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Un diagraphe @' est dit sous -diagraphe de @ si (@ 0 )1 (@) et , (@ 0 ) 1 , (@) Soit 1 (@), alors on désigne par @ < > le sous -diagraphe de @ induit par si (@ < >) = et, pour , ∈ , ( , ) ∈ , (@ < >) si et seulement si ( , ) ∈ , (@) Pour * ∈ (@), @ -* est le sous-diagraphe induit par (@) -{*} et @est le sous-diagraphe induit par (@) -.

Un diagraphe est dit chemin orienté si, en supprimant les orientations de ses arcs, on obtient un graphe qui est un chemin.

Un chemin orienté P est dit direct si tous ses arcs sont orientés du même sens. Puisque ( , ) ∈ , ( ), on dit que = (2,1,3).

Si 0 = ← ← H → I ← K ← L ← M , on dit que 0 = B (2.1.3)Q( . ) ∈ , ( )R
Un chemin orienté est dit antidirect si tous ses blocs ont une longueur égale à un.

Deux chemins orientés sont dits isomorphes s'ils sont du même type.

Exemple : 0 = → → H ← I ← K ← L = (2,3)

et 0 = → → H ← I ← K ← L = (2,3)
Dans ce cas, ≡ 0

Le complément @ T d'un diagraphe @ est le diagraphe obtenu à partir de @ en inversant tous ses arcs.

E&Y = _ 1 %& Q* 6 . * X R ∈ , ( ) 0 %& Q* X , * 6 R ∈ , ( ) !" & = Y
Ensuite, on a donné quelques propriétés concernant le tournoi et qui vont être utilisées dans la suite de la thèse.

théorème de Camion :

Un tournoi est fortement connexe s'il contient un circuit Hamiltonien.

Par conséquence, un tournoi qui n'est pas fortement connexe peut être représenté de la manière suivante : = ` ` … `a avec :

1) ` , ` … `a sont les composants forts de . Soit un tournoi et un chemin orienté, alors :

d! & ↔ d! & f ↔ f d! & ↔ f d! & f
En utilisant ce théorème, on peut supposer que ( 6 , 6 ) ∈ , ( ) car sinon on prouve que f est contenu dans sachant que ( 6 , 6 ) ∈ , ( f ) ↔ ( 6 , 6 ) ∈ , ( ) On a commencé la preuve par deux lemmes concernant les origines des chemins orientés et les propriétés des tournois qui appartiement à H,K,M .

Ensuite, on a défini un sommet * de tel que / (*) = F B ( ) = & et on a posé = 〈 B ( )〉 = 〈 ( )〉

Le but est de démontrer que contient = … 6 → 6 …

On a utilisé l'induction sur l'ordre n de pour prouver que contient .

D'abord on a démontré que contient si F B ( ) = 0 puis si ≤ 4.

Après, on a étudié le cas où ≥ 5.

En supposant que = … 6 → 6 … , on a supposé que le chemin 0 = 6 → 6 … = ( , … i )

C'est-à-dire ' est composé de 8 blocs et est la longueur du premier bloc de '. Enfin, étudie le cas où (* 6 ) ∩ = ∅ En supposant que pour toute copie … 6 de … 6 dans , ( 6 ) ∩ = ∅, ce cas est étudié selon les deux situations suivantes : (* 6 , * 6B ) ∈ , ( ) ou (* 6B , * 6 ) ∈ , ( ).

Sachant que

On aurait dû résoudre ce problème en supposant que ∆ ( ) ≥ ∆ ( f ).

Après cette étude, on démontre que contient une copie de si ( 6 , 6 ) ∈ , ( ). Sinon, ( 6 , 6 ) ∈ , ( ) donc ( 6 , 6 ) ∈ , ( f ). Par suite, contient une copie de ( f ). Pour un chemin orienté = … 6 6 … , ! va démontrer que contient une copie de sans les suivants : ( 6 , 6 ) ∈ , ( ) ou ( 6 , 6 ) ∈ , ( ).

On va travailler par l'induction sur l'ordre n de .

Si ( 6 , 6 ) ∈ , ( ), alors la preuve est donnée dans le chapitre 3.

Si ( 6 , 6 ) ∈ , ( ), alors = … 6 ← 6 … Ayant démontré que contient dans les deux cas : ( 6 , 6 ) ∈ , ( ) ou ( 6 , 6 ) ∈ , ( ) sauf si ∈ H,K,M et est un chemin antidirect, alors la preuve de la conjecture de Rosenfeld est achevée. The basic denitions and concepts of Graph Theory are so easy to understand. In order to help the reader to be more familiar with the terminology and the notations used in this thesis, I present some denitions and properties in this chapter.

1.1. Graphs:

In Graph Theory, a graph is a mathematical structure composed from a set of vertices and a set of edges connecting some pairs of them.

Denitions and Basic Properties:

A graph is a structure consisting of a set of points called vertices and a set of lines called edges. Two vertices can be connected by an edge.

Let A be a set of elements we denote by |A| the cardinality of A.

Let G be a graph. We denote by V (G) the set of vertices of G, by E(G) the set of edges of G, and by v(G) and e(G) the cardinalities of V (G) and E(G) respectively v(G) = |V (G)| and e(G) = |E(G)|.

Let u and v be two vertices of G. If u and v are joined by an edge, they are said to be adjacent, and we denote by uv the edge joining u and v.

Example: Let v be a graph such that

V (G) = {v 1 , v 2 , v 3 , v 4 } and E(G) = {v 1 v 2 , v 1 v 3 , v 3 v 4 } then v(G) = |V (G)| = 4 and e(G) = |E(G)| = 3. G = v 1 v 2 v 3 v 4 Figure 1.1
The neighbourhood of a vertex v in a graph is the set of vertices that are adjacent to v in G and is denoted by N G (v). The cardinality of N G (v) is denoted by d G (v) and is called the degree of v in G. d G (v) = |N G (v)|. When there is no room for confusion, we use the notation N (v) and d(v) instead of N G (v) and d G (v) respectively.

Example:

G = v 1 v 2 v 3 v 4 v 5 v 6 Figure 1.2 N (v 1 ) = {v 2 , v 3 , v 6 } and d(v 1 ) = 3. N (v 2 ) = {v 1 } and d(v 2 ) = 1. N (v 3 ) = {v 1 , v 4 , v 6 } and d(v 3 ) = 3. N (v 4 ) = {v 3 } and d(v 3 ) = 1. N (v 5 ) = ∅ and d(v 5 ) = 0. N (v 6 ) = {v 1 , v 3 } and d(v 6 ) = 2.

Types of graphs:

A complete graph is a graph in which every pair of vertices is joined by an edge.

Let G be a complete graph of order n, then for any vertex v in G, d(v) = n -1.

Example:

G = v 1 v 2 v 3 v 4 Figure 1.3 V (G) = {v 1 , v 2 , v 3 , v 4 }. E(G) = {v 1 v 2 , v 1 v 3 , v 1 v 4 , v 2 v 3 , v 2 v 4 , v 3 v 4 }. Since G is of order 4, then d(v 1 ) = d(v 2 ) = d(v 3 ) = d(v 4 ) = 3.
An empty graph is a graph in which the set of edges is empty.

Example:

G = v 1 v 2 v 3 v 4 Figure 1.4 V (G) = {v 1 , v 2 , v 3 , v 4 } and E(G) = ∅. d(v 1 ) = d(v 2 ) = d(v 3 ) = d(v 4 ) = 0. A graph G ′ is said to be a subgraph of a graph G if V (G ′ ) ⊆ V (G) and E(G ′ ) ⊆ E(G). A subgraph G ′ of G is said to be an induced subgraph of G if for every u, v ∈ V (G), uv ∈ E(G ′ ) if and only if uv ∈ E(G). Example: G = v 1 v 2 v 3 v 4 v 5 Figure 1.5 V (G) = {v 1 , v 2 , v 3 , v 4 , v 5 } and E(G) = {v 1 v 2 , v 1 v 3 , v 1 v 4 , v 1 v 5 , v 2 v 3 , v 3 v 4 } G = v 1 v 2 v 3 v 4 Figure 1.6 G ′ is a subgraph of G since: V (G ′ ) = {v 1 , v 2 , v 3 , v 4 } ⊆ V (G) and E(G ′ ) = {v 1 v 2 , v 2 v 3 , v 3 v 4 } ⊆ E(G). G ′′ = v 1 v 2 v 3 v 4 Figure 1.7 Since V (G ′′ ) = {v 1 , v 2 , v 3 , v 4 } and E(G ′′ ) = {v 1 v 2 , v 2 v 3 , v 3 v 4 , v 1 v 4 , v 1 v 3 }, then G ′′ is an induced subgraph of G. Since G ′ and G ′′ are two subgraphs of G, then we may say that d G (v 1 ) = d(v 1 ) = 4, d G ′ (v 1 ) = 1 and d G ′′ (v 1 ) = 3. Let A be a subset of V (G). We denote by G < A > the subgraph of G induced by A, with V (G < A >) = A. Example: G = v 1 v 2 v 3 v 4 Figure 1.8 Let A = {v 1 , v 2 , v 3 }, then G < A >= G < {v 1 , v 2 , v 3 } >= v 1 v 2 v 3 Let G be a graph and let v ∈ V (G), then G -v is the subgraph of G induced by V (G) -{v}. Let e = xy ∈ E(G). Then G -e is the subgraph of G such that V (G -e) = V (G) and E(G -e) = E(G) -{e}.
Let S be a subset of V (G), we denote by G-S the subgraph of G induced by V (G)-S.

Example:

G = v 1 v 2 v 3 v 4 Figure 1.9 G -v 4 = v 1 v 2 v 3 Figure 1.10 G -v 1 v 2 = v 1 v 2 v 3 v 4 Figure 1.11 A graph P is said to be a path if V (P ) = {v 1 , v 2 , ...v n } and E(P ) = {v i v i+1 , 1 ≤ i ≤ n -1}.
In this case, v 1 and v n are called the ends of P and P is said to be a v 1 v n -path.

Let P be a path, the order of P is equal to v(P ) and the length of P is equal to e(P ) or v(P ) -1.

Example: P = v 1 -v 2 -v 3 -v 4 -v 5 -v 6 . V (P ) = {v 1 , v 2 , v 3 , v 4 , v 5 , v 6 } and E(P ) = {v 1 v 2 , v 2 v 3 , v 3 v 4 , v 4 v 5 , v 5 v 6 }.
The path P is of order 6 and length 5.

A graph C is said to be a cycle if V (C) = {v 1 , v 2 , ..., v n } and E(C) = {v n v 1 } ∪ {v i v i+1 , 1 ≤ i ≤ n -1}. Example: G = v 1 v 2 v 3 v 4 v 5 Figure 1.12 V (C) = {v 1 , v 2 , v 3 , v 4 , v 5 } and E(C) = {v 1 v 2 , v 2 v 3 , v 3 v 4 , v 4 v 5 , v 5 v 1 }.
An acyclic graph is a graph that doesn't contain any cycle as a subgraph. A tree is an acyclic connected graph.

Let T be a tree. Then, e(T ) = v(T ) -1 and for any pair of vertices u, v ∈ V (T ), T contains a unique uv-path.

Example:

T = v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 Figure 1.13
Let S ⊆ V (G). We may say that S is a stable of G if for every pair of vertices u and v in s, uv / ∈ E(G). The stability of G is the cardinality of a maximal stable of G and is denoted by α(G).

Connected Graphs:

A graph G is said to be connected if for any pair x, y ∈ V (G), G contains an xy-path. In this case, the distance between x and y is equal to the length of the xy-path of minimal order and is denoted by d(x, y).

Example:

G = v 1 v 2 v 3 v 4 Figure 1.14 d(v 1 , v 2 ) = 1, d(v 1 , v 4 ) = 2. A connected component of a graph G is a connected subgraph of G which is maximal with respect to inclusion. If G is a connected graph, then the only connected compo- nent of G is G itself. Else, G is the union of its connected components. 1.1.4. Isomorphisms of Graphs: An isomorphism of graphs G and G ′ is a bijection f betweenV (G) and V (G ′ ). f : V (G) → V (G ′ ) such that for u and v ∈ V (G), u v ∈ E(G) if and only if f (u)f (v) ∈ V (G ′ ). Example: G = u v w G ′ = u ′ v ′ w ′ f : V (G) → V (G ′ ) such that f (u) = u ′ , f (v) = f (v ′ ), f (w) = w ′
In this case, f is an isomorphism of graphs G and G ′ .

Digraphs:

Digraphs are mathematical structures composed from vertices that represent a set of objects, and oriented lines that connect some of these vertices. These oriented lines are called arcs.

Denitions and Basic Properties:

A digraph is a pair (V (D), E(D)) such that V (D) is the set of vertices of D and E(D) is the set of arcs of D. For x, y ∈ V (D), an arc is an oriented pair (x, y). We denote by v(D) and e(D) the cardinalities of V (D) and E(D) respectively. The order of a digraph D is v(D), and we say that D is a digraph on v(D) vertices.

Example:

D = v 1 v 2 v 3 v 4 Figure 1.15 V (D) = {v 1 , v 2 , v 3 , v 4 } and E(D) = {(v 1 , v 2 ), (v 1 , v 3 ), (v 2 , v 3 ), (v 2 , v 4 ), (v 3 , v 4 )}. v(D) = |V (D)| = 4 and e(D) = |E(D)| = 5.
A digraph D can be deduced from a graph G by providing orientations to its edges. In this thesis, if for a pair u and v of vertices in V (D), (u, v) ∈ E(D), then (v, u) / ∈ E(D). In other words, there exists at most one arc joining u and v for any u, v ∈ V (D).

Moreover, there is no arc joining a vertex to itself.

Let D be a digraph, we denote by G(D) the underlying graph of D, that is the graph obtained from D by ignoring the direction of the arcs. In other words,

V (G(D)) = V (D) and if (u, v) ∈ E(D), then uv ∈ E(G(D)). Example: If D = v 1 v 2 v 3 v 4 then D = v 1 v 2 v 3 v 4 . V (D) = {v 1 , v 2 , v 3 , v 4 } = V (G). E(D) = {(v 1 , v 2 ), (v 2 , v 3 ), (v 2 , v 4 ), (v 3 , v 4 )} and E(G(D)) = {v 1 v 2 , v 2 v 3 , v 2 v 4 , v 3 v 4 }. Let v ∈ V (D). The out-neighbourhood of v in D denoted by N + D (v), is the set N + D (v) = {u ∈ N (D), (v, u) ∈ E(D)}. The cardinality of N + D (v) is said to be the out-degree of v and is denoted by d + D (v). Similarly, the in-neighbourhood of v in D is the set N - D (v) = {u ∈ V (D), (u, v) ∈ E(D)}. The cardinality of N - D (v
) is said to be the in-degree of v and is denoted by d - D (v). When we are working in one digraph D, we can use the notations

N + (v), d + (v), N -(v) and d -(v) instead of N + D (v), d + D (v), N + D (u) and d - D (u).
Example:

D = v 1 v 2 v 3 v 4 v 5 Figure 1.16 N + (v 1 ) = {v 2 , v 4 , v 5 }, d + (v 1 ) = |N + (v 1 )| = 3 N -(v 1 ) = ∅, d -(v 1 ) = 0 N + (v 2 ) = {3}, d + (v 2 )=1 N -(v 2 ) = {v 1 , v 5 }, d -(v 2 ) = 2 Let D be a digraph, then: ∆ + (D) = M ax{d + (v), v ∈ V (D)}. δ + (D) = M in{d + (v), v ∈ V (D)}. ∆ -(D) = M ax{d -(v), v ∈ V (D)}. δ -(D) = M in{d -(v), v ∈ V (D)}. 1.2.2. Types of Digraphs: A digraph D ′ is said to be a subdigraph of D if V (D ′ ) ⊆ V (D) and E(D ′ ) ⊆ E(D).
Let S ⊆ V (D). We denote by D < S > the subdigraph induced by S, verifying that for every pair of vertices u, v ∈ S, (u, v) ∈ E(D < s >) if and only if (u, v) ∈ E(D).

Example:

D = v 1 v 2 v 3 v 4 v 5 Figure 1.17 V (D) = {v 1 , v 2 , v 3 , v 3 , v 5 } and E(D) = {(v 1 , v 2 ), (v 2 , v 3 ), (v 1 , v 3 ), (v 2 , v 4 ), (v 3 , v 4 ), (v 4 , v 5 )}. Let D ′ = v 1 v 2 v 3 Figure 1.18 D ′ is a subdigraph of D since V (D ′ ) = {v 1 , v 2 , v 3 } ⊆ V (D) and E(D ′ ) = {(v 1 , v 2 ), (v 2 , v 3 )} ⊆ V (D). Let S = {v 1 , v 2 , v 3 }, then D < S >= v 1 v 2 v 3 . Let S ⊆ V (D) and v ∈ V (D) -S (v ∈ V (D) and v / ∈ S). Then D < S > +v = D < S ∪ {v} >. Let S ′ ⊆ V (D) -S such that S ′ = {v 1 , v 2 , ..., v n }. Then D < S > +{v 1 , v 2 , ..., v 3 } = D < (S ∪ S ′ ) >. Example: D = v 1 v 2 v 3 v 4 v 5 v 6 Figure 1.19 For S = {v 1 , v 2 , v 3 }: D < S >= v 1 v 2 v 3 D < S > +v 4 = v 1 v 2 v 3 v 4 D < S > +{v 4 , v 5 } = v 1 v 2 v 3 v 4 v 5 . A digraph C is said to be a directed cycle or circuit if V (C) = {v 1 , v 2 , ..., v n } and E(C) = {(v n , v 1 ) ∪ (v i , v i+1 ), 1 ≤ i ≤ n -1}. C = v 1 v 2 v 3 ... v n-1 v n Figure 1.20

Oriented Paths:

A digraph P is said to be an oriented path if its underlying graph G(P ) is a path. In this case, the arcs of P can have any orientations, and a block of P is a directed path which is maximal with respect to inclusion. Oriented paths can be classied by their number of blocks.

Let P = x 1 x 2 ...x n be an oriented path. x 1 and x n are the extremities of P , x 1 is its origin and v n is its end. The length of P , l(P ), is the number of its arcs, so l(P ) = n -1. P is said to be of type P (b 1 , ..., b m ) and we write

P = P (b 1 , ..., b m ), if P is composed of m successive blocks B 1 , ..., B m , such that l(B i ) = b i . Moreover, we write P = P + (b 1 , ..., b m ) if (x 1 , x 2 ) ∈ E(P ). So P = x 1 → x 2 ...x b1+1 ← x b1+2 ... ← x b1+b2+1 → x b1+b2+2 ...x n , B 1 = x 1 → x 2 ...x b1+1 , B 2 = x b1+1 ...x b1+b2 ← x b1+b2+1 , ... x 1 x 2 ...x b1+1 , x b1+1 ...x b1+b2+1 , ... are directed paths. Else, (x 2 , x 1 ) ∈ E(P ) and P = P -(b 1 , ..., b m ). In this case, P = x 1 ← x 2 ... ← x b1+1 → x b1+2 ... → x b1+b2+1 ...x n , B 1 = x 1 ← x 2 ... ← x b1+1 , B 2 = x b1+1 → x b1+2 → ...x b1+b2+1 . Examples: P 1 = x 1 → x 2 → x 3 ← x 4 ← x 5 ← x 6 ← x 7 = P + (2, 4), P 1 is a path of two blocks. P 2 = x 1 ← x 2 ← x 3 ← x 4 → x 5 → x 6 → x 7 ← x 8 = P -(3, 3, 1). P 2 is a path of three blocks.
An oriented path P is said to be a directed path if

V (P ) = {v 1 , v 2 , ..., v k } and E(P ) = {(v i , v i+1 ), 1 ≤ i ≤ k -1}.
In this case, P is said to be a v 1 v k -directed path, v 1 and v k are said to be its extremities, v 1 is said to be its origin and v k is its end. The length of P is equal to k -

1. P = v 1 → v 2 → v 3 ... → v k-1 → v k . P is said to be antidirected if each block of P is of length 1. Examples: P 1 = x 1 → x 2 ← x 3 → x 4 ← x 5 → x 6 ← x 7 = P + (1, 1, 1, 1, 1, 1) is an antidirected path. P 2 = x 1 ← x 2 → x 3 ← x 4 = P -(1, 1, 1) is an antidirected path. Remark 1.1. Let P = x 1 x 2 ...x n be an antidirected path. If n is an odd integer, then if (x 1 , x 2 ) ∈ E(P ), (x n , x n-1 ) ∈ E(P ). Else, (x 2 , x 1 ), (x n-1 , x n ) ∈ E(P ). If n is an even integer, then, if (x 1 , x 2 ) ∈ E(P ), then (x n-1 , x n ) ∈ E(P ). Else, (x 2 , x 1 ), (x n , x n-1 ) ∈ E(P ). If P = x 1 ...x s = P + (b 1 , ..., b m ) (Resp. P -(v 1 , ..., b m )) and P ′ = y 1 ...y s = P + (b 1 , ..., b m ) (Resp. P -(b 1 , ..., b m )) then we write P ≡ P ′ . Furthermore, if we write x 1 ...x s ≡ x ′ 1 ...x ′
s , then the mapping:

f : V (P ) → V (P ′ ) is an isomorphism x i → f (x i ) = x ′ i Example: If P = x 1 → x 2 → x 3 ← x 4 = P + (2, 1
) and P ′ = y 1 → y 2 → y 3 ← y 4 = P + (2, 1), then P ≡ P ′ .

Let P = x 1 ...x n be an oriented path. Set P = x n ...x 1 .

Example:

P = x 1 → x 2 → x 3 ← x 4 → x 5 → x 6 → x 7 = P + (2, 1, 3) then P = x 7 ← x 6 ← x 5 ← x 4 → x 3 ← x 2 ← x 1 = P -(3, 1, 2).
The converse of P , denoted by P , is the oriented path obtained from P by reversing all its arcs.

In other words, V (P ) = V (P ) and E(P ) = {(x, y), x, y ∈ V (P ) and (y, x) ∈ E(P )}.

Example:

If P = x 1 → x 2 → x 3 ← x 4 → x 5 → x 6 ← x 7 ← x 8 ← x 9 then P = x 1 ← x 2 ← x 3 → x 4 ← x 5 ← x 6 → x 7 → x 8 → x 9 .
An oriented tree is a digraph whose underlying graph is a tree.

A rooted oriented tree is an oriented tree in which, one vertex is specied as its root.

Example:

Let T = v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 Figure 1.21 then v 1 the root of T .
An out-branching is a rooted oriented tree in which every vertex has an in-degree of one, except for the root which has an in-degree of zero. The root of an out-branching is said to be a source.

Example:

T = v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 v 12 Figure 1.22 v 1 is the source of T
An in-branching is a rooted oriented tree in which either every vertex has an outdegree of one, except for the root which has an out-degree of zero. The root of an in-branching is said to be a sink

T = v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 v 12 Figure 1.23 v 1 is the sink of T 1.
3. Tournaments:

Tournaments are particular digraphs such that every pair of vertices is joined by an arc.

Denitions and Basic Properties:

A digraph T is said to be a tournament if its underlying graph G(T ) is complete.

In other words, for u, v ∈ V (T ), (u, v) or (v, u) ∈ E(T ).

Example:

T = v 1 v 2 v 3 v 4 Figure 1.24 V (T ) = {v 1 , v 2 , v 3 , v 4 } and E(T ) = {(v 1 , v 2 ), (v 1 , v 3 ), (v 2 , v 3 ), (v 3 , v 4 ), (v 4 , v 1 ), (v 4 , v 2 )}. If T is a tournament of order n, then: i. e(T ) = |E(T )| = n(n-1) 2 .
ii.

v∈V (T )

d + (v) = v∈V (T ) d -(v) = n(n-1) 2 . iii. δ -(T ) ≤ n-1 2 . iv. δ + (T ) ≤ n-1 2 . v. ∆ -(T ) ≥ n-1 2 . vi. ∆ + (T ) ≥ n-1 2 . 1.3.2.
The Converse of a Tournament:

The converse of a tournament T , denoted by T , is the tournament obtained from T by reversing all its arcs. In other words, given a tournament T , we may dene T by V (T ) = V (T ) and E(T ) = {(x, y), x, y ∈ V (T ) and (y, x) ∈ E(T )}.

Example: We say that a tournament T contains an oriented path P if V (P ) ⊆ V (T ) and E(P ) ⊆ E(T ).

T = v 1 v 2 v 3 v 4 T = v 1 v 2 v 3 v 4 V (T ) = V (T ) = {v 1 , v 2 , v 3 , v 4 }, E(T ) = {(v 1 , v 2 ), (v 2 , v 3 ), (v 3 , v 4 ), (v 1 , v 3 ), (v 2 , v 4 ), (v 4 , v 1 )} and E(T ) = {(v 2 , v 1 ), (v 3 , v 2 ), (v 4 , v 3 ), (v 3 , v 1 ), (v 4 , v 2 ), (v 1 , v 4 )}.
In other words, we say that P ⊆ T or T ⊇ P . If V (P ) = V (T ), we say that P is a Hamiltonian oriented path in T .

Example:

T = v 1 v 2 v 3 v 4 Figure 1.25 T ⊇ P 1 = v 1 → v 2 → v 3 . T ⊇ P 2 = v 4 → v 1 → v 2 . P 3 = v 1 → v 2 → v 3 → v 4 is a Hamiltonian directed path in T (T ⊇ P 3 ). P 4 = v 1 → v 3 ← v 2 → v 4 is a Hamiltonian antidirected path in T (T ⊇ P 4 ). P 5 = v 1 ← v 4 ← v 2 → v 3 is
a Hamiltonian oriented path in T (T ⊇ P 5 ).

Regular Tournaments:

Let T be a tournament of order n. T is said to be a regular tournament if, for

any vertex v ∈ V (T ), d + (v) = d -(v) = n-1 2 . Then δ -(T ) = ∆ + (T ) = δ + (T ) = ∆ -(T ) = n-1 2 .
A regular tournament on 3 vertices is a circuit triangle.

Example:

T = v 1 v 2 v 3 = v 1 v 2 v 3 Figure 1.26 T ′ = v 1 v 2 v 3 v 4 v 5 Figure 1.27
T is a circuit triangle and T ′ is a regular tournament on 5 vertices. Set T 3 = {T , T is a circuit triangle}, and T 5 = {T , T is a regular tournament on 5 vertices}.

Paley Tournaments:

T is said to be a Paley tournament if i. |T | ≡ 3 (mod 4) ii. Let V (T ) = {v 0 , ..., v n-1 } (0, 1, ..., n -1 are the elements of the nite eld F n ). E(T ) = {(v i , v j ), j -i is the square of an element of F n }.

Set T 7 = {T , T is a Paley tournament on 7 vertices}.

Example:

T = v 1 v 2 v 3 v 4 v 5 v 6 v 7 Figure 1.28 T ∈ T 7 .
Set T 3,5,7 = {T 3 , T 5 , T 7 }.

Strong Tournaments:

A tournament is said to be strong, if for x, y ∈ V (T ), T contains an xy-directed path.

Example:

T = v 1 v 2 v 3 v 4 Figure 1.29
Since T contains a Hamiltonian circuit then T is strong. A strong component of T is a strong induced subtournament of T which is maximal with respect to inclusion.

Enumeration of the Vertices of a Tournament:

Let T be a tournament of order n. An enumeration of the vertices of T is a sequence of the form E = v 1 v 2 ...v n . In this case, we denote by [v i , v j ] the enumeration v i v i+1 ...v j for 1 ≤ i < j ≤ n. Let T be a tournament such that E = v 1 v 2 ...v n is an enumeration of the vertices of T . Then A = (a ij ) 1≤i,j≤n is the adjacency matrix of T if

a ij = 1 if (v i , v j ) ∈ E(T ) 0 if (v j , v i ) ∈ E(T ) Example: T = v 1 v 2 v 3 v 4 , then A =     0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0     1.4.

