.

4.1.2 Related work

Very few works in the literature have addressed knowledge transfer for user association [77]. In [78],
authors propose a transfer learning scheme, which enables base stations to share learning knowledge
to improve system QoS. A transfer learning algorithm is developed in [79], which allows transferring
the expertise knowledge learned from spectrum assignment to formulate a knowledge base for user
association. Similarly, [80] proposes to apply transfer learning for spectrum sensing. In [81], an
apprenticeship learning mechanism is proposed for spectrum decision, namely for channel selection and
hando�. None of these works apply to user association in 5G networks or to the distributed multi-agent
system. In this new chapter, we address the problem of transferability of the user association policy. We
propose a novel Policy Network Architecture (PNA) and learning mechanism to derive a transferable
user association strategy able to address changes in the radio environment, including channel dynamics,
mobility of UEs as well as the variability of the number of UEs over time.

4.1.3 Contributions

The contribution of this chapter can be summarized as follows:

• Policy distillation in small-scale dynamics: we design an o�ine distillation procedure consisting of
integrating experiences related to di�erent scenarios in a single one so that the users can adjust
their association policy to abrupt changes in the radio environment. In particular, this is the case
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when the dynamic of the UE tra�c requests changes in time and that the user association must
be updated accordingly to avoid performance losses.

• knowledge transferability: unlike approaches in the literature [39, 40], which require reconstruct-
ing the PNA (i.e., the NN architecture) and a completely new learning process each time the
number or the position of UEs changes, our new proposed solution has the advantage of being
transferable. In other words, both the PNA and the learned association skills can be transferred
to a new scenario or to a new UE that joins the coverage area without any additional changes.
To do this, instead of having one speci�c policy per UE as in the previous chapter, we come out
with a single global PNA based on neural attention mechanisms, which can be trained e�ciently
with the experiences of all UEs. Thanks to the attention mechanism, our proposed architecture is
transferable without any additional loss in performance.

• hysteretic proximal policy optimization: to optimize the proposed user association PNA, we use
a Multi Agent Reinforcement Learning (MARL) framework with policy gradient algorithm, in
particular, the PPO framework. However, dynamic channels and network tra�c combined with
the simultaneous interaction of agents make the radio environment highly non-stationary, which
challenges MARL systems. Therefore, as in the previous chapter, to stabilize the learning process
and improve the convergence, we rely on the concept of the hysteretic Q-learning [64, 63]. We
modify the PPO algorithm by introducing two clipping factors that induce a hysteretic behavior
in policy updates. By doing so, agents become optimistic by giving less importance to the low
reward received (e.g., because of environment noise) from actions that were successful in the past.
We show through numerical simulations the bene�t of such a method both on the convergence
and the system performance.

• zero-shot generalization: in addition and in sharp contrast with existing solutions, the proposed
mechanism has zero-shot learning capability, i.e., it can actively adapt to the variations due to
the departure or arrival of UEs without requiring additional training iterations. For this purpose,
we introduce a UE dropout mechanism, which consists in masking some UEs during the learning
process to enable robustness of the learned policy w.r.t. the variation of the number of UEs in
the network. We show that the dropout mechanism further stabilizes the learning process and
enables better knowledge transferability.

• adaptability w.r.t. to channel and tra�c dynamic: our learning mechanism also incorporates
channel dynamics (fast fading, shadowing) and network tra�c dynamic allowing the proposed
solution to quickly adapt to �uctuations of these parameters in practical implementations.

• distributed, centralized or hybrid architecture: as we come out with a solution involving only
one global model shared by all UEs, another salient feature of the proposed architecture is that
both the learning process and the execution can be either distributed or centralized or even be
implemented in an hybrid way. In the case of a centralized implementation, the PNA may be
located at a central controller, which assigns BSs to UEs based on their feedback. In a distributed
setting, instead, each UE has a copy of the PNA and can take its association decisions locally.
Finally, for a hybrid implementation, we show that parts of the PNA can be located at the UEs
and at the central controller to leverage the advantage of both the centralized and distributed
solutions.

The technical content of this chapter is based on the published journal paper [56] and conference
paper [82].

The remainder of this chapter is organized as follows. Section 4.2 presents the proposed adaptive user
association based on policy distillation mechanism. Section 4.3 details our transferable user association
solution. We provide numerical results in Section 4.5 and draw conclusions in Section 4.6.
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Figure 4.1: Example of the variation of UE j service request with time.

4.2 Proposed Adaptive solution via Policy Distillation

4.2.1 Policy distillation

Let consider the system model de�ned in Section 2.3 of Chapter 2 (see Figure 2.2). We now focus
on a more realistic scenario, where the service requests of the UEs can change over time, e.g., from
video streaming to Virtual Reality (VR) applications. We model this change by abruptly modifying
the intensity of the Poisson distribution that characterizes the UE tra�c, i.e., for UE j, D j (t) is now
time-dependent (see Figure 4.1). This increases the non-stationarity of our system and makes the
learning process more challenging. To deal with this, the agents may keep updating their policies
online, to adapt them to an eventual drastic change in the environment’s dynamics. This approach may
lead to good performance if the convergence time of the algorithm is su�ciently shorter than the time
during which the system is stationary. However, in a multi-agent system, this condition is unlikely
satis�ed and thus, we design an o�ine training strategy that allows the agents to perform well during
the execution time even in strong non-stationary conditions.

Let us assume that the time horizonTe can be divided into P time intervalsTp such that
∑P
p=1Tp = Te ,

where the intensities D j (t), ∀j ∈ U remain constant. Accordingly, we denote by D
(p)
j the average data

rate requested by UE j in the time interval p. Then, we de�ne a task Tp as the set of the UEs’ tra�c
requests during the time interval p:

Tp =
{
D
(p)
1 ,D

(p)
2 , ...,D

(p)
K

}
. (4.1)

In our setting, each agent does not have the global knowledge of each task speci�cations; in fact,
a UE is unaware of the data rate demands of the other UEs. However, we aim to derive, for each
user, a unique policy that performs well in any task. This problem falls in the context of the so-called
Multi-Task Reinforcement Learning (MTRL) [83], where policy distillation consolidates multiple task-
speci�c policies into a single policy. Indeed, policy distillation enables to transfer one or more action
policies (learned knowledge) from expert Q-networks to an untrained network. Speci�cally, with this
mechanism, for every task, we run Algorithm 1 to collect the agents task-speci�c policies π (Tp ); that is,
we derive as many policies as there are tasks for any single agent. Then, for every agent j and task p,
we execute the related policy for a time Tp and we store all the collected observations/action values
〈oj (t),Q j (oj (t);θ j )〉p into a memoryMj (see Algorithm 3). Later, for each UE j, we conduct supervised
learning on the generated databaseMj to learn a distilled policy πD

j through a single Deep Recurrent
Q-Network (DRQN) (having the same architecture as in Figure 3.3 with parameters θDj ) trained via a
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Algorithm 3: Distillation Procedure for UE j

1 for p = 1, . . . , P do
2 Initialize oj = {0}.
3 Select a policy πj (Tp ).
4 for t = 0, . . . ,Tp do
5 Observe the new state oj (t).
6 Using the expert policy πj (Tp ) takes aj (t).
7 Get Q j (oj ;θ j ).
8 Store 〈oj (t),Q j (oj (t);θ j )〉 into a memoryMj .
9 end

10 end
11 Initialize the distilled DRQN weights θDj .
12 Perform supervised learning usingMj .

tempered Kullback-Leibler (KL) divergence loss function:

L(θDj ) = EMj


so�max

(
Q j

τ

)
log

©­­«
so�max

(
Q j
τ

)
so�max

(
QD
j

) ª®®¬

, (4.2)

where the temperature τ controls the way the knowledge is transferred from the expert policies to the
distilled policy [83]. Increasing the temperature softens the Q-values, which may prevent the distilled
agent from taking the same actions as the expert. In contrast, when the temperature decreases, Q-values
becomes more and more sharpened ensuring more knowledge distillation. Therefore, τ is typically set
as a small positive value [83].

4.2.2 Performance comparison

Here, we show the capacity of our scheme to adapt the association policy with respect to time-varying
service requests in the network. As the service request (and its corresponding data rate) at each UE
change during time, the user association has to adapt to keep optimizing the network performance i.e.,
balancing the cell load. To achieve this property, we use the aforementioned distillation mechanism.

Let us consider three services rate requirements denoted as service 1, service 2, and service 3,
corresponding respectively to an average data rate demand of Ds1 = 5 Mbps, Ds2 = 200 Mbps, and
Ds3 = 1.5 Gbps. service 1 may be related to web browsing or voice call services, service 2 to online
video streaming, and service 3 to augmented reality or virtual reality applications. In the following, we
focus on three time periods during which the UEs randomly change their service requests and we apply
the distillation procedure (i.e., Algorithm 3 with P = 3). Figure 4.2 shows a sample of the performance of
the proposed HDRQN with and without distillation. Speci�cally, the agent policies without distillation
are obtained through a single training phase over the three time periods. The upper part of this �gure
highlights the data rate changes for each of the 9 UEs in the network. The middle part of the �gure
describes the corresponding user association1. Finally, the lower part shows the evolution of the network
sum-rate. Overall, Figure 4.2 shows that the proposed algorithm using distillation mechanism can
e�ectively adapt the user association to service request dynamics thus, outperforming the two baselines.
For example, we see that UE 4 is served by SBS 1 in the �rst two time intervals when it is requiring
service 3; in contrast, in the last interval, when it demands for service 1, which is characterized by a
lower data rate request, its access is provided by the MBS. Meanwhile, in the last interval, UE 5 asks for

1Note that the UEs not served by a mmWave beam are receiving data through the MBS.
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Figure 4.2: Dynamic behavior of the pro-
posed adaptive user association scheme.
We set the loss temperature to τ = 0.01 via
informal search. Here, D j (t) is expressed
in Gbps.

service 3; therefore, it hands o� from the MBS to SBS 2, which can satisfy its demand for a higher data
rate. Moreover, we can highlight that in the absence of distillation, the proposed solution shows poor
performance during the �rst two time periods. This is due to the forgetting e�ect inherent to neural
networks training: at the end of the third period, the agents have forgotten what they have learned
in the �rst two periods. The resulting policy is therefore only appraised to handle the last service for
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which it exhibits the best performance.

4.2.3 Concluding remarks

Despite that the solution based on policy distillation can adapt the user association decision to the
environment’s dynamics, like most of the state-of-the-art mechanisms, it optimizes the user association
for a �xed number and/or position of UEs in the network. This has two implications:

• Whenever the position or the number of UEs change, the solution of the user association has to
be recomputed.

• Transferring the knowledge (association policy) from a given user already in the network to a
new incoming user is not a trivial task. Indeed, each user learns its own DRQN, i.e., it has its own
association policy, which is speci�c to its location and requirements.

4.3 Design of Transferable Policy Network Architecture

Taking into account the targeted optimization objective (2.7), we derive in this section an adaptive
association policy capable of solving the user association problem regardless of the location and the
number of UEs in the network. The desired policy must be able to adapt to the departure or arrival of
UEs from and in the network, as both events have an impact on the optimal user association. To do so,
we propose to construct a transferable user association PNA, invariable with the number of UEs, which
can be e�ciently trained and then transferred to any UE that arrives in the cell. This policy leverages
UEs’ local information and if available global information to optimize the association decisions using a
MARL framework.

4.3.1 System model

Let us recall the system model de�ned in Section 2.3 of Chapter 2 (see Figure 2.2). Now we assume that
the number K(t) of UEs varies over time e.g. due to arrival or departure of UEs or change of network
deployment. We call a network deployment D(t), a collection of positions of all UEs in the network:

D(t) = {(
x j (t),yj (t)

)
, j ∈ U(t)} , (4.3)

where x j (t) and yj (t) denote respectively the two coordinates of UE j in deployment D(t), expressed
w.r.t. a reference system common to all UEs and BSs. Accordingly, the set of UEsU(t) = {1, 2, . . . ,K(t)}
varies with time as well as the action spaceAj (t) of each UE j . Our goal is still to solve the optimization
problem (2.9)-(2.12). However, we focus on association policies, which are also transferable and capable
of solving problem (2.9)-(2.12) at each time t regardless of the location and the number of UEs in the
network, i.e., regardless of the deployment D(t). This policy must adapt to the departure or arrival
of UEs without requiring any additional learning procedure, as both events impact the optimal user
association. Thus, a policy learned, e.g., in a scenario of K1 UEs has to be e�ectively applicable to a
scenario of K2 , K1 UEs without additional training. To achieve this, the architecture of the association
policy needs to be transferable, so does the learned policy.

4.3.2 Policy network architecture: general framework

In this section, we provide a general description of the PNA illustrated in Figure 4.3, whose component
design details will be speci�ed in Section 4.3.3. For now, let us denote by oLj (t) and oGj (t) the local
and global observation of UE j respectively. oLj (t) comprises the set of measurement signals directly
accessible to (or measurable by) the user’s device. Instead, depending on the optimization objective
and constraints, oGj (t) embeds higher-level information (macro observations), which can be collected
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and forwarded to UEs by the central controller. Then, in our proposed framework, each UE starts
by building its local state encoding uj (t) = f (oLj (t)) and global state encoding vj (t) = д(oGj (t)) using
di�erentiable and learnable functions f (·) and д(·)2 (i.e., functions with learnable parameters like NNs).
Next, the local and global state encoding are combined together to form the agent context encoding
cj (t) using a combiner function h(·), e.g., a concatenation operator, or a neural network. The role of this
combiner function is to build UE context understanding vector, as a representation of its local and global
observations. Now, given the context vector cj (t), the goal of the learning agent j at each time instant t ,
is to de�ne an association probability vector pj (t) = [p0, j , . . . ,pNs , j ] ∈ [0, 1]Ns+1 with

∑
i ∈A pi, j = 1 and

pi, j = 0 ∀ i < Aj . Then, UE’s action aj (t), which corresponds to a connection request towards the BS
indexed by aj (t) in Aj , is sampled from the distribution characterized by the pi, j . Thus, the learning
problem here consists in deriving an association policy that optimizes the corresponding association
probability vector pj (t), so that sampling from it maximizes the network utility function (3.5).

Figure 4.3 describes the proposed PNA. Note that in this architecture, UEs’ agents share the same
model, i.e., f (·), д(·), and h(·) are common to all UEs. This setting does not preclude UEs from taking
di�erent actions as they do not observe the same inputs. In contrast, sharing the parameters among
UEs enables a better skill transfer since there is only a unique policy (in contrast to having one policy

2One can view this process as a �ltering stage, which consists in building a state representation of the input observations.
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per UE as in the previous chapter), which can be e�ciently and simultaneously trained with all UEs’
experiences.

4.3.3 On transferable policy architecture: PNA components design

For the policy architecture to be transferable, a proper design of the PNA components is required. Our
objective is to construct a policy architecture whose size does not vary with the number of UEs in the
network, which is bound to change over time. In the following, we will describe the main components of
the proposed PNA, including the contents of local and global observations, as well as the characteristics
of encoding functions f (·), д(·) and h(·), which allow the transferability of the policy architecture.

4.3.3.1 UE local observation encoding

In this study, we assume that at each time step, each UE j can estimate the Received Signal Strength (RSS)
and the corresponding Angle of Arrival (AoA) w.r.t. its surrounding BSs, which enables UEs to have a
broad perspective of their environment. We denote with RSSi, j and ϑi, j the estimated RSS and AoA of
UE j w.r.t. BS i , respectively. Moreover, as in the previous chapter, a UE receives an acknowledgment
(ACK/NACK) signal whenever its connection request succeeds (ACKj = 1) or fails (ACKj = 0), which
may happen due to the limited resources available at each BS (2.11) inducing requests collision. Hence,
we de�ne the local state of a UE, oLj (t), as follows3:

oLj (t) =
{
aj (t − 1),Raj (t−1), j ,R(t − 1),ACKj ,

{
RSSi, j

}
i ∈Aj
,
{
ϑi, j

}
i ∈Aj

}
. (4.4)

Here, Raj (t−1), j represents the achievable communication rate when UE j is associated with the BS
indexed by aj (t − 1).

Note that the size of oLj (t) does not depend on the number of UEs, in sharp contrast with [40]. Then,
we obtain the n-dimensional local encoding vector uj (t) = f (oLj (t)), where f : Rl → Rn is a neural
network, and l is the size of the vector obtained after the concatenation of the elements in oLj (t).

Remark 3 (Collision events handling). Collisions may occur when a BS receives more connection
requests than it can support. In the previous Chapter, we severely discouraged collisions by zero-
rewarding UEs when collision events occurred; however, here, as the positions of UEs change over
time, the collision management is considerably more complex. Agents must learn that the collision
events depend not only on their actions but also on their relative positions. To handle such complexity,
we consider a softer solution: when a collision occurs, the BSs send a NACK signal to notify UEs
of the collision event, then each BS selects among the colliding UEs the best ones to associate with,
according to their association probability. In this way, we do not severely set the reward to zero to
punish UEs, and we directly relate the collision events to the training performance.

4.3.3.2 UE global observation encoding

After an action, aj (t), the controller can encode for UE j some meaningful information about the global
state (i.e. macro observations) oGj (t) such as the estimated position of UEs of interfering links, i.e., of
active mmWave links, the load of each BS, etc. However, note that incorporating more information
does not necessarily imply performance improvement as it also increases the agent’s state space, thus
requiring more exploration to discover the intrinsic state/action relation at the risk of misleading the
agent. In our scenario, we consider the information about the actual rate perceived by each UE j and the

3oLj (t) is local in the sense that part of the information in oLj (t) is either local or available to UE in previous time steps (e.g.,
the total network sum-rate).
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position of the potential interferers of UE j , i.e., the set of UEs Nj , susceptible to impact the association
decision of UE j through the interference resulting from their communications4. Thus, we de�ne oGj (t)
as:

oGj (t) =
{
ςl =

[
xl ,yl ,Ral (t−1),l

]
, l ∈ Nj

}
. (4.5)

Then, in the sequel, we propose two solutions to construct UE j global state encoding vector
vj (t) = д(oGj (t)).
Fixed-size encoding. A naive solution to construct vj (t) is to �rst concatenate all elements in oGj (t)
resulting in a vector of sizem = 3×card(Nj ). Then, we obtain the local encoding vector vj (t) = д(oGj (t)),
where д : Rm → Rn is also a NN. However, such an approach i) has limited scalability as the size of
oGj (t) varies with the number of UEs, especially in the neighborhood, and ii) requires ordering elements
before concatenation, preventing transferability.

Attention mechanism for order-agnostic and variable-size encoding. An e�cient solution to
the problem should be agnostic of the ordering in oGj (t). Moreover, to build a scalable and transferable
architecture, the size of vj should be independent of the length of oGj (t), i.e., the number of UEs in UE j
neighborhood. To satisfy these properties, we adopt ideas from the dot-product attention mechanisms
developed in [84]. Considering this approach, let kj = дk

(
ς j

)
, qj = дq

(
ς j

)
, and ν j = дν

(
ς j

)
, where

дk , дq , дν : R3 → Rn are also encoding functions (e.g., neural networks), and kj , qj , ν j denote the key,
the query and the value associated with UE j , respectively. For a given UE j , we compute for each UE in
its neighborhood Nj a weight (or score) αk, j

αk, j = so�max ©­«
[
qkkTj√

n

]
k ∈Nj

ª®¬
. (4.6)

Here, so�max(·) is the softmax function also known as the normalized exponential function. Let
α j =

[
αk, j ,k ∈ Nj

]
. The vector α j represents the interaction of UE j with its neighbors. Then, we

compute the encoding vj by aggregating all values’ information from the neighborhood as follows:

vj =
∑
k ∈Nj

αk, jνk . (4.7)

Remark 4. By construction, the size of vj in Eqn. (4.7) is invariable with the size of Nj . That is to
say, whenever the number of UEs varies, there is no need to change the PNA.

Remark 5. The above process can also be viewed as a message-passing between UEs. In this case,
UEs only need to exchange their queries and values with each other in the neighborhood.

Local and global information combining. Now, once we obtain the UE local and global encoding
vector, they are merged to build its context understanding vector cj , i.e., its perception of the radio
environment. This is done thanks to the combiner function h(·) introduced in Section 4.3.2. Here, we
propose two design solutions for the combiner function: the simple combiner and the attention-based
combiner.

4Note that in this work, for the sake of simplicity, we consider Nj as the k-nearest neighbors of UE j however, solutions
based on local interaction graphs can be considered, where potential interferers can be identi�ed on the basis of an interference
threshold following approaches in [37].
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Simple combiner. A simple combiner �rst concatenates uj and vj to form a 2n-dimensional embedding
vector zj (t) = uj (t) ⊕ vj (t), where ⊕ denotes the concatenation operation. The agent’s context encoding
cj (t) is �nally obtained from zj (t) as:

cj (t) = h
(
zj (t)

)
, (4.8)

where h : R2n → Rn is also taken here, as a NN.

Self-attention combiner. For the UE to be able to selectively weight the importance of local or global
information, the combiner is constructed using a self-attention mechanism [84]:

cj (t) = βTj
[
uj (t)
vj (t)

]
. (4.9)

Here, the combiner function h : Rn × Rn → R2 and β j = so�max
(
h(uj (t), vj (t))

) ∈ R2. The intuition
here is that there may be some scenarios where either local or global information is su�cient for the
UE to understand its context. Worse still, the UE can be misled in trying to always consider all the
information it receives.

