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Abstract

This work aims to extend the comprehension of the out-of-equilibrium transport in Josephson junctions
by both analytical and numerical methods. More specifically, it focuses on the Josephson radiation of a
junction formed by a spin degenerate single level quantum dot connected to two superconducting leads.
Such a junction hosts discrete sub-gap states whose energy depends periodically on the superconducting
phase difference across the junction, they are the so-called Andreev bound states. Because of the energy
dependence of the quantum dot transmission, these states are completely detached from the quasipar-
ticle continuum and any finite detuning of the quantum dot from resonance conditions opens a second
gap at the Fermi energy. The superconducting current flowing through the junction is proportional to the
derivative of the junction energy with respect to the phase difference. Crucially, it depends on the Andreev
bound states occupation. When a constant voltage is set across the junction, the phase difference oscil-
lates at the Josephson frequency, which is proportional to the applied voltage. Thus, a voltage bias can
induce non-adiabatic changes of the Andreev bound states occupation. To investigate the consequences
of this dynamics, we proposed a stochastic model of the Andreev bound states occupation that permits
to analytically evaluate the current through the junction and its fluctuations. It predicted the existence of
a parameter regime where the Josephson radiation is fractional. While those results provided analytical
insights into the junction behaviour, strong assumptions were required. Thus, we turned to a microscopic
description that models the system as a non-interacting quantum dot hosting a unique spin degenerate
level which is tunnel coupled to two BCS superconducting leads. The current is then deduced from the
full Green function, which is obtained by solving the Dyson equation. We developed a novel method to
solve this equation in the time domain. Its complexity is O (N log(N )) in both operation and memory,
where the time axis has been discretized into N time steps. By contrast, the usual time domain method
requires O (N 3) operations and O (N 2) bytes of memory to solve the Dyson equation. This new method is
not restrained in any way to the study of Josephson junctions, it can be used to solve any Dyson equations.
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Résumé

Ces travaux visent à étendre la compréhension du transport quantique hors équilibre dans des jonctions
Josephson polarisées en tension, aussi bien par des méthodes analytiques que numériques. En particulier,
nous avons étudié le rayonnement Josephson d’une jonction formée par une boite quantique connec-
tée à deux fils supraconducteurs. Dans une telle jonction, les états liés d’Andreev sont toujours détachés
des continuums de part et d’autre du gap supraconducteur. Tout écart de la boite quantique à la condi-
tion de résonance induit l’ouverture d’un second gap au niveau de Fermi. Sous l’effet de la tension de
polarisation, des transitions non-adiabatiques peuvent avoir lieu entre ces différents états discrets. Pour
comprendre l’effet de cette dynamique sur le courant et la radiation Josephson, nous proposons un mo-
dèle stochastique de celle-ci. Nous en déduisons des expressions analytiques des différentes observables
paramétrisées par les probabilités de transition des processus non-adiabatiques. Ce modèle prédit l’exis-
tence d’un régime de paramètres où le rayonnement Josephson est fractionnel. Bien que ces résultats
aient fourni un aperçu analytique du comportement de la jonction, il repose sur des hypothèses fortes.
Notamment, tout effet de cohérence quantique est négligé, de même que l’effet de l’environnement. Nous
nous sommes donc tournés vers un modèle microscopique de la jonction décrit dans le formalisme des
champs hors équilibre. La boite quantique est modélisée par un unique état discret connecté par effets
tunnel à deux supraconducteurs BCS. La fonction de Green complète est obtenue en résolvant l’équation
de Dyson dans le domaine temporel. A cette occasion, nous avons développé une nouvelle méthode de
résolution de cette équation de complexité O (N log(N )) en temps et en mémoire, avec N le nombre de
points de discrétisation de l’axe temporel. Alors que les méthodes usuelles nécessitent O (N 3) opérations
et O (N 2) octets de mémoire pour résoudre cette même équation. Ce nouvel algorithme n’est restreint en
aucune façon à la simulation de jonctions Josephson.
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Introduction

In recent years, several research groups have proudly announced reaching the quantum supremacy regime
in both superconducting devices [1] and photonic systems [2, 3]. Other platforms, such as Rydberg atoms
[4] and semiconductor qubits [5, 6], are expected to attain the same performance level in the coming years.
Even if any claim of quantum supremacy must be taken with caution, these results demonstrate the excel-
lent level in the design, fabrication, and control of coherent quantum systems enabled by modern tech-
nologies. Nowadays, some of the quantum systems have already reached the commercialization phase,
one can cite for instance quantum sensors [7, 8], quantum amplifiers [9], or quantum cryptographic so-
lutions [10, 11]. However, most of the research effort is still at the fundamental physics level. In order to
deepen our understanding of novel quantum physics, one has to be able to fabricate and measure devices
with a fast turnaround, which requires efficient and potent simulation tools.

|∆L |e iϕL

VL

|∆R |e iϕR

VR

Figure I.1: Schematic of a Josephson junction. The left and right superconductors are characterized by
their superconducting gap amplitude |∆L/R | and phaseϕL/R . VL/R are the left and right electric potential.
They are separated by a non-superconducting barrier.

When we focus on solid state devices, the most ubiquitous component is certainly the Josephson
junction, which is formed by two superconducting leads connected by a non-superconducting element,
which is called the weak link, see fig. I.1. The core of their phenomenology is captured by the Josephson
relations [12]

I (ϕ) =
2e

ħh
dE J (ϕ)

dϕ
,

dϕ

dt
=

2e V

ħh
(1)

where ϕ = ϕL −ϕR is the phase difference across the junction, E J (ϕ) is the junction energy, V = VL −
VR is the voltage bias, e the elementary charge and ħh the reduced Planck constant. This junction forms
the building block of superconducting quantum processors, magnetic field sensors, or quantum limited
amplifiers. Despite their common use, they are still subject of fundamental research explorations.

In the simplest form of Josephson junctions, the weak link is a piece of metal or insulator of length
L , we refer to this device as a superconductor-normal-superconductor (SNS) junction. As the excitations
within the energy gap are trapped in the weak link, the junctions host discrete states known as the An-
dreev bound states (ABSs). Their number per conduction channel depends on the length of the weak link
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Introduction

compared to its the coherence length ξ = ħhνF /π|∆| [13], where νF is the Fermi velocity in the weak link
and 2|∆| is the size of the superconducting gap. In the short junction limit, L � ξ, each channel hosts only
two particle symmetric ABSs of energy E±(ϕ), see fig. I.2, given by

E±
|∆|
=±

Ç

1−T sin
�

ϕ/2
�

, (2)

where T is the transmission probability of the weak-link at the Fermi energy EF . The junction energy is
the sum of the contribution of each ABS, such that

E J (ϕ) = n+E+(ϕ)+n−E−(ϕ), (3)

where n± ∈ {0 , 1} are the state occupations. Thus, the current flowing though the junction depend on this
occupation. At low temperature T �∆ and thermal equilibrium, only the state E− is occupied, thus the
DC Josephon current is

I J (ϕ) =
2e

ħh
dE−(ϕ)

dϕ
. (4)

By applying a constant voltage bias V across the junction, the superconducting phase difference ϕ will
oscillate at the Josephson frequencyωJ = 2e V /ħh , which in turn can induce a Landau-Zener transition at
ϕ = 0 with a probability

pπ = exp
�

−
π∆

e V
(1−T )

�

. (5)

Because of this non-adiabatic process, the state occupations are time dependant. Yet, in SNS junctions,
the ABSs are in contact with the continuum of states at ϕ = 0 mod 2π, see fig. I.2, meaning that the junc-
tion energy is forced to be 2π-periodic in the phase difference. It results in an oscillation of the current at
the Josephson frequencyωJ , the corresponding electromagnetic signal is the Josephson radiation [14].

π 2π

−∆

∆

ϕ

E

EF

Figure I.2: Spectrum of a short SNS junction. Solid lines: ABS spectrum of a junction of transmission
probability T = 0.8. Dashed lines: ABS spectrum of a perfectly transmiting junction (T = 1). The light
blue rectangles are the continuum outside the superconducting gap. In presence of backscattering, the
ABSs anti-cross at the Fermi energy. At thermal equilibrium, only the states below the Fermi energy are
occupied.

More recently, the Josephson radiation spectrum of a junction composed of topological supercon-
ductors has drawn much attention. A topological superconductor is a superconductor whose wave func-
tion cannot be continuously deformed into a combination of atomic ones. In particular, Majorana bound
states are expected to form at the extremity of spinless p-wave superconductor [15]. When forming a
Josephson junction using such superconducting leads, the Majorana end modes hybridize to form ABS
which energy is 4π-periodic in the superconducting phase difference. An experimental signature of such
a periodicity would be a fractional Josephson radiation, that is a Josephson radiation at frequency ωJ /2
[16–19].
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Introduction

Yet, other kind of junctions may display a non-conventional Josephson radiation. Let’s consider a
junction made of a spin-degenerate single-level quantum dot (QD) that is contacted to two supercon-
ducting leads. Its Andreev spectrum has been analysed both in the presence and absence of Coulomb
interaction [20–22].

In particular, in presence of a strong Coulomb interaction, and when the QD has a non-zero spin,
a many-body state forms at the Fermi energy, this is the Kondo effect. Its associate energy scale is the
Kondo temperature TK , [22, 23]. This pinned state enhances the device transmission at the Fermi energy.
In the strong Kondo regime |∆| � TK , as well as in the absence of interactions when the QD level witdth
Γ induced by the coupling to the leads is large compared to superconducting gap |∆| � Γ , the junction
accommodates two particle-hole symmetric ABSs denoted |+〉 and |−〉, [24]. Their energies are

E±(ϕ) =± |∆|
q

T0 cos2(ϕ/2)+Rπ sin2(ϕ/2), (6)

where Rπ ≡ 1− Tπ is the reflection probability of the device in the normal state at the Fermi energy and
T0 is an effective transmission probability. Introducing the partial level widths ΓL/R due to the coupling to
the left and right leads, and ε0 the position of dot level, we can write

Tπ =
ΓLΓR

((ΓL+ ΓR)/2)
2+ε2

0

. (7)

Thus, when the junction is not symmetric ΓL 6= ΓR , or the QD level not at the Fermi energy, the ABSs are
anti-crossing at the Fermi energy. R0 ≡ 1−T0 is of order (∆|/TK )2� 1 in the Kondo regime and (∆|/Γ )2� 1
in absence of interactions. As the ABSs are detached from the continuum, see fig. I.3, the energies E (ϕ) of
these junctions are not constrained to be 2π-periodic in the phase difference any more. Hence, the time-
dependent phase shift can cause a complex dynamics of the ABSs occupation by inducing non-adiabatic
processes. This may result in a change of the Josephson radiation frequency. That is why it is of prime
interest to understand the out-of-equilibrium dynamics of conventional junctions to assess the use of
fractional Josephson radiations as a probe of topological superconductivity.

π 2π

−∆

∆

|+〉

|−〉

ϕ

E

EF

Figure I.3: Spectrum of a slightly dissymmetric S-QD-S junction. The Andreev bound states are fully de-
tached from the continuum. In the presence of a voltage bias, the phase increases with time and non-
adiabatic transitions may occur between states |+〉 and |−〉 (blues arrows),as well as between state |+〉 and
the continuum at energy E >∆ or between the continuum at energy E <−∆ and state |−〉 (red arrows).

This thesis aims to improve the comprehension of the out-of-equilibrium transport in supercon-
ducting junctions by both analytical and numerical methods. We first develop a stochastic model to de-
scribe the out-of-equilibrium ABS occupation dynamics in junctions where the ABSs are fully detached
from the continuum. This model provides analytical formulas of the DC current and radiation spectrum
parametrized by the transition probabilities p0 and pπ. p0 is the probability for a non-adiabatic transi-
tion between the state |+〉 and the continuum states with energy E > |∆| as well as continuum states of
energy E < −|∆| with the state |−〉. Similar model already had some success in the description of both

11



Introduction

conventional and topological junctions [25–27]. Yet, they do not reproduce the oscillation in the junction
response to an applied voltage caused by interferences between successive non-adiabatic processes [19,
24], and the transition rates still have to be determined from the underlying microscopic model. Plus,
there is no clear direction to include the effects of the environment, such as the presence of an electro-
magnetic cavity around the junction. Thus, we eventually turn to the direct simulation of the microscopic
quantum model.

