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ABSTRACT Titre : Apprentissage profond pour l'évaluation automatique des expressions faciales avec application à l'expression de la douleur Résumé : L'expression faciale est l'un des principaux moyens non verbaux d'exprimer des intentions dans la communication humaine. Il s'agit de l'un des signaux les plus puissants, naturels et universels permettant aux êtres humains de transmettre leurs états émotionnels et leurs intentions. Ainsi, l'analyse et la compréhension de l'expression faciale humaine sont cruciales pour de nombreuses applications dans de multiples domaines, notamment les soins de santé et les domaines médicaux, la réalité virtuelle et la réalité augmentée, l'éducation et le divertissement. Pour mesurer l'intensité des expressions faciales, la méthode la plus populaire et la plus largement acceptée est l'utilisation du Facial Action Coding System (FACS). Le FACS associe les changements d'expression faciale aux actions et aux intensités des muscles qui les produisent. Il définit un ensemble d'unités d'action (UA) faciales différentes, qui sont considérées comme les plus petits mouvements faciaux visuellement discernables. Comme toute expression faciale humaine peut être décomposée en un ensemble d'UA faciales et de leurs intensités, la mesure automatique de l'intensité des UA faciales semble être l'étape clé vers une meilleure compréhension et évaluation de l'expression faciale humaine. Par conséquent, dans cette thèse, nous étudions la mesure automatique des expressions faciales en utilisant les UA du visage, avec une application sur l'estimation automatique de l'intensité de la douleur.

Récemment, les techniques d'apprentissage profond sont apparues comme des méthodes puissantes pour apprendre des représentations de caractéristiques directement à partir de données et ont permis de réaliser des améliorations majeures dans diverses tâches de vision par ordinateur liées aux visages. Le principal avantage des approches d'apprentissage profond est leur capacité à apprendre à partir d'expériences et à généraliser sur de nouvelles données non vues. Cependant, pour ce faire, ces mod-ABSTRACT èles profonds doivent être entraînés sur une quantité massive de données, ce qui est difficile à obtenir pour le domaine des UA faciales et de l'estimation de l'intensité de la douleur. La raison principale est que cela nécessite un effort d'étiquetage coûteux et long par des annotateurs humains formés. Par exemple, il peut falloir plus d'une heure à un annotateur expert pour coder l'intensité des UA dans une seconde d'une vidéo de visage. De plus, le codage de l'intensité des UA nécessite une connaissance approfondie de FACS et une formation supplémentaire par des experts de FACS pour être en mesure d'étiqueter correctement les données. Environ 100 heures de formation FACS sont nécessaires pour un seul codeur FACS. Par conséquent, il est difficile d'obtenir un ensemble de données annotées de haute qualité à grande échelle. De plus, étant donné que la distribution des données de l'intensité de l'UA est généralement déséquilibrée vers une expression neutre (niveau d'intensité 0), la performance des méthodes d'apprentissage profond sur ces bases de données est affectée négativement par des données insuffisantes. Par conséquent, dans cette thèse, nous avons proposé plusieurs approches d'apprentissage qui sont capables d'exploiter de meilleures représentations des caractéristiques de l'image du visage sur une quantité limitée de données, améliorant ainsi les performances du réseau par rapport aux approches de l'état de l'art. La première approche que nous proposons consiste à apprendre à se concentrer sur les régions liées à la douleur dans l'image du visage (région d'intérêt) pour une meilleure estimation de l'intensité de la douleur. L'idée principale de cette approche repose sur le fait que les humains n'ont pas tendance à traiter tout ce qu'ils voient dans son intégralité en une seule fois. Il a plutôt tendance à se concentrer de manière sélective sur une partie de l'information au moment et à l'endroit où il en a besoin, tout en ignorant les autres informations perceptibles au même moment. Par conséquent, se concentrer sur les bons endroits et ignorer les autres informations non pertinentes semble être un aspect important non seulement pour les humains mais aussi pour les machines afin de se concentrer sur les informations révélatrices et d'extraire les caractéristiques correctes.

Notre approche imite ce comportement cognitif des humains en intégrant les emplacements des régions d'intérêt dans les images de visages dans le processus de formation ABSTRACT du réseau. Ce faisant, nous indiquons explicitement au réseau où il doit se concentrer dans l'image du visage et ignorer les autres régions non pertinentes ou non importantes.

Comme l'apprentissage profond en général nécessite une quantité massive de données pour être en mesure d'extraire les caractéristiques correctes des images, notre approche devrait fonctionner efficacement sur une quantité limitée de données, car il a déjà su où extraire les informations importantes sur l'image. En plus d'apprendre à se concentrer sur les régions d'intérêt, notre approche apprend également à modéliser l'information temporelle entre les images consécutives d'une vidéo. En reliant les caractéristiques spatiales extraites de chaque image à un réseau neuronal récurrent (RNN), notre réseau est capable de modéliser l'évolution dans le temps de chaque caractéristique faciale dans une séquence d'images, ce qui améliore encore les performances de notre réseau.

Les expériences menées sur une base de données de référence pour l'estimation de la douleur, à savoir la base de données McMaster de l'UNBC, montrent que notre approche surpasse les autres travaux sur le problème de l'estimation de l'intensité de la douleur.

Conscients de l'importance de se concentrer sur les régions d'intérêt pour extraire des informations pertinentes à partir d'une quantité limitée de données, nous avons encore amélioré les performances du réseau dans notre deuxième approche en ne se contentant pas de se concentrer sur les régions d'intérêt dans les images de visages, mais en les isolant pour mieux extraire les représentations des caractéristiques liées à l'expression. Sur la base du concept du paradigme diviser pour mieux régner, nous utilisons le réseau de détection d'objets Faster RCNN pour localiser les régions d'intérêt de l'UA (diviser) avant de les faire passer par un ensemble de réseaux régresseurs de l'UA pour l'estimation de l'intensité de l'UA (régénérer). En isolant chaque région de l'UA, nous sommes en mesure d'estimer correctement son intensité sans nous soucier de l'apprentissage de caractéristiques incorrectes à partir d'autres régions non liées, ce qui réduit le risque de surajustement. En plus de la localisation et de l'estimation de l'intensité de l'UA, l'approche que nous proposons a également abordé un autre problème crucial des patients lors du tournage, à savoir le problème de la pose de la tête. Comme le patient ne regarde pas toujours directement la caméra lors de ABSTRACT l'enregistrement, il est important que notre réseau soit capable de traiter correctement les parties visibles, semi-visibles et obscures de l'image du visage. En entraînant explicitement le réseau à ne prendre en compte que les parties visibles du visage pendant l'entraînement et à ignorer les parties obscures, notre réseau est capable de détecter les caractéristiques correctes même dans les cas extrêmes de pose de la tête. En menant des expériences approfondies sur deux bases de données de référence bien connues sur les expressions faciales spontanées, à savoir les bases de données DISFA et UNBC McMaster, nos approches proposées ont atteint des performances de pointe dans les domaines de l'estimation de l'intensité des UA du visage et de la mesure de l'expression de la douleur. D'après les approches que nous proposons et les résultats des expériences, on peut constater que les UA du visage jouent un rôle important dans la description des expressions humaines, et qu'un système qui mesure correctement les UA du visage mesurera donc aussi correctement tous les types d'expressions faciales humaines, y compris l'expression faciale de la douleur. De plus, comme de nombreux chercheurs en psychologie ont indiqué que l'état affectif sous-jacent est linéairement lié à l'intensité physique des expressions faciales émotionnelles, nos approches de mesure de l'intensité des UA faciales peuvent donc être adoptées pour mesurer tout état affectif et physiologique humain de haut niveau. where n is corresponding to the number of AUs. These reconstructed heatmaps will then be compared with ground truth heatmaps to compute per-pixel loss function for optimising the model's parameters. . . . . . .

3.5

The preprocessing pipeline. First, the original image frame is aligned using Generalised Procrustes Analysis (GPA) alignment, then it is cropped and resized on the face area based on its landmarks. Finally, fixed image normalisation is applied to ease the training process. . . . . . . . . . . .

3.6

The visualisation of the heatmap outputs of the first stage of our network.

It can be seen that our network predicted both the location and intensity In summary, the objectives of this thesis are about studying human spontaneous facial behaviors in image and video for identifying the intensity levels of (1) facial Action Units (AUs) and (2) facial expression of pain. Between these two objectives, we focus primarily on automatic facial AUs intensity estimation, as it is the most basic building block for describing human facial expressions. A system that correctly measures facial AUs will therefore also correctly measures any types of human facial expressions, including facial expression of pain.

INTRODUCTION

review of the state of the art methods in the objective domains of the thesis are also provided in this chapter.

Chapter 3 and 4 present our proposed methods for automatic facial AUs and pain intensity estimation problems. Chapter 3 introduces our novel method of learning to focus on regions-of-interest in face images for pain intensity estimation. Chapter 4

proposed our new method for isolating regions-of-interest in face images for better facial AUs and pain intensity estimation.

Chapter 5 concludes the thesis by discussing the contributions of the thesis, the opening challenges and future research direction on automatic facial AUs and pain measurement.

Context: CIFRE Thesis

This thesis is part of the Digital Therapeutics (DTx) project at Lucine 1 company. The aims of the DTx project is to provide software-based therapeutic solutions for chronic pain patients to prevent, manage or treat a wide range of physical, mental and behavioral symptoms. According to the SFETD 2 , in 2017, there are 150 millions people suffer from chronic pain in Europe. In France, 70% of pain patients do not receive appropriate treatment and only 3% of them receive personalised care. Also, pain is the most common reason for medical doctor consultation and poses great challenges in terms of its treatment. Therefore, the objective of Lucine is to create new digital solutions that help patients to relieve chronic pain.

This CIFRE 3 thesis, as a part of the DTx project at Lucine company and under the supervision of the LaBRI 4 laboratory, aims to automatise the measurement of human facial expressions in general and pain expression in particular by using machine learning techniques on face image and video. These facial expressions measurement information will be a valuable data for better understanding human expressions and improving pain management of the patients. 

CHAPTER 1. BACKGROUND

In this chapter, we first give a general introduction to human facial expression in general and pain expression in particular. Then, we expose the current measurement approaches to measure each of these two domains. Finally, we review publicly available datasets on both of these two domains.

Overview

The face is a window with a view opening onto our emotions. The expressions on human face provide rich information in understanding the emotional state of the person, feeling and attitude. Although there are only a few words to describe different facial behaviors (smile, frown, furrow, squint, etc), human facial muscles are sufficiently complex to allow more than a thousand different facial appearances [START_REF] James | The psychology of facial expression[END_REF]. These facial expressions can sometime provide much more information than any words can do. In 1872, Charles Darwin [START_REF] Darwin | The expression of the emotions in man and animals[END_REF] once said:

" They (the movements of expression in the face and body) reveal the thoughts and intentions of others more truly than do words, which may be falsified. "

It can be seen that facial expressions are an important non-verbal communication channel, which can reveal our true inner feelings and thoughts. In another research, Russell and Fernández-Dols [RFD97] also have said:

" When we turn our eyes to the face of another human being, we often seek and usually find a meaning in all that it does or fails to do so. " [START_REF] Jeong | Lightweight multilayer random forests for monitoring driver emotional status[END_REF], analysing mother-infant interaction [START_REF] Forbes | Infant affect during parent-infant interaction at 3 and 6 months: Differences between mothers and fathers and influence of parent history of depression[END_REF], human-robot interaction [START_REF] Diego R Faria | Affective facial expressions recognition for human-robot interaction[END_REF], and expression mapping for video gaming [START_REF] Huang | Bilinear kernel reduced rank regression for facial expression synthesis[END_REF] are among the domains that benefits from machine understanding of human facial expressions.

It
There are two main stream researches in automatic facial expressions analysis, one is about detecting the presence or absence of a certain facial expressions (e.g., detecting the facial expression of happiness), the other is about measuring the facial behavior intensity of an expression (e.g., pain intensity estimation). The intensity of a facial expression can be seen as the relative degree of displacement, away from a neutral or relaxed facial expression, of the pattern of muscle movements involved in emotional expressions of a given sort [START_REF] Hess | The intensity of emotional facial expressions and decoding accuracy[END_REF].

Many of previous works have focused on detecting facial expressions due to its pioneering investigations along with the direct and intuitive definition of facial expressions CHAPTER 1. BACKGROUND [START_REF] Li | Deep facial expression recognition: A survey[END_REF]. However, as facial expressions are complex and subtle, the meaning and function of these expressions depends largely on their intensity, rather than just the binary selection of presence and absence. For example, the smiles of enjoyment are full-blown smiles, while the "fake happiness smiles" may be asymmetric and are usually less in intensity when observed in naturalistic social settings [START_REF] Ekman | Felt, false, and miserable smiles[END_REF]. In 2013, Gunnery et al.

[GHR13] noted:

" Most of the smile genuineness impression is created by the intensity of the smile. "

It can be seen that the intensity of a facial expression behavior plays a crucial role in defining the meaning and function of the expression. This is inline with many other psychology findings [RE05, HBK95, HBK97], in which they have found that the underlying affective state is linearly related to the physical intensity of the emotional facial expressions. Hence, the intensity of human affective and physiological states (e.g., pain emotion), which cannot be directly measured, can be effectively estimated by measuring the intensity of facial expression. In this work, we seek primarily to address the problem of automatic measuring the intensity of human facial expressions. Besides automatic estimating the intensity of facial expressions, we also aim to automatically measure the intensity of one prototype of facial expressions, i.e., the facial expression of pain.

Measurement of pain is a crucial requirement for many applications in health care and medical fields [START_REF] Thevenot | A survey on computer vision for assistive medical diagnosis from faces[END_REF][START_REF] Al-Eidan | Deeplearning-based models for pain recognition: A systematic review[END_REF]. Since pain can be considered as the symptom of numerous diseases and tissue damage, understanding the patient's pain is very important for clinicians to provide information about the condition of the patient, and to advise the right course of treatment. In clinical trials and clinical practice, pain is usually diagnosed through the patient' self-report based on several factors including severity, sensory quality, location, and duration of the pain. Self-report is often referred to as the gold standard and the primary tool to measure the pain experience [START_REF] Kenneth | The social communication model of pain[END_REF],

in which the patient is asked to quantify the level of pain that they are experiencing.

CHAPTER 1. BACKGROUND However, self-report is not applicable for population who are unable to articulate their pain experience [START_REF] Craig | The facial expression of pain[END_REF], e.g., unconscious or newborn patients. When assessing the distress of others, self-report is often considered as less weighted than non-verbal activities [START_REF] Kenneth | The facial expression of pain better than a thousand words[END_REF][START_REF] Gary | Judgments of genuine, suppressed, and faked facial expressions of pain[END_REF]. In a review of research, von Baeyer et al. [START_REF] Carl L Von Baeyer | Consequences of nonverbal expression of pain: Patient distress and observer concern[END_REF] have noted that "nonverbal behaviors may be a more accurate source of information than verbal reports because they are less subject to 'motivated dissimulation'". Due to subjectivity of pain experience, self-report may not be a reliable assessment technique because it is a controlled and goal-oriented response to pain [START_REF] Schiavenato | Pain assessment as a social transaction: beyond the "gold standard[END_REF], which might be affected by reporting bias and variances in memory and verbal ability [START_REF] Kenneth | The facial expression of pain better than a thousand words[END_REF].

Another approach to measure pain experience of a patient is observer rating, in which the medical staffs (e.g., professional nurses) examine the conditions of the patient and rate the pain intensity accordingly. However, many variables of the patient in pain, i.e., physical attractiveness, sympathy, gender, and age, are known to influence clinical judgments [HRVB90, HLHM00, RW04, DRGP + 11]. Moreover, as the medical staffs exposed to a high number of painful facial expressions for a long period, they may develop an exaggerated bias over time [START_REF] Kenneth M Prkachin | Understanding the suffering of others: the sources and consequences of third-person pain[END_REF], which could have a negative impact on the accuracy of the pain assessment. To overcome these limitations, it is desirable to develop automatic pain assessment systems that can infer the facial information and provide complementary objective information to the clinicians for better measuring and understanding the pain experience of the patients. Hence, in this work, besides automatic measuring the intensity of human expressions, we also aim to construct a pain measurement system which could correctly measure pain intensity level from facial expressions of patients. This system will act as a computer-aided health management system to continuously monitor the pain condition of the patients, providing more insights of the patient's conditions to the clinicians.

In the next sections, we discuss deeply about facial expression and present different ways to measure it. Sections 1.2-1.4 introduce two approaches to measure human facial expressions, while Section 1.5 discusses about pain emotion and the measurement of pain.

Facial expression analysis

In order to analyse facial expression, we need to know the different ways of describing facial expression and the existing approaches to measuring it. There are two main ways for describing a facial expression: judgement and sign based approaches [START_REF] Jeffrey F Cohn | Observer-based measurement of facial expression with the facial action coding system[END_REF][START_REF] Jeffrey | Measuring facial action[END_REF].

Both of them are grounded on the non-verbal communication model proposed by Rosenthal [START_REF] Rosenthal | Conducting judgment studies: Some methodological issues. The new handbook of methods in nonverbal behavior research[END_REF]. The model assumes communication between two human entities: the subject and the observer. The subject experiences an internal state (e.g., pain or other emotions), then expresses through his external features (e.g., facial muscles, body gestures, etc). These features are then recognised and interpreted by the observer.

The judgement based approach takes the role of the observer and also the way he interprets the expression. It tries to decode the meaning of the behaviour, e.g., by assigning one of the six basic emotions [START_REF] Ekman | Constants across cultures in the face and emotion[END_REF] or by giving an emotion intensity score, such as valence or arousal (see Section 1.3.2 for more information about valence and arousal).

Contrastingly, the sign based approach uses the physical communication channel, e.g., the facial muscles. It analyses how each part of the face move, e.g., lowering of the brows or stretching of the mouth. As an example, on seeing a smiling face, an observer with a judgment-based approach would make judgments such as "happy," whereas an observer with a sign-based approach would code the face as having an upward, oblique movement of the lip corners. Compared to the judgement based approach, the sign based approach is better in term of objectivity, since it is purely just the description of each face part's movement. On the other hand, as each part of the face needs to be analysed separately, this sign based approach is harder and takes longer time for the observer to interpret compared to the judgement based approach.

In term of judgement based approach, we focus on the Discrete and Dimensional emotion measurement approaches in Section 1.3. In term of sign based approach, we focus on the Facial Action Coding System, which is described in Section 1.4.

Discrete and Dimensional emotion assessment

In the field of facial expression analysis, the discrete and dimensional emotion models [START_REF] Marsella | Computationally modeling human emotion[END_REF] are the two well-known approaches for describing human affective states. Both of them are judgement based approach. This section briefly introduces the two emotion models and discusses the advantage and disadvantage for each of them.

Discrete emotion model

Discrete emotion model is based on the assumption that there is a limited set of basic emotions categories whose expression and recognition are fundamentally the same for all individuals regardless of ethnic or cultural differences. The model suggests that an independent neural system subserves every discrete basic emotion. However, neuroimaging and physiological studies have failed to establish reliable, consistent evidence to support this theory (see [BW06, CBL + 00]), and the matter remains under debate.

In studies about human emotions, the six basic emotions proposed by Ekman [START_REF] Ekman | Constants across cultures in the face and emotion[END_REF] is one of the most commonly used facial expressions measurement, which is based on this discrete emotion model. The joy, sadness, fear, anger, disgust and surprise are the six expressions included in the measurement (see Figure 1.1 for the visualisation of these expressions). These expressions are referred as "universal" as they were found to be universal across human ethnicities and cultures [START_REF] Ekman | Constants across cultures in the face and emotion[END_REF]. However, advanced research on neuroscience and psychology argued that the model of six basic emotions are culturespecific and not universal [JGY + 12, GRvdVB14]. Psychology studies have found that affect expression patterns in face and eye movements vary within cultures and vary even more across cultures [CBC + 06, JGY + 12]. They suggest that the cultural factors need to be taken into account when measuring facial expressions [START_REF] Klaus | Culture-specific appraisal biases contribute to emotion dispositions[END_REF].

The discrete emotion model is still the most popular perspective for facial expressions assessment due to its pioneering investigations along with the direct and intuitive definition of facial expressions. However, in the downside, this approach cannot express complex affective emotion states. E.g mixed emotions cannot adequately be transcribed into a limited set of categories [START_REF] Kitayama | Cultural affordances and emotional experience: socially engaging and disengaging emotions in japan and the united states[END_REF][START_REF] Du | Compound facial expressions of emotion[END_REF]. Some researchers tried to define multiple distinct compound emotion categories, e.g., happily surprised, sadly fearful [START_REF] Du | Compound facial expressions of emotion[END_REF], to overcome this limitation. However, the set is still limited, and the intensity of the emotion also cannot be defined in the categorical set of emotions.

