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Nomenclature

General quantities

Notation Description Unit

Aα,Aα Tangent (resp. normal) base vector in the curvilinear system of coordinates ξα ?

A3 Initial director vector (orientation of the material segment in the reference configura-

tion)

-

a, b x, y dimension of a rectangular panel m

D∗ Bending stiffness due to the panel’s membranes resistance to tractionD∗ =
Eτ̃H2

2(1− ν2)
N.m

E Young’s modulus of the panel’s isotropic membranes Pa

Ey Young’s modulus of a single drop-stitch yarn Pa

E Green-Lagrange strain tensor -

F Deformation gradient tensor -

H Panel height (membranes thickness included) (typically around 15cm) m

H∅ Natural panel height (before inflation) m

H̃ Panel height between upper and lower membranes (H − 2τ) m

IP Identity tensor restricted to plane e1e2 (IP = eα ⊗ eα) -

K Total bending stiffness of inflatable panelsK = D∗ +M
(2)
0 =

Eτ̃H2

2(1− ν2)
+
pH2H̃τ̃

4τ
N.m

Kν Total bending stiffness coefficient used in Cartesian coordinatesKν = D∗ 1− ν
2

+M
(2)
0 N.m

K ′ Bending stiffness coefficient for boundary conditionsK ′ = νD∗ +
pH̃3

12
= ν

Eτ̃H2

2(1− ν2)
+

pH̃3

12

N.m

M
(2)
0 Second-order moment pre-tensionM (2)

0 =
pH2H̃τ̃

4τ
N.m

n Normal vector to the upper / lower face -

P Point on the mid-surface in the current configuration m

P0 Point on the mid-surface in the reference configuration m



Nomenclature

Notation Description Unit

p Internal pressure N/m²

Q Position in the plate in current configuration m

Q0 Position in the plate in reference configuration m

R Radius of circular panel m

R∅ Natural radius of circular panel (before inflation) m

Sy Cross section of a single drop-stitch yarn m²

t Time s

U Displacement vector m

W Vertical component of the deflection of the panel m

λ Coordinate along the edge of the panel m

ν Poisson’s ratio of the panel’s isotropic membranes m²/s

ξ Curvilinear parameter -

Π First Piola–Kirchhoff stress tensor Pa

σ Cauchy stress tensor Pa

Σ Second Piola–Kirchhoff stress tensor Pa

τ Panel membranes’ thickness (typically below 1 mm) m

τ̃ Reduced thickness parameter (no physical significance) τ̃ =

(
1− 2τ

H
+

4τ2

3H2

)
τ m

ψ Fiber (ormaterial segment) orientation vector field -

Vibrations

Notation Description Unit

D0 Frequency parameterD2
0 = ω2 2τρ

K
m−2

Dc Cut-off frequency parameter m−2

D1,D2,D3 Square of the wavenumber corresponding to the potentialWi m−2

fc Cut-off frequency Hz

fmn Natural frequency for the mode (m,n) Hz

k1, k2 Coefficients that relate the amplitude of the shear eigenmodes to the bending eigen-

modes

-



Nomenclature

Notation Description Unit

Vs Ratio of flexural stiffness over shear stiffness Vs =
K

pH̃
m²

Vi Ratio of rotatory inertia and flexural inertia Vi =
ρτ̃H2

2
× 1

2τρ
=
τ̃H2

4τ
m²

W1,W2,W3 Plate-displacement potentials for the eigenvalue problem m

α, β Wavenumbers for the rectangular panel m−1

δ1, δ2, δ3 Wavenumbers of the eigenmode potentials, equal to
√
|Ωi| m−1

λ Eigenvalue of the generalized eigenvalue problem of inflatable panels λ = ω2 s−2

σα Coefficients that relate the amplitude of the shear eigenmodes to the bending eigen-

modes

-

ωc Cut-off angular frequency rad/s

ωmn Natural angular frequency for the mode (m,n) rad/s

Ω1, Ω2, Ω3 Square of the wavenumber corresponding to the potentialWi m−2

Ψ Fiber orientation eigenmode -



Résumé français

Les structures en textiles tendus sont en plein essor. L’écriture en cours d’un Eurocode appliqué aux struc-

tures membranaires et gonflables montre qu’elles occupent un rôle de plus en plus grand dans la construc-

tion : la membrane est en train d’être reconnue comme un élément architectural courant. Pour conférer

auxmembranes leur raideur, il est nécessaire d’assurer une prétension bi-axiale. Pour cela, deux techniques

sont couramment employées. La première est la mise en tension par l’intermédiaire d’éléments mécaniques

de type câble. C’est la grande majorité des structures tendues que l’on voit dans l’architecture. La seconde

technique est l’utilisation d’un gaz sous pression, généralement de l’air, pour tendre la structure. C’est ce

qui définit la famille des structures pneumatiques et c’est dans ce cadre que s’inscrit le travail présenté dans

cette thèse.

Il existe de nombreuses structuresmono-membranes de type bulle qui recouvrent des aires de sport telles

que des courts de tennis ou des terrains de football de manière temporaire. Elles peuvent également être

installées de façon pérennes, comme c’est le cas des coussins gonflables utilisés pour recouvrir des bâtiments

tels que le stade de l’Allianz Arena à Munich (Fig. 1). De nombreuses structures pneumatiques temporaires

tirent profit des qualités de ce type de structures : légères, faciles à transporter, faciles àmonter et démonter,

sans impact conséquent sur les sols.

Figure 1: L’Allianz Arena à Munich (Allemagne). (crédit photo : Wikimedia)

Les structures textiles tendues présentent généralement une double courbure opposées (en forme de selle

de cheval, Fig. 2). Les structures gonflables, elles, sont naturellement bombées (comme dans le cas des

coussins gonflables) ou encore avec une seule courbure non nulle (tubes gonflables). Il serait également très

utile de disposer de surfaces sans courbures : c’est ce que permet la technologie de panneau gonflable qui allie

la géométrie d’une plaque classique avec les qualités d’une structure membranaire, peu coûteuse et facile-

ment transportable.

Un panneau gonflable est une structure membranaire étanche et remplie d’un gaz sous pression qui lui

confère sa raideur et dont la forme une fois gonflée est maîtrisée par des fils qui relient les nappes supérieure

et inférieure. Lorsque tous les fils ont la même longueur, le panneau a une épaisseur uniforme et peut être

modélisé comme une plaque.

1



Résumé français

(a) (b) (c)

Figure 2: Surfaces monoclastique (a), synclastique (b) et anticlastique (c).

Du point de vue industriel, les premiers panneaux gonflables ont été proposés pour des applications liées

à l’aviation ou à la conquête spatiale dans les années soixante. Ces projets sont restés à l’échelle de proto-

types mais ont permis l’élaboration des techniques de fabrication, notamment du tissu double-paroi com-

munément appelé « drop stitch ». De nos jours, les panneaux gonflables sont très utilisés dans le secteur

des loisirs pour produire des paddles ou des pistes de gymnastique (Fig. 3). Dans le domaine de la construc-

tion, certaines structures sont déjà composées d’éléments assimilables à des poutres, tels que des tubes ou

des arches, et l’apport d’éléments plans viendra naturellement combler un manque dans les outils de con-

ception d’assemblages structurels. En effet, les théories classiques de la résistance des matériaux ne sont

pas adaptées à l’étude des structures pressurisées puisqu’elles ignorent l’influence de la pression interne. En

conséquent, des recherches ont été menées pour élaborer une nouvelle théorie adaptée à ces structures. Une

fois les théories de poutres et de panneaux gonflables bien maîtrisées, il sera possible de dimensionner des

structures porteuses de formes complexes entièrement gonflables.

(a) Piste de gymnastique gonflable (© Airtrack) (b) Stand up paddle (© Décathlon)

Figure 3: Exemples d’application des panneaux gonflables dans les sports.

Poutres gonflables

Afin demontrer l’étendue des travaux réalisés dans le domaine des structures gonflables, nous commençons

par unhistorique des recherches sur les poutres gonflables qui justifie les hypothèses adoptées pour la théorie

des panneaux gonflables.

L’étude des tubes pressurisés commence en 1963 avec Comer et Levy [1] qui ont étudié une poutre console

gonflable en se basant sur la théorie des poutres d’Euler-Bernoulli qui néglige le cisaillement. Les mêmes

hypothèses sont reprises par Webber [2] qui a étudié des sollicitations combinées de flexion et torsion et

réalisé des expériences avec des pressions de gonflage de l’ordre de 0,2 bar, ce qui est aujourd’hui consid-

2



Résumé français

éré comme étant faible. En 1995, Main et al. [3] mènent des expériences dans le but de valider l’hypothèse de

cinématique d’Euler-Bernoulli pour les poutres gonflables. La gamme des pressions de gonflage considérée

étant trop restreinte, la pression reste peu influente d’après leurs résultats et ils concluent que l’hypothèse

de Comer et Levy doit être valable ; chose qui est réfutée de nos jours. En parallèle, d’autres auteurs avaient

utilisé le théorème de l’énergie potentielle pour inclure la pression interne dans le modèle poutre. C’est le

cas de Fichter [4], qui a introduit l’usage de la cinématique de Timoshenko pour les tubes gonflables, et de

Steeves [5] qui a proposé des solutions sous la forme de fonctions de Green pour des poutres bi-appuyées ou

bi-encastrées.

C’est à partir de 2002 avec les travaux et expériences de Wielgosz et Thomas [6] que des écarts impor-

tants à la théorie basée sur la cinématique d’Euler-Bernoulli sont observés pour des plages de pression éten-

dues. Ils mettent en exergue l’effet du cisaillement et formulent un nouveau modèle avec une cinématique

de Timoshenko. En 2005, Le Van et Wielgosz [7] montrent l’importance de distinguer la configuration na-

turelle (où la pression interne est nulle) et la configuration de référence précontrainte. Ils établissent la relation

entre la charge de plissage et la pression de gonflage. Ils calculent également la charge de ruine. En 2013,

Q.T.Nguyen [8] étend la théoriedespoutresgonflables isotropes aucasorthotrope. Lespropriétésmatérielles

de la membrane à l’état gonflé sont déterminées à partir de ses caractéristiques à l’état naturel.

Panneaux gonflables

La première étude des panneaux gonflables date de 1960 avec les travaux de R. W. Leonard et McComb [9, 10]

pour le compte de la NASA. Ils développent une théorie linéaire des panneaux gonflables et concluent qu’il

s’agit d’un cas particulier de théorie de plaque avec prise en compte du cisaillement. Bien que les fils dans le

panneau soient généralement verticaux, ilsmontrent qu’avec desfils obliques (motif en«V») onaugmente la

résistance au cisaillement auprix d’un gain demasse [11]. Leurs travaux sont suivis d’expériencesmenées par

Stroud [12], toujours à la NASA, où ils mesurent le déplacement au centre d’un panneau rectangulaire chargé

uniformément avec des bords appuyés ou encastrés. Ils mesurent également les premières fréquences pro-

pres en fonction de la pression de gonflage. Lesmodèles cités jusqu’à présent ne peuvent être appliqués qu’en

coordonnées cartésiennes. En 1962, Haight [13] travaille sur les panneaux gonflables pour son mémoire de

master et publie une solution non linéaire sous forme de série entière pour la déformée statique d’un panneau

circulaire chargé uniformément [14]. Néanmoins, cette théorie néglige lesmoments de précontrainte d’ordre

2. D’autres variations autour des panneaux sont possibles : en espaçant davantage les fils dans une direction,

on autorise une courbure périodique de la surface [15, 16].

Plus récemment, Wielgosz et Thomas [17] ont étudié le comportement de panneaux gonflables élancés

pouvant êtreassimilés àdespoutres. Cavallaro [18] a fait demêmeenréalisantuneétudeciblée sur lematériau

drop-stitch, à savoir le tissage 3D de deux membranes pour qu’elles restent à égale distance après gonflage.

En 2021, Davids et al. [19] ont déterminé expérimentalement les propriétés d’un panneau gonflable (mod-

ules d’élasticité et de cisaillement en orthotropie). Ils présentent des simulations numériques non linéaires

obtenues en adaptant leurmodèle de poutre gonflable publié en 2008 [20]. Il s’agit encore une fois d’unmod-

èle unidimensionnel.

Les recherches sur les éléments de construction gonflables ont été prolongées jusqu’à développer des

modèles de coque gonflable, qui ont une surface moyenne courbée à l’état de référence, par exemple avec

les travaux de J. W. Leonard et C. T. Li [21, 22, 23, 24, 25, 26].

Tout ceci montre que même s’il existe des théories de panneaux gonflables, elles sont anciennes et diffi-

ciles d’accès. Dans cette thèse, nous ne nous contentons pas de revisiter ces travaux et proposons une nou-

velle théorie à partir du principe des puissances virtuelles en grandes transformations et en coordonnées
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curvilignes. Les résultats de la littérature sont retrouvés avec un terme de raideur supplémentaire dû à la

pression interne.

Vibrations des plaques de Reissner-Mindlin

En plus de la statique des panneaux gonflables, nous nous intéressons aux aspects dynamiques avec l’étude

des vibrations par analyse modale à partir de la théorie linéarisée.

Bien qu’une théorie des plaques prenant en compte le cisaillement existe depuis les années cinquante, il

reste difficile à ce jour de trouver des méthodes de résolution analytique dans la littérature. Cette théorie est

souvent présentée comme une « simple extension » des plaques de Love–Kirchhoff et peu de résultats sont

présentés. En réalité, l’étude des vibrations de telles plaques présente plusieurs difficultés supplémentaires :

le couplage des modes de flexion et de cisaillement ainsi que l’existence de différents régimes de vibration

(basse fréquence, haute fréquence). Le sujet est abordé pour la première fois en 1951 dans l’article fondateur

de la théorie de Reissner–Mindlin [27] où l’auteur établit une théorie des plaques qui inclut l’inertie de ro-

tation et la raideur en cisaillement. Il pose le problème aux valeurs propres et montre qu’il se réduit à des

équations de Helmholtz mais ne les résout pas. Ensuite, de 1951 à 1956, Mindlin et Deresiewicz [28, 29, 30]

consolident la théorie en résolvant ces équations pour des plaques rectangulaires et circulaires simplement

appuyées. En 1980, Irie et al. [31] généralisent les solutions de Mindlin sur les vibrations de plaques circu-

laires à tous les types de conditions aux limites (bord encastré, appuyé ou libre). En 1993, Liew [32] approfon-

dit l’étude des plaques de Reissner-Mindlin et publie un état de l’art où il introduit la distinction utile entre

l’appui simple classique qu’il qualifie de « souple » et l’appui simple « dur » qui interdit les rotations dans le

plan tangent au bord. En 2005, Hashemi et Arsanjani [33] synthétisent de nombreux travaux en donnant les

équations caractéristiques pour toutes les plaques dont deux bords opposés sont appuyés.

Ces travaux portent sur les plaques classiques et devront donc être adaptés aux panneaux gonflables.

Théorie non linéaire des panneaux gonflables

Dans le cadre de cette thèse, nous avons développé un théorie des panneaux gonflables en grandes transfor-

mations. Il s’agit d’une approche moderne et unifiée qui permet de traiter les problèmes de statique, de dy-

namiqueet deflambement sansprésupposerun systèmede coordonnéesparticulier. Nousprenons encompte

les effets du cisaillement à travers la cinématique de Reissner-Mindlin et ceux de la pression qui est assim-

ilée à un chargement suiveur extérieur. La prise en compte des fils se fait uniquement à travers l’hypothèse

de non-élongation au cours de la phase de chargement, ce qui explique pourquoi la densité et les propriétés

mécaniques des fils n’apparaissent pas explicitement dans les équations locales. La raideur des fils intervient

uniquementpendant la phasedegonflageoù le panneauatteint sahauteur de référence, Fig. 4. Le principedes

puissances virtuelles écrit en grandes transformations permet d’obtenir les équations locales non linéaires

en coordonnées curvilignes. Ces équations contiennent les termes nécessaires à la bonne prise en compte de

la pression de gonflage et ils contribuent effectivement à la raideur globale (en flexion et en cisaillement) de

la structure.

Théorie linéarisée

Leséquationsnon linéairesobtenuesont été linéarisées autourde la configurationgonflée, considérée comme

configuration de référence. Cela permet d’étudier les petits mouvements du panneau au voisinage de cet
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(= naturelle)
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Figure 4: Vues de côté d’un panneau soumis à un chargement vertical dans les trois configurations d’intérêt.

état. Comme toutes les lois de comportement sont confondues avec la loi de Saint Venant–Kirchhoff sous

l’hypothèse des petites déformations, il n’est pas nécessaire de prendre en compte une loi plus complexe lors

de la linéarisation. On suppose de plus un état de contraintes planes dans les membranes. Les équations du

mouvement ainsi obtenues sont semblables à celles de la théorie des plaques de Reissner-Mindlin. Néan-

moins, elles comportent de nouveaux termes de raideur qui s’additionnent aux coefficients matériaux et qui

dépendent de la pression. Nous montrons que la raideur en cisaillement du panneau provient entièrement

de la précontrainte de gonflage et non plus de la raideur au cisaillement transverse des membranes qui a été

négligée.

Solution statique : panneau circulaire simplement appuyé et chargé uni-

formément

Les équations locales ainsi linéarisées ont pu être résolues analytiquement pour le problème de flexion sta-

tique d’un panneau circulaire simplement appuyé sur son bord et soumis à un chargement vertical. La dé-

formée obtenue est de forme parabolique et dépend de la pression interne, Fig. 5. Nous avons également pu

déterminer la limite de validité de cette solution en précisant la charge de ruine au-delà de laquelle les con-

traintes s’annulent dans la membrane, causant une perte de raideur et la formation de plis.

Simulation numérique par éléments finis 3D

Nous avons réalisé des simulations à l’aide du programme éléments finis Evolver [34] qui permet de résoudre

des problèmes statiques parminimisationde l’énergie potentielle. Ce programmeprend en compte les grands

déplacements, le chargement suiveur et le flambement local. Nous appliquons incrémentalement les charge-

ments de gonflagepuis le chargement extérieur. Laméthodedugradient conjugué est utilisée pourminimiser

l’énergie. Lesfils qui relient la face supérieure et la face inférieure sont représentés par des éléments barre. La

flèche du panneau obtenue numériquement est comparée aux résultats de la théorie linéarisée pour plusieurs

géométries et pressions de gonflage. Un très bon accord a été obtenu entre les deux approches avec un écart
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Figure 5: DéforméeW et orientation des fibres ψr pour un panneau circulaire simplement appuyé et soumis
à un chargement vertical de 100 Pa pour quatre pressions de gonflage p différentes. Avant d’être gonflé, le
panneau a un rayon de 1,5 m et une épaisseur de 10 cm.

relatif moyen de 3 %. On observe une tendance : l’erreur relative sur la flèche augmente lorsque le panneau

devient plus épais ou moins large, c’est-à-dire dans les cas où la non-linéarité de la raideur au cisaillement

devient importante et met en défaut les hypothèses de petits déplacements. La non-linéarité de la simula-

tion 3D est visible par l’aspect de la courbe effort–déplacement (Fig. 6), parfois même avant que la charge de

plissage ne soit atteinte. Cependant, tant que les déplacements restent petits (de l’ordre de 3% du rayon), la

réponse est quasiment linéaire et en très bon accord avec la solution théorique linéarisée.
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Figure 6: Courbes effort–déplacement issues de la simulation numérique et de la solution analytique pour
un disque gonflable simplement appuyé et chargé verticalement. Le panneau fait 2 mètres de rayon et 10
centimètres d’épaisseur avant d’être gonflé à 90 kPa (0,9 bar).

Analyse modale

L’étudedes vibrationsdespanneauxgonflables se fait également àpartir de la théorie linéarisée. Ladémarche

est la même que pour les vibrations de plaques de Reissner-Mindlin classiques. Le problème aux valeurs
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propres est posé dans le formalisme tensoriel de façon intrinsèque. Il s’agit d’un système d’équations aux

dérivées partielles qu’il faut découpler pour pouvoir résoudre. Après réécriture des équations, on parvient à

exprimer le problème de flexion indépendamment des inconnues correspondant au cisaillement qui seront

déterminéesdansunsecond temps. Onremarqueque la formedeséquations changeen fonctionde la fréquence

à laquelle le système vibre, ce qui conduit à distinguer les modes de basses fréquences de ceux de hautes

fréquences. En dernière analyse, la détermination des modes propres passe par la résolution de trois équa-

tions de Helmholtz découplées. Les conditions aux limites sont ensuite appliquées pour obtenir l’équation

caractéristique. Les racines de cette équation permettent la détermination des fréquences propres et des

longueurs d’onde du mode propre grâce aux relations de dispersion. La résolution est présentée pour des

panneaux circulaires avec bords encastrés, simplement appuyés ou libres ainsi que pour des panneaux rect-

angulaires appuyés (Fig. 7). Les fréquences prédites sont comparées à celles d’un modèle simplifié. Nous

avons également résolu le problème de vibrations axisymétriques par une méthode numérique pseudospec-

trale qui est présentée en annexe. Ces multiples validations nous permettent d’avoir confiance dans nos ré-

sultats théoriques mais ne dispensent pas de confronter le modèle à la réalité expérimentale.
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Figure 7: Fréquences propres d’un panneau rectangulaire simplement appuyé en fonction de la pression in-
terne. Les entiersm et n indiquent le numéro dumode selon x et y. Dimensions initiales : 300 sur 290 sur 20
centimètres.

Expériences

Leproblèmedupanneaucirculaire enflexionsouschargementvertical a été étudié théoriquementetnumérique-

ment. Il convient à présent de confronter ces prédictions à la réalité physique. En amont des expériences, des
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mesures de variations de géométrie des panneaux lors des phases de pressurisation ont permis d’identifier le

module d’élasticité du matériau. Dans notre montage expérimental, une armature en métal permet de sus-

pendre le panneau pour réaliser toutes sortes de conditions aux limites. Pour appliquer un chargement par-

faitement uniforme sur toute la surface du panneau tout en maintenant le bord en appui simple, nous avons

fabriquéunedemi-sphère en tissuqui permetd’appliquer des chargements jusqu’à 200Pa. Afinde supprimer

l’influence du poids propre, le panneau a été maintenu à la verticale pendant toute la durée de l’expérience.

La mesure a été faite à l’aide d’un capteur de déplacement placé sur un rail aligné avec un diamètre horizon-

tal du panneau. Une attention particulière a été portée à la conservation de l’axisymétrie du problème et au

parallélisme du panneau avec le rail de mesure sur lequel se déplaçait le capteur. L’objectif était de mesurer

le profil de déplacement transverse du panneau sur un diamètre pour le comparer aux courbes théoriques

de déplacement transverse. Les mesures présentées dans ce travail ont été faites pour plusieurs pressions

internes et plusieurs chargement externes. Elles ont montré une comparaison théorie – expérience tout à

fait satisfaisante, comme on peut le voir sur la Fig. 8. Une fois cette série de mesures terminée, des essais

de vibrations ont été réalisés pour valider la théorie des vibrations. Ils ont été menés à l’aide d’un marteau

d’impact pour générer le signal en entrée et la pose de quatre accéléromètres a permis demesurer le mouve-

ment en des points d’amplitude de vibrationmaximale. Les résultats de ces premières expériencesmontrent

la possibilité d’identifier les fréquences de résonance mais des séries d’expériences complémentaires sont à

prévoir pour parfaire la comparaison théorie – expérience, notamment par une estimation plus précise des

propriétés matériaux.
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Figure 8: Comparaison des déplacements transverses expérimentaux et théoriques.

Conclusion

L’objectif de cette thèse était d’étudier les panneauxgonflables par trois approches complémentaires : analy-

tique, numérique et expérimentale. Sur le volet analytique, unmodèle depanneauxgonflables a étédéveloppé

pour prendre en compte les effets de la pression interne et du cisaillement. Nous avons établi les équations

non linéaires du mouvement à partir du principe des puissances virtuelles écrit en grandes transformations.

Ces équations ont ensuite été linéarisées autour de la configurationde référence, ce qui a permis de résoudre le
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problème deflexion d’un disque gonflable et de poser le problème aux valeurs propres pour l’étude des vibra-

tions. Le système d’équations de Helmholtz a été résolu pour déterminer les modes et fréquences propres de

panneaux circulaires (encastrés, appuyés ou libres) ou rectangulaires (simplement appuyés). Les fréquences

propres ainsi déterminées sont très proches de celles obtenues par une méthode de résolution numérique

approchée (pseudospectrale) et par des modèles physiques simplifiés. Dans le volet numérique, la méthode

des éléments finis a été appliquée au panneau modélisé comme un assemblage de membranes et de fils en

3D afin d’obtenir une solution non linéaire du problème de flexion statique. Un très bon accord a été trouvé

avec la solution linéaire. Enfin, dans le volet expérimental, nous avons réalisé une structure permettant de

réaliser les conditions aux limites d’appui simple et d’appliquer un chargement uniforme afin de mesurer

les déplacements transverses d’un panneau gonflable. Les résultats expérimentaux sont en accord avec la

solution linéaire.

Perspectives

À l’issue de notre travail sur les panneaux gonflables, des pistes d’études restent à explorer pour maîtriser

complètement la mécanique de ces structures très particulières. Les principales pistes sont :

• compléter les essais d’analysemodale réalisés dans cette étude en excitant la structure avec des signaux

de type sinus balayé,

• prendre en compte l’orthotropie des membranes supérieure et inférieure,

• déterminer l’évolution des coefficients matériaux et du champ de déplacement lors du passage de la

configuration naturelle (non gonflée) vers la configuration de référence, qui n’est actuellement décrite

que par sa hauteur et ses dimensions caractéristiques (diamètre ou longueur des côtés),

• étudier le comportement post-plissage entre l’apparition du pli et la ruine globale de la structure par

pliage,

• étudier l’influence des déformations différées dans le tempsdu fait dufluage et de la viscosité desmem-

branes,

• création d’un élément fini plan de panneau gonflable pouvant être combiné avec l’élément tube gon-

flable pour le dimensionnement de structures porteuses entièrement gonflables.
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Figure 9: Interest in research on inflatable structures over the last decades shown by the number of publica-
tions in engineering containing the word “inflatable” (data from ScienceDirect).

Tensile membrane structures are in rapid development as evidenced by the efforts to guide the structural

design of such structures in Europe [35]. The interest in pneumatic structures is growing over time, as illus-

trated by the number of papers and books published on this topic (Fig. 9). It is interesting not only for static

inflatable buildings, but also to createmobile inflatable systems in the emergingfield of soft robotics [36, 37].

The 60’s and 70’s were very prolific in terms of inflatable projects, culminating in the 1970 Osaka World

Expo. On that occasion, several inflatable pavilions were proposed, including the American pavilion with

an inflatable cover that later inspired many other stadiums and the well-known Fuji pavilion which is an

impressive arch assembly (Fig. 10a). In parallel with the land-based inflatables, a number of applications

were proposed for the conquest of space such as inflatable heat shields or reentry vehicles (Fig. 11a). Their

main advantage is of course their light weight, which is vital for a structure that is launched into space using

expensive rockets. In the 90’s, due to the energy crisis, inflatable structures were less developed because

large structures required a constant supply of air. More recent examples in aerospace applications include

the deployable hangar that protects the Solar Impulse aircraft, Fig. 14 or the inflatable BEAM module that

was installed on the International Space Station in 2016 (Fig. 11b). A more detailed history of the evolution of

pneumatic structures can be found in the review of Chi and Pauletti [38].

The stiffness of amembrane structure is obtainedbymaintaining abi-axial pre-tension state in the fabric.

To this end, two techniques are commonly used. The first consists in stretching by means of mechanical

elements such as cables and straps fixed to anchors. This is the vast majority of tension structures seen in

architecture. The second technique is the use of a pressurized gas, generally air, to stretch the structure:

this defines the family of pneumatic structures and it is the framework of this work. They have developed

throughout the 20th century, especially with advances in materials such as the invention of nylon in 1938.
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(a) Fuji Pavilion, Osaka 1970World’s fair. (b)Medical tent for the International Committee of the Red
Cross, supported by inflatable arches (© FlyPix)

Figure 10: Examples of inflatable buildings.

(a) Reentry vehicle. (b) Deployment of the BEAM inflatable module.

Figure 11: Inflatable structures for space exploration. (image credit: NASA)

Many different curved shapes can be obtained with inflatables. The family of pneumatic structures can be

broken down into three subfamilies:

• single membrane structures, such as air halls or inflatable roofs,

• inflatable structures, such as inflatable beams, columns, cushions, panels or mattresses (Fig. 13a) and

any assembly of these different structural elements,

• hybrid structures that combine different types of elements and are promising candidates for space ex-

ploration [39].

The most common structure is the mono-membrane cushion. They are made of plastic, generally ETFE

(ethylene tetrafluoroethylene) or PTFE (polytetrafluoroethylene). Many temporary pneumatic structures

take advantage of the qualities of this type of structure: light, easy to transport, easy to assemble and dis-

assemble, with no significant impact on the ground. There are many single-membrane bubble structures

that cover sports areas such as tennis courts or soccer fields on a temporary basis. They can also be installed

permanently, as is the case with the inflatable cushions used to cover buildings such as the Allianz Arena in

Munich (Fig. 12), the green house of the Aarhus Botanical Garden (Fig. 13b) or the Eden Project in England

(Fig. 13c).

They are quite easy to manufacture nowadays thanks to the availability of laser cutting machines and

pattern–making software that allow to preview the shapes after pressurization. More assembly techniques
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Figure 12: Allianz Arena in Munich, Germany. (Wikimedia)

are now well mastered: the sewing of fabric strips, gluing, thermal welding or high frequency welding. With

thefirst technique, a continuous air supply is required to compensate air leakage,which isnotnecessarywhen

the structure is airtight. However, pressure regulation systems may be required in case of slight air leakage.

With their minimal packed volume and their ease of repair, they can be reused a large number of times in a

variety of environments and settings. They acquire load-bearing capacity from inflation alone, whichmakes

them less material-consuming than standard tension structures that require external stiffeners. The infla-

tion level may also be modified to achieve the desired stiffness, which is a rare property for a structure to

have.

The main disadvantage of inflatable structures is the risk of deflation due to puncture or loss of airtight-

ness, which can inspire distrust. The safety of pneumatic structures are addressed in current research, for

instance the safe evacuation of collapsing inflatable buildings [40]. Nonetheless, even after failure, their

integrity can be restored with simple and inexpensive repairs (patches), which considerably increases their

durability. Also, the design of complex inflatable structures can be complicated: the shapes that compose

the structure are cut from flat surfaces of fabric, which when inflated will acquire curvature. This poses

several challenges that pave the way to active areas of research such as form-finding and optimization of

the stretched structure or optimization of the cutting pattern and position of the seams to match a target

shape [41].

Tensile fabric structures generally have opposing principal curvatures, and as such they belong to the

anticlastic surfaces family (Fig. 15). On the other hand, inflatable structures naturally have synclastic curvature

(principal curvatures of the same sign), as can be seen with airbags; or single curvature (monoclastic), which

is the case of inflatable tubes. Ideally, one would want to have flat surfaces that also have the qualities of

inflatable structures, i.e. being inexpensive and easily transportable: this is made possible by the inflatable

panel technology.

(a) (b) (c)

Figure 15: Monoclastic (a), synclastic (b) and anticlastic (c) surfaces.
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(a) Inflatable building with mattress walls. (b) Green house (Aarhus Botanical Garden, Danemark).

(c) Eden Project greenhouse complex in England (picture by Jürgen Matern).

Figure 13: Examples of temporary and permanent inflatable buildings.

