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Résumé : Cette thèse porte sur la modélisation et 
l’analyse de stabilité de certains mécanismes 
biologiques complexes en rapport avec le cancer. Un 
intérêt particulier est porté au cas de l’hématopoïèse 
et de la leucémie aiguë myéloblastique (LAM). Les 
modèles utilisés et/ou introduits dans cette thèse se 
décrivent par des équations aux dérivées partielles 
structurées en âge, qui se réduisent à des systèmes à 
retards de plusieurs types (retards ponctuels ou 
distribués, à support fini ou infini). Ces modèles à 
retards sont parfois couplés à des équations aux 
différences, et possiblement avec des paramètres 
variant dans le temps. Un des principaux challenges 
dans ce travail consiste à développer des méthodes 
temporelles, qui se basent sur la construction de 
fonctionnelles de Lyapunov-Krasovskii strictes, pour 
les systèmes non-linéaires à retards étudiés.  
Les principales notions abordées dans ces travaux 
incluent : l’analyse de stabilité/stabilisation et de   
robustesse, l’emploi de techniques de modélisation 
des populations cellulaires saines et malades, l’étude  
 

de différentes classes de systèmes  dynamiques, 
(possiblement à temps variant ou à commutation), et 
également l’introduction de quelques outils issus de 
l’intelligence artificielle (planification et recherche de 
solution) dans un contexte de modèles biologiques.   
Ainsi, les méthodes de modélisation et d’analyse 
employées dans ce travail ont permis d’une part 
d’étendre les résultats de stabilité de cette classe de 
systèmes biologiques, et d’autre part de mieux 
comprendre certains mécanismes biologiques liés au 
cancer et sa thérapie. Plus précisément, certains 
concepts récemment établis en biologie et en médecine 
sont mis en évidence dans ce travail pour la première 
fois dans cette classe de systèmes, telles que : la 
dédifférenciation des cellules (plasticité), ou encore la 
dormance des cellules cancéreuses dans des modèles 
tenant compte de la cohabitation entre cellules saines et 
mutées. Les résultats obtenus sont interprétés dans le 
cas de l’hématopoïèse et de la LAM, mais ce travail 
s’applique également à d’autres types de tissus où le 
cycle cellulaire se produit de façon similaire. 
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Abstract : The thesis deals with the modeling and 
analysis issues of (cancer) cell population dynamics, 
with particular insights on the process of blood cell 
formation and acute myeloid leukemia (AML). 
Models are described through some age-structured 
partial differential equations, which are suitably 
reduced to nonlinear time-delay systems of different 
types (with pointwise or finite and infinite 
distributed delays, possibly involving time-varying 
parameters, and coupled to difference equations). 
Thus, this work provides analysis tools for stability 
and control, mainly of the class of retarded 
functional differential equations, coupled with 
continuous time difference equations. The main 
contribution relies on the stability analysis of the 
different (biologically) meaningful steady states of 
the resulting systems. Thus, whether for healthy or 
unhealthy (e.g. leukemic) cases, the studied models 
are investigated through time-domain analysis tools. 

More precisely, stability properties of the steady states of 
interest are provided by means of sophisticated strict 
Lyapunov-like functionals, suitable for the studied 
models. At any step, insights and medical interpretations 
of the theoretical results, in light of cancer evolution, are 
provided. In addition, recent biological and medical 
evidences on cancer are introduced in the class of systems 
studied here. This is the case of cell plasticity phenomena 
and cancer dormancy in models taking into account 
cohabitation between ordinary and mutated stem cells. 
Thus, through suitable theoretical studies, it becomes 
possible to provide a better understanding of the complex 
mechanisms behind the triggering of some pathological 
disorders, such as AML. The ultimate aim behind these 
(stability) studies is to finally suggest some suitable 
optimized strategies in order to improve cancer treatment 
through selective combined drug infusions. 
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Résumé	en	français	des	travaux	de	thèse	de	Walid	Djema.	
	
	

Titre	:	«	Modélisation	et	analyse	de	stabilité	des	dynamiques	de	populations	cellulaires	
cancéreuses:	 applications	 au	 cas	 de	 l'hématopoïèse	 et	 de	 la	 leucémie	 aiguë	
myéloblastique	»	
	

	
Titre	 originel	en	 anglais:	 «Understanding	 Cell	 Dynamics	 in	 Cancer	 from	 Control	 and	
Mathematical	 Biology	 Standpoints:	 Particular	 Insights	 into	 the	 Modeling	 and	 Analysis	
Aspects	in	Hematopoietic	Systems	and	Leukemia	»		
	
	
	

Les	 mathématiques	 appliquées	 en	 biologie	 et	 en	 médecine	 connaissent	
actuellement	un	essor	sans	précédent,	à	la	fois	dans	la	description,	la	compréhension	et	
la	 maîtrise	 du	 monde	 du	 vivant.	 En	 effet,	 la	 modélisation	 des	 systèmes	 biologiques	
complexes	 vise	 à	 contrôler	 ces	 processus,	 à	 valider	 des	 observations	 ou	 des	 données	
médicales,	ainsi	qu’à	prédire	le	comportement	de	ces	systèmes	dans	diverses	situations	
(il	 s’agit	 par	 exemple	 d’anticiper	 l’effet	 de	 certaines	 thérapies	 en	 se	 basant	 sur	 des	
modèles	mathématiques	et	sur	des	simulations).			
	

L’analyse	mathématique	du	cas	du	cancer,	parmi	une	multitude	de	désordres	qui	
touchent	 les	 organismes	 et	 tissus	 vivants,	 est	 d’une	 importance	 capitale	 pour	 deux	
raisons	principales	:	d’une	part	 la	gravité	et	 l’agressivité	de	cette	maladie	qui	s’étend	à	
tous	 les	 organismes	 et	 les	 tissus,	 de	 toutes	 les	 tranches	 d’âge,	 etc.,	 et	 d’autre	 part,	 la	
complexité	des	mécanismes	déclencheurs,	des	évolutions	et	des	stades	de	maladie,	ainsi	
que	 des	 traitements	 appliqués	 (chirurgie,	 médicaments	 ciblés,	 chimiothérapie,	
radiothérapie,	 etc.).	 	 D’autant	 plus	 que	plusieurs	 éléments	 intervenant	 dans	 le	 cancer,	
comme	les	mutations	génétiques	et/ou	épi-génétiques	ou	la	résistance	aux	traitements,	
rendent	 ce	 phénomène	 biologique	 encore	 plus	 difficile	 à	 élucider.	 Par	 conséquent,	 les	
biologistes	 et	 les	 médecins	 font	 appel	 à	 la	 modélisation	 et	 l’analyse	 mathématique	 à	
chaque	 fois	 que	 l’intuition	 et	 les	 observations	 ne	 suffisent	 plus	 à	 comprendre	 les	
interactions	 	 entre	 les	mécanismes	majeurs	 qui	 déclenchent	 le	 cancer	 puis	 favorisent	
son	évolution.	Certaines	de	ces	notions	clés,	relatives	au	cancer,	seront	abordées	dans	le	
cadre	 de	 ces	 travaux	 de	 thèse.	 Ainsi,	 par	 exemple,	 un	 modèle	 tenant	 compte	 de	 la	
coexistence	 entre	 des	 cellules	 souches	 saines	 et	 des	 cellules	 mutées	 est	 introduit	 et	
analysé1.	 Ce	 dernier	 décrit	 la	 dynamique	 de	 ces	 populations	 cellulaires	 saines	 et	
cancéreuses	avec,	comme	objectif	thérapeutique	principal,	le	maintien	en	dormance	des	
cellules	 cancéreuses.	 Ce	 modèle	 introduit	 et	 aborde	 également	 un	 aspect	 du	 rôle	 –	
parfois	 ambigu	 –	 du	 système	 immunitaire	 dans	 le	 déclenchement	 du	 cancer	 et	 le	
maintien	en	dormance	des	cellules	tumorales.		

																																																								
1	Djema,	W.,	Bonnet,	C.,	Mazenc,	F.,	Clairambault,	J.,	Fridman,	E.,	Hirsch,	P.	and	Delhommeau,	F.,		
“Control	in	Dormancy	or	Eradication	of	Cancer	Stem	Cells:	Mathematical	Modeling	and	Stability	Issues”.		
Journal	of	theoretical	biology	(JTB).	2018.	
	



	
	 Plus	 généralement,	 les	 problématiques	 abordées	 dans	 ces	 travaux	 de	 thèse	
concernent	 la	 modélisation	 et	 l’analyse	 du	 cycle	 cellulaire,	 incluant	 une	 phase	 de	
quiescence.	Nous	nous	focalisons	particulièrement	sur	le	cas	de	l’hématopoïèse	–	qui	est	
le	processus	de	fabrication	et	de	régénération	continue	de	toutes	les	cellules	sanguines	–	
et	 de	 la	 leucémie	 aiguë	 myéloblastique.	 En	 effet,	 l’hématopoïèse	 est	 considérée	 en	
biologie	 et	 en	 médecine	 comme	 un	 paradigme	 pour	 l’analyse	 du	 cycle	 cellulaire,	 et	
particulièrement	 quand	 il	 s’agit	 du	 processus	 de	 différenciation	 cellulaire.	 À	 noter		
également	que	les	Cancer	Stem	Cells	(CSCs)	ont	été	identifiées	pour	la	première	fois	dans	
le	 cas	 de	 la	 leucémie	 aiguë	 myéloblastique.	 Les	 paramètres	 biologiques	 qui	
interviennent	 de	 façon	 récurrente	 dans	 ce	 type	 de	 modèles	 représentent	 les	
fonctionnalités	biologiques	telles	que	la	différenciation	cellulaire,	l’apoptose	(ou	la	mort	
programmée	des	cellules),	 l’auto-renouvellement	cellulaire	et	 la	prolifération	cellulaire		
(voir	l’Introduction	de	la	thèse,	le	chapitre	A	Glimpe	into	Biology,	ainsi	que	les	travaux	
pionniers	 de	 Mackey	 et	 d’Adimy	 dans	 ce	 domaine).	 	 Nous	 nous	 focalisons	 sur	 les	
propriétés	 de	 stabilité	 des	 systèmes	 	 –	 ou	 des	 modèles	 –	 résultants	 	 puisque	 leurs	
trajectoires	 représentent	 l’évolution	 de	 différentes	 densités	 cellulaires,	 et	 leurs	
comportements	 reflètent	 les	 situations	 saines	 ou	 malades	 d’intérêt	 médical.	 Par	
conséquent,	 nous	 continuons	 dans	 le	 cadre	 de	 ces	 travaux	 de	 thèse	 l’effort	
d’amélioration	 des	 modèles	 mathématiques	 de	 dynamique	 de	 populations	 cellulaires	
déjà	 existants,	 ainsi	 que	 	 leur	 analyse	 de	 stabilité2.	 	 Nous	 introduisons	 également	 de	
nouveaux	modèles	 qui	 tiennent	 compte	d’observations	biologiques	 récentes,	 qui	 n’ont	
pas	été	abordées	précédemment	dans	la	classe	de	systèmes	qui	nous	intéressent,	telles	
que	la	dédifférenciation	et	la	transdifférenciation	cellulaires	(cell	plasticity3),	 le	blocage	
d’une	minorité	de	cellules	durant	 la	mitose	(cell-cycle	arrest),	 la	dormance	des	cellules	
cancéreuses,	 ou	 encore	 le	 rôle	 que	 pourrait	 avoir	 le	 système	 immunitaire	 dans	 le	
maintien	du	phénomène	de	dormance	du	cancer	(immunoediting).		
	
	 Les	modèles	mathématiques	que	nous	étudions	sont	des	modèles	déterministes	
(par	 opposition	 aux	 modèles	 stochastiques),	 qui	 se	 décrivent	 par	 des	 équations	 aux	
dérivées	 partielles	 (EDPs)	 structurées	 en	 âge	 (l’âge	 étant	 la	 durée	 ou	 le	 temps	 que	
passent	 les	 cellules	 soit	 dans	 le	 compartiment	 de	 prolifération	 soit	 dans	 celui	 de	
quiescence	;		voir	les	modèles	de	Mackey	et	d’Adimy	pour	plus	de	détails).	Ces	modèles	
se	réduisent	par	 la	suite	à	des	systèmes	à	retards	de	différents	types,	en	appliquant	 la	
méthode	dite	des	caractéristiques.	Ainsi,	nous	allons	étudier	tout	au	long	de	cette	thèse	
des	 systèmes	 non-linéaires	 à	 retards	 distribués	 à	 supports	 finis	 et	 infinis,	 des	 retards	
ponctuels	 et	 des	 systèmes	 	 non-linéaires	 à	 retards	 couplés	 à	 des	 équations	 aux	
différences	(differential-difference	systems).	 	Certains	de	ces	modèles	peuvent	avoir	des	
paramètres	variant	dans	 le	 temps.	C’est	 le	cas	par	exemple	 lorsque	des	paramètres	de	
taux	d’apoptose	et	de	différenciation	varient	sous	l’effet	de	la	maladie	(le	blocage	de	la	
différenciation	est	une	caractéristique	de	la	leucémie	aiguë	myéloide)	ou	des	thérapies	
possiblement	 appliquées.	 Des	 perturbations	 additives	 non-nulles	 peuvent	 aussi	 être	
considérées	 dans	 nos	 modèles,	 afin	 de	 représenter	 certains	 phénomènes	 biologiques	
non-modélisés	 explicitement	 ou	 bien	 le	 manque	 d’exactitude	 dans	 les	 modèles	
résultants.	 Nous	 abordons	 également	 au	 dernier	 chapitre	 de	 la	 thèse	 la	 question	 de	
																																																								
2	Djema,	W.,	Mazenc,	F.	and	Bonnet,	C.,		“Stability	analysis	and	robustness	results	for	a	nonlinear	system	with	
distributed	delays	describing	hematopoiesis”.	Systems	&	Control	Letters,	2017.			
3	Djema,	W.,	Bonnet,	C.,		Mazenc,	F.,	Clairambault,	J.,		“Introducing	Cell-Plasticity	Mechanisms	into	a	Class	of	Cell	
Population	Dynamical	Systems”.	American	Control	Conference	(ACC),	IEEE,	2018.		



l’effet	 de	 certaines	 injections	 de	 médicaments	 ciblés	 ou	 de	 sécrétions	 de	 facteurs	 de	
croissance,	qui	agissent	sur	les	différents	paramètres	biologiques	de	nos	modèles,	dans	
un	système	où	les	paramètres	peuvent	commuter	entre	plusieurs	valeurs	discrètes.		
	

Dans	 notre	 étude	 de	 stabilité,	 nous	 allons	 nous	 consacrer	 à	 l’application	
d’approches	 d’analyse	 de	 stabilité	 dans	 le	 domaine	 temporel,	 et	 plus	 précisément	 aux	
techniques	issues	de	la	théorie	de	Lyapunov	pour	les	systèmes	non-linéaires	et	à	temps	
variant.	Nous	rappelons	dans	ce	résumé	que	l’aspect	héréditaire	des	systèmes	à	retards,	
qui	les	rend	de	dimension	infinie,	complique	leur	analyse	de	stabilité	et	de	stabilisation.	
Cependant,	 l’extension	 de	 la	 théorie	 classique	 de	 Lyapunov,	 à	 savoir	 précisément	 les	
théorèmes	 de	 Lyapunov-Krasovskii	 et	 de	 Lyapunov-Razumikhin,	 ont	 permis	 l’analyse	
d’une	 plus	 grande	 classe	 de	 systèmes	 dynamiques	 à	 retards.	 Par	 contre,	 la	 difficulté	
majeure	qui	est	classiquement	rencontrée	lors	de	l’analyse	des	systèmes	non-linéaires,	
avec	 ou	 sans	 retards,	 se	 trouve	 dans	 le	 fait	 qu’aucune	méthode	 systématique	 n’existe	
pour	 la	 construction	 de	 fonctionnelles	 de	 Lyapunov-Krasovkii	 appropriées	 pour	 les	
systèmes	à	analyser.	Par	 conséquent,	une	contribution	 fondamentale	apportée	par	 ces	
travaux	 de	 thèse,	 réside	 dans	 les	 différents	 types	 de	 fonctionnelles	 de	 Lyapunov-
Krasovskii	que	nous	proposons	pour	l’étude	de	nos	modèles	biologiques	présentant	des	
retards	de	différentes	natures.	Nous	utilisons	parfois	des	approches	d’analyse	basées	sur	
la	nature	du	système	à	étudier,	qui	est	un	système	positif	 (positive	and	compartmental	
systems),	 pour	 la	 construction	 de	 fonctionnelles	 de	 Lyapunov-Krasovskii	 appropriées.	
Nous	 rappelons	 également	 que	 même	 lorsqu’un	 équilibre	 est	 connu	 pour	 être	
asymptotiquement	 stable,	 il	 est	 toujours	 important	 de	 chercher	 à	 construire	 une	
fonction/fonctionnelle	 de	 Lyapunov	 pour	 le	 système	 en	 question,	 vu	 les	 multiples	
avantages	qui	en	découlent	(stabilité	exponentielle,	estimation	du	taux	de	convergence	
des	 solutions,	 analyse	 de	 robustesse	 de	 type	 Input-to-State	 Stability	 (ISS),	 etc.,	 voir	
Section	 3.3	 de	 la	 thèse).	 	 Les	 résultats	 de	 stabilité,	 et	 de	 robustesse	 par	 rapport	 aux	
perturbations,	qui	ont	été	ainsi	obtenus	sont	 largement	commentés,	d’un	point	de	vue	
biologique	 et	médical,	 et	 différentes	 illustrations	 numériques	 sont	 présentées	 tout	 au	
long	de	la	thèse.			
	
	 L’objectif	 principal	 de	 ce	 travail	 de	 thèse	 est	 donc	 de	 consolider	 nos	
connaissances	en	matière	de	modélisation	et	d’analyse	de	stabilité	des	dynamiques	de	
populations	 cellulaires	 cancéreuses.	 	 Pour	 ce	 faire,	 nous	 avons	 tenu	 compte	 des	
observations	 les	 plus	 récentes	 concernant	 les	 origines	 des	 cancer	 stem	 cells,	 ou	 plus	
exactement	 de	 la	 «	souchitude	»	 (stemness)	 qui	 caractérise	 les	 cellules	 cancéreuses,	
incluant	l’option	de	dormance	dans	le	cancer,	ainsi	que	le	rôle	du	système	immunitaire	
dans	ce	mécanisme	de	dormance,	et	l’option	de	dédifférenciation	cellulaire.	Nous	avons	
également	évoqué	les	thérapies	actuelles	et	émergentes	dans	le	cas	de	la	leucémie	aiguë	
myéloïde.	 	 	 Ainsi,	 nous	 avons	 d’une	 part	 mis	 en	 évidence	 plusieurs	 phénomènes	
biologiques,	liés	au	cancer,	dans	la	classe	de	systèmes	que	nous	étudions,	et	d’autre	part,	
nous	avons	utilisé	plus	d’outils	mathématiques	pour	l’analyse	de	stabilité	des	systèmes	
résultants.	Par	ailleurs,	nous	avons	proposé	une	solution	algorithmique	originale	–	dans	
le	dernier	chapitre	de	 la	 thèse	–	pour	ce	qui	pourrait	 s’apparenter	à	une	 technique	de	
stabilisation	 de	 densités	 cellulaires	 par	 perfusion	 médicamenteuse.	 Cette	 dernière	
approche	s’inspire	des	techniques	de	planification	stratégique	(pathfinding	algorithms),	
largement	utilisées	dans	le	domaine	de	l’intelligence	artificielle.		
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Chapter 1

Introduction

Applied mathematics have an impressive success in describing the natural word. Modeling complex
systems is essential for many practical reasons, including system understanding, control and validation,
prediction and behavior anticipation. For biologic phenomena, mathematics have been used for describ-
ing/modeling dynamical processes during centuries. Related fields as epidemiology and ecology have
also attracted a great mathematical interest which continues to grow (see [211, 210]). Early biological
models were basically investigating the way populations grow or decline over time [19]. In more recent
years, the greatest objectives of mathematical modeling and simulation techniques consist in providing
ways of better understanding the underlying mechanisms of grave diseases. For instance, Dale & Mackey
traced recently in [71] their mathematical modeling and analysis work, during four decades, to understand
and treat the periodic hematological disease known as cyclical neutropenia (CN).

Some other successful biomathematical applications are discussed in [182]. We can mention for
instance the study of the dynamics of molecular regulatory networks that monitor eukaryotic cells during
their cell cycle [287], the mathematical analysis of neuro-oncology and cell proliferation in neuro-tumors
[143], and also the mathematical analysis of plaque formation in atherosclerosis, as well as their regression
under different therapeutic strategies [109].

Mathematics is biology’s next microscope, only better; biology is mathematics’ next physics, only better
(J.E. Cohen, 2004, [65]).

«Although mathematics has long been intertwined with the biological sciences, an explosive synergy between
biology and mathematics seems poised to enrich and extend both fields greatly in the coming decades.
Biology will increasingly stimulate the creation of qualitatively new realms of mathematics. Why? In biology,
ensemble properties emerge at each level of organization from the interactions of heterogeneous biological
units at that level and at lower and higher levels of organization (larger and smaller physical scales, faster
and slower temporal scales). New mathematics will be required to cope with these ensemble properties
and with the heterogeneity of the biological units that compose ensembles at each level. Mathematics
will benefit increasingly from its involvement with biology, just as mathematics has already benefited and
will continue to benefit from its historic involvement with physical problems. In classical times, physics,
as first an applied then a basic science, stimulated enormous advances in mathematics. In the coming
century, biology will stimulate the creation of entirely new realms of mathematics. In this sense, biology is
mathematics’s next physics, only better. Biology will stimulate fundamentally new mathematics because
living nature is qualitatively more heterogeneous than non-living nature» (J.E. Cohen, 2004, [65]).
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In the modern era, cancer is one of the most devastating causes of morbidity and mortality all over
the world [29]. Through modeling, analysis and simulation tools, mathematical biology is involved in
cancer understanding, and particularly in the study of cell population growth. In fact, the main objective of
multi-disciplinary cancer research is the development of efficient anti-tumor therapeutic strategies, and for
that, the input provided by mathematical studies are required. For instance, cancer-triggering mechanisms,
along with all the complications that follow this disease (such as drug resistance, mutation accrual, etc.),
are highly complex phenomena that cannot be easily understood, and for which mathematical tools are
becoming increasingly necessary. This is already the case in hematology (e.g. [189, 240, 59, 182]), and in
various other biological fields (e.g. [249, 154, 287, 234, 211, 210]).

Hematopoiesis - the process of blood cell formation - provides a model for studying and understanding
all the mammalian stem cells and their niches [209], as well as all the mechanisms involved in the cell
cycle and particularly in cell differentiation. The hematopoietic paradigm is in fact already used in
biology and medicine, as well as in mathematical modeling and analysis of living organisms. In [240],
L. Pujo-Menjouet reviewed the mathematical modeling of blood cell dynamics, along with some related
pathological disorders, during the past five decades. It is within this framework that we situate our work,
as a continuity of modeling and stability analysis of blood cell dynamics. As for the majority of works
discussed in [240], the models that we study can be extended to cover other tissues and mechanisms, even
if they follow a long line of work that has much more focused on the hematopoietic system. However,
at this point, it is worth mentioning that pioneering works that introduced early blood cell dynamical
models have been formulated for any type of cells [268], or they were borrowed from models describing
other tissues (see, e.g., [49] for a dorsal epidermis cell model that inspired all the cell cycle models
containing a resting phase). Concretely, medical research is looking for new combined targeted therapies
able to overcome the challenge of cancer cells overproliferation, to restore apoptosis mechanisms and
normal differentiation of immature cells, and also to avoid the high toxicity effects that characterize
heavy non-selective (chemo)therapy. In that quest, the ultimate goal behind mathematical studies is to
provide some inputs that should help biologists to suggest and test new treatments, and to contribute
within multi-disciplinary groups in the opening of new perspectives against cancer. Our research project
is imbued within a similar spirit and fits the expectations of a better understanding of the behavior of
healthy and unhealthy blood cell dynamics. It involve intensive collaboration with hematologists from
Hôpital Saint-Antoine in Paris, and aims to analyze the cell fate evolution in treated or untreated leukemia,
allowing for the suggestion of new anti-leukemic combined chemotherapy. In a fairly general way, we
discuss in this dissertation some issues that are related to the modeling of the cell cycle, with a particular
insight into hematopoietic systems. Stability features of mathematical models are highlighted, since
systems’ trajectories reflect the most prominent healthy or unhealthy behaviors of the biologic processes
under study. We indeed perform stability analysis of systems describing healthy and unhealthy situations,
particularly in the case of acute myeloblastic leukemia (AML). We pursue the objectives of earlier works
in order to understand the interactions between the various parameters and functions involved in the
studied mechanisms. We extend sometimes the stability analysis and the application of some already
existing models, whereas news models and variants are other times introduced, to cover novel biological
evidences such as: mutations accumulation, cohabitation between ordinary and mutated cells in niches
([137]), control in dormancy and eradication of cancer stem cells, cancer dormancy ([93, 102]) and cellular
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plasticity ([301, 52]). The content of the thesis is developed in the last section of the introduction, but
before that, we briefly give a glimpse into Mackey-type models of cell dynamics and Lyapunov concept
for stability analysis.

Population dynamical models

Some of the classical issues that drive mathematical population models are listed in [19] as follows: «Why
do populations sometimes grow and sometimes decline? Must populations grow to such a point that
they are unsustainably large and then die out? If not, must a population reach some equilibrium? If
an equilibrium exists, what factors are responsible for it? Is such an equilibrium so delicate that any
disruption might end it? What determines whether a given population follows one of these courses or
another?» [19]. Some early models have been proposed to address such questions, as the Malthusian
model (introduced in 1798, see [188]), Verhulst logistic model (introduced in 1845, see e.g. [284]), and
their variants. Since then, more sophisticated populations models have emerged, starting from the pioneer
works of Sharpe and Lotka (in 1911, see [262]) and McKendrick (in 1925, [205]) which introduced
partial differential equations (PDE) based modeling framework. Thus, a new area of age-structured
cell populations (and, similarly, of size or any phenotype-structured populations) has been extensively
developed ([22]).

Age-structured population models

Definition 1. «A structured population model is a model of population dynamics where the state variable,
the variable which at each time t characterizes a given population, is a distribution of the individuals over
a set of values, each individual being associated, at each time t, to one and only one value. As examples,
let us quote age-structured models where each individual is characterized by its age. All the individuals
who, at a given time t, have the same age determine what is known as an age-cohort. Other characters of
an individual can be the size, the weight, or the quantity of a certain product» (Arino, 1995 [21]).

The first age-structured model (applied in demography in 1911, by Sharpe and Lotka [262])

We consider that p(t,a) is the population density at time t and of age a. The evolution of p is
governed by the following PDE:

∂ p(t,a)
∂ t

+
∂ p(t,a)

∂a
=−d(a)p(t,a), (1.1)

where d(a) is the death rate at age a, per unit of individual. The age a is the structure variable in
the model (1.1). The number of newborn at time t ≥ 0 is given by the renewal equation:

p(t,0) =
∫ +∞

0
b(a)p(t,a)da, (1.2)

where b(a) is the birth rate. For each t ≥ 0, the function p(t, ·) is a density function. The quantity∫ a
a p(t,a)da gives the total number of alive individuals within the population at time t ≥ 0, whose

age lies in (a,a). Overall, it has to be noted that rigorous mathematical analysis of the fundamental
linear age-structured systems has been based on Volterra theory and it was developed many years
later (e.g., Bellman & Cooke, 1961, [32]).
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Mackey’s model for hematopoietic stem cells (HSCs) in 1978, [180]

Burns & Tannock proposed in 1970 an ODE model with delay to describe the cell cycle involving
a quiescent phase G0 [49]. Few years later, an age-structed model describing the population cell
dynamics in hematopoiesis was introduced by Mackey [180]. In this system, r(t,a) represents the
density of quiescent cells at time t ≥ 0 and age a≥ 0, and lima→+∞ r(t,a) = 0 for all t ≥ 0, while
p(t,a) represents the density of proliferating cells (i.e. active in the cell cycle) at time t ≥ 0 and
age a ∈ [0,τ], where τ > 0 is a finite age limit (i.e. assumed to be the average duration of the cell
cycle, in days). Evolution of r(t,a) and p(t,a) are described by the following PDE-model:{

∂

∂ t r(t,a)+ ∂

∂a r(t,a) =−
(
δ +β (R(t))

)
p(t,a), t > 0, a > 0,

∂

∂ t p(t,a)+ ∂

∂a p(t,a) =−γ p(t,a), t > 0, 0 < a < τ,
(1.3)

where δ is the degradation rate of resting cells (in day−1) and γ is the programmed cell death
rate (apoptosis rate in day−1). The function β is the re-introduction function from resting to
proliferating phases, which has been considered in the form of a Hill function [180]:

β (ℓ) =
β0θ α

θ α + ℓα
, where, β0 > 0, θ > 0, and, α > 1. (1.4)

The total density of resting cells is defined by: R(t) =
∫

∞

0 r(t,a)da, and, similarly, the total density
of proliferating cells is defined by: P(t) =

∫
τ

0 p(t,a)da. The boundary conditions associated to
(1.3) give the new births for t > 0:{

r(t,0) = 2p(t,τ),
p(t,0) =

∫ +∞

0 β (R(t))r(t,a)da = β (R(t))R(t).
(1.5)

The system is completed by adequate initial conditions (at time t = 0) which are L1-functions
denoted by n(0,a) = n0(a) and p(0,a) = p0(a). Using the classical method of characteristics (see
in particular [31] and [101]), Mackey’s model [180] is rewritten for sufficiently large t > 0 as:{

Ṙ(t) =−
(
δ +β (R(t)

)
R(t)+2e−δγβ (R(t− τ))R(t− τ),

Ṗ(t) =−γP(t)+β (R(t))R(t)− e−δγβ (R(t− τ))R(t− τ).
(1.6)

Since then, and for many decades, several versions of Mackey’s model have emerged. The reader is
referred again to the recent paper by L. Pujo-Menjouet (2016, [240]) for a review on hematological
modeling. Here we mention some variants of Mackey’s model that are also considered in this
thesis:

❍ The models of J. Bélair, M. Mackey, and J. Mahaffy, in 1995 [31] and in 1998 [185], F.
Billy et al. in 2012 [39], and M. Adimy and F. Crauste in 2009 [7], where growth-factor dependent
biological parameters have been considered.

❍ The model of M. Adimy, F. Crauste and A. El Abdllaoui in 2008 [8], where several
discrete maturity stages have been introduced (see also A. Marciniak-Czochra, et al. in 2009 [189]
for an ODE model with several maturity stages).

❍ The model of M. Adimy, A. Chekroun and T. Touaoula in 2015 [4], where a recent
fast-self renewing mechanism has been considered.
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Modeling cell population dynamics through time-delay systems

Mackey’s model in (1.6) leads us to consider hematopoiesis models through time-delay systems. In fact,
in order to go even further than the case of hematopoiesis, we emphasize that delay systems is a major
class of dynamical systems in biology and in many other fields (e.g. chemistry, economics, mechanics,
sensors and field network [251]). However, the particularity of delays in biological systems is that they
often result from maturation and proliferation processes which take a large time that cannot be neglected.
Delays may be source of stability or, more often, of instability [218]. Thus, since delays lead to changes of
stability properties in dynamical systems, it becomes essential to develop adequate tools for the analysis
of time-delay biological systems. The theory of time-delay systems is now a vast area, and has continued
to grow strongly during the last two decades (see e.g. [251, 120, 106, 219, 30, 222, 266, 16, 192], to
name only a few). Many time-delay models have been developed in the literature to study hematopoietic
systems and all their related pathological disorders (see the review in [101]). For instance, we mention the
following contributions:

❍ S. Bernard et al. in 2003 [37] studied a model with constant point delays in cyclical neutropenia.
❍ C. Haurie et al. in 2000 [133] studied a model with distributed delay for the peripheral regulation

of neutrophil production mediated by granulocyte colony-stimulating factor.
❍ J. Mahaffy et al. in 1998 [185] studied a model with state-dependent delay for erythropoiesis

-the process of red blood cell formation- involving growth factor dynamics.
❍ M. Adimy et al. in 2015 [4] studied a differential-difference (i.e. a differential system coupled

to an algebraic equation) model for overproliferating blood disorders.
We point out that many ODE-based models have been developed in the literature to describe

hematopoiesis (see for instance [275] and [189]). In other cases, ODE-based representations have
been used instead of some classical delay systems, even if delays appear by nature (to model the duration
of the cell cycle or maturation) in hematopoietic systems as the adequate modeling approach (see Section
3.2 of [101]). Clearly, this modeling simplification aims to reduce the difficulty of analysis that generally
characterizes infinite-dimensional systems. However, for technical details, reducing the model into ODEs
is not always possible for hematopoietic models (see [101]); this is for instance the case of the white blood
cell formation model studied in [135]. Thus, ODE-based models of hematopoiesis are beyond the scope
of our work, where only some age-structured PDEs and time-delay systems are discussed.

Various types of nonlinear time-delay systems modeling cell population dynamics appear throughout
this thesis. When cell proliferation is described as a phase in which cells divide with a certain degree of
freedom, nonlinear systems with distributed delays are used (e.g. [8]). The length of the distributed delays
may be finite (if cells are obliged to die or divide before an age limit), or infinite (if few cells are arrested
during their cell cycle - at some checkpoints - and do not die by apoptosis). Models involve discrete delay
when the cell division (mitosis) is assumed to occur at a fixed average age for all the proliferating cells.
So, with the aim of giving an estimation of the basin of attraction of the steady states of these models, and
having in mind the analysis of similar models with time-varying parameters, we have chosen a state-space
framework for our study.

Some aspect of the mathematical analysis of cell dynamics in hematopoiesis have not been fully
addressed in earlier works. We can mention for instance the analysis of time-varying models, the
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investigation of global stability properties of the nonlinear systems, or the estimate of the size of the basin
of attraction of steady states. These are in fact common issues in many biological models where some
functionalities depend on time (e.g. circadian rhythms) or when they are temporarily affected by therapy
(e.g. drug infusion). Also some systems are known to evolve far from their equilibria (e.g. chemostat’s
models) and a local stability analysis may be insufficient. In the case of hematopoiesis, the biological
parameters can be time-varying if affected by the disease (e.g. blockade of differentiation process and
apoptosis in leukemia), or by therapies that change the model parameters. In addition, in normal or
abnormal hematopoiesis, blood count may temporary deviate or oscillate far from its steady states.

Time-delay systems

Time-delay systems are generally represented in the framework of functional differential equations
(FDEs), see for instance [165], [106] and [120].
We denote C

(
[−τ,0],Rn

)
the set of continuous functions mapping the interval [−τ,0] to Rn.

For any A > 0 and any continuous function of time u ∈ C
(
[t0− τ, t0 +A],Rn

)
, and t0 ≤ t ≤ t0 +A,

we denote by ut ∈ C the segment of the function u defined as:

ut(θ) = u(t +θ), −τ ≤ θ ≤ 0. (1.7)

Thanks to the notation (1.7), a general forma of FDEs is given by:

ẋ(t) = f (t,xt), (1.8)

where x(t) ∈ R, ẋ(t) is the right-hand derivative of x(t), and f : R×C → Rn.
❍ The system (1.8) indicates that the derivative of the state variable x at time t depends on

t and x(m) for t− τ ≤m≤ t. Therefore, in order to determine the future evolution of the state, it is
necessary to specify the initial state variable in a time interval of length τ , i.e. from t0− τ to t0,

xt0 = φ , where φ ∈ C
(
[−τ,0],Rn) is given. (1.9)

The notation (1.9) means that x(t0 +θ) = xt0(θ) = φ(θ),−τ ≤ θ ≤ 0.
❍ For a function φ ∈ C

(
[a,b],Rn

)
, we define the continuous norm ∥.∥c by

∥φ∥c = max
a≤θ≤b

∥φ(θ)∥. (1.10)

❍ The general form of functional differential equations includes the class of differential-
difference systems, and the class of systems with distributed delays, i.e. integro-differential
equations (see [165], Chapter 1).

abut which does not include the case of neutral functional differential equations.
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Control systems and biological models

Remarkably, the powerful techniques of Control (for instance, theory of stability and stabilization
[158, 292, 187]) have demonstrated innumerable applications in mathematical biology ([211, 210]). This
is particularly the case in cancer-related issues, in growth tumors and oncology, but also in neuronal
connectivity and cardiovascular systems, as well as in epidemiology and infectious diseases. The complex
problems encountered in these fields are nowadays requiring increasingly sophisticated mathematical
methods for suitable analysis.

In our case, cell population dynamics are modeled through structured PDEs or time-delay systems,
possibly coupled to difference equations. Due to their hereditary feature, time-delay systems are more
complicated to handle than finite dynamical systems [164]. However, since the middle of the last century,
the extension of the classical theory of Lyapunov to systems with delay, through Lyapunov-Krasovskii
and Lyapunov-Razumikhin theorems, have allowed stability analysis of this major class of systems.

Lyapunov stability analysis of time-delay systems

Lyapunov theory offers efficient tools for stability analysis of nonlinear systems. The extension of
this theory to the case of time-delay systems has allowed the analysis of a larger class of systems. The
advantages of knowing Lyapunov functions or functionals (LKFs) are fundamental in Control theory, since
they make it possible to estimate rates of convergence of solutions and to establish robustness results of
Input-to-State-Stability type [198]. Moreover, LKFs can also be used to determine estimates of the basin of
attraction ([126, 119, 114]) of locally asymptotically stable steady states. Unfortunately, the construction
of Lyapunov-Krasovskii functionals is sometimes a difficult task since there are no systematic method for
dealing with nonlinear systems. This is a difficulty that we face when analyzing models of cell population
dynamics. In addition, some technical difficulties may arise when investigating differential-difference
models where solutions are not uniformly continuous (since invariance principles and Barbalat’s lemma
are not applicable to establish asymptotic stability of solutions). Finally, it is worth mentioning that the
resulting biological models of interest belong to the family of positive and compartmental systems [124].
Therefore, it becomes possible to take advantage of some suitable non-quadratic LKFs (approximated at
the origin by linear functionals), that can be used only when systems trajectories are positive [124] (the use
of a positive approach in the analysis of dynamical systems appeared first in [55]). These constructions
will be often used throughout this thesis.

B	A	

Fig. 1.1 A. The equilibrium point denoted xe is Lyapunov stable, i.e. for sufficiently small initial conditions (small
perturbations), the trajectories remain close to the steady state xe. B. The steady state xe is locally exponentially
stable. These illustrative figures are taken from [304].
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Lyapunov-Krasovskii Theorem for stability of time-delay systems

Definition 2. (Kolmanovskii and Myshkis, 1992 [164]; Hale and Verduyn-Lunel, 1993 [127]).
For the system (1.8), the trivial solution x(t) = 0 is stable if for any t0 ∈R and any ε > 0, there
exists a δ = δ (t0,ε)> 0 such that ∥xt0∥c < δ implies ∥x(t)∥< ε .
It is said to be asymptotically stable if it is stable and for any t0 ∈R and any ε > 0, there exists a
δa = δa(t0,ε)> 0 such that ∥xt0∥c < δa implies lim

t→∞
x(t) = 0.

Moreover, it is said to be exponentially stable if there exist positive constants a, b and δ such that

∥xt0∥c < δ ⇒∥x(t, t0,xt0)∥< a∥xt0∥ce−b(t−t0).

If a, b and δ do not depend on t0, then the origin is uniformly exponentially stable.

It is generally difficult to establish stability using these definitions. The extension of the Lya-
punov theory to systems of infinite dimension offers an alternative way to prove stability. Two
approaches have been introduced: Lyapunov-Krasvoskii theorem and Lyapunov-Razumikhin
theorem. Lyapynov-Krasovskii functionals (LKFs) are the most recurrent tool in the current work:

Lyapunov-Krasovskii approach (K. Gu, V. Kharitonov and J. Chen, 2003 [120])

«As in the study of systems without delay, an effective method for determining the stability of a time-
delay system is the Lyapunov method. For a system without delay, this requires the construction of a
Lyapunov function V (t,x(t)), which in some sense is a potential measure quantifying the deviation
of the state x(t) from the trivial solution 0. Since for a delay-free system x(t) is needed to specify the
system’s future evolution beyond t, and since in a time-delay system, the corresponding Lyapunov
function be a functional V (t,xt) depending on xt , which also should measure the deviation of xt

from the trivial solution 0. Such a functional is known as a Lyapunov-Krasovskii functional»
K. Gu, V. Kharitonov and J. Chen, 2003 [120].

Lyapunov-Krasovskii theorem

Suppose f : R×C
(
[−τ,0],Rn

)
→ Rn, and that u,v,w : R+→ R+ are continuous nondecreasing

functions, where additionally u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there
exists a continuous differentiable functional V : R×C

(
[−τ,0],Rn

)
→R, which is positive definite

u(∥φ(0)∥)≤V (t,φ)≤ v(∥φ∥c) (1.11)

and such that its derivative along (1.8) is non-positive

V̇ (t,φ)≤−w(∥φ(0)∥), (1.12)

then the origin of (1.8) is uniformly stable. If in addition w(s)> 0 for s > 0, then it is uniformly
asymptotically stable. If, in addition, lim

s→∞
u(s) = ∞, then it is globally uniformly asymptotically

stable. Finally, if for all t ≥ 0, V̇ (t,φ)≤−αV (t,φ), where α > 0, then the origin of the system
(1.8) is exponentially stable.
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Organization of the thesis

The manuscript is organized as follows:
■ In Chapter 2, we give an overview on a number of interesting biological principles. Some

of them have recently emerge (e.g. cancer stem cells, dormancy and cell plasticity), and they are currently
undergoing intensive biological research. Our aim is to ease the reading of the manuscript, since these
notions will be re-evoked throughout the upcoming three parts of the thesis.

❍ Part I. The class of nonlinear systems with distributed delays.
■ In Chapter 3, we perform a stability analysis of a particular class of nonlinear systems

with finite distributed delays, that extends some existing models from the literature ([8], [24]). A key
feature of our analysis is that the conceived technique relies on the construction of suitable strict Lyapunov
functionals for nonlinear time-delay systems.

■ In Chapter 4, we consider a model of proliferation and quiescence in living organisms,
where we extend the work of Chapter 3 in two directions:

(a) Firstly, we discuss how to reconcile some earlier modeling ways of the cell cycle in one common
framework. Then, accordingly, we consider a model that contains a compartment where cells may be
quiescent for an unlimited time, along with a proliferating phase (modeling the cell cycle) in which most
of the cells may divide, or die, while few of them may be arrested during their cycle for unlimited time.
The resulting system is a nonlinear system with infinite distributed delays, and a Lyapunov technique is
developed for the analysis of its origin.

(b) In the second part of the chapter, we consider for the first time some cell plasticity features in the
class of systems that we study. As a first step, we are going to discuss some simple cases of cell-plasticity
in unhealthy tissues, and we highlight the role that dedifferentiation may play in the survival of cancer
cells (this hypothesis is in line with some recent medical observations). The main analysis is performed
on a simpler model involving two maturity stages and a dedifferentiation function from progeny to SCs.

❍ Part II. The class of differential-difference systems
■ Chapter 5 is an introductory work which opens up the analysis of a class of hematopoietic

systems, described by some differential-difference (or, more generally, descriptor) systems, following
the work in [4]. More precisely, the study is conducted on a model of stem cell population dynamics
introduced in [4], and which admits two equilibrium points: zero, and - under some conditions on
the biological parameters - a strictly positive steady state. We revisit the stability properties of the
0-equilibrium by extending the Lyapunov construction of [4], in order to establish global exponential
stability of the trajectories. For the strictly positive steady state, the available analysis in [4] is local and is
based on the frequency analysis of the characteristic equation associated to the linear approximation of the
model. Here we discuss the nonlinear analysis of the positive steady state, in the time-domain framework,
going through Lyapunov-like functionals of two types:

First, we test an adaptation of a method recently developed for the analysis of quasi-linear time-varying
systems via Comparative and Positive Systems ([196]). Based on the techniques of [196], [124], [206],
we get the advantage of deriving decay conditions for non-positive trajectories of our model, through a
linear degenerate Lyapunov functional.
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The second approach is more classical, since it is based on a quadratic functional. Sufficient conditions
for the regional exponential stability, an estimate of the decay-rate of the solutions, and a subset of the
basin of attraction of the positive steady state, are then provided.

■ In Chapter 6, an age-structured model describing the coexistence between tumor (or,
cancer stem cells) and ordinary stem cells is developed and explored. Firstly, the model is transformed
into a nonlinear time-delay system that describes the dynamics of healthy cells, coupled to a nonlinear
differential-difference system governing the dynamics of unhealthy cells. These model generalizes some
early coupled systems of hematopoiesis ([23], [26]).

The main features of the resulting model are highlighted and an advanced stability analysis of several
coexisting steady states is performed, through a Lyapunov-like approach for descriptor-type systems.

We pursue an analysis that provides a theoretical treatment framework following different medical
orientations, among which:

i) the case where therapy aims to eradicate cancer cells while preserving healthy cells,
ii) a less demanding, more realistic, scenario that consists in maintaining healthy and unhealthy cells

in a controlled stable steady-state (cancer dormancy).
Biological interpretations and therapeutic strategies are discussed according to our findings throughout

this chapter. Notice that a more recent version of this chapter (mainly focused on the role of the immune
system in cancer dormancy) is provided in the (updated) journal version of this work (see [77]).

❍ Part III. Nonlinear systems involving growth factors and drugs
■ In Chapter 7, we discuss some issues related to the role of growth-factors and drugs in

hematopoietic systems. This is a step-forward in refining the modeling aspects presented in the previous
chapters. First, we propose a description of cell proliferation and quiescence, where almost all the involved
parameters and functions are affected by multiple growth-factor concentrations. We interpret the resulting
system as a possibly switching one. Event-triggered mechanisms in our system may result from drug
infusions or from practical situations where the body requires to adapt efficiently its blood cell count
(e.g. for combating an infection). The key point consists in the formulation of what can be interpreted as
stabilization issue -in our context- through artificial intelligence planning tools. In that framework, an
optimal solution is discovered via planning and scheduling algorithms. For unhealthy hematopoiesis, we
address the treatment issue through multiple drug infusions. In that case, we determine the best therapeutic
strategy that restore an ordinary hematopoietic system. We claim that a large spectrum of applications of
our method can be envisaged. For instance, healthy hematopoiesis can be considered as an intelligent
agent, able to set objectives -that correspond to body requirements- and to achieve them in an optimal
way. Biological interpretations and numerical simulations are provided throughout the chapter.

Finally, a general conclusion, along with some perspectives, are outlined at the end of the thesis.



Chapter 2

A Glimpse into Biology

2.1 The cell-division cycle in living organisms

Cells are the fundamental units of life and the building blocks of all the living organisms. Eukaryotic
cells (these are cells with nucleus) that engage in the division process (i.e. cell-division cycle, [131])
usually undergo a series of transformations and a mechanism of nuclear division (mitosis), that ends
with a division of each engaged cell (cytokinesis, [208]). Figure 2.1 illustrates the cell-division process
of a single mother cell that divides into two daughter cells. Many processes are in fact involved in the
cell-division mechanism, as well as in the several sequential maturation and differentiation stages of cells.
These biological and physiological phenomena frequently occur in the human body, and particularly in
quickly dividing tissues such as skin and bone marrow. Basically, the repetition of cell-division cycle
processes leads to the growth of tissues in all the multicellular organisms.

Definition 3. «Actively dividing eukaryote cells pass through a series of stages known collectively as the
cell cycle, formed by two gap phases (G1 and G2), a synthesis phase S, in which the genetic material is
duplicated, and a mitosis phase M, in which mitosis partitions the genetic material and the cell divides
(cytokinesis)»1. The main events that occur during the phases G1, S, G2, and M, of the cell cycle (Figure
2.1-(A)) are discussed in a chronological order in the next section.

2.1.1 An overview of the main steps defining the eukaryote cell cycle

We provide some basic definitions of the cell cycle phases, that are sufficient for the thesis context. The
interested reader may refer - for instance - to [208] for more information.

❍ GGG1 phase: The cell cycle starts from the interphase G1, which is also known as the growth phase.
It covers the period from the last cell mitosis until the beginning of the DNA replication. Many enzymes,
essential to S phase, are formed during G1. The G1 phase is also characterized by a highly variable
duration, even for cells belonging to the same species.

❍ SSS phase: After G1, each mother-dividing cell starts a process of DNA replication, which marks
the beginning of the synthetic phase S. Each chromosome has two sister chromatids at the end of the S
phase, i.e. the amount of DNA inside the mother-dividing cell is doubled.

1From The Cell Cycle, Mitosis and Meiosis, The official website of the Leicester University. https://le.ac.uk/
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(B)	
Fig. 2.1 The main steps and events in the (animal) cell cycle process, and a resting phase G0.
This figure is made available under the «Creative Commons CC0 1.0 Universal Public Domain Dedication». .

❍ GGG2 phase: Eukaryotic cells enter a gap phase G2, right after the S phase, where a series of events
occurs to prepare the mitosis phase M. For instance, the production of many microtubules (required for
the mitosis process) is performed during the G2 phase. The overall process bringing together G1, S, and
G2, i.e. the period of the cell cycle that precedes mitosis, is known as the interphase.

❍ MMM phase: Mitosis is the process by which the mother cell separates the chromosomes in its
nucleus into two identical (in the general case, even if asymmetric cell division also exists) sets in two
separated nuclei. The M phase is actually composed of several subphases, the last one is cytokinesis,
which divides the nuclei, cytoplasm, organelles and cell membrane into two completely separated daughter
cells.

Remark 1. Even in fast-renewing tissues such as gut, bone marrow, and skin, cells are not always
proliferating, but on the contrary, most of them are in a non-proliferating state, called resting or quiescent
phase, G0 [208]. The quiescent phase G0 is indicated in Figure 2.1-(A) (and also in Figure 2.2), where
cells stopped dividing and left the cell-division cycle.
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2.1.2 Checkpoints, principle of control of the cell cycle

Some well-defined checkpoints are used by the body to control the mother cells during their cycle. These
checkpoints regroup a set of regulatory proteins that monitor and control the overall progression of cells
through the different cell-cycle stages. More precisely, if some requirements are not fulfilled at specific
moments, a proteins network takes over the issue by preventing the cell progression through the cycle.
Consequently, abnormal cells (e.g. with damaged DNA) cannot move forward in the division process, i.e.
cell arrest, where they are obliged to undergo DNA repair, or they are doomed to die by apoptosis.

Fig. 2.2 Cells go through the cycle in an unidirectional manner, where they cannot enter the next phase in the cell
cycle until all the transition exigences of the previous one are satisfied. Thus, the cycle progression is restricted to
the cells fulfilling specific requirements, necessary for the formation of healthy tissues. The figure is from [260].

There are three main checkpoints (G1/S, G2/M, and the metaphase checkpoints) that ensure that
damaged DNA is not passed on to daughter cells (see Figure 2.2). We can briefly mention that:

❍ G1/SG1/SG1/S checkpoint is a transition and a kind of rate-limiting checkpoint in the cell-division cycle.
In this stage (Figure 2.2), the mother-dividing cell checks whether it has enough materials to successfully
replicate its DNA. All unhealthy and/or malnourished cells are arrested at this checkpoint.

❍ G2/MG2/MG2/M checkpoint represents a transition step where the cell ensures that it has enough cytoplasm
and phospholipids to form two daughter cells. It is also the stage where the cell checks if it is the right
time to replicate. Inhibition of protein synthesis during the gap G2 will prevent the cell from undergoing
mitosis M.

❍ Metaphase checkpoint is the one that occurs during the metaphase. Here, the cell wants to
ensure that the spindle has formed and that all of the chromosomes are aligned at the spindle equator
before anaphase begins.

Remark 2. i) The p53 gene (also known as tumor protein p53, or, cellular tumor antigen p53) plays an
important role in triggering the control mechanisms at both G1/S and G2/M checkpoints. In fact, a dam-
aged p53 (due to abnormal mutations) causes some severe health consequences [139]. In addition to p53,



14 A Glimpse into Biology

checkpoint regulators are being heavily researched for their roles in cancer growth and overproliferation.
ii) Cancer are usually caused by mutations that allow the cells to speed through the various checkpoints,
and even skip them altogether (i.e. cells perform a S→M→ S cycle, consecutively, such that the gap
phases are skipped). Because these cells are no longer arrested in the previously mentioned checkpoints,
any DNA mutation that occurs is disregarded and transmitted to the formed daughter cells. This partly
explains why cancer cells tend to exponentially accrue mutations.

Finally, it is worth mentioning that the regulatory process that controls committed cells before and
during mitosis, by triggering a series of physiological events during the cell-division cycle, is not perfectly
understood. Indeed, we point out that, for instance, our understanding of the underlying mechanisms of
translational regulation in the somatic cell cycle is still limited [229], while our knowledge of the energy
regulation (generation and consumption) during the cycle progression is still in a primitive stage [255].

2.2 Stem Cells (SCs)

A fascinating category of cells is known as stem cells (SCs). These are undifferentiated cells characterized
by their extensive ability to self-renew and their multipotency, which is the ability to differentiate into
more mature and specialized cells [285]. Figure 2.3 gives a cartoon representation of the common possible
fates of eukaryotic (stem) cells.

quiescence G0


programmed cell death 
(apoptosis)
proliferation


self-renewal


differentiation/maturation


cell-division cycle


Fig. 2.3 Schematic illustration of the different (stem) cell fates: proliferation, death, self-renewal, differentiation,
quiescence. Quiescent (or resting) cells may recover their division activity. The recent cell plasticity concepts
(dedifferentiation and trandifferentiation, Box 2 and Section 2.4.2) are not represented here.

The general and common concepts defined below are, in a similar way, also valid for non-stem cells.

Definition 4. Cell proliferation.
Proliferation of cells is the mechanism that results in an increase of the number of cells. It is defined
by the balance between cell divisions and cell loss through cell death or differentiation. One of the
characteristics of cancer is that cancerous cells generally overproliferate2.

Definition 5. Cell self-renewal.
Self-renewal of cells is the process by which SCs divide to produce more stem cells, thus perpetuating

2See the definition given in Nature, available at: https://www.nature.com/subjects/cell-proliferation
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the SC pool throughout life. In other words, self-renewal is cell-division with maintenance of the
undifferentiated state that characterizes SCs ([264]). In the process of maturation, cells gradually lose
their ability to self-renew, as they become more and more mature.

Definition 6. Cell differentiation.
Differentiation of cells represents the process by which cells change from one state to a more specialized
type, which has specific functions. Differentiation commonly occurs in an irreversible way3, many times
during the development of a multicellular eukaryotic organism.

Definition 7. Apoptosis
Apoptosis is a highly regulated process of programmed cell death that occurs in multicellular organisms.
Biochemical events lead to morphological cell changes resulting in cell death. If launched, apoptosis
cannot be stopped and causes irreversible nuclear and chromosomal DNA fragmentation.

2.3 Cancer Stem Cells (CSCs)

Basic features of normal SCs have been shortly discussed in the previous section. Now, we point out that
sometimes a pathological population of cells, that does not initially necessarily belong to the SC family
([93]), acquires self-renewing and proliferating capabilities similar to those of normal SCs ([93, 230]).
These stem-like cells are very often out of control [247] and they are capable of initiating, developing and
regenerating cancers [93], hence their designation as cancer stem cells (CSCs) [150].

2.3.1 What is cancer?

Cancer is one of the most devastating causes of morbidity and mortality all over the world [29]. A brief
definition of cancer, given by the National Cancer Institute (NCI) 4, is as follows:

Definition 8. «Cancer is a term for diseases in which abnormal cells divide without control and can
invade nearby tissues. Cancer cells can also spread to other parts of the body through the blood and
lymph systems. There are several main types of cancer. Carcinoma is a cancer that begins in the skin or in
tissues that line or cover internal organs. Sarcoma is a cancer that begins in bone, cartilage, fat, muscle,
blood vessels, or other connective or supportive tissue. Leukemia is a cancer that starts in blood-forming
tissue, such as the bone marrow, and causes large numbers of abnormal blood cells to be produced and
enter the blood. Lymphoma and multiple myeloma are cancers that begin in the cells of the immune
system. Central nervous system cancers are cancers that begin in the tissues of the brain and spinal cord.
Also called malignancy.» National Cancer Institute (NCI, 2017). See also: [297].

In fact healthy tissues are maintaining homeostasis (i.e. maintain a constant internal environment in
response to environmental challenges) through a heavy regulation mechanism. Unfortunately, several
types of disturbances and disorders may occur, causing many severe dysregulation including cancers. In
other words, cancer emerges after some disorders that lead an irreversible neoplastic transformation (i.e.
conversion of a tissue with a normal growth pattern into a malignant tumor) [29]. Neoplastic cells are

3But see Section 2.4, for cell plasticity features (dedifferentiation and transdifferentiation of cells).
4NCI is the federal government’s principal agency for cancer research and training, USA. https://www.cancer.gov
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aggressive, continuously self-renewing, proliferating and in addition, they have the ability to escape to
apoptosis, mitotic checkpoints, and the hole immune regulation system [29].

In particular, a hostile subpopulation of cells within a tumor mass is known to be highly resistant to
anti-tumor drugs currently used in therapeutics [29]. These cells are known as Cancer Stem Cells (CSCs)
[247], as discussed in the next section.

2.3.2 On the Cancer Stem Cell (CSC) hypothesis

CSCs were identified in 1994 and, since then, their research field is generating an increasing interest.
Indeed, their biological properties together with their formation mechanisms become clearly a major focus
of current medical research. The reason behind such an interest is that CSCs are able of initiating and
fueling tumor growth, and moreover, they show a strong resistance to conventional cancer therapies [231].

Box 1. The CSCs hypothesis
Definition 9. CSCs form a limited subpopulation of cancer cells that have indefinite potential for
self-renewal, and most of the time, an overproliferating activity resulting in tumorigenesis.

The CSCs hypothesis postulates that only a subpopulation of the total population of cancer cells,
that form a tumor, is capable of initiating, sustaining and regenerating tumors, while non-stem
cancer cells are considered to be without any tumor initiation potential (see [93, 94]).
In fact, in such a framework, cancer cells include CSCs, and striking parallels exist between
normal SCs and CSCs. One interpretation of cancera is that: CSCs may originate from the
transformation of normal SCs. In addition, it appears clear that similar signalling pathways are
regulating self-renewal mechanisms in SCs and cancer cells (see [247]).

Remark 3. The CSCs hypothesis is actually still controversial, even if this concept has gained
ground in the recent years and is now better accepted. For some authors, the reference as a "CSCs
paradigm" may appear to be more appropriate than "hypothesis" (see for instance [93]). In fact,
medical observations have approved the existence of multiple subpopulations of cancer cells in a
tumor, with different tumor-initiating powers ([93, 94]), including a subpopulation of cells showing
a "stem-like" status [116, 117]. However, it appears that "stemness" is not a permanent state, but
rather a transient cell state that is associated to epigenetic changes [54, 116, 117].

aWe will see later a second interpretation of cancer, based on cell plasticity features (Section 2.4.2), in which it is
argued that CSCs emerge from the dedifferentiation of more mature cancer cells.

In addition, as reported in [231], the discovery that activation in carcinoma5 cells of the epithelial-to-
mesenchymal transition (EMT)6 program can give rise to cells with stem-like properties has provided one
possible mechanism explaining how CSCs arise, with possible therapeutic manipulations (see [231]).

5Carcinoma is a type of cancer that starts in cells that make up the skin or the tissue lining organs, such as the liver or kidneys.
It is developed from epithelial cells and started in the tissues that lines the inner or outer surfaces of the body. As it is usually the
case of all cancers, carcinomas are abnormal cells that overproliferate without control.

6Roughly speaking, EMT is the mechanism by which epithelial cells lose their cell polarity and cell-cell adhesion, and gain
migratory and invasive properties to become mesenchymal stem cells (these are multipotent stromal cells that can differentiate
into a variety of cell types).
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Next, we mention that CSCs have the feature of dividing asymmetrically, since mother CSCs give
birth to daughters that remain as CSCs (self-renewal) and they give also birth to differentiated cells that
generate the non-stem cancer cells [93]. In the sequel, we will see that these (non-stem) cancer cells may
also (re)generate CSCs [29] through a sophisticated process known as dedifferentiation ([52], which is a
cell-plasticity feature [280]) as developed in the next section.

2.4 Can cells undergo dedifferentiation?

In view of the broad range of options available for cells in general (including self-renewal, differentiation,
lineage specification, programmed cell death, and quiescence, see Figure 2.3), and SCs in particular,
it becomes clear that determining the fate of a given cell is a key challenge [95]. This task is further
complicated by the discovery of unexpected biological mechanisms that are known as cell plasticity
abilities. More precisely, it has been believed for a long time that once a cell differentiates into a particular
cell type that has a distinctive function in the human body (e.g. when an hematopoietic SC differentiates
into a type of, for instance, mature white blood cells), it permanently loses the potential for diverse
functions and stably maintains its identity [301]. The discovery of dedifferentiation contradicted this
biological postulate, and thus opening the way to a much richer and complex cellular behavior.

Box 2. Crucial definitions: cell-plasticity (dedifferentiation & transdifferentation)

Definition 10. «Dedifferentiation is an important biological phenomenon whereby cells regress
from a specialized function to a simpler state reminiscent of stem cells» [52].

Definition 11. «Transdifferentiation is defined as the conversion of one cell type to another. It
belongs to a wider class of cell type transformations called metaplasias which also includes cases
in which SCs of one tissue type switch to a completely different SC» [263].

It has been believed that once a cell differentiates into a particular cell type that has a distinctive
function in the human body, it permanently maintains its identity [301]. The discovery of dediffer-
entiation contradicted this biological postulate and allowed a much richer and complex cellular
behavior. Even more surprisingly, transdifferentiation stated that adult SCs may first reside in one
tissue and then contribute to another tissue [280]. In fact, in normal tissues, when the process of
cell generation and continuous replenishment is perturbed (e.g. tissue injury, hemorrhage), the
homeostatic mechanisms are invoked to allow adequate regeneration of damaged tissue [280].

As previously mentioned, the mechanisms regulating the cell-division cycle are not yet perfectly
assimilated. Nevertheless, it is agreed by everyone that understanding how the fate of cell (including
SCs) is guided will, firstly, elucidate the causes of cancer and, secondly, allow the use of cells/SCs in
regenerative medicine7 (see for instance [95], and the references therein).

7«Regenerative medicine aims to replace the lost or damaged cells in the human body through a new source of healthy
transplanted cells or by endogenous repair» [83].
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2.4.1 Evidences about cell plasticity: the case of induced pluripotent stem cells (iPSCs)

The two main human SC types8 are embryonic stem cells and adult stem cells (e.g. epidermal stem cells
to renew skin, epithelial stem cells in the gut, hematopoietic stem cells in bone marrow for fabrication
of blood, bronchoalveolar stem cells in the lungs). By artificially reprogramming adult cells a new
category of cells that expresses embryonic stem cells characteristics is obtained (sometimes called
induced pluripotent stem cells (iPSCs)9. Not surprisingly, the clinical potential of stem cells is eliciting
huge scientific and commercial interest [95].

Box 3. Yamanaka factors (Oct3/4, Sox2, Klf4, c-Myc)
A research team in Kyoto University, in Japan, have successfully identified in 2006 the mechanism
that would allow genetic reprogramming of differentiated adult cells to become SCs. The resulting
stem-like cells are known as induced pluripotent stem cells (iPSCs), and they are similar to
embryonic stem cells. Since then, researchers have rapidly improved the initial techniques of
generating iPSCs, creating a powerful new way to "dedifferentiate" cells whose developmental
fates had been previously assumed to be determined.
Yamanakaa Factors (Oct3/4, Sox2, Klf4, c-Myc) are highly expressed in embryonic SCs, where
they regulate the developmental signaling network inducing pluripotency. The over-expression of
these factors is used to transform human somatic cells into pluripotent embryonic-like cells [175].

aShinya Yamanaka has been awarded the Nobel Prize in Physiology or Medicine, in 2012, for «the discovery that
mature cells can be reprogrammed to become pluripotent».

Finally, since some ethical issues arise regarding the use of embryonic SCs in research, cell plasticity
appears as an acceptable way to produce SCs without sacrificing embryos [52]. Consequently, therapy
research is focusing on adult cells due, as previously mentioned, to their potential in regenerative medicine
and tumor biology, but also because dedifferentiation (or, reprogramming) may offer an abundant source
of SCs without any risk of immune rejection from the intended recipient (see [95, 230, 52, 41]).

2.4.2 Cell plasticity in normal tissues

In normal tissues, it has been believed that once a cell differentiates into a particular cell type that has a
distinctive function in the human body (e.g. when an hematopoietic SC differentiate into a type of mature
white blood cells), it permanently loses the potential for diverse functions and stably maintains its identity
[301]. However, nowadays, it becomes clear that the traditional lineages and functions are, physiologically,
no longer sufficient to describe the fate of a cell [280]. Indeed, the discovery of dedifferentiation in
normal tissues has contradicted the classical biological visions, and thus, opens the way to a much richer
cellular behavior and fates, even when no malignancy is involved. In addition, transdifferentiation and
transdetermination [280], these even more surprising phenomena where adult SCs may first reside in one
tissue and then contribute to another, are also present is healthy cases.

8See the website of the International Society for Stem Cells Research (ISSCR): www.closerlookatstemcells.org
See also the Nature Reports: www.nature.com/stemcells/2007/0706/070614/full/stemcells.2007.14.html

9See the website of GE healthcare: www.gelifesciences.com
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Finally, we notice that cell plasticity in healthy tissues is evoked when the process of cell generation
and continuous replenishment is perturbed (e.g. after tissue injury, or hemorrhage) [280]. Indeed, in such
situations, the homeostatic mechanisms are invoked to allow adequate and fast regeneration of damaged
tissues (see Figure 2.4).

(B)


(A)


Fig. 2.4 (A) A differentiation example: After a ventricular amputation of zebrafish, a dedifferentiation (followed by
a replication -proliferation-, then, a redifferentiation) is observed in cardiomycocytes ([280]). (B) A transdifferentia-
tion example in which hypatocytes become biliary duct epithelial cells. This process occurs after a toxin-induced
biliary injury. These images are from [280] ((A) is from Fig. 2 and (B) is from Fig. 3 of [280]).

2.4.3 Dedifferentiation meets cancer

Cell-plasticity has provided new hypothesis about the origin of cancer, as well as new therapeutic insights
for its treatment (see the review articles on this topic: [83, 110, 171, 149], and the references therein).

At this juncture, the issue is whether cancer emerge from SC disorder or a reacquisition of SC
characteristics? (see [230], for a similar issue in the typical case of leukemia). The latter question is
equivalent to the one already tackled in Section 2.3, about the origin of CSCs. We have already put
forward one interpretation that assumes that CSCs may originate from a transformation (i.e. mutation)
in a part of normal SCs (see Box 1). Several relevant works support this theory that appears consistent.
However, another interpretation strongly relate cancer to dedifferentiation (see [83, 110, 171, 149], and
the example in Figure 2.5). In fact, both ways of generating cancerous cells may exist in the same type of
cancer, as illustrated in the following example in Box 4.

Definition 12. Epigenetics is the analysis of any potentially heritable change in gene expression, which
actually affects how cells read the genes, while it does not involve changes in the corresponding DNA
sequence. In other words, it is about a modification in phenotype without changing genotype. See
[116, 117].
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Box 4. The example of leukemic (i.e. blood cancerous) cells
We quote from Tung & Knoepfler work [286] that:
« The CSC hypothesis postulates that immortality is a pathological offshoot of the normally
exquisitely controlled proliferation machinery in normal SCs from which mis-regulated cell ex-
pansion occurs due to oncogenic mutations [150, 72]. This CSC model further proposes that
there is a subpopulation of cancer cells within tumors that possesses some sSC-related properties
such as self-renewal and that give rise to tumors [42]. However, whether CSCs originate from
normal SCs or from differentiated cells, which reacquire SC attributes through a dedifferen-
tiation process, is a long-standing question [217]. The answer to this key open question may
vary depending on tumor type and stage as well. Take the hematopoietic system for example;
leukemia SCs have been shown to arise from both self-renewing SCs and also from transient
repopulating progenitors, providing evidence that stem cells and late-stage precursors can both
undergo oncogenic transformation and result in similar tumor phenotypes [68] » [286].

In the majority of cancers, the genetic/epigenetic heterogeneity is reflected by genome instability
(i.e. genetic or epigenetic alterations [214]). We define the phenotypic heterogeneity as the diversity in
functional features and behaviors in different lineage markers that cancer cells can adopt during their
cancer progression (growth). Based on cell surface markers ([174, 246, 279]), we can identify distinct
(heterogeneous) populations of cancer cells within the same tumors, i.e. cancer cells within the tumor may
exist at different states of differentiation and maturation, including the subpopulation of CSCs [93, 94].

In [110], the authors reported that although CSCs exhibit the SC characteristics (self-renewal, prolifer-
ation and differentiation), they do not necessarily originate from the transformation of normal tissue SCs.
Several recent works are suggesting that not all cancers strictly conform to the unidirectional hierarchical
CSC model, and highlight the theory of tumor cell plasticity, where non-CSCs dedifferentiate and
acquire CSC-like properties under certain conditions as demonstrated by the concrete examples given in
[110]. Finally, we refer to [142], and the references therein, for a quantitative experience highlighting the
role of dedifferentiation in cancerous cell surviving during radiotherapy.

Box 5. Summary of the main medical research focuses in cell plasticity
All the research efforts in recent years are mainly focusing on the following aspects of cell plasticity:
❍ Adult cells manipulation and artificial reprogramming into iPSCs.
❍ CSCs origin and the role of cell plasticity in the appearance and maintenance of tumors.
❍ Drug-resistance, chemotherapy and radiotherapy resistance, induced by cell-plasticity.

2.5 Cancer dormancy

Very often, CSCs and cancer cells are characterized by unhealthy behaviors such as excessive proliferation
and abnormal loss of their differentiation faculties (this is what we observe in leukemia, for instance). On
the other hand, it cannot be disregarded that in some cases (as in breast cancer and leukemia [88], [18])
CSCs do not overproliferate (cancer without disease [102], or, in situ tumor). However, even during their
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differentiation


dedifferentiation


transdifferentiation


Fig. 2.5 Dedifferentiation and cancer. A model for the generation of malignant gliomas. Normal mechanism
of neuronal differentiation: Neural stem cell can self-renew, go through an intermediate progenitor cell, and
differentiate into oligodendrocytes, astrocytes, neurons, and endothelial cells. In the formation of glioblastoma, the
transformed neurons, astrocytes, and possibly oligodendrocytes can dedifferentiate/reprogram to become cancer
stem cells (CSCs), which can then continue to self-proliferate and differentiate to more transformed neurons and
astrocytes. The transformed neurons and astrocytes can also transdifferentiate into endothelial cells (TDECs), which
can again dedifferentiate to CSCs. [110].

non-overproliferating states, CSCs remain in general distinguishable through specific markers on their
surface10 [247].

2.5.1 Evidences and underlying assumptions about cancer dormancy

Strong evidence about the existence of this stalled growth, commonly referred to as tumor dormancy, has
been established many years ago when microscopic tumors were frequently encountered during autopsy
examinations ([220], [102]). The most likely explanations (see [15, 261, 102]) of CSCs dormancy state
are:

i) blood and nutrient supply issues that prevent tumor growth, or delay its clinical manifestation [213],
ii) vigilance of the immune system which, in some rare cases, suffices to stop tumor development (see

[98, 261, 213, 299, 291]). In fact, there has been a lengthy debate on the role of the immune system in

10For instance, stems cells in acute myeloid leukemia have some interleukin-3–receptor α chain surface markers, which are
not found in normal hematopoietic stems cells (see [150, 99]).
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the defense against cancer: a process called cancer immunosurveillance [291]. The ambiguity about the
immunosurveillance concept stems from the fact that often the immune system favors the development of
the tumor instead of trying to eliminate it. The concept that attempts to integrate the diverse effects of the
immune system on tumor progression is known as cancer immunoediting (see the review articles [261]
and [291]). However, even if it appears as an unsystematic process, the immune response remains one of
the most likely justifications for cancer dormancy.

Illustrative interpretations of CSC eradication, dormancy, and escape of dormancy, in terms of cancer
immunoediting, are provided in Figure 2.6 (see also Figure 3 of [261] and in Figure 1 of [291]).

Not surprisingly, an interest arises for cancer therapies that are oriented on the immune system, bearing
the name of immunotherapy11. In a similar spirit, monoclonal antibodies, e.g. gemtuzumab ozogamicin,
have been approved in the treatment protocols of some cancers (as in acute myeloid leukemia [115]), even
if more trials are still needed to identify their exact benefits [253, 115]. Other cancer therapies, sometimes
assimilated to immunotherapy, are using some immune checkpoint inhibitors (see for instance, [228],
[169] and [44]). In the last part of our work, we will be shortly adopting some of these immuno-oriented
concepts, associated with classical chemotherapy, as it is frequently adopted in practice.

Fig. 2.6 Illustrative figure (taken from [261]) of escape from dormancy and immunoediting concepts.

11Immunotherapy aims to help the immune system destroy cancer cells. It is given after -or at the same time as- another cancer
treatment such as chemotherapy. (http://www.cancer.net/)



2.6 A presentation of the process of blood cell production 23

2.5.2 Is cancer dormancy a promising therapeutic option?

In a general perspective, apart from the interpretation of tumor dormancy as an observed natural phe-
nomenon in human cancers, the idea to transform cancer into a chronic disease is in the voices of many
people in the medical world nowadays [111], [14]. Indeed, the interesting issue here is about: how can we
bring CSCs from an overproliferating activity to a dormant state? More precisely, since cancer treatments
most often consist of delivering the maximum tolerable doses of drugs in order to kill diagnosed tumors,
and knowing that a non-completely eradicated tumor frequently grows again, even more aggressively than
the initial one [93], the option of maintaining the tumor in dormancy is more appealing than trying to
eradicate it [147]. Further discussions on the opportunities offered by cancer dormancy in therapeutics
can be found for instance in [14], [289], [111], and the references therein.

The development of a relevant mathematical framework appears as a necessary tool to apprehend
tumor dormancy as a biological mechanism [154], with the ultimate goal to apply it in therapeutic settings.
However, the task of mastering CSCs, i.e. bringing them into a dormant state, seems to be difficult to
conduct. Indeed, one of the first dormancy-oriented therapeutic approaches has not been very fruitful. It
was based on the use of angiogenesis inhibitors (substances that inhibit the growth of new blood vessels
[102]) as drugs that choke off the blood supply of the tumor, in order to maintain it in dormancy. However,
unexpected effects occurred in practice, in some situations, where targeting the blood vessels that feed
tumors actually accelerated the spread of cancer [134], [248].

In the clinic of cancers today, eradication of CSCs remains the predominant treatment approach
(although there is still a long way to improve the existing eradication treatment strategies [277]). In light
of the previously mentioned observations, one can say that dormancy has actually generated more issues
than answers, in the process of understanding cancer. Among the open issues, we emphasize the following
ones: when a treatment protocol is elaborated for CSCs eradication with a given rate of success, how can
we actually administer it (or a part of it) in order to achieve dormancy? In addition, since eradication
techniques may generate some surviving tumors which become even more aggressive than the initial ones,
a key question is to determine whether it is effective to consider the same targets and drugs, as for CSCs
eradication, in order to achieve dormancy? These are some open questions in this topic.

2.6 A presentation of the process of blood cell production

Among a wide range of physiological mechanisms occurring in the human body, our research axis particu-
larly highlight one fundamental and major process, leading to the formation and continuous replenishment
of all the blood cells, known as hematopoiesis [138]. Clearly, hematopoietic stem cells (HSCs) are the
most clinically studied type of SC. Due to their vital importance, extensive work (particularly in biology
and medicine) is carried out on HSCs, since they sustain haematopoiesis [69].

More precisely, in a healthy bone marrow resides a rare population of HSCs. The critical role of
HSCs is to create and replenish all the types of blood cells, including red blood cells, white blood cells
and platelets, as illustrated in Figure 2.8. These distinctive categories of differentiated blood cells arise
from HSCs by a process of commitment to (and execution of) complex programs of cell differentiation
[138]. Thus, lineage committed progenitor cells subsequently proliferate and differentiate to produce
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the circulating mature blood cells, under the control of what is collectively known as colony-stimulating
factors (CSFs) (i.e. a group of hormonal-like growth factors) [61, 265]. In fact, the blood cells (both the
myeloid and lymphoid lineages in Figure 2.8) differentiate inside the bone marrow (Figure 2.7), they
leave and enter bloodstream when they become mature.

The complexity of the hematopietic system is enormous, since as many as 1−5×109 erythrocytes
and 1−5×109 white blood cells are produced per day during the lifetime of an individual. Additional
complexities include the need to maintain a pool of undifferentiated SCs, from which mature cells arise
by a differentiation process.

Fig. 2.7 The hematopoietic cells are formed inside the bone marrow. When blood cells become mature, they leave
the bone marrow and go into circulation, in order to fulfill their specif tasks. This figure is from the National Cancer
Institute (available at: https://www.cancer.gov/types/leukemia/patient/adult-aml-treatment-pdq).

On the importance of HSCs

In 2017, G. Crane and his co-authors wrote in [69] about hematopoiesis:
« Hematopoiesis is required for the ongoing production of blood cells and immune cells — including
erythrocytes, platelets and white blood cells — throughout life. To generate these cells, HSCs
give rise to an array of restricted progenitors, which proliferate extensively and then differentiate
into mature cells. Without hematopoiesis, we would not be able to maintain blood cell counts and
would die within weeks as a result of anaemia (due to erythrocyte depletion), bleeding (due to
platelet depletion) and infection (due to the depletion of myeloid and lymphoid immune effector
cells). Although restricted progenitors are responsible for most steady-state hematopoiesis, HSCs
must be maintained throughout life to replenish these progenitors, and to regenerate hematopoietic
cells after stresses such as severe infection or blood loss» [69].
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2.7 Hematopoietic niches

The local specialized tissue microenvironment that promotes the maintenance and ongoing production of
SCs is known as niche [69, 209]. Inside the bone marrow, the hematopoietic niche regulates the function
of adult HSCs, via the production of factors that directly act on SCs (some other factors, from more distant
tissues, also affect the SCs in their niche [69]).

Fig. 2.9 This figure is taken from [69]. It illustrates niches location of adult HSCs and their regulation processes.
Inside an adult bone marrow, HSCs position themselves in close contact to sinusoid (see [209, 69]), since these
locations usually express high levels of stem cells factors (SCF) as explained in [69]. SCF and CXCL12 are indeed
necessary for the maintenance of HSCs [69]. Approximately 10% of HSCs localize near to small-diameter arterioles
[69]. Many growth factors, nerve fibers and cells, through very complex mechanisms, are also required for HSC
maintenance (see also [308], and the references therein). Osteoblasts appear to promote a subset of early lymphoid
progenitors. Some other lymphoid progenitors reside inside sinusoidal niches, where they depend on CXCL12
synthesized by LEPR+ (leptin receptor +) cells [69]. Surprisingly, it appears that, in turn, HSCs regulate the
maintenance of the niches through the secretion of angiopoietin-1 (see [308]).

For further reading on the HSCs niches, we refer to [159, 76], and also to [129] for a recent review of
the neural regulation of hematopoietic niches through sympathetic nervous system (SNS).
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2.8 Regulation of hematopoietic cell growth

The process of hematopoietic cell differentiation is heavily regulated through cytokines (see [200]), in
order to maintain an adequate mature-cell density in the bloodstream.

Cytokines: these are small proteins that play a major role in cell signaling. Their release has an
effect on the cell around them, by affecting their behavior and determining their fates. Here we
list some important facts about cytokines: i) They are involved in autocrine signalling, paracrine
signalling and endocrine signalling as immunomodulating agents. ii) They include chemokines,
interferons, interleukins, lymphokines, and tumour necrosis factors but generally not hormones
or growth factorsa. iii) They are produced by a broad range of cells, including immune cells
like macrophages, B lymphocytes, T lymphocytes and mast cells, as well as endothelial cells,
fibroblasts, and various stromal cells.

aDifference between cytokines and growth-factors: Hormones (growth-factors) are also important cell signaling
molecules. In fact, the distinction between cytokines and hormones is still part of ongoing research. Most commonly,
cytokines include chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors but generally not
growth factors (despite some overlap in the terminology). Notice that one type of cytokine may be produced by more
than one type of cells, while hormones tend to be made by specific kinds of cells.

2.8.1 Regulation of red blood cells: Erythropoeietin (EPO)

We define erythropoiesis as the process of production of red blood cells (RBCs or erythrocytes). In the
simplest scenario, a decrease of oxygen O2 is detected by the kidneys, which stimulates the secretion (by
some interstitial fibroblasts in the kidneys) of a cytokine (or a growth factor) called erythropoietin (EPO).
More generally, EPO is a glycoprotein that plays the most relevant control in erythropoiesis: it promotes
both the proliferation and differentiation of red blood cell precursors (see Figure 2.8), which favors the
erythropoiesis process and results in red blood cells production.

2.8.2 Regulation of white blood cells: Granulocyte colony-stimulating factor (G-CSF)

The Granulocyte-colony stimulating factor (G-CSF, [75]), is a glycoprotein that stimulates the bone
marrow to produce granulocytes (see Figure 2.8) that go into the bloodstream [281].

G-CSF is considered both as a cytokine and as a hormone. As mentioned in [200], several tissues
may release G-CSF in the body, and it may in addition have different roles (stimulates the survival,
differentiation, and proliferation of neutrophils, Figure 2.8).

2.8.3 Regulation of platelets production: Thrombopoietin (THPO)

Megakaryocyte growth and development factor (MGDF), or, more commonly, Thrombopoietin (THPO),
is a protein (more precisely, a glycoprotein hormone) produced by liver and kidney, and which regulates
the platelets formation. In fact, THPO stimulates the production and differentiation of megakaryocytes
(see Figure 2.8), the bone marrow cells that lead to platelets [155].
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2.9 Some pathological blood disorders

A huge number of diseases and disorders may occur in the hematologic systems. Here we are listing some
examples of these diseases.

❍ Anemia is one of the most frequent blood disorders which is mainly characterized by a decrease
in the number of red blood cells and hemoglobin in the bloodstream. Numerous kinds of anemia exist,
and several classifications are introduced to categorize them (for instance, nutritional vs non-nutritional
anemias). We can mention for instance:

❏ Pernicious anemia is a type of megaloblastic anemias, characterized by an inability to
absorb B12-vitamins (due to a loss of gastric parietal cells).

❏ Iron deficiency anemia is a disorder where hemoglobin cannot be produced. Indeed, as
its name indicates, iron is very low during this kind of anemia, while hemoglobin contains iron.

❏ Megaloblastic hereditary anemia is an unhealthy situation, which is characterized by an
inhibition of DNA synthesis during erythropoiesis.

❏ Alphastic anemia is a blood disorder in which the bone marrow cannot produce sufficient
blood cells to replenish the circulating mature blood cells.

❍ Infectious diseases (bacterium-related and protozoan-related)
❏ Cholera infection, which is a bacterium-related.
❏ Plasmodium infection (Malaria), which is protozoan-related.

❍ Immunodeficiency

❍ Blood cancers, which belong to the family of cancers (see Section 2.3.1), but they are limited to
those originating, evolving, or affecting the bone marrow, blood cells, or lymph glands12.

❏ Myeloma
➣ Malignant plasma cell tumor NOS

❏ Malignant immunoproliferative diseases
➣ T-gamma lymphoproliferative disease

❏ Lymphoma
➣ B-cell lymphoma
➣ Burkitt lymphoma

❏ Leukemia: unlike solid tumors, leukemia is a liquid cancer that starts in the bone marrow,
which is the place of production of all blood cells. Leukemic cells are most of the time immature white
blood cells, that abnormally and excessively proliferate in the bone marrow until they overrun the healthy
blood cells (see Figure 2.10). Moreover, since leukemia is not a solid tumor, cells may travel through the
bloodstream and contaminate other organs in the body.

First, we distinguish between acute leukemia and chronic leukemia. Roughly speaking, the
acute one growths very quickly, at the point of becoming deadly in weeks or months, if not treated. On
the other hand, chronic leukemia types are generally slow and long-term developing cancers. There two

12Lymph gland is a part of both the lymphatic and adaptive immune systems. Lymph nodes are major sites of B and T
lymphocytes (see Figure 2.8), and other white blood cells.
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main types of acute leukemia: the first one appears in the myeloid lineage while the second one appears in
the lymphoid lineage (see blood lineages in Figure 2.8).

➣ Acute myeloid leukemia (AML)
➣ Acute lymphoblastic leukemia (ALL)

On the other hand, we can distinguish between three types of chronic leukemia:
➣ Chronic myeloid leukemia (CML)
➣ Chronic lymphocytic leukemia (CLL)
➣ Hairy cell leukemia (HCL)

In practice, the most commonly encountered types of leukemia, in adults, are CLL and AML.

Fig. 2.10 Normal blood includes a large variety of cells of different shapes, reflecting the normal developmental
stages and the different types of cells (mature red blood cells, mature white blood cells, platelets, see Figure 2.8).
This diversity is vital for the healthy functioning of blood throughout the body. On the other hand, leukemia is
characterized by a poor cell diversity resulting from the overproliferation of cancer (immature) blood cells, with
a similar appearance. In AML, blast cells (immature white blood cells, Figure 2.8), which are enable to perform
their functions in blood, invade the bone marrow and possibly the bloodstream. In fact, their overproliferating and
self-renewing activities prevent the formation of other (normal) blood cells.
Figure source: http://www.cancerexpertnow.com/resource/cancer-resources/leukemia-diagnosis/

2.10 A particular emphasis on Acute Myeloid Leukemia (AML)

In [85], H. Döhner and co-authors defined AML as follows:

Definition 13. Acute Myeloid Leukemia (AML) [85].
«AML is a form of cancer that is characterized by infiltration of the bone marrow, blood, and other
tissues by proliferative, clonal, abnormally differentiated, and occasionally poorly differentiated cells of
hematopoietic system» [85].
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Box 6. Some facts and figures about AML
❍ AML is clinically identified if leukemic myeloid blasts (Figure 2.11) exceed 20% in the

bloodstream: this is in fact the conventional diagnosis criterion of AML, or, if at least 50% of
blood cells belonging to different myeloid lineages are dysplastica [84].

❍ The success rate of therapies in AML for patients younger than 60 years is approximately
40%, while it never exceeds 15% for patients over 60 years [85, 84].

❍ At the time of this writing, striking statistics and previsions about acute myeloid leukemia
(AML) are provided by the American Cancer Society for the current year (2017), in the United
States of America. Some of these data are summarized in Table 2.1.

aDysplastic cells are unhealthy cells with severe abnormal development.

Fig. 2.11 A two-panel drawing of normal blood cells and blood cells with leukemia. Platelets, red blood cells,
white blood cells, plasma (fluid), and blast cells are labeled. Blasts are not typically found in bloodstream when
hematopoiesis is normal. Usually, AML diagnosis criterion consists in the identification of -at least- 20% of blasts
in the bloodstream. This figure is under a free licence from the National Cancer Institute (NCI), by A. Hoofring.

Estimates of new cases in leukemia (all kinds) ≈ 62130 new cases in 2017
Estimates of deaths from leukemia (all kinds) ≈ 24500 deaths in 2017
Estimates of new cases in Acute Myeloid Leukemia ≈ 21380 new AML cases in 2017
Estimates of of deaths from in Acute Myeloid Leukemia ≈ 10590 deaths in 2017

Table 2.1 Estimates (USA, 2017) provided by the Cancer Statistic Center affiliated to the American Cancer
Society.

According to the type of cell which is affected, AML has been divided into eight types, by the
French-American-British (FAB) classification. A pioneer FAB classification proposal was introduced
in [34]. Since then, many revisions have been performed [125]. A different classification exists, it is
known as WHO - World Health Organization - classification (last update in 2008, [221]). Roughly
speaking, the FAB Classification relies on morphological criteria of the cells, while WHO Classification
separates malignant cells according to chromosome translocations. An overview of the FAB classification
is given in Table 2.2, while an extensive discussion on the WHO classification can be found in [85, 84].
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M0 undifferentiated AML immature while blood cells
M1 myeloblastic leukemia with minimal maturation immature while blood cells
M2 myeloblastic leukemia with maturation immature while blood cells
M3 promyelocytic leukemia immature while blood cells
M4 myelomonocytic leukemia immature while blood cells

M4 eos myelomonocytic leukemia with eosinophilia immature while blood cells
M5 monocytic leukemia immature while blood cells
M6 erythroid leukemia immature red blood cells
M7 megakaryoblastic leukemia immature cells that produce platelets

Table 2.2 The French-American-British (FAB) classification divides AML mainly into eight subtypes13.

2.10.1 FLT3 (fms-like tyrosine kinase) mutations in AML

FLT3 (fms-like tyrosine kinase), is a member of the type III receptor tyrosine kinase (RTK) family. It
is mainly expressed in multipotential HSCs and progenitors [243]. Severe FLT3 mutations are found in
blast cells in nearly 30% of newly diagnosed AML in adults [305, 160, 277]. Cells with FLT3 mutations
have an important overproliferating advantage, typically through RAS-RAF, JAK-STAT and PI3K-AKT
signaling pathways (see Figure 2.12) [85, 258].

There are in fact two types of FLT3 mutations in AML:
❍ FLT3-ITD subtype (internal tandem duplication mutation, see [166], [282], [298]).
❍ FLT3-TKD subtype (point mutation in the tyrosine kinase domain, see [199]).

The first subtype (i.e., FLT3-ITD), represents approximately 70% of AML with FLT3 mutations,
and it has a severely poor prognosis [305, 277]. In fact, several molecules kinase inhibitor have been
evaluated against FLT3 mutations in the typical case of AML. For instance, we can mention: AC220
[305], lestaurtinib [161], and, more recently, midostaurin [277]. A glimpse into some AML therapies is
discussed in the next section (see Box 8).

Finally, we mention that many other mutations may occur -sometimes simultaneously- in the
hematopoietic cell population. These mutations have more or less devastating consequences (see [137]).
For instance, we can mention the DNMT3A mutations, TET2 mutations, IDH1 and IDH2 mutations, etc.
The appearance of the latter types of mutations in AML lead to deregulation of the DNA methylation (see
the review paper about genomic and epigenomic landscapes in AML [214], see also Table 1 in [85] that
gives only the most frequent gene mutations in adult AML).

2.10.2 Current and emerging therapies for AML

Even after decades of intensive medical research, the treatment of AML has not encountered too much
success [85]. Indeed, it is surprising to notice that AML drug protocols have remained substantially
unchanged over the last four decades [85, 258].

In the general case, two main chemotherapy phases are considered during the treatment:

13See the StayWell official webpage:
http://poc.select.kramesstaywell.com/Content/cancer-source-v1/understanding-acute-myeloid-leukemia-am,
And the American Cancer Society official webpage:
https://www.cancer.org/cancer/acute-myeloid-leukemia/detection-diagnosis-staging/how-classified.html
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❍ Induction therapy: this is an intensive chemotherapy phase that generally uses some
continuous-infusions of cytarabine with anthracycline (possibly with anti-CD33 monoclonal antibody
such as gemtuzumab orogamicin [253]). See [85], and also [295].

❍ Postremission therapy: if a complete remission is obtained within the intensive induction
phase, a suitable consolidation program is prescribed. This essential phase includes chemotherapy and
hematopoietic cell transplantation.

Box 7. On classical and emerging therapies for AML (2017, [258])
The classical chemotherapy-based treatment of AML is known as (7+3), meaning that the patient
undergoes an intensive induction consisting of cytarabine (during 7) and/plus anthracycline (during
3 days). This treatment is generally followed by consolidation chemotherapy andhematopoietic
cell transplant (HCT), in order to ensure a complete remission.
In [112], one attempt - among many others - to improve the classical regiment (7+3) is discussed:
« Efforts to improve the outcome of patients with AML have included the replacement of daunoru-
bicin with idarubicin or mitoxantrone; the intensification of cytarabine or daunorubicin during
induction; and the addition of maintenance therapy. With the exception of maintenance therapy,
which was associated with an inferior survival, most regimen modifications have had modest effects
and most randomized trials have shown no significant difference in outcome between treatment
arms» [112]. Nevertheless, the overall results of ongoing treatments suggest that an improve-
ment of the global prognosis of patients is possible, but a better understanding of leukemogenesis
mechanisms is necessary in order to develop new selective combined targeted therapeutic strate-
gies. In fact, various promising agents are evaluated in clinical trials: a summary is given in Table
1 of the recent work [258].

Let us now briefly mention some new promising therapies in the case of AML.
❍ New cytotoxic agents

➡ Vosaroxin
❍ FLT3 inhibitors

➡ Sorafenib (first generation, [252])
➡ Midostaurin (first generation, [277])
➡ Quizartinib (second generation)

❍ PLK inhibitor
➡ Dasatinib
➡ Midostaurin (which is also an FLT3 inhibitor)

❍ Antibody-based therapies
➡ antibodies targeting CD33 (e.g. gemtuzumab orogamicin)
➡ antibodies targeting antigens such as CD123

❍ Epigenetic-modifiers therapies
➡ inhibition of the mutant metabolic enzymes IDH1 and IDH2

(e.g. by infusing AG-120 and AG-221)
❍ Immune checkpoint blockade

Ipilimumab
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Fig. 2.12 FLT3 mutations in the signaling genes are of two subtypes (ITD and TKD) [166, 199, 258]. Mutated cells
in these cases have an overproliferating advantage through RAS-RAF, JAK-STAT and PI3K-AKT ([163]) signaling
pathways, along with a survival ability [85, 258]. This figure is taken from [258].

Box 8. FLT3 inhibitors and therapies for AML (2017, [277])
Patients with acute myeloid leukemia (AML) and a FLT3 mutation have poor outcomes [277].
Since FLT3 mutations are frequently encountered in AML, several tyrosine kinase inhibitors are
developed as possible effective drugs.

The third clinical trial of midostaurin has been conducted recently in [277]. The conclusion is
outlined as follows ([277]):

«The addition of midostaurin to chemotherapy resulted in a 22% lower risk of death than that
among patients who received chemotherapy plus placebo. Although the trial was not powered for
subgroup analyses, overall survival was longer in the midostaurin group than in the placebo group
among patients with a FLT3 mutation of the TKD subtype and among those with a FLT3 mutation
of the ITD subtype with either a high ratio or a low ratio of mutant to wild-type alleles. »[277].

Finally, we mention that therapies targeting FLT3 mutations are highly toxic (due to their nonse-
lectivity), and in addition, a FLT3-resistance mutations can be developed.
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2.11 How do these biological concepts appear in this thesis?

The sections developed in this chapter give a limited overview on a number of interesting biological
principles: some of them have recently emerge (e.g. CSCs, dormancy, and cell plasticity), and they are
currently undergoing intensive biological research. The interested reader is referred to the references
therein the sections for further detail on the topic. Our aim is to ease the reading of the manuscript, since
the notions introduced here will be re-evoked throughout the upcoming three parts of the thesis.

Box 9. Hematopoiesis as a general modeling framework
Hematopoiesis provides a model for studying and understanding all the mammalian stem cells and
their niches [209], but also all mechanisms of cell cycle, differentiation and maturation processes.
One of the objectives behind the study of cell population growth is the development of new
anti-tumor therapeutic strategies. Indeed, cancer-triggering mechanisms (including the case of
AML), as well as all the complications that follow (such as drug resistance, mutation accrual,
etc), are highly complex, and the contribution provided by mathematical tools in representing and
understanding them is becoming increasingly necessary (in hematology [182, 240], and in various
other biological fields [211, 210]). This is actually the concept of our project, in which we expect
that a better understanding of the behavior of healthy and unhealthy blood cell dynamics, allows
us to predict the cell fate evolution in treated or untreated leukemia, and then participates to the
suggestion/elaboration of new anti-AML therapeutic drugs.
Concretely, medical research is looking for new combined targeted therapies able to counter
overproliferation of cancer cells, to restore normal apoptosis and differentiation, and to avoid
the high toxicity effects that characterize heavy non-selective chemotherapy. The ultimate goal
behind mathematical modeling and analysis is to provide some inputs that should help biologists to
suggest and test new treatment, and to contribute within multi-disciplinary groups in the opening
of new perspectives against cancer.

Now, in this section, we want to guide the reader by briefly pointing out some key elements that link
the upcoming chapters to the biological concepts discussed in the current one. In other words, the issue
here is to specify how, where, and from what angle, we are going to approach the biological phenomena
introduced in this chapter, in our mathematical work. For that purpose, we state the following details:

❍ The models we study in this thesis describe the dynamics of cell populations. All these models
consider that cells may be in quiescence G0, or they undergo a cell-division cycle (a proliferating
phase). Our systems may be applied to different biological processes and tissues where a cell cycle is
involved. However, we dedicate particular considerations to the case of hematopoiesis, and especially
acute myeloblastic leukemia (AML). We recall that the hematopoietic system together with its regulatory
mechanism, serve as a paradigm for the other biological systems with self-renewal SC populations
sustaining the production of both short -and long-lived mature cells ([265]). However, a distinction
between the hematopoietic system and other similar biological processes appears in our work, when it
comes to discuss some treatment strategies and anti-cancer drugs. Indeed, in that context, we will only
refer to the molecules already used -or currently undergoing trial phases- in the case of leukemia.
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❍ We consider healthy situations (e.g. normal hematopoiesis), and other times we study some
unhealthy cases (such as AML). In general, we separate between the studies of the healthy and unhealthy
cell dynamics, while in some other situations we consider coexistence between heterogeneous cells (e.g.
healthy and mutated cells), meaning that:

❏ Sometimes, the same mathematical model of cell population dynamics can be interpreted
once in a healthy situation, and another one in an unhealthy situation, under some circumstances:

➣ if all the biological parameters (representing biological functions such as differentiation,
cell death, proliferation, etc) involved in a model are healthy, then the model describes a healthy situation.

➣ if the model contains at least one abnormal parameter (such as an over-proliferation
parameter, or a blockade in differentiation process, as frequently encountered in cancer), then the resulting
system is said to be unhealthy.

The advantage of this separation is to highlight the medical insights in each situation, since the
analysis objectives may differ depending on whether the situation is healthy or unhealthy.

❏ At other times, we will analyze some coupled models where heterogeneous healthy and
mutated populations of cells may coexist in the same environment. The latter modeling approach takes
into account the cohabitation between different categories of cells, such as the shared environment (i.e.
niches) between healthy SCs population and CSCs population. In this case, we will particularly highlight
the role of SCs (not necessarly hematopoietic ones), instead of studying the whole maturation process.

Box 10. A model of cohabitation between SCs and CSCs to study cancer dormancy (see
[77] for an updated version)

At this juncture, we can mention that in the perspective of taking into account the coexistence
between ordinary SCs and mutated SCs (CSCs, Section 2.3), and in light of AML clinical mani-
festation and treatments (discussed in Sections 2.10.1-2.10.2), we explore in Chapter 5 a coupled
model between SC and CSC dynamics. In that configuration, a healthy SC compartment together
with an abnormal (or unhealthy, mutated) cell compartment are involved. The latter subpopulation
is affected by a first mutation that occurs in some genes encoding enzymes in epigenetics (e.g.
TET2, DNMT3A [74, 238]). This event results in an increase of the self-renewing activity of the
affected cells. A more serious pathological situation arises when a second mutation, affecting this
time the pathways regulating the differentiation process such as NPM1 or transcription factors,
appears on some cells. The superposition of these two events yields a blockade in differentiation.
Finally, a subsequent mutation impairing proliferation control (e.g. FLT3, Section 2.10.1) appears
in a subpopulation of cells that have already accumulated one or more of the previously mentioned
mutations. The latter event activates an uncontrolled overproliferation of cells (i.e. they become
CSCs), and thereby causes AML (see [137] for more information on the series of mutations -
causing AML - described above).
The main motivation behind the work presented in Chapter 5 is to provide a framework for studying
the issue of cancer dormancy, along with its therapeutic opportunities (see Sections 2.5). The
analysis is focused on the maintenance of unhealthy cells at a controlled stable steady state, while
ensuring that healthy cells survive.
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❍ Differentiation and maturation processes (as in Figure 2.8) are important modeling aspects in the
majority of models (those discussed in Chapters 3, 4 and 7), different from the model with one maturity
level discussed in Box 10. This is in fact a modeling approach which goes through multi-maturity stages,
where SCs are at the root of the process (i.e. the first maturity state), and cells gradually mature from one
discrete stage into another. The notions dedifferentiation and transdifferentiation (cell plasticity, Section
2.4), as well as those related to the cell arrest at the cell-cycle checkpoints, appear in the the first part of
the thesis, in models involving different maturity stages within a given cell hierarchy.

❍ Finally, we emphasize that the issue of AML treatment -current and emerging chemotherapy
(Section 2.10.2)- is recurrent throughout the thesis, and particularly in Part II. The notions of blood
regulation (Section 2.8), through growth factors or drugs (that are considered to act as growth factors) is
widely discussed in Chapter 7 (Part III of the thesis).
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The class of nonlinear systems with
distributed delays





Chapter 3

Stability analysis of a nonlinear
hematopoietic system with finite
distributed delays

Synopsis. We perform a stability analysis of a particular class of nonlinear systems with finite
distributed delays, that extend some existing models from the literature ([8], [24]). A key feature of
our analysis is that the conceived technique relies on the construction of suitable strict Lyapunov
functionals for nonlinear time-delay systems. Even when a system is known to be asymptotically
stable, it is always more advantageous to construct a strict Lyapunov functional for it. It is pre-
cisely from this point of view that we adopt a Lyapunov approach, which allows us to complement
some analysis aspects and to address some new issues which are of importance -in practice- for
hematopoietic systems.

3.1 Overview of the chapter

We develop in the time-domain a Lyapunov technique of stability analysis for a nonlinear system with
distributed delays describing cell dynamics in hematopoiesis. Based on previous studies by Mackey (see
in particular [180]), the first revisited model was proposed and studied by Adimy et al. in [8], then it
was widely analyzed by Özbay et al. in ([226], [225]) via an Input-Output approach. We also revisit the
model proposed by Avila et al. in [24], via a construction of a novel Lyapunov-Krasovskii functional
(LKF). Notice that the system introduced in [24] generalizes the one presented in [8] by considering
some extra-dynamics describing the advantage of proliferation of unhealthy cells. For analysis purposes,
two interesting biological situations lead us to investigate the stability properties of two meaningful
steady states of the revisited models: the 0-equilibrium for unhealthy hematopoiesis and the positive
equilibrium for the healthy case. Biologically, convergence to the 0-equilibrium means the extinction of
all the generations of blood cells while the positive equilibrium reflects the normal process in which all
the generations of blood cells will survive.

The Lyapunov constructions that we propose for these two steady states are slightly different in the
sense that we take advantage of the positivity of the system under study in order to construct linear
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functionals to analyze the 0-equilibrium, while we use some quadratic functionals to investigate the
stability properties of the positive steady state. In addition, we complement some previous results given
in [180], [8], [9], [226], [225] and [24], by establishing, for both equilibria, the exponential stability of
solutions and by providing an estimate of their rate of convergence. In particular, we prove the global
exponential stability of the trivial steady state under a less conservative condition than the one proposed in
[9] for global asymptotic stability. Moreover, we investigate the case of time-varying differentiation and
self-renewing rates: the latter case is expected to be useful when describing the blockade of differentiation
in an unhealthy hematopoietic system and to model the drug effect (i.e. re-differentiation ability) when
infusing treatments. Next, for the positive steady state, we complement already published results ([8],
[225]) by providing an explicit approximation of its basin of attraction: this is a specific region defined as
a sub-level of the suitable LKF that we are going to introduce, and which imposes a restriction on the
initial conditions of the nonlinear system in order to ensure the exponential convergence of the trajectories
to the positive steady state.

In addition, we perform a robustness analysis when the model is subject to some nonvanishing
perturbations. Recall that many uncertainties may arise when one is mathematically modeling such a
complex living process. For instance, the re-introduction function from resting to proliferating stages,
modelled as a Hill-type function (as proposed by Mackey in [180] and then used in all subsequent works) is
a striking source of uncertainties in the model, since it relies on approximate assumptions. Furthermore, it
is important to be aware that several assumptions were made in order to establish the mathematical models
that we revisit here. For instance, phenomena like dedifferentiation and transdifferentiation -known as cell
plasticity features- are neglected in Mackey-type models. Plasticity mechanisms are briefly discussed in
this chapter where they are introduced as uncertainties, and therefore followed by a robustness analysis.
We will need to await Chapter 4 to deepen the study of hematopoietic systems which take into account
some simple cases of plasticity abilities, by adapting a mathematical framework for dedifferentiation
features in healthy and unhealthy tissues1.

In light of the description mentioned above, we organize this chapter as follows: in Section 3.2 we
expose the basics of the model of interest along with its important features. We subsequently establish an
insight in Section 3.3 into the pursued objectives and novel expectations from the analysis that we perform.
In particular, we highlight the importance of performing robustness analysis, considering time-varying
parameters, estimating rate of convergence of solutions together with region attraction of the positive
steady state. Then, in Section 3.5, we propose our stability analysis approach in the case of unhealthy
hematopoiesis. It is mainly about the stability analysis of the trivial steady state of the models in [8]
and [24] and their extensions. Next, in Section 3.6, the stability analysis of the strictly positive steady
state is discussed in the context of healthy hematopoiesis. Numerical examples along with biological
interpretations are provided throughout the different sections of the chapter. Finally, in Section 3.7 we
bring some concluding remarks.

1In the Chapter 4, we enhance the role of differentiation and transdifferentiation by considering a hematopoietic models
where cell plasticity is no more a marginal phenomenon, and cannot be considered as a perturbation, but it is fully modeled.
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3.2 Models with finite distributed delays describing immature cell dynam-
ics

In [8] and [24], hematopoietic cell dynamics are described through nonlinear transport equations which
can be reduced with the characteristic method to some nonlinear systems with finite distributed delays. As
in many other previous contributions (for instance, [8], [226], [9] and [225]), our interest in the current
work is to find theoretical stability conditions depending on the different biological parameters involved
in the hematological process. Going even further, we want to extend our approach to study nonlinear
systems instead of their linear approximations, to prove exponential stability instead of asymptotic one,
and to investigate robustness and the effect of some uncertain parameters. But now, some quick comments
about the models of interest and their related literature are needed.

Let us now describe precisely the mathematical formulation of the models of interest (i.e. the systems
in [8], and [24]). In fact, from a mathematical point of view, the model in [8] appears as a particular case
of the one in [24]. More explicitly, they are equivalent when the fast self-renewing process introduced in
[24] is zero. However, from a biological standpoint, the model in [24] is an extension which only applies
for unhealthy hematopoiesis (since high proliferation is a symptom of disease. See Chapter 2). Therefore,
in order to achieve the best presentation of this Chapter, we start from the model in [8], that we will first
extend according to our expectations (by considering time-varying parameters and uncertainties), and
analyze in both unhealthy (Section 3.5) and healthy (Section 3.6) cases. The analysis of the model in [24]
(that we also extend by considering time-varying parameters) is performed in the Section 3.5, that deals
with the unhealthy case.