Dimentional emotion model

Many cognitive scientists oppose the theory of a set of discrete, basic emotions [START_REF] Mandler | Mind and body: Psychology of emotion and stress[END_REF][START_REF] James | Facial expressions of emotion: What lies beyond minimal universality?[END_REF]. Some of these opponents instead take a dimensional view of the problem [START_REF] Scherer | A Blueprint for Affective Computing: A sourcebook and manual[END_REF]. In their view, affective states are not discrete and independent of each other, instead they are systematically related to one another [START_REF] Mehrabian | A measure of arousal seeking tendency[END_REF].

Several dimentional emotion models have been proposed [START_REF] James | Evidence for a three-factor theory of emotions[END_REF][START_REF] James | A circumplex model of affect[END_REF][START_REF] Thayer | The biopsychology of mood and arousal[END_REF]].

Yet, the valence-arousal model proposed by Russell [START_REF] James | A circumplex model of affect[END_REF] seems to be the most famous and have gained great support among emotion researchers [START_REF] Schubert | Measuring emotion continuously: Validity and reliability of the two-dimensional emotion-space[END_REF][START_REF] Posner | The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology[END_REF]. Instead of an independent neural system for every basic emotion, Russell's model proposes that all affective states arise from two independent neurophysiological systems: one related to valence (i.e., level of pleasure) and the other to arousal (i.e., level of affective activation). Each and every affective experience is the consequence of a linear combination of these two independent systems, which is then interpreted as representing a particular emotion. Values of valence and arousal form a 2D emotion wheel, where each point represents an emotional state, as can be seen in Figure 1.2. In term of quantifying the facial expressions, as the value of both valence and arousal is on a continuous scale, this dimensional model can distinguish between subtly different displays of affect and encode small changes in the intensity of each emotion, such as low happy, happy or very happy emotions [START_REF] Elbarougy | Speech emotion recognition system based on a dimensional approach using a three-layered model[END_REF].

Since the dimensional model covers both intensity and different emotion categories in the continuous domain, it is more robust compared to the discrete emotion coding approach. However, this model also has some limitations, it has been criticised for their lack of differentiation when it comes to emotions that are close neighbours in the valence-activation space, such as anger and fear [START_REF] Tellegen | On the dimensional and hierarchical structure of affect[END_REF]. It is also unclear how a facial expression should be mapped to the space or, vice versa, how to define regions in the valence/arousal space that correspond to a certain facial expression. Being a judgement system that is based on feeling, it is again problematic to use this system to describe non-emotional communicative signals (e.g., brow-flash used in greetings) [START_REF] François | Timing is everything: A spatio-temporal approach to the analysis of facial actions[END_REF]. Additionally, this dimensional emotion model is subjective and therefore requires experienced annotators to ensure consistency when constructing datasets.

Facial Action Coding System

The FACS [START_REF] Ekman | Facial Action Coding System: The Manual on CD ROM. A Human Face[END_REF] is the most well-known, standardised and widely used sign based approach [START_REF] Jeffrey F Cohn | Observer-based measurement of facial expression with the facial action coding system[END_REF], which was initially developed in the 1970s [START_REF] Ekman | Facial action coding system[END_REF] and was informed by earlier research by [START_REF] Hjortsjö | Man's Face and Mimic Language[END_REF][START_REF] Darwin | The expression of the emotions in man and animals[END_REF]. FACS defines a unique set of anatomically based facial actions called Facial Action Units (AUs). Each AU is based on one or at most a few facial muscles and may occur individually or in combinations, e.g. AU1 (inner brow raiser) codes contractions of both the frontalis and pars medialis facial muscle, while AU23 (lip tightener) codes contractions of the only the orbicularis oris muscle [START_REF] Ekman | Facial Action Coding System: The Manual on CD ROM. A Human Face[END_REF] (see Figure 1.3). Table 1.1 lists the main AUs along with their description and the facial muscle(s) involved.

In addition to the presence or absence of AUs, FACS also defines intensity codings on a five point scale from A to E for representing the intensity variation from barely detectable or trace (A) to maximum (E) [START_REF] Ekman | Facial Action Coding System: The Manual on CD ROM. A Human Face[END_REF]. Recent works [LCP + 12, MMB + 13] FACS intensity with high precision when training on a limited amount of data. As facial AUs are independent of interpretation and can be used for any higher order decision making process, this work of automatic measuring facial AUs intensity is one of the key steps towards better understanding human facial expression and assessment.

In the next section, we discuss about one specific type of human facial expressions:

the facial expression of pain. Since FACS can be used to describe any facial expression, we show how can we utilise FACS to measure the intensity of pain.

Pain expression and measurement

Pain is a complex phenomenon that affects millions of people around the world, and is a common cause of agony and suffering. In order to quantify the expressions of pain,

we first explain what is pain in general and then how to measure it.

Pain emotion and expression

Pain is an inner feeling that draws attention, alerts individuals to possible bodily dan- In order to describe pain, an extension of the Rosenthal non-verbal communication model [START_REF] Rosenthal | Conducting judgment studies: Some methodological issues. The new handbook of methods in nonverbal behavior research[END_REF] is developed and presented by Prkachin and Craig [START_REF] Kenneth | Expressing pain: The communication and interpretation of facial pain signals[END_REF]. The model begins with an experience of pain, then an encoding process encodes information about the experience into external features. Finally, these features are then decoded by an observer. According to the model, the perception of pain experience is influenced by three factors including: the pain stimulus (e.g., the severity of tissue damage), the intrinsic factors (e.g., aging) and the extrinsic factors (e.g., stress-induced analgesia).

The intrinsic and extrinsic factors may amplify or attenuate the effects of the noxious pain stimulus, leading to higher or lower level of perceived pain experience. 

Pain measurement

To measure the pain emotion, there are serveral possibilities including: stimulus measurement, self-report and observer rating. Regarding the stimulus measurement, this is an easy approach to measure the pain experience, since the intensity level can be obtained directly from the pain stimulus device, e.g. the voltage of an electro-shock stimulus or the temperature of an heating stimulus. However, as the perception of pain is influenced not only by the pain stimulus but also by the intrinsic and extrinsic factors, pain measurement should take into account both of these factors. Yet, intrinsic factors like mood, beliefs or personality seem impossible to be quantified and thus do not lead to a reliable measurement of pain. Self-report is another approach for measuring the pain experience, which refers to conscious communication of pain-related information by the patient. The approach is often referred to as the gold standard in pain assessment, and has been widely used in many different clinical applications. However, self-report is also being considered as a controlled and goal-oriented response approach [START_REF] Craig | The facial expression of pain[END_REF], which can be affected by reporting bias and variance in memory and verbal ability [START_REF] Kenneth | The facial expression of pain better than a thousand words[END_REF]. Furthermore, self-report is difficult to collect for dynamic situations that require a continuous intensity measurement over time. Regarding observer rating measurement, there is good evidence that facial pain expressions, which can be observed by an observer, is not only sensitive but also specific to pain and can be distinguished from expressions of basic emotions [Wil02, CPG11]. Hence, this work focuses on measuring the pain reaction of the subject in terms of facial expressions, based on the observer's observation. As observer rating is highly subjective, it is possible to combine several observers to obtain a more robust and reliable measurement result. In order to formulate the measurement of pain, Prkachin and Solomon proposed a pain intensity scale [START_REF] Prkachin | The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain[END_REF] termed by PSPI. The PSPI pain intensity is defined as the sum of some pain-related facial AU intensities as follows: 

P SP I = AU 4 +

Databases

Representative data are essential for developing a facial expression assessment system and proving its usefulness. In this section, we provide an overview of the publicly available face image/video databases which consist of AU intensity and pain estimation. We introduce the two mainly used databases in our experiments: DISFA (Section 1.6.2) and UNBC McMaster (Section 1.6.1). Besides these two databases, we also briefly summary other publicly available databases with AU intensity annotated, as can be seen in Table 1.2. Since the process of AU intensity annotation is time consuming and requires trained experts, only a few databases exist. Regarding the problem of pain intensity estimation, as our work is mainly focus on FACS based approaches (see Section 1.5.2), the UNBC McMaster appears to be the only FACS based pain database that available in research community.

UNBC McMaster database

The this figure, we can see that the database is highly imbalance with more than 85% of the data is labelled as zero. Obviously, without rebalancing the dataset, any leadingbased AU intensity estimation system derived from this dataset will be biased towards the zero intensity, as it is too dominant the dataset [START_REF] László | Facing imbalanced data-recommendations for the use of performance metrics[END_REF]. Therefore, rebalancing is an important step before any further analysis on this data set.

Besides the AUs annotations, the database creators also provided discrete pain in- and sadness. The participants were 27 adults (12 women and 15 men) of different ethnicities: three were Asian, 21 Euro-American, two Hispanic, and one African-American.

Their age is between 18 and 50 years. Their facial behavior was recorded with a resolution of 1024 × 768 pixels, at 20 fps under uniform illumination. Figure 1.9 shows some sample frame images from the database. We chose the DISFA as one of the main evaluating databases in our work since it is one of the few naturalistic databases which provide per-frame annotated videos for quite a lot of differences AUs (12 AUs) in all 6 intensity levels. Other databases only contain very few AUs or only posed facial expressions. More importantly, the annotated AUs in the database are highly reliable, with the ICC between expert raters being greater than or equal to 0.80. As the correctness of the database will directly impact the performance of any system derived from the database, the high reliability of the database is one of the main points when we select a database for training and evaluation of our proposing approaches.

BP4D-Spontanous database

The Binghamton-Pittsburgh 4D spontaneous expression database (BP4D-Spontaneous) Having the pain expression annotated is a plus point of this database. However, as the number of AUs that annotated with intensity are extremely low (only two AUs) and AU intensity is the main focus of our work. Hence, this database is not suitable for our purpose.

FERA 2015 database

The 

GFT database

The Sayette Group Formation Task database (GFT) [START_REF] Jeffrey M Girard | Sayette group formation task (gft) spontaneous facial expression database[END_REF] is the first to address the need for a well-annotated facial expression database of multiple participants during unscripted interactions. The database consists of 172, 800 video frames from 96 subjects, spontaneously interacting with each other in group settings (from 2 to 3 persons per group). These subjects are including 54 males and 42 females with their age is between 21 and 28 years. They were drawn from a larger study on the impact of alcohol on group formation processes. The occurrence of 20 AUs was annotated in the database, which are including AU 1, 2, 4, 5, 6, 7, 9, 10, 11,[START_REF] Jgy + | [END_REF]14,15,17,18,19,22,23, 24, 28, and 99. Among them, five AUs were selected for intensity coding, including AU 1, 6, 10, 12, and 14. Regarding the reliability of the annotations, the inter-rater agreement between their FACS coders ranges from 0.72 to 0.88, which indicates a good to strong reliability for the AU annotations.

As the main purpose of the database is about studying the impact of alcohol, participants had have to drink some alcoholic beverages, which could lead to some differences between their expression and their true feelings. Moreover, the study were focusing on young people with their age is between 21 and 28 years, which is only a small portion of the population. 

CHAPTER 2. STATE OF THE ART

In this chapter, we review prior works on automatic intensity estimation of facial expressions. We provide an overview about different techniques that can be used in face image analysis in Section 2.1. Then, in Section 2.2, we review the state of the arts preprocessing techniques for facial images, which are common to any face analysis approaches. Finally, we provide a literature survey on the fields of facial AUs and PSPI pain intensity estimation in Section 2.3.

Image processing techniques

In order to measure facial expressions from face image or video, we need to apply different image processing techniques to extract important information from the image.

In this section, we briefly introduce these methods for analysing face images. We categorise these methods into two technical-groups including traditional and deep learning approaches. Traditional image processing approaches refer to the conventional hand design feature extracters, which requires a considerable amount of engineering skill and domain expertise, while deep learning based methods refer to the learning approaches that automatically learn to extract features by training on a large amount of data. We review the commonly used techniques in both of these two technical-groups in the next sections.

Traditional image processing methods

Traditionally, in order to measure facial expressions from an image, there are three main steps of image processing including feature extraction, dimensionality reduction, and feature estimation. Feature extraction reviews the techniques that can be used to extract a vector containing information about the face image, commonly called "feature" vector. The dimensionality of these features is then reduced by applying different dimensionality reduction techniques to remove irrelevant or redundant information.

Finally, these features data are fed into feature estimation model for measuring the CHAPTER 2. STATE OF THE ART intensity of the facial expression.

Feature Extraction

Feature extraction refers to the task of extracting important information (features) from an image. In this section, we introduce some popular techniques that can be used for extracting features from images, including spatial filter based and histogram based methods. For in-depth review, see Zhi et al. [START_REF] Zhi | A comprehensive survey on automatic facial action unit analysis[END_REF]. The SIFT features are robust to rotation and scale, meanwhile they are tolerant to illumination variations and small registration errors.

Spatial filter based methods

Dimentionality Reduction

Since the features extracted from face images can have many dimensions, sometimes more than several thousand, there is a need of reducing the number of dimensions of these features. Dimentionality reduction (DR) methods provide a mapping from the original features to a feature subspace, either by selecting a subset of dimensions or by mapping to a new space of reduced dimensionality. This section briefly reviews some common DR methods that are widely used in face image analysis. Further details can be found in the comparative review by Van Linear Discriminant Analysis (LDA) [START_REF] Fisher | The statistical utilization of multiple measurements[END_REF] is another DR approach, which can be defined as a supervised learning method that works by transforming the data onto a subspace that maximises the ratio between-class variance to within-class variance in order to increase the separation between classes. A more recent approach is Spectral Regression (SR) [START_REF] Cai | Regularized locality preserving indexing via spectral regression[END_REF] , which first performs spectral analysis on the Laplacian matrix, followed by learning a linear projection through least squares regression.

Feature estimation

In the domain of traditional facial expressions measurement, after extracting features from a face image, we need to apply a feature estimation method to estimate the intensity of an expression. Normally, this feature estimation method belongs to supervised learning approaches because it works best with vast amounts of fuzzy data. In this section, we briefly review some common supervised learning techniques that can be used to measure the intensity of facial expressions.

Support Vector Machines Support Vector Machines (SVMs) are powerful statistical classifier for binary linear classification. The main idea behind SVMs is the creation of distinct borders between partitions of given data, in order to break the data into multiple sections that could be used for classification purposes with the future input [START_REF] Christopher | A tutorial on support vector machines for pattern recognition[END_REF].

SVM was introduced in 1992 by Vapnik et al. [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF] and can be used for classification (SVC) [START_REF] Vapnik | The nature of statistical learning theory[END_REF] or regression (SVR) [DBK + 96]. Support Vector Classification (SVC) is a max-margin classifier, i.e., it learns the decision boundary by maximising the margins between the classes. Support Vector Regression (SVR) maps regression to a classification problem, by defining a tube around the target function as the correct class and then applying the same max-margin framework as SVC.

Relevance Vector Machines Relevance Vector Machines (RVMs) [START_REF] Michael | Sparse bayesian learning and the relevance vector machine[END_REF] is a machine learning technique based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. As a consequence, they can generalise well and provide inferences at low computational cost. RVMs is kernel based machine learning approach and can be used as an alternative to SVMs for both regression and classification problems. The advantages of the RVMs over the SVMs is the availability of probabilistic predictions, using arbitrary kernel functions and not requiring setting of the regularisation parameter [START_REF] Pal | Support vector machines/relevance vector machine for remote sensing classification: A review[END_REF].

Adaptive Boosting Adaptive Boosting (AdaBoost) [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF] is an optimisation method and can aslo be used for both classification and regression problems. It is based on the idea of creating a highly accurate prediction rule by combining many relatively weak and inaccurate rules. AdaBoost creates a collection of component classifiers by maintaining a set of weights over training samples and adaptively adjusting these weights after each toosting iteration: the weights of the samples which are misclassified by current component classifier will be increased while the weights of the samples which are correctly classified will be decreased. As AdaBoost consists of many classifiers, this optimisation method appears to be slower compared to other learning approaches. On the other hand, AdaBoost seems to have a great resisting against the overfitting problem

[WLH + 19].

Conclusion

In this section, we have reviewed some traditional image processing methods that can be used for analysing face images. These methods requires a considerable amount of engineering skill and domain expertise to be able to correctly analyse facial expressions from face image or video. Besides these traditional approaches, there is another group of image processing techniques that are able to automatically learn to extract rich information from large amount of data, which we will discuss in the next section.

Machine Learning and Deep Neural Network

Machine Learning (ML) is a field of study which allows machines to learn from data or experience and make a prediction based on the experience. Instead of trying to program knowledge into computers, Machine Learning (ML) seeks to automatically learn meaningful relationships and patterns from examples and observations [START_REF] Christopher | Pattern recognition and machine learning[END_REF].

Depending on the approach, type of input/output data, and kind of tasks to achieve, ML can be categorised into three categories, including supervised, unsupervised learning, and reinforcement learning.

In supervised learning [START_REF] Lecun | Deep learning[END_REF], the ML model learn from examples. In the training process, each pair of input data and its ground truth label is used to calibrate the open parameters of the ML model. Once the model has been successfully trained, it can be used to predict the label of newly unseen data.

In unsupervised learning [START_REF] Jerome H Friedman | Data mining and statistics: What's the connection?[END_REF], the ML model track operations to describe the structure of unlabelled data. For example, clustering analysis is a branch of this group that proposes to classify the unlabelled data. The algorithm tries to identify the common features of data belonging to a group. When a new piece of data appears, it will be assigned to the group which exhibits the same common features.

In reinforcement learning [START_REF] Janiesch | Machine learning and deep learning[END_REF], instead of providing input and ground truth pairs, we describe the current state of the system, specify a goal, provide a list of allowable actions and their environmental constraints for their outcomes. Then, we let the ML model to experience the process of achieving the goal by itself using the principle of trial and error to maximise a reward concerning how to map situations to actions.

An algorithm which is built for tasks of a ML system and able to learn from data is called a ML algorithm. Depending on the learning task, there are various classes of ML algorithms, each of them coming in multiple specifications and variants, including regressions models, instance-based algorithms, decision trees, Bayesian methods, and Artificial Neural Networks (ANNs). In the next sections, we will briefly introduce some ML algorithms that have been widely used for analysing facial expression from image. Deep Neural Networks consist of multiple layers with thousands or millions of adjustable parameters. These adjustable parameters, often called weights, are real numbers that can be seen as 'knobs' that define the input-output function of the network.

In order to adjust the weights of the network appropriately and automatically, we use learning algorithms such as Stochastic Gradient Descent (SGD). Basically, the learning algorithm computes a gradient vector with respect to the weights of the network though a process called gradient backpropagation [START_REF] Lecun | Deep learning[END_REF]. This gradient vector, for each weight of the network model, indicates by what amount the prediction error would increase or decrease if the weight were increased by a tiny amount [START_REF] Lecun | Deep learning[END_REF]. The weight vector is then adjusted in the opposite direction to the gradient vector. By slowly moving with each of these tiny steps, it will eventually reach to the point where the error is minimal, the model is then fully trained and can be used for predicting newly unseen For example, stride 1 means that we slide the filter one place to the right each time and then calculate the output. Filter size (also called receptive field) must be fixed across all filters used in the same convolutional operation. Padding configuration adds a number of rows and columns with zero values to the original input matrix to control the size of the output feature map [START_REF] Wu | Introduction to convolutional neural networks[END_REF]. Without using padding, the convolution output is smaller in size than the input. Therefore, the network size shrinks by having multiple layers of convolutions, which limits the number of convolutional layers in a network.

Padding prevents this shrinking effect of convolutional layer and provides the ability to have unlimited deep layers in our network architecture. Pooling layer Pooling layer is mostly used to down-sampling the size of inputs with the purpose to reduce the spatial resolution of the feature map and so to reduce the computation cost. There are two major types of pooling: max pooling and average pooling [START_REF] Scherer | Evaluation of pooling operations in convolutional architectures for object recognition[END_REF]. The pooling operation is also based on a sliding window which goes through the input feature map, and the pooling operation is conducted in the overlapping area of the pool. For max pooling layer, as can be seen in Figure 2.4b, the pooling operation outputs the maximum value of the given matrix while it is obviously the average value for the average pooling layer. Regarding the performance of these two layers, Boureau Image from [START_REF] Han | Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding[END_REF].

between the number of parameters of FC layers compare to other layers in AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. It can be seen that these FC layers contain more than 90% parameters of the network. As these layers contain a large number of parameters, which results in a large computational effort for training them. Therefore, a promising and commonly applied direction is to remove these layers or decrease the connections with a certain method.