Figure 14: Movable hangar for the Solar Impulse aircraft. (Wikimedia)

We have seen that pneumatic structures are in rapid expansion in architecture and other fields of engi-

neering. Public and private research are motivated by the need to produce reusable, less material-intensive

structures in keeping with ecological challenges of our century, as well as transporting and deploying struc-

tures that are required in remote locations for short periods of time (shelter, tent, hospital, bridge). At a larger

scale, pneumatic structures are ideal candidates for space exploration: inflatable habitats have lowmass-to-

volume ratiowhichmakes themcompetitively priced, since launching a kilogram into space still costs around

$10,000 as of today.
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Drop-stitch fabric

When a membrane is allowed to expand without constraints, the surface presents a familiar synclastic cur-

vature. While this rounded aesthetic can be desirable, some applications require zero curvature inflatable

elements, for instance to improve aerodynamic performance or to create usable storage surfaces. This is

where inflatable panels come into play: the inflated thickness of drop-stitch panels is set by the length of the

high-strength threads that connect the upper and lowermembranes, and the panel is finally sealed by lateral

walls to make it airtight. This type of structure is known as “drop-stitch”, “double-wall fabric” or histori-

cally “Airmat” (for “airmattress”). The flexible fibers can be called “drop cords” or “drop yarns” and can be

seen in Fig. 16. The fabric is usually coated with PVC, made flame retardant and resistant to UV. To this day,

Figure 16: Cut-views of double-wall fabric with drop cords (drop-stitch).

the production of inflatable panels is partly directed towards leisure, with sports equipment such as inflatable

gymnastics mats, stand up paddles (Fig. 17a), floating platforms for boat maintenance (Fig. 17b) and floating

platforms to operate on water (Fig. 18). The US army experimented with air-supported tents [42] and a re-

port of the Goodyear Aerospace Company from 1972 investigated the “technical feasibility of an expandable

floating base” [43]. Other potential applications involve inflatable movie screens or inflatable plane wings.

There are also patents for inflatable wings, antennas, dams and rescue boards [44].

(a) Stand up paddle (© Décathlon) (b) Inflatable dock (© Solstice)

Figure 17: Floating platforms for leisure.

In thefield of construction, some structures are already composedof inflatable elements similar to beams,

such as tubes or arches (Fig. 10b), and a theory of inflatable panels will naturally find its place among the de-

sign tools available to engineers. Indeed, the classical theories of strength ofmaterials are not suitable for the

study of pressurized structures since they ignore the influence of the internal pressure. Therefore, research

has been conducted to develop anew theory adapted to these structures. Once the theories of inflatable beams
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Figure 18: Floating decontamination platform, an example of real-world application of the buoyancy of in-
flatable panels. (© Écocréation)

and panels are well mastered, it will be possible to design fully inflatable load-bearing structures of complex

shapes.

Outline of this study

In this thesis, we study inflatable panels by analytical, numerical and experimental approaches. It is struc-

tured as follows:

• Froma theoretical perspective, we develop an inflatable panelmodel thatwill incorporate theMindlin–

Reissner kinematics to allow shear deformation. As observed with inflatable beams, the internal pres-

sure plays a critical role in the load-bearing capacity of the structure, which is why the mechanical

response cannot be predicted correctly without incorporating pressure terms in the governing equa-

tions of inflatable panels. To take this fact into account, the formulation will be done in large deforma-

tions, large displacements and large rotations and we choose to derive the governing equations using

the principle of virtual power, a simple and systematicmethodwhich yields a systemof nonlinear equa-

tions containing all the pressure terms required for a theory of inflatable panels. All the equations will

be given in the tensor form rather than in a particular coordinate system.

• Then, the usual case where the inflatable panel undergoes small displacements and rotations is ad-

dressed. The nonlinear equations are linearized around the inflated configuration, with special em-

phasis on the treatment of the terms relating to the inflating pressure and the other external loads.

• The linear solution to the static bending problem of a simply-supported inflatable disk with uniform

vertical load is proposed along with its limit of validity due to the onset of wrinkling.

• In the numerical part, the finite element method is applied to an inflatable panel modeled as a 3D as-

sembly ofmembranes andwires to obtain anonlinear solution of the bendingproblem. Thesenumerical

results are compared to the analytical solution for a variety of geometries and inflation pressures.

• Thedynamicsof inflatablepanels are also investigated throughmodal analysis. The eigenvalueproblem

is established from the linearized equations of motion and the partial differential equations describing

the eigenmodes are derived in tensor form. The natural frequencies of rectangular and circular pan-

els are determined analytically and confirmed both by approximate numerical solutions and simplified

models.
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• Finally, the above-found theoretical and numerical results are confronted to reality. An experimental

setup is built to hold an inflatable disk of 3 meters in diameter on simple-support and apply a uniform

load before measuring its transverse displacements. The analysis of vibrations is also explored using

impact hammer tests to determine resonance frequencies.
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To understand the state of research in inflatable components, one needs to know the history of their devel-

opment. We divide inflatable elements into three categories:

• one-dimensional, beam-like elements (tubes, columns, arches)

• two-dimensional, plate-like elements (mattresses, arrays of cylindrical tubes, panels)

• inflatable shells (whose mid-surface is not flat in the reference configuration)

This review of literature focuses on inflatable beams and panels, and shellswill bementioned as a perspective

for future work. To set the context for the study of dynamics, some works on the vibrations of Mindlin–

Reissner plates will also be presented.

1.1 Inflatable tubes and panels

1.1.1 Inflatable beams

One of the simplest pneumatic structures is the inflatable beam, which is a pressurized tubular membrane

whose bearing capacity is entirely due to internal pressure. Whether they are a straight (column, mast) or

curved (arch), they can be described using one-dimensional beam theories, while the geometry of mem-

branes and panels require two dimensions and are therefore more complex.

To begin with, Wood [45] and Reissner [46] independently published in 1958 and 1959 two studies on the

flexure of a cylindrical shell with internal pressure. However, they did not focus on fabric tubes specifically.

The very first analytical work dedicated entirely to pressurized tubes made out of fabric was carried out by

Comer and Levy [1] in 1963. They investigated the load-deflection relationship of a cantilever inflatable beam

with tip load and determined the collapse load. Later, in 1982, Webber [2] extended Comer and Levy’s theory

by combining a torque and a vertical load at the end of the cantilever tube, inducing bending and twisting, and

successfully determined the deflection, aswell as thewrinkling and collapse loads. He also performed exper-

iments with relatively low pressures by today’s standards: less than 0.2 bar (20 kPa). Afterwards, Main et al.

improved Comer and Levy’s theory of pressurized membrane tubes by considering the orthotropic property

of the fabric and the effect of the biaxial stress state on thewrinkling [3, 47]. It is one of the first works on this

period to model the fabric as an orthotropic membrane. Experiments were conducted on pressurized tubes

with circular cross-sections and the obtained results were compared with those of Comer and Levy’s theory.
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The theoriesmentioned so far share a commonflaw: they adopted the Euler-Bernoulli kinematics, where

the cross-sections remain perpendicular to the neutral axis, whichmakes it impossible for the inflation pres-

sure to be correctly included in the equations since it is related to shear flexibility, which is ignored by this

kinematics.

Other works, namely NASA technical reports, were based on the Timoshenko beam theory and accounted

for the influence of pressurization on shear stiffness as early as 1966, with Fichter [4] and Steeves [5] (1975)

who both used the principle of minimum potential energy principle to derive inflatable beam equations. In

Fichter’s analytical solutions, the pressure term is being added directly to the material stiffness term, thus

increasing the overall resistance of the structure. Steeves proposed solutions using Green functions, per-

formed bending and twisting experiments (Fig. 1.1), measured the wrinkling load [48] and also developed a

finite element [49] and wrote a technical report on the optimal design of pressure stabilized beams [50].

Figure 1.1: Bending testing apparatus used in Steeves’ experiments [48].

At the beginning of the 21st century, Wielgosz and Thomas [17] derived equations for inflatable beams

and drop-stitch panels seen as beams using Timoshenko’s assumptions. Their analytical expressions and

experimental results confirmed Fichter’s findings (deflection and collapse load). They also proposed a finite

element and performed experiments with inflation pressures as high as 300 kPa (3 bar), Fig. 1.2. One of their

conclusions is that the overall deflection of an inflatable panel is the simple addition of the bending deflection

caused by themembranes’ compliance and the shear deflection permitted by the yarns. A finite element was

also developed [51]. Soon after, in 2005, Le van andWielgosz [7] improved Fichter’s theory by using the vir-

tual power principle in the context of the total Lagrangian formulation. They studied the wrinkling, buckling

and collapse of inflatable beams. Suhey et al. [52] from the University of Florida carried out numerical com-

putations on anisotropic pressurized membrane tubes by means of membrane finite elements and validated

it by comparing their numerical results with the theoretical results of Main et al. [3, 47]. Their application

systemwas an inflatable open-ocean aquaculture cage.

Upuntil now, themembraneshadbeenassumed tohave theelasticpropertiesof an idealized isotropicma-

terial. Continuing the research at the university of Nantes, Z. Jiang incorporated orthotropic properties into

the study of vibrations of inflatable tubes by performing experiments and developing a new finite element
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Figure 1.2: Three points bending tests on a slender inflatable panel performed by Wielgosz in 2005 at the
University of Nantes (France).

Figure 1.3: The five stages of behavior of inflatable beam from inflation to failure exemplified with three-
point bending and picture of a wrinkled inflatable tube.

based on the recently enhanced theories with its stiffness and mass matrices [53, 54, 55]. Apedo extended

these theories in his thesis [56] (2009) by adding orthotropy and buckling loads of beam-columns. At the

same laboratory, the thesis that followed byT. T. Nguyen built uponApedo’s theory of pressurizedmembrane

tubes with large displacements, small rotations and orthotropic directions of thematerial oriented along the

axes of the tube [57, 58, 59]. Their initial formulation was three-dimensional but the equations were lin-

earized in 2D to treat bending and buckling problems. In 2013, the important problem of accounting for the

change in material properties between the natural and inflated configurations is addressed by solving the

associated linear elasticity equations [60] and the analytical predictions are in very good accordance with fi-

nite element simulations. These results were included in Q. T. Nguyen’s dissertation and second paper [8, 61]

where he studied the inflation stage, bending and buckling and also perfected previous theories by taking into

account the orthotropic nature of the fabric with arbitrarily oriented orthotropy basis [62]. Some works on

the failure mechanisms and reliability of inflatable structures were undertaken around 2015 with A. Bloch’s

thesis [63] followed by a conference [64] on the limit states of an inflatable beam, Fig. 1.3. He also studied

the post-wrinkling response of inflatable tubes andperformedwind-tunnel experiments on inflatable beams

and arches to measure drag. Two years later, Thomas and Schoefs [65] also presented a sensitivity analysis.

Now that inflatable beams theories arewell-established, inflatable plate theory is the logical continuation
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and thus worth investigating. While the technology of inflatable panels is not new, there are few studies

dedicated to them and it is becoming an important issue to model them correctly.

1.1.2 Inflatable panels

Figure 1.4: Drawings found in the first inflatable mattress patent [66].

If the pressurized membrane structure has two skins that are flat and parallel and one of the dimensions

is small compared to the two others, then the pressurized structure can be considered as an inflatable plate.

This is the case when the number of cords in the drop-stitch fabric becomes large enough to maintain the

two connectedmembranes at a fixed distance determined by the length of the threads. It is a rare example of

air-supported structure that does not involve a double curvature.

In the history of inflatable structures research, pressurized panels predated the study of tubes. After a

promising start in the 1950swhen the “Airmat” technologywas introduced, the research on inflatable panels

went through a period of decline in the 1970s only to be resumed at the beginning of the 20th century. In the

mean time, the interest in inflatable beams research had remained constant, as their comprehension would

help gain a better understanding of the fundamental principles that govern inflatable structures and thus

represented the first step towards the greater scientific challenges associated with panel theories.

The first occurrence of inflatable panels as we know them today is a patent by E. D. Barker in 1951 [66].

It describes an “inflatable mattress especially adapted to military use, although capable of general employ-

ment”. One of its original designs contained a rubberized inner sheet that materialized themiddle surface of

the panel.

In the 1950s, the Goodyear Aircraft Corporation developed a pressurized double-wall fabric with inter-

connected faces which they called Airmat; and in 1956, the first prototype of the Goodyear Inflatoplane was

produced using this technology [67]. Althoughmost panels applications require them to be airtight, the air-

craft’s inflatable parts received continuous pressure supply: the engineers used the air that came out of the

motor to keep the structure inflated even in the event of holes or tears in the membranes. They stopped the

production in 1962 after unsuccessful tests by the U.S. military.

Even though this attemptwas short-lived, the technologywas still of interest at NASA. Their potential use

as reentry vehicles or heat shields lead them to write a first report in 1960, followed by technical reports and

publications in 1961. An example of reentry vehiclemade of inflatable tubes andpanels is drawn in their paper

and reproduced here in Fig. 1.5. The first paper, “Structural considerations of inflatable reentry vehicles” by

Robert W. Leonard, Brooks and McComb [9], presented a small-deflection theory in Cartesian coordinates

with elastic orthotropicmembranes. The equations are derived from the principle of minimumpotential en-

ergy. They alreadynoticed that their equationswere similar to the then recentMindlinplate theory (1951), but
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where the pressurization pre-stress replaces the transverse shear stiffness modulus of a classical plate. One

year later, McComb [10] formulated a nonlinear theory with the principle of minimum potential energy and

included the effects of a small linear taper. He found solutions in the formof Fourier series for the simply sup-

ported and clamped rectangular plates of constant thickness. This theory cannot be applied to circular panels

and some terms aremissing because of early linearization. These theories were simultaneously validated ex-

Figure 1.5: Inflatable component categories first defined by R. W. Leonard in 1960 [9].

perimentally by Stroud [12] (still at NASA). A square test specimenwith sides 11 cmwasmade from two layers

of woven nylons. The drop cords were also made out of nylon but they did not specify how closely spaced

they were. The small panel was attached to the top of a loading tank to apply a uniform pressure loading. The

simple-support is achieved by clamping a thin membrane connected to the boundary of the specimen. For

clamped boundary-conditions, a wooden frame was used to immobilize the edge of the airmat. They tried

to permit “a free buildup of inplane stresses” due to inflation, that is, they took care to allow the panel to

expand from its natural shape to its inflated one without constraints. Nevertheless, given the small size of

the panel, the boundary effects must have been important. The tank and the deflectionmeasuring apparatus

can be seen in Fig. 1.6. Even though the dimension of the valve was not negligible and the edges were very

rounded, theymanaged to get concluding results. They showed that for high-frequencymodes of vibrations,

the shear deformation predominates.

(a) Test specimen. (b) Deflection-measuring apparatus.

Figure 1.6: Experimental setup of Stroud for measuring the static deflection of a small inflatable panel in
clamped boundary conditions [12].

McComb and R. W. Leonard published a small article [11] where they explore the possibility of slanting

the drop cords to increase the transverse shear stiffness. The cords run at an angle with the normal to the
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Figure 1.7: Experimental setup of Stroud tomeasure the natural frequencies of an Airmat sample in 1961 [12].

middle surface in the length direction. Two adjacent cords draw a “V” shape ( ) that is complemented by

a second set of threads on the opposite membrane, creating an “XX” pattern ( ) as can be seen in Fig. 1.8.

As a rule of thumb, they advise to slant the cords by an angle θ such that the maximum shear force in the

Figure 1.8: Slanted drop cords as drawn in McComb and R. W. Leonard’s paper [11].

panel is always smaller than pH tan θ where p denotes the inflation pressure andH the panel thickness. But

one should also be careful not to make the angle too large or the bending moment may exceed the collapse

momentMcollapse = pH2

2 (1 − tan2 θ). This formula indicates that the collapse moment becomes negative for

θ > 45◦, meaning that the pressurization alone would cause the collapse of the panel. Another factor to be

considered is the increase ofmass due to the longer andmore numerous cords. The total weight of drop cords

material increases by a factor 2/ cos2 θ, meaning that theirmasswill be 2 to 4 times larger thanwhen they are

not slanted, for a comparable increase in shearing stiffness. The additional weight can be easily compensated

by reducing thewidth of the panel or removing stiffeners that are rendered useless by the increased stiffness.

In 1962, Haight wrote his Master’s thesis [13]. His work is based on Leonard andMcComb’s findings. The

deflection of a simply-supported rectangular panel is found in the form of Fourier series. He also approxi-
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mated the non-linear solution in large displacements for a uniformly loaded circular panels as a power series.

This result was published in 1969 but without the calculations presented in his thesis [14].

In the dissertation of D. D. Seath completed in 1963 [68], the author conducts an experimental investi-

gation of the vibrations of an inflatable wing model constructed by the Goodyear Aircraft Corporation. He

explains that the curved edges of thewingmodel are not accounted for inMcComb’smodel [10], and thus the

experimental natural frequenciesmay not be in good agreementwith the theory, insofar as the total stiffness

of the panel is underestimated at lower pressures. This document cites many relevant articles and proceed-

ings that, unfortunately, could not be retrieved nowadays.

Kyser [15] analyzed the behavior of an inflatable cylindrical tubewith twoflat sides in an array of identical

parallel tubes connected to each other, Fig. 1.9. Such structures are lighter and easier to fold than drop-stitch

structures with closely-spaced drop cords. A review of other works published before 1965 can be found in

Habip’s 1965 literature survey [69]. Near the end of the 20th century, the research on drop-stitch panels

was continued by Kawabata and Ishii [16]. Their paper discusses the effective stiffness of drop-stitch panels

when the drop yarns density is low, allowing periodic bulges to formon the top and bottom surfaces (Fig. 1.9).

The dissertation of Kawabata, “Study on Structural Characteristics of Double-Wall Air-Inflated Membrane

Structures”, also deals with form-finding and “air beams” (inflatable tubes). It is interesting to note that the

tubular inflatable panel is currently a popular design choice for reentry vehicles [70, 71] in the space industry.

Figure 1.9: Tubular panel designs investigated by Kyser and Kawabata [15, 16].

In the 21st century, Wielgosz and Thomas [17] and Cavallaro [18] took another look at the deflection of

inflatable panels by modelling them as inflatable beams. Wielgosz and Thomas [51] also built an inflatable

finite element dedicated to inflatable panels, once again modeled using inflatable beam theory.

Since thebeginningofour study (in2019), several studieswere conductedat theUniversityofRhode Island

to experimentally determine material parameters and perform finite element simulations [72, 73, 74].

In 2008,Davids et al. [20]first proposed anonlinear beam-typefinite element and theorizeshow to simu-

late post-wrinkling during isobaric transformations. Beyondwrinkling, they assumed that the bending neu-

tral axis would move down when the curvature increases, and vice versa. All of these complex phenomena

were implemented in their in-house Matlab code. In 2021, they continued to consider 1D models but for an

inflatable panel with small width compared to its length [19] and conducted experimental and computational

studies while including the orthotropic behavior of themembranes, the coupling between shear andmoment

and the presence of rounded panel edges for which they provide amathematical parametrization. They sim-

ulated the nonlinear (softening / stiffening) post-wrinkling response numerically by adapting the code they

had previously worked on.
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1.1.3 Inflatable shells

Although shell theories are not discussed in thiswork, they are a logical continuation to plate theories. Hence,

we will briefly summarize some works to help guiding future research on inflatable components.

John W. Leonard¹ wrote his thesis on inflatable shells of revolution [21] made of isotropic materials dur-

ing their pressurization phase and in-service phase. Soon after, he published three articles concerning the

pressurization phase [22] and the in-service phase [23], which were already addressed in his dissertation,

and extends his results to nonsymmetric in-service loads [24]. For the first article on the inflation stage,

he presents his general theory and solves the equations on the particular problem of a spherical membrane

using perturbation theory. He finds that material non-linearities have a lesser effect than geometric non-

linearities (large displacements). Later, in 1973, he co-authored an article with C. T. Li on the finite element

analysis of inflatable shells [25], followed by a state of the art in inflatable shell research in 1974 [26].

1.2 Vibrations of Mindlin–Reissner plates

Since shear deformations are seen to be non-negligible from experiments on inflatable components, the

load-deflection behavior of inflatable beams and panels can only be described accurately by theories where

kinematics account for the existence of shear effects. When the first articles on inflatable panels were pub-

lished, the Mindlin–Reissner theory of plates with transverse shear deformation had been worked out for

only a decade: it was the state of the art and not the widely adopted theory that we know today. It will be

seen in Chapter 3 that the eigenvalue problem of inflatable panels is identical to that of the theory of classi-

cal plates with transverse shear up to a change in the material coefficients, and so the methods to solve the

vibration problem of inflatable panels are the same as for such plates.

While the theory of thin plates was established in 1888 by Love when he published “On the small free

vibrations anddeformations of elastic shells” based on the assumptions of Kirchhoff, it took another 60 years

for the so-called “theory of thick plates” to emerge. Eric Reissner published two articles in 1945 and 1947

[75, 76] where he investigated the effects of transverse shear deformation on the bending of plates for the

first time. In his time, researchers highlighted the appearance of a third boundary condition rather than the

two of classical (thin) plate theory. A few years later, in 1951, driven by his research on piezoelectric plates

at Columbia University, Raymond D. Mindlin built a theory upon Reissner’s work [27]. In order to overcome

the restrictions of the Love-Kirchhoff theory where the material segments always remain perpendicular to

the mid-surface, which forbade the existence of shear, he introduced a compatibility equation that relates

the vertical deflection gradient and the angles by which the fibers rotate. He compared the flexural and shear

wave velocities predicted by the classical plate theory, an exact 3-dimensional solution and his plate theory

with and without including the rotatory inertia correction or the shear correction. He also showed that the

eigenvalue problem amounts to solve three Helmholtz equations, but does not proceed to solve them. While

this article dealt exclusively with isotropic plates, another paper published the same year dealt with crystal

plates where the elastic properties of the material had monoclinic symmetry [77]. In subsequent papers and

technical reports,MindlinandDeresiewiczaddressed thevibrationsof circular [28, 29] and rectangularplates

[30].

Although it was not mentioned in the founding 1951 paper, Mindlin and Deresiewicz point out in their

technical reports that two coefficients in the eigenvalue problemcan either be real or imaginary depending on

the frequency [28, 29]. Indeed, the natural shapes will change depending on whether the exciting frequency

¹JohnW. Leonard (University of Illinois) should not be confused with the previouslymentioned Robert W. Leonard whoworked at the
NASA Langley Research Center with McComb.
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is below or above a given value named the cutoff frequency ² which marks the transition for low-frequency

vibrations to high-frequency vibrations, as is the case in Timoshenko beam theory [78]. It is undoubtedly

related to the introduction of shear deformations into the model, given that the cutoff frequency is the low-

est frequency of thickness-shear oscillations. If one were to try solving the Mindlin–Reissner’s equations

of plates at the cutoff frequency, it appears that the system of differential equations degenerates and further

work is needed. This special casewas addressed by Chao and Pao [79]. After deriving the governing equations

for the flexuralmotions of plates at the cutoff frequency in Cartesian coordinates, they considered the reflec-

tion of flexural waves at the plate’s edge with oblique or normal incidence, but did not calculate the natural

bending mode shapes.

Irie et al. generalize the results ofMindlin and Deresiewicz on the vibrations of circular plates to the three

commonly encountered boundary condition types: clamped, simply-supported and free [31].

At this point, a confusionpersisted as towhat the proper definition of the simple-support should be. Some

authors claimed that themoment should vanish, while others cancelled the rotation of thematerial segment

on the edge. After publishing a literature survey on thick plate vibrations in 1995 [32], Liew introduces the

helpful distinction between the “soft type”, which is the usual case where the border is free of loads, and the

“hard type” simple-supportwhich forbids rotations in theplane tangent to the edge [80]. The soft type states

the moments should be zero at the edge, which is the first idea that comes to mind since no external forces

are applied, while the hard type enforces the rotation to be zero. In some problems such as the vibrations of

a rectangular panel, solutions exist with hard type simple support but not with the soft type.

In their 2005 article, Hashemi andArsanjani [33] provide the exact characteristic equations and the eigen-

modes shapes for all rectangular panels where two opposite sides are simply-supported in both low and high

frequency domains.

1.3 Conclusion

Much research has been dedicated to inflatable tubes to the detriment of inflatable panels. For a long time

their growth was limited due to insufficient material performances, which can now be overcome. To meet

the currents needs of the industry, a modern and unified theory is required to synthesize previous works on

inflatable panels. After the theory is established, we shall perform 3D nonlinear simulations of inflatable

panels and conduct experiments to validate the analytical results, giving us a global understanding of this

technology. Although the plate theory with shear effects is widely considered as a well-known and well-

tried tool among models used in engineering, the resolution of the associated eigenvalue problem contains

subtleties that deserve special attention and precautions. Wewill generalize the previous works to the tensor

framework to carry out the modal analysis of rectangular and circular inflatable panels.

²Note that the so-called “cutoff frequency” in the context of the vibration of thick plates is unrelated to the frequency at which a
reduction of amplitude is observed in filters or damped systems.
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Nonlinear theory of inflatable panels

2.1 Geometry and kinematics

Someessential definitionsandpropertiesof tensorvector calculus in curvilinear coordinates are recalledhere.

Let (g1, g2, g3) be a basis of a three-dimensional Euclidean space, without any further assumptions. The con-

travariant components of a vector u in this basis, denoted ui, are such that

u =

3∑
i=1

uigi

which will be written using the Einstein summation convention over repeated indices to write u = uigi. The

covariant components ui of a vector u are such that

ui = u · gi

The coefficients gij ≡ gi · gj define a symmetric matrix [g..]which can be inverted to find another symmetric

matrix [g..]whose coefficients are denoted gij . The dual basis is defined by

gj = gijgi

A relationship exists between covariant and contravariant components:

ui = ujgij and ui = ujg
ij

which is a consequence of the above definitions:

ui = u · gi = ujgj · gi = ujgji

ui = u · gi = ujg
j · gi = ujg

ji

The dot product of two vectors u and v can be computed using any of the following expressions:

u · v = uivi = uiv
i = giju

jvi = gijujvi
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Note that, by construction, the vectors of the primal and dual bases are orthogonal:

gi · gj = δji

where δji = δij = δij is the Kronecker symbol. It is often useful to decompose a vector u in the primal or dual

basis: from the definitions of covariant and contravariant components,

u = (u · gk)gk = ukgk

and

u = (u · gk)gk = ukg
k

These relations are presented graphically in Fig. 2.1.

g1

g2

g1

g2

u

(u · g1)g1

(u
· g

2 )
g 2

(u · g
1 )g 1

(u · g2)g2

Figure 2.1: Components of a vector in primal and dual bases.

The cross product of two basis vectors is computed as follows:

gi × gj =
√
gϵijkg

k

gi × gj = ϵijk√
g
gk

where g is the determinant of the matrix [g..] and ϵijk is the Levi-Civita symbol.

2.1.1 Reference position of the plate

The kinematics of the panel is described in a three-dimensional Euclidean space endowed with an orthonor-

mal coordinate system (O; e1, e2, e3). The reference configuration of the panel is the equilibrium pre-stressed

position Ω0 where the panel is subjected to the inflating pressure only. It is assumed that, in the reference

configuration, the upper and lower membranes are parallel and at equal distance from the plane (O; e1, e2),
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Fig. 2.2. The fibers (i.e. the drop-stitch yarns) are vertical, and their density is assumed to be high enough

for the membranes to be flat in the reference configuration. The reader is referred to Kyser or Kawabata and

Ishii’s works [15, 16] formore details on the casewhen the drop yarns density is low, allowing periodic bulges

to form on the top and bottom surfaces.

Figure 2.2: Reference configuration and cross-sectional view of the upper and lower membranes.

In the reference configuration, themid-surfaceS0 is a plane of symmetry of the panel and lies in the plane

(O; e1, e2). Unlike a classical “full” plate, themid-surface is notmaterialized, as there is only air and threads

inside the membranes. Any point P0 on S0 corresponds to the unique curvilinear coordinates (ξ1, ξ2) that

lie in a bounded subset of R2 called the parameter space Sξ, Fig. 2.3. The local covariant basis vectors on the

mid-surface are defined as

∀α ∈ {1, 2}, Aα =
∂P0

∂ξα

Parameter space

Reference configuration

Current configuration

Figure 2.3: Mid-surface of the panel. The red lines represent the transformations from the parameter space
to the reference configuration and from the reference configuration to the current one.

Let τ be the thickness of the membranes in the reference configuration, H the overall thickness of the

panel, Fig. 2.2. The Cartesian coordinates of any point inside the region Ω0, i.e. inside the membranes, are

(X,Y, Z), where the coordinate Z belongs to the disconnected interval

T =

[
−H

2
, −H

2
+ τ

]
∪
[
H

2
− τ , H

2

]
(2.1)

The reference geometry of the panel can be described by a single equation that maps the parameter space
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to the physical space. For a triplet of parameters (ξ1, ξ2, ξ3 ≡ Z) ∈ Sξ × T , any point Q0 in Ω0 is such that

Q0 = P0(ξ
1, ξ2) + Ze3. The local basis vectors are also defined at any point Q0 ∈ Ω0:

∀i ∈ {1, 2, 3}, Gi =
∂Q0

∂ξi
=
∂P0

∂ξi
+
∂Z

∂ξi
e3 = Ai

2.1.2 Displacement field

The displacement of the panel at time t is defined by the displacementU(P0, t) of themid-surface, whichwill

be denoted U in the sequel, and the director vector a3 ≡ a3(P0, t), which represents the drop-stitch yarns

direction (not necessarily normal to the mid-surface):

U(Q0, t) = U + Z(a3 − e3) (2.2)

TheMindlin–Reissner hypothesis states that thematerial segmentsmay rotate but not stretch. As a con-

sequence, the vectorA3 = e3 is transformed into a3 by applying a time-dependent rotation:

a3 = R(ξ1, ξ2, t) · e3 (2.3)

whereR is the rotation tensor. The displacement fieldU and the director vector field a3 are the unknowns of

the problem. The natural covariant basis vectors are expressed in terms of the unknowns of the problem U

and a3: ∀α ∈ {1, 2},

∀P ∈ S, aα ≡
∂P
∂ξα

= Aα +U,α ∀Q ∈ Ω, gα ≡
∂Q
∂ξα

= aα + Za3,α (2.4)

Additionally, g3 = a3. The notations for all the natural bases vectors are summed up in Table 2.1. We also

define the coefficients

∀i, j ∈ {1, 2, 3}, aij = ai · aj

Initial (pressurized) Deformed (pressurized and loaded)

Mid-surface (Z = 0) Aα =
∂P0

∂ξα
aα =

∂P
∂ξα

For Z ∈
[
−H2 ,

H
2

]
Gα =

∂Q0

∂ξα
= Aα gα =

∂Q
∂ξα

Material segments A3 = G3 = e3 a3 = g3

Table 2.1: Summary of the notations used for the natural covariant bases in inflatable panel theory.

Local kinematic of the membranes
Upon closer inspection of the upper and lowermembranes, we observe that the kinematic field of Eq. (2.2)

cannot apply inside themembranes (Z ∈ T ). Indeed, given the very low bending stiffness and shear stiffness

of the thinmembranes, they cannot undergo shear deformation through their thickness: they bend according

to Love–Kirchhoff kinematics, locally. As such, we should distinguish between the global kinematic of the
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panel (described by Eq. (2.2)) and a local kinematic of themembranes (where a3 would be parallel to a1×a2,

that is, to the normal vector of the surface), Fig. 2.4. In thismanuscript, it is assumed that the distinct defor-

mation of the membranes can be described by the global deformation of the panel, provided that the arising

shear stresses in the membranes are cancelled by assuming plane stress inside the membranes (described in

Section 3.2.3).

local

Figure 2.4: Global kinematic of the panel and local kinematic of the membranes shown in the case of pure
shear deformation.

