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Résumé : Dans la première partie de cette thèse, nous étudions trois modèles décrivant une approximation hydrostatique des équations issues de la mécanique des uides telles que les équations de la magnétohydrodynamique, les équations primitives et les équations hyperboliques de Navier-Stokes. Dans le cadre de ce projet, nous avons déterminé l'impact que la méthode des estimations analytiques pourrait avoir sur le problème de la limite hydrostatique des équations de la mécanique des uides avec une faible viscosité dans un domaine mince. Les équations de la magnéto-hydrodynamique et hyperbolique de Navier-Stokes avec une viscosité évanescente et conditions Dirichlet au bord du domaine, font intervenir des équations de type Prandtl qui régissent le comportement du uide dans une couche limite proche du bord. Ces équations semblent être mal posées dans des espaces de Sobolev, mais elles sont bien posées pour des données initiales analytiques. Nous avons démontré par la méthode des estimations analytique qu'il est possible d'obtenir un résultat d'existence globale en temps dans l'espace des fonctions analytiques, à donnée initiale petite.

Dans la deuxième partie de cette thèse, nous étudions le système magnétohydrodynamique dans tout l'espace de dimension trois R 3 . Dans ce cadre, on a obtenu deux résultats d'existence de solutions fortes globales pour ce système magnéto-hydrodynamique homogène et inhomogène. En eet, on a étudié ces équations dans un cadre homogène et inhomogène où on a pu montrer que nos équations sont globalement bien posées lorsque la dérivée verticale de nos données initiales satisfait une condition de petitesse.

Chapter 1 Introduction (Version Française)

La physique est une science qui nous permet de comprendre les diérents phénomènes lié à notre planète. Dans la théorie de la physique on observe trois branches principaux qui sont: La physique classique, la physique quantique et la relativité générale. Dans notre thèse on s'intéresse à la physique classique, plus précisément sur "La mécanique des uides" qui à pour principe d'étudier le comportement des uides (liquides, gaz, plasmas, métaux liquides, eaux salées, électrolytes, . . . ) et des forces internes associées. La mécanique des uides se divise en deux parties: statique et la dynamique des uides. La statique des uide représente l'étude des uide au repos c'est à dire les uides qui ne déplace pas et la dynamique correspondant l'étude des uides en mouvement c'est à dire que les uides qui se déplace au court du temps.

Dans cette thèse, nous étudierons des équations de la dynamique des uides. L'histoire de ces équations a commencé avec L. Euler et J. d'Alembert et leur travail sur des uides parfaits, et par la suite avec L. Navier pour les uides visqueux. Nous étudierons en outre les propriétés magnétiques des uides conducteurs.

Partant du paradoxe de D'Alembert et de Leonhard Euler, l'étude de la dynamique des uides a fourni de nombreuses raisons pour regarder de plus près la frontière qui conne l'écoulement, au 19e siècle. Les expériences physiques, ainsi que les résultats mathématiques, suggèrent que la couche mince proche de la frontière est une partie importante de la dynamique. Pour comprendre le mouvement du uide réel, Ludwig Prandtl a introduit en 1904 le concept de couche limite et a proposé un modèle mathématique décrivant ce phénomène. L'idée de L. Prandtl est de diviser en deux zones le champ d'écoulement : une à l'intérieur de la couche limite, dominée par la viscosité et créant la majorité de la traînée subie par la couche limite, et l'autre à l'extérieur de la couche limite, où nous pouvons négliger la viscosité, sans eets signicatifs sur la solution. Ces deux zones permettent de considérer que le uide est proche à l'intérieur de l'écoulement parfait incompressible décrit par les équations d'Euler incompressibles perturbé autour des bords par des équations des couches limites, ce qui simplie considérablement les équations de Navier-Stokes associées. Ces équations de la couche limite, complétées par la condition d'incompressibilité et les conditions aux limites et conditions initiales appropriées, constitue le système de Prandtl, dont l'étude a permis de mieux comprendre les écoulements visqueux.

Concepts principaux en mécanique des uides 1.Compressibilité et incompressibilité

Un uide est dit compressible si son volume peut changer au cours du temps, c'est-à-dire qu'on peut par exemple le comprimer dans un espace plus restreint en lui appliquant une pression. Tous les gaz sont des uides compressibles (air, oxygène, hydrogène, azote, etc). En revanche, un uide incompressible est un uide qui ne peut être ni comprimé ni dilaté, et son volume reste constant. Cette hypothèse est vériée pour l'eau liquide à température xe et les métaux fondus. Elle est aussi vériée pour les gaz quand le nombre de Mach Ma est très faible convergeant vers zéro. En réalité, un uide rigoureusement incompressible n'existe pas.

La principale diérence entre uides compressibles et uides incompressibles est qu'une force appliquée à un uide compressible modie la densité du uide alors qu'une force appliquée à un uide incompressible n'en modie pas la densité dans une mesure considérable.

Viscosité

La viscosité d'un uide est une mesure de sa résistance à la déformation à une vitesse donnée. Dans un uide, on distingue deux types de viscosité : "cinématique" et "dynamique". Dans les équations de Navier-Stokes, la viscosité cinématique joue un rôle important, car elle est de taille comparable au nombre de Rossby (ce nombre représente le rapport entre les forces d'inerties et les forces dues à la rotation qui caractérisent le mouvement d'un uide dans un repère tournant). En réalité, le uide est turbulent cela signie que la viscosité fréquemment notée par le paramètre ν n'est pas une viscosité cinématique, mais plutôt une viscosité turbulente (c'està-dire une viscosité diérente dans chaque direction). Le fait d'avoir une viscosité turbulente impact l'apparition de l'anisotropie dans le comportement des uides : le mouvement dans la direction horizontale est bien plus important que dans la direction verticale.

Un uide qui n'a pas de résistance au cisaillement est appelé uide idéal ou inviscide. Une viscosité nulle n'est observée qu'à très basses températures dans les uides parfaits. Autrement, la deuxième loi de la thermodynamique exige que tous les uides aient une viscosité positive; ces uides sont techniquement dits visqueux. Un uide à forte viscosité comme le brai peut même sembler solide.

Nombre de Reynolds

Le nombre de Reynolds Re permet de prédire les modèles dans diérentes situations d'écoulement du uide. Ce nombre correspond au rapport entre les forces d'inertie et les forces visqueuses à l'intérieur d'un uide qui a subi un mouvement interne relatif en raison des diérentes vitesses du uide. Une zone où ces forces changent leur comportement est appelée couche limite, comme la surface d'enclenchement à l'intérieur d'un tube. Un eet similaire est créé par l'introduction d'un ux de uide à grande vitesse dans un uide à faible vitesse, tel que les gaz chauds émis par une amme dans l'air. Le nombre de Reynolds est donné par Re = forces d'inertie forces visqueuses = ρU L/ν où U et L sont les échelles de vitesse et de longueur du mouvement. Lorsque le nombre de Reynolds est très faible (Re << 1), les forces d'inertie (∂ t u+u.∇u) sont très faibles par rapport aux forces visqueuses et peuvent être négligées lors de la résolution des équations (N S). En revanche, lorsque ce nombre est très élevé (Re >> 1), les forces inertielles sont plus grandes que les forces visqueuses. De tels problèmes d'écoulement turbulent sont de nature transitoire, un maillage susamment n adapté à la taille des petits tourbillons de l'écoulement doit être utilisé.

Équations du mouvement en mécanique des uides

Dans ce qui suit, nous nous intéressons aux équations diérentielles de la mécanique des uides incompressibles.

Fluide Incompressible

Dans la mécanique des uides ou plus généralement dans la mécanique continue, l'écoulement incompressible désigne un écoulement dans lequel la densité du matériau est constante au sein du ux, dans un volume innitésimal qui se déplace avec la vitesse d'écoulement. Une armation équivalente qui implique l'incompressibilité est que la divergence de la vitesse d'écoulement est nulle. (La dérivation ci-dessous illustre en quoi ces conditions sont équivalentes).

Nous commençons en déduisant du principe fondamental de la dynamique, les équations d'Euler et de Navier-Stokes, pour un uide incompressible. Considérons maintenant l'ouvert Ω comme un élément du uide dans R n . Les particules de uide évoluent dans le temps selon des trajectoires ψ(t, x), qui suivent l'équation suivante :

∂ t ψ(t, x) = u(t, ψ(t, x)), u(0, x) = x.
où u(t, x) est le champ de vitesse du uide au point ψ(t, x).

La condition d'incompressibilité du uide aboutit mathématiquement à la relation

∀t ∈ [0, T ], V olume(Ω) = V olume(ψ(t, Ω)).

En eectuant un changement de variable et en supposant que la fonction ψ(t, x) est un diéomorphisme de classe C 1 , nous avons :

Ω 1dx = Ω |detJψ(t, y)|dy.
Nous choisissons comme domaine Ω = Ω ϵ = B(x, ϵ) et en prenant la limite de ϵ à zéro, nous obtenons : detJψ(t, x) = 1.

En outre, le théorème de Liouville nous arme que toute solution matricielle de l'équation X ′ (t) = A(t)X(t), vérie :

(detX) ′ (t) = (trA(t))detX(t).

Nous constatons que

∂ t (detJψ(t, x)) = tr(∇u)(t, ψ(t, x)) × detJ(ψ)(t, x).

Comme detJψ(t, x) = 1, alors ∂ t (detJψ(t, x)) = 0. En conséquence, nous obtenons le résultat suivant : tr(∇u)(t, ψ(t, x)) = div u = 0.

Ainsi, la condition d'incompressibilité se traduit par l'équation div u = 0.

Conservation de la masse

En physique, la loi de conservation de la masse ou le principe de conservation de la masse, stipule que pour tout système fermé à tout transfert de matière et d'énergie, la masse du système doit rester constante au cours du temps, car la masse du système ne peut pas changer, de sorte que la quantité ne peut être ni ajoutée ni supprimée. Par conséquent, la quantité de masse est conservée au l du temps.

Mathématiquement, la conservation de la masse peut être formulée dans les domaines de la mécanique des uides et de la mécanique des milieux continus. La conservation de la masse est généralement exprimée à l'aide de l'équation de continuité, donnée sous forme diérentielle par ∂ t ρ + div (uρ) = 0, où ρ est la densité (masse par unité de volume), t est le temps, div est l'opérateur divergence (pour un champ de dimension trois, l'opérateur divergence est déni par div u = ∂ x u 1 + ∂ y u 2 + ∂ z u 3 ), et u = (u 1 , u 2 , u 3 ) est le champ de vitesse.

En particulier, si u est un champ à divergences nulle (cela signie que div u = 0) et que notre uide est homogène c'est à dire ρ(t, x) = ρ(t), alors la densité reste constante dans le temps, c'est-à-dire ∂ρ ∂t = 0.

Nous avons alors ρ(t, x) = ρ 0 pour tous t, x.

Expression des grandeurs cinématiques

Trajectoire : C'est un ensemble de points occupés successivement par la même particule de uide. Une particule de uide qui passe à l'instant t au point ψ(t, x) a pour vitesse u dénie par : u(t, ψ(t, x)) = ∂ t ψ(t, x).

Accélération : On note l'accélération du uide par le paramètre γ. Loi de Newton: La loi de Newton nous donne ργ(t, x) = F (t, x) où γ est l'accélération et F désigne les forces extérieures qui s'exercent sur le uide.

Par (1.2.1), on a ρ(∂ t u + u • ∇u) = F.

Equation d'Euler : Considérons l'écoulement incompressible d'un uide parfait dénit dans un champ de force massique f . En tout point du uide ψ(t, x), les champs de pression p(t, ψ(t, x)) et de vitesse u(t, ψ(t, x)) vériant l'état d'incompressibilité implique ∂u ∂t + u • ∇u = -∇p + f , l'incompressibilité implique div u = 0.

Equation de Navier-Stokes : La deuxième loi de Newton s'écrit :

F = ρ(∂ t u + u • ∇u),
avec F = -div σ, où σ est le tenseur des contraintes. Pour un uide général du type diérentiel d'ordre n, σ = -pId + G(A 1 , A 2 , ....., A n ) où G est le polynôme homogène dans ses variables

A n = dA n-1 dt + (∇u) t A n-1 + A n-1 (∇u).
Pour un uide Newtonien, nous avons :

-div (pId + ν∇u) = -∇p + ν∆u = F, donc, ρ(∂ t u + u.∇u) = -∇p + ν∆u, où ∆ = n i=1 ∂ 2 i . Les équations de Navier-Stokes sont alors données par le système d'équations suivant :      ρ(∂ t u + u • ∇u) -ν∆u = -∇p, div u = 0, u(0, x) = u 0 (x).

Pour les uides homogène on peut considérer que ρ = ρ 0 = 1.

Si le uide est inhomogène, le système d'équations prend la forme suivante

         ∂ t ρ + u • ∇ρ = 0, ρ(∂ t u + u.∇u) -ν∆u = -∇p, div u = 0, u(0, x) = u 0 (x).

Équations magnéto-hydrodynamiques

Dans cette thèse, nous avons étudié les équations couplées de Navier-Stokes avec une approximation des équations de Maxwell pour le champ électromagnétique, qui décrivent les interactions du champ électrique et du champ magnétique. Ce modèle est appelé modèle magnétohydrodynamique (MHD). L'équation décrivant l'évolution du champ magnétique noté B, où σ représente la conductivité électrique du uide. Dans le système magnétohydrodynamique usuel, nous supposons que les vitesses typiques du uide sont faibles par rapport à la vitesse de la lumière c (on note que c 2 = 1 λη ); l'équation de Maxwell-Ampère se simplie alors en : curl B = λj.

On combinant ces équations et en dénissant la diusivité magnétique par µ = 1/λσ, on obtient l'équation d'induction

∂ t B = -curl E = -curl 1 σ j -u × B = -curl 1 σ ( 1 λ curl B) -u × B = - 1 σλ curl curl B + curl(u × B) = µ∆B -u • ∇B + B • ∇u.
Le champ électromagnétique E agit sur le uide par la force de Lorentz F = j × B + ρE, où ρ désigne la densité électrique. Cependant, dans les uides denses, la charge électrostatique est neutralisée sur les distances macroscopiques, ce qui est connu sous le nom de quasi-neutralité. Par conséquent, nous pouvons supposer que ρ = 0, ce qui donne la force

F = j × B. (1.3.2)
Selon l'hypothèse qui dit que les vitesses typiques du uide sont petites par rapport à la vitesse de la lumière c, la première équation de (1.3.1) et (1.3.2) se réécrit.

F = 1 λ curlB × B = 1 λ (B.∇)B - 1 2 ∇|B| 2 .
Nous obtenons donc les équations de Navier-Stokes couplées avec la force de Lorentz et les équations de Maxwell pour le champ électromagnétique.

(1.3.3)

               ∂ t u + u.∇u -ν∆u = -∇ p + |B| 2 2 + B.∇B ∂ t B + u.∇B -µ∆B = B.∇u, div u = div B = 0, u /t=0 = u 0 , B /t=0 = B 0 .
Si le uide est inhomogène, notre système d'équations prend la forme suivante (1.3.4)

                     ∂ t ρ + u.∇ρ = 0, ρ(∂ t u + u.∇u) -ν∆u = -∇ p + |B| 2 2 + B.∇B ∂ t B + u.∇B -µ∆B = B.∇u, div u = div B = 0, u/ t=0 = u 0 , B /t=0 = B 0 .
Remarque 1.3.1. Dans cette thèse, nous cherchons à obtenir l'existence globale de solutions du système homogène et inhomogène incompressible MHD en dimension trois d'espace, avec seulement une condition de petitesse sur la dérivée verticale de la donnée initiale dans certains espaces possédant des invariances d'échelle.

La version hyperbolique des équations Navier-Stokes

Dans cette thèse, nous nous intéressons à la version hyperbolique des équations Navier-Stokes. Dans cet esprit, nous approchons les solutions de (NS) par des solutions d'équations hyper-boliques, an de corriger le paradoxe de la vitesse innie de propagation dans les équations paraboliques.

Nous commençons d'abord par l'approximation proposée par Cattaneo en 1949 (et d'autres comme Chester, Vernotte, etc.) pour l'étude de l'équation de la chaleur comme limite des équations hyperboliques (voir [START_REF] Cattaneo | Sulla conduzione del calore[END_REF][START_REF] Cattaneo | Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée[END_REF] ). Ils ont proposé le modèle hyperbolique suivant

1 c 2 ∂ 2 t θ + 1 β ∂ t θ -∆θ = 0.
Cette équation est appelée équation du télégraphe. Elle a une vitesse de propagation nie et est compatible à la fois avec le principe de relativité et la deuxième loi de la thermodynamique, de sorte qu'elle est un modèle physique satisfaisant.

Ces équations peuvent également être considérées comme une relaxation des équations d'Euler, ces équations ont été considérer par Brenier, Natalini and Puel dans [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF]. Considérons les équations d'Euler incompressibles, à savoir (1.4.1)

     ∂ t U + U • ∇U = -∇p, div U = 0, U (0, x) = U 0 (x).
Pour approcher ces équations, nous introduisons leur version relaxée, qui est obtenue par une perturbation singulière du terme non linéaire U • ∇U = ∇ • (U ⊗ U ), au moyen d'une variable à valeur matricielle supplémentaire V . Cela mène au système suivant :

(1.4.2)

               ∂ t U + ∇ • (V ) = -∇p, ∂ t V + ν∇U = - 1 τ V -U ⊗ U , div U = 0, U (0, x) = U 0 (x), V (0, x) = V 0 (x).
Notons que si τ converge vers zéro, nous récupérons formellement le système d'Euler incompressible (1.4.1). Considérons maintenant une échelle diusive. Notons pour ϵ > 0

(1.4.3)                  U ϵ (t, x) := 1 √ ϵ U t ϵ , x √ ϵ , V ϵ (t, x) := 1 ϵ V t ϵ , x √ ϵ , p ϵ (t, x) := 1 ϵ p t ϵ , x √ ϵ .
En prenant τ = 1, le système (1.4.2) devient avec les inconnues de (1.4.3) (1.4.4)

               ∂ t U ϵ + ∇ • (V ϵ ) = -∇p ϵ , √ ϵ∂ t V ϵ + ν √ ϵ ∇U ϵ = - 1 √ ϵ V ϵ -U ϵ ⊗ U ϵ , div U ϵ = 0, U ϵ (0, x) = U ϵ 0 (x), V ϵ (0, x) = V ϵ 0 (x).
Remarquons que notre mise à l'échelle peut être considérée comme une perturbation hyperbolique des équations de Navier-Stokes, qui est semblable à celle proposée par Cattaneo pour les équations de la chaleur [START_REF] Cattaneo | Sulla conduzione del calore[END_REF], En éliminant l'inconnue V dans les équations (1.4.4), et en dénotant par q ϵ = p ϵ + ϵ∂ t p ϵ , nous obtenons (1.4.5)

     ϵ∂ 2 t U ϵ + ∂ t U ϵ + U ϵ • ∇U ϵ -ν∆U ϵ = -∇q ϵ , div U ϵ = 0, U ϵ (0, x) = U ϵ 0 (x), ∂ t U ϵ (0, x) = U ϵ 1 (x).
Cette perturbation, considérée comme une relaxation des équations d'Euler, a été examinée pour la première fois par Brenier, Natalini et Puel dans [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF]. Plus tard, cette équation a été considérée par Paicu et Raugel dans [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | A hyperbolic singular perturbation of the Navier-Stokes equations in R 2[END_REF].

Ce modèle admet plusieurs justications dans de nombreux articles avec des méthodes différentes. Citons par exemple [START_REF] Hunke | An elasticviscousplastic model for sea ice dynamics[END_REF] où les auteurs ont considéré ces équations comme un modèle de formation de glace dans les lacs. D'un point de vue numérique, citons [START_REF] Katsaounis | Relaxation models and nite element schemes for the shallow water equations[END_REF][START_REF] Katsaounis | Stability and convergence of relaxation nite element schemes for the incompressible Navier-Stokes equations[END_REF] où cette approximation est utilisée pour calculer les solutions de Navier-Stokes en utilisant des schémas numériques tel que schémas d'éléments nis. Dans le deuxième chapitre, nous présenterons le résultat obtenu par Brenier, Natalini et Puel dans [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF], ainsi que le résultat obtenu par Paicu et Raugel dans [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | A hyperbolic singular perturbation of the Navier-Stokes equations in R 2[END_REF] et le résultat de Coulaud, Hachicha et Raugel dans [START_REF] Coulaud | Hyperbolic quasilinear Navier-Stokes equations in R 2[END_REF] de la solution globale en 2D et 3D. Dans cette thèse, nous obtenons un résultat d'existence et unicité globale des solutions de l'équation (1.4.5) dans un domaine mince R × (0, 1), pour certaines données initiales analytiquement petites dans la variable tangentielle. Nous allons brièvement les énoncer dans le deuxième chapitre.

Nous allons maintenant expliciter la version hyperbolique des équations magnéto-hydrodynamiques. Nous commençons par rappeler la forme répandue du système bidimensionnel Navier-Stokes-Maxwell avec la loi de Cattaneo:

(1.4.6)                              ρνJ c 2 ∂ 2 τ - → U + ρ ∂ t - → U + - → U • ∇ - → U -ρν∆ - → U + ∇P = - → J × - → B La quantité de mouvement, div - → U = 0 conservation de la masse, ∂ t - → B + curl - → E = 0 Loi de Faraday, - → J = σ - → E + - → U × - → B Loi d'Ohm, 1 c 2 ∂ t - → E + µ 0 - → J = curl - → B Loi d'Ampère, div - → B = 0
Loi de Gauss pour le magnétisme, div -→ E = 0 Loi de Gauss.

Le système et les variables d'état correspondantes dépendent de (t, X, Y ) ∈ (0, T ) × R × R + , pour un temps positif T > 0.

Les constantes ρ > 0 et ν > 0 sont respectivement la densité du uide et la viscosité cinématique, tandis que c > 0 représente la vitesse de la lumière. Le premier terme (ρνJ /c 2 )∂ 2 t -→ U dans l'équilibre de la quantité de mouvement linéaire est dû à la loi de Cattaneo [START_REF] Abdelhedi | Global existence of solutions for hyperbolic Navier-Stokes equations in three space dimensions[END_REF][START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF][START_REF] Coulaud | Hyperbolic quasilinear Navier-Stokes equations in R 2[END_REF][START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | Global hydrostatic approximation of the hyperbolic Navier-Stokes system with small Gevrey class 2 data[END_REF][START_REF] Racke | Hyperbolic Navier-Stokes equations II: Global existence of small solutions[END_REF] et dépend d'une constante d'inertie générale J > 0. Cette loi se développe autour d'un développement de Taylor du premier ordre d'une relation retardée sur le tenseur des contraintes de Cauchy

S(t + t rel , •) = ν ∇u + ∇u T 2 (t, •)
où pour nous le temps de relaxation est donné par t rel = ρνJ /c 2 . Cette forme particulière, sera en eet importante lors du redimensionnement de notre système pour les couches limites.

On note σ > 0 la conductivité électrique, et µ 0 > 0 la perméabilité magnétique. On note aussi

- → U (t, X, Y ) = (U 1 (t, X, Y ), U 2 (t, X, Y )) T ∈ R 2 et - → B (t, X, Y ) = (B 1 (t, X, Y ), B 2 (t, X, Y )) T ∈
R 2 le champ de vitesse et le champ magnétique du média, respectivement. La pression scalaire P (t, X, Y ) ∈ R est le multiplicateur de Lagrange qui assure l'incompressibilité du champ de vitesse. La densité de courant -→ J = (0, 0, J(t, X, Y )) T et le champ électrique -→ E = (0, 0, E(t, X, Y )) T sont considérés comme des champs vectoriels tridimensionnels, étant perpendiculaires au plan dans lequel le mouvement du uide se produit. Puisque nous avons aaire à la version bidimensionnelle des équations, nous allons clarier la notation employée:

- → J × - → B = J - → B ⊥ = J -B 2 B 1 , curl - → E = ∂ Y E -∂ X E , - → U × - → B =    0 0 U 1 B 2 -U 2 B 1   , curl - → B =    0 0 ∂ X B 2 -∂ Y B 1   .
Les paramètres positifs ν, µ 0 et ε 0 correspondent respectivement à la viscosité cinématique, à la perméabilité magnétique et à la permitivité de l'espace libre. De plus, le paramètre σ représente la conductivité électrique du milieu. Certains des termes de (1.4.6) (1.4.7)

∂ τ - → B = -curl - → E = curl - → U × - → B - 1 σ curl - → J .
De plus, pour se débarrasser de la densité du courant dans curl -→ J , nous appliquons l'opérateur curl à la loi d'Ampère:

1 c 2 ∂ τ (curl - → E ) + µ 0 curl - → J = curlcurlB, ce qui implique curl - → J = 1 µ 0 c 2 ∂ 2 τ - → B + 1 µ 0 (∇div - → B -∆B) = 1 µ 0 c 2 ∂ 2 τ - → B + 1 µ 0 (∇div - → B -∆B)
Ainsi, on peut brancher cette dernière relation dans l'équation (1.4.7), pour nalement obtenir une forme hyperbolique de la loi d'Ampère en termes de champ magnétique -→ B :

(1.4.8)

1 σµ 0 c 2 ∂ 2 τ - → B + ∂ τ - → B - 1 σµ 0 ∆ - → B = curl - → U × - → B = - → B • ∇ - → U - - → U • ∇ - → B .
De même, nous pouvons nous débarrasser de -→ J également dans l'équilibre de la quantité de mouvement linéaire dans (1.4.6) grâce à

ρνJ c 2 ∂ 2 t - → U ρ(∂ t - → U + - → U •∇ - → U )-ν∆ - → U +∇P = σ( - → E + - → U × - → B )× - → B = σ - → E × - → B +σ( - → B ( - → U • - → B )- - → U | - → B | 2 ).
Nous sommes maintenant en état de réduire le nombre d'équations dans (1.4.6). En considérant le champ électrique -→ E (t, X, Y ) = (0, 0, E(t, X, Y )) T (dont la divergence est toujours nulle) et en rappelant la dénition du champ vectoriel -→ B T = (-B 2 , B 1 ) T , on rassemble nalement (1.4.9)

                         ρνJ c 2 ∂ 2 t - → U +ρ(∂ t - → U + - → U •∇ - → U )-ρν∆ - → U +∇P = σ( - → B ( - → U • - → B ) - - → U | - → B | 2 ) + σE - → B T , div - → U = 0, 1 σµ 0 c 2 ∂ 2 τ - → B + ∂ t - → B - 1 σµ 0 ∆ - → B = - → B • ∇ - → U - - → U • ∇ - → B , ∂ t - → B + curl - → E = 0, div - → B = 0,

Couches limites

En mécanique des uides, une couche limite est une partie du uide à proximité immédiate d'une surface limitante où les eets visqueux sont au moins aussi importants que les eets inertiels. Le uide dans la couche limite est caractérisé par de grandes variations en variable verticale à l'approche de la surface. Les couches limites apparaissent dans plusieurs phénomènes par exemple autour des ailes d'un avion et dans l'atmosphère de la Terre. Sur les ailes d'un avion, la couche limite est la partie de l'écoulement proche des ailes de l'avion, où les forces visqueuses déforment l'écoulement non visqueux environnant. D'autre part, dans le cas de l'atmosphère de la Terre, nous voyons la couche limite atmosphérique comme la couche d'air à proximité du sol.

Le concept fondamental de couche limite a été déni par L. [START_REF] Prandtl | Uber Flussigkeitsbewegung bei sehr kleiner Reibung[END_REF], comme une couche de uide se développant dans un écoulement avec un nombre de Reynolds Re très élevé, c'est-à-dire avec une viscosité relativement faible par rapport aux forces inertielles.

La déduction des équations de couche limite a été l'un des progrès majeurs en dynamique des uides. En utilisant l'analyse de l'ordre de grandeur, les équations bien connues de Navier-Stokes d'écoulement de uides visqueux peuvent être grandement simpliées à l'intérieur de la couche limite. En faisant l'approximation de la couche limite, notre ux peut être alors divisé en une partie non-visqueuse et une couche limite, qui est régie par une équation plus facile à résoudre. Les équations de continuité et de Navier-Stokes pour un ux continu incompressible en deux dimensions dans les coordonnées cartésiennes sont données par (1.4.10)

           ∂ t u ν + u ν ∂ x u ν + v ν ∂ y u ν -ν ∂ 2 x u ν + ∂ 2 y u ν = -∂ x p ν , ∂ t v ν + u ν ∂ x v ν + v ν ∂ y v ν -ν ∂ 2 x v ν + ∂ 2 y v ν ) = -∂ y p ν , ∂ x u ν + ∂ y v ν = 0, u ν (t, x, 0) = 0, v ν (t, x, 0) = 0.
L'idée de Prandtl est d'injecter un ansatz pour que les deux composantes de la vitesse s'expriment sous une forme plus utile près du bord. En exploitant le fait que la partie la plus importante de l'écoulement se produit près du bord, cette idée conduit à un redimensionnement sur la variable verticale et les composantes de vitesse.

L'hypothèse suggérée par Prandtl est de transformer la variable verticale en Y = y √ ν . Nous obtenons les redimensionnements de nos vitesses et de notre pression suivants (1.4.11)

                 u ν (t, x, y) = u t, x, y √ ν , v ν (t, x, y) = √ νv t, x, y √ ν , p ν (t, x, y) = p t, x, y √ ν .
En insérant l'expression ci-dessus dans (1.4.10) et en conservant les termes d'ordre principaux, nous obtenons le système de Prandtl (en écrivant y au lieu de Y ) :

(1.4.12)

           ∂ t u + u∂ x u + v∂ y u -∂ 2 y u = -∂ x p ν , ∂ y p = 0, ∂ x u + ∂ y v = 0, u(t, x, 0) = 0, v(t, x, 0) = 0.
Si on se place dans le domaine Ω = R×(0, √ ν), cela signie que nous sommes dans un domaine mince. Le système (1.4.12) sera complété donc par les conditions de Dirichlet homogène u /y=0 = u /y=1 = 0 and v /y=0 = v /y=1 = 0.

Remarque 1.4.1. L'une des conséquences de ce travail formel est que nous avons éliminé du système l'équation d'évolution de la composante verticale de la vitesse. Cette composante verticale n'est récupérée qu'à partir de la condition d'incompressibilité. Nous appliquons cette élimination dans plusieurs modèles (par exemple système MHD et version hyperbolique du système Navier-Stokes) pour obtenir l'existence globale des solutions de ces modèles ainsi que leur stabilité.

Équations primitives

Les équations primitives sont un ensemble d'équations diérentielles non linéaires utilisées pour estimer le ux atmosphérique global. Les équations primitives sont une version simpliée des équations de Navier-Stokes. Elles sont applicables dans le cas d'un uide sur la surface d'une sphère en supposant que la composante verticale du mouvement est beaucoup moins importante que la composante horizontale du mouvement et que la couche du uide est très mince par rapport au rayon de la sphère.

Si nous regardons la modélisation faite pour les uides dans la section 1.2, nous avons négligé un eet important qui est la gravité terrestre qui a une grande inuence dans l'étude des uides géophysiques. Dans la nature, l'apparition de la stratication due à la densité variable du uide, provoque le couplage entre les équations de Navier-Stokes et les équations de transport de la chaleur (ou stratication de la densité).

Nous pouvons également mentionner les phénomènes dus à la stratication, qui ne peuvent pas s'expliquer simplement par l'équation du mouvement rapide du uide en rotation, et qui sont observés par de nombreux océanographes. C'est le phénomène "des eaux mortes" (pour une description, nous pouvons suggérer au lecteur la référence [START_REF] Cushman-Roisin | Introduction to geophysical uid dynamics[END_REF]). Il arrive qu'un bateau subisse une forte résistance dans son mouvement alors que l'eau à la surface est apparemment très calme. La cause est la présence de vagues internes. Le bateau navigue sur une mince couche d'eau relativement douce située sur une couche d'eau très salée. Il crée des vagues interne à l'interface, invisibles à la surface mais de grande énergie, provoquant ainsi la résistance au mouvement du bateau.

Pour décrire le mouvement des uides géophysiques à l'échelle, nous considérons deux phénomènes très diérents : la rotation tendant à une distribution en colonnes verticale et la stratication, tendant à maintenir une distribution en couches horizontales de même densité. En utilisant la conservation de masse, la quantité de mouvement et l'approximation de Boussinesq, nous obtenons le système des équations primitives (1.4.13)

               ∂ t U + U.∇U -ν∆U + T F r = -∇p, ∂ t T + U.∇T -ν ′ ∆T = 0, div U = 0,
U/ t=0 = U 0 , T /t=0 = T 0 , où U est le champ de vitesse, T est la température potentielle et p est la pression. Les paramètres ν et ν ′ sont respectivement la viscosité cinématique et la diusivité thermique, F r est le nombre Froude.

Chapter 2

Historique des résultats et contributions de la thèse (Version Française)

Dans le cadre de cette thèse, nous nous intéressons à des systèmes issus de la mécanique des uides géophysiques newtoniens. Dans une première partie, on considère des approximations hydrostatiques des uides géophysiques newtoniens, à savoir les équations de Navier-Stokes dans leur version hyperbolique, les équations de la magnéto-hydrodynamique et les équations primitives, dans des domaines minces. Dans une deuxième partie, nous allons étudier les systèmes magnéto-hydrodynamique dans un cadre anisotrope dans tout l'espace de dimension 3.

On commencera notre étude par des modèles de uides géophysiques dans un domaine mince complété par la condition de Dirichlet au bord, de sorte que l'étendue verticale du domaine est négligeable devant son homologue horizontale. Dans ce cas, la viscosité remise à l'échelle n'est pas isotrope. On utilisera donc des viscosités anisotropes (viscosités turbulentes). L'idée principale est de prendre des espaces invariants par changement d'échelle tels que les espaces de Besov et Sobolev. L'objectif est d'eectuer un changement d'échelle an que nous soyons proches de la limite de notre domaine d'étude. Le changement considéré pour nos données est U (t, x, y) = u ϵ (t, x, y ϵ ), ϵv ϵ (t, x, y ϵ ) où ϵ est la largeur du domaine. La disparition de la viscosité dans la limite combinée aux conditions de Dirichlet aux bords du domaine engendre l'apparition de couches limites. Les équations qui décrivent l'évolution du uide dans des couches limites minces ont été la découverte de Prandtl [START_REF] Prandtl | Uber Flussigkeitsbewegung bei sehr kleiner Reibung[END_REF] en 1904 pour expliquer l'écart entre les conditions aux limites vériées par un uide idéal et un uide visqueux à viscosité évanescente.

Nos modèles sont étudiés dans la première partie, dans un cadre de couches limites ayant une faible viscosité et diusivité magnétique (ν = ϵ 2 et σ = ϵ 2 ) et sont aussi dits à viscosité évanescente. En utilisant un changement d'échelle sur nos solutions, on obtient des systèmes anisotropes. Par un passage à la limite (ϵ → 0), ces systèmes anisotropes tendent vers des équations hydrostatiques de type Prandtl.

Dans un cadre anisotrope, où la viscosité ainsi que la diusivité magnétique horizontale sont faibles par rapport à leurs homologues verticales, l'intérêt est d'obtenir des preuves d'existence des solutions fortes dans des espaces qui sont presque optimaux. On rappelle qu'un espace est dit optimal ou critique s'il est invariant par changement d'échelle pour les systèmes considérés, c'est à dire que si u(t, x) est une solution de notre équation Navier-Stokes hyperbolique, alors u λ (t, x) = λu(λ 2 t, λx) et p λ (t, x) = λ 2 p(λ 2 t, λx) est aussi une solution. Dans notre cas, les espaces critiques dans lesquels on travaillera seront l'espace de Besov B 1 2 ,0 déni par: Dans la deuxième partie de cette thèse, nous étudions le système magnéto -hydrodynamique dans tout l'espace R 3 . Dans ce cadre, on a obtenu deux résultats d'existence de solutions fortes globales pour ce système magnéto-hydrodynamique. En eet, il s'agissait d'étudier le cas où la dérivée verticale de nos données initiales satisfait une condition nonlinéaire de petitesse.

La version hyperbolique des équations de Navier-Stokes

Avant de commencer à présenter les résultats de cette thèse sur le modèle Navier-Stokes hyperbolique, on commence par rappeler quelques résultats fondamentaux sur l'existence, la régularité et l'unicité connus pour ce type d'équations.

Rappel sur les résultats connus d'existence et de régularité des solutions

Brenier, Natalini et Puel dans [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF] ont considéré pour la première fois la version hyperbolique de Navier-Stokes (1.4.5) sur R + × T 2 , où T 2 est le tore bidimensionnel R 2 /Z 2 . On rappelle que l'équation est donnée par (2.1.1)

     τ ∂ 2 t u τ + ∂ t u τ + u τ .∇u τ -ν∆u τ = -∇p τ , div u τ = 0, u τ (0, x) = u τ 0 (x), ∂ t u τ (0, x) = u τ 1 (x).
Cette équation, peut être réécrite sous la forme:

(2.1.2)

               ∂ t u τ + div (V τ ) = -∇p τ , √ τ ∂ t V τ + ν √ τ ∇u τ = - 1 √ τ V τ -u τ ⊗ u τ , div u τ = 0, u τ (0, x) = u τ 0 (x), V τ (0, x) = V τ 0 (x).
Ils ont démontré que si les données initiales (u τ 0 , V τ 0 ) sont petites dans H 2 (T 2 ) 2 × H 1 (T 2 ) 4 alors ils arrivent à obtenir un résultat d'existence globale des solutions, ainsi que la convergence de ces solutions vers les solutions de Navier-Stokes avec une donnée initiale régulière. Dans leur résultat, les auteurs montrent que cette convergence n'est pas seulement formelle. Le résultat obtenu dans [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF] est le suivant Théorème 2.1.1. Soit T ≥ 0 et u 0 un champ de vecteurs régulier de divergence nulle sur le tore T 2 . Soit τ > 0 et (u τ 0 , V τ 0 ) une suite de données initiales pour le système (2.1.2). On suppose qu'il existe une constante C positive indépendante de τ telle que

∥u τ 0 ∥ H 1 (T 2 ) ≤ C, ∥V τ 0 ∥ H 2 (T 2 ) ≤ C √ τ , et ∥u τ 0 ∥ H 2 (T 2 ) ≤ C 0 K s √ τ , ∥u τ 0 -u 0 ∥ 2 L 2 (T 2 ) ≤ C √ τ ,
où 0 < C 0 < 1 et K s est la constante intervenant dans l'inégalité de Sobolev sur H 2 (T). Si u est la solution de Navier-Stokes avec u 0 donnée initiale, alors il existe une constante C T telle que sup

t∈[0,T ] ∥u τ -u∥ 2 L 2 (T 2 ) ≤ C T √ τ .
On rappelle que l'espace de Sobolev a pour dénition dans R n

H s (R n ) = f ∈ S ′ (R n ) : f ∈ L 1 loc (R n ), R n (1 + |ξ| 2 ) s | f (ξ)| 2 dξ < +∞ ,
où S ′ est l'espace des distributions tempérées dans R n . On dénit la norme dans H s par ∥f ∥ H s :=

R n (1 + |ξ| 2 ) s | f (ξ)| 2 dξ 1 2 .
Pour prouver leur résultat, ils ont utilisé la méthode d'énergie hyperbolique et l'énergie modulée de Dafermos pour la convergence. L'énergie obtenue en multipliant l'équation (2.1.1) par u τ + 2τ ∂ t u τ puis en intégrant en espace est

E τ (t) = T 2 1 2 |u τ (t) + τ ∂ t u τ (t)| 2 + τ 2 2 |∂ t u τ (t)| 2 + τ |∇u τ (t)| 2 dx.
An qu'ils puissent avoir des informations sur la convergence, ils ont modulé cette énergie par une solution u de l'équation Navier-Stokes, obtenant l'énergie modulée de Dafermos

E τ,u (t) = T 2 1 2 |u τ (t) -u(t) + τ ∂ t u τ (t)| 2 + τ 2 2 |∂ t u τ (t)| 2 + τ |∇u τ (t)| 2 dx.
Cette énergie permet de contrôler la norme ∥u τ (t) -u(t)∥ L 2 .

La méthode que les auteurs utilisent pour prouver leur résultat reste restreinte au cadre bidimensionnel et demande beaucoup de régularité sur les données initiales.

Une amélioration de ce résultat a été faite par Paicu et Raugel dans [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | A hyperbolic singular perturbation of the Navier-Stokes equations in R 2[END_REF], qui ont approché les équations de Navier-Stokes avec force extérieure f qui peut dépendre du temps par une perturbation hyperbolique ∂ t u + u.∇u -∆u = -∇p + f. grâce à la même méthode d'énergie introduite dans [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF] et une inégalité de type Strichartz sur les hautes fréquences, les auteurs obtiennent des résultats d'existence globale et d'unicité pour ce type d'équation avec des données initiales dans H 1 (R 2 ) 2 × L 2 (R 2 ) 2 . Pour la convergence, les auteurs obtiennent des résultats qui améliorent ceux de Brenier, Natalini et Puel.

Plus précisément, ils obtiennent les résultats suivants. Pour simplier, on considère que la force extérieure f est nulle Théorème 2.1.2. Soit τ 0 > 0, il existe une constante strictement positive K telle que, si 0 < τ < τ 0 et si les vecteurs à divergence nulle

u τ 0 ∈ H 1 (R 2 ) 2 , u τ 0 ∈ L 2 (R 2 ) 2 satisfont ∥u τ 0 ∥ L 2 + ∥u τ 1 ∥ L 2 + ∥∇u τ 0 ∥ L 2 ≤ K,
alors l'équation (2.1.1) admet une solution unique intégrale globale

(u τ , ∂ t u τ ) ∈ C 0 (R + , H 1 (R 2 ) 2 ) × C 0 (R + , L 2 (R 2 ) 2 ).
Lorsqu'on fait converger τ vers 0, la limite formelle du système (2.1.1) est donnée par le système de Navier-Stokes. Dans le théorème suivant, Paicu et Raugel montrent que cette limite n'est pas seulement formelle.

Théorème 2.1.3. Pour tous nombres strictement positifs R et T , il existe un nombre strictement positif τ 1 = τ 1 (R, T ) tel que, pour 0 < τ < τ 1 , si le couple de vecteurs à divergence nulle

(u τ , ∂ t u τ ) ∈ H 1 (R 2 ) 2 , u τ 0 ∈ L 2 (R 2 ) 2 vérie ∥u τ 0 ∥ L 2 + √ τ ∥u τ 1 ∥ L 2 ≤ R,
alors le système (2.1.1) admet une solution unique intégrale

(u τ , ∂ t u τ ) ∈ C 0 (R + , H 1 (R 2 ) 2 × C 0 (R + , L 2 (R 2 ) 2 ).
Pour tout 0 ≤ t ≤ T ,

√ τ ∥∂ t t(u τ (t) -u(t)) ∥ L 2 + ∥t(u τ (t) -u(t))∥ H 1 ≤ τ e K ,
où K est une constante qui ne dépend que de R et T (voir théorème 3 [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF]).

Dans le cadre de deux dimensions et trois dimensions, on peut aussi citer les travaux de Hachicha dans [START_REF] Hachicha | Approximations hyperboliques des équations de Navier-Stokes[END_REF], qui a obtenu un résultat d'existence globale et d'unicité des solutions pour le système (2.1.1) avec des données initiales bien choisies. Le résultat en dimension 2 est le suivant Théorème 2.1.4. Soient 0 < s, δ < 1 et u 0 ∈ H s (R 2 ) 2 un champ de vecteur à divergence nulle. Soit (u τ 0 , u τ 1 )| τ >0 ∈ H 1+δ (R 2 ) 2 × H δ (R 2 ) 2 une suite de données initiales à divergence nulle du système (2.1.1). Supposons que les conditions suivantes soient vériées :

       ∥u τ 0 -u 0 ∥ L 2 + τ ∥u τ 1 ∥ L 2 + τ 1 2 ∥u τ 0 ∥ Ḣ1 = O(τ s 2 ), τ 1+δ 2 ∥u τ 0 ∥ Ḣ1+δ + τ δ 2 ∥u τ 0 ∥ Ḣδ = O(τ s 2 ), τ 1+ δ 2 ∥u τ 1 ∥ Ḣδ = O(1)
. Alors, si τ est assez petit, l'équation (2.1.1) admet une unique solution globale u τ qui converge, en norme L ∞ loc (R + ; L 2 (R 2 ) 2 ), lorsque τ tend vers 0, vers l'unique solution forte u de Navier-Stokes, avec donnée initiale u 0 . De plus, pour tout T > 0, il existe une constante C T ; qui ne dépend que de T et u, telle que

sup t∈[0;T ] R 2 |u τ -u| 2 dx ≤ C T τ ( s 2 ) -.
En dimension 3, l'auteur a imposé une condition de petitesse supplémentaire sur la donnée initiale u τ 0 . Elle obtient un résultat analogue à celui de la dimension 2.

Théorème 2.1.5. Soient 0 < s, δ < 1 et u 0 ∈ H s+ 1 2 (R 3 ) 3 un champ de vecteur à divergence nulle. Soit (u τ 0 , u τ 1 )/ τ >0 ∈ H 3 2 +δ (R 3 ) 3 × H 1 2 +δ (R 3 ) 3 une suite de données initiales à divergence nulle du système (2.1.1) telle que ∥u τ 0 ∥ Ḣ 1 2 < 1 16 . Supposons que les conditions suivantes soient vériées

         ∥u τ 0 -u 0 ∥ Ḣ 1 2 + τ ∥u τ 1 ∥ Ḣ 1 2 + τ 1 2 ∥u τ 0 ∥ Ḣ 3 2 = O(τ s 2 ), τ 1+δ 2 ∥u τ 0 ∥ Ḣ 3 2 +δ + τ δ 2 ∥u τ 0 ∥ Ḣ 1 2 +δ = O(τ s 2 ), τ 1+ δ 2 ∥u τ 1 ∥ Ḣ 1 2 +δ = O(1)
. Alors, si τ est assez petit, l'équation (2.1.1) admet une unique solution globale u τ qui converge, en norme L ∞ loc (R + ; Ḣ 1 2 (R 3 ) 3 ), lorsque τ tend vers 0, vers l'unique solution forte u de Navier-Stokes, avec donnée initiale u 0 . De plus, pour tout T > 0, il existe une constante C T qui ne dépend que de T et de u, telle que

sup t∈[0;T ] R 3 |Λ 1 2 (u τ -u)| 2 dx ≤ C T τ ( s 2 ) -.
L'idée principale de la preuve est d'utiliser la méthode d'énergie hyperbolique inspirée du papier de Brenier, Natalini et Puel dans [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF]. On rappelle que l'espace de Sobolev homogène est déni pour tous s ∈ R par

Ḣs (R n ) = f ∈ S ′ (R n ) : f ∈ L 1 loc (R n ), R n |ξ| 2s | f (ξ)| 2 dξ < +∞ ,
où S ′ est l'espace des distributions tempérées dans R n . On dénit la semi-norme dans H s par ∥f ∥ Ḣs :=

R n |ξ| 2s | f (ξ)| 2 dξ 1 2 .

Contribution de la thèse

Dans le chapitre 3 de cette thèse, pour ϵ > 0 et τ > 0 on considère le système suivant :

(HNS)

       τ ∂ 2 t U τ + ∂ t U τ + U τ .∇U τ -ϵ 2 ∆U τ + ∇P τ = 0, div U τ = 0, U τ /t=0 = U τ 0 , ∂ t U τ /t=0 = U τ 1 ,
Tous les résultats qu'on a cité précédemment, sont obtenus lorsque leur domaine Ω est R n ( n = 2, 3) ou T n . Dans notre cas, on a voulu étudier le système lorsque le uide évolue dans un domaine mince avec des conditions de Dirichlet au bord. On note S ϵ = {(x, y) ∈ R 2 : 0 < y < ϵ}, tel que ϵ est la largeur du domaine. L'avantage de travailler dans un domaine mince complété par les conditions de Dirichlet au bord est de faire apparaître dans notre étude les équations de type Prandtl dans leur version hyperbolique, c'est à dire qu'on va avoir un terme de type ∂ 2 t dans l'équation de Prandtl classique. L'idée principale du résultat est d'obtenir l'existence et l'unicité des solutions pour le système (HNS) dans un domaine mince. Pour simplier notre système, nous éliminons la dépendance τ , pour cela nous eectuons la remise à l'échelle

U τ (t, X) = τ -1 2 U (τ -1 t, τ -1 2 X), P τ (t, X) = τ -1 P (τ -1 t, τ -1 2 X). (2.1.3)
On remplace dans le système (HNS) pour obtenir (2.1.4)

             ∂ 2 t U + ∂ t U + U • ∇U -ϵ 2 ∆U + ∇P = 0, div U = 0, U /t=0 = √ τ U τ 0 ( √ τ X) = U 0 , ∂ t U /t=0 = τ 3 2 U τ 1 ( √ τ X) = U 1
ce système est complété par les conditions de Dirichlet au bord U/ y=0 = 0 et U/ y=ϵ = 0 et par la donnée initiale

U |t=0 = U ϵ 0 = u 0 x, y ϵ , ϵv 0 x, y ϵ .
On va chercher des solution à notre système de la forme (2.1.5)

     U (t,
x, y) = u ϵ t, x, y ϵ , ϵv ϵ t, x, y ϵ , P (t, x, y) = p ϵ t, x, y ϵ .

Soit S := (x, y) ∈ R 2 : 0 < y < 1 . Après un changement naturel d'échelle le système (4.1.4) devient le système de Navier-Stokes hyperbolique anisotrope mis à l'échelle suivant:

(2.1.6)

                 ∂ 2 t u ϵ + ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ y u ϵ -ϵ 2 ∂ 2 x u ϵ -∂ 2 y u ϵ + ∂ x p ϵ = 0, dans ]0, ∞[×S ϵ 2 (∂ 2 t v ϵ + ∂ t v ϵ + u ϵ ∂ x v ϵ + v ϵ ∂ y v ϵ -ϵ 2 ∂ 2 x v ϵ -∂ 2 y v ϵ ) + ∂ y p ϵ = 0, dans ]0, ∞[×S ∂ x u ϵ + ∂ y v ϵ = 0, dans ]0, ∞[×S (u ϵ , v ϵ ) | t=0 = (u 0 , v 0 ) and ∂ t (u ϵ , v ϵ ) | t=0 = (u 1 , v 1 ) , dans S (u ϵ , v ϵ ) | y=0 = (u ϵ , v ϵ ) | y=1 = 0.
Prenant ϵ → 0 dans le système (2.1.6), on obtient l'équation de Prandtl hyperbolique

(2.1.7)

                 ∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = 0, dans ]0, ∞[×S ∂ y p = 0, dans ]0, ∞[×S ∂ x u + ∂ y v = 0, dans ]0, ∞[×S u| t=0 = u 0 , dans S ∂ t u| t=0 = u 1 , dans S,
où la vitesse U = (u, v) satisfait la condition aux limites de non-glissement de Dirichlet

(u, v) | y=0 = (u, v) | y=1 = 0.
Le but est de justier le passage à la limite du système (2.1.6) vers le système (2.1.7) lorsqu'on considère des données initiales analytiques. Travailler avec des données analytiques permet de surmonter la diculté du terme non-linéaire v∂ y u dans (2.1.7), dans le cas général ou on n'impose pas d'hypothèses structurelles sur les données initiales.

Notre premier résultat consiste à prouver que le système de Prandtl (2.1.7) avec des données initiales analytiques et petites est globalement bien posé. Théorème 2.1.6. Soient a > 0 et s ∈]0, 1[. Il existe une constante c 0 > 0 susamment petite, telle que pour (u 0 , u 1 ) de données initiales à divergence nulle vériant la condition de compatibilité 1 0 u 0 dy = 0, si les données initiales satisfont la condition de petitesse e a|Dx| (u 0 + u 1 ) 1.8) alors le système (2.1.7) admet une solution globale unique u satisfaisant l'estimation (2.1.9)

B 1 2 + e a|Dx| ∂ y u 0 B 1 2 + ∥e a|Dx| u 1 ∥ B 1 2 ≤ c 0 a, (2.
1 2 ∥e Rt (u + ∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ y u ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L2 t (B s ) + 1 2 ∥e Rt (∂ t u) ϕ ∥ L∞ t (B s ) ≤ C ∥e a|Dx| ∂ y u 0 ∥ B s + ∥e a|Dx| (u 0 + u 1 )∥ B s + ∥e a|Dx| u 1 ∥ B s ,
où C = C(s) et on dénit w ϕ par (2.1.10) w ϕ (t, x, y) = e ϕ(t,Dx) w(t, x, y) ≜ F -1 h (e ϕ(t,ξ) w(t, ξ, y)), ϕ(t, ξ) = (a -λθ(t))|ξ|, La quantité θ(t) décrit l'évolution de la bande d'analyticité au cours du temps, cette quantité est positive pour tout t ∈ R * + satisfait l'équation θ(t) = ∥∂ y u ϕ ∥ 

1 2 ∥(R 1 + ∂ t R 1 , ϵ(R 2 + ∂ t R 2 )) φ ∥ L∞ t (B 1 2 
)

+ ∥∂ y (R 1 , ϵR 2 ) φ ∥ L∞ t (B 1 2 
)

+ ϵ∥∂ x (R 1 , ϵR 2 ) φ ∥ L∞ t (B 1 2 
)

+ 1 2 ∥(∂ t R 1 ) φ , ϵ(∂ t R 2 ) φ ∥ L∞ t (B 1 2 
)

+ ∥(∂ t R 1 , ϵ∂ t R 2 ) φ ∥ L2 t (B 1 2 
)

où C = C(s) et R 1 = u ϵ -u, R 2 = v ϵ -v, (2.1.15) et v 0 est déterminé d'après u 0 passant par ∂ x u + ∂ y v = 0 et v 0 | y=0 = v 0 | y=1 = 0, et (R 1 φ , ϵR 2 
φ ) est donné par (2.1.10).

Remarque 2.1.2. L'idée principale de la preuve de ces théorèmes ci-dessus est d'utiliser des estimations d'énergie analytiques, qui sont motivées par [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] et qui proviennent de [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF].

Approximation hydrostatique des Équations de la magnétohydrodynamique

Le but de cette section est de présenter les résultats obtenus lors de cette thèse sur une approximation hydrostatique des équations de la magnéto-hydrodynamique dans un domaine mince complété avec des conditions de Dirichlet au bord. Avant d'exposer les résultats, on commence par rappeler les résultats fondamentaux sur l'existence ainsi que la régularité et l'unicité des solutions de ces équations.

Résultats connus

On commence par l'origine de ces approximations, qui ont été obtenues à l'issue d'une dérivation systématique des modèles de couche limite en magnéto-hydrodynamique par D. Gérard-Varet et M. Prestipino dans [START_REF] Gérard-Varet | Formal derivation and stability analysis of boundary layer models in MHD[END_REF]. En eet, ces derniers ont considéré le système magnétohydrodynamique dans un sous-espace Ω de R 3 donné par (2.2.1)

           ∂ t U + U ∇U - 1 Re ∆U = -∇P + SB.∇B, ∂ t B -curl(U × B) - 1 Rm ∆B = 0, div U = div B = 0.
Les paramètres Re et Rm représentent les nombres de Reynolds hydrodynamique et magnétique respectivement. On suppose que ces paramètres sont très grands (Re >> 1, and Rm ∼ Re). Ce choix de régime des paramètres est nécessaire pour la création d'une couche limite. Le paramètre S est un paramètre de couplage donné par

S = B 2 0 µρV 2 = Ha ReRm , où Ha = B 0 L( σ η ) 1 2 ,
où le paramètre Ha est le nombre de Hartmann, B 0 et V sont les amplitudes typiques pour les champs magnétiques et de vitesse, L est une échelle de longueur typique de l'écoulement, ρ correspond à la densité du uide, µ est sa perméabilité magnétique et η est le coecient de viscosité.

Dans notre étude, on va s'intéresser à des uides qui évoluent dans des domaines minces à deux dimensions par exemple Ω 1 = R × (0, 1). On considère les solutions du système (2.2.1) (2.2.2) Le paramètre ϵ désigne la taille de la couche limite, c'est un paramètre très petit (ϵ << 1).

           U (t,
Remarque 2.2.1. Notons que la condition de divergence nulle sur U et B, reste toujours valide par la remise à l'échelle des composantes verticales par le facteur ϵ. En eet

div U = ∂ x u ϵ + ϵ 1 ϵ ∂ y v ϵ = ∂ x u ϵ + ∂ y v ϵ = 0, div B = ∂ x b ϵ + ϵ 1 ϵ ∂ y c ϵ = ∂ x b ϵ + ∂ y c ϵ = 0.
Si on remplace U , B et P par les solutions proposées dans (2.2.2) dans le système (2.2.1), on obtient

∂ t U + U • ∇U - 1 Re ∆U + ∇P -SB • ∇B = ∂ t u ϵ + u ϵ ∂ x u ϵ + ϵv ϵ 1 ϵ ∂ y u ϵ - 1 Re ∂ 2 x u ϵ - 1 Re 1 ϵ 2 ∂ 2 y u ϵ + ∂ x p ϵ -Sb ϵ ∂ x b ϵ -Sϵc ϵ 1 ϵ ∂ y b ϵ , ∂ t ϵv ϵ + u ϵ ∂ x ϵv ϵ + ϵv ϵ 1 ϵ ∂ y ϵv ϵ - 1 Re ∂ 2 x ϵv ϵ - 1 Re 1 ϵ 2 ∂ 2 y ϵv ϵ + 1 ϵ ∂ y p ϵ -Sb ϵ ∂ x ϵc ϵ -Sϵc ϵ 1 ϵ ϵ∂ y c ϵ = (0, 0), et ∂ t B + U • ∇B -B • ∇U - 1 Rm ∆B = ∂ t b ϵ + u ϵ ∂ x b ϵ + ϵv ϵ 1 ϵ ∂ y b ϵ - 1 Re ∂ 2 x b ϵ - 1 Re 1 ϵ 2 ∂ 2 y b ϵ -b ϵ ∂ x u ϵ -ϵc ϵ 1 ϵ ∂ y u ϵ , ∂ t ϵc ϵ + u ϵ ∂ x ϵc ϵ + ϵv ϵ 1 ϵ ∂ y ϵc ϵ - 1 Re ∂ 2 x ϵc ϵ - 1 Re 1 ϵ 2 ∂ 2 y ϵc ϵ -b ϵ ∂ x ϵv ϵ -ϵc ϵ 1 ϵ ϵ∂ y v ϵ = (0, 0).
Donc le nouveau système est de la forme:

(2.2.3)

                           ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ y u ϵ - 1 Re ∂ 2 x u ϵ - 1 Re 1 ϵ 2 ∂ 2 y u ϵ = -∂ x p ϵ + Sb ϵ ∂ x b ϵ + Sc ϵ ∂ y b ϵ , ∂ t ϵv ϵ + ϵu ϵ ∂ x v ϵ + ϵv ϵ ∂ y v ϵ - ϵ Re ∂ 2 x v ϵ - 1 Re 1 ϵ ∂ 2 y v ϵ = - 1 ϵ ∂ y p ϵ + ϵSb ϵ ∂ x c ϵ + Sϵc ϵ ∂ y c ϵ , ∂ t b ϵ + u ϵ ∂ x b ϵ + v ϵ ∂ y b ϵ - 1 Re ∂ 2 x b ϵ - 1 Re 1 ϵ 2 ∂ 2 y b ϵ = b ϵ ∂ x u ϵ + c ϵ ∂ y u ϵ , ϵ∂ t c ϵ + ϵu ϵ ∂ x c ϵ + ϵv ϵ ∂ y c ϵ - 1 Re ϵ∂ 2 x c ϵ - 1 Re 1 ϵ ∂ 2 y c ϵ = ϵb ϵ ∂ x v ϵ + ϵc ϵ ∂ y v ϵ , ∂ x u ϵ + ∂ y v ϵ = 0, et ∂ x b ϵ + ∂ y c ϵ = 0.
ce système est complété par les conditions de Dirichlet au bord:

(u ϵ , v ϵ ) /y=0,1 = (b ϵ , c ϵ ) /y=0,1 = 0.
Dans ce qui suit, on suppose que la constante S = 1. On dénit la taille de notre couche par ϵ = 

                 ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ y u ϵ -ϵ 2 ∂ 2 x u ϵ -∂ 2 y u ϵ = -∂ x p ϵ + b ϵ ∂ x b ϵ + c ϵ ∂ y b ϵ , ϵ 2 ∂ t v ϵ + u ϵ ∂ x v ϵ + v ϵ ∂ y v ϵ -ϵ 2 ∂ 2 x v ϵ -∂ 2 y v ϵ = -∂ y p ϵ + ϵ 2 b ϵ ∂ x c ϵ + c ϵ ∂ y c ϵ , ∂ t b ϵ + u ϵ ∂ x b ϵ + v ϵ ∂ y b ϵ -ϵ∂ 2 x b ϵ -∂ 2 y b ϵ = b ϵ ∂ x u ϵ + c ϵ ∂ y u ϵ , ϵ ∂ t c ϵ + u ϵ ∂ x c ϵ + v ϵ ∂ y c ϵ -ϵ 2 ∂ 2 x c ϵ -∂ 2 y c ϵ = ϵ b ϵ ∂ x v ϵ + c ϵ ∂ y v ϵ ∂ x u ϵ + ∂ y v ϵ = 0, et ∂ x b ϵ + ∂ y c ϵ = 0.
Prenant la limite formelle de ϵ vers 0 dans le système (2.2.4), on obtient le système de type Prandtl suivant:

(2.2.5)

           ∂ t u + u∂ x u + v∂ y u -∂ 2 y u = -∂ x p + b∂ x b + c∂ y b, ∂ y p = 0, ∂ t b + u∂ x b + v∂ y b -∂ 2 y b = b∂ x u + c∂ y u, ∂ x u + ∂ y v = 0, and ∂ x b + ∂ y c = 0.
Le système (2.2.5) a fait l'objet de plusieurs études récentes, l'existence et la régularité des solutions globales et locales sont des questions diciles que les chercheurs ont essayé de prouver pour ce système. Cependant, Liu, Xie et Yang dans [START_REF] Liu | MHD boundary layers theory in Sobolev spaces without monotonicity I: Well-posedness theory[END_REF] ont réussi à prouver que ce système est bien posé localement dans l'espace de Sobolev sans demander aucune condition de monotocité sur la vitesse tangentielle. La seule hypothèse essentielle dans leur travail est que la composante horizontale du champ magnétique admet une borne inférieure positive. Ce résultat donne une bonne compréhension de la physique générale selon laquelle le champ magnétique stabilise la couche limite. D'autre part, lorsque les données initiales sont analytiques, N. Liu and P. Zhang dans [START_REF] Liu | Global small analytic solutions of MHD boundary layer equations[END_REF] ont prouvé un résultat d'existence et d'unicité globale des solutions pour le système magnétohydrodynamique en dimension deux dans l'espace supérieur R 2 + = {(x, y) : x ∈ R, y ∈ R + }. Avant d'énoncer leur résultat on rappelle que leur système est de la forme:

(2.2.6)

                         ∂ t u 1 + u 1 ∂ x u 1 + u 2 ∂ y u 1 -∂ 2 y u 1 = -∂ x p + b 1 ∂ x b 1 + b 2 ∂ y b 1 , ∂ t b 1 + u 1 ∂ x b 1 + u 2 ∂ y b 1 -κ∂ 2 y b 1 = b 1 ∂ x u 1 + b 2 ∂ y u 1 , ∂ x u 1 + ∂ y u 2 = 0, et ∂ x b 1 + ∂ y b 2 = 0, (u 1 , u 2 ) /y=0 = 0 et (∂ y b 1 , b 2 ) /y=0 = 0, lim y→+∞ u 1 = U 1 et lim y→+∞ b 1 = B 1 , u 1 / t=0 = u 1,0 , b 1 / t=0 = b 1,0 , où (u 1 , u 2 ) and (b 1 , b 2 )
représentent respectivement la vitesse du uide et le champ magnétique, le paramètre κ est une constante positive représentant le rapport entre le nombre de Reynolds hydrodynamique et le nombre de Reynolds magnétique, (U 1 , B 1 , p)(t, x) sont les traces des champs tangentiels et de la pression de l'écoulement sur la frontière et satisfont la loi de Bernoulli :

(2.2.7)

∂ t U 1 + U 1 ∂ x U 1 + ∂ x p = B 1 ∂ x B 1 , ∂ t B 1 + U 1 ∂ x B 1 = B 1 ∂ x U 1 .
Le but de leur travail est d'obtenir un résultat d'existence globale des solutions pour ce problème. Pour cela, ils ont déni pour toute constante Bκ , une fonction plateau χ ∈ C ∞ [0, ∞)

dénie par χ(y) = y si y ≥ 2, 0 si y ≤ 1,
et ont fait le changement de variable suivant :

u = u 1 -χ ′ (y)U et v = u 2 + χ(y)∂ x U, b = b 1 -χ ′ (y)B -Bκ et c = b 2 + χ(y)∂ x B, (2.2.8) où U = U 1 et B = B 1 -Bκ . Comme (u 1 , u 2 , b 1 , b 1 ) résout le système (2.2.6), alors (u, v, b, c) résout (2.2.9)                                    ∂ t u -∂ 2 y u -Bκ ∂ x b + u∂ x u -b∂ x b + v∂ y u -c∂ y b + χ ′ (U ∂ x u -B∂ x b) + χ ′ (∂ x U u -∂ x Bb) + χ(-∂ x U ∂ y u + ∂ x B∂ y b) + χ ′′ (U v -Bc) = M U , ∂ t b -κ∂ 2 y b -Bκ ∂ x u + u∂ x b -b∂ x u + v∂ y b -c∂ y u + χ ′ (U ∂ x b -B∂ x u) + χ ′ (∂ x Bu -∂ x U b) + χ(-∂ x U ∂ y b + ∂ x B∂ y u) + χ ′′ (Bv -U c) = M B , ∂ x u + ∂ y v = 0, and ∂ x b + ∂ y c = 0 (u, v) /y=0 = 0 and (∂ y b, c) /y=0 = 0, lim y→+∞ (u, v) = 0 and lim y→+∞ (b, c) = 0, u/ t=0 = u 0 = u 1,0 -χ ′ U 0 , b/ t=0 = b 0 = b 1,0 -χ ′ B 0 -Bκ , Les termes M U et M B sont supportés dans y ∈ [0, 2] pour tout t > 0.
Ces termes sont dénis par

M U = (1 -χ ′ )(∂ t U -Bκ ∂ x B) + χ ′′′ U + (1 -(χ ′ ) 2 + χχ ′′ )(U ∂ x U -B∂ x B), M B = (1 -χ ′ )(∂ t B -Bκ ∂ x U ) + χ ′′′ B + (1 -(χ ′ ) 2 -χχ ′′ )(U ∂ x B -B∂ x U ). (2.2.10) D'autre part, comme ∂ x u + ∂ y v = 0 et ∂ x b + ∂ y c = 0, alors il existe deux fonctions potentielles (φ, ψ) telle que (u, b) = ∂ y (φ, ψ) et (v, c) = -∂ x (φ, ψ).
Ces fonctions primitives peuvent avoir les conditions aux limites suivantes

(φ, ψ) /y=0 = 0 et lim y→+∞ (φ, ψ) = 0.
En intégrant les équations (2.2.9) satisfaites par (u, b) par rapport à la variable verticale y sur l'intervalle [y, ∞[, on obtient (2.2.11) 

                                             ∂ t φ -∂ 2 y φ -Bκ ∂ x ψ + u∂ x φ -b∂ x ψ + 2 ∞ y (∂ x φ∂ y u -∂ x ψ∂ y b)dy ′ + χ ′ (U ∂ x φ -B∂ x ψ) + 2 ∞ y χ ′′ (U ∂ x φ -B∂ x ψ)dy ′ + χ(-∂ x U u + ∂ x Bb) + 2χ ′ (∂ x U φ -∂ x Bψ) + 2 ∞ y χ ′′ (∂ x U φ -∂ x Bψ) = m U , ∂ t ψ -κ∂ 2 y ψ -Bκ ∂ x φ + u∂ x ψ -b∂ x φ + χ ′ (U ∂ x ψ -B∂ x φ) + χ(-∂ x U b + ∂ x Bu) = m B , φ /y=0 = ψ /y=0 = 0, and 
lim y→+∞ φ = lim y→+∞ ψ = 0, φ/ t=0 = φ 0 = - ∞ y u 0 dy ′ , ψ/ t=0 = ψ 0 = - ∞ y b 0 dy ′ , où (m U , m B ) = - ∞ y (M U , M B )dy ′ aussi supporté dans y ∈ [0,
où G 0 = u 0 + y 2⟨t⟩ φ 0 et H 0 = b 0 + y 2κ⟨t⟩ ψ 0 . Alors il existe des constante positives λ, a et ϵ 0 (λ, a, κ, δ) telle que pour ϵ ≤ ϵ 0 et l κ = κ(2-κ) 4 ∈]0, 1 4 ], le système (2.2.9) admet une solution unique globale (u, b) satisfaisant sup t∈[0,∞[ θ(t) ≤ δ 2λ .
La quantité θ(t) est une quantité clé qui nous permet de décrire l'évolution de la bande d'analyticité de (u, b). Dans ce cas, cette quantité est dénie par (2.2.15)

     θ(t) = ⟨t⟩ 1 4 ∥e Ψ ∂ y (G, H) ϕ (t)∥ B 1 2 ,0 + 1 √ ϵ ⟨t⟩ 5 4 ∥(U, B) ϕ (t)∥ B 1 2 h θ| t=0 = 0.
Ici la fonction de phase ϕ est dénie par

ϕ(t, ξ) = (δ -λθ(t))|ξ|,
et la fonction pondérée Ψ est déterminée par

Ψ(t, y) = y 2 8⟨t⟩ avec ⟨t⟩ = 1 + t.
Remarque 2.2.2. L'idée principale de la preuve du théorème ci-dessus consiste à utiliser les estimations d'énergie analytiques, qui sont motivées par [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] et qui proviennent de [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF]. 

h désigne l'espace de Besov B 3 2 2,1 (R h ) et l'espace B 1 2 h désigne l'espace de Besov B 1 2 2,1 (R h ).
Un deuxième résultat dans la direction des données analytiques pour le système magnétohydrodynamique en couche limite est le résultat de S. Li et F. Xie dans [START_REF] Li | Global solvability of 2D MHD boundary layer equations in analytic function spaces[END_REF]. Leur résultat concerne l'étude du caractère bien-posé global des solutions du système magnétohy-drodynamique (2.2.6) dans l'espace des fonctions analytiques. Dans ce travail, les auteurs s'intéressent au cas où (2.2.6). Par la loi de Bernoulli, leur terme de pression satisfait

B 1 = 1, κ = 1 et U 1 (t, x) = f (t) dans le système
∂ x p = -f ′ (t). Soit χ ∈ C ∞ [0, ∞) une fonction plateau dénie par χ(y) = 1 si y ≥ 2, 0 si y ≤ 1, , on note U = u 1 -f (t)χ(y). Alors (U, u 2 , b 1 , b 2 ) résout le système (2.2.17)            ∂ t U + (U + f (t)χ(y))∂ x U + u 2 ∂ y (U + f (t)χ(y)) -∂ 2 y U -b 1 ∂ x b 1 -b 2 ∂ y b 1 = m(t, y), ∂ t b 1 + ∂ y (u 2 b 1 -(U + f (t)χ(y))b 2 ) = ∂ 2 y b 1 , ∂ x U + ∂ y u 2 = 0, and ∂ x b 1 + ∂ y b 2 = 0, où m(t, y) = (1 -χ(y))f ′ (t) + f (t)χ ′′ (y).
Si on se place dans le cadre d'un écoulement de cisaillement on a que (u s (t, s), 0, 1, 0) est une solution triviale du système (2.2.17) avec u s (t, y) résolvant (2.2.18)

       ∂ t u s -∂ 2 y u s = m(t, y), u s (t, y)/ y=0 = 0 et lim y→+∞ u s (t, y) = 0, u s (t, y)/ t=0 = 0.
Cela nous permet de voir la solution du système (2.2.17) comme une perturbation (u, v, b, c) de (u s (t, y), 0, 1, 0). Cette solution est donnée par 

U = u s + u et u 2 = v, b 1 = 1 + b et b 2 = c. Par suite, le système (2.2.17) devient (2.2.19)                              ∂ t u + (u + u s + f (t)χ(y))∂ x u + v∂ y (u + u s + f (t)χ(y)) -∂ 2 y u -(1 + b)∂ x b -c∂ y b = 0, ∂ t b + (u + u s + f (t)χ(y))∂ x b -c∂ y (u + u s + f (t)χ(y)) -∂ 2 y b -(1 + b)∂ x u + v∂ y b = 0, ∂ x u + ∂ y v = 0, and ∂ x b + ∂ y c = 0, (u, v, ∂ y b, c)/ y=0 = 0 et lim y→+∞ (u, b) = 0, u(0, x, y) = u 0 = u 1,0 -f (0)χ(y) et b(0, x, y) = b 0 = b 1,0 -1. De la même manière, comme ∂ x u + ∂ y v = 0 et ∂ x b + ∂ y c = 0 il existe deux fonctions potentielles (φ, ψ) telles que (u, b) = ∂ y (φ, ψ) et (v, c) = -∂ x (φ, ψ).
                             ∂ t φ + (u + u s + f (t)χ(y))∂ x φ + 2 ∞ y ∂ y (u + u s + f (t)χ(y)).∂ x φdy -(1 + b)∂ x ψ -2 ∞ y ∂ y b.∂ x ψdy -∂ 2 y φ = 0, ∂ t ψ + (u + u s + f (t)χ(y))∂ x ψ -(1 + b)∂ x φ -∂ 2 y ψ = 0, φ /y=0 = ψ /y=0 = 0, and lim y→+∞ φ = lim y→+∞ ψ = 0, φ/ t=0 = φ 0 = - ∞ y u 0 dy ′ , ψ/ t=0 = ψ 0 = - ∞ y b 0 dy ′ .
Le résultat obtenu dans leur papier est le suivant Théorème 2.2.2 (S.Li et F.Xie). Soit δ > 0, et f ∈ H 1 (R + ) qui satisfait:

C f = ∞ 0 ⟨t⟩(|f (t)| + |f ′ (t)|)dt + ( ∞ 0 ⟨t⟩ 3 (f 2 (t) + (f ′ (t)) 2 )dt) 1 2 < ∞, (2.2.21) avec ⟨t⟩ = 1 + t et u 0 = ∂ y φ 0 , b 0 = ∂ y ψ 0 satisfaisant la condition de compatibilité ∞ 0 u 0 dy = ∞ 0 b 0 dy = 0. Supposons en outre que G 0 = u 0 + y 2⟨t⟩ φ 0 et H 0 = b 0 + y 2⟨t⟩ ψ 0 satisfont ∥e y 2 8 e 2δ|Dx| (u 0 , b 0 )∥ B 1 2 ,0 < ϵ et ∥e y 2 8 e δ|Dx| (G 0 , H 0 )∥ B 1 2 ,0 ≤ ∞, (2.2.22)
pour un ϵ susamment petit. Alors le système (2.2.19) admet une solution globale unique (u, b), qui satisfait:

∥e y 2 8⟨t⟩ e δ/2|Dx| (u, b)∥ L ∞ (R + ;B 1 2 ,0 ) + ∥e y 2 8⟨t⟩ e δ/2|Dx| ∂ y (u, b)∥ L 2 (R + ;B 1 2 ,0 ) ≤ C∥e y 2 8 e 2δ|Dx| (u 0 , b 0 )∥ B 1 2 ,0 , (2.2.23) où C est une constante indépendante de C f .
Remarque 2.2.4. L'espace utilisé pour obtenir ce résultat est l'espace de Besov déni par (2.2.24) ∥u∥

Lp (T 0 ,T ;B s,0 ) ≜ q∈Z 2 qs T T 0 ∆ h q u(t) p L 2 + dt 1 p .
Remarque 2.2.5. L'idée principale de la preuve du théorème ci-dessus consiste à utiliser les estimations d'énergie analytiques, qui sont motivés par [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] et à dénir la fonction de phase

ϕ(t, ξ) = (δ -λθ(t))|ξ|.
La quantité θ(t) est une quantité clé qui nous permet de décrire l'évolution de la bande d'analyticité de (u, b).

Énoncé des résultats sur le système magnétohydrodynamique

Dans le chapitre 4 de cette thèse, pour ϵ > 0, on considère le système suivant (MHD)

           ∂ t U + U • ∇U -ϵ 2 ∆U + ∇P = B • ∇B, ∂ t B + U • ∇B -ϵ 2 ∆B = B • ∇U, div U = div B = 0, U /t=0 = U 0 , B /t=0 = B 0 ,
Tous les résultats qu'on a cité, sont obtenus lorsque le domaine Ω est

R 2 + = {(x, y) : x ∈ R, y ∈ R + }.
Dans notre cas, on a étudié le système magnétohydrodynamique pour un uide qui évolue dans domaine mince avec des condition de Dirichlet au bord, notre domaine d'étude est le suivant 

S ϵ = {(x, y) ∈ R 2 : 0 < y <
(U, B)| y=0 = 0 et (U, B)| y=ϵ = 0
Nos données initiales sont de la forme suivante

U ϵ |t=0 = U ϵ 0 = u 0 x, y ϵ , ϵv 0 x, y ϵ dans S ϵ , et B ϵ |t=0 = B ϵ 0 = b 0 x, y ϵ , ϵc 0 x, y ϵ dans S ϵ .
On va chercher des solutions pour notre système de la forme (2.2.25) 

           U (t, x, y) = u ϵ t,
                                 ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ y u ϵ -ϵ 2 ∂ 2 x u ϵ -∂ 2 y u ϵ + ∂ x p ϵ = b ϵ ∂ x b ϵ + c ϵ ∂ y b ϵ , in ]0, ∞[×S ϵ 2 ∂ t v ϵ + u ϵ ∂ x v ϵ + v ϵ ∂ y v ϵ -ϵ 2 ∂ 2 x v ϵ -∂ 2 y v ϵ + ∂ y p ϵ = ϵ 2 (b ϵ ∂ x c ϵ + c ϵ ∂ y c ϵ ) , in ]0, ∞[×S ∂ t b ϵ + u ϵ ∂ x b ϵ + v ϵ ∂ y b ϵ -ϵ 2 ∂ 2 x b ϵ -∂ 2 y b ϵ = b ϵ ∂ x u ϵ + c ϵ ∂ y u ϵ , in ]0, ∞[×S ϵ ∂ t c ϵ + u ϵ ∂ x c ϵ + v ϵ ∂ y c ϵ -ϵ 2 ∂ 2 x c ϵ -∂ 2 y c ϵ = ϵ (b ϵ ∂ x v ϵ + c ϵ ∂ y v ϵ ) , in ]0, ∞[×S ∂ x u ϵ + ∂ y v ϵ = 0, in ]0, ∞[×S ∂ x b ϵ + ∂ y c ϵ = 0, in ]0, ∞[×S (u ϵ , v ϵ , b ϵ , c ϵ ) | t=0 = (u 0 , v 0 , b 0 , c 0 ) , in S (u ϵ , v ϵ , b ϵ , c ϵ ) | y=0 = (u ϵ , v ϵ , b ϵ , c ϵ ) | y=1 = 0.
Par un passage à la limite formelle de ϵ → 0 dans le système (2.2.26), on obtient l'équation de Prandtl magnétique

(2.2.27) 

                           ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = b∂ x b + c∂ y b, in ]0, ∞[×S ∂ y p = 0, in S×]0, ∞[ ∂ t b + u∂ x b + v∂ y b -∂ 2 y b = b∂ x u + c∂ y u, in ]0, ∞[×S ∂ x u + ∂ y v = 0, in ]0, ∞[×S ∂ x b + ∂ y c = 0, in ]0, ∞[×S u| t=0 = u 0 , in S b| t=0 = b 0 , in S,
(u 0 , v 0 , b 0 , c 0 ) = (U 0 , B 0 ) satisfaisant ∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| b 0 ∥ B 1 2 ≤ c 0 a, (2.
(U, B) = (u, v, b, c) satisfaisant ∥e Rt (u ϕ , b ϕ )∥ L∞ (R + ,B 1 2 ) + ∥e Rt ∂ y (u ϕ , b ϕ )∥ L2 (R + ,B 1 2 ) ≤ C∥e a|Dx| (u 0 , b 0 )∥ B 1 2 , (2.2.29) où C = C(s) et (u ϕ , b ϕ ) sont donnés par (2.2.30) (u ϕ , b ϕ )(t, x, y) = e ϕ(t,Dx) (u(t, x, y), b(t, x, y)) ≜ F -1 h (e ϕ(t,ξ) ( u(t, ξ, y), b(t, ξ, y))) ϕ(t, ξ) = (a -λθ(t))|ξ|.
La quantité θ(t) décrit l'évolution de la diminution de la bande d'analyticité au cours du temps, cette quantité est positive pour tout

t ∈ R * + satisfait l'équation θ(t) = ∥∂ y (u ϕ , b ϕ )∥ B 1 2 et lorsque t = 0 on a θ(0) = 0.
R est une constante déterminée par l'inégalité de Poincaré pour la bande S, l'espace fonctionnel utilisé pour obtenir ce résultat est l'espace de Besov du type Chemin-Lerner. 

∥u∥ Lp T (B s (S)) ≜ q∈Z 2 qs T 0 ∆ h q u(t) p L 2 dt
(u ϵ 0 , v ϵ 0 , b ϵ 0 , c ϵ 0 ) = (U ϵ 0 , B ϵ 0 ) satisfaisant ∥e a|Dx| (u 0 , ϵv 0 )∥ B 1 2 + ∥e a|Dx| (b 0 , ϵc 0 )∥ B 1 2 ≤ c 1 a, ( 2 
+ ∥e Rt (b φ , ϵc φ )∥ L∞ (R + ,B 1 2 ) + ∥e Rt ∂ y (u φ , ϵv φ )∥ L2 (R + ,B 1 2 ) + ∥e Rt ∂ y (b φ , ϵc φ )∥ L2 (R + ,B 1 2 ) + ϵ∥e Rt ∂ x (u φ , ϵv φ )∥ L2 (R + ,B 1 2 ) + ϵ∥e Rt ∂ x (b φ , ϵc φ )∥ L2 (R + ,B 1 2 ) ≤ C ∥e a|Dx| (u 0 , ϵv 0 )∥ B 1 2 + ∥e a|Dx| (b 0 , ϵc 0 )∥ B 1 2 , où C = C(s) et (u φ , v φ ) and (b φ , c φ ) sont
, v ϵ 0 , b ϵ 0 , c ϵ 0 ), satisfaisant (2.2.31). Soit u 0 , b 0 satisfaisant e a|Dx| (u 0 , b 0 ) ∈ B 1 2 ∩ B 5 2 , e a|Dx| ∂ y (u 0 , b 0 ) ∈ B 3 2 , la condition de compatibilité 1 0 (u 0 , b 0 )dy = 0 et ∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| b 0 ∥ Pour une certaine constante c 2 > 0 susamment petit indépendamment de ϵ, on a ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L∞ t (B 1 2 ) + (Φ 1 Θ , ϵΦ 2 Θ )(t) L ∞ t (B 1 2 ) ∥∂ y (Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 1 2 ) + ϵ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 3 2 
)

+ ∥∂ y (Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t (B 1 2 
)

+ ϵ∥(Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t (B 3 2 ) 
(2.2.33) Remarque 2.2.6. L'idée principale de la preuve de ces théorèmes ci-dessus basés sur l'utilisation des estimations d'énergie analytiques, qui sont motivées par [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] et qui proviennent de [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF].

≤ C ∥e a|Dx| (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + ∥e a|Dx| (b ϵ 0 -b 0 , ϵ(c ϵ 0 -c 0 ))∥ B 1 2 + M ϵ , où C = C(s) et (Ψ 1,ϵ , Ψ 2,ϵ , q ϵ ) = (u ϵ -u, v ϵ -v, p ϵ -p), (Φ 1,ϵ , Φ 2,ϵ ) = (b ϵ -b, c ϵ -c), (2.2.34) et v 0 est déterminé à partir de u 0 via ∂ x u + ∂ y v = 0 et v 0 | y=0 = v 0 | y=1 = 0, et (Ψ 1 Θ , ϵΨ 2 Θ ), (Φ 1 Θ , ϵΦ

Énoncé des résultats sur la version hyperbolique du système magnétohydrodynamique

Dans le chapitre 5 de cette thèse, on s'intéresse à la version hyperbolique du système magnétohydrodynamique en deux dimension suivant:

(2.2.35)                              J∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = H 2 b 1 b 2 v -ub 2 2 -b 2 e (0, T ) × R × (0, 1), ∂ y p = H 2 b 1 b 2 u -b 2 1 v + b 1 e (0, T ) × R × (0, 1), κ Pr m ∂ 2 t b 1 + ∂ t b 1 + u∂ x b 1 + v∂ y b 1 - 1 Pr m ∂ 2 y b 1 = b 1 ∂ x u + b 2 ∂ y u (0, T ) × R × (0, 1), κ Pr m ∂ 2 t b 2 + ∂ t b 2 + u∂ x b 2 + v∂ y b 2 - 1 Pr m ∂ 2 y b 2 = b 1 ∂ x v + b 2 ∂ y v (0, T ) × R × (0, 1), ∂ t b 1 + ∂ y e = 0 and ∂ t b 2 -∂ x e = 0 (0, T ) × R × (0, 1), ∂ x u + ∂ y v = 0 and ∂ x b 1 + ∂ y b 2 = 0 (0, T ) × R × (0, 1),
couplé avec les conditions initiales et aux limites suivantes:

(2.2.36) (b 1 , b 2 , e) = (0, 0, 0). Pour tout s > 2, il existe une constante positive susamment petite ε s ∈ [0, 1) (qui dépend uniquement de s), telle que le résultat suivant est vrai. Soit ū, b1 et b1 les données initiales de (2.2.35) qui sont analytiques dans la variable x ∈ R avec un rayon d'analyticité τ 0 > 0:

(IC) (u, b 1 , b 2 )| t=0 = (ū, b1 , b2 ) R × (0, 1), (∂ t u, ∂ t b 1 , ∂ t b 2 )| t=0 = (ũ, b1 , b2 ) R × (0, 1), (2.2.37) (BC) (u, b 1 , b 2 , e)| y=1 = (0, 0, 0, 0) (0, T ) × R, (u, b 1 , b 2 , e)| y=1 = (0, b 1 , b 2 , e) (0, T ) × R. Toutes les variables d'état (u, v, b 1 , b 2 , e) dans (2.2.35) dépendent du temps t ∈ (0, T ) et de l'espace (x, y) ∈ R × (0, 1). Les champs vectoriels (u, v) T ∈ R 2 et (b 1 , b 2 ) T ∈ R 2 ont
(2.2.38) e τ 0 (1+|Dx|) ū et e τ 0 (1+|Dx|) b1 appartiennent à H s+1,1 (R × (0, 1)), e τ 0 (1+|Dx|) ũ et e τ 0 (1+|Dx|) b1 appartiennent à H s,0 (R × (0, 1)).
Si la condition de petitesse suivante sur les données initiales est vraie (2.2.39)

∥e τ 0 (1+|Dx|) ū∥ H s+1,0 + ∥e τ 0 (1+|Dx|) ∂ y ū∥ H s,0 + ∥e τ 0 (1+|Dx|) ũ∥ H s,0 + ∥e τ 0 (1+|Dx|) b1 ∥ H s+1,0 + +∥e τ 0 (1+|Dx|) ∂ y b1 ∥ H s,0 +∥e τ 0 (1+|Dx|) b1 ∥ H s,0 ≤ min{1, J, κ/Pr m } 3 2 max{1, J, κ/Pr m } 5 2 min{τ 0 , τ -1 0 } 3 2 max{1, H 2 } max{Pr m -1 , Pr m } 1 2 ε s ,
alors il existe une solution analytique globale dans le temps (u, b 1 ) de (2.2.35), qui a un rayon d'analyticité décroissant τ : R + → (0, τ 0 ] donné par:

(2.2.40)

τ (t) := τ 0 exp - t 16 max{1, J, κ/Pr m } > 0.
De plus, les normes analytiques de la solution se tend vers zero exponentiellement dans le temps

t ∈ R + comme suit: (2.2.41) ∥e τ (t)(1+|Dx|) u(t)∥ 2 H s+1,0 + ∥e τ (t)(1+|Dx|) ∂ t u(t)∥ 2 H s,0 + ∥e τ (t)(1+|Dx|) ∂ y u(t)∥ 2 H s,0 + + ∥e τ (t)(1+|Dx|) b 1 (t)∥ 2 H s+1,0 + ∥e τ (t)(1+|Dx|) ∂ t b 1 (t)∥ 2 H s,0 + ∥e τ (t)(1+|Dx|) ∂ y b 1 (t)∥ 2 H s,0 ≤ C(J, κ, Pr m , τ 0 ) ∥e τ 0 (1+|Dx|) ū∥ 2 H s+1,0 + ∥e τ 0 (1+|Dx|) ũ∥ 2 H s,0 + ∥e τ 0 (1+|Dx|) ∂ y ū∥ 2 H s,0 + + ∥e τ 0 (1+|Dx|) b∥ 2 H s+1,0 + ∥e τ 0 (1+|Dx|) b∥ 2 H s,0 + ∥e τ 0 (1+|Dx|) ∂ y b∥ 2 H s,0 exp - t 8 max{1, J, κ/Pr m } .
où la constante C(J, κ, Pr m , τ 0 ) est dénie par

C(J, κ, Pr m , τ 0 ) = 4 3 max{1, J, κ/Pr m } 3 min{1, J, κ/Pr m } 3 max Pr m , Pr -1 m max{τ 0 , τ -1 0 } 2 .

Approximation hydrostatique des Équations Primitives

Dans cette section, nous cherchons à donner les résultats obtenus au cours des travaux de cette thèse sur la modélisation des équations primitives dans les couches limites bidimensionnelles. Le modèle étudié représente les uides géophysiques à grande échelle. Dans notre cas, on va prendre en compte la forte stratication due à la gravité de la Terre. Notre modèle est de la forme suivante

(2.3.1)                      ∂ t u + U • ∇u -ν 1 ∂ 2 x u -ν 2 ∂ 2 y u + ∂ x p = 0, ∂ t v + U • ∇v -ν 1 ∂ 2 x v -ν 2 ∂ 2 y v + ∂ y p = T F r , ∂ t T + U • ∇T -κ 1 ∂ 2 x T -κ 2 ∂ 2 y T = 0 div U = 0, (U, T ) /t=0 = (U 0 , T 0 ),

Rappel des résultats existants

Les résultats de cette thèse concernent l'étude des équations primitives dans un domaine mince complété par des conditions de Dirichlet au bord. La structure du domaine mince ainsi que le choix des données initiales font disparaitre les viscosités horizontales à la limite, lorsque l'épaisseur du domaine converge vers zéro. Nous allons donc être amenés à étudier l'approximation hydrostatique du système de Navier-Stokes qui est une équation de type Prandtl, couplée à une équation du type transport-diusion sur la temperature. Avant de discuter des résultats obtenus pour ce type de système nous rappelons brièvement certains résultats obtenus antérieurement.

On commence en premier lieu par rappeler quelques résultats obtenus lorsqu'on considère toutes les viscosités et la diusivité non nulles. Les premiers à traiter mathématiquement ce modèle sont Lions-Temam-Wang dans [9193] en 1990. Leurs travaux concernent l'étude de l'existence globale des solutions faibles pour les équations primitives en prenant compte de la viscosité et la diusivité. En ce qui concerne l'unicité de la solution, Guillén-Gonzalez, Masmoudi et Rodriguez-Bellido dans [START_REF] Guillen-Gonzalez | Anisotropic estimates and strong solutions of the primitive equations[END_REF] ont prouvé l'unicité de la solution faible pour ces équations dans un cadre de dimension 2. Ils ont aussi obtenu un résultat d'existence locale dans [START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF]. L'existence globale bidimensionnelle pour ces équations a été obtenue par Bresch, Kazhikhov et Lemoine en [START_REF] Bresch | On the two-dimensional hydrostatic Navier-Stokes equations[END_REF].

Lorsqu'on considère seulement une viscosité verticale qui apparaît dans le système et toute la diusivité, C. Cao, Q. Lin and E.S.Titi ont obtenu un résultat d'existence locale et globale avec de petites données initiales de la solution forte du modèle d'ajustement géostrophique primitif 3D réduit avec une faible dissipation dans [START_REF] Cao | On the well-posedness of reduced 3D primitive geostrophic adjustment model with weak dissipation[END_REF]. Plus spéciquement, ils se sont penchés sur le modèle suivant

(2.3.2)                        ∂ t u + u∂ x u + w∂ z u + ϵ 1 u -f 0 v -ν∂ 2 z u + ∂ x p = 0, ∂ t v + u∂ x v + w∂ z v + ϵ 1 v + f 0 u -ν∂ 2 z v = 0, ϵ 2 w + ∂ z p + T = 0, ∂ t T + u∂ x T + w∂ z T -κ∆T = 0 ∂ x u + ∂ z w = 0 (u, v, T )| t=0 = (u 0 , v 0 , T 0 ), Ce modèle est étudié dans le domaine (x, z) ∈ R 2 : 0 ≤ z ≤ H , complété par les conditions au bord (∂ z u, ∂ z v, w, T )| z=0,H=0 , et u, v, w, T sont périodiques en x et de période 1, par ∂ x u + ∂ z w = 0, on déduit w(x, z) = - z 0 ∂ x u(x, s)ds.
Dans le modèle (2.3.2), ϵ 1 et ϵ 2 sont des constantes positives, ν est une constante positive qui représente la viscosité verticale des équations du moment horizontal et f 0 correspond au paramètre de Coriolis. Ces travaux ont abouti par C. Cao, Q. Lin and E.S.Titi dans [START_REF] Cao | On the well-posedness of reduced 3D primitive geostrophic adjustment model with weak dissipation[END_REF] aux résultats suivants: Théorème 2.3.1. On suppose que u 0 , v 0 , T 0 , Remarque 2.3.1. La preuve de ce théorème se fonde sur l'approximation standard de Galerkin.

∂ x u 0 , ∂ x v 0 , ∂ x T 0 ∈ H 1 (T 2 ) vérient
En eet, les auteurs établissent d'abord les estimations formelles a priori pour les solutions du système (2.3.2). Ces estimations peuvent être rigoureusement justiées en les dérivant du système d'approximation Galerkin et en passant ensuite à la limite en utilisant le théorème de compacité Aubin-Lions.

Le second résultat concerne l'existence et l'unicité globale de la solution forte du système (2.3.2), sous réserve que la donnée initiale soit susamment petite. Théorème 2.3.2. On suppose que u 0 , v 0 , T 0 , ∂ x u 0 , ∂ y v 0 , ∂ x T 0 ∈ H 1 (T 2 ) vérient les conditions de symétrie suivantes: u, v et T sont périodiques en x et z de période 1;

u, v sont pairs en z, et T est impair en z, avec la condition de compatibilité 1 0 ∂ x u 0 dz = 0. De plus, supposons que

∥u 0 ∥ H 1 + ∥v 0 ∥ H 1 + C 0 ∥T 0 ∥ H 1 + ∥∂ x u 0 ∥ H 1 + ∥∂ x v 0 ∥ H 1 + C 0 ∥∂ x T 0 ∥ H 1 << 1 pour certains C 0 > 0.
Alors pour tout T positif, il existe une seule solution forte (u, v, T ) du système (2.3.2) sur l'intervalle [0, T ]. De plus, la solution forte unique (u, v, T ) dépend continûment de la donnée initiale.

Contribution de la thèse

Dans le chapitre 8 de cette thèse, pour ϵ > 0, on considère le système

(PE)                  ∂ t U + U • ∇U -ϵ 2 ∆U + ∇P = 0 T F r , ∂ t T + U • ∇T -κ 1 ∂ 2 x T -κ 2 ∂ 2 y T = 0, div U = 0, U /t=0 = U 0 , T /t=0 = T 0 ,
Dans notre étude, nous nous sommes penchés sur les équations primitives, sur un domaine mince avec des conditions de Dirichlet au bord. Notre domaine d'étude est S ϵ = {(x, y) ∈ R 2 : 0 < y < ϵ}, où ϵ représente la largeur du domaine. L'idée générale pour traiter ce type d'équations est d'imposer l'analyticité suivant la variable horizontale. Cela nous permet de contrôler les termes non linéaires qui posent une diculté due aux pertes de dérivée dans la variable horizontale. Cette méthode nous a conduit à trouver un résultat d'existence et d'unicité globale des solutions pour le système (PE) dans un domaine mince.

Dans le système (PE) les constantes κ 1 et κ 2 représentent la diusivité thermique horizontale et verticale. Au long de nos résultats, ces constantes sont données par κ 1 = 1 et κ 2 = ϵ 2 . F r représente le nombre de Froude mesurant l'importance de la stratication, qui est censée être F r = ϵ.

Le système (PE) est complété par les conditions de Dirichlet au bord

(U, T )| y=0 = 0 et (U, T )| y=ϵ = 0.

Nos données initiales ont la forme

U |t=0 = U ϵ 0 = u 0 x, y ϵ , ϵv 0 x, y ϵ dans S ϵ , et T |t=0 = T 0 x, y ϵ dans S ϵ .
On cherche des solutions pour notre système de la forme

(2.3.3)            U (t, x, y) = u ϵ t, x, y ϵ , ϵv ϵ t, x, y ϵ , T (t, x, y) = T ϵ t, x, y ϵ , P (t, x, y) = p ϵ t, x, y ϵ .
Eectuant la modication de mise à l'échelle ȳ = y ϵ , soit S := (x, ȳ) ∈ R 2 : 0 < ȳ < 1 , on obtient le système primitive anisotrope

(2.3.4)                        ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ ȳu ϵ -ϵ 2 ∂ 2 x u ϵ -∂ 2 ȳ u ϵ + ∂ x p ϵ = 0, ϵ 2 ∂ t v ϵ + u ϵ ∂ x v ϵ + v ϵ ∂ ȳv ϵ -ϵ 2 ∂ 2 x v ϵ -∂ 2 ȳ v ϵ + ∂ ȳp ϵ = T ϵ , ∂ t T ϵ + u ϵ ∂ x T ϵ + v ϵ ∂ ȳT ϵ -∆T ϵ = 0, ∂ x u ϵ + ∂ ȳv ϵ = 0, (u ϵ , v ϵ , T ϵ ) | t=0 = (u 0 , v 0 , T 0 ) , (u ϵ , v ϵ , T ϵ ) | ȳ=0 = (u ϵ , v ϵ , T ϵ ) | ȳ=1 = 0.
Par un passage à la limite formelle de ϵ → 0 dans le système (2.3.4), on obtient l'équation hydrostatique suivante:

(2.3.5)                        ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = 0, ∂ y p = T, ∂ t T + u∂ x T + v∂ y T -∆T = 0, ∂ x u + ∂ y v = 0, (u, T )| t=0 = (u 0 , T 0 ), (u, v, T ) | y=0,1 = 0,
Notre objectif est d'obtenir l'existence globale des solutions pour les systèmes (2.3.4) et (4.3.5) lorsque nos données initiales sont analytiques, puis nous voulons montrer la convergence des équations primitives anisotropes mises à l'échelle (2.3.4) vers le système limite (2.3.5) lorsque ϵ tend vers zéro.

Le premier résultat obtenu concerne l'existence de solutions globales du système hydrostatique (2.3.5), avec de petites données analytiques selon la variable horizontale. Théorème 2.3.3. Soit a > 0, on suppose que pour une constante c 0 susamment petite, indépendante de ϵ, et pour toute donnée initiale (u 0 , T 0 ) satisfaisant 

∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| T 0 ∥ B 1 2 ≤ c 0 a, (2.
+ ∥e Rt e a 2 |Dx| ∂ y (u, T )∥ L2 (R + ,B 1 2 ) ≤ C∥e a|Dx| (u 0 , T 0 )∥ B 1 2 , (2.3.7) De plus, si e a|Dx| u 0 ∈ B 5 2 , e a|Dx| T 0 ∈ B 3 2 , e a|Dx| ∂ y u 0 ∈ B 3 2 et ∥e a|Dx| u 0 ∥ B 1 2 ≤ c 1 a 1 + ∥e a|Dx| u 0 ∥ B 3 2 + ∥e a|Dx| T 0 ∥ B 3 2 (2.3.8)
pour un certain c 1 susamment petit, alors il existe C une constante positive telle que pour 1 ≤ s ≤ 5 2 , on a

∥e Rt (∂ t u) ϕ ∥ L2 t (B 3 2 
)

+ 1 2 ∥e Rt ∂ y u ϕ ∥ L∞ t (B 3 2 
)

≲ C ∥e a|Dx| ∂ y u 0 ∥ B 3 2 + ∥e a|Dx| ∂ y u 0 ∥ B 5 2 + ∥e a|Dx| ∂ y T 0 ∥ B 3 2 . (2.3.9)
où C = C(s) et R est une constante déterminée par l'inégalité de Poincaré pour la bande S, l'espace fonctionnel utilisé pour obtenir ce résultat est l'espace de Besov Chemin-Lerner donné par la norme

∥u∥ Lp T (B s (S)) ≜ q∈Z 2 qs T 0 ∆ h q u(t) p L 2 dt 1 p
, Le deuxième résultat démontré est que les équations primitives anisotropes (2.3.4) avec de faibles données analytiques initiales dans la variable tangentielle sont globalement bien posées. Théorème 2.3.4. Soit a > 0, il existe une constante c 1 susamment petite indépendante de ϵ, telle que pour toute donnée initiale (u ϵ 0 , v ϵ 0 , T ϵ 0 ) satisfaisant

∥e a|Dx| (u ϵ 0 , ϵv ϵ 0 )∥ B 1 2 + ∥e a|Dx| T ϵ 0 ∥ B 1 2 ≤ c 1 a. (2.3.10)
Alors le système anisotrope (2.3.4) admet une unique solution globale

(u ϵ , v ϵ , T ϵ ) satisfaisant ∥e Rt e a 2 |Dx| (u ϵ , ϵv ϵ )∥ L∞ (R + ,B 1 2 ) + ∥e Rt e a 2 |Dx| T ϵ ∥ L∞ (R + ,B 1 2 ) + ∥e Rt e a 2 |Dx| ∂ y (u ϵ , ϵv ϵ )∥ L2 (R + ,B 1 2 ) + ∥e Rt e a 2 |Dx| ∇T ϵ ∥ L2 (R + ,B 1 2 ) + ϵ∥e Rt e a 2 |Dx| ∂ x (u ϵ , ϵv ϵ )∥ L2 (R + ,B 1 2 ) (2.3.11) ≤ C ∥e a|Dx| (u ϵ 0 , ϵv ϵ 0 )∥ B 1 2 + ∥e a|Dx| T ϵ 0 ∥ B 1 2
, où C = C(s) et R est une constante déterminée par l'inégalité de Poincaré pour la bande S.

Le troisième résultat concerne la convergence des solutions de l'équation anisotrope mise à l'échelle des équations primitive (2.3.4) au système limite (2.3.5). Théorème 2.3.5. Soit a > 0, et

(u ϵ 0 , v ϵ 0 , b ϵ 0 , c ϵ 0 ), satisfaisant (2.3.10). Soit u 0 , T 0 satisfaisant e a|Dx| u 0 ∈ B 1 2 ∩ B 5 2 , e a|Dx| ∂ y u 0 ∈ B 3 2 , e a|Dx| T 0 ∈ B 1 2 ∩ B 3 2 , et la condition de compatibilité 1 0 u 0 dy = 0 est satisfaite et ∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| T 0 ∥ B 1 2 ≤ c 2 a 1 + ∥e a|Dx| (u 0 , T 0 )∥ B 3 2
, pour un certain c 2 susamment petit indépendamment de ϵ, on a

∥(w 1 φ , ϵw 2 φ )∥ L∞ t (B 1 2 
)

+ ∥∂ y (w 1 φ , ϵw 2 φ )∥ L2 t (B 1 2 ) + ϵ∥(w 1 φ , ϵw 2 φ )∥ L2 t (B 3 2 ) ≤ C ∥e a|Dx| (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + C∥e a|Dx| (T ϵ 0 -T 0 )∥ B 1 2 + M ϵ .
(2.3.12) 

où C = C(s) et w 1 = u ϵ -u, w 2 = v ϵ -v, θ = T ϵ -T et v 0 est déterminé à partir de u 0 via ∂ x u + ∂ y v = 0 ainsi
         (w 1 φ , w 2 φ , θ φ )(t, x, y) = e φ(t,Dx) w 1 (t, x, y), w 2 (t, x, y), θ(t, x, y) ≜ F -1 h e φ(t,ξ) w 1 (t, ξ, y), w 2 (t, ξ, y), θ(t, ξ, y) φ(t, ξ) = (a -λη(t))|ξ|.
La quantité η(t) décrit l'évolution de la bande d'analyticité au cours du temps, cette quantité est positive pour tout t ∈ R * + satisfait l'équation

η(t) = ∥(∂ y u ϵ Θ , ϵ∂ x u ϵ Θ , ∂ y T ϵ Θ )(t)∥ B 1 2 + ∥∂ y (u ϕ , T ϕ )(t)∥ B 1 2
et lorsque t = 0 on a η(0) = 0.

Remarque 2.3.2. L'idée principale de la preuve de ces théorèmes ci-dessus est d'utiliser des estimations d'énergie analytiques, qui sont motivées par [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] et qui proviennent de [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF].

Étude des équations de la magnétohydrodynamique homogène et inhomogène

Dans la deuxième partie de cette thèse, nous nous sommes intéressés à l'étude de l'existence et la régularité ainsi qu'à l'unicité des solutions de l'équation de la magnétohydrodynamique, lorsqu'on a une condition de petitesse de la dérivée unidirectionnelle de la vitesse initiale dans certains espaces invariants d'échelle.

Rappel des résultats

Les résultats de cette thèse sont motivés par le résultat obtenu par Y. Liu, M. Paicu et P. Zhang dans [START_REF] Liu | Global well-posedness of 3-D anisotropic Navier-Stokes system with small unidirectional derivative[END_REF]. Les auteurs ont prouvé que tant que la dérivée unidirectionnelle de la vitesse initiale est susamment petite dans certains espaces invariants d'échelle, alors le système de Navier-Stokes admet une unique solution globale. En eet, les auteurs ont étudié le système suivant :

(2.4.1)

     ∂ t u + u.∇u -∆ h u + ∇p = 0, (t, x) ∈ R + × R 3 , div u = 0, u| t=0 (t, x) = u 0 (x), où ∆ h = ∂ 2 x + ∂ 2 y .
Il est globalement bien posé si les données initiales u 0 satisfont une condition de petitesse sur sa dérivée verticale ∂ 3 u 0 dans certains espaces critiques. Le résultat principal de leur article s'énonce comme suit Théorème 2.4.1. Soit Λ -1 h un multiplicateur de Fourier dont le symbole est

|ξ h | -1 , soit u 0 ∈ B 0, 1 2 un champ vectoriel solénoïdal avec Λ -1 h ∂ 3 u 0 ∈ B 0, 1 2 .
Alors il existe une constante positive susamment petite ϵ 0 et quelques constantes positives universelles L, M , N , tel que si

∥Λ -1 h ∂ 3 u 0 ∥ B 0, 1 2 exp L(1 + ∥u 3 0 ∥ 4 B -1 2 , 1 2 4 
) exp

(M A 4 N (∥u h 0 ∥ B 0, 1 2 )) ≤ ϵ 0 , (2.4.2) avec A N (∥u h 0 ∥ B 0, 1 2 ) = N 1 2 ∥u h 0 ∥ B 0, 1 2 exp(C∥u h 0 ∥ 2 B 0, 1 2 ) + ∥u h 0,N ∥ B 0, 1 2 exp N 2 exp(C∥u h 0 ∥ 2 B 0, 1 2 ) et N est pris susamment grand que ∥u h 0,N ∥ B 0, 1
2 soit susamment petit, alors le système (2.4.1) admet une solution globale unique

u = v + e t∆ h 0 u 3 0,hh avec v ∈ C([0, ∞[; B 0, 1 2 ), ∇ h v ∈ L 2 ([0, ∞[; B 0, 1 2 ) et u 3 0,hh = k≥l-1 ∆ h k ∆ v l u 3 .
Remarque 2.4. 

B 0, 1 2 ≜    f ∈ S ′ h (R 3 ) : ∥u∥ B 0, 1 2 ≜ q∈Z 2 q 2 ∥∆ v q u∥ L 2 (R 3 ) < +∞    .

Contribution de la thèse

Le travail du dernier chapitre de cette thèse porte sur l'étude du système magnétohydrodynamique inhomogène. Le but est de supposer que la dérivée verticale des données initiales est susamment petite et d'arriver alors à prouver l'existence et l'unicité globale des solutions du système magnétohydrodynamique inhomogène 3D. On considère donc le système 

(2.4.3)                  ∂ t ρ + u • ∇ρ = 0, (t, x) ∈ R + × R 3 , ρ(∂ t u + u • ∇u) -µ 1 ∆u + ∇p = b • ∇b, ∂ t b -µ 2 ∆b -curl(u × b) = 0, div u = 0, div b = 0, ρ| t=0 = ρ 0 (x), u| t=0 = u 0 (x), b| t=0 = u 0 (x), où ρ est un scalaire représentant la densité du uide, u = (u 1 , u 2 , u 3 ) et b = (b 1 , b 2 , b
           ∂ t u H + u H • ∇u H -∆u H = -∇p H + b H • ∇b H , ∂ t b H -∆b H + u H • ∇b H -b H • ∇u H = 0, div u H = div b H = 0, (t, x) ∈ R + × R 3 , u H | t=0 = u H 0 (x), b H | t=0 = b H 0 (x).
En utilisant la théorie de Littlewood-Paley et en adaptant la méthode développée dans le travail de Y. Liu, M. Paicu et P. Zhang dans [START_REF] Liu | Global well-posedness of 3-D anisotropic Navier-Stokes system with small unidirectional derivative[END_REF] pour les équations de magnétohydrodynamique homogènes, nous obtenons un résultat de l'existence et l'unicité globale des solutions dans des espaces de Besov. Le résultat est le suivant:

Théorème 2.4.2. Soient u H 0 = (u H,h 0 , u H,3 0 ) ∈ B 0 p (R 3 ), b H 0 = (b H,h 0 , b H,3 0 ) ∈ B 0 p (R 3 ) deux champs de vecteurs de divergence nulle avec (u H,h 0 , b H,h 0 ) ∈ H 1 (R 3 ), Λ -1 h ∂ 3 (u H 0 , b H 0 ) ∈ B 0 p (R 3 ) (1 < p < 4), où Λ -1
h est le multiplicateur de Fourier de symbole |ξ h | -1 . Alors il existe une constante positive susamment petite ε 0 et une constante positive universelle C telle que si

(u H 0 , b H 0 ) satisfont la condition de petitesse ∥Λ -1 h ∂ 3 (u H 0 , b H 0 )∥ B 0 p B(u H,h 0 , b H,h 0 ) × exp C ∥(u H,3 0 , b H,3 0 )∥ B 0 p + ∥(u H,h 0 , b H,h 0 )∥ 2 B 0 p + ∥(u H,h 0 , b H,h 0 )∥ 4 H 1 B(u H,h 0 , u H,h 0 ) ≤ ε 0 . (2.4.5) où B(u H,h 0 , b H,h 0 ) = exp C ∥(u H,h 0 , b H,h 0 )∥ B 0 p + ∥(u H,h 0 , b H,h 0 )∥ 2 H 1 exp(∥(u H,h 0 , b H,h 0 )∥ L 2 ) ,
alors le système (4.4.4) a une solution globale unique (u M HD , b M HD ) qui satisfait

u H ∈ L∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ), b H ∈ L∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ).
Passons maintenant au cas inhomogène du système MHD (2.4.3). Dans la suite, on suppose que la densité initiale vérie inf ρ 0 > 0. Par le principe du maximum pour l'équation de transport, on a inf ρ(t, x) > 0. On peut alors utiliser la transformation a ≜ 1 ρ -1 qui nous permet d'obtenir le système (2.4.6)

                 ∂ t a + u • ∇a = 0, (t, x) ∈ R + × R 3 , ∂ t u + u • ∇u + (1 + a)(-∆u + ∇p) = (1 + a)(b • ∇b), ∂ t b + u • ∇b -∆b = b • ∇u, div u = 0, div b = 0, a| t=0 = a 0 (x), u| t=0 = u 0 (x), b| t=0 = b 0 (x).
Le théorème suivant montre le résultat d'existence et d'unicité globale des solutions associées au système (2.4.6).

Théorème 2.4.3.

Soient u 0 = (u h 0 , u 3 0 ) ∈ B 0 p (R 3 ), b 0 = (b h 0 , b 3 0 ) ∈ B 0 p (R 3 ) deux champs de vecteurs de divergence nul avec (u h 0 , b h 0 ) ∈ H 1 (R 3 ), Λ -1 h ∂ 3 (u 0 , b 0 ) ∈ B 0 p (1 < p < 4), a 0 ∈ B 3 p p , où Λ -1
h est le multiplicateur de Fourier de symbole |ξ h | -1 . Alors il existe une constante positive susamment petite ε 1 et une constante positive universelle C 1 tel que si (a 0 , u 0 , b 0 ) satisfont la condition de petitesse suivante (2.4.7) ∥a 0 ∥

B 3 p p + ∥Λ -1 h ∂ 3 (u 0 , b 0 )∥ B 0 p L(u 0 , b 0 ) ≤ ε 1 , avec L(u 0 , b 0 ) = B(u h 0 , b h 0 ) exp(C 1 (∥(u 3 0 , b 3 0 )∥ B 0 p + ∥(u h 0 , b h 0 )∥ 2 B 0 p + ∥(u h 0 , b h 0 )∥ 4 H 1 )B(u h 0 , b h 0 )) et B(u h 0 , b h 0 ) = exp(C 1 (∥(u h 0 , b h 0 )∥ B 0 p + ∥(u h 0 , b h 0 )∥ 2 H 1 exp(∥(u h 0 , b h 0 )∥ L 2 )
Alors le système (2.4.6) admet une solution globale unique

a ∈ L∞ (R + ; B 3 p p ), u ∈ L∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ) et b ∈ L∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ).
Remarque 2.4. 

≜ {u ∈ S ′ h (R 3 ) : ∥u∥ B s 1 ,s 2 p ≜ (2 s 1 j 2 s 2 k ∥∆ h j ∆ v k u∥ L p ) ℓ 1 (Z) < ∞}.
Pour plus de simplicité, nous utilisons la notation suivante p est déni par:

B 0 p ≜ B -1+ 2 p , 1 p p , B 1 p ≜ B 2 p , 1 p p ∩ B -1+ 2 p ,1+
B 3 p p ≜ {u ∈ S ′ h (R 3 ) : ∥u∥ B 3 p p ≜ (2 3j p ∥∆ j u∥ L p (R 3 ) ) ℓ 1 (Z) < ∞}.
Chapter 3

Introduction (English version)

Physics is a science that allows us to understand the dierent phenomena related to our planet. In the theory of physics there are three main branches which are: classical physics, quantum physics and general relativity. In our thesis we are interested in classical physics, more precisely on "Fluid mechanics" which has for principle to study the behavior of uids (liquids, gases, plasmas, liquid metals, salt water, electrolytes, ...) and the associated internal forces. Fluid mechanics is divided into two parts: static and uid dynamics. The statics of uids represents the study of uids at rest, i.e. uids that do not move and the dynamics corresponding to the study of uids in motion, i.e. uids that move over time.

During this thesis, we study the equations of uid mechanics in motion, the history of these equations began with L. Euler and J. d'Alembert , when they were working on perfect uids, after with L. Navier for a viscous uid. We study also the magnetic properties of electrically conducting uid.

Starting from the D'Alember paradox and Leonhard Euler, the study of uid dynamics provided many reasons to take a closer look near the border that connes the ow in the 19th century. Physical experiments, as well as mathematics results, suggest that in the thin layer near to the boundary lies an important part of crucial dynamics. To understand the motion of real uid, Ludwig Prandtl in 1904 introduced the concept of the boundary layer and proposed a mathematical model for it.