For example, GoogLeNet [SLJ + 15] designed a deep and wide network while keeping the computational budget constant, by switching from fully connected to sparsely connected architectures.

The four types of layers that we have mentioned above are not the only ones each sample is independent (e.g., image classification), this presents no problem. But if data points are related in time or space (e.g., natural language processing), this is unacceptable. There is a need of a different type of DNNs that takes into account the relationships between each data point in a sequence. That is when Recurrent Neural Network comes into the picture.

Recurrent Neural Network

Recurrent Neural Network (RNN) is a special type of DNNs which is designed to process data that comes in the form of sequences, e.g., frames from video, snippets of audio, or words in sentences. Traditional DNNs such as CNNs rely on the assumption of independence among the training and test examples, which is not the case for these sequential data. For this kind of data, there are relationships between the data points in a sequence. Hence, DNNs such as RNNs are designed to exploit these relationship information. RNNs are connectionist models with the ability to selectively pass information across sequence steps, while processing sequential data one element at a time. Thus they can model input and/or output consisting of sequences of elements that are not independent. Further, RNNs can simultaneously model sequential and time dependencies on multiple scales [START_REF] Zachary C Lipton | A critical review of recurrent neural networks for sequence learning[END_REF]. The visualisation of a simple RNN with its unfolding can be seen in Figure 2.6. Each step in the unfolding is referred to as a time step, where

x t is the input at time step t. RNNs can take an arbitrary length sequence as input, by providing the RNN a feature representation of one element x of the sequence at each time step. s t is the hidden state at time step t and contains information extracted from all time steps up to t. The hidden state s is updated with information of the new input

x t after each time step:

s t = f (U x t + W s t-1 ) (2.2)
where U and W are vectors of weights over the new inputs and the hidden state, respectively. Function f , known as the activation function (see Section 2.1.2.1), is usually either the hyperbolic tangent or the sigmoid function. RNNs, once unfolded in time, can be seen as very deep feedforward networks in which all the layers share the same weights. Although their main purpose is to learn long-term dependencies, theoretical and empirical evidence shows that it is difficult to learn to store information for very long [START_REF] Lecun | Deep learning[END_REF]. Standard RNNs fail to learn in the presence of time lags greater than 5 -10 discrete time steps between relevant input events and target signals [START_REF] Felix A Gers | Learning to forget: Continual prediction with lstm[END_REF] due to gradent vanishing problem. Recently, researchers have proposed two variants of RNNs that are capable of solving the problem, including Long Short-Term Memory and Gated Recurrent Unit. We will briefly introduce these two networks in the next paragraphs.

Long Short-Term Memory LSTM network is a variant of RNN which is designed to learn long-term dependencies in sequence prediction problem. The network consists of three layers including input, hidden and output layers. Unlike the standard RNN, the basic unit of LSTM's hidden layer is a memory block, and LSTM adds a 'processor' in the algorithm to decide whether the information is useful or not, which is called a cell at time step t, respectively. Then, the Forget gate f t determines whether x t should be retained or not by applying sigmoid activation function on the combination of x t and the previous hidden state h t-1 as below:

f t = σ W f • h t-1 , x t + b f (2.3)
Where W f and b f denote the weight and bias of the forget gate. The output value f t ranges between [0, 1] to make decisions for filtering non-significant information. Next, the Input gate i t determines the extent to which new memories should affect old memories (Equation 2.4). Meanwhile, this unit determines how much new information should be delivered to the next cell (Equation 2.5). Then, the cell state is updated through discarding the information that needs to be discarded and adding new information (Equation 2.6).

i t = σ W i • h t-1 , x t + b i (2.4) Ct = tanh(W C • [h t-1 , x t ] + b C ) (2.5) C t = f t × C t-1 + i t × Ct (2.6)
Finally, we need to decide what we are going to output. This output will be based on our cell state, but will be a filtered version. In Output gate, we run a sigmoid layer which decides what parts of the cell state we are going to output (Equation 2.7). Then, we put the cell state through tanh (to push the values to be between [-1, 1]) and multiply it by the output of the sigmoid gate (Equation 2.8), so that we only output the parts we decided to.

o t = σ W o • h t-1 , x t + b o (2.7) h t = o t × tanh(C t ) (2.8)
The learning process of LSTM mainly includes the error backpropagation process and optimization algorithm. The Backpropagation Through Time (BPTT) algorithm [START_REF] Ronald | Gradient-based learning algorithms for recurrent[END_REF] is applied in the error backpropagation process of LSTM. The Reset gate focuses on how much previous information to be discarded. In GRU, the fewer parameters are computed and processed, and the hidden state is propagated directly among the network cells instead of being controlled by the Output gate. Hence, GRU is simpler in implement but faster in training and evaluating compared to LSTM neural network.

Gated Recurrent Unit

CNN-RNN hybrid neural network

There are some circumstances where we need to extract both local features and temporal features from the input data. For example, in video processing, we need to extract To conclude, in this section, we have introduced different image processing techniques for analysing face images, including both traditional and deep learning approaches. These techniques are fundamental for any facial expression measurement application to be able to work properly. In the next section, we discuss about how to apply these techniques to measure human facial expressions from image and video.

We review the state-of-the-arts approaches that have been used in this particular face analysis domain.

Face image pre-processing

Typically, in the domain of face image analysis, the first and foremost task we need to do is preprocessing, which is basically localising and normalising the face(s) within an image frame. This preprocessing step includes face detection, facial landmark localisation, and face registration, as visualised in Figure 2.11. The following sections review different preprocessing methods that are commonly used in the field of human face analysis.

Face Detection

Detecting and localising all the faces in the image

Facial landmarks localisation

Localising the facial landmark points of the face in the image

Face registration

Rescaling and Aligning the current face image 

Face detection

Automatic face detection is the cornerstone of almost all applications revolving around automatic face image/video analysis including face recognition and verification, face tracking for surveillance, facial expressions assessment, gender/age recognition [START_REF] Salam | A survey on face modeling: building a bridge between face analysis and synthesis[END_REF][START_REF] Yang | Detecting faces in images: A survey[END_REF]. The goal of face detection is to determine whether or not there are any faces in the image and if so, then return the location and the extent of each face in the image.

While this appears as a trivial task for human beings, it is difficult for computers, and has been one of the most studied research topics in recent decades.

Face detection is a relatively mature problem in computer vision, i.e., many algorithms exist that solve the problem robustly and efficiently. One of the first widely 

Facial landmark localisation

Facial Landmark Localisation (FLL) algorithm is defined as the detection and localisation of certain points characteristic on face images, which have an impact on subsequent 

Face registration

Face Registration is an intermediate step to prepare the shape or appearance of the face image for further feature extraction. It aims to find the transformation (or the deformation) which reduces the discrepancies between two or more faces. These registration approaches modify facial characteristics (texture, geometry, motion) while reducing variations in translation, rotation and scale changes [START_REF] Allaert | Impact of the face registration techniques on facial expressions recognition[END_REF].

There are two main approaches for face registration in 2D images, including eyes registration and shape registration. Eyes registration is the most simple and also the most popular strategy in near frontal-view databases. Eyes are detected and images are aligned and scaled with regard to the inter-pupilar distance and orientation [START_REF] Allaert | Impact of the face registration techniques on facial expressions recognition[END_REF].

The reason of using the eyes instead of other facial components for registration is that they are the most reliable facial component that can be detected and they hardly change in the presence of expressions. The limitation of this approach is that eyes must be well detected. Usually, when out-of-plane rotations occur, the eyes disappear quickly and additional deformations are induced, avoiding the detection of eyes [START_REF] Allaert | Impact of the face registration techniques on facial expressions recognition[END_REF].

Shape registration is another more robust approach, which takes all facial landmarks points into account for alignment. Extensions considering more landmarks is supposed to provide greater stability in case of individual poor landmark detections. Among the shape registration methods, Generalised Procrustes Analysis (GPA) [START_REF] John | Generalized procrustes analysis[END_REF] seems to be the most famous and widely adopted one [KGAS15, RCG + 17, VBADE21]. Procrustes algorithm iteratively estimates the reference shape and the frame-wise alignment transform until convergence. Then, the reference shape is initialised by the mean of all points and then iteratively updated with the mean of all aligned points. Finally, the transformations are obtained by minimising the squared differences between the actual shapes and the mean shape. After these transformations, face images are aligned and scaled with regard to the GPA reference shape, hence reduces the varies of face pose, camera position, or anthropomorphic differences between subjects.

Automatic facial expression measurement

Automatic facial expression measurement is an emerging topic in artificial intelligence due to its wide range of applications in many different domains, especially in health care and medical fields. Researchers have proposed a large number of different approaches to analyse human facial expressions. As mentioned in Chapter 1, this thesis mainly focuses on measuring facial AUs intensity as it is the basic building block of facial expressions in general. Hence, in this section, we jointly review the SOTA approaches in both facial AU intensity and PSPI pain intensity estimation domains, as approaches in these two domains share some common technologies. These methods could be categorised into two groups, including feature hand-crafted (Section 2.3.1) and deep learning based methods (Section 2.3.2). For each groups, we discuss the underlying algorithms and existing works that utilise them. 

Feature hand-crafted methods

Deep learning based methods

Deep Learning (DL) in general and CNN in particular have shown some great improvements in many computer vision tasks, including facial expressions analysis. The superior performance of deep models is largely due to their ability to learn from experience and generalise well on newly unseen data. Hence, more and more works focus on analysing human facial expressions using these deep learning CNN techniques. To conclude, from the SOTA approaches that we have introduced in this section, it can be seen that Deep Neural Networks have a great advantages over traditional image processing approaches because their ability to automatically learn complex patterns from training data. However, as the amount of data for the domain of facial AUs and PSPI intensity estimation are quite limited (see Section 1.6), we need to design new learning approaches that are able to learn to extract correct features from a limited amount of data. In the next chapter, we introduce our proposing approach for better pain intensity estimation when learning from a limited amount of data.

Chapter 3 

Learning to focus on regions-of-interest for pain estimation

Context

Facial expression provides sensitive cues about emotional response and plays a major role in human interaction and nonverbal communications. It can complement verbal communication, or can convey complete thoughts by itself [START_REF] James | Automatic recognition of facial expressions using hidden Markov models and estimation of expression intensity[END_REF]. Facial expression can easily be perceived and processed by human observer in a concise manner. The ability to recognise other's facial expression seems to be innate and universal across cultural and racial borders [SBB + 03]. As result, humans can easily recognise a wide range of different expressions, even though different people may look different for different expressions. While it is natural for humans to recognise other's facial expressions, it is a challenging task for a computer vision system to imitate the same cognitive behaviour.

One of the main reasons for this, particularly in the context of pattern recognition appli-ESTIMATION cations, is the so-called curse of dimensionality [START_REF] Bellman | Dynamic programming[END_REF]. The learning complexity grows exponentially with linear increase in the dimensionality of the data. For human, it is effortlessly to receive and process a myriad of sensory data and capture critical aspects of this data in a way that allows for its future use [START_REF] Dicarlo | How does the brain solve visual object recognition[END_REF]. Contrastingly, high dimensionality of data is a fundamental hurdle in many science and engineering applications [START_REF] Bellman | Dynamic programming[END_REF]. The typical approach to overcome the problem of the curse is to extract only the important features from the data for reducing its dimensionality to that which can be effectively processed, e.g., by a regression algorithm for pain intensity estimation. For instance, a computer vision algorithm can process thousands of images per second to estimate pain intensity from face image. However, the feature extraction system to find and extract important features from this high dimensional data is The main advantage of deep learning approaches is their ability to learn from experience and generalise well on newly unseen data [START_REF] Tripathi | Violence recognition using convolutional neural network: A survey[END_REF]. However, to do so, these deep models require to be trained on massive amount of data, which is difficult to obtain for the domain of facial expressions, especially the facial AU and PSPI pain intensity esti-ESTIMATION mation. The reason for that is because it requires a costly and time-consuming labeling effort by trained human annotators. For instance, it may take more than an hour for an expert annotator to code the intensity of AUs in one second of a face video [LTWE + 17].

In addition to limiting the amount of data, the distribution of AU intensities in these databases is also highly unbalanced. Consequently, the performance of deep methods training on these databases are being negatively affected by insufficient data. Therefore, it is necessary to develop a learning approach that is capable of exploiting better feature showing some promising results.

In the next sections, we explain step-by-step our approach. In section 3.2, we discuss about the idea of learning to focus on regions-of-interest. Section 3.3 mentions about the problem of multi-database combination. Section 3.4 explains the architecture of our proposed 3-stages approach. Finally, the experiment results and discussion are explained in sections 3.5-3.6.

Learning to focus on Regions-Of-Interest

One important property of perception is that humans do not tend to process whole information in its entirety at once. Instead, humans tend to selectively focus on a part of the information when and where it is needed, but ignore other perceivable information at the same time [START_REF] Niu | A review on the attention mechanism of deep learning[END_REF]. Hence, focusing on the right places and ignoring other irrelevant information appears to be an important aspect for not only human but also for machine to concentrate on the relevant information and extract the correct features.

In the field of machine learning and deep learning, if we can tell the neural network where to focus in the image, it will ease the training process and improve the general-ESTIMATION isability of the network. Previous works such as Guan et al. [GHZ + 18] and Tang et al.

[TWH + 18] have tried to integrate the location of lesion area in the Chest X-ray image to the training as heatmap regression, resulting some great performance improvements.

Wo and Ji [START_REF] Wu | Constrained joint cascade regression framework for simultaneous facial action unit recognition and facial landmark detection[END_REF] proposed a cascade regression approach that incorporated the loca- 

tion

Multi-database combination

Before presenting the learning approach and network architecture, in this section, we discuss about multi-database combination, which is a way to improve the coverage of the training data. As we have mentioned earlier, the key point for many deep learning related problems is to have a large amount of data for the training to improve the model facial AU intensity. Hence, there is a possibility to combine these two databases using their common facial AUs and train a neural network as a feature extractor to extract the important features regarding these facial AUs. Then, we can finetune this trained network for pain intensity estimation. To the best of our knowledge, our approach is the first to combine these databases together, probably due to some differences in the annotation and the main purpose of each database.

This approach of combining multiple databases cooperates well with the learning to focus on facial regions-of-interest that we have mentioned earlier. One approach increases the amount of training data and its ethnic coverage by combining multi-database together, the other provides a better way to exploit these combined training data. The next section provides more details about how do we utilise these databases for better pain intensity estimation.

The three-stages training approach

In this work, we strive to take a step towards the goal of automatic pain intensity 

Model architecture

The backbone framework of our network is the Inception Resnet v1 The second stage is mainly used for dimension reduction. As the output dimension of the first stage is 8 × 8 per channel (after removing the added upscaling layers), it still contains some structural information that can be exploited. Moreover, as the LSTM network in the last stage requires to have a 1D vector of data to train, we have to reduce the output dimension of the first stage from 8 × 8 per channel to a 1D vector of features.

A naive approach would directly flatten the output feature to 1D vector. However, this flattening approach may result of losing the structural information and making noise.

Instead, we train the mid and top layers of the base network for PSPI scores estimation, which in the same time, has the effect of reducing the dimension of the input to be to exploit the temporal dynamics information between video frames. We don't take the output of the Fully Connected layer as input of the LSTM network because it has less temporal invariability than the one from Average Pooling layer, as can be seen in Table 3.2, the latter yields better performance when the LSTM network is fed by this layer outputs.

In the next sections, we explain step-by-step the network architecture, input and output data at each stage of our three-stages training approach.

First stage: Action Unit intensity estimation

The main goal of this stage is to improve the generalisability of the network by train the first layers' parameters of the base network by using the learning to focus on regions-ofinterest approach on the combination of the two databases. Several upscaling layers are added on top of the InceptionResnet-B blocks for heatmap regression's training. Similar to [START_REF] Sánchez-Lozano | Joint action unit localisation and intensity estimation through heatmap regression[END_REF][START_REF] Fan | Facial action unit intensity estimation via semantic correspondence learning with dynamic graph convolution[END_REF] we first generate the heatmaps ground-truth from our databases by applying Gaussian function on the predefined AU locations, as depicted in Figure 3.3. Each image frame generates a set of N heatmaps for our selected common AUs coordinate x as follows:

g i (x) = I 2πσ 2 exp(- x -xi 2 2 2σ 2 ) (3.1)
Where I is the labelled intensity of the specified AU, and σ is the standard deviation.

Thus, the generated heatmap has the highest value at the centre AU location x and smoothly decrease when the pixel is farther away. This way, we can encode both spatial and intensity ground-truth information of AUs into heatmaps and then use it to train our model as heatmap regression. Because the output of our model is also AU heatmaps, the loss function should be a per-pixel loss function between the predicted heatmaps and the generated one from ground-truth. As we are doing heatmap regression, the per-pixel loss is defined as the L 2 norm, which is defined as:

L i,j = ŷi,j -y i,j 2 2 (3.2)
Where ŷi,j is the output heatmap generated by the network at pixel i, j and y i,j is the corresponding ground-truth. The total loss is computed as the average of the per-pixel loss per AU. The model state with the lowest validation loss is selected to continue on the next stage. The summary of the whole process is depicted in Figure 3.4.

In this stage, we train this network using all of the common AUs between the two databases as heatmap regression, which are including AU4, AU6, AU9, AU12, AU20, AU25 and AU 26. We also report the results of the network when training with AU4, AU6 and AU9 as target heatmaps, since these common AUs are parts of the PSPI formula (Equation 1.1). We expect that learning to focus on regions-of-interest of these AUs will 

Second stage: Frame level pain intensity estimation

As stated, the main purpose of this second stage is for dimension reduction. The first layers of the base network (from the begining to the last of the InceptionResnet B blocks, which can be seen in Figure 3.2) are frozen to preserve the parameters that have been trained using the two databases on the first stage. All the upscaling layers that we added in the first stage are discarded as we don't need to use them anymore. Mid and top layers of the base network are trained as regression to predict pain intensity level.

Data from the UNBC McMaster database are used to train at this stage as this database is the only one that has annotated with the PSPI score. L 2 objective function between the predicted label ŷ and actual label y are used as loss function to optimise the network:

E = 1 N N n=0 ŷn -y n 2 2 (3.3)
Where N is the total number of predictions. At this stage, the whole of InceptionRes-ESTIMATION net network is fully trained and can be used to predict pain intensity level from images or frames. However, we still can improve it by exploiting the temporal information between the frames in video sequence, in which we describe in the next stage.

Last stage: Sequence level pain intensity estimation

In this last stage, temporal information of the video sequence is exploited by linking the features extracted using the base model trained on the previous stages to a LSTM network. LSTM is a variant of Recurrent Neural Network (RNN) which is capable of keeping long-term information from previous inputs. By learning the changing of the facial expressions over time through the sequence of frames, we expect this network to be able to detect the trending of the expression using the past information, and to combine it with the information from the current frame to make a better decision. In order to train this network, outputs of the Average Pooling layer of the base network are extracted as sequences and fed to this LSTM network. L 2 objective function between the predicted label of the sequence and actual label will be used as loss function to optimise the model's parameters.

Experiments and results

Implementation details

The training and testing processes were performed using a NVIDIA Gerforce RTX 2080 Ti 11G GPU with Pytorch v1.6 [PGM + 19]. During the training phase, Adam optimiser [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] were employed with initial batch size of 64 for all the three stages. Initial learning rate is set of 1e -5 for the first stage, 3e -4 for the second stage and 9e -6 for the last stage. For LSTM network, the number of layers and hidden units are set to 2 and 744, respectively. These configurations are set based on a large grid searching.

GPA Alignment Central Crop Normalization

Image preprocessing pipeline

Figure 3.5: The preprocessing pipeline. First, the original image frame is aligned using GPA alignment, then it is cropped and resized on the face area based on its landmarks. Finally, fixed image normalisation is applied to ease the training process.

Data preprocessing

For the data preprocessing step, we want our images to be as similar to the pretrained VGG-Face2 [CSX + 18] images as possible, which would make the model's activation functions to be activated in the same way. The transforming pipeline consists of three steps including face alignment, face cropping and image normalisation, as can be seen in Figure 3.5. Similar to [LCP + 12, RCG + 17] we also use the Generalised Procrustes Analysis (GPA) [START_REF] John | Generalized procrustes analysis[END_REF] to align the face images based on the provided landmarks.