Justification of the Mindlin–Reissner kinematics in dynamics
Whendeveloping the theory of vibrations for inflatable panel, we had some concerns aboutwhether or not

the theoreticalmodeling of the panel would correspond to the real system. TheMindlin–Reissner kinematics

binds together all the points along a material segment, which undergo rigid body motion. In an inflatable

panel, this means that the movement of the upper membrane is unconditionally linked to the lower one. But

the absence of solidmatter between themembranes is unusual and raises some concerns. In a classical, “full”

solid plate, a wave can travel through the thickness of the plate and bounce off the upper and lower faces. In

a drop-stitch panel, neither the inertia of the drop cords nor that of the inflating gas is enough to efficiently

carry the energy from top to bottom. Therefore, we must examine how an inflatable panel could behave as a

Mindlin–Reissner plate even without a solid propagation medium: when one side of the panel is pulled, the

dropcordswill simplypull theopposite side, andwhenaside ispressed into thepanel, the threadswill shorten

slightly, but not enough to loose pretension. The released tension allows the opposite side to be pushed by

the pressurizing gas again, until the strain in the thread is uniform, in such a way that bending deformations

work exactly the same as with a classical plate.

2.1.3 Green strain tensor

The displacement gradient is

gradQ0
U(Q0, t) = U,α ⊗Aα + (a3 − e3)⊗ e3 + Za3,α ⊗Aα (2.5)

whereAα = Gα is the dual vector ofAα = Gα and Einstein summation convention is made from 1 to 2 on

Greek indices. The material deformation gradient tensor can be defined from Eq. (2.5):

F (Q0, t) = I + gradU︸ ︷︷ ︸
F

+ (a3 − e3)⊗ e3 + Za3,α ⊗Aα (2.6)
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The Green strain tensorE is given by

E = EijG
i ⊗Gj =

1

2
(gij −Gij)Gi ⊗Gj

where gij ≡ gi · gj, Gij = Aij ≡ Ai · Aj and Einstein summation convention is made from 1 to 3 on Latin

indices. It is found thatEαβ may be written as a second-order polynomial in Z: ∀α, β ∈ {1, 2},

Eαβ = E
(0)
αβ + ZE

(1)
αβ + Z2E

(2)
αβ

Eα3 =
1

2
aα3

E33 = 0

(2.7)

where the componentsE(0)
αβ ,E

(1)
αβ ,E

(2)
αβ are, ∀α, β ∈ {1, 2},

E
(0)
αβ =

1

2

(
aαβ −Aαβ

)
E

(1)
αβ =

1

2

(
aα · a3,β + a3,α · aβ

)
E

(2)
αβ =

1

2
a3,α · a3,β

(2.8)

Remark 2.1. At this point of the demonstration, for classical solid plates, a shear correction factor commonly

denoted k or κ2 is introduced in Eq. (2.7). This is because the form of the displacement field causes the shear

strain Eα3 to be constant through the thickness although it is known to be parabolic in reality. Therefore, a

correction factor is applied so that the correct strain energy ispredicted. For inflatablepanels, since there isno

solidmatter between themembranes, having a uniform or parabolic shear strain profile across the thickness

of the panel makes little difference in the overall strain energy and such a correction is not needed.

2.2 Equations of motion

2.2.1 Principle of virtual power

The equations of motion of the inflatable panel will next be obtained using the principle of virtual power,

which states that, for any arbitrary virtual velocity field U∗(Q0) on the reference configuration (or u∗(Q) =

U∗(Q0) on the current configuration), the sumof the virtual powers of internal forcesP∗
int and external forces

P∗
ext equals the virtual power of inertial quantities P∗

accel:

P∗
int + P∗

p + P∗
ext\p︸ ︷︷ ︸

P∗
ext

= P∗
accel (2.9)

In the above expression,P∗
ext is decomposed into two terms: the virtual power due to the inflation pressure

P∗
p and the virtual power of other external loads P∗

ext\p.

2.2.2 Virtual velocity field

At any point Q0 of the structure, the virtual velocity field is

U∗(Q0) = U
∗ + Za∗

3 (2.10)
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where U∗ ≡ U∗(P0) is the virtual velocity of the mid-surface and a∗
3 the virtual director vector. According

to the Mindlin–Reissner kinematics, the fibers do not stretch: they behave as rigid bodies, as shown by the

relation ȧ3 = Ω × a3 (Ω is the axial vector of ṘR−1 with R the rotation tensor in Relation (2.3)). For this

reason, the virtual director vector is taken of the same form:

a∗
3 = ω∗ × a3 (2.11)

where the virtual rotation velocity vector ω∗ is arbitrary.

2.2.3 Virtual power of internal forces

The virtual power of internal forces P∗
int is defined as

P∗
int = −

∫
Ω0

ΠT : gradQ0
U∗(Q0)dΩ0 (2.12)

where A : B = Tr(AB) andΠ is the first Piola-Kirchhoff stress tensor and the virtual velocity gradient is

calculated using Relation (2.10):

gradQ0
U∗(Q0) = U

∗
,α ⊗Aα + a∗

3 ⊗ e3 + Za∗
3,α ⊗Aα (2.13)

InRelation (2.12), the integral over regionΩ0 of any scalar functionu(Q0, t) is rewrittenusing the following

standard transformation∫
Ω0

u(Q0, t)dΩ0 =

∫
Sξ

(∫
T

u(Q0, t)dZ
)√

Adξ1 dξ2 =

∫
S0

(∫
T

u(Q0, t)dZ
)
dS0

in which A is the determinant of the metric tensor. Inserting the expression for the virtual velocity gradient

(2.13) into Relation (2.12) leads to

P∗
int = −

∫
S0

(∫
T

Π ·Aα dZ ·U∗
,α +

∫
T

ZΠ ·Aα dZ · a∗
3,α +

∫
T

Π · e3 dZ · a∗
3

)
dS0

Let us define the internal forcesRα, S and the internal momentsLα as follows: ∀α ∈ {1, 2},

Rα =

∫
T

Π ·Aα dZ

Lα =

∫
T

ZΠ ·Aα dZ

S =

∫
T

Π · e3 dZ

Then, after integration by parts:

P∗
int =

∫
S0

(
1√
A

(√
ARα

)
,α
·U∗ +

(
a3 ×

1√
A

(√
ALα

)
,α
− a3 × S

)
· ω∗

)
dS0

−
∫
∂S0

(
Rα ·U∗ν0α +

(
a3 ×Lα

)
· ω∗ν0α

)
ds0

(2.14)

where ∀α ∈ {1, 2}, ν0α = ν0 ·Aα, the vector ν0 being the outward normal to the edge of themid-surface ∂S0.

As can be seen later, it ismore convenient toworkwith the so-called stress resultantsNαβ,Mαβ,M (2)αβ,Qβ,
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Q(1)β defined as: ∀α, β ∈ {1, 2},

Nαβ =

∫
T

Σαβ dZ

Mαβ =

∫
T

ZΣαβ dZ M (2)αβ =

∫
T

Z2Σαβ dZ

Qβ =

∫
T

Σ3β dZ Q(1)β =

∫
T

ZΣ3β dZ

(2.15)

where the components Σij, ∀i, j ∈ {1, 2, 3}, of the second Piola-Kirchhoff stress tensorΣ = ΣijAi ⊗Aj are

related to those of the first Piola-Kirchhoff stress tensorΠ by Σijgi = ΠijGi. The stress resultantsNαβ are

called the membrane forces, Mαβ the bending moments, M (2)αβ the bending moments of order 2, Qβ the

shear forces and Q(1)β the shear forces of order 1. Using also Eq. (2.4), the internal forcesRα, Lα and S can

be written as: ∀β ∈ {1, 2},
Rβ = Nαβaα +Qβa3 +Mαβa3,α

Lβ =Mαβaα +Q(1)βa3 +M (2)αβa3,α

S = Qαaα +Q(1)αa3,α +

∫
T

Σ33 dZa3

(2.16)

Remark 2.2. The calculations were done considering only the top and bottom layers, not the lateral wall. This

allowed the virtual power of the internal forces to be expressed first as an integral over the surface S0, then

transformed by integration by parts to arrive at the expression (2.14). Discarding the lateral membrane is

equivalent to neglecting the strain energy of the lateral membrane compared to that of the upper and lower

layers.

2.2.4 Virtual power of external forces other than the inflating pressure

Apart from the inflating pressure, the inflatable panel is also subject to external loads in its current configu-

ration:

• a body force ρf applied at every points of the membranes,

• surface forces in the current configuration named tsup on the upper membrane Ssup, tinf on the lower

membrane Sinf and tedge on the lateral wall Sedge (the surfaces are shown in Fig. 2.5 and the loads are

shown in Fig. 2.6).

The integrals over the current surfaces Ssup, Sinf and Sedge can be transposed to integrals over the reference

surfaces Ssup
0 , Sinf

0 and Sedge
0 respectively (Fig. 2.5). The virtual power of these force densities is

P∗
ext\p =

∫
Ω

ρf · u∗(Q)dΩ+

∫
Ssup

tsup · u∗(Q)dA+

∫
Sinf
tinf · u∗(Q)dA+

∫
Sedge

tedge · u∗(Q)dA

where dA is an infinitesimal surface element of ∂Ω, which is different from an infinitesimal surface element

dS on the mid-surface S. Let us now examine how each of these terms can be transposed to the reference

configuration, which is the goal of this total Lagrangian approach.

External body forces
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Sinf
0

∂S0

S
sup
0

S
edge
0

∂S

Ssup

Sedge

Sinf

Figure 2.5: Decomposition of the plate into several surfaces in reference and deformed configurations.

T sup

T inf

T edge

Ω0

tsup

tinf

tedge
Ω

Figure 2.6: Cross-sectional view of the panel with surface loads vectors in reference and current configura-
tions.

Using the conservation of mass ρ0 dΩ0 = ρdΩ,∫
Ω

ρf · u∗(Q)dΩ =

∫
Ω0

ρ0f ·U∗(Q0)dΩ0

=

∫
S0

∫
T

ρ0f ·U∗(Q0)dZ dS0

=

∫
S0

(∫
T

ρ0f dZ
)

︸ ︷︷ ︸
qvol

·U∗ dS0 +

∫
S0

(∫
T

Zρ0f dZ
)

︸ ︷︷ ︸
cvol

· a∗
3 dS0

=

∫
S0

qvol ·U∗ dS0 +

∫
S0

cvol · a∗
3 dS0

(2.17)

In practice, the membranes are thin and their change of volume can be neglected, letting us write ρ ≈ ρ0.

External forces on the upper and lower faces
Let us focus on the integrals over the upper and lower membranes:∫

Ssup∪Sinf
t · u∗(Q)dA =

∫
Ssup

tsup · u∗(Q)dA+

∫
Sinf
tinf · u∗(Q)dA

First, starting with the upper surface:∫
Ssup

tsup · u∗(Q)dA =

∫
S0

T sup ·U∗(Q0)dA0

=

∫
S0

T sup ·U∗ dS0 +

∫
S0

H

2
T sup · a∗

3 dS0

where use was made of the property dA0 =
√
G
∣∣
Z=±H/2

dξ1 dξ2 =
√
Adξ1 dξ2 = dS0. Then, the same treat-
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ment is applied to the lower surface where Z = −H2 . Taking into account both expressions:∫
Ssup∪Sinf

t · u∗(Q)dA =

∫
S0

(
T sup + T inf)︸ ︷︷ ︸
qarea

·U∗ dS0 +

∫
S0

H

2

(
T sup − T inf)︸ ︷︷ ︸
carea

· a∗
3 dS0

=

∫
S0

(qarea ·U∗ + carea · a∗
3) dS0

(2.18)

External forces on the edge∫
Sedge

tedge · u∗(Q)dA =

∫
S
edge
0

T edge ·U∗(Q0)dA0

=

∫
S
edge
0

(T edge ·U∗ + ZT edge · a∗
3)dA0

=

∫
∂S0

∫
T

T edge dZ︸ ︷︷ ︸
q′

·U∗ ds0 +
∫
∂S0

∫
T

ZT edge dZ︸ ︷︷ ︸
C

· a∗
3 ds0

=

∫
∂S0

(q′ ·U∗ +C · a∗
3)ds0

(2.19)

Virtual power of external forces other than the inflating pressure
Combining Relations (2.17), (2.18) and (2.19):

P∗
ext\p =

∫
S0

(
(qvol + qarea) ·U∗ + (cvol + carea) · a∗

3

)
dS0 +

∫
∂S0

(q′ ·U∗ +C · a∗
3)ds0 (2.20)

One can define q ≡ qvol + qarea and c ≡ cvol + carea. Additionally, from a∗
3 = ω∗ × a3 (Relation (2.11)):

P∗
ext\p =

∫
S0

(
q ·U∗ + c · (ω∗ × a3)

)
dS0 +

∫
∂S0

(
q′ ·U∗ +C · (ω∗ × a3)

)
ds0

=

∫
S0

(
q ·U∗ + ω∗ · (a3 × c)

)
dS0 +

∫
∂S0

(
q′ ·U∗ + ω∗ · (a3 ×C)

)
ds0

(2.21)

This last expression shows that the components of c andC along a3 are bound to disappear when calculat-

ing the cross product: they are not meaningful within the context of the Mindlin–Reissner kinematics. As a

result, the notations µ ≡ a3 × c and Γ ≡ a3 × C are introduced: they contain only information relevant to

the components of c andC tangent to S. The surface force q and the surface couple µ distributed over S0, as

well as the line force q′ and the line torqueΓ on the edge ∂S0, are shown in Fig. 2.7. Finally, the virtual power

of external forces other than the inflating pressure is

P∗
ext\p =

∫
S0

[
q ·U∗ + µ · ω∗]dS0 +

∫
∂S0

[
q′ ·U∗ + Γ · ω∗]ds0 (2.22)

In what follows, the surface couple µ is discarded as it is rarely found in practice.

Remark 2.3. It will turn out to bemore practical to deal with the components of the torqueΓ in a local basis at

a point P of the edge ∂S. By introducing the outward normal vector to the edgen and the tangent vector to the

edge s =
a3

‖a3‖
×ν, the torque density is decomposed intoΓ = Γνν+Γss+Γ3a

3. In fact, Γ3 will never appear

in the local equations and is therefore inaccessible. When projecting onto the unit normal and longitudinal
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S0

∂S0n s

e2
e1

e3
q

µ
q′

Γ

Figure 2.7: External forces and couples acting on the mid-surface of the panel.

vectorsn and s, the expressions belowwill come in handy. Since all calculations are done on themid-surface

where Z = 0, Eq. (2.6) yields

F (Q0, t)|Q0=P0
= F + (a3 − e3)⊗ e3

where F = I + gradU .

1. Let us compute s · aα.

s · aα = s · F (Q0, t)
−T
|Q0=P0

·Aα =
(
F−1(Q0, t)|Q0=P0

· s) ·Aα

SinceAα · e3 = 0,

s · aα = s · F−T ·Aα =
(
F−1 · s) ·Aα

The current tangent vector s is related to the tangent vector to the reference mid-plane s0. The rela-

tionship between the two is found by considering a small segment dX from ∂S0 transformed into

dx = F (Q0, t)|Q0=P0
dX =

dX·e3=0
F dX

However, nothing guarantees that the norm of this vector is 1. Therefore, it must be normalized:

s =
dx
‖dx‖

=
F · dX√

dX · F T · F · dX
=

F · s0√
s0 · F T · F · s0

=
F · s0√
1 + 2Ess

hence

s =
1

λs
Fs0

where λs ≡
√
1 + 2Ess. One concludes that

s · aαν0α =
1

λs
s0 ·Aαν0α =

1

λs
s0 · ν0 = 0 (2.23)

s · aαs0α =
1

λs
s0 ·Aαs0α =

1

λs
s0 · s0 =

1

λs
(2.24)

where ν0α = ν0 ·Aα and s0α = s0 ·Aα.

2. Similarly, from

ν · aα = ν · F−T ·Aα =
(
F−1 · ν) ·Aα

it is found that

ν · aαν0α = ν0 · F−1 · ν and ν · aαs0α = s0 · F−1 · ν (2.25)
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Note that in the reference state (s = s0 and ν = ν0):

s · aαν0α = 0 and s · aαs0α = 1

ν · aαν0α = 1 and ν · aαs0α = 0

2.2.5 Virtual power of the inflating pressure

The panel is inflated with air at a prescribed pressure p which exerts a follower force on the inner surface Sp
of the panel in the current configuration. Let S0p, the surface in the reference configuration corresponding to

Sp, be partitioned into three parts S
sup
0p , Sinf

0p and S
edge
0p as shown in Fig. 2.8:

• Ssup
0p and Sinf

0p are the lower side of the upper membrane and the upper side of the lower membrane,

respectively.

• Sedge
0p is the inner side of the lateral membrane.

S0
H H̃

τ

Ssup
0p

Sinf
0p

Sedge
0p

e3

Figure 2.8: Definition of the surfaces on which the pressure is exerted.

The reference surfaces Ssup
0p , Sinf

0p , S
edge
0p become Ssup

p , Sinf
p and Sedge

p , respectively, in the current configura-

tion. The distance between Ssup
0p and Sinf

0p is constant and equals H̃ = H − 2τ . The virtual power of the internal

prescribed pressure p is

P∗
p =

∫
Sp

pn · u∗(Q)dS

where n is the outward normal vector to the membrane, Fig. 2.9.

a3

n

P

Q
Ssup
p

S

Sinf
p

Figure 2.9: The surfaces Ssup
p and Sinf

p and the outward normal vector n at point Q on Ssup
p .
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The virtual power of pressure forces is split into two terms, the integral P∗
p→S

sup
p ∪Sinf

p
over the upper and

lower surfaces and the integral P∗
p→S

edge
p

over the lateral walls:

P∗
p = P∗

p→S
sup
p ∪Sinf

p
+ P∗

p→S
edge
p

Pressure over the upper and lower faces
Let us first consider the virtual power of the pressure exerted on the upper surface:

P∗
p→S

sup
p

=

∫
S
sup
p

pn · u∗(Q)dS (2.26)

Similarly to the mid-surface S, the upper surface Ssup
p is parametrized by (ξ1, ξ2):

Sξ −→ S
sup
p

(ξ1, ξ2) 7→ Q(ξ1, ξ2, t) = P(ξ1, ξ2, t) +
H̃

2
a3(ξ

1, ξ2, t)

The above expression involves the height H̃ = H − 2τ over which the pressure is exerted on the lateral

walls, rather than the total height H of the panel. The distinction between H̃ and H will prove to have a

noticeable impact on the numerical results.

The natural vectors at a point Q on the upper surface Ssup
p are

∀α ∈ {1, 2}, gα =
∂Q
∂ξα

= aα +
H̃

2
a3,α (2.27)

Since the surface element in Relation (2.26) isndS = g1× g2 dξ1 dξ2, the virtual power of the pressure on
the upper surface writes

P∗
p→S

sup
p

= p

∫
Sξ

U∗(Q0) · (g1 × g2)dξ1 dξ2

Moreover, Relation (2.10) leads toU∗(Q0) = U
∗ + ω∗ × H̃

2
a3 so that Relation (2.27) becomes

g1 × g2 = a1 × a2 +
H̃

2
(a1 × a3,2 + a3,1 × a2) +

H̃2

4
a3,1 × a3,2

Since ‖a3‖ = 1, the virtual power of pressure forces acting upon the upper surface is finally

P∗
p→S

sup
p

= p

∫
Sξ

{
U∗ · (a1 × a2) +U

∗ · H̃
2
(a1 × a3,2 + a3,1 × a2) +U

∗ · H̃
2

4
a3,1 × a3,2

+ω∗ · H̃
2
a3 × (a1 × a2) + ω

∗ · H̃
2

4
a3 × (a1 × a3,2 + a3,1 × a2)

}
dξ1 dξ2 (2.28)

The same procedure is applied to the lower face Sinf
p , with

∀α ∈ {1, 2}, gα =
∂Q
∂ξα

= aα −
H̃

2
a3,α

and the surface element ndS = −g1 × g2 dξ1 dξ2. The negative sign indicates that the normal to the lower
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membrane faces downwards. Hence

P∗
p→Sinf

p
= −p

∫
Sξ

{
U∗ · (a1 × a2)−U∗ · H̃

2
(a1 × a3,2 + a3,1 × a2) +U

∗ · H̃
2

4
a3,1 × a3,2

−ω∗ · H̃
2
a3 × (a1 × a2) + ω

∗ · H̃
2

4
a3 × (a1 × a3,2 + a3,1 × a2)

}
dξ1 dξ2 (2.29)

By summing Relation (2.28) and Relation (2.29), the virtual power of pressure forces acting on the upper

and lower surfaces of the panel can be expressed as an integral over the reference mid-surface S0:

P∗
p→S

sup
p ∪Sinf

p
=

∫
S0

pH̃√
A

(a1 × a3,2 + a3,1 × a2) ·U∗ dS0 +

∫
S0

pH̃√
A

[
a3 × (a1 × a2)

]
· ω∗ dS0 (2.30)

Pressure over the lateral wall
The internal pressure also acts on the lateral wall Sedge

p . The following parametrization is introduced to

define the border of the mid-surfaces S0 and S (Fig. 2.10):

Λ −→ ∂S0 −→ ∂S

λ 7→ P0(λ) 7→ P(λ) = P0(λ) +U(P0, t)

Parameter space

Reference configuration

Current configuration

Figure 2.10: Parametrization of the border in the reference and current configurations. The red lines rep-
resent the transformations from the parameter space to the reference configuration and from the reference
configuration to the current one.

The following parametrization defines the edge of the plate:

Λ×

[
−H̃

2
,
H̃

2

]
−→ S

edge
p

(λ,Z) 7→ Q(λ,Z) = P(λ) + Za3(λ)

(2.31)

In writing this, it is assumed that the material segments of the edges remain straight (Fig. 2.10), thus
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ignoring the bulge thatmay form along the edge of the panel after inflation. The virtual power of the pressure

on the lateral wall is recast in terms of parameters (λ,Z) as

P∗
p→S

edge
p

=

∫
S
edge
p

pn · u∗(Q)dS =

∫
Λ×

−
H̃

2
, H̃2


U∗(Q0) · (Q,λ × Q,Z)dλdZ (2.32)

On account of the parametrization (2.31) of the border, the cross product Q,λ × Q,Z is

Q,λ × Q,Z = P,λ × a3 + Za3,λ × a3

Given the expression of the virtual velocity field,U∗(Q0) = U
∗+ω∗×Za3, the integrand in Relation (2.32)

becomes

U∗(Q0) · (Q,λ × Q,Z) = U∗ ·
(
P,λ × a3 + Za3,λ × a3

)
+ ω∗ ·

[
Za3 × (P,λ × a3 + Za3,λ × a3)

]
In the right-hand side, the virtual quantities U∗ and ω∗ are functions of point P0 ∈ S0 only. The terms

P,λ, a3 and a3,λ depend solely on λ. Integrating over Z gives the virtual power of the pressure forces on the

lateral wall of the panel:

P∗
p→S

edge
p

= pH̃

∫
Λ

U∗ · (P,λ × a3)dλ+
pH̃3

12

∫
Λ

ω∗ · a3,λ dλ (2.33)

The total virtual power of the pressure forces P∗
p is simply the sum of (2.30) and (2.33).

Prescribed inflation pressure
In practice, themajority of inflatable structures are first pressurized using a fixed amount of gas and then

sealed to make them airtight. When the deformations of the panel increase or reduce the interior volume,

it causes a change in internal pressure. Taking into account the pressure variations due to volume changes

would require utilizing a state law governing the internal gas and solving a fluid-structure interaction prob-

lem. This difficult issue, possibly intractable by purely analytical means, is beyond the scope of our work.

Throughout the foregoing, we have assumed that the inflating pressure p is prescribed, meaning that is in-

dependent of the interior volume of the inflatable panel, even in finite deformations of the panel.

Equivalence of the pressure-volume work or virtual power of pressure forces approaches
The principle of virtual power used in our work involves the pressure acting on the current configuration,

thus it also takes into account – although indirectly – the change of the interior volume. Integrating the

thermodynamic pressure-volume work over the volume or integrating the pressure forces over the internal

surface is essentially the same thing: indeed, McComb [10] has considered the change in volume inside of

the panel, and this reasoning has lead him to the same pressure terms in his governing equations as in our

linearized equations of motions presented in Chapter 3.

2.2.6 Virtual power of inertial forces

The virtual power of the inertial quantity in Eq. (2.9) is

P∗
accel =

∫
Ω0

ρÜ(Q0, t) ·U∗(Q0)dΩ0
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where ρ is the density of the membrane measured in the reference state¹ and Ü(Q0, t) is the acceleration at

point Q0. Furthermore, since the membranes are very thin, the density ρ can be assumed uniform through

the thickness. The above integral can be transformed into

P∗
accel =

∫
S0

ρ

(
Ü ·U∗

∫
T

dZ + ä3 ·U∗
∫
T

Z dZ

+(a3 × Ü) · ω∗
∫
T

Z dZ + (a3 × ä3) · ω∗
∫
T

Z2 dZ
)
dS0

where ä3 is the second derivative of the director vector a3(P0, t) with respect to time. The integrals carried

out over interval T (defined in (2.1)) are∫
T

dZ = 2τ

∫
T

Z dZ = 0

∫
T

Z2 dZ =
H3 − (H − 2τ)3

12
=
τ̃H2

2
(2.34)

where use has been made of the notation τ̃ =

(
1− 2τ

H
+

4τ2

3H2

)
τ . The virtual power of inertial forces thus

becomes

P∗
accel =

∫
S0

(
2τρÜ ·U∗ +

ρτ̃H2

2
(a3 × ä3) · ω∗

)
dS0 (2.35)

Remark 2.4. In writing (2.34), only the upper and lower membranes have been considered. The expression

(2.35) therefore does not contain the contribution of the lateral membrane. This approximation is justified

since the mass of the lateral membrane is small compared to that of the upper and lower membranes. In the

previous theories of inflatable beams, the same approximation was made by discarding the contribution of

the closing cap sections of the beam.

2.2.7 System of nonlinear equations of motion

The final expression of the principle of virtual power (2.9) is obtained by summing the expressions (2.14),

(2.22), (2.30), (2.33), and (2.35). For the sake of clarity, let us state the resulting governing equations before

proving them.

• The equations of motion for the inflatable panel are: ∀t, ∀P0 ∈ S0,

1√
A

(√
ARα

)
,α

+ q +
pH̃√
A

(
a3,1 × a2 + a1 × a3,2

)
= 2τρÜ (2.36a)

1√
A

(√
Aa3 ×Lα

)
,α

+ aα ×Rα +
pH̃√
A
a3 × (a1 × a2) =

ρτ̃H2

2
a3 × ä3 (2.36b)

The first equation corresponds to the linearmomentum balance and the second to the angularmomen-

tum balance.

• The boundary conditions are
- force boundary conditions: ∀t, ∀P0 ∈ ∂S0,

Rαν0α − pH̃P,s0 × a3 = q′ (2.37)

¹Again, the density of themembrane in the reference state should be denoted ρ0, but we neglect their change of volume because they
are thin, letting us write ρ = ρ0.
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- moment boundary conditions: ∀t, ∀P0 ∈ ∂S0,

Lβν0β · aαν0α −
pH̃3

12
(a3,s0 × a3) · aαν0α = ‖a3‖Γsν · aαν0α (2.38a)

Lβν0β · aαs0α −
pH̃3

12
(a3,s0 × a3) · aαs0α = ‖a3‖

(
Γsν · aαs0α − Γνs · aαs0α

)
(2.38b)

Proof.
Since the principle of virtual power (2.9) holds for arbitrary U∗ and ω∗, it leads to Eq. (2.36a) and the

following equation: ∀t, ∀P0 ∈ S0,

a3 ×
1√
A

(√
ALα

)
,α
− a3 × S +

pH̃√
A
a3 × (a1 × a2) =

ρτ̃H2

2
a3 × ä3

Bycalculatingaα×Rα,a3,α×Lα anda3×S fromexpressions (2.16), one caneasily verify that the following

equality holds:

aα ×Rα + a3,α ×Lα + a3 × S = 0

Furthermore, it can also be shown that

a3 ×
1√
A

(√
ALα

)
,α

=
1√
A

(√
Aa3 ×Lα

)
,α
− a3,α ×Lα

Combining the two previous equations yields Eq. (2.36b). The principle of virtual power (2.9) also yields

the two following boundary conditions written on edge ∂S0: the first one is Eq. (2.37) and the second is

∀t, ∀P0 ∈ ∂S0, a3 ×Lαν0α −
pH̃3

12
a3,s0 − Γ = 0 (2.39)

On account of the following properties:

∀v ∈ R3, a3 × v = 0 ⇔ ∀α ∈ {1, 2}, v · aα = 0 ⇔

{
v · aαν0α = 0

v · aαs0α = 0
(2.40)

Relation (2.39) then gives (2.38).

Surface loads equivalent to the 3D pressure distribution

The termswitha factor
pH̃√
A
inEq. (2.38) arise solely frompressurization. It seemed interesting to calculate

these vector fields for simple deformed configurations of the panel. Doing so confirmed that these terms

behave like surface forces and surface couples on themiddle-planewhichare equivalent to the 3Ddistribution

of pressure follower forces pushing the membranes from the inside.

Let us place ourselves in a simple case where the displacements fields depend solely on the x coordinate,

thus allowing to observe only the side of the panel. As a result, the inflatable panel is assimilated to a beam

(Fig. 2.11), from which it is easier to make observations that generalize to the 3D case. As long as all the ma-

terial segments remain parallel, the vector field a3 is uniform and the term a3,1 × a2 + a1 × a3,2 is always

zero in the equilibrium of forces (2.36a). Therefore, this term only activates when a3 is not constant over

space, which reflects the fact that the top or bottommembrane is more stretched than the other, creating an

imbalance in the pressure forces pushing them. Let us consider a case where the panel is bent with negative
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curvature, such that the area is larger on the upper membrane than on the lower one (Fig. 2.11a). Therefore,

the pressurized gas pushes the upper surface more than it repels the bottom one, and so a net upward force

is created, resulting in an equivalent vertical surface force on the mid-surface (in green).

Besides, the term a3 × (a1 × a2) in the angular momentum balance (2.36b) will only activate when the

fiber orientation a3 deviates from the normal to the middle-plane whose direction is given by a1 × a2, as

can be seen in Fig. 2.11b. Fig. 2.11c shows a superposition of both surface forces and surface couples caused

by a deformed state that combines stretching of the top membrane and misalignment between the material

segments and the normal to the mid-surface.

As a conclusion, the pressurization is equivalent to a surface load that pushes the middle-plane of the

panel in the direction that amplifies bending and a surface couple which tends to align thematerial segments

with the normals of the mid-surface.

Initial configuration

Deformed state Surface loads on the
mid-surface equivalent

to 3D pressure distribution

a)

b)

c)

Figure 2.11: Deformed panels and the equivalent surface pressure loads on the middle-plane.

2.3 Determination of reference quantities (geometry after inflation)

The theory presented here was built by assuming that the reference (inflated) configuration is known. In

practice however, only the natural (deflated) configuration is known precisely, since the dimensions and the

material properties of the panel are measured while it is being made, before it is assembled and pressurized.

Upon inflation, the geometry and thematerial coefficients will change due to the elasticity of the yarns (from

H∅ toH) and themembranes (L∅ toL) aswell asmaterial nonlinearities (E∅, ν∅ and ρ∅ toE, ν and ρ respec-

tively). In this dissertationweonly dealwith the elasticity of the structure andnot thematerial nonlinearities.

