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ABSTRACT

Title: Deep learning for automatic facial expression assessment with applica-

tion to the expression of pain

Abstract: Facial expression is a major non-verbal means of expecting intentions in hu-

man communication. It is one of the most powerful, natural and universal signals for

human beings to convey their emotional states and intention. Thus, analysing and un-

derstanding human facial expression is crucial for many different applications in mul-

tiple domains, including health care and medical fields, virtual reality and augmented

reality, education and entertainment. To measure facial expression intensity, the most

popular and widely accepted way is using Facial Action Coding System (FACS). FACS

defines a set of different facial Action Units (AUs), which are considered to be the

smallest visually discernable facial movements. As any human facial expression can be

decomposed into a set of facial AUs and their intensities, automatic measuring facial

AUs intensity seems to be the key step towards better understanding human facial ex-

pressions. Hence, in this thesis, we study about automatic measuring facial expressions

by utilising facial AUs, with an application on automatic pain intensity estimation.

Recently, deep learning techniques have emerged as powerful methods for learning

feature representations directly from data and have achieved some major improvements

in various face-related computer vision tasks. The main advantage of deep learning ap-

proaches is their ability to learn from experiences and generalise well on newly unseen

data. However, to do so, these deep models require to be trained on a massive amount

of data, which is difficult to obtain for the domains of facial AUs and pain intensity esti-

mation. The reason for that is because it requires a costly and time-consuming labeling

effort by trained human annotators. Moreover, the data distribution of AUs intensities

is generally unbalanced, the performance of deep methods training on these databases

are being negatively affected by insufficient data. Hence, in this thesis, we have pro-

posed several approaches that are capable of exploiting better features of facial images

on a limited amount of data. In particular, we present a learning approach that focuses
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on the pain-related facial AU regions on the face image (regions-of-interest) for better

extracting pain-related features from the image. By integrating the locations of regions-

of-interest in face images into the network training process, we explicitly tell to the

network where to focus in the face image and ignore other irrelevant or non-important

regions. As deep learning in general requires to have massive amount of data to be able

to extract correct features from images, our approach is expected to work effectively

on a limited amount of data, as it has already know where to extract the important

information on the image. Experiments on a benchmark database for pain estimation,

i.e., the UNBC McMaster database, show that our approach outperforms other works in

term of pain intensity estimation problem.

Realising the importance of focusing on regions-of-interest in extracting relevant

feature information from limited amount of data, we have further improved the

performance of the network in our second approach by not just focusing but isolating

the regions-of-interest in face images. Based on the concept of divide and conquer

paradigm, we utilise the Faster RCNN object detection network to locate the AU

regions-of-interest (divide) before put them through a set of AU regressor networks for

AU intensity estimation (conquer). By isolating each AU region, we are able to estimate

correctly its intensity without worrying about learning incorrect features from other

non-related regions, reducing the change of being overfitted. Besides, when analysing

a face image, we also take into account the head pose factor to ensure that the network

pay more attention on the visible parts instead of the obscured parts of the face image.

By conducting extensive experiments on two well known benchmark databases of

spontaneous facial expression, i.e., the DISFA and UNBC McMaster databases, our

proposed approachs achieved state-of-the-art performance on both facial AUs intensity

estimation and pain expression measurement domains.

Keywords : Deep learning, Convolutional Neural Network, Facial expression

analysis, Pain intensity estimation, Facial Action Units intensity estimation,

Three-stages training network, FFAU network.
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ABSTRACT

Titre : Apprentissage profond pour l’évaluation automatique des expressions

faciales avec application à l’expression de la douleur

Résumé : L’expression faciale est l’un des principaux moyens non verbaux d’exprimer

des intentions dans la communication humaine. Il s’agit de l’un des signaux les plus

puissants, naturels et universels permettant aux êtres humains de transmettre leurs états

émotionnels et leurs intentions. Ainsi, l’analyse et la compréhension de l’expression

faciale humaine sont cruciales pour de nombreuses applications dans de multiples do-

maines, notamment les soins de santé et les domaines médicaux, la réalité virtuelle et la

réalité augmentée, l’éducation et le divertissement. Pour mesurer l’intensité des expres-

sions faciales, la méthode la plus populaire et la plus largement acceptée est l’utilisation

du Facial Action Coding System (FACS). Le FACS associe les changements d’expression

faciale aux actions et aux intensités des muscles qui les produisent. Il définit un en-

semble d’unités d’action (UA) faciales différentes, qui sont considérées comme les plus

petits mouvements faciaux visuellement discernables. Comme toute expression faciale

humaine peut être décomposée en un ensemble d’UA faciales et de leurs intensités,

la mesure automatique de l’intensité des UA faciales semble être l’étape clé vers une

meilleure compréhension et évaluation de l’expression faciale humaine. Par conséquent,

dans cette thèse, nous étudions la mesure automatique des expressions faciales en util-

isant les UA du visage, avec une application sur l’estimation automatique de l’intensité

de la douleur.

Récemment, les techniques d’apprentissage profond sont apparues comme des méth-

odes puissantes pour apprendre des représentations de caractéristiques directement

à partir de données et ont permis de réaliser des améliorations majeures dans di-

verses tâches de vision par ordinateur liées aux visages. Le principal avantage des

approches d’apprentissage profond est leur capacité à apprendre à partir d’expériences

et à généraliser sur de nouvelles données non vues. Cependant, pour ce faire, ces mod-

10



ABSTRACT

èles profonds doivent être entraînés sur une quantité massive de données, ce qui est

difficile à obtenir pour le domaine des UA faciales et de l’estimation de l’intensité de

la douleur. La raison principale est que cela nécessite un effort d’étiquetage coûteux et

long par des annotateurs humains formés. Par exemple, il peut falloir plus d’une heure

à un annotateur expert pour coder l’intensité des UA dans une seconde d’une vidéo

de visage. De plus, le codage de l’intensité des UA nécessite une connaissance appro-

fondie de FACS et une formation supplémentaire par des experts de FACS pour être en

mesure d’étiqueter correctement les données. Environ 100 heures de formation FACS

sont nécessaires pour un seul codeur FACS. Par conséquent, il est difficile d’obtenir

un ensemble de données annotées de haute qualité à grande échelle. De plus, étant

donné que la distribution des données de l’intensité de l’UA est généralement déséquili-

brée vers une expression neutre (niveau d’intensité 0), la performance des méthodes

d’apprentissage profond sur ces bases de données est affectée négativement par des

données insuffisantes. Par conséquent, dans cette thèse, nous avons proposé plusieurs

approches d’apprentissage qui sont capables d’exploiter de meilleures représentations

des caractéristiques de l’image du visage sur une quantité limitée de données, amélio-

rant ainsi les performances du réseau par rapport aux approches de l’état de l’art. La

première approche que nous proposons consiste à apprendre à se concentrer sur les

régions liées à la douleur dans l’image du visage (région d’intérêt) pour une meilleure

estimation de l’intensité de la douleur. L’idée principale de cette approche repose sur le

fait que les humains n’ont pas tendance à traiter tout ce qu’ils voient dans son intégral-

ité en une seule fois. Il a plutôt tendance à se concentrer de manière sélective sur une

partie de l’information au moment et à l’endroit où il en a besoin, tout en ignorant les

autres informations perceptibles au même moment. Par conséquent, se concentrer sur

les bons endroits et ignorer les autres informations non pertinentes semble être un as-

pect important non seulement pour les humains mais aussi pour les machines afin de se

concentrer sur les informations révélatrices et d’extraire les caractéristiques correctes.

Notre approche imite ce comportement cognitif des humains en intégrant les emplace-

ments des régions d’intérêt dans les images de visages dans le processus de formation
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du réseau. Ce faisant, nous indiquons explicitement au réseau où il doit se concentrer

dans l’image du visage et ignorer les autres régions non pertinentes ou non importantes.

Comme l’apprentissage profond en général nécessite une quantité massive de données

pour être en mesure d’extraire les caractéristiques correctes des images, notre approche

devrait fonctionner efficacement sur une quantité limitée de données, car il a déjà su où

extraire les informations importantes sur l’image. En plus d’apprendre à se concentrer

sur les régions d’intérêt, notre approche apprend également à modéliser l’information

temporelle entre les images consécutives d’une vidéo. En reliant les caractéristiques spa-

tiales extraites de chaque image à un réseau neuronal récurrent (RNN), notre réseau

est capable de modéliser l’évolution dans le temps de chaque caractéristique faciale

dans une séquence d’images, ce qui améliore encore les performances de notre réseau.

Les expériences menées sur une base de données de référence pour l’estimation de la

douleur, à savoir la base de données McMaster de l’UNBC, montrent que notre approche

surpasse les autres travaux sur le problème de l’estimation de l’intensité de la douleur.

Conscients de l’importance de se concentrer sur les régions d’intérêt pour extraire

des informations pertinentes à partir d’une quantité limitée de données, nous avons

encore amélioré les performances du réseau dans notre deuxième approche en ne se

contentant pas de se concentrer sur les régions d’intérêt dans les images de visages,

mais en les isolant pour mieux extraire les représentations des caractéristiques liées à

l’expression. Sur la base du concept du paradigme diviser pour mieux régner, nous

utilisons le réseau de détection d’objets Faster RCNN pour localiser les régions d’intérêt

de l’UA (diviser) avant de les faire passer par un ensemble de réseaux régresseurs de

l’UA pour l’estimation de l’intensité de l’UA (régénérer). En isolant chaque région de

l’UA, nous sommes en mesure d’estimer correctement son intensité sans nous soucier

de l’apprentissage de caractéristiques incorrectes à partir d’autres régions non liées,

ce qui réduit le risque de surajustement. En plus de la localisation et de l’estimation

de l’intensité de l’UA, l’approche que nous proposons a également abordé un autre

problème crucial des patients lors du tournage, à savoir le problème de la pose de

la tête. Comme le patient ne regarde pas toujours directement la caméra lors de
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l’enregistrement, il est important que notre réseau soit capable de traiter correctement

les parties visibles, semi-visibles et obscures de l’image du visage. En entraînant ex-

plicitement le réseau à ne prendre en compte que les parties visibles du visage pendant

l’entraînement et à ignorer les parties obscures, notre réseau est capable de détecter les

caractéristiques correctes même dans les cas extrêmes de pose de la tête. En menant

des expériences approfondies sur deux bases de données de référence bien connues

sur les expressions faciales spontanées, à savoir les bases de données DISFA et UNBC

McMaster, nos approches proposées ont atteint des performances de pointe dans les do-

maines de l’estimation de l’intensité des UA du visage et de la mesure de l’expression de

la douleur. D’après les approches que nous proposons et les résultats des expériences,

on peut constater que les UA du visage jouent un rôle important dans la description

des expressions humaines, et qu’un système qui mesure correctement les UA du vis-

age mesurera donc aussi correctement tous les types d’expressions faciales humaines, y

compris l’expression faciale de la douleur. De plus, comme de nombreux chercheurs en

psychologie ont indiqué que l’état affectif sous-jacent est linéairement lié à l’intensité

physique des expressions faciales émotionnelles, nos approches de mesure de l’intensité

des UA faciales peuvent donc être adoptées pour mesurer tout état affectif et physi-

ologique humain de haut niveau.

Mots clés : Apprentissage automatique profond, Réseaux de neurones convo-

lutionnels, Reconnaissance des expressions faciales, Évaluation de l’intensité

de la douleur, Évaluation de l’intensité des unités d’action faciales, Technique

d’entrainement de réseau en 3 phases, Réseau de neurones FFAU.

UMR 5800 − Laboratoire Bordelais de Recherche en Informatique (LaBRI)

Université de Bordeaux

351, cours de la Libération − F-33405 TALENCE
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Introduction

Facial expression is a major non-verbal mean of expecting intentions in human commu-

nication. It is one of the most powerful, natural and universal signals for human beings

to convey their emotional states and intention. Thus, analysing and measuring human

facial expression is crucial for many different applications in multiple domains, includ-

ing health care and medical fields, human-computer interaction, virtual reality and aug-

mented reality, advanced driver assistance systems, education, and entertainment. To

measure human facial expression, the most popular and widely accepted way is using

Facial Action Coding System (FACS). FACS associates facial expression changes with ac-

tions and intensities of the muscles that produce them. It defines a set of different facial

Action Units (AUs), which are considered to be the smallest visually discernable facial

movements. By using FACS, human coders can manually code nearly any anatomically

possible facial display, decomposing it into the AUs and their intensities that produced

the display. Hence, it can be seen that FACS plays a crucial role in analysing and under-

standing human affective and physiological states. Yet, as the work of FACS annotating

is costly both in terms of time and effort of human expert annotaters, the amount of

labelled publicly available data on this domain are generally limited. In this work, we

primarily seek to address the problem of automatic facial AUs intensity estimation by

relying on Deep Neural Network (DNN) techniques. Specifically, we try to construct

different learning systems that are able to learn from limited amount of data to auto-

matically measure human facial AUs intensity from face image or video. As facial AUs

is the most basic building block for describing human facial expressions, this work of

automatic facial AUs intensity estimation is one important step for better understanding

the underlying affective state of human emotion.

Besides automatic estimating facial AUs intensity, we also aim to automatically mea-

sure one prototype of facial expressions, i.e., the facial expression of pain. Since pain
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INTRODUCTION

can be considered as the symptom of numerous diseases and tissue damage, it is cru-

cial for clinicians to understand the pain of patients in order to inform them of their

condition and recommend the best course of treatment. Hence, there is a need of de-

veloping an automatic pain assessment system that can infer the facial information and

provide complementary objective information to the clinicians for better measuring and

understanding the pain experience of the patients. As any facial expression can be de-

composed into a set of facial AUs and their intensities, including the pain expression, in

this work we try to construct a Deep Neural Network that capable of accurately mea-

suring pain intensity level by relying on the measurement of facial AUs.

In summary, the objectives of this thesis are about studying human spontaneous fa-

cial behaviors in image and video for identifying the intensity levels of (1) facial Action

Units (AUs) and (2) facial expression of pain. Between these two objectives, we focus

primarily on automatic facial AUs intensity estimation, as it is the most basic building

block for describing human facial expressions. A system that correctly measures fa-

cial AUs will therefore also correctly measures any types of human facial expressions,

including facial expression of pain.

Thesis Organisation

This thesis is organised into two parts. The first part includes two chapters (Chapter

1-2), which provides an overview of the background, state of the art in automatic facial

AUs and pain intensity estimation. The second part consists of the main contributions

of this thesis (Chapter 3-5).

Chapter 1 focuses on the definition of the problems targeted by this work, i.e.,

estimating the intensity of facial Action Units (AUs) and the expressions of pain. The

background and rationale behind the study, as well as the descrition of publicly available

databases used in this thesis are mentioned in this chapter.

Chapter 2 provides an overview of different techniques that can be used in auto-

matic image/video processing. The pipeline of processing face data and the literature
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review of the state of the art methods in the objective domains of the thesis are also

provided in this chapter.

Chapter 3 and 4 present our proposed methods for automatic facial AUs and pain

intensity estimation problems. Chapter 3 introduces our novel method of learning to

focus on regions-of-interest in face images for pain intensity estimation. Chapter 4

proposed our new method for isolating regions-of-interest in face images for better facial

AUs and pain intensity estimation.

Chapter 5 concludes the thesis by discussing the contributions of the thesis, the

opening challenges and future research direction on automatic facial AUs and pain mea-

surement.
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Context: CIFRE Thesis

This thesis is part of the Digital Therapeutics (DTx) project at Lucine1 company. The

aims of the DTx project is to provide software-based therapeutic solutions for chronic

pain patients to prevent, manage or treat a wide range of physical, mental and behav-

ioral symptoms. According to the SFETD2, in 2017, there are 150 millions people suffer

from chronic pain in Europe. In France, 70% of pain patients do not receive appropriate

treatment and only 3% of them receive personalised care. Also, pain is the most com-

mon reason for medical doctor consultation and poses great challenges in terms of its

treatment. Therefore, the objective of Lucine is to create new digital solutions that help

patients to relieve chronic pain.

This CIFRE3 thesis, as a part of the DTx project at Lucine company and under the

supervision of the LaBRI4 laboratory, aims to automatise the measurement of human

facial expressions in general and pain expression in particular by using machine learning

techniques on face image and video. These facial expressions measurement information

will be a valuable data for better understanding human expressions and improving pain

management of the patients.

1lucine.io
2Société Française d’Étude et de Traitement de la Douleur
3CIFRE means industrial training contract by research, and corresponds to a particular French type of

thesis contract, supported by a company.
4Laboratoire Bordelais de Recherche en Informatique
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CHAPTER 1. BACKGROUND

In this chapter, we first give a general introduction to human facial expression in

general and pain expression in particular. Then, we expose the current measurement

approaches to measure each of these two domains. Finally, we review publicly available

datasets on both of these two domains.

1.1 Overview

The face is a window with a view opening onto our emotions. The expressions on hu-

man face provide rich information in understanding the emotional state of the person,

feeling and attitude. Although there are only a few words to describe different facial

behaviors (smile, frown, furrow, squint, etc), human facial muscles are sufficiently com-

plex to allow more than a thousand different facial appearances [RFD97]. These facial

expressions can sometime provide much more information than any words can do. In

1872, Charles Darwin [DP98] once said:

“ They (the movements of expression in the face and body) reveal the thoughts

and intentions of others more truly than do words, which may be falsified. ”

It can be seen that facial expressions are an important non-verbal communication chan-

nel, which can reveal our true inner feelings and thoughts. In another research, Russell

and Fernández-Dols [RFD97] also have said:

“ When we turn our eyes to the face of another human being, we often seek and

usually find a meaning in all that it does or fails to do so. ”

It is clear that facial expressions play an important role in human communication as

revealing one’s emotional states and intentions. Besides facial expressions, there are

other means of communication that express emotions, including vocal intonation, hand

gesture, head movement, body movement and posture, and more. Despite the available

range of cues and modalities in human-human interaction, facial expressions is still

the primary way to express people’s feelings [AA21]. In 1967, psychologist Mehrabian
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observed that 7% of knowledge moves between people through writing, 38% through

voice, and 55% through facial expression [MF67]. Mehrabian’s observations once again

justify the interest and importance of facial expressions in human-human communi-

cation and in the expression of emotional feelings. In fact, facial expression figures

prominently in research on almost every aspect of emotion, including psychophysiol-

ogy [LEF90], neural correlates [EDF90], development of emotion [MCT+89], percep-

tion [ASC05], addiction [GS08], social processes [HCR92], depression [CKM+09], and

other emotion disorders [TMD+05]. From these researches, we can see that facial ex-

pression possesses a lot of valuable information that gives an effective way to the per-

ceive person’s consciousness and mental activity. The analysis of facial expression shows

an important theoretical research value, practical value and the life application value.

Consequently, since the last quarter of the 20th century, with the advances in the field

of computer graphics and computer vision, computer scientists have been starting to

show interest in the study of human facial expressions. Automatic human facial ex-

pression analysis is thus becoming an important research topic and attracting a lot of

attention from researchers, as it is applicable in many different domains. Pain assess-

ment [VBADE21], telenursing [DSI+01], drowsy driver detection [JNK20], analysing

mother-infant interaction [FCAL04], human-robot interaction [FVFP17], and expres-

sion mapping for video gaming [HT10] are among the domains that benefits from ma-

chine understanding of human facial expressions.

There are two main stream researches in automatic facial expressions analysis, one is

about detecting the presence or absence of a certain facial expressions (e.g., detecting

the facial expression of happiness), the other is about measuring the facial behavior

intensity of an expression (e.g., pain intensity estimation). The intensity of a facial

expression can be seen as the relative degree of displacement, away from a neutral or

relaxed facial expression, of the pattern of muscle movements involved in emotional

expressions of a given sort [HBK97].

Many of previous works have focused on detecting facial expressions due to its pio-

neering investigations along with the direct and intuitive definition of facial expressions
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[LD20]. However, as facial expressions are complex and subtle, the meaning and func-

tion of these expressions depends largely on their intensity, rather than just the binary

selection of presence and absence. For example, the smiles of enjoyment are full-blown

smiles, while the “fake happiness smiles” may be asymmetric and are usually less in

intensity when observed in naturalistic social settings [EF82]. In 2013, Gunnery et al.

[GHR13] noted:

“ Most of the smile genuineness impression is created by the intensity of the

smile. ”

It can be seen that the intensity of a facial expression behavior plays a crucial role in

defining the meaning and function of the expression. This is inline with many other

psychology findings [RE05, HBK95, HBK97], in which they have found that the under-

lying affective state is linearly related to the physical intensity of the emotional facial

expressions. Hence, the intensity of human affective and physiological states (e.g., pain

emotion), which cannot be directly measured, can be effectively estimated by measur-

ing the intensity of facial expression. In this work, we seek primarily to address the

problem of automatic measuring the intensity of human facial expressions. Besides

automatic estimating the intensity of facial expressions, we also aim to automatically

measure the intensity of one prototype of facial expressions, i.e., the facial expression

of pain.

Measurement of pain is a crucial requirement for many applications in health care

and medical fields [TBLH17, AEAKAS20]. Since pain can be considered as the symp-

tom of numerous diseases and tissue damage, understanding the patient’s pain is very

important for clinicians to provide information about the condition of the patient, and

to advise the right course of treatment. In clinical trials and clinical practice, pain is

usually diagnosed through the patient’ self-report based on several factors including

severity, sensory quality, location, and duration of the pain. Self-report is often referred

to as the gold standard and the primary tool to measure the pain experience [Cra09],

in which the patient is asked to quantify the level of pain that they are experiencing.
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However, self-report is not applicable for population who are unable to articulate their

pain experience [CPG11], e.g., unconscious or newborn patients. When assessing the

distress of others, self-report is often considered as less weighted than non-verbal ac-

tivities [Cra92, PC92]. In a review of research, von Baeyer et al. [vBJM84] have noted

that “nonverbal behaviors may be a more accurate source of information than verbal

reports because they are less subject to ‘motivated dissimulation’”. Due to subjectivity

of pain experience, self-report may not be a reliable assessment technique because it

is a controlled and goal-oriented response to pain [SC10], which might be affected by

reporting bias and variances in memory and verbal ability [Cra92].

Another approach to measure pain experience of a patient is observer rating, in

which the medical staffs (e.g., professional nurses) examine the conditions of the pa-

tient and rate the pain intensity accordingly. However, many variables of the patient

in pain, i.e., physical attractiveness, sympathy, gender, and age, are known to influence

clinical judgments [HRVB90, HLHM00, RW04, DRGP+11]. Moreover, as the medical

staffs exposed to a high number of painful facial expressions for a long period, they may

develop an exaggerated bias over time [PKB15], which could have a negative impact

on the accuracy of the pain assessment. To overcome these limitations, it is desirable

to develop automatic pain assessment systems that can infer the facial information and

provide complementary objective information to the clinicians for better measuring and

understanding the pain experience of the patients. Hence, in this work, besides auto-

matic measuring the intensity of human expressions, we also aim to construct a pain

measurement system which could correctly measure pain intensity level from facial ex-

pressions of patients. This system will act as a computer-aided health management

system to continuously monitor the pain condition of the patients, providing more in-

sights of the patient’s conditions to the clinicians.

In the next sections, we discuss deeply about facial expression and present different

ways to measure it. Sections 1.2-1.4 introduce two approaches to measure human facial

expressions, while Section 1.5 discusses about pain emotion and the measurement of

pain.
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1.2 Facial expression analysis

In order to analyse facial expression, we need to know the different ways of describing

facial expression and the existing approaches to measuring it. There are two main ways

for describing a facial expression: judgement and sign based approaches [CAE07, CE05].

Both of them are grounded on the non-verbal communication model proposed by Rosen-

thal [Ros05]. The model assumes communication between two human entities: the

subject and the observer. The subject experiences an internal state (e.g., pain or other

emotions), then expresses through his external features (e.g., facial muscles, body ges-

tures, etc). These features are then recognised and interpreted by the observer.

The judgement based approach takes the role of the observer and also the way he

interprets the expression. It tries to decode the meaning of the behaviour, e.g., by assign-

ing one of the six basic emotions [EF71] or by giving an emotion intensity score, such as

valence or arousal (see Section 1.3.2 for more information about valence and arousal).

Contrastingly, the sign based approach uses the physical communication channel, e.g.,

the facial muscles. It analyses how each part of the face move, e.g., lowering of the

brows or stretching of the mouth. As an example, on seeing a smiling face, an observer

with a judgment-based approach would make judgments such as “happy,” whereas an

observer with a sign-based approach would code the face as having an upward, oblique

movement of the lip corners. Compared to the judgement based approach, the sign

based approach is better in term of objectivity, since it is purely just the description of

each face part’s movement. On the other hand, as each part of the face needs to be

analysed separately, this sign based approach is harder and takes longer time for the

observer to interpret compared to the judgement based approach.

In term of judgement based approach, we focus on the Discrete and Dimensional

emotion measurement approaches in Section 1.3. In term of sign based approach, we

focus on the Facial Action Coding System, which is described in Section 1.4.
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1.3 Discrete and Dimensional emotion assessment

In the field of facial expression analysis, the discrete and dimensional emotion models

[MG14] are the two well-known approaches for describing human affective states. Both

of them are judgement based approach. This section briefly introduces the two emotion

models and discusses the advantage and disadvantage for each of them.

1.3.1 Discrete emotion model

Discrete emotion model is based on the assumption that there is a limited set of basic

emotions categories whose expression and recognition are fundamentally the same for

all individuals regardless of ethnic or cultural differences. The model suggests that an

independent neural system subserves every discrete basic emotion. However, neuro-

imaging and physiological studies have failed to establish reliable, consistent evidence

to support this theory (see [BW06, CBL+00]), and the matter remains under debate.

In studies about human emotions, the six basic emotions proposed by Ekman [EF71]

is one of the most commonly used facial expressions measurement, which is based on

this discrete emotion model. The joy, sadness, fear, anger, disgust and surprise are the

six expressions included in the measurement (see Figure 1.1 for the visualisation of

these expressions). These expressions are referred as “universal” as they were found to

be universal across human ethnicities and cultures [EF71]. However, advanced research

on neuroscience and psychology argued that the model of six basic emotions are culture-

specific and not universal [JGY+12, GRvdVB14]. Psychology studies have found that

affect expression patterns in face and eye movements vary within cultures and vary

even more across cultures [CBC+06, JGY+12]. They suggest that the cultural factors

need to be taken into account when measuring facial expressions [SB09].

The discrete emotion model is still the most popular perspective for facial expres-

sions assessment due to its pioneering investigations along with the direct and intuitive

definition of facial expressions. However, in the downside, this approach cannot express
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Figure 1.1: The facial expression visualisations of six basic universal emotions. Image from
[SDF+21].

complex affective emotion states. E.g mixed emotions cannot adequately be transcribed

into a limited set of categories [KMK06, DTM14]. Some researchers tried to define

multiple distinct compound emotion categories, e.g., happily surprised, sadly fearful

[DTM14], to overcome this limitation. However, the set is still limited, and the inten-

sity of the emotion also cannot be defined in the categorical set of emotions.

1.3.2 Dimentional emotion model

Many cognitive scientists oppose the theory of a set of discrete, basic emotions [Man84,

Rus95]. Some of these opponents instead take a dimensional view of the problem

[SBR10]. In their view, affective states are not discrete and independent of each other,

instead they are systematically related to one another [MR73].

Several dimentional emotion models have been proposed [RM77, Rus80, Tha90].

Yet, the valence-arousal model proposed by Russell [Rus80] seems to be the most fa-

mous and have gained great support among emotion researchers [Sch99, PRP05]. In-

stead of an independent neural system for every basic emotion, Russell’s model proposes

that all affective states arise from two independent neurophysiological systems: one re-

lated to valence (i.e., level of pleasure) and the other to arousal (i.e., level of affective
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Figure 1.2: The 2D Emotion Wheel. Image from [KZ18].

activation). Each and every affective experience is the consequence of a linear combi-

nation of these two independent systems, which is then interpreted as representing a

particular emotion. Values of valence and arousal form a 2D emotion wheel, where each

point represents an emotional state, as can be seen in Figure 1.2. In term of quantifying

the facial expressions, as the value of both valence and arousal is on a continuous scale,

this dimensional model can distinguish between subtly different displays of affect and

encode small changes in the intensity of each emotion, such as low happy, happy or very

happy emotions [EA12].