Next, the aligned face images are cropped, resized to 160 × 160 pixels and then normalised using fixed image standardisation as it is the input format of the pretrained model. For a given tensor image X, the normalisation's formula2 is denoted as follows:

X normalised = X -127.5 128 ∀i ∈ X, 0 ≤ i ≤ 255 (3.4)
In training, we apply some data augmentation techniques to improve data scarcity limitation. Specifically, instead of using central crop, for each sample image, we randomly apply Image Translation and Horizontal Flip techniques, as these techniques have proven to be efficient in the task of facial expression recognition [START_REF] Porcu | Evaluation of data augmentation techniques for facial expression recognition systems[END_REF]. We also have applied ColorJitter technique which randomly change the brightness, contrast, saturation and hue of the image.

CHAPTER 3. LEARNING TO FOCUS ON REGIONS-OF-INTEREST FOR PAIN ESTIMATION

For generating sequence database to train LSTM network, similar to [RCG + 17] we first extract the feature vector for each image using the model that has been trained on the second stage. This process produces a set of feature vectors v with v ∈ R 1792 since the Average Pooling layer of the model return 1792 output numbers as 1D vector. Those vectors are grouped together in sequences of length p in a way that each frame is the last of a sequence once. E.g., if the first sequence is

s 0 = {v 0 , v 1 , ..., v p-1 , v p }, then the next sequence is s 1 = {v 1 , v 2 , ..., v p , v p+1 }.
Because we are building a sequence database for pain intensity estimation as regression task, each of those generated sequences is labelled as the pain intensity of its last frame. Hence, the prediction of a frame is done taking into account the past p frames. The value of p is set to 16 based on preliminary testing.

Facing imbalanced data

As stated, the UNBC McMaster is a huge imbalance dataset with about 8, 000 pain frames and about 40, 000 no-pain frames. So, we balance the training data for both the original and generated sequence databases by randomly under-sample the majority class, i.e.

the no-pain class, so that both pain and no-pain categories have the same probability to be randomly picked by the training algorithm. For the DISFA database, since this database is also imbalance and is only used to train for the first stage, we keep only the frames that have minimum of two AUs with its intensity greater than zero.

Evaluation metrics

We conducted a series of experiments to evaluate the effectiveness of the proposed approach on the widely used UNBC McMaster [LCP + 12] database. To compare our results with the other works, the leave-one-subject-out cross-validation is applied on all of our experiments. Data from one subject of the UNBC McMaster database is excluded for validation, the rest are combined with data from DISFA database for training phase, repeatedly. For comparing within the author's scheme, we use Mean Squared Error 

Experiments and results

Firstly, we would like to evaluate the effectiveness of training AU estimation task as heatmap regression for better exploiting regions-of-interest. Table 3.1 shows the evaluation results of CNN model training with and without the task. From this table, we can see that the model trained with AU estimation task (CNN stages 1 + 2) clearly outperforms the model trained without this task. This result is not surprising, as the heatmap regression task guides the network to focus on the right pain-related regions-of-interest, boosting performance of the whole network when utilising the learned features for pain intensity estimation training. Besides learning to focus on regions-of-interest, the AU estimation task also unlocks the ability to train our network on multi-database combination, which further improves the performance of the network. These results once again confirms the effectiveness of learning to focus on regions-of-interest in exploiting the appropriate feature representations from face image. improved compared to CNN model alone. The output of Fully Connected layer seems to contain less temporal information, as it gives a worse result than the CNN model alone.

We further investigated the effectiveness of the data contribution from the secondary database. As it can be seen in Table 3.3, results from the first two stages are already 
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Conclusion

Facial expression of a subject changes spontaneously when experiencing an inner feeling and it is important to precisely extract the feature representations of these changes for better human expression understanding. In this work, we have proposed the learning to focus on regions-of-interest approach training on the combination of multi-database for better pain intensity estimation. Our extensive experiments demonstrate that integrating the locations of the regions-of-interest into the training process provides the deep network with valuable information regarding where to focus in the face image, thus improves the overall performance of the network when finetuning for different facial expressions related tasks, e.g. pain intensity estimation.

While the idea of focusing on regions-of-interest is great for boosting performance of deep neural network, our approach of integrating the location and intensity of the AUs into the training process in the form of heatmap regression still has some limitations. Firstly, we consider the left and right sides of the face with equal weight, which is not entirely correct in some cases when the patients turn their head due to enduring pain (see Figure 3.8). In these cases, some parts of their face are barely visible or completely obscured. Hence, we should pay more attention to the AUs in the visible parts ESTIMATION of the face and reduce the attention to the hard-to-see or obscured parts. Secondly, for generating the heatmap target of each AU, we defined its central location with highest value and gradually decreases as the distance of the pixel increases. This is not an optimal choice because this configuration emphasises the central location of the AU region, while reduces the attention when the pixel move further away from the centre. As the muscle movement of an AU is not only limited to the central of the AU region, but also to the entire muscle-related area of the AU. Therefore, instead of relying on AU target heatmap, an approach that can learn to automatically extract features from the entire AU region is much more appreciable.

In the next chapter, we will present a new approach that addresses both of these limitations. Inspired by the advantage of learning to focus on regions-of-interest, we take it to the next level by not just focusing, but isolating these regions for better extracting feature representations. Besides introducing the new deep learning network architecture, we also propose a new approach for better balancing the training data, which is also a critical problem for the domain of facial analysis in general and pain intensity estimation in particular. ESTIMATION Deep learning is successful when massive amounts of annotated data are available, as evidenced by astonishing results in many different domains, including speech recognition, machine translation and image categorisation. For many problems, however, the precious annotated data may be scarce, hard to obtain or simply unavailable. Facial action unit and pain intensity estimation are among those domains that suffer from data-deficiency. Hence, there is a need of developing a deep learning approach that effectively exploits better feature representations from sparse data. In this chapter, we summarise our findings in paper III, which presents an approach to efficiently learn to isolate regions-of-interest from face image for better extracting feature representations, improving the performance of facial AU estimation and pain intensity assessment.

Paper III: M. T. Vu, M. Beurton-Aimar and K. TRAN, "FFAU: Faster-RCNN for Facial Action Unit intensity estimation," 2022 Pattern Recognition Journal (Submitted).

Context

Data scarcity has long been the major issue while building a deep learning model, as in many fields, sufficient amount of data is not available to train the deep model. The Besides improving network's performance, the explainability of the model behaviour is also an important aspect that we have considered when designing our network. As deep learning models are usually considered as black-box due to their complex mapping of millions of parameters inside these networks, it is difficult to obtain interpretations and explanations for the behaviour of the network. In this work, our approach takes a step towards bettter explicability in predicting PSPI pain intensity level. Previous SOTA approaches only give a final PSPI intensity level for a given image without giving any explanation. In the other hand, our approach not only tells the intensity value of each pain-related AUs that contributed to the PSPI score, but also shows where are the regions for each of these AUs. These are important information which can provides some insight about the behaviour of our model and help practitioner or medical doctor to see and evaluate the reliability of our predictions.

In the next sections, we explain step-by-step about our approach. In section 4.2, we review the object detection network, which is the base network that we used in our approach. We discuss the problem of data imbalance and how we have dealt with it in section 4.3. Section 4.4.2 explains the architecture of our proposed FFAU neural network. Finally, the experiment results and discussion are explained in sections sections 4.5-4.8.

Object detection network

Object detection is an important task for many different computer vision problems the training network to have its prediction toward the dominant category [JCDLT13, CJK04, GMS10], which obviously reduces the capability of the network. Therefore, it is crucial to rebalance the dataset before any further training or analysis. Since the samples in our datasets were annotated in one-to-many fashion, i.e. multiple AUs with multiple intensity levels for a single image, we have applied two popular rebalancing techniques with some modifications to rebalance our databases. These techniques are including under-sampling and over-sampling techniques, which are described in the next sections.

Under-sampling

Traditional under-sampling technique is about randomly drop samples in the majority category. However, since our datasets is quite small and deep learning model in general requires massive amount of data, dropping data should be used as little as possible.

Instead, as our datasets are of the video type, for every k consecutive frame samples, we collapse those samples into a single representative sample. In training, when reading a representative sample, we unfold and randomly pick one of its collapsed samples. This way, we are literally not dropping a single frame in our dataset, while consolidating the balancing of our dataset. Considering the FPS of these datasets are around 20 frames per second, for the majority category (i.e the intensity of all AUs are all zeroes), k is set to 20. Otherwise, k is set to 3. The reason for setting k = 3 for the minority categories is the fact that in video type of dataset, there is not much of difference between two consecutive frame samples. Furthermore, the model could be getting overfitted if the case of several consecutive images appearing in a single batch is repeated. 

Over-sampling

Over-sampling technique is about randomly duplicating samples in the minority category. However, if we duplicate too many times a particular sample, the training model could remember it instead of learning something from it. Therefore, selecting the duplicating rate wisely for each sample is an important factor for rebalancing our datasets.

Since the number of samples annotated with intensity greater than zero for each AU is unbalanced (e.g., AU 1 and AU 25 in Fig. 4.1b) and so does the number of samples at 123 each intensity levels, we try to rebalance for both of them. Let U j i be the number of times the AU i with intensity j appears in our dataset. The duplicating weight of AU i is denoted as:

W U i = 1 5 j=1 U j i × T max α=0 5 j=1 U j α (4.1)
With T denotes the total number of AUs that exists in our dataset. From Equation 4.1 we can see that the lower amount of samples annotated with AU i and intensity j > 0, the higher weight it gets. Therefore, this W U i ensures the balance of each AU i ∈ {0 . . T } inside the dataset.

Next, the duplicating weight of AU i with intensity j is denoted as:

W U j i = 1 U j i × 5 max β=0 U β i (4.2)
Again, we can see that the higher amount of samples annotated with intensity j ≤ 5, the lower weight it gets. While the Equation 4.1 tries to rebalance the dataset at AU ESTIMATION level, Equation 4.2 tries to rebalance the dataset at intensity level. Finally, let x i be the intensity of a sample x with its annotated AU i, the final weight of x is denoted as:

W x = 1 T T i=0 W U i × W U x i i × 1 f + 1 (4.3)
With f denotes the hyper-parameter weight-factor that we will have to select to determine how much we want to penalise the weight for the minority categories. Since the difference in the amount of data between AU intensities is huge (see Figure 4.1), we need this term to prevent oversampling too much the minority samples. The last term (plus one) in the equation is used to ensure the term 1 f rescaling the weight of the minority categories effectively.

In this work, we have set f = 5 based on our preliminary testing. Results of the rebalancing for the DISFA dataset are shown in Figure 4.2b. It can be seen that the balancing of the dataset has been improved compare to the original dataset (see Figure 4.1). Eventhough we can further reduce the value of f to get a nicer distribution of AU intensity. However, as we have mentioned earlier, duplicating too much will lead into the problem of overfitting, therefore we keep this data balancing configuration for all of our experiments.

Faster-RCNN for facial action unit intensity estimation approach

Facial region bounding boxes definition

In order to generate ground truth for training our network to localise the active appearance locations for each AU in our databases, we have defined the facial region bounding boxes based on the provided facial landmarks as can be seen in Figure 4.3. Each facial region contains one facial structure, which is the main active appearance of one or more facial AUs. One can see these facial regions as a more generic version of the heatmap ground-truth defined in [START_REF] Sánchez-Lozano | Joint action unit localisation and intensity estimation through heatmap regression[END_REF][START_REF] Fan | Facial action unit intensity estimation via semantic correspondence learning with dynamic graph convolution[END_REF][START_REF] Manh | Automated pain estimation based on facial action units from multi-databases[END_REF]. While their heatmap ground-truth highly emphasises the central of the region, our facial region approach treats each pixel in the region equally and leaves the decision of which place to emphasise to the higher layer of neural network. Since the human facial structures in the left and right of the face are balanced in general, we have defined the left and right regions for each of the facial AUs accordingly. Table 4.1 shows the predefined facial regions and their containing facial AUs.

FFAU network architecture

Facial region localisation module

As we have mentioned earlier, the face region localisation module of our network takes the responsibility of localising each of the face regions that we defined in Table 4.1. In this work, we have chosen Faster RCNN network [START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] architecture for this part of the network since it is one of the SOTA neural networks for objects detection and it also is an unified end-to-end trainable neural network. Faster RCNN network (see RPN module: For the RPN module, we configured this module to generate anchor sizes of {16 2 , 32 2 , 64 2 , 96 2 , 128 2 } pixels and their aspect ratios (height:width) of {1:4, ESTIMATION 1:2, 1:1, 3:2, 2:1} to cover a variety of potential shapes and sizes. Each of these anchor is assigned to a one-hot vector of classification targets with length γ, where γ is the total number of facial regions in our dataset. From Table 4.1, we can see that there Fast RCNN module: The Fast RCNN module [Gir15, RHGS15] consists of three parts:

a Region-of-Interest (RoI) pooling layer for extracting the interesting part of the backbone features using the given RPN anchor boxes; a classification network for classifying the extracted features and a regression network for regressing the offset from each anchor box to its nearby target object. For the RoI pooling layer, we have selected RoIAlign [START_REF] He | Mask r-cnn[END_REF] instead of the original RoI pooling layer as in [START_REF] Girshick | Fast r-cnn[END_REF][START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] since it has shown to be more precise than the original one [START_REF] He | Mask r-cnn[END_REF]. For the classification net-ESTIMATION work, we use a stack of Linear and ReLU layers with output of k classes. Similarly, we use the same architecture but with output of k × 4 for the regression network. In inference phase, we only keep the predicted boxes which have its classification confidence scores equal or higher than 0.7.

AU intensity estimation module

The AU intensity estimation module is the module that utilises the predicted regions from the Facial region localisation module (section 4.4.2.1) and the shared backbone features to estimate the intensity for each of our facial AUs. This module consists of three sub-modules, including a Per region RoI pooling layer for extracting region features at different sizes from backbone features, a set of Region feature extractor sub-modules for exploiting features from each of the facial regions and a set of AU intensity estimator sub-modules for estimating the intensity for each of our facial AUs. Figure 4.6 shows the overview of this module.

Per region RoI pooling layer

The main role of this layer is about extracting regional features from our shared backbone features by using the predicted region bounding boxes of the Facial region localisation module, the core of this layer is the RoIAlign pooling layer [START_REF] He | Mask r-cnn[END_REF]. Since the aspect ratio of each of our region bounding boxes are quite different, e.g., the appearance of region 6 is most often a square shape, while it is a long rectangle for region 4 (see Figure 4.3). Therefore, if we apply the same square RoI pooling size for all of these regions, some information of the long rectangle shape region will be lost due to the RoI max pooling operation applying on a large receptive field. To avoid this problem, we propose a Per region RoI pooling layer, which is basically a mapping between each region with its corresponding RoI layer as can be seen in Table 4.2. From this table, we can see that region with long rectangle shape (i.e region 4) is mapped with a RoIAlign pooling layer with long rectangle output size (11 × 17), therefore reducing the lost of information. Region feature extractor Since the output of our Per region RoI pooling layer is a map of regional features with different size, according to the type of region (see Table 4.2), we need to have a CNN network to extract features and also reduce the dimension for each of these regional features to the same size. To fulfill this requirement, we have constructed a set of m different Region feature extractor neural networks for each of our facial regions. Each of these networks consists of a Reduction block and an Inception-ResNet block as can be seen in Figure 4.7. These two blocks are parts of the Inception-ResNet architecture [START_REF] Szegedy | Inception-v4, inception-resnet and the impact of residual connections on learning[END_REF] with some modifications in number of channels and kernel size of its 2D Convolutional layers (Conv). Specifically, the kernel size (h, w) and stride (s) of the Conv layers in the Reduction block are configured differently according to the type of region to ensure that it produces the same output size as can be seen in Table 4.2. From this table and Table 4.1, we can see that there are 6 different facial regions (excluding background region) and 5 of them are pair regions (left and right). In this approach, we design our network to use a single Region feature extractor model for a pair regions. Therefore, there are totally m = 6 number of Region feature extractor models that are constructed in our approach.

Once we have all the regional features from our Region feature extractor models, it's time to estimate the intensity for each of our facial AUs.

AU intensity estimator

The AU intensity estimator network consists of a sequence of Linear, BatchNorm, Dropout and ReLU layers as can be seen in One can note that for one facial region, there could be containing multiple AU intensity estimator modules (see Figure 4.6). As we have mentioned earlier, considering the cases like AU 12 (oblique lip raising) and AU 25 (lips parting), it makes sense to have them sharing the same mouth region, since the most active appearance of these two AUs is the mouth region.

Face side visibility module

Handling head pose is a crucial step in many face-related domains [START_REF] Bailly | Head pose estimation by a stepwise nonlinear regression[END_REF][START_REF] Bailly | Head pose determination using synthetic images[END_REF].

Since the patient not always looks directly to the camera when recording, it is important to be able to handle the visible, half-visible and obscured parts of the face correctly. An example of these cases can be seen in Specifically, for a given aligned face image sample i with its facial landmarks matrix M i , let α i be the horizontal distance between the nose point and M i 's farthest point to the right. Let β i be the maximum horizontal distance of M i , the ground truth of face right side percentage p r i of sample i is defined as:

p r i = α i β i (4.4)
From Equation 4.4, we can see that the ground truth p r i emphasises the percentage of visibility of the right side of the face. Since the face image is aligned, the percentage of visibility of the face left side can be calculated as p l i = 1 -p r i . Because of having this relationship between p r i and p l i , we only need to train our Face side visibility module to estimate the value of p r i , then wen can calculate the value of p l i accordingly.

Movement exploitation module

In order to capture the temporal dynamics between the consecutive frame images, we designed the Movement exploitation module, as can be seen in Figure 4.10. For each facial AU, features from the first ReLU layer of the AU intensity estimator module (see By learning the changing of the facial expression over time through the sequence of frames, we expect that this network will be able to capture the facial movements by using both the past and future information (bidirection) and combining it with the information from the current frame to make a better decision. As there are two positions for each AU (except AU 17, see Table 4.1), we take their output predictions and aggregate them with the percentage of face side visibility using the same function as described in Equation 4.6. For each AU, features from each face side are fed into a bidirectional LSTM for exploiting the temporal dynamics between the consecutive frame images. Then, these features are decoded and aggregated to obtain a final estimate of the AU intensity using the predicted face side visibility percentage of the given frame image.

Loss functions

Face side visibility module

As we have mentioned earlier, in our approach, we try to automatically predict the percentage of the right face side visibility for better handling the patient's head pose cases.

The percentage of the left face side visibility will be easily calculated according to the predicted of the right face side visibility percentage. In order to train the network right face side visibility prediction, for each sample i in our dataset, we try to minimise the L 1 distance between the predicted y r i and the ground truth p r i face right side percentage that we have defined in section 4.4.2.3. The objective loss function for this module is denoted as:

L r i = y r i -p r i (4.5)
By minimising L r i , we expect that our network will be able to capture the important features of head posing in face images and then measure the visibility of the right face side correctly.

AU intensity estimator module

To optimise the parameters for this module, firstly we need to estimate the intensity for each of our facial AUs. For a sample i in our dataset, let rθ j i be the intensity estimation of our module for AU j for the right side of the face and lθ j i be the intensity estimation for the left side of the face. The final intensity estimation for AU j of sample i is aggregated as follows:

θ j i = (1 -p r i ) × lθ j i + p r i × rθ j i (4.6)
Where the parameter p r i denotes the face side visibility percentage. Since our network is being trained using two stages strategy, we use the generated ground truth p r i to aggregate rθ j i and lθ j i in training phase. For the testing phase, we use the predicted y r i of our Face side visibility module instead. From this equation, we can see that our network tries to weight the importance of the left compare to the right face side prediction by using the face side visibility factor p r i . This way, we are able to take into account both side of the face, as well as eliminate the problem of the over turning head pose cases like in Figure 4.9b, since the invisible or hard to see parts of the face will have a low weight compared to the visible parts.

Regarding the objective loss function for this module, we utilise the average L 1 distance between the prediction θ j i and ground truth ŷj i for each of our AUs as follows:

L aus i = 1 T T j=0 θ j i -ŷj i (4.7) ESTIMATION
Where T denotes the total number AUs in our dataset. 

Facial region localisation module

Final objective loss function

Finally, the objective loss function for optimising the whole of our network is defined as the sum of the objective loss functions of all of our modules, as follows:

L = 1 N N i=0 L detection i + L aus i + L r i (4.9)
Where N denotes the total number of samples.