4.4 Proximal Policy Optimization

Our solution relies on MARL. In a MARL system, agents learn by interacting with a shared environment
by making decisions following a Markov Decision Process (MDP). In MDP, the action aj (t) of an agent j
in a given state sj (t) leads it to the next state sj (t + 1) and results in a reward r j (t). From the underlying
experience ej (t) = {sj (t),aj (t), r j (t), sj (t + 1)}, the agent learns its policy πj,θ (·|·), parameterized by θ ,
the set of PNA parameters, where πj,θ (aj |sj ) is the probability that agent j takes action aj in state sj 5,
to maximize an accumulated long-term γ -discounted rewardG j (t) =

∑Te
τ=t+1 γ

τ−t−1r j (τ ) over an episode
- a new network deployment - of duration Te :

π ∗j,θ = arg max
πj
Et

[
G j (t)

]
. (4.10)

In our study, we consider the particular case of cooperative MARL [85], i.e., UEs share the same
reward, hence, they are assigned to the same objective of maximizing the network utility function:
r j (t) = R(t), ∀j. Moreover, UEs also share the same policy, i.e., πj,θ = πθ , ∀j.

In general MARL, an agent has only access to a partial observation oj (t) =
{
oLj (t), oGj (t)

}
of the actual

state sj (t), which is unknown, resulting in Partially Observable Markov Decision Process (POMDP)
[63]. Moreover, MARL is subject to non-stationarities due to simultaneous interactions of agents with
the environment, which make the learning process more complex. In the literature, policy gradient
algorithms are used to solve this problem [17], by iteratively updating the policy parameters θ as
follows:

θ t+1 = θ t + µρ̂t (4.11)

ρ̂t = Eπ

[
∇ πθ t (aj |oj )
πθ t−τ (aj |oj )

Â(aj , oj )
]
, (4.12)

= Eπ
[∇ζ (θ t )Â(aj , oj )] .

Here, the expectation Eπ [·] is taken under the stochastic policy π . µ denotes the learning rate, ρ̂t is
the gradient estimator, ζ (θ t ) = πθ t (aj |oj )

πθ t−τ (aj |oj ) is the ratio between the estimate probability at time t and
time t − τ , and Â(·, ·) denotes the advantage estimator, which measures the advantage of selecting
a given action in a given state. Â(aj , oj ) can be estimated using one step Temporal Di�erence (TD)

5Note that, πj,θ (aj |sj ) = paj (t ), j , where pk,l is the probability de�ned in Section 4.3.2.
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error [17] or Generalized Advantage Estimation (GAE) [86]. Hence, at each iteration, the update of
θ is proportional to the advantage estimator to favor actions that yield the highest advantages and
inversely proportional to the action probability to encourage exploration by enabling actions of lowest
probability to be sampled. However, policy gradient updates su�er from high variability as ρ̂t can take
large values from one iteration to another, leading to large updates. To tackle this problem, the PPO
approach introduces a constraint in policy updates preventing large discrepancies between iterations
[87]. This is done by minimizing the ϵ-clipped surrogate objective function6

L(θ ) = Eπ
[
min

(
ζ (θ )Â, clip (ζ (θ ), 1 − ϵ, 1 + ϵ) Â

)]
, (4.13)

where clip(x ,a,b) = min (max (x ,a) ,b). It is noteworthy that the quantity in the expectation is a lower,
hence, pessimist bound of ζ (θ )Â so that agent pessimistically ignores updates that will lead to a high
change in its policy.

4.4.1 Proposed hysteretic proximal policy optimization

In multi-agent environments, an agent should not be pessimistic in the same way for both “positive”
(ζ (θ ) > 1) and “negative” (ζ (θ ) < 1) experience. Indeed, due to the interaction of multiple agents with
the environment and the common reward of the cooperative framework, an agent may receive a lower
reward because of the bad behavior of its teammates. This may cause the user to change its policy at
the risk to misleading it. To overcome this issue, following the concept of hysteretic Q-learning in [64],
we introduce hysteretic proximal policy optimization, where we modify the surrogate loss as follows:

L(θ ) = Eπ
[
min

(
ζ (θ )Â, clip (ζ (θ ), 1 − ϵ1, 1 + ϵ2) Â

)]
, (4.14)

where Â is estimated using one step TD error; we use ϵ1 for negative updates and ϵ2 for positive updates,
where ϵ1 < ϵ2. In this way, an agent gives more importance to updates that improve its policy rather
than to ones that worsen it. This setting is particularly important when agents do not have equal
contribution to the team’s reward and for decentralized learning.

Note that the association policy can be e�ciently trained in a centralized way with the experience of
all agents or in a decentralized way, e.g., by leveraging the decentralized and distributed PPO approaches
presented in [88].

4.4.2 Training with variable number of UEs: proposed UE dropout mechanism

To further enhance the robustness of the learning to the variability of the number of UEs over time,
we introduce a UE dropout mechanism7. Let K0 be the initial number of UEs in the network. Between
episodes of the learning phase, some UEs are randomly selected and masked out (dropped out) to
simulate a dynamic environment w.r.t. the number of UEs. To mask a UE j at a given time without
impacting the learning, we make its agent’s observations oj correspond to those of a UE located very far
from the BSs (e.g. “in�nitely far”), so that it can be no more associated with any of the SBSs. As a result,
its impact on the other UEs (in terms of interference, thus, in terms of association decisions) becomes
negligible. In this way, the masked UE seemingly appears as non-existent in the cell for the other UEs.

To this end, during the learning phase, we randomly select the UEs to be masked, by assigning to
each UE j an independent Bernoulli variable Bj ∈ {0, 1}. Event Bj = 0 in a given episode represents the
masking of UE j and happens with probability 1 − pj . As a result, the average numbermK of UEs per

6We write Â instead of Â(aj , oj ) for notation clarity.
7This idea is similar to the dropout mechanism in neural networks.
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Figure 4.4: Probability density function of
∑K0

j=1 Bj for di�erent values of p0.

episode that are not masked and the associated variance σ 2
K are

mK = E

[
K0∑
j=1

Bj

]
=

K0∑
j=1

pj . (4.15)

σ 2
K = E


(
K0∑
j=1

Bj −mK

)2
=

K0∑
j=1

pj (1 − pj ). (4.16)

As we assume no di�erence between UEs, i.e. they have the same priority, without lost of generality,
we set pj = p0,∀j. Accordingly,

∑K0
j=1 Bj follows a Binomial distribution with mean mK = K0p0 and

variance σ 2
K = K0p0(1 − p0) (see Figure 4.4). σ 2

K measures the variability of the number of UEs in the
cell between episodes. Although high variability may suggest better generalization, it leads to a large
disparity in the number of UEs between episodes, which may prevent the convergence of the learned
policy. Therefore, a careful choice of the value of the hiding probability p0 must be made to achieve the
expected improvement in learning robustness via the dropout mechanism.

Important note 2 (Practical implementation of the proposed solution). In contrast to [40], we
come out with a solution with only one global policy shared by all UEs. Consequently, it can be
�exibly adapted to the speci�c design constraints of di�erent practical implementations:

• Centralized user association: in a centralized deployment, the PNA can be located at the central
controller responsible for assigning a BS to each UE, based on their feedback. This solution
reduces the computational complexity at the UEs’ side. However, it may result in a large
signaling overhead as it requires collecting information from all UEs to take the association
decisions.

• Distributed user association: in a fully distributed setting, each UE has a full copy of the
weights of the PNA, and can take locally its association decisions. Although this solution
alleviates the computation burdens due to its distributed nature, it is also subject to an increased
downlink signaling overhead, especially when the global information oGj (t) has to be sent to
each UEs.
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• Hybrid user association: to �nd a hybrid compromise, part of the PNA (like the encoding
function д(·)) can remain at the central controller and the rest is deployed at the UE’s level. In
this case, the central controller makes sure to provide each user with the computed vector vj (t)
to derive its association policy, taking into account local observations oLj (t) (see Figure 4.3). As
a result, the signaling overhead is limited, as well as the computation complexity both on the
UEs’ and the controller’s sides.

In the Appendix B, we provide some details on a practical implementation of the propose mechanism
in a distributed setting.

Table 4.1: Transferable policies training parameters

Discount factor, γ 0.6
Time horizon, Te 250
UE dropout probability, p0 0.95
Actor and critic learning rate, µ 10−4

Initial number of user K0 15
Hysteretic parameter ϵ ϵ1 = 0.01, ϵ2 = 0.5
Number of MLP neurons, n 128
Number of Monte-Carlo simulations, N 500

4.5 Simulation Results

In this section, we evaluate the e�ectiveness of our approach in di�erent simulation settings. We assess
both the impact of the training parameters and the dynamics of the radio environment on the system
performance. We also evaluate the zero-shot generalization capacity of the proposed framework and,
consequently, its transferability.

Radio Environment. In our simulations, we consider K0 = 15 UEs randomly located in a bi-
dimensional region, under the coverage of Ns = 3 SBSs working at mmWave frequencies with a
carrier frequency of 28 GHz, and one MBS communicating at 2 GHz. We assume that when UEs and
SBSs communicate together, they use the same antenna radiation pattern obtained through the analog
beamforming (see diag 2 in Figure 3.4). In contrast, the MBS transmits via a 17 dBi omnidirectional
antenna. In addition, we assume that the error in the estimation of the AoA follows a normal distribution
with a mean equal to 2°. Also, in our simulations, we consider three types of service corresponding to
an average data rate demand D j ∈ {5, 200, 1500} Mbps . We assume that the tra�c request of a UE j
is a random variable, which follows a Poisson distribution with intensity D j = E

[
D j (t)

]
. Simulation

parameters are summarized in Table 4.1. Additional simulation parameters can be founded in Table 3.1.

UE action space. Since all UEs share the same policy network, A coincides with the action space. In
this way, we guarantee a �xed action space for all UEs irrespective of their positions. However, a UE j
can only be associated with BSs in Aj ⊆ A. Accordingly, unauthorized actions or connection requests
aj (t) < Aj are redirected towards the MBS, i.e., they appear as connection requests to the MBS.

Learning parameters speci�cation. We �xed the size of the encoding functionsn = 128. All encoding
functions are composed of only one hidden multi-layer perceptron (MLP) of n neurons. The network
parameters are optimized using actor-critic PPO [87], where both actor and critic comprise also one
hidden layers with 2n neurons. All layers use a recti�er linear unit (ReLU) activation. We set the
learning rate µ to 10−4 and the discounting factor γ = 0.6. Unless speci�ed, we empirically �x the
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clipping factors to ϵ1 = 0.01, ϵ2 = 0.5, the time horizon to Te = 250 and the dropout probability to
p0 = 0.95. Also, we limit the neighborhood of a UE to its k-nearest neighbors, where k ≤ 15.

Benchmarks. As a comparison, we consider the same benchmarks as in the previous chapter, i.e., the
Max-SNR algorithm, which associates UEs based on links with the maximum SNR, and the centralized
heuristic algorithm, which consists in associating UEs, starting from the links with the maximum SNR,
and in an iterative way as long as it increases the network utility. Originally proposed in [39], the
centralized heuristic algorithm is shown to exhibit good performance, speci�cally in an interference-
limited network. Therefore, we use it as a baseline solution in place of the optimal solution, infeasible,
due to the network size and complexity.

To assess the convergence performance of the proposed algorithm, we de�ne

rd (t) = R
Trans. RL(t) − RHeur.(t), (4.17)

which corresponds to the di�erence of the average reward over an episode reached by the proposed
algorithm (denoted Trans. RL) compared to the centralized heuristic approach (denoted Heur.). For sake
of clarity, we plot the associated rolling average and standard deviation on a 100-sized window, with a
logarithmic scale on the x-axis. Also, unless otherwise speci�ed, we represent on the histograms, the
average performance over N = 500 random deployments of UEs.

4.5.1 Convergence properties

In this section, we evaluate the algorithm’s convergence w.r.t. the above learning parameters.
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Figure 4.5: E�ect of the hysteretic clipping factors on the system’s convergence. Here we maximize
network sum-rate, i.e., α = 0 and D j (t) = ∞, ∀j.

4.5.1.1 E�ect of hysteretic clipping factors on convergence

Let us start by evaluating the impact of the clipping factors ϵ1 and ϵ2 on the convergence. Figure 4.5
shows the evolution of rd (t) in two settings: ϵ1 = ϵ2 = 0.2, corresponding to the setting of the vanilla
PPO proposed in [87], and our empirically optimized hysteretic setting ϵ1 = 0.01, ϵ2 = 0.5. We show
that by simply introducing a hysteretic e�ect in the clipping factors, we notably improve the stability
and the learning performance, reaching the same performance as the heuristic algorithm (as rd (t)
converges on average to zero).
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Figure 4.6: Impact of global observations on the system’s convergence. Here, we optimize network
sum-log-rate, i.e., α = 1 and D j (t) = ∞, ∀j.

4.5.1.2 Impact of the global information oGj (t) on convergence

Here, we assess the add-on impact of the global information oGj (t) for the learning convergence. Figure
4.6 shows the evolution of rd (t) when UEs have or do not have access to global information. We remark
that oGj (t) can e�ectively help accelerate the convergence of the algorithm. However, after 5 × 103

episodes, the two curves eventually end up with the same performance. This last result comes from the
fact that the information (i.e., ςk , k ∈ Nj ) carried on oGj (t) is also embedded in oLj (t) through the RSSI
and R(t), although this information is “drowned”. By separating each piece of information in oGj (t), we
further improve UEs’ context understanding, thus the learning speed.
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Figure 4.7: Fixed-size encoding Vs. attention-based encoding. We use a simple combiner.

4.5.1.3 Performance of the attention-based mechanisms

Attention-based encoding. In Figure 4.7, we evaluate the performance of the attention-based encoding
in being able to capture information of the �xed-sized encoding in addition to favoring transferability.
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We can see that with the attention-based encoding, we obtain the same learning curve as the �xed-size
encoding, with a slight improvement in learning stability. Therefore, by empowering our proposed
architecture with an attention mechanism, we gain transferability without loss in performance.
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Figure 4.8: Simple combiner Vs. attention-based combiner. We use an attention-based encoding. The
learning curves concern the sum-rate maximization problem, i.e., we set α = 0 in Eqn. (2.7).

Attention-based combiner. The attention-based combiner has a di�erent role in our framework. It
enables each UE to weigh the importance of local or global information. The simple combiner can
be viewed as a particular case of the attention combiner, where we set βTj = [0.5, 0.5] in Eqn. (4.9).
Figure 4.8 shows the learning curves for sum-rate maximization in two scenarios corresponding to
full-bu�er tra�c, i.e., D j (t) = ∞ (see Figure 4.8a) and dynamic network tra�c, i.e., D j (t) , ∞ and the
tra�c dynamic follows a Poisson Distribution (see Figure 4.8b). Whereas the attention-based combiner
and the simple combiner exhibit almost the same performance when there is no tra�c (see Figure 4.8a),
we can observe in Figure 4.8b, an improvement of the attention-based combiner over the simple one in
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the case of dynamic tra�c, which is more realistic. This is because, in our particular setting, UE’s local
observation is more informative than the global one as it embeds the UE’s tra�c request D j (t).
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Figure 4.9: E�ect of dropout mechanism for di�erent p0. The policy was trained with the following
con�guration K0 = 15, Ni = 3, γ = 0.9. Then we evaluate the performance for di�erent number of UEs.

4.5.1.4 E�ect of UE dropout mechanism

Here, we evaluate the impact on the system performance of UE random dropout. Figure 4.9 shows the
average network performance for di�erent values of dropout rate p0. For each dropout rate, we train
the network for K0 UEs and then evaluate the performance on a set of K ∈ {10, 20, 25, 30} UEs. We can
observe that by playing with the dropout probability p0, one can improve the network performance.
For instance, by taking p0 = 0.95 instead of p0 = 1 (i.e., no dropout), we observe 4% performance
improvement when K = 30. However, as we decrease p0 to 0.8, the performance decreases as well to
3% compared to p0 = 1. This is mainly because decreasing p0 also increases the variance as shown in
Figure 4.4, leading to a large discrepancy between episodes. In conclusion, a p0 close but not equal to 1
is bene�cial in this scenario. Therefore, for the rest of the paper, we �x p0 = 0.95.
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Figure 4.10: Impact of discounting factor γ .

4.5.1.5 Impact of the discounting factor γ

The discounting factor also impacts the learning convergence. Loweringγ accelerates the convergence to
the detriment of performance. Increasing γ may improve the performance at the risk of miscoordination.
As Figure 4.10 shows, when γ = 0.6, the convergence is much faster than for γ = 0.9, which eventually
ends up yielding better performance.
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Figure 4.11: Comparison between the proposed transferable user association and the previously proposed
solution based on hysteretic deep recurrent Q network (HDRQN).

4.5.2 Performance comparison

4.5.2.1 Comparison of the proposed solution w.r.t. previous works

Here, we aim to prove the advantage of the proposed transferable user association compared to solutions
of the literature, including our previous Hysteretic Deep Recurrent Q-Network (HDRQN) algorithm
for user association in Chapter 3. Recall that the HDRQN solution is conceived and optimized for
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networks in which the UEs’ position does not vary. Therefore, applying a policy trained for a given
set of �xed UEs to a di�erent network geometry does not work satisfactorily, in general. To illustrate
this aspect, we train the HDRQN algorithm in a given deployment of 15 UEs and then evaluate its
performance in 500 randomly chosen deployments. The average performance is showed in Figure
4.11 and compared with the new proposed transferable solution and the two baselines solutions. We
can observe that the sum-rate performance of the HDRQN falls below the Max-SNR. This exempli�es
that the HDRQN algorithm is deployment-speci�c and its generalization to scenarios with mobility is
not straightforward. Indeed, in the HDRQN setting, a new training step is required whenever a new
deployment is speci�ed. In contrast, our new proposed solution is adapted to any deployment, even
when the number of UEs varies and with zero-shot generalization capability. Moreover, we will show in
the following that the performance of our proposed scheme outperforms even more tangibly the other
state-of-the-art solutions, speci�cally when considering dynamic network tra�c and UEs’ mobility.
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(a) Ni = 15 (i.e., less collision events).
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Figure 4.12: Generalization capability of the PNA w.r.t. K . Training con�guration: (K0 = 15 UEs,
Ni = 3, ∀i). Testing con�guration: Ni is kept �xed, K varies.
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4.5.3 Policy transferability property

To assess how transferable the proposed algorithm is, we consider training the PNA for a reference
number of users, K0 = 15 and for a �xed number of beams per BS, Ni = 3, ∀i . Then we evaluate
the performance of the algorithm for di�erent network deployments with a variable number of UEs
K ∈ {10, 20, 25, 30}, including changes in the UEs’ position.
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Figure 4.13: Generalization capacity of the PNA w.r.t. Ni . Training con�guration: (K0 = 15 UEs,
Ni = 3, ∀i). Testing con�guration: K is kept �xed and equal to K0, Ni varies.

4.5.3.1 Zero shot generalization capacity

To evaluate the generalization capability of the proposed algorithm, we train the PNA to optimize
the network sum-log-rate, i.e., α = 1. We remark that the proposed architecture can e�ectively and
e�ciently adapt to change in the number of UEs and the number of beams available per BS, without
requiring additional training steps. In particular, in Figure 4.12, when the number of UEs doubles
w.r.t. the reference training point i.e.from K0 = 15, to K = 30, the proposed transferable PNA exhibits
14.5% and 15.5% increase in network sum-rate compared to max-SNR and the heuristic approach
respectively. Moreover, an additional feature of the proposed architecture, is that even when the number
of beams available per BS later changes, which impacts the collision events, the algorithm still adapts
to maintain the system’s performance. Indeed, in Figure 4.13 where we evaluate the performance of
the algorithms for di�erent Ni ∈ {2, 3, 4, 5, 10, 15}, we can observe that as Ni increases, implying less
and less collisions since K is �xed, the algorithm keeps outperforming the two benchmarks. When Ni
becomes greater than 5, i.e.,

∑3
i=1 Ni > K = 15, there is no improvement in the sum-rate as there are

enough beams to serve all UEs.

4.5.3.2 Performance w.r.t. network tra�c

Now we evaluate the system performance w.r.t. network tra�c. Here again, the PNA is trained for
K0 = 15 to optimize the network sum-rate (α = 0). Figure 4.14a shows the case of full-bu�er tra�c (i.e.,
D j (t) = ∞) and Figure 4.14b the case of dynamic tra�c. We remark that in case of full-bu�er tra�c,
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Figure 4.14: Performance of the proposed solution w.r.t. network tra�c.

the proposed method performs better than the two benchmarks but performs slightly worse8 than the
heuristic algorithm when generalized to K = 10 and K = 30. However, when we consider the network
tra�c, the proposed transferable solution clearly outperforms the two benchmarks, yielding 102.1%,
66.66% network sum-rate increase for K = 30, w.r.t. the max-SNR and heuristic algorithms, respectively.