The idea of L.Prandtl is to divide the ow eld areas: one inside the boundary layer, dominated by the viscosity and creating the majority of drag experienced by the boundary body, and one outside the boundary layer, where we can neglect the viscosity, without signicant eects on the solution. Those two areas allow a closed-form solution for the ow, thus a signicant simplication of the Navier-Stokes equations. This equation, completed with the incompressibility condition and the proper boundary and initial conditions, constitutes the Prandtl system, whose study brought a deeper understanding of viscous ows.

Presentation of main actor in uid mechanics

Compressible and incompressible

The property of volume change is called compressibility and a uid whose volume changes is called compressible uid. On the other hand, incompressible uid is a uid that is not compressed or expanded, and its volume is always constant, this hypothesis is veried for liquid water at a xed temperature and molten metals. It s also checked for gases when the Mach number Ma is low. In reality, a rigorous incompressible uid does not exist.

The main Dierence Compressible vs Incompressible Fluids The main dierence between compressible and incompressible uid is that a force applied to a compressible uid changes the density of uid whereas a force applied to an incompressible uid does not change the density to a considerable degree.

Viscosity

The viscosity of a uid is a measure of its resistance to deformation at a given rate. There are two types of viscosity "cinematic" and "dynamic", but in the Navier-Stokes equations, it is the kinematic viscosity that has a large role, because it is of comparable size with the Rossby number. In reality, the uid is turbulent and ν is not the cinematic viscosity it is rather a turbulent viscosity. The Coriolis force creates an asymmetry between horizontal motion and motion vertical, vertical movement being limited when rotation is fast. This induces an anisotropy in uid behavior: movement in the horizontal direction is much more important than the one in the vertical direction.

A uid that has no resistance to shear stress is known as an ideal or inviscid uid. Zero viscosity is observed only at very low temperatures in super-uids. Otherwise, the second law of thermodynamics requires all uids to have positive viscosity; such uids are technically said to be viscous or viscid. A uid with a high viscosity, such as pitch, may appear to be solid.

Reynolds number

The Reynolds number Re helps predict patterns in dierent uid ow situation. This number is the ratio of the inertial forces to viscous forces within a uid which subjected to relative internal movement due to dierent uid velocities. A region where these forces change behavior is known as a boundary layer, such as the bounding surface in the interior of a pipe. A similar eect is created by the introduction of a stream of high-velocity uid into a low-velocity uid, such as the hot gases emitted from a ame in air. The Reynolds number is given by

Re = forces d'inertie forces visqueuses = ρU L/ν
where U and L is the velocity and length scales of the motion, and we denote them respectively. When the Reynolds number is very small (Re << 1), the inertial forces (∂ t u + u.∇u) are very small compared to the viscous forces and they can be neglected when solving (N S) equations. On the other hand when this number is very high (Re >> 1), in this case the initial forces are very larger than the viscous forces. such turbulent ow problems are transient in nature, a mesh that is ne enough to resolve the size of the smallness eddies in the ow needs to be used.

Equations of motion in uid mechanics

In the following, we are interested in the dierential equations of the mechanics of incompressible uids.

Incompressible uid

In uid mechanics or more generally continuum mechanics, incompressible ow (isochoric ow) refers to a ow in which the material density is constant within a uid parcel an innitesimal volume that moves with the ow velocity. An equivalent statement that implies incompressibility is that the divergence of the ow velocity is zero (see the derivation below, which illustrates why these conditions are equivalent).

We start by deduce from the principle of physics, the d'Euler and Navier-Stocks equations, for an incompressible uid. Let now consider Ω as an element of the uid in R n , the uid evolves over time by trajectories ψ(t, x), who satises the following equation:

∂ t ψ(t, x) = u(t, ψ(t, x)), u(0, x) = x.
where u(t, x) is the velocity eld that is the tangent to the point ψ(t, x) to the trajectory.

The condition of incompressibility of the uid translates mathematically into the following relation :

∀t ∈ [0, T ], V olume(Ω) = V olume(ψ(t, Ω)).
By changing the variable and assuming that the function ψ(t, x) is a C 1 -dieomorphism we have:

Ω 1dx = Ω |detJψ(t, y)|dy.
We choose our domain Ω = Ω ϵ = B(x, ϵ) and by taking the limit of ϵ to zero, we obtain:

detJψ(t, x) = 1.
Otherwise, Liouville's theorem tells us that for any matrix solution of the equation X ′ (t) = A(t)X(t), we have the following equality::

(detX) ′ (t) = (trA(t))detX(t).
We nd that ∂ t (detJψ(t, x)) = tr(∇u)(t, ψ(t, x)) × detJ(ψ)(t, x).

As detJψ(t, x) = 1, then ∂ t (detJψ(t, x)) = 0, as a result we obtain the following result:

tr(∇u)(t, ψ(t, x)) = div u = 0.
So the condition of incompressibility translates into the equation div u = 0.

Conservation of mass

In physics, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so quantity can neither be added nor be removed. Therefore, the quantity of mass is conserved over time.

Mathematically, the conservation of mass law can be formulated in the elds of uid mechanics and continuum mechanics, where the conservation of mass is usually expressed using the continuity equation, given in the dierential form in tree dimension as:

∂ t ρ + div(uρ) = 0,
where ρ is the density (mass per unit volume), t is the time, ∇ is the divergence (for example in tree dimension div u = ∂ x u 1 + ∂ y u 2 + ∂ z u 3 ), and u = (u 1 , u 2 , u 3 ) is the velocity eld.

In particular, if u is a particle of zero divergence (it mean that div u = 0) and our uid is homogeneous (it mean that ρ(t, x) = ρ(t)), then the density remains constant over time, i.e. ∂ρ ∂t = 0, and so we have ρ = ρ 0 for all t, x.

Expression of kinematic quantities

Trajectory : It is a set of points occupied successively by the same uid. A parcel that passes at the moment t to the point ψ(t, x) at speed u whose expression is of the following form :

u(t, ψ(t, x)) = ∂ t ψ(t, x).
Acceleration : noted by γ. By denition, it is the derivative concerning the time of the velocity u, which will be denoted du dt , and given by the following formula :

γ = ∂ t [u(t, ψ(t, x))] = ∂ t u(t, ψ(t, x)) + ∂ t ψ(t, x)∇u(t, ψ(t, x)) = (∂ t u + u.∇u)(t, ψ(t, x)). (3.2.1)
Newton law: Newton's law gives us:

ργ(t, x) = F (t, x)
where γ is the acceleration and F denotes the external forces exerted on the uid. By (3.2.1), we have:

ρ(∂ t u + u∇u) = F.
Euler equation: Let consider the incompressible ow of a perfect uid in a mass force eld f . At any point of the uid ψ(t, x), the pressure elds p(t, ψ(t, x)) and velocities u(t, ψ(t, x)) verifying the incompressible condition, we obtain the following equation:

∂u ∂t + u∇u = -∇p + f and div u = 0.
Navier-stocks equations: The second Newton law give us :

F = ρ(∂ t u + u.∇u),
here the force F = -divσ, where σ is the stress tensor. For a general uid of the dierential type of order n, σ = -pId + G(A 1 , A 2 , ....., A n ) where G is the polynomial homogeneous in its variables and

A n = dA n-1 dt + (∇u) t A n-1 + A n-1 (∇u).
Note that for a Newtonian uid, we have:

-div (pId + ν∇u) = -∇p + ν∆u = F, so, ρ(∂ t u + u.∇u) = -∇p + ν∆u,
where ∆ = n i=1 ∂ 2 i , then the Navier-stocks equations are given by the following system:

     ρ(∂ t u + u.∇u) -ν∆u = -∇p, div u = 0, u(0, x) = u 0 (x).
For homogeneous uids it can be considered that ρ = ρ 0 = 1.

In addition if the uid is inhomogeneous, so our equation have the following form:

         ∂ t ρ + u.∇ρ = 0, ρ(∂ t u + u.∇u) -ν∆u = -∇p, div u = 0, u(0, x) = u 0 (x).

Magneto-hydrodynamics equations

In this thesis, we studied the coupled Navier-Stokes equations with an approximation of the Maxwell equations for the electromagnetic eld, which describes the behavior of magma currents in the Earth's core. This model is called the Magnetohydrodynamique system (MHD). The equation describing the evolution of the magnetic eld noted B, derives from the Maxwell equations (Maxwell 1865, Jackson 1975)

(3.3.1)      ηλ∂ t E = curl B -λj, ∂ t B = -curl E, div B = 0,
where E and B obey the Maxwell equation of electromagnetic, η and λ are the permittivity and the magnetic permeability coecient, respectively. We assume that the electric current j follow the Ohm law :

j = σ(E + u × B)
where σ represent the electric conductivity of the uid. In classical magnetohydrodynamique system, we assume that typical speeds are low compared to the speed of light c (we note that c 2 = 1 λη ); the equation of Maxwell-Ampere is simplied into: curl B = λj.

By combining these equations and dening the magnetic diusivity µ = 1/λσ, we get the induction equation

∂ t B = -curl E = -curl 1 σ j -u × B = -curl 1 σ ( 1 λ curl B) -u × B = - 1 σλ curl curl B + curl(u × B) = µ∆B -u.∇B + B.∇u.
The electromagnetic eld act back on the uid through the action of the Lorentz force F = j × B + ρE, where ρ denote the electric density. However, in dense uids, electrostatic enforce charge neutrally over macroscopic distances, which is known as quasi-neutrality. Therefore, we may assume that ρ = 0, which yields the force

F = j × B. (3.3.2)
Under the assumption of the speed of light c, the rst equation of (3.3.1) and (3.3.2) yield

F = 1 λ curlB × B = 1 λ (B.∇)B - 1 2 ∇|B| 2 .
Thus, we obtain the coupled Navier-Stokes equations with the Lorentz force and the Maxwell equations for the electromagnetic eld

(3.3.3)                ∂ t u + u.∇u -ν∆u = -∇ p + |B| 2 2 + B.∇B ∂ t B + u.∇B -µ∆B = B.∇u, div u = div B = 0, u/ t=0 = u 0 , B /t=0 = B 0 .
In addition if the uid is in-homogeneous, so our equation have the following form:

(3.3.4)                      ∂ t ρ + u.∇ρ = 0, ρ(∂ t u + u.∇u) -ν∆u = -∇ p + |B| 2 2 + B.∇B ∂ t B + u.∇B -µ∆B = B.∇u, div u = div B = 0, u/ t=0 = u 0 , B /t=0 = B 0 .
Remark 3.3.1. In this thesis we investigate to obtain a global well-posedness of the homogeneous and in-homogeneous incompressible MHD system in tree dimension with only onedirectional derivative of the initial velocity and magnetic is suciently small in some scaling invariant spaces.

Presentation of the hyperbolic version of the Navier-Stokes and Magneto-hydrodynamic equations

In this thesis, we interested by the hyperbolic version of Navier-Stokes and Magneto-hydrodynamic equations. With this in mind, we approach the solutions of (NS) and (MHD) by solutions of better known hyperbolic equations. In particular, we consider an equation of damped waves, whose solutions will propagate instantly, and an equation of weakly compressible waves that will have a nite propagation speed.

We start rst by the Cattaneo approximation in 1949 for the study of the heat equation (see [START_REF] Cattaneo | Sulla conduzione del calore[END_REF][START_REF] Cattaneo | Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée[END_REF] ) and others (Chester, Vernotte, etc.) proposed the following hyperbolic model.

1 c 2 ∂ 2 t θ + 1 β ∂ t θ -∆θ = 0.
This equation is called The Telegraph equation. It has a nite propagation speed and is compatible with both the principle of relativity and the second law of thermodynamics, so it is a satisfactory physical model.

This equations can be also seen as a relaxation of Euler equations, these equations were considered by Brenier, Natalini and Puel in [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF]. Let consider the incompressible Euler equations, namely (3.4.1)

     ∂ t U + U.∇U = -∇p, div U = 0, U (0, x) = U 0 (x).
To approximate these equations, we introduce it's relaxed version, which is obtained by a singular perturbation of the nonlinear term U.∇U = ∇.(U ⊗ U ), through a supplementary matrix valued variable noted ∇.(V ). This lead to the following system:

(3.4.2)                ∂ t U + ∇.(V ) = -∇p, ∂ t V + ν∇U = - 1 τ V -U ⊗ U , div U = 0, U (0, x) = U 0 (x), V (0, x) = V 0 (x).
We note that if τ go to zero, we formally recover the Euler system (3.4.1). Let now consider a diusive scaling, for ϵ > 0 we have

(3.4.3)                U ϵ (t, x) := 1 √ ϵ U ( t ϵ , x √ ϵ ), V ϵ (t, x) := 1 ϵ V ( t ϵ , x √ ϵ ), p ϵ (t, x) := 1 ϵ p( t ϵ , x √ ϵ ).
Taking τ = 1, therefore the system (3.4.2) becomes (3.4.4)

               ∂ t U ϵ + ∇.(V ϵ ) = -∇p ϵ , √ ϵ∂ t V ϵ + ν √ ϵ ∇U ϵ = - 1 √ ϵ V ϵ -U ϵ ⊗ U ϵ , div U ϵ = 0, U ϵ (0, x) = U ϵ 0 (x), V ϵ (0, x) = V ϵ 0 (x).
Finally let us remark that our scaling can be considered as a hyperbolic perturbation of the Navier-Stokes equations, which is similar to the Cattaneo hyperbolic heat equations [START_REF] Cattaneo | Sulla conduzione del calore[END_REF], we eliminate just the unknown V in the equations (3.4.4), then we nd (3.4.5)

     ϵ∂ 2 t U ϵ + ∂ t U ϵ + U ϵ .∇U ϵ -ν∆U ϵ = -∇p ϵ , div U ϵ = 0, U ϵ (0, x) = U ϵ 0 (x), ∂ t U ϵ (0, x) = U ϵ 1 (x).
This perturbation, is seen as a relaxation of Euler equations, was considered by Brenier, Natalini, and Puel in [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF]. Later this equation was considered by Paicu and Raugel in [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | A hyperbolic singular perturbation of the Navier-Stokes equations in R 2[END_REF]. This model has a various justication in many articles with dierent methods. We cite for example [START_REF] Hunke | An elasticviscousplastic model for sea ice dynamics[END_REF] where the authors considered these equations as a model of ice formation in lakes. In a numerical and analytic point of view we cites [START_REF] Katsaounis | Relaxation models and nite element schemes for the shallow water equations[END_REF][START_REF] Katsaounis | Stability and convergence of relaxation nite element schemes for the incompressible Navier-Stokes equations[END_REF] where this approximation used to compute the solutions of Navier-Stokes. In the second chapter we will introduce the result obtained by Brenier, Natalini, and Puel in [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF], also after the result obtained by Marius and Raugel in [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | A hyperbolic singular perturbation of the Navier-Stokes equations in R 2[END_REF] and the result of O. Coulaud, I. Hachicha and G. Raugel in [START_REF] Coulaud | Hyperbolic quasilinear Navier-Stokes equations in R 2[END_REF] of the global solution in 2D and 3D. In this thesis, we obtain a result of existence and uniqueness of solutions to (3.4.5) in a striped domain R × (0, 1), for some analytically small initial data in the tangential variable, We will briey state them in the second chapter.

We will now explain the hyperbolic version of the magneto-hydrodynamic equations. We begin by recalling the most widespread form of the two-dimensional Navier-Stokes-Maxwell system with Cattaneo's law:

(3.4.6)                              ρνJ c 2 ∂ 2 τ - → U + ρ ∂ t - → U + - → U • ∇ - → U -ρν∆ - → U + ∇P = - → J × - → B balance of linear momentum, div - → U = 0 conservation of mass, ∂ t - → B + curl - → E = 0 Faraday's law, - → J = σ - → E + - → U × - → B Ohm's law, 1 c 2 ∂ t - → E + µ 0 - → J = curl - → B Ampere's law, div - → B = 0 Gauss's law for magnetism, div - → E = 0
Gauss's law for electric eld.

The system and the corresponding state variables depend on (t, X, Y ) ∈ (0, T ) × R × R + , for a positive time T > 0.

The constants ρ > 0 and ν > 0 are uid density and kinematic viscosity, respectively, while c > 0 represents the speed of light. The rst term (ρνJ /c 2 )∂ 2 t -→ U in the balance of linear momentum is due to Cattaneo's law [START_REF] Abdelhedi | Global existence of solutions for hyperbolic Navier-Stokes equations in three space dimensions[END_REF][START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF][START_REF] Coulaud | Hyperbolic quasilinear Navier-Stokes equations in R 2[END_REF][START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | Global hydrostatic approximation of the hyperbolic Navier-Stokes system with small Gevrey class 2 data[END_REF][START_REF] Racke | Hyperbolic Navier-Stokes equations II: Global existence of small solutions[END_REF] and depends on a general inertia constant J > 0. This law develops around a rst-order Taylor expansion of a delayed relation on the Cauchy stress tensor

S(t + t rel , •) = ν ∇u + ∇u T 2 (t, •)
where for us the relaxation time is given by τ rel = ρνJ /c 2 . This particular form (in terms of J > 0 and not directly in τ rel > 0), will be important indeed when rescaling our system for the boundary layers.

We have denoted by σ > 0 the electrical conductivity, by µ 0 > 0 the magnetic permeability. We have further denoted

- → U (τ, X, Y ) = (U 1 (τ, X, Y ), U 2 (τ, X, Y )) T ∈ R 2 and - → B (τ, X, Y ) = (B 1 (τ, X, Y ), B 2 (τ, X, Y )) T ∈ R 2 the
velocity eld and magnetic eld of the media, respectively. The scalar pressure P (τ, X, Y ) ∈ R is the Lagrangian multiplier that ensures the incompressibility of the velocity eld. The current density -→ J = (0, 0, J(τ, X, Y )) T and the electric eld -→ E = (0, 0, E(τ, X, Y )) T are considered as three dimensional vector elds, being perpendicular to the plane in which the uid motion occurs. Since we are dealing with the two dimensional version of the equations, we shall clarify the employed notation:

- → J × - → B = J - → B ⊥ = J -B 2 B 1 , curl - → E = ∂ Y E -∂ X E , - → U × - → B =    0 0 U 1 B 2 -U 2 B 1   , curl - → B =    0 0 ∂ X B 2 -∂ Y B 1   .
The positive parameters ν, µ 0 and ε 0 correspond to the kinematic viscosity, magnetic permeability and permittivity of free space, respectively. In addition, the parameter σ represents the electrical conductivity of the medium. Some of the terms in (3.4.6) 

∂ τ - → B = -curl - → E = curl - → U × - → B - 1 σ curl - → J .
Also, to get rid of the density of the current in curl -→ J , we apply the operator curl to Ampère's law:

1 c 2 ∂ τ (curl - → E ) + µ 0 curl - → J = curlcurlB, which implies that curl - → J = 1 µ 0 c 2 ∂ 2 τ - → B + 1 µ 0 (∇div - → B -∆B) = 1 µ 0 c 2 ∂ 2 τ - → B + 1 µ 0 (∇div - → B -∆B)
Thus, we can plug this last relation into the equation (3.4.7), to nally obtain a hyperbolic form of Ampère's law in terms of magnetic eld -→ B :

(3.4.8)

1 σµ 0 c 2 ∂ 2 τ - → B + ∂ τ - → B - 1 σµ 0 ∆ - → B = curl - → U × - → B = - → B • ∇ - → U - - → U • ∇ - → B .
Similarly, we can get rid of -→ J also in the linear momentum equilibrium in (3.4.6) thanks to

ρνJ c 2 ∂ 2 t - → U ρ(∂ t - → U + - → U •∇ - → U )-ν∆ - → U +∇P = σ( - → E + - → U × - → B )× - → B = σ - → E × - → B +σ( - → B ( - → U • - → B )- - → U | - → B | 2 ).
We are now able to reduce the number of equations in (3.4.6). Considering the electric eld -→ E (t, X, Y ) = (0, 0, E(t, X, Y )) T (whose divergence is always zero) and recalling the denition of the vector eld

- → B T = (-B 2 , B 1
) T , we nally gather (3.4.9)

                         ρνJ c 2 ∂ 2 t - → U +ρ(∂ t - → U + - → U •∇ - → U )-ρν∆ - → U +∇P = σ( - → B ( - → U • - → B ) - - → U | - → B | 2 ) + σE - → B T , div - → U = 0, 1 σµ 0 c 2 ∂ 2 τ - → B + ∂ t - → B - 1 σµ 0 ∆ - → B = - → B • ∇ - → U - - → U • ∇ - → B , ∂ t - → B + curl - → E = 0, div - → B = 0,

Boundary layer

In physics and uids mechanics, a boundary layer is layer of the uid in the immediate vicinity of a bounding surface where the eect are signicant. The liquid or gaz in the boundary layer is characterized by an approach to the surface. The boundary layer can be seen in several phenomena for example an aircraft and Earth's atmosphere. If we stand on an aircraft wings, we observe that the boundary layer is the part of the ow close to the wing of the aircraft, where viscous forces distort the surrounding non-viscous ow. On the other hand, the case of Earth's atmosphere, we see the atmospheric boundary layer as the air layer near to the ground.

A boundary layer is a thin layer of viscous uid close to the surface of a wall in contact with a moving stream in which the ow of velocity varies from zero at the wall. The fundamental concept of boundary layer was dened by L. Pradtl (1904), it denes the boundary layer as a layer of uid developing in ow with a very high Reynolds number Re, that is with relatively low viscosity as compared with inertial forces.

The deduction of the boundary layer equations was one of the most important advances in uid dynamic. Using the order of magnitude analysis, the well-known governing Navier-Stokes equations of viscous uid ow can be greatly simplied within the boundary layer. By making the boundary layer approximation, our ow can be divided into an inviscid portion and boundary layer, which is governed by an easier to solve PDE. The continuity and Navier-Stokes equations for a two-dimensional steady incompressible ow in Cartesian coordinates are given by (3.4.10)

           ∂ t u ν + u ν ∂ x u ν + v ν ∂ y u ν -ν ∂ 2 x u ν + ∂ 2 y u ν = -∂ x p ν . ∂ t v ν + u ν ∂ x v ν + v ν ∂ y v ν -ν ∂ 2 x v ν + ∂ 2 y v ν ) = -∂ y p ν ∂ x u ν + ∂ y v ν = 0 u ν (t, x, 0) = 0, v ν (t, x, 0) = 0.
The idea of Prandtl is to inject an argument for the two components of the velocity to express them in a more useful form. Exploiting the fact that the most meaningful part of the ow takes place near the boundary, the argument provides a re-scaling of the vertical variable and of the velocity components. On the system (3.4.10), we note that the limit of ν → 0 would give just Euler equation for perfect uids, whose the solution will not satisfy the non-slip condition at the wall .

The assumption suggested by Prandtl is to transform the vertical motion by Y = y √ ν , so we obtain the re-scaling of our velocities and pressure (3.4.11)

                 u ν (t, x, y) = u t, x, y √ ν v ν (t, x, y) = v t, x, y √ ν p ν (t, x, y) = p t, x, y √ ν .
Plugging the expression above in (3.4.10) and keeping the leading order terms we derive the Prandtl system (denoting y instead of Y ):

(3.4.12)

           ∂ t u + u∂ x u + v∂ y u -∂ 2 y u = -∂ x p ν . ∂ y p = 0 ∂ x u + ∂ y v = 0 u(t, x, 0) = 0, v(t, x, 0) = 0.
If we consider the domain Ω = R × (0, 1) it mean that we are in a thin striped domain, then the system (3.4.12) completed by the Dirichlet boundary condition u /y=0 = u /y=1 = 0 and v /y=0 = v /y=1 = 0. Remark 3.4.1. One of the consequences of this formal work is that we eliminated from the system the evolution equation on the vertical component. This vertical component is recovered only through the divergence-free condition. we apply this elimination in several models (for example MHD system and Hyperbolic version of Navier-Stokes system) to obtain the overall existence of the solutions of these models and also their stability.

Primitive equations

The primitive equations are a set of nonlinear partial dierential equations, those equations used to approximate the global atmospheric ow. The primitive atmospheric equations are a simplied version of the Navier-Stokes equations. They are applicable in the case of a uid on the surface of a sphere by assuming that the vertical component of the motion is much weaker than the horizontal component and that the uid layer is very thin relative to the radius of the sphere.

If we look at the modeling done for uids in section 3.2, we have neglected an important eect which is Earth's gravity that in situations this gravity has a great inuence on geophysical uids. In nature, the appearance of stratication due to uid variable density, causes the coupling between the equations of Navier-stokes and the equations of transport of heat (or stratication of density) and salinity.

We can also mention the phenomena due to stratication, which can not be explained simply by the equation of rapidly rotating uid motion, and which are observed by many oceanographers. This is the phenomenon of "dead water" (for a description, we can suggest [START_REF] Cushman-Roisin | Introduction to geophysical uid dynamics[END_REF]). It happens that a boat undergoes a strong resistance in its movement while the water on the surface is apparently very calm. The cause is the presence of internal waves. The boat sails on a thin layer of relatively fresh water located on a layer of very salty water. The boat creates waves internal on the interface, invisible on the surface but of great energy, thus causing the resistance to the movement of the boat.

To describe the movement of geophysical uids at the scale, we consider two very dierent phenomena : the rotation tending to a distribution in columns vertical, and stratication, tending to maintain a distribution in horizontal layers of the same density. Using the mass conservation of the movement quantity and the Boussinesq approximation, we obtain the system of primitives equations (3.4.13)

               ∂ t U + U.∇U -ν∆U + T F r = -∇p, ∂ t T + U.∇T -ν ′ ∆T = 0, div U = 0, U/ t=0 = U 0 , T /t=0 = T 0 ,
where U is the velocity eld, T is the potential temperature and p is the pressure. The Parameters are the kinematic viscosity ν, the thermal diusivity ν ′ , F r is the Froude number.

Chapter 4

History of the results and contributions of the thesis (English version)

As part of this thesis, we are interested in systems derived from Newtonian geophysical uids mechanics. In a rst part, we consider Newtonian geophysical uids hydrostatic approximations, to namely the Navier-Stokes equations in their hyperbolic version, the magnetohydrodynamic equations and primitive equations, in thin domains. In a second part, we will study magneto-hydrodynamic systems in an anisotropic framework through three-dimensional space.

We begin our study with models of geophysical uids in a thin domain, supplemented by the Dirichlet condition at the edge, so that the vertical extent of the domain is negligible compared to its horizontal counterpart. In this case, the rescaled viscosity is not isotropic. Anisotropic viscosities (turbulent viscosities) will therefore be used. The main idea is to take scale-invariant spaces such as Besov and Sobolev spaces. The goal is to make a change of scale so that we are close to the limit of our eld of study. The change considered for our data is U (t, x, y) = u ϵ (t, x, y ϵ ), ϵv ϵ (t, x, y ϵ ) where ϵ is the width of the domain. The disappearance of viscosity within the boundary combined with Dirichlet conditions at the edges of the domain causes the appearance of boundary layers. The equations that describe the evolution of the uid in the thin boundary domain were the discovery of Prandtl [START_REF] Prandtl | Uber Flussigkeitsbewegung bei sehr kleiner Reibung[END_REF] in 1904 to explain the discrepancy between the boundary conditions veried by an ideal uid and a viscous uid with evanescent viscosity.

Our models are studied in the rst part, in a framework of boundary layers having low viscosity and magnetic diusivity (ν = ϵ 2 and σ = ϵ 2 ) and are also called evanescent viscosity. By using a change of scale on our solutions, we obtain anisotropic systems. By crossing the boundary (ϵ → 0), these anisotropic systems tend towards hydrostatic equations of the Prandtl type.

In an anisotropic framework, where the viscosity as well as horizontal magnetic diusivity are low compared to their vertical counterparts, the interest is to obtain evidence of the existence of strong solutions in spaces that are almost optimal. We recall that a space is said to be optimal or critical if it is invariant by change of scale for the systems considered, i.e. if u(t, x) is a solution of our heperbolic NS equation, then u λ (t, x) = λu(λ 2 t, λx) and p λ (t, x) = λ 2 p(λ 2 t, λx) is also a solution. In our case, the critical spaces in which we work will be the Besov space B 1 2 ,0 dened by:

B 1 2 ,0 ≜ f ∈ S ′ h : ∥f ∥ B 1 2 ,0 ≜ ∥(2 q 2 ∥∆ h q f ∥ L 2 ) q∈Z ∥ ℓ 1 (Z) < +∞ .
In the second part of this thesis, we study the magneto-hydrodynamic system in all space R 3 . In this context, two results were obtained of the existence of strong global solutions for this magneto-hydrodynamic system. Indeed, it was a question of studying the case where the vertical derivative of our initial data satises a non-linear condition of smallness.

The hyperbolic version of the Navier-Stokes equations

Before beginning to present the results of this thesis on the hyperbolic Navier-Stokes model, we begin by recalling some fundamental results on the existence, regularity and uniqueness known for this type of equations.

Reminder of the known results of existence and regularity of solutions

Brenier, Natalini and Puel in [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF] considered for the rst time the hyperbolic version of NavierStokes (3.4.5) on R + × T 2 , where T 2 is the two-dimensional torus R 2 /Z 2 . We recalled that the equation is given by (4.1.1)

     τ ∂ 2 t u τ + ∂ t u τ + u τ .∇u τ -ν∆u τ = -∇p τ , div u τ = 0, u τ (0, x) = u τ 0 (x), ∂ t u τ (0, x) = u τ 1 (x).
This equation can be rewrites in the form of: 

               ∂ t u τ + div (V τ ) = -∇p τ , √ τ ∂ t V τ + ν √ τ ∇u τ = - 1 √ τ V τ -u τ ⊗ u τ , div u τ = 0, u τ (0, x) = u τ 0 (x), V τ (0, x) = V τ 0 (x).
They demonstrated that if the initial data (u τ 0 , V τ 0 ) are small in H 2 (T 2 ) 2 × H 1 (T 2 ) 4 , then they handle to obtain a global result of existence of the solutions, as well as the convergence of these solutions to the Navier-Stokes solutions with a regular initial data. In their result, the authors show that this convergence is not only formal. The result obtained in [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF] is as follows Theorem 4.1.1. Let T ≥ 0 and u 0 be a smooth divergence free vector eld on T 2 . Let also τ > 0 and (u τ 0 , V τ 0 ) be a sequence of smooth initial data on T 2 for problem (4.1.2). Assume, moreover, that there exists a constant C independent of τ such that

∥u τ 0 ∥ H 1 (T 2 ) ≤ C, ∥V τ 0 ∥ H 2 (T 2 ) ≤ C √ τ ,
and

∥u τ 0 ∥ H 2 (T 2 ) ≤ C 0 K s √ τ , ∥u τ 0 -u 0 ∥ 2 L 2 (T 2 ) ≤ C √ τ ,
where 0 < C 0 < 1 and K s is the constant in Sobolev's inequality on H 2 (T). if u is the NavierStokes solution with u 0 initial data, then there exists a constant C T such that

sup t∈[0,T ] ∥u τ -u∥ 2 L 2 (T 2 ) ≤ C T √ τ .
We recall that the Sobolev space has for denition in R n

H s (R n ) = f ∈ S ′ (R n ) : f ∈ L 1 loc (R n ), R n (1 + |ξ| 2 ) s | f (ξ)| 2 dξ < +∞ ,
where S ′ is the space of tempered distributions in R n . The standard norm in H s is dened by:

∥f ∥ H s := R n (1 + |ξ| 2 ) s | f (ξ)| 2 dξ 1 2 .
To prove their result, they used the hyperbolic energy method and Dafermos modulated energy for convergence. The energy obtained by multiplying the equation (4.1.1) by u τ + 2τ ∂ t u τ and then integrating into space is

E τ (t) = T 2 1 2 |u τ (t) + τ ∂ t u τ (t)| 2 + τ 2 2 |∂ t u τ (t)| 2 + τ |∇u τ (t)| 2 dx.
In order, for them to have information about convergence, they modulated this energy by a solution of the Navier-Stokes equation u, obtaining the modulated Dafermos energy,

E τ,u (t) = T 2 1 2 |u τ (t) -u(t) + τ ∂ t u τ (t)| 2 + τ 2 2 |∂ t u τ (t)| 2 + τ |∇u τ (t)| 2 dx.
This energy can control the norm ∥u τ (t) -u(t)∥ L 2 .

The method that the authors use to prove their result remains restricted to the two-dimensional framework and requires a lot of regularity on the initial data.

An improvement of this result was made by Paicu and Raugel in [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | A hyperbolic singular perturbation of the Navier-Stokes equations in R 2[END_REF], who approximated the NavierStokes equations with external force f which can depend on time by a hyperbolic perturbation ∂ t u + u.∇u -∆u = -∇p + f.

Using the same energy method introduced in [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF] and a Strichartz inequality on high frequencies, the authors obtain a global existence and uniqueness results for this type of equation with initial data in H 1 (R 2 ) 2 × L 2 (R 2 ) 2 . For the convergence, the authors obtain a results that improve those of Brenier, Natalini and Puel. Specically, they achieve the following results. To simplify, the external force f is considered to be zero. Theorem 4.1.2. Let τ 0 > 0, there exist a strictly positive constant K such that, if 0 < τ < τ 0 and if the free-divergence vectors

u τ 0 ∈ H 1 (R 2 ) 2 , u τ 0 ∈ L 2 (R 2 ) 2 satisfy ∥u τ 0 ∥ L 2 + ∥u τ 1 ∥ L 2 + ∥∇u τ 0 ∥ L 2 ≤ K,
then the equation (4.1.1) has a unique global integral solution

(u τ , ∂ t u τ ) ∈ C 0 (R + , H 1 (R 2 ) 2 ) × C 0 (R + , L 2 (R 2 ) 2 ).
When τ converges to 0, the formal limit of the (4.1.1) system is given by the NavierStokes system. In the following theorem, Paicu and Raugel show that this limit is not only formal. Theorem 4.1.3. For all strictly positive numbers R and T , there exist a strictly positive number

τ 1 = τ 1 (R, T ) such that, for 0 < τ < τ 1 , if the couple of free-divergence vectors (u τ , ∂ t u τ ) ∈ H 1 (R 2 ) 2 , u τ 0 ∈ L 2 (R 2 ) 2 verify ∥u τ 0 ∥ L 2 + √ τ ∥u τ 1 ∥ L 2 ≤ R,
then the system (4.1.1) has a unique integral solution

(u τ , ∂ t u τ ) ∈ C 0 (R + , H 1 (R 2 ) 2 × C 0 (R + , L 2 (R 2 ) 2 ).
For all 0 ≤ t ≤ T ,

√ τ ∥∂ t t(u τ (t) -u(t)) ∥ L 2 + ∥t(u τ (t) -u(t))∥ H 1 ≤ τ e K ,
where K is a constant that depends only on R and T (see theorem 3 [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF]).

In the context of two and three dimensions, we can also mention the work of Hachicha in [START_REF] Hachicha | Approximations hyperboliques des équations de Navier-Stokes[END_REF], which obtained a result of global existence and uniqueness of solutions for the (4.1.1) system with well-chosen initial data. The result in dimension 2 is as follows Theorem 4.1.4. Let 0 < s, δ < 1 and u 0 ∈ H s (R 2 ) 2 be a divergence-free vector eld. Let

(u τ 0 , u τ 1 )/ τ >0 ∈ H 1+δ (R 2 ) 2 × H δ (R 2
) 2 be a sequence of initial data for problem (4.1.1). Assume that

       ∥u τ 0 -u 0 ∥ L 2 + τ ∥u τ 1 ∥ L 2 + τ 1 2 ∥u τ 0 ∥ Ḣ1 = O(τ s 2 ), τ 1+δ 2 ∥u τ 0 ∥ Ḣ1+δ + τ δ 2 ∥u τ 0 ∥ Ḣδ = O(τ s 2 ), τ 1+ δ 2 ∥u τ 1 ∥ Ḣδ = O(1)
. Then, for τ small enough, there exists a global solution u τ to the system (4.1.1) that converges when τ goes to 0 in L ∞ loc (R + ; L 2 (R 2 ) 2 ) norm, towards the unique solution u to the incompress-ible Navier-Stokes equations, with u 0 as initial data. Moreover, there exists a constant C T , depending only on T and u, such that

sup t∈[0;T ] R 2 |u τ -u| 2 dx ≤ C T τ ( s 2 ) -.
In dimension 3, the author imposed an additional condition of smallness on the initial data u τ 0 . It obtains a result similar to that of dimension 2.

Theorem 4.1.5. Let s > 0, δ < 1 and u 0 ∈ H s+ 1 2 (R 3 ) 3 be a divergence-free vector eld. Let

(u τ 0 , u τ 1 )| τ >0 ∈ H 3 2 +δ (R 3 ) 3 × H 1 2 +δ (R 3 ) 3 be a sequence of initial data for problem (4.1.1) such that ∥u τ 0 ∥ Ḣ 1 2 < 1 16 . Assume that          ∥u τ 0 -u 0 ∥ Ḣ 1 2 + τ ∥u τ 1 ∥ Ḣ 1 2 + τ 1 2 ∥u τ 0 ∥ Ḣ 3 2 = O(τ s 2 ), τ 1+δ 2 ∥u τ 0 ∥ Ḣ 3 2 +δ + τ δ 2 ∥u τ 0 ∥ Ḣ 1 2 +δ = O(τ s 2 ), τ 1+ δ 2 ∥u τ 1 ∥ Ḣ 1 2 +δ = O(1).
Then, for τ small enough, there exists a global solution u τ to the system (4.1.1) that converges, when τ goes to 0, in the norm L ∞ loc (R + ; Ḣ 1 2 (R 3 ) 3 ), towards the unique solution u to the incompressible Navier-Stokes equations, with u 0 as initial data. Moreover, there exists a constant C T avec depending only on T and u, such that

sup t∈[0;T ] R 3 |Λ 1 2 (u τ -u)| 2 dx ≤ C T τ ( s 2 ) -.
The main idea of the proof is to use the hyperbolic energy method inspired by the paper of Brenier, Natalini and Puel in [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF]. Recall that the homogeneous Sobolev space is dened for all s ∈ R by

Ḣs (R n ) = f ∈ S ′ (R n ) : f ∈ L 1 loc (R n ), R n |ξ| 2s | f (ξ)| 2 dξ < +∞ ,
where S ′ is the space of tempered distribution in R n . The semi-norm is dened in

H s by ∥f ∥ Ḣs := R n |ξ| 2s | f (ξ)| 2 dξ 1 2 .

Contribution de la thèse

In chapter 3 of this thesis, for ϵ > 0 and τ > 0 we consider the following system:

(HNS)

       τ ∂ 2 t U τ + ∂ t U τ + U τ .∇U τ -ϵ 2 ∆U τ + ∇P τ = 0, div U τ = 0, U τ /t=0 = U τ 0 , ∂ t U τ /t=0 = U τ 1 ,
All the results mentioned above are obtained when their domain Ω is R n ( n = 2.3) or T n . In our case, we want to study the system (HNS) when the uid evolves in a thin domain with Dirichlet conditions at the boundary. Note S ϵ = {(x, y) ∈ R 2 : 0 < y < ϵ}, such that ϵ is the width of the domain. The advantage of working in a thin eld supplemented by the Dirichlet conditions at the edge is to make appear in our study the Prandtl type equations in their hyperbolic version, i.e. we will have a term of type ∂ 2 t in the classical Prandtl equation. The main idea of the result is to obtain the existence and uniqueness of a global solutions for the (HNS) system in a thin domain. To simplify our system, we eliminate the dependency τ , for this we perform the rescaling

U τ (t, X) = τ -1 2 U (τ -1 t, τ -1 2 X), P τ (t, X) = τ -1 P (τ -1 t, τ -1 2 X). (4.1.3)
We replace into the system (HNS), we can obtain (4.1.4)

             ∂ 2 t U + ∂ t U + U • ∇U -ϵ 2 ∆U + ∇P = 0, div U = 0, U /t=0 = √ τ U τ 0 ( √ τ X) = U 0 , ∂ t U /t=0 = τ 3 2 U τ 1 ( √ τ X) = U 1
this system is completed by the following Dirichlet boundary condition:

U | y=0 = 0 et U | y=ϵ = 0
and by the following initial data:

U |t=0 = U ϵ 0 = u 0 x, y ϵ , ϵv 0 x, y ϵ .
We look for solutions to our system of form (4.1.5)

     U (t, x, y) = u ϵ t, x, y ϵ , ϵv ϵ t, x, y ϵ , P (t, x, y) = p ϵ t, x, y ϵ .
Let S := (x, y) ∈ R 2 : 0 < y < 1 . After a natural scaling change, the system (4.1.4) becomes the scaled anisotropic hyperbolic Navier-Stokes system:

(4.1.6)                  ∂ 2 t u ϵ + ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ y u ϵ -ϵ 2 ∂ 2 x u ϵ -∂ 2 y u ϵ + ∂ x p ϵ = 0, in ]0, ∞[×S ϵ 2 (∂ 2 t v ϵ + ∂ t v ϵ + u ϵ ∂ x v ϵ + v ϵ ∂ y v ϵ -ϵ 2 ∂ 2 x v ϵ -∂ 2 y v ϵ ) + ∂ y p ϵ = 0, in ]0, ∞[×S ∂ x u ϵ + ∂ y v ϵ = 0, in ]0, ∞[×S (u ϵ , v ϵ ) | t=0 = (u 0 , v 0 ) and ∂ t (u ϵ , v ϵ ) | t=0 = (u 1 , v 1 ) , in S (u ϵ , v ϵ ) | y=0 = (u ϵ , v ϵ ) | y=1 = 0.
Taking ϵ → 0 in the system (4.1.6), we obtain the hyperbolic Prandtl equation:

(4.1.7)                  ∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = 0, in ]0, ∞[×S ∂ y p = 0, in ]0, ∞[×S ∂ x u + ∂ y v = 0, in ]0, ∞[×S u| t=0 = u 0 , in S ∂ t u| t=0 = u 1 , in S,
where the velocity U = (u, v) satises the Dirichlet non-slip boundary condition

(u, v) | y=0 = (u, v) | y=1 = 0.
The purpose is to justify the transition to the boundary of the system (4.1.6) to the system (4.1.7), when considering analytical initial data. Working with analytical data overcomes the diculty of the nonlinear term v∂ y u in (4.1.7), in the general case where structural assumptions are not imposed on the initial data.

Our rst result is to prove that the Prandtl system (4.1.7) with analytical and small initial data is globally well posed. Theorem 4.1.6. Let a > 0. There exists a constant c 0 > 0 suciently small, such that, for any data (u 0 , u 1 ) verifying the compatibility condition 1 0 u 0 dy = 0, the smallness condition e a|Dx| (u 0 + u 1 )

B 1 2 + e a|Dx| ∂ y u 0 B 1 2 + ∥e a|Dx| u 1 ∥ B 1 2 ≤ c 0 a, (4.1.8)
then the system (4.1.7) has a unique global solution u satisfying the estimate (4.1.9)

1 2 ∥e Rt (u + ∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ y u ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L2 t (B s ) + 1 2 ∥e Rt (∂ t u) ϕ ∥ L∞ t (B s ) ≤ C∥e a|Dx| ∂ y u 0 ∥ B s + C∥e a|Dx| (u 0 + u 1 )∥ B s + C∥e a|Dx| u 1 ∥ B s ,
where C = C(s) and u ϕ is dened by

(4.1.10) u ϕ (t, x, y) = e ϕ(t,Dx) u(t, x, y) ≜ F -1 h (e ϕ(t,ξ) u(t, ξ, y)), ϕ(t, ξ) = (a -λθ(t))|ξ|,
The quantity θ(t) describes the evolution of the analyticity band over time, this quantity is positive for all t ∈ R * + satises Equation θ(t) = ∥∂ y u ϕ ∥ B 1 2 and when t = 0 we have θ(0) = 0. R is a constant determined by the Poincaré inequality for the band S. The functional space used to achieve this result is the Besov space of the Chemin-Lerner type.

∥u∥ Lp T (B s (S)) ≜ q∈Z 2 qs T 0 ∆ h q u(t) p L 2 dt 1 p , Remark 4.1.1.
The main idea to prove the above two theorems is to control the new unknown u ϕ dened by (4.1.10), where u is the horizontal velocity and u ϕ is a weighted function of u in the dual Fourier variable with an exponential function of (a -λθ(t))|ξ|.

The second result is the global well-posedness of the perturbed Navier-Stokes system (4.1.6) with small analytical data in the tangential variable. Theorem 4.1.7. Let a > 0. We assume that our initial satises the following smallness condition 1.11) for some c 1 suciently small. Then System (4.1.6) has a unique global solution (u, v), so that (4.1.12)

∥e a|Dx| ∂ y (u 0 , ϵv 0 )∥ B 1 2 + ϵ∥e a|Dx| ∂ x (u 0 , ϵv 0 )∥ B 1 2 + ∥e a|Dx| (u 0 + u 1 , ϵ(v 0 + v 1 ))∥ B 1 2 + ∥e a|Dx| (u 1 , ϵv 1 )∥ B 1 2 ≤ c 1 a, (4.
1 2 ∥e Rt (u + ∂ t u, ϵ(v + ∂ t v)) Θ ∥ L∞ t (B s ) + ∥e Rt ∂ y (u, ϵv) Θ ∥ L∞ t (B s ) + ϵ∥e Rt ∂ x (u, ϵv) Θ ∥ L∞ t (B s ) + 1 2 ∥e Rt (∂ t u, ϵ∂ t v) Θ ∥ L∞ t (B s ) + ∥e Rt (∂ t u, ϵ∂ t v) Θ ∥ L2 t (B s ) ≤ C ∥e a|Dx| ∂ y (u 0 , ϵv 0 )∥ B s + ϵ∥e a|Dx| ∂ x (u 0 , ϵv 0 )∥ B s + ∥e a|Dx| (u 1 , ϵv 1 )∥ B s + ∥e a|Dx| (u 0 + u 1 , ϵ(v 0 + v 1 ))∥ B s ,
where C = C(s) and (u Θ , v Θ ) is given by (4.1.10) with ϕ = Θ.

The third result concern the study of the convergence from the scaled anisotropic perturbed Navier-Stokes system (4.1.6) to the limit system (4.1.7), so in this theorem, we proved that the convergence across globally in time.

Theorem 4.1.8. Let a > 0, and (u ϵ 0 , v ϵ 0 ) satisfying (4.1.11). Let (u 0 , u 1 ) satisfy e a|Dx| (u 0 , u 1 ) ∈ (B

1 2 ∩ B 7 2 ) 2 , e a|Dx| ∂ y (u 0 , u 1 ) ∈ (B 3 
2 ) 2 , and the compatibility condition 1 0 u 0 dy = 0 and e a|Dx| (u 0 + u 1 )

B 1 2 + e a|Dx| ∂ y u 0 B 1 2 + ∥e a|Dx| u 1 ∥ B 1 2 ≤ c 2 a 2 + e a|Dx| (u 0 + u 1 ) B 3 2 + e a|Dx| ∂ y u 0 B 3 2 + ∥e a|Dx| u 1 ∥ B 3 2 , (4.1.13)
for some c 2 suciently small, then we have 

1 2 ∥(R 1 + ∂ t R 1 , ϵ(R 2 + ∂ t R 2 )) φ ∥ L∞ t (B 1 2 
)

+ ∥∂ y (R 1 , ϵR 2 ) φ ∥ L∞ t (B 1 2 
)

+ ϵ∥∂ x (R 1 , ϵR 2 ) φ ∥ L∞ t (B 1 2 ) + 1 2 ∥(∂ t R 1 ) φ , ϵ(∂ t R 2 ) φ ∥ L∞ t (B 1 2 ) + ∥(∂ t R 1 , ϵ∂ t R 2 ) φ ∥ L2 t (B 1 2 ) ≤ ∥e a|Dx| ((u ϵ 1 -u 1 ), ϵ(v ϵ 1 -v 1 ))∥ B 1 2 + C ∥e a|Dx| ∂ y (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + ϵ∥e a|Dx| ∂ x (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + ∥e a|Dx| ((u ϵ 0 -u 0 ) + (u ϵ 1 -u 1 ), ϵ(v ϵ 0 -v 0 ) + ϵ(v ϵ 1 -v 1 ))∥ B 1 2 + M ϵ .
where C = C(s) and

R 1 = u ϵ -u, R 2 = v ϵ -v, (4.1.15) and v 0 is determined from u 0 via ∂ x u + ∂ y v = 0 and v 0 | y=0 = v 0 | y=1 = 0, (R 1 φ , ϵR 2 
φ ) is given by (4.1.10). Remark 4.1.2. The main idea of proving the above theorem is to use analytical energy estimates, which are motivated by [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] and which originates from [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF].

Hydrostatic approximation of the magneto -hydrodynamics equations

The purpose of this section is to present the results obtained during this thesis on a hydrostatic approximation of the magneto-hydrodynamics equations in a thin domain completed with Dirichlet boundary conditions. Before presenting the results, we begin by recalling the fundamental results on the existence as well as the regularity and uniqueness of the solutions of these equations.

Known results

We start with the origin of these approximations, which were obtained after a systematic derivation of the boundary layer models in magneto-hydrodynamics by D. Gérard-Varet and M. Prestipino in [START_REF] Gérard-Varet | Formal derivation and stability analysis of boundary layer models in MHD[END_REF]. Indeed, they considered the magneto-hydrodynamic system in a Ω subspace of R 3 given by (4.2.1)

           ∂ t U + U ∇U - 1 Re ∆U = -∇P + SB.∇B, ∂ t B -curl(U × B) - 1 Rm ∆B = 0, div U = div B = 0.
The parameters Re and Rm represent the hydrodynamic and magnetic Reynolds numbers, respectively. It is assumed that these parameters are very large (Re >> 1, and Rm ∼ Re). This choice of parameter regime is necessary for the creation of a boundary layer. The parameter S is a coupling parameter given by

S = B 2 0 µρV 2 = Ha ReRm , where Ha = B 0 L( σ η ) 1 2 ,
where the parameter Ha is the Hartmann number, B 0 and V are the typical amplitudes for magnetic and velocity elds, L is a typical length scale of the ow, ρ is the density of the uid, µ is its magnetic permeability, and η is the viscosity coecient.

In our study, we will focus on uids that evolve in thin two-dimensional domains for example Ω 1 = R × (0.1). Consider the solutions of the system (4.2.1) (4.2.2) 

           U (t, x, y) ∼ u ϵ t,
Indeed div U = ∂ x u ϵ + ϵ 1 ϵ ∂ y v ϵ = ∂ x u ϵ + ∂ y v ϵ = 0, div B = ∂ x b ϵ + ϵ 1 ϵ ∂ y c ϵ = ∂ x b ϵ + ∂ y c ϵ = 0.
If we replace U , B and P by the solutions proposed in (4.2.2) in the (4.2.1) system, we obtain

∂ t U + U • ∇U - 1 Re ∆U + ∇P -SB • ∇B = ∂ t u ϵ + u ϵ ∂ x u ϵ + ϵv ϵ 1 ϵ ∂ y u ϵ - 1 Re ∂ 2 x u ϵ - 1 Re 1 ϵ 2 ∂ 2 y u ϵ + ∂ x p ϵ -Sb ϵ ∂ x b ϵ -Sϵc ϵ 1 ϵ ∂ y b ϵ , ∂ t ϵv ϵ + u ϵ ∂ x ϵv ϵ + ϵv ϵ 1 ϵ ∂ y ϵv ϵ - 1 Re ∂ 2 x ϵv ϵ - 1 Re 1 ϵ 2 ∂ 2 y ϵv ϵ + 1 ϵ ∂ y p ϵ -Sb ϵ ∂ x ϵc ϵ -Sϵc ϵ 1 ϵ ϵ∂ y c ϵ = (0, 0), and 
∂ t B + U • ∇B -B • ∇U - 1 Rm ∆B = ∂ t b ϵ + u ϵ ∂ x b ϵ + ϵv ϵ 1 ϵ ∂ y b ϵ - 1 Re ∂ 2 x b ϵ - 1 Re 1 ϵ 2 ∂ 2 y b ϵ -b ϵ ∂ x u ϵ -ϵc ϵ 1 ϵ ∂ y u ϵ , ∂ t ϵc ϵ + u ϵ ∂ x ϵc ϵ + ϵv ϵ 1 ϵ ∂ y ϵc ϵ - 1 Re ∂ 2 x ϵc ϵ - 1 Re 1 ϵ 2 ∂ 2 y ϵc ϵ -b ϵ ∂ x ϵv ϵ -ϵc ϵ 1 ϵ ϵ∂ y v ϵ = (0, 0).
So, the new system is of the form (4.2.3)

                           ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ y u ϵ - 1 Re ∂ 2 x u ϵ - 1 Re 1 ϵ 2 ∂ 2 y u ϵ = -∂ x p ϵ + Sb ϵ ∂ x b ϵ + Sc ϵ ∂ y b ϵ , ∂ t ϵv ϵ + ϵu ϵ ∂ x v ϵ + ϵv ϵ ∂ y v ϵ - ϵ Re ∂ 2 x v ϵ - 1 Re 1 ϵ ∂ 2 y v ϵ = - 1 ϵ ∂ y p ϵ + ϵSb ϵ ∂ x c ϵ + Sϵc ϵ ∂ y c ϵ , ∂ t b ϵ + u ϵ ∂ x b ϵ + v ϵ ∂ y b ϵ - 1 Re ∂ 2 x b ϵ - 1 Re 1 ϵ 2 ∂ 2 y b ϵ = b ϵ ∂ x u ϵ + c ϵ ∂ y u ϵ , ϵ∂ t c ϵ + ϵu ϵ ∂ x c ϵ + ϵv ϵ ∂ y c ϵ - 1 Re ϵ∂ 2 x c ϵ - 1 Re 1 ϵ ∂ 2 y c ϵ = ϵb ϵ ∂ x v ϵ + ϵc ϵ ∂ y v ϵ , ∂ x u ϵ + ∂ y v ϵ = 0, et ∂ x b ϵ + ∂ y c ϵ = 0.
This system is supplemented by the Dirichlet conditions at the boundary:

(u ϵ , v ϵ ) |y=0,1 = (b ϵ , c ϵ ) |y=0,1 = 0.
In the following, it is assumed that the constant S = 1. We dene the size of our layer by

ϵ = 1 √ Re = 1 √
Rm , this means that our hydrodynamic and magnetic Reynolds numbers are identical. If we replace in the system (4.2.3), we obtain (4.2.4)

                 ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ y u ϵ -ϵ 2 ∂ 2 x u ϵ -∂ 2 y u ϵ = -∂ x p ϵ + b ϵ ∂ x b ϵ + c ϵ ∂ y b ϵ , ϵ 2 ∂ t v ϵ + u ϵ ∂ x v ϵ + v ϵ ∂ y v ϵ -ϵ 2 ∂ 2 x v ϵ -∂ 2 y v ϵ = -∂ y p ϵ + ϵ 2 b ϵ ∂ x c ϵ + c ϵ ∂ y c ϵ , ∂ t b ϵ + u ϵ ∂ x b ϵ + v ϵ ∂ y b ϵ -ϵ∂ 2 x b ϵ -∂ 2 y b ϵ = b ϵ ∂ x u ϵ + c ϵ ∂ y u ϵ , ϵ ∂ t c ϵ + u ϵ ∂ x c ϵ + v ϵ ∂ y c ϵ -ϵ 2 ∂ 2 x c ϵ -∂ 2 y c ϵ = ϵ b ϵ ∂ x v ϵ + c ϵ ∂ y v ϵ , ∂ x u ϵ + ∂ y v ϵ = 0, et ∂ x b ϵ + ∂ y c ϵ = 0.
Taking the formal limit from ϵ to 0 in the (4.2.4) system, we obtain the following Prandtl system: (4.2.5)

           ∂ t u + u∂ x u + v∂ y u -∂ 2 y u = -∂ x p + b∂ x b + c∂ y b, ∂ y p = 0, ∂ t b + u∂ x b + v∂ y b -∂ 2 y b = b∂ x u + c∂ y u, ∂ x u + ∂ y v = 0, and ∂ x b + ∂ y c = 0.
The (4.2.5) system has been the subject of several recent studies, the existence and regularity of global and local solutions are dicult questions that researchers have tried to prove for this system. However, Liu, Xie and Yang in [START_REF] Liu | MHD boundary layers theory in Sobolev spaces without monotonicity I: Well-posedness theory[END_REF] managed to prove that this system is indeed posed locally in Sobolev space without asking for any monotocity condition on tangential velocity. The only essential hypothesis in their work is that the horizontal component of the magnetic eld admits a positive lower bound. This result gives a good understanding of the general physics according to which the magnetic eld stabilizes the boundary layer. On the other hand, when the initial data are analytical, N. Liu and P. Zhang in [START_REF] Liu | Global small analytic solutions of MHD boundary layer equations[END_REF] proved a result of existence and global uniqueness of solutions for the magnetohydrodynamic system in two dimension in the upper space R 2 + = {(x, y) : x ∈ R, y ∈ R + }. Before stating their result we recall that their system is of the form:

(4.2.6)                          ∂ t u 1 + u 1 ∂ x u 1 + u 2 ∂ y u 1 -∂ 2 y u 1 = -∂ x p + b 1 ∂ x b 1 + b 2 ∂ y b 1 , ∂ t b 1 + u 1 ∂ x b 1 + u 2 ∂ y b 1 -κ∂ 2 y b 1 = b 1 ∂ x u 1 + b 2 ∂ y u 1 , ∂ x u 1 + ∂ y u 2 = 0, and ∂ x b 1 + ∂ y b 2 = 0, (u 1 , u 2 ) /y=0 = 0 and (∂ y b 1 , b 2 ) /y=0 = 0, lim y→+∞ u 1 = U 1 and lim y→+∞ b 1 = B 1 , u 1 / t=0 = u 1,0 , b 1 / t=0 = b 1,0 ,
where (u 1 , u 2 ) and (b 1 , b 2 ) represent the uid velocity and the magnetic eld, respectively, the parameter κ is a positive constant representing the ratio between the hydrodynamic Reynolds number and the magnetic Reynolds number, (U 1 , B 1 , p)(t, x) are the traces of the tangential elds and the pressure of the ow on the boundary and satisfy Bernoulli's law:

(4.2.7) ∂ t U 1 + U 1 ∂ x U 1 + ∂ x p = B 1 ∂ x B 1 , ∂ t B 1 + U 1 ∂ x B 1 = B 1 ∂ x U 1 .
The aim of their work is to obtain a result of the global existence of solutions for this problem.

To do this, they dened for any constant Bκ , a plateau function χ ∈ C ∞ [0, ∞) dened by

χ(y) = y si y ≥ 2, 0 si y ≤ 1,
and made the following variable change : 

u = u 1 -χ ′ (y)U and v = u 2 + χ(y)∂ x U, b = b 1 -χ ′ (
                                   ∂ t u -∂ 2 y u -Bκ ∂ x b + u∂ x u -b∂ x b + v∂ y u -c∂ y b + χ ′ (U ∂ x u -B∂ x b) + χ ′ (∂ x U u -∂ x Bb) + χ(-∂ x U ∂ y u + ∂ x B∂ y b) + χ ′′ (U v -Bc) = M U , ∂ t b -κ∂ 2 y b -Bκ ∂ x u + u∂ x b -b∂ x u + v∂ y b -c∂ y u + χ ′ (U ∂ x b -B∂ x u) + χ ′ (∂ x Bu -∂ x U b) + χ(-∂ x U ∂ y b + ∂ x B∂ y u) + χ ′′ (Bv -U c) = M B , ∂ x u + ∂ y v = 0, and ∂ x b + ∂ y c = 0 (u, v) /y=0 = 0 and (∂ y b, c) /y=0 = 0, lim y→+∞ (u, v) = 0 and lim y→+∞ (b, c) = 0, u/ t=0 = u 0 = u 1,0 -χ ′ U 0 , b/ t=0 = b 0 = b 1,0 -χ ′ B 0 -Bκ ,
The terms M U and M B are supported for any y ∈ [0, 2] and t > 0. These terms are dened by We assume that the far eld states (U, B) satisfy

M U = (1 -χ ′ )(∂ t U -Bκ ∂ x B) + χ ′′′ U + (1 -(χ ′ ) 2 + χχ ′′ )(U ∂ x U -B∂ x B), M B = (1 -χ ′ )(∂ t B -Bκ ∂ x U ) + χ ′′′ B + (1 -(χ ′ ) 2 -χχ ′′ )(U ∂ x B -B∂ x U ).
                                             ∂ t φ -∂ 2 y φ -Bκ ∂ x ψ + u∂ x φ -b∂ x ψ + 2 ∞ y (∂ x φ∂ y u -∂ x ψ∂ y b)dy ′ + χ ′ (U ∂ x φ -B∂ x ψ) + 2 ∞ y χ ′′ (U ∂ x φ -B∂ x ψ)dy ′ + χ(-∂ x U u + ∂ x Bb) + 2χ ′ (∂ x U φ -∂ x Bψ) + 2 ∞ y χ ′′ (∂ x U φ -∂ x Bψ) = m U , ∂ t ψ -κ∂ 2 y ψ -Bκ ∂ x φ + u∂ x ψ -b∂ x φ + χ ′ (U ∂ x ψ -B∂ x φ) + χ(-∂ x U b + ∂ x Bu) = m B , φ /y=0 = ψ /y=0 = 0, and 
lim y→+∞ φ = lim y→+∞ ψ = 0, φ/ t=0 = φ 0 = - ∞ y u 0 dy ′ , ψ/ t=0 = ψ 0 = -
∥⟨t⟩ 9 4 e δ|Dx| (U, B)∥ L∞ (R + ;B 3 2 h ) + ∥⟨t⟩ 7 4 e δ|Dx| (∂ t U, ∂ t B, U, B)∥ L∞ (R + ;B 1 2 h ) ≤ ϵ, (4.2.12) ∞ 0 ⟨t⟩ 5 4 ∥e δ|Dx| (U, B)∥ B 1 2 h dt ≤ ϵ. (4.2.13)
Let the initial data (u 0 , b 0 , φ 0 , ψ 0 ) satisfy the compatibility condition

∞ 0 u 0 dy = ∞ 0 b 0 dy = 0 and ∥e y 2 8 e δ|Dx| (u 0 , b 0 , φ 0 , ψ 0 )∥ B 1 2 ,0 < ∞ and ∥e y 2 8 e δ|Dx| (G 0 , H 0 )∥ B 1 2 ,0 ≤ √ ϵ, (4.2.14)
where G 0 = u 0 + y 2⟨t⟩ φ 0 and H 0 = b 0 + y 2κ⟨t⟩ ψ 0 . Then there exist positive constants λ, a and ϵ 0 (λ, a, κ, δ) so that for ϵ ≤ ϵ 0 and l κ = κ(2-κ) 4 ∈]0, 1 4 ], the system (4.2.9) has a unique global solution (u, b) which satises

sup t∈[0,∞[ θ(t) ≤ δ 2λ .
The quantity θ(t) is a key quantity that allows us to describe the evolution of the analyticity band of (u, b). In this case, this quantity is dened by (4.2.15)

     θ(t) = ⟨t⟩ 1 4 ∥e Ψ ∂ y (G, H) ϕ (t)∥ B 1 2 ,0 + 1 √ ϵ ⟨t⟩ 5 4 ∥(U, B) ϕ (t)∥ B 1 2 h θ/ t=0 = 0.
Here the phase function ϕ is dened by

ϕ(t, ξ) = (δ -λθ(t))|ξ|,
and the weighted function Ψ is determined by

Ψ(t, y) = y 2 8⟨t⟩ with ⟨t⟩ = 1 + t.
Remark 4.2.2. The main idea of proving the above theorem is to use analytic energy estimates, which are motivated by [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] and which originates from [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF].

This result is obtained in the Besov functional space of the Chemin-Lerner type.

(4.2.16)

∥u∥ Lp (T 0 ,T ;B s,0 ) ≜ q∈Z 2 qs T T 0 ∆ h q u(t) p L 2 + dt 1 p
, where L 2 + = L 2 (R 2 + ). In particular, when T 0 = 0, we simplify the notation of ∥u∥ Lp (0,T ;B s,0 ) with ∥u∥ Lp T (B 

2,1 (R h ).

A second result in the direction of analytical data for the boundary layer magneto-hydrodynamic system is the result of S. Li and F. Xie in [START_REF] Li | Global solvability of 2D MHD boundary layer equations in analytic function spaces[END_REF]. Their result concerns the study of the global well-posed character of the solutions of the magnetohy-drodynamic system (4.2.6) in the space of analytic functions. In this work, the authors are interested in the case where B 1 = 1, κ = 1 and U 1 (t, x) = f (t) in the (4.2.6) system. By Bernoulli's law, their pressure term satises

∂ x p = -f ′ (t). Let χ ∈ C ∞ [0, ∞) a cut-o function dened by χ(y) = 1 si y ≥ 2, 0 si y ≤ 1, , we note U = u 1 -f (t)χ(y). Then (U, u 2 , b 1 , b 2 ) solve the system: (4.2.17)            ∂ t U + (U + f (t)χ(y))∂ x U + u 2 ∂ y (U + f (t)χ(y)) -∂ 2 y U -b 1 ∂ x b 1 -b 2 ∂ y b 1 = m(t, y), ∂ t b 1 + ∂ y (u 2 b 1 -(U + f (t)χ(y))b 2 ) = ∂ 2 y b 1 , ∂ x U + ∂ y u 2 = 0, and ∂ x b 1 + ∂ y b 2 = 0, where m(t, y) = (1 -χ(y))f ′ (t) + f (t)χ ′′ (y).
If we place ourselves in the context of a shear ow we have that (u s (t, s), 0, 1, 0) is a trivial solution of the system (4.2.17) with u s (t, y) solving (4.2.18)

       ∂ t u s -∂ 2 y u s = m(t, y), u s (t, y)/ y=0 = 0 et lim y→+∞ u s (t, y) = 0, u s (t, y)/ t=0 = 0.
This allows us to see the solution of the system (4.2.17) as a perturbation (u, v, b, c) of (u s (t, y), 0, 1, 0). This solution is given by

U = u s + u et u 2 = v, b 1 = 1 + b et b 2 = c.
As a result, the system (4.2.17) becomes 

(4.2.19)                              ∂ t u + (u + u s + f (t)χ(y))∂ x u + v∂ y (u + u s + f (t)χ(y)) -∂ 2 y u -(1 + b)∂ x b -c∂ y b = 0, ∂ t b + (u + u s + f (t)χ(y))∂ x b -c∂ y (u + u s + f (t)χ(y)) -∂ 2 y b -(1 + b)∂ x u + v∂ y b = 0, ∂ x u + ∂ y v = 0, and ∂ x b + ∂ y c = 0, (u, v, ∂ y b, c)/ y=0 = 0 and lim y→+∞ (u, b) = 0, u(0, x, y) = u 0 = u 1,0 -f (0)χ(y) et b(0, x, y) = b 0 = b 1,0 -1.
                             ∂ t φ + (u + u s + f (t)χ(y))∂ x φ + 2 ∞ y ∂ y (u + u s + f (t)χ(y)).∂ x φdy -(1 + b)∂ x ψ -2 ∞ y ∂ y b.∂ x ψdy -∂ 2 y φ = 0, ∂ t ψ + (u + u s + f (t)χ(y))∂ x ψ -(1 + b)∂ x φ -∂ 2 y ψ = 0, φ /y=0 = ψ /y=0 = 0, and lim y→+∞ φ = lim y→+∞ ψ = 0, φ/ t=0 = φ 0 = - ∞ y u 0 dy ′ , ψ/ t=0 = ψ 0 = - ∞ y b 0 dy ′ .
The result obtained in their paper is as follows Theorem 4.2.2 (S.Li et F.Xie). Let δ > 0, and f ∈ H 1 (R + )which satises:

C f = ∞ 0 ⟨t⟩(|f (t)| + |f ′ (t)|)dt + ( ∞ 0 ⟨t⟩ 3 (f 2 (t) + (f ′ (t)) 2 )dt) 1 2 < ∞, (4.2.21) with ⟨t⟩ = 1 + t and u 0 = ∂ y φ 0 , b 0 = ∂ y ψ 0 satisfy the compatibility conditions ∞ 0 u 0 dy = ∞ 0 b 0 dy = 0. Assume further that G 0 = u 0 + y 2⟨t⟩ φ 0 and H 0 = b 0 + y 2⟨t⟩ ψ 0 satisfy ∥e y 2 8 e 2δ|Dx| (u 0 , b 0 )∥ B 1 2 ,0 < ϵ et ∥e y 2 8 e δ|Dx| (G 0 , H 0 )∥ B 1 2 ,0 ≤ ∞, (4.2.22)
for some suciently small ϵ. Then the system (4.2.19) admits a unique global-in-time solution (u, b), which satises:

∥e y 2 8⟨t⟩ e δ/2|Dx| (u, b)∥ L ∞ (R + ;B 1 2 ,0 ) + ∥e y 2 8⟨t⟩ e δ/2|Dx| ∂ y (u, b)∥ L 2 (R + ;B 1 2 ,0 ) ≤ C∥e y 2 8 e 2δ|Dx| (u 0 , b 0 )∥ B 1 2 ,0 , (4.2.23)
where C is an independent constant of C f . Remark 4.2.4. The space used to obtain this result is the Besov space dened by (4.2.24) ∥u∥

Lp (T 0 ,T ;B s,0 ) ≜ q∈Z 2 qs T T 0 ∆ h q u(t) p L 2 + dt 1 p .
Remark 4.2.5. The main idea of the proof of the above theorem is to use the analytical energy estimates, which are motivated by [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] and dene the phase function

ϕ(t, ξ) = (δ -λθ(t))|ξ|.
The quantity θ(t) is a key quantity that allows us to describe the evolution of the analyticity band of (u, b).

Outcome Statement of the Magnetohydrodynamic System

In chapter 4 of this thesis, for ϵ > 0, we consider the following system (MHD)

           ∂ t U + U • ∇U -ϵ 2 ∆U + ∇P = B • ∇B, ∂ t B + U • ∇B -ϵ 2 ∆B = B • ∇U, div U = div B = 0, U /t=0 = U 0 , B /t=0 = B 0 ,
All the results mentioned are obtained when the domain Ω is

R 2 + = {(x, y) : x ∈ R, y ∈ R + }.
In our case, we studied the magneto-hydrodynamic system for a uid that evolves in thin domain with Dirichlet conditions at the boundary, our eld of study is the following

S ϵ = {(x, y) ∈ R 2 : 0 < y < ϵ},
where ϵ represents the width of the domain. The interest of being in a thin domain supplemented by the Dirichlet conditions at the boundary is the appearance of Prandtl-type equations for velocity and magnetic elds. The main idea of the result is to obtain the existence and unique-ness of solutions for the (MHD) system in a thin domain.

The sustem (MHD) is completed by the Dirichlet boundary conditions

(U, B)| y=0 = 0 and (U, B)| y=ϵ = 0
Our initial data is of the following form

U ϵ |t=0 = U ϵ 0 = u 0 x, y ϵ , ϵv 0 x, y ϵ in S ϵ ,
and

B ϵ |t=0 = B ϵ 0 = b 0 x, y ϵ , ϵc 0 x, y ϵ in S ϵ .
We look for solutions for our system of the form (4.2.25)

           U (t, x, y) = u ϵ t, x, y ϵ , ϵv ϵ t, x, y ϵ , B(t, x, y) = b ϵ t, x, y ϵ , ϵc ϵ t, x, y ϵ , P (t, x, y) = p ϵ t, x, y ϵ .
Let S := (x, y) ∈ R 2 : 0 < y < 1 . After a natural change of scale, the (MHD) system becomes an anisotropic system (4.2.26)

                                 ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ y u ϵ -ϵ 2 ∂ 2 x u ϵ -∂ 2 y u ϵ + ∂ x p ϵ = b ϵ ∂ x b ϵ + c ϵ ∂ y b ϵ , in ]0, ∞[×S ϵ 2 ∂ t v ϵ + u ϵ ∂ x v ϵ + v ϵ ∂ y v ϵ -ϵ 2 ∂ 2 x v ϵ -∂ 2 y v ϵ + ∂ y p ϵ = ϵ 2 (b ϵ ∂ x c ϵ + c ϵ ∂ y c ϵ ) , in ]0, ∞[×S ∂ t b ϵ + u ϵ ∂ x b ϵ + v ϵ ∂ y b ϵ -ϵ 2 ∂ 2 x b ϵ -∂ 2 y b ϵ = b ϵ ∂ x u ϵ + c ϵ ∂ y u ϵ , in ]0, ∞[×S ϵ ∂ t c ϵ + u ϵ ∂ x c ϵ + v ϵ ∂ y c ϵ -ϵ 2 ∂ 2 x c ϵ -∂ 2 y c ϵ = ϵ (b ϵ ∂ x v ϵ + c ϵ ∂ y v ϵ ) , in ]0, ∞[×S ∂ x u ϵ + ∂ y v ϵ = 0, in ]0, ∞[×S ∂ x b ϵ + ∂ y c ϵ = 0, in ]0, ∞[×S (u ϵ , v ϵ , b ϵ , c ϵ ) | t=0 = (u 0 , v 0 , b 0 , c 0 ) , in S (u ϵ , v ϵ , b ϵ , c ϵ ) | y=0 = (u ϵ , v ϵ , b ϵ , c ϵ ) | y=1 = 0.
Formally taking ϵ → 0 in the scaled system (4.2.26), we obtain the Prandtl system on u and also on b which is of the following form:

(4.2.27)                            ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = b∂ x b + c∂ y b, in ]0, ∞[×S ∂ y p = 0, in S×]0, ∞[ ∂ t b + u∂ x b + v∂ y b -∂ 2 y b = b∂ x u + c∂ y u, in ]0, ∞[×S ∂ x u + ∂ y v = 0, in ]0, ∞[×S ∂ x b + ∂ y c = 0, in ]0, ∞[×S u| t=0 = u 0 , in S b| t=0 = b 0 , in S,
where the velocity eld U = (u, v) and the magnetic eld B = (b, c) satisfy the Dirichlet non-slip boundary condition

(u, v, b, c) | y=0 = (u, v, b, c) | y=1 = 0.
Our goal is to obtain the global existence of solutions for the (4.2.26) and (4.2.27) systems when our initial data are analytical, and then we want to show the convergence of the scaled anisotropic MHD system (4.2.26) to the limit system (4.2.27) when ϵ tends to zero. The rst result is the global well-posedness of the limit MHD system (4.2.27), with small analytic data in the horizontal variable.

Theorem 4.2.3. Let a > 0, we assume that for some constant c 0 suciently small independent of ϵ, and for any initial data (u 0 , b 0 ) satisfying

∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| b 0 ∥ B 1 2 ≤ c 0 a, (4.2.28)
and the compatibility conditions 1 0 (u 0 , b 0 )dy = 0 are satised. Then the system limit (4.2.27) has a unique global solution (u, b) satisfying

∥e Rt (u ϕ , b ϕ )∥ L∞ (R + ,B 1 2 ) + ∥e Rt ∂ y (u ϕ , b ϕ )∥ L2 (R + ,B 1 2 ) ≤ C∥e a|Dx| (u 0 , b 0 )∥ B 1 2 , (4.2.29) where C = C(s) and (u ϕ , b ϕ ) are given by (4.2.30) (u ϕ , b ϕ )(t, x, y) = e ϕ(t,Dx) (u(t, x, y), b(t, x, y)) ≜ F -1 h (e ϕ(t,ξ) ( u(t, ξ, y), b(t, ξ, y))) ϕ(t, ξ) = (a -λθ(t))|ξ|.
The quantity θ(t) describes the evolution of the decrease of the analyticity band over time, this quantity is positive for all t ∈ R * + satises the equation

θ(t) = ∥∂ y (u ϕ , b ϕ )∥ B 1
2 and when t = 0, we have θ(0) = 0. R is a constant determined by the Poincaré inequality for the band S, the functional space used to obtain this result is the Besov space of the Chemin-Lerner type.

∥u∥ Lp T (B s (S)) ≜ q∈Z 2 qs T 0 ∆ h q u(t) p L 2 dt 1 p ,
The second result is the global well-posedness of the scaled system (4.2.26) with small analytic initial data in the horizontal variable x. Theorem 4.2.4. Let a > 0, there exist a constant c 1 suciently small independent of ϵ, such that for any initial data

(u ϵ 0 , v ϵ 0 , b ϵ 0 , c ϵ 0 ) = (U ϵ 0 , B ϵ 0 ) satisfying ∥e a|Dx| (u 0 , ϵv 0 )∥ B 1 2 + ∥e a|Dx| (b 0 , ϵc 0 )∥ B 1 2 ≤ c 1 a, (4.2.31) then the system (4.2.26) has a unique global solution (U ϵ , B ϵ ) so that (4.2.32) ∥e Rt (u φ , ϵv φ )∥ L∞ (R + ,B 1 2 ) + ∥e Rt (b φ , ϵc φ )∥ L∞ (R + ,B 1 2 ) + ∥e Rt ∂ y (u φ , ϵv φ )∥ L2 (R + ,B 1 2 ) + ∥e Rt ∂ y (b φ , ϵc φ )∥ L2 (R + ,B 1 2 ) + ϵ∥e Rt ∂ x (u φ , ϵv φ )∥ L2 (R + ,B 1 2 ) + ϵ∥e Rt ∂ x (b φ , ϵc φ )∥ L2 (R + ,B 1 2 ) ≤ C ∥e a|Dx| (u 0 , ϵv 0 )∥ B 1 2 + ∥e a|Dx| (b 0 , ϵc 0 )∥ B 1 2
, where C = C(s) and (u ϵ φ , v ϵ φ ) and (b ϵ φ , c ϵ φ ) will given also by (4.2.30). The function φ is given by

φ(t, D x ) = (a -λτ (t))|D x |,
such that τ (t) is the evolution of the analyticity band.

The third result concern the study of the convergence from the scaled anisotropic MHD system (4.2.26) to the limit system (4.2.27), so in this theorem we proved that the convergence is globally in time.

Theorem 4.2.5. Let a > 0, and 

(u ϵ 0 , v ϵ 0 , b ϵ 0 , c ϵ 0 ), satisfying (6.2.7). Let u 0 and b 0 satisfying e a|D|x u 0 ∈ B 1 2 ∩ B
∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| b 0 ∥ B 1 2 ≤ c 2 a 1 + ∥e a|Dx| (u 0 , b 0 )∥ B 3 2
, for some constant c 2 > 0 suciently small independent of ϵ, then we have

∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L∞ t (B 1 2 
)

+ (Φ 1 Θ , ϵΦ 2 Θ )(t) L ∞ t (B 1 2 
)

∥∂ y (Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 1 2 
)

+ ϵ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 3 2 
)

+ ∥∂ y (Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t (B 1 2 
)

+ ϵ∥(Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t (B 3 2 ) (4.2.33) 
≤ C ∥e a|Dx| (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + ∥e a|Dx| (b ϵ 0 -b 0 , ϵ(c ϵ 0 -c 0 ))∥ B 1 2 + M ϵ ,
where C = C(s) and

(Ψ 1,ϵ , Ψ 2,ϵ , q ϵ ) = (u ϵ -u, v ϵ -v, p ϵ -p), (Φ 1,ϵ , Φ 2,ϵ ) = (b ϵ -b, c ϵ -c), (4.2.34) and v 0 is determined from u 0 via ∂ x u + ∂ y v = 0 and v 0 | y=0 = v 0 | y=1 = 0, and (Ψ 1 Θ , ϵΨ 2 Θ ), (Φ 1 Θ , ϵΦ 2 
Θ ) will be given by (4.2.30). The function φ is given by

Θ(t, D x ) = (a -µη(t)) |D x |,
such that η(t) is the evolution of the analyticity band, and µ ≥ λ is a constant.

Remark 4.2.6. The main idea of proving the above theorem is to use analytic energy estimates, which are motivated by [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] and which originates from [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF].

Statement of the results on the hyperbolic version of the magnetohydrodynamic system

In the chapter 5 of this thesis, we are interested in the following hyperbolic version of the magnetohydrodynamic system in two dimensions:

(4.2.35)                              J∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = H 2 b 1 b 2 v -ub 2 2 -b 2 e (0, T ) × R × (0, 1), ∂ y p = H 2 b 1 b 2 u -b 2 1 v + b 1 e (0, T ) × R × (0, 1), κ Pr m ∂ 2 t b 1 + ∂ t b 1 + u∂ x b 1 + v∂ y b 1 - 1 Pr m ∂ 2 y b 1 = b 1 ∂ x u + b 2 ∂ y u (0, T ) × R × (0, 1), κ Pr m ∂ 2 t b 2 + ∂ t b 2 + u∂ x b 2 + v∂ y b 2 - 1 Pr m ∂ 2 y b 2 = b 1 ∂ x v + b 2 ∂ y v (0, T ) × R × (0, 1), ∂ t b 1 + ∂ y e = 0 and ∂ t b 2 -∂ x e = 0 (0, T ) × R × (0, 1), ∂ x u + ∂ y v = 0 and ∂ x b 1 + ∂ y b 2 = 0 (0, T ) × R × (0, 1),
coupled with the following initial conditions and limits:

(4.2.36) (IC) (u, b 1 , b 2 )| t=0 = (ū, b1 , b2 ) R × (0, 1), (∂ t u, ∂ t b 1 , ∂ t b 2 )| t=0 = (ũ, b1 , b2 ) R × (0, 1), (4.2.37) (BC) (u, b 1 , b 2 , e)| y=1 = (0, 0, 0, 0) (0, T ) × R, (u, b 1 , b 2 , e)| y=1 = (0, b 1 , b 2 , e) (0, T ) × R. All state variables (u, v, b 1 , b 2 , e) in (4.2.35) depend on time t ∈ (0, T ) and space (x, y) ∈ R × (0, 1). The vector elds (u, v) T ∈ R 2 and (b 1 , b 2 ) T ∈ R 2
are divergence free and stand for the velocity and magnetic elds of plasma, respectively. The electric eld assumes size e ∈ R and is perpendicular to the plane containing the plasma. All constants H, κ, Pr m and J are positive and depend on standard dimensionless parameters of magnetohydrodynamics. If we assume that our initial data are analytical and suciently small in the horizontal variable, then the result obtained in Chapter 5 represents the existence and uniqueness of the overall solutions of the system (4. (0, 0, 0). For any s > 2, there exists a suciently small positive constant ε s ∈ [0, 1) (which depends uniquely upon s), such that the following result holds true. Let ū, b1 and b1 be initial data of (4.2.35) that are analytic in the variable x ∈ R with radius of analyticity τ 0 > 0:

(4.2.38) e τ 0 (1+|Dx|) ū and e τ 0 (1+|Dx|) b1 belong to H s+1,1 (R × (0, 1)),
e τ 0 (1+|Dx|) ũ and e τ 0 (1+|Dx|) b1 belong to H s,0 (R × (0, 1)).

If the following smallness condition on the initial data holds true (4.2.39)

∥e τ 0 (1+|Dx|) ū∥ H s+1,0 + ∥e τ 0 (1+|Dx|) ∂ y ū∥ H s,0 + ∥e τ 0 (1+|Dx|) ũ∥ H s,0 + ∥e τ 0 (1+|Dx|) b1 ∥ H s+1,0 + +∥e τ 0 (1+|Dx|) ∂ y b1 ∥ H s,0 +∥e τ 0 (1+|Dx|) b1 ∥ H s,0 ≤ min{1, J, κ/Pr m } 3 2 max{1, J, κ/Pr m } 5 2 min{τ 0 , τ -1 0 } 3 2 max{1, H 2 } max{Pr m -1 , Pr m } 1 2 ε s ,
then there exists a global-in-time analytic solution (u, b 1 ) of (4.2.35), which has a decaying radius of analyticity τ : R + → (0, τ 0 ] given by (4.2.40)

τ (t) := τ 0 exp - t 16 max{1, J, κ/Pr m } > 0.
Furthermore, the analytic norms of the solution decay exponentially in time t ∈ R + as follows: (4.2.41)

∥e τ (t)(1+|Dx|) u(t)∥ 2 H s+1,0 + ∥e τ (t)(1+|Dx|) ∂ t u(t)∥ 2 H s,0 + ∥e τ (t)(1+|Dx|) ∂ y u(t)∥ 2 H s,0 + + ∥e τ (t)(1+|Dx|) b 1 (t)∥ 2 H s+1,0 + ∥e τ (t)(1+|Dx|) ∂ t b 1 (t)∥ 2 H s,0 + ∥e τ (t)(1+|Dx|) ∂ y b 1 (t)∥ 2 H s,0 ≤ C(J, κ, Pr m , τ 0 ) ∥e τ 0 (1+|Dx|) ū∥ 2 H s+1,0 + ∥e τ 0 (1+|Dx|) ũ∥ 2 H s,0 + ∥e τ 0 (1+|Dx|) ∂ y ū∥ 2 H s,0 + + ∥e τ 0 (1+|Dx|) b∥ 2 H s+1,0 + ∥e τ 0 (1+|Dx|) b∥ 2 H s,0 + ∥e τ 0 (1+|Dx|) ∂ y b∥ 2 H s,0 exp - t 8 max{1, J, κ/Pr m } .
where the constant C(J, κ, Pr m , τ 0 ) is dened by

C(J, κ, Pr m , τ 0 ) = 4 3 max{1, J, κ/Pr m } 3 min{1, J, κ/Pr m } 3 max Pr m , Pr -1 m max{τ 0 , τ -1 0 } 2 .

Hydrostatic approximation of Primitive Equations

In this section, we seek to give the results obtained during the work of this thesis on the modeling of primitive equations in two-dimensional boundary layers. The model studied represents geophysical uids on a large scale. In our case, we will take into account the strong stratication due to the Earth's gravity. Our model is of the following form:

(4.3.1)                      ∂ t u + U • ∇u -ν 1 ∂ 2 x u -ν 2 ∂ 2 y u + ∂ x p = 0, ∂ t v + U • ∇v -ν 1 ∂ 2 x v -ν 2 ∂ 2 y v + ∂ y p = T F r , ∂ t T + U • ∇T -κ 1 ∂ 2 x T -κ 2 ∂ 2 y T = 0 div U = 0, (U, T ) /t=0 = (U 0 , T 0 ),

Reminder of existing results

The results of this thesis concern the study of primitive equations in a thin domain supplemented by Dirichlet conditions at the edge. The structure of the thin domain as well as the choice of initial data cause horizontal viscosity's to disappear at the limit, when the thickness of the domain converges to zero. We will therefore have to study the hydrostatic approximation of the Navier-Stokes system, which is a Prandtl equation, coupled with a transport-diusion equation on temperature. Before discussing the results obtained for this type of system, we briey recall some of the results obtained previously.

We begin by recalling some results obtained when considering all non-zero viscosity and diffusivity. The rst to mathematically process this model were Lions-Temam-Wang in [9193] in 1990. Their work concerns the study of the global existence of weak solutions for primitive equations taking into account viscosity and diusivity. Regarding the uniqueness of the solution, Guillén-Gonzalez, Masmoudi and Rodriguez-Bellido in [START_REF] Guillen-Gonzalez | Anisotropic estimates and strong solutions of the primitive equations[END_REF] proved the uniqueness of the weak solution for these equations in a 2-dimensional frame. They also obtained a local existence result in [START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF]. The global existence in two-dimensional for these equations was obtained by Bresch, Kazhikhov and Lemoine in [START_REF] Bresch | On the two-dimensional hydrostatic Navier-Stokes equations[END_REF].

When considering only a vertical viscosity that appears in the system and all the diusivity, C. Cao, Q. Lin and E.S.Titi obtained a result of local and global existence with small initial data of the strong solution of the reduced 3D primitive geostrophic adjustment model with low dissipation in [START_REF] Cao | On the well-posedness of reduced 3D primitive geostrophic adjustment model with weak dissipation[END_REF]. More specically, they looked at the following model: In the (4.3.2) model, ϵ 1 and ϵ 2 are positive constants, ν is a positive constant that represents the vertical viscosity of the horizontal moment equations and f 0 is the Coriolis parameter. This work led by C. Cao, Q. Lin and E.S. Titi in [START_REF] Cao | On the well-posedness of reduced 3D primitive geostrophic adjustment model with weak dissipation[END_REF] to the following results:

(4.3.2)                        ∂ t u + u∂ x u + w∂ z u + ϵ 1 u -f 0 v -ν∂ 2 z u + ∂ x p = 0, ∂ t v + u∂ x v + w∂ z v + ϵ 1 v + f 0 u -ν∂ 2 z v = 0, ϵ 2 w + ∂ z p + T = 0, ∂ t T + u∂ x T + w∂ z T -κ∆T = 0 ∂ x u + ∂ z w = 0 (u, v, T )| t=0 = (u 0 , v 0 , T 0 ), This model is studied in the domain (x, z) ∈ R 2 : 0 ≤ z ≤ H , completed
Theorem 4.3.1. Suppose that u 0 , v 0 , T 0 , ∂ x u 0 , ∂ x v 0 , ∂ x T 0 ∈ H 1 (T 2
) satisfy the symmetry conditions:

u, v et T are periodic in x and z with period 1; u, v are even in z, and T is odd in z, with the compatibility condition 1 0 ∂ x u 0 dz = 0. Then there exists some time T positive such that there exists a unique strong solution (u, v, T ) of system (4.3.2), on the interval [0, T ]. Moreover, the unique strong solution (u, v, T ) depends continuously on the initial data. Remark 4.3.1. The proof of this theorem is based on the standard Galerkin approximation. Indeed, the authors rst establish the formal a priori estimates for the solutions of system (4.3.2). These estimates can be justied rigorously by deriving them rst to the Galerkin approximation system and then passing to the limit using the Aubin-Lions compactness theorem.

The second result concerns the existence and global uniqueness of the strong solution of system (4.3.2), provided that the initial data is suciently small.

Theorem 4.3.2. Suppose that u 0 , v 0 , T 0 , ∂ x u 0 , ∂ y v 0 , ∂ x T 0 ∈ H 1 (T 2 )
satises the symmetry conditions:

u, v and T are periodic in x and z with period 1; u, v are even in z, and T is odd in z, with the compatibility condition

1 0 ∂ x u 0 dz = 0. Moreover, suppose that ∥u 0 ∥ H 1 + ∥v 0 ∥ H 1 + C 0 ∥T 0 ∥ H 1 + ∥∂ x u 0 ∥ H 1 + ∥∂ x v 0 ∥ H 1 + C 0 ∥∂ x T 0 ∥ H 1 << 1
for some C 0 > 0. Then for any time T > 0, there exists a unique strong solution (u, v, T ) of system (4.3.2) on the interval [0, T ]. Moreover, the unique strong solution (u, v, T ) depends continuously on the initial data.

Contribution of the thesis

In The Chapter 8 of this thesis, we consider for ϵ > 0 the system (PE)

                 ∂ t U + U • ∇U -ϵ 2 ∆U + ∇P = 0 T F r , ∂ t T + U • ∇T -κ 1 ∂ 2 x T -κ 2 ∂ 2 y T = 0, div U = 0, U /t=0 = U 0 , T /t=0 = T 0 ,
In our study, we looked at primitive equations on a thin domain with Dirichlet conditions at the boundary. Our domain of study is

S ϵ = {(x, y) ∈ R 2 : 0 < y < ϵ},
where ϵ represent the width of the domain. The general idea for dealing with this type of equation is to impose analyticity according to the horizontal variable. This allows us to control the nonlinear terms that give diculty due to derivative losses in the horizontal variable. This method led us to nd a result of the existence and global uniqueness of solutions for the (PE) system in a thin domain.

In the (PE) system, the constants κ 1 and κ 2 represents the horizontal and vertical thermal diusivity. Throughout our results, these constants are given by κ 1 = 1 and κ 2 = ϵ 2 . F r is the Froude number measuring the importance of stratication, which is assumed to be F r = ϵ.

The (PE) system supplemented by the Dirichlet conditions at the boundary (U, T )/ y=0 = 0 and (U, T )/ y=ϵ = 0.

Our initial data has the form

U |t=0 = U ϵ 0 = u 0 x, y ϵ , ϵv 0 x, y ϵ in S ϵ , et T |t=0 = T 0 x, y ϵ in S ϵ .
We are looking for solutions for our system of form

(4.3.3)            U (t, x, y) = u ϵ t, x, y ϵ , ϵv ϵ t, x, y ϵ , T (t, x, y) = T ϵ t, x, y ϵ , P (t, x, y) = p ϵ t, x, y ϵ .
Performing scaling change z = y ϵ , i.e. S := (x, z) ∈ R 2 : 0 < z < 1 , we obtain the primitive anisotropic system (4.3.4)

                       ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ z u ϵ -ϵ 2 ∂ 2 x u ϵ -∂ 2 z u ϵ + ∂ x p ϵ = 0, ϵ 2 ∂ t v ϵ + u ϵ ∂ x v ϵ + v ϵ ∂ z v ϵ -ϵ 2 ∂ 2 x v ϵ -∂ 2 z v ϵ + ∂ z p ϵ = T ϵ , ∂ t T ϵ + u ϵ ∂ x T ϵ + v ϵ ∂ z T ϵ -∆T ϵ = 0, ∂ x u ϵ + ∂ z v ϵ = 0, (u ϵ , v ϵ , T ϵ ) | t=0 = (u 0 , v 0 , T 0 ) , (u ϵ , v ϵ , T ϵ ) | ȳ=0 = (u ϵ , v ϵ , T ϵ ) | ȳ=1 = 0.
Formally taking ϵ → 0 in the system (4.3.4), we obtain the following hydrostatic limit for primitive equations, which are combination of a Prandtl-like system with a transport-diusion equation of the temperature (4.3.5)

                       ∂ t u + u∂ x u + v∂ z u -∂ 2 z u + ∂ x p = 0, ∂ y p = T, ∂ t T + u∂ x T + v∂ z T -∆T = 0, ∂ x u + ∂ z v = 0, (u, T )| t=0 = (u 0 , T 0 ), (u, v, T ) | y=0,1 = 0,
Our goal is to obtain the global existence of solutions for the (4.3.4) and (4.3.5) systems when our initial data are analytical. Then we want to show the convergence of the primitive anisotropic equations scaled (4.3.4) to the limit system (4.3.5) when ϵ tends to zero.

The rst result obtained concerns the existence of global solutions of the hydrostatic system (4.3.5), with small analytical data according to the horizontal variable.

Theorem 4.3.3. Let a > 0, s > 0 and assume that e a|Dx| (u 0 , T 0 ) ∈ B , a] such that, if we suppose that the initial data (u 0 , T 0 ) satisfy the compatibility condition 1 0 u 0 dz = 0 and the smallness assumption

e a|Dx| u 0 B 1 2 + e a|Dx| T 0 B 1 2
≤ c 0 a and e a|Dx| u 0

B 3 2 + e a|Dx| T 0 B 3 2 ≤ c 0 , (4.3.6)
then the system (4.3.5) has a unique global solution

(u, T ) ∈ L∞ (R + ; B s ) ∩ C(R + ; B s ) with ∂ z u ∈ L2 (R + ; B s ), satisfying ∥e Rt (u ϕ , T ϕ )∥ L∞ (R + ;B s ) + 1 4 e Rt ∂ z u ϕ L2 t (B s ) + 1 2 e Rt ∇T ϕ L2 t (B s ) ≤ 2C∥e a|Dx| (u 0 , T 0 )∥ B s , (4.3.7) 
for any 0 ≤ R ≤ 1 2K , where ϕ(t, ξ) = φ(t) |ξ| and where for any f ∈ L 2 (S),

f ϕ (t, x, z) = e ϕ(t,Dx) f (t, x, z) = F -1 h (e ϕ(t,ξ) f (t, ξ, z)).
where K > 0 is the Poincaré constant on the strip S, in the sens that, for any

f ∈ L 2 (S), f | ∂S =0 and ∂ z f ∈ L 2 (S), we have ∥f ∥ L 2 (S) ≤ K ∥∂ z f ∥ L 2 (S)
.

Furthermore, we have,

(4.3.8) ∥e Rt (∂ t u) ϕ ∥ L2 t (B s ) + ∥e Rt ∂ z u ϕ ∥ L∞ t (B s ) ≤ C e a|Dx| (u 0 , T 0 ) B s + e a|Dx| (u 0 , T 0 ) B 1 2 e a|Dx| (u 0 , T 0 ) B s+1 .
where C = C(s), the functional space used to obtain this result is the Besov Chemin-Lerner space given by the norm

∥u∥ Lp T (B s (S)) ≜ q∈Z 2 qs T 0 ∆ h q u(t) p L 2 dt 1 p , Remark 4.3.2.
We remark that the normal component v is uniquely determined from the incompressibility and the boundary condition

v(t, x, z) = z 0 ∂ z v(t, x, z ′ )dz ′ = - z 0 ∂ x u(t, x, z ′ )dz ′ . (4.3.9)
The second result shown is that the primitive anisotropic equations (4.3.4) with small analytical initial data in the tangential variable are generally well-posed. Theorem 4.3.4. Let a > 0, s > 0, ϵ > 0 and assume that e a|Dx| (u ϵ

0 , v ϵ 0 , T ϵ 0 ) ∈ B 1 2 ∩ B 3 2 ∩ B s . There exist positive constants c 1 , C (independent of ϵ) and a decreasing function Θ : R + → [ 2a 3 , a] such that, if we suppose that the initial data (u ϵ 0 , v ϵ 0 , T ϵ 0 ) satisfy e a|Dx| (u ϵ 0 , v ϵ 0 , T ϵ 0 ) B 1 2 ≤ c 1 a and e a|Dx| (u ϵ 0 , v ϵ 0 , T ϵ 0 ) B 3 2 ≤ c 1 ,
then, for any 0 < ϵ < 1 2C the system (4.3.4) has a unique global solution (u ϵ , v ϵ , T ϵ ) satisfying,

∥e Rt (u ϵ Θ , ϵv ϵ Θ , T ϵ Θ )∥ L∞ t (B s ) + ∥e Rt ∂ z (u ϵ Θ , ϵv ϵ Θ , T ϵ Θ )∥ L2 t (B s ) + ∥e Rt ∂ x T ϵ Θ ∥ Lt(B s ) ≤ C∥e a|Dx| (u ϵ 0 , ϵv ϵ 0 , T ϵ 0 )∥ B s ,
where C = C(s), for any 0 ≤ R ≤ 1 2K . Here, Θ(t, ξ) = Θ(t) |ξ| and for any f ∈ L 2 (S),

f Θ (t, x, z) = e Θ(t,Dx) f (t, x, z) = F -1 h (e Θ(t,ξ) f (t, ξ, z)).
The third result concerns the convergence of the solutions of the scaled anisotropic equation of primitive equations (4.3.4) to the limit system (4.3.5).

Theorem 4.3.5. Let a > 0 and 0 < ϵ ≤ 1. We suppose that the initial data (u 0 , v 0 , T 0 ) and

(u ϵ 0 , v ϵ 0 , T ϵ 0 )
satisfy the assumptions of Theorems 4.3.3 and 4.3.4. Let (u, v, T ) and (u ϵ , v ϵ , T ϵ ) be the respective solutions of the systems (4.3.5) and (4.3.4). Then, there exist a constant M > 0 independent of ϵ and a decreasing function

φ : R + → [ a 3 , a] such that ∥(u ϵ φ -u φ , ϵv ϵ φ -ϵv φ )∥ L∞ t (B s ) + ∥∂ z (u ϵ φ -u φ , ϵv ϵ φ -ϵv φ )∥ L2 t (B s ) + ϵ∥(u ϵ φ -u φ , ϵv ϵ φ -ϵv φ )∥ L2 t (B s+1 ) ≤ C ∥e a|Dx| (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B s + C∥e a|Dx| (T ϵ 0 -T 0 )∥ B s + M ϵ .
where C = C(s) and φ(t, ξ) = φ(t) |ξ| and where, for any f ∈ L 2 (S),

f φ (t, x, z) = e φ(t,Dx) f (t, x, z) = F -1 h (e φ(t,ξ) f (t, ξ, z)).
Remark 4.3.3. The main idea of proving the above theorem is to use analytic energy estimates, which are motivated by [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] and which originates from [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF].

Study of the equations of homogeneous and inhomogeneous magnetohydrodynamics

In the second part of this thesis, we were interested in the study of the existence and regularity as well as the uniqueness of the solutions of the equation of magneto-hydrodynamics, when we have a condition of smallness of the unidirectional derivative of the initial velocity in certain scale-invariant spaces.

Reminder of the results

The results of this thesis are motivated by the result obtained by Y. Liu, M. Paicu and P. Zhang in [START_REF] Liu | Global well-posedness of 3-D anisotropic Navier-Stokes system with small unidirectional derivative[END_REF]. The authors proved that as long as the unidirectional derivative of the initial velocity is small enough in some scale-invariant spaces, then the NavierStokes system admits a global unique solution. Indeed, the authors studied the following system: (4.4.1)

     ∂ t u + u.∇u -∆ h u + ∇p = 0, (t, x) ∈ R + × R 3 , div u = 0, u| t=0 (t, x) = u 0 (x),
where

∆ h = ∂ 2 x + ∂ 2 y .
This system (4.4.1) is generally well posed if the initial data u 0 satisfy a smallness condition on its vertical derivative ∂ 3 u 0 in certain critical spaces. The main result of their article is as follows:

Theorem 4.4.1. Soit Λ -1 h be a Fourier multiplier with symbol |ξ h | -1 , let u 0 ∈ B 0, 1 2 be a solenoids vector eld with Λ -1 h ∂ 3 u 0 ∈ B 0, 1 2 .
Then there exist some suciently small positive constant ϵ 0 and some universal positive constants L, M , N , so that if

∥Λ -1 h ∂ 3 u 0 ∥ B 0, 1 2 exp L(1 + ∥u 3 0 ∥ 4 B -1 2 , 1 2 4 
) exp

(M A 4 N (∥u h 0 ∥ B 0, 1 2 )) ≤ ϵ 0 , (4.4.2) with A N (∥u h 0 ∥ B 0, 1 2 ) = N 1 2 ∥u h 0 ∥ B 0, 1 2 exp(C∥u h 0 ∥ 2 B 0, 1 2 ) + ∥u h 0,N ∥ B 0, 1 2 exp N 2 exp(C∥u h 0 ∥ 2 B 0, 1 2 
)
and N is taken large enough that ∥u h 0,N ∥ B 0, 1 2 be small enough, then the system (4.4.1) has a unique global solution

u = v + e t∆ h 0 u 3 0,hh with v ∈ C([0, ∞[; B 0, 1 2 ), ∇ h v ∈ L 2 ([0, ∞[; B 0, 1 2 )
and

u 3 0,hh = k≥l-1 ∆ h k ∆ v l u 3 .
Remark 4.4.1. The proof of this theorem consists to decompose the solution of the (4.4.1)

system into the sum of a solution of the two-dimensional NavierStokes system with a parameter and a solution of the perturbed three-dimensional anisotropic NavierStokes system.

Remark 4.4.2. In the theorem 4.4.1, the authors obtain their result in the following homogeneous Besov space:

B 0, 1 2 ≜    f ∈ S ′ h (R 3 ) : ∥u∥ B 0, 1 2 ≜ q∈Z 2 q 2 ∥∆ v q u∥ L 2 (R 3 ) < +∞    .

Contribution of the thesis

The work of the last chapter of this thesis focuses on the study of the inhomogeneous magnetohydrodynamic system. The goal is to assume that the vertical derivative of the initial data is suciently small and then to prove the existence and global uniqueness of the solutions of the 3D inhomogeneous magneto-hydrodynamic system. We therefore consider the system (4.4.3)

                 ∂ t ρ + u • ∇ρ = 0, (t, x) ∈ R + × R 3 , ρ(∂ t u + u • ∇u) -µ 1 ∆u + ∇p = b • ∇b, ∂ t b -µ 2 ∆b -curl(u × b) = 0, div u = 0, div b = 0, ρ| t=0 = ρ 0 (x), u| t=0 = u 0 (x), b| t=0 = u 0 (x),
where ρ is a scalar representing the density of the uid,

u = (u 1 , u 2 , u 3 ) and b = (b 1 , b 2 , b 3 )
represent respectively the velocity eld and the magnetic eld of the uid, p is a scalar function indicating pressure. µ 1 is a parameter representing the kinematic viscosity coecient and µ 2 is a parameter representing the magnetic scattering coecient. Since µ 1 and µ 2 play no role in the existence and uniqueness of the global solution, so it is assumed that these parameters are worth 1 in the rest of the calculations.

When the density is constant in the (4.4.

3) system, it becomes the next homogeneous standard MHD system (4.4.4)

           ∂ t u H + u H • ∇u H -∆u H = -∇p H + b H • ∇b H , ∂ t b H -∆b H + u H • ∇b H -b H • ∇u H = 0, div u H = div b H = 0, (t, x) ∈ R + × R 3 , u H | t=0 = u H 0 (x), b H | t=0 = b H 0 (x).
Using Littlewood-Paley theory and adapting the method developed in the work of Y. Liu, M. Paicu and P. Zhang in [START_REF] Liu | Global well-posedness of 3-D anisotropic Navier-Stokes system with small unidirectional derivative[END_REF] for homogeneous magneto-hydrodynamic equations, we obtain a result of the existence and global uniqueness of solutions in Besov spaces. The result is as follows:

Theorem

4.4.2. Let u H 0 = (u H,h 0 , u H,3 0 ) ∈ B 0 p (R 3 ), b H 0 = (b H,h 0 , b H,3 0 ) ∈ B 0 p (R 3 ) are two divergence-free vector elds with (u H,h 0 , b H,h 0 ) ∈ H 1 (R 3 ), Λ -1 h ∂ 3 (u H 0 , b H 0 ) ∈ B 0 p (R 3 ) (2 < p < 4), where Λ -1
h is a Fourier multiplier with symbol |ξ h | -1 . Then there exist some suciently small positive constant ε 0 and an universal positive constant C such that if (u H 0 , b H 0 ) satises the smallness condition

∥Λ -1 h ∂ 3 (u H 0 , b H 0 )∥ B 0 p B(u H,h 0 , b H,h 0 ) × exp C ∥(u H,3 0 , b H,3 0 )∥ B 0 p + ∥(u H,h 0 , b H,h 0 )∥ 2 B 0 p + ∥(u H,h 0 , b H,h 0 )∥ 4 H 1 B(u H,h 0 , u H,h 0 ) ≤ ε 0 . (4.4.5)
where

B(u H,h 0 , b H,h 0 ) = exp C ∥(u H,h 0 , b H,h 0 )∥ B 0 p + ∥(u H,h 0 , b H,h 0 )∥ 2 H 1 exp(C∥(u H,h 0 , b H,h 0 )∥ L 2 ) .
Then system (4.4.4) has a unique global solution (u M HD , b M HD ) which satises

u H ∈ L ∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ), b H ∈ L ∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ).
Now let's move on to the inhomogeneous case of the system (4.4.3). In the following, it is assumed that the initial density veries infρ 0 > 0. By the principle of maximum for the transport equation, we have infρ(t, x) > 0. We can then use the transformation a ≜ 1 ρ -1 which allows us to obtain the system (4.4.6)

                 ∂ t a + u • ∇a = 0, (t, x) ∈ R + × R 3 , ∂ t u + u • ∇u + (1 + a)(-∆u + ∇p) = (1 + a)(b • ∇b), ∂ t b + u • ∇b -∆b = b • ∇u, div u = 0, div b = 0, a| t=0 = a 0 (x), u| t=0 = u 0 (x), b| t=0 = b 0 (x).
The next theorem shows the global well-posedness result associated with the system (4.4.6).

Theorem 4.4.3.

Let u 0 = (u h 0 , u 3 0 ) ∈ B 0 p (R 3 ), b 0 = (b h 0 , b 3 0 ) ∈ B 0 p (R 3 ) are two divergence-free vector elds with (u h 0 , b h 0 ) ∈ H 1 (R 3 ), Λ -1 h ∂ 3 (u 0 , b 0 ) ∈ B 0 p (2 < p < 4), a 0 ∈ B 3 p
p , where Λ -1 h is a Fourier multiplier with symbol |ξ h | -1 . Then there exist some suciently small positive constant ε 0 and an universal positive constant C such that if (a 0 , u 0 , b 0 ) satises the smallness condition

(4.4.7) ∥a 0 ∥ B 3 p p + ∥Λ -1 h ∂ 3 (u 0 , b 0 )∥ B 0 p L(u 0 , b 0 ) ≤ ε 1 , with L(u 0 , b 0 ) = B(u h 0 , b h 0 ) exp C 1 + ∥(u 3 0 , b 3 0 )∥ B 0 p + ∥(u h 0 , b h 0 )∥ 2 B 0 p + ∥(u h 0 , b h 0 )∥ 4 H 1 B(u h 0 , b h 0 ) and B(u h 0 , b h 0 ) = exp(C(∥(u h 0 , b h 0 )∥ B 0 p + ∥(u h 0 , b h 0 )∥ 2 H 1 exp(C∥(u h 0 , b h 0 )∥ L 2 ).
Then system (4.4.6) has a unique global solution

a ∈ L ∞ (R + ; B 3 p p ), u ∈ L ∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ) and b ∈ L ∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ).
Remark 4.4.3. The proof of this theorem consists to decompose the inhomogeneous solution into a homogeneous solution plus a remainder term, which is denoted in the last chapter by R.

Remark 4.4.4. In the theorems 4.4.2-4.4.2, we use the following homogenous Besov space:

B s 1 ,s 2 p,r ≜ {u ∈ S ′ h (R 3 ) : ∥u∥ B s 1 ,s 2 p ≜ (2 s 1 j 2 s 2 k ∥∆ h j ∆ v k u∥ L p ) ℓ 1 (Z) < ∞},
for simplicity we use the following notation

B 0 p ≜ B -1+ 2 p , 1 p p , B 1 p ≜ B 2 p , 1 p p ∩ B -1+ 2 p ,1+ 1 p p and B 2 p ≜ B 1+ 2 p , 1 p p ∩ B -1+ 2 p ,2+ 1 p p ,
we mention that the space B 0 p is critical. We recall that the space B 3 p p is dened by

B 3 p p ≜ {u ∈ S ′ h (R 3 ) : ∥u∥ B 3 p p ≜ (2 3j p ∥∆ j u∥ L p (R 3 ) ) ℓ 1 (Z) < ∞}.
Chapter 5

Hyperbolic version of Navier-Stokes

In this chapter we present the results of the following paper:

N. Aarach, Global well-posedness of 2D Hyperbolic perturbation of the Navier-Stokes system in a thin strip, arXiv:2111.13052

Introduction

The Navier-Stokes equations are a type of nonlinear partial dierential equation that describes the motion of Newtonian uids. These equations have been an enormous research topic since their introduction in the 1930s. They are dened by the following Newtonian incompressible viscous uids:

(5.1.1)

∂ t U + U • ∇U -ν∆U + ∇P = 0, div U = 0.
here U denotes the velocity eld, P the scalar pressure function, and ν is the uid's viscosity coecient.

Nonetheless, System (5.1.1) creates a physical conundrum due to the fact that the velocity equation has an innite propagation speed. To avoid this nonphysical aspect, Cattaneo in [START_REF] Cattaneo | Sulla conduzione del calore[END_REF][START_REF] Cattaneo | Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée[END_REF] (also see Vernotte [START_REF] Vernotte | Some possible complication in the phenomena of thermal conduction[END_REF]) advocated modifying the heat equation to a hyperbolic form known as Cattaneo's heat transfer law. More specically, they advocated replacing the Fourier law they proposed to replace Fourier's law which describes the following stress tensor

τ (t) = -P Id + ν ∇U + (∇U ) ⊤ (t),
with the hyperbolic model shown below

1 c 2 ∂ 2 t θ + 1 β ∂ t θ -∆θ = 0.
This equation is called The Telegraph equation. It has a nite propagation speed and is compatible with both the principle of relativity and the second law of thermodynamics, so it is a satisfactory physical model. As a result, it makes sense to think of a hyperbolic Navier-Stokes system by including the term τ ∂ 2 t to the classical Navier-Stokes system (5.1.1), where τ is a small parameter we can assume that is equal to 1/c 2 (c is the speed of light).

In our work, we consider a hyperbolic perturbation of the incompressible Navier-Stokes equations in R × (0, ϵ) such that the viscosity ν = ϵ 2 (this viscosity called vanishing viscosity). We study this system in a thin region with no-slip boundary conditions. We denote S ϵ = {(x, Y ) ∈ R 2 : 0 < Y < ϵ} where ϵ is the width of the domain. Our system is of the following form:

(5.1.2)              τ ∂ 2 t U (τ,ϵ) + ∂ t U (τ,ϵ) + U (τ,ϵ) .∇U (τ,ϵ) -ϵ 2 ∆U (τ,ϵ) + ∇P (τ,ϵ) = 0, in ]0, ∞[×S ϵ div U (τ,ϵ) = 0, in ]0, ∞[×S ϵ U (τ,ϵ) /t=0 = U (τ,ϵ) 0 , ∂ t U (τ,ϵ) /t=0 = U (τ,ϵ) 1 , in S ϵ where U (τ,ϵ) (t, x, Y ) = U (τ,ϵ) 1 (t, x, Y ), U (τ,ϵ) 2
(t, x, Y ) denotes the velocity of the uid and P (τ,ϵ) (t, x, Y ) the scalar pressure function, which guarantees the divergence-free property of the velocity eld U (τ,ϵ) .

The system (5.1.2) is complemented by the no-slip boundary condition

U (τ,ϵ) |Y =0 = 0 and U (τ,ϵ) |Y =ϵ = 0 in ]0, ∞[×S ϵ .
Here, in the equation of the velocity, the Laplacian is

∆ = ∂ 2 x + ∂ 2 Y .
The dissipative hyperbolic Navier-Stokes equation (5.1.2) is obtained after relaxing the Euler equations and a change of scale variables. This perturbation, considered as a relaxation of Euler's equations, was considered by Brenier, Natalini, and Puel in [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF]. They introduced a hyperbolic system of equations, based on a relaxation approximation of the incompressible Navier-Stokes equations, following the scheme described by Jin and Xin in [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimensions[END_REF].

(5.1.3)

               ∂ t U ϵ + div V ϵ = ∇Q ϵ ∂ t V ϵ + ϵ 2 τ ∇U ϵ = - 1 τ (V ϵ -U ϵ ⊗ U ϵ ) div U ϵ = 0 (U ϵ , V ϵ )| t=0 = (U ϵ 0 , V ϵ 0 )
In their work they proved global existence and uniqueness for the perturbed Navier-Stokes equation

with initial data in H 2 (T 2 ) 2 × H 1 (T 2 ) 2
, where T 2 is the periodic square R 2 /Z 2 . Moreover, they proved the convergence of the solution of the perturbed Navier-Stokes to a smooth solution for Navier-Stokes.

Later this equation was considered by Paicu and Raugel in [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | A hyperbolic singular perturbation of the Navier-Stokes equations in R 2[END_REF]. In their work, they also proved a global existence and uniqueness result with signicantly improved regularity for the initial data, when τ is small enough. In fact, they only require the regularity in

H 1 (R 2 ) 2 × L 2 (R 2 ) 2 . Also Hachicha
in [START_REF] Hachicha | Approximations hyperboliques des équations de Navier-Stokes[END_REF], obtained a global result of existence and uniqueness of the perturbed Navier-Stokes in two and three space dimensions and under suitable smallness assumptions on the initial data in the space

[(H n 2 +δ ∩ H n 2 -1+δ )(R n )] n with n = 2, 3.
Moreover, for all positive times T , she proved the convergence to perturbed Navier-Stokes towards solutions of the Navier-Stokes system (NS) with initial data in

H n 2 -1+s (R n ) n , s > 0.
We nally mention a recent result obtained by O. Coulaud, I. Hachicha and G. Raugel in [START_REF] Coulaud | Hyperbolic quasilinear Navier-Stokes equations in R 2[END_REF]. They considered a hyperbolic quasi-linear version of the Navier-Stokes equations in R 2 and proved the existence and uniqueness of solutions to these equations, and exhibit smallness assumptions on the data, under which the solutions are global in time in the 2D case.

The way these authors introduce their system of equations is by using methods that are usually devoted to the study of numerical patterns, and that can be applied to all preservation laws. In this article, we take the problem from another point of view. In order to describe hydrodynamical ows on the earth, in geophysics, it is usually assumed that vertical motion is much smaller than horizontal motion and that the uid layer depth is small compared to the radius of the sphere, thus, they are a good approximation of global atmospheric and oceanic ows. The thin domain in the system (5.1.2) is considered to take into account this anisotropy between horizontal and vertical directions. Under this assumption, it is believed that the dynamics of uids on large scale tend towards a geostrophic balance (see [START_REF] Gill | Atmosphere-Ocean Dynamics[END_REF], [START_REF] Holton | An Introduction to Dynamic Meteorology[END_REF] or [START_REF] Plougonven | Lagrangian approach to the geostrophic adjustment of frontal anomalies in a stratied uid[END_REF]).

