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Résumé : Cette thése porte sur la modélisation et
I’analyse de stabilit¢ de certains mécanismes
biologiques complexes en rapport avec le cancer. Un
intérét particulier est porté au cas de I’hématopoicse
et de la leucémie aigué myéloblastique (LAM). Les
modeles utilisés et/ou introduits dans cette theése se
décrivent par des équations aux dérivées partielles
structurées en age, qui se réduisent a des systémes a
retards de plusieurs types (retards ponctuels ou
distribués, a support fini ou infini). Ces mode¢les a
retards sont parfois couplés a des €quations aux
différences, et possiblement avec des parameétres
variant dans le temps. Un des principaux challenges
dans ce travail consiste a développer des méthodes
temporelles, qui se basent sur la construction de
fonctionnelles de Lyapunov-Krasovskii strictes, pour
les systémes non-linéaires a retards étudiés.

Les principales notions abordées dans ces travaux
incluent : I’analyse de stabilité/stabilisation et de
robustesse, I’emploi de techniques de modélisation
des populations cellulaires saines et malades, 1’étude

de différentes classes de systémes  dynamiques,
(possiblement a temps variant ou & commutation), et
également I’introduction de quelques outils issus de
I’intelligence artificielle (planification et recherche de
solution) dans un contexte de modéles biologiques.
Ainsi, les méthodes de modélisation et d’analyse
employées dans ce travail ont permis d’une part
d’étendre les résultats de stabilité de cette classe de
systémes biologiques, et d’autre part de mieux
comprendre certains mécanismes biologiques liés au
cancer et sa thérapie. Plus précisément, certains
concepts récemment établis en biologie et en médecine
sont mis en évidence dans ce travail pour la premiére
fois dans cette classe de systémes, telles que: la
dédifférenciation des cellules (plasticité), ou encore la
dormance des cellules cancéreuses dans des modeles
tenant compte de la cohabitation entre cellules saines et
mutées. Les résultats obtenus sont interprétés dans le
cas de I’hématopoicse et de la LAM, mais ce travail
s’applique également a d’autres types de tissus ou le
cycle cellulaire se produit de fagon similaire.
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Abstract : The thesis deals with the modeling and
analysis issues of (cancer) cell population dynamics,
with particular insights on the process of blood cell
formation and acute myeloid leukemia (AML).
Models are described through some age-structured
partial differential equations, which are suitably
reduced to nonlinear time-delay systems of different
types (with pointwise or finite and infinite
distributed delays, possibly involving time-varying
parameters, and coupled to difference equations).
Thus, this work provides analysis tools for stability
and control, mainly of the class of retarded
functional differential equations, coupled with
continuous time difference equations. The main
contribution relies on the stability analysis of the
different (biologically) meaningful steady states of
the resulting systems. Thus, whether for healthy or
unhealthy (e.g. leukemic) cases, the studied models
are investigated through time-domain analysis tools.

More precisely, stability properties of the steady states of
interest are provided by means of sophisticated strict
Lyapunov-like functionals, suitable for the studied
models. At any step, insights and medical interpretations
of the theoretical results, in light of cancer evolution, are
provided. In addition, recent biological and medical
evidences on cancer are introduced in the class of systems
studied here. This is the case of cell plasticity phenomena
and cancer dormancy in models taking into account
cohabitation between ordinary and mutated stem cells.
Thus, through suitable theoretical studies, it becomes
possible to provide a better understanding of the complex
mechanisms behind the triggering of some pathological
disorders, such as AML. The ultimate aim behind these
(stability) studies is to finally suggest some suitable
optimized strategies in order to improve cancer treatment
through selective combined drug infusions.
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Résumé en francais des travaux de these de Walid Djema.

Titre : « Modélisation et analyse de stabilité des dynamiques de populations cellulaires
cancéreuses: applications au cas de I'hématopoiese et de la leucémie aigué
myéloblastique »

Titre originel en anglais: «Understanding Cell Dynamics in Cancer from Control and
Mathematical Biology Standpoints: Particular Insights into the Modeling and Analysis
Aspects in Hematopoietic Systems and Leukemia »

Les mathématiques appliquées en biologie et en médecine connaissent
actuellement un essor sans précédent, a la fois dans la description, la compréhension et
la maitrise du monde du vivant. En effet, la modélisation des systémes biologiques
complexes vise a contréler ces processus, a valider des observations ou des données
médicales, ainsi qu’a prédire le comportement de ces systemes dans diverses situations
(il s’agit par exemple d’anticiper l'effet de certaines thérapies en se basant sur des
modeéles mathématiques et sur des simulations).

L’analyse mathématique du cas du cancer, parmi une multitude de désordres qui
touchent les organismes et tissus vivants, est d’'une importance capitale pour deux
raisons principales : d’'une part la gravité et I'agressivité de cette maladie qui s’étend a
tous les organismes et les tissus, de toutes les tranches d’age, etc.,, et d’autre part, la
complexité des mécanismes déclencheurs, des évolutions et des stades de maladie, ainsi
que des traitements appliqués (chirurgie, médicaments ciblés, chimiothérapie,
radiothérapie, etc.). D’autant plus que plusieurs éléments intervenant dans le cancer,
comme les mutations génétiques et/ou épi-génétiques ou la résistance aux traitements,
rendent ce phénomene biologique encore plus difficile a élucider. Par conséquent, les
biologistes et les médecins font appel a la modélisation et 'analyse mathématique a
chaque fois que lintuition et les observations ne suffisent plus a comprendre les
interactions entre les mécanismes majeurs qui déclenchent le cancer puis favorisent
son évolution. Certaines de ces notions clés, relatives au cancer, seront abordées dans le
cadre de ces travaux de thése. Ainsi, par exemple, un modéle tenant compte de la
coexistence entre des cellules souches saines et des cellules mutées est introduit et
analysé!. Ce dernier décrit la dynamique de ces populations cellulaires saines et
cancéreuses avec, comme objectif thérapeutique principal, le maintien en dormance des
cellules cancéreuses. Ce modele introduit et aborde également un aspect du réle -
parfois ambigu - du systéme immunitaire dans le déclenchement du cancer et le
maintien en dormance des cellules tumorales.

1 Djema, W,, Bonnet, C., Mazeng, F., Clairambault, |., Fridman, E., Hirsch, P. and Delhommeau, F.,
“Control in Dormancy or Eradication of Cancer Stem Cells: Mathematical Modeling and Stability Issues”.

Journal of theoretical biology (JTB). 2018.



Plus généralement, les problématiques abordées dans ces travaux de these
concernent la modélisation et l'analyse du cycle cellulaire, incluant une phase de
quiescence. Nous nous focalisons particulierement sur le cas de 'hématopoiese - qui est
le processus de fabrication et de régénération continue de toutes les cellules sanguines -
et de la leucémie aigué myéloblastique. En effet, 'hématopoiése est considérée en
biologie et en médecine comme un paradigme pour l'analyse du cycle cellulaire, et
particuliérement quand il s’agit du processus de différenciation cellulaire. A noter
également que les Cancer Stem Cells (CSCs) ont été identifiées pour la premiére fois dans
le cas de la leucémie aigué myéloblastique. Les parametres biologiques qui
interviennent de facon récurrente dans ce type de modeles représentent les
fonctionnalités biologiques telles que la différenciation cellulaire, 'apoptose (ou la mort
programmeée des cellules), 'auto-renouvellement cellulaire et la prolifération cellulaire
(voir I'Introduction de la these, le chapitre A Glimpe into Biology, ainsi que les travaux
pionniers de Mackey et d’Adimy dans ce domaine). Nous nous focalisons sur les
propriétés de stabilité des systemes - ou des modeles - résultants puisque leurs
trajectoires représentent 1'évolution de différentes densités cellulaires, et leurs
comportements refletent les situations saines ou malades d’intérét médical. Par
conséquent, nous continuons dans le cadre de ces travaux de these Ieffort
d’amélioration des modeles mathématiques de dynamique de populations cellulaires
déja existants, ainsi que leur analyse de stabilité2. Nous introduisons également de
nouveaux modeles qui tiennent compte d’observations biologiques récentes, qui n’ont
pas été abordées précédemment dans la classe de systémes qui nous intéressent, telles
que la dédifférenciation et la transdifférenciation cellulaires (cell plasticity?), le blocage
d’'une minorité de cellules durant la mitose (cell-cycle arrest), la dormance des cellules
cancéreuses, ou encore le role que pourrait avoir le systeme immunitaire dans le
maintien du phénomeéne de dormance du cancer (immunoediting).

Les modeéles mathématiques que nous étudions sont des modéles déterministes
(par opposition aux modeles stochastiques), qui se décrivent par des équations aux
dérivées partielles (EDPs) structurées en age (I'age étant la durée ou le temps que
passent les cellules soit dans le compartiment de prolifération soit dans celui de
quiescence ; voir les modeles de Mackey et d’Adimy pour plus de détails). Ces modeéles
se réduisent par la suite a des systémes a retards de différents types, en appliquant la
méthode dite des caractéristiques. Ainsi, nous allons étudier tout au long de cette these
des systemes non-linéaires a retards distribués a supports finis et infinis, des retards
ponctuels et des systéemes non-linéaires a retards couplés a des équations aux
différences (differential-difference systems). Certains de ces modeéles peuvent avoir des
parametres variant dans le temps. C'est le cas par exemple lorsque des parameétres de
taux d’apoptose et de différenciation varient sous l'effet de la maladie (le blocage de la
différenciation est une caractéristique de la leucémie aigué myéloide) ou des thérapies
possiblement appliquées. Des perturbations additives non-nulles peuvent aussi étre
considérées dans nos modeles, afin de représenter certains phénomenes biologiques
non-modélisés explicitement ou bien le manque d’exactitude dans les modeles
résultants. Nous abordons également au dernier chapitre de la these la question de

2 Djema, W., Mazenc, F. and Bonnet, C., “Stability analysis and robustness results for a nonlinear system with
distributed delays describing hematopoiesis”. Systems & Control Letters, 2017.

3 Djema, W., Bonnet, C., Mazeng, F., Clairambault, J., “Introducing Cell-Plasticity Mechanisms into a Class of Cell
Population Dynamical Systems”. American Control Conference (ACC), IEEE, 2018.



'effet de certaines injections de médicaments ciblés ou de sécrétions de facteurs de
croissance, qui agissent sur les différents parametres biologiques de nos modeles, dans
un systéme ou les parametres peuvent commuter entre plusieurs valeurs discretes.

Dans notre étude de stabilité, nous allons nous consacrer a l'application
d’approches d’analyse de stabilité dans le domaine temporel, et plus précisément aux
techniques issues de la théorie de Lyapunov pour les systémes non-linéaires et a temps
variant. Nous rappelons dans ce résumé que I'aspect héréditaire des systemes a retards,
qui les rend de dimension infinie, complique leur analyse de stabilité et de stabilisation.
Cependant, I'extension de la théorie classique de Lyapunov, a savoir précisément les
théorémes de Lyapunov-Krasovskii et de Lyapunov-Razumikhin, ont permis I'analyse
d’'une plus grande classe de systemes dynamiques a retards. Par contre, la difficulté
majeure qui est classiquement rencontrée lors de 'analyse des systémes non-linéaires,
avec ou sans retards, se trouve dans le fait qu'aucune méthode systématique n’existe
pour la construction de fonctionnelles de Lyapunov-Krasovkii appropriées pour les
systémes a analyser. Par conséquent, une contribution fondamentale apportée par ces
travaux de theése, réside dans les différents types de fonctionnelles de Lyapunov-
Krasovskii que nous proposons pour I'étude de nos modeles biologiques présentant des
retards de différentes natures. Nous utilisons parfois des approches d’analyse basées sur
la nature du systeme a étudier, qui est un systeme positif (positive and compartmental
systems), pour la construction de fonctionnelles de Lyapunov-Krasovskii appropriées.
Nous rappelons également que méme lorsqu’'un équilibre est connu pour étre
asymptotiquement stable, il est toujours important de chercher a construire une
fonction/fonctionnelle de Lyapunov pour le systeme en question, vu les multiples
avantages qui en découlent (stabilité exponentielle, estimation du taux de convergence
des solutions, analyse de robustesse de type Input-to-State Stability (ISS), etc., voir
Section 3.3 de la these). Les résultats de stabilité, et de robustesse par rapport aux
perturbations, qui ont été ainsi obtenus sont largement commentés, d’'un point de vue
biologique et médical, et différentes illustrations numériques sont présentées tout au
long de la these.

L’objectif principal de ce travail de theése est donc de consolider nos
connaissances en matiere de modélisation et d’analyse de stabilité des dynamiques de
populations cellulaires cancéreuses. Pour ce faire, nous avons tenu compte des
observations les plus récentes concernant les origines des cancer stem cells, ou plus
exactement de la «souchitude » (stemness) qui caractérise les cellules cancéreuses,
incluant I'option de dormance dans le cancer, ainsi que le réle du systéme immunitaire
dans ce mécanisme de dormance, et 'option de dédifférenciation cellulaire. Nous avons
également évoqué les thérapies actuelles et émergentes dans le cas de la leucémie aigué
myéloide.  Ainsi, nous avons d'une part mis en évidence plusieurs phénomenes
biologiques, liés au cancer, dans la classe de systémes que nous étudions, et d’autre part,
nous avons utilisé plus d’outils mathématiques pour I'analyse de stabilité des systémes
résultants. Par ailleurs, nous avons proposé une solution algorithmique originale - dans
le dernier chapitre de la thése - pour ce qui pourrait s’apparenter a une technique de
stabilisation de densités cellulaires par perfusion médicamenteuse. Cette derniere
approche s’inspire des techniques de planification stratégique (pathfinding algorithms),
largement utilisées dans le domaine de I'intelligence artificielle.
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Chapter 1

Introduction

Applied mathematics have an impressive success in describing the natural word. Modeling complex
systems is essential for many practical reasons, including system understanding, control and validation,
prediction and behavior anticipation. For biologic phenomena, mathematics have been used for describ-
ing/modeling dynamical processes during centuries. Related fields as epidemiology and ecology have
also attracted a great mathematical interest which continues to grow (see [211, 210]). Early biological
models were basically investigating the way populations grow or decline over time [19]. In more recent
years, the greatest objectives of mathematical modeling and simulation techniques consist in providing
ways of better understanding the underlying mechanisms of grave diseases. For instance, Dale & Mackey
traced recently in [71] their mathematical modeling and analysis work, during four decades, to understand
and treat the periodic hematological disease known as cyclical neutropenia (CN).

Some other successful biomathematical applications are discussed in [182]. We can mention for
instance the study of the dynamics of molecular regulatory networks that monitor eukaryotic cells during
their cell cycle [287], the mathematical analysis of neuro-oncology and cell proliferation in neuro-tumors
[143], and also the mathematical analysis of plaque formation in atherosclerosis, as well as their regression

under different therapeutic strategies [109].

Mathematics is biology’s next microscope, only better; biology is mathematics’ next physics, only better
(J.E. Cohen, 2004, [65]).

«Although mathematics has long been intertwined with the biological sciences, an explosive synergy between
biology and mathematics seems poised to enrich and extend both fields greatly in the coming decades.
Biology will increasingly stimulate the creation of qualitatively new realms of mathematics. Why? In biology,
ensemble properties emerge at each level of organization from the interactions of heterogeneous biological
units at that level and at lower and higher levels of organization (larger and smaller physical scales, faster
and slower temporal scales). New mathematics will be required to cope with these ensemble properties
and with the heterogeneity of the biological units that compose ensembles at each level. Mathematics
will benefit increasingly from its involvement with biology, just as mathematics has already benefited and
will continue to benefit from its historic involvement with physical problems. In classical times, physics,
as first an applied then a basic science, stimulated enormous advances in mathematics. In the coming
century, biology will stimulate the creation of entirely new realms of mathematics. In this sense, biology is
mathematics’s next physics, only better. Biology will stimulate fundamentally new mathematics because

living nature is qualitatively more heterogeneous than non-living nature» (J.E. Cohen, 2004, [65]).




2 Introduction

In the modern era, cancer is one of the most devastating causes of morbidity and mortality all over
the world [29]. Through modeling, analysis and simulation tools, mathematical biology is involved in
cancer understanding, and particularly in the study of cell population growth. In fact, the main objective of
multi-disciplinary cancer research is the development of efficient anti-tumor therapeutic strategies, and for
that, the input provided by mathematical studies are required. For instance, cancer-triggering mechanisms,
along with all the complications that follow this disease (such as drug resistance, mutation accrual, etc.),
are highly complex phenomena that cannot be easily understood, and for which mathematical tools are
becoming increasingly necessary. This is already the case in hematology (e.g. [189, 240, 59, 182]), and in
various other biological fields (e.g. [249, 154, 287, 234, 211, 210]).

Hematopoiesis - the process of blood cell formation - provides a model for studying and understanding
all the mammalian stem cells and their niches [209], as well as all the mechanisms involved in the cell
cycle and particularly in cell differentiation. The hematopoietic paradigm is in fact already used in
biology and medicine, as well as in mathematical modeling and analysis of living organisms. In [240],
L. Pujo-Menjouet reviewed the mathematical modeling of blood cell dynamics, along with some related
pathological disorders, during the past five decades. It is within this framework that we situate our work,
as a continuity of modeling and stability analysis of blood cell dynamics. As for the majority of works
discussed in [240], the models that we study can be extended to cover other tissues and mechanisms, even
if they follow a long line of work that has much more focused on the hematopoietic system. However,
at this point, it is worth mentioning that pioneering works that introduced early blood cell dynamical
models have been formulated for any type of cells [268], or they were borrowed from models describing
other tissues (see, e.g., [49] for a dorsal epidermis cell model that inspired all the cell cycle models
containing a resting phase). Concretely, medical research is looking for new combined targeted therapies
able to overcome the challenge of cancer cells overproliferation, to restore apoptosis mechanisms and
normal differentiation of immature cells, and also to avoid the high toxicity effects that characterize
heavy non-selective (chemo)therapy. In that quest, the ultimate goal behind mathematical studies is to
provide some inputs that should help biologists to suggest and test new treatments, and to contribute
within multi-disciplinary groups in the opening of new perspectives against cancer. Our research project
is imbued within a similar spirit and fits the expectations of a better understanding of the behavior of
healthy and unhealthy blood cell dynamics. It involve intensive collaboration with hematologists from
Hopital Saint-Antoine in Paris, and aims to analyze the cell fate evolution in treated or untreated leukemia,
allowing for the suggestion of new anti-leukemic combined chemotherapy. In a fairly general way, we
discuss in this dissertation some issues that are related to the modeling of the cell cycle, with a particular
insight into hematopoietic systems. Stability features of mathematical models are highlighted, since
systems’ trajectories reflect the most prominent healthy or unhealthy behaviors of the biologic processes
under study. We indeed perform stability analysis of systems describing healthy and unhealthy situations,
particularly in the case of acute myeloblastic leukemia (AML). We pursue the objectives of earlier works
in order to understand the interactions between the various parameters and functions involved in the
studied mechanisms. We extend sometimes the stability analysis and the application of some already
existing models, whereas news models and variants are other times introduced, to cover novel biological
evidences such as: mutations accumulation, cohabitation between ordinary and mutated cells in niches

([137]), control in dormancy and eradication of cancer stem cells, cancer dormancy ([93, 102]) and cellular



plasticity ([301, 52]). The content of the thesis is developed in the last section of the introduction, but
before that, we briefly give a glimpse into Mackey-type models of cell dynamics and Lyapunov concept
for stability analysis.

Population dynamical models

Some of the classical issues that drive mathematical population models are listed in [19] as follows: «Why
do populations sometimes grow and sometimes decline? Must populations grow to such a point that
they are unsustainably large and then die out? If not, must a population reach some equilibrium? If
an equilibrium exists, what factors are responsible for it? Is such an equilibrium so delicate that any
disruption might end it? What determines whether a given population follows one of these courses or
another?» [19]. Some early models have been proposed to address such questions, as the Malthusian
model (introduced in 1798, see [188]), Verhulst logistic model (introduced in 1845, see e.g. [284]), and
their variants. Since then, more sophisticated populations models have emerged, starting from the pioneer
works of Sharpe and Lotka (in 1911, see [262]) and McKendrick (in 1925, [205]) which introduced
partial differential equations (PDE) based modeling framework. Thus, a new area of age-structured
cell populations (and, similarly, of size or any phenotype-structured populations) has been extensively
developed ([22]).

Age-structured population models

Definition 1. «A structured population model is a model of population dynamics where the state variable,
the variable which at each time t characterizes a given population, is a distribution of the individuals over
a set of values, each individual being associated, at each time t, to one and only one value. As examples,
let us quote age-structured models where each individual is characterized by its age. All the individuals
who, at a given time t, have the same age determine what is known as an age-cohort. Other characters of

an individual can be the size, the weight, or the quantity of a certain product» (Arino, 1995 [21]).

The first age-structured model (applied in demography in 1911, by Sharpe and Lotka [262])

We consider that p(t,a) is the population density at time ¢ and of age a. The evolution of p is

governed by the following PDE:

dp(t,a) dp(t,a)
ot + da = —d(a)p(t,a), (1.1)

where d(a) is the death rate at age a, per unit of individual. The age a is the structure variable in

the model (1.1). The number of newborn at time ¢ > 0 is given by the renewal equation:

p(t,0) = /0 " b(a)p(t,a)da, (1.2)

where b(a) is the birth rate. For each 7 > 0, the function p(z,-) is a density function. The quantity
i) f p(t,a)da gives the total number of alive individuals within the population at time r > 0, whose
aée lies in (a,a). Overall, it has to be noted that rigorous mathematical analysis of the fundamental
linear age-structured systems has been based on Volterra theory and it was developed many years
later (e.g., Bellman & Cooke, 1961, [32]).
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Mackey’s model for hematopoietic stem cells (HSCs) in 1978, [180]

Burns & Tannock proposed in 1970 an ODE model with delay to describe the cell cycle involving
a quiescent phase Gy [49]. Few years later, an age-structed model describing the population cell
dynamics in hematopoiesis was introduced by Mackey [180]. In this system, r(¢,a) represents the
density of quiescent cells at time ¢ > 0 and age a > 0, and lim,_, 1. 7(t,a) = O for all # > 0, while
p(t,a) represents the density of proliferating cells (i.e. active in the cell cycle) at time r > 0 and
age a € [0, 7], where T > 0 is a finite age limit (i.e. assumed to be the average duration of the cell
cycle, in days). Evolution of r(¢,a) and p(t,a) are described by the following PDE-model:

{

where § is the degradation rate of resting cells (in day~!) and 7 is the programmed cell death
rate (apoptosis rate in day~'). The function j8 is the re-introduction function from resting to

r(t,a) + Zr(t,a) = — (8 +B(R(t))) p(t,a), t>0, a>0,

9 (1.3)
p(t,a)+5.p(t,a) = —yp(t,a), t>0, 0<a<rT,

Yo Yo

proliferating phases, which has been considered in the form of a Hill function [180]:

_ _Boo®
TN

B() where, Bp >0, 6 >0, and, a > 1. (1.4)

The total density of resting cells is defined by: R(¢) = [;” r(f,a)da, and, similarly, the total density
of proliferating cells is defined by: P(t) = [ p(t,a)da. The boundary conditions associated to

(1.3) give the new births for r > 0:

{ r(1,0) = 2p(t,7),

p(t,0) = i~ BR())r(r,a)da = BRO)R(). 4

The system is completed by adequate initial conditions (at time ¢ = 0) which are L'-functions
denoted by n(0,a) = ng(a) and p(0,a) = po(a). Using the classical method of characteristics (see

in particular [31] and [101]), Mackey’s model [180] is rewritten for sufficiently large ¢ > 0 as:
R(7)
P(1)

Since then, and for many decades, several versions of Mackey’s model have emerged. The reader is

— (8+B(R(1)) R(t)+2¢"B(R(t — D))R(t — ),

g (1.6)
—YP(t)+ B(R(t))R(t) — e ®YB(R(t — T))R(t — 7).

referred again to the recent paper by L. Pujo-Menjouet (2016, [240]) for a review on hematological
modeling. Here we mention some variants of Mackey’s model that are also considered in this
thesis:

O The models of J. Bélair, M. Mackey, and J. Mahaffy, in 1995 [31] and in 1998 [185], F.
Billy et al. in 2012 [39], and M. Adimy and F. Crauste in 2009 [7], where growth-factor dependent
biological parameters have been considered.

O The model of M. Adimy, F. Crauste and A. El Abdllaoui in 2008 [8], where several
discrete maturity stages have been introduced (see also A. Marciniak-Czochra, et al. in 2009 [189]
for an ODE model with several maturity stages).

O The model of M. Adimy, A. Chekroun and T. Touaoula in 2015 [4], where a recent

fast-self renewing mechanism has been considered.




Modeling cell population dynamics through time-delay systems

Mackey’s model in (1.6) leads us to consider hematopoiesis models through time-delay systems. In fact,
in order to go even further than the case of hematopoiesis, we emphasize that delay systems is a major
class of dynamical systems in biology and in many other fields (e.g. chemistry, economics, mechanics,
sensors and field network [251]). However, the particularity of delays in biological systems is that they
often result from maturation and proliferation processes which take a large time that cannot be neglected.
Delays may be source of stability or, more often, of instability [218]. Thus, since delays lead to changes of
stability properties in dynamical systems, it becomes essential to develop adequate tools for the analysis
of time-delay biological systems. The theory of time-delay systems is now a vast area, and has continued
to grow strongly during the last two decades (see e.g. [251, 120, 106, 219, 30, 222, 266, 16, 192], to
name only a few). Many time-delay models have been developed in the literature to study hematopoietic
systems and all their related pathological disorders (see the review in [101]). For instance, we mention the
following contributions:

O S. Bernard et al. in 2003 [37] studied a model with constant point delays in cyclical neutropenia.

O C. Haurie et al. in 2000 [133] studied a model with distributed delay for the peripheral regulation
of neutrophil production mediated by granulocyte colony-stimulating factor.

O J. Mahaffy et al. in 1998 [185] studied a model with state-dependent delay for erythropoiesis
-the process of red blood cell formation- involving growth factor dynamics.

O M. Adimy et al. in 2015 [4] studied a differential-difference (i.e. a differential system coupled
to an algebraic equation) model for overproliferating blood disorders.

We point out that many ODE-based models have been developed in the literature to describe
hematopoiesis (see for instance [275] and [189]). In other cases, ODE-based representations have
been used instead of some classical delay systems, even if delays appear by nature (to model the duration
of the cell cycle or maturation) in hematopoietic systems as the adequate modeling approach (see Section
3.2 of [101]). Clearly, this modeling simplification aims to reduce the difficulty of analysis that generally
characterizes infinite-dimensional systems. However, for technical details, reducing the model into ODEs
is not always possible for hematopoietic models (see [101]); this is for instance the case of the white blood
cell formation model studied in [135]. Thus, ODE-based models of hematopoiesis are beyond the scope
of our work, where only some age-structured PDEs and time-delay systems are discussed.

Various types of nonlinear time-delay systems modeling cell population dynamics appear throughout
this thesis. When cell proliferation is described as a phase in which cells divide with a certain degree of
freedom, nonlinear systems with distributed delays are used (e.g. [8]). The length of the distributed delays
may be finite (if cells are obliged to die or divide before an age limit), or infinite (if few cells are arrested
during their cell cycle - at some checkpoints - and do not die by apoptosis). Models involve discrete delay
when the cell division (mitosis) is assumed to occur at a fixed average age for all the proliferating cells.
So, with the aim of giving an estimation of the basin of attraction of the steady states of these models, and
having in mind the analysis of similar models with time-varying parameters, we have chosen a state-space
framework for our study.

Some aspect of the mathematical analysis of cell dynamics in hematopoiesis have not been fully

addressed in earlier works. We can mention for instance the analysis of time-varying models, the
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investigation of global stability properties of the nonlinear systems, or the estimate of the size of the basin
of attraction of steady states. These are in fact common issues in many biological models where some
functionalities depend on time (e.g. circadian rhythms) or when they are temporarily affected by therapy
(e.g. drug infusion). Also some systems are known to evolve far from their equilibria (e.g. chemostat’s
models) and a local stability analysis may be insufficient. In the case of hematopoiesis, the biological
parameters can be time-varying if affected by the disease (e.g. blockade of differentiation process and
apoptosis in leukemia), or by therapies that change the model parameters. In addition, in normal or

abnormal hematopoiesis, blood count may temporary deviate or oscillate far from its steady states.

Time-delay systems

Time-delay systems are generally represented in the framework of functional differential equations
(FDEs), see for instance [165], [106] and [120].

We denote ¢ ([—7,0],R") the set of continuous functions mapping the interval [—7,0] to R”.
For any A > 0 and any continuous function of time u € ¥ ([to —T,th+A], R”), and ) <t <ty+A,

we denote by u; € % the segment of the function u defined as:
w(0)=u(t+06), —1<6<0. (1.7)
Thanks to the notation (1.7), a general form® of FDEs is given by:

x(t) = f(t,x), (1.8)

where x(7) € R, x(¢) is the right-hand derivative of x(¢), and f : R x ¢ — R".
O The system (1.8) indicates that the derivative of the state variable x at time ¢ depends on
t and x(m) for t — 7 < m <t. Therefore, in order to determine the future evolution of the state, it is

necessary to specify the initial state variable in a time interval of length 7, i.e. from ) — 7 to fy,
X, = @, where ¢ € ¢ ([—7,0],R") is given. (1.9)

The notation (1.9) means that x(f9+0) = x,(0) = ¢(0),—7 < 6 <O0.
O For a function ¢ € ¢ ([a,b],R"), we define the continuous norm ||. || by

9]l = max [[¢(6)]]. (1.10)

a<06<b

O The general form of functional differential equations includes the class of differential-
difference systems, and the class of systems with distributed delays, i.e. integro-differential
equations (see [165], Chapter 1).

“but which does not include the case of neutral functional differential equations.




Control systems and biological models

Remarkably, the powerful techniques of Control (for instance, theory of stability and stabilization
[158, 292, 187]) have demonstrated innumerable applications in mathematical biology ([211, 210]). This
is particularly the case in cancer-related issues, in growth tumors and oncology, but also in neuronal
connectivity and cardiovascular systems, as well as in epidemiology and infectious diseases. The complex
problems encountered in these fields are nowadays requiring increasingly sophisticated mathematical
methods for suitable analysis.

In our case, cell population dynamics are modeled through structured PDEs or time-delay systems,
possibly coupled to difference equations. Due to their hereditary feature, time-delay systems are more
complicated to handle than finite dynamical systems [164]. However, since the middle of the last century,
the extension of the classical theory of Lyapunov to systems with delay, through Lyapunov-Krasovskii

and Lyapunov-Razumikhin theorems, have allowed stability analysis of this major class of systems.

Lyapunov stability analysis of time-delay systems

Lyapunov theory offers efficient tools for stability analysis of nonlinear systems. The extension of
this theory to the case of time-delay systems has allowed the analysis of a larger class of systems. The
advantages of knowing Lyapunov functions or functionals (LKFs) are fundamental in Control theory, since
they make it possible to estimate rates of convergence of solutions and to establish robustness results of
Input-to-State-Stability type [198]. Moreover, LKFs can also be used to determine estimates of the basin of
attraction ([126, 119, 114]) of locally asymptotically stable steady states. Unfortunately, the construction
of Lyapunov-Krasovskii functionals is sometimes a difficult task since there are no systematic method for
dealing with nonlinear systems. This is a difficulty that we face when analyzing models of cell population
dynamics. In addition, some technical difficulties may arise when investigating differential-difference
models where solutions are not uniformly continuous (since invariance principles and Barbalat’s lemma
are not applicable to establish asymptotic stability of solutions). Finally, it is worth mentioning that the
resulting biological models of interest belong to the family of positive and compartmental systems [124].
Therefore, it becomes possible to take advantage of some suitable non-quadratic LKFs (approximated at
the origin by linear functionals), that can be used only when systems trajectories are positive [124] (the use
of a positive approach in the analysis of dynamical systems appeared first in [55]). These constructions

will be often used throughout this thesis.
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Fig. 1.1 A. The equilibrium point denoted x, is Lyapunov stable, i.e. for sufficiently small initial conditions (small
perturbations), the trajectories remain close to the steady state x,. B. The steady state x, is locally exponentially
stable. These illustrative figures are taken from [304].
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Lyapunov-Krasovskii Theorem for stability of time-delay systems

Definition 2. (Kolmanovskii and Myshkis, 1992 [164]; Hale and Verduyn-Lunel, 1993 [127]).
For the system (1.8), the trivial solution x(t) = 0 is stable if for any ty € Z and any € > 0, there
exists a 8 = 6(ty,€) > 0 such that ||x,||. < & implies ||x()|| < €.

It is said to be asymptotically stable if it is stable and for any ty € #Z and any € > 0, there exists a
0y = 04(to, €) > 0 such that ||x||. < &, implies tlggx(t) =0.

Moreover, it is said to be exponentially stable if there exist positive constants a, b and 8 such that

I e < 8 = [lx(t, 10,31 < alflce ™).

If a, b and & do not depend on 1y, then the origin is uniformly exponentially stable.

It is generally difficult to establish stability using these definitions. The extension of the Lya-
punov theory to systems of infinite dimension offers an alternative way to prove stability. Two
approaches have been introduced: Lyapunov-Krasvoskii theorem and Lyapunov-Razumikhin

theorem. Lyapynov-Krasovskii functionals (LKFs) are the most recurrent tool in the current work:

Lyapunov-Krasovskii approach (K. Gu, V. Kharitonov and J. Chen, 2003 [120])

«As in the study of systems without delay, an effective method for determining the stability of a time-
delay system is the Lyapunov method. For a system without delay, this requires the construction of a
Lyapunov function V (t,x(t)), which in some sense is a potential measure quantifying the deviation
of the state x(t) from the trivial solution 0. Since for a delay-free system x(t) is needed to specify the
system’s future evolution beyond t, and since in a time-delay system, the corresponding Lyapunov
function be a functional V (t,x;) depending on x,, which also should measure the deviation of x;
from the trivial solution 0. Such a functional is known as a Lyapunov-Krasovskii functional»

K. Gu, V. Kharitonov and J. Chen, 2003 [120].

Lyapunov-Krasovskii theorem

Suppose f: R x ¥ ([—T,O],R”) — R", and that u,v,w : R, — R are continuous nondecreasing
functions, where additionally u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there
exists a continuous differentiable functional V : R x € ([—'L’, 0], R”) — R, which is positive definite

u([l0(0)) <V(z,0) <v(l9ll) (1.11)

and such that its derivative along (1.8) is non-positive

V(t,9) < —w(ll9(0)])), (1.12)

then the origin of (1.8) is uniformly stable. If in addition w(s) > 0 for s > 0, then it is uniformly
asymptotically stable. If, in addition, Slgg u(s) = oo, then it is globally uniformly asymptotically
stable. Finally, if for all > 0, V(t ,0) < —aV(t,0), where o > 0, then the origin of the system
(1.8) is exponentially stable.




Organization of the thesis

The manuscript is organized as follows:

B In Chapter 2, we give an overview on a number of interesting biological principles. Some
of them have recently emerge (e.g. cancer stem cells, dormancy and cell plasticity), and they are currently
undergoing intensive biological research. Our aim is to ease the reading of the manuscript, since these
notions will be re-evoked throughout the upcoming three parts of the thesis.

O Part L. The class of nonlinear systems with distributed delays.

B In Chapter 3, we perform a stability analysis of a particular class of nonlinear systems
with finite distributed delays, that extends some existing models from the literature ([8], [24]). A key
feature of our analysis is that the conceived technique relies on the construction of suitable strict Lyapunov
functionals for nonlinear time-delay systems.

B In Chapter 4, we consider a model of proliferation and quiescence in living organisms,
where we extend the work of Chapter 3 in two directions:

(a) Firstly, we discuss how to reconcile some earlier modeling ways of the cell cycle in one common
framework. Then, accordingly, we consider a model that contains a compartment where cells may be
quiescent for an unlimited time, along with a proliferating phase (modeling the cell cycle) in which most
of the cells may divide, or die, while few of them may be arrested during their cycle for unlimited time.
The resulting system is a nonlinear system with infinite distributed delays, and a Lyapunov technique is
developed for the analysis of its origin.

(b) In the second part of the chapter, we consider for the first time some cell plasticity features in the
class of systems that we study. As a first step, we are going to discuss some simple cases of cell-plasticity
in unhealthy tissues, and we highlight the role that dedifferentiation may play in the survival of cancer
cells (this hypothesis is in line with some recent medical observations). The main analysis is performed
on a simpler model involving two maturity stages and a dedifferentiation function from progeny to SCs.

O  Part II. The class of differential-difference systems

B Chapter S is an introductory work which opens up the analysis of a class of hematopoietic
systems, described by some differential-difference (or, more generally, descriptor) systems, following
the work in [4]. More precisely, the study is conducted on a model of stem cell population dynamics
introduced in [4], and which admits two equilibrium points: zero, and - under some conditions on
the biological parameters - a strictly positive steady state. We revisit the stability properties of the
0-equilibrium by extending the Lyapunov construction of [4], in order to establish global exponential
stability of the trajectories. For the strictly positive steady state, the available analysis in [4] is local and is
based on the frequency analysis of the characteristic equation associated to the linear approximation of the
model. Here we discuss the nonlinear analysis of the positive steady state, in the time-domain framework,
going through Lyapunov-like functionals of two types:

First, we test an adaptation of a method recently developed for the analysis of quasi-linear time-varying
systems via Comparative and Positive Systems ([196]). Based on the techniques of [196], [124], [206],
we get the advantage of deriving decay conditions for non-positive trajectories of our model, through a

linear degenerate Lyapunov functional.
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The second approach is more classical, since it is based on a quadratic functional. Sufficient conditions
for the regional exponential stability, an estimate of the decay-rate of the solutions, and a subset of the
basin of attraction of the positive steady state, are then provided.

B In Chapter 6, an age-structured model describing the coexistence between tumor (or,
cancer stem cells) and ordinary stem cells is developed and explored. Firstly, the model is transformed
into a nonlinear time-delay system that describes the dynamics of healthy cells, coupled to a nonlinear
differential-difference system governing the dynamics of unhealthy cells. These model generalizes some
early coupled systems of hematopoiesis ([23], [26]).

The main features of the resulting model are highlighted and an advanced stability analysis of several
coexisting steady states is performed, through a Lyapunov-like approach for descriptor-type systems.

We pursue an analysis that provides a theoretical treatment framework following different medical
orientations, among which:

i) the case where therapy aims to eradicate cancer cells while preserving healthy cells,

ii) a less demanding, more realistic, scenario that consists in maintaining healthy and unhealthy cells
in a controlled stable steady-state (cancer dormancy).

Biological interpretations and therapeutic strategies are discussed according to our findings throughout
this chapter. Notice that a more recent version of this chapter (mainly focused on the role of the immune
system in cancer dormancy) is provided in the (updated) journal version of this work (see [77]).

O  Part III. Nonlinear systems involving growth factors and drugs

B In Chapter 7, we discuss some issues related to the role of growth-factors and drugs in
hematopoietic systems. This is a step-forward in refining the modeling aspects presented in the previous
chapters. First, we propose a description of cell proliferation and quiescence, where almost all the involved
parameters and functions are affected by multiple growth-factor concentrations. We interpret the resulting
system as a possibly switching one. Event-triggered mechanisms in our system may result from drug
infusions or from practical situations where the body requires to adapt efficiently its blood cell count
(e.g. for combating an infection). The key point consists in the formulation of what can be interpreted as
stabilization issue -in our context- through artificial intelligence planning tools. In that framework, an
optimal solution is discovered via planning and scheduling algorithms. For unhealthy hematopoiesis, we
address the treatment issue through multiple drug infusions. In that case, we determine the best therapeutic
strategy that restore an ordinary hematopoietic system. We claim that a large spectrum of applications of
our method can be envisaged. For instance, healthy hematopoiesis can be considered as an infelligent
agent, able to set objectives -that correspond to body requirements- and to achieve them in an optimal

way. Biological interpretations and numerical simulations are provided throughout the chapter.

Finally, a general conclusion, along with some perspectives, are outlined at the end of the thesis.



Chapter 2

A Glimpse into Biology

2.1 The cell-division cycle in living organisms

Cells are the fundamental units of life and the building blocks of all the living organisms. Eukaryotic
cells (these are cells with nucleus) that engage in the division process (i.e. cell-division cycle, [131])
usually undergo a series of transformations and a mechanism of nuclear division (mitosis), that ends
with a division of each engaged cell (cytokinesis, [208]). Figure 2.1 illustrates the cell-division process
of a single mother cell that divides into two daughter cells. Many processes are in fact involved in the
cell-division mechanism, as well as in the several sequential maturation and differentiation stages of cells.
These biological and physiological phenomena frequently occur in the human body, and particularly in
quickly dividing tissues such as skin and bone marrow. Basically, the repetition of cell-division cycle

processes leads to the growth of tissues in all the multicellular organisms.

Definition 3. «Actively dividing eukaryote cells pass through a series of stages known collectively as the
cell cycle, formed by two gap phases (G and G»), a synthesis phase S, in which the genetic material is
duplicated, and a mitosis phase M, in which mitosis partitions the genetic material and the cell divides
(cytokinesis)»'. The main events that occur during the phases G, S, Ga, and M, of the cell cycle (Figure

2.1-(A)) are discussed in a chronological order in the next section.

2.1.1 An overview of the main steps defining the eukaryote cell cycle

We provide some basic definitions of the cell cycle phases, that are sufficient for the thesis context. The
interested reader may refer - for instance - to [208] for more information.

O G phase: The cell cycle starts from the interphase Gy, which is also known as the growth phase.
It covers the period from the last cell mitosis until the beginning of the DNA replication. Many enzymes,
essential to S phase, are formed during G;. The G phase is also characterized by a highly variable
duration, even for cells belonging to the same species.

O S phase: After G|, each mother-dividing cell starts a process of DNA replication, which marks
the beginning of the synthetic phase S. Each chromosome has two sister chromatids at the end of the S

phase, i.e. the amount of DNA inside the mother-dividing cell is doubled.

"From The Cell Cycle, Mitosis and Meiosis, The official website of the Leicester University. https://le.ac.uk/
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Fig. 2.1 The main steps and events in the (animal) cell cycle process, and a resting phase Gy.
This figure is made available under the «Creative Commons CCO 1.0 Universal Public Domain Dedication». .

O G, phase: Eukaryotic cells enter a gap phase G, right after the S phase, where a series of events

occurs to prepare the mitosis phase M. For instance, the production of many microtubules (required for

the mitosis process) is performed during the G, phase. The overall process bringing together G, S, and

Gy, i.e. the period of the cell cycle that precedes mitosis, is known as the interphase.

O M phase: Mitosis is the process by which the mother cell separates the chromosomes in its

nucleus into two identical (in the general case, even if asymmetric cell division also exists) sets in two

separated nuclei. The M phase is actually composed of several subphases, the last one is cytokinesis,

which divides the nuclei, cytoplasm, organelles and cell membrane into two completely separated daughter

cells.

Remark 1. Even in fast-renewing tissues such as gut, bone marrow, and skin, cells are not always

proliferating, but on the contrary, most of them are in a non-proliferating state, called resting or quiescent

phase, Go [208]. The quiescent phase Gy is indicated in Figure 2.1-(A) (and also in Figure 2.2), where

cells stopped dividing and left the cell-division cycle.
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2.1.2 Checkpoints, principle of control of the cell cycle

Some well-defined checkpoints are used by the body to control the mother cells during their cycle. These
checkpoints regroup a set of regulatory proteins that monitor and control the overall progression of cells
through the different cell-cycle stages. More precisely, if some requirements are not fulfilled at specific
moments, a proteins network takes over the issue by preventing the cell progression through the cycle.
Consequently, abnormal cells (e.g. with damaged DNA) cannot move forward in the division process, i.e.

cell arrest, where they are obliged to undergo DNA repair, or they are doomed to die by apoptosis.

Spindle assembly checkpoint (SAC)
Correct spindle Quiescence
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Fig. 2.2 Cells go through the cycle in an unidirectional manner, where they cannot enter the next phase in the cell
cycle until all the transition exigences of the previous one are satisfied. Thus, the cycle progression is restricted to
the cells fulfilling specific requirements, necessary for the formation of healthy tissues. The figure is from [260].

There are three main checkpoints (G1/S, G/M, and the metaphase checkpoints) that ensure that
damaged DNA is not passed on to daughter cells (see Figure 2.2). We can briefly mention that:

O Gy /S checkpoint is a transition and a kind of rate-limiting checkpoint in the cell-division cycle.
In this stage (Figure 2.2), the mother-dividing cell checks whether it has enough materials to successfully
replicate its DNA. All unhealthy and/or malnourished cells are arrested at this checkpoint.

O  Gy/M checkpoint represents a transition step where the cell ensures that it has enough cytoplasm
and phospholipids to form two daughter cells. It is also the stage where the cell checks if it is the right
time to replicate. Inhibition of protein synthesis during the gap G» will prevent the cell from undergoing
mitosis M.

O Metaphase checkpoint is the one that occurs during the metaphase. Here, the cell wants to
ensure that the spindle has formed and that all of the chromosomes are aligned at the spindle equator

before anaphase begins.

Remark 2. i) The p53 gene (also known as tumor protein pS53, or, cellular tumor antigen p53) plays an
important role in triggering the control mechanisms at both G /S and G, /M checkpoints. In fact, a dam-

aged p53 (due to abnormal mutations) causes some severe health consequences [139]. In addition to p53,
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checkpoint regulators are being heavily researched for their roles in cancer growth and overproliferation.
ii) Cancer are usually caused by mutations that allow the cells to speed through the various checkpoints,
and even skip them altogether (i.e. cells performa S — M — S cycle, consecutively, such that the gap
phases are skipped). Because these cells are no longer arrested in the previously mentioned checkpoints,
any DNA mutation that occurs is disregarded and transmitted to the formed daughter cells. This partly

explains why cancer cells tend to exponentially accrue mutations.

Finally, it is worth mentioning that the regulatory process that controls committed cells before and
during mitosis, by triggering a series of physiological events during the cell-division cycle, is not perfectly
understood. Indeed, we point out that, for instance, our understanding of the underlying mechanisms of
translational regulation in the somatic cell cycle is still limited [229], while our knowledge of the energy

regulation (generation and consumption) during the cycle progression is still in a primitive stage [255].

2.2 Stem Cells (SCs)

A fascinating category of cells is known as stem cells (SCs). These are undifferentiated cells characterized
by their extensive ability to self-renew and their multipotency, which is the ability to differentiate into
more mature and specialized cells [285]. Figure 2.3 gives a cartoon representation of the common possible

fates of eukaryotic (stem) cells.

cell-division cycle

self-renewal —————— > P ® o e m quiescence GO
® e
J \programmed cell death
proliferation (apoptosis)

|

differentiation/maturation

Fig. 2.3 Schematic illustration of the different (stem) cell fates: proliferation, death, self-renewal, differentiation,
quiescence. Quiescent (or resting) cells may recover their division activity. The recent cell plasticity concepts
(dedifferentiation and trandifferentiation, Box 2 and Section 2.4.2) are not represented here.

The general and common concepts defined below are, in a similar way, also valid for non-stem cells.

Definition 4. Cell proliferation.
Proliferation of cells is the mechanism that results in an increase of the number of cells. It is defined
by the balance between cell divisions and cell loss through cell death or differentiation. One of the

characteristics of cancer is that cancerous cells generally overproliferate®.

Definition 5. Cell self-renewal.

Self-renewal of cells is the process by which SCs divide to produce more stem cells, thus perpetuating

2See the definition given in Nature, available at: https://www.nature.com/subjects/cell-proliferation
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the SC pool throughout life. In other words, self-renewal is cell-division with maintenance of the
undifferentiated state that characterizes SCs ([264]). In the process of maturation, cells gradually lose

their ability to self-renew, as they become more and more mature.

Definition 6. Cell differentiation.
Differentiation of cells represents the process by which cells change from one state to a more specialized
type, which has specific functions. Differentiation commonly occurs in an irreversible way®, many times

during the development of a multicellular eukaryotic organism.

Definition 7. Apoptosis
Apoptosis is a highly regulated process of programmed cell death that occurs in multicellular organisms.
Biochemical events lead to morphological cell changes resulting in cell death. If launched, apoptosis

cannot be stopped and causes irreversible nuclear and chromosomal DNA fragmentation.

2.3 Cancer Stem Cells (CSCs)

Basic features of normal SCs have been shortly discussed in the previous section. Now, we point out that
sometimes a pathological population of cells, that does not initially necessarily belong to the SC family
([93]), acquires self-renewing and proliferating capabilities similar to those of normal SCs ([93, 230]).
These stem-like cells are very often out of control [247] and they are capable of initiating, developing and
regenerating cancers [93], hence their designation as cancer stem cells (CSCs) [150].

2.3.1 Whatis cancer?

Cancer is one of the most devastating causes of morbidity and mortality all over the world [29]. A brief

definition of cancer, given by the National Cancer Institute (NCI) 4 is as follows:

Definition 8. «Cancer is a term for diseases in which abnormal cells divide without control and can
invade nearby tissues. Cancer cells can also spread to other parts of the body through the blood and
lymph systems. There are several main types of cancer. Carcinoma is a cancer that begins in the skin or in
tissues that line or cover internal organs. Sarcoma is a cancer that begins in bone, cartilage, fat, muscle,
blood vessels, or other connective or supportive tissue. Leukemia is a cancer that starts in blood-forming
tissue, such as the bone marrow, and causes large numbers of abnormal blood cells to be produced and
enter the blood. Lymphoma and multiple myeloma are cancers that begin in the cells of the immune
system. Central nervous system cancers are cancers that begin in the tissues of the brain and spinal cord.
Also called malignancy.» National Cancer Institute (NCI, 2017). See also: [297].

In fact healthy tissues are maintaining homeostasis (i.e. maintain a constant internal environment in
response to environmental challenges) through a heavy regulation mechanism. Unfortunately, several
types of disturbances and disorders may occur, causing many severe dysregulation including cancers. In
other words, cancer emerges after some disorders that lead an irreversible neoplastic transformation (i.e.

conversion of a tissue with a normal growth pattern into a malignant tumor) [29]. Neoplastic cells are

3But see Section 2.4, for cell plasticity features (dedifferentiation and transdifferentiation of cells).
4NClI is the federal government’s principal agency for cancer research and training, USA. https://www.cancer.gov
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aggressive, continuously self-renewing, proliferating and in addition, they have the ability to escape to
apoptosis, mitotic checkpoints, and the hole immune regulation system [29].

In particular, a hostile subpopulation of cells within a tumor mass is known to be highly resistant to
anti-tumor drugs currently used in therapeutics [29]. These cells are known as Cancer Stem Cells (CSCs)

[247], as discussed in the next section.

2.3.2 On the Cancer Stem Cell (CSC) hypothesis

CSCs were identified in 1994 and, since then, their research field is generating an increasing interest.
Indeed, their biological properties together with their formation mechanisms become clearly a major focus
of current medical research. The reason behind such an interest is that CSCs are able of initiating and

fueling tumor growth, and moreover, they show a strong resistance to conventional cancer therapies [231].

Box 1. The CSCs hypothesis
Definition 9. CSCs form a limited subpopulation of cancer cells that have indefinite potential for

self-renewal, and most of the time, an overproliferating activity resulting in tumorigenesis.

The CSCs hypothesis postulates that only a subpopulation of the total population of cancer cells,
that form a tumor, is capable of initiating, sustaining and regenerating tumors, while non-stem
cancer cells are considered to be without any tumor initiation potential (see [93, 94]).

In fact, in such a framework, cancer cells include CSCs, and striking parallels exist between
normal SCs and CSCs. One interpretation of cancer® is that: CSCs may originate from the
transformation of normal SCs. In addition, it appears clear that similar signalling pathways are

regulating self-renewal mechanisms in SCs and cancer cells (see [247]).

Remark 3. The CSCs hypothesis is actually still controversial, even if this concept has gained
ground in the recent years and is now better accepted. For some authors, the reference as a "CSCs
paradigm” may appear to be more appropriate than "hypothesis" (see for instance [93]). In fact,
medical observations have approved the existence of multiple subpopulations of cancer cells in a
tumor, with different tumor-initiating powers ([93, 94]), including a subpopulation of cells showing
a "stem-like" status [116, 117]. However, it appears that "stemness" is not a permanent state, but

rather a transient cell state that is associated to epigenetic changes [54, 116, 117].

“We will see later a second interpretation of cancer, based on cell plasticity features (Section 2.4.2), in which it is
argued that CSCs emerge from the dedifferentiation of more mature cancer cells.

In addition, as reported in [231], the discovery that activation in carcinoma? cells of the epithelial-to-
mesenchymal transition (EMT)® program can give rise to cells with stem-like properties has provided one

possible mechanism explaining how CSCs arise, with possible therapeutic manipulations (see [231]).

SCarcinoma is a type of cancer that starts in cells that make up the skin or the tissue lining organs, such as the liver or kidneys.
It is developed from epithelial cells and started in the tissues that lines the inner or outer surfaces of the body. As it is usually the
case of all cancers, carcinomas are abnormal cells that overproliferate without control.

5Roughly speaking, EMT is the mechanism by which epithelial cells lose their cell polarity and cell-cell adhesion, and gain
migratory and invasive properties to become mesenchymal stem cells (these are multipotent stromal cells that can differentiate
into a variety of cell types).
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Next, we mention that CSCs have the feature of dividing asymmetrically, since mother CSCs give
birth to daughters that remain as CSCs (self-renewal) and they give also birth to differentiated cells that
generate the non-stem cancer cells [93]. In the sequel, we will see that these (non-stem) cancer cells may
also (re)generate CSCs [29] through a sophisticated process known as dedifferentiation ([52], which is a

cell-plasticity feature [280]) as developed in the next section.

2.4 Can cells undergo dedifferentiation?

In view of the broad range of options available for cells in general (including self-renewal, differentiation,
lineage specification, programmed cell death, and quiescence, see Figure 2.3), and SCs in particular,
it becomes clear that determining the fate of a given cell is a key challenge [95]. This task is further
complicated by the discovery of unexpected biological mechanisms that are known as cell plasticity
abilities. More precisely, it has been believed for a long time that once a cell differentiates into a particular
cell type that has a distinctive function in the human body (e.g. when an hematopoietic SC differentiates
into a type of, for instance, mature white blood cells), it permanently loses the potential for diverse
functions and stably maintains its identity [301]. The discovery of dedifferentiation contradicted this

biological postulate, and thus opening the way to a much richer and complex cellular behavior.

Box 2. Crucial definitions: cell-plasticity (dedifferentiation & transdifferentation)

Definition 10. «Dedifferentiation is an important biological phenomenon whereby cells regress

from a specialized function to a simpler state reminiscent of stem cells» [52].

Definition 11. «Transdifferentiation is defined as the conversion of one cell type to another. It
belongs to a wider class of cell type transformations called metaplasias which also includes cases

in which SCs of one tissue type switch to a completely different SC» [263].

It has been believed that once a cell differentiates into a particular cell type that has a distinctive
function in the human body, it permanently maintains its identity [301]. The discovery of dediffer-
entiation contradicted this biological postulate and allowed a much richer and complex cellular
behavior. Even more surprisingly, transdifferentiation stated that adult SCs may first reside in one
tissue and then contribute to another tissue [280]. In fact, in normal tissues, when the process of
cell generation and continuous replenishment is perturbed (e.g. tissue injury, hemorrhage), the

homeostatic mechanisms are invoked to allow adequate regeneration of damaged tissue [280].

As previously mentioned, the mechanisms regulating the cell-division cycle are not yet perfectly
assimilated. Nevertheless, it is agreed by everyone that understanding how the fate of cell (including
SCs) is guided will, firstly, elucidate the causes of cancer and, secondly, allow the use of cells/SCs in

regenerative medicine’ (see for instance [95], and the references therein).

7«Regenerative medicine aims to replace the lost or damaged cells in the human body through a new source of healthy
transplanted cells or by endogenous repair» [83].
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2.4.1 Evidences about cell plasticity: the case of induced pluripotent stem cells (iPSCs)

The two main human SC types® are embryonic stem cells and adult stem cells (e.g. epidermal stem cells
to renew skin, epithelial stem cells in the gut, hematopoietic stem cells in bone marrow for fabrication
of blood, bronchoalveolar stem cells in the lungs). By artificially reprogramming adult cells a new
category of cells that expresses embryonic stem cells characteristics is obtained (sometimes called
induced pluripotent stem cells (iPSCs)”. Not surprisingly, the clinical potential of stem cells is eliciting

huge scientific and commercial interest [95].

Box 3. Yamanaka factors (Oct3/4, Sox2, Klf4, c-Myc)

A research team in Kyoto University, in Japan, have successfully identified in 2006 the mechanism
that would allow genetic reprogramming of differentiated adult cells to become SCs. The resulting
stem-like cells are known as induced pluripotent stem cells (iPSCs), and they are similar to
embryonic stem cells. Since then, researchers have rapidly improved the initial techniques of
generating iPSCs, creating a powerful new way to "dedifferentiate" cells whose developmental
fates had been previously assumed to be determined.

Yamanaka® Factors (Oct3/4, Sox2, KIf4, c-Myc) are highly expressed in embryonic SCs, where
they regulate the developmental signaling network inducing pluripotency. The over-expression of

these factors is used to transform human somatic cells into pluripotent embryonic-like cells [175].

4Shinya Yamanaka has been awarded the Nobel Prize in Physiology or Medicine, in 2012, for «the discovery that
mature cells can be reprogrammed to become pluripotent».

Finally, since some ethical issues arise regarding the use of embryonic SCs in research, cell plasticity
appears as an acceptable way to produce SCs without sacrificing embryos [52]. Consequently, therapy
research is focusing on adult cells due, as previously mentioned, to their potential in regenerative medicine
and tumor biology, but also because dedifferentiation (or, reprogramming) may offer an abundant source

of SCs without any risk of immune rejection from the intended recipient (see [95, 230, 52, 41]).

2.4.2 Cell plasticity in normal tissues

In normal tissues, it has been believed that once a cell differentiates into a particular cell type that has a
distinctive function in the human body (e.g. when an hematopoietic SC differentiate into a type of mature
white blood cells), it permanently loses the potential for diverse functions and stably maintains its identity
[301]. However, nowadays, it becomes clear that the traditional lineages and functions are, physiologically,
no longer sufficient to describe the fate of a cell [280]. Indeed, the discovery of dedifferentiation in
normal tissues has contradicted the classical biological visions, and thus, opens the way to a much richer
cellular behavior and fates, even when no malignancy is involved. In addition, transdifferentiation and
transdetermination [280], these even more surprising phenomena where adult SCs may first reside in one

tissue and then contribute to another, are also present is healthy cases.

8See the website of the International Society for Stem Cells Research (ISSCR): www . closerlookatstemcells. org
See also the Nature Reports: www .nature.com/stemcells/2007/0706/070614/full/stemcells.2007.14.html
9See the website of GE healthcare: www .gelifesciences.com
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Finally, we notice that cell plasticity in healthy tissues is evoked when the process of cell generation
and continuous replenishment is perturbed (e.g. after tissue injury, or hemorrhage) [280]. Indeed, in such
situations, the homeostatic mechanisms are invoked to allow adequate and fast regeneration of damaged

tissues (see Figure 2.4).
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Fig. 2.4 (A) A differentiation example: After a ventricular amputation of zebrafish, a dedifferentiation (followed by
a replication -proliferation-, then, a redifferentiation) is observed in cardiomycocytes ([280]). (B) A transdifferentia-
tion example in which hypatocytes become biliary duct epithelial cells. This process occurs after a toxin-induced
biliary injury. These images are from [280] ((A) is from Fig. 2 and (B) is from Fig. 3 of [280]).
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2.4.3 Dedifferentiation meets cancer

Cell-plasticity has provided new hypothesis about the origin of cancer, as well as new therapeutic insights
for its treatment (see the review articles on this topic: [83, 110, 171, 149], and the references therein).
At this juncture, the issue is whether cancer emerge from SC disorder or a reacquisition of SC
characteristics? (see [230], for a similar issue in the typical case of leukemia). The latter question is
equivalent to the one already tackled in Section 2.3, about the origin of CSCs. We have already put
forward one interpretation that assumes that CSCs may originate from a transformation (i.e. mutation)
in a part of normal SCs (see Box 1). Several relevant works support this theory that appears consistent.
However, another interpretation strongly relate cancer to dedifferentiation (see [83, 110, 171, 149], and
the example in Figure 2.5). In fact, both ways of generating cancerous cells may exist in the same type of

cancer, as illustrated in the following example in Box 4.