Consequently, we begin now with the model in [8]. First, we recall from Chapter 2 that HSCs are
immature undifferentiated and unspecialized cells, which are at the root of hematopoiesis, and which are
responsible of blood cells production and their continuous replenishment. More precisely, HSCs are able
to produce cells with the same maturity-level and also to differentiate into more mature and specialized
cells with advanced features. During their proliferation, and more precisely during their M-phase (see
Chapter 2), mitosis occurs for the cells which do not die by apoptosis, and each one of them divides into
two daughter cells. At the maturation stage i, xi denotes the total density of resting cells. We let δi denote
the death rate of the resting cell population, while the apoptosis rate (i.e. the death rate of proliferating
cells), is represented by γi, for all i ∈ {1, . . . ,n}. At each division, a proportion Ki ∈ (0,1) of dividing
cells goes to the next more mature resting stage while the other part (Li = 1−Ki) stays at the same level i.
Finally, βi(·) is the re-introduction function from resting sub-population into the proliferating one, of the
i-th immature generation of cells [180].

In this model, it is considered that proliferating cells can divide between the moment they enter to
the proliferating phase and a maximum age τi > 0. Moreover, immature cells enter into maturity after
passing through n successive (immature) stages. It can be shown (see [8]) that for each compartment
i ∈ In = {1, . . . ,n}, the dynamics of immature cells are governed by the system:

ẋi(t) =−δixi(t)−wi(xi(t))+2Li

∫
τi

0
gi(a)wi(xi(t−a))da

+2Ki−1

∫
τi−1

0
gi−1(a)wi−1(xi−1(t−a))da,

(3.1)
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Fig. 3.1 Schematic representation of the primary phases in the production of immature myeloid progenitor cells, as
introduced in the discrete-maturity model of [8]. In this age-structured model, for all i ∈ {1, . . . ,n}, immature cells
are in a resting phase (right hand side compartment, called G0-phase) or in a proliferating phase (left hand side).
This is a well-established representation since the work of Burns and Tannock in 1970 [49]. See the text for the
details on the notations.

when i > 1 and

ẋ1(t) = −δ1x1(t)−w1(x1(t))+2L1

∫
τ1

0
g1(a)w1(x1(t−a))da, (3.2)

where, for all i ∈ {1, . . . ,n}, the functions wi are defined by wi(xi) = βi(xi)xi, and,

gi(a) = e−γia fi(a), (3.3)

where the function fis describe cell divisions (mitosis), which are probability density functions. Since the
mitosis occurs before the age limit τi, it follows that

fi(a)≥ 0, for all, a ∈ [0,τi], and,
∫

τi

0
fi(a)da = 1. (3.4)

Figure 3.2 shows that after n immature compartments, the cells only proliferate and differentiate (at
rates k j, j ∈ {1, . . . ,m}). Thus, here it is considered that mature cells need to pass through m maturity
compartments before becoming completely differentiated and then being ready to perform their functions
in the bloodstream. Similarly to the immature proliferating cells (Figure 3.1), mature cells divide before
reaching a maximum age θ j and they can be lost by apoptosis with a rate σ j.

It is sufficient to study the dynamics of the total densities of quiescent cells (xi) given by (3.1)-(3.2),
since the population of proliferating cells together with the dynamics of mature cells (Figure 3.2), have
no impact on the dynamics of the resting immature cells xi, for all i ∈ In (see [8] and [225]). More
precisely, the asymptotic behavior of proliferating immature cells and mature cells can be deduced from
the study of the resting cells. Therefore, we focus on the stability properties of the system represented by
equations (3.1)-(3.2).

Obvious biological facts induce that the parameters δi, Li, Ki, τi and γi are positive for all i∈ {1, . . . ,n}
(recall that Ki ∈ (0,1) and, Li = 1−Ki). Moreover, we assume that, for each i ∈ {1, . . . ,n}, the function
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Fig. 3.2 The m mature compartments ([8]) in the myeloid lineage are precursors of the red blood cells, white blood
cells and platelets. At the end of the maturation process, mature cells leave the bone marrow and go into the
bloodstream [8].

βi(·) is differentiable and decreasing, satisfying,

lim
a→+∞

βi(a) = 0 (3.5)

Furthermore, the following parameters are introduced to ease the notation,

Ci =
∫

τi

0
gi(dℓ)dℓ, (3.6)

αi = 2LiCi−1. (3.7)

Remark 4. For the sake of simplicity, we assume throughout the current chapter that the parameters
αi satisfy the conditions αi > 0, for all i ∈ {1, . . . ,n}. In fact, biologically, the constants αi quantify the
difference between surviving self-renewing daughter cells and pre-existing mother cells [8]. The later
assumption is necessary for the existence of a positive equilibrium (see the corresponding assumption in
[225], argued by the growth-principle). However, the conditions αi > 0 are not necessary when studying
the 0-equilibrium of the model (3.1)-(3.2), as illustrated in the next chapter, on even a more general model
including infinite distributed delays.

Let us now say some words about the model in [24], in which fast self-renewing dynamics have been
introduced. This represents a generalization of the model of [8], since the latter model can be deduced
from the former one. In practical terms, extra-dynamics are added to the model (3.1)-(3.2), in a way that
makes possible to distinguish between cells entering a normal resting phase G0 and a second one, denoted
G̃0 (see Figure (3.3)). Thus, cells entering G̃0 are allowed to re-start a proliferating-cycle, via β̃ , faster
than the classical way from G, through β [24].

Remark 5. In our analysis of the model presented in [24] (Section 5.1), we only focus on its 0-equilibrium,
since it is the most biologically meaningful steady state for unhealthy hematopoiesis. Our interest in
dormancy (see Chapter 2) is relevant only in coupled models, where healthy and unhealthy cells coexist.
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Fig. 3.3 The re-introduction function β , from the resting phase G0 to the proliferating one is the unique available
way in (a) that allows quiescent cells to start a cell-cycle (division). However, in (b), a sub-population of cells can
follow a faster path through G̃0 and β̃ . By introducing the β̃ path, a distinction between healthy and unhealthy cells
can be represented.

Having said that, we begin now by the stability properties of the model (3.1)-(3.2). First, we state
some fundamental features of the studied model.

Positivity of the solutions

Proposition 1. The solutions of system (3.1)-(3.2) associated with positive initial conditions are positive.

Proof. First, let us prove that if x1(m)> 0 for all m ∈ [−τ1,0] then x1(t)> 0 for all t ≥−τ1. We prove
this result by contradiction. Assume that there exists t1 > 0 such that for all t ∈ [0, t1[, x1(t) > 0 and
x1(t1) = 0 then from (3.2) we obtain

ẋ1(t1) = 2L1

∫
τ1

0
g1(a)w1(x1(t1−a))da > 0. (3.8)

Since x1 is of class C1, there is Θ continuous such that x1(t) = ẋ1(t1)(t− t1)+Θ(t)(t− t1)2. It follows
there is t2 ∈]0, t1[ such that x1(t2)< 0. This yields a contradiction. We deduce that for all t ≥ 0, x1(t)> 0.

Arguing similarly, we can prove that, if for all integer i ∈ {1, . . . ,n}, and all m ∈ [−τi,0], xi(m)> 0,
then xi(t) > 0, for all t ∈ [−τi,+∞). We conclude that the positive orthant is forward invariant. Thus,
throughout this paper, we consider only positive solutions of (3.1)-(3.2).

We will say that an equilibrium point of a system is globally asymptotically stable when all its positive
solutions converge to it. In the following part we give the main condition of existence of a positive steady
state of system (3.1)-(3.2). The reader is referred to [8] for more details on the existence of equilibrium
points, especially for the so-called axial steady states (equilibrium points belonging to the boundaries of
the positive orthant, apart from the origin), that we do not emphasize here, since they are biologically
irrelevant (moreover, their analysis is readily deduced from the one of the origin and the positive steady
state). Therefore, our main objectives in Sections 3.5 and 3.6 concern the analysis of the origin and the
strictly positive steady state using a new approach.
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Existence of Steady states

One notices that the trivial steady state X0 = (0, . . . ,0) always exists. Biologically, convergence to this
point means the extinction of all generations of immature cells. In contrast, the positive steady state, we
shall denote by Xe = (xe

1, . . . ,x
e
n), where xi > 0 for all i ∈ In, does not always exist. The following result

gives a necessary and sufficient condition of existence of Xe.

Proposition 2. The system (3.1)-(3.2) admits a positive equilibrium point Xe = (xe
1, . . . ,x

e
n), where xi > 0

for all i ∈ In, if and only if the condition

β1(0)>
δ1

α1
, (3.9)

is satisfied.

Proof. Let us assume that the system (3.1)-(3.2) admits a positive equilibrium point Xe. Then one can
check readily that, necessarily,

[
α1β1(xe

1)−δ1
]

xe
1 = 0. (3.10)

Since β1 is a continuous positive and decreasing function such that (3.5) is satisfied, we deduce that (3.10)
admits a solution xe

1 > 0 if and only if the condition (3.9) is satisfied. We conclude that if (3.1)-(3.2)
admits a positive equilibrium point, then necessarily the condition (3.9) is satisfied. Now, assume that
the condition (3.9) is satisfied. Then necessarily, there exists xe

1 > 0 such that (3.10) is satisfied. Next, let
us proceed by induction. Assume there is j ∈ {1, . . . ,n−1} such that there are positive constants xe

i > 0
such that

δixe
i −αiβi(xe

i )x
e
i = 2Ki−1Ci−1βi−1(xe

i−1)x
e
i−1 (3.11)

when i ∈ {2, . . . , j} and δ1xe
1−α1β1(xe

1)x
e
1 = 0. Now, observe that (3.5) implies that the function ϖ(m) =

δ j+1m−α j+1β j+1(m)m satisfies ϖ(0) = 0 and lim
m→+∞

ϖ(m) = +∞. It follows that there exists xe
j+1 > 0

such that

δ j+1xe
j+1−α j+1β j+1(xe

j+1)x
e
j+1 = 2K jC jβ j(xe

j)x
e
j. (3.12)

We conclude that for all i ∈ {2, . . . ,n}, there are positive constants xe
i > 0 such that

δixe
i −αiβi(xe

i )x
e
i = 2Ki−1Ci−1βi−1(xe

i−1)x
e
i−1. (3.13)

We deduce easily that the system (3.1)-(3.2) admits a positive equilibrium point Xe.

3.3 Pursued objectives in hematopoietic models

In order to highlight the issues to be addressed, we need to situate ourselves and clearly position the work
in context. For that, we will give a very short summary of the main aspects in the analysis of time-delay
hematopoietic systems. Here, we want to point out the trends and the objectives fixed/reached by research
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in this field. Several mathematical models are developed in the literature, all of them share in common
the aim of modeling a healthy behavior of hematopoietic cells. Then, from this normal/healthy model,
an abnormal case is derived, modeled, and analyzed. The goal is to enhance the understanding of the
unhealthy situation by studying the conditions that disturb the healthy model and cause pathology (e.g. by
considering an epigenetic mutation that induces a sudden change in the healthy model parameters).

3.3.1 Strengths and weaknesses of the formerly used approaches

In a series of works by Mackey and his co-authors -during more than four decades- a paramount interest
was given to hematological disorders where an oscillatory (periodic) behavior is observed [132] (starting
from earliest works [181], [180], until the most recent ones [170]). We can for instance mention the
importance attached to neutrophenia in [37] and [66]. In these two papers -and the references therein-
the authors deal with a pathological disorder in which oscillations are observed in the count of red blood
cells, white blood cells and platelets (by the way, these oscillations often occur under the same oscillatory
period). We can also mention the contribution [66], in which periodic chronic myeloid leukemia is studied.
In the latter case, objectives behind the analysis are the same as those of [37]-[66], and their conclusions
emphasize how periodic behavior may occur in all blood compartments count.

We focus now on one of the most recent works, namely [170]. In this study, the interesting case of
cyclical thrombocytopenia (CT) is revisited. It is worth mentioning that during CT disease, large period
oscillations in platelets compartment are observed, whereas red and white cell counts remain unchanged.
Therefore, the model introduced in [170] includes only platelets dynamics, while the one presented in
[66] is concerned with different lineages (see Figure 3.4). In summary, most of the time, Mackey’s team
focuses on blood lineages that are likely to exhibit abnormal oscillations. Thus, from a mathematical point
of view, the analysis is often oriented towards the existence of a Hopf bifurcation from which oscillatory
solutions emerge.

Fig. 3.4 An approximate reproduction of the cartoon representations of the models in [66] (on the left) and [170]
(on the right). One notices that the recent model in [170] focuses only on platelets dynamics, since it is the unique
compartment in which cyclical thrombocytopenia causes large fluctuations (oscillations). On the other hand, the
model in [66] contains all the lineages, since period chronic myeloid leukemia may cause oscillations in all cell
types [132].
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Turning now to the works of Adimy et al. ([8], [2], [9], [4]), Avila et al. ([24], [23]), Özbay et al.
([225], [224] [226]). There is no doubt on the fact that all these models find their origin in the Mackey’s
type model (particularly in the pioneer work [180]). However, the perspectives are slightly different and
a new interest is rising for the case of acute myeloid leukemia. Recall that in the latter blood disorder,
an overproliferation of abnormal -immature- white blood cells is observed. Coherently, the search for a
Hopf Bifurcation (i.e. oscillatory solutions) should no longer be the main issue (but, as an exception, it is
further noted in [4] that the existence of Hopf Bifurcations is investigated, even if the model seems to
be designed for a non-periodic disease). Nevertheless, for above quoted contributions by Özbay, Avila,
and their respective collaborators, it is clearly noted that serious interest is being paid to the regional
asymptotic stability of constant steady states. Therefore, the idea of the existence of a Hopf bifurcation is
now abandoned when studying the typical case of acute myeloid leukemia. Clearly, throughout our work,
we are fully committed to this vision and we continue to develop and complement the work started in
[225].

To summarize, in light of the above discussion, we conclude that notable advances have been made in
the field of hematopoietic systems modeling and analysis, which is an active area. The major achievements
are completed within the topic of periodic diseases, while some complementary material need to be
developed to model and analyze non-periodic diseases, mainly characterized by overproliferation of
unhealthy cells.

A second point (particularly highlighted in [225]) that we have already raised in the introduction,
regards the analysis of nonlinear systems instead of their linear approximations. This remark is valid for
almost all the previously mentioned works, when it comes to study the positive steady states of the systems.
In fact, here we are facing a common requirement for many types of models where it is well-known that
analyzed systems may evolve far from their steady states. Thus, it is a general problem which extends
beyond the hematopoietic systems (for instance, we can mention chemostat models [197]). In fact, as
things now stand, the analysis of hematopoietic systems is mainly done without considering the nonlinear
aspects of the models (e.g. [170]) or the effect of disturbances and uncertain parameters.

3.3.2 Alternative approaches to meet novel expectations

Now, we are able to situate ourselves in the current study of hematological disorders. First, local
asymptotic stability (in particular when studying the positive steady states of (3.1)-(3.2)), is the only
result that can be achieved using frequency approaches. On the other hand, we want to extend the study
and provide regional exponential stability of this steady state. Indeed, from a biological standpoint, in
order to understand a physiological phenomenon and to possibly improve its therapy strategy (let say
for instance that we want to adapt a dosage of medication), it appears clear that a result giving a local
asymptotic stability is less useful than a one giving local exponential stability, with an estimate of the rate
of convergence of the solutions (see Section 3.5.2) and a subset of the basin of attraction of the steady
state, as well as establishing results when parameters are uncertain or time-varying (both under the effect
of the disease and the drugs).

Few years after [8], the system (3.1)-(3.2) was widely analyzed in [225] using an Input-Output
approach. In particular, results regarding the stability properties of the positive equilibrium were improved
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(see Section 2.3 of [225]), then they prepared the next steps in the study of acute myeloid leukemia. More
precisely, in the concluding remarks of [225], we can read that: «Of course, periodic medications will
make the system parameters vary in time; analysis of such a time varying nonlinear system with distributed
delays requires a separate study», and, a few lines further on: «Although leukemia is the best understood
cancer, as far as dynamical modeling is concerned, there are still practical difficulties in determining the
parameters of the mathematical model considered here», then, they continue to say: «Other lines of future
work include consideration of different types of (possibly higher order) cell division rates fi ».

In the light of -but not exclusively- all the the remarks mentioned above, we revisit in this chapter
the models studied in ([8], [9], [225], [24]) describing hematopoiesis. We have chosen to approach these
matters by a Lyapunov approach, since this theory offers strong and effective tools in order to deal with
the above mentioned issues. However, we need first to find a suitable Lyapunov functional, which is not
always an easy task.

3.3.3 What can Lyapunov theory bring more?

Since the middle of the last century, the extension of the classical theory of Lyapunov to systems with delay
([251]) allowed stability analysis of a large class of dynamical systems constantly encountered in biology,
physiology, population dynamics and many other real-life problems (see [211] for more information).
The advantages of knowing Lyapunov functions or functionals are fundamental: for instance, they make
it possible to establish robustness results of Input-to-State-Stability type (see for instance [187]), to
estimate rates of convergence of solutions, and they can also be used to determine estimates of the basin of
attraction for locally asymptotically stable equilibrium points. However, in many cases, the construction of
Lyapunov Krasovskii-functionals is a difficult task. This is indeed the case for the model of hematopoiesis
that we are studying here (and, more generally, throughout all our work).

It is worth mentioning that the stability results of the origin of the models in [8] and [4], are already
provided using Lyapunov techniques. Later, we perform a comparison between our results and earlier ones.
However, we can already point out that our constructions slightly relax some earlier stability conditions
and ensure global exponential stability with an estimate on the decay rate of the solutions. Finally, the
LKF approach for the positive equilibrium point is a novel approach that will allow us to complement the
already published work (using frequency and Input-Output frameworks), and thus offering the opportunity
to consolidate our general knowledge on the analysis aspects of the studied models.

3.4 Extending the description of the mathematical model

In view of what has been brought up in the previous section, we enhance the flexibility of the model
(3.1)-(3.2) by considering its new version:

ẋi(t) =−δixi(t)−wi(xi(t))+2Li(t)
∫

τi

0
gi(a)wi(xi(t−a))da

+2Ki−1(t)
∫

τi−1

0
gi−1(a)wi−1(xi−1(t−a))da+ εi(t),

(3.14)
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where εi(t)∈ [0,εi], ε > 0, and Li(·) are functions of class C 1, and similarly to (3.1)-(3.2), Ki(t)= 1−Li(t),
for all t ≥ 0, with the convention K0(t)≡ 0. In explicit terms, here we are considering a system in which
differentiation and self-renewing rates are time-varying (or, uncertain), and, in addition, subject to
nonvanishing perturbations εi. In fact, it can be proven that nonvanishing perturbations arise from cell
plasticity, if considered as unknown input for the resting population, and thereby lead to system (3.14)
with εi(t) ∈ [0,ε i], as illustrated in the sequel.

3.4.1 Origin of nonvanishing perturbations

First, as already mentioned in [225] the parameters of the studied model, at the time being, are not
well-estimated even if some nominal healthy values are given in the literature (see for instance, [180],
[4]). Moreover, we notice that many uncertainties may arise when one is mathematically modeling
such a complex living process. A striking illustration in the models of [180], [8], [24] -among others-
comes from the reintroduction function β (and β̃ , which has a similar form): the Hill function that we
consider was proposed by Mackey in [180] (and used in all subsequent works) under several assumptions
(four main assumptions which are given in [180], page 951, the paragraph between Eq (3.1) and Eq
(3.2)). In fact, it is not difficult to observe that uncertainties on that function fall within the scope of
nonvanishing perturbations (see Chapter 1). In addition, several assumptions were made in order to
determine the studied mathematical models (even if some of them are not explicitly mentioned). For
instance, differentiation is considered in this model, while dedifferentiation and transdifferentiation (see
Chapter 2, cell plasticity) are not modeled. Let us assume now that some differentiated cells that belong to
a given hierarchy i ∈ In = {1, . . . ,n} may join a less mature cell compartment by dedifferentiation (in fact,
even cells which do not belong to the studied hierarchy may join any compartment by transdifferentiation).
Therefore, if we consider that for any i ∈ In, d ≡ εi is the input coming from a different (non-modeled)
hierarchy (e.g. the lymphoid one) by dedifferentiation or transdifferentiation, then εi corresponds to a
bounded disturbance, under the assumption that cells plasticity is a limited phenomenon, of acceptable
scale, which is biologically reasonable. Therefore, we can show that it is possible to describe the dynamics
of the total population of resting cells by model (3.14). More precisely, in this case, the hematopoietic
system is described by the age-structured (McKendrick-type) PDE system:

∂ pi(t,a)
∂ t + ∂ pi(t,a)

∂a + γi pi(t,a)+hi(a)pi(t,a) = 0,
∂ ri(t,a)

∂ t + ∂ ri(t,a)
∂a +δiri(t,a)+βi

(∫
∞

0 ri(t,a)da
)

ri(t,a) = 0,
(3.15)

where pi(t,a) is the density of proliferating cells at the immature stage i, of age a and at time t, and,
similarly, ri(t,a) represents the density of resting cells at the immature stage i. The renewal conditions
(new births) -which give the birth rate at the initial age a = 0 (see Chapeter 1)- are introduced through the
following boundary conditions:{

pi(t,0) = βi
(∫

∞

0 ri(t,a)da
)∫

τi
0 ri(t,a)da,

ri(t,0) = 2Ki−1(t)
∫ τi−1

0 hi−1(a)pi−1(t,a)da+2Li(t)
∫

τi
0 hi(a)pi(t,a)da+εi(t),
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where the second equation of ri(t,0) expresses the fact that new births at time t ≥ 0 are composed by: i)
the new density of cells coming from the same generation i ∈ In by the self renewing process (i.e. the
term containing Li), ii) the density of cells coming from the previous generation i−1 by differentiation
(i.e. the term containing Ki−1), and, iii) the density of new births coming from some non-modelled
hierarchies (e.g. Pre-B cells from the lymphoid lineage that become stem cells [259]), by dedifferentiation
or transdifferentiation (the flux that we are denoting εi).

Hence, using the method of characteristics, we prove that for t ≥ 0 sufficiently large we get

pi(t,a) = pi(t−a,0)e−γiae−
∫ a

0 hi(m)dm.

Therefore, by integrating the second equation of the PDE system, with respect to the age variable a
between 0 and ∞, and using the boundary conditions, we can easily prove that the total density of resting
cells xi(t) =

∫ +∞

0 ri(t,a)da, satisfies (3.14), with εi(t) ∈ [0,ε i].

Res$ng	phase	Prolifera$ng	phase	 Self-renewing	

Differen$a$on	

Apoptosis	 Death	rate	

Re-introduc$on	into	prolifera$on	

Fig. 3.5 A first step to model cell plasticity is to consider it as an unknown disturbance. The input ε represents the
flux of cells generated by dedifferentiation/transdifferentiation, and it leads to the model (3.14) with nonvanishing
perturbations.

In summary, two main reasons are retained for the origin of disturbances: i) the lack of accuracy when
modeling the laws governing complex living organisms, and, ii) difficulties in modelling more complex
phenomena.

3.4.2 Summary of the model equations, without fast-renewing dynamics

Using an alternative approach, our aim here is to deepen the analysis as well as to solve some open issues
of the models in [8] and [24] which are of importance in practice. For that, we are considering the model
described by:

ẋi(t) =−δixi(t)−wi(xi(t))+2Li(t)
∫

τi

0
gi(a)wi(xi(t−a))da

+2Ki−1(t)
∫

τi−1

0
gi−1(a)wi−1(xi−1(t−a))da+ εi(t),

(3.16)

with the convention K0(·) = 0, and where for all i ∈ In = {1, . . . ,n}, n≥ 1, xi denotes the total density of
resting cells of generation i. A resting cell is a cell that is not active in the process of dividing. The constant
δi denotes the death rate for the resting cell population. The re-introduction function from resting into
proliferating sub-population of the i-th generation is denoted βi(·), and depends on the the total density
of resting cells xi. It is assumed to be a differentiable and decreasing function such that lim

a→+∞
βi(a) = 0.
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Proliferating cells can divide between the moment they enter the proliferating phase and a maximal age
τi > 0, while the apoptosis rate, γi, is the death rate of proliferating cells. Moreover, biological facts
induce that the parameters δi, Li, Ki, τi and γi are positive for all i ∈ In. Next, we have wi(xi) = βi(xi)xi,
gi(a) = e−γia fi(a), where the fis are C 1 functions representing the cell division probability densities, such
that fi(a)≥ 0 for all a ∈ [0,τi], and

∫
τi
0 fi(a)da = 1, since the mitosis occurs before the limit age τi. At

each division, and at any time t ≥ 0, a proportion Ki(t) ∈ [Kimin,Kimax] ⊂ (0,1) of dividing cells goes
to the next resting stage while the other part (Li(t) = 1−Ki(t), for all t ≥ 0) stays at the same level i.
Finally, we are going to perform a robustness analysis of (3.16) under nonvanishing perturbation terms
εi(t) ∈ [0,ε i], where ε i > 0, for all i ∈ In and t ≥ 0. Below are some fundamental remarks that complete
the description of the model and its equations.

Remark 6. We are assuming basic concepts in order to distinguish between healthy and unhealthy
situations in the models that we are studying in this chapter (more refined descriptions will be achieved
for models involving cohabitation between healthy and unhealthy cells in Part II). Thus, intuitively, we
consider that the model (3.16) describes a cancer state when some of its biological parameters are
abnormal (i.e. being different from healthy parameters, or becoming time-varying to model the effect of
appropriate infused drugs) and it reflects a healthy situation when all its parameters are normal. Then,
using a Lyapunov technique, our aim is to improve some existing results in two different contexts: i) we
provide theoretical conditions to eradicate cancer cells in an unhealthy situation (Section 3.5), and, ii) we
ensure the survival of healthy cells in normal hematopoiesis (Section 3.6).

Remark 7. From biological considerations, and given what we know about cell-plasticity, it is suggested
that the flux of cells (the input εi in Figure (3.5)) generated by dedifferentiation, is a permanent excitation,
such that εi(t)→ ε i when xi → 0. This is due to the fact that dedifferentiation increases in order to
compensate cell loss in perturbed tissues (e.g. after injury). In other words, cells plasticity is often
interpreted as a mechanism which is invoked to allow regeneration of damaged tissue [280]. However, we
do not require this information when performing the stability analysis.

Remark 8. Considering a time-varying apoptosis is also useful for therapeutic issues, since this pa-
rameters can be targeted by drugs. However, this issue is not addressed in the current chapter and
will be covered in the next one. The reason behind this choice is that the apoptosis rate parameter
appears in the PDE-equations modelling cell dynamics (that lead to the time-delay system studied here),
while differentiation and self-renewing functions appear in the boundary conditions. Therefore, it is
straightforward to consider differentiation and self-renewal processes as time-varying parameters in the
time-delay system, while the transition between the transport equations to the time-delay system (using the
method of characteristics, see Chapter 1) needs to be carefully rechecked (as illustrated in Chapter 4).

Remark 9. Since the nonvanishing perturbations εi(t), for all t ≥ 0 and i ∈ In, satisfy εi(t)≥ 0, we can
prove by arguing as in Proposition 1, that the positive orthant is forward invariant.

3.5 Stability analysis of the trivial steady state in the unhealthy hematopoiesis

In this section, we emphasize the case of unhealthy hematopoiesis. We start with the model (3.1)-(3.2)
(i.e. (3.16), with time-independent parameters and without disturbances).
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3.5.1 Global asymptotic stability of the 0-equilibrium

First, we construct a global nonlinear LKF for the system (3.1)-(3.2), from which, in conjunction with
Barbalat’s lemma, the global asymptotic stability of the origin is proved. In fact, in this first step, we are
already improving the existing results -provided in [8] and [9]- by proving global asymptotic stability of
the origin under a less conservative condition than the one provided in [9].

Theorem 1. The system (3.1)-(3.2) admits the origin X0 as a globally asymptotically stable equilibrium
point if for all i ∈ {1, . . . ,n},

si := δi− (2CiLi−1)βi(0)> 0 (3.17)

Remark 10. i) We can readily check that if (3.17) is satisfied, then the origin is the unique equilibrium of
the nominal system (3.1)-(3.2).
ii) Using a frequency domain approach, it was proved in [8] that (3.17) guarantee local asymptotic
stability of the origin. In [9], more restrictive conditions than (3.17) (due to the fact that Li < 1, for all
i ∈ In) were given to ensure global asymptotic stability of the origin.
iv) Notice that the Lyapunov functional that we will introduce in this section is unusual since it is
approximated at the origin by a linear function (see [124] for linear functional for positive systems).

Proof. Let us introduce for all i ∈ {1, . . . ,n} the functionals

ρi(xit) =
∫ t

t−τi

∫ t

m
gi(m−a+ τi)wi(xi(a))dadm. (3.18)

Simple calculations give:

ρ̇i(t) =Ciwi(xi(t))−
∫ t

t−τi

gi(t−a)wi(xi(a))da, (3.19)

where Ci is the constant defined in (3.6). Now, we focus on the first compartment (i = 1). Let us introduce
a functional:

ζ1(x1t) = x1(t)+2L1ρ1(x1t). (3.20)

Then its derivative along the trajectories of (3.2) satisfies

ζ̇1(t) = 2L1

∫
τ1

0
g1(a)w1(x1(t−a))da−δ1x1(t)−w1(x1(t))

+2L1C1w1(x1(t))−2L1

∫ t

t−τ1

g1(t−a)w1(x1(a))da

= [−δ1 +α1β1(x1(t))]x1(t).

(3.21)

Next, we consider the case where the inequalities (3.17) are satisfied and we show that X0 is globally
asymptotically stable. We consider a positive solution of (3.1)-(3.2).

Since β1 is decreasing and x1(t)> 0 for all t ≥ 0, the inequality

ζ̇1(t)≤−s1x1(t) (3.22)

with s1 = δ1−α1β1(0) is satisfied for all t ≥ 0.
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Now, consider the functional:

ζ2(x1t ,x2t) = x2(t)+2L2ρ2(x2t)+2K1ρ1(x1t)+
3K1C1β1(0)

s1
ζ1(x1t). (3.23)

Simple calculations give

ζ̇2(t) = 2K1
∫

τ1
0 g1(a)w1(x1(t−a))da+2L2

∫
τ2
0 g2(a)w2(x2(t−a))da

− δ2x2(t)−w2(x2(t))+2L2C2w2(x2(t))−2L2
∫ t

t−τ2
g2(t−a)w2(x2(a))da

+ 2K1C1w1(x1(t))−2K1
∫ t

t−τ1
g1(t−a)w1(x1(a))da+ 3K1C1β1(0)

s1
ζ̇1(t).

(3.24)

Using (3.22), we obtain

ζ̇2(t) ≤
[
−δ2 +α2β2(x2(t))

]
x2(t)+K1C1

[
2β1(x1(t))−3β1(0)

]
x1(t). (3.25)

Since the functions β1 and β2 are decreasing, the inequality

ζ̇2(t)≤

−δ2 +α2β2(0)︸ ︷︷ ︸
−s2

x2(t)−K1C1β1(0)x1(t) (3.26)

holds. Next, by induction, with X = (x1, . . . ,xn), we easily determine constants νi > 0, ν̃i > 0 and λn > 0
such that the derivative along the trajectories of (3.1)-(3.2) of the functional

ζn(Xt) =
n

∑
i=1

[νixi(t)+ ν̃iρi(xit)] (3.27)

satisfies

ζ̇n(t)≤−λn

n

∑
i=1

xi(t). (3.28)

By integrating this inequality, we get, for all t ≥ 0,

ζn(Xt)−ζn(X0)≤−λn

∫ t

0

n

∑
i=1

xi(a)da. (3.29)

Since ζn(Xt)> 0 for all t ≥ 0, it follows that

n

∑
i=1

∫ t

0
xi(a)da≤ ζn(X0)

λn
. (3.30)

Moreover the inequality ζn(Xt)≥
n

∑
i=1

νixi(t) and (3.29) imply that X(t) is bounded. We deduce easily that

X(t) is uniformly continuous. Then from (3.30) and Barbalat’s lemma (see Chapter 1), we deduce that,
for all i ∈ {1, . . . ,n},

lim
t→∞

xi(t) = 0. (3.31)
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3.5.2 Global exponential stability of the 0-equilibrium

In the previous section, we proved asymptotic stability of X0 of the system (3.1)-(3.2). Now, we establish
its global exponential stability and we estimate the rate of convergence of the solutions under the same
stability conditions. Thus, we slightly modify the analytic expression of the Lyapunov functional by
adding exponential functions in the double integral terms.

Theorem 2. The nominal system (3.1) admits the origin, X0, as a globally exponentially stable equilibrium
point if for all i ∈ In, the inequalities

si := δi− (2CiLi−1)βi(0)> 0, (3.32)

are satisfied. If
s1 := δ1− (2C1L1−1)β1(0)< 0, (3.33)

then no positive solution converges to X0.

Remark 11. Using a frequency domain approach, it was proven in [8] that if (3.33) is satisfied then the
system is unstable. So here, in the second part of Theorem 2, we are proving a similar result (i.e. that the
origin is not attractive, see Chapter 1) using a different approach that relies on a construction of LKF2.

Proof. First, let us pick a family of positive constants ρ
†
i , to be selected later, and define for all i ∈ In, the

functionals
vi(xit) =

∫ t

t−τi

∫ t

m
e−ρ

†
i (t−m−τi)gi(m+ τi−a)wi(xi(a))dadm. (3.34)

For all i ∈ In, the derivative of the functional (3.34) along the trajectories of the nominal system (3.1)
satisfies

v̇i(t) =−ρ
†
i vi(xit)−

∫ t

t−τi

gi(t−a)wi(xi(a))da+wi(xi(t))
∫

τi

0
eρ

†
i agi(a)da

≤−ρ
†
i vi(xit)−

∫ t

t−τi

gi(t−a)wi(xi(a))da+wi(xi(t))eρ
†
i τiCi,

where the last inequality is a consequence of (3.6). Let us introduce the following functional for the first
compartment of hematopoietic stem cells:

V1(x1t) = x1(t)+2L1v1(x1t). (3.35)

Its derivative along the trajectories of the nominal system (3.1) satisfies

V̇1(t)≤−δ1x1(t)−2L1ρ
†
1 v1(x1t)−

[
1−2L1eρ

†
1 τ1C1

]
w1(x1(t)). (3.36)

2Although Lyapunov theory is usually used to provide sufficient stability conditions, sometimes the Lyapunov functional
candidate can be used to prove instability results. Instability Lyapunov techniques are much less prevalent than stability ones,
but when they apply, it becomes sometimes possible to provide necessary and sufficient stability conditions. For instance, in
Theorem 2, we notice that for the sub-system i = 1 the condition (3.32) is a necessary and sufficient condition for the global
exponential stability of the origin of system (3.2).
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Since α1 > 0, we conclude that for all ρ
†
1 > 0, the inequality 2L1eρ

†
1 τ1C1−1 > 0 is satisfied. Therefore,

using w1(x1(t))≤ β1(0)x1(t), it follows from (3.36) that:

V̇1(t)≤−
[

δ1−
(

2L1eρ
†
1 τ1C1−1

)
β1(0)

]
x1(t)−2L1ρ

†
1 v1(x1t). (3.37)

Now, if (3.32) is satisfied, we choose ρ
†
1 = 1

2τ1
ln
(

δ1+β1(0)+2L1C1β1(0)
4L1C1β1(0)

)
, which satisfies ρ

†
1 > 0 since s1 > 0.

Then we obtain δ1−
(

2L1eρ
†
1 τ1C1−1

)
β1(0)≥ s1

2 > 0.

It follows that the inequality (3.37) gives V̇1(t)≤− s1
2 x1(t)−2L1ρ

†
1 v1(x1t), and from the definition of

V1, we get
V̇1(t)≤−s̃1V1(x1t)−

s1

4
x1(t), (3.38)

with s̃1 = min
{

s1
4 ,ρ

†
1

}
. Consequently, the origin of the subsystem i = 1 is globally exponentially stable.

Next, in order to extend the result to the overall system, we introduce the following functional which
takes into account the cells dynamics of the first and the second generations of immature cells:

V2(x2t ,x1t) =x2(t)+2L2v2(x2t)+2K1v1(x1t)+
8K1β1(0)eρ

†
1 τ1C1

s1
V1(x1t). (3.39)

Using (3.38), we prove that the derivative of V2 along the trajectories of the nominal system (3.1) satisfies

V̇2(t)≤−δ2x2(t)−
(

1−2L2eρ
†
2 τ2C2

)
w2(x2(t))−2L2ρ

†
2 v2(x2t)

−2K1ρ
†
1 v1(x1t)−

8K1β1(0)eρ
†
1 τ1C1s̃1

s1
V1(x1t)

−2K1eρ
†
1 τ1C1

[
β1(0)−β1(x1(t))

]
x1(t).

(3.40)

Using the assumption α2 > 0, together with the fact that the function β2 is strictly decreasing, it follows
that,

V̇2(t)≤−
[

δ2−
(

2L2eρ
†
2 τ2C2−1

)
β2(0)

]
x2(t)−2L2ρ

†
2 v2(x2t)

−2K1ρ
†
1 v1(x1t)−

8K1β1(0)eρ
†
1 τ1C1s̃1

s1
V1(x1t).

(3.41)

When the conditions (3.32) are satisfied, we select ρ
†
2 > 0 (similarly to ρ

†
1 ), such that the inequality

δ2−
(

2L2eρ
†
2 τ2C2−1

)
β2(0)≥ s2

2 , is satisfied. It follows from (3.41) that there exists a strictly positive
constant s̃2, such that

V̇2(t)≤− s̃2V2 (x1t ,x2t)−
s2

4
x2(t), (3.42)

is satisfied. Next, by induction, we easily check that there exist a positive constant s̃n and a family
of strictly positive weighting constants ν

†
i and ν̃

†
i , such that the derivative of the functional V (xt) =

∑
n
i=1

[
ν

†
i xi(t)+ ν̃

†
i vi(xit)

]
, which is taking into account all the n generations of immature blood cells,
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along the trajectories of the nominal system (3.1), satisfies

V̇ (t)≤−s̃nV (xt). (3.43)

From the inequality (3.43) and the properties of the functional V , we conclude that, if the conditions (3.32)
are satisfied, the origin of the nominal model (3.1)-(3.2) is globally exponentially stable.

In order to complete the proof, we consider the case where the inequality (3.33) is satisfied and we
show that no positive solution converges to X0. We prove this result by contradiction, i.e. we assume that
a positive solution x(t) converges to X0. Now, we select ρ

†
1 = 0 and we observe that the derivative of the

functional V1, introduced in (3.35), is given by

V̇1(t) =
[
−δ1 +α1β1(x1(t))

]
x1(t). (3.44)

When (3.33) is verified, using the facts that the function β1 is decreasing and x1(t) converges to zero, we
deduce that there exists tr > 0 such that, for all t ≥ tr,

−δ1 +α1β1(x1(t))≥
−δ1 +α1β1(0)

2
.

It follows from (3.44) that, for all t ≥ tr,

V̇1(t)≥
−δ1 +α1β1(0)

2
x1(t). (3.45)

From (3.33), and the positivity of the solutions, it follows that for all t ≥ tr, V̇1(t)> 0. Consequently, we
deduce that, for all t ≥ tr,

V1(x1t)≥ V1(x1tr)> 0. (3.46)

It follows that V1(x1t) does not converge to zero. On the other hand, V1(x1t) converges to zero because
x1(t) converges to X0 = (0, . . . ,0). This yields a contradiction.

Example 1. A possible selection of the cell division probability densities, which was considered in [226]
and [225], is given by fi(a) = mi

emiτi−1 emia, with mi > 0, for all i ∈ In. Let us consider the following
biological functions and parameters:

βi(xi) fi(a) δi Li τi γi

i = 1 1.22
1+x2

1

5e5a

e5τ1−1
0.9 0.85 1.2 0.22

i = 2 1.33
1+4x4

2

7e7a

e7τ2−1 0.96 0.8 1.3 0.33

The form given to βi [180] normalizes the values taken by the total density xi.
Simple calculations give: (2L1C1−1)β1(0) = 0.4448, (2L2C2−1)β2(0) = 0.4392. Therefore, ac-

cording to Proposition 2, the positive equilibrium of system (3.1)-(3.2) does not exist. Moreover, according
to Theorem 2, the origin X0 = (0,0) of system (3.1)-(3.2) is globally exponentially stable, as shown in
Figure 7.4.5.

Remark 12. In fact, the point made above -in Example 1- about the normalized value of xi is available
throughout all the manuscript. Indeed, the function βi given [180] can be normalized as stated in [4],
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Fig. 3.6 Trajectories of Example 1 showing the exponential convergence to X0

such that in the considered scale, a value xi = 1 expresses approximately 1 unity of 1.62×108 cells/kg
([4]).

3.5.3 Global exponential stability under time-varying parameters

Convergence to X0 means the eradication of all the immature blood cells. This case may be suitable
when the model is assumed to describe the dynamics of unhealthy cells. We recall that one of the
characteristics of leukemia is the blockade in the differentiation process (see Figure 3.7), which can
become a target for the drugs used in treatments. Thus, it is interesting to consider the case where
differentiation and self-renewal rates are uncertain or time-varying (see Remark 8 regarding the case of
time-varying apoptosis).

Global exponential stability under time-varying differentiation and self-renewing rates

In this part, we extend the result of Theorem 2 to the nominal model that describes the immature cell
dynamics under time-varying differentiation rates, Ki(t) for all t ≥ 0, and i ∈ In, and which is given by

ẋi(t) = 2Ki−1(t)
∫

τi−1

0
gi−1(a)wi−1(xi−1(t−a))da

+2Li(t)
∫

τi

0
gi(a)wi(xi(t−a))da−δixi(t)−wi(xi(t)),

(3.47)
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Fig. 3.7 Panel A shows normal bone marrow cells that express a large variety of shapes, reflecting the diversity in
developmental stages in healthy hematopoiesis. In contrast, Panel B shows blast cells, with similar appearance, in
the case of AML. Blasts in healthy hematopoiesis represent less than 5% of the total density of cells in the bone
marrow. A sudden blockade in the differentiation process of blasts in Panel A leads to AML illustrated in Panel
B. It was thought that drugs encouraging the re-differentiation of blasts are not effective to cure AML. However,
very recently, this therapeutic strategy have been relaunched after good clinical results [278], where inhibition of
DHODH restored the differentiation of unhealthy cells. The microscopic images are from the free educational
materials proposed by the Leukemia & Lymphoma Society.

where Ki(t)+Li(t) = 1 and Li(t) ∈ [Limin,Limax]⊂ (0,1). We recall that, by convention, K0(t) = 0, for
all t ≥ 0, and we assume that Ki(·), Li(·) are of class C0, for all i ∈ In. Based on Theorem 2, we prove the
following result:

Corollary 1. The conditions

si = δi− (2LimaxCi−1)βi(0)> 0, ∀i ∈ In, (3.48)

ensure that the origin of the system (3.47) is globally exponentially stable.

Proof. We give some indications for the proof, which is slightly different from the one of Theorem 2.
Here we consider L1max instead of L1 in the definition of the functional V1(x1t) introduced in (3.35).
Similarly, we consider L2max, K1max = 1−L1min and s1, instead of L2, K1, and s1, respectively, in the
definition of the functional V2(x2t ,x1t), introduced in (3.39). Then, we can prove that the derivative of the
former functional along the trajectories of the system (3.47) satisfies an inequality in the form of (3.38),
and similarly the derivative of the latter functional satisfies an inequality similar to (3.42). Therefore,
arguing by induction we can prove that the origin of the system (3.47) is globally exponentially stable.

Example 2. Let us consider n = 2 and for all t ≥ 0, L1(t) = 1
2

(
1+0.96cos(25t)

)
and L2(t) =

1
2

(
1+0.96sin(15t)

)
. Sine function sounds reasonable to model the variation in differentiation rates since

drugs are -usually- infused quasi-periodically. Nevertheless, many other time-varying functions may be
used instead of sine ones. Let us assume that:
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βi(xi) fi(a) δi τi γi

i = 1 2.87
1+x2

1

ea

eτ1−1 0.973 0.8 0.9

i = 2 2.7
1+x4

2

ea

eτ2−1 0.965 0.7 0.97

Elementary calculations give: s1 = 0.0592, and, s2 = 0.0099, which means that the stability conditions
(3.48) are satisfied for i ∈ {1,2}.

Therefore, according to Corollary 1, the origin X0 = (0,0), which is the unique equilibrium point
of (3.47), is globally exponentially stable.

Figure 3.8 illustrates the trajectories x1 and x2 for the parameters and biological functions of
Example 2.
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Fig. 3.8 Trajectories of the system (3.47) for the time-varying functions Ki and Li and the parameters given in
Example 2.

Further comments in the case of time-varying differentiation and self-renewing processes

A) At this juncture, we briefly comment the results in the AML case, in which a blockade of
differentiation, i.e. Ki decreases in early maturity stages, is usually observed. Not surprisingly, the
conditions (3.48) suggest that therapeutic strategies to eradicate cells must be oriented towards increasing
the death rates γi (recall that increasing the apoptosis rate γi decreases Ci), and δi, and also towards
decreasing Limax (i.e. increasing differentiation).
Although very partial results for particular cases of AML (with myelodysplastic syndrome, MDS), and on
cell cultures only, have been obtained using tyrosine kinase inhibitors (TKIs, in particular dasatinb [167])
in stimulating differentiation, the only clinically efficient case of redifferentiation therapy known until
recently was by using all-trans retinoic acid (ATRA) and arsenic tri-oxide in acute promyelocytic leukemia
(APL). However, this therapeutic track has lately been relaunched by establishing that inhibition of
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Dihydroorotate Dehydrogenase (DHODH) is efficient in releasing cells from differentiation arrest [278]
(see also [179]). Finally, increasing apopotosis may be achieved classically by using cytosine arabinoside
(see Chapter 2).
B) We recall that Theorem 2 and Corollary 1 complement the previous published results, by establishing
global exponential stability instead of asymptotic stability and by extending the result to cover the case of
time-varying differentiating and self-renewing rates.
Hence the question that arises is whether we know how do Li and Ki parameters vary under the effect of
the disease and the drugs that may be infused. The answer is not that apparent due to the complexity of
the real phenomena that occur during healthy or unhealthy processes (e.g. accumulation of mutations,
signal pathways break, growth-factors, body response, drug efficiency and toxicity). In addition, even in
the healthy case, the mechanisms controlling hematopoiesis are not perfectly known, at the time being.
Thus, based on the model that we study, we propose to separate some concepts and provide conceptional
interpretations of some typical observed phenomena.
First, we consider that if the disease appears suddenly (due to a mutation that occurs for unknown reasons)
we can expect a brutal change in model parameters from healthy to unhealthy states. For instance, a
mutation in the pathways regulating differentiation such as NPM1 [146] or transcription factors that
induces blockade of cell differentiation. In this case, the functions Ki(·) and Li(·) can be interpreted as
switching parameters.
A different interpretation can be given to the effect of growth-factors and drugs on the model parameters,
however it leads also to a similar representation. More precisely, growth-factor effect on model parameters
can be approximated by switching functions. Indeed, it turns out that the secretion of growth factors is
very fast in comparison to cell response (see Marciniak et al. [189]) and thereby the levels of growth-
factor concentrations converge very quickly to their steady states. This is the time to bring up that the
latter assertion (i.e. the difference between time-scales of cell population dynamics and small molecule
dynamics) is at the origin of the studied models with constant parameters. Thus, in all the models of
hematopoiesis, all the biological parameters (e.g. differentiation, apoptosis rates, etc) actually depend on
the concentration of growth factors (see [31], [3], [82] and the references therein). However, it is assumed
these concentrations do not vary or that they reach very quickly their equilibrium state. Hence the models
with constant parameters (e.g. (3.1)-(3.2)).
Now it seems clear that through a description of cell dynamics with possibly switching parameters (see
for instance the situation illustrated in Figure 3.9), we will be able to combine constant and dynamical
parameters. More importantly, we can represent the (external) events that change the nature of the system
during a long period of time, such that a mutation that suddenly occurs or an instantaneous drug effect.

On the other hand, notice that Corollary 1 does not require Ki(·) and Li(·) to be of class C 0 (as initially
introduced in (3.47)) and the result can be extended to piecewise continuous functions Ki(·) and Li(·).
Therefore, we conclude that Corollary 1 applies for the switching version of system (3.47)3, which is a
nice point.

Of course, a parameter behavior as illustrated in Figure 3.9 remains an idealistic situation, that
results from an approximation of the actual behavior. Therefore, we suggest that small variations may
continuously occur throughout the process of hematopoiesis. By small variations we mean that the

3But we need to ensure that the corresponding switching system has a unique solution.
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Fig. 3.9 An example of evolutionary self-renewing parameter. Switching may result as a reaction to drug infusion
(therapy), mutations and anomalies (disease), or other external factors (body requirement, injury).

fluctuations remain limited and less significant than major changes like those induced by mutations or an
effective drug). We propose to illustrate the above discussion on a pedagogical illustration as follows.

Example 3. We consider an example with one stage (n = 1). Since there is no confusion between
parameters in the discussion that follows, we omit the subscript 1.

The parameters of the model are: δ = 0.25, τ = 0.8, γ = 0.25, f (a) = ea

eτ−1 , and β (x) = 2.87
1+x2 . We

consider two experiences (denoted respectively Sit. 1 and Sit. 2) with two different functions L(t), for all
t ∈ [0,250].

Each L-function is a result of three superimposed signals: a piecewise continuous signal, a cosine
signal, and a white noise.

The former signal (i.e. the piecewise continuous one) is a step-function that switches at several
isolated time instants (similar to the one illustrated in Figure 3.9). More precisely, we consider that in Sit.
1, the step-function switches from the value 0.92 to the value 0.7 at t = 13. Then, it switches again to 0.65
at t = 28. Then it switches from the previous value to 0.58 at t = 52. Finally, at t = 175, it switches again
to its initial value 0.92. In Sit. 2, we replace 0.58 by 0.5 at the transition occurring at t = 52.

Thus, we construct a theoretical example of therapy in which the differentiation ability (recall that
K(t) = 1−L(t), for all t ∈ [0,250]) is gradually recovered (i.e. the so-called re-differentiation therapeutic
track). Thus, at t = 0, we notice that K(0) = 0.08, which is relatively low (assimilated to an unhealthy
situation where differentiation is blocked). The time instants t = 13, t = 28 and t = 52 are considered
as three successive (gradual) drug infusions that progressively increase the differentiation rate. Finally,
the time instant t = 175 is assumed to be the time instant at which the drug is eliminated from the body
(thereby its effect disappears).

It seems reasonable to consider that in the absence of drugs that act on self-renewing (i.e. for all
t ≥ 175), the blockade of differentiation re-appears as for t = 0. In fact, the goal of therapy is to ensure
that malignant cells will be eradicated during the therapy-time (i.e. from t = 13 to t = 175). If cancerous
cells are not eliminated during this period of time, we expect a regeneration of the disease. The meaning
of cell eradication in the studied model will be discussed later.
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Now, we observe the Figure 3.10 that illustrates the evolution of the total density of unhealthy quiescent
cells in Sit. 1 and Sit. 2. We notice from it that for t ∈ [52,175], the total density of cells x is asymptotically
converging to zero, and that in both situations Sit. 1 and Sit. 2. Moreover, for that time-interval, we
can check that the global exponential stability conditions (3.48) are satisfied. Next, from t = 175 and
thereafter, the trajectory x increases progressively until recovering the initial unhealthy situation. This is
an expected result since, mathematically, asymptotic convergence cannot reproduce the total eradication
of cells (a notion that requires convergence to zero in finite-time). However, we can intuitively define a
threshold from which x is considered to be zero.

For instance, we are observing that cells take much more time to reach their initial value in Sit. 2,
in comparison with Sit. 1. This is due to the fact that in Sit 2 (in which the mean value of K(t) for
t ∈ [52,175] is bigger), the state x is closer to zero than in Sit. 1. In more accurate terms, we have
x(t = 175) = 0.0035 in Sit. 1, while x(t = 175) = 5.910−13 in Sit. 2. Here we want to highlight an
important fact about the mathematical models that we are studying. In fact, the McKendrick-type models
that we study here describe the dynamics of large numbers -or population- of cells [234]. Therefore,
when the state variable x is too small, our models do not describe the cell dynamics and some stochastic
phenomena lead to total cell eradication [234]. Nevertheless, we can see in our models that when x
is sufficiently close to zero (for instance, in Sit. 2, where x(t = 175) = 5.910−13), and knowing that
the normalized scaling between the value of the state variable and the total density of cells is given
by: xnormalized = 1⇒ xreal = 1.62× 108 (see [4]), then we deduce that the value of x(t), at t = 1.75 is
equivalent to an effective cell count which is less than 1. Therefore, we can roughly consider that in this
case, cell eradication is actually achieved.

The consequence is that by considering a threshold for the density of cells after which x is zero, the
unhealthy cell regeneration observed in Figure 3.10- Sit. 2 is no longer possible. On the other hand, the
scenario Sit. 1 is different, since we cannot consider that x(t = 175) = 0.0035 (≈ 5.67×105 cells/kg) is
negligible. In this respect, the role of the estimates of the rate of convergence of the solutions appears
clearly. More precisely, using the estimate of the decay rate given in Theorem 2, and given a threshold
xℓ > 0, the initial density of cells x(t = 0), and the effect of drug infusions, we can readily determine the
duration of treatment T , which is necessary to ensure that for all t > T , x(t)≤ xℓ.
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3.5.4 Robustness analysis of the trivial steady state

In this section, we use the strict functionals Vi, introduced in Theorem 2, to perform a robustness analysis
in the case of nonvanishing perturbations εi(t) ∈ (0,ε i], for all i ∈ In, t ≥ 0. Let us observe that the
derivative of the functional V1, defined in (3.35), along the trajectories of the perturbed system (3.1),
satisfies,

V̇1(t)≤−s̃1V1(x1t)−
s1

4
x1(t)+ ε1. (3.49)

We consider any constant θ ∈ (0,1) and we define the family of sets:

Tiε i =

{
ϕ ∈ C

(
[−τi,0],R

)
, Vi(ϕ)≤

ε i

θ s̃i

}
. (3.50)

Notice for later use that the sets Tiε i are the smallest possible for θ close to 1. Clearly, if x1t /∈ T1ε1 ,
then (3.49) gives V̇1(t) ≤ −(1−θ)s̃V1(x1t)− s1

4 x1(t). Therefore, the state x1t converges exponentially
to the set T1ε1 . However, a refined result can be provided, in the sense that we can determine smaller
positive invariant sets than the family Tiε i . For that, let us introduce the functional,

A1(x1t) = V1(x1t)−ψ1x1(t). (3.51)

It is worth mentioning that the functional A1 is positive on the positive orthant for ψ1 =
s1

8(δ1+β1(0))
< 1,

where s1 is the constant defined in (3.32). Using the expression of ψ1, we can check that the derivative
of A1, along the trajectories of the perturbed system (3.1), satisfies:

˙A1(t)≤− s̃1V1(x1t)−
s1

8
x1(t)−2ψ1L1

∫ t

t−τ1

g1(t−a)w1(x1(a))da+(1−ψ1)ε1.

Now, if we define the family of sets

T̃iε i =

{
ϕ ∈ C

(
[−τi,0],R

)
,Vi(ϕ)+

2ψiLi

s̃iθ

∫ 0

−τi

gi(a)wi(ϕ)da≤ (1−ψi)ε i

θ s̃i

}
,

where 0 < ψi < 1, for all i ∈ In. Observe that T̃iε i ⊂Tiε i , for all ψi > 0, and T̃iε i = Tiε i , for ψi = 0. Now,
notice that for all x1t /∈ T̃1ε1 , the derivative of the functional A1 satisfies

˙A1(t)≤− s̃1(1−θ)V1(x1t)−
s1

8
x1(t)≤−s̃1θ A1(x1t)−

s1 +ψ1θ

8
x1(t), (3.52)

where s̃1θ = min
{

s̃1(1−θ),θ/8
}
> 0, for all θ ∈ (0,1). Therefore, from the definition of the functional

A1, we conclude that the state x1t converges exponentially to T̃1ε1 , and the decay rate of the trajectory
x1(t) is smaller than, or equal to, s̃1θ . On the other hand, we readily check, by contradiction, that the sets
T̃iε i are positively invariant (i.e. a trajectory in T̃iε i remains in T̃iε i for all the future time). Arguing as in
the proof of Theorem 2, we generalize this result to the overall system. In other words, we have proved
the following result:
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Theorem 3. If the conditions si > 0 are satisfied, for all i ∈ In, then the states xit of the perturbed system
(3.16), where εi(t) ∈ (0,ε i], for all t ≥ 0, converge exponentially to the sets T̃iε i , where 0 < ψi < 1, for
all i ∈ In.

Remark 13. i) Since dedifferentiation is the mechanism whereby cells regress to undifferentiated cells, it
seems reasonable to focus more on the first compartment of cells. ii) The proof of Theorem 3 can be easily
extended to the case of time-varying differentiation and self-renewing rates.

Example 4. Here we intend to make use of Example 3 in order to illustrate some basics about the effect of
cell plasticity (considered here as an uncertain input in our system). In the next chapter we will return to
this issue. Let us consider the parameters of Example 3 and the self-renewing process as illustrated in Sit.
1. Moreover, we consider stochastic uncertainties as the sequence illustrated in Figure 3.11 for t ∈ [0,1].
Integrating the dynamical systems with and without uncertainties leads to the trajectories illustrated in
Figure 3.11.

3.5.4.1 Further comments in the case of uncertainties induced by cell-plasticity

It is trendy to interpret many cancer types as a phenomenon induced by an abnormal dedifferentiation (see
for instance [64] for leukemia, and also [110], [73], [301], for other types of cancer).

Intuitively, we have underscored in Example 3 how exponential stability can be -in practice- roughly
interpreted as a finite time convergence (the duration that we called T > 0), when the state is sufficiently
small (x(t)< xℓ, for all t ≥ T ). In such a situation we can assume that, in practice, cancer regeneration is
theoretically excluded.

On the other hand, the case described in Figure 3.11 is different. Indeed, in Example 4 we assume that
cell-plasticity generates an uncertain nonvanishing bounded input that leads to a practical stability result
(i.e. Theorem 3). The trajectories illustrated in Figure 3.11 show that in the presence of nonnegligible
cell-plasticity activity, the cell count will not go under the threshold xℓ during the treatment period (e.g.
the treatment period in Example 4 starts at t = 13 and ends at t = 175). Thus, due to cell-plasticity, it is
expected that therapy will not succeed in completely eradicating malignant cells during the treatment
period. It is worth mentioning that both experimental and theoretical recent results seem to confirm
some closed statements. For instance, in the mathematical study presented in [249] (that relies on the
experimental results in [142], from lung cancer) the hypothesis that when cancer cells are attacked by
radiotherapy, they dedifferentiate into cancer stem cells (i.e. dedifferentiation to regress to i = 1) because
stem cells are less sensitive to radiotherapy. Interestingly, they suggest that therapy works better inhibiting
survivin (see, [144]) expression, that decreases dedifferentiation of cancer cells.
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3.5.5 Model equations in the case involving fast self-renewing dynamics

We pursue what we said previously on the model with fast self-renewing dynamics (the model introduced
in [24]). In this case, a sub-population of cells has an advantage of proliferation, if compared to ordinary
cells. A schematic representation of the cell dynamics is given in Figure 5.94. For all i ∈ In = {1, . . . ,n}
(recall that n≥ 1 is the number stages of maturity), we denote by xi the total density of ordinary resting
cells and by x̃i the total density of fast self-renewing cells.

3.5.6 LKF constructions for a model with fast self-renewing dynamics

Fig. 3.12 Schematic representation of the age-structured model describing unhealthy hematopoeisis. The dynamics
x̃i represent the extra-dynamics introduced to quantify the total density of fast-renewing cells.

Similarly to the model introduced in the previous sections, the constant δi represents the death
rate of quiescent cells. We recall that the function gi(a) is defined by gi(a) = e−γia fi(a) where fi is
a density function describing the mitosis and is such that

∫
τi
0 fi(a)da = 1, and γi is the death rate of

the proliferating cells (apoptosis). Proliferating cells can divide between the moment they enter the
proliferating phase and a maximal age τi > 0. The reintroduction functions βi(xi) and β̃i(x̃i) from the
resting to the proliferating phases are considered to be nonlinear, continuous, decreasing functions, and
lima→+∞ β̃i(a) = lima→+∞ βi(a) = 0.

The total population densities xi and x̃i are described by the following time-delay system, for all
i ∈ In = {1, . . . ,n},{

ẋi(t) = −(δi +βi(xi(t))xi(t)+Li(t)ℑi(wi, w̃i)+2Ki−1(t)ℑi−1(wi−1, w̃i−1)

˙̃xi(t) = −w̃i(x̃i(t))+ L̃i(t)ℑi(wi, w̃i), t ≥ 0,
(3.53)

where (with an abuse of notation) the distributed delay terms are defined by,

ℑi(wi, w̃i) =
∫

τi

0
gi(a)[wi(xi(t−a))+ w̃i(x̃i(t−a))]da, (3.54)

where a is the age of cells. As similarly done for the case of the model without fast self-renewing
dynamics, we assume first that the functions Li(·) and L̃i(·) are of class C0, for all i ∈ In. Moreover, these
functions satisfy

Li(t) := 2σi(t)(1−Ki(t)), L̃i(t) := 2(1−σi(t))(1−Ki(t)), and, K0 = 0, (3.55)
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for all t ≥ 0, where we recall that the rates Ki(t) represent the proportion of cells that differentiate, while
the functions 1−σi(t) characterize the probability of fast self-renewal at the time instant t. We recall that:

Ci =
∫

τi

0
gi(a)da, for all i ∈ In.

Originally, the model described by (3.53) was introduced in [24] with constant parameters Ki, Li, L̃i

and σi, for all i ∈ In. As repeatedly mentioned throughout the chapter, AML is characterized by a blockade
in the differentiation process which becomes also a target for some drugs already used in its treatment.
Thus, we consider here the time-varying system (3.53).

Since each proliferating cell, which does not die by apoptosis and completes its mitosis, gives
birth to two daughter cells, we deduce that Ki(t) ∈ [0,1] for all t ≥ 0. In fact, we assume that K(t) ∈
[Kimin,Kimax]⊂ (0,1), for all t ≥ 0, meaning that even for an unhealthy hematopoiesis, the differentiating
process will not completely vanish. More precisely, in the AML case, due to the blockade in the
differentiation process, we expect that limt→∞ K(t) = Kimin ̸= 0.

Similarly, we consider the case where for all t ≥ 0, σi(t) ∈ [σimin,σimax]⊆ [0,1]. From medical prac-
tice we know that, in the AML case, a blockade in the differentiation process

(
i.e. limt→∞ Ki(t) = Kimin

)
and a high rate of fast self-renewing

(
i.e. limt→∞ σi(t) = σimin

)
are simultaneously observed. This fact

yields to limt→∞ L̃i(t) = L̃imax, in the AML case, with L̃imax = 2(1−σimin)(1−Kimin).
The situation in which σi = 0 describes the worst unhealthy case in which all the proliferating cells

that complete their mitosis will be engaged in the fast self-renewing process. On the other hand, we
observe that the case where σi = 1, and all the parameters involved in the model are constant, is in fact
well suited to healthy hematopoiesis. Indeed, note that the case σi = 1 is equivalent to consider x̃ = 0, and
if the parameters in (3.53) are constants, then the system (3.53) is equivalent the model (3.1).

Moreover, we define for all i ∈ In,

L̂i(t) := Li(t)+ L̃i(t) = 2
(
1−Ki(t)

)
, t ≥ 0.

Notice that L̂(t) ∈ [L̂imin, L̂imax]⊂ (0,2), for all t > 0, where L̂imax = 2(1−Kimin).
It is easy to prove that system (3.53) is positive. Throughout this section, we employ the positivity

of the system to construct a suitable Lyapunov-Krasovskii functional in order to investigate the stability
properties of the overall system. We start with the following proposition:

Proposition 3. If the condition
CiL̃imax < 1, (3.56)

for all i ∈ In, is not satisfied, then there exists a system in the family of systems (3.53) whose origin is not
globally asymptotically stable.

Proof. We prove Proposition 3 by contradiction. Let us assume that (3.56) is not satisfied for a given
j ∈ In and that all the positive solutions of the system (3.53), with for all i ∈ In, L̃i(t) = L̃imax, for all t ≥ 0,
converges to the origin.

Observe that
˙̃xi(t)≥−w̃i(x̃i(t))+ L̃imax

∫ t

t−τi

gi(t−a)w̃i(x̃i(a))da. (3.57)
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Let us introduce the functionals

hi(x̃it) =
∫ t

t−τi

∫ t

m
gi(m−a+ τi)w̃i(x̃i(a))dadm. (3.58)

Simple calculations give

ḣi(t) =Ciw̃i(x̃i(t))−
∫ t

t−τi

gi(t−a)w̃i(x̃i(a))da. (3.59)

From (3.57) and (3.59), it follows that the derivatives of the functionals Hi(x̃it) = x̃i(t)+ L̃imaxhi(x̃it),
along the trajectories of (3.53), satisfy

Ḣi(t)≥ (CiL̃imax−1)w̃i(x̃i(t)). (3.60)

Since there exists j ∈ In such that C jL̃ j max > 1, we get Ḣ j(t)≥ 0. It follows that,

H j(x̃ jt)≥ H j(0)> 0.

Therefore, H j(x̃ jt) does not converge to zero. But we consider a solution that converges to the origin,
which implies that H j(x̃ jt) converges to zero. This yields a contradiction.

Remark 14. If σimin = 0, we obtain L̂imax = L̃imax. Therefore, from Proposition 3, we observe that if the
condition CiL̂imax < 1 is not satisfied for all i ∈ In, then there exists a system (3.53) whose origin is not
globally asymptotically stable. Consequently, we can not establish global exponential stability of the
origin of system (3.53) if the condition

CiL̂imax > 1

holds true for some i ∈ In.

Now, let us state and prove the following result:

Theorem 4. For all i ∈ In, if the conditions

CiL̂imax < 1, (3.61)

are satisfied, then all the positive trajectories of (3.53) converge exponentially to the origin.

Proof. Let us consider a family of strictly positive constants λi, for all i ∈ In. First, we observe that when
the conditions (3.61) are satisfied, then for all λi ∈

(
1, 1+CiL̂imax

2CiL̂imax

)
, the following inequalities are verified

1−λiCiL̂imax >
1−CiL̂imax

2
> 0. (3.62)

Next, let us introduce, for all i ∈ In, the functionals defined along the trajectories of system (3.53), by

v‡
i (xit , x̃it) =

∫ t

t−τi

∫ t

m
e−ρ

‡
i (t−m−τi)gi(m−a+ τi)

[
wi(xi(a))+ w̃i(x̃i(a))

]
dadm, (3.63)
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where ρ
‡
i are strictly positive constants to be selected later. The derivatives of the functionals (3.63), along

the trajectories of (3.53), satisfy (with an abuse of notation for ℑi),

v̇‡
i (t)≤−ρ

‡
i v‡

i (xit , x̃it)−ℑi(wi, w̃i)+
[
wi(xi(t))+ w̃i(x̃i(t))

]
eρ

‡
i τiCi. (3.64)

Let us introduce the following functional for the first compartment of unhealthy cells

V ‡
1 (x1t , x̃1t) = x1(t)+ x̃1(t)+λ1L̂1maxv‡

1 (x1t , x̃1t) , (3.65)

where λ1 satisfies (3.62). Using (3.64), it follows that

V̇ ‡
1 (t)≤−

[
δ1 +

(
1−λ1eρ

‡
1 τ1 L̂1maxC1

)
β1(x1(t))

]
x1(t)−λ1ρ

‡
1 L̂1maxv‡

1 (x1t , x̃1t)

−
(

1−λ1eρ
‡
1 τ1 L̂1maxC1

)
w̃1(x̃1(t))+

(
L̂1(t)−λ1L̂1max

)
ℑ1(w1, w̃1),

(3.66)

since λ1 satisfies (3.62). It follows that by selecting any

ρ
‡
1 ∈

0,
1
τ1

ln

(
1+λ1C1L̂1max

2λ1C1L̂1max

) , (3.67)

we obtain

1−λ1eρ
‡
1 τ1 L̂1maxC1 >

1−λ1L̂1maxC1

2
> 0.

Moreover, since L̂1(t)≤ L̂1max, we deduce that (3.66) gives

V̇ ‡
1 (t)≤−

[
δ1 +θ

‡
1 β1(0)

]
x1(t)−θ

‡
1 w̃(x̃1(t))

−λ1L̂1maxρ
‡
1 v‡

1 (x1t , x̃1t)−λ 1ℑ1(w1, w̃1),
(3.68)

where,
θ

‡
1 = 1−λ1eρ

‡
1 τ1 L̂1maxC1 > 0, and, λ 1 = (λ1−1)L̂1max > 0.

Since the right hand side of (3.68) is always nonpositive, we deduce by integrating (3.68) that for all
t ≥ 0,

V ‡
1 (x1t , x̃1t)≤ V ‡

1

(
ϕx1 ,ϕx̃1

)
. (3.69)

This means in particular that x̃(t) is bounded by a constant x̃1b > 0. Since the function β̃1 is decreasing,
it follows that, for all t ≥ 0, the inequality (3.68) gives, with an abuse of notation,

V̇ ‡
1 (t)≤−

[
δ1 +θ

‡
1 β1(0)

]
x1(t)−θ

‡
1 β̃1(x̃1b)x̃1(t)

−λ1L̂1maxρ
‡
1 v‡

1 (x1t , x̃1t)−λ 1ℑ1 (w1, w̃1) .
(3.70)

We conclude that for all t ≥ 0,

V̇ ‡
1 (t)≤− s̃1V

‡
1 (x1t , x̃1t)−λ 1ℑ1(w1, w̃1), (3.71)
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where,
s̃1 = min

{
δ1 +θ

‡
1 β1(0),θ

‡
1 β̃1(x̃1b),λ1ρ

‡
1 L̂1max

}
.

By virtue of the functional V ‡
1 , we conclude that the origin of the subsystem i = 1 is globally

exponentially stable, with a decay rate smaller than, or equal to, s̃1.
Next, in the rest of the proof, we consider the case where the conditions (3.61) are satisfied for any

number of compartments (i ∈ In). Let us introduce the following functional that takes into account the
first and the second generations of cells:

V ‡
2 (X2t) =x2(t)+ x̃2(t)+λ2L̂2maxv‡

2 (x2t , x̃2t)+
2K1max

λ 1
V ‡

1 (x1t , x̃1t) , (3.72)

with X2 = (x1, x̃1,x2, x̃2). Similarly to the case i = 1, we select ρ
‡
2 such that the derivative of the func-

tional (3.72) along the trajectories of (3.53) satisfies

V̇ ‡
2 (t)≤−

[
δ2 +θ

‡
2 β2(0)

]
x2(t)−θ

‡
2 w̃2(x̃2(t))−λ2L̂2maxρ

‡
2 v‡

2 (x2t , x̃2t)

+2K1(t)ℑ1 (w1, w̃1)−λ 2ℑ2 (w2, w̃2)+
2K1max

λ 1
V̇ ‡

1 (t).
(3.73)

Combining (3.73) and (3.71), we deduce that for all t ≥ 0,

V̇ ‡
2 (t)≤−

[
δ2 +θ

‡
2 β2(0)

]
x2(t)−θ

‡
2 β̃2(x̃2b)x̃2(t)−λ2L̂2maxρ

‡
2 v‡

2 (x2t , x̃2t)

−λ 2ℑ2 (w2, w̃2)−
2s̃1K1max

λ 1
V ‡

1 (x1t , x̃1t)−2
(
K1max−K1(t)

)
ℑ1 (w1, w̃1) .

(3.74)

Since K1(t)≤ K1max, we straightforwardly deduce that there exists s̃2 > 0 such that, for all t ≥ 0,

V̇ ‡
2 (t)≤−s̃2V

‡
2 (X2t)−λ2ℑ2 (w2, w̃2) . (3.75)

Next, by induction, one can readily determine families of constants a‡
i > 0, b‡

i > 0 and a constant s̃n > 0,
such that the derivative of the functional

V ‡
n (Xnt) =

n

∑
i=1

[
xi(t)+a‡

i x̃i(t)+b‡
i v‡

i (xit , x̃it)
]
, (3.76)

with Xn = (x1, x̃1, . . . ,xn, x̃n), along the trajectories of (3.53), satisfies

V̇ ‡
n (t)≤−s̃nV

‡
n (Xnt) , with s̃n > 0. (3.77)

From (3.77) and the properties of the functional V ‡
n , we conclude that the origin of the system (3.53) is

globally exponentially stable with a decay rate smaller than, or equal to, s̃n.

Technical Note 1. The reader may have noticed the technical differences between the proofs of Theorem
2 and Theorem 4. For instance, the detour through the boundedness of x̃1 that allowed us to obtain x̃ in
the right-hand side of V̇ ‡

1 (3.68)-(3.70), and thereby recover V ‡
1 in the right-hand side of (3.70), which
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establishes exponential stability of the solutions, was not necessary in Theorem 2. We also notice that
the generalization of the result to the overall system (i ∈ In,n≥ 2) is different (by comparing (3.71) with
(3.38)). Indeed, in (3.38) we required an extra-negative term in x1(t) in order to handle the effect of
the coupling that appears in V2. On the other hand, in (3.71), we manage to ensure a negative integral
term

(
−λ 1ℑ1 (w1, w̃1)

)
, in order to compensate the coupling terms appearing in V ‡

2 . In both cases, we
extended the results to any number of generations of cells without conservatism, which is a nice point.

Remark 15. In the case where σimax = 1, all the cells that complete their mitosis without dying by
apoptosis may join -entirely- the fast-self renewing process, through G̃0. This is an extreme unhealthy
case, in which all cells are abnormally fast-proliferating. Since this case is allowed in our study (the
one presented in [80]), it appears clear that the only way to ensure that the exponential convergence of
the solutions to zero is to force the proliferating cells to have a negative balance between mother cells
entering from G0 and G̃0 (normalized to 1), and daughter cells that rise from mitosis and survive to
apoptosis (CiL̂imax), which is expressed by the condition CiL̂imax < 1. On the other hand, if limited extent
is imposed to the abnormal behavior (i.e. reflected in the model by assuming σimax < 1), we expect that
less restrictive (from a biological standpoint) conditions can be determined, as illustrated in the sequel.

In one among the works done collaboratively with Professor Emilia Fridman [107], further results on
the stability of model with fast self-renewing dynamics are provided. In particular, global asymptotic sta-
bility and regional exponential stability are discussed in the case of system (3.53) has constant parameters.
Notice also that the analysis of the PDE version of the system (3.53) is addressed. Here we retain only
one corollary from [107] which goes along with Theorem 4 of the current chapter (see Remark 15). So
the following result deals with the case in which Ki and Li in (3.53) are constant and σi(t) ∈ [σimin,σimax],
where σimax < 1, for all i ∈ In and t ≥ 0.

σimin ≤ σi(t)≤ σimax, for all, i ∈ In. (3.78)

Corollary 2. Assume that there exist κ1
1 > 0, . . . ,κ1

n > 0 such that the following 4n linear inequalities are
satisfied:

[(Li +κ1
i L̃i)

∫
τi
0 e−γia fi(a)da−1]βi(0)σi=σimin < δi,

[(Li +κ1
i L̃i)

∫
τi
0 e−γia fi(a)da−1]βi(0)|σi=σimax < δi,

(Li +κ1
i L̃i)

∫
τi
0 e−γia fi(a)da|σi=σimin < κ1

i ,

(Li +κ1
i L̃i)

∫
τi
0 e−γia fi(a)da|σi=σimax < κ1

i , for all, i ∈ In.

(3.79)

Then, the zero solution of the system (3.53)-(3.55), where σi satisfies (3.78), is globally asymptotically
stable.

Example 5. Let us consider the following parameters and functions:
for i=1: δ1 = 3.3, K1 = 0.1, m1 = 1, τ1 = 0.8, γ1 = 0.2, β1(x1) =

0.8
1+x3

1
and β̃1(x̃1) =

10
1+2x̃2

1
.

for i=2: δ2 = 4, K2 = 0.08, m2 = 1, τ2 = 0.8, γ2 = 0.3, β2(x2) =
1

1+x3
2

and β̃2(x̃1) =
10

1+x̃2
2
.

We assume that σi is uncertain for i ∈ {1,2}. For instance, we consider that

0.5 = σimin ≤ σi(t)≤ σimax = 0.9, for i = 1,2 (3.80)
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and,
σi(t) =

σimax +σimin

2
+

σimax−σimin

2
cos(t). (3.81)

The conditions (3.79) are satisfied for κ1
1 = κ1

2 = 5:

•
[
(L1 +κ1

1 L̃1)
∫

τ1
0 e−γ1a f1(a)da−1

]
β1(0)|σ1=σ1min = 3.1501 < 3.3 = δ1[

(L1 +κ1
1 L̃1)

∫
τ1
0 e−γ1a f1(a)da−1

]
β1(0)|σ1=σ1max = 1.0434 < 3.3 = δ1

(L1 +κ1
1 L̃1)

∫
τ1
0 e−γ1a f1(a)da|σ1=σ1min = 4.9376 < 5 = κ1

1

(L1 +κ1
1 L̃1)

∫
τ1
0 e−γ1a f1(a)da|σ1=σ1max = 2.3042 < 5 = κ1

1

•
[
(L2 +κ1

2 L̃2)
∫

τ2
0 e−γ2a f2(a)da−1

]
β2(0)|σ2=σ2min = 3.8302 < 4 = δ2[

(L2 +κ1
2 L̃2)

∫
τ2
0 e−γ2a f2(a)da−1

]
β2(0)|σ2=σ2max = 1.2541 < 4 = δ2

(L2 +κ1
2 L̃2)

∫
τ2
0 e−γ2a f2(a)da|σ2=σ2min = 4.8302 < 5 = κ1

2

(L2 +κ1
2 L̃2)

∫
τ2
0 e−γ2a f2(a)da|σ2=σ2max = 2.2541 < 5 = κ1

2

According to Corollary 2, the origin of the studied model in Example 5 is globally asymptotically stable.
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Fig. 3.13 Qualitative behavior of the trajectories xi and x̃i for the model in Example 5.

3.6 Stability analysis of the positive steady state in the healthy hematopoiesis

A strictly positive equilibrium Xe reflects the surviving of all the generations of blood cells, which is the
aim of a healthy hematopoiesis. When the condition (3.9) is satisfied, a unique Xe exists. In this section,
we are interested in finding an estimate of the basin of attraction of Xe.

Let us also recall that the components of Xe can be computed from the equation,

β1(xe
1) =

δ1

α1
, (3.82)

and for i ∈ {2, . . . ,n}, from the equations (3.13), which always admit a unique solution.
Let us start by looking to the reintroduction functions βi, from the resting to the proliferating stages.

We previously mentioned that, owing to some biological considerations, the following Hill functions were
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proposed by Mackey in [180],

βi(xi) =
βi(0)

1+bix
ni
i
, (3.83)

with βi(0)> 0, bi > 0 and ni ≥ 2. This typical choice was assumed in subsequent works ([8] and [226]).
Actually, many other decreasing functions βi, with a finite maximum βi(0) and adjustable slope and
inflection point can be chosen to match the biological assumptions [180].

Throughout this section, we consider the functions βi in the form (3.83) and we indicate later for
which other forms our results remain valid.

Since we are interested in the positive equilibrium Xe, we perform the classical changes of coordinates,
x̂i = xi− xe

i , for i ∈ In. It follows from (3.1)-(3.2) that

˙̂xi(t) =−δi
[
x̂i(t)+ xe

i
]
−wi

(
x̂i(t)+ xe

i
)

+2Li

∫ t

t−τi

gi(t−a)wi
(
x̂i(a)+ xe

i
)

da

+2Ki−1

∫ t

t−τi−1

gi−1(t−a)wi−1
(
x̂i−1(a)+ xe

i−1
)

da.

(3.84)

However, a new representation of (3.84) that eases the analysis of its origin can be obtained. Indeed,
observe that, with an abuse of notation, wi(x̂i + xe

i ) = wi(xe
i )+µix̂i +Ri(x̂i), where,

µi = βi(xe
i )+β

′
i (x

e
i )x

e
i , and, Ri(x̂i) =

∫ xe
i +x̂i

xe
i

[x̂i + xe
i − l]w(2)

i (l)dl. (3.85)

Moreover, we denote βi∗ = δi +µi. It follows that (3.84) is equivalent to

˙̂xi(t) =−βi∗x̂i(t)+2Liµi

∫ t

t−τi

gi(t−a)x̂i(a)da

−Ri(x̂i(t))+2Li

∫ t

t−τi

gi(t−a)Ri(x̂i(a))da

+2Ki−1µi−1

∫ t

t−τi−1

gi−1(t−a)x̂i−1(a)da

+2Ki−1

∫ t

t−τi−1

gi−1(t−a)Ri−1(x̂i−1(a))da.

(3.86)

Remark 16. Compared with Section 3.5, the stability analysis of the origin of (3.86) is more complicated
due to the shifting. Indeed, linear functionals can no longer be used since the system (3.86) is not positive.
A common approach to investigate the stability properties of such a class of systems is by using quadratic
functions or functionals, as illustrated in the sequel.

3.6.1 Introductory result based on Razumikhin’s Theorem

To get a first intuition, let us consider the subsystem (3.86) for i = 1. A linear approximation at its origin
is obtained by neglecting the terms where R1 is present. The following linear system is obtained:

ż1(t) =−β1∗z1(t)+2L1µ1

∫ t

t−τ1

g1(t−a)z1(a)da. (3.87)
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Let us consider the positive definite quadratic function

Q(a) =
1
2

a2. (3.88)

We apply the Razumikhin’s Theorem (see Chapter 1): Pick a constant q > 1 and consider t ≥ 0 such
that qQ(z1(t))≥ Q(z1(a)), ∀a ∈ (t− τ1, t) . Then the derivative of Q along the trajectories of the (3.87)
satisfies:

Q̇(t)≤−2β1∗Q(z1(t))+4
√

Q(z1(t))L1|µ1|
∫ t

t−τ1

g1(t−a)
√

Q(z1(a))da

≤−2
[
β1∗−2

√
qL1|µ1|C1

]
Q(z1(t)).

(3.89)

We conclude from Razumikhin’s theorem that the condition β1∗− 2L1|µ1|C1 > 0 is sufficient for the
asymptotic stability of the origin of the system (3.87). This leads us to introduce, for all i ∈ In, the
constants

ςi = βi∗−2Li|µi|Ci = δi +µi−2Li|µi|Ci, (3.90)

that will be of use later in the stability analysis of the nonlinear system, in the analytic expression of the
quadratic Lyapunov-Krasovskii functionals and in the size of the region of attraction that we will provide.

3.6.2 Introductory result based on Lyapunov-Krasovskii Theorem

Here we prove a similar result to the one provided in the previous section: we extend it to any number of
stages n. Recall that the positive equilibrium point of the system (3.1)-(3.2) has never been studied by
Lyapunov techniques. For our application, the Lyapunov-Krasovskii approach is more advantageous than
the Razumikhin’s one, since the LKF can be used to provide an estimate of the basin of attraction of the
positive steady state.

In this section, we consider the case where a positive equilibrium point exists and determine a quadratic
Lyapunov-Krasovskii functional whose derivative along the trajectories of the system is smaller, in a
neighborhood of the equilibrium point, than a negative definite function of the state variable.

ż1(t) =−β1∗z1(t)+M1µ1

∫ t

t−τ1

g1(t− l)z1(l)dl,

żi(t) =−βi∗zi(t)+Miµi

∫ t

t−τi

gi(t− l)zi(l)dl

+2Ki−1µi−1

∫ t

t−τi−1

gi−1(t− l)zi−1(l)dl, when i ∈ {2, . . . ,n},

(3.91)

with Mi = 2Li for all i ∈ {1, . . . ,n},
βi∗ = δi +µi, (3.92)

µi =

[
∂wi(xi)

∂xi

]
xi=xe

i

= βi(xe
i )+β

′
i (x

e
i )x

e
i , (3.93)
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for all i ∈ {1, . . . ,n}. Let us recall the definition of the constants ςi, which are given for all i ∈ {1, . . . ,n}
by

ςi = βi∗−Mi|µi|
∫

τi

0
gi(a)da, (3.94)

and observe for later use that
ςi = δi +µi−2Li|µi|Ci. (3.95)

Let us also define the constants

ξ1 = 0 , ξi =
8K2

i−1|µi−1|2Ci−1

ςi
, ∀i ∈ {2, . . . ,n}, (3.96)

η1 = 0 , ηi =
2

3ςi
ξiCi−1, ∀i ∈ {2, . . . ,n}, (3.97)

and,

qn = 1 , qi = 2n−i
n

∏
k=i+1

ηk , ∀i ∈ {1, ...,n−1}. (3.98)

We recall that
Q(a) =

1
2

a2, (3.99)

for all i ∈ {1, . . . ,n},
Ωi(zit) =

∫ t

t−τi

∫ t

l
gi(l−a+ τi)Q(zi(a))dadl, (3.100)

R1(z1t) =
1
ς1

[
1
2

Q(z1(t))+L1|µ1|Ω1(z1t)

]
, (3.101)

Si(zit) =
1
2

Q(zi(t))+Li|µi|Ωi(zit) (3.102)

and, for all i ∈ {2, . . . ,n},

Ri(zit ,zi−1t) =
4

3ςi

[
Si(zit)+

ξi

2
Ωi−1(zi−1t)

]
. (3.103)

We are ready to state and prove the main result of the section.

Theorem 5. The conditions
ςi > 0, (3.104)

for all i ∈ {1, . . . ,n}, ensure that the origin of (3.86) is locally asymptotically stable. Moreover, the
functional U

U(Zt) =
n

∑
i=1

qiRi(zit ,zi−1t) (3.105)

with Z = (z1, . . . ,zn) and where the constant qi are the constants defined in (3.98) is such that its derivative
along the solutions of system (3.91) satisfies

U̇(t)≤−Q(zn(t))−
n−1

∑
j=1

2n− j−1
n

∏
k= j+1

ηkQ(z j(t)). (3.106)
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Remark 17. One can check easily that the functional U satisfies the conditions of Lyapunov-Krasovskii’s
theorem.

Proof. i) Lyapunov-Krasovskii result for i = 1:
The derivative along the trajectories of (3.91) of Q(z1), where Q is the function defined in (3.99),

satisfies the inequality

Q̇(t) ≤ −β1∗z1(t)2 +2L1|µ1|
∫ t

t−τ1
g1(t−a)|z1(t)z1(a)|da. (3.107)

Using the inequality |z1(t)z1(a)| ≤ 1
2 |z1(t)|2 + 1

2 |z1(a)|2, we obtain

Q̇(t)≤−2β1∗Q(z1(t))+2L1|µ1|
∫ t

t−τ1
g1(t−a)Q(z1(t))da+2L1|µ1|

∫ t
t−τ1

g1(t−a)Q(z1(a))da.

As an immediate consequence,

1
2

Q̇(t)≤
[
−β1∗+L1|µ1|

∫
τ1

0
g1(a)da

]
Q(z1(t))+L1|µ1|

∫ t

t−τ1

g1(t−a)Q(z1(a))da. (3.108)

Now, we consider the functional S1 defined in (3.102). Using

Ω̇1(t) =
∫ t

t−τ1

g1(l− t + τ1)dlQ(z1(t))−
∫ t

t−τ1

g1(t−a)Q(z1(a))da, (3.109)

we deduce that its derivative along the trajectories of (3.91) satisfies

Ṡ1(t)≤−ς1Q(z1(t)), (3.110)

with ς1 defined in (3.94). Thus, we recover the result given by Razumikhin Theorem in the previous
section. Next, we extend the proof for any i ∈ In.

ii) Lyapunov-Krasovskii functional for the overall system:
Now, we consider the overall maturity-structured model of cell differentiation (3.91). Let us rewrite

this system with simplifying notations: ż1(t) =−β1∗z1(t)+M1µ1ℑ1(z1t)

żi(t) =−βi∗zi(t)+Miµiℑ
†
i (zit)+2Ki−1µi−1ℑ

†
i−1(zi−1t) ,when i > 1,

(3.111)

with,

ℑ
†
i (zit) =

∫ t

t−τi

gi(t−a)zi(a)da (3.112)

for all i ∈ {1, . . . ,n}. Then we deduce from the previous part of the proof of Theorem 5 that

Ṡi(t)≤
[
−βi∗+Mi|µi|

∫
τi

0
gi(a)da

]
Q(zi(t))+

1
2

zi(t)2Ki−1µi−1ℑ
†
i−1(zi−1t)

=

[
−βi∗+Mi|µi|

∫
τi

0
gi(a)da

]
Q(zi(t))+Ki−1zi(t)µi−1ℑ

†
i−1(zi−1t).

(3.113)
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It follows that

Ṡi(t) ≤ −ςiQ(zi(t))+νi−1
∫ t

t−τi−1
gi−1(t− l)zi(t)zi−1(l)dl, (3.114)

with ςi defined in (3.94) and νi−1 = Ki−1|µi−1|.
Notice that for any constant c > 0, |zi(t)zi−1(a)| ≤ 1

2c |zi(t)|2 + c
2 |zi−1(a)|2. It follows that

Ṡi(t)≤− ςiQ(zi(t))+
1
2c

νi−1

∫ t

t−τi−1

gi−1(t−a)|zi(t)|2da+
c
2

νi−1

∫ t

t−τi−1

gi−1(t−a)|zi−1(a)|2da

=− ςiQ(zi(t))+
1
c

νi−1Ci−1Q(zi(t))+ cνi−1

∫ t

t−τi−1

gi−1(t−a)Q(zi−1(a))da.

Choosing c = 4νi−1Ci−1
ςi

, we obtain

Ṡi(t) ≤ −3
4 ςiQ(zi(t))+

ξi
2
∫ t

t−τi−1
gi−1(t−a)Q(zi−1(a))da. (3.115)

Now, consider the functional R1 defined in (3.101) and, for i ∈ {2, . . . ,n} the functionals Ri defined in
(3.103). Then it follows from (3.102) and (3.110) that

Ṙ1(t)≤−Q(z1(t)) (3.116)

and, for i ∈ {2, . . . ,n}, (3.115) implies that

Ṙi(t)≤−Q(zi(t))+
2

3ςi
ξi

∫ t

t−τi−1

gi−1(t−a)Q(zi−1(a))da

+
2

3ςi
ξi

∫ t

t−τi−1

gi−1(l + τi−1− t)Q(zi−1(t))dl

− 2
3ςi

ξi

∫ t

t−τi−1

gi−1(t−a)Q(zi−1(a))da

=−Q(zi(t))+
2

3ςi
ξi

∫
τi−1

0
gi−1(l)dlQ(zi−1(t))

=−Q(zi(t))+ηiQ(zi−1(t)).

(3.117)

Let us consider the functional U defined in (3.105). Then we straightforwardly deduce from (3.116)
and (3.117) that

U̇(t)≤
n

∑
i=2

qi[−Q(zi(t))+ηiQ(zi−1(t))]−q1Q(z1(t))

≤−
n

∑
i=2

qiQ(zi(t))+
n−1

∑
j=2

q j+1η j+1Q(z j(t))+q2η2Q(z1(t))−q1Q(z1(t)).
(3.118)

By grouping the terms, we obtain

U̇(t)≤−qnQ(zn(t))+
n−1

∑
j=1

(
q j+1η j+1−q j

)
Q(z j(t)). (3.119)
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Using (3.98), we obtain

q j+1η j+1−q j = 2n− j−1
n

∏
k= j+1

ηk−2n− j
n

∏
k= j+1

ηk.

We deduce that (3.106) is satisfied. The functional U defined in (3.105) satisfies the conditions of
Lyapunov-Krasovskii’s Theorem. It follows that Xe is a locally asymptotically stable equilibrium point of
the system (3.91).

3.6.3 Exponential stability of the positive equilibrium via a novel LKF

In the previous section, we discussed the local asymptotic stability of the positive steady state of the
system (3.86). In this section, we will extend this result by designing a novel Lyapunov-Krasovskii
functional implying local exponential stability under the same previous sufficient conditions and making
possible to estimate the rate of convergence. For technical reasons that will appear along our constructions,
the analytic expression of the novel functional is slightly different from the one proposed in the previous
section. This functional will allow us to achieve our next objective, which is to determine an approximation
of the basin of attraction of the positive equilibrium of the nonlinear system (3.86).

Let us state and prove the following result:

Theorem 6. The conditions
ςi > 0, (3.120)

for all i ∈ In, ensure that the origin of (3.86) is locally exponentially stable.

Proof. We recall that the linear approximation of the system (3.86) at its origin (which is obtained by
neglecting in (3.86) all the terms where Ri is present for all i ∈ In), can be written as follows

żi(t) =−βi∗zi(t)+2Liµi

∫ t

t−τi

gi(t−a)zi(a)da

+2Ki−1µi−1

∫ t

t−τi−1

gi−1(t−a)zi−1(a)da.
(3.121)

Contrary to Section 3.5, the nonpositivity of the system under study motivates the introduction of the
positive definite function in (3.99). Let us consider also the following two functionals:

Ωi(ϕit) =
∫ t

t−τi

∫ t

l
gi(l−a+ τi)Q(ϕi(a))dadl, (3.122)

Λi(ϕit) =
∫ t

t−τi

el−t
∫ t

l
gi(l−a+ τi)Q(ϕi(a))dadl. (3.123)

In fact, other types of functionals may be used instead of (3.122) and (3.123). However, for the sake of
clarity, we use a weighted combination of them in order to compensate the distributed delayed terms and
estimate the exponential decay rates. Moreover, we define for all i ∈ In, the following functionals:

Let us define for all i ∈ In the following functionals

Si(zit) =
1
2

Q(zi(t))+Li|µi|Ωi(zit), (3.124)
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N1(z1t) = S1(z1t)+
ς1

2C1
Λ1(z1t), (3.125)

and for all i ∈ {2, . . . ,n},

Ni(zit ,zi−1t) = Si(zit)+
ςi

2Ci
Λi(zit)+ψiΛi−1(zi−1t), (3.126)

where ψi is an appropriate strictly positive constant to be determined later for all i ∈ {2, . . . ,n}.
First of all, observe for later use that the derivatives of the functionals Ωi and Λi, for all i ∈ In, along

the trajectories of (3.121) satisfy,

Ω̇i(t) =CiQ(zi(t))−
∫ t

t−τi

gi(t−a)Q(zi(a))da, (3.127)

Λ̇i(t) =−Λi(zit)− e−τi

∫ t

t−τi

gi(t−a)Q(zi(a))da+
∫

τi

0
el−τigi(l)dlQ(zi(t))

≤−Λi(zit)− e−τi

∫ t

t−τi

gi(t−a)Q(zi(a))da+CiQ(zi(t)),
(3.128)

where the last inequality is a consequence of the definition of the constants Ci given by (3.5.6).
For the sake of clarity, we will decompose now the proof of Theorem 6 into two parts: we start the

construction of a Lyapunov functional for the first compartment and next we generalize this construction
to any number of compartments.

i) Lyapunov-Krasovskii functional for the first compartment:
Using the inequality |z1(t)z1(a)| ≤ 1

2 |z1(t)|2 + 1
2 |z1(a)|2, one can readily check that the derivative

along the trajectories of (3.91) of Q(z1), where Q is the function defined in (3.99), satisfies the inequality

1
2

Q̇(t)≤ [−β1∗+L1|µ1|C1]Q(z1(t))+L1|µ1|
∫ t

t−τ1

g1(t−a)Q(z1(a))da. (3.129)

The derivative of the functional N1, defined in (3.125), along the trajectories of (3.91) satisfies

Ṅ1(t)≤−
ς1

2
Q(z1(t))−

ς1

2C1
Λ1(z1t). (3.130)

On the other hand, observe that

N1(z1t)≤
1
2

Q(z1(t))+
ς1

2C1

∫ t

t−τ1

el−t
∫ t

l
g1(l−a+ τ1)Q(z1(a))dadl

+L1|µ1|
∫ t

t−τ1

∫ t

l
e(l−(t−τ1))g1(l−a+ τ1)Q(z1(a))dadl.

Then

N1(z1t)≤
1
2

Q(z1(t))+
(

ς1 +2L1C1|µ1|eτ1

2C1

)
Λ1(z1t). (3.131)

From (3.130) and (3.131) we deduce that

Ṅ1(t)≤− ς̃1N1(z1t)−
ς1

4
Q(z1(t)), (3.132)
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for all ς̃1 ∈
(

0,min
{

ς1
2 ,

ς1
ς1+2L1C1|µ1|eτ1

})
.

ii) Lyapunov-Krasovskii functional for the overall system:
Now observe that for i > 1, the derivatives of the functions Q(zi(t)) along the trajectories of (3.91)

satisfy

Q̇(t)≤−βi∗z2
i (t)+2Li|µi|

∫ t

t−τi

gi(t−a)|zi(t)zi(a)|da

+2Ki−1|µi−1|
∫ t

t−τi−1

gi−1(t−a)|zi(t)zi−1(a)|da.

Using the inequalities: |zi(t)zi(a)| ≤ Q(zi(t))+Q(zi(a), for all i ∈ In, and |zi(t)zi−1(a)| ≤ ξiQ(zi(t))+
1
ξi

Q(zi−1(a)), with ξi > 0, for all i > 1, it follows that

Q̇(t)≤2 [−βi∗+Li|µi|Ci]Q(zi(t))+2Li|µi|
∫ t

t−τi

gi(t−a)Q(zi(a))da

+2ξiKi−1|µi−1|Ci−1Q(zi(t))+
2Ki−1|µi−1|

ξi

∫ t

t−τi−1

gi−1(t−a)Q(zi−1(a))da.

We keep in mind the inequality (3.132), and we observe that, for i> 1, the derivatives of the functionals
Ni, defined in (3.126), along the trajectories of (3.91) satisfy

Ṅi(t)≤[−βi∗+2Li|µi|Ci]Q(zi(t))+ξiKi−1|µi−1|Ci−1Q(zi(t))

+
Ki−1|µi−1|

ξi

∫ t

t−τi−1

gi−1(t−a)Q(zi−1(a))da

− ςi

2Ci
Λi(zit)+

ςi

2
Q(zi(t))+ψiΛ̇i(t).

(3.133)

Choosing

ψi =
Ki−1|µi−1|eτi−1

ξi
+mieτi−1 , (3.134)

with mi > 0, the inequality (3.133) gives

Ṅi(t)≤−
ςi

2
Q(zi(t))−

ςi

2Ci
Λi(zit)−ψiΛi−1(zi−1t)+ψiCi−1Q(zi−1(t))

+ξiKi−1|µi−1|Ci−1Q(zi(t))−mi

∫ t

t−τi−1

gi−1(t−a)Q(zi−1(a))da.
(3.135)

Remark 18. In the remainder of the current proof, one can choose mi = 0 for all i ∈ {2, . . . ,n}. In fact,
the role of this parameter when it is strictly positive will appear in the proof of the next theorem -in the
next section- where we analyze the nonlinear system and we determine a subset of the basin of attraction
of its positive steady state.

Now, observe that if we select ξi =
ςi

4Ki−1|µi−1|Ci−1
, for all i ∈ {2, ...,n}, then

Ṅi(t)≤−
ςi

4
Q(zi(t))−

ςi

2Ci
Λi(zit)−ψiΛi−1(zi−1t)+ψiCi−1Q(zi−1(t)). (3.136)
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One can readily check that there exists a strictly positive real number ς̃i such that

Ṅi(t)≤−ς̃iNi(zit ,zi−1t)−
ςi

8
Q(zi(t))+

θ
⊖
i ςi−1

8
Q(zi−1(t)), (3.137)

with θ
⊖
i = 8ψiCi−1

ςi−1
. In order to establish that the conditions (3.120), for all i ∈ In, are sufficient to ensure

that the origin of the cascaded system (3.91) is exponentially stable, we introduce the functional:

W (Zt) = p1N1(z1t)+
n

∑
i=2

piNi(zit ,zi−1t), (3.138)

with

pi = 2n−i
n

∏
k=i+1

θ
⊖
k , pn = 1. (3.139)

From (3.132) and (3.137), we conclude that

Ẇ (t)≤−
n

∑
i=1

piς̃iNi(zit ,zi−1t)−
p1ς1

4
Q(z1(t))

−
n

∑
i=2

piςi

8
Q(zi(t))+

n

∑
i=2

piθ
⊖
i ςi−1

8
Q(zi−1(t)).

(3.140)

On the other hand

piθ
⊖
i = 2n−i

n

∏
k=i+1

θ
⊖
k θ
⊖
i =

1
2

pi−1. (3.141)

By combining (3.140) and (3.141), we deduce that

Ẇ (t)≤−
n

∑
i=1

piς̃iNi(zit ,zi−1t)−
ςn

8
Q(zn(t))−

1
2

n−1

∑
i=1

piςi

8
Q(zi(t))−

p1ς1

8
Q(z1(t))

≤− ς̃W (Zt),

(3.142)

with ς̃ > 0. From the features of the functional W and the inequality (3.142) we conclude that the
origin of the system (3.91) is exponentially stable. The next step in this work consists in determining an
approximation of the basin of attraction of the strictly positive equilibrium of the nonlinear system (3.86).

3.6.4 Estimate of the region of attraction of the positive steady state

Here we will use the functionals Ni defined in the previous section (i.e. the functionals that allowed us
to prove local exponential stability of the positive steady state), to provide an estimate of the basin of
attraction of the positive steady state.

For that, let us first state and prove the following assertion:



3.6 Stability analysis of the positive steady state in the healthy hematopoiesis 83

Claim 1. There exist constants ŝi > 0, for all i ∈ In, which depend on the biological parameters of the
model and on the strictly positive equilibrium Xe, such that, for all x̂i >−xe

i , xe
i > 0, the inequality

|Ri(x̂i)| ≤ ŝiQ(x̂i), (3.143)

is satisfied.

Proof. For notational convenience, we drop the subscript "i" and we use xe instead of xe
i to denote the

positive equilibrium. Using the expression of β given in (3.83), we observe that for all xe > 0 and z>−xe,

R(z) = β (0)J(z)−µz (3.144)

where J(z) = z+xe

1+b(z+xe)n
− xe

1+bxne
. First, let us study the function

ρ(z) =
1

1+b(z+ xe)n
− 1

1+bxne
=

b
[
xe

n− (z+ xe)
n
]

p(z)
, (3.145)

where, p(z) =
[
1+b(z+ xe)

n
]
(1+bxne). Observe that,

(z+ xe)
n− xne = nxn−1

e z+n

∫ z

0

∫ xe+l

xe

(n−1)mn−2dmdl.

Consequently,

ρ(z) =−nbxn−1
e

p(z)
z+C(z), (3.146)

where C(z) =−nb(n−1)
p(z)

∫ z
0
∫ l

0(m+ xe)
n−2dmdl. Denote h = 1+bxne , and observe that

1
p(z)

=
1
h

(
ρ(z)+

1
h

)
. (3.147)

From (3.147) and (5.48), it follows that ρ(z) =−nbxn−1
e

(
ρ(z)

h + 1
h2

)
z+C(z). Consequently, we get the

intermediate result:

ρ(z) =−nbxn−1
e

h2 z+C(z)− nbxn−1
e

h
ρ(z)z. (3.148)

On the other hand, observe that,

J(z) =
(

ρ(z)+
1
h

)
z+ xeρ(z) = c1z+ c2C(z)+ c3ρ(z)z, (3.149)

where the last equality is a direct consequence of (5.49), with c1 =
1
h −

nbxne
h2 , c2 = xe and c3 =

(
1− nbxne

h

)
.

Now, we readily check that ∣∣C(z)∣∣≤ nb(n−1)
p(z)

(|z|+ xe)
n−2 z

2

2
. (3.150)
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Now, from (5.48), we deduce that
∣∣ρ(z)∣∣≤ nbxn−1

e
p(z) |z|+ |C(z)|. Moreover, using (5.51), we get

∣∣zρ(z)∣∣≤ nbxn−1
e

p(z)
z2 +

nb(n−1)
2p(z)

(|z|+ xe)
n−2 |z|3. (3.151)

From (5.50), we deduce that,

|J(z)− c1z| ≤
nb(n−1)|c3|

2p(z)
(|z|+ xe)

n−2 |z|3 +

[
nb(n−1)|c2|(|z|+ xe)

n−2

2p(z)
+

nbxn−1
e |c3|
p(z)

]
z2.

Now, observe that 1
p(z) =

1
[1+b(z+xe)n]h

. Therefore, for z ≥ 0, we get 1
p(z) =

1
[1+b(|z|+xe)n]h

, and when

z ≤ 0
(

i.e. z ∈ (−xe,0]
)

, we get 1
p(z) ≤

1
h ≤

1+b(2xe)
n

[1+b(|z|+xe)n]h
. Consequently, for all z > −xe, we have

1
p(z) ≤

1+b(2xe)
n

[1+b(|z|+xe)n]h
. We deduce that

∣∣J(z)− c1z
∣∣≤
(nb(n−1)|c3|(1+b(2xe)

n)

2h

)
(|z|+ xe)

n−2 |z|
1+b(|z|+ xe)n

+
nb(n−1)|c2|(|z|+ xe)

n−2 (1+b(2xe)
n
)

2
[
1+b(|z|+ xe)n

]
h

+
nbxn−1

e |c3|
(
1+b(2xe)

n
)[

1+b(|z|+ xe)n
]

h

z2.

By distinguishing between the two cases |z|+ xe ≥ 1 and |z|+ xe ≤ 1, one can prove that the following
inequalities are satisfied for all z>−xe,

(|z|+ xe)
n−2 |z|

1+b(|z|+ xe)n
≤ (|z|+ xe)

n−1

1+b(|z|+ xe)n
≤max

{
b,b−1

}
.

It follows that
|J(z)− c1z| ≤ c4z

2, (3.152)

with the positive constant

c4 =
nb(n−1)(1+b(2xe)

n)
(
xe + |c3|

)
max

{
b,b−1

}
2h

+
nbxn−1

e
(
1+b(2xe)

n
)
|c3|

h2 .

On the other hand, we easily check that µ = β (0)c1, with µ defined in (3.85). It follows that, by combining
(5.47) and (5.53), we obtain |R(z)| ≤ β (0)c4z2. Since Q(z) = 1

2z
2, we conclude that |R(z)| ≤ ŝQ(z),where

one possible value of ŝ is ŝ = 2c4β (0).

Remark 19. It is worth mentioning that the stability analysis which will be performed for the origin of
the nonlinear system (3.86) is available for many other reintroduction functions βi, as long as they satisfy
the sector condition (3.143).

Furthermore, in order to ease the notation, we denote

Ii(x̂it) =
∫ t

t−τi

gi(t−a)Q(x̂i(a))da. (3.153)
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Finally, we define the constants k̃i =
ςi
8ŝi
, k̂i =

ςi
4CiLi ŝieτi and Ni = min

{
k̃2

i , k̂
2
i

}
. Notice that for all i ∈ In,

k̃i and k̂i are only dependent on the constant biological parameters of the model.
Now we are ready to state and prove the following result:

Theorem 7. Let the system (3.86) be such that

ςi > 0, (3.154)

for all i ∈ In. Then all the solutions of (3.86) with initial conditions ϕ̂i ∈ C ([−τi,0],R) satisfying

Ni(ϕ̂i, ϕ̂i−1)< Ni, (3.155)

converge exponentially to the origin.