The purpose of this paper is to show the existence and uniqueness of solutions to (5.1.2) in the thin domain R × (0, ϵ), For some analytically small initial data in the tangential variable. To simplify our system we eliminate the τ -dependency. For that purpose, we perform the re-scaling

U (τ,ϵ) (t, X) = τ α U ϵ (τ β t, X √ τ ), P (τ,ϵ) (t, X) = τ α ′ P ϵ (τ β t, X √ τ
).

(5.1.4)

We replace in System (5.1.2), we nd that α = -1 2 , β = -1 and α ′ = -1, then our re-scaling 5.1.4

have the following form

U (τ,ϵ) (t, X) = 1 √ τ U ϵ ( t τ , X √ τ ), P (τ,ϵ) (t, X) = 1 τ P ϵ ( t τ , X √ τ ). 
(

where X = (x, Y ). This scaling transforms the τ -dependent equations (5.1.2) into the following system of equations with initial data which depend on τ :

(5.1.6)

                 ∂ 2 t U ϵ + ∂ t U ϵ + U ϵ .∇U ϵ -ϵ 2 ∆U ϵ + ∇P ϵ = 0, in ]0, ∞[×S ϵ div U (τ,ϵ) = 0, in ]0, ∞[×S ϵ U ϵ /t=0 = √ τ U τ,ϵ 0 ( √ τ X) = U ϵ 0 , in S ϵ ∂ t U ϵ /t=0 = τ 3 2 U τ,ϵ 1 ( √ τ X) = U ϵ 1 , in S ϵ U ϵ / y=0 = U ϵ / y=1 = 0, in ]0, ∞[×S ϵ
In a formal way, as in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF] and [START_REF] Aarach | Hydrostatic approximation of the 2D primitive equations in a thin strip[END_REF], taking into account this anisotropy, we also consider the initial data of the following form,

U ϵ |t=0 = U ϵ 0 = u 0 x, Y ϵ , ϵv 0 x, Y ϵ ,
and

U ϵ |t=1 = U ϵ 1 = u 1 x, Y ϵ , ϵv 1 x, Y ϵ .
In this paper, we look for solutions in the form

(5.1.7)        U ϵ (t, x, Y ) = u ϵ t, x, Y ϵ , ϵv ϵ t, x, Y ϵ P ϵ (t, x, Y ) = p ϵ t, x, Y ϵ .
Let S := (x, y) ∈ R 2 : 0 < y < 1 , we can rewrite the system (5.1.6) as follows

(5.1.8)                  ∂ 2 t u ϵ + ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ y u ϵ -ϵ 2 ∂ 2 x u ϵ -∂ 2 y u ϵ + ∂ x p ϵ = 0, in ]0, ∞[×S ϵ 2 (∂ 2 t v ϵ + ∂ t v ϵ + u ϵ ∂ x v ϵ + v ϵ ∂ y v ϵ -ϵ 2 ∂ 2 x v ϵ -∂ 2 y v ϵ ) + ∂ y p ϵ = 0, in ]0, ∞[×S ∂ x u ϵ + ∂ y v ϵ = 0, in ]0, ∞[×S (u ϵ , v ϵ ) | t=0 = (u 0 , v 0 ) and ∂ t (u ϵ , v ϵ ) | t=0 = (u 1 , v 1 ) , in S (u ϵ , v ϵ ) | y=0 = (u ϵ , v ϵ ) | y=1 = 0.
Formally taking ϵ → 0 in the system (5.1.8), we obtain the following perturbation hydrostatic Navier-Stokes equations, (5.1.9)

                 ∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = 0, in ]0, ∞[×S ∂ y p = 0, in ]0, ∞[×S ∂ x u + ∂ y v = 0, in ]0, ∞[×S u| t=0 = u 0 , in S ∂ t u| t=0 = u 1 , in S,
where the velocity U = (u, v) satisfy the Dirichlet no-slip boundary condition (5.1.10)

(u, v) | y=0 = (u, v) | y=1 = 0.
Now let us state our main results.

The rst result obtained in this paper is the global well-posedness of System (5.1.9) with small analytic data in the tangential variable. The global well-posedness and the global analyticity of the solutions to the classical 2-D perturbed hydrostatic Navier-Stokes system are well-known (see [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF] for instance).

Theorem 5.1.1. Let a > 0 and λ large enough. There exists a constant c 0 > 0 suciently small, such that, for any data (u 0 , u 1 ) verifying the compatibility condition 1 0 u 0 dy = 0, and the smallness condition e a|Dx| (u 0 + u 1 ) .11) then the system (5.1.9) has a unique global solution u satisfying the estimate ∀t ≥ 0

B 1 2 + e a|Dx| ∂ y u 0 B 1 2 + ∥e a|Dx| u 1 ∥ B 1 2 ≤ c 0 a < a λ , (5.1 
(5.1.12)

∥e Rt (u + ∂ t u) ϕ ∥ L∞ t (B 1 2 
)

+ ∥e Rt ∂ y u ϕ ∥ L∞ t (B 1 2 
)

+ ∥e Rt (∂ t u) ϕ ∥ L2 t (B 1 2 
)

+ ∥e Rt (∂ t u) ϕ ∥ L∞ t (B 1 2 ) ≤ C ∥e a|Dx| ∂ y u 0 ∥ B 1 2 + ∥e a|Dx| (u 0 + u 1 )∥ B 1 2 + ∥e a|Dx| u 1 ∥ B 1 2
, where u ϕ is given by (5.2.3), R is a constant smaller than the constant that comes out of the Poincaré inequality for the domain S (see (5.3.11)), and the functional spaces will be presented in Section 5.2.

The second result is the global well-posedness of the perturbed Navier-Stokes system (5.1.8) with small analytic data in the tangential variable.

Theorem 5.1.2. Let a > 0, ϵ > 0 and λ large enough. We assume that our initial data satisfy the following smallness condition

∥e a|Dx| ∂ y (u ϵ 0 , ϵv ϵ 0 )∥ B 1 2 + ϵ∥e a|Dx| ∂ x (u ϵ 0 , ϵv ϵ 0 )∥ B 1 2 +∥e a|Dx| (u ϵ 0 + u ϵ 1 , ϵ(v ϵ 0 + v ϵ 1 ))∥ B 1 2 + ∥e a|Dx| (u ϵ 1 , ϵv ϵ 1 )∥ B 1 2 ≤ c 1 a < a λ , (5.1.13) 
for some c 1 suciently small. Then System (5.1.8) has a unique global solution (u ϵ , v ϵ ), so that 

∥e Rt (u + ∂ t u, ϵ(v ϵ + ∂ t v ϵ )) Θ ∥ L∞ t (B 1 2 ) + ∥e Rt ∂ y (u ϵ , ϵv ϵ ) Θ ∥ L∞ t (B 1 2 ) + ϵ∥e Rt ∂ x (u ϵ , ϵv ϵ ) Θ ∥ L∞ t (B 1 2 ) + ∥e Rt (∂ t u ϵ , ϵ∂ t v ϵ ) Θ ∥ L∞ t (B 1 2 
)

+ ∥e Rt (∂ t u ϵ , ϵ∂ t v ϵ ) Θ ∥ L2 t (B 1 2 
)

+ ∥e Rt ∂ y (u ϵ , ϵv ϵ ) Θ ∥ L2 t (B 1 2 
)

+ ϵ∥e Rt ∂ x (u ϵ , ϵv ϵ ) Θ ∥ L2 t (B 1 2 ) ≤ C ∥e a|Dx| ∂ y (u ϵ 0 , ϵv ϵ 0 )∥ B 1 2 + ϵ∥e a|Dx| ∂ x (u ϵ 0 , ϵv ϵ 0 )∥ B 1 2 + ∥e a|Dx| (u ϵ 1 , ϵv ϵ 1 )∥ B 1 2 + ∥e a|Dx| (u ϵ 0 + u ϵ 1 , ϵ(v ϵ 0 + v ϵ 1 ))∥ B 1 2
, where (u ϵ Θ , v ϵ Θ ) is given by (5.5.1).

The main idea to prove the above two theorems is to control the new unknown u ϕ dened by (5.2.3), where u is the horizontal velocity and u ϕ is a weighted function of u in the dual Fourier variable with an exponential function of (a -λθ(t))|ξ|. By the classical Cauchy-Kovalevskaya theorem, one expects the radius of analyticity of the solutions to decay in time and so the exponent, which corresponds to the width of the analytical band, is allowed to vary with time. Using energy estimates on the equation satised by u ϕ and the control of the quantity which describes ' the loss of the analytical radius ', we shall show that the analytical band persists globally in time. Consequently, our result is a global Cauchy-Kovalevskaya type theorem.

The third result concerns the study of the convergence from the scaled anisotropic perturbed Navier-Stokes system (5.1.8) to the limit system (5.1.9), so in this theorem, we proved that the convergence occurs globally in time.

Theorem 5.1.3. Let a > 0 and ϵ > 0, ∃M > 0, and (u ϵ

0 , v ϵ 0 ) satisfying (5.1.13). Let (u 0 , u 1 ) satisfy e a|Dx| (u 0 , u 1 ) ∈ (B 1 2 ∩ B 7 2 ) 2 , e a|Dx| ∂ y (u 0 , u 1 ) ∈ (B 3 
2 ) 2 , and the compatibility condition 

+ ∥e a|Dx| u 1 ∥ B 1 2 ≤ c 2 a 2 + e a|Dx| (u 0 + u 1 ) B 3 2 + e a|Dx| ∂ y u 0 B 3 2 + ∥e a|Dx| u 1 ∥ B 3 2 , (5.1.15)
for some c 2 suciently small, then we have (5.1.16)

∥(R 1 + ∂ t R 1 , ϵ(R 2 + ∂ t R 2 )) φ ∥ L∞ t (B 1 2 ) + ∥∂ y (R 1 , ϵR 2 ) φ ∥ L∞ t (B 1 2 ) + ϵ∥∂ x (R 1 , ϵR 2 ) φ ∥ L∞ t (B 1 2 ) + ∥(∂ t R 1 ) φ , ϵ(∂ t R 2 ) φ ∥ L∞ t (B 1 2 ) + ∥(∂ t R 1 , ϵ∂ t R 2 ) φ ∥ L2 t (B 1 2 ) + ∥∂ y (R 1 , ϵR 2 ) φ ∥ L2 t (B 1 2 ) + ϵ∥∂ x (R 1 , ϵR 2 ) φ ∥ L2 t (B 1 2 ) ≤ C ∥e a|Dx| ((u ϵ 1 -u 1 ), ϵ(v ϵ 1 -v 1 ))∥ B 1 2 + ∥e a|Dx| ∂ y (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + ϵ∥e a|Dx| ∂ x (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + ∥e a|Dx| ((u ϵ 0 -u 0 ) + (u ϵ 1 -u 1 ), ϵ(v ϵ 0 -v 0 ) + ϵ(v ϵ 1 -v 1 ))∥ B 1 2 + M ϵ .
where

R 1 = u ϵ -u, R 2 = v ϵ -v, (5.1.17) and v 0 is determined from u 0 via ∂ x u + ∂ y v = 0 and v 0 | y=0 = v 0 | y=1 = 0, (R 1 φ , ϵR 2 φ
) is given by (5.6.6).

We remark that without the smallness conditions (5.1.13) and (5.1.15), we can not prove the convergence from the solutions to System (5.1.8) to the solutions System (5.1.9) on a xed time interval [0, t]

for t < T ⋆ , where T ⋆ is the lifetime of the solution of the hydrostatic perturbed Navier-Stokes equation with the large initial data u 0 .

Remarque 5.1.1. The main idea to prove the above theorem is to use analytic energy estimates, which are motivated by [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] and which originates from [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF].

Organisation of the paper: Our paper will be divided into several sections as follows. In section 5.2, we present some basic notions of the Littlewood-Paley Theory and some technical lemmas. In Section 5.3, we prove the global wellposedness of System (5.1.9) for small data in the analytic framework.

Section 5.5 is devoted to the study of System (5.1.8) and the proof of Theorem 5.1.2. In section 5.4 we present some proposition stating the propagation for any B s regularity. In Section 5.6, we prove the convergence of System (5.1.8) towards System (5.1.9) when ϵ → 0. Finally, in the last section, we give the proofs of some technical estimates.

We end this introduction by the notations that will be used in all that follows. By f ≲ g, we mean that there is a uniform constant C, which may be dierent from line to line, such that f ≤ Cg. We denote by ⟨f, g⟩ L 2 the inner product of f and g in L 2 (S). Finally, we denote by (d q ) q∈Z (resp. (d q (t)) q∈Z ) to be a generic element of ℓ 1 (Z) so that q∈Z d q = 1 (resp. q∈Z d q (t) = 1).

Littlewood-Paley Theory and Some technical lemmas

Littlewood-Paley Theory

To introduce the result of this paper, we will recall some elements of the Littlewood-Paley theory and also introduce the function space and technique used in the proof of our result. We dene the dyadic operator in the horizontal variable, (of x variable) and for all q ∈ Z, we recall from [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF] that

∆ h q f (x, y) = F -1 h φ(2 -q |ξ|) f (ξ, y) , S h q f (x, y) = F -1 h ψ(2 -q |ξ|) f (ξ, y) .
where ψ and φ are a smooth function such that

supp φ ⊂ {z ∈ R/ 3 4 ≤ |z| ≤ 8 3 } and ∀z ̸ = 0, q∈Z φ(2 -q z) = 1, supp ψ ⊂ {z ∈ R/ |z| ≤ 4 3 } and ψ(z) + q≥0 φ(2 -q z) = 1, and ∀ q, q ′ ∈ Z, |q -q ′ | ≥ 2, supp φ(2 -q •) ∩ supp φ(2 -q ′ •) = ∅.
And in all that follows, F h f and f always denote the partial Fourier transform of the distribution f with respect to the horizontal variable (of

x variable), that is, f (ξ, y) = F x→ξ (f )(ξ, y) = F h (f )(ξ, y).
We refer to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF] and [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] for a more detailed construction of the dyadic decomposition. Combining the denition of the dyadic operator to the fact that (5.2.1)

∀z ∈ R, ψ(z) + j∈N φ(2 -j z) = 1,
implies that all tempered distributions can be decomposed with respect to the horizontal frequencies as

f = q∈Z ∆ h q f.
We now introduce the function spaces used throughout the paper. As in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we dene the anisotropic Besov-type spaces B s , s ∈ R as follows.

Denition 5.2.1. Let s ∈ R and S = R×]0, 1[. For all tempered distributions u ∈ S ′ h (S), i.e., f belongs to S ′ (S) and lim q→-

∞ ∥S q f ∥ L ∞ = 0, we set ∥f ∥ B s,0 ≜ ∥(2 qs ∥∆ h q f ∥ L 2 ) q∈Z ∥ ℓ 1 (Z) . (i) For s ≤ 1 2 , we dene B s,0 (S) ≜ {f ∈ S ′ h (S) : ∥f ∥ B s,0 < +∞} . (ii) For s ∈ ]k -1 2 , k + 1 2 ], with k ∈ N * , we dene B s,0 (S) as the subset of distributions f in S ′ h (S) such that ∂ k x f ∈ B s-k,0 (S).
For a better use of the smoothing eect given by the diusion terms, we will work in the following Chemin-Lerner type spaces and also the time-weighted Chemin-Lerner type spaces. 

2 qs t 0 δ(t ′ ) ∆ h q f (t ′ ) p L 2 dt ′ 1 p .
Remark 5.2.1. To simplify the notation even further, in all that follows, we shall denote

B s,0 ≜ B s .
The following Bernstein lemma gives important properties of a distribution u when its Fourier transform is well localized. We refer the reader to [START_REF] Chemin | Fluides parfaits incompressibles[END_REF] for the proof of this lemma.

Lemma

5.2.1. Let k ∈ N, d ∈ N * and r 1 , r 2 ∈ R satisfy 0 < r 1 < r 2 . There exists a constant C > 0 such that, for any a, b ∈ R, 1 ≤ a ≤ b ≤ +∞, for any λ > 0 and for any f ∈ L a (R d ), we have supp ( f ) ⊂ ξ ∈ R d | |ξ| ≤ r 1 λ =⇒ sup |α|=k ∥∂ α f ∥ L b ≤ C k λ k+d( 1 a -1 b ) ∥f ∥ L a , and supp ( f ) ⊂ ξ ∈ R d | r 1 λ ≤ |ξ| ≤ r 2 λ =⇒ C -k λ k ∥f ∥ L a ≤ sup |α|=k ∥∂ α f ∥ L a ≤ C k λ k ∥f ∥ L a .
Finally to deal with the estimate concerning the product of two distributions, we shall frequently use on Bony's decomposition (see [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]) in the horizontal variable (x variable) that for f, g two tempered distributions :

(5.2.2)

f g = T h f g + T h g f + R h (f, g),
where

T h f g = q S h q-1 f ∆ h q g, T h g f = q S h q-1 g∆ h q f
and the remainder term satises

R h (f, g) = q ∆h q f ∆ h q g with ∆h q f = |q-q ′ |≤1 ∆ h q ′ f.

Technical lemmas

Our main diculty relies on nding a way to estimate the nonlinear terms, which allows exploiting the smoothing eect given by the above function spaces. Using the method introduced by Chemin in [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF] (see also [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF], [110] or [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF]), for any f ∈ L 2 (S), we dene the following auxiliary function, which allows to control the analyticity of u in the horizontal variable x,

(5.2.3)

f ϕ (t, x, y) = e ϕ(t,Dx) f (t, x, y) ≜ F -1 h (e ϕ(t,ξ) F h (f )(t, ξ, y)) ϕ(t, ξ) = (a -λθ(t))|ξ|.
where the quantity θ(t) is the analyticity radius, which describes the evolution of the analytic band of f , satises (5.2.4) ∀ t > 0, θ(t) ≥ 0 and θ(0) = 0. Remark 5.2.2. In the proofs we need to choose that θ(t) is satisfying an ordinary dierential equation

θ(t) = ∥e (a-λθ(t))|Dx| ∂ y f ∥ B 1 2
The local existence of θ(t) of t between [0, T [ is given by the Cauchy-Lipschitz theorem. In all our computation we will be in time interval [0, T ⋆ [ where T ⋆ is maximal lifespan of the solution.

In what follows, we shall always assume that t < T ⋆ , with T ⋆ is determined by (5.2.5)

T ⋆ ≜ sup T > 0 : ∀t ∈ [0, T ) : ∥f ϕ ∥ B 1 2 ≤ 1 4C 2 and θ(t) ≤ a λ .
By virtue of (5.2.3) for any t < T ⋆ , there holds the following convex inequality (5.2.6)

ϕ(t, ξ) ≤ ϕ(t, ξ -η) + ϕ(t, η) ∀ξ, η ∈ R.
Remark 5.2.3. To obtain a solution of our system, we use the Friedrich scheme which allows us to build a sequence of solutions, and then we go to the limit on the sequence of solutions. Indeed, for that the quantity θ n (t) satisfying the following ordinary dierential equation : 

θn (t) = ∥e (a-λθ n (t))|Dx| ∂ y J n u∥ B 1 2 , with J n u = |k|<n 1 {|ξ|<n} sin(
X n =   θ n (t) u n ∂ t u n   ,
then X n verify a a dierential equation in time on Banach space R × B 1/2,0 × B 1/2,0 , we obtain the following equation:

(5.2.7)

           ∂ t X n + J n A(D)X n = -    ∥e (a-λθ n (t))|Dx| ∂ y J n u n ∥ B 1 2 0 J n (J n u n ∂ x J n u n ) ϕ + J n (J n v n ∂ y J n u n ) ϕ + ∂ x J n p n ϕ    ∂ x u n ϕ + ∂ y v n ϕ = 0 where A(D) =   0 0 0 0 0 -1 0 -∂ 2 y 1  
which is an ordinary dierential equation. The solution is obtained on the interval [0, T ⋆ n [ by Cauchy-Lipschitz. Since we have that J 2 n = J n , we can deduce that J n X n is also a solution (5.2.7). The uniqueness of the solutions implies that X n = J n X n . So we can write (5.2.8)

           ∂ t X n + J n A(D)X n ϕ = -    ∥e (a-λθ n (t))|Dx| ∂ y J n u∥ B 1 2 0 J n (u n ∂ x u n ) ϕ + J n (v n ∂ y u n ) ϕ + ∂ x p n ϕ    ∂ x u n ϕ + ∂ y v n ϕ = 0
We note that all analytical estimates obtained in all sections 5.3-5.6 are valid also for this equation. So, (u n ) will have a convergent sub-sequence that we still denote by (u n ), then we have that (u n ) converge to u in L ∞ loc (R + , H -s ) for all s ∈]0, 1[, which u is the solution of our nal system.

Before stating the obtained result, we need the following lemma to characterize the product (f g) ϕ , indeed this product will be useful in all the rest of the paper.

Corollary 5.2.1. Let f ∈ L 2 x , g ∈ L 2 x , we dene f + = F -1 ξ (|F x (f )|) then, we have | (f g) ϕ (ξ)| ≤ f + ϕ g + ϕ (ξ) and ∥f + ∥ L 2 x = ∥f ∥ L 2 x
Proof. Let us consider f , and g two functions in L 2

x , we have

| (f g)) ϕ (ξ)| = e ϕ(ξ) | f (.) * g(.)(ξ)| ≤ e ϕ(ξ) | f (ξ -η)|| g(η)|dη,
By virtue of the denition of Function ϕ we have e ϕ(ξ) > 0 and e ϕ(ξ) ≤ e ϕ(ξ-η) e ϕ(η) , thus

| (f g) ϕ (ξ)| ≤ e ϕ(ξ-η) | f (ξ -η)|e ϕ(η) | g(η)|dη ≤ | f ϕ (ξ -η)|| g ϕ (η)|dη ≤ | f ϕ | * | g ϕ |(ξ) = F ξ f + ϕ g + ϕ = f + ϕ g + ϕ (ξ)
The second point of the lemma is trivial.

Lemma 5.2.2. For smooth functions we have

∥(f g) ϕ ∥ L 2 ≤ ∥(f + ϕ )∥ L ∞ ∥(g + ϕ )∥ L 2 .
Proof. Let us consider f , and g two functions in L 2

x , we have by using Plancherel theorem that

∥ f g ϕ ∥ 2 L 2 = |F ξ (f g) ϕ (ξ, y)| 2 dξ ≤ | e ϕ(ξ) F ξ (f )(ξ -η)F ξ (g)(η)dη| 2 dξ ≤ e 2ϕ(ξ) |F ξ (f )(ξ -η)| 2 |F ξ (g)(η)| 2 dηdξ.
We recall that the function ϕ verify the following inequality e ϕ(ξ) ≤ e ϕ(ξ-η) e ϕ(η) , thus

∥ f g ϕ ∥ 2 L 2 ≤ ∥f + ϕ g + ϕ ∥ 2 L 2 ≤ ∥(f + ϕ )∥ 2 L ∞ ∥(g + ϕ )∥ 2 L 2 ,
Corollary 5.2.2. For any f and g in L 2

x , we have

| (T f g) ϕ (ξ)| ≤ (T f + ϕ g + ϕ )(ξ) and | R(f, g) ϕ (ξ)| ≤ R(f + ϕ , g + ϕ )(ξ).
We next present the weighted energy estimate for the linear heat equations Lemma 5.2.3. Let f and g two smooth enough functions on R×(0, 1), satisfying the Dirichlet boundary condition 5.1.10, then we have 1.

d dt ∆ h q f ϕ , ∆ h q g ϕ L 2 = ∆ h q (∂ t f ) ϕ , ∆ h q g ϕ + ∆ h q f ϕ , ∆ h q (∂ t g) ϕ -2λ θ(t) ∆ h q |D x | 1 2 f ϕ , ∆ h q |D x | 1 2 g ϕ , (5.2.9) 
In particular if f = g, we obtain that 1 2

d dt ∥∆ h q f ϕ ∥ 2 L 2 = ∆ h q (∂ t f ) ϕ , ∆ h q f ϕ L 2 -λ θ(t)∥∆ h q |D x | 1 2 f ϕ ∥ 2 L 2 , (5.2.10) 2. ∆ h q (∂ 2 t f ) ϕ , ∆ h q (∂ t f ) ϕ L 2 = 1 2 d dt ∥∆ h q (∂ t f ) ϕ ∥ 2 L 2 + λ θ(t)∥∆ h q |D x | 1 2 (∂ t f ) ϕ ∥ 2 L 2 ,
(5.2.11)

3.

-

∆ h q ∂ 2 y f ϕ , ∆ h q (∂ t f ) ϕ L 2 = 1 2 d dt ∥∆ h q ∂ y f ϕ ∥ 2 L 2 + λ θ(t)∥∆ h q |D x | 1 2 ∂ y f ϕ ∥ 2 L 2 ,
(5.2.12)

Proof. To prove the rst assertion, we apply the rules of the derivation of a product, we obtain

d dt ∆ h q f ϕ , ∆ h q g ϕ L 2 = ∆ h q ∂ t f ϕ , ∆ h q g ϕ L 2 + ∆ h q f ϕ , ∆ h q ∂ t g ϕ L 2 = ∆ h q (∂ t f ) ϕ , ∆ h q g ϕ L 2 -λ θ(t) ∆ h q |D x |f ϕ , ∆ h q g ϕ L 2 + ∆ h q f ϕ , ∆ h q (∂ t g) ϕ L 2 -λ θ(t) ∆ h q f ϕ , ∆ h q |D x |g ϕ L 2 = ∆ h q (∂ t f ) ϕ , ∆ h q g ϕ L 2 + ∆ h q f ϕ , ∆ h q (∂ t g) ϕ L 2 -2λ θ(t) ∆ h q |D x | 1 2 f ϕ , ∆ h q |D x | 1 2 g ϕ L 2
.

By using the rules of the derivation of a product and Parseval equality, we nd

∆ h q (∂ 2 t f ) ϕ , ∆ h q (∂ t f ) ϕ L 2 = ∆ h q (e ϕ(t,|Dx|) ∂ 2 t f )∆ h q (e ϕ(t,|Dx|) ∂ t f )dx = ∆ h q (e ϕ(t,|Dx|) ∂ 2 t f ) ∆ h q (e ϕ(t,|Dx|) ∂ t f )dξ h = 1 2 d dt | ∆ h q (e ϕ(t,|Dx|) ∂ t f )| 2 dξ h + 1 2 2λ θ(t)φ(2 -q ξ)|ξ h |e ϕ(t,|ξ h |) ∂ t f (ξ)φ(2 -q ξ)e ϕ(t,|ξ h |) ∂ t f (ξ)dξ h = 1 2 d dt ∥∆ h q (∂ t f ) ϕ ∥ 2 L 2 + λ θ(t) | ∆ h q |D x | 1 2 (e ϕ(t,|Dx|) ∂ t f )| 2 dξ h = 1 2 d dt ∥∆ h q (∂ t f ) ϕ ∥ 2 L 2 + λ θ(t)∥∆ h q |D x | 1 2 (∂ t f ) ϕ ∥ 2 L 2
.

By using integration by parts and replacing in (5.2.10) by ∂ y f , we can nd the estimate

∆ h q -∂ 2 y f ϕ , ∆ h q (∂ t f ) ϕ L 2 = ∆ h q ∂ y f ϕ , ∆ h q (∂ t ∂ y f ) ϕ L 2 = 1 2 d dt ∥∆ h q ∂ y f ϕ ∥ 2 L 2 + λ θ(t)∥∆ h q |D x | 1 2 ∂ y f ϕ ∥ 2 L 2 .
Note that here we use the fact that

∆ h q (∂ α x f ϕ ) = ∂ α x (∆ h q f ) ϕ .
Before starting the proof of the mains lemmas we recall from Plancherel's formula and Fubini's theorem the following inequality.

Corollary 5.2.3. Let f, g and h be smooth functions on R × (0, 1), we have

∥∆ h q f ϕ ∥ L 2 ≤ C∥f ϕ ∥ L 2 and ∆ h q f g) ϕ , ∆ h q h ϕ L 2 ≤ |q-q ′ |≤4 ∆ h q S q ′ -1 f ∆ q ′ g ϕ , ∆ h q h ϕ L 2 + |q-q ′ |≤4 ∆ h q S q ′ -1 g∆ q ′ f ϕ , ∆ h q h ϕ L 2 + q ′ ≥q-3 ∆ h q ∆q ′ f ∆ q ′ g ϕ , ∆ h q h ϕ L 2 ,
as well as

∆ h q S q ′ -1 f ∆ q ′ g ϕ , ∆ h q h ϕ L 2 ≤ C∥S q ′ -1 f + ϕ ∥ L ∞ ∥∆ q ′ g + ϕ ∥ L 2 ∥∆ h q h ϕ ∥ L 2 C∥S q ′ -1 f + ϕ ∥ L ∞ h (L 2 v ) ∥∆ q ′ g + ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q h ϕ ∥ L 2 ,
and

∆ h q ∆q ′ f ∆ q ′ g ϕ , ∆ h q h ϕ L 2 ≤        C∥ ∆q ′ f + ϕ ∥ L ∞ ∥∆ q ′ g + ϕ ∥ L 2 ∥∆ h q h ϕ ∥ L 2 C∥ ∆q ′ f + ϕ ∥ L ∞ h (L 2 v ) ∥∆ q ′ g + ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q h ϕ ∥ L 2 C∥ ∆q ′ f + ϕ ∥ L 2 h (L ∞ v ) ∥∆ q ′ g + ϕ ∥ L 2 ∥∆ h q h ϕ ∥ L ∞ h (L 2 v ) .
Remark 5.2.4. Using this corollary, can assume from now without losing generality, that f ≥ 0.

Lemma 5.2.4. Let f be smooth function on R × (0, 1). If f = 0 when y = 0 then we have

∥f ∥ L ∞ v ≤ C∥f ∥ 1 2 L 2 v ∥∂ y f ∥ 1 2 L 2 v .
(5.2.13)

Proof. Let f be a smooth function on R × (0, 1), while f = 0 on y = 0 then we can write

(f (x, y)) 2 = y 0 ∂ y (f (x, y ′ ) 2 )dy ′ = 2 y 0 f (x, y ′ )∂ y f (x, y ′ )dy ′ ,
by using Cauchy-Schwarz inequality, we obtain

(f (x, y)) 2 ≤ 2∥f ∥ L 2 ∥∂ y f ∥ L 2 . Then, ∥f (x, .)∥ L ∞ v ≤ √ 2∥f ∥ 1 2 L 2 ∥∂ y f ∥ 1 2 L 2 ,
We also apply the following Poincaré inequality for a smooth function f vanishing on the boundary (for y = 0, 1)

∥f ∥ L ∞ v ≤ ∥∂ y f ∥ L 2 v and ∥f ∥ L 2 v ≤ ∥∂ y f ∥ L 2 v .
Now, let us state our lemmas, which we use to prove our results.

Lemma 5.2.5. Let s ∈ (0, 1), and A, B and C be smooth enough functions on [0, T * ) × R × (0, 1), with

A vanishing on the boundary, let ϕ be dened as in (5.2.3) with θ(t

) = ∥∂ y A ϕ (t)∥ B 1 2
. For any t ∈ [0, T * [ and for any B, C ∈ L2 t, θ(t) (B s+ 1 2 ), we have

t 0 e Rt ′ ∆ h q (A∂ x B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≲ 2 -2qs d 2 q ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

(5.2.14)

with d q ∈ ℓ 1 (Z), q∈Z d q ≤ 1 and where R is the Poincaré constant.

Remark 5.2.5. We can note that θ(t) verifying an ordinary dierential equation

θ(t) = ∥e (a-λθ(t))|Dx| ∂ y A∥ B 1 2 + ϵ∥e (a-λθ(t))|Dx| ∂ y B∥ B 1 2
The local existence of θ(t) of t between [0, T * [ is given by Cauchy Lipschitz.

Proof. As in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF], using Bony's homogeneous decomposition of A∂ x B into para-products in the horizontal variable, we can write

A∂ x B = T h A ∂ x B + T h ∂xB A + R h (A, ∂ x B)
where,

T h A ∂ x B = q∈Z S h q-1 A∆ h q ∂ x B and R h (A, ∂ x B) = |q ′ -q|≤1 ∆ h q A∆ h q ′ ∂ x B = q ∆h q A.∆ h q ∂ x B.
We have the following bound

t 0 e Rt ′ ∆ h q (A∂ x B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≤ M 1,q + M 2,q + M 3,q , where M 1,q = t 0 e Rt ′ ∆ h q (T h A ∂ x B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ M 2,q = t 0 e Rt ′ ∆ h q (T h ∂xB A) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ M 3,q = t 0 e Rt ′ ∆ h q (R h (A, ∂ x B)) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ .
We start by getting the estimate of the rst term M 1,q , for that we need to use the denition of T 

M 1,q ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 A + ϕ (t ′ )∥ L ∞ ∥∆ h q ′ ∂ x B + ϕ (t ′ )∥ L 2 ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ .
Using Bernstein Lemma 5.2.1 we have

∥∆ h q ′ A + ϕ ∥ L ∞ h ≲ 2 q ′ 2 ∥∆ h q ′ A + ϕ ∥ L 2 h .
Taking the L ∞ v norm and using that ∥f ∥

L p v L q h ≤ ∥f ∥ L q h L p v , for q ≥ p ≥ 1, we obtain ∥∆ h q ′ A + ϕ ∥ L ∞ ≲ 2 q ′ 2 ∥∆ h q ′ A + ϕ ∥ L ∞ v L 2 h ≲ 2 q ′ 2 ∥∆ h q ′ A ϕ ∥ L 2 h L ∞ v .
While using the inclusion

H 1 y → L ∞ y , ∥∆ h q ′ A ϕ ∥ L ∞ v ≲ ∥∆ h q ′ A ϕ ∥ 1 2 L 2 v ∥∆ h q ′ ∂ y A ϕ ∥ 1 2 L 2 v ,
and the Poincaré inequality on the interval {0 < y < 1} on A (as we have that A = 0 when y = 0,1)

∥∆ h q ′ A ϕ ∥ L 2 ≲ ∥∆ h q ′ ∂ y A ϕ ∥ L 2 ,
we obtain

∥∆ h q A ϕ (t ′ )∥ L ∞ ≲ 2 q 2 ∥∆ h q A ϕ (t ′ )∥ L 2 h (L ∞ v ) ≲ 2 q 2 ∥∆ h q A ϕ (t ′ )∥ 1 2 L 2 ∥∆ h q ∂ y A ϕ (t ′ )∥ 1 2 L 2 ≲ 2 q 2 ∥∆ h q ∂ y A ϕ (t ′ )∥ L 2 ≲ d q (A ϕ )∥∂ y A ϕ (t ′ )∥ B 1 2
(5.2.16)

≲ d q (A ϕ ) θ(t).

(5.2.17)

Here and in all that follows, we always denote (d q (A ϕ )) q∈Z to be a generic element of ℓ 1 (Z) so that

q∈Z d q (A ϕ ) ≤ 1. Then, ∥S h q ′ -1 A ϕ (t ′ )∥ L ∞ ≲ ∥∂ y A ϕ (t ′ )∥ B 1 2 ,
and replacing this result in our estimate (5.2.15), and combining with Hölder's inequality, imply that

M 1,q ≲ |q-q ′ |≤4 t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 e Rt ′ ∥∆ h q ′ ∂ x B ϕ (t ′ )∥ L 2 e Rt ′ ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y A ϕ (t ′ )∥ 1 2 B 1 2 e Rt ′ ∥∆ h q ′ B ϕ (t ′ )∥ L 2 ∥∂ y A ϕ (t ′ )∥ 1 2 B 1 2 e Rt ′ ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q ′ B ϕ ∥ 2 L 2 dt ′ 1 2 t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2
.

We recall that θ(t

) = ∥∂ y A ϕ (t)∥ B 1 2
, and using Denition 5.2.3, we have

t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2 = t 0 θ(t ′ )e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q(s+ 1 2 ) d q (C ϕ )∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Then,

M 1,q ≲ 2 -2qs d 2 q ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) , (5.2.18) 
where

d 2 q = d q (C ϕ )   |q-q ′ |≤4 d q ′ (B ϕ )2 (q-q ′ )(s-1 2 )   .
Similarly, by Lemma 5.2.1 and considering the support properties to the Fourier transform given in [18, Proposition 2.10] of the terms in T h ∂xB A, we obtain

M 2,q (t) ≲ t 0 e Rt ′ ∆ h q (T h ∂xB A) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≲ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ x B + ϕ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ A + ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q C ϕ ∥ L 2 dt ′ .
As in (5.2.16), we can write

∥∆ h q ′ A + ϕ ∥ L 2 h (L ∞ v ) ≲ ∥∆ h q ′ ∂ y A ϕ ∥ L 2 ≲ 2 -q ′ 2 d q ′ (A ϕ )∥∂ y A ϕ (t ′ )∥ B 1 2 ,
and using Bernstein's inequality we have

∥S h q ′ -1 ∂ x B + ϕ (t ′ )∥ L ∞ h (L 2 v ) ≲ l≤q ′ -2 2 l 2 l 2 ∥∆ h l B ϕ ∥ L 2 .
By using Hölder's inequality, we have

M 2,q ≲ |q-q ′ |≤4 t 0 2 -q ′ 2 d q ′ (A ϕ )e Rt ′ ∥S h q ′ -1 ∂ x B ϕ (t ′ )∥ L ∞ h (L 2 v ) ∥∂ y A ϕ (t ′ )∥ B 1 2 e Rt ′ ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ ≲ |q-q ′ |≤4 t 0 2 -q ′ 2 e Rt ′ l≤q ′ -2 2 l 2 l 2 ∥∆ h l B ϕ ∥ L 2 ∥∂ y A ϕ (t)∥ B 1 2 e Rt ′ ∥∆ h q C ϕ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 -q ′ 2 l≤q ′ -2 t 0 e 2Rt ′ 2 3l ∥∆ h l B ϕ ∥ 2 L 2 ∥∂ y A ϕ ∥ B 1 2 dt ′ 1 2 × t 0 e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 ∥∂ y A ϕ ∥ B 1 2 dt ′ 1 2
.

Yet we observe from Denition 5.2.3, and s < 1 we have

l≲q ′ -2 t 0 2 3l e 2Rt ′ ∥∆ h l B ϕ ∥ 2 L 2 ∥∂ y A ϕ ∥ B 1 2 dt ′ 1 2 ≲ l≤q ′ -2 2 3l 2 t 0 ∥∂ y A ϕ ∥ B 1 2 e 2Rt ′ ∥∆ h l B ϕ (t ′ )∥ 2 L 2 dt ′ 1 2 ≲ l≲q ′ -2 2 3l 2 2 -l(s+ 1 2 ) 2 l(s+ 1 2 ) t 0 ∥∂ y A ϕ ∥ B 1 2 e 2Rt ′ ∥∆ h l B ϕ (t ′ )∥ 2 L 2 dt ′ 1 2 ≲ 2 q ′ (1-s) l≤q ′ -2 dl (B ϕ )2 (q ′ -l)(s-1) ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ≲ 2 q ′ (1-s) d q ′ (B ϕ )∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

(5.2. [START_REF] Bougeault | Dynamique de l'atmosphère et de l'océan[END_REF] where

d q ′ (B ϕ ) = l≤q ′ -2 2 -(q ′ -l)(1-s) dl (B ϕ ) ∈ ℓ 1 (Z).
We remark that d q ′ (B ϕ ) ∈ ℓ 1 (Z) because s < 1 and then d q ′ (B ϕ ) is a convolution between summable sequences. So that it comes out

M 2,q ≲ d 2 q 2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) (5.2.20)
where

d 2 q = d q (C ϕ )   |q-q ′ |≤4 dq ′ (C ϕ )2 (q-q ′ )(s-1 2 )   ,
with d q a summable sequence.

To end this proof, it remains to estimate M 3,q (is the rest term). Using the denition of R h (A, ∂ x B), the support properties given in [18, Proposition 2.10], and Bernstein's lemma 5.2.1, we can write

M 3,q = t 0 e Rt ′ ∆ h q (R h (A, ∂ x B)) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≲ q ′ ≥q-3 t 0 e 2Rt ′ ∥ ∆h q ′ A ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q ′ ∂ x B ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L ∞ h (L 2 v ) dt ′ .
By using Bernstein's Lemma 5.2.1, we can nd that

∥∆ h q ′ ∂ x B ϕ ∥ L 2 ≲ 2 q ′ ∥∆ h q ′ B ϕ ∥ L 2 and ∥∆ h q C ϕ ∥ L ∞ h (L 2 v ) ≲ 2 q 2 ∥∆ h q C ϕ ∥ L 2 h (L 2 v ) , (5.2.21) 
and by using Poincaré inequality on A (having that A = 0 when y = 0, 1), we obtain

∥ ∆h q ′ A ϕ ∥ L 2 h (L ∞ v ) ≲ ∥ ∆h q ′ A ϕ ∥ 1 2 L 2 h (L 2 v ) ∥ ∆h q ′ ∂ y A ϕ ∥ 1 2 L 2 h (L 2 v ) ≲ ∥ ∆h q ′ ∂ y A ϕ ∥ 1 2 L 2 ∥ ∆h q ′ ∂ y A ϕ ∥ 1 2 L 2 = ∥ ∆h q ′ ∂ y A ϕ ∥ L 2 ≲ d q ′ (A ϕ )2 -q ′ 2 ∥∂ y A ϕ ∥ B 1 2 .
(5.2.22)

Then, we replace on (5.2.20) we achieve

M 3,q ≲ 2 q 2 q ′ ≥q-3 t 0 e 2Rt ′ 2 q ′ (1-1 2 ) ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ B ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 t 0 e 2Rt ′ 2 q ′ 2 ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ B ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L 2 dt ′ .
Since s < 1, we have by using Hölder's inequality

M 3,q ≲ 2 q 2 q ′ ≥q-3 t 0 2 q ′ 2 ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ e Rt ′ B ϕ ∥ L 2 ∥∆ h q e Rt ′ C ϕ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 2 q ′ 2 t 0 ∥e Rt ′ ∆ h q ′ B ϕ ∥ 2 L 2 ∥∂ y A ϕ ∥ B 1 2 dt ′ 1 2 × t 0 ∥e Rt ′ ∆ h q C ϕ ∥ 2 L 2 ∥∂ y A ϕ ∥ B 1 2 dt ′ 1 2 ≲ d q (C ϕ )2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )   q ′ ≥q-3 d q ′ (B ϕ )2 (q-q ′ )s   dt ′ .
Then,

M 3,q ≲ d 2 q 2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

(5.2.23)

where . For any t ∈ [0, T * ) and

d 2 q = d q (C ϕ )   q ′ ≥k-3 d q ′ (B ϕ )2 (q-q ′ )s   with d q a summable
for any B, C ∈ L2 t, θ(t) (B s+ 1 2 ), we have t 0 e Rt ′ ∆ h q y 0 ∂ x Bdy ′ • ∂ y A ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≲ d 2 q 2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

(5.2.24)

Proof. As in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF], using homogeneous Bony's decomposition of (

y 0 ∂ x Bdy ′ ) • ∂ y A into para-products in
the horizontal variable and remainders, we can write

∂ y A • y 0 ∂ x Bdy ′ = T h ∂yA y 0 ∂ x Bdy ′ + T h y 0 ∂xBdy ′ ∂ y A + R h (∂ y A, y 0 ∂ x Bdy ′ )
where

T h ∂yA y 0 ∂ x Bdy ′ = q∈Z S h q-1 ∂ y A • ∆ h q y 0 ∂ x Bdy ′ R h (∂ y A, y 0 ∂ x Bdy ′ ) = |q ′ -q|≤1 ∆ h q ∂ y A • ∆ h q ′ y 0 ∂ x Bdy ′ = q ∆h q ∂ y A • ∆ h q y 0 ∂ x Bdy ′ .
We replace this decomposition and we obtain the following bound of

t 0 e Rt ′ ∆ h q (∂ y A • y 0 ∂ x Bdy ′ ) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≤ N 1,q + N 2,q + N 3,q , where N 1,q = t 0 e Rt ′ ∆ h q (T h ∂yA y 0 ∂ x Bdy ′ ) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ N 2,q = t 0 e Rt ′ ∆ h q (T h y 0 ∂xBdy ′ ∂ y A) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ N 3,q = t 0 e Rt ′ ∆ h q (R h (∂ y A, y 0 ∂ x Bdy ′ )) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ .
We start by getting the estimate of the rst term N 1,q , for that we need to use the denition of T h ∂yA y 0 ∂ x Bdy ′ , the support properties given in [18, Proposition 2.10] and again thanks to the Corollary

5.2.2 we infer (5.2.25) N 1,q ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ y A ϕ (t ′ )∥ L ∞ h (L 2 v ) ∥∆ h q ′ y 0 ∂ x B ϕ (t ′ )dy ′ ∥ L 2 h (L ∞ v ) ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ .
We have by applying Bernstein's Lemma 5.2.1 that

∥∆ h q ∂ y A ϕ (t ′ )∥ L ∞ h (L 2 v ) ≲ 2 q 2 ∥∆ h q ∂ y A ϕ (t ′ )∥ L 2 ≲ d q (A ϕ )∥∂ y A ϕ (t ′ )∥ B 1 2 , (5.2.26) where (d q (t)) q∈Z is a generic element of ℓ 1 (Z) such that d q (t) ≤ 1. Then ∥S h q ′ -1 ∂ y A ϕ (t ′ )∥ L ∞ h (L 2 v ) ≲ ∥∂ y A ϕ (t ′ )∥ B 1 2 ,
and

∥∆ h q ′ y 0 ∂ x B ϕ (t ′ )dy ′ ∥ L 2 h (L ∞ v ) ≲ 2 q ′ ∥∆ h q ′ y 0 B ϕ dy ′ ∥ L 2 h (L ∞ v ) ≲ 2 q ′ ∥∆ h q ′ B ϕ ∥ L 2 ,
where we have used that ∥

y 0 f dy ′ ∥ L ∞ y ≤ 1 0 |f |dy ′ ≤ ∥f ∥ L 2 y .
As a result, it comes out

N 1,q ≤ |q-q ′ |≤4 2 q ′ t 0 e 2Rt ′ ∥∂ y A ϕ (t ′ )∥ B 1 2 ∥∆ h q ′ B ϕ ∥ L 2 ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 e 2Rt ′ θ(t ′ )∥∆ h q ′ B ϕ ∥ L 2 ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 e 2Rt ′ θ(t ′ )∥∆ h q ′ B ϕ ∥ 2 L 2 dt ′ 1 2 × t 0 e 2Rt ′ θ(t ′ )∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2
where in the last step we used Hölder's inequality, and we note that θ(t

) = ∥∂ y A ϕ (t ′ )∥ B . Using denition 5.2.3, we achieve t 0 e 2Rt ′ θ(t ′ )∥∆ h q ′ B ϕ ∥ 2 L 2 dt ′ 1 2 ≲ d q ′ (B ϕ )2 -q ′ (s+ 1 2 ) ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

and t 0 e 2Rt ′ θ(t ′ )∥∆ h q ′ C ϕ ∥ 2 L 2 dt ′ 1 2 ≲ d q ′ (C ϕ )2 -q ′ (s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Then,

N 1,q ≲ 2 -2qs d 2 q ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) , (5.2.27) 
where

d 2 q = d q (C ϕ )   |q-q ′ |≤4 d q ′ (B ϕ )2 (q-q ′ )(s-1 2 )

 

Along the same way for s < 1, we obtain

N 2,q (t) ≤ t 0 e Rt ′ ∆ h q (T h t 0 ∂xBdy ′ ∂ y A) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≲ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 y 0 ∂ x B ϕ dy ′ ∥ L ∞ ∥∆ h q ′ ∂ y A ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 -q ′ 2 l≲q ′ -2 t 0 e 2Rt ′ θ(t ′ )∥∆ h l y 0 ∂ x B ϕ ∥ 2 L ∞ dt ′ 1 2 × t 0 e 2Rt ′ θ(t ′ )∥∆ h q C ϕ ∥ L 2 dt ′ 1 2
.

By using the fact that ∥

y 0 f dy ′ ∥ L ∞ y ≤ 1 0 |f |dy ′ ≤ ∥f ∥ L 2 y , we have ∥∆ h l y 0 ∂ x B ϕ (t ′ )dy ′ ∥ L ∞ h (L ∞ v ) ≲ 2 l ∥∆ h l y 0 B ϕ dy ′ ∥ L ∞ h (L ∞ v ) ≲ 2 l ∥∆ h l B ϕ ∥ L ∞ h (L 2 v ) .
Combining with Bernstein's lemma 5.2.1, we can nd

∥∆ h l y 0 ∂ x B ϕ (t ′ )dy ′ ∥ L ∞ h (L ∞ v ) ≲ 2 l ∥∆ h l B ϕ ∥ L ∞ h (L 2 v ) ≲ 2 3l 2 ∥∆ h l B ϕ ∥ L 2 .
We observe from Denition 5.2.3, and we use the same thing as in (5.2.19), then for s < 1 we have

l≲q ′ -2 t 0 e 2Rt ′ θ(t ′ )∥∆ h l y 0 ∂ x B ϕ ∥ 2 L ∞ dt ′ 1 2
(5.2.28)

≲ l≲q ′ -2 t 0 e 2Rt ′ θ(t ′ )2 3l ∥∆ h l B ϕ ∥ 2 L 2 dt ′ 1 2 ≲ l≲q ′ -2 2 3l 2 2 -l(s+ 1 2 ) 2 l(s+ 1 2 ) t 0 e 2Rt ′ θ(t ′ )∥∆ h l B ϕ ∥ 2 L 2 dt ′ 1 2 ≲ 2 q ′ (1-s) l≲q ′ -2 dl (B ϕ )2 (q ′ -l)(s-1) ∥B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ≲ 2 q ′ (1-s) d q ′ (B ϕ )∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

where

d q ′ (B ϕ ) = l≤q ′ -2 2 -(q ′ -l)(1-s) dl (B ϕ ) ∈ ℓ 1 (Z).
So that it comes out

N 2,q ≤ d 2 q 2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) (5.2.29)
where

d 2 q = d q (C ϕ )   |q-q ′ |≤4 d q ′ (B ϕ )2 (q-q ′ )(s-1 2 )
  is a suitable sequence of positive constants.

To end this proof, it remains to estimate N 3,q (is the rest term). Using the support properties given in [18, Proposition 2.10], the denition of R h (∂ y A, y 0 ∂ x Bdy ′ ) and Bernstein's Lemma 5.2.1, we can write

N 3,q ≤ q ′ ≥q-3 t 0 e 2Rt ′ ∥ ∆h q ′ ∂ y A ϕ ∥ L 2 ∥∆ h q ′ y 0 ∂ x B ϕ dy ′ ∥ L 2 h (L ∞ v ) ∥∆ h q C ϕ ∥ L ∞ h (L 2 v ) dt ′ ≤ 2 q 2 q ′ ≥q-3 t 0 e 2Rt ′ 2 q ′ (1-1 2 ) ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ B ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L 2 dt ′ ≤ 2 q 2 q ′ ≥q-3 t 0 e 2Rt ′ 2 q ′ 2 ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ B ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L 2 dt ′ .
Since s < 1, we have by applying Hölder's inequality

N 3,q ≤ 2 q 2 q ′ ≥q-3 t 0 2 q ′ 2 ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ e Rt ′ B ϕ ∥ L 2 ∥∆ h q e Rt ′ C ϕ ∥ L 2 dt ′ ≤ 2 q 2 q ′ ≥q-3 2 q ′ 2 t 0 ∥∂ y A ϕ ∥ B 1 2 ∥e Rt ′ ∆ h q ′ B ϕ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y A ϕ ∥ B 1 2 ∥e Rt ′ ∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2 . Denition 5.2.3 tells us t 0 ∥∂ y A ϕ ∥ B 1 2 ∥e Rt ′ ∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2 ≲ d q (C ϕ )2 -q(s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Then we obtain

N 3,q ≲ d 2 q 2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

(5.2.30)

where 

d 2 q = d q (C ϕ )   q ′ ≥q-3 d q ′ (B ϕ )2 (q-q ′ )s   is a
θ(t) = ∥∂ y A ϕ (t)∥ B 1 2 + ϵ∥∂ y B ϕ (t)∥ B 1 2 .
Then, for any t ∈ [0, T * ) and for any

A, B ∈ L2 t, θ(t) (B s+ 1 2 ) that satises ∂ x A = -∂ y B, A and B
vanishing on the boundary (so that B(t, x, y) = -

y 0 ∂ x A(t, x, s)ds), we have ϵ 2 t 0 e Rt ′ ∆ h q (B∂ y B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≲ d 2 q 2 -2qs ∥e Rt A ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + ∥e Rt ϵB ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt ϵC ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Proof. As in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF], using Bony's homogeneous decomposition of the term B∂ y B into para-products in the horizontal variable and remainders, we can write

B∂ y B = T h ∂yB B + T h B ∂ y B + R h (∂ y B, B)
We replace, we obtain the following bound of t 0

e Rt ′ ∆ h q (B∂ y B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ t 0 e Rt ′ ∆ h q (B∂ y B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≤ L 1,q + L 2,q + L 3,q , where L 1,q = t 0 e Rt ′ ∆ h q (T h B ∂ y B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ L 2,q = t 0 e Rt ′ ∆ h q (T h ∂yB B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ L 3,q = t 0 e Rt ′ ∆ h q (R h (B, ∂ y B)) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ .
We start by getting the estimate of the rst term L 1,q . Due to

∂ y B = -∂ x A, one has ϵ 2 L 1,q ≲ ϵ 2 |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 B ϕ (t)∥ L ∞ ∥∆ h q ′ ∂ x A ϕ (t)∥ L 2 ∥∆ h q C ϕ (t)∥ L 2 .
(5.2.31)

By using Bernstein's Lemma 5.2.1, we have

∥S h q ′ -1 B ϕ (t ′ )∥ L ∞ h ≲ l≤q ′ -2 2 l 2 ∥∆ h l B ϕ (t ′ )∥ L 2 h .
Taking the L ∞ v norm and using that ∥f ∥

L p v L q h ≤ ∥f ∥ L q h L p v , for p ≥ q ≥ 1 we obtain ∥S h q ′ -1 B ϕ (t ′ )∥ L ∞ ≲ l≤q ′ -2 2 l 2 ∥∆ h l B ϕ (t ′ )∥ L ∞ v (L 2 h ) ≲ l≤q ′ -2 2 l 2 ∥∆ h l B ϕ (t ′ )∥ L 2 h (L ∞ v ) .
While using the inclusion

H 1 y → L ∞ v , ∥∆ h l B ϕ (t ′ )∥ L ∞ v ≲ ∥∆ h l B ϕ (t ′ )∥ 1 2 L 2 v ∥∆ h l ∂ y B ϕ (t ′ )∥ 1 2 L 2 v ,
and Poincaré inequality on the interval {0 < y < 1} on B ( we use the fact that B = 0 when y = 0, 1)

gives

∥S h q ′ -1 B ϕ (t ′ )∥ L ∞ ≲ l≤q ′ -2 2 l 2 ∥∆ h l ∂ y B ϕ (t ′ )∥ L 2 ≲ ∥∂ y B ϕ (t ′ )∥ B 1 2
(5.2.32)

Then, we replace in (5.2.31), we get by using Hölder's inequality

ϵ 2 L 1,q ≲ ϵ 2 |q ′ -q|≤4 t 0 e 2Rt ′ ∥∂ y B ϕ (t ′ )∥ B 1 2 2 q ′ ∥∆ h q ′ e Rt ′ A ϕ (t)∥ L 2 ∥∆ h q C ϕ (t)∥ L 2 ≲ ϵ |q ′ -q|≤4 2 q ′ t 0 ϵ∥∂ y B ϕ (t ′ )∥ B 1 2 ∥∆ h q ′ A ϕ (t ′ )∥ 2 L 2 dt ′ 1 2 × t 0 ϵ∥∂ y B ϕ (t ′ )∥ B 1 2 ∥∆ h q e Rt ′ C ϕ (t ′ )∥ 2 L 2 dt ′ 1 2 .
Hence we deduce from the Denition 5.2.1 that

t 0 ϵ∥∂ y B ϕ (t ′ )∥ B 1 2 ∥∆ h q ′ e Rt ′ A ϕ (t ′ )∥ 2 L 2 dt ′ 1 2 ≲ d q ′ (A ϕ )2 -q ′ (s+ 1 2 ) ∥e Rt A ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Then,

L 1,q ≲ d 2 q 2 -2qs ∥e Rt A ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt ϵC ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) (5.2.33)
where

d 2 q = d q (C ϕ ) |q ′ -q|≤4 d q ′ (A ϕ )2 (q-q ′ )(s-1 2 )
Now we move to get the estimate of the second term L 2,q . Due to ∂ y B ϕ = -∂ x A ϕ , we can achieve

L 2,q (t) ≤ t 0 e Rt ′ ∆ h q (T h ∂yB B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≲ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ x A ϕ ∥ L ∞ ∥∆ h q ′ B ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L 2 dt ′ .
Along the same way as we did to estimate L 1,q , we can obtain by using (5.2.32) that

∥S h q ′ -1 ∂ x A ϕ (t ′ )∥ L ∞ ≲ 2 q ′ ∥∂ y A ϕ (t ′ )∥ B 1 2 .
Then,

L 2,q (t) ≲ |q-q ′ |≤4 2 q ′ t 0 e 2Rt ′ ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ B ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y A ϕ ∥ B 1 2 ∥e Rt ′ ∆ h q ′ B ϕ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y A ϕ ∥ B 1 2 ∥e Rt ′ ∆ h q ′ C ϕ ∥ 2 L 2 dt ′ 1 2 ,
in the last step we use Hölder's inequality. Then thanks to Denition 5.2.1, we arrive at

t 0 ∥∂ y A ϕ ∥ B 1 2 ∥e Rt ′ ∆ h q ′ B ϕ ∥ 2 L 2 dt ′ 1 2 ≲ d q ′ (B ϕ )2 -q ′ (s+ 1 2 ) ∥e Rt ′ B ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

We conclude our estimate by

ϵ 2 L 2,q ≲ d 2 q 2 -2qs ∥e Rt ϵB ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt ϵC ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) (5.2.34)
where

d 2 q = d q (C ϕ )   |q-q ′ |≤4 d q ′ (B ϕ )2 (q-q ′ )(s-1 2 )

 

To end this proof, it remains to estimate L 3,q (is the rest term). Due to ∂ y B = -∂ x A, we get, by applying lemma 5.2.1 that

L 3,q ≲ q ′ ≥q-3 t 0 e 2Rt ′ ∥ ∆h q ′ ∂ x A ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q ′ B ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L ∞ h (L 2 v ) dt ′ ≲ q ′ ≥q-3 2 q ′ 2 t 0 e 2Rt ′ ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ B ϕ ∥ L 2 2 q 2 ∥∆ h q C ϕ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 2 q ′ 2 t 0 ∥∂ y A ϕ ∥ B 1 2 ∥e Rt ′ ∆ h q ′ B ϕ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y A ϕ ∥ B 1 2 ∥e Rt ′ ∆ h q ′ C ϕ ∥ 2 L 2 dt ′ 1 2
.

which together with Denition 5.2.3 and s < 1 ensures that

ϵ 2 L 3,q ≲ d q 2 -2qs ∥e Rt ϵB ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt ϵC ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) (5.2.35)
where 5.3 Global existence of the perturbed hydrostatic system (5.1.9)

d 2 q = d q (C ϕ )   q ′ ≥q-3 d q ′ (B ϕ )2 (q-q ′ )s   Lemma 5.
The goal of this section is to prove the global well-posedness of the limit system of the Perturbed Navier-Stokes equation, we remark that the local smooth solution of the limit system follows a standard parabolic regularization method similar to the Perturbation NS system, First, we remark that the Dirichlet boundary condition

(u, v) /y=0 = (u, v) /y=1 = 0,
and the incompressible condition

∂ x u + ∂ y v = 0 imply that : v(t, x, y) = y 0 ∂ y v(t, x, s)ds = - y 0 ∂ x u(t, x, s)ds (5.3.1)
Due to the compatibility condition ∂ x

1 0 u 0 dy = 0, we deduce from ∂ x u + ∂ y v = 0 that ∂ x 1 0 u(t, x, y) dy = - 1 0 ∂ y v(t, x, y) dy = v(t, x, 0) -v(t, x, 1) = 0, (5.3.2) 
which together with the fact: u(t, x, y) → 0 as |x| → ∞, ensure that 1 0 u(t, x, y)dy = 0.

(5.3.3)

Then by integrating the equations ∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = 0 on y ∈ [0, 1] and using the fact that ∂ y p = 0, we obtain

∂ x p = ∂ y u(t, x, 1) -∂ y u(t, x, 0) -∂ x 1 0 (u) 2 (t, x, y)dy (5.3.4)
In view of System (5.1.9), we can transform it into an equation of order one in time, so if we dene V = (u, ∂ t u), Then V satises the following system (5.3.5)

               ∂ t V + A(D)V = - 0 u∂ x u + v∂ y u + ∂ x p ∂ y p = 0 ∂ x u + ∂ y v = 0 (u, v)/ y=0 = (u, v)/ y=1 = 0 where V = u ∂ t u and A(D) = 0 -1 -∂ 2 y 1
Then in view of (5.2.3) we observe that V ϕ veries

(5.3.6)                ∂ t V ϕ + λ θ(t)|D x |V ϕ + A(D)V ϕ = - 0 (u∂ x u) ϕ + (v∂ y u) ϕ + ∂ x p ϕ ∂ y p ϕ = 0 ∂ x u ϕ + ∂ y v ϕ = 0 (u ϕ , v ϕ )/ y=0 = (u ϕ , v ϕ )/ y=1 = 0
Where |D x | denotes the Fourier multiplier with symbol |ξ|.

The main idea of this technique consists in the fact that if we dierentiate, with respect to the time variable a function of the type e ϕ(t,Dx) u(t, x, y), we obtain an additional 'good term' which plays a smoothing role. More precisely, we have

∂ ∂t e ϕ(t,Dx) V (t, x, y) = -λ θ(t) |D x | e ϕ(t,Dx) V (t, x, y) + e ϕ(t,Dx) ∂ t V (t, x, y),
where -θ(t) |D x | e ϕ(t,Dx) u(t, x, y) gives a smoothing eect if θ(t) ≥ 0. This smoothing eect allows to obtain our global existence and stability results in the analytic framework.

Proof of global well-posedness of system (5.1.9) By applying the dyadic operator in the horizontal variable ∆ h q to (5.3.6) and taking the L 2 inner product of the resulting equation with ∆ h q (V ϕ )

we obtain

(5.3.7)

∆ h q ∂ t V ϕ , ∆ h q V ϕ L 2 + λ θ(t) ∆ h q |D x |V ϕ , ∆ h q V ϕ L 2 + ∆ h q A(D)V ϕ , ∆ h q V ϕ L 2 = -∆ h q (u∂ x u + v∂ y u) ϕ , ∆ h q (∂ t u) ϕ L 2 -∆ h q ∂ x p ϕ , ∆ h q (∂ t u) ϕ L 2 .
In what follows, we shall use the technical lemmas in Section 5.2, to handle every term in the display (5.3.7).

By applying the result of Lemma 5.2.3, we nd that

∆ h q ∂ t V ϕ , ∆ h q V ϕ L 2 + λ θ(t) ∆ h q |D x |V ϕ , ∆ h q V ϕ L 2 = ∆ h q ∂ t u ϕ , ∆ h q u ϕ L 2 + ∆ h q ∂ t (∂ t u) ϕ , ∆ h q (∂ t u) ϕ L 2 + λ θ(t) ∆ h q |D x |u ϕ , ∆ h q u ϕ L 2 + ∆ h q |D x |(∂ t u) ϕ , ∆ h q (∂ t u) ϕ L 2 = 1 2 d dt ∥∆ h q u ϕ ∥ 2 L 2 + ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 + λ θ(t) ∥∆ h q |D x | 1 2 u ϕ ∥ 2 L 2 + ∥∆ h q |D x | 1 2 (∂ t u) ϕ ∥ 2 L 2 , (5.3.8) 
and by using the fact that

(∂ t u) ϕ = ∂ t u ϕ + λ θ(t)|D x |u ϕ , we have ∆ h q A(D)V ϕ , ∆ h q V ϕ L 2 = -∆ h q (∂ t u) ϕ , ∆ h q u ϕ L 2 -∆ h q ∂ 2 y u ϕ , ∆ h q (∂ t u) ϕ L 2 + ∆ h q (∂ t u) ϕ , ∆ h q (∂ t u) ϕ L 2 = - 1 2 d dt ∥∆ h q u ϕ ∥ 2 L 2 -λ θ(t)∥∆ h q |D x | 1 2 u ϕ ∥ 2 L 2 + 1 2 d dt ∥∆ h q ∂ y u ϕ ∥ 2 L 2 + λ θ(t)∥∆ h q |D x | 1 2 ∂ y u ϕ ∥ 2 L 2 + ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 .
(5.3.9)

Summing the two equalities (5.3.8) and (5.3.9), we obtain

∆ h q ∂ t V ϕ , ∆ h q V ϕ L 2 + λ θ(t) ∆ h q |D x |V ϕ , ∆ h q V ϕ L 2 + ∆ h q A(D)V ϕ , ∆ h q V ϕ L 2 = 1 2 d dt ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 + ∥∆ h q ∂ y u ϕ ∥ 2 L 2 + λ θ(t) ∥∆ h q |D x | 1 2 (∂ t u) ϕ ∥ 2 L 2 + ∥∆ h q |D x | 1 2 ∂ y u ϕ ∥ 2 L 2 + ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 .
(5.3.10)

Now, for the pressure term, using the Dirichlet boundary condition

(u, v)| y=0 = (u, v)| y=1 = 0 and ∂ t (u, v)| y=0 = ∂ t (u, v)| y=1 = 0, the incompressibility condition ∂ x u + ∂ y v = 0
, and performing an integration by parts, we get

D = ∆ h q ∂ x p ϕ , ∆ h q (∂ t u) ϕ L 2 = -∆ h q p ϕ , ∆ h q (∂ t ∂ x u) ϕ L 2 = ∆ h q p ϕ , ∆ h q (∂ t ∂ y v) ϕ L 2 = -∆ h q ∂ y p ϕ , ∆ h q (∂ t v) ϕ L 2 = 0,
In the last step we use the fact that ∂ y p ϕ = 0. Thus,

D = ∆ h q ∂ x p ϕ , ∆ h q (∂ t u) ϕ L 2 = 0.
While due to u| y=0 = u| y=1 = 0, by applying Poincaré's inequality, we have

k∥∆ h q u ϕ ∥ 2 L 2 ≤ ∥∆ h q ∂ y u ϕ ∥ 2 L 2 , (5.3.11)
where k is the Poincaré's constant. Then, multiplying (5.3.10) by e 2Rt (R is a constant smaller than Poincaré's constant denoted by k), we achieve (5.3.12)

1 2 d dt ∥e Rt ∆ h q (∂ t u) ϕ ∥ 2 L 2 + ∥e Rt ∆ h q ∂ y u ϕ ∥ 2 L 2 + ∥e Rt ∆ h q (∂ t u) ϕ ∥ 2 L 2 + λ θ(t)∥e Rt ∆ h q |D x | 1 2 (∂ t u) ϕ ∥ 2 L 2 + λ θ(t)∥e Rt ∆ h q |D x | 1 2 ∂ y u ϕ ∥ 2 L 2 ≤ R ∥e Rt ∆ h q (∂ t u) ϕ ∥ 2 L 2 + ∥e Rt ∆ h q ∂ y u ϕ ∥ 2 L 2 + ∆ h q (u∂ x u) ϕ , e 2Rt ∆ h q (∂ t u) ϕ L 2 + ∆ h q (v∂ y u) ϕ , e 2Rt ∆ h q (∂ t u) ϕ L 2 .
In what follows, we shall always assume that t < T ⋆ , where T ⋆ is given by (5.3.13)

T ⋆ ≜ sup t > 0, ∥u ϕ ∥ B 1 2 ≤ 1 4C 2 , θ(t) ≤ a λ .
Next, we dene

     J q 1 (t) = ∆ h q (u∂ x u) ϕ , e 2Rt ∆ h q (∂ t u) ϕ L 2 J q 2 (t) = ∆ h q (v∂ y u) ϕ , e 2Rt ∆ h q (∂ t u) ϕ L 2 .
To estimate those two non linear terms we need to use Lemmas 5.2.5 and 5.2.6. In view of Lemma 5.2.5, we replace C ϕ by (∂ t u) ϕ and A = B = u, then we conclude the following estimate of J q

1 for any t < T ⋆ t 0 J q 1 (t ′ )dt ′ = t 0 e Rt ′ ∆ h q (u∂ x u) ϕ , e Rt ′ ∆ h q (∂ t u) ϕ L 2 dt ′ ≤ C2 -2qs d 2 q ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
, (5.3.14) where

θ(t) = ∥∂ y u ϕ ∥ B 1 2
.

In view of Lemma 5.2.6, we replace C ϕ by (∂ t u) ϕ , A = u and B = u, then we conclude the following estimate of J q 2 for any t < T ⋆ t 0

J q 2 (t ′ )dt ′ = e Rt ′ ∆ h q (v∂ y u) ϕ , e Rt ′ ∆ h q (∂ t u) ϕ L 2 123 ≤ C2 -2qs d 2 q ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
, (5.3.15) where

θ(t) = ∥∂ y u ϕ ∥ B 1 2
.

Then we deduce from (5.3.12) by integrating with respect to the time interval, that (5.3.16)

t 0 1 2 d dt ∥e Rt ′ ∆ h q (∂ t u) ϕ (t ′ )∥ 2 L 2 + ∥e Rt ∆ h q ∂ y u ϕ (t ′ )∥ 2 L 2 dt ′ + t 0 ∥e Rt ′ ∆ h q (∂ t u) ϕ (t ′ )∥ 2 L 2 dt ′ + λ t 0 θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ t u) ϕ (t ′ )∥ 2 L 2 dt ′ + λ t 0 θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 ∂ y u ϕ (t ′ )∥ 2 L 2 dt ′ ≤ R ∥e Rt ∆ h q (∂ t u) ϕ ∥ 2 L 2 + ∥e Rt ∆ h q ∂ y u ϕ ∥ 2 L 2 + C2 -2qs d 2 q ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
We multiply the estimate (5.3.16) by 2, we obtain (5.3.17)

t 0 d dt ∥e Rt ′ ∆ h q (∂ t u) ϕ (t ′ )∥ 2 L 2 + ∥e Rt ∆ h q ∂ y u ϕ (t ′ )∥ 2 L 2 dt ′ + 2 t 0 ∥e Rt ′ ∆ h q (∂ t u) ϕ (t ′ )∥ 2 L 2 dt ′ + 2λ t 0 θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ t u) ϕ (t ′ )∥ 2 L 2 dt ′ + 2λ t 0 θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 ∂ y u ϕ (t ′ )∥ 2 L 2 dt ′ ≤ 2R ∥e Rt ∆ h q (∂ t u) ϕ ∥ 2 L 2 + ∥e Rt ∆ h q ∂ y u ϕ ∥ 2 L 2 + C2 -2qs d 2 q ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
Now we still have to get some information of the norm

∥∂ y u ϕ ∥ B 1 2
, for that we need to apply the dyadic operator ∆ h q to the equation (5.3.18)

e ϕ(t,Dx) (∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p) = 0,
and then, we take the L 2 inner product of the resulting equation (5.3.18) with ∆ h q u ϕ , we obtain

(5.3.19) ∆ h q (∂ 2 t u) ϕ , ∆ h q u ϕ L 2 + ∆ h q (∂ t u) ϕ , ∆ h q u ϕ L 2 -∆ h q ∂ 2 y u ϕ , ∆ h q u ϕ L 2 = -∆ h q (u∂ x u + v∂ y u) ϕ , ∆ h q u ϕ L 2 -∆ h q ∂ x p ϕ , ∆ h q u ϕ L 2 .
In what follows, we shall use again the technical lemmas in Section 5.2, to handle term by term in the estimate (5.3.19). We start by the term

I 1 = ∆ h q (∂ 2 t u) ϕ , ∆ h q u ϕ L 2 and I 2 = ∆ h q (∂ t u) ϕ , ∆ h q u ϕ L 2
so by using integration by parts, we nd

I 1 = d dt ∆ h q (∂ t u) ϕ ∆ h q u ϕ dX -∆ h q (∂ t u) ϕ ∆ h q (∂ t u) ϕ dX + 2λ θ(t) ∆ h q |D x |(∂ t u) ϕ ∆ h q u ϕ dX,
and

I 2 = 1 2 d dt ∥∆ h q u ϕ ∥ 2 L 2 + λ θ(t)∥∆ h q |D x | 1 2 u ϕ ∥ 2 L 2 .
Whereas due to the boundary condition, and by integrating by part, we achieve

∆ h q (-∂ 2 y u ϕ ), ∆ h q u ϕ L 2 = ∆ h q ∂ y u ϕ , ∆ h q ∂ y u ϕ L 2 = ∥∆ h q ∂ y u ϕ ∥ 2 L 2 .
Now, by using the Dirichlet boundary condition (u, v)| y=0 = (u, v)| y=1 = 0, and the incompressibility condition ∂ x u + ∂ y v = 0 and the relation ∂ y p ϕ = 0, we can nd by integrating by parts the estimate of the pressure

∆ h q ∂ x p ϕ , ∆ h q u ϕ L 2 = ∆ h q p ϕ , ∆ h q ∂ x u ϕ L 2 = ∆ h q p ϕ , ∆ h q ∂ y v ϕ L 2 = ∆ h q ∂ y p ϕ , ∆ h q v ϕ L 2 = 0.
Then using Lemma 5.2.1 and multiplying (5.3.19) by e 2Rt , we achieve

d dt e 2Rt ∆ h q (∂ t u) ϕ ∆ h q u ϕ dX -e 2Rt ∆ h q (∂ t u) ϕ ∆ h q (∂ t u) ϕ dX + 2λ θ(t) e 2Rt ∆ h q |D x |(∂ t u) ϕ ∆ h q u ϕ dX + 1 2 d dt ∥e Rt ∆ h q u ϕ ∥ 2 L 2 + λ θ(t)∥e Rt ∆ h q |D x | 1 2 u ϕ ∥ 2 L 2 + ∥e Rt ∆ h q ∂ y u ϕ ∥ 2 L 2 = 2R e 2Rt ∆ h q (∂ t u) ϕ ∆ h q u ϕ dx + R∥e Rt ∆ h q u ϕ ∥ 2 L 2 -∆ h q (u∂ x u) ϕ , e 2Rt ∆ h q u ϕ L 2 -∆ h q (v∂ y u) ϕ , e 2Rt ∆ h q u ϕ L 2 .
(5.3.20)

Next, we note that

             L q 1 (t) = ∆ h q (u∂ x u) ϕ , e 2Rt ∆ h q u ϕ L 2 L q 2 (t) = ∆ h q (v∂ y u) ϕ , e 2Rt ∆ h q u ϕ L 2 L 3 q (t) = 2λ θ(t) e 2Rt ∆ h q |D x |(∂ t u) ϕ ∆ h q u ϕ dX .
In view, of Lemmas 5.2.5-5.2.6, we can deduce for t < T ⋆ that

t 0 L q 1 (t ′ )dt ′ = t 0 ∆ h q (u∂ x u) ϕ , e 2Rt ′ ∆ h q u ϕ L 2 dt ′ ≤ C2 -2qs d 2 q ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 ) (5.3.21) and t 0 L q 2 (t ′ )dt ′ = t 0 ∆ h q (v∂ y u) ϕ , e 2Rt ′ ∆ h q u ϕ L 2 dt ′ ≤ C2 -2qs d 2 q ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
.

(5.3.22)

Then we still have to estimate L 3 q , therefore by cutting the derivative |D x | into two half derivative, we achieve the

L 3 q (t) = 2λ θ(t) e 2Rt ′ ∆ h q |D x |(∂ t u) ϕ ∆ h q u ϕ dX ≤ 2λ θ(t) e Rt ∆ h q |D x | 1 2 (∂ t u) ϕ e Rt ′ ∆ h q |D x | 1 2 u ϕ dX ≤ λ θ(t)∥e Rt ∆ h q |D x | 1 2 (∂ t u) ϕ ∥ 2 L 2 + λ θ(t)∥e Rt ∆ h q |D x | 1 2 u ϕ ∥ 2 L 2 , (5.3.23) 
Next, by taking the integration over time of (5.3.20), and we sum it with (5.3.17), we gather that

(5.3.24) t 0 d dt 1 2 ∥e Rt ′ ∆ h q (u+∂ t u) ϕ ∥ 2 L 2 +∥e Rt ′ ∆ h q ∂ y u ϕ ∥ 2 L 2 + 1 2 ∥e Rt ′ ∆ h q (∂ t u) ϕ ∥ 2 L 2 dt ′ + t 0 ∥e Rt ′ ∆ h q (∂ t u) ϕ ∥ 2 L 2 dt ′ + t 0 λ θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 u ϕ ∥ 2 L 2 dt ′ + t 0 ∥e Rt ′ ∆ h q ∂ y u ϕ ∥ 2 L 2 dt ′ + t 0 2λ θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ t u) ϕ ∥ 2 L 2 dt ′ + t 0 2λ θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 ∂ y u ϕ ∥ 2 L 2 dt ′ ≤ R t 0 ∥e Rt ′ ∆ h q (u + ∂ t u) ϕ ∥ 2 L 2 + 2∥e Rt ′ ∆ h q ∂ y u ϕ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ t u) ϕ ∥ 2 L 2 dt ′ + λ t 0 θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ t u) ϕ ∥ 2 L 2 dt ′ + λ t 0 θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 u ϕ ∥ 2 L 2 dt ′ + 2Cd 2 q 2 -2qs ∥e Rt (∂ t u) ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 ) + ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
.

We begin with by observing that the term in the square brackets of the right-hand side in (5.3.24) can be absorbed by the dissipation t

0 ∥e Rt ′ ∆ h q (∂ t u) ϕ ∥ 2 L 2 dt ′ + t 0 ∥e Rt ′ ∆ h q ∂ y u ϕ ∥ 2 L 2 dt ′ . Indeed, since the value of R is smaller than min{ 1 8 , k 8 }, we have that R ∥e Rt ′ ∆ h q (u + ∂ t u) ϕ ∥ 2 L 2 + 2∥e Rt ′ ∆ h q ∂ y u ϕ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ t u) ϕ ∥ 2 L 2 ≤ R 2∥e Rt ′ ∆ h q u ϕ ∥ 2 L 2 + 2∥e Rt ′ ∆ h q ∂ y u ϕ ∥ 2 L 2 + 3∥e Rt ′ ∆ h q (∂ t u) ϕ ∥ 2 L 2 ≤ k 8 ∥e Rt ′ ∆ h q u ϕ ∥ 2 L 2 + 1 4 ∥e Rt ′ ∆ h q ∂ y u ϕ ∥ 2 L 2 + 1 4 ∥e Rt ′ ∆ h q (∂ t u) ϕ ∥ 2 L 2 .
To absorb this last term, we shall then invoke the Poincaré's inequality in y ∈ (0, 1)

: k∥∆ h q u ϕ ∥ L 2 ≤ ∥∆ h q ∂ y u ϕ ∥ L 2 . Thus R ∥e Rt ′ ∆ h q (u + ∂ t u) ϕ ∥ 2 L 2 + 2∥e Rt ′ ∆ h q ∂ y u ϕ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ t u) ϕ ∥ 2 L 2 ≤ 1 2 ∥e Rt ′ ∆ h q ∂ y u ϕ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ t u) ϕ ∥ 2 L 2 .
(5.3.25)

We replace the result obtained (5.3.25) in (5.3.24), we deduce that (5.3.26)

t 0 d dt 1 2 ∥e Rt ′ ∆ h q (u + ∂ t u) ϕ ∥ 2 L 2 + ∥e Rt ′ ∆ h q ∂ y u ϕ ∥ 2 L 2 + 1 2 ∥e Rt ′ ∆ h q (∂ t u) ϕ ∥ 2 L 2 dt ′ + 1 2 t 0 ∥e Rt ′ ∆ h q (∂ t u) ϕ ∥ 2 L 2 dt ′ + 1 2 t 0 ∥e Rt ′ ∆ h q ∂ y u ϕ ∥ 2 L 2 dt ′ + t 0 λ θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ t u) ϕ ∥ 2 L 2 dt ′ + t 0 2λ θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 ∂ y u ϕ ∥ 2 L 2 dt ′ ≤ 2Cd 2 q 2 -2qs ∥e Rt (∂ t u) ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 ) + ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
.

In the last estimate (5.3.26), we remark that the term t

0 λ θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 u ϕ ∥ 2 L 2 dt ′ has disappeared
because of the second term that comes out of the estimate (5.3.23). We can make it appear by using Poincaré's inequality on the term t

0 2λ θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 ∂ y u ϕ ∥ 2 L 2 dt ′ , we have t 0 2λ θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 ∂ y u ϕ ∥ 2 L 2 dt ′ ≥ λ k t 0 θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 u ϕ ∥ 2 L 2 dt ′ + t 0 θ(t ′ )∥e Rt ′ ∆ h q |D x | 1 2 ∂ y u ϕ ∥ 2 L 2 dt ′ .
Now we we multiply the obtained result in (5.3.24) by 2 2qs for s ∈]0, 1[. Summing with respect to q ∈ Z, we nd that for t < T ⋆ (5.3.27)

∥e Rt (u + ∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ y u ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L2 t (B s ) + ∥e Rt ∂ y u ϕ ∥ L2 t (B s ) + √ kλ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ∥e Rt ∂ y u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ≤ C ∥e a|Dx| ∂ y u 0 ∥ B s + ∥e a|Dx| (u 0 + u 1 )∥ B s + ∥e a|Dx| u 1 ∥ B s + √ 2C∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ 2C∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Taking λ ≥ 4C 2 and kλ ≥ 8C 2 in the above inequality leads to (5.3.28)

E s, λ 4 (u)(t) ≤ C∥e a|Dx| ∂ y u 0 ∥ B s + C∥e a|Dx| (u 0 + u 1 )∥ B s + C∥e a|Dx| u 1 ∥ B s , for t < T ⋆ .
where

E s, λ 4 (u)(t) = ∥e Rt (u + ∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ y u ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L2 t (B s ) + ∥e Rt ∂ y u ϕ ∥ L2 t (B s ) + √ kλ 2 ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ 2 ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ 2 ∥e Rt ∂ y u ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
We recall that we already dened θ(t

) = ∥∂ y u ϕ (t)∥ B 1 2
with θ(0) = 0. Then, for any 0 < t < T ⋆ , Inequality (5.3.28) yields

θ(t) = t 0 ∥∂ y u ϕ (t ′ )∥ B 1 2 dt ′ ≤ t 0 e -Rt ′ ∥e Rt ′ ∂ y u ϕ (t ′ )∥ B 1 2 dt ′ ≤ t 0 e -2Rt ′ dt ′ 1 2 × t 0 ∥e Rt ′ ∂ y u ϕ (t ′ )∥ 2 B 1 2 dt ′ 1 2 ≤ C 1 R 1 2 e Rt ∂ y u ϕ L2 t (B 1 2 ) ≤ C ∥e a|Dx| ∂ y u 0 ∥ B 1 2 + ∥e a|Dx| (u 0 + u 1 )∥ B 1 2 + ∥e a|Dx| u 1 ∥ 2 B 1 2

< a 2λ

We deduce from the continuity argument that T ⋆ = +∞ and we have (5.3.28) is valid for any t ∈ R + .

5.4 Propagation of the regularity and of the vorticity of the hyperbolic Prandtl equation (5.1.9)

In this section, we present rst a proposition stating the propagation for any B s regularity on the solution of the perturbed hyperbolic Navier-Stokes equations (5.1.9). The second proposition allows us to control two derivatives in the normal direction ∂ 2 y in any B s , despite the diculties raised by the boundary conditions. Those propositions will be useful in the last section when we prove the global convergence of Theorem 5. 1.3. In what follows, we shall always assume that t < T ⋆ a , where T ⋆ a given by (5.4.1)

T ⋆ a ≜ sup t > 0, ∥u ϕ ∥ B 1 2 ≤ 1 4C 2 θ(t) ≤ a λ .
Proposition 5.4.1. We assume that the condition (5.1.11) is satised, then for any s > 0 and u 0 , u

1 ∈ B 1 2 ∩ B 3 2 ∩ B s
, there exist a small constant C, such that for

λ = C(1 + ∥e a|Dx| ∂ y u 0 ∥ B 3 2 + ∥e a|Dx| (u 0 + u 1 )∥ B 3 2 + ∥e a|Dx| u 1 ∥ B 3 
2 ),

we have

(5.4.2)

∥e Rt (u + ∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ y u ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L2 t (B s ) ≤ C ∥e a|Dx| ∂ y u 0 ∥ B s + ∥e a|Dx| (u 0 + u 1 )∥ B s + ∥e a|Dx| u 1 ∥ B s , for t < T ⋆ a .
where C = C(s).

Proof of Proposition 5.4.1: We rst deduce from Lemma 5.2.5 that for any s > 0 we have by replacing

A = B = u and C = ∂ t u t 0 ∆ h q e Rt ′ (T h u ∂ x u + R h (u, ∂ x u)) ϕ , e Rt ′ ∆ h q (∂ t u) ϕ L 2 dt ′ ≲ d 2 q 2 -2qs ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

(5.4.3)

Then we only have to prove that

t 0 ∆ h q e Rt ′ (T h ∂xu u) ϕ , e Rt ′ ∆ h q (∂ t u) ϕ L 2 dt ′ ≲ d 2 q 2 -2qs ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
, for s > 0.

Indeed, in view of (5.2.16), we infer

t 0 ∆ h q e Rt ′ (T h ∂xu u) ϕ , e Rt ′ ∆ h q (∂ t u) ϕ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ x u ϕ (t ′ )∥ L ∞ ∥∆ h q ′ u ϕ (t ′ )∥ L 2 ∥∆ h q (∂ t u) ϕ (t ′ )∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ t 0 e 2Rt ′ ∥∂ y u ϕ (t ′ )∥ B 1 2 ∥∆ h q ′ u ϕ (t ′ )∥ L 2 ∥∆ h q (∂ t u) ϕ (t ′ )∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ t 0 ∥∂ y u ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q ′ u ϕ (t ′ )∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y u ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q (∂ t u) ϕ (t ′ )∥ 2 L 2 dt ′ 1 2
, which leads to

t 0 ∆ h q (u∂ x u) ϕ , e 2Rt ′ ∆ h q (∂ t u) ϕ L 2 dt ′ ≲ d 2 q 2 -2qs ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

(5.4.4)

While it follows from the proof of Lemma 5.2.6 that

t 0 ∆ h q (T h ∂yu v + R h (v, ∂ y u)) ϕ , e 2Rt ′ ∆ h q (∂ t u) ϕ L 2 dt ′ ≲ d 2 q 2 -2qs ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
, so we have yet to determine the estimate of t 0

∆ h q (T h v ∂ y u) ϕ , e 2Rt ′ ∆ h q (∂ t u) ϕ L 2
dt ′ , we have

∥∆ h q v ϕ (t)∥ L ∞ ≲ d q (u ϕ )2 q 2 ∥u ϕ (t)∥ 1 2 B 3 2 ∥∂ y u ϕ (t)∥ 1 2 B 1 2
, so that

∥S h q ′ -1 v ϕ (t ′ )∥ L ∞ ≲ 2 q ′ 2 ∥u ϕ (t)∥ 1 2 B 3 2 ∥∂ y u ϕ (t)∥ 1 2 B 1 2
, which implies that

t 0 ∆ h q (T h v ∂ y u) ϕ , e 2Rt ′ ∆ h q (∂ t u) ϕ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 v ϕ (t ′ )∥ L ∞ ∥∆ h q ′ ∂ y u ϕ (t ′ )∥ L 2 ∥∆ h q (∂ t u) ϕ (t ′ )∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ 2 ∥u ϕ ∥ 1 2 L ∞ t (B 3 2 
)

∥e Rt ∆ h q ′ ∂ y u ϕ ∥ L 2 t (L 2 ) t 0 ∥∂ y u ϕ (t ′ )∥ B 1 2 ∥∆ h q e Rt (∂ t u) ϕ (t ′ )∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -2qs ∥u ϕ ∥ 1 2 L∞ t (B 3 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B s ) ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

By summing all the terms we obtain

t 0 ∆ h q (v∂ y u) ϕ , ∆ h q (∂ t u) ϕ L 2 dt ′ ≲ d 2 q 2 -2qs ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) × ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + ∥u ϕ ∥ 1 2 L∞ t (B 3 
2

)
∥e Rt ∂ y u ϕ ∥ L2 t (B s ) .

(5.4.5)

Along the same way we can obtain

t 0 ∆ h q (u∂ x u) ϕ , e 2Rt ′ ∆ h q u ϕ L 2 dt ′ ≲ d 2 q 2 -2qs ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
.

(5.4.6) and

t 0 ∆ h q (v∂ y u) ϕ , e 2Rt ′ ∆ h q u ϕ L 2 dt ′ ≲ d 2 q 2 -2qs ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) × ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + ∥u ϕ ∥ 1 2 L∞ t (B 3 
2

)
∥e Rt ∂ y u ϕ ∥ L2 t (B s ) .

( ∥e Rt (u

+ ∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ y u ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L2 t (B s ) + √ kλ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + ∥e Rt ∂ y u ϕ ∥ L2 t (B s ) + √ λ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ∥e Rt ∂ y u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ≤ C ∥e a|Dx| ∂ y u 0 ∥ B s + ∥e a|Dx| (u 0 + u 1 )∥ B s + ∥e a|Dx| u 1 ∥ B s + √ 2C∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ 2C∥e Rt u ϕ ∥ 1 2 L2 t, θ(t) (B s+ 1 2 ) ∥e Rt (∂ t u) ϕ ∥ 1 2 L2 t, θ(t) (B s+ 1 2 ) + √ 2C∥u ϕ ∥ 1 2 L2 t, θ (B s+ 1 2 ) ∥∂ y u ϕ ∥ 1 4 L∞ t (B 3 2 
)

∥∂ y u ϕ ∥ 1 2 L2 t (B s ) + √ 2C∥(∂ t u) ϕ ∥ 1 2 L2 t, θ (B s+ 1 2 ) ∥∂ y u ϕ ∥ 1 4 L∞ t (B 3 2 
)

∥∂ y u ϕ ∥ 1 2 L2 t (B s ) .
Applying Young's inequality yields

C∥u ϕ ∥ 1 4 L∞ t (B 3 2 
)

∥e Rt ∂ y u ϕ ∥ 1 2 L2 t (B s ) ∥e Rt u ϕ ∥ 1 2 L2 t, θ(t) (B s+ 1 2 ) ≤ C∥u ϕ ∥ 1 2 L∞ t (B 3 2 
)

∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + 1 10 ∥e Rt ∂ y u ϕ ∥ L2 t (B s ) .
Then we achieve (5.4.9)

∥e Rt (u + ∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ y u ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L2 t (B s ) + √ kλ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + c∥e Rt ∂ y u ϕ ∥ L2 t (B s ) + √ λ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ∥e Rt ∂ y u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ≤ C∥e a|Dx| ∂ y u 0 ∥ B s + C∥e a|Dx| (u 0 + u 1 )∥ B s + C∥e a|Dx| u 1 ∥ B s + C(2 + ∥∂ y u ϕ ∥ 1 2 L∞ t (B 3 2 
)

)∥e Rt (u, ∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) 
.

Therefore if we take

λ ≥ 4C 2 (2 + ∥∂ y u ϕ ∥ L∞ t (B 3 2 
)

) kλ ≥ 8C 2 (2 + ∥∂ y u ϕ ∥ L∞ t (B 3 2 ) 
),

(5.4.10)

we obtain

E s, λ 4 (u)(t) ≤ C ∥e a|Dx| ∂ y u 0 ∥ B s + ∥e a|Dx| (u 0 + u 1 )∥ B s + ∥e a|Dx| u 1 ∥ B s , where E s, λ 4 (u)(t) = ∥e Rt (u + ∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ y u ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t u) ϕ ∥ L2 t (B s ) + c∥e Rt ∂ y u ϕ ∥ L2 t (B s ) + √ kλ 2 ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ 2 ∥e Rt (∂ t u) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ 2 ∥e Rt ∂ y u ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
which in particular implies that under Condition (5.1.11), there holds

∥∂ y u ϕ ∥ L∞ t (B 3 
2

) ≤ √ C ∥e a|Dx| ∂ y u 0 ∥ B 3 2 + ∥e a|Dx| (u 0 + u 1 )∥ B 3 2 + ∥e a|Dx| u 1 ∥ B 3 2
.

Then by taking λ = C(2+∥e a|Dx| ∂ y u 0 ∥

B 3 2 +∥e a|Dx| (u 0 +u 1 )∥ B 3 2 +∥e a|Dx| u 1 ∥ B 3 
2 ), therefore the condition of the proposition is satised and then the proposition is proved for any t > 0.

Proposition 5.4.2. We assume that the condition (5.1.11) is satised, then for any s > 0, there exist a small constant C, such that for

λ = C(1 + ∥e a|Dx| ∂ y u 0 ∥ B 3 2 + ∥e a|Dx| (u 0 + u 1 )∥ B 3 2 + ∥e a|Dx| u 1 ∥ B 3 2 ),
we have (5.4.11)

∥e Rt ∂ y (u + ∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ y (∂ t u) ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ 2 y u ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ y (∂ t u) ϕ ∥ L2 t (B s ) + ∥e Rt ∂ 2 y u ϕ ∥ L2 t (B s ) ≤ C ∥e a|Dx| ∂ 2 y u 0 ∥ B s + ∥e a|Dx| ∂ y (u 0 + u 1 )∥ B s + ∥e a|Dx| ∂ y u 1 ∥ B s + ∥e a|Dx| u 0 ∥ B s+2 + ∥e a|Dx| u 0 ∥ B s+1 + ∥e a|Dx| u 1 ∥ B s+1 , for t < T ⋆ .
Proof. of Proposition 5.4.2: We start by applying the partial derivative ∂ y to (5.1.9), we obtain

∂ 2 t ∂ y u + ∂ t ∂ y u + ∂ y (u∂ x u) + ∂ y (v∂ y u) -∂ 3 y u + ∂ x ∂ y p = 0.
Due to the divergence-free condition of U (it means that ∂ x u + ∂ y v = 0), we have

∂ y (u∂ x u) + ∂ y (v∂ y u) = ∂ y u∂ x u + u∂ x ∂ y u + ∂ y v∂ y u + v∂ 2 y u = ∂ y u∂ x u + u∂ x ∂ y u -∂ x u∂ y u + v∂ 2 y u = u∂ x ∂ y u + v∂ 2
y u, so our equation becomes

∂ 2 t w + ∂ t w + u∂ x w + v∂ y w -∂ 2 y w + ∂ x q = 0
(5.4.12)

where w = ∂ y u and q = ∂ y p. from which, using that -∂ y w + ∂ x p is vanishing on the boundary, we get, by using a similar derivation of (5.3.12) and (5.3.20). It mean that we take compute the scalar product of our equation with ∆ h q (w + 2∂ t w) ϕ , so that (5.4.13)

d dt ∥e Rt ∆ h q (∂ t w) ϕ ∥ 2 L 2 + ∥e Rt ∆ h q ∂ y w ϕ ∥ 2 L 2 + 2∥e Rt ∆ h q (∂ t w) ϕ ∥ 2 L 2 + 2λ θ(t ′ )∥e Rt ∆ h q |D x | 1 2 (∂ t w) ϕ ∥ 2 L 2 + 2λ θ(t ′ )∥e Rt ∆ h q |D x | 1 2 ∂ y w ϕ ∥ 2 L 2 ≤ 2 ∆ h q (u∂ x w) ϕ , e 2Rt ∆ h q (∂ t w) ϕ L 2 + ∆ h q (v∂ y w) ϕ , e 2Rt ∆ h q (∂ t w) ϕ L 2 +2R ∥e Rt ∆ h q (∂ t w) ϕ ∥ 2 L 2 +∥e Rt ∆ h q ∂ y w ϕ ∥ 2 L 2 +2 R ∆ h q ∂ x p ϕ • e 2Rt ∆ h q (∂ t w(t, x, 1) -∂ t w(t, x, 0)) ϕ dx , and 
d dt A(w ϕ )(t) + 1 2 d dt ∥e Rt ∆ h q w ϕ ∥ 2 L 2 + λ θ(t)∥e Rt ∆ h q |D x | 1 2 w ϕ ∥ 2 L 2 + ∥e Rt ∆ h q ∂ y w ϕ ∥ 2 L 2 (5.4.14) = -∆ h q (u∂ x w) ϕ , e 2Rt ∆ h q w ϕ ) L 2 -∆ h q (v∂ y w) ϕ , e 2Rt ∆ h q w ϕ ) L 2 + R ∥e Rt ∆ h q w ϕ ∥ 2 L 2 + 2 e 2Rt ∆ h q (∂ t w) ϕ ∆ h q w ϕ dx - R ∆ h q ∂ x p ϕ • e 2Rt ∆ h q (w(t, x, 1) -w(t, x, 0)) ϕ dx where A(w ϕ )(t) = e 2Rt ∆ h q (∂ t w) ϕ ∆ h q w ϕ dx -e 2Rt ∆ h q (∂ t w) ϕ ∆ h q (∂ t w) ϕ dx + 2λ θ(t) e 2Rt ∆ h q |D x |(∂ t w) ϕ ∆ h q w ϕ dx
Now, We start to estimate the pressure term, for date we denote

K q = R ∆ h q ∂ x p ϕ • ∆ h q (∂ t w(t, x, 1) -∂ t w(t, x, 0)) ϕ dx.
In view of (5.3.4) and Lemma 5.2.3, we write

K q = R ∆ h q ∂ x p ϕ • ∆ h q (∂ t w(t, x, 1) -∂ t w(t, x, 0)) ϕ dx = R ∆ h q (w ϕ (t, x, 1) -w ϕ (t, x, 0) • ∆ h q ∂ t w(t, x, 1) -∂ t w(t, x, 0) ϕ dx - R ∆ h q ∂ x ( 1 0 (u) 2 ϕ dy) • ∆ h q ∂ t w(t, x, 1) -∂ t w(t, x, 0) ϕ dx = 1 2 d dt R ∆ h q (w(t, x, 1) -w(t, x, 0) 2 ϕ dx + λ θ(t) R ∆ h q |D x | (w(t, x, 1) -w(t, x, 0) 2 ϕ dx - R ∆ h q ∂ x ( 1 0 (u) 2 ϕ dy) • ∆ h q ∂ t w(t, x, 1) -∂ t w(t, x, 0) ϕ dx -R R ∆ h q (w(t, x, 1) -w(t, x, 0) 2 ϕ dx
If we use Lemma 5.2.3 to the following quantity

R ∆ h q ∂ x ( 1 0 (u) 2 dy)•e 2ϕ ∆ h q ∂ t w(t, x, 1)-∂ t w(t, x, 0) ϕ dx,
we can obtain that

R ∆ h q e ϕ ∂ x ( 1 0 (u) 2 dy) • ∆ h q ∂ t w(t, x, 1) -∂ t w(t, x, 0) ϕ dx = d dt R ∆ h q e ϕ ∂ x ( 1 0 (u) 2 dy) • e ϕ ∆ h q w(t, x, 1) -w(t, x, 0) dx -2 R ∆ h q e ϕ ∂ x ( 1 0 
(u∂ t u)dy) • e ϕ ∆ h q w(t, x, 1) -w(t, x, 0) dx

+ 2λ θ(t) R ∆ h q e ϕ |D x |∂ x ( 1 0 
(u) 2 dy) • e ϕ ∆ h q w(t, x, 1) -w(t, x, 0) dx.

So we multiply our equation by e 2Rt , we achieve that

|e 2Rt K q (t)| ≤ 1 2 d dt ∥∆ h q e Rt w ϕ ∥ 2 L ∞ v (L 2 h ) + λ θ(t)∥∆ h q e Rt |D x | 1 2 w ϕ ∥ 2 L ∞ v (L 2 h ) + d dt | R e 2Rt ∆ h q e ϕ ∂ x ( 1 0 (u) 2 dy) • e ϕ ∆ h q w(t, x, 1) -w(t, x, 0) dx| + 2 R |e 2Rt ∆ h q e ϕ ∂ x ( 1 0 (u∂ t u)dy) • e ϕ ∆ h q w(t, x, 1) -w(t, x, 0) |dx + 2λ θ(t) R |e 2Rt ∆ h q e ϕ |D x |∂ x ( 1 0 (u) 2 dy) • e ϕ ∆ h q w(t, x, 1) -w(t, x, 0) |dx + 2R| R e 2Rt ∆ h q e ϕ ∂ x ( 1 0 (u) 2 dy) • e ϕ ∆ h q w(t, x, 1) -w(t, x, 0) dx| + R| R ∆ h q (w(t, x, 1) -w(t, x, 0) 2 ϕ dx|.
from which, we infer

|e 2Rt K q (t)| ≤ 1 2 d dt 1 2 ∥∆ h q e Rt w ϕ ∥ 2 L ∞ v (L 2 h ) + ∥∆ h q e Rt ∂ x (u 2 ) ϕ ∥ 2 L 1 v (L 2 h ) + λ θ(t)∥∆ h q e Rt |D x | 1 2 w ϕ ∥ 2 L ∞ v (L 2 h ) + λ θ(t)∥∆ h q e Rt |D x | 1 2 ∂ x (u 2 ) ϕ ∥ 2 L 1 v (L 2 h ) + C ∥∆ h q e Rt w ϕ ∥ 2 L ∞ v (L 2 h ) + ∥∆ h q e Rt (u∂ t u) ϕ ∥ 2 L 1 v (L 2 h ) + λ θ(t)∥∆ h q e Rt |D x | 1 2 w ϕ ∥ 2 L ∞ v (L 2 h ) + R 3 2 ∥∆ h q e Rt w ϕ ∥ 2 L ∞ v (L 2 h ) + ∥∆ h q e Rt ∂ x (u 2 ) ϕ ∥ 2 L 1 v (L 2 h ) .
By applying Bony's decomposition, we have for any s > 0

∥e Rt ∆ h q ∂ x (u 2 ) ϕ ∥ L 2 t (L 1 v (L 2 h )) ≲ ∥e Rt ∆ h q ∂ x (u 2 ) ϕ ∥ L 2 t (L 2 ) ≲ d q 2 -qs ∥u ϕ ∥ L 2 t (L ∞ ) ∥e Rt u ϕ ∥ L∞ t (B s+1 ) ≲ d q 2 -qs ∥∂ y u ϕ ∥ L 2 t (B 1 2 
)

∥e Rt u ϕ ∥ L∞ t (B s+1 ) and ∥e Rt ∆ h q ∂ x (u∂ t u) ϕ ∥ L 2 t (L 1 v (L 2 h )) ≲ ∥e Rt ∆ h q ∂ x (u∂ t u) ϕ ∥ L 2 t (L 2 ) ≲ d q 2 -qs ∥u ϕ ∥ L 2 t (L ∞ ) ∥e Rt ∂ t u ϕ ∥ L∞ t (B s+1 ) + ∥∂ t u ϕ ∥ L 2 t (L ∞ ) ∥e Rt u ϕ ∥ L∞ t (B s+1 ) ≲ d q 2 -qs ∥∂ y u ϕ ∥ L 2 t (B 1 2 
)

∥e Rt ∂ t u ϕ ∥ L∞ t (B s+1 ) + ∥∂ t ∂ y u ϕ ∥ L 2 t (B 1 2 ) 
∥e Rt u ϕ ∥ L∞ t (B s+1 ) .

While notice that 1 0 ∆ h q ∂ y u ϕ (t, x, y)dy = 0, then for any xed (t, x) ∈ R + × R, there exist Y q 0 (t, x) so that ∆ h q ∂ y u ϕ (t, x, Y q 0 (t, x)) = 0. So we have

(∆ h q ∂ y u ϕ (t, x, y)) 2 ≤ 2∥∆ h q ∂ y u ϕ ∥ L 2 v ∥∆ h q ∂ 2 y u ϕ ∥ L 2 v , which implies that ∥∆ h q ∂ y u ϕ (t, x, y))∥ L ∞ v (L 2 h ) ≤ 2∥∆ h q ∂ y u ϕ ∥ L 2 ∥∆ h q ∂ 2 y u ϕ ∥ L 2 .
As a result, it comes out

t 0 |e 2Rt K q (t ′ )|dt ′ ≤ d 2 q 2 -2qs CE(0) + C∥e Rt w ϕ ∥ 2 L ∞ t (B s ) + 1 4 ∥e Rt ∂ y w ϕ ∥ 2 L ∞ t (B s ) (5.4.15) + 1 2 ∥∂ y u ϕ ∥ 2 L ∞ t (B 1 2 
)

∥e Rt u ϕ ∥ 2 L ∞ t (B s+1 ) + λ∥∂ y u ϕ ∥ 2 L ∞ t (B 3 2 
)

∥e Rt ∂ y u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 ) + C∥e Rt w ϕ ∥ 2 L 2 t (B s ) + 1 4 ∥e Rt ∂ y w ϕ ∥ 2 L 2 t (B s ) + ∥∂ y u ϕ ∥ 2 L2 t (B 1 2 
)

∥e Rt ∂ t u ϕ ∥ 2 L∞ t (B s+1 ) + ∥∂ t ∂ y u ϕ ∥ 2 L2 t (B 1 2 
)

∥e Rt u ϕ ∥ 2 L∞ t (B s+1 ) + Cλ∥e Rt ∂ y u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 ) + λ 4 ∥e Rt ∂ 2 y u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 ) 3R 8 ∥e Rt w ϕ ∥ 2 L2 t (B s ) + 3R 8 ∥e Rt ∂ y w ϕ ∥ 2 L2 t (B s ) + R∥∂ y u ϕ ∥ 2 L2 t (B 1 2 
)

∥e Rt u ϕ ∥ 2 L∞ t (B s+1 )
where

E(0) = ∥e a|Dx| w 0 ∥ 2 B s + ∥e a|Dx| ∂ y w 0 ∥ 2 B s + ∥e a|Dx| ∂ y u 0 ∥ 2 B 1 2 ∥e a|Dx| u 0 ∥ 2 B s+1
Along the same way we obtain

t 0 |e 2Rt ′ R ∆ h q ∂ x p ϕ • ∆ h q (w(t, x, 1) -w(t, x, 0)) ϕ dx|dt ′ (5.4.16) ≤ d 2 q 2 -2qs C∥e Rt w ϕ ∥ 2 L2 t (B s ) + C∥u ϕ ∥ 2 L2 t (B 1 2 
)

∥e Rt u ϕ ∥ 2 L ∞ t (B s+1 ) + 1 4 ∥e Rt ∂ y w ϕ ∥ 2 L2 t (B s ) .
It follows from the proof of Lemma 5.2.5, for any s > 0

t 0 ∆ h q (T h u ∂ x w + R h (u, ∂ x w)) ϕ , e 2Rt ′ ∆ h q (∂ t w) ϕ L 2 dt ′ ≤ C dq 2 -2qs ∥e Rt w ϕ ∥ L2 t, θ (B s+ 1 2 ) ∥e Rt (∂ t w) ϕ ∥ L2 t, θ (B s+ 1 2 )
.

While we deduce from Lemma 5.2.1 and Denition 5.2.3

t 0 | ∆ h q (T h ∂xw u) ϕ , e 2Rt ′ ∆ h q (∂ t w) ϕ L 2 |dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ x w ϕ (t ′ )∥ L ∞ h (L 2 v ) ∥∆ h q ′ u ϕ (t ′ )∥ L 2 h (L ∞ v ) ∥∆ h q (∂ t w) ϕ (t ′ )∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ t 0 e 2Rt ′ ∥w ϕ (t ′ )∥ B 1 2 ∥∆ h q ′ ∂ y u ϕ (t ′ )∥ L 2 ∥∆ h q (∂ t w) ϕ (t ′ )∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ t 0 ∥w ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q ′ w ϕ (t ′ )∥ 2 L 2 dt ′ 1 2 × t 0 ∥w ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q (∂ t w) ϕ (t ′ )∥ L 2 dt ′ 1 2 ≤ Cd 2 q 2 -2qs ∥e Rt w ϕ ∥ L2 t, θ (B s+ 1 2 ) ∥e Rt (∂ t w) ϕ ∥ L2 t, θ (B s+ 1 2 )
.

Then we conclude for any s > 0

t 0 | ∆ h q (u∂ x w) ϕ , e 2Rt ′ ∆ h q (∂ t w) ϕ L 2 |dt ′ (5.4.17) ≤ Cd 2 q 2 -2qs ∥e Rt w ϕ ∥ L2 t, θ (B s+ 1 2 ) ∥e Rt (∂ t w) ϕ ∥ L2 t, θ (B s+ 1 2 )
.

In the same way we have

t 0 | ∆ h q (u∂ x w) ϕ , e 2Rt ′ ∆ h q w ϕ L 2 |dt ′ (5.4.18) ≤ Cd 2 q 2 -2qs ∥e Rt w ϕ ∥ 2 L2 t, θ (B s+ 1 2 )
.

On the other hand, we deduce from Lemma 5.2.1 that for any s > 0

t 0 | ∆ h q (T h v ∂ y w) ϕ , e 2Rt ′ ∆ h q (∂ t w) ϕ L 2 |dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 v ϕ (t ′ )∥ L ∞ ∥∆ h q ′ ∂ y w ϕ (t ′ )∥ L 2 ∥∆ h q (∂ t w) ϕ (t ′ )∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ 2 ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2

) e Rt ′ ∥∆ h q ′ ∂ y w ϕ ∥ L 2 t (L 2 ) t 0 ∥∂ y u ϕ (t( ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q (∂ t w) ϕ (t ′ )∥ 2 L 2 dt ′ 1 2 ≤ Cd 2 q 2 -2qs ∥u ϕ ∥ 1 2 L∞ t (B 3 2 ) ∥e Rt ∂ y w ϕ ∥ L2 t (B s ) ∥e Rt (∂ t w) ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

In the same way we obtain that

t 0 | ∆ h q R h (v, ∂ y w) ϕ , e 2Rt ′ ∆ h q (∂ t w) ϕ L 2 |dt ′ ≤ Cd 2 q 2 -2qs ∥u ϕ ∥ 1 2 L∞ t (B 3 2 
)

∥e Rt ∂ y w ϕ ∥ L2 t (B s ) ∥e Rt (∂ t w) ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Finally, we use Lemma 5.2.5, we nd

t 0 | ∆ h q (T h ∂yw v) ϕ , e 2Rt ′ ∆ h q (∂ t w) ϕ L 2 |dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ y w ϕ (t ′ )∥ L ∞ h (L 2 v ) ∥∆ h q ′ v ϕ (t ′ )∥ L 2 h (L ∞ v ) ∥∆ h q (∂ t w) ϕ (t ′ )∥ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥∂ y w ϕ ∥ B 1 2 ∥∆ h q ′ ∂ x u ϕ ∥ L 2 ∥∆ h q (∂ t w) ϕ ∥ L 2 dt ′ ≤ Cd 2 q 2 -2qs ∥∂ y w ϕ ∥ L2 t (B 1 2 
)

∥e Rt u ϕ ∥ L ∞ t (B s+1 ) ∥e Rt (∂ t w) ϕ ∥ L2 t(B s) .
Then by summing we deduce that

t 0 | ∆ h q (v∂ y w) ϕ , e 2Rt ′ ∆ h q (∂ t w) ϕ L 2 |dt ′ ≤ Cd 2 q 2 -2qs ∥∂ y w ϕ ∥ L2 t (B 1 2 
)

∥e Rt u ϕ ∥ L ∞ t (B s+1 ) ∥e Rt (∂ t w) ϕ ∥ L2 t (B s) + Cd 2 q 2 -2qs ∥u ϕ ∥ 1 2 L∞ t (B 3 2 
)

∥e Rt ∂ y w ϕ ∥ L2 t (B s ) ∥e Rt (∂ t w) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) (5.4.19) 
Along the same way we nd that

t 0 | ∆ h q (T h v ∂ y w + R h (v, ∂ y w)) ϕ , e 2Rt ′ ∆ h q w ϕ L 2 |dt ′ ≲ d 2 q 2 -2qs ∥u ϕ ∥ 1 2 L∞ t (B 3 2 
)

∥e Rt ∂ y w ϕ ∥ L2 t (B s ) ∥e Rt w ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Then we still have to estimate T h ∂yw v, so by integration by part we can obtain

t 0 | ∆ h q (T h ∂yw v) ϕ , e 2Rt ′ ∆ h q w ϕ L 2 |dt ′ ≤ t 0 | ∆ h q (T h w ∂ y v) ϕ , e 2Rt ′ ∆ h q w ϕ L 2 |dt ′ + t 0 | ∆ h q (T h w v) ϕ , e 2Rt ′ ∆ h q ∂ y w ϕ L 2 |dt ′ .
Due to the free divergence

∂ x u + ∂ y v = 0 we deduce t 0 | ∆ h q (T h w ∂ y v) ϕ , e 2Rt ′ ∆ h q w ϕ L 2 |dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 w ϕ (t ′ )∥ L ∞ h (L 2 v ) ∥∆ h q ′ ∂ x u ϕ (t ′ )∥ L 2 h (L ∞ v ) ∥∆ h q w ϕ (t ′ )∥ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 2 q ′ ∥∂ y u ϕ ∥ B 1 2 ∥e Rt ′ ∆ h q ′ w ϕ ∥ L 2 ∥e Rt ′ ∆ h q w ϕ (t ′ )∥ L 2 dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt w ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
.