Oriented Structures in Tournaments

In this section, I am going to introduce some results concerning the existence of some oriented structures in tournaments. The characteristics of these structures will be used later in my proof.

Theorem of Camion:

I will start with strong tournaments where Camion [START_REF] Camion | Chemins et Circuits Hamiltoniens des Graphs Complets[END_REF] gave a characterisation of these tournaments.

Theorem 1.1. A tournament is strong if and only if it contain a Hamiltonian circuit.

As a direct result of this theorem, we can easily notice that each vertex of T is an origin of a directed Hamiltonian path and an end of another Hamiltonian path.

For non strong tournaments we have the following result: Theorem 1.2. Let T be a non strong tournament. T can be represented as T = I 1 I 2 ...I t where: i. I 1 , I 2 ...I t are the strong components of T (For 1 We may deduce from this theorem that for v ∈ V (I l ) (l ∈ [1, t]), I = I 1 ...I l contains a Hamiltonian directed path of end v.

≤ i ≤ t, I i is a subtournament of T ). ii. V (T ) = V (I 1 ) ∪ V (I 2 ) ∪ ... ∪ V (I t ). iii. For 1 ≤ i ≤ j ≤ n, if u ∈ V (I i ) and v ∈ V (I j ) then (u, v) ∈ E(T ). T = I 1 I 2 I t-1 I t ... ... ...
1.4.2. Median Order:

In 2000, Havet and Thomassé [START_REF] Havet | Median orders of tournaments: A tool for the second neighborhood problem and Sumner's conjecture[END_REF] introduced a median order of a tournament T as an enumeration order of v 1 , ..., v n , the vertices of T , that maximizes |{(v i , v j ), i < j}|.

Example:

Let T = v 1 v 2 v 3 v 4 then E = v 1 v 2 v 3 v 4 is a median order of T .
Havet and Thomassé settled the following properties concerning median orders in tournaments:

Let T be a tournament of order n and let E = v 1 ...v n be a median order of T , then:

i. v 1 v 2 ...v n is a directed Hamiltonian path in T .

ii. Feedback property:

For 1 ≤ i ≤ j ≤ n: |N + (v i ) ∩ {v i+1 , ..., v j }| ≥ j-i 2 and |N -(v i ) ∩ {v i+1 , ..., v j }| ≤ j-i 2 |N -(v j ) ∩ {v i , ..., v j-1 }| ≥ j-i 2 and |N + (v j ) ∩ {v i , ..., v i-1 }| ≤ j-i 2 
It is clear that v i ...v j is a median order of T < {v i , ..., v j } >.

In this way, Havet and Thomassé made some progress in treating Sumner's Conjecture.

Sumner's Conjecture (1971) see [sumner]: Any tournament of order 2n -2 contains a copy of any tree of order n.

By using the properties of median orders in tournaments, Havet and Thomassé proved that any tournament of order greater than or equal to 3.5n -2.5 contains any tree of order n. in T , such that k + l = n -1.

Proof. Let T be a tournament of order 4 and let v 1 v 2 v 3 v 4 be a median order of T .

If (v 1 , v 4 ) ∈ E(T ), then v 2 → v 3 → v 4 ← v 1 = P + (2, 1). Otherwise, (v 4 , v 1 ) ∈ E(T ). Since, by feedback property, d + T <{v1,v2,v3,v4}> (v 1 ) ≥ 4-1 2 = 3 2 then (v 1 , v 3 ) ∈ E(T ). So v 4 → v 1 → v 3 ← v 2 = P + (2,

1).

Let T be a tournament of order n ≥ 5 we will give the proof by induction on n.

Let v ∈ V (T ) such that d -(v) = δ -(T ) and let T 1 = T < N -(v) > and T 2 = T < N + (v) >. (a) For k > n-1 2 , since v(T -v) = n -1, then T -v ⊇ v ′ 1 → v ′ 2 ...v k ← v ′ k+1 ← ... ← v ′ n-1 = P + (k -1, l). Since d -(v) = δ -(T ), then d + (v) = ∆ + (T ) ≥ n-1 2 , and since k > n-1 2 , then l = (n -1) -k < n-1 2 ≤ d + (v). So N + (v) ∩ {v ′ 1 , v ′ 2 , ..., v ′ k } ̸ = ∅. If (v ′ 1 , v) ∈ E(T ), then T ⊇ v → v ′ 1 ...v ′ k ← v ′ k+1 ...v ′ n-1 = P + (k, l). Otherwise, let j = M in{r ∈ [2, k], (v, v ′ r ) ∈ E(T )}, then v ′ 1 ...v ′ j-1 → v → v ′ j ...v ′ k ← v ′ k+1 ...v ′ n-1 = P + (k, l). (b) For l > n-1 2 , then the problem is solved by considering a path v ′ 1 ...v ′ l ← v ′ l+1 ...v ′ n-1 = P + (l -1, k) in T -v and the proof is similar to the previous case. (c) For k = l = n-1 2 , then if d + (v) = ∆ + (T ) > n-1 2 , consider a path P 1 = v ′ 1 ...v ′ n-1 2 ← v ′ n+1 2 ...v ′ n-1 = P + ( n-3 2 , n-1 2 ) in T -v. Since d + (v) > n-1 2 then N + (v)∩{v ′ 1 , ..., v ′ n-1 2 } ̸ = ∅. So we can insert v in P 1 to obtain a path v ′ 1 ...v...v ′ n-1 2 ← v ′ n+1 2 ...v ′ n-1 = P + ( n-1 2 , n-1 2 ) in T . Otherwise, for any vertex v of T 1 , d + (v) ≤ n-1 2 . If there exists u ∈ V (T ) such that d + (u) < n-1 2 , then v∈V (T ) d + (v) < n(n-1)
2 which is a contradiction. In this case, T is a regular tournament.

Let v ∈ V (T ), then T -v ⊇ u 1 → u 2 → u n-1 2 ← w n-1 2 ...w 1 = P + ( n-3 2 , n-1 2 ). If N + (v) ∩ {u 1 , ..., u n-1 2 } ̸ = ∅. Then the probem is solved by inserting v in u 1 ...u n-1 2 . Otherwise, N + (v) ∩ {u 1 , ..., u n-1 2 } = ∅. So N + (v) = {w 1 , ..., w n-1 2 } and N -(v) = {u 1 , ..., u n-1 2 }. Since |N + (w 1 )∩{w 2 , ..., w n-1 2 }| ≤ n-3 2 and v ∈ N -(w 1 ) then N + (w 1 )∩ {u 1 , ..., u n-1 2 } ̸ = ∅. Then, we can insert w 1 in u 1 ...u n-1 2 to get a directed path P 2 = u 1 ...w 1 ... → u n-1 2 of order n+1 2 (If (w 1 , u 1 ) ∈ E(T ), then P 2 = w 1 → u 1 ...w 1 → w n-1 2 
).

Since (v, w 2 ) ∈ E(T ), then T ⊇ P 2 ← w n-1 2 ...w 2 ← v = u 1 ...w 1 ... → u n-1 2 ← w n-1 2 ...w 2 ← v = P + ( n-1 2 , n-1 2 ).

Existence of Paths of Three Blocks in Tournaments

In this section, I present the proof of Rosenfeld's Conjecture in paths of three blocks. Given a tournament T of order n and three positive integers k, l and r such that k

+ l + r = n -1, I prove that T contains a path P = P + (k, l, r). A key idea of this proof consists of considering a vertex v of T such that T < N + (v) >⊇ P 1 = P + (k, d + (v) -k -1) and T < N -(v) >⊇ P 2 = P -(d -(v) -2, 1). So T ⊇ P 1 ← v ← P 2 = P + (k, l, r). If k = 1 and T < N + (v) >∈ T 3 then T < N + (v) ≯ ⊇ P 1 = P + (1, 1) or if r = 1 and T < N -(v) >∈ T 3 , then T < N -(v) ≯ ⊇ P 2 = P -(1, 1)
, so I have to study the existence of a path P = P + (k, l, 1) in T where k + l = n -2 separately and the cases of tournaments of order n ≤ 7, one by one. Where the case of paths equal to P + (k, l, 1) is studied, I present the proof of the existence of paths equal to P + (k, l, r) where k + l + r = n -1 in T .

Lemma 2.1. Let T be a tournament of order n and let k, l and r be three positive integers

such that k + l + r = n -1.
If there exists v, a vertex of T such that d + (v) > l + r and a path

P ′ = P + (k -1, l, r) in T -v, or if there exists a vertex u of T such that d -(u) > k + l
and a path P ′′ = P + (k, l, r -1) in T -u, then there exists a path

P = P + (k, l, r) in T . Proof. If there exists a vertex v ∈ V (T ) such that d + (v) > l + r and a path P ′ = v 1 ...v k ← v k+1 ... ← v k+l → ...v n-1 = P + (k -1, l, r) in T -v, then, since d + (v) > l + r, N + (v) ∩ {v 1 , ..., v k } ̸ = ∅. If (v, v 1 ) ∈ E(T ), then T ⊇ v → v 1 ... → v k ← ...v k+l → ...v n-1 = P + (k, l, r). If (v 1 , v) ∈ E(T ), let j = M in{r ∈ [2, k], (v, v k ) ∈ E(T )}. Then T ⊇ v 1 ...v j-1 → v → v j ...v k ← v k+1 ...v k+l → ... → v n-1 = P + (k, l, r). Otherwise, if there exists a vertex u ∈ V (T ) such that d -(u) > k + l and a path P ′′ = P + (k, l, r-1) in T -u, then, since d + T (u) = d -(u) > k+l and T -u ⊇ P ′′ = P -(k, l, r-1) = P + (r -1, l, k), T contains a path P = P + (r, l, k). Then T contains a path P = P + (k, l, r).
Proposition 2.1. Let T be a tournament of order 4. Then we can nd a path P =

P + (1, 1, 1) in T . Proof. Let M = v 1 v 2 v 3 v 4 be a median order of T , then, by feedback property, d + (v 1 ) ≥ 4-1 2 = 3 2 . So d + (v 1 ) ≥ 2. Then (v 1 , v 3 ) or (v 1 , v 4 ) ∈ E(T ). If T -v 1 / ∈ T 3,5,7 , then T -v 1 ⊇ v ′ 1 ← v ′ 2 → v ′ 3 = P -(1, 1) such that v ′ 1 ∈ {v 3 , v 4 } or v ′ 2 ∈ {v 3 , v 4 }. Suppose, without loss of generality, that v ′ 1 ∈ {v 3 , v 4 }, then (v 1 , v ′ 1 ) ∈ E(T ) and T ⊇ v 1 → v ′ 1 ← v ′ 2 → v ′ 3 = P + (1, 1, 1). Otherwise, T -v 1 = v 2 v 3 v 4 . If d + (v 1 ) = 3, then v 2 → v 3 ← v 1 → v 4 = P + (1, 1, 1). If d + (v 1 ) = 2, then, If (v 4 , v 1 ) ∈ E(T ), let M ′ = v 4 v 1 v 2 v 3 .
Since the number of forward arcs with respect to M ′ is greater then the number of forward arcs with respect to M , we get a contradiction.

So (v 3 , v 1 ) ∈ E(T ). In this case, v 3 → v 4 ← v 1 → v 2 = P + (1, 1, 1).
Proposition 2.2. Let T be a tournament of order 5. Then we can nd a path P = P + (2, 1, 1) and a path

P ′ = P + (1, 2, 1) in T . Proof. Let v ∈ V (T ) such that d -(v) = δ -(T ). Since d + (v) = ∆ + (T ) ≥ 5-1 2 , then d + (v) ≥ 2. If d + (v) = 4, then, since T -v ⊇ v 1 → v 2 ← v 3 → v 4 = P + (1, 1, 1) and T -v ⊇ v ′ 1 ← v ′ 2 ← v ′ 3 → v ′ 4 = P -(2, 1), T ⊇ v → v 1 → v 2 ← v 3 → v 4 = P + (2, 1, 1) and T ⊇ v → v ′ 1 ← v ′ 2 ← v ′ 3 → v ′ 4 = P + (1, 2, 1). Otherwise, if there exists u ∈ V (T ) such that d + (u) = 0, then the problem is solved since T -u ⊇ P 1 = P + (2, 1) and T -u ⊇ P 2 = P + (1, 2). Otherwise, since w∈V (T ) d + (w) = 5×4 2 = 10, there exists u ∈ V (T ) such that d + (u) = 2. Set N -(u) = {u 1 , u 2 } and N + (u) = {u 3 , u 4 } with (u 1 , u 2 ), (u 3 , u 4 ) ∈ E(T ). Then T ⊇ u 1 → u 2 ← u ← u 3 → u 4 = P + (1, 2, 1). If d + (v) = 3, then since T -v ⊇ P 1 = v 1 → v 2 ← v 3 → v 4 = P + (1, 1, 1) by Lemma 2.1, T ⊇ P 2 = P + (2, 1, 1). Else, T is a regular tournament. Suppose that N -(v) = {u 1 , u 2 } and N + (v) = {u 3 , u 4 } with (u 1 , u 2 ), (u 3 , u 4 ) ∈ E(T ). Since N -(u 1 ) = {u 3 , u 4 } and N + (u 4 ) = {u 1 , u 2 } then, T ⊇ u 3 → u 4 → u 2 ← u 1 → v = P + (2, 1, 1).
Proposition 2.3. Let T be a tournament of order 6. Then T contains a path equal to

P + (3, 1, 1
), a path equal to P + (2, 2, 1) and path equal to P + (1, 3, 1).

Proof. Let v ∈ V (T ) such that d -(v) = δ -(T ). Since d + (v) ≥ 6-1 2 = 5 2 , then d + (v) ≥ 3. Since T -v ⊇ P 1 = v 1 → v 2 → v 3 ← v 4 → v 5 = P + (2, 1, 1), then, by Lemma 2.1, T ⊇ P ′ 1 = P + (3, 1, 1). If d + (v) = 5, then, since T -v ⊇ v 1 → v 2 ← v 3 ← v 4 → v 5 = P + (1, 2, 1), T ⊇ v → v 1 → v 2 ← v 3 ← v 4 → v 5 = P + (2, 2, 1) and since T -v ⊇ v ′ 1 ← v ′ 2 ← v ′ 3 ← v ′ 4 → v ′ 5 = P -(3, 1), then T ⊇ v → v ′ 1 ← v ′ 2 ← v ′ 3 ← v ′ 4 → v ′ 5 = P ′ (1, 3, 1). Otherwise, if there exists u ∈ V (T ) such that d + (u) = 0, then, since T -u contains a path P 2 = P + (2, 2) and a path P 3 = P + (1, 3), T contains a path P ′ 2 = P 2 → u = P + (2, 2, 1) and a path P ′ 3 = P 3 → u = P + (1, 3, 1). Otherwise, if there exists w ∈ V (T ) such that d + (w) = 3 and T < N + (w) > / ∈ T 3 , then set N -(w) = {d, e} with (d, e) ∈ E(T ). Since T < N + (w) >⊇ a → b ← c, then T ⊇ a → b ← c ← w ← d → e = P + (1, 3, 1). And if there exists w ′ ∈ V (T ) such that d -(w ′ ) = 3 and T < N -(w ′ ) > / ∈ T 3 , let E(T < N + (w ′ ) >) = {(d ′ , e ′ )}. Since T < N -(w ′ ) >⊇ a ′ ← b ′ → c ′ , then T ⊇ d ′ → e ′ ← v ← a ′ ← b ′ → c ′ = P + (1, 3, 1). Otherwise, if there exists u, v ∈ V (T ) such that d + (u) = d + (v) = 4, suppose that N -(v) = {u} and N -(u) = {w}. Since T -v ⊇ a ← b ← c ← d → e = P -(3, 1), then: If a ̸ = u, T ⊇ v → a ← b ← c ← d → e = P + (1, 3, 1). If a = u, then b = w and T ⊇ v → b ← c ← d ← u → e = P + (1, 3, 1). Otherwise, if d + (v) = 4, then for any vertex u of V (T -v), d + (u) < 4. Let N -(v) = {u}. If d + (u) = 1, then, since T -{u, v} ⊇ u 1 → u 2 → u 3 → u 4 , T ⊇ v → u 4 ← u 3 ← u 2 ← u 1 → u = P + (1, 3, 1). Otherwise, if d + (u) = 3, then, since v ∈ N + (u) and d - T <N + (u)> (v) = 0, T < N + (u) > / ∈ T 3 and T ⊇ P 4 = P + (1, 3, 1). Similarly, if there exist u ′ , v ′ ∈ E(T ) such that (u ′ , v ′ ) ∈ E(T ), d + (u ′ ) = 1, d + (v ′ ) = 2, then since T < N -(v ′ ) > / ∈ T 3 , T ⊇ P ′′ 3 = P + (1, 3, 1). Otherwise, d + (u) = 2. Since v∈V (T ) d + (v) = 15, then, by considering V (T ) = {v, u, v 1 , v 2 , v 3 , v 4 } we have N + (v) = {v 1 , v 2 , v 3 , v 4 } and d + (u) = 2. Suppose, without loss of generality, that N + (u) = {v, v 1 }. If T < N -(u) >= T < {v 2 , v 3 , v 4 } > / ∈ T 3 , then T ⊇ P ′ 4 = P + (1, 3, 1), otherwise, T < {v 1 , v 3 , v 4 } >∈ T 3 . Suppose, without loss of generality, that T < {v 2 , v 3 , v 4 } >= v 2 v 3 v 4 . Since d + (v 1 ) + d + (v 2 ) + d + (v 3 ) + d + (v 4 ) = 9, then, if d + (v 1 ) = 1, suppose, without loss of generality that (v 1 , v 2 ) ∈ E(T ). Then N + (v 3 ) = {u, v 4 , v 1 }. Since (v 4 , v 1 ), (v 4 , u) ∈ E(T ) then T < N + (v 3 ) > / ∈ T 3 and T ⊇ P ′′ 4 = P + (1, 3, 1). If d + (v 1 ) = 3, then N + (v 1 ) = {v 2 , v 3 , v 4 } and d + (v 2 ) = d + (v 3 ) = d + (v 4 ) = 2. Since N -(v 2 ) = {v 4 , v, v 1 } and (v, v 4 ), (v, v 1 ) ∈ E(T ), then T < N -(v 2 ) > / ∈ T 3 , then T ⊇ P 5 = P + (1, 3, 1). Otherwise, d + (v 1 ) = 2. Suppose, without loss of generality, that (v 1 , v 2 ), (v 1 , v 3 ) ∈ E(T ). Then d + (v 2 ) = d + (v 3 ) = 2 and d + (v 4 ) = 3. In this case, N + (v 4 ) = {u, v 2 , v 1 }, N -(v 1 ) = {v, u, v 4 }, N -(v 2 ) = {v, v 1 , v 4 } and N -(v 3 ) = {v, v 1 , v 2 }. Since (v, v 1 ), (v, v 2 ) / ∈ E(T ), then T < N -(v 3 ) > / ∈ T 3 and T ⊇ P ′ 5 = P + (1, 3, 1). If ∆ + (T ) = 3, then, if
T is a tournament on six vertices such that three vertices have out degree 3 and three vertices have out degree 2, suppose that

V (T ) = {v 1 , v 2 , v 3 , v 4 , v 5 , v 6 } and d + (v 1 ) = d + (v 2 ) = d + (v 3 ) = d -(v 4 ) = d -(v 5 ) = d -(v 6 ) = 3. If there exists v i ∈ {v 1 , v 2 , v 3 } such that T < N + (v i ) > / ∈ T 3 or v j ∈ {v 4 , v 5 , v 6 } such that T < N -(v j ) > / ∈ T 3 , then T ⊇ P ′′ 5 = P + (1, 3, 1). Otherwise, T < N + (v 1 ) >, T < N + (v 2 ) >, T < N + (v 3 ) >, T < N -(v 4 ) >, T < N -(v 5 ) >, T < N -(v 6 ) > are all circuits. Suppose that T < {v 1 , v 2 , v 3 } > /
∈ T 3 and suppose, without loss of generality, that

T < {v 1 , v 2 , v 3 } >= v 1 v 2 v 3 . Since d + (v 3 ) = 3, then N + (v 3 ) = {v 4 , v 5 , v 6 }, and since T < N + (v 3 ) >∈ T 3 , suppose, without loss of generality, that T < {v 4 , v 5 , v 6 } >= v 4 v 5 v 6 , and that N + (v 1 ) = {v 2 , v 3 , v 4 }. Then, since (v 5 , v 1 ), (v 5 , v 6 ) ∈ E(T ), T < N -(v 6 ) >= T < {v 2 , v 3 , v 5 } > / ∈ T 3 , which is a contradiction. Then T < {v 1 , v 2 , v 3 } >∈ T 3 . Suppose, without loss of generality, that T < {v 1 , v 2 , v 3 } >= v 1 v 2 v 3 , then |N + (v 1 ) ∩ {v 4 , v 5 , v 6 }| = |N + (v 2 ) ∩ {v 4 , v 5 , v 6 }| = |N + (v 3 ) ∩ {v 4 , v 5 , v 6 }| = 2. If T < {v 4 , v 5 , v 6 } > / ∈ T 3 , suppose, without loss of generality, that T < {v 4 , v 5 , v 6 } >= v 4 v 5 v 6 , then N -(v 4 ) = {v 1 , v 2 , v 3 } and |N + (v 6 ) ∩ {v 1 , v 2 , v 3 }| = 2. Suppose, without loss of generality, that N + (v 6 ) = {v 1 , v 2 }, then N + (v 3 ) = {v 1 , v 4 , v 6 }, N + (v 1 ) = {v 2 , v 4 , v 5 }, N + (v 2 ) = {v 3 , v 4 , v 5 } and N -(v 5 ) = {v 4 , v 1 , v 2 }. Since (v 1 , v 4 ), (v 2 , v 4 ) ∈ E(T ), then T < N -(v 5 ) > / ∈ T 3 which is a contradiction. Then T < {v 1 , v 2 , v 3 } >, T < {v 4 , v 5 , v 6 } >∈ T 3 . Suppose, without loss of generality, that T < {v 4 , v 5 , v 6 } >= v 4 v 5 v 6 . Suppose, without loss of generality, that N + (v 6 ) = {v 1 , v 4 }, then N -(v 1 ) = {v 3 , v 6 }, N -(v 2 ) = {v 1 , v 5 }, N -(v 3 ) = {v 2 , v 4 }, N + (v 4 ) = {v 3 , v 5 }, N + (v 5 ) = {v 2 , v 6 } since otherwise, we get a contradiction. In this case, T ⊇ v 2 → v 4 ← v 6 ← v 5 ← v 3 → v 1 = P + (1, 3, 1).
To nd a path

P = P + (2, 2, 1) in T , let v ∈ V (T ), such that d + (v) = 3. Let v 1 → v 2 → v 3 be a Hamiltonian directed path in T < N + (v) > and let E(T < N -(v) >) = {(v 4 , v 5 )}. In this case, T ⊇ v 1 → v 2 → v 3 ← v ← v 4 → v 5 = P + (2, 2, 1).
Proposition 2.4. Let T be a tournament of order 7. Then we can nd paths equal to 

P + (4, 1, 1), P + (3, 2, 1), P + (2, 3, 1) and P + (1, 4, 1) in T . Proof. Let v ∈ V (T ) such that d -(v) = δ -(T ), then d + (v) ≥ 7-1 2 = 3. Since T -v ⊇ v 1 → v 2 → v 3 → v 4 ← v 5 → v 6 , then, by Lemma 2.1, T ⊇ P 1 = P + (4, 1, 1). If d + (v) = 6, then, since T -v contains three paths, P 2 = P + (2, 2, 1), P ′ 2 = P + (1, 3, 1) and P ′′ 2 = P -(4, 1), T ⊇ v → P 2 = P + (3, 2, 1), T ⊇ v → P ′ 2 = P + (2, 3, 1) and T ⊇ v → P ′′ 2 = P + (1, 4, 1). Else, if there exists u ∈ V (T ) such that d + (u) = 0, then similarly, the problem is solved. Else, if d + (v) = 5, since T -v contains a path P 3 = P + (2,
= P + (2, 3, 1) in T . Let N -(v) = {u}. If d + (u) = 1, let v 1 → v 2 → v 3 → v 4 → v 5 be a directed path in T -{u, v}, then T ⊇ v → v 5 ← v 4 ← v 3 ← v 2 ← v 1 → u = P + (1, 4, 1). Else, let a ∈ N + (u) -{v}, and let b → c ← d ← e = P + (1, 2) in T -{u, v, a}. Then T ⊇ b → c ← d ← e ← v ← u → a = P + (1, 4, 1). If d + (v) = 4, then T < N + (v) >⊇ a → b ← c ← d. Let E(T < N -(v) >) = {(e, f )}. Then T ⊇ a → b ← c ← d ← v ← e → f = P + (1, 4, 1) and T ⊇ d → c → b ← a ← v ← e → f = P + (2, 3, 1). Let a ′ → b ′ → c ′ → d ′ be a Hamiltonian directed path in T < N + (v) >. Then T ⊇ a ′ → b ′ → c ′ → d ′ ← v ← e → f = P + (3, 2, 1). If ∆ + (T ) = 3, then T is a regular tournament on 7 vertices. if there exists v ∈ V (T ) such that T < N -(v) >∈ T 3 then let u ∈ N -(v). Suppose that T < N -(v) >= u w 1 w 2 , then {w 2 } = N -(v) ∩ N -(u). Since |T - {u, v, w 2 }| = 4, then T -{u, v, w 2 } ⊇ a → b → c ← d = P + (2, 1). Since d / ∈ N -(v)∩N -(u), suppose, without loss of generality, that (u, d) ∈ E(T ). Then T ⊇ a → b → c ← d ← u ← w 2 → v = P + (2, 3, 1). Similarly, since a / ∈ N -(u) ∩ N -(v), suppose, without loss of generality, that (v, a) ∈ E(T ).Then T ⊇ d → c ← b ← a ← v ← w 2 → u = P + (1, 4, 1). Similarly, let a ′ → b ′ → c ′ → d ′ be a Hamiltonian directed path in T -{u, v, w 1 }. Since d ′ / ∈ N -(u) ∩ N -(v), suppose that (u, d ′ ) ∈ E(T ). Then T ⊇ a ′ → b ′ → c ′ → d ′ ← u ← w 2 → v = P + (3, 2, 1). Else, for any vertex v in T , T < N -(v) > / ∈ T 3 . Let v ∈ V (T ) and let N -(v) = {u 1 , u 2 , u 3 } and N + (v) = {u 4 , u 5 , u 6 }. Suppose that T < N -(v) >= v 1 v 2 v 3 . Suppose, without loss of generality, that u 4 → u 5 → u 6 is a directed path in T < N + (v) >, then T ⊇ u 4 → u 5 → u 6 ← u ← u 3 ← u 1 → u 2 = P + (2, 3, 1). Since d -(u 4 ) = 3 and u 5 ∈ N + (u 4 ), then N -(u 4 ) ∩ N -(v) ̸ = ∅. Suppose, without loss of generality, that (u 3 , u 4 ) ∈ E(T ), then T ⊇ u 3 → u 4 → u 5 → u 6 ← v ← u 1 → u 2 = P + (3, 2, 1). If T < N + (v) > / ∈ T 3 , then (u 4 , u 6 ) ∈ E(T ) and T < N + (v) >= u 4 u 5 u 6 . In this case, T ⊇ u 4 → u 6 ← u 5 ← v ← u 2 ← u 1 → u 3 = P + (1, 4, 1). Otherwise, if for any vertex v in T , T < N -(v) > / ∈ T 3 and T < N + (v) >∈ T 3 , then let v ∈ V (T ) such that u ∈ N + (v) and {w} = N + (v) ∩ N + (u) (|N + (v) ∩ N + (u)| = 1 since d + (v) = 3 and T < N + (v) >∈ T 3 ). Since |T -{u, v, w}| = 4, then T -{u, v, w} ⊇ a ← b ← c → d = P -(2, 1). Since a / ∈ N + (v) ∩ N + (u), then, suppose without loss of generality that (a, u) ∈ E(T ). So T ⊇ v → w ← u ← a ← b ← c → d = P + (1, 4,

1).