4.5.3.3 QoS satisfaction

In this section, we evaluate the QoS satisfaction of users (denoted κi, j in Eqn. 2.7) for a network of
K = 15 UEs under two con�gurations: Ni = 15, ∀i and Ni = 3, ∀i beams. Figure 4.15 shows the
Complementary Cumulative Distribution Function (CCDF) of the QoS satisfaction of UEs. We can
remark that when Ni = 15, all algorithms exhibit almost the same performance. When Ni = 3, i.e., the

8Note that when the network dynamic deviates too much from the reference training point, it is possible to retrain the
policy, e.g., by utilizing a curriculum learning approach [89], where the already trained policy can be used as a starting point.
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Figure 4.15: UEs’ QoS satisfaction when (a) Ni = 15 , and (b) Ni = 3. Here, we consider α = 0.

association becomes complex as there are fewer beams than UEs, the performance of the two baselines
algorithm falls down in comparison to our proposed solution. For example, 75% of the UEs get fully
satis�ed with our solution, whereas only 65% is satis�ed with the Max-SNR algorithm and 70% with
the heuristic approach. However, it is worth noting that UE’s satisfaction does not necessarily re�ect
the global network performance we are interested in. Indeed, two UEs can experience the same QoS
satisfaction, whereas they do not have the same contribution to global network performance. For
example, for two UEs with a data request of 100 Mbps and 1 Gbps respectively, if there is only one
beam, our algorithm will give more importance to the most demanding UE as it contributes most to the
global network objective.
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4.6 Conclusion and Perspectives

In this chapter, we investigated the problem of transferability of user association policies for 5G and
beyond networks. To this end, we proposed a policy network architecture and a learning mechanism that
enable users to learn a robust and transferable user association policy. The latter is adapted to withstand
the environment dynamics, including fast fading, evolving tra�c requirements, and time-varying
number and position of UEs. Our proposed solution is based on deep multi-agent reinforcement learning,
where agents leverage local and possibly global observations to optimize a network utility function.
With our proposed novel architecture, the learned policy has zero-shot generalization capabilities, and
can directly be transferred to new incoming UEs, which can start making decisions without requiring
additional training steps. Moreover, our solution is �exible as it can be implemented in a centralized,
distributed, or hybrid way. Numerical results showed that the proposed solution can achieve large
network sum-rate gains especially when we consider network tra�c and mobility, indeed, doubling the
network sum-rate compared to baseline approaches available in the literature. Eventually, our proposed
framework does not only apply to the user association problem but can be exploited to solve other
complex radio resource management problems involving decision making.

In the next chapter, we will investigate how the proposed solution can be exploited for uplink
communications for dynamic computation o�oading enabled by edge computing, which involves
optimization of both radio and computing resources.

The technical contributions of this chapter have been validated by the following paper and patent.

[C3] M. Sana, N. di Pietro, and E. Calvanese Strinati, “Transferable and Distributed User Asso-
ciation Policies for 5G and Beyond Networks,” IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), Virtual, Sept. 2021.

[P2] M. Sana, N. di Pietro, E. Calvanese Strinati, and B. Miscopein, “Method for associating
user equipment in a cellular network according to a transferable association policy,” Filed in
September 30, 2020, FR2009989.



Chapter 5

Application to Dynamic Computation
O�loading

“On ne naît pas tout fait.”

“We are not born ready-made.”

− Zoseph Ki-Zerbo (1922 − 2006)
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5.1 Introduction

In this chapter, we study the problem of dynamic computation o�oading for energy-e�cient edge
computing. In this problem, the User Equipments (UEs) continuously generate data (possibly with

unknown statistics), which require bu�ering before transmission and processing at a distant Edge
Server (ES) through a set of Access Points (APs). In general, this process introduces a queuing delay
both from a communication and computation point of view. Accordingly, meeting the quality of service
of UEs requires usually imposing average or probabilistic latency constraints on the queuing delay. The
resulting problem is challenging, as it requires e�ective management of limited radio and computation
resources in complex and time-varying environments, including channels’ dynamic and UEs’ mobility.
In this work, we focus on the energy-delay trade-o�. To this end, UEs, APs, and ES exploit low-power
sleep operations: they can activate sleep states in which they cannot communicate and/or calculate for
a limited period, thus consuming less energy. In this context, our goal is to minimize the long-term
system energy consumption under strict end-to-end delay constraints at each UE. By using Lyapunov
stochastic optimization tools, we show that this long-term optimization can be reduced to a per slot
problem, where solving the latter in a per slot fashion guarantees the expected long-term goal. Moreover,
we show that the new problem can be decoupled into a CPU scheduling and a user association problem.
We e�ciently and optimally solve the former using a fast iterative algorithm and hinge on our proposed
scheme in Chapter 4 to solve the latter.

5.1.1 Motivations

Wireless communication networks are experiencing an unprecedented revolution, evolving from pure
communication systems towards a tight integration of communication, computation, caching, and
control [3]. Such a heterogeneous ecosystem requires a �exible network design and orchestration, able
to accommodate, on the same network infrastructure, all the di�erent services with their requirements
in terms of energy, latency, and reliability. This requires an enhancement of the radio access network,
e.g., through the adoption of millimeter-wave (mmWave) communications, densi�cation of APs, and
�exible management of the physical layer [90]. In addition, the deployment of computing and storage
capabilities at the network edge will enable network function virtualization and fast processing of the
myriad of data collected by sensors, cars, mobile devices, etc. For this, Multi-Access Edge Computing
(MEC) was conceived to enable energy-e�cient, low-latency, highly reliable services by bringing cloud
resources close to the users. In this context, dynamic computation o�oading allows resource-poor
devices to transfer application execution to ESs to reduce energy consumption and/or latency. From
a network management perspective, this task is complex and requires the joint optimization of radio
and computation resources. To address this problem, we introduce L2OFF: Learning to O�oad, a
framework built on top of the transferable user association policy architecture proposed in Chapter 4
that successfully addresses the problem of computation o�oading.

5.1.2 Related work

The problem of dynamic computation o�oading has received wide attention from academia and industry
[91]. In [92], a scheduling strategy is proposed to counterbalance task completion ratio and throughput,
hinging on Lyapunov optimization. [93] aims at minimizing the long-term average delay under a long-
term average power consumption constraint. In [94], the long-term average energy consumption of a
MEC network is minimized under a delay constraint, using a MEC sleep control. Also, [95] minimizes
the energy consumption under a mean service delay constraint, optimizing the number of active base
stations and the ESs’ computation resource allocation, leveraging sleep modes for APs and ESs. In [96],
Lyapunov optimization is used to reduce the energy consumption of a fog network, guaranteeing an
average response time. In [97], the authors exploit Lyapunov optimization, Lagrange multipliers, and
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sub-gradient techniques are exploited to optimize devices’ and APs’ energy consumption under latency
constraints, with AP sleep states.

Recently, the advances of Machine Learning (ML) and Deep Reinforcement Learning (DRL) in
wireless networks have opened up new possibilities for low-complexity and e�cient algorithms for
MEC [3], especially when model-based optimization is challenged by the di�culty or even impossibility
of deriving mathematical models that accurately predict the networks’ behavior. In this sense, the authors
of [98] propose to couple model-based Lyapunov optimization with model-free DRL and formulate
a sum-rate maximization problem under queue stability and long-term device energy constraints.
However, their reference scenario considers a single AP, and no CPU scheduling is optimized at the ES.
[99] also considers the same approach, intending to minimize the sum of the power consumption of the
edge nodes, and a cost charged by a central cloud to help the edge node in processing the tasks under
stability constraints. However, they do not consider the energy consumption of end UEs and APs.

5.1.3 Contributions

The contribution of this chapter is as follows:

• A long-term energy minimization problem: we consider a scenario in which multiple UEs perform
computation o�oading and compete for radio and computation resources in a network with
many APs deployed with one ES, all exploiting low-power sleep operation modes. In this work,
we target to minimize the long-term system’s cost measured in terms of money spent on energy
consumption. Accordingly, we treat the underlying problem as a long-term system energy
minimization under strict delay constraints. We do not assume any knowledge of radio channels
and data arrival statistics. Despite this, we come out with an online solution, which in each time
slot, optimizes the UE-AP association in a distributed way using Multi Agent Reinforcement
Learning (MARL), and the ES’s CPU scheduling via a fast iterative algorithm whose solution’s
complexity scales linearly in the number of UEs. The resulting framework provides near-optimal
performance.

• Lyapunov meets distributed reinforcement learning: we combine the convenience of a model-based
solution that exploits Lyapunov stochastic optimization, with the power of model-free solutions
based on MARL, aiming at energy-e�cient computation o�oading from an overall network
perspective.

• A uni�ed framework for joint radio and computing resource management: compared to the state-of-
the-art works, the originality of our strategy lies in the capability of simultaneously: i)minimizing
the duty cycles of all the network elements under delay constraints; ii) e�ectively managing
radio interference; iii) being low-complexity; iv) combining Lyapunov optimization with DRL;
v) being distributed and compatible with UE’s mobility. The latter point, in sharp contrast with
[98], results from the zero-shot generalization capability of our solution: it optimizes the learned
computation o�oading policy for all possible deployments of UEs using attention neural networks,
and adapts when the number of UEs di�ers from the initial training point.

The technical content of this chapter is based on the published conference paper [100].
The remainder of this chapter is organized as follows. Section 5.2 introduces the system model

and formulates the computation o�oading problem as a long-term optimization. Section 5.3 details
the proposed solution to e�ciently address the formulated problem. We provide numerical results in
Section 5.4 and draw conclusions in Section 5.5.
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Figure 5.1: Network model with one Es, 3 APs deployed with K UEs.

5.2 Energy-E�cient Edge Computing: System Model

We consider the scenario depicted in Figure 5.1, where K UEs o�oad computational tasks to an ES,
via one out of N possible APs. Let U and A be the sets of UEs and APs, respectively. Also, let Aj
be the set of APs UE j can be associated with, which depends on the UE’s coverage. In this dynamic
system, we divide time into slots of equal duration τ . Speci�cally, we assume that a fraction β ∈ (0, 1)
of each slot is devoted to controlling signaling and (1 − β) to data transmission from the UEs to the ES
through APs and to data computation at the ES, which can simultaneously occur because they operate
on separate data. At each time slot t , the dynamic of the radio channels and data arrivals at the UEs
varies with a priori unknown statistics. Consequently, the achievable data rate over the radio channels
and the computation rate at the ES vary with time. These variations also depend on UEs’ mobility and
the dynamic of the interference resulting from the communication of multiple UEs that we describe in
the sequel.

5.2.1 Radio access and data rate model

In this work, we consider uplink communications for computation o�oading. More speci�cally, we
assume Spatial Division Multiple Access (SDMA). The APs serve the UEs over the same time-frequency
resources but with di�erent beams. In this scenario, uplink communications are a�ected by both intra-
and inter-cell interference. Indeed, suppose that UE j is served by AP i at time t . Let pu,Tx

j (t) be the
uplink transmit power of UE j, GCh

j,i (t) the channel gain between UE j and AP i , GTx
j,i (t) the transmit

antenna gain towards the direction of AP i , GRx
j,i (t) the receive antenna gain, B the allocated bandwidth,
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and N0 the noise power spectral density. Then, the Signal-to-Noise-plus-Interference Ratio (SINR) is
given by

SINRj (t) =
pu,Tx
j (t)GTx

j,i (t)GCh
j,i (t)GRx

j,i (t)
Ij,i (t) + N0B

, (5.1)

where Ij,i (t) =
∑

j′∈U\{j } p
u,Tx
j′ (t)GTx

j′,i (t)GCh
j′,i (t)GRx

j′,i (t) is the overall interference. Then, the achievable
rate of UE j at time t is given by the Shannon formula as R j (t) = B log2(1 + SINRj (t)).

If the j-th UE’s o�oadable data unit is encoded into S j bits, the number of data units transmitted in
the uplink direction at time t is

Nu
j (t) =

⌊ (1 − β)τR j (t)
S j

⌋
. (5.2)

Here, b·c denotes the Floor operator.

5.2.2 Computation model

We assume that the ES has one core CPU, for which UEs compete for the CPU time in each time slot. In
particular, given a CPU core frequency fc (t) (measured in CPU cycles per second), each UE is allocated
a portion fj (t) of fc (t) such that

∑K
j=1 fj (t) ≤ fc (t). Then, denoting by Jj the number of processed data

units per CPU cycle, the number of data units processed over one slot is

N c
j (t) = b(1 − β)τ fj (t)Jj c . (5.3)

5.2.3 Delay and queuing model

In our setting, computation o�oading involves two steps: i) an uplink transmission phase of input
data from the UEs; ii) a computation phase at the ES. New data units are continuously generated
from an application at the UE’s side and consequently o�oaded and processed at the ES. In particular,
generated data are queued locally at the UEs, then uploaded to the ES through one AP with time-
varying data rate as in Eqn. (5.2). At the ES, received data are queued, waiting to be processed with
a time-varying computational rate as in Eqn. (5.3). Thus, we represent the overall system through a
simple queuing model involving both queues, synthetically depicted in Figure 5.1. Accordingly, each
data unit experiences two di�erent delays: i) a communication delay, including bu�ering at the UE;
ii) a computation delay, including bu�ering at the ES. As shown later, we take into account these two
delays jointly, as in [101]. UE j’s uplink communication queue evolves as

Q l
j (t + 1) = max

(
0,Q l

j (t) − Nu
j (t)

)
+ D j (t), (5.4)

where D j (t) is the number of newly arrived o�oadable data units generated by the application that
runs at the UE at time t . It is the realization of a random process whose statistics are unknown a priori.
The remote computation queue at the ES evolves as

Qs
j (t + 1) = max

(
0,Qs

j (t) − N c
j (t)

)
+min

(
Q l
j (t),Nu

j (t)
)
. (5.5)

End-to-end delay constraints. We know from Little’s law that given a stationary queueing system,
the average overall service delay is proportional to the average queue length [102]. Then, in our system,
the overall delay is directly related to the sum of the uplink communication queue and the computation
queue Q tot

j (t) = Q l
j (t) +Qs

j (t). In particular, if D̄ j = E
{
D j (t)/τ

}
is the average data unit arrival rate, the

long-term average end-to-end delay L
avg
j experienced by a data unit generated by UE j is given by the

ratio between the average of Q tot
j and the average arrival rate. Thus, our �rst aim is to guarantee a

long-term average delay L
avg
j , which gives the following constraint:

lim
T→∞

1
T

T∑
t=1
E

[
Q tot
j (t)

] ≤ Q
avg
j = L

avg
j D̄ j , ∀j . (5.6)
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Note that D̄ j is not known a priori, but can be estimated online e.g., using moving average window.

5.2.4 Energy consumption model

We exploit low-power operation modes at UEs, APs, and ES: they can activate sleep states in which
they cannot communicate and/or calculate for a limited period, thus consuming less energy. However,
due to control signaling, UEs, APs, and ES are active for at least βτ seconds in each slot, consuming
active power. Hence, we model the energy consumption of each entity as follows:

5.2.4.1 UE Energy Consumption.

Let x j,i (t) ∈ {0, 1} be an association variable such that x j,i (t) = 1 if and only if UE j o�oads its data
via AP i at time t , and x j,i (t) = 0 otherwise. Also, Let pu,o�

j and pu,on
j be UE j’s sleep and active power,

respectively. Then, the total UEs’ energy consumption at time t is:

Eu(t) =
∑
j ∈U

τ

[
(1 − β)

(
Iu
j (t)

(
pu,on
j + pu,Tx

j (t)
)
+ (1 − Iu

j (t))pu,o�
j

)
+ βpu,on

j

]
, (5.7)

where Iu
j (t) = max

i ∈Aj
{x j,i (t)} indicates if UE j is active or not. Indeed, in a given time slot, a UE j can

decide to not associate with any AP, hence, to not transmit. In this case, Iu
j (t) = 0, and pu,Tx

j (t) = 0.

5.2.4.2 AP Energy Consumption.

Let pa,o�
i and pa,on

i be the i-th AP’s sleep and active power consumption, respectively. The total APs’
energy consumption at time t is

Ea(t) =
N∑
i=1

τ

[
(1 − β)

(
I a
i (t)pa,on

i + (1 − I a
i (t))pa,o�

i

)
+ βpa,on

i

]
, (5.8)

where I a
i (t) = max

j ∈U
{x j,i (t)} indicates whether AP i is active (I a

i (t) = 1) or not (I a
i (t) = 0).

5.2.4.3 ES Energy Consumption.

To reduce the energy consumption, we adopt both a low-power sleep mode for the ES, when no
computation is performed at a given slot t , and a scaling of the CPU frequency fc (t), when the CPU
is active and computing [103]. Namely, the CPU core consumes a power pon

s in active state, and a
power po�

s < pon
s in sleep state. When the ES is active, the dynamic power spent for computation is

pc
s(t) = κ f 3

c (t), where κ is the e�ective switched capacitance of the processor [104]. In particular, we
assume that fc (t) can be dynamically selected from a �nite set F = {0, . . . , fmax}. Therefore, the ES’s
energy consumption at time t is

Es(t) = (1 − β)τ
(
Is(t)

(
pon

s + p
c
s(t)

)
+ (1 − Is(t))po�

s

)
+ βτpon

s , (5.9)

where Is(t) = 1fc (t )>0, with 1fc (t )>0 the indicator function, which equals 1 if fc (t) > 0 and 0 otherwise.
Hence, Is(t) indicates whether the ES is active (Is(t) = 1) or not (Is(t) = 0). From (5.7), (5.8), (5.9), the
total system energy consumption at time t is Etot(t) = Es(t) + Ea(t) + Eu(t). Next, our objective function
is a convex combination of UEs, APs, and ES energy consumption:

Ew(t) = α1Eu(t) + α2Ea(t) + α3Es(t), (5.10)

with
∑3

i=1 αi = 1. Di�erent αi lead to di�erent strategies. For example, α1 = 1 models a user-centric
strategy, where only UEs’ energy consumption is optimized. αi = 1/3,∀i yields a holistic strategy that
includes the whole network’s energy.
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Remark 6. From an optimization point of view, we can drop the fraction β from equations (β = 0).
This is possible since we do not optimize β as the fraction of time dedicated to signaling and controlling
is prede�ned and �xed. Accordingly, for simplicity, in the following, we consider β = 0 when deriving
equations.

5.2.5 Proposed long-term energy minimization problem

Following the above de�nitions, we formulate the following minimization problem on the weighted
network energy consumption, subject to (5.6) and instantaneous constraints on the optimization
variables:

Long-term energy minimization problem under end-to-end delay constraints.

minimize
{Ψ(t )}

lim
T→∞

1
T

T∑
t=1
E [Ew(t)] , (P0)

subject to lim
T→∞

1
T

T∑
t=1
E

[
Q tot
j (t)

] ≤ Q
avg
j , ∀j; (C1)

x j,i (t) ∈ {0, 1}, ∀j, i, (C2)∑
j ∈U

x j,i (t) ≤ Ni , ∀i, (C3)

∑
i ∈Aj

x j,i (t) ≤ 1, ∀j, (C4)

fj (t) ≥ 0, ∀j, t , (C5)
fc (t) ∈ F , ∀t , (C6)∑
j ∈U

fj (t) ≤ fc (t), ∀t , (C7)

where Ψ(t) = [{x j,i (t)}j,i , fc (t), { fj (t)}j ] and the expectation in Eqns. (P0) and (C1) is taken with
respect to the random input data unit generation and radio channels, whose statistics are unknown.
The constraint (C1) is the delay constraint. The constraint (C2) highlights that the UE-AP association
variables are binary. The constraints (C3) and (C4) respectively ensure that the number of UEs assigned
to each AP cannot exceed a maximum Ni UEs, and that each UE is assigned to at most one AP. Finally,
the constraints (C5)-(C7) indicate that the computation frequencies assigned to each user are non
negative and their sum cannot exceed the total CPU frequency of the ES, chosen from the �nite set F .

Directly solving the problem (P0) is very challenging due to i) the unavailability of the statistics, ii)
non-convexity and NP-hardness of the problem in particular due to binary variables, iii) the long-term
nature of the objective function as well as the delay constraint (C1). Therefore, to address this problem,
we hinge on Lyapunov stochastic optimization tools [105].

5.3 Lyapunov meets MARL for Energy E�cient Edge Computing

5.3.1 A Lyapunov-aided problem decomposition

To handle the constraint (2.10), following [105], we introduce virtual queues Z j (t), which evolve as

Z j (t + 1) = max(0,Z j (t) +Q tot
j (t + 1) −Qavg

j ), ∀j ∈ U. (5.11)
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Here, Z j (t) is a state variable that measures how the system behaves w.r.t. the constraint (C1). In
particular, it increases if the instantaneous value of Q tot

j (t) violates the constraint, and decreases
otherwise. From [105], we know that the constraint (C1) is guaranteed if the virtual queue Z j (t), ∀j is
mean rate stable, i.e.,

lim
T→∞

E{Z j (T )}
T

= 0. (5.12)

To ensure this, we introduce the Lyapunov function L(Z(t)) and the drift-plus-penalty function
∆p (Z(t)), which we de�ne as follows:

L(Z(t)) = 1
2

K∑
j=1

Z j (t)2, (5.13)

∆p (Z(t)) = E [L(Z(t + 1)) − L(Z(t)) + Ω · Ew(t)|Z(t)] . (5.14)

Here, L(Z(t)) represents a measure of overall system’s congestion, whereas the drift-plus-penalty
function ∆p (Z(t)) is the conditional expected variation of L(Z(t)) over one slot, plus a penalty factor
weighted by Ω, which trades o� queue backlogs and the objective function of Eqn. (P0) [105].