As an open quantum system, the junction can be elegantly analysed in the out-of-equilibrium quan-
tum field formalism [28, 29]. Interestingly, both the non-interacting system and the one in the strong
Kondo regime can be described by a non-interacting field theory upon renormalizing the system param-
eters. The latter case being similar to the description of a metal as a non-interacting gas of electrons
through the Fermi liquid theory [23]. Thus, all the system observables can be deduced from the two-point
correlation functions, also known as the Green function G

Gp ,q (t , t ′)≡−i
¬

TCΦp (t )Φ
†
q (t
′)
¶

, (8)

whereΦ†
q (t
′) creates a particle in state q at time t ′ andΦp (t ) destroys a particle in state p at time t . Within

the out-of-equilibrium field theory, these time indices lay on an oriented complex contour. The complex
time ordering symbol TC organizes the operators in front of him according to their positions on this con-
tour. Finally, 〈〉 is the averaging operator. To evaluate this quantity, we first compute the Green function
of the isolated dot g (t , t ′), the effect of the coupling to the leads is then described by a self-energy termΣ.
The full Green function G is therefore the solution of the Dyson equation

G (t , t ′) = g (t , t ′)+
¨

g (t , t1)Σ(t1, t2)G (t2, t ′)dt1dt2. (9)

Solving this equation requires an apparently disproportionate amount of computational resources. This
triggered our effort to design a new method to solve the general out-of-equilibrium Dyson equation. Usual
time domain methods require O (N 3) operations and O (N 2) bytes of memory, where N is the number
of time steps. In consequence, long-time simulations used to be prohibitively expensive. Yet, by using
modern numerical methods adapted to the structure of the Dyson equation and by extending the work of
[30], we propose a new algorithm that reaches a complexity of O (N log(N )) in both time and space.

The manuscript is structured as follows. The chapter 1 and chapter 2 introduce the formalism used
in this work, the BCS theory of superconductors and the properties of the usual short Josephson junctions.
The chapter 3 exposes a stochastic model of the ABS dynamics in S-QD-S junction biased by a constant
voltage. It predicts the existence of a parameter regime where the Josephson radiation is fractional. To
validate this first approach, we turned to a microscopic description of the junction in chapter 4. It models
the junction as a non-interacting quantum dot which hosts a unique spin degenerate level that interacts
through tunnel coupling with two BCS superconducting leads. This model does not explicitly include
many-body interactions, even if it may hold for certain interacting systems by using renormalized param-
eters [24]. Thus, any observable can be deduced from the full Green function which is obtained by solving
the Dyson equation in the time domain. The last part of this manuscript addresses thus the numerical res-
olution of the Dyson equation. The chapter 5 reviews the usual existing algorithms and their limitations.
Finally, in the chapter 6 we propose a new algorithm that solves the general out-of-equilibrium Dyson
equation in quasi-linear time and space. We conclude this manuscript with some suggestions to extend
this work.

12



CHAPTER 1
Out-of-equilibrium field theory

“Begin at the beginning”, the King said gravely, “and go on till you come to the end:

then stop."

— Lewis Carroll, Alice in Wonderland

The quantum field formalism permits to gracefully deal with open quantum systems, or design approxi-

mation methods for interacting problems. In condensed matter physics, this picture is equivalent to the

Hamiltonian formulation. The formal connection between these complementary descriptions is done

in numerous textbooks [28, 29, 31]. Here we introduce the essential features of the out-of-equilibrium

field theory, while disregarding most of the technical aspects. As in classical statistical physics, the central

objects of the field theory are the generating functions, that are usually called partition functions. They

compactly represent all the system properties. But, they are generally impossible to evaluate in a closed

form. Thus, one has to resort to some approximation strategies.

Generating function A sequence of numbers ap can be interpreted as the coefficients of a formal series

development of a function f (x ). f is said to be the generating function of the sequence ap .

For instance, the sequence of numbers 1/n ! can be represented as the coefficients of a power series

expansion of exp(x ).

Partition function In equilibrium statistical physics and field theory all the properties of a system are

encoded in its generating function Z [J1, J2, ...] which is called the partition function or partition func-

tional.

A functional is a map from a function space to scalars. Thus, when the Jk appearing in the expression
Z [J1, J2, ...] are functions, we shall call Z the partition functional. As an example, let’s write the partition
function of a classical system that can exchange energy and particles with a thermostat at temperature T

Z =
∑

r

exp
�

µNr −Er

kB T

�

, (1.1)

13



CHAPTER 1. Out-of-equilibrium field theory

where the sum runs over all the possible configurations of the system, µ is the chemical potential, Er

is configuration energy and Nr is the number of particles. T is the temperature and kB the Boltzmann
constant. The probability to occupy a given state is

P (r ) =
1

Z
exp

�

µNr −Er

kB T

�

. (1.2)

Thus, the average number of particles can be expressed by differentiating Z

kB T
∂ Z

∂ µ
=

∑

r

Nr

Z
exp

�

µNr −Er

kB T

�

, (1.3)

= 〈N 〉 . (1.4)

We may access the statistical properties of other observables by inserting fictitious source terms in Z . To
compute the average values of an observable X̂ , one rewrites Z as

Z [JX ] =
∑

r

exp
�

µNr −Er

kB T
+ xr JX

�

, (1.5)

where xr is the value of X̂ in the configuration r . Thus, by taking the log-derivative with respect to JX and
setting the source to zero we get

∂ Z

∂ JX

�

�

�

�

JX =0

=
∑

r

xr

Z
exp

�

µNr −Er

kB T

�

, (1.6)

= 〈X 〉 . (1.7)

The quantum field formalism also expresses the partition functions as a sum on all the system configura-
tions. But in general, the configuration of a continuous system is a field, that is a function. For instance
the states of an electron are set by its wavefunctionψ(r). Thus, the sum over the configurations is actually
an integration over a function space. The rigorous mathematical construction of this integral is not for the
faint-hearted, and raised numerous mathematical difficulties. But we are blessed, these technical issues
can generally be overlooked in physical applications. The general partition function of a system defines
by the action S [ψ̄,ψ] is

Z =
ˆ
D[ψ̄,ψ]e

i
ħh S [ψ̄,ψ], (1.8)

where
´
D[ψ̄,ψ]designates the integration over the configurations space. We insist that in generalψ is not

a number nor a vector but a function. To follow the customs, when looking at out-of-equilibrium systems
we shall name this object the generating functional rather than the partition function, see [28]. The first
aim of the present section is to introduce the definitions and concepts that permits to understand and use
this equation to study open quantum system. The second objective is to introduce the Keldysh formalism
allowing the description of general out-of-equilibrium dynamics.

1.1 Density matrix

Hereafter, we are dealing with systems in an environment. Therefore, their states are not pure wave func-
tions. They are rather statistical mixtures of quantum states. To fully understand the difference, we first
consider an observable Ô and a quantum state

�

�ψ
�

defined as

�

�ψ
�

=
∑

k

ak |k 〉 , (1.9)
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1.2. Evolution operator

where |k 〉 is a basis of the Hilbert space and the coefficients ak are complex numbers. The expectation
value of the observable Ô for the state

�

�ψ
�

is written as



Ô
�

�

�ψ
� ≡




ψ
�

�Ô
�

�ψ
�

, (1.10)

=
∑

p , q

āp aq




p
�

�Ô
�

�q
�

. (1.11)

Now let’s look at what happens when we consider a statical mixture of the states |k 〉. Let Pk be the proba-
bility for the system to be in the state k . Owing to the usual expression of an average, the expectation of
O is




Ô
�

P
=
∑

k

Pk 〈k | Ô |k 〉 . (1.12)

Hence, to describe statistical mixture, we need to introduce a new object: the density matrix.

Density matrix A statistical mixture of quantum states is described by its density matrix. For a set of

quantum states
�

�ψk

�

distributed according to the probabilities pk , the density matrix ρ is defined by

ρ ≡
∑

k

pk

�

�ψk

�


ψk

�

� . (1.13)

The average value of an observable O is thus provided by

〈O 〉ρ = Tr
�

ρO
�

. (1.14)

To demonstrate this result, we simply expand the trace over an orthonormal basis |k 〉

Tr
�

ρO
�

=
∑

k

∑

l

pl




k
�

�ψl

� 


ψl

�

�O
�

�k
�

(1.15)

=
∑

l

pl




ψl

�

�O
�

�ψl

�

. (1.16)

One may show that the density matrix dynamics follows the Von Neumann equation [28]

iħh
dρ(t )

dt
=
�

H (t ),ρ(t )
�

, (1.17)

where H is the Hamiltonian describing the system. In the following section, we formally solved the Von
Neumann equation using the Picard iteration method. This transformation then allows the partition func-
tion to be written as a field integral.

1.2 Evolution operator

As the Schrödinger equation and by extension the von Neumann equation are linear, the time evolution

of the system is described by a linear-operator.

Evolution operator For a system whose state at every moment is fully characterized by a vector y (t )
that undergoes a linear dynamics, the evolution operator U (t , t ′) is the linear map such that

y (t ) =U (t , t ′)y (t ′). (1.18)
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CHAPTER 1. Out-of-equilibrium field theory

From its definition, it’s trivial to demonstrate that an evolution operator verifies the semigroup
property

U (t , t1)U (t1, t ′) =U (t , t ′). (1.19)

When the dynamics is described by a linear time-independent differential equation of the form

dy (t )
dt

= Ay (t ), (1.20)

where A is a matrix. The general solution is y (t ) = e A(t−t0)y (t0). Thus, we deduce that the evolution oper-
ator is

U (t , t ′) = e A(t−t ′). (1.21)

But we are interested in the out-of-equilibrium regime, and thus our differential equation will be time-
dependent. Hence, we shall consider the case:

dy (t )
dt

= A(t )y (t ). (1.22)

By using Picard iterations we can build a formal representation of the corresponding evolution operator.
The idea of Picard iteration is to write

y (t ) = y (t0)+
ˆ t

t0

y ′(t )dt (1.23)

= y (t0)+
ˆ t

t0

A(t1)y (t1)dt1 (1.24)

= y (t0)+
ˆ t

t ′
A(t1)

�ˆ t1

t0

A(t2)y (t2)dt2+ y (t0)

�

dt1 (1.25)

= y (t0)+
ˆ t

t ′
A(t1)y (t0)dt1+

ˆ t

t0

ˆ t1

t0

A(t1)A(t2)y (t2)dt2dt1. (1.26)

Continuing the iterations, we get that, for t ≥ t0,

y (t ) = lim
n→∞

n
∑

k=0

˙

tk≥...≥t0

A(tk )A(tk−1) · · ·A(t1)y (t0)dtk dtk−1 · · ·dt1. (1.27)

As A(tk ) has no reason to commute, the product orders are important. Thus it is customary to introduce
the time ordering T and anti-time ordering T̃ symbols.

Time-ordering and antitime-ordering symbols Considering a set of time dependant operators

{Ak (tk )}k we define the time ordering symbol T and the anti-time ordering symbol T̃ by their actions

on the operator products

T{A1(t1)A2(t2) · · ·An (tn )} =
∑

σ

ε(σ)

 

n−1
∏

j=1

Θ(tσk
− tσk+1

)

!

Aσ1(tσ1 )
Aσ2(tσ2 )

· · ·Aσn (tσn )
, (1.28)

T̃{A1(t1)A2(t2) · · ·An (tn )} =
∑

σ

ε(σ)

 

n−1
∏

j=1

Θ(tσk+1
− tσk

)

!