Furthermore, the reduction of the membrane’s thickness (from “τ∅” to τ) is assumed to be negligible.
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Figure 2.12: Geometry of the panel before and after inflation.

A characteristic length L (that is,R for a disk or a and b for a rectangle) and the heightH must be derived

from their initial values for any inflation pressure p. Obtaining (L,H) from (L∅,H∅) is a preliminary calcula-

tionwhich should be carried out beforehand using infinitesimal strain theory. The inflated dimensions of the

panel can be estimated by assuming that the increase in total height is entirely due to the elongation of the

drop-stitch yarns (discarding the bulge on the edge of the panel), because the tensile stiffness of the lateral

wall is small compared to the combined stiffness of all the drop cords inside the panel.

2.3.1 Change of height

The yarn density d is the number of yarns per meter squared. The vertical forces equilibrium condition of all

the drop-stitch strings writes

pπR2 = dNyπR
2 ⇒ Ny =

p

d

whereNy is the force in a single drop-stitch yarn. For small elongations:

Ny = EySy
∆H∅

H∅
=
p

d

hence

∆H∅ = H∅
p

dEySy

finally,

H = H∅

(
1 +

p

dEySy

)
(2.41)

In ourwork, wehave set the average axial stiffness of a yarnEySy to 100Nand the yarn density d to 30,000

per square meter.

2.3.2 Change of length for a rectangular panel

From the force equilibrium condition for half of the rectangular panel,

Mat(σ; exey) =
pH̃∅

2τ

[
1 0

0 1

]
(2.42)

where H̃∅ = H∅ − 2τ . Knowing the pre-stress resultantN0 = pH̃∅I
P (where IP = eα ⊗ eα is the iden-

tity tensor restricted to plane e1e2), an inflated dimension L can be deduced from its initial value L∅ using
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infinitesimal strain theory. FromHooke’s law in 3D:

ε =
1 + ν

E
σ − ν

E
(Trσ)IP (2.43)

Mat(ε; exey) =

1− νE

pH̃∅

2τ
0

0
1− ν
E

pH̃∅

2τ

 (2.44)

For the elongation along x:

εxx =
L− L∅

L∅
=

1− ν
E

pH̃∅

2τ
(2.45)

L = L∅

(
1 +

1− ν
E

pH̃∅

2τ

)
(2.46)

The result is the same along y.

2.3.3 Change of radius for a circular panel

The initial geometry of a circular panel is described by the natural radiusR∅ and the natural heightH∅. Con-

sidering the upper or lower membrane, in polar coordinates, the local equilibrium of forces is

∂σr
∂r

+
1

r
(σr − σθ) = 0 (2.47)

and Hooke’s law gives

σr =
E

1− ν2

(
∂u

∂r
+ ν

u

r

)
and σθ =

E

1− ν2

(
u

r
+ ν

∂u

∂r

)
(2.48)

Assuming an axisymmetric problem u = u(r), Relation (2.47) becomes

d2u
dr2

+
1

r

du
dr
− u

r2
= 0 ⇔ d

dr

(
1

r

d
dr

(ru)

)
= 0 (2.49)

hence
d
dr

(ru) = Br ⇒ ru = B
r2

2
+ C ⇒ u(r) = Br +

C

r
(2.50)

whereB andC are constants of integration. The symmetry imposes u(r = 0) = 0, which is finite. ThusC = 0

and u(r) = Br. Going back to Relation (2.48), we have

σθ =
E

1− ν2
(B + νB) =

EB

1− ν
(2.51)

Neglecting the rounded panel edge, the force equilibrium condition for a half-disk yields

σθ × 2Rτ × 2 = 2R× H̃∅ × p (2.52)

hence σθ =
pH̃∅

2τ
. Finally, Relation (2.51) writes

EB

1− ν
=
pH̃∅

2τ
⇒ B =

1− ν
E

pH̃∅

2τ
(2.53)
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R = R∅

(
1 +

1− ν
E

pH̃∅

2τ

)
(2.54)

which is the same expression as (2.46). Some numerical results are given in Table 2.2.

R∅
(m)

H∅
(cm)

p
(kPa)

R
(m)

H
(cm)

1.5 10 30 1.504 10.10
50 1.507 10.17
70 1.510 10.23
90 1.513 10.30

20 30 1.509 20.20
50 1.515 20.33
70 1.521 20.47
90 1.527 20.60

Table 2.2: Radii and heights of the inflated panel before and after inflation (E = 0.59 GPa).
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Chapter 3

Linearized theory of inflatable panels

The equations ofmotion (2.36)–(2.38), where the internal forcesRα andLα are functions of the stress resul-

tantsNαβ,Mαβ,M (2)αβ,Qβ andQ(1)β via Relations (2.15) and (2.16), are nonlinear equations in terms of the

displacements U and a3. In the sequel, we assume that the inflatable panel undergoes small displacements

and rotations and we shall derive the linearized equations from the above-found nonlinear equations.

It should be emphasized that one has to formulate the problem in the nonlinear framework as done in the

previous sections, before proceeding to the linearization. On the contrary, if the equations were obtained di-

rectly from the linear context assuming small strains, the essential termspertaining to the inflationpressure,

which is a follower load, would be missing.

3.1 Linearization assumptions – Small displacements and rotations

The linearization will be carried out around the pre-stressed reference configuration, under the following as-

sumptions:

1. The mid-surface displacements U ≡ x −X and its derivatives with respect to the spatial coordinates

and time t are assumed to be infinitesimal of the first order.

2. The fiber rotation vectorψ ≡ a3−e3 is assumed to be infinitesimal of the first order. Its derivativeswith

respect to the spatial coordinates and time t are also small of the first order.

A3 = e3

a3

2 sin θ

2

θ

A3

a3

co
sθ

1− cos θ

θ

Figure 3.1: The fiber rotates by a small angle θ in the deformed configuration.
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The linearized equations will be obtained by discarding infinitesimals of the second order and higher. Let

the angle between the unit vectors e3 and a3 be θ, Fig. 3.1. Since ‖ψ‖ = 2 sin θ
2 , assuming that ψ is small of

the first order amounts to assuming that angle θ is small. Moreover, since ψ · e3 = 1 − cos θ = 2 sin2 θ

2
, the

out-of-plane component ψ3 ofψ is of second order and can be neglected.

3.2 Linearization of the nonlinear equations

3.2.1 Current basis vectors

Local basis on the mid-surface
Calculations can bemade simpler by temporarily setting the curvilinear coordinates (ξ1, ξ2) to be equal to

the Cartesian coordinates (X,Y ), meaning that (A1,A2, e3) = (e1, e2, e3). Once the linearization is achieved,

we will go back to component-free notations, which are independent of any particular coordinate system.

The components ofU are

U = UP +We3 = U1e1 + U2e2 +We3

where the notation •P is used to indicate in-plane quantities, meaning that UP = Uαeα is the projection of

the vectorU onto the plane e1e2. Thus, the natural covariant basis vectors in Eq. (2.4) can be written as

aα = eα +UP
,α +W,αe3

The contravariant basis must also be linearized. Using the definitions:

aα = Aα +U,α

a3 = e3 +ψ

the matrix representation of the metric tensor writes

[a..] =


1 + 2U1,1 U1,2 + U2,1 ψ1 +W,1

1 + 2U2,2 ψ2 +W,2

(SYM) 1


which can be inverted to find

[a..] = [a..]
−1 =


1− 2U1,1 −(U1,2 + U2,1) −(ψ1 +W,1)

1− 2U2,2 −(ψ2 +W,2)

(SYM) 1


and from ai = aijaj, finally:

aα = eα − Uα,µeµ − ψαe3 = eα − gradUα − ψαe3

a3 = e3 −W,µeµ = e3 − gradW

which implies ‖a3‖ = 1.

Local basis on the edge
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In this paragraph, the Relations (2.24) and (2.25) pertaining to the projection of the local basis vectors on

the edge are linearized. Indeed, they play an important role in the boundary conditions.

1. First, s · aαs0α =
1

λs
=

1√
1 + 2Ess

. The linearized relative elongationEss is computed as follows:

Ess = s0 ·E · s0

Ess ≈ s0 · SYMgradU · s0

Ess = s0 · gradU · s0

In the last expression, gradU may be replaced with gradUP given that

U = UP +We3 ⇒ gradU = gradUP + gradW ⊗ e3 ⇒ s0 · gradU · s0 = s0 · gradUP · s0

hence
λs =

√
1 + 2Ess

λs ≈ 1 + Ess

λs = 1 + s0 · gradUP · s0

Therefore, the linearized expression of s · aαs0α =
1

λs
is

1

λs
= 1− s0 · gradUP · s0 (3.1)

2. Then, ν · aαν0α = ν0 ·F−1
|Q0=P0

· ν and ν · aαs0α = s0 ·F−1
|Q0=P0

· ν . The normal vector to the edge ν can be

expressed in the form of a cross product:

ν = s× a3

‖a3‖

Combining this expression with a3 = e3 − gradW and s =
1

λs
F · s0 (where F = I + gradU), one gets

ν =
1

λs

[
ν0 − s0 × gradW + (gradU · s0)× e3

]
Moreover, for small deformations, F−1

|Q0=P0
≈ I − gradU −ψ ⊗ e3. Thus

F−1
|Q0=P0

· ν =
1

λs

[
ν0 − s0 × gradW + (gradU · s0)× e3 − gradU · ν0

]
Recalling that gradW ⊥ e3:

ν0 · F−1
|Q0=P0

· ν =
1

λs

[
1 + s0 · gradU · s0 − ν0 · gradU · ν0

]
s0 · F−1

|Q0=P0
· ν = − 1

λs

[
ν0 · gradU · s0 + s0 · gradU · ν0

]
= − 2

λs
s0 · SYMgradU · ν0

As explained previously, gradU can be replaced with gradUP . Finally, we conclude by substituting the

linearized expression of 1/λs from Relation (3.1) into the above ones.
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Therefore, the linearized expressions are:

s · aαs0α = 1− s0 · gradUP · s0

ν · aαν0α = 1− ν0 · gradUP · ν0

ν · aαs0α = −2s0 · SYMgradUP · ν0

(3.2)

3.2.2 Strain tensor

The Green strain components in Relation (2.8) can be rewritten in terms ofUP and ψ. The same trick as the

previous section is applied – that is, going through Cartesian coordinates as an intermediate to index-free

notations. Starting with the components of the first tensor coefficientE(0):

E
(0)
αβ =

1

2
(aαβ −Aαβ)

=
1

2
(eα ·U,β +U,α · eβ)

E(0) =
1

2

(
gradU (1) + gradT

U (1)
)

Then,

E
(1)
αβ =

1

2

(
eα ·

(
a3,β − e3,β

)
+ eβ ·

(
a3,α − e3,α

)
+U,α · a3,β +U,β · a3,α

)
=

1

2

(
eα ·

(
a3 − e3

)
,β
+ eβ ·

(
a3 − e3

)
,α

+U,α ·
(
a3 − e3

)
,β︸ ︷︷ ︸

second order

+U,β ·
(
a3 − e3

)
,α︸ ︷︷ ︸

second order

)

=
1

2

(
eα ·

(
a3 − e3

)
,β
+ eβ ·

(
a3 − e3

)
,α

)
thus

E(1) =
1

2

(
grad

(
a3 − e3

)
+ gradT (

a3 − e3
))

And for the last tensor coefficient,

E
(2)
αβ =

1

2

(
a3,α · a3,β −��e3,α ·��e3,β

)
=

1

2

((
a3 − e3

)
,α︸ ︷︷ ︸

first order

·
(
a3 − e3

)
,β︸ ︷︷ ︸

first order

)

= 0

and so

E(2) = 0
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As for the shear strain:

Eα3 =
1

2

(
eα · a3 +U,α · a3

)
=

1

2

(
eα · a3 +U,α · a3 −U,α · e3 + U,α · e3︸ ︷︷ ︸

= (U · e3),α

)

=
1

2

(
eα · a3 +U,α ·

(
a3 − e3

)︸ ︷︷ ︸
second order

+ (U · e3︸ ︷︷ ︸
W

),α

)

Eα3 =
1

2

(
eα · a3 +W,α

)
Moreover, since eα is orthogonal to e3,

Eα3 =
1

2

(
eα · (a3 − e3) +W,α

)
=

1

2
(eα ·ψ +W,α)

To conclude, discarding terms of order 2 and above in the Green strain tensor expressions leads to

E(0) =
1

2

(
gradUP + gradT

UP
)

= SYMgradUP

E(1) =
1

2

(
gradψ + gradT

ψ
)

= SYMgradψ

E(2) = 0

Eα3 =
1

2
(ψα +W,α)

(3.3)

where the symbol SYM designates the symmetric part of a tensor.

3.2.3 Stress resultants and internal forces –Material model

The response of the membranematerial is assumed to be isotropic and based on a hyperelastic model. There

exists a great variety of hyperelastic constitutive laws that take different forms and involve differentmaterial

parameters. Fortunately enough, the common feature of the hyperelastic laws is that all of them reduce to

the standard linear Saint Venant-Kirchhoff law within the context of small deformations. As a result, one

has only to consider the Saint Venant-Kirchhoff law when carrying out the linearization of the governing

equations:

Σ = Σ0 + 2µE + λ(TrE)I (3.4)

where Σ0 is the pre-stress tensor and λ, µ are the Lamé parameters. Furthermore, the membranes are as-

sumed to be under plane stress in the current configuration, which means that, at any point in domain Ω,

σ13 = σ23 = σ33 = 0 ⇔ Σ13 = Σ23 = Σ33 = 0

The same assumption is made on the reference stress state: Σ13
0 = Σ23

0 = Σ33
0 = 0. The zero normal stress

hypothesis Σ33 = 0 (or, equivalently, σ33 = 0) leads to the so-called reduced constitutive law:

∀α, β ∈ {1, 2}, Σαβ = Σαβ0 +KαβδγEδγ (3.5)
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where

Kαβδγ =
E

1− ν2

(
1

2
(1− ν)

(
AαγAβδ +AαδAβγ

)
+ νAαβAγδ

)
andE is the Youngmodulus, ν the Poisson’s ratio. The pre-stress resultants induced by the internal pressure

are calculated from Relation (2.15): ∀α, β ∈ {1, 2},

Nαβ
0 =

∫
T

Σαβ0 dZ = 2τΣαβ0

Mαβ
0 =

∫
T

ZΣαβ0 dZ = 0

M
(2)αβ
0 =

∫
T

Z2Σαβ0 dZ =
τ̃H2

2
Σαβ0

(3.6)

The stress resultants defined in Relation (2.15) are evaluated by performing the integrations over interval

T . Taking into account the reduced constitutive law (3.5) and Relation (3.3) gives the resultants written in

component-free notations:

N =N0 +
2Eτ

1− ν2

(
(1− ν)SYMgradUP + ν

(
divUP

)
IP
)

M =
Eτ̃H2

2(1− ν2)

(
(1− ν)SYMgradψ + ν

(
divψ

)
IP
)

M (2) =M
(2)
0 +

Eτ̃H2

2(1− ν2)

(
(1− ν)SYMgradUP + ν

(
divUP

)
IP
)

Q = 0

Q(1) = 0

(3.7)

where IP = eα ⊗ eα is the identity tensor restricted to the plane e1e2. These relations are used to compute

stresses after having found a solution to the problem. Substituting the linearized expressions of the stress

resultants of Eq. (3.7) into Eq. (2.16) leads to

Rβ = Nαβ
0 (eα +U,α) +

2Eτ

1− ν2

(
1− ν
2

(Uβ,α + Uα,β) + νδαβUγ,γ

)
eα (3.8)

Lβ =
Eτ̃H2

2(1− ν2)

(
1− ν
2

(ψα,β + ψβ,α) + νδαβψγ,γ

)
eα +M

(2)αβ
0 ψ,α (3.9)

Remark 3.1. Note that the pre-stress bending moment of order two, M (2)αβ
0 , in the last equation has been

obtained thanks to the correct linearization process described at the beginning of this section. It would not

have been found if we had considered the linear framework from the start. It is analogous to the term pI0/S0

in previous works on inflatable beams [7].

Remark 3.2. The drop cords need not to be modeled: we assumed that they were stiff enough to guarantee a

constant thickness of the panel.

3.2.4 External loads other than the internal pressure

The expressions of the external loads in Eq. (2.38) must also be linearized. From Relations (3.2), the right-

hand sides of Eq. (2.38) then become

‖a3‖Γsν · aαν0α =
(
1− ν0 · gradUP · ν0

)
Γs
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‖a3‖
(
Γsν · aαs0α − Γνs · aαs0α

)
= −

(
2s0 · SYMgradUP · ν0

)
Γs −

(
1− s0 · gradUP · s0

)
Γν

3.2.5 Internal pressure load

Taking into account the expressions of aα and a3, the pressure term in equation of motion (2.36a) becomes

pH̃√
A

(
a3,1 × a2 + a1 × a3,2

)
=
pH̃√
A

(
ψ,1 × e2 + e1 ×ψ,2

)
(3.10)

Note that
√
A = 1 because the basis is orthonormal. Projecting Relation (3.10) on aα yields

∀α ∈ {1, 2}, (ψ,1 × e2 + e1 ×ψ,2) · aα = ψ,1 · (e2 × eα) + (eα × e1) ·ψ,2 = 0

sinceψ and its derivatives are perpendicular to e3. Then, projecting Eq. (3.10) on a3 yields

(ψ,1 × e2 + e1 ×ψ,2) · a3 = ψ,1 · (e2 × e3) + (e3 × e1) ·ψ,2

= ψ,1 · e1 +ψ,2 · e2 = ψ1,1 + ψ2,2 = divψ

The pressure term in equation of motion (2.36b) becomes

a3 ×
(
a1 × a2

)
= a3 ×

(
(e1 +U,1)× (e2 +U,2)

)
The second order terms are neglected, leaving only

a3 ×
(
a1 × a2

)
≈ ψ ×

(
e1 × e2

)
+W,2e1 −W,1e2

=
(
ψ +W,1e1 +W,2e2

)
× e3 = (ψ + gradW )× e3

Likewise, the pressure line force on the edge in boundary condition (2.37) writes

pH̃P,s0 × a3 ≈ pH̃
(
P0,s0 ×ψ +U,s0 × e3

)
The last term to be linearized is the pressure term in boundary conditions (2.38):

pH̃3

12
(a3,s0 × a3) · aαν0α ≈

pH̃3

12
ψ,s0 · s0

3.2.6 Inertial quantities

The only fact worth noting for the inertial quantities is that the inertial term in themoment equation (2.36b)

should be linearized as follows:
ρτ̃H2

2
a3 × ä3 =

ρτ̃H2

2
a3 × ψ̈

It is more convenient to keep a3 as is in the last right-hand side and not to replace it with ψ + e3, since

this enables one to more easily obtain the final expression of the moment equation (3.13) below.

3.3 Linearized equations of motion

The linearized equations of motion are obtained and written in component-free notations which are inde-

pendent of the coordinate system.
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Linearized equations of motion of inflatable panels
• The equilibrium conditions are:

- for the in-plane forces: ∀t, ∀P0 ∈ S0,

N0 : grad gradUP +
Eτ

1− ν2
[
(1− ν)∆UP + (1 + ν)graddivUP

]
+ q · aα = 2τρÜP (3.11)

- for the out-of-plane forces: ∀t, ∀P0 ∈ S0,

N0 : grad gradW + pH̃ divψ + q · a3 = 2τρẄ (3.12)

• Themoment equilibrium equations are

∀t, ∀P0 ∈ S0,
D∗

2

[
(1− ν)∆ψ + (1 + ν) graddivψ

]
+ div

(
gradψ ·M (2)

0

)
− pH̃ (ψ + gradW ) =

ρτ̃H2

2
ψ̈

(3.13)

where D∗ =
Eτ̃H2

2(1− ν2)
.

• The two force boundary conditions are
- in-plane forces equilibrium: ∀t, ∀P0 ∈ ∂S0,

2Eτ

1− ν2
(
(1− ν)SYMgradUP + ν

(
divUP

)
I
)
· ν0 + pH̃

[
gradUP · ν0 +UP

,s0 × e3
]
= q′ · aα (3.14)

- out-of-plane forces equilibrium: ∀t, ∀P0 ∈ ∂S0,

pH̃
(
ψ + gradW

)
· ν0 = q · a3 (3.15)

• The twomoment boundary conditions are

- equilibrium of moments normal to the border: ∀t, ∀P0 ∈ ∂S0,

D∗
[
(1− ν)ν0 · SYMgradψ · ν0 + ν divψ

]
+ ν0 · gradψ ·M (2)

0 · ν0 +
pH̃3

12
ψ,s0 · s0

=
(
1− ν0 · gradUP · ν0

)
Γs

(3.16)

- equilibrium of moments tangent to the border: ∀t, ∀P0 ∈ ∂S0,

D∗(1− ν)s0 · SYMgradψ · ν0 + s0 · gradψ ·M (2)
0 · ν0 −

pH̃3

12
ψ,s0 · ν0

= −
(
2s0 · SYMgradUP · ν0

)
Γs −

(
1− s0 · gradUP · s0

)
Γν

(3.17)

Proof.
The linear momentum equations (3.11) and (3.12) are obtained by substituting Rα

,α from Eq. (3.8) into
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Eq. (2.36a). The equivalence (2.40) is applied to Eq. (2.36b) with the expression of Lβ in Eq. (3.9) to produce

the angularmomentum equations (3.13). As for the boundary conditions, substituting Eq. (3.8) into Eq. (2.37)

yields (3.14) and (3.15). Likewise, using Eq. (3.9) to rewrite Eq. (2.38) yields (3.16) and (3.17).

Common form of the pre-tension tensors
In Cartesian or cylindrical coordinates, it can be shown that the pre-stress tensorΣ0 is simply

Mat(Σ0; exeyez) = Mat(Σ0; ereθez) =
pH̃

2τ


1 0 0

0 1 0

0 0 0


Hence, the matrices of pre-tensionN0 and pre-momentM (2)

0 after integrating over the thickness are

Mat(N0; exeyez) = Mat(N0; ereθez) = N0


1 0 0

0 1 0

0 0 0



Mat
(
M

(2)
0 ; exeyez

)
= Mat

(
M

(2)
0 ; ereθez

)
=M

(2)
0


1 0 0

0 1 0

0 0 0


where N0 = pH̃ andM (2)

0 =
pH2H̃τ̃

4τ
. Note that the pre-stress moment of second orderM (2)

0 had been ne-

glected in the literature on inflatable panel theories [10, 13]. Whenever N0 = N0I
P = pH̃IP andM (2)

0 =

M
(2)
0 IP , an alternative form of (3.12) and (3.13) is

pH̃(∆W + divψ) + q · a3 = 2τρẄ (3.18)(
D∗ 1− ν

2
+M

(2)
0

)
∆ψ +D∗ 1 + ν

2
graddivψ − pH̃(ψ + gradW ) =

ρτ̃H2

2
ψ̈ (3.19)
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Chapter 4

Application example in statics

Let us show how to solve the foregoing linearized equations for the static bending of a simply-supported

circular inflatable panel subjected to a uniform vertical load. This problem admits an analytical solution as

the geometry, the loading and the boundary conditions are simple.

4.1 Solution for the static bending of a circular inflatable panel

R

O θ

ereθ

P0

Figure 4.1: Geometry of the circular panel and local basis.

Let q = qe3 denote the uniform, vertical dead load applied over themid-surface S0 and (r, θ, z) the cylindrical

coordinates of any point of the panel (Fig. 4.1). Since the static bending problem is axisymmetric around the

axis (O; e3), the unknown fieldsW andψ are functions of the radial distance r only.

After discarding time-dependent terms, Eq. (3.12) and (3.13) become, in polar coordinates:

1

r

(
r(W,r + ψr)

)
,r
= − q

pH̃
(4.1)

−K
(
ψr,rr +

ψr,r
r
− ψr
r2

)
+ pH̃(W,r + ψr) = 0 (4.2)

where K = D∗ +M
(2)
0 =

Eτ̃H2

2(1− ν2)
+
pH2H̃τ̃

4τ
> 0. The boundary condition are W (R) = 0 and Eq. (3.16)

with Γs = Γθ = 0:

Kψr,r(R) +K ′ψr(R)

R
= 0 (4.3)
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where K ′ = νD∗ +
pH̃3

12
=

νEτ̃H2

2(1− ν2)
+
pH̃3

12
> 0. Integrating Relation (4.1) with respect to r gives

W,r + ψr = −
q

pH̃

(
r

2
+
C1

r

)
(4.4)

where C1 is a constant of integration. Using Relation (4.2), one obtains a differential equation of unknown

ψr, which is a Cauchy-Euler equation:

r2ψr,rr + rψr,r − ψr = −
q

K

(
r3

2
+ C1r

)
(4.5)

With the change of variables r = expx ⇔ x = log r (with r > 0) and z(x) = ψr(r) = ψr(expx), the

associated homogeneous equation is
d2z
dx2
− z = 0

The solution is z(x) = C2 exp(x) + C3 exp(−x) where C2 and C3 are constants of integration. Hence the

solution to the homogeneous equation corresponding to Eq. (4.5):

ψr(r) = C2r +
C3

r

The method of variation of parameters is used to find the solution to Eq. (4.5). The following system of

equations is obtained:


r2C ′

2 + C ′
3 = 0

r2C ′
2 − C ′

3 = − q

K

(
r3

2
+ C1r

) ⇒


C2 = − q

2K

(
r2

4
+ C1 log r

)
+ C4

C3 =
q

2K

(
r4

8
+ C1

r2

2

)
+ C5

where C4 and C5 are new constants of integration. Substituting C2 and C3 in the expression of ψr writes

ψr =
q

2K

(
−r

3

8
+ C1

r

2
− C1r log r

)
+ C4r +

C5

r

Given that the problem is axisymmetric, one must have lim
r→0

ψr(r) = 0, which implies C5 = 0. The deflec-

tionW can then be derived from Relation (4.4):

W,r = −
q

2K

(
−r

3

8
+ C1

r

2
− C1r log r

)
− C4r −

q

pH̃

(
r

2
+
C1

r

)
The constants of integration are deduced from the boundary conditions and physical considerations. It

follows that: 
W (r) = q(R2 − r2)

(
1

4pH̃
+

1

64K

(
5K +K ′

K +K ′ R
2 − r2

))
ψr(r) =

q

16K
r

(
3K +K ′

K +K ′ R
2 − r2

) (4.6)

While the deflectionW and the fiber rotationψ depend linearly on the load q, they are intricate functions

of pressure p via the ratio 1/4pH̃ and the coefficientsK andK ′. Let us now plot the solution (4.6) using the

geometric quantities R∅ and H∅ in the natural state, τ and the material properties E and ν from Table 5.1

and taking the external surface load q = 100 Pa. Fig. 4.2 shows the plots of the deflection W and the fiber

rotation ψr for four different inflation pressures p and two panel heights H∅. As expected, the deflection
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Figure 4.2: Deflection W and fiber rotation ψr for a simply supported circular panel subjected to uniform
vertical load q = 100 Pa for four different inflation pressures p (R∅ = 1.5m).

becomes lower as the pressure p increases, which reflects the stiffening phenomenon of inflatable panels,

i.e. the increase in bending stiffness with pressurization. Also, the deflection decreases when the height H

increases since the pre-stress N0 is proportional to H̃, creating additional structural stiffness. As regards

the change of the fiber rotation ψr, it depends on the pressure p via coefficientsK andK ′ and also via (R,H)

given by Relations (2.41)–(2.54). However, the numerical computations show that the dependence of ψr on

p is rather weak, see Fig. 4.2. The values of the rotation ψr are very small (here 10−3), which means that the

fibers remain practically vertical during the deformation process.

In order to show the sensitivity of the deflectionW to the value of themembrane YoungmodulusE, use is

made again of solution (4.6) to computeW with two values different by±0.8 GPa from E = 2.5 GPa, namely

E = 1.7 GPa and E = 3.3 GPa. It is observed that W varies monotonically with E, so that two curves are

enough to draw the envelope. Moreover, as one can see in Fig. 4.3, the larger the external load q is, the greater

the influence ofE on the deflection.
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Figure 4.3: Sensitivity of the deflection to the membrane’s YoungmodulusE for two inflation pressures and
four external loads (R∅ = 1.5m,H∅ = 10 cm,E = 2.5 GPa for the thick line).

4.2 Limit of validity of the solution (wrinkling load)

While fabric materials can withstand large tensile stresses, their stiffness when subjected to compressive

stress is very low. Large deformations may cause the net stress to become zero or negative, giving rise to a

localized buckling phenomenon, commonly named wrinkling (Fig. 4.4). Upon finding a solution, one must

check that the stresses are positive everywhere in the membranes for the analytical solution to remain valid.

The load for which the stress becomes zero is called the wrinkling load qw . Since the determination of qw is

based on the linearized solution, it is only an estimate and cannot predict the actual onset of wrinkling for

strongly nonlinear problems.

Pressurization
Pressurization + Bending

(prior to wrinkling)
Pressurization + Bending

(post-wrinkling)

drop
cords

upper
membrane

lower
membrane

Wrinkling

Figure 4.4: Stress profile in the panel before and after wrinkling.

Let us compute the strain tensors at every point of the panel. Combining the solution in Eq. (4.6) and

59



Chapter 4 – Application example in statics

Relation Eq. (3.3) gives

Mat(E; ereθe3) = Z

[
ψr,r 0

0 ψr

r

]
=

Zq

16K

3K +K ′

K +K ′ R
2 − 3r2 0

0
3K +K ′

K +K ′ R
2 − r2

 (4.7)

The reduced constitutive law (3.5) yields the principal stresses:

Σrr =
pH̃

2τ
+

EZq

16K(1− ν2)

(
3K +K ′

K +K ′ R
2(1 + ν)− r2(3 + ν)

)
Σθθ =

pH̃

2τ
+

EZq

16K(1− ν)

(
3K +K ′

K +K ′ R
2 − r2

)
The principal stresses reach their maximum for r = 0 and Z = ±H/2 (depending on the sign of q). Can-

celling either Σrr or Σθθ gives the same expression of the wrinkling load:

qw = ±pH̃
τH

16K(1− ν)

ER2
3K +K ′

K +K ′

(4.8)
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Figure 4.5: Wrinkling load of the bending solution for two different panel radii and heights (E=2.5 GPa).

For small pressures and small panel heights, Fig. 4.5 shows that the evolution of the wrinkling load is

quasi-linear. Indeed, the coefficientsK andK ′ are combinations of the membrane flexural rigidity and the

pre-stress caused by inflation, which is very small compared to the first term: K ≈ Eτ̃H2

2(1− ν2)
andK ′ ≈ νK .

Furthermore, if τ̃ ≈ τ , H̃ = H − 2τ ≈ H,K ≈ D∗ andK ′ ≈ νD∗, the equation (4.8) simplifies to

qwrinkling ≈ ±
8p

3 + ν

(
H

R

)2

(4.9)

which no longer appears to depend onE, except through the inflated dimensionsH andR.
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Chapter 5

Finite element simulation of inflatable

panels

After obtaining the linearized governing equations and having solved them for a circular panel, it is necessary

to validate the theoretical deflection by comparing it to a reference solution of the fully nonlinear problem.

By doing so, we can assess the range of applicability of our theory, before the loss of linearity becomes too

important. Furthermore, thepre-dimensioningof the experimental setup relies on the valuesprovidedby the

analytical model: the choice of loading type, measuring tools and the design of the supporting frame depend

on the rangeofdisplacements that are expected tobeobserved. Froma theoretical researchperspective, being

able to quickly iterate on the 3D finite element simulation also has the benefit of giving us a better intuition

of the system’s response and pointing out flaws in the analytical model that we were able to rectify. In this

chapter, we present a three-dimensional, nonlinear finite element analysis of a circular inflatable panel and

compare its outputs to the analytical results of Chapter 3.