Proposition 1. If the radio channel states and the input data generation are i.i.d. over time slots,
we obtain the optimal solution of Eqn. (P0) by optimally and jointly solving the following two
sub-problems for a su�ciently high value of Ω.
Sub-problem 1: CPU scheduling. At time t , solve the following optimization problem:

minimize
{fc (t ), {fj (t )}j }

G1(t) = Ωα3Es(t)

+
∑
j ∈U

[
− 2Qs

j (t)τ fj (t)Jj +max
(
0,Qs

j (t) − τ fj (t)Jj + 1
)
Z j (t)

]
(P1)

subject to (C5)-(C7) of (P0).

Sub-problem 2: UE-AP association. At time t , solve the following optimization problem:

minimize
{x j,i (t )}j,i

G2(t) = Ω · (α1Eu(t) + α2Ea(t)) +
∑
j ∈U

[ (
−3

2Q
l
j (t) +Qs

j (t)
)
Nu
j (t)

+max
(
0,Q l

j (t) − Nu
j (t)

)
Z j (t)

]
(P2)

subject to (C2)-(C4) of (P0).

Sketch of proof. From [105], we know that an algorithm, which minimizes the drift-plus-penalty
function ∆p (Z(t)) in Eqn. (5.14) under the constraints (C2)-(C7), which we later refer to as the
drift-plus-penalty algorithm, guarantees that the virtual queues Z j (t)’s are mean rate stable and
therefore also guarantee that the constraint (C1) is satis�ed. However, directly minimizing
∆p (Z(t)) is complex due to its non-convexity and non-di�erentiability. Hence, we hinge on the
concept of Γ-approximation of the drift-plus-penalty algorithm.

De�nition 3. For a given constant Γ, a Γ-additive approximation of the drift-plus-penalty algorithm
is one that, for a given state Z(t) at slot t , chooses a (possibly randomized) action Ψ(t) that yields a
conditional expected value of the objective function in Eqn. (5.14) that is within a constant Γ from
the in�mum over all possible control actions.

Hence, following this concept of Γ-approximation, our policy proceeds by minimizing a proper
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upper bound of the drift-plus-penalty (5.14) to “push” the queues towards lower congestion
states, i.e. towards system stability. In particular, it can be shown that (5.14) enjoys the following
upper-bound:

∆p (Z(t)) ≤ ζ + E
{ K∑
j=1

[
χj (t) − 2Qs

j (t)τ fj (t)Jj

+
(
max

(
0,Qs

j (t) − N c
j (t)

)
+max

(
0,Q l

j (t) − Nu
j (t)

))
Z j (t)

+

(
−3

2Q
l
j (t) +Qs

j (t)
)
Nu
j (t)

]
+ Ω · Ew(t)

����Z(t)
}
, (5.15)

where ζ > 0 is a constant and χj (t) does not depend on the optimization variables. We defer full
derivations of Eqn. (5.15) including expressions of ζ and χj (t) to Appendix C. Next, assuming
that the radio channel states and the input data generation are i.i.d. over time slots and that
L(Z(0)) < ∞, greedily minimizing Eqn. (5.15) under (C2)-(C7) guarantee that the virtual queues
are mean rate stable. Moreover from [105, Th. 4.8], we have also that:

lim
T→∞

1
T

T∑
t=1
E [Ew(t)] ≤ Eopt

w (t) +
ζ + Γ

Ω
, (5.16)

where Eopt
w (t) is the in�mum time average energy achievable by any policy that meets the

required constraints (C2)-(C7). Thus, the long-term solution of Eqn. (P0) is obtained by optimality
minimizing Eqn. (5.15) for su�ciently large value of Ω. Finally, the decomposition into two sub-
problems is straightforward because radio and computing optimization variables are decoupled
in Eqn. (5.15) and can be treated independently. �

Summary. We summarize the objective of the above mathematical manipulations. First, to ensure the
long-term delay constraint (C1), from [105], we need to guarantee the mean rate stability of the virtual
queues. For this, it is su�cient to guarantee that the Lyapunov drift-plus-penalty function (5.14) is
upper-bounded. Now, assuming that radio channel states and input data generation are i.i.d. over slots,
we show that minimizing a proper upper bound of Eqn. (5.14) and letting Ω →∞ under the constraints
(C2)-(C7) is equivalent to solving the problem (P0). Finally, this new problem can be cast into two
sub-problems to be solved in a per slot fashion by observing that radio and computing optimization
variables are decoupled in the derived bound (5.15).
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5.3.2 Proposed fast iterative algorithm for CPU scheduling

Here, our aim is to propose an optimal algorithm to solve the CPU scheduling problem.

Lemma 3 (Maximum frequency constraint). An optimal frequency scheduler should be such that

any time t , for any UE j, it guarantees that fj (t) ≤ min
(Q s

j (t )+1
τ Jj
, fc (t)

)
.

Proof. From Eqn. (5.5), max
(
0,Qs

j (t) − N c
j (t)

)
is the remaining data in the processing queue after

each time slot. Now, we know that N c
j (t) = bτ fj (t)Jj c (where we have dropped β following

Remark 6) thus, τ fj (t)Jj − 1 ≤ N c
j (t) ≤ τ fj (t)Jj . Hence, we have

max
(
0,Qs

j (t) − N c
j (t)

)
≤ max

(
0,Qs

j (t) − τ fj (t)Jj + 1
)
.

Then, the proof is straightforward and follows by observing that for a given UE j,
Qs
j (t) − τ fj (t)Jj + 1 < 0 means that the allocated CPU frequency exceeds what is needed to

empty the queue Qs
j (t), which is ine�cient. Indeed, at maximum, the allocated frequency is the

one that empties the processing queue, i.e. Qs
j (t) − τ fj (t)Jj + 1 ≥ 0. Noting that fj (t) ≤ fc (t), ∀j

completes the proof. �

Then by injecting the maximum frequency constraint in Eqn. (P2) and replacing Es(t) by its
expression in Eqn. (5.9), we can write:

G1(t) = Ωα3τ
(
Is(t)

(
pon

s + p
c
s(t)

)
+ (1 − Is(t))po�

s

)
+

∑
j ∈U

[
− 2Qs

j (t)τ fj (t)Jj +
(
Qs
j (t) − τ fj (t)Jj + 1

)
Z j (t)

]

= Ωα3τ
(
Is(t)

(
pon

s + p
c
s(t) − po�

s

)
+ po�

s

)
+

∑
j ∈U

[
−

(
2Qs

j (t) + Z j (t)
)
τ fj (t)Jj +

(
Qs
j (t) + 1

)
Z j (t)

]
. (5.17)

Now minimizing G1(t) under the constraints (C5)-(C7) is equivalent to minimizing a new objective
G̃1(t) under the same constraints, where

G̃1(t) = Ωα3τ Is(t)
(
pon

s − po�
s + κ fc (t)3

)
−

∑
j ∈U

[ (
2Qs

j (t) + Z j (t)
)
τ fj (t)Jj

]
. (5.18)

Here, G̃1(t) is obtained from G1(t) by dropping the terms, which do not depend on the optimization
variables. Solution of the problem (P1) follows by �rst observing that if fc (t) is �xed, G̃1(t) is linear
w.r.t. the optimization variables { fj (t)}j . Hence it can be solved using fast iterative algorithm with a
complexity of at most O (K × |F |) iterations.

Lemma 4. Let us de�ne Q̃ j (t) = 2Qs
j (t)+Z j (t). At a given time t , the scheduler �rst needs to choose

the frequency fc (t) ∈ F = {0, . . . , fmax} to be used. If there exists a solution fc (t) ∈ F \{0}, i.e. such
that fc (t) > 0 then necessarily we have:

Ωα3(pon
s − po�

s )∑
j ∈U Q̃ j (t)Jj

< fc (t) ≤ min ©­«
√∑

j ∈U Q̃ j (t)Jj
κΩα3

, fmax
ª®¬
. (5.19)

Thus we only need to search fc (t) within this interval.
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Proof. First note that,

• if fc (t) = 0, then Is(t) = 0 ⇐⇒ fj (t) = 0, ∀j ∈ U =⇒ G̃1(t) = 0.

• if fc (t) > 0 =⇒ G̃1(t) = Ωα3τ
(
pon

s − po�
s + κ fc (t)3

) −∑
j ∈U Q̃ j (t)τ fj (t)Jj

Thus, there exists a solution fc (t) > 0 i� Ωα3τ
(
pon

s − po�
s + κ fc (t)3

) −∑
j ∈U Q̃ j (t)τ fj (t)Jj < 0.

⇐⇒ Ωα3κ fc (t)3 <
∑
j ∈U

Q̃ j (t)fj (t)Jj − Ωα3
(
pon

s − po�
s

)

< fc (t)
∑
j ∈U

Q̃ j (t)Jj − Ωα3
(
pon

s − po�
s

)
as fj (t) ≤ fc (t)

Since fc (t) > 0, it implies fc (t)
∑

j ∈U Q̃ j (t)Jj − Ωα3
(
pon

s − po�
s

)
> 0 ⇐⇒ fc (t) > Ωα3(pon

s −po�
s )∑

j∈U Q̃ j (t )Jj .

Also, as pon
s > po�

s we have,

Ωα3κ fc (t)3 < fc (t)
∑
j ∈U

Q̃ j (t)Jj , thus, fc (t) ≤ min ©­«
√∑

j ∈U Q̃ j (t)Jj
κΩα3

, fmax
ª®¬
.

�

Algorithm 4: ES CPU Scheduling
1 In each time slot t , observe Qs

j (t), Q l
j (t), Z j (t), and compute Q̃ j (t) = 2Qs

j (t) + Z j (t), ∀j.
2 De�ne a vector F = [0, . . . , fmax] of ES CPU frequencies available.
3 De�ne a matrix F = {Fk, j }k, j of size |F | × K , and a |F |-sized vector G1 = {Gk1 }k=1... |F | .
4 Initialize F and G1 with zeros i.e., set Fk,l = 0 ∀k, l , and Gk1 = 0 ∀k .
5 for k = 1, . . . , |F | do
6 Let f kc (t) = Fk , andU = {k = 1, . . . ,K}.

7 while Ωα3(pon
s −po�

s )∑
j∈U Q̃ j (t )Jj < f kc (t) ≤ min

(√∑
j∈U Q̃ j (t )Jj
κΩα3

, fmax

)
do

8 j̃ = arg max
j ∈U

{
Q̃ j (t)Jj

}
.

9 Fk, j̃ = min
(
Qs
j̃
(t) + 1

τ J j̃
, f kc (t)

)
.

10 U = U\{j̃}.
11 f kc (t) = f kc (t) − Fk, j̃ .
12 if U = ∅ then
13 break.
14 end
15 end
16 Compute the objective function Gk1 = G̃1(t) of Eqn. (5.18) with fc (t) = Fk and fj (t) = Fk, j , ∀j .
17 end
18 Find k∗ = arg min

k
{Gk1 }, and then set f ∗c (t) = Fk∗ , f ∗j (t) = Fk∗, j ∀j .

The overall procedure to select the optimal CPU frequency fc (t) and the optimal scheduling frequen-
cies { fj }j ∈U is described in Algorithm 4. In particular, in Algorithm 4, steps 7-15 �nd the optimal CPU
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resource allocation for a given fc (t) that minimize G̃1(t). For this, it iteratively allocates the maximum
available CPU to the UE with the highest Q̃ j Jj . This is because of the sign minus in front of Q̃ j Jj in Eqn.
(5.18). This Algorithm 4 requires, in the worst case, at most K × |F | iterations.

5.3.3 Proposed MARL framework for UE-AP association

Sub problem (P2) is more complex as it is non-convex and NP-hard [56]. However, note that it takes a
similar form as the user association problem in previous chapters except for the change in the form of
the objective function. Therefore, we propose to use our transferable solution presented in 4, where UEs,
modeled as autonomous agents, learn to o�oad tasks over multiple episodes of random deployments
to maximize a long-term γ -discounted reward

∑Te
τ=t+1 γ

τ−t−1r (τ ), where r (t) = −G2(t) is the common
reward perceived by each UE at time t andTe is the length of an episode. From a Lyapunov optimization
perspective, the long-term goal (minimization of the long-term average energy) is guaranteed when Eqn.
(P2) is solved optimally slot by slot. Here, this is achieved by myopically maximizing the instantaneous
reward instead of the long-term reward, i.e., by setting γ = 0.

Remark 7. During an episode, r (t) can drop to −∞ due to the presence of queues in the expression
of the objective G2(t), which is not bounded. To solve this problem, note that in a feasible scenario,
the queues growing to in�nity result from UEs deciding systematically to not o�oad (which is a
wrong policy). Hence, we de�ne two clipping valuesQclip

j = (1+α1)Qavg
j and Z clip

j = (1+α2)(Qavg
j )2,

parameterized by α1, α2, which we consider as the maximum tolerable value of physical and virtual
queues respectively, above which an episode terminates with a failure. In this way, we improve the
learning convergence, as UEs are quickly noti�ed of their failure.

Thus, as in Chapter 4, let oRj (t) denote the set of “radio observations” of UE j:

oRj (t) =
{
aj (t − 1),R j,aj (t−1),R(t − 1),ACKj ,

{
RSSj,i

}
i ∈Aj
,
{
ϑj,i

}
i ∈Aj

}
. (5.20)

aj (t − 1) ∈ Aj denotes UE j’s action (i.e., connection request to an AP) at time t − 1, R j,aj (t−1) is the
perceived rate, R(t − 1) the total network sum-rate, and ACKj the received connection acknowledgment
signal.

{
RSSj,i

}
I ∈Aj

,
{
ϑj,i

}
i ∈Aj

indicate the received signal strength and corresponding angles of arrival
(AoA) from UE j to AP n. Similarly, we denote with oCj (t) represents the set of “MEC observations”,
related to task o�oading:

oCj (t) =
{
(x j ,yj ), fj (t),Q l

j (t),Qs
j (t),Z j (t)

}
, (5.21)

where Q l
j (t), Qs

j (t), Z j (t) are the queues de�ned above, (x j ,yj ) are UE j’s geographical coordinates, and
fj (t) its allocated CPU frequency at the ES.
Learning to o�load (L2OFF) computational tasks. To learn to o�oad computational tasks, our
solution relies on the transferable solution proposed in Chapter 4. In this framework, after observing
oRk (t), UE k builds its local state encoding uk , which represents its “perception” of the radio environment,
using an encoding function f (·), e.g., a neural network. Then, based on the aggregated MEC observations
of its whole neighborhood, it constructs an encoding vector vk , which characterizes its perception
of the network from a computation viewpoint. UE k then builds its overall context encoding vector
ck to represent its global understanding of the environment, using an encoding function h(·), e.g., a
concatenation operator or a neural network. For each UE, the goal of the MARL framework is to learn
an association policy πθ with learnable parameters θ , where πθ (ak (t)|ok (t)) = pak (t ),k indicates the
probability of taking action ak (t) after observing ok (t) = {oRk (t), oCk (t)}. Note that the probability vector
pk (t) = [p0,k , . . . ,pN ,k ] ∈ [0, 1]N+1, from which the action ak (t) of the UE will be sampled, is such that∑

n∈A pn,k = 1 and pn,k = 0 for all n < Ak .
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Figure 5.2: Dynamic computation o�oading
policy network architecture. A UE decides
to o�oad its computation tasks based on its
radio observations and after aggregating com-
putation observations from its neighborhood,
including its observations. All UEs share the
same policy.

Message passing service. Let θk ,θq , and θν : R6 × Rm be learnable weights, describing the set of
parameters of the encoding function д(·), which we later refer to as the message generator. For each UE
l , let kl = θTk oCl (t), ql = θ

T
q oCl (t), ν l = θTν oCl (t), and ml = {ql ,ν l } be the key, the query, the value, and

the message associated with UE l . Then, each UE k , after aggregating the messages from its neighbors
Nk , computes its encoding vector vk =

∑
l ∈Nk αl,kν l , where the score αl,k represents the interaction

between UEs l and k (in achieving the underlying optimization goal). This score is calculated using
dot-product attention mechanism [84]:

αl,k = so�max ©­«
[
qlk

T
k√
m

]
l ∈Nk

ª®¬
. (5.22)

Here, so�max(·) denotes the normalized exponential function. Note that computing vk only involves
the queries and the values from others UEs in Nk and not their keys, which are UE-speci�c and do not
need to be transmitted. Such a message-passing service enables the scalability and the transferability
of the learned policy, which is optimized for all possible UE deployments, in sharp contrast with [98],
which requires �xed UEs. In other words, in our framework, a change in the number or position of
UEs in the network does not require a new policy training and does not impact the architecture of the
policy network. Only the number of exchanged messages varies, depending on the variation of a UE’s
neighborhood. Both, the input variables and the number of neurons of the encoding functions remain
�xed. This enables curriculum learning, where a policy obtained from e.g. 6 UEs can be leveraged as
a starting point to train another policy for K > 6 UEs. Finally, all the encoding functions, including
the message generator, are optimized through end-to-end learning procedure using proximal policy
optimization (PPO) and an actor-critic framework [87].
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Table 5.1: Mobile edge computing parameters

UEs sleep and active power, γ pu,o� = 0.346 W, pu,on = 0.9 W
APs sleep and active power pa,o� = 0.278 W, pa,on = 2.2 W
ES sleep and active power ps,o� = 10 W, ps,on = 20 W
Target Signal-to-noise ratio (SNR) 15 dB
UEs max transmit power 0.1 W
Hysteretic parameter ϵ ϵ1 = 0.01, ϵ2 = 0.5
Number of MLP neurons,m 128
Number of Monte-Carlo simulations, N 200

5.4 Simulation results

In this section, we assess the e�ectiveness of the proposed framework in a network of 3 APs operating
at 28 GHz mmWave frequencies and for K ∈ {6, 9, 12, 15} UEs. We use pu,o� = 0.346 W, pu,on = 0.9 W,
pa,o� = 0.278 W, pa,on = 2.2 W, ps,o� = 10 W, ps,on = 20 W. Each UE transmits with power pu,Tx(t) =
min

(
p

tg
j (t),pmax

)
over a bandwidth B = 10 MHz, where ptg

j (t) is the power to meet a prede�ned target
SNR of 15 dB and pmax = 0.1 W. Each slot lasts 10 ms and we set β = 0.1, Ni = 15, κ = 10−27, Jj = 10−3,
S j = 1500 bits ∀j and F = {0, 0.1, . . . , 1} × fmax, where fmax = 109 cycle/s. UEs’ data generation rate
follows a Poisson distribution with mean D j = 50 × S j bits ∀j. In our setup, all encoding functions
are composed of one multi-layer perceptron (MLP) of m = 128 neurons with a recti�er linear unit
(ReLu) activation. Both the actor and the critic module comprise 2m neurons and we empirically set
the learning rate to 10−4, α1 = 10 and α2 = 0. Simulation parameters are summarized in Table 5.1.
Additional parameters, including pathloss and antenna diagrams, can be found in Table 3.1 of Chapter
3. To foster the learned policy and enable better generalization, during training, we consider random
CPU scheduling1. This is possible since the problems (P1) and (P2) are completely decoupled, therefore,
the policy learned to solve the problem (P2) must be independent of the ES frequency allocation. We
compare our L2OFF solution to two benchmarks:

• Exhaustive search: at each t , we perform an exhaustive search over all possible solutions of (P2).

• Max-SNR: each UE is associated with a Bernoulli random variable with probability p of being
in active state (which models the average duty cycle of UEs). Then, at each t , an active UE gets
associated with the AP providing the maximum SNR.

5.4.1 Energy-delay trade-o�

Here, we evaluate the performance of our proposed framework for di�erent values of Ω (cf. Eqn. (5.14)),
and compare the results to the performance obtained via exhaustive search in Figure 5.3. First, we
observe that our method can e�ectively adapts the duty cycle to minimize energy consumption. Indeed,
the results in Figure 5.3 follow our theoretical expectations: when Ω increases, optimally solving the
problems (P1) and (P2) lowers the duty cycle, consequently leading to a lower energy consumption.
Meanwhile, the average delay increases and caps to 100 ms, which is the �xed delay constraint (C1).
Interestingly, the proposed scheme exhibits performance close to exhaustive search approach (for
Ω = 109), reaching up to 96.5% of its performance, for the same delay constraint.

1We randomly select fc (t) ∈ F and allocate ωj fc (t) to each UE j such that
∑
j ωj = 1, where {ωj }j follow a symmetric

Dirichlet distribution.
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Figure 5.3: Energy-delay trade-o� w.r.t. Ω for K = 6 UEs and for a �xed delay constraint of 100 ms.
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Figure 5.4: Average energy for a �xed average delay of 100 ms. Due to complexity, results forK ∈ {12, 15}
UEs cannot be obtained for the exhaustive search.

5.4.2 Performance comparison

To fairly compare the proposed framework with the heuristic based on Max-SNR, we �rst determine
exhaustively the optimal lowest duty cycle that enables the Max-SNR algorithm to guarantee an average
delay constraint of 100 ms. Then, the comparison is made for the same delay in Figure 5.4. We can
notice how, even by optimally computing the duty cycle for the Max-SNR algorithm, our solution still
outperforms, reducing the energy by 10% for 15 UEs compared to Max-SNR solution, as we consider
interference, and intelligently orchestrate UEs. Moreover, under the same delay constraint, with our
strategy, the network consumes 246 mJ on average for 15 UEs, whereas for the same energy consumption,
the Max-SNR can only serve 12 UEs.