Aσ1(tσ1 )
Aσ2(tσ2 )

· · ·Aσn (tσn )
, (1.29)

where the sum runs on all the permutations of length n and ε(σ) account for the symmetry under ex-

change of the operators acting at different points in time, see below, and Θ is the Heaviside function.
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1.2. Evolution operator

Put in simple words, the time ordering T rearranges a product to ensure that the operators appear
in ascending time order from right to left and T̃ organizes them in decreasing time order from right to left.
The statistic factor ε(σ) permits to preserve the relevant symmetries under exchange of operators acting
at different moments in time:

ε≡
�

1 for bosonic operators
sign of the permutation for fermionic operators

(1.30)

Bosonic and fermionic operators The bosonic or fermionic nature of a set of operators {Ak (tk )}k does

not refer to the physical objects they describe, but uniquely to their properties under exchange. Prod-

ucts of bosonic operators acting at the same moment in time commute, while fermionic operators anti-

commute:

For bosonic operators: ∀ (k , k ′), tk = tk ′ =⇒ Ak (tk )Ak ′ (tk ′ ) = Ak ′ (tk ′ )Ak (tk ) (1.31)

For fermionic operators: ∀ (k , k ′), tk = tk ′ =⇒ Ak (tk )Ak ′ (tk ′ ) =−Ak ′ (tk ′ )Ak (tk ) (1.32)

A product of fermionic creation operators can thus be a bosonic operator. In particular the full
Hamiltonian is a bosonic operator. Let’s get back to the expression of the evolution operator, inserting a
time ordering symbol, we get

˙

tk≥...≥t0

A(tk ) · · ·A(t1)y (t0)dtk · · ·dt1 =
1

n !
T

ˆ t

t0

ˆ t

t0

· · ·
ˆ t

t0

k
∏

j=1

A(t j )y (t0). (1.33)

Thus, the evolution operator can be written as

U (t , t ′) =
∞
∑

k=0

1

n !
T

ˆ t

t0

ˆ t1

t0

· · ·
ˆ tn

t ′

n
∏

k=1

A(tk ). (1.34)

The above expression is formally recast into

U (t , t ′) = T exp

�ˆ t

t ′
A(t1)dt1

�

. (1.35)

The Schrödinger equation 1.36 describes the evolution of an isolated quantum system. It is a linear dif-
ferential equation

H
�

�ψ
�

= iħh
d

dt

�

�φ
�

. (1.36)

We may write the associated evolution operator as

For t ≥ t ′, U (t , t ′) = T exp

�

−
i

ħh

ˆ t

t ′
H (t1)dt1

�

. (1.37)

As U (t , t ′) must preserve the norm of the wave vector, it is a unitary matrix : U −1(t , t ′) = U †(t , t ′). By
applying its semigroup property, we have

U (t ′, t )U (t , t ′) = 1. (1.38)
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CHAPTER 1. Out-of-equilibrium field theory

Thus,
U †(t , t ′) =U (t ′, t ). (1.39)

And U †(t , t ′) can be expressed using the reverse time ordering T̃ as

For t ≥ t ′, U †(t , t ′) = T̃ exp

�

i

ħh

ˆ t

t ′
H (t1)dt1

�

. (1.40)

Or said otherwise

For t ≤ t ′, U (t , t ′) = T̃ exp

�

−
i

ħh

ˆ t

t ′
H (t1)dt1

�

. (1.41)

From the definition of the density matrix, we immediately deduce that

ρ(t ) =U (t , t ′)ρ(t ′)U †(t , t ′). (1.42)

Thus, the expectation value of an observable Ô at time t can be expressed knowing the evolution operator
and the density matrix at time t ′ as




Ô
�

(t ) = Tr
�

U (t , t ′)ρ(t ′)U †(t , t ′)Ô
	

, (1.43)

= Tr
�

U (t , t ′)ρ(t ′)U (t ′, t )Ô
	

. (1.44)

To have a more elegant formula, we use the invariance of the trace under cyclic permutations



Ô
�

(t ) = Tr
�

U (t ′, t )ÔU (t , t ′)ρ(t ′)
	

. (1.45)

Hence, it is possible to evaluate the expectation value of an operator at time t , while only knowing the den-
sity matrix only at time t ′. To do this, one first evaluates the operator U (t ′, t )ÔU (t , t ′) which describes
a forward evolution in time from t ′ to t followed by the effect of the operator O and finally a backward
evolution in time from t to t ′. Thus, if one can approximate the density matrix at time t ′ and the evolu-
tion operator U (t , t ′), one can access the operator statistics. It turns out that this strategy is often more
efficient than the direct evaluation of the density matrix [28, 29]. When studying systems at the thermal
equilibrium, it is possible to avoid the backward evolution, and its technical issues [28]. Unfortunately,
we are interested in the out-of-equilibrium regime. Therefore, we introduce a closed time loop which al-
lows distinguishing a time

−→
t associated with a forward evolution and another time

←−
t associated with a

backward evolution.

1.3 Closed time contour

To paraphrase [28], we need to free time from the time axis, so that it is possible to define a closed time
contour often call the Keldysh contour. While one may explicitly consider a loop in the complex plane, we
will not fall for it, as we just need to extend times t with a contour index ±. So that a time on the Keldysh
contour is designated by its projection on the time axis, i.e. its real time, and by its direction. The points
on the Keldysh contour are ordered by their position on the contour. Points of the forward branch C + are
set earlier than those on the backward branch C −. The points on the forward branch are time ordered,
while those of the backward branch are anti-time ordered. We then introduce the evolution operator UC

on this contour. It evolves a state vector following the contour direction. Thus, for t < t ′ the operator
UC (t , t ′) has to do a partial revolution around the contour. Introducing the Keldysh time ordering symbol
TC one may show that the contour evolution operator has the following expression [28]

UC (t , t ′) = TC exp

�

−
i

ħh

ˆ t

t ′
H (t1)dt1

�

. (1.46)
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τt ′ t

t2•
C −

t1•C +

Figure 1.1: Representation of the Keldysh contour between times t ′ and t . By construction times laying
on the forward branch C + are set before times laying on the backward branch C −, thus t2 > t1.

The eq. (1.45) is almost unchanged




Ô
�

(t ) = Tr
�

UC (t
′, t )ÔUC (t , t ′)ρ(t ′)

	

. (1.47)

We stretch the Keldysh contour from −∞ to ∞. The time t at which we evaluate the expectation of

τ

•
t

C −

C +

Figure 1.2: The Keldysh contour is stretched to overlap the whole real line.

an observable now resides either on the forward branch or on the backward branch. In both case, its
expression is :




Ô
�

(t ) = Tr
�

UC (−∞, t )ÔUC (t ,−∞)ρ(−∞)
	

. (1.48)

Finally, a first expression of the partition function is

Z = TrUC (−∞−,−∞+)ρ(−∞) (1.49)

Where UC (−∞−,−∞+) has to be understood as an evolution around the full Keldysh contour starting at
−∞on the forward branch and stopping at−∞on the backward branch. By constructionUC (−∞,−∞) =
1 as the backward evolution compensates exactly the forward evolution, and thus Z = 1. Yet, we can add
to the Hamiltonian H a perturbation Ôδ(t − tÔ )η where tÔ is on the contour. Now, the backward evolu-
tion does not exactly compensate the forward evolution. The partition function can be differentiated with
respect to the source term η, thereby we recover the expectation value of Ô .

iħh
∂ Z [η]
∂ η

�

�

�

�

η=0

=



Ô
�

(tÔ ). (1.50)

Constructing the field integral for fermionic particles requires introducing the anti-commutative algebra
of the Grassmann variables.

1.4 Grassmann variables

The anti-commutativity of fermionic operators imposes to build an anti-commutating and associative al-
gebra known as a Grassmann algebra. Its elements are the Grassmann numbers or variables. It is induced
by a set of generators θi that satisfies

�

θi ,θ j

	

= 0 (1.51)

19



CHAPTER 1. Out-of-equilibrium field theory

where the bracket {,} is the anti-commutator. The set of all the non-zero products {θα, θβ , . . . ,θαθβ , θβθα, . . .}
of generators form a base of this space. Hereafter, we will always consider an even number of generators.
Thus, we can arbitrarily group them in pairs. Elements of pairs are said to be conjugate to each other. This
permits to define the conjugation operator η→ η̄ that associates to a Grassmann variable its conjugate.
This operation is distributive over the sum and satisfies the following properties

ηα, . . .ηβ = η̄β , . . . η̄α (1.52a)

cη = c̄ η̄ with c ∈C (1.52b)
¯̄η = η (1.52c)

The anti-commutation relation imposes that for any Grassmann numberηwe haveη2 = 0. Thus, the most
general one variable polynomial function is

f (η) = a0+a1η, (1.53)

and the more general bivariate polynomial is

f (η, η̄) = a0+a1η+a2η̄+a3ηη̄, (1.54)

with ak some complex numbers. In particular, we have

e η+η̄ = 1+η+ η̄, (1.55)

where the exponential is defined from its Taylor series. The field integral formalism requires the definition
of integration and differentiation of Grassmann functions.

Berezin integrals

The Berezin integrals define an integration over Grassmann numbers suitable for quantum field
formalism. It is the linear operation that is defined byˆ

1 dη ≡ 0 (1.56)
ˆ
ηdη ≡ 1 (1.57)

To uniquely define the integration when several variables appear, we need to add the following rules: be-
fore performing the integration the integrated variable is moved to the left of the integrand. Thus, we have:ˆ

ηη̄dη̄=−η (1.58)

The differentiation with a respect to a Grassmann number is identical to integration:

∂

∂ η
≡
ˆ

dη (1.59)

We shall notice that the Berezin integral is invariant by translation of the integrand. This concludes the
presentation of Grassmann algebra, we now turn to the construction of the coherent states.

1.5 Coherent states

The coherent states are defined as the eigenvectors of the destruction operator a . They satisfy :

a |α〉=α |α〉 (1.60)

Which implies that:
〈α|a † = ᾱ 〈α| (1.61)
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1.5.1 Coherent bosonic state

For a bosonic state associate to the creation and destruction operators a † and a , the coherent states are
the eigenvector of a . Considering a state |α〉 defined as

|α〉=
∞
∑

n=0

an |n〉 , (1.62)

we have

a |α〉=
∞
∑

n=1

an
p

n |n −1〉 . (1.63)

Hence, if α |α〉= a |α〉 for some complex α, we deduce that:

αan =
p

n +1an+1, (1.64)

solving this recurrence, we got

an =
α
p

n !
. (1.65)

We finally deduce the form of the bosonic coherent states

|α〉 ∝
∑

n

αn a †

p
n !
|n〉 (1.66)

= λe αa †
|0〉 . (1.67)

Where λ is a normalization constant that we fix by imposing 〈α|α〉= 1, finally:

|α〉= e −
ᾱα
2 +αa †

|0〉 (1.68)

1.5.2 Coherent fermionic states

When constructing the coherent fermionic states associated to the destruction operator a , the relation
a
�

�η
�

=η
�

�η
�

must hold. Yet, as a 2 = 0, we have the constraint:

η2 = 0 (1.69)

Thus, the only eigenvalue in C is 0. More useful states can be formed by considering eigenvalues in the
set of Grassmann numbers. They automatically fulfil eq. (1.69). Decomposing the wave vector as

�

�η
�

=
α0 |0〉+α1 |1〉, with αi in the set of Grassmann numbers, we deduce from the eigenvector equation that

η (α0 |0〉+α1 |1〉) =α1 |0〉 , (1.70)

and as for the bosonic coherent state, we supplement this first equation with the normalization condition:




η
�

�η
�

= 1 (1.71)

We finally deduce that :
�

�η
�

=
�

1−
η̄η

2

�

|0〉+η |1〉 (1.72)

This last expression can be recast in the same form as the bosonic coherent state:

�

�η
�

= e −
η̄η
2 +ηa †

|0〉 (1.73)
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1.5.3 Properties of coherent states

The coherent states will be used to parametrize the field configuration. This is possible as they form a
complete set [31], id est

1=
ˆ
α
|α〉 〈α| , (1.74)

where in the bosonic case, the above relation holds for the measure on C define by

ˆ
α∈C

f (α)≡
¨

f (x + i y )
d x d y

π
. (1.75)

Yet, they are not orthogonal



α
�

�β
�

= e ᾱβ−
1
2

�

ᾱα+β̄β
�

, (1.76)

The trace of an operator Ô can be expressed as:

Tr Ô =
ˆ
α
〈α| Ô |α〉 (1.77)

But the essential property of the coherent states comes directly from their definition as eigenvectors of
destruction operators. For any product of a and a † in normal order we have

∀ (p , q ) ∈ N2 : 〈α|
�

a †
�p

a q
�

�β
�

= ᾱpβq



α
�

�β
�

(1.78)

Normal order A product of creation and destruction operators is normal ordered when all the creation

operators appear on the left of the destruction operators.