Remark 20. Generally, Lyapunov theory provides sufficient conditions for stability. However, due to
earlier published works we can comment conditions (3.154). In previous works (using frequency domain
approaches), it was claimed in [8] that the origin is locally asymptotically stable if δi +(2LiCi +1)µi > 0
is satisfied. However, in [225], it was shown that the previous assertion holds true only when−δi < µi < 0.
We notice that our stability conditions (3.154) are equivalent to those of [225] on that interval. Next, when
µi > 0, our exponential stability conditions (3.154) (which are provided without specifying a particular
form of fi), correspond to the conditions for local stability provided in [225] (and which have been slightly
improved using Nyquist criterion for a typical selection of the functions fi in [225]). It remains the case
µi < −δi which is not covered by the Lyapunov approach proposed here, and which was addressed in
[225]. The region of attraction defined in (3.155) is rather difficult to interpret. In fact, based on some
numerical simulations and the conjecture made in [225], we suggest that the region defined in (3.155) is
conservative.

Proof. i) Lyapunov-Krasovskii functional for the first compartment:
We start with the first generation of hematopoietic stem cells. Here we are using the results already

proved in the previous section. Then, we deduce that the derivative of the function Q(x̂1(t)), introduced
in (3.99), along the trajectories of (3.86) satisfies

Q̇(t)≤2 [−β1∗+L1|µ1|C1]Q(x̂1(t))+ ŝ1|x̂1(t)|Q(x̂1(t))

+2L1
(
|µ1|+ ŝ1|x̂1(t)|

)
I1(x̂1t).

(3.156)

It follows that the derivative of the functional N1, introduced in (3.125), satisfies

Ṅ1(t)≤−
[

ς1

8
Q(x̂1(t))+

ς1

2C1
Λ1(x̂1t)

]
+

[
ŝ1

2
|x̂1(t)|−

ς1

4

]
Q(x̂1(t))

− ς1

8
Q(x̂1(t))+

[
L1ŝ1|x̂1(t)|−

ς1e−τ1

2C1

]
I1(x̂1t).

(3.157)

On the other hand, from the definition of N1 we observe that

N1(x̂1t)≤
1
2

Q(x̂1(t))+
(

ς1 +2L1C1|µ1|eτ1

2C1

)
Λ1(x̂1t). (3.158)
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From (3.157) and (3.158), we deduce that for all ς̃1 ∈
(

0,min
{

ς1
4 ,

ς1
ς1+2L1C1|µ1|eτ1

})
, the derivative of the

functional N1 satisfies

Ṅ1(t)≤− ς̃1N1(x̂1t)+

[
ŝ1

2
|x̂1(t)|−

ς1

4

]
Q1(x̂1(t))+

[
L1ŝ1|x̂1(t)|−

ς1e−τ1

2C1

]
I1(x̂1t)−

ς1

8
Q(x̂1(t)).

From the definition of N1, which is given in (3.125), we notice that |x̂1(t)| ≤ 2
√

N1(x̂1t). A direct
consequence is that

Ṅ1(t)≤− ς̃1N1(x̂1t)+

[
ŝ1
√

N1(x̂1t)−
ς1

4

]
Q1(x̂1(t))

+

[
2L1ŝ1

√
N1(x̂1t)−

ς1e−τ1

2C1

]
I1(x̂1t)−

ς1

8
Q(x̂1(t)).

Now, we conclude that if the condition (3.155) is satisfied, then

Ṅ1(t)≤− ς̃1N1(x̂1t)−
ς1

8
Q(x̂1(t)). (3.159)

This allows us to conclude that the origin of the subsystem (3.86), for i = 1, is exponentially stable, with a
decay rate smaller than ς̃1.

ii) LKF for the overall system: Here we take into account all generations of immature blood
cells. Using the inequality |x̂i(t)x̂i−1(a)| ≤ ξiQ(x̂i(t)) + 1

ξi
Q(x̂i−1(a)), with ξi > 0 for i > 1, and the

inequality |x̂i(t)x̂i(a)| ≤ Q(x̂i(t))+Q(x̂i(a)), for i ∈ In, we can show that if we select ψi =
Ki−1|µi−1|eτi−1

ξi
+

ςie−τi Ki−1 ŝi−1
2Li ŝiCi

eτi−1 , then the derivatives of the functions Q(x̂i(t)), for all i > 1, along the trajectories of (3.86)
satisfy

Q̇(t)≤2 [−βi∗+Li|µi|Ci]Q(x̂i(t))+ ŝi|x̂i(t)|Q(x̂i(t))

+2Li
(
|µi|+ ŝi|x̂i(t)|

)
Ii(x̂it)+2Ki−1|µi−1|Ci−1ξiQ(x̂i(t))

+2Ki−1

(
ŝi−1|x̂i(t)|+

|µi−1|
ξi

)
Ii−1(x̂i−1t).

(3.160)

Moreover, we choose ξi =
ςi

4Ki−1|µi−1|Ci−1
. It follows that

Ṅi(t)≤− ς̃iNi(x̂i, x̂i−1)+ψiCi−1Q(x̂i−1(t))−
[

ςi

8
− 1

2
ŝi|x̂i(t)|

]
Q(x̂i(t))

− ςi

16
Q(x̂i(t))+Liŝi

[
|x̂i(t)|−

ςie−τi

2LiŝiCi

]
Ii(x̂it)

+Ki−1ŝi−1

[
|x̂i(t)|−

ςie−τi

2LiŝiCi

]
Ii−1(x̂i−1t),

(3.161)
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with ς̃i > 0. Finally, we conclude that if the conditions (3.155) are satisfied, then

Ṅi(t)≤− ς̃iNi(x̂it , x̂i−1t)−
ςi

16
Q(x̂i(t))+ψiCi−1Q(x̂i−1(t)). (3.162)

As we had done in the previous Section, we can prove that the derivative of the functional

W (X̂t) =
n

∑
i=1

piNi(x̂it , x̂i−1t), with pi = 2n−i
n

∏
k=i+1

8ψkCk−1

ςk−1
, pn = 1,

where X̂ = (x̂1, . . . , x̂n), satisfies,

Ẇ (t)≤−
n

∑
i=1

piς̃iNi(x̂it , x̂i−1t)−
ς1

8
Q(x̂1(t))−

ςn

16
Q(x̂n(t))−

1
2

n−1

∑
i=1

piςi

8
Q(x̂i(t)).

Finally, we obtain for all t ≥ 0,
Ẇ (t)≤−ςW (X̂t), (3.163)

with ς = min{ς̃1, . . . , ς̃n}> 0.
To summarize, by virtue of the properties of the functionals Ni, for all i ∈ In, and since the original

system (3.1) is a positive system, we conclude that the set

A =
{

ϕi ∈ C ([−τi,0],R+) : Ni(ϕi− xe
i ,ϕi−1− xe

i−1)< Ni
}
, (3.164)

is a subset of the basin of attraction of the positive steady state of system (3.1).

Example 6. In this numerical example, we consider the system with the following biological functions
and parameters for n = 3:

βi(xi) fi(a) δi τi γi Ki

i = 1 0.5
1+x2

1

10e10a

e10τ1−1 0.1356 1.109402 0.3 0.05

i = 2 1
1+x4

2

10e10a

e10τ2−1 0.1669 1.2 0.4 0.07

i = 3 3
1+x2

3

2e2a

e2τ2−1 0.3559 1.36 0.45 0.085

From the selected parameters, it follows that: C1 = 0.7390, C2 = 0.6445, C3 = 0.6580, and,

xe
i αi ςi ŝi Ni

i = 1 0.70036 0.40422 0.08924 0.65070 2.5935×10−4

i = 2 0.78225 0.19888 0.02329 3.00487 9.3935×10−7

i = 3 1.0050 0.20422 0.33938 2.98491 2.02×10−4

We select the initial conditions: ϕ1 = 0.6850, ϕ2 = 0.782 and ϕ3 = 0.979.
Therefore, N1(ϕ1− xe

1) = 7.16×10−5 < N1,

N2(ϕ2− xe
2,ϕ1− xe

1) = 6.65×10−7 < N2,

N3(ϕ3− xe
3,ϕ2− xe

2) = 1.94×10−4 < N3.
According to Theorem 3, the positive steady state Xe =

(
xe

1,x
e
2,x

e
3

)
is exponentially stable (Figure 3.14).
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Fig. 3.14 Trajectories of Example 6.

3.6.5 Robustness analysis of the positive equilibrium

In this section, we consider the perturbed system (3.1), that we write in the form (3.86), which is
determined by performing the change of coordinate x̂i(t) = xi(t)−xe

i . Based on the functionals constructed
in Theorem 3, we prove the following result:

Corollary 3. Let the system (3.86) be perturbed by a nonvanishing additive disturbances ε(t) ∈ (0,εi],
ε i > 0, for all t > 0 and i ∈ In. If the conditions

ςi > 0 (3.165)

are satisfied for all i ∈ In, then all the solutions of (3.86) with initial conditions ϕi ∈ C ([−τi,0],R+)

satisfying (
2ε i

θ ς̃i

)2

≤ Ni(ϕi− xe
i , ϕ̂ i−1− xe

i−1)< Ni, (3.166)

with θ ∈ (0,1), converge exponentially to the domain,

Gε i =

{
ϕi ∈ C ([−τi,0],R), Ni(ϕi− xe

i ,ϕi−1− xe
i−1)≤

(
2ε i

θ ς̃i

)2
}
. (3.167)

Proof. Let us prove the previous result for i = 1. Arguing as we did in the proof of Theorem 3, one can
generalize to the overall system. First, observe that the derivative of Q(x̂1(t)) along the trajectories of the
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perturbed system satisfies:

Q̇(t)≤2 [−β1∗+L1|µ1|C1]Q(x̂1(t))+ ŝ1|x̂1(t)|Q(x̂1(t))

+2L1
(
|µ1|+ ŝ1|x̂1(t)|

)
I1(x̂1t)+ |x̂1(t)|ε i.

(3.168)

Consequently, the derivative of the functional N1, introduced in (3.125), along the trajectories of the
perturbed system, verifies

Ṅ1(t)≤−
[

ς1

8
Q(x̂1(t))+

ς1

2C1
Λ1(x̂1t)

]
+

[
ŝ1

2
|x̂1(t)|−

ς1

4

]
Q(x̂1(t))

− ς1

8
Q(x̂1(t))+

[
L1ŝ1|x̂1(t)|−

ς1e−τ1

2C1

]
I1(x̂1t)+ |x̂1(t)|ε i.

(3.169)

Using (3.158), and the fact that |x̂1(t)| ≤ 2
√

N1(x̂1t), we obtain

Ṅ1(t)≤− ς̃1N1(x̂1t)+

[
ŝ1
√

N1(x̂1t)−
ς1

4

]
Q1(x̂1(t))

+

[
2L1ŝ1

√
N1(x̂1t)−

ς1e−τ1

2C1

]
I1(x̂1t)−

ς1

8
Q(x̂1(t))+2ε i

√
N1(x̂1t),

where ς̃1 ∈
(

0,min
{

ς1
4 ,

ς1
ς1+2L1C1|µ1|eτ1

})
. Therefore, when N1(ϕ1−xe

1)< N1 is satisfied, we deduce that

Ṅ1(t)≤− ς̃1N1(x̂1t)−
ς1

8
Q(x̂1(t))+2ε i

√
N1(x̂1t). (3.170)

Now, let us consider any θ ∈ (0,1) and observe that for all initial conditions ϕ1 satisfying N1(ϕ1−xe
1)<N1

with ϕ1 /∈ Gε i , the inequality (3.170) gives

Ṅ1(t)≤−(1−θ)ς̃1N1(x̂1t). (3.171)

We conclude that the states x1t satisfying (3.166) converge exponentially to the invariant set Gε1 , defined
in (3.167), with a decay rate smaller or equal to (1−θ)ς̃1

2 .

3.7 Concluding remarks and discussion

With the aim of constantly refining and improving the modeling and the analysis of hematopoietic
mechanisms, we proposed explicit constructions of suitable strict Lyapunov-Krasovksii functionals
for some nonlinear hematopoietic systems with finite distributed delays ([8], [24]). Within a broader
framework regarding unhealthy hematopoiesis, we had begun the chapter with a review of earlier trends
and objectives behind mathematical analysis in this field. Later, we showed how our (Lyapunov) approach
allowed us to solve some practical and technical issues, which complement already published results on
the topic. For instance, in comparison with the previous work in [225], we complement and improved
some analysis aspects by providing exponential stability with an estimate on the decay rate of the solutions
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and a basin of attraction formulation, without any extra assumption on the mitosis functions. Then, for the
first time in the analysis of the studied models, a robustness analysis is performed when they are subject
to some nonvanishing perturbations. We have also illustrated how dedifferentiation flux (cell-plasticity
abilities), together with model uncertainties -that may for instance rise from reintroduction functions from
resting to proliferating stages- can generate nonvanishing perturbations in the studied time-delay models.

In addition, we covered some practical situations such as time-varying differentiating rates (to model
the action on the blockade in differentiation and redifferentiation), that we discussed in several examples,
using switching parameters (i.e. piecewise continuous functions) or periodic behaviors. Throughout the
chapter, we discussed some recent biological facts (e.g. redifferentiation therapy trends and cell-plasticity
interpretations). Then, in the last part of the chapter, emphasis was given to the positive steady state
that is well-suited to describe healthy hematopoiesis. For the first time we proposed a study which is
based on Lyapunov theory for the strictly positive steady state. Then, in that framework, we provided an
explicit formulation of a subset of its region of attraction, which is the first one to be established, even
if -practically- the basin associated to the Lyapunov-Krasovskii functionals seems to be conservative if
compared with simulation results.

The work that we will present in the next chapter will particularly enhance the role of dedifferentiation
and transdifferentiation by considering a simple hematopoietic model where cell plasticity is no more a
marginal phenomenon, and cannot be considered as a perturbation, but has to be fully modeled.



Chapter 4

A model with infinite distributed delays
involving cell arrest and plasticity

Synopsis. A model of proliferation and quiescence in living organisms is studied. Here we extend
the work presented in the previous chapter in two directions. (I) Firstly, we discuss how to reconcile
some earlier modeling ways of the cell cycle in one common framework. Then, accordingly, we
consider a model that contains a compartment where cells may be quiescent for an unlimited time,
along with a proliferating phase (modeling the cell cycle) in which most of the cells may divide, or
die, while few of them may be arrested during their cycle for unlimited time. The resulting system
extends the model of [8] - studied in the previous chapter - by considering the possibly case of
infinite distributed delays. A Lyapunov technique is then developed for the analysis of the origin of
the system. (II) In the second part of the chapter, we consider for the first time some cell plasticity
features in the class of systems that we study. As a first step, we are going to discuss some simple
cases of cell-plasticity in unhealthy tissues, and we highlight the role that dedifferentiation may play
in the survival of cancer cells (this hypothesis is in line with some medical observations). The main
analysis is performed on a simpler model involving two maturity stages and a dedifferentiation
function from progeny to SCs.

4.1 Overview of the chapter

Generally, the length of the cycle is approximately 24 hours for fast-dividing mammalian cells. However,
this duration varies from one type of tissue to another, and even from one cell to another. In addition, if a
problem occurs in some cells within the total cell population, they may be arrested in one of the cell-cycle
checkpoints (See Chapter 1). Several biological works have particularly focused on the length of the G1

phase, as well as its possible applications (see [168] and [256]). For instance, the manipulation of the
G1 length in neural SCs is discussed in [256], including also its impacts on the differentiation of neural
precursors. For other type of cells, we refer to Figure 1 in [168] that gives the lengths of the cell cycle
(particularly G1) of some important categories of cells, including blood lineages, gut lineage and neural
lineage. Note that, in the classification given in [168], the cycle length of the common myeloid progenitors
(CMP) - in the hematopoietic system - appears as unknown or undetermined (see also [40, 209] for the
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mechanisms involved in hematopoietic SCs niches regulation). We also mention that cancer dormancy
([93, 15]) is sometimes justified by cellular dormancy, i.e. G0 and G1-arrest (see [15]). In addition,
some drugs have cell arresting power and are used to stop the uncontrolled growth that characterizes
proliferating cancer cells [244].

Bernard S, Čajavec Bernard B, Lévi F, Herzel H (2010) Tumor Growth Rate 
Determines the Timing of Optimal Chronomodulated Treatment Schedules. PLOS 
Computational Biology 6(3): e1000712. doi:10.1371/journal.pcbi.1000712 
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000712 

Image from the Clinical Gate website, « Principles of 
Systemic Therapy » by H.M. Hatcher.  
http://clinicalgate.com/principles-of-systemic-therapy/ 

Fig. 4.1 The Figure on the right is extracted from the online reference indicated at the bottom of the Figure. It
shows the cell-cycle phases with their lengths and give some examples of drugs that act at a specific moment of
the cycle (e.g. taxanes, which are mitotic inhibitors), or alkylating agents, which are independent-drugs that act at
any cell-cycle sub-phase. The Figure on the left is from [38], and it belongs to the Open-i service of the National
Library of Medicine that enables search and retrieval of abstracts and images from the open source literature. The
figure on the left is taken from [38]. It shows the successive steps of the normal cell-cycle, starting from G1 (of
variable duration) until mitosis where two daughter cells are illustrated. The figure on the right is extracted from the
online reference indicated at its bottom. It shows the phases of the cell-cycle according to their lenghts, as well
as some classical drugs that impact the duration of the cycle at specific sub-phases (e.g. mitotic inhibitors such as
taxanes) and alkylating agents (e.g. ifosfamide), which can target the cells at any moment during their cell-cycle.

In summary, we say that cell-cycle arrest may occur for many reasons, among which: i) if a DNA
damage is detected by cells at some checkpoints, ii) due to insufficient nutriments, iii) resulting from drug
infusions. More details are given in Box 11 for the interested reader.

We pointed out that an heterogeneous distribution of the cell-cycle length over the total density of cells
within the same population exists, and it may complicate the modeling aspect of the cell-cycle. Indeed,
basically, the questions that arise here are the following ones:

If some models take into account the cell arrest (i.e. the fact that some cells can be blocked during
their cycle), while other models consider that all the cells must divide or die before a finite age, can
we expect equivalent results in both frameworks? Does the minority of arrested cells cause a change
in the asymptotic behavior of the model and on the stability properties of its steady states?

To answer these questions, we begin by briefly reviewing some existing models of the cell cycle. Then,
we revisit the model in [8], studied in the previous chapter, and we extend it to the case where few cells
can take infinite time to divide or die.
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Box 11. Some extra-facts about the length of the cell cycle

① Some uncertainty on the duration of the healthy cell-cycle: This is particularly true for the growth-
phase G1, and the gap G2, as illustrated in Figure 4.1.

② A probable link between the cell-cycle arrest and cancer dormancy: Cancer dormancy is still poorly
understood, and is currently undergoing intensive research ([261]). In [15], the author reviewed some of the
main clinical explanations justifying cancer dormancy. His key points include cellular dormancy, i.e. G0

and G1-arrest (but also angiogenic dormancy and immunosurveillance, or cancer immunoediting [15]).

③ Drugs increase the duration of the cell-cycle and cause G1-arrest: Most of the anti-tumor drugs are
targeting dividing cells in their cell-cycle (Figure 4.1). Drugs increase the duration of the cell-cycle and
cause G1-arrest, in order to halt cell overproliferation and achieve cancer dormancy. In fact, the idea to
transform cancer into a chronic disease is in the voices of many people in the medical world nowadays
([111], [14]). erlotinib.

④ The impact of changes in cell cycle duration on the biological properties of living tissues: We have
also noticed that some works focus on the impact of the variable length of the growth-phase G1 ant its
possible applications (see [168] and [256]). For instance, the manipulation of the G1 length in neural stem
cells is discussed in [256], including its impact on the differentiation features of neural precursors.

From a mathematical point of view, the resulting system (Section 4.3) that we study in the first part
of this chapter has infinite distributed delays. A stability analysis of the 0-equilibrium is performed in
Section 4.4, via the introduction of a novel Lyapunov-Krasovskii functional (LKF). The extension of the
stability analysis of the positive steady state to the nonlinear model involving infinite distributed delays is
performed in Section 4.6.

In the second part of the chapter, we highlight some cell plasticity features. We recall that cells have
the ability to guide their development paths and determine their individual and collective fates (Chapter 2).
Dedifferentiation allows cells to regress from an advanced differentiated state to a less differentiated one,
including the case where cells lose their specific functions and become stem cells (Figure 4.2).

Fig. 4.2 (a) Cells development (b) Dedifferentiation: a lineage reversion in which differentiated cells acquire the
properties of more immature cells within the same lineage hierarchy. (c) Transdifferentiation: the conversion of
one differentiated cell type into another, or, the conversion of one progenitor/SC population into another SC type.
Contrary to the case (b), we notice in (c) that a cell of type I can be transformed to a cell of type II, without pasing
through a SC state. This illustrative figure of cell-plasticity features is adapted from [280].
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Our aim is to introduce the process of cell dedifferentiation in living organisms in the models we
study. Firstly, in Section 4.7, we briefly discuss the case in which more mature cells dedifferentiate into
SCs, and join the resting SC phase. A more interesting situation is observed when, in Section 4.8, the
dedifferentiated subpopulation of cells that join the SC compartment is directly active in proliferation. In
the latter case, we are going to introduce a general modeling framework involving cell plasticity functions
is given in Section 4.8.1. functions (Section 4.8.1), and then analyze a simpler case in which an unhealthy
differentiated subpopulation of cells regresses to a CSC state. This is in fact the expected behavior of
cancer cells when dedifferentiation is associated with cancer [286] (e.g. epigenetic mutations that increase
the self-renewing activity of CSCs [173, 286]).

In Section 4.8.2, we study a specific (unhealthy) dedifferentiation process in which a (mutated)
subpopulation of cancer cells belonging to the j-th generation in the cell hierarchy, where j ∈ {2, . . . ,n},
dedifferentiates through a typical function to a SC stage. A stability analysis is carried out in Section 4.8.3,
in the typical case involving two maturity stages and a dedifferentiation function from progeny to SCs.

4.2 An insight on some cell cycle modeling trends

Now, we compare between some early cell-cycle models and we situate the one we focus on in this
chapter according to them. Firstly, it is worth mentioning that the objective behind the introduction of
some models is to investigate the behavior of cells that undergo proliferation at their specific checkpoints
(i.e. the transition from a given sub-phase to the next one). Accordingly, some mathematical models
make a separation between some four sub-phases of the cell cycle (e.g. [25, 26, 39]), however, the latter
perspective is beyond the scope of our work. Indeed, here we give a particular focus to the transition
between the resting phase G0 (which is not explicitly modeled in [39]) and the proliferating compartment
(i.e. the cell-cycle, which is the sum of the four sub-phases G1, S, G2 and M), together with their respective
lengths. This is described in Figure 4.3, where we point out some differences between two main modeling
approaches: on the one hand, we observe the configurations (A) and (B) where a G0 phase is considered,
and on the other hand, we have the configuration (C) where G0 is assimilated to G1. These two trends
may be reconciled by adopting the representation (D) (see the arguments given in Figure 4.3). We recall
from the previous chapter that cell population models containing quiescent and proliferating phases date
back to some pioneers works such as Burns & Tannok [49] and Mackey [180], which have been more
recently improved by Adimy et al. [8].

In our context, the configuration (D) improves the one illustrated in (C) by clearly separating the G0

compartment from the cell-cycle. From a biological point of view, the fact that G0 and G1 are separated is
no longer a matter for debate [208]. In addition, contrary to (A) and (B), the representation (D) extends
the representation of the cell-cycle by considering it of unlimited length. Thus, the role of the growth
phase G1 and the gap phase G2 (which are of variable duration in healthy and unhealthy cases, and which
may halt some dividing cells in the cell cycle) is highlighted. The configuration in (D)-Figure 4.3 is the
one that we consider in the first part of this chapter. Extending the LKF constructions we provided in the
previous chapter to study the origin of the version involving infinite distributed delays is not a trivial task.
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Fig. 4.3 Cartoon approximate representation of some cell cycle models from the literature. Configuration (A) is
the one in which cells may be quiescent during their entire life, or they can enter to a proliferating stage of finite
length (as in [8, 9, 225, 81]). In (B), the cell cycle is splited into four sub-phases G1, S, G2 and M, each one has a
finite duration (as in [25]), i.e. in (B) the length of the proliferating phase is finite since all the sub-phases were
assumed to be finite. Next, the situation in (C) (as in [39]) is completeley different, since in this approach the
cell cycle is described as an infinite support without an explicit resting phase G0 (that can be associated with G1).
Thus, in (C), the lengths of the sub-phases G1, S, G2 and M are infinite, and a focus is placed on how the transition
from one sub-phase to the next one occurs. Finally, we notice that (D) (which is the model we introduce in this
work) represents a genaral case in which -at least- G1 or G2 may be of infinite length in the cell cycle (which is
compacted in a single infinite phase), along with a separated infinite G0 compartment. In summary, one notices that
the configuration (D) separates quiescence from proliferation (as in (A)-(B)), while proliferation is of infinite length
(as in (C)). Some slightly different models are considered for instance in [47, 46], where a molecular structured
population (involving age-and-cyclin structured-PDEs) have been studied, considering that the length of the cell
cycle G1−S−G2−M is infinite.

4.3 A nonlinear cell population model involving infinite distributed delays
and time-varying parameters

We introduce in this section the model of interest, illustrated in Figure 4.12, in which we have n distin-
guishable maturity levels (i ∈ In = {1, . . . ,n}, where i = 1 is the compartment of SCs). For the sake of
clarity, as a first step, we will neglect the cell-plasticity features (dedifferentiation and transdifferentiation),
that appear in Figure 4.4, and we perform a stability analysis of the model that takes into account cell
arrest.
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Fig. 4.4 A cartoon representation of the discrete maturity model of interest, that extends those of Mackey, Adimy et
al. Cells of the i-th maturity-generation, where i∈ In = {1, . . . ,n} , n> 1, are in a resting phase G0, or in proliferation
(cell-division cycle) {G1,S,G2,M} of infinite support (i.e. few cells may be arrested in the cell cycle for unlimited
time). In the general case, we can consider that all the involved biological parameters (rate of differentiation
σi ∈ (0,1), rate of self-renew λi = 1−σi, apoptosis rate dpi, death rate of resting cells dri) are time-varying. On the
right, the flux due to the cell-plasticity functions (ξi and ωi for all i ∈ In) is represented.

The dynamics of resting cells ri(t,a), and proliferating cells pi(t,a), of the i-th generation (i ∈ In), of
age a > 0, at time t ≥ 0, are governed by

∂ pi
∂ t + ∂ pi

∂a =−
[
dpi(t)+hi(a)

]
pi(t,a),

∂ ri
∂ t +

∂ ri
∂a =−

[
dri(t)+βi

(
xi(t)

)]
ri(t,a),

(4.1)

where we recall that for all i ∈ In, xi(t) =
∫ +∞

0 ri(t,a)da, and, for all i ∈ In and t ≥ 0, dri(t) is the death rate
of the resting cells, while dpi(t) is the death rate of proliferating cells. We recall also that the reintroduction
function βi is decreasing and limℓ→∞ βi(ℓ) = 0.

The renewal conditions, which give the birth rate at the initial age a = 0, are introduced through the
following boundary conditions: pi(t,0) = βi

(∫ +∞

0 ri(t,a)da
)∫ +∞

0 ri(t,a)da,

ri(t,0) = 2σi−1(t)
∫ +∞

0 hi−1(t,a)pi−1(t,a)da+2
(
1−σi(t)

)∫ +∞

0 hi(t,a)pi(t,a)da,
(4.2)

where σi(t) represents the time-varying rate of differentiation and, consequently, λi(t) = 1−σi(t) is
the rate of self-renewal of the i-th cell generation. Then, we complete the system (4.83)-(4.86) with
L 1-functions as initial conditions (i.e. initial age distributions when t = 0):{

pi(0,a) = p0
i (a), for all a ∈ [0,+∞),

ri(0,a) = r0
i (a), for all a ∈ [0,+∞).

(4.3)
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Finally, we assume from biological considerations that, for any fixed time t ≥ 0,

lim
a→+∞

pi(t,a) = lim
a→+∞

ri(t,a) = 0. (4.4)

Remark 21. Apart from the aforementioned extension to the case of unlimited cell-cycle length, we also
notice that all the parameters (differentiation, self-renewing and apoptosis rates), involved in (4.83)-(4.86),
are time-varying (which was not the case of similar earlier models).

4.3.1 On the modeling of the mitosis function

Remark 22. The densities of proliferating cells pi(t,a) -first equation in (4.83)- were defined in [8]
over 0 < a < τi, where τi is finite. Therefore, the division rate hi in [8], which must fulfill the condition1∫

τi
0 hi(a)da =+∞, has been considered as a continuous non-decreasing function satisfying

lim
a→τi

hi(a) = +∞.

Now, in our work, we consider that the (continuous) cumulative distribution function hi is defined
over an infinite support [0,+∞), is nondecreasing, and it satisfies

lim
a→+∞

hi(a) = 1. (4.5)

Indeed, we consider that when the age a increases, the cells which do not die by apoptosis, have
an increasing probability to divide, and this probability goes to 1 when a goes to infinity. The latter
description captures the fact that a majority of cells may divide (if they do not die by apoptosis), while few
of them may be arrested within the cycle. The qualitative form of hi in this case is given in Figure 4.5.

4.3.2 A time-delay system with infinite distributed delays and time-varying apoptosis
rates

Similarly to the model studied in the previous chapter (involving finite distributed delays), we want to
study the time-delay version of the cell population dynamical model. We recall that the finite value
τi > 0 - in the previous chapter - represents the maximum age at which all the dividing cells (that do
not die by apoptosis), at the i-th maturity stage, must divide. Thus, here we assume that the PDE model
(4.83)-(4.86)-(4.85) is written in the following nonlinear system with infinite distributed delays (i.e.
where τi = ∞):

ẋi(t) =−dri(t)xi(t)−βi(xi(t))xi(t)+2λi(t)
∫ +∞

0
gi(t,a)βi(xi(t−a))xi(t−a)da

+2σi−1(t)
∫ +∞

0
gi−1(t,a)βi−1(xi−1(t−a))xi−1(t−a)da,

(4.6)

1This assumption describes the fact that all the proliferating cells which do not die by apoptosis during the cell cycle, are
obliged to divide before they reach the maximal age τi.
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Fig. 4.5 Representative - qualitative - graph of the cumulative distribution function hi in (4.83). This form describes
the fact that cells have a low probability to divide at early stages of the cycle, then the probability tends to 1 when
the age of the proliferating cells increases.

where fi(a) = hi(a)e−
∫ a

0 hi(m)dm, for all a ∈ [0,+∞), and

gi(t,a) = fi(a)e−
∫ a

0 dpi(m+t−a)dm, for all a ∈ [0,+∞), and t ≥ 0, (4.7)

and, λi(t) ∈ [λ i,λ i]⊂ (0,1), σi(t) ∈ [σ i,σ i]⊂ (0,1), and λi(t) = 1−σi(t). Moreover, we consider that
for all t ≥ 0, the death rates satisfy: dri(t) ∈ [dri,dri] ⊂ (0,∞), and dpi(t) ∈ [dpi,dpi] ⊂ (0,∞). A direct
consequence is that

e−adpi ≤ e−
∫ a

0 dpi(m+t−a)dm ≤ e−adpi . (4.8)

Then, for all t ≥ 0, and for all a ∈ [0,+∞),

fi(a)e−adpi ≤ gi(t,a)≤ fi(a)e−adpi . (4.9)

Let us denote for later use
Ci =

∫ +∞

0
fi(ℓ)e−dpiℓdℓ, (4.10)

and observe for that Ci < 1, for all i ∈ In.
The system (4.6) is positive, i.e. for positive initial conditions the trajectories are positive for all t ≥ 0.

Throughout the work, we consider only positive solutions of (4.6). As a qualitative example, we consider
a function fi(a) = hi(a)e−

∫ a
0 hi(m)dm, where hi is the cumulative distribution function in Figure 4.5, for all

a ∈ [0,+∞). For constant apoptosis rate (dp is 0.01 days−1), then gi is defined by2 gi(a) = e−dpia fi(a).

2and let us recall for later use that if the apoptosis rate is constant, then:
∫

∞

0 g(m)dm <
∫

∞

0 f (m)dm = 1
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Fig. 4.6 Illustrative - qualitative - graphs of the probability density function fi(a), and the function gi(a) (for constant
apoptosis rate dpi), for all a ∈ [0,+∞).

4.4 Stability analysis of the 0-equilibrium

In this section, we analyze the stability properties of the origin of the model (4.6), since the aim of
anti-cancer therapy is the eradication of unhealthy cells. More precisely, we prove in this section the
following result (that generalizes those given by Adimy et al. and those in Chapter 3, to the case of
infinite distributed delays):

Theorem 8. For all i ∈ In = {1, . . . ,n}, the following statements hold true:

Remark 23. The condition in Step 3 is a direct generalization of the well-known necessary and sufficient
stability condition for the 0-equilibrium of the class of systems with finite distributed delays and constant
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parameters (introduced in [8]). More precisely, the latter stability condition has been provided in [8]
for local asymptotic stability of the origin, and in the previous chapter for global exponential stability
of the origin of the model with finite distributed delays and constant apoptosis rates. However, proving
this statement requires a novel Lyapunov-Krasovskii functional, different from the one already used in the
previous chapter.

Proof. Let us start by introducing for all i ∈ In, the family of functionals:

Ni(xit) =
∫ +∞

0
fi(ℓ)

∫ t

t−ℓ
e−dpi(t−s)

βi(xi(s))xi(s)dsdℓ. (4.11)

The time derivative of Ni is given for all t ≥ 0 by:

Ṅi(t) =−dpiNi(xit)+
∫ +∞

0
fi(ℓ)βi(xi(t))xi(t)dℓ−

∫ +∞

0
fi(ℓ)e−dpiℓβi(xi(t− ℓ))xi(t− ℓ)dℓ. (4.12)

Since
∫

∞

0 fi(ℓ)dℓ= 1, it follows that:

Ṅi(t) =−dpiNi(xit)+βi(xi(t))xi(t)−
∫ +∞

0
fi(ℓ)e−dpiℓβi(xi(t− ℓ))xi(t− ℓ)dℓ

≤−dpiNi(xit)+βi(xi(t))xi(t)−
∫ +∞

0
gi(t, ℓ)βi(xi(t− ℓ))xi(t− ℓ)dℓ,

(4.13)

where the last inequality is a consequence of (4.9). Next, let us observe that the derivatives of the
functionals,

Mi(xit) =
∫ +∞

0
fi(ℓ)e−dpiℓ

∫ t

t−ℓ
βi(xi(s))xi(s)dsdℓ, (4.14)

along the trajectories of (4.6), satisfy for all i ∈ In,

Ṁi(t) =βi(xi(t))xi(t)
∫ +∞

0
fi(ℓ)e−dpiℓdℓ−

∫ +∞

0
fi(ℓ)e−dpiℓβi(xi(t− ℓ))xi(t− ℓ)dℓ. (4.15)

It follows that,

Ṁi(t) =Ciβi(xi(t))xi(t)−
∫ +∞

0
fi(ℓ)e−dpiℓβi(xi(t− ℓ))xi(t− ℓ)dℓ

≤Ciβi(xi(t))xi(t)−
∫ +∞

0
gi(t, ℓ)βi(xi(t− ℓ))xi(t− ℓ)dℓ.

(4.16)

For later use, we notice that:

Ni(xit) =
∫ +∞

0
fi(ℓ)

∫ t

t−ℓ
e−dpi(t−s)

βi(xi(s))xi(s)dsdℓ

≥
∫ +∞

0

∫ t

t−ℓ
fi(ℓ)e−dpiℓβi(xi(s))xi(s)dsdℓ

= Mi(xit).

(4.17)

For the sake of brevity, Step 1 and Step 2 will be established only for the subsystem i = 1. The results
can be extended for all i≥ 1 using similar arguments as those we will provide in the proof of Step 3.
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Step 1: Let us introduce the following functional for the first compartment:

U1(x1t) = x1(t)+2λ 1N1(x1t). (4.18)

Its derivative along the trajectories of (4.6) satisfies:

U̇1(t)≤−
[
dr1(t)+β1(x1(t))

]
x1(t)+2λ1(t)

∫ +∞

0
g1(t, ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ

−2λ 1dp1N1(x1t)+2λ 1β1(x1(t))x1(t)−2λ 1

∫ +∞

0
g1(t, ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ.

(4.19)

Since for all i ∈ In and for all t ≤ 0, λ1(t)≤ λ 1, we obtain

U̇1(t)≤−
[

dr1(t)−
(

2λ 1−1
)

β1(x1(t))
]

x1(t)−2λ 1dp1N1(x1t). (4.20)

From (4.20) we deduce that if the condition 2λ 1− 1 ≤ 0 is satisfied, then the origin of the subsystem
(i = 1) is globally exponentially stable.

Next, we focus on the case 2λ 1−1 > 0. From (4.6) and (4.16), we observe that the derivative of the
functional

V1(x1t) = x1(t)+2λ 1M1(x1t), (4.21)

satisfies
V̇1(t)≤−

[
dr1(t)−

(
2λ 1C1−1

)
β1(x1(t))

]
x1(t). (4.22)

Now, let us distinguish between two cases:
i) If 2λ 1C1−1 < 0. In this case we conclude from (4.22) that the origin of the subsystem (i = 1) is

globally asymptotically stable, and we prove in the sequel that it is also globally exponentially stable (i.e.
the statement in Step 2).

Step 2: By combining (4.20) and (4.22), we check that the functional

W1(x1t) =U1(x1t)+2λ 1
1−C1

1−2λ 1C1
V1(x1t), (4.23)

satisfies,

Ẇ1(t)≤−dr1(t)

[
1+2λ 1

1−C1

1−2λ 1C1

]
x1(t)−2λ 1dp1N1(x1t)+

(
1−2λ 1C1

)
β1(x1(t))x1(t).

Using the fact that 2λ 1C1−1 < 0, it follows that

Ẇ1(t)≤−α1dr1(t)x1(t)−2λ 1dp1N1(x1t), (4.24)

where α1 =
1−2λ 1C1+2λ 1(1−C1)

1−2λ 1C1
. Since 2λ 1C1−1 < 0 and 1−C1 > 0, we deduce that α1 > 0.
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Finally, using (4.17) we conclude that (4.24) gives

Ẇ1(t)≤−α1dr1(t)x1(t)−λ 1dp1N1(x1t)−λ 1dp1N1(x1t)

≤−α1dr1x1(t)−λ 1dp1N1(x1t)−λ 1dp1M1(x1t)

≤−δ1W1(x1t),

(4.25)

where δ1 > 0. Consequently, the origin of the subsystem i = 1 is globally exponentially stable with a
decay rate smaller or equal to δ1.

ii) If 2λ 1C1−1≥ 0. Now, we recall that the functions βi are decreasing. It follows that the functionals
U1 and V1 satisfy, respectively,

U̇1(t)≤−
[

dr1(t)−
(

2λ 1−1
)

β1(0)
]

x1(t)−2λ 1dp1N1(x1t), (4.26)

and
V̇1(t)≤−

[
dr1(t)−

(
2λ 1C1−1

)
β1(0)

]
x1(t). (4.27)

Since for all t ≥ 0, dr1 ≤ dr1(t), we end up with

U̇1(t)≤−
[

dr1−
(

2λ 1−1
)

β1(0)
]

x1(t)−2λ 1dp1N1(x1t), (4.28)

and
V̇1(t)≤−

[
dr1−

(
2λ 1C1−1

)
β1(0)

]
x1(t). (4.29)

Step 3: Firstly, let us assume that

dr1−
(

2λ 1C1−1
)

β1(0)> 0.

A direct consequence is that the functional

R1(x1t) =U1(x1t)+
2λ 1β1(0)

(
1−C1

)
dr1−

(
2λ 1C1−1

)
β1(0)

V1(x1t), (4.30)

is positive on the positive orthant. Moreover, there exists δ̃1 > 0, such that the derivative of R1 along the
trajectories of (4.6) satisfies

Ṙ1(t)≤−
[

dr1−
(

2λ 1C1−1
)

β1(0)
]

x1(t)−2λ 1dp1N1(x1t),

≤−δ̃1R1(x1t),

(4.31)

where the last inequality is a consequence of (4.17). By virtue of the functional R1, we conclude that the
origin of the subsystem (i = 1) is globally exponentially stable.
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Now we extend the result to the overall system. Let us assume that the conditions

dri−
(

2λ iCi−1
)

βi(0)> 0, (4.32)

are verified for all i ∈ In, and let us prove that the origin of the system (4.6) is globally exponentially
stable.

Firstly, we define a family of constants Ki such that:

Ki ∈

1,
dri +

(
2λ iCi +1

)
βi(0)

4λ iCiβi(0)

 , for all i ∈ In. (4.33)

One can check that when the inequalities (4.32) are satisfied then Ki exist for all i ∈ In. Moreover, for
all Ki verifying (4.33), the following inequalities are satisfied,

dri−
(

2Kiλ iCi−1
)

βi(0)>
dri−

(
2λ iCi−1

)
βi(0)

2
> 0, (4.34)

for all i ∈ In. Secondly, we slightly modify the functional V1, introduced in (4.21), in order to get some
additional negative terms in its derivative. For that matter, we set,

Ṽ1(x1t) = x1(t)+2K1λ 1M1(x1t), (4.35)

where K1 satisfies (4.33). Its derivative along the trajectories of (4.6) verifies

˙̃V1(t)≤−
[

dr1(t)−
(

2K1λ 1C1−1
)

βi(0)
]

x1(t)−2
(
K1λ 1−λ1(t)

)∫ +∞

0
g1(t, ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ.

Since K1 > 1, and for all t ≥ 0, λ1(t)≤ λ 1, we get:

˙̃V1(t)≤−
[

dr1(t)−
(

2K1λ 1C1−1
)

βi(0)
]

x1(t)−K1

∫ +∞

0
g1(t, ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ,

where K1 = 2λ 1 (K1−1)> 0. Moreover, using (4.34) we conclude that

˙̃V1(t)≤−
1
2

[
dr1(t)−

(
2λ 1C1−1

)
βi(0)

]
x1(t)−K1

∫ +∞

0
g1(t, ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ. (4.36)

If we compare the derivatives V̇1 and ˙̃V1, that satisfy, respectively, (4.29) and (4.36), we notice that
a negative integral extra-term appears in (4.36). The latter term will be used in order to compensate an
input from the first generation of cells (i.e. i = 1) when we study the subsystem formed by i = 1,2.

More precisely, let us introduce the following functional that takes into account the dynamics of the
first and the second generations of immature cells (i ∈ {1,2}):

R2 (x2t ,x1t) =x2(t)+2λ 2N2(x2t)+ ãṼ2(x2t)+ ˜̃aṼ1(x1t)+ âN1(x1t), (4.37)
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where, similarly to Ṽ1, we consider Ṽ2 given by:

Ṽ2(x2t) = x2(t)+2K2λ 2M2(x2t), (4.38)

and the weighting constants ã > 0, ˜̃a > 0, and â > 0 are given by:

ã =
4λ 2β2(0)

(
1−C2

)
dr2−

(
2λ 2C2−1

)
β2(0)

, ˜̃a =
2σ1 (1+ ã)

K1
, and, â =

˜̃a
[

dr1−
(

2λ 1C1−1
)

β1(0)
]

4β (0)
.

Observe that the conditions (4.32) ensure that ã is strictly positive, which in turn guarantees that the
functional R2 is positive on the positive orthant.

Now observe that the derivative of R2 along the trajectories of (4.6) satisfies

Ṙ2(t)≤−
[
dr2(t)+β2(x2(t))

]
x2(t)+2λ2(t)

∫ +∞

0
g2(t, ℓ)β2(x2(t− ℓ))x2(t− ℓ)dℓ

+2σ1(t)
∫ +∞

0
g1(t, ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ−2λ 2dp2N2(x2t)+2λ 2β2(x2(t))x2(t)

−2λ 2

∫ +∞

0
g2(t, ℓ)β2(x2(t− ℓ))x2(t− ℓ)dℓ− ã

2

[
dr2(t)−

(
2λ 2C2−1

)
β2(0)

]
x2(t)

âβ (0)x1(t)− âdp1N1(x1t)− ãK2

∫ +∞

0
g2(t, ℓ)β2(x2(t− ℓ))x2(t− ℓ)dℓ

+2ãσ1(t)
∫ +∞

0
g1(t, ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ−

˜̃a
2

[
dr1(t)−

(
2λ 1C1−1

)
β1(0)

]
x1(t)

− ˜̃aK1

∫ +∞

0
g1(t, ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ.

(4.39)

By grouping the terms and since for all t ≥ 0, λ2(t)≤ λ 2, we deduce that

Ṙ2(t)≤−
[

dr2(t)−
(

2λ 2−1
)

β2(x2(t))
]

x2(t)

− ã
2

[
dr2(t)−

(
2λ 2C2−1

)
β2(0)

]
x2(t)−2λ 2dp2N2(x2t)

+2σ1(t) [1+ ã]
∫ +∞

0
g1(t, ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ

− ãK2

∫ +∞

0
g2(t, ℓ)β2(x2(t− ℓ))x2(t− ℓ)dℓ

−
˜̃a
2

[
dr1(t)−

(
2λ 1C1−1

)
β1(0)

]
x1(t)+ âβ (0)x1(t)

− ˜̃aK1

∫ +∞

0
g1(t, ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ− âdp1N1(x1t).

(4.40)
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By substituting ˜̃a and â, we get for all t ≥ 0,

Ṙ2(t)≤−
[

dr2(t)−
(

2λ 2C2−1
)

β2(0)
]

x2(t)−2λ 2dp2N2(x2t)

− ãK2

∫ +∞

0
g2(t, ℓ)β2(x2(t− ℓ))x2(t− ℓ)dℓ

−
˜̃a
4

[
dr1(t)−

(
2λ 1C1−1

)
β1(0)

]
x1(t)− âdp1N1(x1t).

(4.41)

We conclude that there exists a strictly positive constant δ̃2 > 0, such that

Ṙ2(t)≤− δ̃2R2(x2t ,x1t)− ãK2

∫ +∞

0
g2(t, ℓ)β2(x2(t− ℓ))x2(t− ℓ)dℓ. (4.42)

Consequently, by virtue of the functional R2, we conclude that the origin (0,0) of the subsystem
i = {1,2}, is globally exponentially stable.

Therefore, by induction, we conclude that there exists a family of strictly positive constants ρi, ρ̃i, for
all i ∈ In = {1, . . . ,n}, such that the derivative of

Rn (xnt , . . . ,x1t) =xn(t)+
n

∑
i=1

(
ρiNi(xit)+ ρ̃iṼi(xit)

)
, (4.43)

where, Ṽi(xit) = xi(t)+2Kiλ iMi(xit) for all i ∈ In, satisfies

Ṙn(t)≤−δ̃nRn (xnt , . . . ,x1t) , where δ̃n > 0. (4.44)

By virtue of the functional Rn, we conclude that the origin (0, . . . ,0) of the overall system i ∈ In is
globally exponentially stable.

Step 4: The last part of the proof consists in proving that there exists a system belonging to the family
of systems (4.6) whose origin is not attractive. For that purpose, it is sufficient to consider a particular
case of system (4.6) where all the biological parameters are constant. More precisely, we consider that
the death rate dpi(t) = dpi, for all t ≥ 0, where dpi is any constant parameter belonging to [dpi,dpi], and
similarly for the other parameters involved in the model (4.6) (i.e. dpi, λi and σi = 1−λi).

We use similar arguments as those for the finite distributed delays in the previous chapter. So, we
consider the functional,

v1(x1t) =x1(t)+2λ1

∫ +∞

0

∫ t

t−ℓ
f1(ℓ)e−dp1ℓβ1(x1(m))x1(m)dmdℓ. (4.45)

The derivative of v1 satisfies for all t ≥ 0,

v̇1(t) =−
[
dr1 +β1(x1(t))

]
x1(t)+2λ1

∫ +∞

0
g1(ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ

+2λ1C1β1(x1(t))x1(t)−2λ1

∫ +∞

0
g1(ℓ)β1(x1(t− ℓ))x1(t− ℓ)dℓ

=−
[
dr1− (2λ1C1−1)β1(x1(t))

]
x1(t).

(4.46)
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Now we proceed by contradiction: we consider that x1(t) converges to the origin and that dr1−
(2λ1C1−1)β1(0)≥ 0. Since β1 is decreasing and β1(0) is its maximum, we deduce that there exists a
time instant t1, such that for all t ≥ t1, we obtain

v̇1(t)≥−
[

dr1− (2λ1C1−1)β1(0)
2

]
x1(t). (4.47)

Since x1(t)> 0, we deduce that v1(x1t)> v1(t1t) for all t > t1. It follows that the functional v1 does not
converge to zero. On the other hand, v1 converges to the zero if x1 converge to zero. This yields to a
contradiction.

Remark 24. In Theorem 8, it is clear that if Step 1 is satisfied, then Step 2 is also satisfied (since Ci < 1,
for all dpi > 0). Similarly, we see that if Step 2 holds true then Step 3 is also verified, since dri > 0. In fact,
by assuming that 2λ iCi−1 > 0 (which is otherwise the generalization of the assumption 2LiCi−1 > 0 in
[225], see also [8]), we rewrite Theorem 8 in a compact form similar to the one in Theorem 3 of [81] for
the model with finite distributed delays. It is also worthy of note that biologically Step 1 is an extreme
condition that ensures exponential eradication of unhealthy cells even if apoptosis is stalled to zero (i.e.
dpi = 0 and Ci = 1). The condition in Step 2 is less strong than the first one, while Step 3 is the most
reasonable. Indeed, Step 3 provides a necessary and sufficient condition for all-cell extinction, less strong
than the two previous ones.

4.5 Some comments on the reintroduction function from quiescence into
proliferation

In Section 4.3.1, we have revisited the description of the mitosis function. Now, we want to highlight some
features of the re-introduction function βi. The motivation is as follows: in numerical experiments, we
observed that for different forms of βi, such that βi is continuously decreasing and limm→+∞ βi(m) = b> 0,
the corresponding system may have unbounded solutions. In fact, having some unbounded solutions can
be interpreted as the invasion of the bone marrow and the bloodstream by blasts (leukemic cells) and it
represents an interesting model to investigate.

Similarly, in [47, 46], a "getting in the cycle" or "recruitment" function (which has the same role as
the reintroduction function βi in our case), of the form: Gi(m) = α1νn+α2mn

νn+mn , where, 0 < α2 < α1, was
considered for unhealthy tissues. The authors have shown that in this case, unbounded solutions may exist
in their model [47, 46].

Here we are wondering about the biological meaning of limm→+∞ βi(m) = b > 0 and its possible
interpretation. Let us firstly revisit the assumptions considered by Mackey in [180], the first time he
introduced the re-introduction function βi(xi) =

β (0)νn

νn+xni
, where ν > 0 and n≥ 2.

Origin of the reintroduction function from resting to proliferation

We list here the assumptions made by Mackey in [180] (see also [241]) on the reintroduction function βi.
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First, it is assumed that each cell contains a receptor for a mitotic regulatory molecule, considered as
an inhibitor (i.e. mitosis occurs in a regular fashion if the cell receptor is in an uncombined form). The
reaction between the receptor and regulatory inhibitors proceeds as follows:

❶ H1, of [180]: ϑac+n× c⇌ ϑinc, where ϑac is the active form of the receptor while ϑinc is its
inactive form; and c is the regulatory molecule.

❷ H2, of [180]: The equilibrium constant ν for the reaction is so that [ϑac]× [c]n = ν [ϑinc].
❸ H3, of [180]: There are a fixed number of receptors [Tc] per cell, thus: [Tc] = [ϑac]+ [ϑinc].
❹ H4, of [180]: The number of regulatory molecules is directly proportional to the number of

resting phase stem cells; [c] = ãxi, where ã is a strictly positive constant.
The hypothesis H4 is the one that interests us most. Indeed, basically it means that the body is

assumed to be able to produce a quantity of regulatory molecules which is proportional to the total density
of resting cells xi. In other words, the model assumes that when the number of cells is about to grow
excessively (to infinity), the body is capable of delivering an infinity of inhibitor ligands (which are
capable of preventing cell division). So, it is not surprising that trajectories remain bounded in this case.

Modifying the re-introduction function from quiescence into proliferation

Let us now modify the hypothesis H4 introduced in [180]. In fact, we are going to consider the case where
the concentration [c] is saturated (i.e. the quantity of regulatory molecules that the body may produce is
limited). One possible form is the following:

[c] =
a0xi

a0−1+ xi
= ψa0(xi), where, a0 > 1. (4.48)

Consequently, by denoting βi(0) the maximal reintroduction rate, we end-up with the following form of
the re-introduction function:

βi(xi) =
βi(0)ν̃

ν̃ +ψa0(xi)n
, βi(0)> 0, ν̃ > 0, and, n≥ 2. (4.49)

In this case we notice that limxi→∞ βi(xi) = b> 0. In numerical experiments, we observe that for the new
form of βi, unbounded solutions may exist for some initial conditions. A rigorous proof of that result
is currently under investigation. For example, we consider that a0 = 15× 1012, βi(0) = 1.84 days−1,
ν̃ = 1.62×108 cells/kg, and n= 2. The saturated production of mitotic inhibitors with respect to the cell
density xi is illustrated in Figure 4.7, the function βi is illustrated in Figure 4.8, and an example in which
unbounded solutions may occur is given in Figure 4.9.
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Fig. 4.7 The density of the regulatory molecules is limited, while the cell population continue to grow. Illustration
of the function ψa0 , when a0 = 15×1012.
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Fig. 4.8 Some illustrations of the form of the re-introduction function β . We have here limm→+∞ βi(m) = b> 0,
where the value of b increases with respect to a0.

4.6 Healthy tissues: Stability analysis of the positive steady state

As in the previous chapter: we associate the strictly positive steady state to a healthy hematopoiesis,
describing the normal process in which cell generations survive and are stable. When all the biological
parameters are constant, the model (4.6) admits a strictly positive steady state E =

(
xe

1, . . . ,x
e
n
)
, where
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Fig. 4.9 The invasion of the bone marrow by cancer stem cells can be modeled by an appropriate selection of the
reintroduction function from resting-into-proliferating phases.

xe
i > 0 for all i ∈ In. In fact, the condition of existence of E is exactly similar to the one for finite delays

in the previous chapter, while its stability analysis is slightly different. We illustrate briefly the LKF
construction in this case.

The version of system (4.6) with constant parameters is given by:

ẋi(t) =−drixi(t)−βi(xi(t))xi(t)+2λi

∫ +∞

0
gi(a)βi(xi(t−a))xi(t−a)da

+2σi−1

∫ +∞

0
gi−1(a)βi−1(xi−1(t−a))xi−1(t−a)da,

(4.50)

where,

gi(a) = fi(a)e−dpia, for all a ∈ [0,+∞],
∫ +∞

0
fi(a)da = 1, and λi +σi = 1. (4.51)

We can see that the positive steady state E =
(
xe

1, . . . ,x
e
n
)

where xe
i > 0 for all i ∈ In, exists if and only

if
dr1 < [2λ1C1−1]β1(0), where, C1 =

∫ +∞

0
g1(a)da, for all a ∈ [0,+∞). (4.52)

We assume in this section that the condition (4.52) is satisfied and we perform the change of coordinates
x̃i = xi− xe

i , for all i ∈ In, and using the Taylor formula, with an abuse of notation,
(
x̃i + xe

i
)

βi(x̃i + xe
i ) =

xe
i βi(xe

i )+ µix̃i + ri(x̃i), where µi = βi(xe
i )+β ′i (x

e
i )x

e
i , and, ri(x̃i) =

∫ xe
i +x̃i

xe
i

(
x̃i + xe

i − ℓ
)[

βi(ℓ)ℓ
](2) dℓ, we

end up with the system:

˙̃xi(t) =−d∗i x̃i(t)+2µiλi

∫ +∞

0
gi(a)x̃i(t−a)da+2µi−1σi−1

∫ +∞

0
gi−1(a)x̃i−1(t−a)da

− ri(x̃i(t))+2λi

∫ +∞

0
gi(a)ri(x̃i(t−a))da+2σi−1

∫ +∞

0
gi−1(a)ri−1(x̃i−1(t−a))da,

(4.53)

where d∗i = dri +µi. If the trajectories of (4.53) converge exponentially to the origin, then the trajectories
of (4.50) converge exponentially to the positive steady state E.
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Theorem 9. The conditions

ψ
†
i = d∗i −2λi|µi|Ci > 0, where, Ci =

∫ +∞

0
gi(a)da, for all a ∈ [0,+∞) (4.54)

for all i ∈ In, ensure that the positive steady state E of the system (4.50) is regionally exponentially state
and a subset of its basin of attraction is provided.

Proof. We give the proof only for i = 1. Using exactly the same arguments as in the previous chapter, we
can extend the result to all i ∈ In. First, we observe that the derivative of the quadratic function,

Q(m) =
1
2

m2. (4.55)

along the trajectories of system (4.53), satisfies for all t ≥ 0

Q̇(t) =−2d∗1Q(x̃1(t))+2µ1λ1x̃1(t)
∫ +∞

0
g1(a)x̃1(t−a)da

− x̃1(t)r1(x̃1(t))+2λ1x̃1(t)
∫ +∞

0
g1(a)r1(x̃1(t−a))da

≤−2
[
d∗1 −|µ1|λ1C1

]
Q(x̃1(t))+2|µ1|λ1

∫ +∞

0
g1(a)Q(x̃1(t−a))da

− x̃1(t)r1(x̃1(t))+2λ1x̃1(t)
∫ +∞

0
g1(a)r1(x̃1(t−a))da,

(4.56)

We recall from the previous chapter that the nonlinearities ri satisfy the sector conditions:

|ri(x̃i)| ≤ riQ(x̃i), (4.57)

where ri > 0, for all i ∈ In, and for all x̃i ∈ (−xe
i ,+∞). Therefore, using (4.57), it follows that

Q̇(t)≤−2
[
d∗1 −|µ1|λ1C1

]
Q(x̃1(t))+2|µ1|λ1

∫ +∞

0
g1(a)Q(x̃1(t−a))da

+ |x̃1(t)|r1Q(x̃1(t))+2λ1|x̃1(t)|r1

∫ +∞

0
g1(a)Q(x̃1(t−a))da

(4.58)

Now, let us introduce the functional:

Ni(x̃it) =
∫ +∞

0
fi(ℓ)

∫ t

t−ℓ
e−dpi(t−m)Q(x̃i(m))dmdℓ. (4.59)

Its derivative satisfies, for all i ∈ In,

Ni(t) =−dpiNi(x̃it)+Q(x̃i(t))−
∫ +∞

0
fi(ℓ)e−dpiℓQ(x̃i(t− ℓ))dℓ

=−dpiNi(x̃it)+Q(x̃i(t))−
∫ +∞

0
gi(ℓ)Q(x̃i(t− ℓ))dℓ

(4.60)

Let us introduce the following functional:

Mi(x̃it) =
∫ +∞

0

∫ t

t−ℓ
gi(ℓ)Q(x̃i(m))dmdℓ. (4.61)
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Its derivative is given by

Ṁi(t) =CiQ(x̃it)−
∫ +∞

0
gi(ℓ)Q(x̃i(t− ℓ))dℓ. (4.62)

It follows that the derivative of the functional

V1(x̃1t) =Q(x̃1(t))+2|µ1|λ1M1(x̃1t)+ψ
†
1N1(x̃1t), (4.63)

where ψ
†
i > 0 is defined in (4.54), along the trajectories of (4.53), satisfies

V̇1(t)≤−2
[
d∗1 −|µ1|λ1C1

]
Q(x̃1(t))+2|µ1|λ1

∫ +∞

0
g1(a)Q(x̃1(t−a))da

+ |x̃1(t)|r1Q(x̃1(t))+2λ1|x̃1(t)|r1

∫ +∞

0
g1(a)Q(x̃1(t−a))da

+2|µ1|λ1C1Q(x̃1t)−2|µ1|λ1

∫ +∞

0
g1(ℓ)Q(x̃1(t− ℓ))dℓ

−dp1ψ
†
1N1(x̃1t)+ψ

†
1Q(x̃1t)−ψ

†
1

∫ +∞

0
g1(ℓ)Q(x̃1(t− ℓ))dℓ

≤−ψ
†
1Q(x̃1(t))+ |x̃1(t)|r1Q(x̃1(t))−dp1ψ

†
1N1(x̃1t)

+
(

2λ1r1|x̃1(t)|−ψ
†
1

)∫ +∞

0
g1(a)Q(x̃1(t−a))da.

Since |x̃1(t)| ≤
√

2V1(x̃1t), it follows that

V̇1(t)≤−
ψ

†
1

2
Q(x̃1(t))+

(
r1
√

2V1(x̃1t)−
ψ

†
1

2

)
Q(x̃1(t))−dp1ψ

†
1N1(x̃1t)

+
(

2λ1r1
√

2V1(x̃1t)−ψ
†
1

)∫ ∞

0
g1(a)Q(x̃1(t−a))da

(4.64)

Since λi < 1 for all i ∈ In, we conclude that for all initial condition ϕ1 ∈ C
(
[−∞,0],R+

)
satisfying

V1(ϕ̃1)<

(
ψ

†
1

2
√

2r1

)2

, (4.65)

the derivative of the functional V satisfies for all t ≥ 0,

V̇1(t)≤−
ψ

†
1

2
Q(x̃1(t))−dp1ψ

†
1N1(x̃1t) (4.66)

On the other hand, we notice from the definitions of N and M that:

Ni(x̃it) =
∫ +∞

0
fi(ℓ)

∫ t

t−ℓ
e−dpi(t−m)Q(x̃i(m))dmdℓ

≥
∫ +∞

0

∫ t

t−ℓ
fi(ℓ)e−dpiℓQ(x̃i(m))dmdℓ

=Mi(x̃it).

(4.67)
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A direct consequence is that

V̇1(t)≤−
ψ

†
1

2
Q(x̃1(t))−dp1ψ

†
1N1(x̃1t)

≤−
ψ

†
1

2
Q(x̃1(t))−

dp1ψ
†
1

2
M1(x̃1t)−

dp1ψ
†
1

2
N1(x̃1t)

≤− ψ̃1
†V1(x̃1t), where, ψ̃1

† > 0.

(4.68)

We conclude that for all initial conditions satisfying (4.65), the trajectories of (4.53) (for i = 1) converge
exponentially to the origin (which is E of model (4.50)) with a decay rate smaller or equal to ψ̃†

2 .

In the previous sections, we revisited the description of the cell cycle and we generalized the
stability results of Chapter 3 to the case of nonlinear systems with infinite distributed delays
and time-varying parameters, through the construction of novel Lyapunov-Krasovskii functionals.
From a biological point of view, we have seen that the stability conditions in Theorem 4.12 and 8
are substantially similar to those given in the previous chapter.

In the sequel, we introduce for the first time some cell-plasticity functions in the model of interest.

4.7 First observations on transdifferentiation and dedifferentiation

We briefly illustrate two situations: transdifferentiation as a disturbance (as in Chapter 3) and a dedifferen-
tiation process in which more mature cells regress to a SC resting (quiescent) compartment.

4.7.1 Transdifferentiation as an input for HSCs-compartment

We recall that in Chapter 3, cell-plasticity has been considered as a perturbation (nonvanishing distur-
bances). In fact, using the LKF that we introduced in Section 4.4, we can perform a robustness analysis
when the system is subject to external perturbations.

Fig. 4.10 εd(·) is introduced to model the effect of the transdifferentiation from other cell types, that join the
compartment of HCSs.
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In this case, the studied model is given by The studied model is given by:
∂ p1(t,a)

∂ t + ∂ p1(t,a)
∂a +dp1(t)p1(t,a)+h1(a)p1(t,a) = 0,

∂ r1(t,a)
∂ t + ∂ r1(t,a)

∂a +dr1(t)r1(t,a)+β1

(∫ +∞

0 r1(t,a)da
)

r1(t,a) = 0.
(4.69)

The renewal conditions which give the birth rate at the initial age a = 0 are introduced through the
following boundary conditions: p1(t,0) = β1

(∫ +∞

0 r1(t,a)da
)∫

∞

0 r1(t,a)da,

r1(t,0) = 2λ1(t)
∫ +∞

0 h1(a)p1(t,a)da+ εd(t).
(4.70)

where, εd(t) ∈ (0,ε], for all t ≥ 0. Using the method of characteristics, we prove that for all t ≥ 0 and
a≥ 0,

ẋ1(t) =−dr1(t)x1(t)−β1(x1(t))x1(t)+2λ1(t)
∫ +∞

0
g1(t,a)β1(x1(t−a))x1(t,a)da+ εd(t). (4.71)

Remark 25. i) We observe that in this case, investigating the stability properties of the origin of system
(4.71) is equivalent to performing a robustness analysis when the nominal system describing stem cells
dynamics is subject to external disturbances. We establish a common result about practical stability
(see Chapter 9, Khalil). ii) It is well known that a strict Lyapunov functional that allows us to establish
exponential stability result guarantees robustness. iii) We can take advantage from the positive infinite
distributed terms in (4.71) in order to refine the stability set obtained using R1.

We introduce the functional
R(x1t) = R1(x1t)−θx1(t), (4.72)

where,

θ =
1
2

min


dr1−

(
4λ 1C1−

(
1+2λ 1

))
β1(0)

dr1−
(

2λ 1C1−1
)

β1(0)
,

dr1−
(

2λ 1C1−1
)

β1(0)

dr1 +β (0)

=
dr1−

(
2λ 1C1−1

)
β1(0)

2
(

dr1 +β (0)
) ,

and the functional R1 is the one defined in (4.30). One of the selection criteria of the weighted constant θ

is to ensure that the functional R is positive on the positive orthant. Finally, we consider θ̃ > 0 and we
define the set

Sεd =

{
ϕ ∈ C

(
(−∞,0],R+

)
,R1(ϕ)+2θλ 1

∫ 0

−∞

f1(−a)edp1a
β1(ϕ)ϕ < θ̃

}
. (4.73)

Based on the LKF used in Section 4.4, we are ready to prove the following result:

Corollary 4. If the condition
dr1−

(
2λ 1C1−1

)
β1(0)> 0, (4.74)
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is satisfied, then the state x1t of system (4.71), where for all t ≥ 0, εd(t) ∈ (0,εd ], converges exponentially
to the set Sεd .

Proof. We are going to use the functionals N1 and M1 introduced respectively in (4.11) and (4.14); as well
as their derivatives satisfying respectively (4.13) and (4.16). Therefore, the derivative of the functional U1,
introduced in (4.18), along the trajectories of the perturbed system (4.71) satisfies

U̇1(t)≤−
[

dr1−
(

2λ 1−1
)

β1(0)
]

x1(t)−2λ 1dp1N1(x1t)+ εd(t), (4.75)

and, similarly, the derivative along the trajectories of the perturbed system (4.71) of the functional V1

introduced in (4.21) satisfies

V̇1(t)≤−
[

dr1−
(

2λ 1C1−1
)

β1(0)
]

x1(t)+ εd(t). (4.76)

Thus, the derivative of the functional R1, introduced in (4.30), satisfies

Ṙ1(t)≤−
[

dr1−
(

2λ 1C1−1
)

β1(0)
]

x1(t)−2λ 1dp1N1(x1t)+

dr1−
(

4λ 1C1−
(

1+2λ 1

))
β1(0)

dr1−
(

2λ 1C1−1
)

β1(0)
εd . (4.77)

A direct consequence is that the derivative of the functional R, defined in (4.72), along the trajectories of
(4.71) satisfies

Ṙ(t)≤−
[

dr1−
(

2λ 1C1−1
)

β1(0)
]

x1(t)+θ

(
dr1 +β (0)

)
x1(t)

−2λ 1dp1N1(x1t)−2θλ1(t)
∫ +∞

0
g1(t,a)β1(x1(t−a))x1(t−a)da

+

dr1−
(

4λ 1C1−
(

1+2λ 1

))
β1(0)

dr1−
(

2λ 1C1−1
)

β1(0)
εd .

Using the expression θ =
dr1−

(
2λ 1C1−1

)
β1(0)

2(dr1+β (0))
, it follows that

Ṙ(t)≤− 1
2

[
dr1−

(
2λ 1C1−1

)
β1(0)

]
x1(t)−2λ 1dp1N1(x1t)

−2θλ1(t)
∫ +∞

0
g1(t,a)β1(x1(t−a))x1(t−a)da

+

dr1−
(

4λ 1C1−
(

1+2λ 1

))
β1(0)

dr1−
(

2λ 1C1−1
)

β1(0)
εd .

(4.78)
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Using the definition of R, R1, and the inequality (4.17), we easily determine a strictly positive constant
δ̂ > 0, such that

Ṙ(t)≤−2δ̂R(x1t)−2θλ1(t)
∫ +∞

0
g1(t,a)β1(x1(t−a))x1(t−a)da

+

dr1−
(

4λ 1C1−
(

1+2λ 1

))
β1(0)

dr1−
(

2λ 1C1−1
)

β1(0)
εd .

(4.79)

We conclude that for all x1t /∈ Sεd , we have Ṙ(t)≤−δ̂R(x1t). Therefore, for all t ≥ 0, εd(t)∈ (0,εd ], ϕ ∈
C
(
(−∞,0],R+

)
, and x1t /∈ Sεd , we have x1(t)≤R(ϕ)e−δ̂ t , meaning that the trajectory x1(t) converges

to the origin as long as x1t /∈ Sεd , and that the state x1t converges exponentially to the set Sεd .

4.7.2 Dedifferentiation towards the stem cell resting compartment

Now, let us say few words about the case in which any generation j ∈ {2, . . . ,n} may dedifferentiate to
join the resting stem cell compartment. The model in this case is illustrated in Figure 4.11, and it is
governed by: 

∂ pi(t,a)
∂ t + ∂ pi(t,a)

∂a +dpi(t)pi(t,a)+hi(a)pi(t,a) = 0,
∂ ri(t,a)

∂ t + ∂ ri(t,a)
∂a +dri(t)ri(t,a)+βi

(
xi(t)

)
ri(t,a) = 0,

for all i≥ 1 where i ̸= j, and,
∂ p j(t,a)

∂ t +
∂ p j(t,a)

∂a +dp j(t)p j(t,a)+h j(a)p j(t,a) = 0,
∂ r j(t,a)

∂ t +
∂ r j(t,a)

∂a +
[
dr j(t)+εd(t)

]
r j(t,a)+β j

(
x j(t)

)
r j(t,a) = 0.

(4.80)

The renewal conditions which give the birth rate at the initial age a = 0 are introduced through the
following boundary conditions:

r1(t,0) = 2
(
1−σ1(t)

)∫ +∞

0 h1(a)p1(t,a)da+
∫ +∞

0 εd(t)r j(t,a)da,

ri(t,0) = 2
(
1−σi(t)

)∫ +∞

0 hi(a)pi(t,a)da

+2σi−1(t)
∫ +∞

0 hi−1(a)pi−1(t,a)da, for all i > 1, and,

pi(t,0) = βi
(
xi(t)

)
xi(t), for all i ∈ {1, . . . ,n} .

(4.81)
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Fig. 4.11 The cell generation j can be chosen to be any generation between the 2nd and the n-th generation. A
subpopulation of the j-th generation is assumed to undergo dedifferentiation mechanisms and thus join the first
compartment of (hematopoietic) stem cells.

Through classical arguments, we show the model in Figure 4.11 is described for all t ≥ 0 by the
system: 

ẋ1(t) = 2λ1(t)
∫ +∞

0 g1(t,a)β1(x1(t−a))x1(t−a)da+ εd(t)x j(t)
−dr1(t)x1(t)−β1(x1(t))x1(t)

ẋ j(t) = 2λ j(t)
∫ +∞

0 g j(t,a)β j(x j(t−a))x j(t−a)da
+2σ j−1(t)

∫ +∞

0 g j−1(t,a)β j−1(x j−1(t−a))x j−1(t−a)da
−
[
dr j(t)+εd(t)

]
x j(t)−β j(x j(t))x j(t),

and, for all i /∈ {1, j} ,

ẋi(t) = 2λi(t)
∫ +∞

0 gi(t,a)βi(xi(t−a))xi(t−a)da
+2σi−1(t)

∫ +∞

0 gi−1(t,a)βi−1(xi−1(t−a))xi−1(t−a)da
−dri(t)xi(t)−βi(xi(t))xi(t).

(4.82)
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Using LKF constructions as in Section 4.4, we can prove that if the stability conditions in Step
3 of Theorem 8 are satisfied for all i ∈ {1, . . . ,n}, then the origin of the system (4.82) -involving
dedifferentiation as in Figure 4.11- is globally exponentially stable. In other words, the dedif-
ferentiation process as represented in Figure 4.11 has no major effect if all the cell generations
are already dying. On the other hand, some medical experiments (e.g. [142], [249]) mention that
cancer cells avoid their extinction during therapy by undergoing dedifferentiation processes.
In order to determine a model that reproduce effectively the expected dynamics in dedifferentiation
of unhealthy tissues, we introduce in the next section another configuration of the cell plasticity
function, in which the dedifferentiated cells are directly active in the proliferating phase. In
other words, we modify the representation given in Figure 4.11, by introducing a dedifferentiation
function from the unhealthy more mature cell generations towards the stem cell compartment,
where CSCs are directly active in the cell cycle. Then, we study the resulting system and we show
that in this configuration, it is possible to have the conditions in Step 3 of Theorem 8 that are
satisfied, while cells do not vanish thanks to the dedifferentiation mechanism.

4.8 Dedifferentiation of a subpopulation of cells into cancer stem cells

We discuss in this section a refined model (illustrated in Figure 4.12-4.13) that highlights, qualitatively,
the impact of dedifferentiation on the behavior of cancer cells. More precisely, we consider that cancer
cells may dedifferentiate into CSCs (i.e. they join the SC compartement, are they are directly active in
proliferation).

4.8.1 Introduction of a general model involving unhealthy cell-plasticity mechanisms

We recall the general form of the model in Figure 4.12, in which we have n distinguishable maturity
levels (i ∈ In = {1, . . . ,n}, where i = 1 is the compartment of SCs). Now, we focus on the role of the
cell-plasticity functions ωi and ξi, for all i ∈ In (the flux functions on the right of Figure 4.12).

The dynamics of resting cells, ri(t,a), and proliferating cells, pi(t,a), of the i-th generation (i ∈ In), of
age a > 0, at time t ≥ 0, are governed by the age-structured (McKendrick) PDEs :

∂ pi
∂ t + ∂ pi

∂a =−
[
dpi(t)+hi(a)

]
pi(t,a),

∂ ri
∂ t +

∂ ri
∂a =−

[
dri(t)+βi

(
xi(t)

)]
ri(t,a)−ξi (t) ,

(4.83)

where, for all i∈ In, xi(t) =
∫ +∞

0 ri(t,a)da, and, for all i∈ In and t ≥ 0, dri(t) is the death rate of the resting
cells, while dpi(t) is the death rate of proliferating cells. The reintroduction function βi is decreasing and
limℓ→∞ βi(ℓ) = 0. Moreover, we consider with an abuse of notation (see the explanation below) that for
all t ≥ 0,

ξi(t) = ξi

x1(t), . . . ,xi−1(t)︸ ︷︷ ︸
out. dediff

,xi(t),

out. transdiff︷ ︸︸ ︷
ξ

†
i (t)

 . (4.84)
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Fig. 4.12 A cartoon representation of the discrete maturity model of interest, involving multiple dedifferentiation
and transdifferentiation functions. Cells of the i-th maturity-generation, where i ∈ In = {1, . . . ,n} , n > 1, are in a
resting phase G0, or in proliferation (cell-division cycle) {G1,S,G2,M}. In the general case, we can consider that all
the involved biological parameters (rate of differentiation σi ∈ (0,1), rate of self-renew λi = 1−σi, apoptosis rate
dpi, death rate of resting cells dri) are time-varying. On the right, the flux due to the cell-plasticity functions, ξi and
ωi for all i ∈ In, is represented. In fact, both ξi and ωi have a part related to dedifferentiation and a part related to
transdifferentiation. The former one depends on the (modeled) state variables, which represent the total densities of
the resting cells xi, while the parts quantifying trandifferentiation (denoted ξ

†
i and ω

†
i , in equations (5.95), (5.105))

depend on time, since they are biologically related to distant (external) cell tissues and lineages (i.e. which are not
explicitely modeled). This model extends the one in [8].

Fig. 4.13 The blue lineage hierarchy is the one we are focusing on. Grey lineages are those which cannot be
explicitly modeled in our mathematical framework. For the i-th cell generation, the function wi quantifies the input
by dedifferentiation from the next more mature generations of the studied blue lineage, together with the input by
transdifferentiation (ω†

i ), which comes from non-modeled distant cell types. In a similar spirit, ξi quantifies the loss
in cell account of the i-th generation, in response to some requirements from less mature generation of the blue
hierarchy (i.e. dedifferentiation), or by other types of cells (i.e. the loss due to transdifferentiation, ξ

†
i ).
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About the functions ξiξiξi

As illustrated in Figure 4.13, the function ξi quantifies the output (cell loss) either by dedifferenti-
ation or by transdifferentiation. As formulated in (5.95), the function ξi depends on xi and may be
affected by some of, or all, the generations of cells which are less mature than the i-th generation,
i.e. the cell densities x1, . . . ,xi−1. This is -by definition- justified by the fact that dedifferentiation
of the i-th generation addresses a need (either healthy or cancerous) that arises in a less mature
generation within the same hierarchy (i.e. at least one of the densities x1, . . . ,xi−1).
In addition, the loss by transdifferentiation, ξ

†
i , aims to address a need from more distant tissues,

i.e. ξ
†
i does not depend on the modeled cell populations xi, but only on time (as a representation of

any external event that occurs beyond the studied hierarchy).

The system (4.83) is associated with some initial conditions (i.e. initial age distributions when t = 0)
which are L 1-functions defined by:{

pi(0,a) = p0
i (a), and,

ri(0,a) = r0
i (a), for all a ∈ [0,+∞).

(4.85)

Moreover, we assume from biological considerations that for all t ≥ 0, lima→∞ pi(t,a) = lima→∞ ri(t,a) =
0. Finally, the renewal conditions, which give the birth rate at the initial age a = 0, are introduced through
the following boundary conditions:

pi(t,0) = βi

(∫ +∞

0 ri(t,a)da
)∫ +∞

0 ri(t,a)da+ωi(t)

= βi(xi(t))xi(t)+ωi(t),

ri(t,0) = 2σi−1(t)
∫ +∞

0 hi−1(a)pi−1(t,a)da
+2
(
1−σi(t)

)∫ +∞

0 hi(a)pi(t,a)da,

(4.86)

where σi(t) represents the time-varying rate of differentiation and, consequently, λi(t) = 1−σi(t) is the
rate of self-renewal of the i-th cell generation. In addition, we consider with an abuse of notation that for
all t ≥ 0,

ωi(t) = ωi

xi(t),xi+1(t), . . . ,xn(t)︸ ︷︷ ︸
in. dediff

,

in. transdiff︷ ︸︸ ︷
ω

†
i (t)

 . (4.87)
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About the functions ωiωiωi

The function ωi appears in the boundary conditions (4.86), since it represents the new cell birth
resulting from the dedifferentiation of more mature cell generations, together with the transdif-
ferentiation of other cell lineages. The functions ωi are implicitly related to the functions ξi in
(5.95), since cells that join the i-th generation by dediffentiation (the input ωi) are, for instance,
the sum of the dedifferentiated cells from more mature generations (the outputs ξi+1, ξi+2, . . .).
Therefore, for all i ∈ In, the function ωi depends on xi and may depend on (all or some of) the
more mature generations in the same hierarchy, xi+1, . . . ,xn. Moreover, the time-varying term ω

†
i

in (5.105) quantifies the incoming by trandifferentiation from distant cell lineages or types, outside
the hierarchy of interest.

In summary, we say that generally in McKendrick type models, the removal terms (e.g. death rates)
appear in the PDE system (model (4.83), in our case), while new births appear in the boundary conditions
(given by (4.86), in our case). The PDE system (4.83)-(4.86)-(4.85) provides a general framework to
describe the cell dynamics within a given hierarchy formed by n discrete-maturity stages. However, we
still need to specify the nature and the operating mode of the dedifferentiation and the transdifferentiation
functions (ξi and ωi, for all i ∈ In), in order to determine the behavior of the overall system. For that
purpose, we need to focus on a typical explicit dedifferentiation mechanism. More precisely, we start in this
study with an unhealthy case in which a portion of the j-th cell generation ( j ∈ In, j > 1) dedifferentiates
and joins the SC compartment (i = 1), as presented in the sequel.

4.8.2 A specific (unhealthy) dedifferentiation process into CSCs

In order to allow mathematical analysis, we focus on the typical (explicit) case in which a proportion
κ ∈ [0,1] of the total density of resting cells of the j-th generation x j becomes diseased, e.g. as a result of
a series of abnormal mutations (see [300] for mutations inducing leukemia). Then, we consider that only
the subpopulation of mutated cells can undergo dedifferentiation, and we denote by D the characteristic
pattern that describes the dedifferentiation mechanism from the j-th generation into the SC-proliferating
compartment.

Let j ∈ [2,n] be the generation of cells that includes a malignant (mutated) subpopulation, capable of
generating cancer stem cells (CSCs) by dedifferentiation. For the sake of brevity, we consider that the
transdifferentiation mechanisms are negligible compared to dedifferentiation (i.e. we put ξ

†
i (t) = ω

†
i (t) =

0, for all i ∈ In and t ≥ 0, otherwise, the study will be similar to the robustness analysis that we performed
in Section 4.7.1).

We notice that -with an abuse of notation- the functions ξi and ωi can be rewritten in this case as:
ξi(x1, . . . ,xi) = 0, for all i ∈ In, i ̸= j,
ξ j(x1, . . . ,x j) = ξ j(x j) = κD(κx j)x j,

ω1(x1, . . . ,xn) = ω1(x j) = κD(κx j)x j,

ωi(xi, . . . ,xn) = 0, for all i ∈ {2, . . . ,n} ,

(4.88)
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where we can select the function D as follows,

D(ℓ) = tanh(ℓp) , where, p > 0, for all ℓ≥ 0. (4.89)

One notices that the selected dedifferentiation functions (4.88) depend only on the mutated subpopula-
tion of cells belonging to the j-th maturity generation x j. The latter choice can be argued as an unhealthy
dedifferentiation process triggered by abnormal mutations observed in a subpopulation κx j of the j-th
stage. Many other alternative choices may be considered if biological requirements are justified3

Fig. 4.14 The function xi→ κD(κxi), for different values of κ , is suggested to represent qualitatively the effectiveness
and the impact of dedifferentiation according to: (1) the size of the population where tumor mutations occur
(quantified by the total cell density xi), and (2) the proportion of mutated cells within the entire population
(quantified by κ). See Remark 26-(ii).

Remark 26. Let us say few more words about the cell-plasticity functions ξi and ωi that we defined in
(4.88). Firstly, we recall that we are limiting ourselves to the case of constant κ , where k ∈ [0,1]. The
features of the tangent hyperbolic function D defined in (4.89) lead to:

i) ξ j ≡ 0 and ω1 ≡ 0, when x j = 0 or κ = 0. The latter case means that dedifferentiation does not
exist if no abnormal mutation occurs.

ii) when the j-th cell generation forms a relatively small population over all the n cell generations
(i.e. a low density x j), or when the portion of unhealthy cells is minimal within the genetic diversity
landscape (i.e. a low mutated portion of cells, quantified by κ), then the gain of the dedifferentiation
process is minimal. Indeed, the subpopulation of mutated cells is not expected to entirely dedifferentiate
and join the SCs compartment. Actually, sometimes mutated cells do not dedifferentiate and they may
also disappear over time if they do not overproliferate. In our model, the gain of the differentiation
process is represented by the quantity κD(κx j), since ξ j(x j) = κD(κx j)x j. The gain is illustrated in
Figure 4.14, where we notice that for low x j and low κ , the amplitude of κD(κx j) is small. Then, it

3Other choices different from (4.88) may be considered within the general framework introduced in Section 4.8.1. For
instance, a healthy dedifferentiation process can be envisaged, in which the ξi and ωi depend on the total density of resting
SCs x1. In this configuration, the density of SCs triggers the dedifferentiation of more mature differentiated cells, if needed (e.g.
after hemorrhage or injury, when the body is in a hurry to regenerate itself). For the sake of brevity, this situation is beyond the
scope of the current work.
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increases in order to approach its maximum value, when the total size of the population x j is too high, i.e.
limx j→∞ κD(κx j) = κ .

Finally, we rewrite the model (4.83) describing the dynamics of resting and proliferating cells, in the
form: 

∂ pi
∂ t + ∂ pi

∂a +
[
dpi(t)+hi(a)

]
pi(t,a) = 0,

∂ ri
∂ t +

∂ ri
∂a +

[
dri(t)+βi

(
xi(t)

)]
ri(t,a) = 0,

for all i≥ 1 where i ̸= j, and,
∂ p j
∂ t +

∂ p j
∂a +

[
dp j(t)+h j(a)

]
p j(t,a) = 0,

∂ r j
∂ t +

∂ r j
∂a +

[
dr j(t)+β j

(
x j(t)

)]
r j(t,a)+κD

(
κx j(t)

)
x j(t) = 0.

(4.90)

We emphasize the case of (4.86) described throughout the current section, in which the renewal
conditions are introduced through the following boundary conditions:

p1(t,0) = β1
(
x1(t)

)
x1(t)+κD j

(
κx j(t)

)
x j(t),

pi(t,0) = βi
(
xi(t)

)
xi(t), for all i ∈ {2, . . . ,n} ,

r1(t,0) = 2
(
1−σ1(t)

)∫ +∞

0 h1(a)p1(t,a)da,

and for all i > 1 :

ri(t,0) = 2
(
1−σi(t)

)∫ +∞

0 hi(a)pi(t,a)da+2σi−1(t)
∫ +∞

0 hi−1(a)pi−1(t,a)da.

(4.91)

Finally, we consider some suitable initial conditions as in (4.85). Now, using the method of char-
acteristics, we reduce the model (4.90)-(4.91)-(4.85) into a nonlinear time-delay system (with infinite
distributed delays and time-varying parameters). For the sake of clarity and due to space limitation, we
illustrate here -without loss of generality- a case with two cell generations, in which a dedifferentiation
mechanism is established from the 2nd generation into the SCs one, as illustrated in Figure 4.15.

For example, we consider that a progeny subpopulation κx2, κ ∈ [0,1], with abnormal mutations (e.g.
DMNT3A increasing self-renewal), that may trigger dedifferentiation into CSCs [68], as it appears to be
the case in leukemia [286, 173].

As a first approach, we consider a simplified version of the model of interest (with two maturity stages,
finite distributed delays and constant parameters). For that:

Let j ∈ [2,n] be the generation of cells that includes a malignant (mutated) subpopulation, capable of
generating cancer stem cells (CSCs) by dedifferentiation. The method of characteristics ([31], [8]) gives,
for sufficiently large time,

pi(t,a) =pi(t−a,0)e−
∫ a

0 dpi(m+t−a)dme−
∫ a

0 hi(m)dm. (4.92)

By integrating ri(t,a), for all i ∈ In, over the age-variable a between 0 and ∞, we obtain:{
ẋi(t) =−dri(t)xi(t)−βi(xi(t))xi(t)+ ri(t,0), for all i≥ 1, i ̸= j, and,
ẋ j(t) =−dr j(t)x j(t)−β j(x j(t))x j(t)+ r j(t,0)−κx j(t)D

(
κx j(t)

)
.

(4.93)
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Fig. 4.15 Red cells are malignant (mutated) cells. White cells are ordinary stem cells (SCs), while the gray cell
compartment is the one of (progeny) differentiated cells, that includes the subpopulation (in red) κx2. A mechanism
of dedifferentiation of malignant cells (in red, from i = 2 to i = 1) is established through the function D. In
hematopoiesis, a translocation effect after some epigenetic mutations in the progeny compartment (here i = 2) may
lead to a dedifferentiation of progeny ([68]) and the rise of cancer stem cells (CSCs), that trigger a quick progression
of leukemia [286]. For instance, a DNMT3A mutation may provide abnormal cells with a self-renewal activity as
important as the one of SCs [173, 286].

Using the boundary conditions (4.91), we substitute the expressions of ri(t,0), for all i ∈ In, we get

ẋ1(t) =−dr1(t)x1(t)−β1(x1(t))x1(t)+2
(
1−σ1(t)

)∫ +∞

0 h1(a)p1(t,a)da,
ẋi(t) =−dri(t)xi(t)−βi(xi(t))xi(t)+2

(
1−σi(t)

)∫ +∞

0 hi(a)pi(t,a)da
+2σi−1(t)

∫ +∞

0 hi−1(a)pi−1(t,a)da, for all i≥ 2, i ̸= j, and,
ẋ j(t) =−dr j(t)x j(t)−β j(x j(t))x j(t)−κx j(t)D

(
κx j(t)

)
+2
(
1−σ j(t)

)∫ +∞

0 h j(a)p j(t,a)da
+2σ j−1(t)

∫ +∞

0 h j−1(a)p j−1(t,a)da.

(4.94)
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Next, using (4.92) we deduce that

ẋ1(t) =−
[
dr1(t)+β1(x1(t))

]
x1(t)+2

(
1−σ1(t)

)∫ +∞

0 h1(a)e−
∫ a

0 h1(m)dm p1(t−a,0)e−
∫ a

0 dp1(m+t−a)dmda,

ẋi(t) =−
[
dri(t)+βi(xi(t))

]
xi(t)+2

(
1−σi(t)

)∫ +∞

0 hi(a)e−
∫ a

0 hi(m)dm pi(t−a,0)e−
∫ a

0 dpi(m+t−a)dmda
+2σi−1(t)

∫ +∞

0 hi−1(a)e−
∫ a

0 hi−1(m)dm pi−1(t−a,0)e−
∫ a

0 dpi−1(m+t−a)dmda, for all i≥ 2, i ̸= j,

ẋ j(t) =−dr j(t)x j(t)−β j(x j(t))x j(t)−κx j(t)D
(
κx j(t)

)
+2
(
1−σ j(t)

)∫ +∞

0 h j(a)e−
∫ a

0 h j(m)dm p j(t−a,0)e−
∫ a

0 dp j(m+t−a)dmda
+2σ j−1(t)

∫ +∞

0 h j−1(a)e−
∫ a

0 h j−1(m)dm p j−1(t−a,0)e−
∫ a

0 dp j−1(m+t−a)dmda.
(4.95)

Using again the boundary conditions (4.91), we deduce that:

ẋ1(t) =−
[
dr1(t)+β1(x1(t))

]
x1(t)

+2
(
1−σ1(t)

)∫ +∞

0 h1(t,a)e−
∫ a

0 h1(m)dmβ1
(
x1(t−a)

)
x1(t−a)e−

∫ a
0 dp1(m+t−a)dmda

+2
(
1−σ1(t)

)∫ +∞

0 h1(a)e−
∫ a

0 h1(m)dmκx j(t−a)D j
(
κx j(t−a)

)
e−

∫ a
0 dp1(m+t−a)dmda,

ẋi(t) =−
[
dri(t)+βi(xi(t))

]
xi(t)

+2
(
1−σi(t)

)∫ +∞

0 hi(a)e−
∫ a

0 hi(m)dmβi
(
xi(t−a)

)
xi(t−a)e−

∫ a
0 dpi(m+t−a)dmda

+2σi−1(t)
∫ +∞

0 hi−1(a)e−
∫ a

0 hi−1(m)dmβi−1
(
xi−1(t−a)

)
xi−1(t−a)e−

∫ a
0 dpi−1(m+t−a)dmda,

for all i≥ 2, i ̸= j, and,

ẋ j(t) =−
[
dr j(t)+β j(x j(t))

]
x j(t)−κD

(
κx j(t)

)
x j(t)

+2
(
1−σ j(t)

)∫ +∞

0 h j(a)e−
∫ a

0 h j(m)dmβ j
(
x j(t−a)

)
x j(t−a)e−

∫ a
0 dp j(m+t−a)dmda

+2σ j−1(t)
∫ +∞

0 h j−1(a)e−
∫ a

0 h j−1(m)dmβ j−1
(
x j−1(t−a)

)
x j−1(t−a)e−

∫ a
0 dp j−1(m+t−a)dmda.

(4.96)
For the sake of clarity, we analyze the simpler version of the model (4.96), with finite distributed delays,
constant parameters, and involving only two cell generations (as in Figure 4.15), given by:

ẋ1(t) =−
[
dr1 +β1(x1(t))

]
x1(t)+2(1−σ1)

∫
τ1
0 g1(a)β1

(
x1(t−a)

)
x1(t−a)da

+2(1−σ1)
∫

τ1
0 g1(a)κx2(t−a)D

(
κx2(t−a)

)
da,

ẋ2(t) =−
[
dr2 +β2

(
x2(t)

)
+κD

(
κx2(t)

)]
x2(t)+2(1−σ2)

∫
τ2
0 g2(a)β2

(
x2(t−a)

)
x2(t−a)da

+2σ1
∫

τ1
0 g1(a)β1

(
x1(t−a)

)
x1(t−a)da+2σ1

∫
τ1
0 g1(a)κx2(t−a)D

(
κx2(t−a)

)
da.

(4.97)

4.8.3 Stability properties of the 0-equilibrium of a two maturity stages model involving
dedifferentiation

Now, we want to determine stability conditions of the origin of the model (4.97). This is equivalent to the
eradication of all the cells involved in this unhealthy process (Figure 4.15), through anti-cancer therapies.
In fact, we can prove that the system (4.97) is positive [124]. Therefore, we take advantage from the
positivity of the trajectories to develop a suitable Lyapunov approach and perform a stability analysis of
the origin of the system (4.97).
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Firstly, let us consider in this proof that: si = dri−αiβi(0) and αi = 2λiCi−1, for i = 1,2, and,

a= s2−κD

[
2σ1λ1C2

1β1(0)
s1

+2σ1C1−1

]
, (4.98)

where, D = supℓ≥0 D(ℓ). Notice that, D = 1, when, D(ℓ) = tanh(ℓp), p > 0.
Now we are ready to state and prove the following result:

Theorem 10. Let us assume that si > 0 for all i ∈ In. If, in addition, the conditions, 1−2σ1C1− 2σ1λ1C2
1 β1(0)

s1
< 0, and, a> 0,

or, 1−2σ1C1− 2σ1λ1C2
1 β1(0)

s1
≥ 0,

(4.99)

are satisfied, then the origin of the model (4.97) is globally asymptotically stable.

Proof. First, let us define the two operators:

v† (x1t ,x2t) =
∫ t

t−τ1

∫ t

m
e−δ (t−m−τ1)g1(m− ℓ+ τ1)

[
β1(x1(ℓ))x1(ℓ)+κx2(ℓ)D(κx2(ℓ))

]
dℓdm, (4.100)

and
u† (x2t) =

∫ t

t−τ2

∫ t

m
e−δ̃ (t−m−τ2)g2(m− ℓ+ τ2)β2(x2(ℓ))x2(ℓ)dℓdm, (4.101)

where δ and δ̃ are two nonnegative constants. It follows that for all t ≥ 0,

v̇†(t)≤−δv† (x1t ,x2t)−
∫ t

t−τ1

g1(t− ℓ)
[
β1(x1(ℓ))x1(ℓ)+κx2(ℓ)D(κx2(ℓ))

]
dℓ

+
[
β1(x1(t))x1(t)+κx2(t)D(κx2(t))

]
eδτ1C1,

(4.102)

and

u̇†(t) =−δ̃u† (x2t)−
∫ t

t−τ2

g2(t− ℓ)β2(x2(ℓ))x2(ℓ)dℓ+C2eδ̃ τ2β2(x2(t))x2(t). (4.103)

We introduce for the system (4.97) the following functional:

V † (x1t ,x2t) =x2(t)+2λ2u(x2t)+2σ1v† (x1t ,x2t)+
2σ1C1β1(0)

s1

x1(t)+2λ1v† (x1t ,x2t)︸ ︷︷ ︸
U†(x1t ,x2t)

 , (4.104)

Throughout the proof of Theorem 10, we consider that si > 0 for all i ∈ In.
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We start by computing the derivative of U† (x1t ,x2t) = x1(t)+2λ1v† (x1t ,x2t), along the trajectories of
(4.97), and we get, for all t ≥ 0,

U̇†(t) =−
[
dr1 +β1(x1(t))

]
x1(t)+2λ1

∫ t

t−τ1

g1(t− ℓ)
[
β1(x1(ℓ))x1(ℓ)+κx2(ℓ)D(κx2(ℓ))

]
dℓ

−2λ1

∫ t

t−τ1

g1(t− ℓ)
[
β1(x1(ℓ))x1(ℓ)+κx2(ℓ)D(κx2(ℓ))

]
dℓ

+2λ1C1
[
β1(x1(t))x1(t)+κx2(t)D(κx2(t))

]
=−

[
dr1−α1β1(x1(t))

]
x1(t)+2κλ1C1D

(
κx2(t)

)
x2(t),

(4.105)

where we choose δ = 0 for the sake of clarity. Next, using the fact that β1(x1)≤ β1(0) for all x1 ≥ 0,
we deduce that since s1 = δ1−α1β1(0)> 0, then it follows that,

U̇†(t)≤− s1x1(t)+2κλ1C1D
(
κx2(t)

)
x2(t). (4.106)

Next, we observe that the derivative of V †, introduced in (4.104), along the trajectories of (4.97), is

V̇ †(t) =−
[
dr2 +β2(x2(t))+κD

(
κx2(t)

)]
x2(t)+2λ2

∫ t

t−τ2

g2(t− ℓ)β2(x2(ℓ))x2(ℓ)dℓ+2λ2C2β2(x2(t))x2(t)

+2σ1

∫ t

t−τ1

g1(t− ℓ)
[
β1(x1(ℓ))x1(ℓ)+κx2(ℓ)D(κx2(ℓ))

]
dℓ−2λ2

∫ t

t−τ2

g2(t− ℓ)β2(x2(ℓ))x2(ℓ)dℓ

+2σ1
[
β1(x1(t))x1(t)+κx2(t)D(κx2(t))

]
C1−2σ1

∫ t

t−τ1

g1(t− ℓ)
[
β1(x1(ℓ))x1(ℓ)+κx2(ℓ)D(κx2(ℓ))

]
dℓ

+
2σ1C1β1(0)

s1

−[dr1−α1β1(x1(t))
]

x1(t)+2κλ1C1D
(
κx2(t)

)
x2(t)︸ ︷︷ ︸

U̇†(t)

 .

Using the intermediate result (4.106), we deduce that for δ̃ = 0, the derivative of V † satisfies for all t ≥ 0,

V̇ †(t)≤−
[
dr2−

(
2λ2C2−1)

)
β2(x2(t))

]
x2(t)+2σ1

[
β1(x1(t))x1(t)+κx2(t)D(κx2(t))

]
C1

−κx2(t)D
(
κx2(t)

)
+

2σ1C1β1(0)
s1

[
−s1x1(t)+2κλ1C1D

(
κx2(t)

)
x2(t)

]
≤− s2x2(t)−

[
1−2σ1C1−

2σ1λ1C2
1β1(0)

s1

]
κD
(
κx2(t)

)
x2(t)

−2σ1C1
[
β1(0)−β1(x1(t))

]
x1(t).

(4.107)

Consequently, from the last inequality in (4.107) we deduce what follows:
❍ The case: 1−2σ1C1− 2σ1λ1C2

1 β1(0)
s1

< 0. Now, we recall that,

a= s2−κD

[
2σ1λ1C2

1β1(0)
s1

+2σ1C1−1

]
, (4.108)

and we deduce that if the condition a> 0 is satisfied, then V̇ †(t) satisfies for all t ≥ 0,

V̇ †(t)≤−ax2(t)−2σ1C1
[
β1(0)−β1(x1(t))

]
x1(t). (4.109)
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By integrating the inequality (4.109) we get,

V †(t)≤V †(0)−a

∫ t

0
x2(m)dm−2σ1C1

∫ t

0

[
β1(0)−β1(x1(m))

]
x1(m)dm,

for all t ≥ 0. Therefore, from the definition of V † in (4.104), we deduce that x1 is bounded by a constant
x1 > 0. Consequently, since β1 is decreasing, we get for all t ≥ 0,

V̇ †(t)≤−ax2(t)−bx1(t), where, b= 2σ1C1
[
β1(0)−β1(x1)

]
> 0. (4.110)

Thus, we conclude that the origin of the model (4.97) is globally asymptotically stable.
❍ The case: 1−2σ1C1− 2σ1λ1C2

1 β1(0)
s1

≥ 0. It follows from (4.107) that for all t ≥ 0 the derivative of
V satisfies:

V̇ †(t)≤−s2x2(t)−2σ1C1
[
β1(0)−β1(x1(t))

]
x1(t). (4.111)

One notices the similarities between (4.109) and (4.111). Therefore, arguing similarly as in the previous
case, we easily prove that the origin of model (4.97) is globally asymptotically stable.

Remark 27. We recall, from Section 4.4, that or a model without dedifferentiation (κ = 0), the conditions
si > 0 (equivalent to Step 3 in Theorem 8), for all i ∈ In are necessary and sufficient for global exponential
stability of the origin of the corresponding system, and that anti-cancer therapy aims to satisfy the decay
conditions that ensure that the origin is stable, in order to eradicate malignant cells. However, we can
show that the model (4.97) may admit a positive steady state even if si > 0, for all i ∈ In, which is not the
case when κ = 0. Therefore, we notice that the conditions si > 0, for all i ∈ In are no longer sufficient to
ensure that the 0-equilibrium is stable when dedifferentiation exists. In light of Theorem 10, we deduce
that zero is stable if we guarantee that an upper-bound on κ is satisfied, i.e. if dedifferentiation does not
cross the threshold defined by the condition a> 0 in (4.99). Medical practice supports this observation
([142], [249]), as discussed in the sequel.

4.8.4 Concluding remarks and numerical experiments

We consider the situation observed in [142, 249], where medical practice shows that cancer cells may
survive to therapy by undergoing dedifferentiation.

A glimpse into the medical experience

In [142], some experiences have been conducted on human non-small cell lung cancer. Their results
suggested that non-stem cancer cells which were targeted through radiotherapy, have protected
themselves by dedifferentiation processes (CSCs are particularly resistant to radiotherapy, see for
example [28, 70]). In [249], an ODE-model was proposed to fit the data of [142]. In a second
time, the experience was renewed by adding some survivin inhibitors (known as YM155), that
undermined dedifferentiation of cancer cells. The therapy efficacy was substantially improved
when YM155 was used along with radiotherapy [249, 142].
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We check the qualitative behavior of our system through some situations that are reflective of those
encountered in [142, 249]. For that purpose, we consider for instance the cell division probability densities
of the forms fi(a) = mi

emiτi−1 emia, with mi > 0, i ∈ In, along with the following functions and parameters:

βi(xi) fi(a) dri λi τi dpi

i = 1 1.11
1+x2

1

10e10a

e10τ1−1 0.112 0.7 1.19 0.27

i = 2 1.4
1+x4

2

10e10a

e10τ2−1 0.37 0.9 1.32 0.33

After simple calculations, we get: s1 = 0.0518 and s2 = 0.2218. Therefore, in the case where
dedifferentiation does not exist (i.e. κ = 0), the origin of the studied model is globally exponentially stable
[81, 8], as illustrated in Figure 4.16-(a). Next, let us assume that at t = 20 days, the dedifferentiation
mechanism is triggered (by setting κ = 0.8 at t = 20 days). In that case, we still have s1 > 0 and s2 > 0,
but, however, we note that the sufficient stability conditions (4.99), in Theorem 10, are not satisfied:

1−2σ1C1−
2σ1λ1C2

1β1(0)
s1

=−4.45, (4.112)

and,

a= s2−κD

[
2σ1λ1C2

1β1(0)
s1

+2σ1C1−1

]
=−3.33. (4.113)

In simulation, we observe that for some initial conditions, the origin of the system (4.97) is not
asymptotically stable, as illustrated in Figure 4.16-(b). More importantly, we can see/prove that the
trajectories converge in this case to a strictly positive steady state, given by x∗1 = 1.47 and x∗2 = 0.66, that
exists even if si > 0 (contrary to the case κ = 0, where zero is the unique steady state). In addition, we
can determine the gain of the dedifferentiation function, which converges to κD(κx∗2) = 0.12, when the
trajectories of the system (4.97) approach the positive steady state. Thus, in this example, the unhealthy
cells prevent themselves from total extinction thanks to their dedifferentiation ability (Figure 4.16 (a)-(b)).

Finally, we notice in Figure 4.16-(c) that for some sufficiently small initial conditions and κ = 0.8,
the dedifferentiation process is not sufficient to avoid the total cell eradication.
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4.9 Conclusion

Let us recall the key points discussed/analyzed throughout this chapter:

❶ A network of regulatory proteins monitor the progression of cells in the cycle at specific check-
points, and some damaged cells may be arrested in G1 or G2 [92]. The cell cycle arrest may also be
induced by chemotherapy, and some hypothesis are advanced to link the cell-cycle arrest with cancer
dormancy.

❷ Different modeling trends have been used to represent the cell cycle. Some of them combine G0

and the proliferating phase in a unique model with infinite duration, while other models include a separated
G0 phase along with a limited/finite proliferating cycle (with or without subdividing the proliferating
phase).

❸ We reconcile some of the early modeling methodologies by taking into account a separated
proliferating compartment of infinite support, in order to include a possible cell arrest, in G1 or G2, for a
minority of cells during their cycle.

❹ The resulting model studied in the first part of the chapter is a nonlinear system with infinite
distributed delays and time-varying parameters. We generalize the stability results of [8, 9], and particularly
the LKF constructions provided in the previous chapter, to analyze the model of interest.

❺ In a second time, we emphasized cell-plasticity features. We introduced a general model for cell
population dynamics involving several dedifferentiation and transdifferentiation (general) functions. Then,
in order to allow analysis, we derived from the general description, a model (with explicit cell-plasticity
functions) for the typical situation where a portion (or, a mutated subpopulation) of any generation of
differentiated progenitor cells4 regresses into an hematopoietic SC proliferating state.

❼ Since anti-cancer therapy aims to eradicate all the malignant cancer cells, we investigated the
stability properties of the origin of the unhealthy model involving cancer cell dedifferentiation. In this
case, we derived a study for a simpler model involving two maturity stages and a dedifferentiation function
from progeny to SCs. We also checked the qualitative behavior of the model and we compared it to some
medical observations that claim that cancer cells protect themselves through dedifferentiation during
anti-cancer therapy.

Much remain to be done in the study of the concepts discussed throughout this chapter. Particularly
the analysis and the interpretation (possibly related to dormancy?) of the positive steady state that occurs
in the model involving dedifferentiation, when the stability conditions of the origin in the model without
dedifferentiation, are satisfied (i.e. Section 4.8.4, Figure 4.16-(b)).