Since the dimensional model covers both intensity and different emotion categories

in the continuous domain, it is more robust compared to the discrete emotion coding

approach. However, this model also has some limitations, it has been criticised for

their lack of differentiation when it comes to emotions that are close neighbours in the

valence-activation space, such as anger and fear [TWC99]. It is also unclear how a

facial expression should be mapped to the space or, vice versa, how to define regions

in the valence/arousal space that correspond to a certain facial expression. Being a

judgement system that is based on feeling, it is again problematic to use this system
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Figure 1.3: The visualisation of some AUs. Image from [HCLW19].

to describe non-emotional communicative signals (e.g., brow-flash used in greetings)

[Val08]. Additionally, this dimensional emotion model is subjective and therefore re-

quires experienced annotators to ensure consistency when constructing datasets.

1.4 Facial Action Coding System

The FACS [EFH02] is the most well-known, standardised and widely used sign based ap-

proach [CAE07], which was initially developed in the 1970s [EF78] and was informed

by earlier research by [Hjo69, DP98]. FACS defines a unique set of anatomically based

facial actions called Facial Action Units (AUs). Each AU is based on one or at most a

few facial muscles and may occur individually or in combinations, e.g. AU1 (inner brow

raiser) codes contractions of both the frontalis and pars medialis facial muscle, while

AU23 (lip tightener) codes contractions of the only the orbicularis oris muscle [EFH02]

(see Figure 1.3). Table 1.1 lists the main AUs along with their description and the facial

muscle(s) involved.

In addition to the presence or absence of AUs, FACS also defines intensity codings

on a five point scale from A to E for representing the intensity variation from barely

detectable or trace (A) to maximum (E) [EFH02]. Recent works [LCP+12, MMB+13]
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Figure 1.4: Sample facial images with AU intensity variations. Image from [MMB+13].

adapted the FACS scale and proposed to use a six-point ordinal scale [0−5] to represent

the AU intensity score, which seems to be easier to interpret. With this six-point ordinal

scale, score 0 denotes the AU fails to occur and the [1− 5] scale is corresponding to the

variation [A − E] in FACS scale. Figure 1.4 shows examples of intensity variations of

AU12 and AU25.

Numerous previous studies have relied on FACS for determining a patient’s psycho-

logical and physiological state. Archinard et al. [AHRH00] used FACS to identify which

depressed patients are at greatest risk for reattempting suicide. Prkachin and Solomon

[PS08] constitute an index of physical pain with desirable psychometric properties by

ultising the combination of different facial AUs. Keltner et al. [KMSL95] used FACS

to distinguish different types of adolescent behavior problems. Cohn et al. [CKM+09]

rely on FACS to detect depression of patients from face video. These are just a few of

the numerous works that benefit from automatic facial AUs intensity estimation. It can

be seen that FACS plays an important role in human facial analysis, which set the step

stones for many high order decision making and applications that related to emotion,

social interaction, psychological disorders and health. Yet, on the downside, the work

of FACS annotating is not easy as it requires a costly and time-consuming labeling effort

by trained human annotators. For instance, it may take more than an hour for an expert

annotator to code the intensity of AUs in one second of a face video [RE20]. Further-

more, FACS coding requires profound knowledge of the FACS and additional training

by FACS experts to be able to correctly label data. Approximately, it requires about

100 hours of time involved in this FACS training [Prk09]. Therefore, in this work, we

attempt to construct a learning system that has the capability of automatic measuring
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AU Description Facial Muscle

0 Neural face -
1 Inner Brow Raiser Frontalis, pars medialis
2 Outer Brow Raiser Frontalis, pars lateralis
4 Brow Lowerer Depressor Glabellae, Depressor Supercilli, Currugator
5 Upper Lid Raiser Levator palpebrae superioris
6 Cheek Raiser Orbicularis oculi, pars orbitalis
7 Lid Tightener Orbicularis oculi, pars palpebralis
9 Nose Wrinkler Levator labii superioris alaquae nasi
10 Upper Lip Raiser Levator Labii Superioris, Caput infraorbitalis
11 Nasolabial Deepener Zygomatic Minor
12 Lip Corner Puller Zygomatic Major
13 Cheek Puffer Levator anguli oris
14 Dimpler Buccinator
15 Lip Corner Depressor Depressor anguli oris (Triangularis)
16 Lower Lip Depressor Depressor labii inferioris
17 Chin Raiser Mentalis
18 Lip Puckerer Incisivii labii superioris and Incisivii labii inferioris
20 Lip stretcher Risorius
22 Lip Funneler Orbicularis oris
23 Lip Tightener Orbicularis oris
24 Lip Pressor Orbicularis oris
25 Lips part Depressor Labii, Orbicularis Oris
26 Jaw Drop Masetter; Temporal and Internal Pterygoid relaxed
27 Mouth Stretch Pterygoids, Digastric
28 Lip Suck Orbicularis oris
41 Lid droop Relaxation of Levator Palpebrae Superioris
42 Slit Orbicularis oculi
43 Eyes Closed Relaxation of Levator Palpebrae Superioris

Table 1.1: List of common AUs with their description and the involved facial muscles.

FACS intensity with high precision when training on a limited amount of data. As facial

AUs are independent of interpretation and can be used for any higher order decision

making process, this work of automatic measuring facial AUs intensity is one of the key

steps towards better understanding human facial expression and assessment.

In the next section, we discuss about one specific type of human facial expressions:

the facial expression of pain. Since FACS can be used to describe any facial expression,

we show how can we utilise FACS to measure the intensity of pain.
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1.5 Pain expression and measurement

Pain is a complex phenomenon that affects millions of people around the world, and is

a common cause of agony and suffering. In order to quantify the expressions of pain,

we first explain what is pain in general and then how to measure it.

1.5.1 Pain emotion and expression

Pain is an inner feeling that draws attention, alerts individuals to possible bodily dan-

ger and subsequently prompts to escape from the dangerous situations, recovery and

heal [Wil02]. According to the most widely accepted definition, pain is an unpleasant

sensory and emotional experience associated with actual or potential tissue damage, or

described in terms of such damage [Mer79]. The experience of pain is constructed in

the brain based on information from multiple sources, including incoming nociceptive

or danger signals, information form the senses (vision, touch, hearing), and other mod-

ulating factors such as attention, distraction, expectations, anxiety, stress, the physical

and social context, and past experience [Mar08, Fit13]. As a result, the same pain stim-

ulus (e.g., electric shock) may lead to different pain experiences, i.e. people differ in

their pain sensitivity and also the same person can have different experiences to the

same stimulus depending on many factors.

In order to describe pain, an extension of the Rosenthal non-verbal communication

model [Ros05] is developed and presented by Prkachin and Craig [PC95]. The model

begins with an experience of pain, then an encoding process encodes information about

the experience into external features. Finally, these features are then decoded by an

observer. According to the model, the perception of pain experience is influenced by

three factors including: the pain stimulus (e.g., the severity of tissue damage), the

intrinsic factors (e.g., aging) and the extrinsic factors (e.g., stress-induced analgesia).

The intrinsic and extrinsic factors may amplify or attenuate the effects of the noxious

pain stimulus, leading to higher or lower level of perceived pain experience. Hence,
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different level of pain stimulus need to be applied for each individual to be able to have

roughly the same sense of perceived pain experience [WGE+13].

Regarding the encoding process, pain experience can be encoded via different chan-

nels including: facial expressions, body gestures, non-verbal vocalisations, speech or

different physiological signals (i.e. Electroencephalography (EEG), Functional magnetic

resonance imaging (fMRI) or Heart Rate Variability (HRV)). Of these cues, only phys-

iological signals cannot be naturally recognised and interpreted by human observers.

Moreover, the measurement procedure of these signals is also complicated and intru-

sive, it requires patients to attach bulky sensors, chest straps, or stick electrodes. Hence,

more and more works have been focusing on exploiting other unobtrusive expressing

channels, such as facial expressions, body gestures or other vocal-related channels. In

this work, we focus on exploiting the facial expressions, since it is unobtrusive and have

been shown to be highly informative with regard to pain [PC95, SHW+07].

1.5.2 Pain measurement

To measure the pain emotion, there are serveral possibilities including: stimulus mea-

surement, self-report and observer rating. Regarding the stimulus measurement, this

is an easy approach to measure the pain experience, since the intensity level can be

obtained directly from the pain stimulus device, e.g. the voltage of an electro-shock

stimulus or the temperature of an heating stimulus. However, as the perception of pain

is influenced not only by the pain stimulus but also by the intrinsic and extrinsic factors,

pain measurement should take into account both of these factors. Yet, intrinsic fac-

tors like mood, beliefs or personality seem impossible to be quantified and thus do not

lead to a reliable measurement of pain. Self-report is another approach for measuring

the pain experience, which refers to conscious communication of pain-related infor-

mation by the patient. The approach is often referred to as the gold standard in pain

assessment, and has been widely used in many different clinical applications. However,

self-report is also being considered as a controlled and goal-oriented response approach

49



CHAPTER 1. BACKGROUND

[CPG11], which can be affected by reporting bias and variance in memory and verbal

ability [Cra92]. Furthermore, self-report is difficult to collect for dynamic situations that

require a continuous intensity measurement over time. Regarding observer rating mea-

surement, there is good evidence that facial pain expressions, which can be observed by

an observer, is not only sensitive but also specific to pain and can be distinguished from

expressions of basic emotions [Wil02, CPG11]. Hence, this work focuses on measuring

the pain reaction of the subject in terms of facial expressions, based on the observer’s

observation. As observer rating is highly subjective, it is possible to combine several

observers to obtain a more robust and reliable measurement result.

Figure 1.5: Example of some facial action units occur in painful experience. Image from
[WLMW+22].

The facial expressions of pain, like any other type of facial expressions, can be de-

scribed by a combination of several different facial AUs. It is shown that there are a

certain number of AUs are displayed during the experience of experimental pain as well

as in clinical pain conditions [KFL12]. These AUs are including: rising the brows (AU1,

AU2), lowering the brows (AU4), cheek raise and lid tightening (AU6, AU7), nose wrin-

kling and upper lip raising (AU9, AU10), mouth opening (AU25, AU26, AU27), and eye

closure (AU43) [PS08, KML19, KL14]. These pain-related facial AUs seems to encode

the essential information about pain available in the face. An example of painful facial

expression are shown in Figure 1.5. From this figure, we can see that these AUs can

be triggered during a painful experience, and not all of them are triggered at the same

time. In fact, individuals often display only parts of these AUs or combine these AUs

50



CHAPTER 1. BACKGROUND

differently [CPG11, KML19]. Hence, the pain expressions can be measured by detecting

and estimating the intensity of the right combination of AUs.

In order to formulate the measurement of pain, Prkachin and Solomon proposed a

pain intensity scale [PS08] termed by PSPI. The PSPI pain intensity is defined as the

sum of some pain-related facial AU intensities as follows:

PSPI = AU4 + max(AU6, AU7) + max(AU9, AU10) + AU43 (1.1)

Each AU has its intensity score with the range of [0−5] , except for AU43 with the range

of [0 − 1] representing the present or absence of the AU. Thus, the PSPI pain scale has

a range of [0− 16], whereas 0 denotes no pain and 16 is the maximum pain experience.

Since PSPI is based on FACS, it can be calculated for each individual image or video

frame. Prkachin and Solomon show that PSPI correlates well with observer rated pain

intensity levels [PS08].

The main advantage of PSPI is that the subjective part of the judgment based pain

rating is eliminated, and directly mapped to the sign based FACS, making the results

easily reproducible. On the downside, it was found that the PSPI pain score can go up

and down with tension and relaxation of facial muscles despite the felt pain is steadily

increasing [WAHLE+17]. Thus, the temporal resolution of PSPI could be misleading if

the pain persists for long time. Moreover, the PSPI may be zero in some cases, even

though the person is actually experiencing pain. There may be no facial reaction at all

due to low pain intensity or expressiveness [PC95, KL14]. Additionally, several factors

that are relevant for pain rating are missed in the calculation of PSPI score including

eyebrow raiser (AU1, AU2) or mouth opening (AU25, AU26, AU27) [KL14], which could

potentially lead to an incorrectly pain measurement in some cases. Further, several

facial expressions of emotions share AUs with PSPI [ZYC+14], e.g. disgust (AU9, AU10),

fear and sadness (AU4), and happiness (AU6). If PSPI is used in a wider context, many

frames are labelled as painful by mistake.

Despite having these shortcommings, PSPI score is still a valuable pain measure-

ment and have been widely used as ground truth to approach pain recognition and
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assessment. As PSPI is a FACS based approach, information regarding both the name

and intensity of each facial muscle movement is encoded at the frame level, which is

a great source of information to exploit. E.g. a learning approach can learn to model

precisely the appearance, location and intensity of each facial muscle that caused the

pain emotion. Additionally, the high correlation of PSPI score with high pain intensi-

ties [WAHLE+16] also seems to be an important aspect of the measurement. E.g. an

automated system could be built to continuously monitor a patient and raise the alarm

if an abnormal pain experience is recognised. Yet, PSPI score should still be used with

caution or supplemented with other ground truth.

Another way to approach this problem is constructing a better frame-level pain mea-

sure, e. g. by subtracting AUs that do not occur during pain and by considering multiple

"faces of pain" in a non-linear combination [WAHLE+16]. This seems to be a promising

approach as it takes the full advantages of FACS based approach while still correctly

measure pain expressions at frame level. Yet, this approach requires extensive work

by neuroscientists and pain specialists to construct a new FACS based pain measure,

which is out of the scope of this work. However, as FACS is always blind to the research

hypothesis [PCBH17], a system that correctly measures AU intensity is always useful as

it is not only able to compute the PSPI score to measure pain for now, but also able to

adapt to the new better FACS based pain measure in the future. Hence, in this work,

we focus on constructing a system to measure AU intensity in general and subsequently

measure PSPI score for estimating pain intensity in particular.

1.6 Databases

Representative data are essential for developing a facial expression assessment system

and proving its usefulness. In this section, we provide an overview of the publicly avail-

able face image/video databases which consist of AU intensity and pain estimation. We

introduce the two mainly used databases in our experiments: DISFA (Section 1.6.2) and

UNBC McMaster (Section 1.6.1). Besides these two databases, we also briefly summary
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other publicly available databases with AU intensity annotated, as can be seen in Ta-

ble 1.2. Since the process of AU intensity annotation is time consuming and requires

trained experts, only a few databases exist.

Database name Year N. Subjects N. Images N. AUs

UNBC McMaster [LCP+12] 2012 25 48, 398 11
DISFA [MMB+13] 2013 27 130, 754 12
BP4D-Spontanous [ZYC+14] 2013 41 146, 847 2
FERA 2015 [VAG+15] 2015 41 146, 847 5
BP4D+ [ZGW+16] 2016 140 197, 875 5
GFT [GCJC17] 2017 96 172, 800 5

Table 1.2: List of publicly available databases that are annotated with facial action unit intensi-
ties.

Regarding the problem of pain intensity estimation, as our work is mainly focus on

FACS based approaches (see Section 1.5.2), the UNBC McMaster appears to be the only

FACS based pain database that available in research community.

1.6.1 UNBC McMaster database

The UNBC-McMaster Shoulder Pain Expression Archive Database (UNBC McMaster)

[LCP+12] contains face videos of patients who suffer from shoulder pain while perform-

ing different range-of-motion tests on their arms to elicit the pain emotion. The partici-

pants were recruited from 3 physiotherapy clinics and by advertisements posted on the

campus of the McMaster University. The inclusion criterium was self-identification with

shoulder pain, which included different medical conditions such as arthritis, bursitis,

tendonitis, subluxation, rotator cuff injuries, impingement syndromes, bone spur, cap-

sulitis and dislocation. Two different movement tests are recorded, including active test

and passive test. For active test, the subject moves the arm himself, while for passive

test, the subject’s arm is moved by a physiotherapist. Only one of the arms is affected by

pain, but movements of the other arm are recorded as well for comparison. Of all the

recorded sequences, 200 sequences of 25 subjects (13 women and 12 men) were selected
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Figure 1.6: Sample images from the UNBC McMaster database.

for distributing to the research community. Totally, there are 48, 398 frame images in this

publicly distributed portion of the database. Figure 1.6 shows some sample images of

the database. It can be seen that images inside the dataset were cropped around the

upper body of the participants.

For each frame, the intensities of pain related AUs, including AU 4, 6, 7, 9, 10, 12,

20, 25, 26, 27 and 43 are provided on a [0 − 5] discrete intensity scale, except for AU

43, which is binary. The AU annotations were obtained by one of three certified FACS

coders and an inter-observer agreement of 95% (according the Ekman-Friesen formula

[EF78]) was reached on a small subset of the data (1, 738 frames) which was annotated

by all three coders. The intensity distribution of these AUs is shown in Figure 1.7. From

this figure, we can see that the database is highly imbalance with more than 85% of

the data is labelled as zero. Obviously, without rebalancing the dataset, any leading-

based AU intensity estimation system derived from this dataset will be biased towards

the zero intensity, as it is too dominant the dataset [JCDLT13]. Therefore, rebalancing

is an important step before any further analysis on this data set.

Besides the AUs annotations, the database creators also provided discrete pain in-

tensities according to Prkachin and Solomon method [PS08]. The pain score is basically

the aggregation of 6 different AUs together to form a single number called PSPI whose

value ranging between [0 − 16] (see Section 1.5.2). As the distribution of AU intensi-

ties is unbalanced, so is the distribution of the PSPI score, as shown in Figure 1.8. In
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Figure 1.7: The distribution of facial AU intensity of the UNBC McMaster database.

addition to the PSPI and AUs annotations, 66 facial landmark points have also been

extracted and provided in the database (see Section 2.2.2 for more information about

facial landmarks).

The reason we chose the UNBC McMaster database is because it is the only database

that focuses solely on pain and that provides detailed for both AU intensities and pain

intensities per frame. Apart from that, in this database, the expressions of pain are

spontaneous and come from people of different genders and ages. Furthermore, as the

agreement score between the three FACS coders in the database has reached the score

of 95%, the annotated AUs of the database appear to be highly reliable.

1.6.2 DISFA database

The Denver Intensity of Spontaneous Facial Action Dataset (DISFA) [MMB+13] is a

non-posed facial expression database, which contains spontaneous facial expressions

of subjects while watching a stimulating video. The video contains 9 short clips from

youtube which are related to five emotions including: happiness, surprise, fear, disgust

55



CHAPTER 1. BACKGROUND

2

40

PSPI  0 1 2 3 4 5 6

x103

0

1

3

N
um

be
r o

f f
ra

m
es

7 8 9 10 11 12 13 14 15

Figure 1.8: UNBC McMaster: Frame distribution of the PSPI intensity levels [0− 16].

and sadness. The participants were 27 adults (12 women and 15 men) of different eth-

nicities: three were Asian, 21 Euro-American, two Hispanic, and one African-American.

Their age is between 18 and 50 years. Their facial behavior was recorded with a resolu-

tion of 1024 × 768 pixels, at 20 fps under uniform illumination. Figure 1.9 shows some

sample frame images from the database.

Figure 1.9: Sample images from the DISFA database. It can be seen that the database contains
both men and women, of different ethnicities and ages.

For each participant, 4, 845 video frames were recorded, resulting in a total number

of 130, 754 frames for the whole database. Each of these frames has been annotated with

AUs and their corresponding intensity on a [0− 5] discrete scale by a single expert FACS
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rater. In order to validate the inter-observer reliability, 10 randomly selected videos were

annotated by a second FACS rater and the inter-rater Intraclass Correlation Coefficient

(ICC) for different AUs ranges from 0.80 to 0.94. For the record, ICC value of 0.80

and higher is considered as high reliability [Coh88]. Hence, the annotated AUs of the

database seem to be reliable. The annotated AUs include AU 1, 2, 4, 5, 6, 9, 12, 15, 17,

20, 25, and 26. The intensity distribution of these AUs is shown in Figure 1.10. From

this figure, we can see that the DISFA database also has the imbalance problem, as does

the UNBC McMaster database. Hence, we also need to work on rebalancing the dataset

before any further training or analysing. In addition to the annotations, the database

creators also have provided 66 Active Appearance Model (AAM) tracked facial landmark

points.
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Figure 1.10: The distribution of facial AU intensity of the DISFA database.

We chose the DISFA as one of the main evaluating databases in our work since

it is one of the few naturalistic databases which provide per-frame annotated videos

for quite a lot of differences AUs (12 AUs) in all 6 intensity levels. Other databases

only contain very few AUs or only posed facial expressions. More importantly, the

annotated AUs in the database are highly reliable, with the ICC between expert raters
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being greater than or equal to 0.80. As the correctness of the database will directly

impact the performance of any system derived from the database, the high reliability

of the database is one of the main points when we select a database for training and

evaluation of our proposing approaches.

1.6.3 BP4D-Spontanous database

The Binghamton–Pittsburgh 4D spontaneous expression database (BP4D-Spontaneous)

[ZYC+14] contains 328 sequences of facial 3D images and 2D texture recorded at 25

Frames Per Second (FPS) from 41 subjects. These subjects are including 18 males and

23 females of different ethnicities, which are including 11 Asian, 6 African-American, 4

Hispanic and 20 Euro-American. Their age is between 18 and 25 years. During each

sequence, the subject is recorded while performing one of 8 interaction tasks with an

experimenter. Each task is designed to elicit one of the emotions: happiness, sadness,

surprise, embarrassment, fear, pain, anger and disgust. Each sequence has been AU

annotated for the most expressive 20 sec period. The onset and offset are annotated for

27 AUs, including AU 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24,

27, 28, 30, 32, 38 and 39. Despite having quite a lot of different AU annotated, only two

AUs are annotated as 6 level discrete intensities [0− 5], including AU 12 and AU 14.

Having the pain expression annotated is a plus point of this database. However, as

the number of AUs that annotated with intensity are extremely low (only two AUs) and

AU intensity is the main focus of our work. Hence, this database is not suitable for our

purpose.

1.6.4 FERA 2015 database

The Facial Expression Recognition and Analysis challenge 2015 database (FERA 2015)

[VAG+15] is the main database built for the FERA 2015 competition. The database is

drawn from BP4D+ [ZGW+16] and SEMAINE [MVC+11] databases for the task of AU

occurrence and intensity estimation. For the task of AU occurrence detection, 14 AUs
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are drawn from both the two SEMAINE and BP4D+, including AU 1, 2, 4, 6, 7, 10, 12, 14,

15, 17, 23, 25, 28, and 45. For the task of AU intensity estimation, 5 AUs are drawn from

the BP4D+ database, including AU 6, 10, 12, 14, and 17. The training set of the FERA

2015 database consists of 146, 847 images from the BP4D+ database and 48, 000 images

from the SEMAINE database. The testing set is kept private and contains 75, 726 images

from the BP4D+ and 37, 695 images from the SEMAINE database. The inter-rater ICC

for different AUs of the database ranges from 0.79 to 0.92, which indicates a strong to

very strong inter-rater reliability for intensity.

FERA 2015 is a large database with a wide range of different AUs annotated. How-

ever, most of the annotated AUs are about the occurrence of AUs, only a few of them

are annotated with intensities. Furthermore, as the database is no longer accessible2,

we not include this database in our work.

1.6.5 BP4D+ database

The Multimodal Spontaneous Emotion database (BP4D+) [ZGW+16] is a large-scale

multimodal spontaneous emotion database, which has a similar style than the BP4D

[ZYC+14] database but larger scale and variability. The database consists of 140 subjects

(82 females and 58 males) of different ages and ethnicities. These subjects were asked

to complete 10 tasks to elicit 10 different emotions, during which 2D RGB images, 3D

model sequences, thermal videos and 8 physiological signal sequences with 1.4 million

frames were captured by different sensors. Despite of having a large number of frames

recorded, only 197, 875 frames are FACS coded. The onset and offset are annotated for

34 AUs, including AU 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23,

24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, and 39. Among these AUs, only 5 AUs

are selected for intensity coding, including AU 6, 10, 12, 14, and 17. The inter-rater

reliability of these AUs annotations ranges from 0.70 to 0.84, which indicates a good to

strong reliability of the annotations.
2We contacted the person who manages FERA 2015 database and learned that the database is no

longer accessible (10/05/2022)
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1.6.6 GFT database

The Sayette Group Formation Task database (GFT) [GCJC17] is the first to address

the need for a well-annotated facial expression database of multiple participants during

unscripted interactions. The database consists of 172, 800 video frames from 96 subjects,

spontaneously interacting with each other in group settings (from 2 to 3 persons per

group). These subjects are including 54 males and 42 females with their age is between

21 and 28 years. They were drawn from a larger study on the impact of alcohol on

group formation processes. The occurrence of 20 AUs was annotated in the database,

which are including AU 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 19, 22, 23, 24, 28, and

99. Among them, five AUs were selected for intensity coding, including AU 1, 6, 10, 12,

and 14. Regarding the reliability of the annotations, the inter-rater agreement between

their FACS coders ranges from 0.72 to 0.88, which indicates a good to strong reliability

for the AU annotations.

As the main purpose of the database is about studying the impact of alcohol, partici-

pants had have to drink some alcoholic beverages, which could lead to some differences

between their expression and their true feelings. Moreover, the study were focusing on

young people with their age is between 21 and 28 years, which is only a small portion

of the population. Additionally, despite of having a large number of different AUs anno-

tated, only a few are annotated with intensities. Hence, we do not include this database

in our work.
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In this chapter, we review prior works on automatic intensity estimation of facial

expressions. We provide an overview about different techniques that can be used in

face image analysis in Section 2.1. Then, in Section 2.2, we review the state of the

arts preprocessing techniques for facial images, which are common to any face analysis

approaches. Finally, we provide a literature survey on the fields of facial AUs and PSPI

pain intensity estimation in Section 2.3.

2.1 Image processing techniques

In order to measure facial expressions from face image or video, we need to apply dif-

ferent image processing techniques to extract important information from the image.

In this section, we briefly introduce these methods for analysing face images. We cate-

gorise these methods into two technical-groups including traditional and deep learning

approaches. Traditional image processing approaches refer to the conventional hand de-

sign feature extracters, which requires a considerable amount of engineering skill and

domain expertise, while deep learning based methods refer to the learning approaches

that automatically learn to extract features by training on a large amount of data. We

review the commonly used techniques in both of these two technical-groups in the next

sections.

2.1.1 Traditional image processing methods

Traditionally, in order to measure facial expressions from an image, there are three

main steps of image processing including feature extraction, dimensionality reduction,

and feature estimation. Feature extraction reviews the techniques that can be used to

extract a vector containing information about the face image, commonly called “fea-

ture” vector. The dimensionality of these features is then reduced by applying different

dimensionality reduction techniques to remove irrelevant or redundant information.

Finally, these features data are fed into feature estimation model for measuring the
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intensity of the facial expression.

2.1.1.1 Feature Extraction

Feature extraction refers to the task of extracting important information (features) from

an image. In this section, we introduce some popular techniques that can be used

for extracting features from images, including spatial filter based and histogram based

methods. For in-depth review, see Zhi et al. [ZLZ20].

Spatial filter based methods Spatial filter is refer to a multi-resolution technique

which consists of a set of discrete wavelets that scan over the facial images to capture

both frequency and location information. Generally, the spatial filter based methods

adopt the two-dimensional form to deal with facial image processing.

Gabor wavelet (Gabor) [Gab46] is a popular spatial filter technique for extracting

features from images. Gabor features are conducted by convolving facial images with

a specific set of Gabor filters of various orientations and scales. A Gabor filter can be

viewed as a sinusoidal signal of particular frequency and orientation, modulated by a

Gaussian wave. Gabor filters are represented as below:

g(x, y, w, θ) =
1

2πσ2
e
−(x
′2+y

′2)
2σ2 [eiwx

′−e
−w2σ2

2 ]

x
′
= xcosθ + ysinθ (2.1)

y
′
= −sinθ + ycosθ

where x and y represents the coordinates of the pixel value in spatial domain, w

represents the radial center frequency, θ represents the orientation of the Gabor filter,

and σ is the standard deviation of the round Gaussian function along the x− y axis.