Experiments and Results

Implementation details

The whole network system is implemented using PyTorch framework For data augmentation, we also have used Image Translation, Horizontal Flip and

ColorJitter, as we have mentioned in our previous approach, which is described in Section 3.5.2.

In order to train our Movement exploitation module, we have applied two steps training strategy for training our network. In the first step, we train only the CNN part of the network using independent images. For the second step, we freeze the CNN part that has been trained in the first step and train only the Movement exploitation module using sequence frame images. The reason for that is because the likeness nature of sequence images. Since the images in a sequence are mostly look-alike each other, feeding them directly into a CNN layer will make the network easily to be overfitted. Although previously we have mentioned about under-sampling and over-sampling techniques for rebalancing the dataset. However, it is mainly to improve the performance of the CNN part of the network when training with independent images. For the RNN part, we still have to rely on the mentioned two steps training to avoid the problem of overfitting.

To evaluate our approach and compare with other articles' results, for the DISFA database, we report the 3-fold subject independent cross-validation results. For the UNBC McMaster database, we report the leave-one-subject-out cross-validation results.

Evaluation metrics

To compare the performance of our method within author scheme and with the SOTA approaches, we use ICC and MAE for both the two DISFA and UNBC Mc-Master databases. We exclusively compute MSE and PCC for the UNBC McMaster database to be inline with other pain-related works. Since our approach is including the object detection task for detecting the facial regions, therefore we also report the mean Average Precison (mAP) for different IoU including mAP@.5, mAP@.75 and mAP@[.5, .95], which are standard COCO evaluation metrics for object detection task [LMB + 14, RHGS15, HGDG17].

Evaluation results

In this section, we provide the experimental results for evaluating the performance of our proposing approach within the author's scheme. We show the effectiveness and also the impact of each module to the final network.

Facial region localisation results

As we have mentioned earlier, our approach follows the divide-and-conquer paradigm, therefore it is crucial to verify the correctness of the dividing part. To evaluate the performance of this module, we report the average mAP of our approach on both the DISFA and UNBC databases, as shows in there is a slightly decrease in performance in term of MAE (5%). The average ICC of our model when trained with the sequence length of 8 frame images also seems to decrease slightly compared to the other configurations, which is probably due to the initialisation of the model parameters. From these results, we can conclude that our movement exploitation module could not effectively exploit the temporal dynamic information from sequence of frame images. The main reason for that seems to be related to the design of our FFAU neural network. As the AU regions proposing by our facial region localisation module can be of different sizes and shapes, features extracted from them consist quite a lot of spatial-feature variations. While having spatial-feature variations are great for CNN network to improve its generalisability, it is hard for LSTM network to model the changing of a certain feature(s) over time [START_REF] Wissam | Mode variational lstm robust to unseen modes of variation: Application to facial expression recognition[END_REF]. One way to solve this problem is to eliminate these spatial-feature variations out of the sequence features before feeding into the LSTM network. Another approach is to improve the LSTM module to learn to ignore these spatial-feature variations. However, due to the limited duration of the thesis, this will be an open research direction to further improve the overall performance of the network. 

Face side visibility results

CHAPTER 4. LEARNING TO ISOLATE REGIONS-OF-INTEREST FOR BETTER PAIN ESTIMATION

Comparison with State of the art

In this section, we compare the performance of our approach with SOTA approaches on the two domains including facial AU intensity estimation and pain intensity estimation. that utilising graph network for AU intensity estimation. Table 4.8 shows the comparative results for the above mentioned methods evaluated on the DISFA dataset. From this table, we observe that the proposed FFAU network outperforms all other approaches on average with higher ICC and lower MAE. Specifically, the average MAE of our approach shows a decrease of 5% ∼ 79% compared to the other mentioned approaches. On the other hand, in term of ICC correlation, the average ICC of our approach shows an increase of 6% ∼ 34% compared to the other mentioned SOTA approaches. These results suggest the advantages of our approach in dividing the facial regions and conquering their intensity estimation. An example of the prediction of our method can be seen in 

Facial action unit intensity estimation

Pain intensity estimation

Next, for evaluating our approach and comparing with other works in the pain estimation domain, we train our network to predict 6 facial action units intensity that related to pain, which are including: AU4, AU6, AU7, AU9, AU10 and AU43. 

Towards explainable PSPI pain assessment

One of the main drawbacks of deep learning methods is the lack of ability to explain why the network makes a particular decision, which is due to the black-box nature of deep learning algorithms. The end-to-end learning paradigm hides the entire decision process behind the complicated inner-workings of deep learning models, making its decisions less understandable to humans and prohibits their use in safety-critical applications [START_REF] Choo | Visual analytics for explainable deep learning[END_REF]. In the domain of health care and medical fields, automatic system to complement medical professionals such as pain measurement system should have a certain amount of explainability and allow the human expert to retrace the decisions and use their judgment. However, there is still a huge gap between explainability and accuracy in the domain of PSPI pain intensity estimation, as SOTA approaches in this ESTIMATION domain only try to improve the PSPI score evaluation results, without any effort of telling why their model makes such a decision.

In this work, we take a step towards better explainability of deep neural network in PSPI pain intensity estimation. As our approach tries to isolate each pain-related AU before estimate its intensities, we can tell explicitly where are the pain-related AUs in the face images and which score we have estimated for each of these AUs. Moreover, as we have integrated the Face side visibility module to our FFAU network, we can also tell which face side that we have focused the most from the face image. Figure 4.16 shows an example of the prediction of our network. For each face image, our network is able to effectively localise the region of each facial AU and estimate its intensity. From these prediction results, professionals can see if the AU regions are located correctly or not. They can also be able to evaluate the intensity for each of these AU to ensure the correctness of our pain-related AU intensity prediction. Compared to SOTA approaches that only return PSPI score, our network provides much richer information to interpret, making it easier for practitioner or medical doctor to see and evaluate the correctness of our prediction.

While having many improvements in explainability of the model behaviour compared to SOTA approaches in PSPI pain intensity estimation, there are still some limitations that need to be addressed in future works. i.e., the ability to explain why the model assigns an AU to a particular region in the face image or how does it predict an intensity score for a region of the AU. These are some important questions which help to better understanding model's behaviour and prove its reliability. All in all, despite having these limitations, our approach still provides a great explainability in PSPI pain intensity estimation compared to SOTA approaches.

Conclusion

The breakthrough success of deep learning is mainly due to the availability of largescale labelled datasets. However, large-scale labelled datasets are not always available CHAPTER 4. LEARNING TO ISOLATE REGIONS-OF-INTEREST FOR BETTER PAIN ESTIMATION in some domains. Facial action unit and pain intensity estimation are among those domains that suffer from lacking of labelled training data. For these face-related domains, it requires a costly and time-consuming labeling effort by trained human annotators to be able to construct a dataset. Moreover, the work of collecting images and videos of faces is also difficult due to many reasons such as ethical, privacy, cultural variations, etc. Therefore, it is crucial to design learning techniques that can learn to extract correct feature representations from face image with a limited amount of labelled data and that are able to generalise for predicting on the newly unseen data.

The main reason why deep learning requires to have massive amout of training data is to learn to extract important features from images through the gradient descent algorithm. Then, one way to help the network to learn better feature representations from small dataset is to integrate the information regarding where to find these important features from the image. In this work, we have introduced a new approach called learning to isolate regions-of-interest for better extracting feature representations. Based on the concept of divide and conquer paradigm, our approach firstly tries to localise and isolate the regions-of-interest (divide) by utilising object detection network, then we estimate the AU intensity for each of the isolated regions (conquer), accordingly. This way, we not only tell the network where to find the regions that contains important information, but also isolate these regions for better feature extraction. Besides extracting features, we also introduced a module to evaluate the face side visibility, allowing our network to take into account the correct face side in case of head posing. Experiments on the two widely known databases UNBC McMaster and DISFA show that our approach outperforms other SOTA apporaches by a large margin on both the two databases. Furthermore, in term of explainability, our proposed approach provides much better view of the prediction results, especially in term of PSPI pain intensity estimation, compared to SOTA approaches. This result demonstrates the effectiveness of our approach in learning to extract correct feature representations from face image. On top of that, as our approach is about measuring facial AU intensity, which is the most basic building block to describe facial expressions. Hence, our approach can be adopted to measure In this work, we gave an overview on measuring facial expressions by utilising facial action units, with an application on automatic PSPI pain intensity estimation. As any human facial expression can be decomposed into a set of facial action units and their intensities, automatic measuring facial action unit intensity seems to be the key step towards better understanding human facial expression and assessment. In this chapter, we summarise all the findings and contributions that we have proposed. In addition, we discuss the obstacles to automatic facial expressions assessment and present future research challenges.

Contributions of the thesis

Facial action units are the most basic building blocks for facial expression assessment since they describe human facial muscle movements precisely. In this thesis, we addressed the problem of facial action unit intensity estimation, by proposing learning methods to focus and isolate regions-of-interest for better extracting feature representations. Additionally, we adopted the proposing approaches for the application of PSPI pain intensity estimation. The main contribution of this thesis is two fold, i.e., (1) learning to focus on regions-of-interest, and (2) learning to isolate regions-of-interest.

Learning to focus on regions-of-interest

Deep learning methods have achieved great success in learning visual representations thanks to the availability of large-scale labelled datasets. However, large-scale labelled dataset is not always available in some domains, especially in the domains of facial AUs and PSPI intensity estimation due to costly and time-consuming labeling effort by trained annotator. Hence, there is a need of developing a learning approach which is capable of learning to exploit correct feature representations from a limited amount of data. In order to tackle this problem, we have proposed an approach of learning to focus on regions-of-interest for better extracting feature representations. As deep learning in general requires massive amount of training data to learn to extract correct features from images, therefore if we can tell the neural network where are the important places to focus in the image, it will ease the training process and improve the generalisability of the network. Based on that idea, our approach first tries to combine multi-database together and then trains a CNN network as heatmap regression for estimating facial AU intensity. This heatmap regression plays the role of guiding our network to focus on our predefined pain-related AU regions (regions-of-interest), which helps the network to learn to extract feature representations from the correct regions in the face image.

Next, we utilise the knowledge that has been learned on the multi-database combination for feature extraction and PSPI pain intensity estimation, showing some great improvements compared to the SOTA approaches on the same domain. From the experimental results, we emphasised the importance of learning to focus on regions-of-interest for better extracting feature representations and reducing the effect of overfitting when training on a limited amount of data.

Learning to isolate regions-of-interest

Lacking of large-scale labelled training data seems to be the major issue in development of machine learning approaches in many domains, including facial AUs and PSPI pain intensity estimation. To effectively learn to extract correct feature representations from limited amount of data, we have proposed an approach of learning to focus on regions-of-interest, which have significantly improved the performance of the network compared to SOTA approaches. However, this approach still have some limitations as it does not take into account the head pose issue and the predefined heatmap emphasises too much the central location of AU region. Hence, we have extended the previous work and proposed a new approach called learning to isolate regions-of-interest. With this approach, we are not just focusing but isolating the regions-of-interest for better extracting feature representations. Besides extracting features, our network also measures the percentage of face side visibility and incorporates this factor into the equation of AU intensity estimation, thus solving the head pose problem. Experiments on the two widely known DISFA and UNBC McMaster databases show that our proposing approach outperforms SOTA approaches by a large margin on both the two databases, which once again confirms the effectiveness of our learning to isolate regions-of-interest approach when training on a limited amount of data. Besides demonstrating the improvements in performance, we also have shown that our approach also provides a great level of explainability, especially in term of PSPI intensity estimation, compared to the SOTA approaches on the same domain. As more and more deep learning techniques are involved in human life, the ability to explain the outcome of the model's prediction is attracting more and more attention as a way to better understand the behavior of the model and prove its reliability.

Opening challenges

Despite having many promising advancements in automatic facial AUs and PSPI pain intensity estimation, there are still a number of challenges to be addressed for developing reliable and applicable methods for measuring human facial expression. These challenges can be categorised to three groups, including dataset (section 5.2.1), method (section 5.2.2) and computational efficiency (section 5.2.3). In the following, we list the existing challenges and discuss the potential solutions as the future work.

Facial action unit intensity dataset

Well-labelled large-scale dataset is crucial for developing automatic facial AU intensity estimation systems and proving their usefulness. For the field of deep learning and machine learning, it is even more critical to have more high-quality data due to the data-hungry nature of these learning algorithms. This is one of the core challenges in the domains of facial AUs and PSPI pain intensity estimation, since the amount of welllabelled, publicly available data in these domains are still limited. The main reason is because it requires a costly and time-consuming labeling effort by trained human annotators. For instance, it may take more than an hour for an expert annotator to code the intensity of AUs in one second of a face video [LTWE + 17]. Furthermore, AUs intensity coding requires profound knowledge of the FACS and additional training by FACS experts to be able to correctly label data. Approximately, it requires about 100 hours of time involved in this FACS training [START_REF] Kenneth M Prkachin | Assessing pain by facial expression: facial expression as nexus[END_REF] for a single FACS coder. In constructing a FACS based dataset, it requires to have at least two (or more) FACS coders to ensure the correctness and consistency of the dataset. Therefore, it is challenging to obtain a largescale high-quality FACS annotated dataset. Besides labeling data, the work of collecting images and videos of faces is also challenging due to many reasons such as ethical, privacy, cultural variations, etc. These face images and videos, when collected, must also include people from different countries and cultures, of different ages and genders to ensure the coverage of a wide range of different facial traits in the dataset. Lacking of any of these facial traits when training a learning model could lead to the issue of unable to predict well in the real-life cases, e.g. models trained only on young faces do not generalise well to older faces due to the textural differences caused by ageing and variations in facial muscle elasticity and facial dynamics [START_REF] Chakkalayil | Recognizing emotions conveyed through facial expressions[END_REF]. Hence, these facial traits play a vital role in providing a large amount of facial expression variations to improve the generalisability of learning methods. In addition to the covering of human facial traits, the environmental variations are also one another important factor which could impact the performance of automatic facial AU measurement [START_REF] Webb | Emotion recognition from face images in an unconstrained environment 201 Bibliography for usage on social robots[END_REF]. As existing facial AU intensity datasets were created under controlled conditions, they do not sufficiently cover environmental variations such as lighting conditions, backgrounds, pose changes, and occlusion. Hence, it is important to consider such environmental variations during the data collection process to increase the robustness of automatic pain assessment methods. All in all, it is a great challenge in constructing a well-labelled large-scale dataset which covers a wide range of ethnicities, ages, genders, and environmental variations. In the end, the release of such dataset would be of great help in improving the robustness of automatic facial expression assessment methods.

Multi-modal expressions assessment

Since any human facial expression can be decomposed into a set of facial action units and their intensities, automatic facial AUs intensity estimation appears to be a great way to measure facial expressions. The intensity estimation of these facial AUs can also be used to measure any higher order facial expression representations, e.g. Pain expression. Therefore, constructing deep learning model for estimating facial AUs automatically is a key step towards better understanding human expression and assessment.

However, facial AU is only one source of information and if we rely entirely on this source alone, there will certainly be a time when something goes wrong, e.g. the person cover entirely their face due to experiencing a high level of emotion. Therefore, a learning approach that consists of multiple models for exploiting different sources of emotion seems to be an optimal choice for a better and stable automatic human expression measurement. Regarding the sources of emotion that we can exploit, as we have mentioned in Chapter 1, according to Rosenthal non-verbal communication model [START_REF] Rosenthal | Conducting judgment studies: Some methodological issues. The new handbook of methods in nonverbal behavior research[END_REF], the subject experiences an internal state and expresses through his external features. These external features could be facial expressions, body gestures, non-verbal vocalisations, speech or different physiological signals. While the measurement procedure of the physiological signals is complicated and intrusive, body gestures and vocalisations seems to be a great source of emotion, as an alternative to facial expressions.

Multi-modal including the fusion estimations of facial expression, body gesture and vocalisation models is a great way to ensure the accuracy and stability of the network.

Previous works [KCC10, ZLCJ18, KRO20] have shown that using multi different modalities in combination greatly increases performance over unimodal emotion recognition systems. Since humans use more than one modality to recognise emotions and process signals in a complementary manner, it is expected that an automatic system demonstrate similar behavior. Overall, the development of such a multi-modal system capable of complementing each other in the case that some modality feature values are missing or unreliable is a great reward but also is a great challenge.

Real-time expressions assessment

In the fields of healthcare and medicine, the ability to continuously monitor a patient in real-time is very important to ensure the well-being of the patient, especially for in-patients with cognitive disorders or serious illnesses. Hence, when constructing a deep neural network for human expressions assessment, besides improving the generalisability of the model for more accurate predictions, the ability to keep up in real-time configuration is another important aspect that need to be taken into account. The general trend in deep learning is towards deeper, wider, and more complicated networks in order to achieve higher accuracy [HZC + 17]. However, this approach makes deep networks heavier and slower, which is not suitable for the requirements of real-time applications. On the other hand, shallow network is much faster than deep network and seems to be perfectively fit for a real-time application. However, empirical work shows that it is difficult to train shallow nets to be as accurate as deep nets [START_REF] Ba | Do deep nets really need to be deep? Advances in neural information processing systems[END_REF]. Another promising direction is relying on the Knowledge Distillation (KD) technique [HVD + 15] (see Appendix A for a learning approach that utilising this technique), whose idea is to train a shallow student network to mimic the ability of a deep teacher model. This way, we can still have a light-weight shallow network that is fast enough for running in real-time configuration, and at the same time, as accurate as deep network thanks to the KD technique.

One another problem with facial expressions assessment systems is the fact that they do not work directly with original camera images but only with face cropped images.

Traditional approach for inference these expressions assessment systems consists of several steps, including detection of facial landmarks, alignment and cropping of the face, and finally facial expressions assessment (e.g., [VBADE21, WXL + 17]). Each of these steps consumes quite a bit of time and this is one of the main reasons that slow down the whole application. As features of the image have been extracted twice, once inside the facial landmark detection network and once inside the facial expressions assessment network, future work can try to reuse the features from the first step for the second step, e.g., by using RoI pooling layer [START_REF] He | Mask r-cnn[END_REF] to extract features from face regions. This way, we can reduce half of the time to extract features from images, improving the speed of the system for better real-time predictions.

Conclusion

In this thesis, we presented different approaches for efficient learning from limited amount of data, for automatic facial expression assessment with application to the pain emotion. We investigated the importance of integrating information about the location of regions-of-interest in the face image into the training process for better extracting feature representations. In our first approach, we have tried to train our network to focus on regions-of-interest by utilising AU heatmaps regression on a combination of multi-database, reaching a great level of performance compared to SOTA approaches on the same domain. Then, we have expanded the idea from focusing to isolating the regions-of-interest by proposing an approach that relies on object detection network, i.e., the FFAU neural network, which further improves the performance of deep neural network on both facial AUs and PSPI pain intensity estimation. Besides the improvements in performance, our FFAU network has also reached a great level of explainability in term of PSPI pain intensity estimation. While other SOTA methods only return the PSPI score without any explanation, our FFAU network can indicate the intensity and also the regions for each of the AUs that construct the PSPI score, which improve the reliability of our network's predictions. Despite having these improvements, one of the drawbacks of our FFAU network is that it has not be able to exploit the temporal dynamics between consecutive frame images of a video. This drawback, however, is also an opportunity to further improve the performance of our network in the future work.

Considering the challenges that we encountered in this research and those mentioned in Section 5.2, in our future work, we would like to develop a multi-modal computational model which is capable of exploiting both spatial and temporal information from multi different modalities such as facial expressions, vocalisations, and body gestures. With 
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 11 Figure 1.1: The facial expression visualisations of six basic universal emotions. Image from [SDF + 21].

Figure 1

 1 Figure 1.2: The 2D Emotion Wheel. Image from [KZ18].
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 13 Figure 1.3: The visualisation of some AUs. Image from [HCLW19].
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 14 Figure 1.4: Sample facial images with AU intensity variations. Image from [MMB + 13].

  ger and subsequently prompts to escape from the dangerous situations, recovery and heal [Wil02]. According to the most widely accepted definition, pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage[START_REF] Hafd Merskey | Pain terms: a list with definitions and notes on usage. recommended by the iasp subcommittee on taxonomy[END_REF]. The experience of pain is constructed in the brain based on information from multiple sources, including incoming nociceptive or danger signals, information form the senses (vision, touch, hearing), and other modulating factors such as attention, distraction, expectations, anxiety, stress, the physical and social context, and past experience[START_REF] Marchand | The physiology of pain mechanisms: from the periphery to the brain[END_REF][START_REF] Fitzgerald | Central nociceptive pathways and descending modulation[END_REF]. As a result, the same pain stimulus (e.g., electric shock) may lead to different pain experiences, i.e. people differ in their pain sensitivity and also the same person can have different experiences to the same stimulus depending on many factors.
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 15 Figure 1.5: Example of some facial action units occur in painful experience. Image from [WLMW + 22].