Definition 12. Epigenetics is the analysis of any potentially heritable change in gene expression, which
actually affects how cells read the genes, while it does not involve changes in the corresponding DNA
sequence. In other words, it is about a modification in phenotype without changing genotype. See
[116, 117].
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Box 4. The example of leukemic (i.e. blood cancerous) cells

We quote from Tung & Knoepfler work [286] that:

« The CSC hypothesis postulates that immortality is a pathological offshoot of the normally
exquisitely controlled proliferation machinery in normal SCs from which mis-regulated cell ex-
pansion occurs due to oncogenic mutations [150, 72]. This CSC model further proposes that
there is a subpopulation of cancer cells within tumors that possesses some sSC-related properties
such as self-renewal and that give rise to tumors [42]. However, whether CSCs originate from
normal SCs or from differentiated cells, which reacquire SC attributes through a dedifferen-
tiation process, is a long-standing question [217]. The answer to this key open question may
vary depending on tumor type and stage as well. Take the hematopoietic system for example;
leukemia SCs have been shown to arise from both self-renewing SCs and also from transient
repopulating progenitors, providing evidence that stem cells and late-stage precursors can both

undergo oncogenic transformation and result in similar tumor phenotypes [68] » [286].

In the majority of cancers, the genetic/epigenetic heterogeneity is reflected by genome instability
(i.e. genetic or epigenetic alterations [214]). We define the phenotypic heterogeneity as the diversity in
functional features and behaviors in different lineage markers that cancer cells can adopt during their
cancer progression (growth). Based on cell surface markers ([174, 246, 279]), we can identify distinct
(heterogeneous) populations of cancer cells within the same tumors, i.e. cancer cells within the tumor may
exist at different states of differentiation and maturation, including the subpopulation of CSCs [93, 94].

In [110], the authors reported that although CSCs exhibit the SC characteristics (self-renewal, prolifer-
ation and differentiation), they do not necessarily originate from the transformation of normal tissue SCs.
Several recent works are suggesting that not all cancers strictly conform to the unidirectional hierarchical
CSC model, and highlight the theory of tumor cell plasticity, where non-CSCs dedifferentiate and
acquire CSC-like properties under certain conditions as demonstrated by the concrete examples given in
[110]. Finally, we refer to [142], and the references therein, for a quantitative experience highlighting the

role of dedifferentiation in cancerous cell surviving during radiotherapy.

Box 5. Summary of the main medical research focuses in cell plasticity
All the research efforts in recent years are mainly focusing on the following aspects of cell plasticity:
O Adult cells manipulation and artificial reprogramming into iPSCs.
O CSCs origin and the role of cell plasticity in the appearance and maintenance of tumors.

O Drug-resistance, chemotherapy and radiotherapy resistance, induced by cell-plasticity.

2.5 Cancer dormancy

Very often, CSCs and cancer cells are characterized by unhealthy behaviors such as excessive proliferation
and abnormal loss of their differentiation faculties (this is what we observe in leukemia, for instance). On
the other hand, it cannot be disregarded that in some cases (as in breast cancer and leukemia [88], [18])

CSCs do not overproliferate (cancer without disease [102], or, in situ tumor). However, even during their
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Fig. 2.5 Dedifferentiation and cancer. A model for the generation of malignant gliomas. Normal mechanism
of neuronal differentiation: Neural stem cell can self-renew, go through an intermediate progenitor cell, and
differentiate into oligodendrocytes, astrocytes, neurons, and endothelial cells. In the formation of glioblastoma, the
transformed neurons, astrocytes, and possibly oligodendrocytes can dedifferentiate/reprogram to become cancer
stem cells (CSCs), which can then continue to self-proliferate and differentiate to more transformed neurons and
astrocytes. The transformed neurons and astrocytes can also transdifferentiate into endothelial cells (TDECs), which
can again dedifferentiate to CSCs. [110].

non-overproliferating states, CSCs remain in general distinguishable through specific markers on their
surface!” [247].

2.5.1 Evidences and underlying assumptions about cancer dormancy

Strong evidence about the existence of this stalled growth, commonly referred to as rumor dormancy, has
been established many years ago when microscopic tumors were frequently encountered during autopsy
examinations ([220], [102]). The most likely explanations (see [15, 261, 102]) of CSCs dormancy state
are:
i) blood and nutrient supply issues that prevent tumor growth, or delay its clinical manifestation [213],
ii) vigilance of the immune system which, in some rare cases, suffices to stop tumor development (see
[98, 261, 213, 299, 291]). In fact, there has been a lengthy debate on the role of the immune system in

10For instance, stems cells in acute myeloid leukemia have some interleukin-3—receptor o chain surface markers, which are
not found in normal hematopoietic stems cells (see [150, 99]).
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the defense against cancer: a process called cancer immunosurveillance [291]. The ambiguity about the
immunosurveillance concept stems from the fact that often the immune system favors the development of
the tumor instead of trying to eliminate it. The concept that attempts to integrate the diverse effects of the
immune system on tumor progression is known as cancer immunoediting (see the review articles [261]
and [291]). Howeyver, even if it appears as an unsystematic process, the immune response remains one of
the most likely justifications for cancer dormancy.

[lustrative interpretations of CSC eradication, dormancy, and escape of dormancy, in terms of cancer
immunoediting, are provided in Figure 2.6 (see also Figure 3 of [261] and in Figure 1 of [291]).

Not surprisingly, an interest arises for cancer therapies that are oriented on the immune system, bearing
the name of immunotherapy'!. In a similar spirit, monoclonal antibodies, e.g. gemtuzumab ozogamicin,
have been approved in the treatment protocols of some cancers (as in acute myeloid leukemia [115]), even
if more trials are still needed to identify their exact benefits [253, 115]. Other cancer therapies, sometimes
assimilated to immunotherapy, are using some immune checkpoint inhibitors (see for instance, [228],
[169] and [44]). In the last part of our work, we will be shortly adopting some of these immuno-oriented

concepts, associated with classical chemotherapy, as it is frequently adopted in practice.
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Fig. 2.6 Illustrative figure (taken from [261]) of escape from dormancy and immunoediting concepts.

' mmunotherapy aims to help the immune system destroy cancer cells. It is given after -or at the same time as- another cancer
treatment such as chemotherapy. (http://www.cancer.net/)
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2.5.2 Is cancer dormancy a promising therapeutic option?

In a general perspective, apart from the interpretation of tumor dormancy as an observed natural phe-
nomenon in human cancers, the idea to transform cancer into a chronic disease is in the voices of many
people in the medical world nowadays [111], [14]. Indeed, the interesting issue here is about: how can we
bring CSCs from an overproliferating activity to a dormant state? More precisely, since cancer treatments
most often consist of delivering the maximum tolerable doses of drugs in order to kill diagnosed tumors,
and knowing that a non-completely eradicated tumor frequently grows again, even more aggressively than
the initial one [93], the option of maintaining the tumor in dormancy is more appealing than trying to
eradicate it [147]. Further discussions on the opportunities offered by cancer dormancy in therapeutics
can be found for instance in [14], [289], [111], and the references therein.

The development of a relevant mathematical framework appears as a necessary tool to apprehend
tumor dormancy as a biological mechanism [154], with the ultimate goal to apply it in therapeutic settings.
However, the task of mastering CSCs, i.e. bringing them into a dormant state, seems to be difficult to
conduct. Indeed, one of the first dormancy-oriented therapeutic approaches has not been very fruitful. It
was based on the use of angiogenesis inhibitors (substances that inhibit the growth of new blood vessels
[102]) as drugs that choke off the blood supply of the tumor, in order to maintain it in dormancy. However,
unexpected effects occurred in practice, in some situations, where targeting the blood vessels that feed
tumors actually accelerated the spread of cancer [134], [248].

In the clinic of cancers today, eradication of CSCs remains the predominant treatment approach
(although there is still a long way to improve the existing eradication treatment strategies [277]). In light
of the previously mentioned observations, one can say that dormancy has actually generated more issues
than answers, in the process of understanding cancer. Among the open issues, we emphasize the following
ones: when a treatment protocol is elaborated for CSCs eradication with a given rate of success, how can
we actually administer it (or a part of it) in order to achieve dormancy? In addition, since eradication
techniques may generate some surviving tumors which become even more aggressive than the initial ones,
a key question is to determine whether it is effective to consider the same targets and drugs, as for CSCs

eradication, in order to achieve dormancy? These are some open questions in this topic.

2.6 A presentation of the process of blood cell production

Among a wide range of physiological mechanisms occurring in the human body, our research axis particu-
larly highlight one fundamental and major process, leading to the formation and continuous replenishment
of all the blood cells, known as hematopoiesis [138]. Clearly, hematopoietic stem cells (HSCs) are the
most clinically studied type of SC. Due to their vital importance, extensive work (particularly in biology
and medicine) is carried out on HSCs, since they sustain haematopoiesis [69].

More precisely, in a healthy bone marrow resides a rare population of HSCs. The critical role of
HSC:s is to create and replenish all the types of blood cells, including red blood cells, white blood cells
and platelets, as illustrated in Figure 2.8. These distinctive categories of differentiated blood cells arise
from HSCs by a process of commitment to (and execution of) complex programs of cell differentiation

[138]. Thus, lineage committed progenitor cells subsequently proliferate and differentiate to produce
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the circulating mature blood cells, under the control of what is collectively known as colony-stimulating
factors (CSFs) (i.e. a group of hormonal-like growth factors) [61, 265]. In fact, the blood cells (both the
myeloid and lymphoid lineages in Figure 2.8) differentiate inside the bone marrow (Figure 2.7), they
leave and enter bloodstream when they become mature.

The complexity of the hematopietic system is enormous, since as many as 1 —5 x 10° erythrocytes
and 1 — 5 x 10 white blood cells are produced per day during the lifetime of an individual. Additional
complexities include the need to maintain a pool of undifferentiated SCs, from which mature cells arise
by a differentiation process.

Bone Anatomy

Spongy bone Blood vessels in
(contains red bone marrow
marrow)

Blood stem
cell

)

Red blood cells

®

Yellow marrow—— \ White blood cells
7\

\ \ Compact bone

Platelets

.
~te

Fig. 2.7 The hematopoietic cells are formed inside the bone marrow. When blood cells become mature, they leave
the bone marrow and go into circulation, in order to fulfill their specif tasks. This figure is from the National Cancer
Institute (available at: https://www.cancer.gov/types/leukemia/patient/adult-aml-treatment-pdq).

On the importance of HSCs

In 2017, G. Crane and his co-authors wrote in [69] about hematopoiesis:

« Hematopoiesis is required for the ongoing production of blood cells and immune cells — including
erythrocytes, platelets and white blood cells — throughout life. To generate these cells, HSCs
give rise to an array of restricted progenitors, which proliferate extensively and then differentiate
into mature cells. Without hematopoiesis, we would not be able to maintain blood cell counts and
would die within weeks as a result of anaemia (due to erythrocyte depletion), bleeding (due to
platelet depletion) and infection (due to the depletion of myeloid and lymphoid immune effector
cells). Although restricted progenitors are responsible for most steady-state hematopoiesis, HSCs
must be maintained throughout life to replenish these progenitors, and to regenerate hematopoietic

cells after stresses such as severe infection or blood loss» [69].
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2.7 Hematopoietic niches

The local specialized tissue microenvironment that promotes the maintenance and ongoing production of
SCs is known as niche [69, 209]. Inside the bone marrow, the hematopoietic niche regulates the function
of adult HSCs, via the production of factors that directly act on SCs (some other factors, from more distant
tissues, also affect the SCs in their niche [69]).

Bone Bone marrow

Megakaryocyte

2\
' Sinusoid

Sinusoidal
endothelial

Arteriole
Non-myelinating
Schwann cell

Arteriolar

Ng2-CreER* cell
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Lymphoid
progenitor

Express high levels Express moderate Express low levels .
of CXCL17 and SCF levels of CXCL12 of CXCL12 and SCF ——== Activates TGFj
Releases calcium and Regulates stem cells
Express TGFP Express very low U .
growth factors from through direct and
and CXCLA levels of CXCL12 the bone matrix indirect mechanisms

Fig. 2.9 This figure is taken from [69]. It illustrates niches location of adult HSCs and their regulation processes.
Inside an adult bone marrow, HSCs position themselves in close contact to sinusoid (see [209, 69]), since these
locations usually express high levels of stem cells factors (SCF) as explained in [69]. SCF and CXCL12 are indeed
necessary for the maintenance of HSCs [69]. Approximately 10% of HSCs localize near to small-diameter arterioles
[69]. Many growth factors, nerve fibers and cells, through very complex mechanisms, are also required for HSC
maintenance (see also [308], and the references therein). Osteoblasts appear to promote a subset of early lymphoid
progenitors. Some other lymphoid progenitors reside inside sinusoidal niches, where they depend on CXCL12
synthesized by LEPR+ (leptin receptor +) cells [69]. Surprisingly, it appears that, in turn, HSCs regulate the
maintenance of the niches through the secretion of angiopoietin-1 (see [308]).

For further reading on the HSCs niches, we refer to [159, 76], and also to [129] for a recent review of

the neural regulation of hematopoietic niches through sympathetic nervous system (SNS).
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2.8 Regulation of hematopoietic cell growth

The process of hematopoietic cell differentiation is heavily regulated through cytokines (see [200]), in
order to maintain an adequate mature-cell density in the bloodstream.

7

Cytokines: these are small proteins that play a major role in cell signaling. Their release has an
effect on the cell around them, by affecting their behavior and determining their fates. Here we
list some important facts about cytokines: i) They are involved in autocrine signalling, paracrine
signalling and endocrine signalling as immunomodulating agents. ii) They include chemokines,
interferons, interleukins, lymphokines, and tumour necrosis factors but generally not hormones
or growth factors®. iii) They are produced by a broad range of cells, including immune cells
like macrophages, B lymphocytes, T lymphocytes and mast cells, as well as endothelial cells,

fibroblasts, and various stromal cells.

“Difference between cytokines and growth-factors: Hormones (growth-factors) are also important cell signaling
molecules. In fact, the distinction between cytokines and hormones is still part of ongoing research. Most commonly,
cytokines include chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors but generally not
growth factors (despite some overlap in the terminology). Notice that one type of cytokine may be produced by more
than one type of cells, while hormones tend to be made by specific kinds of cells.

2.8.1 Regulation of red blood cells: Erythropoeietin (EPO)

We define erythropoiesis as the process of production of red blood cells (RBCs or erythrocytes). In the
simplest scenario, a decrease of oxygen O, is detected by the kidneys, which stimulates the secretion (by
some interstitial fibroblasts in the kidneys) of a cytokine (or a growth factor) called erythropoietin (EPO).
More generally, EPO is a glycoprotein that plays the most relevant control in erythropoiesis: it promotes
both the proliferation and differentiation of red blood cell precursors (see Figure 2.8), which favors the

erythropoiesis process and results in red blood cells production.

2.8.2 Regulation of white blood cells: Granulocyte colony-stimulating factor (G-CSF)

The Granulocyte-colony stimulating factor (G-CSF, [75]), is a glycoprotein that stimulates the bone
marrow to produce granulocytes (see Figure 2.8) that go into the bloodstream [281].

G-CSF is considered both as a cytokine and as a hormone. As mentioned in [200], several tissues
may release G-CSF in the body, and it may in addition have different roles (stimulates the survival,

differentiation, and proliferation of neutrophils, Figure 2.8).

2.8.3 Regulation of platelets production: Thrombopoietin (THPO)

Megakaryocyte growth and development factor (MGDF), or, more commonly, Thrombopoietin (THPO),
is a protein (more precisely, a glycoprotein hormone) produced by liver and kidney, and which regulates
the platelets formation. In fact, THPO stimulates the production and differentiation of megakaryocytes

(see Figure 2.8), the bone marrow cells that lead to platelets [155].
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2.9 Some pathological blood disorders

A huge number of diseases and disorders may occur in the hematologic systems. Here we are listing some
examples of these diseases.

O Anemia is one of the most frequent blood disorders which is mainly characterized by a decrease
in the number of red blood cells and hemoglobin in the bloodstream. Numerous kinds of anemia exist,
and several classifications are introduced to categorize them (for instance, nutritional vs non-nutritional
anemias). We can mention for instance:

(1 Pernicious anemia is a type of megaloblastic anemias, characterized by an inability to
absorb Bj,-vitamins (due to a loss of gastric parietal cells).

(1 Iron deficiency anemia is a disorder where hemoglobin cannot be produced. Indeed, as
its name indicates, iron is very low during this kind of anemia, while hemoglobin contains iron.

(1 Megaloblastic hereditary anemia is an unhealthy situation, which is characterized by an
inhibition of DNA synthesis during erythropoiesis.

(1 Alphastic anemia is a blood disorder in which the bone marrow cannot produce sufficient

blood cells to replenish the circulating mature blood cells.

O Infectious diseases (bacterium-related and protozoan-related)
(1 Cholera infection, which is a bacterium-related.
(1 Plasmodium infection (Malaria), which is protozoan-related.

O Immunodeficiency

O Blood cancers, which belong to the family of cancers (see Section 2.3.1), but they are limited to
those originating, evolving, or affecting the bone marrow, blood cells, or lymph glands'?.
1 Myeloma
> Malignant plasma cell tumor NOS
(1 Malignant immunoproliferative diseases
> T-gamma lymphoproliferative disease
(1 Lymphoma
> B-cell lymphoma
> Burkitt lymphoma
(1 Leukemia: unlike solid tumors, leukemia is a liquid cancer that starts in the bone marrow,
which is the place of production of all blood cells. Leukemic cells are most of the time immature white
blood cells, that abnormally and excessively proliferate in the bone marrow until they overrun the healthy
blood cells (see Figure 2.10). Moreover, since leukemia is not a solid tumor, cells may travel through the
bloodstream and contaminate other organs in the body.
First, we distinguish between acute leukemia and chronic leukemia. Roughly speaking, the
acute one growths very quickly, at the point of becoming deadly in weeks or months, if not treated. On

the other hand, chronic leukemia types are generally slow and long-term developing cancers. There two

121 ymph gland is a part of both the lymphatic and adaptive immune systems. Lymph nodes are major sites of B and T
lymphocytes (see Figure 2.8), and other white blood cells.
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main types of acute leukemia: the first one appears in the myeloid lineage while the second one appears in
the lymphoid lineage (see blood lineages in Figure 2.8).

> Acute myeloid leukemia (AML)

> Acute lymphoblastic leukemia (ALL)

On the other hand, we can distinguish between three types of chronic leukemia:

> Chronic myeloid leukemia (CML)

> Chronic lymphocytic leukemia (CLL)

> Hairy cell leukemia (HCL)

In practice, the most commonly encountered types of leukemia, in adults, are CLL and AML.

Normal Leukemia

Red blood cells Platelets White blood cells

Fig. 2.10 Normal blood includes a large variety of cells of different shapes, reflecting the normal developmental
stages and the different types of cells (mature red blood cells, mature white blood cells, platelets, see Figure 2.8).
This diversity is vital for the healthy functioning of blood throughout the body. On the other hand, leukemia is
characterized by a poor cell diversity resulting from the overproliferation of cancer (immature) blood cells, with
a similar appearance. In AML, blast cells (immature white blood cells, Figure 2.8), which are enable to perform
their functions in blood, invade the bone marrow and possibly the bloodstream. In fact, their overproliferating and
self-renewing activities prevent the formation of other (normal) blood cells.

Figure source: http://www.cancerexpertnow.com/resource/cancer-resources/leukemia-diagnosis/

2.10 A particular emphasis on Acute Myeloid Leukemia (AML)

In [85], H. Dohner and co-authors defined AML as follows:

Definition 13. Acute Myeloid Leukemia (AML) [85].
«AML is a form of cancer that is characterized by infiltration of the bone marrow, blood, and other
tissues by proliferative, clonal, abnormally differentiated, and occasionally poorly differentiated cells of

hematopoietic system» [85].
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Box 6. Some facts and figures about AML

O AML is clinically identified if leukemic myeloid blasts (Figure 2.11) exceed 20% in the
bloodstream: this is in fact the conventional diagnosis criterion of AML, oy, if at least 50% of
blood cells belonging to different myeloid lineages are dysplastic® [84].

O The success rate of therapies in AML for patients younger than 60 years is approximately
40%, while it never exceeds 15% for patients over 60 years [85, 84].

O At the time of this writing, striking statistics and previsions about acute myeloid leukemia
(AML) are provided by the American Cancer Society for the current year (2017), in the United

States of America. Some of these data are summarized in Table 2.1.

“Dysplastic cells are unhealthy cells with severe abnormal development.

Fig. 2.11 A two-panel drawing of normal blood cells and blood cells with leukemia. Platelets, red blood cells,
white blood cells, plasma (fluid), and blast cells are labeled. Blasts are not typically found in bloodstream when
hematopoiesis is normal. Usually, AML diagnosis criterion consists in the identification of -at least- 20% of blasts
in the bloodstream. This figure is under a free licence from the National Cancer Institute (NCI), by A. Hoofring.

Estimates of new cases in leukemia (all kinds) ~ 62130 new cases in 2017
Estimates of deaths from leukemia (all kinds) ~ 24500 deaths in 2017
Estimates of new cases in Acute Myeloid Leukemia ~ 21380 new AML cases in 2017
Estimates of of deaths from in Acute Myeloid Leukemia ~ 10590 deaths in 2017

Table 2.1 Estimates (USA, 2017) provided by the Cancer Statistic Center affiliated to the American Cancer
Society.

According to the type of cell which is affected, AML has been divided into eight types, by the
French-American-British (FAB) classification. A pioneer FAB classification proposal was introduced
in [34]. Since then, many revisions have been performed [125]. A different classification exists, it is
known as WHO - World Health Organization - classification (last update in 2008, [221]). Roughly
speaking, the FAB Classification relies on morphological criteria of the cells, while WHO Classification
separates malignant cells according to chromosome translocations. An overview of the FAB classification

is given in Table 2.2, while an extensive discussion on the WHO classification can be found in [85, 84].
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MO undifferentiated AML immature while blood cells
Ml myeloblastic leukemia with minimal maturation immature while blood cells
M2 myeloblastic leukemia with maturation immature while blood cells
M3 promyelocytic leukemia immature while blood cells
M4 myelomonocytic leukemia immature while blood cells
M4 eos myelomonocytic leukemia with eosinophilia immature while blood cells
M5 monocytic leukemia immature while blood cells
M6 erythroid leukemia immature red blood cells
M7 megakaryoblastic leukemia immature cells that produce platelets

Table 2.2 The French-American-British (FAB) classification divides AML mainly into eight subtypes'?.

2.10.1 FLT3 (fms-like tyrosine kinase) mutations in AML

FLT3 (fms-like tyrosine kinase), is a member of the type III receptor tyrosine kinase (RTK) family. It
is mainly expressed in multipotential HSCs and progenitors [243]. Severe FLT3 mutations are found in
blast cells in nearly 30% of newly diagnosed AML in adults [305, 160, 277]. Cells with FLT3 mutations
have an important overproliferating advantage, typically through RAS-RAF, JAK-STAT and PI3K-AKT
signaling pathways (see Figure 2.12) [85, 258].
There are in fact two types of FLT3 mutations in AML:

O FLT3-ITD subtype (internal tandem duplication mutation, see [166], [282], [298]).

O FLT3-TKD subtype (point mutation in the tyrosine kinase domain, see [199]).

The first subtype (i.e., FLT3-ITD), represents approximately 70% of AML with FLT3 mutations,
and it has a severely poor prognosis [305, 277]. In fact, several molecules kinase inhibitor have been
evaluated against FL'T3 mutations in the typical case of AML. For instance, we can mention: AC220
[305], lestaurtinib [161], and, more recently, midostaurin [277]. A glimpse into some AML therapies is
discussed in the next section (see Box 8).

Finally, we mention that many other mutations may occur -sometimes simultaneously- in the
hematopoietic cell population. These mutations have more or less devastating consequences (see [137]).
For instance, we can mention the DNMT3A mutations, TET2 mutations, IDH1 and IDH2 mutations, etc.
The appearance of the latter types of mutations in AML lead to deregulation of the DNA methylation (see
the review paper about genomic and epigenomic landscapes in AML [214], see also Table 1 in [85] that

gives only the most frequent gene mutations in adult AML).

2.10.2 Current and emerging therapies for AML

Even after decades of intensive medical research, the treatment of AML has not encountered too much
success [85]. Indeed, it is surprising to notice that AML drug protocols have remained substantially
unchanged over the last four decades [85, 258].

In the general case, two main chemotherapy phases are considered during the treatment:

13See the StayWell official webpage:
http://poc.select.kramesstaywell.com/Content/cancer-source-vl/understanding-acute-myeloid-leukemia-am,
And the American Cancer Society official webpage:

https://wuw.cancer.org/cancer/acute-myeloid-leukemia/detection-diagnosis-staging/how-classified.html
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O Induction therapy: this is an intensive chemotherapy phase that generally uses some
continuous-infusions of cytarabine with anthracycline (possibly with anti-CD33 monoclonal antibody
such as gemtuzumab orogamicin [253]). See [85], and also [295].

O Postremission therapy: if a complete remission is obtained within the intensive induction
phase, a suitable consolidation program is prescribed. This essential phase includes chemotherapy and

hematopoietic cell transplantation.

Box 7. On classical and emerging therapies for AML (2017, [258])

The classical chemotherapy-based treatment of AML is known as (7+3), meaning that the patient
undergoes an intensive induction consisting of cytarabine (during 7) and/plus anthracycline (during
3 days). This treatment is generally followed by consolidation chemotherapy andhematopoietic
cell transplant (HCT), in order to ensure a complete remission.

In [112], one attempt - among many others - to improve the classical regiment (7+3) is discussed.:
« Efforts to improve the outcome of patients with AML have included the replacement of daunoru-
bicin with idarubicin or mitoxantrone; the intensification of cytarabine or daunorubicin during
induction; and the addition of maintenance therapy. With the exception of maintenance therapy,
which was associated with an inferior survival, most regimen modifications have had modest effects
and most randomized trials have shown no significant difference in outcome between treatment
arms» [112]. Nevertheless, the overall results of ongoing treatments suggest that an improve-
ment of the global prognosis of patients is possible, but a better understanding of leukemogenesis
mechanisms is necessary in order to develop new selective combined targeted therapeutic strate-
gies. In fact, various promising agents are evaluated in clinical trials: a summary is given in Table
1 of the recent work [258].

Let us now briefly mention some new promising therapies in the case of AML.
O New cytotoxic agents
=  Vosaroxin
O FLT3 inhibitors
= Sorafenib (first generation, [252])
= Midostaurin (first generation, [277])
= Quizartinib (second generation)
O PLK inhibitor
= Dasatinib
= Midostaurin (which is also an FLT3 inhibitor)
O Antibody-based therapies
= antibodies targeting CD33 (e.g. gemtuzumab orogamicin)
= antibodies targeting antigens such as CD123
O Epigenetic-modifiers therapies
= inhibition of the mutant metabolic enzymes IDH1 and IDH2
(e.g. by infusing AG-120 and AG-221)
O Immune checkpoint blockade
Ipilimumab



2.10 A particular emphasis on Acute Myeloid Leukemia (AML) 33
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Fig. 2.12 FLT3 mutations in the signaling genes are of two subtypes (ITD and TKD) [166, 199, 258]. Mutated cells
in these cases have an overproliferating advantage through RAS-RAF, JAK-STAT and PI3K-AKT ([163]) signaling
pathways, along with a survival ability [85, 258]. This figure is taken from [258].

Box 8. FLT3 inhibitors and therapies for AML (2017, [277])
Patients with acute myeloid leukemia (AML) and a FLT3 mutation have poor outcomes [277].

Since FLT3 mutations are frequently encountered in AML, several tyrosine kinase inhibitors are
developed as possible effective drugs.

The third clinical trial of midostaurin has been conducted recently in [277]. The conclusion is
outlined as follows ([277]):

«The addition of midostaurin to chemotherapy resulted in a 22% lower risk of death than that
among patients who received chemotherapy plus placebo. Although the trial was not powered for
subgroup analyses, overall survival was longer in the midostaurin group than in the placebo group
among patients with a FLT3 mutation of the TKD subtype and among those with a FLT3 mutation
of the ITD subtype with either a high ratio or a low ratio of mutant to wild-type alleles. »[277].

Finally, we mention that therapies targeting FLT3 mutations are highly toxic (due to their nonse-

lectivity), and in addition, a FLT3-resistance mutations can be developed.
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2.11 How do these biological concepts appear in this thesis?

The sections developed in this chapter give a limited overview on a number of interesting biological
principles: some of them have recently emerge (e.g. CSCs, dormancy, and cell plasticity), and they are
currently undergoing intensive biological research. The interested reader is referred to the references
therein the sections for further detail on the topic. Our aim is to ease the reading of the manuscript, since

the notions introduced here will be re-evoked throughout the upcoming three parts of the thesis.

Box 9. Hematopoiesis as a general modeling framework

Hematopoiesis provides a model for studying and understanding all the mammalian stem cells and
their niches [209], but also all mechanisms of cell cycle, differentiation and maturation processes.
One of the objectives behind the study of cell population growth is the development of new
anti-tumor therapeutic strategies. Indeed, cancer-triggering mechanisms (including the case of
AML), as well as all the complications that follow (such as drug resistance, mutation accrual,
etc), are highly complex, and the contribution provided by mathematical tools in representing and
understanding them is becoming increasingly necessary (in hematology [182, 240], and in various
other biological fields [211, 210]). This is actually the concept of our project, in which we expect
that a better understanding of the behavior of healthy and unhealthy blood cell dynamics, allows
us to predict the cell fate evolution in treated or untreated leukemia, and then participates to the
suggestion/elaboration of new anti-AML therapeutic drugs.

Concretely, medical research is looking for new combined targeted therapies able to counter
overproliferation of cancer cells, to restore normal apoptosis and differentiation, and to avoid
the high toxicity effects that characterize heavy non-selective chemotherapy. The ultimate goal
behind mathematical modeling and analysis is to provide some inputs that should help biologists to
suggest and test new treatment, and to contribute within multi-disciplinary groups in the opening

of new perspectives against cancer.

Now, in this section, we want to guide the reader by briefly pointing out some key elements that link
the upcoming chapters to the biological concepts discussed in the current one. In other words, the issue
here is to specify how, where, and from what angle, we are going to approach the biological phenomena
introduced in this chapter, in our mathematical work. For that purpose, we state the following details:

O The models we study in this thesis describe the dynamics of cell populations. All these models
consider that cells may be in quiescence Gy, or they undergo a cell-division cycle (a proliferating
phase). Our systems may be applied to different biological processes and tissues where a cell cycle is
involved. However, we dedicate particular considerations to the case of hematopoiesis, and especially
acute myeloblastic leukemia (AML). We recall that the hematopoietic system together with its regulatory
mechanism, serve as a paradigm for the other biological systems with self-renewal SC populations
sustaining the production of both short -and long-lived mature cells ([265]). However, a distinction
between the hematopoietic system and other similar biological processes appears in our work, when it
comes to discuss some treatment strategies and anti-cancer drugs. Indeed, in that context, we will only

refer to the molecules already used -or currently undergoing trial phases- in the case of leukemia.
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O We consider healthy situations (e.g. normal hematopoiesis), and other times we study some
unhealthy cases (such as AML). In general, we separate between the studies of the healthy and unhealthy
cell dynamics, while in some other situations we consider coexistence between heterogeneous cells (e.g.
healthy and mutated cells), meaning that:

(1 Sometimes, the same mathematical model of cell population dynamics can be interpreted
once in a healthy situation, and another one in an unhealthy situation, under some circumstances:

> if all the biological parameters (representing biological functions such as differentiation,
cell death, proliferation, etc) involved in a model are healthy, then the model describes a healthy situation.

> if the model contains at least one abnormal parameter (such as an over-proliferation
parameter, or a blockade in differentiation process, as frequently encountered in cancer), then the resulting
system is said to be unhealthy.

The advantage of this separation is to highlight the medical insights in each situation, since the
analysis objectives may differ depending on whether the situation is healthy or unhealthy.

[ At other times, we will analyze some coupled models where heterogeneous healthy and
mutated populations of cells may coexist in the same environment. The latter modeling approach takes
into account the cohabitation between different categories of cells, such as the shared environment (i.e.
niches) between healthy SCs population and CSCs population. In this case, we will particularly highlight
the role of SCs (not necessarly hematopoietic ones), instead of studying the whole maturation process.

7

Box 10. A model of cohabitation between SCs and CSCs to study cancer dormancy (see
[77] for an updated version)

At this juncture, we can mention that in the perspective of taking into account the coexistence
between ordinary SCs and mutated SCs (CSCs, Section 2.3), and in light of AML clinical mani-
festation and treatments (discussed in Sections 2.10.1-2.10.2), we explore in Chapter 5 a coupled
model between SC and CSC dynamics. In that configuration, a healthy SC compartment together
with an abnormal (or unhealthy, mutated) cell compartment are involved. The latter subpopulation
is affected by a first mutation that occurs in some genes encoding enzymes in epigenetics (e.g.
TET2, DNMT3A [74, 238]). This event results in an increase of the self-renewing activity of the
affected cells. A more serious pathological situation arises when a second mutation, affecting this
time the pathways regulating the differentiation process such as NPM1 or transcription factors,
appears on some cells. The superposition of these two events yields a blockade in differentiation.
Finally, a subsequent mutation impairing proliferation control (e.g. FLT3, Section 2.10.1) appears
in a subpopulation of cells that have already accumulated one or more of the previously mentioned
mutations. The latter event activates an uncontrolled overproliferation of cells (i.e. they become
CSCs), and thereby causes AML (see [137] for more information on the series of mutations -
causing AML - described above).

The main motivation behind the work presented in Chapter 5 is to provide a framework for studying
the issue of cancer dormancy, along with its therapeutic opportunities (see Sections 2.5). The
analysis is focused on the maintenance of unhealthy cells at a controlled stable steady state, while

ensuring that healthy cells survive.
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O Differentiation and maturation processes (as in Figure 2.8) are important modeling aspects in the
majority of models (those discussed in Chapters 3, 4 and 7), different from the model with one maturity
level discussed in Box 10. This is in fact a modeling approach which goes through multi-maturity stages,
where SCs are at the root of the process (i.e. the first maturity state), and cells gradually mature from one
discrete stage into another. The notions dedifferentiation and transdifferentiation (cell plasticity, Section
2.4), as well as those related to the cell arrest at the cell-cycle checkpoints, appear in the the first part of
the thesis, in models involving different maturity stages within a given cell hierarchy.

O Finally, we emphasize that the issue of AML treatment -current and emerging chemotherapy
(Section 2.10.2)- is recurrent throughout the thesis, and particularly in Part II. The notions of blood
regulation (Section 2.8), through growth factors or drugs (that are considered to act as growth factors) is
widely discussed in Chapter 7 (Part I1I of the thesis).



Part I

The class of nonlinear systems with
distributed delays






Chapter 3

Stability analysis of a nonlinear
hematopoietic system with finite
distributed delays

Synopsis. We perform a stability analysis of a particular class of nonlinear systems with finite
distributed delays, that extend some existing models from the literature ([8], [24]). A key feature of
our analysis is that the conceived technique relies on the construction of suitable strict Lyapunov
functionals for nonlinear time-delay systems. Even when a system is known to be asymptotically
stable, it is always more advantageous to construct a strict Lyapunov functional for it. It is pre-
cisely from this point of view that we adopt a Lyapunov approach, which allows us to complement
some analysis aspects and to address some new issues which are of importance -in practice- for
hematopoietic systems.

3.1 Overview of the chapter

We develop in the time-domain a Lyapunov technique of stability analysis for a nonlinear system with
distributed delays describing cell dynamics in hematopoiesis. Based on previous studies by Mackey (see
in particular [180]), the first revisited model was proposed and studied by Adimy et al. in [8], then it
was widely analyzed by Ozbay et al. in ([226], [225]) via an Input-Output approach. We also revisit the
model proposed by Avila et al. in [24], via a construction of a novel Lyapunov-Krasovskii functional
(LKF). Notice that the system introduced in [24] generalizes the one presented in [8] by considering
some extra-dynamics describing the advantage of proliferation of unhealthy cells. For analysis purposes,
two interesting biological situations lead us to investigate the stability properties of two meaningful
steady states of the revisited models: the 0-equilibrium for unhealthy hematopoiesis and the positive
equilibrium for the healthy case. Biologically, convergence to the 0-equilibrium means the extinction of
all the generations of blood cells while the positive equilibrium reflects the normal process in which all
the generations of blood cells will survive.

The Lyapunov constructions that we propose for these two steady states are slightly different in the

sense that we take advantage of the positivity of the system under study in order to construct linear
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functionals to analyze the 0-equilibrium, while we use some quadratic functionals to investigate the
stability properties of the positive steady state. In addition, we complement some previous results given
in [180], [8], [9], [226], [225] and [24], by establishing, for both equilibria, the exponential stability of
solutions and by providing an estimate of their rate of convergence. In particular, we prove the global
exponential stability of the trivial steady state under a less conservative condition than the one proposed in
[9] for global asymptotic stability. Moreover, we investigate the case of time-varying differentiation and
self-renewing rates: the latter case is expected to be useful when describing the blockade of differentiation
in an unhealthy hematopoietic system and to model the drug effect (i.e. re-differentiation ability) when
infusing treatments. Next, for the positive steady state, we complement already published results ([8],
[225]) by providing an explicit approximation of its basin of attraction: this is a specific region defined as
a sub-level of the suitable LKF that we are going to introduce, and which imposes a restriction on the
initial conditions of the nonlinear system in order to ensure the exponential convergence of the trajectories
to the positive steady state.

In addition, we perform a robustness analysis when the model is subject to some nonvanishing
perturbations. Recall that many uncertainties may arise when one is mathematically modeling such a
complex living process. For instance, the re-introduction function from resting to proliferating stages,
modelled as a Hill-type function (as proposed by Mackey in [180] and then used in all subsequent works) is
a striking source of uncertainties in the model, since it relies on approximate assumptions. Furthermore, it
is important to be aware that several assumptions were made in order to establish the mathematical models
that we revisit here. For instance, phenomena like dedifferentiation and transdifferentiation -known as cell
plasticity features- are neglected in Mackey-type models. Plasticity mechanisms are briefly discussed in
this chapter where they are introduced as uncertainties, and therefore followed by a robustness analysis.
We will need to await Chapter 4 to deepen the study of hematopoietic systems which take into account
some simple cases of plasticity abilities, by adapting a mathematical framework for dedifferentiation
features in healthy and unhealthy tissues!.

In light of the description mentioned above, we organize this chapter as follows: in Section 3.2 we
expose the basics of the model of interest along with its important features. We subsequently establish an
insight in Section 3.3 into the pursued objectives and novel expectations from the analysis that we perform.
In particular, we highlight the importance of performing robustness analysis, considering time-varying
parameters, estimating rate of convergence of solutions together with region attraction of the positive
steady state. Then, in Section 3.5, we propose our stability analysis approach in the case of unhealthy
hematopoiesis. It is mainly about the stability analysis of the trivial steady state of the models in [8]
and [24] and their extensions. Next, in Section 3.6, the stability analysis of the strictly positive steady
state is discussed in the context of healthy hematopoiesis. Numerical examples along with biological
interpretations are provided throughout the different sections of the chapter. Finally, in Section 3.7 we

bring some concluding remarks.

IIn the Chapter 4, we enhance the role of differentiation and transdifferentiation by considering a hematopoietic models
where cell plasticity is no more a marginal phenomenon, and cannot be considered as a perturbation, but it is fully modeled.
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3.2 Models with finite distributed delays describing immature cell dynam-
ics

In [8] and [24], hematopoietic cell dynamics are described through nonlinear transport equations which
can be reduced with the characteristic method to some nonlinear systems with finite distributed delays. As
in many other previous contributions (for instance, [8], [226], [9] and [225]), our interest in the current
work is to find theoretical stability conditions depending on the different biological parameters involved
in the hematological process. Going even further, we want to extend our approach to study nonlinear
systems instead of their linear approximations, to prove exponential stability instead of asymptotic one,
and to investigate robustness and the effect of some uncertain parameters. But now, some quick comments
about the models of interest and their related literature are needed.

Let us now describe precisely the mathematical formulation of the models of interest (i.e. the systems
in [8], and [24]). In fact, from a mathematical point of view, the model in [8] appears as a particular case
of the one in [24]. More explicitly, they are equivalent when the fast self-renewing process introduced in
[24] is zero. However, from a biological standpoint, the model in [24] is an extension which only applies
for unhealthy hematopoiesis (since high proliferation is a symptom of disease. See Chapter 2). Therefore,
in order to achieve the best presentation of this Chapter, we start from the model in [8], that we will first
extend according to our expectations (by considering time-varying parameters and uncertainties), and
analyze in both unhealthy (Section 3.5) and healthy (Section 3.6) cases. The analysis of the model in [24]
(that we also extend by considering time-varying parameters) is performed in the Section 3.5, that deals
with the unhealthy case.

Consequently, we begin now with the model in [8]. First, we recall from Chapter 2 that HSCs are
immature undifferentiated and unspecialized cells, which are at the root of hematopoiesis, and which are
responsible of blood cells production and their continuous replenishment. More precisely, HSCs are able
to produce cells with the same maturity-level and also to differentiate into more mature and specialized
cells with advanced features. During their proliferation, and more precisely during their M-phase (see
Chapter 2), mitosis occurs for the cells which do not die by apoptosis, and each one of them divides into
two daughter cells. At the maturation stage 7, x; denotes the total density of resting cells. We let &; denote
the death rate of the resting cell population, while the apoptosis rate (i.e. the death rate of proliferating
cells), is represented by ¥, for all i € {1,...,n}. At each division, a proportion K; € (0,1) of dividing
cells goes to the next more mature resting stage while the other part (L; = 1 — K;) stays at the same level i.
Finally, f3;(+) is the re-introduction function from resting sub-population into the proliferating one, of the
i-th immature generation of cells [180].

In this model, it is considered that proliferating cells can divide between the moment they enter to
the proliferating phase and a maximum age 7; > 0. Moreover, immature cells enter into maturity after
passing through n successive (immature) stages. It can be shown (see [8]) that for each compartment

i€l,={l1,...,n}, the dynamics of immature cells are governed by the system:

$i(t) = — S (t) — wilxi(t)) + 2L /0 " ei(@wilxi(t — a))da

. 3.1)
+2K; /0 gi—1(a)wi—1(xi—1(t —a))da,



42 Stability analysis of a nonlinear hematopoietic system with finite distributed delays
S

S
i(t)

Fig. 3.1 Schematic representation of the primary phases in the production of immature myeloid progenitor cells, as
introduced in the discrete-maturity model of [8]. In this age-structured model, for all i € {1,...,n}, immature cells
are in a resting phase (right hand side compartment, called Go-phase) or in a proliferating phase (left hand side).
This is a well-established representation since the work of Burns and Tannock in 1970 [49]. See the text for the
details on the notations.

when i > 1 and
X)) = —6xi(t) —wi(xi(r)) +2L /OT1 g1(@)wi (x1(t —a))da, (3.2)
where, for all i € {1,...,n}, the functions w; are defined by w;(x;) = B;(x;)x;, and,
gi(a) =e " fi(a), (3.3)

where the function f;s describe cell divisions (mitosis), which are probability density functions. Since the

mitosis occurs before the age limit 7;, it follows that
Ti
fila) >0, forall,a€0,7;], and, / fila)da = 1. 3.4)
0

Figure 3.2 shows that after n immature compartments, the cells only proliferate and differentiate (at
rates k;, j € {1,...,m}). Thus, here it is considered that mature cells need to pass through m maturity
compartments before becoming completely differentiated and then being ready to perform their functions
in the bloodstream. Similarly to the immature proliferating cells (Figure 3.1), mature cells divide before
reaching a maximum age 60; and they can be lost by apoptosis with a rate o;.

It is sufficient to study the dynamics of the total densities of quiescent cells (x;) given by (3.1)-(3.2),
since the population of proliferating cells together with the dynamics of mature cells (Figure 3.2), have
no impact on the dynamics of the resting immature cells x;, for all i € I, (see [8] and [225]). More
precisely, the asymptotic behavior of proliferating immature cells and mature cells can be deduced from
the study of the resting cells. Therefore, we focus on the stability properties of the system represented by
equations (3.1)-(3.2).

Obvious biological facts induce that the parameters &;, L;, K;, 7; and ¥; are positive forall i € {1,...,n}
(recall that K; € (0,1) and, L; = 1 — K;). Moreover, we assume that, for each i € {1,...,n}, the function
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Fig. 3.2 The m mature compartments ([8]) in the myeloid lineage are precursors of the red blood cells, white blood
cells and platelets. At the end of the maturation process, mature cells leave the bone marrow and go into the
bloodstream [8].

Bi(+) is differentiable and decreasing, satisfying,

lim Bi(a) =0 3.5)

a—r+oo

Furthermore, the following parameters are introduced to ease the notation,

T
Gi= [ sldnar, (3.6)
0
o = 2Ll'Cl~ — 1. (37)

Remark 4. For the sake of simplicity, we assume throughout the current chapter that the parameters
o; satisfy the conditions o; > 0, for all i € {1,...,n}. In fact, biologically, the constants o; quantify the
difference between surviving self-renewing daughter cells and pre-existing mother cells [8]. The later
assumption is necessary for the existence of a positive equilibrium (see the corresponding assumption in
[225], argued by the growth-principle). However, the conditions o; > 0 are not necessary when studying
the 0-equilibrium of the model (3.1)-(3.2), as illustrated in the next chapter, on even a more general model

including infinite distributed delays.

Let us now say some words about the model in [24], in which fast self-renewing dynamics have been
introduced. This represents a generalization of the model of [8], since the latter model can be deduced
from the former one. In practical terms, extra-dynamics are added to the model (3.1)-(3.2), in a way that
makes possible to distinguish between cells entering a normal resting phase Gg and a second one, denoted
Gy (see Figure (3.3)). Thus, cells entering G are allowed to re-start a proliferating-cycle, via 3, faster
than the classical way from G, through f [24].

Remark 5. In our analysis of the model presented in [24] (Section 5.1), we only focus on its 0-equilibrium,
since it is the most biologically meaningful steady state for unhealthy hematopoiesis. Our interest in

dormancy (see Chapter 2) is relevant only in coupled models, where healthy and unhealthy cells coexist.
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Fig. 3.3 The re-introduction function f3, from the resting phase Gy to the proliferating one is the unique available
way in (a) that allows quiescent cells to start a cell-cycle (division). However, in (b), a sub-population of cells can
follow a faster path through Gy and ﬁ By introducing the ﬁ path, a distinction between healthy and unhealthy cells
can be represented.

Having said that, we begin now by the stability properties of the model (3.1)-(3.2). First, we state

some fundamental features of the studied model.

Positivity of the solutions
Proposition 1. The solutions of system (3.1)-(3.2) associated with positive initial conditions are positive.

Proof. First, let us prove that if x;(m) > 0 for all m € [—1;,0] then x;(¢) > 0 for all # > —1;. We prove
this result by contradiction. Assume that there exists #; > 0 such that for all 7 € [0,7,[, x;(¢) > 0 and
x1(t;) = 0 then from (3.2) we obtain

X](l]) =21, /0 1g1(a)W1 (x1 (l] —a))da>0. (3.8)

Since x; is of class C!, there is ® continuous such that x1 (t) = x; (t1)(t —t1) +©(¢)(t —t;)?. Tt follows
there is , €]0,7;[ such that x; () < 0. This yields a contradiction. We deduce that for all # > 0, x; (z) > 0.

Arguing similarly, we can prove that, if for all integer i € {1,...,n}, and all m € [—1;,0], x;(m) > 0,
then x;(r) > 0, for all t € [—1;,+o0). We conclude that the positive orthant is forward invariant. Thus,
throughout this paper, we consider only positive solutions of (3.1)-(3.2). ]

We will say that an equilibrium point of a system is globally asymptotically stable when all its positive
solutions converge to it. In the following part we give the main condition of existence of a positive steady
state of system (3.1)-(3.2). The reader is referred to [8] for more details on the existence of equilibrium
points, especially for the so-called axial steady states (equilibrium points belonging to the boundaries of
the positive orthant, apart from the origin), that we do not emphasize here, since they are biologically
irrelevant (moreover, their analysis is readily deduced from the one of the origin and the positive steady
state). Therefore, our main objectives in Sections 3.5 and 3.6 concern the analysis of the origin and the

strictly positive steady state using a new approach.
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Existence of Steady states

One notices that the trivial steady state X° = (0,...,0) always exists. Biologically, convergence to this
point means the extinction of all generations of immature cells. In contrast, the positive steady state, we
shall denote by X = (x{,...,x5), where x; > 0 for all i € I,, does not always exist. The following result

gives a necessary and sufficient condition of existence of X°.

e

Proposition 2. The system (3.1)-(3.2) admits a positive equilibrium point X¢ = (x{,...,x,), where x; > 0

foralli € 1, if and only if the condition
01
aila

Bi(0) > (3.9)

is satisfied.

Proof. Let us assume that the system (3.1)-(3.2) admits a positive equilibrium point X¢. Then one can

check readily that, necessarily,
[ouBi(x§) — 8] x =0. (3.10)

Since B is a continuous positive and decreasing function such that (3.5) is satisfied, we deduce that (3.10)
admits a solution x{ > 0 if and only if the condition (3.9) is satisfied. We conclude that if (3.1)-(3.2)
admits a positive equilibrium point, then necessarily the condition (3.9) is satisfied. Now, assume that
the condition (3.9) is satisfied. Then necessarily, there exists x{ > 0 such that (3.10) is satisfied. Next, let
us proceed by induction. Assume there is j € {1,...,n— 1} such that there are positive constants x{ > 0
such that

6,')61? — OC,'BI'()CZ?)X? = 2Ki—1Ci—1Bi—1 (xffl)xf 1 (31 1)

when i€ {2,...,j} and 61x{ — a; B (x{)x{ = 0. Now, observe that (3.5) implies that the function @ (m) =
8j1m — atji1Bj1(m)m satisfies @(0) =0 and lim @(m) = +oo. It follows that there exists x4 ; >0

m——oo
such that

5j+1x§+1 — 0jr1Bj+1 (x§+1)x5'+1 = 2K;C;P; (xj)xj. (3.12)
We conclude that for all i € {2,...,n}, there are positive constants x{ > 0 such that

Sixf — OC,'BI' (xf)xf = 2K,’_1C,'_1B,'_1 ()Cl-671 )xf 1- (3 13)

We deduce easily that the system (3.1)-(3.2) admits a positive equilibrium point X*. O

3.3 Pursued objectives in hematopoietic models

In order to highlight the issues to be addressed, we need to situate ourselves and clearly position the work
in context. For that, we will give a very short summary of the main aspects in the analysis of time-delay

hematopoietic systems. Here, we want to point out the trends and the objectives fixed/reached by research
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in this field. Several mathematical models are developed in the literature, all of them share in common
the aim of modeling a healthy behavior of hematopoietic cells. Then, from this normal/healthy model,
an abnormal case is derived, modeled, and analyzed. The goal is to enhance the understanding of the
unhealthy situation by studying the conditions that disturb the healthy model and cause pathology (e.g. by

considering an epigenetic mutation that induces a sudden change in the healthy model parameters).

3.3.1 Strengths and weaknesses of the formerly used approaches

In a series of works by Mackey and his co-authors -during more than four decades- a paramount interest
was given to hematological disorders where an oscillatory (periodic) behavior is observed [132] (starting
from earliest works [181], [180], until the most recent ones [170]). We can for instance mention the
importance attached to neutrophenia in [37] and [66]. In these two papers -and the references therein-
the authors deal with a pathological disorder in which oscillations are observed in the count of red blood
cells, white blood cells and platelets (by the way, these oscillations often occur under the same oscillatory
period). We can also mention the contribution [66], in which periodic chronic myeloid leukemia is studied.
In the latter case, objectives behind the analysis are the same as those of [37]-[66], and their conclusions
emphasize how periodic behavior may occur in all blood compartments count.

We focus now on one of the most recent works, namely [170]. In this study, the interesting case of
cyclical thrombocytopenia (CT) is revisited. It is worth mentioning that during CT disease, large period
oscillations in platelets compartment are observed, whereas red and white cell counts remain unchanged.
Therefore, the model introduced in [170] includes only platelets dynamics, while the one presented in
[66] is concerned with different lineages (see Figure 3.4). In summary, most of the time, Mackey’s team
focuses on blood lineages that are likely to exhibit abnormal oscillations. Thus, from a mathematical point
of view, the analysis is often oriented towards the existence of a Hopf bifurcation from which oscillatory
solutions emerge.
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Fig. 3.4 An approximate reproduction of the cartoon representations of the models in [66] (on the left) and [170]
(on the right). One notices that the recent model in [170] focuses only on platelets dynamics, since it is the unique
compartment in which cyclical thrombocytopenia causes large fluctuations (oscillations). On the other hand, the
model in [66] contains all the lineages, since period chronic myeloid leukemia may cause oscillations in all cell
types [132].
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Turning now to the works of Adimy et al. ([8], [2], [9], [4]), Avila et al. ([24], [23]), Ozbay et al.
([225], [224] [226]). There is no doubt on the fact that all these models find their origin in the Mackey’s
type model (particularly in the pioneer work [180]). However, the perspectives are slightly different and
a new interest is rising for the case of acute myeloid leukemia. Recall that in the latter blood disorder,
an overproliferation of abnormal -immature- white blood cells is observed. Coherently, the search for a
Hopf Bifurcation (i.e. oscillatory solutions) should no longer be the main issue (but, as an exception, it is
further noted in [4] that the existence of Hopf Bifurcations is investigated, even if the model seems to
be designed for a non-periodic disease). Nevertheless, for above quoted contributions by Ozbay, Avila,
and their respective collaborators, it is clearly noted that serious interest is being paid to the regional
asymptotic stability of constant steady states. Therefore, the idea of the existence of a Hopf bifurcation is
now abandoned when studying the typical case of acute myeloid leukemia. Clearly, throughout our work,
we are fully committed to this vision and we continue to develop and complement the work started in
[225].

To summarize, in light of the above discussion, we conclude that notable advances have been made in
the field of hematopoietic systems modeling and analysis, which is an active area. The major achievements
are completed within the topic of periodic diseases, while some complementary material need to be
developed to model and analyze non-periodic diseases, mainly characterized by overproliferation of
unhealthy cells.

A second point (particularly highlighted in [225]) that we have already raised in the introduction,
regards the analysis of nonlinear systems instead of their linear approximations. This remark is valid for
almost all the previously mentioned works, when it comes to study the positive steady states of the systems.
In fact, here we are facing a common requirement for many types of models where it is well-known that
analyzed systems may evolve far from their steady states. Thus, it is a general problem which extends
beyond the hematopoietic systems (for instance, we can mention chemostat models [197]). In fact, as
things now stand, the analysis of hematopoietic systems is mainly done without considering the nonlinear

aspects of the models (e.g. [170]) or the effect of disturbances and uncertain parameters.

3.3.2 Alternative approaches to meet novel expectations

Now, we are able to situate ourselves in the current study of hematological disorders. First, local
asymptotic stability (in particular when studying the positive steady states of (3.1)-(3.2)), is the only
result that can be achieved using frequency approaches. On the other hand, we want to extend the study
and provide regional exponential stability of this steady state. Indeed, from a biological standpoint, in
order to understand a physiological phenomenon and to possibly improve its therapy strategy (let say
for instance that we want to adapt a dosage of medication), it appears clear that a result giving a local
asymptotic stability is less useful than a one giving local exponential stability, with an estimate of the rate
of convergence of the solutions (see Section 3.5.2) and a subset of the basin of attraction of the steady
state, as well as establishing results when parameters are uncertain or time-varying (both under the effect
of the disease and the drugs).

Few years after [8], the system (3.1)-(3.2) was widely analyzed in [225] using an Input-Output
approach. In particular, results regarding the stability properties of the positive equilibrium were improved
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(see Section 2.3 of [225]), then they prepared the next steps in the study of acute myeloid leukemia. More
precisely, in the concluding remarks of [225], we can read that: «Of course, periodic medications will
make the system parameters vary in time; analysis of such a time varying nonlinear system with distributed
delays requires a separate study», and, a few lines further on: «Although leukemia is the best understood
cancer, as far as dynamical modeling is concerned, there are still practical difficulties in determining the
parameters of the mathematical model considered here», then, they continue to say: «Other lines of future
work include consideration of different types of (possibly higher order) cell division rates f; ».

In the light of -but not exclusively- all the the remarks mentioned above, we revisit in this chapter
the models studied in ([8], [9], [225], [24]) describing hematopoiesis. We have chosen to approach these
matters by a Lyapunov approach, since this theory offers strong and effective tools in order to deal with
the above mentioned issues. However, we need first to find a suitable Lyapunov functional, which is not

always an easy task.

3.3.3 What can Lyapunov theory bring more?

Since the middle of the last century, the extension of the classical theory of Lyapunov to systems with delay
([251]) allowed stability analysis of a large class of dynamical systems constantly encountered in biology,
physiology, population dynamics and many other real-life problems (see [211] for more information).
The advantages of knowing Lyapunov functions or functionals are fundamental: for instance, they make
it possible to establish robustness results of Input-to-State-Stability type (see for instance [187]), to
estimate rates of convergence of solutions, and they can also be used to determine estimates of the basin of
attraction for locally asymptotically stable equilibrium points. However, in many cases, the construction of
Lyapunov Krasovskii-functionals is a difficult task. This is indeed the case for the model of hematopoiesis
that we are studying here (and, more generally, throughout all our work).

It is worth mentioning that the stability results of the origin of the models in [8] and [4], are already
provided using Lyapunov techniques. Later, we perform a comparison between our results and earlier ones.
However, we can already point out that our constructions slightly relax some earlier stability conditions
and ensure global exponential stability with an estimate on the decay rate of the solutions. Finally, the
LKF approach for the positive equilibrium point is a novel approach that will allow us to complement the
already published work (using frequency and Input-Output frameworks), and thus offering the opportunity

to consolidate our general knowledge on the analysis aspects of the studied models.

3.4 Extending the description of the mathematical model

In view of what has been brought up in the previous section, we enhance the flexibility of the model

(3.1)-(3.2) by considering its new version:

X,'(t) =— 5,-x,-(t) — W,'(Xi(t)) +2Ll'(l) /Ori g,-(a)wi(x,-(t —a))da

N (3.14)
2K (1) /0 i1 (@it (v ( —a))da+ (1),
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where &(t) € [0,], € > 0, and L;(-) are functions of class %!, and similarly to (3.1)-(3.2), Ki(t) = 1 — L;(t),
for all 7 > 0, with the convention Ky (z) = 0. In explicit terms, here we are considering a system in which
differentiation and self-renewing rates are time-varying (or, uncertain), and, in addition, subject to
nonvanishing perturbations g;. In fact, it can be proven that nonvanishing perturbations arise from cell
plasticity, if considered as unknown input for the resting population, and thereby lead to system (3.14)
with &(¢) € [0,€;], as illustrated in the sequel.

3.4.1 Origin of nonvanishing perturbations

First, as already mentioned in [225] the parameters of the studied model, at the time being, are not
well-estimated even if some nominal healthy values are given in the literature (see for instance, [180],
[4]). Moreover, we notice that many uncertainties may arise when one is mathematically modeling
such a complex living process. A striking illustration in the models of [180], [8], [24] -among others-
comes from the reintroduction function 8 (and B, which has a similar form): the Hill function that we
consider was proposed by Mackey in [180] (and used in all subsequent works) under several assumptions
(four main assumptions which are given in [180], page 951, the paragraph between Eq (3.1) and Eq
(3.2)). In fact, it is not difficult to observe that uncertainties on that function fall within the scope of
nonvanishing perturbations (see Chapter 1). In addition, several assumptions were made in order to
determine the studied mathematical models (even if some of them are not explicitly mentioned). For
instance, differentiation is considered in this model, while dedifferentiation and transdifferentiation (see
Chapter 2, cell plasticity) are not modeled. Let us assume now that some differentiated cells that belong to
a given hierarchy i € I, = {1,...,n} may join a less mature cell compartment by dedifferentiation (in fact,
even cells which do not belong to the studied hierarchy may join any compartment by transdifferentiation).
Therefore, if we consider that for any i € [,,, d = &; is the input coming from a different (non-modeled)
hierarchy (e.g. the lymphoid one) by dedifferentiation or transdifferentiation, then &; corresponds to a
bounded disturbance, under the assumption that cells plasticity is a limited phenomenon, of acceptable
scale, which is biologically reasonable. Therefore, we can show that it is possible to describe the dynamics
of the total population of resting cells by model (3.14). More precisely, in this case, the hematopoietic
system is described by the age-structured (McKendrick-type) PDE system:

dpi(ta dpi(ta
opita) | Opta) ooy (t,a) + hi(a) pilt,a) = O,

a
ari(t,a ari(t,a oo
#‘F#‘F&ﬂ(t,a)‘f‘ﬁi(fo ri(t,a

(3.15)
; a ,a)da)ri(t,a) =0,

t
t
where p;(r,a) is the density of proliferating cells at the immature stage i, of age a and at time ¢, and,
similarly, r;(f,a) represents the density of resting cells at the immature stage i. The renewal conditions

(new births) -which give the birth rate at the initial age a = 0 (see Chapeter 1)- are introduced through the

following boundary conditions:

pi(t,0) = B; (f5° ri(t,a)da) Jori(t,a)da,
rl-(t,O) =2K;,_ (t) OTFI hi_q (a)pi,l (t,a)ch— 2L,’(l‘)( OTi h,‘(a)pi(l‘,a)da—l—&(t),
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where the second equation of r;(¢,0) expresses the fact that new births at time 7 > 0 are composed by: 1)
the new density of cells coming from the same generation i € I, by the self renewing process (i.e. the
term containing L;), ii) the density of cells coming from the previous generation i — 1 by differentiation
(i.e. the term containing K;_;), and, iii) the density of new births coming from some non-modelled
hierarchies (e.g. Pre-B cells from the lymphoid lineage that become stem cells [259]), by dedifferentiation
or transdifferentiation (the flux that we are denoting &;).