While we observe that

t 0 | ∆ h q (T h w v) ϕ , e 2Rt ′ ∆ h q ∂ y w ϕ L 2 |dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 w ϕ (t ′ )∥ L ∞ h (L 2 v ) ∥∆ h q ′ v ϕ (t ′ )∥ L 2 h (L ∞ v ) ∥∆ h q ∂ y w ϕ (t ′ )∥ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥w ϕ ∥ B 1 2 ∥∆ h q ′ ∂ x u ϕ ∥ L 2 ∥∆ h q ∂ y w ϕ ∥ L 2 dt ′ ≤ Cd 2 q 2 -2qs ∥w ϕ ∥ L2 t (B 1 2 
)

∥e Rt u ϕ ∥ L∞ t (B s+1 ) ∥e Rt ∂ y w ϕ ∥ L2 t (B s ) .
By summarizing the above estimates, we obtain

t 0 | ∆ h q (v∂ y w) ϕ , e 2Rt ′ ∆ h q w ϕ L 2 |dt ′ ≤ Cd 2 q 2 -2qs ∥u ϕ ∥ 1 2 L∞ t (B 3 2 
)

∥e Rt ∂ y w ϕ ∥ L2 t (B s ) ∥e Rt w ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
(5.4.20)

+ Cd 2 q 2 -2qs ∥w ϕ ∥ L2 t (B 1 2 
)

∥e Rt u ϕ ∥ L∞ t (B s+1 ) ∥e Rt ∂ y w ϕ ∥ L2 t (B s ) + ∥e Rt w ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
By inserting the resulting estimates (5.4.15)-(5.4.20) in (5.4.13) + (5.4.14) and multiplying by 2 2qs for s > 0, and then integrating over time, and summing with respect to q ∈ Z, we nd that for t < T ⋆ (5.4.21)

∥e Rt (w + ∂ t w) ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t w) ϕ ∥ L∞ t (B s ) + ∥e Rt ∂ y w ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t w) ϕ ∥ L2 t (B s ) + √ kλ∥e Rt w ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) +∥e Rt ∂ y w ϕ ∥ L2 t (B s ) + √ λ∥e Rt (∂ t w) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ∥e Rt ∂ y w ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ≤ C L(0) + ∥e Rt w ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + ∥e Rt w ϕ ∥ 1 2 L2 t, θ(t) (B s+ 1 2 ) ∥e Rt (∂ t w) ϕ ∥ 1 2 L2 t, θ(t) (B s+ 1 2 ) + ∥w ϕ ∥ 1 2 L2 t, θ (B s+ 1 2 ) ∥∂ y u ϕ ∥ 1 4 L∞ t (B 3 2 
)

∥∂ y w ϕ ∥ 1 2 L2 t (B s ) + ∥(∂ t w) ϕ ∥ 1 2 L2 t, θ (B s+ 1 2 ) ∥∂ y u ϕ ∥ 1 4 L∞ t (B 3 2 
)

∥∂ y w ϕ ∥ 1 2 L2 t (B s ) + ∥∂ t u ϕ ∥ L2 t (B 1 2 
)

∥e Rt u ϕ ∥ L∞ t (B s+1 ) + ∥∂ y u ϕ ∥ L2 t (B 1 2 
)

∥e Rt ∂ t u ϕ ∥ L∞ t (B s+1 ) + ∥∂ y u ϕ ∥ L2 t (B 1 2 
)

∥e Rt u ϕ ∥ L∞ t (B s+2 ) √ λ C∥e Rt w ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + 1 2 ∥e Rt ∂ y w ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + C √ λ∥∂ y u ϕ ∥ L∞ t (B 3 2 
)

∥e Rt w ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + C∥e Rt w ϕ ∥ L2 t (B s ) + 1 8 ∥e Rt ∂ y w ϕ ∥ L2 t (B s ) + C∥e Rt w ϕ ∥ L∞ t (B s ) + 1 8 ∥e Rt ∂ y w ϕ ∥ L∞ t (B s )
where

L(0) = E(0) + ∥e a|Dx| ∂ y w 0 ∥ B s + ∥e a|Dx| (w 0 + w 1 )∥ B s + ∥e a|Dx| w 1 ∥ B s .
Applying Young's inequality yields

C∥∂ y u ϕ ∥ 1 4 L∞ t (B 3 2 
)

∥e Rt ′ ∂ y w ϕ ∥ 1 2 L2 t (B s ) ∥e Rt ′ w ϕ ∥ 1 2 L2 t, θ(t) (B s+ 1 2 ) ≤ C∥∂ y u ϕ ∥ 1 2 L∞ t (B 3 2 
)

∥e Rt ′ w ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + 1 8 ∥e Rt ′ ∂ y w ϕ ∥ L2 t (B s ) .
Then we achieve (5.4.22) ∥e Rt (w

+ ∂ t w) ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t w) ϕ ∥ L∞ t (B s ) + 3 2 ∥e Rt ∂ y w ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t w) ϕ ∥ L2 t (B s ) + √ kλ∥e Rt w ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + 1 2 ∥e Rt ∂ y w ϕ ∥ L2 t (B s ) + √ λ∥e Rt (∂ t w) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ∥e Rt ∂ y w ϕ ∥ L2 t, θ(t) (B s+ ) ≤ √ C L(0) + √ 2 + ∥∂ y u ϕ ∥ 1 2 L∞ t (B 3 2 ) ∥e Rt w ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ 1 + ∥∂ y u ϕ ∥ L∞ t (B 3 2 ) ∥e Rt w ϕ ∥ L2 t, θ(t) (B s+ ) + √ 2 + ∥∂ y u ϕ ∥ 1 2 L∞ t (B 3 
2

) ∥e Rt (∂ y w, ∂ t w) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + ∥∂ t u ϕ ∥ L2 t (B 1 2 
)

∥e Rt u ϕ ∥ L∞ t (B s+1 ) + ∥e Rt (∂ t u) ϕ ∥ L∞ t (B s+1 ) + ∥e Rt u ϕ ∥ L∞ t (B s+2
) .

Therefore if we take (5.4.23)

     λ ≥ 8C 2 + ∥∂ y u ϕ ∥ L∞ t (B 3 
2

) kλ ≥ 8C 2 + ∥∂ y u ϕ ∥ L∞ t (B 3 2 
)

),

we obtain by using the

E s, λ 4 (w)(t) ≤ C L(0) + ∥e a|Dx| u 0 ∥ B s+2 + ∥e a|Dx| u 0 ∥ B s+1 + ∥e a|Dx| u 1 ∥ B s+1 + √ λ 1 + ∥∂ y u ϕ ∥ L∞ t (B 3 2 
)

∥e Rt w ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
where

E s, λ 4 (w)(t) = ∥e Rt (w + ∂ t w) ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t w) ϕ ∥ L∞ t (B s ) + 3 2 ∥e Rt ∂ y w ϕ ∥ L∞ t (B s ) + ∥e Rt (∂ t w) ϕ ∥ L2 t (B s ) + √ kλ 4 ∥e Rt w ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + 1 2 ∥e Rt ∂ y w ϕ ∥ L2 t (B s ) + √ λ 4 ∥e Rt (∂ t w) ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + √ λ 4 ∥e Rt ∂ y w ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
Then, taking λ = 8C(2+∥e a|Dx| ∂ y u 0 ∥

B 3 2 +∥e a|Dx| (u 0 +u 1 )∥ B 3 2 +∥e a|Dx| u 1 ∥ B 3 
2 ), therefore the condition of the proposition is satised and then the proposition is proved.

As a matter of fact, it remains to present the estimate of ∥∆ h q (∂ 2 t u) ϕ ∥ L 2 , this estimate will serve us in the proof of the last theorem 5.1.3. Indeed by applying ∆ h q to (5.3.18) and take the L 2 inner product of resulting equation with ∆ h q (∂ 2 t u) ϕ . That yields

∥∆ h q (∂ 2 t u) ϕ ∥ 2 L 2 = ∆ h q ∂ 2 y u ϕ , ∆ h q (∂ 2 t u) ϕ L 2 -∆ h q (∂ t u) ϕ , ∆ h q (∂ 2 t u) ϕ L 2 -∆ h q (u∂ x u) ϕ , ∆ h q (∂ 2 t u) ϕ L 2 -∆ h q (v∂ y u) ϕ , ∆ h q (∂ 2 t u) ϕ L 2 -∆ h q ∂ x p ϕ , ∆ h q (∂ 2 t u) ϕ L 2 . The fact that (∂ t u) ϕ = ∂ t u ϕ + λ θ(t)|D x |u ϕ implies ∆ h q (∂ t u) ϕ , ∆ h q (∂ 2 t u) ϕ L 2 = 1 2 d dt ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 + λ θ(t)2 q ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 ,
from which, we deduce that

∥∆ h q (∂ 2 t u) ϕ ∥ 2 L 2 + 1 2 d dt ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 ≤ I 1 + I 2 + I 3 + I 4 ,
where

I 1 = ∆ h q ∂ 2 y u ϕ , ∆ h q (∂ 2 t u) ϕ L 2 I 2 = ∆ h q (u∂ x u) ϕ , ∆ h q (∂ 2 t u) ϕ L 2 I 3 = ∆ h q (v∂ y u) ϕ , ∆ h q (∂ 2 t u) ϕ L 2 I 4 = ∆ h q ∂ x p ϕ , ∆ h q (∂ 2 t u) ϕ L 2 .
Since ∂ x u + ∂ y v = 0, using (5.3.1) and integrations by parts, we nd

I 4 = ∆ h q ∂ x p ϕ , ∆ h q (∂ 2 t u) ϕ L 2 = 0.
For I 1 , I 2 and I 3 we have

I 2 = ∆ h q ∂ 2 y u ϕ , ∆ h q (∂ 2 t u) ϕ L 2 ≤ C∥∆ h q (∂ 2 y u) ϕ ∥ 2 L 2 + 1 10 ∥∆ h q (∂ 2 t u) ϕ ∥ 2 L 2 I 2 = ∆ h q (u∂ x u) ϕ , ∆ h q (∂ 2 t u) ϕ L 2 ≤ C∥∆ h q (u∂ x u) ϕ ∥ 2 L 2 + 1 10 ∥∆ h q (∂ 2 t u) ϕ ∥ 2 L 2 I 3 = ∆ h q (v∂ y u) ϕ , ∆ h q (∂ 2 t u) ϕ L 2 ≤ C∥∆ h q (v∂ y u) ϕ ∥ 2 L 2 + 1 10 ∥∆ h q (∂ 2 t u) ϕ ∥ 2 L 2 .
Then, we deduce that

∥∆ h q (∂ 2 t u) ϕ ∥ 2 L 2 + 1 2 d dt ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 ≤ C ∥∆ h q (u∂ x u) ϕ ∥ 2 L 2 + ∥∆ h q (v∂ y u) ϕ ∥ 2 L 2 + ∥∆ h q ∂ 2 y u ϕ ∥ 2 L 2 .
Multiplying the result by e 2Rt and integrating over [0, t], we get

∥e Rt ∆ h q (∂ 2 t u) ϕ ∥ 2 L 2 t (L 2 ) + 1 2 ∥e Rt ∆ h q (∂ t u) ϕ ∥ 2 L ∞ t (L 2 ) ≤ C ∥∆ h q e a|Dx| u 1 ∥ 2 L 2 + ∥e Rt ∆ h q (u∂ x u) ϕ ∥ 2 L 2 t (L 2 ) + ∥e Rt ∆ h q (v∂ y u) ϕ ∥ 2 L 2 t (L 2 ) + ∥e Rt ∆ h q ∂ 2 y u ϕ ∥ 2 L 2 t (L 2 ) .
Multiplying the above inequality by 2 3q , then taking the square root of the resulting estimate, and nally summing up the obtained equations with respect to q ∈ Z, we obtain (5.4.24)

∥e Rt (∂ 2 t u) ϕ ∥ L2 t (B 3 2 
)

+ 1 4 ∥e Rt (∂ t u) ϕ ∥ L∞ t (B 3 2 
)

≤ C ∥e a|Dx| u 1 ∥ B 3 2 + ∥e Rt (u∂ x u) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (v∂ y u) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt ∂ 2 y u ϕ ∥ L2 t (B 3 2 ) 
.

Next, to deal with the nonlinear terms in (5.4.24), we need the following lemma that gives the estimates of the terms ∥e Rt (u∂

x u) ϕ ∥ L2 t (B 3 2 
)

and ∥e Rt (v∂ y u) ϕ ∥ L2 t (B 3 2 ) 
, the proof will be given in the appendix 5.8.

Lemma 5.4.1.

∥e Rt (u∂ x u) ϕ ∥ L2 t (B 3 2 
)

≤ C∥u ϕ ∥ L∞ (B 1 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 ) 
;

(5.4.25)

and

∥e Rt (v∂ y u) ϕ ∥ L2 t (B 3 2 
)

≤ C∥u ϕ ∥ L∞ (B 1 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 
)

+ ∥u ϕ ∥ L∞ (B 5 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B 1 2 ) 
.

(5.4.26)

Inserting the above estimates into (5.4.24) and then using the smallness condition ∥u ϕ ∥ 

∥e Rt (∂ t u) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (∂ t u) ϕ ∥ L∞ t (B 3 2 
)

≤ C ∥e a|Dx| u 1 ∥ B 3 2 + ∥e a|Dx| ∂ y u 0 ∥ B 5 2 +∥e a|Dx| (u 0 + u 1 )∥ B 5 2 + ∥e a|Dx| ∂ 2 y u 0 ∥ B 3 2 + ∥e a|Dx| ∂ y (u 0 + u 1 )∥ B 3 2
.

Global well-posedness of System (5.1.8)

The goal of this section is to prove the Theorem 5.1.2 and to establish the global well-posedness of the system (5.1.8) with small analytic data. As in Section 2, for any locally bounded function Θ on R + × R and any u ∈ L 2 (S), we dene the analyticity in the horizontal variable x by means of the following auxiliary function u ϵ Θ (t, x, y) = F -1 ξ→x (ϵ Θ(t,ξ) u ϵ (t, ξ, y)).

(5.5.1)

The width of the analyticity band Θ is dened by

Θ(t, ξ) = (a -λτ (t))|ξ|,
where λ > 0 with be precised later and τ (t) will be chosen in such a way that Θ(t, ξ) > 0, for any

(t, ξ) ∈ R + × R and Θ(t) = Θ ′ (t) = -λ τ (t) ≤ 0.
In our paper, we will choose

τ (t) = ∥∂ y u ϵ Θ (t)∥ B 1 2 + ϵ∥∂ y v ϵ Θ (t)∥ B 1 2
with τ (0) = 0.

(5.5.

2)

In what follows, for the sake of the simplicity, we will neglect the script ϵ and write (u

Θ , v Θ ) instead of (u ϵ Θ , v ϵ Θ ).
In view of System (5.1.8), we can transform it like a equation of order one in time, so if we dene U = (u, ∂ t u) and V = (v, ∂ t v), Then U and V satisfy the following equation

(5.5.3)                      ∂ t U + A ϵ (D)U = - 0 u∂ x u + v∂ y u + ∂ x p ϵ 2 ∂ t V + A ϵ (D)V = - 0 ϵ 2 (u∂ x v + v∂ y v) + ∂ y p ∂ x u + ∂ y v = 0 (u, v)/ y=0 = (u, v)/ y=1 = 0 where U = u ∂ t u and A ϵ (D) = 0 -1 -ϵ 2 ∂ 2 x -∂ 2 y 1 and V = v ∂ t v
Then in view of (5.2.3) we observe that (U, V ) Θ veries (5.5.4)

                     ∂ t U Θ + λ τ (t)|D x |U Θ + A ϵ (D)U Θ = - 0 (u∂ x u) Θ + (v∂ y u) Θ + ∂ x p Θ ϵ 2 ∂ t V Θ + λ τ (t)|D x |V Θ + A ϵ (D)V Θ = - 0 ϵ 2 (u∂ x v + v∂ y v) Θ + ∂ y p Θ ∂ x u Θ + ∂ y v Θ = 0 (u Θ , v Θ )/ y=0 = (u Θ , v Θ )/ y=1 = 0
Where |D x | denote the Fourier multiplier of the symbol |ξ|. In what follows, we recall that we use C to denote a generic positive constant which can change from line to line.

By applying the dyadic operator in the horizontal variable ∆ h q to (5.5.4) and taking the L 2 inner product of the resulting equation with ∆ h q U Θ and ∆ h q V Θ we obtain (5.5.5)

∆ h q ∂ t U Θ , ∆ h q U Θ L 2 + λ τ (t) ∆ h q |D x |U Θ , ∆ h q U Θ L 2 + ∆ h q A ϵ (D)U Θ , ∆ h q U Θ L 2 = -∆ h q (u∂ x u + v∂ y u) Θ , ∆ h q (∂ t u) Θ L 2 -∆ h q ∂ x p Θ , ∆ h q (∂ t u) Θ L 2 and
(5.5.6)

ϵ 2 ∆ h q ∂ t V Θ , ∆ h q V Θ L 2 + ϵ 2 λ τ (t) ∆ h q |D x |V Θ , ∆ h q V Θ L 2 + ϵ 2 ∆ h q B ϵ (D)V Θ , ∆ h q V Θ L 2 = -ϵ 2 ∆ h q (u∂ x v + v∂ y v) Θ , ∆ h q (∂ t v) Θ L 2 -∆ h q ∂ y p Θ , ∆ h q (∂ t v) Θ L 2 .
As in (5.3.10) and by using Lemma 5.2.3, we gather

∆ h q ∂ t U Θ , ∆ h q U Θ L 2 + λ τ (t) ∆ h q |D x |U Θ , ∆ h q U Θ L 2 = ∆ h q ∂ t u Θ , ∆ h q u Θ L 2 + ∆ h q ∂ t (∂ t u) Θ , ∆ h q (∂ t u) Θ L 2 + λ τ (t) ∆ h q |D x |u Θ , ∆ h q u Θ L 2 + ∆ h q |D x |(∂ t u) Θ , ∆ h q (∂ t u) Θ L 2 = 1 2 d dt ∥∆ h q u Θ ∥ 2 L 2 + ∥∆ h q (∂ t u) Θ ∥ 2 L 2 + λ τ (t) ∥∆ h q |D x | 1 2 u Θ ∥ 2 L 2 + ∥∆ h q |D x | 1 2 (∂ t u) Θ ∥ 2 L 2 , (5.5.7) 
and

ϵ 2 ∆ h q ∂ t V Θ , ∆ h q V Θ L 2 + ϵ 2 λ τ (t) ∆ h q |D x |V Θ , ∆ h q V Θ L 2 = ϵ 2 ∆ h q ∂ t v Θ , ∆ h q v Θ L 2 + ϵ 2 ∆ h q ∂ t (∂ t v) Θ , ∆ h q (∂ t v) Θ L 2 + ϵ 2 λ τ (t) ∆ h q |D x |v Θ , ∆ h q v Θ L 2 + ∆ h q |D x |(∂ t v) Θ , ∆ h q (∂ t v) Θ L 2 = 1 2 d dt ∥∆ h q ϵv Θ ∥ 2 L 2 + ∥∆ h q ϵ(∂ t v) Θ ∥ 2 L 2 + λ τ (t) ∥∆ h q |D x | 1 2 ϵv Θ ∥ 2 L 2 + ∥∆ h q |D x | 1 2 ϵ(∂ t v) Θ ∥ 2 L 2 .
(

Next, we use that

(∂ t u) Θ = ∂ t u Θ + λ τ |D x |u Θ and (∂ t v) Θ = ∂ t v Θ + λ τ (t)|D x |v Θ ∆ h q A ϵ (D)U Θ , ∆ h q U Θ L 2 = -∆ h q (∂ t u) Θ , ∆ h q u Θ L 2 -ϵ 2 ∆ h q ∂ 2 x u Θ , ∆ h q (∂ t u) Θ L 2 -∆ h q ∂ 2 y u Θ , ∆ h q (∂ t u) Θ L 2 + ∆ h q (∂ t u) Θ , ∆ h q (∂ t u) Θ L 2 and ϵ 2 ∆ h q B ϵ (D)V Θ , ∆ h q V Θ L 2 = -ϵ 2 ∆ h q (∂ t v) Θ , ∆ h q v Θ L 2 -ϵ 4 ∆ h q ∂ 2 x v Θ , ∆ h q (∂ t v) Θ L 2 -ϵ 2 ∆ h q ∂ 2 y v Θ , ∆ h q v Θ L 2 + ϵ 2 ∆ h q (∂ t v) Θ , ∆ h q v Θ L 2 .
We use again the result of Lemma 5.2.3, we obtain

∆ h q A ϵ (D)U Θ , ∆ h q U Θ L 2 = - 1 2 d dt ∥∆ h q u Θ ∥ 2 L 2 -λ τ (t)∥∆ h q |D x | 1 2 u Θ ∥ 2 L 2 + 1 2 d dt ∥∆ h q ϵ∂ x u Θ ∥ 2 L 2 + λ τ (t)∥∆ h q |D x | 1 2 ϵ∂ x u Θ ∥ 2 L 2 + 1 2 d dt ∥∆ h q ∂ y u Θ ∥ 2 L 2 + λ τ (t)∥∆ h q |D x | 1 2 ∂ y u Θ ∥ 2 L 2 + ∥∆ h q (∂ t u) Θ ∥ 2 L 2 ,
(5.5.9) and

ϵ 2 ∆ h q B ϵ (D)V Θ , ∆ h q V Θ L 2 = - 1 2 d dt ∥∆ h q ϵv Θ ∥ 2 L 2 -λ τ (t)∥∆ h q |D x | 1 2 ϵv Θ ∥ 2 L 2 + ϵ 2 2 d dt ∥∆ h q ϵ∂ x v Θ ∥ 2 L 2 + ϵ 2 λ τ (t)∥∆ h q |D x | 1 2 ϵ∂ x v Θ ∥ 2 L 2 + 1 2 d dt ∥∆ h q ϵ∂ y v Θ ∥ 2 L 2 + λ τ (t)∥∆ h q |D x | 1 2 ϵ∂ y v Θ ∥ 2 L 2 + ∥∆ h q ϵ(∂ t v) Θ ∥ 2 L 2 .
(5.5.10)

We sum (5.5.7) with (5.5.9), we achieve

∆ h q ∂ t U Θ , ∆ h q U Θ L 2 + λ τ (t) ∆ h q |D x |U Θ , ∆ h q U Θ L 2 + ∆ h q A ϵ (D)U Θ , ∆ h q U Θ L 2 = 1 2 d dt ∥∆ h q (∂ t u) Θ ∥ 2 L 2 + ∥∆ h q ϵ∂ x u Θ ∥ 2 L 2 + ∥∆ h q ∂ y u Θ ∥ 2 L 2 + ∥∆ h q (∂ t u) Θ ∥ 2 L 2 + λ τ (t) ∥∆ h q |D x | 1 2 (∂ t u) Θ ∥ 2 L 2 + ∥∆ h q |D x | 1 2 ϵ∂ x u Θ ∥ 2 L 2 + ∥∆ h q |D x | 1 2 ∂ y u Θ ∥ 2 L 2 .
(5.5.11)

Next we sum (5.5.8) with (5.5.10), we obtain

ϵ 2 ∆ h q ∂ t V Θ , ∆ h q V Θ L 2 + ϵ 2 λ τ (t) ∆ h q |D x |V Θ , ∆ h q V Θ L 2 + ϵ 2 ∆ h q B ϵ (D)V Θ , ∆ h q V Θ L 2 = 1 2 d dt ∥∆ h q ϵ(∂ t v) Θ ∥ 2 L 2 ϵ 2 ∥∆ h q ϵ∂ x v Θ ∥ 2 L 2 + ∥∆ h q ϵ∂ y v Θ ∥ 2 L 2 + ∥∆ h q ϵ(∂ t v) Θ ∥ 2 L 2 + λ τ (t) ∥∆ h q |D x | 1 2 ϵ(∂ t v) Θ ∥ 2 L 2 + ϵ 2 ∥∆ h q |D x | 1 2 ϵ∂ x v Θ ∥ 2 L 2 + ∥∆ h q |D x | 1 2 ϵ∂ y v Θ ∥ 2 L 2 .
(5.5.12)

By using the Dirichlet boundary condition (u, v)| y=0 = (u, v)| y=1 = 0, and the incompressibility condition ∂ x u + ∂ y v = 0 and the relation, we can perform integration by parts, we get

∆ h q ∇p Θ , ∆ h q (∂ t u, ∂ t v) Θ L 2 = 0.
We insert the resulting equality (5.5.11) in (5.5.5) and (5.5.12) in (5.5.6), and then multiplying by e 2Rt , we achieve (5.5.13)

1 2 d dt ∥e Rt ∆ h q (∂ t u) Θ ∥ 2 L 2 + ∥e Rt ∆ h q ∂ y u Θ ∥ 2 L 2 + ∥e Rt ∆ h q ϵ(∂ t v) Θ ∥ 2 L 2 + ∥e Rt ∆ h q ϵ∂ y v Θ ∥ 2 L 2 + ϵ 4 ∥e Rt ∆ h q ∂ x v Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ∆ h q ∂ x u Θ ∥ 2 L 2 + ∥e Rt ∆ h q (∂ t u) Θ ∥ 2 L 2 + ∥e Rt ∆ h q ϵ(∂ t v) Θ ∥ 2 L 2 + λ τ (t ′ )∥e Rt ∆ h q |D x | 1 2 (∂ t u) Θ ∥ 2 L 2 + ϵ 2 λ τ (t ′ )∥e Rt ∆ h q |D x | 1 2 (∂ t v) Θ ∥ 2 L 2 + ϵ 2 λ τ (t ′ )∥e Rt ∆ h q |D x | 1 2 ∂ x u Θ ∥ 2 L 2 + λ τ (t ′ )∥e Rt ∆ h q |D x | 1 2 ∂ y u Θ ∥ 2 L 2 + λ τ (t ′ )∥e Rt ∆ h q |D x | 1 2 ∂ y v Θ ∥ 2 L 2 + ϵ 4 λ τ (t ′ )∥e Rt ∆ h q |D x | 1 2 ∂ x v Θ ∥ 2 L 2 ≤ R ∥e Rt ∆ h q (∂ t u) Θ ∥ 2 L 2 + ∥e Rt ∆ h q ∂ y u Θ ∥ 2 L 2 + ∥e Rt ∆ h q ϵ(∂ t v) Θ ∥ 2 L 2 + ∥e Rt ∆ h q ϵ∂ y v Θ ∥ 2 L 2 + ϵ 4 ∥e Rt ∆ h q ∂ x v Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ∆ h q ∂ x u Θ ∥ 2 L 2 + ∆ h q (u∂ x u) Θ , e 2Rt ∆ h q (∂ t u) Θ L 2 + ∆ h q (v∂ y u) Θ , e 2Rt ∆ h q (∂ t u) Θ L 2 + ϵ 2 ∆ h q (u∂ x v) Θ , e 2Rt ∆ h q (∂ t v) Θ L 2 + ϵ 2 ∆ h q (v∂ y v) Θ , e 2Rt ∆ h q (∂ t v) Θ L 2 .
In what follows, we shall always assume that t < T ⋆ 1 , where T ⋆ 1 given by (5.5.14)

T ⋆ 1 ≜ sup t > 0, τ (t) ≤ a λ .
Then we deduce from Lemmas 5.2.5-5.2.7 for any t < T ⋆ 1 , and integrating over time (5.5.13), that (5.5.15)

t 0 1 2 d dt ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ y u, ϵ∂ y v) Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ′ ∆ h q (∂ x u, ϵ∂ x v) Θ ∥ 2 L 2 dt ′ + t 0 ∥e Rt ′ ∆ h q (∂ t u) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q ϵ(∂ t v) Θ ∥ 2 L 2 dt ′ + λ t 0 τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 dt ′ + λ t 0 τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ y u, ϵ∂ y v) Θ ∥ 2 L 2 dt ′ + ϵ 2 λ t 0 τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ x u, ϵ∂ x v) Θ ∥ 2 L 2 dt ′ ≤ R ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ y u, ϵ∂ y v) Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ′ ∆ h q (∂ x u, ϵ∂ x v) Θ ∥ 2 L 2 + C2 -2qs d 2 q ∥e Rt u Θ ∥ L2 t, τ (t) (B s+ 1 2 ) ∥e Rt (∂ t u) Θ ∥ L2 t, τ (t) (B s+ 1 2 ) + ∥e Rt u Θ ∥ L2 t, τ (t) (B s+ 1 2 ) ∥e Rt (ϵ∂ t v) Θ ∥ L2 t, τ (t) (B s+ 1 2 )
.

We multiply the estimate (5.5.15) by 2, we have (5.5.16)

t 0 d dt ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ y u, ϵ∂ y v) Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ′ ∆ h q (∂ x u, ϵ∂ x v) Θ ∥ 2 L 2 dt ′ + 2 t 0 ∥e Rt ′ ∆ h q (∂ t u) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q ϵ(∂ t v) Θ ∥ 2 L 2 dt ′ + 2λ t 0 τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 dt ′ + 2λ t 0 τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ y u, ϵ∂ y v) Θ ∥ 2 L 2 dt ′ + 2ϵ 2 λ t 0 τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ x u, ϵ∂ x v) Θ ∥ 2 L 2 dt ′ ≤ 2R ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ y u, ϵ∂ y v) Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ′ ∆ h q (∂ x u, ϵ∂ x v) Θ ∥ 2 L 2 + 2C2 -2qs d 2 q ∥e Rt u Θ ∥ L2 t, τ (t) (B s+ 1 2 ) ∥e Rt (∂ t u) Θ ∥ L2 t, τ (t) (B s+ 1 2 ) + ∥e Rt u Θ ∥ L2 t, τ (t) (B s+ 1 2 ) ∥e Rt (ϵ∂ t v) Θ ∥ L2 t, τ (t) (B s+ 1 2 ) 
. Now we still have to get some information of the norm

∥∂ y u Θ ∥ B 1 2 and ∥∂ x u Θ ∥ B 1 2
, for that we need to apply the dyadic operator ∆ h q to the equation

e Θ(t,|Dx|) ∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u -ϵ 2 ∂ 2 x u + ∂ x p = 0 e Θ(t,|Dx|) ϵ 2 (∂ 2 t v + ∂ t v + u∂ x v + v∂ y v -∂ 2 y v -ϵ 2 ∂ x v) + ∂ y p = 0,
(5.5.17)

and then, we take the L 2 inner product of the resulting equation (5.5.17) with ∆ h q u Θ and ∆ h q v Θ , we obtain (5.5.18)

∆ h q (∂ 2 t u) Θ , ∆ h q u Θ L 2 + ∆ h q (∂ t u) Θ , ∆ h q u Θ L 2 -∆ h q ∂ 2 y u Θ , ∆ h q u Θ L 2 -ϵ 2 ∆ h q ∂ 2 x u Θ , ∆ h q u Θ L 2 = -∆ h q (u∂ x u + v∂ y u) Θ , ∆ h q u Θ L 2 -∆ h q ∂ x p Θ , ∆ h q u Θ L 2 ,

and

(5.5.19)

∆ h q (ϵ∂ 2 t v) Θ , ∆ h q ϵv Θ L 2 + ∆ h q (ϵ∂ t v) Θ , ∆ h q ϵv Θ L 2 -∆ h q ϵ∂ 2 y v Θ , ∆ h q ϵv Θ L 2 -ϵ 2 ∆ h q ϵ∂ 2 x v Θ , ∆ h q ϵv Θ L 2 = -ϵ 2 ∆ h q (u∂ x v + v∂ y v) Θ , ∆ h q v Θ L 2 -∆ h q ∂ y p Θ , ∆ h q v Θ L 2 ,
In what follows, we shall use again the technical lemmas in Section 5.2, to handle term by term in the estimate (5.5.18) and (5.5.19). We start by the complicate term

I 1 = ∆ h q (∂ 2 t u) Θ , ∆ h q u Θ L 2 and I 2 = ∆ h q (ϵ∂ 2 t v) Θ , ∆ h q ϵv Θ L 2
, so by using integration by parts, we nd

I 1 = d dt ∆ h q (∂ t u) Θ ∆ h q u Θ dX -∆ h q (∂ t u) Θ ∆ h q (∂ t u) Θ dX + 2λ τ (t) ∆ h q |D x |(∂ t u) Θ ∆ h q u Θ dX I 2 = d dt ∆ h q (ϵ∂ t v) Θ ∆ h q ϵv Θ dX -∆ h q (ϵ∂ t v) Θ ∆ h q (ϵ∂ t v) Θ dX + 2λ τ (t) ∆ h q |D x |(ϵ∂ t v) Θ ∆ h q ϵv Θ dX
Whereas due to the boundary condition, and by integrating by part, we achieve

-∆ h q (∂ 2 y u Θ + ϵ 2 ∂ 2 x u Θ ), ∆ h q u Θ L 2 = ∥∆ h q ∂ y u Θ ∥ 2 L 2 + ϵ 2 ∥∆ h q ∂ x u Θ ∥ 2 L 2 ∆ h q (-ϵ∂ 2 y v Θ -ϵ 3 ∂ 2 x v Θ ), ϵ∆ h q v Θ L 2 = ∥∆ h q ϵ∂ y v Θ ∥ 2 L 2 + ϵ 2 ∥∆ h q ϵ∂ x v Θ ∥ 2 L 2 .
Now, by using the Dirichlet boundary condition (u, v)| y=0 = (u, v)| y=1 = 0, and the incompressibility condition ∂ x u + ∂ y v = 0, we can nd by integrating by parts the estimate of the pressure

∆ h q ∇p Θ , ∆ h q (u, v) Θ L 2 = ∆ h q p Θ , ∆ h q div (u, v) Θ = 0.
Then by multiplying (5.5.18) and (5.5. [START_REF] Bougeault | Dynamique de l'atmosphère et de l'océan[END_REF]) by e 2Rt , and integrating the resulting inequality over time, we achieve

(5.5.20)

d dt e 2Rt ∆ h q (∂ t u) Θ ∆ h q u Θ -e 2Rt ∆ h q (∂ t u) Θ ∆ h q (∂ t u) Θ + 2λ τ (t)e 2Rt ∆ h q |D x |(∂ t u) Θ ∆ h q u Θ dX + d dt e 2Rt ∆ h q (ϵ∂ t v) Θ ∆ h q (ϵv) Θ -e 2Rt ∆ h q (ϵ∂ t v) Θ ∆ h q (ϵ∂ t v) Θ +2λ τ (t)e 2Rt ∆ h q |D x |(ϵ∂ t v) Θ ∆ h q (ϵv) Θ dX + 1 2 d dt ∥e Rt ∆ h q u Θ ∥ 2 L 2 + 1 2 d dt ∥e Rt ∆ h q ϵv Θ ∥ 2 L 2 + λ τ (t)∥e Rt ∆ h q |D x | 1 2 (u Θ , ϵv Θ )∥ 2 L 2 + ∥e Rt ∆ h q ∂ y u Θ ∥ 2 L 2 + ∥e Rt ∆ h q ∂ y ϵv Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ∆ h q ∂ x u Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ∆ h q ∂ x ϵv Θ ∥ 2 L 2 = R 2 e 2Rt ∆ h q (∂ t u) Θ ∆ h q u Θ dX + 2 e 2Rt ∆ h q (ϵ∂ t v) Θ ∆ h q (ϵv) Θ dX + ∥e Rt ∆ h q (u Θ , ϵv Θ )∥ 2 L 2 -∆ h q (u∂ x u + v∂ y u) Θ , e 2Rt ∆ h q u Θ L 2 -ϵ 2 ∆ h q (u∂ x v + v∂ y v) Θ , e 2Rt ∆ h q v Θ L 2 .
In view, of Lemma 5.2.5-5.2.6 for t < T ⋆ 1 , and by summing (5.5.16) with (5.5.20), we obtain (5.5.21)

B(u, v)(t) ≤ R t 0 ∥e Rt ′ ∆ h q ∂ t u + u, ϵ(∂ t v + v) Θ ∥ 2 L 2 + 2∥e Rt ′ ∆ h q ∂ y (u, ϵv) Θ ∥ 2 L 2 + 2ϵ 2 ∥e Rt ′ ∆ h q ∂ x (u, ϵv) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 dt ′ + λ t 0 τ (t ′ )∥e Rt |D x | 1 2 (u, ϵv) Θ ∥ 2 L 2 dt ′ + λ t 0 τ (t ′ )∥e Rt |D x | 1 2 (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 dt ′ + 2C2 -2qs d 2 q ∥e Rt u Θ ∥ L2 t, τ (t) (B s+ 1 2 ) × ∥e Rt (∂ t u) Θ ∥ L2 t, τ (t) (B s+ 1 2 ) + ∥e Rt (ϵ∂ t v) Θ ∥ L2 t, τ (t) (B s+ 1 2 ) + ∥e Rt (u Θ , ϵv Θ )∥ 2 L2 t, τ (t) (B s+ 1 2 )
.

where

B(u, v)(t) = t 0 d dt 1 2 ∥e Rt ′ ∆ h q ∂ t u + u, ϵ(∂ t v + v) Θ ∥ 2 L 2 + 1 2 ∥e Rt ′ ∆ h q ∂ t u, ϵ(∂ t v) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q ∂ y (u, ϵv) Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ′ ∆ h q ∂ x (u, ϵv) Θ ∥ 2 L 2 dt ′ + t 0 ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q ∂ y (u, ϵv) Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ′ ∆ h q ∂ x (u, ϵv) Θ ∥ 2 L 2 + λ τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (u, ϵv) Θ ∥ 2 L 2 + 2λ τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 + τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ y u, ϵ∂ y v) Θ ∥ 2 L 2 + 2ϵ 2 λ τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ x u, ϵ∂ x v) Θ ∥ 2 L 2 dt ′ .
We begin with by observing that the term in the square brackets in (5.5.21) can be absorbed by the

dissipation t 0 ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 dt ′ + t 0 ∥e Rt ′ ∆ h q (∂ y u, ϵ∂ y v) Θ ∥ 2 L 2 dt ′ + ϵ 2 t 0 ∥e Rt ′ ∆ h q (∂ x u, ϵ∂ x v) Θ ∥ 2 L 2 dt ′ .
Indeed, since the value of R is smaller than min{ 1 8 , k 8 }, we have that

R ∥e Rt ′ ∆ h q ∂ t u + u, ϵ(∂ t v + v) Θ ∥ 2 L 2 + 2∥e Rt ′ ∆ h q ∂ y (u, ϵv) Θ ∥ 2 L 2 + 2ϵ 2 ∥e Rt ′ ∆ h q ∂ x (u, ϵv) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 ≤ R ∥e Rt ′ ∆ h q u, ϵv Θ ∥ 2 L 2 + 2∥e Rt ′ ∆ h q ∂ y (u, ϵv) Θ ∥ 2 L 2 + 2ϵ 2 ∥e Rt ′ ∆ h q ∂ x (u, ϵv) Θ ∥ 2 L 2 + 2∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 ≤ k 8 ∥e Rt ′ ∆ h q u, ϵv Θ ∥ 2 L 2 + 1 4 ∥e Rt ′ ∆ h q ∂ y (u, ϵv) Θ ∥ 2 L 2 + ϵ 2 4 ∥e Rt ′ ∆ h q ∂ x (u, ϵv) Θ ∥ 2 L 2 + 1 4 ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 .
To absorb those terms, we shall then invoke the Poincaré inequality in y ∈ (0, 1)

: k∥∆ h q (u, ϵv) Θ ∥ L 2 ≤ ∥∆ h q ∂ y (u, ϵv) Θ ∥ L 2 . Thus (5.5.22) R ∥e Rt ′ ∆ h q ∂ t u + u, ϵ(∂ t v + v) Θ ∥ 2 L 2 + 2∥e Rt ′ ∆ h q ∂ y (u, ϵv) Θ ∥ 2 L 2 + 2ϵ 2 ∥e Rt ′ ∆ h q ∂ x (u, ϵv) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 ≤ 1 2 ∥e Rt ′ ∆ h q ∂ y (u, ϵv) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ′ ∆ h q (∂ x u, ϵ∂ x v) Θ ∥ 2 L 2 .
We replace the obtained result (5.5.22) in (5.5.21), we deduce that (5.5.23)

F(u, v)(t) ≤ 2C2 -2qs d 2 q ∥e Rt u Θ ∥ L2 t, τ (t) (B s+ 1 2 ) × ∥e Rt (∂ t u) Θ ∥ L2 t, τ (t) (B s+ 1 2 ) + ∥e Rt (ϵ∂ t v) Θ ∥ L2 t, τ (t) (B s+ 1 2 ) + ∥e Rt (u Θ , ϵv Θ )∥ 2 L2 t, τ (t) (B s+ 1 2 )
, where (5.5.24)

F(u, v)(t) = t 0 d dt 1 2 ∥e Rt ′ ∆ h q ∂ t u + u, ϵ(∂ t v + v) Θ ∥ 2 L 2 + 1 2 ∥e Rt ′ ∆ h q ∂ t u, ϵ(∂ t v) Θ ∥ 2 L 2 + ∥e Rt ′ ∆ h q ∂ y (u, ϵv) Θ ∥ 2 L 2 + ϵ 2 ∥e Rt ′ ∆ h q ∂ x (u, ϵv) Θ ∥ 2 L 2 dt ′ + t 0 1 2 ∥e Rt ′ ∆ h q (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 + 1 2 ∥e Rt ′ ∆ h q ∂ y (u, ϵv) Θ ∥ 2 L 2 + ϵ 2 2 ∥e Rt ′ ∆ h q ∂ x (u, ϵv) Θ ∥ 2 L 2 + kλ τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (u, ϵv) Θ ∥ 2 L 2 + λ τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ t u, ϵ∂ t v) Θ ∥ 2 L 2 + λ τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ y u, ϵ∂ y v) Θ ∥ 2 L 2 + ϵ 2 λ τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ x u, ϵ∂ x v) Θ ∥ 2 L 2 dt ′ .
If we look at the third line of the equality (5.5.24), we remark that we have a new term

kλ t 0 τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (u, ϵv) Θ ∥ 2 L 2 dt ′ ,
this term handle from the Poincaré inequality applied to the following term

λ t 0 τ (t ′ )∥e Rt ′ ∆ h q |D x | 1 2 (∂ y u, ϵ∂ y v) Θ ∥ 2 L 2 dt ′ .
Multiplying (5.5.21) by 2 2qs for s ∈]0, 1[ and then integrating over time, and summing with respect to q ∈ Z, we nd that for t < T ⋆ 1 (5.5.25)

E s,λ,k (u, v)(t) ≤ C ∥e a|Dx| ∂ y (u 0 , ϵv 0 )∥ B s + ϵ∥e a|Dx| ∂ x (u 0 , ϵv 0 )∥ B s + ∥e a|Dx| (u 1 , ϵv 1 )∥ B s + ∥e a|Dx| (u 0 + u 1 , ϵ(v 0 + v 1 ))∥ B s + √ 2C∥e Rt ((∂ t u) Θ , ϵ(∂ t v) Θ )∥ L2 t, τ (t) (B s+ 1 2 ) + √ 2C∥e Rt (u, ϵv) Θ ∥ L2 t, τ (t) (B s+ 1 2 )
, where

E s,λ,k (u, v)(t) = ∥e Rt (u + ∂ t u, ϵ(v + ∂ t v)) Θ ∥ L∞ t (B s ) + ∥e Rt ∂ y (u, ϵv) Θ ∥ L∞ t (B s ) + ϵ∥e Rt ∂ x (u, ϵv) Θ ∥ L∞ t (B s ) + ∥e Rt (∂ t u, ϵ∂ t v) Θ ∥ L∞ t (B s ) + ∥e Rt (∂ t u, ϵ∂ t v) Θ ∥ L2 t (B s ) + √ kλ∥e Rt (u, ϵv) Θ ∥ L2 t, τ (t) (B s+ 1 2 ) + ∥e Rt ∂ y (u, ϵv) Θ ∥ L2 t (B s ) + ϵ∥e Rt ∂ x (u, ϵv) Θ ∥ L2 t (B s ) + √ λ∥e Rt (∂ t u, ϵ∂ t v) Θ ∥ L2 t, τ (t) (B s+ 1 2 ) + √ λ∥e Rt ∂ y (u, ϵv) Θ ∥ L2 t, τ (t) (B s+ 1 2 ) + √ λ∥e Rt ∂ x (u, ϵv) Θ ∥ L2 t, τ (t) (B s+ 1 2 )
Taking λ ≥ 2C 2 in the above inequality leads to (5.5.26)

∥e Rt (u + ∂ t u, ϵ(v + ∂ t v)) Θ ∥ L∞ t (B s ) + ∥e Rt (∂ t u, ϵ∂ t v) Θ ∥ L∞ t (B s ) + ∥e Rt ∂ y (u, ϵv) Θ ∥ L∞ t (B s ) + ϵ∥e Rt ∂ x (u, ϵv) Θ ∥ L∞ t (B s ) + ∥e Rt (∂ t u, ϵ∂ t v) Θ ∥ L2 t (B s ) + ∥e Rt ∂ y (u, ϵv) Θ ∥ L2 t (B s ) + ϵ∥e Rt ∂ x (u, ϵv) Θ ∥ L2 t (B s ) ≤ C ∥e a|Dx| ∂ y (u 0 , ϵv 0 )∥ B s + ϵ∥e a|Dx| ∂ x (u 0 , ϵv 0 )∥ B s + ∥e a|Dx| (u 1 , ϵv 1 )∥ B s + ∥e a|Dx| (u 0 + u 1 , ϵ(v 0 + v 1 ))∥ B s , for t < T ⋆ 1 .
We recall that we already dened τ (t) in (5.5.2). Then, for any 0 < t < T ⋆ 1 , Inequality (5.3.28) yields

for s = 1 2 τ (t) = t 0 ∥∂ y u Θ (t ′ )∥ B 1 2 + ϵ∥∂ y v Θ (t ′ )∥ B 1 2 dt ′ ≤ t 0 e -Rt ′ ∥e Rt ′ ∂ y (u, ϵv) Θ (t ′ )∥ B 1 2 dt ′ ≤ t 0 e -2Rt ′ dt ′ 1 2 t 0 ∥e Rt ′ ∂ y (u, ϵv) Θ (t ′ )∥ 2 B 1 2 dt ′ 1 2 ≤ C e Rt ∂ y (u, ϵv) Θ L2 t (B 1 2 
)

≤ C ∥e a|Dx| ∂ y (u 0 , ϵv 0 )∥ B 1 2 + ϵ∥e a|Dx| ∂ x (u 0 , ϵv 0 )∥ B 1 2 + ∥e a|Dx| (u 0 + u 1 , ϵ(v 0 + v 1 ))∥ B 1 2 + ∥e a|Dx| (u 1 , ϵv 1 )∥ B 1 2 < a 2λ

The convergence to the perturbed hydrostatic Navier-Stokes equations

In this section, we justify the limit from the scaled perturbed anisotropic Navier-Stokes system to the perturbed hydrostatic Navier-Stokes system in a 2D thin domain. As in the sections 3 and 4, the main idea will be to obtain a control of the dierence between the two solutions in analytic spaces, by using energy estimates with exponential weights in the Fourier variable. As previously, the exponent of the exponential weight is depending on time but shall take into account now the "loss of the analyticity"

for both solutions, of the re-scaled perturbed Navier-Stokes system and respectively of the perturbed hydrostatic Navier-Stokes equations. To this end, we introduce

     R 1,ϵ = u ϵ -u, R 2,ϵ = v ϵ -v, q ϵ = p ϵ -p.
(5.6.1)

Then, Systems (5.1.8) and (5.1.9) imply that (R 1,ϵ , R 2,ϵ , q ϵ ) veries (5.6.2)

                 ∂ 2 t R 1,ϵ + ∂ t R 1,ϵ -ϵ 2 ∂ 2 x R 1,ϵ -∂ 2 y R 1,ϵ + ∂ x q ϵ = F 1,ϵ in S×]0, ∞[, ϵ 2 ∂ 2 t R 2,ϵ + ∂ t R 2,ϵ -ϵ 2 ∂ 2 x R 2,ϵ -∂ 2 y R 2,ϵ + ∂ y q ϵ = F 2,ϵ , ∂ x R 1,ϵ + ∂ y R 2,ϵ = 0 R 1,ϵ , R 2,ϵ | t=0 = (u ϵ 0 -u 0 , v ϵ 0 -v 0 ) , ∂ t R 1,ϵ , R 2,ϵ | t=0 = (u ϵ 1 -u 1 , v ϵ 1 -v 1 ) , R 1,ϵ , R 2,ϵ | y=0 = R 1,ϵ , R 2,ϵ | y=1 = 0,
where the remaining terms F i,ϵ , with i = 1, 2, are determined by

F 1,ϵ = ϵ 2 ∂ 2 x u -(u ϵ ∂ x u ϵ -u∂ x u) -(v ϵ ∂ y u ϵ -v∂ y u), F 2,ϵ = -ϵ 2 ∂ 2 t v + ∂ t v -ϵ 2 ∂ 2 x v -∂ 2 y v + u ϵ ∂ x v ϵ + v ϵ ∂ y v ϵ .
(5.6.3)

As (R 1,ϵ , R 2,ϵ ) satises the boundary condition and also the free divergence, therefore these two conditions allows us to write

R 2,ϵ (t, x, y) = y 0 ∂ y R 2,ϵ (t, x, s)ds = - y 0 ∂ x R 1,ϵ (t, x, s)ds (5.6.4)
If we replace y by 1 in (5.6.4), we deduce from the incompressibility condition

∂ x R 1,ϵ + ∂ y R 2,ϵ = 0 that ∂ x 1 0 R 1,ϵ (t, x, y) dy = - 1 0 ∂ y R 2,ϵ (t, x, y) dy = R 2,ϵ (t, x, 0) -R 2,ϵ (t, x, 1) = 0.
In what follows, for simplicity, we shall neglect the subscript ϵ in (R 1,ϵ , R 2,ϵ , q ϵ ). In view of System (5.6.2), we can transform it like an equation of order one in time, so if we dene G = (R 1 , ∂ t R 1 ) and H = (R 2 , ∂ t R 2 ), Then G and H satisfy the following equation (5.6.5)

                     ∂ t G + A ϵ (D)G = 0 F 1 -∂ x q ϵ 2 ∂ t H + A ϵ (D)H = 0 F 2 -∂ y q ∂ x R 1 + ∂ y R 2 = 0 (R 1 , R 2 )/ y=0 = (R 1 , R 2 )/ y=1 = 0 where G = R 1 ∂ t R 1 and A ϵ (D) = 0 -1 -ϵ 2 ∂ 2 x -∂ 2 y 1 and H = R 2 ∂ t R 2 .
In view of (5.2.3), we dene for any suitable function f

f φ (t, x, y) = F -1 ξ→x e φ(t,ξ) f (t, ξ, y) where φ(t, ξ) = (a -µη(t)) |ξ|, (5.6.6) 
where µ ≥ λ will be determined later, and η(t) is given by

η(t) = t 0 ∥(∂ y u ϵ Θ , ϵ∂ x u ϵ Θ )(t ′ )∥ B 1 2 + ∥∂ y u ϕ (t ′ )∥ B 1 2 dt ′ .
We can observe that, if we take c 0 and c 1 small enough in Theorems 5.1.1 and 5.1.2 then φ(t) ≥ 0 and 0 ≤ φ(t, ξ) ≤ min (ϕ(t, ξ), Θ(t, ξ)) .

Then in view of (5.6.6), we observe that (G, H) φ veries (5.6.7) 

                     ∂ t G φ + µ η(t)|D x |G φ + A ϵ (D)G φ = 0 F 1 φ + ∂ x q φ ϵ 2 ∂ t H φ + µ η(t)|D x |H φ + A ϵ (D)H φ = - 0 F 2 φ + ∂ y q φ ∂ x R 1 φ + ∂ y R 2 φ = 0 (R 1 φ , R 2 φ )/ y=0 = (R 1 φ , R 2 
∥u ϵ φ ∥ L∞ (R + ;B 1 2 ) + ∥(u + ∂ t u) φ ∥ L∞ (R + ;B 1 2 ∩B 7 2 ) + ∥∂ 2 y u φ ∥ L2 (R + ;B 1 2 ∩B 7 2 ) + ∥∂ y u φ ∥ L2 (R + ;B 1 2 ∩B 7 2 ) + ∥(∂ 2 t u) φ ∥ L2 (R + ;B 3 2 ) 
≤ M, where u ϵ φ and u φ are respectively determined by (5.5.1) and (5.2.3) and M ≥ 1 is a constant independent to ϵ.

Proof of Theorem 5.1.3 We apply the dyadic operator in the horizontal variable ∆ h q to (5.6.7) and taking the L 2 inner product of the resulting equation with ∆ h q G φ and ∆ h q H φ we obtain (5.6.9)

∆ h q ∂ t G φ , ∆ h q G φ L 2 + µ η(t) ∆ h q |D x |G φ , ∆ h q G φ L 2 + ∆ h q A ϵ (D)G φ , ∆ h q G φ L 2 = ∆ h q (F 1 ) φ , ∆ h q (∂ t R 1 ) φ ) L 2 -∆ h q ∂ x q φ , ∆ h q (∂ t R 1 ) φ L 2 and
(5.6.10)

∆ h q ∂ t H φ , ∆ h q H φ L 2 + µ η(t) ∆ h q |D x |H φ , ∆ h q H φ L 2 + ∆ h q B ϵ (D)H φ , ∆ h q H φ L 2 = -∆ h q (F 2 ) φ , ∆ h q (∂ t R 2 ) φ ) L 2 -∆ h q ∂ y q φ , ∆ h q (∂ t R 2 ) φ L 2 .
Due to the free divergence condition, we have

∆ h q ∇q φ , ∆ h q (∂ t R 1 , ∂ t R 2 ) φ L 2 = 0.
Then by using Lemma 5.2.1, we achieve (5.6.11)

1 2 d dt ∥∆ h q (∂ t R 1 ) φ ∥ 2 L 2 + ∥∆ h q ∂ y R 1 φ ∥ 2 L 2 + ∥∆ h q ϵ(∂ t R 2 ) φ ∥ 2 L 2 + ∥∆ h q ϵ∂ y R 2 φ ∥ 2 L 2 + ϵ 4 ∥∆ h q ∂ x R 2 φ ∥ 2 L 2 + ϵ 2 ∥∆ h q ∂ x R 1 φ ∥ 2 L 2 + ∥∆ h q (∂ t R 1 ) φ ∥ 2 L 2 + ∥∆ h q ϵ(∂ t R 2 ) φ ∥ 2 L 2 + µ η(t ′ )∥∆ h q |D x | 1 2 (∂ t R 1 ) φ ∥ 2 L 2 + ϵ 2 µ η(t ′ )∥∆ h q |D x | 1 2 (∂ t R 2 ) φ ∥ 2 L 2 + ϵ 2 µ η(t ′ )∥∆ h q |D x | 1 2 ∂ x R 1 φ ∥ 2 L 2 + µ η(t ′ )∥∆ h q |D x | 1 2 ∂ y R 1 φ ∥ 2 L 2 + µ η(t ′ )∥∆ h q |D x | 1 2 ∂ y R 2 φ ∥ 2 L 2 + ϵ 4 µ η(t ′ )∥∆ h q |D x | 1 2 ∂ x R 2 φ ∥ 2 L 2 ≤ ∆ h q (F 1 ) φ , ∆ h q (∂ t R 1 ) φ ) L 2 + ∆ h q (F 2 ) φ , ∆ h q (∂ t R 2 ) φ L 2 .
Now we still have to take the inner product in L 2 with ∆ h q R 1 φ and ∆ h q R 2 φ to the equation

e φ(t,Dx) (∂ 2 t R 1 + ∂ t R 1 -∂ 2 y R 1 -ϵ 2 ∂ 2 x R 1 + ∂ x q -F 1 ) = 0 e φ(t,Dx) ϵ 2 (∂ 2 t R 2 + ∂ t R 2 -∂ 2 y R 2 -ϵ 2 ∂ x R 2 ) + ∂ y q -F 2 = 0,
(5.6.12)

we obtain

(5.6.13)

∆ h q (∂ 2 t R 1 ) φ , ∆ h q R 1 φ L 2 + ∆ h q (∂ t R 1 ) φ , ∆ h q R 1 φ L 2 -∆ h q ∂ 2 y R 1 φ , ∆ h q R 1 φ L 2 -ϵ 2 ∆ h q ∂ 2 x R 1 φ , ∆ h q R 1 φ L 2 = ∆ h q (F 1 ) φ , ∆ h q R 1 φ ) L 2 -∆ h q ∂ x q φ , ∆ h q R 1 φ L 2 ,

and

(5.6.14)

∆ h q (ϵ∂ 2 t R 2 ) φ , ∆ h q ϵR 2 φ L 2 + ∆ h q (ϵ∂ t R 2 ) φ , ∆ h q ϵR 2 φ L 2 -∆ h q ϵ∂ 2 y R 2 φ , ∆ h q ϵR 2 φ L 2 -ϵ 2 ∆ h q ϵ∂ 2 x R 2 φ , ∆ h q ϵR 2 φ L 2 = F 2 ) φ , ∆ h q R 2 φ ) L 2 -∆ h q ∂ y q φ , ∆ h q R 2 φ L 2 ,
In what follows, we shall use again the technical lemmas from Section 5.2, to handle term by term in the estimate (5.6.13) and (5.6.14). We start by the complicate term

I 1 = ∆ h q (∂ 2 t R 1 ) φ , ∆ h q R 1 φ L 2 and I 2 = ∆ h q (ϵ∂ 2 t R 2 ) φ , ∆ h q ϵR 2
φ L 2 , so by using integration by parts, we nd

I 1 = d dt ∆ h q (∂ t R 1 ) φ ∆ h q R 1 φ dx -∆ h q (∂ t R 1 ) φ ∆ h q (∂ t R 1 ) φ dx + 2µ η(t) ∆ h q |D x |(∂ t R 1 ) φ ∆ h q R 1 φ dx I 2 = d dt ∆ h q (ϵ∂ t R 2 ) φ ∆ h q ϵR 2 φ dx -∆ h q (ϵ∂ t R 2 ) φ ∆ h q (ϵ∂ t R 2 ) φ dx + 2µ η(t) ∆ h q |D x |(ϵ∂ t R 2 ) φ ∆ h q ϵR 2 φ dx
Then by using Lemma 5.2.1, we achieve

d dt ∆ h q (∂ t R 1 ) φ ∆ h q R 1 φ dx -∆ h q (∂ t R 1 ) φ ∆ h q (∂ t R 1 ) φ dx + 2µ η(t) ∆ h q |D x |(∂ t R 1 ) φ ∆ h q R 1 φ dx + d dt ∆ h q (∂ t R 2 ) φ ∆ h q R 2 φ dx -∆ h q (∂ t R 2 ) φ ∆ h q (∂ t R 2 ) φ dx + 2µ η(t) ∆ h q |D x |(∂ t R 2 ) φ ∆ h q R 2 φ dx + 1 2 d dt ∥∆ h q R 1 φ ∥ 2 L 2 + 1 2 d dt ∥∆ h q ϵR 2 φ ∥ 2 L 2 + µ τ (t)∥∆ h q |D x | 1 2 (R 1 φ , R 2 φ )∥ 2 L 2 + ∥∆ h q ∂ y R 1 φ ∥ 2 L 2 + ∥∆ h q ∂ y ϵR 2 φ ∥ 2 L 2 + ϵ 2 ∥∆ h q ∂ x R 1 φ ∥ 2 L 2 + ϵ 2 ∥∆ h q ∂ x ϵR 2 φ ∥ 2 L 2
(5.6.15)

= ∆ h q (F 1 ) φ , ∆ h q R 1 φ ) L 2 + ∆ h q (F 2 ) φ , ∆ h q R 2 φ ) L 2 .
Now we claim that (5.6.16)

t 0 2µ η(t) ∆ h q |D x |(∂ t R 1 ) φ ∆ h q R 1 φ + ∆ h q |D x |(∂ t R 2 ) φ ∆ h q R 2 φ dx ≤ 2 -q d 2 q µ ∥(∂ t R 1 , ϵ∂ t R 2 ) φ ∥ L2 t, η (B 1 ) ∥∂ y (R 1 , ϵR 2 ) φ ∥ L2 t, η (B 1 ) , (5.6.17) 
t 0 ∆ h q F 1 φ , ∆ h q R 1 φ L 2 dt ′ + t 0 ∆ h q F 1 φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ ≲ 2 -q d 2 q ϵ∥∂ y u φ ∥ L2 t (B 5 2 
)

∥ϵR 1 φ ∥ L2 t (B 1 2 
)

+ ∥ϵ(∂ t R 1 ) φ ∥ L2 t (B 1 2 
)

+ ∥u φ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y R 1 φ ∥ L2 t B 1 2 
)

∥R 1 φ ∥ L2 t, η (B 1 ) + ∥(∂ t R 1 ) φ ∥ L2 t, η (B 1 ) + ∥(R 1 , ∂ t R 1 ) φ ∥ 2 L2 t, η (B 1 ) , and 
(5.6.18)

t 0 ∆ h q F 2 φ , ∆ h q R 2 φ L 2 dt ′ + t 0 ∆ h q F 2 φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ 2 -q d 2 q ∥R 1 φ ∥ 2 L2 t, η (B 1 ) + ϵ 2 ∥(R 2 φ , (∂ t R 2 ) φ )∥ 2 L2 t, η (B 1 ) + ϵ 2 ∥(R 2 φ , ϵ(∂ t R 2 ) φ )∥ L2 t (B 1 2 ) × ∥(∂ 2 t u) φ ∥ L2 t (B 3 2 
)

+ ∥(∂ t u) φ ∥ L2 t (B 3 2 
)

+ ϵ∥∂ y u φ ∥ L2 t (B 7 2 
)

+ ∥∂ y u φ ∥ L2 t (B 3 2 
)

+ ϵ 2 ∥(R 2 φ , (∂ t R 2 ) φ )∥ L2 t, η (B 1 ) ∥R 2 φ ∥ L2 t, η (B 1 ) + ∥u ϵ φ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y u φ ∥ L2 t (B 3 2 
)

+ ∥u φ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y R 2 φ ∥ L2 t (B 1 2 
)

+ ∥∂ y u φ ∥ L2 t (B 3 2 ) 
, the proof of those estimates will be presented later in the last section of the chapter.

By virtue of (5.6.8), (5.6.17) and (5.6.18), we infer (5.6.19)

2 i=1 t 0 ∆ h q F i φ , ∆ h q R i φ L 2 dt ′ + t 0 ∆ h q F i φ , ∆ h q (∂ t R i ) φ L 2 dt ′ ≲ d 2 q 2 -q M ϵ∥(ϵR 1 , ϵ∂ t R 1 ) φ ∥ L2 t (B 1 
2

) + M 1 2 ∥∂ y R 1 φ ∥ L2 t B 1 2 ) ∥(R 1 , ∂ t R 1 ) φ ∥ L2 t, η (B 1 ) + ∥(R 1 , ∂ t R 1 ) φ ∥ 2 L2 t, η (B 1 ) + ∥(ϵR 2 , ϵ∂ t R 2 ) φ ∥ 2 L2 t, η (B 1 ) + M ϵ∥(ϵR 2 , ϵ∂ t R 2 ) φ ∥ L2 t (B 1 2 ) + M 3 2 ϵ∥(ϵR 2 , ϵ∂ t R 2 ) φ ∥ L2 t, η (B 1 ) + M 1 2 ∥ϵ∂ y R 2 φ ∥ L2 t (B 1 2 ) ∥(ϵR 2 , ϵ∂ t R 2 ) φ ∥ L2 t, η (B 1 ) .
Then by summing 2 × (5.6.11) with (5.6.15) and multiplying the resulting by 2 q and then integrating over time, and summing with respect to q ∈ Z, we nd that for t < T ⋆ (5.6.20)

K(t) ≤ √ CE(0) + √ C √ M ϵ∥(ϵR 1 , ϵ∂ t R 1 ) φ ∥ 1 2 L2 t (B 1 2 
)

+ M 1 4 ∥∂ y R 1 φ ∥ 1 2 L2 t B 1 2 ) ∥(R 1 , ∂ t R 1 ) φ ∥ 1 2 L2 t, η (B 1 ) + ∥(R 1 , ∂ t R 1 ) φ ∥ L2 t, η (B 1 ) + ∥(ϵR 2 , ϵ∂ t R 2 ) φ ∥ L2 t, η (B 1 ) + √ M ϵ∥(ϵR 2 , ϵ∂ t R 2 ) φ ∥ 1 2 L2 t (B 1 2 
)

+ M 3 4 ϵ 1 2 ∥(ϵR 2 , ϵ∂ t R 2 ) φ ∥ 1 2 L2 t, η (B 1 ) + M 1 4 ∥ϵ∂ y R 2 φ ∥ 1 2 L2 t B 1 2 ) ∥(ϵR 2 , ϵ∂ t R 2 ) φ ∥ 1 2 L2 t, η (B 1 ) ,
where

K(t) = ∥(R 1 + ∂ t R 1 , ϵ(R 2 + ∂ t R 2 )) φ ∥ L∞ t (B 1 2 ) + ∥(∂ t R 1 ) φ , ϵ(∂ t R 2 ) φ ∥ L∞ t (B 1 2 
)

+ ∥∂ y (R 1 , ϵR 2 ) φ ∥ L∞ t (B 1 2 
)

+ ϵ∥∂ x (R 1 , ϵR 2 ) φ ∥ L∞ t (B 1 2 ) + ∥(∂ t R 1 , ϵ∂ t R 2 ) φ ∥ L2 t (B 1 2 
)

+ √ µ∥(R 1 , ϵR 2 ) φ ∥ L2 t, η(t) (B 1 ) + ∥∂ y (R 1 , ϵR 2 ) φ ∥ L2 t (B 1 2 
)

+ ϵ∥∂ x (R 1 , ϵR 2 ) φ ∥ L2 t (B 1 2 
)

+ √ µ∥(∂ t R 1 , ϵ∂ t R 2 ) φ ∥ L2 t, η(t) (B 1 ) + √ µ∥∂ y (R 1 , ϵR 2 ) φ ∥ 2 L2 t, η(t) (B 1 ) + √ µ∥∂ x (R 1 , ϵR 2 ) φ ∥ L2 t, η(t) (B 1 )
.

and

E(0) = ∥e a|Dx| ∂ y (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + √ Cϵ∥e a|Dx| ∂ x (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + √ C∥e a|Dx| ((u ϵ 0 -u 0 ) + (u ϵ 1 -u 1 ), ϵ(v ϵ 0 -v 0 ) + ϵ(v ϵ 1 -v 1 ))∥ B 1 2 + √ C∥e a|Dx| ((u ϵ 1 -u 1 ), ϵ(v ϵ 1 -v 1 ))∥ B 1 2
Applying Young's inequality gives rise to

K(t) ≤ √ C E(0) + M (ϵ + ∥(R 1 , ∂ t R 1 ) φ ∥ L2 t, η (B 1 ) + ∥(ϵR 2 , ϵ∂ t R 2 ) φ ∥ L2 t, η (B 1
) )

(5.6.21)

Taking µ ≥ CM 2 leads to (5.3.1), this completes the proof of the theorem 5.1.3.

5.7

Proof of the estimates (5.6.17) and (5.6.18) 5.7.1 Proof of the estimate (5.6.17)

We rst observe that

F 1 φ = (ϵ 2 ∂ 2 x u -(u ϵ ∂ x R 1 + R 1 ∂ x u) -(v ϵ ∂ y R 1 + R 2 ∂ y u)) φ , so, we dene G q 1 = t 0 ∆ h q F 1 φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ = t 0 ∆ h q (ϵ 2 ∂ 2 x u -(u ϵ ∂ x R 1 + R 1 ∂ x u) -(v ϵ ∂ y R 1 + R 2 ∂ y u)) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ ≤ I q 1 + I q 2 + I q 3 ,
where

I q 1 = t 0 ∆ h q (ϵ 2 ∂ 2 x u) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ I q 2 = t 0 ∆ h q (u ϵ ∂ x R 1 + R 1 ∂ x u) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ I q 3 = t 0 ∆ h q (v ϵ ∂ y R 1 + R 2 ∂ y u) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ .
We rst observe that

I q 1 ≤ Cd 2 q 2 -q ϵ 2 ∥u φ ∥ L2 t (B 5 2 
)

∥(∂ t R 1 ) φ ∥ L2 t (B 1 2 ) 
.

(5.7.1)

For I q 2 , we write

I q 2 = t 0 ∆ h q (u ϵ ∂ x R 1 + R 1 ∂ x u) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ ≤ I q 21 + I q 22 ,
where

I q 21 = t 0 ∆ h q (u ϵ ∂ x R 1 ) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ I q 22 = t 0 ∆ h q (R 1 ∂ x u) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ .
Lemma 5.2.5 implies

I q 21 ≤ Cd 2 q 2 -q ∥R 1 φ ∥ L2 t, η(t) (B 1 ) ∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 ) , (5.7.2) 
For I 22 , using Bony's decomposition for the horizontal variable, we write

R 1 ∂ x u = T h ∂xu R 1 + T h R 1 ∂ x u + R h (R 1 , ∂ x u),
and then, we have the following bound

I q 22 = t 0 ∆ h q (T h ∂xu R 1 + T h R 1 ∂ x u + R h (R 1 , ∂ x u)) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ ≤ I q 22,1 + I q 22,2 + I q 22,3 with I q 22,1 = t 0 ∆ h q (T h ∂xu R 1 ) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ I q 22,2 = t 0 ∆ h q (T h R 1 ∂ x u) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ I q 22,3 = t 0 ∆ h q (R h (R 1 , ∂ x u) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ .
Using the support properties given in [ [18], Proposition 2.10] and the denition of T h R 1 ∂ x u, we have

I q 22,2 ≤ |q-q ′ |≤4 t 0 ∥S h q ′ -1 R 1 φ ∥ L ∞ ∥∆ h q ′ ∂ x u φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ . As we have R 1 = u ϵ -u, so ∥S h q ′ -1 R 1 φ ∥ L ∞ = ∥S h q ′ -1 (u ϵ -u) φ ∥ L ∞ ≤ ∥S h q ′ -1 u ϵ φ ∥ L ∞ + ∥S h q ′ -1 u φ ∥ L ∞ , then, I q 22,2 = t 0 ∆ h q (T h ∂xu R 1 ) φ , ∆ h q (∂ t R 1 ) φ ≤ |q-q ′ |≤4 t 0 ∥S h q ′ -1 u ϵ φ ∥ L ∞ ∥∆ h q ′ ∂ x u φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ + |q-q ′ |≤4 t 0 ∥S h q ′ -1 u φ ∥ L ∞ ∥∆ h q ′ ∂ x u φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ .
We note that we get by applying Bernstein lemma 5.2.1

∥∆ h q ′ u ϵ φ ∥ L ∞ ≤ 2 q ′ 2 ∥∆ h q ′ u ϵ φ ∥ L 2 h (L ∞ v ) ≤ Cd q ′ (u ϵ φ )∥u ϵ φ ∥ 1 2 B 1 2 ∥∂ y u ϵ φ ∥ 1 2 B 1 2

,

Here and in all that follows, we always denote (d q ′ (u ϵ φ )) q ′ ∈Z to be a generic element of ℓ 1 (Z) so that

q ′ ∈Z d q ′ (u ϵ φ ) ≤ 1, then ∥S h q ′ -1 u ϵ φ ∥ L ∞ ≲ ∥u ϵ φ ∥ 1 2 B 1 2 ∥∂ y u ϵ φ ∥ 1 2 B 1 2 and ∥S h q ′ -1 u φ ∥ L ∞ ≲ ∥u φ ∥ 1 2 B 1 2 ∥∂ y u φ ∥ 1 2 B 1 2 . So I q 22,2 ≲ |q-q ′ |≤4 t 0 ∥u ϵ φ ∥ 1 2 B 1 2 ∥∂ y u ϵ φ ∥ 1 2 B 1 2 ∥∆ h q ′ ∂ x u φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ + |q-q ′ |≤4 t 0 ∥u φ ∥ 1 2 B 1 2 ∥∂ y u φ ∥ 1 2 B 1 2 ∥∆ h q ′ ∂ x u φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 ∥u ϵ φ ∥ 1 2 L ∞ t (B 1 2 
)

∥∆ h q ′ ∂ x u φ ∥ L 2 t (L 2 ) t 0 ∥∂ y u ϵ φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ 2 L 2 dt ′ 1 2 + |q-q ′ |≤4 ∥u φ ∥ 1 2 L ∞ t (B 1 2 
)

∥∆ h q ′ ∂ x u φ ∥ L 2 t (L 2 ) t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ 2 L 2 dt ′ 1 2 ≤ C2 -q d 2 q ∥u ϵ φ ∥ 1 2 L∞ t (B 1 2 
)

+ ∥u φ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y u φ ∥ L2 t (B 1 ) ∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 )
.

Now, we recall that

∥S h q-1 ∂ x u φ ∥ L ∞ ≤ l≤q-2 2 3l 2 ∥∆ h l ∂ y u φ ∥ L 2 ≲ 2 q ∥∂ y u φ ∥ B 1 2 ,
so we can deduce

I q 22,1 = t 0 ∆ h q (T h ∂xu R 1 ) φ , ∆ h q (∂ t R 1 ) φ ≤ |q-q ′ |≤4 t 0 ∥S h q ′ -1 ∂ x u φ ∥ L ∞ ∥∆ h q ′ R 1 φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 ≲ |q-q ′ |≤4 t 0 2 q ′ ∥∂ y u φ ∥ B 1 2 ∥∆ h q ′ R 1 φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥2 ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q ′ R 1 φ ∥ 2 L 2 dt ′ 1 2 t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ 2 L 2 dt ′ 1 2
Using the denition of η(t) and Denition 5.2.3 we have

t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q R 1 φ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q d q (R 1 φ )∥R 1 φ ∥ L2 t, η(t) (B 1 ) .
Then,

I q 22,1 ≲ 2 -q d 2 q ∥R 1 φ ∥ L2 t, η(t) (B 1 ) ∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 )
where

d 2 q = d q   |q-q ′ |≤4 d q ′  
In a similar way, we have

I q 22,3 = t 0 ∆ h q (R h (R 1 , ∂ x u)) φ , ∆ h q (∂ t R 1 ) φ dt ′ ≲ 2 q 2 q ′ ≥q-3 t 0 ∥∆ h q ′ R 1 φ ∥ L 2 ∥ ∆h q ′ ∂ x u φ ∥ L 2 h (L ∞ v ) ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 t 0 2 q ′ 2 ∥∆ h q ′ R 1 φ ∥ L 2 ∥∂ y u φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 ≲ 2 q 2 q ′ ≥q-3 2 q ′ 2 t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q ′ R 1 φ ∥ L 2 dt ′ t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ d 2 q 2 -q ∥R 1 φ ∥ L2 t, η(t) (B 1 ) ∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 )
Then we conclude that

I q 22 ≲ d 2 q 2 -q ∥(R 1 , ∂ t R 1 ) φ ∥ 2 L2 t, η(t) (B 1 ) + ∥u ϵ φ ∥ 1 2 L∞ t (B 1 2 ) 
(5.7.3)

+ ∥u φ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y u φ ∥ L2 t (B 1 ) ∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 )
(5.7.4)

For the term I q 3 , we write

I q 3 = t 0 v ϵ ∂ y R 1 + R 2 ∂ y u)) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ ≤ I q 31 + I q 32 , (5.7.5) 
where

I q 31 = t 0 ∆ h q (v ϵ ∂ y R 1 ) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ I q 32 = t 0 ∆ h q (R 2 ∂ y u) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ . Since v ϵ ∂ y R 1 = (R 2 + v)∂ y R 1 = R 2 ∂ y R 1 + v∂ y R 1 ,
we get

I q 31 ≤ I q 31,1 + I q 31,2 , with I q 31,1 = t 0 ∆ h q (R 2 ∂ y R 1 ) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ I q 31,2 = t 0 ∆ h q (v∂ y R 1 ) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ .
Lemma 5.2.6 implies

I q 31,1 =≲ d 2 q 2 -q ∥R 1 φ ∥ L2 t, η(t) (B 1 ) ∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 )
.

(5.7.6)

For the term I q 31,2 , we apply Bony's decomposition with respect to the horizontal variable

v∂ y R 1 = T h v ∂ y R 1 + T h ∂yR 1 v + R h (v, ∂ y R 1 ).
Using (5.3.1), we have

∥S h q ′ -1 v φ ∥ L ∞ = ∥S h q ′ -1 y 0 ∂ x u φ (t, x, s)ds∥ L ∞ ≲ l≤q ′ -2 2 3l 2 ∥∆ h l u φ ∥ 1 2 L 2 ∥∆ h l ∂ y u φ ∥ 1 2 L 2 ≲ 2 q ′ 2 ∥u φ ∥ 1 2 B 3 2 ∥∂ y u φ ∥ 1 2 B 1 2
, from which, we infer (5.7.7)

t 0 ∆ h q (T h v ∂ y R 1 ) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 v φ ∥ L ∞ ∥∆ h q ′ ∂ y R 1 φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≤ |q ′ -q|≤4 t 0 2 q ′ 2 ∥u φ ∥ 1 2 B 3 2 ∥∂ y u φ ∥ 1 2 B 1 2 ∥∆ h q ′ ∂ y R 1 φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ d 2 q 2 -q ∥u φ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y R 1 φ ∥ L2 t (B 1 2 
)

∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 )
,

where {d q } forms a suitable sequence.

As we have R 1 = u ϵ -u, so

∥S h q ′ -1 ∂ y R 1 φ ∥ L ∞ h (L 2 v ) = ∥S h q ′ -1 ∂ y (u ϵ -u) φ ∥ L ∞ h (L 2 v ) ≤ ∥S h q ′ -1 ∂ y u ϵ φ ∥ L ∞ h (L 2 v ) + ∥S h q ′ -1 ∂ y u φ ∥ L ∞ h (L 2 v ) , then, t 0 ∆ h q (T h ∂yR 1 v) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 ∂ y R 1 φ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ v φ ∥ L 2 h (L ∞ v ) ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 ∂ y u ϵ φ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ v φ ∥ L 2 h (L ∞ v ) ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ + |q ′ -q|≤4 t 0 ∥S h q ′ -1 ∂ y u φ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ v φ ∥ L 2 h (L ∞ v ) ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ,
We note that we get by applying Bernstein lemma 5.2.1

∥S h q ′ -1 ∂ y u ϵ φ ∥ L ∞ h (L 2 v ) ≲ ∥∂ y u ϵ φ ∥ B 1 2 and ∥S h q ′ -1 u φ ∥ L ∞ h (L 2 v ) ≲ ∥∂ y u φ ∥ B 1 2 .
So,

I q 22,2 ≲ |q-q ′ |≤4 t 0 ∥∂ y u ϵ φ ∥ B 1 2 ∥∆ h q ′ v φ ∥ L 2 h (L ∞ v ) ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ + |q-q ′ |≤4 t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q ′ v φ ∥ L 2 h (L ∞ v ) ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 ∥∂ y u ϵ φ ∥ 1 2 L 2 t (B 1 2 
)

∥∆ h q ′ v φ ∥ 1 2 L ∞ t (L 2 h (L ∞ v )) ∥∆ h q ′ v φ ∥ 1 2 L 2 t (L 2 h (L ∞ v )) t 0 ∥∂ y u ϵ φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ 2 L 2 dt ′ 1 2 + |q-q ′ |≤4 ∥∂ y u φ ∥ 1 2 L ∞ t (B 1 2 
)

∥∆ h q ′ ∂ x ∂ y u φ ∥ L 2 t (L 2 ) t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ 2 L 2 dt ′ 1 2 ≤ C2 -q d 2 q ∥∂ y u ϵ φ ∥ 1 2 L2 t (B 1 2 
)

+ ∥∂ y u φ ∥ 1 2 L2 t (B 1 2 
)

∥∂ y u φ ∥ 1 2 L∞ t (B 1 ) ∥∂ y u φ ∥ 1 2 L2 t (B 1 ) ∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 )
.

where {d q } forms a suitable sequence.

Finally, by using that

∥∆ h q ′ v φ (t, x, y)∥ L 2 h (L ∞ v ) ≲ d q ′ (u ϕ )∥u φ ∥ 1 2 B 3 2 ∥∂ y u φ ∥ 1 2 B 1 2
, we have

t 0 ∆ h q (R h (v, ∂ y R 1 )) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 t 0 ∥∆ h q ′ v φ ∥ L 2 h (L ∞ v ) ∥ ∆h q ′ ∂ y R 1 φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 t 0 ∥u φ ∥ 1 2 B 3 2 ∥ ∆h q ′ ∂ y R 1 φ ∥ L 2 ∥∂ y u φ ∥ 1 2 B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ d 2 q 2 -q ∥u φ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y R 1 φ ∥ L2 t (B 1 2 
)

∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 ) ,
Then we obtain the following estimates,

I q 31,2 ≲ 2 -q d 2 q ∥u φ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y R 1 φ ∥ L2 t (B 1 2 
)

∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 )
.

(5.7.8)

Now we estimate the term I q 32 in (5.7.5). Bony's decomposition with respect to the horizontal variable implies

I q 32 = t 0 ∆ h q (T h R 2 ∂ y u + T h ∂yu R 2 + R h (R 2 , ∂ y u)) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ ≤ I q 32,1 + I q 32,2 + I q 32,3 ,
where

I q 32,1 = t 0 ∆ h q (T h R 2 ∂ y u) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ I q 32,2 = t 0 ∆ h q (T h ∂yu R 2 ) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ I q 32,3 = t 0 ∆ h q (R h (R 2 , ∂ y u)) φ , ∆ h q (∂ t R 1 ) φ L 2 dt ′ .
We rst observe that

I q 32,1 ≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 R 2 φ ∥ L ∞ ∥∆ h q ′ ∂ y u φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ .
Due to the fact that R 2 (t, x, y) = -y 0 ∂ x R 1 (t, x, s)ds, we deduce

I q 32,1 ≲ |q ′ -q|≤4 t 0 2 -q ′ 2 ∥S h q ′ -1 R 2 φ ∥ L ∞ ∥∂ y u φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ t 0 ∥∂ y u φ ∥ B 1 2 y 0 ∥S h q ′ -1 ∂ x R 1 φ (t, x, s)∥ 2 L ∞ dsdt ′ 1 2 × t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ 2 L 2 dt ′ 1 2

,

Taking into account the denition of η(t) and Denition 5.2.3 we obtain

t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q d q ∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 ) .
Then,

I q 32,1 ≲ 2 -q d 2 q ∥R 1 φ ∥ L2 t, η(t) (B 1 ) ∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 )
(5.7.9)

Now, for I q 32,2 , we have

I q 32,2 ≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 ∂ y u φ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ R 1 φ ∥ L 2 h (L ∞ v ) ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 2 q ′ 2 ∥∂ y u φ ∥ B 1 2 2 q ′ 2 ∥∆ h q ′ R 1 φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q ′ R 1 φ ∥ 2 L 2 dt ′ 1 2 t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -q ∥R 1 φ ∥ L2 t, η(t) (B 1 ) ∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 )
.

We end by estimating I q 32,3 , in the same way, we have

I q 32,3 ≲ 2 q 2 q ′ ≥q-3 t 0 ∥∆ h q ′ R 2 φ ∥ L 2 h (L ∞ v ) ∥ ∆h q ′ ∂ y u φ ∥ L 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 t 0 2 q ′ 2 ∥∆ h q ′ R 1 φ ∥ L 2 ∥∂ y u φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 2 q ′ 2 t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q ′ R 1 φ ∥ 2 L 2 dt ′ 1 2 t 0 ∥∂ y u φ ∥ B 1 2 ∥∆ h q (∂ t R 1 ) φ ∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -q ∥R 1 φ ∥ L2 t, η(t) (B 1 ) ∥(∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 ) ,
Summing all the resulting estimate, we can achieve

I q 32 ≲ d 2 q 2 -q ∥R 1 φ ∥ L2 t, η(t) (B 1 ) ∥ ′ ∂ t R 1 ) φ ∥ L2 t, η(t) (B 1 )
.

(5.7.10) By summing up (5.7.1)-(5.7.10), we conclude the proof of (5.6.17).

Remark 5.7.1. For the proof when we have R 1 and not ∂ t R 1 , we just easily adapt the proof by replacing

R 1 instead of ∂ t R 1 .
5.7.2 Proof of the estimate (5.6.18)

We rst deduce from

∂ x u + ∂ y v = 0, that ϵ 2 t 0 ∆ h q (∂ t v) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ d 2 q 2 -q ϵ 2 ∥(∂ t u) φ ∥ L2 t (B 3 2 ) ∥(∂ t R 2 ) φ ∥ L2 t (B 1 2 
)

ϵ 2 t 0 ∆ h q (∂ 2 t v) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ d 2 q 2 q ϵ 2 ∥(∂ 2 t u) φ ∥ L2 t (B 3 2 ) ∥(∂ t R 2 ) φ ∥ L2 t (B 1 2 ) 
,

ϵ 2 t 0 ∆ h q (∂ 2 y v) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ d 2 q 2 -q ϵ 2 ∥∂ 2 y u φ ∥ L2 t (B 3 2 
)

∥(∂ t R 2 ) φ ∥ L2 t (B 1 2 ) 
,

ϵ 4 t 0 ∆ h q (∂ 2 x v) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ d 2 q 2 -q ϵ 4 ∥∂ y u φ ∥ L2 t (B 7 2 
)

∥(∂ t R 2 ) φ ∥ L2 t (B 1 2 ) 
.

(5.7.11)

Then now we still have to control

J q 4 = ϵ 2 t 0 ∆ h q (u ϵ ∂ x v ϵ ) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ and J q 5 = ϵ 2 t 0 ∆ h q (v ϵ ∂ y v ϵ ) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ .
We start rst by J 4 q , we have J q 4 ≤ ϵ 2 (J q 41 + J q 42 ) ,

where

J q 41 = t 0 ∆ h q (u ϵ ∂ x R 2 ) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ J q 42 = t 0 ∆ h q (u ϵ ∂ x v) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ .
It follows from Lemma 5.2.5 that

J q 41 = t 0 ∆ h q (u ϵ ∂ x R 2 ) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ d 2 q 2 -q ∥R 2 φ ∥ L2 t, η(t) (B 1 ) ∥(∂ t R 2 ) φ ∥ L2 t, η(t) (B 1 )
.

(5.7.12)

For the second term, Bony's decomposition for the horizontal variable gives

J q 42 = t 0 ∆ h q (u ϵ ∂ x v) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≤ J q 421 + J q 422 + J q 423 , with J q 421 = t 0 ∆ h q (T h u ϵ ∂ x v) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ J q 422 = t 0 ∆ h q (T h ∂xv u ϵ ) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ J q 423 = t 0 ∆ h q (R h (u ϵ , ∂ x v)) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ . Due to ∥S h q ′ -1 u ϵ φ ∥ L ∞ ≲ ∥u ϵ φ ∥ 1 2 B 1 2 ∥∂ y u ϵ φ ∥ 1 2 B 1 2
, and the relation (5.3.1), we have

J q 421 = t 0 ∆ h q (T h u ϵ ∂ x v) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 u ϵ φ ∥ L ∞ ∥∆ h q ′ ∂ x v φ ∥ L 2 ∥∆ h q (∂ t R 2 ) φ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 ∥u ϵ φ ∥ 1 2 B 1 2 ∥∂ y u ϵ φ ∥ 1 2 B 1 2 2 2q ′ ∥∆ h q ′ u φ ∥ L 2 ∥∆ h q (∂ t R 2 ) φ ∥ L 2 dt ′ ≲ d 2 q 2 -q ∥u ϵ φ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y u φ ∥ L2 t (B 2 ) ∥(∂ t R 2 ) φ ∥ L2 t, η(t) (B 1 )
.

While again thanks to (5.3.1), we nd

∥S h q ′ -1 ∂ x v φ ∥ L ∞ ≲ y 0 ∥S h q ′ -1 ∂ x (∂ x u φ (t, x, s)∥ L ∞ ds ≲ 2 q ′ 2 ∥∂ y u φ ∥ B 2 ,
which leads to

J q 422 = t 0 ∆ h q (T h ∂xv u ϵ ) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ d 2 q 2 -q ∥u ϵ φ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y u φ ∥ L2 t (B 2 ) ∥(∂ t R 2 ) φ ∥ L2 t, η(t) (B 1 )
.

Along the same way, we obtain

J q 423 = t 0 ∆ h q (R h (∂ x v, u ϵ )) φ , ∆ h q (∂ t R 2 ) φ L 2 ≲ d 2 q 2 -q ∥u ϵ φ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y u φ ∥ L2 t (B 2 ) ∥(∂ t R 2 ) φ ∥ L2 t, η(t) (B 1 )
.

This gives rise to

J q 42 ≲ d 2 q 2 -q ∥u ϵ φ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y u φ ∥ L2 t (B 2 ) ∥∂ t R 2 ) φ ∥ L2 t, η(t) (B 1 ) . Now for J q 5 , We rst note that v ϵ ∂ y v ϵ = v∂ y R 2 + R 2 ∂ y R 2 + v∂ y v + R 2 ∂ y v.
Lemma 5.2.5 yields

ϵ 2 t 0 ∆ h q (R 2 ∂ y R 2 ) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ d 2 q 2 -q ∥(R 1 φ , ϵ(∂ t R 2 ) φ )∥ 2 L2 t, η(t) (B 1 )
.

From (5.7.8), we have

t 0 ∆ h q (v∂ y R 2 ) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ d 2 q 2 -q ∥u φ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y R 2 φ ∥ L2 t (B 1 2 ) ∥(∂ t R 2 ) φ ∥ L2 t, η(t) (B 1 )
.

As for (5.7.3), we obtain

t 0 ∆ h q (R 2 ∂ x u) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ d 2 q 2 -q ∥(∂ t R 2 ) φ ∥ L2 t, η(t) (B 1 ) ∥u φ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y R 2 φ ∥ L2 t (B 1 2 ) 
.

Then, we deduce from the proof of (5.7.8) that

t 0 ∆ h q (v∂ y v) φ , ∆ h q (∂ t R 2 ) φ L 2 dt ′ ≲ d 2 q 2 -q ∥u φ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y v φ ∥ L2 t (B 1 2 
)

∥(∂ t R 2 ) φ ∥ L2 t, η(t) (B 1 ) ≲ d 2 q 2 -q ∥u φ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y u φ ∥ L2 t (B 3 2 
)

∥(∂ t R 2 ) φ ∥ L2 t, η(t) (B 1 ) .
As a result, it comes out

J q 5 ≲ d 2 q 2 -q ∥(R 1 φ , ϵ(∂ t R 2 ) φ )∥ 2 L2 t, η(t) (B 1 ) + ϵ 2 ∥u φ ∥ 1 2 L∞ t (B 3 2 
)

(∥∂ y R 2 φ ∥ L2 t (B 1 2 
)

+ ∥∂ y u φ ∥ L2 t (B 3 2 ) 
)∥(∂ t R 2 ) φ ∥ L2 t, η(t) (B 1 ) .

(5.7.14)

By summing up (5.7.11)-(5.7.14), we conclude the proof of (5.6.18)

Remark 5.7.2. For the proof when we have R 2 and not ∂ t R 2 , we just adapt the proof by replacing R 2 instead of ∂ t R 2 .

Proof of lemma 5.4.1

In this appendix we present the proof of the lemma 5.4.1, we start by giving the proof of the estimate (5.4.25). By using the Bony's decomposition (5.2.2), we can write

u∂ x u = T h u ∂ x u + T h ∂xu u + R h (u, ∂ x u). Then t 0 ∥e Rt ′ ∆ h q (u∂ x u) ϕ ∥ 2 L 2 dt ′ 1 2 ≲ t 0 ∥e Rt ′ ∆ h q (T h u ∂ x u) ϕ ∥ 2 L 2 dt ′ 1 2 + t 0 ∥e Rt ′ ∆ h q (T h ∂xu u) ϕ ∥ 2 L 2 dt ′ 1 2 + t 0 ∥e Rt ′ ∆ h q (R h (u, ∂ x u)) ϕ ∥ 2 L 2 dt ′ 1 2
We use the denition of T h , we have

t 0 ∥e Rt ′ ∆ h q (T h u ∂ x u) ϕ ∥ 2 L 2 dt ′ 1 2 ≲ t 0 |q ′ -q|≤4 ∥e Rt ′ (S h q ′ -1 u∆ h q ′ ∂ x u) ϕ ∥ 2 L 2 dt ′ 1 2 .
The lemma 5.2.2 allows us to obtain

t 0 |q ′ -q|≤4 ∥e Rt ′ (S h q ′ -1 u∆ h q ′ ∂ x u) ϕ ∥ 2 L 2 dt ′ 1 2 ≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 u + ϕ ∥ 2 L ∞ h (L 2 v ) ∥e Rt ′ ∆ h q ′ ∂ x u ϕ ∥ 2 L 2 h (L ∞ v ) dt ′ 1 2
(5.8.1)

≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 u + ϕ ∥ 2 L ∞ h (L 2 v ) 2 2q ′ ∥e Rt ′ ∆ h q ′ u ϕ ∥ 2 L 2 h (L ∞ v ) dt ′ 1 2
(5.8.2)

Using Bernstein Lemma 5.2.1 we have

∥∆ h q ′ u ϕ ∥ L ∞ h ≲ 2 q ′ 2 ∥∆ h q ′ u ϕ ∥ L 2 h .
So we can deduce that

∥∆ h q ′ u ϕ ∥ L ∞ h (L 2 v ) ≲ 2 q ′ 2 ∥∆ h q ′ u ϕ ∥ L 2 ≲ d q ′ (u ϕ )∥u ϕ ∥ B 1 2
Here and in all that follows, we always denote (d q (u ϕ )) q∈Z to be a generic element of ℓ 1 (Z) so that q∈Z d q (u ϕ ) ≤ 1.

Then,

∥S h q ′ -1 u ϕ (t ′ )∥ L ∞ h (L 2 v ) ≲ ∥u ϕ (t ′ )∥ B 1 2 .
While using the inclusion

H 1 y → L ∞ y , ∥∆ h q ′ u ϕ ∥ L ∞ v ≲ ∥∆ h q ′ u ϕ ∥ 1 2 L 2 v ∥∆ h q ′ ∂ y u ϕ ∥ 1 2 L 2 v ,
and the Poincaré inequality on the interval {0 < y < 1} on u (as we have that u = 0 when y = 0,1)

∥∆ h q ′ u ϕ ∥ L 2 ≲ ∥∆ h q ′ ∂ y u ϕ ∥ L 2 ,
we obtain

∥∆ h q ′ u ϕ (t ′ )∥ L 2 h (L ∞ v ) ≲ ∥∆ h q ′ ∂ y u ϕ (t ′ )∥ L 2 .
(5.8.3)

We replace in (5.8.1) we obtain

t 0 ∥e Rt ′ ∆ h q (T h u ∂ x u) ϕ ∥ 2 L 2 dt ′ 1 2 ≲ |q ′ -q|≤4 ∥u ϕ ∥ L∞ t (B 1 2 
)

2 q ′ t 0 ∥e Rt ′ ∆ h q ′ ∂ y u ϕ ∥ 2 L 2 dt ′ 1 2 ≲ |q ′ -q|≤4 ∥u ϕ ∥ L∞ t (B 1 2 
)

2 q ′ 2 -5q ′ 2 d q ′ (∂ y u ϕ )∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 
)

≤ Cd q 2 -3q 2 ∥u ϕ ∥ L∞ t (B 1 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 ) 
,

where

d q = |q ′ -q|≤4 d q ′ (∂ y u ϕ )2 3 2 (q-q ′ ) .
Along the same way we can obtain that

t 0 ∥e Rt ′ ∆ h q (T h ∂xu u) ϕ ∥ 2 L 2 dt ′ 1 2 ≤ Cd q 2 -3q 2 ∥u ϕ ∥ L∞ t (B 1 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 
)

.

We still have to nd the estimate of the reminder term, we have

t 0 ∥e Rt ′ ∆ h q (R h (u, ∂ x u)) ϕ ∥ 2 L 2 dt ′ 1 2 ≲ q ′ ≥q-3 t 0 ∥ ∆h q ′ u ϕ ∥ 2 L ∞ h (L 2 v ) ∥e Rt ′ ∆ h q ′ ∂ x u ϕ ∥ 2 L 2 h (L ∞ v ) dt ′ 1 2 ≲ q ′ ≥q-3 t 0 ∥u ϕ ∥ 2 B 1 2 
2 2q ′ ∥e Rt ′ ∆ h q ′ u ϕ ∥ 2 L 2 h (L ∞ v ) dt ′ 1 2
.

By using the Poincaré inequality we achieve

∥e Rt ′ ∆ h q ′ u ϕ ∥ L 2 h (L ∞ v ) ≲ ∥e Rt ′ ∆ h q ′ ∂ y u ϕ ∥ L 2 . Then t 0 ∥e Rt ′ ∆ h q (R h (u, ∂ x u)) ϕ ∥ 2 L 2 dt ′ 1 2 ≲ q ′ ≥q-3 t 0 ∥u ϕ ∥ 2 B 1 2 
2 2q ′ ∥e Rt ′ ∆ h q ′ ∂ y u ϕ ∥ 2 L 2 dt ′ 1 2 ≤ Cd q 2 -3q 2 ∥u ϕ ∥ L∞ t (B 1 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 ) 
.

By summing all the resulting estimates, and then multiplying by 2 3q 2 and taking the sum over Z we obtain the proof of the term ∥e Rt (u∂ x u) ϕ ∥ L2 t (B . Now we give the proof of the second estimate in (5.4.25). By using the Bony's decomposition (5.2.2), we can write

v∂ y u = T h v ∂ y u + T h ∂yu v + R h (v, ∂ y u). Then t 0 ∥e Rt ′ ∆ h q (v∂ y u) ϕ ∥ 2 L 2 dt ′ 1 2 ≲ t 0 ∥e Rt ′ ∆ h q (T h v ∂ y u) ϕ ∥ 2 L 2 dt ′ 1 2 + t 0 ∥e Rt ′ ∆ h q (T h ∂yu v) ϕ ∥ 2 L 2 dt ′ 1 2 + t 0 ∥e Rt ′ ∆ h q (R h (v, ∂ y u)) ϕ ∥ 2 L 2 dt ′ 1 2
We use the denition of T h , we have

t 0 ∥e Rt ′ ∆ h q (T h v ∂ y u) ϕ ∥ 2 L 2 dt ′ 1 2 ≲ t 0 |q ′ -q|≤4 ∥e Rt ′ (S h q ′ -1 v∆ h q ′ ∂ y u) ϕ ∥ 2 L 2 dt ′ 1 2 .
Lemma 5.2.2 allows us to obtain

t 0 |q ′ -q|≤4 ∥e Rt ′ (S h q ′ -1 v∆ h q ′ ∂ y u) ϕ ∥ 2 L 2 dt ′ 1 2 ≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 v + ϕ ∥ 2 L ∞ ∥e Rt ′ ∆ h q ′ ∂ y u ϕ ∥ 2 L 2 dt ′ 1 2 .
(5.8.5)

We have by applying Bernstein Lemma 5.2.1 that

∥∆ h q ′ v ϕ (t ′ )∥ L ∞ ≲ 2 3q 2 ∥∆ h q ′ y 0 u ϕ (t ′ , ., s)ds∥ L 2 h (L ∞ v ) ,
we use the fact that ∥

y 0 f dy ′ ∥ L ∞ y ≤ 1 0 |f |dy ′ ≤ ∥f ∥ L 2 y .
As a result, it comes out

∥∆ h q ′ v ϕ (t ′ )∥ L ∞ ≲ 2 3q 2 ∥∆ h q ′ u ϕ (t ′ )∥ L 2 ≤ Cd q ′ (u ϕ )2 q ′ ∥u ϕ ∥ B 1 2 , where (d q ′ (u ϕ )) q ′ ∈Z is a generic element of ℓ 1 (Z) such that d q ′ (u ϕ ) ≤ 1. Then ∥S h q ′ -1 v ϕ (t ′ )∥ L ∞ ≲ 2 q ′ ∥u ϕ (t ′ )∥ B 1 2 ,
We replace in (5.8.5) we obtain

t 0 ∥e Rt ′ ∆ h q (T h v ∂ y u) ϕ ∥ 2 L 2 dt ′ 1 2 ≲ |q ′ -q|≤4 ∥u ϕ ∥ L∞ t (B 1 2 
)

2 q ′ t 0 ∥e Rt ′ ∆ h q ′ ∂ y u ϕ ∥ 2 L 2 dt ′ 1 2 ≲ |q ′ -q|≤4 ∥u ϕ ∥ L∞ t (B 1 2 
)

2 q ′ 2 -5q ′ 2 d q ′ (∂ y u ϕ )∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 
)

≤ Cd q 2 -3q 2 ∥u ϕ ∥ L∞ t (B 1 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 ) , (5.8.6) 
where

d q = |q ′ -q|≤4 d q ′ (∂ y u ϕ )2 3 2 (q-q ′ ) .
Along the same way we can obtain that

t 0 ∥e Rt ′ ∆ h q (T h ∂yu v) ϕ ∥ 2 L 2 dt ′ 1 2 ≤ Cd q 2 -3q 2 ∥u ϕ ∥ L∞ t (B 1 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 ) 
.

We nish our proof by giving the estimate of the last term t

0 ∥e Rt ′ ∆ h q (R h (v, ∂ y u)) ϕ ∥ 2 L 2 dt ′ . We use the denition of R h , we have t 0 ∥e Rt ′ ∆ h q (R h (v, ∂ y u)) ϕ ∥ 2 L 2 dt ′ 1 2 ≲ q ′ ≥q-3 t 0 ∥ ∆h q ′ v ϕ ∥ 2 L ∞ ∥e Rt ′ ∆ h q ′ ∂ y u ϕ ∥ 2 L 2 dt ′ 1 2 ≲ q ′ ≥q-3 t 0 ∥u ϕ ∥ 2 B 5 2 
2 -2q ′ ∥e Rt ′ ∆ h q ′ ∂ y u ϕ ∥ 2 L 2 dt ′ 1 2 ≤ Cd q 2 -3q 2 ∥u ϕ ∥ L∞ t (B 5 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B 1 2 ) 
.

By summing all the resulting estimates, and then multiplying by 2 3q 2 and taking the sum over Z we obtain the proof of the term ∥e Rt (v∂ y u) ϕ ∥ L2 t (B . Chapter 6

Magnetohydrodynamics system

In this chapter we present the results of the following paper: N. Aarach, Hydrostatic approximation of the 2D MHD system in a thin strip with a small analytic data, Journal of Mathematical Analysis and Applications Volume 509, Issue 2, 2022

Introduction

The dynamics of an electrically conducting liquid near a wall has been a topic of constant interest, at least since the pioneering work of Hartmann [START_REF] Hartmann | Theory of the laminar ow of an electrically conductive liquid in ahomogeneous magnetic eld, K. Dan[END_REF]. It is relevant to many domains of active research, such as dynamo theory [START_REF] Desjardins | Boundary Layer Instability at the top of the Earth outer core[END_REF] or nuclear fusion [START_REF] Wesson | Tokamacs[END_REF]. In this paper, we consider the global well-posedness of the following two-dimensional Navier-Stokes system coupled with an approximation of the Maxwell equation, this system is called the MHD system. We study this system in a thin domain provided by Dirichlet boundary conditions. Then let S ϵ = {(x, y) ∈ R 2 : 0 < y < ϵ} where ϵ is the width of the domain. So, our system is of the following form:

(6.1.1)            ∂ t U ϵ + U ϵ .∇U ϵ -ϵ 2 ∆U ϵ + ∇P ϵ = B ϵ .∇B ϵ , in ]0, ∞[×S ϵ ∂ t B ϵ + U ϵ .∇B ϵ -ϵ 2 ∆B ϵ = B ϵ .∇U ϵ , in ]0, ∞[×S ϵ div U ϵ = div B ϵ = 0, in ]0, ∞[×S ϵ U ϵ /t=0 = U ϵ 0 , B ϵ /t=0 = B ϵ 0 , in S ϵ where U ϵ (t, x, Y ) = (u ϵ (t, x, Y ), v ϵ (t, x, Y ))
is the uid's velocity vector, and P ϵ (t, x, Y )is the pressure function that guarantees the velocity eld's free divergence,

B ϵ (t, x, Y ) = (b ϵ (t, x, Y ), c ϵ (t, x, Y )) repre-
sents the magnetic eld of the uid. System (6.1.1) is completed by the following boundary condition

U ϵ |Y =0 = U ϵ |Y =ϵ = 0 and B ϵ |Y =0 = B ϵ |Y =ϵ = 0.
In our System (6.1.1) the Laplace is given by ∆

= ∂ 2 x + ∂ 2 Y .
The purpose of this work is to rely on this recent progress to gain insight and perspective in the study of the Magnetohydrodynamic system (MHD), which couples the Navier-Stokes equation with small viscosity and an approximation of the Maxwell equation for the electromagnetic eld. The purpose of this paper is to gain some insight into the analysis of MHD boundary layer models. It is primarily intended for mathematicians, either applied or interested in the theory of uid PDE's. The electrohydrodynamics, or mechanical uids ionized in the presence of electric elds (electrostatic) without a magnetic eld, falls between the mechanics of classic uids and the magnetohydrodynamics. This system describes the evolution of a conducting uid under the eect of a magnetic eld in a strip (such as, for instance, the liquid iron in the Earth's core under the inuence of the Earth's magnetic eld).

In geophysics, it is common to assume that vertical motion is much smaller than horizontal motion and that the uid layer depth is small in comparison to the radius of the sphere. As a result, these assumptions used to describe hydrodynamical ows on the earth and are a good approximation of oceanic and global magnetospheric ow. The thin domain in System (6.1.1) considered to take into account this anisotropy between horizontal and vertical directions. Under this assumption, it believed that the dynamics of uids on a large scale tend towards a geostrophic balance (see [START_REF] Gill | Atmosphere-Ocean Dynamics[END_REF], [START_REF] Holton | An Introduction to Dynamic Meteorology[END_REF] or [START_REF] Plougonven | Lagrangian approach to the geostrophic adjustment of frontal anomalies in a stratied uid[END_REF]).

Formally, as in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], taking into account this anisotropy, we also consider the initial data in the following form,

U ϵ |t=0 = U ϵ 0 = u 0 x, Y ϵ , ϵv 0 x, Y ϵ in S ϵ ,
and

B ϵ |t=0 = B ϵ 0 = b 0 x, Y ϵ , ϵc 0 x, Y ϵ in S ϵ .
Then in our paper, we look for solutions of System (6.1.1) in the following form :

(6.1.2)                  U ϵ (t, x, Y ) = u ϵ t, x, Y ϵ , ϵv ϵ t, x, Y ϵ , B ϵ (t, x, Y ) = b ϵ t, x, Y ϵ , ϵc ϵ t, x, Y ϵ , P ϵ (t, x, Y ) = p ϵ t, x, Y ϵ .
Let S = (x, y) ∈ R 2 : 0 < y < 1 , we start by giving the two equations obtained by replacing U ϵ by u ϵ and v ϵ and B ϵ by b ϵ and c ϵ (6.1.3)

                                 ∂ t u ϵ + u ϵ ∂ x u ϵ + v ϵ ∂ y u ϵ -ϵ 2 ∂ 2 x u ϵ -∂ 2 y u ϵ + ∂ x p ϵ = b ϵ ∂ x b ϵ + c ϵ ∂ y b ϵ , in ]0, ∞[×S ϵ 2 ∂ t v ϵ + u ϵ ∂ x v ϵ + v ϵ ∂ y v ϵ -ϵ 2 ∂ 2 x v ϵ -∂ 2 y v ϵ + ∂ y p ϵ = ϵ 2 (b ϵ ∂ x c ϵ + c ϵ ∂ y c ϵ ) , in ]0, ∞[×S ∂ t b ϵ + u ϵ ∂ x b ϵ + v ϵ ∂ y b ϵ -ϵ 2 ∂ 2 x b ϵ -∂ 2 y b ϵ = b ϵ ∂ x u ϵ + c ϵ ∂ y u ϵ , in ]0, ∞[×S ϵ ∂ t c ϵ + u ϵ ∂ x c ϵ + v ϵ ∂ y c ϵ -ϵ 2 ∂ 2 x c ϵ -∂ 2 y c ϵ = ϵ (b ϵ ∂ x v ϵ + c ϵ ∂ y v ϵ ) , in ]0, ∞[×S ∂ x u ϵ + ∂ y v ϵ = 0, in ]0, ∞[×S ∂ x b ϵ + ∂ y c ϵ = 0, in ]0, ∞[×S (u ϵ , v ϵ , b ϵ , c ϵ ) | t=0 = (u 0 , v 0 , b 0 , c 0 ) , in S (u ϵ , v ϵ , b ϵ , c ϵ ) | y=0 = (u ϵ , v ϵ , b ϵ , c ϵ ) | y=1 = 0.
Formally taking ϵ → 0 in the scaled system (6.1.3), we obtain the Prandtl system on u and also for b which is of the following form :

(6.1.4)                            ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = b∂ x b + c∂ y b, in ]0, ∞[×S ∂ y p = 0, in ]0, ∞[×S ∂ t b + u∂ x b + v∂ y b -∂ 2 y b = b∂ x u + c∂ y u, in ]0, ∞[×S ∂ x u + ∂ y v = 0, in ]0, ∞[×S ∂ x b + ∂ y c = 0, in ]0, ∞[×S u| t=0 = u 0 , in S b| t=0 = b 0 , in S,
where (u, v) and (b, c) satisfying the Dirichlet boundary condition (6.1.5)

(u, v, b, c) | y=0 = (u, v, b, c) | y=1 = 0.
Our goal is to achieve the global existence of the solution for Systems (6.1.3) et (6.1.4), then we want to show the convergence of the scaled MHD system (6.1.3) to the limit system when ϵ tends towards zero.

Remark 6.1.1. We can also get the equation satised by c when ϵ → 0. We remark that System (6.1.4)

implies the following equation for c:

∂ t c + u∂ x c + v∂ y c -∂ 2 y c = b∂ x v + c∂ y v in ]0, ∞[×S.
Indeed, by taking the derivative of the equation satised by b with respect to x variable, and using the free divergence of U and B, we obtain

∂ x ∂ t b + u∂ x b + v∂ y b -∂ 2 y b -b∂ x u -c∂ y u = -∂ y ∂ t c + u∂ x c + v∂ y c -∂ 2 y c -b∂ x v -c∂ y v = 0.
From which we obtain

∂ t c + u∂ x c + v∂ y c -∂ 2 y c -b∂ x v -c∂ y v = m(t, x),
but as c is zero at the boundary then m(t, x) = 0 this ensure the equation satised by c.

We remark that in System (6.1.4), we have to deal with the same diculties as for the Prandtl equations due to its degenerate form and the nonlinear term v∂ y u which will lead to the loss of one derivative in the tangential direction in the process of energy estimates. For a more complete survey on this very challenging problem we refer the reader to the works [START_REF] Alexandre | Well-posedness of The Prandtl Equation in Sobolev Spaces[END_REF][START_REF] Weinan | Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation[END_REF][START_REF] Weinan | Blow up of solutions of the unsteady Prandtl's equation[END_REF][START_REF] Gérard-Varet | On the ill-posedness of the Prandtl equation[END_REF], 101] and references therein. To overcome this diculty, one has to impose a monotony hypothesis on the normal derivative of the velocity or analytic regularity on the velocity. Lately, this result was proved via the energy method in [START_REF] Alexandre | Well-posedness of The Prandtl Equation in Sobolev Spaces[END_REF][START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF] independently by taking care of the cancellation property in the convection terms of (PE). Sammartino and Caisch [START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I. Existence for Euler and Prandtl equations[END_REF] solved the problem for analytic solutions on a half-space and later, the analyticity in the normal variable y was removed by Lombardo, Cannone, and Sammartino in [START_REF] Lombardo | Well-posedness of the boundary layer equations[END_REF]. The main argument used in [START_REF] Lombardo | Well-posedness of the boundary layer equations[END_REF][START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I. Existence for Euler and Prandtl equations[END_REF] is to apply the abstract Cauchy-Kowalewskaya (CK) theorem. We also mention a well-posedness result of the Prandtl system for a class of data with Gevrey regularity [START_REF] Gérard-Varet | Well-posedness for the Prandtl system without analyticity or mono-tonicity[END_REF]. Lately, for a class of convex data, Gérard-Varet, Masmoudi, and Vicol [START_REF] Gérard-Varet | Well-posedness of the hydrostatic Navier-Stokes equations[END_REF] proved the well-posedness of the Prandtl system in the Gevrey class. We also want to remark that unlike the case of Prandtl equations, in the system (6.1.4), the pressure term is determined by ∂ y p = 0 and by the compatibility condition 1 0 udy = 0. Indeed, the pressure act as a Lagangean multiplier associated to the compatibility condition, and can be computed by

∂ x p = ∂ y u(t, x, 1) -∂ y u(t, x, 0) -∂ x 1 0 (u) 2 (t, x, y)dy + ∂ x 1 0 (b) 2 (t, x, y)dy.
One of the diculties of the chapter is to nd a way to deal with the term pressure, for this we have used analytical methods to remove this diculty. We also want to recall some results concerning the system (6.1.3). Concerning the strong solutions for the 2D case, the locale existence result was established by Guillén-Gonzàlez, Masmoudi and Rodriguez-Bellido [START_REF] Guillen-Gonzalez | Anisotropic estimates and strong solutions of the primitive equations[END_REF], while the global existence for the 2D case was achieved by Bresch, Kazhikhov, and Lemoine in [START_REF] Bresch | On the two-dimensional hydrostatic Navier-Stokes equations[END_REF] and by Temam and Ziane in [START_REF] Temam | Some mathematical problems in geophysical uid dynamics[END_REF]. In our paper, we also want to establish the global well-posedness of the system (6.1.3) in a 2D case in a thin domain.

Littlewood-Paley Theory and Functional Framework

To introduce the result of this paper, we will recall some elements of the Littlewood-Paley theory and introduce the functions space and technique using for the proof of our result. So we dene the dyadic operator in the horizontal variable, (of x variable) and for all q ∈ Z, we recall from [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF] that

∆ h q a(x, y) = F -1 h φ(2 -q |ξ|) a(ξ, y) , S h q a(x, y) = F -1 h ψ(2 -q |ξ|) a(ξ, y) .
where ψ and φ are a smooth function such that

supp φ ⊂ {z ∈ R/ 3 4 ≤ |z| ≤ 8 3 } and ∀z > 0, q∈Z φ(2 -q z) = 1, supp ψ ⊂ {z ∈ R/ |z| ≤ 4 3 } and ψ(z) + q≥0 φ(2 -q z) = 1. and ∀ q, q ′ ∈ Z, |q -q ′ | ≥ 2, supp φ(2 -q •) ∩ supp φ(2 -q ′ •) = ∅.
And in all that follows, Fa and a always denote the partial Fourier transform of the distribution a with respect to the horizontal variable (of x variable), that is, a(ξ, y) = F x→ξ (a)(ξ, y). We refer to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF] and [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] for a more detailed construction of the dyadic decomposition. Combined the denition of the dyadic operator to (6.2.1)

∀z ∈ R, ψ(z) + j∈N φ(2 -j z) = 1,
implies that all tempered distributions can be decomposed with respect to the horizontal frequencies as a = q∈Z ∆ h q a.

We now introduce the function spaces used throughout the paper. As in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we dene the Besov-type spaces B s,0 , s ∈ R as follows.

Denition 6.2.1. Let s ∈ R and S = R×]0, 1[. For any a ∈ S ′ h (S), i.e., a belongs to S ′ (S) and lim q→-∞ S h q a L ∞ = 0, we set ∥a∥ B s,0 ≜ q∈Z 2 qs ∆ h q a L 2 .

(i) For s ≤ 1 2 , we dene

B s,0 (S) ≜ {a ∈ S ′ h (S) : ∥a∥ B s,0 < +∞} . (ii) For s ∈ ]k -1 2 , k + 1 2 ]
, with k ∈ N * , we dene B s,0 (S) as the subset of distributions u in S ′ h (S) such that ∂ k x a ∈ B s-k,0 (S).

For better use of the smoothing eect given by the diusion terms, we work in the following Chemin-Lerner type spaces and the time-weighted Chemin-Lerner type spaces. 

∥a∥ Lp t,f (t) (B s,0 (S)) ≜ q∈Z 2 qs t 0 f (t ′ ) ∆ h q a(t ′ ) p L 2 dt ′ 1 p
. Remark 6.2.1. To simplify the notation even further, in all that follows, we shall denote B s,0 ≜ B s .

The following Bernstein lemma gives important properties of a distribution u when its Fourier transform is well localized. We refer the reader to [START_REF] Chemin | Fluides parfaits incompressibles[END_REF] for the proof of this lemma. Lemma 6.2.1. Let k ∈ N, d ∈ N * and r 1 , r 2 ∈ R satisfy 0 < r 1 < r 2 . There exists a constant C > 0 such that, for any p, q ∈ R, 1 ≤ p ≤ q ≤ +∞, for any λ > 0 and for any a ∈ L p (R d ), we have

supp ( a) ⊂ ξ ∈ R d | |ξ| ≤ r 1 λ =⇒ sup |α|=k ∥∂ α a∥ L q ≤ C k λ k+d( 1 p -1 q ) ∥a∥ L p , and supp ( a) ⊂ ξ ∈ R d | r 1 λ ≤ |ξ| ≤ r 2 λ =⇒ C -k λ k ∥a∥ L p ≤ sup |α|=k ∥∂ α a∥ L p ≤ C k λ k ∥a∥ L p .
Finally, to deal with the estimate concerning the product of two distribution, we shall frequently use Bony's decomposition (see [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] ) in the horizontal variable ( of the x variable ) that for f, g two tempered distributions :

(6.2.2)

f g = T h f g + T h g f + R h (f, g),
where

T h f g = q S h q-1 f ∆ h q g, T h g f = q S h q-1 g∆ h q f,
and the rest term satised

R h (f, g) = q ∆h q f ∆ h q g with ∆h q f = |q-q ′ |≤1
∆ h q ′ f.

Main results

Our main diculty relies on nding a way to estimate the nonlinear terms, which allows exploiting the smoothing eect given by the above function spaces. Using the method introduced by Chemin in [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF] (see also [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF], [110] or [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF]), for any f ∈ L 2 (S), we dene the following auxiliary function, which allows to control the analyticity of f in the horizontal variable x,

f ϕ (t, x, y) = e ϕ(t,Dx) f (t, x, y) ≜ F -1 h (e ϕ(t,ξ) f (t, ξ, y)) with ϕ(t, ξ) = (a -λθ(t))|ξ|, (6.2.3) 
where the quantity θ(t), which describes the evolution of the analytic band of f , satises (6.2.4)

∀ t > 0, θ(t) ≥ 0 and θ(0) = 0.

The main idea of this technique consists in the fact that if we dierentiate, with respect to the time variable, a function of the type e ϕ(t,Dx) f (t, x, y), we obtain an additional good term which plays the smoothing role. More precisely, we have d dt e ϕ(t,Dx) f (t, x, y) = -λ θ(t) |D x | e ϕ(t,Dx) f (t, x, y) + e ϕ(t,Dx) ∂ t f (t, x, y),

where -λ θ(t) |D x | e ϕ(t,Dx) f (t, x, y) gives a smoothing eect if θ(t) ≥ 0. This smoothing eect allows to obtain our global existence and stability results in the analytic framework. Besides, MHD system is known to be very unstable.