In what follows, we prove that in any tournament of order n ≥ 8, we can nd a path P = P + (k, l, 1) for any k and l such that k + l = n -2.

(P = x 1 ...x k+1 ← x k+2 ... ← x k+l+1 → x k+l+2 ). Lemma 2.2. Let T be a tournament. If there exists v ∈ V (T ) such that n-1 2 ≤ d + (v) < n-2 and d + (v) ̸ = n-4, then we can nd any path equal to P + (k, l, 1) such that k < d + (v). Moreover, if d + (v) = n -4 and T < N -(v) > is not a circuit then we have the same result. Proof. Since T < N -(v) >⊇ P 1 = P -(d -(v)-2, 1) and T < N + (v) >⊇ P 2 = P + (k, d + (v)- k -1), then T ⊇ P 2 ← v ← P 1 = P + (k, l, 1). Lemma 2.3. If T is a tournament of order n, then we can nd a path P = P + (k, l, 1) for k ≥ n-1 2 and k + l = n -2. Proof. Let v ∈ V (T ) such that d + (v) = ∆ + (T ). If n is even, then, since d + (v) = ∆ + (T ) ≥ n-1 2 , d + (v) ≥ n 2 . And since k ≥ n-1 2 , then l + 1 ≤ n-1 2 < n
2 , so we can nd a path P 1 = P + (k -1, l, 1) in T -v and, by adding v, we can nd a path P ′

1 = P + (k, l, 1) in T . If n is odd, then, if d + (v) ≥ n+1 2 , since k ≥ n-1 2 and l + 1 ≤ n-1 2 < n+1
2 , we can nd a path P 2 = P + (k -1, l, 1) in T -v and, by adding v, we obtain a path

P ′ 2 = P + (k, l, 1) in T . If d + (v) = ∆ + (T ) < n+1 2 , then ∆ + (T ) = n-1 2 and T is a regular tournament. For k > n-1
2 , we can nd easily a path

P 3 = P + (k, l, 1) in T since l + 1 < n-1 2 
and by adding v to a path

P ′ 3 = P + (k -1, l, 1) in T -v, we get the desired path. For k = n-1 2 , T -v ⊇ P 4 = u 1 → u 2 → ... → u n-1 2 ← w 1 ... ← w n-3 2 → w n-1 2 = P + ( n-3 2 , n-3 2 , 1). If N + (v) ∩ {u 1 , ..., u n-1 2 } ̸
= ∅, then , by adding v to P 4 we get a path

P ′ 4 = P + ( n-1 2 , n-3 2 , 1) in T . Otherwise, N -(v) = {u 1 , ..., u n-1 2 } and N + (v) = {w 1 , ..., w n-1 2 }. Since d -(w n-3 2 ) = n-1 2 and v ∈ N -(w n-3 2 ), then N + (w n-3 2 ) ∩ {u 1 , ..., u n-1 2 } ̸
= ∅ and, by adding w n-3

2 to P 5 = u 1 → ...u n-1 2 ← w 1 ← ... ← v → w n-1 2 , we get a path P ′ 5 = P + ( n-1 2 , n-3 2 , 1).
Using the two lemmas above, we can deduce the following theorem:

Theorem 2.2. Let T be a tournament of order n, then if there exists a vertex u in T such

that n-1 2 ≤ d + (u) < n -2 and if d + (u) = n -4, T < N -(v)
> is not a circuit, then we nd a path P = P + (k, l, 1) in T and such that k + l = n -2.

Proposition 2.5. Let T be a tournament. If there exists a vertex u ∈ V (T ) such that

d + (u) = n -1 or d -(u) = n -1 then we can nd a path P = P + (k, l, 1) such that k + l = n -2. Proof. If d + (u) = n -1, then since T -u ⊇ P + (k -1, l, 1) and T ⊇ P 2 = P -(n -3, 1), T ⊇ u → P 1 = P + (k, l, 1) and T ⊇ u → P 2 = P + (1, n -3, 1). If d -(u) = n -1 then since T -u ⊇ P 3 = P + (k, l), T ⊇ P 3 → u = P + (k, l, 1).
Proposition 2.6. Let T be a tournament of order n ≥ 7. If there exists v ∈ V (T ) such that d + (u) = n -2, then we can nd a path

P = P + (k, l, 1) in T such that k + l = n -2. Proof. For k > 1, then l + 1 = (n -1) -k < (n -1) -1 = n -2 and T ⊇ P 1 = P + (k, l, 1) since T -u ⊇ u 1 → u 2 ...u k ← u n+1 ...u n-2 ← u n-1 → u n = P + (k -1, l, 1) and N + (u) ∩ {u 1 , u 2 , ..., u k } ̸ = ∅. For K = 1, let {w} = N -(u). If d + (w) = 0, then T contains a copy of P . If d + (w) = 1, let u 1 → u 2 ...u n-2 be a Hamiltonian directed path in T -{u, v}, then u → u n-2 ← u 2 ← u 1 → w = P + (1, n -3, 1). Otherwise, d + (u) ≥ 2. Let w ′ ∈ N + (u) -{v}. Then since T -{u, w, w ′ } ⊇ P 2 = P + (1, n -5), T ⊇ P 3 = P 2 ← u ← w → u ′ = P + (1, n -3, 1). Proposition 2.7. Let T be a tournament of order n ≥ 8 such that for any vertex v in T such that d + (v) ≥ n-1 2 , we have: (a) d + (v) = n -4 (b) T < N -(v) >∈ T 3
Then T contains a path

P = P + (k, l, 1) for k + l = n -2. Proof. Let v ∈ V (T ) such that d + (v) = n -4, then T < N -(v) >∈ T 3 .
We can consider the following cases:

(a) For k ≥ 4 and k + l = n -2, we can nd a path P 1 = P + (k -1, l, 1) in T -v and since l + 1 < n -4 then, by adding v to P 1 , we can nd a path P ′

1 = P + (k, l, 1) in T . (b) Let u ∈ N -(v), then, since T < N -(v) > is a circuit, |N + (u) ∩ N -(v)| = |N -(u) ∩ N -(v)| = 1. (c) Let u, w ∈ N -(v) such that {w} = N -(u) ∩ N -(v). T -{u, v, w} ⊇ a 1 → a 2 ← a 3 ...a n-4 ← a n-3 = P + (1, n -5). Since a n-3 / ∈ N -(u) ∩ N -(v), suppose, without loss of generality, that (u, a 3 ) ∈ E(T ). Then T ⊇ a 1 → a 2 ← ...a n-4 ← a n-3 ← u ← w → v = P + (1, n -3, 1). (d) If there exists at least two vertices u and v such that d + (u) = d + (v) = n -4, then T < N -(v) >, T < N -(u) >∈ T 3 .
Indeed, we can easily nd a path

P = P + (3, n -5, 1) in T . Let T < N -(v) >= u 1 u 2 u and let a 1 ∈ N + (v) T < (N + (v) -{a 1 }) ∪ {v} >⊇ v → ... → a 2 , a Hamiltonian directed path. If {a 2 } ̸ = N -(u 2 ) ∩ N -(u), then, suppose, without loss of generality, that (u 2 , a 2 ) ∈ E(T ), so u → u 1 → u 2 → a 2 ... ← v → a 1 = P + (3, n -5, 1). Otherwise, {a 2 } = N -(u 2 ) ∩ N -(u)
. So we restart the same procedure by substituting a 1 with a 2 .

(e) If there exists u ∈ V (T ) such that d + (u) = 2 then we can easily nd a path P =

P + (2, n -4, 1) in T . In fact, let N + (u) = {u 1 , u 2 } such that (u 1 , u 2 ) ∈ E(T ). Since ∆ + (T ) = n -4, then δ -(T ) = 3. So |N -(u 1 ) ∩ N -(u)| ≥ 2. Let {v 1 , v 2 } ∈ N -(u 1 ) ∩ N -(u) such that (v 1 , v 2 ) ∈ E(T ). Since T -{u 1 , u 2 , v 2 , u} ⊇ P 1 = P -(n -6, 1), then T ⊇ v 2 → u 1 → u 2 ← u ← P 1 = P + (2, n -4, 1). If n ≥ 9, then, since T -{u 1 , u 2 , v 1 , v 2 , u} ⊇ P 2 = P -(n -7, 1), T ⊇ v 1 → v 2 → v 3 → u 1 → u 2 ← u ← P 2 = P + (3, n -5, 1
).

(f ) In a similar manner, if there exists a vertex u ∈ V (T ) such that d + (u) = 3, we can nd a path P = P + (2, n -4, 1) in T , and if n ≥ 9, we can nd a path

P ′ = P + (3, n -5, 1) in T . (g) For n ≥ 9, if there exists u ∈ V (T ) such that 4 ≤ d + (u) ≤ n-1 2 , then, since T < N + (u) >⊇ P 1 = P + (2, d + (u) -3) and T < N -(u) >⊇ P 2 = P -(d -(u) -2, 1), T ⊇ P 1 ← u ← P 2 = P + (2, n -4, 1). If d + (u) > 4, since T < N + (u) >⊇ P 3 = P + (3, d + (u) -4) then T ⊇ P 3 ← u ← P 2 = P + (3, n -5, 1). If d + (v) = 4, then let u 1 → u 2 → u 3 → u 4 be a Hamiltonian directed path in T < N + (v) >. In this case, T ⊇ u 1 → u 2 → u 3 → u 4 ← u ← P 2 = P + (3, n -5,

1).

(h) For n ≥ 4 such that n ̸ = 10, we cannot nd any tournament satisfying the condition that either for any vertex v ∈ V (T ),

d + (v) = n -4 and T < N -(v) >∈ T 3 or d + (v) = 1. Indeed, otherwise, if there exists u and v, vertices of T such that d + (u) = 1, d + (v) = n -4 and (u, v) ∈ E(T ), then T < N -(v)
> won't be a circuit. In this case, we must have exactly three vertices of out degree 1. And since v∈V (T )

d + (v) = (n -3)(n -4) + 3 × 1 = n(n-1)

2

, which implies n 2 -13n + 30 = 0. So n = 3 or n = 10, which is a contradiction.

(i) Let T be a tournament of order 10 such that if v ∈ V (T ):

d + (v) = 6 and T < N -(v) >∈ T 3 or d + (v) = 1. Let u 1 , u 2 , u 3 be the three vertices such that d + (u 1 ) = d + (u 2 ) = d + (u 3 ) = 1 and consider the circuit u 1 u 2 u 3 . Then for v ∈ V (T ) such that d + (v) = 6, {u 1 , u 2 , u 3 } ∈ N + (v). Suppose, without loss of generality, that u 1 → u 2 → u 3 is a directed path. So, since T -{u 1 , u 2 , u 3 } ⊇ P 1 = P + (5, 1), then T ⊇ u 1 → u 2 → u 3 ← P 1 = P + (2, 6, 1).
And by (d) we can easily nd a path P 2 = P + (3, 5, 1).

(j) By (d), (e), (f ), (g), (h) and (i), for n ≥ 9, we can easily nd a path P 1 = P + (2, n -4, 1) and a path P 2 = P + (3, n -5, 1) in T .

(k) For n = 8, since v∈V (T )

d + (v) = 8×7 2 = 28, then we have at least two vertices of degree

Proof. If k = 1 or r = 1, the problem is solved.

We argue by induction on n: 

If k > n-1 2 , then since k + l + r = n -1, l + r < n-1 2 . Let v ∈ V (T ) such that d + (v) = ∆ + (T ) ≥ n-1 2 , then d + (v) > l +
P = P + (k, l, r) in T . If k = n-1 2 and ∆ + (T ) > n-1 2 = l + r, then the problem is solved, otherwise, ∆ + (T ) = n-1 2 and T is a regular tournament. Let v ∈ V (T ). If l > 1, then T -v ≥ P ′ = v 1 ...v n-1 2 ← u l ... ← u 2 ← u 1 → u ′ 1 ...u ′ r = P + ( n-3 2 , l, r). If N + (v) ∩ {v 1 , ..., v n-1 2 } ̸ = ∅, then, by adding v to P ′ 3 , the problem is solved. Otherwise, N -(v) = {v 1 , ..., v n-1 2 } and N + (v) = {u 1 , ..., u l , u ′ 1 , ..., u ′ r }. Since (v, u 1 ) ∈ E(T ), then N + (u 1 ) ∩ {v 1 , ..., v n-1 2 } ̸ = ∅. So, by adding u 1 to v 1 ...v n-1 2 ← u l ...u 2 ← v → u ′ 1 ...u ′ r , the problem is solved. If l = 1, T -v ⊇ v 1 ...v n-1 2 ← u 1 → u 2 ... → u n-1 2 = P + ( n-3 2 , 1, n-3 2 ). If N + (v) ∩ {v 1 , ..., v n-1 2 } ̸ = ∅, then the problem is solved. Else, N -(v) = {v 1 , ..., v n-1 2 } and N + (v) = {u 1 , u 2 , ..., u n-1 2 }. Since d + (v n-1 2 ) = n-1 2 , v n-3 2 ∈ N -(v n-1 2 ), then |N + (v n-1 2 ) ∩ ({v 1 , ..., v n-5 2 } ∪ {v})| ≤ n-3 2 . So N + (v n-1 2 ) ∩ {u 1 , ..., u n-1 2 } ̸ = ∅. Let a ∈ {u 1 , ..., u n-1 2 } ∩ N + (v n-1 2 
) and let u ′ 1 ...u ′ n-3 2 be a Hamiltonian directed path in T < ({u 1 , ..., u n-1 2 } -{a}) >. Then T ⊇ v 1 ...v n-1 2 → a ← v → u ′ 1 ...u ′ n-3 2 = P + ( n-1 2 , 1, n-3 2 ). For r ≥ n-1
2 , then, T ⊇ P = P + (r, l, k): Thus T ⊇ P = P + (k, l, r). Otherwise, k < n-1 2 and r < n-1 2 we will study two cases:

(a) If l = 1, then k + l = n -2. If n is odd, let n = 2s + 1. Since k + r = 2s -1, so either k ≥ n-1 2 or r ≥ n-1 2 , which is a contradiction. If n is even, let n = 2s. Since k + r = 2s -2, then if k ̸ = s -1, since k ≥ s or r ≥ s,
we get a contradiction.

Otherwise, k = r = s -1.

If d + (v) = ∆ -(T ) > s, then, since T -v ⊇ P 2 = v 1 ...v s-1 ← v s+1 → v s+2 ...v 2s-1 = P + (s -2, 1, s -1) and N + (v) ∩ {v 1 , ..., v s-1 } ̸ = ∅ (d + (v) > 1 + (s -1)
), by adding v to P 2 , we can easily nd a path

P ′ 2 = P + (s -1, 1, s -1) in T . Else, if there exists u ∈ V (T ) such that d + (u) < s-1 then d -(u) = (n-1)-d + (u) > s. T -u ≥ v 1 → ... → v s ← v s+1 ...v 2s-1 = P + (s -1, 1, s -2). Since d -(u) > s, then N -(u) ∩ {v s+1 , ..., v 2s-1 } ̸ = ∅. Let j = M ax{m ∈ [s + 1, 2s -1], (v m , u) ∈ E(T )}. Then T ⊇ v 1 ...v s ← v s+1 ...v j → u → v j+1 ...v 2s-1 = P + (s -1, 1, s -1). Otherwise, for u ∈ V (T ), d + (u) = s or d + (u) = s -1. Let A = {u ∈ V (T ), d + (u) = s} and B = {u ∈ V (T ), d + (u) = s -1}, then |A| + |B| = 2s.
We have u∈V (T )

d + (u) = |A|.s + (2s -|A|).(s -1) = 2s.(2s-1) 2 = s(2s -1). Then |A| = |B| = s. Let v ∈ A and let u 1 u 2 ...u s-1 be a Hamiltonian directed path in T < N -(v) >. Since d + (u s-1 ) ≥ s -1, |{u 1 , ..., u s-3 } ∪ {v}| = s -2, then N + (u s-1 ) ∩ N + (v) ̸ = ∅. Let w ∈ N + (v) ∩ N + (u s-1 ) and let w 1 ...w s-1 be a Hamiltonian directed path in T < (N + (v)-{w}) >, then T ⊇ u 1 ...u s-1 → w ← v → w 1 ...w s-1 = P + (s-1, 1, s-1). (b) If l ≥ 2, then if there exists v ∈ V (T ) such that if there exists v ∈ V (T ) such that d + (v) ≥ k + 1 and d -(v) ≥ r + 1, then since k ≥ 2, r ≥ 2 and l ≥ 2, by using a path P 1 = P + (k, d + (v) -k -1) in T < N + (v) > and P 2 = P -(d -(v) -r -1, r) in T -< N -(v) >, we get P 3 = P 1 ← v ← P 2 = P + (k, l, r) in T . (If d + (v) = k + 1, then P 1 is a Hamiltonian directed path in T < N + (v) > and if d -(v) = r + 1, then P 2 is a Hamiltonian directed path in T < N -(v) >). Otherwise, d -(v) = (n -1) -d + (v) ≤ r or d + (v) ≤ k then d + (v) ≥ (n -1) -r = k + l or d + (v) ≤ k. If there exists v ∈ V (T ) such that d + (v) > l + r or u ∈ V (T ) such that d -(u) > k + l,
then, by Lemma 2.1, the problem is solved.

Otherwise, for any vertex v ∈ V (T ),

d -(v) ≤ k + l and d + (v) ≤ l + r, so d + (v) ≥ (n -1) -(k + l) = r. Then r ≤ d + (v) ≤ l + r. In this case, for any vertex v in T : r ≤ d + (v) ≤ l + r. d + (v) ≤ k or d + (v) ≥ l + k. If k > r, then, since k + l > k + r, d + (v) ≤ k, so r ≤ d + (v) ≤ k for any vertex v in T . So since ∆ + (T ) ≥ n-1 2 , then n-1 2 ≤ k, and this is a contradiction. Else, if k < r, then k + l < l + r and k + l ≤ d + (v) ≤ l + r. If k + l < n-1 2 , then (n -1) -r < n-1 2 and r > n-1
2 , we get a contradiction.

Else k +l ≥ n-1 2 and for any vertex

v in T , d + (v) ≥ n-1 2 ) so T is a regular tournament and d + (v) = k + l = n-1 2 . Then r = (n -1) -n-1 2 = n-1
2 and this is a contradiction.

Else, k = r, then:

k ≤ d + (v) ≤ k + l d + (v) ≤ k or d + (v) ≥ k + l So for any vertex v in T , d + (v) = k or d + (v) = k + l. Let A = {v ∈ V (T ), d + (v) = k} and B = {v ∈ V (T ), d + (v) = k + l}. Since v∈V (T ) d + (v) = n(n-1) 2 , then |A|.k + |B|(k + l) = n(n-1) 2 . So |A|.K + (n - |A|).((n -1) -k) = n(n-1) 2 . Then 2|A|.(2k + 1 -n) = n(2k + 1 -n). Since n = 2k + l + 1, then 2k + 1 -n = -l ̸ = 0. So |A| = n 2 = |B|. Let u ∈ B and let u 1 u 2 ...u k be a Hamiltonian directed path in T < N -(u) >. Since d + (u k ) ≥ k, then there exists w ∈ N + (u k ) ∩ N + (u). If l > 2, since T < N + (u) -{w} >⊇ v 1 → ...v k+1 ← v k+2 ... ← v k+l-1 = P + (k, l -2), then T ⊇ v 1 ...v k+l-1 ← u ← u 1 → ... → u k → w = P + (k, l, k). If l = 2, let v 1 v 2 ...v k+1 be a directed path in T < N + (u) -{w} >, then T ⊇ v 1 ...v k+1 ← u ← u 1 → ... → u k → w = P + (k, 2, k).

Score Sets in Tournaments

In the following section, I will study the existence of a tournament T such that {d + (v), v ∈ V (T )} = {a, b} where a and b are two nonnegative integers. The score set of a tournament T is the set of scores (out-degrees) of the vertices of T . The idea of the tournament T such that {d + (v), v ∈ V (T )} = {k, k + l} inspired me to think that if, for a given set of distinct integers {a 1 , a 2 , ..., a r }, there exists a tournament T such that {d + (v), v ∈ V (T )} = {a 1 , a 2 , ..., a r }. I proposed the following idea: Let {a 1 , a 2 , ..., a r } be a set of integers such that 0 ≤ a 1 < a 2 < ... < a r . There exists a tournament T such that {d + (v), v ∈ V (T )} = {a 1 , a 2 , ..., a r }. And I proved the following theorem.

Theorem 2.4. Let a, b be two integers such that 0 ≤ a ≤ b. Then there exists a tournament

T such that {d + (v), v ∈ V (T )} = {a, b}.
Proof. Suppose that T is a tournament of order n such that {d + (v), v ∈ V (T )} = {a, b}.

Let A = {v ∈ V (T ), d + (v) = a} and B = {v ∈ V (T ), d + (v) = b}. Set b = a + k, k ≥ 1. If k ≥ a + 1, then b ≥ 2a + 1.
Let T ′ be a regular tournament of order 2a + 1 and let T ′′ be a regular tournament of order 2[b -

(2a + 1)] + 1. Let T be a tournament such that V (T ) = V (T ′ ) ∪ V (T ′′ ), T ′ = T < V (T ′ ) >, T ′′ = T < V (T ′′ ) > and for u ∈ V (T ′ ), v ∈ V (T ′′ ), (v, u) ∈ E(T ), then {d + (v), v ∈ V (T )} = {a, b}. Otherwise, k ≤ a. Let N = u 1 ...u |A| u |A|+1 ...u n be a sequence such that u 1 = u 2 ... = u |A| = a and u |A|+1 = u |A|+2 ... = u n = b.
Since M is a nondecreasing positive sequence, then by the algorithm of Hemasinha [START_REF] Hemasinha | An algorithm to generate tournament score sequences[END_REF] for 

1 ≤ i ≤ n -1, 1≤l≤i u l ≥ i(i-1)
-I[2(a + k) + 1] + 2k|A| ≤ 0. ∆ = [2(a + k) + 1] 2 -8k|A| ≥ (2a + 1) 2 + 4k(2a + 1) + 4k 2 -8k(2a + 1) = [(2a + 1) -2k] 2 ≥ 0. So we have 2(a+k)+1- √ ∆ 2 ≤ I ≤ 2(a+k)+1+ √ ∆ 2 then |A| + 1 ≥ 2(a+k)+1- √ ∆ 2 , 2|A| + 1 ≥ 2(a + k) - √ ∆ √ ∆ ≥ 2a + k -1 -2|A| If 2(a + k) -1 ≤ 2|A|, then the problem is solved. If 2|A| ≤ 2(a + k) -1, [2(a + k) + 1] 2 - 8K|A| ≥ [2(a + k) -1] 2 -4|A|[2(a + k) -1] + 4|A| 2 8(a + k) + 8|A|(a + k) ≥ 8k|A| + 4|A| + 4|A| 2 2(a + k) + 2a|A| ≥ |A| + |A| 2 |A| 2 -(2a -1)|A| -2(a + k) ≤ 0 ∆ = (2a -1) 2 + 8(a + k) ∆ = 4a 2 -4a + 1 + 8a + 8k ∆ = 4a 2 + 4a + 1 + 8k ∆ = (2a + 1) 2 + 8k 2a-1- √ ∆ 2 ≤ |A| ≤ 2a-1+ √ ∆ 2 2a-1- √ ∆ 2 ≤ 0, then |A| > 2a-1- √ ∆ 2 . and |A| ≤ 2a -1 + (2a + 1) 2 + 8k. Since 2a ≤ 2a-1+ √ (2a+1) 2 +8k 2 , then if |A| ≤ 2a, the condition is veried, if |A| = 2a + 1, 2|A| = 4a + 2 ≥ 2(a + k) -1 since k ≤ a, then √ ∆ ≥ 0 ≥ 2(a + k) -1 -2|A|, so it is enough to nd A such that |A| ≤ 2a + 1. Since a|A| + b|B| = n(n-1) 2 , then 2[a|A| + (a + k)(n -|A|)] = n(n -1) So 2(a + k)n -K|A| = n 2 -n. Then |A| = n×(2a+2k+1-n) 2k and |B| = n -|A| = n(n-2a-1 2k and since n 2 -[2(a + k) + 1]n + 2k|A| = 0, ∆ = (2(a + k) + 1) 2 -8k|A| ≥ 0 and n = 2(a+k)+1+ √ ∆ 2 , then for 1 ≤ i ≤ |B|, |A| + i ≤ |A| + |B| = 2(a+k)+1+ √ ∆ 2 . a < n-1 2 since otherwise a.|A| + b.|B| > n(n-1) 2 , then n ≥ 2n + 2 and b > n-1 2 since otherwise, a.|A| + b.|B| < n(n-1) 2 , then n ≤ 2b. So 2a + 2 ≤ n ≤ 2a + 2k. There exists i, 0 ≤ i ≤ k -1, such that a + 1 ≡ -i[k]. Then a + 1 ≤ a + 1 + i ≤ a + k. Let n = 2(a + 1 + i), then 2a + 2 ≤ n ≤ 2a + 2k and n such that 2k is an integer. Then |A| = n(2a+2k+1-n 2k is an integer. Since n 2k ≥ 1, then |B| = n(n-2a-1) 2k ≥ n -(2a - 

El Sahili Ghazo Hanna Theorem

This section is dedicated to the key that allowed me to write a reduced proof of Rosenfeld's conjecture. This key is a theorem given by Amin El Sahili and Zeina Ghazo-Hanna [19].

Theorem 3.1. A path P lies in a tournament T if and only if it lies in T , in other words,

P ⊆ T ⇔ P ⊆ T ⇔ P ⊆ T ⇔ P ⊆ T .
Let P be a tournament of order n. Set P = x 1 ...x n and suppose that (x i , x i+1 ) ∈ E(P ) where i = δ -(T ). If we just prove that T contains a copy of P , then Theorem 3.1 allows us to deduce that T contains a copy of any path

P ′ = x ′ 1 ...x ′ n such that (x ′ i+1 , x ′ i ) ∈ E(P ′
). Moreover, we may suppose, without loss of generality, that ∆ + (T ) ≥ ∆ + (T ), since, by Theorem 3.1, P ⊆ T ⇔ P ⊆ T and we can choose the tournament where the maximal out-degree is the greater one..

Proof of Rosenfeld's Conjecture

I will start by proving some lemmas that are useful in the sequel. 