5.5 Conclusion and Perspectives

In this chapter, we proposed a novel approach for delay constrained energy-e�cient dynamic computa-
tion o�oading services in dense mmWave networks impaired by interference. We �rst formulated the
computation o�oading as a long-term optimization. Then, we applied Lyapunov optimization tools to
split the problem into a CPU scheduling problem and a UE-AP association problem. While the �rst one
is easily solvable via an e�cient fast iterative algorithm, we solved the second one using multi-agent
reinforcement learning with a distributed and transferable policy. The proposed solution reaches up to
96.5% of the optimal solution obtained via exhaustive search and can reduce energy consumption up to
10% compared to a heuristic approach based on SNR maximization.

Eventually, if direct information exchange is allowed between users, the performance of our proposed
framework can be further improved, which would help to unwind confusing situations. Indeed, consider
the example of two users with similar requirements located very close to each other. In this case, each
of these users may have the same perception of the radio environment and thus observe the same
inputs. As a result, these users may eventually converge to the same behavior, taking the same actions
(or resulting in a ping-pong e�ect) as they share the same knowledge. Thus, in the absence of explicit
communication between these users (or priority level), they will tend to connect to the same base
station, hence, will experience strong interference from each other. In such a case, a good policy might
be to let one of the users communicates or to connect both users to di�erent base stations. However,
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our proposed mechanism cannot induce such concurrent behavior because users share the same global
knowledge. Therefore, in this scenario, an external arbitration is required. Although rare, this example
illustrates the need for inter-agent communications in some situations to reach optimal convergence.
However, due to bandwidth constraints, communications between agents must be limited. In addition,
only relevant information, su�cient for agents to complete the targeted optimization task must be
exchanged. This gives rise to a new paradigm: the semantic communications, which we explore in the
next chapter as a new fundamental for beyond 5G networks.

The technical contributions of this chapter have been validated by the following paper.

[C4] M. Sana, M. Merluzzi, N. di Pietro, and E. Calvanese Strinati, “Energy E�cient Edge Com-
puting: When Lyapunov Meets Distributed Reinforcement Learning,” IEEE International
Conference on Communications (ICC) Workshops, Virtual, Montreal, Canada, June 2021.
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Exploring new Fundamentals for
beyond 5G Networks: The Opportunity

of Semantic Communications



Chapter 6

Learning Semantics: An Opportunity
for E�ective 6G Communications

“There’s no sense in being precise when you don’t even know what you’re talking
about.”

“Il ne sert à rien d’être précis quand on ne sait même pas de quoi on parle.”

− John von Neumann (1903 − 1957)
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6.1 Introduction

R ecently, semantic communications are envisioned as a key enabler of future Sixth Generation (6G)
networks. Back to Shannon’s information theory, the goal of communication has long been to

guarantee the correct reception of transmitted messages irrespective of their meaning or the intended
goal. However, in general, whenever communication occurs to convey a meaning or to accomplish
a goal, what matters is the receiver’s understanding of the transmitted message or how the received
message help in achieving the targeted goal of the communication (e.g., completing a speci�ed task) and
not necessarily the correct reconstruction of transmitted messages. Hence, semantic and goal-oriented
communications introduce a new paradigm: transmitting only relevant information su�cient for the
receiver to capture the meaning intended or ful�ll the targeted goal of communication (e.g., dictated by
the application). This can help in saving a lot of communication bandwidth. This chapter provides a
global overview of the opportunity o�ered by semantic and goal-oriented communications for beyond
5G networks. To this end, we present and detail a novel architecture that enables representation learning
of semantic symbols for e�ective semantic communications. We �rst discuss theoretical aspects and
successfully design objective functions, which help learn e�ective semantic encoders and decoders.
Eventually, we show promising preliminary numerical results for the scenario of text transmission,
especially when sender and receiver speak di�erent languages.

6.1.1 Motivations

Academia and industry have kicked o� research on the future 6G of wireless networks. Speculation about
the possible evolution of current 5G technology as well as radical new architectures, approaches, and
technologies are being intensely discussed [3, 106, 107]. The expectation is that by 2030 �rst commercial
6G solutions will be available. This is driven by the current trend, witnessing an unprecedented demand
for communication bandwidth to accommodate burgeoning new services like eXtended Reality (XR)
or autonomous driving. To meet these challenges, historically in wireless communications, a solution
has been to explore higher frequencies to bene�t from the available large spectrum resources. Such
solutions cyclically face an inevitable bottleneck, represented by the hardware’s cost, complexity and
energy e�ciency of wireless communications. For example, as frequency increases new challenges
arise in communication such as blockage, severe pathloss, atmospheric absorption, and power ampli�er
e�ciency [108]. This calls for new paradigms shift for the e�ective design of 6G communications [2].

In addition, 6G will o�er a radical step ahead to Arti�cial Intelligence (AI) in general and to
Machine Learning (ML) in particular. ML and AI are already cornerstones of 5G, allowing to improve
operational and service performance. However, 5G has not been designed speci�cally to support
e�ective interactions between AI agents but rather to collect, exchange, and process data to feed ML
applications. In contrast, 6G will be built on the native inclusion of AI as a fundamental component
of the connect-compute-control network [109]. This will enable the intertwining of di�erent kinds of
intelligence (natural and arti�cial), requiring a radically new approach in the design of communication
systems [2]. In our view, future 6G systems should be engineered to e�ectively recreate or infer the
meaning of what has been communicated rather than to “just” optimize opaque data pipes that aim
at reproducing exactly exchanged sequences of symbols [2]. E�ective communication of meanings
can be achieved through exchanges of semantics. Today fundamental open question to answer is how
to bring the notion of semantic from human understanding to machine understanding? In our view,
this requires a radically innovative approach to communications: the semantic and goal-oriented
communications [2]. This approach can achieve a signi�cant source data compression gain, which
saves a lot of communication bandwidth.



6.1. Introduction 90

Source/Channel
encoder

Network
tra�c

engineering
Physical
channel

Noise, interference

Source/Channel
decoder

Semantic
message
generator

Semantic
channel

Semantic
message
interpreter

Source Environment

E�ect of semantic information exchange

Destination

KBS KBD
Knowledge
sharing

Le
ve
lA

:
Te
ch
ni
ca
l

Le
ve
lB

:
Se
m
an
tic

Le
ve
lC

:
E�

ec
tiv

en
es
s

Syntactic feedback

Semantic feedback

Figure 6.1: Multi-level communication system [2]. Here, KBS and KBD denote the knowledge base
available at the source and destination, respectively.

6.1.2 Related work

In their seminal work [110, 111], Shannon and Weaver identi�ed three levels of communication (see
Figure 6.1):

• Level A - the technical problem: how accurately can the symbols of communication be transmitted?

• Level B - the semantic problem: how precisely do the transmitted symbols convey the desired
meaning?

• Level C - the e�ectiveness problem: how e�ectively does the received meaning a�ect conduct in
the desired way?

Shannon deliberately focused on the technical problem and the communication systems that we know
so far are engineered to optimize the level A of communication. Then in 1953, Weaver provided
a �rst attempt for the inclusion of semantics in the communication problem [111]. Bar-Hillel and
Carnap provided also outlines of a theory of semantic information, focusing mainly on measuring how
informative transmitted message is (informativity measurement) [112]. Recently with the growing
interdependence between communication systems and AI, new attempts to include the Level B (the
semantic problem) in the communication system has started [2, 113, 114, 115]. The ontology for
semantics is still evolving in the state-of-the-art. In the Internet of Things (IoT) and semantic web
contexts, semantic refers to the capability of enriching data and support interoperability mechanism
between hardware and software applications belonging to di�erent domains [116]. The semantic is
indeed a way to associate documents, collected or processed data (a �le, an image, a text, a sensed
physical measure, etc.) to information and metadata. This enables to constitute of a knowledge-based
decision-making database that can communicate in prede�ned semantic languages. In application-driven
mechanisms, semantic refers to an abstraction at higher Open Systems Interconnection (OSI) layers,
used for autonomous con�guration and recon�guration of network states leveraging on the principle
of information-centric networking [117]. In contrast, as indicated in [2], the end goal of semantic



6.1. Introduction 91

communication is di�erent. Semantic communications are shaped to e�ectively compress the exchanged
data between communicating parties, improve the communication robustness by incorporating semantic
information to the classical Level A communication scheme.

This is possible by exploiting the knowledge shared a priori between communicating parties, such
as a shared language or logic, shared background and contextual knowledge, and possibly a shared view
on the goal of communication. In [113], the authors provide tentative de�nitions of semantic capacity,
semantic noise, and a semantic channel from the perspective of Shannon’s statistical measurement
of information. Our work focuses on the potential bene�ts of semantic compression. In [118] the
authors refers to semantic as the semantics of information, addressing the signi�cance and usefulness of
messages by considering the contextual attributes (semantics) of information [119]. In this approach,
the Age of the Information (AoI) is key to identify the relevance of the semantic information for the
e�ectiveness of the exchange between communicating parties. Nevertheless, AoI does not necessarily
de�ne the meaning of a message in many applications, but rather how a message is still pertinent for an
application given its age. Indeed, di�erent de�nitions of semantic carry di�erent measures of semantic
information.

Here in this chapter, we focus on semantic communications and particularly on the bene�t of
semantic compression. We refer to semantic as a “meaningful” message (a sequence of well-formed
symbols, which are possibly learned from data) that have to be interpreted at the receiver. This requires
a reasoning unit (natural or arti�cial) able to interpret based on a knowledge base: a symbolic knowledge
representation of the speci�c application. Here, we focus on applications for AI and neural networks
that exchange, communicate and intertwine. We do not apply this research only to level A, but we
jointly design a full end-to-end (E2E) communication-intelligence chain with level A, jointly to Level B.
This requires creating an overlay on top of Level A to enable interaction and communication between
intelligent machines. In this context, an E2E neural architecture is presented in [114], enabling semantic
transmission of sentences. However, their proposed architecture is limited in �exibility: they represent
each word in a transmitted sentence with the same and �xed number of semantic symbols irrespective
of the conveyed meaning. Authors in [120] apply the same architecture to speech signals transmission.
Similarly, the work in [121] presents a deep source-channel coding scheme, which exploits hybrid
automatic repeat request (HARQ) to reduce semantic transmission error.

6.1.3 Contributions

The contribution of this chapter is as follows:

• An E2E semantic communication architecture: we propose a novel E2E semantic communication
architecture incorporating level B to classical level A communications. In this architecture,
information from a binary source is encoded with semantic information extracted using neural
attention mechanisms [84], to produce sequence of semantic symbols. In contrast to very recent
state-of-the-art works [114, 120], which propose an E2E system for semantic text and speech
transmission, we formally de�ne a new loss function, which captures the e�ects of semantic
distortion to communication. This enables to dynamically trade semantic compression losses with
semantic �delity [113] (i.e., the semantic interpretation correctness).

• An adaptive mechanism for dynamic semantic symbols representation at the source: we design a
semantic adaptive mechanism, which dynamically optimizes the number of symbols per semantic
message based on the trade-o� between semantic compression and semantic �delity that we
formally express.

• A toy example in the scenario of text transmission: we provide a detailed numerical evaluation that
shows the bene�ts of our proposed adaptive E2E semantic system. Results are provided for the
context of Natural Language Processing (NLP), especially when transmitter and receiver speak a
di�erent language. In this context, messages are formed and communication parameters are set
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to maximize the correct interpretation of semantic messages rather than error-free bit decoding
at the receiver.

The technical content of this chapter is based on the conference paper [122].
The remainder of this chapter is organized as follows. Section 6.2 introduces the basic concepts of

semantic communications. Section 6.3 details the proposed E2E architecture for semantic representation
learning. We provide numerical results in Section 6.4 and draw conclusions in Section 6.5.

6.2 Semantic Communications

Semantic
Encoder fθ (·) Channel p(y |x)x Semantic

Decoder дϑ (·)
y

m ∈ Mt m̂ ∈ Mr

Figure 6.2: Simpli�ed semantic communication system model.

6.2.1 General introduction

A semantic communication system de�nes a communication framework in which sender and receiver
exchange semantic information to create a common understanding of exchanged messages.

De�nition 4. We refer to the term semantic information as the meaning underlying the data
(which can be discrete or continuous) that a sender wants to convey to a receiver.

Example of data ranges from (random) numbers to texts, audios, images or videos. Formally de�ning
the semantic content (or the meaning) of data is not a trivial task. In [123], the author proposes a
de�nition of semantic content based on data as follows:

De�nition 5. An instance of semantics is de�ned, if and only if:

• the instance consists of at least one datum

• the data are well-formed (i.e., data are organized in a correct way according to the rules
(syntax) of a speci�c system)

• the well-formed data is meaningful (i.e., the data must comply with the meaning of the chosen
system, code or language).

For example, human language uses a structured set of signs, gestures, writings, or words associated
with real-world things or abstract thoughts, and rules to convey meanings. Each language has its own
structure, which depends on the set of rules used to convey meaningful information. This de�nition
of meaning and language can be extended to arti�cial languages, such as a computer programming
language, after proper identi�cation of language’s concepts, rules, and constraints. Here, we focus
on applications where AI agents exchange, communicate and intertwine. For this, we adopt semantic
symbols as a means to represent semantics. Thus, in our scenario, agents exchange semantic symbols
depending on the meaning associated with the exchanged data. To do so, agents can also rely on their
respective knowledge base (KB), a symbolic knowledge representation of the speci�c application [124],
possibly shared among agents, from which semantic symbols can be inferred or interpreted (see Figure
6.1). A knowledge base can be manually constructed or learned from the ontology, rules, constraints that
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govern a speci�c application. This can be achieved using for e.g., graph-based knowledge representation
[124], where relationships, rules between entities, or concepts are organized over a graph.

Figure 6.3: A gira�e drinking water.

Example 2 (A gira�e drinking water). Consider the following example of a picture of a gira�e drinking
water (see Figure 6.3). A knowledge base of this picture can be represented as follows: i) this is an image of
an animal, ii) the animal is a gira�e, iii) the gira�e is standing on grass, iv) the gira�e is drinking water, v)
there is a fence behind the gira�e etc.

The knowledge base extracted from one speci�c application can be used to solve related problems
[124]. From the above example, to the question “is the gira�e in a zoo?", one may answer “yes” because
“there is a fence behind the gira�e”. However answering such a question requires reasoning capabilities
(here for e.g., �nding the relationship between the concept “zoo” in the question and the knowledge
base, in particular, the word “fence”). This example also points out a central aspect of the knowledge
base, which cannot answer all questions due to a limited and �nite set of symbolic structures used to
represent knowledge [124]. For example, the knowledge base of the above example cannot answer the
question “is the gira�e male or female?”. In addition, the knowledge base can be static or dynamic
(introduction of new concepts or entities, the evolution of relationships or rules for e.g. in a multi-level
video game.). Here, for sake of simplicity, we consider a scenario where knowledge bases are static
and are inferred from the underlying data available at the source and destination. Hence, we refer to
semantic messages as a sequence of well-formed symbols generated1 from the source and destination
knowledge bases. Our goal is then to propose a framework, which enables representation learning of
semantic symbols. Figure 6.2 presents our proposed E2E adaptive semantic communication system. It is
composed of a semantic encoder fθ (·) and a semantic decoder дϑ (·), which we describe in the following.

6.2.2 Semantic source and channel coding

The semantic encoder transforms input sequence into semantic symbols to be transmitted through the
channel. LetMt denotes the source alphabet. Each message m emitted by the source is associated with
a symbol x ∈ X (possibly a discrete or continuous space) such that x = fθ (m), where fθ (·) denotes
the semantic encoder with (trainable) parameters θ . This encoder is characterized by the probability
distribution pθ (x |m). Thus, if the source emits a messagem with a probability pMt (m), the probability

1Note that before being able to produce semantic symbols, the source and the destination may �rst agree on a common
mechanism (e.g., a logic). This can be achieved through our proposed E2E learning.
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that the encoder emits symbol x is:

pθ (x) =
∑

m:x=fθ (m)
m∈Mt

pMt (m) =
∑

m∈Mt

δ (x − fθ (m))pMt (m), (6.1)

where δ (·) is the Dirac distribution. Next, our objective is to de�ne the adequate symbols probability
distribution pθ (x) (or equivalently pθ (x |m)), which ensures semantic “�delity" of interpreted messages
at the receiver. Note that the mapping from m to x is not always bijective [125]. Indeed, it can be
one-to-many: a message can be mapped to di�erent symbols, each conveying the same information.
In this case, the encoder introduces semantic redundancy, i.e., the conditioned entropy Hθ (X |M) , 0.
Conversely, the mapping can be many-to-one, i.e., many messages are mapped to the same symbol:
there is a semantic ambiguity, and Hθ (M |X ) , 0. As in the rate-distortion Theory [126], such an encoder
has a complexity equals to Iθ (X ;M), which corresponds to average number of bits needed to represent
message m. Hence, as we focus on semantic compression, our �rst objective is to �nd fθ (·), which
minimizes this complexity i.e.,

arg min
θ

Iθ (X ;M) (6.2)

Lemma 5. If there is no redundancy introduced by the semantic encoder, i.e.,M determines X as
the mapping fθ : Mt → X is unique, then,

Iθ (X ;M) = Hθ (X ), (6.3)

in which case, minimizing Iθ (X ;M) is equivalent to minimizing Hθ (X ).

Proof. First note Iθ (X ;M) = H (X ) −Hθ (X |M). Thus, proof follows as Hθ (X |M) = 0 if there is no
redundancy. �

6.2.3 Semantic decoder

The role of the decoder is mainly to infer the meaning intended by the source2. In contrast to Shannon’s
communications paradigm, an exact reconstruction of the transmitted messages is not necessary. Given
the receiver alphabetMr and the semantic decoder дϑ (·) with (trainable) parameters ϑ , the decoded
message m̂ from a received symbol y is the one that maximizes the estimated posterior probability
qϑ (m |y) conditioned on the received symbol y at the receiver:

m̂ = arg max
m′∈Mr

qϑ (m′ |y), (6.4)

Hence, given the semantic encoder and decoder, a natural measure of the semantic distortion between
m and m̂ is the expected Kullback-Leibler (KL) divergence between the "true" posterior probability
pθ (m |y) at the encoder and the one captured by the decoder qϑ (m |y),

Ey {KL (pθ (m |y)| |qϑ (m |y))} =
∑

m∈Mr

∫
y
pθ (y)pθ (m |y)log

(
qϑ (m |y)
pθ (m |y)

)
dy. (6.5)

Our second objective is then to �nd fθ (·) and дϑ (·) which minimize the semantic distortion between
the intended messagem and the decoded message m̂, i.e., Eqn. (6.5).

arg min
θ,ϑ

Ey {KL (pθ (m |y)| |qϑ (m |y))} (6.6)

2The decoder can also recover an equivalent meaning from Level C perspective, i.e., w.r.t. to the targeted goal of the
communication.
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6.2.4 Semantic channel and noise

To illustrate the notion of semantic channel, let us consider the following example of a conversation
between three persons [113].
Example 3 (A conversation between Linda, Pheobe, and Aïda). Here, Linda is trying to convey mean-
ingful information to Phoebe through Aïda, who serves as a semantic channel.
- Linda: “Aïda, would Phoebe like to go for hiking in the Bastille’s mountain?"
- Aïda: “Pheobe, you want to climb the Bastille?"
- Phoebe: “No, I’m not available today."
In this example, Aïda conveys to Pheobe a message completely di�erent from one transmits by Linda, which
may result in an engineering failure from classical level A communication’s perspective if we compare
e.g., transmit and receive sentence character by character. However, there is no semantic failure as Linda’s
message to Aïda is semantically equivalent to Aïda’s message to Phoebe.

De�nition 6. Two messages are semantically equivalent if they convey the same meaning. In other
words, the received message m̂ and the transmitted messagem are semantically equivalent if m̂ is
interpreted accurately by the receiver as the meaning intended by the transmitter.

From the above de�nition, formally de�ning the notion of semantic equivalence is not trivial, as it can
take di�erent forms depending on the purpose of the communication and the type of data manipulated
by the source and the destination. For example, in NLP, two words may be semantically equivalent if
they are synonyms. A semantic error may occur during communication as the result of a mismatch
between m and m̂: the two messages are not semantically equivalent. This error can be introduced
by Level A channel noise and/or interference, the di�erence of the level of knowledge available at the
source and destination or its incompleteness (at Level B) and, by limitation of semantic encoder/decoder
not being able to learn the correct semantic representation, i.e., a limitation of the representation space
of fθ (·) and дϑ (·). To design an e�cient communication system, given the semantic channel with
probability density p(y |x), our proposed solution maximizes the mutual information Iθ (X ;Y ) between
the input and output of the channel:

arg max
θ

Iθ (X ;Y ) (6.7)

6.2.5 Proposed semantic representation learning

To optimize our semantic communication system, we adopt an E2E learning mechanism, where our
objective is to jointly achieve Eqns. (6.2), (6.6) and (6.7). Overall, we propose to minimize the following
objective function Lα,β

θ,ϑ
:

Lα,β
θ,ϑ
= Iθ (X ;M) − (1 + α)Iθ (X ;Y ) + βEy {KL (pθ (m |y)| |qϑ (m |y))} , (6.8)

where α ≥ 0 and β ≥ 0 are some hyperparameters that trade-o� the optimization. To minimize Lα,β
θ,ϑ

,
we hinge on the well-known cross-entropy (CE) loss de�ned as:

LCE
θ,ϑ

∆
= Em∼pM (m),y∼pθ (y |m) {−log(qϑ (m |y)} . (6.9)

Indeed, we have the following Lemmas:

Lemma 6. Assuming the RX and the TX are sharing the same background i.e.,Mt =Mr =M,
the cross-entropy loss can be decomposed as follows:

LCE
θ,ϑ = Hθ (X ) − Iθ (X ;Y ) + Ey {KL (pθ (m |y)| |qϑ (m |y))} . (6.10)
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Proof of Lemma 2 Eqn. (6).