4Belonging for instance, to a specific blood lineage hierarchy as illustrated in Figure 4.13-blue hierarchy.
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The class of coupled differential-difference
systems





Chapter 5

Analysis of a differential-difference model
through Lyapunov-like functionals design

Synopsis. This is an introductory work which opens up the analysis of a class of hematopoietic
systems, described by some differential-difference (or, more generally, descriptor) systems. In fact,
our study is conducted on a model of stem cell population dynamics, recently introduced in the
literature ([4]), that admits two equilibrium points: zero, and, under some conditions on the bio-
logical parameters, a strictly positive steady state. The latter one seems biologically more relevant
([4]).
We revisit the stability properties of the 0-equilibrium by extending the Lyapunov construction of
[4], in order to establish global exponential stability of the trajectories with an estimate on their
rate of convergence.
For the strictly positive steady state, the available analysis in [4] is local, based on the frequency
analysis of the characteristic equation associated to the linear approximation of the model. Here
we discuss the nonlinear analysis of the positive steady state, in the time-domain framework, going
through Lyapunov-like functionals of two types. Firstly, we test an adaptation of a method re-
cently developed for the analysis of quasi-linear time-varying systems via Comparative and Positive
Systems ([196]). Based on the techniques of [196], [124], [206], we get the advantage of deriving
decay conditions for non-positive trajectories of the studied model, through a linear degenerate
Lyapunov-like functional. The second approach that we use for the positive steady state is more
classical, since it is based on the computation of the derivative of a quadratic functional along the
non-positive trajectories of the shifted model whose origin is the strictly positive steady state of
the initial system. Thus, sufficient conditions for regional exponential stability, an estimate of the
decay-rate of the solutions, and a subset of the basin of attraction of the positive steady state, are
then provided. We discuss the complementarity of both approaches and their limits throughout
the chapter.
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5.1 Overview of the chapter

A relevant model has been recently introduced in [8], improving the pioneering model proposed by Mackey
in [180]. The work presented in this chapter is based on this new model, where fast self-renewing dynamics
of hematopoietic stem cells is envisaged. In fact, this description takes into account a sub-population of
cells that remains constantly active in the proliferating compartment.

In this chapter, we highlight the positive system approach as an effective way to establish stability
results for nonlinear time-delay systems. The hematopoietic model that we are interested in can be put in
the form of a differential-difference systems, that can admit two steady states: the 0-equilibrium which
always exists, and a unique strictly positive steady state that may exist under some conditions on the
biological parameters. The model of interest is briefly given in Section 5.2 (the interested reader is invited
to refer to the original work [4] for more details). It has been proven through a Lyapunov functional that
the origin is globally asymptotically stable if it is the unique equilibrium of the model. In Section 5.3, we
are using a slightly different Lyapunov approach to extend the stability known results and thus establish
global exponential stability of the origin, with an estimate of the decay rate of solutions. We recall that
the positivity of the trajectories of the studied model is an asset that makes possible the analysis through
linear Lyapunov functionals [124].

Clearly, linear functions are more convenient for the analysis of positive systems, particularly when
time-delay is involved ([36], [216], [97], [124], [122], [50], [176], [215]), since it avoids painful computa-
tions which goes along with the use, for instance, of quadratic-type functions. Notice that, sometimes,
the suitable quadratic functions are difficult to construct, while linear ones are readily available. This
general observation motivates in fact the axis of fundamental search that aims to develop new ways to
establish stability of non-positive systems, using the tools available for positive ones (see the recent works
[196], [86], [190], [216], [51], [206], [136]). Similar techniques and applications are widely used for the
construction of interval observers, as in [90], [89], [191], [245], [193], [118], and [207].

In light of the above mentioned remarks, the question arose as to whether it was possible to define a
framework to study the stability properties of the strictly positive equilibrium point using a simple linear
(i.e. non quadratic) Lyapunov functionals. We recall that initially the studied model is positive. However,
the trajectories are no longer monotone when it comes to study the shifted version of the model (whose
origin is the positive steady state of the initial one). Therefore, the first step that we perform in Section
5.4.1.1 is the determination of a linear Comparative System ([250]). The origin of the latter obtained
system has the particularity of being globally exponentially stable if it is exponentially stable on only
the positive orthant ([196]). Consequently, in Sections 5.4.1.2 and 5.4.1.3, global decay conditions are
derived via the construction of a suitable linear functional. Exploitation of that study in the case of our
hematopoietic system, together with the feasibility of the global results, are discussed through numerical
applications in Section 5.4.1.4.

Finally, in Section 5.4.2, a more classical study, which is based on the direct analysis of the non-
positive system through a quadratic Lyapunov-like construction, is established. Through this approach,
sufficient conditions for the regional exponential stability are provided, and a subset of the basin of
attraction is formulated in terms of a sub-level of the Lyapunov-like functional. Roughly speaking - and
apart from the conservatism that characterizes Lyapunov methods - we can say that both studies that will
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be presented for the strictly positive steady state appear to be complementary; in the sense that the former
one provides sufficient conditions that are more likely to be satisfied for large state values (see Section
5.4.1.4), while the second approach gives local results, as summarized in Section 5.5.

5.2 Model presentation

The resulting model of interest is a nonlinear differential-difference system, whose piecewise-continuous
trajectories can be bounded or unbounded [4]. Some tools making possible to construct Lyapunov
functionals for some general nonlinear differential-difference equations are available (see, [233], [152],
[121], and the references therein). Notice also that one may rewrite the model equations in the neutral
time-delay framework, in order to take advantage from the existing literature devoted to this field (see
[194, 104]). Even if an equilibrium is known to be asymptotically stable, we still need some explicit
strict Lyapunov functionals for the multiple advantage that they offer (e.g. to establish some robustness
results [218, 187]). Besides the difficulties related to the construction of suitable functionals for nonlinear
time-delay systems, it is generally more difficult to prove stability when trajectories are not uniformly
continuous [203], since Barbalat’s lemma requires uniform continuity of solutions. In fact, almost all
the issues related to stability and robustness can be addressed when a strict Lyapunov functional for the
corresponding system is known.

In light of previous comments, we focus in this chapter on different Lyapunov-based analysis tech-
niques, by developing a study dedicated to the delay differential-difference model of hematopoiesis of
interest. In particular, for the strictly positive steady state, two ways to prove stability of the nonlinear
system are investigated, thereby completing the linear frequency-domain analysis performed in [4]. The
reader is invited to refer to Sections 1-3 in [4] for the complete presentation of the biological model in
Figure 5.1. Here we give its differential-difference version of interest:{

ẋ(t) = −
(
δ +β (x(t))

)
x(t)+2Le−γτu(t− τ),

u(t) = β (x(t))x(t)+2Ke−γτu(t− τ), t > 0,
(5.1)

where we consider that the parameters δ , K, L = 1−K, γ and τ are strictly positive real numbers and
K ∈ (0,1). x represents the total density of resting cells and u is the density of the new proliferating cells.
As usual, the function β is continuous, decreasing and limx→∞ β (x) = 0 ([180]). A unique piecewise
continuous solution (x(t),u(t)) exists for all t ≥ 0, when the system (6.8) is associated with the initial
conditions x(0) ∈ R and ϕu ∈ PC

(
[−τ,0],R

)
, (see [121]). Throughout this work, we assume that the

solutions are piecewise continuous. Moreover, system (6.8) is positive, i.e. the solutions of system (6.8)
associated with positive initial conditions x(0) ∈ R+ and ϕu ∈ PC

(
[−τ,0],R+

)
, are positive. Here, we

consider only the positive solutions of (6.8).
We consider that β is the Hill function of Mackey’s models, i.e.,

β (x) =
β (0)

1+bxn (5.2)

where b, β (0) are strictly positive real numbers, and, n≥ 2. To ease the notation, we define the following
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Fig. 5.1 Schematic representation of blood cells formation.

constants:
K =

1
2

eγτ , (5.3)

µ =
β (0)

δ
, (5.4)

K = (µ +1)K−µ. (5.5)

Notice that K and µ are strictly positive. Finally, we prove for later use the following result:

Lemma 1. The positive solution ϖ(t), for all t ≥ 0, of the perturbed scalar difference equation

ϖ(t) = ξ
†(t)+υϖ(t−h), ξ

†(t)≥ 0, ∀t ≥ 0, (5.6)

associated with a piecewise-continuous positive initial function ϖ(t) = ϕ(t), for t ∈ [−h,0], h > 0,
converges exponentially to zero if: (i) the perturbation ξ †(t) vanishes exponentially to zero, when t→ ∞,
and, (ii) υ ∈ (0,1).

Proof. From (i) it follows that there exist κ1 > 0 and κ2 > 0, such that, ξ †(t)≤ κ1e−κ2t , for all t ≥ 0. Let
us denote ρ(t) = κ1e−κ2t , for all t ≥ 0. We notice that:

ρ(t) = e−κ2h
κ1eκ2(t−h) = κ3ρ(t−h), where κ3 ∈ (0,1) . (5.7)

Therefore, from (5.6) we obtain:

ϖ(t)≤ κ3ρ(t−h)+υϖ(t−h), where, κ3 ∈ (0,1) , and, υ ∈ (0,1) . (5.8)

Let us assume that υ > κ3, without loss of generality1. Now, we introduce the positive constant
κ4 =

κ3
υ−κ3

, and we deduce that:

ϖ(t)+κ4ρ(t)≤υϖ(t−h)+κ3 (1+κ4)ρ(t−h)

=υ
[
ϖ(t−h)+κ4ρ(t−h)

]
.

(5.9)

Since υ ∈ (0,1), we conclude that ϖ(t) converges exponentially to zero.

1Otherwise, if κ3 > υ , we observe that there always exists υ̃ ∈ (κ3,1), such that ϖ(t)≤ κ3ρ(t−h)+ υ̃ϖ(t−h), typically
we select υ̃ = 1−κ3

2 . The remainder of the proof does not change, considering this time υ̃ instead of υ .
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Now we are ready to investigate the stability properties of the model (6.8), starting with its trivial
steady state, and then its positive steady state.

5.3 Stability analysis of the 0-equilibrium

We revisit the 0-equilibrium E0 = (0,0) stability analysis provided in [4], by proving its global exponential
stability. Non-attractivity of E0 when its stability condition is not satisfied can also be deduced from the
Lyapunov functional. The expression of the functional introduced here is slightly different from the one
used in [4], and here we prove exponential stability, with an estimate of the rate of convergence of the
solutions.

Theorem 11. For all
K ∈

(
0,K

)
, (5.10)

i) if the condition
s := K−K > 0, (5.11)

is satisfied, the origin of the system (6.8) is globally exponentially stable.
ii) if

s := K−K < 0, (5.12)

then no positive trajectory converges to the origin of system (6.8).

Remark 28. In fact, when the condition (5.11) is satisfied, the origin is the unique equilibrium point of
system (6.8). This explains why the stability results in Theorem 11 can be global.

Proof. Firstly, we use the following functional:

M
(
x(t),ut

)
= x(t)+

(
µ +1

µ
+ ε

)∫ t

t−τ

u(ℓ)dℓ, (5.13)

where,
ε =− s

2(K−K)µ
. (5.14)

Notice that, since K ∈ (0,K), then ε < 0 when (5.11) is satisfied and ε > 0 when (5.12) holds.
We start by proving ii). Let us proceed by contradiction. We assume that the condition (5.12) is

satisfied and a positive solution (x(t),u(t)) converges to the origin.
Since ε > 0, the functional M is positive on the positive orthant. Moreover, its derivative along the

trajectories of (6.8) is

Ṁ (t) =

[
−δ +

(
µ +1

µ
+ ε−1

)
β (x(t))

]
x(t)

+

[
− µ +1

µ
− ε +

(
µ +1

µ
+ ε

)
K
K
+

1−K
K

]
u(t− τ).

(5.15)



138 Analysis of a differential-difference model through Lyapunov-like functionals design

On the other hand, from (5.4), we notice that

−δ +

(
µ +1

µ
+ ε−1

)
β (0) =εβ (0)> 0. (5.16)

Since x(t) converges to zero, and β is continuous and decreasing, we conclude that there exists a time
instant t1 > 0, such that for all t ≥ t1,

−δ +

(
µ +1

µ
+ ε−1

)
β (x(t))≥εβ (0)

2
> 0. (5.17)

It follows from (5.15) and (5.17) that for all t ≥ t1,

Ṁ (t)≥εβ (0)
2

x(t)+
1

µK

[
− (µ +1)K +µ +K + εµ(K−K)

]
u(t− τ).

Since s = (µ +1)K−µ−K, the previous inequality rewrites as

Ṁ (t)≥εβ (0)
2

x(t)+
1

µK

[
−s+ εµ(K−K)

]
u(t− τ)

=
εβ (0)

2
x(t)− s

2µK
u(t− τ),

where the last equality is a consequence of (5.14). Since s < 0 and ε > 0, we conclude that for all t ≥ t1,
Ṁ (t)≥ 0. It follows that

M (x(t),ut)≥M (x(t1),ut1)> 0. (5.18)

Therefore, M does not converge to zero when t goes to +∞. On the other hand, M converges to zero
since

(
x(t),u(t)

)
converges to the origin. This yields a contradiction.

Next, let us prove i). We consider the case where the inequality (5.11) is satisfied. An immediate
consequence is that ε < 0. First, to ensure that the functional M is positive on the positive orthant, let us
check that µ+1

µ
+ ε > 0. From the definitions of ε and s, we get

µ +1
µ

+ ε =
2
[
(µ +1)K−µK

]
−2K− s

2(K−K)µ
. (5.19)

Since K ∈ (0,1), we deduce that

(µ +1)K−µK > (µ +1)K−µ = K.

It follows that

µ +1
µ

+ ε >
2(K−K)− s
2(K−K)µ

=
s

2(K−K)µ
> 0. (5.20)
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Consequently, the functional M is nonnegative. Moreover, its derivative along the trajectories of (6.8)
satisfies

Ṁ (t) =

[
−δ +

(
µ +1

µ
+ ε−1

)
β (x(t))

]
x(t)− s

2µK
u(t− τ)

≤

[
−δ +

(
µ +1

µ
−1
)

β (0)

]
x(t)+ εβ (x(t))x(t)− s

2µK
u(t− τ)

=εβ (x(t))x(t)− s
2µK

u(t− τ),

(5.21)

where the last equality is a consequence of (5.4). By integrating (5.21), we get, for all t ≥ 0,

M (x(t),ut)≤M (x(0),ϕu)+ ε

∫ t

0
β (x(m))x(m)dm− s

2µK

∫ t

0
u(m− τ)dm. (5.22)

Since ε < 0 and s > 0, it follows from (5.13) and (5.22) that for all t ≥ 0, the trajectory x(t) is upper
bounded by a strictly positive constant xb.

In order to complete the proof, let us introduce the following functional:

W
(
x(t),ut

)
=M

(
x(t),ut

)
−ψ

∫ t

t−τ

u(ℓ)dℓ+ ψ̃

∫ t

t−τ

∫ t

m
eℓ−tu(ℓ)dℓdm, (5.23)

where ψ and ψ̃ are positive real numbers to be selected later. From (5.20), observe that if we choose

ψ = min

{
s

4(K−K)µ
,

s
2µK

}
, (5.24)

then the functional W is nonnegative and its derivative along the trajectories of (6.8) is:

Ẇ (t) =Ṁ (t)−ψ
[
u(t)−u(t− τ)

]
+ ψ̃

[
−
∫ t

t−τ

eℓ−tu(ℓ)dℓ+ τu(t)
]
− ψ̃

∫ t

t−τ

∫ t

m
eℓ−tu(ℓ)dℓdm.

By selecting ψ̃ = ψ

τ
, we obtain

Ẇ (t) =Ṁ (t)+ψu(t− τ)− ψ̃

∫ t

t−τ

eℓ−tu(ℓ)dℓ− ψ̃

∫ t

t−τ

∫ t

m
eℓ−tu(ℓ)dℓdm

≤Ṁ (t)+ψu(t− τ)− ψ̃e−τ

∫ t

t−τ

u(ℓ)dℓ− ψ̃

∫ t

t−τ

∫ t

m
eℓ−tu(ℓ)dℓdm.

(5.25)

Then from (5.21) and (5.25), we deduce that

Ẇ (t)≤εβ (x(t))x(t)−

[
s

2µK
−ψ

]
u(t− τ)− ψ̃e−τ

∫ t

t−τ

u(ℓ)dℓ− ψ̃

∫ t

t−τ

∫ t

m
el−tu(ℓ)dℓdm

≤εβ (x(t))x(t)− ψ̃e−τ

∫ t

t−τ

u(ℓ)dℓ− ψ̃

∫ t

t−τ

∫ t

m
eℓ−tu(ℓ)dℓdm,

(5.26)
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where the last inequality is a consequence of (5.24). Therefore, by combining the facts that ε < 0, β is a
continuous decreasing function and x(t) is upper bounded by xb > 0, for all t ≥ 0, we deduce that

Ẇ (t)≤εβ (xb)x(t)− ψ̃e−τ

∫ t

t−τ

u(ℓ)dℓ− ψ̃

∫ t

t−τ

∫ t

m
el−tu(ℓ)dℓdm. (5.27)

Finally, we conclude that there exists a strictly positive s̃, such that

Ẇ (t)≤−s̃W
(
x(t),ut

)
. (5.28)

We deduce that,
W
(
x(t),ut

)
≤ e−s̃tW

(
x(0),ϕu

)
, (5.29)

for all t ≥ 0. Therefore,
x(t)≤ e−s̃tW

(
x(0),ϕu

)
, (5.30)

for all t ≥ 0. It follows that x converges exponentially to zero. Consequently, using Lemma 1, we notice
form the second equation in (6.8), that u converges exponentially to zero, since the condition (5.10)
implies that 2Ke−γτ < 1.

Remark 29. Theorem 11 gives a necessary and sufficient condition for the exponential stability of the
trivial steady state when K ∈

(
0,K

)
(Eq. (5.10)). In the case where K ≥ 1, it follows that Theorem 11 can

be used to address the stability of the system for all the possible K values, i.e. for all K ∈ (0,1). However,
we notice that if K < 1, then the conditions (5.11) and (5.12) give stability/instability conditions only for
K ∈ (0,K). In order to complete the analysis (i.e. to establish the stability conditions for all the possible
K values), we show that if K ≤ 1, then no positive trajectory converges to the origin for all K ∈ (K,1), by
similar arguments as in ii) in Theorem 11. For that, we can consider the functional M , defined in (5.15)
where now ε is in fact any strictly positive constant. Moreover, notice that K > K implies that 2Ke−γτ > 1.
Therefore, using the second equation in (6.8), one notices that in this case system (6.8) has unbounded
solutions (see [4]).

Example 7. Let us define the following biological parameters:

β (x) γ τ δ K
β (0)
1+x3 0.4 1 1 0.2

Case 1: Let us select β (0) = 2. It follows that K = 0.2377. and s = 0.0377. Then, according to
Theorem 11, the origin E0 = (0,0) is the unique equilibrium point and it is globally exponentially stable.

Case 2: Now we assume that β (0) = 4. After simple calculations we find that s = −0.4704. We
deduce, according to Theorem 11, that the origin E0 = (0,0) is not attractive.

In fact, this system has a stable strictly positive steady state E = (xe,ue), where xe = 0.9516 and
ũe = 2.7936, that seems asymptotically stable. In fact, the system illustrated in Case. 2 (Figure 5.3)
provides an opening example for the study of the positive steady state in the sequel.



5.4 Analysis of the positive steady state 141

Time (s)
0 10 20 30 40 50 60 70 80 90 100

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
 

 x(t)

 u(t)

Fig. 5.2 The trajectories x(t) and u(t) for the parameters in Case 1.
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Fig. 5.3 The trajectories x(t) and u(t) for the parameters in Case 2.

5.4 Analysis of the positive steady state

Contrary to the trivial equilibrium E0 = (0,0) studied in the previous part, the strictly positive steady
state E = (xe,ue), where xe > 0 and ue > 0, does not always exist. In this section, first, we recall from
[4] the conditions for its existence, then we investigate its stability properties by two Lyapunov-based
approaches. The first one is inspired from [196] and uses the notions of Comparative Systems [250] and
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linear Lyapunov-like functionals ([124], [122]). On the other hand, the second analysis is more classical,
since it is performed through quadratic functionals directly defined along the model trajectories.

It is worth mentioning that in order to analyze the stability of the positive equilibrium, the authors in [4]
developed a method which consists in writing the model (6.8) as a special case of a neutral differential
system, then they investigated the local stability properties of the linear approximation of the neutral
system by a frequency approach. The latter procedure assumes continuity of the solutions and provides a
local result on the linear approximation. The results that we discuss here are complementary with those
already provided, since we focus on the nonlinear behavior.

Existence of a strictly positive equilibrium point

If a positive equilibrium E = (xe,ue) exists, then it satisfies:{
(δ +β (xe))xe = 2Le−γτue,

β (xe)xe = (1−2Keγτ)ue.
(5.31)

From the second equation in (5.31), it follows that

ue =
K

K−K
β (xe)xe. (5.32)

From the previous equation, observe that the existence of E implies that necessarily K <K. By substituting
ue in the first equation in (5.31), and since xe is not zero, we get(

1−K
K−K

)
β (xe) = δ .

Since δ > 0 and K < K, we deduce that
K < 1. (5.33)

Since β is continuous, decreasing and lima→∞ β (a) = 0, it follows from (5.32) that the existence and
uniqueness of E are guaranteed by

1−K
K−K

>
1
µ
.

Since 1−K > 0, K−K > 0 and K = (µ +1)K−µ , the previous inequality is equivalent to

K < K. (5.34)

We conclude that the condition K ∈ (K,K) is necessary for the existence of E. This statement justifies what
we have mentioned in Remark 1. We can easily check that if (5.33) holds, then K < K, and consequently
E may exist. Next, since K may be positive or negative, and using the fact that K > 0, we conclude that
we have proved the following:
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Proposition 4. A unique strictly positive steady state E = (xe,ue) exists if and only if the conditions:

0 < K < K <
µ

µ +1
, (5.35)

or,
0 < K < K < K < 1, (5.36)

are satisfied.

Remark 30. In the previous statement, the uniqueness concerns the existence of the positive equilibrium
E. We recall that the 0-equilibrium of system (6.8) always exists.

A new representation of the system

In the sequel, we assume that the positive equilibrium E exists. First, the changes of coordinates, x̃ = x−xe

and ũ = u−ue, give{
˙̃x(t) = −

(
δ +β (x̃(t)+ xe)

)
(x̃(t)+ xe)+2Le−γτ(ũ(t− τ)+ue),

ũ(t) = −ue +β (x̃(t)+ xe)(x̃(t)+ xe)+2Ke−γτ(ũ(t− τ)+ue), t > 0,
(5.37)

or, equivalently,{
˙̃x(t) = −δ x̃(t)−β (x̃(t)+ xe)(x̃(t)+ xe)+2Le−γτ ũ(t− τ)−δxe +2Le−γτue,

ũ(t) = β (x̃(t)+ xe)(x̃(t)+ xe)+2Ke−γτ ũ(t− τ)+(2Ke−γτ −1)ue, t > 0.
(5.38)

Analyzing the stability properties of the origin of (5.38) seems to be a difficult task. Therefore, we write
the model (5.38) in an equivalent form that eases its analysis. Using the Taylor formula, we can write,
with an abuse of notation,

β (z+ xe)(z+ xe) = β (xe)xe +θz+ I(z), (5.39)

where,
θ = β (xe)+β

′(xe)xe, (5.40)

and,

I(z) =
∫ xe+z

xe

(z+ xe− l) θ̃(ℓ)dℓ, (5.41)

where, θ̃(z) =
[
β (z)z

](2). We deduce that for all t > 0, the system (5.38) is equivalent to{
˙̃x(t) = −δ x̃(t)−β (xe)xe−θ x̃(t)− I(x̃(t))+2Le−γτ ũ(t− τ)−δxe +2Le−γτue,

ũ(t) = β (xe)xe +θ x̃(t)+ I(x̃(t))+2Ke−γτ ũ(t− τ)+(2Ke−γτ −1)ue.
(5.42)

Using (5.31), we get for all t > 0,{
˙̃x(t) = −(δ +θ) x̃(t)− I(x̃(t))+2Le−γτ ũ(t− τ),

ũ(t) = θ x̃(t)+ I(x̃(t))+2Ke−γτ ũ(t− τ).
(5.43)
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Due to the shifting of the initial system coordinates, we notice that the trajectories x̃ and ũ of system (5.43)
are no longer positive. More precisely, we have, x̃ >−xe, and, ũ >−ue, where xe > 0 and ue > 0, when
Proposition 4 is satisfied.

In the analysis of the nonlinear system (5.43), we need to prove that the typical nonlinear term I (x̃)
satisfies a kind of sector-condition, that is given by:

Claim 2. For all xe > 0 and x̃ >−xe, there exist two strictly positive constants z1 and z2, such that

|I(x̃)| ≤ z1Q(x̃), and, |I(x̃)| ≤ z2|x̃|. (5.44)

A possible selection of z1 and z2 is:
z1 = 2c4β (0), (5.45)

z2 = β (0)max
{
c4,2max{b,b−1}+ |c1|

}
, (5.46)

where, Q(m) = 1
2 m2, and, c1 = 1

h −
nbxn

e
h2 , c2 = xe, c3 =

(
1− nbxn

e
h

)
, h = 1+bxn

e , and,

c4 =
nb(n−1)(1+b(2xe)

n)
(
|c2|+ |c3|

)
max

{
b,b−1

}
2h

+
nbxn−1

e
(
1+b(2xe)

n
)
|c3|

h2 .

Proof. The first part of this proof (to determine z1) is identical to the one presented in Chapter 3. Here we
recall the main steps that allow us to determine the constant z2. So, using the expression of β , which is
given in (6.1), we observe that for all xe > 0 and z>−xe,

I(z) = β (0)G(z)−θz (5.47)

where G(z) = z+xe
1+b(z+xe)n − xe

1+bxn
e
. First of all, let us study the function:

ρ(z) =
1

1+b(z+ xe)n −
1

1+bxn
e
=

b
[
xn

e− (z+ xe)
n
]

p(z)
, where, p(z) =

[
1+b(z+ xe)

n](1+bxn
e).

Thanks to the formula (z+ xe)
n− xn

e = nxn−1
e z+n

∫ z
0
∫ xe+l

xe
(n−1)mn−2dmdl, it follows that,

ρ(z) =−nbxn−1
e

p(z)
z+C(z). (5.48)

where C(z)=−nb(n−1)
p(z)

∫ z
0
∫ l

0(m+xe)
n−2dmdl. Let us denote h= 1+bxn

e , and observe that 1
p(z) =

1
h

(
ρ(z)+ 1

h

)
.

Therefore, we obtain, ρ(z) =−nbxn−1
e

(
ρ(z)

h + 1
h2

)
z+C(z).

Consequently, we get the intermediate result:

ρ(z) =−nbxn−1
e

h2 z+C(z)− nbxn−1
e

h
ρ(z)z. (5.49)
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On the other hand, observe that

G(z) =

(
ρ(z)+

1
h

)
z+ xeρ(z) = c1z+ c2C(z)+ c3ρ(z)z, (5.50)

where the last equality is a direct consequence of (5.49), and the constants c1, c2, and, c3 are those provided
in the statement of Claim 2. Now, we readily check that

∣∣C(z)∣∣≤ nb(n−1)
p(z)

(|z|+ xe)
n−2 z

2

2
. (5.51)

From (5.48) we deduce that
∣∣ρ(z)∣∣≤ nbxn−1

e
p(z) |z|+ |C(z)|. Using (5.51), it follows that

∣∣zρ(z)∣∣≤ nbxn−1
e

p(z)
z2 +

nb(n−1)
2p(z)

(|z|+ xe)
n−2 |z|3. (5.52)

From the second equality in (5.50), we deduce that,

|G(z)− c1z| ≤
nb(n−1)|c3|

2p(z)
(|z|+ xe)

n−2 |z|3 +

[
nb(n−1)|c2|(|z|+ xe)

n−2

2p(z)
+

nbxn−1
e |c3|
p(z)

]
z2.

Through simple calculations (see in Chapter 3), we find that

|G(z)− c1z| ≤ c4z
2, (5.53)

where c4 is the positive constant defined in the statement of the Claim 2. On the other hand, we easily
check that θ = β (0)c1, where θ is the constant defined in (5.40). Therefore, by combining (5.47) and
(5.53), we obtain

|I(z)| ≤ β (0)c4z2, (5.54)

We conclude that z1 = 2c4β (0), since by definition, Q(ℓ) = 1
2ℓ

2.
Now, we wish to determine z2. From (5.53), we have |G(z)−c1z|

|z| ≤ c4|z|. Then,

• if |z| ≤ 1, we get |G(z)−c1z|
|z| ≤ c4, and,

• if |z|> 1, we get |G(z)−c1z|
|z| ≤ |c1|+ 2max{b,b−1}

|z| ≤ |c1|+2max{b,b−1}.

We conclude that for all z>−xe, we have |G(z)−c1z|
|z| ≤max

{
c4,2max{b,b−1}+ |c1|

}
.

From (5.47), we conclude that
|I(z)| ≤ z2|z|, (5.55)

where, z2 = β (0)max
{
c4,2max{b,b−1}+ |c1|

}
.

Now, we are ready to analyze the resulting model (5.43), for which we are going to highlight two
different approaches. The method that we left for the end is more traditional, through quadratic Lyapunov-
like constructions. While the technique that we address right after the present section is based on more
recent concepts, including Comparative (Positive) Systems and linear Lyapunov functionals.
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5.4.1 Stability analysis through a Comparative Positive System approach

The technique that we investigate here (recently presented in [196], see also the references therein) starts
with the original step of representing the nonlinear system (5.43) as a linear time-varying system. Notice
that both classes of systems, i.e., nonlinear and time-varying ones, are beyond the scope of classical
frequency methods. However, Lyapunov techniques offer strong tools for performing their analyses.

5.4.1.1 Obtaining a Comparative System of higher dimension

We are looking for a Comparative System which enables us -from the analysis of its origin- to establish
the exponential stability of the zero solution of the model given in (5.43). Therefore, using Claim 2, we
notice that the function J(x̃) = I(x̃)/x̃ is bounded on (−xe,+∞). More precisely, we have∣∣J(x̃)∣∣< z2, for all x̃ ∈ (−xe,∞) , and, xe > 0. (5.56)

Moreover, we take a specific well-defined non-zero trajectory x̃0(t), of the system (5.43), for all t ≥ 0,
and we set:

J(t) := I(x̃0(t))/x̃0(t), for all t ≥−τ. (5.57)

The notation (5.57) implies that the model (5.43) is rewritten as a linear time-varying system of the form:{
˙̃x(t) = −

(
δ +θ + J(t)

)
x̃(t)+2Le−γτ ũ(t− τ),

ũ(t) =
(
θ + J(t)

)
x̃(t)+2Ke−γτ ũ(t− τ), t > 0.

(5.58)

Remark 31. The notation (5.57) is a manner of concealing the nonlinear part of the dynamical
system (5.43). This will be beneficial in a first time, since it allows us to obtain a linear time-
varying Comparative System, from which decay conditions can be derived. To be relevant, the
decay conditions provided for the model (5.58) have to be independent from the choice of the
fixed trajectory x0(t) in the model (5.43), i.e., stability conditions have to be valid for all the
system trajectories. The latter issue will be discussed in the sequel, when decay conditions will
be provided. It seems clear that an analysis approach that omits the particular nature of the
nonlinear terms (i.e. I defined in (5.41)) may lead to more conservatism in the stability conditions,
than a dedicated approach which takes into account the model features. The latter observation
applies also to the assertion in Claim 2, where the constants z1 and z2 are determined, globally,
for all x̃≥−xe. However, we can notice that by exploiting the nature of the nonlinear term I, the
constants z1 and z2 can be considerably improved over a large part of the domain of definition,
where they are smaller than the global values. This will have a direct impact on the conservatism
of the obtained decay conditions. Hence, in the second phase that follows the determination of the
decay conditions for the time-varying system (5.58), the above mentioned remarks will be taken
into account in order to provide a more refined analysis dedicated to the system (5.43).



5.4 Analysis of the positive steady state 147

Now, along the trajectories of the system (5.43), we define the following operator for all t ≥ 0,

ξ (t) = x̃(t)+α

∫ t

t−τ

ũ(ℓ)dℓ, (5.59)

where α is a positive constant to be chosen later. Next, observe that the derivative of ξ (t), along the
trajectories of the time-varying system (5.58), is given by

ξ̇ (t) =−
[
δ +(1−α)

(
θ + J(t)

)]
x̃(t)+

[
α(2Ke−γτ −1)+2Le−γτ

]
ũ(t− τ). (5.60)

Using the equality x̃(t) = ξ (t)−α
∫ t

t−τ
u(ℓ)dℓ, we get

ξ̇ (t) =−
[
δ +(1−α)

(
θ + J(t)

)]
ξ (t)+α

[
δ +(1−α)

(
θ + J(t)

)]∫ t

t−τ

ũ(ℓ)dℓ

+
[
α(2Ke−γτ −1)+2Le−γτ

]
ũ(t− τ) .

(5.61)

Then, we fix the value of α to the constant that we denote in the sequel α0, where, α0 =
2Le−γτ

1−2Ke−γτ > 0. It
follows that we can rewrite:

ξ̇ (t) =−A(t)ξ (t)+α0A(t)
∫ t

t−τ

ũ(ℓ)dℓ, (5.62)

where,
A(t) = δ +(1−α0)

(
θ + J(t)

)
.

To ease the notation, we put B(t) = θ + J(t). Therefore, for all t > 0, we rewrite the system equations in
the following compact form:

ξ̇ (t) = −A(t)ξ (t)+α0A(t)
∫ t

t−τ
ũ(ℓ)dℓ,

x̃(t) = ξ (t)−α0
∫ t

t−τ
ũ(ℓ)dℓ,

ũ(t) = B(t)x̃(t)+2Ke−γτ ũ(t− τ).

(5.63)

In addition, we use the following decomposition: A(t) = A(t)−A(t), B(t) = B(t)−B(t), where, for all
t ≥ 0, A(t)≥ 0, A(t)≥ 0, B(t)≥ 0 and B(t)≥ 0. Consequently, the system (5.63) is equivalent to

ξ̇ (t) = −A(t)ξ (t)+α0A(t)
∫ t

t−τ
ũ(l)dl−α0A(t)

∫ t
t−τ

ũ(ℓ)dℓ,
x̃(t) = ξ (t)−α0

∫ t
t−τ

ũ(ℓ)dℓ,
ũ(t) = B(t)x̃(t)−B(t)x̃(t)+2Ke−γτ ũ(t− τ), t > 0.

(5.64)

The latter form is equivalent to:
ξ̇ (t) =−A(t)ξ (t)+α0A(t)

∫ t
t−τ

ũ(l)dl−α0A(t)
∫ t

t−τ
ũ(ℓ)dℓ,

˙̃x(t) =−A(t)ξ (t)+α0A(t)
∫ t

t−τ
ũ(l)dl−α0A(t)

∫ t
t−τ

ũ(ℓ)dℓ−α0ũ(t)+α0ũ(t− τ),

ũ(t) = B(t)x̃(t)−B(t)x̃(t)+2Ke−γτ ũ(t− τ), t > 0.

(5.65)
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Technical Note 2. At this juncture, let us point out the following assertions:
(i) If all the solutions of (5.65) with initial conditions satisfying the matching condition

ϕx̃(0) = ϕξ (0)+α0

∫ 0

−τ

ϕũ(ℓ)dℓ, where, ϕũ ∈ PC
(
[−τ,0] ,(−ũe,+∞)

)
, (5.66)

converge exponentially to zero, then the solutions of (5.58) converge exponentially to the origin,
i.e. to the positive steady state E of the non-shifted system (6.8).
(ii) Notice that, in (i), we require the condition (5.66) in order to match the trajectories of (5.65)
to those of (5.58), otherwise we cannot concludea. On the other hand, the matching condition that
ensures the continuity of the solutions in (5.58) (and therefore, in (5.65)), i.e. the condition:

ϕũ(0) = B(0)ϕx̃(0)+2Ke−γτ
ϕũ(−τ), (5.67)

is not required, i.e., the models (5.58) and (5.65) have piecewise continuous solutions.
(iii) The solution x̃(t) explicitly intervenes in the model (5.65), through the terms A and B. Hence,
it will be possible to conclude on the stability of the origin of (5.65) (and, therefore, of (5.58))
if and only if the decay conditions, and the expression of the decay rate, of the solutions will be
determined independently b from the specific J(t).

aA counter-example: let us consider the zero initial condition ϕx̃(0) = 0, ϕũ(m) = 0, for all m ∈ [−τ,0], for the
systems (5.58) and (5.65), while we set ϕξ (0)> 0 in (5.65), i.e. the matching condition is not satisfied. We notice that
if for all t ≥ 0, A(t)< 0, then the solutions of the model (5.58) are identically zero for all t ≥ 0, but this does not hold
for the components

(
x̃(t), ũ(t)

)
of the solution of (5.65).

bFor that, the inequality (5.56) is crucial, since it gives an upper-bound on J regardless the specific trajectory x0(t)
used to define A(t) and B(t) in (5.65).

Next, our objective is to investigate the stability properties of the resulting system (5.64), which is
equivalent to (5.65). For that purpose, we use an approach that doubles the dimension of the system, as in
[206] (see also, [196], [122]). More precisely, we consider the following system:

ξ̇ (t) = −A(t)ξ (t)+α0A(t)
∫ t

t−τ
ũ(ℓ)dℓ+α0A(t)

∫ t
t−τ

ỹ(ℓ)dℓ,
x̃(t) = ξ (t)+α0

∫ t
t−τ

ỹ(ℓ)dℓ,
ũ(t) = B(t)x̃(t)+B(t)z̃(t)+2Ke−γτ ũ(t− τ),

ψ̇(t) = −A(t)ψ(t)+α0A(t)
∫ t

t−τ
ỹ(l)dl +α0A(t)

∫ t
t−τ

ũ(ℓ)dℓ,
z̃(t) = ψ(t)+α0

∫ t
t−τ

ũ(ℓ)dℓ,
ỹ(t) = B(t)z̃(t)+B(t)x̃(t)+2Ke−γτ ỹ(t− τ),

(5.68)

for all t > 0, which is associated with the matching conditions,

ϕx̃(0) =ϕξ (0)+α0

∫ 0

−τ

ϕỹ(ℓ)dℓ,

ϕz̃(0) =ϕψ(0)+α0

∫ 0

−τ

ϕũ(ℓ)dℓ.
(5.69)



5.4 Analysis of the positive steady state 149

5.4.1.2 Analyzing the Comparative System via a linear Lyapunov functional

For later use, let us check the following feature regarding the system (5.68).

Proposition 5. For strictly positive initial conditions, i.e., ϕξ (0)∈R+, ϕx̃(0)∈R+, ϕψ(0)∈R+, ϕz̃(0)∈
R+, ϕũ ∈ PC

(
[−τ,0] ,R+

)
, and, ϕỹ ∈ PC

(
[−τ,0] ,R+

)
, the trajectories of the system (5.68) remain

strictly positive for all future time t ≥ 0.

Proof. We want to prove that the solutions of (5.68) associated with strictly positive initial conditions are
strictly positive. Let us give a brief proof, by contradiction, for each component of the trajectories. First,
we consider that all the initial conditions are positive. Then,

• We assume that ξ (t)> 0 for all t ∈ [0, t1[, and that ξ (t1) = 0, while all the other components of the
trajectories are positive for all t ≤ t1. It follows from the first equation in (5.68) that

ξ̇ (t1) = α0A(t1)
∫ t1

t1−τ

ũ(ℓ)dℓ+α0A(t1)
∫ t1

t1−τ

ỹ(ℓ)dℓ > 0, (5.70)

which contradicts the fact that ξ (t)> 0 for all t ∈ [0, t1[. Therefore, ξ (t1)> 0.

• We assume that x̃(t) > 0 for all t ∈ [0, t1[, and that x̃(t1) = 0; all the other components of the
trajectories are positive for all t ≤ t1. It follows from the second equation in (5.68) that

α0

∫ t1

t1−τ

ỹ(ℓ)dℓ=−ξ (t1)< 0, (5.71)

which contradicts the positivity of ỹ(t) for all t ≤ t1. Therefore, x̃(t1)> 0.

• We assume that ũ(t) > 0 for all t ∈ [0, t1[, and that ũ(t1) = 0; all the other components of the
trajectories are positive for all t ≤ t1. It follows from the third equation in (5.68) that

B(t1)z̃(t1)+2Ke−γτ ũ(t1− τ) =−B(t1)x̃(t1)< 0, (5.72)

which contradicts the ũ(t) for all t < t1. Arguing similarly for ψ , z̃, and ỹ, we prove that all the
trajectories are positive when (5.68) is associated with positive initial conditions.

Remark 32. (i) Similarly to Proposition 5, we can prove that the system (5.68) is negative, i.e.,
for negative initial conditions, the trajectories remain negative. More importantly, we highlight
the fact that the proof of the positivity does not rely on the choice of the specific trajectory used to
determine J(t) in (5.58).
(ii) The second relevant feature to be pointed out for the higher dimensional system (5.68) is that if(

ξ , x̃, ũ
)

is a solution of (5.64), then automatically
(
ξ , x̃, ũ,−ξ ,−x̃,−ũ

)
is a solution of (5.68). A

direct consequence is that if all the solutions of (5.68) -that satisfy the matching conditions (5.69)-
converge to the origin, then all the solutions of (5.64) converge to the origin too.
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Another key idea needs to be formulated before being able to apply the positive approach in the
stability analysis of (5.68). Indeed, as discussed for the system studied in [196] (Section IV. Step 2), the
linearity and the positivity of the Comparative System (5.68) ensure that its origin is globally exponentially
stable if it is globally exponentially stable only on the positive orthant.

5.4.1.3 Sufficient decay conditions for global exponential stability

In this section, we consider only positive solutions of the Comparative System (5.68). This fact allows us
to reduce the stability analysis to a system of lower dimension. Indeed, now we set X1 = ξ +ψ , X2 = x̃+ z̃,
and, X3 = ũ+ ỹ. Then (5.68) gives

Ẋ1(t) = A(t)X1(t)+α0As(t)
∫ t

t−τ
X3(l)dl,

X2(t) = X1(t)+α0
∫ t

t−τ
X3(l)dl,

X3(t) = Bs(t)X2(t)+2Ke−γτX3(t− τ),

(5.73)

where, As = A+A ∈ [0,S). Therefore, we notice that (5.73) yields{
Ẋ1(t) = A(t)X1(t)+α0As(t)

∫ t
t−τ

X3(ℓ)dℓ,
X3(t) = Bs(t)X1(t)+α0Bs(t)

∫ t
t−τ

X3(ℓ)dℓ+2Ke−γτX3(t− τ),
(5.74)

Let us introduce the following linear functional:

W
(
X1(t),X3t

)
= X1(t)+σ1

∫ t

t−τ

X3(m)dm+σ2

∫ t

t−τ

∫ t

m
eσ3(ℓ−t)X3(ℓ)dℓdm,

where σ1, σ2, and, σ3, are strictly positive constants to be selected later.
The derivative of the functional W , along the trajectories of (5.74), is given for almost all t ≥ 0, by:

Ẇ (t) =A(t)X1(t)+α0As(t)
∫ t

t−τ

X3(ℓ)dℓ+σ1
[
X3(t)−X3(t− τ)

]
+σ2

[
τX3(t)−

∫ t

t−τ

eσ3(ℓ−t)X3(ℓ)dℓ−σ3

∫ t

t−τ

∫ t

m
eσ3(ℓ−t)X3(ℓ)dℓdm

]
=A(t)X1(t)+α0As(t)

∫ t

t−τ

X3(ℓ)dℓ+(σ1 + τσ2)X3(t)−σ1X3(t− τ)

−σ2

∫ t

t−τ

eσ3(ℓ−t)X3(ℓ)dℓ−σ2σ3

∫ t

t−τ

∫ t

m
eσ3(ℓ−t)X3(ℓ)dℓdm.

(5.75)

Thanks to the second equation in (5.74), we get for almost all t ≥ 0,

Ẇ (t) =Γ(t)X1(t)+α0As(t)+α0
[
As(t)+(σ1 + τσ2)Bs(t)

]∫ t

t−τ

X3(ℓ)dℓ

−σ2

∫ t

t−τ

eσ3(ℓ−t)X3(ℓ)dℓ−
[
σ1−2Ke−γτ (σ1 + τσ2)

]
X3(t− τ)

−σ2σ3

∫ t

t−τ

∫ t

m
eσ3(ℓ−t)X3(ℓ)dℓdm,

(5.76)



5.4 Analysis of the positive steady state 151

where,
Γ(t) =−A(t)+(σ1 + τσ2)Bs(t), for all t ≥ 0. (5.77)

Using the fact that ∫ t

t−τ

eρ(ℓ−t)X3(ℓ)dℓ≥ e−ρτ

∫ t

t−τ

X3(ℓ)dℓ, (5.78)

for all t ≥ 0, we deduce that for almost all t ≥ 0,

Ẇ (t)≤Γ(t)X1(t)−
[
σ2e−σ3τ −α0

(
As(t)+(σ1 + τσ2)Bs(t)

)]∫ t

t−τ

X3(ℓ)dℓ

+σ1

[
2Ke−γτ

(
1+

σ2τ

σ1

)
−1

]
X3(t− τ)−σ2σ3

∫ t

t−τ

∫ t

m
eσ3(ℓ−t)X3(ℓ)dℓdm.

(5.79)

Now, let us choose,

σ2 =
σ2

1
τ
. (5.80)

It follows that 2
(

1+ σ2τ

σ1

)
Ke−γτ −1 = 2(1+σ1)Ke−γτ − 1. Therefore, since 2Ke−γτ < 1, we deduce

that for all σ1 ∈
(

0, 1−2Ke−γτ

4Ke−γτ

)
, we get,

2(1+σ1)Ke−γτ −1 <
2Ke−γτ −1

2
< 0. (5.81)

Therefore, we observe that by choosing σ2 =
σ2

1
τ

, and σ1 ∈
(

0, 1−2Ke−γτ

4Ke−γτ

)
, then the derivative of W along

the trajectories of (5.74), satisfies,

Ẇ (t)≤Γ(t)X1(t)−
[
σ2e−σ3τ −α0

(
As(t)+(σ1 + τσ2)Bs(t)

)]∫ t

t−τ

X3(ℓ)dℓ

−σ2σ3

∫ t

t−τ

∫ t

m
eσ3(ℓ−t)X3(ℓ)dℓdm, for almost all t ≥ 0.

(5.82)

A condition on the delay: We recall that J(t) = J(x̃0(t))≤ z2, for all t ≥−τ , x̃0 ∈ (−xe,+∞). Now,
let S > 0 be such that As(t)< S, for all t ≥ 0, and set,

h(τ) =
α0τ

σ2
1

[
S+σ1 (σ1 +1)(|θ |+ z2)

]
. (5.83)

It follows that if the delay τ satisfies the condition

h(τ)< 1, (5.84)

then, for a small enough σ3 > 0, we readily check2 that there exists σ4 > 0 satisfying,

σ2e−σ3τ −α0
[
As(t)+(σ1 +σ2τ)Bs(t)

]
= σ4 > 0. (5.85)

2The condition (5.84) means that 1−α0σ2

[
S+σ1 (σ1 +1)

(
|θ |+ z2

)]
> 0. Therefore, for small enough σ3, we have

e−σ3τ −α0σ2

[
S+σ1 (σ1 +1)

(
|θ |+ z2

)]
> 0.
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Therefore, if the first decay condition (5.84) is satisfied, then we end up with,

Ẇ (t)≤Γ(t)X1(t)−σ4

∫ t

t−τ

X3(ℓ)dℓ−σ2σ3

∫ t

t−τ

∫ t

m
eσ3(ℓ−t)X3(ℓ)dℓdm. (5.86)

Now, let us focus on the function Γ(t), for all t ≥ 0, where,

Γ(t) =−δ +

(
2e−γτ −1

1−2Ke−γτ
+σ1 (σ1 +1)

)(
θ + J(t)

)
. (5.87)

Our objective is to ensure that

∃Γ† > 0, such that, Γ(t)≤−Γ
†, ∀t ≥ 0. (5.88)

The latter condition is in fact satisfied if and only if the following second decay condition,

δ >

(
2e−γτ −1

1−2Ke−γτ
+σ1 (σ1 +1)

)
(|θ |+ z2) , (5.89)

is satisfied.

Remark 33. The decay conditions (5.84) and (5.89) are sufficient conditions of global exponen-
tial stability of the origin of (5.74). Indeed, we observe that if (5.84) and (5.89) are satisfied, then
there exists a constant σ† > 0, such that,

Ẇ (t)≤−σ
†W
(
X1(t),X3t

)
, for almost all t ≥ 0. (5.90)

Therefore, by integrating the previous inequality, we conclude that for all t ≥ 0,

W
(
X1(t),X3t

)
≤ e−σ†tW

(
ϕX1(0),ϕX3t

)
. (5.91)

Bearing in mind the formula of the functional W, if follows that the solutions of the model (5.74) are

such that X1(t) and
∫ t

t−τ

X3(ℓ)dℓ converge exponentially to the origin, with a decay rate smaller

or equal to σ†. Therefore, we deduce from the second equation in (5.73) that X2(t) converges
exponentially to zero. Finally, using the third equation in (5.73), together with Lemma (1) (by
putting ξ (t) = Bs(t)X2(t), for all t ≥ 0), we readily conclude that X3(t) converges exponentially
to zero. Next, from the definition of X1, X2 and X3, we deduce that the positive trajectories(
ξ , x̃, ũ,ψ, z̃, ỹ

)
of (5.68) are exponentially stable on the positive orthant. Therefore they are

globally exponentially stable and it follows that the solution of (5.64) (or, equivalently, (5.65))
are globally exponentially stable to their origin. We conclude that the solutions of (5.58) are
globally exponentially stable, on their domain of definition, i.e. x̃∈ (−xe,+∞), and, ũ∈ (−ue,+∞).
Therefore, we conclude that all the positive trajectories of the system (6.8) converge exponentially
to the strictly positive steady state E = (xe,ue), xe > 0, ue > 0.
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The theory summarized in Remark 33, above, is derived without any consideration for the nature of
the nonlinearity in the system describing hematopoiesis, with the exception of the boundedness condition,
i.e. ∃z2 > 0 such that

∣∣J(t)∣∣ < z2. On some numerical examples, we are going to translate the latter
findings in our case.

5.4.1.4 Numerical results and interpretations

Let us consider the biological parameters and functions given in Table 5.1. In fact, in these parameters
only the apoptosis rate γ is varying from one system to another. These sets of parameters define four
different systems that we denote Sys.1, . . ., Sys.4. All these systems satisfy the conditions of existence of
a strictly positive steady state, E = (xe,ue), which is given for each system in Table 5.1.

γ β (m) τ K δ xe ue

Sys.1 0.1 1.33
1+m2 0.2 0.1 0.75 1.057541503 0.82586247

Sys.2 0.2 1.33
1+m2 0.2 0.1 0.75 1.01143581 0.82312744

Sys.3 0.3 1.33
1+m2 0.2 0.1 0.75 0.96456477 0.81878866

Sys.4 0.4 1.33
1+m2 0.2 0.1 0.75 0.91675560 0.81250312

Table 5.1 The biological paremeters of the systems Sys.1,. . ., Sys.4 satisfy the conditions of existence of E = (xe,ue).

Let us focus on Sys.1, first. In Figure 5.4, the function x→
∣∣∣β (x)x−β (xe)xe−θ(x−xe)

x−xe

∣∣∣, for all x ∈ [0,500],
is illustrated. The same function, but restricted to the interval x ∈ [0,15], is represented in Figure 5.5,
where the intersection between the vertical red line and the x-axis gives the strictly positive equilibrium
point xe = 1.057541503. In this case (i.e. Sys.1), we have θ = −0.03508875. We notice that on the
positive orthant, i.e. x ∈ (0,+∞), the global z2-value is greater than 0.65. Unfortunately, for that global
z2-value, the global (sufficient) decay conditions (5.84) and (5.89) are not satisfied.
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Fig. 5.4 The pattern of the curve x→
∣∣∣β (x)x−β (xe)xe−θ(x−xe)

x

∣∣∣ in Sys.1, for x ∈ [0,500].
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On the other hand, we notice from Figure 5.4 (without loss of generality) that the high value of z2

for which, in this example, the decay conditions cannot be satisfied, is specific to a certain interval in the
x-domain. Otherwise, we can see for instance that if z2 = 0.15 (which is in fact the value indicated in
Figure 5.5 by the horizontal red line) then, according to the Figure 5.5, the blue curve is always under
the horizontal red line, except for the interval x ∈ [0,0.68]. In addition, after simple calculations, we can
check that for z2 = 0.15, the global decay conditions (5.84) and (5.89) are satisfied for all the systems
Sys.1,. . ., Sys.4, as shown in Table 5.2.
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Fig. 5.5 The pattern of the curve x→
∣∣∣β (x)x−β (xe)xe−θ(x−xe)

x

∣∣∣ in Sys.1, for x ∈ [0,15].

α0τ

σ2
1

[
S+σ1 (σ1 +1)(|θ |+ z2)

]
δ −

(
2e−γτ−1

1−2Ke−γτ +σ1 (σ1 +1)
)
(|θ |+ z2)

Sys.1 0.3923 0.1445
Sys.2 0.3637 0.2308
Sys.3 0.3523 0.1683
Sys.4 0.3509 0.0352

Table 5.2 The global decay conditions computed for z2 = 0.15 for the four systems of Table 5.1

We recall that the decay conditions require that

α0τ

σ2
1

[
S+σ1 (σ1 +1)(|θ |+ z2)

]
< 1, and, δ −

(
2e−γτ −1

1−2Ke−γτ
+σ1 (σ1 +1)

)
(|θ |+ z2)> 0,

which are satisfied for the four systems in Table 5.2.
Consequently, we conclude that for all initial conditions ϕx(0) ∈ (0.68,+∞) associated to the systems

Sys.1,. . ., Sys.4, their respective strictly positive steady states given in Table 5.1 are globally exponentially
stable. The decay feature is lost if the system trajectory x(t) enters, at a given time instant t ≥ 0, in the
interval x ∈ (0,68], where the sufficient decay conditions are violated. Nothing can be said about the
behavior of the system in the region x ∈ (0,0.68], since the provided decay conditions are only sufficient.
One can notice that the threshold z2 which ensures the feasibility of the decay conditions (5.84) and (5.89)
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is entirely dependent on the x-values, according to the nonlinear characteristic patterns as in Figure 5.4.
However, the initial condition ϕu(m), for m ∈ [−τ,0], plays an implicit role to fulfill the sufficient decay
conditions. It can be seen for instance in the Figures 5.8-5.9 that according to ϕu(m), for m ∈ [−τ,0], the
trajectory x(t) for all t ≥ 0, may evolve in a x-domain where the sufficient decay conditions are satisfied
or not. It is worth mentioning that restricting x to the domain R+− (0,0.68] does not mean that the
decay conditions (5.84) and (5.89), as well as the estimate of the decay rate of the solutions σ† > 0, are
dependent on the fixed trajectory x0(t) used in the definition of J(t), for all t ≥ 0. Indeed, as we see in the
Figure 5.4 for instance,

∣∣J(t)∣∣< z2 = 0.15, is satisfied for any fixed trajectory x0(t) of the system when
it belongs to R+− [0,0.68]3. More precisely, the characteristic nonlinear patters as in Figures 5.4-5.5
are standard profiles as long as we keep the same form of the nonlinearity β (the Hill function). Thus,
some fixed trajectories x0(t) may evolve for all t ≥ 0 in a x-domain where the global decay conditions are
always satisfied. This is for instance the case of the trajectories x(t) of Sys.1, represented in red color in
the Figures 5.6 and 5.7, for large positive initial conditions ϕx(0). While some other fixed trajectories go
through the x-region where the sufficient decay conditions are not satisfied. This is the case for instance of
the trajectories x(t) that starts from small initial conditions, as in the Figure 5.8. One notices that the global
value of z2 is directly related to the value of β (0). More importantly, we notice that for the large values
of x, the decay conditions are more likely to be satisfied, which is an interesting feature of the studied
model. This is unusual since for nonlinear systems it is generally expected that the stability property of an
equilibrium point is more likely to be lost when the trajectories go away from the equilibrium of interest.
However, in our case, the sufficient decay conditions are no longer valid for small values of x, since the
corresponding local-value z2 is large in that domain. On the other hand z2 becomes locally smaller for
large values of x, as it can be deduced from Figure 5.4.
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Fig. 5.6 Example of the trajectories of Sys.1 for a large initial condition ϕx(0) and a large initial condition ϕu(m),
for m ∈ [−τ,0].

Finally, it appears clear that even for a fixed nonlinear function β (as for Sys.1,. . ., Sys.4), the threshold
where the decay conditions (5.84) and (5.89) are no longer satisfied depends on the different biological

3Or, equivalently, for all fixed shifted trajectory x̃0(t) belonging to (−xe,+∞)− (−xe,0.3775] = (−0.3775,+∞).
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Fig. 5.7 Example of the trajectories of Sys.1 for a large initial condition ϕx(0) and a small initial condition ϕu(m),
for m ∈ [−τ,0].
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Fig. 5.8 Example of the trajectories of Sys.1 for a small initial condition ϕx(0) and a small initial condition ϕu(m),
for m ∈ [−τ,0].

parameters involved in the model (and, consequently, on the value of xe). Thus, we observe that for
z2 = 0.2, the decay conditions for the considered systems are given in Table 5.3.

α0τ

σ2
1

[
S+σ1 (σ1 +1)(|θ |+ z2)

]
δ −

(
2e−γτ−1

1−2Ke−γτ +σ1 (σ1 +1)
)
(|θ |+ z2)

Sys.1 0.409 −0.0189
Sys.2 0.3822 0.066
Sys.3 0.3720 0.002
Sys.4 0.3715 −0.1327

Table 5.3 The global decay conditions computed for z2 = 0.2 for the four systems of Table 5.1
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Fig. 5.9 Example of the trajectories of Sys.1 for a small initial condition ϕx(0) and a large initial condition ϕu(m),
for m ∈ [−τ,0].

We notice that the second sufficient decay condition (5.89) is no longer verified for Sys.1 and Sys.4
when z2 = 0.2. In fact, numerically we determine that the threshold for Sys.3 is around z2 = 0.21, while it
is approximately z2 = 0.23 for Sys.2.

What we retain from this first part of the analysis, of the strictly positive steady state, are the
sufficient global conditions of global exponential stability. These decay conditions are less
restrictive for large initial conditions associated to the system, which is a nice point of the study
since it is not covered by local results (i.e. no local analysis may provide such a statement). In the
next section, we perform a complementary (more classical) regional study, i.e. in the neighborhood
of the strictly positive steady state. The analysis will be performed using quadratic functionals that
provide sufficient local exponential stability conditions and an estimate of the basin of attraction of
the strictly positive steady state.

5.4.2 An alternative analysis through quadratic Lyapunov functionals

In the present chapter, without extra assumptions on the system (5.38) -that may admit piecewise-
continuous solutions- we prove under suitable sufficient conditions that E is locally exponentially stable
by a direct Lyapunov approach, which allows us to determine an approximation of its basin of attraction.

Observe that, due to the shifting, the trajectories are no longer positive (x̃ > −xe, ũ > −ue, where
xe > 0 and ue > 0). To analyze the model (5.43), we introduce the following function and functionals

Q(a) =
1
2

a2, (5.92)

Θ(ũt) =
∫ t

t−τ

Q(ũ(ℓ))dℓ, (5.93)

Λ(ũt) =
∫ t

t−τ

∫ t

m
eℓ−tQ(ũ(ℓ))dℓdm. (5.94)
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Next, let us define the following constants which depend on the biological parameters:

ξ = θ
2 +2K|θ |e−γτ , (5.95)

K=
(
2Ke−γτ

)2
+2K|θ |e−γτ −1, (5.96)

ω =
2
(
δ +θ −Le−γτ

)
ξ

, (5.97)

and

ω =−2Le−γτ

K
, for K ̸= 0. (5.98)

Now we are ready to prove the following result:

Theorem 12. If the conditions
0 < ω < ω, (5.99)

are satisfied, then the positive equilibrium E of the nonlinear system (6.8) is locally exponentially stable.
Moreover, an open subset of the basin of attraction that contains E can be determined.

Proof. The derivative of the functional Q(x̃(t)) along the trajectories of (5.43) satisfies

Q̇(t) =−2(δ +θ)Q(x̃(t))− x̃(t)I(x̃(t))+2Le−γτ x̃(t)ũ(t− τ)

≤−2(δ +θ)Q(x̃(t))+ z1|x̃(t)|Q(x̃(t))+2Le−γτ x̃(t)ũ(t− τ),
(5.100)

where the last inequality is a consequence of (5.44). Using the inequality x̃(t)ũ(t−τ)≤Q(x̃(t))+Q(ũ(t−
τ)), it follows that

Q̇(t)≤−2
(
δ +θ −Le−γτ

)
Q(x̃(t))+ z1|x̃(t)|Q(x̃(t))+2Le−γτQ(ũ(t− τ)). (5.101)

On the other hand, through lengthy but simple calculations, we can prove that Q(ũ(t)) satisfies,

Q(ũ(t))≤ξ Q(x̃(t))+(K+1)Q(ũ(t− τ))+
z1z2

2
|x̃(t)|Q(x̃(t))+ |θ |z1|x̃(t)|Q(x̃(t))

+2Ke−γτz1|ũ(t− τ)|Q(x̃(t))

≤ξ Q(x̃(t))+(K+1)Q(ũ(t− τ))+
z1 (z2 +2|θ |)

2
|x̃(t)|Q(x̃(t))

+Ke−γτz1|x̃(t)|
[
Q(ũ(t− τ)+Q(x̃(t))

]
,

where the last inequality is a consequence of the inequalities,

I(x̃(t))2 ≤ z1z2|x̃(t)|Q(x̃(t)),
∣∣ũ(t− τ)I(x̃(t))

∣∣≤ z1
∣∣ũ(t− τ)

∣∣Q(x̃(t)) ,∣∣ũ(t− τ)
∣∣Q(x̃(t)) =

1
2
|x̃(t)|

∣∣ũ(t− τ)x̃(t)
∣∣≤ 1

2
|x̃(t)|

[
Q(ũ(t− τ))+Q(x̃(t))

]
.

(5.102)
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By grouping the terms we obtain:

Q(ũ(t))≤ξ Q(x̃(t))+(K+1)Q(ũ(t− τ))+a1|x̃(t)|Q(x̃(t))+a2|x̃(t)|Q(ũ(t− τ)), (5.103)

where, a1 =
z1(z2+2|θ |+2Ke−γτ)

2 , a2 = Ke−γτz1, and, ξ and K are the constants defined respectively in (5.95)
and (5.96). A direct consequence of (5.103) is that the derivative of the functional Θ, defined in (5.93),
along the trajectories of (5.43), satisfies,

Θ̇(t)≤ξ Q(x̃(t))+KQ(ũ(t− τ))+a1|x̃(t)|Q(x̃(t))+a2|x̃(t)|Q(ũ(t− τ)). (5.104)

Now, let us assume that the condition (5.99), i.e., the decay condition, is satisfied. First, we notice that
K< 0. In addition, we introduce the strictly positive constant:

ω =
ω +ω

2
, (ω > 0) . (5.105)

By combining (6.53) and (5.104), we conclude that, since K ̸= 0, the derivative of the functional,

V (x̃(t), ũt) = Q(x̃(t))+ωΘ(ũt), (5.106)

along the trajectories of (5.43), satisfies the inequality,

V̇ (t)≤−ξ [ω +ω]Q(x̃(t))+K [ω−ω]Q(ũ(t− τ))

+(a1ω + z1) |x̃(t)|Q(x̃(t))+a2ω|x̃(t)|Q(ũ(t− τ)),
(5.107)

with ξ > 0 and K< 0. From (5.105), we conclude that

V̇ (t)≤−q
[
Q(x̃(t))+Q(ũ(t− τ))

]
+(a1ω + z1) |x̃(t)|Q(x̃(t))+a2ω|x̃(t)|Q(ũ(t− τ)), (5.108)

where q= min
{

ξ (ω−ω) ,−K(ω−ω)
}
> 0. Now, we turn our attention on the functional Λ, introduced

in (5.94). We notice that its derivative along the trajectories of (5.43) satisfies,

Λ̇(t) =τQ(ũ(t))−
∫ t

t−τ

eℓ−tQ(ũ(ℓ))dℓ−Λ(ũt)

≤τQ(ũ(t))− e−τ
Θ(ũt)−Λ(ũt)

≤τξ Q(x̃(t))+ τ(K+1)Q(ũ(t− τ))+ τa1|x̃(t)|Q(x̃(t))

+ τa2|x̃(t)|Q
(
ũ(t− τ)

)
− e−τ

Θ(ũt)−Λ(ũt),

(5.109)

where the last inequality is a consequence of (5.103). Now, by combining (5.109) and (5.108), we
straightforwardly conclude that the derivative of the functional,

U (x̃(t), ũt) =V (x̃(t), ũt)+pΛ(ũt), (5.110)
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where, p= q
2τ max{ξ ,K+1} , along the trajectories of (5.43), satisfies,

U̇ (t)≤− q

2
Q(x̃(t))− q

2
Q(ũ(t− τ))+

[
a1 (ω + τp)+ z1

]
|x̃(t)|Q(x̃(t))

+a2 (ω + τp) |x̃(t)|Q(ũ(t− τ))−pe−τ
Θ(ũt)−pΛ(ũt).

(5.111)

Since |x̃(t)| ≤
√

2U (x̃(t), ũt), we deduce that,

U̇ (t)≤−
[
q

2
−
[
a1 (ω + τp)+ z1

]√
2U (x̃(t), ũt)

]
Q(x̃(t))

−
[
q

2
−a2 (ω + τp)

√
2U (x̃(t), ũt)

]
Q(ũ(t− τ))

−pe−τ
Θ(ũt)−pΛ(ũt).

(5.112)

Therefore, for all initial conditions x̃(0) and ϕ̃u, satisfying

U (x̃(0), ϕ̃u)< U , (5.113)

where,

U = min


(

q

4
√

2
[
a1 (ω + τp)+ z1

])2

,

(
q

4
√

2a2 (ω + τq)

)2
 , (5.114)

the derivative of the functional U satisfies:

U̇ (t)≤− q

4
Q(x̃(t))−pe−τ

Θ(ũt)−pΛ(ũt). (5.115)

Finally, we conclude that:

U̇ (t)≤−rU (x̃(t), ũt), where, r= min

{
1,
pe−τ

ω
,
q

4

}
. (5.116)

By virtue of the Lyapunov-like functional, U , we conclude that x̃ converges exponentially to its
origin with a decay rate smaller or equal to r

2 .
Moreover, using the second equation in (5.43), we see from Lemma 1 that ũ converges exponentially
to its origin, since the condition ω > 0 (i.e., K< 0) implies that 2Ke−γτ < 1.
Finally, notice that the set of all initial conditions satisfying the condition (5.113) provides an
estimate of the basin of attraction of the origin of the shifted system (5.43). Therefore, the set

A =

{
x(0) ∈ R+,ϕu ∈PC

(
[−τ,0],R+

)
,U
(
x(0)− xe,ϕu−ue

)
< U

}
, (5.117)

where the sublevel U > 0 is given in (5.114), is a subset of the basin of attraction of the strictly
positive equilibrium E of the positive system (6.8).



5.4 Analysis of the positive steady state 161

Example 8. Here we give a numerical example that satisfies the conditions of existence of E (i.e.
Proposition 4) and also the decay conditions provided in Theorem 12. We consider the following
biological parameters and functions: τ = 1, β (m) = 2.78

1+m3 , δ = 0.9, γ = 0.4, and where the rate of
permanently proliferating cells is K = 0.2.

After simple calculations we get,

µ =
β (0)

δ
= 3.088888, K =

1
2

eγτ = 0.745912, K = (µ +1)K−µ =−0.038936,

and, s = K−K =−0.238936. It follows that the origin is not attractive.
(5.118)

Next, the first condition in Proposition 4 is satisfied, i.e.,

0 < K︸︷︷︸
0.2

< K︸︷︷︸
0.745912

<
µ

µ +1︸ ︷︷ ︸
0.755434

, (5.119)

and, consequently, a unique strictly positive steady state exists. This equilibrium is given by:

E = (xe,ue) , where, xe = 0.7592526, and, ue = 2.006009. (5.120)
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Fig. 5.10 The trajectories of the differential-difference nonlinear system (6.8), for the model paramaters given in
Example 8.

Simple calculations give:

θ = β (xe)+ xeβ
′(xe) = 0.167633, ξ = θ

2 +2K|θ |e−γτ = 0.073048,

K=
(
2Ke−γτ

)2
+2K|θ |e−γτ −1 =−0,883160,

ω =
2
(
δ +θ −Le−γτ

)
ξ

= 14.548691, ω =−2Le−γτ

K
= 1.214402.

(5.121)
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We conclude that the decay condition 0 < ω < ω is satisfied, and therefore E is regionally exponential
stable. It is worth mentioning that in simulations, the region of attraction seems to be the entire positive
orthant, i.e. the estimate provided in Theorem 12 is conservative, as it is generally the case with Lyapunov
approaches. For an arbitrary initial condition, the trajectories of the corresponding system are shown in
the Figure 5.10.

5.5 Concluding remarks and discussion

In this chapter, we revisited the analysis of a recent biological differential-difference system ([4]),
describing the stem cell dynamics. The feature of the proposed approach is that it is based on Lyapunov-
like techniques. This corresponds with our aim of extending the analysis and the modeling aspects of the
hematopoietic system. Indeed, the studied model has the interesting feature of allowing a sub-population
of stem cells to be permanently active in the proliferating phase. Two steady states may exist: the
0-equilibrium, and, under some conditions on the biological parameters, a strictly positive steady state.

We revisited the stability properties of the 0-equilibrium by extending the Lyapunov construction of
[4], in order to establish global exponential stability of the trajectories. The positivity of the studied system
is an asset that allows its analysis through linear Lyapunov functionals ([124]). Since linear functionals
are more convenient for the analysis and the computations, we focused on the second part on whether it
was possible to define a framework to study the stability properties of the strictly positive equilibrium
point using a linear Lyapunov functionals (knowing that the trajectories we are interested in are no longer
all positive when studying the positive equilibrium point, after a classical change of coordinates). For
that purpose, the first step that we performed was the determination of a linear Comparative System
([250]). The origin of the latter system has the particularity of being globally exponentially stable if it
is exponentially stable on only the positive orthant ([196]). Then, some global decay conditions were
derived via a construction of a suitable linear functional. Exploitation of that study in the case of our
hematopoietic system, together with the feasibility of the global results, were discussed through numerical
applications. The characteristic nonlinear patterns for the specific studied model made the global decay
conditions less conservative for large initial conditions. For the local study (i.e. in the neighborhood of the
positive steady state), a more classical analysis was performed, via a quadratic Lyapunov-like construction.
Sufficient conditions for the regional exponential stability of the positive equilibrium were provided, with
a subset of its basin of attraction.



Chapter 6

A coupled model between healthy and
mutated stem cells: cancer dormancy and
eradication of cancer stem cells

Synopsis. An age-structured McKendrick model describing the coexistence between tumor and
ordinary stem cells is developed and explored. Firstly, the model is transformed into a nonlinear
time-delay system that describes the dynamics of healthy cells, coupled to a nonlinear differential-
difference system governing the dynamics of unhealthy cells. Then, its main features are high-
lighted and an advanced stability analysis of several coexisting steady states is performed, through
a Lyapunov-like approach for descriptor-type systems. We pursue an analysis that provides a the-
oretical treatment framework following different medical orientations, among which: i) the case
where therapy aims to eradicate cancer cells while preserving healthy cells, ii) a less demanding,
more realistic, scenario that consists in maintaining healthy and unhealthy cells in a controlled
stable steady-state (cancer dormancy). Biological interpretations and therapeutic strategies are
discussed according to our findings throughout the chapter.

6.1 Overview of the chapter

We recall that sometimes a pathological population of cells, that does not initially necessarily belong to the
SC family, acquires self-renewing and proliferating capabilities similar to those of SCs ([93], [94], [230]).
These stem-like cells are very often out of control [247] and they are capable of initiating, developing and
regenerating cancers [93], hence their designation as cancer stem cells (CSCs) [150].

Very often, CSCs are characterized by unhealthy behaviors such as excessive proliferation and
abnormal loss of their differentiation faculties (this is what we observe in leukemia [147], for instance).
On the other hand, it cannot be disregarded that in some cases (as in breast cancer and leukemia [88],
[18]) CSCs do not overproliferate (cancer without disease [102], or, in situ tumor). However, even during
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their non-overproliferating states, CSCs remain in general distinguishable through specific markers on
their surface1 [247].

Strong evidence about the existence of this stalled growth (i.e. tumor dormancy), has been established
many years ago when microscopic tumors were frequently encountered during autopsy examinations
([220], [102]). More details are given in Chapter 2, however, the most likely explanations (see [15],
and also [261] and [102]) of CSCs dormancy state are: i) blood and nutrient supply issues that prevent
tumor growth, or at least delay its clinical manifestation [213], and ii) vigilance of the immune system
which, in some rare cases, suffices to stop tumor development (see [98, 261, 213, 299, 291] and the
references therein). In fact, there has been a lengthy debate on the role of the immune system in the
defense against cancer: a process called cancer immunosurveillance [291]. The ambiguity about the
immunosurveillance concept stems from the fact that often the immune system favors the development of
the tumor instead of trying to eliminate it. The concept that attempts to integrate the diverse effects of the
immune system on tumor progression is known as cancer immunoediting (see the review articles [261]
and [291]). However, even if it appears as an unsystematic process, the immune response remains one of
the most likely justifications for cancer dormancy.

Not surprisingly, an interest arises for cancer therapies that are oriented on the immune system, bearing
the name of immunotherapy2. In a similar spirit, monoclonal antibodies, e.g. gemtuzumab ozogamicin,
have been approved in the treatment protocols of some cancers (as in acute myeloid leukemia [115]), even
if more trials are still needed to identify their exact benefits [253, 115]. Other cancer therapies, sometimes
assimilated to immunotherapy, are using some immune checkpoint inhibitors (see for instance, [228],
[169] and [44]). In the last part of our work, we will be shortly adopting some of these immuno-oriented
concepts, associated with classical chemotherapy, as it is frequently adopted in practice.

In a general perspective, apart from the interpretation of tumor dormancy as an observed natural
phenomenon in human cancers, the idea to transform cancer into a chronic disease is in the voices of many
people in the medical world nowadays [111], [14]. Indeed, the interesting issue here is about: how can we
bring CSCs from an overproliferating activity to a dormant state? More precisely, since cancer treatments
most often consist of delivering the maximum tolerable doses of drugs in order to kill diagnosed tumors,
and knowing that a non-completely eradicated tumor frequently grows again, even more aggressively than
the initial one [93], the option of maintaining the tumor in dormancy is more appealing than trying to
eradicate it [147]. Further discussions on the opportunities offered by cancer dormancy in therapeutics
can be found for instance in [14], [289], [111], and the references therein.

The development of a relevant mathematical framework appears as a necessary tool to apprehend
tumor dormancy as a biological mechanism [154], with the ultimate goal to apply it in therapeutic settings.
However, the task of mastering CSCs, i.e. bringing them into a dormant state, seems to be difficult to
conduct. Indeed, one of the first dormancy-oriented therapeutic approaches has not been very fruitful. It
was based on the use of angiogenesis inhibitors (substances that inhibit the growth of new blood vessels
[102]) as drugs that choke off the blood supply of the tumor, in order to maintain it in dormancy. However,

1For instance, stems cells in acute myeloid leukemia have some interleukin-3–receptor α chain surface markers, which are
not found in normal hematopoietic stems cells (see [150, 99]).

2Immunotherapy aims to help the immune system destroy cancer cells. It is given after -or at the same time as- another cancer
treatment such as chemotherapy. (http://www.cancer.net/) - See also Chapter 2 for related facts related to tumor dormancy.
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unexpected effects occurred in practice, in some situations, where targeting the blood vessels that feed
tumors actually accelerated the spread of cancer [134], [248].

In the clinic of cancers today, eradication of CSCs remains the predominant treatment approach
(although there is still a long way to improve the existing eradication treatment strategies [277]). In light
of the previously mentioned observations, one can say that dormancy has actually generated more issues
than answers, in the process of understanding cancer. Among the open issues, we emphasize the following
ones: when a treatment protocol is elaborated for CSCs eradication with a given rate of success, how can
we actually administer it (or a part of it) in order to achieve dormancy? In addition, since eradication
techniques may generate some surviving tumors which become even more aggressive than the initial ones,
a key question is to determine whether it is effective to consider the same targets and drugs, as for CSCs
eradication, in order to achieve dormancy? One can already figure out the utility of mathematical studies
in such a context.

Objectives of the chapter

We aim to provide a consistent theoretical framework for the modeling and the analysis of healthy and
unhealthy cell dynamics, following different medical orientations, among which: the case where therapy
aims to eradicate cancer cells while preserving healthy ones, and the scenario that consists in maintaining
healthy and unhealthy cells in a controlled stable steady-state (i.e. cancer dormancy). To that purpose,
a model of cohabitation between ordinary and mutated cells is introduced and analyzed. Firstly, we
investigate the stability properties of the origin of the resulting model: this is equivalent to the radical case
in which all the cells are eradicated. Then, we perform a stability analysis that applies to cases of cancer
dormancy and unhealthy cell eradication (while healthy cells survive). For the biological motivations
stated here and in Chapter 2, we focus more on the study of cancer dormancy throughout the chapter.

As it is the case throughout the thesis, we emphasize in the current study the particular case of
hematopoietic SCs, which are at the root of the hematopoietic system (Chapter 2). We recall that
hematopoiesis is a complex process in which the number of hematopoietic SCs involved in proliferation,
together with their frequency of division, have to be well controlled [138] in order to avoid a wide range of
blood disorders3. Currently, AML treatment still relies on heavy chemotherapy with a high toxicity level
and a low rate of success [85]. In fact, the only certain AML cure being not the result of chemotherapy,
but of total bone marrow transplant (that induces nearly 10−20% of mortality during the manipulation
and due to severe reaction, GVH, of the graft versus the host).

In this chapter, a better understanding of the behavior of CSCs (leukemic cells in AML) should allow
us to propose some selective combined targeted therapies that lead, theoretically, to cancer dormancy. In
particular, our ambition is to provide a relevant theoretical framework, taking into account observations
made by hematologists, and allowing for the suggestion of new treatments insights. It is in this light that
we propose in this chapter a model of cohabitation between ordinary and mutated cells in the case of the
hematopoietic system.

3In particular, periodic diseases, such as cyclic neutropenia and some cases of chronic acute leukemia ([184], [37], [66],
[180], and the references therein), but also overproliferating malignant hemopathies, such as acute myeloid leukemia (see the
definitions in Chapter 2, and the models in [8], [225], [80]).
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This model follows recent observations (made in [137] and in many other works) that associate the
emergence of leukemic cells to an accumulation of several mutations, most often occurring in a standard
chronological order, in the SC compartment. Thus, we analyze here two categories of heterogeneous cells
as illustrated in Figure 6.1, where the addition of mutations (TET2, NPM1, FLT3) that we have consider
had been established in [137].

Fig. 6.1 Category A: healthy stem cells. Category B: unhealthy stem cells. The latter class (B) has a first mutation
in some genes encoding enzymes in epigenetics (e.g. TET2, DNMT3A [74, 239]), that increases the self-renewing
activity of the affected cells. A more serious pathological situation arises when a second mutation, affecting this
time the pathways regulating the differentiation process such as NPM1 or transcription factors, appears on some of
the cells. The superposition of these two events yields a blockade in differentiation (the subpopulation in orange
color). Finally, a subsequent mutation impairing proliferation control (e.g. FLT3) appears in a subpopulation of
cells that have already accumulated one or more of the previously mentioned mutations. The latter event activates
an uncontrolled overproliferation of a subpopulation of cells, CSCs (in red), and thereby causes AML [137].

The study that we perform in this chapter generalizes the one that we proposed in a series of works:
[4], [23], [25], (but see also [241], [189], [101], [276], [275], [8], [225], [81]). It is worth mentioning that
the model in [25], [23] can neither model dormancy nor the abnormal overproliferation (e.g. invasion of
the bone marrow by blasts). The latter point is improved by adopting a different form of fast self-renewing
process, which has been recently introduced in [4], and where a subpopulation of cells is considered to
be always active in proliferation. In fact, cancer dormancy has not been considered in all the previously
mentioned works4.

Organization of the chapter

In light of the above mentioned remarks, the coupled model (between healthy and mutated cells as in
Figures 6.1-6.2) of interest is presented in Section 6.2.

Next, some features of the resulting coupled differential-difference model, together with the conditions
of existence of our favourable steady states (reflecting dormancy and CSCs eradication), are discussed in
Section 6.3. Then, in Section 6.4, the stability analysis of the case of all-cell extinction, via a construction
of a linear Lyapunov-like functional, is performed (here we provide conditions for global exponential
stability of the origin of the coupled model).

Then, afterwards, we address in Section ?? the stability analysis, in the time-domain framework, of
the cases describing cancer dormancy or unhealthy cells eradication (while healthy cells survive). The
latter study goes through quadratic Lyapunov-like constructions (i.e. suitable degenerate functionals for
the class of differential-difference systems).

4See also [154] for a different approach of modeling and analysis, where an ODE system describing dormancy is discussed,
but without considering the coexistence between healthy and unhealthy cells.
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Fig. 6.2 Schematic representation of the coupled model of interest, involving a healthy SCs compartment (on the
left) and an unhealthy compartment (on the right). For the sake of simplicity, we assume that unhealthy cells are
those presenting mutations that lead to cancer (cells in orange and cells in red in Figure 6.1). Thus, with an abuse of
notation, we use equivalently the designations: unhealthy cells, mutated cells, and CSCs. Similarly, healthy cells, or
ordinary cells, represented on the left of the figure, are those which do not have any abnormal mutation, or those
presenting some abnormalities but are not related with cancer. The definition of the biological parameters given in
this figure is provided in Section 6.2.

In fact, we are going to use two slightly different constructions: the first one is more general and relies
on LMI conditions derived via the descriptor method [106], applied to the linear approximation of the
model around its nontrivial steady state of interest. This approach aims to provide a theoretical (sufficient)
stability criterion, in the LMI form, to establish whether the steady state of a specific biological system
is locally stable. The latter technique is followed by a second Lyapunov-type construction that allows
us to determine explicit decay conditions (not in the LMI form) as well as an estimate of the decay rate
of solutions and an approximation of the basin of attraction of the studied steady state. These sufficient
stability conditions may be more restrictive than the LMI ones, however, they have the advantage of
being easier to handle and, therefore, make it possible to interpret them biologically, from medical and
therapeutic standpoints.

Finally, numerical illustrations are provided and concluding discussions (including biological interpre-
tations of the findings) are outlined in Section 6.5.

6.2 A new mathematical model involving coexistence between healthy and
cancer stem cells

Our objective is to introduce a more general model than the existing ones, with regard to the recent
biological features of interest, that are: mutations accumulation [137], cancer dormancy [93] ,[88],
control and eradication of CSCs [147]. In particular, the model that we want has to take into account the
cohabitation between healthy and unhealthy cells, to reproduce and interpret the case of cancer dormancy,
with the ultimate goal of providing theoretical stability conditions, along with therapeutic insights, that
lead to stable dormant CSCs.
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6.2.1 A multi-compartmental model for healthy and unhealthy cells

We focus on the model illustrated in Figure 6.2, where CSCs are characterized by an over-proliferating
ability represented by the parameter K̃, as considered in [4], and previously envisaged in [25, 23] in a
different configuration. One notices that the model in [80] is similar to the one in Figure 6.2, however,
the models of healthy and unhealthy cells studied in [25, 80, 23] do not admit a stable steady state that
describes cancer dormancy. In fact, this issue is overcome by considering a more general manner of
coupling healthy and unhealthy SCs, while retaining the same model structure as in [80] (Figure 6.2).
Finally, we mention that as many other works (see [180, 241, 8], among others), we are considering a
compartmental model in which each cell can be in a resting phase or in a proliferating one.

We notice in Figure 6.2 that a sub-population of unhealthy cells is in a permanent dividing state, i.e.
the portion 2K̃, where, 0 < K̃ < 1, as in [4] for a non-coupled model. This is different from the healthy
SCs behavior (Figure 6.2, on the left) where daughter cells, that arise from mother-cells division, leave
the proliferating compartment and join necessarily the resting one, where they can stay until their death,
differentiate, or start a new proliferating cycle by passing through the reintroduction function β . Next, we
denote by δ (resp. δ̃ ) the rate of resting cells which is lost either by differentiation or natural cell death
for healthy SCs (resp. CSCs). A resting cell may start a cell cycle by entering in the proliferating phase
during which each proliferating SC (resp. CSC) may die by apoptosis at a rate γ (resp. γ̃), or complete its
mitosis and become two daughter cells at the end of the proliferating phase. We denote τ (resp. τ̃) the
average time taken to complete mitosis in the healthy (resp. unhealthy) proliferating compartment.

For proliferation, the mechanisms regulating the entry into the cell cycle -at the cellular level- rely
on some regulatory molecules that can play the role of growth-factors (by stimulating the entry into
proliferation of resting healthy and unhealthy cells), or, they can play the role of mitotic inhibitor ligands
(meaning that mitosis proceeds normally if inhibitors are not combined with cell receptors, while it is
stalled when they bind them). Consequently, we consider in our model that the passing from the resting to
the proliferating states is controlled by some reintroduction functions (as in [180, 241] and the majority of
earlier works). More precisely, we let β (resp. β̃ ) be the reintroduction function from the healthy (resp.
unhealthy) resting phase to the healthy (resp. unhealthy) proliferating phase.

In addition, since healthy and unhealthy cells share the same environment (called niches [69] in
hematopoiesis), we consider that each of the two functions β and β̃ depend simultaneously on both: the
total density of resting healthy cells, x(t) =

∫
∞

0 r(t,a)da, and, the total density of unhealthy resting cells,
x̃(t) =

∫
∞

0 r̃(t,a)da, where r(t,a) and r̃(t,a) are, respectively, the densities of resting healthy cells and
resting unhealthy cells, of age a ≥ 0, at time t ≥ 0 [80]. This modeling approach reflects cohabitation
between healthy and unhealthy cells: by considering that the entry into proliferation of healthy cells (resp.
unhealthy cells) is also dependent on the total density of unhealthy cells (resp. healthy cells), the dynamics
of the left and the right sub-populations in Figure 6.2 become thus strongly coupled (linked in red color in
Figure 6.2).

In summary, we consider that the reintroduction functions β and β̃ are controlled by some mitotic
regulatory molecules (that are either secreted by the body or administrated as drug doses), which are in
turn assumed to be related to the cell densities x and x̃ (i.e. the concentration of the regulatory molecules is
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proportional to the cell density, as developed in [180] for a non-coupled model). More details are provided
in the next section.

6.2.2 The coupling form between ordinary and mutated cells

Now, the remaining issue regarding the functions β and β̃ is to select the coupling function between
the total density of healthy resting cells x and the total density of mutated resting cells x̃ (i.e. specifying
how β and β̃ actually depend on x and x̃). It appears that the simplest choice is to consider that both β

and β̃ depend on the sum x+ x̃, as previously considered in [25] and [80]. The latter scheme expresses
a kind of absence of dominance between the populations x and x̃, since they show equal influence on
β and β̃ . However, differences actually exist between x and x̃ in their shared host environment, mainly
due to the mutations acquired by abnormal cells [139]. Changes that occur in mutated cell behavior may
enhance the growth of cancer and result in cachexia and death [33] (see also [91, 237] and the references
therein, for biological observations and modeling of the interaction between unhealthy cells and their host
environment).

We might be tempted to argue that, in our particular context, considering a coupling in the form x+ x̃
may be a result of an homogeneous sensitivity5 expressed by the resting ordinary and mutated populations
to the concentration of mitotic regulatory molecules, that act on the reintroduction mechanisms of resting
cells into proliferation. This is in fact a particular situation (considered in [23], [26]), which corresponds
to the cases (b)-(c) in Figure 6.3, where we notice that mutated resting cells in orange (c), and ordinary
resting cells in green (b), are reacting with (or, sensitive to) the same concentration of regulatory molecules
(small molecules represented in blue).

In turn, by generalizing the arguments used in [180] for a non-coupled model by assuming that
the concentration of the mitotic regulatory molecules (in blue) is proportional to the total density x̃+ x
(green and orange cells). Thus, homogeneity between x̃ and x in that case means that healthy cells (green
cells (b)) and unhealthy resting cells (in orange (c)) have a common interpretation of their shared host
environment. We aim in the present work (in contrast with [23]) to extend the modeling aspects by
considering a more general form of coupling functions, so that one subpopulation may dominate the other
one. For that purpose, we consider that β depends on a function C (x, x̃), while β̃ depends at the same
time on a different combination C̃ (x, x̃). In particular, we are interested in the case of linear functions in
the forms: C = αx+ x̃ and C̃ (x, x̃) = x+ α̃ x̃, where, α and α̃ are some positive weighted constants. In
that framework, the previous situation expressing a homogeneous sensitivity C = C̃ (i.e. as in [23, 26]),
becomes a particular case characterized by α = α̃ = 1.

5Sensitivity here is related to the dominance property that healthy or unhealthy resting sub-populations may express. More
precisely, it refers to the different perception carried on the same common host environment of healthy and unhealthy cells,
while some of them are more sensitive to certain molecules (e.g. ligands) and less sensitive to the others. For example, due
to epigenetic mutations, unhealthy cells become less sensitive than healthy ones to the regulatory molecules secreted by the
body, while healthy cells are less sensitive to drugs since they are designed to target unhealthy cells. These situations show how
healthy and unhealthy cells may react differently to their shared host environment in which they live (see Figure 6.3), which later
results in the dominance of one subpopulation. For further information, notice that in biological systems and enzyme kinetics,
sensitivity has different meanings. The most used one refers to the sigmoidally shaped response behavior (responsiveness, see
[? ]-Section 6). In our application, it is worth mentioning that the reintroduction functions β and β̃ behave in a sigmoidal
manner (Hill functions, see [? ]), but it is not our intended meaning of sensitivity here, which is rather related to the concept of
dominance, as explained above.
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In fact, to ease the notation, we can normalize without loss of generality the value of α , i.e. α = 1,
that becomes a reference (6.3-(b)) describing a healthy case. It follows that the free-parameter α̃ varies
relatively to that reference: α̃ < 1 (Figure 6.3-(d)), α̃ > 1 (Figure 6.3-(e)), or α̃ = 1 (Figure 6.3-(c)). Thus,
throughout the paper, we focus on the situation where α is normalized and α̃ > 0 is a free parameter, i.e.
(α, α̃) = (1, α̃). We will prove later in Section 6.3 that actually dormancy may exist only if α̃ ̸= 1.

In illustrative manner, we observe that Figure 6.3-(d) provides a cartoon representation of the case
C̃ (x, x̃)= x+α̃ x̃, when α̃ < 1, compared to the neutral case (without dominance), C (x, x̃)= C̃ (x, x̃)= x+ x̃,
described by the couple of Figures 6.3-(b)-(c), where regulatory molecules are equal. The case of Figure
6.3-(d) means that even if ordinary and mutated cells are sharing the same environment, the mutated ones
indicated in orange 6.3-(d) are less sensitive to the regulatory molecules, present in the host environment,
that we consider to be inhibitors which decrease cell proliferation (as previously envisaged in [180]).

This appears to be in line with medical practice, since the unhealthy behavior is mainly due to
epigenetic mutations that make cells partially unresponsive to the regulating system. Therefore, the
case α̃ < 1 suits well the untreated unhealthy behavior, in which cells get out of control. Indirectly,
the sensitivity parameter α̃ that we introduced, led to a concept of dominance between the healthy and
mutated cells x and x̃.

(a)	 (b)	

(c)	(d)	 (e)	

Fig. 6.3 Cartoon illustration of healthy and unhealthy cells in their shared environment. In (a), red cells are the
subpopulation of cells which is constantly active in proliferation, orange cells are unhealthy mutated cells that go
through quiescence to re-start a cell-cyle, green cells are ordinary cells with normal behavior, while blue molecules
represent natural mitotic regulatory molecules (inhibitor ligands), or drug molecules. The representation (b) gives a
reference, which is the shared environment as regarded by healthy cells (the density of blue molecules is proportional
to x+ x̃. On their part, unhealthy cells perceive the same environment in the case where α̃ = 1, as illustrated in (c).
However, cells are expected to be different from healthy cells due to epigenitic mutations. The latter case in which
unhealthy cells are out of control of a part of regulatory molecules is illustrated in (d) (α̃ < 1). Finally, the case
where unhealthy cells are targeted by administrated drugs and by the body immune reaction (while healthy cells ((b)
are spared) is illustrated in (e) (α̃ > 1).

On the other hand, the reverse situation corresponding to α̃ > 1, as illustrated in Figure 6.3-(e),
describes an environment where unhealthy cells are more affected by the regulatory molecules than the
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healthy population. This may be partially due to the immune system response (cancer immunosurveillance
[291]) which may explain the dormancy phenomenon as a result of an effective immune action that
contains cancer [299]. However, it can be effectively argued that the case α̃ > 1 relies on the use of drugs
(chemotherapy, immunotherapy, etc.) that specifically target unhealthy cells. Indeed, we recall that recent
drug molecules are increasingly more accurate due to their overexpression of cancer receptors, which
allow them to target unhealthy cells while the majority of healthy cells are spared (Figures (b) and (e)).
Therefore, it becomes reasonable to consider that during treatments, unhealthy cells are likely to be more
sensitive (i.e. α̃ > 1) than healthy cells to the whole regulatory molecules in the host environment (Figures
6.3 -(e)-(b)).

Finally, it is worth mentioning that the introduction of the above considerations related to the coupling
functions between x and x̃ will make the dynamics of the resulting model richer than earlier models, as
discussed in the next sections (see Section 6.3). To the authors’ knowledge, no equivalent model exists in
the literature.

Next, as conventionally considered, we assume that β̃ and β are nonlinear continuous decreasing
functions, and, limℓ→∞ β̃ (ℓ) = limℓ→∞ β (ℓ) = 0. As in [180], [241], and all subsequent works for non-
coupled models, we consider the typical Hill forms, belonging to the family of functions with negative
Schwarzian derivatives (see [17], Chap. 3),

β̃ (ℓ) =
β̃ (0)

1+ b̃ℓñ
, β (ℓ) =

β (0)
1+bℓn (6.1)

where b̃, b, β̃ (0) and β (0) are strictly positive real numbers and, ñ≥ 2 and n≥ 2. In our case, classical
arguments on cooperativity of enzyme inhibition kinetics (see [156], and [242]), allow to determine the
Hill-type expressions (6.1). The cooperative effect in our case results from the fact that the binding of
one regulatory molecule on one extracellular -surface- receptor of one cell will affect the binding of
subsequent regulatory molecules on other receptors of the same cell. Due to the above considerations on
the heterogeneous sensitivity between healthy and unhealthy cells in the niches, we can readily deduce
that for a given total densities x and x̃, the associated reintroduction functions β and β̃ actually operate
according to:

β̃ (x+ α̃ x̃) =
β̃ (0)

1+ b̃(x+ α̃ x̃)ñ , β (x+ x̃) =
β (0)

1+b(x+ x̃)n (6.2)

where we recognize C(x, x̃) = x+ x̃ and C̃(x, x̃) = x+ α̃ x̃, in the definition of the functions (Figure 6.4).

6.2.3 Equations describing the dynamics of coupled cell populations

After the description of the particular case of the reintroduction functions β and β̃ according to the
variation of the cell densities x and x̃ (as in Figure 6.4), we now focus on the dynamical equations
describing the populations of cells. Similarly to x and x̃, we denote by y and ỹ, respectively, the total
densities of proliferating healthy and unhealthy cells: y(t) =

∫
τ

0 p(t,a)da, and, ỹ(t) =
∫

τ̃

0 p̃(t,a)da. The
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Fig. 6.4 Illustrative example of variations of a typical β̃ -surface with respect to x̃ and x, for different values of α̃ (i.e.
in the three possible situations: α̃ > 1, α̃ = 1, and α̃ < 1).

age-structured PDEs describing the coupled model in Figure 6.2, are given for all t > 0 by:

∂t r̃(t,a)+∂ar̃(t,a) =−
[

δ̃ + β̃

(
C̃(t)

)]
r̃(t,a), a > 0,

∂t p̃(t,a)+∂a p̃(t,a) =−γ̃ p̃(t,a), 0 < a < τ̃,

∂tr(t,a)+∂ar(t,a) =−
[
δ +β

(
C(t)

)]
r(t,a), a > 0,

∂t p(t,a)+∂a p(t,a) =−γ p(t,a), 0 < a < τ,

(6.3)

where, by abuse of notation, we set, C̃(t)= x(t)+α̃ x̃(t), and, C(t)= x̃(t)+x(t). As for all the McKendrick-
type models, we recall that only the death rates (δ , δ̃ , γ and γ̃), and the removal terms (β and β̃ , since the
reintroduction functions are considered as cell loss from resting cells) appear in the PDE system (6.3).
On the other hand, the new births, which are the renewal conditions at the age a = 0, for resting and
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proliferating cells, are introduced through the following boundary conditions:
r̃(t,0) = 2(1− K̃)p̃(t, τ̃),

p̃(t,0) = β̃ (C̃(t))x̃(t)+2K̃ p̃(t, τ̃) ∆
= ũ(t),

r(t,0) = 2p(t,τ),
p(t,0) = β (C(t))x(t),

(6.4)

for all t > 0. Finally, the initial age-distributions, respectively, r̃(0,a) = r̃0(a), for a > 0, p̃(0,a) = p̃0(a),
for 0< a< τ̃ , r(0,a)= r0(a), for a> 0, and p(0,a)= p0(a), for 0< a< τ̃ , are assumed to be L1-functions.
Using the classical method of characteristics, we determine that:

p̃(t,a) =

{
e−γ̃t p̃0(a− t), 0≤ t ≤ a
e−γ̃a p̃(t−a,0), t > a.

(6.5)

Consequently, the first equation in (6.4) is then equivalent to

r̃(t,0) =

{
2(1− K̃)e−γ̃t p̃0(τ̃− t), 0≤ t ≤ τ̃,

2(1− K̃)e−γ̃ τ̃ p̃(t− τ̃,0), t > τ̃.
(6.6)

From biological considerations we set, lima→∞ r̃(t,a) = lima→∞ r(t,a) = 0, for all fixed value of t ≥ 0.
Then, using (6.6), and by integrating the first equation in (6.3) with respect to a between 0 and +∞,

we determine that the long time behavior ([31]) of x̃ is given by

˙̃x(t) =−
(

δ̃ + β̃

(
C̃(t)

))
x̃(t)+2(1− K̃)e−γ̃ τ̃ ũ(t− τ̃),

where, ũ(t), as defined in (6.4), represents for all t > 0 the density of new unhealthy proliferating cells.
Similarly, by integrating the second equation in (6.3) over the variable a, between 0 and τ̃ , and using
p̃(t, τ̃) = ũ(t− τ̃), we get,

˙̃y(t) =−γ̃ ỹ(t)+ β̃

(
C̃(t)

)
x̃(t)− (1−2K̃)e−γ̃ τ̃ ũ(t− τ̃).

Using similar arguments for the healthy compartment, we obtain for all t > 0 the following overall-system,

˙̃x(t) = −
[

δ̃ + β̃

(
C̃(t)

)]
x̃(t)+2(1− K̃)e−γ̃ τ̃ ũ(t− τ̃),

˙̃y(t) = −γ̃ ỹ(t)+ β̃

(
C̃(t)

)
x̃(t)− (1−2K̃)e−γ̃ τ̃ ũ(t− τ̃),

ũ(t) = β̃

(
C̃(t)

)
x̃(t)+2K̃e−γ̃ τ̃ ũ(t− τ̃),

ẋ(t) = −
[
δ +β (C(t))

]
x(t)+2e−γτβ (C(t− τ))x(t− τ),

ẏ(t) = −γy(t)+β (C(t))x(t)− e−γτβ (C(t− τ))x(t− τ).

(6.7)
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The triangular structure of the previous system leads us to study first:
˙̃x(t) =−

[
δ̃ + β̃

(
x(t)+ α̃ x̃(t)

)]
x̃(t)+2(1− K̃)e−γ̃ τ̃ ũ(t− τ̃),

ũ(t) = β̃
(
x(t)+ α̃ x̃(t)

)
x̃(t)+2K̃e−γ̃ τ̃ ũ(t− τ̃),

ẋ(t) =−
[
δ +β

(
x(t)+ x̃(t)

)]
x(t)+2e−γτβ

(
x(t− τ)+ x̃(t− τ)

)
x(t− τ).

(6.8)

We can prove that a unique piecewise continuous solution,
(
x̃(t), ũ(t),x(t)

)
, exists for all t ≥ 0, when

system (6.8) is associated with appropriate initial conditions (ϕx̃,ϕũ,ϕx), where, ϕx̃ ∈ C
(
[−τ,0],R

)
,

ϕx ∈ C
(
[−τ,0],R

)
, and, ϕũ ∈ C

(
[−τ̃,0],R

)
. Moreover, we can show that the system (6.8) is positive,

since K̃ ∈ (0,1). Throughout this work, only positive solutions of (6.8) are considered.

6.3 Notable features of the coupled model

In this section, we point out some properties of the model (6.8) that highlight its rich dynamics, according
to the following possibly existing cases6:

Point of interest of x̃ 0 x̃e 0 x̃e ∞

Point of interest of ũ 0 ũe 0 ũe ∞

Point of interest of x 0 0 xe xe *

❑ Cell extinction: Clearly, (0,0,0), is an equilibrium point of model (6.8). Biologically, conver-
gence to the origin is synonymous of the extinction of all the cells (both healthy and unhealthy populations).
From a therapeutic standpoint, we said that we aim to address theoretical studies for the case of unhealthy
cells eradication (while ensuring that healthy cells survive), and also for a dormancy steady state (where
all the cells are at a stable steady state). In both situations we do not consider that healthy cells may vanish.
However, at this juncture, an interesting question may arise: Does chemotherapy affect healthy cells? In
fact, side-effects of recent chemotherapy treatments are fewer than those of the drugs used in the past,
since novel molecules are designed for over-expressed receptors (i.e. drugs are more accurate since they
attack cells with accurate extracellular receptors expressed only on mutated cells). In addition, medications
are mainly acting on cells during their phase of proliferation, while it appears that most of the healthy cells
are in quiescence. Therefore, we consider that only a radical therapy will lead to total cell eradication,
and this is a situation that we want to avoid. Nevertheless, the theoretical conditions (depending on the
biological functions and parameter involved in our model) that cause total cell eradication are discussed in
the next section.

❑ Escape from dormancy in diseased cells: One of the main concerns related to dormancy is to
explain how escape from tumor dormancy can emerge (see [154], but also the non-coupled model in [4]
that admits unbounded solutions).

Similarly, we notice in the coupled model (6.8) that the CSC compartment may have unbounded
solutions that reproduce the unlimited cell proliferation in cancer. Indeed, from the second equation in
(6.8) it is obvious that 2K̃e−γ̃ τ̃ > 1, implies that, limt→+∞ ũ(t) = +∞. It follows from the the first equation

6We recall that x̃e = 0 implies that ũe = 0, and vice versa.
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in (6.8) that limt→+∞ x̃(t) = +∞. This situation may reflect the escape from tumor dormancy, or the
invasion of the bone marrow by the blasts in AML ([4]).

❑ Existence of the desired steady states D and E: Let us start from the general case in which the
nonnegative point (x̃e, ũe,xe) is a steady state of (6.8). Therefore, it follows that this equilibrium point
satisfies: 

[
δ̃ + β̃ (xe + α̃ x̃e)

]
x̃e = 2(1− K̃)e−γ̃ τ̃ ũe,

β̃ (xe + α̃ x̃e)x̃e =
(

1−2K̃e−γ̃ τ̃

)
ũe,[

δ −
(
2e−γτ −1

)
β (xe + x̃e)

]
xe = 0,

(6.9)

where we exclude the previously discussed case of unbounded solutions by assuming that: 2K̃e−γ̃ τ̃ < 1.
Indeed, our main objective here is to determine necessary and sufficient conditions for the existence of
D= (x̃e, ũe,xe), where xe > 0, x̃e > 0 and ũe > 0, and for the existence of E= (0,0,xe), where xe > 0.

First, since β is continuous and decreasing from β (0) to zero, we deduce from the third equation in
(6.9) that,

δ <
[
2e−γτ −1

]
β (0), (6.10)

is a necessary and sufficient condition for the existence of xe and x̃e such that, xe + x̃e > 0, and, δ −(
2e−γτ −1

)
β (xe + x̃e) = 0. In fact, the inequality (6.10) is a necessary and sufficient condition for the

existence of E (but not D).
Next, from the second equation in (6.9), we obtain that ũe =

β̃ (xe+α̃ x̃e)x̃e
1−2K̃e−γ̃ τ̃

.
By substituting ũe in the first equation of (6.9), we get:[

δ̃ − 2e−γ̃ τ̃ −1
1−2K̃e−γ̃ τ̃

β̃ (xe + α̃ x̃e)

]
x̃e = 0. (6.11)

The fact that β̃ is continuous and decreasing implies that the condition,

δ̃ <

[
2e−γ̃ τ̃ −1

1−2K̃e−γ̃ τ̃

]
β̃ (0), (6.12)

is necessary and sufficient for the existence of xe and x̃e, such that, xe + α̃ x̃e > 0, and, δ̃ − 2e−γ̃ τ̃−1
1−2K̃e−γ̃ τ̃

β̃ (xe +

α̃ x̃e) = 0. Obviously, we notice that, 2K̃e−γ̃ τ̃ < 1 < 2e−γ̃ τ̃ . In fact, the condition (6.12) is a necessary and
sufficient condition for the existence of (x̃e, ũe,0), where x̃e > 0 and ũe > 0.

It is worth mentioning that, if the condition (6.10) is satisfied (i.e. the necessary and sufficient
condition for the existence of E), together with the condition

δ̃ >

[
2e−γ̃ τ̃ −1

1−2K̃e−γ̃ τ̃

]
β̃ (0), (6.13)

then (0,0,0) and E are the unique existing steady states of the studied model. Let us now focus on the
case where both xe and x̃e are simultaneously strictly positive (and then ũe is strictly positive). In the latter
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situation, we get, {
xe + α̃ x̃e = β̃−1 (µ̃) ,

xe + x̃e = β−1 (µ) ,
(6.14)

where, µ = δ

2e−γτ−1 , and, µ̃ =
δ̃(1−2K̃e−γ̃ τ̃)

2e−γ̃ τ̃−1 . Consequently, we get,
xe =

1
α̃−1

[
α̃β−1 (µ)− β̃−1 (µ̃)

]
,

x̃e =
1

α̃−1

[
β̃−1 (µ̃)−β−1 (µ)

]
,

ũe =
δ̃

2e−γ̃ τ̃−1 x̃e.

(6.15)

Now, we distinguish between the following two situations:
The case α̃ = 1: Here we notice that, xe + x̃e = β̃−1 (µ̃) = β−1 (µ) ,

ũe =
δ̃

2e−γ̃ τ̃−1 x̃e,
(6.16)

which is either an impossible case if the biological parameters are such that β̃−1 (µ̃) ̸= β−1 (µ), or, when
β̃−1 (µ̃) = β−1 (µ), it corresponds to a continuum equilibrium point (the infinite possible values of xe and
x̃e that satisfy the first equation in (6.16)). We want to avoid the latter continuum equilibrium points since
that case has no concrete biological signification.