Before starting the obtained result, we need the following lemma to characterize the product (f g) ϕ , indeed this product be useful in all the rest of the paper. Lemma 6.2.2. Let f ∈ L 2

x , g ∈ L 2

x , we dene f

+ = F -1 ξ (|F x (f )|) then, we have | (f g) ϕ (ξ)| ≤ f + ϕ g + ϕ (ξ) and ∥f + ∥ L 2 x = ∥f ∥ L 2 x .
Proof. Let as consider f , and g two functions in L 2

x , we have

| (f g) ϕ (ξ)| = e ϕ(ξ) | f (.) * g(.)(ξ)| ≤ e ϕ(ξ) | f (ξ -η)|| g(η)|dη,
By virtue of the denition of the function ϕ we have e ϕ(ξ) > 0 and e ϕ(ξ) ≤ e ϕ(ξ-η) e ϕ(η) , thus

|( f g) ϕ (ξ)| ≤ e ϕ(ξ-η) | f (ξ -η)|e ϕ(η) | g(η)|dη ≤ | f ϕ (ξ -η)|| g ϕ (η)|dη ≤ | f ϕ | * | g ϕ |(ξ) = f + ϕ g + ϕ (ξ).
The second point of the lemma is trivial.

Corollary 6.2.1. For any f and g in L 2

x , we have

| (T f g) ϕ | ≤ (T f + g + ) ϕ and | R(f, g) ϕ | ≤ R(f + , g + ) ϕ .
Our main results are the following theorems.

The rst result is the global well-posedness of the limit MHD system (6.1.4), with small analytic data in the horizontal variable. Theorem 6.2.1 (Global well-posedness of the MHD limit system). . Let a > 0 and λ large enough, we assume that for some constant c 0 suciently small independent of ϵ, and for any initial data (u 0 , b 0 )

satisfying ∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| b 0 ∥ B 1 2 ≤ c 0 a < a λ , (6.2.5) 
and the compatibility conditions 1 0 (u 0 , b 0 )dy = 0 are satised. Then the limit system (6.1.4) has a unique global solution (u, b)

satisfying ∥e Rt (u ϕ , b ϕ )∥ L∞ (R + ,B 1 2 ) + ∥e Rt ∂ y (u ϕ , b ϕ )∥ L2 (R + ,B 1 2 ) ≤ C∥e a|Dx| (u 0 , b 0 )∥ B 1 2 , (6.2.6)
where (u ϕ , v ϕ ) will be given by (6.2.3) and R is a constant smaller than Poincaré constant on the domain S = (x, y) ∈ R 2 : 0 < y < 1 .

The second result is the global well-posedness of the scaled system (6.1.3) with small analytic initial data in the horizontal variable x. The main interesting point here is that the smallness of data is independent of ϵ and there holds the global uniform estimate (6.2.8) with respect to the parameter ϵ. Theorem 6.2.2 (Global well-posedness of the scaled system). Let a > 0 and ϵ > 0, there exist a constant c 1 suciently small independent of ϵ, such that for any initial data

(u ϵ 0 , v ϵ 0 , b ϵ 0 , c ϵ 0 ) = (U ϵ 0 , B ϵ 0 ) satisfying ∥e a|Dx| (u ϵ 0 , ϵv ϵ 0 )∥ B 1 2 + ∥e a|Dx| (b ϵ 0 , ϵc ϵ 0 )∥ B 1 2 ≤ c 1 a, (6.2.7) 
then System (6.1.3) has a unique global solution (U ϵ , B ϵ ) so that

∥e Rt (u ϵ φ , ϵv ϵ φ )∥ L∞ (R + ,B 1 2 
)

+ ∥e Rt (b ϵ φ , ϵc ϵ φ )∥ L∞ (R + ,B 1 2 
)

+ ∥e Rt ∂ y (u ϵ φ , ϵv ϵ φ )∥ L2 (R + ,B 1 2 
)

+ ∥e Rt ∂ y (b ϵ φ , ϵc ϵ φ )∥ L2 (R + ,B 1 2 
)

+ ϵ∥e Rt ∂ x (u ϵ φ , ϵv ϵ φ )∥ L2 (R + ,B 1 2 
)

+ ϵ∥e Rt ∂ x (b ϵ φ , ϵc ϵ φ )∥ L2 (R + ,B 1 
2

) (6.2.8) ≤ C ∥e a|Dx| (u ϵ 0 , ϵv ϵ 0 )∥ B 1 2 + ∥e a|Dx| (b ϵ 0 , ϵc ϵ 0 )∥ B 1 2
, where (u ϵ φ , v ϵ φ ) and (b ϵ φ , c ϵ φ ) will given also by (6.2.3).

The main idea to prove the above two theorems is to control the new unknown (u ϕ , b ϕ ) dened by (6.2.3), where u is the horizontal velocity and b is the horizontal component of the uid's magnetic eld. u ϕ and b ϕ is a weighted function of u and b in the dual Fourier variable with an exponential function of (a -λθ(t))|ξ|, which is equivalent to the analyticity of the solution in the horizontal variable. By the classical Cauchy-Kowalewskaya theorem, one expects the radius of the analytically of the solutions to decay in time and so the exponent, which corresponds to the width of the analyticity band, is allowed to vary with time. Using energy estimates on the equation satised by (u ϕ , b ϕ ) and the control of the quantity which describes 'the loss of the analyticity radius', we shall show that 'the analyticity persists globally in time. Consequently, our result is a global Cauchy-Kowalewskaya type theorem. Remark 6.2.2. To obtain a solution of our systems, we use the Friedrich's schemes which allows us to build a sequence of solutions, and then we go to the limit on the sequence of solutions. Indeed, for that we dene our the quantity θ n (t) satisfying the following ordinary dierential equation : 

θn (t) = ∥e (a-λθn(t))|Dx| ∂ y (J n u, J n b)∥ B 1 2 , with (6.2.9)            J n u = |k|<n 1 {|ξ|<n} sin(kπy) 1 2π R e ixξ ûk
         u n (t, x) = 1 2π 1 0 u(t, x, y) sin(n.π.y)dy, b n (t, x) = 1 2π
1 0 b(t, x, y) sin(n.π.y)dy.

Then we achieve the following equation (6.2.12)

∂ t u n -J n ∂ 2 y u n + J n (J n u n ∇J n u n ) + ∇J n p n = J n (J n b n ∇J n b n ), ∂ t b n -J n ∂ 2 y b n + J n (J n u n ∇J n b n ) = J n (J n b n ∇J n u n ),
which is an ordinary dierential equation, the solution is obtained on the interval [0, T ⋆ n [ by Cauchy-Lipschitz. Since we have that J 2 n = J n , we can deduce that J n u n and J n b n are also a solution (6.2.12). The uniqueness of the solution implies that u n = J n u n and b n = J n b n . So we can write (6.2.13)

∂ t u n -J n ∂ 2 y u n + J n (u n ∇u n ) + ∇p n = J n (b n ∇b n ), ∂ t b n -J n ∂ 2 y b n + J n (u n ∇b n ) = J n (b n ∇u n ),
We note that all the analyticity estimates got it in Sections 5.3-5.6 are valid also for this equation. So, (u n ) and (b n ) will have a convergent sub-sequence that we still denote by (u n ) and (b n ), then we have that (u n ) and (b n ) converge to u and b in L ∞ loc (R + , H -s ) for all s ∈]0, 1[, which u and b are the solution of our nal system.

The third result concerns the study of the convergence from the scaled anisotropic MHD system (6.1.3) to the limit system (6.1.4), so in this theorem we proved that the convergence is globally in time.

Theorem 6.2.3 (Convergence to the MHD limit system). Let a > 0 and ϵ > 0, ∃M > 0 and (u ϵ 0 , v ϵ 0 , b ϵ 0 , c ϵ 0 ), satisfying (6.2.7). Let u 0 and b 0 satisfying e a|D|x u 0 ∈ B 

∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| b 0 ∥ B 1 2 ≤ c 2 a 1 + ∥e a|Dx| (u 0 , b 0 )∥ B 3 2
, for some c 2 suciently small independent of ϵ, then we have

∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L∞ t (B 1 2 
)

+ (Φ 1 Θ , ϵΦ 2 Θ )(t) L∞ t (B 1 2 
)

∥∂ y (Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 1 2 
)

+ ϵ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 3 2 
)

+ ∥∂ y (Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t (B 1 2 
)

+ ϵ∥(Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t (B 3 
2

) (6.2.14) ≤ C ∥e a|Dx| (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + ∥e a|Dx| (b ϵ 0 -b 0 , ϵ(c ϵ 0 -c 0 ))∥ B 1 2 + M ϵ .
where

(Ψ 1,ϵ , Ψ 2,ϵ ) = (u ϵ -u, v ϵ -v), (Φ 1,ϵ , Φ 2,ϵ ) = (b ϵ -b, c ϵ -c), (6.2.15) and v 0 is determined from u 0 via ∂ x u + ∂ y v = 0 and v 0 | y=0 = v 0 | y=1 = 0, and (Ψ 1 Θ , ϵΨ 2 Θ ), (Φ 1 Θ , ϵΦ 2 Θ )
will be given by (6.5.6).

Remarque 6.2.1. The main idea to prove the above theorems is to use analytic energy estimates, which are motivated by [START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF] and which originates from [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF].

Global well posedness of the limit system

The goal of this section is to prove the global well posedness of the limit system of the MHD equation, we remark that the local smooth solution of the limit system follow a standard parabolic regularization method similar to the MHD system. First we remark that the Dirichlet boundary condition 

∂ x p = ∂ y u(t, x, 1) -∂ y u(t, x, 0) -∂ x 1 0 (u) 2 (t, x, y)dy + ∂ x 1 0 (b) 2 (t, x, y)dy.
Remark 6.3.1. We consider the equation for the magnetic eld B = (b, c),

∂ t B + U ∇B -B∇U -∂ 2 y B = 0.
Taking the trace of this equation we nd that ∂ 2 y B = 0 on the boundary for a smooth solutions of (6.1.4). Using that B satises the divergence free condition ∂ x b + ∂ y c = 0, we obtain

∂ x (∂ y b) + ∂ 2 y c = 0.
Since ∂ 2 y c = 0 on the boundaries of the domain, then ∂ x (∂ y b) = 0 also on the boundary. This implies that that (∂ y b)(t, x, 0) = m(t) and using the fact that ∂ y b(t, x, y) → 0 as |x| → ∞, then we deduce that (∂ y b)(t, x, 0) = 0. Using a similar argument we obtain (∂ y b)(t, x, 1) = 0. Let (u ϕ , v ϕ , b ϕ , c ϕ ) be dened as in (6.2.3) and (6.2.4). By direct calculations from the limit system (6.1.4), we show that (u ϕ , v ϕ , b ϕ , c ϕ ) verify the following system (6.3.3) Applying the dyadic operator ∆ h q to the system (6.3.3), then taking the L 2 (S) scalar product of the rst and the third equations of the obtained system with ∆ h q u ϕ and ∆ h q b ϕ respectively, we get

                             ∂ t u ϕ + λ θ(t)|D x |u ϕ + (u∂ x u) ϕ + (v∂ y u) ϕ -∂ 2 y u ϕ + ∂ x p ϕ = (b∂ x b) ϕ + (c∂ y b) ϕ , ∂ y p ϕ = 0, ∂ t b ϕ + λ θ(t)|D x |b ϕ + (u∂ x b) ϕ + (v∂ y b) ϕ -∂ 2 y b ϕ = (b∂ x u) ϕ + (c∂ y u) ϕ , ∂ x u ϕ + ∂ y v ϕ = 0, ∂ x b ϕ + ∂ y c ϕ = 0, u ϕ | t=0 = e a|Dx|
∆ h q ∂ t u ϕ , ∆ h q u ϕ L 2 + λ θ(t) |D x |∆ h q u ϕ , ∆ h q u ϕ L 2 -∆ h q ∂ 2 y u ϕ , ∆ h q u ϕ L 2 + ∆ h q ∂ x p ϕ , ∆ h q u ϕ L 2 = -∆ h q (u∂ x u) ϕ , ∆ h q u ϕ ) L 2 -∆ h q (v∂ y u) ϕ , ∆ h q u ϕ L 2 + ∆ h q (b∂ x b + c∂ y b) ϕ , ∆ h q u ϕ ,
and

∆ h q ∂ t b ϕ , ∆ h q b ϕ L 2 + λ θ(t) |D x |∆ h q b ϕ , ∆ h q b ϕ L 2 -∆ h q ∂ 2 y b ϕ , ∆ h q b ϕ L 2 = -∆ h q (u∂ x b) ϕ , ∆ h q b ϕ L 2 -∆ h q (v∂ y b) ϕ , ∆ h q b ϕ L 2 + ∆ h q (b∂ x u + c∂ y u) ϕ , ∆ h q b ϕ .
Thanks to the Dirichlet boundary condition (u ϕ | y=0 = u ϕ | y=1 = 0) and due to the free divergence of U = (u, v) (it mean that div U ϕ = ∂ x u ϕ + ∂ y v ϕ = 0 ), we get by using the integration by part that

∆ h q ∂ x p ϕ , ∆ h q u ϕ L 2 = -∆ h q p ϕ , ∆ h q ∂ x u ϕ L 2 = ∆ h q p ϕ , ∆ h q ∂ y v ϕ L 2 = -∆ h q ∂ y p ϕ , ∆ h q v ϕ L 2 = 0. ( because ∂ y p ϕ = 0)
We recall that we have by integrating by part that

∆ h q ∂ 2 y u ϕ , ∆ h q u ϕ L 2 = -∆ h q ∂ y u ϕ , ∆ h q ∂ y u ϕ L 2 = -∆ h q ∂ y u ϕ 2 L 2 , ∆ h q ∂ 2 y b ϕ , ∆ h q b ϕ L 2 = -∆ h q ∂ y b ϕ , ∆ h q ∂ y b ϕ L 2 = -∆ h q ∂ y b ϕ 2 L 2 .
Replacing this in the obtained estimate, we get (6.3.4)

1 2 ∂ ∂t ∥∆ h q u ϕ (t)∥ 2 L 2 + λ θ(t) |D x | 1 2 ∆ h q u ϕ (t) 2 L 2 + ∥∆ h q ∂ y u ϕ (t)∥ 2 L 2 = -∆ h q (u∂ x u) ϕ , ∆ h q u ϕ ) L 2 -∆ h q (v∂ y u) ϕ , ∆ h q u ϕ L 2 + ∆ h q (b∂ x b) ϕ , ∆ h q u ϕ + ∆ h q (c∂ y b) ϕ , ∆ h q u ϕ ,
and (6.3.5)

1 2 ∂ ∂t ∥∆ h q b ϕ (t)∥ 2 L 2 + λ θ(t) |D x | 1 2 ∆ h q b ϕ (t) 2 L 2 + ∥∆ h q ∂ y b ϕ (t)∥ 2 L 2 = -∆ h q (u∂ x b) ϕ , ∆ h q b ϕ L 2 -∆ h q (v∂ y b) ϕ , ∆ h q b ϕ L 2 + ∆ h q (b∂ x u) ϕ , ∆ h q b ϕ + ∆ h q (c∂ y u) ϕ , ∆ h q b ϕ .
Multiplying (6.3.4) and (6.3.5) with e 2Rt , and integrating with respect to the time variable, we have (6.3.6)

1 2 e Rt ∆ h q u ϕ 2 L ∞ t (L 2 ) + λ t 0 θ(t ′ ) e Rt ′ |D x | 1 2 ∆ h q u ϕ (t ′ ) 2 L 2 dt ′ + e Rt ∆ h q ∂ y u ϕ 2 L 2 t (L 2 ) = R e Rt ∆ h q u ϕ 2 L 2 t (L 2 ) + 1 2 ∆ h q e a|Dx| u 0 2 L 2 + I 1 + I 2 + I 3 + I 4 ,
and (6.3.7)

1 2 e Rt ∆ h q b ϕ 2 L ∞ t (L 2 ) + λ t 0 θ(t ′ ) e Rt |D x | 1 2 ∆ h q b ϕ (t ′ ) 2 L 2 dt ′ + e Rt ∆ h q ∂ y b ϕ 2 L 2 t (L 2 ) = R e Rt ∆ h q b ϕ 2 L 2 t (L 2 ) + 1 2 ∆ h q e a|Dx| b 0 2 L 2 + D 1 + D 2 + D 3 + D 4 .
We begin by observing that the terms R e Rt ∆ h q u ϕ 2

L 2 t (L 2 ) and R e Rt ∆ h q b ϕ 2 L 2 t (L 2 )
can be absorbed by the dissipation e Rt ∆ h q ∂ y u ϕ

2 L 2 t (L 2 ) and e Rt ∆ h q ∂ y b ϕ 2 L 2 t (L 2 )
. Choosing R smaller than k 8 , where k is the Poincaré constant that comes out from the inequality k∥u ϕ ∥ L 2 ≤ ∥∂ y u ϕ ∥ L 2 , we can achieve that (6.3.8)

1 2 e Rt ∆ h q u ϕ 2 L ∞ t (L 2 ) + λ t 0 θ(t ′ ) e Rt ′ |D x | 1 2 ∆ h q u ϕ (t ′ ) 2 L 2 dt ′ + 1 2 e Rt ∆ h q ∂ y u ϕ 2 L 2 t (L 2 ) ≤ C ∆ h q e a|Dx| u 0 2 L 2 + I 1 + I 2 + I 3 + I 4 ,
and (6.3.9)

1 2 e Rt ∆ h q b ϕ 2 L ∞ t (L 2 ) + λ t 0 θ(t ′ ) e Rt |D x | 1 2 ∆ h q b ϕ (t ′ ) 2 L 2 dt ′ + 1 2 e Rt ∆ h q ∂ y b ϕ 2 L 2 t (L 2 ) ≤ C ∆ h q e a|Dx| b 0 2 L 2 + D 1 + D 2 + D 3 + D 4 ,
Next, by using the technical Lemmas in the subsection 6.3.1, yield that

|I 1 | = t 0 e Rt ′ ∆ h q (u∂ x u) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
,

|I 2 | = t 0 e Rt ′ ∆ h q (v∂ y u) ϕ , e Rt ′ ∆ h q u ϕ dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
,

|I 3 | = t 0 e Rt ′ ∆ h q (b∂ x b) ϕ , e Rt ′ ∆ h q u ϕ dt ′ ≤ Cd 2 q 2 -2qs e Rt u ϕ L2 t, θ(t) (B s+ 1 2 ) e Rt b ϕ L2 t, θ(t) (B s+ 1 2 )
,

|I 4 | = t 0 e Rt ′ ∆ h q (c∂ y b) ϕ , e Rt ′ ∆ h q u ϕ dt ′ ≤ Cd 2 q 2 -2qs e Rt u ϕ L2 t, θ(t) (B s+ 1 2 ) e Rt b ϕ L2 t, θ(t) (B s+ 1 2 )
, and

|D 1 | = t 0 e Rt ′ ∆ h q (u∂ x b) ϕ , e Rt ′ ∆ h q b ϕ dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt b ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
,

|D 2 | = t 0 e Rt ′ ∆ h q (v∂ y b) ϕ , e Rt ′ ∆ h q b ϕ dt ′ ≤ Cd 2 q 2 -2qs e Rt u ϕ L2 t(, θ(t)) (B s+ 1 2 ) e Rt b ϕ L2 t(, θ(t)) (B s+ 1 2 )
,

|D 3 | = t 0 e Rt ′ ∆ h q (b∂ x u) ϕ , e Rt ′ ∆ h q b ϕ dt ′ ≤ Cd 2 q 2 -2qs e Rt u ϕ L2 t, θ(t) (B s+ 1 2 ) e Rt b ϕ L2 t, θ(t) (B s+ 1 2 )
,

|D 4 | = t 0 e Rt ′ ∆ h q (c∂ y u) ϕ , e Rt ′ ∆ h q b ϕ dt ′ ≤ Cd 2 q 2 -2qs e Rt b ϕ 2 L2 t, θ(t) (B s+ 1 
2 ) .

Multiplying (6.3.8) and (6.3.9) by 2 2qs ( for s ∈]0, 1[), and taking square root of the resulting inequality, and nally by summing up the resulting ones over Z, we obtain (6.3.10)

e Rt u ϕ L∞ t (B s ) + √ 2λ e Rt u ϕ L2 t, θ(t) (B s+ 1 2 ) + e Rt ∂ y u ϕ L2 t (B s )
≤ C e a|Dx| u 0

B s + ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + e Rt (u, b) ϕ L2 t, θ(t) (B s+ 1 2 )
, and (6.3.11)

e Rt b ϕ L∞ t (B s ) + √ 2λ e Rt b ϕ L2 t, θ(t) (B s+ 1 2 ) + e Rt ∂ y b ϕ L2 t (B s ) ≤ C e a|Dx| b 0 B s + ∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + ∥e Rt (u ϕ , b ϕ )∥ L2 t, θ(t) (B s+ 1 2 )
.

Thus, choosing (6.3.12)

C ≥ max 4, 1 2R ,
taking the sum of (6.3.10) and (6.3.11), we have

(6.3.13) e Rt (u ϕ , b ϕ ) L∞ t (B s ) + √ 2λ e Rt (u ϕ , b ϕ ) L2 t, θ(t) (B s+ 1 2 ) + e Rt ∂ y u ϕ L2 t (B s ) + e Rt ∂ y b ϕ L2 t (B s ) ≤ C e a|Dx| (u 0 , b 0 ) B s + 2C e Rt (u ϕ , b ϕ ) L2 t, θ(t) (B s+ 1 2 )
.

We set (6.3.14)

T ⋆ ≜ sup t > 0 : ∥u ϕ ∥ B 1 2 + ∥b ϕ ∥ B 1 2 ≤ 1 2C 2 and θ(t) ≤ a λ .
We choose initial data such that

C ∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| b 0 ∥ B 1 2 < min 1 2C 2 , a 2λ
, combining with the fact that θ(0) = 0, we deduce that T ⋆ > 0. We choose now √ 2λ ≥ 2C. For any 0 < t < T ⋆ , we deduce from (6.3.13) that

e Rt (u ϕ , b ϕ ) L∞ t (B s ) + e Rt ∂ y (u ϕ , b ϕ ) L2 t (B s ) ≤ C e a|Dx| (u 0 , b 0 ) B s . (6.3.15)
We deduce from (6.3.15), using (6.3.12), that, for any 0 < t < T ⋆ ,

∥u ϕ ∥ B 1 2 ≤ ∥e Rt (u ϕ , b ϕ ) ∥ L∞ t (B 1 2 ) 
≤ C e a|Dx| (u 0 , b 0 )

B 1 2 ≤ C ∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| b 0 ∥ B 1 2 < 1 2C 2 .
Now, we recall that we already dened θ(t

) = ∥∂ y (u ϕ , b ϕ )(t)∥ B 1 2
with θ(0) = 0. Then, for any 0 < t < T ⋆ , Inequality (6.3.15) yields

θ(t) = t 0 ∥∂ y (u ϕ , b ϕ )(t)∥ B 1 2 dt ′ ≤ t 0 e -Rt ′ ∥e Rt ′ ∂ y (u ϕ , b ϕ )(t ′ )∥ B 1 2 dt ′ ≤ t 0 e -2Rt ′ dt ′ 1 2 t 0 ∥e Rt ′ ∂ y (u ϕ , b ϕ )(t ′ )∥ 2 B 1 2 dt ′ 1 2 ≤ C ∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| b 0 ∥ B 1 2 < a 2λ .
A continuity argument implies that T ⋆ = +∞ and we have (6.3.15) is valid for any t ∈ R + .

In what follows, we present a proposition states the propagation for any B s ( where 0 < s ≤ 5

2

)
regularity on the solution of the hydrostatic MHD equations (6.1.4), and also the estimate of the term

∥∆ h q (∂ t u) ϕ ∥ L 2
. This proposition will be useful in the last section when we prove the global convergence of the Theorem 6. for some c 1 suciently small, then there exists a positive constant C so that for λ ≥ C 2 (1+∥e a|Dx| u 0 ∥

B 3 2 + ∥e a|Dx| b 0 ∥ B 3 2 ), and 1 ≤ s ≤ 5 2 , one has e Rt (u ϕ , b ϕ ) L∞ (R + ,B s ) + e Rt ∂ y (u ϕ , b ϕ ) L2 (R + ,B s ) ≤ C e a|Dx| (u 0 , b 0 ) B s , (6.3.17) and ∥e Rt (∂ t u) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (∂ t b) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt ∂ y (u ϕ , b ϕ )∥ L∞ t (B 3 
2 )

(6.3.18) ≤ C ∥e a|Dx| ∂ y (u 0 , b 0 )∥ B 3 2 + ∥e a|Dx| (u 0 , b 0 )∥ B 5 2
.

Proof. We start by giving proof of (6.3.17). In the same way, by applying the dyadic operator to the system (6.3.3) and taking the L 2 inner product, then integrating with respect to the time variable, we have (6.3.19)

1 2 e Rt ∆ h q u ϕ (t) 2 L ∞ t (L 2 ) + λ t 0 θ(t ′ ) e Rt ′ |D x | 1 2 ∆ h q u ϕ 2 L 2 dt ′ + e Rt ∆ h q ∂ y u ϕ (t) 2 L 2 t (L 2 ) = R e Rt ∆ h q u ϕ (t) 2 L 2 t (L 2 ) + ∆ h q e a|Dx| u 0 2 L 2 + I 1 + I 2 ,
and (6.3.20)

1 2 e Rt ∆ h q b ϕ (t) 2 L ∞ t (L 2 ) + λ t 0 θ(t ′ ) e Rt |D x | 1 2 ∆ h q b ϕ 2 L 2 dt ′ + e Rt ∆ h q ∂ 2 y b ϕ (t) 2 L 2 t (L 2 ) = R e Rt ∆ h q b ϕ (t) 2 L 2 t (L 2 ) + ∆ h q e a|Dx| b 0 2 L 2 + I 3 + I 4 .
To absorb the terms R e Rt ∆ h q u ϕ (t)

2 L 2 t (L 2 )
and R e Rt ∆ h q b ϕ (t) 

e Rt ∆ h q u ϕ (t) 2 L ∞ t (L 2 ) + 2λ t 0 θ(t ′ ) e Rt ′ |D x | 1 2 ∆ h q u ϕ 2 L 2 dt ′ + e Rt ∆ h q ∂ y u ϕ (t) 2 L 2 t (L 2 ) ≤ C ∆ h q e a|Dx| u 0 2 L 2 + I 1 + I 2 ,
and (6.3.22)

e Rt ∆ h q b ϕ (t) 2 L ∞ t (L 2 ) + 2λ t 0 θ(t ′ ) e Rt |D x | 1 2 ∆ h q b ϕ 2 L 2 dt ′ + e Rt ∆ h q ∂ 2 y b ϕ (t) 2 L 2 t (L 2 ) ≤ C ∆ h q e a|Dx| b 0 2 L 2 + I 3 + I 4 .
where

|I 1 | = t 0 e Rt ′ ∆ h q (u∂ x u + v∂ y u) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ , |I 2 | = t 0 e Rt ′ ∆ h q (b∂ x b + c∂ y b) ϕ , e Rt ′ ∆ h q u ϕ dt ′ , |I 3 | = t 0 e Rt ′ ∆ h q (u∂ x b + v∂ y b) ϕ , e Rt ′ ∆ h q b ϕ dt ′ , |I 4 | = t 0 e Rt ′ ∆ h q (b∂ x u + c∂ y u) ϕ , e Rt ′ ∆ h q b ϕ dt ′ .
All the estimates obtained in the proof of the theorem 6.2.1, are true when s ∈]0, 1[. We need now give the proof of all this estimate when our s > 0. We rst remark from the proof of the lemma 6.3.1, that for any s > 0, we have

t 0 e Rt ′ ∆ h q (T h u ∂ x u + R h (u, ∂ x u)) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≤ C2 -2qs d 2 q ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
, we only need to prove that

t 0 e Rt ′ ∆ h q (T h ∂xu u) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≤ C2 -2qs d 2 q ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
, for s > 0.

Indeed, we use Bernstein lemma 6.2.1 we get

∥∆ h q u ϕ (t ′ )∥ L ∞ ≲ 2 q 2 ∥∆ h q u ϕ (t ′ )∥ L 2 h (L ∞ v ) , the inclusion H 1 y → L ∞ give ∥∆ h q u ϕ (t ′ )∥ L 2 h (L ∞ v ) ≲ ∥∆ h q u ϕ (t ′ )∥ 1 2 L 2 ∥∆ h q ∂ y u ϕ (t ′ )∥ 1 2 L 2
and the Poincaré inequality on the interval {0 < y < 1} on u (we have that u = 0 when y = 0) allows us to have

∥∆ h q ∂ x u ϕ (t ′ )∥ L ∞ ≲ d q (u ϕ )2 q ′ ∥∂ y u ϕ (t ′ )∥ B 1 2 , (6.3.23)
we infer,

t 0 e Rt ′ ∆ h q (T h ∂xu u) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ x u ϕ ∥ L ∞ ∥∆ h q ′ u ϕ ∥ L 2 ∥∆ h q u ϕ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ t 0 e 2Rt ′ ∥∂ y u ϕ ∥ B 1 2 ∥∆ h q ′ u ϕ ∥ L 2 ∥∆ h q u ϕ ∥ L 2 dt ′ ≲ 2 -2qs d 2 q ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
.

While it follows from the proof of Lemma 6.3.2 that

t 0 e Rt ′ ∆ h q (T h ∂yu v + R h (v, ∂ y u)) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≤ C2 -2qs d 2 q ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
,

Based at the proof of Lemma 6.3.2 (Estimate (6.3.39)), we have

∥∆ h q v ϕ (t)∥ L ∞ ≤ d q 2 q 2 ∥u ϕ ∥ 1 2 B 3 2 ∥∂ y u ϕ ∥ 1 2 B 1 2
, we replace in the inequality of the term T h v ∂ y u, we obtain

t 0 e Rt ′ ∆ h q (T h v ∂ y u) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 v ϕ ∥ L ∞ ∥∆ h q ′ ∂ y u ϕ ∥ L 2 ∥∆ h q u ϕ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ 2 t 0 e 2Rt ′ ∥u ϕ ∥ 1 2 B 3 2 ∥∂ y u ϕ ∥ 1 2 B 1 2 ∥∆ h q ′ ∂ y u ϕ ∥ L 2 ∥∆ h q u ϕ ∥ L 2 dt ′ ≲ 2 -2qs d 2 q ∥u ϕ ∥ 1 2 L∞ t (B 3 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B s ) ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

As a result, it comes out

t 0 e Rt ′ ∆ h q (u∂ x u + v∂ y u) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≲ 2 -2qs d 2 q ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) × ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + ∥u ϕ ∥ 1 2 L∞ t (B 3 
2

) ∥e Rt ∂ y u ϕ ∥ L2 t (B s ) .
Now, we will get the estimate of the second term I 2 . In the same way, we remark from the proof of Lemma 6.3.1 that we only need to prove

t 0 e Rt ′ ∆ h q (T h ∂xb b) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≤ C2 -2qs d 2 q ∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
, for s > 0.

So, in views of (6.3.23), we infer

t 0 e Rt ′ ∆ h q (T h ∂xb b) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ x b ϕ ∥ L ∞ ∥∆ h q ′ b ϕ ∥ L 2 ∥∆ h q u ϕ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ t 0 e 2Rt ′ ∥∂ y b ϕ ∥ B 1 2 ∥∆ h q ′ b ϕ ∥ L 2 ∥∆ h q u ϕ ∥ L 2 dt ′ ≲ 2 -2qs d 2 q ∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Based on the proof of Lemme 6.3.2 (Estimate (6.3.39)), we have

∥∆ h q c ϕ (t)∥ L ∞ ≤ d q 2 q 2 ∥b ϕ ∥ 1 2 B 3 2 ∥∂ y b ϕ ∥ 1 2 B 1 2
, so that there holds

t 0 e Rt ′ ∆ h q (T h c ∂ y b) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 c ϕ ∥ L ∞ ∥∆ h q ′ ∂ y b ϕ ∥ L 2 ∥∆ h q u ϕ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ 2 t 0 e 2Rt ′ ∥b ϕ ∥ 1 2 B 3 2 ∥∂ y b ϕ ∥ 1 2 B 1 2 ∥∆ h q ′ ∂ y b ϕ ∥ L 2 ∥∆ h q u ϕ ∥ L 2 dt ′ ≲ 2 -2qs d 2 q ∥b ϕ ∥ 1 2 L∞ t (B 3 
2

) ∥e Rt ∂ y b ϕ ∥ L2 t (B s ) ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

As a result, it comes out

t 0 e Rt ′ ∆ h q (b∂ x b + c∂ y b) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≲ 2 -2qs d 2 q ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) × ∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + ∥b ϕ ∥ 1 2 L∞ t (B 3 2 
)

∥e Rt ∂ y b ϕ ∥ L2 t (B s ) .
We do the same thing to estimate I 3 and I 4 , then we have

I 3 + I 4 ≲ 2 -2qs d 2 q ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) × ∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + ∥b ϕ ∥ 1 2 L∞ t (B 3 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B s ) + ∥u ϕ ∥ 1 2 L∞ t (B 3 2 ) ∥e Rt ∂ y b ϕ ∥ L2 t (B s ) .
Applying Young's inequality yields

∥b ϕ ∥ 1 2 L∞ t (B 3 
2

) ∥e Rt ∂ y (b ϕ , u ϕ )∥ L2 t (B s ) ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ≤ C∥b ϕ ∥ L∞ t (B 3 
2

) ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 ) + 1 10 ∥e Rt ∂ y (b ϕ , u ϕ )∥ 2 L2 t (B s ) ,
and

∥u ϕ ∥ 1 2 L∞ t (B 3 
2

) ∥e Rt ∂ y (u ϕ , b ϕ )∥ L2 t (B s ) ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ≤ C∥u ϕ ∥ L∞ t (B 3 2 ) ∥e Rt u ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 ) + 1 10 ∥e Rt ∂ y (b ϕ , u ϕ )∥ 2 L2 t (B s ) .
So we replace all the results obtained in (6.3.21) and (6.3.22) and taking the square-root and multi-plying by 2 qs , then summing with respect to q ∈ Z, we obtain

e Rt u ϕ L∞ t (B s ) + √ 2λ e Rt u ϕ L2 t, θ(t) (B s+ 1 2 ) + e Rt ∂ y u ϕ L2 t (B s ) (6.3.24)
≤ C e a|Dx| u 0

B s + C∥e Rt (u ϕ , b ϕ )∥ L2 t, θ(t) (B s+ 1 2 ) (6.3.25) + C∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥b ϕ ∥ 1 2 L∞ t (B 3 2 
)

+ ∥u ϕ ∥ 1 2 L∞ t (B 3 2 
)

+ 1 10 ∥e Rt ∂ y (u ϕ , b ϕ )∥ L2 t (B s ) ,
and

e Rt b ϕ L∞ t (B s ) + √ 2λ e Rt b ϕ L2 t, θ(t) (B s+ 1 2 ) + e Rt ∂ y b ϕ L2 t (B s ) (6.3.26)
≤ C e a|Dx| b 0

B s + C∥e Rt (u ϕ , b ϕ )∥ L2 t, θ(t) (B s+ 1 2 ) (6.3.27) + C∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥u ϕ ∥ 1 2 L∞ t (B 3 2 
)

+ ∥b ϕ ∥ 1 2 L∞ t (B 3 2 
)

+ 1 10 ∥e Rt ∂ y (u ϕ , b ϕ )∥ L2 t (B s ) .
We take the sum of (6.3.24) and (6.3.26), we have

e Rt (u ϕ , b ϕ ) L∞ t (B s ) + √ 2λ e Rt (u ϕ , b ϕ ) L2 t, θ(t) (B s+ 1 2 ) + e Rt ∂ y u ϕ L2 t (B s ) ≤ C e a|Dx| (u 0 , b 0 ) B s + C∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + C∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) + C∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥u ϕ ∥ 1 2 L∞ t (B 3 2 
)

+ ∥b ϕ ∥ 1 2 L∞ t (B 3 2 
)

+ 1 5 ∥e Rt ∂ y (u ϕ , b ϕ )∥ L2 t (B s ) .
Therefore, if we take (6.3.28)

√ 2λ ≥ 2C 1 + ∥u ϕ ∥ 1 2 L∞ t (B 3 2 
)

+ ∥b ϕ ∥ 1 2 L∞ t (B 3 
2 )

,

then we obtain e Rt (u ϕ , b ϕ ) L∞ t (B s ) + e Rt ∂ y (u ϕ , b ϕ ) L2 t (B s ) ≤ C e a|Dx| (u 0 , b 0 ) B s . (6.3.29)
In particular Estimate (6.3.29) implies that under the condition (6.3.28), there holds

∥u ϕ ∥ L∞ t (B 3 2 
)

+ ∥b ϕ ∥ L∞ t (B 3 
2

)
≤ C e a|Dx| (u 0 , b 0 )

B 3 2 , then by taking λ ≥ C(1+ e a|Dx| (u 0 , b 0 ) B 3 
2 ), (6.3.28) veried. So under the condition (6.3.16), we have that (6.3.28) holds, and then (6.3.29) is valid for any t > 0. This completes the proof of the proposition. Now we still have to prove the second estimate (6.3.18). For that, we apply the dyadic operator ∆ h q to (6.3.3) and taking the L 2 inner product of the resulting equation with ∆ h q (∂ t u) ϕ and ∆ h q (∂ t b) ϕ . That yields

∆ h q (∂ t u) ϕ , ∆ h q (∂ t u) ϕ L 2 -∆ h q ∂ 2 y u ϕ , ∆ h q (∂ t u) ϕ L 2 + ∆ h q ∂ x p ϕ , ∆ h q (∂ t u) ϕ L 2 = -∆ h q (u∂ x u) ϕ , ∆ h q (∂ t u) ϕ L 2 -∆ h q (v∂ y u) ϕ , ∆ h q (∂ t u) ϕ L 2 + ∆ h q (b∂ x b + c∂ y b) ϕ , ∆ h q (∂ t u) ϕ ,
and

∆ h q (∂ t b) ϕ , ∆ h q (∂ t b) ϕ L 2 -∆ h q ∂ 2 y b ϕ , ∆ h q (∂ t b) ϕ L 2 = -∆ h q (u∂ x b) ϕ , ∆ h q (∂ t b) ϕ L 2 -∆ h q (v∂ y b) ϕ , ∆ h q (∂ t b) ϕ L 2 + ∆ h q (b∂ x u + c∂ y u) ϕ , ∆ h q (∂ t b) ϕ . The fact that (∂ t u) ϕ = ∂ t u ϕ + λ θ(t)|D x |u ϕ implies ∆ h q ∂ 2 y u ϕ , ∆ h q (∂ t u) ϕ L 2 = - 1 2 d dt ∥∆ h q ∂ y u ϕ ∥ 2 L 2 + λ θ(t)2 q ∥∆ h q ∂ y u ϕ ∥ 2 L 2 , ∆ h q ∂ 2 y b ϕ , ∆ h q (∂ t b) ϕ L 2 = - 1 2 d dt ∥∆ h q ∂ y b ϕ ∥ 2 L 2 + λ θ(t)2 q ∥∆ h q ∂ y b ϕ ∥ 2 L 2 ,
from which, we deduce that

∥∆ h q (∂ t u) ϕ ∥ 2 L 2 + 1 2 d dt ∥∆ h q ∂ y u ϕ ∥ 2 L 2 ≤ I 1 + I 2 + I 3 ,
and

∥∆ h q (∂ t b) ϕ ∥ 2 L 2 + 1 2 d dt ∥∆ h q ∂ y b ϕ ∥ 2 L 2 ≤ D 1 + D 2 ,
where

I 1 = ∆ h q (u∂ x u + b∂ x b) ϕ , ∆ h q (∂ t u) ϕ L 2 , I 2 = ∆ h q (v∂ y u + c∂ y b) ϕ , ∆ h q (∂ t u) ϕ L 2 , I 3 = ∆ h q ∂ x p ϕ , ∆ h q (∂ t u) ϕ L 2 , D 1 = ∆ h q (u∂ x b + b∂ x u) ϕ , ∆ h q (∂ t b) ϕ L 2 , D 2 = ∆ h q (v∂ y b + c∂ y u) ϕ , ∆ h q (∂ t b) ϕ L 2 .
Since ∂ x u + ∂ y v = 0, using (6.3.1) and integrating by parts, we nd

I 3 = ∆ h q ∂ x p ϕ , ∆ h q (∂ t u) ϕ L 2 = ∆ h q ∂ x p ϕ , ∆ h q (∂ t u ϕ + λ θ(t)|D x |u ϕ ) L 2 = ∆ h q p ϕ , ∆ h q (∂ t ∂ x u ϕ + λ θ(t)|D x |∂ x u ϕ ) L 2 = ∆ h q p ϕ , ∆ h q (∂ t ∂ y v ϕ + λ θ(t)|D x |∂ y v ϕ ) L 2 = ∆ h q ∂ y p ϕ , ∆ h q (∂ t v) ϕ L 2 = 0 (because ∂ y p = 0).
For I 1 , I 2 , D 1 and D 2 we have

I 1 = ∆ h q (u∂ x u + b∂ x b) ϕ , ∆ h q (∂ t u) ϕ L 2 ≤ ∆ h q (u∂ x u) ϕ , ∆ h q (∂ t u) ϕ L 2 + ∆ h q (b∂ x b) ϕ , ∆ h q (∂ t u) ϕ L 2 ≤ ∥∆ h q (u∂ x u) ϕ ∥ 2 L 2 + ∥∆ h q (b∂ x b) ϕ ∥ 2 L 2 + 1 10 ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 ,
and

I 2 = ∆ h q (v∂ y u + c∂ y b) ϕ , ∆ h q (∂ t u) ϕ L 2 ≤ ∥∆ h q (v∂ y u) ϕ ∥ 2 L 2 + ∥∆ h q (c∂ y b) ϕ ∥ 2 L 2 + 1 10 ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 ,
and

D 1 = ∆ h q (u∂ x b + b∂ x u) ϕ , ∆ h q (∂ t b) ϕ L 2 ≤ ∥∆ h q (u∂ x b) ϕ ∥ 2 L 2 + ∥∆ h q (b∂ x u) ϕ ∥ 2 L 2 + 1 10 ∥∆ h q (∂ t b) ϕ ∥ 2 L 2 ,
and

D 2 = ∆ h q (v∂ y b + c∂ y u) ϕ , ∆ h q (∂ t b) ϕ L 2 ≤ ∥∆ h q (v∂ y b) ϕ ∥ 2 L 2 + ∥∆ h q (c∂ y u) ϕ ∥ 2 L 2 + 1 10 ∥∆ h q (∂ t b) ϕ ∥ 2 L 2 .
Then, we deduce that

∥∆ h q (∂ t u) ϕ ∥ 2 L 2 + d dt ∥∆ h q ∂ y (u ϕ , b ϕ )∥ 2 L 2 + ∥∆ h q (∂ t b) ϕ ∥ 2 L 2 ≤ C ∥∆ h q (u∂ x u) ϕ ∥ 2 L 2 + ∥∆ h q (v∂ y u) ϕ ∥ 2 L 2 + ∥∆ h q (b∂ x b) ϕ ∥ 2 L 2 + ∥∆ h q (c∂ y b) ϕ ∥ 2 L 2 + ∥∆ h q (u∂ x b) ϕ ∥ 2 L 2 + ∥∆ h q (b∂ x u) ϕ ∥ 2 L 2 + ∥∆ h q (c∂ y u) ϕ ∥ 2 L 2 + ∥∆ h q (b∂ x u) ϕ ∥ 2 L 2 .
Multiplying the result by e 2Rt and integrating over [0, t], we get

∥e Rt ∆ h q (∂ t u) ϕ ∥ 2 L 2 t (L 2 ) +∥e Rt ∆ h q (∂ t b) ϕ ∥ 2 L 2 t (L 2 ) +∥e Rt ∆ h q ∂ y (u ϕ , b ϕ )∥ 2 L ∞ t (L 2 ) ≤ C ∥∆ h q ∂ y e a|Dx| (u 0 , b 0 )∥ 2 L 2 + ∥e Rt ∆ h q (u∂ x u) ϕ ∥ 2 L 2 t (L 2 ) + ∥e Rt ∆ h q (v∂ y u) ϕ ∥ 2 L 2 t (L 2 ) + ∥e Rt ∆ h q (b∂ x b) ϕ ∥ 2 L 2 t (L 2 ) + ∥e Rt ∆ h q (c∂ y b) ϕ ∥ 2 L 2 t (L 2 ) + ∥e Rt ∆ h q (u∂ x b) ϕ ∥ 2 L 2 t (L 2 ) + ∥e Rt ∆ h q (v∂ y b) ϕ ∥ 2 L 2 t (L 2 ) + ∥e Rt ∆ h q (b∂ x u) ϕ ∥ 2 L 2 t (L 2 ) + ∥e Rt ∆ h q (c∂ y u) ϕ ∥ 2 L 2 t (L 2 ) .
Multiplying the above inequality by 2 3q , then taking the square root of the resulting estimate, and nally summing up the obtained equations with respect to q ∈ Z, we obtain (6.3.30)

∥e Rt (∂ t u) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (∂ t b) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt ∂ y (u ϕ , b ϕ )∥ L∞ t (B 3 2 
)

≤ C ∥∂ y e a|Dx| (u 0 , b 0 )∥ B 3 2 + ∥e Rt (u∂ x u) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (v∂ y u) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (b∂ x b) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (c∂ y b) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (u∂ x b) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (v∂ y b) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (b∂ x u) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (c∂ y u) ϕ ∥ L2 t (B 3 2 ) 
. .

Next, it follows from the law of product in anisotropic Besov spaces and Poincaré inequality that

∥e Rt (u∂ x u) ϕ ∥ L2 t (B 3 2 ) ≤ ∥u ϕ ∥ L∞ (B 1 2 ) ∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 ) 
,

∥e Rt (b∂ x b) ϕ ∥ L2 t (B 3 2 ) ≤ ∥b ϕ ∥ L∞ (B 1 2 ) ∥e Rt ∂ y b ϕ ∥ L2 t (B 5 2 ) 
,

∥e Rt (v∂ y u) ϕ ∥ L2 t (B 3 2 ) ≤ ∥u ϕ ∥ L∞ (B 1 2 ) ∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 
)

+ ∥u ϕ ∥ L∞ (B 5 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B 1 2 ) 
,

∥e Rt (c∂ y b) ϕ ∥ L2 t (B 3 2 ) ≤ ∥b ϕ ∥ L∞ (B 1 2 ) ∥e Rt ∂ y b ϕ ∥ L2 t (B 5 2 
)

+ ∥b ϕ ∥ L∞ (B 5 
2

) ∥e Rt ∂ y b ϕ ∥ L2 t (B 1 2 ) 
.

and ∥e Rt (u∂ x b) ϕ ∥ L2 t (B 3 2 
)

+ ∥e Rt (b∂ x u) ϕ ∥ L2 t (B 3 
2

) ≤ ∥u ϕ ∥ L∞ (B 1 2 ) ∥e Rt ∂ y b ϕ ∥ L2 t (B 5 
2 )

+ ∥b ϕ ∥ L∞ (B 1 2 ) ∥e Rt ∂ y u ϕ ∥ L2 t (B 5 
2 )

, and

∥e Rt (v∂ y b) ϕ ∥ L2 t (B 3 
2 )

+ ∥e Rt (c∂ y u) ϕ ∥ L2 t (B 3 2 ) ≤ ∥u ϕ ∥ L∞ (B 1 2 ) ∥e Rt ∂ y b ϕ ∥ L2 t (B 5 
2 )

+ ∥u ϕ ∥ L∞ (B 5 
2

) ∥e Rt ∂ y b ϕ ∥ L2 t (B 1 2 
)

+ ∥b ϕ ∥ L∞ (B 1 2 ) ∥e Rt ∂ y u ϕ ∥ L2 t (B 5 2 
)

+ ∥b ϕ ∥ L∞ (B 5 2 
)

∥e Rt ∂ y u ϕ ∥ L2 t (B 1 2 ) 
.

Inserting the above estimates into (6.3.30) and then using the smallness condition ∥u ϕ ∥

B 1 2 + ∥b ϕ ∥ B 1 2 ≤ 1 2C 2 , we nally obtain ∥e Rt (∂ t u) ϕ ∥ L2 t (B 3 2 ) + ∥e Rt (∂ t b) ϕ ∥ L2 t (B 3 2 ) + ∥e Rt ∂ y (u ϕ , b ϕ )∥ L∞ t (B 3 2 ) ≤ C ∥e a|Dx| ∂ y (u 0 , b 0 )∥ B 3 2 + ∥e a|Dx| u 0 ∥ B 5 2 + ∥e a|Dx| b 0 ∥ B 5 2 .
this complete the proof of Proposition 6.3.1. . There exists C ≥ 1 such that, for any t > 0, ϕ(t, ξ) > 0 and for any B, C ∈ L2 t, θ(t) (B s+ 1 2 ), we have

Technicals lemmas

t 0 e Rt ′ ∆ h q (A∂ x B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
. (6.3.31) Proof. We dene I the integral given by

I(t) = t 0 e Rt ′ ∆ h q (A∂ x B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ .
As in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF], using Bony's homogeneous decomposition of A∂ x B into para-products in the horizontal variable and remainders as in Denition of a tempered distribution, we can write

A∂ x B = T h A ∂ x B + T h ∂xB A + R h (A, ∂ x B),
where,

T A ∂ x B = q∈Z S h q-1 A∆ h q ∂ x B and R h (A, ∂ x B) = |q ′ -q|≤1 ∆h q A∆ h q ′ ∂ x B.
We have the following bound of

I t 0 e Rt ′ ∆ h q (A∂ x B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≤ I 1,q + I 2,q + I 3,q ,
where

I 1,q = t 0 e Rt ′ ∆ h q (T h A ∂ x B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ , I 2,q = t 0 e Rt ′ ∆ h q (T h ∂xB A) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ , I 3,q = t 0 e Rt ′ ∆ h q (R h (A, ∂ x B)) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ .
We start by getting the estimate of the rst term I 1,q , for that we need to use the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10] and the denition of T h A ∂ x B, and the lemma 6.2.2, we infer (6.3.32)

I 1,q ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 A + ϕ (t ′ )∥ L ∞ ∥∆ h q ′ ∂ x B ϕ (t ′ )∥ L 2 ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ .
By the Poincaré inequality on the interval {0 < y < 1}, we have the inclusion Ḣ1 y → L ∞ y and

∥∆ h q A + ϕ (t ′ )∥ L ∞ ≲ 2 q 2 ∥∆ h q A + ϕ (t ′ )∥ L 2 h (L ∞ v ) ≲ 2 q 2 ∥∆ h q ∂ y A ϕ (t ′ )∥ L 2 ≲ d q (A ϕ )∥∂ y A ϕ (t ′ )∥ B 1 2 , (6.3.33)
where {d q (A ϕ )} is a square-summable sequence with d q (A ϕ ) 2 = 1. Then,

∥S h q ′ -1 A + ϕ (t ′ )∥ L ∞ ≲ ∥∂ y A ϕ (t ′ )∥ B 1 2 ,
then, we replace this result in our estimate (6.3.32), and combining with Hölder inequality, imply that

I 1,q ≲ |q-q ′ |≤4 t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 e Rt ′ ∥∆ h q ′ ∂ x B ϕ (t ′ )∥ L 2 e Rt ′ ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y A ϕ (t ′ )∥ 1 2 B 1 2 e Rt ′ ∥∆ h q ′ B ϕ (t ′ )∥ L 2 ∥∂ y A ϕ (t ′ )∥ 1 2 B 1 2 e Rt ′ ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q ′ B ϕ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2
.

we note that θ(t) = ∥∂ y A ϕ (t ′ )∥ B 1 2
, using Denition 6.2.3, we have

t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2 ≲ t 0 θ(t ′ )e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q(s+ 1 2 ) d q (C ϕ )∥e Rt C ϕ ∥ L2 t, θ (B s+ 1 2 )
.

Then,

I 1,q ≲ 2 -2qs d 2 q ∥e Rt B ϕ ∥ L2 t, θ (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ (B s+ 1 2 )
, (6.3.34) where

d 2 q = d q (C ϕ )   |q-q ′ |≤4 d q ′ (B ϕ )2 (q-q ′ )(s-1 2 )   .
Now we move to get the estimate of the second term, by using the support properties given in [ [18], Proposition 2.10] and the denition of T h ∂xB A, and Lemma 6.2.2, we can estimate I 2,q in a similar way as we did for I 1,q .

I 2,q (t) ≤ t 0 e Rt ′ ∆ h q (T h ∂xB A) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ x B + ϕ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ A + ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q C ϕ ∥ L 2 dt ′ .
As in (6.3.33), we can write

∥∆ h q ′ A + ϕ ∥ L 2 h (L ∞ v ) ≲ ∥∆ h q ′ ∂ y A + ϕ ∥ L 2 ≲ d q ′ (A ϕ )2 -q ′ 2 ∥∂ y A ϕ (t ′ )∥ B 1 2 .
Since s < 1 and we use the fact that d q ′ (A ϕ ) ≤ 1, we have

I 2,q ≤ |q-q ′ |≤4 2 -q ′ 2 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ x B ϕ ∥ L ∞ h (L 2 v ) ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q C ϕ ∥ L 2 dt ′ ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ x B ϕ ∥ 2 L ∞ h (L 2 v ) ∥∂ y A ϕ (t ′ )∥ B 1 2 dt ′ 1 2 × t 0 e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 ∥∂ y A ϕ (t ′ )∥ B 1 2 dt ′ 1 2
Yet we observe from Denition 5.2.1, and s < 1 we have

l≲q ′ -2 t 0 2 3l e 2Rt ′ ∥∆ h l B ϕ ∥ 2 L 2 ∥∂ y A ϕ ∥ B 1 2 dt ′ 1 2 ≲ l≤q ′ -2 2 3l 2 t 0 ∥∂ y A ϕ ∥ B 1 2 e 2Rt ′ ∥∆ h l B ϕ (t ′ )∥ 2 L 2 dt ′ 1 2 ≲ l≲q ′ -2 2 3l 2 2 -l(s+ 1 2 ) 2 l(s+ 1 2 ) t 0 ∥∂ y A ϕ ∥ B 1 2 e 2Rt ′ ∥∆ h l B ϕ (t ′ )∥ 2 L 2 dt ′ 1 2 ≲ 2 q ′ (1-s) l≤q ′ -2 dl (B ϕ )∥e Rt B ϕ ∥ L2 t, θ (B s+ 1 2 ) ≲ 2 q ′ (1-s) d q ′ (B ϕ )∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) . (6.3.35)
Then, we nd the following estimate for I 2,q

I 2,q ≲ d 2 q 2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
, where

d 2 q = d q (C ϕ )   |q-q ′ |≤4 d q ′ (B ϕ )2 (q-q ′ )(s-1 2 )   ,
is a summable sequence of positive constants. Thus,

I 2,q ≲ d 2 q 2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
, (6.3.36) where we recall that θ(t

) = ∥∂ y A ϕ ∥ B 1 2
.

To end this proof, it remains to estimate I 3,q (is the remainder term). Using the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10], the denition of R h (A, ∂ x B) and Bernstein lemma 6.2.1, we can write

I 3,q ≤ 2 q 2 q ′ ≥q-3 t 0 e 2Rt ′ 2 q ′ (1-1 2 ) ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ B ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L 2 dt ′ ≤ 2 q 2 q ′ ≥q-3 t 0 e 2Rt ′ 2 q ′ 2 ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ B ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L 2 dt ′ .
Since 0 < s < 1, we have

I 3,q ≲ 2 q 2 q ′ ≥q-3 2 q ′ 2 t 0 ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ e Rt ′ B ϕ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q e Rt ′ C ϕ ∥ 2 L 2 dt ′ 1 2 ≲ d q (C ϕ )2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )   q ′ ≥q-3 d q ′ (B ϕ )2 (q-q ′ )s   ≲ d 2 q 2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
, where

d 2 q = d q (C ϕ )   q ′ ≥q-3 d q ′ (B ϕ )2 (q-q ′ )s   ,
is a summable sequence of positive constants. So, and B(t, x, y) = -y 0 ∂ x A(t, x, y ′ )dy ′ . There exist C ≥ 1 such that, for any t > 0 such that ϕ(t, ξ) > 0 ∀ξ and for any B, C ∈ L2 t, θ(t) (B s+ 1 2 ), we have

I 3,q ≲ d 2 q 2 -2qs ∥e Rt B ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) . ( 6 
t 0 e Rt ′ ∆ h q (B∂ y A) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt A ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
. (6.3.38) Proof. We dene the function K(t) by the following formula

K(t) = t 0 e Rt ′ ∆ h q (B∂ y A) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ .
As in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF], using Bony's homogeneous decomposition of B∂ y A into para-products in the horizontal variable and remainders as in denition of a tempered distribution, we can write

B∂ y A = T h B ∂ y A + T h ∂yA B + R h (B, ∂ y A),
where,

T B ∂ y A = q∈Z S h q-1 B∆ h q ∂ y A and R h (B, ∂ y A) = |q ′ -q|≤1 ∆h q B∆ h q ′ ∂ y A.
We have the following bound of K

K(t) = t 0 e Rt ′ ∆ h q (B∂ y A) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≤ K 1,q + K 2,q + K 3,q , where K 1,q = t 0 e Rt ′ ∆ h q (T h B ∂ y A) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ , K 2,q = t 0 e Rt ′ ∆ h q (T h ∂yA B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ , K 3,q = t 0 e Rt ′ ∆ h q (R h (B, ∂ y A)) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ .
We start by getting the estimate of the rst term K 1,q , for that we need to use the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10] and the denition of T h B ∂ y A, and Lemma 6.2.2, we infer

K 1,q ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 B ϕ (t ′ )∥ L ∞ ∥∆ h q ′ ∂ y A ϕ (t ′ )∥ L 2 ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ .
By the Poincaré inequality on the interval {0 < y < 1}, we have the inclusion Ḣ1 y → L ∞ y and

∥∆ h q B ϕ (t ′ )∥ L ∞ ≲ 1 0 ∥∆ h q ∂ x A ϕ (t ′ , x, y ′ )∥ L ∞ h dy ′ ≲ 2 q 2 1 0 ∥∆ h q ∂ x A ϕ (t ′ , x, y ′ )∥ L 2 h dy ′ ≲ 2 q 2 2 q 1 0 ∥∆ h q A ϕ (t ′ , x, y ′ )∥ L 2 h dy ′ ≲ 2 3q 2 ∥∆ h q A ϕ (t ′ )∥ L 2 , (6.3.39) 
and

∥∆ h q ′ ∂ y A ϕ (t ′ )∥ L 2 ≤ d q ′ (A ϕ )2 -q ′ 2 ∥∂ y A ϕ (t ′ )∥ B 1 2 .
Then, we replace this result in the estimate of K 1,q , and combining with Hölder inequality, imply that

K 1,q ≲ |q-q ′ |≤4 2 -q ′ 2 t 0 e 2Rt ′ ∥S h q ′ -1 B ϕ (t ′ )∥ L ∞ ∥∂ y A ϕ (t ′ )∥ B 1 2 ∥∆ h q C ϕ (t ′ )∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 -q ′ 2 l≤q ′ -2 t 0 2 3l 2 e 2Rt ′ ∥∆ h l A ϕ (t ′ )∥ 2 L 2 ∥∂ y A ϕ (t ′ )∥ B 1 2 dt ′ 1 2 × t 0 e 2Rt ′ ∥∆ h q C ϕ (t ′ )∥ 2 L 2 ∥∂ y A ϕ (t ′ )∥ B 1 2 dt ′ 1 2 . we note that θ(t) = ∥∂ y A ϕ (t ′ )∥ B 1 2
, we use the same thing as we do in (6.3.35), we obtain by using Denition 6.2.3 that

l≤q ′ -2 2 3l t 0 e 2Rt ′ ∥∆ h l A ϕ (t ′ )∥ 2 L 2 ∥∂ y A ϕ (t ′ )∥ B 1 2 dt ′ 1 2 ≲ 2 q ′ (1-s) d q (A ϕ )∥e Rt A ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) and t 0 e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 ∥∂ y A ϕ (t ′ )∥ B 1 2 dt ′ 1 2 ≲ t 0 θ(t ′ )e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q(s+ 1 2 ) d q (C ϕ )∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) . So, K 1,q ≲ 2 -2qs d 2 q ∥e Rt A ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
, (6.3.40) where

d 2 q = d q (C ϕ )   |q-q ′ |≤4 d q ′ (A ϕ )2 (q-q ′ )(s-1 2 )   .
Now we move to get the estimate of the second term, by using the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF],

Proposition 2.10] and the denition of T h ∂yA B, and Lemma 6.2.2, we can estimate K 2,q in a similar way as we did for K 1,q .

K 2,q (t) ≤ t 0 e Rt ′ ∆ h q (T h ∂yA B) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ y A ϕ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ B ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q C ϕ ∥ L 2 dt ′ .
As in (6.3.39), we can write

∥∆ h q ′ B ϕ ∥ L 2 h (L ∞ v ) ≲ 2 q ′ y 0 ∥∆ h q ′ A ϕ (t, x, y ′ )∥ L 2 h dy ′ ≲ 2 q ′ ∥∆ h q ′ A ϕ (t)∥ L 2 . Since 0 < s < 1, we have K 2,q ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ y A ϕ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ B ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q C ϕ ∥ L 2 dt ′ ≤ |q-q ′ |≤4 t 0 2 q ′ e Rt ′ ∥S h q ′ -1 ∂ y A ϕ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ A ϕ (t)∥ L 2 e Rt ′ ∥∆ h q C ϕ ∥ L 2 dt ′ ≤ |q-q ′ |≤4 t 0 2 q ′ e Rt ′ ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q ′ A ϕ (t)∥ L 2 e Rt ′ ∥∆ h q C ϕ ∥ L 2 dt ′ ≤ |q-q ′ |≤4 t 0 2 q ′ ∥∂ y A ϕ ∥ B 1 2 ∥e Rt ′ ∆ h q ′ A ϕ (t)∥ L 2 ∥e Rt ′ ∆ h q C ϕ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 ∥e Rt ′ ∆ h q ′ A ϕ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 ∥e Rt ′ ∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2
.

we note that θ(t) = ∥∂ y A ϕ (t ′ )∥ B 1 2
, using Denition 6.2.3, we have

t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2 ≲ t 0 θ(t ′ )e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q(s+ 1 2 ) d q (C ϕ )∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Then,

K 2,q ≲ 2 -2qs d 2 q ∥e Rt A ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
, (6.3.41) where

d 2 q = d q (C ϕ )   |q-q ′ |≤4 d q ′ 2 (q-q ′ )(s-1 2 )   ,
is a summable sequence of positive constants. We recall that θ(t

) = ∥∂ y A ϕ ∥ B 1 2
.

To end this proof, it remains to estimate K 3,q (is the remainder term). Using the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10], the denition of R h (B, ∂ y A) and Bernstein lemma 6.2.1, we can write

K 3,q = t 0 e Rt ′ ∆ h q (R h (B, ∂ y A)) ϕ , e Rt ′ ∆ h q C ϕ L 2 dt ′ ≤ 2 q 2 q ′ ≥q-3 t 0 e 2Rt ′ ∥ ∆h q ′ B ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q ′ ∂ y A ϕ ∥ L 2 ∥∆ h q C ϕ ∥ L 2 dt ′ .
Similar calculations as in (6.3.39) imply

∥∆ h q B ϕ (t)∥ L ∞ v (L 2 h ) ≤ 1 0 ∥∆ h q ∂ x A ϕ (t, ., y ′ )∥ L 2 h dy ′ ≲ 2 q 1 0 ∥∆ h q A ϕ (t, ., y ′ )∥ L 2 h dy ′ ≲ 2 q ∥∆ h q A ϕ (t)∥ L 2 . Since 0 < s < 1, we have K 3,q ≤ 2 q 2 q ′ ≥q-3 t 0 2 q ∥e Rt ′ ∆h q ′ A ϕ (t ′ )∥ L 2 ∥∆ h q ′ ∂ y A ϕ ∥ L 2 ∥∆ h q e Rt ′ C ϕ ∥ L 2 dt ′ ≤ 2 q 2 q ′ ≥q-3 t 0 2 q ′ 2 ∥e Rt ′ ∆h q ′ A ϕ (t ′ )∥ L 2 ∥∂ y A ϕ ∥ B 1 2 ∥∆ h q e Rt ′ C ϕ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 2 q ′ 2 t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 ∥e Rt ′ ∆ h q ′ A ϕ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 ∥e Rt ′ ∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2
.

we note that θ(t) = ∥∂ y A ϕ (t ′ )∥ B 1 2
, using Denition 6.2.3, we have

t 0 ∥∂ y A ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2 ≲ t 0 θ(t ′ )e 2Rt ′ ∥∆ h q C ϕ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q(s+ 1 2 ) d q (C ϕ )∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) . So, K 3,q ≲ 2 -2qs d 2 q ∥e Rt A ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt C ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) , (6.3.42)
where

d 2 q = d q (C ϕ )   q ′ ≥q-3 d q ′ (A ϕ ) 2 (q-q ′ )s   ,
is a summable sequence of positive constants. Lemma 6. 

(b∂ x u) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ ≤ C dq 2 -2qs ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
. (6.3.43) and

t 0 e Rt ′ ∆ h q (c∂ y u) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ ≤ C dq 2 -2qs e Rt b ϕ 2 L2 t, θ(t) (B s+ 1 
2 ) .

(6.3.44)

Proof. At rst, we start proving the rst estimate (6.3.43) of lemma 6.3.3. We dene the time-dependent function L(t)

L(t) = t 0 e Rt ′ ∆ h q (b∂ x u) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ .
Bony's decomposition for the horizontal variable into the para-products of the term b∂ x u implies

t 0 e Rt ′ ∆ h q (b∂ x u) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ ≤ L 1,q + L 2,q + L 3,q , (6.3.45) with L 1,q = t 0 e Rt ′ ∆ h q (T h b ∂ x u) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ , L 2,q = t 0 e Rt ′ ∆ h q (T h ∂xu b) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ , L 3,q = t 0 e Rt ′ ∆ h q (R h (b, ∂ x u)) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ .
We start by getting the estimate of the rst term L 1,q , Using the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10] and the denition of T h b ∂ x u, and Lemma 6.2.2, we infer (6.3.46)

L 1,q ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 b ϕ (t ′ )∥ L ∞ ∥∆ h q ′ ∂ x u ϕ (t ′ )∥ L 2 ∥∆ h q b ϕ (t ′ )∥ L 2 dt ′ .
By the Poincaré inequality on the interval {0 < y < 1}, we have the inclusion Ḣ1 y → L ∞ y and

∥∆ h q b ϕ (t ′ )∥ L ∞ ≲ 2 q 2 ∥∆ h q b ϕ (t ′ )∥ L 2 h (L ∞ v ) ≲ 2 q 2 ∥∆ h q ∂ y b ϕ (t ′ )∥ L 2 ≲ d q (b ϕ )∥∂ y b ϕ (t ′ )∥ B 1 2 , (6.3.47)
where {d q (b ϕ )} is a square-summable sequence with d q (u ϕ ) 2 = 1. Then,

∥S h q ′ -1 b ϕ (t ′ )∥ L ∞ ≲ ∥∂ y b ϕ (t ′ )∥ B 1 2 ,
then, we replace this result in our estimate (6.3.46), and combining with Hölder inequality, imply that

L 1,q ≲ |q-q ′ |≤4 t 0 ∥∂ y b ϕ (t ′ )∥ B 1 2 e Rt ′ ∥∆ h q ′ ∂ x u ϕ (t ′ )∥ L 2 e Rt ′ ∥∆ h q b ϕ (t ′ )∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y b ϕ (t ′ )∥ 1 2 B 1 2 e Rt ′ ∥∆ h q ′ u ϕ (t ′ )∥ L 2 ∥∂ y b ϕ (t ′ )∥ 1 2 B 1 2 e Rt ′ ∥∆ h q b ϕ (t ′ )∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y b ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q ′ u ϕ ∥ 2 L 2 dt ′ 1 2 t 0 ∥∂ y b ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q b ϕ ∥ 2 L 2 dt ′ 1 2
.

We note that θ

(t) = ∥∂ y b ϕ (t ′ )∥ B 1 2
, using Denition 6.2.3, we have

t 0 ∥∂ y b ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q ′ u ϕ ∥ 2 L 2 dt ′ 1 2 ≲ t 0 θ(t ′ )e 2Rt ′ ∥∆ h q ′ u ϕ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q ′ (s+ 1 2 ) d q ′ (u ϕ )∥e Rt u ϕ ∥ L2 t, θ (B s+ 1 2 )
.

Then,

L 1,q ≲ 2 -2qs d 2 q ∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
, (6.3.48) where

d 2 q = d q (b ϕ )   |q-q ′ |≤4 d q ′ (u ϕ )2 (q-q ′ )(s-1 2 )   .
Using the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10] and the denition of T h b ∂ x u, and Lemma 6.2.2, we can estimate L 2,q in a similar way as we did for L 1,q . As in (6.3.49), we can write

∥∆ h q ∂ x u ϕ (t ′ )∥ L ∞ ≲ 2 q 2 q 2 ∥∆ h q ∂ y u ϕ (t ′ )∥ L 2 ≲ d q (u ϕ )2 q ∥∂ y u ϕ (t ′ )∥ B 1 2 , (6.3.49) 
where {d q (b ϕ )} is a square-summable sequence with d q (u ϕ ) 2 = 1. Then,

L 2,q = t 0 e 2Rt ′ ∆ h q (T h ∂xu b) ϕ , ∆ h q b ϕ L 2 dt ′ ≲ t 0 e 2Rt ′ |q-q ′ |≤4 ∥S h q ′ -1 ∂ x u ϕ ∥ L ∞ ∥∆ h q ′ b ϕ ∥ L 2 ∥∆ h q b ϕ ∥ L 2 dt ′ ≤ t 0 e 2Rt ′ |q-q ′ |≤4 2 q ∥∂ y u ϕ ∥ B 1 2 ∥∆ h q ′ b ϕ ∥ L 2 ∥∆ h q b ϕ ∥ L 2 dt ′ . Since 0 < s < 1, we have L 2,q ≲ |q-q ′ |≤4 2 q t 0 ∥∂ y u ϕ ∥ B 1 2 ∥∆ h q ′ b ϕ ∥ 2 L 2 dt ′ 1 2 t 0 ∥∂ y u ϕ ∥ B 1 2 ∥∆ h q b ϕ ∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -2qs ∥e Rt b ϕ ∥ L2 t, θ (B s+ 1 2 ) ∥e Rt b ϕ ∥ L2 t, θ (B s+ 1 2 ) . So, L 2,q ≲ d 2 q 2 -2qs ∥e Rt b ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
, (6.3.50) where

d 2 q = d q (b ϕ )   |q-q ′ |≤4 d q ′ 2 (q-q ′ )(s-1 2 )   ,
is a summable sequence of positive constants.

To end this proof, it remains to estimate L 3,q . Using the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10], the denition of R h (b, ∂ x u) and Bernstein lemma 6.2.1, we can write

L 3,q = t 0 e 2Rt ′ ∆ h q (R h (b, ∂ x u)) ϕ , ∆ h q b ϕ L 2 dt ′ ≲ t 0 e 2Rt ′ 2 q 2 q ′ ≥q-3 ∥∆ h q ′ b ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q ′ ∂ x u ϕ ∥ L 2 ∥∆ h q b ϕ ∥ L 2 dt ′ ≲ t 0 e 2Rt ′ 2 q 2
q ′ ≥q-3

2 q ′ (1-1 2 ) ∥∂ y b ϕ ∥ B 1 2 ∥∆ h q ′ u ϕ ∥ L 2 ∥∆ h q b ϕ ∥ L 2 dt ′ ≲ t 0 e 2Rt ′ 2 q 2 q ′ ≥q-3 2 q ′ 2 ∥∂ y b ϕ ∥ B 1 2 ∥∆ h q ′ u ϕ ∥ L 2 ∥∆ h q b ϕ ∥ L 2 dt ′ . Since 0 < s < 1, we have L 3,q ≲ 2 q 2 q ′ ≥k-3 2 q ′ 2 t 0 ∥∂ y b ϕ ∥ B 1 2 ∥∆ h q ′ e Rt ′ u ϕ ∥ 2 L 2 dt ′ × t 0 ∥∂ y b ϕ ∥ B 1 2 ∥∆ h q e Rt b ϕ ∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -2qs ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 )   q ′ ≥q-3 d q ′ (u ϕ )2 (q-q ′ )s   . So, L 3,q ≲ d 2 q 2 -2qs ∥e Rt u ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) ∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 ) , (6.3.51) 
where

d 2 q = d q (b ϕ )   q ′ ≥q-3 d q ′ (u ϕ )2 (q-q ′ )s   ,
is a summable sequence of positive constants.

By summing the estimates (6.3.48), (6.3.50) and (6.3.51), we achieved the proof of (6.3.43) .

We now prove the estimate (6.3.44). Using Bony's decomposition for the horizontal variable, we have

t 0 e Rt ′ ∆ h q (c∂ y u) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ ≤ C 1,q + C 2,q + C 3,q , (6.3.52)
where

C 1,q = t 0 e Rt ′ ∆ h q (T h c ∂ y u) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ , C 2,q = t 0 e Rt ′ ∆ h q (T h ∂yu c) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ , C 3,q = t 0 e Rt ′ ∆ h q (R h (c, ∂ y u)) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ .
Identity (6.3.1), and Bernstein lemma 6.2.1, imply

∥∆ h q c ϕ (t)∥ L ∞ ≤ 1 0 ∥∆ h q ∂ x b ϕ (t, ., y ′ )∥ L ∞ h dy ′ ≲ 2 3q 2 1 0 ∥∆ h q b ϕ (t, ., y ′ )∥ L 2 h dy ′ ≲ 2 3q 2 ∥∆ h q b ϕ (t)∥ L 2 , (6.3.53)
Along the same way as we did in (6.3.35), we get for s < 1 that

C 1,q ≲ t 0 |q ′ -q|≤4 2 -q ′ 2 e 2Rt ∥S h q ′ -1 c ϕ ∥ L ∞ ∥∂ y u ϕ ∥ B 1 2 ∥∆ h q b ϕ ∥ L 2 dt ′ ≲ t 0 |q ′ -q|≤4 2 -q ′ 2 l≤q ′ -2 2 3l 2 ∥∆ h l e Rt ′ b ϕ ∥ L 2 ∥∂ y u ϕ ∥ B 1 2 ∥∆ h q e Rt ′ b ϕ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 -q ′ 2 l≤q ′ -2 t 0 2 3l ∥∂ y u ϕ ∥ B 1 2 ∥∆ h l e Rt ′ b ϕ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y u ϕ ∥ B 1 2 ∥∆ h q e Rt ′ b ϕ ∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -2qs ∥e Rt b ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 ) . So, C 1,q ≲ d 2 q 2 -2qs ∥e Rt b ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
, (6.3.54) where

d 2 q = d q (b ϕ )   |q ′ -q|≤4 d q ′ (b ϕ )2 (q-q ′ )(s-1)   ,
is a summable sequence of positive constants.

Now we move to get the estimate of the second term, by using the support properties given in [ [18], Proposition 2.10] and the denition of T h ∂yu c, we can estimate C 2,q in a similar way as we did for C 1,q .

C 2,q (t)

≤ t 0 e Rt ′ ∆ h q (T h ∂yu c) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ y u ϕ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ c ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q b ϕ ∥ L 2 dt ′ .
As in (6.3.53), we can write

∥∆ h q ′ c ϕ ∥ L 2 h (L ∞ v ) ≲ 2 q ′ y 0 ∥∆ h q ′ b ϕ (t, x, y ′ )∥ L 2 h dy ′ ≲ 2 q ′ ∥∆ h q ′ b ϕ (t)∥ L 2 . Since 0 < s < 1, we have C 2,q ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ y u ϕ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ c ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q b ϕ ∥ L 2 dt ′ ≤ |q-q ′ |≤4 t 0 2 q ′ e Rt ′ ∥S h q ′ -1 ∂ y u ϕ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ b ϕ (t)∥ L 2 e Rt ′ ∥∆ h q b ϕ ∥ L 2 dt ′ ≤ |q-q ′ |≤4 t 0 2 q ′ e Rt ′ ∥∂ y u ϕ ∥ B 1 2 ∥∆ h q ′ b ϕ (t)∥ L 2 e Rt ′ ∥∆ h q b ϕ ∥ L 2 dt ′ ≤ |q-q ′ |≤4 t 0 2 q ′ ∥∂ y u ϕ ∥ B 1 2 ∥e Rt ′ ∆ h q ′ b ϕ (t)∥ L 2 ∥e Rt ′ ∆ h q b ϕ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y u ϕ (t ′ )∥ B 1 2 ∥e Rt ′ ∆ h q ′ b ϕ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y u ϕ (t ′ )∥ B 1 2 ∥e Rt ′ ∆ h q b ϕ ∥ 2 L 2 dt ′ 1 2
.

We note that θ(t

) = ∥∂ y u ϕ (t ′ )∥ B 1 2
, using the denition (6.2.3), we have

t 0 ∥∂ y u ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q b ϕ ∥ 2 L 2 dt ′ 1 2 ≲ t 0 θ(t ′ )e 2Rt ′ ∥∆ h q b ϕ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q(s+ 1 2 ) d q (b ϕ )∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Thus,

C 2,q ≲ 2 -2qs d 2 q ∥e Rt b ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
, (6.3.55) where

d 2 q = d q (b ϕ )   |q-q ′ |≤4 d q ′ 2 (q-q ′ )(s-1 2 )   ,
is a summable sequence of positive constants. We recall that θ(t

) = ∥∂ y (u ϕ , b ϕ )∥ B 1 2
.

To end this proof, it remains to estimate C 3,q (is the rest term). Using the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10], the denition of R h (B, ∂ y A) and Bernstein lemma 6.2.1, we can write

C 3,q = t 0 e Rt ′ ∆ h q (R h (c, ∂ y u)) ϕ , e Rt ′ ∆ h q b ϕ L 2 dt ′ ≤ 2 q 2 q ′ ≥q-3 t 0 e 2Rt ′ ∥∆ h q ′ c ϕ ∥ L 2 h (L ∞ v ) ∥∆ h q ′ ∂ y u ϕ ∥ L 2 ∥∆ h q b ϕ ∥ L 2 dt ′ .
Similar calculations as in (6.3.39) imply

∥∆ h q c ϕ (t)∥ L ∞ v (L 2 h ) ≤ 1 0 ∥∆ h q ∂ x b ϕ (t, ., y ′ )∥ L 2 h dy ′ ≲ 2 q 1 0 ∥∆ h q b ϕ (t, ., y ′ )∥ L 2 h dy ′ ≲ 2 q ∥∆ h q b ϕ (t)∥ L 2 . Since 0 < s < 1, we have C 3,q ≤ 2 q 2 q ′ ≥q-3 t 0 2 q ∥e Rt ′ ∆ h q ′ b ϕ (t ′ )∥ L 2 ∥∆ h q ′ ∂ y u ϕ ∥ L 2 ∥∆ h q e Rt ′ b ϕ ∥ L 2 dt ′ ≤ 2 q 2 q ′ ≥q-3 t 0 2 q ′ 2 ∥e Rt ′ ∆ h q ′ b ϕ (t ′ )∥ L 2 ∥∂ y u ϕ ∥ B 1 2 ∥∆ h q e Rt ′ b ϕ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 2 q ′ 2 t 0 ∥∂ y u ϕ (t ′ )∥ B 1 2 ∥e Rt ′ ∆ h q ′ b ϕ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y u ϕ (t ′ )∥ B 1 2 ∥e Rt ′ ∆ h q b ϕ ∥ 2 L 2 dt ′ 1 2
.

we note that θ(t) = ∥∂ y u ϕ (t ′ )∥ B 1 2
, using Denition 6.2.3, we have

t 0 ∥∂ y u ϕ (t ′ )∥ B 1 2 e 2Rt ′ ∥∆ h q b ϕ ∥ 2 L 2 dt ′ 1 2 ≲ t 0 θ(t ′ )e 2Rt ′ ∥∆ h q b ϕ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q(s+ 1 2 ) d q (b ϕ )∥e Rt b ϕ ∥ L2 t, θ(t) (B s+ 1 2 )
.

Thus, C 3,q ≲ 2 -2qs d 2 q ∥e Rt b ϕ ∥ 2 L2 t, θ(t) (B s+ 1 2 )
, (6.3.56) where

d 2 q = d q (b ϕ )   q ′ ≥q-3 d q ′ (b ϕ ) 2 (q-q ′ )s   ,
is a summable sequence of positive constants.

The proof of Lemma 6.3.3 is then completed by summing Estimates (6.3.54), (6.3.55) and (6.3.56) .

Global well posedness of the 2D MHD system in a thin domain

The goal of this section is to prove Theorem 6.2.2 and to establish the global well-posedness of the system (6.1.3) with small analytic data. As in section 3 for any locally bounded function φ on R + × R and any f ∈ L 2 (S), we dene the analytically in the horizontal variable x through the following auxiliary function

f ϵ φ (t, x, y) = F -1 ξ→x (ϵ φ(t,ξ) f ϵ (t, ξ, y)). (6.4.1)
The width of the analytically band φ is dened by

φ(t, ξ) = (a -λτ (t))|ξ|,
where λ > 0 with be precised later and τ (t) will be chosen in such a way that φ(t, ξ) > 0, for any (t, ξ) ∈ R + × R and φ(t) = φ ′ (t) = -λ τ (t) ≥ 0. In our paper, we will choose :

τ (t) = ∥∂ y u ϵ φ (t)∥ B 1 2 + ϵ∥∂ y v ϵ φ (t)∥ B 1 2 with τ (0) = 0. (6.4.2)
In what follows, for the sake of simplicity, we will neglect the script ϵ and write (u 

Θ , v Θ , T Θ ) instead of (u ϵ φ , v ϵ φ , b ϵ φ , c ϵ φ ).
                     ∂ t u φ + λ τ (t)|D x |u φ + (u∂ x u) φ + (v∂ y u) φ -ϵ 2 ∂ 2 x u φ -∂ 2 y u φ + ∂ x p φ = (b∂ x b) φ + (c∂ y b) φ , ϵ 2 ∂ t v φ + λ τ (t)|D x |v φ + (u∂ x v) φ + (v∂ y v) φ -ϵ 2 ∂ 2 x v φ -∂ 2 y v φ + ∂ y p φ = ϵ 2 ((b∂ x c) φ + (c∂ y c) φ ) , ∂ t b φ + λ τ (t)|D x |b φ + (u∂ x b) φ + (v∂ y b) φ -ϵ 2 ∂ 2 x b φ -∂ 2 y b φ = (b∂ x u) φ + (c∂ y u) φ , ϵ 2 ∂ t c φ + λ τ (t)|D x |c φ + (u∂ x c) φ + (v∂ y c) φ -ϵ 2 ∂ 2 x c φ -∂ 2 y c φ = ϵ 2 ((b∂ x v) φ + (c∂ y v) φ ) , ∂ x u φ + ∂ y v φ = 0 and ∂ x b φ + ∂ y c φ = 0, (u φ , v φ , b φ , c φ ) | y=0 = (u φ , v φ , b φ , c φ ) | y=1 = 0, (u φ , v φ , b φ , c φ ) | t=0 = (u 0 , v 0 , b 0 , c 0 ) .
Where |D x | denote the Fourier multiplier of the symbol |ξ|. In what follows, we recall that we use C to denote a generic positive constant that can change from line to line.

Applying the dyadic operator ∆ h q to the system (6.4.3), then taking the L 2 (S) (S = R×]0, 1[) scalar product of the rst, second, third and the fourth equations of the obtained system with ∆ h q u ϕ , ∆ h q v ϕ ∆ h q b ϕ and ∆ h q c ϕ respectively, we get :

∆ h q ∂ t (u φ , ϵv φ ), ∆ h q (u φ , ϵv φ ) L 2 + λ τ (t) |D x |∆ h q (u φ , ϵv φ ), ∆ h q (u φ , ϵv φ ) L 2 -∆ h q ∂ 2 y (u φ , ϵv φ ), ∆ h q (u φ , ϵv φ ) L 2 -ϵ 2 ∆ h q ∂ 2 x (u φ , ϵv φ ), ∆ h q (u φ , ϵv φ ) L 2 + ∆ h q ∇p φ , ∆ h q (u φ , v φ ) L 2 = -∆ h q (u∂ x u + v∂ y u) φ , ∆ h q u φ ) L 2 -ϵ 2 ∆ h q (u∂ x v + v∂ y v) φ , ∆ h q v φ ) L 2 + ∆ h q (b∂ x b + c∂ y b) φ , ∆ h q u φ L 2 + ϵ 2 ∆ h q (b∂ x c + c∂ y c) φ , ∆ h q v φ L 2 ,
and

∆ h q ∂ t (b φ , ϵc φ ), ∆ h q (b φ , ϵc φ ) L 2 + λ τ (t) |D x |∆ h q (b φ , ϵc φ ), ∆ h q (b φ , ϵc φ ) L 2 -∆ h q ∂ 2 y (b φ , ϵc φ ), ∆ h q (b φ , ϵc φ ) L 2 -ϵ 2 ∆ h q ∂ 2 x (b φ , ϵc φ ), ∆ h q (b φ , ϵc φ ) L 2 = -∆ h q (u∂ x b + v∂ y b) φ , ∆ h q b φ L 2 -ϵ 2 ∆ h q (u∂ x c + v∂ y c) φ , ∆ h q c φ L 2 + ∆ h q (b∂ x u + c∂ y u) φ , ∆ h q b φ L 2 + ϵ 2 ∆ h q (b∂ x v + c∂ y v) φ , ∆ h q c φ L 2 .
Thanks to the Dirichlet boundary condition and due to the fact that U is divergence-free (means that div U = ∂ x u + ∂ y v = 0 ), we get by using the integration by part that :

∆ h q ∇p φ , ∆ h q (u φ , v φ ) L 2 = -∆ h q p φ , ∆ h q div (u φ , v φ ) L 2 = ∆ h q p φ , ∆ h q (∂ y v φ + ∂ x u φ ) L 2 = 0. ( because ∂ y v φ + ∂ x u φ = 0).
We recall that we have by integrating by part that :

∆ h q ∂ 2 y (u φ , ϵv φ ), ∆ h q (u φ , ϵv φ ) L 2 = -∆ h q ∂ y (u φ , ϵv φ ), ∆ h q ∂ y (u φ , ϵv φ ) L 2 = -∆ h q ∂ y (u φ , ϵv φ ) 2 L 2 , ϵ 2 ∆ h q ∂ 2 x (u φ , ϵv φ ), ∆ h q (u φ , ϵv φ ) L 2 = -ϵ 2 ∆ h q ∂ x (u φ , ϵv φ ), ∆ h q ∂ x (u φ , ϵv φ ) L 2 = -ϵ 2 ∆ h q ∂ x (u φ , ϵv φ ) 2 L 2 , ∆ h q ∂ 2 y (b φ , ϵc φ ), ∆ h q (b φ , ϵc φ ) L 2 = -∆ h q ∂ y (b φ , ϵc φ ), ∆ h q ∂ y (b φ , ϵc φ ) L 2 = -∆ h q ∂ y (b φ , ϵc φ ) 2 L 2 , ϵ 2 ∆ h q ∂ 2 x (b φ , ϵc φ ), ∆ h q (b φ , ϵc φ ) L 2 = -ϵ 2 ∆ h q ∂ x (b φ , ϵc φ ), ∆ h q ∂ x (b φ , ϵc φ ) L 2 = -ϵ 2 ∆ h q ∂ x (b φ , ϵc φ ) 2 L 2 ,
we replace in the obtained estimate, we get : (6.4.4)

1 2 d dt ∥∆ h q (u φ , ϵv φ )(t)∥ 2 L 2 + λ τ (t) |D x | 1 2 ∆ h q (u φ , ϵv φ ) 2 L 2 + ∥∆ h q ∂ y (u φ , ϵv φ )(t)∥ 2 L 2 ϵ 2 ∥∆ h q ∂ x (u φ , ϵv φ )(t)∥ 2 L 2 = -∆ h q (u∂ x u + v∂ y u) φ , ∆ h q u φ ) L 2 -ϵ 2 ∆ h q (u∂ x v + v∂ y v) φ , ∆ h q v φ ) L 2 + ∆ h q (b∂ x b + c∂ y b) φ , ∆ h q u φ L 2 + ϵ 2 ∆ h q (b∂ x c + c∂ y c) φ , ∆ h q v φ L 2 , and (6.4.5) 
1 2

d dt ∥∆ h q (b φ , ϵc φ )(t)∥ 2 L 2 + λ τ (t) |D x | 1 2 ∆ h q (b φ , ϵc φ ) 2 L 2 + ∥∆ h q ∂ y (b φ , ϵc φ )(t)∥ 2 L 2 + ϵ 2 ∥∆ h q ∂ x (b φ , ϵc φ )(t)∥ 2 L 2 = -∆ h q (u∂ x b + v∂ y b) φ , ∆ h q b φ L 2 -ϵ 2 ∆ h q (u∂ x c + v∂ y c) φ , ∆ h q c φ L 2 + ∆ h q (b∂ x u + c∂ y u) φ , ∆ h q b φ L 2 + ϵ 2 ∆ h q (b∂ x v + c∂ y v) φ , ∆ h q c φ L 2 .
Multiplying (6.3.4) and (6.3.5) with e 2Rt and integrating with respect to the time variable, we have the resulting estimates (6.4.6)

1 2 e Rt ∆ h q (u φ , ϵv φ )(t) 2 L ∞ t (L 2 ) +λ t 0 τ (t ′ ) e Rt ′ |D x | 1 2 ∆ h q (u φ , ϵv φ ) 2 L 2 dt ′ + e Rt ∆ h q ∂ y (u φ , ϵv φ )(t) 2 L 2 t (L 2 ) +ϵ 2 e Rt ∆ h q ∂ x (u φ , ϵv φ )(t) 2 L 2 t (L 2 ) ≤ R e Rt ∆ h q (u φ , ϵv φ )(t) 2 L 2 t (L 2 ) +C ∆ h q (u φ , ϵv φ )(0) 2 L 2 +F 1 +F 2 +F 3 +F 4 ,
and (6.4.7)

1 2 e Rt ∆ h q (b φ , ϵc φ )(t) 2 L ∞ t (L 2 ) + λ t 0 τ (t ′ ) e Rt |D x | 1 2 ∆ h q (b φ , ϵc φ ) 2 L 2 dt ′ + e Rt ∆ h q ∂ y (b φ , ϵc φ )(t) 2 L 2 t (L 2 ) +ϵ 2 e Rt ∆ h q ∂ x (b φ , ϵc φ )(t) 2 L 2 t (L 2 ) ≤ R e Rt ∆ h q (b φ , ϵc φ )(t) 2 L 2 t (L 2 ) +C ∆ h q (b φ , ϵc φ )(0) 2 L 2 +F 5 +F 6 .
where

                           F 1 = t 0 e Rt ∆ h q (u∂ x u) φ , e Rt ∆ h q u φ L 2 + e Rt ∆ h q (v∂ y u) φ , e Rt ∆ h q u φ L 2 dt ′ F 2 = ϵ 2 t 0 e Rt ∆ h q (u∂ x v) φ , e Rt ∆ h q v φ L 2 + e Rt ∆ h q (v∂ y v) φ , e Rt ∆ h q v φ L 2 dt ′ F 3 = t 0 e Rt ∆ h q (b∂ x b) φ , e Rt ∆ h q u φ L 2 + e Rt ∆ h q (c∂ y b) φ , e Rt ∆ h q u φ L 2 dt ′ F 4 = ϵ 2 t 0 e Rt ∆ h q (b∂ x c) φ , e Rt ∆ h q v φ L 2 + e Rt ∆ h q (c∂ y c) φ , e Rt ∆ h q v φ L 2 dt ′ , and          F 5 = t 0 ∆ h q (u∂ x b + v∂ y b) φ , ∆ h q b φ L 2 + ∆ h q (b∂ x u + c∂ y u) φ , ∆ h q b φ L 2 dt ′ F 6 = ϵ 2 t 0 ∆ h q (u∂ x c + v∂ y c) φ , ∆ h q c φ L 2 + ∆ h q (b∂ x v + c∂ y v) φ , ∆ h q c φ L 2 dt ′ .
We start by observing that the terms R e Rt ∆ h q (u, ϵv) ϕ

2 L 2 t (L 2 )
and R e Rt ∆ h q (b, ϵc) ϕ

2 L 2 t (L 2 )
can be absorbed by the dissipation

e Rt ∆ h q ∂ y (u, ϵv) ϕ 2 L 2 t (L 2 ) and e Rt ∆ h q ∂ y (b, ϵc) ϕ 2 L 2 t (L 2 )
. So, choosing R smaller than k 8 , (here k is the Poincaré constant that comes out from the inequality k∥(u, ϵv) ϕ ∥ L 2 ≤ ∥∂ y (u, ϵv) ϕ ∥ L 2 ), we can achieve that (6.4.8)

1 2 e Rt ∆ h q (u φ , ϵv φ )(t) 2 L ∞ t (L 2 ) +λ t 0 τ (t ′ ) e Rt ′ |D x | 1 2 ∆ h q (u φ , ϵv φ ) 2 L 2 dt ′ + 1 2 e Rt ∆ h q ∂ y (u φ , ϵv φ )(t) 2 L 2 t (L 2 ) + ϵ 2 e Rt ∆ h q ∂ x (u φ , ϵv φ )(t) 2 L 2 t (L 2 ) ≤ C ∆ h q (u φ , ϵv φ )(0) 2 L 2 + F 1 + F 2 + F 3 + F 4 ,
and (6.4.9)

1 2 e Rt ∆ h q (b φ , ϵc φ )(t) 2 L ∞ t (L 2 ) +λ t 0 τ (t ′ ) e Rt |D x | 1 2 ∆ h q (b φ , ϵc φ ) 2 L 2 dt ′ + 1 2 e Rt ∆ h q ∂ y (b φ , ϵc φ )(t) 2 L 2 t (L 2 ) + ϵ 2 e Rt ∆ h q ∂ x (b φ , ϵc φ )(t) 2 L 2 t (L 2 ) ≤ C ∆ h q (b φ , ϵc φ )(0) 2 L 2 + F 5 + F 6 .
After giving the estimate of the nonlinear terms, we begin by giving the following lemma that handles to estimate F 2 , F 4 and F 6 . Lemma 6.4.1. For any s ∈]0, 1[ and t ≤ T * , and φ be dened as in (6.4.1), with

τ (t) = ∥∂ y u ϵ φ (t)∥ B 1 2 + ϵ∥∂ y v ϵ φ (t)∥ B 1 2 .
Then, there exists C ≥ 1 such that, for any t > 0, φ(t, ξ) > 0 and for any u ∈ L2 t, τ (t) (B s+ 1 2 ) that satises v(t, x, y) = -t 0 ∂ x u(t, x, s)ds, we have

ϵ 2 t 0 e Rt ′ ∆ h q (v∂ y v) φ , e Rt ′ ∆ h q v φ L 2 dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt (u φ , ϵv φ )∥ 2 L2 t, τ (t) (B s+ 1 2 ) 
.

Next, by using the lemmas 6.3.2, 6.3.1, 6.4.1 and 6.3.3

F 1 = t 0 e Rt ∆ h q (u∂ x u) φ , e Rt ∆ h q u φ L 2 + e Rt ∆ h q (v∂ y u) φ , e Rt ∆ h q u φ L 2 dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt u φ ∥ 2 L2 t, τ (t) (B s+ 1 2 ) , F 2 = ϵ 2 t 0 e Rt ∆ h q (u∂ x v) φ , e Rt ∆ h q v φ L 2 + e Rt ∆ h q (v∂ y v) φ , e Rt ∆ h q v φ L 2 dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt (u φ , ϵv φ )∥ 2 L2 t, τ (t) (B s+ 1 2 ) 
,

F 3 = t 0 e Rt ∆ h q (b∂ x b) φ , e Rt ∆ h q u φ L 2 + e Rt ∆ h q (c∂ y b) φ , e Rt ∆ h q u φ L 2 dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt (u φ , b φ )∥ 2 L2 t, τ (t) (B s+ 1 2 ) 
,

F 4 = ϵ 2 t 0 e Rt ∆ h q (b∂ x c) φ , e Rt ∆ h q v φ L 2 + e Rt ∆ h q (c∂ y c) φ , e Rt ∆ h q v φ L 2 dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt (b φ , ϵv φ )∥ 2 L2 t, τ (t) (B s+ 1 2 ) 
, and

F 5 = t 0 ∆ h q (u∂ x b + v∂ y b) φ , ∆ h q b φ L 2 + ∆ h q (b∂ x u + c∂ y u) φ , ∆ h q b φ L 2 dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt (u φ , b φ ∥ 2 L2 t, τ (t) (B s+ 1 2 ) , F 6 = ϵ 2 t 0 ∆ h q (u∂ x c + v∂ y c) φ , ∆ h q c φ L 2 + ∆ h q (b∂ x v + c∂ y v) φ , ∆ h q c φ L 2 dt ′ ≤ Cd 2 q 2 -2qs e Rt (u φ , ϵc φ ) 2 L2 t, τ (t) (B s+ 1 
2 ) .

Multiplying (6.4.8) and (6.4.9) by 2 2qs (for s ∈]0; 1[), taking the square root of the resulting inequality, and nally summing up the resulting ones over Z, we obtain (6.4.10)

1 2 e Rt (u φ , ϵv φ )(t) L ∞ t (B s ) + √ λ e Rt ′ (u φ , ϵv φ ) L2 t, τ (t) (B s+ 1 2 ) + 1 2 e Rt ∂ y (u φ , ϵv φ )(t) L 2 t (B s ) + ϵ e Rt ∂ x (u φ , ϵv φ )(t) L 2 t (B s ) ≤ C ∥(u φ , ϵv φ )(0)∥ B s + C∥e Rt (u φ , b φ , ϵv φ )∥ L2 t, τ (t) (B s+ 1 2 )
, and (6.4.11)

1 2 e Rt (b φ , ϵc φ )(t) L ∞ t (B s ) + √ λ e Rt ′ (b φ , ϵc φ ) L2 t, τ (t) (B s+ 1 2 ) + 1 2 e Rt ∂ y (b φ , ϵc φ )(t) L 2 t (B s ) + ϵ e Rt ∂ x (b φ , ϵc φ )(t) L 2 t (B s ) ≤ C ∥(b φ , ϵc φ )(0)∥ B s + C∥e Rt (u φ , b φ , ϵc φ )∥ L2 t, τ (t) (B s+ 1 2 ) 
.

Thus, choosing our constant C such that (6.4.12)

C ≥ max 4, 1 2R ,
and taking the sum of the two estimates (6.4.10) and (6.4.11), we obtain

1 2 e Rt (u φ , b φ , ϵ(v φ , c φ )) L∞ t (B s ) + √ λ e Rt (u ϕ , b ϕ , ϵ(v φ , c φ )) L2 t, θ(t) (B s+ 1 2 ) + 1 2 e Rt ∂ y (u ϕ , b ϕ , ϵ(v φ , c φ )) L2 t (B s ) + ϵ e Rt ∂ x (u ϕ , b ϕ , ϵ(v φ , c φ )) L2 t (B s ) ≤ 2C e a|Dx| (u 0 , b 0 , ϵv 0 , ϵc 0 ) B s + 2C e Rt (u ϕ , b ϕ , ϵ(v φ , c φ )) L2 t, θ(t) (B s+ 1 2 ) 
.

We set (6.4.13)

T ⋆ ≜ sup t > 0 : ∥u φ ∥ B 1 2 ≤ 1 2C and τ (t) ≤ a λ ,
and we choose the initial data such that C ∥e a|Dx| (u 0 , ϵv 0 )∥

B 1 2 + ∥e a|Dx| (b 0 , ϵc 0 )∥ B 1 2 < min 1 2C , a 2λ 
.

The fact that τ (0) = 0 implies already that T ⋆ > 0. If √ λ = 2C, for any 0 < t < T ⋆ , we have (

∥e

Rt (u φ , ϵv φ )∥ L∞ t (B s ) + ∥e Rt (b φ , ϵc φ )∥ L∞ t (B s ) + e Rt ∂ y (b φ , ϵc φ ) L2 t (B s ) + ∥e Rt ∂ y (u φ , ϵv φ )∥ L2 t (B s ) +ϵ∥e Rt ∂ x (u φ , ϵv φ )∥ L2 t (B s ) +ϵ∥e Rt ∂ x (b φ , ϵc φ )∥ L2 t (B s ) ≤ 2C e a|Dx| (u 0 , ϵv 0 ) B s + e a|Dx| (u 0 , ϵv 0 ) B s .
From (6.4.14) and (6.4.12), we get that, for any 0 < t < T ⋆ ,

∥u φ ∥ B 1 2 ≤ ∥e Rt (u φ , ϵv φ )∥ L∞ t (B s ) ≤ C ∥e a|Dx| (u 0 , ϵv 0 )∥ B s + ∥e a|Dx| (b 0 , ϵc 0 )∥ B s ≤ C ∥e a|Dx| (u 0 , ϵv 0 )∥ B 1 2 + ∥e a|Dx| (b 0 , ϵc 0 )∥ B s < 1 2C
.

Now, we recall that we already dened τ (t) = ∥∂ y u ϵ φ (t)∥

B 1 2 + ϵ∥∂ y v ϵ φ (t)∥ B 1 2
with τ (0) = 0. Then, for any 0 < t < T ⋆ , Inequality (6.4.14) yields

τ (t) = t 0 ∥∂ y u ϵ φ (t)∥ B 1 2 + ϵ∥∂ y v ϵ φ (t)∥ B 1 2 dt ′ ≤ t 0 e -Rt ′ ∥e Rt ′ ∂ y u ϵ φ (t)∥ B 1 2 + ϵ∥e Rt ′ ∂ y v ϵ φ (t)∥ B 1 2 dt ′ ≤ t 0 e -2Rt ′ dt ′ 1 2 t 0 (∥e Rt ′ ∂ y u ϵ φ (t)∥ B 1 2 + ϵ∥e Rt ′ ∂ y v ϵ φ (t)∥ B 1 2 ) 2 dt ′ 1 2 ≤ C∥e Rt (ϵ∂ y v ϵ φ , ∂ y u ϵ φ )∥ L2 t (B 1 2 ) 
≤ C ∥e a|Dx| (u 0 , ϵv 0 )∥

B 1 2 + ∥e a|Dx| (b 0 , ϵc 0 )∥ B 1 2 < a 2λ .
A continuity argument implies that T ⋆ = +∞ and we have (6.4.14) is valid for any t ∈ R + .

6.5 The convergence to the limit system MHD

In this section, we justify the limit from the scaled anisotropic MHD system to the hydrostatic MHD system in a 2D thin domain. As in the rst section, our main idea is to get control of the dierence between the two solutions (U ϵ , B ϵ ) and (U, B) of the systems (6.1.3) and (6.1.4) (respectively), in analytic space with some small initial data. To this end, we introduce :

(Ψ 1,ϵ , Ψ 2,ϵ , q ϵ ) = (u ϵ -u, v ϵ -v, p ϵ -p), (Φ 1,ϵ , Φ 2,ϵ ) = (b ϵ -b, c ϵ -c). (6.5.1) 
Then, Systems (6.1.3) and (6.1.4) imply that (Ψ 1,ϵ , Ψ 2,ϵ , q ϵ , Φ 1,ϵ , Φ

                     ∂ t Ψ 1,ϵ -ϵ 2 ∂ 2 x Ψ 1,ϵ -∂ 2 y Ψ 1,ϵ + ∂ x q ϵ = R 1,ϵ , ϵ 2 ∂ t Ψ 2,ϵ -ϵ 2 ∂ 2 x Ψ 2,ϵ -∂ 2 y Ψ 2,ϵ + ∂ y q ϵ = R 2,ϵ , ∂ t Φ 1,ϵ -ϵ 2 ∂ 2 x Φ 1,ϵ -∂ 2 y Φ 1,ϵ = R 3,ϵ , ∂ t Φ 2,ϵ -ϵ 2 ∂ 2 x Φ 2,ϵ -∂ 2 y Φ 2,ϵ = R 4,ϵ , ∂ x Ψ 1,ϵ + ∂ y Ψ 2,ϵ = 0 ∂ x Φ 1,ϵ + ∂ y Φ 2,ϵ = 0 Ψ 1,ϵ , Ψ 2,ϵ , Φ 1,ϵ , Φ 2,ϵ | t=0 = (u ϵ 0 -u 0 , v ϵ 0 -v 0 , b ϵ 0 -b 0 , c ϵ 0 -c) , Ψ 1,ϵ , Ψ 2,ϵ , Φ 1,ϵ , Φ 2,ϵ | y=0 = Ψ 1,ϵ , Ψ 2,ϵ , Φ 1,ϵ , Φ 2,ϵ | y=1 = 0, 2,ϵ ) veries (6.5.2) 
where v 0 is a function of u 0 and c 0 is a function of b 0 , using (6.3.1) and the remaining terms R i,ϵ , with i = 1, 2, 3, 4, are determined by the rest

           R 1,ϵ = ϵ 2 ∂ 2 x u -(u ϵ ∂ x u ϵ -u∂ x u) -(v ϵ ∂ y u ϵ -v∂ y u) + (b ϵ ∂ x b ϵ -b∂ x b) + (c ϵ ∂ y b ϵ -c∂ y b), R 2,ϵ = -ϵ 2 ∂ t v -ϵ 2 ∂ 2 x v -∂ 2 y v + u ϵ ∂ x v ϵ + v ϵ ∂ y v ϵ + b ϵ ∂ x c ϵ + c ϵ ∂ y c ϵ , R 3,ϵ = ϵ 2 ∂ 2 x b -(u ϵ ∂ x b ϵ -u∂ x b) -(v ϵ ∂ y b ϵ -v∂ y b) + (b ϵ ∂ x u ϵ -b∂ x u) + (c ϵ ∂ y u ϵ -c∂ y u), R 4,ϵ = -ϵ 2 ∂ t c -ϵ 2 ∂ 2 x c -∂ 2 y c + u ϵ ∂ x c ϵ + v ϵ ∂ y c ϵ + b ϵ ∂ x u ϵ + c ϵ ∂ y v ϵ . (6.5.3) 
As (Ψ 1,ϵ , Ψ 2,ϵ , q ϵ , Φ 1,ϵ , Φ 2,ϵ ) satises the boundary condition and also the divergence-free condition, therefore these two conditions allow us to write If we replace y by 1 in (6.5.4) and (6.5.5), we deduce from the incompressibility condition

Ψ 2,ϵ (t, x, y) = y 0 ∂ y Ψ 2,ϵ (t, x, s)ds = - y 0 ∂ x Ψ 1,ϵ (t, x, s)ds, (6.5.4) 
Φ 2,ϵ (t, x, y) = y 0 ∂ y Φ 2,ϵ (t, x, s)ds = - y 0 ∂ x Φ 1,ϵ (t, x , s)ds. 
∂ x Ψ 1,ϵ + ∂ y Ψ 2,ϵ = 0 ∂ x Φ 1,ϵ + ∂ y Φ 2,ϵ = 0 that ∂ x 1 0 Ψ 1,ϵ (t, x, y) dy = - 1 0 ∂ y Ψ 2,ϵ (t, x, y) dy = Ψ 2,ϵ (t, x, 1) -Ψ 2,ϵ (t, x, 0) = 0 ∂ x 1 0 Φ 1,ϵ (t, x, y) dy = - 1 0 ∂ y Φ 2,ϵ (t, x, y) dy = Φ 2,ϵ (t, x, 1) -Φ 2,ϵ (t, x, 0) = 0. Now for suitable function f , we dene f Θ (t, x, y) = F -1 ξ→x e Θ(t,ξ) f (t, ξ, y)
where

Θ(t, ξ) = (a -µη(t)) |ξ|, (6.5.6) 
where µ ≥ λ will be determined later, and η(t) is given by

η(t) = t 0 ∥(∂ y u ϵ φ , ϵ∂ x u ϵ φ )(t ′ )∥ B 1 2 + ∥∂ y u ϕ (t ′ )∥ B 1 2 dt ′ .
We can observe that, if we take c 0 and c 1 small enough in Theorems 6.2.1 and 6.2.2 then Θ(t) ≥ 0 and

0 ≤ Θ(t, ξ) ≤ min (ϕ(t, ξ), φ(t, ξ)) .
In what follows, for simplicity, we drop the script ϵ and we will write

(Ψ 1 Θ , Ψ 2 Θ , q Θ , Φ 1 Θ , Φ 2 Θ ) instead of (Ψ 1,ϵ Θ , Ψ 2,ϵ Θ , q ϵ Θ , Φ 1,ϵ Θ , Φ 2,ϵ Θ ). Direct calculations show that (Ψ 1 Θ , Ψ 2 Θ , q Θ , Φ 1 Θ , Φ 2 Θ ) satises (6.5.7) 
                     ∂ t Ψ 1 Θ + µ|D x | η(t)Ψ 1 Θ -ϵ 2 ∂ 2 x Ψ 1 Θ -∂ 2 y Ψ 1 Θ + ∂ x q Θ = R 1 Θ , ϵ 2 ∂ t Ψ 2 Θ + µ|D x | η(t)Ψ 2 Θ -ϵ 2 ∂ 2 x Ψ 2 Θ -∂ 2 y Ψ 2 Θ + ∂ y q Θ = R 2 Θ , ∂ t Φ 1 Θ + µ|D x | η(t)Φ 1 Θ -ϵ 2 ∂ 2 x Φ 1 Θ -∂ 2 y Φ 1 Θ = R 3 Θ , ϵ 2 ∂ t Φ 2 Θ + µ|D x | η(t)Φ 2 Θ -ϵ 2 ∂ 2 x Φ 2 Θ -∂ 2 y Φ 2 Θ = R 4 Θ , ∂ x Ψ 1 Θ + ∂ y Ψ 2 Θ = 0 ∂ x Φ 1 Θ + ∂ y Φ 2 Θ = 0, Ψ 1 Θ , Ψ 2 Θ , Φ 1 Θ , Φ 2 Θ | t=0 = (u ϵ 0 -u 0 , v ϵ 0 -v 0 , b ϵ 0 -b 0 , c ϵ 0 -c) , Ψ 1 Θ , Ψ 2 Θ , Φ 1 Θ , Φ 2 Θ | y=0 = Ψ 1 Θ , Ψ 2 Θ , Φ 1 Θ , Φ 2 Θ | y=1 = 0.
As in the previous sections, we will use C to denote a generic positive constant that can change from line to line. So, thanks to Theorems 6.2.1 and 6.2.2, and the proposition 6.3.1 we deduce that (6.5.8)

∥(u ϵ φ , b ϵ φ )∥ L∞ (R + ;B 1 2 ) +∥(u ϕ , b ϕ )∥ L∞ (R + ;B 1 2 ∩B 5 2 ) +∥∂ y (u ϕ , b ϕ )∥ L2 (R + ;B 1 2 ∩B 5 2 ) +∥(∂ t (u, b)) ϕ ∥ L2 (R + ;B 3 2 ) 
≤ M, where u ϵ Θ and u ϕ are respectively determined by (6.4.3) and (6.3.3) and M ≥ 1 is a constant independent of ϵ. Now we return to get the proof of the last theorem, for that we start by applying the dyadic operator in the system (6.5.7) and then taking the L 2 (S) (such that S = R×]0, 1[) scalar product of all the equations then we obtain that

∆ h q ∂ t (Ψ 1 Θ , ϵΨ 2 Θ ), ∆ h q (Ψ 1 Θ , ϵΨ 2 Θ ) L 2 + µ η(t) |D x |∆ h q (Ψ 1 Θ , ϵΨ 2 Θ ), ∆ h q (Ψ 1 Θ , ϵΨ 2 Θ ) L 2 + ∆ h q ∇q Θ , ∆ h q (Ψ 1 Θ , ϵΨ 2 Θ ) L 2 -∆ h q ∂ 2 y (Ψ 1 Θ , ϵΨ 2 Θ ), ∆ h q (Ψ 1 Θ , ϵΨ 2 Θ ) L 2 -ϵ 2 ∆ h q ∂ 2 x (Ψ 1 Θ , ϵΨ 2 Θ ), ∆ h q (Ψ 1 Θ , ϵΨ 2 Θ ) L 2 = ∆ h q R 1 Θ , ∆ h q Ψ 1 Θ L 2 + ∆ h q R 2 Θ , ∆ h q Ψ 2 Θ L 2 ,
and

∆ h q ∂ t (Φ 1 Θ , ϵΦ 2 Θ ), ∆ h q (Φ 1 Θ , ϵΦ 2 Θ ) L 2 + µ η(t) |D x |∆ h q (Φ 1 Θ , ϵΦ 2 Θ ), ∆ h q (Φ 1 Θ , ϵΦ 2 Θ ) L 2 -∆ h q ∂ 2 y (Φ 1 Θ , ϵΦ 2 Θ ), ∆ h q (Φ 1 Θ , ϵΦ 2 Θ ) L 2 -ϵ 2 ∆ h q ∂ 2 x (Φ 1 Θ , ϵΦ 2 Θ ), ∆ h q (Φ 1 Θ , ϵΦ 2 Θ ) L 2 = ∆ h q R 3 Θ , ∆ h q Φ 1 Θ L 2 + ∆ h q R 4 Θ , ∆ h q Φ 2 Θ L 2 .
Thanks to the Dirichlet boundary condition and due to the free divergence of Ψ ( div Ψ = ∂ x Ψ 1 + ∂ y Ψ 2 = 0 ), we get by using the integration by part that

∆ h q ∇q Θ , ∆ h q (Ψ 1 Θ , ϵΨ 2 Θ ) L 2 = -∆ h q q Θ , ∆ h q div (Ψ 1 Θ , ϵΨ 2 Θ ) L 2 = ∆ h q q Θ , ∆ h q (∂ y Ψ 2 Θ + ∂ x Ψ 1 Θ ) L 2 = 0. ( because ∂ y Ψ 2 Θ + ∂ x Ψ 1 Θ = 0).
We recall that we have by integrating by part that

∆ h q ∂ 2 y (Ψ 1 Θ , ϵΨ 2 Θ ), ∆ h q (Ψ 1 Θ , ϵΨ 2 Θ ) L 2 = -∆ h q ∂ y (Ψ 1 Θ , ϵΨ 2 Θ ) 2 L 2 , ϵ 2 ∆ h q ∂ 2 x (Ψ 1 Θ , ϵΨ 2 Θ ), ∆ h q (Ψ 1 Θ , ϵΨ 2 Θ ) L 2 = -ϵ 2 ∆ h q ∂ x (Ψ 1 Θ , ϵΨ 2 Θ ) 2 L 2 , ∆ h q ∂ 2 y (Φ 1 Θ , ϵΦ 2 Θ ), ∆ h q (Φ 1 Θ , ϵΦ 2 Θ ) L 2 = -∆ h q ∂ y (Φ 1 Θ , ϵΦ 2 Θ ) 2 L 2 , ϵ 2 ∆ h q ∂ 2 x (Φ 1 Θ , ϵΦ 2 Θ ), ∆ h q (Φ 1 Θ , ϵΦ 2 Θ ) L 2 = -ϵ 2 ∆ h q ∂ x (Φ 1 Θ , ϵΦ 2 Θ ) 2 L 2 ,
we replace in the obtained estimate and then integrating with respect to the time variable, we have the result estimates (6.5.9)

1 2 e Rt ∆ h q (Ψ 1 Θ , ϵΨ 2 Θ )(t) 2 L ∞ t (L 2 ) + µ t 0 η(t ′ ) e Rt ′ |D x | 1 2 ∆ h q (Ψ 1 Θ , ϵΨ 2 Θ ) 2 L 2 dt ′ + 1 2 e Rt ∆ h q ∂ y (Ψ 1 Θ , ϵΨ 2 Θ )(t) 2 L 2 t (L 2 ) + ϵ 2 e Rt ∆ h q ∂ x (Ψ 1 Θ , ϵΨ 2 Θ )(t) 2 L 2 t (L 2 ) ≤ C ∆ h q (Ψ 1 Θ , ϵΨ 2 Θ )(0) 2 L 2 + G q 1 + G q 2 ,
and (6.5.10)

1 2 e Rt ∆ h q (Φ 1 Θ , ϵΦ 2 Θ )(t) 2 L ∞ t (L 2 ) + µ t 0 η(t ′ ) e Rt |D x | 1 2 ∆ h q (Φ 1 Θ , ϵΦ 2 Θ ) 2 L 2 dt ′ + 1 2 e Rt ∆ h q ∂ ( y Φ 1 Θ , ϵΦ 2 Θ )(t) 2 L 2 t (L 2 ) + ϵ 2 e Rt ∆ h q ∂ x (Φ 1 Θ , ϵΦ 2 Θ )(t) 2 L 2 t (L 2 ) ≤ C ∆ h q (Φ 1 Θ , ϵΦ 2 Θ )(0) 2 L 2 + G q 3 + G q 4 ,
where

∆ h q (Ψ 1 Θ , ϵΨ 2 Θ )(0) 2 L 2 = ∆ h q e a|Dx| (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 )) 2 L 2 , ∆ h q (Φ 1 Θ , ϵΦ 2 Θ )(0) 2 L 2 = ∆ h q e a|Dx| (b ϵ 0 -b 0 , ϵ(c ϵ 0 -c 0 )) 2 L 2
.