If |T | = 6 let v ∈ V (T ) such that T -v ∈ T 5 . Let T -v = v 1 v 2 v 3 v 4 v 5 Figure 3.1 Suppose without loss of generality that T -v 1 ∈ T 3,5,7 . Then, since T -v 1 is a regular tournament on 5 vertices for 2 ≤ i ≤ 5, d - T -v (v i ) = d + T -v (v i ) = d - T -v1 (v i ) = d + T -v1 (v i ) = 2, so N - T -{v,v1} (v 1 ) = N - T -{v,v1} (v) and N + T -{v,v1} (v 1 ) = N + T -{v,v1} (v). Then T -v 1 = v v 2 v 3 v 4 v 5 Figure 3.2 Let v i ∈ N + T -{v,v1} (v) = N + T -{v,v1} (v 1 ). If (v, v 1 ) ∈ E(T ), then N + T -vi (v 1 ) = N + T -v (v 1 )-{v i } and N - T -vi (v 1 ) = N - T -v (v 1 )+{v} then d + T -vi (v 1 ) = 1 and d - T -vi (v 1 ) = 3 and since T -v i is not regular then T -v i / ∈ T 3,5,7 . In T -v 1 : v j v k v v i v l
In T -v :

v j v k v 1 v i v l Figure 3.3 In T -v i : v j v k v v 1 v l Figure 3.4 Similarly, if (v 1 , v) ∈ E(T ), then d + T -vi (v) = 1 and d - T -vi (v) = 3 then T -v i is not regular and so T -v i / ∈ T 5 In T -v i : v j v k v 1 v v l Figure 3.5 Let v j ∈ N - T -{v,v1} (v 1 ) = N - T -{v,v1} (v). If (v, v 1 ) ∈ E(T ), then N - T -vj (v) = N - T -v1 (v)- {v j } and N + T -vj (v) = N + T -v1 (v)+{v 1 } then d - T -vj (v) = 1 and d + T -vj (v) = 3. So T -v j is not a regular tournament and T -v j / ∈ T 5 . In T -v j : v k v v i v l v 1 Figure 3.6 Similarly, if (v 1 , v) ∈ E(T ), then d - T -vj (v 1 ) = 1 and d + T -vj (v 1 ) = 3 so T -v j / ∈ T 5 . In T -v j : v k v 1 v i v l v Figure 3.7 If |T | = 8, let v, v 1 ∈ V (T ) such that T -v, T -v 1 ∈ T 7 . Since T -v and T -v 1 are both regular tournaments on 7 vertices, then for u ∈ V (T -{v, v 1 }), d - T -v (u) = d + T -v (u) = d - T -v1 (u) = d + T -v1 (u) = 3. Then we can deduce that N + T -{v,v1} (v) = N + T -{v,v1} (v 1 ) and N - T -{v,v1} (v) = N + T -{v,v1} (v 1 ). (If u ∈ V (T -{v, v 1 }) then (v, u) ∈ E(T ) ⇔ (v 1 , u) ∈ E(T ) and (u, v) ∈ E(T ) ⇔ (u, v 1 ) ∈ E(T )). Let v i ∈ N + T -{v,v1} (v) = N + T -{v,v1} (v 1 ). If (v, v 1 ) ∈ E(T ), then N + T -vi (v 1 ) = N + T -v (v 1 )-{v i } and N - T -vi (v 1 ) = N - T -v (v 1 )+{v} so d + T -vi (v 1 ) = 2 and d - T -vi (v 1 ) = 4. In this case, T -v i is not regular and T -v i ∈ T 7 . In T -v 1 : v j v k v s v v i v m v n In T -v: v j v k v s v 1 v i v m v n Figure 3.8 In T -v i : v j v k v s v v 1 v m v n Figure 3.9 Similarly, if (v 1 , v) ∈ E(T ), then d + T -vi (v) = 2 and d - T -vi (v) = 4 then T -v i / ∈ T 7 . In T -v i : v j v k v s v 1 v v m v n Figure 3.10 Let v j ∈ N - T -{v,v1} (v) = N - T -{v,v1} (v 1 ). If (v, v 1 ) ∈ E(T ), then N - T -vj (v) = N - T -v1 (v)- {v j } and N + T -vj (v) = N + T -v1 (v) + {v 1 } so d - T -vj (v) = 2 and d + T -vj (v) = 4. In this case, T -v j si not regular and T -v j / ∈ T 7 . In T -v j : v k v s v v i v m v n v 1 Figure 3.11 Similarly, if (v 1 , v) ∈ E(T ), then d - T -vj (v 1 ) = 2 and d + T -vj (v 1 ) = 4 so T -v j is not regular and T -v j / ∈ T 7 . In T -v j : v k v s v 1 v i v m v n v Figure 3.12
In the three previous cases we have |{v ∈ T, T -v ∈ T 3,5,7 }| ≤ 2, we can deduce that, for any tournament T , if we choose a vertex v 1 of T such that T -v 1 ∈ T 3,5,7 , and we choose another vertex v 2 of T such that T -v 2 ∈ T 3,5,7 then for any vertex

v 3 of T -{v 2 , v 3 }, T -v 3 / ∈ T 3,5,7 .
Lemma 3.2. (Simple Lemma)

P = P -(1, 2) (P = x 1 ← x 2 → x 3 → x 4 ) and T -v ∈ T 3 .
In other words: Lemma 3.3. (Simple Lemma version 2) Let T be a tournament such that δ + (T ) = 0, and let v ∈ V (T ) such that d + T (v) = δ + (T ) = 0. Suppose that any tournament of order s < n contains a copy of any path P ′ of order s unless T ′ ∈ T 3,5,7 and P ′ is an antidirected path. Let P = x 1 ...x n be a non directed path, then:

T contains a copy of P with origin x ̸ = v unless P = P -(1, 2) and T -v ∈ T 3 . Any of the vertices of T -v is an origin of a copy of P if T -v ∈ T 3,5,7 .

Proof. Let j ∈ [2, n] be the minimal integer such that d + P (x j ) = 0.

If j = n, then T -v ⊇ v 1 ...v n-1 ≡ x 1 ...x n-1 so T ⊇ v 1 ...v n-1 → v ≡ P with v 1 ̸ = v.
Remark 3.1. Let P = x 1 ...x n and let j ∈ [2, n] be the minimal integer such that

d + P (x j ) = 0. If x 1 ...x n-1
is antidirected then we have to study a unique case:

x 1 ...x n-1 = x 1 ← x 2 → x 3 since if n -1 ≥ 4: j < n. If (x 1 , x 2 ) ∈ E(P ) then x 1 ...x n-1 = x 1 → x 2 ← x 3 → x 4 ...x n-1 : j = 2 < n. If (x 2 , x 1 ) ∈ E(P ) then x 1 ...x n-1 = x 1 ← x 2 → x 3 ← x 4 ...x n-1 : j = 3 < n.
In both cases there is a contradiction.

If x 1 ...x n-1 = x 1 ← x 2 → x 3 then P = x 1 ← x 2 → x 3 → x 4 = P -(1, 2) which is a contradiction.
If j < n, similarly to the previous case, let

P 3 = x ′ 1 ...x ′ j-1 → x ′ j+1 ...x ′ n and P 4 = x 1 ...x ′ j-1 ← x ′ j+1 ...x ′ n . If T -v ⊇ v 1 ...v j-1 → v j+1 ...v n ≡ P 3 , then v 1 ...v j-1 → v ← v j+1 ...v n ≡ P with v 1 ̸ = v. Otherwise, P 4 is not antidirected then T -v ⊇ v 1 ...v j-1 ← v j+1 ...v n ≡ P 4 . So T ⊇ v 1 ...v j-1 → v ← v j+1 ...v n ≡ P with v 1 ̸ = v. If T -v ∈ T 3,5,7 ,
similarly to the previous case, by symmetry, a copy of P may be found in T starting at any one of the verties of T -v 3.2.2. Rosenfeld's Conjecture in tournaments of null minimal out-degree and tournaments of order n ≤ 4

In this part, I will prove Rosenfeld's conjecture in tournaments of minimal out-degree equal to zero and tournaments of order n ≥ 4.

Theorem 3.2. Let T be a tournament of order n such that δ -(T ) = 0. Suppose that for any tournament T of order s < n and any path P ′ of order s, T ′ contains a copy of P ′ unless T ′ ∈ T 3,5,7 and P ′ is an antidirected path. Let P be a path of order n, then T contains a copy of P .

Proof. Since δ -(T ) = 0, then T /

∈ T 3,5,7 . Let v ∈ V (T ) such that d - T (v) = δ -(T ) = 0 then for u ∈ V (T -v), (v, u) ∈ E(T ). By Simple Lemma, T ⊇ v 1 ...v n ≡ P with v 1 ̸ = v unless P is a directed path of origin x n (P = x n → x n-1 ...x 1 ) or T -v ∈ T 3 and P = P + (1, 2). In the rst case, T -v ⊇ v n-1 ...v n ≡ x n-1 ...x n . Since (v, v n-1 ) ∈ E(T ), then v → v n-1 ...v 1 ≡ P . In the second case, let T -v = abc, then v → c ← b ← a ≡ P .
Theorem 3.3. Let T be a tournament of order n ≤ 3 and let P be a path of order n then T contains a copy of P unless T ∈ T 3 and P is an antidirected path. 

If (a, b) ∈ E(T ), then a → b → c ≡ P . If (b, a), (a, c) ∈ E(T ), then b → a → c ≡ P . If (b, a), (c, a) ∈ E(T ), then b → c → a ≡ P . If P = x 1 → x 2 ← x 3 or P = x 1 ← x 2 → x 3 and T / ∈ T 3 . Let P = a b c . In this case, a → c ← b ≡ x 1 → x 2 ← x 3 and b ← a → c ≡ x 1 ← x 2 → x 3 .
Theorem 3.4. Let T be a tournament of order 4 and let P be a path of order 4, then T contains a copy of P .

Proof. Let v ∈ V (T ) such that d - T (v) = δ -(T ) then d - T (v) ≤ 4-1 2 = 3 2 , so d - T (v) ∈ {0, 1}. If d - T (v) = 0, then the problem is solved Theorem 3.2. If d - T (v) = 1, let V (T ) = {v, v 1 , v 2 , v 3 } and suppose without loss of generality that (v 1 , v), (v, v 2 ), (v, v 3 ) ∈ E(T ). Suppose without loss of generality that (v 2 , v 3 ) ∈ E(T ). Since δ -(T ) = 1 then |N -(v 1 ) ∩ {v 2 , v 3 }| ≥ 1. If T -v = v 1 v 2 v 3 , then, T ⊇ {v 1 → v → v 2 → v 3 , v → v 2 → v 3 ← v 1 , v 3 ← v → v 2 → v 1 }. If T -v = v 1 v 2 v 3 , then T ⊇ {v 1 → v → v 2 → v 3 , v → v 2 → v 1 ← v 3 , v 2 ← v → v 3 → v 1 }. If T -v = v 1 v 2 v 3 , then T ⊇ {v 1 → v → v 2 → v 3 , v 1 → v → v 3 ← v 2 , v 2 ← v → v 3 → v 1 }
In the following section I will prove Rosenfeld's Conjecture in the case of a tournament T of order n ≥ 5 and a path P = x 1 ...x n such that (x δ -(T ) , x δ -(T )-1 ) ∈ E(P ).

3.2.3. Rosenfeld's Conjecture in a Tournament T of order n ≥ 5 and a path P such that

(x δ -(T ) , x δ -(T )+1 ) ∈ E(P )
First, I will prove Rosenfeld's Conjecture in the case of a tournament T and a path

P = x 1 ...x n such that x 1 ...x δ -(T ) is an antidirected path, (x δ -(T ) , x δ -(T )+1 ) ∈ E(P ) and T < N -(v) >∈ T 3,5,7 where v ∈ V (T ) such that d -(v) = δ -(T ). Let T be a tournament of order n such that δ -(T ) ∈ {3, 5, 7}. Let v ∈ V (T ) such that d -(v) = δ -(T ). Set T 1 = T < N -(v) > and T 2 = T < N + (v) >. Suppose that T 1 = T < N -(v) >∈ T 3,5,7
. Suppose that for s < n, any tournament T ′ of order s contains a copy of any path P ′ of order s unless T ′ ∈ T 3,5,7 and P ′ is an antidirected path. Set δ -(T ) = i and let P = x 1 ...x i x i+1 ...x n be a path such that (x i , x i+1 ) ∈ E(P ). P i = x 1 ...x i is an antidirected path.

We will prove that T contains a path v 1 ...v n ≡ x 1 ...x n unless P is an antidrected path and T ∈ T 3,5,7 . Set P ′ i = x i ...x n = P + (b 1 , ..., b s ) then P ′ i = x i ...x n = x i → x i+1 ... → x i+b1 ← x i+b1+1 ... ← x i+b1+b2 → ...x n . We will discuss the cases with respect to the value of b 1 .

Case 1. b 1 ≥ 3 then, (x i , x i+1 ), (x i+1 , x i+2 ) and (x i+2 , x i+3 ) ∈ E(P ). By Lemma 3.1, there exists a ∈ V (T 2 ) such that T 2 -a / ∈ T 3,5,7 . In this case, T 2 -a contains a path v i+3 ...v n ≡ P i+3 = x i+3 ...x n since even though P i+3 = x i+3 ...x n is an antidirected path, T 2 -a / ∈ T 3,5,7 and v i+2 ...v n exists. Since T 1 ∈ T 3,5,7 , then v(T

1 ) = |T 1 | = d -(v) ∈ {3, 5, 7}, and since V (T 1 + a) = V (T 1 ) ∪ {a}, then |V (T 1 + a)| = V (T 1 ) + 1 so v(T 1 + a) ∈ {4, 6, 8}. We can assume that T 1 + a / ∈ T 3,5,7 then there exists a path v 1 ...v i v i+1 ⊆ T 1 + a such that v 1 ...v i v i+1 ≡ x 1 ...x i x i+1 . It is clear that v i+1 ̸ = a since otherwise, v 1 ...v i ⊆ T 1 , so T 1 contains a copy of x 1 ...x i which is an antidirected path which is impossible since T 1 ∈ T 3,5,7 , then v i+1 ∈ V (T 1 ). Since v i+1 ∈ V (T 1 ), then (v i+1 , v) ∈ E(T ) and since v i+3 ...v n ⊆ T 2 -a, then v i+3 ∈ V (T 2 ) and (v, v i+3 ) ∈ E(T ), then: P ′ = v 1 ...v i+1 → v → v i+3 ...v n ≡ P . P ′ = v 1 ...a v i+1 v v i+3 ...v n Figure 3.13 Case 2. b 1 = 1 then: i. If (x i , x i-1 ) ∈ E(P ), P = x 1 → x 2 ...x i-1 ← x i → x i+1 ← x i+2 ...x n . We discuss if T 2 ⊇ v i+2 ...x n ≡ x i+2 ...x n or not. T 2 ⊇ v i+2 ...v n ≡ x i+2 ...x n . If N + T1 (v i+2 ) ̸ = ∅, let x ∈ N + T1 (v i+2 ), then (v i+2 , x) ∈ E(T ). Since d - T1+v (v) = 0, x 1 .
..x i+1 is neither a directed path nor equal to P + (1, 2), and T 1 ∈ T 3,5,7 , then, by Simple Lemma,

T 1 + v ⊇ v 1 ...v i+1 ≡ x 1 ...x i+1 with v i+1 = x then v 1 ...v i+1 ← v i+2 ...v n ≡ P . Otherwise, for x ∈ V (T 1 ), (x, v i+2 ) ∈ E(T ). Let j be the minimal integer in [i + 2, n] such that d - P (x j ) = 0. So (x j , x j-1 ), (x j , x j+1 ) ∈ E(P ) and x i+2 ... ← x j-1 ← x j is a directed path. If j > i + 2, then P = x 1 ...x i-1 ← x i → x i+1 ← x i+2 ← ... ← x j-1 ← x j → x j+1 ...x n and if j = i + 2 then P = x 1 ...x i-1 ← x i → x i+1 ← x i+2 → x i+3 ...x n . For j > i + 2, if there exists k ∈ [i + 3, j] such that N + (v k ) ∩ V (T 1 ) ̸ = ∅, let k = M in{s ∈ [i + 1, j], N + (v 5 ) ∩ V (T 2 ) ̸ = ∅} and let x ∈ N + (v k ) ∩ V (T 1 ), then (v k , x), (x, v k-1 ) ∈ E(T ). Since v i+2 ← ...v k-1 ← v k ...v j-1 ← v j → v j+1 ...v n ≡ x i+2 ...x n , then v i+2 ← v k-1 ← x ← v k ...v j-1 ← v j → v j+1 ...v n ≡ x i+1 ...x n . Since d - T1-x+v (v) = 0, x 1 ...x i is neither a directed path nor equal to P -(1, 2), then by Simple Lemma, T 1 -x + v ⊇ v 1 ...v i ≡ x 1 ...x i where v i ̸ = v, then v i ∈ V (T 1 ) and (v i , v i+2 ) ∈ E(T ), So v 1 ...v i ← v i+2 ...x ← v k ...v j v i+1 ...v n ≡ P . Otherwise, for s ∈ [i + 2, j], N + (v s ) ∩ V (T 1 ) = ∅. If N -(v j+1 ) ∩ V (T 2 ) ̸ = ∅, then let x ∈ V (T 1 ) such that (x, v j+1 ) ∈ E(T ). For j = i + 2, since (x, v i+2 ), (x, v i+3 ) ∈ E(T ), we have: v i+2 ← x → v i+3 ...v n ≡ x i+1 ...x n , and for i > i + 2, since (x, v j ), (x, v j+1 ) ∈ E(T ) we have: v i+2 ← ... ← v j ← x → v j+1 ...v n ≡ x i+1 ...x n . Since T 1 -x + v / ∈ T 3,5,7 , then T 1 -x+v ⊇ v 1 ...v i-1 ← v i ≡ x 1 ...x i-1 ← x i with v i ̸ = v since (x i , x i-1 ) ∈ E(P ) so (v i , v i-1 ) ∈ E(T ) and d - T1-x+v (v) = 0. Since v i ∈ V (T 1 ), then (v i , v i+2 ) ∈ E(T ). In this case, if j = i + 2, then v 1 ...v i → v i+2 ← x → v i+3 ...v n ≡ x 1 ...x n and if j > i+2 then v 1 ...v i → v i+2 ...v j ← x → v j+1 ...v n ≡ x 1 ...x n .
Otherwise, for x ∈ V (T 1 ), (v j+1 , x) ∈ E(T ) and for s ∈ [i+2, j], (x, v s ) ∈ E(T ). T < {v j }∪{v j+2 ; ...; v n } >⊇ u j+1 ...u n ≡ x j+1 ...x n unless T < {v j } ∪ {v j+2 ; ...; v n } >∈ T 3,5,7 and x j+1 ...x n is an antidirected path. In this case, since d - T <{vj ,v}∪{vj+2,...,vn}> (v) = 0, and x j ...x n is neither a directed path nor equal to P + (1, 2), and since T < {v j } ∪ {v j+2 , ..., v n } >∈ T 3,5,7 , then by Simple Lemma, T < {v j , v} ∪ {v j+2 , ...,

v n } >⊇ u ′ j ...u ′ n ≡ x j ...x n with u ′ j = v j . Let y ∈ V (T 1 ). Since d + T1+vi+2 (v i+2 ) = 0, x 1 ...x i+1 is an antidirected path and T 1 ∈ T 3,5,7 , then T 1 + v i+2 ⊇ v 1 ...v i → v i+1 ≡ x 1 ...x i with v i+1 = y and since (v i , v i+1 ), (y, v i+2 ) ∈ E(T ), then v i ̸ = v i+2 and v i ∈ V (T 1 -y). If j = i + 3, then v i+2 ...v n = v i+2 ← v i+3 → v i+4 ...v n . If T < {v j } ∪ {v j+2 , ..., v n } >⊇ u j+1 ...u n ≡ x j+1 ...x n , then u j+1 ...u n = u i+4 ...u n ≡ x i+4 ...x n . In this case, v 1 ...v i → y ← v i+4 ← v → u i+4 ...u n ≡ P ((v i+4 , y) ∈ E(T ) since (v j+1 , y) ∈ E(T )). Otherwise, T < {v i+3 , v i+5 , ..., v n } ≯ ⊇ u i+4 ..u n ≡ x i+4 ...x n . Since T < {v i+3 , v}∪ {v i+5 , ..., v n } >⊇ u ′ i+3 ...u ′ n ≡ x i+3 ...x n where u ′ i+3 = v i+3 (Simple Lemma), then v 1 ...v i → y ← v i+4 ← u ′ i+3 ...u ′ n ≡ P . For j > i + 3, v i+2 ...v n = v i+2 ← v i+3 ← ... ← v j-1 ← v j → v j+1 ...v n . Since (v j+1 , y) and (y, v j-1 ) ∈ E(T ), then Q = v i+3 ← v i+4 ...v j-1 ← y ← v j+1 is a directed path such that Q ≡ x i+1 ...x j-1 . Since v i ∈ V (T 1 ), then (v i , v i+3 ) ∈ E(T ). If T < {v j } ∪ {v j+2 , ..., v n } >⊇ u j+1 ...u n ≡ x j+1 ...x n , then v 1 ...v i → v i+3 ← v i+4 ...v j-1 ← y ← v j+1 ← v → u j+1 ...u n ≡ P . Otherwise, since T < {v j , v} ∪ {v i+2 , ..., v n } >⊇ u ′ j ...u n ≡ x j ...x n with u ′ j = v j and since (v j , v j+1 ∈ E(T ), then v 1 ...v i → v i+3 ...v j-1 ← y ← v j+1 ← u ′ j ...u ′ n ≡ P . For j = i + 2: If (x i+3 , x i+4 ) ∈ E(T ), then P = x 1 → x 2 ...x i-1 ← x i → x i+1 ← x i+2 → x i+3 → x i+4 ...x n . Let x ∈ V (T 1 ). Since T 1 -x / ∈ T 3,5,7 , then T 1 -x ⊇ v 2 ...v i ≡ x 2 ...x i . Since (v i+3 , v 2 ), (v i , v i+2 ), (x, v i+2 ) ∈ E(T ), then v i+3 → v 2 ...v i → v i+2 ← x → v → v i+4 ...v n ≡ T . If (x i+4 , x i+3 ) ∈ E(P ) then P = x 1 ...x i → x i+1 ← x i+2 → x i+3 ← x i+4 ...x n : If N + (v i+4 ) ∩ V (T 1 ) ̸ = ∅, then let x ∈ V (T 1 ) such that (v i+4 , x) ∈ E(T ) and let a, b ∈ V (T 1 ) such that (a, b) ∈ E(T ). Since N -(v j+1 ) ∩ V (T 1 ) = ∅, then for x ∈ V (T 1 ) (v i+3 , x) ∈ E(T ). If T 1 ∈ T 3 , then v → v i+2 ← a → b ← v i+3 → y ← v i+4 ...v n ≡ P . If T 1 ∈ {T 5 , T 7 } since T 1 -{a, b, y} + v / ∈ T 3,5,7 , T 1 -{a, b, y} + v ⊇ v 1 ...v i-2 ≡ x 1 ...x i-2 . In this case, v 1 ...v i-2 → v i+2 ← a → b ← v i+3 → y ← v i+4 ...v n ≡ P . Else, N + (v i+4 ) ∩ V (T 1 ) = ∅. Let z ∈ V (T 1 ). Since d - T1-z+vi+3 (v i+3 ) = 0, then T 1 -z + v i+3 ⊇ v 1 ...v i ≡ x 1 ...x i with v i ̸ = v i+3 (v i+3 may be equal to v 1 ) and since P ′ i+3 = x i+3 ← x i+4 ...x k-1 ← x k → x k+1 ...x n (k ≥ i + 4), then v i+4 ...v k-1 ← v k ← v → v k+1 ...v n ≡ x i+3 ...x n . In this case v 1 ...v i → v i+2 ← z → v i+4 ...v j v v j+1 ...v n ≡ P . In the other case, T 2 ̸ ⊇ v i+2 ...v n ≡ x i+2 ...x n then x i+2 ...x n is an antidirected path and T 2 ∈ T 3,5,7 . If b 2 = 1, then P = x 1 → x 2 ...x i-1 ← x i → x i+1 ← x i+2 → x i+3 ...x n-1 ← x n . So P is an antidirected path. Since T 1 ∈ T 3,5,7 , then δ -(T ) = |T 1 | ∈ {3, 5, 7} and for u ∈ V (T 1 ), d - T1 (u) ∈ {1, 2, 3} and (u, v) ∈ E(T ), then there exists {a, b} ∈ N -(u) ∩ V (T 2 ). Let x ∈ V (T 2 ). Since T 1 + x / ∈ T 3,5,7 , then T 1 + x ⊇ v 1 ...v i+1 ≡ x 1 ...x i+1 with v i+2 ̸ = x since otherwise T 1 ⊇ v 1 ...v i , an antidirected path, which is a contradic- tion since T 1 ∈ T 3,5,7 . Since v i+1 ∈ V (T 1 ) then there exists y ∈ V (T 2 ) such that (y, v i+1 ) ∈ E(T ) and y ̸ = x. If T 2 / ∈ T 3 , then there exists z ∈ V (T 2 -{x, y}) such that (y, z) ∈ E(T ). Since v(T 2 -{x, y, z}) ∈ {2, 4} then T 2 -{x, y, z} ⊇ v i+5 ...v n ≡ x i+5 ...x n . Then v 1 ...v i ← y → z ← v → v i+5 ...v n ≡ P . If T 2 ∈ T 3 , then since δ -(T ) ≤ ∆ + (T ), |T 1 | ≤ |T 2 | and T 1 , T 2 ∈ T 3 . If T 2 = xyz. Then since (y, z) ∈ E(T ), v 1 ...v 4 ← y → z ← v ≡ P . Otherwise, T 2 = xzy. If (z, v 4 ) ∈ E(T ), then v 1 ...v 4 ← z → y ← v ≡ P . Otherwise, (v 4 , z) ∈ E(T ). v 1 ...v 4 = v 1 → v 2 ← v 3 → v 4 with v 1 ̸ = x since otherwise T 1 ⊇ v 2 ← v 3 → v 4 which is a contradiction. If x = v 3 , then N + (x) = {v 2 , v 4 , z} and N -(x) = {v 1 , v, y}. Since (v 1 , v 2 ) ∈ E(T ), then let T 1 = v 1 v 2 v 3 . If (y, v 2 ) ∈ E(T ), then v 1 → v 2 ← y → x ← v → z ← v 4 ≡ P . Otherwise, (v 4 , z), (v 2 , y) ∈ E(T ). Then (z, v 2 ) ∈ E(T ) and N -(v 2 ) = {v 1 , x, z}. Since (v 1 , x) ∈ E(T ), then (y, v 1 ), (z, v 1 ) ∈ E(T ). So N -(v 1 ) = {y, z, v 4 } and N + (v 1 ) = {v 2 , v, x}. In this case N -(v 4 ) = {y, x, v 2 }, N + (v 4 ) = {z, v, v 1 }, N -(y) = {v, z, v 2 }, N + (y) = {v 1 , v 4 , x}. N -(z) = {x, v, v 4 }, N + (z) = {y, v 1 , v 2 }. Then T < N -(x) >= xyv 1 , T < N -(x) >= v 2 v 4 z, T < N -(y) >= vzv 2 , T < N -(y) >= v 1 xv 4 , T < N -(z) >= vxv 4 , T < N -(z) >= v 1 v 2 y, T < N -(v 1 ) >= yv 4 z, T < N -(v 1 ) >= vxv 2 , T < N -(v 2 ) >= v 1 xz, T < N -(v 2 ) >= vyv 4 , T < N -(v 4 ) >= v 2 yv 1 , T < N -(v 4 ) >= vzv 1 , and since T 1 , T 2 ∈ T 3 , then T is a Paley tournament on 7 vertices and since T ∈ T 3,5,7 , T ̸ ⊇ v 1 ...v 7 ≡ x 1 ...x 7 . Otherwise, x = v 2 : v 1 ...v 4 = v 1 → x ← v 3 → v 4 . In this case, since (v 3 , v 4 ) ∈ E(T ), then T 1 = v 3 v 4 v 1 , and since (v 1 , x), (v 3 , x) ∈ E(T ), then N -(v 1 ) = (v 4 , y, z) and N -(v 3 ) = (v 1 , y, z). Since (v 4 , z) ∈ E(T ), then N -(v 4 ) = {x, y, v 3 }. In this case: v 4 → v ← v 3 → x ← y → v 1 ← z ≡ P . Otherwise b 2 = 2. P = x 1 ...x i-1 ← x i → x i+1 ← x i+2 ← x i+3 ...x n-1 → x n . Let a ∈ V (T 2 ). T 1 + a ⊇ v 1 ...v i v i+1 ≡ x 1 ...x i+1 with v i+1 ̸ = a since otherwise T 1 ⊇ v 1 ...v i which is a contradiction. v i+1 ∈ V (T 1 ) then d - T2 (v i+1 ) ≥ 2, so there exists b ̸ = a such that b ∈ V (T 2 ) and (b, v i+1 ) ∈ E(T ). If T 2 -{a, b} ⊇ v i+4 ...v n ≡ x i+4 ...x n , then v 1 ...v i+1 ← b ← v → v i+4 ...v n ≡ P . Otherwise, T 2 -{a, b} ∈ T 3,5,7 . Then T 2 -{a, b} ∈ {T 3 , T 5 } and T 2 ∈ {T 5 , T 7 }. Then, d - T2 (b) ∈ {2, 3} and there exists c ∈ V (T 2 -{a, b}) such that (c, b) ∈ E(T ). Since d -
T2-{a,b}+v (v) = 0, x i+3 ...x n is neither a directed path nor equal to P + (1, 2), and T 2 -{a, b} ∈ T 3,5,7 , then,by Simple Lemma, T 2 -{a, b}