The case α̃ > 1 or 0 < α̃ < 1: First, we focus on the case 0< α̃ < 1. We recall from earlier discussion that,
biologically, 0 < α̃ < 1 means that CSCs are less sensitive than ordinary cells to their shared environment
composed by regulatory mitotic molecules (due to epigenetic mutations for instance, unhealthy cells no
longer respond to inhibitory signals and continue to proliferate). More generally, α̃ < 1 plays the role
of a mitigating factor of the effect of regulatory molecules that attenuate the entrance frequency into
proliferation. Now, from (6.15), we deduce that a sufficient condition for the existence of D when α̃ < 1,
is given by: α̃β−1 (µ)< β̃−1 (µ̃)< β−1 (µ) .

On the other hand, we observe that when α̃ > 1, then, from (6.15), we deduce that a sufficient
condition for the existence of D is given by: β−1(µ)< β̃−1(µ̃)< α̃β−1(µ). We summarize the overall
discussion in the following result:

Proposition 6. (i) For all α̃ > 0, if the conditions

δ̃ >

[
2e−γ̃ τ̃ −1

1−2K̃e−γ̃ τ̃

]
β̃ (0), and, δ >

[
2e−γτ −1

]
β (0), (6.17)

are satisfied, then (0,0,0) is the unique equilibrium point of the system (6.8). Note that in fact (0,0,0) is
always a steady state of the system (6.8).

(ii) For all α̃ > 0, the condition
δ <

[
2e−γτ −1

]
β (0), (6.18)

is a necessary and sufficient conditions for the existence of the steady state, E= (0,0,xe), where xe > 0,
for the system (6.8).
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(iii) For all α̃ > 0, if the conditions

δ̃ >

[
2e−γ̃ τ̃ −1

1−2K̃e−γ̃ τ̃

]
β̃ (0), and, δ <

[
2e−γτ −1

]
β (0), (6.19)

are satisfied, then (0,0,0) and E= (0,0,xe) are the unique steady states of system (6.8).
(iv) For all α̃ > 0, the condition

δ̃ <

[
2e−γ̃ τ̃ −1

1−2K̃e−γ̃ τ̃

]
β̃ (0), (6.20)

is a necessary and sufficient condition for the existence of the steady state (x̃e, ũe,0) where, x̃e > 0 and
ũ > 0, for the system (6.8).

(v) For all α̃ > 0, if the conditions

δ̃ <

[
2e−γ̃ τ̃ −1

1−2K̃e−γ̃ τ̃

]
β̃ (0), and, δ >

[
2e−γτ −1

]
β (0), (6.21)

are satisfied, then (0,0,0) and (x̃e, ũe,0) are the unique steady states of system (6.8).
(vi) For all α̃ > 0, the conditions

α ̸= 1, δ̃ <

[
2e−γ̃ τ̃ −1

1−2K̃e−γ̃ τ̃

]
β̃ (0), and, δ <

[
2e−γτ −1

]
β (0), (6.22)

are necessary, but not sufficient, for the existence of D= (x̃e, ũe,xe).

(vii) We denote µ = δ

2e−γτ−1 , and, µ̃ =
δ̃(1−2K̃e−γ̃ τ̃)

2e−γ̃ τ̃−1 . If the conditions,
0 < α̃ < 1, µ < β (0), µ̃ < β̃ (0),
α̃β−1 (µ)< β̃−1 (µ̃)< β−1 (µ) ,

2K̃e−γ̃ τ̃ < 1 < 2e−γ̃ τ̃ ,

(6.23)

or, 
α̃ > 1, µ < β (0), µ̃ < β̃ (0),
β−1(µ)< β̃−1(µ̃)< α̃β−1(µ),

2K̃e−γ̃ τ̃ < 1 < 2e−γ̃ τ̃ ,

(6.24)

are satisfied, then a unique strictly positive dormancy steady state D= (x̃e, ũe,xe), exists and is given by
(6.15).

Remark 34. 1) Obviously, uniqueness in Proposition 6-(vii) means the existence of a unique isolated
strictly positive equilibrium point D, but the origin and the points E= (0,0,xe), (x̃e, ũe,0) are also steady
states of system (6.8).

2) The third condition in (6.23)-(6.24) expresses an interesting relationship between the fast-self
renewing ability K̃, the apoptosis rate of malignant cancer cells γ̃ , and their average cell-cycle duration
τ̃ . We notice that even if K̃ is relatively important (and knowing that it is not easy to act on K̃ by drugs
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infusion since its high value is due to FLT3 mutation) it is still possible to guarantee the existence of a
dormancy state by increasing τ̃ γ̃ . However, the increase must be moderate to not exceed the upper-bound
γ̃ τ̃ < ln(2).

3) Finally, we notice that other cases can be discussed if biologically needed. For instance, by adding
the following restriction: 2β̃−1(µ̃)< (1+ α̃)β−1(µ), to the conditions in (6.23)-(6.24), we ensure that
xe > x̃e, which is the expected situation of existing (dormant) tumors, without forming a clinically apparent
cancer.

Now, we motivate our stability analysis through some preliminary numerical observations that
highlight the rich dynamics of the model that we introduced in this work. In particular, we point out the
different possible behaviors of the nonlinear differential-difference system (6.8) according to its associated
initial conditions. The latter fact emphasizes the importance of determining mathematically an estimate of
the region of attraction of each steady state of interest.

Example 9. Let us consider the following biological functions and parameters for cells in Category A
and Category B:

Category A: τ = 1.11 δ = 0.1 γ = 0.1 β (m) = 3
1+m4 α = 1

Category B: τ̃ = 0.9 δ̃ = 0.36 γ̃ = 0.32 β̃ (m) = 2
1+m4 α̃ = 0.6 K̃ = 0.54

For the considered set of parameters and functions, a unique dormancy steady state D exists and is
given by D = (x̃e, ũe,xe), where x̃e = 0.6573, ũe = 0.4737 and xe = 1.5255. This steady state is shown
in Figure 6.5. However, the latter point is not the unique equilibrium point of the system. Indeed, the
0-equilibrium (0,0,0), and the points: E = (0,0,2.1826) and (3.1998,2.3060,0), also exist7. When
we select the constant initial conditions ϕx(t) = ϕx̃(t) = 2, for all t ∈ [−τ,0], and ϕũ(t) = 1, for all
t ∈ [−τ̃,0], we observe that the trajectories converge to (3.1998,2.3060,0), as illustrated in Figure 6.6,
where unhealthy cells survive (the attractive point seems to be stable), while the healthy cells vanish
(converge to zero).

By changing the initial condition of ũ, from the previous value to ϕũ(t) = 0.1, for all t ∈ [−τ̃,0], we
observe that the trajectories converge to E, as illustrated in Figure 6.7. Moreover, the steady states in
Figures 6.6 and 6.7 seem to be stable (each one has its region of attraction). Lyapunov theory offers strong
tools to establish the regional stability properties of the steady states of interest, provided that a suitable
Lyapunov functional is found for the studied model.

Now, let us modify the value of K̃ by increasing it to K̃ = 0.6680. It follows that 2K̃e−γ̃ τ̃ −1 = 0.017,
which implies that the trajectories of the unhealthy compartment are unbounded (similarly to [4]).
Numerical simulations in that case, for arbitrary initial conditions, are given in Figure 6.8.

7One may notice the relationship that exists between the three different non-trivial steady states. In fact, the xe-value in E
corresponds to the sum xe + x̃e of the dormancy steady state D, while the x̃e-value in the steady state (x̃e, ũe,0) corresponds to
the value xe+α̃ x̃e

α̃
, where xe and x̃e in the latter fraction are the corresponding values in the dormancy steady state D.
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Fig. 6.5 Convergence to D.
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Fig. 6.6 Convergence to (x̃e, ũe,0).
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Fig. 6.7 Convergence to E.
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Fig. 6.8 Unbounded CSCs behavior.
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Example 10. Now, let us consider the following functions and parameters:

Category A: τ = 1.25 δ = 0.2 γ = 0.2 β (m) = 1
1+m2 α = 1

Category B: τ̃ = 1.66 δ̃ = 0.1 γ̃ = 0.2 β̃ (m) = 1.2
1+5m4 α̃ = 0.4 K̃ = 0.3

The steady states (0,0,0), E= (0,0,xe), (x̃e, ũe,0) and D= (x̃e, ũe,xe), of the corresponding system,
exist.

If we select the constant initial conditions ϕx(t) = 1.55, and ϕx̃(t) = 1, for all t ∈ [−τ,0], and
ϕũ(t) = 0.3, for all t ∈ [−τ̃,0], we observe that the trajectories are unstable as illustrated in Figure 6.9,
knowing that the dormancy steady state here is D= (0.3445,0.0792,0.9926). We recall that oscillations
in hematopoietic systems are associated to many periodic diseases (e.g. cyclic neutropenia [37], [241],
or some types of chronic myeloid leukemia).
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Fig. 6.9 Unstable (oscillatory) solutions.

Now, let us consider random constant initial conditions and let us keep constant all the biological
parameters except the value of α̃ , that we consider to be ranging between 0.1 and 0.6. As shown in Figure
6.10, we note that by increasing the value of α̃ , the trajectories of the corresponding system become
stable when α̃ increases. Thus, it appears that α̃ may have, at least in this example, a stabilizing (or
destabilizing) effect on the trajectories of the system (6.8).

Example 11. Finally, let us consider the following functions and parameters:

Category A: τ = 1.25 δ = 0.1 γ = 0.2 β (m) = 1
1+m2 α = 1

Category B: τ̃ = 0.7 δ̃ = 0.2 γ̃ = 0.1 β̃ (m) = 2
1+2m4 α̃ = 2 K̃ = 0.5
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Fig. 6.10 Stabilizing effect of α̃ .

The conditions of existence of D= (x̃e, ũe,xe) are satisfied, and in this case we obtain: x̃e = 0.6833,
ũe = 0.1580 and xe = 1.45599. For the constant initial conditions ϕx(t) = 0.1 and ϕx̃(t) = 1.5, for all
t ∈ [−τ,0], and ϕũ(t) = 1.5 for all t ∈ [−τ̃,0], it appears that D is stable as illustrated in Figure 6.11.
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Fig. 6.11 Convergence to the dormancy steady state D.

At this juncture, we deduce that the coupled system (6.8) under study has richer dynamical features
than the earlier models. Firstly, we saw that the solutions of the coupled system can be bounded or
unbounded. In the former case, several steady states may exist and their values depend on the different
biological parameters of the model. The existence of the steady states of interest (D and E) are governed
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by some non-intuitive conditions on the biological parameters involved in the system (see Proposition
6). In addition, we saw that according to the initial conditions associated with the model trajectories, the
bounded solutions may converge to one among several possible steady states, meaning that stability of
each steady state is regional (local). Moreover, in the general case, the steady states of the system (6.8)
are not always stable, but on the contrary, we noticed that oscillations may emerge, as in Example 10).
Our objective in the sequel is to determine exponential stability conditions for the steady states of interest
(all-cell extinction (0,0,0), unhealthy cell eradication E, and cancer dormancy D).

6.4 Stability analysis of the extinction of all the cells

In this section, we perform a stability analysis of the 0-equilibrium of the system (6.8). From a biological
standpoint, this is a case that we want to avoid, as discussed in the previous section (see the first point,
Cell extinction), since it is synonymous of an excessive therapy that not only alters unhealthy populations,
but also leads to the extinction of healthy cells in the coupled model.

Here we introduce the following functional:

W (x̃t , ũt ,xt) =x̃(t)+ x(t)+ψ1

∫ t

t−τ̃

eρ1(ℓ−t)ũ(ℓ)dℓ

+ψ2

∫ t

t−τ

eρ2(ℓ−t)
β
(
x(ℓ)+ x̃(ℓ)

)
x(ℓ)dℓ,

(6.25)

where, ψ1 = ψ11+ψ12, ψ11 = 1+ δ̃

β̃ (0)
, ψ12 =− ψ∗

3(K−K̃)β̃ (0)
, K = 1

2 eγ̃ τ̃ , ψ∗ =
(

β̃ (0)+ δ̃

)
K− β̃ (0)− K̃δ̃ ,

and, ψ2 = 2ψ3e−γτ , where, ψ3, together with ρ1 and ρ2, are strictly positive constants that we choose
later.

We can readily check that if 2K̃e−γ̃ τ̃ < 1 (that we can rewrite as K̃ < K), and ψ∗ > 0, (i.e. ψ12 < 0),
we obtain ψ1 > 0. It follows that the functional W is nonnegative. We notice also that W is an unusual
LKF candidate, since it can be used only because the system (6.8) is positive. In addition, it is a degenerate
LKF candidate (since W = 0 does not imply ũ = 0) which is usually the case for differential-difference
systems. This will also be the case when we investigate the stability properties of the dormancy steady
state, where we will construct a quadratic degenerate LKF.

Thanks to the functional W , we prove the following result:

Theorem 13. If the conditions

(
2e−γτ −1

)
β (0)< δ , 0 < ψ

∗, and, 2K̃e−γ̃ τ̃ < 1, (6.26)

are satisfied, then the origin of system (6.8) is globally exponentially stable with a decay rate smaller or
equal to ψ4 > 0 that we estimate.
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Proof. Simple calculations show that the derivative of W , defined in (6.25), along the trajectories of (6.8),
satisfies, for almost all t ≥ 0,

Ẇ (t) =
[
−δ̃ +(ψ1−1) β̃

(
x(t)+ α̃ x̃(t)

)]
x̃(t)

−
[

ψ1

(
e−ρ1τ̃ −2K̃e−γ̃ τ̃

)
−2(1− K̃)e−γ̃ τ̃

]
ũ(t− τ̃)

−
[
δ +(1−ψ2)β

(
x(t)+ x̃(t)

)]
x(t)−ψ1ρ1

∫ t

t−τ̃

eρ1(ℓ−t)ũ(ℓ)dℓ

−
(
ψ3e−ρ2τ −1

)
2e−γτ

β
(
x(t− τ)+ x̃(t− τ)

)
x(t− τ)

−ψ2ρ2

∫ t

t−τ

eρ2(ℓ−t)
β
(
x(ℓ)+ x̃(ℓ)

)
x(ℓ)dℓ.

(6.27)

Now, according to 6.26, the conditions 2K̃e−γ̃ τ̃ < 1 and ψ∗ > 0 are satisfied. It follows that for all

ρ1 ∈
(

0, 1
τ̃

ln
(

k
1+2(k−1)K̃e−γ̃ τ̃

))
, where k > 1 is a constant that we will select later, we have,

0 <
1−2K̃e−γ̃ τ̃

k
< e−ρ1τ̃ −2K̃e−γ̃ τ̃ < 1−2K̃e−γ̃ τ̃ .

On the other hand, using the definition of ψ1, we can readily check that:

ψ1

(
1−2K̃e−γ̃ τ̃

)
−2
(
1− K̃

)
e−γ̃ τ̃ > 0.

Therefore, we can notice that for all k ∈
(

1, (
1−2K̃e−γ̃ τ̃)ψ1

2(1−K̃)e−γ̃ τ̃

)
,

k = ψ1

(
1−2K̃e−γ̃ τ̃

k

)
−2
(
1− K̃

)
e−γ̃ τ̃ ,

is a strictly positive constant. Next, since β̃ is decreasing, and using the fact that ψ11 > 1, it follows that
(ψ11−1) β̃

(
x(t)+ α̃ x̃(t)

)
≤ (ψ11−1) β̃ (0).

From the previous intermediate results, we conclude that for all t ≥ 0,

−δ̃ +(ψ1−1) β̃
(
x(t)+ α̃ x̃(t)

)
≤ ψ12β̃

(
x(t)+ α̃ x̃(t)

)
,

where, ψ12 < 0.
Now, let us assume that the third decay condition, δ >

(
2e−γτ −1

)
β (0), is satisfied. Then we choose

ψ3 =
2β (0)+(δ+β (0))eγτ

4β (0) . Therefore, it is easy to check that, in the case, we have ψ3 ∈
(

1, δ+β (0)
2β (0) eγτ

)
.

It follows that δ +(1−ψ2)β (0) is positive.
For later use we denote δ ∗ = δ +(1−ψ2)β (0).Next, by selecting ρ2 =

1
2τ

ln
(

2ψ3
ψ3+1

)
> 0, we deduce

that ψ3e−ρ2τ −1 is positive. For later use we denote ρ∗ = ψ3e−ρ2τ −1.
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We conclude that Ẇ (t) satisfies, for almost all t ≥ 0,

Ẇ (t)≤ψ12β̃
(
x(t)+ α̃ x̃(t)

)
x̃(t)−ψ1ρ1

∫ t

t−τ̃

eρ1(ℓ−t)ũ(ℓ)dℓ

− kũ(t− τ̃)−2ρ
∗e−γτ

β
(
x(t− τ)+ x̃(t− τ)

)
x(t− τ)

−δ
∗x(t)−ψ2ρ2

∫ t

t−τ

eρ2(ℓ−t)
β
(
x(ℓ)+ x̃(ℓ)

)
x(ℓ)dℓ,

(6.28)

where, ψ12 < 0, k > 0, δ ∗ > 0, and, ρ∗ > 0. By integrating the previous inequality (6.28), we deduce
that the functional W is bounded over [0,+∞). From the definition of W , it follows that for all t ≥ 0, the
trajectories x̃(t) and x(t) are bounded by, respectively, the positive constants x̃s and xs.

A direct consequence is that for almost all t ≥ 0,

Ẇ (t)≤ψ12β̃ (xs + α̃ x̃s) x̃(t)−ψ1ρ1

∫ t

t−τ̃

eρ1(ℓ−t)ũ(ℓ)dℓ

−δ
∗x(t)−ψ2ρ2

∫ t

t−τ

eρ2(ℓ−t)
β
(
x(ℓ)+ x̃(ℓ)

)
x(ℓ)dℓ.

(6.29)

We conclude that for almost all t ≥ 0, we have,

Ẇ (t)≤−ψ4W (x̃t , ũt ,xt) , (6.30)

where ψ4 = min
{
−ψ12β̃ (xs + α̃ x̃s),δ

∗,ρ1,ρ2

}
> 0.

Now, by integrating the inequality (6.30), we deduce that for all t ≥ 0,

W (x̃t , ũt ,xt)≤ e−ψ4tW (ϕx̃,ϕũ,ϕx) . (6.31)

It follows from the definition of W that x̃ and x converge exponentially to zero with a decay rate
greater or equal to ψ4. From the second equation in (6.8), we note that the linearity in ũ and the fact that
2K̃e−γ̃ τ̃ < 1, imply that ũ converges exponentially to the origin when x̃ and x also converge exponentially
to the origin. This concludes the proof of Theorem 13.

Remark 35. i) The conditions (6.26) exclude the existence of any steady state different from the origin.
ii) We can interpret the cell extinction as a result of an excessive therapy that affects also healthy cells

so that their apoptosis rate, γ , increases until becoming greater than the ratio ln(2)
τ

, or, until the death
rate and differentiation rate, i.e. δ , becomes greater than

(
2e−γτ −1

)
β (0) (which is a less demanding

condition in comparison to γ > ln(2)
τ

).
iii) Arguing as in Chapter 4 and in [4], we can prove that the conditions (6.26) are also necessary for

the asymptotic stability of the origin.
iv) Finally, we deduce from Theorem 13 that all-cell extension results from uncorrelated conditions

between the healthy and unhealthy compartments. Indeed, we note that the last two conditions in (6.26)
relate to the unhealthy compartment, since only unhealthy parameters are involved. Moreover, these
conditions are similar to those giving global asymptotic stability in [4] for a non-coupled model. The
biological interpretation is that cell extension occurs if and only if both the healthy and unhealthy
compartments are enable to regenerate themselves autonomously. In other words, it appears that the
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coupling has no effect on the stability of the 0-equilibrium since the conditions for total-cell eradication
imply extinction of the unhealthy and healthy compartments separately. This observation will not hold
when we study dormancy.

Here we will emphasize on the dormancy steady state D= (x̃e, ũe,xe), where all the components of
the steady state are different from zero (i.e. x̃e > 0, ũe > 0, xe > 0). In fact, we will highlight the case of
dormancy D, since it is clearly the most general one. Indeed, from the analysis of D, it becomes possible
to evaluate the regional stability properties of E= (0,0,xe) (which are partially investigated in [? ], when
α̃ = 1), and also of the steady state (x̃e, ũe,0).

6.4.1 A new representation of the system

Now, we want to investigate the stability properties of D when it exists. Thus, we assume that the
conditions given in Proposition 6-(vii) are satisfied and we perform the classical changes of coordinates:
X̃ = x̃− x̃e, Ũ = ũ− ũe, and X = x− xe. Therefore, from (6.8), it follows that for all t ≥ 0,

˙̃X(t) =−
[
δ̃ + β̃ (X(t)+ α̃X̃(t)+ xe + α̃ x̃e)

]
(X̃(t)+ x̃e)

+2(1− K̃)e−γ̃ τ̃(Ũ(t− τ̃)+ ũe),

Ũ(t)+ ũe = β̃ (X(t)+ α̃X̃(t)+ xe + α̃ x̃e)(X̃(t)+ x̃e)

+2K̃e−γ̃ τ̃(Ũ(t− τ̃)+ ũe),

Ẋ(t) =−
[
δ +β (X(t)+ X̃(t)+ xe + x̃e)

]
(X(t)+ xe)

+2e−γτβ (X(t− τ)+ X̃(t− τ)+ xe + x̃e)(X(t− τ)+ xe).

(6.32)

To ease the analysis of the above system, we rewrite it in a more convenient form. Observe that for all
z>−e, e> 0, where, z= X + X̃ and e= xe + x̃e, we have, with an abuse of notation,

β (z+ e) = β (e)+θz+R(z), (6.33)

where β is the Hill-function defined in (6.1), θ = β ′(e), and, R(z) =
∫ e+z
e (z+ e− ℓ)β (2)(ℓ)dℓ. Next, for

all z̃>−ẽ, ẽ> 0, where, z̃= X + α̃X̃ , and, ẽ= xe + α̃ x̃e, we get similarly to (6.33),

β̃ (z̃+ ẽ) = β̃ (ẽ)+ θ̃ z̃+ R̃(z̃), (6.34)

where, θ̃ = β̃ ′(ẽ), and, R̃(z̃) =
∫ ẽ+z̃
ẽ (z̃+ ẽ−ℓ)β̃ (2)(ℓ)dℓ. Therefore, using (6.33)-(6.34), and by simplifying

some terms using (6.9), we get the system,
˙̃X(t) =−a1X̃(t)−a2X(t)+a3Ũ(t− τ̃)+F(X(t), X̃(t)),

Ũ(t) = a4X̃(t)+a2X(t)+a5Ũ(t− τ̃)−F(X(t), X̃(t)),
Ẋ(t) =−a6X(t)−a7X̃(t)+a8X(t− τ)+a9X̃(t− τ)+G(Xt , X̃t),

(6.35)

where, F(X(t), X̃(t)) =− θ̃

[
α̃X̃2(t))+X(t)X̃(t)

]
− R̃(X(t)+ α̃X̃(t))(X̃(t)+ x̃e),

(6.36)
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G(Xt , X̃t) =−θ

[
X2(t)+X(t)X̃(t)

]
−R(X(t)+ X̃(t))(X(t)+ xe)

+2e−γτ
θ

[
X2(t− τ)+X(t− τ)X̃(t− τ)

]
+2e−γτR(X(t− τ)+ X̃(t− τ))(X(t− τ)+ xe),

(6.37)

and where the constant parameters ai are given by:
a1 = δ̃ + β̃ (xe + α̃ x̃e)+ α̃θ̃ x̃e, a2 = θ̃ x̃e, a3 = 2(1− K̃)e−γ̃ τ̃ ,

a4 = β̃ (xe + α̃ x̃e)+ α̃θ̃ x̃e,a5 = 2K̃e−γ̃ τ̃ , a6 = δ +β (xe + x̃e)+θxe,

a7 = θxe, a8 = 2e−γτ
[
β (xe + x̃e)+θxe

]
, a9 = 2e−γτθxe.

(6.38)

We notice that if the trajectories of (6.35) converge exponentially to the 0-equilibrium, then the
positive trajectories of the system (6.8) converge exponentially to D. Now, we are going to state and
prove some sector conditions on the nonlinear terms R and R̃. Then, we deduce some upper-bounds on the
nonlinear terms F and G. For that purpose, we prove in ?? through lengthy calculations that there exist
strictly positive constants s, s̃, m and m̃, satisfying:

|R(z)| ≤ s|z|, and |R̃(z̃)| ≤ s̃|z̃|, (6.39)

|R(z)| ≤mz2, and |R̃(z̃)| ≤ m̃z̃2, (6.40)

for all z>−e (z and e are defined before (6.33)), and for all z̃>−ẽ (z̃ and ẽ are defined before (6.34)).
Moreover, using (6.39) and (6.40), we can determine strictly positive constants ci, i = {1, . . . ,6}, such
that the following quadratic upper bounds hold true:∣∣F(X , X̃)

∣∣≤ c1Q(X)+ c2Q(X̃), (6.41)

∣∣G(Xt , X̃t)
∣∣≤c3Q(X(t))+ c4Q(X̃(t))+ c5Q(X(t− τ))+ c6Q(X̃(t− τ)). (6.42)

Remark 36. (1) The upper-bounds given in (6.39), (6.40), (6.41), and, (6.42), will not intervene when we
determine the decay conditions and the decay rate of the solutions. However, their effect appears in the
size of the basin of attraction that we will provide. Actually, if the constants s, s̃, m, m̃, in (6.39)-(6.40),
as well as the constants ci in (6.41)-(6.42), are large, then the size of the basin of attraction shrinks
accordingly. (2) By comparing the present study with [? ], we notice that [? ] was devoted to the study
of a model which was simpler than the system (6.35) under study in this paper. Indeed, the model in [?
] can be obtained by putting α̃ = 1 and by eliminating all the terms where x̃e is present in equations
(6.35), (6.38), (6.36) and (6.37). (3) It is worth mentioning that the stability results that we will determine
later apply for a wide range of functions β and β̃ , as long as the sector conditions (6.39) and (6.40) are
satisfied.

Now, we want to perform a stability analysis of the trivial steady state of the (shifted) model using its
representation in (6.35): we recall that the 0-equilibrium of (6.35) can be D or E of (6.8). For meeting
such a purpose, strong tools are provided by Lyapunov theory, in the analysis of nonlinear differential-
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difference systems with possibly piecewise continuous solutions (see e.g. [121], [152], [232], and the
references therein). However, finding a suitable LKF is not an easy task. In addition, the provided stability
conditions can be conservative. So, we adopt the following strategy that highlights our biological aims:

① Firstly, we use the descriptor method [106] that allows us to provide a local (Lyapunov-based)
stability result for our biological model. The advantage of this approach is that it provides an effective
tool (formulated as an LMI condition) to check if a steady state of a specific biological model (defined by
its set of parameters) is locally stable.

② In order to address the following issue: How can we provide realistic stability conditions that can
be interpreted and satisfied under the effect of drugs?, the first approach will be slightly modified in a
second time. Thus, we establish a different result (that can be seen as a particular formulation of the first
approach) which relies on the analytic construction of a suitable Lyapunov-like functional, specific for
the studied biological system. The latter approach allows us to provide more explicit decay conditions
than the common LMI-type approaches. We point out that even if the second construction provides more
conservative conditions than the LMI ones, they have the advantage of being more easily (biologically)
understandable. It is to this end that, in the last section, we show how the decay conditions can be
interpreted, in practice, according to the biological context of hematopoiesis and leukemia.

In summary, we determine throughout this section some exponential decay conditions (along with
an estimate of the decay rate of the solutions and a region of attraction of the favourable steady states),
via two complementary approaches: the descriptor method that provides local stability results for the
general structure of the studied system, and, a suitable explicit Lyapunov-like construction that allows us
to address the regional stability properties of the dormancy steady state. The latter decay conditions lend
themselves more easily than the LMI ones to medical interpretations.

6.4.2 Stability analysis using the descriptor method

In this section, we consider as a first step only continuous solutions of the system in (6.35) and we study
the linear approximation of the state col

{
X , X̃

}
, that we denote Z = col {Z1,Z2}. Then, by neglecting the

nonlinear terms F and G in (6.35), we rewrite the studied system in the following compact form:{
Ż(t) = B0Z(t)+B1Z(t− τ)+B2Ũ (t− τ̃) ,

Ũ(t) = B3Z(t)+B4Ũ (t− τ̃) ,
(6.43)

for all t ≥ 0, where Bi are given by (we recall that ai are defined in (6.38)),

B0 =−

(
a6 a7

a2 a1

)
, B1 =

(
a8 a9

0 0

)
, B2 =

(
0
a3

)
,

B3 =
(

a2 a4

)
, and, B4 = a5 = 2K̃e−γ̃ τ̃ .

(6.44)
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Next, we consider some symmetric positive definite matrices P> 0, S > 0, J > 0, of appropriate dimension,
together with a strictly positive constant ã, and we verify that the derivative of the functional,

V
(
Zt ,Ũt

)
=Z(t)T PZ(t)+

∫ t

t−τ

ZT (ℓ)SZ(ℓ)dℓ+ ã

∫ t

t−τ̃

Ũ2(ℓ)dℓ+ τ

∫ t

t−τ

(ℓ+ τ− t) ŻT (ℓ)JŻ(ℓ)dℓ,

(6.45)

along the trajectories of (6.43), is given by,

V̇ (t) = ZT (t)
[
P+PT

]
Ż(t)+ZT (t)SZ(t)−ZT (t− τ)SZ(t− τ)

−τ
∫ t

t−τ
ŻT (ℓ)JŻ(ℓ)dℓ+ τ2ŻT (t)JŻ(t)+ ã

(
Ũ2(t)−Ũ2(t− τ̃)

)
.

First, we notice that an upper-bound of V̇ is given by,

V̇ (t)≤ ZT (t)
[
P+PT

]
Ż(t)+ZT (t)SZ(t)−ZT (t− τ)SZ(t− τ)

+τ2ŻT (t)JŻ(t)−ZT (t)JZ(t)+ZT (t)JZ(t− τ)

+ZT (t− τ)JZ(t)−ZT (t− τ)JZ(t− τ)+ãŨ2(t)− ãŨ2(t− τ̃)

+2
[

ZT (t)PT
+ ŻT (t)P

T
][

B0Z(t)+B1Z(t− τ)+B2Ũ (t− τ̃)− Ż(t)
]︸ ︷︷ ︸

=0

,

(6.46)

which, in fact, directly follows from the Jensen’s Inequality given by,

−τ

∫ t

t−τ

ŻT (ℓ)JŻ(ℓ)dℓ≤−
∫ t

t−τ

ŻT (ℓ)dℓJ
∫ t

t−τ

Ż(ℓ)dℓ

=−
[
Z(t)−Z(t− τ)

]T J
[
Z(t)−Z(t− τ)

]
,

and where P and P that appear in (6.46) are some free-weighting matrices of appropriate dimension. Then,
it follows that,

V̇ (t)≤ η
T (t)Φη(t)+ ãŨ2(t),

where η is an augmented state defined by,

η
T (t) =

[
Z(t) Ż(t) Z(t− τ) Ũ(t− τ̃)

]
, (6.47)

and the matrix Φ is given by,

Φ =


S− J+ pT B0 +BT

0 P P−PT
+BT

0 P J+PT B1 PT B2

∗ τ2J−P
T
−P P

T
B1 P

T
B2

∗ ∗ −S− J 0
∗ ∗ ∗ −ã

 . (6.48)

Noticing that, Ũ(t) =
[

B3 0 0 B4

]
η(t), it follows that,

ãŨ2(t) = η
T (t)Eη(t), where, E =

[
B3 0 0 B4

]T
ã
[

B3 0 0 B4

]
.
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Therefore, by applying Schur complement, we conclude that V̇ (t) < 0 is satisfied provided that the
following LMI:

Ψ =



S− J+PT B0 +BT
0 P P−PT

+BT
0 P J+PT B1 PT B2 BT

3 ã

∗ τ2J−P
T
−P P

T
B1 P

T
B2 0

∗ ∗ −S− J 0 0
∗ ∗ ∗ −ã BT

4 ã

∗ ∗ ∗ ∗ −ã


< 0, (6.49)

holds. Next, by following arguments of [105, 106], we deduce from Ψ < 0 that the last block in (6.49)

satisfies

(
−ã BT

4 ã

∗ −ã

)
< 0. The latter implies by Schur complement that −I +BT

4 B4 < 0. Hence, the

eigenvalues of B4 are inside the unit circle, i.e. the difference equation Ũ(t) = B4Ũ(t − τ̃) is stable
for all τ̃ > 0. The latter, together with V̇ < 0, guarantees the asymptotic stability of the system (6.43).
We mention that it is possible to extend the stability result to the nonlinear system (6.35), using the
functional V (i.e. providing some conditions on the nonlinear terms F and G as in [106], Section 3.11).
However, since it seems actually difficult to interpret the LMI (6.49) as a combined targeted therapy for
the studied biological system, we slightly modify our Lyapunov approach by designing, in the next section,
a suitable specific LKF for the studied system that provides explicit (sufficient) stability conditions for the
dormancy steady state of the nonlinear system (6.35). The functional that we are going to propose has
some similarities with the functional V . Actually, in the next section, we are going to select some matrices
P, S and J, together with the constant ã, involved in the above construction. Thus, we will determine
analytically some upper-bounds on V̇ , through classical inequalities. Not surprisingly, the latter approach
increases the conservatism of the sufficient stability condition in the LMI form (the LMI condition is given
by (6.49)). That is the price of determining more biologically exploitable results (i.e. explicit exponential
decay conditions with an estimate on the decay rate of the solution and a subset of the basin of attraction
of the trivial steady state of the nonlinear system (6.35)).

6.4.3 Obtaining Explicit Exponential Decay Conditions

We focus on the coupled system using its representation in (6.35), with possibly piecewise continuous
solutions. Firstly, let us introduce the quadratic function:

Q(X , X̃) = Q(X)+λ1Q(X̃), where, Q(ℓ) = 1
2ℓ

2, (6.50)

and λ1 = 2. This is equivalent to put P = diag
{

1/2,1
}

in V of the previous section. Next, we consider
the following operators,

Y (ϕ̃) =
∫ 0

−τ̃

eρ1ℓQ(ϕ̃(ℓ))dℓ, and, (6.51)

S (ϕ) =
∫ 0

−τ

eρ2ℓQ(ϕ(ℓ))dℓ, (6.52)
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where, ϕ ∈C
(
[−τ,0],R

)
, ϕ̃ ∈C

(
[−τ̃,0],R

)
, and ρ1, ρ2, are strictly positive constants that we determine

later. In fact, observe that, compared to the integral terms in V of the previous section, S and Y have
exponential functions -in the integral terms- that make it possible to get a lower-bound on the exponential
decay of the solutions. Next, in the quest for explicit decay conditions, we are going to substitute Ẋ and ˙̃X
when computing the derivative of Q (which is not the approach adopted in the descriptor method, where
Ẋ and ˙̃X were not replaced). Thus, the derivative of Q along the trajectories of (6.35), satisfies

Q̇(t) =−2a1λ1Q(X̃(t))−2a6Q(X(t))− (a2λ1 +a7)X(t)X̃(t)

+a3λ1X̃(t)Ũ(t− τ̃)+a8X(t)X(t− τ)+a9X(t)X̃(t− τ)

+λ1X̃(t)F(X(t), X̃(t))+X(t)G(Xt , X̃t).

(6.53)

Notice that the derivative of Y (Ũt), for almost all t ≥ 0, is

Ẏ (t) = Q(Ũ(t))− e−ρ1τ̃Q(Ũ(t− τ̃))−ρ1Y (Ũt). (6.54)

Now, using the second equation in (6.35), we obtain

Ẏ (t) =−ρ1Y (Ũt)+a2
4Q(X̃(t))+a2

2Q(X(t))− (e−ρ1τ̃ −a2
5)Q(Ũ(t− τ̃))

+a2a4X(t)X̃(t)+a2a5X(t)Ũ(t− τ̃)+a4a5X̃(t)Ũ(t− τ̃)

+Q(F(X̃(t),X(t)))−F(X(t), X̃(t))
[
a4X̃(t)+a2X(t)+a5Ũ(t− τ̃)

]
,

where the ai’s and F are defined after (6.35). Similarly, we compute the derivatives of the functionals
S (Xt) and S (X̃t). By combining the previous intermediate results (i.e. Q̇, Ẏ and Ṡ ), we deduce that
the time derivative of the functional,

V †(Xt , X̃t ,Ũt) = Q(X(t), X̃(t))+λ2S (Xt)+λ3S (X̃t)+λ4Y (Ũt), (6.55)

where λ2, λ3 and λ4 are positive constants to be chosen later, along the trajectories of (6.35) is given, for
almost all t ≥ 0, by:

V̇ †(t) =−
[
2λ1a1−λ3−λ4a

2
4

]
Q(X̃(t))−

[
2a6−λ2−λ4a

2
2

]
Q(X(t))

−ρ2λ3S (X̃t)−ρ2λ2S (Xt)−ρ1λ4Y (Ũt)−λ4

[
e−ρ1 τ̃ −a2

5

]
Q(Ũ(t− τ̃))

−λ2e−ρ2τ Q
(
X(t− τ)

)
−λ3e−ρ2τ Q(X̃(t− τ))+a2a5λ4X(t)Ũ(t− τ̃)

− [a2λ1 +a7−λ4a2a4]X(t)X̃(t)+a8X(t)X(t− τ)+a9X(t)X̃(t− τ)

+ [a3λ1 +a4a5λ4] X̃(t)Ũ(t− τ̃)−a5λ4F(X(t), X̃(t))Ũ(t− τ̃)

+X(t)G(Xt , X̃t)+λ4Q(F(X̃(t),X(t)))−λ4F(X(t), X̃(t))
[
a4X̃(t)+a2X(t)

]
.

Next, we recall that for strictly positive constants, νi > 0, i = 1 to 5, (that we will choose later), we
have the following inequalities:

∣∣XX̃
∣∣≤ 1

ν1
Q(X)+ν1Q(X̃),

∣∣X(t)X(t− τ)
∣∣≤ 1

ν2
Q(X(t))+ν2Q(X(t−τ)),∣∣X(t)X̃(t− τ)

∣∣≤ 1
ν3

Q(X(t))+ν3Q(X̃(t−τ)),
∣∣X̃(t)Ũ(t− τ̃)

∣∣≤ 1
ν4

Q(X̃(t))+ν4Q(Ũ(t− τ̃)),
∣∣X(t)Ũ(t− τ̃)

∣∣≤
1
ν5

Q(X(t))+ν5Q(Ũ(t− τ̃)). Therefore, it follows that the derivative V̇ †(t) satisfies, for almost all t ≥ 0,
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the following inequality:

V̇ †(t)≤− [2λ1a1−b1]Q(X̃(t))− [2a6−b2]Q(X(t))−ρ2λ3S (X̃t)

−ρ2λ2S (Xt)−ρ1λ4Y (Ũt)−
[
λ4e−ρ1τ̃ −b3

]
Q(Ũ(t− τ̃))

−
[
λ2e−ρ2τ −b4

]
Q
(
X(t− τ)

)
−
[
λ3e−ρ2τ −b5

]
Q(X̃(t− τ))

+λ4Q(F(X̃(t),X(t)))−a5λ4F(X(t), X̃(t))Ũ(t− τ̃)

+X(t)G(Xt , X̃t)−λ4F(X(t), X̃(t))
[
a4X̃(t)+a2X(t)

]
,

(6.56)

where, 
b1 = λ3 +λ4a

2
4 +ν1

∣∣a2λ1 +a7−λ4a2a4
∣∣ ,

b2 = λ2 +λ4a
2
2 +
|a2λ1+a7−λ4a2a4|

ν1
+ |a8|

ν2
+ |a9|

ν3
+ |a2a5|λ4

ν5
,

b3 = λ4a
2
5 +ν4 |a3λ1 +a4a5λ4|+ν5λ4 |a2a5| ,

b4 = ν2|a8|, and, b5 = ν3|a9|.

(6.57)

Now we are ready to determine decay conditions that ensure the regional exponential stability of the
trivial steady state of the system (6.35). The terms where F and G are involved in (6.56) will be used only
to determine a subset of the basin of attraction of the trivial steady state of the system (6.35).

Let us focus on the constant which is multiplied by Q(Ũ(t − τ̃)) in (6.56). Using the inequality
|a3λ1 +a4a5λ4| ≤ λ1|a3|+λ4|a4a5|, we notice that the inequality λ4e−ρ1τ̃ −b3 > 0 is verified if

λ4

(
e−ρ1τ̃ −a2

5−ν4|a4a5|−ν5|a2a5|
)
−ν4λ1|a3|> 0. (6.58)

For later use, we set d1 ≜ λ4

(
e−ρ1τ̃ −a2

5−ν4|a4a5|−ν5|a2a5|
)
−ν4λ1|a3|.

We deduce that the first decay condition is given by:

a2
5 +ν4|a4a5|+ν5|a2a5|< 1. (6.59)

Indeed, the previous condition is necessary to guarantee that (6.58) is satisfied. Now, let us select
ν4 =

1
2 |a4|−1, and ν5 =

1
2 |a2|−1, for a4 ̸= 0 and a2 ̸= 0. Using the definitions of ai’s, ν4 and ν5, it follows

that the first decay condition (6.59) is equivalent to

(2K̃e−γ̃ τ̃)2 +2K̃e−γ̃ τ̃ < 1. (6.60)

Remark 37. One notices that we have deliberately chosen ν4 =
1
2 |a4|−1, and, ν5 =

1
2 |a2|−1, and that

these choices are not unique. Indeed, our objective here is to determine a sufficient decay condition
that involves only the unhealthy parameters of the permanently dividing subpopulation (for instance, the
subpopulation with FLT3-type mutations in AML) which are, K̃, τ̃ and γ̃ . For that purpose, we derive a
decay condition involving only the parameter a5. Therefore, ν4 and ν5 are used in order to compensate a4

and a2. A more general form is given by ν4 = ν̃4|a4|−1, ν5 = ν̃5|a2|−1, where ν̃4 > 0, and, ν̃5 > 0. In this
case, the decay condition (6.60) rewrites as, (2K̃e−γ̃ τ̃)2 +2(ν̃4 + ν̃5) K̃e−γ̃ τ̃ < 1.
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Now, notice that a direct consequence of the inequality (6.60) is that for all ρ1 ∈

(
0, 1

τ̃
ln
(

5
1+4[a2

5+a5]

))
,

we get e−ρ1τ̃ −
[
a2

5 +a5

]
>

1−[a2
5+a5]
5 > 0. Consequently, we deduce that d1, which is defined right after

(6.58), and which is now equal to: d1 = λ4

(
e−ρ1τ̃ −

[
a2

5 +a5

])
−ν4λ1|a3|, satisfies the inequality, d1 > 0,

for all λ4 =
λ̃4λ1ν4|a3|

e−ρ1 τ̃−[a2
5+a5]

> 0, where λ̃4 > 1. Next, using the inequality,

∣∣F(X(t), X̃(t))Ũ(t− τ̃)
∣∣≤ 2|a5|λ4

d1
Q(F(X(t), X̃(t)))+

d1

2|a5|λ4
Q(Ũ(t− τ̃),

it follows from (6.56) that,

V̇ †(t)≤− [2λ1a1−b1]Q(X̃(t))− [2a6−b2]Q(X(t))− d1

2
Q(Ũ(t− τ̃))

−ρ2λ2S (Xt)−ρ2λ3S (X̃t)−
[
λ2e−ρ2τ −b4

]
Q(X (t− τ))

−
[
λ3e−ρ2τ −b5

]
Q(X̃(t− τ))−ρ1λ4Y (Ũt)+H(Xt , X̃t),

(6.61)

where,

H
(
Xt , X̃t

)
=

(
λ4 +

2(a5λ4)
2

d1

)
Q(F(X(t), X̃(t)))+X(t)G(Xt , X̃t)

−λ4F(X(t), X̃(t))
[
a4X̃(t)+a2X(t)

]
.

(6.62)

Arguing similarly, we select ν2 and ν3 that compensate the terms a8 and a9 (for |a8| ≠ 0, and |a9| ≠ 0).
For instance, we can consider ν2 =

1
6|a8| and ν3 =

1
6|a9| . Then, we put, for instance, λ2 = λ3 =

1
3 . We

notice that our choices of ν2 and ν3 in this case are equivalent to b4 = b5 =
1
6 , and it follows that for all

ρ2 ∈
(

0, 1
τ

ln
(

λ2
b4

))
, we obtain in this case e−ρ2τ > 2

3 . Thus, we end up with8

d2 ≜ λ2e−ρ2τ −b4 =
1
3

(
e−ρ2τ − 1

2

)
> 1

18 ,

d3 ≜ λ3e−ρ2τ −b5 =
1
3

(
e−ρ2τ − 1

2

)
> 1

18 .
(6.63)

Finally, by selecting ν1 = λ1 = 2, all the setting parameters involved in the functional V † are now
chosen. We conclude that if the decay conditions d4 ≜ 2λ1a1− b1 > 0, and d5 ≜ 2a6− b2 > 0, are
satisfied, then (6.61) satisfies for almost all t ≥ 0,

V̇ †(t)≤−3dV †(Xt , X̃t ,Ũt)−
d4

2
Q(X̃(t))− d5

2
Q(X(t))− d1

2
Q(Ũ(t− τ̃))

−d2Q(X(t− τ))−d3Q(X̃(t− τ))+H(Xt , X̃t),

where d= 1
3 min

{
d4

2λ1
, d5

2 ,ρ1,ρ2

}
.

8Similarly to ν4 and ν5 in Remark 37, the choices of ν2 and ν3 are not unique (and, similarly, those of λ2 and λ3 either). In
Example 12, we are going to use different numerical values that also satisfy d2 > 0 and d3 > 0.
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Now, we focus on the function H, defined after (6.61), in order to define a subset of the basin of
attraction of the trivial steady state of system (6.35). We recall that there exist ci > 0, i = 1, . . . ,6 such
that (6.41) and (6.42) are satisfied. In addition, from the expression of V †, defined in (6.55), we notice
that since λ1 = 2, we get,

V †(Xt , X̃t ,Ũt)≥
c1

max{c1,c2}
Q(X(t))+

c2

max{c1,c2}
Q(X̃(t),

∣∣X̃(t)
∣∣≤√V †(Xt , X̃t ,Ũt), and,

∣∣X(t)
∣∣≤√2V †(Xt , X̃t ,Ũt).

By combining the previous inequalities, we get the following upper bound:∣∣H(Xt , X̃t)
∣∣≤ vV †2

(Xt , X̃t ,Ũt)+ c5
√

2V †(Xt , X̃t ,Ũt)Q(X(t− τ))

+
[
λ4c1(a4 +a2)+ c3

]√
2V †(Xt , X̃t ,Ũt)Q(X(t))

+
[
λ4c2(a4 +a2)+ c4

]√
2V †(Xt , X̃t ,Ũt)Q(X̃(t))

+c6
√

2V †(Xt , X̃t ,Ũt)Q(X̃(t− τ)),

(6.64)

where, v =

(
d1λ4+2(a5λ4)

2
)

max{c1,c2}2

2d1
. A direct consequence is that the time derivative of V † satisfies for

almost all t ≥ 0,

V̇ †(t)≤−2dV †(Xt , X̃t ,Ũt)−
d1

2
Q(Ũ(t− τ̃))

−
[
d− vV †(Xt , X̃t ,Ũt)

]
V †(Xt , X̃t ,Ũt)

−
[
d4

2
−
(
λ4c2(a4 +a2)+ c4

)√
2V †(Xt , X̃t ,Ũt)

]
Q(X̃(t))

−
[
d2− c5

√
2V †(Xt , X̃t ,Ũt)

]
Q(X(t− τ))

−
[
d5

2
−
(
λ4c1(a4 +a2)+ c3

)√
2V †(Xt , X̃t ,Ũt)

]
Q(X(t))

−
[
d3− c6

√
2V †(Xt , X̃t ,Ũt)

]
Q(X̃(t− τ)).

(6.65)

Consequently, for all initial conditions belonging to the set

B =
{(

ϕX ,ϕX̃ ,ϕŨ
)
∈ Cτ × C̃τ × C̃τ̃

∣∣∣V † (
ϕX ,ϕX̃ ,ϕŨ

)
<V †

}
, (6.66)

where, with an abuse of notation, we consider the spaces of continuous functions: Cτ =C
(
[−τ,0],(−xe,+∞)

)
,

C̃τ = C
(
[−τ,0],(−x̃e,+∞)

)
, and, C̃τ̃ = C

(
[−τ̃,0],(−ũe,+∞)

)
, as well as the upper bound: V †

=

min{ dv ,u
2
1,u

2
2,u

2
3,u

2
4}, where, u1 =

d4
8(λ4c2(a4+a2)+c4)

, u2 =
d5

8(λ4c1(a4+a2)+c3)
, u3 =

d4
4c5

, and, u4 =
d3
4c6

,

we finally find that the derivative of the functional V † satisfies:

V̇ †(t)≤−2dV †(Xt , X̃t ,Ũt), where d> 0, for almost all t ≥ 0.
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We integrate this inequality and we obtain for all t ≥ 0,

V †(Xt , X̃t ,Ũt)≤ e−2dtV †
(

ϕXt ,ϕX̃t
,ϕŨt

)
. (6.67)

Consequently, we get for all t ≥ 0, X2(t) + λ1X̃2(t) ≤ 2e−2dtV †
(
ϕX ,ϕX̃ ,ϕŨ

)
. We conclude that the

trajectories X(t) and X̃(t) converge exponentially to the trivial steady state of the shifted system, with
a decay rate larger than, or equal to, d. By classical arguments, we observe from the second equation
in (6.35) that, since 2K̃e−γ̃ τ̃ < 1, Ũ(t) converges exponentially to zero when X(t) and X̃(t) converge
exponentially to the zero.
To summarize, we considered that D (or E) exists and we rewrote the studied system (6.8) in the form
(6.35). Next, we proved that if the decay conditions ((6.60), d4 > 0, d5 > 0) are satisfied, then the
trajectories of (6.35) associated with initial conditions belonging to the set B, converge exponentially
to 0-equilibrium of the shifted system (6.35), with a decay rate larger than, or equal to, d. By explicitly
rewriting the decay conditions, we summarize our findings as follows:

Theorem 14. (A) Assume that D (resp. E) exists, then consider the shifted system (6.35), such that
its trivial steady state corresponds to D (resp. E) of (6.8). If there exist matrices P, S, J, P and P,
of appropriate dimension, and a positive constant ã, that satisfy the LMI (6.49), then the trivial
steady state of the shifted system (6.35), which is D (resp. E) of (6.8), is locally asymptotically
stable.
(B) Assume that system (6.8) admits a positive steady state D (i.e. (6.23) or (6.24) in Proposition
6-(vii) hold). If

i)
(

2K̃e−γ̃ τ̃

)2
+2K̃e−γ̃ τ̃ < 1,

ii) b1
4 − α̃θ̃ x̃e < β̃ (xe + α̃ x̃e)+ δ̃ ,

iii) b2
2 −θxe < β (xe + x̃e)+δ ,

(6.68)

are satisfied, ensuring also that d2 > 0 and d3 > 0, then D is regionally exponentially stable with
a decay rate larger than, or equal to, d, and with basin of attraction defined by:

B† =

{
ϕx ∈ C

(
[−τ,0],R+

)
,ϕx̃ ∈ C

(
[−τ,0],R+

)
,ϕũ ∈ C

(
[−τ̃,0],R+

)∣∣∣
V † (ϕx− xe,ϕx̃− x̃e,ϕũ− ũe)<V †

}
.

(6.69)

(C) Assume that E exists (Proposition 6-(ii)), and consider that x̃e = 0 in (6.68). If the conditions
(6.68) are satisfied (for x̃e = 0), then E of (6.8) is regionally exponentially stable with a decay rate
d and basin of attraction defined by (6.69), where we consider now that x̃e = ũe = 0 in (6.69).

Example 12. In this example, we assume that α̃ = 5. For the unhealthy compartment, we consider the
parameters given in Table 6.1, while for the healthy case we consider the parameters of Table 6.2.

We want to investigate the stability properties of the dormancy steady state: D= (x̃e, ũe,xe), where,
x̃e = 0.0217, ũe = 0.0593, and xe = 0.2535. Obviously, if the decay conditions (6.68) are satisfied, then
the LMI (6.49) admits a solution.
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δ̃ γ̃ τ̃ β̃ (m) K̃ ũe x̃e

0.928 0.4 1 2.78
1+3m2 0.2 0.05938567 0.02179864

Table 6.1 Parameters of the unhealthy compartment, and the values of x̃e and ũe.

δ γ τ β (m) xe

0.168 0.001 0.12 0.219
1+4m2 0.25354595

Table 6.2 Parameters of the healthy hematopoetic stem cell compartment, and the value of xe.

We check that the decay conditions (6.68) are verified:

(i) 1−2K̃e−γ̃ τ̃ −
(

2K̃e−γ̃ τ̃

)2
= 0.659979347 > 0,

(ii) β̃ (xe + α̃ x̃e)+ δ̃ −
(
b1
4 − α̃θ̃ x̃e

)
= 0.987350196 > 0,

(iii) β (xe + x̃e)+δ −
(
b2
2 −θxe

)
= 0.000149333 > 0,

(6.70)

where we consider: λ1 = 2, λ2 = λ3 = 0.261780, λ4 = 2.205796, λ̃4 = 2, ν1 = 2, ν2 =
1

4|a8| = 1.301858,

ν3 =
1

4|a9| = 1.736024, ν4 =
1

2|a4| = 0.302151, ν5 =
1

2|a2| = 7.374022, ρ1 =
1

10τ̃
ln
(

5
1+4(a2

5+a5)

)
= 0.075074

and ρ2 =
1

10τ
ln
(

λ2
b4

)
= 0.038369. For these numerical values, we check that d1 = d2 = 0.010577 > 0.

Therefore, according to Theorem 14, the dormancy steady state, D= (0.0217,0.0593,0.2535), is region-
ally exponentially stable, as illustrated in Figure 12. This example will be revisited in the next section, in
the practical situation of therapeutic strategies.
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ũ

Fig. 6.12 Trajectories of the system of the numerical example 12 (Tables 6.1-6.2). In this case, the dormancy steady
state D exists, such that x̃e = 0.0217, ũe = 0.0593. The sufficient local stability conditions given in Theorem 14-(B)
are satisfied, as shown in (6.70), and the trajectories of the system converge exponentially to D.
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6.5 Concluding comments on the findings and possible therapeutic strate-
gies oriented towards cancer dormancy

A first remark is that CSC dormancy probably results from complex relationships between the different
biological parameters involved in this process, that are difficult to elicit, let alone to be understood. This
observation concerns the stability properties (decay conditions in Theorem 14), but also the conditions of
existence of dormancy (Proposition 6-(vii)), along with the role of the sensitivity parameter α̃ . This should
lead us to develop further the mathematical framework sketched here, in order to help us understand the
mechanisms behind dormancy.

Nevertheless, as a first step, the analysis that we performed throughout this paper reveals that our
theoretical results may suggest some therapeutic guidelines to eradicate aggressive CSCs (E), or to bring
them to dormancy (D), as discussed in the sequel.

1) Towards the adoption of a common therapeutic strategy to yield states D and E? It cannot be
claimed that convergence to the steady state D and the steady state E should share the same therapeutic
roadmap, since a crucial difference lies in their conditions of existence. For instance, E exists even if
δ̃ > 2e−γ̃ τ̃−1

1−2K̃e−γ̃ τ̃
β̃ (0) (see Proposition 6), while the reverse situation is required in order to allow for the

existence of dormancy D, in addition to other conditions. We recall that in our system, the conditions of
existence of the steady states of interest are a type of red lines, that must not be crossed when elaborating
a treatment strategy.

On the other hand, when we focus on the stability conditions, wondering how therapeutic actions
can make the biological system go into the direction of the decay conditions (6.68), we realize that the
respective decay conditions of D and E are substantially similar. More precisely, our sufficient stability
conditions suggest that the biological parameters that can be targeted in order to satisfy (6.68), in either of
the two states D or E, are similar (but not identical). In this sense, we can state that a common therapeutic
strategy for D and E can be proposed. So, in light of the existing therapies and recent clinical trials that
highlight novel effective molecules as potential drugs in AML, we briefly discuss how a combined therapy
may satisfy the theoretical conditions (6.68).

First, we observe that the condition (B-i) in Theorem 14 provides a restriction on the dynamics of
over-proliferating cells, since K̃, γ̃ and τ̃ are involved. Satisfying the previous condition relies in increasing
the product γ̃ τ̃ , and decreasing K̃. Increasing γ̃ τ̃ means that we extend the average duration of the cell
cycle τ̃ and/or increase the apoptosis rate γ̃ in the population of unhealthy cells. Leukemic cells may
be targeted by drugs such as quizartinib (AC220 [305]) or erlotinib [167] to increase τ̃ , while cytosine
arabinoside can be used to increase the apoptosis rate γ̃ . Moreover, quizartinib can be used to decrease the
fast self-renewal rate K̃. In fact, K̃ is expected to be the hardest parameters to modify in practice, due to
preexisting mutations in epigenetic control genes (DNMT3A, TET2). However, new FLT3 inhibitors,
such as midostaurin9, have achieved good performance (see the recent quantitative results provided in
[277]) and are now approved for use along with chemotherapy to target leukemic cells in AML.

9Midostaurin is a multi-targeted protein kinase inhibitor, which can be active against oncogenic CD135 (FMS-like tyrosine
kinase 3 receptor, FLT3). [85, 277]. See also some other comments in Chapter 2.
Basic information on midostaurin can be found in the American Cancer Society website:
https://www.cancer.org/cancer/acute-myeloid-leukemia/treating/targeted-therapy.html
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Next, in the conditions (B-ii) and (B-iii) of Theorem 14, the targets can be the parameters δ and δ̃

(mainly δ̃ , since it is the unhealthy parameter) that appear in the right hand sides of the corresponding
inequalities. We recall that δ̃ includes the death rate and the differentiation rate of unhealthy resting cells.
In practice, increasing δ̃ means that we should increase the differentiation rates, which can be achieved
in the case of leukemia by infusing dasatinib [167], that targets most of the tyrosine kinases including
the c-KIT gene. In fact, it was thought that drugs promoting re-differentiation of CSCs in many cancers
are not effective in the specific case of AML. However, this therapeutic option has been relaunched
recently after successful clinical trials, where dihydroorotate dehydrogenase (DHODH) inhibitors restored
differentiation of leukemic cells in AML [278]. Finally, increasing β (0) and β̃ (0) can be performed by
using G-CSF molecules [100]. These are the main common targets shared by D and E.

2) Constraints and spillover risks of CSCs eradication: Increasing the parameters δ̃ , γ̃ and τ̃ (using
some of the previously mentioned molecules or their equivalent), promotes the existence of the state E,
together with its stability. However, it may exclude the steady state D, by violating its conditions of
existence. Furthermore, an excessive therapy that affects also healthy cells leads, theoretically, to the
extinction of all the cells (Theorem 13). At the other extreme, an insufficient dose of drugs leads to CSCs
overproliferation (when 2K̃e−γ̃ τ̃ > 1). The overproliferating behavior may be worsened by CSC resistance
to drugs. Therefore, the dormancy steady state D appears as a delicate intermediate equilibrium between
the cancer progression and CSC eradication.

3) Specific constraints related to dormancy: In the common strategy that aims to satisfy the condition
(6.68), we noticed that drugs have to increase the product γ̃ τ̃ . On the other hand, we recall from Proposition
6-(vii) that the condition 1 < 2e−γ̃ τ̃ is necessary for the existence of D. Thus, the therapy action in this
case has to take into account this supplementary condition. We infer from this remark that the probability
to achieve the dormancy steady state D by using the classical strategies that consist in giving the maximum
tolerated dose of drugs during the treatment period [93], is therefore very low. Indeed, since a high dose is
expected to yield 1 > 2e−γ̃ τ̃ , the condition of existence of D is then violated.

The multiple restrictions on the biological parameters listed in Proposition 1 show that the existence
of D is more difficult to achieve than the existence of E. However, we suggest that infusing G-CSF
molecules appears to favour the existence of a dormancy steady state, since increasing (relatively) β (0)
seems to go in the right direction in order to satisfy both the existence and the stability conditions of D.

4) The suggestion of therapeutic strategies that achieve dormancy: In light of the above discussion,
we propose to implement what can be considered as a simple theoretical therapeutic strategy that aims
to achieve a stable dormancy steady state. More precisely, we consider an hematopoietic system with
the clinical symptoms that we expect when facing some overproliferating malignant hemopathies. This
ranges from a blockade in differentiation mechanisms to the survival of abnormal cells, along with a
high rate of self-renewal activity. We will in fact check that in the absence of adequate treatment, the
unhealthy population will proliferate abundantly. Then, in a second time, our objective is to stabilize the
total cell density, through multiple drug infusions of a combined therapy that is in line with our theoretical
results (i.e. the decay conditions in Theorem 14). In other words, we aim to bring the hematopoietic
system from an initial abnormal overproliferating state into a dormant stable steady state. For that purpose,
let us assume that the initial parameters of the unhealthy compartment are those given in Table 6.3. In
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fact, we have deliberately chosen an intuitive set of parameters that matches specific dysfunctions in
overproliferating malignant hemopathies (particularly the condition 2K̃e−γ̃ τ̃ > 1).

δ̃ γ̃ τ̃ β̃ (m) K̃ α̃

0.25 0.1 0.2 2.78
1+m3 0.55 0.8

Table 6.3 The set of initial (i.e. before treatment) parameters of the unhealthy compartment.

On the other hand, we assume that the parameters of the healthy compartment are those given in
Example 12, and we consider that the therapy to be administrated has a negligible effect on ordinary cells.

In medical practice, usually the hematopoietic system is targeted through chemotherapy (a combination
of two or three drugs), sometimes infused along with a complementary treatment. All these drugs have
molecular targets (e.g. dasatinib targets BCR/Abl, Src, ephrin receptors, c-Kit and many other tyrosine
kinases), that result in a modification of some biological mechanisms (e.g. generally, dasatinib increases
proliferation, and differentiation in AML [96]).

It should be borne in mind that the functional effect resulting from the molecular action of the infused
drugs, varies in practice according to several facts (for instance, the buildup of many types of mutations
by some individuals). However, when we put aside all the intermediate complications that may exist in
practice, we can take a shortcut that associates to each infused drug its most likely action on one or several
biological functions (that are: differentiation, apoptotis, and so on), with a certain amount of confidence.
Thus, we can roughly state from medical practice some major families of molecules that can be used in
the case of AML or other cancers, according to their expected effect on the biological functionalities.

Fast self-renewing Quizartinib, midostaurin
(K̃) Dihydroorotate dehydrogenase (DHODH) inhibitors

Apoptosis (γ̃) Daunorubicin, cytosine arabinoside, volasertib
Differentiation (δ̃ ) Dihydroorotate dehydrogenase (DHODH) inhibitors
Cell cylce dur. (τ̃) Quizartinib, erlotinib, volasertib

Table 6.4 Here we associate the most likely (clinically established) effect of some advanced drugs/molecules on
the biological features of the hematopoietic system, in the specific case of AML (without focussing neither on the
molecular mechanisms behind each drug action, or on the possible mutual interactions that may exist between drugs
within some combinations).

Remark 38. (i) One notices that some molecules in Table 6.4 are expected to modify more than one model
parameter. For instance, the DHODH inhibitor, which is a differentiation re-activator, may decrease K̃
and increase δ̃ , since both actions seem to promote a return into normal differentiation.

(ii) The volasertib (recognized as orphan drug for AML since 2014), belongs to the family of Polo-like
kinase (Plk) inhibitors. It can be used in the treatment of AML to promote apoptosis and cell cycle arrest
(see for instance [45]). In fact, the list of drugs given in Table 6.4 is not exhaustive and can be enlarged,
for instance, to: histone deacetylase (HDAC) inhibitors (vorinostat and panobinostat), and the family of
aurora kinase inhibitors (AZD115).
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(iii) According to the description of the dominance measure α̃ , and its acting modes as a sensitivity
parameter to mitotic inhibitors (as discussed in Section 6.2.2), we can reasonably suggest some drug
infusion ways to change its behavior. It appears that molecules such as vincristine (a mitotic inhibitor), or
monoclonal antibodies (e.g. gemtuzumab ozogamicin) and other immuno-oriented therapies, can be more
likely expected to act on the parameter α̃ .

Now, we observe that the biological parameters considered in Table 6.3 imply that 2K̃e−γ̃ τ̃ = 1.078.
It follows that, theoretically, if AML is not treated, unhealthy cells will invade the bone marrow and
possibly the bloodstream. In Figure 6.13, we illustrate the evolution of cell densities for the selected
model parameters, where we observe the unbounded proliferation of unhealthy cells.
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Fig. 6.13 Trajectories of the system for the (non-treated) model parameters of Table 6.3.

Actually, the elaboration of an optimal therapeutic strategy10 is beyond the scope of this chapter. Here,
we are suggesting a theoretical therapeutic strategy, that can be based on some suitable combination of
drugs (listed in Table 6.4, or others similar ones). We assume that the resulting evolution patterns of the
biological model parameters are those illustrated in Figure 7.22. In fact, we can distinguish between two
evolution trends, nested within one another as follows:

1) The first series of infusions aims to decrease K̃ (fast self-renewing rate), to increase τ̃ (cell-cycle
duration), and to increase γ̃ (apoptosis rate). It is worth mentioning that the direction of the change in the
model parameters (i.e. by increasing/decreasing the model parameters values) is in line with the observed
effect of the drugs listed in Table 6.3. This treatment phase is expected to limit the expansion of CSCs.
We also assume that the first treatment phase is accompanied by a slight increase of the value of α̃ , under
the effect of the drugs that target unhealthy cells11.

2) The second phase of the treatment aims, on the one hand, to maintain the trend given for the
parameters (K̃, τ̃ , γ̃), and on the other hand, to reactivate the differentiation of unhealthy cells (using

10The optimal therapy requires the determination of the best infusion planning, that takes into account drug toxicity and other
practical considerations (e.g. how the doses of each drug type are spread over the duration of the therapy). These points deserve
a separated study. An approach to deal with this issue is proposed in the next chapter (Part III. Chapter 7).

11Before therapy, it is expected that α̃ < 1, meaning that unhealthy cells are less sensitive than healthy cells to the natural
mitotic regulatory molecules that are secreted by the body. Then, we consider that α̃ increases when selected therapy targets
unhealthy cells, thus reversing the trend since unhealthy cells become progressively sensitive to more and more regulatory
molecules (i.e. drugs) when therapy is in progression.
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DHODH inhibitors, for instance) and to increase the sensitivity parameter α̃ with more virulence than in
the first series of infusions (by administrating some mitotic regulatory molecules that target unhealthy
cells, such as immunotherapy).

Remark 39. It seems legitimate to wonder whether the reactivation of differentiation of CSCs is a good
strategy to fight cancer. The answer is argued for instance in [93], where it is explained how CSCs can
initiate and regenerate cancers, while differentiated cancer cells (called CCs [93]) will inevitably die out
(see the section “Cancer stem cells and non-stem cancer cells", [93]). Thus, promoting the differentiation
of CSCs into CCs appears as a sustainable way to both limit cancer progression, and avoid the escape
from cancer dormancy.

Now, let us assume that an adequate combination of drugs has been fixed. We can highlight one
suggestion among other possibilities, in which we propose:

① a shock treatment through chemotherapy promoting apoptosis γ̃ , cell arrest τ̃ (e.g. through
volasertib for both objectives), and targeting K̃ using AC220 (which may in addition have a suitable effect
on cell arrest, i.e. increasing τ̃),

② followed by a more differentiation-oriented treatment (e.g. using drugs that are based on DHODH
inhibitors) and mitotic inhibition of unhealthy cells (possibly using some immunotherapy-based drugs, or
vincristine, see also [258]).

We aim through the selected therapy to achieve an evolution pattern of the model parameters as close
as possible to the idealistic ones given in Figure 7.22.

Remark 40. The treatment protocol that we suggest have many similarities with classical methods in
AML therapeutics [258]. We can mention in particular the 3+7 most famous strategy, which is also
based on two main separated phases (7 days of intensive induction through cytarabine, plus 3 days of an
anthracycline [258]), and then possibly followed by consolidation chemotherapy and hematopoietic cell
transplant [85, 258].

Next, we apply the therapeutic strategy given in Figure 7.22 to our model, starting the first infusion at
t = 1 day, and considering a fixed treatment step of 1 day between successive infusions (another choice
may be envisaged if needed). One notices that the model parameters after Infusion 9 are those given in
Example 12, for which the decay conditions (6.68) of Theorem 14 are satisfied.
The evolution of the ordinary and mutated cell densities is shown in Figure 6.15.

It is worth mentioning that in practice, the treatment of AML is spread over several separated phases.
For instance, in the recent experimental work [277], an AML (FLT3-type) therapy based on midostaurin
and chemotherapy, has been separated into two induction phases, a consolidating phase and maintenance
phase (59% of patients that have undergone the previously mentioned therapeutic protocol, then underwent
bone marrow transplant, have reached the complete remission state [277]). Similarly, in our example,
we assume that after Infusion 9, a consolidating and a maintenance phases continue so as to correct,
adjust, strengthen, and fortify the desired dormancy state of the hematopoietic system (which is the state
described by the set of parameters of Infusion 9).
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Fig. 6.15 The evolution of the total densities of healthy and unhealthy cells (resp. x(t) and x̃(t)) and ũ(t), in the
mathematical model. The trajectories converge from a leukemic overproliferating behavior to a dormancy stable
steady state under the effect of the therapy in Figure 7.22.

We conclude this work by referring to Table 1 in [258], which summarizes a number of emerging
promising AML therapies, that open up other possibilities to act on cancerous hematopoietic systems.
Many of these strategies can in fact be implemented and discussed within the modeling and analysis
framework that we introduced in our current work. It is worth mentioning that the addition of midostaurin
to chemotherapy resulted in a 22% lower risk of death among patients, in comparison to another more
classical treatment (see [277]). Notice that, most of the molecules listed in [258] (and the references
therein) are in early phases of development and trials, but they participate greatly, as well as many
multidisciplinary works, to nourish this hope of moving towards systematic treatments for cancer, in
general, and leukemia, in particular.
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Chapter 7

Stabilization of blood cell counts through
growth-factors and drugs switching

Synopsis. Trying to deepen the mathematical modeling of cell dynamics has a cost and may be highly

demanding in terms of mathematical analysis. The present work is a step-forward in refining the analysis

presented in the previous chapters. First, we start from a description of cell proliferation and quiescence

where almost all the involved parameters and functions are affected by multiple growth-factor concentra-

tions. For the first time, we interpret the resulting system as a possibly switching one. This work launches

the modeling of hematopoietic systems through switching and event-triggered ones, resulting from drug in-

fusions or from practical situations where the body requires to adapt efficiently its blood cell count (e.g. for

combating an infection). The key point consists in the original complete-type formulation of the stabilization

issues that we propose through artificial intelligence planning tools. In that framework, an optimal solution

is discovered via classical planning and scheduling algorithms. We show the large spectrum of application

of our method: in the unhealthy hematopoiesis, we address the treatment issue through multiple drug infu-

sions. In that case, we determine the best therapeutic strategy that might restore an ordinary hematopoietic

system. Next, the healthy hematopoiesis is considered as an intelligent agent able to set objectives - that

correspond to body requirements - and to achieve them in an optimal way. Biological interpretations and

numerical simulations are provided throughout the chapter.

7.1 General overview and description of the findings

In this work, we will address some open issues, mainly related to the idea of stabilization or regulation
of the hematopoietic process in healthy and unhealthy situations. Knowing that, until now, research
efforts were particularly focusing on continually improving the existing models of hematopoietic cell
dynamics and on their stability properties. Most of the time, these models involve fixed parameters
and functions (representing differentiation, self-renewing, proliferation, death rates, apoptosis rates etc),
which are assumed not to depend on growth factors (hormone-like molecules, Chapter 2). In fact, despite
their paramount importance, growth factors are evoked in only few works among a large list of papers
dedicated to this subject. The reason behind that is quite simple: including growth-factor dynamics notably
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complicates the resulting models, as well as their analysis. Not surprisingly, growth-factor dependent
parameters are usually avoided.

Moreover, the majority of the mathematical models of hematopoietic systems (at least those studied
in [49], [180], [31], [100], [185], [6], [7], [8], [20], [4], [3], [189], [275], [224], [225], [37], [39], [23],
[107], [81], [154], and, [170]) share in common the fact that they can admit a unique strictly positive
steady state, which has been less studied in the models involving growth-factor dependent parameters
since it is more demanding in terms of mathematical analysis (refer to the Section 7 of the most recent
work [3]).

We want to go a step further in the analysis of the behavior of population dynamical systems. For
that purpose, a first step consists in considering a model where almost all the biological functions and
parameters are growth-factor dependent. This is in line with the previous works ([31], [185], [6] and [3])
insofar as we will continue their efforts to improve and refine the hematopoietic models. For instance, we
consider several discrete maturity stages, where biological parameters of the overall system are controlled
by five different growth-factors. We consider that cells may divide with a high degree of freedom1 during
their cell-cycle, exactly like the models discussed in Part I of the thesis (Chapters 3 and 4, in models
which are not growth-factor dependent).

In the first part of the chapter, we discuss some modeling features and we revisit the description given
to growth-factor dynamics. In fact, we note that the characteristic patterns that describe how a model
parameter may vary according to a growth-factor concentration is a fundamental issue when addressing
the stabilization of the hematopoietic system. Thus, we are going to introduce a different formulation
of how growth-factor concentrations are acting on the biological features of the model, no matter the
number of the controlled parameters. For that purpose, we employ the time-scaling heterogeneity in the
overall system that regroups the cell population dynamics and the variation of the hormone-like molecule
concentrations. It is agreed that the secretion of growth factors is very fast in comparison to population
cell response and cell proliferation. This assertion is actually behind the models of cell dynamics that
consider static biological parameters. More importantly, this time-scaling heterogeneity had allowed
the study of models where parameters depend on growth-factors that are in quasi-steady states (see
[189]). For instance, since the half-life of erythropoirtins (which are the EPO hormones that regulate
erythropoiesis -Chapter 2) is very short compared to the hematopoietic cell proliferation, a quasi-steady
state approximation of growth-factor dynamics was considered in [31].

In fact, we noted that the models involving growth-factor dynamics were considering that the total
density of mature cells is exerting a form of control on the growth-factor concentrations, through a specific
evolution equation. This is a differential equation suggesting that hormone-like molecules may evolve
in the same time-scaling as population dynamics. In this modeling approach, it appears from a practical
point of view that actually mature cells are directly controlling the secretion of growth factors, however,
the evolution of growth-factor concentrations as considered in previous models could be considered in
a different way. More precisely, the evolution equation of growth-factor concentrations have to take
into account the heterogeneous time-scaling between growth-factor secretion and cell proliferation. The
issue of determining an alternative and effective approximate representation of growth-factor (or drug)

1In other words, we do not assume that mitosis occurs at a fixed age, as usually done in models that take into account
growth-factor dynamics
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dynamics, which can be convenient for blood cell regulation, is discussed in detail in Section 7.3 (see also
Section 7.6 for numerical applications).

The key point we see in Section 7.3 is that we can interpret the hematopoietic mechanisms from a
different perspective: we suggest that the hematopoietic system is a possibly switching one, in the sense
that growth-factor concentrations exert a form of event-triggered control on the different biological
features and parameters involved in the model. The latter approach shows -throughout the second part
of the chapter (see in particular Section 7.6)- its efficiency to describe both the unhealthy2 and healthy
hematopoiesis. One of the fundamental issues that guided our modeling research relies on the elaboration
of an unified framework that allows -in some sense- the existence of several strictly positive steady states
in one overall model describing hematopoiesis. As far as we know, all the mathematical models of
hematopoiesis admit a unique strictly positive steady state. This fact is even more frustrating for models
involving growth factors, since their introduction should allow more flexibility in the system. In other
words, the resulting hematopoietic system should be able to change its operating mode, by changing the
levels of the growth-factors secreted by the body, or through drug therapy if infused.

Many evidences support the hypothesis under which the hematopoietic system admits multiple
operating points. For instance, in normal hematopoiesis, the body adapts its blood count to face some
frequent situations such as seasonal allergies, or when dealing with asthma, eczema, and infections.
Some frequently encountered examples are evoked in Section 7.2, but here we briefly mention the
well-known case of eosinophil3 normal count, that moves from one value to another one, depending on
body requirements when facing many types of allergy. We also know from the works of the anatomist
François-Gilbert Viault (1890) that high altitude dwellers have higher hematocrits than sea-level residents.
The same is observed for persons suffering from pulmonary insufficiency.

In light of all the previously mentioned considerations, we are going to present in Section 7.4.1
a coupled PDE-system of McKendrick-type, that describes the dynamics of gradually immature cell
subpopulations residing inside the bone marrow, together with one type of mature cells that are active
in the bloodstream. Almost all the biological parameters and functions involved in the PDEs and their
associated boundary conditions are growth-factor dependent. We approximate the relationship between
the growth-factor concentrations and the values of their corresponding parameters by some step-like
functions, as indicated in Section 7.3. That is precisely a triggered-event operating mode, where at
different thresholds of the growth-factor concentrations, the corresponding controlled biological parameter
jumps from one level to another one (Section 7.3). Roughly speaking, one can observe that by changing
the value of a specific growth-factor concentration in a way that makes it crossing a predefined threshold,
we will be able -as a consequence- to move the value of the corresponding controlled parameter from
its initial state to a new one. The latter idea achieves a consistent representation where, actually, the
hematopoeitic system is able to change its steady state and operating mode, as illustrated throughout our
work. Of course, the question remains of how growth factors are changing with respect to time in order to
drive the event leading to the described parameter-switching: this is the issue that we address through
some planning tools as in Sections 7.5-7.6.

2By assuming that drug concentrations act as growth factors when therapeutic control is envisaged
3This is a type of mature white blood cells.
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In fact, we will go through several representations until achieving the one that interests us, which is
given by a nonlinear switching system with distributed delays, that we obtain in Section 7.4.2 and link
to the models in Part I. In summary, we say that by exploiting the event-triggered operating mode that
growth-factor exert on the biological functionalities, together with the McKendrick-type model of mature
and immature cells populations, we achieve a representation of the complete-type hematopoietic system,
which is composed by a family of nonlinear switching subsystems with distributed delays. However,
the resulting system is a complicated one, and can operate only under reasonable assumptions. Finally,
in our model, the family of subsystems, generated from the complete-type switching system, achieves
the objective of admitting several positive steady states. So comes the issue of determining how growth
factors or drugs are managing to make the system moving between the possible subsystems, in order
to activate, restore, or achieve new operating modes. As previously mentioned, that concept is related
to the stabilization issue in our context. In some sense, we need to elaborate a systematic strategy to
pursue, in order to provide the suitable switching signal managing the optimal succession of transitions,
from an initial operating mode until reaching a desired new one. To put the concepts into perspective, we
distinguish between two situations: healthy and unhealthy hematopoiesis. The common characteristics
and the differences between these two cases are detailed in Section 7.5.

When reflecting on the meaning of stabilization in healthy and unhealthy contexts, we were not
expecting that this could bring us into the fundamental field of automated planning and scheduling,
which belongs to the branch of artificial intelligence (AI) [254]. Mainly it concerns the elaboration
and the realization of strategies and action sequences, in order to set goals and achieve them (see
[151]). This theory is used when the solutions are complex and must be discovered and optimized in
multidimensional space. Thus, our issue is to clearly specify how the switching occur between the
appropriate subsystems in order to achieve a final goal (that depends on whether it is a healthy or
unhealthy hematopoiesis).

It is interesting to notice that the strategy to be developed operates under strict conditions, some of
them stem from our specific model (mathematical constraints), while others are related to the application
(biological constraints). Let say for instance that we need to move the total density of a type of mature
cells from an initial value M(0) to a new value that we assume to be the required density M∗ to confront an
infection. Then, it is necessary to realize that among a large number of possible subsystems candidates,
where each one is actually defined through a unique biological parameter combination, only a few of
them can be validated. This is because many times, when switching from a subsystem to its neighbor4,
the strictly positive steady state of the latter subsystem can be: mathematically non-existent, or it can
exist but it turns out later that it is unstable (which is recommended to avoid), or it can be stable but
biologically insignificant (too high or too low), etc. Therefore, the question here is: how can we choose
between the succession of subsystems, the best path to move from M(0) to M∗. So, to deal with these
situations, we provide a well-established framework adapted to our main concerns (see Section 7.5). Then,
we formulate and solve our issues by proposing a series of algorithms that we adapt to the healthy cells
and to the unhealthy ones. Our approach implicitly uses an A∗ Replanner algorithm (see [130], [273]). A
step-by-step implementation, together with numerical results, are presented through the Sections 7.5-7.6.

4two subsystems are each in the vicinity of each other, if at most one switching action in each of the controlled parameters
involved in the model, is sufficient to pass directly from one subsystem to the other one, and vice versa.
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7.2 Open challenges in population cell dynamics involving growth-factor
regulation

Extending the modeling aspects are essential steps towards consolidating the common knowledge about
mechanisms behind blood cells regulation. On the other hand, these improvements have a cost and may be
highly demanding in terms of mathematical analysis. Ideally, growth factors manage to maintain almost
quasi-constant level of production and replenishment of cells in a healthy situation: for instance, growth
factors stimulate the production of cells to replace the diminution of their number by natural death, after
an hemorrhage, or due to blood donation. In other situations, the body needs to react in an effective
manner to deal with changes in body health.

Before going further we need to clarify what we mean by healthy and unhealthy hematopoiesis, in
order to avoid confusion. So, healthy hematopoiesis includes all the normal behaviors and reactions
preformed by the hematopoietic system for a specific objective. This covers the case in which the body
reacts to parasitic worms, infections, eczema, asthma, seasonal allergies, fever, etc. These are abnormal
but frequent situations that require a change in some blood type counts (e.g. eosinophil), and which are
considered as healthy or ordinary reactions. The intermediate inference that may be drawn here is that the
body properly controls its steady states and regulates its operating modes according to its requirements:
this task is achieved through a suitable adaptation of growth-factors concentrations. On the other hand,
unhealthy hematopoiesis is the one that displays abnormal behaviors that emerge from the hematopoietic
compartments themselves. We can mention some serious diagnosis as acute myeloid leukemia or blood
periodic disorders like cyclical neutropenia (see Chapter 2).

The phenomenon of red blood cells creation and regulation -erythropoiesis- is the best known feedback
control system in hematopoiesis. Basically, erythropoietin (EPO) hormones are secreted to promote the
production of red blood cells if required. However, several aspects in that regulation remain mysterious.
The Figure 7.1-[A], which is taken from [148], illustrates in a simplified manner the erythropoiesis control
principle. In the latter reference, we are particularly interested by two facts, pointed out by the author:
«Lack of O2 (hypoxia) is a stimulus for the synthesis of erythropoietin (EPO), primarily in the kidneys.
EPO is a survival, proliferation and differentiation factor for the erythrocytic progenitors, particularly
the colony-forming units-erythroid (CFU-Es). The O2 capacity of the blood increases with the enhanced
release of reticulocytes. The role of extra-renal sites (brain, skin) in the control of the renal EPO synthesis
is still incompletely understood » [148]. So, first, the role of brain in the feedback control system is
admitted to be unclear (see Figure 7.1-[A]). However, it has been proved in the literature that brain
affects renal-EPO secretion. There are even cases of local hypoxia5 in brain that yields to an increasing
renal-EPO [294]. It appears also that brain-derived EPO exists but its action is local and cannot replace
the renal-derived one in kidney-failure. The highly complicated mechanism behind the neural activity
in the bone marrow niche (see Figure 7.1-[B]), which is managed by the sympathetic nervous system
(SNS), is nicely described in [129]. The second point that we reiterate here, from the above quoted
passage of [148] is about the EPO-targets. Indeed, this growth factor decreases apoptosis rates, while
promoting proliferation and differentiation of erythrocytic progenitors. These EPO targets (the three

5Deficiency in the amount of oxygen reaching the tissues.
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biological features) are also emphasized in [129]. Later in our model, these three biological processes
(in addition to the self-renewing activity of HSCs) will be the focus of our stabilization analysis.

At this juncture, while we strive to identify the complex mechanisms and signals responsible of blood
cell regulation, an issue draws our attention. Indeed, it is also impressive to realize how the body estimates
the extend of its requirements, and then reacts reasonably. This is a strong motivation for suggesting a
mathematical framework in which the hematopoietic system is formulated as an intelligent agent able to
-sequentially- performs a real-time diagnosis, sets new objectives according to its current requirements,
analyzes the costs and investigates diverse possibilities to achieve its objectives, then establishes the best
strategy of self-regulation and applies it. We will suggest an approach that uses some planning tools
derived from the artificial intelligence theory, in order to propose an implementation of a convenient
framework for the previously mentioned issues. To our knowledge, this is a new approach that has never
been envisaged in the study of blood cells dynamics, during the past decades.

[A]	 [B]	

Fig. 7.1 [A] The figure is taken from [148]. It shows the regulation of erythropoiesis, which designates the
hematopoietic lineage responsible of red blood cells production. When the body detects that cells are not getting
enough oxygen, kidney responds by releasing erythropoietin (EPO), that catalyzes the development of proerythrob-
lasts into reticulocyte. Brain reaction in EPO secretion remains ambiguous. [B] The figure is taken from [129]. It
shows the autonomic signals that modulate steady-state hematopoiesis. Stromal cells of different types regulate
HSC maintenance and regulation. The neuronal components of the HSC niche comprise peripheral sympathetic
neurons and circadian noradrenaline secretion from sympathetic nerves leads in rhythmic release of HSCs to the
periphery. The figure is from [129]. See Chapter 2 for regulation of hematopoietic niches.

Now, let us come back to the existing mathematical modeling of hemetopoietic systems. It is
worth mentioning that relatively few works are considering growth-factor supervision of the biological
functionalities involved in the hematopoietic system. As previously mentioned, including growth factor
dynamics notably complicates the resulting models and that is why they are usually neglected. First,
we put the spotlight on the series of works that emphasize on growth-factor dynamics and we quote
in a chronological order the following papers that deal with hematopoietic systems involving growth
factor-dependent parameters: [31], [185], [12], [6], [7], and, [3]. The pioneering paper by [31] is very
important (this work was improved by the same authors in [185], where they considered a possible
controlled apoptosis in mature cells compartment). These papers introduced and analyzed a maturity
structured model, which was reduced to a time-delay system using the method of characteristics. An
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important feature in their systems is that they considered a maturity velocity controlled by a growth factor.
This velocity was then neglected in order to simplify the mathematical analysis of their resulting system.
Following them, we will obtain the distributed time-delay system that we study in the present contribution.
Moreover, the maturity velocity of [31] is, in some sense, equivalent to the several aging velocities that we
consider here, in a model with discrete maturity stages. The second generation of papers, by Adimy and
his co-authors, continues the effort of gradually refining the hematopoiesis models. In their most recent
contribution ([3]), they focused on a model in which differentiation, proliferation and apoptosis rates are
governed by growth factors. One immature stage was considered, without aging velocity, and under the
assumption that cells divide (mitosis occurs) after they reach a fixed age during their cell-cycle. When it
comes to discuss the stabilization technique in our work (Section 7.5), we will also consider that the aging
velocity is fixed, and to ease the study, we focus on the HSCs compartment for immature cells. However,
in the first part of the work, and owing a great deal to the previously mentioned works, we establish a
generalized multi-stage model of hematopoiesis that includes multiple growth-factor types. Then, we
complement early works in the following way:

❍ We consider a model with several discrete maturity stages, where all the biological parameters,
and aging velocities, are affected by different growth factors. In addition, we consider that cells may
divide at any moment during their cell-cycle.

❍ Regarding mathematical analysis, we focus on the stability properties of positive steady states,
which were less studied in the literature. For that, we interpret hematopoiesis mechanisms from a different
perspective: we consider the hematopoietic system as a possibly switching one, in the sense that growth-
factors concentrations exert a form of event-triggered control on different biological features involved
in the model. In a broader context, interpreting cell dynamics using switching systems leads to a good
compromise between complexity of realistic models and their mathematical analysis.

❍ We also mention that the stabilization techniques we are going to discuss later in the chapter
may (under some conditions) apply to the case of switching aging-velocities or any other switching
parameter in the model. Indeed, we discuss a general framework where any model parameter can be
switching -reasonably- between several levels: a behavior that results from a significant change in their
corresponding growth-factor concentration.

Thus, we end up with a large family of subsystems that constitute one overall nonlinear switching
system with distributed delays. The subsystems share in common some fixed biological parameters while
they are distinguishable according to the possible combination taken by the switching ones. Each possibly
switching parameters has a characteristic pattern that connects the concentration of its respective growth
factor to its current value. These characteristics are in the form of monotonic step-like evolution functions
(see for instance, Figure 7.4).

Based on earlier results ([81], [225]), we will be able to address the stability issue of each subsystem,
followed by the stability property when switching from one subsystem to any other one in its neighborhood.
The remaining questions to be addressed, in Section 7.5, are related to how the switching-instructions are
quantified and scheduled both in: i) the healthy case where we focus on the role of mature cells in the
control exerted on growth-factors, and, ii) in the unhealthy case where an optimal therapeutic strategy has
to be determined, taking into account drugs toxicity, as well as other practical considerations.
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Henceforth, each subsystem -which is actually fully defined by a unique combination of the switching
parameters among all the possibly existing ones- is considered as a node or vertices, in a network
representing all the existing and admissible subsystems. We will define the rules and the possibilities for
the transitions permissions between the nodes (i.e. edges costs, when switching between the subsystems
is allowed). That is our suitable framework for the optimal strategy planning. Then, the final solution is
provided as an assembly of algorithms to solve the stabilization issues in healthy and unhealthy situations,
through simple planning tools.

7.3 On the modeling of growth-factor dynamics

In the starting part, we revisit the description given to growth-factor dynamics. Indeed, we are going to
improve the formulation of how growth-factor concentrations evolve. We employ the feature about the
time-scaling heterogeneity in the overall system, which is composed by population cell dynamics and
growth-factor evolution characteristics.

We recall that the secretion of growth factors is much faster than the dynamics of cell populations,
which means that levels of growth-factor concentrations converge very quickly to their steady states.
Hence, if quasi-fixed growth-factor concentrations are considered, the corresponding controlled parameters
are frozen. We also pointed out that models involving growth-factor dynamics were considering the control
exerted by the total density of mature cells on growth-factor concentrations through an evolution equation.
Their formulation was suggesting that hormone-like molecules may evolve in the same time-scaling as
population dynamics. It is indeed well-known that mature cells are directly controlling the secretion of
growth factors.

More precisely, in [31] and in almost all the subsequent works (see the recent paper [3]), the dynamics
of growth factors are governed by a differential equation of the form:

ė j(t) =−α je j(t)+ f j
(
M(t)

)
, (7.1)

where e j is the concentration of a growth factor j, α j > 0, M(t) is the total density of mature cells, the
functions f j are positive decreasing functions, and limℓ→+∞ f j(ℓ) = 0. However, what does this equation
mean? In fact, this is a basic representation that can be qualitatively interpreted in the following way: if
we assume that the total density of mature cells M(t) at time t ≥ 0 is too high, then f j(M(t))→ 0, and it
follows that ė j(t)< 0, since α j > 0. Therefore, the growth-factor concentration e j will decrease, and M(t)
will also decrease for all the future time. Indeed, when e j decreases, the model parameters are affected in
such a way as to discourage cell production. The opposite situation (i.e. M(t) very low) is interpreted in a
similar way. Unfortunately, the resulting framework cannot represent how the change in growth factor
concentration may induce to a different steady state in the model (i.e. to change the operating mode), since
only one positive steady state does exist. Moreover, e j(t) approaches its unique steady state e∗j =

f(M∗)
α

when M(t) approaches its steady state M∗ (i.e. e j and M evolve in the same time-scaling). The latter two
points might be improved in order to become more consistent with the general understanding we have.
Thus, we do not consider the equation (7.1).

Let us now observe the following introductory example:
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Example 13. Let us consider that an infection forces the body to set a new objective, which is
to increase the total density of white blood cells to a novel reference-density M∗. We assume
that the body is able to act through three distinct growth factors, that promote differentiation,
proliferation and decrease apoptosis rates (death rates of proliferating cells). For the time being,
we consider that the body knows how to recognize the triplet value of the model parameters(
β ∗(0),γ∗,K∗

)
that leads to the hematopoietic system which admits M∗ as a stable steady state.

Therefore, we expect that the growth-factor concentrations corresponding to that suitable triplet
are immediately secreted. However, it will certainly take more time for the overall system to reach
the required steady state M∗. Indeed, the cell population in the bone marrow will be instigated by
the secreted growth factors, then immature hematopoietic stem cells (HSCs) will be recruited to
enter a cell-cycle for a non-negligible duration, and then differentiate.

That is exactly what we want to achieve through this work (at the end, Section 7.6). Some major
questions are in fact barely veiled in the statement of Example 13. For instance, it is assumed that
the body moves its triplet of parameters from an initial state

(
β (0)(0),γ(0),K(0)

)
, to a suitable triplet(

β ∗(0),γ∗,K∗
)
, through growth-factor secretions. But how does it occur? How does the body determine

the
(
β ∗(0),γ∗,K∗

)
that corresponds to M∗? In order to move from

(
β (0)(0),γ(0),K(0)

)
to
(
β ∗(0),γ∗,K∗

)
,

do we have to target (by increasing or by decreasing) all the involved biological parameters? Is it possible
to achieve this objective through only one growth-factor secretion or several steps are required? Similarly
for the unhealthy case: imagine that we are dealing with a blood disorder that we want to cure through
drug infusions. Thus, we certainly need to recognize the objective parameters

(
β ∗(0),γ∗,K∗

)
of the

therapy, that correspond to the reference M∗ prescribed by health professionals. Then, we have to identify
the parameters to be targeted and establish the therapy protocol. Is it a one dose therapy? Are there any
optimal and systematic strategy to follow in order to restore the healthy hematopoiesis? These are in fact
the open questions that we are going to answer in this work.

We will not get to these issues as early. We need first to go through a certain number of steps. As
regards the dynamics of growth factors, we consider a more general expressions than (7.1), that may cover
for instance the option of therapeutic action and the feedback from mature cells. The general form can be
expressed by:

ė j(t) = g j(t,e j,M(t)), (7.2)

where g j is a function that depends also on time. In this case, a time-triggered switching can be modeled,
by infusing periodic doses of drugs for instance. Next, in this work, we consider five different growth
factors (i.e., j ∈ {1, . . . ,5}), each one is acting on a specific biological function.

In the general description of the hematopoietic system, the growth factors are stimulating proliferation,
differentiation rates and aging velocities; while they are blocking apoptosis, that is death rate of prolifer-
ating cells (this is a negative feedback, meaning that apoptosis rate decreases when the corresponding
growth-factor concentration increases [3]). Generally speaking, growth factors are increasing the effect of
the biological feature that are favorable to cell prosperity.

In addition, we introduce a general model where growth-factors concentrations are governed by (7.2),
without wondering about time-scaling in growth-factor evolution. The latter consideration will be used,
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subsequently, to introduce a new interpretation when it comes to investigate the stability properties of the
resulting mathematical model.

Differently from those who consider constant biological param-
eters for all the time, we study the case in which growth factors
are active, moving their quasi-steady states to new ones when it is
needed. Such a behavior is representative of actions initiated by
the body itself to meet its requirement in healthy hematapoiesis,
or due to sudden therapeutic measures (drug infusions, bone mar-
row transplantation etc) when facing some blood disorders. That
kind of evolution is well-approximated by step-like functions as
illustrated in Figure 7.2. Thus, by relying on that characteristic,
a first approach consists in inferring how the behavior of the
different biological parameters will be (see Figure 7.3).

Fig. 7.2 Qualitative behavior of e j in
the time-scale of cell dynamics (in
hours or in days).

Figure 7.3 gives an illustration for the expected evolution of the aging velocity (v), and of a differ-
entiation rate (K), with respect to their growth-factor concentrations, when they behave as in Figure 7.2.

Fig. 7.3 Qualitative behavior of vi and Ki with respect to their growth-factors concentration.

For p values taken by e j, i.e.
{
e1

j ,e
2
j ,e

3
j , . . . ,e

p
j

}
, in Figure 7.2, where p is arbitrary large, it follows that

the characteristic patterns illustrated in Figure 7.3 will approach continuous monotonic6 curves. It is hard
to imagine how such a characteristic pattern can be obtained in practice. What we could rather expect to
determine (at least approximately) is the effect of a molecule or a drug on a given biological functionality,
that we approximate using a step-like pattern as in Figure 7.4. That representation is convenient because it
allows us to approximate the real cell-population dynamics via a model involving parameters that remain
constant over a certain period of time. During that time-interval, the growth factor concentration varies
slightly, until it crosses a given threshold, that triggers a switch in the parameter value.

A characteristic as in Figure 7.4 has to be determined experimentally and may vary from one individual
to another, because the effect of a molecule on the hematopoietic system is strongly dependent on the

6Later we will state that the step-like functions used to describe the biological parameters are either entirely nonincreasing or
nondecreasing with respect to increasing growth-factor concentrations.
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genetic and epigenetic levels (e.g. presence and accumulation of diverse main and auxiliary mutations).
This is for the quantitative aspect, but fortunately the qualitative aspect of the variation of a parameter, with
respect to its growth factor, remains unchanged as described for each of the parameters in the following
paragraph.

 In the scale unit of growth-factor concentration (e
4
)

 K

0

0.05

0.1

0.15

0.2

0.25

Fig. 7.4 An example of the approximate variation of the differentiation rate for a given maturity stage (denoted K)
with respect to the concentration of its growth factor (e4).

In Figure 7.5, we have n different (discrete) maturity stages as introduced in [8] for a model without
growth factors. The first stage in Figure 7.5, i.e. for i = 1, is the compartment of hematopoietic stem cells
(HSCs), that are found in the bone marrow. For all i ∈ In = {1, . . . ,n}, Ri(t) is the total density of resting
cells of the i-th generation of immature cells, while M(t), as mentioned previously, is the total density
of one type of mature cells (e.g. one among the five types of white blood cells) in the blood circulation.
Resting cells may die or differentiate to other lineages at a rate 0 < δi < 1. They can also re-enter to the
proliferating stage, in order to start a dividing-cycle, according to a particular function that we denote
βi. During their cell-cycle, cells may die with a death rate (apoptosis rate) γi, or they can complete their
mitosis, i.e. each mother-cell divides into two daughter-cells, before reaching a maximal age τi. At each
division, a proportion 0 < Ki < 1 of new daughter cells will differentiate (i.e. join the next more mature
stage i+1, in the cascade of immature stages, as illustrated in Figure 7.5). The remaining portion, i.e.
0 < 1−Ki < 1, will join the same maturity level as the one of mother cells: this is a self-renewing process
that we denote Li (Li = 1−Ki). In addition, we consider an aging velocity vi, in the proliferating phases
as illustrated in Figure 7.5. After n immature stages, cells are ready to leave the bone marrow and join the
blood circulation.

Next, and this is the key point, we consider that the five different growth factors concentrations (e j,
j ∈ {1, . . . ,5}) are acting on the biological functionalities as follows:

● δi(·) depends on e1. Increasing e1 yields to increase δi, across all maturity levels, similarly to
what is shown in Figure 7.3 for Ki and vi. We also consider that lime1→∞ δi(e1) = δi < 1, for all i ∈ In.

● βi(·, ·) is a function that depends on e2 and on the total density of resting cells, Ri for all i ∈ In. We
consider that for each fixed e2, the mapping βi (e2,Ri) is continuously decreasing with respect to Ri, and
limRi→∞ βi(·,Ri) = 0 (see [180]). On the other hand, for a fixed Ri, the mapping βi (e2,Ri) is increasing
when e2 increases, in a similar form as in Figure 7.3, where βi(0,Ri)≈ 0, and, lime2→∞ βi(e2,Ri) = βi > 0.

● The apoptosis rates, γi(·), depend on the concentration e3. Since, by convention, a growth factor
stimulates the production of cells, we consider that the mapping γi(e3) is decreasing with respect to e3.
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● Differentiation, Ki(·), increases with respect to e4 as illustrated in Figure 7.3, and lime4→∞ Ki(e4) =

Kimax < 1.
● Similarly, the aging-velocities vi, which are affected by the concentration e5, for all i ∈ In, are

increasing from a normal velocity-values (normalized to 1), until reaching a maximum velocity, as shown
by Figure 7.3.

Remark 41. To summarize, at this stage we have already discussed the evolution of growth-factor
concentrations with respect to time (as step-like functions, in the time-scale of cell dynamics), then,
we described how parameters of the model may vary with respect to growth-factor concentrations
(also approximated by step-like functions). Therefore, we deduce that changes in growth-factor
concentrations with respect to time exert a kind of triggered-event control on the different biological
functionalities, i.e. a jump in model parameter occurs each time the growth-factor concentration
crosses a threshold. We retain that by knowing the evolution of growth-factor concentrations (e.g.
predefined therapeutic protocols) we can determine how the biological parameters evolve with
respect to time, as illustrated for instance in the Figures (a),(b)-Table 7.3 for γi and vi.

7.4 From a model of dynamical equations to a network representation

In this part we will go through several stages, starting with a PDE system that describes cell population
dynamics (Section 7.4.1), which will be reduced to a nonlinear system with distributed delays (Section
7.4.2). The latter system will be presented as a nonlinear switching systems with distributed delays
(Section 7.4.3), through the arguments provided in Section 7.3.

In order to be brief and to focus more on the stabilization issues, we will show in Section 7.4.4
that the study of each subsystem7 can be performed thanks to some earlier work. More precisely, we
employ our results on the global stability properties of the strictly positive steady state of the nonlinear
model in [8], which was widely analyzed in [225] via Input/Output approaches, and more recently in
[81] through Lyapunov-Krasovskii functionals constructions. Through that formulation, we will not
dwell on the stability issue of each subsystem (Section 7.4.4). Then, we establish the stability properties
when switching from one stable subsystem to another one. Once this step is done, we formulate the
stabilization issue as the problem of how finding the adequate switching law (or signal) between the
different subsystems, in order to reach a desired operating mode. The targeted reference that we set is the
favorable total density of mature cells in the bloodstream.

Finally, once we address the stability of each subsystem, and once we establish the stability properties
of a switching between one subsystem to any other one in its neighborhood, we will be ready to represent
each subsystem as a node in a network representing all the possible subsystems constituting the overall
system. The latter representation and its aims will be widely discussed in Section 7.5.

7The subsystem here is a system that belongs to the family of systems constituting the overall switching model. Each
subsystem can be written on a time interval [ts1 + τi, ts2], where ts1 and ts2 are two consecutive switching time-instants, as a
system without any switching parameter (all the parameters are constants during that interval), and it involves one or more
switching on the time interval [ts1, ts1 + τi], i.e. the length of the cell-cycle τi.
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7.4.1 An age-structured model describing cells population dynamics including growth-
factor depending parameters

We have already described in Section 7.3 the biological functionalities and parameters (differentiation,
self-renewing, death-rates etc) involved in our model, as illustrated in Figure 7.5. Now, what we are
interested in, is the model governing the dynamics of mature and immature cell populations. We recall
that the n first generations of cells in Figure 7.5 represent the immature cells, at different maturity stages,
inside the bone marrow. So, we defined Ri(t), for all t ≥ 0 and i ∈ In, that represents the total density of
resting cells of the i-th generation of immature cells. We recall that M(t), for all t ≥ 0, represents the total

density of one type of mature cells in the bloodstream. In fact, Ri(t) =
∫ +∞

0
ri(t,a)da, where ri(t,a) is

the density of resting cells at time t ≥ 0 and age a≥ 0, for all i ∈ In. Similarly, pi(t,a) is the density of
proliferating cells at time t and age a during their cell-cycle (the proliferating stage, Figure 7.5), along

with the density m(t,a), of mature cells at time t and age a, and M(t) =
∫ +∞

0
m(t,a)da, for all t ≥ 0. The

PDE system that describes the dynamics of the densities ri(t,a), pi(t,a), for all i ∈ In, and m(t,a), for all
t > 0 and a > 0, is formed by the following age-structured McKendrick model,

∂ ri(t,a)
∂ t + ∂ ri(t,a)

∂a =−
[
δi(e1(t))+βi

(
e2(t),Ri(t)

)]
ri(t,a), for all a > 0,

∂ pi(t,a)
∂ t + vi(e5(t))

∂ pi(t,a)
∂a =−

[
γi(e3(t))+hi(a)

]
pi(t,a), for all 0 < a < τi, and,

∂m(t,a)
∂ t + ∂m(t,a)

∂a =−µm(t,a), for all a > 0,

(7.3)

in which the new births, i.e. at age a = 0, in the proliferating and resting phases are introduced through
the following boundary conditions:

r1(t,0) = 2
(
1−K1(e4(t))

)∫
τ1
0 h1(a)p1(t,a)da, and, for all i > 1,

ri(t,0) = 2
(
1−Ki(e4(t))

)∫
τi
0 h1(a)pi(t,a)da

+2Ki−1(e4(t))
∫ τi−1

0 hi−1(a)pi−1(t,a)da, and, for all i ∈ In,

pi(t,0) = βi(e2(t),Ri(t))Ri(t), and,

m(t,0) = 2Kn(e4(t))
∫

τn
0 hn(a)pn(t,a)da.

(7.4)

We consider that the initial conditions at t = 0, associated with the PDE system (7.3), namely r0
i (a) =

ri(0,a) for a > 0, and p0
i (a) = pi(0,a), for 0 < a < τi, for all i ∈ In, and m0(a) = m(0,a), for a > 0,

are some appropriate positive L1-functions. Next, we will follow [31], (see also [101], [201], and
the references therein), who themselves were inspired by techniques of [267], in order to reduce the
age-structured system (7.3)-(7.4) to a time-delay system, using the classical method of characteristics.

7.4.2 A nonlinear time-delay system involving growth-factor dependent parameters

We use the classical method of characteristics, by applying to our model the arguments developed in
[31] and [101], starting by the introduction of a parametrization z in the (t−a) space where t > 0, and
0 < a < τi. Therefore, we can write (with an abuse of notation), pi(z) = pi(t(z),a(z)).
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Fig. 7.6 The illustrative curve C0, that emanates from the point
(
t(0),a(0)

)
= (0,0), separates the t−a plane into

two regions ([31], [101]).

It follows that: d pi(z)
dz = ∂ pi(t,a)

∂ t
dt
dz +

∂ pi(t,a)
∂a

da
dz . The parameter z follows a characteristic curve for the

second equation in (7.3), characterized by the ODEs, dt
dz = 1, and, da

dz = vi(e5(t)), for all t > 0, and
a ∈ [0,τi] ([31, 101]). In fact, the characteristic curves are described by [31],{

t(z)− t(0) = z, and,
a(z)−a(0) =

∫ z
0 vi
(
e5(t(ℓ))

)
dℓ.

(7.5)

Next, we notice that along the characteristics (7.5), the second equation in (7.3) is written as

d pi(z)
dz

=−
[
γi(e3(t(z)))+hi(a(z))

]
pi(z), (7.6)

and its general solution is given by

pi(z) = pi(0)e−
∫ z

0 [γi(e3(t(ℓ)))+hi(a(ℓ))]dℓ. (7.7)

Now, what we need to determine is an expression for z and pi(0), in function of t and a, in order to obtain
pi(t,a). Naturally, the solution has different forms depending on which region we are (i.e. (A1) or (A2),
illustrated in Figure 7.6).