Gabor features provide multi-scale characteristics of the facial images, reflecting the

local neighboring relationship among pixels. The features are tolerant to illumination

variations, small translation and rotations, and robust to registration errors to a de-

gree [SGC14]. However, Gabor filtering is known to be computationally expensive and
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suffers from identity bias [ZLZ20].

Haar wavelet (Haar) [Haa11] is another spatial filter technique which is faster than

Gabor wavelet in feature extraction from images. Haar wavelet exploits the pair of

low-pass filters and high-pass filters in facial image columns and rows independently,

where the mean and difference of two adjacent pixel values are figured out for low-pass

and high-pass filtering individually [ZLZ20]. Haar features is robust to illumination

variations, and an acceptable extent registration error. Haar wavelet is the simplest

possible wavelet, and it is suitable for use in a real-time application system.

Histogram based methods Besides spatial filter based methods, there are another

type of feature extraction techniques that are based on histograms of quantised local

descriptors. A local descriptor uses the image intensities within a small neighbourhood,

with only a few pixels in diameter. The quantised local descriptor response is accu-

mulated over a larger image region within a histogram. This process discards spatial

information and thus provides a compressed descriptor that is invariant regarding small

translations.

Local Binary Pattern (LBP) [OPM02] is one of the widely-known histogram based

feature extraction technique. It uses the sign of the intensity difference between the

center pixel and circular surrounding pixels as local descriptor. The value of each center

pixel is converted to an integer, which forms the LBP histogram with counting all the

integers. Perhaps the most important property of LBP is its robustness to monotonic

gray-scale changes caused, for example, by illumination variations [ZLZ20]. Another

important properly of LBP is its computational simplicity, which makes it possible to

analyse images in challenging real-time configurations.

Histogram of Oriented Gradients (HOG) is another histogram based method, uses

the intensity gradients as local descriptor. It is simplicity in computing and represents

both texture and shape-skin information. The use of orientation histograms has many

precursors, but it only reached maturity when combined with local spatial histogram

and normalisation in Lowe’s Scale Invariant Feature Transformation approach [DT05],
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in which it provides the underlying image patch descriptor for matching scale-invariant

keypoints [ZLZ20].

Scale-Invariant Feature Transform (SIFT) [Low04] is a histogram based method that

uses weighted 3D histogram of gradient locations and orientations as local descriptor.

The SIFT features are robust to rotation and scale, meanwhile they are tolerant to illu-

mination variations and small registration errors.

2.1.1.2 Dimentionality Reduction

Since the features extracted from face images can have many dimensions, sometimes

more than several thousand, there is a need of reducing the number of dimensions of

these features. Dimentionality reduction (DR) methods provide a mapping from the

original features to a feature subspace, either by selecting a subset of dimensions or by

mapping to a new space of reduced dimensionality. This section briefly reviews some

common DR methods that are widely used in face image analysis. Further details can

be found in the comparative review by Van der Maaten et al. [VDMPVdH+09].

Principle Component Analysis (PCA) [Jol05] is one of the oldest and most studied

DR method. It is based on the extraction of the important and relevant information as

new orthogonal feature vectors called principal components from a set of input obser-

vations. These principal components are linear combinations of the original variables,

with the first principal component having the largest variance, the second principal

component having the second largest variance, and so on. It is thus possible to select a

number of significant components, so that data dimension is reduced by preserving the

systematic variation in the data retained in the first selected components, while noise is

excluded, being represented in the last components [Bal15]. As a result, PCA can dras-

tically reduce the dimensionality of the original feature vectors without loss of much

information in the sense of representation.

There are some other matrix factorisation methods which also calculate linear pro-

jections of the data like PCA, but imposing different constraints. Independent Compo-
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nent Analysis (ICA) [HO00] constrains the new dimensions to be not only uncorrelated

but statistically independent. This characteristic allows ICA to reveal hidden factors

that underlie sets of random variables, measurements, or signals. Non-negative Matrix

Factorisation (NMF) [LS99] is another matrix factorisation method that constraints all

values to be greater or equal to zero, thus well suited for pixel intensities. NMF provides

a part-based decomposition of the data, i.e., most of the new component weights are

zero. Both, ICA and NMF lead to sparse subspace weights.

Linear Discriminant Analysis (LDA) [Fis38] is another DR approach, which can be

defined as a supervised learning method that works by transforming the data onto a

subspace that maximises the ratio between-class variance to within-class variance in

order to increase the separation between classes. A more recent approach is Spectral

Regression (SR) [CHZH07] , which first performs spectral analysis on the Laplacian

matrix, followed by learning a linear projection through least squares regression.

2.1.1.3 Feature estimation

In the domain of traditional facial expressions measurement, after extracting features

from a face image, we need to apply a feature estimation method to estimate the inten-

sity of an expression. Normally, this feature estimation method belongs to supervised

learning approaches because it works best with vast amounts of fuzzy data. In this sec-

tion, we briefly review some common supervised learning techniques that can be used

to measure the intensity of facial expressions.

Support Vector Machines Support Vector Machines (SVMs) are powerful statistical

classifier for binary linear classification. The main idea behind SVMs is the creation of

distinct borders between partitions of given data, in order to break the data into multi-

ple sections that could be used for classification purposes with the future input [Bur98].

SVM was introduced in 1992 by Vapnik et al. [BGV92] and can be used for classification

(SVC) [Vap99] or regression (SVR) [DBK+96]. Support Vector Classification (SVC) is a

max-margin classifier, i.e., it learns the decision boundary by maximising the margins
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between the classes. Support Vector Regression (SVR) maps regression to a classifica-

tion problem, by defining a tube around the target function as the correct class and then

applying the same max-margin framework as SVC.

Relevance Vector Machines Relevance Vector Machines (RVMs) [Tip01] is a machine

learning technique based on Bayesian formulation of a linear model with an appropriate

prior that results in a sparse representation. As a consequence, they can generalise

well and provide inferences at low computational cost. RVMs is kernel based machine

learning approach and can be used as an alternative to SVMs for both regression and

classification problems. The advantages of the RVMs over the SVMs is the availability

of probabilistic predictions, using arbitrary kernel functions and not requiring setting of

the regularisation parameter [Pal11].

Adaptive Boosting Adaptive Boosting (AdaBoost) [FS97] is an optimisation method

and can aslo be used for both classification and regression problems. It is based on the

idea of creating a highly accurate prediction rule by combining many relatively weak

and inaccurate rules. AdaBoost creates a collection of component classifiers by main-

taining a set of weights over training samples and adaptively adjusting these weights

after each toosting iteration: the weights of the samples which are misclassified by cur-

rent component classifier will be increased while the weights of the samples which are

correctly classified will be decreased. As AdaBoost consists of many classifiers, this opti-

misation method appears to be slower compared to other learning approaches. On the

other hand, AdaBoost seems to have a great resisting against the overfitting problem

[WLH+19].

2.1.1.4 Conclusion

In this section, we have reviewed some traditional image processing methods that can

be used for analysing face images. These methods requires a considerable amount of

engineering skill and domain expertise to be able to correctly analyse facial expressions
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from face image or video. Besides these traditional approaches, there is another group

of image processing techniques that are able to automatically learn to extract rich infor-

mation from large amount of data, which we will discuss in the next section.

2.1.2 Machine Learning and Deep Neural Network

Machine Learning (ML) is a field of study which allows machines to learn from data

or experience and make a prediction based on the experience. Instead of trying to

program knowledge into computers, Machine Learning (ML) seeks to automatically

learn meaningful relationships and patterns from examples and observations [BN06].

Depending on the approach, type of input/output data, and kind of tasks to achieve,

ML can be categorised into three categories, including supervised, unsupervised learning,

and reinforcement learning.

In supervised learning [LBH15], the ML model learn from examples. In the training

process, each pair of input data and its ground truth label is used to calibrate the open

parameters of the ML model. Once the model has been successfully trained, it can be

used to predict the label of newly unseen data.

In unsupervised learning [Fri98], the ML model track operations to describe the struc-

ture of unlabelled data. For example, clustering analysis is a branch of this group that

proposes to classify the unlabelled data. The algorithm tries to identify the common

features of data belonging to a group. When a new piece of data appears, it will be

assigned to the group which exhibits the same common features.

In reinforcement learning [JZH21], instead of providing input and ground truth pairs,

we describe the current state of the system, specify a goal, provide a list of allowable

actions and their environmental constraints for their outcomes. Then, we let the ML

model to experience the process of achieving the goal by itself using the principle of

trial and error to maximise a reward concerning how to map situations to actions.

An algorithm which is built for tasks of a ML system and able to learn from data

is called a ML algorithm. Depending on the learning task, there are various classes of
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ML algorithms, each of them coming in multiple specifications and variants, including

regressions models, instance-based algorithms, decision trees, Bayesian methods, and

Artificial Neural Networks (ANNs). In the next sections, we will briefly introduce some

ML algorithms that have been widely used for analysing facial expression from image.

a) Biological neuron b) Artificial neural network

Input

Hidden

Output

Figure 2.1: The visualisation of (a) the Biological neuron from [Vod17] and (b) the Artifical
neural networks.

Among these classes, ANNs is of particular interest since their flexible structure al-

lows them to be modified for a wide variety of contexts. Inspired by the principle of

information processing in biological systems, ANNs consist of mathematical represen-

tations of connected processing units called artificial neurons. Like synapses in a brain

(see Figure 2.1a), each connection between neurons transmits signals whose strength

can be amplified or attenuated by a weight that is continuously adjusted during the

learning process. Signals are only processed by subsequent neurons if a certain thresh-

old is exceeded as determined by an activation function [JZH21]. Typically, neurons

are organised into networks with different layers. An input layer usually receives the

data input , e.g., face image, and an output layer produces the final result. In between,

there are zero or more hidden layers (see Figure 2.1b) that are responsible for learning

a non-linear mapping between input and output [BN06, GBC16]. Deep Neural Net-

works (DNNs) typically is refer to ANNs which consists of more than one hidden layer,
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organised in deeply nested network architectures. Each level of these network learns

to transform its input data into a slightly more abstract and composite representation.

With the composition of enough such transformations, very complex functions can be

learned. The key aspect of DNNs is that these layers of features are not designed by hu-

man engineers: they are learned from data using a general-purpose learning procedure

[LBH15]. The hierarchical relationships between ML, ANNs, and DNNs is summarised

in Venn diagram of Figure 2.2.

Figure 2.2: Venn diagram of machine learning concepts and classes. Image from [JZH21].

Deep Neural Networks consist of multiple layers with thousands or millions of ad-

justable parameters. These adjustable parameters, often called weights, are real num-

bers that can be seen as ’knobs’ that define the input-output function of the network.

In order to adjust the weights of the network appropriately and automatically, we use

learning algorithms such as Stochastic Gradient Descent (SGD). Basically, the learn-

ing algorithm computes a gradient vector with respect to the weights of the network

though a process called gradient backpropagation [LBH15]. This gradient vector, for

each weight of the network model, indicates by what amount the prediction error would

increase or decrease if the weight were increased by a tiny amount [LBH15]. The weight

vector is then adjusted in the opposite direction to the gradient vector. By slowly mov-

ing with each of these tiny steps, it will eventually reach to the point where the error is

minimal, the model is then fully trained and can be used for predicting newly unseen
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Figure 2.3: A visualisation of a typical Convolutional Neural Network. Image from [TFSK19].

samples.

In the early ages, Deep Neural Network encounters several problems to take into

account real-world cases because of the limitation of the memory size or computing

power. When applying to images, DNNs model can easily have tens of millions of free

parameters, which can take weeks to train using a conventional implementation on a

single CPU [RMN09]. However, with advent of fast and convenient programming on

Graphics Processing Units (GPUs), researchers were able to train their DNNs model at

about 100 times faster compared to training on CPU [RMN09], which opens a new era

in the revolution of Deep Learning.

Deep Learning has been making major advances in solving problems that have re-

sisted the best attempts of the artificial intelligence community for many years. With

the invent of many powerful variants of DNNs such as Convolutional Neural Network

(CNN) or Recurrent Neural Network (RNN), DNNs is beating records in many domains

including image recognition and analysis [KSH12, FCNL12, LGTB97], speech recogni-

tion [Zue90, HDY+12], object detection [RHGS15, BWL20], and more. In the next

sections, we focus on Convolutional Neural Network (CNN) and Recurrent Neural Net-

work (RNN) which variants of DNNs useful for the analysis of face images and videos.
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2.1.2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a special type of DNNs which is designed to

process data that comes in the form of multiple arrays, e.g., a colour image composed

of three 2D arrays contaning pixel intensities in the three colour channels. Many data

modalities are in the form of multiple arrays: 1D for signals and sequences, including

language; 2D for images or audio spectrograms; and 3D for video or volumetric images.

There are four key ideas behind CNNs that take advantage of the properties of natural

signals: local connections, shared weights, pooling and the use of many layers [LBH15].

A typical CNN is shown in Figure 2.3. The network requires to have a Convolutional

layer but can have other types of layers, such as Activation function (e.g., ReLU layer),

Pooling, and Fully connected layers, to create a deep Convolutional Neural Network.

Sometimes, Dropout layers are added, for example, between the Fully connected layers

to prevent the overfitting of the network. In CNN, convolutional filters are trained us-

ing the backpropagation method. The values of these filters learn automatically through

training to extract relevant features from input data, depending on the given task. For

example, in an application such as face detection, one filter can perform edge extrac-

tion, whereas another can carry out eye extraction. In the next paragraphs, we briefly

introduce some important layer types in CNN.

Convolutional layer Convolutional layer of CNN consists of multiple learnable filters

which slide over the layer for the given input data (see Figure 2.4a). A summation of an

element-by-element multiplication of the filters and receptive field of the input is then

calculated as the output of this layer. The weighted summation is placed as an element

of the next layer. Each of the convolutional operation is specified by stride, filter size,

and padding. Stride, which is a positive integer number, determines the sliding step.

For example, stride 1 means that we slide the filter one place to the right each time and

then calculate the output. Filter size (also called receptive field) must be fixed across all

filters used in the same convolutional operation. Padding configuration adds a number
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of rows and columns with zero values to the original input matrix to control the size

of the output feature map [Wu17]. Without using padding, the convolution output is

smaller in size than the input. Therefore, the network size shrinks by having multiple

layers of convolutions, which limits the number of convolutional layers in a network.

Padding prevents this shrinking effect of convolutional layer and provides the ability to

have unlimited deep layers in our network architecture.

Figure 2.4: (a) Convolution operation. The amber squares represent the position of the kernel
as it slides through the green input slice. (b) Max Pooling Operation with a filter size of (2,2).
Image from [TFSK19].

Activation function Activation functions are functions used in neural networks to

computes the weighted sum of input and biases, of which is used to decide if a neuron

can be fired or not. Activation function can be either linear or non-linear depending

on the function it represents, and are used to control the outputs of out neural net-

works. The choice of which type of activation function to be used in a neural network

varies depends on each architecture. However, if we only use linear activation func-

tion, the output of each layer in DNN is a linear function of the upper layer. Then, no

matter how many layers the DNN has, the outputs are linear combination of the in-

puts. Hence, in order to get access to a much richer hypothesis space that would benefit

from deep representations, we need non-linearity activation functions [Cho21]. Non-

linearity activation functions such as sigmoid [LDH19] or hyperbolic tangent [LDH19]

have been widely used in the convolution classification model during the beginning of
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deep learning research, but all of them are easy to make the convolution model ap-

pear the phenomenon of gradient diffusion [WLSR20]. The coming of ReLU function

[ESH19] has effectively solved the above problem and becomes one of the most com-

mon non-linearity activation function applied in various fields, such as image processing

[Wu17]. That is being said, other activation functions such as linear, sigmoid or hyper-

bolic tangent are still useful depend on each situation, e.g., linear activation function

can be used as the output layer of a neural network model to solve a regression problem.

Pooling layer Pooling layer is mostly used to down-sampling the size of inputs with

the purpose to reduce the spatial resolution of the feature map and so to reduce the com-

putation cost. There are two major types of pooling: max pooling and average pooling

[SMB10]. The pooling operation is also based on a sliding window which goes through

the input feature map, and the pooling operation is conducted in the overlapping area

of the pool. For max pooling layer, as can be seen in Figure 2.4b, the pooling operation

outputs the maximum value of the given matrix while it is obviously the average value

for the average pooling layer. Regarding the performance of these two layers, Boureau

et al. [BPL10] provided a detailed theoretical analysis of their performances in select-

ing features. Scherer et al. [SMB10] further conducted a comparison between the two

pooling operations and found that max-pooling can lead to faster convergence, select

superior invariant features and improve generalisation of the whole CNN network.

Fully Connected layer In the CNN, Fully-connected (FC) layer usually follows the

group of convolutional and pooling layers, as can be seen in Figure 2.3. The main use

of this layer is to extract the abstract feature representations of the input data. De-

pending on the problem, an activation function can be added to promote the output for

the network. For example, we use linear activation function for a regression problem,

and for binary classification we use sigmoid activation function [LDH19]. A CNN may

have one or more FC layers, and most of the time these layers dominate the number

of parameters in a CNN [HMD15]. Figure 2.5 shows an example of the comparison
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Figure 2.5: Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding.
Image from [HMD15].

between the number of parameters of FC layers compare to other layers in AlexNet

[KSH12]. It can be seen that these FC layers contain more than 90% parameters of the

network. As these layers contain a large number of parameters, which results in a large

computational effort for training them. Therefore, a promising and commonly applied

direction is to remove these layers or decrease the connections with a certain method.

For example, GoogLeNet [SLJ+15] designed a deep and wide network while keeping

the computational budget constant, by switching from fully connected to sparsely con-

nected architectures.

The four types of layers that we have mentioned above are not the only ones

that exist. A large number of different layers can be found in the related documents

of deep learning [LBH15, GWK+18]. Over the past few years, storage has become

more affordable, datasets have grown far larger, and the field of parallel computing

has advanced considerably. All these conditions give wings to CNNs to become dom-

inant method in a variety of computer vision problems such as image classification

[KSH12, FCNL12, LGTB97], object detection [RHGS15, BWL20], semantic segmenta-

tion [LSD15, GDDM13, KS14], computational creativity [GPAM+20, CWD+18], and

many more. However, despite their power, CNNs also have limitations. For exam-

ple, CNN works with each training sample independently, without considering whether

there are relationships between each of the training samples. In many cases where
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Figure 2.6: The visualisation of a simple Recurrent Neural Network with its unfolding in time
calculations. Image from [LBH15].

each sample is independent (e.g., image classification), this presents no problem. But

if data points are related in time or space (e.g., natural language processing), this is

unacceptable. There is a need of a different type of DNNs that takes into account the

relationships between each data point in a sequence. That is when Recurrent Neural

Network comes into the picture.

2.1.2.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is a special type of DNNs which is designed to pro-

cess data that comes in the form of sequences, e.g., frames from video, snippets of

audio, or words in sentences. Traditional DNNs such as CNNs rely on the assumption

of independence among the training and test examples, which is not the case for these

sequential data. For this kind of data, there are relationships between the data points in

a sequence. Hence, DNNs such as RNNs are designed to exploit these relationship infor-

mation. RNNs are connectionist models with the ability to selectively pass information

across sequence steps, while processing sequential data one element at a time. Thus

they can model input and/or output consisting of sequences of elements that are not

independent. Further, RNNs can simultaneously model sequential and time dependen-

cies on multiple scales [LBE15]. The visualisation of a simple RNN with its unfolding

can be seen in Figure 2.6. Each step in the unfolding is referred to as a time step, where

xt is the input at time step t. RNNs can take an arbitrary length sequence as input, by
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providing the RNN a feature representation of one element x of the sequence at each

time step. st is the hidden state at time step t and contains information extracted from

all time steps up to t. The hidden state s is updated with information of the new input

xt after each time step:

st = f(Uxt +Wst−1) (2.2)

where U and W are vectors of weights over the new inputs and the hidden state,

respectively. Function f , known as the activation function (see Section 2.1.2.1), is

usually either the hyperbolic tangent or the sigmoid function. RNNs, once unfolded

in time, can be seen as very deep feedforward networks in which all the layers share

the same weights. Although their main purpose is to learn long-term dependencies,

theoretical and empirical evidence shows that it is difficult to learn to store information

for very long [LBH15]. Standard RNNs fail to learn in the presence of time lags greater

than 5 - 10 discrete time steps between relevant input events and target signals [GSC00]

due to gradent vanishing problem. Recently, researchers have proposed two variants

of RNNs that are capable of solving the problem, including Long Short-Term Memory

and Gated Recurrent Unit. We will briefly introduce these two networks in the next

paragraphs.

Long Short-Term Memory LSTM network is a variant of RNN which is designed to

learn long-term dependencies in sequence prediction problem. The network consists of

three layers including input, hidden and output layers. Unlike the standard RNN, the

basic unit of LSTM’s hidden layer is a memory block, and LSTM adds a ’processor’ in

the algorithm to decide whether the information is useful or not, which is called a cell

[GBC16]. The typical structure of a LSTM cell is shown in Figure 2.7a. A LSTM cell is

configured mainly by three gates: Input gate, Forgot gate, and Output gate. These gates

regulate the flow of information into and out of the cell, indicate which information to

keep and to be discarded. Let xt and ht to be the input vector and the hidden state
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Figure 2.7: The visualisation of the simplified architecture of (a) LSTM and (b) GRU layers.
Image from [ZNNS20].

at time step t, respectively. Then, the Forget gate ft determines whether xt should be

retained or not by applying sigmoid activation function on the combination of xt and

the previous hidden state ht−1 as below:

ft = σ
(
Wf ·

[
ht−1, xt

]
+ bf

)
(2.3)

Where Wf and bf denote the weight and bias of the forget gate. The output value ft

ranges between [0, 1] to make decisions for filtering non-significant information. Next,

the Input gate it determines the extent to which new memories should affect old mem-

ories (Equation 2.4). Meanwhile, this unit determines how much new information

should be delivered to the next cell (Equation 2.5). Then, the cell state is updated

through discarding the information that needs to be discarded and adding new infor-

mation (Equation 2.6).

it = σ
(
Wi ·

[
ht−1, xt

]
+ bi

)
(2.4)

C̃t = tanh(WC · [ht−1, xt] + bC) (2.5)

Ct = ft × Ct−1 + it × C̃t (2.6)
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Finally, we need to decide what we are going to output. This output will be based on

our cell state, but will be a filtered version. In Output gate, we run a sigmoid layer which

decides what parts of the cell state we are going to output (Equation 2.7). Then, we

put the cell state through tanh (to push the values to be between [−1, 1]) and multiply

it by the output of the sigmoid gate (Equation 2.8), so that we only output the parts we

decided to.

ot = σ
(
Wo ·

[
ht−1, xt

]
+ bo

)
(2.7)

ht = ot × tanh(Ct) (2.8)

The learning process of LSTM mainly includes the error backpropagation process

and optimization algorithm. The Backpropagation Through Time (BPTT) algorithm

[WZ95] is applied in the error backpropagation process of LSTM.

Gated Recurrent Unit GRU was proposed by Cho et al. [CvMG+14] in 2014, similar

to LSTM, but simpler to compute and implement. The typical structure of GRU cells is

shown in Figure 2.7b. Instead of having three gates: Input gate, Forget gate, and Output

gate to control the flow of data as in LSTM, the GRU cell has only two gates including

Update gate and Reset gate. The Update gate is in charge of inputting and discarding

information, which covers the work of the Input gate and the Forget gate in LSTM.

The Reset gate focuses on how much previous information to be discarded. In GRU,

the fewer parameters are computed and processed, and the hidden state is propagated

directly among the network cells instead of being controlled by the Output gate. Hence,

GRU is simpler in implement but faster in training and evaluating compared to LSTM

neural network.

2.1.2.3 CNN-RNN hybrid neural network

There are some circumstances where we need to extract both local features and tempo-

ral features from the input data. For example, in video processing, we need to extract
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the spatial features from each frame image to see what we have in a single frame and the

temporal features to see the changing over time of these spacial features. When CNN is

great for extracting spacial features and RNN is great for extracting temporal features,

we can combine these two type of DNNs to effectively learn to model both spacial and

temporal information. In fact, the combination of CNN-RNN has been proven successful

in several classification and regression tasks for modeling spacial-temporal information

in many previous works. For example, they have been used for handwriting recognition

[DKMJ18], speech recognition [HZZ+20] from audio streams. In the domain of video

analysing, CNN-RNN architectures have also been used for emotion detection [KZ20],

sign language recognition [MSTA18] or action recognition [UAM+17], taking advan-

tage of their ability to learn scene features using the CNN and sequential features using

the RNN.

There are two main types of CNN-RNN hybrid neural network in the domain of

video analysing: sequence-based and frame-based networks. Sequence-based network

is basically the network designed to work on sequential data where we have only one

label per sequence. The network takes a sequence of frame images and tries to predict

the label for the whole sequence. For this sequential data, sign language recognition

and action recognition are the two well-known sequence-related problems when we

have only one gesture or action labelled per video. To solve this problem, in sequence-

based CNN-RNN hybrid network, features extracted by CNN network are fed into RNN

network, and only the RNN hidden states of the last frame are extracted for the classi-

fication or regression tasks. Since the RNNs such as LSTM or GRU have the capacity of

remembering long-term dependencies, hence features from the last frame of a sequence

should contain the important information of the whole sequence. Figure 2.8 shows the

visualisation of an example of sequence-based CNN-RNN architecture.

Besides the sequence-based network, we also have the frame-based CNN-RNN hy-

brid network. Frame-based network is basically the CNN-RNN hybrid network that is

designed to work on per-frame labelled sequential data. Instead of using only the RNN

hidden states of the last frame as in sequence-based network, this frame-based network
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Figure 2.8: The visualisation of an example sequence-based CNN-RNN architecture. Image from
[UAM+17].

uses the hidden states of all time steps in a sequence of frame images, each time step is

corresponding to the label of each input frame. In fact, for frame-based type of data, as

we have a label for each frame image, we can simply train a CNN-only neural network

to perform the task, without the need of RNN. However, in order to further improve

the performance of the whole network, one can integrate the RNN network to model

the temporal dynamics information of the data. Figure 2.9 shows the visualisation of a

frame-based CNN-RNN hybrid neural network.

CNN-RNN hybrid neural network is a great way to model both spacial and temporal

information of the input data. In the domain of face video analysis, CNN-RNN networks

have been widely used and achieved great successes in many domains such as emo-

tion recognition [LZH+19, VBA21], micro-expressions recognition [ASH+22], valence-

arousal estimation [KZ20, DCS20], pain intensity estimation [VBADE21, RCG+17].

However, CNN-RNN hybrid networks are not the only way to model spatial-temporal

information, there is another type of DNNs called 3D Convolutional Neural Network

(3D CNN) which have the same capacity to some extent. In the next section, we will

briefly introduce 3D CNN and also discuss about their use in our thesis.
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Figure 2.9: The visualisation of a frame-based CNN-RNN architecture. Spacial features are
extracted from each images by a CNN network, then these features are fed to a GRU layer for
extracting temporal information. Image from [KTN+19].

2.1.2.4 3D Convolution Neural Network

3D Convolutional Neural Network (3D CNN) [JXYY12] is a logical extension of CNN

which works with three dimensional data like video which has an additional temporal

dimension in addition to the X and Y co-ordinates [RM19]. Figure 2.10 shows an ex-

ample of 3D CNN architecture for video classification problem. It can be seen that the

3D convolution of 3D CNN is achieved by convolving a 3D kernel to the cube formed by

stacking multiple contiguous frame images together. By this construction, the feature

maps in the convolution layer is connected to multiple contiguous frames in the previ-

ous layer, thereby capturing temporal information [JXYY12]. Because of this character-

istic of 3D CNN, in terms of temporal information modelling capability, while CNN-RNN

hybrid networks focus on learning global temporal information, 3D CNNs focus on mod-

elling local temporal information of the input data. Also because of this characteristic

of coupling spatial and temporal signals with each other through each 3D convolution,

when training these 3D CNNs, it becomes much more difficult to optimise the network’s

parameters because of the exponential growth of the solution space with respect to the
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Figure 2.10: Basic 3D CNN architecture: the 3D filter is convolved with the video in three
dimensions as indicated by the arrows to produce feature volumes. After subsampling and
flattening the features are fed to a fully connected layer for classification. Image from [RM19].

case of 2D CNNs [ZSZZ18]. Besides, the memory cost and model size of 3D CNN are

much higher compared to 2D CNN [KR19]. For example, an 11-layer 3D CNN requires

nearly 1.5 times as much memory as a 152-layer Residual Network [ZSZZ18]. Further-

more, as for model/computation complexity, 3D CNNs are much more expensive than

2D CNNs and prone to overfit [XSH+18]. Meanwhile, as this work focuses on facial

AU and pain intensity estimation, the amount of well-labelled publicly available data

on these domains are generally limited (see Section 1.6). As the size of these 3D CNNs

is generally huge and the amount of training data is small, poor generalisation is to be

expected [L+89]. Thereby, in this thesis, when modeling spacial-temporal information

from face video, we have chosen to use CNN-RNN hybrid network instead of 3D CNNs.