LCE
θ,ϑ

∆
= Em∼pM (m),y∼pθ (y |m) {−log(qϑ (m |y)}
(a)
= −

∑
m∈M

pM(m)
∫
y
pθ (y |m)log(qϑ (m |y))dy,

(b)
= −

∑
m∈M

∫
y
pθ (y)pθ (m |y)log(qϑ (m |y)dy,

(c)
= −

∑
m∈M

∫
y
pθ (y)pθ (m |y)log

(
qϑ (m |y)
pθ (m |y)

)
dy −

∑
m∈M

∫
y
pθ (y)pθ (m |y)log(pθ (m |y))dy

(d )
= Ey {KL (pθ (m |y)| |qϑ (m |y))} −

∑
m∈M

∫
y
pM(m)

∫
x
p(y |x)δ (x − fθ (m))log(pθ (m |y))dxdy

(e)
= Ey {KL (pθ (m |y)| |qϑ (m |y))} −

∫
x

∫
y
pθ (x)p(y |x)log(pθ (x |y))dxdy

= Ey {KL (pθ (m |y)| |qϑ (m |y))} −
∫
x

∫
y
pθ (x ,y)log(pθ (x |y))dxdy

= Ey {KL (pθ (m |y)| |qϑ (m |y))} −
∫
x

∫
y
pθ (x ,y)log

(
pθ (x ,y)pθ (x)
pθ (y)pθ (x)

)
dxdy

= Ey {KL (pθ (m |y)| |qϑ (m |y))} − Iθ (X ;Y ) + Hθ (X ),

(a) comes from the de�nition of the expectation Eqn. (6.9); (b) is straightforward noting that
p(y |m)p(m) = p(m |y)p(y); Note that the �rst term in (c) is the expectation of the KL-divergence
between pθ (m |y) and qϑ (m |y). Then, we use pθ (y |m) =

∫
x p(y |x)δ (x − fθ (m))dx in (d) and apply

Eqn. (6.1) in (e), which completes the proof. �

Lemma 7. If α ≥ 0 and 0 ≤ β ≤ 1, then, the objective function (6.8) admits an upper-bound as
follows:

Lα,β
θ,ϑ
≤ LCE

θ,ϑ − αIθ (X ;Y ). (6.11)

In particular, equality holds if β = 1 and if there is no semantic redundancy at the source.

Proof. The proof follows by noting that Lα=0,β=1
θ,ϑ

= LCE
θ,ϑ
−Hθ (X |M) and that Hθ (X |M) ≥ 0. �

Thus, to minimize Lα,β
θ,ϑ

, we can minimize this upper-bound, where Iθ (X ;Y ) can be estimated using
mutual information neural estimator [127].

Remark 8. Note that in [114], the authors have considered minimizing LCE
θ,ϑ
− αIθ (X ;Y ), where

0 ≤ α ≤ 1. However, the paper fails in providing a justi�cation on how the proposed loss optimizes
the semantic representation learning. In contrast, our Lemma (7) speci�es that the semantic repre-
sentation loss (6.8) admits LCE

θ,ϑ
− αIθ (X ;Y ) as an upper-bounded. Hence, minimizing this upper

bound also minimizes the loss function Lα,β
θ,ϑ

.
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Figure 6.4: Transformer-based semantic communication system architecture

6.3 Transformers Enabled Semantic Communications

Our semantic communication system relies on Transformer architecture [84]. Transformer networks
have been introduced as the �rst transduction model entirely built using self-attention mechanisms able
to learn context representation of its input and output. In contrast to solutions based on recurrent and
convolution neural networks, Transformer models in general have i) lower computational complexity,
ii) more parallelizable computations, and iii) can learn long-range dependencies in input sequence [84].

6.3.1 Background on transformers

The key components of Transformers are self attention and multi-head attention mechanisms [84].
Self attention mechanism. Given a sequence of size N , let K , Q , and V be the associated key, query,
and value matrices respectively, where K ,Q ∈ RN×dk , V ∈ RN×dv , ∀i , and dk , dv are the dimensions of
the key, value, respectively. The output A of the attention function can be computed in a matrix form
as follows:

A = Attention(Q,K ,V ) = so�max
(
QKT
√
dk

)
V . (6.12)

where so�max(·) denotes the normalized exponential function.

Multi-head attention mechanism. Consider the following dm-dimensional key, query, and value
matrices K ′,Q ′,V ′ ∈ RN×dm . For each head h, a multi-head attention proceeds by �rst projecting each
row in K ′,Q ′,V ′ into dk , dk , dv dimensional subspace, using linear projectors θKi ,θ

Q
i ∈ Rdm×dk and

θVi ∈ Rdm×dv . Here, θKi ,θ
Q
i , and θVi are learnable weights, describing the set of parameters of the

attention head i . Thus, for each head i , the projections gives Ki = K ′θKi ∈ RN×dk , Qi = Q
′θQi ∈ RN×dk ,
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Vi = V
′θKi ∈ RN×dv , and the associated attention value is

Ai = Attention(Qi ,Ki ,Vi ).

Finally, we obtain the output of the multi-head attention mechanism by concatenating the attention’s
value of all heads and projecting into another linear subspace as follows:

MultiHead(Q,K ,V ) = concat(A1, . . . ,Ah)θO , (6.13)

where θO ∈ Rhdv×dm is another learnable parameter, h is the number of attention heads, and concat(·)
is the concatenation operator. Hence, the fundamental idea behind multi-head attention is that each
attention head, through its projectors, can extract speci�c characteristics of inputs sequences. Doing so
allows the model to jointly attend to information from di�erent representation subspaces at di�erent
positions. This aspect of multi-head attention mechanisms makes them particularly suitable for semantic
information extraction.

6.3.2 Architecture description

Figure 6.4 shows our attention-based E2E semantic communication system. Our proposed architecture
is composed of a source coder S(·), a semantic generatorG(·), a channel encoder E(·), a channel decoder
D(·), and a semantic interpreter I (·).
Semantic generator. The key component of the semantic generator is multi-head attention block (see
Figure 6.4). It allows features extraction and to �nd intrinsic relationships between pair of messages (mi ,
mj ) in an input sequence m = [m1,m2, . . . ,mN ] generated by the source, where mi ∈ Mt . It outputs
z = G(m) ∈ RN×M , in the semantic representation subspace, where each message mi is mapped into
RM .

Channel encoder. It encodes the message S(m) generated by the source coding block (e.g., using
Hu�man source coding), with the semantic information provided by the semantic generator G(m):
x = E(z, S(m)). Here, E(·) is composed of a feed-forward neural network (FNN), followed by a power
normalization layer such that E[‖x‖] = 1 to average the energy of the symbols constellation. Then,
each messagemi is encoded in n complex symbols to be transmitted through the wireless channel.

Wireless channel. The channel outputs y = hx + n, where h is the fading coe�cient matrix, and
n ∼ CN(0,σ 2

nI) is an additive Gaussian noise with power σ 2
n and I denotes the identity matrix.

Channel decoder. The decoder performs a channel equalization e.g., using Zero Forcing (ZF) method
and decodes the received symbols into the semantic representation subspace, z′ = D(y) using a feed-
forward neural network.

Semantic interpreter. It plays the inverse role of the generator. it interprets the decoded semantic
symbols in the space of possible messages of the receiver alphabetMr . As the generator, the interpreter
is composed of a multi-head attention network. For each decoded message z ′i , the output of the
interpreter is a probability distribution over all possible messages inMr : [q(m |z ′i ), ∀m ∈ Mr ]. Each z ′i
is then interpreted as the messagem ∈ Mr that maximizes q(m |z ′i ):

m̂i = arg max
m′∈Mr

q(m′ |z ′i ), ∀i . (6.14)

Remark 9. Note that the semantic interpreter can also adopt an auto-regressive model, where the
previously interpreted message is consumed as an additional input when interpreting the next one.
In other words, given a sequence of decoded symbols z′ = [z ′1, . . . , z ′N ], if the �rst symbol z ′1 is
interpreted as m̂1, then the second symbol z ′2 is interpreted given z′ and m̂1, then z ′3 given z′, m̂1 and
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m̂2, and so on.
m̂i = arg max

m′∈Mr

q(m′ |z ′1, . . . , z ′i ). (6.15)

Auto-regressive models are particularly suitable when there is a strong correlation between di�erent
messages in the sequence (e.g., text translation). However, it requires interpreting symbols one after
the other, thus can result in a large decoding overhead.

6.3.3 Performance measure

To assess the performance of the proposed semantic communication system, we de�ne the following
metric and trade-o� parameter:
Average transmission rate (bits/s). Let Ts denotes the transmission duration of each symbol. We
de�ne the average transmission rate R as the ratio between the amount of transmitted information
I (X ;Y ) and Ts , i.e.,

R =
Iθ (X ;Y )

Ts
(bits/s). (6.16)

Accuracy vs. complexity trade-o�. Moreover, we also consider the following metric:

τ =
1
E[n] × (1 −ψθ,ϑ (M, M̂)), (6.17)

where E[n] is the average number of symbol per transmitted message. Here,ψθ,ϑ (M, M̂) measures the
semantic error between transmitted message M and interpreted message M̂ . This error takes di�erent
forms depending on the context [118] (e.g., mean square error, cross-entropy or BLEU score in NLP
[128]). Thus, τ measures the trade-o� between “transmission accuracy" and model complexity in terms
of average number of symbols (E[n]) used to represent each message.

6.4 Numerical Results

We provide a detailed evaluation of the performance of our proposed adaptive E2E semantic com-
munication system in the context of natural language processing. Numerical results are reported for
text transmission as in [114]. Our reference scenario considers a transmitter communicating with a
receiver by sending a block of sentences (sequence of words) through the wireless channel using the
previously described semantic communication system. To this end, the transmitter learns to map each
word to a sequence of semantic symbols that the receiver has to interpret. Note that such a mapping is
learned from the data available at the source. Hence a word can have di�erent symbols representation
depending on the sentence it belongs to and the underlying meaning conveyed by both the word and
the sentence. In this scenario, once received symbols are interpreted back to words, we measure the
transmission accuracy in terms of Bilingual Evaluation Understudy (BLEU) Score, which counts the
di�erence of words (or group of words - n-grams) between the intended sentence and interpreted one
[128]. Its value range from zero to one, with one indicating that the interpreted message is the one as
the reference. We consider averaging the BLEU score over 1-gram to 4-grams. We use the dataset from
Tatoeba Project (translation from English to French data available at http://www.manythings.org/anki/).
All FNNs are composed of one multi-layer perceptron with 128 neurons and we use 6 attention heads.
Unless otherwise speci�ed, we set M = 64, Ts = 1s (normalized), n = 6, α = 0.01 and β = 1. Then we
train the proposed E2E network for a reference signal-to-noise ratio (SNR) of 7 dB using a batch-size of
256 and then performs tests for di�erent value of SNR.
Impact of the SNR and the source entropy. We �rst show in Figure 6.5, the impact of SNR and the
source entropy on transmission accuracy. We change the source entropy by modifying the distribution
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Figure 6.5: Impact of the SNR and HM(M) on the accuracy. Here we use n = 6 symbols/word over
AWGN channel.

pM(M). We observe in Figure 6.5 that the performance slightly decreases when HM(M) increases since
there is more information to convey to the receiver. Also, we observe that the proposed scheme achieves
a BLEU score of 1 for SNR ≥ 5 dB. In particular, we observe that this threshold varies with the reference
SNR for the training, which we set here to 7 dB.
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Figure 6.6: Impact of the trade-o� parameter α on performances.

Impact of α . Here, we assess the performance of the proposed scheme w.r.t. the trade-o� parameter
α of the objective function (6.8). Figure 6.6 shows the BLEU score and the mutual information of the
channel for di�erent α . As α increases we give more importance to I (X ;Y ) term (6.8), thus increasing
the mutual information at the risk of degrading the accuracy.
Impact of the number of symbols per word. Authors in [114] consider a �xed number of symbols
per word sent through the channel. However, depending on the length of the words (e.g., the number of
characters) and/or the conveyed semantic information, di�erent words may not use the same number
of symbols. To show this e�ect, let m = [m1,m2, . . . ,mN ] be a sequence of words to be transmitted
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and l(mi ) the length of each word mi on a character basis. Let Lm =
∑

i l(mi ) be the total number
of characters in sequence m. we �rst construct the probability vector p = [p1, . . . ,pN ] such that
pi =

l (mi )
Lm
, ∀i . Hence, pi de�nes the weight of the word mi in the sequence in terms of number of

characters. Now, let nmax be the maximum number of symbols admissible for each word. Then, we
encode each wordmi in ni (instead of �xed n = nmax as considered in [114]) symbols where,

ni = min
(
max

(
nmin, bnmaxNpi +

1
2c

)
,nmax

)
. (6.18)

Hence, ni ∈ [nmin,nmax], ∀i . In Figure 6.7, we show the impact of the adaptive vs. �xed encoding on the
metric τ , where we arbitrary �x nmin = 1 and let nmax ∈ [1, 16]. We �rst note that in both cases, there is
a trade-o� between accuracy and complexity, i.e., there is an optimal value (n∗) of nmax depending on
the SNR. In particular, for the �xed case (n = nmax), and for lower SNR (8dB) we have n∗ = 4. As the
SNR increases to 14dB, only n∗ = 3 symbols are su�cient to encode each word. In the adaptive case,
the number of symbols per word is adapted to the words’ length such that on average, E[n] ≤ nmax.
Therefore, in Figure 6.7, we clearly see that when nmax ≤ 4, the adaptive method outperforms the �xed
one, exhibiting 21.7% increase in τ . This means that for the same accuracy, the adaptive encoding uses a
lower number of symbols than the �xed encoding to represent each word. When nmax ≤ 3, the adaptive
method is slightly less e�cient: this suggests that there is a minimum number of symbols per word to
meet a given accuracy, here e.g., nmin = 2.
Impact of languages mismatch. We now show a scenario where the transmitter speaks French
and the receiver must understand in English. In this case, the sender and the receiver have di�erent
alphabets. This further introduces complexity in symbols interpretation. Indeed, many words in French
are written the same way in English leading to semantic ambiguity. The result is 30% decrease in BLEU
score performance as show in Figure 6.8. In the same �gure, we also show the performance of the
classical approach using Hu�man/6-bits coding and a 64 QAM modulation. Note that as there is no way
to infer English words from decoded symbols in the classical approaches, we rely on Google Translator,
although its alphabet is larger than that of our receiver. The proposed semantic communication clearly
outperforms the two benchmarks, especially in the low SNR regime.
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Figure 6.8: 1-gram BLEU Score vs. SNR for French-to-(French/English) translation in the presence of
AWGN channel.

6.5 Conclusion and Perspectives

In this work, we focused on showing the potential of semantic compression considering static knowl-
edge bases at the source and destination. To this end, we proposed a novel E2E architecture for an
e�cient semantic communication system. We started by analyzing theoretical aspects to formulate
an objective function for semantic representation learning. Then, we proposed a new metric and
trade-o� parameter to assess the performance of the proposed system in terms of transmission accuracy
and model complexity. Eventually, we proposed a toy example on text transmission, which shows a
signi�cant semantic compression gain, especially when sender and receiver speak di�erent languages.
In this example, the sender learns to map transmitted sentences into a sequence of well-formed symbols,
exploiting the semantic, i.e., the meaning conveyed by these sentences. Then, we proposed a mechanism
that adapts the number of symbols per word based on the conveyed semantic, providing up to 21%
extra gain compared to state-of-the-art approaches. Importantly, this gain can be signi�cantly extended
when applied to multi-modal and data-angry applications such as video-to-text or text-to-video.

Eventually, the work of this last chapter can be extended to fully take advantage of the potential
gain of semantic communications for e�ective and e�cient 6G communications. A possible extension
�rst considers dynamic knowledge bases. In this scenario, the knowledge available at the source and
destination evolves during the exchanges and according to the shared semantic channels. For example,
this is the case when the rules that govern an application change with time, and the source and the
destination must dynamically update their reasoning unit accordingly. Another perspective is to study
how the obtained semantic compression gain translates into bandwidth saving gain. This would require
�rst de�ning the semantic capacity, which is still an open research issue. Finally, as in [113], our work
focused only on jointly optimizing level A with level B. It is therefore interesting to study how to
incorporate level C, i.e., the goal-oriented aspect. One solution is to specify a communication goal: for
e.g., the receiver may interpret sentences to execute an action. Then we can optimize the resulting new
E2E architecture after a proper de�nition of the new loss function.

The technical contributions of this chapter have been validated by the following paper.

[C5] M. Sana and E. Calvanese Strinati, “Learning Semantics: An Opportunity for E�ective 6G Com-
munications,” in Proc. IEEE Consumer Communications and Networking Conference (CCNC),
Virtual, Las Vegas, January 2022.



Chapter 7

Conclusions and Future Perspectives

“Le sage n’évite pas toujours les erreurs.”

“The wise man does not always avoid mistakes.”

− Adage Mossi (Burkina Faso)
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7.1 Main Conclusions

In this thesis, we have designed and analyzed novel distributed learning frameworks for radio re-
source management in 5G and beyond networks. Our proposed approach models user equipments

as independent agents, which cooperate or compete for radio or computing resources to optimize net-
work utility functions. To do so, agents learn to make autonomous decisions in a distributed way, based
only on their local observations (and global observations if available) using a Multi Agent Reinforcement
Learning (MARL) framework. Our proposed method eliminates the need for a cumbersome database or
a priori modeling, which in practice are infeasible, thus reducing signaling and computational costs.
Our proposed solutions jointly incorporate environment’s dynamics during learning, including large
and small scale fading, intra- and inter-cell interference, users tra�c and mobility, as well as radio and
computing resources, resulting in near-optimal performance. In addition, by properly designing agent
policy network architecture, we ensure �exible, scalable, and transferable solutions. In other words,
the learned policies adapt well by design to change in the number of users and their positions and can
be transferred to new deployments without requiring substantial additional training. Thus, with the
proposed approaches, new users can bene�t from the knowledge available in the cell without requiring
new learning. Moreover, when a relevant change occurs in the radio environment (e.g., due to fading),
our proposed solution is self-reorganized toward the optimal solution.

To come out with all these valuable features, we �rst proposed a fully distributed and decentralized
user association framework in Chapter 3. In this context, we proposed a learning and orchestration
mechanism based on hysteretic deep recurrent Q network, which allows coordination between users
to achieve near-optimal performance without inter-agent communications, thus limiting signaling
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overhead. We have validated the proposed solution in millimeter-wave networks with static and
dynamic channels, as well as in a mobility context for handover management. However, despite its
valuable features, this solution lacks �exibility: it requires a new learning procedure each time a change
in the number or position of users occurs w.r.t. initial training point. To address this issue, we introduced
in Chapter 4, a transferable policy architecture, which allows a user association strategy or policy
acquired in a speci�c scenario (e.g., a network deployment) to be applied to distinct but related scenarios,
without having to rede�ne, recompute, or relearn a new policy. To achieve transferability, our proposed
novel architecture conveniently combines neural attention mechanisms and multi-agent reinforcement
learning and has zero shot generalization capacity: a policy learned in a speci�c deployment can be
transferred to another one without requiring substantial additional training procedure. Therefore, as
desired, the proposed mechanism adapts well and by design to variations in the number of UEs or changes
in the geometry of the network. Such a feature signi�cantly reduces the computational complexity
of user association during the network operations and makes the policy suitable for distributed and
dynamic scenarios.

Next, based on previous results, we addressed the problem of dynamic computation o�oading in
Chapter 5. In the considered scenario, multiple users compete for radio and computing resources to
o�oad tasks to an edge server, to reduce energy consumption and/or latency. We �rst formulated the
underlying problem as a long-term minimization problem of system energy consumption under strict
end-to-end delay constraints. Then, based on Lyapunov stochastic optimization tools, we decoupled
the formulated problem into a per slot frequency allocation problem and a radio resource allocation
problem, namely a user association problem, which are to be jointly solved. Accordingly, we proposed a
fast and e�cient iterative algorithm to solve the former problem and we hinged on our transferable user
association solution to solve the latter. The resulting framework exhibits near-optimal performance by
improving the energy e�ciency of the network while signi�cantly reducing complexity.