+ v ⊇ v i+3 ...v n ≡ x i+3 ...x n with v i+3 = c. Then v 1 ...v i+1 ← b ← v i+3 ...v n ≡ P . ii. If (x i-1 , x i ) ∈ E(P ), then P = x 1 ← x 2 ...x i-1 → x i ...x n . Let x ∈ T 1 . T 1 -x / ∈ T 3,5,7 then T 1 -x ⊇ v 1 ...v i-1 ≡ x 1 ...x i-1 . T 2 + x ⊇ v i+1 ...v n ≡ x i+1 ...x n unless T 2 + x ∈ T 3,5,7 and x i+1 ...x n is an antidirected path. In this case, if v i+1 ̸ = x, then v i+1 ∈ V (T 2 ) and (x, v i+1 ) ∈ E(T ). So v 1 ...v i-1 → v → v i+1 ...v n ≡ P . If v i+1 = x, let P i+1 = x 1 ...x i+1 . Since d - T1+v (v) = 0, P i+1 ̸ = P -(1, 2), P i+1 is not a directed path and T 1 ∈ T 3,5,7 , then T 1 + v ⊇ u 1 ...u i+1 ≡ x 1 ...x i+1 with u i+1 = x, then u 1 ...u i v i+1 ...v n ≡ P . Otherwise T 2 + x ∈ T 3,5,7 and x i+1 ...x n is an antidirected path. If (x n , x n-1 ) ∈ E(P ), then P = x 1 ← x 2 ...x i-1 → x i → x i+1 → x i+2 ...x n-1 ← x n . Since δ -(T ) ≤ ∆ + (T ) then i ≤ n -1 -i and i < n -i. Let P = y 1 → y 2 ...y i-1 ← y i → y i+1 ...y n-i-1 ← y n-i ← y n-i+1 ...y n-1 → y n . Since (y i , y i-1
) ∈ E( P ) and y 1 ...y i is an antidirected path, we recover a previous case, and T ⊇

v 1 ...v n ≡ P so T ⊇ v ′ 1 ...v ′ n ≡ P . If (x n-1 , x n ) ∈ E(P ) then P = x 1 ← x 2 ...x i-1 → x i → x i+1 ← x i+2 ...x n-1 → x n .
If there exists y ̸ = x such that y ∈ V (T 1 ) and T 2 + y / ∈ T 3,5,7 then the problem is solved since T 2 + y ⊇ v i+1 ...v n and we recover a previous case. Otherwise, for any vertex 

x in T 1 , T 2 + x ∈ T 3,5,7 . Since |T 1 | ≤ |T 2 | and T 2 + x ∈ T 3,5,7 , then T 2 + x ∈ {T 5 , T 7 } since otherwise T 2 + x ∈ T 3 , |T 2 | = 2 < |T 1 | which is a contradiction. Let x, y ∈ V (T 1 ). If T 2 + x, T 2 + y ∈ T 5 . Then d - T2+x (x) = d + T2+x (x) = d - T2 (x) = d + T2 (x) = 2. Let V (T 2 ) ∩ N -(x) = {a, b} and V (T 2 ) ∩ N + (x) = {c, d}. Suppose, without of generality that (a, b), (c, d) ∈ E(T ). Since d + T2+x (a) = d + T2+x (b) = d + T2+x (c) = d + T2+x (d) = 2. Then (c,
(a) = 1 which is a contradiction. If (y, b) ∈ E(T 2 + y), then N + T2+y (b) = 1 which is a contradiction, then (a, y), (b, y) ∈ E(T ) If (c, y) ∈ E(T 2 + y) then N - T2+y (c) = {b} and d - T2+y (c) = 1 which is a contradic- tion. If (d, y) ∈ E(T 2 + y), then N - T2+y (d) = {c} and d - T2+y (d) = 1 which is a con- tradiction. Then (y, c), (y, d) ∈ E(T ). Then N - T2+x (x) = N - T2 (x) = N - T2+y (y) = N - T2 (y) = {a, b} and N + T2+x (x) = N + T2 (x) = N + T2+y (y) = N + T2 (y) = {c, d}. We can deduce that for any vertex z of T 1 , N - T2 (z) = {a, b} and N + T2 (z) = {c, d}. If T 2 + x, T 2 + y ∈ T 7 . Let N - T2+x (x) = {a, b, c} and N + T2+x (x) = {d, e, f }. If T 1 ∈ T 3 , let T 1 = v 1 v 2 v 3 v 4 v 5 Figure 3.16 If (u 2 , u 6 ) ∈ E(T ), v 1 ← u 1 → v 5 ← v 2 → v 3 → v ← v 4 → u 6 ← u 2 → u 3 ← u 4 → u 5 ≡ P . If (u 6 , u 2 ) ∈ E(T ), v 1 ← u 1 → v 5 ← v 2 → v 3 → v ← v 4 → u 2 ← u 6 → u 5 ← u 4 → u 3 ≡ P .
Remark 3.2. The case (x n-1 , x n ) can be deduced immediatly from Theorem 3.1.

Since P = x 1 ← x 2 ...x i-1 → x i → x i+1 ← x i+2 ...x n-1 → x n , then P = x n ← x n-1 ...x 2 → x 1 = y 1 ← y 2 ...y n-i-1 → y n-i ← y n-i+1 ← y n-i+2 ...y n-1 → y n and so P = y 1 → y 2 ...y n-i-1 ← y n-i → y n-i+1 → y n-i+2 ...y n-1 ← y n . Since δ -(T ) ≤ ∆ + (T ), then i ≤ n -i -1 and i < n -i, then P = y 1 → y 2 ...y i-1 ← y i → y i+1 ...y n-i-1 ← y n-i ...y n .
In this case, we have y ′ 1 ...y ′ i is an antidirected path with (y i , y i-1 ). (y i , y i+1 ) ∈ E( P ). Then we recover a previous case and T contains a copy of P . By the Theorem 3.1, since P ⊆ T ⇔ P ⊆ T , T contains a copy of P and a copy of P . Case 3. b 1 = 2: rst we will study the case: (x i , x i-1 ) ∈ E(P ). Since x 1 ...x i is an antidirected path and T 1 ∈ T 3,5,7 , i ∈ {3, 5, 7}

For i = 3: x 1 ...

x i = x 1 → x 2 ← x 3 For i = 5: x 1 ...x i = x 1 → x 2 ← x 3 → x 4 ← x 5 For i = 7: x 1 ...x i = x 1 → x 2 ← x 3 → x 4 ← x 5 → x 6 ← x 7 P = x 1 → x 2 ...x i-1 ← x i → x i+1 → x i+2 ← x i+3 ...x n .
In this case, we have to study two subcases:

i. T 2 ⊇ P ′ i+2 = v i+2 ...v n ≡ x i+2 ...x n . If N -(v i+2 ) ∩ V (T 1 ) ̸ = ∅, then there exists a vertex x ∈ V (T ) such that: (x, v) and (x, v i+2 ) ∈ E(T ). T 1 T 2 x v v i+2 ...v n Figure 3.17 Since T 1 = T < N -(v) >, then d + T1+v (v) = 0. P i+1 = x 1 → x 2 ...x i-1 ← x i → x i+1
is an antidirected path, then P i+1 ̸ = P -(1, 2) and we can apply the Simple Lemma. By Simple Lemma, T

1 + v ⊇ P i+1 = v 1 ...v i+1 ≡ x 1 ...x i+1 such that v i+1 ̸ = v. Since T 1 ∈ T 3,5,7 , then any vertex of T 1 can play the role of x i+1 in P i+1 . So T 1 + v ⊇ P i+1 = v 1 ...v i+1 ≡ x 1 ...x i+1 with v i+1 = x. P i+1 = v 1 ...v...v i x. Since b 1 = 2, then (x i , x i+1 ) and (x i+1 , x i+2 ) ∈ E(P ) and since (x, v i+2 ) ∈ E(P ), then: v 1 ...v...x → v i+2 ...v n ≡ P . Otherwise N -(v i+2 ) ∩ V (T 1 ) = ∅, then for y ∈ V (T 1 ), (v i+2 , y) ∈ E(T ). T 1 y v v i+2 Figure 3.18 since b 2 = 2, then (x i+3 , x i+2 ) ∈ E(P ). Let j be the smallest integer in [i + 3, n] such that d - p (x j ) = 0 then (x j , x j-1 ) and (x j , x j+1 ) ∈ E(P ): x i+2 ...x n = x i+2 ← x i+3 ... ← x j-1 ← x j → x j+1 ...x n then v i+3 ← ... ← v j-1 ← v j → v j+1 ...v n ≡ x i+3 ...x j-1 ← x j → x j+1 ...x n . Then, since v j and v j+1 ∈ V (T 2 ), (v, v j ) and (v, v j+1 ) ∈ E(T ). So we can insert v in v i+3 ...v n , to get the path: v i+3 ...v j-1 ← v j ← v → v j+1 ...v n .
To explain this idea further:

v i+2 ← v i+3 ... ← v j-1 ← v j → v j+1 ... v n v j+3 ← ... ← v j ← v → v j+1 ... v n v j+3 ← ... ← v j ← v → v j+1 ... v n If N -(v i+3 ) ∩ V (T 1 ) ̸ = ∅, then there exists z ∈ V (T 1 ) such that (z, v i+3 ) ∈ E(T ),
and since d - T1 (v i+2 ) = 0, then we can apply the Simple Lemma to obtain a path

P i+1 = u 1 ...u i+1 ≡ x 1 ...x i+1 in T 1 + v i+2 such that u i+1 ̸ = v i+2 since T 1 ∈ T 3,5,7 , then any vertex of V (T 1 ) may be equal to u i+1 in P i+1 . P i+1 = u 1 → u 2 ...u i → z ≡ x 1 ...x i+1 . Since, (z, v i+3 ) ∈ E(T ) then we have: u 1 ...v i+2 ...z → v i+3 ...v...v n ≡ P . Otherwise, d - T1 (v i+2 ) = d - T1 (v i+3 ) = 0. If j = i + 3: P = x 1 ...x i-1 ← x i → x i+1 → x i+2 ← x i+3 → x i+4 ...x n (b 2 = 1). Suppose that there exists x ∈ V (T 1 ) such that N + (x) ∩ V (T 2 ) ̸ = ∅. Let a ∈ N + (x) ∩ V (T 2 ), then (x, a) and (v, a) ∈ E(T ). T 2 -{a, v i+2 } contains a path P ′ i = v i+4 ...v n ≡ x i+4 ...x n unless T 2 -{a, v i+2 } ∈ T 3,5,7 and x i+4 ...x n is an antidirected path, since d - T1 (v i+2 ) = 0, and T 1 ∈ T 3,5,7 , then, by Simple Lemma T 1 + v i+2 contains a path u 1 ...u i+1 ≡ x 1 ...x i+1 where u i+1 = x since v i+4 ∈ V (T 2 ), then (v, v i+4 ) ∈ E(T ). Then u 1 ...u i → x → a ← v → v i+4 ...v n ≡ P . Otherwise, T 2 -{a, v i+2 } ∈ T 3,5,7 and x i+4 ...x n is an antidirected path. If T 2 -{a, v i+3 } / ∈ T 3,5,7
, then by following the same steps, we can nd a path u ′

1 ...u ′ i+1 ≡ x 1 ...x i+1 where u ′ i+1 = x, in T 1 + v i+3 and a path v ′ i+4 ...v ′ n ≡ x i+4 ...x n in T 2 -{a, v i+3 } and then: u ′ 1 ...u ′ i+1 → a ← v → v ′ i+4 ...v ′ n ≡ P . Otherwise, T 2 -{a, v i+2 } and T 2 -{a, v i+3 } ∈ T 3,5,7 . If there exists b ∈ V (T 2 ) ∩ N -(a), then (b, a) and (v, b) ∈ E(T ). If b ̸ = v i+2 , let v 1 ...v i+1 ⊆ T 1 + v i+2 where v i+1 = x. T 3 = T 2 + v -{a, v i+2 } is a tournament such that d - T3 (v) = 0 and T 3 -v ∈ T 3,5,7 . Since x i+4 ...x n is antidirected, then x i+3 x i+4 ...x n ̸ = P + (1, 2). (P + (1, 2) = y 1 → y 2 ← y 3 ← y 4 : since y 2 ← y 3 ← y 4
is a directed path and x i+4 ...x n is an antidirected path then y 2 ← y 3 ← y 4 isn't a copy of x i+4 ...x n ). Then, by Simple Lemma, T 3 contains a path y i+3 ...y n ≡ x i+3 ...x n where y i+3 = b. Since (b, a) ∈ E(T ), then v 1 ...v i+1 → a ← y i+3 ...y n ≡ P . If b = v i+2 , we can repeat the same steps where v 1 ...v i+1 is contained in

T 1 + v i+3 and T 3 = T 2 + v -{a, v i+3 }. Otherwise, N -(a) ∩ V (T 2 ) = ∅, then for any vertex b in V (T 2 ), (a, b) ∈ E(T ). If there exists y ∈ V (T 1 ) such that d + T2 (y) ≥ 2, then let y 1 , y 2 ∈ N + (y) ∩ V (T 2 ) such that (y 2 , y 1 ) ∈ E(T )
. The same procedure is followed to study the existence of the copy of

P in T . If T 2 -{v i+2 , y 1 } or T 2 -{v i+3 , y 1 } / ∈ T 3,5,7 or x i+4 ...x n is not an antidirected path,
then the problem is solved.

Otherwise, since (y 2 , y 1 ) ∈ E(T ), we will not have any problem to nd a copy of (a,b) ∈ E(T ). So we have for x ∈ V (T 1 ) and b ∈ V (T 2 -a), (x, a), (a, b) and (b, x) ∈ E(T ). Since T 2 -{a, v i+2 } and T 2 -{a, v i+3 } ∈ T 3,5,7 , then V (T 2 -{a, v i+2 }) ≥ 3, then there exists y 1 , y 2 , y 3 in V (T 2 -a). By Lemma 3.1, if T 2 -{a, y 1 } and T 2 -(a, y 2 ) ∈ T 3,5,7 , then T 2 -{a, y 3 } / ∈ T 3,5,7 . Since d - T1+y3 (y 3 ) = 0, then T 1 + y 3 contains a path, v 1 ...v i+1 ≡ x 1 ...x i+1 such that v i+1 ̸ = y 3 since otherwise T 1 contains an antidirected path v 1 ...v i which is a contradiction since T 1 ∈ T 3,5,7 and since T 2 -{a,

P in T : If T 2 -{v i+2 , y 1 } or T 2 -{v i+3 , y 1 } contains a path v i+4 ...v n ≡ x i+4 ...x n , since T 1 + v i+2 or T 1 + v i+3 contains a path v 1 ...v i+1 ≡ x 1 ...x i+1 with v i+1 = y, then v 1 ...v i → y → y 1 ← v → v i+4 ...v n ≡ P . Otherwise, by Simple Lemma, T 2 + v -{v i+2 , y 1 } or T 2 + v -{v i+3 , y 1 } contains a path u i+3 ...u n ≡ x i+3 ...x n with u i+3 = y 2 , then: v 1 ...v i+1 → y 1 ← y 2 ...u n ≡ P . Otherwise, for any vertex x of T 1 , d + T2 (x) ≤ 1. If there exists 2 vertices, x and y of T 1 such that N + (x) ∩ V (T 2 ) = {a}, N + (y) ∩ V (T 2 ) = {b} and a ̸ = b, suppose without loss of generality that (b, a) ∈ E(T ), then the problem is solved in a previous case by considering a path v 1 ...v i+1 ≡ x 1 ...x i+1 in T 1 + v i+2 or T 1 + v i+3 with v i+1 = x and studying the existence of a path v i+3 ...v n ≡ x i+3 ...x n in T 2 + v -{y 1 , v i+2 } or T 2 + v -{y 1 , v i+3 }. Otherwise, if x and y ∈ V (T 1 ) such that d + T2 (x) = d + T2 (y) = 1, then N + (x) ∩ V (T 2 ) = N + (y) ∩ V (T 2 ) = {a}. If for any vertex x of T 1 , N + (x) ∩ V (T 2 ) = {a}, then for any vertex b of T 2 -a,
y 3 } / ∈ T 3,5,7 then it contains a path v i+4 ...v n ≡ x i+4 ...x n . Since a and v i+4 ∈ V (T 2 ), then (v, a) and (v, v i+4 ) ∈ E(T ) and since v i+1 ∈ V (T 1 ) then (v i+1 , a) ∈ E(T ). Then v 1 ...v i+1 → a ← v → v i+4 ...v n ≡ P .
Remark 3.3. By considering Theorem 3.1 we can assume that for u ∈ V (T 1 ),

d + T2 (u) ≥ 1 since if there exists u ∈ V (T 1 ) such that d + T2 (u) = 0,
we get one of the following three cases:

A. If T 1 ∈ T 3 , then d + T1 (u) = d - T1 (u) = 1. Let N + (u) ∩ T 1 = {u 1 } then since d + T2 (u) = 0 and v ∈ N + (u), N + T (u) = {u 1 , v} then d + T (u 1 ) = 2. By considering T , since (u, v) and (u, u 1 ) ∈ E(T ), then (v, u) and (u 1 , u) ∈ E(T ) and since for y ∈ T -{u, u 1 , v}, (y, u) ∈ E(T ), then (u, y) ∈ E(T ) then N - T (u) = {u 1 , v} and d - T (u) = |{u 1 , v}| = 2. Since δ -(T ) = M in{d - T (w), w ∈ V (T )}, then δ -(T ) ≤ 2 and since δ -(T ) = |T 1 | = 3, δ -(T ) < δ -(T ). Since δ -(T ) + ∆ + (T ) = |T | -1 = n -1 then ∆ + (T ) = n -1 -δ -(T ) and ∆ + (T ) = |T | -1 -δ -(T ) = n -1 -δ -(T ). So ∆ + (T ) > ∆ + (T ) B. If T 1 ∈ T 5 , then d - T1 (u) = d + T1 (u) = 2 (T 5 is a regular tournament of order 5). Let N + T1 (u) = {u 1 , u 2 }. Since d + T2 (u) = 0, and (u, v) ∈ E(T ), then N + T (u) = {u 1 , u 2 , v}. Then N - T (u) = {u 1 , u 2 , v} and N + T (u) = T -{u 1 , u 2 , v, u}. So d - T (u) = |{u 1 , u 2 , v}| = 3. Since δ -(T ) = M in{d - T (w), w ∈ V (T )} then δ -(T ) ≤ d - T (u) and so δ -(T ) ≤ 3. Since δ -(T ) = |T 1 | = 5, then δ -(T ) < δ -(T ). So (n -1) -δ -(T ) > (n -1) -δ -(T ) and ∆ + (T ) > ∆ + (T ). C. If T 1 ∈ T 7 , then d - T1 (u) = d + T1 (u) = 3 (T 7 is a regular tournament on 7 vertices). Let N + T1 (u) = {u 1 , u 2 , u 3 } then N + T (u) = {u 1 , u 2 , u 3 , v} and d + T (u) = |{u 1 , u 2 , u 3 , v}| = 4. So N - T (u) = {u 1 , u 2 , u 3 , v} and d - T (u) = |{u 1 , u 2 , u 3 , v}| = 4 then δ -(T ) ≤ 4 and since δ -(T ) = |T 1 | = 7, then δ -(T ) < δ -(T ) so ∆ + (T ) > ∆ + (T ).
Then, in these 3 cases, ∆ + (T ) > ∆ + (T ). By Theorem 3.1, P ⊆ T ⇔ P ⊆ T . So if T contains a copy of P , then T contains also a copy of P . We suppose, without loss of generality, that

∆ + (T ) ≥ ∆ + (T ), then, since |T | = |T | = n, (n -1) -∆ + (T ) ≤ (n -1) -∆ + (T ). So δ -(T ) ≤ δ -(T ). If T 1 ∈ T 3 , δ -(T ) = |T 1 | = 3 then δ -(T ) ≥ 3 and since d - T (u) ≥ δ -(T ) then d - T (u) ≥ 3 and d + T (u) ≥ 3 then N + T (u) ̸ = {u 1 , v} so there exists y ∈ V (T 2 ) such that (u, y) ∈ E(T ) then N + (u) ∩ V (T 2 ) ̸ = ∅ which is a contradiction. If T 1 ∈ T 5 , δ -(T ) = |T 1 | = 5 then δ -(T ) ≥ 5 and since d - T (u) ≥ δ -(T ) then d - T (u) ≥ 5 and d + T (u) ≥ 5 then N + T (u) ̸ = {u 1 , u 2 , v}. So there exists y ∈ V (T 2 ) such that (u, y) ∈ E(T ) then N + (u) ∩ V (T 2 ) ̸ = ∅ which is a contradiction. If T 1 ∈ T 7 , then similarily to the two previous cases, d + T (u) ≥ 7, N + T (u) ̸ = {u 1 , u 2 , u 3 , v} and N + (u) ∩ V (T 2 ) ̸ = ∅ which is a contradiction.
Now, we will prove the existence of a copy of P in T without using the theorem 3.1.

Suppose that there exists u ∈ V (T 1 ) such that d + T2 (u) = 0. In this case, let

x ∈ V (T 1 ) such that N + (x) ∩ V (T 2 ) = {a}. For y ∈ V (T 2 -a) and for z ∈ V (T 1 ), (y, z) ∈ E(T ) since y ̸ = a. Since T 2 -{a, v i+2 } and T 2 -{a, v i+3 } ∈ T 3,5,7 then |T 2 -{a, v i+2 }| ∈ {3, 5, 7} and since |T 2 | = |T 2 -{a, v i+2 }|+2, then |T 2 | ∈ {5, 7, 9}.
Then, by Lemma 3.1, we can choose y ∈ V (T 2 -a) such that T 2 -{a, y} / ∈ T 3,5,7 .

P i+1 = x 1 → x 2 ...x i-1 ← x i → x i+1 is an antidirected path, then P i+1 = x i+1 ← x i → x i-1 ...x 2 ← x 1 . A. If T 1 ∈ T 3 , then P i+1 = x 1 → x 2 ← x 3 → x 4 and P i+1 = x 1 ← x 2 → x 3 ← x 4 . B. If T 1 ∈ T 5 , then P i+1 = x 1 → x 2 ← x 3 → x 4 ← x 5 → x 6 and P i+1 = x 1 ← x 2 → x 3 ← x 4 → x 5 ← x 6 . C. If T 1 ∈ T 7 , then P i+1 = x 1 → x 2 ← x 3 → x 4 ← x 5 → x 6 ← x 7 → x 8 and P i+1 = x 1 ← x 2 → x 3 ← x 4 → x 5 ← x 6 → x 7 ← x 8 . Since P + (1, 2) = x 1 → x 2 ← x 3 ← x 4 then P i+1 ̸ = P + (1, 2
) and P i+1 , being an antidirected path is not a directed path. Since d - T1+y (y) = 0, T 1 ∈ T 3,5,7 and P i+1 is neither equal to P + (1, 2) nor a directed path then by Simple Lemma,

T 1 + y ⊇ Q = v 1 v 2 ...v i+1 ≡ x 1 ...x i+1 with v i+1 = x, (v i+1 is the origin of Q and is equal to x). Since T 2 -{a, y} / ∈ T 3,5,7 , then T 2 -{a, y} ⊇ v i+4 ...v n ≡ x i+4 ...x n . Since (x, a), (v, a) and (v, v i+4 ) ∈ T 3,5,7 , then v 1 ...v i+1 → a ← v → v i+4 ...v n ≡ x 1 ...x n . If for any vertex u ∈ V (T 1 ), N + (u) ∩ V (T 2 ) = ∅, by Lemma 3.1, we can choose a vertex a of T 2 such that T 2 -a / ∈ T 3,5,7 , then T 2 -a contains a path v i+3 ...v n ≡ x i+3 ...x n . If T 1 ∈ T 5 , let v 1 → v 2 → v 3 → v 4 → v 5 be a Hamiltonian directed path in T 1 . Then since (v 1 , v), (v 2 , v), (v 2 , v 3 ), (a, v 3 ), (a, v 4 ), (v 4 , v 5 ) and (v i+3 , v 5 ) ∈ E(T ): v 1 → v ← v 2 → v 3 ← a → v 4 → v 5 ← v i+3 ...v n ≡ P . If T 1 ∈ T 7 , then let T 1 = v 1 v 2 v 3 v 4 v 5 v 6 v 7 Figure 3.19 Since (v 1 , v), (v 2 , v), (v 2 , v 3 ), (v 6 , v 3 ), (v 6 , v 7 ), (a, v 7 ), (a, v 4 ), (v 4 , v 5 ) and (v i+3 , v 5 ) ∈ E(T ): v 1 → v ← v 2 → v 3 ← v 6 → v 7 ← a → v 4 → v 5 ← v i+3 ...v n . If T 1 ∈ T 3 , let T 1 = v 1 v 2 v 3 . Since d +
T2-a+v3 (v 3 ) = 0, and since T 2 -a ∈ T 3,5,7 , then, by Simple Lemma, T 2 -a + v 3 ⊇ v i+2 ...v n ≡ x i+2 ...x n such that v i+2 ̸ = v 3 unless P i+2 ≡ x i+2 ...x n is a directed path:

P i+2 = x i+2 ← x i+3 ...x n (Eventhough x i+2 ...x n = P -(1, 2), we can nd a path v i+2 ...v n = v 5 ← v 6 → v 7 → v 8 ≡ x i+2 ...x n with v i ̸ = v 3 since T 2 -a / ∈ T 3,5,7 ). In this case, since (a, v 2 ), (v 1 , v 2 ), (v 1 , v) and (v, v i+2 ) ∈ E(T ), then a → v 2 ← v 1 → v → v i+2 ...v n ≡ x 1 ...x n . If x i+2 ← x i+3 ...x n is a directed path, then since δ -(T ) ≤ n-1 2 and ∆ + (T ) ≥ n-1 2 , δ -(T ) ≤ ∆ + (T ). So |T 1 | ≤ |T 2 | and |T 2 | ≥ 3. Let a, b ∈ V (T 2
) and let v 6 ...v n be a directed path in T 2 -{a, b} such that v 6 ...v n ≡ x 6 ...x n . Since (x i+3 , x i+2 ) ∈ E(P ) and