  Figure 1.6: Sample images from the UNBC McMaster database.
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 171 Figure 1.7: The distribution of facial AU intensity of the UNBC McMaster database.
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 191 Figure 1.9: Sample images from the DISFA database. It can be seen that the database contains both men and women, of different ethnicities and ages.
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 2 Spatial filter is refer to a multi-resolution technique which consists of a set of discrete wavelets that scan over the facial images to capture both frequency and location information. Generally, the spatial filter based methods adopt the two-dimensional form to deal with facial image processing.Gabor wavelet(Gabor) [START_REF] Gabor | Theory of communication. part 3: Frequency compression and expansion[END_REF] is a popular spatial filter technique for extracting features from images. Gabor features are conducted by convolving facial images with a specific set of Gabor filters of various orientations and scales. A Gabor filter can be viewed as a sinusoidal signal of particular frequency and orientation, modulated by a Gaussian wave. Gabor filters are represented as below: g(x, y, w, θ) = xcosθ + ysinθ (2.1) y = -sinθ + ycosθ where x and y represents the coordinates of the pixel value in spatial domain, w represents the radial center frequency, θ represents the orientation of the Gabor filter, and σ is the standard deviation of the round Gaussian function along the x -y axis. Gabor features provide multi-scale characteristics of the facial images, reflecting the local neighboring relationship among pixels. The features are tolerant to illumination variations, small translation and rotations, and robust to registration errors to a degree [SGC14]. However, Gabor filtering is known to be computationally expensive and suffers from identity bias [ZLZ20]. Haar wavelet (Haar) [Haa11] is another spatial filter technique which is faster than Gabor wavelet in feature extraction from images. Haar wavelet exploits the pair of low-pass filters and high-pass filters in facial image columns and rows independently, where the mean and difference of two adjacent pixel values are figured out for low-pass and high-pass filtering individually [ZLZ20]. Haar features is robust to illumination variations, and an acceptable extent registration error. Haar wavelet is the simplest possible wavelet, and it is suitable for use in a real-time application system. Histogram based methods Besides spatial filter based methods, there are another type of feature extraction techniques that are based on histograms of quantised local descriptors. A local descriptor uses the image intensities within a small neighbourhood, with only a few pixels in diameter. The quantised local descriptor response is accumulated over a larger image region within a histogram. This process discards spatial information and thus provides a compressed descriptor that is invariant regarding small translations. Local Binary Pattern (LBP) [OPM02] is one of the widely-known histogram based feature extraction technique. It uses the sign of the intensity difference between the center pixel and circular surrounding pixels as local descriptor. The value of each center pixel is converted to an integer, which forms the LBP histogram with counting all the integers. Perhaps the most important property of LBP is its robustness to monotonic gray-scale changes caused, for example, by illumination variations [ZLZ20]. Another important properly of LBP is its computational simplicity, which makes it possible to analyse images in challenging real-time configurations. Histogram of Oriented Gradients (HOG) is another histogram based method, uses the intensity gradients as local descriptor. It is simplicity in computing and represents both texture and shape-skin information. The use of orientation histograms has many precursors, but it only reached maturity when combined with local spatial histogram and normalisation in Lowe's Scale Invariant Feature Transformation approach [DT05], CHAPTER 2. STATE OF THE ART in which it provides the underlying image patch descriptor for matching scale-invariant keypoints [ZLZ20]. Scale-Invariant Feature Transform (SIFT) [Low04] is a histogram based method that uses weighted 3D histogram of gradient locations and orientations as local descriptor.
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 2 Figure 2.1: The visualisation of (a) the Biological neuron from [Vod17] and (b) the Artifical neural networks.
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 22 Figure 2.2: Venn diagram of machine learning concepts and classes. Image from [JZH21].
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 2 Figure 2.3: A visualisation of a typical Convolutional Neural Network. Image from [TFSK19].
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 24 Figure 2.4: (a) Convolution operation. The amber squares represent the position of the kernel as it slides through the green input slice. (b) Max Pooling Operation with a filter size of (2,2). Image from [TFSK19].

  et al.[START_REF] Boureau | A theoretical analysis of feature pooling in visual recognition[END_REF] provided a detailed theoretical analysis of their performances in selecting features. Scherer et al.[START_REF] Scherer | Evaluation of pooling operations in convolutional architectures for object recognition[END_REF] further conducted a comparison between the two pooling operations and found that max-pooling can lead to faster convergence, select superior invariant features and improve generalisation of the whole CNN network.Fully Connected layerIn the CNN, Fully-connected (FC) layer usually follows the group of convolutional and pooling layers, as can be seen in Figure2.3. The main use of this layer is to extract the abstract feature representations of the input data. Depending on the problem, an activation function can be added to promote the output for the network. For example, we use linear activation function for a regression problem, and for binary classification we use sigmoid activation function[START_REF] Kumar Lohani | Performance analysis of extreme learning machine variants with varying intermediate nodes and different activation functions[END_REF]. A CNN may have one or more FC layers, and most of the time these layers dominate the number of parameters in a CNN[START_REF] Han | Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding[END_REF]. Figure 2.5 shows an example of the comparison
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 25 Figure 2.5: Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding. Image from [HMD15].

  that exist. A large number of different layers can be found in the related documents of deep learning [LBH15, GWK + 18]. Over the past few years, storage has become more affordable, datasets have grown far larger, and the field of parallel computing has advanced considerably. All these conditions give wings to CNNs to become dominant method in a variety of computer vision problems such as image classification [KSH12, FCNL12, LGTB97], object detection [RHGS15, BWL20], semantic segmentation [LSD15, GDDM13, KS14], computational creativity [GPAM + 20, CWD + 18], and many more. However, despite their power, CNNs also have limitations. For example, CNN works with each training sample independently, without considering whether there are relationships between each of the training samples. In many cases where
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 26 Figure 2.6: The visualisation of a simple Recurrent Neural Network with its unfolding in time calculations. Image from [LBH15].

[

  [START_REF] Goodfellow | Deep learning[END_REF]. The typical structure of a LSTM cell is shown in Figure2.7a. A LSTM cell is configured mainly by three gates: Input gate, Forgot gate, and Output gate. These gates regulate the flow of information into and out of the cell, indicate which information to keep and to be discarded. Let x t and h t to be the input vector and the hidden state
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 27 Figure 2.7: The visualisation of the simplified architecture of (a) LSTM and (b) GRU layers. Image from [ZNNS20].

CHAPTER 2 .

 2 STATE OF THE ART the spatial features from each frame image to see what we have in a single frame and the temporal features to see the changing over time of these spacial features. When CNN is great for extracting spacial features and RNN is great for extracting temporal features, we can combine these two type of DNNs to effectively learn to model both spacial and temporal information. In fact, the combination of CNN-RNN has been proven successful in several classification and regression tasks for modeling spacial-temporal information in many previous works. For example, they have been used for handwriting recognition [DKMJ18], speech recognition [HZZ + 20] from audio streams. In the domain of video analysing, CNN-RNN architectures have also been used for emotion detection [KZ20], sign language recognition [MSTA18] or action recognition [UAM + 17], taking advantage of their ability to learn scene features using the CNN and sequential features using the RNN. There are two main types of CNN-RNN hybrid neural network in the domain of video analysing: sequence-based and frame-based networks. Sequence-based network is basically the network designed to work on sequential data where we have only one label per sequence. The network takes a sequence of frame images and tries to predict the label for the whole sequence. For this sequential data, sign language recognition and action recognition are the two well-known sequence-related problems when we have only one gesture or action labelled per video. To solve this problem, in sequencebased CNN-RNN hybrid network, features extracted by CNN network are fed into RNN network, and only the RNN hidden states of the last frame are extracted for the classification or regression tasks. Since the RNNs such as LSTM or GRU have the capacity of remembering long-term dependencies, hence features from the last frame of a sequence should contain the important information of the whole sequence.Figure 2.8 shows the visualisation of an example of sequence-based CNN-RNN architecture. Besides the sequence-based network, we also have the frame-based CNN-RNN hybrid network. Frame-based network is basically the CNN-RNN hybrid network that is designed to work on per-frame labelled sequential data. Instead of using only the RNN hidden states of the last frame as in sequence-based network, this frame-based network
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 28 Figure 2.8: The visualisation of an example sequence-based CNN-RNN architecture. Image from [UAM + 17].
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 29 Figure 2.9: The visualisation of a frame-based CNN-RNN architecture. Spacial features are extracted from each images by a CNN network, then these features are fed to a GRU layer for extracting temporal information. Image from [KTN + 19].

Figure 2 .

 2 Figure 2.10: Basic 3D CNN architecture: the 3D filter is convolved with the video in three dimensions as indicated by the arrows to produce feature volumes. After subsampling and flattening the features are fed to a fully connected layer for classification. Image from [RM19].
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 211 Figure 2.11: Generic overview of the face image pre-processing pipeline.

  adopted algorithms was the Viola-Jones object detection framework [VJ01]. The framework introduces the idea of computing an integral image over the greyscale input to enable fast evaluation of boosted weak classifiers based on Haar-like features [MBPG14]. Following the pioneering work of Viola-Jones, numerous methods have been proposed for face detection in the past decade. Early research studies in the literature were mainly focused on extracting hand-crafted features with domain experts in computer vision, and training effective classifiers for detection and recognition with traditional machine learning algorithms. Such approaches are limited in that they often require computer vision experts in crafting effective features and each individual component is optimised separately, making the whole detection pipeline often sub-optimal. With the great success of CNNs in computer vision, researchers have proposed several promising model architectures for face detection problem over the past few years. Deep learning based approaches are getting better and better in the task of detecting face from images thanks to the introduction of many large face databases such as Wider Face [YLLT16], MALF [YYLL15], or VGGFace2 [CSX + 18]. Cascade-CNN [LLS + 15, QJM + 19], Single-short Detection [NSCD17, CHP + 21] , RCNN based architectures [CHWS16, ZZLS17, COG19], Feature Pyramid Network (FPN) models [ZWHZ20, TDHL18, NSD19] are among the most well-known Deep Neural Networks for face detection. Performance of these deep learning based face detectors is much better than that of feature hand-crafted based methods, which is once again confirming the advantages of DNNs in learning from data. Further details about different techniques in face detection can be found in the review of the SOTA paper provided by Minaee et al. [MLLB21].

  task focused on the face, like animation, face recognition, gaze detection, face tracking, expression recognition, gesture understanding, etc. Commonly used facial landmarks usually include points around the eyebrows, eyes, nose, mouth and the face contour. According to various application scenarios, different numbers of facial landmark points are labelled as, for example, a 5-point, 17-point, 29-point, 66-point, or 68-point model. Generally speaking, more points indicate richer information, although it is more timeconsuming to detect all the points. FLL methods could be divided into four groups: Constrained Local Model (CLM) based methods, AAM based methods, regression based method, and others [WGT + 18]. CLM based methods consist of a shape model and a number of local experts, each of them is utilised to detect a facial feature point [CILS12, LBL + 12]. AAM based techniques fit a shape model to an image my minimising texture synthesis errors [MCB13]. Regression based methods directly learn a mapping function from facial image appearance to facial feature points [MVBP12, BAPD13]. Besides the three main categories that we have mentioned, there are also other methods, such as graphical model-based methods [ZSCC13], or independent facial feature point detectors [SLBW13]. Recently, deep learning methods become popular tools for computer vision problems and they also have achieved great successes in this domain of Facial Landmark Localisation. In fact, for facial landmark detection and tracking, there is a trend to shift from traditional methods to deep learning based methods [WJ19], indicating the superiority of these data-driven learning approaches. Since deep learning based methods also perform regression to locate the facial landmarks, they fall into the category of regression based methods. Recent deep learning methods [RPC17, RSCC17] can jointly perform face detection, facial landmark localisation, pose estimation, and gender recognition, all in a single neural network. Another approaches [ZLL + 16, JL16] went to different di-
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 212 Figure 2.12: Example of large-pose face landmark localisation. From left to right: initial landmarks, fitted 3D dense shape, estimated landmarks with visibility. The green/red/yellow dots in the right column show the visible/invisible/cheek landmarks, respectively. Image from [JL16].
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  only possible through highly engineering systems, which are well designed and trained through specialised image processing and pattern recognition algorithms. Traditional hand-engineered feature extraction methods have been around for decades and have been used for extracting features for many facial expression recognition and analysis systems [KRP12, BLF + 06, SZP13]. However, these hand-engineered methods at times can be challenging, highly application-dependent, time consuming, brittle and not scalable in practice [SA19]. Recently, deep learning techniques have emerged as powerful methods for learning feature representations directly from data and have achieved some major improvements in various face-related computer vision tasks [SKP15, VBADE21, ZPS17, STE13]. Because these learned feature representations are extracted automatically to solve a specific task, they are extremely effective at it. In fact, deep learning models that perform feature extraction and classification outperform models that classify manually extracted features by a large margin, in many different domains [SBAO18, ABRD15, XLW + 16].

  representations of facial image features on a limited amount of data. In this work, we propose a new three-stages training approach which can combine multi-database together for more training data and, at the same time, learn to focus on the right regions on the face (regions-of-interest) for better exploiting the data. We demonstrate the effectiveness of our three-stages training approach on the UNBC McMaster database,

  of facial landmarks into the training process, which improved the performance of the face AU recognition task. Li et al. [LAZ17] proposed a region-based network which integrated the information regarding the location of each AU into the training for better AU detection. Sánchez et al. [SLTV18] and Fan et al. [FLL20] tried to encode both the location and intensity of each facial AU as a heatmap (see Figure 3.1) and train the network as a per-pixel regression problem, resulting some great improvements in the task of facial AUs intensity estimation. These findings once again confirm that learning to focus on the right parts of the face image would definitely help to improve network performance.In this work, inspired by [SLTV18, FLL20], we utilise the heatmap regression to force our deep neural network to focus on each facial AU's regions. However, different from [SLTV18, FLL20], we do not use the predicted heatmaps for AU intensity estimation, instead, we extract the embedded feature representations of the network for further pain intensity estimation training. Since the network have been trained to focus on each of the pain-related AU regions (regions-of-interest), hence these feature representations should contain the important information regarding each facial AU. Section 3.4 explains step by step our approach to utilise heatmap regression for boosting performance of our pain intensity estimation network.

Figure 3

 3 Figure 3.1: A visualisation example of target heatmaps for a given sample. The size and peak of the heatmaps are given by the corresponding labels, and are located according to the landmarks defining the AU locations. Image from [SLTV18].

Figure 3

 3 Figure 3.2: The overview of the proposed three-stages training approach. Several upscaling layers are added for heatmap regression training in the first stage (blue block). The mid and top layers of the base Inception Resnet network are trained as linear regression in the second stage (green block) and then, the output of the Average Pooling layer are extracted to train the LSTM network in the last stage (pink block).

  [START_REF] Szegedy | Inception-v4, inception-resnet and the impact of residual connections on learning[END_REF] architecture, in which we add some different layers to train different parts of the network at each of the three-stages, as showing in Figure3.2. Specifically, in the first stage, we add some upscaling layers, which are including Transposed Convolution[START_REF] Dumoulin | A guide to convolution arithmetic for deep learning[END_REF] and ReLU[START_REF] Fred | Deep learning using rectified linear units (relu)[END_REF] layers, on top of the InceptionResnet-B blocks of the base network for reconstructing the AUs intensities as heatmaps from the original images. The reason of choosing the output of InceptionResnet-B blocks is because the output dimension at this layer is 8 × 8 per channel, which is small enough for reconstruction. Since the output dimension of the previous layer (Reduction-A) is 17 × 17 per channel, which is too large and can introduce noise while the output dimension of the next layer (Reduction-B) is 3 × 3 per channel, which is too small and does not provide enough information to reconstruct. Thus, the output of InceptionResnet-B is perfectly fit for our problem and is selected to reconstruct our AU heatmaps for training in this stage. The intuition behind this heatmap regression is to train the network to focus on the pain-related AU regions (regions-of-interest) for better extracting feature representations, the added layers will be discarded afterward. Since the network takes data from the combination of UNBC McMaster and DISFA database as input images for training, this first stage is used to improve the generalisability of the model.

Figure 3

 3 Figure 3.3: Central locations of the common AUs between the two databases and the visualization of the Target Heatmaps generated from the ground truth.
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 34 Figure 3.4: The visualisation of the Heatmap regression in the first stage. Several upscaling layers are added on top of the InceptionResnet-B blocks of the base network to reconstruct the AUs intensity as a set of n heatmaps, where n is corresponding to the number of AUs. These reconstructed heatmaps will then be compared with ground truth heatmaps to compute perpixel loss function for optimising the model's parameters.

Figure 3

 3 Figure 3.6: The visualisation of the heatmap outputs of the first stage of our network. It can be seen that our network predicted both the location and intensity of each facial AU quite correctly.

[Figure 3

 3 Figure 3.8: The visualisation of an incorrect AU intensity prediction of our network. Using the same weight for both the visible and the obscured parts of the face could be the reason for these incorrect prediction.

  lesser amount of training data often leads to a phenomenon called over-fitting: the model performs well in training but not on newly unseen data. In fact, deep neural network overfits the training data by memorising small training data without learning underlying patterns [LKG19]. In such a situation, the model performs exceptionally well on the training data but fails miserably on the test data or in the real world. The typical approaches to overcome this problem are including data augmentations and transfer learning. Data augmentation techniques enrich training data by generating additional training examples using various label-preserving transformations, such as scaling, zooming, and random cropping of images. In the other hand, the transfer learning approach attempts to transfer the knowledge gained on a large labelled source dataset for a target task [HAG + 17]. Both of these approaches are useful to fight against ESTIMATION the data scarcity problem. However, in cases where the dataset is extremely unbalanced and the number of samples is also very limited, applying these techniques alone is not sufficient. Facial AU intensity and PSPI pain intensity estimation are among these cases where labelled data are limited both in the number of samples and in the distribution of the intensity levels (see Section 1.6). To overcome this problem, prior studies [ZDHJ18, ZZD + 18, LTWE + 17, SCW + 21] attempted to use a semi-supervised approach or leverage prior knowledge to have more training data. The works [KTP15, WRPP16, RRBP16] tried to exploit more information from a single image by utilising the co-occurrence of the AUs. Other works [ZJW + 19, CTC17] tried to exploit temporal information between the consecutive frames of a video. The common point of these works is the fact that they tried to analyse all the AUs together, without pointing out explicitly where to find the information regarding these AUs on the face image. Despite the fact that deep learning has the capability to find these information automatically through learning [DT18, Kim10, dSP22], it requires a huge amount of data for model learning to avoid overfitting [dSP22, ZDHJ18], which is difficult to obtain in the domain of facial AU intensity estimation as mentioned earlier.Inspired by the advantages of the learning to focus on regions-of-interest that we have presented in Chapter 3. Here we present a new deep neural network called FFAU network, which is not just focusing but isolating the regions-of-interest for better feature extraction. Based on the concept of divide and conquer paradigm, we utilise the Faster RCNN object detection network[START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] to locate the AU regions of interest (divide) before put them through a set of AU regressor networks for AU intensity estimation (conquer). By isolating each AU region, we are able to estimate correctly its intensity without worrying about learning incorrect features from other non-related regions, reducing the chance of being overfitted. In addition to localising and estimating AU intensity, our FFAU network has also addressed the head pose problem of the patients when filming. By explicitly training the network to take into account only the visible parts of the face during training and ignoring the obscured parts, our network is able to pick up the correct features even in the extreme head pose cases when the ESTIMATION patients over turn their faces to the left or right. Experiments on the two widely known databases UNBC McMaster and DISFA databases show that our approach outperforms other SOTA approaches on both the two databases.

[ ZZXW18 ,

 ZZXW18 JLM17, ZXT18, EV18]. The task involves locating and classifying objects in an image or video. There are two types of object detectors: single stage and twostage. One of the first two-stage detector network is Selective Search [USGS13], in which the first stage generates a set of candidate proposals and the second stage clas-

Figure 4 .

 4 Figure 4.1: The distribution of facial AU intensity of the UNBC McMaster dataset (a) and the DISFA dataset (b).

Figure 4 .

 4 Figure 4.2: The distribution of facial AU intensity of the DISFA database after collapsing (a) and re-balancing (b).

  Figure 4.2a shows the distribution of facial AU intensity of the DISFA dataset after this collapsing step.