Finally, our analysis showed that inter-agent communication, although limited, may be necessary
for some scenarios to ensure convergence. Thus, in our last study in Chapter 6, we explored the
opportunity o�ered by semantic communications to beyond 5G network management. In this context,
what matters in communication between agents is their understanding of the meaning conveyed by
exchanged messages and not their correct reconstruction. To this end, in this preliminary work, we
focused on semantic compression. In our study, we referred to semantic as “meaningful” message (a
sequence of well-formed symbols, which are possibly learned from data) that have to be interpreted
at the receiver. This required an arti�cial reasoning unit based on a knowledge base, i.e., a symbolic
knowledge representation of the speci�c application. Therefore, we have proposed and detailed a
novel E2E architecture, which allows representation learning of semantic symbols for e�ective semantic
communications. We have discussed theoretical aspects and have designed objective functions, which
allow learning an e�cient semantic encoder and decoder. Our preliminary results have shown signi�cant
semantic compression gain, which suggests that semantic communications can bring a signi�cant leap
forward to the current 5G networks by enabling e�cient and sustainable communications.

7.2 Future Work

Here we present the perspectives of our work, which require further investigation.

7.2.1 UAV assisted wireless networks

An immediate extension of our work concerns application with mobile base stations, namely Unmanned
Aerial Vehicles (UAVs) also referred to as drones. Recently UAV applications have gained central interest
in the wireless communication community [129]. With their ability to �y, UAVs can be leveraged in a
variety of ways to enhance wireless networks. They can be deployed to provide ubiquitous network
coverage by assisting the existing wireless communication infrastructure or serve as relays to provide
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wireless connectivity between users with no line-of-sight links with surrounding base stations [130]. In
this context, an interesting study investigates optimal UAVs deployment and trajectory optimization
w.r.t. static ground base stations load, UAVs’ battery level, and users tra�c demand and mobility. Then,
a solution to this problem exploits the idea introduced by our proposed user association solution in
Chapter 4 to build adaptive and fully transferable Radio Resource Management (RRM) policies. Here,
the interaction between multiple UAVs and UEs can be formulated as two distinct MARL problems,
where the former optimizes UAVs placement, and the latter optimizes user association.

7.2.2 Explainable policies

Policy explainability is an interesting direction of study [131]. Indeed, the agents in our MARL frame-
work learn to take autonomous decisions, which have an impact on the network performance. It is
therefore primordial to understand and to be able to explain the underlying reasoning behind every
decision as well as exchanged messages. Doing so will help gain con�dence in the learning performance
and recover from failure situations, which can occur due to the uncertainties of wireless channels. In
the context of user association, an attempt to explain the learned policies in Chapter 3 and 4, may �rst
identify how the di�erent components of UEs’ observations impact the output association request. This
can be achieved using e.g., classi�cation methods or principal component analysis, which will enable to
construct a table mapping the resulting key components to association requests.

7.2.3 Communications for machine learning

Another interesting line of research is to study the impact of wireless communications on machine
(or edge) learning applications. One prominent example is federated learning over-the-air, where
multiple distributed devices collaboratively perform common learning tasks by exchanging their model
parameters rather than raw data, using wireless communication links [132]. In this context, many
challenges arise, ranging from learning convergence to optimizing communication and computation
resources for communication-e�cient learning. Our work in Chapter 5 can be extended, considering
that o�oaded tasks are now learning tasks (e.g., federated learning) and jointly optimizing learning
performance with computation and communication constraints.

7.2.4 Semantic and goal oriented communications

Our preliminary results on semantic communications are promising. In particular, we have shown in
Chapter 6 that a signi�cant semantic compression gain can be obtained by transmitting only relevant
information, which allow the receiver to correctly extract and understand the intended meaning rather
than trying to reproduce the information exactly from one point to another [2]. However, our work did
not focus on how a semantic compression gain translates into bandwidth saving. As we mentioned
in Chapter 6, this would require �rst de�ning the semantic capacity, which is still an open research
issue. In addition, as our work focused on applications with the source and destination sharing static
knowledge bases, a possible extension considers dynamic knowledge base systems. Such applications
require the source and destination to dynamically update their reasoning unit, as their knowledge bases
evolve during the exchange of messages and according to the shared semantic channels. Finally, our
work focused on jointly optimizing level A with level B. The interesting study to incorporate level C,
i.e., the goal-oriented aspect, requires specifying a communication goal. For instance, following our
examples of Chapter 6, the receiver may now interpret sentences to execute actions. Then we can
optimize the resulting new E2E architecture after a proper de�nition of the new loss function. We
believe that semantic communications together with goal-oriented communications may be one of the
cornerstones of sixth-generation (6G) networks [133], thus requiring further research.
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Appendix A

Résumé étendu de thèse

Les travaux de thèse présentés dans ce manuscrit portent sur les mécanismes d’apprentissage
distribués pour la gestion et l’orchestration des réseaux mobiles 5G et au-delà. Plus spéci�quement,

nous étudions comment gérer de manière e�ciente et e�cace les ressources radio et computationnelles
des réseaux mobiles en se basant sur des approches d’apprentissage distribuées et sur l’intelligence
arti�cielle. Dans ce qui suit nous résumons brièvement les principaux résultats de nos travaux de
recherches. Pour cela nous commençons par situer le contexte d’étude, puis nous décrivons les principaux
challenges associés avant de décliner les méthodes proposées pour adresser ces problèmes.

Introduction et contexte d’étude

Les communications sans �l connaissent une demande sans précédent de débit et de bande passante.
Non seulement le volume du tra�c de données explose, mais les spéci�cités et la nature des objets
communicants se diversi�ent. Dans le même temps, de nouvelles applications et de nouveaux cas
d’utilisation apparaissent, chacun avec des exigences strictes en termes de �abilité et/ou de latence.
Il s’agit par exemple de la réalité augmentée, virtuelle et mixte, de la télémédecine, des véhicules
autonomes, des véhicules volants, de l’Internet des objets (IoT), des usines 4.0 et des villes intelligentes.
Cela pousse le réseau sans �l à se réinventer constamment pour relever ces dé�s. L’introduction récente
de la cinquième génération (5G) de réseaux mobiles en est un parfait exemple [4]. La technologie 5G
représente une avancée considérable dans la conception des réseaux de communication. Elle fournit une
infrastructure de communication capable de délivrer simultanément des communications hautement
�ables, à faible latence et à débits de données élevés, prenant ainsi en charge une variété de services.
Ces services sont généralement répartis en trois grandes catégories :

1. Les communications à haut débit (eMBB) : poussés par la nécessité de fournir un débit de données
plus élevé, les services eMBB visent à améliorer la capacité du réseau à prendre en charge des
connexions stables avec des débits de données de pointe très élevés (jusqu’à 20 Gbps en liaison
descendante [5]) ainsi que des débits de données modérés pour les utilisateurs en bordure de
cellule (fournissant globalement un débit de données perçu de 100 Mbps à tout moment et en
tout lieu).

2. Les communications massives entre-machines (mMTC): ce service vise à prendre en charge un
nombre massif de dispositifs connectés ayant des communications sporadiques (envoi de petits
paquets de données) et une faible consommation d’énergie, comme les dispositifs IoT. Parmi les
autres cas d’utilisation �gurent les réseaux intelligents, l’internet tactile ainsi que les services
impliquant des communications de machine à machine.

3. Les communications ultra-�ables à faible latences (URLLC): ce service vise à prendre en charge
les applications nécessitant une transmission de paquets courts à faible latence et une �abilité
extrêmement élevée (avec des taux d’erreur des paquets autour de 10−5 − 10−9). Ces applications
vont de la télé-chirurgie aux véhicules autonomes en passant par les usines 4.0.

Pour répondre à toutes ces exigences strictes, la 5G adopte principalement des communications dans les
bandes millimétriques, l’approche MIMO massif en augmentant le nombre d’antennes par station de base
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pour avoir des gains d’antenne important et des communications directives, ainsi qu’un déploiement
(ultra) dense des points d’accès mobiles pour booster la capacité du réseau [6]. Cela n’est pas sans
complexités additionnelles. En e�et, les communications dans les bandes millimétriques sou�rent d’une
sévère atténuation du canal et sont très sensibles au blocage et aux absorptions atmosphériques. La
densi�cation des points d’accès mobile quant à elle, augmente le nombre de stations à gérer, entraînant
également des interférences intercellulaires tandis que la gestion simultanée des utilisateurs devient
complexe avec le MIMO massif (formation et choix des faisceaux optimaux trop complexes). À cela
se rajoutent une complexité liée à la croissance exponentielle du nombre d’utilisateurs connectés, des
services hétérogènes et exigeants, des données de tra�c variables, des canaux sans �l dynamiques. De
ce fait, la gestion des ressources radio devient de plus en plus complexe, nécessitant désormais des
solutions avancées, �exibles, évolutives et peu complexes que nous étudions dans cette thèse.

Des solutions distribuées pour la gestion des ressources radio

Dans les communications sans �l, la gestion des ressources radio (RRM) implique toutes les stratégies,
procédures et algorithmes utilisés pour gérer e�cacement les ressources radio (par exemple la formation
de faisceaux, l’allocation de puissance, le choix de la modulation et du schéma de codage de canal,
etc.). Traditionnellement, ces algorithmes sont obtenus en résolvant des problèmes d’optimisation basés
par exemple sur le tra�c de données (instantané), la dynamique des canaux sans �ls, les exigences
dynamiques de qualité de service des utilisateurs, la charge des stations de base, et cela, sous des
contraintes spéci�ques de consommation d’énergie des utilisateurs, de latence, de débit, etc. En général,
ces problèmes d’optimisation sont des problèmes de programmation en nombres entiers (ou en nombres
mixtes), qui sont non convexes et NP-di�cile. Par conséquent, les solutions traditionnelles fonctionnent
généralement de manière centralisée. En e�et, les approches centralisées donnent de meilleurs résultats
car les informations provenant de plusieurs nœuds du réseau sont collectées et traitées de manière
uni�ée. Cependant, elles entraînent une surcharge importante de signalisation et nécessitent un calcul
excessif, ce qui n’est pas pratique pour les réseaux 5G en raison du déploiement dense d’utilisateurs
et de stations de base. De plus, comme souligné, la gestion des ressources radio fait intervenir de
nombreuses variables d’optimisation qui ne sont pas toujours bien dé�nies mathématiquement (en
raison de la nature dynamique de l’environnement de propagation, de la mobilité des utilisateurs), ce
qui rend di�cile la formulation et la résolution de problèmes d’optimisation. Cela motive davantage
l’exploration de solutions plus avancées pour la gestion des ressources radio. Cette thèse fait le choix
des approches d’apprentissage distribué pour une gestion e�cace et e�ciente des ressources radio des
réseaux mobiles 5G et au-delà. Les solutions distribuées ont l’avantage d’être �exibles, évolutives et
robustes face aux perturbations ambiantes. En outre, elles réduisent la surcharge de signalisation et
évitent des calculs centralisés laborieux. Cependant, l’apprentissage distribué fait face à plusieurs dé�s,
notamment dans les réseaux 5G denses, en raison d’un environnement sans �l incertain et des ressources
radio et de calcul limitées. Motivés par ces dé�s, nous proposons de nouveaux cadres d’apprentissage
distribué basés sur l’apprentissage par renforcement multi-agent, tenant compte de la dynamique de
l’environnement (variations des canaux sans �l, interférences intra et intercellulaires, tra�c et mobilité
des utilisateurs) pour une gestion dynamique des ressources radio. Plus précisément, notre approche
modélise les équipements utilisateur comme des agents indépendants, qui collaborent (ou rivalisent)
pour accéder à des ressources radio et/ou computationnelles a�n d’optimiser des fonctions d’utilité du
réseau. Pour cela, les agents s’appuient sur leurs observations locales (et sur d’éventuelles observations
globales) pour prendre des décisions autonomes, réduisant ainsi les coûts de signalisation et de calcul.
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UE j

L’environnement radio est opaque aux utilisateurs

Environnement radio

aj (t)

R j (t), R(t)
ACKj (t), . . .

oj (t)

Figure A.1: Illustration du cadre d’apprentissage par renforcement proposé.

Une gestion dynamique basée sur l’apprentissage par renforcement
multi-agent

En se basant sur cette approche distribuée, nous proposons dans un premier temps, un cadre d’association
d’utilisateurs entièrement distribué et décentralisé pour l’a�ectation optimale des équipements util-
isateurs aux stations de base, ainsi que pour gérer la mobilité. L’association optimale des utilisateurs
aux stations de base est une tâche fondamentale, qui est cruciale dans les communications mobiles car
elle a�ecte directement l’e�cacité spectrale du réseau ainsi que la qualité de service perçue par les
utilisateurs. Cependant elle est di�cile à résoudre car c’est un problème combinatoire qui implique
généralement des optimisations non convexes et NP-di�cile. Pour résoudre ce problème, notre solution
associe des mécanismes d’apprentissage par renforcement aux méthodes d’apprentissage machine
(et d’apprentissage profonds). En utilisant ce mécanisme, il n’est nullement besoin de bases de don-
nées experts labélisés ou de modèles de l’environnement radio, intraitable mathématiquement le plus
souvent. Dans notre solution, les agents apprennent leur politique d’association par interaction avec
l’environnement radio, de manière à maximiser des fonctions d’utilité du réseau.

Chaque équipement d’utilisateur est modélisé comme un agent indépendant qui prend des dé-
cisions autonomes basées sur ces observations locales oj (t). Ces observations locales sont choisis
avantageusement à l’instant t comme suit :

oj (t) =
{
aj (t − 1),Raj (t−1), j (t − 1),R(t − 1),ACKj (t − 1),RSSaj (t−1), j (t),D j (t)

}
. (A.1)

où aj (t − 1) est l’action ayant été e�ectuée par l’utilisateur j à l’instant précédent, ACKj (t − 1) est
la réponse à la requête d’association renvoyée par la station de base à laquelle elle a été transmise
(par exemple ACKj (t − 1) = 1 si l’association était acceptée et ACKj (t − 1) = 0 si elle était refusée).
RSSaj (t−1), j (t) est à la mesure à l’instant t de la puissance reçue de la station de base à laquelle le terminal
mobile s’est associé, D j (t) est le débit demandé par le terminal mobile à l’instant t , Raj (t−1), j (t − 1) est
une estimation de la capacité de canal de la liaison descendante à l’instant précédent t − 1 (autrement dit
Ri, j (t) = Bi, j log2

(
1 + SINRi, j (t)

)
où Bi, j et SINRi, j sont respectivement la bande passante et le rapport

signal à bruit plus interférence lorsque l’utilisateur j est associé à la station de base i). La capacité totale
du réseau obtenue à l’instant précédent est alors calculée sur l’ensemble des utilisateurs comme suit :

R(t) =
∑
i ∈A

∑
j ∈U

xi, jUα
(
min

(
Ri, j (t),D j (t)

) )
, (A.2)
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oùA etU désignent respectivement l’ensemble des stations de base et des utilisateurs dans le réseau. Ici,
Uα (·) est une fonction d’utilité permettant d’introduire une équité dans l’association selon le paramètre
α [44]. Elle est dé�nie comme suit :

Uα (x) =
{ (1 − α)−1x1−α , si α ≥ 0 et α , 1,

log(x), α = 1. (A.3)

Ainsi par exemple si α = 1, nous avons une équité proportionnelle entre les utilisateur.
L’action d’un équipement utilisateur à l’instant t est dé�nie par la requête d’association de cet

utilisateur, soit aj (t) = i , où i désigne l’index de la station de base demandée. Ainsi, après que l’agent
associé à l’utilisateur j ait observé le vecteur oj (t) et pris l’actionaj (t), celui-ci reçoit une récompense r (t),
dé�nie sur la base de la fonction d’utilité du réseau, et commune à tous les utilisateurs. Les équipements
utilisateur apprennent ainsi de manière indépendante une stratégie (politique) d’association πj qui
décide pour chaque observation, l’action à e�ectuer permettant de maximiser la somme de récompenses
au cours du temps.

Il est important de noter que dans le cadre proposé, la taille des observations n’évolue pas avec le
nombre d’utilisateurs, contrairement à d’autres travaux de la littérature [40]. Aussi, les utilisateurs ne
sont pas conscients de leur présence mutuelle dans le réseau et les observations de chaque utilisateur
informent partiellement de l’état du réseau. Ce faisant, malgré la bonne association d’un utilisateur
donné, la fonction d’utilité résultante peut décroître du fait du mauvais comportement des autres
utilisateurs générant ainsi de fortes interférences. Cela peut pousser cet utilisateur à changer sa
stratégie bien qu’étant bonne. Ce problème de non-stationnarité de l’environnement dû à l’interaction
de multiple agents est fondamental dans l’apprentissage par renforcement multi-agent [63].

L’approche que nous proposons résous ce problème en introduisant le principe d’hystérésis dans
l’apprentissage, permettant de traiter di�éremment les récompenses positives et négatives perçues
par les utilisateurs au cours du temps [64]. Plus précisément, un utilisateur, décidant d’être optimiste,
accorde moins d’importance à la faible récompense reçue après son action, faisant l’hypothèse que
cela est probablement dû au mauvais comportement des autres utilisateurs. Il ignore donc de ce fait
cette récompense, en maintenant sa stratégie apprise. Nous montrons qu’en choisissant bien le degré
d’optimisme de chaque utilisateur, nous améliorons considérablement les performances d’apprentissage.
Outre cela, la solution que nous proposons intègre la dynamique de l’environnement (interférence
des canaux, évanouissement rapide et tra�c réseau) pendant la phase d’apprentissage, de sorte que
l’association des utilisateurs se réorganise d’elle-même vers l’association optimale lorsqu’un changement
pertinent se produit dans l’environnement. Par conséquent, nous réduisons davantage les coûts de
signalisation ainsi que la complexité de calcul. Ceci est en contraste avec les solutions actuelles de l’état
de l’art, qui ne prennent pas en compte la nature dynamique des réseaux sans �l, nécessitant ainsi de
recalculer périodiquement ou à chaque fois qu’un changement notable se produit dans l’environnement
pour corriger les dérives possibles de l’association optimale. Nous validons cette approche à la fois
dans un réseau hétérogène statique et dynamique, comprenant des stations de base millimétriques et
sub-6 GHz. Nous montrons notamment que notre approche permet d’atteindre jusqu’à 98.7% de la
performance optimale obtenue par une recherche exhaustive, augmentant les gains de performance
de 40% comparés à des solutions de l’état de l’art. Dans le cas de la mobilité, notre solution permet de
réduire de 70% la fréquence de transfert d’un utilisateur d’une station de base à une autre, très coûteux
aussi bien énergétiquement que matériellement.

La nouveauté de cette contribution est ensuite validée dans les articles de conférence, de journal et
de brevet suivants:

[C1] M. Sana, A. De Domenico, and E. Calvanese Strinati, “Multi-Agent Deep Reinforcement
Learning based User Association for Dense mmWave Networks,” In Proc. IEEE Global Com-
munications Conference (GLOBECOM), HI, USA, pages 1–6., Dec 2019.
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[C2] M. Sana, A. De Domenico, E. Calvanese Strinati, and A. Clemente, “Multi-Agent Deep Rein-
forcement Learning for Distributed Handover Management In Dense MmWave Networks,” In
Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Madrid, Spain, pages 8976–8980., May 2020.

[J1] M. Sana, A. De Domenico, W. Yu, Y. Lostanlen, and E. Calvanese Strinati, “Multi-Agent
Reinforcement Learning for Adaptive User Association in Dynamic mmWave Networks,” IEEE
Transactions on Wireless Communications, 19 (10):6520–6534, 2020.

[P1] M. Sana, A. De Domenico, “Method for associating user equipment in a cellular network via
multi-agent reinforcement learning,” Issued in May 20, 2021, US17099922.

Des solutions d’association d’utilisateurs transférables

L’une des principales limites des algorithmes de gestion des ressources radio est qu’ils sont souvent
fondés sur des hypothèses assez rigides, telles que des ensembles pré-dimensionnés et �xes de stations
de base et d’utilisateurs statiques, des conditions de canal favorables, l’absence d’interférence intra
ou intercellulaire. Pourtant, dans les réseaux dynamiques à ondes millimétriques, en particulier dans
les réseaux denses, le nombre d’utilisateurs, leur position les uns par rapport aux autres et par rap-
port aux stations de base, ainsi que les exigences de performance des services auxquels ils accèdent
sont susceptibles de changer au �l du temps avec une grande dynamique. Même dans des scénarios
relativement stables du point de vue du canal radio et du tra�c de données, l’arrivée dans le réseau ou
le départ du réseau d’un ou plusieurs utilisateurs impacte les performances globales du réseau. Cela
nécessite donc une adaptation constante de l’association d’utilisateurs pour garantir dynamiquement la
meilleure qualité de service possible. Pour résoudre ces problèmes, nous proposons dans le chapitre 4
une politique d’association d’utilisateurs évolutive et facile à gérer. Plus précisément, contrairement à
la solution précédente formulée pour des scénarios prédé�nis, cette nouvelle solution se concentre sur
l’aspect central de la transférabilité. Elle permet d’appliquer la stratégie ou la politique d’une association
d’utilisateurs acquise dans un scénario spéci�que (par exemple, un déploiement donné de réseau) à un
autre scénario distinct mais connexe, sans qu’il soit nécessaire de revoir la conception, de recalculer
ou de réapprendre une nouvelle politique. De plus, la solution que nous proposons, a une erreur de
généralisation quasi-nulle (“zero-shot” learning) : elle s’adapte bien par conception aux variations du
nombre d’utilisateurs et de leurs positions sans nécessiter de procédure d’entrainement supplémentaire.
Cela réduit considérablement la complexité de calcul de l’association des utilisateurs pendant la phase
opérationnelle du réseau et rend la politique adaptée aux scénarios distribués et dynamiques. Nos
résultats de simulation montrent que la solution proposée est capable de s’adapter e�cacement même
lorsque le nombre d’utilisateurs double par rapport à la référence d’apprentissage, avec des gains de
performance pouvant atteindre 100% comparés à des solutions de l’état de l’art. Nous validons ensuite
la nouveauté de cette proposition dans les contributions suivantes:

[C3] M. Sana, N. di Pietro, and E. Calvanese Strinati, “Transferable and Distributed User Asso-
ciation Policies for 5G and Beyond Networks,” IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), Virtual, Sept. 2021.