Next, we claim that G i , i = 1, ..., 4 satisfy : (6.5.11)

G q 1 = t 0 ∆ h q R 1 Θ , ∆ h q Ψ 1 Θ L 2 dt ′ ≲ 2 -q dq ϵ∥∂ y u Θ ∥ L2 t (B 3 2 
)

∥ϵΨ 1 Θ ∥ L2 t (B 3 2 
)

+ 2 -q dq ∥u Θ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y Ψ 1 Θ ∥ L2 t B 1 2 
)

+ ∥b Θ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y Φ 1 Θ ∥ L2 t B 1 2 
)

∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) + 2 -q dq ∥Ψ 1 Θ ∥ 2 L2 t, η(t) (B 1 ) + 2 -q dq ∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) ∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) . G q 2 = t 0 ∆ h q R 2 Θ , ∆ h q Ψ 2 Θ L 2 dt ′ (6.5.12) ≲ 2 -q dq ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t, η(t) (B 1 ) + ϵ 2 ∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 ) ∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 ) + ∥Φ 2 Θ ∥ L2 t, η(t) (B 1 ) + ∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) + ϵ 2 ∥(∂ y Ψ 2 Θ , ϵ∂ x Ψ 2 Θ )∥ L2 t (B 1 2 
)

∥(∂ t u) Θ ∥ L2 t (B 3 2 
)

+ ∥∂ y u Θ ∥ L2 t (B 3 2 
)

+ ∥∂ y u Θ ∥ L2 t (B 5 2 
)

+ ∥u ϵ Θ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y u Θ ∥ L2 t (B 2 ) + ∥u Θ ∥ 1 2 L∞ t (B 3 2 
)

(∥∂ y Ψ 2 Θ ∥ L2 t (B 1 2 
)

+ ∥∂ y u Θ ∥ L2 t (B 3 2 ) 
)

+ ∥b Θ ∥ 1 2 L∞ t (B 3 2 
)

(∥∂ y Φ 2 Θ ∥ L2 t (B 1 2 
)

+ ∥∂ y b Θ ∥ L2 t (B 3 2 
)

) + ∥b ϵ Θ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y b Θ ∥ L2 t (B 2 )
.

(6.5.13)

G q 3 = t 0 ∆ h q R 3 Θ , ∆ h q Φ 1 Θ L 2 dt ′ ≲ 2 -q dq ϵ∥∂ y b Θ ∥ L2 t (B 3 2 
)

∥ϵ∂ x Φ 1 Θ ∥ L2 t (B 1 2 
)

+ 2 -q dq ∥u Θ ∥ 1 2 L ∞ t (B 3 2 
)

∥∂ y Φ 1 Θ ∥ L2 t B 1 2 
)

+ ∥b Θ ∥ 1 2 L ∞ t (B 3 2 
)

∥∂ y Ψ 1 Θ ∥ L2 t B 1 2 
)

∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) + 2 -q dq ∥Φ 1 Θ ∥ 2 L2 t, η(t) (B 1 ) + 2 -q dq ∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) ∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) . G q 4 = t 0 ∆ h q R 4 Θ , ∆ h q Φ 2 Θ L 2 dt ′ (6.5.14) ≲ 2 -q dq ∥(Ψ 1 Θ , ϵΦ 2 Θ )∥ 2 L2 t, η(t) (B 1 ) + ϵ 2 ∥Φ 2 Θ ∥ L2 t, η(t) (B 1 ) ∥Φ 2 Θ ∥ L2 t, η(t) (B 1 ) + ∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 ) + ϵ 2 ∥(∂ y Φ 2 Θ , ϵ∂ x Φ 2 Θ )∥ L2 t (B 1 2 
)

∥(∂ t b) Θ ∥ L2 t (B 3 2 
)

+ ∥∂ y b Θ ∥ L2 t (B 3 2 
)

+ ∥∂ y b Θ ∥ L2 t (B 5 2 
)

+ ϵ 2 ∥Φ 2 Θ ∥ L2 t, η(t) (B 1 ) ∥b ϵ Θ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y u Θ ∥ L2 t (B 2 ) + ∥u Θ ∥ 1 2 L∞ t (B 3 2 
)

(∥∂ y Φ 2 Θ ∥ L2 t (B 1 2 
)

+ ∥∂ y b Θ ∥ L2 t (B 3 2 ) 
)

+ ∥b Θ ∥ 1 2 L∞ t (B 3 2 
)

(∥∂ y Ψ 2 Θ ∥ L2 t (B 1 2 
)

+ ∥∂ y u Θ ∥ L2 t (B 3 2 
)

) + ∥u ϵ Θ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y b Θ ∥ L2 t (B 2 )
.

By virtue of (6.5.8), (6.5.11), (6.5.12), (6.5.13) and (6.5.14), we infer

2 i=1 G q i = 4 i=1 t 0 ∆ h q R i Θ , ∆ h q Ψ i Θ L 2 dt ′ ≲ dq 2 -q M ϵ∥(ϵ∂ x (Ψ 1 Θ , ϵΨ 2 Θ ), ϵ∂ y Ψ 2 Θ ∥ L2 t (B 1 2 ) (6.5.15) 
+ M

1 2 ∥∂ y (Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 1 2 
)

∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t, η(t) (B 1 ) + M 3 2 ϵ∥ϵΨ 2 Θ ∥ L2 t, η(t) (B 1 ) + ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ 2 L2 t, η(t) (B 1 ) + ∥(ϵΨ 2 Θ , ϵΦ 2 Θ )∥ 2 L2 t, η(t) (B 1 ) + ∥(Ψ 1 Θ , Φ 1 Θ )∥ 2 L2 t, η(t) (B 1 ) + M 1 2 ∥∂ y Φ 1 Θ ∥ Lt(B 1 2 
)

∥Ψ 1 Θ )∥ L2 t, η(t) (B 1 ) + M 1 2 ϵ 1 2 ∥∂ y Φ 2 Θ ∥ Lt(B 1 2 
)

∥ϵΨ 2 Θ )∥ L2 t, η(t) (B 1 ) .
Multiplying the above inequality (6.5.9) and (6.5.10) by 2 q , and summing the obtained inequalities with respect to q ∈ Z, we come to

1 2 ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L∞ t (B 1 2 
)

+ (Φ 1 Θ , ϵΦ 2 Θ )(t) L ∞ t (B 1 2 ) 
+ µ

1 2 ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t, η(t) (B 1 ) + µ 1 2 ∥(Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t, η(t) (B 1 ) + 1 2 ∥∂ y (Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 1 2 
)

+ ϵ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 3 2 
)

+ 1 2 ∥∂ y (Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t (B 1 2 
)

+ ϵ∥(Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t (B ≤ C∥e a|Dx| (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + C∥e a|Dx| (b ϵ 0 -b 0 , ϵ(c ϵ 0 -c 0 ))∥ B 1 2 + C M ϵ∥(ϵ∂ x (Ψ 1 Θ , ϵΨ 2 Θ ), ϵ∂ y Ψ 2 Θ ∥ L2 t (B 1 
2 ) (6.5.16)

+ M 1 2 ∥∂ y (Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 1 2 
)

∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t, η(t) (B 1 ) + M 3 2 ϵ∥ϵΨ 2 Θ ∥ L2 t, η(t) (B 1 ) + ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ 2 L2 t, η(t) (B 1 ) + ∥(ϵΨ 2 Θ , ϵΦ 2 Θ )∥ 2 L2 t, η(t) (B 1 ) + ∥(Ψ 1 Θ , Φ 1 Θ )∥ 2 L2 t, η(t) (B 1 ) + M 1 2 ∥∂ y Φ 1 Θ ∥ Lt(B 1 2 
)

∥Ψ 1 Θ )∥ L2 t, η(t) (B 1 ) + M 1 2 ϵ 1 2 ∥∂ y Φ 2 Θ ∥ Lt(B 1 2 
)

∥ϵΨ 2 Θ )∥ L2 t, η(t) (B 1 ) .
Young's inequality leads to

1 2 ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L∞ t (B 1 2 
)

+ (Φ 1 Θ , ϵΦ 2 Θ )(t) L ∞ t (B 1 2 ) 
+ µ

1 2 ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t, η(t) (B 1 ) + µ 1 2 ∥(Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t, η(t) (B 1 ) + 1 2 ∥∂ y (Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 1 2 
)

+ ϵ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t (B 3 2 
)

+ 1 2 ∥∂ y (Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t (B 1 2 
)

+ ϵ∥(Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t (B 3 
2 ) (6.5.17)

≤ C∥e a|Dx| (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B 1 2 + C∥e a|Dx| (b ϵ 0 -b 0 , ϵ(c ϵ 0 -c 0 ))∥ B 1 2 + CM ϵ + ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t, η(t) (B 1 ) + ∥(Φ 1 Θ , ϵΦ 2 Θ )∥ L2 t, η(t) (B 1 )
.

Then by taking µ = CM , we can complete the proof Theorem 6.2.3. □.

Lemma 6.5.1. We use the same assertion used in Theorem 6.2.3, and the result from Remark 6.1.1

we obtain the convergence of Φ 2,ϵ = c ϵ -c to 0 when ϵ → 0.

Proof. of Estimate (6.5.11). According to (6.5.3), we write

R 1 Θ = ϵ 2 ∂ 2 x u -(u ϵ ∂ x u ϵ -u∂ x u) -(v ϵ ∂ y u ϵ -v∂ y u) + (b ϵ ∂ x b ϵ -b∂ x b) + (c ϵ ∂ y b ϵ -c∂ y b) Θ = ϵ 2 ∂ 2 x u Θ -u ϵ ∂ x (u ϵ -u) + (u ϵ -u)∂ x u -v ϵ ∂ y (u ϵ -u) + (v ϵ -v)∂ y u Θ + b ϵ ∂ x (b ϵ -b) + (b ϵ -b)∂ x b -c ϵ ∂ y (b ϵ -b) + (c ϵ -c)∂ y b Θ R 1 Θ = Q 1 Θ + b ϵ ∂ x Φ 1 + Φ 1 ∂ x b -c ϵ ∂ y Φ 1 + Φ 2 ∂ y b Θ .
We have already bounded t 0

∆ h q Q 1 Θ , ∆ h q Ψ 1 Θ L 2 dt ′ ( see the proof of the estimate (4.76) in [4]), so t 0 ∆ h q Q 1 Θ , ∆ h q Ψ 1 Θ L 2 dt ′ ≲ d 2 q 2 -q ϵ∥∂ y u φ ∥ L2 t (B 3 2 
)

∥ϵw 1 φ ∥ L2 t (B 3 2 
)

+∥u φ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y w 1 φ ∥ L2 t B 1 2 
)

∥w 1 φ ∥ L2 t, η(t) (B 1 ) + ∥w 1 φ ∥ 2 L2 t, η(t) (B 1 ) . (6.5.18) 
So, we still have to get the estimate of

t 0 ∆ h q (b ϵ ∂ x Φ 1 + Φ 1 ∂ x b) Θ , ∆ h q Ψ 1 Θ dt ′ and t 0 ∆ h q (c ϵ ∂ y Φ 1 + Φ 2 ∂ y b) Θ , ∆ h q Ψ 1 Θ dt ′ .
Then, we start by giving the estimate of the term t 0

∆ h q (b ϵ ∂ x Φ 1 + Φ 1 ∂ x b) Θ , ∆ h q Ψ 1 Θ dt ′ .
It follow from the lemma 6.3.1 that

t 0 ∆ h q (b ϵ ∂ x Φ 1 ) Θ , ∆ h q Ψ 1 Θ dt ′ ≤ Cd 2 q 2 -q ∥Φ Θ ∥ L2 t, η(t) (B 1 ) ∥Ψ Θ ∥ L2 t, η(t) (B 1 ) . (6.5.19) 
We note

I q 1 = t 0 Φ 1 ∂ x b) Θ , ∆ h q Ψ 1 Θ dt ′ ,
by applying Bony's decomposition (6.2.2) for the horizontal variable to Φ 1 ∂ x b we obtain

Φ 1 ∂ x b = T h Φ 1 ∂ x b + T h ∂xb Φ 1 + R h (∂ x b, Φ 1 ).
and then, we have the following bound

I q 1 = t 0 ∆ h q (T h Φ 1 ∂ x b + T h ∂xb Φ 1 + R h (∂ x b, Φ 1 )) Θ , ∆ h q Ψ 1 Θ L 2 dt ′ ≤ I q 1,1 + I q 1,2 + I q 1,3 , with I q 1,2 = t 0 ∆ h q (T h ∂xb Φ 1 ) Θ , ∆ h q Ψ 1 Θ L 2 dt ′ , I q 1,1 = t 0 ∆ h q (T h Φ 1 ∂ x b) Θ , ∆ h q Ψ 1 Θ L 2 dt ′ , I q 1,3 = t 0 ∆ h q (R h (∂ x b, Φ 1 ) Θ , ∆ h q Ψ 1 Θ L 2 dt ′ .
Using the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10] and the denition of T h Φ 1 ∂ x b, we have

I q 1,1 ≤ |q-q ′ |≤4 t 0 ∥S h q ′ -1 Φ 1 Θ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ ∂ x b Θ ∥ L 2 h (L ∞ v ) ∥∆ h q Ψ 1 Θ ∥ L 2 ≤ |q-q ′ |≤4 t 0 2 q ′ 2 ∥S h q ′ -1 Φ 1 Θ ∥ L 2 ∥∆ h q ′ ∂ x b Θ ∥ L 2 h (L ∞ v ) ∥∆ h q Ψ 1 Θ ∥ L 2 . Since ∥∆ h q ′ ∂ x b Θ ∥ L 2 h (L ∞ v ) ≲ 2 q ′ ∥∆ h q ′ b Θ ∥ 1 2 L 2 ∥∆ h q ′ ∂ y b Θ ∥ 1 2 L 2 ,
then,

I q 1,1 = t 0 ∆ h q (T h Φ 1 ∂ x b) Θ , ∆ h q Ψ 1 Θ dt ′ ≲ |q-q ′ |≤4 t 0 2 q ′ 2 ∥S h q ′ -1 Φ 1 Θ ∥ L 2 ∥b Θ ∥ 1 2 B 3 2 ∥∂ y b Θ ∥ 1 2 B 1 2 ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ 2 t 0 ∥S h q ′ -1 Φ 1 Θ ∥ 2 L 2 ∥b Θ ∥ B 3 2 dt ′ 1 2 × t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -q ∥b Θ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y Φ 1 Θ ∥ L2 t (B 1 2 
)

∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) ,
where d 2 q is a summable sequence, which implies

I q 1,1 = t 0 ∆ h q (T h Φ 1 ∂ x b) Θ , ∆ h q Ψ 1 Θ dt ′ ≲ d 2 q 2 -q ∥b Θ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y Φ 1 Θ ∥ L2 t (B 1 2 
)

∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) . (6.5.20) 
While observing that

∥S h q ′ -1 ∂ x b Θ ∥ L ∞ ≤ l≤q-2 2 3l 2 ∥∆ h l b Θ ∥ 1 2 L 2 ∥∆ h l ∂ y b Θ ∥ 1 2 L 2 ≲ 2 q ∥∂ y b Θ ∥ B 1 2 ,
so we can deduce

I q 1,2 = t 0 ∆ h q (T h ∂xb Φ 1 ) Θ , ∆ h q Ψ 1 Θ ≤ |q-q ′ |≤4 t 0 ∥S h q ′ -1 ∂ x b Θ ∥ L ∞ ∥∆ h q ′ Φ 1 Θ ∥ L 2 ∥∆ h q Ψ 1 Θ ∥ L 2 ≲ |q-q ′ |≤4 t 0 2 q ′ ∥∂ y b Θ ∥ B 1 2 ∥∆ h q ′ Φ 1 Θ ∥ L 2 ∥∆ h q Ψ 1 Θ ∥2 ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q ′ Φ 1 Θ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2
.

Using the denition of η(t) and Denition 6.2.3 we have

t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q d q (Ψ 1 Θ )∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 )
.

Then,

I q 1,2 ≲ 2 -q d 2 q ∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) ∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) , (6.5.21) 
where

d 2 q = d q (Ψ 1 Θ )   |q-q ′ |≤4 d q ′ (Φ 1 Θ )   .
In a similar way, we have

I q 1,3 = t 0 ∆ h q (R h (Φ 1 , ∂ x b)) Θ , ∆ h q Ψ 1 Θ dt ′ ≲ 2 q 2 q ′ ≥q-3 t 0 ∥∆ h q ′ Φ 1 Θ ∥ L 2 ∥ ∆h q ′ ∂ x b Θ ∥ L 2 h (L ∞ v ) ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 t 0 2 q ′ 2 ∥∆ h q ′ Φ 1 Θ ∥ L 2 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ L 2 ≲ 2 q 2 q ′ ≥q-3 2 q ′ 2 t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q ′ Φ 1 Θ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2
.

Using the denition of η(t) and Denition 6.2.3 we have

t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q d q (Ψ 1 Θ )∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 )
.

Then,

I q 1,3 ≲ 2 -q d 2 q ∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) ∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) , (6.5.22) 
where

d 2 q = d q (Ψ 1 Θ )   |q-q ′ |≤4 d q ′ (Φ 1 Θ )   .
Summing the estimates (6.5.20), (6.5.21) and (6.5.22) we obtain

I q 1 ≲ d 2 q 2 -q ∥b Θ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y Φ 1 Θ ∥ L2 t (B 1 2 
)

+ ∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) ∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) . (6.5.23) 
Now we move to get the estimate of the term

t 0 ∆ h q (c ϵ ∂ y Φ 1 + Φ 2 ∂ y b) Θ , ∆ h q Ψ 1 Θ dt ′ = J q 1 + J q 2 , we start by J q 1 , we recall that c ϵ = c + Φ 2 , then J q 2 = t 0 ∆ h q (c ϵ ∂ y Φ 1 ) Θ , ∆ h q Ψ 1 Θ dt ′ = t 0 ∆ h q (Φ 2 ∂ y Φ 1 ) Θ , ∆ h q Ψ 1 Θ dt ′ + t 0 ∆ h q (c∂ y Φ 1 ) Θ , ∆ h q Ψ 1 Θ dt ′ = J q 1,1 + J q 1,2 .
It follow from the lemma 6.3.2 that

J q 1,1 = t 0 ∆ h q (Φ 2 ∂ y Φ 1 ) Θ , ∆ h q Ψ 1 Θ dt ′ ≤ Cd 2 q 2 -q ∥Φ Θ ∥ L2 t, η(t) (B 1 ) ∥Ψ Θ ∥ L2 t, η(t) (B 1 ) . (6.5.24) 
For the second term J q 1,2 , we apply the Bony's decomposition (6.2.2) for the horizontal variable to

c∂ y Φ 1 , we obtain c∂ y Φ 1 = T h c ∂ y Φ 1 + T h ∂yΦ 1 c + R h (c, ∂ y Φ 1 )
, so, we have the following bound

J q 1,2 = t 0 ∆ h q (T h c ∂ y Φ 1 + T h ∂yΦ 1 c + R h (c, ∂ y Φ 1 )) Θ , ∆ h q Ψ 1 Θ dt ′ ≤ J q 1,21 + J q 1,22 + J q 1,23 , where J q 1,21 = t 0 ∆ h q (T h c ∂ y Φ 1 ) Θ , ∆ h q Ψ 1 Θ dt ′ , J q 1,22 = t 0 ∆ h q (T h ∂yΦ 1 c) Θ , ∆ h q Ψ 1 Θ dt ′ , J q 1,23 = t 0 ∆ h q (R h (c, ∂ y Φ 1 )) Θ , ∆ h q Ψ 1 Θ dt ′ .
Using the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10] and the denition of T h c ∂ y Φ 1 , we have

J q 1,21 ≤ |q-q ′ |≤4 t 0 ∥S h q ′ -1 c Θ ∥ L ∞ ∥∆ h q ′ ∂ y Φ 1 Θ ∥ L 2 ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ .
Due to ∂ x b + ∂ y c = 0 and Poincaré inequality, we can write c(t, x, y) = -y 0 ∂ x b(t, x, s)ds, then we deduce from the lemma 6.2.1 that Since

∥∆ h q ′ c Θ ∥ L ∞ ≤ 1 0 ∥∆ h q ′ ∂ x b Θ (t, x, s)∥ L ∞ h ds ≤ 2 3q 2 1 0 ∥∆ h q ′ b Θ (t, x, s)∥ L 2 h ds ≤ 2 3q 2 ∥∆ h q ′ b Θ (t, x, s)∥ L 2 , (6.5.25) 
then,

∥S h q ′ -1 c Θ ∥ L ∞ ≤ 2 q ′ 2 ∥b Θ (t ′ )∥ 1 2 B 3 2 ∥∂ y b Θ (t ′ )∥ 1 2 B 1 2
, from which we infer

J q 1,21 ≲ |q-q ′ |≤4 t 0 ∥S h q ′ -1 c Θ ∥ L ∞ ∥∆ h q ′ ∂ y Φ 1 Θ ∥ L 2 ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 t 0 2 q ′ 2 ∥b Θ (t ′ )∥ 1 2 B 3 2 ∥∂ y b Θ (t ′ )∥ 1 2 B 1 2 ∥∆ h q ′ ∂ y Φ 1 Θ ∥ L 2 ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 t 0 2 q ′ 2 ∥b Θ (t ′ )∥ 1 2 B 3 2 ∥∆ h q ′ ∂ y Φ 1 Θ ∥ L 2 ∥∂ y b Θ (t ′ )∥ 1 2 B 1 2 ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ 2 ∥b Θ (t ′ )∥ 1 2 L ∞ t (B 3 2 
)

∥∆ h q ′ ∂ y Φ 1 Θ ∥ L 2 t (L 2 ) t 0 ∥∂ y b Θ (t ′ )∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -q ∥b Θ (t ′ )∥ 1 2 L ∞ t (B 3 2 
)

∥∂ y Φ 1 Θ ∥ L2 t (B 1 2 
)

∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) ,
where dq is a summable sequence, which implies

J q 1,21 ≲ d 2 q 2 -q ∥b Θ ∥ 1 2 L ∞ t (B 3 2 
)

∥∂ y Φ 1 Θ ∥ L2 t (B 1 2 
)

∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) . (6.5.26) 
While observing that

∥∆ h q c Θ ∥ L 2 h (L ∞ v ) ≤ d q ∥b Θ (t ′ )∥ 1 2 B 3 2 ∥∂ y b Θ (t ′ )∥ 1 2 B 1 2
, so we can deduce

J q 1,22 = t 0 ∆ h q (T h ∂yΦ 1 c) Θ , ∆ h q Ψ 1 Θ dt ′ ≤ |q-q ′ |≤4 t 0 ∥S h q ′ -1 ∂ y Φ 1 Θ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ c Θ ∥ L 2 h (L ∞ v ) ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 t 0 ∥S h q ′ -1 ∂ y Φ 1 Θ ∥ L ∞ h (L 2 v ) d q ′ (b Θ )∥b Θ (t ′ )∥ 1 2 B 3 2 ∥∂ y b Θ (t ′ )∥ 1 2 B 1 2 ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 ∥b Θ (t ′ )∥ 1 2 L ∞ t (B 3 2 
)

∥S h q ′ -1 ∂ y Φ 1 Θ ∥ L 2 t (L ∞ h (L 2 v )) t 0 ∥∂ y b Θ (t ′ )∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -q ∥b Θ (t ′ )∥ 1 2 L ∞ t (B 3 2 
)

∥∂ y Φ 1 Θ ∥ L2 t (B 1 2 
)

∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 )
.

Using the denition of η(t) and Denition 6.2.3 we have

t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q d q (Ψ 1 Θ )∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 )
.

Then,

J q 1,22 ≲ 2 -q d 2 q ∥b Θ ∥ 1 2 L ∞ t (B 3 2 
)

∥∂ y Φ 1 Θ ∥ L2 t (B 1 2 
)

∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) , (6.5.27) 
where

d 2 q = d q (Ψ 1 Θ )   |q-q ′ |≤4 d q ′   .
In a similar way, we have

J q 1,23 = t 0 ∆ h q (R h (c, ∂ y Φ 1 )) Θ , ∆ h q Ψ 1 Θ dt ′ ≲ 2 q 2 q ′ ≥q-3 t 0 ∥∆ h q ′ ∂ y Φ 1 Θ ∥ L 2 ∥ ∆h q ′ c Θ ∥ L 2 h (L ∞ v ) ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 t 0 ∥b Θ (t ′ )∥ 1 2 B 3 2 ∥∂ y b Θ (t ′ )∥ 1 2 B 1 2 ∥∆ h q ′ ∂ y Φ 1 Θ ∥ L 2 ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 ∥b Θ (t ′ )∥ 1 2 L ∞ t (B 3 2 
)

∥∆ h q ′ ∂ y Φ 1 Θ ∥ L 2 t (L 2 ) t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2
.

Using the denition of η(t) and Denition 6.2.3 we have

t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q d q (Ψ 1 Θ )∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 )
.

As a consequence, we arrive at

J q 1,23 ≲ d 2 q 2 -q ∥b Θ ∥ 1 2 L ∞ t (B 3 2 
)

∥∂ y Φ 1 Θ ∥ L2 t (B 1 2 
)

∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) . (6.5.28) 
Summing the estimates (6.5.26), (6.5.27) and (6.5.28) we obtain

J q 1,2 ≲ d 2 q 2 -q ∥b Θ ∥ 1 2 L ∞ t (B 3 2 
)

∥∂ y Φ 1 Θ ∥ L2 t (B 1 2 
)

∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) . (6.5.29) 
Now we will get the estimate of the last term J q 2 = t 0

∆ h q (Φ 2 ∂ y b) Θ , ∆ h q Ψ 1 Θ dt ′ .
For this end, we apply the Bony's decomposition (6.2.2) for the horizontal variable to Φ 2 ∂ y b, we obtain

Φ 2 ∂ y b = T h Φ 2 ∂ y b + T h ∂yb Φ 2 + R h (∂ y b, Φ 2 ),
so, we have the following bound

J q 2 = t 0 ∆ h q (T h Φ 2 ∂ y b + T h ∂yb Φ 2 + R h (∂ y b, Φ 2 )) Θ , ∆ h q Ψ 1 Θ dt ′ ≤ J q 2,1 + J q 2,2 + J q 2,3 , where J q 2,1 = t 0 ∆ h q (T h Φ 2 ∂ y b) Θ , ∆ h q Ψ 1 Θ dt ′ , J q 2,2 = t 0 ∆ h q (T h ∂yb Φ 2 ) Θ , ∆ h q Ψ 1 Θ dt ′ , J q 2,3 = t 0 ∆ h q (R h (∂ y b, Φ 2 )) Θ , ∆ h q Ψ 1 Θ dt ′ .
Using the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10] and the denition of T h Φ 2 ∂ y b, we have

J q 2,1 ≤ |q-q ′ |≤4 t 0 ∥S h q ′ -1 Φ 2 Θ ∥ L ∞ ∥∆ h q ′ ∂ y b Θ ∥ L 2 ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 t 0 d q ′ 2 -q ′ 2 ∥S h q ′ -1 Φ 2 Θ ∥ L ∞ ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ .
Due to ∂ x Φ 1 + ∂ y Φ 2 = 0 and Poincaré inequality, we can write Φ 2 (t, x, y) = -y 0 ∂ x Φ 1 (t, x, s)ds, then we deduce from the lemma 6.2.1 that Since

∥∆ h q ′ Φ 2 Θ ∥ L ∞ ≤ 1 0 ∥∆ h q ′ ∂ x Φ 1 Θ (t, x, s)∥ L ∞ h ds ≤ 2 3q 2 1 0 ∥∆ h q ′ Φ 1 Θ (t, x, s)∥ L 2 h ds ≤ 2 3q 2 ∥∆ h q ′ Φ 1 Θ (t, x, s)∥ L 2 ,
from which, we infer

t 0 ∥S h q ′ -1 Φ 2 Θ ∥ 2 L ∞ ∥∂ y b Θ ∥ B 1 2 dt ′ 1 2 l≤q ′ -2 2 3l 2 t 0 ∥∆ h l Φ 1 Θ ∥ 2 L 2 ∥∂ y b Θ ∥ B 1 2 dt ′ 1 2 ≲ l≤q ′ -2 d l 2 l 2 ∥Φ 1 (t)∥ L2 t, η(t) (B 1 ) ≲ 2 q ′ 2 d q ′ (Φ 1 )∥Φ 1 (t)∥ L2 t, η(t) (B 1 ) .
We replace in J q 2,1 , we obtain

J q 2,1 ≲ d 2 q 2 -q ∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) ∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) . (6.5.30) 
Now let get the estimate of the second term J 2,2

J q 2,2 = t 0 ∆ h q (T h ∂yb Φ 2 ) Θ , ∆ h q Ψ 1 Θ dt ′ ≤ |q-q ′ |≤4 t 0 ∥S h q ′ -1 ∂ y b Θ ∥ L ∞ h (L 2 v ) ∥∆ h q ′ Φ 2 Θ ∥ L 2 h (L ∞ v ) ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q ′ Φ 1 Θ ∥ L 2 ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q ′ Φ 1 Θ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q ′ Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2
.

Using the denition of η(t) and Denition 6.2.3 we have

t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q d q (Ψ 1 Θ )∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) .
Then,

J q 2,2 ≲ 2 -q d 2 q ∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) ∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) , (6.5.31) 
where

d 2 q = d q (Ψ 1 Θ )   |q-q ′ |≤4 d q ′ (Φ 1 Θ )   .
In a similar way, we have

J q 2,3 = t 0 ∆ h q (R h (Φ 2 , ∂ y b)) Θ , ∆ h q Ψ 1 Θ dt ′ ≲ 2 q 2 q ′ ≥q-3 t 0 ∥ ∆h q ′ ∂ y b Θ ∥ L 2 ∥∆ h q ′ Φ 2 Θ ∥ L 2 h (L ∞ v ) ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 2 q ′ 2 t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q ′ Φ 1 Θ ∥ L 2 ∥∆ h q Ψ 1 Θ ∥ L 2 dt ′ ≲ 2 q 2 q ′ ≥q-3 2 q ′ 2 t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q ′ Φ 1 Θ ∥ 2 L 2 dt ′ 1 2 × t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q ′ Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2
.

Using the denition of η(t) and Denition 6.2.3 we have

t 0 ∥∂ y b Θ ∥ B 1 2 ∥∆ h q Ψ 1 Θ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -q d q (Ψ 1 Θ )∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 )
.

As a consequence, we arrive at

J q 2,3 ≲ 2 -q d 2 q ∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) ∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) . (6.5.32) 
Summing the estimates (6.5.30), (6.5.31) and (6.5.32) we obtain

J q 2 ≲ d 2 q 2 -q ∥Ψ 1 Θ ∥ L2 t, η(t) (B 1 ) ∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) . (6.5.33) 
By summing all the resulting estimates we obtain the proof of the estimate (6.5.11).

We will now study the second term G q 2 .

Proof. of the estimate (6.5.12). Using the denition of R 2 Θ , we write

R 2 Θ = -ϵ 2 ∂ t v -ϵ 2 ∂ 2 x v -∂ 2 y v + u ϵ ∂ x v ϵ + v ϵ ∂ y v ϵ + b ϵ ∂ x c ϵ + c ϵ ∂ y c ϵ Θ = Q 2 Θ + (b ϵ ∂ x c ϵ ) Θ + (c ϵ ∂ y c ϵ ) Θ .
We have already do the proof of the estimate t 0

∆ h q Q 2 Θ , ∆ h q Ψ 2 Θ L 2 dt ′ ( see the proof of the estimate (4.79) in [4]), then t 0 ∆ h q Q 2 Θ , ∆ h q Ψ 2 Θ L 2 dt ′ (6.5.34) ≲ d 2 q 2 -q ∥(Ψ 1 Θ , ϵΨ 2 Θ )∥ L2 t, η(t) (B 1 ) + ϵ 2 ∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 ) (∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 ) + ϵ 2 ∥(∂ y Ψ 2 Θ , ϵ∂ x Ψ 2 Θ )∥ L2 t (B 1 2 
)

∥(∂ t u) Θ ∥ L2 t (B 3 2 
)

+ ∥∂ y u Θ ∥ L2 t (B 3 2 
)

+ ∥∂ y u Θ ∥ L2 t (B 5 2 
)

+ ∥u ϵ Θ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y u Θ ∥ L2 t (B 2 ) + ∥u Θ ∥ 1 2 L∞ t (B 3 2 
)

(∥∂ y Ψ 2 Θ ∥ L2 t (B 1 2 
)

+ ∥∂ y u Θ ∥ L2 t (B 3 2 ) 
)) .

So, we still have to get the estimate of

J q 3 = t 0 ∆ h q (b ϵ ∂ x c ϵ ) Θ , ∆ h q Ψ 2 Θ dt ′ , J q 4 = t 0 ∆ h q (c ϵ ∂ y c ϵ ) Θ , ∆ h q Ψ 2 Θ dt ′ .
Then, we start by giving the estimate of the term J q 3 = t 0

∆ h q (b ϵ ∂ x c ϵ ) Θ , ∆ h q Ψ 2 Θ dt ′ . We write J q 3 ≤ ϵ 2 (J q 31 + J q 32 ) , where J q 31 = t 0 ∆ h q (b ϵ ∂ x Φ 2 ) Θ , ∆ h q Ψ 2 Θ L 2 dt ′ J q 32 = t 0 ∆ h q (b ϵ ∂ x c) Θ , ∆ h q Ψ 2 Θ L 2 dt ′ .
It follows from Lemma 6.3.1 that

J q 31 ≲ d 2 q 2 -q ∥ϵΨ 2 Θ ∥ L2 t, η(t) (B 1 ) ∥ϵΦ 2 Θ ∥ L2 t, η(t) (B 1 )
.

For the second term, Bony's decomposition for the horizontal variable gives

J q 32 = t 0 ∆ h q (b ϵ ∂ x c) Θ , ∆ h q Ψ 2 Θ L 2 dt ′ ≤ J q 321 + J q 322 + J q 323 , with J q 321 = t 0 ∆ h q (T h b ϵ ∂ x c) Θ , ∆ h q Ψ 2 Θ L 2 dt ′ , J q 322 = t 0 ∆ h q (T h ∂xc b ϵ ) Θ , ∆ h q Ψ 2 Θ L 2 dt ′ , J q 323 = t 0 ∆ h q (R h (b ϵ , ∂ x c)) Θ , ∆ h q Ψ 2 Θ L 2 dt ′ .
Using the estimate

∥S h q ′ -1 b ϵ Θ ∥ L ∞ ≲ ∥b ϵ Θ ∥ 1 2 B 1 2 ∥∂ y b ϵ Θ ∥ 1 2 B 1 2
, and the relation (6.3.1), we have

J q 321 = t 0 ∆ h q (T h b ϵ ∂ x c) Θ , ∆ h q Ψ 2 Θ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 b ϵ Θ ∥ L ∞ ∥∆ h q ′ ∂ x c Θ ∥ L 2 ∥∆ h q Ψ 2 Θ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 ∥b ϵ Θ ∥ 1 2 B 1 2 ∥∂ y b ϵ Θ ∥ 1 2 B 1 2 2 2q ′ ∥∆ h q ′ b Θ ∥ L 2 ∥∆ h q Ψ 2 Θ ∥ L 2 dt ′ ≲ d 2 q 2 -q ∥b ϵ Θ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y b Θ ∥ L2 t (B 2 ) ∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 )
.

So, we obtain (6.5.35)

J q 321 ≲ d 2 q 2 -q ∥b ϵ Θ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y b Θ ∥ L2 t (B 2 ) ∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 )
.

In a similar way, the fact that

∥S h q ′ -1 ∂ x c Θ ∥ L ∞ ≲ y 0 ∥S h q ′ -1 ∂ x (∂ x b Θ (t, x, s)∥ L ∞ ds ≲ 2 q ′ 2 ∥∂ y b Θ ∥ B 2 , leads to J q 322 = t 0 ∆ h q (T h ∂xc b ϵ ) Θ , ∆ h q Ψ 2 Θ L 2 dt ′ ≲ d 2 q 2 -q ∥b ϵ Θ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y b Θ ∥ L2 t (B 2 ) ∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 ) . (6.5.36) 
For the last term J q 323 , we have

J q 323 = t 0 ∆ h q (R h (∂ x c, b ϵ )) Θ , ∆ h q Ψ 2 Θ L 2 ≲ d 2 q 2 -q ∥b ϵ Θ ∥ 1 2 L∞ t (B 1 2 ) ∥∂ y b Θ ∥ L2 t (B 2 ) ∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 ) . (6.5.37) 
Summing inequalities (6.5.35), (6.5.36) and (6.5.37) nally yields

J q 32 ≲ d 2 q 2 -q ∥b ϵ Θ ∥ 1 2 L∞ t (B 1 2 
)

∥∂ y b Θ ∥ L2 t (B 2 ) ∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 )
.

To end, we need to estimate the last term J q 4 = t 0

∆ h q (c ϵ ∂ y c ϵ ) Θ , ∆ h q Ψ 2 Θ dt ′ . We rst note that c ϵ ∂ y c ϵ = c∂ y c + Φ 2 ∂ y Φ 2 + c∂ y Φ 2 + Φ 2 ∂ y c.
We rst deduce from the lemma (6.4.1) that

ϵ 2 t 0 ∆ h q (Φ 2 ∂ y Φ 2 ) Θ , ∆ h q Ψ 2 Θ dt ′ ≲ d 2 q 2 -q ∥Φ 1 Θ ∥ L2 t, η(t) (B 1 ) ∥ϵΨ 2 Θ ∥ L2 t, η(t) (B 1 )
.

We deduce also form the proof of (6.5.29) that

t 0 ∆ h q (c∂ y c) Θ , ∆ h q Ψ 2 Θ dt ′ ≲ d 2 q 2 -q ∥b Θ ∥ 1 2 L ∞ t (B 3 2 
)

∥∂ y c Θ ∥ L2 t (B 1 2 
)

∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 ) ≲ d 2 q 2 -q ∥b Θ ∥ 1 2 L ∞ t (B 3 2 
)

∥∂ y b Θ ∥ L2 t (B 3 2 
)

∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 )
,

and t 0 ∆ h q (c∂ y Φ 2 ) Θ , ∆ h q Ψ 2 Θ dt ′ ≲ 2 -q d 2 q ∥b Θ ∥ 1 2 L ∞ t (B 3 2 
)

∥∂ y Φ 2 Θ ∥ L2 t (B 1 2 
)

∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 )
.

And (6.5.23) ensure that

t 0 ∆ h q (Φ 2 ∂ x b) Θ , ∆ h q Ψ 2 Θ dt ′ ≲ d 2 q 2 -q ∥b Θ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y Φ 2 Θ ∥ L2 t (B 1 2 
)

+ ∥Φ 2 Θ ∥ L2 t, η(t) (B 1 ) ∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 ) .
As a result, we nd

ϵ 2 J q 4 ≲ d 2 q 2 -q ∥(Φ 1 Θ , ϵΨ 2 Θ )∥ 2 L2 t, η(t) (B 1 ) (6.5.38) 
+ ϵ 2 ∥b Θ ∥ 1 2 L∞ t (B 3 2 
)

∥∂ y b Θ ∥ L2 t (B 1 2 
)

+ ∥∂ y Φ 2 Θ ∥ L2 t (B 3 2 
)

∥Ψ 2 Θ ∥ L2 t, η(t) (B 1 ) + ∥ϵΦ 2 Θ ∥ 2 L2 t, η(t) (B 1 )
.

By summing all the resulting estimates we obtain the proof of the estimate (6.5.12).

For the proof of the estimates G q 3 and G q 4 it is the same as for G q 1 and G q 2 .

Chapter 7

MHD Hyperbolic

In this chapter we present the results of the following paper:

N. Aarach, F. De Anna, M. Paicu and N. Zhu, On the role of the displacement current and the Cattaneo's law on boundary layers of plasma, arXiv:2210.12994

Introduction

The mathematical study of electrically conducting uids and hot plasma has received for many years numerous investigations. The understanding of the underlying equations (MHD equations or Navier-Stokes-Maxwell equations) has provided a fascinating number of implications, both on technological processes and physical experiments. Among the remarkable variety of applications, MHD ows are ubiquitous in contexts like astronomy (hydrodynamics of plasma in neutron stars and white dwarfs), nuclear fusion reactors (self-cooled liquid metal blankets) and metallurgic (liquid metal stirring).

In this paper we are interested in deriving and analysing a family of partial dierential equations that mathematically account for boundary layers of plasma and electrically conducting uids, when the corresponding characteristic speed is of relativistic order. This specic hydrodynamics near a wall surface has been a topic of constant interest in astrophysics. For instance, these boundary layers are expected to be dominant sources of X-ray production in neutron stars [START_REF] Rashid | Accretion Disk Boundary Layers around Neutron Stars: X-Ray Production in Low-Mass X-Ray Binaries[END_REF], gravitational radiation [START_REF] Mendell | Magnetic eects on the viscous boundary layer damping of the r-modes in neutron stars[END_REF] and magnetic reconnection [START_REF] Vörös | Narita Magnetic Reconnection Within the Boundary Layer of a Magnetic Cloud in the Solar Wind[END_REF].

The mathematical treatment of boundary layers in electrically conducting uids has a long history, which dates back to the pioneering work of Hartmann [START_REF] Hartmann | Theory of the laminar ow of an electrically conductive liquid in ahomogeneous magnetic eld, K. Dan[END_REF]. Hartmann studied a duct ow of a viscous electrically-conducting uid under the inuence of a transverse magnetic eld. Oriented at the right angle, the magnetic eld produced additional viscosity, separating the channel into two main regions, boundary-layer region (Hartmann layers) and central core region.

Afterwards, many theoretical investigations and experiments have been developed around this theory, most of them under the assumption that the electromagnetic variations of plasma are non-relativistic (i.e. the characteristic speed of plasma has magnitude consistently lower than the speed of light). This hypothesis relaxes several terms of the Maxwell's equations, in particular, it neglects the so-called displacement current in the Ampere's law (a source of the magnetic eld related to the ratio between the characteristic speed of plasma and the speed of light).

The lack of the displacement current may or may not be satisfactory, depending on the modelling context. In neutron stars, for instance, strong time-dependent electric eld could develop, when the plasma density falls below a critical value [START_REF] Kumar | FRB coherent emission from decay of Alfvén waves[END_REF]. Thus, the associated displacement current makes up for the decit of the plasma density and plays a major role in the evolution of the magnetic eld.

To the best of our knowledge, it still remains an open problem to mathematically understand boundary layers of plasma, whose magnetic eld in the Navier-Stokes-Maxwell's equations is aected by the displacement current. This chapter is therefore a rst mathematical attempt to address this issue. In details, we derive and analyse the following system of PDEs (written in dimensionless form):

(7.1.1)                              J∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = H 2 b 1 b 2 v -ub 2 2 -b 2 e (t, x, y) ∈ (0, T ) × R × (0, 1), ∂ y p = H 2 b 1 b 2 u -b 2 1 v + b 1 e (0, T ) × R × (0, 1), κ Pr m ∂ 2 t b 1 + ∂ t b 1 + u∂ x b 1 + v∂ y b 1 - 1 Pr m ∂ 2 y b 1 = b 1 ∂ x u + b 2 ∂ y u (0, T ) × R × (0, 1), κ Pr m ∂ 2 t b 2 + ∂ t b 2 + u∂ x b 2 + v∂ y b 2 - 1 Pr m ∂ 2 y b 2 = b 1 ∂ x v + b 2 ∂ y v (0, T ) × R × (0, 1), ∂ t b 1 + ∂ y e = 0 and ∂ t b 2 -∂ x e = 0 (0, T ) × R × (0, 1), ∂ x u + ∂ y v = 0 and ∂ x b 1 + ∂ y b 2 = 0 (0, T ) × R × (0, 1),
coupled with initial and boundary conditions

(7.1.2) (IC) (u, b 1 , b 2 )| t=0 = (ū, b1 , b2 ) R × (0, 1), (∂ t u, ∂ t b 1 , ∂ t b 2 )| t=0 = (ũ, b1 , b2 ) R × (0, 1), (BC) (u, b 1 , b 2 , e)| y=0 = (0, 0, 0, 0) (0, T ) × R, (u, b 1 , b 2 , e)| y=1 = (0, b 1 , b 2 , e) (0, T ) × R.
7.1.1 Overview of System (

For the sake of a clear presentation, we consider here a rather simple geometry, as well as simple boundary conditions. We assume indeed that the conducting uid is restricted to the whole half space, in other words System (7.1.1) represents the behaviour of the uid on a thin layer near a (at) boundary line (y = 0). The velocity eld (u, v) T satises no-slip boundary conditions, while the magnetic eld (b 1 , b 2 ) T and the electric-eld intensity e are assumed constant on the boundary (a scenario which is typical when the surrounding medium is an insulator).

All state variables (u, v, b 1 , b 2 , e) in (7.1.1) depend on time t ∈ (0, T ) and space (x, y) ∈ R × (0, 1). The vector elds (u, v) T ∈ R 2 and (b 1 , b 2 ) T ∈ R 2 are divergence free and stand for the velocity and magnetic elds of plasma, respectively. The electric eld assumes size e ∈ R and is perpendicular to the plane containing the plasma.

All constants H, κ, Pr m and J are positive and depend on standard dimensionless parameters of magnetohydrodynamics. More precisely, H stands for the asymptotic of the ratio between the Hartmann number Ha > 0 and the Reynolds number Re, as Re → ∞. The magnetic Prandtl number Pr m > 0 is assumed in this work constant and represents the ratio between the Reynolds number Re and the magnetic Reynolds number Re m . Hence viscous and magnetic diusions are proportional, a regime typical of heavier white dwarfs, in which Reynolds and magnetic Reynolds numbers range between 10 14 to 10 15 (cf. Section 2 in [START_REF] Isern | A Common Origin of Magnetism from Planets to White Dwarfs[END_REF]). Furthermore, the proportionality between Ha and Re m reects a threshold for the initiation of magnetic advection and subsequent reconnection (cf. for instance Section 3.3 in [START_REF] Meintjes | Magnetized fragmented mass transfer in cataclysmic variables: AE Aquarii, a trial case[END_REF],

for the binary star AE Acquarii).

Novelties of the model

Although System (7.1.1) diers intrinsically from previous models (such as the Prandtl-MHD equations, cf. (7.1.3)), the major novelties reside in particular within the terms κ/Pr m ∂ 2 tt b 1 and κ/Pr m ∂ 2 tt b 2 for the equations of b 1 and b 2 (due to the displacement current [START_REF] Donatelli | Vanishing dielectric constant regime for the Navier Stokes Maxwell equations[END_REF]), as well as within the term J∂ 2 t u in the equation for u. The role of the underlying constant κ > 0 is exploited in details in Section 7.2 (cf. Theorem 7.2.1 and Theorem 7.2.2), it relates however to the ratio (U 0 /c) 2 between the characteristic speed of plasma U 0 > 0 and the speed of light c, for high value of Re ≫ 1.

The constant J ≥ 0 together with the second time derivative ∂ 2 t u are derived from a well-known hyperbolic extension of the Navier-Stokes equations, a model which is known as Navier-Stokes with Cattaneo's law (cf. [START_REF] Abdelhedi | Global existence of solutions for hyperbolic Navier-Stokes equations in three space dimensions[END_REF][START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF][START_REF] Coulaud | Hyperbolic quasilinear Navier-Stokes equations in R 2[END_REF][START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | Global hydrostatic approximation of the hyperbolic Navier-Stokes system with small Gevrey class 2 data[END_REF][START_REF] Racke | Hyperbolic Navier-Stokes equations II: Global existence of small solutions[END_REF]). This extension was rst proposed in uid-dynamics by Carrassi and Morro [START_REF] Carrassi | A modied Navier-Stokes equation, and its consequences on sound dispersion[END_REF] (inspired by the original work of Cattaneo in the study of heat diusion [START_REF] Cattaneo | Sulla conduzione del calore[END_REF][START_REF] Cattaneo | Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée[END_REF]).

As most compelling reason to introduce this term, a positive value of J > 0 avoids indeed an innite speed of propagation of u, which would be quite unnatural when considering the evolution of uids at large scale.

The general concern of this paper is twofold. First, we aim to derive model (7.1.1) from suitable asymptotics of the full Navier-Stokes-Maxwell's equations under Cattaneo's law (cf. Section 7.1.4).

Secondly we aim at studying the underlying well-posedness theory and prove the existence of global-intime smooth solutions for system (7.1.1), by considering initial data that are small and highly regular (more precisely analytic in the horizontal coordinate x ∈ R, cf. Section 7.1.5).

A brief overview of the analysis of MHD boundary layers

The analysis of boundary layers in magnetohydrodynamics have received from the mathematical community numerous investigations during the past decades. To the best of our knowledge, however, the derivation of system (7.1.1) is new, hence there has not been related analytical results, up to now.

The majority of the results concerns classical MHD-equations and the underlying boundary-layer theory, in which the displacement current is indeed neglected. In this paragraph we shall hence focus on the various contributions that dealt with certain equations that shear at least similarities with system (7.1.1).

One of the systems that has received most attention was provided by Gérard-Varet and Prestipino in [START_REF] Gérard-Varet | Formal derivation and stability analysis of boundary layer models in MHD[END_REF]. Omitting the notation of the several dimensionless parameters, the equations read as follows:

(7.1.3)                  ∂ t u + u∂ x u + v∂ y u -∂ y y 2 u + ∂ x p = b 1 ∂ x b 1 + b 2 ∂ y b 1 , ∂ y p = 0, ∂ t b 1 + u∂ x b 1 + v∂ y b 1 -∂ 2 y b 1 = b 1 ∂ x u + b 2 ∂ y u, ∂ t b 2 + u∂ x b 2 + v∂ y b 2 -∂ 2 y b 2 = b 1 ∂ x v + b 2 ∂ y v, ∂ x u + ∂ y v = 0, ∂ x b 1 + ∂ y b 2 = 0.
The authors derived this system as boundary asymptotic of the classical MHD equations, under a stringent regime of the coupling parameters (which we also assume in this paper): the Hartmann number Ha, the Reynolds number Re and the magnetic Reynolds number Re m were all proportional and assumed high values.

The major dierences between Systems (7.1.1) and (7.1.3) can be recognized with the forcing term of the momentum equation in u, a non-constant pressure in the vertical variable due to ∂ y p ̸ = 0 and the second time derivatives ∂ 2 t u, ∂ 2 t b 1 and ∂ 2 t b 2 on the equations for the magnetic eld (which are due to the displacement current, cf. also Remark 7.2.1). System (7.1.3) retains most terms of the original MHD equations and it reduces to the widespread Prandtl equations for purely hydrodynamic ows, when the magnetic eld (b 1 , b 2 ) is null. Among the mathematical community, there has been hence an increasing interest to transfer well-known analytical results of the Prandtl theory to the corresponding Prandtl-MHD equations [START_REF] Gérard-Varet | Formal derivation and stability analysis of boundary layer models in MHD[END_REF][START_REF] Liu | MHD boundary layers theory in Sobolev spaces without monotonicity I: Well-posedness theory[END_REF][START_REF] Liu | Global small analytic solutions of MHD boundary layer equations[END_REF][START_REF] Paicu | Global regularity for the 2D MHD and tropical climate model with horizontal dissipation[END_REF]: existence and uniqueness of solutions, regularity analysis (Sobolev, analytic, Gevrey), stability of certain equilibria (such as shear ows).

At a rst glance, one may think that System (7.1.3) shall satisfy reduced (or at least similar) properties than classical Prandtl. However, in [START_REF] Gérard-Varet | Formal derivation and stability analysis of boundary layer models in MHD[END_REF], Gérard-Varet and Prestipino overturned this statement, when dealing with the stability of (7.1.3) around certain equilibria. The authors showed indeed how System (7.1.3) is linearly stable around to a suitable family of shear ows in which both plasma's velocity and magnetic eld are parallel to the bounding at surface:

(u(t, x, y), v(t, x, y), b 1 (t, x, y), b 2 (t, x, y)) = (U s (y), 0, 1, 0),

This stability holds already at the level of Sobolev regularity, a fact that is in sharp contrast with the Sobolev instability of the classical Prandtl equations (cf. [START_REF] Gérard-Varet | On the ill-posedness of the Prandtl equation[END_REF][START_REF] Gérard-Varet | Remarks on the ill-posedness of the Prandtl equation[END_REF]). Hence, in terms of Sobolev stability,

Prandtl-MHD has better properties than Prandtl. To better understand this unusual characteristic, one shall rst recall that the major diculties of the Prandtl equations reside in the convective term v∂ y u (this vertical component v has a lower regularity in the tangential variable than u and is determined by the divergence free condition ∂ x u + ∂ y v = 0). However, when dealing with the Prandtl-MHD equations (7.1.3), one can get rid of this bad term, by introducing a new modied velocity eld ũ = u + U ′ s ϕ, where ϕ stands for the potential generating the magnetic eld (i.e. b 1 = ∂ y ϕ and b 2 = -∂ x ϕ). This mathematical artifact has claried certain observations in physics, in particular the fact that a magnetic eld has a stabilizing eect on the ow of plasma and provides therefore a mechanism for containment.

Away from shear ows, Liu, Xie and Tong proposed in [START_REF] Liu | Justication of Prandtl ansatz for MHD boundary layer[END_REF] a generalisation of this Sobolev stability, when dealing with the full nonlinear version of equations (7.1.3). The authors showed indeed that a modied velocity similar to ũ could still be dened, as long as the tangential component b 1 of the magnetic eld never vanishes (a condition known as nondegeneracy of b 1 ). This result was local in time and was extended globally by Liu and Zhang in [START_REF] Liu | Global small analytic solutions of MHD boundary layer equations[END_REF], under a smallness condition on the initial data.

After [START_REF] Liu | Justication of Prandtl ansatz for MHD boundary layer[END_REF], a remaining open problem was to understand if the nondegeneracy of b 1 was somehow necessary in order to recover the mentioned Sobolev stability. The same authors Liu, Xie and Tong in [START_REF] Liu | A note on the ill-posedness of shear ow for the MHD boundary layer equations[END_REF] provided a surprisingly positive answer to this dilemma: when linearising equations (7.1.3) around a family of shear ows of the form (u(t, x, y), v(t, x, y), b 1 (t, x, y), b 2 (t, x, y)) = (U s (t, y), 0, B s (t, y), 0), in which B s vanishes (together with some of its derivatives), it was shown that the corresponding system is indeed ill-posed in Sobolev spaces. This result in [START_REF] Liu | A note on the ill-posedness of shear ow for the MHD boundary layer equations[END_REF] opened a further variety of questions, which regarded in particular the following aspects:

If the asymptotic limit (Re, Re m → ∞) of the Prandtl-MHD equations (7.1.3) is well posed in Sobolev spaces, does a formal mathematical expansion reveal the corresponding boundary layers within the solutions of the original MHD equations (for high values of Re ≫ 1 and Re m ≫ 1)?

If the nondegeneracy condition b 1 ̸ = 0 is necessary for the Sobolev stability, can one consider higher regularities (such as Gevrey), in order to relax this constraint? Liu, Xie and Yang in [START_REF] Liu | Justication of Prandtl ansatz for MHD boundary layer[END_REF] provided a positive answer to the rst question, as long as the tangential magnetic component b 1 ≥ δ > 0 remains strictly positive. With some additional technical condition on the initial data, the authors showed that the dierences between the smooth solutions of the original MHD equations and the boundary layers (which depend on Re > 0 and Re m > 0) converge to the smooth solution of the limit case Re, Re m → ∞. The convergence is indeed uniform in L ∞ (both in time and space) because of the Sobolev stability.

For what concerns higher regularities, Li and Yang addressed in [START_REF] Li | Well-posedness of the MHD boundary layer system in Gevrey function space without structural assumption[END_REF] solutions with Gevrey regularities in x of order 3/2 (a function space between analytic and Sobolev functions). Gevrey functions have signicantly inuenced and impacted the analysis of the Prandtl equations, since they still allow to cope with smooth test functions (in contrast with analytic regularity). Without any assumption on the tangent component b 1 of the magnetic eld, Li and Yang showed in [START_REF] Li | Well-posedness of the MHD boundary layer system in Gevrey function space without structural assumption[END_REF] that initial data in Gevrey 3/2 generate local-in-time smooth solutions of (7.1.3). It still remains an interesting open problem to establish if this result is optimal or if one can further enlarge the regularity (for instance towards Gevrey 2, the optimal value of Prandtl, cf. [START_REF] Dietert | Well-posedness of the Prandtl equations without any structural assumption[END_REF]).

Statement of our formal results

The well-posedness results of classical Navier-Stokes-Maxwell equations without Cattaneo's law can be found in [START_REF] Arsénio | Solutions of Navier-Stokes-Maxwell systems in large energy spaces[END_REF][START_REF] Germain | Well-posedness of the Navier-Stokes-Maxwell equations[END_REF][START_REF] Kawashima | Global well-posedness and time-decay of solutions for the compressible Hall-magnetohydrodynamic sstem in the critical Besov framework[END_REF][START_REF] Masmoudi | Global well posedness for the Maxwell-Navier-Stokes system in 2D[END_REF]. The approach of our modelling is rst to introduce a suitable form of the Navier-Stokes-Maxwell equations with Cattaneo's law (cf. System (7.2.1) and its dimensionless form (7.2.5)) and secondly to examine the asymptotics when some related dimensionless parameters converge to ∞ (that are indeed popular in MHD). More precisely, we derive System (7. The nature of the derived equations depends on certain hypotheses on the characteristic speed U 0 > 0 of Plasma (we refer to (7.2.5) for the explicit relation between the starting equations and U 0 ). We establish indeed boundary layers with thickness of two types: Prandtl or Hartmann.

To clarify our result, we shall rst recall that in magnetohydrodynamics several types of boundary layers can occur, depending on the angle of orientation of the magnetic eld boundary. Among the most relevant, Prandtl and Hartmann layers stand out, since they also dier on their thickness. Conventional Prandtl layers are indeed purely hydrodynamic and are characterised by a length, which is proportional to 1/

√

Re. On the other hand, Hartmann layers are mainly attributable to the magnetic eld, having a thickness inversely proportional to the Hartmann number Ha. Depending on the magnitude of an imposed magnetic eld, Hartmann layers may be as thin as one desires, thus the velocity eld of plasma usually increases much more rapidly over a short distance from the boundary.

Our rst result in Theorem 7.1.1 shows that, when the characteristic speed of Plasma U 0 is proportional to the Reynolds number Re, then System (7.1.1) stands for a boundary layer within a region of thickness 1/ √ Re (Prandtl).

Theorem 7.1.1. Consider the Navier-Stokes-Maxwell equations with Cattaneo's law in (7.2.5). Assume that the following relations between the dimensionless parameters in system (7.2.5) are satised:

lim Re→+∞ Ha Re = H ∈ R, Pr m := Re m Re is xed, lim Re→+∞ U 0 c 2 1 Re = κ ∈ R, J := κJ is xed.
Furthermore, assume that the initial data

B ′ = (B ′ 1 , B ′ 2 ) T ∈ R 2 and E ′ ∈ R are such that B ′ 1 = b 1 is xed, while B ′ 2 = 1 √ Re b 2 , E ′ = 1 √ Re e,
for some b 2 ∈ R and e ∈ R. Then System (7.1.1) appears as boundary layer of equations (7.2.5) in the region

(t ′ , x ′ , y ′ ) ∈ (0, T ) × R × 0, 1 √ Re ,
when Re → +∞ (and thus also when Re, Ha → +∞).

Statement of our mathematical results

In this subsection we investigate the well-posedness problem of the derived system. Since the considered model is an extension of the standard Prandtl equations, it presents similar analytical challenges, in particular the lack of diusion (and thus of regularising eects) on the variable x ∈ R. The major nonlinearities can indeed generate strong instabilities in the horizontal direction, specically under the occurrence of high oscillations of the solutions (the contribution of the high frequencies in x ∈ R). It is rather common in the scientic community to address the analysis of boundary layers by considering therefore highly regular initial data, such as analytic in x ∈ R [START_REF] Aarach | Hydrostatic approximation of the 2D MHD system in a thin strip with a small analytic data[END_REF][START_REF] Paicu | Global existence and decay of solutions to prandtl system with small analytic data[END_REF][START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF]. We postpone the precise denition of this functional framework to Section 7.3, we shall however mention that these are functions whose frequencies ξ ∈ R under Fourier transform decay like exp(-τ |ξ|), for some τ > 0 known as radius of analyticity. Our analytical result asserts that if the initial data are indeed analytic and are suciently small, then there exists a global-in-time analytic solution of equations (7.1.1), whose radius of analyticity decays exponentially in time.

Theorem 7.1.3. Assume homogeneous boundary conditions in (7.1.2): (b 1 , b 2 , e) = (0, 0, 0). For any s > 2, there exists a suciently small positive constant ε s ∈ [0, 1) (which depends uniquely upon s), such that the following result holds true. Let ū, b1 and b1 be initial data of (7.1.1) that are analytic in the variable x ∈ R with radius of analyticity τ 0 > 0:

e τ0(1+|Dx|) ū and e τ0(1+|Dx|) b1 belong to H s+1,1 (R × (0, 1)), e τ0(1+|Dx|) ũ and e τ0(1+|Dx|) b1 belong to H s,0 (R × (0, 1)).

If the following smallness condition on the initial data holds true ∥e τ0(1+|Dx|) ū∥ H s+1,0 + ∥e τ0(1+|Dx|) ∂ y ū∥ H s,0 + ∥e τ0(1+|Dx|) ũ∥ H s,0 + ∥e τ0(1+|Dx|) b1 ∥ H s+1,0 + +∥e τ0(1+|Dx|) ∂ y b1 ∥ H s,0 +∥e τ0(1+|Dx|) b1 ∥ H s,0 ≤ min{1, J, κ/Pr m }

3 2 max{1, J, κ/Pr m } 5 2 min{τ 0 , τ -1 0 } 3 2 max{1, H 2 } max{Pr m -1 , Pr m } 1 2 ε s ,
then there exists a unique global-in-time analytic solution (u, b 1 ) of (7.1.1), which has a decaying radius of analyticity τ : R + → (0, τ 0 ] given by (7.1.6) τ (t) := τ 0 exp -t 16 max{1, J, κ/Pr m } > 0.

Furthermore, the analytic norms of the solution decay exponentially in time t ∈ R + as follows:

(7.1.7) We refer to Section 7.3.2 for more details, and to (7.3.3) for an explicit form of the equations in terms of (u, b 1 ).

∥e τ (t)(1+|Dx|) u(t)∥ 2 H s+1,0 + ∥e τ (t)(1+|Dx|) ∂ t u(t)∥ 2 H s,0 + ∥e τ (t)(1+|Dx|) ∂ y u(t)∥ 2 H s,0 + + ∥e τ (t)(1+|Dx|) b 1 (t)∥ 2 H s+1,0 + ∥e τ (t)(1+|Dx|) ∂ t b 1 (t)∥ 2 H s,0 + ∥e τ (t)(1+|Dx|) ∂ y b 1 (t)∥ 2 H s,0 ≤ C(J, κ, Pr m , τ 0 ) ∥e τ0(1+|Dx|) ū∥ 2 H s+1,0 + ∥e τ0(1+|Dx|) ũ∥ 2 H s,0 + ∥e τ0(1+|Dx|) ∂ y ū∥ 2 H s,0 + + ∥e τ0(1+|Dx|) b∥ 2 H s+1,0 + ∥e τ0(1+|Dx|) b∥ 2 H s,0 + ∥e τ0(1+|Dx|) ∂ y b∥ 2 H s,0 exp - t 8 max{1, J, κ/Pr m } .
The function space described by (7.1.4) is analytic in the variable x ∈ R, since e τ0(1+|Dx|) is a Fourier multiplier that enforces an exponential decay on the frequencies of the initial data (more details in Section 7.3.1). The range s > 2 of the related norms is however a pure artifact of our analysis rather than a real restriction. This condition simplies indeed certain estimates (cf. for instance Lemma 7.4.1 together with (7.4.14) where σ 2 -1/2 = s -2 > 0). Nevertheless we could also consider s ∈ [0, 2), since e τ0(1+|Dx|) ū (and similarly all the other initial data) can always be recasted as e -ϵ(1+|Dx|) e (τ0+ϵ)(1+|Dx|) ū,

where the Fourier multiplier e -ϵ(1+|Dx|) is a regularising operator (of course we would need a slightly higher radius of analiticity). We do not pursue this approach just for the sake of a short presentation.

The small parameter ε s in (7.1.5) depends uniquely on s > 2 and can be explicitly dened as (cf. (7.3.20))

ε s := s -2 2 2s+14 1 1 + s-2 √ s-1
.

Moreover the right hand-side of (7.1.5) and the size of the initial data decrease proportionally to τ 3/2 0 (when the radius of analyticity τ 0 < 1). This aspect is revealed and supported by the function framework in (7.1.4), which converges to standard Sobolev spaces when τ 0 vanishes (our model may still be ill-posed in Sobolev, as Prandtl).

Let us now comment on the relation between the smallness condition (7.1.5) and the dierent physical parameters from System (7.1.1). When H ≫ 1 the nonlinearities in the right-hand side of the uequation become predominant, hence a more restrictive condition on the initial data is natural in order to achieve analytic stability. Moreover, although the constants J and κ/Pr m play a major role in (7.1.5), since they inherently decrease the size of the initial data, when they converge towards 0. At a rst glance, this property would seem questionable, since we would expect that when these constants vanish (i.e. both the inertial term of the velocity eld and the displacement current are neglected) we should recover similar equations to Prandtl-MHD in (7.1.3). Consequently, the equations would switch from hyperbolic in the y-direction (with damping mechanisms) to parabolic, a setting which is usually more stable. This observation is however inaccurate, since our model (7.1.1) owns a more involved structure than Prandtl-MHD (7.1.3), which can be highlighted in the following aspects:

The right-hand side of the momentum equation (rst equation in (7.1.1)) has terms that are trilinear in the solution (contrary to the bilinear ones in (7.1.3)). These terms further increase the instabilities of our model, when compared with the ones of boundary layers in MHD.

The contribution of the pressure is not trivial as in Prandtl-MHD, since ∂ y p is not identically zero and it encompasses further trilinear terms. These are indeed the most challenging terms to estimate.

Our analysis and our smallness condition (7.1.5) therefore suggest that the contributions J, κ/Pr m of the displacement current and the Cattaneo's law have not only a role as derivation of our model, but they may rather have a stabilizing eect on the underlying solutions (at least at the level of analytic regularities).

The part of this paper concerning the analysis of System (7. 

∈ R + × R × [0, 1].
By saying that System (7.1.1) appears as boundary layer, we mean that as long as the triple ( -→ U ′ , -→ B ′ , E ′ ) (which depends on Re) converges towards a prole ((u, 0) T , (b 1 , b 2 ) T , e) when Re ≫ 1 (under a suitable rescaling), then (u, b 1 , b 2 , e) must satisfy system (7.1.1). The convergence is well known in the purely hydrodynamic regime (Ha = 0), a fact that have been highly studied through the stability theory of the Prandtl equations. We infer that this convergence holds true also when Ha ̸ = 0, but that is beyond the scope of this paper.

Proof. We denote by ε 2 = 1/Re the inverse of the Reynolds number, which converges towards 0 when Re converges to ∞. The parameter ε ≪ 1 represents the size of the region in which the boundary layer occurs. We derive System (7.1.1) as a rescaled version of the asymptotic limit of (7.2.5) within the domain (t, x ′ , y ′ ) ∈ [0, T ] × R × [0, ε], by (informally) sending ε towards 0. To this end, we shall rst introduce the change of variables (7.2.9)

t = t ′ ∈ [0, T ], x = x ′ ∈ R, and y = y ′ /ε ∈ [0, 1],
as well as the following new state variables Hence, we can develop System (7.2.5) in terms of u, v, e and p, as well as the variables (t, x, y):

                                 U0 c 2 ε 2 κ J ∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -ε 2 ∂ 2 x u -∂ 2 y u + ∂ x p = Ha 2 ε 4 b 1 b 2 v -ub 2 2 -b 2 e , ε( U0 c 2 ε 2 κ J ∂ 2 t v + ∂ t v + u∂ x v + v∂ y v) -ε 3 ∂ 2 x v -ε∂ 2 y v + 1 ε ∂ y p = Ha 2 ε 3 b 2 b 1 u -b 2 1 v + b 1 e , ∂ x u + ∂ y v = 0, U0 c 2 ε 2 Prm ∂ 2 t b 1 + ∂ t b 1 -ε 2 Prm ∂ 2 x b 1 -1 Prm ∂ 2 y b 1 = b 1 ∂ x u + b 2 ∂ y u -u∂ x b 1 -v∂ y b 1 , U0 c 2 ε 3 Prm ∂ 2 t b 2 + ε∂ t b 2 -ε 3 Prm ∂ 2 x b 2 -ε Prm ∂ 2 y b 2 = εb 1 ∂ x v + εb 2 ∂ y v -εu∂ x b 2 -εv∂ y b 2 , ∂ t b 1 + ∂ y e = 0, ε(∂ t b 2 -∂ x e) = 0, ∂ x b 1 + ∂ y b 2 = 0. with boundary conditions u(t, x, 0) = 0, v(t, x, 0) = 0, b 1 (t, x, 0) = b 1 , b 2 (t, x, 0) = b 2 and e(t, x, 0) = e ∈ R.
We now remark that the conditions in (7.2.7) imply that Ha 2 ε 4 → H 2 and (U 0 /c) 2 ε 2 = (U 0 /c) 2 /Re → κ as ε → 0. System (7.1.1) appears therefore by multiplying the second equation in (7.2.5) by ε, dividing the fth equation by ε and nally sending ε towards 0. 

                                       δ -3 2 J Ha HRe ∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -Ha ReH δ -1 2 ∂ 2 x u -Ha ReH δ -3 2 ∂ 2 y u + δ -3 2 ∂ x p = = Ha 2 Re δ -1 2 b 1 b 2 v -ub 2 2 -b 2 e , δ -1 (J Ha HRe ∂ 2 t v + ∂ t v + u∂ x v + v∂ y v) -Ha ReH ∂ 2 x v -Ha ReH δ -1 ∂ 2 y v + δ -2 ∂ y p = Ha 2 Re δ -1 b 2 b 1 u -b 2 1 v + b 1 e , δ -1 (∂ x u + ∂ y v) = 0, U0 c 2 Ha ReH δ -3 2 Prm ∂ 2 t b 1 +δ -3 2 ∂ t b 1 -δ -1 2 Prm Ha ReH ∂ 2 x b 1 -δ -3 2 Prm Ha ReH ∂ 2 y b 1 = δ -3 2 b 1 ∂ x u+b 2 ∂ y u-u∂ x b 1 -v∂ y b 1 , U0 c 2 Ha ReH δ -1 Prm ∂ 2 t b 2 +δ -1 ∂ t b 2 -1 Prm Ha ReH ∂ 2 x b 2 -δ -1 Prm Ha ReH ∂ 2 y b 2 = δ -1 b 1 ∂ x v+b 2 ∂ y v-u∂ x b 2 -v∂ y b 2 , δ -3 2 ∂ t b 1 + ∂ y e = 0, δ -1 ∂ t b 2 -∂ x e = 0, δ -1 ∂ x b 1 + ∂ y b 2 = 0, with boundary conditions u(t, x, 0) = 0, v(t, x, 0) = 0, b 1 (t, x, 0) = b 1 , b 2 (t, x, 0) = b 2 and e(t, x, 0) = e.
We thus multiply the rst, fourth and sixth equations in (7.2.15) by δ 3/2 , as well as the second, third, fth, seventh and eighth equations by δ. The main goal of the present paragraph is to prove the existence of certain smooth solutions for the derived System (7.1.1) (cf. Theorem 7.3.1). The analysis of these equations has similar challenges as the ones of the classical Prandtl system, in particular the fact that the system lacks of regularizing eects on the horizontal variable x ∈ R (the dissipative mechanisms of the system is indeed only on the variable y ∈ (0, 1)). In order to cope with this diculty, it is rather common to impose high regularities on the initial data, along such horizontal variable. Our work addresses in particular the case of analytic functions. Before stating our main result, we shall rst clarify the denition of analytic solutions, that we will use throughout the next sections. Furthermore, we provide a suitable reduction of the overall system, that will simplify our forthcoming analysis.

Analytic functions in the horizontal direction

A function f = f (x) is analytic in x ∈ R, if its Fourier transform F x (f )(ξ) = f (ξ) decays exponentially to zero as e -τ |ξ| , for some τ > 0, when the frequency ξ ∈ R diverges to ±∞. For a xed τ > 0 (which stands for the radius of analyticity of f ), this function space is indeed a Banach space. Between the several equivalent norms, we will make use of the one given by ∥e τ |Dx| f ∥ H s (R) , where H s (R) is a Sobolev space with regularity s > 2 and e τ |Dx| stands for the Fourier multiplier F x (e τ |Dx| f )(ξ) = e τ |ξ| f (ξ).

Thus, we are interested in solutions (u, v, b 1 , b 2 ) which depend upon (t, x, y) ∈ (0, T ) × R × (0, 1) and are analytic in the variable x ∈ R, as described by the following function space: The space C([0, T ], H s,0 (R × (0, 1)) (which we will abbreviate from now on by C([0, T ], H s,0 )) is anisotropic in space, namely it has H s regularity in x ∈ R and only L 2 -regularity in y ∈ (0, 1). The above identities are well-dened, since we cope with solutions that are smooth in x ∈ R and the corresponding derivatives ∂ x u(t, x, •), ∂ x b 1 (t, x, •) are L 2 -integrable in y ∈ (0, 1) (for any (t, x) ∈ (0, T )×R). Moreover, for the sake of a compact presentation, we will shorten from now on the identities in (7.3.2) as v = -

y 0 ∂ x u and b 2 = - y 0 ∂ x b 1 .
Similarly, the magnitude e of the electric eld can be recast just in terms of b 1 , making use of the relation:

∂ t b 1 + ∂ y e = 0 in (0, T ) × R × (0, 1), e = 0 on (0, T ) × R × {0}, ⇐⇒ e(t, x, y) = - y 0 ∂ t b 1 (t, x, z)dz
for any (t, x, y) ∈ (0, T ) × R × (0, 1).

Because of these aspects, the equations of b 2 and e are redundant in system (7.1.1) and we can reduce the considered model uniquely in terms of (u, b 1 ):

(7.3.3)        J∂ 2 tt u + ∂ t u + u∂ x u + v∂ y u -∂ 2 yy u + ∂ x p = H 2 b 1 b 2 v -ub 2 2 + b 2 y 0 ∂ t b 1 , ∂ y p = H 2 b 1 b 2 u -b 2 1 v -b 1 y 0 ∂ t b 1 , κ Prm ∂ 2 tt b 1 + ∂ t b 1 + u∂ x b 1 + v∂ y b 1 -1 Prm ∂ 2 yy b 1 = b 1 ∂ x u + b 2 ∂ y u,
in (t, x, y) ∈ (0, T ) × R × (0, 1), coupled with (7.3.2) and the following initial and boundary conditions:

u |t=0 = ū, ∂ t u |t=0 = ũ, b 1|t=0 = b1 , ∂ t b 1|t=0 = b1 in R × (0, 1), u |y=0 = u |y=1 = b 1|y=0 = b 1|y=1 = 0 on (0, T ) × R.

Statement of the result

The function space being introduced, we can state our result, which asserts the existence of global-intime analytic solutions with small initial data.

Theorem 7.3.1. For any s > 2, there exists a suciently small positive constant ε s ∈ [0, 1) (which depends uniquely upon s), such that the following result holds true. Let ū, b1 , ũ and b1 be initial data that are analytic in the variable x ∈ R with radius of analyticity τ 0 > 0: 1+|Dx|) ū and e τ0(1+|Dx|) b1 belong to H s+1,1 (R × (0, 1)), e τ0(1+|Dx|) ũ and e τ0(1+|Dx|) b1 belong to H s,0 (R × (0, 1)).

e τ0(
If the following smallness condition on the initial data holds true (7.3.4) ∥e τ0(1+|Dx|) ū∥ H s+1,0 +∥e τ0(1+|Dx|) ∂ y ū∥ H s,0 +∥e τ0(1+|Dx|) ũ∥ H s,0 +∥e τ0(1+|Dx|) b1 ∥ H s+1,0 +∥e τ0(1+|Dx|) ∂ y b1 ∥ H s,0

+ ∥e τ0(1+|Dx|) b1 ∥ H s,0 ≤ δ := min{1, J, κ/Pr m } 3 2 max{1, J, κ/Pr m } 5 2 min{τ 0 , τ -1 0 } 3 2 max{1, H 2 } max{Pr m -1 , Pr m } 1 2 ε s ,
then there exists a global-in-time analytic solution (u, b 1 ) of (7.3.3), which has a decaying radius of analyticity τ : R + → (0, τ 0 ] given by (7.3.5) τ (t) := τ 0 exp -t 16 max{1, J, κ/Pr m } > 0.

Furthermore, the analytic norms of the solution decay exponentially in time t ∈ R + as follows:

(7.3.6) ∥e τ (t)(1+|Dx|) u(t)∥ 2 H s+1,0 + ∥e τ (t)(1+|Dx|) ∂ t u(t)∥ 2 H s,0 + ∥e τ (t)(1+|Dx|) ∂ y u(t)∥ 2 H s,0 + + ∥e τ (t)(1+|Dx|) b 1 (t)∥ 2 H s+1,0 + ∥e τ (t)(1+|Dx|) ∂ t b 1 (t)∥ 2 H s,0 + ∥e τ (t)(1+|Dx|) ∂ y b 1 (t)∥ 2 H s,0 ≤ C(J, κ, Pr m , τ 0 ) ∥e τ0(1+|Dx|) ū∥ 2 H s+1,0 + ∥e τ0(1+|Dx|) ũ∥ 2 H s,0 + ∥e τ0(1+|Dx|) ∂ y ū∥ 2 H s,0 + + ∥e τ0(1+|Dx|) b∥ 2 H s+1,0 + ∥e τ0(1+|Dx|) b∥ 2 H s,0 + ∥e τ0(1+|Dx|) ∂ y b∥ 2 H s,0 exp - t 8 max{1, J, κ/Pr m } .
where the constant C(J, κ, Pr m , τ 0 ) is dened by

C(J, κ, Pr m , τ 0 ) = 4 3 max{1, J, κ/Pr m } 3 min{1, J, κ/Pr m } 3 max Pr m , Pr -1 m max{τ 0 , τ -1 0 } 2
In what follows, we shall rst describe the main idea for the proof and postpone the detailed estimates (that are rather involved) to the subsequent sections. 

e Rt E s + m η ′ E s+ 1 2 + m 2 (η ′ ) 2 E s+1 (t) Energy + t 0 e R t D s +η ′ D s+ 1 2 +m(η ′ ) 2 D s+1 +m 2 (η ′ ) 3 D s+ 3 2 ( t)d t Dissipation - t 0 e R t J+ κ Pr m η ′′ E s+ 1 2 +2 J 2 + κ 2 Pr 2 m η ′ η ′′ E s+1 ( t)d t
Rest due to the hyperbolicity of the system

≤ E s (0)+Mη ′ (0)E s+ 1 2 (0)+M 2 η ′ (0) 2 E s+1 (0)
Initial energy 

+ D s max{1, H 2 } max 1 √ J , Pr m √ κ t 0 e R t E
E s := J 2 2 ∥(∂ t u) η ∥ 2 H s,0 + 1 2 ∥J(∂ t u) η +u η ∥ 2 H s,0 +J∥∂ y u η ∥ 2 H s,0 + κ 2 2Pr m 2 ∥(∂ t b 1 ) η ∥ 2 H s,0 + 1 2 κ Pr m (∂ t b 1 ) η +b 1,η 2 
H s,0 + κ Pr 2 m ∥∂ y b 1,η ∥ 2 H s,0 , E s+ 1 2 := 1 2 ∥u η ∥ 2 H s+ 1 2 ,0 + 1 2 ∥b 1,η ∥ 2 H s+ 1 2 ,0 , E s+1 := ∥u η ∥ 2 H s+1,0 + ∥b 1,η ∥ 2 H s+1,0 .
D s := 1 2 ∂ y u η ∥ 2 H s,0 + 1 2 (∂ t u) η ∥ 2 H s,0 + 1 2 ∂ y b 1,η ∥ 2 H s,0 + 1 2 (∂ t b) 1,η ∥ 2 H s,0 , D s+ 1 2 := 1 2 ∥ (∂ t u) η ∥ 2 H s+ 1 2 ,0 + 1 2 ∥ (∂ t u) η +u η ∥ 2 H s+ 1 2 ,0 +2∥ ∂ y u η ∥ 2 H s+ 1 2 ,0 +∥ ∂ t (u η ) ∥ 2 H s+ 1 2 ,0 + 3 8 ∥ u η ∥ 2 H s+ 1 2 ,0 + 1 2 ∥(∂ t b 1 ) η ∥ 2 H s+ 1 2 ,0 + 1 2 ∥(∂ t b 1 ) η +b 1,η ∥ 2 H s+ 1 2 ,0 +2∥∂ y b 1,η ∥ 2 H s+ 1 2 ,0 + ∥∂ t (b 1,η )∥ 2 H s+ 1 2 ,0 + 3 8 ∥b 1,η ∥ 2 H s+ 1 2 ,0 , D s+1 := 3 4 ∥u η ∥ 2 H s+ 1 2 ,0 + 3 4 ∥∂ t b 1,η ∥ 2 H s+ 1 2 ,0 , D s+ 3 2 (t) := ∥u η ∥ 2 H s+ 3 2 ,0 + ∥b 1,η ∥ 2 H s+ 3 2 ,0 .
Since the proof of this Proposition is rather technical, we postpone it to the forthcoming sections and we focus this paragraph to the remaining steps to prove Theorem 7.3.1. We shall however rst provide some remarks on the main inequality (7.3.8), and highlight in particular the dissipative mechanisms due to η, as well as the more challenging terms, that we are indeed left to estimate.

An explicit relation on the constant D s ≥ 1 is formally determined later on (cf. (7.4.21)):

(7.3.11) D s = 2 2s+6 s -2 1 + s -2 √ s -1 ≥ 1.
By assuming that Proposition 7.3.1 holds true, the proof of Theorem 7.3.1 follows with some straightforward steps. Indeed, our main goal is to determine a suitable function η ∈ C 2 (R + ) in (7.3.8) and a small parameter ε s > 0 for the initial condition (7.3.4), that ensure the following relations:

(a) the terms on the left-hand side of (7.3.8) are all non-negative and thus "support" the H s,0 -energy inequality, (b) the right-hand side of (7.3.8) can eventually be absorbed by some of the positive terms of the left-hand side, under a suitable smallness condition on the initial data.

For what concerns part (a), the only term that (for a general η) could reach negative values is the rst integral at the second line of (7.3.8), namely (7.3.12)

- t 0 e R t J+ κ Pr m η ′′ E s+ 1 2 + 2 J 2 + κ 2 Pr 2 m η ′ η ′′ E s+1 ( t)d t.
The sign of this integral is entangled with the sign of the weights -η ′′ (t) and -2η ′ (t)η ′′ (t), t ∈ R. It is natural therefore to calibrate the function η ∈ C 2 (R), in such a way that this integral provides a positive dissipation or at least vanishes. In other words, we shall seek for a function η ∈ C 2 (R + ) such that (7.3.13) τ 0 -η(t) > 0, η ′ (t) ≥ 0, -η ′′ (t) ≥ 0, for any t ∈ R + .

Among the several functions satisfying (7.3.13), we consider a specic family of the form η(t) := τ 0 (1 -e -λt ), where λ is (momentarily) an arbitrary positive constant (the exact value of λ for our analysis will be shortly be determined in (7.3.17)). Indeed, we remark that τ 0 -η(t) = τ 0 e -λt > 0, η ′ (t) = λτ 0 e -λt > 0, -η ′′ (t) = λ 2 τ 0 e -λt > 0, for any t ∈ R + .

In doing so, we can recast the main inequality (7. 

λ := R 4 = 1 16 max{1, J, κ/Pr m }
, namely η(t) = τ 0 1 -e - t 16 max{1,J,κ/Prm} (we do not consider the threshold λ = R/2, since the exponential function in front of E s+1 in (7.3.14) would in that case vanish, not allowing us to derive an exponential decay of the related norms). In particular, coupling (7.3.15) 

m 2 R 2 τ 0 4 2 e R 2 t E s+1 (t)+ + τ 0 R 4 -D s max 1, H 2 sup t∈(0,t) max 1 √ J , Pr m √ κ e R tE s ( t) 1 2 + 2e R tE s ( t) t 0 e 3R 4 tD s+ 1 2 ( t)d t+ + m 2 τ 3 0 R 3 4 3 - D s 4 max 1,H 2 max 1 J , Pr 2 m κ sup t∈(0,t) e Rt E s ( t) t 0 e R 4 tD s+ 3 2 ( t)d t ≤ E s (0)+ MRτ 0 4 E s+ 1 2 (0)+ M 2 R 2 τ 2 0 4 2 E s+1 (0),
where we have omitted to write the positive dissipative integrals in D s and D s+1 on the left-hand side. Now, we remark that E s (0)+ MRτ0

4 E s+ 1 2 (0)+ M 2 R 2 τ 2 0 4 2
E s+1 (0) can be estimated in terms of the initial data and the smallness condition (7.3.4). Indeed, recalling the denition of E s , E s+1/2 and E s+1 in (7.3.9), we observe that

E s (0) ≤ max 1, J 2 , κ Pr m 2 max 1, 1 Pr m 3 2 ∥ũ∥ 2 H s,0 + 1 2 ∥ū∥ 2 H s,0 + + ∥∂ y ū∥ 2 H s,0 + 3 2 ∥ b1 ∥ 2 H s,0 + 1 2 ∥ b1 ∥ 2 H s,0 + ∥∂ y b1 ∥ 2 H s,0 ≤ 2 max 1, J, κ Pr m 2 max 1, 1 Pr m ∥ũ∥ H s,0 + ∥ū∥ H s+1,0 + + ∥∂ y ū∥ H s,0 + ∥ b1 ∥ H s,0 + ∥ b1 ∥ H s+1,0 + ∥∂ y b1 ∥ H s,0 2 ≤ 2 max 1, J, κ Pr m 2 max 1, 1 Pr m δ 2 ,
where we recall that δ > 0 is the small parameter bounding the norms of the initial data and it is dened in (7.3.4) by

δ := min{1, J, κ/Pr m } 3 2 max{1, J, κ/Pr m } 5 2 min{τ 0 , τ -1 0 } 3 2 max{1, H 2 } max{Pr -1 m , Pr m } 1 2 ε s ,
for a small parameter ε s that depends only on s > 2 (and that we have not determined, yet). Similarly, we have that E s+1/2 (0) ≤ (1/2)δ 2 and E s+1 (0) ≤ δ 2 , Hence, we obtain the following estimate of the right-hand side in (7.3.18):

(7.3.19) E s (0) + MRτ 0 4 E s+ 1 2 (0) + M 2 R 2 τ 2 0 4 2 E s+1 (0) ≤ E s (0) + τ 0 4 2 E s+ 1 2 (0) + τ 2 0 4 4 E s+1 (0) ≤ max{1, τ 0 } 2 2 max 1, J, κ Pr m 2 max 1, 1 Pr m δ 2 + 1 4 2 δ 2 + 1 4 4 δ 2 ≤ 4 max{1, τ 0 } 2 max 1, J, κ Pr m 2 max 1, 1 Pr m δ 2 ≤ 4 max{1, τ 0 } 2 min{τ 0 , τ -1 0 } 3 min{1, J, κ/Pr m } 3 max{1, H 2 } 2 max{1, J, κ/Pr m } 3 max{Pr -1 m , Pr m } min{1, Pr m } ε 2 s ≤ 4 min{1, τ 0 } 3 min{1, J, κ/Pr m } 3 max{1, H 2 } 2 max{1, J, κ/Pr m } 3 max{1, Pr m } ε 2 s .
where, in the last line, we have used the identity max{Pr -1 m , Pr m } min{1, Pr m } = max{1, Pr m }, as well as the inequality max{1, τ 0 } 2 min{τ 0 , τ -1 0 } 3 ≤ min{1, τ 0 } 2 . Inequality (7.3.18) together with (7.3.19) allow us to conclude the proof by means of a bootstrap method. Indeed, by introducing the small parameter ε s > 0 in (7.3.4) and a maximal time T * ∈ (0, T ), such that (7.3.20)

ε 2 s := 1 2 16 D 2 s thus ε s := s -2 2 2s+14 1 1 + s-2 √ s-1
, because of (7.3.11) ,

T * := sup t ∈ (0, T ) : e Rt E s (t) ≤ 1 2 12 min{1, τ 0 } 3 min{1, J, κ/Pr m } 3 D 2 s max{1, H 2 } 2 max{1, J, κ/Pr m } 3 max{1, Pr m } < 1 ,
we have that, for any time t ∈ (0, T * ), the constants in front of the dissipative terms of (7.3.18) are indeed positive:

τ 0 R 4 -D s max 1, H 2 sup t∈(0,t) max 1 √ J , Pr m √ κ e R tE s ( t) 1 2 + 2e R tE s ( t) = = τ 0 4 2 max{1, J, κ/Pr m } -D s max 1, H 2 sup t∈(0,t) e R tE s ( t) 1 2 max 1 √ J , Pr m √ κ + 2 e R tE s ( t) 1 2 ≥ τ 0 4 2 max{1, J, κ/Pr m } -D s max 1, H 2 sup t∈(0,t) e R tE s ( t) 1 2 max 1 √ J , Pr m √ κ + 2 ≥ τ 0 4 2 max{1, J, κ/Pr m } -D s max 1, H 2 sup t∈(0,t) e R tE s ( t) 1 2 4 max{1, Pr m } 1 2 min{1, J, κ/Pr m } 1 2 ≥ τ 0 4 2 max{1, J, κ/Pr m } - D s max 1, H 2 min{1, τ 0 } 3 2 min{1, J, κ/Pr m } 3 2 2 6 D s max{1, H 2 } max{1, J, κ/Pr m } 3 2 max{1, Pr m } 1 2 4 max{1, Pr m } 1 2 min{1, J, κ/Pr m } 1 2 ≥ min{1, τ 0 } max{1, J, κ/Pr m } 1 4 2 - 1 2 4 min{1, τ 0 } 1 2 min{1, J, κ/Pr m } max{1, J, κ/Pr m } 1 2 ≥ 0 and m 2 τ 3 0 R 3 4 3 - D s 4 max 1,H 2 max 1 J , Pr 2 m κ sup t∈(0,t) e Rt E s ( t) ≥ τ 3 0 min{1, J, κ/Pr m } 2 4 6 max{1, J, κ/Pr m } 3 - D s max 1,H 2 max 1,Pr m 4 min{1, J, κ/Pr m } min{1, τ 0 } 3 min{1, J, κ/Pr m } 3 2 12 D 2 s max{1, H 2 } 2 max{1, J, κ/Pr m } 3 max{1, Pr m } ≥ τ 3 0 min{1, J, κ/Pr m } 2 4 6 max{1, J, κ/Pr m } 3 - min{1, τ 0 } 3 min{1, J, κ/Pr m } 2 2 14 max{1, J, κ/Pr m } 3 ≥ 0.
Hence the energy inequality (7.3.18) The core of our approach being showed, it remains to prove the high-order energy estimate described by Proposition 7.3.1.

Estimates related to the equation of u

In this section we deal with the momentum equation of u in the main system (7.3.3), which satises (7.4.1)

J∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = H 2 b 1 b 2 v -ub 2 2 + b 2 y ∫ 0 ∂ t b 1 .
Recalling the denition of u η (t, •) = e (τ0-η(t))(1+|Dx|) u(t, •) and the value R = 1/(4 max{1, J, κ/Pr m }), we remark that the function e Rt/2 u η (t, x, y) is solution of (7.4.2)

J∂ t e R 2 t (∂ t u) η + Je R 2 t η ′ (t)(1 + |D x |)(∂ t u) η + e R 2 t (∂ t u) η + e R 2 t (u∂ x u) η + e R 2 t (v∂ y u) η + e R 2 t ∂ x p η -∂ 2 y e R 2 t u η = JR 2 e R 2 t (∂ t u) η + e R 2 t F η ,
where the forcing term F η in (7.3.3) is generated by applying the Fourier multiplier e (τ0-η(t))(1+|Dx|) to the right-hand side of (7.4.1):

(7.4.3)

F η = H 2 (b 1 b 2 v) η -H 2 (ub 2 2 ) η + H 2 b 2 y ∫ 0 ∂ t b 1 η .
We can further derive an equivalent form of this equation, by developing the time derivative e Rt/2 (∂ t u) η in the third term of (7. 

∂ t e R 2 t J(∂ t u) η + u η + e R 2 t η ′ (t)(1 + |D x |) J(∂ t u) η + u η + e R 2 t (u∂ x u) η + e R 2 t (v∂ y u) η + e R 2 t ∂ x p η -∂ 2 y e R 2 t u η = R 2 e R 2 t J(∂ t u) η + u η + e R 2 t F η .
Next, we take the H s,0 -inner product between (7.4.2) and e Rt/2 J(∂ t u) η and adding the result with the H s,0 -inner product between (7.4.4) and e Rt/2 (J(∂ t u) η + u η ), we gather that (7.4.5)

d dt e Rt J 2 2 ∥(∂ t u) η ∥ 2 H s,0 + 1 2 ∥J(∂ t u) η +u η ∥ 2 H s,0 + J∥∂ y u η ∥ 2 H s,0 +e Rt ∥∂ y u η ∥ 2 H s,0 +J∥(∂ t u) η ∥ 2 H s,0 +η ′ (t)e Rt J 2 ∥(∂ t u) η ∥ 2 H s+ 1 2 ,0 + ∥J(∂ t u) η + u η ∥ 2 H s+ 1 2 ,0 + 2J∥∂ y u η ∥ 2 H s+ 1 2 ,0 = Re Rt J 2 2 ∥(∂ t u) η ∥ 2 H s,0 + 1 2 ∥J(∂ t u) η + u η ∥ 2 H s,0 + J∥∂ y u η ∥ 2 H s,0 + e Rt -⟨(u∂ x u) η , 2J(∂ t u) η +u η ⟩ H s,0 -⟨(v∂ y u) η , 2J(∂ t u) η +u η ⟩ H s,0 +⟨F η , 2J(∂ t u) η +u η ⟩ H s,0 -⟨∂ x p η , 2J(∂ t u) η +u η ⟩ H s,0 .
We begin by observing that the term in the square brackets of the right-hand side in (7.4.5) can be absorbed by the dissipation e Rt ∥∂ y u η ∥ 2

H s,0 + J∥(∂ t u) η ∥ 2
H s,0 of the left-hand side. Indeed, since the value of R is smaller than min{1/4, 1/(4J)}, we have that

Re Rt J 2 2 ∥(∂ t u) η ∥ 2 H s,0 + 1 2 ∥J(∂ t u) η +u η ∥ 2 H s,0 +J∥∂ y u η ∥ 2 H s,0 ≤ Re Rt 3J 2 2 ∥(∂ t u) η ∥ 2 H s,0 +∥u η ∥ 2 H s,0+ J∥∂ y u η ∥ 2 H s,0 ≤ 3J 8 e Rt ∥(∂ t u) η ∥ 2 H s,0 + 1 4 e Rt ∥u η ∥ 2 H s,0 + 1 4 e Rt ∥∂ y u η ∥ 2 H s,0 .
To absorb this last term, we shall then invoke the Poincaré inequality in y ∈ (0, 1): ∥u η ∥ H s,0 ≤ ∥∂ y u η ∥ H s,0 (here the homogeneous boundary condition u = 0 in y = 0 comes into play). Thus

Re Rt J 2 2 ∥(∂ t u) η ∥ 2 H s,0 + 1 2 ∥J(∂ t u) η +u η ∥ 2 H s,0 +J∥∂ y u η ∥ 2 H s,0 ≤ e Rt J 2 ∥(∂ t u) η ∥ 2 H s,0 + 1 2 ∥∂ y u η ∥ 2 H s,0 ,
which corresponds to half dissipation on the left-hand side of (7.4.5).

We can summarize what obtained with the following estimate:

(7.4.6) d dt e Rt J 2 2 ∥(∂ t u) η ∥ 2 H s,0 + 1 2 ∥J(∂ t u) η +u η ∥ 2 H s,0 + J∥∂ y u η ∥ 2 H s,0 + 1 2 e Rt ∥∂ y u η ∥ 2 H s,0 +J∥(∂ t u) η ∥ 2 H s,0 +η ′ (t)e Rt J 2 ∥(∂ t u) η ∥ 2 H s+ 1 2 ,0 + ∥J(∂ t u) η + u η ∥ 2 H s+ 1 2 ,0 + 2J∥∂ y u η ∥ 2 H s+ 1 2 ,0 ≤ e Rt -⟨(u∂ x u) η , 2J(∂ t u) η +u η ⟩ H s,0 + ⟨(v∂ y u) η , 2J(∂ t u) η +u η ⟩ H s,0 + ⟨F η , 2(∂ t u) η +u η ⟩ H s,0 -⟨∂ x p η , 2J(∂ t u) η +u η ⟩ H s,0 .
The left-hand side of (7.4.6) already provides information on several norms of the solution. However these norms are of Sobolev regularities lower than s+1/2, while our nal estimate (7.3.8) in Proposition 7.3.1 incorporates higher regularities, such as H s+3/2,0 in D s+3/2 . We shall therefore perform a further development of the above inequality. To this end, we rst isolate η ′ (t)

2 e Rt (J 2 (∂ t u) η 2 
H s+1/2,0 + J(∂ t u) η + u η 2 H s+1/2,
0 ) in the second line of (7.4.6) and, recalling the formula

(∂ t u) η = ∂ t (u η ) + η ′ (t)(1 + |D x |)u η , we remark that η ′ (t) 2 e Rt J 2 (∂ t u) η 2 H s+ 1 2 ,0 + ∥J(∂ t u) η + u η ∥ 2 H s+ 1 2 ,0 = = η ′ (t) 2 e Rt J 2 ∂ t (u η ) + η ′ (t)(1 + |D x |)u η 2 H s+ 1 2 ,0 + ∥J∂ t (u η ) + Jη ′ (t)(1 + |D x |)u η + u η ∥ 2 H s+ 1 2 ,0 = η ′ (t) 2 e Rt J 2 ∂ t (u η ) 2 H s+ 1 2 ,0 + J 2 η ′ (t) 2 u η 2 H s+ 3 2 ,0 + J 2 2η ′ (t)⟨∂ t (u η ), u η ⟩ H s+1,0 + J 2 ∂ t (u η ) 2 H s+ 1 2 ,0 + J 2 η ′ (t) 2 u η 2 H s+ 3 2 ,0 + ∥u η ∥ 2 H s+ 1 2 ,0 + J 2 2η ′ (t)⟨∂ t (u η ), u η ⟩ H s+1,0 + J2⟨∂ t (u η ), u η ⟩ H s+ 1 2 ,0 +J2η ′ (t)∥u η ∥ 2 H s+1,0 .
In this last identity, we have used the relation ∥(1

+ |D x |)u η ∥ H s+ 1 2 ,0 = ∥u η ∥ H s+ 3 2
,0 , as well as the inner products ⟨∂ t (u η ), (1

+ |D x |)u η ⟩ H s+ 1 2 ,0 = ⟨∂ t (u η ), u η ⟩ H s+1,0 and ⟨(1 + |D x |)u η , u η ⟩ H s+ ,0 = ∥u η ∥ 2 H s+1,0 .
Thus, the isolated term satises

η ′ (t) 2 e Rt J 2 (∂ t u) η 2 H s+ 1 2 ,0 + ∥J(∂ t u) η + u η ∥ 2 H s+ 1 2 ,0 = J 2 e Rt η ′ (t) 2 d dt u η 2 H s+1,0 + J 2 e Rt η ′ (t) d dt u η 2 H s+ 1 2 ,0 + e Rt J 2 η ′ (t) ∂ t (u η ) 2 H s+ 1 2 ,0 + J 2 η ′ (t) 3 u η 2 H s+ 3 2 ,0 + η ′ (t) 2 u η 2 H s+ 1 2 ,0 + Jη ′ (t) 2 u η 2 H s+1,0 .
and by bringing the time derivative in front of Je Rt η ′ (t) 2 and Jη ′ (t)/2 also (7.4.7)

η ′ (t) 2 e Rt J 2 (∂ t u) η 2 H s+ 1 2 ,0+ ∥J(∂ t u) η +u η ∥ 2 H s+ 1 2 ,0 = d dt J 2 η ′ (t) 2 e Rt u η 2 
H s+1,0 + J 2 η ′ (t)e Rt u η 2 H s+ 1 2 ,0 -2J 2 e Rt η ′ (t)η ′′ (t) u η 2 H s+1,0 - J 2 η ′′ (t)e Rt u η 2 H s+ 1 2 ,0 + e Rt J 2 η ′ (t) ∂ t (u η ) H s+ 1 2 ,0 + J 2 η ′ (t) 3 u η 2 H s+ 3 2 ,0 + 1 2 - JR 2 η ′ (t) u η 2 H s+ 1 2 ,0 + J -RJ 2 η ′ (t) 2 u η 2 H s+1,0 .
The Sobolev norm of H s+3/2,0 has now appeared (rst term of the third line). Furthermore, recalling that R ≤ (1/4) min{1, J -1 } both (1/2 -JR/2) ≥ 3/8 and J -RJ 

+η ′ (t) J 2 ∥u η ∥ 2 H s+ 1 2 ,0 u-term in E s+ 1 2 (t) +η ′ (t) 2 J 2 ∥u η ∥ 2 H s+1,0 u-term in Es+1(t) + η ′ (t)e Rt J 2 2 ∥(∂ t u) η ∥ 2 H s+ 1 2 ,0 + 1 2 ∥J(∂ t u) η +u η ∥ 2 H s+ 1 2 ,0 + 2J∥∂ y u η ∥ 2 H s+ 1 2 ,0 u-terms in D s+ 1 2 (t) +J 2 ∥∂ t (u η )∥ 2 H s+ 1 2 ,0 + 3 8 ∥u η ∥ 2 H s+ 1 2 ,0 u-terms in D s+ 1 2 (t) + Jη ′ (t) 2 e Rt 3 4 ∥u η ∥ 2 H s+1,0 u-term in Ds+1(t) +J 2 η ′ (t) 3 e Rt ∥u η ∥ 2 H s+ 3 2 ,0 u-terms in D s+ 3 2 (t) -2J 2 e Rt η ′ (t)η ′′ (t) u η 2 H s+1,0 u-term in Es+1(t) -Je Rt η ′′ (t) 1 2 u η 2 H s+ 1 2 ,0 u-term in E s+ 1 2 (t) + e Rt 2 ∥∂ y u η ∥ 2 H s,0 +J∥(∂ t u) η ∥ 2 H s,0 u-term in Ds(t) ≤ e Rt -⟨(u∂ x u) η , 2J(∂ t u) η +u η ⟩ H s,0 -⟨(v∂ y u) η , 2J(∂ t u) η +u η ⟩ H s,0 +⟨F η , 2J(∂ t u) η +u η ⟩ H s,0 -⟨∂ x p η , 2J(∂ t u) η +u η ⟩ H s,0 .
We next proceed to estimate each term on the right-hand side of (7.4.8). For each estimated term, we will determine a suitable lower bound of the constant D s ≥ 1 in the main inequality (7.3.8) of Proposition 7.3.1. This lower bound will increase at any step. The last term will therefore provide the exact form of D s .

Throughout the forthcoming analysis, we will repeatedly use the following estimates, which recast the (7.4.9)

∥u η ∥ H s,0 ≤ ∥u η +J(∂ t u) η ∥ H s,0 +J∥(∂ t u) η ∥ H s,0 ≤ 2 J 2 2 ∥(∂ t u) η ∥ 2 H s,0 + 1 2 ∥J(∂ t u) η +u η ∥ 2 H s,0 1 2 ≤ 2 E s , ∥b 1,η ∥ H s,0 ≤ b 1,η + κ Pr m (∂ t b 1 ) η H s,0 + κ Pr m ∥(∂ t b 1 ) η ∥ H s,0 ≤ 2 κ 2 2Pr 2 m ∥(∂ t b 1 ) η ∥ 2 H s,0 + 1 2 κ Pr m (∂ t b 1 ) η + b 1,η 2 H s,0 1 2 ≤ 2 E s .
Similarly, we can connect the H s+1/2 -norms of u η and b 1,η in terms of D s+ 1 2 :

(7.4.10)

∥u η ∥ H s+ 1 2 ,0 ≤ 2 D s+ 1 2 , ∥b 1,η ∥ H s+ 1 2 ,0 ≤ 2 D s+ 1 2 .
The rst term on the right-hand side of (7.4.8), that we deal with, is the convection (7.4.11) e Rt ⟨(u∂

x u) η , 2J(∂ t u) η + u η ⟩ H s,0 ≤ e Rt ∥(u∂ x u) η ∥ H s-1 2 ,0 J∥(∂ t u) η ∥ H s+ 1 2 ,0 +∥J(∂ t u) η +u η ∥ H s+ 1 2 ,0 ≤ e Rt ∥(u∂ x u) η ∥ H s-1 2 ,0 2 J 2 2 ∥(∂ t u) η ∥ 2 H s+ 1 2 ,0 + 1 2 ∥J(∂ t u) η +u η ∥ 2 H s+ 1 2 ,0 1 2 ≤ 2e Rt ∥(u∂ x u) η ∥ H s-1 2 ,0 D s+ 1 2 (t).
In order to cope with (u∂ x u) η in H s-1/2,0 , we shall transfer the η-transformation i.e. the Lagrangian multiplier e (τ0-η(t))(1+|Dx|) to each component u and ∂ x u. Of course, (u∂ x u) η ̸ = u η ∂ x u η in general.

However, we are here controlling a Sobolev norm and not the functions themselves, pointwise. The following product law therefore allows us to transfer the mentioned Lagrangian multiplier in terms of pure Sobolev estimates:

Lemma 7.4.1. Let f, g : R×(0, 1) → R be two functions such that f η , g η and ∂ y f η belong to H σ1,0 (R× (0, 1)) with σ 1 > 1/2 (and thus also to H σ2,0 (R × (0, 1)), for any σ 2 ≤ σ 1 ). Furthermore, assume that f ≡ 0 in y = 0 in the sense of trace. Then

∥(f g) η ∥ H σ 1 ,0 ≤ 2 σ1-1 2 σ 2 -1 2 ∥∂ y f η ∥ H σ 1 ,0 ∥g η ∥ H σ 2 ,0 + ∥∂ y f η ∥ H σ 2 ,0 ∥g η ∥ H σ 1 ,0
for any regularities σ 2 ∈ (1/2, σ 1 ].

We postpone the technical proof of this lemma 7.4.1 to the appendix (cf. Lemma 7.5.1). Addressing our original estimate (7.4.11), we are in the position to apply Lemma 7.4.1 with the regularities

σ 1 = σ 2 = s -1/2 > 1/2 and the functions f (•) = u(t, •), g(•) = ∂ x u(t, •). We deduce therefore that ∥(u∂ x u) η ∥ H s-1 2 ,0 ≤ 2 s-1 √ s -1 2∥∂ y u η ∥ H s-1 2 ,0 ∥∂ x u η ∥ H s-1 2 ,0 ≤ 2 s √ s -1 ∥∂ y u η ∥ H s,0 ∥u η ∥ H s+ 1 2 ,0 ≤ 2 s+1 √ s -1 ∥∂ y u η ∥ H s,0 D s+ 1 2 (t),
where in the last inequality we have indeed applied (7.4.10). Plugging this inequality to the original estimate (7.4.11), we eventually gather that the convective term is bounded by

e Rt ⟨(u∂ x u) η , u η ⟩ H s,0 ≤ 2 s+2 √ s -1 e Rt 1 √ J E s (t)D s+ 1 2 (t).
We shall now remark that the above right-hand side is indeed in the rst integrand of the third line of our main inequality (7.3.8) 

u) η , 2J(∂ t u) η + u η ⟩ H s,0 ≤ 2 s-1 √ s -1 e Rt 2∥∂ y v η ∥ H s-1 2 ,0 ∥∂ y u η ∥ H s-1 2 ,0 2 D s+ 1 2 (t) ≤ 2 s+1 √ s -1 e Rt ∂ x u η H s-1 2 ,0 ∥∂ y u η ∥ H s-1 2 ,0 D s+ 1 2 (t) ≤ 2 s+1 √ s -1 e Rt ∥∂ y u η ∥ H s,0 ∥u η ∥ H s+ 1 2 ,0 D s+ 1 2 (t) ≤ 2 s+1 √ s -1 e Rt ∥∂ y u η ∥ H s,0 D s+ 1 2 (t) ≤ 2 s+2 √ s -1 e Rt 1 √ J E s (t)D s+ 1 2 (t),
which is in the rst integrand of the third line of our energy inequality (7.3.8). Hence D s must satisfy at least D s ≥ 2 s+3 / √ s -1.

Next, we aim at estimating each component of the function F η in (7.4.6) (see also (7.4.3)). We begin with e Rt (b

1 b 2 v) η , 2J(∂ t u) η + u η H s,0 ≤ e Rt (b 1 b 2 v) η H s-1 2 ,0 ∥J(∂ t u) η + u η ∥ H s+ 1 2 ,0 + J∥(∂ t u) η ∥ H s+ 1 2 ,0 ≤ e Rt (b 1 b 2 v) η H s-1 2 ,0 2 D s+ 1 2 (t)
Thanks to Lemma 7.4.1, with σ

1 = s -1/2, σ 2 = s -1, f = v and g = b 1 b 2 , we deduce that e Rt (b 1 b 2 v) η , 2J(∂ t u) η + u η H s,0 ≤ e Rt 2 s-1 s -3/2 ∥∂ y v η ∥ H s-1 2 ,0 ∥ b 1 b 2 η ∥ H s-1,0 + ∥∂ y v η ∥ H s-1,0 ∥(b 1 b 2 ) η ∥ H s-1 2 ,0 2 D s+ 1 2 (t) ≤ e Rt 2 s s -3/2 ∥u η ∥ H s+ 1 2 ,0 ∥(b 1 b 2 ) η ∥ H s-1,0 + ∥u η ∥ H s,0 ∥(b 1 b 2 ) η ∥ H s-1 2 ,0 D s+ 1 2 (t)
Next, we apply Lemma 7. 

v) η , 2J(∂ t u) η + u η H s,0 ≤ e Rt 2 s s -3/2 ∥u η ∥ H s+ 1 2 ,0 2 s-3 2 s -3/2 2∥b 1,η ∥ H s-1,0 ∥∂ x b 1,η ∥ H s-1,0 + 2 s-1 √ s -1 2∥u η ∥ H s,0 ∥b 1,η ∥ H s-1 2 ,0 ∥∂ x b 1,η ∥ H s-1 2 ,0 D s+ 1 2 (t) ≤ 2 2s s -3/2 e Rt ∥b 1,η ∥ 2 H s,0 ∥u η ∥ H s+ 1 2 ,0 + ∥u η ∥ H s,0 ∥b 1,η ∥ H s,0 ∥b 1,η ∥ H s+ 1 2 ,0 D s+ 1 2 (t).
Thus, by recalling (7.4.9) and (7.4.10), we deduce that

e Rt (b 1 b 2 v) η , 2J(∂ t u) η + u η H s,0 ≤ ≤ 2 2s s -3/2 e Rt 2 2 E s (t)2 D s+ 1 2 (t) + 2 2 E s (t)2 D s+ 1 2 (t) D s+ 1 2 (t) ≤ 2 2s+4 s -3/2 e Rt E s (t)D s+ 1 2 (t),
which is one of integral in the third line of (7.4.1). Hence D s must satisfy D s ≥ 2 s+3 / √ s -1+2 2s+4 /(s-3/2).

The remaining components of F η are dealt with an analogous procedure. Thanks to Lemma 7.4.1, we have indeed

e Rt (b 2 2 u) η , 2J(∂ t u) η + u η H s,0 ≤ e Rt (b 2 2 u) η H s-1 2 ,0 ∥J(∂ t u) η + u η ∥ H s+ 1 2 ,0 + J∥(∂ t u) η ∥ H s+ 1 2 ,0 ≤ e Rt b 2 2 u η H s-1 2 ,0 2 D s+ 1 2 (t).
We invoke once more Lemma 7.4.1, with σ

1 = s -1/2, σ 2 = s -1, f = b 2 and g = ub 2 . Thanks to the divergence-free condition ∂ y b 2,η = -∂ x b 1,η , we deduce that e Rt (b 2 2 u) η , 2J(∂ t u) η + u η H s,0 ≤ e Rt 2 s-1 s -3/2 ∥∂ y b 2,η ∥ H s-1 2 ,0 ∥ ub 2 η ∥ H s-1,0 + ∥∂ y b 2,η ∥ H s-1,0 ∥ ub 2 η ∥ H s-1 2 ,0 2 D s+ 1 2 (t) ≤ 2 s s -3/2 e Rt ∥b 1,η ∥ H s+ 1 2 ,0 ∥(ub 2 ) η ∥ H s-1,0 + ∥b 1,η ∥ H s,0 ∥(ub 2 ) η ∥ H s-1 2 ,0 D s+ 1 2 ( 

t).

We are now in the position to apply Lemma 7.4.1 to cope with ∥(ub 2 ) η ∥ H s-1,0 and ∥(ub 2 ) η ∥ H s-1/2,0 . We rst consider regularities σ 1 = σ 2 = s -1 and functions f = b 2 , g = u and secondly regularities

σ 1 = σ 2 = s -1/2, with functions f = b 2 , g = u: e Rt (b 2 2 u) η , 2J(∂ t u) η + u η H s,0 ≤ 2 s s -3/2 e Rt ∥b 1,η ∥ H s+ 1 2 ,0 2 s-3 2 s -3/2 2∥∂ x b 1,η ∥ H s-1,0 ∥u η ∥ H s-1,0 + 2 s-1 √ s -1 2∥b 1,η ∥ H s,0 ∥∂ x b 1,η ∥ H s-1 2 ,0 ∥u η ∥ H s-1 2 ,0 D s+ 1 2 (t) ≤ 2 2s s -3/2 e Rt ∥b 1,η ∥ H s+ 1 2 ,0 ∥b 1,η ∥ H s,0 ∥u η ∥ H s,0 + ∥b 1,η ∥ H s,0 ∥b 1,η ∥ H s+ 1 2 ,0 ∥u η ∥ H s,0 D s+ 1 2 (t) ≤ 2 2s+1 s -3/2 e Rt ∥b 1,η ∥ H s+ 1 2 ,0 ∥b 1,η ∥ H s,0 ∥u η ∥ H s,0 D s+ 1 2 (t).
Thus, recalling (7.4.9) and (7.4.10), we obtain

e Rt (b 2 2 u) η , 2J(∂ t u) η + u η H s,0 ≤ 2 2s+1 s -3/2 e Rt 2 D s+ 1 2 (t)2 2 E s (t) D s+ 1 2 (t) = 2 2s+4 s -3/2 e Rt E s (t)D s+ 1 2 (t).
We need therefore to impose D s ≥ 2 s+3 / √ s -1 + 2 2s+5 /(s -3/2).