To conclude, in this section, we have introduced different image processing tech-

niques for analysing face images, including both traditional and deep learning ap-

proaches. These techniques are fundamental for any facial expression measurement

application to be able to work properly. In the next section, we discuss about how

to apply these techniques to measure human facial expressions from image and video.

We review the state-of-the-arts approaches that have been used in this particular face
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analysis domain.

2.2 Face image pre-processing

Typically, in the domain of face image analysis, the first and foremost task we need to

do is preprocessing, which is basically localising and normalising the face(s) within an

image frame. This preprocessing step includes face detection, facial landmark localisa-

tion, and face registration, as visualised in Figure 2.11. The following sections review

different preprocessing methods that are commonly used in the field of human face

analysis.

Face Detection

Detecting and localising all the
faces in the image

Facial landmarks localisation

Localising the facial landmark
points of the face in the image

Face registration

Rescaling and Aligning the
current face image

Figure 2.11: Generic overview of the face image pre-processing pipeline.

2.2.1 Face detection

Automatic face detection is the cornerstone of almost all applications revolving around

automatic face image/video analysis including face recognition and verification, face

tracking for surveillance, facial expressions assessment, gender/age recognition [SS18,

YKA02]. The goal of face detection is to determine whether or not there are any faces

in the image and if so, then return the location and the extent of each face in the image.

While this appears as a trivial task for human beings, it is difficult for computers, and

has been one of the most studied research topics in recent decades.

84



CHAPTER 2. STATE OF THE ART

Face detection is a relatively mature problem in computer vision, i.e., many algo-

rithms exist that solve the problem robustly and efficiently. One of the first widely

adopted algorithms was the Viola-Jones object detection framework [VJ01]. The frame-

work introduces the idea of computing an integral image over the greyscale input to en-

able fast evaluation of boosted weak classifiers based on Haar-like features [MBPG14].

Following the pioneering work of Viola-Jones, numerous methods have been proposed

for face detection in the past decade. Early research studies in the literature were

mainly focused on extracting hand-crafted features with domain experts in computer

vision, and training effective classifiers for detection and recognition with traditional

machine learning algorithms. Such approaches are limited in that they often require

computer vision experts in crafting effective features and each individual component is

optimised separately, making the whole detection pipeline often sub-optimal.

With the great success of CNNs in computer vision, researchers have proposed

several promising model architectures for face detection problem over the past few

years. Deep learning based approaches are getting better and better in the task of

detecting face from images thanks to the introduction of many large face databases

such as Wider Face [YLLT16], MALF [YYLL15], or VGGFace2 [CSX+18]. Cascade-

CNN [LLS+15, QJM+19], Single-short Detection [NSCD17, CHP+21] , RCNN based

architectures [CHWS16, ZZLS17, COG19], Feature Pyramid Network (FPN) models

[ZWHZ20, TDHL18, NSD19] are among the most well-known Deep Neural Networks

for face detection. Performance of these deep learning based face detectors is much bet-

ter than that of feature hand-crafted based methods, which is once again confirming the

advantages of DNNs in learning from data. Further details about different techniques

in face detection can be found in the review of the SOTA paper provided by Minaee et

al. [MLLB21].
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2.2.2 Facial landmark localisation

Facial Landmark Localisation (FLL) algorithm is defined as the detection and localisa-

tion of certain points characteristic on face images, which have an impact on subsequent

task focused on the face, like animation, face recognition, gaze detection, face tracking,

expression recognition, gesture understanding, etc. Commonly used facial landmarks

usually include points around the eyebrows, eyes, nose, mouth and the face contour.

According to various application scenarios, different numbers of facial landmark points

are labelled as, for example, a 5-point, 17-point, 29-point, 66-point, or 68-point model.

Generally speaking, more points indicate richer information, although it is more time-

consuming to detect all the points. FLL methods could be divided into four groups:

Constrained Local Model (CLM) based methods, AAM based methods, regression based

method, and others [WGT+18]. CLM based methods consist of a shape model and

a number of local experts, each of them is utilised to detect a facial feature point

[CILS12, LBL+12]. AAM based techniques fit a shape model to an image my minimising

texture synthesis errors [MCB13]. Regression based methods directly learn a mapping

function from facial image appearance to facial feature points [MVBP12, BAPD13]. Be-

sides the three main categories that we have mentioned, there are also other methods,

such as graphical model-based methods [ZSCC13], or independent facial feature point

detectors [SLBW13].

Recently, deep learning methods become popular tools for computer vision problems

and they also have achieved great successes in this domain of Facial Landmark Locali-

sation. In fact, for facial landmark detection and tracking, there is a trend to shift from

traditional methods to deep learning based methods [WJ19], indicating the superiority

of these data-driven learning approaches. Since deep learning based methods also per-

form regression to locate the facial landmarks, they fall into the category of regression

based methods. Recent deep learning methods [RPC17, RSCC17] can jointly perform

face detection, facial landmark localisation, pose estimation, and gender recognition,

all in a single neural network. Another approaches [ZLL+16, JL16] went to different di-
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Figure 2.12: Example of large-pose face landmark localisation. From left to right: initial land-
marks, fitted 3D dense shape, estimated landmarks with visibility. The green/red/yellow dots in
the right column show the visible/invisible/cheek landmarks, respectively. Image from [JL16].

rection by fitting a dense 3D model to face image, solving the problem of large-pose face

landmark localisation, as can be seen in Figure 2.12. Many more different approaches

in facial landmark localisation can be found in the review SOTA paper proposed by Wo

et al. [WJ19].

2.2.3 Face registration

Face Registration is an intermediate step to prepare the shape or appearance of the face

image for further feature extraction. It aims to find the transformation (or the deforma-

tion) which reduces the discrepancies between two or more faces. These registration

approaches modify facial characteristics (texture, geometry, motion) while reducing

variations in translation, rotation and scale changes [AMBD18].

There are two main approaches for face registration in 2D images, including eyes

registration and shape registration. Eyes registration is the most simple and also the

most popular strategy in near frontal-view databases. Eyes are detected and images are
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aligned and scaled with regard to the inter-pupilar distance and orientation [AMBD18].

The reason of using the eyes instead of other facial components for registration is that

they are the most reliable facial component that can be detected and they hardly change

in the presence of expressions. The limitation of this approach is that eyes must be well

detected. Usually, when out-of-plane rotations occur, the eyes disappear quickly and

additional deformations are induced, avoiding the detection of eyes [AMBD18].

Shape registration is another more robust approach, which takes all facial landmarks

points into account for alignment. Extensions considering more landmarks is supposed

to provide greater stability in case of individual poor landmark detections. Among the

shape registration methods, Generalised Procrustes Analysis (GPA) [Gow75] seems to

be the most famous and widely adopted one [KGAS15, RCG+17, VBADE21]. Procrustes

algorithm iteratively estimates the reference shape and the frame-wise alignment trans-

form until convergence. Then, the reference shape is initialised by the mean of all points

and then iteratively updated with the mean of all aligned points. Finally, the transfor-

mations are obtained by minimising the squared differences between the actual shapes

and the mean shape. After these transformations, face images are aligned and scaled

with regard to the GPA reference shape, hence reduces the varies of face pose, camera

position, or anthropomorphic differences between subjects.

2.3 Automatic facial expression measurement

Automatic facial expression measurement is an emerging topic in artificial intelligence

due to its wide range of applications in many different domains, especially in health

care and medical fields. Researchers have proposed a large number of different ap-

proaches to analyse human facial expressions. As mentioned in Chapter 1, this thesis

mainly focuses on measuring facial AUs intensity as it is the basic building block of

facial expressions in general. Hence, in this section, we jointly review the SOTA ap-

proaches in both facial AU intensity and PSPI pain intensity estimation domains, as

approaches in these two domains share some common technologies. These methods
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could be categorised into two groups, including feature hand-crafted (Section 2.3.1)

and deep learning based methods (Section 2.3.2). For each groups, we discuss the

underlying algorithms and existing works that utilise them.

2.3.1 Feature hand-crafted methods

Traditional hand-crafted feature-based methods have sought to address the problem of

facial AUs and PSPI intensity estimation for quite a long time. One of the earliest works

on these domains was proposed by Fasel and Luettin [FL00]. They have tried to extract

features from face images by using PCA and ICA dimentionality reduction techniques

for automatic facial AUs intensity estimation. They found that the PCA is more effective

at extracting facial feature representations than ICA, since the ICA is quite sensitive to

noise. In 2006, Bartlett et al. [BLF+06] revisited the problem of facial AUs intensity

estimation with real-time application. They used Gabor wavelet for feature extraction,

AdaBoost for feature selection and dimensionality reduction. Both SVMs and regression

analysis were used for classification, resulting the mean rate of 93% recognition with

20 AUs for the task of facial AUs detection. SVMs have also been used by Hammal and

Cohn [HC12] for one of the first methods on pain intensity estimation. They tracked

AAM landmarks on the UNBC McMaster database and used log-normal filter features to

recognise 4 discrete pain levels.

In 2009, Mahoor et al. [MCMC09] conducted a research on detection and inten-

sity estimation of AUs in non-posed mother-infant face-to-face interactions. They used

AAMs for facial representation, and applied Spectral Regression for dimensionality re-

duction. They trained a SVM based system for automatic recognition of intensities for

AU6 and AU12. In 2012, Savran et al. [SSB12] applied AdaBoost feature selection and

SVR to Bosphorus 3D data, combining 3D shape and Gabor filters. They showed that

for 3D images, AdaBoost shows superior efficiency for feature selection. Their regres-

sion based method showed better performance than previously suggested SVM based

methods. They also showed that it is both possible and feasible to generate an intensity

89



CHAPTER 2. STATE OF THE ART

estimation system that uses facial grid and/or facial fiducial point detection. In conclu-

sion, they showed that using the combination of 3D and 2D images gives better results

compared to either one individually. Still in 2012, Lucey et al. [LCP+12] conducted

some research on the UNBC McMaster database for automatic pain analysis. They have

applied SVCs for binary detection of AUs to detect the existence of pain in a human

face. Their research was also based on frame-level and sequence-level pain detection.

They showed that both frame-level and sequence level pain detection is successful, but

the speed of the system is faster with sequence based analysis.

Kaltwang et al. [KRP12] used AAMs for feature extraction and RVM for classification.

They have reported that pain intensity detection from facial AUs intensities received a

higher classification rate compared to direct pain intensity detection from PSPI. Hammal

and Cohn [HC12] proposed to use the normalised of canonical normalised appearance

(CAPP) of the face on top of the AAM landmark points, and four different SVMs to

classify between pain intensities. They achieved a classification success between 40%

and 67% with 5-folds leave-one-out evaluation method.

Another research on facial AUs intensity estimation was conducted by Jeni et al.

[JGCDLT13]. Their system consists of four parts, including fiducial point detection by

constrained local models, local patch removal using fiducial points, application of non-

negative matrix factorisation, and training the SVM using the extracted features. They

have conducted their experiments on the CK-Enhanced [LCK+10], BU-4DFE and BP4D-

Spontaneous databases, achieved some great improvements. Sandbach et al. [SZP13]

applies LBP features, GentleBoost (a more stable version of the AdaBoost algorithm)

feature selection and a Markov Random Field (MRF) [Kin80] on the DISFA database

for inferring upper facial AUs intensities. A MRF is a graph consisting of nodes and

edges, where each node corresponds to a random variable and each edge corresponds

to a parameterised potential function. Through the MRF graph, all AU intensities are

estimated jointly. This is different from most other previous approaches, which train a

separate model for each AU. Another research that focused on pain intensity was done

by Rudovic [RPP13]. They proposed to use Conditional Ordinal Random Fields (CORF)
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for classifier and LBP for feature extraction. CORF is a special case of MRF where all

the clique potentials are conditioned on input features. Through experimentation, they

came to the conclusion that accounting for heterogeneity in the dataset would give

better results.

Khan et al. [KMKB13] tried to extract shape and appearance information to obtain

discriminative representations of facial expressions. Four common classifiers including

SVM, Decision Tree (DT), Random Forest (RF), and 2 Nearest Neighbor (2NN) have

been used to test the performance of this method, and the nonparametric classifier 2NN

achieves the best experimental results. Mavadati et al. [MM14] proposed to use Gabor

feature to represent the facial AUs and Hidden Markov Model (HMM) to model the

temporal patterns of them. HMMs are a specific type of MRF and exact inference is

achieved by the forward-backward algorithm. Florea et al. [FFV14] proposed to use

histogram of topographic features (HoT) to describe faces with different pain levels,

and to use transfer learning to enhance the robustness of the model.

Zhang et al. [ZZH15] proposed a method that extracts the dynamic motion-based

facial features which were measured through the facial landmark points’ displacement

between natural and expressive frames on 3D facial video. These facial features are then

fed to SVRs regressors for AU intensity estimation. Kaltwang et al. [KTP15] formulated

a Latent Tree (LT) where fiducial points were set as part of leaf nodes accompanying

by several other leaf nodes of AU targets and hidden variables. This graphical model

represents the joint distribution of targets and features that was further revised through

conducting graph-edits for final representation. Walecki et al. [WRPP16] proposed a

Copula Ordinal Regression (COR) framework to model the co-occurring AU intensity

levels with the power of copula functions and Conditional Random Fields (CRFs). Ruiz

et al. [RRBP16] proposed Multi-instance Dynamic Ordinal Random Fields by exploiting

the idea of multi-instance learning for automatic facial AUs intensity estimation. They

treated each sequence as a bag (set of training samples) and treated the maximum in-

tensity of a sequence as the bag label. Hong et al. [HZZ+16] proposed a second-order

pooling framework for medical image analysis, texture classification, micro-expression
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recognition and pain intensity assessment. Zhao et al. [ZGWJ16] proposed the peak-

piloted method that uses the peak samples to supervise the feature responses for the

non-peak frames of the same emotion and the same subject, achieving a competitive

performance in prediction of PSPI scores. Zhang et al. [ZZD+18] proposed a weakly

supervised regression model so called Bilateral Ordinal Relevance Multi-Instance Re-

gression (BORMIR), which exploits the relationships among instances and incorporated

domain knowledge to learn AU intensity regression.

2.3.2 Deep learning based methods

Deep Learning (DL) in general and CNN in particular have shown some great improve-

ments in many computer vision tasks, including facial expressions analysis. The supe-

rior performance of deep models is largely due to their ability to learn from experience

and generalise well on newly unseen data. Hence, more and more works focus on

analysing human facial expressions using these deep learning CNN techniques. Zhou

et al. [ZHSZ16] proposed to use Recurrent Convolutional Neural Network (RCNN) for

PSPI intensity estimation problem. Their RCNN uses recurrent connections in the con-

volution layers to capture the temporal information without increasing the overload of

parameters to avoid over fitting. Walecki et al. [WOR+17] placed a CRF graph on top of

a CNN to exploit the spatial relations between different AUs, improving the performance

of deep network in estimating facial AUs intensity. Rodriguez et al. [RCG+17] trained

a VGG-16 network to extract features from each frame of the dataset video sequences.

Those features are fed into a LSTM network to model the temporal dynamics informa-

tion between consecutive frame images. They have shown that their CNN-RNN hybrid

network is capable of capturing both spatial and temporal information from sequence

frames, outperforms hand-crafted approaches by a large margin in the domain of PSPI

intensity estimation problem.

In 2018, Zhang et al. [ZDHJ18] tried to exploit the temporal dynamics information

between consecutive frames by proposing a knowledge-based CNN for AU intensity es-
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timation with peak and valley frames in training sequences. Tavakolian et al. [TH18a]

extracted the features of the image by using the deep neural network and then pro-

cessed them to obtain the binary code. Sánchez et al. [SLTV18] proposed a network

based on Hourglass architecture [NYD16], which directly regress both AU locations and

intensities. They have shown that integrating AU locations into the training process has

greatly improved the performance of deep neural network. Zhang et al. [ZJW+19] and

Chu et al. [CTC17] both proposed deep CNN-RNN hybrid networks for automatic facial

AUs intensity estimation. Fan et al. [FLL20] stacked a Semantic Correspondence Con-

volution (SCC) module on top of a heatmap regression-based network to perform both

AU location regression and AU intensity estimation. Huang et al. [HQX+21] proposed

HybNet, which is a fusion of three sub-networks including 3D CNN, 2D CNN, and 1D

CNN for PSPI intensity estimation. Song et al. [SCW+21] integrated AU locations and

probabilistic graphs into the training of ther deep neural network, resulting some great

improvements in facial AUs intensity estimation problem.

To conclude, from the SOTA approaches that we have introduced in this section, it

can be seen that Deep Neural Networks have a great advantages over traditional image

processing approaches because their ability to automatically learn complex patterns

from training data. However, as the amount of data for the domain of facial AUs and

PSPI intensity estimation are quite limited (see Section 1.6), we need to design new

learning approaches that are able to learn to extract correct features from a limited

amount of data. In the next chapter, we introduce our proposing approach for better

pain intensity estimation when learning from a limited amount of data.
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Since human inner feelings and physiological states are typically characterised by

subtle movements of facial parts, the analysis of the facial details could improve the

overall quality of automatic expression assessment system. Thus, the development of

a powerful feature extraction system which is able to focus on these facial detail and

extract features from them is a crucial task and has been receiving attention from re-

search community. In this chapter, we summarise our results in paper I and provide

some extended findings that we did not mention in this paper due to the limitation of

both the scope-of-the-work and the maximum number-of-pages allowed. These findings

demonstrate the importance of learning to focus on regions-of-interest for pain intensity

estimation.

Paper I: M. T. Vu, M. Beurton-Aimar, P. -y. Dezaunay and M. C. Eslous, "Automated

Pain Estimation based on Facial Action Units from Multi-Databases," 2021 Joint 10th

International Conference on Informatics, Electronics & Vision (ICIEV) and 2021 5th

International Conference on Imaging, Vision & Pattern Recognition (icIVPR), 2021, pp.

1-8, doi: 10.1109/ICIEVicIVPR52578.2021.9564244.

3.1 Context

Facial expression provides sensitive cues about emotional response and plays a major

role in human interaction and nonverbal communications. It can complement verbal

communication, or can convey complete thoughts by itself [Lie98]. Facial expression

can easily be perceived and processed by human observer in a concise manner. The

ability to recognise other’s facial expression seems to be innate and universal across cul-

tural and racial borders [SBB+03]. As result, humans can easily recognise a wide range

of different expressions, even though different people may look different for different

expressions. While it is natural for humans to recognise other’s facial expressions, it is a

challenging task for a computer vision system to imitate the same cognitive behaviour.

One of the main reasons for this, particularly in the context of pattern recognition appli-
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cations, is the so-called curse of dimensionality [Bel66]. The learning complexity grows

exponentially with linear increase in the dimensionality of the data. For human, it

is effortlessly to receive and process a myriad of sensory data and capture critical as-

pects of this data in a way that allows for its future use [DZR12]. Contrastingly, high

dimensionality of data is a fundamental hurdle in many science and engineering ap-

plications [Bel66]. The typical approach to overcome the problem of the curse is to

extract only the important features from the data for reducing its dimensionality to that

which can be effectively processed, e.g., by a regression algorithm for pain intensity

estimation. For instance, a computer vision algorithm can process thousands of images

per second to estimate pain intensity from face image. However, the feature extrac-

tion system to find and extract important features from this high dimensional data is

only possible through highly engineering systems, which are well designed and trained

through specialised image processing and pattern recognition algorithms. Traditional

hand-engineered feature extraction methods have been around for decades and have

been used for extracting features for many facial expression recognition and analysis

systems [KRP12, BLF+06, SZP13]. However, these hand-engineered methods at times

can be challenging, highly application-dependent, time consuming, brittle and not scal-

able in practice [SA19].

Recently, deep learning techniques have emerged as powerful methods for learning

feature representations directly from data and have achieved some major improvements

in various face-related computer vision tasks [SKP15, VBADE21, ZPS17, STE13]. Be-

cause these learned feature representations are extracted automatically to solve a spe-

cific task, they are extremely effective at it. In fact, deep learning models that perform

feature extraction and classification outperform models that classify manually extracted

features by a large margin, in many different domains [SBAO18, ABRD15, XLW+16].

The main advantage of deep learning approaches is their ability to learn from experi-

ence and generalise well on newly unseen data [TSV20]. However, to do so, these deep

models require to be trained on massive amount of data, which is difficult to obtain for

the domain of facial expressions, especially the facial AU and PSPI pain intensity esti-
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mation. The reason for that is because it requires a costly and time-consuming labeling

effort by trained human annotators. For instance, it may take more than an hour for an

expert annotator to code the intensity of AUs in one second of a face video [LTWE+17].

In addition to limiting the amount of data, the distribution of AU intensities in these

databases is also highly unbalanced. Consequently, the performance of deep methods

training on these databases are being negatively affected by insufficient data. Therefore,

it is necessary to develop a learning approach that is capable of exploiting better feature

representations of facial image features on a limited amount of data. In this work, we

propose a new three-stages training approach which can combine multi-database to-

gether for more training data and, at the same time, learn to focus on the right regions

on the face (regions-of-interest) for better exploiting the data. We demonstrate the

effectiveness of our three-stages training approach on the UNBC McMaster database,

showing some promising results.

In the next sections, we explain step-by-step our approach. In section 3.2, we discuss

about the idea of learning to focus on regions-of-interest. Section 3.3 mentions about

the problem of multi-database combination. Section 3.4 explains the architecture of

our proposed 3-stages approach. Finally, the experiment results and discussion are

explained in sections 3.5–3.6.

3.2 Learning to focus on Regions-Of-Interest

One important property of perception is that humans do not tend to process whole in-

formation in its entirety at once. Instead, humans tend to selectively focus on a part

of the information when and where it is needed, but ignore other perceivable informa-

tion at the same time [NZY21]. Hence, focusing on the right places and ignoring other

irrelevant information appears to be an important aspect for not only human but also

for machine to concentrate on the relevant information and extract the correct features.

In the field of machine learning and deep learning, if we can tell the neural network

where to focus in the image, it will ease the training process and improve the general-
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isability of the network. Previous works such as Guan et al. [GHZ+18] and Tang et al.

[TWH+18] have tried to integrate the location of lesion area in the Chest X-ray image

to the training as heatmap regression, resulting some great performance improvements.

Wo and Ji [WJ16] proposed a cascade regression approach that incorporated the loca-

tion of facial landmarks into the training process, which improved the performance of

the face AU recognition task. Li et al. [LAZ17] proposed a region-based network which

integrated the information regarding the location of each AU into the training for better

AU detection. Sánchez et al. [SLTV18] and Fan et al. [FLL20] tried to encode both

the location and intensity of each facial AU as a heatmap (see Figure 3.1) and train the

network as a per-pixel regression problem, resulting some great improvements in the

task of facial AUs intensity estimation. These findings once again confirm that learning

to focus on the right parts of the face image would definitely help to improve network

performance.

In this work, inspired by [SLTV18, FLL20], we utilise the heatmap regression to force

our deep neural network to focus on each facial AU’s regions. However, different from

[SLTV18, FLL20], we do not use the predicted heatmaps for AU intensity estimation,

instead, we extract the embedded feature representations of the network for further

pain intensity estimation training. Since the network have been trained to focus on each

of the pain-related AU regions (regions-of-interest), hence these feature representations

should contain the important information regarding each facial AU. Section 3.4 explains

step by step our approach to utilise heatmap regression for boosting performance of our

pain intensity estimation network.

3.3 Multi-database combination

Before presenting the learning approach and network architecture, in this section, we

discuss about multi-database combination, which is a way to improve the coverage of

the training data. As we have mentioned earlier, the key point for many deep learning

related problems is to have a large amount of data for the training to improve the model
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Figure 3.1: A visualisation example of target heatmaps for a given sample. The size and peak of
the heatmaps are given by the corresponding labels, and are located according to the landmarks
defining the AU locations. Image from [SLTV18].

generalisation. Deep neural networks trained on large supervised datasets have led to

impressive results in many different domains [RVBS17, KSZQ20, TYRW14]. While con-

structing a new large database is costly and time consuming, combining the existing

databases seems to be feasible. Lefter et al. [LRVL10] combined several emotional

speech corpora within the training set to reduce the data scarcity problem and extend-

ing the variety of acoustic background, resulting improved performance compared to

training on a single dataset alone. Schuller et al. [SZWR11] also found that fusing a

variety of training data is on average better than relying on a single training corpus. In

the domain of image processing, Dobrescu et al. [DVGT17] used a regression model

based on ResNet-50 [HZRS15] architecture, training on the combination of multiple

leaf datasets to produce a more generalized model, with excellent results. These re-

searchs show a promising way to improve the performance of the deep learning model,

while maintaining initial complexity level and memory size required.

In this work, we introduce the multi-database combination approach for better pain

intensity estimation. We combine the training data of the two well-known facial AU in-

tensity databases, including the UNBC McMaster and the DISFA databases (see Section

1.6 for more information about the databases). Although the DISFA database does not

have the PSPI pain intensity annotation, these two databases share some pain-related
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facial AU intensity. Hence, there is a possibility to combine these two databases using

their common facial AUs and train a neural network as a feature extractor to extract

the important features regarding these facial AUs. Then, we can finetune this trained

network for pain intensity estimation. To the best of our knowledge, our approach is

the first to combine these databases together, probably due to some differences in the

annotation and the main purpose of each database.

This approach of combining multiple databases cooperates well with the learning

to focus on facial regions-of-interest that we have mentioned earlier. One approach in-

creases the amount of training data and its ethnic coverage by combining multi-database

together, the other provides a better way to exploit these combined training data. The

next section provides more details about how do we utilise these databases for better

pain intensity estimation.

3.4 The three-stages training approach

In this work, we strive to take a step towards the goal of automatic pain intensity

estimation by introducing a novel three stages training approach. Similar to [RCG+17],

we also perform regression using deep CNNs linked with LSTM model to predict PSPI

score for each frame image. However, instead of fine-tuning a CNN model directly from

the original database as [RCG+17], we partially train it on the combination of the UNBC

McMaster [LCP+12] and DISFA [MMB+13] databases by using the learning to focus on

regions-of-interest approach. Then, we utilise the knowledge that has been learned on

the two databases for feature extraction and PSPI pain intensity estimation. Particularly,

in the first stage, we train our CNN model with the combination of the two databases

for predicting their common AUs intensities as heatmap regression. In the second stage,

we freeze the first layers of the network to preserve the parameters that have been

trained on the two databases, then fine-tune its mid and top layers for predicting PSPI

scores. For the last stage, we link the features extracted from the fine-tuned CNN model

to the LSTM recurrent network for exploiting the temporal axis information between
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Figure 3.2: The overview of the proposed three-stages training approach. Several upscaling
layers are added for heatmap regression training in the first stage (blue block). The mid and
top layers of the base Inception Resnet network are trained as linear regression in the second
stage (green block) and then, the output of the Average Pooling layer are extracted to train
the LSTM network in the last stage (pink block).

the video frames. With this approach, we are able to effectively extract the important

features from the combination of two different databases, boosting the performance

of our pain intensity estimation network. As UNBC McMaster is the only database

annotated with PSPI pain intensity levels and the number of subjects of this database is

quite small with only 25 subjects, the addition of subjects from the second database is

extremely valuable. For the base CNN model, the Inception Resnet v1 [SIVA16] model

pretrained1 on VGG-Face2 [CSX+18] database is selected as this architecture is proven

to be computationally efficient while keeping high performance on different learning

tasks. By fine-turning from this model, we also benefit from the VGG-Face2 database

[CSX+18], which contains millions of faces that helps to improve the generalisability of

our model.