[P2] M. Sana, N. di Pietro, E. Calvanese Strinati, and B. Miscopein, “Method for associating
user equipment in a cellular network according to a transferable association policy,” Filed in
September 30, 2020, FR2009989.
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De l’association d’utilisateur au déchargement à faible consommation
d’énergie de tâches de calcul sur des périphéries distantes

Jusqu’à présent, nous avons étudié les mécanismes d’association des utilisateurs pour améliorer
l’e�cacité spectrale du réseau. Nous proposons maintenant de consolider tous ces acquis pour résoudre
le problème du déchargement de calcul e�cace en énergie sur des serveurs distants. En e�et, avec le
déploiement de capacités de calcul et de stockage à la périphérie du réseau, l’informatique de périphérie
(également connue sous le nom d’informatique périphérique mobile multi-accès (MEC)) a été conçue
pour permettre des services à faible latence, hautement �ables et économes en énergie, en rapprochant
les ressources et les capacités de calcul du “cloud” au plus près des utilisateurs �naux. Dans ce contexte,
le déchargement dynamique de tâches de calcul permet aux dispositifs pauvres en ressources de calcul,
de transférer l’exécution des applications à des serveurs distants a�n de réduire la consommation
d’énergie et la latence. Dans le scénario envisagé, plusieurs utilisateurs se disputent simultanément des
ressources radio et de calcul en périphérie limitées pour obtenir le traitement des tâches déchargées
sous des contraintes de délai. Pour cela, nous exploitons les modes de veille à faible consommation à
tous les nœuds du réseau. Autrement dit, les utilisateurs, tout comme les stations de base et les serveurs
distant peuvent décider de se mettre en “mode veille” pour réduire la consommation d’énergie. Il s’agit
ensuite de déterminer quand éteindre ou rallumer un noeud. Du point de vue de la gestion du réseau,
cette tâche est complexe et nécessite une optimisation conjointe des ressources radio et de calcul. Dans
le chapitre 5, nous formulons le problème sous-jacent comme un problème d’optimisation dynamique à
long terme visant à réduire la consommation d’énergie à long terme sous des contraintes strictes de
délai. Ensuite, en se basant sur les outils d’optimisation stochastique de Lyapunov, nous montrons que
ce problème peut être découplé en un problème d’ordonnancement de fréquence CPU et un problème
d’allocation des ressources radio, à savoir un problème d’association d’utilisateurs. Nous proposons
donc un algorithme itératif rapide, particulièrement e�cace pour résoudre le premier problème et nous
nous appuyons sur le cadre d’association d’utilisateurs proposé précédemment pour résoudre le second.
Dans l’ensemble, l’originalité de la solution résultante réside dans sa capacité à simultanément : i)
minimiser les rapports cycliques de mise en veille de tous les éléments du réseau sous contraintes de
délai; ii) gérer e�cacement les interférences radio; iii) être peu complexe; iv) combiner les méthodes
d’optimisation stochastique de Lyapunov avec l’apprentissage par renforcement multi-agent (MARL);
v) être distribué et compatible avec la mobilité des UE. Nos résultats de simulation montrent alors
que la méthode proposée atteint 96.5% des performances optimales obtenues par recherche exhaustive
onéreuse et permet de réduire la consommation d’énergie de 10% comparée à un algorithme heuristique
proposée. La nouveauté de cette contribution est validée par l’article de conférence suivant:

[C4] M. Sana, M. Merluzzi, N. di Pietro, and E. Calvanese Strinati, “Energy E�cient Edge Com-
puting: When Lyapunov Meets Distributed Reinforcement Learning,” IEEE International
Conference on Communications (ICC) Workshops, Virtual, Montreal, Canada, June 2021.

Vers des communications sémantiques pour des réseaux au-delà de la
5G encore plus performants

Nous avons montré dans les travaux précédents que la communication entre agents, bien que limitée,
peut être nécessaire dans certains scénarios pour garantir la convergence. Si l’on revient à la théorie de
l’information de Shannon, l’objectif de la communication a longtemps été d’assurer la réception correcte
des messages transmis, indépendamment de leur signi�cation. Cependant, pour que la communication
soit e�cace, ce qui importe est que les agents comprennent le sens véhiculé par les messages échangés
et non leur reconstruction correcte. Ce paradigme fait référence aux communications sémantiques :
transmettre uniquement les informations pertinentes su�santes pour que les agents saisissent le sens
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voulu (l’objectif visé) permet d’économiser beaucoup de bande passante de communication. Dans
cette dernière contribution, nous proposons d’explorer l’opportunité des communications sémantiques
comme nouveau fondamental pour les réseaux au-delà de la 5G. Pour cela, dans le chapitre 6, nous
proposons et détaillons une nouvelle architecture qui permet l’apprentissage de la représentation des
symboles sémantiques pour des communications e�caces entre agents. Nous discutons des aspects
théoriques et concevons avec succès des fonctions objectives qui permettent d’apprendre des codeurs et
des décodeurs sémantiques e�caces. Nous proposons également un mécanisme adaptatif, qui optimise
dynamiquement le nombre de symboles de chaque message transmis. En�n, nous validons notre
approche dans un scénario de transmission de texte, où un expéditeur - un agent IA - transmet des
phrases dans une langue que le récepteur doit décoder et comprendre dans une autre langue. Nos
résultats numériques préliminaires sont prometteurs et montrent le potentiel des communications
sémantiques pour les futurs réseaux 6G. Les résultats de cette contribution ont été acceptés pour
publication dans la conférence suivante:

[C5] M. Sana and E. Calvanese Strinati, “Learning Semantics: An Opportunity for E�ective 6G
Communications,” in Proc. IEEE Consumer Communications and Networking Conference
(CCNC), Virtual, Las Vegas, January 2022.

Conclusion

Dans cette thèse, nous avons conçu et analysé de nouveaux cadres d’apprentissage distribué pour la
gestion des ressources radio dans les réseaux mobiles 5G et au-delà. L’approche que nous proposons
modélise les équipements des utilisateurs comme des agents indépendants, qui coopèrent ou rivalisent
pour des ressources radio ou de calcul a�n d’optimiser les fonctions d’utilité du réseau. Pour ce faire, ils
apprennent à prendre des décisions autonomes de manière distribuée, en se basant uniquement sur
leurs observations locales (et les observations globales si elles sont disponibles) en utilisant un cadre
d’apprentissage par renforcement multi-agent. Cette méthode élimine le besoin d’une base de données
onéreuse à constituer ou d’une modélisation a priori de l’environnement radio, qui en pratique sont
infaisables, réduisant ainsi les coûts de signalisation et de calcul. Les solutions que nous proposons
intègrent conjointement la dynamique de l’environnement pendant l’apprentissage, y compris les
évanouissements à grande et petite échelle des canaux, les interférences intra et intercellulaires, le tra�c
et la mobilité des utilisateurs, ainsi que les ressources radio et computationnelles, ce qui permet d’obtenir
des performances quasi-optimales. De plus, en concevant correctement l’architecture neuronale de la
politique des agents, nous garantissons des solutions �exibles, évolutives et transférables. En d’autres
termes, les politiques apprises s’adaptent bien par conception aux changements du nombre d’utilisateurs
et de leurs positions et peuvent être transférées à de nouveaux déploiements sans nécessiter de procé-
dures d’entrainement substantielles. Ainsi, avec les approches proposées, les nouveaux utilisateurs
peuvent béné�cier des connaissances disponibles dans la cellule sans nécessiter un nouvel apprentissage.
De plus, lorsqu’un changement pertinent se produit dans l’environnement radio (par exemple, en raison
de l’évanouissement des canaux sans �l), notre solution proposée s’auto-réorganise vers la solution
optimale. En�n, dans notre dernière étude, nous avons exploré l’opportunité des communications
sémantiques comme nouveau fondamental pour les communications au-delà des réseaux 5G. Dans ce
contexte, ce qui importe dans la communication entre agents est leur compréhension du sens véhiculé
par les messages échangés et non leur reconstruction correcte. Par conséquent, nous avons proposé
et détaillé une nouvelle architecture, qui permet l’apprentissage de la représentation des symboles
sémantiques pour des communications sémantiques e�caces. Nos résultats préliminaires se sont avérés
prometteurs et suggèrent que les communications sémantiques apporteront un bond en avant signi�catif
aux réseaux 5G actuels.



Appendix B

Training transferable policies

We provide in this Appendix, the sequence diagram and the algorithm used to derive transferable user
association policies of Chapter 4.

UEj MBS SBS

Find the surrounding BSs i.e., Aj

Compute and report vj (t)

Process oLj (t) and vj (t)

Request connection to aj (t)

if aj (t) = 0, MBS transmit data

if aj (t) > 0, Request Access for the UE

ACKj (t)

if ACKj (t) = 0, MBS transmit data

if ACKj (t) = 1, SBS transmit data

Evaluate Raj (t ), j (t)

Forward min
(
Raj (t ), j (t),D j (t)

)

Compute R(t)

Broadcast R(t)

Figure B.1: Message sequence chart for a distributed implementation of the proposed mechanism.

Fig. B.1 shows the �ow diagram for a possible implementation of the proposed framework in a
distributed fashion. Here, we assume a central controller collocated with the MBS. Each UE j �rst
identi�es the set of BSs Aj it could connect to, which also represents its action space, i.e. , an action
aj (t) ∈ Aj denotes the index of the BS to which the UE j requests connection at time t . Accordingly, at
each time step, UE j observes its local observations oLj (t) and computes the local encoding vector uj (t).
Then given the available global information, the central controller computes for each UE j, the global
encoding vector vj (t). Based on uj (t) and vj (t), UE j selects an action aj (t) and informs the MBS of the
association request. If aj (t) = 0, the MBS grants the connection request and sets up communication.
Otherwise, the MBS forwards the connection request to the corresponding SBS. Depending on the overall
received requests, the SBS sends an acknowledgement signal (ACKj (t)) to the MBS. If ACKj (t) = 1,
the SBS grants a connection to the UE; otherwise, the MBS establishes the default data link with the
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UE j. Next, each UE j evaluates the perceived data rate, i.e. , R j (t) = Baj (t ), j log2(1 + SINRaj (t ), j ) and
forwards this value to the MBS. Then, the MBS computes the total network utility R(t) and sends it
each UE, which use this information to evaluate the goodness of the action selection strategy, and to
de�ne future actions accordingly. In Algorithm 5 we summarizes the main steps used for training the
proposed transferable user association policies using Proximal Policy Optimization (PPO).

Algorithm 5: Transferable User Association: Training Procedure
1 Initialize actor and critic network. // Note: UEs share the same policy network.
2 Initialize global memoryM.
3 for N episodes do
4 Randomly deploy K UEs.
5 Apply dropout mechanism with probability p0.
6 Free global memoryM.
7 while t < Te do
8 for j ∈ U do
9 Observe state oj (t) = {oLj (t), oGj (t)}.

10 Use the actor and compute the association probability vector pj (t) = [p0, j , . . . ,pNs , j ].
11 Sample action aj (t) in Aj from distribution pj (t).
12 if aj (t) == 0 then
13 MBS grants access.
14 ACKj (t) ← 1. // the UE is requesting a connection to the MBS.

15 end
16 end
17 for i ∈ A\{0} do
18 if

∑
j 1aj (t )=i > Ni then

19 Admit only the best Ni UEs w.r.t. their pj (t) and set ACKj ← 1 for these UEs.
20 Redirect the others UEs towards the MBS and set ACKj ← 0 for these UEs.
21 else
22 ACK ← 1 for all SBS’ UEs.
23 end
24 end
25 for j ∈ U do
26 Measure Raj (t ), j .
27 end
28 R(t) ← ∑

i ∈A
∑

j ∈U xi, jUα
(
min

(
Ri, j (t),D j (t)

) )
. // compute network utility.

29 for j ∈ U do
30 r j (t) = R(t). // UEs are equally rewarded.
31 Observe the new state oj (t + 1) = {oLj (t + 1), oGj (t + 1)}.
32 Store experience ej (t) =

{
oj (t),aj (t), r j (t), oj (t + 1)} into global memoryM.

33 end
34 t = t + 1.
35 end
36 Sample a batch of experiences fromM.
37 Update actor network to minimize the PPO loss: Eπ

[
min

(
ζ (θ )Â, clip (ζ (θ ), 1 − ϵ1, 1 + ϵ2) Â

)]
38 Update critic network to minimize the TD error : δ (t) = r (t) + γV (oj (t + 1)) −V (oj (t))
39 end
40 Note that the “gray parts" can be computed in parallel.



Appendix C

Upper bound of the Lyapunov
drift-plus-penalty function

In this Appendix, we provide full derivations of the Lyapunov drift-plus-penalty’s upperbound used for
Proposition 1 in Chapter 5. For this let us recall the de�nition of the virtual queues, which evolve as:

Z j (t + 1) = max(0,Z j (t) +Q tot
j (t + 1) −Qavg

j ), ∀j . (C.1)

Here, Q tot
j (t) = Q l

j (t) +Qs
j (t) is the sum of the uplink communication queue Q l

j (t) and the computation
queue Qs

j (t , which evolve as follow:

Q l
j (t + 1) = max

(
0,Q l

j (t) − Nu
j (t)

)
+ D j (t), (C.2)

Qs
j (t + 1) = max

(
0,Qs

j (t) − N c
j (t)

)
+min

(
Q l
j (t),Nu

j (t)
)
, (C.3)

where D j (t) is the number of newly arrived o�oadable data units generated by the application that
runs at the UE at time t , Nu

j (t) and N c
j (t) are the number of data units o�oaded and processed over

one slot respectively.

Lyapunov function

Our initial objective is to ensure the mean rate stability of the virtual queues Z j (t) ∀j. For this, we
introduce the Lyapunov function L(Z(t)) as:

L(Z(t)) = 1
2

K∑
j=1

Z j (t)2. (C.4)

Note that the lower is L(Z(t)), the lower the virtual queues. Also, we introduce the associated Lyapunov
drift-plus-penalty function, which is de�ned as follows:

∆p (Z(t)) = E [L(Z(t + 1)) − L(Z(t)) + Ω · Ew(t)|Z(t)] . (C.5)

Here, ∆p (Z(t)) is the conditional expected change of the Lyapunov function over one slot plus a penalty
factor that weights the objective function of (P0) using parameter Ω. Now, if ∆p (Z(t)) is bounded ∀t ,
all virtual queues are mean rate stable [105]. Thus, our objective is to de�ne an upperbound of ∆p (Z(t)).

Upperbound derivation

To derive an upper bound of ∆p (Z(t)), �rst note that from [105, p. 59], given a generic queue X (t)
evolving as

X (t + 1) = max(0, X (t) + y(t + 1) − ȳ), (C.6)

we have,
X (t + 1)2 − X (t)2

2 ≤ (y(t + 1) − ȳ)2
2 + X (t)y(t + 1) − X (t)ȳ.
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To simplify notations, let ∆X (t)2 = X (t +1)2−X (t)2. By applying (C.7) to the virtual queue Z j (t) de�ned
in (C.1) and noting that (x + y)2 ≤ 2x2 + 2y2, we can write

∆Z j (t)2
2 ≤

(
Q tot
j (t + 1) −Qavg

j

)2

2 + Z j (t)
(
Q tot
j (t + 1) −Qavg

j

)
,

=
1
2

(
Q tot
j (t + 1)

)2
−Q tot

j (t + 1)Qavg
j +

1
2

(
Q

avg
j

)2
+ Z j (t)

(
Q tot
j (t + 1) −Qavg

j

)
,

≤
(
Q l
j (t + 1)

)2
+

(
Qs
j (t + 1)

)2
+

1
2

(
Q

avg
j

)2
+ Z j (t)

(
Q tot
j (t + 1) −Qavg

j

)
.

Now, note that for A,b ≥ 0 we have from [105]:

(max(0,Q − b) +A)2 ≤ Q2 +A2 + b2 + 2Q(A − b). (C.7)

Now, recalling the evolution of the physical queues (C.2), we can write

∆Z j (t)2
2 ≤

(
Q l
j (t)

)2
+

(
D j (t)

)2
+ 2Q l

j (t)
(
D j (t) − Nu

j (t)
)
+

(
Nu
j (t)

)2

+
(
min

(
Q l
j (t),Nu

j (t)
))2
+

(
Qs
j (t)

)2
+ 2Qs

j (t)
(
min

(
Q l
j (t),Nu

j (t)
)
− N c

j (t)
)

+
(
N c
j (t)

)2
+

1
2

(
Q

avg
j

)2
+ Z j (t)

(
Q tot
j (t + 1) −Qavg

j

)
. (C.8)

Next, applying the following inequalities

• D j (t) ≤ Dmax
j ,

• The frequency allocated to each UE j is such that fj (t) ≤ fmax,

• N c
j (t) ≤ N c,max

j = bτ fmax Jj c, where Jj is the number of processed data units per CPU cycle,

• Nu
j (t) ≤ Nu,max

j =
⌊ τ Rmax

j
Sj

⌋
, where Rmax

j is the maximum rate of UE j.

we have,

∆Z j (t)2
2 ≤

(
Q l
j (t)

)2
+ (Dmax

j )2 + 2Q l
j (t)D j (t) + (Nu

j (t))2 − 2Q l
j (t)Nu

j (t)

+

(
1
2 (N

u
j (t) +Q l

j (t))
)2
+ (N c

j (t))2 + 2Qs
j (t)

(
1
2 (N

u
j (t) +Q l

j (t))
)

+ (Qs
j (t))2 − 2Qs

j (t)N c
j (t) +

1
2

(
Q

avg
j

)2
+ Z j (t)

(
Q tot
j (t + 1) −Qavg

j

)
. (C.9)

Now, recalling the de�nition of the total queue and utilizing the fact that

τ fj (t)Jj − 1 ≤ N c
j (t) = bτ fj (t)Jj c ≤ τ fj (t)Jj ,

and after rearranging terms, we have

∆Z j (t)2
2 ≤ (

D j (t)
)2
+

1
2

(
Q

avg
j

)2
+

5
4

(
Nu,max
j

)2
+

(
N c,max
j

)2
+

5
4

(
Q l
j (t)

)2

+ Qs
j (t)Q l

j (t) + 2Q l
j (t)D j (t) +

(
Qs
j (t)

)2
− Z j (t)Qavg

j +min
(
Q l
j (t),Nu

j (t)
)
Z j (t)

+ Z j (t)D j (t) − 2Qs
j (t)

(
τ fj (t)Jj − 1

)
+max

(
0,Qs

j (t) − (τ fj (t)Jj − 1)
)
Z j (t)

− 3
2Q

l
j (t)Nu

j (t) +Qs
j (t)Nu

j (t) +max
(
0,Q l

j (t) − Nu
j (t)

)
Z j (t). (C.10)
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Then, by summing over all UEs and taking the expectation, we have,

∆p (Θ(t)) ≤ ζ + χ (t) + E
{
Ω · Etot(t)

+

K∑
k=1

[
− 2Qs

j (t)τ fj (t)Jj +max
(
0,Qs

j (t) − τ fj (t)Jj + 1
)
Z j (t)

]

+

K∑
k=1

[ (
−3

2Q
l
j (t) +Qs

j (t)
)
Nu
j (t) +max

(
0,Q l

j (t) − Nu
j (t)

)
Z j (t)

] ����Θ(t)
}
, (C.11)

where,

ζ = E

{ K∑
k=1

(
Dmax
j

)2
+

1
2

(
Q

avg
j

)2
+

5
4

(
Nu,max
j

)2
+

(
N c,max
j

)2
}

=
1
2

K∑
k=1

[
2Dmax

j
2 + (Qavg

j )2 +
5
2

(
Nu,max
j

)2
+ 2

(
N c,max
j

)2
]

(C.12)

χ (t) = E
{ K∑
k=1

5
4

(
Q l
j (t)

)2
+Qs

j (t)2 +Qs
j (t)Q l

j (t) + 2Qs
j (t) + 2Q l

j (t)D j (t)

− Z j (t)Qavg
j +min

(
Q l
j (t),Nu

j

)
Z j (t) + Z j (t)D j (t)

}

=

K∑
k=1

[
5
4 (Q

l
j (t))2 + (Qs

j (t))2 + 2Qs
j (t) +Qs

j (t)Q l
j (t)

+ 2Q l
j (t)D j (t) +min

(
Q l
j (t),Nu

j

)
Z j (t) + Z j (t)D j (t) − Z j (t)Qavg

j

]
(C.13)

Here, ζ is constant and independent of time t and χ (t) is constant at time t and does not depend on the
optimization variables.
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