CHAPTER 4 .

 4 LEARNING TO ISOLATE REGIONS-OF-INTEREST FOR BETTER PAIN ESTIMATIONLeft regions Right regions

Figure 4 .

 4 Figure 4.3: Facial regions bounding boxes extracted from face image using facial landmarks.

  (a) Multi bounding boxes in the same region (b) No bounding box in the face right side

Figure 4 . 4 :

 44 Figure 4.4: Bounding boxes in training phase of our Facial region localisation module.There could be multiple bounding boxes proposed by RPN module for the same region (a) and there could also be no bounding box for some regions (b).

Figure 4 .

 4 Figure 4.5b) consists of three main modules: the CNN backbone network for extracting features, the Region Proposal Network (RPN) for generating proposal regions and the Fast RCNN module for detecting objects in the proposed regions. In the next paragraphs, we explain step-by-step the way we configured each module inside this network.

Figure 4 . 5 :

 45 Figure 4.5: Facial region localisation module visualisation. The module consists of a Faster RCNN network (b) built on top of a Feature Pyramid Network (a).

are 5

 5 pair regions with two positions left and right, one region with only one center position and one final region is reserved for the background. Totally, the number of regions are γ = 12 regions. To assign an anchor to a classification target, we use a similar assignment rule as in[START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF]. Specifically, anchors are assigned to target object boxes if the Intersection Over Union (IoU) between them is no less than 0.7 and to background if it is no greater than 0.3. The Non-Maximum Suppression (NMS) is set to 0.8 to suppress the anchors that overlaps too much. During training, we also have modified the positive anchors selective algorithm in RCNN network to ensure the presentation of all types of regions for each of the training image.

Figure 4 .

 4 Figure 4.6: AU intensity estimation module. The Per region RoI pooling layer extracts regional features from our shared backbone features and routes it to pass though the corresponding Region feature extractor model based on the type of each region. Finally, the AU intensity estimation model extracts features and estimates the AU intensity for each of the given regional features.

Figure 4 . 8 :

 48 Figure 4.8: Network architecture of the AU intensity estimator module (a) and Face side visibility module (b).

Figure 4 .

 4 8a. Features from the previous Region feature extractor module are shrinked to the size of 1 × 1 by Max Pooling operation before going through this module for estimating AU intensity.

Figure 4 .

 4 Figure 4.9: Face side visibility ground truth generation using the provided facial landmarks.

Figure 4 .

 4 9b, the right part of the face is obscured and therefore it is incorrect to treat them in the same way as the left part of the face, we need to tell our network to focus more in the left side instead.In order to solve this problem, we propose the Face side visibility module network, which is a network for estimating the percentage of the visibility of the right face side of the given face image. The network consists of a sequence of Linear, BatchNorm, Dropout and ReLU layers (similar to the AU intensity estimator module) that we have ESTIMATION put it on top of our CNN backbone network (see Figure4.8b). In training, we generate ground truth to train this network by relying to the position of the nose point in the face.

Figure 4 .

 4 Figure 4.8a) are extracted and fed into a bidirectional LSTM network. LSTM is a variant of RNN which has a capability of keeping long-term information from previous inputs.

Figure 4 .

 4 Figure 4.10: Network architecture of our Movement exploitation module. For each AU, features from each face side are fed into a bidirectional LSTM for exploiting the temporal dynamics between the consecutive frame images. Then, these features are decoded and aggregated to obtain a final estimate of the AU intensity using the predicted face side visibility percentage of the given frame image.

For training our

  Facial region localisation module, we adopt the same two-stage training strategy as [RHGS15, HGDG17]. For each training sample i, we minimise the RPN loss L RP N i at first stage and both the classification loss L cls i and bounding-box loss L box i in parallel at the second stage: the definition of L RP N i , L cls i and L box i loss functions are identical to [RHGS15, HGDG17].

Figure 4 .

 4 Figure 4.11: mAP vs. IoU overlap ratio on the UNBC and DISFA databases

Figure 4 . 12 :

 412 Figure 4.12: Prediction samples of our Face region localisation module. It can be seen that our network is able to predicted correctly both normal cases (a, c) and special cases (b, d).

IoU = 0. 5 ,

 5 our model have reached ≈ 99% of mAP on the DISFA database and ≈ 98% of mAP on the UNBC database, which basically means that our model have predicted ESTIMATION shows some visualisation examples of the predictions of our network. It can be seen that our network has correctly localised the facial regions in both normal cases when the left and right parts of the face are roughly balanced and hard cases when the patient cover a part of their face (b) or when they overturn their head pose (d).

  has reached M AE = 0.04 for both the two databases which indicates that on average the difference between our prediction and ground truth face right side visibility percentage is 0.04. Since the ground truth and prediction are both percentages, we can see it as ≈ 4% error in prediction, which is an acceptable error threshold and shows the reliability of the module.Regarding the PCC results, we can see that our network has reached the correlation of 0.94 on the UNBC McMaster database and 0.62 on the DISFA database. The reason for this difference in correlation results could be due to the nature of each of these two databases. As the participants in the DISFA database were watching a video to elicit spontaneous AUs, their faces tended not to move too much compared to the UNBC McMaster database when the patients were performing different movements on their arms to elicit the pain emotion. The difference in variations and frequencies of changing in the face side visibility in each of these databases appears to be the reason for the difference in the ICC correlation results. All in all, as the average difference in term of

Figure 4 . 14 :

 414 Figure 4.14: An example of the predicted results for AU1 and AU2 of the same subject compared to the corresponding ground-truth from the DISFA dataset.

Figure 4 . 14 .

 414 Figure 4.14. We can see that for both two AUs (AU 1 and AU 2) in the figure, our network have predicted the AU intensity quite close to the ground truth of the dataset. To the best of our knowledge, the proposed FFAU network have achieved the best performance with the highest average ICC, as well as the lowest average MAE, for the DISFA database.

AU 4

 4 Brow Lowerer: 3.8 PSPI = AU4 + max(AU6, AU7) + max(AU9, AU10) + AU34 = 3.8 + max(0.83, -0.27) + max(1.34, 0.32) + 1 = 6.97

Figure 4 . 16 :

 416 Figure 4.16: The visualisation of the PSPI intensity prediction by our network. We can see that our network is able to explain why it gives a pain level for an image by saying where it got the pain-related AU from and what score it gave to the AU.
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Table 1

 1 

	Database name	Year	N. Subjects	N. Images	N. AUs
	UNBC McMaster [LCP + 12]	2012	25	48, 398	11
	DISFA [MMB + 13]	2013	27	130, 754	12
	BP4D-Spontanous [ZYC + 14]	2013	41	146, 847	2
	FERA 2015 [VAG + 15]	2015	41	146, 847	5
	BP4D+ [ZGW + 16]	2016	140	197, 875	5
	GFT [GCJC17]	2017	96	172, 800	5

.2: List of publicly available databases that are annotated with facial action unit intensities.

  AUs are drawn from both the two SEMAINE and BP4D+, including AU 1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23, 25, 28, and 45. For the task of AU intensity estimation, 5 AUs are drawn from the BP4D+ database, including AU 6, 10, 12, 14, and 17. The training set of the FERA 2015 database consists of 146, 847 images from the BP4D+ database and 48, 000 images from the SEMAINE database. The testing set is kept private and contains 75, 726 images from the BP4D+ and 37, 695 images from the SEMAINE database. The inter-rater ICC for different AUs of the database ranges from 0.79 to 0.92, which indicates a strong to very strong inter-rater reliability for intensity.

Facial Expression Recognition and Analysis challenge 2015 database

(FERA 2015) 

[VAG

+ 15] 

is the main database built for the FERA 2015 competition. The database is drawn from BP4D+ [ZGW

+ 16] 

and SEMAINE [MVC

+ 11] 

databases for the task of AU occurrence and intensity estimation. For the task of AU occurrence detection, 14 FERA 2015 is a large database with a wide range of different AUs annotated. However, most of the annotated AUs are about the occurrence of AUs, only a few of them are annotated with intensities. Furthermore, as the database is no longer accessible 2 , we not include this database in our work.

1.6.5 BP4D+ database

The Multimodal Spontaneous Emotion database (BP4D+) [ZGW + 16] is a large-scale multimodal spontaneous emotion database, which has a similar style than the BP4D [ZYC + 14] database but larger scale and variability. The database consists of 140 subjects (82 females and 58 males) of different ages and ethnicities. These subjects were asked to complete 10 tasks to elicit 10 different emotions, during which 2D RGB images, 3D model sequences, thermal videos and 8 physiological signal sequences with 1.4 million frames were captured by different sensors. Despite of having a large number of frames recorded, only 197, 875 frames are FACS coded. The onset and offset are annotated for 34 AUs, including AU 1, 2, 4, 5, 6, 7, 9, 10,

11,[START_REF] Jgy + | [END_REF] 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38

, and 39. Among these AUs, only 5 AUs are selected for intensity coding, including AU 6, 10, 12, 14, and 17. The inter-rater reliability of these AUs annotations ranges from 0.70 to 0.84, which indicates a good to strong reliability of the annotations.

  Traditional hand-crafted feature-based methods have sought to address the problem of facial AUs and PSPI intensity estimation for quite a long time. One of the earliest works They also showed that it is both possible and feasible to generate an intensity estimation system that uses facial grid and/or facial fiducial point detection. In conclusion, they showed that using the combination of 3D and 2D images gives better results compared to either one individually. Still in 2012, Lucey et al. [LCP + 12] conducted some research on the UNBC McMaster database for automatic pain analysis. They have applied SVCs for binary detection of AUs to detect the existence of pain in a human face. Their research was also based on frame-level and sequence-level pain detection.They showed that both frame-level and sequence level pain detection is successful, but the speed of the system is faster with sequence based analysis.

	for classifier and LBP for feature extraction. CORF is a special case of MRF where all recognition and pain intensity assessment. Zhao et al. [ZGWJ16] proposed the peak-
	the clique potentials are conditioned on input features. Through experimentation, they piloted method that uses the peak samples to supervise the feature responses for the
	came to the conclusion that accounting for heterogeneity in the dataset would give non-peak frames of the same emotion and the same subject, achieving a competitive
	better results. performance in prediction of PSPI scores. Zhang et al. [ZZD + 18] proposed a weakly
	Khan et al. [KMKB13] tried to extract shape and appearance information to obtain supervised regression model so called Bilateral Ordinal Relevance Multi-Instance Re-
	discriminative representations of facial expressions. Four common classifiers including gression (BORMIR), which exploits the relationships among instances and incorporated
	SVM, Decision Tree (DT), Random Forest (RF), and 2 Nearest Neighbor (2NN) have domain knowledge to learn AU intensity regression.
	been used to test the performance of this method, and the nonparametric classifier 2NN
	AAMs for facial representation, and applied Spectral Regression for dimensionality re-duction. They trained a SVM based system for automatic recognition of intensities for AU6 and AU12. In 2012, Savran et al. [SSB12] applied AdaBoost feature selection and SVR to Bosphorus 3D data, combining 3D shape and Gabor filters. They showed that for 3D images, AdaBoost shows superior efficiency for feature selection. Their regres-sion based method showed better performance than previously suggested SVM based feature selection and a Markov Random Field (MRF) [Kin80] on the DISFA database for inferring upper facial AUs intensities. A MRF is a graph consisting of nodes and edges, where each node corresponds to a random variable and each edge corresponds to a parameterised potential function. Through the MRF graph, all AU intensities are estimated jointly. This is different from most other previous approaches, which train a separate model for each AU. Another research that focused on pain intensity was done Copula Ordinal Regression (COR) framework to model the co-occurring AU intensity levels with the power of copula functions and Conditional Random Fields (CRFs). Ruiz et al. [RRBP16] proposed Multi-instance Dynamic Ordinal Random Fields by exploiting the idea of multi-instance learning for automatic facial AUs intensity estimation. They treated each sequence as a bag (set of training samples) and treated the maximum in-tensity of a sequence as the bag label. Hong et al. [HZZ + 16] proposed a second-order methods. applies LBP features, GentleBoost (a more stable version of the AdaBoost algorithm) by Rudovic [RPP13]. They proposed to use Conditional Ordinal Random Fields (CORF) pooling framework for medical image analysis, texture classification, micro-expression

on these domains was proposed by Fasel and Luettin

[START_REF] Fasel | Recognition of asymmetric facial action unit activities and intensities[END_REF]

. They have tried to extract features from face images by using PCA and ICA dimentionality reduction techniques for automatic facial AUs intensity estimation. They found that the PCA is more effective at extracting facial feature representations than ICA, since the ICA is quite sensitive to noise. In 2006, Bartlett et al. [BLF + 06] revisited the problem of facial AUs intensity estimation with real-time application. They used Gabor wavelet for feature extraction, AdaBoost for feature selection and dimensionality reduction. Both SVMs and regression analysis were used for classification, resulting the mean rate of 93% recognition with 20 AUs for the task of facial AUs detection. SVMs have also been used by Hammal and Cohn [HC12] for one of the first methods on pain intensity estimation. They tracked AAM landmarks on the UNBC McMaster database and used log-normal filter features to recognise 4 discrete pain levels. In 2009, Mahoor et al. [MCMC09] conducted a research on detection and intensity estimation of AUs in non-posed mother-infant face-to-face interactions. They used Kaltwang et al. [KRP12] used AAMs for feature extraction and RVM for classification. They have reported that pain intensity detection from facial AUs intensities received a higher classification rate compared to direct pain intensity detection from PSPI. Hammal and Cohn [HC12] proposed to use the normalised of canonical normalised appearance (CAPP) of the face on top of the AAM landmark points, and four different SVMs to classify between pain intensities. They achieved a classification success between 40% and 67% with 5-folds leave-one-out evaluation method. Another research on facial AUs intensity estimation was conducted by Jeni et al. [JGCDLT13]. Their system consists of four parts, including fiducial point detection by constrained local models, local patch removal using fiducial points, application of nonnegative matrix factorisation, and training the SVM using the extracted features. They have conducted their experiments on the CK-Enhanced [LCK + 10], BU-4DFE and BP4D-Spontaneous databases, achieved some great improvements. Sandbach et al. [SZP13] achieves the best experimental results. Mavadati et al. [MM14] proposed to use Gabor feature to represent the facial AUs and Hidden Markov Model (HMM) to model the temporal patterns of them. HMMs are a specific type of MRF and exact inference is achieved by the forward-backward algorithm. Florea et al. [FFV14] proposed to use histogram of topographic features (HoT) to describe faces with different pain levels, and to use transfer learning to enhance the robustness of the model. Zhang et al. [ZZH15] proposed a method that extracts the dynamic motion-based facial features which were measured through the facial landmark points' displacement between natural and expressive frames on 3D facial video. These facial features are then fed to SVRs regressors for AU intensity estimation. Kaltwang et al. [KTP15] formulated a Latent Tree (LT) where fiducial points were set as part of leaf nodes accompanying by several other leaf nodes of AU targets and hidden variables. This graphical model represents the joint distribution of targets and features that was further revised through conducting graph-edits for final representation. Walecki et al. [WRPP16] proposed a

Table 3 .

 3 1: Evaluating the effectiveness of the learning to focus on regions-of-interest in the first stage training. CNN refer to the vanilla InceptionResnet network.

	Model	Trained on databases	MSE	PCC
	CNN model	UNBC	0.75	0.76
	CNN stages 1 + 2 model	UNBC	0.67	0.78
	CNN stages 1 + 2 model	UNBC & DISFA	0.63	0.80
	(MSE) and Pearson Correlation Coefficient (PCC). For comparison with other SOTA
	approaches, we use MSE, Mean Absolute Error (MAE), PCC, and ICC. Between these
	evaluation metrics, for MSE and MAE: the lower the better; for PCC and ICC: the higher
	the better.			

Table 3 .

 3 performance of the CNN model alone and the CNN model that links to LSTM model. To eliminate the effect of other factors like the selection of AUs or the use of the secondary database, we trained these models on the UNBC McMaster database only, for pain intensity estimation. Table 3.2 shows the evaluation results of three different training configurations: CNN model alone, CNN model linked with LSTM at the first Fully Connected layer, and CNN model link with LSTM at the Average Pooling layer. From Table3.2, we can see that when using the output of Average Pooling layer as input for training LSTM model, the performance of the whole network have been significantly

	Model	With LSTM	MSE	PCC
	CNN model	No	0.67	0.78
	CNN (Fully Connected)	Yes	0.74	0.78
	CNN (Average Pooling)	Yes	0.65	0.80

2: Comparison the effectiveness of the LSTM and the layer to extract features. The models was trained on the UNBC McMaster only (without DISFA database).

Table 3 .

 3 5: Comparison the performance of the model at the second stage when freezing and not freezing the first layers of the base network

	Model	Freezing	MSE	PCC
	The second stage	No	0.69	0.79
	The second stage	Yes	0.63	0.80

Table 4 .

 4 1: Region definition of each facial AUs. A region contains one facial structure and contains one or more facial AUs.

	Region ID	Position	Definition	AU(s) included
	4	Left & right	Browns area	AU 1, 2, 4
	5	Left & right	Eyes area	AU 5, 7, 43
	6	Left & right	Cheeks area	AU 6
	9	Left & right	Nose wings area	AU 9
	15	Left & right	Mouth area	AU 10, 12, 15, 20, 25, 26
	17	Center	Chin area	AU 17

Table 4 .

 4 2: Per region RoI layer and its corresponding Conv layer configuration to ensure the same output of 5 × 5 for each facial region.

	Region ID	RoI output size	kernel size	Conv layer	stride
	4	11 × 17	3 × 5		2 × 3
	5	11 × 17	3 × 5		2 × 3
	6	13 × 13	5 × 5		2 × 2
	9	13 × 13	5 × 5		2 × 2
	15	11 × 17	3 × 5		2 × 3
	17	13 × 13	5 × 5		2 × 2

  Region feature extractor sub-module. The h, w and s parameters are corresponding to the Conv kernel size (h, w) and stride (s) that are defined in Table4.2.

	Input RoI features	1 x 1 Conv (stride 1)
		Region feature extractor module	Backbone Network
	h x w Conv (stride s) Concat Region out features + Figure 4.7: Network architecture visualisation 3 x 3 Conv (stride 1; pad 1) h x w MaxPool (stride s) h x w MaxPool (stride s) 1 x 1 Conv (stride 1) 1 x 1 Conv (stride 1) 1 x 3 Conv (stride 1; pad 0,1) 3 x 1 Conv (stride 1; pad 1,0) 1 x 1 Conv (stride 1) Reduction block Inception ResNet block of a Adaptive Max Pool 2D Dropout p=0.6 Linear 896, 512 BatchNorm Linear 512, 256 ReLU BatchNorm Linear 256, 128 ReLU BatchNorm Linear 128, 1 ReLU (a) AU intensity estimation module	Adaptive Max Pool 2D Dropout p=0.5 Linear 256, 128 BatchNorm Linear 128, 1 ReLU (b) Face side visibility module

Table 4

 4 .3. From this table, we can see that at

Table 4 .

 4 4: Performance of our Face side visibility module on the two DISFA and UNBC McMaster databases.

	Database

For evaluating the correctness of our network in estimating face right side percentage, we report the cross-validation MAE and PCC of both the UNBC McMaster and DISFA databases as shows in Table

4

.4. From this table we can see that our network

Table 4 .

 4 7: Performance of our Movement exploitation module on the DISFA database.

	Model	Seq. lengh	Avg MAE	Avg ICC(3,1)
	FFAU	-	.19	.62
	FFAU-LSTM	8	.20	.61
	FFAU-LSTM	16	.20	.62
	FFAU-LSTM	32	.20	.62
	FFAU-LSTM	64	.20	.62
	figurations as shown in			

Table 4

 4 .7. From this table, we can see that there are not much difference in performance when integrating the Movement exploitation module into our FFAU network. Specifically, there is no improvement in term of average ICC and also

Table 4 .

 4 8: Comparison to the SOTA AU intensity estimation methods on the DISFA database using 3-fold cross validation. Numbers in bold denote the best performance.