Thus if we consider a second quantization Hamiltonian Ĥ written in normal order. It is a multivari-
ate polynomial in the creation and destruction operators. Let’s denote this formal polynomial as

H
�

X̄k , Xk

�

=
∑

k

hk X̄k Xk , (1.79)

so that H
�

a †
k , ak

�

=H . By use of eq. (1.78) we have the following correspondence between Hamiltonians,
and more generally any operators written in normal order, and coherent states

⊗

l

〈αl |Ĥ
�

�βl

�

=H
�

ᾱl ,βl

�


α
�

�β
�

, (1.80)

where the tensor product run over all the creation operator indices. This correspondence between oper-
ators and coherent state coupled with eq. (1.74) will permit to build the field integral.

1.6 Field integral

We consider a system governed by the normal-ordered second quantization Hamiltonian H (t ), with t
living on the Keldysh contour, which extends from t0 to t f . We discretize the Keldysh contour on 2N
segments [tk−1, tk ]k=1, ..., 2N of algebraic length∆tk :

∆tk ≡ tk − tk−1 (1.81)
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τt0 t f

C −

C +

•t0 = t2N

•
tN

•
tN+1

That is,∆tk is negative on the backward branch. Thus, we can decompose the evolution operator on the
contour as follows

UC (ti , t f ) =
2N
∏

k=1

UC (tk , tk−1), (1.82)

and insert between each evolution the resolution of identity
ˆ
Φ(tk )
|Φ(tk )〉 〈Φ(tk )|= 1, (1.83)

where |Φ(tk )〉 is the tensor product of the coherent states associated to each destruction operator at time
tk

|Φ(tk )〉=
⊗

l

|αl (tk )〉 , (1.84)

Thus, we got:

UC (t2N , t0) =
˙

Φ(t1), ...,Φ(t2N−1)

UC (t2N , t2N−1) |Φ(t2N−1)〉
2N−1
∏

k=2

�

〈Φ(tk )|UC (tk , tk−1)
�

�Φ†(tk−1)
�	

〈Φ(t1)|UC (t1, t0) (1.85)

By developing the evolution operator to the first order in the time increment, we got:

UC (tk , tk−1)≈ exp
�

1−
i∆tk

ħh
Ĥ (tk−1)+O

�

∆t 2
k

�

�

(1.86)

Combining this last equation with eq. (1.80) we have

〈Φ(tk )|UC (tk , tk−1) |Φ(tk−1)〉 ≈ e 1− i∆tk
ħh H (tk−1,Φ†(tk ),Φ(tk−1))+O

�

∆t 2
k

�

〈Φ(tk )|Φ(tk−1)〉 (1.87)

≈ e −
i∆tk
ħh H (tk−1,Φ†(tk ),Φ(tk−1))e Φ

†(tk )Φ(tk−1)− 1
2

�

Φ†(tk )Φ(tk )+Φ(tk−1)Φ(tk−1)
�

(1.88)

≈ e −
i∆tk
ħh H (tk−1,Φ†(tk ),Φ(tk−1))+

1
2

��

Φ†(tk )−Φ†(tk−1)
�

Φ(tk−1)−Φ†(tk )(Φ(tk )−Φ(tk−1))
	

(1.89)

Thus, defining the discretized action as

S
�

Φ†(tk ),Φ(tk )
�

=
∑

k

ħh
2i

��

Φ†(tk )−Φ†(tk−1)
�

Φ(tk−1)−Φ†(tk ) (Φ(tk )−Φ(tk−1))
	

−∆tk H (tk−1,Φ†(tk ),Φ(tk−1)),

(1.90)
We can rewrite the evolution operator as

UC (t2N , t0) =
∆tk→0

˙

Φ(t1), ...,Φ(t2N−1)

e
i
ħh S

�

Φ†(tk ),Φ(tk )
�

(1.91)

To finally form the correlation function, we have to introduce the initial density matrix, and the trace.

Z =
∆tk→0

Tr

˙

Φ(t1), ...,Φ(t2N−1)

e
i
ħh S

�

Φ†(tk ),Φ(tk )
�

ρ(t0) (1.92)
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By adding another resolution of the identity in front of the density matrix, and taking the trace by use of
eq. (1.77), we have

Z =
∆tk→0

˙

Φ(t0), ...,Φ(t2N )

〈Φ(t2N )|e
i
ħh S

�

Φ†(tk ),Φ(tk )
�

|Φ(t0)〉 〈Φ(t0)|ρ(t0) |Φ(t2N )〉 . (1.93)

We are getting close to the expected result. The last step is to take the continuum limit. Therefore, we
introduce the differential operator ∂t defined by

∂tΦ≡ lim
∆t→∞

Φ(t )−Φ(t −δt )
δt

. (1.94)

This operator is equivalent to usual derivatives for complex valued functions. Finally, we extend the defi-
nition of the Hamiltonian to the Keldysh contour by

H (t ±)≡±H (t ), (1.95)

with t +, t − designing times on the forward, respectively backward, branch. With these definitions at hand,
we write a first form of the continuous action

S [Φ†,Φ] =
ˆ

C

ħh
2i

�

∂tΦ
†(t )Φ(t )−Φ†(t )∂tΦ(t )

�

−H (t ,Φ†(t ),Φ(t ))dt . (1.96)

Where
´

C is the integration over the Keldysh contour. With this first form of the action, the partition
function is almost in its final form

Z =
ˆ
D[Φ†,Φ]




Φ(t f )
�

�e
i
ħh S [Φ†,Φ] |Φ(t0)〉 〈Φ(t0)|ρ(t0)

�

�Φ(t f )
�

, (1.97)

where the integration measure
´
D[Φ†,Φ] is defined asˆ

D[Φ†,Φ] = lim
N→∞

˙

Φ(t0), ...,Φ(t2N )

. (1.98)

To derive the usual expression of the partition function in the field formalism, we shall include the initial
correlations described by ρ(t0) in the definition of the action. To do so, we write the new action as S =
S0+Sint. Where S0 is a quadratic form and includes the initial correlations. This corresponds to a splitting
of the Hamiltonian into H0 +Hint with the unique constraint that H0 should be quadratic in the creation
and destruction operators, id est it can be recast into

H0(t ) =
∑

p ,q

hp ,q a †
p aq + h̄p ,q a †

q ap , (1.99)

where the hp ,q are complex numbers. Such a Hamiltonian H0 is said to be non-interacting as each term
a †

p aq can be interpreted as the propagation from the mode q to the mode p . The quadratic part of the
action can be written as

S0[Φ
†,Φ] =

ˆ
c
Φ†(t )g −1(t )Φ(t )dt ., (1.100)

where g −1 is for the moment the kernel of the quadratic form. Thus, Sint is deduced from Hint by the
following relation.

Sint =−
ˆ

C
Hint(t ,Φ†(t ),Φ(t ))dt , (1.101)

With this new definition of the action, we finally have

Z =
ˆ
D[Φ†,Φ]e

i
ħh S [Φ†,Φ]. (1.102)

In the following section we shall identify g −1 with the inverse of the one particle correlation function, also
known as Green function, associates to the problem define by H0 and the initial density matrix ρ(t0).
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1.7. Green functions

1.7 Green functions

Let’s consider a quadratic Hamiltonian H defined as

H (t ) =
∑

p ,q

hp ,q a †
p aq + h̄p ,q a †

q ap . (1.103)

The corresponding partition function augmented by two sources terms η̄ and η is

Z0[η
†,η] =

ˆ
D[Φ†,Φ]e

i
ħh
´

C Φ
†(t )g −1(t )Φ(t )+η(t )†Φ(t )+Φ(t )†η(t ) dt (1.104)

Considering the results from section 1.2, one may show the following relation

δZ0

δηq (t ′)δη
†
p (t )

�

�

�

�

�

η,η†=0

=
−1

ħh 2

¬

TCΦp (t )Φ
†
q (t
′)
¶

, (1.105)

where Φ(t ) denotes both the field configuration and the destruction operator acting at time t , in the same
manner Φ†(t ) stands for the operator creating a particle at time t and the conjugate field configuration.
Using the same notation for both object should not bring any difficulties, as they appear in very different
contexts. When the action is quadratic, as here, the relations for Gaussian integral in appendix A permit
to carry out the integration. One obtain

Z0[η
†,η] = det

�

g −1/iħh
�±1

e
−i
ħh2

˜
C η

†(t1)g (t1,t2)η(t2)dt1dt2 (1.106)

where g (t , t ′) is solution of g · g −1 = ħh , thus we absorb a ħh in the definition of g . The determinant of a
functional linear operator is the limit of the determinants of the discretized operators and the sign + and
− are respectively for fermionic and bosonic fields. As we are working on the Keldysh contour we still have
the normalization condition Z [0, 0] = 1. Hence, the above relation simplifies to

Z0[η
†,η] = e

−i
ħh2

˜
C η

†(t1)g (t1,t2)η(t2)dt1dt2 (1.107)

Finally taking the functional derivative of the above relation, we have

gp ,q (t , t ′) =−i
¬

TCΦp (t )Φ
†
q (t
′)
¶

(1.108)

This function g is the contour ordered one particle Green function. The name of this correlation function
come from its properties for non-interacting systems. From eq. (1.108) and the properties of the density
matrix, one can show [28] that the inverse of the free Green function g −1 is

g −1 (r, t ) =
�

iħh
∂

∂ t
−h (∇r, r, t )

�

(1.109)

Where h (∇r, r, t ) is the local Hamiltonian. Thus, the contour ordered Green function of a non-interacting
system g satisfies

g −1 (r, t )g
�

r, t , r′, t ′
�

= ħhδ
�

r− r′
�

δ
�

t − t ′
�

(1.110)

Thus, g is a Green function as defined in applied mathematics textbooks, see [32], where Green functions
are usually defined as follows. Considering a linear equation of the form:

L y (r, t ) = 0 (1.111)
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WhereL is a linear operator defining the problem and y (r) is the unknown. The associated Green function
is a distribution G (r, t , r′, t ′) that solves the equation

LG
�

r, t , r′, t ′
�

=δ
�

r− r′
�

δ
�

t − t ′
�

(1.112)

The Green functions describe how an excitation propagates through time and space. In particular, once
the Green functions are known, the non-homogeneous equation

L y (r, t ) = f (r, t ) , (1.113)

is formally solved by

y (r, t ) =
ˆ

G
�

r, t , r′, t ′
�

f
�

r′, t ′
�

dr′dt′. (1.114)

One may think of the Green functions as operators acting on elements of the Hilbert space. Thus, we
naturally introduce algebra operations that extend those on finite dimensional matrices.