Hence, using the method of characteristics, we prove that for r > 0 sufficiently large we get

pi(t,a) = pi(t — a,O)eiﬁae*f(;‘hi(m)dm'

Therefore, by integrating the second equation of the PDE system, with respect to the age variable a
between 0 and oo, and using the boundary conditions, we can easily prove that the total density of resting
cells x;(t) = [, " ri(t,a)da, satisfies (3.14), with &(r) € [0,€;].

Re-introduction into proliferation lg

Self-renewing

Proliferating phase

Differentiation \
Apoptosis Death rate

Fig. 3.5 A first step to model cell plasticity is to consider it as an unknown disturbance. The input € represents the
flux of cells generated by dedifferentiation/transdifferentiation, and it leads to the model (3.14) with nonvanishing
perturbations.

Resting phase

In summary, two main reasons are retained for the origin of disturbances: i) the lack of accuracy when
modeling the laws governing complex living organisms, and, ii) difficulties in modelling more complex

phenomena.

3.4.2 Summary of the model equations, without fast-renewing dynamics

Using an alternative approach, our aim here is to deepen the analysis as well as to solve some open issues
of the models in [8] and [24] which are of importance in practice. For that, we are considering the model
described by:

X,‘(l) = — 6,')(,‘(1‘) — W,'(xl‘(l‘)) +2Ll‘(l) /Ori gi(a)wi(xi(t —a))da

o (3.16)
2K (1) /0 g1 (@it (51 (1 — a))da + (1),

with the convention Ko(-) = 0, and where for all i € I, = {1,...,n}, n > 1, x; denotes the total density of
resting cells of generation i. A resting cell is a cell that is not active in the process of dividing. The constant
d; denotes the death rate for the resting cell population. The re-introduction function from resting into
proliferating sub-population of the i-th generation is denoted f;(-), and depends on the the total density

of resting cells x;. It is assumed to be a differentiable and decreasing function such that liril Bi(a) = 0.
a——+oo
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Proliferating cells can divide between the moment they enter the proliferating phase and a maximal age
7; > 0, while the apoptosis rate, ¥;, is the death rate of proliferating cells. Moreover, biological facts
induce that the parameters &;, L;, K;, T; and 7 are positive for all i € I,. Next, we have w;(x;) = Bi(x;)x;,
gi(a) = e "4 f;(a), where the f;s are €' functions representing the cell division probability densities, such
that f;(a) > 0 for all a € [0,7], and [ f;(a)da = 1, since the mitosis occurs before the limit age 7;. At
each division, and at any time ¢ > 0, a proportion K;(¢) € [Kimin, Kimax] C (0,1) of dividing cells goes
to the next resting stage while the other part (L;(t) = 1 — K;(t), for all # > 0) stays at the same level i.
Finally, we are going to perform a robustness analysis of (3.16) under nonvanishing perturbation terms
g(t) € 10,€;], where € > 0, for all i € [, and ¢ > 0. Below are some fundamental remarks that complete
the description of the model and its equations.

Remark 6. We are assuming basic concepts in order to distinguish between healthy and unhealthy
situations in the models that we are studying in this chapter (more refined descriptions will be achieved
for models involving cohabitation between healthy and unhealthy cells in Part Il). Thus, intuitively, we
consider that the model (3.16) describes a cancer state when some of its biological parameters are
abnormal (i.e. being different from healthy parameters, or becoming time-varying to model the effect of
appropriate infused drugs) and it reflects a healthy situation when all its parameters are normal. Then,
using a Lyapunov technique, our aim is to improve some existing results in two different contexts: i) we
provide theoretical conditions to eradicate cancer cells in an unhealthy situation (Section 3.5), and, ii) we

ensure the survival of healthy cells in normal hematopoiesis (Section 3.6).

Remark 7. From biological considerations, and given what we know about cell-plasticity, it is suggested
that the flux of cells (the input &; in Figure (3.5)) generated by dedifferentiation, is a permanent excitation,
such that €(t) — €; when x; — 0. This is due to the fact that dedifferentiation increases in order to
compensate cell loss in perturbed tissues (e.g. after injury). In other words, cells plasticity is often
interpreted as a mechanism which is invoked to allow regeneration of damaged tissue [280]. However, we

do not require this information when performing the stability analysis.

Remark 8. Considering a time-varying apoptosis is also useful for therapeutic issues, since this pa-
rameters can be targeted by drugs. However, this issue is not addressed in the current chapter and
will be covered in the next one. The reason behind this choice is that the apoptosis rate parameter
appears in the PDE-equations modelling cell dynamics (that lead to the time-delay system studied here),
while differentiation and self-renewing functions appear in the boundary conditions. Therefore, it is
straightforward to consider differentiation and self-renewal processes as time-varying parameters in the
time-delay system, while the transition between the transport equations to the time-delay system (using the

method of characteristics, see Chapter 1) needs to be carefully rechecked (as illustrated in Chapter 4).

Remark 9. Since the nonvanishing perturbations €(t), for all t > 0 and i € 1, satisfy & (t) > 0, we can

prove by arguing as in Proposition 1, that the positive orthant is forward invariant.

3.5 Stability analysis of the trivial steady state in the unhealthy hematopoiesis

In this section, we emphasize the case of unhealthy hematopoiesis. We start with the model (3.1)-(3.2)

(i.e. (3.16), with time-independent parameters and without disturbances).
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3.5.1 Global asymptotic stability of the 0-equilibrium

First, we construct a global nonlinear LKF for the system (3.1)-(3.2), from which, in conjunction with
Barbalat’s lemma, the global asymptotic stability of the origin is proved. In fact, in this first step, we are
already improving the existing results -provided in [8] and [9]- by proving global asymptotic stability of
the origin under a less conservative condition than the one provided in [9].

Theorem 1. The system (3.1)-(3.2) admits the origin X° as a globally asymptotically stable equilibrium
point if forall i € {1,...,n},
S; = 51' — (2C,'L,' — 1)[3,(0) >0 3.17)

Remark 10. i) We can readily check that if (3.17) is satisfied, then the origin is the unique equilibrium of
the nominal system (3.1)-(3.2).

ii) Using a frequency domain approach, it was proved in [8] that (3.17) guarantee local asymptotic
stability of the origin. In [9], more restrictive conditions than (3.17) (due to the fact that L; < 1, for all
i € I,) were given to ensure global asymptotic stability of the origin.

iv) Notice that the Lyapunov functional that we will introduce in this section is unusual since it is

approximated at the origin by a linear function (see [124] for linear functional for positive systems).

Proof. Let us introduce for all i € {1,...,n} the functionals

pi(xl-,)—/tir./mlg,-(m—a—i—’C,-)wi(xi(a))dadm. (3.18)

Simple calculations give:

pi(t) = Ciwi(xi(t)) — /ttr gi(t — a)wi(xi(a))da, (3.19)

where C; is the constant defined in (3.6). Now, we focus on the first compartment (i = 1). Let us introduce

a functional:
Ci(x1r) = x1(¢) + 2Ly p1 (x14). (3.20)

Then its derivative along the trajectories of (3.2) satisfies

G = 241 [ gr@w (- a)da= xi () - win (1)
2L, Cyw (1 (1)) — 2Ly /H ¢1(t — a)wi (1 (a))da (3.21)
= [=61+auBi(x1(2)]xr(2).

Next, we consider the case where the inequalities (3.17) are satisfied and we show that X° is globally
asymptotically stable. We consider a positive solution of (3.1)-(3.2).
Since B is decreasing and x; () > O for all 7 > 0, the inequality

Gi(t) < —sixi(t) (3.22)

with s; = 6; — a1 81 (0) is satisfied for all # > 0.
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Now, consider the functional:

GOlrixy) = xa(t) +2Lapa(xa) +2K1py1 (x1) + KB O £ (). (3.23)

S1

Simple calculations give

i:z(t) = 2K, foﬁ gi1(@)wi(x1(t —a))da+2L, fOTZ g2(a)wa(x2(t —a))da
— 82X2(l) — WQ(XZ(Z‘)) +2L2C2W2(X2(t)) —2L, ftt o gz( )Wz( Q(a))da (3.24)
+ 2K1Cowi (x1(1)) — 2Ky [, 1(t — a)wi (x1 (a))da+ FKELO G r),

Using (3.22), we obtain

L) < [=&+aPa(x(n)] x(t) + KiCr [2B1(x1(1)) = 3B1(0)] x1 (1) (3.25)

Since the functions B; and 3, are decreasing, the inequality

&(t) < | =8+ 002 (0) | x2(f) — KiC1 1 (0)x1 (1) (3.26)
——————

—5n

holds. Next, by induction, with X = (xy,...,x,), we easily determine constants v; >0, ¥; > 0 and 4,, >0
such that the derivative along the trajectories of (3.1)-(3.2) of the functional

-

I
-

Ca(Xy) = Y [vixi(t) + Vipi(xit)] (3.27)

satisfies

1) < —lnixi(t). (3.28)

By integrating this inequality, we get, for all > 0,

Gn(Xr) — Gu(X0) < =y /Otii‘{x,-(a)da. (3.29)

Since &,(X;) > 0 for all > 0, it follows that
; /0 txi(a)da < C”/(lf(’) . (3.30)
Moreover the inequality &, (X;) > zn: ) and (3.29) imply that X (¢) is bounded. We deduce easily that

X (t) is uniformly continuous. The;l from (3.30) and Barbalat’s lemma (see Chapter 1), we deduce that,
forallie {1,...,n},
lim x;(z) = 0. (3.31)

t—roo

O
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3.5.2 Global exponential stability of the 0-equilibrium

In the previous section, we proved asymptotic stability of X© of the system (3.1)-(3.2). Now, we establish
its global exponential stability and we estimate the rate of convergence of the solutions under the same
stability conditions. Thus, we slightly modify the analytic expression of the Lyapunov functional by

adding exponential functions in the double integral terms.

Theorem 2. The nominal system (3.1) admits the origin, X°, as a globally exponentially stable equilibrium
point if for all i € I, the inequalities

§; = 6,' — (ZC,'L,' — 1) ﬁ,(()) >0, (3.32)

are satisfied. If
S = 51 — (2C1L1 — 1)[31 (0) < O, (333)

then no positive solution converges to X°.

Remark 11. Using a frequency domain approach, it was proven in [8] that if (3.33) is satisfied then the
system is unstable. So here, in the second part of Theorem 2, we are proving a similar result (i.e. that the

origin is not attractive, see Chapter 1) using a different approach that relies on a construction of LKF>.

Proof. First, let us pick a family of positive constants pl.T, to be selected later, and define for all i € I,,, the

functionals . .
vi(xi) = / / e_p;(’_m_f")gi(m + 7, —a)w;(xi(a))dadm. (3.34)
-7 Jm

For all i € I, the derivative of the functional (3.34) along the trajectories of the nominal system (3.1)

satisfies

t

i(0) == pvili) = |

—T;

t
< —p; vi(xi) —/

-7

gi(t —a)wi(x;(a))da+ wi(x;(t)) /Ofi ePfagi(a)da

gi(t — a)wi(xi(a))da+wi(xi(t))eP 5C;,

where the last inequality is a consequence of (3.6). Let us introduce the following functional for the first

compartment of hematopoietic stem cells:
%(XU) =X (t)—|—2L1v1(x1t). (3.35)
Its derivative along the trajectories of the nominal system (3.1) satisfies

Fi(t) < — Sux1 (t) — 2Ly pJ vy (x1,) — [1 v flcl] wi(x1 (1)) (3.36)

2 Although Lyapunov theory is usually used to provide sufficient stability conditions, sometimes the Lyapunov functional
candidate can be used to prove instability results. Instability Lyapunov techniques are much less prevalent than stability ones,
but when they apply, it becomes sometimes possible to provide necessary and sufficient stability conditions. For instance, in
Theorem 2, we notice that for the sub-system i = 1 the condition (3.32) is a necessary and sufficient condition for the global
exponential stability of the origin of system (3.2).
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Since a; > 0, we conclude that for all plT > 0, the inequality 2Llep:’1 C; — 1 > 0 is satisfied. Therefore,
using wy(x1(2)) < B1(0)x(¢), it follows from (3.36) that:

V(1) < — [51 - (2L1epl”lc1 - 1) Bi (0)] x1(t) = 2L1pJ vy (x1y ). (3.37)

Now, if (3.32) is satisfied, we choose pf = % In (5l+ﬁ 14(L01)gl ZﬁLll(g)lﬁ 1(0) ), which satisfies plT > 0 since s; > 0.

Then we obtain 6; — (ZLIePfTI C — 1) Bi(0) >3 > 0.
It follows that the inequality (3.37) gives 71 (1) < —3xi (1) — 2L1pf'v1 (x1), and from the definition of

N, we get
S1

Y1(t) < =517 (%) — 2 (1), (3.38)

with §1 = min { %‘,pj } Consequently, the origin of the subsystem i = 1 is globally exponentially stable.
Next, in order to extend the result to the overall system, we introduce the following functional which

takes into account the cells dynamics of the first and the second generations of immature cells:

8K, B1(0)ePI 1 Cy

51

7/2()62;,)61;) :)Cz<t)+2L2V2(X2;)+2K1V1(X1,)-‘r 7/1()61;). (339)

Using (3.38), we prove that the derivative of %5 along the trajectories of the nominal system (3.1) satisfies

P(1) < — S (1) — ( | —2LseP fzcz) wa(x2(£)) — 2Lopva (xar)

8K B1(0)ePi " Ci§
PO RS (3.40)

51

— 2K1pITV1 (xl,) —
—2K1P1Cy [B1(0) — By (x1 ()] xa (8).

Using the assumption o, > 0, together with the fact that the function f; is strictly decreasing, it follows
that,

Pa(t) < — [52 — (2L2eP§T2C2 — 1) [32(0)} x(t) — 2L2p;vz(xm)

N 3.41)
8K1[31 (0)€p1 TC18§

S1

— 2K, p{ vy (x17) — N (x1r).
When the conditions (3.32) are satisfied, we select p; > (0 (similarly to pf ), such that the inequality
0 — (2L2e”2T RC, — l) B2(0) > 3, is satisfied. It follows from (3.41) that there exists a strictly positive
constant §>, such that
. . SZ

N (t) < =575 (x1,x2) — sz(f)’ (3.42)
is satisfied. Next, by induction, we easily check that there exist a positive constant §, and a family
of strictly positive weighting constants vf and \7;, such that the derivative of the functional ¥ (x;) =

" | vixi(e) + ¥/ vi(xi) |, which is taking into account all the n generations of immature blood cells,
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along the trajectories of the nominal system (3.1), satisfies

V() < =57 (x;). (3.43)

From the inequality (3.43) and the properties of the functional ¥, we conclude that, if the conditions (3.32)
are satisfied, the origin of the nominal model (3.1)-(3.2) is globally exponentially stable.

In order to complete the proof, we consider the case where the inequality (3.33) is satisfied and we
show that no positive solution converges to X°. We prove this result by contradiction, i.e. we assume that
a positive solution x(¢) converges to X°. Now, we select plT = (0 and we observe that the derivative of the

functional 71, introduced in (3.35), is given by
(1) = [=8 + a1 Bi (x1 ()] x1 (7). (3.44)

When (3.33) is verified, using the facts that the function f; is decreasing and x; (r) converges to zero, we
deduce that there exists ¢, > 0 such that, for all ¢ > ¢,,

—01+ a1 B (0
<81+ oy () >~
It follows from (3.44) that, for all ¢ > ¢,,
; -6+ a1 B1(0
hiley > “AFAPOL ) (3.45)

From (3.33), and the positivity of the solutions, it follows that for all # > t,, #1(¢) > 0. Consequently, we
deduce that, for all ¢ > ¢,,
1 (x1e) > Y1 (x1,,) > 0. (3.46)

It follows that ¥7(x);) does not converge to zero. On the other hand, 7] (x,) converges to zero because

x1(t) converges to X = (0,...,0). This yields a contradiction. O

Example 1. A possible selection of the cell division probability densities, which was considered in [226]
and [225], is given by fi(a) = sm— €™, with m; >0, for all i € I,. Let us consider the following
biological functions and parameters:

Bitxi) || fila) || & L; T %
i=1| L2 | 2221 09 [[085] 12 022

1+X% T —1
- 1.33 Te'®
i=2| 5% || A || 096 08 [[13]033

The form given to B; [180] normalizes the values taken by the total density x;.

Simple calculations give: (2L;C; —1)B1(0) = 0.4448, (2L,C; — 1) B(0) = 0.4392. Therefore, ac-
cording to Proposition 2, the positive equilibrium of system (3.1)-(3.2) does not exist. Moreover, according
to Theorem 2, the origin X° = (0,0) of system (3.1)-(3.2) is globally exponentially stable, as shown in
Figure 7.4.5.

Remark 12. In fact, the point made above -in Example 1- about the normalized value of x; is available

throughout all the manuscript. Indeed, the function fB; given [180] can be normalized as stated in [4],
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Fig. 3.6 Trajectories of Example 1 showing the exponential convergence to X°

such that in the considered scale, a value x; = 1 expresses approximately 1 unity of 1.62 x 108 cells/kg

([4]).

3.5.3 Global exponential stability under time-varying parameters

Convergence to X° means the eradication of all the immature blood cells. This case may be suitable
when the model is assumed to describe the dynamics of unhealthy cells. We recall that one of the
characteristics of leukemia is the blockade in the differentiation process (see Figure 3.7), which can
become a target for the drugs used in treatments. Thus, it is interesting to consider the case where
differentiation and self-renewal rates are uncertain or time-varying (see Remark 8 regarding the case of

time-varying apoptosis).

Global exponential stability under time-varying differentiation and self-renewing rates

In this part, we extend the result of Theorem 2 to the nominal model that describes the immature cell

dynamics under time-varying differentiation rates, K;(¢) for all # > 0, and i € I,, and which is given by

5(t) = 2K, 1 (1) /0 e (@wi (v 1 (1 —a))da

2 (3.47)
+2L;(t) /0 gi(a)w;i(x;(t —a))da — &xi(t) — wi(x;(1)),
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Fig. 3.7 Panel A shows normal bone marrow cells that express a large variety of shapes, reflecting the diversity in
developmental stages in healthy hematopoiesis. In contrast, Panel B shows blast cells, with similar appearance, in
the case of AML. Blasts in healthy hematopoiesis represent less than 5% of the total density of cells in the bone
marrow. A sudden blockade in the differentiation process of blasts in Panel A leads to AML illustrated in Panel
B. It was thought that drugs encouraging the re-differentiation of blasts are not effective to cure AML. However,
very recently, this therapeutic strategy have been relaunched after good clinical results [278], where inhibition of
DHODH restored the differentiation of unhealthy cells. The microscopic images are from the free educational
materials proposed by the Leukemia & Lymphoma Society.

where K;(t) +L;(t) = 1 and L;(¢) € [Limin, Limax] C (0, 1). We recall that, by convention, Ky(¢) = 0, for
all £ > 0, and we assume that K;(-), L;(-) are of class C°, for all i € I,,. Based on Theorem 2, we prove the

following result:

Corollary 1. The conditions
5 =0, — (2L,~maXC,- — 1) ﬁl(O) >0, Viel,, (3.48)

ensure that the origin of the system (3.47) is globally exponentially stable.

Proof. We give some indications for the proof, which is slightly different from the one of Theorem 2.
Here we consider L,y instead of L; in the definition of the functional 7] (xj,) introduced in (3.35).
Similarly, we consider Lymax, Kimax = 1 — L1 min and 51, instead of L, K, and s, respectively, in the
definition of the functional %5 (xy;,x1;), introduced in (3.39). Then, we can prove that the derivative of the
former functional along the trajectories of the system (3.47) satisfies an inequality in the form of (3.38),
and similarly the derivative of the latter functional satisfies an inequality similar to (3.42). Therefore,

arguing by induction we can prove that the origin of the system (3.47) is globally exponentially stable. [

Example 2. Let us consider n =2 and for all t > 0, Li(t) = % (14+0.96¢c0s(25t)) and Ly(t) =
% (1 +0.96 sin(lSt)). Sine function sounds reasonable to model the variation in differentiation rates since
drugs are -usually- infused quasi-periodically. Nevertheless, many other time-varying functions may be

used instead of sine ones. Let us assume that:
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Bixi) || fila) || & || @ | ¥
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1
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i=2 T n—t || 0.965 || 0.7 || 0.97

Elementary calculations give: 51 =0.0592, and, s, = 0.0099, which means that the stability conditions
(3.48) are satisfied for i € {1,2}.

Therefore, according to Corollary 1, the origin X° = (0,0), which is the unique equilibrium point
of (3.47), is globally exponentially stable.

Figure 3.8 illustrates the trajectories x| and x, for the parameters and biological functions of

Example 2.

Total density of quienscent cells (x1.62 x 10° cells/kg)
o
[6;]

0 1 1 1
Time (days)

Fig. 3.8 Trajectories of the system (3.47) for the time-varying functions K; and L; and the parameters given in
Example 2.

Further comments in the case of time-varying differentiation and self-renewing processes

A) At this juncture, we briefly comment the results in the AML case, in which a blockade of
differentiation, i.e. K; decreases in early maturity stages, is usually observed. Not surprisingly, the
conditions (3.48) suggest that therapeutic strategies to eradicate cells must be oriented towards increasing
the death rates 7; (recall that increasing the apoptosis rate ¥ decreases C;), and &;, and also towards
decreasing L;,,, (i.e. increasing differentiation).

Although very partial results for particular cases of AML (with myelodysplastic syndrome, MDS), and on
cell cultures only, have been obtained using tyrosine kinase inhibitors (TKIs, in particular dasatinb [167])
in stimulating differentiation, the only clinically efficient case of redifferentiation therapy known until
recently was by using all-trans retinoic acid (ATRA) and arsenic tri-oxide in acute promyelocytic leukemia
(APL). However, this therapeutic track has lately been relaunched by establishing that inhibition of
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Dihydroorotate Dehydrogenase (DHODH) is efficient in releasing cells from differentiation arrest [278]
(see also [179]). Finally, increasing apopotosis may be achieved classically by using cytosine arabinoside
(see Chapter 2).
B) We recall that Theorem 2 and Corollary 1 complement the previous published results, by establishing
global exponential stability instead of asymptotic stability and by extending the result to cover the case of
time-varying differentiating and self-renewing rates.
Hence the question that arises is whether we know how do L; and K; parameters vary under the effect of
the disease and the drugs that may be infused. The answer is not that apparent due to the complexity of
the real phenomena that occur during healthy or unhealthy processes (e.g. accumulation of mutations,
signal pathways break, growth-factors, body response, drug efficiency and toxicity). In addition, even in
the healthy case, the mechanisms controlling hematopoiesis are not perfectly known, at the time being.
Thus, based on the model that we study, we propose to separate some concepts and provide conceptional
interpretations of some typical observed phenomena.
First, we consider that if the disease appears suddenly (due to a mutation that occurs for unknown reasons)
we can expect a brutal change in model parameters from healthy to unhealthy states. For instance, a
mutation in the pathways regulating differentiation such as NPM1 [146] or transcription factors that
induces blockade of cell differentiation. In this case, the functions K;(-) and L;(-) can be interpreted as
switching parameters.
A different interpretation can be given to the effect of growth-factors and drugs on the model parameters,
however it leads also to a similar representation. More precisely, growth-factor effect on model parameters
can be approximated by switching functions. Indeed, it turns out that the secretion of growth factors is
very fast in comparison to cell response (see Marciniak et al. [189]) and thereby the levels of growth-
factor concentrations converge very quickly to their steady states. This is the time to bring up that the
latter assertion (i.e. the difference between time-scales of cell population dynamics and small molecule
dynamics) is at the origin of the studied models with constant parameters. Thus, in all the models of
hematopoiesis, all the biological parameters (e.g. differentiation, apoptosis rates, etc) actually depend on
the concentration of growth factors (see [31], [3], [82] and the references therein). However, it is assumed
these concentrations do not vary or that they reach very quickly their equilibrium state. Hence the models
with constant parameters (e.g. (3.1)-(3.2)).
Now it seems clear that through a description of cell dynamics with possibly switching parameters (see
for instance the situation illustrated in Figure 3.9), we will be able to combine constant and dynamical
parameters. More importantly, we can represent the (external) events that change the nature of the system
during a long period of time, such that a mutation that suddenly occurs or an instantaneous drug effect.

On the other hand, notice that Corollary 1 does not require K;(-) and L;(-) to be of class ¢ (as initially
introduced in (3.47)) and the result can be extended to piecewise continuous functions K;(-) and L;(-).
Therefore, we conclude that Corollary 1 applies for the switching version of system (3.47)%, which is a
nice point.

Of course, a parameter behavior as illustrated in Figure 3.9 remains an idealistic situation, that
results from an approximation of the actual behavior. Therefore, we suggest that small variations may

continuously occur throughout the process of hematopoiesis. By small variations we mean that the

3But we need to ensure that the corresponding switching system has a unique solution.
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Fig. 3.9 An example of evolutionary self-renewing parameter. Switching may result as a reaction to drug infusion
(therapy), mutations and anomalies (disease), or other external factors (body requirement, injury).

fluctuations remain limited and less significant than major changes like those induced by mutations or an

effective drug). We propose to illustrate the above discussion on a pedagogical illustration as follows.

Example 3. We consider an example with one stage (n = 1). Since there is no confusion between
parameters in the discussion that follows, we omit the subscript 1.

The parameters of the model are: 6 =0.25, t=0.8, y=0.25, f(a) = %, and B(x) = 12+8x72 We
consider two experiences (denoted respectively Sit. 1 and Sit. 2) with two different functions L(t), for all
t € [0,250].

Each L-function is a result of three superimposed signals: a piecewise continuous signal, a cosine

signal, and a white noise.

The former signal (i.e. the piecewise continuous one) is a step-function that switches at several
isolated time instants (similar to the one illustrated in Figure 3.9). More precisely, we consider that in Sit.
1, the step-function switches from the value 0.92 to the value 0.7 at t = 13. Then, it switches again to 0.65
att = 28. Then it switches from the previous value to 0.58 at t = 52. Finally, at t = 175, it switches again
to its initial value 0.92. In Sit. 2, we replace 0.58 by 0.5 at the transition occurring att = 52.

Thus, we construct a theoretical example of therapy in which the differentiation ability (recall that
K(t)=1—L(t), for allt € [0,250]) is gradually recovered (i.e. the so-called re-differentiation therapeutic
track). Thus, at t = 0, we notice that K(0) = 0.08, which is relatively low (assimilated to an unhealthy
situation where differentiation is blocked). The time instants t = 13, t = 28 and t = 52 are considered
as three successive (gradual) drug infusions that progressively increase the differentiation rate. Finally,
the time instant t = 175 is assumed to be the time instant at which the drug is eliminated from the body
(thereby its effect disappears).

It seems reasonable to consider that in the absence of drugs that act on self-renewing (i.e. for all
t > 175), the blockade of differentiation re-appears as for t = 0. In fact, the goal of therapy is to ensure
that malignant cells will be eradicated during the therapy-time (i.e. fromt = 13 to t = 175). If cancerous
cells are not eliminated during this period of time, we expect a regeneration of the disease. The meaning

of cell eradication in the studied model will be discussed later.
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Now, we observe the Figure 3.10 that illustrates the evolution of the total density of unhealthy quiescent
cells in Sit. 1 and Sit. 2. We notice from it that for t € [52,175], the total density of cells x is asymptotically
converging to zero, and that in both situations Sit. 1 and Sit. 2. Moreover, for that time-interval, we
can check that the global exponential stability conditions (3.48) are satisfied. Next, from t = 175 and
thereafter, the trajectory x increases progressively until recovering the initial unhealthy situation. This is
an expected result since, mathematically, asymptotic convergence cannot reproduce the total eradication
of cells (a notion that requires convergence to zero in finite-time). However, we can intuitively define a
threshold from which x is considered to be zero.

For instance, we are observing that cells take much more time to reach their initial value in Sit. 2,
in comparison with Sit. 1. This is due to the fact that in Sit 2 (in which the mean value of K(t) for
t € [52,175] is bigger), the state x is closer to zero than in Sit. 1. In more accurate terms, we have
x(t = 175) = 0.0035 in Sit. 1, while x(t = 175) = 5.910~% in Sit. 2. Here we want to highlight an
important fact about the mathematical models that we are studying. In fact, the McKendrick-type models
that we study here describe the dynamics of large numbers -or population- of cells [234]. Therefore,
when the state variable x is too small, our models do not describe the cell dynamics and some stochastic
phenomena lead to total cell eradication [234]. Nevertheless, we can see in our models that when x
is sufficiently close to zero (for instance, in Sit. 2, where x(t = 175) = 5.9107"%), and knowing that
the normalized scaling between the value of the state variable and the total density of cells is given
by: Xnormatized = 1 = Xyeq1 = 1.62 x 108 (see [4]), then we deduce that the value of x(t), at t = 1.75 is
equivalent to an effective cell count which is less than 1. Therefore, we can roughly consider that in this
case, cell eradication is actually achieved.

The consequence is that by considering a threshold for the density of cells after which x is zero, the
unhealthy cell regeneration observed in Figure 3.10- Sit. 2 is no longer possible. On the other hand, the
scenario Sit. 1 is different, since we cannot consider that x(t = 175) = 0.0035 (= 5.67 x 10° cells/kg) is
negligible. In this respect, the role of the estimates of the rate of convergence of the solutions appears
clearly. More precisely, using the estimate of the decay rate given in Theorem 2, and given a threshold
x¢ > 0, the initial density of cells x(t = 0), and the effect of drug infusions, we can readily determine the

duration of treatment T, which is necessary to ensure that for allt > T, x(t) < x;.



63

"SUOTIEMIS 30q UI S[[99 Ay[eayun Sunsal Jo AJIsuap [810} oY) ‘Pl U] "SUONEBMIS Yl0q UL SWes Y} ST 7 ‘9SIMIdYIQ “§°() ST ON[eA UBSW ST IT 7 “IIS UL J[IYM ‘G’() dN[BA UBIW
© Sey [ Ul 17 °[GL] ‘7S] S 110§ Jey) ST 7 )G PUE | NS ST 177 U0OMIOG OUAIJIIP YL (T “MS PUE | “IIS) SUONBMIS JUAIJFIP Om) UT (1) 17 S[euSIS oy anfq uf 01°¢ "S1q

3.5 Stability analysis of the trivial steady state in the unhealthy hematopoiesis

(sAep) owry,
052 002 05} 001 05
0
[ I I I I
S
L=
ez
)
g
052 002 05} 001 05
0
[ I I I I
20 =
0 T
90 £
g0 =
s
052 002 051 001 05
[ _ = 1 T _ 0
£5G€00°0 ‘A .
GLL X =
1=
@
e =
=
g
052 002 051 001 05
0
[ I I I I
0=
0
90 £
80 =




64 Stability analysis of a nonlinear hematopoietic system with finite distributed delays

3.5.4 Robustness analysis of the trivial steady state

In this section, we use the strict functionals %#;, introduced in Theorem 2, to perform a robustness analysis
in the case of nonvanishing perturbations &(r) € (0,&;], for all i € I, t > 0. Let us observe that the
derivative of the functional ¥, defined in (3.35), along the trajectories of the perturbed system (3.1),
satisfies,

Yl < =511 () = Jaa () + 2. (3.49)

We consider any constant 6 € (0, 1) and we define the family of sets:

Tre. {(pe%([ %,0,R), 7/(<p)<8l} (3.50)

0s;
Notice for later use that the sets .7, are the smallest possible for 8 close to 1. Clearly, if xj; ¢ Jg,,
then (3.49) gives ¥ (t) < —(1— 6)§¥](x1,) — %x; (). Therefore, the state xi, converges exponentially
to the set .71¢,. However, a refined result can be provided, in the sense that we can determine smaller

positive invariant sets than the family .7,. For that, let us introduce the functional,

2 (x11) = V1(x1:) — yaxe (). (3.51)

It is worth mentioning that the functional .¢7] is positive on the positive orthant for y; = m <1,
1 1
where s7 is the constant defined in (3.32). Using the expression of y;, we can check that the derivative

of o7, along the trajectories of the perturbed system (3.1), satisfies:

A0 <= in) ~ a0 -2 [ et an(@)da+ (1 -y

Now, if we define the family of sets

" 2yiL; [© 1— )
e {«pe%([ %01 R) Hi(0) + g TAgi<a>wi<<p>das<9§"’,)},

where 0 < y; < 1, for all i € I,,. Observe that ,7:3. C Jfg,, for all y; > 0, and j@i = ,, for y; = 0. Now,
notice that for all x, ¢ ﬁlg, , the derivative of the functional .«7] satisfies

sityib

() <—5(1 —e>%<xn)—%x1<r> < 10 (n1) — =

X1 (l‘ ), (352)
where §19 = min {51(1 —6),6/8} > 0, for all 6 € (0,1). Therefore, from the definition of the functional
/1, we conclude that the state xj; converges exponentially to <7~i§l , and the decay rate of the trajectory
x1(t) is smaller than, or equal to, §19. On the other hand, we readily check, by contradiction, that the sets
9:@[. are positively invariant (i.e. a trajectory in figi remains in ﬂ:a for all the future time). Arguing as in
the proof of Theorem 2, we generalize this result to the overall system. In other words, we have proved

the following result:
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Theorem 3. If the conditions s; > 0 are satisfied, for all i € I,,, then the states x;; of the perturbed system
(3.16), where g(t) € (0,€], for allt > 0, converge exponentially to the sets 9:@, where 0 < y; < 1, for
alliel,.

Remark 13. i) Since dedifferentiation is the mechanism whereby cells regress to undifferentiated cells, it
seems reasonable to focus more on the first compartment of cells. ii) The proof of Theorem 3 can be easily

extended to the case of time-varying differentiation and self-renewing rates.

Example 4. Here we intend to make use of Example 3 in order to illustrate some basics about the effect of
cell plasticity (considered here as an uncertain input in our system). In the next chapter we will return to
this issue. Let us consider the parameters of Example 3 and the self-renewing process as illustrated in Sit.
1. Moreover, we consider stochastic uncertainties as the sequence illustrated in Figure 3.11 fort € [0, 1].
Integrating the dynamical systems with and without uncertainties leads to the trajectories illustrated in
Figure 3.11.

3.5.4.1 Further comments in the case of uncertainties induced by cell-plasticity

It is trendy to interpret many cancer types as a phenomenon induced by an abnormal dedifferentiation (see
for instance [64] for leukemia, and also [110], [73], [301], for other types of cancer).

Intuitively, we have underscored in Example 3 how exponential stability can be -in practice- roughly
interpreted as a finite time convergence (the duration that we called 7 > 0), when the state is sufficiently
small (x(¢) < xg, for all # > T'). In such a situation we can assume that, in practice, cancer regeneration is
theoretically excluded.

On the other hand, the case described in Figure 3.11 is different. Indeed, in Example 4 we assume that
cell-plasticity generates an uncertain nonvanishing bounded input that leads to a practical stability result
(i.e. Theorem 3). The trajectories illustrated in Figure 3.11 show that in the presence of nonnegligible
cell-plasticity activity, the cell count will not go under the threshold x, during the treatment period (e.g.
the treatment period in Example 4 starts at t = 13 and ends at = 175). Thus, due to cell-plasticity, it is
expected that therapy will not succeed in completely eradicating malignant cells during the treatment
period. It is worth mentioning that both experimental and theoretical recent results seem to confirm
some closed statements. For instance, in the mathematical study presented in [249] (that relies on the
experimental results in [142], from lung cancer) the hypothesis that when cancer cells are attacked by
radiotherapy, they dedifferentiate into cancer stem cells (i.e. dedifferentiation to regress to i = 1) because
stem cells are less sensitive to radiotherapy. Interestingly, they suggest that therapy works better inhibiting

survivin (see, [144]) expression, that decreases dedifferentiation of cancer cells.
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3.5.5 Model equations in the case involving fast self-renewing dynamics

We pursue what we said previously on the model with fast self-renewing dynamics (the model introduced
in [24]). In this case, a sub-population of cells has an advantage of proliferation, if compared to ordinary
cells. A schematic representation of the cell dynamics is given in Figure 5.94. For alli € I, = {1,...,n}
(recall that n > 1 is the number stages of maturity), we denote by x; the total density of ordinary resting

cells and by %; the total density of fast self-renewing cells.

3.5.6 LKEF constructions for a model with fast self-renewing dynamics

NasZ
@ [ T (t) ] 2Ki;1(75)

—— Ti——————— Li (t) Z; (t) J

7 2K, (t) e

Fig. 3.12 Schematic representation of the age-structured model describing unhealthy hematopoeisis. The dynamics
X; represent the extra-dynamics introduced to quantify the total density of fast-renewing cells.

(B2

Similarly to the model introduced in the previous sections, the constant §; represents the death
rate of quiescent cells. We recall that the function g;(a) is defined by g;(a) = e %“f;(a) where f; is
a density function describing the mitosis and is such that [ fi(a)da = 1, and ¥, is the death rate of
the proliferating cells (apoptosis). Proliferating cells can divide between the moment they enter the
proliferating phase and a maximal age 7; > 0. The reintroduction functions f;(x;) and f;(%;) from the
resting to the proliferating phases are considered to be nonlinear, continuous, decreasing functions, and
limy_, 4o Bi(a) = lim,_s 1o Bi(a) = 0.

The total population densities x; and X; are described by the following time-delay system, for all
iel,={1,...,n},

Xi(t) = —(5,' + ﬁi(xi(t))xi(t) +L,-(t)3,-(wl~, W,‘) +2K;_ (I)Si_l (W,'_l , W,'_l) (3.53)
)él‘(t) = —W,‘(f,(l)) +l~4i<l)si(wi,wi), t> 0, ’
where (with an abuse of notation) the distributed delay terms are defined by,
3 (i, W) = /O ' gi(@)wilni(t — @) + Wit —a))|da, (3.54)

where a is the age of cells. As similarly done for the case of the model without fast self-renewing
dynamics, we assume first that the functions L;(-) and L;(-) are of class C?, for all i € I,. Moreover, these

functions satisfy

L,‘(l‘) = ZGi(t)(l —Ki(t)), Zi(l) = 2(1 — G,'(l))(l —Ki(l)), and, Ky =0, (3.55)
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for all + > 0, where we recall that the rates K;(¢) represent the proportion of cells that differentiate, while

the functions 1 — o;(7) characterize the probability of fast self-renewal at the time instant . We recall that:
T
Ci= / gi(a)da, forall i€l,.
0

Originally, the model described by (3.53) was introduced in [24] with constant parameters K;, L;, L;
and oy, for all i € [,,. As repeatedly mentioned throughout the chapter, AML is characterized by a blockade
in the differentiation process which becomes also a target for some drugs already used in its treatment.
Thus, we consider here the time-varying system (3.53).

Since each proliferating cell, which does not die by apoptosis and completes its mitosis, gives
birth to two daughter cells, we deduce that K;(z) € [0,1] for all # > 0. In fact, we assume that K(¢) €
[Kimin, Kimax] C (0,1), for all # > 0, meaning that even for an unhealthy hematopoiesis, the differentiating
process will not completely vanish. More precisely, in the AML case, due to the blockade in the
differentiation process, we expect that lim, . K(f) = Kjmin # 0.

Similarly, we consider the case where for all # > 0, 6;(¢) € [Gimin, Cimax] C [0, 1]. From medical prac-
tice we know that, in the AML case, a blockade in the differentiation process (i.e. limy e K; (1) = K,-min)
and a high rate of fast self-renewing (i.e. lim, o 0;(1) = G,-min) are simultaneously observed. This fact
yields to lim; e L;(t) = Limax, in the AML case, with Limax = 2(1 — Ojmin) (1 — Kimin).-

The situation in which o; = 0 describes the worst unhealthy case in which all the proliferating cells
that complete their mitosis will be engaged in the fast self-renewing process. On the other hand, we
observe that the case where 0; = 1, and all the parameters involved in the model are constant, is in fact
well suited to healthy hematopoiesis. Indeed, note that the case 6; = 1 is equivalent to consider ¥ = 0, and
if the parameters in (3.53) are constants, then the system (3.53) is equivalent the model (3.1).

Moreover, we define for all i € I,,,
ﬁ,-(t) = Li(l) +Z,-(t) =2 (1 *K,‘(l‘)) , t>0.

Notice that L(t) € [Limin, Limax] C (0,2), for all > 0, where Limax = 2(1 — Kimin)-
It is easy to prove that system (3.53) is positive. Throughout this section, we employ the positivity
of the system to construct a suitable Lyapunov-Krasovskii functional in order to investigate the stability

properties of the overall system. We start with the following proposition:

Proposition 3. If the condition

CiLimax < 17 (356)

for alli € 1, is not satisfied, then there exists a system in the family of systems (3.53) whose origin is not

globally asymptotically stable.

Proof. We prove Proposition 3 by contradiction. Let us assume that (3.56) is not satisfied for a given
j € I, and that all the positive solutions of the system (3.53), with for all i € I, L;(t) = Limax., for all t > 0,
converges to the origin.
Observe that
%(t) > —wi(%i(2)) + Limax gi(t —a)w;(%;(a))da. (3.57)
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Let us introduce the functionals

mi) = [ [ sitn—atw)m(s(a)dadm (3.58)
Simple calculations give
hult) = Comy(& (1)) — / " gt —a)w(%(a) da. (3.59)

From (3.57) and (3.59), it follows that the derivatives of the functionals H;(X;) = %i(t) + Limaxhi(%i),
along the trajectories of (3.53), satisfy

H;(t) > (CiLimax — 1)Wi(%()). (3.60)
Since there exists j € I,, such that Cji jmax > 1, we get H j(t) > 0. It follows that,
Hj(fj[) > HJ(O) > 0.

Therefore, H;(X;;) does not converge to zero. But we consider a solution that converges to the origin,

which implies that H;(X;;) converges to zero. This yields a contradiction. O

Remark 14. If 6;nmin = 0, we obtain Limax = Limax- Therefore, from Proposition 3, we observe that if the
condition CiLimax < 1 is not satisfied for all i € I,, then there exists a system (3.53) whose origin is not
globally asymptotically stable. Consequently, we can not establish global exponential stability of the
origin of system (3.53) if the condition

N

CiLimax >1
holds true for some i € I,,.
Now, let us state and prove the following result:

Theorem 4. For alli € 1,, if the conditions

N

CiLimax < 17 (361)

are satisfied, then all the positive trajectories of (3.53) converge exponentially to the origin.

Proof. Let us consider a family of strictly positive constants A;, for all i € I,,. First, we observe that when
the conditions (3.61) are satisfied, then for all A; € (1 M) the following inequalities are verified

’ 2CiLimax
. 1—ClL;
1 — ACiLimax > % > 0. (3.62)

Next, let us introduce, for all i € I,,, the functionals defined along the trajectories of system (3.53), by

t t
V?;(xilvfit) =/ / efpfi(t*m’r")gi(m—a—&- ) [w,-(x,»(a)) +Wi(ii(a))] dadm, (3.63)
-7 Jm
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where pii are strictly positive constants to be selected later. The derivatives of the functionals (3.63), along

the trajectories of (3.53), satisfy (with an abuse of notation for 3;),
vE(t) <= pivi (i Eir) — Si(wi, i) + [wil(xi(8)) + i (%i(0)) ] P ;. (3.64)
Let us introduce the following functional for the first compartment of unhealthy cells
VE (1, %1e) = x1 () + %1 (1) + MLt maxVi (10, %10) (3.65)

where A, satisfies (3.62). Using (3.64), it follows that

%i(t) <— |:61 -+ <1 —)y]eplil’l]:] maxcl) ﬁ] (Xl (l‘)):| X1 (t) — Mpfi]maxvf (X];,)Z]t)

) (3.66)
- (1 _)Llepfrlz‘]maxcl) Wi (%1 (1)) + (1:1 (t) — MLy max) S1(wi,W1),
since A; satisfies (3.62). It follows that by selecting any
1 1+ MCiL
piel0,—In S A Rima ) ) (3.67)
T 201 C1 L1 max
we obtain .
TS 1—-ML C
l*klepITﬁleaxcl > % > 0.
Moreover, since [ (1) < L1 max, we deduce that (3.66) gives
V) <~ 81+ 6781 (0)| xi (1) — 6 w(x1 (1)
: : ‘ (3.68)

— Mtlmaxpflﬁ (x10,%11) — A1 31 (wy, 1),

where,
0F = 1— AP "Ly pxCy > 0, and, A; = (A — 1)L max > 0.

Since the right hand side of (3.68) is always nonpositive, we deduce by integrating (3.68) that for all
t>0,
T (i) < V5 (0, 05, - (3.69)

This means in particular that X(¢) is bounded by a constant £, > 0. Since the function [§1 is decreasing,

it follows that, for all r > 0, the inequality (3.68) gives, with an abuse of notation,

) <= 8+ 61RO 1 (1) — 6}Bi ()5 (1)

) B (3.70)
— MleafoV;f (X1, %1:) = 2131 (wr, W)

‘We conclude that for all ¢+ > 0,

Vi) < =517 (x1e,%10) — 2131 (wr, 01), (3.71)
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where,
§1 = min {51 + Qliﬁl (0), 911:31 ()ﬁb),llp%il max} .

By virtue of the functional ¥, * we conclude that the origin of the subsystem i = 1 is globally
exponentially stable, with a decay rate smaller than, or equal to, §7.

Next, in the rest of the proof, we consider the case where the conditions (3.61) are satisfied for any
number of compartments (i € I,;). Let us introduce the following functional that takes into account the

first and the second generations of cells:

2K +
Sy (v, B (3.72)

4//21 (X21f> =X2 (t) + fZ (t) + l21,;2 maxvg (x2t ’ )ZZI) +
1

with X, = (x1,%1,x2,%2). Similarly to the case i = 1, we select p2i such that the derivative of the func-
tional (3.72) along the trajectories of (3.53) satisfies

V(1) < — |82+ 63Ba(0) | xa(r) — 652 (22(0)) — AnLamax 3V (321, 21)

e 2K max 3 (3.73)
+2K1(1)31(W1,W1)—1232 (wp,Wn) + 7 7/17(1)-
1

Combining (3.73) and (3.71), we deduce that for all ¢ > 0,

P5(1) < = [ 8+ 65B2(0) | o) — 03 Bo (8 2(r) — Mo Loman PEVS (2, )

251K max (3.74)

— 2232 (w2, W2) — W (1, %) — 2 (Kimax — K1 (1)) S (wi,91).

1

Since K (1) < K| max, We straightforwardly deduce that there exists §, > 0 such that, for all 7 > 0,
7/'; (1) < —527/; (X2r) — X282 (wp,Wn) . 3.75)

Next, by induction, one can readily determine families of constants a;‘-t >0, b;L > 0 and a constant §,, > 0,

such that the derivative of the functional

n
Vi (Xu) =Y [x,-a) +ai (1) + b vE (i, Fa) | (3.76)
i=1
with X,, = (x1,%1,...,%,,%,), along the trajectories of (3.53), satisfies
VEE) < —5,9F (X)), with §, > 0. (3.77)

From (3.77) and the properties of the functional #,*, we conclude that the origin of the system (3.53) is

globally exponentially stable with a decay rate smaller than, or equal to, §),. O

Technical Note 1. The reader may have noticed the technical differences between the proofs of Theorem
2 and Theorem 4. For instance, the detour through the boundedness of X1 that allowed us to obtain X in
the right-hand side of “//'f (3.68)-(3.70), and thereby recover ”1/11 in the right-hand side of (3.70), which
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establishes exponential stability of the solutions, was not necessary in Theorem 2. We also notice that
the generalization of the result to the overall system (i € I,,n > 2) is different (by comparing (3.71) with
(3.38)). Indeed, in (3.38) we required an extra-negative term in x| (t) in order to handle the effect of
the coupling that appears in V5. On the other hand, in (3.71), we manage to ensure a negative integral
term <—1131 (w1, W )) in order to compensate the coupling terms appearing in 7/2: In both cases, we

extended the results to any number of generations of cells without conservatism, which is a nice point.

Remark 15. In the case where Ojmax = 1, all the cells that complete their mitosis without dying by
apoptosis may join -entirely- the fast-self renewing process, through Gy. This is an extreme unhealthy
case, in which all cells are abnormally fast-proliferating. Since this case is allowed in our study (the
one presented in [80]), it appears clear that the only way to ensure that the exponential convergence of
the solutions to zero is to force the proliferating cells to have a negative balance between mother cells
entering from Go and Gy (normalized to 1), and daughter cells that rise from mitosis and survive to
apoptosis ( CiLimax ), which is expressed by the condition CiLimax < 1. On the other hand, if limited extent
is imposed to the abnormal behavior (i.e. reflected in the model by assuming Cimax < 1), we expect that

less restrictive (from a biological standpoint) conditions can be determined, as illustrated in the sequel.

In one among the works done collaboratively with Professor Emilia Fridman [107], further results on
the stability of model with fast self-renewing dynamics are provided. In particular, global asymptotic sta-
bility and regional exponential stability are discussed in the case of system (3.53) has constant parameters.
Notice also that the analysis of the PDE version of the system (3.53) is addressed. Here we retain only
one corollary from [107] which goes along with Theorem 4 of the current chapter (see Remark 15). So
the following result deals with the case in which K; and L; in (3.53) are constant and 0;(f) € [Cimin, Oimax|>
where Gjmax < 1, foralli €[, andt > 0.

Ojmin < Gi(l‘) < Ojmax, forall, i € I,. (3.78)

Corollary 2. Assume that there exist Kll >0,..., K,% > 0 such that the following 4n linear inequalities are
satisfied:
[(Li+ K/ Li) [y e " fia)da — 1]Bi(0) 6,=0in < &y
[(Li+ K/ Li) Jg" e " fia)da — 1]Bi(0) 6=, < 6,
(Li+ Kilz'i) .fori ei’yjaﬁ(a)da|6i:6imin < Kilv
(Li+&'Li) [g e " fi(a)dajg—c,p,, < K}, forall, i€,

(3.79)

Then, the zero solution of the system (3.53)-(3.55), where o; satisfies (3.78), is globally asymptotically
stable.

Example 5. Let us consider the following parameters and functions:

for i=1: 61 =3.3, K, = 0.1, m=1 17 = 0.8, N = 0.2, Bl(xl) = % and Bl(fl) = llgfc’%

fori=2: & =4,K, =0.08, my=1,1 =08, 1 =03, fa(x2) = 15 and fa(%1) = 72
2

1+

We assume that o; is uncertain for i € {1,2}. For instance, we consider that

0.5 = Gimin < 0i(f) < Ojmax = 0.9, for i=1,2 (3.80)



3.6 Stability analysis of the positive steady state in the healthy hematopoiesis 73

and,
_ Oimax '2|‘ Oimin + Oimax ; Gimin COS(I)- (3.81)

The conditions (3.79) are satisfied for Kll = Kzl =35

Gl‘([)

. [(Ll + L) [B e e fy (a)da— 1} B1(0)]o1—o = 3.1501 < 3.3 = §
(

[(Ll kL) [P e g (a)da — 1} Bi(0)lg—o,... = 1.0434 < 3.3 = §,
(Li+ k(L) [§ e M fi(a)da| 6=, = 49376 <5 = K]
(Li +&1Ly) [ e M fi(a)dals, =23042 <5=k|

~— ~—

=01 max
o (Lot KL2) [ e fa(a)da— 1] B(0) ooy = 3.8302 < 4 = &
(L2 + KIL) [ e 24 fo(@)da— 1] B2(0) 0,01, = 12541 < 4= 5
(La+ x5 L0) 32 e " fr(a)da|gy=c,,;, = 4.8302 < 5= k)
(La+15L0) [3? e " fr(a)da|gy—cypy = 2.2541 <5 =K

According to Corollary 2, the origin of the studied model in Example 5 is globally asymptotically stable.

i (t)
a1(t)

. . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Time (9) Time(s)

Fig. 3.13 Qualitative behavior of the trajectories x; and %; for the model in Example 5.

3.6 Stability analysis of the positive steady state in the healthy hematopoiesis

A strictly positive equilibrium X reflects the surviving of all the generations of blood cells, which is the
aim of a healthy hematopoiesis. When the condition (3.9) is satisfied, a unique X* exists. In this section,
we are interested in finding an estimate of the basin of attraction of X*.

Let us also recall that the components of X¢ can be computed from the equation,

Bi(x7) = —, (3.82)

and for i € {2,...,n}, from the equations (3.13), which always admit a unique solution.
Let us start by looking to the reintroduction functions f3;, from the resting to the proliferating stages.

We previously mentioned that, owing to some biological considerations, the following Hill functions were
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proposed by Mackey in [180],

Bi(xi) = ot (3.83)

with f3;(0) > 0, b; > 0 and n; > 2. This typical choice was assumed in subsequent works ([8] and [226]).
Actually, many other decreasing functions f3;, with a finite maximum f3;(0) and adjustable slope and
inflection point can be chosen to match the biological assumptions [180].

Throughout this section, we consider the functions f; in the form (3.83) and we indicate later for
which other forms our results remain valid.

Since we are interested in the positive equilibrium X¢, we perform the classical changes of coordinates,
Xi = x; —x{, for i € I,,. It follows from (3.1)-(3.2) that

)é,'(l‘) = — 5,' [)?l'(l) —i—xﬂ —W; ()?i(l‘) —|—Xf)
+2Ll '[71. gl(t — Cl)Wi (ﬁ,(a) +Xf) da (384)

t
+2K;_1 / g,'_l(t — a)w,-_l ()Ei_l(a) +xf,1) da.
=T

However, a new representation of (3.84) that eases the analysis of its origin can be obtained. Indeed,

observe that, with an abuse of notation, w;(£; +x¢) = w;(x¢) + w%; + R;(%;), where,

X§ X
W= Bi(x) + BI(x)x¢, and, Ri(%)= / % +x¢ — w® (1)l (3.85)

e

Moreover, we denote B = 0; + 1;. It follows that (3.84) is equivalent to

t
£(t) = — Buki(t) + 2Liy / et —a)fi(a)da
—T

CRi((0) +2L; / " gt —a)Ri(i(a))da
L (3.86)
+2Ki71.ui71/ gi—1(t —a)ki—1(a)da

=T

t
oK / @i 1(t—a)Ri (51 (a))da.
=T

Remark 16. Compared with Section 3.5, the stability analysis of the origin of (3.86) is more complicated
due to the shifting. Indeed, linear functionals can no longer be used since the system (3.86) is not positive.
A common approach to investigate the stability properties of such a class of systems is by using quadratic

functions or functionals, as illustrated in the sequel.

3.6.1 Introductory result based on Razumikhin’s Theorem

To get a first intuition, let us consider the subsystem (3.86) for i = 1. A linear approximation at its origin

is obtained by neglecting the terms where R; is present. The following linear system is obtained:

t

21(t) == Bz (t) +2L1 1y / g1(t—a)zi(a)da. (3.87)

—7
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Let us consider the positive definite quadratic function

Q(a) = %az. (3.88)

We apply the Razumikhin’s Theorem (see Chapter 1): Pick a constant ¢ > 1 and consider ¢ > 0 such
that gQ(z1(t)) > O(z1(a)), Va € (t —11,t). Then the derivative of Q along the trajectories of the (3.87)

satisfies:

O(t) < —2B1.0(z1 (1)) + 4/ Q(Zl(f))Ll.Uﬂ/ttT g1(t—a)y/Q(zi1(a))da
< =2 [Bis —2y/qL1|11|C1] O(z1 (1))

(3.89)

We conclude from Razumikhin’s theorem that the condition B, — 2L;|u;|C; > 0 is sufficient for the
asymptotic stability of the origin of the system (3.87). This leads us to introduce, for all i € I,,, the
constants

Gi = Bi —2Li|Wwi|C; = & + i — 2L; | | G, (3.90)

that will be of use later in the stability analysis of the nonlinear system, in the analytic expression of the
quadratic Lyapunov-Krasovskii functionals and in the size of the region of attraction that we will provide.

3.6.2 Introductory result based on Lyapunov-Krasovskii Theorem

Here we prove a similar result to the one provided in the previous section: we extend it to any number of
stages n. Recall that the positive equilibrium point of the system (3.1)-(3.2) has never been studied by
Lyapunov techniques. For our application, the Lyapunov-Krasovskii approach is more advantageous than
the Razumikhin’s one, since the LKF can be used to provide an estimate of the basin of attraction of the
positive steady state.

In this section, we consider the case where a positive equilibrium point exists and determine a quadratic
Lyapunov-Krasovskii functional whose derivative along the trajectories of the system is smaller, in a
neighborhood of the equilibrium point, than a negative definite function of the state variable.

a(0) = —Bra@) +¢u | le=Da@)d,
2le) =~ + Mt [ it — Dz 3.9
2K i /tt  sia(t=Dza(Ddl, when i€ {2,...n},
with M; =2L; foralli € {1,...,n},
B = & + u;, (3.92)
& e I IR 7 (.99

i
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foralli € {1,...,n}. Let us recall the definition of the constants ¢;, which are given for all i € {1,...,n}

by .
g:m—meAgmwm

and observe for later use that
Gi = 6+ M — 2Li| i C;.

Let us also define the constants

8K? | |pi1|*Cio

207 i =
& S :

Vie{2,...,n},

2
m=0,n= Tgéic"*l’ Vie{2,...,n},

and,
n
gn=1, ¢=2""T] m, Vvie{l,..n—1}.
k=i+1
We recall that |
_ 12
0(a) = 54"

foralli e {I,...,n},
t 1
Q) = [ [ ali—a+1)0(@)dad,
1—7T;

Ri(zi;) = gll BQ(Zl (1)) +Li|m |91(Z1r)] ;

1
Si(zir) = EQ(Zi(f)) + Li 14: |4 (zir )
and, foralli € {2,...,n},
4 i
Ri(zitszi—11) = i [Si(zit) + igi—l(zi—lt):| -

We are ready to state and prove the main result of the section.

Theorem 5. The conditions
G >0,

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

foralli € {1,...,n}, ensure that the origin of (3.86) is locally asymptotically stable. Moreover, the

functional U

U(Zt) = ZQiRi(Ziz;Zi—lt) (3.105)
i=1
withZ = (z1,...,z,) and where the constant q; are the constants defined in (3.98) is such that its derivative
along the solutions of system (3.91) satisfies
) n—1 ) n
U(t) < —0(z(t)) = Y. 271 T mQ(z;(t)). (3.106)

j=1 k=j+1
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Remark 17. One can check easily that the functional U satisfies the conditions of Lyapunov-Krasovskii’s

theorem.

Proof. i) Lyapunov-Krasovskii result for i = 1:
The derivative along the trajectories of (3.91) of Q(z;), where Q is the function defined in (3.99),

satisfies the inequality

0(r) < —Bua(t) +2Lilwml [ 81(r —a)|z (t)z1 (a) da. (3.107)

Using the inequality |z (¢)z1 (a)| < 3|z1(2)[> + % |z1(a)[?, we obtain

O(t) < —2B1.Q(z1 (1)) +2L1 || [, 81(t — a)Q(z1 (t))da+ 2Ly || f;_, 1 (t —a)Q(zi1(a))da.

As an immediate consequence,

t

%Q(t) < [—/31* +L1|H1\/Tl gl(a)da] O(z1(t))+Lilm| [ gi(t—a)0(zi(a))da. (3.108)
0 t

-1

Now, we consider the functional S| defined in (3.102). Using

t

Ql(t):/tt gl(l—t+ﬁ)de(Z1(t))—/ g1(t—a)Q(zi(a))da, (3.109)

-7 -7

we deduce that its derivative along the trajectories of (3.91) satisfies

S1(t) < —610(z1 (1)), (3.110)

with ¢; defined in (3.94). Thus, we recover the result given by Razumikhin Theorem in the previous
section. Next, we extend the proof for any i € I,,.

ii) Lyapunov-Krasovskii functional for the overall system:

Now, we consider the overall maturity-structured model of cell differentiation (3.91). Let us rewrite

this system with simplifying notations:

21(t) == Brsza (1) + My 31 (z11)

. . (3.111)
Zi(t) =— Bi*Zi(l) +Milvli3; (Ziz) +2Ki—lﬂi—13!_1 (Zi—lt) ,when i>1,
with,
B t
3/ (zir) = / gi(t —a)zi(a)da (3.112)
-7
foralli € {1,...,n}. Then we deduce from the previous part of the proof of Theorem 5 that
. T 1 .
$i0) < |+ Ml | wa)da] QG0 + 35 (02K w1 S (an)
(3.113)

_ [—ﬁi* fu [ gi<a>da] (1)) + Kirzr)piaSE (i),
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It follows that
Si(t) < —6O(zi(t)) + Vi f,l_TH gi—1(t —1)zi(t)zi—1 (1)dl, (3.114)

with ¢; defined in (3.94) and v;_; = K;_ “,l,,'_l ‘

Notice that for any constant ¢ > 0, |z(#)zi—1(a)| < % |zi(t)|* + §|zi-1(a)|*. It follows that

. 1 t c t
Si(t) S—GiQ(Zi(f))Jr*Vifl/ gifl(f—a)\zi(f)|2da+*\’i71/ gi—1(t —a)|zi—1(a)*da
2c =T 2 =T

t

— G0((1) + %w,lc,-,lQ@,-(z)) tevir [ git-@)0a-1(a)da

=T

4vi1Cig
;

o we obtain

Choosing ¢ =

$i) < —360())+ % [,  gi1(t—a)Q(zi-1(a))da. (3.115)

Now, consider the functional R defined in (3.101) and, for i € {2,...,n} the functionals R; defined in
(3.103). Then it follows from (3.102) and (3.110) that

Ri(1) < —0(z1(1)) (3.116)

and, for i € {2,...,n}, (3.115) implies that

/tt gi—1(t—a)0(zi—1(a))da

—Ti-1

Ri(t) < — 0(a1(0) + 32ch

1

+3c6 /tt gi-1(I+ 71 = 1)Q(zi-1(¢))dl

—Ti-1

2 t
_3(3—1.8;:1'/1%_1 gi-1(t —a)Q(zi-1(a))da (3.117)

=—0(z(1) + 329&/0% gi-1(1)dlQ(zi-1(1))

=—Q(zi(t)) + M:Q(zi-1(1)).