The last term of F η is nally estimated as follows:

e Rt b 2 y ∫ 0 ∂ t b 1 η , 2J(∂ t u) η + u η H s,0 ≤ e Rt b 2 y ∫ 0 ∂ t b 1 η H s-1 2 ,0 ∥2J(∂ t u) η + u η ∥ H s+ 1 2 ,0 ≤ 2 s √ s -1 e Rt ∥∂ x b 1,η ∥ H s-1 2 ,0 y ∫ 0 (∂ t b 1 ) η H s-1 2 ,0 2 D s+ 1 2 (t) ≤ 2 s+1 √ s -1 e Rt 2 D s+ 1 2 (t) y ∫ 0 (∂ t b 1 ) η H s-1 2 ,0 D s+ 1 2 (t).
Since y ∈ (0, 1), one has that ∥ ∫ y

0 (∂ t b 1 ) η H s-1 2 ,0 ≤ ∥(∂ t b 1 ) η H s-1 2 ,0 ≤ ∥(∂ t b 1 ) η H s,0 ≤ (2/ √ J) E s (t), hence e Rt b 2 y ∫ 0 ∂ t b 1 η , 2J(∂ t u) η + u η H s,0 ≤ 2 s+2 √ s -1 e Rt 1 √ J E s (t)D s+ 1 2 (t),
which is indeed in the second integral of (7.4.1). We shall impose

D s ≥ 3 • 2 s+2 / √ s -1 + 2 2s+5 /(s -3/2).

Estimates of the pressure

To complete the estimates of the momentum equation, we shall nally address the term in (7.4.8) related to the pressure. First, we remark that

-⟨∂ x p η , 2J(∂ t u) η +u η ⟩ H s,0 = ⟨∂ x p η , 2J(∂ t ∂ x u) η +∂ x u η ⟩ H s,0 = -⟨p η , 2J(∂ t ∂ y v) η +∂ y v η ⟩ H s,0 = ⟨∂ y p η , 2J(∂ t v) η +v η ⟩ H s,0 .
Furthermore, making use of the second equation in (7.3.3), we can decompose this term as (7.4.12)

e Rt ⟨∂ y p η , 2J(∂ t v) η +v η ⟩ H s,0 = e Rt b 1 b 2 u η , 2J(∂ t v) η +v η H s,0 + (b 2 1 v) η , 2J(∂ t v) η +v η H s,0 -b 1 y ∫ 0 ∂ t b 1 η , 2J(∂ t v) η +v η H s,0 .
We begin with by estimating the inner product ⟨(b

1 b 2 u) η , 2J(∂ t v) η +v η ⟩ H s,0
, where we can rst localise a dissipation of the form D s+1/2 (t) 

e Rt (b 1 b 2 u) η ,2J(∂ t v) η +v η H s,0 ≤ e Rt (b 1 b 2 u) η H s+ 1 2 ,0 ∥2J(∂ t v) η +v η ∥ H s-1 2 ,0 ≤ e Rt (b 1 b 2 u) η H s+ 1 2 ,0 J y ∫ 0 ∂ x (∂ t u) η H s-1 2 ,0 + J y ∫ 0 ∂ x (∂ t u) η + y ∫ 0 ∂ x u η H s-1 2 ,0 ≤ e Rt (b 1 b 2 u) η H s+ 1 2 ,0 J ∂ x (∂ t u) η H s-1 2 ,0 + J∂ x (∂ t u) η + ∂ x u η H s-1 2 ,0 ≤ e Rt (b 1 b 2 u) η H s+ 1 2 ,0 J (∂ t u) η H s+ 1 2 ,0 + J(∂ t u) η + u η H s+ 1 2 ,0 ≤ e Rt (b 1 b 2 u) η H s+ 1 2 ,0 2 D s+ 1 2 (t)
We shall now address the trilinear term ∥(b 1 b 2 u) η ∥ H s+1/2,0 and we apply Lemma 7.4.1 with σ 1 = s+1/2, σ 2 = s -3/2, f = b 2 and g = b 1 u:

(7.4.14) (b 1 b 2 u) η H s+ 1 2 ,0 ≤ 2 s √ s -2 ∥∂ y b 2,η ∥ H s+ 1 2 ,0 ∥(ub 1 ) η ∥ H s-3 2 ,0 + ∥∂ y b 2,η ∥ H s-3 2 ,0 ∥(ub 1 ) η ∥ H s+ 1 2 ,0 ≤ 2 s √ s -2 ∥∂ x b 1,η ∥ H s+ 1 2 ,0 ∥(ub 1 ) η ∥ H s-3 2 ,0 + ∥∂ x b 1,η ∥ H s-3 2 ,0 ∥(ub 1 ) η ∥ H s+ 1 2 ,0 ≤ 2 s √ s -2 ∥b 1,η ∥ H s+ 3 2 ,0 ∥(ub 1 ) η ∥ H s-3 2 ,0 + ∥b 1,η ∥ H s-1 2 ,0 ∥(ub 1 ) η ∥ H s+ 1 2 ,0 ≤ 2 s √ s -2 2 D s+ 3 2 (t)∥(ub 1 ) η ∥ H s-3 2 ,0 + 2 E s (t)∥(ub 1 ) η ∥ H s+ 1 2 ,0
.

Next, we apply twice Lemma 7.4.1, in order to deal with ∥(ub 1 ) η ∥ H s-3/2,0 and ∥(ub 1 ) η ∥ H s+1/2,0 . For both cases we consider functions f = u and g = b 1 , however the regularities are considered σ 1 = s -3/2 = σ 2 and σ 1 = s + 1/2, σ 2 = s, respectively. We gather

(b 1 b 2 u) η H s+ 1 2 ,0 ≤ 2 s √ s -2 2 D s+ 3 2 (t) 2 s-2 √ s -2 ∥∂ y u η ∥ H s-3 2 ,0 ∥b 1,η ∥ H s-3 2 ,0 + + 2 E s (t) 2 s s -1/2 ∥∂ y u η ∥ H s+ 1 2 ,0 ∥b 1,η ∥ H s,0 + ∥∂ y u η ∥ H s,0 ∥b 1,η ∥ H s+ 1 2 ,0 ≤ 2 s √ s -2 2 s+1 √ s -2 D s+ 3 2 (t) 1 √ J E s (t)2 E s (t)+ + 2 s+1 s -1/2 E s (t) 1 √ J D s+ 1 2 (t)2 E s (t) + 1 √ J E s (t)2 D s+ 1 2 (t) ≤ 2 2s+3 s -2 1 √ J D s+ 3 2 (t) + D s+ 1 2 (t) E s (t).
Plugging the last inequality into (7.4.13), we eventually obtain (7.4.15) e Rt (b

1 b 2 u) η , 2J(∂ t v) η +v η H s,0 ≤ 2 2s+4 s -2 e Rt √ J D s+ 3 2 (t)D s+ 1 2 (t)E s (t) + 2 2s+4 s -2 e Rt √ J E s (t)D s+ 1 2 (t).
We shall thus impose

D s ≥ 3 • 2 s+2 / √ s -1 + 2 2s+5 /(s -3/2) + 2 2s+4 /(s -2).
Coming back to (7.4.12), we infer that a similar approach as the one used to show (7.4.15) implies that

e Rt (b 2 1 v) η , 2(∂ t v) η +v η H s,0 ≤ 2 2s+4 s -2 e Rt √ J D s+ 3 2 (t)D s+ 1 2 (t)E s (t) + 2 2s+4 s -2 e Rt √ J E s (t)D s+ 1 2 (t), thus we must impose D s ≥ 3 • 2 s+2 / √ s -1 + 2 2s+5 /(s -3/2) + 2 2s+5 /(s -2).
To conclude the estimates of the momentum equation, we consider ⟨(b

1 (∫ y 0 ∂ t b 1 )) η , 2J(∂ t v) η +v η ⟩ H s,0 ,
the last term of (7.4.12).

e Rt b 1

y ∫ 0 ∂ t b 1 η , 2J(∂ t v) η +v η H s,0 ≤ e Rt b 1 y ∫ 0 ∂ t b 1 η H s+ 1 2 ,0 2 D s+ 1 2 (t) ≤ e Rt 2 s s -1/2 ∥b 1,η ∥ H s+ 1 2 ,0 ∥∂ t b 1,η ∥ H s,0 + ∥b 1,η ∥ H s,0 ∥∂ t b 1,η ∥ H s+ 1 2 ,0 2 D s+ 1 2 (t) ≤ e Rt 2 s+1 s -1/2 2 D s+ 1 2 (t) 2Pr m κ E s (t) + 2 E s (t) 2Pr m κ D s+ 1 2 (t) D s+ 1 2 (t) ≤ e Rt 2 s+4 s -1/2 Pr m κ E s (t)D s+ 1 2 (t).
We shall impose

D s ≥ 3 • 2 s+2 √ s -1 + 2 2s+5 (s -3/2) + 2 2s+5 (s -2) + 2 2s+4
s -1/2 . (7.4.16) This concludes the estimates related to the momentum equation.

Estimates related to the equation of b 1

In this section we cope with the equation of b 1 in the main system (7.3.3), more precisely we deal with (7.4.17)

κ Pr m ∂ t b 2 1 + ∂ t b 1 + u∂ x b 1 + v∂ y b 1 - 1 Pr m ∂ 2 y b 1 = b 1 ∂ x u + b 2 ∂ y u.
By coupling the denition of b 1,η = e (τ0-η)(1+|Dx|) b 1 and equation (7.4.17), we remark that the function (t, x, y) ∈ (0, T ) × R → e Rt/2 b 1,η (t, x, y) is solution of the following equation

(7.4.18) κ Pr m ∂ t e R 2 t (∂ t b 1 ) η + e R 2 t (∂ t b 1 ) η + η ′ (t)(1 + |D x |) e R 2 t (∂ t b 1 ) η + e R 2 t (u∂ x b 1 ) η + + e R 2 t (v∂ y b 1 ) η -e R 2 t ∂ 2 y e R 2 t b 1,η = κ Pr m R 2 e R 2 t (∂ t b 1 ) η + e R 2 t (b 1 ∂ x u) η + e R 2 t (b 2 ∂ y v) η .
With a similar approach as the one used to prove inequality (7.4.8), we infer that the following estimate holds true:

(7.4.19) d dt e Rt κ 2 2Pr 2 m ∥(∂ t b 1 ) η ∥ 2 H s,0 + 1 2 κ Pr m (∂ t b 1 ) η +b 1,η 2 
H s,0 + κ Pr 2 m ∥∂ y b 1,η ∥ 2 H s,0 b1-terms in Es(t) + κ Pr m η ′ (t) 1 2 ∥b 1,η ∥ 2 H s+ 1 2 ,0 b1-term in E s+ 1 2 (t) +η ′ (t) 2 κ 2 Pr 2 m ∥b 1,η ∥ 2 H s+1,0 b1-term in Es+1(t) + η ′ (t)e Rt κ 2 2Pr 2 m ∥(∂ t b 1 ) η ∥ 2 H s+ 1 2 ,0 + 1 2 ∥ κ Pr m (∂ t b 1 ) η +u η ∥ 2 H s+ 1 2 ,0 b1-terms in D s+ 1 2 (t) + 2κ 2Pr 2 m ∥∂ y b 1,η ∥ 2 H s+ 1 2 ,0 + κ 2 Pr 2 m ∥∂ t (b 1,η )∥ 2 H s+ 1 2 ,0 + 3 8 ∥b 1,η ∥ 2 H s+ 1 2 ,0 b1-terms in D s+ 1 2 (t) + κ Pr m η ′ (t) 2 e Rt 3 4 ∥u η ∥ 2 H s+1,0 b1-term in Ds+1(t) + κ 2 Pr 2 m η ′ (t) 3 e Rt ∥b 1,η ∥ 2 H s+ 3 2 ,0 b1-terms in D s+ 3 2 (t) -2 κ 2 Pr 2 m e Rt η ′ (t)η ′′ (t) b 1,η 2 H s+1,0 b1-term in Es+1(t) - κ Pr m e Rt η ′′ (t) 1 2 b 1,η 2 H s+ 1 2 ,0 b1-term in E s+ 1 2 (t) + e Rt 2 1 Pr m ∥∂ y b 1,η ∥ 2 H s,0 + κ Pr m ∥(∂ t b 1 ) η ∥ 2 H s,0 b1-term in Ds(t) ≤ e Rt ⟨(u∂ x b 1 ) η , 2(∂ t b 1 ) η +b 1,η ⟩ H s,0 + (v∂ y b 1 ) η , 2κ Pr m (∂ t b 1 ) η +b 1,η H s,0 + (b 1 ∂ x u) η , 2κ Pr m (∂ t b 1 ) η +b 1,η H s,0 + (b 2 ∂ x v) η , 2κ Pr m (∂ t b 1 ) η +b 1,η H s,0
.

We next proceed to estimate each term on the right-hand side of (7.4.19). For each estimated term, we will determine a suitable (increasing) lower bound of the constant D s . The last term will therefore provide the exact form of D s . We recall that from the estimate of the momentum equation, D s ≥ e Rt (u∂

x b 1 ) η , 2κ Pr m (∂ t b 1 ) η +b 1,η H s,0 ≤ e Rt ∥(u∂ x b 1,η ) η ∥ H s-1 2 ,0 κ Pr m ∥(∂ t b 1 ) η ∥ H s+ 1 2 ,0 + κ Pr m (∂ t b 1 ) η + b 1,η H s+ 1 2 ,0 ≤ e Rt ∥(u∂ x b 1 ) η ∥ H s-1 2 ,0 2 κ 2 2Pr 2 m ∥(∂ t b 1 ) η ∥ 2 H s+ 1 2 ,0 + 1 2 κ Pr m (∂ t b 1 ) η + b 1,η 2 
H s+ 1 2 ,0 ≤ 2e Rt ∥(u∂ x b 1 ) η ∥ H s-1 2 ,0 D s+ 1 2 (t)
We are in the position to apply Lemma 7.4.1 with the regularities

σ 1 = σ 2 = s -1/2 > 1/2 and the functions f (•) = u(t, •), g(•) = ∂ x u(t, •). We deduce therefore that ∥(u∂ x b 1 ) η ∥ H s-1 2 ,0 ≤ 2 s-1 √ s -1 2∥∂ y u η ∥ H s-1 2 ,0 ∥∂ x b 1,η ∥ H s-1 2 ,0 ≤ 2 s √ s -1 ∥∂ y u η ∥ H s,0 ∥b 1,η ∥ H s+ 1 2 ,0 ≤ 2 s √ s -1 1 √ J E s (t)2 D s+ 1 2 (t).
Plugging the above estimate to the original convective term (7.4.20), we eventually gather that e Rt (u∂

x b 1 ) η , 2κ Pr m (∂ t b 1 ) η +b 1,η H s,0 ≤ 2 s+2 √ s -1 e Rt 1 √ J E s (t)D s+ 1 2 (t). Therefore we require D s ≥ 2 s+4 / √ s -1 + 2 2s+5 /(s -3/2) + 2 2s+5 /(s -2) + 2 2s+4 / s -1/2. Next, we
treat the second term on the right-hand side of (7.4.6):

e Rt (v∂

y b 1 ) η , 2κ Pr m (∂ t b 1 ) η +b 1,η H s,0 ≤ e Rt (v∂ y b 1 ) η H s-1 2 ,0 2 D s+ 1 2 (t).
We apply Lemma 7. 

(∂ t b 1 ) η +b 1,η H s,0 ≤ 2 s-1 √ s -1 e Rt 2∥∂ y v η ∥ H s-1 2 ,0 ∥∂ y b 1,η ∥ H s-1 2 ,0 2 D s+ 1 2 (t) ≤ 2 s+1 √ s -1 e Rt ∂ x u η H s-1 2 ,0 ∥∂ y b 1,η ∥ H s-1 2 ,0 D s+ 1 2 (t) ≤ 2 s+1 √ s -1 e Rt ∥u η ∥ H s+ 1 2 ,0 ∥∂ y b 1,η ∥ H s-1 2 ,0 D s+ 1 2 (t) ≤ 2 s+2 √ s -1 e Rt ∥∂ y b 1,η ∥ H s,0 D s+ 1 2 (t) ≤ 2 s+2 √ s -1 e Rt Pr m √ κ E s (t)D s+ 1 2 (t),
which is still on the second integral of (7.4.1). Hence D s must satisfy at least

D s ≥ 5 • 2 s+2 / √ s -1 + 2 2s+5 /(s -3/2) + 2 2s+5 /(s -2) + 2 2s+4 / s -1/2. Next, we deal with e Rt ⟨(b 1 ∂ x u) η , 2κ Pr m (∂ t b 1 ) η + b 1,η ⟩ H s,0 ≤ e Rt ∥(b 1 ∂ x u) η ∥ H s-1 2 ,0 κ Pr m (∂ t b 1 ) η +b 1,η H s+ 1 2 ,0 + κ Pr m (∂ t b 1 ) η H s+ 1 2 ,0 ≤ e Rt ∥(b 1 ∂ x u) η ∥ H s-1 2 ,0 2 D s+ 1 2 (t). Applying Lemma 7.4.1 with regularities σ 1 = σ 2 = s -1/2 > 1/2, with functions f = b 1 and g = ∂ x u, we gather e Rt ⟨(b 1 ∂ x u) η , 2κ Pr m (∂ t b 1 ) η + b 1,η ⟩ H s,0 ≤ 2 s e Rt √ s -1 ∥∂ y b 1 ∥ H s-1 2 ,0 ∥∂ x u η ∥ H s-1 2 ,0 2 D s+ 1 2 (t) ≤ 2 s+2 e Rt √ s -1 ∥∂ y b 1 ∥ H s-1 2 ,0 D s+ 1 2 (t) ≤ 2 s+2 e Rt √ s -1 Pr m √ κ E s (t)D s+ 1 2 (t). Hence D s must satisfy at least D s ≥ 6 • 2 s+2 / √ s -1 + 2 2s+5 /(s -3/2) + 2 2s+5 /(s -2) + 2 2s+4 / s -1/2.
Finally, we deal with 

e Rt ⟨(b 2 ∂ y u) η , 2κ Pr m (∂ t b 1 ) η + b 1,η ⟩ H s,0 ≤ e Rt ∥(b 2 ∂ y u) η ∥ H s-1 2 ,0 ∥ κ Pr m (∂ t b 1 ) η +b 1,η ∥ H s+ 1 2 ,0 + ∥ κ Pr m (∂ t b 1 ) η ∥ H s+ 1 2 ,0 ≤ e Rt ∥(b 2 ∂ y u) η ∥ H s-1 2 ,0 2 D s+ 1 2 (t). Applying Lemma 7.4.1 with regularities σ 1 = σ 2 = s -1/2 > 1/2, with functions f = b 1 and g = ∂ x u, we gather e Rt ⟨(b 2 ∂ y u) η , 2κ Pr m (∂ t b 1 ) η + b 1,η ⟩ H s,0 ≤ 2 s e Rt √ s -1 ∥∂ y b 2,η ∥ H s-1 2 ,0 ∥∂ y u η ∥ H s-1 2 ,0 2 D s+ 1 2 (t) ≤ 2 s+1 e Rt √ s -1 ∥∂ x b 1,η ∥ H s-1 2 ,0 ∥∂ y u η ∥ H s-1 2 ,0 D s+ 1 2 (t) ≤ 2 s+1 e Rt √ s -1 ∥b 1,η ∥ H s+ 1 2 ,0 ∥∂ y u η ∥ H s-1 2 ,0 D s+ 1 2 (t) ≤ 2 s+2 e Rt √ s -1 ∥∂ y u η ∥ H s-1 2 ,0 D s+ 1 2 (t) ≤ 2 s+2 e Rt √ s -1 1 √ J E s (t)
D s = 2 2s+6 s -2 1 + s -2 √ s -1
This concludes the proof of Proposition 7.3.1.

A suitable product law

This appendix is devoted to the proof of Lemma 7.4.1. We recall here the statement.

Lemma 7.5.1. Let f, g : R×(0, 1) → R be two functions such that f η , g η and ∂ y f η belong to H σ1,0 (R× (0, 1)) with σ 1 > 1/2 (and thus also to H σ2,0 (R × (0, 1)), for any σ 2 ≤ σ 1 ). Furthermore, assume that f ≡ 0 in y = 0 in the sense of trace. Then

∥(f g) η ∥ H σ 1 ,0 ≤ C 2 σ1-1 2 σ 2 -1 2 ∥∂ y f η ∥ H σ 1 ,0 ∥g η ∥ H σ 2 ,0 + ∥∂ y f η ∥ H σ 2 ,0 ∥g η ∥ H σ 1 ,0
for any regularities σ 2 ∈ (1/2, σ 1 ].

Proof. According to the denition of (f g) η and the anisotropic Sobolev norm H σ1,0 , we have

∥(f g) η ∥ 2 H σ 1 ,0 = 1 0 R (1 + |ξ|) 2σ1 e 2(τ0-η(t))(1+|ξ|) | f g(ξ, y)| 2 dξdy = 1 0 R |(1 + |ξ|) σ1 e (τ0-η(t))(1+|ξ|) f * g(ξ, y)| 2 dξdy = 1 0 R R (1 + |ξ|) σ1 e (τ0-η(t))(1+|ξ|) f (ξ -ζ, y) g(ζ, y)dζ 2 
dξdy.

(7.5.1)

We claim that

(1 + |ξ|) 2σ1 ≤ 2 2σ1-1 (1 + |ξ -ζ|) 2σ1 + (1 + |ζ|) 2σ1 , (7.5.2) 
for σ 1 > 1 2 . Indeed, we have

(1 + |ξ|) 2σ1 ≤ (1 + |ξ -ζ| + |ζ|) 2σ1 ≤ (1 + |ξ -ζ|) 2σ1 + |ζ| 2σ1 2σ1× 1 2σ 1 1 + 1 (1-1 2σ 1 
)×2σ1 , where in the last step we have used the Hölder inequality (a + b) ≤ (a θ + b θ ) 1/θ 2 1-1/θ , with θ = 2σ 1 .

Continuing our estimate, we have therefore

(1 + |ξ|) 2σ1 ≤ 2 2σ1-1 (1 + |ξ -ζ|) 2σ1 + |ζ| 2σ1 ≤ 2 2σ1-1 (1 + |ξ -ζ|) 2σ1 + (1 + |ζ|) 2σ1 ,
which is indeed (7.5.2). Next, we bring inequality (7.5.2) to (7.5.1) and we use the fact that e (τ0-η(t))(1+|ξ|) ≤ e (τ0-η(t))(1+|ξ-ζ|) e (τ0-η(t))(1+|ζ|) , thus

∥(f g) η ∥ 2 H σ 1 ,0 = 2 2σ1-1 1 0 R R (1 + |ξ -ζ|) σ1 e (τ0-η(t))(1+|ξ|) f (ξ -ζ, y) g(ζ, y)dζ 2 dξdy +2 2σ1-1 1 0 R R (1 + |ζ|) σ1 e (τ0-η(t))(1+|ξ|) f (ξ -ζ, y) g(ζ, y)dζ 2 dξdy ≤ 2 2σ1-1 1 0 R R (1 + |ξ -ζ|) σ1 e (τ0-η(t))(1+|ξ-ζ|) f (ξ -ζ, y)e (τ0-η(t))(1+|ζ|) g(ζ, y)dζ 2 dξdy +2 2σ1-1 1 0 R R e (τ0-η(t))(1+|ξ-ζ|) f (ξ -ζ, y)(1 + |ζ|) σ1 e (τ0-η(t))(1+|ζ|) g(ζ, y)dζ 2 dξdy.
We are now in the condition to apply the Young's inequality for the convolution of functions, more precisely:

∥(f g) η ∥ 2 H σ 1 ,0 ≤ C2 2σ1-1 ∥(1 + |D x |) σ1 f η ∥ 2 L 2 x L ∞ y ∥g η ∥ 2 L ∞ x L 2 y + C2 2σ1-1 ∥(1 + |D x |) σ1 g η ∥ 2 L 2 ∥f η ∥ 2 L ∞ x L ∞ y .
Next, since σ 2 > 1/2, we have that

|f η (x, y)| ≤ C R e ixξ f η (ξ, y)dξ ≤ C R 1 (1 + |ξ|) 2σ2 dξ 1 2 × R |(1 + |D x |) σ2 f η (x, y)| 2 dx 1 2 ≤ C (σ 2 -1 2 ) 1 2 ∥(1 + |D x |) σ2 f η ∥ L 2 x , then we use that f (t, x, y) = y 0 ∂ y f (t, x, z)dz, we obtain ∥f η ∥ 2 L ∞ x L ∞ y ≤ C (σ 2 -1 2 ) ∥(1 + |D x |) σ2 f η ∥ 2 L 2 x L ∞ y ≤ C σ 2 -1 2 ∥∂ y f η ∥ 2 H σ 2 ,0 . Moreover ∥(1 + |D x |) σ1 f η ∥ 2 L 2 x L ∞ y = R sup y∈(0,1) y ∫ 0 (1 + |D x |) σ1 ∂ y f η (x, z)dz 2 dx ≤ R sup y∈(0,1) y y ∫ 0 (1 + |D x |) 2σ1 |∂ y f η (x, z)| 2 dzdx ≤ C R 1 ∫ 0 (1 + |D x |) 2σ1 |∂ y f η (x, z)| 2 dzdx = C∥∂ y f η ∥ 2 H σ 1 ,0 .
Summarising, we nally deduce that

∥(f g) η ∥ 2 H σ 1 ,0 ≤ C 2 2σ1-1 σ 2 -1 2 ∥∂ y f η ∥ 2 H σ 1 ,0 ∥g η ∥ 2 H σ 2 ,0 + C 2 2σ1-1 σ 2 -1 2 ∥∂ y f η ∥ 2 H σ 2 ,0 ∥g η ∥ 2 H σ 1 ,0 .
By applying the square root to the above inequality, we conclude the proof of the Lemma.

Chapter 8 Primitive equations

In this chapter we present the results of the following paper:

N. Aarach and V. S. Ngo, Hydrostatic approximation of the 2D primitive equations in a thin strip, arXiv:2006.16025.

Primitive equations in a thin strip

The primitive equations describe the motion of large scale uids on the earth (hundreds to thousands of kilometers), typically an ocean or the atmosphere. The study of geophysical uids of that scale involve two important phenomena: the eect of the vertical stratication due to the gravity and the eect of the rotation of the earth at large scales.

The rst eect naturally appears when we consider a uid of variable density (hot and and cold air for instance). The uid has then a vertical distribution where heavier layers stay under lighter ones and the gravity constantly maintains this structure against the internal movements of the uid.

The second eect becomes important at large scale when the uid can sense the rotation of the earth.

More precisely, two additional force terms will appear in the equations: the centrifugal force, which is included in the gravity gradient term, and the Coriolis force, which becomes large when the rotation is rapid (or when the scale is large) and which induces a vertical rigidity in the uid movements. The latter is well known as the phenomenon of Taylor-Proudman columns. The estimate of the importance of this rigidity leads to the comparison between the typical time scale of the system and the Brunt-Väisälä frequency by means of the introduction of the Froude number F r. For more details about physical considerations, we refer to [START_REF] Chemin | Mathematical Geophysics: An introduction to rotating uids and to the Navier-Stokes equations[END_REF], [START_REF] Cushman-Roisin | Introduction to geophysical uid dynamics[END_REF], [117], and [START_REF] Bougeault | Dynamique de l'atmosphère et de l'océan[END_REF].

In [START_REF] Embid | Averaging over fast gravity waves for geophysical ows with arbitrary potential vorticity[END_REF], Embid and Majda considered specic scale simplications by choosing the same scale for the rotation and the stratication. More precisely, the Froude number is supposed to be F r = ϵF , where F > 0 is a constant (which will also be called Froude number) and ϵ is the Rossby number. Using the moment, energy, mass conservation laws, they obtained the following primitive equations in R 3

         ∂ t U ϵ + v ϵ • ∇U ϵ -LU ϵ + 1 ϵ AU ϵ = 1 ϵ (-∇Φ ϵ , 0), div v ϵ = 0, U ϵ | t=0 = U 0 ,
where the unknowns are U ϵ = (v ϵ , ρ ϵ ), which represents the velocity and the temperature of the uid, and Φ ϵ the pressure. The operator L is dened by LU ϵ = (ν∆v ϵ , ν ′ ∆ρ ϵ ) and the skew-symmetric matrix Denition 8.0.2. Let s ∈ R and S = R×]0, 1[. For any u ∈ S ′ h (S), i.e., u belongs to S ′ (S) and lim q→-∞ ∥S h q u∥ L ∞ = 0, we set ∥u∥ B s,0 ≜ q∈Z 2 qs ∥∆ h q u∥ L 2 .

(i) For s ≤ 1 2 , we dene B s,0 (S) ≜ {u ∈ S ′ h (S) : ∥u∥ B s,0 < +∞} .

(ii) For s ∈ ]k -1 2 , k + 1 2 ], with k ∈ N * , we dene B s,0 (S) as the subset of distributions u in S ′ h (S) such that ∂ k

x u ∈ B s-k,0 (S).

For a better use of the smoothing eect given by the diusion terms, we will need the following time-weighted Chemin-Lerner-type spaces. 

∥u∥ Lp t,f (t) (B s,0 (S)) ≜ q∈Z 2 qs t 0 f (t ′ )∥∆ h q u(t ′ )∥ p L 2 dt ′ 1 p
, with the usual change if p = ∞. In the case where f ≡ 1, we will simply use the notation Lp t (B s,0 (S)).

The following estimates are a direct consequence of the above denition.

Proposition 8.0.4.

Let p ∈ [1, ∞] and let f ∈ L 1 loc (R + ) be a non-negative function. If u ∈ Lp t,f (t) (B s,0 ( mathbf S)) then, there exists a sequence (d q (u)) q∈Z such that d q (u) = 1 and t 0 f (t ′ )∥∆ h q u(t ′ )∥ p L 2 dt ′ 1 p ≤ d q (u)2 -qs ∥u∥ Lp t,f (t) (B s,0 (S)) , ∀ q ∈ Z.
Remark 8.0.2. To simplify the notation even further, in all that follows, we shall denote B s,0 ≜ B s .

Main results

The diculty when one wants to estimate the nonlinear terms relies in nding a way to compensate the loss of one derivative. The main idea here is to exploit the smoothing eect given by the above function spaces, which allows to gain one half derivative. Using the method introduced by Chemin in [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF] (see also [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF], [110] or [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF]), for any f ∈ L 2 (S), we dene the following auxiliary function, which allows to control the analyticity of f in the horizontal variable x,

f ϕ (t, x, z) = e ϕ(t,Dx) f (t, x, z) ≜ F -1 h (e ϕ(t,ξ) f (t, ξ, z)) with ϕ(t, ξ) = (a -λρ(t))|ξ|, (8.0.7)
where the quantity ρ(t), which describes the evolution of the analytic band of f , satises (8.0.8)

∀ t > 0, ρ(t) ≥ 0 and ρ(0) = 0.

Here, the constants a > 0 and λ > 0 are given and in particular, a represents the width of the initial analytic band. We will chose λ according to the necessity of the bootstrap process in the next sections.

We remark that if we dierentiate, with respect to the time variable, a function of the type e ϕ(t,Dx) f (t, x, z),

we obtain an additional good term which allows to gain one half derivative. More precisely, we have (8.0.9)

d dt e ϕ(t,Dx) f (t, x, z) = -λ ρ(t) |D x | e ϕ(t,Dx) f (t, x, z) + e ϕ(t,Dx) ∂ t f (t, x, z),
where -λ ρ(t) |D x | e ϕ(t,Dx) f (t, x, z) plays a smoothing role if ρ(t) ≥ 0. This smoothing eect allows to obtain our global existence and stability results in the analytic framework.

From now on, let K > 0 be the Poincaré constant on the strip S, in the sens that, for any f ∈ L 2 (S),

f | ∂S =0 and ∂ z f ∈ L 2 (S), we have ∥f ∥ L 2 (S) ≤ K ∥∂ z f ∥ L 2 (S)
.

Our main results are the following theorems.

Theorem 8.0.5 (Global well-posedness of the hydrostatic limit system). Let a > 0, s > 0 and assume that e a|Dx| (u 0 , T 0 ) ∈ B 

(u, T ) ∈ L∞ (R + ; B s ) ∩ C(R + ; B s ) with ∂ z u ∈ L2 (R + ; B s ), satisfying ∥e Rt (u ϕ , T ϕ )∥ L∞ (R+;B s ) + e Rt ∂ z u ϕ L2 t (B s ) + e Rt ∇T ϕ L2 t (B s ) ≤ C∥e a|Dx| (u 0 , T 0 )∥ B s , (8.0.10) 
for any 0 ≤ R ≤ 1 2K , where ϕ(t, ξ) = φ(t) |ξ| and where for any f ∈ L 2 (S), ≤ C e a|Dx| (u 0 , T 0 ) B s + e a|Dx| (u 0 , T 0 )

f ϕ (t, x, z) = e ϕ(t,Dx) f (t, x, z) = F -1 h (e ϕ(t,ξ) f (t, ξ, z)).
B 1 2
e a|Dx| (u 0 , T 0 ) B s+1 .

Remark 8.0.3. We remark that the normal component v is uniquely determined from the incompressibility and the boundary condition

v(t, x, z) = z 0 ∂ z v(t, x, z ′ )dz ′ = - z 0 ∂ x u(t, x, z ′ )dz ′ .
(8.0.12) Theorem 8.0.6 (Global well-posedness of the primitive system). Let a > 0, s > 0, ϵ > 0 and assume that e a|Dx| (u ϵ 0 , v ϵ 0 , T ϵ 0 ) ∈ B 

(u ϵ 0 , v ϵ 0 , T ϵ 0 ) satisfy e a|Dx| (u ϵ 0 , ϵv ϵ 0 , T ϵ 0 ) B 1 2
≤ c 1 a and e a|Dx| (u ϵ 0 , ϵv ϵ 0 , T ϵ 0 )

B 3 2 ≤ c 1 , then, for any 0 < ϵ < 1 2C System (8.0.3) has a unique global solution (u ϵ , v ϵ , T ϵ ) satisfying, ∥e Rt (u ϵ Θ , ϵv ϵ Θ , T ϵ Θ )∥ L∞ t (B s ) + ∥e Rt ∂ z (u ϵ Θ , ϵv ϵ Θ , T ϵ Θ )∥ L2 t (B s ) + ∥e Rt ∂ x T ϵ Θ ∥ Lt(B s ) ≤ C∥e a|Dx| (u ϵ 0 , ϵv ϵ 0 , T ϵ 0 )∥ B s , for any 0 ≤ R ≤ 1 2K .
Here, Θ(t, ξ) = Θ(t) |ξ| and for any f ∈ L 2 (S),

f Θ (t, x, z) = e Θ(t,Dx) f (t, x, z) = F -1 h (e Θ(t,ξ) f (t, ξ, z)).
Theorem 8.0.7 (Convergence to the hydrostatic limit system). Let a > 0 and 0 < ϵ ≤ 1. We suppose that the initial data (u 0 , v 0 , T 0 ) and (u ϵ 0 , v ϵ 0 , T ϵ 0 ) satisfy the assumptions of Theorems 8.0.5 and 8.0.6. Let (u, v, T ) and (u ϵ , v ϵ , T ϵ ) be the respective solutions of Systems (8.0.4) and (8.0.3). Then, there exist a constant M > 0 independent of ϵ and a decreasing function φ : R + → [ a 3 , a] such that

∥(u ϵ φ -u φ , ϵv ϵ φ -ϵv φ )∥ L∞ t (B s ) + ∥∂ z (u ϵ φ -u φ , ϵv ϵ φ -ϵv φ )∥ L2 t (B s ) + ϵ∥(u ϵ φ -u φ , ϵv ϵ φ -ϵv φ )∥ L2 t (B s+1 ) ≤ C ∥e a|Dx| (u ϵ 0 -u 0 , ϵ(v ϵ 0 -v 0 ))∥ B s + C∥e a|Dx| (T ϵ 0 -T 0 )∥ B s + M ϵ .
where φ(t, ξ) = φ(t) |ξ| and where, for any f ∈ L 2 (S),

f φ (t, x, z) = e φ(t,Dx) f (t, x, z) = F -1 h (e φ(t,ξ) f (t, ξ, z)).

Organisation of the paper

Our chapter will be divided into several sections as follows. In the next section, we establish the needed nonlinear estimates which will be used throughout this chapter. we start by in the giving the proofs of Lemmas 8. We end this introduction by the notations that will be used in all that follows. For f ≲ g, we mean that there is a positive constant C, which may be dierent from line to line, such that f ≤ Cg. We denote by ⟨f, g⟩ L 2 the inner product of f and g in L 2 (S). Finally, we denote by (d q ) q∈Z (resp. (d q (t)) q∈Z ) to be a generic element of ℓ 1 (Z) so that q∈Z d q = 1 (resp. q∈Z d q (t) = 1).

Nonlinear estimates

The proofs of our main theorems rely on the following lemmas 8.1.1 and 8.1.3 which give controls of the nonlinear terms in our analytic norms. Lemma 8.1.1. Let s > 0 and ϕ : R + × R → R + . There exists a constant C ≥ 1 such that, for any functions u, w and w which are dened on R + × S, u| ∂S = w| ∂S = w ∂S = 0 and satisfy

∂ z u ϕ (t), ∂ z w ϕ (t) ∈ B 1 2 , ∀t ≥ 0, and w, w ∈ L2 t,f (t) (B s+ 1 2 ),
we have, for any 0 ≤ R ≤ 1 2K and for any q ∈ Z,

t 0 e Rt ′ ∆ h q (u∂ x w) ϕ , e Rt ′ ∆ h q w ϕ L 2 dt ′ ≤ Cd 2 q 2 -2qs e Rt u ϕ L2 t,f (t) (B s+ 1 2 ) + e Rt w ϕ L2 t,f (t) (B s+ 1 2 ) e Rt w ϕ L2 t,f (t) (B s+ 1 2 )
, where u ϕ is determined by (8.0.7), where

f ∈ L 1 loc (R + ) and f (t) ≥ max ∥∂ z u ϕ (t)∥ B 1 2 , ∥∂ z w ϕ (t)∥ B 1 2
, ∀t ≥ 0, and (d q ) q∈Z is a positive sequence with q∈Z d q = 1.

Remark 8.1.1. In the case where 0 < s < 1, we can relax the condition f

(t) ≥ ∥∂ z w ϕ (t)∥ B 1 2
and obtain, for any w, w ∈ L2 t,f (t) (B s+ 1 2 ), the following estimate (as in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF])

t 0 e Rt ′ ∆ h q (u∂ x w) ϕ , e Rt ′ ∆ h q w ϕ L 2 dt ′ ≤ Cd 2 q 2 -2qs e Rt w ϕ L2 t,f (t) (B s+ 1 2 ) e Rt w ϕ L2 t,f (t) (B s+ 1 2 )
.

Before starting the calculations, we remark that one should be careful when dealing with the product of the type (f g) ϕ , since in general, we have (f g) ϕ ̸ = f ϕ g ϕ . However, we still can compare this two products as in the following lemma.

Lemma 8.1.2. For any f, g ∈ L 2

x , we set

f + = F -1 ξ (|F x (f )|) and g + = F -1 ξ (|F x (g)|)
.

Then, we have

|( f g) ϕ (ξ)| ≤ f + ϕ g + ϕ (ξ).
Proof. We have

|( f g) ϕ (ξ)| = e ϕ(ξ) | f (.) * g(.)(ξ)| ≤ e ϕ(ξ) | f (ξ -η)|| g(η)|dη.
From the denition of the function ϕ, we have e ϕ(ξ) ≤ e ϕ(ξ-η) e ϕ(η) , then

|( f g) ϕ (ξ)| ≤ e ϕ(ξ-η) | f (ξ -η)|e ϕ(η) | g(η)|dη ≤ | f ϕ (ξ -η)|| g ϕ (η)|dη ≤ | f ϕ | * | g ϕ |(ξ) = f + ϕ * g + ϕ = f + ϕ g + ϕ (ξ). Remark 8.1.2. For any f ∈ L 2 x (R), we have ∥f + ∥ L 2 x = ∥f ∥ L 2 x
. Since the norms of the function spaces used in our work are based on the L 2 -norm (with respect to the space variables), without loss of generality, from now on, we can assume that f ≥ 0.

Proof of Lemma 8.1.1.

We rst recall the Bony homogeneous decomposition into paraproducts and remainders (see for instance [15, Chapter 2]) in the tangential direction. For two tempered distributions X and Y , we have

XY = T h X Y + T h Y X + R h (X, Y ), where T h X Y = q∈Z S h q-1 X∆ h q Y and R h (X, Y ) = |q ′ -q|≤1 ∆ h q X∆ h q ′ Y.
Using this decomposition, we write

t 0 e Rt ′ ∆ h q (u∂ x w) ϕ , e Rt ′ ∆ h q w ϕ L 2 dt ′ ≤ A 1,q + A 2,q + A 3,q , where A 1,q = t 0 e Rt ′ ∆ h q (T h u ∂ x w) ϕ , e Rt ′ ∆ h q w ϕ L 2 dt ′ A 2,q = t 0 e Rt ′ ∆ h q (T h ∂xw u) ϕ , e Rt ′ ∆ h q w ϕ L 2 dt ′ A 3,q = t 0 e Rt ′ ∆ h q (R h (u, ∂ x w)) ϕ , e Rt ′ ∆ h q w ϕ L 2 dt ′ .
Using the support properties of the Fourier transform of the dyadic operators ∆ h q (see for example [18, Proposition 2.10]), Lemma 8.1.2 and Remark 8.1.2, we get

A 1,q ≤ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 u ϕ (t ′ )∥ L ∞ ∥∆ h q ′ ∂ x w ϕ (t ′ )∥ L 2 ∥∆ h q w ϕ (t ′ )∥ L 2 dt ′ . For any l ∈ Z, Sobolev inclusion Ḣ1 z ([0, 1]) → L ∞ z ([0, 1]
) and the denition of B 

∥∆ h l u ϕ (t ′ )∥ L ∞ ≲ 2 l 2 ∥∆ h l u ϕ (t ′ )∥ L 2 x (L ∞ z ) ≲ 2 l 2 ∥∆ h l ∂ z u ϕ (t ′ )∥ L 2 ≲ d q (u ϕ )∥∂ z u ϕ (t ′ )∥ B 1 2 ,
where {d q (u ϕ )} is a positive sequence with d q (u ϕ ) = 1 and then,

∥S h q ′ -1 u ϕ (t ′ )∥ L ∞ = l≤q ′ -2 ∆ h l u ϕ (t ′ ) L ∞ ≲ ∥∂ z u ϕ (t ′ )∥ B 1 2 .
Using Cauchy-Schwarz inequality and Proposition 8.0.4, we obtain

A 1,q ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ z u ϕ (t ′ )∥ B 1 2 e Rt ′ ∥∆ h q ′ w ϕ (t ′ )∥ L 2 e Rt ′ ∥∆ h q w ϕ (t ′ )∥ L 2 dt ′ (8.1.2) ≲ |q-q ′ |≤4 2 q ′ t 0 ∥∂ z u ϕ ∥ B 1 2 e 2Rt ′ ∥∆ h q ′ w ϕ ∥ 2 L 2 dt ′ 1 2 t 0 ∥∂ z u ϕ ∥ B 1 2 e 2Rt ′ ∥∆ h q w ϕ ∥ 2 L 2 dt ′ 1 2 ≲ |q-q ′ |≤4 2 q ′ t 0 f (t ′ )e 2Rt ′ ∥∆ h q ′ w ϕ ∥ 2 L 2 dt ′ 1 2 t 0 f (t ′ )e 2Rt ′ ∥∆ h q w ϕ ∥ 2 L 2 dt ′ 1 2 ≲ 2 -2qs d 2 q ∥e Rt w ϕ ∥ L2 t,f (t) (B s+ 1 2 ) ∥e Rt w ϕ ∥ L2 t,f (t) (B s+ 1 2 )
, where

d 2 q = d q (w ϕ ) |q-q ′ |≤4 d q ′ (w ϕ )2 (q-q ′ )(s-1 2 ) .
Using the symmetry of T h X Y and T h Y X, we can estimate A 2,q in the similar way as A 1,q . First, Bernstein lemma 8.0.1 and similar calculations as in (8.1.1) give

∥S h q ′ -1 ∂ x w ϕ (t ′ )∥ L ∞ ≲ 2 q ′ ∥S h q ′ -1 w ϕ (t ′ )∥ L ∞ ≲ 2 q ′ ∥∂ z w ϕ (t ′ )∥ B 1 2 .
Then, we obtain

A 2,q ≲ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ x w ϕ (t ′ )∥ L ∞ ∥∆ h q ′ u ϕ (t ′ )∥ L 2 ∥∆ h q w ϕ (t ′ )∥ L 2 dt ′ (8.1.3)
(u, v, w, w), which are dened on R + × S, (u, w, w)| ∂S = 0 and satisfy, for any t ≥ 0,

u ϕ (t) ∈ B 3 2 , ∂ z u ϕ (t), ∂ z w ϕ (t) ∈ B 1 2 , 1 0 ∂ x u dz = 0, and u, w, w ∈ L2 t,f (t) (B s+ 1 2 ), with f ∈ L 1 loc (R + ), f (t) ≥ max ∥∂ z u ϕ ∥ B 1 2 , ∥∂ z w ϕ ∥ B 1 2 and v(t, x, z) = - z 0 ∂ x u(t, x, z ′ )dz ′ ,
we have, for any R ≥ 0 and for any q ∈ Z, (8.1.5)

t 0 e Rt ′ ∆ h q (v∂ z w) ϕ , e Rt ′ ∆ h q w ϕ L 2 dt ′ ≤ Cd 2 q 2 -2qs e Rt w ϕ L2 t,f (t) (B s+ 1 2 ) e Rt u ϕ L2 t,f (t) (B s+ 1 2 ) + ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2 )

e Rt ∂ z w ϕ L2 t (B s ) ,

where (d q ) q∈Z is a positive sequence with q∈Z d q = 1.

Before proving this lemma, we remark that the incompressibility condition ∂ x u + ∂ z v = 0 implies a transfer of regularity from u to v and so we can control v by mean of u. Indeed, we have the following result Lemma 8.1.4. Let u, v be dened on S with u| ∂S = v| ∂S = 0 and ∂ x u + ∂ z v = 0 such that the following terms are well dened. Then, for any q ∈ Z,

∆ h q v ϕ L 2 x L ∞ z ≤ 2 q ∆ h q u ϕ L 2 ∆ h q v ϕ L ∞ ≤ 2 3q 2 ∆ h q u ϕ L 2 .
Proof. To prove the rst estimate, we write

v = - z 0 ∂ x udz ′ .
Then we have,

∆ h q v ϕ L 2 x L ∞ z ≤ 1 0 ∂ x ∆ h q u ϕ L 2 x dz ′ ≲ 2 q ∆ h q u ϕ L 2 .
Finally, we remark that we can obtain the second estimate from the rst one, using Bernstein lemma 8.0.1.

Proof of Lemma 8.1.3.

As in the proof of Lemma 8.1.1, we decompose the term on the left-hand side of (8.1.5) as follows

t 0 e Rt ′ ∆ h q (v∂ z w) ϕ , e Rt ′ ∆ h q w ϕ L 2 dt ′ ≤ B 1,q + B 2,q + B 3,q , (8.1.6) with B 1,q = t 0 e Rt ′ ∆ h q (T h v ∂ z w) ϕ , e Rt ′ ∆ h q w ϕ L 2 dt ′ B 2,q = t 0 e Rt ′ ∆ h q (T h ∂zw v) ϕ , e Rt ′ ∆ h q w ϕ L 2 dt ′ B 3,q = t 0 e Rt ′ ∆ h q (R h (v, ∂ z w)) ϕ , e Rt ′ ∆ h q w ϕ L 2 dt ′ .
As for the term A 1,q in the proof of Lemma 8.1.1, we have the following estimate

e Rt ∆ h q (T h v ∂ z w) ϕ , e Rt ∆ h q w ϕ L 2 ≲ |q ′ -q|≤4 e Rt ∥S h q ′ -1 v ϕ ∥ L 2 x L ∞ z ∥∆ h q ′ ∂ z w ϕ ∥ L 2 ∥∆ h q e Rt w ϕ ∥ L ∞ x L 2 z .
Lemma 8.1.4, Poincaré and Cauchy-Schwarz inequalities imply

S h q ′ -1 v ϕ L 2 x L ∞ z ≤ l≤q ′ -2 2 l ∆ h l u ϕ L 2 ≲ l≤q ′ -2 2 3l 4 ∆ h l u ϕ 1 2 L 2 2 l 4 ∆ h l ∂ z u ϕ 1 2 L 2 ≲   l≤q ′ -2 2 3l 2 ∆ h l u ϕ L 2   1 2   l≤q ′ -2 2 l 2 ∆ h l ∂ z u ϕ L 2   1 2 ≲ ∥u ϕ ∥ 1 2 B 3 2 ∥∂ z u ϕ ∥ 1 2 B 1 2 . Thus, B 1,q ≲ |q ′ -q|≤4 t 0 2 q 2 ∥u ϕ ∥ 1 2 B 3 2 ∥∂ z u ϕ ∥ 1 2 B 1 2 ∥∆ h q ′ e Rt ∂ z w ϕ ∥ L 2 ∥∆ h q e Rt w ϕ ∥ L 2 (8.1.7) ≲ |q ′ -q|≤4 t 0 ∥u ϕ ∥ B 3 2 ∥∆ h q ′ e Rt ∂ z w ϕ ∥ 2 L 2 1 2 2 q 2 t 0 ∥∂ z u ϕ ∥ B 1 2 ∥∆ h q e Rt w ϕ ∥ 2 L 2 1 2 ≲ d 2 q 2 -2qs ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2 )

e Rt ∂ z w ϕ L2 t (B s ) e Rt w ϕ L2 t,f (t) (B s+ 1 2 )
where

d 2 q = d q (w ϕ ) |q ′ -q|≤4 d q ′ (∂ z w ϕ )2 (q-q ′ )s .
For the second term on the right-hand side of (8.1.6), using similar calculations as in (8.1.1), we get

∥S h q ′ -1 ∂ z w ϕ ∥ L ∞ x L 2 z ≤ ∥∂ z w ϕ ∥ B 1 2 .
Thus, Lemma 8.1.4, Young and Cauchy-Schwarz inequalities imply

B 2,q ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ z w ϕ ∥ L ∞ x L 2 z ∥∆ h q ′ v ϕ ∥ L 2 x L ∞ z ∥∆ h q w ϕ ∥ L 2 dt ′ (8.1.8) ≲ |q ′ -q|≤4 t 0 ∥∂ z w ϕ ∥ B 1 2 2 q ′ ∥∆ h q ′ e Rt ′ u ϕ ∥ L 2 ∥∆ h q e Rt ′ w ϕ ∥ L 2 dt ′ ≲ |q-q ′ |≤4 2 q ′ t 0 f (t ′ )e 2Rt ′ ∥∆ h q ′ u ϕ ∥ 2 L 2 dt ′ 1 2 t 0 f (t ′ )e 2Rt ′ ∥∆ h q w ϕ ∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -2qs ∥e Rt u ϕ ∥ L2 t,f (t) (B s+ 1 2 ) ∥e Rt w ϕ ∥ L2 t,f (t) (B s+ 1 2 )
, where

d 2 q = d q (w ϕ ) |q ′ -q|≤4 d q ′ (u ϕ ) 2 (q-q ′ )(s-1 2 ) .
Now, for the third term on the right-hand side of (8.1.6), using Lemma 8.1.4, we obtain

B 3,q ≲ q ′ ≥q-3 t 0 e 2Rt ′ ∥∆ h q ′ v ϕ ∥ L 2 x L ∞ z ∥∆ h q ′ ∂ z w ϕ ∥ L 2 ∥∆ h q w ϕ ∥ L ∞ x L 2 z dt ′ (8.1.9) ≲ q ′ ≥q-3 t 0 2 q ′ ∥∆ h q ′ e Rt ′ u ϕ ∥ L 2 2 -q ′ 2 ∥∂ z w ϕ ∥ B 1 2 2 q 2 ∥∆ h q e Rt ′ w ϕ ∥ L 2 dt ′ ≲ q ′ ≥q-3 2 q+q ′ 2 t 0 f (t ′ )e 2Rt ′ ∥∆ h q ′ u ϕ ∥ 2 L 2 dt ′ 1 2 t 0 f (t ′ )e 2Rt ′ ∥∆ h q w ϕ ∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -2qs ∥e Rt u ϕ ∥ L2 t,f (t) (B s+ 1 2 ) ∥e Rt w ϕ ∥ L2 t,f (t) (B s+ 1 2 )
, where

d 2 q = d q (w ϕ ) q ′ ≥q-3 d q ′ (u ϕ ) 2 (q-q ′ )s .
The proof of Estimate (8.1.5) is completed.

□

Global wellposedness of the hydrostatic limit system

The goal of this section is to prove Theorem 8.0.5. We remark that the construction of a local smooth solution of System (8.0.4) follows a standard parabolic regularization method, similar to the case of Prandtl system, which features an additional horizontal smoothing term of the type γ∂ 2

x and then taking γ → 0. The diculty here relies on the presence of the unknown pressure term ∂ x p in the rst equation of (8.0.4). However, as in [START_REF] Cao | On the well-posedness of reduced 3D primitive geostrophic adjustment model with weak dissipation[END_REF], we can reformulate the problem by writing v and ∂ x p as functions of u and T . From the Dirichlet boundary condition (u, v)| z=0 = (u, v)| z=1 = 0 and the incompressibility condition

∂ x u + ∂ z v = 0, we get v(t, x, z) = z 0 ∂ z v(t, x, z ′ )dz ′ = - z 0 ∂ x u(t, x, z ′ )dz ′ .
For the pressure term, due to the Dirichlet boundary condition (u, v, T )| z=0 = 0, we deduce from the incompressibility condition ∂

x u + ∂ z v = 0 that ∂ x 1 0 u(t, x, z) dz ′ = - 1 0 ∂ z v(t, x, z ′ ) dz ′ = v(t, x, 0) -v(t, x, 1) = 0. (8.2.1)
Integrating the equation ∂ z p = T with respect z, we obtain

p(t, x, z) = p(t, x, 0) + z 0 T (t, x, z ′ )dz ′ . (8.2.2)
Next, dierentiating (8.2.2) with respect to x and using the rst equation of the system (8.0.4), we get

∂ x p(t, x, 0) = - z 0 ∂ x T (t, x, z ′ )dz ′ + ∂ x p(t, x, z) = - z 0 ∂ x T (t, x, z ′ )dz ′ -∂ t u + u∂ x u + v∂ z u -∂ 2 z u (t, x, z)
Now, we set c(t) = 1 0 u(t, x, z)dz. Integrating the above equation with respect to z ∈ [0, 1] and

= -e 2Rt ∆ h q (u∂ x u) ϕ , ∆ h q u ϕ ) L 2 -e 2Rt ∆ h q (v∂ z u) ϕ , ∆ h q u ϕ L 2 -e 2Rt ∆ h q ∂ x p ϕ , ∆ h q u ϕ L 2 , and 1 2 d dt ∥e Rt ∆ h q T ϕ (t)∥ 2 L 2 -R∥e Rt ∆ h q T ϕ (t)∥ 2 L 2 + λ ρ(t) e Rt |D x | 1 2 ∆ h q T ϕ 2 L 2 + ∥e Rt ∆ h q ∇T ϕ (t)∥ 2 L 2 = -e 2Rt ∆ h q (u∂ x T ) ϕ , ∆ h q T ϕ L 2 -e 2Rt ∆ h q (v∂ z T ) ϕ , ∆ h q T ϕ L 2 .
For 0 ≤ R ≤ 1 2K , we apply Poincaré inequality, then we integrate the above identities with respect to the time variable and get (8.2.6)

e Rt ∆ h q u ϕ (t) 2 L ∞ t (L 2 ) + 2λ t 0 ρ(t ′ ) e Rt ′ |D x | 1 2 ∆ h q u ϕ 2 L 2 dt ′ + e Rt ∆ h q ∂ z u ϕ (t) 2 L 2 t (L 2 ) ≤ ∆ h q u ϕ (0) 2 L 2 + D 1 + D 2 + D 3 , and (8.2.7) e Rt ∆ h q T ϕ (t) 2 L ∞ t (L 2 ) + 2λ t 0 ρ(t ′ ) e Rt |D x | 1 2 ∆ h q T ϕ 2 L 2 dt ′ + e Rt ∆ h q ∇T ϕ (t) 2 L 2 t (L 2 ) ≤ ∆ h q T ϕ (0) 2 L 2 + D 4 + D 5 .
From now on, we set (8.2.8)

ρ(t) = ∥∂ z u ϕ (t)∥ B 1 2 + ∥∂ z T ϕ (t)∥ B 1 2 . 
Lemmas 8.1.1 and 8.1.3 yield

|D 1 | = 2 t 0 e Rt ′ ∆ h q (u∂ x u) ϕ , e Rt ′ ∆ h q u ϕ ) dt ′ ≤ Cd 2 q 2 -2qs ∥e Rt u ϕ ∥ 2 L2 t, ρ(t) (B s+ 1 2 )
,

|D 2 | = 2 t 0 e Rt ′ ∆ h q (v∂ z u) ϕ , e Rt ′ ∆ h q u ϕ dt ′ ≤ Cd 2 q 2 -2qs e Rt u ϕ 2 L2 t, ρ(t) (B s+ 1 2 ) + ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2 )

e Rt ∂ z u ϕ L2 t (B s ) e Rt u ϕ L2 t, ρ(t) (B s+ 1 2 ) ≤ Cd 2 q 2 -2qs ∥e Rt u ϕ ∥ 2 L2 t, ρ(t) (B s+ 1 2 ) + d 2 q 2 -2qs ∥u ϕ ∥ L ∞ t (B 3 
2 )

e Rt ∂ z u ϕ 2 L2 t (B s ) , |D 4 | = 2 t 0 e Rt ′ ∆ h q (u∂ x T ) ϕ , e Rt ′ ∆ h q T ϕ dt ′ ≤ Cd 2 q 2 -2qs e Rt u ϕ L2 t, ρ(t) (B s+ 1 2 ) + e Rt T ϕ L2 t, ρ(t) (B s+ 1 2 ) e Rt T ϕ L2 t, ρ(t) (B s+ 1 2 ) ≤ Cd 2 q 2 -2qs e Rt u ϕ 2 L2 t, ρ(t) (B s+ 1 2 ) + e Rt T ϕ 2 L2 t, ρ(t) (B s+ 1 2 )
and

|D 5 | = 2 t 0 e Rt ′ ∆ h q (v∂ z T ) ϕ , e Rt ′ ∆ h q T ϕ dt ′ ≤ Cd 2 q 2 -2qs e Rt T ϕ L2 t, ρ(t) (B s+ 1 2 ) e Rt u ϕ L2 t, ρ(t) (B s+ 1 2 ) + ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2 )

e Rt ∂ z T ϕ L2 t (B s ) ≤ Cd 2 q 2 -2qs e Rt u ϕ 2 L2 t, ρ(t) (B s+ 1 2 ) + e Rt T ϕ 2 L2 t, ρ(t) (B s+ 1 2 ) + d 2 q 2 -2qs ∥u ϕ ∥ L ∞ t (B 3 
2 )

e Rt ∂ z u ϕ

L2

t (B s ) .

Concerning the pressure term, using the Dirichlet boundary condition (u, v, T )| z=0 = 0, the incompressibility condition ∂ x u + ∂ z v = 0, the relation ∂ z p = T and Poincaré inequality, we can perform integrations by parts and get (8.2.9)

∆ h q ∂ x p ϕ , ∆ h q u ϕ = ∆ h q p ϕ , ∆ h q ∂ x u ϕ = ∆ h q p ϕ , ∆ h q ∂ z v ϕ = ∆ h q ∂ z p ϕ , ∆ h q v ϕ = ∆ h q T ϕ , ∆ h q v ϕ = ∆ h q T ϕ , ∆ h q z 0 ∂ x u ϕ dz ′ = ∆ h q ∂ x T ϕ , ∆ h q z 0 u ϕ dz ′ ,
and so we can have the following bound

∆ h q ∂ x p ϕ , ∆ h q u ϕ ≤ ∥∆ h q ∂ x T ϕ ∥ L 2 ∥∆ h q u ϕ ∥ L 2 ≤ C∥∆ h q ∂ x T ϕ ∥ 2 L 2 + 1 4 ∥∆ h q ∂ z u ϕ ∥ 2 L 2 .
Thus,

|D 3 | = 2 t 0 e Rt ′ ∆ h q ∂ x p ϕ , e Rt ′ ∆ h q u ϕ dt ′ ≤ Cd 2 q 2 -2qs e Rt ∂ x T ϕ 2 L2 t (B s ) + 1 4 e Rt ∆ h q ∂ z u ϕ (t) 2 L 2 t L 2 .
Now, we recall that for a positive sequence (a 1 , . . . , a n ), n ∈ N * , we have (8.2.10)

1 √ n n j=1 a n ≤ n j=1 a 2 n ≤ n j=1 a n .
Inequality (8.2.10) allows us to take the square root of each terms on the two sides of (8.2.6) and (8.2.7) (with a cost of a constant multiplier on the right-hand side, which will be included in the generic constant C). Summing the two obtained inequalities, we get

e Rt ∆ h q u ϕ (t) L ∞ t (L 2 ) + √ 2λ t 0 ρ(t ′ ) e Rt ′ |D x | 1 2 ∆ h q u ϕ 2 L 2 dt ′ 1 2 + 1 2 e Rt ∆ h q ∂ z u ϕ (t) L 2 t (L 2 ) ≤ e a|Dx| ∆ h q u 0 L 2 + Cd q 2 -qs ∥e Rt u ϕ ∥ L2 t, ρ(t) (B s+ 1 2 ) + Cd q 2 -qs e Rt ∂ x T ϕ L2 t (B s ) + d q 2 -qs ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2 )

e Rt ∂ z u ϕ L2 t (B s ) , and

e Rt ∆ h q T ϕ (t) L ∞ t (L 2 ) + √ 2λ t 0 ρ(t ′ ) e Rt |D x | 1 2 ∆ h q T ϕ 2 L 2 dt ′ 1 2 + e Rt ∆ h q ∇T ϕ (t) L 2 t (L 2 ) ≤ e a|Dx| ∆ h q T 0 L 2 + Cd q 2 -qs ∥e Rt u ϕ ∥ L2 t, ρ(t) (B s+ 1 2 ) + Cd q 2 -qs ∥e Rt T ϕ ∥ L2 t, ρ(t) (B s+ 1 2 ) + d q 2 -qs ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2 )

e Rt ∂ z T ϕ L2 t (B s ) .

Multiplying the above inequalities by 2 qs and then summing with respect to q ∈ Z, we obtain (8.2.11)

e Rt u ϕ L∞ t (B s ) + √ 2λ e Rt u ϕ L2 t, ρ(t) (B s+ 1 2 ) + 1 2 e Rt ∂ z u ϕ L2 t (B s ) ≤ e a|Dx| u 0 B s + C∥e Rt u ϕ ∥ L2 t, ρ(t) (B s+ 1 2 ) + C e Rt ∂ x T ϕ L2 t (B s ) + ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2 )

e Rt ∂ z u ϕ L2 t (B s ) , and (8.2.12)

e Rt T ϕ L∞ t (B s ) + √ 2λ e Rt T ϕ L2 t, ρ(t) (B s+ 1 2 ) + e Rt ∇T ϕ L2 t (B s ) ≤ e a|Dx| T 0 B s + C∥e Rt u ϕ ∥ L2 t, ρ(t) (B s+ 1 2 ) + C∥e Rt T ϕ ∥ L2 t, ρ(t) (B s+ 1 2 ) + ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2 )

e Rt ∂ z T ϕ L2 t (B s ) .

Without loss of generality, we can suppose that C ≥ 2. Multiplying Inequality (8.2.12) by 2C and then adding the obtained result to Inequality (8.2.11), we get

e Rt (u ϕ , T ϕ ) L∞ t (B s ) + √ 2λ e Rt (u ϕ , T ϕ ) L2 t, ρ(t) (B s+ 1 2 ) + 1 2 e Rt ∂ z u ϕ L2 t (B s ) + e Rt ∇T ϕ L2 t (B s ) ≤ 2C e a|Dx| (u 0 , T 0 ) B s + 3C 2 e Rt (u ϕ , T ϕ ) L2 t, ρ(t) (B s+ 1 2 ) + 2C ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2

) e Rt (∂ z u ϕ , ∂ z T ϕ ) L2 t (B s ) .
From now on, we will x λ and R such that

0 < R < 1 2K and √ λ ≥ 9C 2 .
We obtain from the above inequality that (8.2.13)

e Rt (u ϕ , T ϕ ) L∞ t (B s ) + √ λ e Rt (u ϕ , T ϕ ) L2 t, ρ(t) (B s+ 1 2 ) + 1 2 e Rt ∂ z u ϕ L2 t (B s ) + e Rt ∇T ϕ L2 t (B s ) ≤ 2C e a|Dx| (u 0 , T 0 ) B s + 2C ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2

) e Rt (∂ z u ϕ , ∂ z T ϕ ) L2 t (B s ) . Let t ⋆ = sup t > 0 : ∥u ϕ (t)∥ B 3 2 ≤ 1 16C 4 , and ρ(t) ≤ a 3λ
.

For small initial data such that

       ∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| T 0 ∥ B 1 2 < a √ 2R 16Cλ e a|Dx| u 0 B 3 2 + e a|Dx| T 0 B 3 2 ≤ 1 64C 5 ,
the continuity with respect to the time variable in B 3 2 and the fact that ρ(0) = 0 imply that t ⋆ > 0. For s = 3 2 and for any 0 < t < t ⋆ , we have

∥u ϕ (t)∥ B 3 2 ≤ e Rt (u ϕ , T ϕ ) L∞ t (B 3 2 ) 
< 2C e a|Dx| (u 0 , T 0 )

B 3 2 ≤ 2C • 1 64C 5 = 1 32C 4 .
For s = 1 2 and for any 0 < t < t ⋆ , we deduce from (8.2.13) that

ρ(t) = t 0 ∥∂ z (u ϕ , T ϕ )(t ′ )∥ B 1 2 dt ′ ≤ t 0 e -Rt ′ ∥e Rt ′ ∂ z (u ϕ , T ϕ )(t ′ )∥ B 1 2 dt ′ ≤ t 0 e -2Rt ′ dt ′ 1 2 t 0 ∥e Rt ′ ∂ z (u ϕ , T ϕ )(t ′ )∥ 2 B 1 2 dt ′ 1 2 ≤ 1 √ 2R e Rt ∂ z (u ϕ , T ϕ ) L2 t (B 1 
2 ) ≤ 4C √ 2R ∥e a|Dx| u 0 ∥ B 1 2 + ∥e a|Dx| T 0 ∥ B 1 2 < a 4λ .
We deduce that t ⋆ = +∞ and that (8.0.10) is veried for any t ∈ R + .

In order to end the proof of Theorem 8.0.5, we need to prove Inequality (8.0.11). Applying the operator ϕ and then ∆ h q to the rst equation of (8.0.4) and taking the L 2 inner product of resulting equation with ∆ h q (∂ t u) ϕ yield

∥∆ h q (∂ t u) ϕ ∥ 2 L 2 = ∆ h q ∂ 2 z u ϕ , ∆ h q (∂ t u) ϕ L 2 -∆ h q (u∂ x u) ϕ , ∆ h q (∂ t u) ϕ L 2 -∆ h q (v∂ z u) ϕ , ∆ h q (∂ t u) ϕ L 2 -∆ h q ∂ x p ϕ , ∆ h q (∂ t u) ϕ L 2 .
An integration by parts gives

∆ h q ∂ 2 z u ϕ , ∆ h q (∂ t u) ϕ L 2 = ∆ h q ∂ 2 z u ϕ , ∂ t ∆ h q u ϕ + λ ρ(t) |D x | ∆ h q u ϕ L 2 = - 1 2 d dt ∆ h q ∂ z u ϕ 2 L 2 + λ ρ(t) |D x | 1 2 ∆ h q ∂ z u ϕ 2 L 2
, and thus,

∆ h q (∂ t u) ϕ 2 L 2 + 1 2 d dt ∆ h q ∂ z u ϕ 2 L 2 + λ ρ(t) |D x | 1 2 ∆ h q ∂ z u ϕ 2 L 2 ≤ I 1 + I 2 + I 3 ,
where

I 1 = ∆ h q (u∂ x u) ϕ , ∆ h q (∂ t u) ϕ L 2 I 2 = ∆ h q (v∂ z u) ϕ , ∆ h q (∂ t u) ϕ L 2 I 3 = ∆ h q ∂ x p ϕ , ∆ h q (∂ t u) ϕ L 2 .
For I 1 and I 2 , we simply have

I 1 = ∆ h q (u∂ x u) ϕ , ∆ h q (∂ t u) ϕ L 2 ≤ C∥∆ h q (u∂ x u) ϕ ∥ 2 L 2 + 1 6 ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 I 2 = ∆ h q (v∂ z u) ϕ , ∆ h q (∂ t u) ϕ L 2 ≤ C∥∆ h q (v∂ z u) ϕ ∥ 2 L 2 + 1 6 ∥∆ h q (∂ t u) ϕ ∥ 2 L 2 .
Now, using similar calculations as in (8.2.9), we nd

I 3 = ∆ h q ∂ x p ϕ , ∆ h q (∂ t u) ϕ L 2 ≤ ∆ h q ∂ x T ϕ L 2 ∆ h q (∂ t u) ϕ L 2 ≤ C ∆ h q ∂ x T ϕ 2 L 2 + 1 6 ∆ h q (∂ t u) ϕ 2 L 2 .
Then, we deduce that

∆ h q (∂ t u) ϕ 2 L 2 + d dt ∆ h q ∂ z u ϕ 2 L 2 + λ ρ(t) |D x | 1 2 ∆ h q ∂ z u ϕ 2 L 2 ≤ C ∥∆ h q (u∂ x u) ϕ ∥ 2 L 2 + ∥∆ h q (v∂ z u) ϕ ∥ 2 L 2 + ∥∆ h q ∂ x T ϕ ∥ 2 L 2 .
Multiplying the above inequality by e 2Rt , we get

e Rt ∆ h q (∂ t u) ϕ 2 L 2 + d dt e Rt ∆ h q ∂ z u ϕ 2 L 2 -2R e Rt ∆ h q ∂ z u ϕ 2 L 2 + λ ρ(t) e Rt |D x | 1 2 ∆ h q ∂ z u ϕ 2 L 2 ≤ C ∥∆ h q (u∂ x u) ϕ ∥ 2 L 2 + ∥∆ h q (v∂ z u) ϕ ∥ 2 L 2 + ∥∆ h q ∂ x T ϕ ∥ 2 L 2 .
Integrating over [0, t], we obtain (8.2.14)

∥e Rt ∆ h q (∂ t u) ϕ ∥ 2 L 2 t (L 2 ) +∥e Rt ∆ h q ∂ z u ϕ ∥ 2 L ∞ t (L 2 ) -2R∥e Rt ∆ h q ∂ z u ϕ ∥ 2 L 2 t (L 2 ) +λ t 0 ρ e Rt ′ |D x | 1 2 ∆ h q ∂ z u ϕ 2 L 2 dt ′ ≤ ∥∆ h q ∂ z e a|Dx| u 0 ∥ 2 L 2 + C ∥e Rt ∆ h q (u∂ x u) ϕ ∥ 2 L 2 t (L 2 ) + ∥e Rt ∆ h q (v∂ z u) ϕ ∥ 2 L 2 t (L 2 ) + ∥e Rt ∆ h q ∂ x T ϕ ∥ 2 L 2 t (L 2 ) .
We recall that Inequality (8.2.10) allows to take the square root of each terms in the above inequality, with the price of a constant multiplier that will be included in the generic constant C. So, taking the square root of each terms of (8.2.14), multiplying the obtained inequality by 2 qs and then summing with respect to q ∈ Z, we obtain (8.2.15)

∥e Rt (∂ t u) ϕ ∥ L2 t (B s ) + ∥e Rt ∂ z u ϕ ∥ L∞ t (B s ) ≤ ∥e a|Dx| ∂ z u 0 ∥ B s + 2R e Rt ∂ z u ϕ L2 t (B s ) + C ∥e Rt (u∂ x u) ϕ ∥ L2 t (B s ) + ∥e Rt (v∂ z u) ϕ ∥ L2 t (B s ) + ∥e Rt ∂ x T ϕ ∥ L2 t (B s ) .
We will accept for now the following estimates. The proof of these estimates will be given later.

Lemma 8.2.1. Under the hypotheses of Theorem 8.0.5, we have the following inequalities

∥e Rt (u∂ x u) ϕ ∥ L2 t (B s ) ≤ C∥u ϕ ∥ L∞ (B 1 2 
)

∥e Rt ∂ z u ϕ ∥ L2 t (B s+1 ) ; ∥e Rt (v∂ z u) ϕ ∥ L2 t (B s ) ≤ C∥u ϕ ∥ L∞ (B 1 2 
)

∥e Rt ∂ z u ϕ ∥ L2 t (B s+1 ) + ∥u ϕ ∥ L∞ (B s+1 ) ∥e Rt ∂ z u ϕ ∥ L2 t (B 1 2 ) 
. Now, using Estimate (8.0.10), we have

∥u ϕ ∥ L∞ t (B 1 2 ) 
≤ 2C e a|Dx| (u 0 , T 0 )

B 1 2 e Rt ∂ z u ϕ L2 t (B 1 2 ) 
≤ 2C e a|Dx| (u 0 , T 0 )

B 1 2 e Rt ∂ z u ϕ L2 t (B s ) ≤ 2C e a|Dx| (u 0 , T 0 ) B s e Rt ∂ x T ϕ L2 t (B s ) ≤ 2C e a|Dx| (u 0 , T 0 ) B s ∥u ϕ ∥ L∞ t (B s+1 ) ≤ 2C e a|Dx| (u 0 , T 0 ) B s+1 e Rt ∂ z u ϕ L2 t (B s+1 ) ≤ 2C e a|Dx| (u 0 , T 0 ) B s+1 .
Inserting all the above estimates into (8.2.15), we nally obtain the existence of a constant C > 0

such that ∥e Rt (∂ t u) ϕ ∥ L2 t (B s ) + ∥e Rt ∂ z u ϕ ∥ L∞ t (B s )
≤ C e a|Dx| (u 0 , T 0 )

B s + e a|Dx| (u 0 , T 0 ) B 1 2
e a|Dx| (u 0 , T 0 )

B s+1
.

Theorem 8.0.5 is proved.

□

Proof of Lemma 8.2.1.

The proof of this lemma is very similar to the proof of Lemmas 8.1.1 and 8.1.3. We will give the main calculations without going into details. For the rst inequality, we decompose

(u∂ x u) ϕ = (T h u ∂ x u) ϕ + (T h ∂xu u) ϕ + (R h (u, ∂ x u)) ϕ .
We have

e Rt ∆ h q (T h u ∂ x u) ϕ L 2 t (L 2 ) ≤ |q-q ′ |≤4 t 0 S h q ′ -1 u ϕ 2 L ∞ x L 2 z e Rt ′ ∆ h q ′ ∂ x u ϕ 2 L 2 x L ∞ z dt ′ 1 2 ≲ ∥u ϕ ∥ L ∞ t (B 1 2 ) |q-q ′ |≤4 2 q ′ e Rt ∆ h q ′ ∂ z u ϕ L 2 t (L 2 ) ≲ d q 2 -qs ∥u ϕ ∥ L ∞ t (B 1 
2 )

e Rt ∂ z u ϕ L2 t (B s+1 )
where

d q = |q-q ′ |≤4 d q ′ (∂ z u ϕ )2 q ′ -q , e Rt ∆ h q (T h ∂xu u) ϕ L 2 t (L 2 ) ≤ |q-q ′ |≤4 t 0 S h q ′ -1 ∂ x u ϕ 2 L ∞ x L 2 z e Rt ′ ∆ h q ′ u ϕ 2 L 2 x L ∞ z dt ′ 1 2 ≲ |q-q ′ |≤4 t 0 2 2q ′ ∥u ϕ ∥ 2 B 1 2 e Rt ′ ∆ h q ′ ∂ z u ϕ 2 L 2 dt ′ 1 2 ≲ ∥u ϕ ∥ L ∞ t (B 1 2 ) |q-q ′ |≤4 2 q ′ e Rt ∆ h q ′ ∂ z u ϕ L 2 t (L 2 ) ≲ d q 2 -qs ∥u ϕ ∥ L ∞ t (B 1 
2 )

e Rt ∂ z u ϕ L2 t (B s+1 )
where

d q = |q-q ′ |≤4 d q ′ (∂ z u ϕ )2 q ′ -q .
Finally, we have

e Rt ∆ h q (R h (u, ∂ x u)) ϕ L 2 t (L 2 ) ≤ q ′ ≥q-3 t 0 ∆ h q ′ ∂ x u ϕ 2 L ∞ x L 2 z e Rt ′ ∆ h q ′ u ϕ 2 L 2 x L ∞ z dt ′ 1 2 ≲ q ′ ≥q-3 t 0 2 2q ′ ∥u ϕ ∥ 2 B 1 2 e Rt ′ ∆ h q ′ ∂ z u ϕ 2 L 2 dt ′ 1 2 ≲ ∥u ϕ ∥ L ∞ t (B 1 
2 ) q ′ ≥q-3

2 q ′ e Rt ∆ h q ′ ∂ z u ϕ L 2 t (L 2 ) ≲ d q 2 -qs ∥u ϕ ∥ L ∞ t (B 1 
2 )

e Rt ∂ z u ϕ L2 t (B s+1 ) , where d q = q ′ ≥q-3 d q ′ (∂ z u ϕ )2 -(q-q ′ ) .

Here, for the third estimate, we remark that the sequence (d q ) q∈Z can be considered as the convolution of two summable sequences and is then also summable.

For the second inequality, we can perform the same calculations, while taking into account the transfer of regularity given in Lemma 8.1.4. e Rt ∆ h q T Θ (t) 

|F 8 | = 2 t 0 e Rt ′ ∆ h q (v∂ z T ) Θ , e Rt ′ ∆ h q T Θ dt ′ ≤ Cd 2 q 2 -2qs
e Rt (u ϕ , T ϕ )

2 L2 t, τ (t) (B s+ 1 2 ) + ∥u Θ ∥ L ∞ t (B 3 
2 )

e Rt ∂ z T Θ 2 L2 t (B s ) .

For the term F 3 , using the divergence-free property ∂ x u Θ + ∂ z v Θ = 0 and an integration by parts, we deduce that

|F 3 | = 2 t 0 e Rt ′ ∇∆ h q p Θ , e Rt ′ ∆ h q (u Θ , v Θ ) L 2 dt ′ = 0.
For the last term F 4 , the boundary condition (u Θ , v Θ ) | y∈{0,1} = 0 and the relation v Θ (t, x, y) = -y 0 ∂ x u Θ (t, x, s)ds imply e Rt ∆ h q T Θ , e Rt ∆ h q v Θ L 2 = e Rt ∆ h q T Θ , e Rt ∆ h q y 0 -∂ x u Θ ds

L 2 ≤ ∥∆ h q e Rt ∂ x T Θ ∥ L 2 ∥∆ h q e Rt u Θ ∥ L 2 ≤ C∥∆ h q e Rt ∂ x T Θ ∥ 2 L 2 + 1 16 ∥∆ h q e Rt u Θ ∥ 2 L 2 .
Then, Poincaré and Cauchy-Schwartz inequalities yield

|F 6 | = 2 t 0 e Rt ′ ∆ h q T Θ , e Rt ′ ∆ h q v Θ L 2 dt ′ ≤ d 2 q 2 -2qs C∥e Rt ∂ x T Θ ∥ 2 L2 t (B s ) + 1 8 ∥e Rt ∆ h q ∂ z u Θ ∥ 2 L 2 t (B s ) .
We now multiply (8.3.4) and (8.3.5) by 2 2qs and we recall that we can take square root of each terms with the cost of a multiplier which will be included in the generic constant C. Summing the resulting inequalities with respect to q ∈ Z, we have 

+ C ∥u Θ ∥ 1 2 L ∞ t (B 3 
2 )

e Rt ∂ z (u Θ , ϵv Θ , T Θ ) L2 t (B s ) .

Without loss of generalit, we can suppose that C ≥ 2 and we choose √ λ > 3C. For ϵ ≤ 

≤ a √ 2R 8λ
e a|Dx| (u 0 , ϵv 0 , T 0 )

B 3 2 ≤ 1 8C
the fact that τ (0) = 0 and the continuity in time in B s imply that t ⋆ > 0.

For s = 3 2 and for any 0 < t < t ≤ e a|Dx| (u 0 , ϵv 0 , T 0 )

B 3 2 ≤ 1 8C .
For s = 1 2 and for any 0 < t < t A continuity argument implies that t ⋆ = +∞ and allows to close the proof of Theorem 8.0.6.

Convergence to the hydrostatic limit system

In this section, we will prove Theorem 8.0.7 and justify the approximation of the scaled non-rotating primitive equations and the hydrostatic limit system in a two-dimensional thin strip. To this end, we introduce the following dierence quantities w ϵ,1 = u ϵ -u, w ϵ,2 = v ϵ -v, θ ϵ = T ϵ -T, q ϵ = p ϵ -p where (u ϵ , v ϵ , T ϵ , p ϵ ) and (u, v, T, p) are respectively solutions of the systems (8.0.3) and (8.0.4). We deduce that (w ϵ,1 , w ϵ,2 , θ ϵ , q ϵ ) satises the following system (8.4.1)

                     ∂ t w ϵ,1 -ϵ 2 ∂ 2 x w ϵ,1 -∂ 2 z w ϵ,1 + ∂ x q ϵ = R 1,ϵ ϵ 2 ∂ t w ϵ,2 -ϵ 2 ∂ 2
x w ϵ,2 -∂ 2 z w ϵ,2 + ∂ z q ϵ = θ ϵ + R 2,ϵ ∂ t θ ϵ -∂ 2

x θ ϵ -∂ 2 z θ ϵ = R 3,ϵ ∂ x w ϵ,1 + ∂ z w ϵ,2 = 0 w ϵ,1 , w ϵ,2 , θ ϵ | t=0 = (u ϵ 0 -u 0 , v ϵ 0 -v 0 , T ϵ 0 -T 0 ) w ϵ,1 , w ϵ,2 , θ ϵ | z=0 = w ϵ,1 , w ϵ,2 , θ ϵ | z=1 = 0, where the remaining terms R i,ϵ , with i = 1, 2, 3, are given by Let φ : R + × R → R + such that φ(0, ξ) = 0, φ(t, ξ) = (a -µη(t))|ξ|, ∀ t > 0, ∀ ξ ∈ R, where µ ≥ λ > 0 and η(t) will be determined later. For any function f ∈ L 2 (S), we dene φ : f → f φ ; f φ (t, x, z) = e φ(t,Dx) f (t, x, z) = F -1 h (e φ(t,ξ) f (t, ξ, z)).

     R 1,ϵ = ϵ 2 ∂ 2 x u -(u ϵ ∂ x u ϵ -u∂ x u) -(v ϵ ∂ z u ϵ -v∂ z u), R 2,ϵ = -ϵ 2 ∂ t v -ϵ 2 ∂ 2 x v -∂ 2 z v + u ϵ ∂ x v ϵ + v ϵ ∂ z v ϵ , R 3,ϵ = -(u ϵ ∂ x T ϵ + v ϵ ∂ z T ϵ ) + (u∂ x T + v∂ z T ) .
In what follows, for the sake of the simplicity, we will drop the index ϵ and write (w 1 φ , w 2 φ , θ φ , q φ , R i φ )

instead of (w ϵ,1 φ , w ϵ,2 φ , θ ϵ φ , q ϵ , R i,ϵ φ ). Direct calculations show that (w 1 φ , w 2 φ , θ φ , q φ ) satises (8.4.3)

                       ∂ t w 1 φ + µ|D x | η(t)w 1 φ -ϵ 2 ∂ 2 x w 1 φ -∂ 2 z w 1 φ + ∂ x q φ = R 1 φ ϵ 2 ∂ t w 2 φ + µ|D x | η(t)w 2 φ -ϵ 2 ∂ 2 x w 2 φ -∂ 2 z w 2 φ + ∂ z q φ = θ φ + R 2 φ ∂ t θ φ + µ|D x | η(t)θ φ -∂ 2 x θ φ -∂ 2 z θ φ = R 3 φ ∂ x w 1 φ + ∂ z w 2 φ = 0 w 1 φ , w 2 φ , θ φ | t=0 = e a|Dx| (u ϵ 0 -u 0 , v ϵ 0 -v 0 , T ϵ 0 -T 0 ) w 1 φ , w 2 φ , θ φ | z=0 = w 1 φ , w 2 φ , θ φ | z=1 = 0. ≤ Cd 2 q 2 -2qs ∥u ϕ ∥ 1 2 L ∞ t (B 3 
2 )

e Rt ∂ z w ϕ L2 t (B s ) e Rt w ϕ L2 t,f (t) (B s+ 1 2 )

, where (d q ) q∈Z is a positive sequence with q∈Z d q = 1.

Proof of Lemma 8.4.1.

1. In order to prove Estimate (8.4.10), we can use Lemma 8.1.1 and we only need to modify the calculations that we did for the A 2,q on the page 258. We use Sobolev inclusion Ḣ1 z ([0, 1]) → L ∞ z ([0, 1]) and write

A 2,q ≲ |q-q ′ |≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ x w ϕ ∥ L ∞ x L 2 z ∥∆ h q ′ ∂ z u ϕ ∥ L 2 ∥∆ h q w ϕ ∥ L 2 dt ′ .
Now, using the denition of S h q ′ -1 and of the B 1 2 -norm and Bernstein lemma 8.0.1, we get

A 2,q ≲ |q-q ′ |≤4 t 0 e 2Rt ′   l≤q ′ -2 2 3l 2 ∥∆ h l w ϕ ∥ L 2   d q ′ (∂ z u ϕ )2 -q ′ 2 ∥∂ z u ϕ ∥ B 1 2 ∥∆ h q w ϕ ∥ L 2 dt ′ .
Since d q ′ (∂ z u ϕ ) ≤ 1, using Proposition 8.0.4, we can write

A 2,q ≲ |q-q ′ |≤4 2 -q ′ 2   t 0 l≤q ′ -2 2 3l ∥∂ z u ϕ ∥ B 1 2 ∥∆ h l e Rt ′ w ϕ ∥ 2 L 2 dt ′   1 2 t 0 ∥∂ z u ϕ ∥ B 1 2 ∥∆ h q e Rt ′ w ϕ ∥ 2 L 2 dt ′ 1 2 ≲ |q-q ′ |≤4 2 -q ′ 2   l≤q ′ -2 d l (w)2 l(1-s)
  e Rt w ϕ L2 t,f (t) (B s+ 1 2 ) d q (w)2 -q(s+ 1 2 ) e Rt w ϕ L2 t,f (t) (B s+ 1 2 )

.

We remark that the sequence d q ′ q ′ ∈Z with d q ′ = l≤q ′ -2 d l (w)2 (q ′ -l)(s-1) can be written as a convolution product of two summable sequences if 0 < s < 1. Thus, we nally obtain A 2,q ≲ d 2 q 2 -2qs e Rt w ϕ L2 , where d 2 q = d q (w)

|q-q ′ |≤4 d q ′ 2 (q-q ′ )(s-1 2 ) .

2. To prove Estimate (8.4.11), the same modications can be done to the terms B 2,q and B 3,q in the proof of Lemma 8.1.3 on page 261. We will show these modications for B 2,q . We recall that, using Lemma 8.1.4, we have

B 2,q ≲ |q ′ -q|≤4 t 0 e 2Rt ′ ∥S h q ′ -1 ∂ z w ϕ ∥ L ∞ x L 2 z ∥∆ h q ′ v ϕ ∥ L 2 x L ∞ z ∥∆ h q w ϕ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 t 0 l≤q ′ -2 2 l 2 ∥∆ h l e Rt ′ ∂ z w ϕ ∥ L 2 2 q ′ ∥∆ h q ′ u ϕ ∥ L 2 ∥∆ h q e Rt ′ w ϕ ∥ L 2 dt ′ .
≤ 2 I q 5,1 + I q 5,2 + I q 5,3 , where I q 5,1 = t 0 ∆ h q (T h w 2 ∂ z u) φ , ∆ h q w 1 φ L 2 dt ′ I q 5,2 = t 0 ∆ h q (T h ∂zu w 2 ) φ , ∆ h q w 1 φ L 2 dt ′ I q 5,3 = t 0 ∆ h q (R h (w 2 , ∂ z u)) φ , ∆ h q w 1 φ L 2 dt ′ .

For I q 5,1 , Lemma 8.1.4 yields

∥S h q ′ -1 w 2 φ ∥ L ∞ ≲ l≤q ′ -2 ∥∆ h l w 1 φ ∥ L ∞ ≲ l≤q ′ -2 2 3l 2 ∥∆ h l w 1 φ ∥ L 2 .
Then, we can write

I q 5,1 ≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 w 2 φ ∥ L 2 ∥∆ h q ′ ∂ z u φ ∥ L 2 ∥∆ h q w 1 φ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 t 0   l≤q ′ -2 2 3l 2 ∥∆ h l w 1 φ ∥ L 2   ∥∆ h q ′ ∂ z u φ ∥ L 2 ∥∆ h q w 1 φ ∥ L 2 dt ′ .
Thus, I q 5,1 can be controlled in the same way as A 2,q in the proof of Estimate (8.4.10) of Lemma 8.4.1 and if 0 < s < 1, we have .

I q 5,1 ≲ d 2 q 2 -2qs ∥w 1 φ ∥ 2
(8.4.16)

For I q 5,2 , using Lemma 8.1.4, we write

∆ h q ′ w 2 φ L 2 x L ∞ z ≲ 2 q ′ ∆ h q ′ w 1 φ L 2 . Since ∥S h q ′ -1 ∂ z u φ ∥ L ∞ x L 2 z ≲ ∥∂ z u φ ∥ B 1 2 ,
as in the estimate of the term A 1,q in the proof of Lemma 8.1.1, we have,

I q 5,2 ≲ |q ′ -q|≤4 t 0 ∥S h q ′ -1 ∂ z u φ ∥ L ∞ x L 2 z ∥∆ h q ′ w 2 φ ∥ L 2 x L ∞ z ∥∆ h q w 1 φ ∥ L 2 dt ′ (8.4.17) ≲ |q ′ -q|≤4 t 0 ∥∂ z u φ ∥ B 1 2 2 q ′ ∥∆ h q ′ w 1 φ ∥ L 2 ∥∆ h q w 1 φ ∥ L 2 dt ′ ≲ |q ′ -q|≤4 2 q ′ t 0 ∥∂ z u φ ∥ B 1 2 ∥∆ h q ′ w 1 φ ∥ 2 L 2 dt ′ 1 2 t 0 ∥∂ z u φ ∥ B 1 2 ∥∆ h q w 1 φ ∥ 2 L 2 dt ′ 1 2 ≲ d 2 q 2 -2qs ∥w 1 φ ∥ 2 L2 t, η(t) (B s+ 1 2 )
.

The last term I q 5,3 can also be treated in the similar way as the term A 3,q in the proof of Lemma 8. .

Control of G q 5

To estimate the last term G q 5 , we will write

R 3 φ = -(u ϵ ∂ x θ + w 1 ∂ x T ) φ -(v ϵ ∂ z θ + w 2 ∂ z T ) φ ,
and so,

G q 5 = 2 t 0 ∆ h q R 3 φ , ∆ h q θ φ L 2 dt ′ ≤ 2 (L q 1 + L q 2 + L q 3 + L q 4 ) ,
where

L q 1 = t 0 ∆ h q (u ϵ ∂ x θ) φ , ∆ h q θ φ L 2 dt ′ L q 2 = t 0 ∆ h q (w 1 ∂ x T ) φ , ∆ h q θ φ L 2 dt ′ L q 3 = t 0 ∆ h q (v ϵ ∂ z θ) φ , ∆ h q θ φ L 2 dt ′ L q 4 = t 0 ∆ h q (w 2 ∂ z T ) φ , ∆ h q θ φ L 2 dt ′ .
Using Lemma 8.4.1, we immediately obtain L q 1 ≲ d 2 q 2 -2qs ∥θ φ ∥ 2 L2 t, η(t) (B s+ 1 2 )

and .

L q 3 ≲ d 2 q 2 -2qs u ϵ φ L ∞ t (B 3 
The term L q 2 can be controlled in the same way as we did for the term I q 3 (page 278). We have

L q 2 ≲ d 2 q 2 -2qs T ϵ φ L ∞ t (B 3 2 
)

∂ z w 1 φ 2 L2 t (B s ) + ∥θ φ ∥ 2 L2 t, η(t) (B s+ 1 2 )
.

Finally, the term L q 4 can be controlled in the same way as we did for the term I q 5,1 (page 279) and we obtain L q 4 ≲ d 2 q 2 -2qs ∥w 

+ C ∥T φ ∥ L ∞ t (B 3 2 
)

∂ z w 1 φ 2 L2 t (B s ) + C ∥u φ ∥ L ∞ t (B 3 
2

)
∥∂ z θ φ ∥

L2

t (B s ) .

Chapter 9

Homogeneous and inhomogeneous

MHD system

In this chapter we present the results of the following paper:

N. Aarach and N. Zhu, Global well-posedness of 3D homogeneous and inhomogeneous MHD system with small unidirectional derivative. Accepted in the Calculus of Variations and Partial Dierential Equations Journal.

Introduction

We study in this chapter the global well-posedness of the following 3D inhomogeneous MHD system, (IMHD) Notice that in [START_REF] Liu | Global solutions of 3-D Navier-Stokes system with small unidirectional derivative[END_REF], the authors proved that as long as the one-directional derivative of the initial velocity is suciently small in some scaling invariant spaces, then the classical Navier-Stokes system has a global unique solution. The goal of this paper is to extend this type of result to the 3-D homogeneous and inhomogeneous MHD system in L p functional framework. For the MHD system, the situation is more complicated compared with the Navier-Stokes system due to the strong coupling eect between the velocity and the magnetic elds.

                 ∂ t ρ + u • ∇ρ = 0, (t, x) ∈ R + × R
Before we present our main result, we rst recall the functional space framework which we are going to use in what follows. The denitions of the space we are going to work with require anisotropic dyadic decomposition of the Fourier variables (see [START_REF] Chemin | Fluids with anisotropic viscosity[END_REF][START_REF] Chemin | On the global well-posedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF][START_REF] Paicu | Équation anisotrope de Navier-Stokes dans des espaces critiques[END_REF]). Let us recall from [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF][START_REF] Chemin | Global large solutions to 3-D inhomogeneous Navier-Stokes system with one slow variable[END_REF] that Remark 9.1.1. What we dened in Denition 9.1.1 is the homogeneous Besov space, we remark that in many books and other papers, the notation is Ḃs p,r , for the sake of simplicity, we write it as B s p,r .

∆ h j f = F -1 (φ(2 -j |ξ h |) f ), ∆ v k f = F -1 (φ(2 -k |ξ 3 | f )), S h j f = F -1 (χ(2 -j |ξ h | f )), S v k f = F -1 (χ(2 -k |ξ 3 | f )), ∆ j f = F -1 (φ(2 -j |ξ| f )), S j f = F -1 (χ(2 -j |ξ| f )),
Remark 9.1.2. To simplify the notation even further, in all that follows, we shall denote B s p ≜ B s p,1 .

We will also use the space-time space introduced by Chemin and Lerner (see, e.g., [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF]).

Denition 9.1.2. For t > 0, s ∈ R and 1 ≤ p, q, r ≤ ∞, the space-time space L q ([0, T ]; B s p,r ) is dened through the norm .

Then we give the denition of the anisotropic Besov space, which will be used frequently throughout this paper. 

∥∆ h j ∆ v k ∇f ∥ L ∞ ≤ j,k∈Z ∥∆ h j ∆ v k ∇ h f ∥ L ∞ + j,k∈Z ∥∆ h j ∆ v k ∂ 3 f ∥ L ∞ .
Applying Bernstein's inequality from Lemma 9.2.1, j,k∈Z 

∥∆ h j ∆ v k ∇ h f ∥ L ∞ ≲ j,k∈Z 2 j 2 2 p j 2 k p ∥∆ h j ∆ v k f ∥ L p ≤ ∥f ∥ B 1+ 2 p , 1 p p . Similarly, j,k∈Z ∥∆ h j ∆ v k ∂ 3 f ∥ L ∞ ≲ j,k∈Z 2 k 2 2 p j 2 k p ∥∆ h j ∆ v k f ∥ L p ≤ ∥f ∥
2 2 p j 2 (1+ 1 p )k ∥∆ h j ∆ v k f ∥ L p = j,k∈Z 2 (-1+ 2 p )j 2 (2+ 1 p )k ∥∆ h j ∆ v k f ∥ L p 1 2 × 2 (1+ 2 p )j 2 1 p k ∥∆ h j ∆ v k f ∥ L p 1 2 ≲ j,k∈Z 2 (-1+ 2 p )j 2 (2+ 1 p )k ∥∆ h j ∆ v k f ∥ L p 1 2 × j,k∈Z 2 (1+ 2 p )j 2 1 p k ∥∆ h j ∆ v k f ∥ L p 1 2
≲ ∥f ∥ 

.

Thus we complete the proof of this lemma.

Sketch of the proof

In this section, we show the strategy to prove our main results and give the proof of Theorem 9.1.1 and Theorem 9.1.2. Motivated by the study of the global large solution to the classical 3D Navier-Stokes system, here we are going to decompose the solution of (MHD) as a sum of a solution to the Quasi-2D MHD system and a solution to the 3D perturbed system. For the inhomogeneous case, we decompose the solution of the 3D inhomogeneous MHD system (IMHD') into a solution of the 3D homogeneous MHD system and putting a solution to the 3D perturbed system.

Before we proceed to derive the energy estimate, we rst recall the classical two-dimensional Biot-Savart's law which will be used frequently in this paper. For u h = (u 1 , u 2 ) and b h = (b 1 , b 2 ), we decompose it into:

u h = u h curl + u h div with u h curl ≜ ∇ ⊥ h ∆ -1 h curl h u h and u h div ≜ ∇ h ∆ -1 h div h u h , and b h = b h curl + b h div with b h curl ≜ ∇ ⊥ h ∆ -1 h curl h b h and b h div ≜ ∇ h ∆ -1 h div h b h , where curl h u h ≜ ∂ 1 u 2 -∂ 2 u 1 , div h u h ≜ ∂ 1 u 1 + ∂ 2 u 2 and curl h b h ≜ ∂ 1 b 2 -∂ 2 b 1 , div h b h ≜ ∂ 1 b 1 + ∂ 2 b 2 .
Consider the following Quasi-2D MHD system satised by ūh = ūh (t, x h ; x 3 ) ∈ R 2 and bh = bh (t, x h ; x 3 ) ∈ R 2 which x 3 can be regarded as a parameter: for a large number λ and suitable small ϵ which will be veried in the proof of Theorem 9.1.1 in this section.

(Quasi-2D MHD)              ∂ t u h + u h • ∇ h u h -∆u h + ∇ h p = b h • ∇ h b h , (t, x) ∈ R + × R 3 , ∂ t b h -∆b h + u h • ∇ h b h = b h • ∇ h u h , div h u h = div h b h = 0, u h | t=0 = u h 0 (x) = u h 0,
∥(u h , b h )∥ 2 L ∞ (0,T ;L 2 ) + ∥∇(u h , b h )∥ 2 L 2 (0,T ;L 2 ) ≤ ∥(u h 0 , b h 0 )∥ 2 L 2 , ∥∇(u h , b h )∥ 2 L ∞ (0,T ;L 2 ) + ∥∇ 2 (u h , b h )∥ 2 L 2 (0,T ;L 2 ) ≤ C∥(u h 0 , b h 0 )∥ 2 H 1 exp ∥(u h 0 , b h 0 )∥ 2 H 1 exp (∥(u h 0 , b h 0 )∥ 2 L 2 ) ,
                             ∂ t v h + v • ∇v h + u h • ∇ h v h + v • ∇u h -∆v h = -∇ h q + c • ∇c h + b h • ∇ h c h + c • ∇b h , ∂ t v 3 + v h • ∇ h v 3 -v 3 div h v h + u h • ∇ h v 3 -∆v 3 = -∂ 3 (q -p) + c h • ∇ h c 3 -c 3 div h c h + b h • ∇ h c 3 , ∂ t c h + v • ∇c h + u h • ∇ h c h + v • ∇b h -∆c h = c • ∇v h + c • ∇u h + b h • ∇ h v h , ∂ t c 3 + v h • ∇ h c 3 -v 3 div h c h + u h • ∇ h c 3 -∆c 3 = c h • ∇ h v 3 -c 3 div h v h + b h • ∇ h v 3 , div v = 0, div c = 0, v| t=0 = v 0 (x) = (-∇ h ∆ -1 h (∂ 3 u 3 0 ), u 3 
Remark 9.3.3. V 3 λ and C 3 λ in the above proposition will be bounded by the term λ t 0 h(τ )∥v 3 λ (t)∥ B 0 p dτ on the left-hand-side of (9.3.12) and λ t 0 h(τ )∥c 3 λ (t)∥ B 0 p dτ on the left-hand-side of (9.3.13) with suciently large λ. Remark 9.3.4. V 3 vis and C 3 vis in the above proposition will be bound by the viscous dissipation terms in the left-hand-side of (9.3.12) and (9. In this section we present the proof of Proposition 9.3.1, we start by the standard L 2 energy estimates for the equations satised by u and b, Since we have the divergence-free condition of u h and b h , integrating by parts yield that ∇ h p, u h L 2 = -p div h u h dx = 0, , we nd that it equal to -b

1 2 d dt ∥u h (t)∥ 2 L 2 + ∥∇u h ∥ 2 L 2 = -∇ h p, u h L 2 -u h • ∇ h u h , u h L 2 + b h • ∇ h b h , u h L 2
u h • ∇ h u h , u h L 2 = u h • ∇ h u h • u h dx = - 1 2 div h u h |u h | 2 dx = 0,
h • ∇ h u h , b h L 2 , indeed b h • ∇ h b h , u h L 2 = b h • ∇ h b h • u h dx = 2 i,j=1 (b h ) i ∂ i (b h ) j (u h ) j dx = - 2 i,j=1 ∂ i (b h ) i (b h ) j (u h ) j dx - 2 i,j=1 (b h ) i (b h ) j ∂ i (u h ) j dx = -div h b h • u h • b h dx -b h • ∇ h u h • b h dx = -b h • ∇ h u h , b h L 2 .
By summing up the two resulting estimates (9.4.1) and (9.4.2), and then integrating on time on (0, T ), 

∂ t ∂ 3 u h + ∂ 3 (u h • ∇ h u h ) -∆∂ 3 u h + ∇ h ∂ 3 p = ∂ 3 (b h • ∇ h b h ), ∂ t ∂ 3 b h + ∂ 3 (u h • ∇ h b h ) -∆∂ 3 b h = ∂ 3 (b h • ∇ h u h ).
Dening u h σ (t) = u h (t)e 

-
             ∂ t ∂ 3 u h σ + σ(∥∇u h ∥ 2 L 2 + ∥∇b h ∥ 2 L 2 )∂ 3 u h σ + ∂ 3 (u h • ∇ h u h ) σ -∆∂ 3 u h σ + ∇ h ∂ 3 p σ = ∂ 3 (b h • ∇ h b h ) σ , ∂ t ∂ 3 b h σ + σ(∥∇u h ∥ 2 L 2 + ∥∇b h ∥ 2 L 2 )∂ 3 b h σ + ∂ 3 (u h • ∇ h b h ) σ -∆∂ 3 b h σ = ∂ 3 (b h • ∇ h u h ) σ .
Multiplying System (9.4.3) by (∂ 3 u h σ , ∂ 3 b h σ ), and then integrating over R 2 with respect to x h , we assert that 1 2

d dt ∥∂ 3 u h σ (t, •, x 3 )∥ 2 L 2 x h + σ(∥∇u h ∥ 2 L 2 x h + ∥∇b h ∥ 2 L 2 x h )∥∂ 3 u h σ (t, •, x 3 )∥ 2 L 2 x h - 1 2 ∂ 2 3 ∥∂ 3 u h σ (t, •, x 3 )∥ 2 L 2 x h + ∥∂ 2 3 u h σ (t, •, x 3 )∥ 2 L 2 x h + ∥∇ h ∂ 3 u h σ (t, •, x 3 )∥ 2 L 2 x h = - R 2 ∂ 3 u h σ • ∇ h u h • ∂ 3 u h σ dx h + R 2 ∂ 3 (b h • ∇ h b h ) σ • ∂ 3 u h σ dx h - R 2 ∇ h ∂ 3 p σ • ∂ 3 u h σ dx h , and 
1 2 d dt ∥∂ 3 b h σ (t, •, x 3 )∥ 2 L 2 x h + σ(∥∇u h ∥ 2 L 2 x h + ∥∇b h ∥ 2 L 2 x h )∥∂ 3 b h σ (t, •, x 3 )∥ 2 L 2 x h - 1 2 ∂ 2 3 ∥∂ 3 b h σ (t, •, x 3 )∥ 2 L 2 x h + ∥∂ 2 3 b h σ (t, •, x 3 )∥ 2 L 2 x h + ∥∇ h ∂ 3 b h σ (t, •, x 3 )∥ 2 L 2 x h = - R 2 ∂ 3 u h σ • ∇ h b h • ∂ 3 b h σ dx h + R 2 ∂ 3 (b h • ∇ h u h ) σ • ∂ 3 b h σ dx h .
Summing up these two resulting estimates and making use of the fact that

R 2 b h • ∇ h ∂ 3 b h σ • ∂ 3 u h σ dx h = - R 2 b h • ∇ h ∂ 3 u h σ • ∂ 3 b h σ dx h ,
then we just need to estimate the following four terms:

R 2 ∂ 3 u h σ • ∇ h u h • ∂ 3 u h σ dx h , R 2 ∂ 3 b h σ • ∇ h b h • ∂ 3 u h σ dx h and R 2 ∂ 3 u h σ • ∇ h b h • ∂ 3 b h σ dx h , R 2 ∂ 3 b h σ • ∇ h u h • ∂ 3 b h σ dx h .
We start by the rst term. Using Hölder's inequality, interpolation and Young's inequality, we have

R 2 ∂ 3 u h σ • ∇ h u h • ∂ 3 u h σ dx h ≤ C∥∂ 3 u h σ ∥ L 4 x h ∥∇ h u h ∥ L 2 x h ∥∂ 3 u h σ ∥ L 4 x h ≤ C∥∂ 3 u h σ ∥ L 2 x h ∥∇ h u h ∥ L 2 x h ∥∇ h ∂ 3 u h σ ∥ L 2 x h ≤ 1 10 ∥∇ h ∂ 3 u h σ ∥ 2 L 2 x h + C∥∂ 3 u h σ ∥ 2 L 2 x h ∥∇ h u h ∥ 2 L 2
x h .

In the same manner, we obtain

R 2 ∂ 3 b h σ • ∇ h b h • ∂ 3 u h σ dx h ≤ ∥∂ 3 b h σ ∥ L 4 x h ∥∇ h b h ∥ L 2 x h ∥∂ 3 u h σ ∥ L 4 x h ≤ C∥∂ 3 b h σ ∥ 1 2 L 2 x h ∥∇ h ∂ 3 b h σ ∥ 1 2 L 2 x h ∥∇ h b h ∥ L 2 x h ∥∂ 3 u h σ ∥ 1 2 L 2 x h ∥∇ h ∂ 3 u h σ ∥ 1 2 L 2 x h ≤ C∥∂ 3 b h σ ∥ L 2 x h ∥∇ h ∂ 3 b h σ ∥ L 2 x h ∥∇ h b h ∥ L 2 x h + C∥∇ h b h ∥ L 2 x h ∥∂ 3 u h σ ∥ L 2 x h ∥∇ h ∂ 3 u h σ ∥ L 2 x h ≤ 1 10 ∥∇ h ∂ 3 (u h σ , b h σ )∥ 2 L 2 x h + C(∥∂ 3 b h σ ∥ 2 L 2 x h + ∥∂ 3 u h σ ∥ 2 L 2 x h )∥∇ h b h ∥ 2 L 2 x h
.

Choosing σ large (say σ > 2 + 2C), we get

d dt ∥∂ 3 (u h σ , b h σ )(t, •, x 3 )∥ 2 L 2 x h -∂ 2 3 ∥∂ 3 (u h σ , b h σ )(t, •, x 3 )∥ 2 L 2 x h + ∥∂ 2 3 (u h σ , b h σ )(t, •, x 3 )∥ 2 L 2 x h + ∥∇ h ∂ 3 (u h σ , b h σ )(t, •, x 3 )∥ 2 L 2
x h ≤ 0. and then according to the denition of u h σ , we deduce that for any T > 0,

∥∂ 3 (u h , b h )∥ 2 L 2 + T 0 ∥∇∂ 3 (u h , b h )∥ 2 L 2 dτ ≤ ∥∂ 3 (u h 0 , b h 0 )∥ 2 L 2 exp(C∥(u h 0 , b h 0 )∥ 2 L 2 ).
We still need to estimate the horizontal derivative of the solution (u h , b h ). For that we apply the curl h to System (Quasi-2D MHD), one can obtain

   ∂ t ω h + u h • ∇ h ω h -∆ω h = b h • ∇ h j h , ∂ t j h + u h • ∇ h j h -∆j h = b h • ∇ h ω h + Q. with ω h = curl h u h , j h = curl h b h and Q = 2∂ 1 (b h ) 1 (∂ 2 (u h ) 1 + ∂ 1 (u h ) 2 ) -2∂ 1 (u h ) 1 (∂ 2 (b h ) 1 + ∂ 1 (b h ) 2 ).
Taking L 2 inner product with ω h and j h , using the fact that div h u h = div h b h = 0, we can assert that

∥(ω h , j h )∥ 2 L 2 + T 0 ∥∇ω h (τ )∥ 2 L 2 dτ + T 0 ∥∇j h (τ )∥ 2 L 2 dτ ≤ ∥(ω h 0 , j h 0 )∥ 2 L 2 + T 0 Q, j h L 2 dτ.
By the denition of Q and Hölder inequality, we have

Q, j h L 2 ≤ C R ∥∇ h u h ∥ L 4 x h ∥∇ h b h ∥ L 4 x h ∥j h ∥ L 2 x h dx 3 ≤ C R ∥∇ h u h ∥ 1 2 L 2 x h ∥∇ h ∇ h u h ∥ 1 2 L 2 x h ∥∇ h b h ∥ 1 2 L 2 x h ∥∇ h ∇ h b h ∥ 1 2 L 2 x h ∥j h ∥ L 2 x h dx 3 ≤ C∥∇ h u h ∥ 1 2 L 2 ∥∇ h ∇ h u h ∥ 1 2 L 2 ∥∇ h b h ∥ 1 2 L 2 ∥∇ h ∇ h b h ∥ 1 2 L 2 ∥j h ∥ L ∞ xv L 2 x h ≤ C∥∇ h (u h , b h )∥ L 2 ∥∇ 2 h (u h , b h )∥ L 2 ∥j h ∥ 1 2 L 2 ∥∂ 3 j h ∥ 1 2 L 2 .
Using the 2D Biot-Savart law ∥∇ h u h ∥ L 2 ≤ ∥ω h ∥ L 2 and Young's inequality, we nd

Q, j h L 2 ≤ ϵ∥∇ h (ω h , j h )∥ 2 L 2 + ∥(ω h , j h )∥ 3 L 2 ∥∂ 3 j h ∥ L 2 .
Noticing that we have ∥(ω h , j

h )∥ L 2 ≤ ∥∇(u h , b h )∥ L 2 , then T 0 ∥(ω h , j h )∥ L 2 ∥∂ 3 j h ∥ L 2 dτ ≤ C,
where the constant C only depend on the initial datum.

Then by applying the Grönwall Lemma, we obtain

∥(ω h , j h )∥ 2 L ∞ (0,T ;L 2 ) + ∥∇(ω h , j h )∥ 2 L 2 (0,T ;L 2 ) ≤ C∥(ω h 0 , j h 0 )∥ 2 L 2 exp T 0 ∥(ω h , j h )∥ L 2 ∥∂ 3 j h ∥ L 2 dτ ≤ C∥(ω h 0 , j h 0 )∥ 2 L 2 exp(∥(u h 0 , b h 0 )∥ 2 H 1 exp (∥(u h 0 , b h 0 )∥ 2 L 2 )).
According to the Biot-Savat law, This completes the proof of the second part of this proposition. Now we prove (9.3.3), for that we apply the dyadic bloc ∆ h q ∆ v j to system (Quasi-2D MHD) and taking the L 2 inner product of the resulting equation with |∆ h q ∆ v j u h | p-2 ∆ h q ∆ v j u h and |∆ h q ∆ v j b h | p-2 ∆ h q ∆ v j b h respectively, we obtain 

1 p d dt ∥∆ h q ∆ v j u h (t)∥ p L p - R 3 ∆∆ h q ∆ v j u h • |∆ h q ∆ v j u h | p-2 ∆ h q ∆ v j u h dx = - R 3 ∆ h q ∆ v j (u h • ∇ h u h ) • |∆ h q ∆ v j u h | p-2 ∆ h q ∆ v j u h dx + R 3 ∆ h q ∆ v j (b h • ∇ h b h ) • |∆ h q ∆ v j u h | p-2 ∆ h q ∆ v j u h dx (9.4.4) + R 3 ∇ h ∆ h q ∆ v j p • |∆ h q ∆ v j u h | p-2 ∆ h q ∆ v j u h dx and 1 p d dt ∥∆ h q ∆ v j b h (t)∥ p L p - R 3 ∆∆ h q ∆ v j b h • |∆ h q ∆ v j b h | p-2 ∆ h q ∆ v j b h dx u h , b h ∈ L 2 (
             ∂ t Λ -1 h ∂ 3 u h γ + γm(t)Λ -1 h ∂ 3 u h γ + Λ -1 h ∂ 3 (u h • ∇ h u h ) γ -∆Λ -1 h ∂ 3 u h γ + ∇ h Λ -1 h ∂ 3 p γ = Λ -1 h ∂ 3 (b h • ∇ h b h ) γ , ∂ t Λ -1 h ∂ 3 b h γ + γm(t)Λ -1 h ∂ 3 u h γ + Λ -1 h ∂ 3 (u h • ∇ h b h ) γ -∆Λ -1 h ∂ 3 b h γ = Λ -1 h ∂ 3 (b h • ∇ h u h ) γ .
Applying the dyadic operator ∆ h q ∆ v j to the system (9.4.10), and taking the L 2 scalar product of the rst and the second equations of the resulting system with

|∆ h q ∆ v j Λ -1 h ∂ 3 u h γ | p-2 ∆ h q ∆ v j Λ -1 h ∂ 3 u h γ and |∆ h q ∆ v j Λ -1 h ∂ 3 b h γ | p-2 ∆ h q ∆ v j Λ -1 h ∂ 3 b h γ
respectively. Integrating from 0 to T in time, and multiplying by 2 (-1+ 2 p )q 2 1 p j and taking the summation in q, j, we obtain 9.4.11) and

∥Λ -1 h ∂ 3 u h γ ∥ L ∞ (0,T ;B 0 p ) + γ T 0 m(τ )∥Λ -1 h ∂ 3 u h γ ∥ B 0 p dτ + c 0 ∥Λ -1 h ∂ 3 u h γ ∥ L 1 (0,T ;B 2 p ) ≤ ∥Λ -1 h ∂ 3 u h 0 ∥ B 0 p + T 0 ∥Λ -1 h ∂ 3 (u h • ∇ h u h ) γ ∥ B 0 p + ∥Λ -1 h ∂ 3 (b h • ∇ h b h ) γ ∥ B 0 p dτ + T 0 ∥Λ -1 h ∂ 3 ∇ h p γ ∥ B 0 p dτ ( 
∥Λ -1 h ∂ 3 b h γ ∥ L ∞ (0,T ;B 0 p ) + γ T 0 m(τ )∥Λ -1 h ∂ 3 b h γ ∥ B 0 p dτ + c 0 ∥Λ -1 h ∂ 3 b h γ ∥ L 1 (0,T ;B 2 p ) ≤ ∥Λ -1 h ∂ 3 b h 0 ∥ B 0 p + T 0 ∥Λ -1 h ∂ 3 (u h • ∇ h b h ) γ ∥ B 0 p + ∥Λ -1 h ∂ 3 (b h • ∇ h u h ) γ ∥ B 0 p dτ.
(9.4.12)

According to the formulation of the pressure p in (9.4.7), and using the boundedness of Riesz transform in L p , we nd 

∥Λ -1 h ∂ 3 ∇ h p γ ∥ B 0 p ≤ ∥Λ -1 h ∂ 3 div h (u h ⊗ u h -b h ⊗ b h ) γ ∥ B 0 p ≲ ∥u h ⊗ ∂ 3 u h γ ∥ B 0 p + ∥b h ⊗ ∂ 3 b h γ ∥ B 0 p ≲ ∥u h ∥ B 2 p
∥Λ -1 h ∂ 3 ∇ h p γ ∥ B 0 p ≲ ∥u h ∥ 1 2 B 0 p ∥u h ∥ 1 2 B 2 p ∥Λ -1 h ∂ 3 u h γ ∥ 1 2 B 0 p ∥Λ -1 h ∂ 3 u h γ ∥ 1 2 B 2 p + ∥b h ∥ 1 2 B 0 p ∥b h ∥ 1 2 B 2 p ∥Λ -1 h ∂ 3 b h γ ∥ 1 2 B 0 p ∥Λ -1 h ∂ 3 b h γ ∥ 1 2 B 2 p ≲ 1 4C ∥u h ∥ B 0 p ∥Λ -1 h ∂ 3 u h γ ∥ B 2 p + ∥u h ∥ B 2 p ∥Λ -1 h ∂ 3 u h γ ∥ B 0 p + 1 4C ′ ∥b h ∥ B 0 p ∥Λ -1 h ∂ 3 b h γ ∥ B 2 p + ∥b h ∥ B 2 p ∥Λ -1 h ∂ 3 b h γ ∥ B 0 p .
Combining this result with the estimates (9.4.11) and (9.4.12), choosing γ large enough (say γ > 16C),

we can obtain

∥Λ -1 h ∂ 3 (u h γ , b h γ )∥ L ∞ (0,T ;B 0 p ) + c 0 ∥Λ -1 h ∂ 3 (u h γ , b h γ )∥ L 1 (0,T ;B 2 p ) ≤ ∥Λ -1 h ∂ 3 (u h 0 , b h 0 )∥ B 0 p .
Then according to the denition of u h γ and b h γ , we can assert that In this section we will give the proof of Proposition 9.3.2 which shows the global estimate for the horizontal component (v h , c h ) of the system (MHD).