1.7.1 Integral operator algebra

Here, we will not discuss the involved topic of linear operators on infinite or even continuous space, but
simply introduce some notations useful in the following. In general, the operators we meet can be ex-
pressed as linear integral operators. That is, the action of a linear mapA on a vector fq (t , r) is expressed
as

A ( fq (t , r))≡
∑

k

¨
dr′dt ′Ap ,k (t , r, t ′, r′) fk (t

′, r′), (1.115)

where Ap ,k (t , r, t ′, r′) is the integral kernel of the mapA . It is similar to the description of a finite dimen-
sional linear map by a matrix, and following this similarity, we introduce the product of kernel as follows.
For two kernels Ap ,q (t , r, t ′, r′) and Bp ,q (t , r, t ′, r′), we define their product as

(AB )p ,q (t , r, t ′, r′)≡
∑

k

¨
dr1dt1Ap ,k (t , r, t1, r1)Bk ,q (t1, r1, t ′, r′), (1.116)

The transposition AT of a kernel is defined as

AT
p ,q (t , r, t ′, r′)≡ Aq ,p (t

′, r′, t , r). (1.117)

Its hermitian conjugate is defined in the same way

A†
p ,q (t , r, t ′, r′)≡ Āq ,p (t

′, r′, t , r). (1.118)

We say that an operator is local in time, or instantaneous, when its kernel has the form

Ap ,k (t , r; t ′, r′) = Ap ,k (t , r, r′)δ(t − t ′). (1.119)

A kernel Ap ,k (t , r; t ′, r′) is said to be stationary when it can be written as

Ap ,k (t , r; t ′, r′) = Ap ,k (t − t ′, r; r′) (1.120)

With these conventions at hand, we can introduce the whole family of Green functions that appears in
out-of-equilibrium quantum field theory.
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1.7.2 Usual Green functions

Field theory generalizes the definition of Green functions to all the correlation functions [28, 29] such as
the following two-particles Green functions

G4,3,2,1(t4, x4; t3, x3; t2, x2; t1, x1) =



ψ4(t4, x4)ψ3(t3, x3)ψ
†
2(t2, x2)ψ

†
1(t1, x1)

�

. (1.121)

We will mainly be interested in the one-particle Green functions, that is the ones that are formed by a
unique product of creation and destruction operators. The time ordered GT and the anti-time ordered GT̃

Green function are defined as

GT (x , t , x ′, t ′)≡−i



T
�

ψ(t , x )ψ†(t ′, x ′)
��

, (1.122a)

GT̃ (x , t , x ′, t ′)≡−i



T̃
�

ψ(t , x )ψ†(t ′, x ′)
��

. (1.122b)

The lesser G <(x , t , x ′, t ′) and greater G >(x , t , x ′, t ′) Green functions are defined as

G <(x , t , x ′, t ′)≡∓i



ψ†(t ′, x ′)ψ(t , x )
�

, (1.123a)

G >(x , t , x ′, t ′)≡−i



ψ(t , x )ψ†(t ′, x ′)
�

, (1.123b)

where the upper sign is for bosons, and the lower one for fermions. In non interacting systems, they solve
the following equations

g −1 (r, t )g <
�

r, t , r′, t ′
�

= 0 (1.124a)

g −1 (r, t )g >
�

r, t , r′, t ′
�

= 0 (1.124b)

Some Green functions are defined as combinations of the previous ones. Such as the retarded G R and
advanced G A Green functions

G R (x , t , x ′, t ′)≡ θ (t − t ′)
�

G >(x , t , x ′, t ′)−G <(x , t , x ′, t ′)
�

(1.125a)

G A(x , t , x ′, t ′)≡−θ (t ′− t )
�

G >(x , t , x ′, t ′)+G <(x , t , x ′, t ′)
�

(1.125b)

Retarded and advanced Green function are related by

G A =
�

G R
�†

(1.126)

Finally, the Keldysh Green function is defined as

G K ≡
�

G >(x , t , x ′, t ′)+G <(x , t , x ′, t ′)
�

(1.127)

1.7.3 Thermal equilibrium Green function

In thermal equilibrium, the Green functions are stationary. Thus, they are naturally represented in the
energy domain

G (t ) =
ˆ ∞
−∞

d E

2πħh
G (E )e −

i E t
ħh (1.128)

G (E ) =
ˆ ∞
−∞

dt G (t )e
i t E
ħh (1.129)

We can deduce all the Green functions from the retarded component [28], in particular the kinetic Green
function of a fermionic system satisfies

G K (E ) =
fermion

�

G R (E )−G R †
(E )

�

tanh
�

E

2kB T

�

. (1.130)
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While for bosons its verifies

G K (E ) =
boson

�

G R (E )−G R †
(E )

�

coth
�

E

2kB T

�

. (1.131)

The retarded and advanced Green functions of a system describes by a quadratic Hamiltonian H whose
modes are |λ〉with energies ελ reads

g R (E ) =
0<η�1

∑

λ

|λ〉 〈λ|
E + iη−ελ

, (1.132a)

g A(E ) =
0<η�1

∑

λ

|λ〉 〈λ|
E − iη−ελ

, (1.132b)

where η/ħh is an infinitesimal relaxation rate that ensures the proper definition of the Fourier transform.
In latter chapters, these expressions will be our starting point to evaluate the free Green functions. Before
closing this chapter, we shall introduce the real-time formulation of the out-of-equilibrium quantum field
formalism.

1.8 Real time representation

When leaving the abstract description of the out-of-equilibrium theory to study specific problems, the
manipulation of time indices laying on a closed contour is rather annoying. Thus, we supplement the
field configurations by a Keldysh index : Φ→ Φ±. So that, Φ+(t ) and Φ−(t ) are the forward and backward
branch configurations at real time t . The partition function takes the form

Z =
ˆ
D[Φ+†

,Φ+,Φ−
†
,Φ−]e

i
ħh S [Φ+†,Φ+,Φ−†,Φ−] (1.133)

The integration measure D[Φ+†,Φ+,Φ−†,Φ−] accounts for the proper constraint on the forward and back-
ward fields. Thereafter, we will not keep explicit the numerous fields D[Φ+†,Φ+,Φ−†,Φ−]→D[Φ†,Φ]. The
correlation functions are also equipped with a set of Keldysh indices. Hence, the real-time representation
Ĝ of the contour ordered Green function has a matrix structure in the Keldysh space

G → Ĝ ≡
�

G ++ G +−

G −+ G −−

�

(1.134)

The blocks of the real time Green function G ±± can be identified with previously defined Green functions
�

G ++ G +−

G −+ G −−

�

=

�

G G <

G > G̃

�

(1.135)

A rotation in the Keldysh space permit to cancel redundant information and provide a more meaningful
representation. Considering the matrix

L =
1
p

2

�

1− iτy

�

, (1.136)

where τy is the second Pauli matrix acting on the Keldysh indices.

τ2 =

�

0 −i
i 0

�

(1.137)

The field configurationsφ are transformed according to
�

φq

φc

�

= L

�

φ+
φ−

�

, (1.138)
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where φq and φc are called quantum and classical fields as the first vanishes in the classical regime [29].
Upon performing the rotation described by L , we obtain a more efficient representation GS of Ĝ

GS ≡ LĜ L † (1.139)

As GS is symmetric for real bosonic field [28], it is sometime called the symmetric representation, despite
GS is not symmetric in general.

GS =

�

0 G A

G R G K

�

. (1.140)

The kinetic Green function contains the description of the state occupations, while the retarded and ad-
vanced Green functions describe the spectrum of the system and the propagations of excitations. Whether
we are considering the representation of the Green function on the real time axis, or its real-time repre-
sentation, we shall simply denote it by g or G .

Conclusion

In this chapter we have introduced the essential aspect of the out-of-equilibrium field theory. Yet, we did
not provide any method to study interacting or open systems. Field theory approach to open systems will
be introduced in chapter 4. The next chapter illustrates the mean-field approximation by deriving the BCS
theory of superconductors.
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CHAPTER 2
Superconducting devices

A superconducting material is characterized by the absence of current dissipation in DC up to a critical
current IC , and by the repulsion of all magnetic fields below the critical field HC . These properties usually
appear at low temperatures. The critical temperature TC separates the superconducting phase at tem-
peratures below TC from the normal phase. This phenomenon was discovered in 1911 by H. Kamerlingh
Onnes and colleagues at Leiden [33] while measuring the resistivity of mercury cooled by liquid Helium.
The initial purpose of this experiment was to develop a thermometer for cryogenic temperatures. While
phenomenological models had some success, such as the London equations and the Ginzburg-Landau
theory [13], we had to wait 1956 for the first successful microscopic description of superconductivity by
John Bardeen, Leon Neil Cooper and John Robert Schrieffer. The BCS theory [34], named after its authors,
properly describes the so-called conventional superconductors. By contrast, superconducting materials
that do not follow the BCS theory such as high TC cuprate superconductors are tagged as unconventional.
In 1962, Josephson published an article where he accurately evaluated the non-dissipative current that
flows through a junction formed by an insulator connected to two superconducting leads. He also pre-
dicted that when a constant voltage bias V is applied, this current shall oscillate at the pulsationωJ =

2e V
ħh .

The existence of these currents is now known as the DC and AC Josephson effects.

2.1 BCS theory of superconductors

The BCS theory describes how an effective attraction between electrons mediated by phonons induces the
collapse of the Fermi sea at low temperature. Here we derive the classical BCS results in the field theory
formalism. We recast into the real-time framework the derivations proposed by [29, 35].

2.1.1 A BCS type hamiltonian

We consider an effective Hamiltonian of the form

H =H0+γ
ˆ

c †
↑ (r)c

†
↓ (r)c↓(r)c↑(r)dr, (2.1)

where H0 is a quadratic Hamiltonian diagonal in spin associated to the Green function g , while a local
interaction of strength γ couples particles of opposite spins. The operator cs (r) destroys an electron of
spin s at position r. From eq. (1.101) and eq. (1.100) we deduce the expressions of the actions

S0[ψ̄,ψ] =
∑

σ

¨
ψ̄σ(r, t )g −1(r, t )ψσ(r, t )dr dt , (2.2)

Sint[ψ̄,ψ] = −γ
¨
ψ̄↑(r, t )ψ̄↓(r, t )ψ↓(r, t )ψ↑(r, t )dr dt , (2.3)
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whereψs is a Grassmann field. Thus, the partition function is

Z =
ˆ
D[ψ̄,ψ]e

i
ħh
�

S0[ψ̄,ψ]+Sint[ψ̄,ψ]
�

. (2.4)

The quartic interaction
˜
ψ̄↑(r, t )ψ̄↓(r, t )ψ↓(r, t )ψ↑(r, t ) prevents us from exactly integrating the above in-

tegral, id est it is a many-body problem. Even a small attractive interaction, corresponding to γ < 0, is ex-
pected to collapse the Fermi sea, thus a perturbative development in the interaction strength γ is not rec-
ommended. Yet, a mean field approximation provides a good description of the superconductor physics.
The first step is to introduce a field∆ that describes the configuration ofψ↓(r, t )ψ↑(r, t ), this is done by a
Hubbard-Stratonovich transform. The integration over this new field is then approximated by the saddle-
point method.