First, the region (A1) is characterized by t(z) = z and a(z) = a(0)+
∫ z

0 vi(e5(t(ℓ)))dℓ. Moreover, using
a(ℓ) = a−

∫ t
ℓ vi(ei(w))dw, we conclude that for all (t,a) ∈ (A1),

pi(t,a) =p0
i

(
a−

∫ t

0
vi(e5(ℓ))dℓ

)
e−

∫ z
0

[
γi(e3(ℓ))+hi(a−

∫ t
ℓ vi(ei(w))dw)

]
dℓ
. (7.8)

Secondly, we are looking for the solutions pi(t,a) in (A2). In that region, the characteristic curves (7.5)
intersect the time-axis. Therefore, using (7.5), we notice that this region is characterized by t(z) = t(0)+ z
and a(z) =

∫ z
0 vi(e5(t(ℓ)))dℓ. Thus,

a(z) =
∫ z

0
vi(e5(t(0)+ ℓ))dℓ=

∫ t(0)+z

t(0)
vi(e5(ℓ))dℓ. (7.9)
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Thanks to the boundary conditions (7.4), we get,

pi(0) =pi(t(0),a(0)) = pi(t− z,0). (7.10)

At this juncture, we need to give an expression for z. As previously encountered in [31] and [101], we
realize that the z variable is implicitly defined by the expression of a(z). Knowing that z is the time required
for the age a to increase from 0 to a(z), and using (7.9), we obtain ([31, 101]): a =

∫ t
t−z vi(e5(ℓ))dℓ. Here

we are interested in all age-values between 0 and the maximum age value τi (this is a fact that complicates
our problem, in comparison with [31]). Thus, we notice that if Ta is the time (i.e. z), necessary to grow
from the age 0 to a≤ τi, then, a =

∫ t
t−Ta

vi(e5(ℓ))dℓ. Therefore, we obtain

pi(t,a) = pi(t−Ta,0)e
−
∫ Ta

0

[
γi(t(0)+ℓ)+hi(a(ℓ))

]
dℓ

= pi(t−Ta,0)e
−
∫ Ta

0

[
γi(t−z+ℓ)+hi

(∫ ℓ
0 vi(e5(w))dw

)]
dℓ

= pi(t−Ta,0)e
−
∫ Ta

0

[
γi(t−Ta+ℓ)+hi

(∫ ℓ
0 vi(e5(w))dw

)]
dℓ
.

We conclude that in the t−a plane the solutions pi(t,a) for all i ∈ In, along the characteristic curves (7.5),
are given by:

pi(t,a) =



p0
i

(
a−

∫ t
0 vi(e5(ℓ))dℓ

)
e−

∫ z
0

[
γi(e3(ℓ))+hi(a−

∫ t
ℓ vi(ei(w))dw)

]
dℓ
,

for all (t,a) ∈ (A1), and;

pi(t−Ta,0)e
−
∫ Ta

0

[
γi(t−Ta+ℓ)+hi

(∫ ℓ
0 vi(e5(w))dw

)]
dℓ
, for all (t,a) ∈ (A2),

where, a ∈ [0,τi], and, a =
∫ t

t−Ta
vi(e5(ℓ))dℓ.

(7.11)

Remark 42. In view of the solutions obtained in (7.11), we notice that if we consider vi ≡ 1 then, ∀i ∈ In

and t > 0,

pi(t,a) =

 pi(t−a,0)e−
∫ a

0 γi(e3(ℓ+t−a))+hi(ℓ)dℓ, t > a,

p0
i (a− t)e−

∫ t
0 γi(e3(ℓ))+hi(ℓ+a−t)dℓ, a > t.

Even this simpler case was not studied in the past, for model with growth-factor dependent parameters.
Only its version with constant ones was analyzed in ([8], [225], and, [81]).

As explained in [31] (and also in [101]) we are interested in long-time behavior of our system. Hence,
we do not focus on the solution in (A1) since it is related to the initial conditions p0

i . In the sequel, we
consider the solution on the region (A2), which is related to the boundary conditions (that express long
time behavior). By integrating the first equation in (7.3), with respect to the age-variable a between 0 and
∞, we get,

Ṙi(t) = ri(t,0)−
[
δi(e1(t))+βi(e2(t),Ri(t))

]
Ri(t). (7.12)
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Using the boundary condition (7.4), we obtain for all i > 1,

Ṙi(t) =−
[
δi(e1(t))+βi(e2(t),Ri(t))

]
Ri(t)+2

(
1−Ki(e4(t))

)∫
τi
0 hi(a)pi(t,a)da

+2Ki−1(e4(t))
∫ τi−1

0 hi−1(a)pi−1(t,a)da.

Similarly, if we integrate the third equation in (7.3) with respect to the age-variable, we get,

Ṁ(t) =−µM(t)+2Kn(e4(t))
∫

τn

0
hn(a)pi(t,a)da. (7.13)

Next, substituting pi(t,a) by its expression (given in (7.11), for (t,a) ∈ (A2)) leads to the system exposed
in Table 7.1. That is the general time-delay form that we obtain for our PDE system, when five distinct
growth-factors are acting on model parameters, and which are governed by the general form of their
dynamics (7.1). Next, we incorporate the growth-factor effect as described in (7.3), in order to give a
specific form to the system in Table 7.1.

7.4.3 The model equations under event-triggered parameters

A first observation is that exploitation of our mathematical model in its general form as presented in
Table 7.1 is not an easy task. Indeed, the implicitly defined variable Ta (the same observation occurred in
[31]), and the state variables that appear in the distributed delay terms (which are the total densities Ri,
and the growth-factor concentrations e2, e3, and, e5), cannot be easily manipulated in order to investigate
the existence and the stability properties of the positive steady states. For that reason, we are looking
for a new representation of the model given in Table 7.1. A key feature that helps us at this stage is the
behavior of the growth factors, as explained in Section 7.3, and their triggering-effects on the biological
functionalites involved in the model.

❑ First, we start by assuming that the fourth equation in Table 7.1 has a unique piecewise continuous
solution for all j ∈ {1, . . . ,5}. Whatever the behavior of the states e j(t), for all t ≥ 0, (whether driven by
a body requirement or resulting from drug infusions), their effect on the biological functions (δi, βi, γi,
Ki and vi) is the same. We recall from Section 7.3 that knowing the solutions e j allows us to determine
the variation of the biological parameters with respect to time. An illustration is provided in Figures
(a-b)-Table 7.3, in which we give a qualitative example with two parameters, vi and γi (see also Figure 7.4
for variations of K). The remaining biological parameters can be represented in a similar way.

Now, we define for all t ≥ 0, the time duration h that corresponds to the smallest8 time-interval during
which all the biological parameters (not only those represented in the corresponding Figures (a-b)-Table
7.3) are invariant with respect to the possible change in their respective growth-factor concentrations.
Therefore, we can distinguish two interesting situations:

① The case h< τi: A simplified version of the resulting model obtained in this situation is given
in Table 7.2. This case is not easy to be studied without strong extra assumptions on the model. The
difficulty comes mainly from the distributed delay terms that can cover -in the general case- a large period
of time, and which involves several switching as illustrated in Table 7.2 (the distributed delay terms are
denoted ℑi, with an abuse of notation). This scenario is shown in Figure (a)-Table 7.3.

8In the classical theory of switching systems, h is called the dwell-time.
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② The case h>> τi: This is a more suitable situation for analysis purposes (see Figure (b)-Table
7.3). Indeed, since the biological parameters do not vary during a sufficiently large period of time, we can
rewrite the system presented in Table 7.1 in a more convenient form, especially in the region (D3) which
is illustrated in Figure (b)-Table 7.3. That region coincides with the time interval [ts1 + τi, ts2], where ts1

and ts2 are assumed to be two consecutive switching time-instants. The particularity of (D3) is that the
model in Table 7.1 can be rewritten as a system without switching dynamics, even inside its distributed
delay terms (the corresponding model equations are given in Table 7.4). If a switching (in at least one
of the model parameters) occurs at a time instant ts1 > 0, then, by definition of the dwell-time, the next
switching instant will not occur before ts1 +h.

We use the following abuse of notation: the parameter σ ∈ N identifies which subsystem is activated
at any time instant9 t ≥ 0 (e.g. when at least one parameter changes at ts1 > 0, then the system in Table 7.4
switches from a subsystem σ = 1, to a sub-system σ = 2). In the region (D3), the system is exclusively
defined by specifying σ . However, it is not the case in the region (D2) since the distributed delay terms
appeal the history of the system in the region (D1), which complicates its analysis. Without loss of
generality, we select in Table 3 the non-switching dynamical subsystem defined by σ = 1 to be activated
during the (D2)-(D3)- time-period, between two consecutive switching time-instants ts1 and ts2.

❑ At this juncture, from the previous discussion, we assume in our model that h >> τi (case ②,
even if the numerical simulations that we will perform (Section 7.6) show that this restriction is not
necessary). In the sequel, stability properties of our model are discussed. An interesting observation is
that, by focusing on the behavior of the fixed subsystem on (D3), the portion on (D2) appears as nothing
more than the initial condition associated to the studied subsystem. That feature will be the subject of
the next section, in which the stability properties when switching from one subsystem to its neighbor are
discussed. Thus, the issue of stable jump between a given subsystem and any other subsystem present in
its vicinity (subsystems are illustrated by the set of blues points in the Figure (d)-Table 7.3) is the next
crucial step towards stabilization. More precisely, stabilization tools focus on searching the best neighbor
(also called a successor) to which the initial system will move, then iterate the process until reaching the
desired operating mode10 (the reference), represented by the red point in Figure (d)-Table 7.3.

9Actually, σ depends on time. It is the switching signal, that determines which subsystem is activated at t ≥ 0. However, in
our application, it is more convenient to write σ instead of σ(t), for more clarity in the system equations. We recall from Section
7.3 that the switching signal σ(t) is triggered when the growth-factor concentrations cross a specific thresholds. Therefore, the
issue of how the switching signal σ evolves with respect to time is a problem-specific. It will be separately addressed in Section
7.5, since the switching signal is actually governed by the stabilization algorithm that we will propose later.

10The ordered list of successors from the initial activated subsystem until the goal is the optimal path, which thereby defines
the switching signal σ(t).
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(a) (b)

(c) (d)

Table 7.3 (a) The case ①, where h < τi. (b) The case ②, where h >> τi. (c) Illustration of the trajectory R1(t).
The values R1

1∗ and R2
2∗ represent, respectively, the positive steady states of the subsystems σ = 1 and σ = 2. The

green regions B1
1 and B2

1 illustrate the plausible regions of attraction of, respectively, R1
1∗ and R2

2∗. (d) The steady
states (of interest) of the studied overall-system. The green point represents the origin (zero) of the studied model,
which is always an equilibrium point, while the blue points and the red one represent the different positive steady
states, for the different possible subsystems (σ = 1, σ = 2, . . .). Actually, the red point is assumed to represent the
favourable steady state that the hematopoiesis process achieves after a series of switching: it can be for instance the
objective of a therapy.
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7.4.4 On the stability properties of the individual nodes

For a long time, we saw that many works ([180], [8], [9], [226], [225], [78], [4], [189], [3], [107], and [81])
focused on the stability issues of some hematopoietic systems whose parameters are frozen, or growth
factor-dependent but with limiting considerations. Unlike all the previous works in this field, we propose
here a description of the parameters involved in a complete-type model as an event-triggered process,
which leads to dynamical systems formulated in the framework of switching nonlinear systems with
distributed delays. We can see that actually the switching occurs between a wide variety of subsystems,
and merely some of them can be put in the form of some previously studied models.

Therefore, since we do not intend to dwell upon technical issues that are not necessary for the
stabilization problem11, we consider without loss of generality that the considered growth-factors are
effectively acting on proliferation, apoptosis rates, differentiation and self-renewing rates, while their
variations are not significant for the other biological features (i.e. their growth factors may vary but
without crossing the thresholds that trigger a switching in their corresponding model parameter (see
Remark 43). As we remember, the role of EPO hormones is the regulation of proliferation, apoptosis and
differentiation, during erythropoiesis (see Section 7.2). More generally, these biological parameters are in
fact affected by many molecules, which are effectively tested and used as drugs. The best known examples
are the cytotoxic drugs, which increase the apoptosis rates. In particular, in the case of hematopoiesis,
the cytosine arabinoside has a well-known effect on apoptosis rates. The anthracyclines (idarubicin
and daunorubicin) can also be used to increase apoptosis in some blood disorders. Next, for promoting
re-differentiation, the dihydroorotate dehydrogenase inhibitors gave very recently encouraging results,
even in the very severe case of acute myeloid leukemia [278]. The dasatinib molecules [167] can also
be used to increase differentiation in hematopoietic systems. Finally, proliferation is classically targeted
using G-CSF molecules [141].

We focus on the new representation of the model as in Table 7.4, where σ = 1, on the time interval
t ∈ [ts1, ts1 + h] ⊆ [ts1, ts2]. In order to determine the asymptotic behavior of this system, we start by
assuming that no switching will occur (i.e. ts2→ ∞). Then, one may investigate the existence of a strictly
positive steady state, Eσ=1 =

(
R1

1∗, . . . ,R
1
n∗,M

1
∗

)
, of the studied system. We notice also that the origin of

the system described in Tables 7.1-7.4 is always an equilibrium point. In our work, we are only focusing
on strictly positive steady states. For a given subsystem in the overall system (i.e. for a fixed σ ), when the
strictly positive equilibrium points exists, the 0-equilibrium is unstable. We refer to [8] for a complete
discussion on the existence of equilibrium points for a similar model (when vi = 1 and a fixed σ ). Of
course, by changing σ , the positive equilibrium point Eσ =

(
Rσ

1∗, . . . ,R
σ
n∗,M

σ
∗
)

will change. Whether
through medication or by an action of the body, we expect that the dynamics e j (Eq.(7.2)) converge to
a favourable state e f

j . The corresponding positive equilibrium point (i.e. Eσ
f for a fixed desired σ f ), is

then the red point in Figure(d)-Table 7.3. The determination of the optimal strategy to converge to the
favourable state will be the subject of the next section. Let us come-back to the subsystem (σ = 1) in
Table 7.4. We assume that its positive equilibrium, Eσ=1, exists. By classical arguments, one can study
the local stability properties of Eσ=1. We refer to [225], for the stability analysis of a similar system,
based on Input-Output approaches. Then, in Chapter 3 of the thesis, we derived slightly more restrictive

11That assertion is argued in Remark 44, at the end of the current section.
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results using a Lyapunov approach. The size of the region of attraction of the positive equilibrium, for a
typical form of the functions βi (Hill functions, see [180]), was also estimated. We recall that this region
of attraction is expressed as a sublevel of a suitable Lyapunov-Krasovskii functional (see [126] and [165]).
More precisely, the estimate of the region of attraction quantifies the set of all initial conditions such that
the states Rit and Mt converge to the positive steady state.

In the case of the present chapter, we use the previously mentioned constructions and we only focus on
the novelty, which is the issue of switching between several subsystems. This situation is represented in
Figure(c)-Table 7.3, where a possible trajectory R1(t) is illustrated. Let us observe the positive equilibrium
R2

1∗, for the subsystem σ = 2, and the region B2
1 which qualitatively represents the region of attraction

of R2
1∗. A first remark is that if the portion of the trajectory R1t , for t ∈ (D2), satisfies the LKF-sublevel

condition defining the region of attraction of R2
1∗, then the trajectory R1(t) converges exponentially to its

positive equilibrium point. Extra-assumptions on the overall model ensure that these conditions always
happen, using the fact that the trajectories of the studied system are bounded, and assuming that the
successive Rσ

i∗ are sufficiently close. Moreover, in [225], the following conjuncture was stated from
numerical simulations: the systems of the studied class (i.e. for each fixed σ for all t ≥ 0) have a region
of attraction which is much bigger than the one rigorously provided by the LKF-approach (i.e. the results
provided by the Lyapunov approach are more conservative). Consequently, and without extra-assumptions
on the model, we confirm that the behavior of the trajectories during the (D2)-periods does not impact the
(D3) phases.

To summarize the previous key points, we retain that we have a large family of subsystems that constitute
one overall nonlinear switching system with distributed delays, which is in fact the switching version of the
general model obtained in Table (7.1). The subsystems share in common some fixed biological parameters
(δi, τi) while they are distinguishable according to the possible combination taken by the three switching
parameters, that we denote by the triplet

(
βi(0),γi,Ki

)
, representing respectively the proliferation maximum

recruitment rate, the apoptosis rate, and the differentiation rate of the i-th generation. Each of these three
parameters has a characteristic pattern that connects the concentration of its respective growth-factor to its
current value; in the form of a monotonic step-like evolution function, as the one shown by Figure 7.4. In
other words, a typical growth-factor is exercising over each model parameter an event-triggered control.
Let us assume for instance that initially, a triplet of parameters is activated, then at a time instant t0 > 0,
a drug infusion causes a switch in model parameters (at least in one of them), which jump to the triplet(

β
(0)
i (0),γ(0)i ,K(0)

i

)
. Based on earlier results (Chapter 3 and [225], [8], [81]), we deduce the following:

i) First, it is possible that the subsystem corresponding to the activated triplet for t ≥ t0 does not satisfy the
condition of existence of a strictly positive steady state.
ii) If, for the corresponding triplet of parameters, the positive steady state exists, then the latter can be
unstable or exponentially stable.
iii) If the condition of its exponential stability is satisfied (we retain the one given in Theorem 3 of [81],
or Chapter 3 of the thesis), then the intermediate time-interval, traversed by the trajectory, between t0 and
t0 +τi, can be seen as an initial condition for the model equations written for all t ≥ t0 +τi (where the model
equations have no longer any switching parameter, even in their distributed delay terms) has no effect on
the dynamics of the system for all t ≥ t0 + τi, until the next switching time-instant. The latter assertion is
available as long as the overall system is switching between subsystem for which the stability conditions of
their positive steady states are satisfied.
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7.4.5 Numerical results on a switching hematopoietic systems

At this point, it will be helpful to illustrate the model behavior on some numerical examples. Let us start
by the following one, where a switching occurs between three subsystems (we are limiting the frame
of possibilities). Each subsystem corresponds to a hematopoietic system which is composed of three
generations of immature cells (HSCs, progeny and precursors) and one generation of mature cells (it can
be a type of white blood cells or let say red blood cells).

Let us consider the following biological parameters and functions for the three subsystems:
➊ For σ = 1:

➢ For i = 1 : K1 = 0.05, τ1 = 1.109, γ1 = 0.28, v1 = 1, δ1 = 0.14, and, β1(R1) =
0.5

1+R2
1
.

➢ For i = 2 : K2 = 0.05, τ2 = 1.2, γ2 = 0.28, v2 = 1, δ2 = 0.26, and, β2(R2) =
1

1+R4
2
.

➢ For i = 3 : K3 = 0.08, τ3 = 1.36, γ3 = 0.4, v3 = 1, δ3 = 0.35, and, β3(R3) =
3

1+R2
3
.

➢ For M: µ = 0.042.
After simple calculations, we can prove that the positive steady state is:

E1 = (0.73867,0.89927,1.21625,3.86030) .

➋ For σ = 2:
We consider that β1(R1) =

0.55
1+R2

1
, β2(R2) =

1.13
1+R4

2
, and, β3(R3) =

3.15
1+R2

3
. All the other parameters are the

same as for σ = 1. The positive steady state in this case is:

E2 = (0.83677,0.96778,1.26532,4.01943) .

➌ For σ = 3:
We consider that the functions β1, β2, and β3, and the parameters δ1, δ2 and δ3 are similar to those
considered in σ = 2. On the other hand, we assume that in this case we have: γ1 = 0.18, K1 = 0.06,
γ2 = 0.18, K2 = 0.045, γ3 = 0.3, and, K3 = 0.055. The positive steady state is:

E3 = (1.10952,1.14432,1.72306,2.70245)

Now, we consider that a first switching from the subsystem σ = 1 to the subsystem σ = 2, occurs at
t = 90. Then, a second switching from the subsystem σ = 2 to the subsystem σ = 3 occurs at t = 160.
The trajectories of the system are given in Figure 7.7.
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Fig. 7.7 Trajectories of the switching system of the numerical example in Section 7.4.5.

Remark 44. At this juncture, it is worth mentioning that the part of the work presented throughout
the previous sections is already a step-forward in refining the analysis of healthy and unhealthy
hematopoiesis. Indeed, here we introduced the basics of a new representation of hematopoietic
processes as a switching system, through event-triggered parameters. The Example 7.4.5 empha-
sizes on a particular case in which it is assumed that the behavior of the growth factors is known.
It is representative of a well-defined therapeutic protocol in which drugs are administrated at two
time-instants decided for instance by the health professionals. Now, the issues that remain to be
addressed are related to precisely how these switching instructions are quantified and scheduled,
both in: i) the healthy case where we focus on the role of mature cells (in Eq (7.2)) in the control
exerted on growth-factors, and, ii) in the unhealthy cases where an optimal therapeutic strategy
have to be determined (and which takes into account drugs toxicity and other factors). Henceforth,
each subsystem, which is actually fully defined by a unique triplet of parameters among the possible
triplet-combinations of the switching parameters

(
βi(0),γi,Ki

)
, is considered as a node or vertices,

in a network representing all the possible subsystems. We will define the rules and the possibilities
for the transitions between the nodes (i.e. switching between the subsystems). Through numerical
illustrations (Section 7.6) we will prove that this is a suitable representative framework for optimal
strategies planning.
Finally, the characteristics concerning each node (each subsystem) which are fundamental and
that we retain for the next steps are: i) Existence of Me: if the positive steady state Me, of mature
cells, exists or not, for each subsystem and, ii) Stability of Me: if the existing positive steady state
Me is stable or nota. This justifies our assertion at the beginning of this section, when we claimed
that without loss of generality we focus on only three parameters (actually, they are four, because
self-renewal rates depend on differentiation). In other words, even if we add other switching
parameters, or even if we slightly modify the studied model, all what we need to provide is: the
existence and the stability properties (points (i) and (ii)) of each node in the resulting network.
Then, the planning algorithms for the stabilization issues that we will discuss in the next section
remain exploitable.

aThis is an abuse of notation. We are considering that the strictly positive steady state Me of a specific subsystem (i.e.
fixed σ ) is unstable, if it does not satisfy the exponential stability condition in Chapter 3 - even if the latter condition is
just sufficient-.
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7.5 Stabilization through drug infusions and regulation via proper means
of the body

Several times throughout this work, we had mentioned that when searching the best stabilization strategy
for an hematopoietic system, some nuances exist between the healthy and the unhealthy cases. In this
section, we set the appropriate rules that the strategy-finding algorithm takes into account in order to
establish the optimal strategy in each case. In fact, these are, for the most part, practical constraints and
instructions. However, it is worth mentioning that our algorithms remain flexible and easily modifiable if
one wants to enrich or change the set of initial rules.

We start here by the statement of common rules, which are available for both the healthy and the
unhealthy cases. It is worth mentioning that for the sake of clarity, the stabilization theory is formulated
for the case where the model involves only one immature compartment (HSCs, in the bone marrow) and
one mature-type compartment (e.g. white or red blood cells, in the bloodstream). This is particularly
convenient for the implementation of the algorithms that we provide. A further worthwhile clarification:
we denote by stable node, or stable subsystem, a subsystem belonging to the set of possible subsystems
(that constitute the overall hematopoietic model) which has a stable strictly positive equilibrium point.
The stable steady state is in fact the point (Re,Me), where Re is the steady state of HSCs and Me is the
steady state in the mature compartment. However, for clarity, we focus only on Me, since both Me and
Re have the same properties (i.e. existence and stability properties, see Remark 44). This is convenient
in practice because the reference is usually given in terms of active mature cells in the bloodstream.
Therefore, we can say that the stable node in our network is completely defined by its associated Me. In
addition, when we determine the network of all the possible existing nodes, we define the domain that we
call «Limit_area», that contains only the biologically significant values of Me, i.e. the values which are
too high or too low, at the point of becoming impossible nodes, are excluded. Having said that, we state
the first fundamental rule in our networks:

Rule 1. The neighbors of a given node are those which can be directly reached from it through one
transition, which requires no more than one switching in each possibly switching parameter.

We recall the form of the characteristic pattern given for instance in Figure 7.4. In that step-like
function, the parameter K is switching by ±0.02 from its previous value at each time it changes (continu-
ously) with respect to its growth-factor concentration e4 (e.g. the K-value is increasing or decreasing by a
step of 0.02, each time it changes to a new level). However, we have three switching parameters in our
model. Thus, Rule 1 allows one elementary switching in each possibly switching parameter, through
one transition. For instance, if we consider the initial node to be M(0,0,0)

e , meaning that the activated
initial subsystem has the parameters

(
β (0),γ(0),K(0)

)
, then the point denoted12 M(+1,0,+1)

e belongs to the

neighborhood of the initial node, however, it is not possible to make a direct transition between M(0,0,0)
e

and M(0,0,+2)
e , because the latter action requires a double jump in K-value. Rule 1 avoids giving more

than one dose of one-type drug at the same moment. That situation is banned because the elementary
switching-step is to be understood as the maximum tolerable dose of the used-type molecule at one dose.

12That is a compact form that means that, in comparison to the parameters of M(0,0,0)
e , the β (0) increases by one jump,

apoptosis remains unchanged, while differentiation increases by one jump.
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Therefore, giving a double dose of one-type drug at the same moment is considered to be highly toxic.
Moreover, if the drug infusions are not well-spread over time, their effect is expected to be saturated. On
the other hand, Rule 1 allows the infusion of different drugs, if they are targeting different parameters,
at the same time13 (however, possible does not mean that it is the best choice, as described in the next
section). Now, we set the rules which are specific to healthy and unhealthy cases. Starting with the latter
one.

7.5.1 Procedures and constraints of the stabilization through drug-infusions

If we want to cure the hematopoietic system, it is because, without drugs, it shows some malfunctions. We
can distinguish between two situations: on the one hand, before treatment, the initial state of the system is
stable, but diagnosed with an abnormal blood cell count (e.g. a severe low blood count in a type of mature
cells, as it is the case in many diseases). On the other hand, the initial system can show an oscillatory
behavior as in cyclic and periodic blood disorders (e.g. cyclical neutropenia). The latter case is equivalent
to say that the initial node in the network corresponding to the overall model is unstable. Next, when
constructing the effective network regrouping only the allowed nodes, we can decide that switching can
occur only between stable nodes, or we can admit some transitions through few unstable nodes. This issue
does not even arise in the healthy case, in which we exclude at early stage all the unstable nodes from the
set of possible transitions14. But the answer is not as obvious for the unhealthy case. Then, on the basis of
the most reasonable option, we set the following rule:

Rule 2. When the initial system starts from an unstable node, the first therapeutic step is to drive it to the
most quickly reachable stable node, even if the latter subsystem is not the best successor in the chain of
successors leading to the ultimate goal of the therapy.

The example shown in Figure 7.8 highlights the fact that in a general construction, it may be possible
that the optimal pathway (or the unique one) towards the objective M∗ is the one that passes through some
unstable nodes. However, to avoid drowning in the details that lengthen the description, we limit ourselves
to the application of Rule 2, and we emphasize the case of networks formed by stable nodes.

Since the starting point itself may be unstable, one might be tempted to consider the paths through
some unstable points. However, this option is banned by Rule 2 because we notice that important
oscillations in blood counts may emerge from unstable nodes, creating the risk of significantly exceeding
the tolerable limit (i.e. Limit_area), which is prohibited. An illustration of the oscillatory behavior is
given in the following example.

Example 14. Let us consider the following biological parameters for what we assume to be an arbitrary
subsystem of an overall switching system describing hematopoiesis:
For HSCs: K = 0.05, γ = 0.03, τ = 2.81165, δ = 0.85, f (a) = ea

eτ−1 , and, β (R) = 8
1+R3 .

For mature cells: µ = 0.025. The trajectories of the total density of resting HSCs R(t) and the total
density of the mature-type cells M(t) are given in Figure 7.9. It shows an oscillatory behavior of important

13This is called a combined-targeted therapy.
14It is hard to believe that when the body wants to adapt its operating mode from one state to another one, it expresses unstable

or unhealthy behavior between the two.
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Fig. 7.8 Stabilization through drug infusions: the transitions and their costs.

amplitudes, in particular in the HSCs compartment. If the values of the steady states associated with a
specific subsystem are close to the boundaries specified by the Limit_area, then the oscillatory behavior
can become problematic because it leads to a clear overrun of the tolerable limits. Thus, we tend to avoid
such a compromising situation.
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Fig. 7.9 An example of the oscillatory behavior of an unstable node representing one subsystem in the overall
hematopoietic system. The trajectories correspond to the subsystem-parameters of Example 14.

Moreover, because of the high toxicity levels caused by the drugs (in particular, chemotherapy and
its severe side-effects), priority must be given to any therapy strategy that requires the minimum
quantity of drugs at each infusion. Therefore, one possible consideration is as follows:
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Rule 3. i) The cost of a one-step transition that requires targeting the three biological parameters in one
dose is 6u. ii) The cost of a one-step transition that requires targeting two biological parameters in one
dose is 3u. iii) The cost of a one-step transition that requires targeting only one biological parameter in
one dose is 1u.

In Rule 3, the u indicates a normalized unit associated to the cost in our context. The lowest cost is
1u and it is associated to the simplest transition from one node to another one, that requires exactly one
switching in only one of the possible parameters. For later use, we mention that when elaborating the
decision function in the search algorithm, it is important to associate to the heuristic function the same
scaling-unit as the one for the cost.

7.5.2 Procedures and constraints in the regulation of mature cell density through self-
tuning switching mediated by growth-factors

In the case of a healthy well-regulated hematopoiesis, some features are to be pointed. First, in contrast to
what has been precised for the unhealthy case, here the starting node represents a healthy subsystem (i.e.
the node is stable). When the body requires to move from that initial state in order to reach a desired state
M∗, as in Figure 7.10, only stable subsystems are investigated.

Rule 4. Among all the subsystems (or, equivalently, the nodes) generated from the set of combinations
between the possible values of the switching parameters, the selected nodes-network is entirely formed by
the subsystems verifying the constraints of existence, stability (i-ii in Remark 44), and the Limit_area
requirement.

M(0)	

stable	

stable	

stable	
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stable	

stable	

M*	
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1u	

1u	

1u	

1u	

1u	
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stable	

Fig. 7.10 Body regulation: Transitions, rules, and instructions. The newtork is exclusively composed by stable
nodes. The cost of 1u is associated to all the elementary transitions.

In the previous section, we have considered that the use of drugs is toxic and expensive. However,
the growth-factor secretion is a natural phenomenon that does not imply notable costs or side-effects,
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compared to chemotherapy for instance. Therefore, there is no reason to consider that according to the
number of switching executed by the parameters, different costs are attributed to the elementary transitions.
In other words, we do not consider that a growth-factor secretion has a cost for the body, when moving
from one node to its neighbor.

Rule 5. The cost of a one-step transition (i.e. elementary switching) between one node and any available
node in its neighborhood, is the same and it is worth 1u.

Remark 45. The previously mentioned rules offer a reasonable framework that allow us to provide
a consistent framework, by taking into account some practical constraints. Changing or adding
the rules can be done without a major difficulty (e.g. adding rules that include multiple costs
for different drugs, due to a difference in toxicity levels, price or a shortage of some molecules).
It is precisely this flexibility that we will highlight in the sequel, by providing two different
implementations: one for the healthy case and another one for the unhealthy case.

7.5.3 Where does the interest for planning come from?

When reflecting on the meaning of stabilization in healthy and unhealthy contexts, we were not suspecting
that this could bring us into the fundamental field of automated planning and scheduling, which is a
fully inserted branch of artificial intelligence (AI) [254] and decision theory. Mainly it concerns the
elaboration and the realization of strategies and action sequences, in order to set goals and achieve them
(see [151]). This theory is used when the solutions are complex and must be discovered and optimized
in multidimensional spaces. As an example, here we can evoke robotics and the pathfinding issue for
autonomous vehicles, where the latter theory is widespread. In this regard, we are going to take the
similarities between our application and the pathfinding issues to illustrate the interest that we have in
planning.

So, on the one hand, we consider the issue of searching an optimal path (see [151], Chapters 5 and 7)
for physical objects (e.g. a mobile robot) in a known, partially known, or unknown environment. We can
think about a 2D surface on which a robot is looking for the optimal trajectory to join two points S (Start)
and G (Goal). During its journey, the robot seeks to avoid the static or dynamic obstacles that appear on
its way, while discovering new scenes during its movement. It is also possible that the point G is also
moving.

On the other hand, we have achieved a description of the hematopoietic system as a switching one.
Thus, the question is clearly how to move, or switch, between the appropriate subsystems in order to
achieve a final objective (which turns out to be different if it is healthy or unhealthy hematopoiesis). It is
interesting to notice that the strategy to be developed operates under strict conditions that come from our
specific model (mathematical constraints) and are also related to the application (biological constraints).
More precisely, let us assume that one wishes to switch between several subsystems before reaching a
fixed objective: this is for instance a behavior which is similar to the one described in Example 7.4.5 and
Figure 7.7. Then, it is necessary to know that among a large number of possible subsystems candidates,
where each one is actually defined through a unique biological parameter combination, only a few of them
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can be validated. This is because many times, when switching from a subsystem to its neighbor15, the
strictly positive steady state of the latter subsystem can be mathematically non-existent, or it can exist but
it turns out later that it is an unstable steady state to be avoided (Rule 4), or it can be stable but biologically
insignificant (outside the Limit_area), etc.

Consequently, if we return to the robot illustration, we deduce the following parallels:

The set of all the possible hematopoietic subsystems is equivalent to the virgin scene that is in
front of the robot. In particular, each subsystem is in some sense equivalent to a unit of space
(e.g. 1m2) that the robot can occupy at a given time instant. So, it appears clear that the units of
space that the robot cannot borrow because of the presence of obstacles, are equivalent for us to
the hematopoietic subsystems that are rejected because of one of the previously stated reasons.
Next, the departure point S of the robot is similar to the initial hematopoietic subsystem, while
the goal G can be set by body requirements in order increase or decrease its blood counts (see
Introduction), or, in the unhealthy case, it can be a reference prescribed by health professionals (i.e.
therapeutic objectives).

That said, now we give a glimpse on few well-known techniques bequeathed from AI. We only
mention some flagship works that are related to our objectives, starting from 1968, when three researchers
from the Stanford Research Institute provided a strong conceptual framework for pathfinding issues. In
their famous paper [130], they presented the A∗ algorithm which uses a heuristic approach. Generally
speaking, there are two main ways to solve the optimal planning problems: dynamic programming and
greedy approaches. The former one is based on the idea that the whole problem should be divided in
several subproblems, then by combining the individual solutions of the subproblems, we can determine the
optimal solution of the overall problem. On the other hand, the greedy approach, which is an algorithmic
paradigm that follows the problem solving heuristic of making the locally optimal choice at each stage
(by making one greedy choice after another until finding the optimal global solution). All the conditions
of consistency, admissibility and optimality of A∗ -that allow it to find the optimal path- are rigorously
established in [130]. We will revisit in detail the most important point about the heuristics in our context.
But here we continue with some generalities about the incremental search algorithms, that are useful for
us. It is worth mentioning, however, that our application creates more issues than the basic example of the
2D robot pathfinding as illustrated in the following sections. Next, the D∗ algorithm, which is an informed
incremental search algorithm for dynamical partially known environment, appears in [273]. The latter
algorithm is proved to be efficient and optimal, with a high ability to deal with changing environments.
Many versions of D∗ followed, with always the aim of extending the field of application and improving
the computational aspects. That is how the Focused D∗ appears in [274], followed by the D∗ Lite in
[162]. Finally, we mention the recent work in [186], where a 3D-D∗ algorithm was introduced. The
latter method is approaching what we are going to do, because it considers the pathfinding issues in a
three-dimensional space xyz (e.g. for a drone). The xyz space in our application is the space β (0)-γ-K
where each axis admits a set of finite discrete values defined according to the evolution patterns (as in

15We recall that two subsystems are each in the vicinity of each other, if at most one switching action in each of the controlled
parameters involved in the model, is sufficient to pass from one subsystem to the other one, and vice versa.
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Figure 7.4). The resulting set of nodes in the 3D space is illustrated in the Figure 7.11, where the M(0)

node (or, equivalently, M(0,0,0)) is represented in purple color.
The 3D-representation of our network is painful and does not bring any information about the features

of the network (it may even be misleading, because some nodes in the center of the 3D construction can
represent values outside the Limit_area, for instance). The only benefit of the latter representation is that
each node is placed near its possible neighbors (26 neighbors, if all of them satisfy all the fundamental
requirements). Therefore, we prefer a more convenient representation, in a 2D graph, as sketched in
the previous section (Figures 7.8-7.10). More precisely, we set a more intuitive representation where
the flat space incorporates all the admissible nodes and marginalizes those outside the Limit_area, as
illustrated in Figure 7.12 in which the Confidence_area contains the so-called Goal-nodes, which are
the objective, or, the reference nodes.

Fig. 7.11 A selected part of the hematopoietic network in the 3D space. The connections between the nodes are not
represented. Notice that, in fact, some of the nodes may not exist if the corresponding triplet does not satisfy one of
the fundamental requirements. Other nodes can be unstable or stable but insignifiant (outside the Limit_area).
However, all these information cannot be deduced directly from the 3D representation, so we are looking for a better
representation (a suitable 2D projection).

7.5.4 Pseudo-Codes and main features of the hematopoietic system network

In relation with what we have said in the previous section, we want to point out a fundamental feature
that characterizes our hematopoietic system network. The concepts that we are going to discuss here are
related to the meaning of optimal strategy.

Remark 46. A further worthwhile clarification, useful in this section, is: for notational convenience, we
employ equivalently the forms M(0,0,0)

e and M(0)
e . The former one is used most of the time, while the latter

compact one is employed when no confusion is possible.
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M(0)	

M*	

Fig. 7.12 The 2D representation of the network, with some illustrative nodes and connections between them.
The costs of the transitions are not mentioned. The nodes outside the Limit_area are not taking into account
when searching the optimal path to the objective. The optimal path is the cheapest possible path from the purple
node (initial point) until one of the nodes satisfying the Confidence_area requirements (the goal). Each of the
blue nodes is defined by the value of the positive steady state of the mature cells and its corresponding triplet of
parameters, i.e. M(attribute1,attribute2,attribute3)

e .

First, let us further the comparison between our hematopoietic system strategy and more practical
fields that usually implement the pathfinding techniques. The case of a moving object in a 2D scene is the
most classical one. In Figure 7.13, three scenes are proposed. We consider the general case in which the
moving object can perform lateral and front movements (cost 1u for white squares, and 2u for the gray
ones) and also diagonal movements (cost 1.4u for the white squares and 2.8u for the gray ones). These
costs are not coincidental: they are actually proportional to the distance traveled by the moving object.
If we consider that a lateral or frontal movement represents a unit (1) distance, then the length of the
diagonal is (

√
2), which gives the cost 1.4u for the corresponding progress. Moreover, observe that in

Figure 7.13 ((b)-(c)), whether one decides to move between S and its diagonal successor, or between N1

and N2, the costs and the traveled distances of these movements are the same. In this case, we say that for
the one-step transition, we have coordinates-free traveled distances and costs.

Thus, in the latter situation, we highlight the fact that the concept of distance plays a dual role:
(use-i) First, at each progress-step, the cost of the transition between the current node (or, square) and its
successor is proportional to the distance between the two nodes (or, squares).
(use-ii) The progress towards the final objective is also measured (or, estimated) through the distance
separating the current position and the final objective: the mission is accomplished if this distance is zero.

Consequently, since the same notion of distance is considered in the two points (use-i) and (use-ii),
the problem of optimal pathfinding is readily formulated and solved, by choosing the shortest distance
between any two squares (i.e. the straight line between them) as a consistent and admissible heuristic in
the search algorithm [130]. However, things are slightly more complicated in our hematopoietic system
network. Indeed, in our application, three variables are switching (or, moving). A 3D space is then
considered, which is in fact the β (0)-γ-K-space, as illustrated in Figure 7.14-(a). That representation is
discretized, such that each volume-unit is a cube (equivalent to the squares in 2D, Figure 7.13), such that



240 Stabilization of blood cell counts through growth-factors and drugs switching

G	

S	

G	

S	

N2	

(a)	 (b)	 (c)	

N1	N1	

N2	

Fig. 7.13 In green the starting point and in red the objective point. (a) A scene without obstacles: the white squares
are accessible for the robot. (b) a scene with obstacles: the black squares are forbidden for the robot, which has to
avoid them. (c) A heterogeneous scene that contains white squares and black squares, but also some gray squares for
"damaged land", that the moving object can borrow but they are more costly than the white ones, as they represent a
perilous path.

each cube is defined by its coordinates, i.e. its triplet of parameters (β (0),γ,K). We consider that the
nodes Me - when they exist for the specific triplets - are placed in the center of each cube.

(a)	 (b)	 (c)	

Fig. 7.14 Representation of the 3D-space β (0)-γ-K.

In order to visualize the space inside the 3D-construction, we separate the cubes as shown in Figure
7.14-(b). That representation is admitted to be completely equivalent to the previous one (Figures 7.14-
(a)). Similarly to the black squares (i.e. the obstacles) in the 2D example (Figure 7.13-(b)-(c)), the
hematopoietic network may contain many triplets of parameters that are inadmissible (non-existent Me-
points, unstable Me, or Me-values outside the Limit_area). For the sake of clarity, we choose to simply
remove the inadmissible nodes from the 3D-representation (Figure 7.14-(c)), instead of putting them in
black color. Now, let us consider an arbitrary node to be the initial node (represented in green in Figure
7.15). We focus on the more interesting case of unhealthy hematopoiesis, since different transition-costs
are involved (Rule 3). Therefore, in the general case when all the neighbors of the green node exist, the
transitions and their associated costs are those illustrated in the Figure 7.15.

Similarly to the moving-object situation discussed previously, the concept of distance plays an
important role in the hematopoietic system network. Indeed, the stabilization objective behind the therapy
(or the body regulation) is a reference M∗ that gives the desired mature blood cells density, and we
can use a norm that measures the distance between M(t) and its objective M∗ (see the algorithms in
Appendix). In practice, we cannot expect that the body cell count is stabilized to an exact mathematical
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Fig. 7.15 3D representation in the β (0)-γ-K-space. In the case of unhealthy hematopoiesis, the transistions and
their costs are given by the Rule 3.

value. Therefore, we admit that the exact value M∗ is associated to a Confidence_area, which is a
safety-distance threshold around the exact value M∗. For instance, for the red blood cells, we can for
instance consider that the therapy objective is to guarantee a stable steady state between 38%-42% of
the total blood volume in the bloodstream (M∗ is given as number of cells/kg of blood). At first glance,
we may think that the difference between the cell-densities of each current value Me -of one activated
hematopoietic subsystem- and the prescribed reference M∗, is a heuristic candidate in our application.
That is because, starting -for instance- from an unhealthy state (e.g. a low stable blood cell density M(0)

e ),
we can observe the evolution of blood count and the progress through therapy until its stops when the
distance -i.e. the difference- between one reached stable steady state Me, and the objective M∗, satisfies
the requirement given by the Confidence_area. One can make the parallel between the case described
above, and the point (use-ii) previously illustrated in the example of the moving-object. Unfortunately,
that concept of distance does not satisfy the dual conditions of the example of the moving-object. More
precisely, if we compare our network with the point (use-i), we notice that, in our application, the cost of
a transition between the current node that we consider for instance to be M(0)

e , and its neighbors (Figure
7.15) is not proportional to the distance between the two concerned nodes, if the distance is considered
as the difference between the current blood cell density and the one set as an objective. The latter remark
results from the complex relationship between the biological parameters and the Me-values. In other
words, we can get a considerable jump in the Me-value by a one-step transition in which only one model
parameter changes (i.e. the cheapest cost - Rule 3), while a timid advance in the Me-value is achieved
through a more costly one-step transition (involving two or three jumps in the switching parameters). In
addition, this is a coordinate-dependent problem16, since by applying a one-step transition to two different
initial nodes, the result in terms of distance in the Me-values is not the same. More precisely, we can
expect that the first node jumps to a value Me which is far from its initial value, while the second node, of
different coordinates, jumps to a closer point, even if the applied one-step transition type is the same. To
make it clear, we provide the following numerical example.

16The opposite of the free-coordinates distances and costs described in the moving-object comparative example.



242 Stabilization of blood cell counts through growth-factors and drugs switching

 I
n
 t

h
e 

sc
al

e-
u
n
it

 o
f 

g
ro

w
th

-f
ac

to
r 

co
n
ce

n
tr

at
io

n
 (

e 2
)

 β(0)
0

0
.51

1
.52

2
.53

 I
n
 t

h
e 

sc
al

e 
u
n
it

 o
f 

g
ro

w
th

-f
ac

to
r 

co
n
ce

n
tr

at
io

n
 (

e 3
)

 γ

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

 I
n
 t

h
e 

sc
al

e 
u
n
it

 o
f 

g
ro

w
th

-f
ac

to
r 

co
n
ce

n
tr

at
io

n
 (

e 4
)

 K

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

Fi
g.

7.
16

A
nu

m
er

ic
al

ex
am

pl
e

of
th

e
st

ep
-li

ke
fu

nc
tio

ns
m

od
el

in
g

th
e

be
ha

vi
or

of
th

e
sy

st
em

pa
ra

m
et

er
s

ac
co

rd
in

g
to

th
ei

rg
ro

w
th

-f
ac

to
rc

on
ce

nt
ra

tio
ns

(r
ec

al
lt

ha
tL

,t
he

se
lf

-r
en

ew
in

g
pa

ra
m

et
er

,i
s

im
pl

ic
ite

ly
va

ry
in

g
ac

co
rd

in
g

to
L
=

1
−

K
).



7.5 Stabilization through drug infusions and regulation via proper means of the body 243

Example 15. Let us consider the following fixed biological parameters and functions:

For the HSCs compartment: τ = 1.25 (actual cell-cycle duration), δ = 0.14 (death rate), f (a) = mema

emτ−1

(the mitosis function), where m = 10, and, β (e2,R) =
β (e2,0)
1+bRn (the re-introduction function from resting to

proliferating phases), where b = 1, and n = 4.

For mature cells: µ = 0.05 (the degradation rate).

We continue to refer to the parameters, of each subsystem of the overall system, that depend on
growth factor concentrations by β (0), γ and K, instead of β (e2,0), γ(e3) and K(e4). In particular, here
we want to investigate the case where the previously mentioned parameters vary, with respect to their
corresponding growth-factor (or drug) concentrations, as described in Figure 7.16.

Let us suppose that at t = 0 the initial parameter values are: B(0)(0) = 0.95, γ(0) = 0.25, and,
K(0) = 0.08. We recall from Chapter 3 (or, [8, 225, 81]) that the strictly positive steady states R(0)

e (for
HSCs) and M(0)

e (or, equivalently in this case, M(0,0,0)
e ), when they exist, satisfy:

R(0)
e = β

−1

(
δ

2(1−K(0))
∫

τ

0 f (ℓ)e−γ(0)ℓdℓ

)
,

M(0)
e =

1
µ

2Kβ (0)(0)R(0)
e

1+b
(

R(0)
e

)n

∫
τ

0
f (ℓ)e−γ(0)ℓdℓ

 .

(7.14)

After calculation, using the previous numerical values, we obtain: M(0,0,0)
e = 0.99054255.

Now, we notice that moving from M(0,0,0)
e to M(0,+1,0)

e requires one dose of one type of drug in order to
decrease the apoptosis rate. Therefore, using the characteristics given in Figure 7.16 (the second one is
for e3→ γ(e3)), we observe that the previous action needs to decrease the apoptosis rate from 0.25 to
0.2. We recall that the overscript +1 in M(0,+1,0)

e means that we increase the value of the growth factor
corresponding to the apoptosis rates, which consequently decreases the apoptosis since it has a negative
feedback on that parameter. Then, after calculation, we get: M(0,+1,0)

e = 0.93120333.
On the other hand, let us observe for instance the transition M(0,0,0)

e →M(+1,+1,+1)
e , which means

that all the controlled parameters are changing their initial values. Clearly, a combined-chemotherapy is
required, and by definition a higher cost is set, due to the toxicity risks (Rule 3). In our numerical example,
the transition of interest leads to the following parameters: β (0) = 1.25, γ = 0.2, K = 0.1. It follows that:
M(+1,+1,+1)

e = 1.34252268. Finally, we can observe that the transition M(0,0,0)
e →M(−1,+1,+1)

e , which also
commits a high cost, consists in moving model parameters to β (0) = 0.65, γ = 0.2, and, K = 0.1. This
transition yields to: M(−1,+1,+1)

e = 1.033486086.
It should be noted that at this level, we give the values of the existing positive steady state but we

do not check whether these equilibria are stable or not (it will be done in Section 7.6). But now, we are
focusing on the previous obtained steady states and we are comparing how far away they are from the
initial point M(0,0,0). We notice clearly that the cost of the action from which a transition emerges is not
proportional to the change in mature cell count (see the approximate representation A-Figure 7.17). This
is of course a direct consequence of the equations in (7.14). But recall that the requirements of the body
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and the aims of the drug therapy is to reach a stable cell count M∗. Therefore, the concept of distance
towards the final desired steady state is important to be measured. Finally, let us consider for instance
that the steady state M(+1,+1,+1)

e is close to M∗ and satisfies the Confidence_area condition, associated
to the therapy objective. In other words, that means that -if this equilibrium point is stable- convergence
to it is satisfactory for the therapy (Figure 7.17). Here we have explored a very small field of possibilities,
and by expanding the network, some other Me-values, corresponding to other triplet of parameters, can
be discovered inside the Confidence_area, thus forming the set Goal of potential objectives.

G 

confidence_area	

A

B	

Fig. 7.17 Cartoon illustration - using approximate distances - of the positive steady states of Example 15.

Nevertheless, in the case where we consider that M(+1,+1,+1)
e is the unique objective, we notice that if

all the nodes are stable, then the path:

M(0,0,0)
e →M(0,0,+1)

e →M(0,+1,+1)
e →M(+1,+1,+1)

e , (7.15)

is certainly the cheapest one. We can see the similarity with the moving object, for which the cheapest
path is the straight line, if it exists (i.e. no obstacle on this way). That is exactly what the heuristics serve
for: estimating the cheapest paths, as discussed in the sequel.

M(0)	

G1	 G2	

Fig. 7.18 On the left, an example of a 3D-representation of the hematopoietic network of 35 retained nodes in the
β (0)-γ-K-space. In the right, the equivalent 2-D projection of the same hematopoietic network, presented in a
suitable form that highlights the therapy objectives (Confidence_area, Goal, Limit_area). The connections
between the nodes are not represented. We notice that the red nodes belonging to Goal in the right, are close to each
other. However, nothing prevents the fact that their corresponding parameters are far from each other, as represented
by red cubes on the left.
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We conclude that our hematopoietic network have some particularities, when it is compared
to classical applications of pathfinding algorithms. Specifically, we need to make a difference
between:
i) on the one hand, the 3D-hematopoietic network represented according to its switching parame-
ters, in the β (0)-γ-K-space.
i) and on the one hand, the apparent objectives, which are dependent on the measurements related
to the total density of mature cells and its features: the nodes are the stable Me points, the
Limit_area defined for the mature cell density, the therapy objectives defined by the prescribed
M∗ density and its Confidence_area (which allow to determine the Goal set). All these elements
are defined according to the distance separating the current nodes from the therapy-objective M∗,
as illustrated in Figure 7.18- on the right.
To illustrate a typical situation that can be encountered in the hematopoietic network system, we
can consider the case where two nodes belong to the Goal seta, and we notice that actually they
can be distant from each another in the parameter-space representation (see Figure 7.18 on the
left).
Such a situation cannot occur in the example of the moving object. Indeed, if a Confidence_area
is considered in that case, then any additional goal-square in Figure 7.13 will be in the neighborhood
of the initial one in red (i.e. they are directly connected).
To summarize, we say that with the aim of prioritizing the representation that highlights our final
objectives, we continue to use the representation in 2D-projection as in the Figure 7.18-on the
right. However, for the implementation issues of the heuristic function (using A∗-like algorithm for
instance), the 3D-representation on the left is fundamental.

aBoth of them are close to M∗ -in terms of distance- and satisfy the Confidence_area requirement (e.g. G1 and
G2 in the Figure 7.18)

What can the heuristic function be in the hematopoietic network?

Let us begin by examining the fundamental definition of the heuristic function:

Definition 14. At a node Me, H(Me) is a heuristic that estimates the cost of the cheapest path
from the node Me to the considered objective node M∗ (i.e. M∗ ∈ Goal).

The concept of heuristics is problem-specific. For instance, in our application, the nonlinear relation-
ship between the controlled parameters and the steady states (i.e.

(
β (0),γ,K

)
→Me

(
β (0),γ,K

)
), and

the previously mentioned rules (Rules 1, 2,. . .,5) imply that even if the progress towards the objective (M∗)
is measured by the difference between the cell total densities at M∗ and a given node Me in the network, it
is an illusion to think that the closest point to M∗ (in terms of blood cell count) has necessary the cheapest
cost to reach the goal M∗. The previous idea has been illustrated and discussed above.

We conclude that, in the unhealthy case, the heuristic associated to any node M(attributeβ ,attributeγ ,attributeK)
e

in the effective hematopoietic network which has G ∈ Goal and G
(
attributeG

β
,attributeG

γ ,attribute
G
K

)
, is
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G 

 The heuristic does not depend on the distance between a node and the final 
destination G. However, the objective points G (belonging to the set Goal) are fully-
determined through their distance from the prescribed reference M* and satisfy the 
Confidence_area requirement.  

S 

   The inadmissible node    can be: 
•  an unstable steady state 
•  non-existing positive steady state 
•  a point outside the Limit_area 

The heuristic = cheapest switching through hematopoietic subsystems 

The actual switching through stable mature cell nodes of the hematopoetic subsystems. 

   The heuristic has to be: 
•  Admissible: It must always be lower or 

equal to the actual path. 
•  Consistent: H(N1) ≤ cost(N1,N2)+H(N2)  

stable	

stable	
stable	

stable	

Fig. 7.19 In this representation, the visually closest points represent the cheapest costs, without having to consider
the value of the mature cell steady states.

given by

H
(

M(attributeβ ,attributeγ ,attributeK)
e

)
=

1
∆β

∣∣∣attributeβ −attributeG
β

∣∣∣
+

1
∆γ

∣∣∣attributeγ −attributeG
γ

∣∣∣
+

1
∆K

∣∣∣attributeK−attributeG
K

∣∣∣ ,
(7.16)

where ∆β , ∆γ and ∆K , are respectively the amplitudes of the one-step (an elementary switching) transition
in the characteristic step-like patterns e2→ β (e2,0), e3→ γ (e3), and, e4→K (e4). For example, in Figure
7.16, we have ∆β = 0.3, ∆γ = 0.05, and, ∆K = 0.02.

Now, more details about the implementation issues, where we establish the suitable pseudocodes that
describe our techniques, are discussed in Appendix A. That is an adaptation of classical algorithms (such
as A*) to our hematopoietic system network. In Appendix A, we particularly focus on the important case
of unhealthy hematopoiesis (Algorithm 1, Appendix A), and we discuss also briefly the healthy one. In
the next section we provide a numerical illustration.
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7.6 Concluding illustrations on the time-delay overall system

This is a first work where we introduce some concepts related to planning and scheduling of regulating
strategies in biological contexts. Other works in this direction and others will follow, and we mention
particularly that more recent algorithms (such that the D∗) can be employed in the study of the healthy
hematopoiesis, for tracking a moving blood cell reference. At the end of this section, we will also mention
the interesting case of coupled models between healthy and mutated cells (studied in Part II - Chapter 6).

In this concluding section, we give a numerical illustration that merge all the previously mentioned
parts. More precisely, here we combine:

➊ The dynamics of cell-populations: The PDE-system (Section 7.4.1), governing the dynamics
of hematopoietic stem cells (HSCs) and mature cells. Then, the nonlinear system with distributed
delay terms where proliferation, apoptosis, differentiation and self-renewing processes are growth-
factor dependent (Section 7.4.2). More precisely, we consider for cell-population dynamics the
model given in Table 7.1, where three different growth factors are acting on

(
β (0),γ,K

)
.

➋ The dynamics of growth-factor concentrations and their effect on cell-dynamics model
parameters: The general growth-factor features are discussed in Section 7.3, and their dynamics
are described by (7.2). In the unhealthy case, drugs doses are assumed to act as growth factors.
The key feature is the event-triggered property that growth-factors or drugs exert on the model
parameters. In the following numerical example, we consider the characteristic patterns (step-
like functions) giving the variations of the model parameters with respect to their respective
drugs/growth-factor concentrations as in Figure 7.16.
➌ The switching law defining the stabilization technique: Given a reference M∗ (associated
with its Confidence_area), which in fact specifies the desired total density of mature blood cells,
Algorithm 1 reveals which path (i.e. a succession of subsystemsa) is optimal to be undertaken in
order to achieve the best therapeutic strategy.

aFrom that information, we deduce the suitable step-like functions of the growth-factors with respect to time, that
yields to the desired switching series, as illustrated in the sequel.

The fixed-parameter system that we consider here are those given in Example 15:
For HSCs: τ = 1.25 (actual cell-cycle duration), δ = 0.14 (death rate), f (a) = mema

emτ−1 where m = 10
(mitosis function), β (e2,R) =

β (e2,0)
1+bRn (the re-introduction function from resting to proliferating phases),

where b = 1, n = 4.
Finally, the degradation rate of mature cells is µ = 0.05.
Next, using all the possible combinations of the switching parameters given by Figure 7.16, we define

1000 possible hematopoietic subsystem constituting the overall system presented in Table 7.1. However,
for half of them the condition of existence of the positive steady state is not verified. Furthermore, only 59
subsystems have a positive steady state that satisfies the exponential stability condition of Chapter 3.

We set Limit_area= 5 (a normalized value for the total density of mature cells). It follows that the
resulting network contains 51 hematopoietic subsystems (the nodes are the positive steady state of each
system), i.e. length

(
Me f f

)
= 51.
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In order to show how the values of the steady states of the total density of mature cells (Me) spread,
we give the following 1D-plot of the 51 points.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 7.20 The distribution of the 51 stable steady states, which are inside the Limit_area= (0,5].

It suits us to consider some more constraints on the problem in order to reduce the number of nodes in
the studied network. We consider that due to the presence of superimposed severe epigenetic mutations
[137], it is expected that the drug has only a limited leverage to change the β (0)-parameter. Then, we can
assume, without loss of generality, that this parameter β can vary only between 0.95 and 2.15. It follows
that the number of nodes in the network is reduced to 22, i.e. length

(
Me f f

)
= 22. However, it is worth

mentioning that the complete-type case involving 51 nodes can be addressed exactly in the same way, but
detailing it will make the section too long without significant benefits.

Nodes β (0) γ K Me M(0)
e Goal candidates (M∗±0.5)

1 0.95 0.40 0.06 0.81808465 ✓
2 0.95 0.40 0.08 0.98614342
3 0.95 0.35 0.12 1.70355101
4 0.95 0.35 0.14 1.35798982
5 0.95 0.30 0.16 2.45099792
6 0.95 0.30 0.18 2.47511923
7 0.95 0.25 0.20 3.24792752
8 0.95 0.25 0.22 3.41423221
9 1.25 0.45 0.06 0.89302665
10 1.25 0.40 0.10 1.77626758
11 1.25 0.35 0.14 2.66862097
12 1.25 0.35 0.16 2.76695795
13 1.25 0.30 0.20 3.93743744
14 1.55 0.45 0.06 1.26462747
15 1.55 0.45 0.08 1.46594557
16 1.55 0.40 0.12 2.65308368
17 1.55 0.35 0.18 3.65098593
18 1.85 0.45 0.08 2.00965592
19 1.85 0.40 0.14 3.52953970
20 1.85 0.30 0.24 4.48839554 ✓
21 2.15 0.45 0.10 2.74132806
22 2.15 0.40 0.14 4.33497547 ✓

Table 7.5 The 22 nodes constituing the vector Me f f , with their β (0)-γ-K coordinates. The nodes number 20 and 22
satisfy the Confidence_area requirement and thereby are potential therapy objectives.

Remark 47. if we do not limit the values of β (0) to those given in Table 7.5 (i.e., if we consider the 51
possible steady states), then a third stable steady state Me exists in Goal, having the triplet: β (0) = 2.45,
γ = 0.4 and K = 0.16.
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According to Table (7.5), we set the network system representation (Figure 7.21) corresponding to
our overall hematopoietic system.

19	

20	

22	

1	

9	

10	

14	

15	

16		

18	
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1	
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6	

6	

6	 6	

1	

Fig. 7.21 The hematopoetic network corresponding to the example of Table 7.5.

In the Confidence_area, only the 22th node is reachable. According to its attributes (i.e.
coordinates) the heuristic is computed. The results are given in Table 7.6.

Using Table 7.6 and the costs of the edges in Figure 7.21, we easily determine the optimal path from
the node initial node to the objective. Indeed, the strategy in this case is given by:

19	 22	9	 10	14	 15	 16		1	

That strategy corresponds exactly to the model parameter evolution in Figure 7.22.
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Nodes β (0) γ K Me M(0)
e Goal Heuristic

1 0.95 0.40 0.06 0.81808465 ✓ 8
2 0.95 0.40 0.08 0.98614342 7
3 0.95 0.35 0.12 1.70355101 6
4 0.95 0.35 0.14 1.35798982 5
5 0.95 0.30 0.16 2.45099792 7
6 0.95 0.30 0.18 2.47511923 8
7 0.95 0.25 0.20 3.24792752 10
8 0.95 0.25 0.22 3.41423221 11
9 1.25 0.45 0.06 0.89302665 8
10 1.25 0.40 0.10 1.77626758 5
11 1.25 0.35 0.14 2.66862097 4
12 1.25 0.35 0.16 2.76695795 5
13 1.25 0.30 0.20 3.93743744 8
14 1.55 0.45 0.06 1.26462747 7
15 1.55 0.45 0.08 1.46594557 6
16 1.55 0.40 0.12 2.65308368 3
17 1.55 0.35 0.18 3.65098593 5
18 1.85 0.45 0.08 2.00965592 5
19 1.85 0.40 0.14 3.52953970 1
20 1.85 0.30 0.24 4.48839554 8
21 2.15 0.45 0.10 2.74132806 3
22 2.15 0.40 0.14 4.33497547 ✓ 0

Table 7.6 Nodes, switching parameters, and heuristic measures.
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Now we are interested in the time-delay system (Table 7.1) behavior when its parameters are switching
through a series of therapeutic drug infusions, following the defined strategy (Figure 7.22). We want
to observe the dynamics of HSCs and the total density of mature cells. For that, we need to choose the
duration of treatment and the accurate instants for drug infusions (i.e. how infusions are spread over
time in Figure 7.22). First, let us select -theoretically- an excessively long-term treatment duration. This
allows us to observe the behavior on each node, i.e. each subsystem is activated for sufficient long time
in order to check its asymptotic behavior. Therefore, we select ts1 = 200, ts2 = 400, ts3 = 600, ts4 = 800,
ts5 = 1000, ts6 = 1200, ts7 = 1400, where tsi is the switching-day corresponding to the i-th infusion. The
resulting trajectories are shown in Figure 7.23.
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Fig. 7.23 Trajectories of the nonlinear system with distributed delays (Table 7.1), when applying the established
therapeutic strategy. The switching-days are sufficiently far apart to allow each of the activated subsystem to show
its long-time behavior.

The second switching-days selection is more realistic. Indeed, we consider that the therapy starts at
ts1 = 50, then ts2 = 57, ts3 = 64, ts4 = 71, ts5 = 78, ts6 = 95, and finally, ts7 = 102, i.e. one week between
each two successive drugs infusions. The trajectories in that case are illustrated in the Figure 7.24.
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Fig. 7.24 Trajectories of the nonlinear system with distributed delays (Table 7.1), when applying the established
therapeutic strategy, where drug infusions are spread over intervals of one week.

One notices that in the case of Figure 7.24, the condition on the dwell-time h> τ (the actual cell-cycle
here is nearly one day), discussed in the Sections 7.4.3-7.4.4, is satisfied. However, we observe that even
if the latter requirement does not hold, the trajectories are correctly behaving. That point is illustrated
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in the last simulation, where we consider that the seven switching-times occur during the length of one
distributed delay term. More precisely, we consider that the therapy starts at ts1 = 100, then ts2 = 100.2,
ts3 = 100.4, ts4 = 100.6, ts5 = 100.8, ts6 = 101, and, ts7 = 101.2, while τ = 1.25 in this example. The
trajectories in this case are those illustrated in Figure 7.25. The latter case remains of course a theoretical
and unrealistic one, because a high toxicity results from such a treatment over a very short period of time.
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Fig. 7.25 Trajectories of the nonlinear system with distributed delays (Table 7.1), when applying the established
therapeutic strategy. In this case, the time between the drug infusions is abnormally very short.

We conclude this last section by evoking an interesting perspective of this work. Our next main focus
is to extend both the modeling, the stability/stabilization analysis techniques -together with the use of the
search algorithms- to study the case of coupled models (see Figure 7.26). These are models that describe
the cohabitation between healthy and cancerous cells, or between healthy and mutated cells from which
cancer may emerge. Our idea is as follows:
On the one hand, we notice that the recent anti-cancer drugs contain more and more receptors that allow
these molecules to target cancer cells, most of the time. However, a minority of healthy cells is affected
by these drugs. On the other hand, abnormal cells that express several mutations, are not completely
insensitive to the immune response of the body and its secretions. In conclusion, our next objective is to
provide a theoretical framework to study the non-negligible mutual effect between healthy and unhealthy
cells. In particular, by enriching the basis of rules as discussed, separately for healthy and unhealthy cases
in this work, we aim to provide effective therapeutic strategies for coupled model, that target the unhealthy
cells while causing the minimum damage on healthy cells.
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Conclusion and perspectives

At the end of this dissertation, we want to summarize some key facts in few words. Firstly, understanding
cell dynamics and maturation, stem-cell fates, stemness and cancer, is a highly challenging issue that
requires strong involvement in theory and practice. In this regard, we wanted to strengthen the analysis
theory and take into account the recent medical observations in this field. Thus, efforts have been made to
bring back as far as possible some analysis and simulation tools into biology, as well as some biologic
concepts into modeling and analysis. From this perspective, we have worked on the analysis of nonlinear
delayed biological systems in the time-domain framework, through Lyapunov-like approaches. We
mention again that Lyapunov theory has not been widely employed, in the past, in the analysis of the type
of models that we emphasized throughout the thesis. Thus, we have been able to diversify and extend
some stability analysis aspects17 through the development of several Lyapunov functional constructions,
and we had also brought back some planning algorithms for the interest of the biological application.
Similarly, we have emphasized in this thesis the most recent biological evidences to further motivate
the mathematical analysis and update models of cell dynamics that we use. In this spirit, we introduced
and investigated throughout this work some concepts as: the CSCs-paradigm in a model of cohabitation
between mutated cells and ordinary stem cells in their niches, the cell-cycle arrest and cell-plasticity
features, as well as emerged chemotherapy treatment of leukemia. Far from being solved, these biological
issues remain of paramount interest in future works, both in biologic/medical research and in mathematical
modeling, as well as for analysis and simulations techniques.

At this point, we can pay tribute to pioneer and current contributors in the field of modeling of blood
cell dynamics (see the review article [240]). Many issues have been addressed during the past five decades
by several authors (e.g. Mackey and Adimy), particularly in the case of cyclic blood diseases. To use the
wording of Mackey [182], successes of mathematical biology are significant but not growing as fast as it
ought to be. One of the recurrent reason is that there still have some barriers to communication between
disciplines, but also because there are a lack of corresponding data for stem cells and their progeny [101].

In this thesis, we provided a consistent modeling framework that follows recent medical observa-
tions, especially oriented towards overproliferating hematological malignancies from our hematologist
collaborators18. Our findings, provided through the stability analysis of the resulting models, have been
interpreted in the typical case of acute myeloid leukemia (e.g. the last section in Chapter 6).

17Analysis of nonlinear systems with finite or infinite distributed delays, possibly with time-varying or switching parameters,
analysis of differential-difference coupled systems, exponential stability with estimate of decay rates of solutions, regions of
attraction of steady states in nonlinear systems, analysis through positivity and comparative system approaches, robustness, etc).

18François Delhommeau and Pierre Hirsch, which are with Groupe de Recherche Clinique sur les Myéloproliferations Aïgues
et Chronique, Hôpital Saint-Antoine, Laboratoire d’Hématologie, Paris, France.
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In our surroundings, projects are going ahead for the identification of the parameters involved in acute
myeloid leukemia. Experiments on fresh blood samples of patients with hyperleukocytosis may allow to
identify the apoptosis rate and differentiation rate, however, there is no immediate prospect for estimating
the proliferation function β , or the cell-plasticity mechanisms ωi and ξi (Chapter 4).

At the time being, dedifferentiation is admitted as a fully existing biological process, and its possible
relation with cancer is often highlighted. However, the current quantitative knowledge on cell-plasticity
does not seem sufficient to either arbitrate on cancer origins19 nor identify the form of dedifferentiation
functions in this context. Similarly, data related to how pervasive cancer dormancy is, are not easily
traceable. This is mainly due to clinical manifestation of cancer, since generally it becomes detectable
only beyond a certain threshold of cancer cell density or tumor size.

Cancer dormancy and cancer plasticity require better understanding, and much remain to be done in
biological and mathematical research communities. This is our main line of research in the immediate
future. In particular, the study of a coupled model between healthy SCs and CSCs (as in Chapter 6), taking
into account several maturity stages with growth-factor dependent functions (as in Chapter 7), along with a
dedifferentiation mechanism from cancer (differentiated) cells into the CSCs compartment (as in Chapter
4), would be an interesting case for studying the rise of cancer, since it combines the two hypotheses about
CSCs origin. Many other issues remain to be thoroughly investigated, including a more rigorous stability
analysis of switching and event-triggering processes that we introduced for cell population dynamical
with growth factor dependent parameters (Chapter 7).

Finally we mention that the emergent medical projects which are patient oriented in early leukemic
develoment stages offer rich perspectives in terms of disease modelling. The challenge is to predict at first
diagnosis the best therapeutic schedule for each patient. This requires to develop models which integrate
not only genetic but also epigenetic information and allow the classification of patients into different
classes with similar disease evolution and similar response to treatments.

19Do cancer stem cells (CSCs) emerge through dedifferentiation of more mature mutated cells, or from abnormalities that
occur in the population of stem cells itself? Both hypothesis are investigated.
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[38] Bernard, S., Bernard, B. Č., Lévi, F., and Herzel, H. (2010). Tumor growth rate determines the timing of

optimal chronomodulated treatment schedules. PLoS Comput Biol, 6(3):e1000712.
[39] Billy, F., Clairambault, J., Delaunay, F., Feillet, C., and Robert, N. (2012). Age-structured cell population model

to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences and Engineering,
page xx.



References 259

[40] Birbrair, A. and Frenette, P. S. (2016). Niche heterogeneity in the bone marrow. Annals of the New York
Academy of Sciences, 1370(1):82–96.

[41] Blau, H. M., Brazelton, T., and Weimann, J. (2001). The evolving concept of a stem cell: entity or function?
Cell, 105(7):829–841.

[42] Bonnet, D. and Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates
from a primitive hematopoietic cell. Nature medicine, 3(7):730–737.

[43] Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V. (1994). Linear matrix inequalities in system and
control theory. SIAM.

[44] Brahmer, J. R. and Pardoll, D. M. (2013). Immune checkpoint inhibitors: making immunotherapy a reality for
the treatment of lung cancer. Cancer immunology research, 1(2):85–91.

[45] Brandwein, J. M. (2015). Targeting polo-like kinase 1 in acute myeloid leukemia. Therapeutic advances in
hematology, 6(2):80–87.

[46] Brikci, F. B., Clairambault, J., and Perthame, B. (2008a). Analysis of a molecular structured population
model with possible polynomial growth for the cell division cycle. Mathematical and Computer Modelling,
47(7):699–713.

[47] Brikci, F. B., Clairambault, J., Ribba, B., and Perthame, B. (2008b). An age-and-cyclin-structured cell
population model for healthy and tumoral tissues. Journal of mathematical biology, 57(1):91–110.

[48] Brodal, P. (2004). The central nervous system: structure and function. Oxford University Press.
[49] Burns, F. and Tannock, I. (1970). On the existence of a go-phase in the cell cycle. Cell Proliferation,

3(4):321–334.
[50] Busłowicz, M. (2010). Robust stability of positive continuous-time linear systems with delays. International

Journal of Applied Mathematics and Computer Science, 20(4):665–670.
[51] Cacace, F., Germani, A., Manes, C., and Setola, R. (2012). A new approach to the internally positive

representation of linear mimo systems. IEEE Transactions on Automatic Control, 57(1):119–134.
[52] Cai, S., Fu, X., and Sheng, Z. (2007). Dedifferentiation: a new approach in stem cell research. Bioscience,

57(8):655–662.
[53] Castillo, R. E. and Rafeiro, H. (2016). An introductory course in Lebesgue spaces. Springer.
[54] Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., Brooks, M.,

Reinhardt, F., Su, Y., Polyak, K., et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert
to a stem-like state. Proceedings of the National Academy of Sciences, 108(19):7950–7955.

[55] Chaplygin, S. (1950). A new method of approximate integration of differential equations. GITTL, Moscow–
Leningrad, 1(950):3–1.

[56] Chekroun, A. (2016). Contribution à l’analyse mathématique d’équations aux dérivées partielles structurées
en âge et en espace modélisant une dynamique de population cellulaire. PhD thesis, Université Claude Bernard
Lyon 1.

[57] Clairambault, J. (2009). Modelling physiological and pharmacological control on cell proliferation to optimise
cancer treatments. Mathematical Modelling of Natural Phenomena, 4(3):12–67.

[58] Clairambault, J. (2011). Optimizing cancer pharmacotherapeutics using mathematical modeling and a systems
biology approach. Personalized Medicine, 8(3):271–286.

[59] Clairambault, J. (2014). Deterministic mathematical modelling for cancer chronotherapeutics: Cell population
dynamics and treatment optimization. In Mathematical Oncology 2013, pages 265–294. Springer.

[60] Clairambault, J. and Fercoq, O. (2012). Physiologically structured cell population dynamic models with
applications to combined drug delivery optimisation in oncology.

[61] Clark, S. C. and Kamen, R. (1987). The human hematopoietic colony-stimulating factors. Science,
236(4806):1229–1237.



260 References

[62] Clarke, F. (2013). Functional analysis, calculus of variations and optimal control, volume 264. Springer
Science & Business Media.

[63] Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. Nature medicine, pages 313–319.
[64] Cobaleda, C., Jochum, W., and Busslinger, M. (2007). Conversion of mature b cells into t cells by dedifferenti-

ation to uncommitted progenitors. Nature, 449(7161):473–477.
[65] Cohen, J. E. (2004). Mathematics is biology’s next microscope, only better; biology is mathematics’ next

physics, only better. PLoS biology, 2(12):e439.
[66] Colijn, C. and Mackey, M. C. (2005). A mathematical model of hematopoiesis: Ii. cyclical neutropenia.

Journal of theoretical biology, 237(2):133–146.
[67] Cooper, S. (2003). Reappraisal of serum starvation, the restriction point, g0, and g1 phase arrest points. The

FASEB journal, 17(3):333–340.
[68] Cozzio, A., Passegué, E., Ayton, P. M., Karsunky, H., Cleary, M. L., and Weissman, I. L. (2003). Similar

mll-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes &
development, 17(24):3029–3035.

[69] Crane, G. M., Jeffery, E., and Morrison, S. J. (2017). Adult haematopoietic stem cell niches. Nature Reviews
Immunology.

[70] Dahan, P., Gala, J. M., Delmas, C., Monferran, S., Malric, L., Zentkowski, D., Lubrano, V., Toulas, C., Moyal,
E. C.-J., and Lemarie, A. (2014). Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like
phenotype through survivin: possible involvement in radioresistance. Cell death & disease, 5(11):e1543.

[71] Dale, D. C. and Mackey, M. C. (2015). Understanding, treating and avoiding hematological disease: Better
medicine through mathematics? Bulletin of mathematical biology, 77(5):739–757.

[72] Dalerba, P., Cho, R. W., and Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annu. Rev. Med.,
58:267–284.

[73] Daley, G. (2008). Common themes of dedifferentiation in somatic cell reprogramming and cancer. In Cold
Spring Harbor symposia on quantitative biology, pages sqb–2008. Cold Spring Harbor Laboratory Press.

[74] Delhommeau, F., Dupont, S., Valle, V. D., James, C., Trannoy, S., Massé, A., Kosmider, O., Le Couedic, J.-P.,
Robert, F., Alberdi, A., et al. (2009). Mutation in tet2 in myeloid cancers. New England Journal of Medicine,
360(22):2289–2301.

[75] Deotare, U., Al-Dawsari, G., Couban, S., and Lipton, J. (2015). G-csf-primed bone marrow as a source of
stem cells for allografting: revisiting the concept. Bone marrow transplantation, 50(9):1150.

[76] Ding, L., Saunders, T. L., Enikolopov, G., and Morrison, S. J. (2012). Endothelial and perivascular cells
maintain haematopoietic stem cells. Nature, 481(7382):457.

[77] Djema, W., Bonnet, C., Mazenc, F., Clairambault, J., Fridman, E., Hirsch, P., and Delhommeau, F. (2018).
Control in dormancy or eradication of cancer stem cells: Mathematical modeling and stability issues. Journal of
theoretical biology.

[78] Djema, W., Mazenc, F., and Bonnet, C. (2015). Lyapunov stability analysis of a model describing
hematopoiesis. In Control Conference (ECC), 2015 European, pages 2706–2711. IEEE.

[79] Djema, W., Mazenc, F., and Bonnet, C. (2016a). Analysis of a nonlinear delay differential-difference biological
model. IFAC-PapersOnLine, 49(10):246–251.

[80] Djema, W., Mazenc, F., and Bonnet, C. (2016b). Stability of immature cell dynamics in healthy and unhealthy
hematopoiesis. In American Control Conference (ACC), pages 6121–6126. IEEE.

[81] Djema, W., Mazenc, F., and Bonnet, C. (2017a). Stability analysis and robustness results for a nonlinear
system with distributed delays describing hematopoiesis. Systems & Control Letters, 102:93–101.

[82] Djema, W., Özbay, H., Bonnet, C., Fridman, E., Mazenc, F., and Clairambault, J. (2017b). Analysis of blood
cell production under growth factors switching. Proceedings of the IFAC World Congress, Toulouse.



References 261

[83] Doherty, M. R., Smigiel, J. M., Junk, D. J., and Jackson, M. W. (2016). Cancer stem cell plasticity drives
therapeutic resistance. Cancers, 8(1):8.

[84] Döhner, H., Estey, E. H., Amadori, S., Appelbaum, F. R., Büchner, T., Burnett, A. K., Dombret, H., Fenaux,
P., Grimwade, D., Larson, R. A., et al. (2010). Diagnosis and management of acute myeloid leukemia in
adults: recommendations from an international expert panel, on behalf of the european leukemianet. Blood,
115(3):453–474.

[85] Döhner, H., Weisdorf, D. J., and Bloomfield, C. D. (2015). Acute myeloid leukemia. New England Journal of
Medicine, 373(12):1136–1152.

[86] Domoshnitsky, A. and Fridman, E. (2016). A positivity-based approach to delay-dependent stability of systems
with large time-varying delays. Systems & Control Letters, 97:139–148.

[87] Durairajanayagam, D., Rengan, A. K., Sharma, R. K., and Agarwal, A. (2015). Sperm biology from production
to ejaculation. In Unexplained Infertility, pages 29–42. Springer.

[88] Ebinger, S., Özdemir, E. Z., Ziegenhain, C., Tiedt, S., Alves, C. C., Grunert, M., Dworzak, M., Lutz, C.,
Turati, V. A., Enver, T., et al. (2016). Characterization of rare, dormant, and therapy-resistant cells in acute
lymphoblastic leukemia. Cancer Cell, 30(6):849–862.

[89] Efimov, D., Perruquetti, W., Raïssi, T., and Zolghadri, A. (2013a). Interval observers for time-varying
discrete-time systems. IEEE Transactions on Automatic Control, 58(12):3218–3224.

[90] Efimov, D., Perruquetti, W., and Richard, J.-P. (2013b). On reduced-order interval observers for time-delay
systems. In Control Conference (ECC), 2013 European, pages 2116–2121. IEEE.

[91] Eftimie, R., Bramson, J. L., and Earn, D. J. (2011). Interactions between the immune system and cancer: a
brief review of non-spatial mathematical models. Bulletin of mathematical biology, 73(1):2–32.

[92] Elledge, S. J. (1996). Cell cycle checkpoints: preventing an identity crisis. Science, 274(5293):1664.
[93] Enderling, H. (2013). Cancer stem cells and tumor dormancy. In Systems Biology of Tumor Dormancy, pages

55–71. Springer.
[94] Enderling, H. (2015). Cancer stem cells: small subpopulation or evolving fraction? Integrative Biology,

7(1):14–23.
[95] Enver, T., Pera, M., Peterson, C., and Andrews, P. W. (2009). Stem cell states, fates, and the rules of attraction.

Cell stem cell, 4(5):387–397.
[96] Fang, Y., Zhong, L., Lin, M., Zhou, X., Jing, H., Ying, M., Luo, P., Yang, B., and He, Q. (2013). Mek/erk

dependent activation of stat1 mediates dasatinib-induced differentiation of acute myeloid leukemia. PloS one,
8(6):e66915.

[97] Farina, L. and Rinaldi, S. (2011). Positive linear systems: theory and applications, volume 50. John Wiley &
Sons.

[98] Ferrarini, M., Ferrero, E., Dagna, L., Poggi, A., and Zocchi, M. R. (2002). Human γδ t cells: a nonredundant
system in the immune-surveillance against cancer. Trends in immunology, 23(1):14–18.

[99] Feuring-Buske, M., Frankel, A. E., Alexander, R. L., Gerhard, B., and Hogge, D. E. (2002). A diphtheria
toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal
progenitors. Cancer Research, 62(6):1730–1736.

[100] Foley, C., Bernard, S., and Mackey, M. C. (2006). Cost-effective g-csf therapy strategies for cyclical
neutropenia: Mathematical modelling based hypotheses. Journal of theoretical biology, 238(4):754–763.

[101] Foley, C. and Mackey, M. C. (2009). Dynamic hematological disease: a review. Journal of mathematical
biology, 58(1-2):285–322.

[102] Folkman, J. and Kalluri, R. (2004). Cancer without disease. Nature, 427(6977):787–787.
[103] Forys, U. and Marciniak-Czochra, A. (2003). Logistic equations in tumour growth modelling. International

Journal of Applied Mathematics and Computer Science, 13(3):317–326.



262 References

[104] Fridman, E. (2001). New lyapunov–krasovskii functionals for stability of linear retarded and neutral type
systems. Systems & Control Letters, 43(4):309–319.

[105] Fridman, E. (2002). Stability of linear descriptor systems with delay: a lyapunov-based approach. Journal of
Mathematical Analysis and Applications, 273(1):24–44.

[106] Fridman, E. (2014). Introduction to time-delay systems: Analysis and control. Springer.
[107] Fridman, E., Bonnet, C., Mazenc, F., and Djema, W. (2016). Stability of the cell dynamics in acute myeloid

leukemia. Systems & Control Letters, 88:91–100.
[108] Fridman, E. and Shaked, U. (2002). A descriptor system approach to h? control of linear time-delay systems.

IEEE Transactions on Automatic Control, 47(2):253–270.
[109] Friedman, A. and Hao, W. (2015). A mathematical model of atherosclerosis with reverse cholesterol transport

and associated risk factors. Bulletin of mathematical biology, 77(5):758–781.
[110] Friedmann-Morvinski, D. and Verma, I. M. (2014). Dedifferentiation and reprogramming: origins of cancer

stem cells. EMBO reports, page e201338254.
[111] Gatenby, R. A. (2009). A change of strategy in the war on cancer. Nature, 459(7246):508–509.
[112] Geiger, T. L. and Rubnitz, J. E. (2015). New approaches for the immunotherapy of acute myeloid leukemia.

Discovery medicine, 19(105):275.
[113] Germani, A., Manes, C., and Pepe, P. (2003). Input-output linearization with delay cancellation for nonlinear

delay systems: the problem of the internal stability. International Journal of Robust and Nonlinear Control,
13(9):909–937.

[114] Giesl, P. (2007). Construction of global Lyapunov functions using radial basis functions, volume 1904.
Springer.

[115] Godwin, C., Gale, R., and Walter, R. (2017). Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia.
[116] Goldman, A., Kohandel, M., and Clairambault, J. (2017a). Integrating biological and mathematical models

to explain and overcome drug resistance in cancer. part 1: Biological facts and studies in drug resistance. Current
Stem Cell Reports, 3(3):253–259.

[117] Goldman, A., Kohandel, M., and Clairambault, J. (2017b). Integrating biological and mathematical models
to explain and overcome drug resistance in cancer, part 2: from theoretical biology to mathematical models.
Current Stem Cell Reports, 3(3):260–268.

[118] Gouzé, J.-L., Rapaport, A., and Hadj-Sadok, M. Z. (2000). Interval observers for uncertain biological systems.
Ecological modelling, 133(1):45–56.

[119] Gruyitch, L. T., Richard, J.-P., Borne, P., and Gentina, J.-C. (2003). Stability domains, volume 1. CRC Press.
[120] Gu, K., Chen, J., and Kharitonov, V. L. (2003). Stability of time-delay systems. Springer Science & Business

Media.
[121] Gu, K. and Liu, Y. (2009). Lyapunov–krasovskii functional for uniform stability of coupled differential-

functional equations. Automatica, 45(3):798–804.
[122] Haddad, W. M. and Chellaboina, V. (2004). Stability theory for nonnegative and compartmental dynamical

systems with time delay. In American Control Conference, 2004. Proceedings of the 2004, volume 2, pages
1422–1427. IEEE.

[123] Haddad, W. M. and Chellaboina, V. (2005). Stability and dissipativity theory for nonnegative dynamical
systems: a unified analysis framework for biological and physiological systems. Nonlinear Analysis: Real World
Applications, 6(1):35–65.

[124] Haddad, W. M., Chellaboina, V., and Hui, Q. (2010). Nonnegative and compartmental dynamical systems.
Princeton University Press.

[125] Haferlach, T., Schoch, C., Schnittger, S., Kern, W., Löffler, H., and Hiddemann, W. (2002). Distinct genetic
patterns can be identified in acute monoblastic and acute monocytic leukaemia (fab aml m5a and m5b): a study
of 124 patients. British journal of haematology, 118(2):426–431.



References 263

[126] Hahn, W. and Baartz, A. P. (1967). Stability of motion, volume 138. Springer.
[127] Hale, J. and Verduyn Lunel, S. (1993). Introduction to functional differential equations springer verlag new

york. NY Google Scholar.
[128] Hale, J. K. (1965). Sufficient conditions for stability and instability of autonomous functional-differential

equations. Journal of Differential Equations, 1(4):452–482.
[129] Hanoun, M., Maryanovich, M., Arnal-Estapé, A., and Frenette, P. S. (2015). Neural regulation of

hematopoiesis, inflammation, and cancer. Neuron, 86(2):360–373.
[130] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determination of minimum

cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107.
[131] Hartwell, L. H., Kastan, M. B., et al. (1994). Cell cycle control and cancer. Science-AAAS-Weekly Paper

Edition, 266(5192):1821–1828.
[132] Haurie, C., Dale, D. C., and Mackey, M. C. (1998). Cyclical neutropenia and other periodic hematological

disorders: a review of mechanisms and mathematical models. Blood, 92(8):2629–2640.
[133] Haurie, C., Dale, D. C., Rudnicki, R., and Mackey, M. C. (2000). Modeling complex neutrophil dynamics in

the grey collie. Journal of theoretical biology, 204(4):505–519.
[134] Hayden, E. C. (2009). Cutting off cancer’s supply lines. Nature, 458(7239):686–687.
[135] Hearn, T., Haurie, C., and Mackey, M. C. (1998). Cyclical neutropenia and the peripheral control of white

blood cell production. Journal of theoretical biology, 192(2):167–181.
[136] Hennet, J.-C. and Tarbouriech, S. (1998). Stability conditions of constrained delay systems via positive

invariance. International Journal of Robust and Nonlinear Control, 8(3):265–278.
[137] Hirsch, P., Zhang, Y., Tang, R., Joulin, V., Boutroux, H., Pronier, E., Moatti, H., Flandrin, P., Marzac, C.,

Bories, D., et al. (2016). Genetic hierarchy and temporal variegation in the clonal history of acute myeloid
leukaemia. Nature communications, 7.

[138] Hoffman, R., Silberstein, L. E., Heslop, H., and Weitz, J. (2013). Hematology: basic principles and practice.
Elsevier Health Sciences.

[139] Hollstein, M., Sidransky, D., Vogelstein, B., Harris, C. C., et al. (1991). p53 mutations in human cancers.
Science, 253(5015):49–53.

[140] Hon, G. C., Song, C.-X., Du, T., Jin, F., Selvaraj, S., Lee, A. Y., Yen, C.-a., Ye, Z., Mao, S.-Q., Wang, B.-A.,
et al. (2014). 5mc oxidation by tet2 modulates enhancer activity and timing of transcriptome reprogramming
during differentiation. Molecular cell, 56(2):286–297.

[141] Hosing, C. (2012). Hematopoietic stem cell mobilization with g-csf. Stem Cell Mobilization: Methods and
Protocols, pages 37–47.

[142] Iwasa, T., Okamoto, I., Suzuki, M., Nakahara, T., Yamanaka, K., Hatashita, E., Yamada, Y., Fukuoka,
M., Ono, K., and Nakagawa, K. (2008). Radiosensitizing effect of ym155, a novel small-molecule survivin
suppressant, in non–small cell lung cancer cell lines. Clinical Cancer Research, 14(20):6496–6504.

[143] Jackson, P. R., Juliano, J., Hawkins-Daarud, A., Rockne, R. C., and Swanson, K. R. (2015). Patient-specific
mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice.
Bulletin of mathematical biology, 77(5):846–856.

[144] Jaiswal, P. K., Goel, A., Mittal, R., et al. (2015). Survivin: A molecular biomarker in cancer. Indian Journal
of Medical Research, 141(4):389.

[145] James, D. D. Neo-Classical Physics or Quantum Mechanics?: A New Theory of Physics. Educreation
Publishing.

[146] Jan, M. and Majeti, R. (2013). Clonal evolution of acute leukemia genomes. Oncogene, 32(2):135–140.
[147] Jansen, G., Gatenby, R., and Aktipis, C. A. (2015). Opinion: Control vs. eradication: Applying infectious

disease treatment strategies to cancer. Proceedings of the National Academy of Sciences of the United States of
America, 112(4):937.



264 References

[148] Jelkmann, W. (2011). Regulation of erythropoietin production. The Journal of physiology, 589(6):1251–1258.
[149] Jilkine, A. and Gutenkunst, R. N. (2014). Effect of dedifferentiation on time to mutation acquisition in stem

cell-driven cancers. PLoS Comput Biol, 10(3):e1003481.
[150] Jordan, C. T., Guzman, M. L., and Noble, M. (2006). Cancer stem cells. New England Journal of Medicine,

355(12):1253–1261.
[151] Kanal, L. and Kumar, V. (2012). Search in artificial intelligence. Springer Science & Business Media.
[152] Karafyllis, I., Pepe, P., and Jiang, Z.-P. (2009). Stability results for systems described by coupled retarded

functional differential equations and functional difference equations. Nonlinear Analysis: Theory, Methods &
Applications, 71(7):3339–3362.

[153] Kareva, I. (2016a). Escape from tumor dormancy and time to angiogenic switch as mitigated by tumor-
induced stimulation of stroma. Journal of theoretical biology, 395:11–22.

[154] Kareva, I. (2016b). Primary and metastatic tumor dormancy as a result of population heterogeneity. Biology
Direct, 11(1):37.

[155] Kaushansky, K. (2006). Lineage-specific hematopoietic growth factors. New England Journal of Medicine,
354(19):2034–2045.

[156] Keener, J. and Sneyd, J. (2009a). Biochemical reactions. In Mathematical Physiology, pages 1–47. Springer.
[157] Keener, J. P. and Sneyd, J. (2009b). Mathematical physiology, volume 1. Springer.
[158] Khalil, H. K. (2002). Nonlinear systems, 3rd. New Jewsey, Prentice Hall, 9.
[159] Kiel, M. J., Radice, G. L., and Morrison, S. J. (2007). Lack of evidence that hematopoietic stem cells depend

on n-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell stem cell, 1(2):204–217.
[160] Kindler, T., Lipka, D. B., and Fischer, T. (2010). Flt3 as a therapeutic target in aml: still challenging after all

these years. Blood, 116(24):5089–5102.
[161] Knapper, S., Russell, N., Gilkes, A., Hills, R. K., Gale, R. E., Cavenagh, J. D., Jones, G., Kjeldsen, L.,

Grunwald, M. R., Thomas, I., et al. (2016). A randomised assessment of adding the kinase inhibitor lestaurtinib
to 1st-line chemotherapy for flt3-mutated aml. Blood, pages blood–2016.

[162] Koenig, S. and Likhachev, M. (2005). Fast replanning for navigation in unknown terrain. IEEE Transactions
on Robotics, 21(3):354–363.

[163] Kolch, W. (2000). Meaningful relationships: the regulation of the ras/raf/mek/erk pathway by protein
interactions. Biochemical Journal, 351(2):289–305.

[164] Kolmanovskii, V. and Myshkis, A. (1992). Applied theory of functional differential equations. Kluwer Acad.
Pub.

[165] Kolmanovskii, V. and Myshkis, A. (1999). Introduction to the theory and applications of functional
differential equations. Mathematics and Its Applications, Springer.

[166] Kottaridis, P. D., Gale, R. E., Frew, M. E., Harrison, G., Langabeer, S. E., Belton, A. A., Walker, H., Wheatley,
K., Bowen, D. T., Burnett, A. K., et al. (2001). The presence of a flt3 internal tandem duplication in patients with
acute myeloid leukemia (aml) adds important prognostic information to cytogenetic risk group and response to
the first cycle of chemotherapy: analysis of 854 patients from the united kingdom medical research council aml
10 and 12 trials. Blood, 98(6):1752–1759.

[167] Lainey, E., Thépot, S., Bouteloup, C., Sébert, M., Adès, L., Tailler, M., Gardin, C., de Botton, S., Baruchel,
A., Fenaux, P., et al. (2011). Tyrosine kinase inhibitors for the treatment of acute myeloid leukemia: delineation
of anti-leukemic mechanisms of action. Biochemical pharmacology, 82(10):1457–1466.

[168] Lange, C. and Calegari, F. (2010). Cdks and cyclins link g1 length and differentiation of embryonic, neural
and hematopoietic stem cells. Cell Cycle, 9(10):1893–1900.

[169] Langer, C. J. (2015). Emerging immunotherapies in the treatment of non–small cell lung cancer (nsclc): The
role of immune checkpoint inhibitors. American journal of clinical oncology, 38(4):422–430.



References 265

[170] Langlois, G. P., Craig, M., Humphries, A. R., Mackey, M. C., Mahaffy, J. M., Bélair, J., Moulin, T., Sinclair,
S. R., and Wang, L. (2017). Normal and pathological dynamics of platelets in humans. Journal of Mathematical
Biology, pages 1–52.

[171] Leder, K., Holland, E. C., and Michor, F. (2010). The therapeutic implications of plasticity of the cancer
stem cell phenotype. PloS one, 5(12):e14366.

[172] Lewis, T. A., Sykes, D. B., Law, J. M., Munoz, B., Rustiguel, J. K., Nonato, M. C., Scadden, D. T., and
Schreiber, S. L. (2016). Development of ml390: a human dhodh inhibitor that induces differentiation in acute
myeloid leukemia. ACS Medicinal Chemistry Letters.

[173] Ley, T. J., Ding, L., Walter, M. J., McLellan, M. D., Lamprecht, T., Larson, D. E., Kandoth, C., Payton,
J. E., Baty, J., Welch, J., et al. (2010). Dnmt3a mutations in acute myeloid leukemia. New England Journal of
Medicine, 363(25):2424–2433.

[174] Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., Wicha, M., Clarke, M. F., and Simeone,
D. M. (2007). Identification of pancreatic cancer stem cells. Cancer research, 67(3):1030–1037.

[175] Liu, X., Huang, J., Chen, T., Wang, Y., Xin, S., Li, J., Pei, G., and Kang, J. (2008). Yamanaka factors critically
regulate the developmental signaling network in mouse embryonic stem cells. Cell research, 18(12):1177.

[176] Liu, X., Yu, W., and Wang, L. (2010). Stability analysis for continuous-time positive systems with time-
varying delays. IEEE Transactions on Automatic Control, 55(4):1024–1028.

[177] Logan, J. D. (2014). Applied partial differential equations. Springer.
[178] Lowenberg, B., Downing, J. R., and Burnett, A. (1999). Acute myeloid leukemia. New England Journal of

Medicine, 341(14):1051–1062.
[179] Ma, P., Song, W., and Hess, J. L. (2016). A new target for differentiation therapy in aml. Cell Research.
[180] Mackey, M. C. (1978). Unified hypothesis of the origin of aplastic anemia and periodic hematopoiesis. Blood,

51(4):941–956.
[181] Mackey, M. C., Glass, L., et al. (1977). Oscillation and chaos in physiological control systems. Science,

197(4300):287–289.
[182] Mackey, M. C. and Maini, P. K. (2015). What has mathematics done for biology? Bulletin of mathematical

biology, 77(5):735–738.
[183] Mackey, M. C. and Milton, J. G. (1990). Feedback, delays and the origin of blood cell dynamics.
[184] Mackey, M. C., Ou, C., Pujo-Menjouet, L., and Wu, J. (2006). Periodic oscillations of blood cell populations

in chronic myelogenous leukemia. SIAM journal on mathematical analysis, 38(1):166–187.
[185] Mahaffy, J. M., Bélair, J., and Mackey, M. C. (1998). Hematopoietic model with moving boundary condition

and state dependent delay: applications in erythropoiesis. Journal of theoretical biology, 190(2):135–146.
[186] Majumder, S. and Prasad, M. S. (2016). Three dimensional d* algorithm for incremental path planning

in uncooperative environment. In Signal Processing and Integrated Networks (SPIN), 2016 3rd International
Conference on, pages 431–435. IEEE.

[187] Malisoff, M. and Mazenc, F. (2009). Constructions of strict Lyapunov functions. Springer Science & Business
Media.

[188] Malthus, T. R. (1798). An Essay on the Principle of Population, as it Affects the Future Imporvement of
Society, with Remarks on the Speculations of Mr. Godwin, M. Condorcet, and Other Writers. The Lawbook
Exchange, Ltd.

[189] Marciniak-Czochra, A., Stiehl, T., Ho, A. D., Jäger, W., and Wagner, W. (2009). Modeling of asymmetric
cell division in hematopoietic stem cells-regulation of self-renewal is essential for efficient repopulation. Stem
cells and development, 18(3):377–386.

[190] Mazenc, F. (2015). Stability analysis of time-varying neutral time-delay systems. IEEE Transactions on
Automatic Control, 60(2):540–546.



266 References

[191] Mazenc, F. and Bernard, O. (2011). Interval observers for linear time-invariant systems with disturbances.
Automatica, 47(1):140–147.

[192] Mazenc, F. and Bliman, P.-A. (2006). Backstepping design for time-delay nonlinear systems. IEEE
Transactions on Automatic Control, 51(1):149–154.

[193] Mazenc, F., Fridman, E., and Djema, W. (2015). Estimation of solutions of observable nonlinear systems
with disturbances. Systems & Control Letters, 79:47–58.

[194] Mazenc, F. and Ito, H. (2013). Lyapunov technique and backstepping for nonlinear neutral systems. IEEE
Transactions on Automatic Control, 58(2):512–517.

[195] Mazenc, F. and Malisoff, M. (2010). Stabilization of a chemostat model with haldane growth functions and a
delay in the measurements. Automatica, 46(9):1428–1436.

[196] Mazenc, F. and Malisoff, M. (2016). Stability analysis for time-varying systems with delay using linear
lyapunov functionals and a positive systems approach. IEEE Transactions on Automatic Control, 61(3):771–776.

[197] Mazenc, F., Malisoff, M., and Harmand, J. (2008). Further results on stabilization of periodic trajectories for
a chemostat with two species. IEEE Transactions on Automatic Control, 53(Special Issue):66–74.

[198] Mazenc, F., Niculescu, S.-I., and Krstic, M. (2012). Lyapunov–krasovskii functionals and application to
input delay compensation for linear time-invariant systems. Automatica, 48(7):1317–1323.

[199] Mead, A. J., Linch, D. C., Hills, R. K., Wheatley, K., Burnett, A. K., and Gale, R. E. (2007). Flt3 tyrosine
kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than
flt3 internal tandem duplications in patients with acute myeloid leukemia. Blood, 110(4):1262–1270.

[200] Metcalf, D. (2008). Hematopoietic cytokines. Blood, 111(2):485–491.
[201] Metz, J. A. and Diekmann, O. (2014). The dynamics of physiologically structured populations, volume 68.

Springer.
[202] Michel, A. N., Hou, L., and Liu, D. (2008). Stability of dynamical systems: continuous, discontinuous, and

discrete systems. Springer Science & Business Media.
[203] Michel, A. N., Hou, L., and Liu, D. (2015). Stability of dynamical systems: on the role of monotonic and

non-monotonic Lyapunov functions. Springer.
[204] Michiels, W. and Niculescu, S.-I. (2014). Stability, Control, and Computation for Time-delay Systems: An

Eigenvalue-based Approach, volume 27. Siam.
[205] M’Kendrick, A. (1925). Applications of mathematics to medical problems. Proceedings of the Edinburgh

Mathematical Society, 44:98–130.
[206] Moisan, M. and Bernard, O. (2005). Interval observers for non monotone systems. application to bioprocess

models. IFAC Proceedings Volumes, 38(1):43–48.
[207] Moisan, M., Bernard, O., and Gouzé, J.-L. (2009). Near optimal interval observers bundle for uncertain

bioreactors. Automatica, 45(1):291–295.
[208] Morgan, D. O. (2007). The cell cycle: principles of control. New Science Press.
[209] Morrison, S. J. and Scadden, D. T. (2014). The bone marrow niche for haematopoietic stem cells. Nature,

505(7483):327.
[210] Murray, J. (2003). Mathematical Biology II: Spatial Models and Biomedical Applications, vol. 18 of

Biomathematics.
[211] Murray, J. D. (2002). Mathematical biology i: an introduction, vol. 17 of interdisciplinary applied mathemat-

ics.
[212] Nakao, M., Yokota, S., Iwai, T., Kaneko, H., Horiike, S., Kashima, K., Sonoda, Y., Fujimoto, T., and

Misawa, S. (1996). Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia,
10(12):1911–1918.

[213] Naumov, G. N., Folkman, J., and Straume, O. (2009). Tumor dormancy due to failure of angiogenesis: role
of the microenvironment. Clinical & experimental metastasis, 26(1):51–60.



References 267

[214] Network, C. G. A. R. et al. (2013). Genomic and epigenomic landscapes of adult de novo acute myeloid
leukemia. N Engl j Med, 2013(368):2059–2074.

[215] Ngoc, P. H. A. (2009). On positivity and stability of linear volterra systems with delay. SIAM Journal on
Control and Optimization, 48(3):1939–1960.

[216] Ngoc, P. H. A. (2013). Stability of positive differential systems with delay. IEEE Transactions on Automatic
Control, 58(1):203–209.

[217] Nguyen, L. V., Vanner, R., Dirks, P., and Eaves, C. J. (2012). Cancer stem cells: an evolving concept. Nature
reviews. Cancer, 12(2):133.

[218] Niculescu, S.-I. (2001). Delay effects on stability: a robust control approach, volume 269. Springer Science
& Business Media.

[219] Niculescu, S.-I., Verriest, E. I., Dugard, L., and Dion, J.-M. (1998). Stability and robust stability of time-delay
systems: A guided tour. In Stability and control of time-delay systems, pages 1–71. Springer.

[220] Nielsen, M., Thomsen, J., Primdahl, S., Dyreborg, U., and Andersen, J. (1987). Breast cancer and atypia
among young and middle-aged women: a study of 110 medicolegal autopsies. British journal of cancer,
56(6):814.

[221] Norris, D. and Stone, J. (2008). Who classification of tumours of haematopoietic and lymphoid tissues.
[222] Olgac, N. and Sipahi, R. (2002). An exact method for the stability analysis of time-delayed linear time-

invariant (lti) systems. IEEE Transactions on Automatic Control, 47(5):793–797.
[223] Özbay, H. (1999). Introduction to feedback control theory. CRC Press.
[224] Özbay, H., Benjelloun, H., Bonnet, C., and Clairambault, J. (2010). Stability conditions for a system

modeling cell dynamics in leukemia. IFAC Proceedings Volumes, 43(2):99–102.
[225] Özbay, H., Bonnet, C., Benjelloun, H., and Clairambault, J. (2012). Stability analysis of cell dynamics in

leukemia. Mathematical Modelling of Natural Phenomena, 7(1):203–234.
[226] Özbay, H., Bonnet, C., and Clairambault, J. (2008). Stability analysis of systems with distributed delays and

application to hematopoietic cell maturation dynamics. In CDC, pages 2050–2055.
[227] Ozbay, J. A. C. B. H., Hirsch, J. C. S. N. P., and Delhommeau, F. A discrete-maturity interconnected model

of healthy and cancer cell dynamics in acute myeloid leukemia.
[228] Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature reviews.

Cancer, 12(4):252.
[229] Park, J.-E., Yi, H., Kim, Y., Chang, H., and Kim, V. N. (2016). Regulation of poly (a) tail and translation

during the somatic cell cycle. Molecular cell, 62(3):462–471.
[230] Passegué, e., Jamieson, C. H., Ailles, L. E., and Weissman, I. L. (2003). Normal and leukemic hematopoiesis:

are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proceedings of the National
Academy of Sciences, 100(suppl 1):11842–11849.

[231] Pattabiraman, D. R. and Weinberg, R. A. (2014). Tackling the cancer stem cells–what challenges do they
pose? Nature reviews. Drug discovery, 13(7):497.

[232] Pepe, P. (2003). The liapunov’s second method for continuous time difference equations. International
Journal of Robust and Nonlinear Control, 13(15):1389–1405.

[233] Pepe, P., Karafyllis, I., and Jiang, Z.-P. (2008). On the liapunov–krasovskii methodology for the iss of
systems described by coupled delay differential and difference equations. Automatica, 44(9):2266–2273.

[234] Perthame, B. (2006). Transport equations in biology. Springer Science & Business Media.
[235] Philipone, E. and Yoon, A. J. (2017). Oral soft tissue manifestations of hematologic abnormalities and

diseases. In Oral Pathology in the Pediatric Patient, pages 129–134. Springer.
[236] Polyanin, A. D., Zaitsev, V. F., and Moussiaux, A. (2001). Handbook of first-order partial differential

equations. CRC Press.



268 References

[237] Preziosi, L. (1996). From population dynamics to modelling the competition between tumors and immune
system. Mathematical and computer modelling, 23(6):135–152.

[238] Pronier, E., Almire, C., Mokrani, H., Vasanthakumar, A., Simon, A., Mor, B. d. C. R. M., Massé, A.,
Le Couédic, J.-P., Pendino, F., Carbonne, B., et al. (2011). Inhibition of tet2-mediated conversion of 5-
methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human
hematopoietic progenitors. Blood, 118(9):2551–2555.