Let us consider the functional U defined in (3.105). Then we straightforwardly deduce from (3.116)
and (3.117) that

n

U(r) <Y ail=0(z(1) + mQ(zi-1(1))] — 10(z1 (1))

= . (3.118)
<=Y ai0(1) + Y 4j+1Mj+10(z(t)) + 212021 (1) — 41021 (1))
i= =
By grouping the terms, we obtain
n—1
U(t) < =guQ(za(0)) + Y (qj+1mj3+1 — q;) O(z;(1))- (3.119)

j=1
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Using (3.98), we obtain

n n
gjriMi1—q;=2""""T] m—=2""7 [] m
k=j+1 k=j+1
We deduce that (3.106) is satisfied. The functional U defined in (3.105) satisfies the conditions of
Lyapunov-Krasovskii’s Theorem. It follows that X is a locally asymptotically stable equilibrium point of
the system (3.91). ]

3.6.3 Exponential stability of the positive equilibrium via a novel LKF

In the previous section, we discussed the local asymptotic stability of the positive steady state of the
system (3.86). In this section, we will extend this result by designing a novel Lyapunov-Krasovskii
functional implying local exponential stability under the same previous sufficient conditions and making
possible to estimate the rate of convergence. For technical reasons that will appear along our constructions,
the analytic expression of the novel functional is slightly different from the one proposed in the previous
section. This functional will allow us to achieve our next objective, which is to determine an approximation
of the basin of attraction of the positive equilibrium of the nonlinear system (3.86).
Let us state and prove the following result:

Theorem 6. The conditions
G >0, (3.120)

foralli € I, ensure that the origin of (3.86) is locally exponentially stable.

Proof. We recall that the linear approximation of the system (3.86) at its origin (which is obtained by
neglecting in (3.86) all the terms where R; is present for all i € 1,;), can be written as follows

t

24(6) = — Brzi(t) + 2Ligy / gt — a)zi(a)da
o (3.121)

t

+ 2K Wi / 8i—1 (l — a)Z,'_l (a)da.

=71

Contrary to Section 3.5, the nonpositivity of the system under study motivates the introduction of the
positive definite function in (3.99). Let us consider also the following two functionals:

Qi(fpiz)z/ﬂ/l gi(l—a+7)0(¢i(a))dadl, (3.122)

Ao = [ e [Caili—a+)0(o(@)dad. (3.123)

In fact, other types of functionals may be used instead of (3.122) and (3.123). However, for the sake of
clarity, we use a weighted combination of them in order to compensate the distributed delayed terms and
estimate the exponential decay rates. Moreover, we define for all i € I,,, the following functionals:

Let us define for all i € I, the following functionals

1
Sizir) = 5 Q(zi(t)) + Lil il (2 ), (3.124)
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Ni(z1r) :Sl(le)“‘iAl(th), (3.125)
2Cy
and foralli € {2,...,n},
M(Zihziflt) = Si(Ziz) 2€C A (Zzt) + YA I(Zl 11) (3.126)
where y; is an appropriate strictly positive constant to be determined later for all i € {2,...,n}.

First of all, observe for later use that the derivatives of the functionals Q; and A;, for all i € I,,, along

the trajectories of (3.121) satisty,

Qi(t) = CiO(zilt / g, (t—a)Q(zi(a))da, (3.127)

A =M =" [ aili-a0(@)da+ /0 110 (1))

t (3.128)
<M= " [ gl—a)0((@)da+ GO (),

where the last inequality is a consequence of the definition of the constants C; given by (3.5.6).

For the sake of clarity, we will decompose now the proof of Theorem 6 into two parts: we start the
construction of a Lyapunov functional for the first compartment and next we generalize this construction
to any number of compartments.

i) Lyapunov-Krasovskii functional for the first compartment:

‘2

Using the inequality |z;(¢)z1(a)| < $|z1(t)|* + 3|21 (a)|*, one can readily check that the derivative

along the trajectories of (3.91) of Q(z;), where Q is the function defined in (3.99), satisfies the inequality

1

200 <[+ LillCl Q@) +hlul [ gi—a0@@)da.  (3129)

The derivative of the functional N, defined in (3.125), along the trajectories of (3.91) satisfies

Ni(t) <— %Q(a (t) — —;C A1(z1r). (3.130)
On the other hand, observe that
1 Sl - [
Ni(z11) S*Q(Zl( ))—l—TCI e gl(l—a+ 71)0(z1(a))dadl
—7

—|—L1|u1|/t / =) g, (1 — a+1,)0(z1 (a))dadl.

Then

1 2L.C U
Nl(zn>s2Q(z1(t>)+(gl+ zlcl'“le )Al(z”). (3.131)
1

From (3.130) and (3.131) we deduce that

o), (3.132)

Ny(t) < =& Ny (z11) — 1
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~ . g g
forall & € <O,m1n{2'7 W})
ii) Lyapunov-Krasovskii functional for the overall system:
Now observe that for i > 1, the derivatives of the functions Q(z;(¢)) along the trajectories of (3.91)
satisfy

00) =~ BuO)+ 2wl [t —a)li)aila)lda

t
+2Ki 1| i1 gi-1(t —a)lzi(t)zi-1(a)|da.
=T
Using the inequalities: |z;(¢)zi(a)| < O(zi(¢)) + Q(zi(a), for all i € I, and |z;(t)zi—1(a)| < &Q(zi(t)) +
£0(zi-1(a)), with & > 0, for all i > 1, it follows that

O(r) <2[—Pw +Lilwi|Ci] Q(zi(1)) +2Li i t gi(t —a)Q(zi(a))da

—7;

2K 1 |pia] [

éi 1—=Ti—1

We keep in mind the inequality (3.132), and we observe that, for i > 1, the derivatives of the functionals
N;, defined in (3.126), along the trajectories of (3.91) satisfy

+ 28K 1|pi—1|Ci—10(zi(t)) + gi-1(t—a)0(zi—1(a))da.

Ni(t) <[—Bi +2Li| i Gl O(zi (1)) + EiKi—1|[14i—11Ci-10(zi(1))

Ki1|i—a| [
+ Kictlpi] gi—1(t —a)Q(zi-1(a))da (3.133)
& =T
LN A
2CiAt(Zzt) + 3 Q(Zz(t)) + l[/,A,([)
Choosing
. . Ti-1
Yi= W+miefila (3.134)
with m; > 0, the inequality (3.133) gives
Bilt) < = 5 0(ai(1) — o Ailzi) = Yili-1 zio10) + WG 1 Q(zi-1 (1)
! , (3.135)
+ &K1 |pi-1]Ci10(zi(t)) — mi/ gi-1(t —a)Q(zi-1(a))da.
=T

Remark 18. In the remainder of the current proof, one can choose m; =0 for all i € {2,...,n}. In fact,
the role of this parameter when it is strictly positive will appear in the proof of the next theorem -in the
next section- where we analyze the nonlinear system and we determine a subset of the basin of attraction

of its positive steady state.

Now, observe that if we select &; = ,foralli € {2,...,n}, then

Gi
4K; 1|ui—1|Cizy

Ni(r) < _%Q(Zi(t)) - il\i(Zit) — Vi\i—1(zi—1r) + WiCi—10(zi-1(1)). (3.136)

i
2Ci
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One can readily check that there exists a strictly positive real number &; such that

. . - 0 G
Ni(t) < =GiNi(zir zi-11) — %Q(Zl(t)) + %Q(Zi_l (1)), (3.137)
with 9% 8¥Ciet 1n order to establish that the conditions (3.120), for all i € I, are sufficient to ensure

Gi-1
that the origin of the cascaded system (3.91) is exponentially stable, we introduce the functional:

W(Z:) = piNi(z1s +Zpl (zirsZi—11) (3.138)
i=2
with

pi=2""1] 6 pn=1 (3.139)
k=i+1

From (3.132) and (3.137), we conclude that

W) <= Y pi&Milanzi1) - 220 (1)
iGi PiY; Gi—
P00+ 3 S 0 1))
i=2 =2
On the other hand
pi67 =2"" H 6,6 = pl . (3.141)
k=i+1
By combining (3.140) and (3.141), we deduce that
: L n 1" pigi P16
W) <-— Zity Zi—1e) — 5 Oza(t)) — 5 Qzit)) — == @
0= Y peNaan) - F @) -3 L0 - Fte@m) -
<-¢W(z),

with & > 0. From the features of the functional W and the inequality (3.142) we conclude that the
origin of the system (3.91) is exponentially stable. The next step in this work consists in determining an
approximation of the basin of attraction of the strictly positive equilibrium of the nonlinear system (3.86).

O

3.6.4 Estimate of the region of attraction of the positive steady state

Here we will use the functionals N; defined in the previous section (i.e. the functionals that allowed us
to prove local exponential stability of the positive steady state), to provide an estimate of the basin of
attraction of the positive steady state.

For that, let us first state and prove the following assertion:
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Claim 1. There exist constants §; > 0, for all i € I,,, which depend on the biological parameters of the

model and on the strictly positive equilibrium X¢, such that, for all £; > —x¢, x{ > 0, the inequality
[Ri(%:)] < $i0(%:), (3.143)

is satisfied.

lll'n

Proof. For notational convenience, we drop the subscript "i" and we use x, instead of x{ to denote the

positive equilibrium. Using the expression of 8 given in (3.83), we observe that for all x, > 0 and 3 > —x,,

R(3) = B(0)J(3) — 13 (3.144)
where J(3) = 17 1?(: fxe),, -1 j;;x?. First, let us study the function
1 1 b [Xen_(?) +xe)n]
_ _ - , 3.145
PO = TG m) T om 0 G.195)
where, p(3) = [1 +b(3+x)"] (14 bx}). Observe that,
3 x(’+l
(3 +xe)“—x2:nx2_13—|—n/ / (n—1)m"2dmadl.
0 Jx,
Consequently,
nbxt !
p(3)=——"3+¢0), (3.146)
@) p(3) 6)
where €(3) = —nbl(y?;)]) I Ja(m+x.)"2dmdl. Denote h = 1+ bx", and observe that
1 1 1
BN YA +), (3.147)
p@) h ( R

From (3.147) and (5.48), it follows that p(3) = —nbx"~! (# + 1712> 3+ €(3). Consequently, we get the

intermediate result:

nbx? ! nbxt~!
PG)=——33+CG) —— —P()s (3.148)
On the other hand, observe that,
1
J(3) = <P(5) + h) 3+ xp(3) = c23+ 2 €(3) +¢3p(3)3, (3.149)

where the last equality is a direct consequence of (5.49), with ¢; = % — “Zfl“‘ , € =X and ¢; = (1 — “b}f‘? )

Now, we readily check that
nb(n—1)

2
=) (\3!+xe)"_2%. (3.150)

€(3)| <
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nbx!
p(3)

Now, from (5.48), we deduce that |p(3)| < 3]+ |€(3)]. Moreover, using (5.51), we get

nbx! 5 nb(n—1) h2 3
C—3"+ 3l +x. 3. (3.151)
p(3) 2p(3) (ol )"~

3p(3)| <

From (5.50), we deduce that,

nb(n—1)[c| w2s [ o= Dle] (3l +x)" 2 | nba e[| 5
[(3) — 3] < (3 +2xe)™ [a]" + < 3
' 2p(3) ‘ 2p(3) p(3)
1 1 1 _ 1
Now, observe that — = Therefore, for 3 > 0, we get G = 7[ E DI and when

p(3) [14+b(3+x)" |

. . 1 1 1+b(2x,)"
3<0 (1.e. 3€( xe,O]), we get o5 < g < T (s 07

G) = W. We deduce that

. Consequently, for all 3 > —x,, we have
1 1+b(2x,)"

nb(n—1)]es[(1 +b(2xe)“)) (I3l +xe)" " |

[V(3) — 3| < ( 2h 1+b([3] +x)"

nb(n—1)]c,] (3] +x)" > (1+5(2x)")  nbaey| (14+5(2x)") |
2[1+b(|3] +x.)] A [1+b(]3] +xe)] A

By distinguishing between the two cases 3| +x, > 1 and |3| +x, < 1, one can prove that the following

inequalities are satisfied for all 3 > —x,,

(I3l +x)" 3] < (la] +2x)™"!
l—l—b(b’—i—xe)“ B 1+b(|3‘+xe)

- < max{b,b’l} .

It follows that
I (3) — c13] < 457, (3.152)
with the positive constant

nb(n—1)(1+b(2x,)") (xe + |¢5|) max {b,b‘l} b1 (14 b(2x,)") [cs
= 2h * 2 '

On the other hand, we easily check that u = f3(0)c,, with u defined in (3.85). It follows that, by combining
(5.47) and (5.53), we obtain [R(3)| < B(0)c,3°. Since O(3) = 13%, we conclude that [R(3)| < §Q(3),where
one possible value of § is § = 2¢,3(0). O

Remark 19. It is worth mentioning that the stability analysis which will be performed for the origin of
the nonlinear system (3.86) is available for many other reintroduction functions B;, as long as they satisfy
the sector condition (3.143).

Furthermore, in order to ease the notation, we denote

Ii(fn) = /t " ailt—a)0(k(a))da. (3.153)

—T;
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Finally, we define the constants k= Sis’l, IAci = 4C,LGW and N; = min {7@2, 12,2} Notice that for all i € I,,,
k; and k; are only dependent on the constant biological parameters of the model.

Now we are ready to state and prove the following result:

Theorem 7. Let the system (3.86) be such that
G >0, (3.154)
foralli € I,. Then all the solutions of (3.86) with initial conditions ¢; € € ([—1;,0],R) satisfying
Ni(i, Pi—1) < Nj, (3.155)

converge exponentially to the origin.

Remark 20. Generally, Lyapunov theory provides sufficient conditions for stability. However, due to
earlier published works we can comment conditions (3.154). In previous works (using frequency domain
approaches), it was claimed in [8] that the origin is locally asymptotically stable if &; + (2L,C; + 1) ; >0
is satisfied. However, in [225], it was shown that the previous assertion holds true only when —&; < u; < 0.
We notice that our stability conditions (3.154) are equivalent to those of [225] on that interval. Next, when
u; > 0, our exponential stability conditions (3.154) (which are provided without specifying a particular
form of f;), correspond to the conditions for local stability provided in [225] (and which have been slightly
improved using Nyquist criterion for a typical selection of the functions f; in [225]). It remains the case
W < —9&; which is not covered by the Lyapunov approach proposed here, and which was addressed in
[225]. The region of attraction defined in (3.155) is rather difficult to interpret. In fact, based on some
numerical simulations and the conjecture made in [225], we suggest that the region defined in (3.155) is

conservative.

Proof. i) Lyapunov-Krasovskii functional for the first compartment:
We start with the first generation of hematopoietic stem cells. Here we are using the results already
proved in the previous section. Then, we deduce that the derivative of the function Q(£;(t)), introduced

in (3.99), along the trajectories of (3.86) satisfies

O(1) <2[—Prs +Li |11 |C1] Q(R1(2)) + 81121 ()| Q(£1 (1))

(3.156)
+2L; (|,LL1 ’ + 81 ‘)?1 (l‘)|) I ()’51,).
It follows that the derivative of the functional Ni, introduced in (3.125), satisfies
- Sl S R 814 S .
Ni(t) <— | = t A — %1 (t)| — = t
10 <= | o)+ g mit)] + | F 0] 5| o)
c e (3.157)
o Ale 4 A
—§1Q(x1(t))-|— Li$1|%:(1)] — 12C1 I (%17).
On the other hand, from the definition of N; we observe that
. 1, +2L,C e™ .
Ni(f1r) < 5081 (1) + (g 21(;11 i >A1 (#1r). (3.158)
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From (3.157) and (3.158), we deduce that for all §; € (0, min { %, m }) , the derivative of the

functional V| satisfies

W) < - i)+ | 10 - 5 01610 + g™

Ly$i[% (1) - 2 ]Il(flt)—%lQ(fl(t))'

2

From the definition of N;, which is given in (3.125), we notice that |£;(7)| < 24/Ni(%1,). A direct
consequence is that

N] (l‘) < -GNV ()?U) + |:§1 \/M) - al:| Ql()el (t))
2151/ N1 (i) — £

* 2Cy

h(f) = 500 (1))

Now, we conclude that if the condition (3.155) is satisfied, then
Ni(1) < =GINi (R1r) — 2 0% (1)). (3.159)

This allows us to conclude that the origin of the subsystem (3.86), for i = 1, is exponentially stable, with a
decay rate smaller than G;.

ii) LKF for the overall system: Here we take into account all generations of immature blood
cells. Using the inequality |£;(£)%_1(a)| < &Q(Xi(r)) + éQ()?i,l(a)), with & > 0 for i > 1, and the
inequality |£;(7)%i(a)| < Q(%:(2)) + Q(%i(a)), for i € I,, we can show that if we select y; = %’l"em +

e UK 1§ : . . . A . : :
%eﬂ—l , then the derivatives of the functions Q(£;(z)), for all i > 1, along the trajectories of (3.86)

satisfy

O() <2[—Pis + Lil |Gl Q(£:(2)) + §i|2: (1) | Q(%i (1))

+ 2L (|| + $il&i (0)]) £i(Rir) + 2Kim1 | i1 | Cim1 GO (Ri(7)) (3.160)
+2K; <§i—1’fi(f)’ + |ul§1|> Iio1 (Riur)-
l
Moreover, we choose &; = W It follows that

Ri(t) < — GN(Einti1) + W1 Qi (1)) — {g" - lszrae,-(r)@ 0(s(1))

G ia ~lia T A
~ 16 QWi (0) +Lis; |xi(f)|—72Li§iCi Li(%ir) (3.161)
. . e .
+Ki_18i1 [|xi(l)| - ZgLifiCi L1 (Rio1),
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with & > 0. Finally, we conclude that if the conditions (3.155) are satisfied, then

Ni(r) < —GiNi(&ir, Ri11) — (3.162)

%Q(ﬁ,-(r)) +WiCi1Q(%i-1(1)).

As we had done in the previous Section, we can prove that the derivative of the functional

%)=L

O 8YCe
L with =20 ] AL, =

xll?'xl lt n — 17
k=ir1 Sk—1

where X = (£1,...,%,), satisfies,

)<— Zp,gl (Rirs i 1,>——Q< ())—%Q()?nt

Finally, we obtain for all t > 0,
W(r) < —gW(X,),

(3.163)

with ¢ = min{G,...,,} > 0.
To summarize, by virtue of the properties of the functionals N;, for all i € I,,, and since the original
system (3.1) is a positive system, we conclude that the set
o ={¢; € €([-7,0],Ry): 1) <N}, (3.164)

Ni(@i —x7, 9,1

is a subset of the basin of attraction of the positive steady state of system (3.1). 0

Example 6. In this numerical example, we consider the system with the following biological functions

and parameters for n = 3:

Bi(xi) || fi(a) 0; T Y K;
i=1 & [ 2= 101356 || 1.109402 || 03 || 0.05
1
. 1 10e'04
. 3 262
i=3 i oy 0.3559 1.36 0.45 || 0.085
From the selected parameters, it follows that: C; = 0.7390, C; = 0.6445, C3 = 0.6580, and,
x; o Gi 8 N;
i=1 | 0.70036 || 0.40422 || 0.08924 || 0.65070 || 2.5935 % 10~*
i=21 0.78225 || 0.19888 || 0.02329 || 3.00487 || 9.3935x 10~
i=3 1.0050 || 0.20422 || 0.33938 || 2.98491 2.02x 1074

We select the initial conditions:

Therefore, (@1 —x5) =

=/V2((p2_x2’q’1
M5(@3

(p1 = 0.6850, @ = 0.782 and @3 = 0.979.
7.16 x 107> < Ny,
—x¢) =6.65x 1077 <N,
—x5, 0 —x5) = 1.94 x 107* < N3.

According to Theorem 3, the positive steady state X¢ = (xi,xﬁ,xg) is exponentially stable (Figure 3.14).
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Fig. 3.14 Trajectories of Example 6.

3.6.5 Robustness analysis of the positive equilibrium

In this section, we consider the perturbed system (3.1), that we write in the form (3.86), which is
determined by performing the change of coordinate £;(¢) = x;(¢) —x{. Based on the functionals constructed

in Theorem 3, we prove the following result:

Corollary 3. Let the system (3.86) be perturbed by a nonvanishing additive disturbances £(t) € (0, €],
€ >0, forallt >0and i€ I, Ifthe conditions

G >0 (3.165)

are satisfied for all i € I, then all the solutions of (3.86) with initial conditions ¢; € € (|—1;,0],RT)
satisfying

28\’
(95) SN = X7, 0 —xi1) <Nis (3.166)

with 0 € (0,1), converge exponentially to the domain,

28\ °
ggi = {(pl € %([_TEOLR% Ni((Pi_va(pi—l —Xf,l) S <68§> } (3167)

Proof. Let us prove the previous result for i = 1. Arguing as we did in the proof of Theorem 3, one can

generalize to the overall system. First, observe that the derivative of Q(%(¢)) along the trajectories of the



3.7 Concluding remarks and discussion 89

perturbed system satisfies:

O(1) <2[—Prs + L |1 |C1] Q(R1(2)) + 81 1%1 () |O(£1 (1))

B (3.168)
+ 2Ly (] + 81|81 (0)]) 1 (R1r) + |21 (1) &3

Consequently, the derivative of the functional Ny, introduced in (3.125), along the trajectories of the

perturbed system, verifies

Ni(t) < — [QIQ(Jﬁ (1) + gl/\]()?];)} + [Sl\)?] (1) — g]] 0%, (1))

8 2Cy 2 4
. (3.169)
Sl e Ale gie ! . -
=2 Q1)+ | Lisi |21 (2)] - Li(£1) + %1 (1) &
8 2C,
Using (3.158), and the fact that |£; (r)| < 24/N;(%1;), we obtain
) <= e+ [sr VA - 2 i)
. . e . - .
+ [2L181/ N1 (%1) — glzcl I (%1r) — %Q(xl(l‘)) +2€;v/ N1 (F1r),
where | € (O,min{i‘, W}) Therefore, when Ny (@ —x§) < N, is satisfied, we deduce that
Ni(t) < — &Ny (Ry) — %Q()ﬁl (1)) + 281/ N (R ). (3.170)

Now, let us consider any 6 € (0, 1) and observe that for all initial conditions ¢; satisfying N1 (¢@; —x{) <N
with @; ¢ ¥, the inequality (3.170) gives

Ni(t) < —(1—0)&N, (%) (3.171)

We conclude that the states xy; satisfying (3.166) converge exponentially to the invariant set %, defined

in (3.167), with a decay rate smaller or equal to %. O

3.7 Concluding remarks and discussion

With the aim of constantly refining and improving the modeling and the analysis of hematopoietic
mechanisms, we proposed explicit constructions of suitable strict Lyapunov-Krasovksii functionals
for some nonlinear hematopoietic systems with finite distributed delays ([8], [24]). Within a broader
framework regarding unhealthy hematopoiesis, we had begun the chapter with a review of earlier trends
and objectives behind mathematical analysis in this field. Later, we showed how our (Lyapunov) approach
allowed us to solve some practical and technical issues, which complement already published results on
the topic. For instance, in comparison with the previous work in [225], we complement and improved

some analysis aspects by providing exponential stability with an estimate on the decay rate of the solutions
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and a basin of attraction formulation, without any extra assumption on the mitosis functions. Then, for the
first time in the analysis of the studied models, a robustness analysis is performed when they are subject
to some nonvanishing perturbations. We have also illustrated how dedifferentiation flux (cell-plasticity
abilities), together with model uncertainties -that may for instance rise from reintroduction functions from
resting to proliferating stages- can generate nonvanishing perturbations in the studied time-delay models.

In addition, we covered some practical situations such as time-varying differentiating rates (to model
the action on the blockade in differentiation and redifferentiation), that we discussed in several examples,
using switching parameters (i.e. piecewise continuous functions) or periodic behaviors. Throughout the
chapter, we discussed some recent biological facts (e.g. redifferentiation therapy trends and cell-plasticity
interpretations). Then, in the last part of the chapter, emphasis was given to the positive steady state
that is well-suited to describe healthy hematopoiesis. For the first time we proposed a study which is
based on Lyapunov theory for the strictly positive steady state. Then, in that framework, we provided an
explicit formulation of a subset of its region of attraction, which is the first one to be established, even
if -practically- the basin associated to the Lyapunov-Krasovskii functionals seems to be conservative if
compared with simulation results.

The work that we will present in the next chapter will particularly enhance the role of dedifferentiation
and transdifferentiation by considering a simple hematopoietic model where cell plasticity is no more a

marginal phenomenon, and cannot be considered as a perturbation, but has to be fully modeled.



Chapter 4

A model with infinite distributed delays
involving cell arrest and plasticity

Synopsis. A model of proliferation and quiescence in living organisms is studied. Here we extend
the work presented in the previous chapter in two directions. (I) Firstly, we discuss how to reconcile
some earlier modeling ways of the cell cycle in one common framework. Then, accordingly, we
consider a model that contains a compartment where cells may be quiescent for an unlimited time,
along with a proliferating phase (modeling the cell cycle) in which most of the cells may divide, or
die, while few of them may be arrested during their cycle for unlimited time. The resulting system
extends the model of [8] - studied in the previous chapter - by considering the possibly case of
infinite distributed delays. A Lyapunov technique is then developed for the analysis of the origin of
the system. (1) In the second part of the chapter, we consider for the first time some cell plasticity
features in the class of systems that we study. As a first step, we are going to discuss some simple
cases of cell-plasticity in unhealthy tissues, and we highlight the role that dedifferentiation may play
in the survival of cancer cells (this hypothesis is in line with some medical observations). The main
analysis is performed on a simpler model involving two maturity stages and a dedifferentiation
function from progeny to SCs.

4.1 Overview of the chapter

Generally, the length of the cycle is approximately 24 hours for fast-dividing mammalian cells. However,
this duration varies from one type of tissue to another, and even from one cell to another. In addition, if a
problem occurs in some cells within the total cell population, they may be arrested in one of the cell-cycle
checkpoints (See Chapter 1). Several biological works have particularly focused on the length of the G,
phase, as well as its possible applications (see [168] and [256]). For instance, the manipulation of the
G length in neural SCs is discussed in [256], including also its impacts on the differentiation of neural
precursors. For other type of cells, we refer to Figure 1 in [168] that gives the lengths of the cell cycle
(particularly G1) of some important categories of cells, including blood lineages, gut lineage and neural
lineage. Note that, in the classification given in [168], the cycle length of the common myeloid progenitors

(CMP) - in the hematopoietic system - appears as unknown or undetermined (see also [40, 209] for the
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mechanisms involved in hematopoietic SCs niches regulation). We also mention that cancer dormancy
([93, 15]) is sometimes justified by cellular dormancy, i.e. Go and Gj-arrest (see [15]). In addition,
some drugs have cell arresting power and are used to stop the uncontrolled growth that characterizes
proliferating cancer cells [244].

cell division
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G

Bernard S, Cajavec Bernard B, Lévi F, Herzel H (2010) Tumor Growth Rate
Determines the Timing of Optimal Chronomodulated Treatment Schedules. PLOS
Computational Biology 6(3): €1000712. doi:10.1371/journal.pcbi.1000712
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000712

Image from the Clinical Gate website, « Principles of
Systemic Therapy » by H.M. Hatcher.
http://clinicalgate.com/principles-of-systemic-therapy/

Fig. 4.1 The Figure on the right is extracted from the online reference indicated at the bottom of the Figure. It
shows the cell-cycle phases with their lengths and give some examples of drugs that act at a specific moment of
the cycle (e.g. taxanes, which are mitotic inhibitors), or alkylating agents, which are independent-drugs that act at
any cell-cycle sub-phase. The Figure on the left is from [38], and it belongs to the Open-i service of the National
Library of Medicine that enables search and retrieval of abstracts and images from the open source literature. The
figure on the left is taken from [38]. It shows the successive steps of the normal cell-cycle, starting from G; (of
variable duration) until mitosis where two daughter cells are illustrated. The figure on the right is extracted from the
online reference indicated at its bottom. It shows the phases of the cell-cycle according to their lenghts, as well
as some classical drugs that impact the duration of the cycle at specific sub-phases (e.g. mitotic inhibitors such as
taxanes) and alkylating agents (e.g. ifosfamide), which can target the cells at any moment during their cell-cycle.

In summary, we say that cell-cycle arrest may occur for many reasons, among which: i) if a DNA
damage is detected by cells at some checkpoints, ii) due to insufficient nutriments, iii) resulting from drug
infusions. More details are given in Box 11 for the interested reader.

We pointed out that an heterogeneous distribution of the cell-cycle length over the total density of cells
within the same population exists, and it may complicate the modeling aspect of the cell-cycle. Indeed,
basically, the questions that arise here are the following ones:

If some models take into account the cell arrest (i.e. the fact that some cells can be blocked during
their cycle), while other models consider that all the cells must divide or die before a finite age, can
we expect equivalent results in both frameworks? Does the minority of arrested cells cause a change
in the asymptotic behavior of the model and on the stability properties of its steady states?

To answer these questions, we begin by briefly reviewing some existing models of the cell cycle. Then,
we revisit the model in [8], studied in the previous chapter, and we extend it to the case where few cells

can take infinite time to divide or die.
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Box 11. Some extra-facts about the length of the cell cycle

® Some uncertainty on the duration of the healthy cell-cycle: This is particularly true for the growth-
phase G, and the gap G, as illustrated in Figure 4.1.

@ A probable link between the cell-cycle arrest and cancer dormancy: Cancer dormancy is still poorly
understood, and is currently undergoing intensive research ([261]). In [15], the author reviewed some of the
main clinical explanations justifying cancer dormancy. His key points include cellular dormancy, i.e. Gg

and G| -arrest (but also angiogenic dormancy and immunosurveillance, or cancer immunoediting [15]).

® Drugs increase the duration of the cell-cycle and cause G-arrest: Most of the anti-tumor drugs are
targeting dividing cells in their cell-cycle (Figure 4.1). Drugs increase the duration of the cell-cycle and
cause Gi-arrest, in order to halt cell overproliferation and achieve cancer dormancy. In fact, the idea to
transform cancer into a chronic disease is in the voices of many people in the medical world nowadays
([111], [14]). erlotinib.

@ The impact of changes in cell cycle duration on the biological properties of living tissues: We have
also noticed that some works focus on the impact of the variable length of the growth-phase G; ant its
possible applications (see [168] and [256]). For instance, the manipulation of the G length in neural stem
cells is discussed in [256], including its impact on the differentiation features of neural precursors.

From a mathematical point of view, the resulting system (Section 4.3) that we study in the first part
of this chapter has infinite distributed delays. A stability analysis of the 0-equilibrium is performed in
Section 4.4, via the introduction of a novel Lyapunov-Krasovskii functional (LKF). The extension of the
stability analysis of the positive steady state to the nonlinear model involving infinite distributed delays is
performed in Section 4.6.

In the second part of the chapter, we highlight some cell plasticity features. We recall that cells have
the ability to guide their development paths and determine their individual and collective fates (Chapter 2).
Dedifferentiation allows cells to regress from an advanced differentiated state to a less differentiated one,

including the case where cells lose their specific functions and become stem cells (Figure 4.2).

Progenitor 1
Cell type IT

Cell type I

—
Progenitor I Cell type I \
— >
‘ Cell type I-11 Cell type I
Stem Cell Cell type I / Cell type I
Progenitor IT  Cell type II Stem Cell Stem Cell Cell type I

(2)

(b)

(©)

Fig. 4.2 (a) Cells development (b) Dedifferentiation: a lineage reversion in which differentiated cells acquire the
properties of more immature cells within the same lineage hierarchy. (¢) Transdifferentiation: the conversion of
one differentiated cell type into another, or, the conversion of one progenitor/SC population into another SC type.
Contrary to the case (b), we notice in (c) that a cell of type I can be transformed to a cell of type II, without pasing
through a SC state. This illustrative figure of cell-plasticity features is adapted from [280].
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Our aim is to introduce the process of cell dedifferentiation in living organisms in the models we
study. Firstly, in Section 4.7, we briefly discuss the case in which more mature cells dedifferentiate into
SCs, and join the resting SC phase. A more interesting situation is observed when, in Section 4.8, the
dedifferentiated subpopulation of cells that join the SC compartment is directly active in proliferation. In
the latter case, we are going to introduce a general modeling framework involving cell plasticity functions
is given in Section 4.8.1. functions (Section 4.8.1), and then analyze a simpler case in which an unhealthy
differentiated subpopulation of cells regresses to a CSC state. This is in fact the expected behavior of
cancer cells when dedifferentiation is associated with cancer [286] (e.g. epigenetic mutations that increase
the self-renewing activity of CSCs [173, 286]).

In Section 4.8.2, we study a specific (unhealthy) dedifferentiation process in which a (mutated)
subpopulation of cancer cells belonging to the j-th generation in the cell hierarchy, where j € {2,...,n},
dedifferentiates through a typical function to a SC stage. A stability analysis is carried out in Section 4.8.3,

in the typical case involving two maturity stages and a dedifferentiation function from progeny to SCs.

4.2 An insight on some cell cycle modeling trends

Now, we compare between some early cell-cycle models and we situate the one we focus on in this
chapter according to them. Firstly, it is worth mentioning that the objective behind the introduction of
some models is to investigate the behavior of cells that undergo proliferation at their specific checkpoints
(i.e. the transition from a given sub-phase to the next one). Accordingly, some mathematical models
make a separation between some four sub-phases of the cell cycle (e.g. [25, 26, 39]), however, the latter
perspective is beyond the scope of our work. Indeed, here we give a particular focus to the transition
between the resting phase Gg (which is not explicitly modeled in [39]) and the proliferating compartment
(i.e. the cell-cycle, which is the sum of the four sub-phases Gy, S, G, and M), together with their respective
lengths. This is described in Figure 4.3, where we point out some differences between two main modeling
approaches: on the one hand, we observe the configurations (A) and (B) where a Gy phase is considered,
and on the other hand, we have the configuration (C) where Gy is assimilated to G;. These two trends
may be reconciled by adopting the representation (D) (see the arguments given in Figure 4.3). We recall
from the previous chapter that cell population models containing quiescent and proliferating phases date
back to some pioneers works such as Burns & Tannok [49] and Mackey [180], which have been more
recently improved by Adimy et al. [8].

In our context, the configuration (D) improves the one illustrated in (C) by clearly separating the Gy
compartment from the cell-cycle. From a biological point of view, the fact that Gy and G are separated is
no longer a matter for debate [208]. In addition, contrary to (A) and (B), the representation (D) extends
the representation of the cell-cycle by considering it of unlimited length. Thus, the role of the growth
phase G and the gap phase G, (which are of variable duration in healthy and unhealthy cases, and which
may halt some dividing cells in the cell cycle) is highlighted. The configuration in (D)-Figure 4.3 is the
one that we consider in the first part of this chapter. Extending the LKF constructions we provided in the

previous chapter to study the origin of the version involving infinite distributed delays is not a trivial task.
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Fig. 4.3 Cartoon approximate representation of some cell cycle models from the literature. Configuration (A) is
the one in which cells may be quiescent during their entire life, or they can enter to a proliferating stage of finite
length (as in [8, 9, 225, 81]). In (B), the cell cycle is splited into four sub-phases Gy, S, G, and M, each one has a
finite duration (as in [25]), i.e. in (B) the length of the proliferating phase is finite since all the sub-phases were
assumed to be finite. Next, the situation in (C) (as in [39]) is completeley different, since in this approach the
cell cycle is described as an infinite support without an explicit resting phase Gy (that can be associated with Gy).
Thus, in (C), the lengths of the sub-phases G1, S, G> and M are infinite, and a focus is placed on how the transition
from one sub-phase to the next one occurs. Finally, we notice that (D) (which is the model we introduce in this
work) represents a genaral case in which -at least- G; or G, may be of infinite length in the cell cycle (which is
compacted in a single infinite phase), along with a separated infinite Go compartment. In summary, one notices that
the configuration (D) separates quiescence from proliferation (as in (A)-(B)), while proliferation is of infinite length
(as in (C)). Some slightly different models are considered for instance in [47, 46], where a molecular structured
population (involving age-and-cyclin structured-PDEs) have been studied, considering that the length of the cell
cycle Gy — S — G, — M is infinite.

4.3 A nonlinear cell population model involving infinite distributed delays

and time-varying parameters

We introduce in this section the model of interest, illustrated in Figure 4.12, in which we have n distin-
guishable maturity levels (i € I, = {1,...,n}, where i = 1 is the compartment of SCs). For the sake of
clarity, as a first step, we will neglect the cell-plasticity features (dedifferentiation and transdifferentiation),
that appear in Figure 4.4, and we perform a stability analysis of the model that takes into account cell

arrest.
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/51\ I
dr1(t)
L {G1>S> GZaM} 2)\1(t) GO /'

)/ 201(t)

dp1(t

Maturity stage (1)

(B W(t)
] I

(G1, S, G, M) 22:() GV

\s207‘, (t) Maturity stage (7) (i +1)

Fig. 4.4 A cartoon representation of the discrete maturity model of interest, that extends those of Mackey, Adimy et
al. Cells of the i-th maturity-generation, where i € I, = {1,...,n}, n > 1, are in a resting phase Gy, or in proliferation
(cell-division cycle) {G1,S,G2,M} of infinite support (i.e. few cells may be arrested in the cell cycle for unlimited
time). In the general case, we can consider that all the involved biological parameters (rate of differentiation
o; € (0,1), rate of self-renew A; = 1 — o}, apoptosis rate d,,;, death rate of resting cells d,;) are time-varying. On the
right, the flux due to the cell-plasticity functions (&; and @ for all i € 1)) is represented.

The dynamics of resting cells r;(¢,a), and proliferating cells p;(z,a), of the i-th generation (i € I,,), of
age a > 0, at time ¢ > 0, are governed by

Bt % = = [di(r) + 1i(a)] pilt.a), .
%498 =~ [da(t) + B ()] e, ) b
where we recall that for all i € I, x;(t) = [, ri(t,a)da, and, for all i € I, and t > 0, d;(t) is the death rate
of the resting cells, while d,,;(¢) is the death rate of proliferating cells. We recall also that the reintroduction
function f; is decreasing and lim;_,.. §;(¢) = 0.

The renewal conditions, which give the birth rate at the initial age a = 0, are introduced through the

following boundary conditions:

pi(1,0) = B; ( Ji Wri(t,a)da) o= ri(t,a)da,

(4.2)
ri(t,O) = 20'i_1(t) f0+°°hi_1(t,a)pi_l(t,a)da—i—Z (1 — G,'(l‘)) f0+°°hi(t,a)pi(t,a)da,

where 0;() represents the time-varying rate of differentiation and, consequently, A;(1) = 1 — o;(¢) is
the rate of self-renewal of the i-th cell generation. Then, we complete the system (4.83)-(4.86) with

Z!functions as initial conditions (i.e. initial age distributions when ¢t = 0):

. 0 -
{ pi(0,a) = p/(a), forall ae€ [0,+), 43)

7:(0,a) = r¥(a), forall ac [0,+o).

i
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Finally, we assume from biological considerations that, for any fixed time ¢ > 0,

lim p;(t,a) = lim ri(t,a) =0. (4.4)

a—+oo a—r+oo

Remark 21. Apart from the aforementioned extension to the case of unlimited cell-cycle length, we also
notice that all the parameters (differentiation, self-renewing and apoptosis rates), involved in (4.83)-(4.86),

are time-varying (which was not the case of similar earlier models).

4.3.1 On the modeling of the mitosis function

Remark 22. The densities of proliferating cells p(t,a) -first equation in (4.83)- were defined in [8]
over 0 < a < 1, where T; is finite. Therefore, the division rate h; in [8], which must fulfill the condition!
OT" hi(a)da = +oo, has been considered as a continuous non-decreasing function satisfying
lim h;(a) = +oo.
a—T;
Now, in our work, we consider that the (continuous) cumulative distribution function #; is defined
over an infinite support [0, +<), is nondecreasing, and it satisfies

lim hi(a) =1. 4.5)

a—+oo

Indeed, we consider that when the age a increases, the cells which do not die by apoptosis, have
an increasing probability to divide, and this probability goes to 1 when a goes to infinity. The latter
description captures the fact that a majority of cells may divide (if they do not die by apoptosis), while few

of them may be arrested within the cycle. The qualitative form of #; in this case is given in Figure 4.5.

4.3.2 A time-delay system with infinite distributed delays and time-varying apoptosis
rates

Similarly to the model studied in the previous chapter (involving finite distributed delays), we want to
study the time-delay version of the cell population dynamical model. We recall that the finite value
7; > 0 - in the previous chapter - represents the maximum age at which all the dividing cells (that do
not die by apoptosis), at the i-th maturity stage, must divide. Thus, here we assume that the PDE model
(4.83)-(4.86)-(4.85) is written in the following nonlinear system with infinite distributed delays (i.e.

where T; = o0):

Xi(t) = — dri(1)xi(t) — Bi(xi(t))xi(r) +22:(r) /0+wgi(faa)/3i(xi(f —a))xi(t —a)da

- (4.6)
£20.4(0) | i1 (6,0)Bi1 (51 (1= @)1 (1= a)da

I'This assumption describes the fact that all the proliferating cells which do not die by apoptosis during the cell cycle, are
obliged to divide before they reach the maximal age 7;.
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An example of the graph of the function h

1 1 1 1 1 ]
0 20 40 60 80 100 120
Age a

Fig. 4.5 Representative - qualitative - graph of the cumulative distribution function #; in (4.83). This form describes
the fact that cells have a low probability to divide at early stages of the cycle, then the probability tends to 1 when
the age of the proliferating cells increases.

where fi(a) = hi(a)e Johilmdm for all g € [0, +o0), and
gi(t,a) = fi(a)e™ 1 An(mHt=adm for all g € [0, +0), and 1 >0, “.7)

and, A;(t) € [A;,4,] € (0,1), 6i(?) € [o

i (0, ) and A;(t) = 1 — 0;(r). Moreover, we consider that
for all t > 0, the death rates satisfy: d,;(¢

il C
€ [d,;,dyi] C (0,00), and d,i(t) € [d ;,dpi] C (0,00). A direct

O
) “Lpis

consequence is that
ey < e—fé’dpi(m-i-t—a)dm < e i 4.8)

Then, for all 7 > 0, and for all a € [0, +o0),

fila)e i < gi(t,a) < fi(a)e i, (4.9)

Let us denote for later use .
Ci= fi(0)e %itar, (4.10)
0

and observe for that C; < 1, for all i € I,

The system (4.6) is positive, i.e. for positive initial conditions the trajectories are positive for all > 0.
Throughout the work, we consider only positive solutions of (4.6). As a qualitative example, we consider
a function f;(a) = hi(a)e™Jo hi(mdm where h; is the cumulative distribution function in Figure 4.5, for all

€ [0, 4o0). For constant apoptosis rate (d,, is 0.01 days '), then g; is defined by? g;(a) = e~ f;(a).

2and let us recall for later use that if the apoptosis rate is constant, then: [;°g(m)dm < [5° f(m)dm = 1
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An example of the graphs of the functions f and g

15 20 25 30
Age a (Days)

Fig. 4.6 Illustrative - qualitative - graphs of the probability density function f;(a), and the function g;(a) (for constant
apoptosis rate d,;), for all a € [0, +o0).

4.4 Stability analysis of the 0-equilibrium

In this section, we analyze the stability properties of the origin of the model (4.6), since the aim of
anti-cancer therapy is the eradication of unhealthy cells. More precisely, we prove in this section the
following result (that generalizes those given by Adimy ef al. and those in Chapter 3, to the case of

infinite distributed delays):

Theorem 8. Forallic I, ={l1,...,n}, the following statements hold true:

Step 1 If QX’L —-1 < 0 The ()rigiu. is globally
exponentially stable

~ The origin is globally
Step 2 [ If QAiCi —-1<0 ‘ < exponentially stable

_(OY\.C0. — i The origin is globally
Step 3 [ I d” <2)\1CZ 1> ﬁZ(O) ~ 0 exponentially stable

&

There exists a system belonging to the family

Step 4 of the studied model
whose origin is not an attractive equilibrium point

Remark 23. The condition in Step 3 is a direct generalization of the well-known necessary and sufficient
stability condition for the 0-equilibrium of the class of systems with finite distributed delays and constant
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parameters (introduced in [8]). More precisely, the latter stability condition has been provided in [8]
for local asymptotic stability of the origin, and in the previous chapter for global exponential stability
of the origin of the model with finite distributed delays and constant apoptosis rates. However, proving
this statement requires a novel Lyapunov-Krasovskii functional, different from the one already used in the

previous chapter.

Proof. Let us start by introducing for all i € I,;, the family of functionals:

Ni(xy) = O+°° f(0) /l;edf’i(tS)ﬁi(xi(s))xi(s)dsdé. (4.11)

The time derivative of N; is given for all # > 0 by:

Ni(t) = —d ,;Ni(xir) + O+°° Fi(0) Bi(xi(t))xi(t)dl — 0+°° Ffil©e i By(xi(t — O)xi(t — O)dl.  (4.12)

Since [;” f;(£)d¢ = 1, it follows that:

Nit) = _dpzN (xie ) =+ Bi(xi(2) )xi( / fill 7piéﬁi(xi(t —0))xi(t —0)dl
(4.13)
< —dpiNi(xie) + Bi(xi())xi(t) —/0 8i(t, O)Bi(xi(t — 0))xi(t — £)de,

where the last inequality is a consequence of (4.9). Next, let us observe that the derivatives of the

functionals,

M;(x;) = i / Bi(xi(s))xi(s)dsdl, (4.14)
0
along the trajectories of (4.6), satisfy for all i € I,,,
Mi(t) =Pi(xi(1))xi(e) | et~ / Fi(0)e 4 By (xit — 0)xi(t — £)de. (4.15)

It follows that,

M;(t) =Cif;(xi(1))xi( [i@)e™ 4 Bilxi(t — £))xi(r — £)de
0 (4.16)
<CiBi(xi(t))xi( gi(t,0)Bi(xi(t —£))x;(t — £)dX.

(=]

For later use, we notice that:

Ni(xj) = O+°°f,'(f) /ztg e_dpi(t_s)ﬁi(xi(s))xi(s)dsdﬁ
> /O+°° tigfi(ﬁ)edmﬁﬁi(xi(s))xi(s)dsdﬁ 4.17)

:Mi(xi,).

For the sake of brevity, Step 1 and Step 2 will be established only for the subsystem i = 1. The results
can be extended for all i > 1 using similar arguments as those we will provide in the proof of Step 3.
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Step 1: Let us introduce the following functional for the first compartment:
Ul(xh):xl(t)+211N1(xlt). (4.18)

Its derivative along the trajectories of (4.6) satisfies:

Ul(t) <-— [d,l(t)+[31(x1(t))] xl(l‘) —|—2M(z‘)/0+mg1(t,€)[31(x1(t—Z))xl(t—ﬁ)dﬁ

(4.19)
_ _ _ e
_ZAldplNl (xl,) —|—211[31(x1 (t))xl(t) —2&1/0 gl(l‘,f)ﬁl (xl(t —f))xl(l‘—g)df.
Since for all i € I, and for all 7 <0, A;(r) < A1, we obtain
U1 (I) < - |:drl (l‘) — (2%1 — 1) ﬁ] (xl (l‘)):| X1 (l) _2Ildp1N1 (Xlz)- (4.20)

From (4.20) we deduce that if the condition 24, — 1 < 0 is satisfied, then the origin of the subsystem
(i=1) is globally exponentially stable.
Next, we focus on the case 211 — 1> 0. From (4.6) and (4.16), we observe that the derivative of the
functional
Vi(x1) = x1(t) + 241 M, (xy), (4.21)

satisfies

Vi) < - [dﬂ 0= (22— 1) B <t>>] X (0) (4.22)

Now, let us distinguish between two cases:

i) If 2A,C; — 1 < 0. In this case we conclude from (4.22) that the origin of the subsystem (i = 1) is
globally asymptotically stable, and we prove in the sequel that it is also globally exponentially stable (i.e.
the statement in Step 2).

Step 2: By combining (4.20) and (4.22), we check that the functional

1-C

W, =U + 22—V (x1y), 4.23
1 (x1:) = Ui (x1) 11—211(71 1(x12) (4.23)
satisfies,
. - 1-C - o
Wi(e) < = dpa(0) | 14281 ——= | x1(0) = 22y (i) + (1= 22081 ) B (1 () 0):
1-224,C

Using the fact that 22,C; — 1 < 0, it follows that

Wi(t) < — audp (t)x1(t) —241d,, Ny (x1), (4.24)

1721161 +211 (1761 )
1-22,C;

where o = . Since 24,C; — 1 <0 and 1 —C; > 0, we deduce that o > 0.



102 A model with infinite distributed delays involving cell arrest and plasticity

Finally, using (4.17) we conclude that (4.24) gives

Wi(t) < —audyi (1)x1(t) = A1d, N1 (x1) — A1d, N1 (x1)
<—oud, x(t) —Ildle (1) —Ildlel (x17) (4.25)

<= Wi (x1r),

where §; > 0. Consequently, the origin of the subsystem i = 1 is globally exponentially stable with a
decay rate smaller or equal to J;.

ii) If 21161 — 1> 0. Now, we recall that the functions f3; are decreasing. It follows that the functionals
U, and V] satisty, respectively,

Ui(r) < — [d,l (1) — (2%1 - 1) B, (0)] x1(t) = 221d N (x1r), (4.26)
and
Vi) < - [cm 0~ (22— 1) B (0)} (). (427)
Since for allt > 0, d,; < d,(t), we end up with
Uy (f) < — [d,l - (211 - 1) Bi (0)] x1(1) = 221d Ny (x17), 4.28)
and
Vi(t) < — {dﬂ . (21161 - 1) Bi (0)] x(). (4.29)

Step 3: Firstly, let us assume that
d, - (21161 - 1) B1(0) > 0.
A direct consequence is that the functional

22151 (0) (1 —El)
d, — (2%161 - 1) B1(0)

Ri(x1;) = Uy (x1,) + Vi (x1r), (4.30)

is positive on the positive orthant. Moreover, there exists 81 > 0, such that the derivative of R, along the

trajectories of (4.6) satisfies

Ri(t) < — [d,l - (lea - 1) B, (0)] x1(£) = 221d N (x17),

S—SlRl(xlt),

4.31)

where the last inequality is a consequence of (4.17). By virtue of the functional R, we conclude that the
origin of the subsystem (i = 1) is globally exponentially stable.
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Now we extend the result to the overall system. Let us assume that the conditions
d,;— (2%,-6,- - 1) B:(0) >0, (4.32)

are verified for all i € [,,, and let us prove that the origin of the system (4.6) is globally exponentially
stable.
Firstly, we define a family of constants &; such that:

d,+ (ZIiEi + 1) Bi(0)
40,C;3;(0)

Rell, , forall i €I,. (4.33)

One can check that when the inequalities (4.32) are satisfied then K; exist for all i € I,,. Moreover, for
all &; verifying (4.33), the following inequalities are satisfied,

d,;— (21@ - 1) B:(0)
2

d,— (2@%@ - 1) Bi(0) > >0, (4.34)

for all i € I,,. Secondly, we slightly modify the functional Vi, introduced in (4.21), in order to get some

additional negative terms in its derivative. For that matter, we set,
Vi(x1) = x1(t) + 281 A1 M, (xy,), (4.35)

where R satisfies (4.33). Its derivative along the trajectories of (4.6) verifies

() < - [d,l (1) — (m@la - 1) Bi(o)} x(t)—2 (ﬁm e (z)) /0 T (0B (61 (6 — 0))xa (£ — D).

Since 8] > 1, and for all # > 0, A;(¢) < A1, we get:

2 ——— o —+o0

Vi (l‘) <-— |:drl (l) — <2ﬁ111C1 — 1) Bl(())] X1 (l‘) — ﬁ] 0 g1 (Z,@B] (Xl(l —6)))61 (l —K)dé,
where §; =21 (R; — 1) > 0. Moreover, using (4.34) we conclude that

W <—3 [drl 0~ (e 1) ﬁi<o>] W) -5 [ e 0Bia - O -0dt. 336)

If we compare the derivatives V; and 171, that satisfy, respectively, (4.29) and (4.36), we notice that
a negative integral extra-term appears in (4.36). The latter term will be used in order to compensate an
input from the first generation of cells (i.e. i = 1) when we study the subsystem formed by i = 1,2.

More precisely, let us introduce the following functional that takes into account the dynamics of the

first and the second generations of immature cells (i € {1,2}):

R> (XQ,,XU) ZXQ(I) + ZIQNz(XQI) + 5‘72()@[) + C:lV1 ()C]t) + anN; (-xll‘)7 4.37)
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where, similarly to V,, we consider V» given by:
Va(x2:) = x2(t) + 28242 M5 (x21), (4.38)

and the weighting constants @ > 0, @ > 0, and @ > 0 are given by:

42,5,(0) (1 —62) 26, (1+4) a [dﬂ - (21151 - 1) Bi (0)}

d: 7d:77’ and, d:

d,— (21262 - 1) B1(0) fi 4B(0)

Observe that the conditions (4.32) ensure that @ is strictly positive, which in turn guarantees that the
functional R; is positive on the positive orthant.

Now observe that the derivative of R, along the trajectories of (4.6) satisfies

Rz(l‘) <- [d,z(l) +ﬁ2()€2(l))] xz(t) +27Lz(t) /O+wg2(t,€)ﬁ2(x2(t—E))xz(t —f)dﬁ

+ 20 (l‘) /()Jroogl(l‘,f)ﬁl (x1 (t 75)))61 (l‘ *f)df* ZzzdpzNQ(th) +212[32(X2(l‘)))€2(l‘)
7 [ e, 0Baeat — 0))xat — €yl — g {d,z(t) - (21262 - 1) /32(0)} ()

0 . (4.39)
&ﬁ(O)xl (l‘) —ﬁdplNl ()C],) —dﬁz /0Jr gz(t,f)ﬁz()@(l —E))xz(t —g)df

1246, (1) /0 gl(t,ﬁ)ﬁl(xl(t—Z))xl(t—ﬁ)df—i [d,l(t)— (zila —1) BI(O)] X1 (1)

&R, 0+°°g1 (£,0)B1 (x1 (¢ — £))x1 (¢ — £)d.

By grouping the terms and since for all # > 0, A,(¢) < A2, we deduce that

Rolt) < — [d,z(t) . (212 — 1) Bg(xz(t))] N0

-2 420 (2522 1) 320 al0) - Pt

+<>o
+26,(1)[1+4] /0 21 (6,01 (xr(t — 0))xa (1 — 0)d

- (4.40)
[ /0 (1, 0)Baxa(t — 0))xat — )

X

a

-2 a0~ (1€ 1) o) | )+ a0y 1)

&R, /0 " 16,0 er (¢ — )1 (1 — £l — iy Ny ).
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By substituting & and 4, we get for all ¢ > 0,

Ry(t) <— [drz(t) — (21262 — 1) ﬁz(o)] x2(1) = 2Aad ;o Na (x21)

e
—ak, A §2(t,0) Ba(xa(t — £))x2(t — £)dl (4.41)

a

-3 [d,l (t) — (21151 - 1) Bi (O)} x1(t) —ad, Ny (x).

We conclude that there exists a strictly positive constant 8 > 0, such that

Rz(l‘) <- 62R2()C2,,)C1,) —dﬁz /()Jroogz(t,f)ﬁz(xZ(l‘ —E))xz(t —f)df. (4.42)

Consequently, by virtue of the functional R,, we conclude that the origin (0,0) of the subsystem
i ={1,2}, is globally exponentially stable.

Therefore, by induction, we conclude that there exists a family of strictly positive constants p;, p;, for
alli € I, = {1,...,n}, such that the derivative of

R, (xnty' .- 7x11‘) :x”(t) +

n
=

(PiNi(xit) + piVi(xir)) , (4.43)
i

where, V;(x;) = x;(t) + 28 A:M;(x;, ) for all i € I, satisfies
R, (1) < —8,Ry (X, ..., x1;), where 8, > 0. (4.44)

By virtue of the functional R,,, we conclude that the origin (0,...,0) of the overall system i € I, is
globally exponentially stable.

Step 4: The last part of the proof consists in proving that there exists a system belonging to the family
of systems (4.6) whose origin is not attractive. For that purpose, it is sufficient to consider a particular
case of system (4.6) where all the biological parameters are constant. More precisely, we consider that

the death rate d; (1) = d,y;, for all t > 0, where d,; is any constant parameter belonging to [d;,d ], and

7171 )
similarly for the other parameters involved in the model (4.6) (i.e. dp;, A; and 0; = 1 — 4)).
We use similar arguments as those for the finite distributed delays in the previous chapter. So, we

consider the functional,

() =x1 (1) + 20 /0 - /t té A0 By (x1 (m) x1 (m)dmal. (4.45)

The derivative of v satisfies for all ¢+ > 0,

Vl(l) = — [drl +ﬁ1(x1(t))] X1 (l) +2ﬂ,1 /0+°°g1(€)[31 (xl(t —f))xl(l‘—g)df
+224C1 By (x1 (1)1 (1) — 224 /0 +°° g1(0)B1 (x1 (t — 0))x1 (¢ — £)de (4.46)
= — [drl — (lecl — l)ﬁl (xl(t))] X1 (t)
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Now we proceed by contradiction: we consider that x;(z) converges to the origin and that d,; —
(24:C1 — 1) B1(0) > 0. Since B is decreasing and f3;(0) is its maximum, we deduce that there exists a
time instant 71, such that for all # > #;, we obtain

vi(t) >— dri = (21121 ~1)Bi(0) x1(1). (4.47)

Since x () > 0, we deduce that vy (x;) > v (t1,) for all # > 7;. It follows that the functional v; does not
converge to zero. On the other hand, v; converges to the zero if x| converge to zero. This yields to a

contradiction. O

Remark 24. In Theorem 8, it is clear that if Step 1 is satisfied, then Step 2 is also satisfied (since C; < 1,
foralld,; > 0). Similarly, we see that if Step 2 holds true then Step 3 is also verified, since d,; > 0. In fact,
by assuming that 21@ — 1 > 0 (which is otherwise the generalization of the assumption 2L;C; —1 > 0 in
[225], see also [8]), we rewrite Theorem 8 in a compact form similar to the one in Theorem 3 of [81] for
the model with finite distributed delays. It is also worthy of note that biologically Step 1 is an extreme
condition that ensures exponential eradication of unhealthy cells even if apoptosis is stalled to zero (i.e.
dpi =0 and C; = 1). The condition in Step 2 is less strong than the first one, while Step 3 is the most
reasonable. Indeed, Step 3 provides a necessary and sufficient condition for all-cell extinction, less strong

than the two previous ones.

4.5 Some comments on the reintroduction function from quiescence into

proliferation

In Section 4.3.1, we have revisited the description of the mitosis function. Now, we want to highlight some
features of the re-introduction function ;. The motivation is as follows: in numerical experiments, we
observed that for different forms of B;, such that f3; is continuously decreasing and lim,;,, 4 f;(m) = b > 0,
the corresponding system may have unbounded solutions. In fact, having some unbounded solutions can
be interpreted as the invasion of the bone marrow and the bloodstream by blasts (leukemic cells) and it
represents an interesting model to investigate.

Similarly, in [47, 46], a "getting in the cycle" or "recruitment” function (which has the same role as

a vi+opm"
V“-I—m"

considered for unhealthy tissues. The authors have shown that in this case, unbounded solutions may exist
in their model [47, 46].

Here we are wondering about the biological meaning of lim,,_, . fB;(m) = b > 0 and its possible

the reintroduction function f; in our case), of the form: G;(m) = , where, 0 < ap < oy, was

interpretation. Let us firstly revisit the assumptions considered by Mackey in [180], the first time he

introduced the re-introduction function B;(x;) = I‘iﬂ;’: ,

where v > 0 and n > 2.