2.1.2 Hubbard-Stratonovich transform

The complex Gaussian integral in the continuum limit reads as

ˆ
d(z̄, z)e −z†Az+j†z+z†j′ =

e j†A−1j′

det{A}
, (2.5)

where A is a complex N -dimensional matrix with positive definite Hermitian part, while j and j′ are arbi-
trary vectors. With this relation at hand, we introduce a first composite bosonic field b (r, t ) =ψ↓(r, t )ψ↑(r, t )
such that the quartic interaction is rewritten as

Sint[ψ̄,ψ] =−γ
¨

b̄ (r, t )b (r, t )dr dt . (2.6)

Performing the following substitutions in the above integral

j†←
i b̄

ħh
, j′←

i b

ħh
and A−1← iγħh , (2.7)

we have

e
i
ħh Sint[ψ̄,ψ] = e

−iγ
ħh
˜

b̄ (r,t )b (r,t )dr dt , (2.8)

=
ˆ
D
�

∆̄,∆
�

e
i
ħh
˜ 1

γ |∆|2+
�

b̄∆+b ∆̄
�

dr dt , (2.9)

where ∆ is a bosonic field and the determinant has been absorbed in the measure D
�

∆̄,∆
�

. This trans-
formation amounts to replace the electron-electron interaction with an interaction between the electrons
and a bosonic field ∆, see fig. 2.1. The interacting part of the action is now expressed as a function of 4
fields Sint[∆̄,∆,ψ̄,ψ]

Z =
ˆ
D[∆̄,∆,ψ̄,ψ]e

i
ħh
�

S0[ψ̄,ψ]+Sint[∆̄,∆,ψ̄,ψ]
�

. (2.10)

We introduce the Nambu spinor representation that gathers in the same object the holes and particles
degrees of freedom

Ψ =

�

ψ↑
ψ̄↓

�

, Ψ† =
�

ψ̄↑ ψ↓
�

. (2.11)

This permits to define the Gor’kov Green function acting on Nambu spinors

G−1 [∆] =

�

g −1 ∆

∆̄ −g −1T

�

, (2.12)
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ψ↑

ψ↓

ψ↑

ψ↓

(a) Initial interaction

ψ↑ψ↑

∆

ψ↓ψ↓

(b) Interaction after bosonization

Figure 2.1: The Hubbard Stratonovich transform replaces the initial electron-electron interaction by an
interaction mediated by a bosonic field.

where we emphasize its dependence on the field ∆. Thus, the action can be disguised into a quadratic
form

S [∆̄,∆,ψ̄,ψ] =
i

ħh

¨
1

γ
|∆|2+ Ψ̄G−1 [∆]Ψ dr dt . (2.13)

To derive this last equation, we use the relation

¨
ψ̄↓g

−1ψ↓dr dt =−
¨
ψ↓g

−1T
ψ̄↓dr dt , (2.14)

this states that the Green function of holes satisfies g −1
h =−g −1T . We thus write the partition function as

Z =
ˆ
D[∆̄,∆]

ˆ
D[Ψ̄,Ψ]e

i
ħh
˜ 1

γ |∆|2+Ψ̄G−1[∆]Ψ dr dt . (2.15)

The integration over the fermionic fields can be carried out using the relation of appendix A

ˆ
D
�

ψ̄,ψ
�

e −
´
ψ̄Aψ = det A, (2.16)

where A is an arbitrary matrix, and the integration is done over Grassmann fields. Thus we have

Z =
ˆ
D[∆̄,∆]e

i
ħh
˜ 1

γ |∆|2 dr dt+ln det
�

− i
ħh G

−1
�

∆̄,∆
��

. (2.17)

The introduction of the Gor’kov Green function underlines that the field ∆ acts as an effective force that
couples electrons to holes. It is the result of the interaction of each particle with many others. Thus, one
may expect that the field∆ does not deviate much from its average configuration. This suggests develop-
ing a mean-field approximation.

2.1.3 Mean field approximation

The mean field approximation amounts to replace the integration over∆ by the value of the integrand at
a saddle point of the action, at this point∆ satisfies

δS

δ∆
= 0, (2.18a)

δS

δ∆̄
= 0. (2.18b)
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Using the relation ln(det A) = tr(ln A), we obtain

δ

δ∆

§

i

ħh

¨
1

γ
|∆|2 dr dt + tr ln

�

1

iħh
G−1

�

∆̄,∆
�

�ª

= 0, (2.19a)

δ

δ∆̄

§

i

ħh

¨
1

γ
|∆|2 dr dt + tr ln

�

1

iħh
G−1

�

∆̄,∆
�

�ª

= 0. (2.19b)

These functional derivatives can be evaluated as follows

δ

δ∆(r, t )

§

i

ħh

¨
1

γ
|∆|2 dr dt + tr ln

�

1

iħh
G−1

�ª

=
i

ħhγ
∆̄(r, t )+

δ tr ln
�

1
iħhG

−1
�

δ∆(r, t )
. (2.20)

Using the relation [29]
δ tr f (A(x ))

δx
= tr f ′(A)

δA(x )
δx

, (2.21)

we get

δ tr ln
�

1
iħhG

−1
�

δ∆(r, t )
= tr

�

G
ħh
δG−1

δ∆(r, t )

�

, (2.22)

=
1

ħh
G21(r, t ; r, t ), (2.23)

where Gp ,q (r, t ; r′, t ′) is the element at indices p , q in the Nambu space of the Gor’kov Green function.

Once again, we absorbed ħh in its definition: G ·G−1 = ħh . By the same means, we express δS
δ∆̄

and we finally
deduce the following relations

∆̄(r, t ) = iγG21(r, t ; r, t ), (2.24a)

∆(r, t ) = iγG12(r, t ; r, t ). (2.24b)

Upon replacing the Green function by its definition, we get

∆̄(r, t ) = γ



TCψ̄↓(r, t )ψ̄↑(r, t )
�

(2.25a)

∆(r, t ) = γ



TCψ↑(r, t )ψ↓(r, t )
�

(2.25b)

As the time ordering operator is applied to symbols that live at the same instant, we can simply drop it,
the reader may convince himself by adding a small time increment to one of the time indices and take the
limit. We finally get the self-consistent equations

∆̄(r, t ) = γ



ψ̄↓(r, t )ψ̄↑(r, t )
�

,

∆(r, t ) = γ



ψ↑(r, t )ψ↓(r, t )
�

.

(2.26a)

(2.26b)

As we are considering a mean field approximation, the integration over the bosonic field configuration is
replaced by the integrand saddle point value, this leads to

ZMF =
ˆ
D[Ψ̄,Ψ]e

i
ħh
˜ 1

γ |∆|2+Ψ̄G−1[∆]Ψ dr dt , (2.27)

where ∆ is the mean field configuration provided by eq. (2.26). Absorbing the irrelevant constant in the
measure, we finally obtain

ZM F =
ˆ
D[Ψ̄,Ψ]e

i
ħh
˜
Ψ̄G−1[∆]Ψ dr dt . (2.28)
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2.1. BCS theory of superconductors

This is the partition function of a free theory whose inverse Green function isG−1. Thus, we can define an
effective Hamiltonian, see section 1.7

H (r, t )≡
�

H0 (r, t ) ∆ (r, t )
∆̄ (r, t ) −H̄0 (r, t )

�

. (2.29)

This is the Bogoliubov-de Gennes Hamiltonian which provides a description of excitations in BCS super-
conductors in a mean-field approximation. The wave function written in the Nambu representation shall
be solution of the Bogoliubov-de Gennes Hamiltonian

H (r, t )

�

ψ↑
ψ†
↓

�

= iħh
d

dt

�

ψ↑
ψ†
↓

�

. (2.30)

One may think of −H̄0 as the Hamiltonian governing the dynamics of holes. Hence, the above equation
describes how electrons of spin up are coupled to holes of spin down by the effective interaction∆. That
induces the superconducting gap. This concludes the derivation of the mean-field approximation of the
BCS theory. To practice, let’s derive some properties of BCS superconductors from this model.

2.1.4 BCS superconducting gap

We consider the case of a constant and uniform order parameter∆, in thermal equilibrium. The states of
H0 are |n〉 of energy εn

H0 = εn

�

c †
↑,n c↑,n + c †

↓,n c↓,n
�

, (2.31)

where cs ,n destroys an electron of spin s in the mode n . As∆ is uniform, the effective Hamiltonian is block
diagonal in the basis {|n〉}, thus we only have to solve the following small equation

�

εn ∆
∆̄ −εn

��

un

vn

�

= En

�

un

vn

�

, (2.32)

where En is the state energy, and un , vn are complex numbers subject to the constraint |un |2 + |vn |2 = 1.
This eigenvector equation is swiftly solved, the energies are

En ,e /h =±
q

ε2
n + |∆|2, (2.33)

and the corresponding eigenvector (un ,e /h , vn ,e /h )T satisfies 1

vn ,e /h

un ,e /h
=
�

εn +En ,e /h

�

∆−1. (2.34)

In the limit where |E | � ∆, the solutions of positive and negative energies correspond respectively to
electrons and holes. So, those solutions are named electron-like and hole-like. From eq. (2.33) we see that
a gap appears at the Fermi level. This gap is in the excitation spectrum of the Cooper pair condensate that
lays at the Fermi level. It means that a finite amount of energy is required to break a Cooper pair, this
protects the condensate from numerous dissipation mechanisms [13]. Upon approximating the density
of state in the normal metal by a constant nF close to the Fermi energy, we can evaluate the density of
states in the superconductor in the vicinity of the Fermi energy

n (E ) =

¨

nF
|E |

Æ

E 2−|∆|2
|E |> |∆|

0 |E |< |∆|
, (2.35)
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Figure 2.2: BCS density of states in the vicinity of the Fermi energy.

the corresponding spectrum is illustrated in fig. 2.2. By deriving the above formula, one must not double
count the spin states: in the Nambu representation, the spin down particles are described as holes, while
the spin-up particles are depicted as electrons. In equilibrium eq. (2.26) does not depend on time, once
projected on the eigenvector of H0, we get

∆(r) = γ
∑

n




c↑,n c↓,n
�

|wn (r)|2, (2.36a)

∆̄(r) = γ
∑

n

¬

c †
↓,n c †

↑,n

¶

|wn (r)|2, (2.36b)

where wn (r) is the orbital part of the wave function associated to cs ,n . These averages cannot be directly
evaluated using the Fermi distribution as the eigenvectors of H0 are not eigenvectors of H . Thus, we in-
troduce bn ,e /h as the destruction operators that diagonalize the de Gennes Hamiltonian. They can be
expressed as a combination of the initial destruction and creation operators

�

bn ,e

b †
n ,h

�

=

�

un ,e vn ,e

un ,h vn ,h

��

c↑,n
c †
↓,n

�

. (2.37)

With this definition of the new creation and destruction operators, we ensure that the energies of corre-
sponding excitations are positive. Thereafter, we call those particles bogoliubon. They follow the Fermi
statistic. Thus, their thermal distribution is set by the Fermi function fT (E ). The matrix that appears in
the above equation is formed by the normalized eigenvectors of a hermitian matrix, thus it is a unitary.
One may recast it into

P≡
�

un ,e vn ,e

un ,h vn ,h

�

=

�

un vn

−v̄n ūn

�

, (2.38)

where we define un ≡ un ,e and vn ≡ vn ,e . Thus, we have

�

c↑,n
c †
↓,n

�

=P†

�

bn ,e

b †
n ,h

�

. (2.39)

We thus deduce that
∆(r ) = γūn vn

�

1−



b †
n ,e bn ,e

�

−
¬

b †
n ,h bn ,h

¶�

|wn (r)|2. (2.40)

1Be careful, this definition of the coefficients un ,e /h and vn ,e /h differs from the one used in Introduction to superconductivity
by Michael Tinkham [13]
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This can be expressed using the Fermi distribution

∆(r ) = γ
∑

n

ūn vn

�

1−2 fT (En )
�

|wn (r)|2, (2.41a)

= −γ
∑

n

∆(r )
2En

tanh
�

Enβ

2

�

. (2.41b)

This equation is usually recast as
1

γ
=−

∑

n

tanh
�

Enβ/2
�

2En
. (2.42)

To go further, let’s consider the case of a clean bulk material. The modes of H0 are thereby plane waves
which are characterized by their wave-vector k, thus we have

1

γ
=−
ˆ

n (k)dk

2Ek
tanh

�

Ekβ

2

�

, (2.43)

where n (k) is the normal density of states. The main parameter to describe a BCS superconductor is the
critical temperature TC . We evaluate it by setting∆= 0. Upon approximating the normal density of states
by its value at the Fermi energy nF , we have

1

nF γ
=−
ˆ ħhωc βc /2

0

tanh (x )
x

dx , (2.44)

where nF is the normal density of states at the Fermi energy,ωc is a cut-off depending on the microscopic
details andβc = 1/kB TC . In classical BCS superconductor, we haveωc ∼ωD withωD the Debye frequency.
The integral can be evaluated exactly [13]

ˆ ħhωc βc /2

0

tanh (x )
x

dx = ln
�

2e γE βc ħhωc

π

�

≈ ln
�

1.13βc ħhωc

�

, (2.45)

where γE is the Euler constant. We finally have the expression of the critical temperature Tc

kB Tc ≈ 1.13ħhωc exp
�

1

γnF

�

. (2.46)

The critical temperature is directly accessible by experiment , and it permits to characterize the tempera-
ture dependence of the gap [13]. Close to TC the gap equation admits an approximate solution

∆(T )
∆(0)

≈ 1.74

√

√

1−
T

Tc
for T ≈ TC . (2.47)

Now that we have introduced the BCS superconductivity we can turn to a description of the Joseph-
son effect.