1The pretrained Inception ResNet v1 model is taken from the work [SKP15] and can be found at
https://github.com/davidsandberg/facenet
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3.4.1 Model architecture

The backbone framework of our network is the Inception Resnet v1 [SIVA16] architec-

ture, in which we add some different layers to train different parts of the network at

each of the three-stages, as showing in Figure 3.2. Specifically, in the first stage, we

add some upscaling layers, which are including Transposed Convolution [DV16] and

ReLU [Aga18] layers, on top of the InceptionResnet-B blocks of the base network for

reconstructing the AUs intensities as heatmaps from the original images. The reason of

choosing the output of InceptionResnet-B blocks is because the output dimension at this

layer is 8 × 8 per channel, which is small enough for reconstruction. Since the output

dimension of the previous layer (Reduction-A) is 17× 17 per channel, which is too large

and can introduce noise while the output dimension of the next layer (Reduction-B) is

3 × 3 per channel, which is too small and does not provide enough information to re-

construct. Thus, the output of InceptionResnet-B is perfectly fit for our problem and is

selected to reconstruct our AU heatmaps for training in this stage. The intuition behind

this heatmap regression is to train the network to focus on the pain-related AU regions

(regions-of-interest) for better extracting feature representations, the added layers will

be discarded afterward. Since the network takes data from the combination of UNBC

McMaster and DISFA database as input images for training, this first stage is used to

improve the generalisability of the model.

The second stage is mainly used for dimension reduction. As the output dimension

of the first stage is 8 × 8 per channel (after removing the added upscaling layers), it

still contains some structural information that can be exploited. Moreover, as the LSTM

network in the last stage requires to have a 1D vector of data to train, we have to reduce

the output dimension of the first stage from 8×8 per channel to a 1D vector of features.

A naive approach would directly flatten the output feature to 1D vector. However, this

flattening approach may result of losing the structural information and making noise.

Instead, we train the mid and top layers of the base network for PSPI scores estimation,

which in the same time, has the effect of reducing the dimension of the input to be
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Figure 3.3: Central locations of the common AUs between the two databases and the visualiza-
tion of the Target Heatmaps generated from the ground truth.

able to fit the requirement of the LSTM training in the last stage. Finally, the outputs

of the Average Pooling layer are extracted to train the LSTM network in the last stage

to exploit the temporal dynamics information between video frames. We don’t take

the output of the Fully Connected layer as input of the LSTM network because it has

less temporal invariability than the one from Average Pooling layer, as can be seen in

Table 3.2, the latter yields better performance when the LSTM network is fed by this

layer outputs.

In the next sections, we explain step-by-step the network architecture, input and

output data at each stage of our three-stages training approach.

3.4.2 First stage: Action Unit intensity estimation

The main goal of this stage is to improve the generalisability of the network by train the

first layers’ parameters of the base network by using the learning to focus on regions-of-

interest approach on the combination of the two databases. Several upscaling layers are

added on top of the InceptionResnet-B blocks for heatmap regression’s training. Similar

to [SLTV18, FLL20] we first generate the heatmaps ground-truth from our databases

by applying Gaussian function on the predefined AU locations, as depicted in Figure

3.3. Each image frame generates a set of N heatmaps for our selected common AUs
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between the two databases, where N is the total number of the predefined AU locations.

For a predefined AU location Li(i = {1, ..., N}), the ground-truth heatmap gi(x) is a

64× 64 image generated by applying a Gaussian function centered on its corresponding

coordinate x̂ as follows:

gi(x) =
I

2πσ2
exp(−‖x− x̂i‖

2
2

2σ2
) (3.1)

Where I is the labelled intensity of the specified AU, and σ is the standard deviation.

Thus, the generated heatmap has the highest value at the centre AU location x̂ and

smoothly decrease when the pixel is farther away. This way, we can encode both spatial

and intensity ground-truth information of AUs into heatmaps and then use it to train our

model as heatmap regression. Because the output of our model is also AU heatmaps,

the loss function should be a per-pixel loss function between the predicted heatmaps

and the generated one from ground-truth. As we are doing heatmap regression, the

per-pixel loss is defined as the L2 norm, which is defined as:

Li,j = ‖ŷi,j − yi,j‖22 (3.2)

Where ŷi,j is the output heatmap generated by the network at pixel i, j and yi,j is the

corresponding ground-truth. The total loss is computed as the average of the per-pixel

loss per AU. The model state with the lowest validation loss is selected to continue on

the next stage. The summary of the whole process is depicted in Figure 3.4.

In this stage, we train this network using all of the common AUs between the two

databases as heatmap regression, which are including AU4, AU6, AU9, AU12, AU20,

AU25 and AU 26. We also report the results of the network when training with AU4,

AU6 and AU9 as target heatmaps, since these common AUs are parts of the PSPI formula

(Equation 1.1). We expect that learning to focus on regions-of-interest of these AUs will

help the network to exploit better feature representations and the additional data from

the secondary database will compensate the lacking of different face appearances of the

UNBC McMaster database, thus, improving the generalisability of the network.
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Figure 3.4: The visualisation of the Heatmap regression in the first stage. Several upscaling
layers are added on top of the InceptionResnet-B blocks of the base network to reconstruct the
AUs intensity as a set of n heatmaps, where n is corresponding to the number of AUs. These
reconstructed heatmaps will then be compared with ground truth heatmaps to compute per-
pixel loss function for optimising the model’s parameters.

3.4.3 Second stage: Frame level pain intensity estimation

As stated, the main purpose of this second stage is for dimension reduction. The first

layers of the base network (from the begining to the last of the InceptionResnet B blocks,

which can be seen in Figure 3.2) are frozen to preserve the parameters that have been

trained using the two databases on the first stage. All the upscaling layers that we

added in the first stage are discarded as we don’t need to use them anymore. Mid and

top layers of the base network are trained as regression to predict pain intensity level.

Data from the UNBC McMaster database are used to train at this stage as this database is

the only one that has annotated with the PSPI score. L2 objective function between the

predicted label ŷ and actual label y are used as loss function to optimise the network:

E =
1

N

N∑
n=0

‖ŷn − yn‖22 (3.3)

Where N is the total number of predictions. At this stage, the whole of InceptionRes-
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net network is fully trained and can be used to predict pain intensity level from images

or frames. However, we still can improve it by exploiting the temporal information

between the frames in video sequence, in which we describe in the next stage.

3.4.4 Last stage: Sequence level pain intensity estimation

In this last stage, temporal information of the video sequence is exploited by linking

the features extracted using the base model trained on the previous stages to a LSTM

network. LSTM is a variant of Recurrent Neural Network (RNN) which is capable of

keeping long-term information from previous inputs. By learning the changing of the

facial expressions over time through the sequence of frames, we expect this network

to be able to detect the trending of the expression using the past information, and to

combine it with the information from the current frame to make a better decision. In

order to train this network, outputs of the Average Pooling layer of the base network

are extracted as sequences and fed to this LSTM network. L2 objective function between

the predicted label of the sequence and actual label will be used as loss function to

optimise the model’s parameters.

3.5 Experiments and results

3.5.1 Implementation details

The training and testing processes were performed using a NVIDIA Gerforce RTX 2080

Ti 11G GPU with Pytorch v1.6 [PGM+19]. During the training phase, Adam optimiser

[KB14] were employed with initial batch size of 64 for all the three stages. Initial

learning rate is set of 1e−5 for the first stage, 3e−4 for the second stage and 9e−6 for the

last stage. For LSTM network, the number of layers and hidden units are set to 2 and

744, respectively. These configurations are set based on a large grid searching.
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Figure 3.5: The preprocessing pipeline. First, the original image frame is aligned using GPA
alignment, then it is cropped and resized on the face area based on its landmarks. Finally, fixed
image normalisation is applied to ease the training process.

3.5.2 Data preprocessing

For the data preprocessing step, we want our images to be as similar to the pretrained

VGG-Face2 [CSX+18] images as possible, which would make the model’s activation

functions to be activated in the same way. The transforming pipeline consists of three

steps including face alignment, face cropping and image normalisation, as can be seen

in Figure 3.5. Similar to [LCP+12, RCG+17] we also use the Generalised Procrustes

Analysis (GPA) [Gow75] to align the face images based on the provided landmarks.

Next, the aligned face images are cropped, resized to 160 × 160 pixels and then nor-

malised using fixed image standardisation as it is the input format of the pretrained

model. For a given tensor image X, the normalisation’s formula2 is denoted as follows:

Xnormalised =
X − 127.5

128
∀i ∈ X, 0 ≤ i ≤ 255 (3.4)

In training, we apply some data augmentation techniques to improve data scarcity

limitation. Specifically, instead of using central crop, for each sample image, we ran-

domly apply Image Translation and Horizontal Flip techniques, as these techniques have

proven to be efficient in the task of facial expression recognition [PFA20]. We also have

applied ColorJitter technique which randomly change the brightness, contrast, satura-

tion and hue of the image.

2The equation 3.4 is the improved formula using in the preprocessing step of the pretrained model
that is given by the authors of [SKP15] and can be found at https://github.com/davidsandberg/facenet
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For generating sequence database to train LSTM network, similar to [RCG+17] we

first extract the feature vector for each image using the model that has been trained on

the second stage. This process produces a set of feature vectors v with v ∈ R1792 since the

Average Pooling layer of the model return 1792 output numbers as 1D vector. Those

vectors are grouped together in sequences of length p in a way that each frame is the

last of a sequence once. E.g., if the first sequence is s0 = {v0, v1, ..., vp−1, vp}, then the

next sequence is s1 = {v1, v2, ..., vp, vp+1}. Because we are building a sequence database

for pain intensity estimation as regression task, each of those generated sequences is

labelled as the pain intensity of its last frame. Hence, the prediction of a frame is done

taking into account the past p frames. The value of p is set to 16 based on preliminary

testing.

Facing imbalanced data

As stated, the UNBC McMaster is a huge imbalance dataset with about 8, 000 pain frames

and about 40, 000 no-pain frames. So, we balance the training data for both the original

and generated sequence databases by randomly under-sample the majority class, i.e.

the no-pain class, so that both pain and no-pain categories have the same probability

to be randomly picked by the training algorithm. For the DISFA database, since this

database is also imbalance and is only used to train for the first stage, we keep only the

frames that have minimum of two AUs with its intensity greater than zero.

3.5.3 Evaluation metrics

We conducted a series of experiments to evaluate the effectiveness of the proposed

approach on the widely used UNBC McMaster [LCP+12] database. To compare our

results with the other works, the leave-one-subject-out cross-validation is applied on all

of our experiments. Data from one subject of the UNBC McMaster database is excluded

for validation, the rest are combined with data from DISFA database for training phase,

repeatedly. For comparing within the author’s scheme, we use Mean Squared Error
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Table 3.1: Evaluating the effectiveness of the learning to focus on regions-of-interest in the first
stage training. CNN refer to the vanilla InceptionResnet network.

Model Trained on databases MSE PCC

CNN model UNBC 0.75 0.76
CNN stages 1 + 2 model UNBC 0.67 0.78
CNN stages 1 + 2 model UNBC & DISFA 0.63 0.80

(MSE) and Pearson Correlation Coefficient (PCC). For comparison with other SOTA

approaches, we use MSE, Mean Absolute Error (MAE), PCC, and ICC. Between these

evaluation metrics, for MSE and MAE: the lower the better; for PCC and ICC: the higher

the better.

3.5.4 Experiments and results

Firstly, we would like to evaluate the effectiveness of training AU estimation task as

heatmap regression for better exploiting regions-of-interest. Table 3.1 shows the evalu-

ation results of CNN model training with and without the task. From this table, we can

see that the model trained with AU estimation task (CNN stages 1 + 2) clearly outper-

forms the model trained without this task. This result is not surprising, as the heatmap

regression task guides the network to focus on the right pain-related regions-of-interest,

boosting performance of the whole network when utilising the learned features for pain

intensity estimation training. Besides learning to focus on regions-of-interest, the AU

estimation task also unlocks the ability to train our network on multi-database com-

bination, which further improves the performance of the network. These results once

again confirms the effectiveness of learning to focus on regions-of-interest in exploiting

the appropriate feature representations from face image. Figure 3.6 shows the visual-

isation of heatmap prediction results of a subject in the UNBC McMaster database. It

can be seen that our network have learned well to focus on the right location of each

individual pain-related facial AU.

Next, we would like to test the effectiveness of the LSTM network by comparing the
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Figure 3.6: The visualisation of the heatmap outputs of the first stage of our network. It can be
seen that our network predicted both the location and intensity of each facial AU quite correctly.

Table 3.2: Comparison the effectiveness of the LSTM and the layer to extract features. The
models was trained on the UNBC McMaster only (without DISFA database).

Model With LSTM MSE PCC

CNN model No 0.67 0.78
CNN (Fully Connected) Yes 0.74 0.78
CNN (Average Pooling) Yes 0.65 0.80

performance of the CNN model alone and the CNN model that links to LSTM model. To

eliminate the effect of other factors like the selection of AUs or the use of the secondary

database, we trained these models on the UNBC McMaster database only, for pain in-

tensity estimation. Table 3.2 shows the evaluation results of three different training

configurations: CNN model alone, CNN model linked with LSTM at the first Fully

Connected layer, and CNN model link with LSTM at the Average Pooling layer. From

Table 3.2, we can see that when using the output of Average Pooling layer as input for

training LSTM model, the performance of the whole network have been significantly

improved compared to CNN model alone. The output of Fully Connected layer seems

to contain less temporal information, as it gives a worse result than the CNN model

alone.

We further investigated the effectiveness of the data contribution from the secondary

database. As it can be seen in Table 3.3, results from the first two stages are already
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Table 3.3: Comparison the performance of the model with and without the data contribution
from the DISFA database.

Model Database(s) MSE PCC

CNN model UNBC 0.67 0.78
CNN stages 1 + 2 model UNBC & DISFA 0.63 0.80
The three stages model UNBC & DISFA 0.60 0.82

Table 3.4: Comparison the performance of the model at the second stage when using different
AUs as target heatmaps for training in the first stage.

Model AUs MSE PCC

The second stage All common AUs 0.78 0.74
The second stage AU4, AU6, AU9 0.63 0.80

better than the one trained without the secondary database. And when we put all the

three stages together, it pushes the result even higher. This demonstrates the effective-

ness of our approach when learning from the combination of two database instead of

just a single one. However, to draw this advantage, the work of selecting AUs for the

heatmap regression in the first stage is also important. As shows in Table 3.4, the results

when we use all common AUs between the two databases are worse than if we use only

AU4, AU6 and AU9. This could be happened because AU4, AU6 and AU9 are parts of

PSPI formula (Eq. 1.1) , which make the network easier to learn in next stages. If we

train with all common AUs, the non-related AUs can introduce noise, which may reduce

the capacity of the model.

Finally, we would like to test the effectiveness of freezing the first layers’s parameters

of the base model. We hypothesised that the UNBC McMaster is a huge imbalanced

database, so overfitting can easily occur when we fine-tune the whole network, i.e. no

freezing. Furthermore, we believed that this freezing layers will preserve the parameters

that have been trained with data from the two databases, which will make it better

when predicting new cases. Table 3.5 shows the result of the first two stages of the

model when applying and not applying the layers freezing. It is clear that the model

works better when first layers’ parameters are frozen.
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Table 3.5: Comparison the performance of the model at the second stage when freezing and not
freezing the first layers of the base network

Model Freezing MSE PCC

The second stage No 0.69 0.79
The second stage Yes 0.63 0.80

3.5.5 Reference to the works of Mohammad Tavakolian

Different from our original published paper I, in this thesis, we do not cite the works

[TH18b, TH19] of Mohammad Tavakolian. The reason for that is because we see that

their results are rather strange, as their deep learning model consists of 423.2 millions

parameters, while the UNBC database contains only 48.398 images and only 8.369 im-

ages with PSPI > 0. The amount of training examples are way smaller than the size

of their proposing network. Regarding this problem, Yan Lecun once said in [L+89]:

"Theoretical studies (Denker et al , 1987) (Patarnello and Carnevah, 1987) have shown

that the likelihood of correct generalization depends on the size of the hypothesis space

(total number of networks being considered), the size of the solution space (set of networks

that give good generalization), and the number of training examples. If the hypothesis

space is too large and/or the number of training examples is too small , then there will

be a vast number of networks which are consistent with the training data , only a small

proportion of which will lie the true solution space, so poor generalization is to be expected”.

Generally speaking, the more parameters there are in a learning model, the more

training examples are needed to avoid the problem of overfitting. And the size of

Tavakolian’s model is simply insane compared to the tiny size of the UNBC McMaster

dataset. For reference, the model of Tran et al. [TBF+15] (the one that their model is

based on) has only 17.5 millions of parameters, which is about 1
24

of the size of Tavako-

lian’s model. And they trained it on the Sport1M database, which is about 20 times

bigger than the UNBC McMaster database.

Apart from the size of the training dataset, the imbalance of the data is also one of

the strange things in their results. Since the UNBC McMaster database is an extremely
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(a) Fig. 9 - Tavakolian and Hadid, 2019 (b) Ground truth of subject 064-ak064

Figure 3.7: Visualisation of pain intensity prediction in the paper [TH19] (a) and the PSPI
ground truth of the subject 064-ak064. We can see that despite visualising the same subject
(064-ak064), we can’t find the same pattern in (a) compare to the ground truth PSPI (b).

unbalanced database, as can be seen in the Figure 1.8. Hence, when training a deep

model on this database without applying any rebalancing technique, the learning model

will certainly bias to have its prediction toward the dominant category [CJK04, GMS10].

So, it is strange that they did not apply any data re-balancing technique but still reach

a high level of generalisation.

Next, Figure 9 in their paper [TH19] shows the prediction vs ground truth of subject

064-ak064 in the UNBC McMaster database. However, there are no such pattern in the

ground truth PSPI visualisation, as can be seen in Figure 3.7, which could be a sign of

data leakage or reading incorrect data.

Regarding these concerns, we have tried to send an email to the authors using the

email addresses that they provided in their papers. However, when we was trying to

send the email, it was rejected as incorrected email addresses. We have further con-

tacted the head of their team at Oulu University and obtained a new email address. We

have sent another email regarding these issues to the new email address of the author,

but we have not received any response since then. Therefore, we decided to exclude

these works out of this dissertation.
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3.5.6 Comparison with State of the Art

Table 3.6: Comparison against Leave-One-Subject-Out method with MSE, MAE, PCC, and ICC
on the UNBC McMaster database. The best results are shown in bold.

Model MSE MAE PCC ICC

Kaltwang et al. [KRP12] 1.39 - 0.59 0.50
Florea et al. [FFV14] 1.21 - 0.53 -
Zhao et al. [ZGWJ16] - 0.81 0.60 0.56
Zhou et al. [ZHSZ16] 1.54 - 0.64 -
Rodriguez et al. [RCG+17] 0.74 0.50 0.78 0.45
Tavakolian et al. [TH18a] 0.69 - 0.81 -
Our 3Stages model 0.60 0.35 0.82 0.80

We compared our proposed three stages approach with other works that related to

continuous pain intensity estimation, which including Kaltwang et al. [KRP12] with

their shape and appearance features fusion network, Florea et al. [FFV14] with HoT

and SVM classifier, Zhao et al. [ZGWJ16] with OSVR regression model and Zhou et al.

[ZHSZ16] with Recurrent Convolution Neural Network, Rodriguez et al. [RCG+17] with

VGG + LSTM network and Tavakolian et al. [TH18a] with their Deep binary represen-

tation model. Table 3.6 shows the comparative results of leave-one-subject-out cross-

validation method for the above mentioned approaches evaluated on the UNBC McMas-

ter database. From this table, we can observe that our proposed three stages approach

outperforms other works in all evaluation metrics. Specifically, our method archives

30% higher than the previous SOTA in term of MAE (Rodriguez et al. [RCG+17]) and

13% higher than previous SOTA in term of MSE (Tavakolian et al. [TH18a]). For the

correlation evaluations, our approach achieved 35% higher than previous SOTA in term

of ICC and 1% higher than previous SOTA in term of PCC. These results once again con-

firm the effectiveness of our approach in focusing on the regions-of-interest for better

exploiting data on the multi-database combination.
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Figure 3.8: The visualisation of an incorrect AU intensity prediction of our network. Using the
same weight for both the visible and the obscured parts of the face could be the reason for these
incorrect prediction.

3.6 Conclusion

Facial expression of a subject changes spontaneously when experiencing an inner feeling

and it is important to precisely extract the feature representations of these changes for

better human expression understanding. In this work, we have proposed the learning to

focus on regions-of-interest approach training on the combination of multi-database for

better pain intensity estimation. Our extensive experiments demonstrate that integrat-

ing the locations of the regions-of-interest into the training process provides the deep

network with valuable information regarding where to focus in the face image, thus

improves the overall performance of the network when finetuning for different facial

expressions related tasks, e.g. pain intensity estimation.

While the idea of focusing on regions-of-interest is great for boosting performance

of deep neural network, our approach of integrating the location and intensity of the

AUs into the training process in the form of heatmap regression still has some limita-

tions. Firstly, we consider the left and right sides of the face with equal weight, which

is not entirely correct in some cases when the patients turn their head due to enduring

pain (see Figure 3.8). In these cases, some parts of their face are barely visible or com-

pletely obscured. Hence, we should pay more attention to the AUs in the visible parts
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of the face and reduce the attention to the hard-to-see or obscured parts. Secondly, for

generating the heatmap target of each AU, we defined its central location with highest

value and gradually decreases as the distance of the pixel increases. This is not an opti-

mal choice because this configuration emphasises the central location of the AU region,

while reduces the attention when the pixel move further away from the centre. As the

muscle movement of an AU is not only limited to the central of the AU region, but also

to the entire muscle-related area of the AU. Therefore, instead of relying on AU target

heatmap, an approach that can learn to automatically extract features from the entire

AU region is much more appreciable.

In the next chapter, we will present a new approach that addresses both of these

limitations. Inspired by the advantage of learning to focus on regions-of-interest, we

take it to the next level by not just focusing, but isolating these regions for better ex-

tracting feature representations. Besides introducing the new deep learning network

architecture, we also propose a new approach for better balancing the training data,

which is also a critical problem for the domain of facial analysis in general and pain

intensity estimation in particular.
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Deep learning is successful when massive amounts of annotated data are available,

as evidenced by astonishing results in many different domains, including speech recog-

nition, machine translation and image categorisation. For many problems, however, the

precious annotated data may be scarce, hard to obtain or simply unavailable. Facial

action unit and pain intensity estimation are among those domains that suffer from

data-deficiency. Hence, there is a need of developing a deep learning approach that

effectively exploits better feature representations from sparse data. In this chapter, we

summarise our findings in paper III, which presents an approach to efficiently learn to

isolate regions-of-interest from face image for better extracting feature representations,

improving the performance of facial AU estimation and pain intensity assessment.

Paper III: M. T. Vu, M. Beurton-Aimar and K. TRAN, "FFAU: Faster-RCNN for Facial

Action Unit intensity estimation," 2022 Pattern Recognition Journal (Submitted).

4.1 Context

Data scarcity has long been the major issue while building a deep learning model, as

in many fields, sufficient amount of data is not available to train the deep model. The

lesser amount of training data often leads to a phenomenon called over-fitting: the

model performs well in training but not on newly unseen data. In fact, deep neural

network overfits the training data by memorising small training data without learning

underlying patterns [LKG19]. In such a situation, the model performs exceptionally

well on the training data but fails miserably on the test data or in the real world. The

typical approaches to overcome this problem are including data augmentations and

transfer learning. Data augmentation techniques enrich training data by generating

additional training examples using various label-preserving transformations, such as

scaling, zooming, and random cropping of images. In the other hand, the transfer

learning approach attempts to transfer the knowledge gained on a large labelled source

dataset for a target task [HAG+17]. Both of these approaches are useful to fight against
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the data scarcity problem. However, in cases where the dataset is extremely unbalanced

and the number of samples is also very limited, applying these techniques alone is not

sufficient. Facial AU intensity and PSPI pain intensity estimation are among these cases

where labelled data are limited both in the number of samples and in the distribution of

the intensity levels (see Section 1.6). To overcome this problem, prior studies [ZDHJ18,

ZZD+18, LTWE+17, SCW+21] attempted to use a semi-supervised approach or leverage

prior knowledge to have more training data. The works [KTP15, WRPP16, RRBP16]

tried to exploit more information from a single image by utilising the co-occurrence of

the AUs. Other works [ZJW+19, CTC17] tried to exploit temporal information between

the consecutive frames of a video. The common point of these works is the fact that

they tried to analyse all the AUs together, without pointing out explicitly where to find

the information regarding these AUs on the face image. Despite the fact that deep

learning has the capability to find these information automatically through learning

[DT18, Kim10, dSP22], it requires a huge amount of data for model learning to avoid

overfitting [dSP22, ZDHJ18], which is difficult to obtain in the domain of facial AU

intensity estimation as mentioned earlier.

Inspired by the advantages of the learning to focus on regions-of-interest that we

have presented in Chapter 3. Here we present a new deep neural network called FFAU

network, which is not just focusing but isolating the regions-of-interest for better fea-

ture extraction. Based on the concept of divide and conquer paradigm, we utilise the

Faster RCNN object detection network [RHGS15] to locate the AU regions of interest

(divide) before put them through a set of AU regressor networks for AU intensity es-

timation (conquer). By isolating each AU region, we are able to estimate correctly its

intensity without worrying about learning incorrect features from other non-related re-

gions, reducing the chance of being overfitted. In addition to localising and estimating

AU intensity, our FFAU network has also addressed the head pose problem of the pa-

tients when filming. By explicitly training the network to take into account only the

visible parts of the face during training and ignoring the obscured parts, our network

is able to pick up the correct features even in the extreme head pose cases when the
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patients over turn their faces to the left or right. Experiments on the two widely known

databases UNBC McMaster and DISFA databases show that our approach outperforms

other SOTA approaches on both the two databases.

Besides improving network’s performance, the explainability of the model behaviour

is also an important aspect that we have considered when designing our network. As

deep learning models are usually considered as black-box due to their complex mapping

of millions of parameters inside these networks, it is difficult to obtain interpretations

and explanations for the behaviour of the network. In this work, our approach takes

a step towards bettter explicability in predicting PSPI pain intensity level. Previous

SOTA approaches only give a final PSPI intensity level for a given image without giving

any explanation. In the other hand, our approach not only tells the intensity value of

each pain-related AUs that contributed to the PSPI score, but also shows where are the

regions for each of these AUs. These are important information which can provides

some insight about the behaviour of our model and help practitioner or medical doctor

to see and evaluate the reliability of our predictions.

In the next sections, we explain step-by-step about our approach. In section 4.2,

we review the object detection network, which is the base network that we used in

our approach. We discuss the problem of data imbalance and how we have dealt with

it in section 4.3. Section 4.4.2 explains the architecture of our proposed FFAU neu-

ral network. Finally, the experiment results and discussion are explained in sections

sections 4.5–4.8.

4.2 Object detection network

Object detection is an important task for many different computer vision problems

[ZZXW18, JLM17, ZXT18, EV18]. The task involves locating and classifying objects

in an image or video. There are two types of object detectors: single stage and two-

stage. One of the first two-stage detector network is Selective Search [USGS13], in

which the first stage generates a set of candidate proposals and the second stage clas-
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sifies the proposals as one of the foreground (target) classes or as background. RCNN

[GDDM13] replaces the second stage classifier by a CNN network, yielding large gains

in accuracy. SPPNet [HZRS14] improves RCNN network by sharing feature extraction

stage and use spatial pyramid pooling to extract fixed length feature for each proposal.