Origin of the reintroduction function from resting to proliferation

We list here the assumptions made by Mackey in [180] (see also [241]) on the reintroduction function f3;.
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First, it is assumed that each cell contains a receptor for a mitotic regulatory molecule, considered as
an inhibitor (i.e. mitosis occurs in a regular fashion if the cell receptor is in an uncombined form). The
reaction between the receptor and regulatory inhibitors proceeds as follows:

@ HI, of [180]: Uy + 1 X ¢ = Vin,, Where g is the active form of the receptor while ¥, is its
inactive form; and c is the regulatory molecule.

® H2, of [180]: The equilibrium constant v for the reaction is so that [Uq] X [¢]" = V[Vinc]-

® H3, of [180]: There are a fixed number of receptors [T;] per cell, thus: [T;] = [Oac] + [Cinc]-

® H4, of [180]: The number of regulatory molecules is directly proportional to the number of
resting phase stem cells; [c] = dx;, where @ is a strictly positive constant.

The hypothesis H4 is the one that interests us most. Indeed, basically it means that the body is
assumed to be able to produce a quantity of regulatory molecules which is proportional to the total density
of resting cells x;. In other words, the model assumes that when the number of cells is about to grow
excessively (to infinity), the body is capable of delivering an infinity of inhibitor ligands (which are

capable of preventing cell division). So, it is not surprising that trajectories remain bounded in this case.

Modifying the re-introduction function from quiescence into proliferation

Let us now modify the hypothesis H4 introduced in [180]. In fact, we are going to consider the case where
the concentration [c] is saturated (i.e. the quantity of regulatory molecules that the body may produce is

limited). One possible form is the following:

apX;
(|=—F"—= /), where, ag > 1. 4.48
[ ] a0_1+xi V/a()(xl) 0 ( )
Consequently, by denoting f3;(0) the maximal reintroduction rate, we end-up with the following form of
the re-introduction function:

Bi(x;) = _POV Bi(0) >0, ¥ >0, and, n > 2. (4.49)

v+ Wao (xi)" 7
In this case we notice that limy, . B;(x;) = b > 0. In numerical experiments, we observe that for the new
form of fB;, unbounded solutions may exist for some initial conditions. A rigorous proof of that result
is currently under investigation. For example, we consider that ag = 15 x 10'2, §;(0) = 1.84 days™!,
V = 1.62 x 10® cells/kg, and n = 2. The saturated production of mitotic inhibitors with respect to the cell
density x; is illustrated in Figure 4.7, the function f3; is illustrated in Figure 4.8, and an example in which

unbounded solutions may occur is given in Figure 4.9.
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15 210"

o
T

regulatory molecules/kg

0 1 1 1 1 1 1 1 1 1 I

5 6
cells/kg 1014

Fig. 4.7 The density of the regulatory molecules is limited, while the cell population continue to grow. Illustration
of the function Wq,, when ag = 15 x 10'2.

B(x) for a=15x10"2
B(x) for a=25x10°
B(x) for a=1 5x10°

The reintroduction function B(x)

0.2

0 1 2 3 4 5 6 7 8 9 10
The total density of resting cells x

Fig. 4.8 Some illustrations of the form of the re-introduction function . We have here lim,,—, 1. §;(m) = b > 0,
where the value of b increases with respect to ag.

4.6 Healthy tissues: Stability analysis of the positive steady state

As in the previous chapter: we associate the strictly positive steady state to a healthy hematopoiesis,
describing the normal process in which cell generations survive and are stable. When all the biological

parameters are constant, the model (4.6) admits a strictly positive steady state E = (xf, . ,x,i), where
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X(1) for BEX)=(BOXV)(v+X?)
°r —— X(®) for BO=(BOXV)/(v+((ax X)/(a=1+X>))

The total density of resting stem cells (cells/kg)

25

Time t (days)

Fig. 4.9 The invasion of the bone marrow by cancer stem cells can be modeled by an appropriate selection of the
reintroduction function from resting-into-proliferating phases.

x{ > 0 for all i € I,,. In fact, the condition of existence of E is exactly similar to the one for finite delays
in the previous chapter, while its stability analysis is slightly different. We illustrate briefly the LKF
construction in this case.

The version of system (4.6) with constant parameters is given by:

Xi(t) = — drixi(t) — Bi(xi(2))xi(1) + 24 /0“0 gi(a)Bi(xi(t —a))xi(t — a)da

N (4.50)
—1—201'71/0 gi-1(@)Bi1(xi—1(t —a))xi—1(t — a)da,

where, .
gi(a) = fi(a)e 9, for all a € [0, +oo], fila)da=1, and A;+o0;=1. (4.51)
0

We can see that the positive steady state £ = (xf yeen ,xfl) where x{ > 0 for all i € I, exists if and only
if N
dy < [24Cy —1]B1(0), where, C; :/ gi1(a)da, forall a € [0,+oo). (4.52)
0

We assume in this section that the condition (4.52) is satisfied and we perform the change of coordinates

X; = x; —x{, for all i € I,,, and using the Taylor formula, with an abuse of notation, ()'E,- +xf) Bi(Xi+x5) =
- - - e 2

X6 Bi(x¢) + Wik + ri(%;), where p; = Bi(x¢) + B/ (x¢)x¢, and, ri(%;) = f;;’ i (% +x¢—20) [Bi(ﬂ)ﬁ]( )dﬁ, we

end up with the system:

)Ei(l‘) =— d?)f,'(l) + Zuixi/ gi(a)il-(t — a)da +2U;i—10;—1 / gi—1 (a))f,'_1 (l‘ — a)da
0 0 (4.53)

) + 24 /0 " @)t —a))da+ 20 /0 e (@ (B ( — a))da,

where d = d,; + ;. If the trajectories of (4.53) converge exponentially to the origin, then the trajectories

of (4.50) converge exponentially to the positive steady state E.
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Theorem 9. The conditions

o0
l//l-T =d —2X|Ww|C; >0, where, C; = gi(a)da, forall a € [0,+eo) (4.54)
0

foralli € I, ensure that the positive steady state E of the system (4.50) is regionally exponentially state

and a subset of its basin of attraction is provided.

Proof. We give the proof only for i = 1. Using exactly the same arguments as in the previous chapter, we

can extend the result to all i € I,,. First, we observe that the derivative of the quadratic function,
Q(m) = —m?. (4.55)

along the trajectories of system (4.53), satisfies for all > 0

Q(l‘) = —ZdTQ()Z] (l‘)) +2,LL1},1)21 (t) O+Wg1(a)f1 (t —a)da

+oo
—X (t)r1 (X] (l)) +2ﬁ,1f1 (t)/o g1 (a)n (f] (t —a))da

oo (4.56)
< =2[d} — (MG Qi (1)) + 2| A /0 81(a)Q(%1(t —a))da
o0
— X (t)r1 (551 (l‘)) —{—2},1)21 (I)/O g1 (a)r1 (fl (l‘ —a))da,
We recall from the previous chapter that the nonlinearities r; satisfy the sector conditions:
ri(%)| < 7iQ(%), (4.57)
where 7; > 0, for all i € I,,, and for all X; € (—xf, +o0). Therefore, using (4.57), it follows that
. oo
Q) <=2[d} — MG QE @) +2(mld [ g1(@)Q(F(r —a))da
L (4.58)
+ %1 ()1 QE (1)) + 24|15 (t)\?l/o 81(a)Q(%1(t —a))da
Now, let us introduce the functional:
+oo t
A= [ A [ e A m)dmat. (4.59)
0 t—{
Its derivative satisfies, for all i € I,,,
—+oo
O == di (5 + Q5 0) ~ [ 0 (e~ 1)t
0 (4.60)

+oo
= — dpi (i) + Q(%i(1)) — /O (A (r —£))ae

Let us introduce the following functional:

i) = [ [ sOatm)ama @6
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Its derivative is given by
. oo
A1) =CAE) ~ [ s(OR(E(—0)dt, (4.62)
It follows that the derivative of the functional
4 ()flf) = Q(fl (t)) + 2|u1 |7Ll,//1 (ilz) + L4 JV(XU) (4.63)

where l//l-T > 0 is defined in (4.54), along the trajectories of (4.53), satisfies

() <=2[df — || MC ] Q(x ())+2|H1|11/0+wgl(a)9(f1(f—a))da
+ %1 () [F1 QX1 (£)) + 24| %1 (1) |71 /0+w81(a)9(f1(f—f1))da
F2lu Gt -2l [ s (O 0)d

gyt [ c
A+ vi2m) v [ a0 -0
— Y QE (1) + 51 (1) [F1Q(F1 (1)) — dprw A (F1r)

o0
+unn0-v) [ si@ami-a)da

Since %1 (1)| < /271 (X1,), it follows that
:
() <— —Q( (1) + (n 20 (%) — l’;) Q%1 (1)) = dpr Y} A (F1r)

+ (2mn 2 A @) - ) /0ng (@)% ( —a))da

(4.64)

Since A; < 1 for all i € I,, we conclude that for all initial condition @; € € ([—c0,0],RT) satisfying

¥ 2
%@o<<w‘), (4.65)

2\@1’1
the derivative of the functional ¥ satisfies for all ¢ > 0,
7 _¥am) - AL (4.66)
(1) <= Hra@ ) - dpw]Aiw)
On the other hand, we notice from the definitions of ./” and .# that:
m@>()ﬁo/ e~ =) (5, m) ) dma

/+00/ fl dp,KQ ( ))dmd€ (467)
xl[
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A direct consequence is that

:
Yile) <= B 0) v A ()

F d T d ¥
<o) - BHa@) - B A )

(4.68)

<- WIT%(XIZ)’ Wherea IFIT > 0.

We conclude that for all initial conditions satisfying (4.65), the trajectories of (4.53) (for i = 1) converge
exponentially to the origin (which is E of model (4.50)) with a decay rate smaller or equal to %T O

In the previous sections, we revisited the description of the cell cycle and we generalized the
stability results of Chapter 3 to the case of nonlinear systems with infinite distributed delays
and time-varying parameters, through the construction of novel Lyapunov-Krasovskii functionals.
From a biological point of view, we have seen that the stability conditions in Theorem 4.12 and 8

are substantially similar to those given in the previous chapter.

In the sequel, we introduce for the first time some cell-plasticity functions in the model of interest.

4.7 First observations on transdifferentiation and dedifferentiation

We briefly illustrate two situations: transdifferentiation as a disturbance (as in Chapter 3) and a dedifferen-

tiation process in which more mature cells regress to a SC resting (quiescent) compartment.

4.7.1 Transdifferentiation as an input for HSCs-compartment

We recall that in Chapter 3, cell-plasticity has been considered as a perturbation (nonvanishing distur-
bances). In fact, using the LKF that we introduced in Section 4.4, we can perform a robustness analysis

when the system is subject to external perturbations.

L 2\ ([,-1 (f)
{G1757G27M} = l(/> GO /
(1) 204 (1)
Stem cells

Fig. 4.10 g4(-) is introduced to model the effect of the transdifferentiation from other cell types, that join the
compartment of HCSs.
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In this case, the studied model is given by The studied model is given by:

plta) 4 Iplta) 4 g (1) py (t,a) + hi (a)pi (t,a) =0,

ri(t,a ri(ta o (4.69)
J la(i ) 42 la(; ) +d(t)ri(t,a)+ P (f0+ r (t,a)da) ri(t,a) =0.

The renewal conditions which give the birth rate at the initial age a = 0 are introduced through the

following boundary conditions:

p1(t,0) =By (fo 1 (t,a)a’a) Jo ri(t,a)da, 470)

ri(1,0) =21 (¢) Jy b (a)pa (¢, a)da+ eq(t). .
where, g4(t) € (0,€], for all # > 0. Using the method of characteristics, we prove that for all # > 0 and
a>0,

X1() = —dp (1)x1 () — Br (x1(£))x1 () + 221 (2) 0+m81(f,a)ﬁ1(xl(t—a))xl(t>a)da+8d(f)- (4.71)

Remark 25. i) We observe that in this case, investigating the stability properties of the origin of system
(4.71) is equivalent to performing a robustness analysis when the nominal system describing stem cells
dynamics is subject to external disturbances. We establish a common result about practical stability
(see Chapter 9, Khalil). ii) It is well known that a strict Lyapunov functional that allows us to establish
exponential stability result guarantees robustness. iii) We can take advantage from the positive infinite

distributed terms in (4.71) in order to refine the stability set obtained using R.

We introduce the functional
%()qt) =R1(X1t)—9)C1 (I), (4.72)

where,

1 d, - (4/11C1 - (1 +2l1)> Bi(0) g, - (21161 - 1) B1(0) d, — (21161 - 1) B1(0)

6 =— min —

dy—(20C-1)p0)  dnthO) 24,1+ B(0))

)

and the functional R; is the one defined in (4.30). One of the selection criteria of the weighted constant 0
is to ensure that the functional % is positive on the positive orthant. Finally, we consider § > 0 and we
define the set

Seg = {(p €€ ((—=,0,R") R () +264, [ 1f1<—a>e"ﬂ'“ﬁ1<¢>¢ < é} : (4.73)

Based on the LKF used in Section 4.4, we are ready to prove the following result:

Corollary 4. If the condition
d,— (21 —1) B1(0) >0, (4.74)
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is satisfied, then the state x\; of system (4.71), where for allt > 0, g,(t) € (0,€,], converges exponentially
to the set S,.

Proof. We are going to use the functionals N; and M, introduced respectively in (4.11) and (4.14); as well
as their derivatives satisfying respectively (4.13) and (4.16). Therefore, the derivative of the functional Uy,
introduced in (4.18), along the trajectories of the perturbed system (4.71) satisfies

Ur(t) < — {dﬂ - (211 - 1) Bi (0)] x1(8) = 221d N1 (1) + € (), (4.75)

and, similarly, the derivative along the trajectories of the perturbed system (4.71) of the functional V|

introduced in (4.21) satisfies

Vi(t) < — [d,l . (ﬁla - 1) B, (0)] x(t) +&a(t). (4.76)
Thus, the derivative of the functional R, introduced in (4.30), satisfies

d— (4/116'1 — (1 +27Ll)> B1(0)

_ g, @77
dy ~ (2C1 = 1) Bi(0)

Ri(t) < — [d,l - (2%161 - 1) ﬁl(O)} x1(t) = 221d Ny (1) +

A direct consequence is that the derivative of the functional &, defined in (4.72), along the trajectories of
(4.71) satisfies

(1) < — [dﬂ - (2%161 - 1) Bi (0)] x1(6)+6 (2,1 n /3(0)) x1(f)
_ﬁlgplNl (x1) =204 (t)/(:oogl(t,a)ﬁl (x1(t—a))xi(t —a)da
d,;— [ 42:Cy— (14+241) ) Bi1(0)
+1<11(+1))1

d, — (21161 - 1) B1(0) o

dy—(224C1-1)Bi(0)

Using the expression 6 = —— 75

, it follows that

R(t) < — % [d“ - (ﬁla - 1) B, (0)] x1(8) = 221d Ny (x1r)
—204,(1) /O e (t.a)Bi (61 (t— ) (t — a)da
d,—(42,C;— (14+221) ) B1(0)
.\ 1 ( 1€ (-i— 1>>1

d, — (21161 - 1) B1(0)

(4.78)

E4.
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Using the definition of Z, R1, and the inequality (4.17), we easily determine a strictly positive constant
8 > 0, such that

N

R(t) <—20%(x1;) — 202 (1) /()+wg1(t,a)ﬁl (x1(t—a))xi(t —a)da
- (41101 - (1 +2/11>> B1(0) (4.79)
&4.
= (221€1-1) B (0) ‘

We conclude that for all x;, ¢ Sg,, we have Z(t) < Sﬁ(xl,) Therefore, forallz > 0, g;(¢) € (0,€,4], ¢ €
% ((—o0,0],R"), and x|, ¢ Se,, we have x (1) < Z(@)e” % meaning that the trajectory x; (f) converges

to the origin as long as xj; ¢ Sg,, and that the state xj, converges exponentially to the set .7, . [

4.7.2 Dedifferentiation towards the stem cell resting compartment

Now, let us say few words about the case in which any generation j € {2,...,n} may dedifferentiate to
join the resting stem cell compartment. The model in this case is illustrated in Figure 4.11, and it is

governed by:
dpi(ta dpi(ta
Ita) | Onlta) 4 g (1) pi(t,a) + hi(a)pilt,a) =0,
ori(t,a dri(t,a
(t Irilta) | a(; )+dri( )ri(t,a)+ B (xi(1)) ri(t,a) =0,
for all i > 1 where i # j, and, (4.80)
dpi(ta d a
eyt 1 ) 1 g, (1) ps(t,a) + hj(@)p;(t.a) =0,
ari(t,a ori(ta
2+ —-:52 Lot [dy(0) +€a(0)] rit,a) + By (x;(0)) ri(t,) = 0.

The renewal conditions which give the birth rate at the initial age a = 0 are introduced through the

following boundary conditions:

r1(t,0)=2(1=01()) fo~" hi(a)pi(t,a)da+ [ €,(t)r;(t,a)da,
ri(t,0) =2 (1= 0i(t)) fo~ hi(a)pi(t,a)da

—1—201',1([) fO whi,l(a)pi,l(t,a)da, for all i > 1, and,
pi(t,0) = Bi (xi(r)) x:(¢), forallie {1,...,n}.

4.81)
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L O |
Stem cells . . Resting
Proliferating phase (1 <
(1) phase (1) ca(t)
i-th L Proliferating phase (i) Restmg
generation phase (2)
L O N\
j-th Proliferating phase (j) Pl{estlng
generation phase (])
b L i ; Restin
generation Proliferating phase (n) Shase (i )

Fig. 4.11 The cell generation j can be chosen to be any generation between the 2nd and the n-th generation. A
subpopulation of the j-th generation is assumed to undergo dedifferentiation mechanisms and thus join the first
compartment of (hematopoietic) stem cells.

Through classical arguments, we show the model in Figure 4.11 is described for all # > 0 by the
system:
x1(t) =20() [y " g1(t,a)Bi(x1(t —a))xi(t —a)da + €4(t)x;(1)
—dy1 (0)x1(1) = i (x1(1))x1 (¢)
(1) = 224(1) Jo " gj(1,0) B (xj(t — @))x;(t — a)da
+20j-1(1) Jo 7 gj-1(t,@)Bj—1 (xj-1 ( — @))xj-1 ( — a)da
— [drj(t)—i-sd(t)] xj(t) = Bjx;(t))x; (1), (4.82)
and, forall i ¢ {1, },
xi(t) = 22(1) Jo~ gi(t,@) Bi(xi(t — a))xi(t — a)da
+20i1(1) Jo " gi1 (1, @) Bi1 (xi-1 (1 — @))xi-1 (1 — a)da
—dyi(1)xi(t) = Bi(xi(2))xi(2).
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Using LKF constructions as in Section 4.4, we can prove that if the stability conditions in Step
3 of Theorem 8 are satisfied for all i € {1,...,n}, then the origin of the system (4.82) -involving
dedifferentiation as in Figure 4.11- is globally exponentially stable. In other words, the dedif-
ferentiation process as represented in Figure 4.11 has no major effect if all the cell generations
are already dying. On the other hand, some medical experiments (e.g. [142], [249]) mention that
cancer cells avoid their extinction during therapy by undergoing dedifferentiation processes.

In order to determine a model that reproduce effectively the expected dynamics in dedifferentiation
of unhealthy tissues, we introduce in the next section another configuration of the cell plasticity
function, in which the dedifferentiated cells are directly active in the proliferating phase. In
other words, we modify the representation given in Figure 4.11, by introducing a dedifferentiation
function from the unhealthy more mature cell generations towards the stem cell compartment,
where CSCs are directly active in the cell cycle. Then, we study the resulting system and we show
that in this configuration, it is possible to have the conditions in Step 3 of Theorem 8 that are

satisfied, while cells do not vanish thanks to the dedifferentiation mechanism.

4.8 Dedifferentiation of a subpopulation of cells into cancer stem cells

We discuss in this section a refined model (illustrated in Figure 4.12-4.13) that highlights, qualitatively,
the impact of dedifferentiation on the behavior of cancer cells. More precisely, we consider that cancer
cells may dedifferentiate into CSCs (i.e. they join the SC compartement, are they are directly active in

proliferation).

4.8.1 Introduction of a general model involving unhealthy cell-plasticity mechanisms

We recall the general form of the model in Figure 4.12, in which we have n distinguishable maturity
levels (i € I, = {1,...,n}, where i = 1 is the compartment of SCs). Now, we focus on the role of the
cell-plasticity functions @; and &;, for all i € I, (the flux functions on the right of Figure 4.12).

The dynamics of resting cells, r;(f,a), and proliferating cells, p;(¢,a), of the i-th generation (i € I,), of
age a > 0, at time ¢ > 0, are governed by the age-structured (McKendrick) PDEs :

%I;i + %I;i == [dpi(t) +hl(a)} pi(t7a)7
Gt G = ) B ()| i)~ & 0)

(4.83)

where, for all i € I, x;(t) = [, ri(t,a)da, and, for all i € I, and > 0, d,;(t) is the death rate of the resting
cells, while d;(t) is the death rate of proliferating cells. The reintroduction function f; is decreasing and
limy_,., B;(¢) = 0. Moreover, we consider with an abuse of notation (see the explanation below) that for
allt >0,
out. transdiff
E(t) =& | x1(t),...,xim1(0),x:(0), E () |- (4.84)

out. dediff
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dl)l (t) Maturity stage (1)

B N(t)
da(t)
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20, (t) Maturity stage (7) (i+1)

Fig. 4.12 A cartoon representation of the discrete maturity model of interest, involving multiple dedifferentiation
and transdifferentiation functions. Cells of the i-th maturity-generation, where i € I, = {1,...,n},n > 1, areina
resting phase Gy, or in proliferation (cell-division cycle) {G1,S,G>,M}. In the general case, we can consider that all
the involved biological parameters (rate of differentiation o; € (0, 1), rate of self-renew A; = 1 — o;, apoptosis rate
dpi, death rate of resting cells d,;) are time-varying. On the right, the flux due to the cell-plasticity functions, &; and
w; for all i € I, is represented. In fact, both & and @; have a part related to dedifferentiation and a part related to
transdifferentiation. The former one depends on the (modeled) state variables, which represent the total densities of
the resting cells x;, while the parts quantifying trandifferentiation (denoted 5: and (JoiT , in equations (5.95), (5.105))
depend on time, since they are biologically related to distant (external) cell tissues and lineages (i.e. which are not
explicitely modeled). This model extends the one in [8].

(D)

000 000 020
osos (0308 HH

Fig. 4.13 The blue lineage hierarchy is the one we are focusing on. Grey lineages are those which cannot be
explicitly modeled in our mathematical framework. For the i-th cell generation, the function w; quantifies the input
by dedifferentiation from the next more mature generations of the studied blue lineage, together with the input by
transdifferentiation (a);), which comes from non-modeled distant cell types. In a similar spirit, & quantifies the loss
in cell account of the i-th generation, in response to some requirements from less mature generation of the blue
hierarchy (i.e. dedifferentiation), or by other types of cells (i.e. the loss due to transdifferentiation, 5;).
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About the functions &;

As illustrated in Figure 4.13, the function &; quantifies the output (cell loss) either by dedifferenti-
ation or by transdifferentiation. As formulated in (5.95), the function &; depends on x; and may be
affected by some of, or all, the generations of cells which are less mature than the i-th generation,
i.e. the cell densities xi,...,x;—1. This is -by definition- justified by the fact that dedifferentiation
of the i-th generation addresses a need (either healthy or cancerous) that arises in a less mature
generation within the same hierarchy (i.e. at least one of the densities x,...,x;_1).

In addition, the loss by transdifferentiation, é;, aims to address a need from more distant tissues,
ie. ?j;r does not depend on the modeled cell populations x;, but only on time (as a representation of

any external event that occurs beyond the studied hierarchy).

The system (4.83) is associated with some initial conditions (i.e. initial age distributions when ¢t = 0)

which are %! -functions defined by:

) _ .0
{ pi(0,a) = pY(a), and, (4.85)

ri(0,a) = r%(a), forall a € [0,+).

Moreover, we assume from biological considerations that for all 7 > 0, lim, ;e p;(f,a) = limy_e0 ri(t,a) =
0. Finally, the renewal conditions, which give the birth rate at the initial age a = 0, are introduced through

the following boundary conditions:

pi(t,0) = B; < r,tada) Jo e ri(t,a)da+ ay(t)
= Bi(xi(1))xi(r) + i(2),

ri(t,0) = 20,1 (t) Jo " hi-1(a)pi-1(t,a)da
+2(1=0(t)) Jo = hi(a)pi(t,a)da,

(4.86)

where 0;(t) represents the time-varying rate of differentiation and, consequently, A;(z) = 1 — 0;(¢) is the
rate of self-renewal of the i-th cell generation. In addition, we consider with an abuse of notation that for
allz >0,

in. transdiff

(1) = & | xi(t),xi11(2),...,xa(2), @ (t) |. (4.87)

1

in. dediff
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About the functions @;

The function @; appears in the boundary conditions (4.86), since it represents the new cell birth
resulting from the dedifferentiation of more mature cell generations, together with the transdif-
ferentiation of other cell lineages. The functions @; are implicitly related to the functions &; in
(5.95), since cells that join the i-th generation by dediffentiation (the input @) are, for instance,
the sum of the dedifferentiated cells from more mature generations (the outputs &1, &1, .. .).
Therefore, for all i € [,;, the function w; depends on x; and may depend on (all or some of) the
more mature generations in the same hierarchy, x;, 1, ...,x,. Moreover, the time-varying term a)l.T
in (5.105) quantifies the incoming by trandifferentiation from distant cell lineages or types, outside

the hierarchy of interest.

In summary, we say that generally in McKendrick type models, the removal terms (e.g. death rates)
appear in the PDE system (model (4.83), in our case), while new births appear in the boundary conditions
(given by (4.86), in our case). The PDE system (4.83)-(4.86)-(4.85) provides a general framework to
describe the cell dynamics within a given hierarchy formed by 7 discrete-maturity stages. However, we
still need to specify the nature and the operating mode of the dedifferentiation and the transdifferentiation
functions (& and @;, for all i € I,), in order to determine the behavior of the overall system. For that
purpose, we need to focus on a typical explicit dedifferentiation mechanism. More precisely, we start in this
study with an unhealthy case in which a portion of the j-th cell generation (j € I, j > 1) dedifferentiates
and joins the SC compartment (i = 1), as presented in the sequel.

4.8.2 A specific (unhealthy) dedifferentiation process into CSCs

In order to allow mathematical analysis, we focus on the typical (explicit) case in which a proportion
Kk € [0,1] of the total density of resting cells of the j-th generation x; becomes diseased, e.g. as a result of
a series of abnormal mutations (see [300] for mutations inducing leukemia). Then, we consider that only
the subpopulation of mutated cells can undergo dedifferentiation, and we denote by D the characteristic
pattern that describes the dedifferentiation mechanism from the j-th generation into the SC-proliferating
compartment.

Let j € [2,n] be the generation of cells that includes a malignant (mutated) subpopulation, capable of
generating cancer stem cells (CSCs) by dedifferentiation. For the sake of brevity, we consider that the
transdifferentiation mechanisms are negligible compared to dedifferentiation (i.e. we put 5; (1) = col-T (1) =
0, for all i € I,, and ¢ > 0, otherwise, the study will be similar to the robustness analysis that we performed
in Section 4.7.1).

We notice that -with an abuse of notation- the functions &; and @; can be rewritten in this case as:

Ei(x1,...,x;) =0, foralli €, i # j,
8ilxt,..x)) = §;(xj) = kD(Kx;)x;,
O1(X1,...,%,) = 01 (x;) = KD(Kx;)x;,
;(xi,...,x,) =0, foralli€{2,...,n},

(4.88)
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where we can select the function D as follows,
D(¢) =tanh (¢”), where, p > 0, forall £ > 0. (4.89)

One notices that the selected dedifferentiation functions (4.88) depend only on the mutated subpopula-
tion of cells belonging to the j-th maturity generation x;. The latter choice can be argued as an unhealthy
dedifferentiation process triggered by abnormal mutations observed in a subpopulation xx; of the j-th

stage. Many other alternative choices may be considered if biological requirements are justified

k=02
k=03

High dediffenciation k=04

k=05

, p=3

Transition phase

The function x — r tanh ((kx)?)

|
The total density of resting cells of the j-th genecration (= x10° cells/kg)

Fig. 4.14 The function x; — kD(Kx;), for different values of , is suggested to represent qualitatively the effectiveness
and the impact of dedifferentiation according to: (1) the size of the population where tumor mutations occur
(quantified by the total cell density x;), and (2) the proportion of mutated cells within the entire population
(quantified by k). See Remark 26-(ii).

Remark 26. Let us say few more words about the cell-plasticity functions & and o; that we defined in
(4.88). Firstly, we recall that we are limiting ourselves to the case of constant K, where k € [0,1]. The
features of the tangent hyperbolic function D defined in (4.89) lead to:

i) §;=0and ) =0, when x; =0 or k = 0. The latter case means that dedifferentiation does not
exist if no abnormal mutation occurs.

ii) when the j-th cell generation forms a relatively small population over all the n cell generations
(i.e. a low density xj), or when the portion of unhealthy cells is minimal within the genetic diversity
landscape (i.e. a low mutated portion of cells, quantified by k), then the gain of the dedifferentiation
process is minimal. Indeed, the subpopulation of mutated cells is not expected to entirely dedifferentiate
and join the SCs compartment. Actually, sometimes mutated cells do not dedifferentiate and they may
also disappear over time if they do not overproliferate. In our model, the gain of the differentiation
process is represented by the quantity kD(kx;), since §j(x;) = kD(kx;)x;. The gain is illustrated in
Figure 4.14, where we notice that for low x; and low x, the amplitude of kD(kx;) is small. Then, it

30ther choices different from (4.88) may be considered within the general framework introduced in Section 4.8.1. For
instance, a healthy dedifferentiation process can be envisaged, in which the &; and w; depend on the total density of resting
SCs x;. In this configuration, the density of SCs triggers the dedifferentiation of more mature differentiated cells, if needed (e.g.
after hemorrhage or injury, when the body is in a hurry to regenerate itself). For the sake of brevity, this situation is beyond the
scope of the current work.
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increases in order to approach its maximum value, when the total size of the population x; is too high, i.e.

limy, e KD(KX;) = K.

Finally, we rewrite the model (4.83) describing the dynamics of resting and proliferating cells, in the

form: )

iy 9Pt [di(r) + hi(a)] pi(t,a) =0,

% oy [dit) + B (xi(0)) | ritt,0) =0,

for all i > 1 where i # j, and, (4.90)
i+ %L+ [dy (1) + hy(a)] pj(r.a) =0,

% 4 904 [ j(6)+Bj (x;(t ))} rj(t,a) +xD (kx;(t)) x;(t) = 0.

We emphasize the case of (4.86) described throughout the current section, in which the renewal

\

conditions are introduced through the following boundary conditions:

pi(,0) = B (x1 () x1(r) +xD; (rx;(1)) x;(2),
pi(t,0) = Bi (xi(r)) xi(¢), forallie {2,...,n},

r1(t,0) =2(1=01(t)) fo""hi(a)pi1(t,a)da, (4.91)
and forall i > 1:

ri(t,0) =2 (1—0i(t)) fo~ hi(a)pi(t,a)da+206;_1(t) [ hi—1(a)pi-1(t,a)da.

\

Finally, we consider some suitable initial conditions as in (4.85). Now, using the method of char-
acteristics, we reduce the model (4.90)-(4.91)-(4.85) into a nonlinear time-delay system (with infinite
distributed delays and time-varying parameters). For the sake of clarity and due to space limitation, we
illustrate here -without loss of generality- a case with two cell generations, in which a dedifferentiation
mechanism is established from the 2nd generation into the SCs one, as illustrated in Figure 4.15.

For example, we consider that a progeny subpopulation kx,, k € [0, 1], with abnormal mutations (e.g.
DMNT3A increasing self-renewal), that may trigger dedifferentiation into CSCs [68], as it appears to be
the case in leukemia [286, 173].

As a first approach, we consider a simplified version of the model of interest (with two maturity stages,
finite distributed delays and constant parameters). For that:

Let j € [2,n] be the generation of cells that includes a malignant (mutated) subpopulation, capable of
generating cancer stem cells (CSCs) by dedifferentiation. The method of characteristics ([31], [8]) gives,

for sufficiently large time,
pi(t,a) =pi(t —a,0)e Jo dpim+i=a)dm = [g hi(m)dm_ (4.92)

By integrating r;(,a), for all i € I, over the age-variable a between 0 and oo, we obtain:

{ (1) = —=dyi(t)xi(t) = Bi(xi(1))xi(1) +7:(2,0), forall i>1,i j, and, (4.93)

Xj(l) = —drj(t)xj(t) —ﬁj(xj(t))xj(t) —I-I”j(l,O) — KXj(l)D (K‘xj(t)) .
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Fig. 4.15 Red cells are malignant (mutated) cells. White cells are ordinary stem cells (SCs), while the gray cell
compartment is the one of (progeny) differentiated cells, that includes the subpopulation (in red) xx;. A mechanism
of dedifferentiation of malignant cells (in red, from i = 2 to i = 1) is established through the function D. In
hematopoiesis, a translocation effect after some epigenetic mutations in the progeny compartment (here i = 2) may
lead to a dedifferentiation of progeny ([68]) and the rise of cancer stem cells (CSCs), that trigger a quick progression
of leukemia [286]. For instance, a DNMT3A mutation may provide abnormal cells with a self-renewal activity as

important as the one of SCs [173, 286].

Using the boundary conditions (4.91), we substitute the expressions of r;(¢,0), for all i € I,,, we get

+2(1=05(1) Jy"hj(a)p;(t,a)da
+2051(1) Jo™"hj-1(a)pj-1(t,a)da.

[ 41(0) = —dn ()1 (1) = Br (1 ()i (1) +2 (1= 01(1)) Jy™ I (a) pa (1, @)da,

%i(t) = —dyi(t)xi(t) — Bi(xi(1))xi(t) + 2 (1 = 03(1)) Jo ™ hia) pi(t,a)da
+2Gi,1(t) fO whi,l(a)pi,l(t,a)da, for all i > 2,i7£j, and,

(1) = —dpj()x;(r) — By (o (1))x;(r) — e (1)D (1 (1))

(4.94)
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Next, using (4.92) we deduce that

(

X](t):—[d (f)—|—131( 1(1‘))] ( )—|—2(1—Gl(t)) fO whl(a)e—jalhl(m)dmpl(t_a’o)e—jgdpl(m+t—a)dmda’
Xi(t) = — [dy(t )+/31(x,(t))] i(t )+2 (1= 6i(t)) Ji hi(@)e I lmdm (s — g 0)¢=Ii dnimti-a)dmgq
+20;1 (¢ )fo _1(a)e = Jo hi—1(m)dm p71(;_a,())e*f(§’d,,,>1(ertfa)dmda7 forall i >2, i# ],
Xj(1) = —dpj(0)x;(t) — ﬁ/(x/(f)) i ) Kx/(f)D(Kxj(f))
+2(1 —G]( )) ](a)e Jo' p.(t_a’o)eﬁfé‘dpj(mﬂfa)dmda
+20;_1 (1 )fo _1(a)e” Jo i1 ( p~_1([_a’O)eff(?dpj—l(m+t7a)dmda.
(4.95)

Using again the boundary conditions (4.91), we deduce that:

xl(f)z—[drl(f)Jrﬁl(xl())} 1(7)
+2.(1=01(0)) Ji ™ i1, he FROIB, (311 — ) 1 (1 — a)e g
+2(1—01(1)) Jo " hi(a —Jymmdmiey (1 — a)D; (Kxj(t—a))e*fo“dpl(mﬂfa)dmda’

Je

%i(t) = = [dni(t) + Bi(xi(r))] xi(t)

+2 (1= 03(t)) Jo©= hi(a)e™ Jo mimdmB; (x;(t — a)) x;(t — a)e™ Jo drilmti=admgq

12051 (1) fof " himi (@)e™ b1 tmdmB, | (x; (¢ —a)) xi—1 (t — a)e™ o doim1 (mti=a)dmgq

foralli >2,i= j, and,

xj(t) = = [drj(t) + Bj (x; ()] x;(r) — kD (1x; (1)) x;(2)

+2(1=05(0)) Jo hj(a)e” M, (x;(t — a)) xj(t — a)e™ i drilme=a)imdg

+20j-1(1) o by (@) TRy (i (1 —a)) xjoa (1 — @)e” it bmidngg,

(4.96)

For the sake of clarity, we analyze the simpler version of the model (4.96), with finite distributed delays,

constant parameters, and involving only two cell generations (as in Figure 4.15), given by:

X](t) [ 1+B] X] )]xl l‘)+2 1—61)‘/0 gl( )[31 (xl(t—a))xl(t—a)da
+2(1—01) fo" g1(a)kxz(t — a)D (kx2(t — a)) da,

(
xz(r):—[ 2+ By (x2(t)) + kD (Kxa(1 )} 2(1)+2(1 = 63) [ 82(a)Ba (xat — @) xa(t — a)da
+201 [y g1(a)Bi (x1(t —a)) x1(t —a)da+ 20y [ g1(a)kx,(t —a)D (kx2(t — a)) da.
(4.97)

4.8.3 Stability properties of the 0-equilibrium of a two maturity stages model involving
dedifferentiation

Now, we want to determine stability conditions of the origin of the model (4.97). This is equivalent to the
eradication of all the cells involved in this unhealthy process (Figure 4.15), through anti-cancer therapies.
In fact, we can prove that the system (4.97) is positive [124]. Therefore, we take advantage from the
positivity of the trajectories to develop a suitable Lyapunov approach and perform a stability analysis of
the origin of the system (4.97).
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Firstly, let us consider in this proof that: s; = d,; — 04;(0) and o; = 2A,C; — 1, for i = 1,2, and,

— 261%1(7%[31 (0)

a=sy— KD +201C1 — 1],

S1

where, D = sup,-,D(¢). Notice that, D = 1, when, D(¢) = tanh(¢?), p > 0.

Now we are ready to state and prove the following result:
Theorem 10. Let us assume that s; > 0 for all i € I,. If, in addition, the conditions,

2
1 —261C] _ Zo-l)tlf]ﬁl(o)

or, 1 —261C1 —

‘ <0, and, a >0,
2612.1C12ﬁ| (O)
S1 2 0’

are satisfied, then the origin of the model (4.97) is globally asymptotically stable.

Proof. First, let us define the two operators:

v (xig,000) = /t; /mt e =m0 gy (m— 04 1,) [B1 (31 (£))x1 (€) + Kkx2(£)D(xx2(£))] dldm,

and

m

it () = /,tf / oS0 o0 (1 — 04 1) B (xa (€) 32 (€) b,
where & and § are two nonnegative constants. It follows that for all r > 0,
V(1) < —8v' (xyy,x0) — /;T g1(1—0) [Br(x1())x1 (€) + xx2(£)D(Kx2(€))] dl
+ [Bi(x1(£))x1 () + kxa(1)D(kx2 (1)) | 27 C,
and
i (1) = —u’ (xx) — /ttf g2t = O)Ba(x2(0)\x2 (£)dl + C2e®® By (xa (1)) (1).

We introduce for the system (4.97) the following functional:

201C1B1(0)

5 xp (2) 420" (x10,22) |

Ut (x11,%21)

I"al (x17,x2¢) =x2(2) +2A0u(x) + 200" (x17,x2,) +

Throughout the proof of Theorem 10, we consider that s; > 0 for all i € 1,,.

(4.98)

(4.99)

(4.100)

(4.101)

(4.102)

(4.103)

(4.104)
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We start by computing the derivative of U™ (x1;,x2,) = x1(t) +2A1v' (x1,, x5 ), along the trajectories of
(4.97), and we get, for all r > 0,

U () = — [do1 + B (x1(1))] 21 (1) + 224 /t tT 21(t =€) [B1 (x1 (£))x1 (£) + kx2(0)D(kexa (£))] dl

—2 /tf g1(t =€) [Bi(x1(€))x1(£) + kx2 (€)D(kx2 (L)) ] dl (4.105)

-7

+27LlC1 [Bl(xl (t))xl(t) +KX2(I‘)D(KX2(Z‘))]
=— [drl — 06131 (xl(t))} X1 (l‘) +2kMC\D (KXZ(Z‘))XQ(I‘),

where we choose 6 = 0 for the sake of clarity. Next, using the fact that B (x;) < B;(0) for all x; > 0,
we deduce that since s; = 6; — @ $1(0) > 0, then it follows that,

Ut (t) < —s1x1(t) + 2k C1D (kxa (1)) x2(2). (4.106)

Next, we observe that the derivative of V7, introduced in (4.104), along the trajectories of (4.97), is

val (t) =— |:dr2 +ﬁ2()c2(t)) +xD (K‘)Q(t))} )Cz(l‘) +24 zir 22 (l — ﬁ)ﬁz()cz(e)))@(g)dg-i— ZXQCQﬁQ(XQ(I))XZ(I)

t

1201 [ gil—0) [Bun(©)n () + ke OD(kna(©)] de—22 [ g2t — OBaxa())xa(O)at

+201 (B () (1) +xe)D(R)] € —201 [ a1l—0) [Bin (O 0+ xe(OD(ea ()] dr
+ 201GAI0) | [d —ou P (x1 (1)) x1 (1) + 2621 C1D (Kxa (1)) x2(1)

S1

Ut (t)

Using the intermediate result (4.106), we deduce that for §= 0, the derivative of VT satisfies for all 7 > 0,

VT(Z‘) <-— |:dr2 — (2),2C2 — 1)) ﬁz(xZ(l‘))} )Q(l‘) +20; [Bl (x1 (t))xl(t) + KXQ(I‘)D(KXQ(Z‘))] i

)+ 2616?:1[51(0)

2(71)L1C12ﬁl (0)
S1

— k2 (£)D (ixa (1) [—sm (1) + 2K C1 D (Kkx2(1)) 2 (t)}
4.107)

kD (K‘xz(t))XQ(l‘)

< —soxp(t) — [1 —201C| —

—201Cy [B1(0) = Bu(x1(1))] x1 (7).

Consequently, from the last inequality in (4.107) we deduce what follows:

O The case: 1 —201C; — %ﬁﬁl(o) < 0. Now, we recall that,

20]116‘12[31 (0)
S1

a=s,— KD +2061C, — 1], (4.108)

and we deduce that if the condition a > 0 is satisfied, then V' (¢) satisfies for all # > 0,

V(1) < —axa(t) —201C1 [Br(0) — Bi (x1(2))] x1(2).- (4.109)
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By integrating the inequality (4.109) we get,

t

Vi) <v'(0) —a/

0

wo(m)dm — 261C /O "1B1(0) — By (s (m))] 1 (m)dim,

for all 7 > 0. Therefore, from the definition of V' in (4.104), we deduce that x; is bounded by a constant
x1 > 0. Consequently, since B is decreasing, we get for all t > 0,

VI(t) < —axa(t) — bxi (t), where, b=201C; [B1(0) — Bi(%1)] > 0. (4.110)

Thus, we conclude that the origin of the model (4.97) is globally asymptotically stable.
2
O The case: 1 —20,C; — %ﬁﬁ‘(o) > 0. It follows from (4.107) that for all # > 0 the derivative of

V satisfies:
V(1) < —sox2(t) = 261Cy [B1(0) — By (x1(2))] xi1 (). (4.111)

One notices the similarities between (4.109) and (4.111). Therefore, arguing similarly as in the previous

case, we easily prove that the origin of model (4.97) is globally asymptotically stable. O

Remark 27. We recall, from Section 4.4, that or a model without dedifferentiation (x = 0), the conditions
s; > 0 (equivalent to Step 3 in Theorem 8), for all i € I, are necessary and sufficient for global exponential
stability of the origin of the corresponding system, and that anti-cancer therapy aims to satisfy the decay
conditions that ensure that the origin is stable, in order to eradicate malignant cells. However, we can
show that the model (4.97) may admit a positive steady state even if s; > 0, for all i € I,,, which is not the
case when x = 0. Therefore, we notice that the conditions s; > 0, for all i € I,, are no longer sufficient to
ensure that the 0-equilibrium is stable when dedifferentiation exists. In light of Theorem 10, we deduce
that zero is stable if we guarantee that an upper-bound on K is satisfied, i.e. if dedifferentiation does not
cross the threshold defined by the condition a > 0 in (4.99). Medical practice supports this observation
([142], [249]), as discussed in the sequel.

4.8.4 Concluding remarks and numerical experiments

We consider the situation observed in [142, 249], where medical practice shows that cancer cells may

survive to therapy by undergoing dedifferentiation.

A glimpse into the medical experience

In [142], some experiences have been conducted on human non-small cell lung cancer. Their results
suggested that non-stem cancer cells which were targeted through radiotherapy, have protected
themselves by dedifferentiation processes (CSCs are particularly resistant to radiotherapy, see for
example [28, 70]). In [249], an ODE-model was proposed to fit the data of [142]. In a second
time, the experience was renewed by adding some survivin inhibitors (known as YM155), that
undermined dedifferentiation of cancer cells. The therapy efficacy was substantially improved
when YM155 was used along with radiotherapy [249, 142].
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We check the qualitative behavior of our system through some situations that are reflective of those

encountered in [142, 249]. For that purpose, we consider for instance the cell division probability densities

of the forms f;(a) = _mm—e™, withm; > 0, i € I,, along with the following functions and parameters:

Bi(xi) fi(]éf)) di | A | T | dyi
i=1| LU 10 10112 | 0.7 | 1.19 | 0.27

1+x% 1071 1

i=2 | 14 [ 10" 1937 [09|1.32]033

1+x§ | 921

After simple calculations, we get: s; = 0.0518 and s, = 0.2218. Therefore, in the case where
dedifferentiation does not exist (i.e. k = 0), the origin of the studied model is globally exponentially stable
[81, 8], as illustrated in Figure 4.16-(a). Next, let us assume that at r = 20 days, the dedifferentiation
mechanism is triggered (by setting K = 0.8 at # = 20 days). In that case, we still have s; > 0 and s, > 0,

but, however, we note that the sufficient stability conditions (4.99), in Theorem 10, are not satisfied:

2011 C3B1 (0
1—200, — 29MCEAO) 45 4.112)
51
and,
— 2014 C?B1 (0
a=s,—KkD ‘ﬁlslﬁl()umq—l =-3.33. 4.113)
1

In simulation, we observe that for some initial conditions, the origin of the system (4.97) is not
asymptotically stable, as illustrated in Figure 4.16-(b). More importantly, we can see/prove that the
trajectories converge in this case to a strictly positive steady state, given by x] = 1.47 and x5 = 0.66, that
exists even if 5; > O (contrary to the case k = 0, where zero is the unique steady state). In addition, we
can determine the gain of the dedifferentiation function, which converges to kD (kx3) = 0.12, when the
trajectories of the system (4.97) approach the positive steady state. Thus, in this example, the unhealthy
cells prevent themselves from total extinction thanks to their dedifferentiation ability (Figure 4.16 (a)-(b)).

Finally, we notice in Figure 4.16-(c) that for some sufficiently small initial conditions and k¥ = 0.8,

the dedifferentiation process is not sufficient to avoid the total cell eradication.
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4.9 Conclusion

Let us recall the key points discussed/analyzed throughout this chapter:

@ A network of regulatory proteins monitor the progression of cells in the cycle at specific check-
points, and some damaged cells may be arrested in G| or G, [92]. The cell cycle arrest may also be
induced by chemotherapy, and some hypothesis are advanced to link the cell-cycle arrest with cancer

dormancy.

® Different modeling trends have been used to represent the cell cycle. Some of them combine Gy
and the proliferating phase in a unique model with infinite duration, while other models include a separated
Gy phase along with a limited/finite proliferating cycle (with or without subdividing the proliferating
phase).

® We reconcile some of the early modeling methodologies by taking into account a separated
proliferating compartment of infinite support, in order to include a possible cell arrest, in Gy or G», for a
minority of cells during their cycle.

® The resulting model studied in the first part of the chapter is a nonlinear system with infinite
distributed delays and time-varying parameters. We generalize the stability results of [8, 9], and particularly
the LKF constructions provided in the previous chapter, to analyze the model of interest.

® In a second time, we emphasized cell-plasticity features. We introduced a general model for cell
population dynamics involving several dedifferentiation and transdifferentiation (general) functions. Then,
in order to allow analysis, we derived from the general description, a model (with explicit cell-plasticity
functions) for the typical situation where a portion (or, a mutated subpopulation) of any generation of
differentiated progenitor cells* regresses into an hematopoietic SC proliferating state.

@ Since anti-cancer therapy aims to eradicate all the malignant cancer cells, we investigated the
stability properties of the origin of the unhealthy model involving cancer cell dedifferentiation. In this
case, we derived a study for a simpler model involving two maturity stages and a dedifferentiation function
from progeny to SCs. We also checked the qualitative behavior of the model and we compared it to some
medical observations that claim that cancer cells protect themselves through dedifferentiation during
anti-cancer therapy.

Much remain to be done in the study of the concepts discussed throughout this chapter. Particularly
the analysis and the interpretation (possibly related to dormancy?) of the positive steady state that occurs
in the model involving dedifferentiation, when the stability conditions of the origin in the model without
dedifferentiation, are satisfied (i.e. Section 4.8.4, Figure 4.16-(b)).

4Belonging for instance, to a specific blood lineage hierarchy as illustrated in Figure 4.13-blue hierarchy.



Part I1

The class of coupled differential-difference
systems






Chapter 5

Analysis of a differential-difference model
through Lyapunov-like functionals design

Synopsis. This is an introductory work which opens up the analysis of a class of hematopoietic
systems, described by some differential-difference (or, more generally, descriptor) systems. In fact,
our study is conducted on a model of stem cell population dynamics, recently introduced in the
literature ([4]), that admits two equilibrium points: zero, and, under some conditions on the bio-
logical parameters, a strictly positive steady state. The latter one seems biologically more relevant
([4D).

We revisit the stability properties of the 0-equilibrium by extending the Lyapunov construction of
[4], in order to establish global exponential stability of the trajectories with an estimate on their
rate of convergence.

For the strictly positive steady state, the available analysis in [4] is local, based on the frequency
analysis of the characteristic equation associated to the linear approximation of the model. Here
we discuss the nonlinear analysis of the positive steady state, in the time-domain framework, going
through Lyapunov-like functionals of two types. Firstly, we test an adaptation of a method re-
cently developed for the analysis of quasi-linear time-varying systems via Comparative and Positive
Systems ([196]). Based on the techniques of [196], [124], [206], we get the advantage of deriving
decay conditions for non-positive trajectories of the studied model, through a linear degenerate
Lyapunov-like functional. The second approach that we use for the positive steady state is more
classical, since it is based on the computation of the derivative of a quadratic functional along the
non-positive trajectories of the shifted model whose origin is the strictly positive steady state of
the initial system. Thus, sufficient conditions for regional exponential stability, an estimate of the
decay-rate of the solutions, and a subset of the basin of attraction of the positive steady state, are
then provided. We discuss the complementarity of both approaches and their limits throughout
the chapter.
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5.1 Overview of the chapter

A relevant model has been recently introduced in [8], improving the pioneering model proposed by Mackey
in [180]. The work presented in this chapter is based on this new model, where fast self-renewing dynamics
of hematopoietic stem cells is envisaged. In fact, this description takes into account a sub-population of
cells that remains constantly active in the proliferating compartment.

In this chapter, we highlight the positive system approach as an effective way to establish stability
results for nonlinear time-delay systems. The hematopoietic model that we are interested in can be put in
the form of a differential-difference systems, that can admit two steady states: the 0-equilibrium which
always exists, and a unique strictly positive steady state that may exist under some conditions on the
biological parameters. The model of interest is briefly given in Section 5.2 (the interested reader is invited
to refer to the original work [4] for more details). It has been proven through a Lyapunov functional that
the origin is globally asymptotically stable if it is the unique equilibrium of the model. In Section 5.3, we
are using a slightly different Lyapunov approach to extend the stability known results and thus establish
global exponential stability of the origin, with an estimate of the decay rate of solutions. We recall that
the positivity of the trajectories of the studied model is an asset that makes possible the analysis through
linear Lyapunov functionals [124].

Clearly, linear functions are more convenient for the analysis of positive systems, particularly when
time-delay is involved ([36], [216], [97], [124], [122], [50], [176], [215]), since it avoids painful computa-
tions which goes along with the use, for instance, of quadratic-type functions. Notice that, sometimes,
the suitable quadratic functions are difficult to construct, while linear ones are readily available. This
general observation motivates in fact the axis of fundamental search that aims to develop new ways to
establish stability of non-positive systems, using the tools available for positive ones (see the recent works
[196], [86], [190], [216], [51], [206], [136]). Similar techniques and applications are widely used for the
construction of interval observers, as in [90], [89], [191], [245], [193], [118], and [207].

In light of the above mentioned remarks, the question arose as to whether it was possible to define a
framework to study the stability properties of the strictly positive equilibrium point using a simple linear
(i.e. non quadratic) Lyapunov functionals. We recall that initially the studied model is positive. However,
the trajectories are no longer monotone when it comes to study the shifted version of the model (whose
origin is the positive steady state of the initial one). Therefore, the first step that we perform in Section
5.4.1.1 is the determination of a linear Comparative System ([250]). The origin of the latter obtained
system has the particularity of being globally exponentially stable if it is exponentially stable on only
the positive orthant ([196]). Consequently, in Sections 5.4.1.2 and 5.4.1.3, global decay conditions are
derived via the construction of a suitable linear functional. Exploitation of that study in the case of our
hematopoietic system, together with the feasibility of the global results, are discussed through numerical
applications in Section 5.4.1.4.

Finally, in Section 5.4.2, a more classical study, which is based on the direct analysis of the non-
positive system through a quadratic Lyapunov-like construction, is established. Through this approach,
sufficient conditions for the regional exponential stability are provided, and a subset of the basin of
attraction is formulated in terms of a sub-level of the Lyapunov-like functional. Roughly speaking - and

apart from the conservatism that characterizes Lyapunov methods - we can say that both studies that will
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be presented for the strictly positive steady state appear to be complementary; in the sense that the former
one provides sufficient conditions that are more likely to be satisfied for large state values (see Section
5.4.1.4), while the second approach gives local results, as summarized in Section 5.5.

5.2 Model presentation

The resulting model of interest is a nonlinear differential-difference system, whose piecewise-continuous
trajectories can be bounded or unbounded [4]. Some tools making possible to construct Lyapunov
functionals for some general nonlinear differential-difference equations are available (see, [233], [152],
[121], and the references therein). Notice also that one may rewrite the model equations in the neutral
time-delay framework, in order to take advantage from the existing literature devoted to this field (see
[194, 104]). Even if an equilibrium is known to be asymptotically stable, we still need some explicit
strict Lyapunov functionals for the multiple advantage that they offer (e.g. to establish some robustness
results [218, 187]). Besides the difficulties related to the construction of suitable functionals for nonlinear
time-delay systems, it is generally more difficult to prove stability when trajectories are not uniformly
continuous [203], since Barbalat’s lemma requires uniform continuity of solutions. In fact, almost all
the issues related to stability and robustness can be addressed when a strict Lyapunov functional for the
corresponding system is known.

In light of previous comments, we focus in this chapter on different Lyapunov-based analysis tech-
niques, by developing a study dedicated to the delay differential-difference model of hematopoiesis of
interest. In particular, for the strictly positive steady state, two ways to prove stability of the nonlinear
system are investigated, thereby completing the linear frequency-domain analysis performed in [4]. The
reader is invited to refer to Sections 1-3 in [4] for the complete presentation of the biological model in

Figure 5.1. Here we give its differential-difference version of interest:

{)’c(t) = —(8+B(x(1)) x(t) +2Le u(t — 1), 5

ut) = Px(t))x(t)+2Ke "u(t—1), t >0,

where we consider that the parameters 0, K, L = 1 — K, y and 7 are strictly positive real numbers and
K € (0,1). x represents the total density of resting cells and u is the density of the new proliferating cells.
As usual, the function f is continuous, decreasing and lim,_,.. 3(x) = 0 ([180]). A unique piecewise
continuous solution (x(¢),u(t)) exists for all # > 0, when the system (6.8) is associated with the initial
conditions x(0) € R and ¢, € PC ([—T,O],]R), (see [121]). Throughout this work, we assume that the
solutions are piecewise continuous. Moreover, system (6.8) is positive, i.e. the solutions of system (6.8)
associated with positive initial conditions x(0) € R and ¢, € PC ([-7,0],R"), are positive. Here, we
consider only the positive solutions of (6.8).

We consider that 3 is the Hill function of Mackey’s models, i.e.,

B(0)

B =1

5.2)

where b, B(0) are strictly positive real numbers, and, n > 2. To ease the notation, we define the following
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Fig. 5.1 Schematic representation of blood cells formation.

constants: |
F = Eew, (53)
_ B(0)
== (5.4)
K=(u+1)K—p. (5.5)

Notice that K and p are strictly positive. Finally, we prove for later use the following result:

Lemma 1. The positive solution @ (t), for allt > 0, of the perturbed scalar difference equation
@(t) =& (1) +v@(r—h), &'(r) 20, vt >0, (5.6)

associated with a piecewise-continuous positive initial function @(t) = @(t), for t € [—h,0], h > 0,
converges exponentially to zero if: (i) the perturbation &' (t) vanishes exponentially to zero, when t — oo,
and, (ii) v € (0,1).

Proof. From (i) it follows that there exist k; > 0 and k» > 0, such that, £7(¢) < ke~ ", for all t > 0. Let
us denote p(t) = ke, for all 7 > 0. We notice that:

p(t) = e i) = 13p(t — h), where k3 € (0,1). (5.7)
Therefore, from (5.6) we obtain:

o(t) < k3p(t—h)+v@(t—h), where, k3 € (0,1), and, v € (0,1). (5.8)

Let us assume that v > k3, without loss of generality!. Now, we introduce the positive constant

Ky = DEQ , and we deduce that:

@(t)+rup(r) <VO(r—h)+ k3 (1+ ki) p(t —h)

(5.9)
=v [@(t —h)+Kkap(t —h)] .

Since v € (0,1), we conclude that @(z) converges exponentially to zero. O

!Otherwise, if k3 > v, we observe that there always exists D € (3, 1), such that @ (¢) < x3p(t — h) + D@ (t — h), typically
we select D = % The remainder of the proof does not change, considering this time ¥ instead of v.
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Now we are ready to investigate the stability properties of the model (6.8), starting with its trivial

steady state, and then its positive steady state.

5.3 Stability analysis of the 0-equilibrium

We revisit the 0-equilibrium E° = (0,0) stability analysis provided in [4], by proving its global exponential
stability. Non-attractivity of E° when its stability condition is not satisfied can also be deduced from the
Lyapunov functional. The expression of the functional introduced here is slightly different from the one
used in [4], and here we prove exponential stability, with an estimate of the rate of convergence of the

solutions.

Theorem 11. For all
K € (0,K), (5.10)

i) if the condition
s =K—K>0, (5.11)

is satisfied, the origin of the system (6.8) is globally exponentially stable.
ii) if
s=K—-K <0, (5.12)

then no positive trajectory converges to the origin of system (6.8).

Remark 28. In fact, when the condition (5.11) is satisfied, the origin is the unique equilibrium point of
system (6.8). This explains why the stability results in Theorem 11 can be global.

Proof. Firstly, we use the following functional:

M (x(1),ur) = x(t) + (“:1 +e) /t u(f)de, (5.13)
where,
s

Notice that, since K € (0,K), then € < 0 when (5.11) is satisfied and € > 0 when (5.12) holds.

We start by proving ii). Let us proceed by contradiction. We assume that the condition (5.12) is
satisfied and a positive solution (x(¢),u(t)) converges to the origin.

Since € > 0, the functional ./ is positive on the positive orthant. Moreover, its derivative along the

trajectories of (6.8) is

(5.15)
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On the other hand, from (5.4), we notice that
1
5+ <”:+s—1>ﬁ(0) =£f(0) > 0. (5.16)

Since x(¢) converges to zero, and f3 is continuous and decreasing, we conclude that there exists a time

instant #; > 0, such that for all r > ¢4,

p+1 ep(0)

—5—|—<‘u—|—8—1>[3(x(t))2 3 > 0. 5.17)
It follows from (5.15) and (5.17) that for all r > 11,
; eB(0) 1 - —
AW 250+ |~ (et DR oK ep(K = K) fuli 7).

Since s = (1 + 1)K — u — K, the previous inequality rewrites as

VAG Zgﬁz(o)x(t) + ulK [—s+eu(K—K)|u(r—1)

eB(0) s
> x(t) — 2#Eu(t —1),

where the last equality is a consequence of (5.14). Since s < 0 and € > 0, we conclude that for all ¢ > 1,

A (t) > 0. It follows that
M (x(t),up) > A (x(11),ur,) > 0. (5.18)

Therefore, .# does not converge to zero when ¢ goes to 4+oo. On the other hand, .# converges to zero
since (x(z),u(t)) converges to the origin. This yields a contradiction.