2.2 Josephson junctions

A dissipation less current can flow at equilibrium between superconductors separated by a non-superconducting
material if this weak link permits a phase coherent transport of charges, see fig. 2.3. Devices designed to
harness this effect are called Josephson junctions. The Josephson relations [13, 36–38] capture the essen-
tial of their physics.

I (ϕ) =
2e

ħh
dE J (ϕ)

dϕ
,

dϕ

dt
=

2e V

ħh
(2.48)
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|∆|e iϕL

VL

|∆|e iϕR

VR

Figure 2.3: Schematic of a Josephson junction. The superconducting leads are connected by a non-
superconducting element designed as the weak ink

.

Whereϕ =ϕL−ϕR is the phase difference across the junction, E J (ϕ) is the junction energy and V =VL−VR

is the voltage bias. As the barrier is usually not gaped at the Fermi energy, excitation within the supercon-
ducting energy gap are trapped in the barrier, they form the Andreev bound states (ABSs). In junction
shorter the coherence length, ξ = ħhνF

π|∆| with νF the Fermi velocity in the weak-link, the system energy is
fixed by occupation of the ABSs. ξ reflects the size of the Cooper pair [13]. Hereafter, we introduce the
microscopic reflection mechanism that permits the formation of those states and we derive the spectrum
of a typical junction whose barrier is either a non-superconducting metal (SNS junction) or a quantum
dot (SQDS junction). We then discuss the out-of-equilibrium properties of these devices.

2.2.1 Andreev reflections

Andreev reflections appear at the interface between a superconductor and a metal. Incident particles on
the interface coming from the normal side of the junction at energy within the gap have to bound to a
particle of opposed spin to form a Cooper pair, as there is no single particle state available. Hence, the
incident particle is reflected as its antiparticle of opposite spin while a cooper pair forms in the supercon-
ductor. The overall process results in the effective transfer of twice the electronic charge. This process
is captured by the Bogoliubov de Gennes eq. (2.29). We consider a one dimensional infinite lead that is
described by the following stationary equation

�

H0(x ) ∆(x )
∆̄(x ) −H̄0(x )

��

u (x )
v (x )

�

= E

�

u (x )
v (x )

�

, (2.49)

The normal state Hamiltonian is

H0 =−
ħh 2

2m

d2

dx 2
(2.50)

where m is the effective mass of electrons. The order parameter ∆ satisfies ∆(x ) = |∆|e iϕΘ(−x ), where
Θ is the Heaviside function and ϕ is the phase of the superconducting order parameter, see fig. 2.4. As
previously, the order parameter being constant on each part of the real line, the equation restricted to the
normal or superconducting part is block diagonal in the plane wave basis wk (x ) = e i k x

−
ħh 2

2m

d

dx
wk (x ) = εk wk (x ) (2.51)

Thereafter, we will consider only excitations close to the Fermi surface, thus the dispersion relation is
k (E ) = kF + E /ħh vF , with vF is the Fermi velocity vF =

p

2EF /m . At energy E , in the normal metal a left
propagating electron and a right propagating hole are respectively described by

ψ←e (x > 0) =

�

1
0

�

e −i (kF +E /ħh vF )x (2.52a)

ψ→h (x > 0) =

�

0
1

�

e i (kF −E /ħh vF )x (2.52b)
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Figure 2.4: Order parameter profile

While the superconductor does not admit propagating modes within the gap, we can build an evanescent
solution. It amounts to replace εn in eq. (2.33) and eq. (2.34) by iε, εmust be positive to ensure that the
corresponding wave-function vanishes. Hence, we have

ψs (x < 0) =

�

u
v

�

e x
p

∆2−E 2
ħh vF (2.53)

We can now evaluate how an incoming electron is reflected by matching the wave function at x = 0

ψ←e (0)+ rAψ
→
h (0) =ψs (0) (2.54)

⇔
�

1
0

�

+ rA

�

0
1

�

=

�

u
v

�

. (2.55)

Thus the reflection coefficient is

rA,e (|E |< |∆|,ϕ) = e −iϕ

�

E

|∆|
− i

Æ

|∆|2−E 2

|∆|

�

(2.56)

χ(E ) =−arccos
�

E

|∆|

�

−ϕ. (2.57)

The same procedure can be used to evaluate the reflection coefficient for incoming holes, it leads to
rA,h (E ,ϕ) = rA,e (E ,−ϕ). Thus, we define rA ≡ rA,e . This expression can be analytically prolonged for all
value of E [38]. The coefficient rA is plot on section 2.2.1.
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Figure 2.5: Real and imaginary part of the Andreev reflection coefficient at ϕ = 0.

2.2.2 Andreev bound states

From the above description of the Andreev reflection, it appears that an interface between a supercon-
ducting lead and a normal region acts like a perfectly reflecting mirror for sub-gap excitations of the nor-
mal region. Hence, a Josephson junction formed by two of such interfaces is an electronic equivalent of
Fabry-Perot cavity. As a result, resonances form. They are the Andreev bounds states. Or said otherwise,
the quasiparticles are trapped, thus discreet bound states form. Considering two superconductors of or-
der parameter ∆L/R = |∆|e iϕL/R , that are connected by a perfectly transmitting weak-link much shorter
than its coherence length. An electron is first reflected into a hole at an interface and back in an electron
at the other. Thus, through a cycle in the cavity, particles acquire a phase χ

χ =±ϕ−2 arccos
�

E

|∆|

�

(2.58)

Where ϕ = ϕR −ϕL , while + and − respectively correspond to left moving and right moving electrons.
As we are considering only excitation close to the Fermi surface, the propagation phase cancel out. A
resonance appears when the accumulated phase is a multiple of 2π. Thus, bound states energies solve
the equation

∓ϕ−2 arccos
�

E�
|∆|

�

= 0 mod 2π. (2.59)

The junction spectrum is shown on fig. 2.6, its expression is

E� =∓|∆|cos
�ϕ

2

�

sgn
n

sin
�ϕ

2

�o

, (2.60)

where states of energy E→ contributes to current from the left to the right leads, while E← correspond to a
current in the opposite direction. This might be seen by evaluating the current associate to the occupation
of each state. From the Josephson equation we have

I� =
2e

ħh
dE�
dϕ

=±
e |∆|
ħh

�

�sin
�

ϕ/2
��

� , (2.61)

this current are plotted on fig. 2.7. Those bound states cross perfectly at the Fermi energy when ϕ = π
mod 2π. They are in contact with the continuum at ϕ = 0 mod 2π. Any backscattering induces a hy-
bridization of the different Andreev bounds states that results in the opening of a gap at ϕ = π mod 2π.
To describe the fate of Andreev bound states in the presence of scattering, we first need to introduce the
scattering formalism.
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Figure 2.6: Spectrum of a short Josephson junction in the absence of scattering in the weak link. At ϕ =π
there is a perfect crossing.
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Figure 2.7: Current associated to each bound state in a perfectly ballistic junction.

2.2.3 Scattering formalism

Coherent transport in non-interacting stationary systems can be depicted in terms of scattering matrices,
in a manner similar to the description of microwave hardware. Considering a scattering center connected
to leads that support well-defined propagating modes at energy E , ψin

n (E ) andψout
n (E ) designate modes

propagating toward and outward the scatterer, respectively. They are normalized so that current proba-
bilities are equal. An incident wave packet Ψin can be decomposed into those modes

Ψin(E ) =
∑

n

an (E )ψ
in
n (E ), (2.62)

while the scattered wave packet reads as

Ψout(E ) =
∑

n

bn (E )ψ
out
n (E ). (2.63)

The scattering matrix S links the amplitudes of the outgoing modes to the incoming ones

bn =
∑

m

Sn ,m am (2.64)

This relation between the incoming and outcoming modes is pictured by fig. 2.8. The elastic scattering
process must conserve the probability flow at each energy, thus the scattering matrix is unitary S†(E )S(E ) =
1. It can be expressed in terms of retarded and advanced Green functions using the Fisher-Lee relation
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Ψ in
L (E )+Ψ

out
L (E ) Ψ in

R (E )+Ψ
out
R (E )S(E )

Figure 2.8: The scattering matrix describes how a nanostructure scatters the incoming modes, pictured
by dashed arrows, among all the outgoing modes, represented by solid lines. Here we represent only two
leads L and R, but a scattering matrix can represent more general structures.

[39].

sn ,m =−δm ,n + iħh
∑

p ,q

p

vn vm

¨
χn (yp )G

R
p qχm (yq )dyp dyq , (2.65)

where χm are the transverse mode wave-functions, yp are the coordinate along the surfaces at which the
scattering amplitudes are evaluated, vn are the modes velocities. The scattering formalism provide a very
simple way to describe non-interacting structure at equilibrium. The scattering matrix of quantum de-
vices can easily be numerically evaluated using open source tool such as Kwant [40].

2.2.4 SNS junctions

In its simplest form, a Josephson junction is made of two superconductors connected together by a piece
of metal or insulator of length L . By modelling the weak link as a scattering centre, it can be described
within the scattering formalism.

2.2.4.1 Spectrum of SNS junctions

We suppose that the scattering events that occur within the weaklink conserve the particle spin and does
not depend on it. Thus, it is described by a scattering matrix SM(E )which is block diagonal in the Nambu
indices. The holes scattering matrix Sh can be deduced from the electrons scattering matrix Se by the
relation

Sh(E ) = S̄e(−E ). (2.66)

This expression is justified by handwavy arguments in [38], it can be swiftly derived by considering the
expression of the scattering matrix in terms of Greens functions eq. (2.65). We further suppose that the
particles spend a very short time tD in the weak link, id est tD |∆| � h . Thus, by virtue of time energy
uncertainty relation, its scattering matrix is energy independent on the scales we consider. By the same
consideration, the remaining superconducting coupling can be disregard in the link, the interested reader
may again have a look at [38]. Up to properly selecting the basis, we can suppose that the different channels
are independent [26], thus we can consider one channel at a time. Finally, we suppose that the system is
symmetric under time reversal, this implies Se = Se

T . Once the symmetry constraint is combine with the

aL

bL

aR

bR

|∆|e −ϕ/2 |∆|e ϕ/2SM

Figure 2.9: aL and aR are the wave functions amplitudes before scattering by the weak link, they both
comport an electron and a hole part. In the same way, bL and bR are the amplitudes before reflection by
the superconductors.
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2.2. Josephson junctions

unitarity of the scattering matrix, one obtain the following parametrization

Se =

�

−i r t
t −i r

�

, (2.67)

where the parameters (r, t ) ∈C2 satisfy
�

|r |2+ |t |2 = 1
arg r = arg t mod π

. (2.68)

The relation describing the scattering by the weak link is thus
�

be

bh

�

=

�

Se 0
0 S̄e

��

ae

ah

�

. (2.69)

Thus, we define the scattering matrix of the weak link as

SM ≡
�

Se 0
0 S̄e

�

, (2.70)

see fig. 2.9. The conversion of electrons into holes is described by the scattering block she, the opposite
process is described by seh.

she =

�

e iχL 0
0 e iχR

�

, she =

�

e i χ̃L 0
0 e i χ̃R

�

, (2.71)

where χL/R =−ϕL/R −arccos
�

E
|∆|

�

. The full Andreev reflection scattering matrix is:

SA =

�

0 seh

she 0

�

(2.72)

The full cavity scattering matrix S is thus
SSNS = SASM (2.73)

The resonant modes are solution of the equation

SSNSa= a (2.74)

Thus, the Andreev bound states spectrum is solution of the equation

det{SSNS(E )−1}= 0 (2.75)

This conducts to
E

|∆|
=±

r

1−T sin
�

ϕ/2
�2

(2.76)

where T ≡ |t |2 is the channel transmission in the normal state. Hence, any finite amount of backscattering
induces an anti-crossing at the Fermi energy, see fig. 2.10. The size of the energy gap between the Andreev
states is

δE = 2∆
p

1−T (2.77)

The full spectrum of a multi-channels junction is the sum of the spectrum of each channel. The ABS
spectrum contains enough information to evaluate the current flowing thought a short junction biased
by voltage V . Let’s first consider the very low voltage regime : e |V | � ηħh � |∆|, where η is the relaxation
rate toward equilibrium. In this regime the states occupations are given by the thermal distribution. This
is the adiabatic regime.
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π 2π

−∆

∆

ϕ

E

EF

Figure 2.10: Spectrum of a short junction in presence of backscattering at T = 0.99.