(v 6 , v 3 ) ∈ E(T ), then a → v 1 ← b → v 2 → v 3 ← v 6 ...v n ≡ P . If j > t + 3 (b 2 ≥ 2), P = x 1 ...x i-1 ← x i → x i+1 → x i+2 ← x i+3 ← x i+4 ...x n . Let x ∈ V (T 1 ). Since T 1 ∈ T 3,5,7 , then |T 1 -x| ∈ {2, 4, 6} and so T 1 -x / ∈ T 3,5,7 then T 1 -x ⊇ v ′ 2 ...v ′ i ≡ x 2 ...x i . Set P ′ i-1 = v i-1 ← v i → v i+1 → v i+2 ← v i+3 ← v i+4 ... ← v j-1 ← v j → v j+1 ...v n . If there exists k ∈ [i + 4, j] such that (v k , x) ∈ E(T ), then: if k = i + 4, (v i+4 , x) ∈ E(T ). Since N -(v i+2 ) ∩ V (T 1 ) = ∅ and N -(v i+3 ) ∩ V (T 2 ) = ∅, (v i+2 , v ′ 2 ), (v i+3 , v ′ i-1 ), (v i+3 , v ′ i ) ∈ E(P ): v i+2 → v ′ 2 ...v i-1 ← v i+3 → v ′ i → v ← x ← v i+4 ...v n ≡ P . If k > i + 4, let k = M in{s ∈ {v i+5 , t}, (v 5 , x) ∈ E(T )}, then for s ′ ∈ [i + 4, k -1], (x, v ′ s ) ∈ E(P ). In this case: v i+2 → v ′ 2 ...v ′ i-1 ← v ′ i → v → v i+3 ← v i+4 ...v k-1 ← x ← v k ...v n ≡ P Otherwise, for s ∈ [i + 4, j], (x, v s ) ∈ E(T ). If (x, v j+1 ) ∈ E(T ) or n = j,then we have: v i+2 → v ′ 2 ...v ′ i-1 ← v ′ i → v → v i+3 ← v i+4 ... ← v j ← x → v j+1 ...v n ≡ P , or v i+2 → v ′ 2 ...x ′ i-1 ← v ′ i → v → v i+3 ← v i+4 ... ← v j ← x ≡ P . Otherwise (v j+1 , x
) ∈ E(P ). Since T 1 ∈ T 3,5,7 , then any vertex y in T 1 -x can play the role of x by considering the symmetry of the tournaments in T 3,5,7 . So we can assume that for any vertex x of T 1 , for s ∈ [i + 4, t], (x, v s ) ∈ E(P ) and (v j+1 , x) ∈ E(P ). Let x, y ∈ V (T 1 ) such that T 1 -{x, y} / ∈ T 3,5,7 (Lemma 3.1) and suppose that (x, y) ∈ E(T ). Then T 1 -{x, y}

⊇ P 1 = w 2 ...w i-1 ≡ x 2 ...x i-1 . If T 1 ∈ T 3 . Let T 1 = v 1 v 2 v 3 . we suppose that x = v 1 and y = v 2 : then P 1 = v 3 .
If T 1 ∈ T 5 , we may use [gure] and suppose that x = v 1 and y = v 3 , then

P 1 = v 2 ← v 4 → v 5 .
If T 1 ∈ T 7 , we may use [gure] and suppose that x = v 1 and y = v

2 then P 1 = v 7 ← v 3 → v 5 ← v 4 → v 6 . If T < {v j+2 ; ...; v n } ∪ {v j } >⊇ w j+1 ...w n ≡ x j+1 ...x n . Then: if j = i + 4: v i+2 → w 2 ...w i-1 ← v i+3 → x → y ← v j+1 ← v → w j+1 ...w n ≡ P If t > i + 4: v i+2 → w 2 ...w i-1 ← v i+3 → x → v i+4 ← ...v j-1 ← y ← v j+1 ← v → w j+1 ...w n .
Otherwise, T < {v j+2 , ..., v n } ∪ {v j } >∈ T 3,5,7 and x j+1 ..x n is antidirected. in this case, x j+1 ...x n ̸ = P + (1, 2) and is not a directed path since x n-2 x n-1 x n is antidirected. Then, by Simple Lemma, T < {v j+2 , ..., v n } ∪ {v j } ∪ {v} >⊇ w ′ j ...w ′ n ≡ x j ...x n with w ′ j = v j since d - T <{vj+2;...;vn}∪{vj }∪{v}> (v) = 0 and T < {v j+2 ; ...; v n } ∪ {v j } >∈ T 3,5,7 . Then, since (v j , v j+1 ) ∈ E(T ), if j = i + 4:

v i+2 → w 2 ...w i-1 ← v i+3 → x → y ← v j+1 ← v j w ′ j+1 ...w ′ n ≡ P . And if j > i + 4: v i+2 → w 2 ...w i-1 ← v i+3 → x → v i+4 ...v j-1 ← y ← v j+1 ← v j w ′ j+1 ...w ′ n = P .
ii. T 2 ̸ ⊇ v i+2 ...v n ≡ x i+2 ...x n . In this case, x i+2 ...x n is antidirected and T 2 ∈ T 3,5,7 . Since (x i+3 , x i+4 ) ∈ E(P ),

P = x 1 → x 2 ...x i-1 ← x i → x i+1 → x i+2 ← x i+3 ...x n-1 → x n . If |T 1 | < |T 2 |
, then we have to study three cases:

A. |T 1 | = 3 and |T 2 | = 5. P = x 1 → x 2 ← x 3 → x 4 → x 5 ← x 6 → x 7 ← x 8 →
x 9 . Since x 1 ...x 5 is not an antidirected path, T 2 contains a path v 1 ..v 5 ≡ x 2 ...x 5 where any vertex y of T 2 can play the role of v 5 . If there exists x ∈ V (T 1 ) and y ∈ V (T 2 ) such that (x, y) ∈ E(T ), then, since x 6 ...x 9 is an antidirected path, and since d + T1+v (v) = 0, by Simple Lemma, T 1 + v ⊇ v 6 ...v 9 ≡ x 6 ...x 9 where v 6 = x. So v 1 ...v 5 ← v 6 ...v 9 ≡ P . Otherwise, ∀x ∈ 

V (T 1 ), y ∈ V (T 2 ), (y, x) ∈ E(T ). T 2 ⊇ v 3 → v 4 → v 5 ← v 6 → v 7 ≡ x 3 ...x 7 (x 3 ...x 7 is not antidirected). Let T 1 = v 8 v 9 v 10 . Since (v 6 , v 9 ), (v 3 , v 10 ), (v 7 , v 10 ) ∈ E(T ), then v 7 → v 10 ← v 3 → v 4 → v 5 ← v 6 → v 9 ← v 8 → v ≡ P . B. If |T 1 | = 3 and |T 2 | = 7, then P = x 1 → x 2 ← x 3 → x 4 → x 5 ← x 6 → x 7 ← x 8 → x 9 ← x 10 → x 11 . If there exists x ∈ V (T 1 ), y ∈ V (T 2 ) such that (x, y) ∈ E(T ).
∈ V (T 2 ), (y, x) ∈ E(T ). T 2 ⊇ v 1 → v 2 ← v 3 → v 4 → v 5 ← v 6 → v 7 . Let T 1 = v 9 v 10 v 11 . Since (v 3 , v 10 ) and (v 1 , v 11 ) ∈ E(T ), then v 9 → v 10 ← v 3 → v 4 → v 5 ← v 6 → v 7 ← v → v 2 ← v 1 → v 11 ≡ P . C. |T 1 | = 5 and |T 2 | = 7 then: P = x 1 → x 2 ← x 3 → x 4 ← x 5 → x 6 → x 7 ← x 8 → x 9 ← x 10 → x 11 ←
x 12 → x 13 . If there exists x ∈ V (T 1 ) and y ∈ V (T 2 ) such that (x, y) ∈ E(T ), then T 2 ⊇ v 1 ...v 7 ≡ x 1 ...x 7 and T 1 + v ⊇ v 8 ...v 13 ≡ x 8 ...x 13 , with v 7 = y and v 8 = x so v 1 ...v 7 ← v 8 ...v 13 ≡ x 1 ...x 13 . Otherwise, for x ∈ V (T 1 ) and y ∈ V (T 2 ), (y, x) ∈ E(T ).

T 2 ⊇ u 1 → u 2 ← u 3 → u 4 ← u 5 → u 6 → u 7 ≡ x 1 ...x 7
and Let

T 1 = v 1 v 2 v 3 v 4 v 5 Figure 3.20 Since (u 3 , v 4 ) and (u 1 , v 3 ) ∈ E(T ): v 1 → v 4 ← u 3 → u 4 ← u 5 → u 6 → u 7 ← v → u 2 ← u 1 → v 3 ← v 2 → v 5 ≡ x 1 ...x 13 . Remark 3.4. Since |T 1 | < |T 2 |, then i < n -1 -i and since T 1 ∈ T 3,5,7 , then
i is an odd number.

P = x 1 → x 2 ...x i-1 ← x i → x i+1 → x i+2 ← x i+3 → x i+4 ...x n-2 ← x n-1 → x n antidirected path on n -1 -i vertices . Since i < n -1 -i, x i+2 ...x n
is an antidirected path, and since i is an odd number, then (x n-i+2 , x n-i+1 ) and (x n-i , x n-i+1 ) ∈ E(T ).

P ′ i+2 = x i+2 ← x i+3 ...x n-i-1 ← x n-i → x n-i+1 ← x n-i+2 ...x n-2 ← x n-1 → x n
antidirected path on i vertices . Then P ′ i+2 = x n ← x n-1 ...x i+3 →

x i+2 = y 1 ← y 2 → y 3 ...y i-1 → y i ← y i+1 → y i+2 ...y n-1-i and P ′ i+2 = y 1 → y 2 ← y 3 ...y i-1 ← y i → y i+1 ← y i+2 ...y n-1-i , so P = y 1 → y 2 ← y 3 ...y i-1 ← y i → y i+1 ← y i+2 ...y n . Since y 1 ...y i is an antidirected path, (y i , y i-1 ), (y i , y i+1 ), (y i+2 , y i+1 ) ∈ E(T ), then T contains a copy of P (b 1 = 1) and by using El Sahili Ghazo Hanna theorem, since if T ⊇ P ⇔ T ⊇ P , T contains a copy of P then T contains a copy of P .

If |T 1 | = |T 2 |, then we have to study three cases:

|T 1 | = |T 2 | = 7:
(T is a regular tournament on 13 vertices).

P = x 1 → x 2 ← x 3 → x 4 ← x 5 → x 6 ← x 7 → x 8 → x 9 ← x 10 → x 11 ← x 12 → x 13 ← x 14 → x 15 . Let V (T 1 ) = {v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 } and V (T 2 ) = {v ′ 1 , v ′ 2 , v ′ 3 , v ′ 4 , v ′ 5 , v ′ 6 , v ′ 7 }. T 2 + v 1 ⊇ u 8 ...u 15 ≡ x 8 ...x 15 . |T 2 + v 1 | = 8 so T 2 + v 1 /
∈ T 3,5,7 and u 8 ̸ = v 1 since otherwise, u 9 ...u 15 ⊆ T 2 which is a contradiction since T 2 ∈ T 3,5,7 and x 9 ...x 15 is an antidirected path. Since T is regular then d 

- T (u 8 ) = d + T (u 8 ) = 7. Since d - T2 (u 8 ) = 3 and (v, u 8 ) ∈ E(T ), then d - T1 (u 8 ) = 3 and d - T1-v1 (u 8 ) = 2. Let x, y ∈ N -(u 8 ) ∩ T 1 -v 1 such that (x, y) ∈ E(T ). If T 1 -{v 1 , x} / ∈ T 3,5,7 , then T 1 -{v 1 , x} ⊇ u ′ 1 ...u ′ 5 ≡ x 1 ...
P = v 1 → v 2 ← v 3 → v 4 ← v 5 → v 6 → v 7 ← v 8 → v 9 ← v 10 → v 11 . Let v 1 ∈ V (T 1 ). Since T 2 + v 1 /
∈ T 3,5,7 , then T 2 + v 1 ⊇ u 6 ...u 11 with u 6 ̸ = v 1 since otherwise T 2 ⊇ u 7 ...u 11 which is an antidirected path, a contradiction. Since T is regular then d - T (u 6 ) = d + T (u 6 ) = 5 and since

T 2 ∈ T 5 , then d - T2 (u 6 ) = 2 and since (v, u 6 ) ∈ E(T ), then d - T1 (u 6 ) = 2 and d - T1-v1 (u 6 ) ≥ 1. Let x ∈ V (T 1 -v 1 ) ∩ N -(u 6 ). If T 1 -{v 1 , x} ⊇ u 1 → u 2 ← u 3 , then u 1 → u 2 ← u 3 → v ← x → u 6 ...u 11 ≡ P . Otherwise, T 1 -{v 1 , x} ∈ T 3 . Let T 1 -{v 1 , x} = u 1 u 2 u 3 . Since T 1 ∈ T 5 , then d + T1 (x) = 2 and d + T1-v1 (x) ≥ 1. Suppose, without loss of generality that (x, u 3 ) ∈ E(T ). Then u 1 → v ← u 2 → u 3 ← x → u 6 ...u 11 ≡ P . |T 1 | = |T 2 | = 3: (T 1 is a regular tournament on 7 vertices) Let T 1 = v 1 v 2 v 3 and let T 2 = v ′ 1 v ′ 2 v ′ 3 . P = x 1 → x 2 ← x 3 → x 4 → x 5 ← x 6 → x 7 . Since T is regular then for x ∈ V (T ), d - T (x) = d + T (v) = 3. Since d - T1 (v 1 ) = d - T1 (v 2 ) = d - T1 (v 3 ) = 1, and (v 1 , v), (v 2 , v), (v 3 , v) ∈ E(T ), then d - T2 (v 1 ) = d - T2 (v 2 ) = d - T2 (v 3 ) = 2. Suppose without loss of generality that N - T2 (v 2 ) = {v ′ 1 , v ′ 2 }. If (v ′ 2 , v 3 ) ∈ E(T ), then v ′ 1 → v 2 ← v 1 → v → v ′ 3 ← v ′ 2 → v 3 ≡ P . Otherwise, N - T2 (v 3 ) = {v ′ 1 , v ′ 3 }, then v ′ 3 → v 3 ← v ′ 1 → v ′ 2 → v 2 ← v 1 → v ≡ P .
Now, I will study the case of a tournament T and a path P =

x 1 ...x n such that (x δ -(T ) , x δ -(T )+1 ) ∈ E(P ), T < N -(v) >⊇ P ′ ≡ x 1 ...x δ -(T ) where v ∈ V (T ) such that d -(v) = δ -(

T ).

Let P = x 1 ...x n be a path of order n. Let T be a tournament of order n and let v ∈

V (T ) such that d -(v) = δ -(T ) and set T 1 = T < N -(v) >, T 2 = T < N + (v) > and δ -(T ) = i. Suppose that T 1 ⊇ v 1 ...v i ≡ x 1 ...x i , (x i , x i+1
) ∈ E(P ), and that for s < n, any tournment T ′ of order s contains a copy of any path P ′ of order s unless T ′ ∈ T 3,5,7 and P ′ is an antidirected path, we will prove that T contains a copy of P unless P is an antidirected path and T ∈ T 3,5,7 .

i. b 1 ≥ 2, then (x i , x i+1 ), (x i+1 , x i+2 ) ∈ E(P ) and P = x 1 ... 

x i-1 x i → x i+1 → x i+2 ...x n . T 2 ⊇ v i+2 ...v n ≡ x i+2 ...x n unless x i+2 ...x n is antidirected path and T 1 ∈ T 3,5,7 . If T 2 ⊇ v i+2 ...v n ≡ x i+2 ...x n , then, since v i+2 ∈ V (T 2 ),(v, v i+2 ) ∈ E(T ) and since (v i , v) ∈ E(T ), v 1 ...v i → v → v i+2 ...v n ≡ P . Otherwise, x i+2 ...x n is an antidirected path and T 2 ∈ T 3,5,7 . Since x i+2 ...x n is an antidirected path then x n-2 x n-1 x n = x n-2 → x n-1 ← x n or x n-2 ← x n-1 → x n then x n-2 x n-1 x n ̸ = x n-2 ← x n-1 ← x n so x i+1 ..x n ̸ = P + (1, 2). If N + (v i ) ∩ V (T 2 ) ̸ = ∅, then let x ∈ V (T 2 ) such that (v i , x) ∈ E(T ). Since d - T2+v (v) = 0, T 2 ∈ T 3,
T 2 + v ⊇ v i+1 ...v n ≡ x i+1 ...x n with v i+1 = x so v 1 ...v i → v i+1 ...v n ≡ P . Otherwise N + (v i ) ∩ V (T 2 ) = ∅ and for u ∈ V (T 2 ), (u, v i ) ∈ E(T ). Since x i+2 ...x n is an antidirected path then x n-2 x n-1 x n being antidirected is dierent then x n-2 → x n-1 → x n so x i+1 ...x n ̸ = P -(1, 2). Since d - T2+vi (v i ) = 0, T 2 ∈ T 3,5,7 and x i+1 ...x n ̸ = P -(1, 2), then T 2 + v i ⊇ v i+1 ...v n ≡ x i+1 ...x n with v i+1 ̸ = v i (v i+1 ∈ V (T 2 )). If i = 1 then v → v i+1 ...v n ≡ P . Otherwise, i ≥ 2. If (v i-1 , v i ) ∈ E(T ), then since v i-1 ∈ V (T 1 ), (v i-1 , v) ∈ E(T ) then v 1 ...v i-1 v v i+1 ...v n ≡ P (any vertex of T 2 can play the role of v i+1 and so (v, v i+1 ) ∈ E(T )). If (v i , v i-1 ) ∈ E(T ) let t be the maximal index in [1, i -1] such that d + P (x t ) = 0: x 1 ...x i = x 1 ...x t-1 → x t ← x t+1 ← ...x i-1 ← x i ( x t ← x t+1 ...x i-1 ← x i is a directed path). Since (x t , v) and (v t-1 , v) ∈ E(T ), then v 1 ...v t-1 → v ← v t ← v t+1 ...v i-1 ≡ x 1 ...x i . If N + (v i-1 ) ∩ V (T 2 ) ̸ = ∅, then let x ∈ N + (v i-1 ) ∩ V (T 2 ). By Simple Lemma, T 2 + v i ⊇ v i+1 ...v n ≡ x i+1 ...x n with v i+1 = x. Then v 1 ...v t-1 v v t ...v i-1 → v i+1 ...v n ≡ P . Otherwise, for x ∈ V (T 2 ), (x, v i-1 ) ∈ E(T ). Since x i+2 ...x n is an antidirected path, then if (x i+2 , x i+3 ) ∈ E(P ), let x ∈ V (T 2 ). Since T 2 -x / ∈ T 3,5,7 , then T 2 -x ⊇ v i+3 ...v n ≡ x i+3 ...x n . Since (x, v i-1 ), (x, v i ), (v i , v) and (v, v i+3 ) ∈ E(T ), then v 1 ...v i-1 ← x → v i → v → v i+3 ...v n ≡ P . Otherwise, (x i+3 , x i+2 ) ∈ E(P ). If T 2 ∈ T 5 , then P = x 1 ...x i-2 ← x i → x i+1 → x i+2 ← x i+3 → x i+4 ← x i+5 → x i+6 . Let v ′ 1 → v ′ 2 → v ′ 3 → v ′ 4 → v ′ 5 be a directed path in T 2 . Then: v 1 ...v i-1 ← v ′ 1 → v ′ 2 → v ′ 3 ← v → v ′ 5 ← v ′ 4 → v i ≡ P . If T 2 ∈ T 7 , T 1 = v ′ 1 v ′ 2 v ′ 3 v ′ 4 v ′ 5 v ′ 6 v ′ 7 Figure 3.21 Since P = x 1 ...x i-1 ← x i → x i+1 → x i+2 ← x i+3 → x i+4 ← x i+5 → xi + 6 ← x i+7 → x i+8 , then v 1 ...v i-1 ← v ′ 1 → v ′ 2 → v ′ 3 ← v → v ′ 7 ← v ′ 5 → v ′ 6 ← v ′ 4 → v i ≡ P . If T 2 ∈ T 3 , let T 2 = xyz. Since |T 1 | ≤ |T 2 |, then i ≤ 3. If i = 1, we recover a previous case. If i = 2, since P = x 1 ← x 2 → x 3 → x 4 ← x 5 → x 6 , then x ← v → y → v 1 ← z → v 2 ≡ P . If i = 3, then P = x 1 ← x 2 ← x 3 → x 4 → x 5 ← x 6 → x 7 or P = x 1 → x 2 ← x 3 → x 4 → x 5 ← x 6 → x 7 . Since δ -(T ) = 3, then d - T (v 1 ) = 3 and since v(T 1 -v 1 ) = 2, and (v 1 , v) ∈ E(T ), then if N -(v 1 ) ∩ V (T 2 ) = ∅, d - T (v 1 ) ≤ 2 which is a contradiction. Then N -(v 1 ) ∩ V (T 2 ) ̸ = ∅. Suppose, without loss of generality, that (x, v 1 ) ∈ E(T ). In the rst case, v 1 ...v i = v 1 ← v 2 ← v 3 , then v ← v 1 ← x → y → v 2 ← z → v 3 ≡ P . ((y, v 2 ), (z, v 2 ) ∈ E(T ) since i -1 = 2 and N + (v i-1 ) ∩ V (T 2 ) = ∅). In the second case, v 1 ...v i = v 1 → v 2 ← v 3 then v → z ← y → v 3 → v 2 ← x → v 1 ≡ P . ((y, v 3 ) ∈ E(T ) since N + (v i ) ∩ V (T 2 ) = ∅).
Remark 3.5. By the Theorem 3.1, P ⊆ T ⇔ P ⊆ T . We suppose without loss of generality that ∆

+ (T ) ≥ ∆ + (T ). Since δ -(T ) + ∆ + (T ) = n -1 then δ -(T ) = (n -1) -∆ + (T ), and since ∆ + (T ) ≥ ∆ + (T ), then (n -1) -∆ + (T ) ≤ (n -1) -∆ + (T ) and so δ -(T ) ≤ δ -(T ). If there exists x ∈ V (T 1 ) such that N + (x) ∩ V (T 2 ) = ∅, then since (x, v) ∈ E(T ), if y ∈ N + (x), y = v or y ∈ V (T 1 -x). If there exists y ∈ V (T 1 ) such that (y, x) ∈ E(T ) then N + T (x) ⊆ V (T 1 -{x, y}) ∪ {v}. Since |T 1 -{x, y}| = |T 1 | -|{x, y}| = δ -(T ) -2, then d + T (x) ≤ (δ -(T ) -2) + 1 = δ -(T ) -1. If y ∈ N + T (x) then (x, y) ∈ E(T ) and (y, x) ∈ E(T ), then y ∈ N - T (x) so N + T (x) = N - T (x) and d + T (x) = d - T (x) then d - T (x) ≤ δ -(T ) -1. Since δ -(T ) = M in x∈V (T ) d - T (x), then d - T (x) ≥ δ -(T ) so δ -(T ) ≤ d - T (x) ≤ δ -(T ) -1 then δ -(T ) < δ -(T ) which is a contradiction. Then for x ∈ V (T 1 ), N + (x) ∩ V (T 2 ) ̸ = ∅,
and we don't have to study the case where 

N + (v i ) ∩ V (T 2 ) = ∅. ii. b 1 = 1, then (x i , x i+1 ), (x i+2 , x i+1 ) ∈ E(P ). If N + (v i ) ∩ V (T 2 ) ̸ = ∅,
l = M ax{j, N + (v i ) ∩ I j ̸ = ∅}. Then for l ′ > l, N + (v i ) ∩ V (I l ′ ) = ∅ and so if u ∈ I l ′ , (u, v i ) ∈ E(T ). T 2 = I 1 I 2 I l I l+1 I t ... ...
I l | = |I 1 | + |I 2 | + ... + |I l |. For 1 ≤ i ≤ t. Since I i is a strongly connected tournament, then I i ⊇ u i 1 → ... → u i |Ii| a directed
path containing all the vertices of I i where any vertex u i of I i can play the role of u i j for 1 ≤ j ≤ |I i |. So we have:

I 1 ⊇ U 1 1 → ... → U 1 |I1| , I 2 ⊇ U 2 1 → ... → U 2|I2| , ..., I l-1 ⊇ U l-1 1 → ... → U l-1 |I l-1 | , I l ⊇ U l 1 → ... → U l |I l | , ..., |I t | ⊇ U t 1 → ... → U t |It| . Since for i < j, v i ∈ I i , v j ∈ I j , (v i , v j ) ∈ E(T ), then (U 1 |I1| , U 2 1 ), ..., (U l-1 |I l-1 | , U l 1 ) ∈ E(T ) so I ⊇ Q = U l |I l | ... ← U l 1 ← U l-1 |I l-1 | ← ... ← U l-1 1 ← ... ← U 1 |I1| ← U 1 1 and since |I 1 |+...+|I l | = s then Q contains s vertices and so Q = U ′ s ← ... ← U ′ 2 ← U ′ 1 Since P = x 1 ...x i → x i+1 ← x i+2 ... ← x i+b2+1 → x i+b2+2 ...x n then B 2 = x i+1 ← x i+2 ... ← x i+b2+1 contains b 2 + 1 vertices.
We discuss according to the value of s. 

Let x ∈ N + (v i ) ∩ I l then x can play the role of U ′ s in Q. Case 1: s > b 2 then Q = U ′ s ← ... ← U ′ s-b2+1 ...U ′ s-b2 ...U ′ 1 ⊇ Q ′ = U ′ s ...U ′ s-b2+1 U ′ s-b2 such that Q ′ is a directed path of order b 2 + 1 and of length b 2 . so U ′ s ...U ′ s-b2+1 ← v is a path of order b 2 . If |T 2 -{U ′ s-b2+1 , ..., U ′ s }| ⊇ v i+b2+2 ...v n ≡ x i+b2+2 ...x n , then since U ′ s = x, (v i , U ′ s ) ∈ E(T ) and so v 1 ...v i → u ′ s ...v ′ s-b2+1 ← v → v i+b2+2 ...v n ≡ P . Otherwise, T 2 -{U ′ s-b2+1 , ..., U ′ s } ∈ T 3,
P + (1, 2), d - T2-{U ′ s-b 2 +1 ,...,U ′ s }+v (v) = 0 and T 2 -{U ′ s-b2+1 , ..., U ′ s } ∈ T 3,5,7 , then, by Simple Lemma, T 2 -{U ′ s-b2+1 , ..., U ′ s } + v ⊇ v i+b2+1 ...v n ≡ x i+b2+1 ...x n with v i+b2+1 = U ′ s-b2 . Since (U ′ s-b2 , U ′ s-b2+1 ) ∈ E(T ), then v 1 ...v i → U ′ s ...U ′ s-b2+1 ← v i+b2+1 ...v n ≡ P . tion. If |T 2 | = 3, then P = x 1 ← x 2 → x 3 ← x 4 ← x 5 → x 6 . Let V (T 2 ) = {v 1 , v 2 , v, u 1 , a, b}. Then a ← v 1 → b ← u 1 ← v 2 → v ≡ P .
Remark 3.7. Since by considering the Theorem 3.1 we may suppose that ∆ + (T ) ≥

∆ + (T ), then if |T 2 | = 3 and V (T ) = {v 1 , v 2 , v, u 1 , a, b} such that (a, b) ∈ E(T ), N + T (b) = {v 2 } then d + T (b) = d - T (b) = 1 so d + T (b) = 4 ≤ ∆ + (T ) then ∆ + (T ) = 3 < ∆ + (T )
which is a contradiction so we may suppose that |T 2 | > 3.