Next, let us prove i). We consider the case where the inequality (5.11) is satisfied. An immediate
consequence is that € < 0. First, to ensure that the functional .# is positive on the positive orthant, let us
check that “TH + € > 0. From the definitions of € and s, we get

ol oo 2l DR pk] - 2K s (5.19)
2(K—K)u
Since K € (0, 1), we deduce that
(U+1DK—uK>p+1)K—pu=K.
It follows that
HAl  J2E-K)=s s (5.20)

2(K-K)u  2(K—K)u
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Consequently, the functional .# is nonnegative. Moreover, its derivative along the trajectories of (6.8)

satisfies
)= | -5+ (FE e 1) BGa() 400~ 5t )
<|-8+ <'u:1—1>ﬁ(0) x(t)+8ﬁ(x(t))x(t)—w%u(t—r) (5.21)

=eB(x(1)a(r) = 5t =),

where the last equality is a consequence of (5.4). By integrating (5.21), we get, for all > 0,
t

A (x(0)sup) <A (x(0), @) + € /0 " B (x(m))x(m)dm — 2%? [ u(m—z)dm. (5.22)

Since € < 0 and s > 0, it follows from (5.13) and (5.22) that for all ¢ > 0, the trajectory x(¢) is upper
bounded by a strictly positive constant x;.
In order to complete the proof, let us introduce the following functional:

W (x(t),u) =AM (x(t),ur) — . T 0)dl+ l/// / () dtdm, (5.23)

where Y and ¥ are positive real numbers to be selected later. From (5.20), observe that if we choose

S N
= mi = = 5.24

then the functional 7 is nonnegative and its derivative along the trajectories of (6.8) is:

W(t):///(t)—w[u(t)—u(t—’v)]—i—lfl[—/t[T u(0)dl+ tult } q//”/ !~ u()dbdm.

v

By selecting = =, we obtain

W () =M (t)+yult—1)—§ tt e u(0)dl — /tt /t e u(0)dldm
o ce (5.25)

t t
<M (t)+yu(t —1) — lfleif/ u(t)de— lf// e u(l)dldm.
-7 t

Then from (5.21) and (5.25), we deduce that

W (1) <eB(x(r))x(t) -

2uK

<eB(x())x(t) — We * /tt 0dl— / / O)dtdm,

u(t —7)— e /, ;u(ﬁ)dﬁ _ /t; / M u(0)dbdm
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where the last inequality is a consequence of (5.24). Therefore, by combining the facts that € < 0, B is a
continuous decreasing function and x(¢) is upper bounded by x; > 0, for all 7 > 0, we deduce that

W (1) <eP (v,)x(t) — We ™ /' w0t [ /tel’u(ﬁ)dﬁdm. (527)

-7 t—TJm

Finally, we conclude that there exists a strictly positive §, such that

W (t) <=5 (x(t),u) . (5.28)
‘We deduce that,
W (x(t),u) <e W (x(0),pu), (5.29)
for all r > 0. Therefore,
x(t) <e W (x(0),u), (5.30)

for all # > 0. It follows that x converges exponentially to zero. Consequently, using Lemma 1, we notice
form the second equation in (6.8), that u converges exponentially to zero, since the condition (5.10)
implies that 2Ke™ " < 1. O

Remark 29. Theorem 11 gives a necessary and sufficient condition for the exponential stability of the
trivial steady state when K € (O,F) (Eq. (5.10)). In the case where K > 1, it follows that Theorem 11 can
be used to address the stability of the system for all the possible K values, i.e. for all K € (0,1). However,
we notice that if K < 1, then the conditions (5.11) and (5.12) give stability/instability conditions only for
K € (0,K). In order to complete the analysis (i.e. to establish the stability conditions for all the possible
K values), we show that if K < 1, then no positive trajectory converges to the origin for all K € (K, 1), by
similar arguments as in ii) in Theorem 11. For that, we can consider the functional #, defined in (5.15)
where now € is in fact any strictly positive constant. Moreover, notice that K > K implies that 2Ke™ " > 1.
Therefore, using the second equation in (6.8), one notices that in this case system (6.8) has unbounded

solutions (see [4]).

Example 7. Let us define the following biological parameters:

Bx) y t & K
BO 04 1 1 02

Case 1: Let us select B(0) = 2. It follows that K = 0.2377. and s = 0.0377. Then, according to
Theorem 11, the origin E° = (0,0) is the unique equilibrium point and it is globally exponentially stable.

Case 2: Now we assume that B(0) = 4. After simple calculations we find that s = —0.4704. We
deduce, according to Theorem 11, that the origin E0 = (0,0) is not attractive.

In fact, this system has a stable strictly positive steady state E = (x,,u,), where x, = 0.9516 and
i, = 2.7936, that seems asymptotically stable. In fact, the system illustrated in Case. 2 (Figure 5.3)

provides an opening example for the study of the positive steady state in the sequel.



5.4 Analysis of the positive steady state 141

0.8

0.6

0.4

0.2

x(t)
u(t)

1 L
10 20 30 40 50 60 70 80 90 100
Time (s)

Fig. 5.2 The trajectories x(¢) and u(¢) for the parameters in Case 1.
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u()
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Fig. 5.3 The trajectories x(¢) and u(¢) for the parameters in Case 2.

5.4 Analysis of the positive steady state

Contrary to the trivial equilibrium E° = (0,0) studied in the previous part, the strictly positive steady

state E = (x,,u,), where x, > 0 and u, > 0, does not always exist. In this section, first, we recall from

[4] the conditions for its existence, then we investigate its stability properties by two Lyapunov-based

approaches. The first one is inspired from [196] and uses the notions of Comparative Systems [250] and
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linear Lyapunov-like functionals ([124], [122]). On the other hand, the second analysis is more classical,
since it is performed through quadratic functionals directly defined along the model trajectories.

It is worth mentioning that in order to analyze the stability of the positive equilibrium, the authors in [4]
developed a method which consists in writing the model (6.8) as a special case of a neutral differential
system, then they investigated the local stability properties of the linear approximation of the neutral
system by a frequency approach. The latter procedure assumes continuity of the solutions and provides a
local result on the linear approximation. The results that we discuss here are complementary with those

already provided, since we focus on the nonlinear behavior.

Existence of a strictly positive equilibrium point

If a positive equilibrium E = (x,,u,) exists, then it satisfies:

0 e))re = 2Le™ 7" 2
(6+B(x.))x. =2Le Tu 53
B(xe)xe = (1 —2Ke"™)u,.
From the second equation in (5.31), it follows that
U B (xe)xe. (5.32)

“K-K

From the previous equation, observe that the existence of E implies that necessarily K < K. By substituting

u, in the first equation in (5.31), and since x, is not zero, we get
1-K
= =94.
()

K<1. (5.33)

Since 8 > 0 and K < K, we deduce that

Since f is continuous, decreasing and lim, . f(a) = 0, it follows from (5.32) that the existence and
uniqueness of E are guaranteed by

1-K 1

= > —.

K-K u
Since 1 —K >0,K —K >0and K = (1 + 1)K — u, the previous inequality is equivalent to

K <K. (5.34)

We conclude that the condition K € (K, K) is necessary for the existence of E. This statement justifies what
we have mentioned in Remark 1. We can easily check that if (5.33) holds, then K < K, and consequently
E may exist. Next, since K may be positive or negative, and using the fact that K > 0, we conclude that
we have proved the following:
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Proposition 4. A unique strictly positive steady state E = (x,,u,) exists if and only if the conditions:

0<K<K<-—H_ (5.35)
1
or,
0<K<K<K<l, (5.36)

are satisfied.

Remark 30. In the previous statement, the uniqueness concerns the existence of the positive equilibrium
E. We recall that the 0-equilibrium of system (6.8) always exists.

A new representation of the system

In the sequel, we assume that the positive equilibrium E exists. First, the changes of coordinates, ¥ =x —x,

and @ = u — u,, give

f(t)= —(8+PE(1) +x)) (X(t) +xe) +2Le” " (i(r — T) + ue), (537)
i(t) = —ue+B(F(t)+x0)(X(r) +x0) +2Ke " (id(t — 7) + ), t >0, .
or, equivalently,
()= —6x(t)— B(X(r) +x.)(%(t) +x.) +2Le " i(t — T) — 6x, +2Le ""u,, (5.38)
i(t)= BX()+x0)(X(t) +x0) +2Ke " i(t — )+ (2Ke 7" — 1)u,, t>0. '

Analyzing the stability properties of the origin of (5.38) seems to be a difficult task. Therefore, we write
the model (5.38) in an equivalent form that eases its analysis. Using the Taylor formula, we can write,

with an abuse of notation,

B(Zﬁ +xe)(3 +xe> :B(xe)xe+93+l(3)’ (5.39)
where,
0 = B(x.) + B’ (xe)xe, (5.40)
and,
Xet3 .
1(3) = / (34x0—1)B(0)de, (5.41)

where, 0(3) = (B()3] @) We deduce that for all > 0, the system (5.38) is equivalent to

()= —08%(t)— B(xe)xe— 0x(t) —I(X(t)) +2Le ""ii(t — T) — 8x, +2Le™ "u,, (5.42)
i(t) = B(xe)xe+O0x(t) +1(%(t)) +2Ke "%ii(t — 7) + (2Ke " — 1)u,. '
Using (5.31), we get for all ¢ > 0,
i(t) = —(6+0)x(t)—I(X(t))+2Le " i(t — 1), (5.43)
a(t) = O0x(t)+I1(%(t))+2Ke it —1). '
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Due to the shifting of the initial system coordinates, we notice that the trajectories X and i of system (5.43)
are no longer positive. More precisely, we have, ¥ > —x,, and, &# > —u,, where x, > 0 and u, > 0, when
Proposition 4 is satisfied.

In the analysis of the nonlinear system (5.43), we need to prove that the typical nonlinear term / (¥)

satisfies a kind of sector-condition, that is given by:

Claim 2. For all x, > 0 and X > —x,, there exist two strictly positive constants z; and z;, such that
(%) <210(%), and, |[(%)] < 2] (5.44)

A possible selection of 7 and z; is:
71 =2¢,(0), (5.45)
Zz:ﬁ(O)max{c4,2maX{b,b*1}+ycl|}, (5.46)

bx" bx"
where, Q(m) = %mz, and, ¢, = % — "hf”, €2 =X, €3 = (1 - nhxe), h=1+bx!, and,

C4—

nb(n—1)(1+b(2x,)") (|ea| + |c3|)max{b,b_1} a1 (14 b(2x)") e
2h + 7 :

Proof. The first part of this proof (to determine z;) is identical to the one presented in Chapter 3. Here we
recall the main steps that allow us to determine the constant z;. So, using the expression of 3, which is

given in (6.1), we observe that for all x, > 0 and 3 > —x,,

I(3) = B(0)G(3) — 65 (5.47)
where G(3) = § +§(J; fxg)" -7 fzxg‘ First of all, let us study the function:
1 1 bl —(3+x)"]

= - = h =[1+b (14 bat).
L+b(3+x)" 1+ bxl () , where, p(3) = [14b(5+x)"] (1+bx;)

J6)
Thanks to the formula (34 x,)" —x! = nx! " '34+n [§ f;if” (n—1)m"~2dmadl, it follows that,

nbx 1
=———3+<(3). 5.48
p(3) K (3) (5.48)

p@) p@)
Therefore, we obtain, p(3) = —nbx’~! (% + h—12> 3+C(3).

Consequently, we get the intermediate result:

where ¢(3) = — 21 J& Jo(m+x.)""2dmdl. Let us denote h = 1+ bx’, and observe that -1 = i (p (3)+ %) .

nbx"~! nbx,
p)=——3—35+C0G) ——,— P (5.49)
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On the other hand, observe that

G@3) = <p(a) + 2) 3P (3) = 23 +¢.€(3) +¢3p(3)3, (5.50)

where the last equality is a direct consequence of (5.49), and the constants c,, ¢,, and, ¢; are those provided
in the statement of Claim 2. Now, we readily check that

I’lb(l’l — 1) n—2 32
¢ < ———(|3] +x —. 5.51)
€] < 20 (150
From (5.48) we deduce that |p(3)| < "I;é;l 3] + |€(3)|- Using (5.51), it follows that
nbx?~' 5 nb(n—1) n21 13
G| < — 55+ 3l 4xe)" "3l (5.52)
e S PO R AR

From the second equality in (5.50), we deduce that,

nb(n—1)[cs| wa i [ b= Dlel (3l +x)"2 | nbx ||
G(3) —a3l < (la] +20)" 13" + 3
' 2p(3) ‘ 2p(3) p(3)
Through simple calculations (see in Chapter 3), we find that
G(5) — 13| < c45”, (5.53)

where ¢4 is the positive constant defined in the statement of the Claim 2. On the other hand, we easily
check that 8 = (0)c,, where 6 is the constant defined in (5.40). Therefore, by combining (5.47) and
(5.53), we obtain

11(3)| < B(0)eu3%, (5.54)

We conclude that z; = 2¢,(0), since by definition, Q(¢) = 3.

Now, we wish to determine z;. From (5.53), we have W < ¢43/. Then,

(3)—c13]

o if 3] < 1, we get G A < ¢, and,

2max{b,b~'}

o <|es| +2max{b,b~'}.

o if 3] > l,weget% <leu|+

We conclude that for all 3 > —x,, we have W < max {c4,2max{b,b71} + ey }
From (5.47), we conclude that
11(3)] < 223, (5.55)

where, z2:B(O)max{c4,2max{b,b*1}—|—|cl|}. O

Now, we are ready to analyze the resulting model (5.43), for which we are going to highlight two
different approaches. The method that we left for the end is more traditional, through quadratic Lyapunov-
like constructions. While the technique that we address right after the present section is based on more

recent concepts, including Comparative (Positive) Systems and linear Lyapunov functionals.
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5.4.1 Stability analysis through a Comparative Positive System approach

The technique that we investigate here (recently presented in [196], see also the references therein) starts
with the original step of representing the nonlinear system (5.43) as a linear time-varying system. Notice
that both classes of systems, i.e., nonlinear and time-varying ones, are beyond the scope of classical

frequency methods. However, Lyapunov techniques offer strong tools for performing their analyses.

5.4.1.1 Obtaining a Comparative System of higher dimension

We are looking for a Comparative System which enables us -from the analysis of its origin- to establish
the exponential stability of the zero solution of the model given in (5.43). Therefore, using Claim 2, we

notice that the function J(X) = I(¥) /X is bounded on (—x,, +c). More precisely, we have
|/(%)| < z2, forall £€ (—x,,o), and, x, > 0. (5.56)

Moreover, we take a specific well-defined non-zero trajectory %(z), of the system (5.43), for all 7 > 0,

and we set:
J(t) =1(%o(t))/%o(t), forallt > —t. (5.57)

The notation (5.57) implies that the model (5.43) is rewritten as a linear time-varying system of the form:

{ i(t) = —(8+6+J(1))x(t)+2Le it — 1), (5.58)

i(t) = (0+J(r))%(t)+2Ke ""i(t—1), t>0.

Remark 31. The notation (5.57) is a manner of concealing the nonlinear part of the dynamical
system (5.43). This will be beneficial in a first time, since it allows us to obtain a linear time-
varying Comparative System, from which decay conditions can be derived. To be relevant, the
decay conditions provided for the model (5.58) have to be independent from the choice of the
fixed trajectory xy(t) in the model (5.43), i.e., stability conditions have to be valid for all the
system trajectories. The latter issue will be discussed in the sequel, when decay conditions will
be provided. It seems clear that an analysis approach that omits the particular nature of the
nonlinear terms (i.e. I defined in (5.41)) may lead to more conservatism in the stability conditions,
than a dedicated approach which takes into account the model features. The latter observation
applies also to the assertion in Claim 2, where the constants 7| and z, are determined, globally,
for all X > —x,. However, we can notice that by exploiting the nature of the nonlinear term I, the
constants 7, and 7z can be considerably improved over a large part of the domain of definition,
where they are smaller than the global values. This will have a direct impact on the conservatism
of the obtained decay conditions. Hence, in the second phase that follows the determination of the
decay conditions for the time-varying system (5.58), the above mentioned remarks will be taken

into account in order to provide a more refined analysis dedicated to the system (5.43).
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Now, along the trajectories of the system (5.43), we define the following operator for all t > 0

() =5(1) + /t;ﬁ(é)df,

where o is a positive constant to be chosen later. Next, observe that the derivative of £(z), along the

(5.59)

trajectories of the time-varying system (5.58), is given by

E(r) =— [6+ (1—a) (0+J( ))] 5(1) + [@(2Ke ™ — 1) +2Le 7] ii(t — 7). (5.60)
Using the equality ¥(r) = &(¢) — o [ u(€)dl, we get
0y =—[6+(1-a)(0+/()]£0) +afs+(1-a) (0+0)] /Ha(e)de o)

+ [0t(2Ke " — 1) +2Le | it — 7).
2Le T~ 0. 1t

Then, we fix the value of @ to the constant that we denote in the sequel o, where, 0 = 55—

follows that we can rewrite:
(5.62)

&) = —AWEW) +o0Al) [ atni,

where,
A()=6+(1—0p) (0+J(1)).

To ease the notation, we put B(z) = 6 +J(¢). Therefore, for all # > 0, we rewrite the system equations in

the following compact form:

E(t) = —A@)E()+aA(r) [ a(t)de,
i) = E(t)—ao [ a(l)dL, (5.63)
i(t) = B(t)x(r)+2Ke "%i(t —1).

In addition, we use the following decomposition: A(t) = A(t) —A(t), B(t) = B(t) — B(t), where, for all
t>0,A(t) >0,A(t) >0, B(t) >0 and B(¢) > 0. Consequently, the system (5.63) is equivalent to

§() = —AWMEW) +awA(r) [ a()dl — awA(r) f;_a(t)dl,
) = &()— oo a(0)de (5.64)
(1)x(t) —

it
a(t) = B()x(t)—B()x(t )+2Ke "t —1), t>0.

E(1) = —A()E (1) + cwA(r) [ a(1)dl — cw0A(r) [ a(¢)de,
i 0E() + oA (r) [ a(1)dl — aA(t) [ d(0)dl — opi(t) + oii(t — ), (5.65)

a(t) = B(t)%(r) — B(t)%(t) + 2Ke ""a(t — 1), t > 0.
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Technical Note 2. At this juncture, let us point out the following assertions:
(i) If all the solutions of (5.65) with initial conditions satisfying the matching condition

0
0:(0) = 92 (0) + 0ty /_ @u(0)dt, where, gz € PC([=7,0], (<1 +9)). (5.66)

converge exponentially to zero, then the solutions of (5.58) converge exponentially to the origin,
i.e. to the positive steady state E of the non-shifted system (6.8).

(ii) Notice that, in (i), we require the condition (5.66) in order to match the trajectories of (5.65)
to those of (5.58), otherwise we cannot conclude®. On the other hand, the matching condition that

ensures the continuity of the solutions in (5.58) (and therefore, in (5.65)), i.e. the condition:
¢:(0) = B(0)9:(0) +2Ke " a(—7), (5.67)

is not required, i.e., the models (5.58) and (5.65) have piecewise continuous solutions.

(iii) The solution X(t) explicitly intervenes in the model (5.65), through the terms A and B. Hence,
it will be possible to conclude on the stability of the origin of (5.65) (and, therefore, of (5.58))
if and only if the decay conditions, and the expression of the decay rate, of the solutions will be

determined independently ® from the specific J(t).

“A counter-example: let us consider the zero initial condition @z(0) = 0, @z(m) = 0, for all m € [—1,0], for the
systems (5.58) and (5.65), while we set ()2 (0) > 01in (5.65), i.e. the matching condition is not satisfied. We notice that
if for all # > 0, A(¢) < 0, then the solutions of the model (5.58) are identically zero for all # > 0, but this does not hold
for the components ((¢),ii(r)) of the solution of (5.65).

bFor that, the inequality (5.56) is crucial, since it gives an upper-bound on J regardless the specific trajectory xo(t)
used to define A(¢) and B(z) in (5.65).

Next, our objective is to investigate the stability properties of the resulting system (5.64), which is
equivalent to (5.65). For that purpose, we use an approach that doubles the dimension of the system, as in

[206] (see also, [196], [122]). More precisely, we consider the following system:

§(r) = —AME(N) +awA(r) [ a(0)dl+ aoA(r) f)_ . F(0)dL,

() = &) +oo )l F(0)al,

a(t) = B()xX(t)+B(1)z(t) +2Ke " a(t — 1), (5.68)

Y1) = —A)w(r)+a0A(r) [ 5(1)dl +a0A(r) [/ a(f)ae

) = w)+oo ) a(t)de,

| 5(t) = B()Z(t) +B(t)%(t) + 2Ke 7*5(t — 1),
for all # > 0, which is associated with the matching conditions,
0
0:(0) =p2(0) +an | gs(0)dt,

- (5.69)

0:0) =0y 0) +0 | g0yt
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5.4.1.2 Analyzing the Comparative System via a linear Lyapunov functional

For later use, let us check the following feature regarding the system (5.68).

Proposition 5. For strictly positive initial conditions, i.e., ¢z(0) € RT, ¢:(0) € R, ¢y, (0) e RT, ¢:(0) €
R, ¢z € PC([-7,0],RT), and, @5 € PC([—7,0],R"), the trajectories of the system (5.68) remain
strictly positive for all future time t > 0.

Proof. We want to prove that the solutions of (5.68) associated with strictly positive initial conditions are
strictly positive. Let us give a brief proof, by contradiction, for each component of the trajectories. First,

we consider that all the initial conditions are positive. Then,

» We assume that & () > 0 for all # € [0,7[, and that & (7;) = 0, while all the other components of the
trajectories are positive for all # < #1. It follows from the first equation in (5.68) that

&) =ood) [ atode+aa) [ s@aro, (5.70)

n—r
which contradicts the fact that &(r) > 0 for all 7 € [0,#,[. Therefore, &(¢;) > 0.

* We assume that %(z) > 0 for all ¢ € [0,7], and that %(¢;) = 0; all the other components of the
trajectories are positive for all ¢ < ¢;. It follows from the second equation in (5.68) that

w [ 5(de=—E(n) <0, (571

which contradicts the positivity of §(¢) for all # < #,. Therefore, %(¢;) > 0.

* We assume that i(z) > 0 for all + € [0,7,[, and that i(¢;) = 0; all the other components of the
trajectories are positive for all # < #1. It follows from the third equation in (5.68) that

B(1)Z(t) +2Ke ""ii(t; — t) = —B(11)%(t1) < 0, (5.72)

which contradicts the i(¢) for all # < ¢;. Arguing similarly for y, Z, and #, we prove that all the

trajectories are positive when (5.68) is associated with positive initial conditions.

Remark 32. (i) Similarly to Proposition 5, we can prove that the system (5.68) is negative, i.e.,

for negative initial conditions, the trajectories remain negative. More importantly, we highlight
the fact that the proof of the positivity does not rely on the choice of the specific trajectory used to
determine J(t) in (5.58).

(ii) The second relevant feature to be pointed out for the higher dimensional system (5.68) is that if
(§,%,i) is a solution of (5.64), then automatically (&,%,id,—&, —%, —ii) is a solution of (5.68). A
direct consequence is that if all the solutions of (5.68) -that satisfy the matching conditions (5.69)-

converge to the origin, then all the solutions of (5.64) converge to the origin too.
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Another key idea needs to be formulated before being able to apply the positive approach in the
stability analysis of (5.68). Indeed, as discussed for the system studied in [196] (Section IV. Step 2), the
linearity and the positivity of the Comparative System (5.68) ensure that its origin is globally exponentially

stable if it is globally exponentially stable only on the positive orthant.

5.4.1.3 Sufficient decay conditions for global exponential stability

In this section, we consider only positive solutions of the Comparative System (5.68). This fact allows us
to reduce the stability analysis to a system of lower dimension. Indeed, now we set X; = & + vy, X, = X+7,
and, X3 = @i+ 3. Then (5.68) gives

Xi(t) = A@0)Xi(t)+aAst) [ X3(1)dl,
Xi(t)+ao [ X3(1)dl, (5.73)
X3(t) = B(t)Xa(t)+2Ke 7" X3(t — 1),

&
—~
~
~—
Il

where, A = A +A € [0,S). Therefore, we notice that (5.73) yields

{Xl(z) = A@)X1(t)+ A (1) [ X3(0)de, (5.74)

X3(t) = B()Xi(t)+ooB(t) [ X3(£)dl+2Ke V" X5(t — 7T),
Let us introduce the following linear functional:
t

! 1
W (X1 (). Xx) = Xi (1) + 01 [ Xa(m)dm+ o, / / 0 (0)dbdm,
-7 t—tTJm

where 01, 0», and, 03, are strictly positive constants to be selected later.

The derivative of the functional W, along the trajectories of (5.74), is given for almost all # > 0, by:

W(t) :A(t)xl(l‘)—}—OCQAs(l) t Xg(ﬁ)dﬂ—km [X3(l)—X3(l—T)]

-7

t t t
+ 0y |:’L'X3 (l‘) — /t 663“4)}(3 (g)dﬁ — G3/t / 603(272‘))(3 (ﬁ)dﬁdm
- —tJm

(5.75)
t
—A(1)X1 (1) + 00A* (1) / X3(0)dl + (01 +702) X3(1) — 01X (1 — 7)
-7
ot t t
— (72/ €G3(€_I)X3 (f)dﬁ— (72(73/ / 663(6_0)(3 (E)dﬁdm
—T t—T7Jm
Thanks to the second equation in (5.74), we get for almost all t > 0,
. 1
W(0) =T(0X1 1) + 00A* (1) + 00 [A°(0) + (01 + 20) B(0)] | Xs()ae
1—7T
t
- 0'2/ 663“7[))(3 (E)d@ — [G] —2Ke T° (G] + ’E('fz)] X3 (t — ’L') (5.76)
-7

t t
— 0203/ / €G3(éit)X3(€)d€dm,
—TJm
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where,
I'(t) = —A(t) + (01 + 102) B*(¢), forall t >0. (5.77)

Using the fact that
t

!
/ PENX(Dde > e P [ Xs(0)de, (5.78)
JI—T

t—7T

for all > 0, we deduce that for almost all r > 0,

W (r) <I(1)X, () — [czefw — 0o (A*(1) + (01 + 702) BS(z))} /t ;xg (0)dr

o1 P (5.79)
+ 0 2Ke 7t (1 + ;) —1 X3(t — ’L') — 6263/ / 663(K7I)X3(€)d£dm.
1 t—TJm
Now, let us choose,
o2
o) = —-. (5.80)
T

It follows that 2 (1 + %f) Ke 7" —1=2(1+07)Ke 7" — 1. Therefore, since 2Ke~"* < 1, we deduce

that for all o] € (O, %), we get,

2Ke 17— 1
21+ 61)Ke 7" —1< ef <0. (5.81)

1-2Ke 7"
) 4Ke= 7T

Therefore, we observe that by choosing 6, = 0712, and 0] € (O ), then the derivative of W along

the trajectories of (5.74), satisfies,

t
W(t) <T()X (1) [oze-csf—ao( f(r)+(ol+mz>BS(z))} / X3(0)de
D T (5.82)
—6263/ / e"3(£”)X3(€)d€dm, for almost all ¢ > 0.
—TJm

A condition on the delay: We recall that J(r) = J(%o(r)) < zo, for all t > —7, %y € (—x,, +0). Now,
let S > 0 be such that A*(r) < S, for all + > 0, and set,

h(t) = % [S+01(01+1)(16]+22)] . (5.83)
1

It follows that if the delay 7 satisfies the condition
h(t) <1, (5.84)
then, for a small enough o3 > 0, we readily check? that there exists 64 > 0 satisfying,

ore” BT — o [A*(t) + (01 + 02T) B (t)] = 04 > 0. (5.85)

2The condition (5.84) means that 1 — cty0, [S +o1(o1+1) (|9| +zZ)} > 0. Therefore, for small enough o3, we have
e %% — 00y [S+61 (o1+1) (6] +zz)} > 0.
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Therefore, if the first decay condition (5.84) is satisfied, then we end up with,
t t t ,
W (1) <T()X, (1) — o4 / X3(0)dl — 204 / / X, (0)dtdm. (5.86)
-7 —TtJm

Now, let us focus on the function I'(¢), for all # > 0, where,

2077 —1
() =—-6+ (1 —xeye To1(o1F 1)) (8+J(1)). (5.87)
Our objective is to ensure that
3r' >0, suchthat, I'(r) < I, Vr>0. (5.88)

The latter condition is in fact satisfied if and only if the following second decay condition,

R i ) (e 5.89
> W+GI(GI+) (16]+22), (5.89)

is satisfied.

e D

Remark 33. The decay conditions (5.84) and (5.89) are sufficient conditions of global exponen-
tial stability of the origin of (5.74). Indeed, we observe that if (5.84) and (5.89) are satisfied, then

there exists a constant 6 > 0, such that,
W(t) < —o'W (Xi(t),X5), foralmostall t > 0. (5.90)
Therefore, by integrating the previous inequality, we conclude that for all t > 0,
W (X1 (t),X3) < e W (9x,(0), x,) - (5.91)

Bearing in mind the formula of the functional W, if follows that the solutions of the model (5.74) are
1
such that X, (t) and X3(0)dl converge exponentially to the origin, with a decay rate smaller
—7

or equal to 6'. Therefore, we deduce from the second equation in (5.73) that X»(t) converges
exponentially to zero. Finally, using the third equation in (5.73), together with Lemma (1) (by
putting &(t) = B%(t)X(¢), for all t > 0), we readily conclude that X5(t) converges exponentially
to zero. Next, from the definition of X\, Xo and X3, we deduce that the positive trajectories
(f,i, i,z )7) of (5.68) are exponentially stable on the positive orthant. Therefore they are
globally exponentially stable and it follows that the solution of (5.64) (or, equivalently, (5.65))
are globally exponentially stable to their origin. We conclude that the solutions of (5.58) are
globally exponentially stable, on their domain of definition, i.e. X € (—x,,+o°), and, il € (—u,,+).
Therefore, we conclude that all the positive trajectories of the system (6.8) converge exponentially

to the strictly positive steady state E = (x,,u,), X, > 0, u, > 0.
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The theory summarized in Remark 33, above, is derived without any consideration for the nature of
the nonlinearity in the system describing hematopoiesis, with the exception of the boundedness condition,
i.e. dzp > 0 such that }J (t)] < z2. On some numerical examples, we are going to translate the latter

findings in our case.

5.4.1.4 Numerical results and interpretations

Let us consider the biological parameters and functions given in Table 5.1. In fact, in these parameters
only the apoptosis rate ¥ is varying from one system to another. These sets of parameters define four
different systems that we denote Sys.1, ..., Sys.4. All these systems satisty the conditions of existence of

a strictly positive steady state, E = (x,,u,), which is given for each system in Table 5.1.

Yy | B(m)| © | K ) Xe Ue
Sys.1 | 0.1 | =% 102 0.1]0.75 || 1.057541503 | 0.82586247
Sys2 | 02 | =5 [ 02[0.1[0.75 || 1.01143581 [ 0.82312744
Sys-3 | 03 | {25 102 ]0.1]0.75 || 096456477 | 0.81878866
Sys4 | 04 | {25 102 ]0.1]0.75 || 091675560 | 0.81250312

Table 5.1 The biological paremeters of the systems Sys.1,. . ., Sys.4 satisfy the conditions of existence of E = (x,,u,).

X—Xe

Let us focus on Sys.1, first. In Figure 5.4, the function x — Blx)x—B(xe)xe—6(x—x.) ) for all x € [0,500],
is illustrated. The same function, but restricted to the interval x € [0, 15], is represented in Figure 5.5,
where the intersection between the vertical red line and the x-axis gives the strictly positive equilibrium
point x, = 1.057541503. In this case (i.e. Sys.1), we have 8 = —0.03508875. We notice that on the
positive orthant, i.e. x € (0, +e0), the global z,-value is greater than 0.65. Unfortunately, for that global
2p-value, the global (sufficient) decay conditions (5.84) and (5.89) are not satisfied.

0.7 —
06—
0.5

04—

02—

mN
0 | | | | | | | | | |

0 50 100 150 200 250 300 350 400 450 50(

z(r=7+z)

B(x)r—PB(ze)re—0(x—10)
T

Fig. 5.4 The pattern of the curve x — |2&x=P (x"ixfe(xfxe) in Sys.1, for x € [0, 500].
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On the other hand, we notice from Figure 5.4 (without loss of generality) that the high value of z,
for which, in this example, the decay conditions cannot be satisfied, is specific to a certain interval in the
x-domain. Otherwise, we can see for instance that if zp = 0.15 (which is in fact the value indicated in
Figure 5.5 by the horizontal red line) then, according to the Figure 5.5, the blue curve is always under
the horizontal red line, except for the interval x € [0,0.68]. In addition, after simple calculations, we can
check that for zo = 0.15, the global decay conditions (5.84) and (5.89) are satisfied for all the systems
Sys.1,..., Sys.4, as shown in Table 5.2.

z(r=2+z)

Fig. 5.5 The pattern of the curve x — ’ Br—p xe)re—(x—xc)

X

in Sys.1, for x € [0,15].

9 [S+01 (01 +1)(16]+22)] | 5 (55 +01(01+1) (8] +22)
Sys.1 0.3923 0.1445
Sys.2 0.3637 0.2308
Sys.3 0.3523 0.1683
Sys.4 0.3509 0.0352

Table 5.2 The global decay conditions computed for z; = 0.15 for the four systems of Table 5.1

We recall that the decay conditions require that

2e7 1" -1
1—-2Ke™ 7"

% [S+Gl (01 +1)(\9|+Z2)] <1, and, 6 — <

+oy (o1 + 1)) (16| +z2) > 0,
1

which are satisfied for the four systems in Table 5.2.

Consequently, we conclude that for all initial conditions ¢,(0) € (0.68,+c0) associated to the systems
Sys.1,..., Sys.4, their respective strictly positive steady states given in Table 5.1 are globally exponentially
stable. The decay feature is lost if the system trajectory x(¢) enters, at a given time instant ¢ > 0, in the
interval x € (0,68], where the sufficient decay conditions are violated. Nothing can be said about the
behavior of the system in the region x € (0,0.68], since the provided decay conditions are only sufficient.

One can notice that the threshold z, which ensures the feasibility of the decay conditions (5.84) and (5.89)
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is entirely dependent on the x-values, according to the nonlinear characteristic patterns as in Figure 5.4.
However, the initial condition ¢,(m), for m € [—,0], plays an implicit role to fulfill the sufficient decay
conditions. It can be seen for instance in the Figures 5.8-5.9 that according to ¢,(m), for m € [—7,0], the
trajectory x(¢) for all # > 0, may evolve in a x-domain where the sufficient decay conditions are satisfied
or not. It is worth mentioning that restricting x to the domain R™ — (0,0.68] does not mean that the
decay conditions (5.84) and (5.89), as well as the estimate of the decay rate of the solutions o’ >0, are
dependent on the fixed trajectory xo(¢) used in the definition of J(¢), for all 7 > 0. Indeed, as we see in the

Figure 5.4 for instance, |J (t)| < zp =0.15, is satisfied for any fixed trajectory xo(¢) of the system when
it belongs to R* — [0,0.68]>. More precisely, the characteristic nonlinear patters as in Figures 5.4-5.5
are standard profiles as long as we keep the same form of the nonlinearity 8 (the Hill function). Thus,
some fixed trajectories xo(¢) may evolve for all # > 0 in a x-domain where the global decay conditions are
always satisfied. This is for instance the case of the trajectories x(¢) of Sys.1, represented in red color in
the Figures 5.6 and 5.7, for large positive initial conditions ¢,(0). While some other fixed trajectories go
through the x-region where the sufficient decay conditions are not satisfied. This is the case for instance of
the trajectories x(¢) that starts from small initial conditions, as in the Figure 5.8. One notices that the global
value of z; is directly related to the value of B(0). More importantly, we notice that for the large values
of x, the decay conditions are more likely to be satisfied, which is an interesting feature of the studied
model. This is unusual since for nonlinear systems it is generally expected that the stability property of an
equilibrium point is more likely to be lost when the trajectories go away from the equilibrium of interest.
However, in our case, the sufficient decay conditions are no longer valid for small values of x, since the
corresponding local-value z; is large in that domain. On the other hand z, becomes locally smaller for

large values of x, as it can be deduced from Figure 5.4.

Total densities of cells (x & x10° cells/kg)

4
Time (days)

Fig. 5.6 Example of the trajectories of Sys.1 for a large initial condition ¢,(0) and a large initial condition ¢, (m),
form € [-1,0].

Finally, it appears clear that even for a fixed nonlinear function f (as for Sys.1,.. ., Sys.4), the threshold
where the decay conditions (5.84) and (5.89) are no longer satisfied depends on the different biological

30r, equivalently, for all fixed shifted trajectory %(r) belonging to (—x,,4o0) — (—x¢,0.3775] = (—0.3775, 4-c0).
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x(t)
u(t)

Total densities of cells (x &~ x10° cells/kg)

P
Time (days)

Fig. 5.7 Example of the trajectories of Sys.1 for a large initial condition ¢,(0) and a small initial condition ¢, (m),
form € [-1,0].

Total densities of cells (x ~ x10® cells/kg)

Fig. 5.8 Example of the trajectories of Sys.1 for a small initial condition ¢,(0) and a small initial condition ¢, (m),
form € [—1,0].

parameters involved in the model (and, consequently, on the value of x.). Thus, we observe that for
7 = 0.2, the decay conditions for the considered systems are given in Table 5.3.

ar[S+oi(o+1)(|6]+z2)] | 8- (% +oy (o1 + 1)) (18] +22)
1
Sys.1 0.409 —0.0189
Sys.2 0.3822 0.066
Sys.3 0.3720 0.002
Sys.4 0.3715 ~0.1327

Table 5.3 The global decay conditions computed for zo = 0.2 for the four systems of Table 5.1
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30 —

Total densities of cells (x ~ x10° cells/kg)

Fig. 5.9 Example of the trajectories of Sys.1 for a small initial condition ¢,(0) and a large initial condition ¢, (m),
form € [-1,0].

We notice that the second sufficient decay condition (5.89) is no longer verified for Sys.1 and Sys.4
when zo = 0.2. In fact, numerically we determine that the threshold for Sys.3 is around z, = 0.21, while it
is approximately z, = 0.23 for Sys.2.

7

What we retain from this first part of the analysis, of the strictly positive steady state, are the
sufficient global conditions of global exponential stability. These decay conditions are less
restrictive for large initial conditions associated to the system, which is a nice point of the study
since it is not covered by local results (i.e. no local analysis may provide such a statement). In the
next section, we perform a complementary (more classical) regional study, i.e. in the neighborhood
of the strictly positive steady state. The analysis will be performed using quadratic functionals that
provide sufficient local exponential stability conditions and an estimate of the basin of attraction of

the strictly positive steady state.

5.4.2 An alternative analysis through quadratic Lyapunov functionals

In the present chapter, without extra assumptions on the system (5.38) -that may admit piecewise-
continuous solutions- we prove under suitable sufficient conditions that E is locally exponentially stable
by a direct Lyapunov approach, which allows us to determine an approximation of its basin of attraction.

Observe that, due to the shifting, the trajectories are no longer positive (¥ > —x,, # > —u,, where

X, > 0 and u, > 0). To analyze the model (5.43), we introduce the following function and functionals

O(a) = %az, (5.92)
o) = [ o), (5.93)

A(i) = /,tf mteé_’Q(ﬁ(E))dde. (5.94)
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Next, let us define the following constants which depend on the biological parameters:

E=0%+2K|6le ", (5.95)
R = (2Ke "")* +2K|0le 7 1, (5.96)
2(6+60—Le "
o= 2 e’") , (5.97)
§
and
2Le™ 7"
o=—""" for R+0. (5.98)
R
Now we are ready to prove the following result:
Theorem 12. If the conditions
I<o<o, (5.99)

are satisfied, then the positive equilibrium E of the nonlinear system (6.8) is locally exponentially stable.

Moreover, an open subset of the basin of attraction that contains E can be determined.

Proof. The derivative of the functional Q(%(¢)) along the trajectories of (5.43) satisfies

(6+0)0(x(r)) —x()I(X(r)) +2Le " x(t)a(t — 7)

O(t) =2
<—2(8+6)Q(%(1) +21|%(1)|Q(%(r)) +2Le” " x(t)i(r — 1),

(5.100)

where the last inequality is a consequence of (5.44). Using the inequality ¥()i(r — 7) < Q(%(r)) + Q(ii(t —
7)), it follows that

() <—2(64+60—Le 77) Q(x(t)) +z1|%(r)|Q(%(t)) + 2Le” " Q(ii(t — 7). (5.101)

On the other hand, through lengthy but simple calculations, we can prove that Q(i(z)) satisfies,

Q(a(r)) <EQ(X(1)) + (R+1)Q(a(r — 1)) + %\i(t)lQ(i(t)) +16]z1[%(1)|Q(x(1))
+2Ke Vit — 7)| Q(%(1))
z1(22+2/6])

<EQ(R(1)) + (R+ 1)Q(a(r — 7)) + 2= 15(1) [ 0(5(r))
+Ke " |%(1)| [Q(a(t — ) + Q(x(1))]
where the last inequality is a consequence of the inequalities,

I1(%(1))* < 2122 8(0)|Q(E()), |a(r — )I(F(1))] < z1 |a(r — )] Q (%(1))
1 1 (5.102)
\ﬁ(f—f)}Q(f(f)):Eli(f)Hﬂ(f—T)f(f)\ =< :
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By grouping the terms we obtain:

Q(a(r)) <6 Q(x(r)) + (R+ 1)Q(a(t — 7)) + a1 [¥(1) |Q(%(2)) + a2 |%(1) |Q(a(t — 7)), (5.103)

21 (2242|6|+2Ke™77)
2

and (5.96). A direct consequence of (5.103) is that the derivative of the functional ®, defined in (5.93),

along the trajectories of (5.43), satisfies,

where, a; = ,a» = Ke "7z, and, & and R are the constants defined respectively in (5.95)

O(r) <EQ(%(1)) + RQ(i(t — 7)) +an [£(1) | Q(¥(1)) + (1) [Q(a(t — 7). (5.104)

Now, let us assume that the condition (5.99), i.e., the decay condition, is satisfied. First, we notice that

R < 0. In addition, we introduce the strictly positive constant:

w:¥, (@>0). (5.105)

By combining (6.53) and (5.104), we conclude that, since £ # 0, the derivative of the functional,
V(). @) = Q(%(r)) + 0O(d), (5.106)
along the trajectories of (5.43), satisfies the inequality,

V() < -0+ 0] Q(F(r)) + Ko — 0] Oi(t — 7))

(5.107)
+ (@10 +21) [X(1)|Q(X(1)) + a2 0]%(1)|Q(a(r — 1)),

with & > 0 and & < 0. From (5.105), we conclude that

V() < —q[Q((1) + (it — 1)) + (a1 0 +21) [5(1)|Q(&(r)) + a2 00| %(1) | Q(a(t — 7)), (5.108)

where g =min {£ (® — @), —&(® — ®) } > 0. Now, we turn our attention on the functional A, introduced
in (5.94). We notice that its derivative along the trajectories of (5.43) satisfies,
1

A Q@) - [ oa(t)at—Aa)

-7

<tQ(i(t)) — e "O(d;) — A(i) (5.109)
<t8Q(%(t)) +T(R+ 1)Q((r — 7)) + Tan [%(1) |Q(%(2))
+ Tao|%(1)|Q (a(t — 7)) — e T O(d) — A(iF;),

where the last inequality is a consequence of (5.103). Now, by combining (5.109) and (5.108), we

straightforwardly conclude that the derivative of the functional,

U (5(1), i) = V(E(1), @)+ pAdd), (5.110)
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where, p = along the trajectories of (5.43), satisfies,

q
2tmax{& R+1}’

(1) <= 30(3(1) — 50((1 — 7)) + [ar (@+7) +21] [¥(1) |Q(3(1))

(5.111)
+ax (0+p) [X(1)|Q(i(t — 7)) — pe” "O(ir) — pA(i;)-
Since |X(f)| < /2% (x(t), 4, ), we deduce that,
70 < | 3= [ (@+ w)-+21] VIGO0 000)
- |30+ o) V2@, | 0t - ) 112
—pe "O(i,) — pA(dy).
Therefore, for all initial conditions %(0) and @,, satisfying
U (%(0),u) <% , (5.113)
where,
2 2
Z = min 9 , 9 , (5.114)
42 [ay (0 +Tp) +21] 4\2a; (0 +19)
the derivative of the functional % satisfies:
% (1) <~ J0(E(1)) —pe @) —pA(@). (5.115)
Finally, we conclude that:
- o o ) pe g
U(t) < —v%(x(t),i;), where, t=min I,T,Z . (5.116)

By virtue of the Lyapunov-like functional, %/, we conclude that ¥ converges exponentially to its
origin with a decay rate smaller or equal to 3.

Moreover, using the second equation in (5.43), we see from Lemma 1 that i converges exponentially
to its origin, since the condition @ > 0 (i.e., & < 0) implies that 2Ke 7" < 1.

Finally, notice that the set of all initial conditions satisfying the condition (5.113) provides an
estimate of the basin of attraction of the origin of the shifted system (5.43). Therefore, the set

o = {x(O) eR", @, € € ([-7,0],R"), % (x(0) — xXe, @ — ute) < 02/} (5.117)

where the sublevel % > 0 is given in (5.114), is a subset of the basin of attraction of the strictly
positive equilibrium E of the positive system (6.8).
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O]

Example 8. Here we give a numerical example that satisfies the conditions of existence of E (i.e.

Proposition 4) and also the decay conditions provided in Theorem 12. We consider the following

biological parameters and functions: T =1, (m) = 11753, 6 =0.9, y=0.4, and where the rate of
permanently proliferating cells is K = 0.2.

After simple calculations we get,

B(0) - 1 -
=7 =3.088888, K = —¢"* =0.745912, K = (u+ 1)K — u = —0.038936,
0 2 K=(u+DKk-u (5.118)

and, s = K — K = —0.238936. It follows that the origin is not attractive.

Next, the first condition in Proposition 4 is satisfied, i.e.,

0< K < K <-H_. (5.119)
~  ~~ T u+l
0.2 0.745912 N——
0.755434
and, consequently, a unique strictly positive steady state exists. This equilibrium is given by:
E = (x.,u,), where, x, =0.7592526, and, u, = 2.0060009. (5.120)

Total densities of cells (x ~ x10° cells/kg)

20 25

Time (days)

Fig. 5.10 The trajectories of the differential-difference nonlinear system (6.8), for the model paramaters given in
Example 8.

Simple calculations give:

0 = B(x.) +x.B (x.) =0.167633, & = 6% +2K|0|e"" = 0.073048,
_ 2 _

2(6+0—Le " e
( +€ ¢ ):14.548691, P

o= =1.214402.
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We conclude that the decay condition 0 < @ < @ is satisfied, and therefore E is regionally exponential
stable. It is worth mentioning that in simulations, the region of attraction seems to be the entire positive
orthant, i.e. the estimate provided in Theorem 12 is conservative, as it is generally the case with Lyapunov
approaches. For an arbitrary initial condition, the trajectories of the corresponding system are shown in
the Figure 5.10.

5.5 Concluding remarks and discussion

In this chapter, we revisited the analysis of a recent biological differential-difference system ([4]),
describing the stem cell dynamics. The feature of the proposed approach is that it is based on Lyapunov-
like techniques. This corresponds with our aim of extending the analysis and the modeling aspects of the
hematopoietic system. Indeed, the studied model has the interesting feature of allowing a sub-population
of stem cells to be permanently active in the proliferating phase. Two steady states may exist: the
0-equilibrium, and, under some conditions on the biological parameters, a strictly positive steady state.
We revisited the stability properties of the 0-equilibrium by extending the Lyapunov construction of
[4], in order to establish global exponential stability of the trajectories. The positivity of the studied system
is an asset that allows its analysis through linear Lyapunov functionals ([124]). Since linear functionals
are more convenient for the analysis and the computations, we focused on the second part on whether it
was possible to define a framework to study the stability properties of the strictly positive equilibrium
point using a linear Lyapunov functionals (knowing that the trajectories we are interested in are no longer
all positive when studying the positive equilibrium point, after a classical change of coordinates). For
that purpose, the first step that we performed was the determination of a linear Comparative System
([250]). The origin of the latter system has the particularity of being globally exponentially stable if it
is exponentially stable on only the positive orthant ([196]). Then, some global decay conditions were
derived via a construction of a suitable linear functional. Exploitation of that study in the case of our
hematopoietic system, together with the feasibility of the global results, were discussed through numerical
applications. The characteristic nonlinear patterns for the specific studied model made the global decay
conditions less conservative for large initial conditions. For the local study (i.e. in the neighborhood of the
positive steady state), a more classical analysis was performed, via a quadratic Lyapunov-like construction.
Sufficient conditions for the regional exponential stability of the positive equilibrium were provided, with

a subset of its basin of attraction.



Chapter 6

A coupled model between healthy and
mutated stem cells: cancer dormancy and
eradication of cancer stem cells

Synopsis. An age-structured McKendrick model describing the coexistence between tumor and
ordinary stem cells is developed and explored. Firstly, the model is transformed into a nonlinear
time-delay system that describes the dynamics of healthy cells, coupled to a nonlinear differential-
difference system governing the dynamics of unhealthy cells. Then, its main features are high-
lighted and an advanced stability analysis of several coexisting steady states is performed, through
a Lyapunov-like approach for descriptor-type systems. We pursue an analysis that provides a the-
oretical treatment framework following different medical orientations, among which: i) the case
where therapy aims to eradicate cancer cells while preserving healthy cells, ii) a less demanding,
more realistic, scenario that consists in maintaining healthy and unhealthy cells in a controlled
stable steady-state (cancer dormancy). Biological interpretations and therapeutic strategies are
discussed according to our findings throughout the chapter.

6.1 Overview of the chapter

We recall that sometimes a pathological population of cells, that does not initially necessarily belong to the
SC family, acquires self-renewing and proliferating capabilities similar to those of SCs ([93], [94], [230]).
These stem-like cells are very often out of control [247] and they are capable of initiating, developing and
regenerating cancers [93], hence their designation as cancer stem cells (CSCs) [150].

Very often, CSCs are characterized by unhealthy behaviors such as excessive proliferation and
abnormal loss of their differentiation faculties (this is what we observe in leukemia [147], for instance).
On the other hand, it cannot be disregarded that in some cases (as in breast cancer and leukemia [88],

[18]) CSCs do not overproliferate (cancer without disease [102], or, in sifu tumor). However, even during
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their non-overproliferating states, CSCs remain in general distinguishable through specific markers on
their surface! [247].

Strong evidence about the existence of this stalled growth (i.e. tumor dormancy), has been established
many years ago when microscopic tumors were frequently encountered during autopsy examinations
([220], [102]). More details are given in Chapter 2, however, the most likely explanations (see [15],
and also [261] and [102]) of CSCs dormancy state are: i) blood and nutrient supply issues that prevent
tumor growth, or at least delay its clinical manifestation [213], and ii) vigilance of the immune system
which, in some rare cases, suffices to stop tumor development (see [98, 261, 213, 299, 291] and the
references therein). In fact, there has been a lengthy debate on the role of the immune system in the
defense against cancer: a process called cancer immunosurveillance [291]. The ambiguity about the
immunosurveillance concept stems from the fact that often the immune system favors the development of
the tumor instead of trying to eliminate it. The concept that attempts to integrate the diverse effects of the
immune system on tumor progression is known as cancer immunoediting (see the review articles [261]
and [291]). However, even if it appears as an unsystematic process, the immune response remains one of
the most likely justifications for cancer dormancy.

Not surprisingly, an interest arises for cancer therapies that are oriented on the immune system, bearing
the name of immunotherapy®. In a similar spirit, monoclonal antibodies, e.g. gemtuzumab ozogamicin,
have been approved in the treatment protocols of some cancers (as in acute myeloid leukemia [115]), even
if more trials are still needed to identify their exact benefits [253, 115]. Other cancer therapies, sometimes
assimilated to immunotherapy, are using some immune checkpoint inhibitors (see for instance, [228],
[169] and [44]). In the last part of our work, we will be shortly adopting some of these immuno-oriented
concepts, associated with classical chemotherapy, as it is frequently adopted in practice.

In a general perspective, apart from the interpretation of tumor dormancy as an observed natural
phenomenon in human cancers, the idea to transform cancer into a chronic disease is in the voices of many
people in the medical world nowadays [111], [14]. Indeed, the interesting issue here is about: how can we
bring CSCs from an overproliferating activity to a dormant state? More precisely, since cancer treatments
most often consist of delivering the maximum tolerable doses of drugs in order to kill diagnosed tumors,
and knowing that a non-completely eradicated tumor frequently grows again, even more aggressively than
the initial one [93], the option of maintaining the tumor in dormancy is more appealing than trying to
eradicate it [147]. Further discussions on the opportunities offered by cancer dormancy in therapeutics
can be found for instance in [14], [289], [111], and the references therein.

The development of a relevant mathematical framework appears as a necessary tool to apprehend
tumor dormancy as a biological mechanism [154], with the ultimate goal to apply it in therapeutic settings.
However, the task of mastering CSCs, i.e. bringing them into a dormant state, seems to be difficult to
conduct. Indeed, one of the first dormancy-oriented therapeutic approaches has not been very fruitful. It
was based on the use of angiogenesis inhibitors (substances that inhibit the growth of new blood vessels

[102]) as drugs that choke off the blood supply of the tumor, in order to maintain it in dormancy. However,

IFor instance, stems cells in acute myeloid leukemia have some interleukin-3—receptor o chain surface markers, which are
not found in normal hematopoietic stems cells (see [150, 99]).

2Immunotherapy aims to help the immune system destroy cancer cells. It is given after -or at the same time as- another cancer
treatment such as chemotherapy. (http://www.cancer.net/) - See also Chapter 2 for related facts related to tumor dormancy.
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unexpected effects occurred in practice, in some situations, where targeting the blood vessels that feed
tumors actually accelerated the spread of cancer [134], [248].

In the clinic of cancers today, eradication of CSCs remains the predominant treatment approach
(although there is still a long way to improve the existing eradication treatment strategies [277]). In light
of the previously mentioned observations, one can say that dormancy has actually generated more issues
than answers, in the process of understanding cancer. Among the open issues, we emphasize the following
ones: when a treatment protocol is elaborated for CSCs eradication with a given rate of success, how can
we actually administer it (or a part of it) in order to achieve dormancy? In addition, since eradication
techniques may generate some surviving tumors which become even more aggressive than the initial ones,
a key question is to determine whether it is effective to consider the same targets and drugs, as for CSCs
eradication, in order to achieve dormancy? One can already figure out the utility of mathematical studies

in such a context.

Objectives of the chapter

We aim to provide a consistent theoretical framework for the modeling and the analysis of healthy and
unhealthy cell dynamics, following different medical orientations, among which: the case where therapy
aims to eradicate cancer cells while preserving healthy ones, and the scenario that consists in maintaining
healthy and unhealthy cells in a controlled stable steady-state (i.e. cancer dormancy). To that purpose,
a model of cohabitation between ordinary and mutated cells is introduced and analyzed. Firstly, we
investigate the stability properties of the origin of the resulting model: this is equivalent to the radical case
in which all the cells are eradicated. Then, we perform a stability analysis that applies to cases of cancer
dormancy and unhealthy cell eradication (while healthy cells survive). For the biological motivations
stated here and in Chapter 2, we focus more on the study of cancer dormancy throughout the chapter.

As it is the case throughout the thesis, we emphasize in the current study the particular case of
hematopoietic SCs, which are at the root of the hematopoietic system (Chapter 2). We recall that
hematopoiesis is a complex process in which the number of hematopoietic SCs involved in proliferation,
together with their frequency of division, have to be well controlled [138] in order to avoid a wide range of
blood disorders®. Currently, AML treatment still relies on heavy chemotherapy with a high toxicity level
and a low rate of success [85]. In fact, the only certain AML cure being not the result of chemotherapy,
but of total bone marrow transplant (that induces nearly 10 —20% of mortality during the manipulation
and due to severe reaction, GVH, of the graft versus the host).

In this chapter, a better understanding of the behavior of CSCs (leukemic cells in AML) should allow
us to propose some selective combined targeted therapies that lead, theoretically, to cancer dormancy. In
particular, our ambition is to provide a relevant theoretical framework, taking into account observations
made by hematologists, and allowing for the suggestion of new treatments insights. It is in this light that
we propose in this chapter a model of cohabitation between ordinary and mutated cells in the case of the

hematopoietic system.

3In particular, periodic diseases, such as cyclic neutropenia and some cases of chronic acute leukemia ([184], [37], [66],
[180], and the references therein), but also overproliferating malignant hemopathies, such as acute myeloid leukemia (see the
definitions in Chapter 2, and the models in [8], [225], [80]).
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This model follows recent observations (made in [137] and in many other works) that associate the
emergence of leukemic cells to an accumulation of several mutations, most often occurring in a standard
chronological order, in the SC compartment. Thus, we analyze here two categories of heterogeneous cells
as illustrated in Figure 6.1, where the addition of mutations (TET2, NPM1, FLT3) that we have consider
had been established in [137].

F1t3-ITD .
- > mutations

Category A Category B

Fig. 6.1 Category A: healthy stem cells. Category B: unhealthy stem cells. The latter class (B) has a first mutation
in some genes encoding enzymes in epigenetics (e.g. TET2, DNMT3A [74, 239]), that increases the self-renewing
activity of the affected cells. A more serious pathological situation arises when a second mutation, affecting this
time the pathways regulating the differentiation process such as NPM1 or transcription factors, appears on some of
the cells. The superposition of these two events yields a blockade in differentiation (the subpopulation in orange
color). Finally, a subsequent mutation impairing proliferation control (e.g. FLT3) appears in a subpopulation of
cells that have already accumulated one or more of the previously mentioned mutations. The latter event activates
an uncontrolled overproliferation of a subpopulation of cells, CSCs (in red), and thereby causes AML [137].

The study that we perform in this chapter generalizes the one that we proposed in a series of works:
[4], [23], [25], (but see also [241], [189], [101], [276], [275], [8], [225], [81]). It is worth mentioning that
the model in [25], [23] can neither model dormancy nor the abnormal overproliferation (e.g. invasion of
the bone marrow by blasts). The latter point is improved by adopting a different form of fast self-renewing
process, which has been recently introduced in [4], and where a subpopulation of cells is considered to
be always active in proliferation. In fact, cancer dormancy has not been considered in all the previously

mentioned works?.

Organization of the chapter

In light of the above mentioned remarks, the coupled model (between healthy and mutated cells as in
Figures 6.1-6.2) of interest is presented in Section 6.2.

Next, some features of the resulting coupled differential-difference model, together with the conditions
of existence of our favourable steady states (reflecting dormancy and CSCs eradication), are discussed in
Section 6.3. Then, in Section 6.4, the stability analysis of the case of all-cell extinction, via a construction
of a linear Lyapunov-like functional, is performed (here we provide conditions for global exponential
stability of the origin of the coupled model).

Then, afterwards, we address in Section ?? the stability analysis, in the time-domain framework, of
the cases describing cancer dormancy or unhealthy cells eradication (while healthy cells survive). The
latter study goes through quadratic Lyapunov-like constructions (i.e. suitable degenerate functionals for

the class of differential-difference systems).

4See also [154] for a different approach of modeling and analysis, where an ODE system describing dormancy is discussed,
but without considering the coexistence between healthy and unhealthy cells.
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Fig. 6.2 Schematic representation of the coupled model of interest, involving a healthy SCs compartment (on the
left) and an unhealthy compartment (on the right). For the sake of simplicity, we assume that unhealthy cells are
those presenting mutations that lead to cancer (cells in orange and cells in red in Figure 6.1). Thus, with an abuse of
notation, we use equivalently the designations: unhealthy cells, mutated cells, and CSCs. Similarly, healthy cells, or
ordinary cells, represented on the left of the figure, are those which do not have any abnormal mutation, or those
presenting some abnormalities but are not related with cancer. The definition of the biological parameters given in
this figure is provided in Section 6.2.

In fact, we are going to use two slightly different constructions: the first one is more general and relies
on LMI conditions derived via the descriptor method [106], applied to the linear approximation of the
model around its nontrivial steady state of interest. This approach aims to provide a theoretical (sufficient)
stability criterion, in the LMI form, to establish whether the steady state of a specific biological system
is locally stable. The latter technique is followed by a second Lyapunov-type construction that allows
us to determine explicit decay conditions (not in the LMI form) as well as an estimate of the decay rate
of solutions and an approximation of the basin of attraction of the studied steady state. These sufficient
stability conditions may be more restrictive than the LMI ones, however, they have the advantage of
being easier to handle and, therefore, make it possible to interpret them biologically, from medical and
therapeutic standpoints.

Finally, numerical illustrations are provided and concluding discussions (including biological interpre-

tations of the findings) are outlined in Section 6.5.