The finite element simulation relies on the Surface Evolver program [34], an open source software orig-

inally intended for modelling liquid surfaces under constraints¹, which can be repurposed to the simula-

tion of tensile membranes by implementing the appropriate strain energy density function for the material

model. The mesh geometry, boundary conditions, material properties and loading increments are specified

in a text file written in the Evolver scripting language. The software allows to simulate structures made of

one-dimensional lines and two-dimensional facets undergoing finite strain and large displacements from

minimization of potential energy. The gas used for inflation is taken into account exclusively through the

pressure load it generates and does not constitute a heavy material medium, as justified by the static nature

of the study.

5.1 Description of the numerical model

5.1.1 Nonlinearities

The simulation incorporates three kinds of nonlinearities: large displacements, follower pressure loads and

slacking drop cords.

1. With large displacements, the current configurationwill differ from the reference configuration, which

¹The program was developed by Ken Brakke, Professor Emeritus from the Department of Mathematics and Computer Science of
Susquehanna University. The simulations presented in this work were carried out using the last release version of the software from
August 2013.
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allows to precisely account for all the effects that are a function of the current geometry. It can also

capture the formation of wrinkles, which was impossible with the simpler geometric description used

in the theory.

2. The pressure forces will always act normal to the current mesh geometry. In the linearized theory, the

current panel configuration (and therefore the orientation of the normals) is described by the vectors

U and ψ = a3 − e3 which were assumed small of the first order. The vertical component of ψ was also

neglected at the beginning of the linearization process. Because small terms of the second order were

neglected, some information about the normals was lost and the pressure-related terms which depend

on it are incorrectly described when the displacements become large.

3. The kinematic assumptions of the theory remain valid as long as the drop cords are all taut. However,

since the drop yarns cannot resist compression, they should loose their stiffness when they are not

stretched. Therefore, we scan the drop cords at every iteration to cancel the stiffness of the bars whose

current length is shorter than their original length. It should be noted, however, that this only occurred

exceptionally throughout all of our simulations, and always at the panel’s edge where the lateral wall

would bring the membranes closer.

Another difference with the theory is that the lateral wall is modeled in the finite element simulation, while

it was discarded in the theory.

5.1.2 Modeling membranes and drop cords

The 3D structure comprises threemembranes (upper, lower and lateral) and drop cords that connect the up-

per and lower faces. The initialmesh is procedurally generated froma simple cylinder geometrywhich is then

subdivided until convergence is reached at a total of 12,288 surface elements and 6,146 nodes (Fig. 5.1²). It is

then scaled to have overall thicknessH∅ and radius R∅. The membranes are discretized using 3-node pure

membrane triangular elements and the yarns as 2-node bar elements connecting the upper and lower sur-

faces, Fig. 5.2. The behavior of the membranes is modeled by the Saint Venant–Kirchhoff law and the values

ofE, ν and τ are presented in Table 5.1.
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Figure 5.1: Convergence of the relative difference between the theoretical and numerical initial slopes as the
number of surface elements in the mesh increases. (H∅ = 20 cm,R∅ = 1m, p = 50 kPa)

Special care must be taken when modelling the drop cords, since modelling each of them individually

²The calculation of the relative difference on the slope will be explained in Section 5.2.4.
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Figure 5.2: Cut-view and top view of the mesh used in the simulations in the reference configuration.

Parameter Values

Eτ 389 N/mm
ν 0.25
τ 1 mm
ρ 1000 kg/m³

EySy 100 N
d 30,000m−2

Table 5.1: Material properties of the inflatable panel in the reference configuration.

would be unreasonably resource-consuming. The total potential energy in this case would be written as

Πthreads =

nthreads∑
i=1

1

2
EySyH∅ε

2
i

where thenumberof threadsnthreadswouldbevery large (around300,000). Insteadofdoing this, bar elements

are created to link each node of the upper membrane to the node facing it on the lower membrane (which is

a mirror image of the upper one), and each bar needs to be assigned a stiffness representative of the yarns

surrounding in reality. To this end, every node of the membranes is assigned a “neighboring area” which is

the sumof the neighboring triangles’ area divided by three (because all elements are triangles, so one third of

their surface goes to each vertex), Fig. 5.3. Then, the bar elementswill receive the axial stiffness of one thread,

EySy, multiplied by the estimated number of threads surrounding it, which is the average neighboring area

of the bar’s two nodes (denoted Savg) multiplied by the thread density d. With mathematical notations:

Πibar = dSavg,i ×
1

2
EySyH∅ε

2
i (5.1)

where nbars the number of bar elements connecting the membranes (typically one thousand, much smaller

than the true number of drop cords), Savg,i is the average neighboring surface around the i-th bar’s nodes,

and εi =
1

2

H2
i −H2

∅
H2

∅
is the Green strain in the i-th bar element. Note that this expression of the potential

energy is only valid when the bar is stretched. If the Green strain in a bar becomes negative, then its axial

stiffness should be cancelled, and reactivated as soon as the thread is taut again. That is:

Πibar = dSavg,i ×
1

2
EySyH∅

(
max(0, εi)

)2 (5.2)
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as a result, the total potential energy of all the threads is approximated by

Πthreads ≈
nbars∑
i=1

Πibar (5.3)

The high rigidity of these bars can pose numerical challenges, making the simulation of inflatable panels a

difficult task.

Drop-stitch 3D model

Figure 5.3: Drop-stitch fabric with drop yarns and 3D model with bar elements of equivalent stiffness. The
“neighboring area” and the drop cords they account for are drawn in the same colors.

5.1.3 Boundary conditions, pressurization and external loads

Boundary conditions are applied so as to prevent rigid bodymotions: Ux(X = 0) = 0 and Uy(Y = 0) = 0. The

internal pressure pwill successively take four values: 30, 50, 70 and 90 kPa. After the panel is pressurized at

the pressure p, the natural radius R∅ becomes R and the natural height H∅ increases to H; both reference

dimensionsR andH of the panel are used in the analytical equation (4.6) for comparison. Once the structure

is inflated, a vertical dead load q is applied. Half of this external load is applied to the top membrane and the

other half to the bottommembrane: this is because in theory the external loads are applied directly onto the

plate’smid-surface, which is notmaterialized in the 3Dmesh. Therefore, one has to decide how to divide the

load on the upper and lower layers. For instance, onemay put the entire load on the upper or lower layer, and

each distribution has different consequences for the stresses in the membrane layers and the drop yarns. In

our work, we did not study the influence of the load distribution type. Instead, we have arbitrarily decided to

apply 50 % of the load on the upper layer and 50 % on the lower layer, as this minimizes the lever arm and

thus undesirable surface couples.

5.1.4 Pressurization phase and loading phase

Thesimulation takesplace in twostages: thepressurizationphaseand the loadingphaseFig. 5.4. Theproblem

that is considered is static,meaning that there is no time involved in the process. Thefinite element solutions

are found by minimizing the total potential energy with respect to the current nodal positions, using the

conjugate gradient method. The total potential energy is written as

Π = Πmembrane +Πthreads +Πgas
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where

Πmembrane =

∫
Ω0

(
λ

2

(
Tr(E)

)2
+ µTr(E2)

)
dΩ0 (5.4)

Πthreads =
1

2
EySyH∅d

nbars∑
i=1

(
max(0, εi)

)2
Savg,i (5.5)

Πgas = pV (5.6)

where λ, µ are the Lamé coefficients and V = vol(Ω0) is the volume inside the panel. Given the nonlinearity

of the system, the loads cannot be applied all at once:

• first, the internal pressure is applied in 3 increments: 4% of the final inflation pressure (this first in-

crement is especially long to compute), 30% and 100%;

• then, the external load is applied in 15 increments from 1 Pa to 3000 Pa: 1, 10, 30, 60, 100, 200, 300, 500,

700, 1000, 1300, 1600, 2000, 2500 and 3000 Pa.

At every load increment the program goes through dozens or hundreds of iterations, updating the position of

the nodes until convergence is reached, that is, when the energy step size in the conjugate gradient method

becomes smaller than a given threshold of 10−8 J.

Figure 5.4: Configurations of the inflatable panel throughout the simulation.

5.1.5 Achieving convergence of very stiff systems

In some cases, convergence is hard to reach due to numerical instabilities. Sometimes the problem can be

overcome simply by forcing the program to iterate one more step or by artificially displacing every node by

a very small amount to escape from local minima, but this cannot be applied systematically or the iterative

process also fails.

At first, the number of drop cords was set to be as high as it is in reality (40 000 per square meter). But in

this case the iterative processwould often come to ahalt evenwhen the increment step sizewas still relatively

large. To overcome this, we had to decrease the density of the yarns to 30 000.
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The lateral wall also hindered the resolution process, restricting the top and bottommembranes’ expan-

sion. This is partly due to the ill-conditioning of the mesh in this region (the triangular elements are very

elongated). In order to get the simulation to match the theory assumption that the border simply doesn’t

exist, the elasticity modulus of the lateral was set to be 5% of the stiffness of the membranes.

Overall, simulating stiff nonlinear systems is not straightforward because of numerical ill-conditioning

and still requires some expertise and fine-tuning.

5.1.6 Code parametrization

In order to evaluate the analytical solution against finite element simulations, one must compare their pre-

dictions for a variety of geometries, materials and loads, and so the same programmust be run several times

with different inputs. To avoid editing the script manually each time, a simple code was written in the form

of a Python notebook³ to process every combination of parameters automatically. The Python notebook du-

plicates the original Evolver script, replaces the variable parameters with the desired values and saves each

modified script as a separate file. The notebook then calls the Evolver program to run all the scripts which,

in turn, write their outputs to individual text file for further post-processing in Python. This process is sum-

marized in Fig. 5.5. Any number of variables can be parametrized in this way. We focused our attention on the

initial geometry and inflation pressure, i.e. different combinations ofH∅,R∅ and p.

Figure 5.5: Batch processing workflow with Evolver.

5.1.7 Limitations

Aswas done in the theory, the behavior of the panel is studied at prescribed pressure, in otherwords, pressure

variations due to volume changes are ignored. The code does not handle self-contact of the mesh, which

means that the post-wrinkling response may not always be accurate. Since the mesh has to be procedurally

generated from subdivisions of a cylinder, the finite elements on the lateral wall aremuch smaller than those

on themembranes (see Fig. 5.2), and the junction between these regionswith elements of very different sizes

is unfavorable to convergence and should be addressed.

³In computer programming, a notebook is an interactive document where text, equations, code and code outputs can be displayed
next to each other. They make it easier to interact with the code and present the results, especially when dealing with many tables or
figures.
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5.2 Finite element results

5.2.1 Load-displacement curves

Fig. 5.6 shows the maximal deflectionW (r = 0) as a function of the external load q for two different geome-

tries and two inflation pressures p = 50 kPa and p = 90 kPa. The analytical solution is only plotted for external

load q less than the wrinkling load qw defined by Relation (4.8). Recall that the linear elastic solution for the

inflatable panel is valid as long as:

(i) the displacements and rotations are small (see Section 3.1)

(ii) the load q is less than the wrinkling load qw given by (4.8)

Criterion (i) may be expressed in terms of ratioW (r = 0)/R∅ and ψr(r = 0) for instance, say

W (r = 0)

R∅
< 3% and ψr(r = 0) < 1%

The present results show that the higher the inflating pressure p and the membrane thickness H∅ are, the

larger the range of validity of the solution – defined by the above-mentioned criteria (i) and (ii) – and the

larger the external load q, or equivalently, the higher the bearing capacity of the panel. Furthermore, it can

be seen in Fig. 5.6 that the criterionW (r = 0)/R∅ < 3%may be violated before criterion q < qw . In other

words, one can go beyond the linear elastic range before reaching the wrinkling load.

5.2.2 Relative difference in terms of displacement

The analytical maximum deflection, denotedWtheor, and the maximum deflection given by the 3D finite ele-

ment computations, denotedWFE, are given in Table 5.2 for a uniform vertical load q = 100 Pa. The relative

difference is defined as (WFE − Wtheor)/Wtheor. Across all 24 cases, the average absolute relative difference

is 1.92 %. The comparison between Wtheor and WFE can be conducted in terms of the ratio H∅/R∅ and the

external load q, respectively:

• Table 5.2 shows that, as expected, at a given pressure p, the smaller the ratioH∅/R∅ is, the better the

panel analytical solution compares with the 3D finite element computations.

• For a given geometry and pressure p, the deflection varies with the external load q ranging from 0 to

3000 Pa as shown in Fig. 5.6. In the range where the load q is small enough for the linear solution to be

valid, the analytical solution and the finite element results are found to be in fairly good agreement.

So far, all the numerical computations have been made with the membrane Young modulus E = 2.5 GPa.

In order to show the sensitivity of the deflections to the value ofE, we conduct a new series of computations

taking now E = 0.59 GPa and the same values for all other quantities. This new value of E, significantly

smaller than the previous one, is closer to the one measured with an inflatable panel that will be used in our

experiments presented in Chapter 7. Table 5.3 displays the results corresponding toE = 0.59 GPa. These ad-

ditional numerical values confirmthat the inflatedheightH is insensitive to themembrane’s Youngmodulus.

Note also that the wrinkling load is rather insensitive to the change of elastic modulus, as it mostly depends

on the geometry and load type. Here again, the values given by the inflatable panel theory agree quite well

with those from the 3D finite element computations. Overall, the largest discrepancy between the theory and

the finite element computations occurs at radius R∅ = 2m and height H∅ = 10 cm, which is the geometry
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Figure 5.6: Linearized analytical load-deflection curves comparedwith the finite element results for two dif-
ferent geometries and inflation pressures. The analytical curves stopwhen the assumption of positive tensile
stress is no longer valid (q > qw) and the FE curve stops at the maximum applied load q = 3000 Pa. Parame-
ters: E = 2.5 GPa, τ = 0.66mm ν = 0.25.

corresponding to the lowest wrinkling load as can be seen in the last column of Table 5.3. For this geome-

try, the relative difference is negative,meaning that the analytical deflection is larger than the simulated one

(which has additional geometric stiffness).

5.2.3 Someremarkson theexclusionof themembranes’ thickness fromtheoverall thick-
ness

Two quantities were introduced as a result of excluding themembrane’s thickness from the overall thickness

of the panel: τ̃ and H̃ introduced in Sections 2.2.6 and 2.2.5, respectively. When making the approximation

τ̃ ≈ τ the relative difference will generally not deteriorate unless themembranes are particularly thick or the

panel is very thin. On the other hand, consideringH instead of H̃ = H − 2τ in (4.6) worsens the results as it

increases the relative difference by up to 2 percentage points on every test case. This is mostly due to the fact
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p
(kPa)

H∅
(cm)

H
(cm)

R∅
(m)

R
(m)

WFE
(mm)

Wtheor
(mm)

Relative
difference (%)

Wrinkling
load qw (Pa)

30 10 10.10 1.0 1.000 9.17 9.11 0.7 734
1.5 1.501 22.10 22.59 -2.2 326
2.0 2.001 42.39 45.35 -6.5 183

20 20.20 1.0 0.999 4.49 4.33 3.7 2983
1.5 1.501 10.49 10.29 2.0 1323
2.0 2.002 19.86 19.59 1.4 743

50 10 10.17 1.0 1.001 5.79 5.72 1.2 1239
1.5 1.502 14.98 14.94 0.3 551
2.0 2.002 31.14 31.70 -1.8 310

20 20.33 1.0 1.000 2.72 2.66 2.3 5034
1.5 1.502 6.64 6.51 2.0 2232
2.0 2.004 13.13 12.86 2.1 1255

70 10 10.23 1.0 1.001 4.32 4.27 1.2 1758
1.5 1.502 11.76 11.64 1.0 781
2.0 2.003 25.70 25.78 -0.3 439

20 20.47 1.0 1.001 1.98 1.94 2.0 7134
1.5 1.504 4.99 4.88 2.3 3164
2.0 2.006 10.20 9.95 2.5 1778

90 10 10.30 1.0 1.002 3.50 3.46 1.4 2289
1.5 1.503 9.92 9.79 1.3 1017
2.0 2.004 22.51 22.43 0.4 572

20 20.60 1.0 1.003 1.57 1.54 2.0 9285
1.5 1.505 4.08 3.98 2.6 4119
2.0 2.008 8.56 8.33 2.8 2315

Table 5.2: Analytical and 3Dfinite element results for a simply supported circular inflatable panel (q = 100Pa,
E = 2.5 GPa).

that H̃ is squared or cubed in several expressions, notably in the coefficientsK andK ′.

5.2.4 Initial stiffness calculation

The relative difference between the analytical and simulated deflectionsWtheor,WFE is elementary and easy

to compute directly using the raw data. However, a better criterion exists: from a theoretical perspective,

the analytical and numerical models can only be compared while the deflection is small, in keeping with the

linearizationhypotheses. Therefore, the twomodels should agree on the initial stiffness of the structure, that

is,
∂q

∂W

∣∣∣∣
W=0

. The use of this criterion showsmore consistent trends in the data that the simplistic deflection

discrepancy criterion. The relative difference in slope is expressed by the following relationship:

(relative difference on the slope) =
(numerical slope)− (analytical slope)

(analytical slope)

The numerical initial slope is obtained by performing a linear regression on the first three points of the sim-

ulated load-deflection curve (arbitrarily). The constant term in the regression is forced to zero, since the

deflection is zero when no external loads are applied. This intercept-free linear model was selected among

others because it did not assume an expression of the simulated curve (unlike quadratic, exponential, log-

arithmic or power models) and proved to be more accurate at describing the initial slope than interpolation

methods (B-spline). One should observe that the computation of the slope is very sensitive to small varia-

tions in data: this comparison criterion is penalizing and the relative difference obtained must be analyzed
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p
(kPa)

H∅
(cm)

H
(cm)

R∅
(m)

R
(m)

WFE
(mm)

Wtheor
(mm)

Relative
difference (%)

Wrinkling
load qw (Pa)

30 10 10.10 1.0 1.003 11.71 11.56 1.3 733
1.5 1.504 34.49 34.92 -1.2 326
2.0 2.006 76.85 84.24 -8.8 183

20 20.20 1.0 1.005 5.12 4.98 2.8 2969
1.5 1.508 13.87 13.44 3.1 1318
2.0 2.011 30.23 29.46 2.6 741

50 10 10.17 1.0 1.005 8.35 8.16 2.2 1236
1.5 1.507 27.33 27.20 0.5 549
2.0 2.003 66.70 69.99 -4.7 309

20 20.33 1.0 1.009 3.44 3.31 3.9 4996
1.5 1.514 10.06 9.67 4.0 2218
2.0 2.019 23.44 22.72 3.2 1247

70 10 10.23 1.0 1.007 6.87 6.69 2.6 1750
1.5 1.510 24.04 23.83 0.9 778
2.0 2.014 61.53 64.16 -4.1 437

20 20.47 1.0 1.013 2.71 2.59 4.7 7062
1.5 1.521 8.39 8.05 4.2 3137
2.0 2.028 20.42 19.82 3.0 1764

90 10 10.30 1.0 1.009 6.03 5.87 2.8 2277
1.5 1.513 22.08 21.90 0.8 1012
2.0 2.018 58.20 60.56 -3.9 569

20 20.60 1.0 1.018 2.31 2.19 5.3 9168
1.5 1.527 7.44 7.14 4.2 4074
2.0 2.036 18.62 18.20 2.3 2291

Table 5.3: Analytical and 3D finite element results for a simply supported circular inflatable panel with a
smaller elastic modulus (q = 100 Pa,E = 0.59 GPa).

with regard to this severe criterion. The relative difference in displacement can be negative or positive for a

same geometry depending on the pressure, which leads to believe that the theory can be unpredictably stiffer

or softer than the FE simulation. This is misleading, because if one were to consider the relative difference

in slope, it would be systematically positive and independent of the pressurization for a fixed geometry, Ta-

ble 5.4. For p = 30 kPa, numerical instabilities made the convergence difficult to achieve and the relative

difference are less consistent for this reason.

To summarize the results obtained in this chapter visually, the data from Tables 5.2 and 5.4 can be pre-

sented in a scatter plot to show that both the analytical and numerical approaches produce practically iden-

tical values, Fig. 5.7.
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Table 5.4: Relative difference percentage on the maximum deflection (left) and slope (right) for various ge-
ometry and inflation pressures (E = 2.5 GPa, ν = 0.25).
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Chapter 6

Vibrations of inflatable panels

In this chapter, the vibration of inflatable panels is considered. We will calculate the eigenfunctions and the

eigenfrequencies (also called natural modes and natural frequencies) of rectangular and circular inflatable

panels.

6.1 Hypotheses for the study of vibrations

• The amplitude of the vibrations is small enough for the response of the panel to remain linear.

• The dynamic material properties remain close to the statically measured ones.

• The pressure inside the panel is prescribed or does not vary significantly over time, such that it can be

considered as constant through time and space.

• The inflatable panel is filledwith a gaswhose density is small compared to that of themembranes, such

that its inertia does not affect themovement of themembranes. Modelling the fluid velocity and added

mass of air on vibrating membranes is of current interest in research [82].

• The vibration of the drop cords is not considered.

6.2 Eigenvalue problem for inflatable panels

The linearized equations of motion for the inflatable panel are reminded here.

• Equilibrium condition for out-of-plane forces. ∀t, ∀P0 ∈ S0,

2τρẄ −N0 : grad gradW − pH̃ divψ = q · a3 (6.1)

whereN0 is the membrane pre-stress tensor.

• Moment equilibrium equations. ∀t, ∀P0 ∈ S0,

ρτ̃H2

2
ψ̈ − D∗

2

[
(1− ν)∆ψ + (1 + ν)graddivψ

]
− div

(
gradψ ·M (2)

0

)
+ pH̃ (ψ + gradW ) = 0 (6.2)

whereM (2)
0 is the second order moment pre-stress tensor.
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These equations are of the form
MW Ẅ + LWWW + LWψψ = q3

Mψψ̈ + LψWW + Lψψψ = 0

whereMW andMψ are operators proportional to the identity operator Id:

MW ≡ 2τρ Id Mψ ≡
ρτ̃H2

2
Id

and LWW , LWψ, LψW , Lψψ are differential operators defined by

LWW ≡ −N0 : grad grad LWψ ≡ −pH̃ div

LψW ≡ pH̃ grad Lψψ ≡ −D
∗

2 [(1− ν)∆+ (1 + ν) graddiv]− div
(
grad ·M (2)

0

)
+ pH̃Id

In condensed form:[
MW 0

0 Mψ

]{
Ẅ

ψ̈

}
+

[
LWW LWψ

LψW Lψψ

]{
W

ψ

}
= {f} ⇔ M

{
Ẅ

ψ̈

}
+ L

{
W

ψ

}
= {f}

Remark 6.1. The coefficient pH̃ replaces the shear stiffness term κ2GH of the classical theory for solid plates.

The term −N0 : grad gradW = −N0 divgradW replaces −κ2GH∆W . Only the term −div
(
grad ·M (2)

0

)
is

completely new. It will be found to increase the flexural stiffness.

The eigenvalue problem consists in searching for the eigenvalues λ and the eigenfunctions (W,Ψ) veri-

fying the following equations. Henceforth, W denotes the bending eigenfunction (which is independent of

time t) instead of the vertical component of the displacementU .

1. The eigenvalue equations

[
LWW LWψ

LψW Lψψ

]{
W

Ψ

}
= λ

[
MW 0

0 Mψ

]{
W

Ψ

}
that is,

−N0 : grad gradW − pH̃ divΨ = 2τρλW

−D
∗

2

[
(1− ν)∆Ψ+ (1 + ν) graddivΨ

]
− div

(
gradΨ ·M (2)

0

)
+ pH̃ (Ψ+ gradW ) = λ

ρτ̃H2

2
Ψ

AssumingN0 = N0I
P = pH̃IP andM (2)

0 =M
(2)
0 IP , the eigenvalue problem can be rewritten as

∆W + λ
2τρ

pH̃
W + divΨ = 0 (6.3)

(
D∗ 1− ν

2
+M

(2)
0

)
∆Ψ+D∗ 1 + ν

2
graddivΨ+

(
λ
ρτ̃H2

2
− pH̃

)
Ψ− pH̃ gradW = 0 (6.4)

2. The boundary conditions without external actions, rewritten in terms of the eigenfunctionsW ,Ψ.

(a) On a clamped edge:

W = 0 and Ψ = 0
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(b) On a simply-supported edge (soft type):

W = 0

And Γs = Γν = 0 imply

D∗[(1− ν)ν0 · SYMgradΨ · ν0 + ν divΨ
]
+ ν0 · gradΨ ·M (2)

0 · ν0 +
pH̃3

12
Ψ,s0 · s0 = 0

D∗(1− ν)s0 · SYMgradΨ · ν0 + s0 · gradΨ ·M (2)
0 · ν0 −

pH̃3

12
Ψ,s0 · ν0 = 0

(c) On a simply-supported edge (hard type):

W = 0

D∗[(1− ν)ν0 · SYMgradΨ · ν0 + ν divΨ
]
+ ν0 · gradΨ ·M (2)

0 · ν0 +
pH̃3

12
Ψ,s0 · s0 = 0

Ψ · s0 = 0

(d) On a free edge: q · a3 = 0 implies

(Ψ+ gradW ) · ν0 = 0

And Γs = Γν = 0 imply

D∗[(1− ν)ν0 · SYMgradΨ · ν0 + ν divΨ
]
+ ν0 · gradΨ ·M (2)

0 · ν0 +
pH̃3

12
Ψ,s0 · s0 = 0

D∗(1− ν)s0 · SYMgradΨ · ν0 + s0 · gradΨ ·M (2)
0 · ν0 −

pH̃3

12
Ψ,s0 · ν0 = 0

One can prove the following two results:

• The operatorsM andL are positive-definite,meaning that the eigenvaluesλ are strictly positive,which

justifies its interpretation as the square of the circular frequency λ = ω2.

• TheoperatorsMandLare symmetric,meaning that theeigenvectors

{
W

Ψ

}
areM–andL–orthogonal.

With these two conditions met, from the expansion theorem, any function that satisfies the boundary con-

ditions can be written as an infinite sum of eigenfunctions:{
W

ψ

}
=

∞∑
j=1

qj(t)

{
Wj

Ψj

}

where the coefficients qj(t) are unknown scalar functions of time to be determined.
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6.3 Natural bendingmodesW

The local equations (6.3) and (6.4) are coupled. Without assuming a specific coordinate system, wewill strive

to separate the bending and shear problems as far as can be done. Taking the divergence of Eq. (6.4) yields

(
D∗ +M

(2)
0

)
∆divΨ+

(
λ
ρτ̃H2

2
− pH̃

)
divΨ− pH̃∆W = 0 (6.5)

thanks to the vector calculus identity div∆Ψ = ∆divΨ. The divergence ofΨ can be expressed in terms of

W with Eq. (6.3):

divΨ = −∆W − λ2τρ
pH̃

W

and

∆divΨ = −∆∆W − λ2τρ
pH̃

∆W

hence (
D∗ +M

(2)
0

)(
−∆∆W − λ2τρ

pH̃
∆W

)
+

(
λ
ρτ̃H2

2
− pH̃

)(
−∆W − λ2τρ

pH̃
W

)
− pH̃∆W = 0

(
D∗ +M

(2)
0

)
∆∆W +

((
D∗ +M

(2)
0

)
λ
2τρ

pH̃
+ λ

ρτ̃H2

2
− pH̃ + pH̃

)
∆W + λ

2τρ

pH̃

(
λ
ρτ̃H2

2
− pH̃

)
W = 0

∆∆W +

λ2τρ
pH̃

+
λρτ̃H2

2
(
D∗ +M

(2)
0

)


︸ ︷︷ ︸
−S

∆W + λ
2τρ

D∗ +M
(2)
0

(
λρτ̃H2

2pH̃
− 1

)
︸ ︷︷ ︸

P

W = 0

which is of the form

∆∆W − S∆W + PW = 0 (6.6)

where

S ≡ −λ

2τρ

pH̃
+

ρτ̃H2

2
(
D∗ +M

(2)
0

)
 (in m−2)

P ≡ λ 2τρ

D∗ +M
(2)
0

(
λρτ̃H2

2pH̃
− 1

)
(in m−4)

(6.7)

S is always negative: it is physically impossible to have S > 0. However, P can be positive or negative de-

pending on λ. The quadratic equation associated to (6.6) is introduced:

r4 − Sr2 + P = 0 (6.8)

Its discriminant is

S2 − 4P =

λ2τρ
pH̃

+
λρτ̃H2

2
(
D∗ +M

(2)
0

)
2

+ 4λ
2τρ

D∗ +M
(2)
0

(
λρτ̃H2

2pH̃
− 1

)
> 0 (6.9)
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and the two roots are

Ω2
1 ≡

1

2

(
S −

√
S2 − 4P

)
Ω2

2 ≡
1

2

(
S +

√
S2 − 4P

) (6.10)

The values of Ω2
1 and Ω2

2 are plotted in Fig. 6.1 along with Ω2
3 which will be defined below in Eq. (6.16). Ω2

2

vanishes when P = 0 at a specific λ denoted λc (c is for cutoff or critical). This value happens to be the ratio of

shear stiffness over rotatory inertia:

λc = ω2
c = pH̃

(
ρτ̃H2

2

)−1

and fc = ωc/2π is the cutoff frequency (in Hz).

0 50 100 150 200 250
f (Hz)

20

15

10

5

0

5

fc

2
1 (m 2)
2
2 (m 2)
2
3 (m 2)

Figure 6.1: Dispersion relations (Eτ = 389N/mm, ν = 0.25, ρ = 1000 kg/m³,H∅ = 20 cm).

The differential equation (6.6) with unknownW is first rewritten as

∆∆W − S∆W + PW = 0⇔ (∆− Ω2
1)(∆− Ω2

2)W = 0

whereΩ2
1 andΩ2

2 are the roots of the quadratic equation (6.8) given in Eq. (6.10). It is then solved in two steps

by definingW1 ≡ (∆− Ω2
2)W which allows to restate the problem as

(
∆− Ω2

1

)
W1 = 0 (6.11a)

(
∆− Ω2

2

)
W =W1 (6.11b)

After the intermediate variableW1 has been determined, the second equation (6.11b), which depends on

W1, must be solved. The complete solutionW is the sum of:

• the general solutionW2 of the homogeneous equation (∆− Ω2
2)W2 = 0,

• and a particular solutionW ∗ of (∆− Ω2
2)W

∗ =W1.