For |T 2 | > 3, let a, b ∈ V (T 2 -u 1 ) such that (a, b) ∈ E(T ) and let u ′ 6 → u ′ 7 ...u ′ n-1 be a directed path in T 2 -{a, b, u 1 } then v ← v 1 → b ← a ← u 1 → u ′ 6 → u ′ 7 ...u ′ n-1 → v 2 . (Since a, b,u ′ 6 , u ′ n-1 ∈ V (T 2 -u 1 ), then (u 1 , u ′ 6 ), (u 1 , a), (v 1 , b), (u ′ n-1 , v 2 ) ∈ E(T )). (x i-1 , x i ) ∈ E(P ) or i = 1: If T 2 -u 1 ⊇ v i+3 ...v n ≡ x i+3 ...x n , then: If i = 1: v → u 1 ← v 1 ← v i+3 ...v n ≡ P . If (v i-1 , v i ) ∈ E(P ): v 1 ...v i-1 → v → u 1 ← v i ← v i+3 ...v n ≡ P . Otherwise, T 2 -u 1 ∈ T 3,5,7 and x i+3 ...x n is an antidirected path. If (x i+4 , x i+3 ) ∈ E(P ) then P = x 1 ...x i-1 → x i → x i+1 ← x i+2 ← x i+3 ← x i+4 → x i+5 ...x n-1 → x n and b 2 = 3. Let a ∈ V (T 2 -u 1 ), then T 2 -{u 1 , a} ⊇ v i+4 → v i+5 ...v n-1 → v n ≡ x i+4 ...x n since T 2 -{u 1 , a} / ∈ T 3,5,7 . Since v i+4 ∈ V (T 2 -u 1 ), then (v i+4 , v i ) ∈ E(T ) so v 1 ...v i-1 → v → a ← u 1 ← v i ← v i+4 ...v n ≡ P . (If i = 1: v → a ← u 1 ← v i ← v i+4 ...v n ≡ P ). If (x i+3 , x i+4 ) ∈ E(P ), then P = x 1 ...x i-1 → x i → x i+1 ← x i+2 ← x i+3 → x i+4 ...x n-1 ← x n and b 2 = 2. If T 2 -u 1 ∈ T 5 , then let v ′ 1 → v ′ 2 → v ′ 3 → v ′ 4 → v ′ 5 be a Hamiltonian directed path in T 2 -u 1 . Since P = x 1 ...x i-1 → x i → x i+1 ← x i+2 ← x i+3 → x i+4 ← x i+5 → x i+6 ← x i+7 then: If (x i-1 , x i ) ∈ E(P ): v 1 ...v i-1 → v → v ′ 5 ← v ′ 4 ← u 1 → v ′ 3 ← v ′ 2 → v i ← v ′ 1 ≡ P . If i = 1: v → v ′ 5 ← v ′ 4 ← u 1 → v ′ 3 ← v ′ 2 → v i ← v ′ 1 ≡ P . If T 2 -u 1 ∈ T 7 , let T 2 -u 1 = v ′ 1 v ′ 2 v ′ 3 v ′ 4 v ′ 5 v ′ 6 v ′ 7 Figure 3.23 Since P = x 1 ...x i-1 → x i → x i+1 ← x i+2 ← x i+3 → x i+4 ← x i+5 → x i+6 ← x i+7 → x i+8 ← x i+9 , then: If (x i-1 , x i ) ∈ E(P ) : v 1 ...v i-1 → v → v ′ 7 ← v ′ 6 ← u 1 → v ′ 5 ← v ′ 3 → v ′ 4 ← v ′ 2 → since (v i , v ′ i ) ∈ E(T ) then d + T1 (v ′ i ) ≤ i -2 and since ∆ + (T ) ≥ ∆ + (T ), then δ -(T ) ≥ δ -(T ) so d - T (v ′ i ) = d + T (v ′ i ) ≥ δ -(T ) ≥ i, then N + (v ′ i ) ∩ V (T 2 ) ̸ = ∅ and we recover a previous case. Otherwise, if T 1 ⊇ v ′ 1 ...v ′ i ≡ x 1 ...x i , v ′ i = v i .
Thus, by Simple Lemma we can deduce that x i ...x 1 is a directed path of origin x i or x i ...x 1 = P + (1, 2) with T 1 -v i ∈ T 3 . If i = 1, we recover a previous case, otherwise, in both cases, (v i , v i-1 ) ∈ E(P ).

If |T 1 | = 2, we recover a previous case. Otherwise, |T 1 | > 2: If v i ...v 1 is directed then (v i-1 , v i-2 ) ∈ E(T ) and if T 1 -v i ∈ T 3 then, since v i-1 ∈ T 1 -v i , d + T1-vi (v i-1 ) = 1. In both cases, d + T1 (v i-1 ) ≥ 1, then d -

T1 (v i-1 ) ≤ i -2
and since (v i-1 , v) ∈ E(T ) and d - T (v i-1 ) ≥ i, then |N -(v i-1 ) ∩ V (T 2 )| ≥ 2 and as above, the problem is solved.

The Simple Proof of Rosenfeld's Conjecture

In this section, since I proved that any tournament of order n contains any path P = x 1 ...x n such that (x δ -, x δ -(T )+1 ) ∈ E(P ) unless T ∈ T 3,5,7 and P is an antdirected path, I will deduce the proof of Rosenfeld's Conjecture by using Theorem 3.1. Theorem 3.5. Let T be a tournament of order n ≥ 5 and let P be a path of order n.

Then T contains a copy of P unless P is an antidirected path and T ∈ T 3,5,7 .

Proof. let v ∈ V (T ) such that d - T (v) = δ -(T ). Set δ -(T ) = i and set P = x 1 ...x i x i+1 ...x n . If (x i , x i+1 ) ∈ E(P ), then we argue by induction on n and, by 3.2.1, 3.2.2 and 3.2.3, T contains a copy P . If (x i+1 , x i ) ∈ E(P ) then P = x 1 ...x i → x i+1 ...x n . Since (x i , x i+1 ) ∈ E(P ), then T contains a copy of P . By Theorem 3.1, since P ⊆ T ⇔ P ⊆ T , then T contains a copy of P . By considering a tournament T of order n and a path P = x 1 ...x n , I have to study 2 cases, either (x δ -(T ) , x δ -(T )+1 ) ∈ E(P ) or (x δ -(T )+1 , x δ -(T ) ) ∈ E(P ), to prove that the tournament T contains P . Since the rst case ((x δ -(T ) , x δ -(T )+1 ) ∈ E(P )) is studied Chapter 3, I will prove, in Chapter 4, that T contains P if (x δ -(T )+1 , x δ -(T ) ) ∈ E(P ). Theorem 4.1. Let T be a regular tournament on n vertices and let P be a path of order n. Then T contains a copy of P unless T ∈ T 3,5,7 and P is an antidirected path.

Proof. Set P = x 1 ...x n and δ -(T ) = i.

If (x i , x i+1 ) ∈ E(P ), then, by Chapter 3, T contains a copy of P . If (x i+1 , x i ) ∈ E(P ), then (x i , x i+1 ) ∈ E(P ) (P = x 1 ...x i ← x i+1 ...x n and P = x 1 ...x i → x i+1 ...x n ). Since δ -(T ) = ∆ + (T ) = δ -(T ) = ∆ + (T ) = i, and (x i , x i+1 ) ∈ E(P ), then, by chapter 3, T ⊇ Q = v 1 v 2 ...v i → v i+1 ...v n ≡ P . Since (v j , v l ) ∈ E(T ) ⇔ (v l , v j ) ∈ E(T ), then T ⊇ Q = v 1 ...v n ≡ P . Theorem 4.2. Let T be a tournament on n vertices and let P be a path of order n. T contains a copy of P , unless T ∈ T 3,5,7 and P is an antidirected path.

Proof. Let P = x 1 x 2 ...x n . We may suppose that (x 1 , x 2 ) ∈ E(P ) since otherwise, P = x 1 ← x 2 ...x n and P = x 1 → x 2 ...x n . Since P ⊆ T ⇔ P ⊆ T , we prove the existence of a copy of P in T and deduce the existence of a copy of P in T . Set δ -(T ) = i. If (x i , x i+1 ) ∈ E(P ), then, by Chapter 3, T ⊇ v 1 ...v n ≡ P . If (x i+1 , x i ) ∈ E(P ), let v ∈ V (T ) such that d - T (v) = δ -(T ) = i and let T 1 = T < N -(v) > and T 2 =< N + (v) >. Suppose that any tournament T ′ of order s < n contains a copy of any path P ′ of order s unless T ′ ∈ T 3,5,7 and P ′ is an antidirected path. We will discuss by considering the orientation of the arc joining x i and x i-1 in P . Case 1. (x i , x i-1 ) ∈ E(P ): P = x 1 ...x i-1 ← x i ← x i+1 ...x n . T 1 ⊇ v 1 ...v i ≡ x 1 ...x i unless T 1 ∈ T 3,5,7 and x 1 ...x i is an antidirected path. Subcase 1:

T 1 ⊇ v 1 ...v i-1 ← v i ≡ x 1 ...x i . Since (v i , v i-1 ) ∈ E(T ), then N -(v i ) ∩ V (T 1 ) ⊆ V (T 1 ) -{v i , v i-1 }, so |N -(v i ) ∩ V (T 1 )| ≤ i -2. Since (v i , v) ∈ E(T ) and d - T (v i ) ≥ δ -(T ) = i, then |N -(v i ) ∩ V (T 2 )| ≥ 2.
We discuss by considering the type of the path x i+1 x i+2 x i+3 x i+4 in P . . We give also a program which transfers a tournament of order n into a vector of order n -1 relatively to a given enumeration of the vertices of the tournament and vice versa.

This program gives all directed paths and median orders of this tournament.

In the rst section, I will dene a representative vector of tournaments and study the existence of a tournament of order n relative to a given vector of order n -1.

5.1. Representative vector of a tournament Denition 1. Let T be a tournament of order n. E = v 1 ...v n is an enumeration of the vertices of T . A = (a ij ) 1 ≤ i, j ≤ n is the adjacency matrix of T with respect to E. The representative vector of T with respect to E is the vector be a vector of order n, where r 1 ...r n are non negative integers. For 1 ≤ i ≤ n, let r i = a i ki a i ki-1 ...a i 0 in binary code. If from 1 ≤ i ≤ n, K i ≤ n -i, then there exists a tournament T of order n+1 such that for an enumeration E of the vertices of T , r = r T (E).

r T (E) =       r 1 . . . r n-1       such that, for 1 ≤ i ≤ n -1. r i = n-1 j=i a i i+j .
Proof. Let B = (b ij ) 1 ≤ i, j ≤ n + 1 be a matrix such that: For 1 ≤ i ≤ n + 1, b ii = 0. For 1 ≤ i ≤ n: If K i = n -i, set, for j ≥ i + 1 b ij = a i (n + 1) -j. If K i < n -i, for i + 1 ≤ j ≤ n -K i : set a ij = 0 and for n -K i < j ≤ n + 1. Set b ij = a i (n + 1) -j. if(vectorOutput==""):

vectorOutput+="E(T)= { " else:

vectorOutput+=", " vectorOutput += vertex+"v"+str(j+1)+")" vectorOutput+=" }" fullTournament+=" }" print("Matrix:") for i in range(size):

print("[", end="") for j in range(size): print(matrix[i][j], end="") print("]") print("Tournament:") print(fullTournament) print(vectorOutput) showMatrixWithArcs(matrix)

In the following section, I present some applications of the program stated in 5.2.

Applications

Example 1: T is a tournament such that V (T ) = {v 1 , v 2 , v 3 , v 4 , v 5 } and E(T ) = {(v 1 , v 2 ), (v 1 , v 4 ), (v 2 , v 4 ), (v 4 , v 3 ), (v 5 , v 1 ), (v 5 , v 4 ), (v 2 , v 5 ), (v 3 , v 5 ), (v 3 , v 1 ), (v 2 , v 3 )}. Please choose the operation: Enter 1 to search for representative Vector of T with respect to E=v1...vn Enter 2 to search for a Tournament relative to a vector if it exists > 2

The vector is of order n Please enter n: > 4

Please enter the decimal values of the tournament separated by comma (example: 6,1,1): > 12,6,1,0 Input does not represent a valid tournament of matrices. I give also a program which transfers a tournament of order n into a vector of order n-1 relative to a given enumeration of the vertices of the tournament and vice versa. This program gives all directed path and median orders of this tournament. suite, par le théoreme de El Sahili Ghazo Hanna, T contient P . Dans le chapitre 4, je présente une deuxième preuve de la conjecture de Rosenfeld. On donne un tournoi T d'ordre n tel que δ -(T ) = i et un chemin P = x1...xn et on démontre que T contient P sauf si T ∈ T3,5,7 et P est un chemin antidirect. J'ai deux cas à étudier. Si (xi, xi+1) ∈ E(P ), la preuve de la conjecture de Rosenfeld est donnée dans le chapitre 3. Sinon, (xi+1, xi) ∈ E(P ). Dans ce cas, la preuve de la conjecture de Rosenfeld est donnée dans le chapitre 4. Dans le chapitre 5, je dénis le vecteur représentatif d'un tournoi. C'est une représentation simpliée d'un tournoi qui utilise n -1 entrées au lieu de n(n-1) 2 pour la représentation des matrices. Je donne en plus un programme qui transforme un tournoi d'ordre n en un vecteur d'ordre n -1 par rapport à une enumération donnée des sommets de ce tournoi et vice versa. Ce programme donne aussi tous les chemins directs et les ordres moyens du tournoi.

  Thomason était le premier à donner une réponse générale. Il a proposé, en 1986, qu'il existe ≤ 2 , tel que, pour tout entier ≥ , tout tournoi d'ordre n contient tout chemin Hamiltonien orienté. Il a encore démontré que tout ensemble de -1 sommets dans un n -tournoi contient un origine de tout ( -1)chemin ayant son premier bloc de longueur . En 2000, Havet et Thomassé avaient amélioré cette idée -clé introduite par Thomason et avaient demontré que tout tournoi d'ordre n contient tout chemin d'ordre n avec exactement les exceptions de Grünbaum. Pour tout , deux sommets de , ils ont défini ( , ) = |{ ∈ ( ) tel que z peut être atteint par un chemin direct d'origine !" }| et ils ont prouvé que si ( , ) ≥ + 1, alors !" est un origine d'un tel chemin.

  Un chemin orienté est classé selon ses blocs, un bloc étant un chemin direct maximal par rapport à l'inclusion. La longueur d'un chemin d'ordre est égale au nombre de ses arcs ( -1). Exemple : = → → H ← I → K → L → M est l'origine de P qui est formé de trois blocs. N = → → H (O(N ) = 2), N = H ← I (O(N ) = 1) et N H = I → K → L → M (O(N H ) = 3)

2 ) 1 !" 1 . 6 …

 2116 ( ) = (` ) ; (` ) … ; (`a) 3) Pour 1 ≤ & < Y ≤ , %& " ∈ (`6) * ∈ Q`XR, alors (", *) ∈ ,( ). Soit , = * * … * 6 … * X … * b … * une énumération des sommets d'un tournoi . Un arc (* 6 , * X ) est dit arc avant par rapport à , si & < Y et un arc (* b , * X ) est dit arc retour par rapport à , si c > Y. En 2000, Havet et Thomassé avaient donné une définition de l'ordre moyen d'un tournoi comme étant l'énumération de tous les sommets de ce tournoi tel que le nombre des arcs avant soit maximal. Dans le chapitre 2, on présente certains résultats qui constituent les premiers pas à la résolution de la conjecture de Rosenfeld. Tout d'abord, on a donné une nouvelle preuve de l'existence de tout chemin à deux blocs dans tout tournoi d'ordre ≥ 4. Soit c et O deux entiers positifs non nuls tel que c + O = -1, alors tout chemin = (c, O) ou B (c, O) est contenu dans tout tournoi d'ordre . On dit que ou Puis on a donné une preuve de l'existence de tout chemin à trois blocs dans tournoi d'ordre ≥ 4. Elle consistait à démontrer le théorème suivant : Théorème : Soit T un tournoi d'ordre ≥ 4 et c, O, 8 trois entiers naturels non nuls donnés tel que c + O + 8 = -1. Alors contient une copie de tout chemin tel que = (c, O, 8) ou = B (c, O, 8). Tout d'abord, on a résolu par récurrence sur n les cas tel que 8 = 1 puis on a donné la preuve du cas général en passant par le cas tel que O = 1. Dans la dernière partie du chapitre 2, on a donné une preuve du théorème suivant : Pour deux entiers naturels E et donnés, il existe un tournoi tel que {/ (*), * ∈ } = {E, } Dans les chapitres 3 et 4, on a donné deux versions de la preuve de théorème suivant : Soit un tournoi d'ordre et un chemin orienté du même ordre , alors contient sauf si ∈ H,K,M et est un chemin antidirect. (En faite, on donne deux versions d'une simple preuve de la conjecture de Rosenfeld). En supposant que = … , on a posé F B ( ) = & Ainsi, = … 6B 6Dans le chapitre 3, on a utilisé le théorème suivant :Théorème (El -Sahili -Ghazo Hanna) :

  | | = & | | = ( -1) -&, on étudié l'existence d'un chemin * … * 6 ≡ … 6 dans . Si ne contient pas ce chemin, alors ∈ H,K,M et … 6 est un chemin antidirect. On prouve l'existence de P dans dans ce cas en étudiant les cas suivants : De remarques sont données concernant d'autres preuves de certains idées en supposant, d'après le théorème (El -Sahili -Ghazo Hanna) que ∆ ( ) ≥ ∆ ( f ) Dans le deuxième cas, contient une copie de … 6 ( Dans ce cas, on utilise le théorème de Camion pour supposer que = ` … `l … `a où ` , ` … `a sont les composants fortement connexes de , dispoints deux à deux, tel que : = ` ;` … ;`a Et pour 1 ≤ & < Y ≤ , ∈ `6, ∈ `X, ( , ) ∈ ,( ) On pose O = D& {1 ≤ & ≤ , (* 6 ) ∩ `6 ∅} et = |` | + |` | … |`l| Puis on étudie les cas suivants : > , = , ≤ -1 avec ≥ 2 et les cas où = 1.

  Par le théorème (El Sahili -Ghazo Hanna), d! & f ↔ d! & donc contient aussi une copie de P et la preuve de la conjecture est achevée. Dans le chapitre 4, on donne une deuxième version de la simple preuve de la conjecture de Rosenfeld sans utiliser le théorème (El Sahili -Ghazo Hanna). Dans ce chapitre, on donne un tournoi d'ordre tel que F B ( ) = & et / B (*) = F B ( ) = & et on pose = < B (*) > et = < (*) >.

Dans le chapitre 5

 5 de cette thèse, on définit le vecteur représentatif d'un tournoi par rapport à une énumération , des sommets de : 8 n (,) Soit , = * * … * . on a besoin de ( B ) données pour représenter . Le vecteur représentatif de par rapport à , présente avec uniquement ( -1) données. 2 = (E&Y)1 ≤ &, Y ≤ étant la matrice adjacente à par rapport à ,, 8 n (,) est défini par :

1. 3 . 3 .

 33 Oriented Paths in a Tournament:

1. 3 . 8 .

 38 Adjacency Matrix of a Tournament:
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 22 Then a|A| ≥ |A|(|A|-1) 2 and so |A| ≥ 2a+1. For 1 ≤ i ≤ |B|, a|A|+i(a+k) ≥ (|A|+i)(|A|+i-1) Set |A|+i=I, then 2[a.|A|+k.|A|+i(a+k)]-2k.|A| ≥ I(I -1). So 2(a+k)I -2k|A| ≥ I 2 -I and we get I 2

3 Chapter 3 :

 33 1) and so |A| = n -|B| ≤ n -[n -(2a + 1)] = 2a + 1 and the problem is solved. A simple Proof of Rosenfeld's Conjecture using El Sahili Ghazo Hanna Theorem In this chapter, I will present the simple proof of Rosenfeld's conjecture. But, in my thesis, I explain all my ideas in a very simple way. This proof is submitted, the article is available on arXive: C.B. Hanna, Paths in tournaments a simple proof of Rosenfeld's Conjecture. arXiv preprint arXiv 2011.14394.2020.

3. 2 T 3 .

 23 .1. Lemmas: Lemma 3.1. Let T be a tournament then |{v ∈ V (T ), T -v ∈ T 3,5,7 }| ≤ 2. Proof. If |T | / ∈ {4, 6, 8} then for any vertex v of T , |T -v| / ∈ {3, 5, 7} then T -v / ∈ T 3,5,7 so |{v ∈ V (T ), T -v ∈ T 3,5,7 }| = 0 ≤ 2. If |T | = 4, set V (T ) = {a, b, c, d}. Suppose that T -a ∈ T 3 and let T -a = b c d. Suppose without loss of generality that T -b ∈ T 3,5,7 . Since (c, d) ∈ E(T ), then T -Then |{v ∈ V (T ), T -v ∈ T 3,5,7 }| ≤ 2.

  Proof. If |T | = 1 or |T | = 2, the proof is clear. If |T | = 3 and P = x 1 → x 2 → x 3 let V (T ) = {a,b, c} and suppose, without loss of generality, that (b, c) ∈ E(T ).

Since T 2 +

 2 Figure 3.14

Figure 3 . 22 Let
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 44 An Independent Simple Proof of Rosenfeld's Conjecture In this chapter, I provide a proof of Rosenfeld's conjecture without using El Sahili Ghazo Hanna Theorem.

4. 1 .

 1 Rosenfeld's Conjecture in Regular TournamentsFirst, I will prove Rosenfeld's Conjecture in regular tournaments.

4. 2 .

 2 The Independent Simple Proof of Rosenfeld's Conjecture In this section, I will present the proof of Rosenfeld's Conjecture without using Theorem 3.1.
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 55 Representative Vector of a Tournament andApplicationsIn this chapter we dene a simplied representation of a tournament which requires n -1 entries instead of n(n-1) 2

For 1 ≤

 1 i ≤ n + 1 and 1 ≤ j ≤ i -1: If b ji = 0, let b ij = 1. If b ji = 1, let b ij = 0. Then B = (b ij ) 1 ≤ i, j ≤ n + 1is the adjacency matrix of one and only one tournament T with respect to one enumeration E of the vertices of T . Remark 5.1. We need only n -1 entries instead of n(n-1) 2 to represent any n-tournament.

  Give the representative vector of T with respect to the enumeration E = v 1 v 2 v 3 v 4 v 5 and list the hamiltonian directed paths and median orders of T .Please choose the operation: Enter 1 to search for representative Vector of T with respect to E=v1...vn Enter 2 to search for a Tournament relative to a vector if it exists > 1The tournament is of order n Please enter n: > 5Please enter the indexes of the outneighbours of v1 that are greater than 1 separated by comma (example: 2,4,5): > 2,4Please enter the indexes of the outneighbours of v2 that are greater than 2 separated by comma (example: 2,4,5): > 3,4,5Please enter the indexes of the outneighbours of v3 that are greater than 3 separated by comma (example: 2,4,5): > 5Please enter the indexes of the outneighbours of v4 that are greater than 4 separated by comma (example: 2This tournament has 13 directed path(s) and they are/it is:v1 -> v2 -> v3 -> v5 -> v4 v1 -> v2 -> v4 -> v3 -> v5 v1 -> v2 -> v5 -> v4 -> v3 v2 -> v3 -> v5 -> v1 -> v4 v2 -> v4 -> v3 -> v5 -> v1 v2 -> v5 -> v1 -> v4 -> v3 v2 -> v5 -> v4 -> v3 -> v1 v3 -> v1 -> v2 -> v5 -> v4 v3 -> v5 -> v1 -> v2 -> v4 v4 -> v3 -> v1 -> v2 -> v5 v4 -> v3 -> v5 -> v1 -> v2 v5 -> v1 -> v2 -> v4 -> v3 v5 -> v4 -> v3 -> v1 -> v2This tournament`s median orders have 8 forward arcs. This tournament has 1 median order(s), and they are/it is:v2 -> v3 -> v5 -> v1 -> v4Example 2: Let e = vector. Show if e can be considered as the representative vector of a tournament T with respect to the enumeration E = v 1 v 2 v 3 v 4 v 5 of its vertices. If yes, list the hamiltonian directed paths, and median orders of T .Please choose the operation: Enter 1 to search for representative Vector of T with respect to E=v1...vn Enter 2 to search for a Tournament relative to a vector if it exists > 2The vector is of order n Please enter n: > 4Please enter the decimal values of the tournament separated by comma (example: 6vector of a tournament T with respect to the enumeration E = v 1 v 2 v 3 v 4 v 5 of its vertices. If yes, list the hamiltonian directed paths, and median orders of T .

  Dans ce cas contient toujours une copie du chemin … 6 car si ce dernier est un chemin antidirect, alors il doit obligatoirement être d'ordre pair, donc,

	3) ( 6B , 6 ) ∈ , ( )	=	→ … 6B → 6
	i étant un entier pair,		0 E77E8 &	7E% à H,K,M on étudie les situations
	suivantes : a) ( 6 , 6 ), ( 6 , 6 H ) ∈ , ( ) b) ( 6 , 6 ), ( 6 H , 6 ) ∈ , ( ) et contient une copie de 6 … c) ( 6 , 6 ), ( 6 H , 6 ) ∈ , ( ) et ne contient pas une copie de 6 … d) ( 6 , 6 ), ( 6 , 6 H ) ∈ , ( ) et contient une copie de 6 … e) ( 6 , 6 ), ( 6 , 6 ) ∈ , ( ) et ne contient pas une copie de
	h) ( 6 , 6 ), ( 6 H , 6 ), ( 6 I , 6 H ) ∈ , ( ) d! & * 0 … * 6 0 ≡ … 6 i) ( 6 , 6 ), ( 6 H , 6 ), ( 6 I , 6 H ) ∈ , ( ) d! & 7E% * 0 … * 6 0 ≡ … 6

6 … f) ( 6 , 6 ), ( 6 H , 6 ), ( 6 H , 6 I ) ∈ , ( ), | B (* 6 ) ∩ | ≥ 2 g) ( 6 , 6 ), ( 6 H , 6 ), ( 6 H , 6 I ) ∈ , ( ), | B (* 6 ) ∩ | = 1

  Let T be a tournament and let P be a path such that P = P + (k 1 , k 2 , ..., k r ), thenP = P -(k 1 , k 2 , ..., k r ).T contains a copy of P if and only if T contains a copy of P . So by proving that any tournament contains a copy of a path P = P + (k 1 , k 2 , ..., k r ) we may deduce that any tournament contains a copy of P = P -(k 1 , k 2 , ..., k r ).