6.2 A new mathematical model involving coexistence between healthy and
cancer stem cells

Our objective is to introduce a more general model than the existing ones, with regard to the recent
biological features of interest, that are: mutations accumulation [137], cancer dormancy [93] ,[88],
control and eradication of CSCs [147]. In particular, the model that we want has to take into account the
cohabitation between healthy and unhealthy cells, to reproduce and interpret the case of cancer dormancy,
with the ultimate goal of providing theoretical stability conditions, along with therapeutic insights, that
lead to stable dormant CSCs.
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6.2.1 A multi-compartmental model for healthy and unhealthy cells

We focus on the model illustrated in Figure 6.2, where CSCs are characterized by an over-proliferating
ability represented by the parameter K, as considered in [4], and previously envisaged in [25, 23] in a
different configuration. One notices that the model in [80] is similar to the one in Figure 6.2, however,
the models of healthy and unhealthy cells studied in [25, 80, 23] do not admit a stable steady state that
describes cancer dormancy. In fact, this issue is overcome by considering a more general manner of
coupling healthy and unhealthy SCs, while retaining the same model structure as in [80] (Figure 6.2).
Finally, we mention that as many other works (see [180, 241, 8], among others), we are considering a
compartmental model in which each cell can be in a resting phase or in a proliferating one.

We notice in Figure 6.2 that a sub-population of unhealthy cells is in a permanent dividing state, i.e.
the portion 2K, where, 0 < K < 1, as in [4] for a non-coupled model. This is different from the healthy
SCs behavior (Figure 6.2, on the left) where daughter cells, that arise from mother-cells division, leave
the proliferating compartment and join necessarily the resting one, where they can stay until their death,
differentiate, or start a new proliferating cycle by passing through the reintroduction function 3. Next, we
denote by O (resp. 5) the rate of resting cells which is lost either by differentiation or natural cell death
for healthy SCs (resp. CSCs). A resting cell may start a cell cycle by entering in the proliferating phase
during which each proliferating SC (resp. CSC) may die by apoptosis at a rate y (resp. ¥), or complete its
mitosis and become two daughter cells at the end of the proliferating phase. We denote 7 (resp. 7) the
average time taken to complete mitosis in the healthy (resp. unhealthy) proliferating compartment.

For proliferation, the mechanisms regulating the entry into the cell cycle -at the cellular level- rely
on some regulatory molecules that can play the role of growth-factors (by stimulating the entry into
proliferation of resting healthy and unhealthy cells), or, they can play the role of mitotic inhibitor ligands
(meaning that mitosis proceeds normally if inhibitors are not combined with cell receptors, while it is
stalled when they bind them). Consequently, we consider in our model that the passing from the resting to
the proliferating states is controlled by some reintroduction functions (as in [180, 241] and the majority of
earlier works). More precisely, we let B (resp. ,3) be the reintroduction function from the healthy (resp.
unhealthy) resting phase to the healthy (resp. unhealthy) proliferating phase.

In addition, since healthy and unhealthy cells share the same environment (called niches [69] in
hematopoiesis), we consider that each of the two functions 8 and B depend simultaneously on both: the
total density of resting healthy cells, x(r) = [ r(t,a)da, and, the total density of unhealthy resting cells,
x(t) = [y F(t,a)da, where r(t,a) and 7(t,a) are, respectively, the densities of resting healthy cells and
resting unhealthy cells, of age a > 0, at time ¢ > 0 [80]. This modeling approach reflects cohabitation
between healthy and unhealthy cells: by considering that the entry into proliferation of healthy cells (resp.
unhealthy cells) is also dependent on the total density of unhealthy cells (resp. healthy cells), the dynamics
of the left and the right sub-populations in Figure 6.2 become thus strongly coupled (linked in red color in
Figure 6.2).

In summary, we consider that the reintroduction functions 8 and ﬁ are controlled by some mitotic
regulatory molecules (that are either secreted by the body or administrated as drug doses), which are in

turn assumed to be related to the cell densities x and X (i.e. the concentration of the regulatory molecules is
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proportional to the cell density, as developed in [180] for a non-coupled model). More details are provided

in the next section.

6.2.2 The coupling form between ordinary and mutated cells

Now, the remaining issue regarding the functions  and B is to select the coupling function between
the total density of healthy resting cells x and the total density of mutated resting cells X (i.e. specifying
how B and ﬁ actually depend on x and ). It appears that the simplest choice is to consider that both 3
and B depend on the sum x + ¥, as previously considered in [25] and [80]. The latter scheme expresses
a kind of absence of dominance between the populations x and &, since they show equal influence on
B and B However, differences actually exist between x and % in their shared host environment, mainly
due to the mutations acquired by abnormal cells [139]. Changes that occur in mutated cell behavior may
enhance the growth of cancer and result in cachexia and death [33] (see also [91, 237] and the references
therein, for biological observations and modeling of the interaction between unhealthy cells and their host
environment).

We might be tempted to argue that, in our particular context, considering a coupling in the form x 4 &
may be a result of an homogeneous sensitivity> expressed by the resting ordinary and mutated populations
to the concentration of mitotic regulatory molecules, that act on the reintroduction mechanisms of resting
cells into proliferation. This is in fact a particular situation (considered in [23], [26]), which corresponds
to the cases (b)-(c) in Figure 6.3, where we notice that mutated resting cells in orange (c), and ordinary
resting cells in green (b), are reacting with (or, sensitive to) the same concentration of regulatory molecules
(small molecules represented in blue).

In turn, by generalizing the arguments used in [180] for a non-coupled model by assuming that
the concentration of the mitotic regulatory molecules (in blue) is proportional to the total density X + x
(green and orange cells). Thus, homogeneity between X and x in that case means that healthy cells (green
cells (b)) and unhealthy resting cells (in orange (c)) have a common interpretation of their shared host
environment. We aim in the present work (in contrast with [23]) to extend the modeling aspects by
considering a more general form of coupling functions, so that one subpopulation may dominate the other
one. For that purpose, we consider that  depends on a function C (x, %), while f depends at the same
time on a different combination C (x, ). In particular, we are interested in the case of linear functions in
the forms: C = ox + % and C (x,%) = x + @, where, o and & are some positive weighted constants. In
that framework, the previous situation expressing a homogeneous sensitivity C = C (i.e. as in [23, 26]),
becomes a particular case characterized by o0 = & = 1.

SSensitivity here is related to the dominance property that healthy or unhealthy resting sub-populations may express. More
precisely, it refers to the different perception carried on the same common host environment of healthy and unhealthy cells,
while some of them are more sensitive to certain molecules (e.g. ligands) and less sensitive to the others. For example, due
to epigenetic mutations, unhealthy cells become less sensitive than healthy ones to the regulatory molecules secreted by the
body, while healthy cells are less sensitive to drugs since they are designed to target unhealthy cells. These situations show how
healthy and unhealthy cells may react differently to their shared host environment in which they live (see Figure 6.3), which later
results in the dominance of one subpopulation. For further information, notice that in biological systems and enzyme kinetics,
sensitivity has different meanings. The most used one refers to the sigmoidally shaped response behavior (responsiveness, see
[? ]-Section 6). In our application, it is worth mentioning that the reintroduction functions 8 and B behave in a sigmoidal
manner (Hill functions, see [? ]), but it is not our intended meaning of sensitivity here, which is rather related to the concept of
dominance, as explained above.
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In fact, to ease the notation, we can normalize without loss of generality the value of «t, i.e. @ =1,
that becomes a reference (6.3-(b)) describing a healthy case. It follows that the free-parameter & varies
relatively to that reference: & < 1 (Figure 6.3-(d)), & > 1 (Figure 6.3-(e)), or & = 1 (Figure 6.3-(c)). Thus,
throughout the paper, we focus on the situation where o is normalized and & > O is a free parameter, i.e.
(a,0) = (1,¢). We will prove later in Section 6.3 that actually dormancy may exist only if & # 1.

In illustrative manner, we observe that Figure 6.3-(d) provides a cartoon representation of the case
C (x,%) = x+ &%, when & < 1, compared to the neutral case (without dominance), C (x,%) = C (x,%) = x+ %,
described by the couple of Figures 6.3-(b)-(c), where regulatory molecules are equal. The case of Figure
6.3-(d) means that even if ordinary and mutated cells are sharing the same environment, the mutated ones
indicated in orange 6.3-(d) are less sensitive to the regulatory molecules, present in the host environment,
that we consider to be inhibitors which decrease cell proliferation (as previously envisaged in [180]).

This appears to be in line with medical practice, since the unhealthy behavior is mainly due to
epigenetic mutations that make cells partially unresponsive to the regulating system. Therefore, the
case &t < 1 suits well the untreated unhealthy behavior, in which cells get out of control. Indirectly,
the sensitivity parameter & that we introduced, led to a concept of dominance between the healthy and

mutated cells x and X.
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Fig. 6.3 Cartoon illustration of healthy and unhealthy cells in their shared environment. In (a), red cells are the
subpopulation of cells which is constantly active in proliferation, orange cells are unhealthy mutated cells that go
through quiescence to re-start a cell-cyle, green cells are ordinary cells with normal behavior, while blue molecules
represent natural mitotic regulatory molecules (inhibitor ligands), or drug molecules. The representation (b) gives a
reference, which is the shared environment as regarded by healthy cells (the density of blue molecules is proportional
to x4+ . On their part, unhealthy cells perceive the same environment in the case where & = 1, as illustrated in (c).
However, cells are expected to be different from healthy cells due to epigenitic mutations. The latter case in which
unhealthy cells are out of control of a part of regulatory molecules is illustrated in (d) (& < 1). Finally, the case
where unhealthy cells are targeted by administrated drugs and by the body immune reaction (while healthy cells ((b)
are spared) is illustrated in (e) (& > 1).

On the other hand, the reverse situation corresponding to & > 1, as illustrated in Figure 6.3-(e),

describes an environment where unhealthy cells are more affected by the regulatory molecules than the
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healthy population. This may be partially due to the immune system response (cancer immunosurveillance
[291]) which may explain the dormancy phenomenon as a result of an effective immune action that
contains cancer [299]. However, it can be effectively argued that the case & > 1 relies on the use of drugs
(chemotherapy, immunotherapy, etc.) that specifically target unhealthy cells. Indeed, we recall that recent
drug molecules are increasingly more accurate due to their overexpression of cancer receptors, which
allow them to target unhealthy cells while the majority of healthy cells are spared (Figures (b) and (e)).
Therefore, it becomes reasonable to consider that during treatments, unhealthy cells are likely to be more
sensitive (i.e. & > 1) than healthy cells to the whole regulatory molecules in the host environment (Figures
6.3 -(e)-(b)).

Finally, it is worth mentioning that the introduction of the above considerations related to the coupling
functions between x and X will make the dynamics of the resulting model richer than earlier models, as
discussed in the next sections (see Section 6.3). To the authors’ knowledge, no equivalent model exists in
the literature.

Next, as conventionally considered, we assume that [§ and 3 are nonlinear continuous decreasing
functions, and, limy_,., §(¢) = limy_,.. (¢) = 0. As in [180], [241], and all subsequent works for non-
coupled models, we consider the typical Hill forms, belonging to the family of functions with negative

Schwarzian derivatives (see [17], Chap. 3),

o)
1 +boi

=L 6

B(o)

where b, b, $(0) and f(0) are strictly positive real numbers and, i > 2 and n > 2. In our case, classical
arguments on cooperativity of enzyme inhibition kinetics (see [156], and [242]), allow to determine the
Hill-type expressions (6.1). The cooperative effect in our case results from the fact that the binding of
one regulatory molecule on one extracellular -surface- receptor of one cell will affect the binding of
subsequent regulatory molecules on other receptors of the same cell. Due to the above considerations on
the heterogeneous sensitivity between healthy and unhealthy cells in the niches, we can readily deduce
that for a given total densities x and £, the associated reintroduction functions 8 and 3 actually operate

according to:

B(0) 62)

A L

where we recognize C(x,%) = x+ % and C(x,%) = x + &, in the definition of the functions (Figure 6.4).

6.2.3 Equations describing the dynamics of coupled cell populations

After the description of the particular case of the reintroduction functions 8 and B according to the
variation of the cell densities x and ¥ (as in Figure 6.4), we now focus on the dynamical equations
describing the populations of cells. Similarly to x and ¥, we denote by y and ¥, respectively, the total
densities of proliferating healthy and unhealthy cells: y(t) = [ p(¢,a)da, and, () = fof p(t,a)da. The
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Fig. 6.4 Illustrative example of variations of a typical B-surface with respect to & and x, for different values of & (i.e.
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in the three possible situations: & > 1, &

age-structured PDEs describing the coupled model in Figure 6.2, are given for all t > 0 by:
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where, by abuse of notation, we set, C(t

type models, we recall that only the death rates (0, 5, Y and ), and the removal terms (8 and f3, since the

reintroduction functions are considered as cell loss from resting cells) appear in the PDE system (6.3).

On the other hand, the new births, which are the renewal conditions at the age a = 0, for resting and
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proliferating cells, are introduced through the following boundary conditions:

(6.4)

for all 7 > 0. Finally, the initial age-distributions, respectively, 7(0,a) = Fy(a), for a > 0, p(0,a) = po(a),
for0 < a < %, r(0,a) =ro(a), fora> 0, and p(0,a) = po(a), for 0 < a < %, are assumed to be L'-functions.

Using the classical method of characteristics, we determine that:

“Tpo(a—t 0<t<
Blay={ ¢ pola=n, 0<r<a (6.5)
e "p(t—a,0), t>a.

Consequently, the first equation in (6.4) is then equivalent to

—R)e 5o (%—
He.0) {2(1 K)e Poif ), (E , 66)

From biological considerations we set, lim,_,o. 7(f,a) = lim,_,.. r(¢,a) = 0, for all fixed value of > 0.
Then, using (6.6), and by integrating the first equation in (6.3) with respect to a between 0 and +-oco,

we determine that the long time behavior ([31]) of X is given by
() =— (5 +B (C’(z))) X(t)+2(1 —I?)e_ﬁzi(t - 1),

where, ii(7), as defined in (6.4), represents for all 7 > 0 the density of new unhealthy proliferating cells.
Similarly, by integrating the second equation in (6.3) over the variable a, between 0 and 7, and using

p(t,%) =it — 1), we get,
§(0) = =75() + B (C(0)) #(1) — (1 = 2R)e a(s ~ %).
Using similar arguments for the healthy compartment, we obtain for all # > 0 the following overall-system,

) (1) +2(1 - R)e Ta(r — %),

)
(1)) %(t) — (1 —2K)e "%ii(t — %),
- 6.7)
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The triangular structure of the previous system leads us to study first:

B
+ ai(t)) %(t) + 2Ke Rii(t — T), (6.8)
B (x(r)+%(r)) | x(t) + 2" B (x(t — ) +%(t — 7)) x(r — 7).

We can prove that a unique piecewise continuous solution, (£(t),i(r),x(r)), exists for all 1 > 0, when
system (6.8) is associated with appropriate initial conditions (@, @z, ¢x), where, ¢z € ¢ ([-7,0],R),
¢c € € ([-7,0],R), and, ¢; € € ([~7,0],R). Moreover, we can show that the system (6.8) is positive,

since K € (0, 1). Throughout this work, only positive solutions of (6.8) are considered.

6.3 Notable features of the coupled model

In this section, we point out some properties of the model (6.8) that highlight its rich dynamics, according

to the following possibly existing cases®:

Point of interest of ¥
Point of interest of i
Point of interest of x

(=) fe)
<
S

Q Cell extinction: Clearly, (0,0,0), is an equilibrium point of model (6.8). Biologically, conver-
gence to the origin is synonymous of the extinction of all the cells (both healthy and unhealthy populations).
From a therapeutic standpoint, we said that we aim to address theoretical studies for the case of unhealthy
cells eradication (while ensuring that healthy cells survive), and also for a dormancy steady state (where
all the cells are at a stable steady state). In both situations we do not consider that healthy cells may vanish.
However, at this juncture, an interesting question may arise: Does chemotherapy affect healthy cells? In
fact, side-effects of recent chemotherapy treatments are fewer than those of the drugs used in the past,
since novel molecules are designed for over-expressed receptors (i.e. drugs are more accurate since they
attack cells with accurate extracellular receptors expressed only on mutated cells). In addition, medications
are mainly acting on cells during their phase of proliferation, while it appears that most of the healthy cells
are in quiescence. Therefore, we consider that only a radical therapy will lead to total cell eradication,
and this is a situation that we want to avoid. Nevertheless, the theoretical conditions (depending on the
biological functions and parameter involved in our model) that cause total cell eradication are discussed in
the next section.

U Escape from dormancy in diseased cells: One of the main concerns related to dormancy is to
explain how escape from tumor dormancy can emerge (see [154], but also the non-coupled model in [4]
that admits unbounded solutions).

Similarly, we notice in the coupled model (6.8) that the CSC compartment may have unbounded
solutions that reproduce the unlimited cell proliferation in cancer. Indeed, from the second equation in
(6.8) it is obvious that 2Ke~ 7% > 1, implies that, lim;_, | o ii(t) = +oo. It follows from the the first equation

5We recall that X, = 0 implies that i, = 0, and vice versa.
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in (6.8) that lim,_, ;. %(f) = +eo. This situation may reflect the escape from tumor dormancy, or the
invasion of the bone marrow by the blasts in AML ([4]).

U Existence of the desired steady states © and €: Let us start from the general case in which the
nonnegative point (%, i, x,) is a steady state of (6.8). Therefore, it follows that this equilibrium point
satisfies:

|84+ Blx, + k)| 7 =2(1- R)e Ta,
B( + ax, )X, = (1 —2Ke™ W) e, (6.9)
8- (27" 1) Blae+ )| % =0,

where we exclude the previously discussed case of unbounded solutions by assuming that: 2Ke 7% < 1.
Indeed, our main objective here is to determine necessary and sufficient conditions for the existence of
D = (X, e, x,), Wwhere x, > 0, X, > 0 and iz, > 0, and for the existence of € = (0,0,x,), where x, > 0.
First, since f3 is continuous and decreasing from (0) to zero, we deduce from the third equation in
(6.9) that,
8 < [2¢77"—1] B(0), (6.10)

is a necessary and sufficient condition for the existence of x, and %, such that, x, + X, > 0, and, § —
(2¢77"— 1) B(xe + %) = 0. In fact, the inequality (6.10) is a necessary and sufficient condition for the
existence of & (but not D). i

Next, from the second equation in (6.9), we obtain that i1, = %

By substituting i, in the first equation of (6.9), we get:
B (x, + @s,)

T
[5 2e 71 % =0. 6.11)

1-2Re 7t

The fact that ﬁ is continuous and decreasing implies that the condition,

2e 71
1—2Ke 7t

5 < £(0), (6.12)

2e 7|
To2Re 7 5B re+

a%,) = 0. Obviously, we notice that, 2Ke 7" < 1 < 2¢ 7%, In fact, the condition (6.12) is a necessary and

is necessary and sufficient for the existence of x, and X,, such that, x, + &%, > 0, and, 5—

sufficient condition for the existence of (%,,,,0), where X, > 0 and i, > 0.
It is worth mentioning that, if the condition (6.10) is satisfied (i.e. the necessary and sufficient
condition for the existence of &), together with the condition

2e 17—
1— 2Ke v

0> B(0), (6.13)

then (0,0,0) and € are the unique existing steady states of the studied model. Let us now focus on the
case where both x, and %, are simultaneously strictly positive (and then i, is strictly positive). In the latter
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situation, we get,

ax, =B (i
Xe+~Xe 531 (,Ll), (614)
Xet+Xe =P (1),
where, U = ﬁ, and, fi = w Consequently, we get,
xe= gy [@B~ ()~ B ()]
e a—1 au ‘LL )
Xe = 5{1_1 ﬁ_l(ﬂ)—ﬁ_l(ﬂ) ) (615)
e = 26*?%71)26'
Now, we distinguish between the following two situations:
The case & = 1: Here we notice that,
¢ _B-1(q)_ B!
Yot e Sﬁ ~(u) B (), 6.16)
Ue = 577 _1%e>

which is either an impossible case if the biological parameters are such that §~1 (fi) # B! (i), or, when
p! (ft) = B~ (u), it corresponds to a continuum equilibrium point (the infinite possible values of x, and
X, that satisfy the first equation in (6.16)). We want to avoid the latter continuum equilibrium points since
that case has no concrete biological signification.

The case & > 1 or 0 < & < 1: First, we focus on the case 0 < & < 1. We recall from earlier discussion that,

biologically, 0 < & < 1 means that CSCs are less sensitive than ordinary cells to their shared environment
composed by regulatory mitotic molecules (due to epigenetic mutations for instance, unhealthy cells no
longer respond to inhibitory signals and continue to proliferate). More generally, & < 1 plays the role
of a mitigating factor of the effect of regulatory molecules that attenuate the entrance frequency into
proliferation. Now, from (6.15), we deduce that a sufficient condition for the existence of ® when & < 1,
is given by: B~ (1) < B (1) < B (u).

On the other hand, we observe that when & > 1, then, from (6.15), we deduce that a sufficient
condition for the existence of ® is given by: B~ (u) < B~ (j1) < &B ' (1). We summarize the overall

discussion in the following result:

Proposition 6. (i) For all & > 0, if the conditions

2¢ 71

TR B(0), and, § > [2¢7""—1] B(0), (6.17)

are satisfied, then (0,0,0) is the unique equilibrium point of the system (6.8). Note that in fact (0,0,0) is
always a steady state of the system (6.8).
(ii) For all & > 0, the condition
8 < [2¢77"—1] B(0), (6.18)

is a necessary and sufficient conditions for the existence of the steady state, € = (0,0,x,), where x, > 0,
for the system (6.8).
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(iii) For all & > 0, if the conditions

2¢ 71

Iy 7= B(0), and, § < [2¢7""—1] B(0), (6.19)

are satisfied, then (0,0,0) and € = (0,0,x,) are the unique steady states of system (6.8).
(iv) For all & > 0, the condition

2¢ 7T 1

1_2fe 7 B(0), (6.20)

is a necessary and sufficient condition for the existence of the steady state (%,,i,,0) where, X, > 0 and
ii > 0, for the system (6.8).
(v) For all & > 0, if the conditions

2¢ 71

ey o= B(0), and, & > [2¢77° —1] B(0), (6.21)

are satisfied, then (0,0,0) and (%,,i,,0) are the unique steady states of system (6.8).
(vi) For all & > 0, the conditions

2071

(04 1, S< ——= ==
7 1—-2Ke 7*

B(0), and, § < [2¢7""—1] B(0), (6.22)

are necessary, but not sufficient, for the existence of © = (X, i, X, ).
5(1-2Ke™77)
T 2e o1

(vii) We denote |1 = 0, and, =

SeTET” . If the conditions,

O<a<l, u<p(0), ii<po),
ap="(u) < B~ (m) < B~ (w), (6.23)
2Ke 7P < 1 <2e7 7P,

a>1, u<p0), i<p0),
B (w) < B~ (@) <ap'(w), (6.24)
2Kke TP <1 <2e 77,

are satisfied, then a unique strictly positive dormancy steady state ®© = (X,, 1, X ), exists and is given by
(6.15).

Remark 34. 1) Obviously, uniqueness in Proposition 6-(vii) means the existence of a unique isolated
strictly positive equilibrium point ©, but the origin and the points € = (0,0,x,), (%, .,0) are also steady
states of system (6.8).

2) The third condition in (6.23)-(6.24) expresses an interesting relationship between the fast-self
renewing ability K, the apoptosis rate of malignant cancer cells ¥, and their average cell-cycle duration

. We notice that even if K is relatively important (and knowing that it is not easy to act on K by drugs



A coupled model between healthy and mutated stem cells: cancer dormancy and eradication of cancer
178 stem cells

infusion since its high value is due to FLT3 mutation) it is still possible to guarantee the existence of a
dormancy state by increasing Y. However, the increase must be moderate to not exceed the upper-bound
7T < In(2).

3) Finally, we notice that other cases can be discussed if biologically needed. For instance, by adding
the following restriction: 2B~"(f1) < (1+ &) B~ (1), to the conditions in (6.23)-(6.24), we ensure that
Xe > X, which is the expected situation of existing (dormant) tumors, without forming a clinically apparent

cancer.

Now, we motivate our stability analysis through some preliminary numerical observations that
highlight the rich dynamics of the model that we introduced in this work. In particular, we point out the
different possible behaviors of the nonlinear differential-difference system (6.8) according to its associated
initial conditions. The latter fact emphasizes the importance of determining mathematically an estimate of

the region of attraction of each steady state of interest.

Example 9. Let us consider the following biological functions and parameters for cells in Category A

and Category B:
Category A: 7=1.11 =01 y=01 B(m)==5 oa=1
Category B:  £=09 6=036 7=032 B(m)=i>s &=06 K=054

For the considered set of parameters and functions, a unique dormancy steady state ® exists and is
given by © = (X, e, X, ), where X, = 0.6573, ii, = 0.4737 and x, = 1.5255. This steady state is shown
in Figure 6.5. However, the latter point is not the unique equilibrium point of the system. Indeed, the
0-equilibrium (0,0,0), and the points: ¢ = (0,0,2.1826) and (3.1998,2.3060,0), also exist’. When
we select the constant initial conditions Q.(t) = @z(t) = 2, for all t € [—7,0], and @;(t) = 1, for all
t € [—17,0], we observe that the trajectories converge to (3.1998,2.3060,0), as illustrated in Figure 6.6,
where unhealthy cells survive (the attractive point seems to be stable), while the healthy cells vanish
(converge to zero).

By changing the initial condition of i, from the previous value to @;(t) = 0.1, for all t € [—7,0], we
observe that the trajectories converge to €, as illustrated in Figure 6.7. Moreover, the steady states in
Figures 6.6 and 6.7 seem to be stable (each one has its region of attraction). Lyapunov theory offers strong
tools to establish the regional stability properties of the steady states of interest, provided that a suitable
Lyapunov functional is found for the studied model.

Now, let us modify the value of K by increasing it to K = 0.6680. It follows that 2Ke~"* —1 =0.017,
which implies that the trajectories of the unhealthy compartment are unbounded (similarly to [4]).

Numerical simulations in that case, for arbitrary initial conditions, are given in Figure 6.8.

7One may notice the relationship that exists between the three different non-trivial steady states. In fact, the x,-value in &
corresponds to the sum x, + %, of the dormancy steady state D, while the %,-value in the steady state (%, ii,,0) corresponds to

the value %, where x, and %, in the latter fraction are the corresponding values in the dormancy steady state .
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Example 10. Now, let us consider the following functions and parameters:

Category A: 7=125 §=02 y=02 Bm=-—-5 a=1
CategoryB: =166 6=0.1 =02 B(m =2, a=04 K=03

The steady states (0,0,0), € = (0,0,x,), (X,ie,0) and ® = (X, e, X ), of the corresponding system,
exist.

If we select the constant initial conditions @.(t) = 1.55, and @z(t) = 1, for all t € [—7,0], and
¢i(t) = 0.3, for allt € [—%,0], we observe that the trajectories are unstable as illustrated in Figure 6.9,
knowing that the dormancy steady state here is © = (0.3445,0.0792,0.9926). We recall that oscillations
in hematopoietic systems are associated to many periodic diseases (e.g. cyclic neutropenia [37], [241],

or some types of chronic myeloid leukemia).

2 e

Time t (days)

Fig. 6.9 Unstable (oscillatory) solutions.

Now, let us consider random constant initial conditions and let us keep constant all the biological
parameters except the value of @, that we consider to be ranging between 0.1 and 0.6. As shown in Figure
6.10, we note that by increasing the value of &, the trajectories of the corresponding system become
stable when @ increases. Thus, it appears that & may have, at least in this example, a stabilizing (or

destabilizing) effect on the trajectories of the system (6.8).

Example 11. Finally, let us consider the following functions and parameters:

Category A: t=125 6=0.1 y=02 fB(m)= 1+1m2

a=1
CategoryB:  £=0.7 6=02 7=0.1 B(m)=1355 &=2 K=05
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The conditions of existence of © = (%, lle, X.) are satisfied, and in this case we obtain: %, = 0.6833,
i, = 0.1580 and x, = 1.45599. For the constant initial conditions @y(t) = 0.1 and @z(t) = 1.5, for all
t € [—7,0], and @;(t) = 1.5 for all t € [—%,0], it appears that D is stable as illustrated in Figure 6.11.
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Fig. 6.11 Convergence to the dormancy steady state .

At this juncture, we deduce that the coupled system (6.8) under study has richer dynamical features
than the earlier models. Firstly, we saw that the solutions of the coupled system can be bounded or
unbounded. In the former case, several steady states may exist and their values depend on the different

biological parameters of the model. The existence of the steady states of interest (© and €) are governed
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by some non-intuitive conditions on the biological parameters involved in the system (see Proposition
6). In addition, we saw that according to the initial conditions associated with the model trajectories, the
bounded solutions may converge to one among several possible steady states, meaning that stability of
each steady state is regional (local). Moreover, in the general case, the steady states of the system (6.8)
are not always stable, but on the contrary, we noticed that oscillations may emerge, as in Example 10).
Our objective in the sequel is to determine exponential stability conditions for the steady states of interest
(all-cell extinction (0,0,0), unhealthy cell eradication &, and cancer dormancy D).

6.4 Stability analysis of the extinction of all the cells

In this section, we perform a stability analysis of the 0-equilibrium of the system (6.8). From a biological
standpoint, this is a case that we want to avoid, as discussed in the previous section (see the first point,
Cell extinction), since it is synonymous of an excessive therapy that not only alters unhealthy populations,
but also leads to the extinction of healthy cells in the coupled model.

Here we introduce the following functional:

W i) =50) +x(0) i [ Do
t = (6.25)
TYA / P10 B (x(0) + 7(0)) x(0)d,

*

where, Vi =VYi1+ Vi, Y11 = 1+ %, Yo = —m, K= %eﬁ" ll/* — (B(O) + S) E—B(O) —[ZS,
and, Yy, = 2yze 77, where, 3, together with p; and p,, are strictly positive constants that we choose
later.

We can readily check that if 2K e 7T < 1 (that we can rewrite as K < K), and v >0, (i.e. Yo <0),
we obtain y; > 0. It follows that the functional % is nonnegative. We notice also that % is an unusual
LKF candidate, since it can be used only because the system (6.8) is positive. In addition, it is a degenerate
LKEF candidate (since # = 0 does not imply & = 0) which is usually the case for differential-difference
systems. This will also be the case when we investigate the stability properties of the dormancy steady
state, where we will construct a quadratic degenerate LKF.

Thanks to the functional %', we prove the following result:

Theorem 13. [f the conditions
(2677 —1)B(0) <8, O0<y*, and 2Ke 7" <1, (6.26)

are satisfied, then the origin of system (6.8) is globally exponentially stable with a decay rate smaller or

equal to Ya > 0 that we estimate.
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Proof. Simple calculations show that the derivative of %, defined in (6.25), along the trajectories of (6.8),
satisfies, for almost all £ > 0,

(1) = |=5+(y1 = 1) B (x(0) + a5(1)) | %)

- [‘/’1 (e—mf - 2&-??) 01— K)e—yf} it — %)

— [6+01=w) B () +50) |50 —wipy [ e Daeyae (6.27)
— (y3e " —1)2e 7B (x(t — 7))+ %(t — 7)) x(t — T)
—wop [ IR (x(0)+50) a0t

Now, according to 6.26, the conditions 2Ke~?* < 1 and y* > 0 are satisfied. It follows that for all

p1 € <O, % In <W) , where k > 1 is a constant that we will select later, we have,

1—2Ke 7% . L s o
0< Te <e PP _2Ke "' <1 —-2Ke 7",

On the other hand, using the definition of v, we can readily check that:

vi (1-2&e ) —2(1-K)e 7 >0,
’ 2(1-K)e 7?

_ 1—2Ke 7F o s

k= (ke> —2(1-R)e 7,

is a strictly positive constant. Next, since B is decreasing, and using the fact that y1; > 1, it follows that

(w11 — 1) B (x(t) + (1)) < (w11 —1) B(0).

From the previous intermediate results, we conclude that for all # > 0,

Therefore, we can notice that for all k € (1 WW) ,

—&+ (w1 — 1) B (x(r) + ax(t)) < ynaP (x(r) + Gx(t)) ,

where, Yy, < 0.

Now, let us assume that the third decay condition, § > (26_77 - l) B(0), is satisfied. Then we choose

= %W, Therefore, it is easy to check that, in the case, we have y3 € (1, 5273%())) e”).

It follows that § + (1 — y») B(0) is positive.

For later use we denote 6* = 8 + (1 — y») B(0).Next, by selecting p, = % In (é"fl) > 0, we deduce

that y3e P2% — 1 is positive. For later use we denote p* = yze P27 — 1.
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We conclude that W(t) satisfies, for almost all # > 0,

P(0) <ynB (x(0) + G5(0) 50)— yapy | e Da(o)ae

t
tf
—kii(t — %) —2p*e "B (x(t — 7) + X(1 — 7)) x(t — 7) (6.28)
t
—8x(0) = yepr [P IB (x(0) +5(0) (00,
1—7T
where, w1, <0, k >0, 8* > 0, and, p* > 0. By integrating the previous inequality (6.28), we deduce
that the functional 7 is bounded over [0, +c0). From the definition of #, it follows that for all # > 0, the

trajectories %(7) and x(z) are bounded by, respectively, the positive constants ¥; and x;.

A direct consequence is that for almost all 7 > 0,

(0 <viob (-+ a5)5(0) — wip [ " P D0l
, =T (6.29)
— 8 x(t) — yap2 /t B P (0B (x(6) +3(0)) x(€)dl.

‘We conclude that for almost all > 0, we have,

W(t) S _W4W (ilvlzl‘axt)7 (630)

where Yy = min {_WUE(XS + d-fs)a S*anPZ} > 0.
Now, by integrating the inequality (6.30), we deduce that for all + > 0,

W (&g, x) < e VW (@, 0a, @s) - (6.31)

It follows from the definition of % that X and x converge exponentially to zero with a decay rate
greater or equal to Y. From the second equation in (6.8), we note that the linearity in & and the fact that
2Ke™ 7" < 1, imply that i converges exponentially to the origin when & and x also converge exponentially
to the origin. This concludes the proof of Theorem 13. 0

Remark 35. i) The conditions (6.26) exclude the existence of any steady state different from the origin.

ii) We can interpret the cell extinction as a result of an excessive therapy that affects also healthy cells

so that their apoptosis rate, Y, increases until becoming greater than the ratio 1n(12), or, until the death

rate and differentiation rate, i.e. 8, becomes greater than (26*77 — 1) B(0) (which is a less demanding
condition in comparison to 'y > @).

iii) Arguing as in Chapter 4 and in [4], we can prove that the conditions (6.26) are also necessary for
the asymptotic stability of the origin.

iv) Finally, we deduce from Theorem 13 that all-cell extension results from uncorrelated conditions
between the healthy and unhealthy compartments. Indeed, we note that the last two conditions in (6.26)
relate to the unhealthy compartment, since only unhealthy parameters are involved. Moreover, these
conditions are similar to those giving global asymptotic stability in [4] for a non-coupled model. The
biological interpretation is that cell extension occurs if and only if both the healthy and unhealthy

compartments are enable to regenerate themselves autonomously. In other words, it appears that the
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coupling has no effect on the stability of the 0-equilibrium since the conditions for total-cell eradication
imply extinction of the unhealthy and healthy compartments separately. This observation will not hold

when we study dormancy.

Here we will emphasize on the dormancy steady state ® = (%, éi,, X, ), where all the components of
the steady state are different from zero (i.e. X, > 0, i@, > 0, x, > 0). In fact, we will highlight the case of
dormancy D, since it is clearly the most general one. Indeed, from the analysis of ®, it becomes possible
to evaluate the regional stability properties of & = (0,0,x,) (which are partially investigated in [? ], when
o = 1), and also of the steady state (%,,i,,0).

6.4.1 A new representation of the system

Now, we want to investigate the stability properties of ® when it exists. Thus, we assume that the
conditions given in Proposition 6-(vii) are satisfied and we perform the classical changes of coordinates:
X =%—%,U=1ii—ii,, and X = x — x,. Therefore, from (6.8), it follows that for all 7 > 0,

.

X(0) = =[5+ BX(1)+aX(1) +x.+ k)| (R(1) +.)
+2(1—=K)e™7*
0(t)+i, = B(X(t)+
+2Ke V(U (t —
X(1)=—[8+BxX(
+2e TB(X (1 —7)

(6.32)

1) +xe+%)| (X (1) +xe)
—T)+x.+ %) (X ([ —T)+x.).

To ease the analysis of the above system, we rewrite it in a more convenient form. Observe that for all

3> —e¢, e >0, where, 3 = X + X and ¢ = x, + X,, we have, with an abuse of notation,

B(3+e)=P(e)+03+R(3), (6.33)

where f is the Hill-function defined in (6.1), 8 = B/(¢), and, R(3) = [*3(5 + ¢ — £)B?) (¢)d¢. Next, for
all 3> —¢,¢ >0, where, 3 =X+ aX, and, ¢ = x, + 0%, we get similarly to (6.33),

B(+8) =BE)+635+R0), (6.34)

where, 8 = B/(€), and, R(3) = [T T3 (3+&— £) B (¢)d{. Therefore, using (6.33)-(6.34), and by simplifying

some terms using (6.9), we get the system,

X(6) = —aiX(t) — a2X (1) + 030 (r — &) + F(X (1), X (1)),
Ut)=asX(t)+aX(t)+asU(t— %) —F(X(t),X (1)), (6.35)
X(t) = —agX(t) — a7 X(t) + agX (t — 7) + aoX (t — 7) + G(X,, X)),

where, F(X(t),X(t)) =—

D
o)}
~—~
~—
N—
+
<
—
N—
—
S~—
—_

(6.36)
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GX,, %) == 0 [X*(6) X (NX(1)] — RX (1) + R (1)) (X (1) + %)
2.9 [Xz(t SO+ X(—T)X (1 — r)] (6.37)

+2e "RX(t—1)+X(t—1))(X(t —7T) +x.),
and where the constant parameters a; are given by:

ay =&+ B(x. + ax,) + @bz, ay= 0%, a3 =2(1—-K)e 77,
a4 = B(xe + 0%,) + 065, a5 = 2Ke 7 ag = 8 + B (xo + £, ) + Oxe, (6.38)
a7 = 0x., ag=2e 1" [B (xe + %) + Gxe] , g =2¢ " 0x,.

We notice that if the trajectories of (6.35) converge exponentially to the 0-equilibrium, then the
positive trajectories of the system (6.8) converge exponentially to ©. Now, we are going to state and
prove some sector conditions on the nonlinear terms R and R. Then, we deduce some upper-bounds on the
nonlinear terms F and G. For that purpose, we prove in ?? through lengthy calculations that there exist

strictly positive constants s, §, m and ™, satisfying:

53], (6.39)
52, (6.40)

for all 3 > —e (3 and ¢ are defined before (6.33)), and for all 3 > —¢ (3 and ¢ are defined before (6.34)).
Moreover, using (6.39) and (6.40), we can determine strictly positive constants ¢;, i = {1,...,6}, such
that the following quadratic upper bounds hold true:

|F(X,X)| < 10(X) +0(X), (6.41)

|G(X:, X)| <30(X (1)) +c4Q(X (1)) + ¢sQ(X (1 — 7)) + 6 Q(X (1 — 7)). (6.42)

Remark 36. (1) The upper-bounds given in (6.39), (6.40), (6.41), and, (6.42), will not intervene when we
determine the decay conditions and the decay rate of the solutions. However, their effect appears in the
size of the basin of attraction that we will provide. Actually, if the constants s, 5, m, M, in (6.39)-(6.40),
as well as the constants ¢; in (6.41)-(6.42), are large, then the size of the basin of attraction shrinks
accordingly. (2) By comparing the present study with [? ], we notice that [? | was devoted to the study
of a model which was simpler than the system (6.35) under study in this paper. Indeed, the model in [?
] can be obtained by putting 0. = 1 and by eliminating all the terms where X, is present in equations
(6.35), (6.38), (6.36) and (6.37). (3) It is worth mentioning that the stability results that we will determine
later apply for a wide range of functions 3 and B as long as the sector conditions (6.39) and (6.40) are
satisfied.

Now, we want to perform a stability analysis of the trivial steady state of the (shifted) model using its
representation in (6.35): we recall that the 0-equilibrium of (6.35) can be © or € of (6.8). For meeting

such a purpose, strong tools are provided by Lyapunov theory, in the analysis of nonlinear differential-
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difference systems with possibly piecewise continuous solutions (see e.g. [121], [152], [232], and the
references therein). However, finding a suitable LKF is not an easy task. In addition, the provided stability
conditions can be conservative. So, we adopt the following strategy that highlights our biological aims:

@ Firstly, we use the descriptor method [106] that allows us to provide a local (Lyapunov-based)
stability result for our biological model. The advantage of this approach is that it provides an effective
tool (formulated as an LMI condition) to check if a steady state of a specific biological model (defined by
its set of parameters) is locally stable.

@ In order to address the following issue: How can we provide realistic stability conditions that can
be interpreted and satisfied under the effect of drugs?, the first approach will be slightly modified in a
second time. Thus, we establish a different result (that can be seen as a particular formulation of the first
approach) which relies on the analytic construction of a suitable Lyapunov-like functional, specific for
the studied biological system. The latter approach allows us to provide more explicit decay conditions
than the common LMI-type approaches. We point out that even if the second construction provides more
conservative conditions than the LMI ones, they have the advantage of being more easily (biologically)
understandable. It is to this end that, in the last section, we show how the decay conditions can be
interpreted, in practice, according to the biological context of hematopoiesis and leukemia.

In summary, we determine throughout this section some exponential decay conditions (along with
an estimate of the decay rate of the solutions and a region of attraction of the favourable steady states),
via two complementary approaches: the descriptor method that provides local stability results for the
general structure of the studied system, and, a suitable explicit Lyapunov-like construction that allows us
to address the regional stability properties of the dormancy steady state. The latter decay conditions lend

themselves more easily than the LMI ones to medical interpretations.

6.4.2 Stability analysis using the descriptor method

In this section, we consider as a first step only continuous solutions of the system in (6.35) and we study
the linear approximation of the state col {X X }, that we denote Z = col {Z;,Z,}. Then, by neglecting the
nonlinear terms F and G in (6.35), we rewrite the studied system in the following compact form:

- (6.43)

Z({t)=BoZ(t)+B1Z(t —7) +BU (t — %),
U(t)=BsZ(t)+B4U (t — %),

for all # > 0, where B; are given by (we recall that a; are defined in (6.38)),

0
By =— o , By = awem , By = ;
ay 0 0 a3 (6.44)

B; = ( a a4 ) , and, By = as = 2Ke 7%,
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Next, we consider some symmetric positive definite matrices P > 0, S > 0, J > 0, of appropriate dimension,

together with a strictly positive constant @, and we verify that the derivative of the functional,

V(2.,0,) =Z(t)"PZ(t)+ / i ZT(0)Sz(0)dl +d / i 0*(0)dl+t / i (+T1—0)ZT(0)JZ(0)dY,
(6.45)

along the trajectories of (6.43), is given by,

V()=Z"(t) [P+ P Z(t)+Z" (1 )SZ() ( —
— [ ZT(0)J2(0)dl + T277 (1) (

First, we notice that an upper-bound of V is given by,

V() <Z"(t) [P+ P Z(t)+Z" (t)SZ(r) — —1)SZ(t — 1)
+12ZT () JZ(t) - ZT (1)JZ(t) + Z7 (¢t ) ( T)
+ZT(t —1)JZ(t) = Z" (t — ©)JZ(t — 7)+a0>%(t) — aU%(t —
+2 [ZT ()P +27 (t)PT] [BoZ(t)+BiZ(t —7) + B U (t — %) — Z(1)],

=0

(6.46)

N
~—

which, in fact, directly follows from the Jensen’s Inequality given by,

t 3
Zr(0yaer | z(0)de

-7 -7

1 /t ZT(0JZ(0)de < —

——[z()-z(t—)]" T [Z(t) - Z2(t - 7)],

and where P and P that appear in (6.46) are some free-weighting matrices of appropriate dimension. Then,
it follows that,

V(1) <n'(0)Pn(1)+a0° (),

where 1 is an augmented state defined by,
n'(t)y=1|2z@t) z(t) Zt—1) O@—1%) |, (6.47)
and the matrix ® is given by,

S—J+p'By+BLP P—P +BP J+P'B, P B,

2P -P PB PB

@ — * L ! 2 (6.48)
* * —S—J 0
* * * —a

Noticing that, U(t)= | B; 0 0 By } n(t), it follows that,

2 T T
G02(1) = 0" ()EN(r), where, E= | By 0 0 By | @[ B 0 0 By
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Therefore, by applying Schur complement, we conclude that V(¢) < 0 is satisfied provided that the
following LMI:

S—J+P By+BSP P—P +BLP J+P'B, P'B, Bla

x 2J-P P PB PB 0

Y= * * —S—J 0 0 <0, (6.49)
* * * —d Bfa
* * * * —a

holds. Next, by following arguments of [105, 106], we deduce from W < 0 that the last block in (6.49)
—d Bla

satisfies < 0. The latter implies by Schur complement that —1 + B} B4 < 0. Hence, the

*  —d

eigenvalues of By are inside the unit circle, i.e. the difference equation U(t) = B4U(t — %) is stable
for all T > 0. The latter, together with V < 0, guarantees the asymptotic stability of the system (6.43).
We mention that it is possible to extend the stability result to the nonlinear system (6.35), using the
functional V (i.e. providing some conditions on the nonlinear terms F and G as in [106], Section 3.11).
However, since it seems actually difficult to interpret the LMI (6.49) as a combined targeted therapy for
the studied biological system, we slightly modify our Lyapunov approach by designing, in the next section,
a suitable specific LKF for the studied system that provides explicit (sufficient) stability conditions for the
dormancy steady state of the nonlinear system (6.35). The functional that we are going to propose has
some similarities with the functional V. Actually, in the next section, we are going to select some matrices
P, S and J, together with the constant @, involved in the above construction. Thus, we will determine
analytically some upper-bounds on V, through classical inequalities. Not surprisingly, the latter approach
increases the conservatism of the sufficient stability condition in the LMI form (the LMI condition is given
by (6.49)). That is the price of determining more biologically exploitable results (i.e. explicit exponential
decay conditions with an estimate on the decay rate of the solution and a subset of the basin of attraction
of the trivial steady state of the nonlinear system (6.35)).

6.4.3 Obtaining Explicit Exponential Decay Conditions

We focus on the coupled system using its representation in (6.35), with possibly piecewise continuous

solutions. Firstly, let us introduce the quadratic function:
Q(X,X) = 0(X) + 1 0(X), where, Q(¢) = %62, (6.50)

and A; = 2. This is equivalent to put P = diag { 1/2, 1} in V of the previous section. Next, we consider
the following operators,

v ()= /_0~ P O(¢(0))dl, and, (6.51)

T

7(9)= [ e o, 652

J—=T
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where, ¢ € ¢ ([—T, 0], ]R), pecv ([—'E, 0], R), and py, p», are strictly positive constants that we determine
later. In fact, observe that, compared to the integral terms in V of the previous section, . and % have
exponential functions -in the integral terms- that make it possible to get a lower-bound on the exponential
decay of the solutions. Next, in the quest for explicit decay conditions, we are going to substitute X and X
when computing the derivative of £ (which is not the approach adopted in the descriptor method, where

X and X were not replaced). Thus, the derivative of £ along the trajectories of (6.35), satisfies

Q(f) :—ZCL]A,]Q(X(t)) —2a6Q(X(t)) — (CQ)L] +a7)X(t)X(t)
Fas R (O0 (1 — %)+ agX ()X (t — 7) + aoX (1)K (1 — 7) (6.53)
+AMX()F (X (1), X(1) + X (1)G(X,,X,).

Notice that the derivative of %/ (U,), for almost all # > 0, is
D (1)=00@1)—e POt — %)) — 1 Z (T,). (6.54)
Now, using the second equation in (6.35), we obtain

Y (1) =—p1 (0,) + 030X (1)) + 630(X (1)) — (e P'* —03)Q(U (¢ - 7))
+aa4X ()X () + a2asX (1)U (t — %) + agasX () U (t — %)
+Q(F(X(1),X (1)) — F(X(1),X(1)) [0aX (1) + 02X (1) + asU (1 = 7)] ,

where the a;’s and F are defined after (6.35). Similarly, we compute the derivatives of the functionals
7 (X;) and . (X;). By combining the previous intermediate results (i.e. 2, % and .#), we deduce that
the time derivative of the functional,

VX, %,0) = QX @), X))+ 17 (X)) + LX)+ M7 (T,), (6.55)

where A,, A3 and A4 are positive constants to be chosen later, along the trajectories of (6.35) is given, for
almost all ¢ > 0, by:

Vi) =— [zzlal N —Maﬂ 0(X(1)) - [z% B - mg} 0(X (1))
— 3 I(R) — pra” (X)) — P12 (Or) — A [e—mf - ag] 0(U(t - 7))
e PTQ (X (t—1)) — Mae PTQ(X(1 — 7)) + o205 uX (1)U (1 — %)
— @A+ a7 — ),4a2a4}X(t)f(( t)+agX ()X (t— 1) +agX (t)X(t— 1)
+ [a3A1 +agas ) X ()0 (1 — %) — asAeF (X (1), X (1)U (t — %)
+X(1)G(X, Xe) + MQ(F (X (1), X (1)) — AF (X (1), X (1)) [0aX (1) + 02X (1)] .
Next, we recall that for strictly positive constants, v,- >0, i=1to 5, (that we will choose later), we
have the following inequalities: [XX| < -Q(X)+v1Q(X), [X(1)X (t —7)| < 3-Q(X (1)) + 20X (t — 7)),

X% 1)] < LXK (1) + (R (- 1), [X(O0( —7)] < V4Q< (1) + vsQ(U (1~ %)), [X ()0 7)] <
v15 [0]0.4 ( )) +vsQ(U(t — %)). Therefore, it follows that the derivative V7 (¢) satisfies, for almost all > 0,
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the following inequality:

Vit) <= 2har = 0] QX (1)) — [2a6 — b2] Q(X (1)) — p2s (X:)
oMo T (X)) — pria (U)) — [Me—mf - 53} o(U(t — 7))
— [le T~ 0] Q(X(r— 7)) — [lse P* —bs] QX (r — 7)) (6.56)
+MO(F (X (1), X (1)) — asAaF (X (1), X (1)U (¢ - 7)
+X()G(X, X)) — MF (X(2),X (1)) [0aX (1) + 02X (1)]

where,
b= A +7L4a§+v1 ‘a27Ll+a7—7L4a2a4‘ ,

_ 2, |whiter—Aaay| | fag| | fao | fazaslh
bz— kz+7t4a2+v—l+72+73+v757
b3 A4Clg+\/4|a3ll +a4a5l4\+v514]a2a5\,
by = V2|Clg|, and, b5:v3]a9].

(6.57)

Now we are ready to determine decay conditions that ensure the regional exponential stability of the
trivial steady state of the system (6.35). The terms where F and G are involved in (6.56) will be used only
to determine a subset of the basin of attraction of the trivial steady state of the system (6.35).

Let us focus on the constant which is multiplied by Q(U (¢ — %)) in (6.56). Using the inequality
lazA1 + agasAy| < Ar]as| + A4|asas], we notice that the inequality Ase P1% — b3 > 0 is verified if

)L4 (eiplf — a§ — V4|Cl4a5‘ — v5|a2a5]> — V4A,1 ‘ag‘ > 0. (6.58)

For later use, we set 0| = A4 (e*p‘% — a2 — v4laqas| — v5]a2a5\) — Vadi]az].
We deduce that the first decay condition is given by:

u§ + Valagas| + vs|apas| < 1. (6.59)

Indeed, the previous condition is necessary to guarantee that (6.58) is satisfied. Now, let us select
V4= %\aﬂ_l, and v5 = %|a2|_1, for a4 ## 0 and a; # 0. Using the definitions of a;’s, v4 and vs, it follows
that the first decay condition (6.59) is equivalent to

(2Ke T2 4 2Ke 7T < 1. (6.60)

Remark 37. One notices that we have deliberately chosen v4 = S|as|~", and, vs = 3|a>| ™", and that
these choices are not unique. Indeed, our objective here is to determine a sufficient decay condition
that involves only the unhealthy parameters of the permanently dividing subpopulation (for instance, the
subpopulation with FLT3-type mutations in AML) which are, K, ¥ and ¥. For that purpose, we derive a
decay condition involving only the parameter as. Therefore, V4 and Vs are used in order to compensate a,
and ay. A more general form is given by V4 = Vy|as| ™!, vs = Vs|ay| !, where V4 > 0, and, Vs > 0. In this
case, the decay condition (6.60) rewrites as, (2Ke 7")? +2 (V4 + V5) Ke 7 < 1.



6.4 Stability analysis of the extinction of all the cells 193

a§+a5]

Now, notice that a direct consequence of the inequality (6.60) is that for all p; € (O, % In <1+4[5> ) ,

i 1
we gete P17 — [ag + as] > 7[ ostas]

> 0. Consequently, we deduce that 91, which is defined right after
(6.58), and which is now equal to: 07 = A4 (epl T _ [ag + a5} > — V4 |as|, satisfies the inequality, 9, > 0,

for all A4 = % >0, where A4 > 1. Next, using the inequality,

~ ~ . 2’a5’7t4 ~ 01 ~ ~
|F(X(0),X(1)0(—7)| < > O(F(X(1),X(1))) Sasiia (U—-1),
it follows from (6.56) that,
Vi) <—[2Aa; —b1] Q(X (1)) — [2a6 — b2] Q(X (1)) — DEIQ(U(t )
—p2Aa L (X)) — pada (X)) — [Mae P —by] Q(X (1 — 7)) (6.61)

where,

2 (asAs)*

0

H(XMXZ) == <l4+
(6.62)

) Q(F(X(1),X (1) +X()G(X;, X,)
—MaF (X (1), X (1)) [0aX (1) + 02X (1)] .

Arguing similarly, we select v, and V3 that compensate the terms ag and ag (for |ag| # 0, and |ag| # 0).

For instance, we can consider v, = and v = Then, we put, for instance, A, = A3 = % We

6\01 \ 6\a [
notice that our choices of v, and V3 in this case are equivalent to by = bs = 6’ and it follows that for all

P2 € <O7 % In (%) > , we obtain in this case e 2% > % Thus, we end up with®

07 £ Ape ™ P2T — by =

03 £ 7(,36_pzr —bs =

-p27 _ 1 1
e 2) > 18
-p27 _ 1 1
e 7) > 1%

(6.63)

W= W=

Finally, by selecting v = A; = 2, all the setting parameters involved in the functional V' are now
chosen. We conclude that if the decay conditions 04 2200, —b; > 0, and 05 £ 2a6—by > 0, are
satisfied, then (6.61) satisfies for almost all > 0,

Vi) <=3V (X,X,0) - SR (1) - X)) - 200~ )
—00(X(r—1)) _03Q()~((f —1)) +H(Xta}zt)7

where 0 = 3m1n{2/11, 2,p],pg}

8Similarly to v4 and vs in Remark 37, the choices of v, and v3 are not unique (and, similarly, those of A, and A3 either). In
Example 12, we are going to use different numerical values that also satisfy 9, > 0 and 93 > 0.
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Now, we focus on the function H, defined after (6.61), in order to define a subset of the basin of
attraction of the trivial steady state of system (6.35). We recall that there exist ¢; > 0,i=1,...,6 such
that (6.41) and (6.42) are satisfied. In addition, from the expression of V¥, defined in (6.55), we notice

that since A; =2, we get,

b 0(x(1) + ——2—0(X (1),

max {cp, ¢} max {cj, ¢}

1X(0)| < VX, X,0,), and, |[X(1)| <1/2VT(X,,X,,0)).

By combining the previous inequalities, we get the following upper bound:

~ 22 o~ < —
|H(X %) < W™ (X, X,0,) + es7/ 2V (X, X, U) Q(X (1 — 7))

Vi, X,0,)>

+ [k4c1(a4+a2)+ca] 2VIi(X,, X, U,)0(X (1)) (6.64)
+ [K4C2(a4+a2)+t4] ZVT(X,,X,,U,)Q(X(I))
+¢q ZVT(XHXH ﬁ,)Q(Y(l —-1)),
(0114+2(a514)2) max{er,c2}* . . : vt T qati
where, v = %, . A direct consequence is that the time derivative of V' satisfies for

almost all ¢t > 0,

Vi) < -2V (X, X,0) - 20 )

- -6_ VVT(XtmeUt)} V%(XMXMUI)
K - ~ .

— 34 — (Aaca(as+a2) +ca) /2VH(X,, X, U,)] Q(X(1))
i — (6.65)

-~ oam sV X0 0 - 7)
:0 [ . - ~

Consequently, for all initial conditions belonging to the set
%:{(¢X7¢X>¢0)e(gfx(€g‘tx% VT((PX7¢X7(PU)<VT}a (6.66)

where, with an abuse of notation, we consider the spaces of continuous functions: ¢; =% ([—‘L’, 0], (—xe, —|—oo)) ,
% =% ([-7,0],(—F%e,+0)), and, ¢z = € ([—%,0], (—ile,+0)), as well as the upper bound: vi=

. 2.2 .2 2 12 04 05 [ 03
min{ <, uf, u5, u5,uy t, where, u; = Uy = u3 = %, and, ug = =
{ v M2 %3 4}’ > 41 8(/14c2(a4+a2)+C4) » 42 8()~4C1 (a4+u2)+c3) » 43 4es” e

4¢g°
we finally find that the derivative of the functional V' satisfies:

Vi) < —20V'(X,,X,,U,), where 0 > 0, for almost all # > 0.
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We integrate this inequality and we obtain for all > 0,
VXX 0) < e PV (9,05, 05,). (6.67)

Consequently, we get for all > 0, X2(r) + L, X2(t) < 2 21y* (ox, 9z, 9y) . We conclude that the
trajectories X (¢) and X () converge exponentially to the trivial steady state of the shifted system, with
a decay rate larger than, or equal to, 9. By classical arguments, we observe from the second equation
in (6.35) that, since 2Ke™ 7% < 1, U(t) converges exponentially to zero when X () and X () converge
exponentially to the zero.

To summarize, we considered that © (or €) exists and we rewrote the studied system (6.8) in the form
(6.35). Next, we proved that if the decay conditions ((6.60), 94 > 0, 05 > 0) are satisfied, then the
trajectories of (6.35) associated with initial conditions belonging to the set %, converge exponentially
to O-equilibrium of the shifted system (6.35), with a decay rate larger than, or equal to, 9. By explicitly

rewriting the decay conditions, we summarize our findings as follows:

7

Theorem 14. (A) Assume that ® (resp. €) exists, then consider the shifted system (6.35), such that
its trivial steady state corresponds to ® (resp. &) of (6.8). If there exist matrices P, S, J, P and I:-’,
of appropriate dimension, and a positive constant @, that satisfy the LMI (6.49), then the trivial
steady state of the shifted system (6.35), which is ® (resp. €) of (6.8), is locally asymptotically
stable.
(B) Assume that system (6.8) admits a positive steady state ® (i.e. (6.23) or (6.24) in Proposition
6-(vii) hold). If
i) (2[26_7%)2 +2Ke 7" < 1,
i) % — @b, < B (x. +0%,) + 8, (6.68)
iii) % — 0x, < B(x.+%)+3,
are satisfied, ensuring also that 9y > 0 and 03 > 0, then D is regionally exponentially stable with

a decay rate larger than, or equal to, 0, and with basin of attraction defined by:

B = {‘Px €€ ([-7,0,R"),p: € € ([-7,0],R"),p; € € ([-7,0,RT)
(6.69)
V! (@1 s s — %oy 0 — ) <v*}.

(C) Assume that € exists (Proposition 6-(ii)), and consider that X, = 0 in (6.68). If the conditions
(6.68) are satisfied (for X, = 0), then € of (6.8) is regionally exponentially stable with a decay rate
0 and basin of attraction defined by (6.69), where we consider now that X, = ii, = 0 in (6.69).

Example 12. In this example, we assume that & = 5. For the unhealthy compartment, we consider the
parameters given in Table 6.1, while for the healthy case we consider the parameters of Table 6.2.

We want to investigate the stability properties of the dormancy steady state: © = (X, ile, X, ), where,
X, =0.0217, i, = 0.0593, and x, = 0.2535. Obviously, if the decay conditions (6.68) are satisfied, then
the LMI (6.49) admits a solution.
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0 y|T|Bm | K ife e
0928 | 04 [ 1| {355 [ 0.2 [] 0.05938567 | 0.02179864

Table 6.1 Parameters of the unhealthy compartment, and the values of %, and i,.

[ 4 T | B(m) Xe
0.2

19
0.168 | 0.001 | 0.12 | 22/l 0.25354595

Table 6.2 Parameters of the healthy hematopoetic stem cell compartment, and the value of x,.