[239] Pronier, E. and Delhommeau, F. (2012). Role of tet2 mutations in myeloproliferative neoplasms. Current
hematologic malignancy reports, 7(1):57–64.

[240] Pujo-Menjouet, L. (2016). Blood cell dynamics: half of a century of modelling. Mathematical Modelling of
Natural Phenomena, 11(1):92–115.

[241] Pujo-Menjouet, L., Bernard, S., and Mackey, M. C. (2005). Long period oscillations in a g0 model of
hematopoietic stem cells. SIAM Journal on Applied Dynamical Systems, 4(2):312–332.

[242] Qian, H. (2012). Cooperativity in cellular biochemical processes: noise-enhanced sensitivity, fluctuating
enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses. Annual review of
biophysics, 41:179–204.

[243] Quentmeier, H., Reinhardt, J., Zaborski, M., and Drexler, H. (2003). Flt3 mutations in acute myeloid
leukemia cell lines. Leukemia, 17(1):120.

[244] Rader, J., Russell, M. R., Hart, L. S., Nakazawa, M. S., Belcastro, L. T., Martinez, D., Li, Y., Carpenter, E. L.,
Attiyeh, E. F., Diskin, S. J., et al. (2013). Dual cdk4/cdk6 inhibition induces cell-cycle arrest and senescence in
neuroblastoma. Clinical cancer research, 19(22):6173–6182.

[245] Raïssi, T., Efimov, D., and Zolghadri, A. (2012). Interval state estimation for a class of nonlinear systems.
IEEE Transactions on Automatic Control, 57(1):260–265.

[246] Reiter, R. E., Gu, Z., Watabe, T., Thomas, G., Szigeti, K., Davis, E., Wahl, M., Nisitani, S., Yamashiro, J.,
Le Beau, M. M., et al. (1998). Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer.
Proceedings of the National Academy of Sciences, 95(4):1735–1740.

[247] Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001). Stem cells, cancer, and cancer stem
cells. nature, 414(6859):105–111.

[248] Reynolds, A. R., Hart, I. R., Watson, A. R., Welti, J. C., Silva, R. G., Robinson, S. D., Da Violante, G.,
Gourlaouen, M., Salih, M., Jones, M. C., et al. (2009). Stimulation of tumor growth and angiogenesis by low
concentrations of rgd-mimetic integrin inhibitors. Nature medicine, 15(4):392–400.

[249] Rhodes, A. and Hillen, T. (2016). Mathematical modeling of the role of survivin. Bulletin of mathematical
biology, 78(6):1162–1188.

[250] Richard, J., Goubet-Bartholomeüs, A., Tchangani, P., and Dambrine, M. (1998). Nonlinear delay systems:
Tools for a quantitative approach to stabilization. Stability and control of time-delay systems, pages 218–240.

[251] Richard, J.-P. (2003). Time-delay systems: an overview of some recent advances and open problems.
automatica, 39(10):1667–1694.

[252] Röllig, C., Serve, H., Hüttmann, A., Noppeney, R., Müller-Tidow, C., Krug, U., Baldus, C. D., Brandts,
C. H., Kunzmann, V., Einsele, H., et al. (2015). Addition of sorafenib versus placebo to standard therapy in
patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (soraml): a multicentre, phase
2, randomised controlled trial. The lancet oncology, 16(16):1691–1699.

[253] Rowe, J. M. and Löwenberg, B. (2013). Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable
saga about an active drug. Blood, 121(24):4838–4841.

[254] Russell, S., Norvig, P., and Intelligence, A. (1995). A modern approach. Artificial Intelligence. Prentice-Hall,
Egnlewood Cliffs, 25:27.

[255] Salazar-Roa, M. and Malumbres, M. (2017). Fueling the cell division cycle. Trends in Cell Biology,
27(1):69–81.



References 269

[256] Salomoni, P. and Calegari, F. (2010). Cell cycle control of mammalian neural stem cells: putting a speed
limit on g1. Trends in cell biology, 20(5):233–243.

[257] Santillan, M., Mahaffy, J. M., Belair, J., and Mackey, M. C. (2000). Regulation of platelet production: The
normal response to perturbation and cyclical platelet disease. Journal of Theoretical Biology, 206(4):585–603.

[258] Saygin, C. and Carraway, H. E. (2017). Emerging therapies for acute myeloid leukemia. Journal of
hematology & oncology, 10(1):93.

[259] Schaniel, C., Bruno, L., Melchers, F., and Rolink, A. G. (2002). Multiple hematopoietic cell lineages develop
in vivo from transplanted pax5-deficient pre-b i–cell clones. Blood, 99(2):472–478.

[260] Schnerch, D., Yalcintepe, J., Schmidts, A., Becker, H., Follo, M., Engelhardt, M., and Wäsch, R. (2012).
Cell cycle control in acute myeloid leukemia. American journal of cancer research, 2(5):508.

[261] Schreiber, R. D., Old, L. J., and Smyth, M. J. (2011). Cancer immunoediting: integrating immunity? roles in
cancer suppression and promotion. Science, 331(6024):1565–1570.

[262] Sharpe, F. R. and Lotka, A. J. (1911). L. a problem in age-distribution. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 21(124):435–438.

[263] Shen, C.-N., Burke, Z. D., and Tosh, D. (2004). Transdifferentiation, metaplasia and tissue regeneration.
Organogenesis, 1(2):36–44.

[264] Shenghui, H., Nakada, D., and Morrison, S. J. (2009). Mechanisms of stem cell self-renewal. Annual Review
of Cell and Developmental, 25:377–406.

[265] Sieff, C. A. (1987). Hematopoietic growth factors. Journal of Clinical Investigation, 79(6):1549.
[266] Sipahi, R., Niculescu, S.-I., Abdallah, C. T., Michiels, W., and Gu, K. (2011). Stability and stabilization of

systems with time delay. IEEE Control Systems, 31(1):38–65.
[267] Smith, H. L. (1993). Reduction of structured population models to threshold-type delay equations and

functional differential equations: a case study. Mathematical biosciences, 113(1):1–23.
[268] Smith, J. and Martin, L. (1973). Do cells cycle? Proceedings of the National Academy of Sciences,

70(4):1263–1267.
[269] Solary, E., Bernard, O., Tefferi, A., Fuks, F., and Vainchenker, W. (2014). The ten-eleven translocation-2

(tet2) gene in hematopoiesis and hematopoietic diseases. Leukemia, 28(3):485–496.
[270] Solomon, O. and Fridman, E. (2013). New stability conditions for systems with distributed delays. Automatica,

49(11):3467–3475.
[271] Solomon, O. and Fridman, E. (2015). Stability and passivity analysis of semilinear diffusion pdes with

time-delays. International Journal of Control, 88(1):180–192.
[272] Sontag, E. D. (2008). Input to state stability: Basic concepts and results. In Nonlinear and optimal control

theory, pages 163–220. Springer.
[273] Stentz, A. (1994). Optimal and efficient path planning for partially-known environments. In Robotics and

Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 3310–3317. IEEE.
[274] Stentz, A. et al. (1995). The focussed dˆ* algorithm for real-time replanning. In IJCAI, volume 95, pages

1652–1659.
[275] Stiehl, T. and Marciniak-Czochra, A. (2011). Characterization of stem cells using mathematical models of

multistage cell lineages. Mathematical and Computer Modelling, 53(7):1505–1517.
[276] Stiehl, T. and Marciniak-Czochra, A. (2012). Mathematical modeling of leukemogenesis and cancer stem

cell dynamics. Mathematical Modelling of Natural Phenomena, 7(1):166–202.
[277] Stone, R. M., Mandrekar, S. J., Sanford, B. L., Laumann, K., Geyer, S., Bloomfield, C. D., Thiede, C., Prior,

T. W., Döhner, K., Marcucci, G., et al. (2017). Midostaurin plus chemotherapy for acute myeloid leukemia with
a flt3 mutation. New England Journal of Medicine, 377(5):454–464.



270 References

[278] Sykes, D. B., Kfoury, Y. S., Mercier, F. E., Wawer, M. J., Law, J. M., Haynes, M. K., Lewis, T. A., Schajnovitz,
A., Jain, E., Lee, D., et al. (2016). Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade
in acute myeloid leukemia. Cell, 167(1):171–186.

[279] Takaishi, S., Okumura, T., Tu, S., Wang, S. S., Shibata, W., Vigneshwaran, R., Gordon, S. A., Shimada, Y.,
and Wang, T. C. (2009). Identification of gastric cancer stem cells using the cell surface marker cd44. Stem cells,
27(5):1006–1020.

[280] Tata, P. R. and Rajagopal, J. (2016). Cellular plasticity: 1712 to the present day. Current Opinion in Cell
Biology, 43:46–54.

[281] Tay, J., Levesque, J.-P., and Winkler, I. G. (2017). Cellular players of hematopoietic stem cell mobilization in
the bone marrow niche. International journal of hematology, 105(2):129–140.

[282] Thiede, C., Steudel, C., Mohr, B., Schaich, M., Schäkel, U., Platzbecker, U., Wermke, M., Bornhäuser,
M., Ritter, M., Neubauer, A., et al. (2002). Analysis of flt3-activating mutations in 979 patients with acute
myelogenous leukemia: association with fab subtypes and identification of subgroups with poor prognosis.
Blood, 99(12):4326–4335.

[283] Thorens, B. (2011). Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes,
Obesity and Metabolism, 13(s1):82–88.

[284] Tsoularis, A. and Wallace, J. (2002). Analysis of logistic growth models. Mathematical biosciences,
179(1):21–55.

[285] Tuch, B. (2006). Stem cells-a clinical update. Australian family physician, 35(9):719.
[286] Tung, P.-Y. and Knoepfler, P. S. (2015). Epigenetic mechanisms of tumorigenicity manifesting in stem cells.

Oncogene, 34(18):2288.
[287] Tyson, J. J. and Novak, B. (2015). Bistability, oscillations, and traveling waves in frog egg extracts. Bulletin

of mathematical biology, 77(5):796–816.
[288] Uchida, N., He, D., Friera, A. M., Reitsma, M., Sasaki, D., Chen, B., and Tsukamoto, A. (1997). The

unexpected g0/g1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood. Blood, 89(2):465–
472.

[289] Uhr, J. W., Scheuermann, R. H., Street, N. E., and Vitetta, E. S. (1997). Cancer dormancy: opportunities for
new therapeutic approaches. Nature medicine, 3(5):505–509.

[290] Verriest, E. (1995). Stability of systems with distributed delays. In Preprints of the IFAC Conference on
System, Structure and Control, pages 294–299.

[291] Vesely, M. D., Kershaw, M. H., Schreiber, R. D., and Smyth, M. J. (2011). Natural innate and adaptive
immunity to cancer. Annual review of immunology, 29:235–271.

[292] Vidyasagar, M. (2002). Nonlinear systems analysis. SIAM.
[293] Visvader, J. E. and Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and

unresolved questions. Nature reviews. Cancer, 8(10):755.
[294] von Wussow, U., Klaus, J., and Pagel, H. (2005). Is the renal production of erythropoietin controlled by the

brain stem? American Journal of Physiology-Endocrinology and Metabolism, 289(1):E82–E86.
[295] Wang, E. S., Stone, R. M., Tallman, M. S., Walter, R. B., Eckardt, J. R., and Collins, R. (2016). Crenolanib, a

type i flt3 tki, can be safely combined with cytarabine and anthracycline induction chemotherapy and results in
high response rates in patients with newly diagnosed flt3 mutant acute myeloid leukemia (aml).

[296] Wang, G. (2013). Analysis of Complex Diseases: A Mathematical Perspective. CRC Press.
[297] Weinberg, R. (2013). The biology of cancer. Garland science.
[298] Whitman, S. P., Archer, K. J., Feng, L., Baldus, C., Becknell, B., Carlson, B. D., Carroll, A. J., Mrózek, K.,

Vardiman, J. W., George, S. L., et al. (2001). Absence of the wild-type allele predicts poor prognosis in adult
de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of flt3. Cancer
research, 61(19):7233–7239.



References 271

[299] Wilkie, K. P. and Hahnfeldt, P. (2013). Tumor–immune dynamics regulated in the microenvironment inform
the transient nature of immune-induced tumor dormancy. Cancer research, 73(12):3534–3544.

[300] Xie, M., Lu, C., Wang, J., McLellan, M. D., Johnson, K. J., Wendl, M. C., McMichael, J. F., Schmidt,
H. K., Yellapantula, V., Miller, C. A., et al. (2014). Age-related mutations associated with clonal hematopoietic
expansion and malignancies. Nature medicine, 20(12):1472–1478.

[301] Yamada, Y., Haga, H., and Yamada, Y. (2014). Concise review: dedifferentiation meets cancer development:
proof of concept for epigenetic cancer. Stem cells translational medicine, 3(10):1182–1187.

[302] Yan, H., Romero-López, M., Benitez, L. I., Di, K., Frieboes, H. B., Hughes, C. C., Bota, D. A., and
Lowengrub, J. S. (2017). 3d mathematical modeling of glioblastoma suggests that transdifferentiated vascular
endothelial cells mediate resistance to current standard-of-care therapy. Cancer Research, pages canres–3094.

[303] Yao, J.-C. and Link, D. C. (2017). Concise review: The malignant hematopoietic stem cell niche. STEM
CELLS, 35(1):3–8.

[304] Yeganefar, N. (2006). Définitions et analyse de stabilités pour les systèmes à retard non linéaires. PhD thesis,
Ecole Centrale de Lille; Université des Sciences et Technologie de Lille-Lille I.

[305] Zarrinkar, P. P., Gunawardane, R. N., Cramer, M. D., Gardner, M. F., Brigham, D., Belli, B., Karaman, M. W.,
Pratz, K. W., Pallares, G., Chao, Q., et al. (2009). Ac220 is a uniquely potent and selective inhibitor of flt3 for
the treatment of acute myeloid leukemia (aml). Blood, 114(14):2984–2992.

[306] Zhang, C. C. and Lodish, H. F. (2008). Cytokines regulating hematopoietic stem cell function. Current
opinion in hematology, 15(4):307.

[307] Zhang, X., Su, J., Jeong, M., Ko, M., Huang, Y., Park, H. J., Guzman, A., Lei, Y., Huang, Y.-H., Rao, A., et al.
(2016). Dnmt3a and tet2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic
stem cells. Nature Genetics, 48(9):1014–1023.

[308] Zhou, B. O., Ding, L., and Morrison, S. J. (2015). Hematopoietic stem and progenitor cells regulate the
regeneration of their niche by secreting angiopoietin-1. Elife, 4:e05521.





Appendix A

A step-by-step interpretation of the
pseudo-code generating the optimal drug
infusion strategy

Underneath the synthetic version of the pseudocode that generates the optimal drug infusion strategy,
presented in Algorithm 1, there are many procedures which are sequentially ordered with the aim of
determining the optimal feasible therapeutic strategy. In this section, we provide a step by step explanation
and illustration of Algorithm 1, together with a given number of algorithms, which are in fact already
implicitly implemented in the general Algorithm 1. More specifically, the parts of Algorithms 1 that
deserve to be highlighted will be in turn rigorously formulated as separated algorithms throughout the
current section. Now we are ready to start, and we naturally begin with the initialization statements in our
program.

The initialization step consists in giving the fixed system parameters, structures and functions, also
the initial states, the characteristic patters of the switching variables -which is certainly the key point-,
as well as some program initial instructions like the therapy objectives (M∗ and the Confidence_area)
which are set by the health professionals. With a bit more detail, the initialization step involves:

• A set of positive adequate parameters. (1) For HSCs: γ (apoptosis rate), τ (cell-cycle actual
duration), K (rate of differentiation to the lineage of interest), L (rate of self-renewing), δ (rate
of death and differentiation to other lineages), f (mitosis function), β (0), b, n (parameters of the
re-introduction function β ). (2) For mature cells: µ (the degradation rate).

• The evolution profiles of the controlled biological parameters with respect to growth-factors
concentrations:
The step-like pattern: e2→ β (e2,0), e3→ γ (e3), and, e4→K (e4). An example of these evolution
profiles is given in Figure 7.16.

• The size of the Confidence_area and the Limit_area are specified. It may be argued that the
instructions related to the therapy objectives may depend on the diagnosis of the patient. In this
case, the Confidence_area and the Limit_area are specified in the last step of the initialization
phase.
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Algorithm 1: The general outline of the procedure operated by the Unit of Control (UC) for the search of an optimal

strategy of stabilization through multiple drug infusions
Input: Initial model parameters and explicit dependence patterns between the controlled parameters and their growth-factors

concentrations. The reference M∗ and the time-span between blood tests
Output: The optimized therapeutic strategy to stabilize the HSCs and mature cells total densities at a desired final steady state
Initialization: system parameters and functions, initial states, and characteristic patters

1 The hematopoietic system structure. The set of fixed parameters and functions of the model
2 The prescribed reference M∗, the prescribed confidence_area, and, limit_area
3 The evolution profiles of the controlled functions e2→ β (e2,0), e3→ γ (e3), e4→ K (e4)

Network construction:
4 From the first medical testings, identify the parameters of the initially activated subsystem
5 Identify all the hematopoietic subsystems for all the possible parameter combinations
6 Identify the subsystems that have strictly positive steady states inside the limit_area
7 Identify the subclass of systems that have stable strictly positive steady states
8 Set up the network connections between all the subsystems
9 Determine the Goal set using the prescribed reference M∗ and confidence_area

10 if Goal=∅ then
11 return Failure
12 else
13 if M(0)

e is not a stable node then
14 Find in the neighborhood of M(0)

e the cheapest path leading to a stable node Ms

15 Save the therapeutic action leading from M(0)
e to Ms then consider that M(0)

e ←Ms

16 else
17 Continue

Real-time tracking and processing
18 for i← 1 to length(Goal) do
19 Initialize the Open_list with M(0)

e . Initialize the Closed_list with unstable points, stable points /∈ limit_area, and points
in Goal that are different from Goal(i)

20 The cost of switching from M(0)
e to itself is set to G

(
M(0)

e ,M(0)
e

)
= 0

21 Compute the (Manhattan-like distance) heuristic between Goal(i) and each stable steady state which is inside the limit_area
and outside the confidence_area

22 while Open_list ̸= ∅ do
23 Current_target takes the point that has the lowest F value (F = H +G)
24 Discover the Successors which are the neighbors of Current_target
25 Ignore the neighbors in Successors that already belong to Closed_list
26 Add the first-time discovered nodes in Successors to the Open_list
27 Pop off Current_target from Open_list and add it to Closed_list
28 for j← 1 to length(Successors) do
29 if G(Current_target)+G

(
Current_target,Successors( j)

)
≥ G

(
Successors(j)

)
then

30 Continue
31 else
32 (Current_target← Successors( j)). Cost(node)=Cost

33 Therapeutic_strategyi =
[
M(0,0,0)

e ,Best_neighbori
1,Best_neighbori

2, . . . ,Goal(i)
]

34 Therapeutic_strategy ← the best strategy between the ”i” strategies (Therapeutic_strategy_i)
35 return Therapeutic_strategy
36 Time out during the treatment (Ttreatment days)
37 Monitoring the patient’s conditions after treatment was completed

38 if Post-therapeutic analyzes reveals that Mpost_therapy
e is stable and respects the Confidence_area then

39 return Therapy has been a success!
40 else
41 Learn from past experience and loop to Initialization
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The analysis of the results of the initial tests of the patient: In this regard, it is worth bearing in
mind that a type of blood disorder is identified by the health professionals after one or more medical
testings. These are of one-off and temporary measures that for our part we assume to occur every Tk days
(k ∈ N, not necessarily uniformly distributed). Thus, from the data collected and processed at T0, we
assume that it is possible to identify the initial total densities of HSCs and mature cells of interest (e.g.
white blood cells), as well as their respective initial estimated parameters. Therefore, the monitoring of
the initial parameter values gives the vector of the controlled parameters at the initial state, that we denote:

k← 0,
[
β
(0),γ(0),K(0)

]
←
[
β (Tk,0),γ(Tk),K(Tk)

]
.

In the early phase of the construction of the nodes network (see Figure A.2), the Limit_area is
clearly specified, the starting point M(0) is identified from initial tests, and the prescribed reference M∗

together with its Confidence_area are defined (as therapy objectives).

Fig. A.2 Inside the Limit_area there is the start-
ing point M(0), the prescribed reference M∗ and
the Confidence_area.

(-1)	

(+1)	

(+5)		

(0)	Ini,al	value	

Growth-factor	concentra,on	

(-2)	

(-3)	

(+2)	

(+3)	

(+4)	

Controlled	
parameter	

Fig. A.3 In this cartoon illustration, the exact value of p is 5.
It would have been the same value if the jumps were in the
opposite sense (i.e. from −5 to +3).

While referring to the step-like characteristic patterns giving the discrete values of the biological
parameters, it is easy to determine the value of the integer p, which represents the maximum number of
jumps that a biological parameter can perform in the increasing sense or in the decreasing one (see Figure
A.3). In fact, this task can be avoided and the value of p can be initially set at an arbitrary large value that
guarantees the maximum expansion of the network. On the other hand, the network expansion can be
limited if p is forced to a value which is lower than its maximum possible one. In fact, p is a technical
detail that is principally used to quantify the possible maximum number of nodes in the resulting networks
and more importantly for notational convenience in the optimal pathway search algorithm as illustrated in
the sequel.

In Figure A.3, we expect that each possible value taken by the controlled parameter represents in fact
a distinct hematopoietic system, that may have a stable positive steady state which is in fact a node in
our network. Our case is slightly more complicated since we are studying the case in which multiple
parameters are varying under the control of different growth-factors or drugs (see Figure A.4). It is
convenient to consider p as the maximum value of the individual distinct values for all the controlled
parameters. We reiterate that p is simply suitable for the general statements of the Algorithms.

However, the legitimate question that raises is rather to know how to determine the adequate size
of the network (i.e. the maximum expansion) measured by the number of effective nodes involved in
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-1	

+1	

-1	

+1	

-1	

+1	

Fig. A.4 Cartoon illustration of the case of evolution profiles of three parameters: β (0), γ and K, as it is the case
in our statement. Each parameter is controlled by its own growth-factor. Since each parameter has its particular
growth-factor, it follows that the variations of each controlled functionality is independent from the bahavior of the
others.

it. By "adequate" we mean that a good compromise between optimal paths towards the goal nodes and
the corresponding computational cost may be guaranteed. That is without doubt a problem-specific
and no systematic rule can be stated, for the following reasons. Indeed, we can determine the exact
number of nodes that can exist, i.e., the number of triplets

(
β (0),γ,K

)
(which is overestimated by

(2p + 1)3). However, the number of effective nodes generated by the latter triplets can be highly
variable in our application. This is simply because the triplets selection are notably combined with
the fixed model parameters (δ , τ ,. . .), and all together require to satisfy strong nonlinear conditions in
order to be retained as effective nodes involved in the final network. More precisely, for a triplet of
controlled parameters, together with the fixed model parameters, will define a unique hematopoietic
subsystem. Then, the requirements for that subsystem to be represented by one node in our network
is that the following conditions hold true: i) the condition of existence of the strictly positive steady
state: δ <

(
2(1−K(e4))

∫
τ

0 f (ℓ)e−γ(e3)ℓdℓ
)

β (e2,0), ii) The positive steady state does not go beyond the
Limit_area, and, iii) the stability condition of the strictly positive steady state:

δ − ∂

∂R

[
β (e2,0)R
1+bRn

]
R=Re

+2(1−K(e4))

∣∣∣∣∣ ∂

∂R

[
β (e2,0)R
1+bRn

]
R=Re

∣∣∣∣∣
∫

τ

0
f (ℓ)e−γ(e3)ℓdℓ > 0.

Therefore, according to the initial fixed model parameters and the characteristic patterns of the
controlled ones, a given number of triplets is rejected during the network construction step. Furthermore,
we will see that the choice of the prescribed reference M∗ and the Confidence_area are also important
elements to assess how effective is the proposed network. Indeed, even if we fix the number of nodes, it
sometimes happens that many edges exist to connect the major part of the vertices, while some of them
are less accessible (or completely isolated). This specific case will be illustrated in numerical simulations.

In addition, we precise that a construction without a goal is automatically rejected. In other words,
a nodes network that does not contain at least one of its nodes inside the Confidence_area is useless.
Next, a very limited nodes network (i.e. whose expansion has been limited after few iterations), and even
if it involves nodes that belong to the Confidence_area, has certainly more chance to provide better and
cheapest therapies if its expansion is increased.
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We provide a generally comprehensive illustration in Figure A.5. Actually, here we want to represent
the key ideas in a simple way, where we start from the point M(0)

e . The first expanding operation creates
less than 33−1 = 26 since a part of triplets does not generate positive steady states. In this first iteration
two nodes are outside the Limit_area, and will be rejected. All the nodes retained in the first iteration
will be expanded in the next one. Here again, the way of representing the resulting nodes is caricatured
since in fact many of the points created in the first iteration will be re-discovered during the second one.
For instance, let us assume that among the retained nodes in the first iteration we have M(+1,+1,0)

e and
M(0,1,0)

e . We notice that when expanding one of them we re-discover the other one. However both of
them allow emergence of novel nodes (e.g. M(0,+2,0)

e is one possible successor of both of them, while
M(+2,+2,−1)

e can be a neighbor of the former point exclusively). Finally, we notice that in this example
three nodes are inside the Confidence_area, that we group in the vector Goal. In fact, the way to
perceive the nodes network depends entirely on which node in Goal is selected, as illustrated later in the
part dealing with pathfinding techniques.

Fig. A.5 Cartoon depicting of one expected nodes network. The connections are not well-reproduced but it is to
show the expansion after each iteration. The first iteration is the one that moves each parameter at the most by one
step. The second iteration goes beyon this limit in the sense that new neighbors (involving +2 parameters) appear,
while many common nodes will be shared. The objective is to achieve a network with reasonable size and at least
one element inside the Goal-set, i.e. satisfying the Confidence_area requirements.

Using the evolution profiles and p, the vector P that contains all the possibly existing parameter
combinations -without distinction- is created. In fact, the set P of possible combinations contains all the
triplets of parameters, such that each possible one defines a distinct hematopoietic subsystem that could
exist or not. Next, we notice that even for the existing triplets of parameters (i.e. existing hematopoietic
subsystems), only a part of them will satisfy the condition of existence of the strictly positive steady
states for the HSCs subpopulation. Then, we create the vector M that contains in an ordered sequence
(according to P) all the equilibrium points Me that can be achieved -without distinction-. However, as
previously explained, many of these points may not exist (we recall it: because the triplets do not exist, or,
even if the triplet of parameters exist, it is not guaranteed that the associated hematopoietic subsystem has
a positive steady state, and when it exists, it can be outside the Limit_area). For that reason, we need to



279

create the vector containing the stable1 steady states. This vector containing the effective nodes is called
Me f f . The process described above is illustrated in the following memory segments (see Figure A.6 and
Algorithm 2).

Me
(0,0,0)	…	

…	

…	

…	

Me
(-p,-p,-p)	 Me

(+p,+p,+p)	Me
(-p,-p,-p+1)	 Me

(-p,-p,-p+2)	 Me
(p,p,p-1)	Me

(p,p,p-2)	

Inexistant	 Inexistant	
Ini5al	node	
(Unstable)	

Available	
(Stable)	

Available	
(Unstable)	

Available	
(Stable)	

Available	
(Stable)	

…	 …	

Inside	the	Limit_area	?	

Stability	?	

Existence	?	

…	

…	

Fig. A.6 Me f f is obtained through a process of elimination of non-existing and undesirebale nodes.

Now, we remind that some data (which are the references given by the health professionals for all
t ≥ 0, and the system states and parameters at specific time instants Tk) are accessible. From them, we
consider that once the vector Me f f is obtained, it comes to the vector Dsort , as listed in Algorithm 2.
Quite simply, it is about the search of the points in Me f f which are inside the Confidence_area. For
that, we measure the distance between each point in the vector Me f f and the reference M∗(Tk), given at
Tk ≥ 0. Then, we sort the vector Dsort in ascending order, i.e., from the smallest distance to the largest one.
Technically (think about the implementation aspects), it is important to be able to connect each distance in
Dsort to, first, its related point in Me f f , and then to its initial location in M . Indeed, since the position of
the corresponding point in the vector M is entirely and uniquely determined by p, it follows that we can
recursively determine the corresponding triplets of parameters. In the light of this observation, Algorithm
2 operates as follows (see also Figure A.7).

First, we keep track on the switching parameters by storing their values in a new vector A , according
to the effective Me’s values and positions in the M vector. Consequently, for each retained Me in
Me f f , three values are added to A , which are actually the corresponding triplet β (0), γ and K, in this
order (each triplet of parameters defines a distinct available hematopoietic system with a valid Me node
candidate). Then, the vector Dsort stores the distances (d = |Me−M∗|) and records the corresponding

1In the case of healthy hematopoiesis that we will discuss in the next section, we will use from the begging the vector of
positive stable steady states since the switching is allowed only between hematopoietic subsystems that possess stable strictly
positive steady states.
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model parameters as illustrated in Figure A.7. We observe that: length(A ) = 3length
(
Me f f

)
and

length(Dsort) = length
(
Me f f

)
+length(A ).

Algorithm 2: Network construction
Input: Initial model parameters and explicit dependence patterns between the controlled parameters and their growth-factors

concentrations. The reference M∗ and the time-span between blood tests
Output: The nodes network

1 The parameters: µ , γ , τ , K, L, δ , β (0), b, n, and the function f .
2 The evolution profiles of the controlled biological parameters
3 The Confidence_area and the Limit_area
4 Monitoring the reference of mature cell density M∗(t), for all t ≥ 0
5 Monitoring the controlled parameters, β (t, ·) = β (e2(t), ·), γ(t) = γ(e3(t)), and, K(t) = K(e4(t)), at specific time instants Tk , k ∈ N
6 Observing the total density of HSCs, R(t) and the total density of mature cells M(t), at specific time instants Tk , k ∈ N

7 First medical testings: k← 1,
[
β (0),γ(0),K(0)

]
←
[
β (Tk,0),γ(Tk),K(Tk)

]
8 Compute R(0)

e , M(0)
e , d(0)(Tk) =

∣∣∣M(0)
e −M∗(Tk)

∣∣∣
9 P ←

[(
β (−p),γ(−p),K(−p)

)
, . . . ,

(
β (−1),γ(−1),K(−1)

)
, . . . ,

(
β (+1),γ(+1),K(+1)

)
, . . . ,

(
β (+p),γ(+p),K(+p)

)]
Compute the vector R of HSCs positive steady states, for each parameter combination from P:

10 for i← 1 to length(P) do
11 R←

[
R(−p,−p,−p)

e , . . . ,R(−1,−1,−1)
e , . . . ,R(0,0,−1)

e ,R(0)
e ,R(0,0,+1)

e , . . . ,R(+1,+1,+1)
e , . . .R(+p,+p,+p)

e

]
Compute the vector M of positive steady states of mature cells for each existing element in R

12 M ←
[
M(−p,−p,−p)

e , . . . ,M(−1,−1,−1)
e , . . . ,M(0,0,−1)

e ,M(0)
e ,M(0,0,+1)

e , . . . ,M(+1,+1,+1)
e , . . .M(+p,+p,+p)

e

]
Exclude the strictly positive steady states that do not exist, or do not belong to Limit_area, or unstable

13 Me f f ← M −{Me /∈ limit_area}−{Me unstable}, while storing the parameters in A ←
[
a1,a2,a3, . . . ,a3length(Me f f )

]
14 Such that: [a1,a2,a3]← attributes_Me f f (1), . . . , [a3k−2,a3k−1,a3k]← attributes_Me f f (k), ∀k ≤ length(Me f f )

15 Compute the vector measuring the distance between each point of Me f f and the reference M∗(Tk), then sort it in ascending order,
while keeping track on parameter switching by storing their values in ordered sequences

16 Dsort ←
[
(dmin,attributes_dmin) , . . . ,(dmax,attributes_dmax)

]
Create the vector Goal that contains the stable steady states from Me f f which are inside the confidence_area

17 i ← 1, i′ ← 1
18 for i← 1 to length(Dsort) do
19 if Dsort(i)< confidence_area then
20 Goal(i′)← Mattributes_di

e ,
[
Goal(i′+1),Goal(i′+2),Goal(i′+3)

]
← attributes_di, i′ ← i′+4, i ← i+4

21 else
22 i ← i+4
23 if Goal=∅ then
24 return Failure
25 else
26 return Nodes networks constructed successfully

Once these basic instructions are executed, we can determine one or more node networks. As
previously mentioned, we simply consider that the nodes are the stable steady states belonging to Me f f .
However, what lurks, in reality, behind each node is a unique hematopoietic subsystem of HSCs and
mature cells which is fully defined by the triplets

(
β (0),γ,K

)
defining the node in question (the triplets

are what we called attributes in Figure A.7). Next, using the vector Dsort we can determine (as shown
in Algorithm 2) the vector Goal that contains the nodes of Me f f which are inside the Confidence_area.
Clearly, if dmin > Confidence_area, then Goal=∅, which means that the problem is ill-defined and
the initial setting problems need to be revised (e.g. we have to revisit the prescribed favourable state M∗,
to increase the integer p). In some singular situations (we will evoke one later in numerical examples), it
is possible that it exists at least one point in Goal, but without any path (a succession of feasible edges
that connect the nodes) to reach it. In that case it is better to focus on the other possibilities inside Goal or
to increase the size of the network which creates in turn more suitable edges and vertices in the network.
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Me
(0,0,0)	…	 …	Me

(-p,-p,-p)	 Me
(+p,+p,+p)	Me

(-p,-p,-p+1)	 Me
(-p,-p,-p+2)	 Me

(p,p,p-1)	Me
(p,p,p-2)	

…	

…	

…	

(-p,-p,-p+2)	

Node1	

Me	

Nodei	 …	

…	 …	

Fig. A.7 The construction of Dsort while storing the corresponding switching model parameters

For the sake of brevity, we will not spread too much on the case in which M(0,0,0) is an unstable
steady state (which is more likely to be the case in unhealthy hematopoiesis) because several ways of
interpretation may be envisaged. As previously mentioned, we just chose the path with minimum network
expansion that leads to a stable node Ms ∈Me f f , then we pursue the reasoning as if Ms = M(0,0,0), in
order to answer the crux of the problem: how to find the best therapeutic strategy to reach a suitable point
belonging to Goal, from any starting point in Me f f .

Remark 48. The construction of the network we have just discussed is a bit technical, but without
presenting any difficulty. This technicality results from the nature of our haematopoietic system.
Indeed, these developments have a single objective, which is to determine the hematopoietic nodes
network as presented in Figure 7.18 on the right, while still keeping a parallel 3D-construction
as in Figure 7.18 on the left. This is striking for instance in Figure A.7, where the vector Me f f

gives the nodes Me (the stable steady states of the total density of mature cells), and the vector
A contains the 3D coordinates of each Me ∈Me f f . These steps are essential for establishing the
optimal stabilization strategy (i.e. the origin of the switching signal in our overall hematopoietic
system in Table-7.4. The next step is a classical application of a search algorithm on the resulting
hematopoietic network (see Algorithm 3).
In fact, we have as many hematopoietic networks as the number of nodes in the Goal vector. We
thus determine an optimal strategy for each point in Goal, then the overall strategy is the one with
the least cost between all the strategies,

Therapeutic_strategy ← mini∈{1,...,length(Goal)} {Therapeutic_strategy_i} .
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Algorithm 3: Exploration of the hematopoietic network
Input: Data (Input and Output) from Algorithm 2
Output: The optimal therapeutic strategy

1 if Goal=∅ then
2 Return to Initialization: increase p or change Confidence_area
3 else

For each point in Goal, identify its corresponding nodes network and features, then search the best therapeutic strategy
4 Total_cost ← 0, weighted_cost1, weighted_cost2, weighted_cost3
5 for i ← 1 to length(Goal) do
6 G ← Goal(i), Closed_list←

{
M(0,0,0)

e

}
, Cost

(
M(0,0,0)

e

)
= 0, Open_list←Me f f −Closed_list

7 while Current_target ̸= G do
Use the Manhattan distance to compute the heuristic

8 for j ← 1 to length(Me f f ) do
9 H( j) =

∣∣a3 j−2−Goal(i+1)
∣∣+ ∣∣a3 j−1−Goal(i+2)

∣∣+ ∣∣a3 j−Goal(i+2)
∣∣

10 Current_target ← M(0,0,0)
e

List the immediate stable nodes in the neighborhood of Current_target
11 Immediate_candidates= Open_list∩Neighbors_of_current
12 for j ← 1 to length(Immediate_candidates) do

Compute the Step_cost from Current_target to each point in Immediate_candidates

13 c( j) =
3

∑
m=1

(∣∣attributem_(Current_target)
∣∣− ∣∣attributem_

(
Immediate_candidates(j)

)∣∣)
14 if c( j) = 1 then
15 Step_cost( j) = weighted_cost1
16 else
17 if c( j) = 1 then
18 Step_cost( j) = weighted_cost2
19 else
20 Step_cost( j) = weighted_cost3

Combine all the previous elements to compute for each point in Immediate_candidates the Test_score
21 Test_score( j) = H( j)+

(
Total_cost+Step_cost( j)

)
Best_neighbor with minimum Test_score becomes Current_target
Current_target ← Best_neighbor, Total_cost← Total_cost+Step_cost( j)

22 Therapeutic_strategyi =
[
M(0,0,0)

e ,Best_neighbori
1,Best_neighbori

2, . . . ,Goal(i)
]

Choose the best strategy:
23 Therapeutic_strategy ← mini∈{1,...,length(Goal)} (Therapeutic_strategy_i)

24 return Therapeutic_strategy
25 Time out during the treatment (Ttreatment days)
26 Monitoring the patient’s conditions after treatment was completed

27 if Post-therapeutic analyzes reveals that Mpost_therapy
e is stable and respects the Confidence_area then

28 return Therapy has been a success!
29 else
30 Learn from past experience then reschedule.

The algorithm version for healthy hematopoiesis

Now, we briefly evoke the version for healthy hematopoiesis (Algorithm 4). Differently from the unhealthy
case, we consider for the healthy one that the reference M∗(t) is always accessible for the growth-factor
secretion centers (i.e. for all t ≥ 0), since the body sets its own objectives (e.g. according to the external
environment: altitudes, presence of infections, seasonal allergies, injury, etc). In addition, the monitoring
of the hematopoietic system parameters and blood cell count is available in real-time (the role of kidney
for instance). It is worth mentioning that the Rule 5 has an impact on the heuristic function in this case,
and the algorithm Algorithm 4 computes differently the cheapest cost for each node to reach the reference.
Several features can be added in this case, since the reference is available for all t ≥ 0, an implementation
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of a D∗-like algorithm can be more suitable, however, this is beyond the scope of the current work, so as
not to lengthen it excessively. In the last section of this contribution, we provide a numerical illustration
that includes all the main aspects evoked throughout the work.

Algorithm 4: The general outline of the procedure operated by the Unit of Control (UC) for the search of an optimal

strategy of self-stabilization in healthy hematopoiesis
Input: Actual system parameters and explicit dependence patterns between the varying parameters and their growth-factors

concentrations. The reference M∗(t) for all t ≥ 0.
Output: The required optimized switching strategy to self-stabilize the HSCs and mature cells total densities at a final steady state

that meets the body expectations.

Initialization: system parameters and functions, initial states, and characteristic patters
1 The reference M∗(t) that changes according to body requirements, the Confidence_area, and, Limit_area
2 The evolution profiles of the controlled functions e2→ β (e2,0), e3→ γ (e3), e4→ K (e4)

Network construction:
3 Body self-test to identify the actual situation and initially activated subsystem
4 Identify all the hematopoietic subsystems for all the possible parameter combinations
5 Identify the subsystems that have strictly positive steady states inside the limit_area
6 Identify the subclass of systems that have stable strictly positive steady states
7 Set up the network connections between all the subsystems
8 Determine the Goal set using the prescribed reference M∗ and confidence_area
9 if Goal=∅ then

10 return Failure
11 else
12 for i← 1 to length(Goal) do
13 Initialize the Open_list with M(0)

e . Initialize the Closed_list with unstable points, stable points /∈ limit_area, and
points in Goal that are different from Goal(i)

14 The cost of switching from M(0)
e to itself is set to G

(
M(0)

e ,M(0)
e

)
= 0

15 Compute the (Manhattan-like distance) heuristic between Goal(i) and each stable steady state which is inside the
limit_area and outside the confidence_area

16 while Open_list ̸= ∅ do
17 Current_target takes the point that has the lowest F value (F = H +G)
18 Discover the Successors which are the neighbors of Current_target
19 Ignore the neighbors in Successors that already belong to Closed_list
20 Add the first-time discovered nodes in Successors to the Open_list
21 Pop off Current_target from Open_list and add it to Closed_list
22 for j← 1 to length(Successors) do
23 if G(Current_target)+G

(
Current_target,Successors( j)

)
≥ G

(
Successors(j)

)
then

24 Continue
25 else
26 (Current_target← Successors( j))

27 Regulation_strategyi =
[
M(0,0,0)

e ,Best_neighbori
1,Best_neighbori

2 . . .Goal(i)
]

28 Best regulation strategy:
Regulation_strategy ← the best strategy between the ”i” strategies (Regulation_strategy_i)

29 Monitoring the evolution of R(t), M(t) and M∗(t), ∀t ≥ 0
30 if The regulation is not successful or M∗(t) changes its value then
31 Loop to Initialization
32 else
33 Stay in standby
34 if New requirement M∗(t) for any t ≥ 0 then
35 Break Stanby and loop to Initialization
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Abstract

A nonlinear system with distributed delays describing cell dynamics in hematopo-
iesis is analyzed -in the time-domain- via a construction of suitable Lyapunov-
Krasovskii functionals (LKFs). Two interesting biological situations lead us
to re-investigate the stability properties of two meaningful steady states: the
0-equilibrium for unhealthy hematopoiesis and the positive equilibrium for the
healthy case. Biologically, convergence to the 0-equilibrium means the extinc-
tion of all the generations of blood cells while the positive equilibrium reflects
the normal process where blood cells survive. Their analyses are slightly differ-
ent in the sense that we take advantage of positivity of the system to construct
linear functionals to analyze the 0-equilibrium, while we use some quadratic
functionals to investigate the stability properties of the positive equilibrium.
For both equilibria, we establish the exponential stability of solutions and we
provide an estimate of their rates of convergence. Moreover, a robustness analy-
sis is performed when the model is subject to some nonvanishing perturbations.
Numerical examples are provided.

Keywords: Delay, Positive system, Lyapunov, Stability, Biological model.

1. Introduction

With the ultimate goal of determining a model describing cell dynamics
in acute myeloid leukemia, which will be of use for the optimization of poly-
chemotherapies, we start here with a model describing the process of fabrication
of blood which was studied in [1] and revisited by input-output methods in [16].5

Using an alternative approach, our aim here is to deepen the analysis as well as
to solve some open issues which are of importance in practice.

Through the process of hematopoiesis, the Hematopoeitic Stem Cells (HSCs)
develop into red blood cells, white blood cells, platelets and all other blood cells.
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HSCs are immature unspecialized cells able to produce cells with the same ma-10

turity level and to differentiate into specialized cells. This is a simplified devel-
opment scheme, which does not take into account other cell fates -increasingly
highlighted in recent years- such as cell dedifferentiation [4]. In fact, the com-
plex cascade of signals regulating hematopoiesis is not currently clearly identi-
fied. Therefore, the importance of this biological process has motivated many15

theoretical and experimental works that focus on the earliest generations of im-
mature cells since they play a critical role in blood formation, and because they
are the source of several hematological disorders. The long list of works devoted
to blood cells dynamics includes [1], [2], [3], [13], [16], [17], [12], [18], and [8].

Acute Myelogenous Leukemia (AML) is a serious type of cancer, which is20

characterized by an overproduction of abnormal myeloblasts, simultaneously
with an inability to develop further into mature white blood cells (a blockade
in the maturation process). Due to their overproliferation, blasts invade the
bone marrow and even - sometimes - the blood circulation (Figure 1-a), which
prevents adequate production of mature healthy blood cells. Since we want to25

emphasize on AML, we consider that the model that we focus on describes the
development hierarchy leading to white cell production in the myeloid lineage.

Relying on several essential contributions by Mackey and his colleagues ([12],
[18], [13], to name but a few), Adimy et al. introduced and analyzed in [1] a
nonlinear system with distributed delays to model cell dynamics in several ma-30

turity stages. This is the model we study here, considering that it describes a
cancer state when some of its biological parameters are abnormal (i.e. being
different from healthy parameters, or becoming time-varying to model the ef-
fect of appropriate infused drugs) and it reflects a healthy situation when all its
parameters are normal. Using a Lyapunov technique we improve some existing35

results in two different contexts: i) we provide theoretical conditions to eradicate
cancer cells in what we assume to be a basic unhealthy situation, and, ii) we
ensure the survival of healthy cells in normal hematopoiesis. A key point that
we emphasize here is that the Lyapunov direct method offers strong tools to
study exponential convergence of solutions, estimates on their decay rates (for40

both steady states), as well as estimating the basin of attraction of the positive
equilibrium point and this, in our opinion, improves the way to study the phe-
nomenon of hematopoiesis (see the concluding remarks in [16]). On the other
hand, the search for a suitable Lyapunov functional is generally quite difficult,
since no systematic methods apply [14, 10], and that is the challenging problem45

that we are dealing with in this contribution.
The paper is organized as follows. In Section 2 we briefly present the model

of interest. Section 3 is devoted to the study of the 0-equilibrium of the system.
We establish global exponential stability even when some parameters are time-
varying, then we perform a robustness analysis. The strictly positive equilibrium50

Xe of the nominal system is discussed in Section 4. An estimate of its basin of
attraction is proposed via a construction of a novel Lyapunov functional, that
also allows us to perform a robustness analysis of the perturbed system.
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2. Description of the model and known results

We revisit from [1] the model described in Figure 1-b, where for all i ∈ In =55

{1, . . . , n}, n ≥ 1, xi denotes the total density of resting cells of generation i.
A resting cell is a cell that is not actively in the process of dividing. The re-
introduction function from resting into proliferating subpopulation of the i-th
generation is denoted βi(·). Proliferating cells can divide between the moment
they enter the proliferating phase and a maximal age τi > 0, while the apoptosis60

rate, γi, represents the death rate of proliferating cells of the i-th generation. At
each division, a proportion Ki of dividing cells goes to the next resting stage of
the development hierarchy of interest, while the other part (Li = 1−Ki) stays at
the same level i (self-renewing process), with the convention that K0 = 0. The
constant δi covers both the death rate of the resting cells of the i-th generation,65

together with their differentiation into lineages that we do not focus on.

Figure 1: (a) Blast cells are not typically found in the circulating blood of healthy individuals.
The picture is from the National Cancer Institute. (b) Schematic representation of the earliest
stages in the myeloid lineage [1].

Finally, the dynamical system equation is in the form:

ẋi(t) =− δixi(t)− wi(xi(t)) + 2Li

∫ τi

0

gi(a)wi(xi(t− a))da

+ 2Ki−1

∫ τi−1

0

gi−1(a)wi−1(xi−1(t− a))da+ εi(t),

(1)

for each compartment i ∈ In, and t ≥ 0, with wi(xi) = βi(xi)xi, gi(a) =
e−γiafi(a), where the fis are C1 functions representing the cell division proba-
bility densities, such that fi(a) ≥ 0 for all a ∈ [0, τi], and

∫ τi
0
fi(a)da = 1, since

it is assumed in [1] that the mitosis occurs before the age-limit τi. Moreover,
biological facts induce that the parameters δi, Li, Ki, τi and γi are positive for
all i ∈ In, with K0 = 0 and Ki ∈ (0, 1) for all i ∈ In. The functions βi(·) are
assumed to be differentiable and decreasing functions such that lim

a→+∞
βi(a) = 0.

For a later use, we introduce the following parameters:

Ci =

∫ τi

0

gi(l)dl, and, αi = 2LiCi − 1, (2)

where αi is assumed to be strictly positive, for all i ∈ In (see [16], Assumption 2).
We will perform a robustness analysis of the model (1) under nonvanishing
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perturbation terms εi(t) ∈ [0, εi], where εi > 0, for all i ∈ In and t ≥ 0.
It is well-known that disturbances are in general due to the lack of accuracy70

when modeling the laws governing complex living organisms. More precisely,
in the model that we study, uncertainty comes from the biological parameters
and functions (e.g. the nonlinearity βi, introduced in [12]), and from more
complex phenomena which are difficult to model. In particular, the ability of
differentiated cells to undergo lineage reversion (including dedifferentiation - the75

mechanism whereby differentiated cells regress to a less mature state [4] - and
transdifferentiation from different types of cells and hierarchies) is not covered
by the model illustrated in Figure 1-b. A basic representation of cells plasticity
features is achieved by considering dedifferentiation and transdifferentiation as
perturbation inputs. In fact, it can be proven that nonvanishing perturbations80

arise from cell plasticity, and uncertain re-introduction functions βi, leading to
system (1) with εi(t) ∈ (0, εi], for all t ≥ 0.

Notation and definitions:
Throughout the paper, we analyze the stability of the model described by (1),
where for all i ∈ In = {1, . . . , n}, xi(t) ∈ Rn. The state of the system (1)85

at a time instant t is defined as the restriction of each component xi(t) of the
solution x(t) = (x1(t), . . . , xn(t)), on the segment [t − τi, t], for all i ∈ In. We
let x = (x1, . . . , xn) and Cin = C ([−τi, 0],R) denote the space of all continuous
R-valued functions defined on a given interval [−τi, 0], for all i ∈ In, and for all
t ≥ 0, the function xit is defined by xit(m) = xi(t+m) for all m ∈ [−τi, 0].90

Finally, we notice that negative steady states are excluded from this study,
as well as equilibria belonging to the boundaries of the positive orthant, except
the origin, because of their biological irrelevance. We focus on two meaningful
steady states: the 0-equilibrium denoted by X0 = (0, . . . , 0) and the strictly
positive equilibrium point denoted by Xe = (xe1, . . . , x

e
n), xei > 0, for all i ∈ In.95

We recall two simple but useful results (see [1] and [5]).

Proposition 1. The solutions of the system (1) with positive initial conditions
are positive.

Proof. Since the nonvanishing perturbations εi(t), for all i ∈ In, satisfy εi(t) ≥ 0,100

for all t ≥ 0, the proof that the positive orthant is forward invariant is similar
to the one proposed in [5] for the nominal system.

Concerning steady states for the nominal system (1), we notice that X0 al-
ways exists. Next, without proof (available in [1] and [5]), we recall the necessary
and sufficient condition of the existence of Xe of the nominal system (1):105

Proposition 2. The nominal system (1) admits a positive equilibrium point
Xe = (xe1, . . . , x

e
n) if and only if:

β1(0) >
δ1
α1
. (3)

Throughout Section 4, we will assume that the condition (3) is satisfied and
we will analyze the stability properties of Xe using a new approach.
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3. Stability analysis of the trivial steady state

3.1. Global exponential stability of the nominal system

We start by establishing global exponential stability of the origin X0. As a110

corollary of this result, we prove exponential stability ofX0 when some biological
parameters are uncertain or time-varying.

Theorem 1. The nominal system (1) admits the origin, X0, as a globally
exponentially stable equilibrium point if for all i ∈ In, the inequalities

si := δi − (2CiLi − 1)βi(0) > 0, (4)

are satisfied. If
s1 := δ1 − (2C1L1 − 1)β1(0) < 0, (5)

then no positive solution converges to X0.

Remark 1. i) We can readily check that if (4) is satisfied, then zero is the
unique equilibrium of the nominal system (1). ii) Using a frequency domain115

approach, it was proved in [1] that if (5) is satisfied then the system is unstable,
and that the conditions (4) guarantee local asymptotic stability of the origin. In
[3], slightly more restrictive conditions than (4) (due to the fact that Li < 1,
for all i ∈ In) were given to ensure global asymptotic stability of the origin.
In [5], we proved global asymptotic stability of X0 under conditions (4). In120

Theorem 1 of the present paper, we extend the result of [5] to establish global
exponential stability under conditions (4). iii) Even if the analytic expression
of the Lyapunov functional that we will introduce in this section will be slightly
different from the one used in [5], they share the common feature of being unusual
since they are approximated at the origin by linear functions.125

Proof. First, let us pick a family of positive constants ρi, to be selected later,
and define for all i ∈ In, the functionals

vi(xit) =

∫ t

t−τi

∫ t

m

e−ρi(t−m−τi)gi(m+ τi − a)wi(xi(a))dadm. (6)

For all i ∈ In, the derivative of the functional (6) along the trajectories of the
nominal system (1) satisfies

v̇i(t) =− ρivi(xit)−
∫ t

t−τi
gi(t− a)wi(xi(a))da+ wi(xi(t))

∫ τi

0

eρiagi(a)da

≤− ρivi(xit)−
∫ t

t−τi
gi(t− a)wi(xi(a))da+ wi(xi(t))e

ρiτiCi,

where the last inequality is a consequence of (2). Let us introduce the following
functional for the first compartment of hematopoietic stem cells:

V1(x1t) = x1(t) + 2L1v1(x1t). (7)
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Its derivative along the trajectories of the nominal system (1) satisfies

V̇1(t) ≤− δ1x1(t)− 2L1ρ1v1(x1t)− [1− 2L1e
ρ1τ1C1]w1(x1(t)). (8)

Since α1 > 0, we conclude that for all ρ1 > 0, the inequality 2L1e
ρ1τ1C1−1 > 0

is satisfied. Therefore, using w1(x1(t)) ≤ β1(0)x1(t), it follows from (8) that:

V̇1(t) ≤− [δ1 − (2L1e
ρ1τ1C1 − 1)β1(0)]x1(t)− 2L1ρ1v1(x1t). (9)

Now, if (4) is satisfied, we choose ρ1 = 1
2τ1

ln
(
δ1+β1(0)+2L1C1β1(0)

4L1C1β1(0)

)
. Then we

obtain δ1− (2L1e
ρ1τ1C1 − 1)β1(0) ≥ s1

2 . It follows that the inequality (9) gives

V̇1(t) ≤ − s12 x1(t)− 2L1ρ1v1(x1t), and from the definition of V1, we get

V̇1(t) ≤ −s̃1V1(x1t)−
s1
4
x1(t), (10)

with s̃1 = min
{
s1
4 , ρ1

}
. Consequently, the origin of the subsystem i = 1 is

globally exponentially stable. Next, in order to extend the result to the overall
system, we introduce the following functional which takes into account the cells
dynamics of the first and the second generations of immature cells:

V2(x2t, x1t) =x2(t) + 2L2v2(x2t) + 2K1v1(x1t) +
8K1β1(0)eρ1τ1C1

s1
V1(x1t).

Using (10), we prove that the derivative of V2 along the trajectories of the
nominal system (1) satisfies

V̇2(t) ≤− δ2x2(t)− (1− 2L2e
ρ2τ2C2)w2(x2(t))− 2L2ρ2v2(x2t)

− 2K1ρ1v1(x1t)−
8K1β1(0)eρ1τ1C1s̃1

s1
V1(x1t)

− 2K1e
ρ1τ1C1 [β1(0)− β1(x1(t))]x1(t).

(11)

Using the assumption α2 > 0, together with the fact that the function β2 is
strictly decreasing, it follows that,

V̇2(t) ≤− [δ2 − (2L2e
ρ2τ2C2 − 1)β2(0)]x2(t)− 2L2ρ2v2(x2t)

− 2K1ρ1v1(x1t)−
8K1β1(0)eρ1τ1C1s̃1

s1
V1(x1t).

(12)

When the conditions (4) are satisfied, we select ρ2 > 0 (similarly to ρ1), such
that the inequality δ2− (2L2e

ρ2τ2C2 − 1)β2(0) ≥ s2
2 , is satisfied. It follows from

(12) that there exists a strictly positive constant s̃2, such that

V̇2(t) ≤− s̃2V2(x1t, x2t)−
s2
4
x2(t), (13)

is satisfied. Next, by induction, we easily check that there exist a positive
constant s̃n and a family of strictly positive weighting constants λi and λ̃i, such
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that the derivative of the functional V(xt) =
∑n
i=1

[
λixi(t) + λ̃ivi(xit)

]
, which

is taking into account all the n generations of immature blood cells, along the
trajectories of the nominal system (1), satisfies

V̇(t) ≤ −s̃nV(xt). (14)

From the inequality (14) and the properties of the functional V, we conclude
that, if the conditions (4) are satisfied, the origin of the nominal model (1) is
globally exponentially stable.

In order to complete the proof, we consider the case where the inequality (5)
is satisfied and we show that no positive solution converges to X0. As in [5], we
prove this result by contradiction, i.e. we assume that a positive solution x(t)
converges to X0. Now, we select ρ1 = 0 and we observe that the derivative of
the functional V1, introduced in (7), is given by

V̇1(t) = [−δ1 + α1β1(x1(t))]x1(t). (15)

When (5) is verified, using the facts that the function β1 is decreasing and x1(t)
converges to zero, we deduce that there exists tr > 0 such that, for all t ≥ tr,

−δ1 + α1β1(x1(t)) ≥ −δ1+α1β1(0)
2 . It follows from (15) that, for all t ≥ tr,

V̇1(t) ≥ −δ1 + α1β1(0)

2
x1(t). (16)

From (5), and the positivity of the solutions, it follows that for all t ≥ tr,
V̇1(t) > 0. Consequently, we deduce that, for all t ≥ tr, V1(x1t) ≥ V1(x1tr ) > 0.130

It follows that V1(x1t) does not converge to zero. On the other hand, V1(x1t)
converges to zero because x1(t) converges to X0. This yields a contradiction.

Example 1. A possible selection of the cell division probability densities, which
was considered in [17] and [16], is given by fi(a) = mi

emiτi−1e
mia, with mi > 0,

for all i ∈ In. Let us consider the following biological functions and parameters:135

βi(xi) fi(a) δi Li τi γi

i = 1 1.22
1+x2

1

5e5a

e5τ1−1 0.9 0.85 1.2 0.22

i = 2 1.33
1+4x4

2

7e7a

e7τ2−1 0.96 0.8 1.3 0.33

The form given to βi [12] normalizes the values taken by the total density
xi. Simple calculations give: (2L1C1 − 1)β1(0) = 0.4448, (2L2C2 − 1)β2(0) =
0.4392. Therefore, according to Proposition 2, the positive equilibrium of sys-
tem (1) does not exist. Moreover, according to Theorem 1, the origin X0 = (0, 0)140

of system (1) is globally exponentially stable, as shown in Figure 2.

3.2. Global exponential stability under time-varying differentiation rates

Convergence to X0 means the eradication of all the immature blood cells.
This case may be suitable when the model is assumed to describe the dynamics of
unhealthy cells. Recall that one of the characteristics of leukemia is the blockade145

in the differentiation process, which becomes also a target for the drugs used in
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treatments. From a theoretical point of view, it is interesting to consider the
case where differentiation and self-renewing rates are uncertain or time varying.

In this part, we extend the result of Theorem 1 to the nominal model that
describes the immature cell dynamics under time-varying differentiation rates,
Ki(t) for all t ≥ 0, and i ∈ In, and which is given by

ẋi(t) = 2Ki−1(t)

∫ τi−1

0

gi−1(a)wi−1(xi−1(t− a))da

+ 2Li(t)

∫ τi

0

gi(a)wi(xi(t− a))da− δixi(t)− wi(xi(t)),
(17)

where Ki(t) + Li(t) = 1 and Li(t) ∈ [Limin, Limax] ⊂ (0, 1). We recall that, by
convention, K0(t) = 0, for all t ≥ 0, and we assume that Ki(·), Li(·) are of class150

C0, for all i ∈ In. Based on Theorem 1, we prove the following result:

Corollary 1. The conditions

si = δi − (2LimaxCi − 1)βi(0) > 0, ∀i ∈ In, (18)

ensure that the origin of the system (17) is globally exponentially stable.

Proof. We give some indications for the proof, which is slightly different from
the one of Theorem 1. Here we consider L1max instead of L1 in the definition
of the functional V1(x1t) introduced in (7), and, similarly, we consider L2max,155

K1max = 1 − L1min and s1, instead of L2, K1, and s1, respectively, in the
definition of the functional V2(x2t, x1t).

Example 2. Let us consider n = 2 and for all t ≥ 0, L1(t) = 1
2 (1 + 0.97 cos(25t))

and L2(t) = 1
2 (1 + 0.97 sin(15t)). Sine function sounds reasonable to model

the variation in differentiation rates since drugs are - usually - infused quasi-160

periodically. Nevertheless, many other time-varying functions may be used in-
stead of sine ones. Let us assume that:

βi(xi) fi(a) δi τi γi
i = 1 2.87

1+x2
1

ea

eτ1−1 0.973 0.8 0.9

i = 2 2.7
1+x4

2

ea

eτ2−1 0.965 0.7 0.97

Elementary calculations give: s1 = 0.0592, and, s2 = 0.0099.
According to Corollary 1, X0 = (0, 0), which is the unique equilibrium point165

of (17), is globally exponentially stable. Figure 3 illustrates the trajectories x1
and x2 for the the parameters and biological functions of Example 2.
Remark 2. At this juncture, we emphasize that Theorem 1 and Corollary 1
complement the results of [1], [3], and [5], by establishing global exponential sta-
bility instead of asymptotic stability and by extending the result to cover the case170

of time-varying differentiating and self-renewing rates. Let us briefly comment
these results in the AML case, in which we expect a blockade of differentiation,
i.e. Ki decreases in early maturity stages. Not surprisingly, the conditions (18)
suggest that therapeutic strategies to eradicate cells must be oriented towards in-
creasing the death rates γi (recall that increasing the apoptosis rate γi decreases175
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Figure 2: Trajectories of Example 1.
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Figure 3: Trajectories of Example 2.

Ci), and δi, and also towards decreasing Limax (i.e. increasing differentiation).
Although very partial results for particular cases of AML (with myelodysplastic
syndrome, MDS), and on cell cultures only, have been obtained using tyrosine
kinase inhibitors (TKIs, in particular dasatinb [11]) in stimulating differenti-
ation, the only clinically efficient case of redifferentiation therapy known until180

recently was by using all-trans retinoic acid (ATRA) and arsenic tri-oxide in
acute promyelocytic leukemia (APL). However, this therapeutic track has lately
been relaunched by establishing that inhibition of Dihydroorotate Dehydrogenase
(DHODH) is efficient in releasing cells from differentiation arrest [15]. Finally,
increasing apoptosis may be achieved classically by using cytosine arabinoside.185

3.3. Robustness analysis of the trivial steady state

In this section, we use the strict functionals Vi, introduced in Theorem 1, to
perform a robustness analysis in the case of nonvanishing perturbations εi(t) ∈
(0, εi], for all i ∈ In, t ≥ 0. Let us observe that the derivative of the functional
V1, defined in (7), along the trajectories of the perturbed system (1), satisfies,

V̇1(t) ≤ −s̃1V1(x1t)−
s1
4
x1(t) + ε1. (19)

We consider any constant θ ∈ (0, 1) and we define the family of sets:

Tiεi =

{
ϕ ∈ C

(
[−τi, 0],R+

)
, Vi(ϕ) ≤ εi

θs̃i

}
. (20)

Notice for later use that the sets Tiεi are the smallest possible for θ close to
1. Clearly, if x1t /∈ T1ε1 , then (19) gives V̇1(t) ≤ −(1 − θ)s̃V1(x1t) − s1

4 x1(t).
Therefore, the state x1t converges exponentially to the set T1ε1 . However, a re-
fined result can be provided, in the sense that we can determine smaller positive
invariant sets than the family Tiεi . For that, let us introduce the functional,

A1(x1t) = V1(x1t)− ψ†1x1(t). (21)

It is worth mentioning that the functional A1 is positive on the positive orthant
for ψ†1 = s1

8(δ1+β1(0))
< 1, where s1 is the constant defined in (4). Using the
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expression of ψ†1, we can check that the derivative of A1, along the trajectories
of the perturbed system (1), satisfies:

Ȧ1(t) ≤− s̃1V1(x1t)−
s1
8
x1(t)− 2ψ†1L1

∫ t

t−τ1
g1(t− a)w1(x1(a))da+ (1− ψ†1)ε1.

Now, if we define the family of sets:

T̃iεi =

{
ϕ ∈ C

(
[−τi, 0],R+

)
,Vi(ϕ) +

2ψ†iLi
s̃iθ

∫ 0

−τi
gi(a)wi(ϕ)da ≤ (1− ψ†i )εi

θs̃i

}
,

where 0 < ψ†i < 1, for all i ∈ In. Observe that T̃iεi ⊂ Tiεi , for all ψi > 0. Now,
notice that for all x1t /∈ T̃1ε1 , the derivative of the functional A1 satisfies,

Ȧ1(t) ≤− s̃1(1− θ)V1(x1t)−
s1
8
x1(t) ≤ −s̃1θA1(x1t)−

s1 + ψ†1θ

8
x1(t), (22)

where s̃1θ = min {s̃1(1− θ), θ/8} > 0, for all θ ∈ (0, 1). Therefore, from the
definition of the functional A1, we conclude that the state x1t converges expo-
nentially to T̃1ε1 , and the decay rate of the trajectory x1(t) is smaller than, or
equal to, s̃1θ. On the other hand, we readily check, by contradiction, that the190

sets T̃iεi are positively invariant (i.e. a trajectory in T̃iεi remains in T̃iεi for all
the future time). Arguing as in the proof of Theorem 1, we generalize this result
to the overall system. In other words, we have proved the following result:

Theorem 2. If the conditions si > 0 are satisfied, for all i ∈ In, then the states
xit of the perturbed system (1), where εi(t) ∈ (0, εi], for all t ≥ 0, converge195

exponentially to the sets T̃iεi , where 0 < ψ†i < 1, for all i ∈ In.

4. Stability analysis of the strictly positive steady state

A strictly positive equilibrium Xe reflects the surviving of all the genera-
tions of blood cells, which is the aim of a healthy hematopoiesis. When the
condition (3) is satisfied, a unique Xe exists. In this section, we answer one
important open question about the problem of finding an estimate of the basin
of attraction of Xe. Let us start by looking to the reintroduction functions, βi’s,
from the resting to the proliferating stages. Owing to some biological consider-
ations, Hill functions were proposed by Mackey in [12] to model βi. Therefore,
we consider,

βi(xi) =
βi(0)

1 + bix
ni
i

, (23)

where βi(0) > 0, bi > 0 and ni ≥ 2. This typical choice was assumed in
subsequent works ([1] and [16]). Actually, many other smoothly decreasing
functions βi, with a finite maximum βi(0) and adjustable slope and inflection200

point, can be chosen to match the biological assumptions [12].
Throughout this section, we consider the functions βi in the form (23) and

we indicate later for which other forms our results remain valid. Since we are

10



interested in the positive equilibrium Xe, we perform the change of coordinates,
x̂i = xi − xei , for i ∈ In. It follows from (1) that

˙̂xi(t) =− δi [x̂i(t) + xei ]− wi (x̂i(t) + xei )

+ 2Li

∫ t

t−τi
gi(t− a)wi (x̂i(a) + xei ) da

+ 2Ki−1

∫ t

t−τi−1

gi−1(t− a)wi−1
(
x̂i−1(a) + xei−1

)
da.

(24)

However, a better representation of (24) that eases the analysis of its origin,
can be obtained. Indeed, observe that, with an abuse of notation, wi(x̂i+xei ) =
wi(x

e
i ) + µix̂i +Ri(x̂i), where,

µi = βi(x
e
i ) + β′i(x

e
i )x

e
i , and, Ri(x̂i) =

∫ xei+x̂i

xei

[x̂i + xei − l]w
(2)
i (l)dl. (25)

Moreover, we denote βi∗ = δi + µi. It follows that (24) is equivalent to

˙̂xi(t) =− βi∗x̂i(t) + 2Liµi

∫ t

t−τi
gi(t− a)x̂i(a)da

−Ri(x̂i(t)) + 2Li

∫ t

t−τi
gi(t− a)Ri(x̂i(a))da

+ 2Ki−1µi−1

∫ t

t−τi−1

gi−1(t− a)x̂i−1(a)da

+ 2Ki−1

∫ t

t−τi−1

gi−1(t− a)Ri−1(x̂i−1(a))da.

(26)

Remark 3. Compared with Section 3, the stability analysis of the origin of (26)
is more complicated due to the shifting. Indeed, linear functionals can no longer
be used since the system (26) is not positive. A common approach to investigate
the stability properties of such a class of systems is by using quadratic functions205

or functionals, as illustrated in the sequel.

4.1. Introductory result

To get a first intuition, let us consider the subsystem (26) for i = 1. A
linear approximation at its origin is obtained by neglecting the terms where R1

is present. The following linear system is obtained:

ż1(t) =− β1∗z1(t) + 2L1µ1

∫ t

t−τ1
g1(t− a)z1(a)da. (27)

Let us consider the positive definite quadratic function

Q(a) =
1

2
a2. (28)

11



We apply the Razumikhin’s theorem (see, for instance, [7]): Pick q > 1 and
consider t ≥ 0 such that qQ(z1(t)) ≥ Q(z1(a)), ∀a ∈ (t− τ1, t) . Then the
derivative of Q along the trajectories of the system (27) satisfies:

Q̇(t) ≤ −2β1∗Q(z1(t)) + 4
√
Q(z1(t))L1|µ1|

∫ t

t−τ1
g1(t− a)

√
Q(z1(a))da

≤ −2 [β1∗ − 2
√
qL1|µ1|C1]Q(z1(t)).

(29)

We conclude from Razumikhin’s theorem that the condition β1∗−2L1|µ1|C1 > 0
is sufficient for the asymptotic stability of the origin of the system (27). This
leads us to introduce, for all i ∈ In, the constants

ςi = βi∗ − 2Li|µi|Ci = δi + µi − 2Li|µi|Ci, (30)

that will be of use later in the stability analysis of the nonlinear system, in the
analytic expression of the quadratic Lyapunov-Krasovskii functionals and in the
size of the region of attraction that we will provide.210

4.2. Estimate of the basin of attraction of the positive steady state

Contrary to Section 3, the nonpositivity of the system under study motivates
the use of the positive definite function (28), as well as the following functionals:

Ωi(ϕit) =

∫ t

t−τi

∫ t

l

gi(l − a+ τi)Q(ϕi(a))dadl, (31)

Λi(ϕit) =

∫ t

t−τi
el−t

∫ t

l

gi(l − a+ τi)Q(ϕi(a))dadl. (32)

Notice that other types of functionals may be used instead of (31) and (32).
However, for the sake of clarity, we use a weighted combination of them in order
to compensate the distributed delayed terms and estimate the exponential decay
rates. Moreover, we define for all i ∈ In, the following functionals:

Si(x̂it) =
1

2
Q(x̂i(t)) + Li|µi|Ωi(x̂it), (33)

N1(x̂1t) = S1(x̂1t) +
ς1

2C1
Λ1(x̂1t), and for all i ∈ {2, . . . , n}, (34)

Ni(x̂it, x̂i−1t) = Si(x̂it) +
ςi

2Ci
Λi(x̂it) + ψiΛi−1(x̂i−1t), (35)

with ςi the constants defined in Section 4.1, and ψi are appropriate strictly
positive constants to be selected later, for all i ∈ {2, . . . , n}.

Next, for a later use, we prove in Appendix A the following assertion:

Claim 1. There exist constants ŝi > 0, for all i ∈ In, which depend on the
biological parameters of the model and on the strictly positive equilibrium Xe,
such that, for all x̂i > −xei , where xei > 0, the following inequality holds true:

|Ri(x̂i)| ≤ ŝiQ(x̂i), where, ŝi > 0 are given in Appendix A. (36)

12



Remark 4. It is worth mentioning that the stability analysis which will be215

performed for the origin of the nonlinear system (26) is available for many other
reintroduction functions βi, as long as they satisfy the sector conditions (36).

Furthermore, in order to ease the notation, we denote

Ii(x̂it) =

∫ t

t−τi
gi(t− a)Q(x̂i(a))da. (37)

Finally, we define the constants k̃i = ςi
8ŝi
, k̂i = ςi

4CiLiŝieτi
andN i = min

{
k̃2i , k̂

2
i

}
.

Notice that for all i ∈ In, k̃i and k̂i are only dependent on the constant biological
parameters of the model. Now, we prove the following result:220

Theorem 3. Let the system (26) be such that

ςi > 0, (38)

for all i ∈ In. Then all the solutions of (26) with initial conditions ϕ̂i ∈
C([−τi, 0], (−xei ,+∞)) satisfying

Ni(ϕ̂i, ϕ̂i−1) < N i, (39)

converge exponentially to the origin.

Remark 5. Generally, Lyapunov theory provides sufficient conditions for sta-
bility. Nevertheless, due to earlier published works we can comment conditions
(38). In previous works (using frequency domain approaches), it was claimed
in [1] that the origin is locally asymptotically stable if δi + (2LiCi + 1)µi > 0225

is satisfied. However, in [16], it was shown that the previous assertion holds
true only when −δi < µi < 0. We notice that our stability conditions (38) are
equivalent to those of [16] on that interval. Next, when µi > 0, our exponen-
tial stability conditions (38) (which are provided without specifying a particular
form of fi), correspond to the conditions for local stability provided in [16] (and230

which have been slightly improved using Nyquist criterion for a typical selection
of the functions fi in [16]). It remains the case µi < −δi which is not covered
by the Lyapunov approach proposed here, and which was addressed in [16]. The
region of attraction defined in (39) is rather difficult to interpret. In fact, based
on some numerical simulations and the conjecture made in [16], we suggest that235

the region defined in (39) is conservative.

Proof. First, let us observe for later use that the derivatives of the functionals
Ωi and Λi, for all i ∈ In, along the trajectories of (26) satisfy,

Ω̇i(t) = CiQ(x̂i(t))−
∫ t

t−τi
gi(t− a)Q(x̂i(a))da, and,

Λ̇i(t) ≤− Λi(x̂it)− e−τi
∫ t

t−τi
gi(t− a)Q(x̂i(a))da+ CiQ(x̂i(t)),

13



where the last inequality is a consequence of (2). For the sake of clarity, we will
decompose now the proof of Theorem 3 in two parts: we prove the exponential
stability of solutions of the first compartment (i = 1), and then we extend the
result to any number of compartments (i ≥ 1).240

i) LKF for the first compartment: We start with the first generation of
hematopoietic stem cells. Using (36), one can prove that the derivative of the
function Q(x̂1(t)), introduced in (28), along the trajectories of (26) satisfies

Q̇(t) ≤2 [−β1∗ + L1|µ1|C1]Q(x̂1(t)) + ŝ1|x̂1(t)|Q(x̂1(t))

+ 2L1 (|µ1|+ ŝ1|x̂1(t)|) I1(x̂1t).
(40)

It follows that the derivative of the functional N1, introduced in (34), satisfies

Ṅ1(t) ≤−
[
ς1
8
Q(x̂1(t)) +

ς1
2C1

Λ1(x̂1t)

]
+

[
ŝ1
2
|x̂1(t)| − ς1

4

]
Q(x̂1(t))

− ς1
8
Q(x̂1(t)) +

[
L1ŝ1|x̂1(t)| − ς1e

−τ1

2C1

]
I1(x̂1t).

(41)

On the other hand, from the definition of N1 we observe that

N1(x̂1t) ≤
1

2
Q(x̂1(t)) +

(
ς1 + 2L1C1|µ1|eτ1

2C1

)
Λ1(x̂1t). (42)

From (41) and (42), we deduce that for all ς̃1 ∈
(

0,min
{
ς1
4 ,

ς1
ς1+2L1C1|µ1|eτ1

})
,

the derivative of the functional N1 satisfies

Ṅ1(t) ≤− ς̃1N1(x̂1t) +

[
ŝ1
2
|x̂1(t)| − ς1

4

]
Q1(x̂1(t))

+

[
L1ŝ1|x̂1(t)| − ς1e

−τ1

2C1

]
I1(x̂1t)−

ς1
8
Q(x̂1(t)).

From the definition of N1, which is given in (34), we notice that |x̂1(t)| ≤
2
√
N1(x̂1t). A direct consequence is that

Ṅ1(t) ≤− ς̃1N1(x̂1t) +
[
ŝ1
√
N1(x̂1t)−

ς1
4

]
Q1(x̂1(t))

+

[
2L1ŝ1

√
N1(x̂1t)−

ς1e
−τ1

2C1

]
I1(x̂1t)−

ς1
8
Q(x̂1(t)).

Now, we conclude that if the condition (39) is satisfied, then

Ṅ1(t) ≤− ς̃1N1(x̂1t)−
ς1
8
Q(x̂1(t)). (43)

This allows us to conclude that the origin of the subsystem (26), for i = 1, is
exponentially stable, with a decay rate smaller than ς̃1.

ii) LKF for the overall system: Here we take into account all generations
of immature blood cells. We use the inequality |x̂i(t)x̂i−1(a)| ≤ ξiQ(x̂i(t)) +
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1
ξi
Q(x̂i−1(a)), with ξi > 0 for all i > 1, and the inequality |x̂i(t)x̂i(a)| ≤

Q(x̂i(t))+Q(x̂i(a)), for all i ∈ In, and we select ψi = Ki−1|µi−1|eτi−1

ξi
+ ςie

−τiKi−1ŝi−1

2LiŝiCi
eτi−1 .

Then the derivatives of the functions Q(x̂i(t)), for all i > 1, along the trajecto-
ries of (26) satisfy

Q̇(t) ≤2 [−βi∗ + Li|µi|Ci]Q(x̂i(t)) + ŝi|x̂i(t)|Q(x̂i(t))

+ 2Li (|µi|+ ŝi|x̂i(t)|) Ii(x̂it) + 2Ki−1|µi−1|Ci−1ξiQ(x̂i(t))

+ 2Ki−1

(
ŝi−1|x̂i(t)|+

|µi−1|
ξi

)
Ii−1(x̂i−1t).

(44)

Moreover, we choose ξi = ςi
4Ki−1|µi−1|Ci−1

. It follows that

Ṅi(t) ≤− ς̃iNi(x̂i, x̂i−1) + ψiCi−1Q(x̂i−1(t))−
[
ςi
8
− 1

2
ŝi|x̂i(t)|

]
Q(x̂i(t))

− ςi
16
Q(x̂i(t)) + Liŝi

[
|x̂i(t)| −

ςie
−τi

2LiŝiCi

]
Ii(x̂it)

+Ki−1ŝi−1

[
|x̂i(t)| −

ςie
−τi

2LiŝiCi

]
Ii−1(x̂i−1t),

(45)

with ς̃i > 0. Finally, we conclude that if the conditions (39) are satisfied, then

Ṅi(t) ≤− ς̃iNi(x̂it, x̂i−1t)−
ςi
16
Q(x̂i(t)) + ψiCi−1Q(x̂i−1(t)). (46)

As we had done in [6], we can prove that the derivative of the functional
W (X̂t) =

∑n
i=1 piNi(x̂it, x̂i−1t), with an abuse of notation for N1, and where

pi = 2n−i
∏n
k=i+1

8ψkCk−1

ςk−1
, pn = 1, and X̂ = (x̂1, . . . , x̂n), satisfies,

Ẇ (t)≤−
n∑
i=1

piς̃iNi(x̂it, x̂i−1t)−
ς1
8
Q(x̂1(t))− ςn

16
Q(x̂n(t))− 1

2

n−1∑
i=1

piςi
8
Q(x̂i(t)).

Finally, we obtain Ẇ (t) ≤ −ςW (X̂t), with ς = min {ς̃1, ..., ς̃n} > 0.
To summarize, by virtue of the properties of the functionals Ni, for all i ∈ In,

and since the original system (1) is a positive system, we conclude that the set

A = {ϕi ∈ C([−τi, 0],R+) : Ni(ϕi − xei , ϕi−1 − xei−1) < N i}, (47)

is a subset of the basin of attraction of the positive steady state of system (1).

Example 3. In this numerical example, we consider the system with the fol-245

lowing biological functions and parameters for n = 3:

βi(xi) fi(a) δi τi γi Ki

i = 1 0.5
1+x2

1

10e10a

e10τ1−1 0.1356 1.109402 0.3 0.05

i = 2 1
1+x4

2

10e10a

e10τ2−1 0.1669 1.2 0.4 0.07

i = 3 3
1+x2

3

2e2a

e2τ2−1 0.3559 1.36 0.45 0.085
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From the selected parameters, it follows that

xei αi ςi ŝi N i

i = 1 0.70036 0.40422 0.08924 0.65070 2.5935× 10−4

i = 2 0.78225 0.19888 0.02329 3.00487 9.3935× 10−7

i = 3 1.0050 0.20422 0.33938 2.98491 2.02× 10−4

250

We select constant initial conditions: ϕ1 = 0.6850, ϕ2 = 0.782 and ϕ3 =
0.979. Therefore, we get, N1(ϕ1 − xe1) = 7.16 × 10−5 < N1, N2(ϕ2 − xe2, ϕ1 −
xe1) = 6.65 × 10−7 < N2, and, N3(ϕ3 − xe3, ϕ2 − xe2) = 1.94 × 10−4 < N3.
According to Theorem 3, the positive steady state (xe1, x

e
2, x

e
3) is exponentially

stable (Figure 4).255
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Figure 4: Trajectories x1, x2 and x3 for the parameters of Example 3.

4.3. Robustness analysis of the positive equilibrium point
Here we return to the perturbed system (1), that we rewrite in a form similar

to (26) by performing the change of coordinate x̂i(t) = xi(t)−xei . Based on the
functionals constructed in Theorem 3, we prove the following result:

Corollary 2. Let the system (26) be perturbed by nonvanishing additive dis-
turbances εi(t) ∈ (0, εi], εi > 0, for all t > 0, and i ∈ In. If the conditions

ςi > 0 (48)

are satisfied for all i ∈ In, then all the solutions of (26) with initial conditions
ϕi ∈ C([−τi, 0],R+) satisfying(

2εi
θς̃i

)2

≤ Ni(ϕi − xei , ϕi−1 − xei−1) < N i, (49)

with θ ∈ (0, 1), converge exponentially to the domain,

Gεi =

{
ϕi ∈ C([−τi, 0],R+), Ni(ϕi − xei , ϕi−1 − xei−1) ≤

(
2εi
θς̃i

)2
}
. (50)
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Proof. Let us prove the previous result for i = 1. Arguing as we did in the proof
of Theorem 3, one can generalize to the overall system. First, observe that the
derivative of Q(x̂1(t)) along the trajectories of the perturbed system satisfies:

Q̇(t) ≤2 [−β1∗ + L1|µ1|C1]Q(x̂1(t)) + ŝ1|x̂1(t)|Q(x̂1(t))

+ 2L1 (|µ1|+ ŝ1|x̂1(t)|) I1(x̂1t) + |x̂1(t)|εi.
(51)

Consequently, the derivative of the functional N1, introduced in (34), along the
trajectories of the perturbed system, verifies

Ṅ1(t) ≤−
[
ς1
8
Q(x̂1(t)) +

ς1
2C1

Λ1(x̂1t)

]
+

[
ŝ1
2
|x̂1(t)| − ς1

4

]
Q(x̂1(t))

− ς1
8
Q(x̂1(t)) +

[
L1ŝ1|x̂1(t)| − ς1e

−τ1

2C1

]
I1(x̂1t) + |x̂1(t)|εi.

(52)

Using (42), and the fact that |x̂1(t)| ≤ 2
√
N1(x̂1t), we obtain

Ṅ1(t) ≤− ς̃1N1(x̂1t) +
[
ŝ1
√
N1(x̂1t)−

ς1
4

]
Q1(x̂1(t))

+

[
2L1ŝ1

√
N1(x̂1t)−

ς1e
−τ1

2C1

]
I1(x̂1t)−

ς1
8
Q(x̂1(t)) + 2εi

√
N1(x̂1t),

where ς̃1 ∈
(

0,min
{
ς1
4 ,

ς1
ς1+2L1C1|µ1|eτ1

})
. Therefore, when N1(ϕ1 − xe1) < N1

is satisfied, we deduce that

Ṅ1(t) ≤− ς̃1N1(x̂1t)−
ς1
8
Q(x̂1(t)) + 2εi

√
N1(x̂1t). (53)

Now, let us consider any θ ∈ (0, 1) and observe that for all initial conditions ϕ1

satisfying N1(ϕ1 − xe1) < N1 with ϕ1 /∈ Gεi , the inequality (53) gives

Ṅ1(t) ≤ −(1− θ)ς̃1N1(x̂1t). (54)

We conclude that the states x1t satisfying (49) converge exponentially to the260

invariant set Gε1 , defined in (50), such that the decay rate of the trajectory x1(t)

is smaller than, or equal to, (1−θ)ς̃1
2 .

5. Conclusion

With the aim of constantly refining and improving the modeling and the
analysis of hematopoietic mechanisms, we proposed explicit constructions of265

suitable strict LKFs for nonlinear hematopoietic systems with distributed de-
lays. Our approach allowed us to solve some practical and technical issues,
which complement already published results on the topic. In comparison with
previous works, our results provided exponential stability with an estimate on
the decay rate of the solutions, and are derived without any extra assumption270

on the mitosis functions. Moreover, a robustness analysis was performed under
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nonvanishing perturbations (that may represent dedifferentiation flux, together
with model uncertainties), and we have also covered some practical situations
such that time-varying differentiating rates (to model the action on the block-
ade in differentiation and re-differentiation). Particular emphasis was given to275

the positive steady state that represents healthy hematopoiesis, and for which
we provided an explicit formulation of a subset of its region of attraction. Fu-
ture work will enhance the role of dedifferentiation and transdifferentiation by
considering hematopoietic models where cell plasticity is no more a marginal
phenomenon, and cannot be considered as a perturbation, but has to be fully280

modeled.

References

[1] M. Adimy, F. Crauste, A. Abdllaoui, Discrete Maturity-Structured Model of
Cells Differentiation with Applications to Acute Myelogenous Leukemia, J.
Biological Systems, No. 3, pp. 395-424, (2008).285

[2] M. Adimy, F. Crauste, Mathematical Model of Hematopoiesis Dynamics with
Growth Factor-dependent Apoptosis and Proliferation regulations, Math.
Comput. Modelling 49, No. 11-12, pp. 2128-2137, (2009).

[3] M. Adimy, F. Crauste, A. Abdllaoui, Boundedness and Lyapunov
function for a nonlinear system of hematopoietic stem cell dynamics,290

C. R. Acad. Sci. Paris, Ser. I, 348, No. 7-8, pp. 373-377, (2010).

[4] S. Cai, X. Fu, Z. Sheng, Dedifferentiation: a new approach in stem cell
research, Bioscience 57.8, pp. 655-662, (2007).

[5] W. Djema, F. Mazenc, C. Bonnet, Lyapunov Stability Analysis of a Model
Describing Hematopoiesis. Proceedings of the European Control Conference295

(ECC), Linz, Austria, pp. 2711-2716, (2015).

[6] W. Djema, F. Mazenc, C. Bonnet, Stability of Immature Cell Dynamics in
Healthy and Unhealthy Hematopoiesis. Proceedings of the American Control
Conference (ACC), Boston, USA, pp. 6121-6126, (2016).

[7] E. Fridman, Introduction to time-delay systems: analysis and control,300

Birkhauser, Systems and Control: Foundations and Applications, Springer,
(2014).

[8] E. Fridman, C. Bonnet, F. Mazenc, W. Djema, Stability of the cell dynamics
in Acute Myeloid Leukemia. Systems & Control Letters Vol. 88, pp. 91-100,
(2016).305

[9] H. Khalil, Nonlinear systems, Third Edition. Prentice Hall, Upper Saddle
River, NJ, (2002).

[10] V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applica-
tions of Functional Differential Equations, Kluwer Academic Publishers,
Dordrecht, (1999).310

18



[11] E. Lainey, et al., Tyrosine kinase inhibitors for the treatment of acute
myeloid leukemia: Delineation of anti-leukemic mechanisms of action, Bio-
chemical Pharmacology 82, pp. 1457-1466, (2011).

[12] M.C. Mackey, Unified hypothesis of the origin of aplastic anemia and peri-
odic hematopoiesis, Blood, 51: pp. 941-956, (1978).315

[13] J. M. Mahaffy, J. Bélair, M.C. Mackey, Hematopoietic Model with Moving
Boundary Condition and State-delay: Applications in Erythropoiesis, Jour-
nal of Theoretical Biology, 190. No. 2, pp. 135-146, (1998).

[14] M. Malisoff, F. Mazenc, Constructions of Strict Lyapunov Functions, Serie
: Communications and Control Engineering. Spinger-Verlag London Ltd,320

U.K., (2009).

[15] D. B. Sykes, et al. Inhibition of dihydroorotate dehydrogenase overcomes
differentiation blockade in acute myeloid leukemia, Cell, 167.1, pp. 171-186,
(2016).
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Appendix A. Proof of Claim 1

For notational convenience, we drop the subscript ”i” and we use xe instead
of xei to denote the positive equilibrium. Using the expression of β given in
(23), we observe that for all xe > 0 and z > −xe, R(z) = β(0)J(z) − µz, where

J(z) = z+xe

1+b(z+xe)n
− xe

1+bxn
e
. First, let us study the function

ρ(z) =
1

1 + b(z + xe)n
− 1

1 + bxne
=
b [xe

n − (z + xe)
n]

p(z)
,

where p(z) = [1 + b(z + xe)
n] (1 + bxne). Observe that

(z + xe)
n − xne = nxn−1e z + n

∫ z

0

∫ xe+l

xe

(n− 1)mn−2dmdl.

Consequently, ρ(z) = −nbxn−1
e

p(z) z+C(z), where, C(z) = −nb(n−1)
p(z)

∫ z

0

∫ l
0
(m+xe)

n−2dmdl.335
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Denote h = 1 + bxne and observe that, 1
p(z) = 1

h

(
ρ(z) + 1

h

)
. It follows that

ρ(z) = −nbxn−1e

(
ρ(z)
h + 1

h2

)
z + C(z).

Consequently, we get the intermediate result:

ρ(z) = −nbxn−1e

h2
z + C(z)− nbxn−1e

h
ρ(z)z. (A.1)

On the other hand, observe that

J(z) =

(
ρ(z) +

1

h

)
z + xeρ(z) = c1z + c2C(z) + c3ρ(z)z, (A.2)

where the last equality is a direct consequence of (A.1), with c1 = 1
h −

nbxn
e

h2 ,

c2 = xe and c3 =
(

1− nbxn
e

h

)
. Now, we readily check that

|C(z)| ≤ nb(n− 1)

p(z)
(|z|+ xe)

n−2 z2

2
. (A.3)

It follows that |ρ(z)| ≤ nbxn−1
e

p(z) |z|+ |C(z)|. Using (A.3), we get

|zρ(z)| ≤ nbxn−1e

p(z)
z2 +

nb(n− 1)

2p(z)
(|z|+ xe)

n−2 |z|3. (A.4)

From (A.2), we deduce that,

|J(z)− c1z| ≤
nb(n− 1)|c3|

2p(z)
(|z|+ xe)

n−2 |z|3

+

[
nb(n− 1)|c2| (|z|+ xe)

n−2

2p(z)
+

nbxn−1e |c3|
p(z)

]
z2.

Now, observe that 1
p(z) = 1

[1+b(z+xe)n]h
. Therefore, when z ≥ 0, we have

1

p(z)
=

1

[1 + b(|z|+ xe)n]h
,

and when z ≤ 0
(

i.e. z ∈ (−xe, 0]
)
, we get

1

p(z)
≤ 1

h
≤ 1 + b(2xe)

n

[1 + b(|z|+ xe)n]h
.

Consequently, for all z > −xe, we have

1

p(z)
≤ 1 + b(2xe)

n

[1 + b(|z|+ xe)n]h
.
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We deduce that

|J(z)− c1z| ≤

[(
nb(n− 1)|c3|(1 + b(2xe)

n)

2h

)
(|z|+ xe)

n−2 |z|
1 + b(|z|+ xe)n

+
nb(n− 1)|c2| (|z|+ xe)

n−2
(1 + b(2xe)

n)

2 [1 + b(|z|+ xe)n]h
+

nbxn−1e |c3| (1 + b(2xe)
n)

[1 + b(|z|+ xe)n]h

]
z2.

By distinguishing between the two cases |z| + xe ≥ 1 and |z| + xe ≤ 1, one
can prove that the following inequalities are satisfied for all z > −xe,

(|z|+ xe)
n−2 |z|

1 + b(|z|+ xe)n
≤ (|z|+ xe)

n−1

1 + b(|z|+ xe)n
≤ max

{
b, b−1

}
.

It follows that |J(z)− c1z| ≤ c4z
2, with the positive constant

c4 =
nb(n− 1)(1 + b(2xe)

n) (xe + |c3|) max
{
b, b−1

}
2h

+
nbxn−1e (1 + b(2xe)

n) |c3|
h2

.

On the other hand, we easily check that µ = β(0)c1, with µ defined in (25).
It follows that |R(z)| ≤ β(0)c4z

2. Since Q(z) = 1
2 z

2, we conclude that

|R(z)| ≤ ŝQ(z), where, ŝ = 2c4β(0).
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Control in Dormancy or Eradication of Cancer Stem
Cells: Mathematical Modeling and Stability IssuesI

Walid Djema1,∗, Catherine Bonnet2, Frédéric Mazenc2, Jean Clairambault3, Emilia
Fridman4, Pierre Hirsch5, François Delhommeau5

Abstract

Objective: Modeling and analysis of cell population dynamics enhance our under-
standing of cancer. Here we introduce and explore a new model that may apply to
many tissues.
Analyses: An age-structured model describing coexistence between mutated and or-
dinary stem cells is developed and explored. The model is transformed into a nonlin-
ear time-delay system governing the dynamics of healthy cells, coupled to a nonlinear
differential-difference system describing dynamics of unhealthy cells. Its main features
are highlighted and an advanced stability analysis of several steady states is performed,
through specific Lyapunov-like functionals for descriptor-type systems.
Results: We propose a biologically based model endowed with rich dynamics. It in-
corporates a new parameter representing immunoediting processes, including the case
where proliferation of cancer cells is locally kept under check by the immune cells. It
also considers the overproliferation of cancer stem cells, modeled as a subpopulation
of mutated cells that is constantly active in cell division. The analysis that we per-
form here reveals the conditions of existence of several steady states, including the
case of cancer dormancy, in the coupled model of interest. Our study suggests that
cancer dormancy may result from a plastic sensitivity of mutated cells to their shared
environment, different from that - fixed - of healthy cells, and this is related to an
action (or lack of action) of the immune system. Next, the stability analysis that
we perform is essentially oriented towards the determination of sufficient conditions,
depending on all the model parameters, that ensure either a regionally (i.e., locally)
stable dormancy steady state or eradication of unhealthy cells. Finally, we discuss some
biological interpretations, with regards to our findings, in light of current and emerging
therapeutics. These final insights are particularly formulated in the paradigmatic case
of hematopoiesis and acute leukemia, which is one of the best known malignancies for
which it is always hard, in presence of a clinical and histological remission, to decide
between cure and dormancy of a tumoral clone.
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Highlights (to appear before the abstract in JTB template)

• Modeling the cell cycle and population cell dynamics taking into account: coexistence

between normal and mutated stem cells, overproliferation of cancer stem cells and

sensitivity to the immune system.

• The study of existence of different steady states, including: unhealthy cells eradication5

and cancer cells dormancy (i.e. control in dormancy of abnormal cells).

• Construction of different types of suitable strict Lyapunov-like functionals for nonlinear

delay differential-difference systems.

• Deriving stability conditions of steady states in different biological situations: a par-

ticular focus on the scenario of cancer dormancy.10

• Numerical simulations, biological discussions and some therapeutic insights in the

paradigmatic/exemplary case of hematopoiesis and acute myeloid leukemia.

1. Introduction and overview of the objectives

1.1. Cancer Stem Cells (SCS): a unified hypothesis to all types of cancer15

Stem cells (SCs) are undifferentiated cells characterized by their ability to

self-renew and their multipotency, which is the ability to differentiate into more

mature and specialized cells [62], [88]. A SC that engages in the division process

undergoes successive transformations until becoming, at the end of its cell cycle,

two daughter cells. A heavy regulatory process controls committed cells before20

and during mitosis, by triggering a series of physiological events during the

cycle. Even in fast-renewing tissues (e.g. gut, bone marrow and skin), cells

are not always proliferating, but on the contrary, most of them are in a non-

proliferating state, called resting or quiescent phase, G0 [62]. Sometimes a

pathological population of cells, that initially does not necessarily belong to the25

SC subpopulation, acquires self-renewing and proliferating capabilities similar

to those of SCs ([28], [67]). These stem-like cells are very often out of control

[76] and they are capable of initiating, developing and regenerating cancers [28],

hence their designation as cancer stem cells (CSCs) [49]. Very often, CSCs are

characterized by unhealthy behaviors such as excessive proliferation and loss of30

their differentiation faculties. This is what we observe for instance in the case
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of leukemia [25]. On the other hand, it cannot be disregarded that in some

cases (as in breast cancer and leukemia [6, 26]) CSCs do not overproliferate

(cancer without disease [35], or, in situ tumor). However, even during their

non-overproliferating states, CSCs remain in general distinguishable through35

specific markers on their surface6 [76]. In medical research, the CSC hypothesis7

postulates that one subpopulation of cells holds the power of initiating and

regenerating cancer [28]. This stemness property in non-SCs has been first

observed in leukemia, then in many other types of cancer. Not surprisingly, the

study of leukemic cells became a model for many other stem-like cells [76].40

1.2. Evidences and underlying assumptions about cancer dormancy

Strong evidence about the existence of a stalled growth state, commonly

referred to as tumor dormancy, has been established many years ago when

microscopic tumors were frequently encountered during autopsy examinations

([35], [64]). The most likely explanations (see [3], and also [35] and [80]) of45

CSCs dormancy state are: (H.1) blood and nutrient supply issues that pre-

vent tumor growth, or at least delay its clinical manifestation [63], and (H.2)

vigilance of the immune system which, in some cases, suffices to stop tumor de-

velopment (see [32, 63, 80, 90, 93] and the references therein). In fact, there has

been a lengthy debate on the role of the immune system in the defense against50

cancer: a process called cancer immunosurveillance [90]. The ambiguity about

the immunosurveillance concept stems from the fact that often the immune

system favors the development of the tumor instead of trying to eliminate it.

The concept that attempts to integrate the diverse effects of the immune sys-

tem on tumor progression is known as cancer immunoediting (see the review55

articles [80] and [90]). Even if it appears as an unsystematic process, an inter-

6For instance, stems cells in acute myeloid leukemia have some interleukin-3receptor α
chain surface markers, which are not found in normal hematopoietic stems cells (see [31, 49]).

7The reference as CSC paradigm has also gained ground recently. Several subpopulations
of cells, with distinct cancer-initiating powers, form actually a tumor. One subpopulation
has an indefinite potential of self-renewing and shows stem-like status. It appears also that
stemness might be a transient cell state that is associated to epigenetic changes [17].
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est arises for cancer therapies that are immuno-oriented, bearing the name of

immunotherapy8. In a similar spirit, monoclonal antibodies, e.g. gemtuzumab-

ozogamicin, have been approved in the treatment protocols of some cancers (as

in acute myeloid leukemia [40]), even if more trials are still needed to identify60

their exact benefits [40, 78]. Other cancer therapies, sometimes assimilated to

immunotherapy, are using some immune checkpoint inhibitors (see for instance,

[15], [55] and [66]). In the last part of our work, we will be shortly adopting some

of these immuno-oriented concepts, associated with classical chemotherapy or

targeted therapies, as it is frequently adopted in practice. More generally, the65

complex link between the immune system and cancer dormancy (as it is sum-

marized in Fig. 3 of [80]) is implicitly represented in our model thanks to an

extra-parameter that we introduce, as detailed in the sequel (see Section 2.2).

1.3. Is cancer dormancy a promising therapeutic option?

In a general perspective, apart from the interpretation of tumor dormancy70

as an observed natural phenomenon in human cancers, the idea to transform

cancer into a chronic disease is in the voices of many people in the medical

world nowadays [4], [39]. Indeed, the interesting issue here is about: how can

we bring CSCs from an overproliferating activity to a dormant state? More

precisely, since cancer treatments most often consist of delivering the maximum75

tolerable doses of drugs in order to kill clinically apparent tumors, and know-

ing that an incompletely eradicated cancer frequently grows again, even more

aggressively than the initial one [28], the option of maintaining the tumor in

dormancy is more appealing than trying to eradicate it [48]. Further discussions

on the opportunities offered by cancer dormancy in therapeutics can be found80

for instance in [4], [39], [89] and the references therein.

The development of a relevant mathematical framework appears as a nec-

essary tool to apprehend tumor dormancy as a biological mechanism [51], with

8Immunotherapy aims to help the immune system destroy cancer cells. It is given after -
or at the same time as - another cancer treatment such as chemotherapy.
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the ultimate goal to apply it in therapeutic settings. However, the task of mas-

tering CSCs, i.e. bringing them into a dormant state, seems to be difficult to85

achieve. Indeed, one of the first dormancy-oriented therapeutic approaches in

the case of solid tumors has not been very fruitful. It was based on the use of

angiogenesis inhibitors9 as drugs that choke off the blood supply of the tumor,

in order to maintain it in dormancy. However, unexpected effects occurred in

practice, and in some situations, targeting the blood vessels that feed tumors90

actually accelerated the spread of cancer (see [43, 77]). Therefore, it seems that

tumor dormancy is more likely to be assigned to immuno-vigilance10 (H.2 ),

than to nutrient supply limitations (H.1 ). In light of the previously mentioned

observations, one can say that dormancy has actually generated more issues

than answers, in the process of understanding cancer. Among the open issues,95

we emphasize the following ones: when a treatment protocol is elaborated for

CSCs eradication with a given rate of success, how can we actually administer

it (or a part of it) in order to achieve dormancy? In addition, since eradica-

tion techniques may generate some surviving tumors which become even more

aggressive than the initial ones, a key question is to determine whether it is ef-100

fective to consider the same targets and drugs, as for CSCs eradication, in order

to achieve dormancy? One can already figure out the utility of mathematical

studies in such a context. Finally, we emphasize that, in the clinic of cancers

today, eradication of CSCs remains the predominant treatment approach (al-

though there is still a long way to improve the existing eradication treatment105

strategies [85]).

1.4. Objectives of the study - Particular insights into the hematopoietic system

We aim to provide a consistent theoretical framework for the modeling and

the analysis of healthy and unhealthy cell dynamics, following different medical

orientations, among which: the case where therapy aims to eradicate cancer110

9These are substances that inhibit the growth of new blood vessels [35]
10In particular, cancer dormancy results from the action of adaptive immunological mech-

anisms, through T cells, IL-12 and IFN-gamma [80].
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cells while preserving healthy ones, and the scenario that consists in maintain-

ing healthy and unhealthy cells in a controlled stable steady-state (i.e. cancer

dormancy). To that purpose, a model of coexistence between ordinary and

mutated cells is introduced and analyzed. Firstly, we investigate the stability

properties of the trivial steady state of the resulting model: this is equivalent115

to the radical case in which all the cells are eradicated. Then, we perform a

stability analysis that applies to cases of cancer dormancy and unhealthy cell

eradication (while healthy cells survive). For the biological motivations stated

in the above sections, we will focus on the study of cancer dormancy throughout

our paper.120

At this juncture, we express our keen interest in the hematopoietic system.

We define hematopoiesis as the process initiated by the hematopoietic SC pop-

ulation inside the bone marrow, that leads to the formation and continuous

replenishment of all the blood cells in the body [45]. Hematopoiesis provides a

model for studying and understanding all the mammalian stem cells and their125

niches [18], as well as all the mechanisms involved in the cell cycle, particu-

larly cell differentiation. The hematopoietic paradigm is used in biology and

medicine, as well as in the modeling and analysis of all similar processes. In

[72], the author reviewed the mathematical modeling of blood cell dynamics

and its related pathological disorders within the past five decades. It is within130

this framework that we can situate our work, as a continuity of modeling and

stability analysis of blood cell dynamics. However, as for the majority of works

discussed in [72], the models that we study can be used to cover other tissues

and mechanisms. At this point, it is worth mentioning that pioneering works

that formulated early blood cell dynamical models have been introduced for135

any type of cells [81], or borrowed from models describing other tissues, differ-

ent from blood cell dynamics (see [16] for a dorsal epidermis cell model that

inspired all the cell cycle models containing a resting phase). The interested

reader is referred to [72] for more information. Therefore, we emphasize in this

study the paradigmatic case of hematopoietic SCs, which are at the root of the140

overall hematopoietic system. Hematopoietic SCs give rise to both the myeloid

6



and lymphoid lineages of blood cells. The myeloid cells include many types of

white blood cells (monocytes, macrophages, neutrophils, eosinophils), red blood

cells (erythrocytes), and platelets (megakaryocytes). The hematopoietic process

has to be well controlled [45] in order to avoid a wide range of blood disorders11.145

Acute myeloid leukemia (AML) is one of the most deadly blood malignancies.

It affects the myeloid lineage and it is characterized by an overproliferation of

abnormal immature white blood cells (blasts) of the myeloid lineage. Currently,

AML treatment still relies on heavy chemotherapy with a high toxicity level

and a low rate of success [25]. In fact, the only certain AML cure being not150

the result of chemotherapy, but of total bone marrow transplant that induces

nearly 10 − 20% of mortality during the manipulation and due to severe reac-

tion, GVH, of the graft versus the host. A better understanding of the behavior

of CSCs (called leukemic cells in AML) should allow us to propose some selec-

tive combined targeted therapies that lead, theoretically, to cancer dormancy.155

In particular, our ambition is to provide a theoretical framework, taking into

account observations made by hematologists, and allowing for the suggestion

of insights into cancer treatments. It is in this light that we proposed in [23]

a model of cohabitation between ordinary and mutated cells in the case of the

hematopoietic system. The latter model follows recent observations (made in160

[44] and in many other works) that associate the emergence of leukemic cells

with an accumulation of several mutations, most often occurring in a standard

chronological order [44], in the SC compartment. Thus, we have mathematically

analyzed in [23] and [24] two categories of heterogeneous cells as illustrated in

Figure 1 below, where the addition of mutations (on TET2, NPM1, FLT3) that165

we have considered had been established in [44]. We pursue in this work an

analysis that provides a theoretical framework following different medical ori-

entations, among which: (i) the case where therapy aims to eradicate cancer

cells while preserving healthy cells, (ii) a less demanding, more realistic, sce-

11In particular, periodic diseases, such as cyclic neutropenia and some cases of chronic
acute leukemia (see [13], [19], [58], [73], and the references therein), but also overproliferating
malignant hemopathies, such as acute myeloid leukemia ([2], [23], [65]).
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nario that consists in maintaining healthy and unhealthy cells in a controlled170

stable steady-state (cancer dormancy). Thus, our work extends the one that

we proposed in [23], [24] and in a series of works: [1], [8], [9], (but see also [2],

[21], [33], [38], [60], [65], [73], [83] and [84]). It is worth mentioning that the

model in [9] can neither model dormancy nor the abnormal overproliferation

(e.g. invasion of the bone marrow by blasts). The latter point is improved by175

adopting a different form of fast self-renewing process, which has been recently

introduced in [1], and where a subpopulation of cells is considered to be always

active in proliferation [1]. In fact, cancer dormancy has not been considered in

all the previously mentioned works. This is indeed a new area in cancer therapy

(see [4], [28], [48], [89]) that we want to highlight here (but see also [51] for a180

different approach of modeling and analysis of cancer dormancy).