The homogeneous equation for W2 is similar to Eq. (6.11a) for W1 (which is known at this stage) and is

therefore solved in a similar fashion, which will be detailed for a rectangular panel in Section 6.5.1. Let us
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then look for a particular solution of the formW ∗ = kW1, where k is a constant. As a result,∆W ∗ = k∆W1 =

−kΩ2
1W1. Substituting this expression into (∆− Ω2

2)W
∗ =W1 yields

k = − 1

Ω2
1 +Ω2

2

⇒ W ∗ = − 1

Ω2
1 +Ω2

2

W1

Thus, one obtains

W =W2 +W ∗ =W2 −
1

Ω2
1 +Ω2

2

W1

Insofar asW1 is a solution of the homogeneous equation, so is any function proportional toW1. Thus we

can retract the multiplicative constant in front ofW1, which simplifies the above equation to

W =W1 +W2

Weconclude fromthis demonstration that the eigenfunctionW canbewritten as the sumof two solutions:

W =W1 +W2 where

 W1 is solution of (∆− Ω2
1)W1 = 0

W2 is solution of (∆− Ω2
2)W2 = 0

6.4 Natural shear modesΨ

Here we will show thatΨ can be written as a function ofW1,W2 and a new potential that will be denoted as

W3, that will satisfy an equation of the same form as (6.11). Taking the gradient of Eq. (6.3):

grad∆W + λ
2τρ

pH̃
gradW + graddivΨ = 0 (6.12)

hence graddivΨ = −grad∆W − λ2τρ
pH̃

gradW . Thus Eq. (6.4) becomes

(
D∗ 1− ν

2
+M

(2)
0

)
∆Ψ+D∗ 1 + ν

2

(
− grad∆W − λ2τρ

pH̃
gradW

)
+

(
λ
ρτ̃H2

2
− pH̃

)
Ψ− pH̃ gradW = 0

(6.13)(
D∗ 1− ν

2
+M

(2)
0

)
∆Ψ+

(
λ
ρτ̃H2

2
− pH̃

)
Ψ = D∗ 1 + ν

2
grad∆W +

(
D∗ 1 + ν

2
λ
2τρ

pH̃
+ pH̃

)
gradW (6.14)

As we have shown in the above,W is the sum of two functionsW1 andW2 that satisfy the relations (6.11),

which lets us write:
grad∆W = grad∆(W1 +W2)

= grad
(
Ω2

1W1 +Ω2
2W2

)
= Ω2

1 gradW1 +Ω2
2 gradW2

Hence

∆Ψ− Ω2
3Ψ =

D∗ 1 + ν

2

(
Ω2

1 + λ
2τρ

pH̃

)
+ pH̃

D∗ 1− ν
2

+M
(2)
0

gradW1 +

D∗ 1 + ν

2

(
Ω2

2 + λ
2τρ

pH̃

)
+ pH̃

D∗ 1− ν
2

+M
(2)
0

gradW2 (6.15)
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where

Ω2
3 =

pH̃ − λρτ̃H
2

2

D∗ 1− ν
2

+M
(2)
0

(6.16)

Remark 6.2. Note that we can also write Ω2
3 as a function of the cutoff eigenvalue λc:

Ω2
3 =

pH̃

D∗ 1− ν
2

+M
(2)
0

(
1− λ

λc

)
(6.17)

6.4.1 A particular solution for the natural shear modes

The form of Eq. (6.15) suggests that a particular solution could be a linear combination of the gradients ofW1

andW2. This is coherent with the fact that in Love–Kirchhoff theory, the equivalent ofΨwould be−gradW .

From these observations, the solution is sought for in the following form:

Ψ∗ = k1 gradW1 + k2 gradW2 (6.18)

where the two scalar coefficients k1, k2must be determined. The Laplacian of this candidatefield is calculated

using Eq. (6.11):
∆Ψ∗ = k1∆gradW1 + k2∆gradW2

= k1 grad∆W1 + k2 grad∆W2

= k1Ω
2
1 gradW1 + k2Ω

2
2 gradW2

(6.19)

whence

∆Ψ∗ − Ω2
3Ψ

∗ = k1
(
Ω2

1 − Ω2
3

)
gradW1 + k2

(
Ω2

2 − Ω2
3

)
gradW2 (6.20)

By equating this relation with Eq. (6.15):

k1
(
Ω2

1 − Ω2
3

)
=

D∗ 1 + ν

2

(
Ω2

1 + λ
2τρ

pH̃

)
+ pH̃

D∗ 1− ν
2

+M
(2)
0

k2
(
Ω2

2 − Ω2
3

)
=

D∗ 1 + ν

2

(
Ω2

2 + λ
2τρ

pH̃

)
+ pH̃

D∗ 1− ν
2

+M
(2)
0

k1 =

D∗ 1 + ν

2

(
Ω2

1 + λ
2τρ

pH̃

)
+ pH̃(

D∗ 1− ν
2

+M
(2)
0

)(
Ω2

1 − Ω2
3

)

k2 =

D∗ 1 + ν

2

(
Ω2

2 + λ
2τρ

pH̃

)
+ pH̃(

D∗ 1− ν
2

+M
(2)
0

)(
Ω2

2 − Ω2
3

)
(6.21)

Thevalues ofk1 andk2 areplotted inFig. 6.2. The coefficientk1 is 1 for f =0Hz thenquickly vanishesbefore

the cutoff frequency. As for k2, is starts at zero, goes to infinity from both sides of the cutoff frequency fc,

then converges to a positive value as f goes to infinity. These numbers are related to the σ1, σ2 of Section 6.6.2

by the relation kα = σα − 1, and so the same observations are made.
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Figure 6.2: Values of the coefficients in the particular solution of the natural shear modes.

Remark 6.3. If the shear stiffness pH̃ becomes infinite and the rotatory inertia
ρτ̃H2

2
is suppressed, then both

of the coefficients k1, k2 will equal−1, which corresponds to the Love–Kirchhoff kinematicsΨ = −gradW .

6.4.2 A solution to the homogeneous equation for natural shear modes

The homogeneous equation associated to Eq. (6.15) is

∆Ψ0 − Ω2
3Ψ0 = 0 (6.22)

We will show that the unknown field Ψ0 is divergence free and thus it must derive from a potentialW3 for

whichwewill provide a definition. Firstly, onemust show that∆∆divΨ−S∆divΨ+P divΨ = 0. By taking

the Laplacian of Eq. (6.3):

∆∆W + λ
2τρ

pH̃
∆W +∆divΨ = 0 (6.23)

and from the divergence of Eq. (6.4) that was previously calculated in Eq. (6.5):

∆W =
D∗ +M

(2)
0

pH̃
∆divΨ+

(
λ
ρτ̃H2

2pH̃
− 1

)
divΨ (6.24)

The Laplacian ofW from Eq. (6.24) is substituted into Eq. (6.23)

D∗ +M
(2)
0

pH̃
∆∆divΨ+

[
λ
ρτ̃H2

2pH̃
− 1 + λ

2τρ

pH̃

D∗ +M
(2)
0

pH̃
+ 1

]
∆divΨ+ λ

2τρ

pH̃

(
λ
ρτ̃H2

2pH̃
− 1

)
divΨ = 0

which is indeed

∆∆divΨ− S∆divΨ+ P divΨ = 0 (6.25)

Now, the divergence ofΨ is expressed after replacing the unknown by the sum of the homogeneous solution

Ψ0 and the particular solutionΨ∗:

divΨ = div(Ψ0 +Ψ∗) = divΨ0 + divΨ∗
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and Eq. (6.25) can be rewritten as:

∆∆divΨ0 − S∆divΨ0 + P divΨ0 +∆∆divΨ∗ − S∆divΨ∗ + P divΨ∗ = 0

the form ofΨ∗ is known from Eq. (6.18), and therefore its divergence is

divΨ∗ = k1∆W1 + k2∆W2

= k1Ω
2
1W1 + k2Ω

2
2W2

which is a linear combination ofW1 andW2, meaning that it is also a solution of Eq. (6.6). Hence

∆∆divΨ∗ − S∆divΨ∗ + P divΨ∗ = ∆∆(k1Ω
2
1W1 + k2Ω

2
2W2)− S∆(k1Ω

2
1W1 + k2Ω

2
2W2)

+ P (k1Ω
2
1W1 + k2Ω

2
2W2)

= 0

which yields

∆∆divΨ0 − S∆divΨ0 + P divΨ0 = 0 (6.26)

and from Eq. (6.22), we have∆divΨ0 = Ω2
3 divΨ0, which entails

(
Ω4

3 − S Ω2
3 + P

)
divΨ0 = 0 (6.27)

The expression between parentheses is the quadratic equation (6.8) whose roots are Ω2
1 and Ω2

2. We have

shown earlier that Ω2
1, Ω

2
2 and Ω2

3 always take distinct values, except in the very special case where P = 0 ⇔
λ = λc, which causes Ω2

2 = Ω2
3 = 0 (as can be seen in Fig. 6.1). Therefore the expression in parentheses can

never be zero and

divΨ0 = 0

unless the exciting frequency if the cutoff frequency (λ = λc).

We have proven that the homogeneous solutionΨ0 is divergence free, an important property that is ap-

plied immediately: by virtue of the fundamental theorem of vector calculus (also known as Helmholtz’s the-

orem, illustrated in Fig. 6.3), any sufficiently smooth vector field can be written as the sum of a curl-free and

a divergence-free vector fields, that is, there exist φ and V such that

Ψ0 = gradφ+ curl(V )

In our case, the vector fieldΨ =

∣∣∣∣∣∣∣∣
Ψ1

Ψ2

0

is two-dimensional, and so only one component of V is needed¹:

Ψ0 = gradφ+ curl(W3e3) (6.28)

The last result to be established involves the definition of the potentialW3. The following conditions on φ

andW3 are sufficient, but not necessary. Doing so allows us to retrieve the expressions found in the literature

available to us, which are often presented without further explanations. Two operations are applied to the

above expression:

¹In Cartesian coordinates: curlΨ =

∣∣∣∣∣∣
0
0

Ψy,x −Ψx,y

and curl(W3e3) =

∣∣∣∣∣∣
0
0

−W3,xx −W3,yy

.
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=      +      

Figure 6.3: Illustration of the Helmholtz-Hodge theorem. Under the appropriate assumptions, a vector field
can be decomposed as the sum of a gradient field and a divergence-free field. The scalar potentials φ andW3

are shown in color.

• First, computing the divergence gives

divΨ0 = ∆φ = 0

We have shown previously that Ψ0 is divergence-free and so we will set φ = 0. This assertion seems

restrictive since the scalar potential φ could be a harmonic function which satisfies the above Laplace’s

equation. The boundary conditions may forbid this possibility, but we have not been able to prove it

rigorously within the time allotted to this research.

• Second, taking the curl of the Helmholtz decomposition (6.28) yields

curlΨ0 = curl curl(W3e3)

Using the vector analysis identity curl curlv = graddivv −∆v, this relation becomes

curlΨ0 = −∆(W3e3)

sinceW3 is a 2D field that is independent of z. The curl of the homogeneous equation (6.22) writes

curl(∆Ψ0)− Ω2
3 curl(Ψ0) = 0⇔∆ curl(Ψ0)− Ω2

3 curl(Ψ0) = 0

and so

∆
(
−∆(W3e3)

)
+Ω2

3∆(W3e3) = 0⇔ −∆∆W3e3 +Ω2
3∆W3e3 = 0

projected onto vector e3:

∆(∆W3 − Ω2
3W3) = 0

Again, we are restrictive by choosing to satisfy only∆W3−Ω2
3W3 = 0, hoping that the omitted solutions

would not be permitted by boundary conditions anyway.

Finally, the homogeneous solution of Eq. (6.22) is

Ψ0 = curl(W3e3) (6.29)
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whereW3 is defined by

(∆− Ω2
3)W3 = 0 (6.30)

The natural modes ofΨ are obtained by summing the particular solutionΨ∗ given by Eq. (6.18) and the

homogeneous solutionΨ0 of Eq. (6.29).

Ψ = k1 gradW1 + k2 gradW2 + curl(W3e3) (6.31)

where
(∆− Ω2

1)W1 = 0

(∆− Ω2
2)W2 = 0

(∆− Ω2
3)W3 = 0

(6.32)

6.5 Simply-supported rectangular inflatable panel

The threeHelmholtz equations (6.32)will nowbe solved for a rectangular inflatable panelwith four supported

edges. Although Cartesian coordinates are easier to manipulate than polar coordinates, studying the free

vibrations of rectangular plates is more challenging than circular plates. Indeed, the number of possibles

expressions that are solution to the eigenvalue problem is bigger and each eigenmode should be examined

one by one.

6.5.1 Natural shapes of rectangular inflatable panels

a

b

ex

ey

Figure 6.4: Geometry of the simply supported rectangular panel.

The rectangularpanelhas sidesaand balongxand y andall its edgesare simply-supported (SSSS), Fig. 6.4.

In Cartesian coordinates, the unknown displacement components are

W =W (x, y, t) ψ = ψx(x, y, t)ex + ψy(x, y, t)ey

and their corresponding eigenmodes are

W =W (x, y) Ψ = Ψx(x, y)ex +Ψy(x, y)ey

The eigenmodes forW =W1 +W2 are determined by solving the two Helmholtz equations:

(∆− Ω2
1)W1 = 0

(∆− Ω2
2)W2 = 0
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1. The modified biharmonic equation (6.6) resembles the one commonly encountered in membrane vi-

bration problems, which hints at the idea that it can be solved by separation of variables. Let us look for

the solutionW1 as the product: W1 = X(x)Y (y). Substituting this expression into (6.11a) and dividing

the result byX(x)Y (y):
X,x2

X︸ ︷︷ ︸
function of x

+
Y,y2

Y︸︷︷︸
function of y

− Ω2
1 = 0

The only possibility is for
X,x2

X
and

Y,y2

Y
to be constants. Thus, there are three options:

X,x2

X
= +α2 and

Y,y2

Y
= +β2 with +α2 + β2 = Ω2

1

or
X,x2

X
= −α2 and

Y,y2

Y
= +β2 with −α2 + β2 = Ω2

1

or
X,x2

X
= +α2 and

Y,y2

Y
= −β2 with +α2 − β2 = Ω2

1

The case where X,x2/X = −α2 and Y,y2/Y = −β2 is impossible since −α2 − β2 < 0 and Ω2
1 is always

positive.

2. The second Helmholtz equation forW2 is similar and is therefore solved in a similar fashion. Again, the

solutionW2 is presumed tobe aproduct of two functions:W2 = X(x)Y (y). The equation (∆−Ω2
2)W2 = 0

then becomes
X,x2

X︸ ︷︷ ︸
function of x

+
Y,y2

Y︸︷︷︸
function of y

− Ω2
2 = 0

which entails the following options:

X,x2

X
= +γ2 and

Y,y2

Y
= +δ2 with + γ2 + δ2 = Ω2

2 (LF only)

or
X,x2

X
= +γ2 and

Y,y2

Y
= −δ2 with + γ2 − δ2 = Ω2

2

or
X,x2

X
= −γ2 and

Y,y2

Y
= +δ2 with − γ2 + δ2 = Ω2

2

or
X,x2

X
= −γ2 and

Y,y2

Y
= −δ2 with − γ2 − δ2 = Ω2

2 (HF only)

Note that the case X,x2/X = +γ2 and Y,y2/Y = +δ2 may only happen in the low-frequency domain

where Ω2
2 is always positive, and the case−γ2 − δ2 = Ω2

2 may only occur in the high-frequency domain

where Ω2
2 is always negative.

Hence, for a rectangular panel, the possible eigenmodes are expressed as

W (x, y) = X1(x)Y1(y) +X2(x)Y2(y) (6.33)

where the productsX1Y1 andX2Y2 can be

X1(x)Y1(y) = (A1 sinαx+A2 cosαx) (A3 sinβy +A4 cosβy) with α2 + β2 = Ω2
1

or = (A1 sinαx+A2 cosαx) (A3 sinhβy +A4 coshβy) with α2 − β2 = Ω2
1

or = (A1 sinhαx+A2 coshαx) (A3 sinβy +A4 cosβy) with − α2 + β2 = Ω2
1

(6.34a)
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and

X2(x)Y2(y) = (A5 sinh γx+A6 cosh γx) (A7 sinh δy +A8 cosh δy) with γ2 + δ2 = Ω2
2

or = (A5 sinh γx+A6 cosh γx) (A7 sin δy +A8 cos δy) with γ2 − δ2 = Ω2
2

or = (A5 sin γx+A6 cos γx) (A7 sinh δy +A8 cosh δy) with − γ2 + δ2 = Ω2
2

or = (A5 sin γx+A6 cos γx) (A7 sin δy +A8 cos δy) with − γ2 − δ2 = Ω2
2

(6.34b)

where α, β, γ, δ are constants called thewavenumbers of the eigenmode. A1, . . . , A8 are other constants that

determine the phase and amplitude of each stationary wave, and most of them will be determined when ap-

plying the boundary conditions. In a given frequency range (high or low), the three expressions for X1Y1

combine with the three possible expressions ofX2Y2 to form nine expressions ofW .

The potentialW3 is solution of (∆−Ω2
3)W3 = 0whichhas the same formas (∆−Ω2

2)W2 = 0. Consequently,

the solutionW3 has the same form asW2 with Ω2
3 instead of Ω

2
2.

W3(x, y) = (C1 sinh cx+ C2 cosh cx) (C3 sinh dy + C4 cosh dy) with c2 + d2 = Ω2
3

or = (C1 sinh cx+ C2 cosh cx) (C3 sin dy + C4 cos dy) with c2 − d2 = Ω2
3

or = (C1 sin cx+ C2 cos cx) (C3 sinh dy + C4 cosh dy) with − c2 + d2 = Ω2
3

or = (C1 sin cx+ C2 cos cx) (C3 sin dy + C4 cos dy) with − c2 − d2 = Ω2
3

(6.35)

In the following, to simplify thepresentationof the solvingprocess,weset the solutionW (x, y) = X1(x)Y1(y)+

X2(x)Y2(y) to have only one of the above mentioned expressions:

W = (A1 sinαx+A2 cosαx) (A3 sinβy +A4 cosβy) + (A5 sinh γx+A6 cosh γx) (A7 sinh δy +A8 cosh δy)

whereα2+β2 = Ω2
1 and γ

2+δ2 = Ω2
2. Likewise, the potentialW3 inΨ = k1 gradW1+k2 gradW2+curl(W3e3)

is taken as

W3(x, y) = (C1 sinh cx+ C2 cosh cx) (C3 sinh dy + C4 cosh dy)

where c2 + d2 = Ω2
3. Hence the form of the eigenmode forΨ is deduced from (6.31):

Ψx = k1X1,xY1 + k2X2,xY2 + (C1 sinh cx+ C2 cosh cx)(C3 sinh dy + C4 cosh dy)

Ψy = k1X1Y1,y + k2X2Y2,y + (C1 sinh cx+ C2 cosh cx)(C3 sinh dy + C4 cosh dy)
(6.36)

The derivatives are computed as follows:

⇒
Ψx,x = k1X1,x2Y1 + k2X2,x2Y2 + c(C1 cosh cx+ C2 sinh cx)(C3 sinh dy + C4 cosh dy)

Ψy,y = k1X1Y1,y2 + k2X2Y2,y2 + d(C1 sinh cx+ C2 cosh cx)(C3 cosh dy + C4 sinh dy)

⇒
Ψx,x = −k1α2X1Y1 + k2γ

2X2Y2 + c(C1 cosh cx+ C2 sinh cx)(C3 sinh dy + C4 cosh dy)

Ψy,y = −k1β2X1Y1 + k2δ
2X2Y2 + d(C1 sinh cx+ C2 cosh cx)(C3 cosh dy + C4 sinh dy)

(6.37)

6.5.2 Boundary conditions

The boundary conditions on eigenmodes for a soft type simple-support given in Section 6.2 are now applied

on the four edges of the panel. Considering first the boundary conditionW = 0where at least one coordinate

x or y is zero lets us cancel constants more rapidly. Starting on the bottom edge where y = 0, the boundary
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conditionW (x, y = 0, t) = 0 is

X1(x)Y1(0) +X2(x)Y2(0) = 0

Since this relation holds for any x ∈ [0, a],{
Y1(0) = 0

Y2(0) = 0
⇒

{
A3 sin 0 +A4 cos 0 = 0

A7 sinh 0 +A8 cosh 0 = 0
⇒ A4 = A8 = 0

Similarly, the left border gives A2 = A6 = 0 . Then, the right border gives

{
X1(a) = 0

X2(a) = 0
⇒

A1 sin(αa) = 0

A5 sinh(γa) = 0
⇒

A1 = 0 or αa = mπ,m ∈ N
A5 = 0 or sinh(γa) = 0⇒ γ = 0

IfA5 = 0 or γ = 0, in either way the termA5 sinh(γx) is zero. Finally, the top border gives{
Y1(b) = 0

Y2(b) = 0
⇒

A3 sin(βb) = 0

A7 sinh(δb) = 0
⇒

A3 = 0 or βb = nπ, n ∈ N
A7 = 0 or sinh(δb) = 0⇒ δ = 0

If A7 = 0 or δ = 0, in either way the term A7 sinh(δx) is zero. Six constants have been cancelled by applying

the first boundary condition: A1,A2,A6,A8, γ and δ, leaving only

W = A1A3 sin(αx) sin(βy)

The constants A5 and A7 disappear due to γ = δ = 0. Cancelling either A1 or A3 leads to the trivial solution

W = 0. The other solutions are obtained for A1A3 6= 0, which leads to α =
mπ

a
and β =

nπ

b
as shown in the

above.

The process of writing the boundary conditions forΨ on all four edges is quite long as it is not possible to

cancel any terms until the end, where one arrives at the conclusion that all coefficients Cimust vanish.

Finally, the boundary conditions are satisfied when A2 = A4 = A5 = A6 = A7 = A8 = 0 and Ci = 0.

Therefore, the solution fields take the form

W =Wmn sin (αx) sin (βy)

Ψx = Ψxmn cos (αx) sin (βy)

Ψy = Ψymn sin (αx) cos (βy)

(6.38)

where α =
mπ

a
and β =

nπ

b
. The natural shapes are similar to the well-known ones for thin classical plates,

Fig. 6.5. In the end, it appears that hyperbolic functions are not permitted by the SSSS boundary conditions,

and that all the remaining terms inW stem fromW1 andnotW2,W3. Note that in thehigh-frequencydomain,

other eigenmodes exist as the sum of two products of sine functions with different wavenumbers, and they

should be addressed in future works.

6.5.3 Natural frequencies of rectangular inflatable panels

The classicalmethod for finding the eigenfrequencies is towrite the transcendent characteristic equation and

look for its roots numerically. However, in the special case of simply-supported rectangular panels, there

exists a simple method that yields analytical expressions of the natural frequencies. The reasoning in this

section was inspired by Rakotomanana’s book on the dynamics of elastic structures [78]. It takes advantage
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Figure 6.5: First flexural vibration modes (m,n) of a supported rectangular inflatable panel withWmn = 1,
Ψxmn = Ψymn = 1.

of the sine and cosine functions’ property of being proportional to their second derivatives, which allows

them to be cancelled out from the equations of motion. Substituting the solution fields of Eq. (6.38) into the

eigenvalue equations (6.3) and (6.4) yields the following 3 by 3 system:
P11 − 2τρω2 P12 P13

P12 P22 −
ρτ̃H2

2
ω2 P23

P13 P23 P33 −
ρτ̃H2

2
ω2



Wmn

Ψxmn

Ψymn

 =


0

0

0


where

P11 ≡ pH̃(α2 + β2)

P22 ≡ D∗
(
α2 +

1− ν
2

β2

)
+M

(2)
0 (α2 + β2) + pH̃

P33 ≡ D∗
(
1− ν
2

α2 + β2

)
+M

(2)
0 (α2 + β2) + pH̃

P12 ≡ P21 = pH̃α

P13 ≡ P31 = pH̃β

P23 ≡ P32 = D∗ 1 + ν

2
αβ

where we recall thatD∗ =
Eτ̃H2

2(1− ν2)
andM (2)

0 =
pH̃τ̃H2

4τ
. The first root from Cardan’s method is

ω2
0 =

2

ρτ̃H2

[
pH̃ +

(
D∗ 1− ν

2
+M

(2)
0

)
(α2 + β2)

]
(6.39)
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Factorizing the determinant by this root unveils a quadratic equation in ω2:

2τρ× ρτ̃H2

2
ω4 −

[
ρτ̃H2

2
pH̃

(
α2 + β2

)
+ 2τρ

(
pH̃ +

(
D∗ +M

(2)
0

) (
α2 + β2

))]
ω2

+
(
D∗ +M

(2)
0

)
pH̃

(
α2 + β2

)2
= 0

Note that α2 + β2 = Ω2
1. The two roots are

ω2
± =

1

2ρ2H2τ τ̃

[
ρτ̃H2

2
pH̃

(
α2 + β2

)
+ 2τρ

(
pH̃ +

(
D∗ +M

(2)
0

) (
α2 + β2

))
±
√
∆

]
(6.40)

where

∆ ≡
[
ρτ̃H2

2
pH̃

(
α2 + β2

)
+ 2τρ

(
pH̃ +

(
D∗ +M

(2)
0

) (
α2 + β2

))]2
− 4

(
ρ2H2τ τ̃

) (
D∗ +M

(2)
0

)
pH̃(α2 + β2)2

Since the expressions of ω2 from Eq. (6.39) and (6.40) are symmetric inm and n, when the panel is square

(a = b), the modes that are simply a quarter turn rotation of another mode will have the same frequency:

fmn = fnm. In Fig. 6.6 the three natural frequencies of a “classical” (not inflatable) plate are plotted and

compared to Hashemi’s results [33]. Interestingly, only the lowest of our previously calculated frequencies,

ω−, can be retrieved in his work. Although he does mention additional parameters denoted λ1, λ2 and λ3,

only λ1 has non-zero values that may cancel the characteristic equation. While it is possible to compute the

values of ω0, ω+ and ω−, only values corresponding to ω− are found in the literature. An explanation may be

that the characteristic equation stems from applying the boundary conditions to the natural shapes: it can

only be cancelled by eigenfrequencies that satisfy the boundary conditions. Thus it appears that ω0 and ω+ are

eigenfrequencies that correspond to natural shapes which cannot exist in a plate with a simply-supported

edge. An explanation is yet to be found as for why this approach produced two superfluous eigenfrequencies,

even though the natural shape substituted into the local equilibrium took into account boundary conditions

that forbade them. Following this discussion, we will focus exclusively on ω− in the following.
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Figure 6.6: Eigenfrequencies of a simply-supported rectangular plate (a = 0.5 m, b = 1 m, H∅ = 5 cm,
E = 2 GPa, ν = 0.3, ρ = 2000 kg/m³).

Returning to inflatable panels, the spectrum (the set of all the eigenfrequencies) is plotted against infla-

tion pressure in Fig 6.7. As was the case with circular panels, they approximately follow a square root law

of the inflation pressure p, especially as the resonance frequency becomes higher. A simplified model of the

vibrations of rectangular membranes is proposed in the appendices, Section C.1.

6.6 Historical approach to solving the eigenvalue problem

Alternatively, the eigenvalue problem can be solved using the original method by Mindlin and Deresiewicz.

The notations change but the main results remain identical to the ones that have been established in this

chapter. Some additional observations will be discussed.

The Helmholtz-Hodge theorem in 2D assures that there exist two scalar fields φ andW3 such that Ψ =

gradφ + curl(W3ez). In Cartesian coordinates, the components of the fiber orientation eigenmodeΨ derive

from potentials φ,W3:

Ψx =
∂φ

∂x
+
∂W3

∂y

Ψy =
∂φ

∂y
− ∂W3

∂x

IfΨ is expressed as a function of the potentials φ andW3, then Eq. (6.3) becomes

∆(W + φ) + ω2 2τρ

pH̃
W = 0 (6.41)

that is rewritten as

∆(W + φ) + VsD
2
0W = 0 (6.42)

where Vs =
K

pH̃
is the ratio of flexural stiffness over shear stiffness andD2

0 = ω2 2τρ

K
the frequency parameter
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Figure 6.7: Natural frequencies of a simply-supported rectangular inflatable panel as a function of the infla-
tion pressure (Eτ = 390N/mm, ν = 0.25, ρ = 1000 kg/m³).

(in m−2). Recall thatK = D∗ +M
(2)
0 . The moment equilibrium equation projected on the x axis writes

D∗

2

[
(1− ν)∆(φ,x +W3,y) + (1 + ν)(φ,xxx +W3,xxy + φ,xyy −W3,xxy)

]
+M

(2)
0 ∆(φ,x +W3,y)− pH̃(φ,x +W3,y +W,x) = −ω2 ρτ̃H

2

2
(φ,x +W3,y)

(
D∗ +M

(2)
0

)
∆φ,x +

(
D∗ 1− ν

2
+M

(2)
0

)
∆W3,y − pH̃(φ,x +W3,y +W,x) + ω2 ρτ̃H

2

2
(φ,x +W3,y) = 0

the terms are rearranged to separate those that affect φ andW from the ones that affectW3:

∂

∂x

[
K∆φ+

(
ω2 ρτ̃H

2

2
− pH̃

)
φ− pH̃W

]
+

∂

∂y

[
Kν∆W3 +

(
ω2 ρτ̃H

2

2
− pH̃

)
W3

]
= 0

where Kν = D∗ 1− ν
2

+M
(2)
0 . The same reasoning is applied for the y component to produce the following

system of two equations:

∂

∂x

[
∆φ+

(
ViD

2
0 − V −1

s

)
φ− V −1

s W
]
+
Kν

K

∂

∂y

[
∆W3 +

K

Kν

(
ViD

2
0 − V −1

s

)
W3

]
= 0 (6.43a)

∂

∂y

[
∆φ+

(
ViD

2
0 − V −1

s

)
φ− V −1

s W
]
− Kν

K

∂

∂x

[
∆W3 +

K

Kν

(
ViD

2
0 − V −1

s

)
W3

]
= 0 (6.43b)
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where Vi =
ρτ̃H2

2

2τρ
=
τ̃H2

4τ
is the ratio of rotatory inertia and flexural inertia. By differentiating (6.43a) with

respect to x and (6.43b) with respect to y, the addition of the two resulting equations is the following Laplace

equation

∆
(
∆φ+

(
ViD

2
0 − V −1

s

)
φ− V −1

s W
)
= 0 (6.44)

Next, differentiation with respect to y and x followed by subtraction of Equations (6.43) gives

∆

(
∆+

K

Kν

(
ViD

2
0 − V −1

s

))
W3 = 0 (6.45)

where we define

D3 ≡
K

Kν

(
ViD

2
0 − V −1

s

)
(6.46)

Note that Equation (6.45) can be solved independently from (6.44). Fromnowon, the same reasoning applies

in all coordinates systems. One can assume that the potential φ is proportional to the unknown transverse

displacementW : by choosing φ = (σ − 1)W , Equation (6.45) implies

∆
(
W + (σ − 1)W

)
+ VsD

2
0W = 0 ⇒ ∆W +

VsD
2
0

σ
W = 0 , σ 6= 0

It is observed that the Laplacian ofW must be proportional toW . Let us defineDW such that∆W = −DWW .

Equation (6.44) becomes

(σ − 1)D2
WW −

(
ViD

2
0 − V −1

s

)
(σ − 1)DWW + V −1

s DWW = 0 (6.47)

We introduced two constant parameters, σ andDW , which must satisfy

DW =
VsD

2
0

σ
(6.48a)

DW = ViD
2
0 −

1

Vs
− 1

Vs(σ − 1)
(6.48b)

Substituting the expression of σ from the first equation into the second yields(
V 2
s D

2
0

DW
− Vs

)
ViD

2
0 −

V 2
s D

2
0

DW
= V 2

s D
2
0 − VsDW (6.49)

multiplying by−DW /Vs and rearranging terms gives

D2
W − (Vi + Vs)D

2
0DW + ViVsD

4
0 −D2

0 = 0

Two solutions forDW exist, provided that

(Vi + Vs)
2D4

0 − 4ViVsD
4
0 + 4D2

0 = D4
0

[
(Vi − Vs)2 + 4D−2

0

]
> 0

then, the solutions are

D1, D2 ≡
D2

0

2

(
Vi + Vs ±

√
(Vi − Vs)2 + 4D−2

0

)
(6.50)

The constant σ can then be deduced from σ =
VsD

2
0

DW
. SubstitutingD1,D2 from Equation (6.50) and using
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the conjugate of the denominator:

σ =

VsD
2
0

[
Vi + Vs ∓

√
(Vi − Vs)2 + 4D−2

0

]
1

2
D2

0

[
(Vi + Vs)2 − (Vi − Vs)2 − 4D−2

0

]

σ1 ≡
D2

ViD2
0 − V

−1
s

σ2 ≡
D1

ViD2
0 − V

−1
s

(6.51)

From∆W = −DWW we deduced two possible values ofDW denoted asD1 andD2, which give rise to two

possible solutionsW1 andW2 forW . Ultimately, determining the natural modes of inflatable panels with the

method of potentials comes down to solving three Helmholtz equations:

(∆ +D1)W1 = 0

(∆ +D2)W2 = 0

(∆ +D3)W3 = 0

(6.52)

The unknown fieldsW1,W2 andW3 are called the displacement potentials. The plate-displacement compo-

nents are computed with
W =W1 +W2

Ψx = (σ1 − 1)W1,x + (σ2 − 1)W2,x +W3,y

Ψy = (σ1 − 1)W1,y + (σ2 − 1)W2,y −W3,x

(6.53)

Remark 6.4. When Vi = 0 (no rotatory inertia) and Vs = 0 (infinite shear stiffness), σ vanishes and D1 =

−D2 = D0, meaning that the equations reduce to those of Love–Kirchhoff theory:

(∆ +D0)(∆−D0)W = 0

Note thatD1,D2 andD3 depend on the circular frequency ω throughD0. It is important to study the sign

of D2 andD3 as a function of frequency, as this will change the solutions to Equations (6.52). The values of

Di are plotted againstD0 in Fig 6.8.