Fast RCNN [Gir15] improves over SPPNet by introducing a differentiable RoI Pooling

operation, enabling the network to be able to train end-to-end. Region Proposal Net-

works (RPN) is proposed in [RHGS15], which integrates proposal generation with the

second-stage classifier of Fast RCNN into a single convolution network, forming the

Faster RCNN framework. Besides the two-stage detector, we also have single-stage

detector that is primarily aimed at detecting objects in real time. This type of de-

tector network predict object classes and locations directly, hence much faster than

two-stage detector networks. OverFeat [SEZ+13], SSD [FLR+17, LAE+16] and YOLO

[RDGF15, RF17, BWL20] are some of one-stage methods. Yet, as the two-stage detec-

tors are generally more accurate than single stage detectors [ZAA+21, CWS+18] and

the inference speed is out of our concern, we have selected Faster RCNN as the object

detector backbone of our network.

Regarding the Object detection in face analysis, since there are no directly relation

between these two domains, there are only a few works in the literature. Faster RCNN

was used in [JLM17, ZXT18] for face detection from images. Li et al. [LZZ+17] and

Zaman et al. [ZSS+22] both utilised Faster RCNN to localise face-area and then classify

facial expressions. The main objective of the object detection task in these approaches

is still limited to localising the human head or face. To the best of our knowledge, our

approach is the first to utilise object detection to localise and analyse human emotion

at AU level.

4.3 Dataset re-balancing

Since our experimental databases are quite unbalanced, most of the samples are being

labelled with zero intensity, which can be seen in Figure 4.1. This certainly will bias
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Figure 4.1: The distribution of facial AU intensity of the UNBC McMaster dataset (a) and the
DISFA dataset (b).

the training network to have its prediction toward the dominant category [JCDLT13,

CJK04, GMS10], which obviously reduces the capability of the network. Therefore, it

is crucial to rebalance the dataset before any further training or analysis. Since the

samples in our datasets were annotated in one-to-many fashion, i.e. multiple AUs with

multiple intensity levels for a single image, we have applied two popular rebalancing

techniques with some modifications to rebalance our databases. These techniques are

including under-sampling and over-sampling techniques, which are described in the

next sections.

Under-sampling

Traditional under-sampling technique is about randomly drop samples in the majority

category. However, since our datasets is quite small and deep learning model in general

requires massive amount of data, dropping data should be used as little as possible.

Instead, as our datasets are of the video type, for every k consecutive frame samples,

we collapse those samples into a single representative sample. In training, when reading

a representative sample, we unfold and randomly pick one of its collapsed samples. This

122



CHAPTER 4. LEARNING TO ISOLATE REGIONS-OF-INTEREST FOR BETTER PAIN
ESTIMATION

(a) DISFA dataset collapsed (b) DISFA dataset re-balanced

N
um

be
r o

f f
ra

m
es

5

10

15

20

AU 1 2 4 5 6 9 12 15 17 20 25 26 AU 1 2 4 5 6 9 12 15 17 20 25 26

x103

0

5

10

15

20

x103

0

AU  
Intensity

Figure 4.2: The distribution of facial AU intensity of the DISFA database after collapsing (a) and
re-balancing (b).

way, we are literally not dropping a single frame in our dataset, while consolidating the

balancing of our dataset. Considering the FPS of these datasets are around 20 frames

per second, for the majority category (i.e the intensity of all AUs are all zeroes), k is set

to 20. Otherwise, k is set to 3. The reason for setting k = 3 for the minority categories

is the fact that in video type of dataset, there is not much of difference between two

consecutive frame samples. Furthermore, the model could be getting overfitted if the

case of several consecutive images appearing in a single batch is repeated. Figure 4.2a

shows the distribution of facial AU intensity of the DISFA dataset after this collapsing

step.

Over-sampling

Over-sampling technique is about randomly duplicating samples in the minority cate-

gory. However, if we duplicate too many times a particular sample, the training model

could remember it instead of learning something from it. Therefore, selecting the dupli-

cating rate wisely for each sample is an important factor for rebalancing our datasets.

Since the number of samples annotated with intensity greater than zero for each AU is

unbalanced (e.g., AU 1 and AU 25 in Fig. 4.1b) and so does the number of samples at
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Left
regions

Right
regions

Figure 4.3: Facial regions bounding boxes
extracted from face image using facial land-
marks.

(a) Multi bounding boxes  
in the same region

(b) No bounding box  
in the face right side

Figure 4.4: Bounding boxes in training phase
of our Facial region localisation module.
There could be multiple bounding boxes pro-
posed by RPN module for the same region (a)
and there could also be no bounding box for
some regions (b).

each intensity levels, we try to rebalance for both of them. Let U j
i be the number of

times the AU i with intensity j appears in our dataset. The duplicating weight of AU i is

denoted as:

WUi =
1∑5

j=1 U
j
i

×
T

max
α=0

5∑
j=1

U j
α (4.1)

With T denotes the total number of AUs that exists in our dataset. From Equation

4.1 we can see that the lower amount of samples annotated with AU i and intensity

j > 0, the higher weight it gets. Therefore, this WUi ensures the balance of each AU

i ∈ {0 . . T} inside the dataset.

Next, the duplicating weight of AU i with intensity j is denoted as:

WUji
=

1

U j
i

×
5

max
β=0

Uβ
i (4.2)

Again, we can see that the higher amount of samples annotated with intensity j ≤ 5,

the lower weight it gets. While the Equation 4.1 tries to rebalance the dataset at AU

124



CHAPTER 4. LEARNING TO ISOLATE REGIONS-OF-INTEREST FOR BETTER PAIN
ESTIMATION

level, Equation 4.2 tries to rebalance the dataset at intensity level. Finally, let xi be the

intensity of a sample x with its annotated AU i, the final weight of x is denoted as:

Wx =
1

T

T∑
i=0

WUi ×
(
W
Ux

i
i
× 1

f
+ 1

)
(4.3)

With f denotes the hyper-parameter weight-factor that we will have to select to

determine how much we want to penalise the weight for the minority categories. Since

the difference in the amount of data between AU intensities is huge (see Figure 4.1),

we need this term to prevent oversampling too much the minority samples. The last

term (plus one) in the equation is used to ensure the term 1
f

rescaling the weight of the

minority categories effectively.

In this work, we have set f = 5 based on our preliminary testing. Results of the

rebalancing for the DISFA dataset are shown in Figure 4.2b. It can be seen that the

balancing of the dataset has been improved compare to the original dataset (see Figure

4.1). Eventhough we can further reduce the value of f to get a nicer distribution of AU

intensity. However, as we have mentioned earlier, duplicating too much will lead into

the problem of overfitting, therefore we keep this data balancing configuration for all

of our experiments.

4.4 Faster-RCNN for facial action unit intensity estima-

tion approach

4.4.1 Facial region bounding boxes definition

In order to generate ground truth for training our network to localise the active appear-

ance locations for each AU in our databases, we have defined the facial region bounding

boxes based on the provided facial landmarks as can be seen in Figure 4.3. Each facial

region contains one facial structure, which is the main active appearance of one or more

facial AUs. One can see these facial regions as a more generic version of the heatmap
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Table 4.1: Region definition of each facial AUs. A region contains one facial structure and
contains one or more facial AUs.

Region ID Position Definition AU(s) included

4 Left & right Browns area AU 1, 2, 4
5 Left & right Eyes area AU 5, 7, 43
6 Left & right Cheeks area AU 6
9 Left & right Nose wings area AU 9
15 Left & right Mouth area AU 10, 12, 15, 20, 25, 26
17 Center Chin area AU 17

ground-truth defined in [SLTV18, FLL20, VBADE21]. While their heatmap ground-truth

highly emphasises the central of the region, our facial region approach treats each pixel

in the region equally and leaves the decision of which place to emphasise to the higher

layer of neural network. Since the human facial structures in the left and right of the

face are balanced in general, we have defined the left and right regions for each of the

facial AUs accordingly. Table 4.1 shows the predefined facial regions and their contain-

ing facial AUs.

4.4.2 FFAU network architecture

4.4.2.1 Facial region localisation module

As we have mentioned earlier, the face region localisation module of our network takes

the responsibility of localising each of the face regions that we defined in Table 4.1. In

this work, we have chosen Faster RCNN network [RHGS15] architecture for this part

of the network since it is one of the SOTA neural networks for objects detection and

it also is an unified end-to-end trainable neural network. Faster RCNN network (see

Figure 4.5b) consists of three main modules: the CNN backbone network for extracting

features, the Region Proposal Network (RPN) for generating proposal regions and the

Fast RCNN module for detecting objects in the proposed regions. In the next paragraphs,

we explain step-by-step the way we configured each module inside this network.
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(a) Feature Pyramid Network architecture (b) Faster RCNN Network architecture
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Features
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Figure 4.5: Facial region localisation module visualisation. The module consists of a Faster
RCNN network (b) built on top of a Feature Pyramid Network (a).

CNN backbone module: For the CNN backbone, we adopt the Feature Pyramid Net-

work (FPN) [LDG+16] architecture as the backbone for our FFAU network since it

has shown to be effectively improved the performance of the object detection tasks

[HGDG17, LDG+16]. This network augments a standard convolutional network by

adding a top-down pathway and lateral connections into the original network, enabling

the network to construct a rich and multi-scale feature pyramid from a single resolution

input image. The illustration of this network can be seen in Figure 4.5a.

Similar to [HGDG17, LDG+16], we have built a FPN on top of a ResNet 50 archi-

tecture [HZRS15]. Following [LDG+16], we have constructed 4 levels of FPN feature

pyramid using the last 4 blocks of the ResNet architecture. The number of channels for

each FPN pyramid layer is set to 256 channels.

RPN module: For the RPN module, we configured this module to generate anchor

sizes of {162, 322, 642, 962, 1282} pixels and their aspect ratios (height:width) of {1:4,
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1:2, 1:1, 3:2, 2:1} to cover a variety of potential shapes and sizes. Each of these anchor

is assigned to a one-hot vector of classification targets with length γ, where γ is the

total number of facial regions in our dataset. From Table 4.1, we can see that there

are 5 pair regions with two positions left and right, one region with only one center

position and one final region is reserved for the background. Totally, the number of

regions are γ = 12 regions. To assign an anchor to a classification target, we use a

similar assignment rule as in [RHGS15]. Specifically, anchors are assigned to target

object boxes if the Intersection Over Union (IoU) between them is no less than 0.7 and

to background if it is no greater than 0.3. The Non-Maximum Suppression (NMS) is

set to 0.8 to suppress the anchors that overlaps too much. During training, we also

have modified the positive anchors selective algorithm in RCNN network to ensure the

presentation of all types of regions for each of the training image.

Table 4.2: Per region RoI layer and its corresponding Conv layer configuration to ensure the
same output of 5× 5 for each facial region.

Region ID RoI output size
Conv layer

kernel size stride

4 11× 17 3× 5 2× 3
5 11× 17 3× 5 2× 3
6 13× 13 5× 5 2× 2
9 13× 13 5× 5 2× 2
15 11× 17 3× 5 2× 3
17 13× 13 5× 5 2× 2

Fast RCNN module: The Fast RCNN module [Gir15, RHGS15] consists of three parts:

a Region-of-Interest (RoI) pooling layer for extracting the interesting part of the back-

bone features using the given RPN anchor boxes; a classification network for classifying

the extracted features and a regression network for regressing the offset from each an-

chor box to its nearby target object. For the RoI pooling layer, we have selected RoIAlign

[HGDG17] instead of the original RoI pooling layer as in [Gir15, RHGS15] since it has

shown to be more precise than the original one [HGDG17]. For the classification net-
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work, we use a stack of Linear and ReLU layers with output of k classes. Similarly, we

use the same architecture but with output of k × 4 for the regression network. In infer-

ence phase, we only keep the predicted boxes which have its classification confidence

scores equal or higher than 0.7.

4.4.2.2 AU intensity estimation module

The AU intensity estimation module is the module that utilises the predicted regions

from the Facial region localisation module (section 4.4.2.1) and the shared backbone

features to estimate the intensity for each of our facial AUs. This module consists of

three sub-modules, including a Per region RoI pooling layer for extracting region features

at different sizes from backbone features, a set of Region feature extractor sub-modules

for exploiting features from each of the facial regions and a set of AU intensity estimator

sub-modules for estimating the intensity for each of our facial AUs. Figure 4.6 shows

the overview of this module.

Per region RoI pooling layer The main role of this layer is about extracting regional

features from our shared backbone features by using the predicted region bounding

boxes of the Facial region localisation module, the core of this layer is the RoIAlign

pooling layer [HGDG17]. Since the aspect ratio of each of our region bounding boxes

are quite different, e.g., the appearance of region 6 is most often a square shape, while

it is a long rectangle for region 4 (see Figure 4.3). Therefore, if we apply the same

square RoI pooling size for all of these regions, some information of the long rectangle

shape region will be lost due to the RoI max pooling operation applying on a large

receptive field. To avoid this problem, we propose a Per region RoI pooling layer, which

is basically a mapping between each region with its corresponding RoI layer as can be

seen in Table 4.2. From this table, we can see that region with long rectangle shape

(i.e region 4) is mapped with a RoIAlign pooling layer with long rectangle output size

(11× 17), therefore reducing the lost of information.
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Figure 4.6: AU intensity estimation module. The Per region RoI pooling layer extracts regional
features from our shared backbone features and routes it to pass though the corresponding Re-
gion feature extractor model based on the type of each region. Finally, the AU intensity estimation
model extracts features and estimates the AU intensity for each of the given regional features.

Another responsibility of this layer is about resolving the uncertainty of the region

proposals. Since the bounding box proposed by the Facial region localisation module

could be including multiple or zero bounding boxes for a region (see Figure 4.4), in

training, we randomly pick one bounding box per region to extract features. In evalu-

ating, we pick the highest confidence bounding box to evaluate. If there is no bounding

box proposed, we just return an empty feature vector.

Region feature extractor Since the output of our Per region RoI pooling layer is a

map of regional features with different size, according to the type of region (see Table

4.2), we need to have a CNN network to extract features and also reduce the dimen-

sion for each of these regional features to the same size. To fulfill this requirement,

we have constructed a set of m different Region feature extractor neural networks for

each of our facial regions. Each of these networks consists of a Reduction block and an

Inception-ResNet block as can be seen in Figure 4.7. These two blocks are parts of the

Inception-ResNet architecture [SIVA16] with some modifications in number of channels
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Figure 4.7: Network architecture visualisation
of a Region feature extractor sub-module. The
h,w and s parameters are corresponding to
the Conv kernel size (h,w) and stride (s) that
are defined in Table 4.2.
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Figure 4.8: Network architecture of the AU
intensity estimator module (a) and Face side
visibility module (b).

and kernel size of its 2D Convolutional layers (Conv). Specifically, the kernel size (h,w)

and stride (s) of the Conv layers in the Reduction block are configured differently ac-

cording to the type of region to ensure that it produces the same output size as can be

seen in Table 4.2. From this table and Table 4.1, we can see that there are 6 different

facial regions (excluding background region) and 5 of them are pair regions (left and

right). In this approach, we design our network to use a single Region feature extractor

model for a pair regions. Therefore, there are totally m = 6 number of Region feature

extractor models that are constructed in our approach.

Once we have all the regional features from our Region feature extractor models, it’s

time to estimate the intensity for each of our facial AUs.

AU intensity estimator The AU intensity estimator network consists of a sequence of

Linear, BatchNorm, Dropout and ReLU layers as can be seen in Figure 4.8a. Features

from the previous Region feature extractor module are shrinked to the size of 1 × 1 by

Max Pooling operation before going through this module for estimating AU intensity.
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Figure 4.9: Face side visibility ground truth generation using the provided facial landmarks.

One can note that for one facial region, there could be containing multiple AU intensity

estimator modules (see Figure 4.6). As we have mentioned earlier, considering the cases

like AU 12 (oblique lip raising) and AU 25 (lips parting), it makes sense to have them

sharing the same mouth region, since the most active appearance of these two AUs is

the mouth region.

4.4.2.3 Face side visibility module

Handling head pose is a crucial step in many face-related domains [BMP09, BM08].

Since the patient not always looks directly to the camera when recording, it is important

to be able to handle the visible, half-visible and obscured parts of the face correctly. An

example of these cases can be seen in Figure 4.9b, the right part of the face is obscured

and therefore it is incorrect to treat them in the same way as the left part of the face,

we need to tell our network to focus more in the left side instead.

In order to solve this problem, we propose the Face side visibility module network,

which is a network for estimating the percentage of the visibility of the right face side

of the given face image. The network consists of a sequence of Linear, BatchNorm,

Dropout and ReLU layers (similar to the AU intensity estimator module) that we have
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put it on top of our CNN backbone network (see Figure 4.8b). In training, we generate

ground truth to train this network by relying to the position of the nose point in the face.

Specifically, for a given aligned face image sample i with its facial landmarks matrix Mi,

let αi be the horizontal distance between the nose point and Mi’s farthest point to the

right. Let βi be the maximum horizontal distance of Mi, the ground truth of face right

side percentage pri of sample i is defined as:

pri =
αi
βi

(4.4)

From Equation 4.4, we can see that the ground truth pri emphasises the percentage

of visibility of the right side of the face. Since the face image is aligned, the percentage

of visibility of the face left side can be calculated as pli = 1− pri . Because of having this

relationship between pri and pli, we only need to train our Face side visibility module to

estimate the value of pri , then wen can calculate the value of pli accordingly.

4.4.2.4 Movement exploitation module

In order to capture the temporal dynamics between the consecutive frame images, we

designed the Movement exploitation module, as can be seen in Figure 4.10. For each

facial AU, features from the first ReLU layer of the AU intensity estimator module (see

Figure 4.8a) are extracted and fed into a bidirectional LSTM network. LSTM is a variant

of RNN which has a capability of keeping long-term information from previous inputs.

By learning the changing of the facial expression over time through the sequence of

frames, we expect that this network will be able to capture the facial movements by

using both the past and future information (bidirection) and combining it with the in-

formation from the current frame to make a better decision. As there are two positions

for each AU (except AU 17, see Table 4.1), we take their output predictions and aggre-

gate them with the percentage of face side visibility using the same function as described

in Equation 4.6.
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Figure 4.10: Network architecture of our Movement exploitation module. For each AU, features
from each face side are fed into a bidirectional LSTM for exploiting the temporal dynamics
between the consecutive frame images. Then, these features are decoded and aggregated to
obtain a final estimate of the AU intensity using the predicted face side visibility percentage of
the given frame image.

4.4.3 Loss functions

4.4.3.1 Face side visibility module

As we have mentioned earlier, in our approach, we try to automatically predict the per-

centage of the right face side visibility for better handling the patient’s head pose cases.

The percentage of the left face side visibility will be easily calculated according to the

predicted of the right face side visibility percentage. In order to train the network right

face side visibility prediction, for each sample i in our dataset, we try to minimise the

L1 distance between the predicted yri and the ground truth pri face right side percentage

that we have defined in section 4.4.2.3. The objective loss function for this module is

denoted as:
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Lri = ‖yri − pri‖ (4.5)

By minimising Lri , we expect that our network will be able to capture the important

features of head posing in face images and then measure the visibility of the right face

side correctly.

4.4.3.2 AU intensity estimator module

To optimise the parameters for this module, firstly we need to estimate the intensity for

each of our facial AUs. For a sample i in our dataset, let rθji be the intensity estimation of

our module for AU j for the right side of the face and lθji be the intensity estimation for

the left side of the face. The final intensity estimation for AU j of sample i is aggregated

as follows:

θji = (1− pri )× lθ
j
i + pri × rθ

j
i (4.6)

Where the parameter pri denotes the face side visibility percentage. Since our net-

work is being trained using two stages strategy, we use the generated ground truth pri to

aggregate rθji and lθji in training phase. For the testing phase, we use the predicted yri of

our Face side visibility module instead. From this equation, we can see that our network

tries to weight the importance of the left compare to the right face side prediction by

using the face side visibility factor pri . This way, we are able to take into account both

side of the face, as well as eliminate the problem of the over turning head pose cases

like in Figure 4.9b, since the invisible or hard to see parts of the face will have a low

weight compared to the visible parts.

Regarding the objective loss function for this module, we utilise the average L1

distance between the prediction θji and ground truth ŷji for each of our AUs as follows:

Lausi =
1

T

T∑
j=0

‖θji − ŷ
j
i ‖ (4.7)
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Where T denotes the total number AUs in our dataset.

4.4.3.3 Facial region localisation module

For training our Facial region localisation module, we adopt the same two-stage training

strategy as [RHGS15, HGDG17]. For each training sample i, we minimise the RPN loss

LRPNi at first stage and both the classification loss Lclsi and bounding-box loss Lboxi in

parallel at the second stage:

Ldetectioni = LRPNi + Lclsi + Lboxi (4.8)

Where the definition of LRPNi , Lclsi and Lboxi loss functions are identical to [RHGS15,

HGDG17].

4.4.3.4 Final objective loss function

Finally, the objective loss function for optimising the whole of our network is defined as

the sum of the objective loss functions of all of our modules, as follows:

L =
1

N

N∑
i=0

(
Ldetectioni + Lausi + Lri

)
(4.9)

Where N denotes the total number of samples.

4.5 Experiments and Results

4.5.1 Implementation details

The whole network system is implemented using PyTorch framework [PGM+19]. Dur-

ing the training phase, Adam optimiser [KB14] was employed with the initial learning

rate set to 4e−5 for the DISFA database and 3e−4 for the UNBC database. The training

batch size set to 42 images per batch based on our preliminary testing. The training and

validating processes were performed on an Intel Workstation machine with a NVIDIA

Gerforce RTX 2080 Ti 11G GPU.
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Regarding model parameters initialisation, we have initialised our model with a

ResNet model pretrained [VBA21] on a database called Aff-Wild2 [KSHZ, KSZ21, KZ21,

KZ19b, KSZ19, KTN+19, ZKN+17, KKHZ21], which is a large in-the-wild database for

emotion recognition.

For data augmentation, we also have used Image Translation, Horizontal Flip and

ColorJitter, as we have mentioned in our previous approach, which is described in Sec-

tion 3.5.2.

In order to train our Movement exploitation module, we have applied two steps train-

ing strategy for training our network. In the first step, we train only the CNN part of

the network using independent images. For the second step, we freeze the CNN part

that has been trained in the first step and train only the Movement exploitation module

using sequence frame images. The reason for that is because the likeness nature of se-

quence images. Since the images in a sequence are mostly look-alike each other, feeding

them directly into a CNN layer will make the network easily to be overfitted. Although

previously we have mentioned about under-sampling and over-sampling techniques for

rebalancing the dataset. However, it is mainly to improve the performance of the CNN

part of the network when training with independent images. For the RNN part, we still

have to rely on the mentioned two steps training to avoid the problem of overfitting.

To evaluate our approach and compare with other articles’ results, for the DISFA

database, we report the 3-fold subject independent cross-validation results. For the

UNBC McMaster database, we report the leave-one-subject-out cross-validation results.

4.5.2 Evaluation metrics

To compare the performance of our method within author scheme and with the

SOTA approaches, we use ICC and MAE for both the two DISFA and UNBC Mc-

Master databases. We exclusively compute MSE and PCC for the UNBC McMaster

database to be inline with other pain-related works. Since our approach is includ-

ing the object detection task for detecting the facial regions, therefore we also report
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Figure 4.11: mAP vs. IoU overlap ratio on the
UNBC and DISFA databases

(a) (b)

(c) (d)

Figure 4.12: Prediction samples of our Face
region localisation module. It can be seen that
our network is able to predicted correctly both
normal cases (a, c) and special cases (b, d).

the mean Average Precison (mAP) for different IoU including mAP@.5, mAP@.75 and

mAP@[.5, .95], which are standard COCO evaluation metrics for object detection task

[LMB+14, RHGS15, HGDG17].

4.5.3 Evaluation results

In this section, we provide the experimental results for evaluating the performance of

our proposing approach within the author’s scheme. We show the effectiveness and also

the impact of each module to the final network.

4.5.3.1 Facial region localisation results

As we have mentioned earlier, our approach follows the divide-and-conquer paradigm,

therefore it is crucial to verify the correctness of the dividing part. To evaluate the

performance of this module, we report the average mAP of our approach on both the

DISFA and UNBC databases, as shows in Table 4.3. From this table, we can see that at

IoU = 0.5, our model have reached ≈ 99% of mAP on the DISFA database and ≈ 98%

of mAP on the UNBC database, which basically means that our model have predicted
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Figure 4.13: Face right side percentage prediction and its corresponding ground-truth of a sub-
ject in UNBC McMaster dataset.

almost perfectively at this IoU level. On top of that, our network is still be able to

reach mAP > 80% at IoU = 0.70 as can be seen in Figure 4.11. This is an important

information which shows that our network is capable of localising facial regions and

is reliable for the next phase of our network to work on the predicted regions of this

module.

Table 4.3: Performance of our Facial region localisation module on the two DISFA and UNBC
McMaster databases.

Database mAP@.5 mAP@.75 mAP@[.5, .95]

DISFA 98.7 84.7 67.6
UNBC 97.8 62.0 57.3

Moving on to the mAP results at IoU = 0.75 we can see that our model is still quite

confident with mAP ≈ 85% on the DISFA database and drop slightly to 62% of mAP

on the UNBC McMaster database. The reason for this dropping could be because the

overtunning head pose case happens quite a lot in the latter compared to the former

database. The overall mAP@[.5, .95] results of the DISFA and UNBC database shows

once again that our Facial region localisation module is working effectively. Figure 4.12
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shows some visualisation examples of the predictions of our network. It can be seen

that our network has correctly localised the facial regions in both normal cases when

the left and right parts of the face are roughly balanced and hard cases when the patient

cover a part of their face (b) or when they overturn their head pose (d).

4.5.3.2 Face side visibility results

Table 4.4: Performance of our Face side visibility module on the two DISFA and UNBC McMaster
databases.

Database MAE PCC

DISFA 0.04 0.62
UNBC McMaster 0.04 0.94

For evaluating the correctness of our network in estimating face right side percent-

age, we report the cross-validation MAE and PCC of both the UNBC McMaster and

DISFA databases as shows in Table 4.4. From this table we can see that our network

has reached MAE = 0.04 for both the two databases which indicates that on average

the difference between our prediction and ground truth face right side visibility per-

centage is 0.04. Since the ground truth and prediction are both percentages, we can see

it as ≈ 4% error in prediction, which is an acceptable error threshold and shows the

reliability of the module.

Regarding the PCC results, we can see that our network has reached the correlation

of 0.94 on the UNBC McMaster database and 0.62 on the DISFA database. The reason

for this difference in correlation results could be due to the nature of each of these two

databases. As the participants in the DISFA database were watching a video to elicit

spontaneous AUs, their faces tended not to move too much compared to the UNBC

McMaster database when the patients were performing different movements on their

arms to elicit the pain emotion. The difference in variations and frequencies of changing

in the face side visibility in each of these databases appears to be the reason for the

difference in the ICC correlation results. All in all, as the average difference in term of
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Table 4.5: Comparison of the rebalancing techniques on the DISFA database. The final balancing
is about applying both under-sampling and over-sampling techniques that we have proposed.

AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg

IC
C

No balancing .63 .59 .69 .36 .51 .47 .83 .00 .29 .00 .93 .67 .50

Only under-sampling .61 .69 .71 .36 .42 .57 .80 .00 .46 .00 .92 .68 .52

Final rebalancing .60 .70 .74 .72 .53 .53 .86 .27 .56 .34 .93 .64 .62

M
A

E

No balancing .19 .14 .34 .04 .30 .17 .25 .09 .21 .07 .23 .26 .19

Only under-sampling .19 .14 .38 .04 .33 .13 .25 .09 .22 .07 .27 .22 .19

Final rebalancing .20 .15 .34 .04 .29 .15 .22 .10 .18 .08 .25 .26 .19

MAE is only 4%, the changing in term of ICC correlation between these two databases

seems acceptable. Figure 4.13 shows a visualisation of our network for a subject in the

UNBC McMaster database. From this figure, we can see that our network has correctly

predicted the face right side visibility percentage, even in hard cases like overturning

left or overturning right.

4.5.3.3 AU intensity estimator results

Re-balancing dataset techniques evaluation: For evaluating the performance of our

network in AU intensity estimation as well as evaluating the use of different dataset

re-balancing techniques that we have mentioned earlier, we report the ICC and MAE

results for each of the AUs as shows in Table 4.5. From this table, we can see that

in term of MAE, the changing in performance when applying different data balancing

techniques is not significant. However, in term of ICC correlation results, we can see that

there are some different results when appling different data re-balancing techniques.