We start by giving the proof of the second estimate satised by c h µ in (9.3.10), for that we need to use the function c h µ which veries

∂ t c h µ + µc h µ -∆c h µ = G µ , (9.5.1) 
with

G µ = (c • ∇v h + c • ∇u h + b h • ∇ h v h -v • ∇c h -u h • ∇ h c h -v • ∇b h ) µ .
Applying the dyadic operator ∆ h q ∆ v j to (9.5.1), and taking the L p scalar product, we deduce from the We rst start by giving the proof of the second estimate (9. with

M λ = -(v h • ∇ h c 3 -v 3 div h c h + u h • ∇ h c 3 -c h • ∇ h v 3 + c 3 div h v h -b h • ∇ h v 3 ) λ .
Applying the dyadic operator ∆ h q ∆ v j to (9.6.1), and taking the L p estimate, we deduce from Lemma 9.2.1 that for some positive constant c 0 ,

1 p d dt ∥∆ h q ∆ v j c 3 λ (t)∥ p L p + µh(t)∥∆ h q ∆ v j c 3 λ ∥ p L p + c 0 (2 2q + 2 2j )∥∆ h q ∆ v j c 3 λ ∥ p L p ≤ ∥∆ h q ∆ v j M h λ ∥ L p ∥∆ h q ∆ v j c 3 λ ∥ p-1 L p .
Simplify by ∥∆ h q ∆ v j c 3 λ (t)∥ p-1 L p , and integrating from 0 to t in time, multiplying by 2 (-1+ 2 p )q 2 1 p j and then taking the summation in q, j, we obtain ∥c According to the denition of the function M λ , we have

∥M λ ∥ B 0 p = ∥(v h • ∇ h c 3 ) λ ∥ B 0 p + ∥(v 3 div h c h ) λ ∥ B 0 p + ∥(u h • ∇ h c 3 ) λ ∥ B 0 p + ∥(c h • ∇ h v 3 ) λ ∥ B 0 p + ∥(c 3 div h v h ) λ ∥ B 0 p + ∥(b h • ∇ h v 3 ) λ ∥ B 0 p (9.6.3) = M 1 + M 2 + M 3 + M 4 ,
where

M 1 = ∥(v h • ∇ h c 3 ) λ ∥ B 0 p + ∥(c h • ∇ h v 3 ) λ ∥ B 0 p , M 2 = ∥(v 3 div h c h ) λ ∥ B 0 p + ∥(c 3 div h v h ) λ ∥ B 0 p , M 3 = ∥(u h • ∇ h c 3 ) λ ∥ B 0 p and M 4 = ∥(b h • ∇ h v 3 ) λ ∥ B 0 p .
According to Lemma 9.2.3 and Lemma 9.2.4, one can deduce 

M 1 = ∥(v h • ∇ h c 3 ) λ ∥ B 0 p + ∥(c h • ∇ h v 3 ) λ ∥ B 0 p ≤ ∥v h ∥ 1 2 B 0 p ∥v h ∥ 1 2 B 2 p ∥c 3 λ ∥ 1 2 B 0 p ∥c 3 λ ∥ 1 2 B 2 p + ∥c h ∥ 1 2 B 0 p ∥c h ∥ 1 2 B 2 p ∥v 3 λ ∥ 1 2 B 0 p ∥v 3 λ ∥ 1 
L λ = -(v h • ∇ h v 3 -v 3 div h v h + u h • ∇ h v 3 -c h • ∇ h c 3 -c 3 div h c h + b h • ∇ h c 3 ) λ -∂ 3 (q -p) λ .
Applying the dyadic operator ∆ h q ∆ v j to (9.6.9), and taking the L p estimate, from Lemma 9.2.1 we have for some positive constant c 0 > 0,

1 p d dt ∥∆ h q ∆ v j v 3 λ (t)∥ p L p + µh(t)∥∆ h q ∆ v j v 3 λ ∥ p L p + c 0 (2 2q + 2 2j )∥∆ h q ∆ v j v 3 λ ∥ p L p ≤ ∥∆ h q ∆ v j K λ (t)∥ L p ∥∆ h q ∆ v j v 3 λ ∥ p-1 L p .
Simplify by ∥∆ h q ∆ v j v 3 λ (t)∥ p-1 L p , and integrating from 0 to t in time, multiplying by 2 (-1+ 2 p )q 2 1 p j and taking the summation in q, j, we obtain According to the denition of the function K λ , we have

∥K λ ∥ B 0 p = ∥(v h • ∇ h v 3 ) λ ∥ B 0 p + ∥(v 3 div h v h ) λ ∥ B 0 p + ∥(u h • ∇ h v 3 ) λ ∥ B 0 p + ∥(c h • ∇ h c 3 ) λ ∥ B 0 p + ∥(c 3 div h c h ) λ ∥ B 0 p + ∥(b h • ∇ h c 3 ) λ ∥ B 0 p + ∥∂ 3 q λ ∥ B 0 p + ∥∂ 3 p λ ∥ B 0 p = K 1 + K 2 + K 3 + K 4 + K 5 , (9.6.11) 
where Finally, we estimate the last term K 5 , according to the denition of q in (9.3.7), we have

K 1 = ∥(v h • ∇ h v 3 ) λ ∥ B 0 p + ∥(c h • ∇ h c 3 ) λ ∥ B 0 p , K 2 = ∥(v 3 div h v h ) λ ∥ B 0 p + ∥(c 3 div h c h ) λ ∥ B 0 p , K 3 = ∥(u h • ∇ h v 3 ) λ ∥ B 0 p + ∥(b h • ∇ h c 3 ) λ ∥ B 0 p , K 4 =
∂ 3 q λ = ∂ 3 (-∆) -1 div h (v h • ∇ h v h + v 3 ∂ 3 v h + u h • ∇ h v h + v h • ∇ h u h + v 3 ∂ 3 u h ) λ -∂ 3 (-∆) -1 div h (c h • ∇ h c h + c 3 ∂ 3 c h + b h • ∇ h c h + c h • ∇ h b h + c 3 ∂ 3 b h ) λ + ∂ 3 (-∆) -1 ∂ 3 (v h • ∇ h v 3 -v 3 div h v h + u h • ∇ h v 3 + ∂ 3 p -c h • ∇ h c 3 + c 3 div h c h -b h • ∇ h c 3 ) λ .
(9.6.16)

Because of the boundedness of the Riesz transform, the terms in the last two lines of (9.6.16) can be bounded similarly to K 1 K 4 , we only need to estimate the rst and second line of the right hand side in (9.6.16) in B 0 p . By Lemma 9.2.3 and Lemma 9.2.4, we have 

t 0 ∥∂ 3 (-∆) -1 div h (v h • ∇ h v h -c h • ∇ h c h ) λ ∥ B 0 p dτ ≤ C t 0 ∥v h ∥ B 0 p ∥v h λ ∥ B 2 p dτ + C t 0 ∥c h ∥ B 0 p ∥c h λ ∥ B 2 p dτ, t 0 ∥∂ 3 (-∆) -1 div h (u h • ∇ h v h -b h • ∇ h c h ) λ ∥

  est déduite des équations de Maxwell (Maxwell 1865, Jackson 1975) t E = curl B -λj, ∂ t B = -curl E, div B = 0, où E et B obéissent à l'équation de Maxwell de l'électromagnétique et désignent respectivement le champ électrique et magnétique du uide, η et λ sont respectivement la permittivité et le coecient de perméabilité magnétique. Nous supposons que le courant électrique j suit la loi d'Ohm : j = σ(E + u × B)

  sont redondants, en eet nous pouvons obtenir le système global en cinq équations en fonction de d'abord, nous formulons la loi de Faraday dans (1.4.6) uniquement en termes de champ magnétique -→ B , en utilisant la loi d'Ohm (1.4.6):

B 1 2≤ c 2 a 2 + 3 2 2 + 2 ,

 12322 et lorsque t = 0 on a θ(0) = 0. e a|Dx| (u 0 + u 1 )B + e a|Dx| ∂ y u 0 B 3 ∥e a|Dx| u 1 ∥ B 3 (2.1.13)pour c 2 une constante susamment petite, alors on a(2.1.14) 

  où le champ vitesse U = (u, v) et le champ magnétique B = (b, c) satisfonts la condition aux limites de non-glissement de Dirichlet (u, v, b, c) | y=0 = (u, v, b, c) | y=1 = 0.

2 . 28 )et la condition de compatibilité 1 0

 2281 (u 0 , b 0 )dy = 0 est satisfaite. Alors le système limite (2.2.27) admet une unique solution globale

  les conditions de symétrie suivantes: u, v et T sont périodiques en x et z de période 1; u, v sont pairs en z, et T est impair en z, avec la condition de compatibilité 1 0 ∂ x u 0 dz = 0. Alors il existe un temps T positif tel qu'existe une unique solution forte (u, v, T ) du système (2.3.2), sur l'intervalle [0, T ]. En outre, la seule solution forte (u, v, T ) dépend continûment des données initiales.

  3.6) et la condition de compatibilité 1 0 u 0 dy = 0 est satisfaite, alors le système limite (2.3.5) admet une unique solution globale (u, T ) satisfaisant ∥e Rt e a 2 |Dx| (u, T )∥ L∞ (R + ,B 1 2 )

  y)B -Bκ and c = b 2 + χ(y)∂ x B, (4.2.8) where U = U 1 et B = B 1 -Bκ . Since (u 1 , u 2 , b 1 , b 1 ) solves the (4.2.6) system, then (u, v, b, c) solves (4.2.9)

  (4.2.10) On the other hand, since ∂ x u + ∂ y v = 0 and ∂ x b + ∂ y c = 0, then there are two potential functions (φ, ψ) such that (u, b) = ∂ y (φ, ψ) and (v, c) = -∂ x (φ, ψ). These primitive functions can have the following boundary conditions (φ, ψ) |y=0 = 0 and lim y→+∞ (φ, ψ) = 0. By integrating the equations (4.2.9) satised by (u, b) with respect to the vertical variable y on the interval [y, ∞[, we obtain (4.2.11)

∞ y b 0

 0 dy ′ , where (m U , m B ) = -∞ y (M U , M B )dy ′ also supported in y ∈ [0.2] for any t > 0. The result achieved in their work is as follows: Theorem 4.2.1 (N. Liu et P. Zhang). Let κ ∈]0, 2[, Bκ = 1 if κ = 1, 0 else , and ϵ, δ > 0.

  Similarly, as ∂ x u + ∂ y v = 0 and ∂ x b + ∂ y c = 0, there exist two potential functions (φ, ψ) such as (u, b) = ∂ y (φ, ψ) and (v, c) = -∂ x (φ, ψ). Integrating the equations (4.2.19) satised by (u, b) with respect to the vertical variable y on the interval [y, ∞[, we obtain (4.2.20)

5 2 , 3 2

 23 e a|D|x ∂ y u 0 ∈ B , (the same thing for b 0 ) and the compatibility condition 1 0 (u 0 , b 0 )dy = 0 are satised and

0 ∂

 0 by the following boundary condition:(∂ z u, ∂ z v, w, T )| z=0,H=0, and u, v, w, T are periodic in x with period 1, by ∂ x u + ∂ z w = 0, we deduce that w(x, z) = -z x u(x, s)ds.

3 2

 3 ∩ B s . There exist positive constants c 0 , C and a decreasing function φ : R + → [ 2a 3

1 0 2 +

 12 u 0 dy = 0 and e a|Dx| (u 0 + u 1 ) B 1 e a|Dx| ∂ y u 0 B 1 2

.4. 7 )

 7 By virtue of (5.4.4), (5.4.5) (5.4.6) and (5.4.7), we deduce from (5.3.12) and (5.3.20) that for t < T ⋆ a(5.4.8) 

φ )/ y=1 = 0 Where 1 and 5 . 1 . 2 ,

 01512 |D x | denote the Fourier multiplier of the symbol |ξ|.In what follows, we recall that we use "C" to denote a generic positive constant which can change from line to line. Thanks to Theorems 5.1.Propositions 5.4.1 and 5.4.2, we deduce for 0 < s < 1 there exist some M > 0 such that(5.6.8) 

1 2 ∩ B 5 2 2 ,(the same thing for b 0 ) and the compatibility condition 1 0

 2521 , e a|D|x ∂ y u 0 ∈ B 3 (u 0 , b 0 )dy = 0 are satised and

( 0 ∂ 0 ∂ 0 ∂ 0 ∂

 0000 u, v) /y=0 = (u, v) /y=1 = (b, c) /y=0 = (b, c) /y=1 = 0, and the incompressible conditions ∂ x u + ∂ y v = 0 and ∂ x b + ∂ y c = 0 imply that : v(t, x, y) = y y v(t, x, s)ds = -y x u(t, x, s)ds, y c(t, x, s)ds = -y x b(t, x, s)ds.

( 6 . 3 . 2 )x 1 0 1 0∂∂ 1 0

 632111 We want now to nd the equation for the pressure. The Dirichlet boundary conditions (u, v, b, c) /y=0 = (u, v, b, c) /y=1 = 0 we deduce from the incompressibility condition∂ x u + ∂ y v = 0 and ∂ x b + ∂ y c = 0 that ∂ u(t, x, y) dy =y v(t, x, y) dy = v(t, x, 0) -v(t, x, 1) = 0, y c(t, x, y) dy = c(t, x, 0) -c(t, x, 1) = 0.The compatibility condition ∂ x (u 0 , b 0 )dy = 0 and the fact that u(t, x, y) → 0 and b(t, x, y) → 0 as |x| → ∞, ensure that 1 0 u(t, x, y)dy = 0 and 1 0 b(t, x, y)dy = 0. Then by integrating the equations ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = b∂ x b + c∂ y b and ∂ t b + u∂ x b + v∂ y b -∂ 2 y b = b∂ x u + c∂ y u, for y ∈ [0, 1] and using the fact that ∂ y p = 0, we obtain

  So, we have obtained∂ y b(t, x, 1) = ∂ y b(t, x, 0) = 0,for smooth solutions of (6.1.4). Remark 6.3.2. Using the previous boundary condition, we obtain that the average 1 0 b(t, x, y) dy = 0 for all t ≥ 0. Indeed, we have x, y) dy -∂ y b(t, x, 1) + ∂ y b(t, x, 0) = 0.

  u 0 , b ϕ | t=0 = e a|Dx| b 0 , where |D x | denotes the Fourier multiplier of symbol |ξ|. In what follows, we recall that we use C to denote a generic positive constant that can change from line to line.

2 . 3 Proposition 6 . 3 . 1 . 3 2 1 + 3 2+

 23631313 Let a > 0. If e a|Dx| u 0 ∈ B 5 2 , e a|Dx| ∂ y u 0 ∈ B , e a|Dx| b 0 ∈ B ∥e a|Dx| u 0 ∥ B ∥e a|Dx| b 0 ∥

Lemma 6 . 3 . 1 .

 631 Let A,B and C be a smooth function on [0, T ] × R × (0, 1) vanishing on the boundary, and s ∈]0, 1[, T > 0 and ϕ be dened as in (6.2.3), with θ(t) = ∥∂ y A ϕ (t)∥ B 1 2

  2.1) for high values of the Reynolds number Re, the magnetic Reynolds numbers Re m and the Hartmann number Ha (for details, cf. Sections 7.2.2-7.2.4, as well as Theorem 7.1.1 and Theorem 7.1.2, below).

1 m max{τ 0 , τ - 1 0 } 2 . 0 ∂ 0 ∂ x b 1 0 ∂ t b 1

 11200101 where the constant C(J, κ, Pr m , τ 0 ) is dened by C(J, κ, Pr m , τ 0 ) = 4 3 max{1, J, κ/Pr m } 3 min{1, J, κ/Pr m } 3 max Pr m , Pr -Some remarks are here in order. The statement considers uniquely the state variables (u, b 1 ). Indeed all others variables (v, b 2 , e) are determined by the divergence-free conditions, Faraday's law and the homogeneous boundary conditions : v(t, x, y) = -y x u(t, x, z)dz, b 2 (t, x, y) = -y (t, x, z)dz e(t, x, y) = -y (t, x, z)dz.

( 7 .

 7 2.10) u(t, x, y) := U 1 (t, x, εy), v(t, x, y) := U 2 (t, x, εy)/ε, b 1 (t, x, y) := B 1 (t, x, εy), b 2 (t, x, y) := B 2 (t, x, εy)/ε, p(t, x, y) := P (t, x, εy), e(t, x, y) := E(t, x, εy)/ε.

H 2 ,

 2 we nally derive the main system (7.1.1), by also denoting κ = (U 0 /c) 2 .7.3 Existence of Analytic Solutions of System(7.1.1) 

( 7 . 3 . 1 )

 731 e τ (t)|Dx| u, e τ (t)|Dx| b 1 , e τ (t)|Dx| b 2 , ∈ C([0, T ], H s+1,0 (R × (0, 1)), e τ (t)|Dx| ∂ t u, e τ (t)|Dx| ∂ t b 1 , e τ (t)|Dx| ∂ t b 2 ,e τ (t)|Dx| v, e τ (t)|Dx| e ∈ C([0, T ], H s,0 (R × (0, 1)).

7. 3 . 2 0 ∂ 0 ∂ x b 1

 32001 Reduced systemWe remark that system (7.1.1) can be shortened, since both v and b 2 in (7.1.1) are determined by the divergence-free relations ∂ x u + ∂ y v = 0, ∂ x b 1 + ∂ y b 2 = 0 and the boundary conditions v| y=0 = 0, b 2 | y=0 = 0: (7.3.2) v(t, x, y) = -y x u(t, x, z)dz, and b 2 (t, x, y) = -y (t, x, z)dz.

7. 3 . 4

 34 Proof of Theorem 7.3.1 inequality holds true for any function η ∈ C 2 (R), with η(0) = 0:(7.3.8) 

Furthermore 3 2

 3 the dissipative functionals D s , D s+1/2 , D s+1 and D s+

4 . 2 )

 42 by means of e Rt/2 (∂ t (u η ) + η ′ (t)(1 + |D x |)u η ). Thus equation (7.4.2) can also be recasted as(7.4.4) 

  4.1 twice, rst with regularities σ 1 = σ 2 = s -1 and functions f = b 2 , g = b 1 (to deal with the term ∥(b 1 b 2 ) η ∥ H s-1 ), secondly with regularities σ 1 = σ 2 = s -1/2 and same functions f = b 2 , g = b 1 (to deal with the term ∥(b 1 b 2 ) η ∥ H s-1/2 ). By recalling the divergence-free condition ∂ y b 2,η = -∂ x b 1,η , we gather e Rt (b 1 b 2

( 7 . 4 .

 74 [START_REF] Bougeault | Dynamique de l'atmosphère et de l'océan[END_REF] we deal with is the convection(7.4.20) 

4 . 1

 41 once more with regularities σ 1 = σ 2 = s -1/2 > 1/2, with functions f = v and g = ∂ y b 1 . Hence e Rt (v∂ y b 1 ) η , 2κ Pr m

1 2 ∩ B 3 2 1 0 u 0 dz = 0 and the smallness assumption e a|Dx| u 0 B 1 2 + e a|Dx| T 0 B 1 2 ≤ c 0 a and e a|Dx| u 0 B 3 2 + e a|Dx| T 0 B 3 2 ≤ c 0 ,

 2310120120320320 ∩ B s . There exist positive constants c 0 , C and a decreasing function φ : R + → [ 2a 3 , a] such that, if we suppose that the initial data (u 0 , T 0 ) satisfy the compatibility condition then the system (8.0.4) has a unique global solution

  L2t, η(t) (B s+ 1 2 )

3 ∂

 3 , ρ(∂ t u + u • ∇u) -µ 1 ∆u + ∇p = b • ∇b, ∂ t b -µ 2 ∆b -curl(u × b) = 0, div u = 0, div b = 0, ρ| t=0 = ρ 0 (x), u| t=0 = u 0 (x), b| t=0 = u 0 (x),where ρ is a scalar standing for the density, u = (u 1 , u 2 , u 3 ) and b = (b 1 , b 2 , b 3 ) represent the velocity and magnetic eld of the uid respectively. p is a scalar function denoting the pressure. The parameter µ 1 represent the kinematic viscosity coecient and µ 2 is a parameter representing the magnetic diusive coecient. Since the specic value of the positive coecients µ 1 , µ 2 plays no role in the argument of this paper. For simplicity, we suppose µ 1 = µ 2 = 1 in the rest of this paper. This system is derived by coupling the inhomogeneous Navier-Stokes system and the Maxwell equation. Such a system describes in particular the motion of several conducting incompressible immiscible uids (without surface tension) in presence of a magnetic eld.It is worth mentioning that when there is no electromagnetic eld, that is, b ≡ 0, then System (IMHD) reduces to the following incompressible inhomogeneous Navier-Stokes equations, t ρ + u • ∇ρ = 0, (t, x) ∈ R + × R 3 , ρ(∂ t u + u • ∇u) -∆u + ∇p = 0, div u = 0, ρ| t=0 = ρ 0 (x), u| t=0 = u 0 (x),

2 -j ζ) = 1 .

 21 where ξ h = (ξ 1 , ξ 2 ), F(f ) and f denote the Fourier transform of the distribution f . The functions χ(ξ) and φ(ξ) are smooth such that suppφ ⊂ ζ ∈ R :Then we give the denition of the classical Besov space.Denition 9.1.1. Let (p, r) ∈ [1, +∞] 2 , s ∈ R and f ∈ S ′ h (R 3 ), which means that f ∈ S ′ (R 3 ) and lim j→∞ ∥S j f ∥ ∞ = 0, we set B s p,r ≜ {f ∈ S ′ h (R 3 ) : ∥f ∥ B s p,r ≜ (2 js ∥∆ j f ∥ L p (R3) ) ℓ r (Z) < ∞}.

  curl , b h | t=0 = b h 0 (x) = b h 0,curl .Concerning the system (Quasi-2D MHD), we have the following a priory estimates:Proposition 9.3.1. Let (u h 0 , b h 0 ) ∈ H 1 ∩ B 0 p with Λ -1 h ∂ 3 (u h 0 , b h 0 ) ∈ B 0 p . Then System (Quasi-2D MHD)has a unique global solution (u h , b h ) that satises:(9.3.1)

( 9 . 3 . 2 )∂ 3 2 L 2 )

 932322 ∥(u h , b h )∥ L ∞ (0,T ;B 0 p ) + c 0 ∥(u h , b h )∥ L 1 (0,T ;B 2 (u h , b h )∥ L ∞ (0,T ;B 0 p ) + c 0 ∥Λ -1 h ∂ 3 (u h , b h )∥ L 1 (0,T ;B 2 p ) ≤ C∥Λ -1 h ∂ 3 (u h ) ≜ M B ,(9.3.4)for some harmless positive constant c 0 and C 0 independent of time T .The proof of Proposition 9.3.1 will be given in Section 4. In order to study the wellposedness of system (MHD), we decompose the solution u H and b H of (MHD) as u H = u where the couple (u h , b h ) is determined by the system (Quasi-2D MHD). According to the result given by Proposition 9.3.1, we only need to estimate the remainder part (v, c). It is easy to verify that the remainder (v, c) satises(9.3.5) 

  0 ), c| t=0 = c 0 (x) = (-∇ h ∆ -1 h (∂ 3 b 3 0 ), b 3 0 ).

V

  

  3.13). Now we will show the proof of Theorem 9.1.1 with the help of the result of in Proposition 9.3.1, Proposition 9.3.2 and Proposition 9.3.3. The proof of these propositions will be presented in Section 4-6.Proof of Theorem 9.1.1. Our goal is to prove the existence of global solution to the system (MHD) under the smallness condition in the vertical derivative (9.1.4). Let T * denote the maximal time of existence

0 ∥R 2 0 ∥R 2 ∥ B 2 p,

 02022 M HD , b M HD )∥ B 0 p ∥R 2,k ∥ B 2 p + ∥(u M HD , b M HD )∥ B 0 p ∥R 1,k ∥ B 2 M HD , b M HD )∥ B 2 p ∥R 2,k ∥ B 0 p + ∥(u M HD , b M HD )∥ B 2 p ∥R 1,k ∥ B 0 ∥ B 0 p ∥R 1,κ ∥ B 2 p + ∥R 1 ∥ B 0 p ∥R 2,κ ∥ B 2 ∥R 1,κ ∥ B 0 p + ∥R 1 ∥ B 2 p ∥R 2,κ ∥ B 0 p dτ.Noticing that we have shown in Theorem 9.1.1 that u M HD ∈ L ∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ) and b M HD ∈ L ∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ).To nish the proof, we need to do some estimate of the transport equation satised by a. Recall that∂ t a + (u M HD + R 1 ) • ∇a = 0, Using Lemma 9.2.6 we can obtain ∥a∥ (τ )∥ B 2 p + ∥R 1 (τ )∥ B 2 p dτ .According to Theorem 9.1.1 and the denition of T IM HD in (9.3.14), we haveexp C T 0 ∥u M HD (τ )∥ B 2 p + ∥R 1 (τ )∥ B 2 p dτ ≤ C ′ where C ′ is a constant independent of time t. Choosing ϵ, α small such that ϵ ≤ min c 0 16∥(u M HD , b M HD )∥ B 0 p , c 0 16C ′ α∥a 0 ∥ B 0 p , c 0 16C ′ ∥a 0 ∥ B 0 p ∥(u M HD , b M HD )∥ B 0 p , c 0 16α α ≤ min 1 16CC ′ ∥a 0 ∥ B 0 p , 1 16CC ′ ∥a 0 ∥ B 0 p ∥(u M HD , b M HD )∥ B 0 p , c 0 16α ,and κ be large enough (say κ > 16C), then we have∥(R 1,κ , R 2,κ )∥ L ∞ (0,T ;B 0 p ) + c 0 ∥(R 1,κ , R 2,κ )∥ L 1 (0,T ;B 2 p ) ≤ C a ∥a 0 ∥ the denition of R 1,κ and R 2,κ , we deduce the estimate of the couple (R 1 , R 2 ) ∥(R 1 , R 2 )∥ L ∞ (0,T ;B 0 p ) + ∥(R 1 , R 2 )∥ L 1 (0,T ;B 2 ∥ B 2 p + ∥b M HD ∥ B 2 p dτ ≤ C a ∥a 0 ∥where C a is a positive constant depending on the initial datum but independent of time. From this estimate and combining with the smallness condition in Theorem 9.1.2, we can also prove that T IM HD = +∞ and the global solution to (a, u, b) of the (IMHD') satises a ∈ L ∞ (R + ; B 3 p p ), u ∈ L ∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ) and b ∈ L ∞ (R + ; B 0 p ) ∩ L 1 (R + ; B 2 p ).

9. 4

 4 Proof of Proposition 9.3.1

2 L 2 + ∥∇b h ∥ 2 L 2 =

 2222 -u h • ∇ h b h

and similarly u h • ∇ h b h , b h L 2 = 0 .

 20 We remark that if we integrate by part the term bh • ∇ h b h , u h L 2

  h , b h )∥ L ∞ (0,T ;L 2 ) + ∥∇(u h , b h )∥ L 2 (0,T ;L 2 ) ≤ ∥(u h 0 , b h 0 )∥ L 2 ,which veries (9.3.1). Then we give the estimate of ∂ 3 (u h , b h ). Applying ∂ 3 to (Quasi-2D MHD), we get   

Finally integrating in x 3

 3 and time variable t, we obtain ∥∂ 3

∥∇ h (u h , b h )∥ 2 L 2 L 2 (

 222 ∞ (0,T ;L 2 ) + ∥∇ h ∇(u h , b h )∥

∥Λ - 1 h ∂ 3 9 . 5

 1395 (u h , b h )∥ L ∞ (0,T ;B 0 p ) + c 0 ∥Λ -1 h ∂ 3 (u h , b h )∥ L 1 (0,T ;B 2 B 0 p exp C ∥(u h 0 , b h 0 )∥ B 0 p + ∥(u h 0 , b h 0 )∥ H 1 exp(C∥∇u h 0 , ∇b h 0 ∥ 2 L 2 ) ,which completes the proof of the Proposition 9.3.1. Proof of Proposition 9.3.2

3 λ

 3 3.13) in Proposition 9.3.3. If we replace c 3 by c 3 λ in (9.3.5), we deduce that c veries the following equation, ∂ t c 3 λ + µc 3 λ -∆c 3 λ = M λ , (9.6.1)

∥v 3 λ

 3 (t)∥ L ∞ (0,t;B 0 p ) + µ t 0 h(τ )∥v 3 λ ∥ B 0 p dτ + c 0 ∥v 3 λ ∥ L 1 (0,t;B 2 p )

  Elle est dénie comme la dérivée en temps de la vitesse du uide u, notée du dt , est donnée par la formule

		γ = ∂ t [u(t, ψ(t, x))]
		= ∂ t u(t, ψ(t, x)) + ∂ t ψ(t, x) • ∇u(t, ψ(t, x))
	(1.2.1)	= (∂ t u + u.∇u)(t, ψ(t, x)).

  En particulier, quand T 0 = 0, on simplie la notation de ∥u∥ Lp (0,T ;B s,0 ) en ∥u∥ Lp T (B s,0 ) .

	where L 2 + = L 2 (R 2 + ). Remarque 2.2.3. L'espace B	3 2						
		q∈Z	2 qs	T T 0	∆ h q u(t)	p L 2 +	dt	1 p	,

Ce résultat est obtenu dans l'espace fonctionnel de Besov de type Chemin-Lerner

(2.2.16) 

∥u∥ Lp (T 0 ,T ;B s,0 ) ≜

  Intégrant les équations (2.2.19) satisfaites par (u, b) par rapport à la variable verticale y sur l'intervalle [y, ∞[, on obtient

	(2.2.20)

  Notre objectif est d'obtenir l'existence globale des solutions pour les systèmes (2.2.26) et (2.2.27) lorsque nos données initiales sont analytiques, puis nous voulons montrer la convergence du système MHD anisotrope mis à l'échelle (2.2.26) au système limite (2.2.27) lorsque ϵ tend vers zéro. Le premier résultat est que le système MHD limite (2.2.27), avec des petites données analytiques dans la variable horizontale, est globalement bien posé. Théorème 2.2.3. Soit a > 0, on suppose que pour une constante c 0 susamment petite, indépendante de ϵ, et pour toute donnée initiale

  Le deuxième résultat démontré est que le système de MHD anisotrope (2.2.26) avec des données initiales petites analytiques dans la variable tangentielle est globalement bien posé. Théorème 2.2.4. Soit a > 0, il existe une constante c 1 susamment petite indépendante de

	1
	p
	,

ϵ, telle que pour toute donnée initiale

  .2.31) alors le système anisotrope (2.2.26) admet une unique solution globale (U ϵ , B ϵ ) satisfaisant (2.2.32) ∥e Rt (u φ , ϵv φ )∥ L∞ (R + ,B

	1 2 )

  aussi donnés par (2.2.30). La fonction φ est donnée par

	Le troisième résultat concerne la convergence des solutions de l'anisotrope mis à l'échelle du
	système MHD (2.2.26) vers le système limite du type Prandtl magnétique (2.2.27).
	Théorème 2.2.5. Soit a > 0, et (u ϵ 0

φ(t, D x ) = (a -λτ (t))|D x |,

tel que τ (t) est l'évolution de la bande d'analyticité.

  2 Θ ) sont donnés par (2.2.30). La fonction φ est donnée par

Θ(t, D x ) = (a -µη(t)) |D x |,

tel que η(t) est l'évolution de la bande d'analyticité, et µ ≥ λ est une constante.

  une divergence nulle et représentent respectivement la vitesse et les champs magnétiques du plasma. Le champ électrique prend une taille e ∈ R perpendiculaire au plan contenant le plasma. Toutes les constantes H, κ, Pr m et J sont positives et dépendent des paramètres standards. Si on suppose que nos données initiales sont analytiques et susamment petites dans la variable horizontale, alors le résultat obtenu dans le chapitre 5 reprèsente l'existence et l'unicité des solutions globales du système (2.2.35). Théorème 2.2.6. Supposons que les conditions aux limites homogènes dans (2.2.36) et (2.2.37):

  que les conditions au bords pour les données initiales suivant la variable verticale, et M ≥ 1 est une constante indépendante de ϵ.

	(w 1 φ , w 2 φ , θ φ ) sont données par
	(2.3.13)

  3 ) représentent respectivement le champ de vitesse et le champ magnétique du uide, p est une fonction scalaire indiquant la pression. µ 1 est un paramètre représentant le coecient de viscosité cinématique et µ 2 est un paramètre représentant le coecient de diusion magnétique. Comme µ 1 et µ 2 ne joue aucun rôle dans l'existence et l'unicité de la solution globale, donc on suppose que ces paramètres valent 1 dans le reste des calculs.

	Quand la densité est constante dans le système (2.4.3), il devient le système MHD standard
	homogène suivant
	(2.4.4)

  [START_REF] Aarach | On the role of the displacement current and the Cattaneo's law on boundary layers of plasma[END_REF]. La preuve de ce théorème consiste à décomposer la solution inhomogène en solution homogène plus un terme de reste, qu'on note dans le dernier chapitre par R.

Remarque 2.4.4. Dans les théorèmes 2.4.2-2.4.2, nous utilisons l'espace de Besov homogène suivant: B s 1 ,s 2 p,r

  Note that the free-divergence condition on U and B, always remains valid by the scaling of the vertical components by the factor ϵ.

	x, B(t, x, y) ∼ b ϵ t, x, P (t, x, y) ∼ p ϵ t, x, y ϵ	y ϵ y ϵ	.	, ϵv ϵ t, x, , ϵc ϵ t, x,	y ϵ y ϵ	, ,
	The parameter ϵ denotes the size of the boundary layer, it is a very small parameter (ϵ << 1).
	Remark 4.2.1.					

  s,0 ) .

	Remark 4.2.3. The space B	3 2 h denotes the Besov space B 2,1 (R h ) and the space B 3 2 h denotes the 1 2
		1
	Besov space B	2

  sequence of positive numbers. Lemma 5.2.5 is then proved by summing Estimates

	(5.2.18), (5.2.20) and (5.2.23).	
	Lemma 5.2.6. Let A,B and C be smooth functions on [0, T B	1 2

* ) × R × (0, 1), with A vanishing on the boundary, s ∈]0, 1[, and ϕ be dened as in (5.2.3), with θ(t) = ∥∂ y A ϕ (t)∥

  suitable sequence of positive constants.

Lemma 5.2.6 is then proved by summing Estimates (5.2.27), (5.2.29) and (5.2.30). Lemma 5.2.7. For any s ∈]0, 1[ and t ≤ T * , and ϕ be dened as in (5.2.3), with

  2.7 is then proved by summing Estimates (5.2.33), (5.2.34) and (5.2.35).

  Denition 6.2.2. Let p ∈ [1, +∞] and T ∈]0, +∞]. Then, the space Lp Denition 6.2.3. Let p ∈ [1, +∞] and let f ∈ L 1 loc (R + ) be a nonnegative function. Then, the space Lp t,f (t) (B s,0 (S)) is the closure of C([0, T ]; S(S)) under the norm

	with the usual change if p = +∞.								
									T (B s,0 (S)) is the closure of
	C([0, T ]; S(S)) under the norm								
								1	
	∥a∥ Lp	q∈Z	2 qs	0	T	∆ h q a(t)	p L 2 dt	p	,

T (B s,0 (S)) ≜

  6.3.3. For any s ∈]0, 1[ and t ≤ T * , there exist C ≥ 1 such that,

	t	e Rt ′	∆ h q
	0		

3.1 is proved by summing Estimates (6.3.40), (6.3.41) and (6.3.42). Lemma

  1.1) is organized as follows. In Section 7.3.1 we dene the function spaces of the analytic solutions, while in Section 7.3.2 we provide a compact formulation of System (7.1.1). Section 7.3.4 is devoted to the sketch of the proof of Theorem 7.1.3, order to avoid loosing contribution from the equations of (b 1 , b 2 ). A more physical scenario is addressed in Section 7.2.4.Although the boundary layer appears in the region given by (7.2.8), System (7.1.1) is written in terms of rescaled variables (t, x, y) in (7.2.9) and rescaled functions (u, b 1 , b 2 , p, e) in (7.2.10). Therefore, the domain of System (7.1.1) does not depend on the Reynolds number: (t, x, y)

  The radius of analyticity τ (t) > 0 of the solutions in (7.3.1) is explicitly dened in Theorem 7.3.1 (cf.(7.3.5)). It depends on the radius of analyticity of the initial data and coincides with it at initial time t = 0. One shall furthermore remark that τ (t) decreases in t ∈ (0, T ), a fact that expresses (roughly speaking) the degrading mechanisms of the regularity in the horizontal variable.

					The
	corresponding norm on a general function g = g(t, x, y) is given by	
	sup	1	(1 + |ξ|) 2s ĝ(t, ξ, y)	2 dξdy < ∞, where ĝ(t, ξ, y) = F x (g)(t, ξ, y) :=	e -ixξ f (t, x, y)dx
	t∈(0,T )	0	R	R	
	stands for the Fourier transform in the horizontal variable x ∈ R.	

  The functionals E s , E s+1/2 and E s+1 are dened in terms of the following Sobolev norms for the transformed solution (u η , b 1,η ):

	s ( t)D s+ 1 2 ( t)d t +	0	t	e R tE s ( t)D s+ 1 2 ( t)d t	+
	Estimate of the bilinear terms			
	+ max	1 √ J	,	Pr m √ κ		0	t	e R tE s ( t) D s+ 1 2 ( t)D s+ 3 2 ( t)d t
				Estimate of the trilinear terms
	(7.3.9)						

.

  we have dropped the integral (7.3.12) on the left-hand side of the inequality, since it is positive and furthermore it does not support the next steps of our analysis. Our goal is therefore to determine a suitable λ > 0 in(7.3.14) and a suitable parameter ε s > 0 in the smallness condition(7.3.4) for the initial data, such that all integrals in the third line of (7.3.14) can be absorbed by the dissipative terms of the inequality. Consequently, we shall rst reformulate these integrals in accordance with the We hence remark that we can bound e 2λt E s ( t) and e λt E s ( t) with the energy e Rt E s (t) in(7.3.14), as long as λ > 0 is considered within the range λ ≤ R/2 = 1/(8 max{1, J, κ/Pr m }). Major diculties arise however from the last integrals at the fourth line of(7.3.14), since this term involves the dissipation D s+3/2 , which has indeed the highest Sobolev regularity. We deal with this integral, by observing that we can still bound e 2λt E s ( t) with the energy e Rt E s (t), as long as λ ≤ R/2.

	(7.3.16)												
	max	1 √ J	,	Pr m √ κ					0	t	e R tE s ( t) D s+ 1 2 ( t)D s+ 3 2 ( t)d t =
		= max		1 √ J	,	Pr m √ κ	0	t	e 2λ tE s ( t) e (R-λ) tD s+ 1 2 ( t) e (R-3λ) tD s+ 3 2 ( t)d t,
		≤ sup t∈(0,t)			e 2λt E s ( t)	0	t	e (R-λ) tD s+ 1 2 ( t)d t +	1 4	max	1 J	,	Pr 2 m κ	0	t	e (R-3λ) tD s+ 3 2 ( t)d t ,
	We are now in the condition to set a specic value of λ, namely
	(7.3.17)												
														3.8) into
	(7.3.14)												
	e Rt E s (t) + mλτ 0 e (R-λ)t E s+ 1 2 + m 2 λ 2 τ 2 0 e (R-2λ)t E s+1 (t)+	0	t e R tD s ( t)d t+τ 0 λ	0	t	e (R-λ) tD s+ 1 2 ( t)d t+
	+ mτ 2 0 λ 2	0	t e (R-2λ) tD s+1 ( t)d t + m 2 τ 3 0 λ 3	0	t e (R-3λ) tD s+ 3 2 ( t)d t ≤ E s (0) + Mτ 2 0 λE s+ 1 2 (0)+
	+ M 2 τ 0 λ 2 E s+1 (0) + D s max 1, H 2	max	1 √ J	,	Pr m √ κ	0	t	e R t E s ( t)D s+ 1 2 ( t)d t+
						+	0	t	e R tE s ( t)D s+ 1 2 ( t)d t + max	1 √ J	,	Pr m √ κ	0	t	e R tE s ( t) D s+ 1 2 ( t)D s+ 3 2 ( t)d t ,
	dissipative terms. First	
						0	t	e R t E s ( t)D s+ 1 2 ( t)d t ≤ sup t∈(0,t)	e 2λ tE s ( t)	1 2	0	t	e (R-λ) tD s+ 1 2 ( t)d t,
	(7.3.15)					0	t	e R tE s ( t)D s+ 1 2 ( t)d t ≤ sup t∈(0,t)	e λ tE s ( t)	0	t	e (R-λ) tD s+ 1 2 ( t)d t.

where where

  and the estimate(7.3.19) at initial time t = 0 imply that the functional e t/4 E s (t) stays small for any t ∈ (0, T * ):} 3 min{1, J, κ/Pr m } 3 D 2 s max{1, H 2 } 2 max{1, J, κ/Pr m } 3 max{1, Pr m } .From the denition of T * in (7.3.20), we nally deduce that T * = T , which must be innite since the analytic norm does not blow up at this time. Accordingly, the solution (u, b 1 ) is indeed global in time.We hence achieve(7.3.6), by manipulating m = min{J, κ/Pr m } and R = 1/(4 max{1, J, κ/Pr m }), as well as by recalling the denition of the functions E s E s+1/2 and E s+1 in(7.3.9). This concludes the proof of

	e Rt E s (t) ≤ min{1, τ 0 Finally, inequality (7.3.6) about the exponential decay of the norms of the solution follows directly from 1 2 14
	the estimate (7.3.18), which implies		
	e	R 2 t min 1,	mR 4	2	min{1, τ 0 } E s (t) + E s+1/2 (t) + E s+1 (t) ≤
		≤ max{1, τ 0 } 2 E s (0) + E s+1/2 (0) + E s+1 (0) .
	Theorem 7.3.1.				
	7.4 Proof of Proposition 7.3.1

  2 ≥ 3J/4 are positive. Needless to say, this high regularity comes with a price, namely the appearance of certain terms which depend on the second time derivative η ′′ (t) (and are also in our main estimate(7.3.8)).

					By coupling (7.4.6) together
	with (7.4.7), we eventually gather the estimate		
	(7.4.8)				
	d dt	e Rt J 2 2	∥(∂ t u) η ∥ 2 H s,0 +	1 2	∥J(∂ t u) η +u η ∥ 2 H s,0 + J∥∂ y u η ∥ 2 H s,0
					u-terms in Es(t)

  of Proposition 7.3.1. A necessary condition for the validity of this Proposition is that the related constant D s must satisfy D s ≥ 2 s+2 / Next, we deal with the second term on the right-hand side of (7.4.6), more precisely e Rt (v∂ y u) η , 2J(∂ t u) η + u η H s,0 ≤ e Rt (v∂ y u) η H s-1We apply Lemma 7.4.1 once more with regularities σ 1 = σ 2 = s -1/2 > 1/2, but with functions f = v and g = ∂ y u. Hence e Rt ⟨(v∂ y

	√	s -1.		
	2	,0 J∥(∂ t u) η ∥ H s+ 1 2	,0 + ∥J(∂ t u) η +u η ∥	H s+ 1 2	,0
	≤ e Rt (v∂ y u) η H s-1 2	,0 2 D s+ 1 2 (t).		

  Denition 8.0.3. Let p ∈ [1, ∞] and let f ∈ L 1 loc (R + ) be a non-negative function. Then, the space Lp t,f (t) (B s,0 (S)) is the closure of C([0, t]; C ∞ 0 (S)) under the norm

  ∩ B s . There exist positive constants c 1 , C (independent of ϵ) and a decreasing function Θ : R + → [ 2a 3 , a] such that, if we suppose that the initial data

	1 2 ∩ B	3 2

  1.1 and 8.1.3 in Section 8.1. In Section 8.2, we prove the global wellposedness of System (8.0.4) for small data in analytic framework. Section 8.3 is devoted to the study of System (8.0.3) and the proof of Theorem 8.0.6. Finally, in Section 8.4, we prove the convergence of System (8.0.3) towards System (8.0.4) when ϵ goes to 0.

  ′ ) e Rt |D x | L 2 dt ′ + e Rt ∆ h q ∇T Θ (t) + F 7 + F 8 . Rt ∆ h q (u∂ x u) Θ , e Rt ∆ h q u Θ L 2 dt ′ ≤ Cd 2 q 2 -2qs e Rt u Θ Rt ∆ h q (u∂ x (ϵv)) Θ , e Rt ∆ h q (ϵv) Θ L 2 dt ′ ≤ Cd 2 q 2 -2qs e Rt (u Θ , ϵv Θ ) Rt ′ ∆ h q (u∂ x T ) Θ , e Rt ′ ∆ h q T Θ dt ′ ≤ Cd 2 q 2 -2qs e Rt (u Θ , T Θ ) Rt ∆ h q (v∂ z u) Θ , e Rt ∆ h q u Θ L 2 dt ′ Rt ∆ h q (v∂ z (ϵv)) Θ , e Rt ∆ h q (ϵv) Θ L 2 dt ′ ≤ Cd 2 q 2 -2qse Rt (u Θ , ϵv Θ )

				2 L ∞ t (L 2 ) + 2λ	0	t	τ (t 1 2 ∆ h q T Θ	2	2 L 2 t L 2
	≤ ∆ h q T Θ (0) L 2 From now on, we will x 2
	(8.3.6)			τ (t) = ∥∂ z u Θ (t)∥ B	1 2 + ∥∂ z T Θ (t)∥ B	1 2 + ϵ∥∂ z v Θ (t)∥ B	1 2 .
	Using Lemma 8.1.1, we get the following controls
	|F 1 | = 2	0	t	e 2 L2 t, τ (t) (B s+ 1 2 ) ,
	|F 4 | = 2						2 L2 t, τ (t) (B s+ 1 2 )
	and					
	|F 7 | = 2						2 L2 t, τ (t) (B s+ 1 2 ) .
				≤ Cd 2 q 2 -2qs	e Rt u Θ	2 L2 t, τ (t) (B s+ 1 2 ) + ∥u Θ ∥ L ∞ t (B	3 2 )	e Rt ∂ z u Θ	2 L2
							2 L2 t, τ (t) (B s+ 1 2 ) + ∥u Θ ∥ L ∞ t (B	3 2 )	e Rt ∂ z (ϵv) Θ	2 L2 t (B s )
	and					

t 0 e t 0 e Next, Lemma 8.1.3 implies the following controls |F 2 | = 2 t 0 e t (B s ) , |F 5 | = 2 t 0 e

  ∥e Rt (u Θ , ϵv Θ , T Θ )∥ L∞ t (B s ) + √ 2λ∥e Rt (u Θ , ϵv Θ , T Θ )∥ L2 Rt ∂ z (u Θ , ϵv Θ , T Θ )∥ L2 t (B s ) + ϵ∥e Rt ∂ x (u Θ , ϵv Θ )∥ L2 t (B s) ≤ e a|Dx| (u 0 , ϵv 0 , T 0 )

	B

t, τ (t) (B s+

1 2 

)

+ e Rt ∂ x T Θ L2 t (B s ) + ∥e s + C∥e Rt (u Θ , ϵv Θ , T Θ )∥ L2 t, τ (t) (B s+ 1 2 ) + 1 8 e Rt ∂ z u Θ L2 t (B s )

  Rt (u Θ , ϵv Θ , T Θ ) L2 Rt ∂ z (u Θ , ϵv Θ , T Θ ) L2 t (B s) ≤ e a|Dx| (u 0 , ϵv 0 , T 0 )

							1 2C , we can
	simply the above inequality as follows		
	(8.3.7)					
	+	1 2	e B s
							1
						2 L ∞ + C ∥u Θ ∥ t (B	3 2 )
				B	3 2 ≤	1 4C	and τ (t) ≤	a 3λ	,
	For initial data such that					
			  	e a|Dx| (u 0 , ϵv 0 , T 0 )	B	1 2
			  			

e Rt (u Θ , ϵv Θ , T Θ ) L∞ t (B s ) + √ λ e t, τ (t) (B s+ 1 2 ) + e Rt ∂ x T Θ L2 t (B s ) e Rt ∂ z (u Θ , ϵv Θ , T Θ ) L2 t (B s ) . Let t ⋆ ≜ sup t > 0 : ∥u Θ ∥

  * , from (8.3.7) we have Rt (u Θ , ϵv Θ , T Θ ) L∞

	∥u Θ ∥	B	3 2 ≤ e t (B	3 2 )

  Rt ′ ∂ z (u Θ , ϵv Θ , T Θ )(t ′ ) Rt ′ ∂ z (u Θ , ϵv Θ , T Θ )(t ′ ) Rt ∂ z (u Θ , ϵv Θ , T Θ )∥ L2

	≤	0	t	e -Rt ′	e B	2 1	dt ′
	≤			0	t	e -2Rt ′	dt ′	1 2	0	t	B e 2	2 1	dt ′	1 2
	≤	√	1 2R	∥e t (B	1 2 )
	≤	√	2 2R	e a|Dx| (u 0 , ϵv 0 , T 0 )	B	1 2	<	a 4λ	.
													B	1 2 dt ′

* , Inequality (8.3.7) also yields

τ (t) = t 0 ∥∂ z (u Θ , ϵv Θ , T Θ )(t ′ )∥

  1.1 (8.4.21)G q 2 ≲ d 2 q 2 -2qs ϵ 2 C∥(∂ t u) φ ∥ 2

			L2 t (B s+ 3 2 )	+ C∥∂ z u φ ∥ 2 L2 t (B s+ 3 2 )	+ Cϵ 2 ∥∂ z u φ ∥ 2 L2 t (B s+ 5 2 )
	+	1 20	∥∂ z w 2 φ ∥ 2 L2 t (B s ) + ∥u ϵ φ ∥ L ∞ (B	1 2 )	∥∂ z u φ ∥ 2 L2 t (B s+ 3 2 )	+ ∥w 2 φ ∥ 2 L2 t, η(t) (B s+ 1 2 )

2 )

 2 ∥∂ z θ φ ∥

	2	2
	L2	L2 t, η(t) (B s+ 1 2 )

t (B s ) + ∥θ φ ∥

  Denition 9.1.3. Let p be in[1, +∞], s 1 , s 2 ∈ R and u in S ′ , we prove an embedding lemma which shows the Lipschitz norm can be bounded by the Besov space B 2 p with 2 < p < ∞.Lemma 9.2.7. Assume f to be a vector eld belonging to B 2 p for 2 < p < ∞, then we have ∥∇f ∥ L ∞ ≲ ∥f ∥ B 2 p .

	Finally(9.2.13)
	Proof. Using anisotropic Littlewood-Paley decomposition,
	∥∇f ∥ L ∞ =
	j,k∈Z

h (R 3 ), we set ∥u∥ B s 1 ,s 2 p ≜ (2 s1j 2 s2k ∥∆ h j ∆ v k u L p ) ℓ 1 (Z) .

  + ∥R 2 ∥ B 2 p ∥R 2,κ ∥ B 0 p ) + ϵ(∥b M HD ∥ B 0 p ∥R 2,k ∥ B 2 p + ∥u M HD ∥ B 0 p ∥R 1,k ∥ B 2 p ) + C(∥b M HD ∥ B 2 p ∥R 2,k ∥ B 0 p + ∥u M HD ∥ B 2 p ∥R 1,k ∥ B 0 p ) + ∥a∥ (ϵ∥R 2 ∥ B 0 p ∥R 2,κ ∥ B 2 p + C∥R 2 ∥ B 2 p ∥R 2,κ ∥ B 0 p + ϵ∥b M HD ∥ B 0 p ∥R 2,k ∥ B 2 p + C∥b M HD ∥ B 2 p ∥R 2,k ∥ B 0 p ).the estimates (9.3.31) and (9.3.26) to (9.3.22), one can deduce∥(R 1,κ , R 2,κ )(t)∥ L ∞ (0,T ;B 0 p ) + κ )∥(R 1,κ , R 2,κ )∥ B 0 p dτ + c 0 ∥(R 1,κ , R 2,κ )∥ L 1 (0,T ;B 2 ∥ B 0 p ∥R 2,κ ∥ B 2 p + C∥R 2 ∥ B 2 p ∥R 2,κ ∥ B 0 p + ϵ∥b M HD ∥ B 0 p ∥R 2,k ∥ B 2 p + C∥b M HD ∥ B 2 p ∥R 2,k ∥ B 0 ∥R 1 ∥ B 0 p ∥R 1,κ ∥ B 2 p + ∥R 2 ∥ B 0 p ∥R 2,κ ∥ B 2 ∥R 1 ∥ B 2 p ∥R 1,κ ∥ B 0 p + ∥R 2 ∥ B 2 p ∥R 2,κ ∥ B 0

	(9.3.31)											B	p 3 p	(∥u M HD κ	∥ B 2 p
					+ ∥∇p H κ ∥ B 2 p + ∥R 1,κ ∥ B 2 p ) + ∥a∥	3 p p B			
	Inserting T					
						0	L(τ p )
		T									T
	≤	0	∥a∥ B	3 p p	∥u M HD κ	∥ B 2 p + ∥∇p H κ ∥ B 2 p + ∥R 1,κ ∥ B 2 p	dτ +	0	∥a∥ B	3 p p	ϵ∥R 2 p dτ
			T								
		+ ϵ	0					p	dτ		
			T								
		+ C									
			0								

  0, T ; B Combining with the estimate (9.4.8) and (9.4.9), one can deduce∥(u h , b h )∥ L ∞ (0,T ;B 0 p ) + c 0 ∥(u h , b h )∥ L 1 (0,T ;B 2Now we will verify the last equality(9.3.4). For that we deneu h γ (t) = u h (t)e -γ( t 0 m(τ )dτ ) and b m(t) = ∥u h ∥ B 2 p + ∥b h ∥ B 2 p. From System (Quasi-2D MHD), we can derive the equations for u h

		2 p , 1	
			p )
		≤ C ∥(u h 0 , b	h 0 )∥ B 0 p + ∥(u h 0 , b h 0 )∥ 2 H 1 exp ∥(u h 0 , b	h 0 )∥ 2 H 1 exp (∥(u h 0 , b h 0 )∥ 2 L 2 ) .
			h γ (t) = b	h (t)e -γ( t 0 m(τ )dτ )
				γ and
	b	h γ , and then applying the operator Λ -1 h ∂ 3 , we obtain
	(9.4.10)	

p p ).

with

  3 λ (t)∥ L ∞ (0,t;B 0 p ) + µ

	t		t	
	0	h(τ )∥c 3 λ ∥ B 0 p dτ + c 0 ∥c 3 λ ∥ L 1 (0,t;B 2 p ) ≤ ∥c 3 0 ∥ B 0 p +	0	∥M λ (τ )∥ B 0 p dτ.

(9.6.2) 

  2Using Young's inequality and integrating from 0 to t in time we obtain the estimate of M 1 that ϵ is an arbitrary positive constant which will be chosen suitable small.3 div h c h ) λ ∥ B 0 p + ∥(c 3 div h v h ) λ ∥ B 0 p dτAlso to get the bound of M 3 and M 4 in the same way,To conclude, we integrate (9.6.3) from 0 to t in time and then combining with the above Estimates (9.6.4), (9.6.5), (9.6.6) and (9.6.7), we obtain Combining Estimates (9.6.8) with (9.6.2) we nish the proof of the second inequality (9.3.13) of Proposition9.3.3.Finally, we investigate the rst estimate (9.3.12) of Proposition 9.3.3, we can deduce from Systems (9.3.5) and (9.3.11) that v 3 λ veries the following equation,∂ t v 3 λ + λv 3 λ -∆v 3 λ = K λ ,

											t		t
	(9.6.5)							≤ C	0	∥v 3 λ ∥ B 0 p ∥c h ∥ B 2 p dτ + C	0	∥c 3 λ ∥ B 0 p ∥v h ∥ B 2 p dτ.
			t						t			t
	(9.6.6)		0		M 3 (τ )dτ ≤ ϵ	0		∥u h ∥ B 0 p ∥c 3 λ ∥ B 2 p dτ + +C	0	∥u h ∥ B 2 p ∥c 3 λ ∥ B 0 p dτ,
	and											
	(9.6.7)		0	t	M 4 (τ )dτ ≤ ϵ	0	t	∥b	h ∥ B 0 p ∥v 3 λ ∥ B 2 p dτ + C	0	t	∥b	h ∥ B 2 p ∥v 3 λ ∥ B 0 p dτ.
	t							t					t
	0	∥M λ (τ )∥ B 0 p dτ ≤ ϵ	0	∥v h ∥ B 0 p ∥c 3 λ ∥ B 2 p dτ + ϵ	0	∥c h ∥ B 0 p ∥v 3 λ ∥ B 2 p dτ
				t								t	t
	(9.6.8)	+ C	0			∥v h ∥ B 2 p ∥c 3 λ ∥ B 0 p dτ + C	0	∥c h ∥ B 2 p ∥v 3 λ ∥ B 0 p dτ + ϵ	0	∥u h ∥ B 0 p ∥c 3 λ ∥ B 2 p dτ
		+ C	0	t	∥u h ∥ B 2 p ∥c 3 λ ∥ B 0 p dτ + ϵ	0	t	∥b h ∥ B 0 p ∥v 3 λ ∥ B 2 p dτ + +C	0	t	∥b	h ∥ B 2 p ∥v 3 λ ∥ B 0 p dτ.
	(9.6.9)											
	with											
													p B 2	.
			t							t		t
		0	M 1 (τ )dτ ≤ ϵ	0	∥v h ∥ B 0 p ∥c 3 λ ∥ B 2 p dτ +	0	∥c h ∥ B 0 p ∥v 3 λ ∥ B 2 p dτ
												t	t
	(9.6.4)							+ C			0	∥v h ∥ B 2 p ∥c 3 λ ∥ B 0 p dτ +	0	∥c h ∥ B 2 p ∥v 3 λ ∥ B 0 p dτ ,

with

The same conclusion can be drawn for M 2 :

t 0 M 2 (τ )dτ = t 0 ∥(v

  ∥∂ 3 p λ ∥ B 0 p and K 5 = ∥∂ 3 q µ ∥ B 0 p . Similar to the estimate of M 1 , we have the bounded estimate of K 1 that ϵ is an arbitrary positive constant suitable small.Along the same way, we can bound the term K 2 by∥(v 3 div h v h ) λ ∥ B 0 p + ∥(c 3 div h c h ) λ ∥ B 0 p dτby using the boundness of the Riesz transform and Lemma 9.2.3,

	t				t						t
	0	K 1 (τ )dτ ≤ϵ	0	∥v h ∥ B 0 p ∥v 3 λ ∥ B 2 p dτ +	0	∥c h ∥ B 0 p ∥c 3 λ ∥ B 2 p dτ
									t			t
	(9.6.12)			+ C			0	∥v h ∥ B 2 p ∥v 3 λ ∥ B 0 p dτ +	0	∥c h ∥ B 2 p ∥c 3 λ ∥ B 0 p dτ ,
			t		t						
				K 2 (τ )dτ =							
		0	0						
							t					t
				≤ C	0	∥v 3 λ ∥ B 0 p ∥v h ∥ B 2 p dτ + C	0	∥c 3 λ ∥ B 0 p ∥c h ∥ B 2 p dτ.
					t							t
	(9.6.14)				0		∥u h ∥ B 0 p ∥v 3 λ ∥ B 2 p dτ + C	0	∥u h ∥ B 2 p ∥v 3 λ ∥ B 0 p dτ
				+ ϵ		0	t	∥b h ∥ B 0 p ∥c 3 λ ∥ B 2 p dτ + C	0	t	∥b h ∥ B 2 p ∥c 3 λ ∥ B 0 p dτ.
	0	t	K 4 (τ )dτ ≤ C	0	t	∥u h λ ∥ B 0 p ∥u h λ ∥ B 2 p dτ + C	0	t	∥b	h λ ∥ B 0 p ∥b	h λ ∥ B 2 p dτ.

with

(9.6.13) 

According to the result obtained in (9.6.6) and (9.6.7), we can deduce that

t 0 K 3 (τ )dτ = t 0 ∥(u h • ∇ h v 3 ) λ ∥ B 0 p + ∥(b h • ∇ h c 3 ) λ ∥ B 0 p dτ ≤ ϵ For K 4 , notice that p = (-∆ h ) -1 div h div h (u h ⊗ u h -b h ⊗ b h ),

(9.6.15)

  ∥∂ 3 (-∆) -1 div h (v h • ∇ h u h -c h • ∇ h b h ) λ ∥ B 0 p dτ ∥∂ 3 (-∆) -1 div h (v 3 ∂ 3 v h -c 3 ∂ 3 c h ) λ ∥ B 0 p dτ ≤ ϵ ∥∂ 3 (-∆) -1 div h (v 3 ∂ 3 u h -c 3 ∂ 3 b h ) λ ∥ B 0 p dτ ≤ ϵIntegrating (9.6.11) from 0 to t in time, and then inserting all the resulting estimates obtained of K i (i = 1, • • • , 5)

												B 0 p dτ
						≤ C	0	t	∥u h ∥ B 0 p ∥v h λ ∥ B 2 p dτ + C	0	t	∥b	h ∥ B 0 p ∥c h λ ∥ B 2 p dτ,
	and										
									t		
								0			
						≤ C	0	t	∥v h λ ∥ B 0 p ∥u h ∥ B 2 p dτ + C	0	t	∥c h λ ∥ B 0 p ∥b	h ∥ B 2 p dτ.
	By using Lemma 9.2.3 we obtain	
	t											t
	0											0	∥v 3 λ ∥ B 2 p ∥v h ∥ B 0 p dτ
						t						t	t
		+ C	0		∥v 3 λ ∥ B 0 p ∥v h ∥ B 2 p dτ + ϵ	0	∥c 3 λ ∥ B 2 p ∥c h ∥ B 0 p dτ + C	0	∥c 3 λ ∥ B 0 p ∥c h ∥ B 2 p dτ.
	Similarly,										
	t											t
	0											0	∥v 3 λ ∥ B 2 p ∥u h ∥ B 0 p dτ
		+ C	0	t	∥v 3 λ ∥ B 0 p ∥u h ∥ B 2 p dτ + ϵ	0	t	∥c 3 λ ∥ B 2 p ∥b h ∥ B 0 p dτ + C	0	t	∥c 3 λ ∥ B 0 p ∥b h ∥ B 2 p dτ.
	t							t				t	t
	0	∥K λ ∥ B 0 p ≤ ϵ	0	∥v h ∥ B 0 p ∥v 3 λ ∥ B 2 p dτ + ϵ	0	∥c h ∥ B 0 p ∥c 3 λ ∥ B 2 p dτ + C	0	∥v h ∥ B 2 p ∥v 3 λ ∥ B 0 p dτ
		+ C	0	t	∥c h ∥ B 2 p ∥c 3 λ ∥ B 0 p dτ + ϵ	0	t	∥u h ∥ B 0 p ∥v 3 λ ∥ B 2 p dτ + ϵ	0	t	∥b	h ∥ B 0 p ∥c 3 λ ∥ B 2 p dτ
		+ C	0	t	∥u h ∥ B 2 p ∥v 3 λ ∥ B 0 p dτ + C	0	t	∥b h ∥ B 2 p ∥c 3 λ ∥ B 0 p dτ + C	0	t	∥u h λ ∥ B 0 p ∥u h ∥ B 2 p dτ
		+ C	0	t	∥b h λ ∥ B 0 p ∥b h ∥ B 2 p dτ + C	0	t	∥v h ∥ B 0 p ∥v h λ ∥ B 2 p dτ + C	0	t	∥c h ∥ B 0 p ∥c h λ ∥ B 2 p dτ
		+ C	0	t	∥u h ∥ B 0 p ∥v h λ ∥ B 2 p dτ + C	0	t	∥b	h ∥ B 0 p ∥c h λ ∥ B 2 p dτ + C	0	t	∥u h ∥ B 2 p ∥v h λ ∥ B 0 p dτ
	(9.6.17)	+ C	0	t	∥b h ∥ B 2 p ∥c h λ ∥ B 0 p dτ.
	Combining Estimates (9.6.17) with (9.6.10) we obtain Inequality (9.3.12), which completes the proof of
	Proposition 9.3.3.									

= +∞ and we have (5.3.28) is valid for any t ∈ R + .

(5.7.13) 

• 2 s+2 / √ s -1 + 2 2s+5 /(s -3/2) + 2 2s+5 /(s -2) + 2 2s+4 / s -1/2, momentarily. The rst term in

de l'aide pour développer mes connaissances en

Since (t, x, y) are the variables of the boundary layer in (7.1.1), we clarify that (t ′ , x ′ , y ′ ) are now the variables of the starting Navier-Stokes-Maxwell equations (7.2.5).

The relation U 2 0 /(c 2 Re) → κ > 0 is of course questionable, since it would imply that the characteristic speed U 0 takes values that are much higher than the speed of light ′ c ′ . In case U 0 /c is xed (we treat this case in Theorem 7.1.2), the contribution of the displacement current would indeed vanish, thus an ansatz typical of the Prandtl theory would probably lead to the standard Prandtl-MHD equations (7.1.1) (as derived in [START_REF] Gérard-Varet | Formal derivation and stability analysis of boundary layer models in MHD[END_REF]) rather than system (7.1.1). Theorem 7.1.1 would seem therefore to suggest that when the characteristic speed of Plasma is constant, System (7.1.1) is ineective at the limit Re → ∞. With the next Theorem 7.1.2, we counteract this statement, by showing that System (7.1.1) remains an accurate boundary layer, when considering a dierent scaling (and thus a dierent region of the layer).

Theorem 7.1.2. Consider the Navier-Stokes-Maxwell equations with Cattaneo's law in (7.2.5). Assume that the following relations between the dimensionless parameters in system (7. Furthermore, assume that the initial data

for some b 1 ∈ R and e ∈ R. Then System (7.1.1) appears as boundary layer in the region

when Re → +∞ (and thus also when Re, Ha → +∞).

Remark 7.1.1. The domain of the boundary layer in Theorem 7.1.2 is not only close to y ′ = 0 but also to the time origin t ′ = 0. This is not surprising from a mathematical point of view. Indeed, at the asymptotic limit Re → ∞, the Navier-Stokes-Maxwell's equations with Cattaneo's law (7.2.5) switch from hyperbolic to parabolic in the variables (t, y). This leads to a loss of initial data on the time derivative of the velocity eld and the magnetic eld, thus the appearance of boundary layers near the origin in time.

From a physical point of view, one would wonder if this domain is rather an artifact of the equations, since such a short time would not be observed in real applications. We counter this statement through the following remark: although t ′ ∈ (0, δT ) reects a short range of time, the solution (u, v, b 1 , b 2 , e) of (7.1.1) contributes to dynamics of Plasma (U ′ 1 , U ′ 2 , B ′ 1 , B ′ 2 , E ′ ) with a rescaled magnitude of order 1/δ (for more details cf. transformation (7.2.14)). This property would suggest that the solution (u, v, b 1 , b 2 , e) might still impact the evolution of Plasma near bounding surface for larger time t ′ > δT . The formal proof of this statement is however beyond the interest of this paper.

We conclude this introduction with a short overview of the sections concerning our modelling. In Section 7.2.1 and Section 7.2.2 we introduce the Navier-Stokes-Maxwell equations with Cattaneo's law in a suitable dimensionless form. Next, in Section 7.2.3, we prove Theorem 7.1.1 and derive System postponing the more technical parts. Our approach is indeed based on a suitable estimate of the norms of the solutions (cf. Proposition 7.3.1, whose proof is formally developed in Section 7.4).

Derivation of the model

This section is devoted to prove Theorem 7.1.1 and Theorem 7.1.2. To this end, in Section 7.2.1 we introduce a suitable form of the Navier-Stokes-Maxwell equations with Cattaneo's law, that we recast in their dimensionless form in Section 7.2.2. Section 7.2.3 is hence devoted to prove Theorem 7.1.1, while in Section 7.2.4 we deal with Theorem 7.1.2.

The Navier-Stokes-Maxwell equations with Cattaneo's law

We begin by recalling the widespread form of the two-dimensional Navier-Stokes-Maxwell system with Cattaneo's law: (7.2.1)

Gauss's law for magnetism, div -→ E = 0

Gauss's law for electric eld.

The system and the corresponding state variables depends upon (τ, X, Y ) ∈ (0, T ) × R × R + (instead of (t, x, y), which are the variables of the boundary layers), for a positive time T > 0. The following boundary conditions are also prescribed:

i.e. the velocity eld satises a no-slip boundary condition, whereas the surrounding medium in (τ, X, Y ) ∈ (0, T ) × R × {y < 0} is an insulator with a prescribed xed magnetic eld -→ B ∈ R 2 .

The constants ρ > 0 and ν > 0 are the density of the uid and the kinematic viscosity, respectively, while c > 0 stands for the speed of light. The rst term (ρνJ /c 2 )∂ 2 τ -→ U in the balance of linear momentum is due to the Cattaneo's law [START_REF] Abdelhedi | Global existence of solutions for hyperbolic Navier-Stokes equations in three space dimensions[END_REF][START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF][START_REF] Coulaud | Hyperbolic quasilinear Navier-Stokes equations in R 2[END_REF][START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | Global hydrostatic approximation of the hyperbolic Navier-Stokes system with small Gevrey class 2 data[END_REF][START_REF] Racke | Hyperbolic Navier-Stokes equations II: Global existence of small solutions[END_REF] and depends on a general inertial constant J > 0. This law develops around a rst-order Taylor expansion of a delayed relation on the Cauchy stress tensor

where for us the relaxation time is given by τ rel = ρνJ /c 2 . This particular form (in terms of J > 0 and not directly in τ rel > 0), will be important indeed when rescaling our system for the boundary layers.

We have denoted by σ > 0 the electrical conductivity, by µ 0 > 0 the magnetic permeability. We further write -→ U (τ, X, Y ) = (U 1 (τ, X, Y ), U 2 (τ, X, Y )) T ∈ R 2 and -→ B (τ, X, Y ) = (B 1 (τ, X, Y ), B 2 (τ, X, Y )) T ∈ R 2 the velocity eld and magnetic eld of the media, respectively. The scalar pressure P (τ, X, Y ) ∈ R is the Lagrangian multiplier that ensures the incompressibility of the velocity eld. The current density -→ J = (0, 0, J(τ, X, Y )) T and the electric eld -→ E = (0, 0, E(τ, X, Y )) T are considered as three dimensional vector elds, being perpendicular to the plane in which the uid motion occurs. Since we are dealing with the two dimensional version of the equations, we shall clarify the employed notation:

The positive parameters ν, µ 0 and ε 0 correspond to the kinematic viscosity, the magnetic permeability and permittivity of free space, respectively. Furthermore, the parameter σ represents the electrical conductivity of the medium. Some of the terms in (7. [START_REF] Aarach | Hydrostatic approximation of the 2D MHD system in a thin strip with a small analytic data[END_REF] 

Furthermore, to get rid of the current density in curl -→ J , we apply the curl operator to Ampere's law:

Thus, we can plug this last relation in equation (7.2.2), to nally obtain an hyperbolic form of Ampere's law in terms of the magnetic eld -→ B :

(7.2.3)

Similarly, we can get rid of -→ J also in the balance of linear momentum in (7.2.1) through

We are now able to reduce the number of equations in (7.2.1). By considering the electric eld -→ E (τ, X, Y ) = (0, 0, E(τ, X, Y )) T (whose divergence is always null) and recalling the denition of the vector eld

Before performing an asymptotic analysis of equations (7.2.4) to derive the boundary-layer model (7.1.1), it is reasonable to rst recast equations (7.2.4) in their dimensionless form.

The equations in dimensionless form

We shall rst briey recall some dimensionless parameters which are well-known in the magnetohydrodynamic theory. We refer to [START_REF] Davidson | An Introduction to Magnetohydrodynamics[END_REF][START_REF] Priest | Magnetohydrodynamics of the Sun[END_REF] for additional details and an exhaustive overview of the underlying physics.

Throughout this manuscript we denote by U 0 ∈ R + and by B 0 ∈ R + the sizes of the characteristic speed and magnetic eld of the uid, respectively. We further denote by l 0 ∈ R + and t 0 ∈ R + the underlying length and time scales (thus U 0 = l 0 /t 0 ). The ratio between the sizes of the inertial and viscous terms is given by the Reynolds number Re = l 0 U 0 /ν, while Re m = l 0 U 0 σµ 0 stands for the magnetic Reynolds number and measures the coupling between the ow and the magnetic eld. The Hartmann number Ha = B 0 l 0 σ/ρν represents the ratio between the magnetic and viscous forces.

Hence, we can introduce the change of variables t ′ = τ /t 0 ∈ (0, T ′ ) (with 

where all spatial derivatives ∇, ∆ and div are now in terms of (x ′ , y ′ ). 

This observation is however imprecise. Indeed, by neglecting 1/c 2 ∂ t E in (7.2.1) (thus also

in the third equation of (7.2.5)), Ohm's law together with Ampere's law imply

which provides the additional constant 1/Re m to yield Ha 2 /(Re Re m ). System (7.2.5) is therefore an extension of the MHD-equations in dimensionless form.

In the forthcoming sections, we aim at obtaining system (7.1.1), by sending Re, Re m and Ha towards ∞ in (7.2.5). To this end, we consider suitable conditions on U 0 and Ha, as well as some valid rescalings of the variables (t ′ , x ′ , y ′ ) near the boundary. In particular, in section 7. Re m Re = Pr m > 0.

thus also the magnetic Reynolds number assumes high values Re m ≫ 1. Similarly, we address the case in which the Hartmann number Ha diverges to ∞ proportionally to Re.

We can then summarise the statement of Theorem 7.1.1 as follows.

Theorem 7.2.1. Assume that the following relations between the dimensionless parameters in system (7.2.5) are satised:

Furthermore, assume that the initial data

for some b 2 ∈ R and e ∈ R. 

when Re → +∞ (and thus also when Re, Ha → +∞).

Remark 7.2.2. Before addressing the proof of this Theorem, we shall rst clarify certain aspects and terminologies of its statement.

The third condition in (7.2.7) is rather unphysical, since it implies that the characteristic speed U 0 converges towards ∞ for high values of Re ≫ 1. This relation seems however necessary in we have slightly abused the notation about Hartmann, since Hartmann layers usually occur when the magnetic eld is oriented at some specic angles, whereas our modelling treats more general scenarios).

Although we introduce a dierent scaling, the derived equations remain the same as in System (7.1.1).

We exploit this aspect in the following statement. Furthermore, assume that the initial data

for some b 1 ∈ R and e ∈ R. Then System (7.1.1) appears as boundary layer in the region (7.2.12)

when Re → +∞ (and thus also when Re, Ha → +∞).

Remark 7.2.3. Some remarks are here in order:

We do not impose any condition on U 0 in terms of the Reynolds number, therefore this characteristic speed can range within physical values below the speed of light.

The interval [0, H/Ha] in (7.2.12) can be replaced by [0, 1/Re], since our assumptions ensure that H/Ha ≈ 1/Re when Re ≫ 1.

The domain in (7.2.12) represents a region close to the boundary of the domain

From the scaling of the new variables (cf. (7.2.13)) the domain of model (7.1.1) shall be better understood as an asymptotic expansion of a dierent domain, namely (t

In particular, the singular behaviour of the solutions given by (7.1.1) appears close to the boundary of the domain R × R 2 + and close to the origin both in time t ′ = 0 and in space x ′ = 0. This particular region of the domain is motivated by the fact that the term

) is now vanishing. As a result, when Re ≫ 1, the limit system of (7.2.5) requires dierent boundary conditions both in space (i.e. in y ′ = 0) as well as in time (i.e. in t ′ = 0).

Proof of Theorem 7.2.2. We denote by δ = H/Ha ≪ 1 the size of the boundary layer. We thus introduce the change of variables (7.2.13)

Our approach is entirely performed in terms of a-priori estimates. Indeed, without loss of generality, we can assume that the regular initial data generates a local-in-time analytic solution, whose largest lifespan is denoted by T > 0. If T < +∞, the norms on the left-hand side of (7.3.6) would blow up, thus our aim is to propagate the smallness condition of the initial data to any time t ∈ (0, T ). This implies in particular that T = +∞ and thus the local solution is in reality global in time.

The core of the proof relies on a suitable transformation of the state variables (u, b 1 ) in system (7.3.3), which aims to highlight the time behaviour of the underlying radius of analyticity. More precisely, for a general non decreasing function η : R + := [0, +∞) → [0, τ 0 ] in C 2 (R + ), with η(0) = 0, we introduce the transformation f → f η to a general function f = f (t, x, y), by applying the Fourier multiplier e (τ0-η(t))(1+|Dx|) : (7.3.7) f η (t, x, y) := e (τ0-η(t))(1+|Dx|) f (t, x, y), i.e. F x (f η )(t, ξ, y) = e (τ0-η(t))(1+|ξ|) F x (f )(t, ξ, y).

Here F x stands for the Fourier transform uniquely on the variable x ∈ R, while τ 0 is the radius of analyticity of the initial data.

The Fourier multiplier and the related transformation (7.3.7) are well dened, as long as f is analytic in x ∈ R for xed (t, y) ∈ (0, T ) × (0, 1), with radius of analyticity given by τ 0 -η(t) (or larger). In particular this positive radius degrades (or stays constant) as time t ∈ R + increases, since we restrict the function η within the interval [0, τ 0 ).

Our approach is to apply the mentioned transformation to both u and b 1 and eventually to determine an optimal function η in (7.3.7), such that the new functions u η and b 1,η fulll a specic dissipative energy estimate (cf. Proposition 7.3.1 and (7.3.17) for the nal form of η). This energy controls higher-order Sobolev norms of the transformed state variables u η and b 1,η and thus of the analytic norms of the solutions u and b 1 themselves.

Roughly speaking, for a general function η, the transformation produces some additional damping mechanisms and dissipations to the system, but at the same time introduces further nonlinearities that could complicate the overall analysis. Our goal is therefore to select a suitable function η, so that the damping mechanism are indeed predominant. In this regime, a suitable high-order" energy occurs that allows to control the H s,0 -norms of u η and b 1,η (or equivalently of e (τ0-η(t))|Dx| u and e (τ0-η(t))|Dx| b 1 , for the analyticity).

We proceed now to formalize the described strategy and we begin by stating the following proposition, that provides the mentioned energy inequality (with higher-order Sobolev norms) for a general function 

There exists a constant D s ≥ 1, which depends uniquely on the regularity s > 2, such that the following A is given by

Another important remark concerning geophysical uids is the dierence between the horizontal scale (generally of order of hundreds to thousands of kilometers) and the vertical scale (generally a few kilometers for oceans and 10-20 kilometers for the atmosphere). In order to take into account this anisotropy, one can consider anisotropic viscosities as in the works of Chemin, Desjardins, Gallagher and Grenier (see [START_REF] Chemin | Mathematical Geophysics: An introduction to rotating uids and to the Navier-Stokes equations[END_REF] and the references therein for instance) or in the work of Charve and Ngo (see [START_REF] Charve | Global existence for the primitive equations with small anisotropic viscosity[END_REF] for instance). Another direction consists in studying the uids in thin domains where a dimension is supposed to be very small and goes to zero, which is the main consideration of our work.

In this paper, we will neglect the eect of the rotation and only focus on the eect of the vertical stratication. The combined eect of the rotation and the stratication in the full primitive equations will be studied in a forthcoming paper. In the two-dimensional case, these considerations lead to the following non-rotating primitive equations in the thin strip S ϵ = (x, y) ∈ R 2 : 0 < y < ϵ , where ϵ is supposed to be very small.

(8.0.1)

Here, U ϵ (t, x, y) = (U ϵ 1 (t, x, y), U ϵ 2 (t, x, y)) denotes the velocity of the uid and P ϵ (t, x, y) the pressure which guarantees the divergence-free property of the velocity eld U ϵ ; T ϵ (t, x, y) is the temperature of the uid and the Froude number is supposed to be F = 1. System (8.0.1) is complemented by the no-slip boundary condition

In the equation of the velocity, the Laplacian is ∆ = ∂ 2 x + ∂ 2 y and in the equation of the temperature, the anisotropic Laplacian ∆ ϵ = ∂ 2 x + ϵ 2 ∂ 2 y reects the dierence between the horizontal and the vertical scales. We will explain our choice of the diusion term ∆ ϵ in the next section.

Hydrostatic limit of non-rotating primitive equations

In this framework, it is believed that the uid behavior tends towards a geostrophic balance (see [START_REF] Gill | Atmosphere-Ocean Dynamics[END_REF], [START_REF] Holton | An Introduction to Dynamic Meteorology[END_REF] or [START_REF] Plougonven | Lagrangian approach to the geostrophic adjustment of frontal anomalies in a stratied uid[END_REF]). In a formal way, as in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], taking into account this anisotropy, we consider the initial data in the following form, 

T ϵ (t, x, y) = T ϵ t, x, y ϵ P ϵ (t, x, y) = p ϵ t, x, y ϵ .

In order to study the limit when ϵ → 0, we perform the rescaling z = y ϵ and bring our problem to the xed domain S = (x, z) ∈ R 2 : 0 < z < 1 . We rewrite System (8.0.1) as follows (8.0.3)

Formally taking ϵ → 0 in System (8.0.3), we obtain the following hydrostatic limit for primitive equations, which are a combination of a Prandtl-like system with a transport-diusion equation of the temperature (8.0.4)

We want to recall some results on the well-posedness of System (8.0.1). This system was studied by Lions, Temam and Wang in [9193], where the authors considered full viscosity and diusivity, and established the global existence of weak solutions. In the two-dimensional case, the local existence of strong solutions was proved by Guillén-González, Masmoudi and Rodriguez-Bellido [START_REF] Guillen-Gonzalez | Anisotropic estimates and strong solutions of the primitive equations[END_REF], while the global existence was achieved by Bresch, Kazhikhov and Lemoine in [START_REF] Bresch | On the two-dimensional hydrostatic Navier-Stokes equations[END_REF] and by Temam and Ziane in [START_REF] Temam | Some mathematical problems in geophysical uid dynamics[END_REF]. In our work, we will study the global well posedness of System (8.0.1) in the 2D thin strip S ϵ when ϵ is close to zero. The equivalent result is also available for the rescaled System (8.0.3).

Concerning the hydrostatic limit system (8.0.4), we remark the same diculties as for the Prandtl equations due to its degenerate form and the non-local nonlinear term v∂ z u which leads to the loss of one derivative in the tangential direction when one wants to perform energy estimates. For a more complete survey on this challenging problem, we refer the reader to the works [START_REF] Alexandre | Well-posedness of The Prandtl Equation in Sobolev Spaces[END_REF][START_REF] Weinan | Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation[END_REF][START_REF] Weinan | Blow up of solutions of the unsteady Prandtl's equation[END_REF][START_REF] Gérard-Varet | On the ill-posedness of the Prandtl equation[END_REF][START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF] and the references therein. The main ideas to overcome this diculty consist in imposing a monotonicity hypothesis on the normal derivative of the velocity or an analytic regularity on the velocity. In the pioneering work [START_REF] Oleinik | Mathematical Models in Boundary Layers Theory[END_REF], Oleinik and Samokhin used the Croco transformation under the monotonicity assumption to transform Prandtl equations into a new quasilinear system and established the local existence of solutions in the Sobolev functional framework. However, the nonlinearity of the Croco variables induces certain diculties for understanding the nature of Prandtl equations.

Later, in [START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I. Existence for Euler and Prandtl equations[END_REF], Sammartino and Caisch solved the problem for analytic solutions (analytic in both tangential and normal directions) on a half space without using the monotonicity assumption and the Croco transformation. The analyticity in the normal variable was then removed by Lombardo, Cannone and Sammartino in [START_REF] Lombardo | Well-posedness of the boundary layer equations[END_REF]. The main argument used in [START_REF] Lombardo | Well-posedness of the boundary layer equations[END_REF][START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I. Existence for Euler and Prandtl equations[END_REF] is to apply the abstract Cauchy-Kowalewskaya (CK) theorem. We also mention the well-posedness results of the Prandtl equations in Gevrey classes [START_REF] Gérard-Varet | Well-posedness for the Prandtl system without analyticity or mono-tonicity[END_REF][START_REF] Gérard-Varet | Well-posedness of the hydrostatic Navier-Stokes equations[END_REF]. Under the monotonicity assumption, recently, Alexandre, Wang, Xu and Yang [START_REF] Alexandre | Well-posedness of The Prandtl Equation in Sobolev Spaces[END_REF] and Masmoudi and Wong [START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF] obtained the existence of local smooth solutions for Prandtl equations by performing direct energy estimates in weighted Sobolev spaces and by exploiting the cancellation properties of the bad terms, without using the Croco transformation.

We remark that unlike the case of Prandtl equations, in System (8.0.4), the pressure term is not dened by the outer ow using the Bernoulli's law but by temperature via the relation ∂ z p = T . One of the novelties of the paper is to nd a way to treat the pressure term using the temperature equation to obtain the global well posedness of our system. In the case where the temperature is constant, the well-posedness of the hydrotatic Navier-Stokes equations was studied in Gevrey classes by Gérard-Varet, Masmoudi and Vicol in [START_REF] Gérard-Varet | Well-posedness for the Prandtl system without analyticity or mono-tonicity[END_REF] and recently in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], Paicu, Zhang and Zhang proved the global well-posedness of the hydrostatic Navier-Stokes system for small analytic data. We remark that the well-posedness of hydrostatic limit systems is still open in Sobolev settings. In this work, we will apply the method from [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF] in the case of the hydrostatic primitive equations, where the temperature is not constant.

Remark 8.0.1. 1. We rst remark that the tangential pressure term is of order 1 in the rst equation of (8.0.4). Let us suppose for now that we have the necessary regularity to perform the following calculations. Taking the L 2 -scalar product of ∂ x p with u and performing integrations by parts, we obtain

So, in order to control ∂ x p, we need a control of ∂ x T (or more precisely, we need at least a control of |D x | 1 2 T as explained in the following calculation). That is the reason why we consider an anisotropic Laplacian term ∆ ϵ in the temperature equation.

2. We remark a particular case where we can still get a control of ∂ x p without the consideration of an anisotropic diusion on the temperature. Indeed, if we suppose that the pressure satises a hydrostatic law of the type ∂ z p = f (t)T , where the function f (t) is integrable, then we can perform the following estimate

The method of [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF] (that we will resume in the next section) and the functional settings used in our paper allow to gain an addition diusion-type term, which implies the necessary controls on

Functional framework

In order to introduce our results, we will briey recall some elements of the Littlewood-Paley theory and introduce the function spaces and techniques that we are going to use throughout this paper.

Let ψ be an even smooth function in C ∞ 0 (R) such that the support is contained in the ball B R (0, 4 3 ) and ψ is equal to 1 on a neighborhood of the ball B R (0, 3 4 ). Let χ(z) = ψ z 2 -ψ(z). Thus, the support of χ is contained in the ring z ∈ R : 3 4 ≤ |z| ≤ 8 3 , and χ is identically equal to 1 on the ring z ∈ R : 4 3 ≤ |z| ≤ 3 2 . The functions ψ and χ enjoy the following important properties

Here, (8.0.5) is used to dene non-homogeneous Sobolev (and Besov) spaces and (8.0.6) is important for the denition of homogeneous Sobolev (and Besov) spaces. We also remark that χ satises the following quasi-orthogonal relation

Let F h and F -1 h be the Fourier transform and the inverse Fourier transform respectively in the horizontal direction. We will also use the notation u = F h u. We introduce the following denitions of the homogeneous dyadic cut-o operators.

Denition 8.0.1. For all tempered distribution u in the horizontal direction (of x variable) and for all q ∈ Z, we set

We refer to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF] and [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] for a more detailed construction of the dyadic decomposition. This denition, combined with the equality (8.0.6), implies that all tempered distributions can be decomposed with respect to the horizontal frequencies as

The following Bernstein lemma gives important properties of a distribution u when its Fourier transform is well localized. We refer the reader to [26, Lemma 2.1.1] for the proof and for other comments.

Lemma 8.0.

We now introduce the function spaces used throughout the paper. As in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we dene the Besov-type spaces B s,0 , s ∈ R as follows.

, where

To end the proof, it remains to estimate A 3,q . Using the support localization properties given in [18, Proposition 2.10], the denition of R h (u,

inequality and Bernstein lemma 8.0.1, we can write

The denition of the B

Thus, as for the term A 1,q , we can perform the following estimates

, where

Here, we remark that we can write the above sum as a convolution product and using Young inequality, if we set 

Here λ > 0 and ρ is a function satisfying (8.0.8), both will be determined later. Applying the operator dened in (8.0.7) to System (8.0.4) and taking into account (8.0.9), we obtain

where |D x | denotes the Fourier multiplier of symbol |ξ|. In what follows, we recall that for the sake of the simplicity, we use C to denote a generic positive constant which can change from line to line and (d q ) q∈Z (resp. (d q (t)) q∈Z ) a generic element of ℓ 1 (Z) such that q∈Z d q = 1 (resp. q∈Z d q (t) = 1).

We will now perform a priori estimates needed to prove Theorem 8.0.5. We remark that the continuity with respect to time variable of the solutions in B s can be proved by a similar argument as in [START_REF] Paicu | Équation anisotrope de Navier-Stokes dans des espaces critiques[END_REF]. We will only focus on estimates in analytic norms. Applying the dyadic operator ∆ h q to the system (8.2.3), then taking the L 2 (S)-scalar product of the rst and the third equations of the obtained system with ∆ h q u ϕ and ∆ h q T ϕ respectively, we get (8.2.4)

and (8.2.5)

Let R > 0. Multiplying (8.2.4) and (8.2.5) with e 2Rt and taking remarking that

we have

Global well-posedness of the 2D non-rotating primitive equations in a thin strip

In this section, we will prove Theorem 8.0.6 and establish the global well-posedness of System (8.0.3) for small analytic data. We will use the same technique as in the previous section but will consider a dierent auxiliary function to control the evolution of the analyticity of the solutions. This auxiliary function is chosen to be adapted to the primitive system (8.0.3). Let Θ : R

where λ > 0 and τ (t) will be determined later. For any function f ∈ L 2 (S), we dene

In what follows, for the sake of the simplicity, we will neglect the index ϵ and write (u

Applying the operator Θ to the system (8.0.3), we obtain

We remark that the pressure term is not really an unknown and can be determined as function of (u Θ , T Θ ) as we did for the hydrostatic limit system (see also [START_REF] Cao | On the well-posedness of reduced 3D primitive geostrophic adjustment model with weak dissipation[END_REF] for more details). We recall also that we always use C to denote a generic positive constant which can change from line to line.

Applying the operator ∆ h q to the system (8.3.1), then taking the L 2 (S) scalar product of the rst three equations of the obtained system with ∆ h q u ϕ , ∆ h q v ϕ and ∆ h q T ϕ respectively and summing up the rst and second equations, we get 1 2

As in the previous section, we will multiply (8.3.2) and (8.3.3) by e 2Rt , then we integrate the obtained equations with respect to the time variable and get, for any 0 < R < 1 2K , (8.3.4)

As in the previous sections, we will use C to denote a generic positive constant which can change from line to line.

Applying the dyadic operator ∆ h q to System (8.4.3), then taking the L 2 (S) scalar product of the rst, second and the third equations of the obtained system with ∆ h q w 1 φ , ∆ h q w 2 φ and ∆ h q θ φ respectively, we obtain (8.4.4)

Integrating (8.4.4) and (8.4.5) with respect to the time variable, we have (8.4.6)

and (8.4.7)

where the terms G i , i = 1, . . . , 5, will be precised and controlled in what follows.

We will now estimate the linear terms on the right-hand side of the above inequalities. First of all, for pressure term, using the incompressibility property ∂ x w 1 φ + ∂ z w 2 φ = 0, we perform an integration by parts and get

For the temperature term, the boundary condition (u

Then, using integration by parts, Poincaré inequality and Bernstein lemma 8.0.1, we have

The goal of the main part of this section is to estimate the nonlinear terms on the right-hand side of (8.4.6) and (8.4.7), which are

with R i φ being dened in (8.4.2). From now on, we will set

where ρ and τ are dened in the previous sections. We remark that, under the hypotheses of Theorems 8.0.5 and 8.0.6, we have a 3 ≤ φ(t, ξ) ≤ min {ϕ(t, ξ), Θ(t, ξ)} .

Before giving the estimates of G q 1 , G q 2 and G q 5 , we remark that we need a slightly dierent version of . More precisely, we will prove the following lemma.

Lemma 8.4.1. Let 0 < s < 1 2 and ϕ : R + × R → R + . There exists a constant C ≥ 1 such that, for any (u, v, w, w), which are dened on R + × S, (u, w, w)| ∂S = 0 and satisfy, for any t ≥ 0,

we have, for any R ≥ 0 and for any q ∈ Z, 

Now, using Poincaré inequality, we can write

.

Then, Cauchy-Schwartz inequality implies

2

2

We remark that the sequence d q ′ q ′ ∈Z with

can be written as a convolution product of two summable sequences if 0 < s < 1 2 . Thus, we obtain

2 )

.

Finally, we remark that the term B 3,q can be controlled in the similar way and we obtain Estimate (8.4.11).

Control of G q 1

We start by observing that we can write

where I q i will be precised and controlled in what follows.

Using Bernstein lemma 8.0.1 and Poincaré inequality, we can write

Then, using Poincaré inequality and Bernstein lemma 8.0.1, we have

For I q 2 , Estimate (8.4.10) of Lemma 8.4.1 implies

The term I q 3 can be controlled in the exact same way as we did to prove Estimate (8.4.11). Indeed, using the Bony decomposition, we can write

Using Poincaré inequality and Bernstein lemma 8.0.1, we can write

Thus, we can control B 1,q in the exact same way as what we did for B 2,q above. Similarly, B 2,q can be controlled in the same way as B 1,q and B 3,q as B 3,q . We obtain

)

)

2 ) .

For I q 4 , using Estimate (8.4.11) of Lemma 8.4.1, we also have

)

)

2 ) .

For the term I q 5 , we will not use Lemma 8.4.1 and we will use a slightly dierent control. We rst recall the following horizontal decomposition into paraproducts and remainders

and we will get

.

(8.4.18)

Summing Estimate (8.4.16), (8.4.17) and (8.4.18) will imply that 

)

2 ) .

(8.4.20)

Control of G q 2

We recall that

Then, we can bound G q 2 as follows G q 2 ≤ J q 1 + J q 2 + J q 3 + J q 4 + J q 5 , where J q i will be precised and controlled in what follows.

Using Young inequality, Sobolev inclusion Ḣ1 z ([0, 1]) → L ∞ z ([0, 1]) and Bernstein lemma 8.0.1, we have

Similarly, we have

and

For J q 4 , we can use similar estimates as in the proof of Estimate (8.4.11) of Lemma 8.4.1. We rst apply Bony's decomposition for the horizontal variable and write

We remark that Lemma 8.1.4 and Bernstein lemma 8.0.1 imply

We also remark that, using Poincaré inequality, Bernstein lemma 8.0.1 and then Cauchy-Schwartz inequality, we have

.

Then, using Young inequality, we get

Cauchy-Schwartz and Poincaré inequalities nally imply

)

Similar estimates also lead to

)

)

.

Summing the above inequalities, we obtain

)

. Now, for J q 5 , using the divergence-free property, we can write v ϵ ∂ z v ϵ = v ϵ ∂ x u ϵ . Thus, J q 5 can be controlled in the exact same way as J q 4 and we get

)

.

We deduce that Now, we recall that we can take the square-root of each term of the resulting inequality, with the cost of a constant multiplier which will be included in the generic constant C. Without loss of generality, we can always consider that C ≥ 2. We obtain

)

)

)

)

Now, from the results of the previous sections, we deduce the existence of a constant M ≥ 1 such that

)

)

≤ M

and we deduce also that, for ∥(u 0 , T 0 )∥

)

≤ 1 4C .

Multiplying (8.4.23) by 2 qs and then summing with respect to q, we obtain

.

Then by taking µ ≥ C 2 , we can complete the proof Theorem 8.0.7. □

which have been studied by many researchers. For the well-posedness of (INS), Kazhikhov in [START_REF] Kazhikhov | Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible uid[END_REF] solved this problem with an additional condition inf ρ 0 > 0 based on the energy method. Then Simon in [START_REF] Simon | Nonhomogeneous viscous incompressible uids: existence of velocity, density, and pressure[END_REF] removed the lower-bound assumption on ρ 0 and constructed a global weak solution of (INS) with nite energy. See also [START_REF] Lions | Mathematical topics in uid mechanics[END_REF] for the general result with variable viscosity. For the case of bounded domain Ω with homogeneous Dirichlet boundary condition for the velocity eld. Ladyºenskaja and Solonnikov in [START_REF] Ladyºenskaja | The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous uids[END_REF] rst addressed the question of unique resolvability. Under the assumptions that u 0 ∈ W 2-2 p ,p (Ω) with p > d, and u 0 is divergence-free and vanishes on ∂Ω, ρ 0 ∈ C 1 (Ω) which is bounded and away from zero, then they proved:

• Global well-posedness in dimension d = 2;

p ,p (Ω), then global well-posedness holds.

Then Abidi in [START_REF] Abidi | Équation de Navier-Stokes avec densité et viscosité variables dans l'espace critique[END_REF] and Danchin in [START_REF] Danchin | Density-dependent incompressible viscous uids in critical spaces[END_REF][START_REF] Danchin | Local and global well-posedness results for ows of inhomogeneous viscous uids[END_REF] studied this well-posedness problem with lower regularity initial data which satises the smallness condition in some critical Besov space. Later, Paicu and Zhang in [START_REF] Paicu | Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system[END_REF] relaxed the smallness condition in the case that only a 0 and the horizontal component u h of the velocity eld are suitable small in some Besov space. Chemin et. al. in [START_REF] Chemin | Global large solutions to 3-D inhomogeneous Navier-Stokes system with one slow variable[END_REF] further improved the result of [START_REF] Paicu | Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system[END_REF] to the critical anisotropic Besov spaces. For more results on the system (INS), one can see [START_REF] Abidi | Existence globale pour un uide inhomogéne[END_REF][START_REF] Abidi | On the well-posedness of 3-D inhomogeneous Navier-Stokes equations in the critical spaces[END_REF][START_REF] Abidi | Well-posedness of 3-D inhomogeneous Navier-Stokes equations with highly oscillating initial velocity feild[END_REF][START_REF] Chen | Fujita-Kato theorem for the 3-D inhomogeneous Navier-Stokes equations[END_REF]4244,[START_REF] Gui | Large global solutions to the 3-D inhomogeneous Navier-Stokes equations[END_REF][START_REF] Huang | Global well-posedness of incompressible inhomogeneous uid systems with bounded density or non-Lipschitz velocity[END_REF][START_REF] Paicu | Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system[END_REF][START_REF] Paicu | Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density[END_REF][START_REF] Zhang | Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system[END_REF] and references therein.

When the density is constant in System (IMHD), it degenerates to the following classical homogeneous MHD system:

For this system, Duvaut and Lions in [START_REF] Duvaut | Inéquations en thermoélasticité et magnétohydrodynamique[END_REF] established the local existence and uniqueness of the solution in the classical Sobolev spaces H s (R d ), s ≥ d, and they also proved the global existence of the solution for small initial data. Sermange and Temam [START_REF] Sermange | Some mathematical questions related to the MHD equations[END_REF] proved the global unique solution in dimension two.

For the MHD system with partial Laplace dissipation, Jiu and Niu [START_REF] Jiu | Mathematical results related to a two-dimensional magnetohydrodynamic equations[END_REF] proved the local well-posedness in Sobolev space H s (s ≥ 3) with only Laplace dissipation in the velocity equation. Later, this result was generalized to the lower regularity initial data in [START_REF] Chemin | Local existence for the non-resistive MHD equations in Besov spaces[END_REF][START_REF] Feerman | Higher order commutator estimates and local existence for the non-resistive MHD equations and related models[END_REF][START_REF] Feerman | Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces[END_REF][START_REF] Li | Local existence and uniqueness for the non-resistive MHD equations in homogeneous Besov spaces[END_REF][START_REF] Wan | On the uniqueness for the 2D MHD equations without magnetic diusion[END_REF]. For the global solution with large initial data, due to the well-known problem of the global well-posedness of the 3D incompressible Navier-Stokes equations is still open, so the case of the MHD system is more dicult and also open.

Many recent papers study the stability problem of the 3D MHD system near some equilibrium state, which can be found in [START_REF] Abidi | On the global solution of 3D MHD system with initial data near equilibrium[END_REF][START_REF] Cai | Global well-posedness of the incompressible magnetohydrodynamics[END_REF][START_REF] Deng | Large time behavior of solutions to 3-D MHD system with initial data near equilibrium[END_REF][START_REF] He | On global dynamics of three dimensional magnetohydrodynamics: nonlinear stability of Alfvén waves[END_REF][START_REF] Lin | Global small solutions to 2-D incompressible MHD system[END_REF][START_REF] Wei | Global well-posedness of the MHD equations in a homogeneous magnetic eld[END_REF] and references therein.

The present chapter is devoted to studying the full inhomogeneous MHD system (IMHD). Compared with the Navier-Stokes equations, the dynamic motion of the uid and the magnetic eld interact with each other. The hydrodynamic and electrodynamics eects in the motion are strongly coupled.

Hence the problems of inhomogeneous MHD system are considerably more complicated. Motivated by Lions' work [START_REF] Lions | Mathematical topics in uid mechanics[END_REF] where the global existence result for the density-dependent Navier-Stokes equations was obtained, Gerbeau and Le Bris [START_REF] Gerbeau | Existence of solution for a density-dependent magnetohydrodynamic equation[END_REF] (see also Desjardins and Le Bris [START_REF] Desjardins | Remarks on a nonhomogeneous model of magnetohydrodynamics[END_REF]) proved a global-in-time existence of a weak solution for the density-dependent MHD equations in a bounded domain. The global existence of strong solutions with small initial data in the critical Besov spaces was established by Abidi and Paicu [START_REF] Abidi | Global existence for the magnetohydrodynamic system in critical space[END_REF]. Chen, Tan and Wang [START_REF] Chen | Strong solutions to the incompressible magnetohydrodynamic equations[END_REF] extended the local existence in presence of vacuum by the Galerkin method, energy method and the domain expansion technique. Huang and Wang [START_REF] Huang | Global strong solution to the 2-D nonhomogeneous incompressible MHD system[END_REF] proved the existence and uniqueness of a global strong solution for the initial-boundary problem with initial vacuum in dimension two by using a critical Sobolev inequality of logarithmic type. Recently, Gui in [START_REF] Gui | Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity[END_REF] proved that the 2D MHD equations with a constant viscosity are globally well-posed for a generic family of variations of the initial data and an inhomogeneous electrical conductivity.

Notations. In all that follows, we shall denote

we mention that the space B 0 p is critical. Similar as (9.1.1), we can dene the anisotropic Chemin-Lerner space as:

The space L q ([0, T ]; B s1,s2 p

) may be linked with the more classical space L q ([0, T ]; B s1,s2 p ) via the Minkowski inequality that:

Then we present our main results of this paper. The rst theorem following obtains the global wellposedness for homogeneous MHD system (MHD).

Theorem 9.1.

Fourier multiplier with symbol |ξ h | -1 . Then there exist some suciently small positive constant ε 0 and universal positive constant

where

Then System (MHD) has a unique global solution (u

Remarque 9.1.1. We mention (9.1.4) is a relative smallness condition that is triple-exponential in

Then we consider the inhomogeneous (MHD) system (IMHD). In the following, we suppose that the initial density veries inf ρ 0 (x) > 0 on R 3 , and thus, by the maximum principle for the transport equation, we have inf ρ(t, x) > 0 on R 3 . Then we can use the transformation a ≜ 1 ρ -1 which allows us the following system:

The next theorem shows the global well-posedness result associated with the system (IMHD').

Theorem 9.1.2. Let u 0 = (u h

p , where Λ -1 h is the Fourier multiplier with symbol |ξ h | -1 . Then there exist some suciently small positive constant ε 0 and universal positive constant C such that if (a 0 , u 0 , b 0 ) satises the smallness condition (9.1.5)

Then system (IMHD') has a unique global solution

Let us end this section with the notations that we shall use in this context.

Throughout this paper, C stands for some real positive constant which may vary from line to line. By a ≲ b, we mean that there is a uniform constant C, such that a ≤ Cb. We denote by ℓ 1 the space of summable sequence with the norm ∥ {b q } ∥ ℓ 1 = q |b q |. Finally, ∥f (x)∥ L p (R 3 ) denotes the norm in the Lebesgue space

denotes the norm in the anisotropic Lebesgue space L q v L p h (R 3 ), and

Preliminaries

In this section, we shall introduce some useful lemmas which will be used frequently in the proof of our main results. We rst recall the following anisotropic Bernstein inequalities from [START_REF] Chemin | Remarks on the global solutions of 3-D Navier-Stokes system with one slow variable[END_REF][START_REF] Paicu | Équation anisotrope de Navier-Stokes dans des espaces critiques[END_REF].

v ) .

To make connections between anisotropic Besov spaces and the classical homogeneous Besov spaces, we need the following lemma: 

Then for f in B s1,σ1 q (R 3 ) and g in B s2,σ2 p (R 3 ), the product f g belongs to B s1+s2-2 q ,σ1+σ2-1 q p (R 3 ), and ∥f g∥

Remark 9.2.1. From Lemma 9.2.3, we can obtain the following special cases:

Then we provide a lemma which gives some interpolation inequalities in the anisotropic Besov space. Lemma 9.2.4. Assume f and g belong to B 0 p ∩ B 2 p , then we have

Proof. First we verify (9.2.6), according the denition of B 1 p , (9.2.8)

According to the denition of the anisotropic Besov space, ∥f ∥

Inserting the estimates (9.2.9) and (9.2.10) into (9.2.8) leads to (9.2.6).

Next we prove (9.2.7). According to product law (9.2.5) and Lemma 9.2.1,

Then by (9.2.6), we obtain

which completes the proof of this lemma.

In order to estimate the pressure term in System (IMHD'), we need the following lemma which in the case of the density a is small. The proof can be found in Lemma 2.4 of [START_REF] Chemin | Global large solutions to 3-D inhomogeneous Navier-Stokes system with one slow variable[END_REF].

Lemma 9.2.5. Let p ∈ (1, 4), we consider a function ρ such that ∥ρ∥

Then, we provide a lemma which is a classical estimate for transport equation (See Section 3.2 of [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF] for instance).

Lemma 9.2.6. Let p be in [1, ∞] and s ∈ (0, 1). Then given an initial data a 0 in B s p (R 3 ) and a vector eld u in L 1 ([0, T ]; Lip(R 3 )) with div u = 0 , then the unique solution a of

From (Quasi-2D MHD), we know (9.3.6)

Similarly from (9.3.5), using divergence-free condition of v,

We shall give the estimate of the solution(v, c) of System (9.3.5). We start rst by giving a proposition that shows the global estimate in time for the couple (v h , c h ) of System (9.3.5). For that, we dene two functions corresponding to (v h , c h )

and µ be a positive constant will be dened later and taken large enough. Then we have the following proposition. Then we have for any t > 0,

where

where

The constant µ is large number and ϵ suitable small which will be veried exactly later in the proof of Theorem 9.1.1 in this section. Remark 9.3.1. V h µ and C h µ in the above proposition will be bound by the term µ t 0 f (τ )∥v h µ (t)∥ B 0 p dτ on the left-hand-side of (9.3.9) and µ t 0 f (τ )∥c h µ (t)∥ B 0 p dτ on the left-hand-side of (9.3.10) with suciently large µ.

Remark 9.3.2. V h vis and C h vis in the above proposition will be bounded by the viscous dissipation terms in the left hand side of (9.3.9) and (9.3.10).

Next we will give a proposition which shows the estimate for the couple (v 3 , c 3 ), to do that we dene the auxiliary function v 3 λ and c 3

and λ be a positive constant will be dened later and taken large enough.

Then we have the following proposition. ) which satises the divergence-free condition. Then we have for any t > 0, ).

Let us consider T M HD dened by (9.3.14)

where η > 0 will be chosen suciently small later. Let λ > 16C, ϵ < min{ c0 16C , c0 16η } in Proposition 9.3.3, absorbing the terms in

λ by the left-hand-side of (9.3.12) and (9.3.13), one can deduce for any T > 0,

Combining with the global bound of u h and b h in Proposition 9.3.1, we have

where the constant C is independent of time T .

Next we move to estimate v h µ and c h µ . Let µ > 16C and ϵ < c0

16C in Proposition 9.3.2, by using the denition of v h µ and c h µ and absorbing the terms in V h µ , V h vis , C h µ , C h λ by the left-hand-side of (9.3.9) and (9.3.10), we have

.

).

(9.3.16)

Recall that we have obtained the global bounded of u h and b h in Proposition 9.3.1 and also the estimate of the couple (v 3 , c 3 ) in (9.3.15). According to the choosing of (v h 0 , c h 0 ), we have

where

We now claim that T ⋆ = +∞ if the initial data (u H 0 , b H 0 ) satises the smallness condition (9.1.4). If not, from (9.3.17) and (9.1.4), we can infer

In particular if we choose ε 0 in (9.1.4) small enough such that ε 0 ≤ η 2C0 , one has

which contradicts the induction hypothesis (9.3.14), and which in turn shows that T ⋆ = ∞ under the assumption (9.1.4). This completes the proof of Theorem 9.1.1.

In the rest of this section we focus on the inhomogeneous MHD system. For this case, we only need to decompose the solution of System (IMHD') into a solution of the homogeneous MHD system plus a solution of the perturbed system. More precisely, dening R 1 = u -u M HD , R 2 = b -b M HD , q = p -p H , u M HD 0 = u 0 and b M HD 0 = b 0 taking the dierence between (IMHD') and (MHD), we can obtain the remaining term (R, q) satises the following system:

Based on the result in Theorem 9.1.1, the proof of Theorem 9.1.2 is transferred to estimate the remainder term (a, R 1 , R 2 ) in System (9.3.20).

Proof of Theorem 9.1.2. Let us denote T ⋆⋆ the maximal time of existence of the solution (u, b, a) to (IMHD') associated with the smooth initial data (u 0 , b 0 , a 0 ). Consider T IM HD dened by

where α > 0 will be chosen suciently small later. Let us dene the functions R 

Applying the dyadic operator ∆ h q ∆ v j to (9.3.21), and taking the L p estimate, we deduce from Lemma 9.2.1 that for some positive constant c 0 ,

Simplifying by ∥∆ h q ∆ v j (R 1,κ , R 2,κ )∥ p-1 L p in the above inequality, and integrating from 0 to T in time, multiplying by 2 (-1+ 2 p )q 2 1 p j and then taking summation in q, j, we obtain

By Lemma 9.2.5, we can deduce that

Thus now we only need to estimate g 1,κ and g 2,κ . We start by showing the estimate of g 2,κ , using Lemma 9.2.4 and Young's inequality,

Along the same way, we have

and

Then summing up the estimates (9.3.23)-(9.3.25) we obtain the following estimate for g 2,κ ,

Now we move to estimate g 1,κ , recall that

In the same manner we can obtain the estimate of the terms (u M HD • ∇R 1 ) κ , (R 1 • ∇u M HD ) κ and (R 1 • ∇R 1 ) κ , then we still need to estimate the other terms. Denote that

By using Lemma 9.2.4 and Young's inequality we can obtain

.3.27)

To estimate f 2,κ , using the product law (9.2.5), Lemmas 9.2.2-9.2.4 and Young's inequality, 

Then summing the estimates (9.3.27)(9.3.30) up, we obtain the following estimate for g 1,κ ,

L p , and using Lemma 9.2.1, -

for some positive constant c 0 > 0, we obtain

and

Using the divergence-free condition div h u h = 0, we have

where the operator ∇

Integrating (9.4.5) and (9.4.6) from 0 to T in time and then multiplying the resulting equation by 2 (-1+ 2 p )q 2 1 p j and taking the summation in q, j, we obtain

(9.4.9)

By using the product law, we nd

Then according to the global bound (9.3.1), (9.3.2) and the interpolation in Besov space, we have Lemma 9.2.1 that there exists some positive constant c 0 ,

Integrating from 0 to t in time, multiplying by 2 (-1+ 2 p )q 2 1 p j and then taking the summation in q, j, we obtain

According to the denition of the function G µ , we have

where

where

According to the product law (9.2.5) and Lemma 9.2.4, we have

Then by summing the resulting estimates of G 1,1 and G 1,2 and integrating over time, we obtain

where we have used Young's inequality with a positive constant ϵ > 0 suitable small.

The same conclusion can be drawn for G 2 ,

For G 3 , similarly we have To conclude, we integrate (9.5.3) from 0 to t in time and then combining with the above estimates (9.5.4), (9.5.5), (9.5.6) 

dτ.

Combining the estimate (9.5.8) with (9.5.2) we establish the inequality (9.3.10) of the Proposition 9.3.2. Now we show the rst estimate (9.3.9) of Proposition 9.3.2, which we can deduce from Systems (9.3.5) and (9.3.8) that v h µ veries the following equation, ∂ t v h µ + µv h µ -∆v h µ = L µ , (9.5.9)

with

Applying the dyadic operator ∆ h q ∆ v j to (9.5.9), and taking the L p estimate, we deduce from Lemma 9.2.1 that, for some positive constant c 0 > 0,

Simplify by ∥∆ h q ∆ v j v h µ (t)∥ p-1 L p in our equation, and integrating from 0 to t in time, multiplying by 2 (-1+ 2 p )q 2 1 p j and then taking the summation in q, j, we obtain ∥v h µ (t)∥ L ∞ (0,t;B 0 p ) + µ where

We start rst to give the estimate of L 1 ,

where

Similar as the estimate of G where in the last step we used Young's inequality with an arbitrary positive constant ϵ > 0 which will be chosen suitable small.

Along the same way, we can bound L 2 as To conclude, it remains to estimate the last term L 5 . According to the denition of q in (9.3.7) 

and

Along the same way, we have

).

We 

.

To conclude, we integrate (9.5.11) from 0 to t in time and then combining with the above estimates (9.5.12), (9.5.13), (9.5.14) Combining the estimate (9.5.17) with (9.5.10) we establishing the second inequality (9.3.9), which completes the proof of Proposition 9.3.2. 9.6 Proof of Proposition 9.3.3 In this section, we will give the proof of Proposition 9.3.2 which shows the global estimate for the vertical component (v 3 , c 3 ) of system (MHD).