We check that the decay conditions (6.68) are verified:

- . - N\2
(i) 1—2Re 77— (ZKNT) — 0.659979347 > 0,
(i) P (xe+@F)+6— (% — aé@ — 0.987350196 > 0, (6.70)
(i) B (x.+%)+6— (% _ Gxe) — 0.000149333 > 0,
where we consider: Ay =2, Ay = A3 = 0.261780, Ay = 2.205796, Ay =2, V| =2, V» = -1 = 1.301858,

4ag|

1 1 1 1 5
V3 = o] = 1736024, V4= 3] 20302151, V5 = 2] :7374022, Pl = 10% In <1+4(a§+as)) =0.075074

and pr = ﬁln (%) = 0.038369. For these numerical values, we check that 0; = 0, = 0.010577 > 0.
Therefore, according to Theorem 14, the dormancy steady state, © = (0.0217,0.0593,0.2535), is region-
ally exponentially stable, as illustrated in Figure 12. This example will be revisited in the next section, in

the practical situation of therapeutic strategies.

03—

02—

0.15

01—

005\7\

o | | | | |
0 50 100 . 150 200 250
Time t (days)

Number of cells (x ~ 1.62 x 10° cells/kg)

Fig. 6.12 Trajectories of the system of the numerical example 12 (Tables 6.1-6.2). In this case, the dormancy steady
state © exists, such that ¥, = 0.0217, i@, = 0.0593. The sufficient local stability conditions given in Theorem 14-(B)
are satisfied, as shown in (6.70), and the trajectories of the system converge exponentially to 2.
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6.5 Concluding comments on the findings and possible therapeutic strate-

gies oriented towards cancer dormancy

A first remark is that CSC dormancy probably results from complex relationships between the different
biological parameters involved in this process, that are difficult to elicit, let alone to be understood. This
observation concerns the stability properties (decay conditions in Theorem 14), but also the conditions of
existence of dormancy (Proposition 6-(vii)), along with the role of the sensitivity parameter ¢&. This should
lead us to develop further the mathematical framework sketched here, in order to help us understand the
mechanisms behind dormancy.

Nevertheless, as a first step, the analysis that we performed throughout this paper reveals that our
theoretical results may suggest some therapeutic guidelines to eradicate aggressive CSCs (&), or to bring
them to dormancy (®), as discussed in the sequel.

1) Towards the adoption of a common therapeutic strategy to yield states © and €? 1t cannot be
claimed that convergence to the steady state © and the steady state € should share the same therapeutic
roadmap, since a crucial difference lies in their conditions of existence. For instance, € exists even if
5> % 3 (0) (see Proposition 6), while the reverse situation is required in order to allow for the
existence of dormancy ©, in addition to other conditions. We recall that in our system, the conditions of
existence of the steady states of interest are a type of red lines, that must not be crossed when elaborating
a treatment strategy.

On the other hand, when we focus on the stability conditions, wondering how therapeutic actions
can make the biological system go into the direction of the decay conditions (6.68), we realize that the
respective decay conditions of ® and € are substantially similar. More precisely, our sufficient stability
conditions suggest that the biological parameters that can be targeted in order to satisfy (6.68), in either of
the two states © or &, are similar (but not identical). In this sense, we can state that a common therapeutic
strategy for © and € can be proposed. So, in light of the existing therapies and recent clinical trials that
highlight novel effective molecules as potential drugs in AML, we briefly discuss how a combined therapy
may satisfy the theoretical conditions (6.68).

First, we observe that the condition (B-i) in Theorem 14 provides a restriction on the dynamics of
over-proliferating cells, since K, 7 and % are involved. Satisfying the previous condition relies in increasing
the product 7%, and decreasing K. Increasing ¥ means that we extend the average duration of the cell
cycle 7 and/or increase the apoptosis rate ¥ in the population of unhealthy cells. Leukemic cells may
be targeted by drugs such as quizartinib (AC220 [305]) or erlotinib [167] to increase %, while cytosine
arabinoside can be used to increase the apoptosis rate 7. Moreover, quizartinib can be used to decrease the
fast self-renewal rate K. In fact, K is expected to be the hardest parameters to modify in practice, due to
preexisting mutations in epigenetic control genes (DNMT3A, TET2). However, new FLT3 inhibitors,
such as midostaurin’, have achieved good performance (see the recent quantitative results provided in

[277]) and are now approved for use along with chemotherapy to target leukemic cells in AML.

9Midostaurin is a multi-targeted protein kinase inhibitor, which can be active against oncogenic CD135 (FMS-like tyrosine
kinase 3 receptor, FLT3). [85, 277]. See also some other comments in Chapter 2.
Basic information on midostaurin can be found in the American Cancer Society website:
https://www.cancer.org/cancer/acute-myeloid-leukemia/treating/targeted-therapy.html
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Next, in the conditions (B-ii) and (B-iii) of Theorem 14, the targets can be the parameters é and 5
(mainly 5, since it is the unhealthy parameter) that appear in the right hand sides of the corresponding
inequalities. We recall that 5 includes the death rate and the differentiation rate of unhealthy resting cells.
In practice, increasing 5 means that we should increase the differentiation rates, which can be achieved
in the case of leukemia by infusing dasatinib [167], that targets most of the tyrosine kinases including
the c-KIT gene. In fact, it was thought that drugs promoting re-differentiation of CSCs in many cancers
are not effective in the specific case of AML. However, this therapeutic option has been relaunched
recently after successful clinical trials, where dihydroorotate dehydrogenase (DHODH) inhibitors restored
differentiation of leukemic cells in AML [278]. Finally, increasing 8(0) and (0) can be performed by
using G-CSF molecules [100]. These are the main common targets shared by © and €.

2) Constraints and spillover risks of CSCs eradication: Increasing the parameters &, 7 and 7 (using
some of the previously mentioned molecules or their equivalent), promotes the existence of the state €,
together with its stability. However, it may exclude the steady state ©, by violating its conditions of
existence. Furthermore, an excessive therapy that affects also healthy cells leads, theoretically, to the
extinction of all the cells (Theorem 13). At the other extreme, an insufficient dose of drugs leads to CSCs
overproliferation (when 2Ke~7* > 1). The overproliferating behavior may be worsened by CSC resistance
to drugs. Therefore, the dormancy steady state © appears as a delicate intermediate equilibrium between
the cancer progression and CSC eradication.

3) Specific constraints related to dormancy: In the common strategy that aims to satisfy the condition
(6.68), we noticed that drugs have to increase the product 7. On the other hand, we recall from Proposition
6-(vii) that the condition 1 < 2¢~7% is necessary for the existence of . Thus, the therapy action in this
case has to take into account this supplementary condition. We infer from this remark that the probability
to achieve the dormancy steady state ® by using the classical strategies that consist in giving the maximum
tolerated dose of drugs during the treatment period [93], is therefore very low. Indeed, since a high dose is
expected to yield 1 > 2¢~77, the condition of existence of D is then violated.

The multiple restrictions on the biological parameters listed in Proposition I show that the existence
of ® is more difficult to achieve than the existence of €. However, we suggest that infusing G-CSF
molecules appears to favour the existence of a dormancy steady state, since increasing (relatively) 3 (0)
seems to go in the right direction in order to satisfy both the existence and the stability conditions of ©.

4) The suggestion of therapeutic strategies that achieve dormancy: In light of the above discussion,
we propose to implement what can be considered as a simple theoretical therapeutic strategy that aims
to achieve a stable dormancy steady state. More precisely, we consider an hematopoietic system with
the clinical symptoms that we expect when facing some overproliferating malignant hemopathies. This
ranges from a blockade in differentiation mechanisms to the survival of abnormal cells, along with a
high rate of self-renewal activity. We will in fact check that in the absence of adequate treatment, the
unhealthy population will proliferate abundantly. Then, in a second time, our objective is to stabilize the
total cell density, through multiple drug infusions of a combined therapy that is in line with our theoretical
results (i.e. the decay conditions in Theorem 14). In other words, we aim to bring the hematopoietic
system from an initial abnormal overproliferating state into a dormant stable steady state. For that purpose,

let us assume that the initial parameters of the unhealthy compartment are those given in Table 6.3. In
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fact, we have deliberately chosen an intuitive set of parameters that matches specific dysfunctions in

overproliferating malignant hemopathies (particularly the condition 2Ke=7% > 1).

S 71z |Bm]| R | &
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0250102 25 055038

Table 6.3 The set of initial (i.e. before treatment) parameters of the unhealthy compartment.

On the other hand, we assume that the parameters of the healthy compartment are those given in
Example 12, and we consider that the therapy to be administrated has a negligible effect on ordinary cells.

In medical practice, usually the hematopoietic system is targeted through chemotherapy (a combination
of two or three drugs), sometimes infused along with a complementary treatment. All these drugs have
molecular targets (e.g. dasatinib targets BCR/AbI, Src, ephrin receptors, c-Kit and many other tyrosine
kinases), that result in a modification of some biological mechanisms (e.g. generally, dasatinib increases
proliferation, and differentiation in AML [96]).

It should be borne in mind that the functional effect resulting from the molecular action of the infused
drugs, varies in practice according to several facts (for instance, the buildup of many types of mutations
by some individuals). However, when we put aside all the intermediate complications that may exist in
practice, we can take a shortcut that associates to each infused drug its most likely action on one or several
biological functions (that are: differentiation, apoptotis, and so on), with a certain amount of confidence.
Thus, we can roughly state from medical practice some major families of molecules that can be used in
the case of AML or other cancers, according to their expected effect on the biological functionalities.

Fast self-renewing Quizartinib, midostaurin
(K) Dihydroorotate dehydrogenase (DHODH) inhibitors
Apoptosis (¥) Daunorubicin, cytosine arabinoside, volasertib
Differentiation (&) | Dihydroorotate dehydrogenase (DHODH) inhibitors
Cell cylce dur. (T) Quizartinib, erlotinib, volasertib

Table 6.4 Here we associate the most likely (clinically established) effect of some advanced drugs/molecules on
the biological features of the hematopoietic system, in the specific case of AML (without focussing neither on the
molecular mechanisms behind each drug action, or on the possible mutual interactions that may exist between drugs
within some combinations).

Remark 38. (i) One notices that some molecules in Table 6.4 are expected to modify more than one model
parameter. For instance, the DHODH inhibitor, which is a differentiation re-activator, may decrease K
and increase 8, since both actions seem to promote a return into normal differentiation.

(ii) The volasertib (recognized as orphan drug for AML since 2014), belongs to the family of Polo-like
kinase (Plk) inhibitors. It can be used in the treatment of AML to promote apoptosis and cell cycle arrest
(see for instance [45]). In fact, the list of drugs given in Table 6.4 is not exhaustive and can be enlarged,
for instance, to: histone deacetylase (HDAC) inhibitors (vorinostat and panobinostat), and the family of
aurora kinase inhibitors (AZD115).
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(iii) According to the description of the dominance measure @, and its acting modes as a sensitivity
parameter to mitotic inhibitors (as discussed in Section 6.2.2), we can reasonably suggest some drug
infusion ways to change its behavior. It appears that molecules such as vincristine (a mitotic inhibitor), or
monoclonal antibodies (e.g. gemtuzumab ozogamicin) and other immuno-oriented therapies, can be more

likely expected to act on the parameter @.

Now, we observe that the biological parameters considered in Table 6.3 imply that 2Ke~ 7% = 1.078.
It follows that, theoretically, if AML is not treated, unhealthy cells will invade the bone marrow and
possibly the bloodstream. In Figure 6.13, we illustrate the evolution of cell densities for the selected

model parameters, where we observe the unbounded proliferation of unhealthy cells.

Number of cells (x & 1.62 x 10° cells/kg)
o
&
[

0 | \ !
0 5 10 15 20 25 30

Time t (days)

Fig. 6.13 Trajectories of the system for the (non-treated) model parameters of Table 6.3.

Actually, the elaboration of an optimal therapeutic strategy'? is beyond the scope of this chapter. Here,
we are suggesting a theoretical therapeutic strategy, that can be based on some suitable combination of
drugs (listed in Table 6.4, or others similar ones). We assume that the resulting evolution patterns of the
biological model parameters are those illustrated in Figure 7.22. In fact, we can distinguish between two
evolution trends, nested within one another as follows:

1) The first series of infusions aims to decrease K (fast self-renewing rate), to increase % (cell-cycle
duration), and to increase ¥ (apoptosis rate). It is worth mentioning that the direction of the change in the
model parameters (i.e. by increasing/decreasing the model parameters values) is in line with the observed
effect of the drugs listed in Table 6.3. This treatment phase is expected to limit the expansion of CSCs.
We also assume that the first treatment phase is accompanied by a slight increase of the value of &, under
the effect of the drugs that target unhealthy cells'!.

2) The second phase of the treatment aims, on the one hand, to maintain the trend given for the

parameters (K, %, ¥), and on the other hand, to reactivate the differentiation of unhealthy cells (using

10The optimal therapy requires the determination of the best infusion planning, that takes into account drug toxicity and other
practical considerations (e.g. how the doses of each drug type are spread over the duration of the therapy). These points deserve
a separated study. An approach to deal with this issue is proposed in the next chapter (Part III. Chapter 7).

T Before therapy, it is expected that & < 1, meaning that unhealthy cells are less sensitive than healthy cells to the natural
mitotic regulatory molecules that are secreted by the body. Then, we consider that & increases when selected therapy targets
unhealthy cells, thus reversing the trend since unhealthy cells become progressively sensitive to more and more regulatory
molecules (i.e. drugs) when therapy is in progression.
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DHODH inhibitors, for instance) and to increase the sensitivity parameter ¢ with more virulence than in
the first series of infusions (by administrating some mitotic regulatory molecules that target unhealthy
cells, such as immunotherapy).

Remark 39. It seems legitimate to wonder whether the reactivation of differentiation of CSCs is a good
strategy to fight cancer. The answer is argued for instance in [93], where it is explained how CSCs can
initiate and regenerate cancers, while differentiated cancer cells (called CCs [93]) will inevitably die out
(see the section “Cancer stem cells and non-stem cancer cells"”, [93]). Thus, promoting the differentiation
of CSCs into CCs appears as a sustainable way to both limit cancer progression, and avoid the escape

from cancer dormancy.

Now, let us assume that an adequate combination of drugs has been fixed. We can highlight one
suggestion among other possibilities, in which we propose:

@ a shock treatment through chemotherapy promoting apoptosis ¥, cell arrest 7 (e.g. through
volasertib for both objectives), and targeting K using AC220 (which may in addition have a suitable effect
on cell arrest, i.e. increasing 7),

@ followed by a more differentiation-oriented treatment (e.g. using drugs that are based on DHODH
inhibitors) and mitotic inhibition of unhealthy cells (possibly using some immunotherapy-based drugs, or
vincristine, see also [258]).

We aim through the selected therapy to achieve an evolution pattern of the model parameters as close

as possible to the idealistic ones given in Figure 7.22.

Remark 40. The treatment protocol that we suggest have many similarities with classical methods in
AML therapeutics [258]. We can mention in particular the 3+7 most famous strategy, which is also
based on two main separated phases (7 days of intensive induction through cytarabine, plus 3 days of an
anthracycline [258]), and then possibly followed by consolidation chemotherapy and hematopoietic cell
transplant [85, 258].

Next, we apply the therapeutic strategy given in Figure 7.22 to our model, starting the first infusion at
t = 1 day, and considering a fixed treatment step of 1 day between successive infusions (another choice
may be envisaged if needed). One notices that the model parameters after Infusion 9 are those given in
Example 12, for which the decay conditions (6.68) of Theorem 14 are satisfied.

The evolution of the ordinary and mutated cell densities is shown in Figure 6.15.

It is worth mentioning that in practice, the treatment of AML is spread over several separated phases.
For instance, in the recent experimental work [277], an AML (FLT3-type) therapy based on midostaurin
and chemotherapy, has been separated into two induction phases, a consolidating phase and maintenance
phase (59% of patients that have undergone the previously mentioned therapeutic protocol, then underwent
bone marrow transplant, have reached the complete remission state [277]). Similarly, in our example,
we assume that after Infusion 9, a consolidating and a maintenance phases continue so as to correct,
adjust, strengthen, and fortify the desired dormancy state of the hematopoietic system (which is the state
described by the set of parameters of Infusion 9).
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Fig. 6.15 The evolution of the total densities of healthy and unhealthy cells (resp. x(¢) and %(r)) and #(#), in the
mathematical model. The trajectories converge from a leukemic overproliferating behavior to a dormancy stable
steady state under the effect of the therapy in Figure 7.22.

We conclude this work by referring to Table 1 in [258], which summarizes a number of emerging
promising AML therapies, that open up other possibilities to act on cancerous hematopoietic systems.
Many of these strategies can in fact be implemented and discussed within the modeling and analysis
framework that we introduced in our current work. It is worth mentioning that the addition of midostaurin
to chemotherapy resulted in a 22% lower risk of death among patients, in comparison to another more
classical treatment (see [277]). Notice that, most of the molecules listed in [258] (and the references
therein) are in early phases of development and trials, but they participate greatly, as well as many
multidisciplinary works, to nourish this hope of moving towards systematic treatments for cancer, in

general, and leukemia, in particular.
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Nonlinear systems involving growth
factors and drugs






Chapter 7

Stabilization of blood cell counts through
growth-factors and drugs switching

Synopsis. Trying to deepen the mathematical modeling of cell dynamics has a cost and may be highly
demanding in terms of mathematical analysis. The present work is a step-forward in refining the analysis
presented in the previous chapters. First, we start from a description of cell proliferation and quiescence
where almost all the involved parameters and functions are affected by multiple growth-factor concentra-
tions. For the first time, we interpret the resulting system as a possibly switching one. This work launches
the modeling of hematopoietic systems through switching and event-triggered ones, resulting from drug in-
fusions or from practical situations where the body requires to adapt efficiently its blood cell count (e.g. for
combating an infection). The key point consists in the original complete-type formulation of the stabilization
issues that we propose through artificial intelligence planning tools. In that framework, an optimal solution
is discovered via classical planning and scheduling algorithms. We show the large spectrum of application
of our method: in the unhealthy hematopoiesis, we address the treatment issue through multiple drug infu-
sions. In that case, we determine the best therapeutic strategy that might restore an ordinary hematopoietic
system. Next, the healthy hematopoiesis is considered as an intelligent agent able to set objectives - that
correspond to body requirements - and to achieve them in an optimal way. Biological interpretations and

numerical simulations are provided throughout the chapter.

7.1 General overview and description of the findings

In this work, we will address some open issues, mainly related to the idea of stabilization or regulation
of the hematopoietic process in healthy and unhealthy situations. Knowing that, until now, research
efforts were particularly focusing on continually improving the existing models of hematopoietic cell
dynamics and on their stability properties. Most of the time, these models involve fixed parameters
and functions (representing differentiation, self-renewing, proliferation, death rates, apoptosis rates etc),
which are assumed not to depend on growth factors (hormone-like molecules, Chapter 2). In fact, despite
their paramount importance, growth factors are evoked in only few works among a large list of papers
dedicated to this subject. The reason behind that is quite simple: including growth-factor dynamics notably
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complicates the resulting models, as well as their analysis. Not surprisingly, growth-factor dependent
parameters are usually avoided.

Moreover, the majority of the mathematical models of hematopoietic systems (at least those studied
in [49], [180], [31], [100], [185], [6], [71, [8], [20], [4], [3], [189], [275], [224], [225], [37], [39], [23],
[107], [81], [154], and, [170]) share in common the fact that they can admit a unique strictly positive
steady state, which has been less studied in the models involving growth-factor dependent parameters
since it is more demanding in terms of mathematical analysis (refer to the Section 7 of the most recent
work [3]).

We want to go a step further in the analysis of the behavior of population dynamical systems. For
that purpose, a first step consists in considering a model where almost all the biological functions and
parameters are growth-factor dependent. This is in line with the previous works ([31], [185], [6] and [3])
insofar as we will continue their efforts to improve and refine the hematopoietic models. For instance, we
consider several discrete maturity stages, where biological parameters of the overall system are controlled
by five different growth-factors. We consider that cells may divide with a high degree of freedom! during
their cell-cycle, exactly like the models discussed in Part I of the thesis (Chapters 3 and 4, in models
which are not growth-factor dependent).

In the first part of the chapter, we discuss some modeling features and we revisit the description given
to growth-factor dynamics. In fact, we note that the characteristic patterns that describe how a model
parameter may vary according to a growth-factor concentration is a fundamental issue when addressing
the stabilization of the hematopoietic system. Thus, we are going to introduce a different formulation
of how growth-factor concentrations are acting on the biological features of the model, no matter the
number of the controlled parameters. For that purpose, we employ the time-scaling heterogeneity in the
overall system that regroups the cell population dynamics and the variation of the hormone-like molecule
concentrations. It is agreed that the secretion of growth factors is very fast in comparison to population
cell response and cell proliferation. This assertion is actually behind the models of cell dynamics that
consider static biological parameters. More importantly, this time-scaling heterogeneity had allowed
the study of models where parameters depend on growth-factors that are in quasi-steady states (see
[189]). For instance, since the half-life of erythropoirtins (which are the EPO hormones that regulate
erythropoiesis -Chapter 2) is very short compared to the hematopoietic cell proliferation, a quasi-steady
state approximation of growth-factor dynamics was considered in [31].

In fact, we noted that the models involving growth-factor dynamics were considering that the total
density of mature cells is exerting a form of control on the growth-factor concentrations, through a specific
evolution equation. This is a differential equation suggesting that hormone-like molecules may evolve
in the same time-scaling as population dynamics. In this modeling approach, it appears from a practical
point of view that actually mature cells are directly controlling the secretion of growth factors, however,
the evolution of growth-factor concentrations as considered in previous models could be considered in
a different way. More precisely, the evolution equation of growth-factor concentrations have to take
into account the heterogeneous time-scaling between growth-factor secretion and cell proliferation. The

issue of determining an alternative and effective approximate representation of growth-factor (or drug)

In other words, we do not assume that mitosis occurs at a fixed age, as usually done in models that take into account
growth-factor dynamics
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dynamics, which can be convenient for blood cell regulation, is discussed in detail in Section 7.3 (see also
Section 7.6 for numerical applications).

The key point we see in Section 7.3 is that we can interpret the hematopoietic mechanisms from a
different perspective: we suggest that the hematopoietic system is a possibly switching one, in the sense
that growth-factor concentrations exert a form of event-triggered control on the different biological
features and parameters involved in the model. The latter approach shows -throughout the second part
of the chapter (see in particular Section 7.6)- its efficiency to describe both the unhealthy? and healthy
hematopoiesis. One of the fundamental issues that guided our modeling research relies on the elaboration
of an unified framework that allows -in some sense- the existence of several strictly positive steady states
in one overall model describing hematopoiesis. As far as we know, all the mathematical models of
hematopoiesis admit a unique strictly positive steady state. This fact is even more frustrating for models
involving growth factors, since their introduction should allow more flexibility in the system. In other
words, the resulting hematopoietic system should be able to change its operating mode, by changing the
levels of the growth-factors secreted by the body, or through drug therapy if infused.

Many evidences support the hypothesis under which the hematopoietic system admits multiple
operating points. For instance, in normal hematopoiesis, the body adapts its blood count to face some
frequent situations such as seasonal allergies, or when dealing with asthma, eczema, and infections.
Some frequently encountered examples are evoked in Section 7.2, but here we briefly mention the
well-known case of eosinophil® normal count, that moves from one value to another one, depending on
body requirements when facing many types of allergy. We also know from the works of the anatomist
Frangois-Gilbert Viault (1890) that high altitude dwellers have higher hematocrits than sea-level residents.
The same is observed for persons suffering from pulmonary insufficiency.

In light of all the previously mentioned considerations, we are going to present in Section 7.4.1
a coupled PDE-system of McKendrick-type, that describes the dynamics of gradually immature cell
subpopulations residing inside the bone marrow, together with one type of mature cells that are active
in the bloodstream. Almost all the biological parameters and functions involved in the PDEs and their
associated boundary conditions are growth-factor dependent. We approximate the relationship between
the growth-factor concentrations and the values of their corresponding parameters by some step-like
functions, as indicated in Section 7.3. That is precisely a triggered-event operating mode, where at
different thresholds of the growth-factor concentrations, the corresponding controlled biological parameter
jumps from one level to another one (Section 7.3). Roughly speaking, one can observe that by changing
the value of a specific growth-factor concentration in a way that makes it crossing a predefined threshold,
we will be able -as a consequence- to move the value of the corresponding controlled parameter from
its initial state to a new one. The latter idea achieves a consistent representation where, actually, the
hematopoeitic system is able to change its steady state and operating mode, as illustrated throughout our
work. Of course, the question remains of how growth factors are changing with respect to time in order to
drive the event leading to the described parameter-switching: this is the issue that we address through
some planning tools as in Sections 7.5-7.6.

2By assuming that drug concentrations act as growth factors when therapeutic control is envisaged
3This is a type of mature white blood cells.
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In fact, we will go through several representations until achieving the one that interests us, which is
given by a nonlinear switching system with distributed delays, that we obtain in Section 7.4.2 and link
to the models in Part I. In summary, we say that by exploiting the event-triggered operating mode that
growth-factor exert on the biological functionalities, together with the McKendrick-type model of mature
and immature cells populations, we achieve a representation of the complete-type hematopoietic system,
which is composed by a family of nonlinear switching subsystems with distributed delays. However,
the resulting system is a complicated one, and can operate only under reasonable assumptions. Finally,
in our model, the family of subsystems, generated from the complete-type switching system, achieves
the objective of admitting several positive steady states. So comes the issue of determining how growth
factors or drugs are managing to make the system moving between the possible subsystems, in order
to activate, restore, or achieve new operating modes. As previously mentioned, that concept is related
to the stabilization issue in our context. In some sense, we need to elaborate a systematic strategy to
pursue, in order to provide the suitable switching signal managing the optimal succession of transitions,
from an initial operating mode until reaching a desired new one. To put the concepts into perspective, we
distinguish between two situations: healthy and unhealthy hematopoiesis. The common characteristics
and the differences between these two cases are detailed in Section 7.5.

When reflecting on the meaning of stabilization in healthy and unhealthy contexts, we were not
expecting that this could bring us into the fundamental field of automated planning and scheduling,
which belongs to the branch of artificial intelligence (Al) [254]. Mainly it concerns the elaboration
and the realization of strategies and action sequences, in order to set goals and achieve them (see
[151]). This theory is used when the solutions are complex and must be discovered and optimized in
multidimensional space. Thus, our issue is to clearly specify how the switching occur between the
appropriate subsystems in order to achieve a final goal (that depends on whether it is a healthy or
unhealthy hematopoiesis).

It is interesting to notice that the strategy to be developed operates under strict conditions, some of
them stem from our specific model (mathematical constraints), while others are related to the application
(biological constraints). Let say for instance that we need to move the total density of a type of mature
cells from an initial value M(©) to a new value that we assume to be the required density M* to confront an
infection. Then, it is necessary to realize that among a large number of possible subsystems candidates,
where each one is actually defined through a unique biological parameter combination, only a few of
them can be validated. This is because many times, when switching from a subsystem to its neighbor®,
the strictly positive steady state of the latter subsystem can be: mathematically non-existent, or it can
exist but it turns out later that it is unstable (which is recommended to avoid), or it can be stable but
biologically insignificant (too high or too low), etc. Therefore, the question here is: how can we choose
between the succession of subsystems, the best path to move from M 0) to M*. So, to deal with these
situations, we provide a well-established framework adapted to our main concerns (see Section 7.5). Then,
we formulate and solve our issues by proposing a series of algorithms that we adapt to the healthy cells
and to the unhealthy ones. Our approach implicitly uses an A* Replanner algorithm (see [130], [273]). A

step-by-step implementation, together with numerical results, are presented through the Sections 7.5-7.6.

4two subsystems are each in the vicinity of each other, if at most one switching action in each of the controlled parameters
involved in the model, is sufficient to pass directly from one subsystem to the other one, and vice versa.
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7.2  Open challenges in population cell dynamics involving growth-factor

regulation

Extending the modeling aspects are essential steps towards consolidating the common knowledge about
mechanisms behind blood cells regulation. On the other hand, these improvements have a cost and may be
highly demanding in terms of mathematical analysis. Ideally, growth factors manage to maintain almost
quasi-constant level of production and replenishment of cells in a healthy situation: for instance, growth
factors stimulate the production of cells to replace the diminution of their number by natural death, after
an hemorrhage, or due to blood donation. In other situations, the body needs to react in an effective
manner to deal with changes in body health.

Before going further we need to clarify what we mean by healthy and unhealthy hematopoiesis, in
order to avoid confusion. So, healthy hematopoiesis includes all the normal behaviors and reactions
preformed by the hematopoietic system for a specific objective. This covers the case in which the body
reacts to parasitic worms, infections, eczema, asthma, seasonal allergies, fever, etc. These are abnormal
but frequent situations that require a change in some blood type counts (e.g. eosinophil), and which are
considered as healthy or ordinary reactions. The intermediate inference that may be drawn here is that the
body properly controls its steady states and regulates its operating modes according to its requirements:
this task is achieved through a suitable adaptation of growth-factors concentrations. On the other hand,
unhealthy hematopoiesis is the one that displays abnormal behaviors that emerge from the hematopoietic
compartments themselves. We can mention some serious diagnosis as acute myeloid leukemia or blood
periodic disorders like cyclical neutropenia (see Chapter 2).

The phenomenon of red blood cells creation and regulation -erythropoiesis- is the best known feedback
control system in hematopoiesis. Basically, erythropoietin (EPO) hormones are secreted to promote the
production of red blood cells if required. However, several aspects in that regulation remain mysterious.
The Figure 7.1-[A], which is taken from [148], illustrates in a simplified manner the erythropoiesis control
principle. In the latter reference, we are particularly interested by two facts, pointed out by the author:
«Lack of Oy (hypoxia) is a stimulus for the synthesis of erythropoietin (EPO), primarily in the kidneys.
EPO is a survival, proliferation and differentiation factor for the erythrocytic progenitors, particularly
the colony-forming units-erythroid (CFU-Es). The O, capacity of the blood increases with the enhanced
release of reticulocytes. The role of extra-renal sites (brain, skin) in the control of the renal EPO synthesis
is still incompletely understood » [148]. So, first, the role of brain in the feedback control system is
admitted to be unclear (see Figure 7.1-[A]). However, it has been proved in the literature that brain
affects renal-EPO secretion. There are even cases of local hypoxia® in brain that yields to an increasing
renal-EPO [294]. It appears also that brain-derived EPO exists but its action is local and cannot replace
the renal-derived one in kidney-failure. The highly complicated mechanism behind the neural activity
in the bone marrow niche (see Figure 7.1-[B]), which is managed by the sympathetic nervous system
(SNS), is nicely described in [129]. The second point that we reiterate here, from the above quoted
passage of [148] is about the EPO-targets. Indeed, this growth factor decreases apoptosis rates, while
promoting proliferation and differentiation of erythrocytic progenitors. These EPO targets (the three

SDeficiency in the amount of oxygen reaching the tissues.
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biological features) are also emphasized in [129]. Later in our model, these three biological processes
(in addition to the self-renewing activity of HSCs) will be the focus of our stabilization analysis.

At this juncture, while we strive to identify the complex mechanisms and signals responsible of blood
cell regulation, an issue draws our attention. Indeed, it is also impressive to realize how the body estimates
the extend of its requirements, and then reacts reasonably. This is a strong motivation for suggesting a
mathematical framework in which the hematopoietic system is formulated as an intelligent agent able to
-sequentially- performs a real-time diagnosis, sets new objectives according to its current requirements,
analyzes the costs and investigates diverse possibilities to achieve its objectives, then establishes the best
strategy of self-regulation and applies it. We will suggest an approach that uses some planning tools
derived from the artificial intelligence theory, in order to propose an implementation of a convenient
framework for the previously mentioned issues. To our knowledge, this is a new approach that has never

been envisaged in the study of blood cells dynamics, during the past decades.
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Fig. 7.1 [A] The figure is taken from [148]. It shows the regulation of erythropoiesis, which designates the
hematopoietic lineage responsible of red blood cells production. When the body detects that cells are not getting
enough oxygen, kidney responds by releasing erythropoietin (EPO), that catalyzes the development of proerythrob-
lasts into reticulocyte. Brain reaction in EPO secretion remains ambiguous. [B] The figure is taken from [129]. It
shows the autonomic signals that modulate steady-state hematopoiesis. Stromal cells of different types regulate
HSC maintenance and regulation. The neuronal components of the HSC niche comprise peripheral sympathetic
neurons and circadian noradrenaline secretion from sympathetic nerves leads in rhythmic release of HSCs to the
periphery. The figure is from [129]. See Chapter 2 for regulation of hematopoietic niches.

Now, let us come back to the existing mathematical modeling of hemetopoietic systems. It is
worth mentioning that relatively few works are considering growth-factor supervision of the biological
functionalities involved in the hematopoietic system. As previously mentioned, including growth factor
dynamics notably complicates the resulting models and that is why they are usually neglected. First,
we put the spotlight on the series of works that emphasize on growth-factor dynamics and we quote
in a chronological order the following papers that deal with hematopoietic systems involving growth
factor-dependent parameters: [31], [185], [12], [6], [7], and, [3]. The pioneering paper by [31] is very
important (this work was improved by the same authors in [185], where they considered a possible
controlled apoptosis in mature cells compartment). These papers introduced and analyzed a maturity

structured model, which was reduced to a time-delay system using the method of characteristics. An
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important feature in their systems is that they considered a maturity velocity controlled by a growth factor.
This velocity was then neglected in order to simplify the mathematical analysis of their resulting system.
Following them, we will obtain the distributed time-delay system that we study in the present contribution.
Moreover, the maturity velocity of [31] is, in some sense, equivalent to the several aging velocities that we
consider here, in a model with discrete maturity stages. The second generation of papers, by Adimy and
his co-authors, continues the effort of gradually refining the hematopoiesis models. In their most recent
contribution ([3]), they focused on a model in which differentiation, proliferation and apoptosis rates are
governed by growth factors. One immature stage was considered, without aging velocity, and under the
assumption that cells divide (mitosis occurs) after they reach a fixed age during their cell-cycle. When it
comes to discuss the stabilization technique in our work (Section 7.5), we will also consider that the aging
velocity is fixed, and to ease the study, we focus on the HSCs compartment for immature cells. However,
in the first part of the work, and owing a great deal to the previously mentioned works, we establish a
generalized multi-stage model of hematopoiesis that includes multiple growth-factor types. Then, we
complement early works in the following way:

O We consider a model with several discrete maturity stages, where all the biological parameters,
and aging velocities, are affected by different growth factors. In addition, we consider that cells may
divide at any moment during their cell-cycle.

O Regarding mathematical analysis, we focus on the stability properties of positive steady states,
which were less studied in the literature. For that, we interpret hematopoiesis mechanisms from a different
perspective: we consider the hematopoietic system as a possibly switching one, in the sense that growth-
factors concentrations exert a form of event-triggered control on different biological features involved
in the model. In a broader context, interpreting cell dynamics using switching systems leads to a good
compromise between complexity of realistic models and their mathematical analysis.

O We also mention that the stabilization techniques we are going to discuss later in the chapter
may (under some conditions) apply to the case of switching aging-velocities or any other switching
parameter in the model. Indeed, we discuss a general framework where any model parameter can be
switching -reasonably- between several levels: a behavior that results from a significant change in their
corresponding growth-factor concentration.

Thus, we end up with a large family of subsystems that constitute one overall nonlinear switching
system with distributed delays. The subsystems share in common some fixed biological parameters while
they are distinguishable according to the possible combination taken by the switching ones. Each possibly
switching parameters has a characteristic pattern that connects the concentration of its respective growth
factor to its current value. These characteristics are in the form of monotonic step-like evolution functions
(see for instance, Figure 7.4).

Based on earlier results ([81], [225]), we will be able to address the stability issue of each subsystem,
followed by the stability property when switching from one subsystem to any other one in its neighborhood.
The remaining questions to be addressed, in Section 7.5, are related to how the switching-instructions are
quantified and scheduled both in: i) the healthy case where we focus on the role of mature cells in the
control exerted on growth-factors, and, ii) in the unhealthy case where an optimal therapeutic strategy has

to be determined, taking into account drugs toxicity, as well as other practical considerations.
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Henceforth, each subsystem -which is actually fully defined by a unique combination of the switching
parameters among all the possibly existing ones- is considered as a node or vertices, in a network
representing all the existing and admissible subsystems. We will define the rules and the possibilities for
the transitions permissions between the nodes (i.e. edges costs, when switching between the subsystems
is allowed). That is our suitable framework for the optimal strategy planning. Then, the final solution is
provided as an assembly of algorithms to solve the stabilization issues in healthy and unhealthy situations,
through simple planning tools.

7.3 On the modeling of growth-factor dynamics

In the starting part, we revisit the description given to growth-factor dynamics. Indeed, we are going to
improve the formulation of how growth-factor concentrations evolve. We employ the feature about the
time-scaling heterogeneity in the overall system, which is composed by population cell dynamics and
growth-factor evolution characteristics.

We recall that the secretion of growth factors is much faster than the dynamics of cell populations,
which means that levels of growth-factor concentrations converge very quickly to their steady states.
Hence, if quasi-fixed growth-factor concentrations are considered, the corresponding controlled parameters
are frozen. We also pointed out that models involving growth-factor dynamics were considering the control
exerted by the total density of mature cells on growth-factor concentrations through an evolution equation.
Their formulation was suggesting that hormone-like molecules may evolve in the same time-scaling as
population dynamics. It is indeed well-known that mature cells are directly controlling the secretion of
growth factors.

More precisely, in [31] and in almost all the subsequent works (see the recent paper [3]), the dynamics

of growth factors are governed by a differential equation of the form:
¢j(t) = —oje;(t) +§; (M(1)), (7.1)

where ¢; is the concentration of a growth factor j, o; > 0, M (t) is the total density of mature cells, the
functions f; are positive decreasing functions, and lim_, ;.. f;(¢) = 0. However, what does this equation
mean? In fact, this is a basic representation that can be qualitatively interpreted in the following way: if
we assume that the total density of mature cells M(¢) at time ¢ > 0 is too high, then ;(M(¢)) — 0, and it
follows that ¢;(¢) < 0, since ¢¢; > 0. Therefore, the growth-factor concentration ¢; will decrease, and M(t)
will also decrease for all the future time. Indeed, when ¢; decreases, the model parameters are affected in
such a way as to discourage cell production. The opposite situation (i.e. M(¢) very low) is interpreted in a
similar way. Unfortunately, the resulting framework cannot represent how the change in growth factor
concentration may induce to a different steady state in the model (i.e. to change the operating mode), since
only one positive steady state does exist. Moreover, ¢;() approaches its unique steady state ;= @
when M () approaches its steady state M* (i.e. e; and M evolve in the same time-scaling). The latter two
points might be improved in order to become more consistent with the general understanding we have.
Thus, we do not consider the equation (7.1).

Let us now observe the following introductory example:



7.3 On the modeling of growth-factor dynamics 215

Example 13. Let us consider that an infection forces the body to set a new objective, which is
to increase the total density of white blood cells to a novel reference-density M*. We assume
that the body is able to act through three distinct growth factors, that promote differentiation,
proliferation and decrease apoptosis rates (death rates of proliferating cells). For the time being,
we consider that the body knows how to recognize the triplet value of the model parameters
(ﬁ* 0),7",K *) that leads to the hematopoietic system which admits M* as a stable steady state.
Therefore, we expect that the growth-factor concentrations corresponding to that suitable triplet
are immediately secreted. However, it will certainly take more time for the overall system to reach
the required steady state M*. Indeed, the cell population in the bone marrow will be instigated by
the secreted growth factors, then immature hematopoietic stem cells (HSCs) will be recruited to

enter a cell-cycle for a non-negligible duration, and then differentiate.

That is exactly what we want to achieve through this work (at the end, Section 7.6). Some major
questions are in fact barely veiled in the statement of Example 13. For instance, it is assumed that
the body moves its triplet of parameters from an initial state ([3 ©) 0), y0) K (0)>, to a suitable triplet
(ﬁ* (0),v",K *), through growth-factor secretions. But how does it occur? How does the body determine
the (B*(0),y*,K*) that corresponds to M*? In order to move from ([3(0) 0), y(o),K(O)) to (B*(0),7",K*),
do we have to target (by increasing or by decreasing) all the involved biological parameters? Is it possible
to achieve this objective through only one growth-factor secretion or several steps are required? Similarly
for the unhealthy case: imagine that we are dealing with a blood disorder that we want to cure through
drug infusions. Thus, we certainly need to recognize the objective parameters (/3*(0), Y, K *) of the
therapy, that correspond to the reference M* prescribed by health professionals. Then, we have to identify
the parameters to be targeted and establish the therapy protocol. Is it a one dose therapy? Are there any
optimal and systematic strategy to follow in order to restore the healthy hematopoiesis? These are in fact
the open questions that we are going to answer in this work.

We will not get to these issues as early. We need first to go through a certain number of steps. As
regards the dynamics of growth factors, we consider a more general expressions than (7.1), that may cover
for instance the option of therapeutic action and the feedback from mature cells. The general form can be
expressed by:

¢;(t) =g;j(t,e;,M(1)), (7.2)

where g; is a function that depends also on time. In this case, a time-triggered switching can be modeled,
by infusing periodic doses of drugs for instance. Next, in this work, we consider five different growth
factors (i.e., j € {1,...,5}), each one is acting on a specific biological function.

In the general description of the hematopoietic system, the growth factors are stimulating proliferation,
differentiation rates and aging velocities; while they are blocking apoptosis, that is death rate of prolifer-
ating cells (this is a negative feedback, meaning that apoptosis rate decreases when the corresponding
growth-factor concentration increases [3]). Generally speaking, growth factors are increasing the effect of
the biological feature that are favorable to cell prosperity.

In addition, we introduce a general model where growth-factors concentrations are governed by (7.2),

without wondering about time-scaling in growth-factor evolution. The latter consideration will be used,
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subsequently, to introduce a new interpretation when it comes to investigate the stability properties of the

resulting mathematical model.

Differently from those who consider constant biological param- g
eters for all the time, we study the case in which growth factors 2 R
are active, moving their quasi-steady states to new ones when it is 2
. . . . . ., . J
needed. Such a behavior is representative of actions initiated by ¢ I

the body itself to meet its requirement in healthy hematapoiesis,
or due to sudden therapeutic measures (drug infusions, bone mar-
row transplantation etc) when facing some blood disorders. That
kind of evolution is well-approximated by step-like functions as 0
illustrated in Figure 7.2. Thus, by relying on that characteristic,
a first approach consists in inferring how the behavior of the
different biological parameters will be (see Figure 7.3).

Fig. 7.2 Qualitative behavior of e; in
the time-scale of cell dynamics (in
hours or in days).

Figure 7.3 gives an illustration for the expected evolution of the aging velocity (v), and of a differ-

entiation rate (K), with respect to their growth-factor concentrations, when they behave as in Figure 7.2.
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Fig. 7.3 Qualitative behavior of v; and K; with respect to their growth-factors concentration.

For p values taken by ¢, i.e. {e ;, e%, e?, ey e';. }, in Figure 7.2, where p is arbitrary large, it follows that
the characteristic patterns illustrated in Figure 7.3 will approach continuous monotonic® curves. It is hard
to imagine how such a characteristic pattern can be obtained in practice. What we could rather expect to
determine (at least approximately) is the effect of a molecule or a drug on a given biological functionality,
that we approximate using a step-like pattern as in Figure 7.4. That representation is convenient because it
allows us to approximate the real cell-population dynamics via a model involving parameters that remain
constant over a certain period of time. During that time-interval, the growth factor concentration varies
slightly, until it crosses a given threshold, that triggers a switch in the parameter value.

A characteristic as in Figure 7.4 has to be determined experimentally and may vary from one individual

to another, because the effect of a molecule on the hematopoietic system is strongly dependent on the

SLater we will state that the step-like functions used to describe the biological parameters are either entirely nonincreasing or
nondecreasing with respect to increasing growth-factor concentrations.
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genetic and epigenetic levels (e.g. presence and accumulation of diverse main and auxiliary mutations).
This is for the quantitative aspect, but fortunately the qualitative aspect of the variation of a parameter, with
respect to its growth factor, remains unchanged as described for each of the parameters in the following
paragraph.

01—

In the scale unit of growth-factor concentration (e,)

Fig. 7.4 An example of the approximate variation of the differentiation rate for a given maturity stage (denoted K)
with respect to the concentration of its growth factor (e4).

In Figure 7.5, we have n different (discrete) maturity stages as introduced in [8] for a model without
growth factors. The first stage in Figure 7.5, i.e. for i = 1, is the compartment of hematopoietic stem cells
(HSCs), that are found in the bone marrow. For all i € [, = {1,...,n}, R;(¢) is the total density of resting
cells of the i-th generation of immature cells, while M (), as mentioned previously, is the total density
of one type of mature cells (e.g. one among the five types of white blood cells) in the blood circulation.
Resting cells may die or differentiate to other lineages at a rate 0 < §; < 1. They can also re-enter to the
proliferating stage, in order to start a dividing-cycle, according to a particular function that we denote
Bi. During their cell-cycle, cells may die with a death rate (apoptosis rate) ¥;, or they can complete their
mitosis, i.e. each mother-cell divides into two daughter-cells, before reaching a maximal age ;. At each
division, a proportion 0 < K; < 1 of new daughter cells will differentiate (i.e. join the next more mature
stage i+ 1, in the cascade of immature stages, as illustrated in Figure 7.5). The remaining portion, i.e.
0 < 1—K; < 1, will join the same maturity level as the one of mother cells: this is a self-renewing process
that we denote L; (L; = 1 — K;). In addition, we consider an aging velocity v;, in the proliferating phases
as illustrated in Figure 7.5. After n immature stages, cells are ready to leave the bone marrow and join the
blood circulation.

Next, and this is the key point, we consider that the five different growth factors concentrations (¢;,
j€{l1,...,5}) are acting on the biological functionalities as follows:

® J;(-) depends on ¢;. Increasing ¢; yields to increase &;, across all maturity levels, similarly to
what is shown in Figure 7.3 for K; and v;. We also consider that lim,, . 8;(¢1) = 8§ < 1,foralliel,.

® [i(-,-)is a function that depends on ¢, and on the total density of resting cells, R; for all i € I,. We
consider that for each fixed ¢, the mapping f; (¢2,R;) is continuously decreasing with respect to R;, and
limg, e Bi(+, R;) = 0 (see [180]). On the other hand, for a fixed R;, the mapping f3; (¢2, R;) is increasing
when e, increases, in a similar form as in Figure 7.3, where 3;(0,R;) ~ 0, and, lim,, o Bi(¢2,Ri) = Bi > 0.

® The apoptosis rates, ¥(-), depend on the concentration e3. Since, by convention, a growth factor
stimulates the production of cells, we consider that the mapping 7% (e3) is decreasing with respect to e3.
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@ Differentiation, K;(-), increases with respect to e4 as illustrated in Figure 7.3, and lim,, o0 Ki(¢4) =
Kimax < 1.

@® Similarly, the aging-velocities v;, which are affected by the concentration es, for all i € I,,, are
increasing from a normal velocity-values (normalized to 1), until reaching a maximum velocity, as shown

by Figure 7.3.

Remark 41. To summarize, at this stage we have already discussed the evolution of growth-factor
concentrations with respect to time (as step-like functions, in the time-scale of cell dynamics), then,
we described how parameters of the model may vary with respect to growth-factor concentrations
(also approximated by step-like functions). Therefore, we deduce that changes in growth-factor
concentrations with respect to time exert a kind of triggered-event control on the different biological
functionalities, i.e. a jump in model parameter occurs each time the growth-factor concentration
crosses a threshold. We retain that by knowing the evolution of growth-factor concentrations (e.g.
predefined therapeutic protocols) we can determine how the biological parameters evolve with

respect to time, as illustrated for instance in the Figures (a),(b)-Table 7.3 for ¥; and v;.

7.4 From a model of dynamical equations to a network representation

In this part we will go through several stages, starting with a PDE system that describes cell population
dynamics (Section 7.4.1), which will be reduced to a nonlinear system with distributed delays (Section
7.4.2). The latter system will be presented as a nonlinear switching systems with distributed delays
(Section 7.4.3), through the arguments provided in Section 7.3.

In order to be brief and to focus more on the stabilization issues, we will show in Section 7.4.4
that the study of each subsystem’ can be performed thanks to some earlier work. More precisely, we
employ our results on the global stability properties of the strictly positive steady state of the nonlinear
model in [8], which was widely analyzed in [225] via Input/Output approaches, and more recently in
[81] through Lyapunov-Krasovskii functionals constructions. Through that formulation, we will not
dwell on the stability issue of each subsystem (Section 7.4.4). Then, we establish the stability properties
when switching from one stable subsystem to another one. Once this step is done, we formulate the
stabilization issue as the problem of how finding the adequate switching law (or signal) between the
different subsystems, in order to reach a desired operating mode. The targeted reference that we set is the
favorable total density of mature cells in the bloodstream.

Finally, once we address the stability of each subsystem, and once we establish the stability properties
of a switching between one subsystem to any other one in its neighborhood, we will be ready to represent
each subsystem as a node in a network representing all the possible subsystems constituting the overall

system. The latter representation and its aims will be widely discussed in Section 7.5.

"The subsystem here is a system that belongs to the family of systems constituting the overall switching model. Each
subsystem can be written on a time interval [t + T;,%], where £ and 7 are two consecutive switching time-instants, as a
system without any switching parameter (all the parameters are constants during that interval), and it involves one or more
switching on the time interval [t;,2,) + 7i], i.e. the length of the cell-cycle 7;.
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7.4.1 An age-structured model describing cells population dynamics including growth-
factor depending parameters

We have already described in Section 7.3 the biological functionalities and parameters (differentiation,
self-renewing, death-rates etc) involved in our model, as illustrated in Figure 7.5. Now, what we are
interested in, is the model governing the dynamics of mature and immature cell populations. We recall
that the » first generations of cells in Figure 7.5 represent the immature cells, at different maturity stages,
inside the bone marrow. So, we defined R;(t), for all t > 0 and i € I,,, that represents the total density of

resting cells of the i-th generation of immature cells. We recall that M(r), for all # > 0, represents the total
density of one type of mature cells in the bloodstream. In fact, R;(t) = / ri(t,a)da, where ri(t,a) is
0

the density of resting cells at time r > 0 and age a > 0, for all i € I,,. Similarly, p;(¢,a) is the density of

proliferating cells at time ¢ and age a during their cell-cycle (the proliferating stage, Figure 7.5), along
—+oo
with the density m(t,a), of mature cells at time ¢ and age a, and M(t) = / m(t,a)da, for all 1 > 0. The

PDE system that describes the dynamics of the densities r;(¢,a), p;(t,a), for all i € I,,, and m(t,a), for all
t > 0and a > 0, is formed by the following age-structured McKendrick model,

Pl 1 9n) — [ 5(e1(1) + i (e2(0),Ri(0)) | it ), Forall a0,
PR viles(0) 25 = = [1(es(0) + @] pilt,a), forall 0<a< g, and,  (7.3)
W + 3ma(za) = —um(t,a), foralla>0,

in which the new births, i.e. at age a = 0, in the proliferating and resting phases are introduced through

the following boundary conditions:

ri(1,0) =2 (1 —Ki(es())) Jo" hi(a)pi(t,a)da, and,foralli> 1,
ri(t,0) =2 (1 — Ki(es(1))) Jo" hi(a)pi(t,a)da
+2K;_1(ea(1)) fOTi*' hi—1(a)pi—1(t,a)da, and,forall i€ I,, (7.4)
pi(1,0) = Bi(e2(1), Ri(t))Ri(r), and,
m(t,0) = 2K, (e4(t)) 7 hu(a) pa(t,a)da.

We consider that the initial conditions at = 0, associated with the PDE system (7.3), namely ?(a) =
r;(0,a) for a > 0, and p%(a) = p;(0,a), for 0 < a < 7, for all i € I,, and m°(a) = m(0,a), for a > 0,
are some appropriate positive L'-functions. Next, we will follow [31], (see also [101], [201], and
the references therein), who themselves were inspired by techniques of [267], in order to reduce the

age-structured system (7.3)-(7.4) to a time-delay system, using the classical method of characteristics.

7.4.2 A nonlinear time-delay system involving growth-factor dependent parameters

We use the classical method of characteristics, by applying to our model the arguments developed in
[31] and [101], starting by the introduction of a parametrization z in the (t — a) space where ¢ > 0, and
0 < a < 7. Therefore, we can write (with an abuse of notation), p;(z) = p;(t(z),a(z)).
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(¢(0),0)

(0,a(0)) T a

Fig. 7.6 The illustrative curve Cp, that emanates from the point (¢(0),a(0)) = (0,0), separates the r — a plane into
two regions ([31], [101]).

It follows that: d’;}éz) = b(;’a) & 9p j;(zl’a) 44 The parameter z follows a characteristic curve for the

second equation in (7.3), characterized by the ODE:s, j—; =1, and, ‘j—’; = v;(es(2)), for all t > 0, and
a € [0,7] ([31, 101]). In fact, the characteristic curves are described by [31],

{ t(z) —1(0) =z, and, 75
az) —a(0) = f§vi (es(t(0)) dt.
Next, we notice that along the characteristics (7.5), the second equation in (7.3) is written as
P — — [n(es(12)) + i(ate))] i) 6)
and its general solution is given by
pi(z) = pi(o)e*ﬁi‘[%(93(t(f)))%i(a(f))]d? (1.7)

Now, what we need to determine is an expression for z and p;(0), in function of 7 and a, in order to obtain
pi(t,a). Naturally, the solution has different forms depending on which region we are (i.e. (A1) or (Az),
illustrated in Figure 7.6).

First, the region (A ) is characterized by #(z) = z and a(z) = a(0) + [ vi(es(¢(¢)))d{. Moreover, using
a(l) =a— [} vi(es(w))dw, we conclude that for all (¢,a) € (A;),

4 Sy (a— [Tv;(e;(w))dw
pilt.a) =p° <a_/ vi(es(e))cM) o i (s () thi(amffvites(w))w) [ ae 78)
0

Secondly, we are looking for the solutions p;(7,a) in (A;). In that region, the characteristic curves (7.5)
intersect the time-axis. Therefore, using (7.5), we notice that this region is characterized by #(z) = #(0) +z
and a(z) = [y vi(es(¢(¢)))d{. Thus,

£(0)+z

a(z) = /0 “i(es(1(0) + 0))di = / viles(£))de. (7.9)

t(0)
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Thanks to the boundary conditions (7.4), we get,

pi(0) =pi(2(0),a(0)) = pi(t — z,0). (7.10)

At this juncture, we need to give an expression for z. As previously encountered in [31] and [101], we
realize that the z variable is implicitly defined by the expression of a(z). Knowing that z is the fime required
for the age a to increase from 0 to a(z), and using (7.9), we obtain ([31, 101]): a = ftlz vi(es(£))dl. Here
we are interested in all age-values between 0 and the maximum age value 7; (this is a fact that complicates
our problem, in comparison with [31]). Thus, we notice that if T, is the time (i.e. z), necessary to grow
from the age 0 to a < 7;, then, a = ff?Ta vi(es(¢))dl. Therefore, we obtain

pi(t,a) = pi(t —T, O)e_for" [%(1(0)+€)+h,-(a(g))]dg

= Pz(f _ Ta’ O)ei f()Ta [%(tfz+l)+h,- (foi vi(QS(W))dW)}df

— p~(t T O)e_' OTa {%(Z—Ta-I-Z)-&-h;(f(f v,-(q(w))dw)}dé

We conclude that in the 7 — a plane the solutions p;(¢,a) for all i € I, along the characteristic curves (7.5),

are given by:

( 517 (a— [} vi(ei(w))dw
P? (a—fév,(%(ﬂ))df) e—fo [%(?3(@)4"1:( Joviei(w))d )]4Z7
- forall (¢,a) € (A1), and;
pi(t,a) = . , (7.11)
— [ f 7Ta 4 hl' Vi w))dw ) |df
i e G N

where, a € [0,7;], and, a = ff_Ta vi(es(£))de.

Remark 42. In view of the solutions obtained in (7.11), we notice that if we consider v; = 1 then, Vi € I,
andt > 0,
Pl — a’O)eifézY’.(e3(€+t7a))+h,-(€)d€7 t>a,

p?(a_t)e—fé%(es(ﬂ))+h,~(e+a—z)dz a1

)

pi(t,a) =

Even this simpler case was not studied in the past, for model with growth-factor dependent parameters.
Only its version with constant ones was analyzed in ([8], [225], and, [81]).

As explained in [31] (and also in [101]) we are interested in long-time behavior of our system. Hence,
we do not focus on the solution in (A) since it is related to the initial conditions p?. In the sequel, we
consider the solution on the region (A;), which is related to the boundary conditions (that express long
time behavior). By integrating the first equation in (7.3), with respect to the age-variable a between 0 and

oo, We get,

Ri(1) = ri(1,0) = [&i(er (1)) + Bilea(r),Ri(1))] Ri(t). (7.12)
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Using the boundary condition (7.4), we obtain for all i > 1,

Rilt) = — [8(e1 (1) + Bileat), Re(0))] Ri(e) +2 (1~ Ki(ea(1))) i h(@)pir,a)da
+2K;—1(ea(t)) Jo = hie1 (@) pi-1(t,a)da.

Similarly, if we integrate the third equation in (7.3) with respect to the age-variable, we get,
Ty
M) = ~puM(0)+ 2K, (e4(0) [ ha(a)pit.a)da (713

Next, substituting p;(¢,a) by its expression (given in (7.11), for (¢,a) € (A;)) leads to the system exposed
in Table 7.1. That is the general time-delay form that we obtain for our PDE system, when five distinct
growth-factors are acting on model parameters, and which are governed by the general form of their
dynamics (7.1). Next, we incorporate the growth-factor effect as described in (7.3), in order to give a
specific form to the system in Table 7.1.

7.4.3 The model equations under event-triggered parameters

A first observation is that exploitation of our mathematical model in its general form as presented in
Table 7.1 is not an easy task. Indeed, the implicitly defined variable 7, (the same observation occurred in
[31]), and the state variables that appear in the distributed delay terms (which are the total densities R;,
and the growth-factor concentrations ¢, ¢3, and, e5), cannot be easily manipulated in order to investigate
the existence and the stability properties of the positive steady states. For that reason, we are looking
for a new representation of the model given in Table 7.1. A key feature that helps us at this stage is the
behavior of the growth factors, as explained in Section 7.3, and their triggering-effects on the biological
functionalites involved in the model.

U First, we start by assuming that the fourth equation in Table 7.1 has a unique piecewise continuous
solution for all j € {1,...,5}. Whatever the behavior of the states ¢;(z), for all # > 0, (whether driven by
a body requirement or resulting from drug infusions), their effect on the biological functions (&;, B, ¥,
K; and v;) is the same. We recall from Section 7.3 that knowing the solutions ¢; allows us to determine
the variation of the biological parameters with respect to time. An illustration is provided in Figures
(a-b)-Table 7.3, in which we give a qualitative example with two parameters, v; and 7; (see also Figure 7.4
for variations of K). The remaining biological parameters can be represented in a similar way.

Now, we define for all # > 0, the time duration § that corresponds to the smallest® time-interval during
which all the biological parameters (not only those represented in the corresponding Figures (a-b)-Table
7.3) are invariant with respect to the possible change in their respective growth-factor concentrations.
Therefore, we can distinguish two interesting situations:

® The case h < 7;: A simplified version of the resulting model obtained in this situation is given
in Table 7.2. This case is not easy to be studied without strong extra assumptions on the model. The
difficulty comes mainly from the distributed delay terms that can cover -in the general case- a large period
of time, and which involves several switching as illustrated in Table 7.2 (the distributed delay terms are

denoted 3;, with an abuse of notation). This scenario is shown in Figure (a)-Table 7.3.

81n the classical theory of switching systems, b is called the dwell-time.
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® The case hh >> 7;: This is a more suitable situation for analysis purposes (see Figure (b)-Table

7.3). Indeed, since the biological parameters do not vary during a sufficiently large period of time, we can
rewrite the system presented in Table 7.1 in a more convenient form, especially in the region (©3) which
is illustrated in Figure (b)-Table 7.3. That region coincides with the time interval [ts) + T;,%,2], where f;
and 7, are assumed to be two consecutive switching time-instants. The particularity of (©3) is that the
model in Table 7.1 can be rewritten as a system without switching dynamics, even inside its distributed
delay terms (the corresponding model equations are given in Table 7.4). If a switching (in at least one
of the model parameters) occurs at a time instant z;; > 0, then, by definition of the dwell-time, the next
switching instant will not occur before ;] + b.

We use the following abuse of notation: the parameter ¢ € N identifies which subsystem is activated
at any time instant” # > 0 (e.g. when at least one parameter changes at #,; > 0, then the system in Table 7.4
switches from a subsystem ¢ = 1, to a sub-system ¢ = 2). In the region (®3), the system is exclusively
defined by specifying 0. However, it is not the case in the region (®,) since the distributed delay terms
appeal the history of the system in the region (®), which complicates its analysis. Without loss of
generality, we select in Table 3 the non-switching dynamical subsystem defined by o =1 to be activated
during the (D;)-(D3)- time-period, between two consecutive switching time-instants z;; and ;.

O At this juncture, from the previous discussion, we assume in our model that b >> 1; (case @,
even if the numerical simulations that we will perform (Section 7.6) show that this restriction is not
necessary). In the sequel, stability properties of our model are discussed. An interesting observation is
that, by focusing on the behavior of the fixe