Specifically, we have achieved the correlation of 0.5 when not applying any data re-

balancing techniques. This correlation has improved to 0.52 when applying our under-

sampling data that we explained in section 4.3, which is about 2% of improvement

compared to the model trained without data re-balancing. This result suggests that

the under-sampling technique that we applied reduces the imbalancing of the dataset.

Yet, since the dataset is ways too imbalanced (see Figure 4.2), the improvement when

appling our under-sampling technique is not significant. However, when we applied
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Table 4.6: Performance comparison of our network on the DISFA database when training with
and without the Per region RoI pooling layer.

AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg

IC
C RoIAlign pooling .53 .60 .73 .66 .56 .56 .85 .30 .50 .29 .93 .66 .60

Per-reg. RoI pooling .60 .70 .74 .72 .53 .53 .86 .27 .56 .34 .93 .64 .62

M
A

E RoIAlign pooling .24 .21 .35 .04 .27 .15 .24 .11 .25 .08 .27 .27 .21

Per-reg. RoI pooling .20 .15 .34 .04 .29 .15 .22 .10 .18 .08 .25 .26 .19

both under-sampling and over-sampling techniques, we have reached the correlation

of 0.62, which is about 12% of improvement compared to the model trained without

any data re-balancing. This result confirms the effectiveness of our proposed data-

rebalancing technique in improving performance of the model on a highly imbalanced

dataset.

Per region RoI pooling layer evaluation: For evaluating the effectiveness of the Per

region RoI pooling layer, we report the performance of our network when training with

and without this layer as in Table 4.6. From this table, we can see that the layer im-

proved the performance of our network in term of both ICC and MAE evaluations,

especially for the case of average MAE result with about 10% of improvement. This

result clearly shows the effectiveness of using the right RoI pooling size for each of the

facial regions compared to the one which uses the same pooling size for all regions. The

drawback of this approach is the fact that we need to know the average shape of the

region in advance, in order to choose the RoI pooling size accordingly. It works in the

case of face analysis because we know the average shape of each of our facial regions

when they are visible. In the case of invisible or incomplete facial regions due to head

pose, we reduce the weight of these cases when optimising network parameters using

the Face side visibility module.

Movement exploitation module: To evaluate the effectiveness of the module in ex-

ploiting temporal dynamic information, we report the performance of our FFAU network

when training with and without this module, as well as at different sequence length con-
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Table 4.7: Performance of our Movement exploitation module on the DISFA database.

Model Seq. lengh Avg MAE Avg ICC(3,1)

FFAU - .19 .62
FFAU-LSTM 8 .20 .61
FFAU-LSTM 16 .20 .62
FFAU-LSTM 32 .20 .62
FFAU-LSTM 64 .20 .62

figurations as shown in Table 4.7. From this table, we can see that there are not much

difference in performance when integrating the Movement exploitation module into our

FFAU network. Specifically, there is no improvement in term of average ICC and also

there is a slightly decrease in performance in term of MAE (5%). The average ICC of our

model when trained with the sequence length of 8 frame images also seems to decrease

slightly compared to the other configurations, which is probably due to the initialisation

of the model parameters. From these results, we can conclude that our movement ex-

ploitation module could not effectively exploit the temporal dynamic information from

sequence of frame images. The main reason for that seems to be related to the design of

our FFAU neural network. As the AU regions proposing by our facial region localisation

module can be of different sizes and shapes, features extracted from them consist quite

a lot of spatial-feature variations. While having spatial-feature variations are great for

CNN network to improve its generalisability, it is hard for LSTM network to model the

changing of a certain feature(s) over time [BR19]. One way to solve this problem is

to eliminate these spatial-feature variations out of the sequence features before feeding

into the LSTM network. Another approach is to improve the LSTM module to learn to

ignore these spatial-feature variations. However, due to the limited duration of the the-

sis, this will be an open research direction to further improve the overall performance

of the network.
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Table 4.8: Comparison to the SOTA AU intensity estimation methods on the DISFA database
using 3-fold cross validation. Numbers in bold denote the best performance.

AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg

IC
C

(3
,1

)

BORMIR[ZZD+18] .20 .25 .30 .17 .39 .18 .58 .16 .23 .09 .71 .15 .28

CCNN-IT[WOR+17] .20 .12 .46 .08 .48 .44 .73 .29 .45 .21 .60 .46 .38

KJRE[ZWD+19] .27 .35 .25 .33 .51 .31 .67 .14 .17 .20 .74 .25 .35

KBSS[ZDHJ18] .23 .11 .48 .25 .50 .25 .71 .22 .25 .06 .83 .41 .36

CFLF[ZJW+19] .26 .19 .46 .35 .52 .36 .71 .18 .34 .21 .81 .51 .41

2DC[LTWE+17] .70 .55 .69 .05 .59 .57 .88 .32 .10 .08 .90 .50 .50

SCC[FLL20] .73 .44 .74 .06 .27 .51 .71 .04 .37 .04 .94 .78 .47

DPG[SCW+21] .46 .46 .75 .63 .61 .48 .84 .29 .44 .18 .95 .63 .56

FFAU (ours) .60 .70 .74 .72 .53 .53 .86 .27 .56 .34 .93 .64 .62

M
A

E

BORMIR[ZZD+18] .88 .78 1.24 .59 .77 .78 .76 .56 .72 .63 .90 .88 .79

CCNN-IT[WOR+17] .73 .72 1.03 .21 .72 .51 .72 .43 .50 .44 1.16 .79 .66

KJRE[ZWD+19] 1.02 .92 1.86 .70 .79 .87 .77 .60 .80 .72 .96 .94 .91

KBSS[ZDHJ18] .48 .49 .57 .08 .26 .22 .33 .15 .44 .22 .43 .36 .33

CFLF[ZJW+19] .33 .28 .61 .13 .35 .28 .42 .18 .29 .16 .53 .40 .33

2DC[LTWE+17] .32 .39 .53 .26 .43 .30 .25 .27 .61 .18 .37 .55 .37

SCC[FLL20] .16 .16 .27 .03 .25 .13 .32 .15 .20 .09 .30 .32 .20

DPG[SCW+21] .29 .26 .39 .03 .27 .14 .27 .10 .25 .11 .24 .34 .22

FFAU (ours) .20 .15 .34 .04 .29 .15 .22 .10 .18 .08 .25 .26 .19

4.6 Comparison with State of the art

In this section, we compare the performance of our approach with SOTA approaches on

the two domains including facial AU intensity estimation and pain intensity estimation.

4.6.1 Facial action unit intensity estimation

We compared our proposed FFAU model with other works that related to facial AU in-

tensity estimation on the DISFA dataset. CCNN-IT [WOR+17], KBSS [ZDHJ18] are deep

networks that leverage structural or dynamic information. KJRE [ZWD+19], BORMIR

[ZZD+18] and KBSS [ZDHJ18] combine prior knowledge or semantic information for

facial AU intensity estimation. 2DC [LTWE+17] is another model that combines the

deep model and probabilistic model. CFLF [ZJW+19] is an approach that tries to utilise

spatial relationships among AUs. SCC [FLL20] and DPG [SCW+21] are deep methods

144



CHAPTER 4. LEARNING TO ISOLATE REGIONS-OF-INTEREST FOR BETTER PAIN
ESTIMATION

AU 1, Subject 24 AU 2, Subject 24 

Frame number Frame number

In
te

ns
ity

Ground truth

Prediction

Ground truth

Prediction

Figure 4.14: An example of the predicted results for AU1 and AU2 of the same subject compared
to the corresponding ground-truth from the DISFA dataset.

that utilising graph network for AU intensity estimation. Table 4.8 shows the compara-

tive results for the above mentioned methods evaluated on the DISFA dataset. From this

table, we observe that the proposed FFAU network outperforms all other approaches on

average with higher ICC and lower MAE. Specifically, the average MAE of our approach

shows a decrease of 5% ∼ 79% compared to the other mentioned approaches. On the

other hand, in term of ICC correlation, the average ICC of our approach shows an in-

crease of 6% ∼ 34% compared to the other mentioned SOTA approaches. These results

suggest the advantages of our approach in dividing the facial regions and conquering

their intensity estimation. An example of the prediction of our method can be seen in

Figure 4.14. We can see that for both two AUs (AU 1 and AU 2) in the figure, our net-

work have predicted the AU intensity quite close to the ground truth of the dataset. To

the best of our knowledge, the proposed FFAU network have achieved the best perfor-

mance with the highest average ICC, as well as the lowest average MAE, for the DISFA

database.
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4.6.2 Pain intensity estimation

Next, for evaluating our approach and comparing with other works in the pain estima-

tion domain, we train our network to predict 6 facial action units intensity that related

to pain, which are including: AU4, AU6, AU7, AU9, AU10 and AU43. Afterwards, ac-

cording to Prkachin and Solomon [PS08], we aggregate these AUs to compute PSPI

pain intensity level using the Equation 1.1 (see Chapter 1.5.2). As our network only

works with facial AU intensity estimation, we can turn our network to a pain intensity

estimation network by applying Equation 1.1. Hence, we are able to compare our work

with other SOTA methods in pain estimation domain.

4.6.2.1 The MSE scale issue in pain domain literature

One problem that we found in reviewing the literature in the domain of PSPI estimation

is the misalignment of the PSPI intensity scales. The works [KRP12, FFV14, ZHSZ16,

TH18a, VBADE21, HQX+21] use 16 discrete pain intensity levels [0−16] (group A) while

the works [RPP13, ZGWJ16, RCG+17, WXL+17] use the aggregated 6 discrete pain

intensity levels [0−5] (group B). Therefore, putting these two groups into a single SOTA

leaderboard as in [HQX+21, RCG+17, VBADE21, TH18a] could cause a misleading to

the readers since the two ranges are not the same. As the MSE metric that we have been

used to evaluate these approaches is extremely sensitive to the outlier by definition,

which penalises too much the evaluation results of group A than group B, leading to a

better results in group A compared to group B. To solve this issue, we propose to use

two different SOTA leaderboards for the two PSPI intensity scales. We also report the

results of our approach on both of these two leaderboards for comparison.

Note that we exclude the works that neither follow the two mentioned PSPI scales

nor use the same training or evaluating data, i.e. Bargshady et al. [BZD+20] and Xin

et al. [XLY+21] since they are using 4-level PSPI scale, Hoang et al [HXMF20] since

they have selected data from 19 of 25 subjects in the dataset (the evaluating set when

applying leave-one-subject-out cross-validating is no longer the same as other works).
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Table 4.9: PSPI 16-level comparison against Leave-One-Subject-Out method with MSE, MAE,
PCC, and ICC on the UNBC McMaster database. The best results are shown in bold.

Model MSE MAE PCC ICC

Kaltwang et al. [KRP12] 1.39 - 0.59 0.50
Florea et al. [FFV14] 1.21 - 0.53 -
Zhou et al. [ZHSZ16] 1.54 - 0.64 -
Huang et al. [HQX+21] 0.76 0.40 0.82 -
Tavakolian et al. [TH18a] 0.69 - 0.81 -
3Stages (ours) 0.60 0.35 0.82 0.80
FFAU (ours) 0.56 0.38 0.82 0.81

4.6.2.2 State of the art 16-level PSPI estimation

We compare our proposed FFAU network to other deep networks that related to the

domain of estimating PSPI intensity with 16 levels [0− 16], in which including Kaltwang

et al [KRP12] with their shape and appearance features fusion network, Florea et al.

[FFV14] with HoT and SVM classifier, Zhou et al. [ZHSZ16] with Recurrent Convolution

Neural Network, Hoang et al. [HQX+21] with a hybrid network, Tavakolian et al.

[TH18a] with Deep Binary Representation network, and our 3Stages training model

that we have mentioned in the previous chapter (see Chapter 3). Table 4.9 shows

the evaluation results of leave-one-subject-out cross-validation method for the above

mentioned approaches evaluated on the UNBC McMaster database. At the first sign, it

can be seen that our two approaches (FFAU and 3Stages) outperformed all the other

SOTA approaches in all of the four evaluation metrics (MSE, MAE, PCC, ICC). Since we

have already done the comparison between our 3Stages model and the previous SOTA

approaches (see Section 3.5.6), we will compare the evaluation results between our

3Stages and our FFAU approaches in the next paragraph.

From table 4.9, we that our FFAU approach is 7% lower in term of MSE but 9%

higher in term of MAE compared to our 3Stages model. Since the MSE score is much

more sensitive to the outliers compared to MAE by definition, these results show that

this FFAU approach predicts the PSPI with high intensity levels better than the other

method. In term of ICC and PCC correlation, the predictions of our approach are slightly
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Figure 4.15: An example of the PSPI intensity prediction compared to the corresponding ground-
truth from the UNBC McMaster dataset.

Table 4.10: PSPI 6-level comparison against Leave-One-Subject-Out method with MSE, MAE,
PCC, and ICC on the UNBC McMaster database. The best results are shown in bold.

Model MSE MAE PCC ICC

Rudovic et al. [RPP13] - 0.80 - 0.70
Zhao et al. [ZGWJ16] - 0.81 0.60 0.56
Wang et al. [WXL+17] 0.80 0.46 0.65 -
Rodriguez et al. [RCG+17] 0.74 0.50 0.78 0.45
FFAU (ours) 0.43 0.35 0.78 0.78

better than those of our 3Stages model, but not significant. All in all, we can argue that

our FFAU approach is slightly better than our 3Stages approach in term of 16 levels

PSPI intensity estimation. Figure 4.15 shows an example of our network prediction

versus ground truth of a subject in the UNBC McMaster database. It can be seen that

our network has predicted quite correctly for both low and high intensity levels, which

demonstrates the capability in pain intensity estimation of our FFAU network.
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4.6.2.3 State of the art 6-level PSPI estimation

We compare the performance of our approach with other SOTA approaches that use

PSPI 6 levels, which are including Rudovic et al. [RPP13] with their Conditional Ordi-

nal Random Field (CORF) model, Zhao et al. [ZGWJ16] with OSVR regression model,

Wang et al. [WXL+17] with a regularized deep neural network and Rodriguez et al.

[RCG+17] with their VGG + LSTM hybrid network. In order to be inline with these

works, we aggregate the results of our PSPI prediction using the same logic as in

[RPP13, ZGWJ16, RCG+17, WXL+17]. Specifically, pain intensity levels 0, 1, 2 and

3 are kept the same. Pain levels 4, 5 are merged and pain levels 6+ become 5th level.

Table 4.10 shows the comparison results of our approach compared to the mentioned

SOTA approaches. From this table, we can see that there are a large difference between

our 16-level PSPI results (Table 4.9) and our 6-level PSPI results, despite being derived

from the same set of prediction. Specifically, the 6-level PSPI is 23% lower in term of

MSE and 8% lower in term of MAE compare to our 16-level PSPI results. These results

again confirm the problem we have raised earlier, which is the fact that we can’t com-

pare the evaluation results of the two different prediction scales together, and there is a

need of using different SOTA leaderboard for each scale.

Regarding the comparison within SOTA approaches for 6-levels PSPI evaluation,

from Table 4.10 we can see that our network has outperformed all other approaches in

almost all the evaluation metrics. Specifically, in term of MSE, our method has achieved

42% of improvement compared to previous SOTA approach [RCG+17] and in term of

MAE, our method has reached 24% of improvement compared to previous SOTA ap-

proach [WXL+17]. In term of correlation, our approach has the same PCC with SOTA

approach [RCG+17] but in term of ICC, our approach is 8% higher than previous SOTA

approach [RPP13]. To the best of our knowledge, the proposed FFAU network have

achieved the best performance with the highest average ICC and average PCC, as well

as lowest MSE and MAE, for the UNBC McMaster database using PSPI 6-level estimation

protocol.
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AU 43
eyes closed

AU 10
Upper Lip Raiser : 0.32

AU 9 
Nose Wrinkler: 1.34

AU 7 
Lid Tightener: -0.27

AU 6 
Cheek Raiser: 0.83

AU 4 
Brow Lowerer: 3.8

PSPI  =  AU4 + max(AU6, AU7) + max(AU9, AU10) + AU34

  =  3.8 + max(0.83, -0.27) + max(1.34, 0.32) + 1 = 6.97

Figure 4.16: The visualisation of the PSPI intensity prediction by our network. We can see that
our network is able to explain why it gives a pain level for an image by saying where it got the
pain-related AU from and what score it gave to the AU.

4.7 Towards explainable PSPI pain assessment

One of the main drawbacks of deep learning methods is the lack of ability to explain

why the network makes a particular decision, which is due to the black-box nature of

deep learning algorithms. The end-to-end learning paradigm hides the entire decision

process behind the complicated inner-workings of deep learning models, making its

decisions less understandable to humans and prohibits their use in safety-critical ap-

plications [CL18]. In the domain of health care and medical fields, automatic system

to complement medical professionals such as pain measurement system should have a

certain amount of explainability and allow the human expert to retrace the decisions

and use their judgment. However, there is still a huge gap between explainability and

accuracy in the domain of PSPI pain intensity estimation, as SOTA approaches in this
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domain only try to improve the PSPI score evaluation results, without any effort of

telling why their model makes such a decision.

In this work, we take a step towards better explainability of deep neural network

in PSPI pain intensity estimation. As our approach tries to isolate each pain-related AU

before estimate its intensities, we can tell explicitly where are the pain-related AUs in

the face images and which score we have estimated for each of these AUs. Moreover,

as we have integrated the Face side visibility module to our FFAU network, we can also

tell which face side that we have focused the most from the face image. Figure 4.16

shows an example of the prediction of our network. For each face image, our network is

able to effectively localise the region of each facial AU and estimate its intensity. From

these prediction results, professionals can see if the AU regions are located correctly or

not. They can also be able to evaluate the intensity for each of these AU to ensure the

correctness of our pain-related AU intensity prediction. Compared to SOTA approaches

that only return PSPI score, our network provides much richer information to interpret,

making it easier for practitioner or medical doctor to see and evaluate the correctness

of our prediction.

While having many improvements in explainability of the model behaviour com-

pared to SOTA approaches in PSPI pain intensity estimation, there are still some limi-

tations that need to be addressed in future works. i.e., the ability to explain why the

model assigns an AU to a particular region in the face image or how does it predict an

intensity score for a region of the AU. These are some important questions which help

to better understanding model’s behaviour and prove its reliability. All in all, despite

having these limitations, our approach still provides a great explainability in PSPI pain

intensity estimation compared to SOTA approaches.

4.8 Conclusion

The breakthrough success of deep learning is mainly due to the availability of large-

scale labelled datasets. However, large-scale labelled datasets are not always available
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in some domains. Facial action unit and pain intensity estimation are among those do-

mains that suffer from lacking of labelled training data. For these face-related domains,

it requires a costly and time-consuming labeling effort by trained human annotators to

be able to construct a dataset. Moreover, the work of collecting images and videos of

faces is also difficult due to many reasons such as ethical, privacy, cultural variations,

etc. Therefore, it is crucial to design learning techniques that can learn to extract cor-

rect feature representations from face image with a limited amount of labelled data and

that are able to generalise for predicting on the newly unseen data.

The main reason why deep learning requires to have massive amout of training data

is to learn to extract important features from images through the gradient descent algo-

rithm. Then, one way to help the network to learn better feature representations from

small dataset is to integrate the information regarding where to find these important

features from the image. In this work, we have introduced a new approach called learn-

ing to isolate regions-of-interest for better extracting feature representations. Based on

the concept of divide and conquer paradigm, our approach firstly tries to localise and

isolate the regions-of-interest (divide) by utilising object detection network, then we es-

timate the AU intensity for each of the isolated regions (conquer), accordingly. This way,

we not only tell the network where to find the regions that contains important infor-

mation, but also isolate these regions for better feature extraction. Besides extracting

features, we also introduced a module to evaluate the face side visibility, allowing our

network to take into account the correct face side in case of head posing. Experiments

on the two widely known databases UNBC McMaster and DISFA show that our approach

outperforms other SOTA apporaches by a large margin on both the two databases. Fur-

thermore, in term of explainability, our proposed approach provides much better view

of the prediction results, especially in term of PSPI pain intensity estimation, compared

to SOTA approaches. This result demonstrates the effectiveness of our approach in

learning to extract correct feature representations from face image. On top of that, as

our approach is about measuring facial AU intensity, which is the most basic building

block to describe facial expressions. Hence, our approach can be adopted to measure
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any higher order facial expression representation.
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In this work, we gave an overview on measuring facial expressions by utilising facial

action units, with an application on automatic PSPI pain intensity estimation. As any

human facial expression can be decomposed into a set of facial action units and their

intensities, automatic measuring facial action unit intensity seems to be the key step

towards better understanding human facial expression and assessment. In this chapter,

we summarise all the findings and contributions that we have proposed. In addition,

we discuss the obstacles to automatic facial expressions assessment and present future

research challenges.

5.1 Contributions of the thesis

Facial action units are the most basic building blocks for facial expression assessment

since they describe human facial muscle movements precisely. In this thesis, we ad-

dressed the problem of facial action unit intensity estimation, by proposing learning

methods to focus and isolate regions-of-interest for better extracting feature represen-

tations. Additionally, we adopted the proposing approaches for the application of PSPI

pain intensity estimation. The main contribution of this thesis is two fold, i.e., (1)

learning to focus on regions-of-interest, and (2) learning to isolate regions-of-interest.

5.1.1 Learning to focus on regions-of-interest

Deep learning methods have achieved great success in learning visual representations

thanks to the availability of large-scale labelled datasets. However, large-scale labelled

dataset is not always available in some domains, especially in the domains of facial

AUs and PSPI intensity estimation due to costly and time-consuming labeling effort by

trained annotator. Hence, there is a need of developing a learning approach which is

capable of learning to exploit correct feature representations from a limited amount of

data. In order to tackle this problem, we have proposed an approach of learning to fo-

cus on regions-of-interest for better extracting feature representations. As deep learning
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in general requires massive amount of training data to learn to extract correct features

from images, therefore if we can tell the neural network where are the important places

to focus in the image, it will ease the training process and improve the generalisability

of the network. Based on that idea, our approach first tries to combine multi-database

together and then trains a CNN network as heatmap regression for estimating facial AU

intensity. This heatmap regression plays the role of guiding our network to focus on

our predefined pain-related AU regions (regions-of-interest), which helps the network

to learn to extract feature representations from the correct regions in the face image.

Next, we utilise the knowledge that has been learned on the multi-database combination

for feature extraction and PSPI pain intensity estimation, showing some great improve-

ments compared to the SOTA approaches on the same domain. From the experimental

results, we emphasised the importance of learning to focus on regions-of-interest for

better extracting feature representations and reducing the effect of overfitting when

training on a limited amount of data.

5.1.2 Learning to isolate regions-of-interest

Lacking of large-scale labelled training data seems to be the major issue in develop-

ment of machine learning approaches in many domains, including facial AUs and PSPI

pain intensity estimation. To effectively learn to extract correct feature representations

from limited amount of data, we have proposed an approach of learning to focus on

regions-of-interest, which have significantly improved the performance of the network

compared to SOTA approaches. However, this approach still have some limitations as it

does not take into account the head pose issue and the predefined heatmap emphasises

too much the central location of AU region. Hence, we have extended the previous

work and proposed a new approach called learning to isolate regions-of-interest. With

this approach, we are not just focusing but isolating the regions-of-interest for better

extracting feature representations. Besides extracting features, our network also mea-

sures the percentage of face side visibility and incorporates this factor into the equation
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of AU intensity estimation, thus solving the head pose problem. Experiments on the two

widely known DISFA and UNBC McMaster databases show that our proposing approach

outperforms SOTA approaches by a large margin on both the two databases, which once

again confirms the effectiveness of our learning to isolate regions-of-interest approach

when training on a limited amount of data. Besides demonstrating the improvements

in performance, we also have shown that our approach also provides a great level of

explainability, especially in term of PSPI intensity estimation, compared to the SOTA ap-

proaches on the same domain. As more and more deep learning techniques are involved

in human life, the ability to explain the outcome of the model’s prediction is attracting

more and more attention as a way to better understand the behavior of the model and

prove its reliability.

5.2 Opening challenges

Despite having many promising advancements in automatic facial AUs and PSPI pain

intensity estimation, there are still a number of challenges to be addressed for devel-

oping reliable and applicable methods for measuring human facial expression. These

challenges can be categorised to three groups, including dataset (section 5.2.1), method

(section 5.2.2) and computational efficiency (section 5.2.3). In the following, we list

the existing challenges and discuss the potential solutions as the future work.

5.2.1 Facial action unit intensity dataset

Well-labelled large-scale dataset is crucial for developing automatic facial AU intensity

estimation systems and proving their usefulness. For the field of deep learning and

machine learning, it is even more critical to have more high-quality data due to the

data-hungry nature of these learning algorithms. This is one of the core challenges in

the domains of facial AUs and PSPI pain intensity estimation, since the amount of well-

labelled, publicly available data in these domains are still limited. The main reason is

157



CHAPTER 5. DISCUSSION AND CONCLUSION

because it requires a costly and time-consuming labeling effort by trained human anno-

tators. For instance, it may take more than an hour for an expert annotator to code the

intensity of AUs in one second of a face video [LTWE+17]. Furthermore, AUs intensity

coding requires profound knowledge of the FACS and additional training by FACS ex-

perts to be able to correctly label data. Approximately, it requires about 100 hours of

time involved in this FACS training [Prk09] for a single FACS coder. In constructing a

FACS based dataset, it requires to have at least two (or more) FACS coders to ensure the

correctness and consistency of the dataset. Therefore, it is challenging to obtain a large-

scale high-quality FACS annotated dataset. Besides labeling data, the work of collecting

images and videos of faces is also challenging due to many reasons such as ethical, pri-

vacy, cultural variations, etc. These face images and videos, when collected, must also

include people from different countries and cultures, of different ages and genders to

ensure the coverage of a wide range of different facial traits in the dataset. Lacking of

any of these facial traits when training a learning model could lead to the issue of un-

able to predict well in the real-life cases, e.g. models trained only on young faces do not

generalise well to older faces due to the textural differences caused by ageing and vari-

ations in facial muscle elasticity and facial dynamics [Has17]. Hence, these facial traits

play a vital role in providing a large amount of facial expression variations to improve

the generalisability of learning methods. In addition to the covering of human facial

traits, the environmental variations are also one another important factor which could

impact the performance of automatic facial AU measurement [WRGEP20]. As existing

facial AU intensity datasets were created under controlled conditions, they do not suf-

ficiently cover environmental variations such as lighting conditions, backgrounds, pose

changes, and occlusion. Hence, it is important to consider such environmental varia-

tions during the data collection process to increase the robustness of automatic pain

assessment methods. All in all, it is a great challenge in constructing a well-labelled

large-scale dataset which covers a wide range of ethnicities, ages, genders, and envi-

ronmental variations. In the end, the release of such dataset would be of great help in

improving the robustness of automatic facial expression assessment methods.
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5.2.2 Multi-modal expressions assessment

Since any human facial expression can be decomposed into a set of facial action units

and their intensities, automatic facial AUs intensity estimation appears to be a great

way to measure facial expressions. The intensity estimation of these facial AUs can

also be used to measure any higher order facial expression representations, e.g. Pain

expression. Therefore, constructing deep learning model for estimating facial AUs auto-

matically is a key step towards better understanding human expression and assessment.

However, facial AU is only one source of information and if we rely entirely on this

source alone, there will certainly be a time when something goes wrong, e.g. the per-

son cover entirely their face due to experiencing a high level of emotion. Therefore,

a learning approach that consists of multiple models for exploiting different sources of

emotion seems to be an optimal choice for a better and stable automatic human ex-

pression measurement. Regarding the sources of emotion that we can exploit, as we

have mentioned in Chapter 1, according to Rosenthal non-verbal communication model

[Ros05], the subject experiences an internal state and expresses through his external

features. These external features could be facial expressions, body gestures, non-verbal

vocalisations, speech or different physiological signals. While the measurement proce-

dure of the physiological signals is complicated and intrusive, body gestures and vocal-

isations seems to be a great source of emotion, as an alternative to facial expressions.

Multi-modal including the fusion estimations of facial expression, body gesture and vo-

calisation models is a great way to ensure the accuracy and stability of the network.