6.6.1 Cutoff frequency

The frequency forwhichD2 andD3 vanish is named cutoff frequency and it plays a crucial role in determining

the natural shapes, since the sign ofD2 andD3 changes when this special frequency is exceeded.

D3 = 0⇔ D2
0 =

1

ViVs

⇔ ω2
c

2τρ

K
=

4τpH̃

Kτ̃H2

⇔ ω2
c = pH̃

(
ρτ̃H2

2

)−1

The cutoff frequency increases with the shear stiffness caused by pressurization and decreases with the ro-

tatory inertia of the panel (when the membranes are thicker, heavier or farther apart).

Mode shape at the cutoff frequency
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Figure 6.8: Dispersion relations for an inflatable panel (Eτ = 389 N/mm, ν = 0.25, ρ = 1000 kg/m³, H∅ =
20 cm). Dc is the cutoff frequency parameter.

The last two equations of (6.52) reduce to Laplace equations that can be satisfied in Cartesian coordinates

by a simple equation of the form c11xy + c10x + c01y + c00. This hints at the possibility of having a natural

shape that contains an “offset by a plane” (if the boundary conditions allow it). However, σ2 goes to infinity

near the cutoff frequency (Fig. 6.9), such that the plate-displacement cannot be reconstructed: the equations

at hand fail to describe what happens in this case. Chao and Pao [79] described a method to study flexural

motions of plates at the cutoff frequency. They focused on the propagation of waves inside a plate and not

on the eigenmode shape. To solve the vibration problem at the cutoff frequency, several notations need to be

replaced to obtain a different set of equations. This very special case will not be investigated further in this

dissertation as it seems unlikely to be observed in practice.

6.6.2 Contribution of the potentials to the natural shear modes

The contribution ofW1 andW2 toΨx andΨy can be studied by examining the sign of σ1 and σ2 as a function of

ω. Note that these two numbers are related to the k1, k2 of Section 6.4 by the relation kα = σα − 1, and so the

same observations are made. They are both zero when ω = 0. Then, the first coefficient σ1 rapidly converges

to 1 before the cutoff frequency. In the low-frequency domain, σ2 diverges to −∞ as ω approaches ωc from

the left. In the high-frequency domain, it diverges to∞ as ω approaches ωc from the right and converges to
Vs
Vi

at infinity. One may also compute the asymptotic values of σ1 and σ2 for very large frequencies. D1 and

D2 both diverge to infinity with ω. From the definition of σ in Eq. (6.48a):

σ =
VsD

2
0

DW
=

2Vs

Vi + Vs ±
√

(Vi − Vs)2 +
4

D2
0

(6.54)

AssumingD2
0 −→∞ yields

σ1 =
VsD

2
0

D1
=

2Vs
Vi + Vs + |Vi − Vs|2

σ2 =
VsD

2
0

D2
=

2Vs
Vi + Vs − |Vi − Vs|2

(6.55)
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We need to determine whether Vi is smaller or larger than Vs. For an inflatable panel, Vs/Vi =
K

pH̃

4τ

τ̃H2
≈

4(D∗ +M
(2)
0 )/(pH3), which is numerically much larger than 1 with the geometric and material properties of

our panels. Therefore:

σ1 =
2Vs

Vi + Vs − Vi + Vs
= 1

σ2 =
2Vs

Vi + Vs + Vi − Vs
=
Vs
Vi

(6.56)

Consequently, σ2 is larger than σ1 in the high-frequency domain. Since σ1 converges to 1 before the cutoff

frequency (as seen in Fig. 6.9), Equation (6.53) shows thatW1 will not contribute to the shear mode in the

high-frequency domain: it only plays a role for very low frequencies.
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Figure 6.9: Graph of σ1 and σ2 and their asymptotic values in the frequency domain.

6.7 Vibrations of circular inflatable panels

The geometry and coordinate system of the circular panel is the same as for the static example, Fig. 4.1.

6.7.1 Natural shapes of circular inflatable panels

In polar coordinates, the Helmholtz-Hodge decomposition is written as:

Ψr =
∂φ

∂r
+

1

r

∂W3

∂θ

Ψθ =
1

r

∂φ

∂θ
− ∂W3

∂r

The plate-displacement components are computed with

W =W1 +W2

Ψr = (σ1 − 1)W1,r + (σ2 − 1)W2,r +
W3,θ

r

Ψθ = (σ1 − 1)
W1,θ

r
+ (σ2 − 1)

W2,θ

r
−W3,r

(6.57)
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We will now solve the three Helmholtz equations (6.52). ∀i ∈ {1, 2, 3},

(∆ +Di)Wi = 0⇒Wi,rr +
Wi,r

r
+
Wi,θθ

r2
+DiWi = 0

⇒ r2Wi,rr + rWi,r +Wi,θθ +Dir
2Wi = 0

The method of separation of variables is applied: assuming that the plate-displacements potentials can

be written asWi(r, θ) = fi(r)Θi(θ), the previous equation may be written as

r2fi,rrΘi + rfi,rΘi + fiΘi,θθ +Dir
2fiΘi = 0 (6.58)

dividing by fiΘi yields
r2fi,rr + rfi,r

fi
+Dir

2︸ ︷︷ ︸
function of r only

+
Θi,θθ
Θi︸ ︷︷ ︸

function of θ only

= 0 (6.59)

Therefore, the two underbraced terms must be equal to a constant ±m2 ∈ R. For the sake of clarity, we will
anticipate the results of the integration to settle the sign of±m2:

1. If
Θi,θθ
Θi

= m2, thenΘi is the sum of hyperbolic sine and cosine functions, which are not periodic.

2. If
Θi,θθ
Θi

= −m2, thenΘi is the sum of cosine and sine functions, which are periodic.

Only the second option is possible since the solution must be periodic with respect to θ. Hence

Θi,θθ = −m2Θi ⇒ Θi(θ) = Ci cos(mθ) + Si sin(mθ)

Furthermore, in order to satisfy the periodicity condition Θi(r, θ) = Θi(r, θ + 2π), one must havem ∈ N.
The constant integer m is called the circumferential order (or angular wavenumber) of the natural mode,

since it dictates the number of sinewave cycles on the circumference of the disk. It corresponds to thenumber

of nodal diameters.

r2fi,rr + rfi,r +Dir
2fi = m2fi ⇔ r2fi,rr + rfi,r +

(
Dir

2 −m2
)
fi = 0 (6.60)

IfDi is positive, then fi is the solution of a Bessel equation of orderm. However, bothD2 andD3 are negative

in the low-frequency range and positive in the high-frequency range. We define, ∀i ∈ 2, 3,

δi =

{ √
−Di , ω < ωc√
Di , ω > ωc

and δ1 =
√
D1. Let us anticipate the resolution by discussing the sign ofD2.

• When ω < ωc (low-frequency domain): D2 < 0will be replaced by (jδ2)2 = −δ22, turning Eq. (6.60) into
a modified Bessel equation (via the change of variable r ← ir, see Appendix A).

• When ω = ωc (cutoff frequency): Eq. (6.60) becomes a Cauchy-Euler equation with solutions of the

form fi(r) = Ai cosh(m log(r)) +A′
i sinh(m log(r)). The mode shape is independent ofD2 andD3.

• Whenω > ωc (high-frequencydomain): in Eq. (6.60),D2 andD3 are replacedwith δ22 and δ
2
3 respectively

(δ2 and δ3 are positive). It is therefore a classical Bessel equation.
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Therefore, whenD2, D3 < 0 (low-frequencies): ∀i ∈ {2, 3}

Wi(r, θ) = [AiIm(δir) +A′
iKm(δir)]

(
Ci cos(mθ) + Si sin(mθ)

)
(6.61)

and whenD2, D3 > 0 (high-frequencies): ∀i ∈ {2, 3}

Wi(r, θ) = [AiJm(δir) +A′
iYm(δir)]

(
Ci cos(mθ) + Si sin(mθ)

)
(6.62)

The linear combination of sine and cosine Θi(θ) = Ci cos(mθ) + Si sin(mθ) in Relations (6.61), (6.62) can

also be rewritten as a phase-shifted sine function. A phase-shift in this angular-dependent factor simply

means rotating the natural shape around the (O, e3) axis. Eigenfrequencies are invariant under translation or

rotation of their correspondingmode shape, and consequently the spectrum of the panel remains unchanged

if the initial phase ofΘi(θ) vanishes. Therefore, as long as we are not concerned with the relative orientation

of one natural shape to another, the discussion can be simplified by keeping only a cosine inW1 andW2 and

a sine W3, as was done in the literature [29, 31]. Leissa explains in his 1969 book [83] that for thin plates:

“If the boundary conditions possess symmetry with respect to one or more diameters of the circle, then the terms

involving sin θ are not needed”. With this choice of potentials,Ψr andΨθ will contain either sin or cos but not

both, whichmakes them disappear easily when applying the boundary conditions thatmust hold for all θ. To

simplify the following discussionwhere all the boundary conditionswill be axisymmetric, we follow the same

procedure and consider only one of the infinity of natural shapes that are identical up to a rotation.

The Bessel functions of the second kind Ym andKm have infinite limits at r = 0. This is not a problem for

the potentialsWi, but the displacementW is required to be finite for physical reasons. If one were to keep

these Bessel functions inWi, the conclusion would be that all coefficientsA′
imust vanish (except for the case

of an annular panel). By anticipating this reasoning, the plate-displacement potentials are

W1 = A1Jm(δ1r) cos(mθ)

W2 = A2Bm(δ2r) cos(mθ)

W3 = A3Bm(δ3r) sin(mθ)

(6.63)

whereBm = Im in the low-frequency range andBm = Jm in the high-frequency range:

Bm =

{
Im when ω < ωc

Jm when ω > ωc
(6.64)

Now, the plate-displacements components from (6.57) can be expressed in terms of these solutions:

W =
[
A1Jm(δ1r) +A2Bm(δ2r)

]
cos(mθ)

Ψr =
[
A1(σ1 − 1)δ1J

′
m(δ1r) +A2(σ2 − 1)δ2B

′
m(δ2r) +A3

m

r
Bm(δ3r)

]
cos(mθ)

Ψθ = −
[
A1(σ1 − 1)

m

r
Jm(δ1r) +A2(σ2 − 1)

m

r
Bm(δ2r) +A3δ3B

′
m(δ3r)

]
sin(mθ)

(6.65)

Remark 6.5. When discarding the possible rotation of a natural shape around the central axis, the natural

frequencies are still predicted correctly but the relative orientation of the eigenmodes cannot be captured.

For instance, in the situationwhere the edge of the panel is pinned at one point, at least one nodal line of each

mode should pass through this point in order to satisfy the boundary conditions, but the nodal diameters are

generally not alignedwith those of othermodes. Therefore, when dealingwith problemswhere the boundary

conditions are not axisymmetric, it is necessary to work with the following sets of potentials. In the low
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frequency range,

W1 =
[
AmJm(δ1r) +BmYm(δ1r)

]
cos(mθ) +

[
amJm(δ1r) + bmYm(δ1r)

]
sin(mθ)

W2 =
[
CmIm(δ2r) +DmKm(δ2r)

]
cos(mθ) +

[
cmIm(δ2r) + dmKm(δ2r)

]
sin(mθ)

W3 =
[
EmIm(δ3r) + FmKm(δ3r)

]
cos(mθ) +

[
emIm(δ3r) + fmKm(δ3r)

]
sin(mθ)

(6.66)

and in the high frequency range:

W1 =
[
AmJm(δ1r) +BmYm(δ1r)

]
cos(mθ) +

[
amJm(δ1r) + bmYm(δ1r)

]
sin(mθ)

W2 =
[
CmJm(δ2r) +DmYm(δ2r)

]
cos(mθ) +

[
cmJm(δ2r) + dmYm(δ2r)

]
sin(mθ)

W3 =
[
EmJm(δ3r) + FmYm(δ3r)

]
cos(mθ) +

[
emJm(δ3r) + fmYm(δ3r)

]
sin(mθ)

(6.67)

The numbers of unknown constants increases greatly.

6.7.2 Boundary conditions

Thematrix system that represents the boundary conditions is

[C]{A} =


C11 C12 C13

C21 C22 C23

C31 C32 C33



A1

A2

A3

 =


0

0

0

 (6.68)

The coefficients Cij must be chosen according to the boundary condition type.

• Free edge Γr = Γθ = 0, q3 = 0

• Simply-supported edge (soft type) W = 0, Γr = Γθ = 0

• Simply-supported edge (hard type) W = 0, Γr = Ψθ = 0

• Clamped edge W = 0,Ψr = Ψθ = 0

Each boundary condition defines which set of 3 coefficients must be used to fill a line of the [C] matrix.

These coefficients are detailed here:

∀θ,W (R, θ) = 0 implies
Ci1 = Jm(δ1R)

Ci2 = Bm(δ2R)

Ci3 = 0

(6.69)

∀θ,Ψr(R, θ) = 0 implies
Ci1 = (σ1 − 1)δ1J

′
m(δ1R)

Ci2 = (σ2 − 1)δ2B
′
m(δ2R)

Ci3 =
m

R
Bm(δ3R)

(6.70)

∀θ,Ψθ(R, θ) = 0 implies

Ci1 = (σ1 − 1)
m

R
Jm(δ1R)

Ci2 = (σ2 − 1)
m

R
Bm(δ2R)

Ci3 = δ3B
′
m(δ3R)

(6.71)
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The out-of-plane forces equilibrium boundary conditions (3.15) q3 = 0writes

Ci1 = σ1δ1J
′
m(δ1R)

Ci2 = σ2δ2B
′
m(δ2R)

Ci3 =
m

R
Bm(δ3R)

(6.72)

The moment equilibrium condition for moments tangent to the border (3.16) Γθ = 0 gives

Ci1 = (σ1 − 1)

[
Kδ21J

′′
m(δ1R) +

K ′

R
δ1J

′
m(δ1R)−

m2K ′

R2
Jm(δ1R)

]
Ci2 = (σ2 − 1)

[
Kδ22B

′′
m(δ2R) +

K ′

R
δ2B

′
m(δ2R)−

m2K ′

R2
Bm(δ2R)

]
Ci3 =

m

R
(K −K ′)

(
δ3B

′
m(δ3R)−

1

R
Bm(δ3R)

) (6.73)

whereK ′ ≡ D∗ν +
pH̃3

12
.

The moment equilibrium condition for moments normal to the border (3.17) Γr = 0 gives

Ci1 =
m

R
(σ1 − 1)

(
D∗(1− ν)− pH̃3

12

)(
1

R
Jm(δ1R)− δ1J ′

m(δ1R)

)

Ci2 =
m

R
(σ2 − 1)

(
D∗(1− ν)− pH̃3

12

)(
1

R
Bm(δ2R)− δ2B′

m(δ2R)

)

Ci3 = −D∗ 1− ν
2

δ23B
′′
m(δ3R) +

(
D∗ 1− ν

2
− pH̃3

12

)(
δ3
R
B′
m(δ3R)−

m2

R2
Bm(δ3R)

)
(6.74)

A nondimensional frequency parameter can be introduced, but unlike the case of classical plate theories,

this parameter remains sensitive to the values ofR, h, p, etc.

Ω = ωR2

√
2τρ

D∗ +M
(2)
0

(6.75)

If det([C]) 6= 0, then the trivial solution A1 = A2 = A3 = 0 is found. Therefore, det([C]) = 0 is a neces-

sary condition for resonance. The function det([C(ω)]) is called the characteristic equation, and its roots are

related to the eigenfrequencies. This kind of equation is too complex to be solved manually. Next we present

how to design a computer program to compute the characteristic equation and find its roots.

6.7.3 Natural frequencies of circular inflatable panels

The algorithm to find the natural frequencies is outlined here and summarized in Fig. 6.10. First, the circum-

ferential mode numberm is fixed. Then, we scan an interval [ωmin, ωmax] by applying the following procedure

toN values of ω within this interval. These two parameters (frequency range and number of samples) must

be well-chosen by the user of the program. For each ω, each square of wavenumber Di is computed using

the dispersion relations (6.46) and (6.50). Depending on the sign ofD2 andD3, a set of potentials is chosen.

Then, the matrix of boundary conditions [C] is formed. The determinant of this matrix as a function of ω is

the characteristic equation and our goal is to determine its roots, which are the natural frequencies of the

panel. To this end, a root-finding algorithm must be used, such as the Newton–Raphson method which is

very fast and accurate. However, it must be initialized with an initial guess that is very close to an actual root.

97



Chapter 6 – Vibrations of inflatable panels

Among all of the values of the characteristic equation that have been calculated for all the frequencies, we

compare the sign of each evaluation to the next, which gives us the location of all changes of sign. Note that

some changes of signs may not be detected if the evaluation points of the characteristic equation are too far

from one another: it is crucial to have enough sample points to detect every sign changes. The value of ω just

before the change of sign is used as the initial estimate for the optimization algorithm.

When a natural frequency is found, the coefficients of the [C]matrix can be used to express A2 and A3 as

a function ofA1, that is, to find the relative contribution of each potential to the final solution. Provided that

C12C23 − C13C22 6= 0:

A2 = −A1
C11C23 − C13C21

C12C23 − C13C22

A3 = A1
C11C22 − C12C21

C12C23 − C13C22

(6.76)

Once the process has been completed for a given circumferential mode m, we move on to the next one.

The natural frequencies and relative amplitudes can then be stored in tables. We can also plot the evolution

of the natural frequencies of each mode as a function of the inflation pressure in Fig. 6.11, 6.12 and 6.13 with

Eτ = 389 N/mm, ν = 0.25 and ρ = 1000 kg/m³. The values used in the numerical calculations are those

determinedwhen the structure is not inmovement: the results could be improved by using dynamicmaterial

parameters, as they are assuredly different [12]. One may see that the frequencies of the simply-supported

and clamped cases (Fig. 6.11 and 6.12) are almost identical. Indeed, since the fibers remain almost vertical

in both cases, the deformation is very similar. A slight difference is observed for the lower modes at high

inflation pressures.

It should come as no surprise that the frequencies vary as a square root of the pressure, as it is a general

rule in vibrating systems that natural frequencies are the square root of the stiffness over themass: f ∝
√
k

m
,

and in inflatable panels, the pressurization is responsible for the load-bearing capacity of the structure. The

bending eigenmodes W for (soft) simple-support and free boundary conditions are shown in Fig. 6.14 and

6.15. The natural shapes for clamped boundary conditions are very similar to the simply-supported ones.

Note that the position of the nodal circles and diameters are independent ofmaterial properties and inflation

pressure.

The eigenfrequencies calculated by this theoretical approach are in agreement with those obtained by an

approximate (pseudospectral) resolution method presented in Appendix B. As was done for the rectangular

panel, a simplified “equivalent membrane” model is presented in Appendix C for faster estimation of the

frequencies of an inflatable disk.
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Figure 6.10: Algorithm for finding the natural frequencies of a circular inflatable panel (for a givenm).
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Figure 6.11: Natural frequencies of a clamped circular inflatable panel.
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Figure 6.12: Natural frequencies of a circular inflatable panel on (soft) simple-support.
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Figure 6.13: Natural frequencies of a free circular inflatable panel.

101



Chapter 6 – Vibrations of inflatable panels

Figure 6.14: Natural bending modes of a circular inflatable panel on simple-support (soft type).
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Figure 6.15: Natural bending modes of a free circular inflatable panel.
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Chapter 7

Experimental validation

The axisymmetric deflection of a circular inflatable panel subjected to a uniformvertical loadwas determined

in Chapter 4 and the natural frequencies of circular panelswere calculated in Chapter 6. The analytical results

were validated by comparing them to finite element simulations or approximated numerical solutions and it

is now time to confront the theory to the experimental reality.

First, we determine the various material properties of the panel used in the analytical expressions and

required for comparison with numerical results. Second, static bending testing of a circular panel subjected

to a uniform vertical dead load is carried out for a variety of inflation pressure and external loads. Finally, we

explore the possibility of determining the natural frequencies of inflatable panels from impact hammer tests.

7.1 Experimental determination of basic material properties of inflation

panels

Two inflatable panels were acquired for the purpose of the experimental validation of our theory: they are

both circular with a diameter of 3 m and have different heights (10 cm and 20 cm). They are made of woven

PVC fabric and have total masses 21.6 kg and 23.8 kg (around 3200 g/m²). The panels were bought from a

company named Écocréation and assembled by gluing rolls of double wall fabric (with drop-stitch) together

with a bonding strip that runs across the surface of the panel and sealed with a lateral wall. They were both

perforated near the edge to insert a small tube through a glued valve to serve both as a pressure probe and air

inlet.

7.1.1 Marking of a diameter on the inflatable panel

The deflection will be measured along a diameter of the panel, thus it must be accurately located. The center

of the panel is located by wrapping a string around the perimeter and dividing its length by four, so that four

equidistant points are placed on the circumference and marked using a pencil. The distance between two

oppositemarkswasmeasuredwith a ruler tomake sure that the diameter was correctly identified: the length

between two opposite marks was the largest that could be measured compared to other points that were not

perfectly symmetrical to the center of the panel, thus forming a diameter since these two points were as far

apart as possible. The result was double-checked by verifying that the diameter was the hypotenuse of a

triangle with its right angle on the perimeter, Fig. 7.1.
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Figure 7.1: Geometric construction tomark two perpendicular diameters of a circular panel andmark its cen-
ter.

7.1.2 Measurement of the membrane’s thickness

The panel skins is a heterogeneous assembly of woven fabric, coating and stitched drop yarns, which makes

the precise definition andmeasurement of its thickness challenging. The true thickness of each layer of ma-

terial will change after pressurization and loading, and the drop cords will pull on the woven fabric. Never-

theless, a simple measurement of 8 folds of membranes scraps using a caliper gives a good estimation of the

average initial thickness τ ≈ 1 mm (± 6%). In this work, the thickness is assumed to be constant, so there is

no reason to distinguish between the natural and inflated thicknesses (τ∅ = τ).

7.1.3 Determination of membrane and drop cords densities

Since we know the mass of two different panels made from the same materials, it is possible to access the

two unknown that are the densities of the membranes and the high strength threads. Technically, the drop

cords are also part of the upper and lowermembranes (they are intertwined) and account for a fraction of the

fabric’s weight, but the following calculation neglects the length of the drop threadmaterial that runs inside

themembranes, considering that the envelope is a continuousmedium of area density σm (in kg/m²) and the

vertical part of the drop cords will have a line density ρly (in kg/m). Themasses of the 2 panels relate to their

dimensions and the 2 unknown densities, thus forming a solvable system:m1 = σmS1 + ρlyly1

m2 = σmS2 + ρlyly2
(7.1)

where S1 = 2 × πR2 + 2πR × H1 (resp. S2) is the total surface of membranes of the panel with thickness

H∅ = H1 = 10 cm (resp. H2 = 20 cm) and ly1 = R2dH1 (resp. ly2) is the total length of drop yarns of the first
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panel (resp. second panel). The solution is simply:

σm =
m1ly2 −m2ly1
S1ly2 − S2ly1

≈ 1.376 kg/m2

ρly =
S1m2 − S2m1

S1ly2 − S2ly1
≈ 4.12× 10−5 kg/m

(7.2)

Using the value of σm, the homogenized density ρ of themembranes should be ρ = σm/τ where τ = 1mm,

which is approximately ρ = 1300 kg/m³. Other more suitable units for the linear mass density of fibers are

the tex (1 g/km) or the denier (1 g/9km): ρly = 41.2 tex = 4.58 denier. It may be interesting to note that the

total length of threads in the 10 cm thick panel is ly1 = 21 km, and the double for the twice as thick panel. The

mass of drop threads is 0.87 kg and 1.75 kg respectively, which is 4% and 7% of the total mass of the panels.

7.1.4 Determination of the maximum inflation pressure

Before starting to design our experiments, knowing what the maximum inflation pressure should be was

important for safety reasons. The panel may break in three ways: by tearing of themembranes, by tearing of

the drop cords or by detachment of glued pieces of fabrics at their junction. Since manufacturing and gluing

techniques are beyond the scope of this thesis, only the first twomodes of failure are briefly discussed here.

Membranes’ tensile strength
According to the manufacturer’s specification sheet, the tensile strength of a single membrane Rm is

68/70 N/mm (warp/weft). Therefore, the maximum inflation pressure based on the resistance of the two

membranes alone is calculated as

pmax =
Rm

2H̃

And so themaximum inflation pressure would be around 1.7 bar for the 20 cm panel, which is consistent with

the manufacturer’s recommendations of not exceeding 0.8 bar (taking a safety coefficient of 2).

Figure 7.2: Broken drop-stitch cords after tensile tests.

Drop threads’ tensile strength
We cut a few tension threads from a drop-stitch fabric sample and performed tensile tests. The cords’

properties have a high variance as they are made of thin woven microfibers, but average properties can still

be estimated. It took several attempts to improve the procedure, as the strings would get pinched and torn

at the jaws, and so we ended up gluing them to small pieces of fabrics to increase the area of contact. Three

strings broke at their center after being submitted to a tension force Nbreak = 23; 33 and 32 N, respectively

(Fig. 7.2). The maximum inflation pressure is simply

pmax = Nbreak × d
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where d is the density of yarns, in our case

pmax = 23 N × 7600m−2

which is again 1.75 bar.

As a conclusion, even though these two calculations tend to show that the panel could withstand an infla-

tion pressure of 1.6 bar, the strength of the glued junctions is uncertain and therefore we will not inflate the

panels above 1 bar of pressure as recommended by the manufacturer. The failure mechanisms of inflatable

panels are outside of the scope of this study, which is why we did not conduct further experiments: our main

objective was to perform safe static bending experiments.

7.1.5 Determination of Young’s modulus from inflation tests

Figure 7.3: Measuring the elasticity modulusEτ of the 20 cm thick inflatable panel.

The effective fabric membranemodulus of elasticity is determined bymeasuring the increase of an initial

length Li along a diameter of the circular panel for several inflation pressures: the slope of the curve∆L(p)

can be used to retrieveEτ by using Relation (2.54) that relates the increase in radius to the inflation pressure.

Lf − Li
Li

=
1− ν
2Eτ

pH̃∅

whereLf is themeasured length. Using experimental data, with the slopem =
∂

∂p

(
Lf − Li
Li

)
obtained from

linear regression:

Eτ =
1− ν
2m

H̃∅

The experiment was performed twice on the same day: once in themorning and once in the afternoon, using

two different rulers to average the results and reduce imprecision (Fig. 7.4). After each change of the internal

pressure p, the panel was lifted and lowered to allow free expansion of the panel and avoid friction with the

floor. The manipulation was done over a short enough time period to avoid the effects of creep. The deduced

moduli are presented in Table 7.1: their average is 393 N/mm, which is the value used in all calculations in

this thesis unless mentioned otherwise.
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Figure 7.4: Strain (Lf − Li)/Li VS inflation pressure for experimental determination of the panel’s Young’s
modulus.

Tape measure (N/mm) Ruler (N/mm)

Test 1 (AM) 372 380
Test 2 (PM) 396 424

Table 7.1: Effective membrane modulusEτ .

7.2 Experimental validation of the static bending solution

7.2.1 Experimental setup design

We thought about several ways to apply a uniform pressure load and realize the simple-support boundary

condition, such as creating a ring of fabric to hold the panel’s edge and suspend it to a larger metal ring.

The load could be applied by covering the surface with wood blocks or carpets or sand, but none of these

approaches seemed practical or close enough to the theoretical assumptions. One way to meet all of the re-

quirementswas to create a dome that could bemounted on top of the panels using duct tape. The dome shape

is ideal since the forces at the equator are purely vertical: there are no in-plane forces, which corresponds to

the definition of simple-support. Furthermore, with this envelope covering the panel, it becomes possible to

create a pressure differential between the two sides of the inflatable panel, which counts as a uniform surface

load. Only 200 Pascals (2 mbar) are needed to apply a force equivalent to a weight of 140 kg. First, we will

see how the dome was constructed. Second, the experimental setup and measuring tools will be introduced.

Then the results and their comparison with analytical predictions will be discussed.

Design andmaking of the dome
Onewayof drawing an approximate development of the sphere onto a plane is the goremethod: by cutting

a globe along several meridians, several pieces of fabric in the shape of an eye can be joined together by their

longitude to form a sphere, and the greater the number of divisions, the smaller the distortion. The domewas
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made from n = 16 cuts of fabric which divide sections of angle α =
2π

n
. Let s denote the longitudinal distance

along the meridian. For s ∈ [0, Rπ/2],
z = R cos

( s
R

)
ρ(z) = R

√
1−

( z
R

)2
h(s) = αρ

(
z(s)

) (7.3)

The corresponding pattern is drawn in Fig. 7.5 and a cutting guidewas createdwith a laser cutter¹ to speed

up the fabrication process. The wooden template was outlined on the fabric with amarker before getting cut,

Fig. 7.6.

0.0 0.5 1.0 1.5 2.0 2.5
s (m)

0.4

0.2

0.0
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±h
(s

)/
2 

(m
)

Figure 7.5: Half meridian section template for the dome (R = 1.53m, α = 22.5◦, n = 16).

Figure 7.6: Marking of the outline of each meridian section using the wooden template.

We chose to experiment with the 10 cm panel first because the deflections are twice as large as the thicker

panel for the same loading. Even after the domewas taped to the panel, the fabric could still be reused for the

¹The fabric could not be put into the laser cutter directly because burning PVC releases toxic fumes of hydrochloric acid.
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Figure 7.7: All sections are taped to the perimeter of the inflated panel and then to their neighbors.

Figure 7.8: (left) Inflated dome with continuous air supply. The airtightness is not achieved yet, since only
one layer of adhesive tape was applied inside. (right) Deflated dome with two layers of adhesive tape (on the
inside and the outside).

20 cm panel by peeling off the tape and cleaning the area with alcohol in order to tape it again.

Inflation pressure regulation
Although the panel is airtight when closed, the pressure measuring system requires a continuous supply

of air to display the actual pressure inside. Furthermore, one assumption of our model is that the pressure

always stays the same, and so it was precisely controlled to a prescribed value; although the section of the

pressure inlet was too small to achieve uniform pressure everywhere in the panel instantaneously. The com-

pressed air system of the workshop was plugged into a pressure limiter for safety and then redirected to a

pressure regulation valve with a wheel, Fig. 7.10. Finally, the output was inserted into the inflatable panel

and the pressure could be monitored in real time on a computer via a pressure gauge.