1.5. Organization of the work

In light of the above mentioned remarks, the coupled model (between healthy

and mutated cells as in Figure 1 below) of interest is presented in Section 2.

Next, some features of the resulting coupled differential-difference model, to-185

gether with the conditions of existence of our favourable steady states (reflecting

dormancy and CSCs eradication), are discussed in Section 3. Then, in Section

4, the stability analysis of the case of all-cell extinction, via a construction of

a linear Lyapunov-like functional, is performed (here we provide conditions for

global exponential stability of the trivial steady state of the coupled model).190

Then, afterwards, we address in Section 5 the stability analysis, in the time-

domain framework, of the cases describing cancer dormancy, and, unhealthy

cells eradication (while healthy cells survive). The latter study goes through

quadratic Lyapunov-like constructions (i.e. suitable degenerate functionals for

the class of differential-difference systems). In fact, we are going to use two195

slightly different constructions: the first one is more general and relies on Lin-

ear Matrix Inequality (LMI) conditions derived via the descriptor method [37],

applied to the linear approximation of the model around its nontrivial steady

state of interest. This approach aims to provide a theoretical (sufficient) sta-
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bility criterion, in the LMI form, to establish whether the steady state of a200

specific biological system is locally stable. The latter technique is followed by a

second Lyapunov-type construction that allows us to determine explicit decay

conditions (not in the LMI form) as well as an estimate of the decay rate of

solutions and an approximation of the basin of attraction of the studied steady

state. These sufficient stability conditions may be more restrictive than the LMI205

ones, however, they have the advantage of being easier to handle and, therefore,

make it possible to interpret them biologically, from medical and therapeutic

standpoints. Finally, numerical illustrations are provided and some concluding

discussions, including biological interpretations of the findings, are outlined in

Section 6.210

	
	

Figure 1: Schematic representation of the coupled model of interest, involving a healthy
SCs compartment (on the left) and an unhealthy compartment (on the right). For the sake
of simplicity, we assume that unhealthy cells are those presenting mutations that lead to
cancer. Indeed, we consider that abnormal stem cells (Category B) have for instance a first
mutation in some genes encoding enzymes in epigenetics (e.g. on TET2, DNMT3A [20, 71]),
that increases the self-renewing activity of the affected cells. A more serious pathological
situation arises when a second mutation, affecting this time the pathways regulating the
differentiation process such as NPM1 or transcription factors, appears on some of the cells.
The superposition of these two events yields a blockade in differentiation. Finally, a subsequent
mutation impairing proliferation control (e.g. FLT3-ITD) appears in a subpopulation of cells
that have already accumulated one or more of the previously mentioned mutations. The
latter event activates an uncontrolled overproliferation of a subpopulation of cells (CSCs) and
thereby causes AML [44]. Throughout this work, with a kind of abuse of notation, we use
equivalently the designations: unhealthy cells, mutated cells, and CSCs. Similarly, healthy
cells (Category A), or ordinary cells, represented on the left, are those which do not have any
abnormal mutation, or those presenting some abnormalities which are not related to cancer.
The definitions of the biological parameters (δ, δ̃, γ, γ̃,...) are provided in Section 2.
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2. A new general mathematical model involving coexistence between

healthy and cancer stem cells

Our objective is to introduce a model more general than the existing ones,

with regard to the recent biological features of interest, that are: cancer dor-

mancy [26, 28], control and eradication of CSCs [48]. In particular, the compart-215

ment of unhealthy cells is hierarchized according to the severity of the mutations:

cells that accumulate mutations up to that of FLT3 duplication (see Figure 1)

are constantly active in proliferation (as in [1]). Our configuration allows us to

reproduce and interpret the case of cancer dormancy, with the ultimate goal of

providing theoretical stability conditions, along with therapeutic insights, that220

lead to stable dormant CSCs.

2.1. A multi-compartmental general model for healthy and unhealthy cells

We focus on the model illustrated in Figure 1, where CSCs are characterized

by an ability to over-proliferate represented by the parameter K̃ (in days−1),

as considered in [1], and previously envisaged in [9] in a different configuration.225

More precisely, we notice that a subpopulation of unhealthy cells is in a perma-

nent dividing state, namely the portion corresponding to 2K̃, where, 0 < K̃ < 1

(as in [1] for a non-coupled model), which is different from the healthy SCs

behavior (Figure 1, on the left), where daughter cells, that arise from division of

healthy mother cells, leave the proliferating compartment and join necessarily230

the resting one. Healthy resting stem cells can stay in G0 until their death,

differentiate, or start a new proliferating cycle by being transferred through

the reintroduction function β to there proliferating compartment. Indeed, we

mention that as many other works (see [2, 57, 73], among others), we are con-

sidering a compartmental model in which each cell can be in a resting phase or235

in a proliferating one. Finally, we mention that the coupled models studied in

[9, 23] do not admit a stable steady state that describes cancer dormancy, and

this is an issue that we overcome here by considering a more general manner of

coupling healthy and unhealthy SCs as discussed in the sequel.
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Next, we denote by δ (resp. δ̃) the rate, expressed in days−1, of resting240

cells, which is lost either by differentiation or natural cell death for healthy

SCs (resp. CSCs). A resting cell may start a cell cycle by entering in the

proliferating phase during which each proliferating SC (resp. CSC) may die by

apoptosis at a rate, expressed in days−1, γ (resp. γ̃), or complete its mitosis

and become two daughter cells at the end of the proliferating phase. We denote245

τ (resp. τ̃) the average time (in days) taken to complete mitosis in the healthy

(resp. unhealthy) proliferating compartment. For proliferation, the mechanisms

regulating the entry into the cell cycle - at the cellular level - rely on some

regulatory molecules that can play the role of growth factors (by stimulating the

entry into proliferation of resting healthy and unhealthy cells), or, they can play250

the role of mitotic inhibitor ligands (meaning that mitosis proceeds normally if

inhibitors are not combined with cell receptors, while it is stalled when they bind

them). Consequently, we consider in our model that the transfer from the resting

to the proliferating states is controlled by some reintroduction functions (as in

[57, 73] and the majority of earlier works). More precisely, we let β (resp. β̃) be255

the reintroduction function from the healthy (resp. unhealthy) resting phase to

the healthy (resp. unhealthy) proliferating phase. In addition, since healthy and

unhealthy cells share the same environment (called niches [18] in hematopoiesis),

we consider that each of the two functions β and β̃ depends simultaneously

on both the total density of resting healthy cells, x(t) =
∫∞

0
r(t, a)da, and260

the total density of unhealthy resting cells, x̃(t) =
∫∞

0
r̃(t, a)da, where r(t, a)

and r̃(t, a) are, respectively, the densities of resting healthy cells and resting

unhealthy cells, of age a ≥ 0, at time t ≥ 0 [23]. This modeling approach reflects

cohabitation between healthy and unhealthy cells, by considering that the entry

into proliferation of healthy cells (resp. unhealthy cells) is also dependent on265

the total density of unhealthy cells (resp. healthy cells), the dynamics of the

left and the right subpopulations in Figure 1 becoming thus strongly coupled.

Thus, the choice of the arguments (i.e. coupling forms) given to the functions β

and β̃ is crucial, since these arguments quantify the regulating mechanisms that

affect healthy and unhealthy cells (see [57] for the case of non-coupled models).270
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2.2. The coupling form between ordinary and mutated cells

The functions β and β̃ represent the physiological inhibitory hormonal feed-

back by Granulocyte Colony Stimulating Factors (G-CSF) that is valid in the

case of healthy as in the case of cancer cells. However, in the latter unhealthy

situation, the sensitivity of the unhealthy cell population to this feedback may275

strongly vary. Now, the remaining issue regarding the functions β and β̃ is to

select the coupling function between the total density of healthy resting cells x

and the total density of mutated resting cells x̃ (i.e., to specify how β and β̃

actually depend on x and x̃). It appears that the simplest choice is to consider

that both β and β̃ depend on the sum x + x̃, as previously considered in [9]280

and [23]. The latter scheme expresses a kind of absence of dominance between

the populations x and x̃, since they show equal influence on β and β̃. However,

differences actually exist between x and x̃ in their shared host - in particular

immune - environment, mainly due to the mutations acquired by abnormal cells

[46] and the reaction of the immune system. Changes that occur in mutated cell285

behavior may enhance the growth of cancer and result in cachexia and death

[12] (see also [27, 70] for biological observations and modeling of the interaction

between cancer and host environment). In our modeling approach, considering

a coupling in the form x + x̃ means equal sensitivity of ordinary and mutated

resting populations regarding the diverse proliferation regulation mechanisms,290

that act on the reintroduction of resting cells into proliferation. For example,

due to epigenetic mutations, unhealthy cells may become less sensitive than

healthy ones to the regulatory molecules secreted by the body and avoid the

immune system (i.e. an immunosuppressive effect); on the other hand, healthy

cells are in turn insensitive to the action of the immune system and less sen-295

sitive to drugs, since these drugs are designed to target unhealthy cells. In

summary, healthy and unhealthy cells may react differently to their shared host

environment (see Figure 2 below), which may result in the dominance of one

subpopulation (healthy or unhealthy), or possibly in cancer dormancy [80]. Our

first objective is to achieve a model that reproduces all these situations. Thus,300

we aim here to extend the modeling aspects by considering a more general form
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of coupling functions, so that some immunological effects can be represented.

For that purpose, we consider that the argument of β is x + x̃, while β̃ de-

pends at the same time on a weighted combination x + α̃x̃, where α̃ is some

positive constant. We will show later in Section 3 that actually dormancy may305

be found mostly when α̃ 6= 1. In an illustrative manner, Figure 2 provides a

representation of the cases:

l 0 ≤ α̃ ≤ 1: even if ordinary and mutated cells are sharing the same en-

vironment, the mutated ones are less sensitive to the regulatory system present

in the host environment, that may be identified as effects of the immune sys-310

tem on mutated cell proliferation. Consequently, unhealthy cells may escape

a part of the regulatory system, including the immune system. This appears

to be in line with medical practice, since the unhealthy behavior is mainly due

to genetic/epigenetic mutations that make cells partially unresponsive to the

regulating system. Consequently, the case 0 ≤ α̃ ≤ 1 suits well the untreated315

unhealthy behavior, in which cells avoid immune attacks and tend to get out of

control, possibly leading to outgrowth of CSCs [80, 90, 95].

l α̃ > 1: this case can describe an environment where unhealthy cells are

more affected by the regulatory molecules than the healthy ones. This may

be partly due to the effector response of the immune system (cancer immuno-320

surveillance [90]), which may explain the dormancy phenomenon as a result of

an efficient immune action that contains cancer growth [93]. In other words, the

case α̃ > 1 stands for a situation where proliferation of unhealthy cells may be

locally kept under check by the immune system. This is the role of the innate

and adaptive immunity which may lead to extrinsic tumor suppression in some325

rare cases, or to the adaptive immunity (T cells, IL-12, IFN-gamma) that at

least may maintain cancer dormancy for long time [80].

Remark 1. A concept of dominance between healthy and mutated cells results

from α̃, that allows for an implicit representation of the immunologic mecha-

nisms. In fact, what really makes the difference between cells is their respective330

sensitivity to the immune environment. The natural feedback represented by the
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functions β and β̃ depending on their arguments x and x̃, is in the case of can-

cer cells tuned by a sensititvity parameter α̃ that may be seen as the faculty of

unhealthy cells to over-express (α̃ > 1) or hide (α̃ < 1) their surface antigens.

NK	
T	Cell	

Weak	a+ack	

Low	tumor	an5gen	expression	

NK	
T	Cell	

Effec5ve	a+ack	

gl	

gl	

globulins	

Natural	killers	

High	tumor	an5gen	expression	

Prolifera5on	inhibitors:		
Granulocyte		S5mula5ng	Factors	

(GSF)	

globulins	

Natural	killers	

immunotherapy	

IFN-g	

IL-12	

IFN-g	

IL-12	

Prolifera5on	inhibitors:		
Granulocyte		S5mula5ng	Factors	

(GSF)	

Figure 2: Cartoon illustration of healthy and unhealthy cells in their shared environment.
Ordinary SCs with normal behavior are in green, while mutated ones that go through quies-
cence to re-start a cell cycle (i.e. not the ones having the FLT3 mutation that makes them
constantly active into proliferation) are in blue. The regulation of cell proliferation may in-
clude different mechanisms: release of growth factors and mitotic regulatory molecules, T
cells, natural killers, globulins, IFN-g (IFN-gamma) and IL-12 (interleukin 12). Epigenetic
mutations may also play a role on the way cells react to the whole regulating system. The
case 0 ≤ α̃ ≤ 1 fits well a situation in which unhealthy cells are less sensitive to proliferation
regulation than healthy ones. In this case, abnormal cells may hide their tumor antigens
(an immunosuppressive state), which can be also due to the tumor variant cells that become
no longer recognized and attacked by the adaptive immunity [80] and grow into insensitive
cells to the entire immune effector mechanism. This condition is not enough in itself for the
development of cancer, but it certainly favors it and may lead to the escape phase. On the
other hand, the case α̃ > 1 represents a situation in which proliferation of unhealthy cells is
more controlled than the one of healthy cells. Reasons for this include an effective action car-
ried out by the innate and adaptive immunity (sometimes this action suffices for total tumor
eradication, see e.g. [90] and Fig. 3 in [80]), but also the use of immunotherapy that acts in
two ways: boosting the immune system to eliminate CSCs, and/or, enhancing the immune
response by providing additional combative components such as reenabling exhausted T cells.

In addition, it can also be argued that α̃ > 1 relies on the use of drugs

(immunotherapy, chemotherapy, etc) that specifically target unhealthy cells.

Indeed, we recall that immunotherapy mainly enhances the immune response,

and that recent chemotherapy or targeted therapies are increasingly more accu-

rate due to the overexpression of cancer receptors (which allow them to target
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unhealthy cells while the majority of healthy cells are spared). Finally, we men-

tion that the introduction of the above considerations related to the coupling

functions between x and x̃ will make the dynamics of the resulting model richer

than earlier models, as discussed in the next sections (Section 3). To the authors’

knowledge, no equivalent model exists in the literature. Next, as conventionally

considered, we assume that β̃ and β are nonlinear continuous decreasing func-

tions, and, lim`→∞ β̃(`) = lim`→∞ β(`) = 0. As in [57], [73], and all subsequent

works for non-coupled models, we consider the typical Hill forms:

β̃(`) =
β̃(0)

1 + b̃`ñ
, β(`) =

β(0)

1 + b`n
(1)

where b̃, b, β̃(0) and β(0) are strictly positive real numbers and, ñ ≥ 2 and n ≥ 2.

In fact, the Hill functions in (1), that belong to the family of functions with

negative Schwarzian derivatives (see [5], Chap. 3) are commonly encountered

in many real-life problems. Classical arguments on cooperativity of enzyme

inhibition kinetics (see Chap. 1 in [52], and [75]), allow to determine the Hill-

type expressions (1). The cooperative effect results in general from the fact that

the binding of one regulatory molecule on one extracellular (surface) receptor

of one cell will affect the binding of subsequent regulatory molecules on other

receptors of the same cell. Due to the above considerations on the different

sensitivities between healthy and unhealthy cells in the niches (1 and α̃ 6= 1,

respectively), we can readily deduce that for given total densities x and x̃, the

associated reintroduction functions β and β̃ actually operate according to:

β̃ (x+ α̃x̃) =
β̃(0)

1 + b̃ (x+ α̃x̃)
ñ
, β (x+ x̃) =

β(0)

1 + b (x+ x̃)
n . (2)

2.3. Equations describing the dynamics of coupled cell populations335

After the description of the particular case of the reintroduction functions β

and β̃ according to the variation of the cell densities x and x̃ (as in Figure 3),

we now focus on the dynamical equations describing the populations of cells.
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Figure 3: Illustrative example of variations of a typical β̃-surface with respect to x̃ and x, for
different values of α̃ (i.e. in the three possible situations: α̃ > 1, α̃ = 1, and α̃ < 1).

Similarly to x and x̃, we denote by y and ỹ, respectively, the total densities

of proliferating healthy and unhealthy cells: y(t) =
∫ τ

0
p(t, a)da, and, ỹ(t) =∫ τ̃

0
p̃(t, a)da. The age-structured PDEs describing the coupled model in Figure

1, are given for all t > 0 by:

∂tr̃(t, a) + ∂ar̃(t, a) = −
[
δ̃ + β̃ (x, x̃, α̃, t)

]
r̃(t, a), a > 0,

∂tp̃(t, a) + ∂ap̃(t, a) = −γ̃p̃(t, a), 0 < a < τ̃ ,

∂tr(t, a) + ∂ar(t, a) = − [δ + β (x, x̃, t)] r(t, a), a > 0,

∂tp(t, a) + ∂ap(t, a) = −γp(t, a), 0 < a < τ.

(3)

In McKendrick-type models ([33], [56], [91]), we observe that only the death

rates (δ, δ̃, γ and γ̃), and the removal terms (β and β̃, since the reintroduction

functions are considered as cell loss from resting cells) appear in the PDE system

(3). On the other hand, the new births, which are the renewal conditions at

the age a = 0, for resting and proliferating cells, are introduced through the

following boundary conditions:

r̃(t, 0) = 2(1− K̃)p̃(t, τ̃),

p̃(t, 0) = β̃ (x, x̃, α̃, t) x̃(t) + 2K̃p̃(t, τ̃)
∆
= ũ(t),

r(t, 0) = 2p(t, τ),

p(t, 0) = β (x, x̃, t)x(t),

(4)

for all t > 0, and where ũ(t) represents the density of new proliferating un-

healthy cells at time t > 0 [1]. Finally, the initial age-distributions, respectively,
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r̃(0, a) = r̃0(a), for a > 0, p̃(0, a) = p̃0(a), for 0 < a < τ̃ , r(0, a) = r0(a), for

a > 0, and p(0, a) = p0(a), for 0 < a < τ̃ , are assumed to be L1-functions.

Now, inspired by an illustrative approach in [87], we give a biological expla-

nation of the method of characteristics in our context. To avoid redundancy, we

focus only on the unhealthy compartment. Let us define p∗(a, s) as the density

of unhealthy proliferating cells, of age a, that entered to the unhealthy prolifer-

ating phase at time s. This coincides with the density of unhealthy proliferating

cells at time t = a+ s ([87]). In other words, p∗(a, s) = p̃(a+ s, a). Therefore,

∂p∗(a, s)

∂a
=
∂p̃(t, a)

∂t

∣∣∣
t=a+s

+
∂p̃(t, a)

∂a

∣∣∣
t=a+s

= −γ̃p∗(a, s).

It follows that p∗(a, s) = p∗(0, s)e−γ̃a, where p∗(0, s) = p̃(s, 0).340

Now, let us recover p̃ from p∗ ([87]). Noticing that p̃(t, a) = p∗(a, t− a), for

t > a, we obtain, p̃(t, a) = e−γ̃ap̃(t− a, 0), for all t > a.

Next, we define pv(t, s) = p̃(t, t+ s), which can be interpreted as the density

of unhealthy proliferating cells that are in the proliferating phase at time t, and

have been in the proliferating phase at time 0, with an age a = s at t = 0.345

Arguing as for p∗ ([87]), we find that ∂pv(t,s)
∂t = −γ̃pv(t, s).

Then, pv(t, s) = pv(0, s)e−γ̃t, where pv(0, s) = p̃(0, s) = p̃0(s). Recovering p̃

from pv, for a ≥ t, gives us p̃(t, a) = e−γ̃tp̃0(a− t), for all a ≥ t.

We deduce that we have recovered the well-known solution ([87]):

p̃(t, a) =


e−γ̃tp̃0(a− t), 0 ≤ t ≤ a

e−γ̃ap̃(t− a, 0), t > a.
(5)

Consequently, the first equation in (4) is then equivalent to

r̃(t, 0) =


2(1− K̃)e−γ̃tp̃0(τ̃ − t), 0 ≤ t ≤ τ̃ ,

2(1− K̃)e−γ̃τ̃ p̃(t− τ̃ , 0), t > τ̃ .
(6)

From biological considerations we set, lima→∞ r̃(t, a) = lima→∞ r(t, a) = 0, for

all fixed value of t ≥ 0. Then, using (8), and by integrating the first equation in

(3) with respect to a between 0 and +∞, we determine that the long time behav-

ior ([11]) of x̃ is given by ˙̃x(t) = −(δ̃+ β̃ (x, x̃, α̃, t))x̃(t) + 2(1− K̃)e−γ̃τ̃ ũ(t− τ̃),

where we recall that the density ũ(t) is the one defined in (4), and represents
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for all t > 0 the density of new unhealthy proliferating cells. Similarly, by inte-

grating the second equation in (3) over the variable a, between 0 and τ̃ , and using

p̃(t, τ̃) = ũ(t−τ̃), we get ˙̃y(t) = −γ̃ỹ(t) + β̃(x, x̃, α̃, t)x̃(t)− (1− 2K̃)e−γ̃τ̃ ũ(t− τ̃).

Similarly, we can check that for the healthy compartment, we obtain for all t > 0:

p(t, a) =


e−γtp0(a− t), 0 ≤ t ≤ a

e−γap(t− a, 0), t > a.
(7)

It follows that the third equation in (4) is then equivalent to:

r(t, 0) =


2e−γtp0(τ − t), 0 ≤ t ≤ τ,

2e−γτp(t− τ, 0), t > τ,
(8)

where p(t− τ, 0) is deduced from the fourth equation in (4). Thus, using similar

arguments as for the unhealthy compartment, we deduce the following overall

system for all t > 0,

˙̃x(t) = −
[
δ̃ + β̃ (x, x̃, α̃, t)

]
x̃(t) + 2(1− K̃)e−γ̃τ̃ ũ(t− τ̃),

˙̃y(t) = −γ̃ỹ(t) + β̃ (x, x̃, α̃, t) x̃(t)− (1− 2K̃)e−γ̃τ̃ ũ(t− τ̃),

ũ(t) = β̃ (x, x̃, α̃, t) x̃(t) + 2K̃e−γ̃τ̃ ũ(t− τ̃),

ẋ(t) = − [δ + β (x, x̃, t)]x(t) + 2e−γτβ (x, x̃, t− τ)x(t− τ),

ẏ(t) = −γy(t) + β (x, x̃, t)x(t)− e−γτβ (x, x̃, t− τ)x(t− τ).

(9)

We notice that the dynamics of x, x̃ and ũ do not depend on y and ỹ. This

(triangular) system structure leads us to study first:
˙̃x(t) = −

[
δ̃ + β̃ (x(t) + α̃x̃(t))

]
x̃(t) + 2(1− K̃)e−γ̃τ̃ ũ(t− τ̃),

ũ(t) = β̃ (x(t) + α̃x̃(t)) x̃(t) + 2K̃e−γ̃τ̃ ũ(t− τ̃),

ẋ(t) = − [δ + β (x(t) + x̃(t))]x(t) + 2e−γτβ (x(t− τ) + x̃(t− τ))x(t− τ).

(10)

We can prove that a unique piecewise continuous solution, (x̃(t), ũ(t), x(t)),

exists for all t ≥ 0, when system (10) is associated with appropriate initial350

conditions (ϕx̃, ϕũ, ϕx), where, ϕx̃ ∈ C ([−τ, 0],R), ϕx ∈ C ([−τ, 0],R), and,

ϕũ ∈ C ([−τ̃ , 0],R). Moreover, we can show that the system (10) is positive,

since K̃ ∈ (0, 1). Throughout this work, only positive solutions of (10) are

considered.
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3. Notable features of the coupled model355

In this section, we point out some properties of the model (10) that highlight

its rich dynamics, according to the following possibly existing cases12:

Point of interest of x̃ 0 x̃e 0 x̃e +∞
Point of interest of ũ 0 ũe 0 ũe +∞
Point of interest of x 0 0 xe xe *

q Cell extinction: clearly, (0, 0, 0), is an equilibrium point of model (10).

Biologically, convergence to zero is synonymous of the extinction of all the cells

(both healthy and unhealthy populations). From a therapeutic standpoint, we360

said that we aim to address theoretical studies for the case of unhealthy cells

eradication (while ensuring that healthy cells survive), and also for a dormancy

steady state (where all the cells are in a stable steady state). In both situa-

tions we do not want that healthy cells vanish. However, chemotherapy always

affects - to a certain extent - healthy cells. But side effects of recent chemother-365

apy treatments are fewer than those of the drugs used in the past, since novel

molecules (targeted therapies) are designed to target overexpressed receptors

corresponding to mutated cells (i.e. drugs are more accurate since they attack

cells with specific extracellular receptors expressed only on mutated cells). In

addition, medications are mainly acting on cells during their phase of prolifera-370

tion, while it appears that most of the healthy cells are in quiescence. Therefore,

we consider that only a radical therapy will lead to total cell eradication, and

this is a situation that we want to avoid. Nevertheless, the theoretical con-

ditions, depending on the biological functions and parameter involved in our

model, that cause total cell eradication are discussed in Section 4.375

q Escape from dormancy in diseased cells: one of the main concerns

related to dormancy is to explain how escape from tumor dormancy can emerge

(see [51] and the non-coupled model in [1] that admits unbounded solutions).

12Here we are considering that x̃e > 0, ũe > 0 and xe > 0. We can notice that x̃e = 0
implies that ũe = 0, and vice versa.
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Similarly to [1], we notice in the coupled model (10) that the CSC-compartment

may have unbounded solutions that reproduce the unlimited cell proliferation in380

cancer. Indeed, from the second equation in (10) it is obvious that 2K̃e−γ̃τ̃ > 1,

implies that, limt→+∞ ũ(t) = +∞. It follows from the first equation in (10)

that limt→+∞ x̃(t) = +∞. This situation may reflect the escape from tumor

dormancy, or the invasion of the bone marrow by the blasts as in AML.

q Existence of the desired steady states D and E: let us start from

the general case in which the point (x̃e, ũe, xe) is a nonnegative steady state of

(10). Therefore, it follows that this equilibrium point satisfies:

[
δ̃ + β̃(xe + α̃x̃e)

]
x̃e = 2(1− K̃)e−γ̃τ̃ ũe,

β̃(xe + α̃x̃e)x̃e =
(

1− 2K̃e−γ̃τ̃
)
ũe,

[δ − (2e−γτ − 1)β(xe + x̃e)]xe = 0,

(11)

where we exclude the previously discussed case of unbounded solutions by as-385

suming that: 2K̃e−γ̃τ̃ < 1. Indeed, our main objective here is to determine

necessary and sufficient conditions for the existence of D = (x̃e, ũe, xe), where

xe > 0, x̃e > 0 and ũe > 0, and for the existence of E = (0, 0, xe), where xe > 0.

First, since β is continuous and decreasing from β(0) to zero, we deduce

from the third equation in (11) that,

δ <
[
2e−γτ − 1

]
β(0), (12)

is a necessary and sufficient condition for the existence of xe and x̃e such that,

xe + x̃e > 0, and, δ − (2e−γτ − 1)β(xe + x̃e) = 0. In fact, the inequality (12) is390

a necessary and sufficient condition for the existence of E (but not D).

Next, from the second equation in (11), we obtain that ũe = β̃(xe+α̃x̃e)x̃e
1−2K̃e−γ̃τ̃

.

By substituting ũe in the first equation of (11), we get:

[
δ̃ − 2e−γ̃τ̃ − 1

1− 2K̃e−γ̃τ̃
β̃(xe + α̃x̃e)

]
x̃e = 0. (13)

20



The fact that β̃ is continuous and decreasing implies that the condition,

δ̃ <

[
2e−γ̃τ̃ − 1

1− 2K̃e−γ̃τ̃

]
β̃(0), (14)

is necessary and sufficient for the existence of xe and x̃e, such that, xe+α̃x̃e > 0,

and, δ̃ − 2e−γ̃τ̃−1
1−2K̃e−γ̃τ̃

β̃(xe + α̃x̃e) = 0. Obviously, we notice that, 2K̃e−γ̃τ̃ < 1 <

2e−γ̃τ̃ . In fact, the condition (14) is a necessary and sufficient condition for the395

existence of (x̃e, ũe, 0), where x̃e > 0 and ũe > 0.

It is worth mentioning that, if the condition (12) is satisfied (i.e. the neces-

sary and sufficient condition for the existence of E), together with the condition

δ̃ >

[
2e−γ̃τ̃ − 1

1− 2K̃e−γ̃τ̃

]
β̃(0), (15)

then (0, 0, 0) and E are the unique existing steady states of the studied model.

Let us now focus on the case where both xe and x̃e are simultaneously strictly

positive (and then ũe is strictly positive). In the latter situation, we get,

 xe + α̃x̃e = β̃−1 (µ̃) ,

xe + x̃e = β−1 (µ) ,
(16)

where, µ = δ
2e−γτ−1 , and, µ̃ =

δ̃(1−2K̃e−γ̃τ̃)
2e−γ̃τ̃−1 . Consequently, we get,


xe = 1

α̃−1

[
α̃β−1 (µ)− β̃−1 (µ̃)

]
,

x̃e = 1
α̃−1

[
β̃−1 (µ̃)− β−1 (µ)

]
,

ũe = δ̃
2e−γ̃τ̃−1 x̃e.

(17)

Now, we distinguish between the following two situations:

The case α̃ = 1: Here we notice that,

 xe + x̃e = β̃−1 (µ̃) = β−1 (µ) ,

ũe = δ̃
2e−γ̃τ̃−1 x̃e,

(18)
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which is either an impossible case if the biological parameters are such that

β̃−1 (µ̃) 6= β−1 (µ), or, when β̃−1 (µ̃) = β−1 (µ), it corresponds to a continuum

equilibrium point (the infinite possible values of xe and x̃e that satisfy the first

equation in (18)). We want to avoid the latter continuum equilibrium points400

since that case has no concrete biological signification.

The case α̃ > 1 or 0 < α̃ < 1: First, we focus on the case 0 < α̃ < 1. We recall

from earlier discussion that, biologically, 0 < α̃ < 1 means that CSCs are less

sensitive than ordinary cells to their shared environment composed by regulatory

mitotic molecules (due to epigenetic mutations for instance, unhealthy cells no405

longer respond to inhibitory signals and continue to proliferate). More generally,

α̃ < 1 plays the role of a mitigating factor of the effect of regulatory molecules

that attenuate the entrance frequency into proliferation. Now, from (17), we

deduce that a sufficient condition for the existence of D when α̃ < 1, is given

by: α̃β−1 (µ) < β̃−1 (µ̃) < β−1 (µ) .410

On the other hand, we observe that when α̃ > 1, then, from (17), we deduce

that a sufficient condition for the existence of D is given by: β−1(µ) < β̃−1(µ̃) <

α̃β−1(µ). We summarize the overall discussion in the following result:

Proposition 1. (i) For all α̃ > 0, if the conditions

δ̃ >

[
2e−γ̃τ̃ − 1

1− 2K̃e−γ̃τ̃

]
β̃(0), and, δ >

[
2e−γτ − 1

]
β(0), (19)

are satisfied, then (0, 0, 0) is the unique equilibrium point of the system (10).

Note that in fact (0, 0, 0) is always a steady state of the system (10).415

(ii) For all α̃ > 0, the condition

δ <
[
2e−γτ − 1

]
β(0), (20)

is a necessary and sufficient conditions for the existence of the steady state,

E = (0, 0, xe), where xe > 0, for the system (10).
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(iii) For all α̃ > 0, if the conditions

δ̃ >

[
2e−γ̃τ̃ − 1

1− 2K̃e−γ̃τ̃

]
β̃(0), and, δ <

[
2e−γτ − 1

]
β(0), (21)

are satisfied, then (0, 0, 0) and E = (0, 0, xe) are the unique steady states of

system (10).

(iv) For all α̃ > 0, the condition

δ̃ <

[
2e−γ̃τ̃ − 1

1− 2K̃e−γ̃τ̃

]
β̃(0), (22)

is a necessary and sufficient condition for the existence of the steady state420

(x̃e, ũe, 0) where, x̃e > 0 and ũ > 0, for the system (10).

(v) For all α̃ > 0, if the conditions

δ̃ <

[
2e−γ̃τ̃ − 1

1− 2K̃e−γ̃τ̃

]
β̃(0), and, δ >

[
2e−γτ − 1

]
β(0), (23)

are satisfied, then (0, 0, 0) and (x̃e, ũe, 0) are the unique steady states of system

(10).

(vi) For all α̃ > 0, the conditions

α̃ 6= 1, δ̃ <

[
2e−γ̃τ̃ − 1

1− 2K̃e−γ̃τ̃

]
β̃(0), and, δ <

[
2e−γτ − 1

]
β(0), (24)

are necessary, but not sufficient, for the existence of D = (x̃e, ũe, xe).

(vii) We denote µ = δ
2e−γτ−1 , and, µ̃ =

δ̃(1−2K̃e−γ̃τ̃)
2e−γ̃τ̃−1 . If the conditions,


0 < α̃ < 1, µ < β(0), µ̃ < β̃(0),

α̃β−1 (µ) < β̃−1 (µ̃) < β−1 (µ) ,

2K̃e−γ̃τ̃ < 1 < 2e−γ̃τ̃ ,

(25)
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or, 
α̃ > 1, µ < β(0), µ̃ < β̃(0),

β−1(µ) < β̃−1(µ̃) < α̃β−1(µ),

2K̃e−γ̃τ̃ < 1 < 2e−γ̃τ̃ ,

(26)

are satisfied, then a unique strictly positive dormancy steady state D = (x̃e, ũe, xe),425

exists and is given by (17).

Remark 2. (1) Obviously, uniqueness in Proposition 1-(vii) means the exis-

tence of a unique isolated strictly positive equilibrium point D, but the trivial

steady state and the points E = (0, 0, xe), (x̃e, ũe, 0) are also steady states of

system (10). (2) We can check that when the positive steady states exists, then

ye =
1

γ
(1− e−γτ )β(xe + x̃e)xe, and, ỹe =

1

γ̃
(1− e−γ̃τ̃ )ũe, (27)

where ye (resp. ỹe) is the positive steady state of the total density of proliferating

healthy (resp. unhealthy) cells. (3) The third condition in (25)-(26) expresses

an interesting relationship between the fast-self renewing ability K̃, the apoptosis

rate of malignant cancer cells γ̃, and their average cell-cycle duration τ̃ . We430

notice that even if K̃ is relatively important (and knowing that it is not easy to

act on K̃ by drug infusions since its high value is due to FLT3 mutations) it is

still possible to guarantee the existence of a dormancy state by increasing τ̃ γ̃.

However, the increase must be moderate to not exceed the upper-bound γ̃τ̃ <

ln(2). (4) Finally, we notice that other cases can be discussed if biologically435

needed. For instance, adding the restriction, 2β̃−1(µ̃) < (1 + α̃)β−1(µ), to the

conditions (25)-(26), ensures that xe > x̃e, which can reasonably be the expected

situation of dormant tumors without forming clinically apparent cancers.

Now, we motivate our stability analysis through some preliminary numerical

observations that highlight the rich dynamics of the model that we introduced440

in this work. In particular, we point out the different possible behaviors of the

nonlinear differential-difference system (10) according to its associated initial

conditions. The latter fact emphasizes the importance of determining mathe-
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matically an estimate of the region of attraction of each steady state of interest.

Example 1. Let us consider the following biological functions and parameters445

for cells in Category A (Cat. A) and Category B (Cat. B):

Cat. A: τ = 1.11 δ = 0.1 γ = 0.1 β(m) = 3
1+m4

Cat. B: τ̃ = 0.9 δ̃ = 0.36 γ̃ = 0.32 β̃(m) = 2
1+m4 α̃ = 0.6 K̃ = 0.54

For the considered set of parameters and functions, a unique dormancy

steady state D exists and is given by D = (x̃e, ũe, xe), where x̃e = 0.6573, ũe =

0.4737 and xe = 1.5255. This steady state is shown in Figure 4-(a). However,

the latter point is not the unique equilibrium point of the system. Indeed, the450

0-equilibrium (0, 0, 0), and the points: E = (0, 0, 2.1826) and (3.1998, 2.3060, 0),

also exist13. When we select the constant initial conditions ϕx(t) = ϕx̃(t) = 2,

for all t ∈ [−τ, 0], and ϕũ(t) = 1, for all t ∈ [−τ̃ , 0], we observe that the

trajectories converge to (3.1998, 2.3060, 0), as illustrated in Figure 4-(b), where

unhealthy cells survive (the attractive point seems to be stable), while the healthy455

cells vanish (converge to zero). By changing the initial condition of ũ, from the

previous value to ϕũ(t) = 0.1, for all t ∈ [−τ̃ , 0], we observe that the trajecto-

ries converge to E, as illustrated in Figure 4-(c). Moreover, the steady states in

Figures 4-(b)-(c) seem to be stable (each one has its region of attraction). Lya-

punov theory offers strong tools to establish the regional stability properties of460

the steady states, provided that a suitable Lyapunov functional is found for the

studied model. Now, let us modify the value of K̃ by increasing it to K̃ = 0.6680.

It follows that 2K̃e−γ̃τ̃ − 1 = 0.017, which implies that the trajectories of the

unhealthy compartment are unbounded (similarly to [1]). Numerical simulations

in that case, for arbitrary initial conditions, are given in Figure 4-(d).465

13One may notice the relationship that exists between the three different non-trivial steady
states. In fact, the xe-value in E corresponds to the sum xe+ x̃e of the dormancy steady state
D, while the x̃e-value in the steady state (x̃e, ũe, 0) corresponds to the value xe+α̃x̃e

α̃
, where

xe and x̃e in the latter fraction are the corresponding values in the dormancy steady state D.
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Figure 4: (a) Trajectories of the model whose parameters are given in Example 1, when they
started on the Dormancy steady state D, where x̃e = 0.6573, ũe = 0.4737 and xe = 1.5255.
We mention that in this case, numerical simulations show that D is unstable, i.e. for arbitrary
small perturbation on the initial conditions, trajectories do not converge towards D. (b)
Trajectories of the model whose parameters are given in Example 1, when they started from
the initial conditions given by: ϕx(t) = ϕx̃(t) = 2, for all t ∈ [−τ, 0], and ϕũ(t) = 1, for
all t ∈ [−τ̃ , 0]. The steady states D and E both exist in this case, however, we notice that
the trajectories rather converge to another equilibrium point, that seems stable, and which
is given by (3.1998, 2.3060, 0). (c) All the model parameters and the initial conditions are
similar to (b), except the initial condition for ũ which is no given by: ϕũ(t) = 0.1, for all
t ∈ [−τ̃ , 0]. In this case, the trajectories converge to E = (0, 0, 2.1826). (d) Now, we modify
the value of K̃, that we incrase to 0.6680, and we observe that for any initial conditions the
trajectories x̃→ +∞ and ũ→ +∞, when t goes to +∞.

Example 2. Now, let us consider the following functions and parameters:

Cat. A: τ = 1.25 δ = 0.2 γ = 0.2 β(m) = 1
1+m2

Cat. B: τ̃ = 1.66 δ̃ = 0.1 γ̃ = 0.2 β̃(m) = 1.2
1+5m4 α̃ = 0.4 K̃ = 0.3

The steady states (0, 0, 0), E = (0, 0, xe), (x̃e, ũe, 0), and D = (x̃e, ũe, xe),

of the corresponding system, exist. If we select the constant initial conditions

ϕx(t) = 1.55, and ϕx̃(t) = 1, for all t ∈ [−τ, 0], and ϕũ(t) = 0.3, for all t ∈
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[−τ̃ , 0], we observe that the trajectories are unstable as illustrated in Figure 5-470

(a), knowing that the dormancy steady state here is D = (0.3445, 0.0792, 0.9926).

For instance, we recall that in hematopoietic systems, oscillations are associated

to many periodic diseases (e.g. cyclic neutropenia and some types of chronic

leukemia). Now, let us consider random constant initial conditions and let us

keep constant all the biological parameters, except the value of α̃, that we con-475

sider as 0.2, and then 0.6 in a second case. As shown in Figure 5-(b), we note

that by increasing the value of α̃ from 0.2 to 0.6, the trajectories become stable.

Thus, it appears that α̃ may have, at least in this example, a stabilizing (or

destabilizing) effect on the trajectories of the studied model.
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Figure 5: Trajectories of the model in Example 2. (a) Unstable (oscillatory) solutions cor-
responding to the constant initial conditions ϕx(t) = 1.55, ϕx̃(t) = 1, for all t ∈ [−τ, 0],
ϕũ(t) = 0.3, for all t ∈ [−τ̃ , 0]. (b) Stabilizing effect of α̃. In this illustration, all the pa-
rameters, as well as initial conditions, are identical, except the value of α̃. In the first case,
α̃ = 0.2: the trajectories are unstable. By increasing α̃ to 0.7 the trajectories become stable.

Example 3. Finally, let us consider the following functions and parameters:

Cat. A: τ = 1.25 δ = 0.1 γ = 0.2 β(m) = 1
1+m2

Cat. B: τ̃ = 0.7 δ̃ = 0.2 γ̃ = 0.1 β̃(m) = 2
1+2m4 α̃ = 2 K̃ = 0.5

480
The conditions of existence of D = (x̃e, ũe, xe) are satisfied, and in this case

we have: x̃e = 0.6833, ũe = 0.1580 and xe = 1.45599. For the constant initial

conditions ϕx(t) = 0.1 and ϕx̃(t) = 1.5, for all t ∈ [−τ, 0], and ϕũ(t) = 1.5 for

all t ∈ [−τ̃ , 0], it appears that D is stable as illustrated in Figure 6.

At this juncture, we deduce that the coupled system (10) under study has485

some interesting dynamical features. Firstly, we saw that the solutions of the
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Figure 6: Trajectories of the model given in Example 3. Here the dormancy steady state D
exists and is given by: x̃e = 0.6833, ũe = 0.1580 and xe = 1.45599. Convergence to the
dormancy steady state D (which seems stable) is obtained starting from the constant initial
conditions: ϕx(t) = 0.1 and ϕx̃(t) = 1.5, for all t ∈ [−τ, 0], and ϕũ(t) = 1.5 for all t ∈ [−τ̃ , 0].

coupled system can be bounded or unbounded (as in the non-coupled model

[1]). In the former case, several steady states may exist and their values depend

on the different biological parameters of the model. The existence of the steady

states of interest (D and E) are governed by some non-intuitive conditions on490

the biological parameters involved in the system (see Proposition 1). In addi-

tion, we saw that according to the initial conditions associated with the model

trajectories, the bounded solutions may converge to one among several possible

steady states, i.e. the stability of each steady state is regional (local). In the

general case, the steady states of the system (10) are not always stable, but on495

the contrary, we noticed that oscillations may emerge, as in Example 2. Our

objective now is to determine exponential stability conditions for the steady

states of interest (which are: all-cell extinction, E and D).

4. Stability analysis of the extinction of all the cells

In this section, we perform a stability analysis of the 0-equilibrium of the500

system (10). From a biological standpoint, this is a case that we want to avoid, as
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discussed in the previous section (see the first point, Cell extinction), since it is

synonymous of an excessive therapy that not only alters unhealthy populations,

but also leads to the extinction of healthy cells in the coupled model.

Here we introduce the following functional:

W (x̃t, ũt, xt) =x̃(t) + x(t) + ψ1

∫ t

t−τ̃
eρ
∗
1(`−t)ũ(`)d`

+ ψ2

∫ t

t−τ
eρ
∗
2(`−t)β (x(`) + x̃(`))x(`)d`,

(28)

where, ψ1 = ψ11 + ψ12, ψ11 = 1 + δ̃
β̃(0)

, ψ12 = − ψ∗

3(K−K̃)β̃(0)
, K = 1

2e
γ̃τ̃ ,505

ψ∗ = (β̃(0) + δ̃)K − β̃(0) − K̃δ̃, and, ψ2 = 2ψ3e
−γτ , where, ψ3, together with

ρ∗1 and ρ∗2, are strictly positive constants that we will choose later.

We can readily check that if 2K̃e−γ̃τ̃ < 1 (that we can rewrite as K̃ < K),

and ψ∗ > 0, (i.e. ψ12 < 0), we obtain ψ1 > 0. It follows that the functional

W is nonnegative. We notice also that W is an unusual Lyapunov-Krasovskii510

functional (LKF) candidate, since it can be used only because the system (10)

is positive. In addition, it is a degenerate LKF candidate (since W = 0 does

not imply ũ = 0) which is usually the case for differential-difference systems.

This will also be the case when we investigate the stability properties of the

dormancy steady state, where we will construct a quadratic degenerate LKF.515

Thanks to the functional W, we prove in Appendix A the following result:

Theorem 1. If the conditions

(
2e−γτ − 1

)
β(0) < δ, 0 < ψ∗, and, 2K̃e−γ̃τ̃ < 1, (29)

are satisfied, then the trivial steady state of system (10) is globally exponentially

stable with a decay rate larger than, or equal to, ψ4 (defined in Appendix A).

Remark 3. (1) The conditions (29) exclude the existence of any steady state

different from the trivial one. (2) We can interpret the cell extinction as a520

result of an excessive therapy that affects also healthy cells so that their apop-

tosis rate, γ, increases until becoming greater than the ratio ln(2)
τ , or, until the
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death rate and differentiation rate, i.e. δ, becomes greater than (2e−γτ − 1)β(0)

(which is a less demanding condition in comparison to γ > ln(2)
τ ). (3) Arguing

as in [1, 22], we can prove that the conditions (29) are also necessary for the525

exponential stability of the 0-equilibrium. (4) Finally, we deduce from Theorem

1 that all-cell extension results from uncorrelated conditions between the healthy

and unhealthy compartments. Indeed, we note that the last two conditions in

(29) relate to the unhealthy compartment, since only unhealthy parameters are

involved. Moreover, these conditions are similar to those giving global asymp-530

totic stability in [1] for a non-coupled model. The biological interpretation is that

cell extension occurs if and only if both the healthy and unhealthy compartments

are enable to regenerate themselves autonomously. In other words, it appears

that the coupling has no effect on the stability of the 0-equilibrium since the

conditions for total-cell eradication imply extinction of both the unhealthy and535

healthy compartments, as if they were separated (not coupled). This observation

will not hold when we study dormancy (and non-zero steady states).

5. Stability analysis of favourable steady states: D (dormancy) and

E (CSCs eradication)

Here we will emphasize on the dormancy steady state D = (x̃e, ũe, xe), where540

all the components of the steady state are different from zero (i.e. x̃e > 0, ũe > 0,

xe > 0). In fact, we will highlight the case of dormancy D, since it is clearly

the most general one. Indeed, from the analysis of D, it becomes possible to

evaluate the regional stability properties of E = (0, 0, xe) (which are partially

investigated in [23], when α̃ = 1), and also of the steady state (x̃e, ũe, 0).545

5.1. A new representation of the system

Now, we want to investigate the stability properties of D when it exists.

Thus, we assume that the conditions given in Proposition 1-(vii) are satisfied

and we perform the classical changes of coordinates: X̃ = x̃ − x̃e, Ũ = ũ − ũe,

30



and X = x− xe. Therefore, from (10), it follows that for all t ≥ 0,



˙̃X(t) = −
[
δ̃ + β̃(X(t) + α̃X̃(t) + xe + α̃x̃e)

]
(X̃(t) + x̃e)

+2(1− K̃)e−γ̃τ̃ (Ũ(t− τ̃) + ũe),

Ũ(t) + ũe = β̃(X(t) + α̃X̃(t) + xe + α̃x̃e)(X̃(t) + x̃e)

+2K̃e−γ̃τ̃ (Ũ(t− τ̃) + ũe),

Ẋ(t) = −
[
δ + β(X(t) + X̃(t) + xe + x̃e)

]
(X(t) + xe)

+2e−γτβ(X(t− τ) + X̃(t− τ) + xe + x̃e)(X(t− τ) + xe).

(30)

To ease the analysis of the above system, we rewrite it in a more convenient

form. Observe that for all z > −e, e > 0, where, z = X + X̃ and e = xe + x̃e, we

have, with an abuse of notation,

β(z + e) = β(e) + θz +R(z), (31)

where β is the Hill-function defined in (1), θ = β′(e), and, R(z) =
∫ e+z

e
(z + e−

`)β(2)(`)d`. Next, for all z̃ > −ẽ, ẽ > 0, where, z̃ = X + α̃X̃, and, ẽ = xe + α̃x̃e,

we get similarly to (31),

β̃ (z̃ + ẽ) = β̃(ẽ) + θ̃z̃ + R̃(z̃), (32)

where, θ̃ = β̃′(ẽ), and, R̃(z̃) =
∫ ẽ+z̃

ẽ
(z̃+ẽ−`)β̃(2)(`)d`. Therefore, using (31)-(32),

and by simplifying some terms using (11), we get the system,
˙̃X(t) = −a1X̃(t)− a2X(t) + a3Ũ(t− τ̃) + F (X(t), X̃(t)),

Ũ(t) = a4X̃(t) + a2X(t) + a5Ũ(t− τ̃)− F (X(t), X̃(t)),

Ẋ(t) = −a6X(t)− a7X̃(t) + a8X(t− τ) + a9X̃(t− τ) +G(Xt, X̃t),

(33)

where, F (X(t), X̃(t)) =− θ̃
[
α̃X̃2(t)) +X(t)X̃(t)

]
− R̃(X(t) + α̃X̃(t))(X̃(t) + x̃e),

(34)
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G(Xt, X̃t) =− θ
[
X2(t) +X(t)X̃(t)

]
−R(X(t) + X̃(t))(X(t) + xe)

+ 2e−γτθ
[
X2(t− τ) +X(t− τ)X̃(t− τ)

]
+ 2e−γτR(X(t− τ) + X̃(t− τ))(X(t− τ) + xe),

(35)

and where the constant parameters ai are given by:
a1 = δ̃ + β̃(xe + α̃x̃e) + α̃θ̃x̃e, a2 = θ̃x̃e, a3 = 2(1− K̃)e−γ̃τ̃ ,

a4 = β̃(xe + α̃x̃e) + α̃θ̃x̃e, a5 = 2K̃e−γ̃τ̃ , a6 = δ + β (xe + x̃e) + θxe,

a7 = θxe, a8 = 2e−γτ [β (xe + x̃e) + θxe] , a9 = 2e−γτθxe.

(36)

We notice that if the trajectories of (33) converge exponentially to the 0-

equilibrium, then the positive trajectories of the system (10) converge expo-

nentially to D. Now, we are going to state and prove some sector conditions

on the nonlinear terms R and R̃. Then, we deduce some upper-bounds on the

nonlinear terms F and G. For that purpose, we prove in Appendix B through

lengthy calculations that there exist strictly positive constants s, s̃, m and m̃,

satisfying:

|R(z)| ≤ s|z|, and |R̃(z̃)| ≤ s̃|̃z|, (37)

|R(z)| ≤ mz2, and |R̃(z̃)| ≤ m̃z̃2, (38)

for all z > −e (z and e are defined before (31)), and for all z̃ > −ẽ (z̃ and ẽ are

defined before (32)). Moreover, using (37) and (38), we can determine strictly

positive constants ci, i = {1, . . . , 6}, such that the following quadratic upper

bounds hold true: ∣∣∣F (X, X̃)
∣∣∣ ≤ c1Q(X) + c2Q(X̃), (39)

∣∣∣G(Xt, X̃t)
∣∣∣ ≤c3Q(X(t)) + c4Q(X̃(t)) + c5Q(X(t− τ)) + c6Q(X̃(t− τ)). (40)

Remark 4. (1) The upper-bounds given in (37), (38), (39), and, (40), will

not intervene when we determine the decay conditions and the decay rate of the
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solutions. However, their effect appears in the size of the basin of attraction that

we will provide. Actually, if the constants s, s̃, m, m̃, in (37)-(38), as well as550

the constants ci in (39)-(40), are large, then the size of the basin of attraction

shrinks accordingly. (2) By comparing the present study with [23], we notice

that [23] was devoted to the study of a model which was simpler than the system

(33) under study in this paper. Indeed, the model in [23] can be obtained by

putting α̃ = 1 and by eliminating all the terms where x̃e is present in equations555

(33), (36), (34) and (35). (3) It is worth mentioning that the stability results

that we will determine later apply for a wide range of functions β and β̃, as long

as the sector conditions (37) and (38) are satisfied.

Now, we want to perform a stability analysis of the trivial steady state of the

(shifted) model using its representation in (33): we recall that the 0-equilibrium560

of (33) can be D or E of (10). For meeting such a purpose, strong tools are

provided by Lyapunov theory, in the analysis of nonlinear differential-difference

systems with possibly piecewise continuous solutions (see e.g. [41], [50], [61],

[68], and the references therein). However, finding a suitable LKF is not an easy

task. In addition, the provided stability conditions can be conservative. So, we565

adopt the following strategy that highlights our biological aims:

¬ Firstly, we use the descriptor method [37] that allows us to provide a

local (Lyapunov-based) stability result for our biological model. The advantage

of this approach is that it provides an effective tool (formulated as an LMI

condition) to check if a steady state of a specific biological model (defined by570

its set of parameters) is locally stable.

­ In order to address the following issue: How can we provide realistic sta-

bility conditions that can be interpreted and satisfied under the effect of drugs?,

the first approach will be slightly modified in a second time. Thus, we estab-

lish a different result (that can be seen as a particular formulation of the first575

approach) which relies on the analytic construction of a suitable Lyapunov-like

functional, specific for the studied biological system. The latter approach al-

lows us to provide more explicit decay conditions than the common LMI-type
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approaches. We point out that even if the second construction provides more

conservative conditions than the LMI ones, they have the advantage of being580

more easily (biologically) understandable. It is to this end that, in the last sec-

tion, we show how the decay conditions can be interpreted, in practice, according

to the biological context of hematopoiesis and leukemia.

In summary, we determine throughout this section some exponential decay

conditions (along with an estimate of the decay rate of the solutions and a585

region of attraction of the favourable steady states), via two complementary

approaches: the descriptor method that provides local stability results for the

general structure of the studied system, and, a suitable explicit Lyapunov-like

construction that allows us to address the regional stability properties of the

dormancy steady state. The latter decay conditions lend themselves more easily590

than the LMI ones to medical interpretations.

5.2. Stability analysis using the descriptor method

In this section, we consider as a first step only continuous solutions of the

system in (33) and we study the linear approximation of the state col
{
X, X̃

}
,

that we denote Z = col {Z1, Z2}. Then, by neglecting the nonlinear terms F

and G in (33), we rewrite the studied system in the following compact form:

 Ż(t) = B0Z(t) +B1Z(t− τ) +B2Ũ (t− τ̃) ,

Ũ(t) = B3Z(t) +B4Ũ (t− τ̃) ,
(41)

for all t ≥ 0, where Bi are given by (we recall that ai are defined in (36)),

B0 = −

 a6 a7

a2 a1

 , B1 =

 a8 a9

0 0

, B2 =

 0

a3

 ,

B3 =
(

a2 a4

)
, and, B4 = a5 = 2K̃e−γ̃τ̃ .

(42)

Next, we consider some symmetric positive definite matrices P > 0, S > 0,

J > 0, of appropriate dimension, together with a strictly positive constant ã,
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and we verify that the derivative of the functional,

V
(
Zt, Ũt

)
=Z(t)TPZ(t) +

∫ t

t−τ
ZT (`)SZ(`)d`+

+ ã

∫ t

t−τ̃
Ũ2(`)d`+ τ

∫ t

t−τ
(`+ τ − t) ŻT (`)JŻ(`)d`,

(43)

along the trajectories of (41), is given by,

V̇ (t) = ZT (t)
[
P + PT

]
Ż(t) + ZT (t)SZ(t)− ZT (t− τ)SZ(t− τ)

−τ
∫ t
t−τ Ż

T (`)JŻ(`)d`+ τ2ŻT (t)JŻ(t) + ã
(
Ũ2(t)− Ũ2(t− τ̃)

)
.

First, we notice that an upper-bound of V̇ is given by,

V̇ (t) ≤ ZT (t)
[
P + PT

]
Ż(t) + ZT (t)SZ(t)− ZT (t− τ)SZ(t− τ)

+τ2ŻT (t)JŻ(t)− ZT (t)JZ(t) + ZT (t)JZ(t− τ)

+ZT (t− τ)JZ(t)− ZT (t− τ)JZ(t− τ)+ãŨ2(t)− ãŨ2(t− τ̃)

+2

[
ZT (t)P

T
+ ŻT (t)P

T
] [
B0Z(t) +B1Z(t− τ) +B2Ũ (t− τ̃)− Ż(t)

]
︸ ︷︷ ︸

=0

,

(44)

which, in fact, directly follows from the Jensen’s Inequality given by,

−τ
∫ t

t−τ
ŻT (`)JŻ(`)d` ≤−

∫ t

t−τ
ŻT (`)d`J

∫ t

t−τ
Ż(`)d`

=− [Z(t)− Z(t− τ)]
T
J [Z(t)− Z(t− τ)] ,

and where P and P that appear in (44) are some free-weighting matrices of

appropriate dimension. Then, it follows that,

V̇ (t) ≤ ηT (t)Φη(t) + ãŨ2(t),

where η is an augmented state defined by,

ηT (t) =
[
Z(t) Ż(t) Z(t− τ) Ũ(t− τ̃)

]
, (45)
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and the matrix Φ is given by,

Φ =



S − J + pTB0 +BT0 P P − PT +BT0 P J + P
T
B1 P

T
B2

∗ τ2J − P
T
− P P

T
B1 P

T
B2

∗ ∗ −S − J 0

∗ ∗ ∗ −ã


.

(46)

Noticing that, Ũ(t) =
[
B3 0 0 B4

]
η(t), it follows that,

ãŨ2(t) = ηT (t)Eη(t), where, E =
[
B3 0 0 B4

]T
ã
[
B3 0 0 B4

]
.

Therefore, by applying Schur complement, we conclude that V̇ (t) < 0 is satisfied

provided that the following LMI:

Ψ =



S − J + P
T
B0 +BT0 P P − PT +BT0 P J + P

T
B1 P

T
B2 BT3 ã

∗ τ2J − P
T
− P P

T
B1 P

T
B2 0

∗ ∗ −S − J 0 0

∗ ∗ ∗ −ã BT4 ã

∗ ∗ ∗ ∗ −ã


< 0,

(47)

holds. Next, by following arguments of [36] we deduce from Ψ < 0 that the

last block in (47) satisfies

 −ã BT4 ã

∗ −ã

 < 0. The latter implies by Schur

complement that −I + BT4 B4 < 0. Hence, the eigenvalues of B4 are inside the595

unit circle, i.e. the difference equation Ũ(t) = B4Ũ(t− τ̃) is stable for all τ̃ > 0.

The latter, together with V̇ < 0, guarantees the asymptotic stability of the

system (41). We mention that it is possible to extend the stability result to the

nonlinear system (33), using the functional V (i.e. providing some conditions on

the nonlinear terms F and G as in [37], Section 3.11). However, since it seems600

actually difficult to interpret the LMI (47) as a combined targeted therapy for

the studied biological system, we slightly modify our Lyapunov approach by
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designing, in the next section, a suitable specific LKF for the studied system

that provides explicit (sufficient) stability conditions for the dormancy steady

state of the nonlinear system (33). The functional that we are going to propose605

has some similarities with the functional V . Actually, in the next section, we

are going to select some matrices P , S and J , together with the constant ã,

involved in the above construction. Thus, we will determine analytically some

upper-bounds on V̇ , through classical inequalities. Not surprisingly, the latter

approach increases the conservatism of the sufficient stability condition in the610

LMI form (the LMI condition is given by (47)). That is the price of determining

more biologically exploitable results (i.e. explicit exponential decay conditions

with an estimate on the decay rate of the solution and a subset of the basin of

attraction of the trivial steady state of the nonlinear system (33)).

5.3. Obtaining Explicit Exponential Decay Conditions615

We focus on the coupled system using its representation in (33), with possibly

piecewise continuous solutions. Firstly, let us introduce the quadratic function:

Q(X, X̃) = Q(X) + λ1Q(X̃), where, Q(`) = 1
2`

2, (48)

and λ1 = 2. This is equivalent to put P = diag {1/2, 1} in V of the previous

section. Next, we consider the following operators,

Y(ϕ̃) =

∫ 0

−τ̃
eρ1`Q(ϕ̃(`))d`, and, (49)

S(ϕ) =

∫ 0

−τ
eρ2`Q(ϕ(`))d`, (50)

where, ϕ ∈ C ([−τ, 0],R), ϕ̃ ∈ C ([−τ̃ , 0],R), and ρ1, ρ2, are strictly positive con-

stants that we determine later. In fact, observe that, compared to the integral

terms in V of the previous section, S and Y have exponential functions -in the

integral terms- that make it possible to get a lower-bound on the exponential

decay of the solutions. Next, in the quest for explicit decay conditions, we are

going to substitute Ẋ and ˙̃X when computing the derivative of Q (which is
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not the approach adopted in the descriptor method, where Ẋ and ˙̃X were not

replaced). Thus, the derivative of Q along the trajectories of (33), satisfies

Q̇(t) =− 2a1λ1Q(X̃(t))− 2a6Q(X(t))− (a2λ1 + a7)X(t)X̃(t)

+ a3λ1X̃(t)Ũ(t− τ̃) + a8X(t)X(t− τ) + a9X(t)X̃(t− τ)

+ λ1X̃(t)F (X(t), X̃(t)) +X(t)G(Xt, X̃t).

(51)

Notice that the derivative of Y(Ũt), for almost all t ≥ 0, is

Ẏ(t) = Q(Ũ(t))− e−ρ1τ̃Q(Ũ(t− τ̃))− ρ1Y(Ũt). (52)

Now, using the second equation in (33), we obtain

Ẏ(t) =− ρ1Y(Ũt) + a2
4Q(X̃(t)) + a2

2Q(X(t))− (e−ρ1τ̃ − a2
5)Q(Ũ(t− τ̃))

+ a2a4X(t)X̃(t) + a2a5X(t)Ũ(t− τ̃) + a4a5X̃(t)Ũ(t− τ̃)

+Q(F (X̃(t), X(t)))− F (X(t), X̃(t))
[
a4X̃(t) + a2X(t) + a5Ũ(t− τ̃)

]
,

where the ai’s and F are defined after (33). Similarly, we compute the derivatives

of the functionals S (Xt) and S(X̃t). By combining the previous intermediate

results (i.e. Q̇, Ẏ and Ṡ), we deduce that the time derivative of the functional,

V †(Xt, X̃t, Ũt) = Q(X(t), X̃(t)) + λ2S (Xt) + λ3S(X̃t) + λ4Y(Ũt), (53)

where λ2, λ3 and λ4 are positive constants to be chosen later, along the trajec-

tories of (33) is given, for almost all t ≥ 0, by:

V̇ †(t) =−
[
2λ1a1 − λ3 − λ4a

2
4

]
Q(X̃(t))−

[
2a6 − λ2 − λ4a

2
2

]
Q(X(t))

− ρ2λ3S(X̃t)− ρ2λ2S (Xt)− ρ1λ4Y(Ũt)− λ4

[
e−ρ1τ̃ − a2

5

]
Q(Ũ(t− τ̃))

− λ2e
−ρ2τQ (X(t− τ))− λ3e

−ρ2τQ(X̃(t− τ)) + a2a5λ4X(t)Ũ(t− τ̃)

− [a2λ1 + a7 − λ4a2a4]X(t)X̃(t) + a8X(t)X(t− τ) + a9X(t)X̃(t− τ)

+ [a3λ1 + a4a5λ4] X̃(t)Ũ(t− τ̃)− a5λ4F (X(t), X̃(t))Ũ(t− τ̃)

+X(t)G(Xt, X̃t) + λ4Q(F (X̃(t), X(t)))− λ4F (X(t), X̃(t))
[
a4X̃(t) + a2X(t)

]
.
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Next, we recall that for strictly positive constants, νi > 0, i = 1 to 5, (that we

will choose later), we have the following inequalities:
∣∣∣XX̃∣∣∣ ≤ 1

ν1
Q(X)+ν1Q(X̃),

|X(t)X(t− τ)| ≤ 1
ν2
Q(X(t)) + ν2Q(X(t − τ)),

∣∣∣X(t)X̃(t− τ)
∣∣∣ ≤ 1

ν3
Q(X(t)) +

ν3Q(X̃(t− τ)),
∣∣∣X̃(t)Ũ(t− τ̃)

∣∣∣ ≤ 1
ν4
Q(X̃(t)) + ν4Q(Ũ(t− τ̃)),

∣∣∣X(t)Ũ(t− τ̃)
∣∣∣ ≤

1
ν5
Q(X(t)) + ν5Q(Ũ(t − τ̃)). Therefore, it follows that the derivative V̇ †(t)

satisfies, for almost all t ≥ 0, the following inequality:

V̇ †(t) ≤− [2λ1a1 − b1]Q(X̃(t))− [2a6 − b2]Q(X(t))− ρ2λ3S(X̃t)

− ρ2λ2S (Xt)− ρ1λ4Y(Ũt)−
[
λ4e
−ρ1τ̃ − b3

]
Q(Ũ(t− τ̃))

−
[
λ2e
−ρ2τ − b4

]
Q (X(t− τ))−

[
λ3e
−ρ2τ − b5

]
Q(X̃(t− τ))

+ λ4Q(F (X̃(t), X(t)))− a5λ4F (X(t), X̃(t))Ũ(t− τ̃)

+X(t)G(Xt, X̃t)− λ4F (X(t), X̃(t))
[
a4X̃(t) + a2X(t)

]
,

(54)

where,



b1 = λ3 + λ4a
2
4 + ν1 |a2λ1 + a7 − λ4a2a4| ,

b2 = λ2 + λ4a
2
2 +

|a2λ1+a7−λ4a2a4|
ν1

+ |a8|
ν2

+ |a9|
ν3

+ |a2a5|λ4

ν5
,

b3 = λ4a
2
5 + ν4 |a3λ1 + a4a5λ4|+ ν5λ4 |a2a5| ,

b4 = ν2|a8|, and, b5 = ν3|a9|.

(55)

Now we are ready to determine decay conditions that ensure the regional

exponential stability of the trivial steady state of the system (33). The terms

where F and G are involved in (54) will be used only to determine a subset of

the basin of attraction of the trivial steady state of the system (33).

Let us focus on the constant which is multiplied by Q(Ũ(t − τ̃)) in (54).

Using the inequality |a3λ1 + a4a5λ4| ≤ λ1|a3| + λ4|a4a5|, we notice that the

inequality λ4e
−ρ1τ̃ − b3 > 0 is verified if

λ4

(
e−ρ1τ̃ − a2

5 − ν4|a4a5| − ν5|a2a5|
)
− ν4λ1|a3| > 0. (56)

For later use, we set d1 , λ4

(
e−ρ1τ̃ − a2

5 − ν4|a4a5| − ν5|a2a5|
)
− ν4λ1|a3|.620
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We deduce that the first decay condition is given by:

a2
5 + ν4|a4a5|+ ν5|a2a5| < 1. (57)

Indeed, the previous condition is necessary to guarantee that (56) is satisfied.

Now, let us select ν4 = 1
2 |a4|−1, and ν5 = 1

2 |a2|−1, for a4 6= 0 and a2 6= 0.

Using the definitions of ai’s, ν4 and ν5, it follows that the first decay condition

(57) is equivalent to

(2K̃e−γ̃τ̃ )2 + 2K̃e−γ̃τ̃ < 1. (58)

Remark 5. One notices that we have deliberately chosen ν4 = 1
2 |a4|−1, and,

ν5 = 1
2 |a2|−1, and that these choices are not unique. Indeed, our objective here

is to determine a sufficient decay condition that involves only the unhealthy

parameters of the permanently dividing subpopulation (for instance, the subpop-625

ulation with FLT3-type mutations in AML) which are, K̃, τ̃ and γ̃. For that

purpose, we derive a decay condition involving only the parameter a5. There-

fore, ν4 and ν5 are used in order to compensate a4 and a2. A more general form

is given by ν4 = ν̃4|a4|−1, ν5 = ν̃5|a2|−1, where ν̃4 > 0, and, ν̃5 > 0. In this

case, the decay condition (58) rewrites as, (2K̃e−γ̃τ̃ )2 + 2 (ν̃4 + ν̃5) K̃e−γ̃τ̃ < 1.630

Now, notice that a direct consequence of the inequality (58) is that for all

ρ1 ∈
(

0, 1
τ̃ ln

(
5

1+4[a2
5+a5]

))
, we get e−ρ1τ̃ −

[
a2

5 + a5

]
>

1−[a2
5+a5]
5 > 0. Conse-

quently, we deduce that d1, which is defined right after (56), and which is now

equal to: d1 = λ4

(
e−ρ1τ̃ −

[
a2

5 + a5

])
− ν4λ1|a3|, satisfies the inequality, d1 > 0,

for all λ4 = λ̃4λ1ν4|a3|
e−ρ1τ̃−[a2

5+a5]
> 0, where λ̃4 > 1. Next, using the inequality,

∣∣∣F (X(t), X̃(t))Ũ(t− τ̃)
∣∣∣ ≤ 2|a5|λ4

d1
Q(F (X(t), X̃(t))) +

d1

2|a5|λ4
Q(Ũ(t− τ̃),
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it follows from (54) that,

V̇ †(t) ≤− [2λ1a1 − b1]Q(X̃(t))− [2a6 − b2]Q(X(t))− d1

2
Q(Ũ(t− τ̃))

− ρ2λ2S(Xt)− ρ2λ3S(X̃t)−
[
λ2e
−ρ2τ − b4

]
Q(X (t− τ))

−
[
λ3e
−ρ2τ − b5

]
Q(X̃(t− τ))− ρ1λ4Y(Ũt) +H(Xt, X̃t),

(59)

where,

H
(
Xt, X̃t

)
=

(
λ4 +

2 (a5λ4)
2

d1

)
Q(F (X(t), X̃(t))) +X(t)G(Xt, X̃t)

− λ4F (X(t), X̃(t))
[
a4X̃(t) + a2X(t)

]
.

(60)

Arguing similarly, we select ν2 and ν3 that compensate the terms a8 and a9 (for

|a8| 6= 0, and |a9| 6= 0). For instance, we can consider ν2 = 1
6|a8| and ν3 = 1

6|a9| .

Then, we put, for instance, λ2 = λ3 = 1
3 . We notice that our choices of ν2

and ν3 in this case are equivalent to b4 = b5 = 1
6 , and it follows that for all

ρ2 ∈
(

0, 1
τ ln

(
λ2

b4

))
, we obtain in this case e−ρ2τ > 2

3 . Thus, we end up with14

d2 , λ2e
−ρ2τ − b4 = 1

3

(
e−ρ2τ − 1

2

)
> 1

18 ,

d3 , λ3e
−ρ2τ − b5 = 1

3

(
e−ρ2τ − 1

2

)
> 1

18 .
(61)

Finally, by selecting ν1 = λ1 = 2, all the setting parameters involved in

the functional V † are now chosen. We conclude that if the decay conditions

d4 , 2λ1a1 − b1 > 0, and d5 , 2a6 − b2 > 0, are satisfied, then (59) satisfies

for almost all t ≥ 0,

V̇ †(t) ≤− 3dV †(Xt, X̃t, Ũt)−
d4

2
Q(X̃(t))− d5

2
Q(X(t))− d1

2
Q(Ũ(t− τ̃))

− d2Q(X(t− τ))− d3Q(X̃(t− τ)) +H(Xt, X̃t),

14Similarly to ν4 and ν5 in Remark 5, the choices of ν2 and ν3 are not unique (and, similarly,
those of λ2 and λ3 either). In Example 4, we are going to use different numerical values that
also satisfy d2 > 0 and d3 > 0.
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where d = 1
3 min

{
d4

2λ1
, d5

2 , ρ1, ρ2

}
. Next, in Appendix C, we focus on the non-

linear function H, defined right after (59), in order to define a subset of the

basin of attraction of the trivial steady state of system (33). By following the

arguments given in Appendix C, we prove that in a well-defined region (defined

in terms of the initial conditions) we get:

V̇ †(t) ≤ −2dV †(Xt, X̃t, Ũt), for almost all t ≥ 0. (62)

We integrate this inequality and we obtain for all t ≥ 0,

V †(Xt, X̃t, Ũt) ≤ e−2dtV †
(
ϕXt , ϕX̃t , ϕŨt

)
. (63)

Consequently, we get for all t ≥ 0, X2(t) + λ1X̃
2(t) ≤ 2e−2dtV † (ϕX , ϕX̃ , ϕŨ ) .

We conclude that the trajectories X(t) and X̃(t) converge exponentially to the

trivial steady state of the shifted system, with a decay rate larger than, or equal

to, d. By classical arguments, we observe from the second equation in (33) that,

since 2K̃e−γ̃τ̃ < 1, Ũ(t) converges exponentially to zero when X(t) and X̃(t)635

converge exponentially to the zero.

To summarize, we considered that D (or E) exists and we rewrote the studied

system (10) in the form (33). Next, we proved that if the decay conditions

((58), d4 > 0, d5 > 0) are satisfied, then the trajectories of (33) associated with

initial conditions belonging to the set B, converge exponentially to 0-equilibrium640

of the shifted system (33), with a decay rate larger than, or equal to, d. By

explicitly rewriting the decay conditions, we summarize our findings in Section

5 as follows:

Theorem 2. (A) Assume that D (resp. E) exists, then consider the shifted

system (33), such that its trivial steady state corresponds to D (resp. E) of

(10). If there exist matrices P , S, J , P and P , of appropriate dimension, and

a positive constant ã, that satisfy the LMI (47), then the trivial steady state of

the shifted system (33), which is D (resp. E) of (10), is locally asymptotically

stable.
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(B) Assume that system (10) admits a positive steady state D (i.e. (25) or (26)

in Proposition 1-(vii) hold). If

i)
(

2K̃e−γ̃τ̃
)2

+ 2K̃e−γ̃τ̃ < 1,

ii) b1

4 − α̃θ̃x̃e < β̃ (xe + α̃x̃e) + δ̃,

iii) b2

2 − θxe < β(xe + x̃e) + δ,

(64)

are satisfied, ensuring also that d2 > 0 and d3 > 0, then D is regionally expo-

nentially stable with a decay rate larger than, or equal to, d, and with basin of

attraction defined by:

B† =
{
ϕx ∈ C

(
[−τ, 0],R+

)
, ϕx̃ ∈ C

(
[−τ, 0],R+

)
, ϕũ ∈ C

(
[−τ̃ , 0],R+

) ∣∣∣
V † (ϕx − xe, ϕx̃ − x̃e, ϕũ − ũe) < V

†}
.

(65)

(C) Assume that E exists (Proposition 1-(ii)), and consider that x̃e = 0 in (64).

If the conditions (64) are satisfied (for x̃e = 0), then E of (10) is regionally645

exponentially stable with a decay rate d and basin of attraction defined by (65),

where we consider now that x̃e = ũe = 0 in (65).

Example 4. In this example, we assume that α̃ = 5. For the unhealthy com-

partment, we consider the parameters given in Table 1, while for the healthy

case we consider the parameters of Table 2.650

We want to investigate the stability properties of the dormancy steady state:

D = (x̃e, ũe, xe), where, x̃e = 0.0217, ũe = 0.0593, and xe = 0.2535. Obviously,

if the decay conditions (64) are satisfied, then the LMI (47) admits a solution.

δ̃ γ̃ τ̃ β̃(m) K̃ ũe x̃e
0.928 0.4 1 2.78

1+3m2 0.2 0.05938567 0.02179864

Table 1: Parameters of the unhealthy compartment, and the values of x̃e and ũe.

δ γ τ β(m) xe
0.168 0.001 0.12 0.219

1+4m2 0.25354595

Table 2: Parameters of the healthy hematopoetic stem cell compartment, and the value of xe.
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We check that the decay conditions (64) are verified:

(i) 1− 2K̃e−γ̃τ̃ −
(

2K̃e−γ̃τ̃
)2

= 0.659979347 > 0,

(ii) β̃ (xe + α̃x̃e) + δ̃ −
(

b1

4 − α̃θ̃x̃e
)

= 0.987350196 > 0,

(iii) β (xe + x̃e) + δ −
(
b2

2 − θxe
)

= 0.000149333 > 0,

(66)

where we consider: λ1 = 2, λ2 = λ3 = 0.261780, λ4 = 2.205796, λ̃4 =

2, ν1 = 2, ν2 = 1
4|a8| = 1.301858, ν3 = 1

4|a9| = 1.736024, ν4 = 1
2|a4| =655

0.302151, ν5 = 1
2|a2| = 7.374022, ρ1 = 1

10τ̃ ln
(

5
1+4(a2

5+a5)

)
= 0.075074 and

ρ2 = 1
10τ ln

(
λ2

b4

)
= 0.038369. For these numerical values, we check that d2 =

d3 = 0.010577 > 0. Therefore, according to Theorem 2, the dormancy steady

state, D = (0.0217, 0.0593, 0.2535), is regionally exponentially stable, as illus-

trated in Figure 4. This example will be revisited in the next section, in the660

practical situation of therapeutic strategies.
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Figure 7: Trajectories of the system of the numerical example 4 (Tables 1-2). In this case,
the dormancy steady state D exists, such that x̃e = 0.0217, ũe = 0.0593. The sufficient local
stability conditions given in Theorem 2-(B) are satisfied, as shown in (66), and the trajectories
of the system converge exponentially to D.
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6. Concluding comments on the findings and possible therapeutic

strategies oriented towards cancer dormancy

A first remark is that CSC dormancy probably results from complex rela-

tionships between the different biological parameters involved in this process,665

that are difficult to elicit, let alone to be understood. This observation concerns

the stability properties (decay conditions in Theorem 2), but also the conditions

of existence of dormancy (Proposition 1-(vii)), along with the role of the sen-

sitivity parameter α̃. This should lead us to develop further the mathematical

framework sketched here, in order to help us understand the mechanisms behind670

dormancy. In the current section, we emphasize the main case of hematopoiesis

and AML. In fact, experiments on fresh blood samples of patients with hyper-

leukocytosis may allow to identify the apoptosis and differentiation rates in the

specific case of AML. However, there is no immediate prospect for estimating

the proliferation functions β̃ and β, as well as the fast self-renewing parameter675

K̃. In addition, cancer dormancy is not easily traceable at the current time,

since clinical manifestation of cancer is detectable only when tumor size exceeds

a given threshold. Thus, model identification is a highly topical open issue,

and our attention is only focused on the qualitative asymptotic behavior of our

model, which is otherwise in line with the biological observations in this field.680

Nevertheless, as a first step, the analysis that we performed throughout this

paper reveals that our theoretical results may suggest some therapeutic guide-

lines to eradicate aggressive CSCs (E), or to bring them to dormancy (D), as

discussed in the sequel.

1) Towards the adoption of a common therapeutic strategy to yield685

states D and E? It cannot be claimed that convergence to the steady state

D and the steady state E should share the same therapeutic roadmap, since

a crucial difference lies in their conditions of existence. For instance, E exists

even if δ̃ > 2e−γ̃τ̃−1
1−2K̃e−γ̃τ̃

β̃(0) (see Proposition 1), while the reverse situation is

required in order to allow for the existence of dormancy D, in addition to other690

conditions. We recall that in our system, the conditions of existence of the
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steady states of interest are a type of red lines, that must not be crossed when

elaborating a treatment strategy.

On the other hand, when we focus on the stability conditions, wondering how

therapeutic actions can make the biological system go into the direction of the695

decay conditions (64), we realize that the respective decay conditions of D and

E are substantially similar. More precisely, our sufficient stability conditions

suggest that the biological parameters that can be targeted in order to satisfy

(64), in either of the two states D or E, are similar (but not identical). In this

sense, we can state that a common therapeutic strategy for D and E can be700

proposed. So, in light of the existing therapies and recent clinical trials that

highlight novel effective molecules as potential drugs in AML, we briefly discuss

how a combined therapy - mostly composed of targeted therapies and standard

chemotherapy - may satisfy the theoretical conditions (64).

First, we observe that the condition (B-i) in Theorem 2 provides a restric-705

tion on the dynamics of over-proliferating cells, since K̃, γ̃ and τ̃ are involved.

Satisfying the previous condition relies in increasing the product γ̃τ̃ , and de-

creasing K̃. Increasing γ̃τ̃ means that we extend the average duration of the

cell cycle τ̃ and/or increase the apoptosis rate γ̃ in the population of unhealthy

cells. Leukemic cells may be targeted by drugs such as quizartinib (AC220 [94])710

or erlotinib [54] to increase τ̃ , while cytosine arabinoside can be used to increase

the apoptosis rate γ̃. Moreover, quizartinib can be used to decrease the fast self-

renewal rate K̃. In fact, K̃ is expected to be the hardest parameters to modify

in practice, due to preexisting mutations in epigenetic control genes (DNMT3A,

TET2). However, new FLT3 inhibitors, such as midostaurin15, have achieved715

good performance (see the recent quantitative results provided in [85]) and are

now approved for use along with chemotherapy to target leukemic cells in AML.

Next, in the conditions (B-ii) and (B-iii) of Theorem 2, the targets can

be the parameters δ and δ̃ (mainly δ̃, since it is the unhealthy parameter) that

15Midostaurin is a multi-targeted protein kinase inhibitor, which can be active against
oncogenic CD135 (FMS-like tyrosine kinase 3 receptor, FLT3). [25, 85]
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appear in the right hand sides of the corresponding inequalities. We recall that720

δ̃ includes the death rate and the differentiation rate of unhealthy resting cells.

In practice, increasing δ̃ means that we should increase the differentiation rates,

which can be achieved in the case of leukemia by infusing dasatinib [54], that

targets most of the tyrosine kinases including the c-KIT gene. In fact, it was

thought that drugs promoting re-differentiation of CSCs in many cancers are725

not effective in the specific case of AML. However, this therapeutic option has

been relaunched recently after successful clinical trials, where dihydroorotate

dehydrogenase (DHODH) inhibitors restored differentiation of leukemic cells in

AML [86]. Finally, increasing β(0) and β̃(0) can be performed by using G-CSF

molecules [34]. These are the main common targets shared by D and E.730

2) Constraints and spillover risks of CSCs eradication: Increasing

the parameters δ̃, γ̃ and τ̃ (using some of the previously mentioned molecules

or their equivalent), promotes the existence of the state E, together with its

stability. However, it may exclude the steady state D, by violating its condi-

tions of existence. Furthermore, an excessive therapy that affects also healthy735

cells leads, theoretically, to the extinction of all the cells (Theorem 1). At the

other extreme, insufficient drug dose might not successfully stop CSCs from

overproliferation (when 2K̃e−γ̃τ̃ > 1). The overproliferating behavior may be

worsened by CSC resistance to drugs. Thus, dormancy D appears as a delicate

intermediate equilibrium between the cancer progression and CSC eradication.740

3) Specific constraints related to dormancy: In the common strategy

that aims to satisfy the condition (64), we noticed that drugs have to increase

the product γ̃τ̃ . On the other hand, we recall from Proposition 1-(vii) that

the condition 1 < 2e−γ̃τ̃ is necessary for the existence of D. Thus, the therapy

action in this case has to take into account this supplementary condition. We745

infer from this remark that the probability to achieve the dormancy steady state

D by using the classical strategies that consist in giving the maximum tolerated

dose of drugs during the treatment period [28], is therefore very low. Indeed,

since a high dose is expected to yield 1 > 2e−γ̃τ̃ , the condition of existence of

D is then violated. The multiple restrictions on the biological parameters listed750
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in Proposition 1 show that the existence of D is more difficult to achieve than

the existence of E. However, we suggest that infusing G-CSF molecules appears

to favour the existence of a dormancy steady state, since increasing (relatively)

β(0) seems to go in the right direction in order to satisfy both the existence and

the stability conditions of D.755

4) The suggestion of therapeutic strategies that achieve dormancy:

In light of the above discussion, we propose to implement what can be consid-

ered as a simple theoretical therapeutic strategy that aims to achieve a stable

dormancy steady state. More precisely, we consider an hematopoietic system

with the clinical symptoms that we expect when facing some overproliferating760

malignant hemopathies. This ranges from a blockade in differentiation mecha-

nisms to the survival of abnormal cells, along with a high rate of self-renewal

activity. We will in fact check that in the absence of adequate treatment, the

unhealthy population will proliferate abundantly. Then, in a second time, our

objective is to stabilize the total cell density, through multiple drug infusions of765

a combined therapy that is in line with our theoretical results (i.e. the decay

conditions in Theorem 2). In other words, we aim to bring the hematopoietic

system from an initial abnormal overproliferating state into a dormant stable

steady state. For that purpose, let us assume that the initial parameters of the

unhealthy compartment are those given in Table 3. In fact, we have deliberately770

chosen an intuitive set of parameters that matches specific dysfunctions in over-

proliferating malignant hemopathies (particularly the condition 2K̃e−γ̃τ̃ > 1).

δ̃ γ̃ τ̃ β̃(m) K̃ α̃
0.25 0.1 0.2 2.78

1+m3 0.55 0.8

Table 3: The set of initial (i.e. before treatment) parameters of the unhealthy compartment.

On the other hand, we assume that the parameters of the healthy compart-

ment are those given in Example 4, and we consider that the therapy to be775

administrated has a negligible effect on ordinary cells.

In medical practice, usually the hematopoietic system is targeted through
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chemotherapy or targeted therapy (a combination of two or three drugs), some-

times infused along with a complementary treatment. All these drugs have in

fact molecular targets (e.g. dasatinib targets BCR/Abl, Src, ephrin receptors,780

c-Kit and many other tyrosine kinases), that result in a modification of some

biological mechanisms (e.g. generally, dasatinib increases proliferation, and dif-

ferentiation in AML [30]). It should be borne in mind that the functional effect

resulting from the molecular action of the infused drugs, varies in practice ac-

cording to several facts (for instance, the buildup of many types of mutations785

by some individuals). However, when we put aside all the intermediate com-

plications that may exist in practice, we can take a shortcut that associates to

each infused drug its most likely action on one or several biological functions

(that are: differentiation, apoptotis, and so on), with a certain amount of con-

fidence. Thus, we can roughly state from medical practice some major families790

of molecules that can be used in the case of AML or other cancers, according

to their expected effect on the biological functionalities.

Fast self-renewing Quizartinib, midostaurin

(K̃) Dihydroorotate dehydrogenase (DHODH) inhibitors

Apoptosis (γ̃) Daunorubicin, cytosine arabinoside, volasertib

Differentiation (δ̃) Dihydroorotate dehydrogenase (DHODH) inhibitors

Cell cylce dur. (τ̃) Quizartinib, erlotinib, volasertib

Table 4: Here we associate the most likely (clinically established) effect of some advanced
drugs/molecules on the biological features of the hematopoietic system, in the specific case
of AML (without focussing neither on the molecular mechanisms behind each drug action, or
on the possible mutual interactions that may exist between drugs within some combinations).
The case of the sensitivity paprameter α̃ is discussed later, in Remark 7.

Remark 6. (i) One notices that some molecules in Table 4 are expected to

modify more than one model parameter. For instance, the DHODH inhibitor,

which is a differentiation re-activator, may decrease K̃ and increase δ̃, since795

both actions seem to promote a return into normal differentiation. (ii) The

volasertib (recognized as orphan drug for AML since 2014), belongs to the family

of Polo-like kinase (Plk) inhibitors. It can be used in the treatment of AML to

promote apoptosis and cell cycle arrest (see for instance [10]). In fact, the list

of drugs given in Table 4 is not exhaustive and can be enlarged, for instance, to:800

histone deacetylase (HDAC) inhibitors (vorinostat and panobinostat), and the
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family of aurora kinase inhibitors (AZD115).

Now, we observe that the biological parameters considered in Table 3 imply

that 2K̃e−γ̃τ̃ = 1.078. It follows that, theoretically, if AML is not treated,

unhealthy cells will invade the bone marrow and possibly the bloodstream. In805

Figure 8, we illustrate the evolution of cell densities for the selected model

parameters, where we observe the unbounded proliferation of unhealthy cells.
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Figure 8: Trajectories of the system for the (non-treated) model parameters of Table 3.

Remark 7. We expect that α̃ is less than 1 before therapy, then it starts to in-

crease when therapy is applied (an immunostimulating effect of cytotoxic drugs,

elicited e.g. in [96, 95]), and then greater than 1 when the immune system has810

learnt to counter the dodges of cancer cells (such as hiding their tumor antigens

or achieving inactivation of antibodies, e.g. by glycosylation), or when the reduc-

tion of the tumor burden has made immune cells proportionally more efficient

in their encounters with cancer cells, or also when successful immunotherapy is

used to directly target cancer cells.815

Actually, the elaboration of an optimal therapeutic strategy16 is beyond the

16The optimal therapy requires the determination of the best infusion planning, that takes
into account drug toxicity and other practical considerations (e.g. how the doses of each drug
type are spread over the duration of the therapy). These points deserve a separated study.
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scope of this work. Here, we are suggesting a theoretical therapeutic strategy,

that can be based on some suitable combination of drugs (listed in Table 4, or

others similar ones). We assume that the resulting evolution patterns of the

biological model parameters are those illustrated in Figure 9. In fact, we can820

distinguish between two evolution trends, nested within one another as follows:

1) The first series of infusions aims to decrease K̃ (fast self-renewing rate),

to increase τ̃ (cell-cycle duration), and to increase γ̃ (apoptosis rate). It is

worth mentioning that the direction of the change in the model parameters

(i.e. by increasing/decreasing the model parameters values) is in line with the825

observed effect of the drugs listed in Table 3. This treatment phase is expected

to limit the expansion of CSCs. We also assume that the first treatment phase

is accompanied by a slight increase of the value of α̃ (see Remark 7).

2) The second phase of the treatment aims, on the one hand, to maintain the

trend given for the parameters (K̃, τ̃ , γ̃), and on the other hand, to reactivate830

the differentiation of unhealthy cells (using DHODH inhibitors, for instance)

and to increase the sensitivity parameter α̃ with more virulence than in the first

series of infusions (e.g. using a suitable immunotherapeutic action, Remark 7).

Remark 8. It seems legitimate to wonder whether the reactivation of differ-

entiation of CSCs is a good strategy to fight cancer. The answer is argued for835

instance in [28], where it is explained how CSCs can initiate and regenerate

cancers, while differentiated cancer cells (called CCs [28]) will inevitably die out

(see the section “Cancer stem cells and non-stem cancer cells”, [28]). Thus,

promoting the differentiation of CSCs into CCs appears as a sustainable way to

both limit cancer progression, and avoid the escape from cancer dormancy.840

Now, let us assume that an adequate combination of drugs has been fixed.

We can highlight one suggestion among other possibilities, in which we propose:

¬ a shock treatment through chemotherapy that promotes apoptosis γ̃ and

cell arrest τ̃ (using volasertib for both objectives), and targeting K̃ using AC220

(which has also a suitable effect on cell arrest τ̃),845

­ followed by a more differentiation-oriented treatment (using drugs based
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Figure 9: An illustrative therapeutic strategy that gradually modifies five model parameters,
using adequates drugs: this can be achieved using a mixture of standard chemotherapy or
targeted therapies, along with complementary molecules and/or immunotherapeutic actions.

on DHODH inhibitors) and mitotic/proliferation inhibition of unhealthy cells

(possibly using some immunotherapy-based drugs, or vincristine, see also [79]).

We aim through the selected therapy to achieve an evolution pattern of the

model parameters as close as possible to the idealistic ones given in Figure 9.850

Remark 9. The treatment protocol that we suggest have many similarities with

classical methods in AML therapeutics [79]. We can mention in particular the

3+7 most famous strategy, which is also based on two main separated phases (7

days of intensive induction through cytarabine, plus 3 days of an anthracycline

[79]), and then possibly followed by consolidation chemotherapy and hematopoi-855

etic cell transplant [25, 79].

Next, we apply the therapeutic strategy given in Figure 9 to our model,

starting the first infusion at t = 1 day, and considering a fixed treatment step of

1 day between successive infusions (another choice may be envisaged if needed).

One notices that the model parameters after Infusion 9 are those given in Ex-860

ample 4, for which the decay conditions (64) of Theorem 2 are satisfied.

The evolution of the ordinary and mutated cell densities is shown in Figure

10. It is worth mentioning that in practice, the treatment of AML is spread

over several separated phases. For instance, in the recent experimental work
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[85], an AML (FLT3-type) therapy based on midostaurin and chemotherapy,865

has been separated into two induction phases, a consolidating phase and main-

tenance phase (59% of patients that have undergone the previously mentioned

therapeutic protocol, then underwent bone marrow transplant, have reached the

complete remission state [85]). Similarly, in our example, we assume that after

Infusion 9, a consolidating and a maintenance phases continue so as to correct,870

adjust, strengthen, and fortify the desired dormancy state of the hematopoietic

system (which is the state described by the set of parameters of Infusion 9).
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Figure 10: The evolution of the total densities of healthy and unhealthy cells (resp. x(t) and
x̃(t)) and ũ(t), when we apply the theoretical therapeutic strategy illustrated in Figure 9. If
we do not change the parameter values, the model behaves as in Figure 8 (i.e. CSCs over-
proliferate). However, in the case of treated cancer, the trajectories converge to a dormancy
stable steady state, under the effect of the suggested therapy.

We conclude this work by referring to Table 1 in [79], which summarizes a

number of emerging promising AML therapies, that open up other possibilities

to act on cancerous hematopoietic systems. Many of these strategies can in875

fact be implemented and discussed within the modeling and analysis framework

that we introduced in our current work. It is worth mentioning that the ad-

dition of midostaurin to chemotherapy resulted in a 22% lower risk of death

among patients, in comparison to another more classical treatment (see [85]).

Notice that, most of the molecules listed in [79] (and the references therein)880

are in early phases of development and trials, but they participate greatly, as

53



well as many multidisciplinary works, to nourish this hope of moving towards

systematic treatments for cancer, in general, and leukemia, in particular.
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Appendix A. Proof of Theorem 1 (cell extinction)

Simple calculations show that the derivative ofW, defined in (28), along the

trajectories of (10), satisfies, for almost all t ≥ 0,

Ẇ(t) =
[
−δ̃ + (ψ1 − 1) β̃ (x(t) + α̃x̃(t))

]
x̃(t)

−
[
ψ1(e−ρ

∗
1 τ̃ − 2K̃e−γ̃τ̃ )− 2(1− K̃)e−γ̃τ̃

]
ũ(t− τ̃)

− [δ + (1− ψ2)β(x(t) + x̃(t))]x(t)− ψ1ρ
∗
1

∫ t

t−τ̃
eρ
∗
1(`−t)ũ(`)d`

− (ψ3e
−ρ∗2τ − 1)2e−γτβ (x(t− τ) + x̃(t− τ))x(t− τ)

− ψ2ρ
∗
2

∫ t

t−τ
eρ
∗
2(`−t)β (x(`) + x̃(`))x(`)d`.

Now, according to (29), the conditions 2K̃e−γ̃τ̃ < 1 and ψ∗ > 0 are satisfied. It

follows that for all ρ∗1 ∈
(

0, 1
τ̃ ln

(
k

1+2(k−1)K̃e−γ̃τ̃

))
, where k > 1 is a constant
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that we will select later, we get 0 < 1−2K̃e−γ̃τ̃

k < e−ρ1τ̃ −2K̃e−γ̃τ̃ < 1−2K̃e−γ̃τ̃ .

On the other hand, using the definition of ψ1, we can readily check that:

ψ1

(
1− 2K̃e−γ̃τ̃

)
− 2

(
1− K̃

)
e−γ̃τ̃ > 0.

Therefore, we can notice that for all k ∈
(

1,
(1−2K̃e−γ̃τ̃)ψ1

2(1−K̃)e−γ̃τ̃

)
, the constant:

k = ψ1

(
1− 2K̃e−γ̃τ̃

k

)
− 2

(
1− K̃

)
e−γ̃τ̃ ,

is strictly positive. Next, since β̃ is decreasing, and using the fact that ψ11 > 1,

it follows that (ψ11 − 1) β̃ (x(t) + α̃x̃(t)) ≤ (ψ11 − 1) β̃(0). From the previous in-

termediate results, we conclude that for all t ≥ 0, −δ̃+(ψ1 − 1) β̃ (x(t) + α̃x̃(t)) ≤

ψ12β̃ (x(t) + α̃x̃(t)), where, ψ12 < 0. Now, we assume that the third decay con-

dition, δ > (2e−γτ − 1)β(0), is satisfied, and we put ψ3 = 2β(0)+(δ+β(0))eγτ

4β(0) .

Therefore, it is easy to check that, in this case, we have ψ3 ∈
(

1, δ+β(0)
2β(0) e

γτ
)

.

It follows that δ + (1− ψ2)β(0) is positive. For later use we denote δ∗ =

δ + (1− ψ2)β(0). Next, by selecting ρ∗2 = 1
2τ ln

(
2ψ3

ψ3+1

)
> 0, we deduce that

ψ3e
−ρ2τ − 1 is positive. For later use we denote ρ∗ = ψ3e

−ρ∗2τ − 1. We conclude

that Ẇ(t) satisfies, for almost all t ≥ 0,

Ẇ(t) ≤ψ12β̃ (x(t) + α̃x̃(t)) x̃(t)− ψ1ρ1

∫ t

t−τ̃
eρ1(`−t)ũ(`)d`

− kũ(t− τ̃)− 2ρ∗e−γτβ (x(t− τ) + x̃(t− τ))x(t− τ)

− δ∗x(t)− ψ2ρ2

∫ t

t−τ
eρ2(`−t)β (x(`) + x̃(`))x(`)d`,

(A.1)

where, ψ12 < 0, k > 0, δ∗ > 0, and, ρ∗ > 0. By integrating the previous

inequality (A.1), we deduce that the functional W is bounded over [0,+∞).

From the definition of W, it follows that for all t ≥ 0, the trajectories x̃(t) and

x(t) are bounded by, respectively, the positive constants x̃s and xs. A direct
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consequence is that for almost all t ≥ 0,

Ẇ(t) ≤ψ12β̃ (xs + α̃x̃s) x̃(t)− ψ1ρ1

∫ t

t−τ̃
eρ1(`−t)ũ(`)d`

− δ∗x(t)− ψ2ρ2

∫ t

t−τ
eρ2(`−t)β (x(`) + x̃(`))x(`)d`.

We conclude that for almost all t ≥ 0, we have,

Ẇ(t) ≤ −ψ4W (x̃t, ũt, xt) , (A.2)

where ψ4 = min
{
−ψ12β̃(xs + α̃x̃s), δ

∗, ρ∗1, ρ
∗
2

}
> 0. Now, by integrating the

inequality (A.2), we deduce that for all t ≥ 0,

W (x̃t, ũt, xt) ≤ e−ψ4tW (ϕx̃, ϕũ, ϕx) . (A.3)

It follows from the definition of W that x̃ and x converge exponentially to zero1125

with a decay rate larger than, or equal to, ψ4. From the second equation in

(10), we note that the linearity in ũ and the fact that 2K̃e−γ̃τ̃ < 1, imply that ũ

converges exponentially to the 0-equilibrium of the shifted system when x̃ and

x also converge exponentially to zero. This concludes the proof of Theorem 1.

Appendix B. Determining s, s̃, m, and m̃, in (37) and (38)1130

Since R and R̃ have similar forms, we prove the desired results only for R.

Using the expression of β given in (1), we rewrite for all e > 0 and z > −e,

R(z) = β(0)

(
1

1 + b(z + e)n
− 1

1 + ben

)
− θz. (B.1)

Obviously, when |z| > 1, we have

|R(z|
|z|
≤ 2β(0) + |θ|

|z|
≤ 2β(0) + |θ|. (B.2)
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To address the case where |z| ≤ 1 for all z > −e and e > 0, we consider first the

function:

ρ†(z) =
1

1 + b(z + e)n
− 1

1 + ben
=
b [en − (z + e)n]

q(z)
,

where q(z) = [1 + b(z + e)n] (1 + ben). Using,

(z + a)n − an = nan−1z + n(n− 1)

∫ z

0

∫ a+l

a

mn−2dmdl,

we deduce that,

ρ†(z) = −nben−1 z

q(z)
+ C(z), (B.3)

where C(z) = −nb(n − 1) 1
q(z)

∫ z

0

∫ `
0

(m + e)n−2dmd`. We ease the notation by

considering h = 1 + ben. Then, by noticing that 1
q(z) = 1

h

(
ρ†(z) + 1

h

)
, it follows

that ρ†(z) = −nben−1
(
ρ†(z)
h + 1

h2

)
z + C(z). Consequently,

ρ†(z) = −nbe
n−1

h2
z + C(z)− nben−1

h
ρ†(z)z. (B.4)

We recall that, by definition, θ = β′(e) = β(0)nbe
n−1

h2 . Therefore,

ρ†(z) +
θ

β(0)
z = C(z)− nben−1

h
ρ†(z)z. (B.5)

On the other hand, observe that (B.1) is equivalent toR(z) = β(0)
[
ρ†(z)− θ

β(0) z
]
.

By combining the last equality with (B.5), we get the intermediate consequence,

R(z)

β(0)
= C(z)− nben−1

h
ρ†(z)z. (B.6)

Now, we readily check that

|C(z)| ≤ nb(n− 1)

q(z)
(|z|+ e)

n−2 z2

2
. (B.7)
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From (B.3) we deduce that
∣∣ρ†(z)∣∣ ≤ nben−1

q(z) |z| + |C(z)|. Using (B.7), it follows

that ∣∣zρ†(z)∣∣ ≤ nben−1

q(z)
z2 +

nb(n− 1)

2q(z)
(|z|+ e)

n−2 |z|3. (B.8)

Consequently, from (B.6), and using (B.7) and (B.8), we obtain the upper

bound,

|R(z)|
β(0)

≤ (nb)2(n− 1)en−1

2hq(z)
(|z|+ e)

n−2 |z|3

+

[
nb(n− 1)

2q(z)
(|z|+ e)

n−2
+

(
nben−1

)2
hq(z)

]
z2.

(B.9)

On the other hand, we observe that, 1
q(z) = 1

[1+b(z+e)n]h . Therefore, when z ≥ 0,

we have, 1
q(z) = 1

[1+b(|z|+e)n]h , and when z ≤ 0, then z ∈ (−e, 0]. Thus, 1
q(z) ≤

1
h ≤

1+b(2e)n

[1+b(|z|+e)n]h . Consequently, for all z > −e, we have,

1

q(z)
≤ 1 + b(2e)n

[1 + b(|z|+ e)n]h
. (B.10)

From (B.10) and (B.9), we deduce that

|R(z)|
β(0)

≤

[
p1

1 + (|z|+ e)
n−2

1 + b (|z|+ e)
n + p2

(|z|+ e)
n−2 |z|

1 + b (|z + e)
n

]
z2

≤

[
p1

1 + (|z|+ e)
n−2

1 + b (|z|+ e)
n + p2

(|z|+ e)
n−1

1 + b (|z + e)
n

]
z2,

where the positive constants p1 and p2 are given by:

p1 =
[
1 + b(2e)2

]n
max

{
nb(n− 1)

2h
,

(
nben−1

)2
h2

}
,

and, p2 =
((nb)2(n−1)en−1)(1+b(2e)n)

2h2 . Next, observe that:

case 1: if |z|+ e ≤ 1, then 1+(|z|+e)n−2

1+b(|z|+e)n ≤ 2, and, (|z|+e)n−1

1+b(|z+e)n ≤ 1.

case 2: if |z| + e > 1, then 1+(|z|+e)n−2

1+b(|z|+e)n ≤ b, and, (|z|+e)n−1

1+b(|z+e)n ≤ b, where,
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b = max
{

1, 1
b

}
. Therefore, in both cases, we proved that:

|R(z)| ≤mz2, (B.11)

where, m = β(0) max
{
p1 max

{
2, b−1

}
, p2b

}
.

Now, recall that R(z) = β(0)
[
ρ†(z)− θ

β(0) z
]
. From (B.11), we get,

|β(0)ρ†(z)− θz|
|z|

≤m|z|. (B.12)

Therefore, we observe that if |z| ≤ 1, the inequality (B.12) implies that

|β(0)ρ†(z)− θz| ≤m|z|. (B.13)

From (B.2) and (B.13), we conclude that, for all z > −e and e > 0, we have,

|R(z)| ≤ s|z|, (B.14)

where s = max {m, 2β(0) + |θ|}.

Finally, based on (B.11), (B.14) and similar results for R̃, one can easily

determine constants ci so that (39) and (40) are satisfied.

Appendix C. Subsequent steps in the proof of Theorem 21135

Now, we focus on the function H, defined after (59). We recall that there

exist ci > 0, i = 1, . . . , 6 such that (39) and (40) are satisfied. In addition, from

the expression of V †, defined in (53), we notice that since λ1 = 2, we get,

V †(Xt, X̃t, Ũt) ≥
c1

max {c1, c2}
Q(X(t)) +

c2
max {c1, c2}

Q(X̃(t),

∣∣∣X̃(t)
∣∣∣ ≤√V †(Xt, X̃t, Ũt), and, |X(t)| ≤

√
2V †(Xt, X̃t, Ũt).
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By combining the previous inequalities, we get the following upper bound:

∣∣∣H(Xt, X̃t)
∣∣∣ ≤ vV †2(Xt, X̃t, Ũt) + c5

√
2V †(Xt, X̃t, Ũt)Q(X(t− τ))

+ [λ4c1(a4 + a2) + c3]
√

2V †(Xt, X̃t, Ũt)Q(X(t))

+ [λ4c2(a4 + a2) + c4]
√

2V †(Xt, X̃t, Ũt)Q(X̃(t))

+c6

√
2V †(Xt, X̃t, Ũt)Q(X̃(t− τ)),

(C.1)

where, v =
(d1λ4+2(a5λ4)2) max{c1,c2}2

2d1
. A direct consequence is that the time

derivative of V † satisfies for almost all t ≥ 0,

V̇ †(t) ≤− 2dV †(Xt, X̃t, Ũt)−
d1

2
Q(Ũ(t− τ̃))

−
[
d− vV †(Xt, X̃t, Ũt)

]
V †(Xt, X̃t, Ũt)

−
[
d4

2
− (λ4c2(a4 + a2) + c4)

√
2V †(Xt, X̃t, Ũt)

]
Q(X̃(t))

−
[
d2 − c5

√
2V †(Xt, X̃t, Ũt)

]
Q(X(t− τ))

−
[
d5

2
− (λ4c1(a4 + a2) + c3)

√
2V †(Xt, X̃t, Ũt)

]
Q(X(t))

−
[
d3 − c6

√
2V †(Xt, X̃t, Ũt)

]
Q(X̃(t− τ)).

(C.2)

Consequently, for all initial conditions belonging to the set

B =
{

(ϕX , ϕX̃ , ϕŨ ) ∈ Cτ × C̃τ × C̃τ̃
∣∣∣ V † (ϕX , ϕX̃ , ϕŨ ) < V

†}
, (C.3)

where, with an abuse of notation, we consider the spaces of continuous func-

tions: Cτ = C ([−τ, 0], (−xe,+∞)), C̃τ = C ([−τ, 0], (−x̃e,+∞)), and, C̃τ̃ =

C ([−τ̃ , 0], (−ũe,+∞)), as well as the upper bound: V
†

= min{dv , u
2
1, u

2
2, u

2
3, u

2
4},

where, u1 = d4

8(λ4c2(a4+a2)+c4) , u2 = d5

8(λ4c1(a4+a2)+c3) , u3 = d4

4c5
, and, u4 = d3

4c6
,

we finally find that the derivative of the functional V † satisfies:1140

V̇ †(t) ≤ −2dV †(Xt, X̃t, Ũt), where d > 0, for almost all t ≥ 0.
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