Previous works [KCC10, ZLCJ18, KRO20] have shown that using multi different modal-

ities in combination greatly increases performance over unimodal emotion recognition

systems. Since humans use more than one modality to recognise emotions and process

signals in a complementary manner, it is expected that an automatic system demon-

strate similar behavior. Overall, the development of such a multi-modal system capable

of complementing each other in the case that some modality feature values are missing

or unreliable is a great reward but also is a great challenge.

159



CHAPTER 5. DISCUSSION AND CONCLUSION

5.2.3 Real-time expressions assessment

In the fields of healthcare and medicine, the ability to continuously monitor a patient

in real-time is very important to ensure the well-being of the patient, especially for

in-patients with cognitive disorders or serious illnesses. Hence, when constructing a

deep neural network for human expressions assessment, besides improving the gener-

alisability of the model for more accurate predictions, the ability to keep up in real-time

configuration is another important aspect that need to be taken into account. The gen-

eral trend in deep learning is towards deeper, wider, and more complicated networks

in order to achieve higher accuracy [HZC+17]. However, this approach makes deep

networks heavier and slower, which is not suitable for the requirements of real-time ap-

plications. On the other hand, shallow network is much faster than deep network and

seems to be perfectively fit for a real-time application. However, empirical work shows

that it is difficult to train shallow nets to be as accurate as deep nets [BC14]. Another

promising direction is relying on the Knowledge Distillation (KD) technique [HVD+15]

(see Appendix A for a learning approach that utilising this technique), whose idea is

to train a shallow student network to mimic the ability of a deep teacher model. This

way, we can still have a light-weight shallow network that is fast enough for running in

real-time configuration, and at the same time, as accurate as deep network thanks to

the KD technique.

One another problem with facial expressions assessment systems is the fact that they

do not work directly with original camera images but only with face cropped images.

Traditional approach for inference these expressions assessment systems consists of sev-

eral steps, including detection of facial landmarks, alignment and cropping of the face,

and finally facial expressions assessment (e.g., [VBADE21, WXL+17]). Each of these

steps consumes quite a bit of time and this is one of the main reasons that slow down

the whole application. As features of the image have been extracted twice, once inside

the facial landmark detection network and once inside the facial expressions assessment

network, future work can try to reuse the features from the first step for the second step,
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e.g., by using RoI pooling layer [HGDG17] to extract features from face regions. This

way, we can reduce half of the time to extract features from images, improving the

speed of the system for better real-time predictions.

5.3 Conclusion

In this thesis, we presented different approaches for efficient learning from limited

amount of data, for automatic facial expression assessment with application to the pain

emotion. We investigated the importance of integrating information about the location

of regions-of-interest in the face image into the training process for better extracting

feature representations. In our first approach, we have tried to train our network to

focus on regions-of-interest by utilising AU heatmaps regression on a combination of

multi-database, reaching a great level of performance compared to SOTA approaches

on the same domain. Then, we have expanded the idea from focusing to isolating the

regions-of-interest by proposing an approach that relies on object detection network,

i.e., the FFAU neural network, which further improves the performance of deep neural

network on both facial AUs and PSPI pain intensity estimation. Besides the improve-

ments in performance, our FFAU network has also reached a great level of explainability

in term of PSPI pain intensity estimation. While other SOTA methods only return the

PSPI score without any explanation, our FFAU network can indicate the intensity and

also the regions for each of the AUs that construct the PSPI score, which improve the

reliability of our network’s predictions. Despite having these improvements, one of the

drawbacks of our FFAU network is that it has not be able to exploit the temporal dy-

namics between consecutive frame images of a video. This drawback, however, is also

an opportunity to further improve the performance of our network in the future work.

Considering the challenges that we encountered in this research and those mentioned in

Section 5.2, in our future work, we would like to develop a multi-modal computational

model which is capable of exploiting both spatial and temporal information from multi

different modalities such as facial expressions, vocalisations, and body gestures. With
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the Knowledge Distillation technique, we expect such model to be both generalisation

to newly unseen samples and fast enough for real-time running configuration.
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Appendix A

Multitask Multi-database Emotion

Recognition

Knowledge Distillation (KD) is a technique that transfers knowledge from a deep and

complex model to a small student model. Hence, the main use of the technique is about

compressing a deep learning teacher model to have a smaller and faster student model,

while maintaining approximately the same level of performance as the teacher model.

However, this technique can also be used to improve the performance of the student

model over the teacher model in some specific cases. In this appendix, we summarise

our findings in paper II, which utilise the KD technique to improve the performance of

multi-task deep learning model in the context of Valence and Arousal estimation.

Paper II: M. T. Vu, M. Beurton-Aimar and S. Marchand, "Multitask Multi-database

Emotion Recognition," 2021 IEEE/CVF International Conference on Computer Vision

Workshops (ICCVW), 2021, pp. 3630-3637, doi: 10.1109/ICCVW54120.2021.00406.

A.1 Introduction

Emotion recognition and analysis are the crucial parts of many applications and

human-computer interactive systems, especially in health care and medical fields

[TBLH17, AEAKAS20] since it is directly related to the health state of a patient. As

results, more and more works have been conducted to try to analyse human emo-

tions and behaviours [SCGH05, SKG20, WLMW+19]. In the same sense, the 2nd

Affective Behavior Analysis in-the-wild (ABAW 2021) competition by Kollias et al.
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[KSHZ, KSZ21, KZ21, KZ19b, KSZ19, KTN+19, ZKN+17, KKHZ21] provides a large-

scale dataset Aff-Wild2 [KZ19a] for analysing human emotion in-the-wild settings. This

dataset includes videos with annotations for three tasks including: valence-arousal es-

timation, action unit (AU) detection, and seven basic facial expression classification.

Valence represents how positive or negative an emotional state is, whereas arousal de-

scribes how passive or active it is. The seven basic facial expressions include neutral,

anger, disgust, fear, happiness, sadness, and surprise. AUs are the basic actions of indi-

viduals or groups of muscles for portraying emotions.

In this paper, we focus on two tasks: seven basic facial expressions classification and

valence-arousal estimation. Inspired by the multitask training with incomplete label

method from Deng et al. [DCS20] we propose a method to further exploit the inter-

task correlations between these two tasks. Similar to Deng et al. [DCS20] we apply

the distillation knowledge technique to train two multitask models: a teacher model

and a student model. The student model will be trained using both ground truth labels

and soft labels derived from the pretrained teacher model. However, instead of treating

each task independently when training teacher model as in [DCS20], we add one more

task to the training process, which is the combination of the two tasks above to train

the network using data coming from AffectNet database [MHM19], in which contains

labels for both of the two tasks. Since the data for this task has been annotated for

both seven basic expressions and valence-arousal, this task will play the role of guid-

ing the training, i.e. re-balancing the gradient backpropagation of the first two tasks

and exploiting the inter-task correlations between the training tasks. Apart from that,

taking into account that there are a huge number of videos that are annotated for both

seven basic facial expressions and valence-arousal labels in the Affwild2 database, we

integrate this information into the student model’s training process for better exploiting

inter-task correlations. With these improvements, our model has reached the perfor-

mance on par with the state of the art on the test set of the official dataset Affwild2 of

the competition.
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A.2 Related Works

The challenges of human affect analysis have attracted lots of research efforts, especially

in in-the-wild settings. In this section, we will briefly introduce some works related to

this problem. Pan et al. [PYC+19] propose a framework to aggregate spatial and tem-

poral convolutional features across the entire extent of a video. Deng et al. [DCS20]

apply distillation knowledge technique to train their multitask model using data with

incomplete labels. Kuhnke et al. [KRO20] propose a two stream aural-visual network

for multi-task training. Gera et al. [GB20] propose a spatio-channel attention network,

which is able to extract local and global attentive features for classifying facial expres-

sions. Kollias et al. [KSZ21] proposed FaceBehaviorNet for large-scale face analysis,

by jointly learning multiple facial affective behaviour tasks and a distribution match-

ing approach. Wei Zhang et al. [ZGC+21] propose a heuristic that the three emotion

representations including: categorical emotions, action units and valence-arousal are

intrinsically associated with each other. They try to exploit these hierarchical relation-

ships by developing a prior aided streaming network for multitask prediction. Wang et

al. [WW21] extend the work of Kuhnke et al. [KRO20] by improving the preprocessing

method of rendering mask and applying mean teacher model for utilising the unlabelled

data. Su Zhang et al. [ZDWG21] propose an audio-visual spatial-temporal deep neural

network with attention mechanism for valence-arousal estimation.

A.3 Methodology

In this section, we introduce our multitask multi-databases training method. Frame

images are extracted from video and fed into a Convolution Neural Network (CNN)

to train for analysing human’s emotion in-the-wild. Then, features extracted from this

network will go through a Recurrent Neural Network (RNN) to capture temporal in-

formation and finally, perform both the seven basic facial expressions classification and

valence-arousal estimation. Because in our dataset, we do not always have all labels for
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all of our tasks, we have applied the multitask training with missing labels method that

is described in [DCS20] with some enhancements, which is described in the sections

below.

A.3.1 Data Imbalancing

Similar to [DCS20], we also have used some external datasets to address the data im-

balance problem in the Affwild2 dataset, e.g. most of the frames inside the Affwild2

dataset have their valence value in the range of [0 − 0.4]. The external datasets are

including Expression in-the-Wild (ExpW) dataset [ZLLT18] for expression classification

and AFEW-VA dataset [KTTP17] for valence-arousal estimation. After merging these

datasets, we have applied the same dataset balancing protocol as [DCS20] to improve

the balance of the dataset.

Different from [DCS20], as we have mentioned earlier, in this preliminary work we

perform only two tasks: seven basic facial expressions prediction and valence-arousal

estimation. Apart from that, we also want to include the AffectNet database [MHM19]

into the training, since this database is annotated for both seven basic expressions and

valence-arousal are available. After this step, for the training process, our dataset is

including three parts:

Mixed EXPR The mixing set of the AffWild 2 (expressions part) and ExpW datasets

for seven basic expressions. This dataset has no information about valence and arousal.

Mixed VA The mixing set of the AffWild 2 (valence-arousal part) and AFEW-VA

datasets for valence and arousal. This dataset has no information about the seven basic

expressions.

Affect EXPR_VA The AffectNet dataset, for both seven basic expressions and valence-

arousal.
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EXPR

VA

Teacher model

Student model

EXPR

EXPR

EXPR EXPR_VA

Student Loss Teacher Loss Ground Truth Model output

VA

VA

VA
EXPR_VA

Figure A.1: The overview of our multitask training with missing labels.

Corresponding to these three dataset’s parts are the three training tasks

T ∈ {1, 2, 3}, which are including: expression classification (EXPR), valence-arousal

estimation (VA) and the mixing of these two tasks (EXPR_VA). One can note that even

though we have three training tasks, our model has only two outputs, which are EXPR

and VA, since the last training task reuses these two outputs for computing loss.

A.3.2 Multitask training with missing labels

Here we describe the formulars that are used to train our teacher and student mod-

els. Let (X, Y ) be the training dataset, where X is a set of input vectors and Y is a

set of ground truth training labels. Since our dataset contains three parts including:

Mixed EXPR, Mixed VA and Affect EXPR_VA, therefore (X, Y ) = {(X(i), Y (i))}3i=1. For

convenience of notation, we assume each subset i includes an equal number N of in-

stances within a batch, i.e (X(i), Y (j)) = {(x(i,n), y(i,n))}Nn=1 where n indexes the instance.

Because the data from the last set Affect EXPR_VA is including both EXPR and VA anno-

tations, we denote 3expr and 3va as the EXPR annotation and the VA annotation of this

set, respectively. For example, instance x(3,1) belongs to Affect EXPR_VA dataset and has

two annotations: y(3expr,1) and y(3va,1)

The inputs for all instances have the same dimensionality, regardless of task. How-
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ResNet 50

FC 2048, 128 FC 2048, 128

FC 128, 7 FC 128, 40

EXPR VA

Frame Image

ResNet 50

FC 2048, 128 FC 2048, 128

FC 128, 7 FC 128, 40

EXPR VA

Frame Image
Frame Image

Frame Image

GRU 128, 64 GRU 128, 64

a) Multitask CNN b) Multitask CNN RNN

Figure A.2: The multitask CNN (a) and CNN-RNN (b) architectures, The two architectures share
the same ResNet spatial feature extractor shown in the dashed box.

ever, the ground truth labels for different tasks have different dimensionality. The la-

bel for the first task (EXPR) is y(1) ∈ {0, 1}7. The label for the second task (VA) is

y(2) ∈ [−1, 1]2. The label for the last task (EXPR_VA) is the mixed of the two tasks

above.

Similar to [DCS20], we also apply the two steps training for capturing inter-task

correlations. We train a single teacher model using only the ground truth labels in the

first step. In the second step, we replace the missing labels with soft labels derived from

the outputs of the teacher model. We then use the ground truth and soft labels to train

a single student model. Different from [DCS20], we do not train multi student models

for model ensemble because this approach is too costly in term of computation and the

gain in performance is not significant. The overview of our network can be seen in Fig

A.1 and the architecture of our model is in Fig A.2.

To be in the same line with [DCS20] in the sense of notation, we also denote the

output of our multitask network by f
(i)
θ (·) where θ contains the model parameters of

either teacher model or student model, and i ∈ {1, 2} indicates the current task. For
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example, f (1)
θ (x(3)) indicates the output of the network for task 1 (EXPR) for an instance

in the Affect EXPR_VA set. To avoid clutter, we will often refer to the output of the teacher

network on task i by t(i) irrespective of what the input label is, i.e. t(i) = f
(i)
θ (x(j)) for

some j ∈ {1, 2} and similarly to the output of the student network on task i by s(i).

Regarding the objective loss functions, similar to [DCS20], we also treat the problem

of expression classification as a multiclass classification problem, and the problem of

valence-arousal estimation as a combination of multiclass classification and regression

problem. We will use the same Soft-max Function SF , the Cross Entropy function CE

and the Concordance Correlation Coefficient function CCC, which have already been

defined in [DCS20].

A.3.2.1 Supervision loss functions

Here we denote the loss functions that are used for optimizing our models parameters

with the supervision of the ground truth labels for each of our training tasks.

EXPR task The supervision loss for the samples from the Mixed EXPR set is denoted

as:

L (1)(y(1), t(1)) = CE
(
y(1), SF (t(1), 1)

)
(A.1)

VA task The supervision loss for the samples from the Mixed VA set is denoted as:

L (2)(y(2), t(2)) =
2∑
i=1

{
CE

(
onehot(y

(2)
i ), SF (t

(2)
i , 1)

)
+

1

B

(
1− CCC(y(2)i , t

(2)
i )
)}

(A.2)
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EXPR_VA task For the samples from Affect EXPR_VA set, since the samples of this set

are annotated for both VA and EXPR, the supervision loss for this task is denoted as:

L (3)(y(3), t(3)) = CE
(
y(3expr), SF (f

(1)
θt

(x(3)), 1)
)

+
2∑
i=1

{
CE

(
onehot(y

(3va)
i ), SF (f

(2)
θti

(x(3)), 1)
)

+
1

B

(
1− CCC(y(3va)i , f

(2)
θti

(x(3)))
)}

(A.3)

From this equation, we can see that for each sample of the dataset, we calculate the

loss for both EXPR and VA tasks. Therefore, the gradient backpropagation derived from

this task’s loss is the most accurate one compared to the other two tasks. Because we can

see that the loss of the EXPR task can be used to adjust the model’s parameters for better

EXPR prediction, but it has absolutely no idea of whether the VA estimation is correct

or not, and the same goes for the loss of the VA task. Therefore, the EXPR_VA task plays

the role of guiding the training process, i.e. re-balance the gradient backpropagation

for the whole training process. In the same time, since this task compute the loss for

both EXPR and VA tasks, it can exploit the inter-task correlations, which typically can

help the network for better prediction.

A.3.2.2 Distillation loss functions

Here we denote the loss functions that are used to optimise our student model pa-

rameters with the supervision of both the ground truth labels (hard targets) and the

pretrained teacher model’s outputs (soft targets) for each of our training tasks. Similar

to [DCS20], we use the KL divergence to measure the difference between two proba-

bility distributions (output of teacher model and student model). The KL divergence

of two vectors p and q is denoted as: KL(p, q) =
∑

i pilog
(
pi
qi

)
.

EXPR task Distillation loss for the samples from the Mixed EXPR set:

H (1)(t(1), s(1)) = KL
(
SF (t(1), T ), SF (s(1), T )

)
(A.4)
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VA task Distillation loss for the samples from the Mixed VA set:

H (2)(t(2), s(2)) =
2∑
i=1

KL
(
SF (t

(2)
i , T ), SF (s

(2)
i , T )

)
(A.5)

EXPR_VA task Distillation loss for the samples from the Affect EXPR_VA set is the

combination of the EXPR and VA distillation losses, which is denoted as:

H (3)(t(3), s(3)) = KL

(
SF

(
f
(1)
θt

(x(3)), T
)
, SF

(
f
(1)
θs

(x(3)), T
))

+
2∑
i=1

KL

(
SF

(
f
(2)
θti

(x(3)), T
)
, SF

(
f
(2)
θsi

(x(3)), T
))

(A.6)

A.3.2.3 Batch-wise loss functions

Given a batch of data (X, Y ) = {{(x(i,n), y(i,n))}Nn=1}3i=1, the parameters of teacher net-

work and student networks are denoted as θt and θs, respectively. Since our last dataset

Affect EXPR_VA contains annotation for both EXPR and VA, therefore, when i = 3 then

y(3,n) contains both y(3expr,n) and y(3va,n).

The training teacher loss is denoted as:

Ft(X, Y, θt) =
3∑
i=1

N∑
n=1

L (i)
(
y(i,n), f

(i)
θt
(x(i,n))

)
(A.7)

The student loss of a sample x with ground truth y from dataset i with i ∈ {1, 2, 3}

is denoted as:

Gi(x, y, θt, θs) = λ × L (i)
(
y, f

(i)
θs
(x)
)

+ (1 − λ) × H (i)
(
f
(i)
θt
(x), f

(i)
θs
(x)
)

(A.8)

Similar to [DCS20], we also use the parameter λ to weight the supervision loss

versus the distillation loss. The λ parameter is set to 0.6 to weight the ground truth

slightly more than the soft labels.

The student loss is denoted as:

Ft(X, Y, θt, θs) =
N∑
n=1

G3

(
x(3,n), y(3,n), θt, θs

)
+

2∑
i=1

N∑
n=1

{
Gi
(
x(i,n), y(i,n), θt, θs

)
+
∑
j 6=i

H (j)
(
f
(j)
θt

(x(j,n)), f
(j)
θs

(x(j,n))
)}

(A.9)
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As we have mentioned earlier, there are 164 videos that are annotated for both EXPR

and VA in the Affwild2 database. Instead of treating all of these videos as if they are

annotated with only one label like [DCS20], we check if the given video frame has been

annotated with one or both EXPR and VA labels. Then, we compute the objective loss of

the secondary task using the distillation loss alone or supervision loss plus distillation

loss, respectively. Particularly, the student loss for taking into account this characteristic

is denoted as:

Ft(X,Y, θt, θs) =
N∑
n=1

G3

(
x(3,n), y(3,n), θt, θs

)
+

2∑
i=1

N∑
n=1

{
Gi
(
x(i,n), y(i,n), θt, θs

)

+
∑
j 6=i


H (j)

(
f
(j)
θt

(x(j,n)), f
(j)
θs

(x(j,n))
)
, if yj,n is NA

Gj
(
x(j,n), y(j,n), θt, θs

)
, otherwise

}}
(A.10)

A.3.3 Frame images analysis

For the video’s frame images, face images with the size of 112×112 pixels are aligned and

extracted from each frame. Then, we use these images to train a CNN model using the

method mentioned in Section A.3.2. For this CNN model, we have selected the ResNet

50 [HZRS15] architecture as base network and added two head layers corresponding

to the two outputs of the model: EXPR and VA (see Figure A.2). During training,

we have applied some image-wise augmentation process with some filters to improve

the performance of the model. These filters are including: random image translation

[PFA20] and random image horizontal flip.

A.3.4 Temporal information exploitation

Once the CNN student model has been trained, we use this model to extract features

from each video frame. Then, we group these features together to form a new dataset

ds of feature’s sequences with the sequence length of 32 frames per sequence. Finally,
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we fed data from this new dataset ds into a bidirectional RNN network for exploiting

temporal information, as well as predicting EXPR and VA. For this RNN network, we

have selected the Gated Recurrent Units (GRU) architecture [CvMG+14] as it has been

proven to be efficient in remembering long-term dependencies. Regarding this GRU

model’s parameters, we also use the training method in Section A.3.2 to train them.

During the training, we have used the same augmentation process with filters that are

mentioned in Section A.3.3 but in sequence level.

A.4 Experiments and Results

A.4.1 Implementation details

The whole network system is implemented using PyTorch framework [PGM+19]. Dur-

ing the training phase, Adam optimizer [KB17] was employed with the initial learning

rate is set to 1e−4. The maximum number of epochs is 40 and the training process will

stop when there is no improvement after five consecutive epochs. The number of batch

size for the CNN part of the network is set to 64. For RNN network, the batch size is 16.

The training and validating processes were performed on an Intel Workstation machine

with a NVIDIA Gerforce RTX 2080 Ti 11G GPU.

A.4.2 Results

Here we report the results of different experiments to demonstrate the effectiveness of

each of our changes comparing to the original method [DCS20]. For the evaluation

metrics, we use the same criterion as outlined in [KSHZ]. Valence and Arousal estima-

tion is based on the mean Concordance Correlation Coefficient (CCC). The seven basic

expressions classification is measured by 0.67×F1 score+0.33×total accuracy. For each

of our experiments, we run it 10 times and report the mean of the evaluation results on

the Validation set of the AffWild2 dataset.
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Table A.1 shows the performance of the teacher network when training using Equa-

tion A.7 with only the first two tasks (T ∈ {1, 2}) and with all the three tasks

(T ∈ {1, 2, 3}). From this table, we can see that when training with only two tasks,

our model has already outperformed the baseline results of the competition. When we

add the third task EXPR_VA into the training process

(T ∈ {1, 2, 3}), we can see that the performance of both EXPR and Valence have

increased quite a lot, especially the later with 17% of improvement. Despite of having a

slightly decreasing in term of Arousal (about 2%), the performance of the network has

been improved in overall by a large margin, compared to the model trained without the

EXPR_VA task.

Table A.1: Performance results of the teacher CNN models on the validation set of the Affwild2
database. The baseline results are provided by the ABAW 2021 competition organiser.

Method EXPR Valence Arousal

Baseline 0.366 0.230 0.210
Multitask T ∈ {1, 2} 0.498 0.374 0.407
Multitask T ∈ {1, 2, 3} 0.513 0.438 0.398

After training the teacher model, we train student models with the supervision of

both ground truth and the pretrained teacher model using Equation A.9 for the case of

not using the shared annotations (No sharing), and using Equation A.10 for the case

of using the shared annotations (With sharing). The results are shown in Table A.2.

From this table, it can be seen that the performance of the model trained using the

shared annotations (With sharing) is better than the one trained without using it (No

sharing). This results indicate the importance of exploiting the sharing annotations in

the database.

Once the student model is trained, we use this CNN model to extract features to

train GRU network for exploiting temporal information. We train a teacher model using

Equation A.7 and a student model using Equation A.10. Table A.3 shows the results of
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Table A.2: Performance results of the student CNN models on the validation set of the Affwild2
database. The student models are trained using all three tasks T ∈ {1, 2, 3}.

Method EXPR Valence Arousal

No sharing 0.513 0.472 0.412
With sharing 0.525 0.471 0.421

Table A.3: Performance results of the CNN + GRU model. Both teacher and student models are
trained using all three tasks T ∈ {1, 2, 3}.

Method EXPR Valence Arousal

Teacher model 0.555 0.523 0.543
Student model 0.555 0.526 0.551

these models. From this table, we can see that: the performance of the student model

is equivalent to the performance of the teacher model in the task of EXPR prediction

and better than the teacher model in all the other cases. When we compare the CNN +

GRU model with the CNN model alone (in Table A.2), the former model outperformed

the latter by a large margin.

A.4.3 Comparison with State of the art

Here we compare the performance of our model with the state of the art on the test set

of Affwild2 dataset. In this 2nd challenge, the database has been updated by adding

more videos and labels for the AU detection task, but since the data for EXPR recog-

nition task and VA estimation task are almost unchanged, we are still able to compare

the performance of our model with the works on the previous ABAW 2020 challenge

[KSHZ].

Table A.4 shows the comparison results between the works on Affwild2 database.

One can note that these results are the results of the test set of the database and have
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Table A.4: Comparison with other works on the test set of the Affwild2 database

Method
Expression CCC

F1 Acc Criterion Valence Arousal Mean

Top entries to ABAW 2020:
ICT-VIPL [ZHZ+20] 0.287 0.652 0.408 0.361 0.408 0.385

NISL2020 [DCS20] 0.270 0.680 0.405 0.440 0.454 0.447

TNT [KRO20] 0.398 0.734 0.509 0.448 0.417 0.433

Top entries to ABAW 2021:
FlyingPigs [ZDWG21] − − − 0.463 0.492 0.478

STAR [WW21] 0.476 0.732 0.560 0.478 0.498 0.488

Netease Fuxi Virtual Human [ZGC+21] 0.763 0.807 0.778 0.486 0.495 0.491

CPIC-DIR2021 [JZGX21] 0.683 0.771 0.712 − − −
NISL2021 (no publication) 0.431 0.654 0.505 0.533 0.454 0.494

Our model 0.351 0.668 0.456 0.505 0.475 0.490

been computed by the organiser of the competition for fair comparison. For the prior

works on this dataset (ABAW 2020) we have: ICT-VIPL team [ZHZ+20] with their M3T

model, NISL2020 team [DCS20] with their multitask model trained on multiple datasets

with incomplete labels and TNT team [KRO20] with their two streams aural-visual net-

work. For the top entries to the challenge (ABAW 2021), we have: FlyingPigs team

[ZDWG21] with their Audio-visual Attentive Fusion model, STAR team [WW21] with

their multitask aural-visual model, Netease Fuxi Virtual Human team [ZGC+21] with

their Prior Aided Streaming network, CPIC-DIR2021 team [JZGX21] with their mul-

titask multimodal method for detecting AUs and classifying facial expressions. Apart

from that, we also have the NISL2021 team, but without publicly available article. From

this table, we can see that our model is significantly outperformed the original model

(which we have adapted from) of the NISL2020 team [DCS20] in both of the two tasks

and outperformed all other prior works in term of VA estimation. This results are clearly

showing that our changes and improvements in the approach have improved the overall

performance of the model significantly.

For the top entries to ABAW 2021 competition, our model has reached the third

place in the VA estimation track leaderboard, over 40 teams that have participated in
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this track of the challenge. Taking into account that the difference between the mean

VA of our model and the best model (NISL2021) is only 0.82%, we can say that our

model has reached the same performance level compared to the state of the art in term

of VA estimation on the official Affwild2 database of the competition. In term of EXPR

recognition, we are in the 8th place in the EXPR track leaderboard, over 55 teams that

participated in this track of the challenge. The reason for this results could be because

we are not using AUs annotations as the other competitors. e.g. the top two teams

in this track: Netease Fuxi Virtual Human and CPIC-DIR2021, they are both trying to

detect AUs beside recognise EXPR and have achieved a good performance compared to

the others. There could be a strong link between action units and facial expressions that

need to be identified in the future works.

A.5 Conclusion

In this paper, we have presented a method to optimise the multitask training with in-

complete labels approach. On top of the original method based on teacher-student ar-

chitecture, we have added a new task to train the deep neural network on a dataset that

contains both seven basic expressions and valence-arousal values for better exploiting

the inter-task correlations between the two tasks. In the same time, we have exploited

the shared annotations inside the Affwild2 database during the training process of the

student model. With these improvements, we have obtained a model that is on par with

state of the art in term of valence and arousal estimation on the test set of the Affwild2

database. In future work, we will investigate about the link between action units and

facial expressions, which could be the key to further improve the performance of both

the facial expressions classification and valence-arousal estimation tasks.
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