		AU	1	2	4	5	6	9	12	15	17	20	25	26	Avg
		BORMIR[ZZD + 18]	.20	.25	.30	.17	.39	.18	.58	.16	.23	.09	.71	.15	.28
		CCNN-IT[WOR + 17]	.20	.12	.46	.08	.48	.44	.73	.29	.45	.21	.60	.46	.38
		KJRE[ZWD + 19]	.27	.35	.25	.33	.51	.31	.67	.14	.17	.20	.74	.25	.35
	ICC(3,1)	KBSS[ZDHJ18] CFLF[ZJW + 19] 2DC[LTWE + 17]	.23 .26 .70	.11 .19 .55	.48 .46 .69	.25 .35 .05	.50 .52 .59 .57 .88 .32 .10 .25 .71 .22 .25 .36 .71 .18 .34	.06 .21 .08	.83 .81 .90	.41 .51 .50	.36 .41 .50
		SCC[FLL20]	.73	.44	.74	.06	.27	.51	.71	.04	.37	.04	.94	.78	.47
		DPG[SCW + 21]	.46	.46	.75	.63 .61 .48	.84	.29	.44	.18	.95	.63	.56
		FFAU (ours)	.60	.70	.74	.72 .53	.53	.86	.27 .56 .34	.93	.64	.62
		BORMIR[ZZD + 18]	.88	.78 1.24 .59	.77	.78	.76	.56	.72	.63	.90	.88	.79
		CCNN-IT[WOR + 17]	.73	.72 1.03 .21	.72	.51	.72	.43	.50	.44 1.16 .79	.66
		KJRE[ZWD + 19]	1.02 .92 1.86 .70	.79	.87	.77	.60	.80	.72	.96	.94	.91
	MAE	KBSS[ZDHJ18] CFLF[ZJW + 19] 2DC[LTWE + 17]	.48 .33 .32	.49 .28 .39	.57 .61 .53	.08 .13 .26	.26 .35 .43	.22 .28 .30	.33 .42 .25	.15 .18 .27	.44 .29 .61	.22 .16 .18	.43 .53 .37	.36 .40 .55	.33 .33 .37
		SCC[FLL20]	.16	.16	.27	.03 .25 .13 .32	.15	.20	.09	.30	.32	.20
		DPG[SCW + 21]	.29	.26	.39	.03 .27	.14	.27 .10 .25	.11	.24	.34	.22
		FFAU (ours)	.20	.15	.34	.04	.29	.15 .22 .10 .18 .08	.25	.26 .19

1 The MSE scale issue in pain domain literature

  HQX + 21, RCG + 17, VBADE21, TH18a] could cause a misleading to the readers since the two ranges are not the same. As the MSE metric that we have been used to evaluate these approaches is extremely sensitive to the outlier by definition, which penalises too much the evaluation results of group A than group B, leading to a better results in group A compared to group B. To solve this issue, we propose to use two different SOTA leaderboards for the two PSPI intensity scales. We also report the results of our approach on both of these two leaderboards for comparison. Note that we exclude the works that neither follow the two mentioned PSPI scales nor use the same training or evaluating data, i.e. Bargshady et al. [BZD + 20] and Xin et al. [XLY + 21] since they are using 4-level PSPI scale, Hoang et al [HXMF20] since they have selected data from 19 of 25 subjects in the dataset (the evaluating set when applying leave-one-subject-out cross-validating is no longer the same as other works). Wang et al. [WXL + 17] with a regularized deep neural network and Rodriguez et al.[RCG+ 17] with their VGG + LSTM hybrid network. In order to be inline with these works, we aggregate the results of our PSPI prediction using the same logic as in [RPP13, ZGWJ16, RCG + 17, WXL+ 17]. Specifically, pain intensity levels 0, 1, 2 and 3 are kept the same. Pain levels 4, 5 are merged and pain levels 6+ become 5th level.

	Afterwards, ac-cording to Prkachin and Solomon [PS08], we aggregate these AUs to compute PSPI pain intensity level using the Equation 1.1 (see Chapter 1.5.2). As our network only works with facial AU intensity estimation, we can turn our network to a pain intensity estimation network by applying Equation 1.1. Hence, we are able to compare our work with other SOTA methods in pain estimation domain. We compare the performance of our approach with other SOTA approaches that use PSPI 6 levels, which are including Rudovic et al. [RPP13] with their Conditional Ordi-4.6.2.4.6.2.3 State of the art 6-level PSPI estimation nal Random Field (CORF) model, Zhao et al. [ZGWJ16] with OSVR regression model,

One problem that we found in reviewing the literature in the domain of PSPI estimation is the misalignment of the PSPI intensity scales. The works [KRP12, FFV14, ZHSZ16, TH18a, VBADE21, HQX + 21] use 16 discrete pain intensity levels [0-16] (group A) while the works [RPP13, ZGWJ16, RCG + 17, WXL + 17] use the aggregated 6 discrete pain intensity levels [0 -5] (group B). Therefore, putting these two groups into a single SOTA leaderboard as in [

Table 4 .

 4 10 shows the comparison results of our approach compared to the mentioned SOTA approaches. From this table, we can see that there are a large difference between

our 16-level PSPI results (Table

4

.9) and our 6-level PSPI results, despite being derived from the same set of prediction. Specifically, the 6-level PSPI is 23% lower in term of MSE and 8% lower in term of MAE compare to our 16-level PSPI results. These results again confirm the problem we have raised earlier, which is the fact that we can't compare the evaluation results of the two different prediction scales together, and there is a need of using different SOTA leaderboard for each scale.

Regarding the comparison within SOTA approaches for 6-levels PSPI evaluation, from

Table 4 .

 4 10 we can see that our network has outperformed all other approaches in almost all the evaluation metrics. Specifically, in term of MSE, our method has achieved 42% of improvement compared to previous SOTA approach [RCG + 17] and in term of MAE, our method has reached 24% of improvement compared to previous SOTA approach [WXL+ 17]. In term of correlation, our approach has the same PCC with SOTA approach [RCG + 17] but in term of ICC, our approach is 8% higher than previous SOTA

	approach [RPP13]. To the best of our knowledge, the proposed FFAU network have
	achieved the best performance with the highest average ICC and average PCC, as well
	as lowest MSE and MAE, for the UNBC McMaster database using PSPI 6-level estimation
	protocol.

We contacted the person who manages FERA 2015 database and learned that the database is no longer accessible (10/05/2022)

The pretrained Inception ResNet v1 model is taken from the work[START_REF] Schroff | FaceNet: A unified embedding for face recognition and clustering[END_REF] and can be found at https://github.com/davidsandberg/facenet

The equation

3.4 is the improved formula using in the preprocessing step of the pretrained model that is given by the authors of[START_REF] Schroff | FaceNet: A unified embedding for face recognition and clustering[END_REF] and can be found at https://github.com/davidsandberg/facenet
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ESTIMATION

better than the one trained without the secondary database. And when we put all the three stages together, it pushes the result even higher. This demonstrates the effectiveness of our approach when learning from the combination of two database instead of just a single one. However, to draw this advantage, the work of selecting AUs for the heatmap regression in the first stage is also important. As shows in Table 3. 4, the results when we use all common AUs between the two databases are worse than if we use only AU4, AU6 and AU9. This could be happened because AU4, AU6 and AU9 are parts of PSPI formula (Eq. 1.1) , which make the network easier to learn in next stages. If we train with all common AUs, the non-related AUs can introduce noise, which may reduce the capacity of the model.

Finally, we would like to test the effectiveness of freezing the first layers's parameters of the base model. We hypothesised that the UNBC McMaster is a huge imbalanced database, so overfitting can easily occur when we fine-tune the whole network, i.e. no freezing. Furthermore, we believed that this freezing layers will preserve the parameters that have been trained with data from the two databases, which will make it better when predicting new cases. Table 3. 5 shows the result of the first two stages of the model when applying and not applying the layers freezing. It is clear that the model works better when first layers' parameters are frozen. ESTIMATION unbalanced database, as can be seen in the Figure 1.8. Hence, when training a deep model on this database without applying any rebalancing technique, the learning model will certainly bias to have its prediction toward the dominant category [START_REF] Nitesh V Chawla | Special issue on learning from imbalanced data sets[END_REF][START_REF] García | Theoretical analysis of a performance measure for imbalanced data[END_REF].

So, it is strange that they did not apply any data re-balancing technique but still reach a high level of generalisation.

Next, Figure 9 in their paper [START_REF] Tavakolian | A spatiotemporal convolutional neural network for automatic pain intensity estimation from facial dynamics[END_REF] shows the prediction vs ground truth of subject 064-ak064 in the UNBC McMaster database. However, there are no such pattern in the ground truth PSPI visualisation, as can be seen in Figure 3.7, which could be a sign of data leakage or reading incorrect data.

Regarding these concerns, we have tried to send an email to the authors using the email addresses that they provided in their papers. However, when we was trying to send the email, it was rejected as incorrected email addresses. We have further contacted the head of their team at Oulu University and obtained a new email address. We have sent another email regarding these issues to the new email address of the author, but we have not received any response since then. Therefore, we decided to exclude these works out of this dissertation. 

Comparison with State of the Art

Dataset re-balancing

Since our experimental databases are quite unbalanced, most of the samples are being labelled with zero intensity, which can be seen in Figure 4.1. This certainly will bias ESTIMATION almost perfectively at this IoU level. On top of that, our network is still be able to reach mAP > 80% at IoU = 0.70 as can be seen in Figure 4.11. This is an important information which shows that our network is capable of localising facial regions and is reliable for the next phase of our network to work on the predicted regions of this module. Specifically, we have achieved the correlation of 0.5 when not applying any data rebalancing techniques. This correlation has improved to 0.52 when applying our undersampling data that we explained in section 4.3, which is about 2% of improvement compared to the model trained without data re-balancing. This result suggests that the under-sampling technique that we applied reduces the imbalancing of the dataset.

Yet, since the dataset is ways too imbalanced (see Figure 4.2), the improvement when appling our under-sampling technique is not significant. However, when we applied ESTIMATION 

Per region RoI pooling layer evaluation:

For evaluating the effectiveness of the Per region RoI pooling layer, we report the performance of our network when training with and without this layer as in Table 4.6. From this table, we can see that the layer improved the performance of our network in term of both ICC and MAE evaluations, especially for the case of average MAE result with about 10% of improvement. This result clearly shows the effectiveness of using the right RoI pooling size for each of the facial regions compared to the one which uses the same pooling size for all regions. The drawback of this approach is the fact that we need to know the average shape of the region in advance, in order to choose the RoI pooling size accordingly. It works in the case of face analysis because we know the average shape of each of our facial regions when they are visible. In the case of invisible or incomplete facial regions due to head pose, we reduce the weight of these cases when optimising network parameters using the Face side visibility module.

Movement exploitation module:

To evaluate the effectiveness of the module in exploiting temporal dynamic information, we report the performance of our FFAU network when training with and without this module, as well as at different sequence length con-ESTIMATION 

A.1 Introduction

Emotion recognition and analysis are the crucial parts of many applications and human-computer interactive systems, especially in health care and medical fields 

A.2 Related Works

The challenges of human affect analysis have attracted lots of research efforts, especially in in-the-wild settings. In this section, we will briefly introduce some works related to 

A.3 Methodology

In this section, we introduce our multitask multi-databases training method. Frame images are extracted from video and fed into a Convolution Neural Network (CNN)

to train for analysing human's emotion in-the-wild. Then, features extracted from this network will go through a Recurrent Neural Network (RNN) to capture temporal information and finally, perform both the seven basic facial expressions classification and valence-arousal estimation. Because in our dataset, we do not always have all labels for all of our tasks, we have applied the multitask training with missing labels method that is described in [START_REF] Deng | Multitask emotion recognition with incomplete labels[END_REF] with some enhancements, which is described in the sections below.

A.3.1 Data Imbalancing

Similar to [START_REF] Deng | Multitask emotion recognition with incomplete labels[END_REF], we also have used some external datasets to address the data im- Corresponding to these three dataset's parts are the three training tasks T ∈ {1, 2, 3}, which are including: expression classification (EXPR), valence-arousal estimation (VA) and the mixing of these two tasks (EXPR_VA). One can note that even though we have three training tasks, our model has only two outputs, which are EXPR and VA, since the last training task reuses these two outputs for computing loss.

A.3.2 Multitask training with missing labels

Here we describe the formulars that are used to train our teacher and student models. Let (X, Y ) be the training dataset, where X is a set of input vectors and Y is a set of ground truth training labels. Since our dataset contains three parts including:

i=1 . For convenience of notation, we assume each subset i includes an equal number N of instances within a batch, i.e (X (i) , Y (j) ) = {(x (i,n) , y (i,n) )} N n=1 where n indexes the instance. Because the data from the last set Affect EXPR_VA is including both EXPR and VA annotations, we denote 3 expr and 3 va as the EXPR annotation and the VA annotation of this set, respectively. For example, instance x (3,1) belongs to Affect EXPR_VA dataset and has two annotations: y (3expr,1) and y (3va,1)

The inputs for all instances have the same dimensionality, regardless of task. How- ever, the ground truth labels for different tasks have different dimensionality. The label for the first task (EXPR) is y (1) ∈ {0, 1} 7 . The label for the second task (VA) is

The label for the last task (EXPR_VA) is the mixed of the two tasks above.

Similar to [START_REF] Deng | Multitask emotion recognition with incomplete labels[END_REF], we also apply the two steps training for capturing inter-task correlations. We train a single teacher model using only the ground truth labels in the first step. In the second step, we replace the missing labels with soft labels derived from the outputs of the teacher model. We then use the ground truth and soft labels to train a single student model. Different from [DCS20], we do not train multi student models for model ensemble because this approach is too costly in term of computation and the gain in performance is not significant. The overview of our network can be seen in Fig To be in the same line with [START_REF] Deng | Multitask emotion recognition with incomplete labels[END_REF] in the sense of notation, we also denote the output of our multitask network by f (1) θ (x (3) ) indicates the output of the network for task 1 (EXPR) for an instance in the Affect EXPR_VA set. To avoid clutter, we will often refer to the output of the teacher network on task i by t (i) irrespective of what the input label is, i.e. t (i) = f (i) θ (x (j) ) for some j ∈ {1, 2} and similarly to the output of the student network on task i by s (i) .

Regarding the objective loss functions, similar to [START_REF] Deng | Multitask emotion recognition with incomplete labels[END_REF], we also treat the problem of expression classification as a multiclass classification problem, and the problem of valence-arousal estimation as a combination of multiclass classification and regression problem. We will use the same Soft-max Function SF , the Cross Entropy function CE and the Concordance Correlation Coefficient function CCC, which have already been defined in [START_REF] Deng | Multitask emotion recognition with incomplete labels[END_REF].

A.3.2.1 Supervision loss functions

Here we denote the loss functions that are used for optimizing our models parameters with the supervision of the ground truth labels for each of our training tasks.

EXPR task

The supervision loss for the samples from the Mixed EXPR set is denoted as:

VA task

The supervision loss for the samples from the Mixed VA set is denoted as:

EXPR_VA task For the samples from Affect EXPR_VA set, since the samples of this set are annotated for both VA and EXPR, the supervision loss for this task is denoted as:

θt (x (3) ), 1)

), SF (f

θti (x (3) ))

From this equation, we can see that for each sample of the dataset, we calculate the loss for both EXPR and VA tasks. Therefore, the gradient backpropagation derived from this task's loss is the most accurate one compared to the other two tasks. Because we can see that the loss of the EXPR task can be used to adjust the model's parameters for better EXPR prediction, but it has absolutely no idea of whether the VA estimation is correct or not, and the same goes for the loss of the VA task. Therefore, the EXPR_VA task plays the role of guiding the training process, i.e. re-balance the gradient backpropagation for the whole training process. In the same time, since this task compute the loss for both EXPR and VA tasks, it can exploit the inter-task correlations, which typically can help the network for better prediction.

A.3.2.2 Distillation loss functions

Here we denote the loss functions that are used to optimise our student model parameters with the supervision of both the ground truth labels (hard targets) and the pretrained teacher model's outputs (soft targets) for each of our training tasks. Similar to [START_REF] Deng | Multitask emotion recognition with incomplete labels[END_REF], we use the KL divergence to measure the difference between two probability distributions (output of teacher model and student model). The KL divergence of two vectors p and q is denoted as: KL(p, q) = i p i log p i q i . EXPR task Distillation loss for the samples from the Mixed EXPR set:

VA task Distillation loss for the samples from the Mixed VA set:

i , T ), SF (s

EXPR_VA task Distillation loss for the samples from the Affect EXPR_VA set is the combination of the EXPR and VA distillation losses, which is denoted as:

θsi (x (3) ), T (A.6)

A.3.2.3 Batch-wise loss functions

Given a batch of data (X, Y ) = {{(x (i,n) , y (i,n) )} N n=1 } 3 i=1 , the parameters of teacher network and student networks are denoted as θ t and θ s , respectively. Since our last dataset Affect EXPR_VA contains annotation for both EXPR and VA, therefore, when i = 3 then y (3,n) contains both y (3expr,n) and y (3va,n) .

The training teacher loss is denoted as:

The student loss of a sample x with ground truth y from dataset i with i ∈ {1, 2, 3} is denoted as:

θs (x) (A.8)

Similar to [START_REF] Deng | Multitask emotion recognition with incomplete labels[END_REF], we also use the parameter λ to weight the supervision loss versus the distillation loss. The λ parameter is set to 0.6 to weight the ground truth slightly more than the soft labels.

The student loss is denoted as:

θs (x (j,n) ) (A.9)

As we have mentioned earlier, there are 164 videos that are annotated for both EXPR and VA in the Affwild2 database. Instead of treating all of these videos as if they are annotated with only one label like [START_REF] Deng | Multitask emotion recognition with incomplete labels[END_REF], we check if the given video frame has been annotated with one or both EXPR and VA labels. Then, we compute the objective loss of the secondary task using the distillation loss alone or supervision loss plus distillation loss, respectively. Particularly, the student loss for taking into account this characteristic is denoted as:

θs (x (j,n) ) , if y j,n is NA G j x (j,n) , y (j,n) , θ t , θ s , otherwise (A.10)

A.3.3 Frame images analysis

For the video's frame images, face images with the size of 112×112 pixels are aligned and extracted from each frame. Then, we use these images to train a CNN model using the method mentioned in Section A. 

A.3.4 Temporal information exploitation

Once the CNN student model has been trained, we use this model to extract features from each video frame. Then, we group these features together to form a new dataset ds of feature's sequences with the sequence length of 32 frames per sequence. Finally, we fed data from this new dataset ds into a bidirectional RNN network for exploiting temporal information, as well as predicting EXPR and VA. For this RNN network, we have selected the Gated Recurrent Units (GRU) architecture [CvMG + 14] as it has been proven to be efficient in remembering long-term dependencies. Regarding this GRU model's parameters, we also use the training method in Section A.3.2 to train them.

During the training, we have used the same augmentation process with filters that are mentioned in Section A.3.3 but in sequence level.

A.4 Experiments and Results

A.4.1 Implementation details

The whole network system is implemented using PyTorch framework [PGM + 19]. During the training phase, Adam optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] was employed with the initial learning rate is set to 1e -4 . The maximum number of epochs is 40 and the training process will stop when there is no improvement after five consecutive epochs. The number of batch size for the CNN part of the network is set to 64. For RNN network, the batch size is 16.

The training and validating processes were performed on an Intel Workstation machine with a NVIDIA Gerforce RTX 2080 Ti 11G GPU.

A.4.2 Results

Here we report the results of different experiments to demonstrate the effectiveness of each of our changes comparing to the original method [START_REF] Deng | Multitask emotion recognition with incomplete labels[END_REF]. For the evaluation metrics, we use the same criterion as outlined in [KSHZ]. 

A.4.3 Comparison with State of the art

Here we compare the performance of our model with the state of the art on the test set of Affwild2 dataset. In this 2nd challenge, the database has been updated by adding more videos and labels for the AU detection task, but since the data for EXPR recognition task and VA estimation task are almost unchanged, we are still able to compare the performance of our model with the works on the previous ABAW 2020 challenge [KSHZ].

Table A .4 shows the comparison results between the works on Affwild2 database.

One can note that these results are the results of the test set of the database and have detect AUs beside recognise EXPR and have achieved a good performance compared to the others. There could be a strong link between action units and facial expressions that need to be identified in the future works.

A.5 Conclusion

In this paper, we have presented a method to optimise the multitask training with incomplete labels approach. On top of the original method based on teacher-student architecture, we have added a new task to train the deep neural network on a dataset that contains both seven basic expressions and valence-arousal values for better exploiting the inter-task correlations between the two tasks. In the same time, we have exploited the shared annotations inside the Affwild2 database during the training process of the student model. With these improvements, we have obtained a model that is on par with state of the art in term of valence and arousal estimation on the test set of the Affwild2 database. In future work, we will investigate about the link between action units and facial expressions, which could be the key to further improve the performance of both the facial expressions classification and valence-arousal estimation tasks.