Loading pressure regulation
The surface load applied onto the panel results from the pressurization of air inside the dome. Continuous

flowing air was provided by an electric fan with a power of 1.5 kW and a speed of 2800 RPM to counter air

leakage through small gaps in the duct tape that holds the pieces of fabric together. The pressure was then

measured with an inclined alcohol manometer: the angle from a horizontal plane was 32 deg which allowed

for a resolution of 4.55 Pa (to the nearest reading inaccuracy). However, this tool is sensitive to temperature

changes, whichwere important in July 2022. For the lastmeasurementwehad access to a lowpressure digital
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Figure 7.9: Inside of the inflated dome upon completion.

Figure 7.10: Pressure regulation panel and pressure inlet connected to the drop-stitch panel.
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sensor which gave values in millimeters of water, achieving a resolution of 9.8 Pa (= 1 mmH2O).

Supporting structure
The panel was placed inside a squaremetal frame of sides 3 by 1 m (Fig. 7.11). The idea was to let the panel

expand freely, which is why there are only three contact points: it stands on two rolls (Fig. 7.12) to support its

own weight and was held upright by a tape between the dome and the metal frame to avoid falling over.

Figure 7.11: Front and back view of the experimental setup with the pressurized panel sitting upright on
rollers, attached to the inflated dome andmeasurement rail aligned with a diameter.

Figure 7.12: Roller used to hold the panel vertically. The linking forces applied to the panel are in-plane.

7.2.2 Deflectionmeasurement

Wewished to compare the deflection along themarked diameter of the panel as explained in the above. When

the panel was placed upright, the rollers were moved closer or further apart to lift the diameter to the same

height as a metal rail onto which the measuring tool could slide. The tool used for measuring the deflection

is a Linear Variable Differential Transformer (LVDT) with resolution smaller than a hundredth of millimeter.

First, the profile of the panel’s top membrane is measured every 20 centimeters along a diameter parallel to
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Figure 7.13: Initial deflection of the pressurized panel before any load is applied (left) and evolution over time
(right) (p = 0.2 bar, q = 0 Pa).

the measuring rail when the dome is inflated but not pressurized (the differential pressure with the outside

is zero but the dome almost has a spherical shape). Then, the dome is pressurized and the position of the

panel’s top membrane is measured again.

With this protocol, the post-processed deflection is sensitive to the positions of the leftmost and right-

most points, which were difficult to access since the diameter of the panel was similar to size of the frame,

and columns hindered theses measurements.

Repeatability of the measurements and sagging
The deflection of the panel was measured three times over 30 minutes to observe the repeatability of the

measuring protocol and the potential sagging of the panel, Fig. 7.13. There seems to be a slow evolution of the

deflection over time, possibly due to its ownweight or theweight of the deflated dome pulling on the circum-

ference, causing the surface to bend. But it should be small enough not to interfere with the interpretation of

the results: the drift is at most 5 mm per hour at the lowest inflation pressure (i.e. the lowest stiffness), and

a series of measurement lasts less than 2 hours.

7.2.3 Experimental results

On every experiment day, the panel and the dome attached to it had to bemounted on the frame and disman-

tled for the night. The parameters were changed in the following order:

1. adjustment of the panel’s pressurization (3 minutes)

2. then adjust the pressure load inside the dome (7 minutes)

3. then move the LVDT along the rail, touch the panel with the sliding rod and report the value into a

spreadsheet (less than 2minutes)

Fig. 7.14 shows the experimental results compared to the theory for three different pressurization lev-

els: 20, 40, 60 kPa. For each inflation pressure, the same color palette is used (red, orange, green, blue)

as the external load increases. Due to the experimental setup and the difficulty of stabilizing the external

pressure applied onto the panel, the values of the loads q have a similar order of magnitude but they are not

perfectly uniform for the three inflation pressures p. Overall, the experimental deflection points are close to

the parabolic curves plotted from the analytical solution (4.6). As expected, the higher the inflation pressure
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p, the smaller the deflection for a given external load q. The proportionality of the deflection with respect

to the external load q is also confirmed experimentally. The average absolute relative difference between the

theoretical and experimentalmaximumdeflections is 11.7%. However, this rather high value is found by tak-

ing the Poisson’s ratio equal to 0.25 in the analytical expressions, which is chosen for the sake of consistency

with the previous chapters. But the membranes were not tested to determine this quantity. If one were to

lower this parameter down to 0.1, which is a realistic value [8], the average absolute relative difference drops

to 5.7 % (Fig. 7.15). Therefore, a logical continuation is to measure the Poisson’s ratio of the membranes.
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Figure 7.14: Experimental deflection profiles compared to the analytical solution (parameters: R∅ = 1.52m,
H∅ = 10 cm, ν = 0.25,Eτ = 390N/mm)
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Figure 7.15: Experimental deflection profiles compared to the analytical solution with a smaller Poisson’s
ratio (parameters: R∅ = 1.52m,H∅ = 10 cm, ν = 0.1,Eτ = 390N/mm)
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7.2.4 Conclusion on static bending tests

We have successfully designed and performed experimental measurements on a large inflatable disk and

measured its deflection under constant uniform pressure. The comparison with the analytical solution is

satisfying, but could be greatly improved by measuring the Poisson’s ratio. The protocol could be improved

in some other ways. The dome could have benefited from a better manufacture, since the junctions could not

withstand a loading pressure higher than 150 Pa: the dome came undone after several experiments, Fig. 7.16.

Although a simple LVDT was well-suited for the measurements of this axisymmetric shape, it would be in-

teresting to look into photogrammetry techniques to measure the out of plane components at every point of

the panel. Such techniques have been applied successfully to inflatable structures [84].

Figure 7.16: Dome coming unstuck from the panel after prolonged pressurization.

7.3 Modal analysis using an impact hammer

In this section, the natural frequencies of a circular inflatable panel with free edge will be measured experi-

mentally in order to confirm the predictions made in Chapter 6. We had the opportunity to collaborate with

engineers from Thales Group who lent us their testing material which comprises of accelerometers, a data

acquisition unit (DAQ) and the associated software (Fig. 7.17). The idea behind hammer testing it to excite all

the modes of vibration equally by applying a rectangular force pulse on the structure. This method of testing

is generally applied to stiff structures, while inflatable structures are very soft: the results presented here are

exploratory. The impact hammer is a heavy piece of metal with a rubber tip used to strike the structure. On

one side of the panel, we positioned four triaxial accelerometers with the Z-direction normal to the surface.

Each accelerometer must be registered along with its sensitivity (mV/g) in the acquisition software so that

the conversion from voltage to acceleration is done correctly. The sampling frequency is set to be 10 times

larger than the highest frequency of interest (100 Hz).

7.3.1 Preliminary checks

Modal analysis relies on the assumption that the modes are “well-formed” at the time of measurement. In

stiff structures where the wave propagation is extremely fast, stationary waves appear after a fraction of

second after multiple reflections on the boundaries of the structure. When performing the impact hammer

experiments, we wondered if the system was maybe too soft for the waves to propagate and overlap enough
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Figure 7.17: Impact hammer experiment on a circular panel (DAQ: Data AcQuisition unit).

times to form a mode before the energy dissipates due to damping. The speed of wave propagation in an

isolated membrane is

c =

√
pH̃

2τρ

For a 20 cm panel at the lowest tested inflation pressure (15 kPa), the wave velocity is 39 m/s, meaning that

the wave can cross the panel 13 times within a second. This should be enough for a standing wave to form.

Before beginning the actual experiment, the background noise was recorded to make sure it wouldn’t in-

terfere with ourmeasurements. Since the signal-to-noise ratio of themeasured accelerations was very high,

subtracting the background noise spectrum from the data seemed unnecessary.

7.3.2 Hammer test protocol

Figure 7.18: “Square” and “Aligned” positions of the sensors on the panel. The center is marked by a black
dot.

After inflation, the valve is closed and the panel is held upright by two people. The experimenters took

care to only put their hands on the edge of the panel without applying too much force. The pressure can

still be measured continuously using a small hole linked to a pressure gauge. By placing the four sensors

such that they form a square, they are symmetric with respect to the center, Fig. 7.18. In this configuration,

the information given by the four sensors should be redundant (except for phase shifts, but we do not have
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Test
number

Sensors
location

Pressure
(kPa)

Impact
position Specificity

1 Square 20 Center Half sampling frequency
2 Center Hitting the back of the panel
3 Center Baseline for 1–7
4 Center Without hammer rubber tip
5 Center Panel rotated 45° (sensors attached)
6 Right 1 hit with the hand on the right-hand side
7 Right Hits on the right-hand side

8 Aligned 20 Center

9 33.9 Center
10 33.9 Right

11 30 Center
12 30 Center Faster pace (1 hit per second)
13 30 Right

14 30 Left
15 25 Left (discarded)
16 22.68 Left
17 19 Left
18 14.9 Left
19 20.1 Left

Table 7.2: Details of each vibration test.

access to this information). After this was confirmed and we had tested several hypotheses, we moved on

to the second configuration with all the sensors aligned, which means that they have different radial and

angular positions from the center, thus allowing to capture different observations. Since the vertical panel

was touching the ground, we expected the nodal diameter (for modes wherem > 0) to start from the contact

point at the ground to the top of the panel, vertically. At firstwe hit the panel every 3 seconds, before testing a

higher pace (1 hit per second). For recordings number 1 to 11, 10 hits were applied at the impact point with the

hammer, whereas 20 hits were given for recordings 12 to 19. The spectra of tests #11 and#12 can be compared

in Fig. 7.19. It can also be seen from Fig. 7.20 that hitting the panel faster makes the input spectrum noisier,

less uniform. Thus, some spikes that appear in the output signals may not be due to resonance, but only to

the way the panel was hit. This observation calls for further testing in future experiments.

7.3.3 Post-processing of the response spectra

The acceleration data from each test was collected into individual spreadsheet files that were then processed

with a Python script. For each test, we have drawn the input spectrum (the frequencies excited by the ham-

mer) and the output spectrum (the frequencies effectively observed in the panel’s motion). The y-scale of

the output spectrum is acceleration, originally measured in g (RMS). It was divided by the largest amplitude

to make it easier to compare spectra with this “normalized” scale.

Fig. 7.21 presents the experimental spectra of tests #17 and #19. The predicted analytical frequencies are

indicated by vertical lines with a label that specifies themode using the values ofm and n: for instance, “32”

corresponds to the mode (m = 3, n = 2). In theory, the spikes on the experimental spectra should be located

at the frequencies indicated by those vertical lines. This is not the case with this exploratory batch of exper-

iments. To us, it seems that the value of ρ is overestimated. It is computed from the membrane density via

the relation ρ = σm/τ , which is extremely sensitive to the membrane thickness τ (about 1 mm). Therefore,
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Figure 7.19: Increasing the pace of the impacts (from#11 to #12) does not affect the location of the resonance
peaks.

one improvement track is to work on the determination of this thickness. One way to bring the theoretical

result closer to the experimental results is to reduce the mass per unit area, as presented in Fig. 7.22 for a

density ρ = 1000 kg/m³ where the first mode is in good agreement with the theory. It would make sense for

the mode 00 to be absent in this graph, since the panel was struck on a nodal diameter of this mode. Further

testingwith different setupsmust be conducted in order to improve the identification of the eigenfrequencies

of inflatable panels.

7.3.4 Improved placement of sensors and impact location

From these preliminary tests, we see that is difficult to observe all the modes in one test. To maximize the

number ofmodes that can be excited and recorded at once, the impact and sensors locations should be placed

at anti-nodes (where the amplitude of the mode is at maximum), as in Fig. 7.23 for instance. When drawing

this figure, the orientation of each mode is taken such that a nodal point touches the ground.

7.4 Conclusion on impact hammer testing

We have applied impact hammermodal analysis to an inflatable panel, which has allowed for the identifica-

tion of resonant frequencies at various inflation pressure levels. However, further investigation is necessary

to match the theoretical prediction of Section 6.7.3, as the density of themembrane does not seem to be cor-

rectly identified. The dynamic material properties of the panel have not been determined, and so the static

values of the constants are used in the calculations. This could be an important source of error, as these values

canbe differ greatly [12]. Another source of discrepancy is that the panels are not axisymmetric because of the
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Figure 7.20: Spectra of the acceleration of the hammer at various paces.
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Figure 7.21: Experimental spectra for two different inflation pressures with analytically determined eigen-
frequencies marked by vertical lines, with ρ = 1300 kg/m³. (Eτ = 389N/mm, ν = 0.25,H∅ = 20 cm)

bonding strip that crosses the upper and lower sides of the panel. Themain difficulty associated with impact

testing is repeatability (caremust be taken to always hit the panel with the same force and rhythm). Further-

more, sudden shocks may trigger nonlinearities in the system’s response, and more generally the repeated

impacts may damage the structure. Some of these challenges can be overcome by using a shaker instead of a

hammer for modal excitation.
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Figure 7.22: Experimental spectra for two different inflation pressures with analytically determined eigen-
frequencies marked by vertical lines, with ρ = 1000 kg/m³. (Eτ = 389N/mm, ν = 0.25,H∅ = 20 cm)
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Figure 7.23: Improved sensors positions and impact point based on the nodal lines and diameters of allmodes
withm ≤ 2, n ≤ 2.
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Conclusion and perspectives

The objective of this study was to investigate inflatable panels by three complementary approaches: analyt-

ical, numerical and experimental.

In Chapter 2, the analytical study has consisted in establishing the nonlinear equations of motion of in-

flatable panels using the principle of virtual power in large deformations. The nonlinear equations account

for the effects of the internal pressure as well as shear effects through the Mindlin–Reissner kinematics.

In Chapter 3, the nonlinear governing equations were then linearized around the reference configuration

to deal with the usual case where the displacements and rotations are small. The equations resemble those of

the classical Mindlin–Reissner theory for solid plates with different stiffness terms due to internal pressure.

In Chapter 4, the linearized equations of motion were solved for the static bending problem of a simply-

supported inflatable disk with uniformly distributed vertical load. The limit of validity of this solution in

relation to the wrinkling of the membranes was established. The influence of the inflation pressure on the

parabolic deflection profile was captured.

In Chapter 5, this solution was then confronted to a 3D nonlinear finite element simulation for a variety

of geometries and inflation pressures and a very good agreement was found.

In Chapter 6, the dynamics of inflatable panels were also investigated. The eigenvalue problem was re-

duced to a system of Helmholtz equations which was solved to determine the eigenmodes and eigenfre-

quencies of inflatable disks and simply-supported rectangular panels. Two additional methods to determine

the natural frequencies are proposed in the appendix: a numerical approximation method for axisymmetric

eigenvalue problems (Appendix B) and the modal analysis of simplified membrane models (Appendix C).

Finally, in Chapter 7, the theoretical predictions were tested against experimental measurements per-

formed on circular inflatable panels. A specific testing apparatus was built to handle the large disk and apply

the simply-supported boundary conditions as well as a uniform transverse load to the panel. The static de-

flections are in agreementwith the linear solution, although it could be improved by a better characterization

of the materials. As for the experiments on dynamics, the dependence of the natural frequencies to the in-

flation pressure was observed but further work must be conducted to match the theory to the experimental

data.

Perspectives
In addition to the results thathavebeenestablished for the statics anddynamics of inflatable panels,many

scientific challenges remain. Further research could be done in the following areas, starting with the most

accessible ones:

• conduct further vibration analysis using modal exciters with a sine sweep as the input signal

• determine the inflatedmechanical propertiesof themembranes fromthevaluesmeasured in thenatural

configuration

• study the post-wrinkling response of the panel, from the onset of wrinkling to bending collapse
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Conclusion and perspectives

• create a 2D nonlinear finite element for the numerical analysis of inflatable panels

• study the buckling of inflatable panels to anticipate their use as supporting structures

In the longer term, the following further studies could be considered, which go beyond the framework of this

present work:

• include anisotropic behavior of the membranes, such as orthotropy

• perform reliability analysis to determine probabilities of failure

• explore new inflatable geometries (non-uniform diameter or thickness, with spaced or slanted cords)

• develop a theory of inflatable shells (with curved reference configuration)
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Appendix A

Bessel functions

Here we briefly define the Bessel functions and recall some of their useful properties that are used in Sec-

tion 6.7.

A.1 Definition of the Bessel andmodified Bessel functions
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Figure A.1: Plots of the Bessel functions for real values (n ∈ N).

The Bessel equation with unknown y is:

x2y′′ + xy′ + (x2 − n2)y = 0
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The solutions are Jn et Yn for n integer (otherwise, for n ∈ R the solutions are Jn and J−n). These functions

have finite value near zero. The change of variable x← ix yields the modified Bessel equation:

(ix)2
∂2y

∂(ix)2
+ ix

∂y

∂ix
+
(
(ix)2 − n2

)
y = 0

x2y′′ + xy′ − (x2 + n2)y = 0

which has solutions In andKn (when n is an integer). Unlike the normal Bessel functions, In andKn have an

infinite limit near zero. A plot of some Bessel functions of small order is drawn in Fig. A.1.

The two kinds of Bessel and modified Bessel functions are related to one another:

In(x) = i−nJn(ix) (A.1)

Kn(x) = exp
(
i
(n+ 1)π

2

)[
Jn(ix) + iYn(ix)

]
(A.2)

A.2 Properties of the Bessel andmodified Bessel functions

Symmetries of the Bessel functions
Regarding the parity with respect to the variable x, both Jn and In are even when n is even, and odd when

n is odd. There are also properties that resemble (anti-)symmetry with respect to the order n:

∀n ∈ Z, J−n = (−1)nJn

∀n ∈ Z, In = I−n
(A.3)

Thefirst equation is a consequencesof the following relationshipsbetween thefirst andsecondkindsofBessel

functions:

J−n(x) = Jn(x) cos(πn)− Yn(x) sin(πn) (A.4)

Y−n(x) = Yn(x) cos(πn) + Jn(x) sin(πn) (A.5)

Recursive definitions
Bessel functions of different orders are related to one another: ∀n ∈ Z,

Jn+1 + Jn−1 =
2n

x
Jn

In−1(x)− In+1(x) =
2n

x
In(x)

Recursive derivation
The first and second derivatives of Jn and In can be calculated in twomanners.

1. First, using

Jn+1 − Jn−1 = −2J ′
n

it is found that

J ′
n(x) =

1

2

(
Jn−1(x)− Jn+1(x)

)
(A.6)
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J ′′
n(x) =

1

4

(
Jn−2(x)− 2Jn(x) + Jn+2(x)

)
(A.7)

similarly

In+1 + In−1 = 2I ′n

I ′n(x) =
1

2

(
In−1(x) + In+1(x)

)
(A.8)

I ′′n(x) =
1

4

(
In−2(x) + 2In(x) + In+2(x)

)
(A.9)

2. Second, using

J ′
n(x) =

n

x
Jn(x)− Jn+1(x) (A.10)

I ′n(x) =
n

x
In(x) + In+1(x) = −

n

x
In(x) + In−1(x) (A.11)

it follows that

J ′′
n(x) = Jn+2(x)−

2n+ 1

x
Jn+1(x) +

n(n− 1)

x2
Jn(x) (A.12)

I ′′n(x) = In+2(x) +
2n+ 1

x
In+1(x) +

n(n− 1)

x2
In(x) (A.13)

Hence
dJ0
dx

= −J1 and
dI0
dx

= I1 = I−1. Using the above formulas with n < 1 does not pose a problem

given the symmetry and antisymmetry properties of the Bessel functions.

126



Appendix B

Vibration analysis of axisymmetric plates

by a pseudospectral method

The eigenfrequencies obtained for circular plates in Section 6.7.3 can be compared to those produced by an

approximate numerical solution of the eigenvalue problem in the axisymmetric case. We adapted a pseu-

dospectral method presented by Lee and Schultz [85] for the eigenvalue analysis of axisymmetric Mindlin

plates to the case of inflatable panels. They define a pseudospectral method as “a spectral method that per-

forms a collocation process”.

Derivation
After normalizing the coordinate variable z = r/R and replacing the unknown fieldsW andΨr with their

polynomial expansion, a system of equations will be obtained by setting the residuals of the governing equa-

tions and the boundary conditions equal to zero at some collocation points. The solution fieldsW andΨr are

written as Chebyshev series:

W (z) ≈
N+1∑
n=1

bnT2n−2(z)

Ψr(z) ≈
N+1∑
n=1

anT2n−1(z)

(B.1)

where Tn is the Chebyshev polynomial of the first kind with degree n and the coefficients an, bn are yet to be

determined. Onemay chooseN as large as one desires, but 35 is more than enough. Note that this expansion

form takes advantage of the axisymmetry of the panel, as well as even and odd symmetries of Chebyshev

polynomials. Then, the governing equations are “collocated” at the Chebyshev interpolation grid points zi,

which are

zi = cos
(
π(2i− 1)

4N

)
, i = 1, . . . , N

Although the expansions in Eq. (B.1) containedN + 1 terms, there are onlyN collocation points because the

axisymmetry conditions at z = 0 are already satisfied. The eigenvalue problem and the boundary conditions

are then written in matrix form and solved as described by Lee and Schultz [85]. This process is outlined

below, but the reader is referred to the article for further details and explanations. The unknowns of the
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problem, namely the coefficients in the polynomial expansion (B.1), are stored in vector form as

{d} =



a1
...

aN

b1
...

bN


and

{
d†
}
=

{
aN+1

bN+1

}

which allows to write the eigenvalue problem in matrix form:

[H]{d}+
[
H†] {d†} = ω2

(
[S]{d}+

[
S†
] {

d†
})

where the matrices [H],
[
H†] are related to stiffness terms and [S],

[
S†
]
are related to inertial terms. A dagger

(†) is added when the matrix affects only the last coefficient of the expansion. The boundary conditions in

matrix form are

[U]{d}+ [V]
{
d†
}
= {0}

where [U] and [V] are block diagonalmatrices that describe the boundary conditions. The eigenfrequencies can

be found in one step by incorporating the boundary conditions into the eigenvalue problem,which is achieved

by eliminating {d†}: {
d†
}
= −[V]−1[U]{d}

The final result is the following generalized eigenvalue problem

(
[H]−

[
H†] [V]−1[U]

)
{d} = ω2

(
[S]−

[
S†
]
[V]−1[U]

)
{d}

which is easy to implement and solve numerically.

Numerical results
The implementation of this algorithm was tested and it successfully retrieved the numerical results of

several papers on classical plates [86, 87]. When applied to inflatable panels, both this numerical approach

and the analytical results of Chapter 6 give the same natural frequencies to 4 digits of precision for the first

15 axisymmetric modes, and so the resulting values will not be listed here. This gives us confidence in the

methodology used to solve the general vibration problem.

Although this approximate computation method is fast and reliable, it is restricted to the axisymmetric

modes, and extending this method to the 2D polar case is beyond the scope of this thesis. We refer the reader

to Fornberg’s work on pseudospectral methods [88] for further exploration of this approach.
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Simplified vibration models

Since the inertia and strain energy of the lateral wall is negligible compared to that of the upper and lower

layers, the inflatable panel model is essentially a model of two membranes connected by stretched threads,

and one may wonder how the spectrum of the panel compares to that of its two membranes. Guided by this

physical intuition, we will compute the natural frequencies of membranes with the same tension forceN0 as

the pressurized panel, and the thickness of this equivalent membrane will be chosen to match the inertia of

the top and bottommembranes of the panel.

C.1 Natural frequencies of a tensed rectangular membrane

Figure C.1: Equivalent rectangular membrane for comparison with simply-supported inflatable panels.

The naturalmodes of a rectangularmembrane of width a and length bwith fixed boundary are, ∀m,n ∈ N,

wmn(x, y, t) = Amn sin(2πfmnt) sin
(mπ
a
x
)
sin
(nπ
b
y
)

(C.1)

where fmn is the frequency of themode. This shape is based on the assumption that the deflectionwmn equals

zero on the whole boundary. Classically, the wave velocity is the square root of the ratio between the tension

force and inertia:

c =

√
tension force

inertia

In our case the tension force is the pre-stressN0 = pH̃ due to the inflation of the panel and the inertia comes
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from the top and bottommembranes, which yields

c =

√
pH̃

2τρ
(C.2)

This information makes it possible to represent the equivalent membrane (Fig. C.1). The natural frequencies

of the membrane are known analytically from the relation

fmn =
c

2

√(m
a

)2
+
(n
b

)2
(C.3)

It turns out that this simplified model predicts natural frequencies that are close to the lowest predicted

angular frequency ω− of Eq. (6.40), as can be seen in Fig. C.2. This further reinforces our conviction that only

ω− holds physical significance for the SSSS boundary conditions, and that ω0, ω+ can be ignored. Note that

f00 = 0Hz since the mode (m = 0, n = 0) corresponds to an absence of motion.

Remark C.1. The relative difference between themembrane equivalent and the completemethod grows larger

with inflation pressure, as seen with Table C.1 and Fig. C.2.

Inflation pressure

p (kPa)

Frequency (Hz) Relative

differencePanel Membrane

30 12.56 14.16 +13%

50 15.15 18.26 +21%

70 16.88 21.57 +28%

90 18.14 24.42 +35%

100 18.65 25.73 +38%

Table C.1: Influence of the inflation pressure on the frequencies predicted by the inflatable panel theory and
the membrane equivalent for the mode (m = 1, n = 1). Parameters (prior to inflation): 3m by 2.5m by 20cm,
Eτ = 389N/mm, ν = 0.25, ρ = 1000 kg/m³.

Remark C.2. When either m or n equals zero, the mode is a shear-only vibration mode (W = 0 but ψ 6= 0).

Equation (C.1) clearly shows that such values ofm and n do not give rise to any vibrations of the equivalent

membrane, and yet, surprisingly, the frequencies predicted by (C.3) are not zero and still match the natural

frequencies of the panel. Although it looks like an incorrect extensionof the formula (C.3) to a case that should

hold no physical significance, the numerical results still seem to be still realistic.
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Figure C.2: Natural frequencies of a simply-supported rectangular inflatable panel (natural dimensions: 3m
by 2.5m by 20cm) compared to those of an equivalent membrane for various modes and two inflation pres-
sures. (H∅ = 20 cm,Eτ = 389N/mm, ν = 0.25, ρ = 1000 kg/m³)
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C.2 Natural frequencies of a tensed circular membrane

The natural shapes of a circular membrane are well-known:

wmn(r, θ, t) = Amn cos(mθ)Jm(αmnr) cos(c αmnt) (C.4)

where c is the speed of the wave propagation and αmn are the wavenumber of the mode that must be deter-

mined for each m and n (the circumferential and radial mode numbers, respectively). The tension force in

the membrane is the pre-stress N0 = pH̃ of the panel, exactly like in the rectangular case, and so the speed

of the wave propagation is again:

c =

√
pH̃

2τρ
(C.5)

where pH̃ is the tension force due to the inflation pressure and 2τρ the inertia of both membranes. This in-

formation makes it possible to represent the equivalent membrane (Fig. C.3). The stiffness and inertia of the

rounded panel edges are again neglected since they have no direct equivalent in the membrane theory.

Figure C.3: Equivalent membrane for comparison with clamped or simply-supported inflatable disk.

The simplest boundary condition is to fix the edge of the membrane: ∀t, ∀θ, wmn(r = R, θ, t) = 0 entails

Jm(αmnR) = 0

Therefore, if zmn is the n-th zero of Jm, then αmn = zmn/R and the natural frequency is fmn = zmn
c

2πR
. The

zeros of the Bessel function are easily accessible in the literature, see Table C.2.

n m = 0 m = 1 m = 2 m = 3 m = 4

0 2.405 3.832 5.136 6.380 7.588

1 5.520 7.016 8.417 9.761 11.065

2 8.654 10.173 11.620 13.015 14.373

3 11.792 13.324 14.796 16.223 17.616

4 14.931 16.471 17.960 19.409 20.827

Table C.2: First roots of the Bessel function Jm.

This calculation neglects the rounded panel edges and the drop yarns, and yet it gives a very good approx-

imation of the natural frequencies of the clamped panel, as shown in Fig. C.4. The drawing of the equivalent

membrane (Fig. C.3) suggests that this simplermodel works best when themovement of the upper and lower

membranes are identical, that is, when the fibers remain vertical (Ψ = 0). As observed with the rectangular
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panel, the relative difference between the natural frequencies of membrane equivalent and the panel theory

grows larger with inflation pressure.
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Figure C.4: Natural frequencies of a clamped inflatable panel compared to the simplified membrane model
(R∅ = 1.5m,H∅ = 20 cm, p = 50 kPa,Eτ = 389N/mm, ν = 0.25, ρ = 1000 kg/m³).
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Titre : Étude des panneaux membranaires pressurisés

Mots clés : panneau gonflable, statique, dynamique, plaque de Reissner-Mindlin, validation expérimentale

configuration de référence et résolues en statique 
dans le cas d'un disque simplement appuyé 
soumis à un chargement vertical uniforme. Cette 
solution est validée par comparaison à une 
simulation éléments finis 3D non linéaire. L'étude 
dynamique est menée par analyse modale  : le 
problème aux valeurs propres se réduit à des 
équations de Helmholtz dont la résolution est 
donnée pour des panneaux rectangulaires 
appuyés ou circulaires. Enfin, les mesures issues 
d'essais de flexion statique avec un disque 
gonflable ont permis de valider la solution 
obtenue avec les équations linéarisées. 
L'évolution de la raideur en fonction de la 
pression interne est bien observée et correspond 
aux prédictions théoriques. Les résultats d'essais 
de vibration par marteau d'impact sont 
également présentés.

Résumé  : Un panneau gonflable est une structure 
membranaire étanche remplie d'un gaz sous 
pression qui lui confère sa raideur et dont la 
planéité à l'état gonflé est assurée par des fils qui 
relient les membranes supérieure et inférieure. En 
assemblant des tubes et des panneaux pressurisés, 
il devient possible de créer des structures 
porteuses entièrement gonflables de formes 
complexes. Dans cette thèse, l'étude des panneaux 
membranaires pressurisés est menée de façon 
analytique, numérique et expérimentale. Les 
équations locales non linéaires sont déduites du 
principe des puissances virtuelles écrit en grandes 
transformations. Elles prennent en compte les 
effets de cisaillement grâce à la cinématique de 
Reissner-Mindlin ainsi que ceux de la pression de 
gonflage qui augmente la raideur globale. Ces 
équations sont ensuite linéarisées autour de la 

Title: Study of pressurized membrane panels

Keywords: inflatable panel, statics, dynamics, Mindlin-Reissner plate, experimental validation

then linearized around the reference configuration 
and solved in statics for a simply-supported disk 
subjected to a uniformly distributed vertical load. 
This solution is validated by comparison with a 
non-linear 3D finite element simulation. The study 
of dynamics is conducted through modal analysis: 
the eigenvalue problem is reduced to Helmholtz 
equations whose solutions are given for circular or 
simply-supported rectangular panels. Finally, the 
measurements from static bending tests with an 
inflatable disk were used to validate the solution 
obtained with the linearized equations. The 
increase in stiffness due to pressurization is 
observed and corresponds to the theoretical 
predictions. The results of vibration tests using an 
impact hammer are also presented.

Abstract: An inflatable panel is an airtight 
membrane structure filled with a pressurized gas 
that gives it its stiffness and whose flatness in the 
inflated state is ensured by drop cords that 
connect the upper and lower membranes. By 
assembling pressurized tubes and panels, it 
becomes possible to create fully inflatable load-
bearing structures with complex shapes. In this 
thesis, the study of pressurized membrane panels 
is conducted analytically, numerically and 
experimentally. The nonlinear equations of motion 
are deduced from the principle of virtual power in 
large deformations. They take into account the 
shear effects through the Mindlin-Reissner 
kinematics, as well as the inflation pressure which 
increases the overall stiffness. These equations are 
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