	2	Chapter 2: First Step Towards Rosenfeld's Conjecture
	In this chapter, I will introduce the starting point of my trip in treating Rosenfeld's conjecture.
	The beginning was when I tried to nd a new proof for proving the existence of paths with
	two and three blocks in tournaments. Comparing to the main result, one may ask why you are
	presenting such results here and my answer is that these two results were the source of light in
	my way in proving Rosenfeld's Conjecture.
	Moreover, in my proof of the existence of paths of three blocks in tournaments, in order to nd
	a copy of P = P + (k, l, k) in tournaments of order 2k + l -1 where k and l are two nonnegative
	integers, I faced an interesting tournament T such that {d + (v), v ∈ V (T )} = {k, k + l}. I was
	curious to study the existence of such tournament. I will present in this chapter my proof of
	the existence of a tournament T such that {d + (v), v ∈ V (T )} = {a, b}, for any two nonnegative
	integers a and b.
	I will start with the following remark which will be used in the proof of Rosenfeld's Conjecture
	in paths of two and three blocks:
	Remark 2.1. 2.1. Existence of Paths of Two Blocks in Tournaments
		I present the proof of Rosenfeld's Conjecture in paths of two blocks.
		Theorem 2.1. Let T be a tournament of order n ≥ 4. There exists a path P = P + (k, l)

  2, 1) and a path P 4 = P + (1, 3, 1), then, by Lemma 2.1, we obtain a path P ′ 3 = P + (3, 2, 1) and a path P ′ 4

  r and, by Lemma 2.1, there exists a path

  By the same procedure, T 2 ⊇ v 1 ...v 7 ≡ x 1 ...x 7 and T 1 + v ⊇ v 8 ...v 11 ≡ x 8 ...x 11 with v 7 = y and v 8 = x, then v 1 ...v 7 ← v 8 ...v 11 ≡ P . Otherwise, for x ∈ V (T 1 ) and y

  x 5 and u ′ 1 ...u ′ 5 → v ← x → u 8 ...u 13 ≡ P . Otherwise, T 1 -{v 1 , x} ∈ T 3,5,7 . Since d - T1-{v1,x}+v (v) = 0 and x 1 ...x 6 is neither a directed path nor equal to P -(1, 2), by Simple Lemma, T 1 -{v 1 , x} + v ⊇ u ′′ 1 ...u ′′ 6 ≡ x 1 ...x 6 with u ′′ 6 = y then u ′′ 1 ...u ′′ 6 ← x → u 8 ...u 13 ≡ P . |T 1 | = |T 2 | = 5: (T is a regular tournament on 11 vertices)

  5,7 and x i+1 ...x n is neither equal to P + (1, 2) nor an antidirected path then, by Simple Lemma

  then, by Theorem 1.1, let I 1 , I 2 ...I t be the strongly connected components of T 2 such that T 2 = I 1 ...I t and let

  5,7 and x i+b2+2 ...x n ∈ T 3,5,7 . Since x i+b2+1 ...x n is neither a directed path nor equal to

1 Résumé de la thèse Ma thèse de doctorat est basée sur un sujet très intéressant en théorie de graphe : le tournoi. En 1934, Redei a prouvé que tout tournoi contient un chemin Hamiltonien direct. En 1971, grünbaum a prouvé que tout tournoi contient tout chemin hamiltonien antidirect avec exactement trois exceptions. Un circuit d'ordre trois, un tournoi régulier d'ordre cinq et un tournoi de Paley d'ordre sept ne contiennent pas un chemin Hamiltonien antidirect. En 1972, Rosenfeld, inspiré par le résultat de Grünbaum, propose la conjecture suivante : Conjecture de rosenfeld : il existe k ≥ 8 tel que tout tournoi d'ordre ≥ contient tout chemin Hamiltonien orienté. Alspach, Rosenfeld et straight ont prouvé la conjecture de Rosenfeld pour les chemins à deux blocs. En 1973, Forcade a prouvé la conjecture de Rosenfeld dans le cas de tournois d'ordre 2 .

So we can nd a path P 1 = P + (3, 3, 1) in T (by (d)) and since we must have a vertex u much that d + (u) = 2 or d + (u) = 3 (by (h)), then we can easily, using (e) and (f ), nd a path P 2 = P + (2, 4, 1) in T .In this part, we will prove the existence of any path of three blocks in any tournament of order at least 4.Theorem 2.3. Let T be a tournament of order n. Then there exists a path P = P + (k, l, r) in T such that k + l + r = n -1.

(c) If (x i+1 , x i ), (x i+1 , x i+2 ), (x i+2 , x i+3 ) ∈ E(P ), then P = x 1 ...x i-1 ← x i ← x i+1 → x i+2 → x i+3 ...x n . Let u 2 ...u i+1 ⊇ T 1 such that u 2 ...u i+1 ≡ x 2 ...x i+1 , then u 2 ...u i+1 = u 2 ...u i-1 ← u i ← u i+1 . Since u 2 ∈ V (T 1 ), then N -(u 2 ) ∩ V (T 2 ) ̸ = ∅. Let a ∈ V (T 2 ) ∩ N -(u 2 ), then (a, u 2 ) ∈ E(T ). T 2 -a ⊇ v i+3 ...v n ≡ x i+3 ...x n unless T 2 -a ∈ T 3,5,7 and v i+3 ...v n is antidirected. If T 2 -a ⊇ v i+3 ...v n ≡ x i+3 ...x n , then a → u 2 ...u i+1 → v → v i+3 ...v n ≡ P . If T 2 -a ∈ T 3,5,7 and x i+3 ...x n is an antidirected path, then, if N + (u i+1 ) ∩ V (T 2a) ̸ = ∅, let b ∈ V (T 2 -a) ∩ N + (u i+1). Since d - T2-a+v (v) = 0, T 2 -a ∈ T 3,5,7 and x i+2 ...x n is neither equal to P + (1, 2), nor a directed path, then, by Simple Lemma,T 2 -a + v ⊇ v i+2 ...v n ≡ x i+2 ...x n with v i+2 = b. Then a → u 2 ...u i+1 → v i+2 ...v n ≡ P . Otherwise, N + (u i+1 ) ∩ V (T 2 -a) = ∅. Since (u i , u i-1 ) ∈ E(P ), then |N -(u i ) ∩ V (T 1 )| ≤ i -2 and since (u i , v) ∈ E(T ) then |N -(u i ) ∩ V (T 2 )| ≥ 2 so |N -(u i ) ∩ V (T 2 -a)| ≥ 1. Let c ∈ N -(u i ) ∩ V (T 2 -a). If (x i+3 , x i+4 ) ∈ E(P ), then, since T 2 -{a, c} / ∈ T 3,5,7 , T 2 -{a, c} ⊇ v i+4 ...v n ≡ x i+4 ...x n , and since N + (u i+1 ) ∩ V (T 2 -a) = ∅, then (c, u i+1 ) ∈ E(T ). Thus, a → u 2 ...u i ← c → u i+1 → v → v i+4 ...v n ≡ P . If (x i+4 , x i+3 ) ∈ E(P ) then: If T 2 -a ∈ T 7 , let
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i. Let T be a tournament such that δ -(T ) = 0 and let v ∈ V (T ) such that d - T (v) = δ -(T ) = 0. Suppose that any tournament of order s < n contains a copy of any path P ′ of order s unless T ′ ∈ T 3,5,7 and P ′ is an antidirected path. Let P be a non directed path of order n. Then: A. T contains a path v 1 ...v n ≡ P with v 1 ̸ = v unless P = P + (1, 2) (P = x 1 →

x 2 ← x 3 ← x 4 ) and T -v ∈ T 3 . B. If T -v ∈ T 3,5,7 then any of the vertices of T -v is an origin of a copy of P . Proof. A. Let P = x 1 ...x n and let j ∈ [2, n] be the minimal integer such that d - P (x j ) = 0.

x 1 ...x n-1 is an antidirected path of order 3, 5 or 7. If x 1 ...x n-1 = x 1 → x 2 ← x 3 → x 4 ← x 5 → x 6 ← x 7 then j = 3 < n: a contradiction.

But in this case, P = P + (1, 2) and T -v ∈ T 3 which is a contradiction. (If

1 ̸ = v. If P 3 is an antidirected path, then (x ′ j-1 , x ′ j-2 ) ∈ E(P 1 ) and (x ′ j+2 , x ′ j+1 ) ∈ E(P 2 ). In this case P 4 = x ′ 1 ...x ′ j-2 ← x ′ j-1 ← x ′ j+1 ← x ′ j+2 ...x n , since P 4 is not an antidirected path then T -

B. If T -v ∈ T 3,5,7 then:

By symmetry, any vertex of T -v may be equal to v 1 (a copy of x 1 ...x n-1 may be found in T -v starting at any one of the vertices of T -v).

If 1 < j < n, and

T -v ⊇ v 1 ...v j-1 → v j+1 ...v n ≡ P 3 . Similarly, by symmetry, a copy of P 3 may be found in T -v starting at any one of the vertices of T -v.

If 1 < j < n and P 3 is antidirected then P 4 is not antidirected. So T -v ⊇ v 1 ...v j-1 ← v j+1 ...v n ≡ P 4 . Similarly, by symmetry, a copy of P 4 may be found in T -v starting at any one of the vertices of T -v.

In both cases, T ⊇ v 1 ...v j-1 ← v → v j ...v n ≡ P such that any one of the vertices of T -v may be equal to v 1 in a copy of P .

By analogy, the above lemma is valid if d + (v) = 0, with the only exception where In this case, P = x 1 ← x 2 → x 3 → x 4 ← x 5 → x 6 ← x 7 , Since T 2 / ∈ T 3,5,7 , then T 2 ⊇ v 5 ← v 6 → v 7 ← v 8 ⊇ x 4 ...x 7 . If N + (v 8 ) ∩ V (T 1 ) ̸ = ∅, suppose without loss of generality that (v 8 , v 3 ) ∈ E(T ), then v 5 ← v 6 → v 7 ← v 8 → v 3 is an antidirected path in T 2 + v 3 which is a contradiction since T 2 + v 3 ∈ T 3,5,7 (v 3 ∈ V (T 1 )), then (v 3 , v 8 ) ∈ E(T ) and similarily (v 1 , v 8 ), (v 2 , v 8 ) ∈ E(T ).

If N -(v 7 ) ∩ V (T 1 ) ̸ = ∅ suppose without loss of generality that (v 3 , v 7 ) ∈ E(T ), then T 2 + v 3 ⊇ v 5 ← v 6 → v 7 ← v 3 → v 8 , which is a contradiction since v 5 ← v 6 → v 7 ← v 3 → v 8 is a antidirected path and T 2 + v 3 ∈ T 3,5,7 . Then (v 7 , v 3 ) ∈ E(T ) and similarily (v 7 , v 2 ), (v 7 , v 1 ) ∈ E(T ) we can prove by the same procedure that (v 5 , v 1 ), (v 5 , v 2 ), (v 5 , v 3 ), (v 1 , v 6 ), (v 2 , v 6 ), (v 3 , v 6 ) ∈ E(T ). Since (v 6 , v 5 ), (v 6 , v 7 ) ∈ E(T ) and d + T2 (v 6 ) ≤ 2 then (v 8 , v 6 ) ∈ E(T ).

∈ T 3,5,7 then T 2 ⊇ u 1 ← u 2 → u 3 ← u 4 → u 5 ← u 6 ≡ x i+1 ...x n-1 . For x ∈ V (T 1 ), (x, u 6 ) ∈ E(T ) since otherwise u 1 ← u 2 ...u 6 → x is an antidirected path in T 2 + x which is a contradiction since T 2 + x ∈ T 7 . Also (u 5 , x) ∈ E(T ) since otherwise u 1 ...u 5 ← x → u 6 is an antidirected path in T 2 + x which is a contradiction. Similarily, we can prove that for 1 ≤ k ≤ 6, (u k , x) ∈ E(T ) if k is an odd integer and (x, u k ) ∈ E(T ) if k is an even integer. Then for x ∈ V (T 1 ), (u 1 , x), (u 3 , x), (u 5 , x), (x, u 2 ), (x, u 4 ), (x, u 6 ) ∈ E(T ).

.., U ′ 1 } ∈ T 3,5,7 and x i+b2+2 ...x n is an antidirected path. Since l is the maximal integer in [i, t] such that I l ∩ N + (v i ) ̸ = ∅, then for y ∈ V (I l+1 ∪ ... ∪ I t ), (y, v i ) ∈ V (T ) and so V (T 2 -{U ′ 1 , ..., U ′ s }) ⊇ N -(v i ). I will continue the proof depending on the orientation of x i-1 x i and on the value of i.

Subcase 1:

∈ T 3,5,7 , then by Simple Lemma, T 2 -{U ′ 1 , ..., U ′ s , a} + v i ⊇ v i+b2+2 ...v n ≡ x i+b2+2 ...x n with v i+b2+2 ̸ = v i (x i+b2+2 ...x n is antidirected). Since V (T 2 -{U ′ 1 , ..., U ′ s }) = V (I l ∪ ... ∪ I t ) and {U ′ 1 , ..., U ′ s } = V (I 1 ∪ I 2 ∪ ... ∪ I l ), then for y ∈ V (T 2 -{U ′ 1 , ..., U ′ s }) and z ∈ {U ′ 1 , ..., U ′ s }, y ∈ I l1 and z ∈ I l2 with l 2 < l 1 and so (z, y) ∈ E(T ) then (U ′ 1 , v i+b2+2 ) and (U ′ s , a) ∈ E(T ).

) ∈ E(P ) and i ≥ 2. 

Remark 3.6. This case may be deduced from Theorem 3.1 by considering P :

then we recover a previous case.

If |T 1 | = 3 then we have to study the following two cases:

In this case:

In this case T is a regular tournament on 9 vertices. So for any vertex u of T , d -

We may discuss two cases:

Now we will treat the case s = 1.

In this case, we may repeat the proof by considering that T 1 ⊇ w

= ∅ and there exists j ≤ i -2 such that (v j , v 1 ) ∈ E(T ). In this case, if s ≤ 2, the problem is solved. If s = 1, by following the same steps as above, since N -

Otherwise, since for any vertex a in T 2 -u 1 , d - T2-a (u 1 ) = 0, by Simple Lemma and Lemma 3.1, x i+3 ...x n = x 5 ...x n is a directed path such that (x 5 , x 6 ) ∈ E(P ) (x 5 ...

We may study the following cases:

then if i is odd, consider P : P = y 1 → y 2 ...y i-1 ← y i → y i+1 ...y n . Since (y i , y i+1 ), (y i , y i-1 ) ∈ E( P ) then we recover a previous case, so T contains a copy of P and P . If i is even, consider P : P = y 1 ← y 2 ...y i-1 ← y i → y i+1 ...y n . Since (y i , y i+1 ), (y i , y i-1 ) ∈ E( P ), then we recover a previous case and T contains a copy of P . By considering the Theorem 3.1, P ⊆ T ⇔ P ⊆ T so T contains a copy of P .

-i and T is a regular tournament. By considering

, then the problem is solved unless y i+2 ...y n is isomorphic to x i+2 ...x n ((y i+3 , y i+2 ), (y i+3 , y i+4 ) ∈ E( P ) and y i+3 ...y n is an antidirected path) and so x 1 ...

In these 3 cases, since T is a regular tournament, any vertex of T may play role of

and, for any vertex y ′ of T 2 , (y, y ′ ) ∈ E(T )) then we recover a previous case and the problem is solved. Otherwise, for any vertex u of T , T < N + (u) >≡ T 2 . If there exists a vertex w of T such that T < N -(u) > is not isomorphic to T 2 then T < N + (u) > is not isomorphic to T 2 and so T contains a copy of P . By the Theorem 3.1, since

, then, since d - T2 (U 1 ) = 0 and x i+2 ...x n is an antidirected path (̸ = P + (1, 2) and is not directed), by Simple Lemma, T 2 ⊇ v i+2 ...v n ≡ x i+2 ...x n with x i+2 = b, and since d + T1-a+v (v) = 0 and x 1 ...x i is an antidirected path (̸ = P -(1, 2) and is not directed), then by Simple Lemma,

In the three cases d -

From now on, we may suppose that any copy y 1 ...

and T is a regular tournament on 5 vertices (|T

, then the problem is solved since:

we recover a previous case. T ) and so ∆ + (T ) > ∆ + (T ). By considering the Theorem 3.1, we may suppose that ∆ + (T ) ≥ ∆ + (T ) and we can deduce that

, the third block of x i ...x n ). We will discuss according to the value of s:

-i then T is a regular tournament and the problem is solved by Theorem 4.1. If i < (n -1) -i then, by considering P = y 1 ...y i → y i+1 ...y n , (y i , y i+1 ) ∈ E( P ) and we recover a previous case. Then T contains a copy of P .

and suppose, without loss of generality that v ′ 1 = c.

Then

and T is a regular tournament on 9 vertices. Since T / ∈ T 3,5,7 then, by Theorem 4.1, T contains a copy of any path on 9 vertices. 

∈ T 3,5,7 . And since x i+b1+1 ...x n is an antidirected path (is not directed), then by Simple Lemma, T 2 -{u 1 , ..., u s , a}

Otherwise, for any vertex a of T 2 -{u 1 , ..., u s }, N + (a)

..,us,a} (u 1 ) = 0, T 2 -{u 2 , ..., u s , a} / ∈ T 3,5,7 and since x i+b1+1 ...x n is neither equal to P + (1, 2) not directed (antidirected path), then, by Simple Lemma,

..x j-1 , then T < {v 1 , ...v j-2 , v j } >∈ T 3,5,7 , and x 1 ...x j-1 is an antidirected path. Since T < {v 1 , ..., v j-2 , v j } >∈ T 3,5,7 then j -1 ∈ {3, 5, 7}, so j ∈ {4, 6, 8}. And since (x 1 , x 2 ) ∈ E(P ), then (x j-1 , x j ) ∈ E(P ), so:

In these cases, x 1 ...x j is neither equal to P -(1, 2) nor a directed path. So, since d + T <{v1,...,vj-2,vj ,v}> (v) = 0, T < {v 1 , ..., v j-2 , v j } >∈ T 3,5,7 , by Simple Lemma,

) ∈ E( P ), then, by Chapter 3, T contains a copy of P , so T contains a copy of P . Otherwise, P =

..x j-1 , then T < {v 1 , ..., v j-1 , v j } >∈ T 3,5,7 and x 1 ...x j-1 is an antidirected path. Since x 1 ...x j-1 is antidirected and 

(a) For (x i+2 , x i+1 ), (x i+3 , x i+2 ) ∈ E(P ), P = x 1 ...

In this case, since x i+b1 → x i+b1-1 ...x i-1 is a directed path of order n + 2 -i, we consider P = y 1 ...y i y i+1 ...y n . Since i ≤ n -1 -i, then (y i , y i+1 ) ∈ E( P ) and we recover a previous case.

Otherwise, T < {v i+b1+2 , ..., v n } ∪ {v i+b1 } >∈ T 3,5,7 and x i+b1+1 ...x n is an antidirected path. Since x i+b1 ...x n is neither equal to P + (1, 2) nor a directed path and since d - T <{v i+b 1 +2 ,...,vn}∪{v i+b 1 ,v}> (v) = 0 and T < {v i+b1+2 , ..., v n } ∪ {v i+b1 } >∈ T 3,5,7 , then, by Simple Lemma, T < {v i+b1+2 , ...,

ii. T 2 ̸ ⊇ v i+2 ...v n ≡ x i+2 ...x n , then T 2 ∈ T 3,5,7 and x i+2 ...x n is an antidirected path.

Since (x i+2 , x i+3 ) ∈ E(P ), then (x n , x n-1 ) ∈ E(P ). By considering P = y 1 → y 2 ...y n , the problem is solved since (y i , y i+1 ) ∈ E( P ).

(c) For (x i+1 , x i+2 ), (x i+2 , x i+3 ) ∈ E(P ):

In this case, T is a regular tournament on 7 vertices and, by Theorem 4.1, the problem is solved.

(a) For (x i+2 , x i+1 ), (x i+2 , x i+3 ) ∈ E(P ):

.., v j-1 , v j+1 } ∈ T 3,5,7 and x j+1 ...x n is an antidirected path. In this case, By Simple Lemma, since x j ...x n is neither equal to

5,7 and x 1 ...x i-1 is an antidirected path. In this case, since x 2 ...x i is an antidirected path of order i -1 and x 2 ...x i+1 is an antidirected path of order i,

..v n ≡ P . Otherwise, x 2 ...x i+1 is antidirected and T 1 ∈ T 3,5,7 . Since (x i+1 , x i ) ∈ E(P ) and i is odd, then x 2 ...

..x n , then T 2 -v 7 ∈ T 3,5,7 and x 6 ...x n is an antidirected path. Since (x 7 , x 6 ) ∈ E(P ) then (x 7 , x 8 ) ∈ E(P ) and v i+2 ..

we recover a previous case. 

By considering, P = y 1 ← y 2 ← y 3 → y 4 ← y 5 ← y 7 ← y z then, since (y i , y i+1 ) ∈ P , we recover a previous case.

By considering P = y 1 ← y 2 ← y 3 → y 4 ← y 5 → y 6 ← y 7 , then, since (y i , y i-1 ), (y i+1 , y i ) ∈ E( P ), we recover a previous case.

(e) For (x i+1 , x i+2 ), (x i+3 , x i+2 ), (x i+4 , x i+3 ) ∈ E(P ):

Since (x i+3 , x i+2 ), (x i+4 , x i+3 ) ∈ E(P ) then x i+2 ...x n is not an antidirected path. Let

..x n , then T < {v j , ..., v n } -{x} >∈ T 3,5,7 and x j+1 ...x n is an antidirected path. Since x j ...x n is neither a directed path nor equal to P + (1, 2), and since d - T <({vj ,...vn}-{x})∪{v}> (v) = 0, then, by Simple Lemma, T < ({v j , ...,

If there exists x ∈ {v j , ..., v n } such that (x, v 1 ) ∈ E(T ), then, since, as above, T < ({v j , ..

..v ′ n ≡ P . Otherwise, T < ({v j+1 , ..., v n }-{y})∪{v i+2 } >∈ T 3,5,7 and x j+1 ...x n is an antidirected path. If there exists z ∈ ({v j+1 , ..., v n } -{y}) ∪ {v i+2 } such that (z, v j ) ∈ E(T ), then since, by Simple Lemma, T < ({v j+1 , ...,

Let y ′ ∈ {v j+1 , ..., v n }. Since x j+1 ...x n is an antidirected path and d - T <({vj+1,...,vn}∪{vi+2,v})-{y,y ′ }> (v) = 0, then, by Simple Lemma, T < ({v j+1 , ..., v n } ∪ {v i+2 , v}) -{y,

By considering P = y 1 → y 2 → y 3 ...y n , T contains a copy of P ((y i , y i+1 ) ∈ E( P )) and the problem is solved. If |{x j+1 , ..., x n }| = 2, then P = x 1 → x 2 ← x 3 → x 4 ← x 5 ← x 6 ...x j → x j+1 ← x j+2 .

By considering P = y 1 → y 2 ← y 3 → y 4 → y 5 ...y n , since (y i-1 , y i ), (y i+1 , y i ), (y i+1 , y i+2 ), (y i+2 , y i+3 ) ∈ E( P ), then we recover a previous case. If n = j + 1, then P = x 1 → x 2 ← x 3 → x 4 ← x 5 ...x j → x j+1 . By considering P = y 1 ← y 2 → y 3 → y 4 ...y n , the problem is solved since (y i , y i-1 ) ∈ E( P ) and we recover a previous case. Remark 4.1. If j = n, then P = x 1 → x 2 ← x 3 → x 4 ← x 5 ← x 6 ... ← x n . By considering P = y 1 → y 2 → y 3 ...y n , the problem is solved since (y i , y i+1 ) ∈ E( P ) (If n = 5 then P is an antidirected path and since |T 1 | = 2, then T is a regular tournament on 5 vertices and

If there exits r ∈ [i + 4, j] such that N + (v r ) ∩ V (T 1 ) ̸ = ∅, let r be of minimal index, and suppose without loss of generality that (v r , v 1 ) ∈ E(T ).

In the following section, I give a program which transforms a tournament into a vector and vice versa. Moreover, this program gives all directed paths and median orders of the tournament.

Program

We give a program which converts directly a tournament into its representative vector with respect to an enumeration E of the vertices of T or vice versa. This program conrms if the given vector can represent a tournament or not and conrms also if the enumeration E is a directed path or a median order in T . It lists all directed paths and median orders of T . while True: operation = input( "\nPlease choose the operation:\nEnter 1 to search for representative Vector of T with respect to E=v1...vn\nEnter 2 to search for a Tournament relative to a vector if it exists\n> ") if operation == "1" or operation == "2": break if operation == "1": # we enter the vector size = input("\nThe tournament is of order n\nPlease enter n:\n> ") size = int(size) vector = [[0 for col in range(size)] for row in range(size)] for i in range(1, size): vertices = input("\nPlease enter the indexes of the outneighbours of v" + str(i)+" that are greater than "+str(i)+" separated by comma (example: 2,4,5):\n> ") if (isinstance(vertices,str) and vertices !="" and vertices !="0"): vertices = vertices.split(",") for vertexIndex in vertices: vertexIndex = int(vertexIndex) if(vertexIndex>size or vertexIndex<=i): print("Invalid input") exit() vector[i-1][int(vertexIndex)-1] = 1 tournament = convertToTournament(vector) matrix = invertMatrix(vector) print("Vector:") for i in range(size):

print("[", end="") print(tournament[i], end="") print("]") print("Matrix:") for i in range(size):

print("[", end="") for j in range(size): print(matrix[i][j], end="") print("]") showMatrixWithArcs(matrix) else:

# we enter the tournament size = input("\nThe vector is of order n\nPlease enter n: print("This is an invalid tournament") exit(0) else: vectorOutput = "" fullTournament = "V(T)= { " matrix = invertMatrix(matrix) for i in range(size): fullTournament+="v"+str(i+1)+("" if i==size-1 else ", ") vertex = "(v"+str(i+1)+", " for j in range(size): if(matrix[i][j] == 1):

Abstract

My PhD thesis is based on an interesting subject in Graph Theory: The Tournament. In 1934, Rédei [15] proved that any tournament contains a Hamiltonian directed path. In 1971, Grünbaum [8] proved that any tournament contains any Hamiltonian antidirected path with exactly three exceptions. A circuit triangle, a regular tournament on ve vertices and a Paley tournament on seven vertices don't contain a Hamiltonian antidirected path. Rosenfeld [17], in 1972, inspired by the work of Grünbaum, proposed the following conjecture: Rosenfeld's Conjecture: There exists k ≥ 8 such that any tournament T of order n ≥ k contains any Hamiltonian oriented path. Alspach, Rosenfeld [2] and Straight [20] proved Rosenfeld's conjecture on paths of two blocks.

In 1973, Forcade [7] proved Rosenfeld's conjecture for any tournament of order 2 n . Thomason [21] was the rst one to give a general answer. He proved, in 1986, that there exists n0 ≤ 2 128 such that for all n ≥ n0 any tournament of order n contains any Hamiltonian oriented path. He also proved that any set of b1 + 1 vertices in an n-tournament contains an origin of any (n -1)-path whose rst block is of length b1.

In 2000, Havet and Thomassé [START_REF] Havet | Oriented Hamiltonian Paths in Tournaments: A Proof of Rosenfeld's Conjecture[END_REF] gave a renement of this key idea introduced by Thomason and proved that any tournament T of order n contains a copy of any path P of order n with only the three exceptions of Grünbaum. For x and y ∈ V (T ), they dened s + (x, y) = |{z ∈ V (T ) such that z can be reached from x or y by a directed path}| and they proved that if s + (x, y) ≥ b1 + 1, then x or y is an origin of such path. This new performance allowed them to remark that proving the existence of an (n -1)-oriented path in any n-tournament is equivalent to the existence of any Hamiltonian path P in this tournament unless (T, P ) is one of the 69 exceptions that were veried one by one. Their proof was long and complicated. Encouraged by the belief of my Professor Amin El Sahili that there exists a shorter proof of Rosenfeld's conjecture, I gave in my Master's II thesis (2019) an elementry proof of the existence of any Hamiltonian oriented path with two or three blocks in any tournaments of order n ≥ 4. In 2020, after one year of deep work, I gave two simple proofs of Rosenfeld's conjecture, without treating all exceptions studied by Havet and Thomassé. The rst one was the shorter. I used a theorem stated by El Sahili-Ghazo Hanna [19] and the number of cases I had to study was reduced to the half. In the second one, I studied the remaining cases that I didn't study in Chapter 3 and presented another proof of Rosenfeld's Conjecture without using El Sahili Ghazo Hanna's theorem.

In the rst chapter of the thesis, I introduce some denitions, notations and some properties that will be used throughout the thesis.

In the second chapter, I present some results that I found in my Master's II thesis. These results concerning Rosenfeld's Conjecture in paths of two blocks were the source of light for me to generalize my proof. Also, in Chapter 2, I proved that for any two non-negative integers a and b such that a < b, there exists a tournament T such that {d + T (v), v ∈ V (T )} = {a, b}.

This result was given by K.B. Reid [START_REF] Reid | Score sets for tournaments[END_REF]. In chapter 3, I introduce my rst proof of Rosenfeld's Conjecutre. Let T be a tournament of order n such that δ -(T ) = i, and let P be a path such that In the fth chapter, I dene the representative vector of a tournament, a simplied representation of a tournament which requires n -1 entries instead of n(n-1)
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for the representation