2.2.4.2 Adiabatic regime

For the sake of clarity, we consider hereafter the single channel case. At thermal equilibrium and low
temperature kB T �∆, only the state |−〉which lays below the Fermi level is occupied. Hence, the junction
energy is E J (ϕ) = E−(ϕ). Using the Josephson relation eq. (2.48), we get the expression of the current going
through a channel

I J (ϕ) =
2e

ħh
dE−(ϕ)

dϕ
, (2.78)

when the weak link is perfectly transparent, the phase current relation is discontinuous, but any backscat-
tering smooths it, see fig. 2.11. In the adiabatic limit, the current through the junction is provided by
I J (ϕ(t )). While the phase difference follows

ϕ(t ) =
2e V t

ħh
+ϕ(0). (2.79)

As E−(ϕ) is 2π-periodic, this results in radiation at the Josephson pulsationωJ =
2e V
ħh and its harmonics.

In this regime there is no DC current flowing through the junction. This is the usual AC Josephson effect.
For larger voltage biased e |V | � ηħh the effect of the relaxation is negligible. The charge transport across

0 π 2π 3π 4π

−1

−0.5

0

0.5

1

ϕ

I(
ϕ
)/

I C

Figure 2.11: Josephson current at equilibrium for T � ∆ normalized by the junction critical current IC .
The dashed line correspond a junction of low transmission (T = 0.1), the solid line correspond to a per-
fectly transparent junction (T = 1).

the junction is described by the multiple Andreev reflection (MAR) [41].
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2.2. Josephson junctions

2.2.4.3 Multiple Andreev Reflection

The applied voltage accelerates the quasiparticles within the weaklink. They gain a bit of energy at each
cycle through the cavity until they escape the energy gap after k reflections, see fig. 2.12. These multiple
Andreev reflections are responsible for the sub-gap structure e |V | < |∆| of the differential conductance
dV /dI : peaks appear at V = 2∆

e n with n ∈ Z. Indeed, each time V = 2∆
e n a new path formed by n − 1

reflection opens as depicted on fig. 2.12. It also provides a quantitative description of the current at higher
voltage, including the affine part of the I −V characteristic at e V �∆. While the MAR description of the

E

Figure 2.12: When a voltage bias is applied across the junction the electrons propagating in a certain di-
rection are accelerated. Upon Andreev reflection they transformed into holes with are also gaining energy
while travelling in the opposite direction. At each of these cycles the quasiparticles gain an energy 2e V .
Thus, a quasiparticle from the edge of the continuum below the Fermi energy require e V /2∆ reflection
to escape the weak-link.

current flowing through a junction is very general, it does not provide a small closed form expression of
the current, even for the simple SNS junctions. In the low voltage limit, when |V | � |∆|, as the number of
reflections is large, the states of the junction can be described by the occupation of the Andreev bounds
states which change under the effect of non-adiabatic processes induced by the rapid phase shift.

2.2.4.4 Quasi-adiabatic regime of SNS junctions

The Andreev bound states occupations can be described using a stochastic model. At ϕ = 0 mod 2π the
bound states merge with the continuum, see fig. 2.10, thus the lower state is empty while the higher one is
occupied. Untilϕ =π mod 2πnothing is expected to change, if we neglect all relaxation mechanisms and
other parasitic effects. Atϕ =π a Landau-Zener transition is induced by the phase shift with a probability
pπ set by the following relation, see [25]

pπ = exp
�

−
π∆

e V
(1−T )

�

. (2.80)

Hence, at each cycle of the phase, either the transition does not happen , and the current cancel out, either
an effective charge q∗ is transferred

q∗ ≡
2e

ħh

ˆ 2π/ωJ

0

�

Θ(π−ϕ(t ))
dE−(ϕ)

dt
+Θ(ϕ(t )−π)

dE+(ϕ)
dt

�

dt , (2.81)

where we set ϕ(0) = 0.This expression can be simplified into

q∗ =
1

V

ˆ 2π

0

�

�

�

�

dE−(ϕ)
dt

�

�

�

�

dϕ, (2.82)
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In the limit 1−T � 1, we have

q∗ =
2|∆|

V
. (2.83)

The divergence of the effective charge results from the coherent transport occurring within the junction.
Regardless of whether a Landau-Zener transition occurs, the initial state of the occupations is restored
when the ABS merges back into the continuum atϕ = 2π. Thus, the fundamental frequency of the Joseph-
son radiation is ωJ despite the non-adiabatic processes. From the above discussion, it appears that the
low frequency charge transfer is a binomial process. Thus, we can swiftly evaluate the low frequency cur-
rent noise. Considering a time δt =

2nπ
ωJ

, the probability that k effective charges cross the junction is set
by

P (k ) =

�

n
k

�

p k
π (1−pπ)

n−k (2.84)

where the binomial coefficient is
�

n
k

�

≡
k !

k !(n −k )!
. (2.85)

Therefore, the charge flow statistics are provided by

Nδt
= npπ, σ2

N ,δt
= npπ(1−pπ), (2.86)

Nowadays, it is possible to measure the low-frequency noise and current flowing through a single chan-
nel Josephson junction [42, 43]. This corresponds to measure the direct current ID C and its variance σ2

I
defined as

ID C ≡ lim
δt→+∞

�ˆ δt

0

I (t )
δt

dt

�

(2.87)

σ2
I ≡ lim

δt→+∞

�ˆ δt

0

�

I (t )
δt

�2

dt

�

− I 2
D C (2.88)

Within our model of a highly transparent SNS junction, we have

ID C = q∗pπ (2.89)

σ2
I = q 2

∗ pπ(1−pπ) (2.90)

Fano factor Considering a random variable w of mean µw and varianceσ2
w its Fano factor is defined

as

Fw =
σ2

w

µw
. (2.91)

Thus, by measuring the Fano factor F ∗ one obtains the effective charge

F∗ =
σ2

I

ID C
=
�

1−pπ
� 2∆

V
. (2.92)

Hence, at low voltage V � (1−T )π∆/e , the transition probability pπ vanishes. Yet, the Fano factor, that is
the ratio of the noise power to the average current, diverges as V −1. This results from the interplay between
the coherent transport in the junction building up a large effective charge and the stochastic dynamics
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2.2. Josephson junctions

induced by the Landau-Zener transitions. We shall emphasize that this formula does not hold at extremely
low voltage, where other mechanisms such as relaxations interfere [25, 44, 45]. The normalized Fano factor
F = F∗/q∗ permits to analyse the statistic of charge transfers. When the Landau-Zener probability is very
small pπ � 1, the successive charge transfers are uncorrelated. Thus, they are described by a Poisson
process and the normalized Fano factor is equal to unit (F = 1), whereas in the opposite limit, when 1−
pπ� 0, the transfers are fully deterministic.

This concludes the overview of the short SNS junctions. In the following, we will consider a junction
in which the normal metal weaklink is replaced by a quantum dot and will describe the spectrum of such
a junction.

2.2.5 SQDS junctions

We consider a junction made of a spin-degenerate single-level quantum dot that is contacted to two super-
conducting leads. Its Andreev spectrum has been analysed both in the presence and absence of Coulomb
interaction [20–22]. Let us first start with the non-interacting situation. As in the case of SNS junction, the
junction accommodates two particle-hole symmetric ABSs denoted |+〉 and |−〉. By trapping the quasi-
particle in the dot, we restore the energy dependence of the scattering matrices. Thus, the link between
the superconductors is now described by the matrix SQD

SQD =

�

Se (E ) 0
0 S̄e (−E )

�

, Se =

�

−i r (E ) t (E )
t (E ) −i r (E )

�

, (2.93)

Thus, the junction spectrum is solution of the equation

det
�

SA(E)SQD(E )−1
	

= 0. (2.94)

Without any additional assumption about the form of the coefficients, we derive a first equation

cos (ζ(E ))+ cos
�

ϕ
�

|t (−E )t (E )|+
p

|r (−E )r (E )|= 0, (2.95)

where
ζ(E ) = arg t (E )−arg t (−E )+2 arcsin(E /|∆|). (2.96)

Hence, close to the Fermi energy, this equation reduces to the one obtained for the SNS junction

E±
�

ϕ
�

|∆|
≈ ±

Ç

1− |t (0)|2 sin2
�

ϕ/2
�

atφ ≈π. (2.97)

To further investigate the Andreev bound states spectrum of this junction, we need the scattering matrix
of the non-interacting quantum dot. Let rR/L and tR/L be the transmission and reflection coefficients asso-
ciated to the tunnelling from the right and left leads in normal state to the quantum-dot, we suppose that
they do not depend on the energy. We also introduce the phase shift χ(E ) induced by travelling through
the dot. To evaluate the whole transmission, let’s consider a wave at energy E travelling from left to right.
It can follow different paths which differ by the numbers of reflections that occur within the quantum dot.
The particle first has to cross the left barrier, this is associated to the coefficient tL. Then it travels back and
forth across the quantum dot, at each round trip, its amplitude gains a factor rLrR exp

�

2iχ(E )
�

. Finally, it
crosses the right barrier. By summing coherently all these processes, we obtain the junction transmission
t (E )

t (E ) = tLtRe iχ(E )
∞
∑

k=0

�

rLrR exp
�

2iχ(E )
��k

(2.98)

=
tLtRe iχ(E )

1− rLrRe 2iχ(E ) . (2.99)
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Upon absorbing the reflection phase shifts in the definition of χ(E ), so that rR/L ∈ R+, the transmission
probability T = |t |2 can be cast as

T =
TLTR

1+RLRR−2
p

RLRR cos
�

2χ(E )
� , (2.100)

where TL/R = |tL/R|2 and RL/R = |rL/R|2 are the transmission and reflection probabilities associated to the
tunnel coupling. Following [38], we may focus on a single resonance at energy ε0 and develop the phase
shift as

χ(E ) =
E −ε0

2W
, (2.101)

where W is of the magnitude of the distance between successive resonances. By developing T (E ) around
ε0 we finally obtain

T =
ΓLΓR

((ΓL+ ΓR)/2)
2+ (E −ε0)

2 , (2.102)

where we defined the tunnelling rate ΓL/R/ħh ≡W TL/R/ħh . The quantum-dot transmission around a reso-
nance has thus a Lorentzian shape of energy width ΓL + ΓR and amplitude 4ΓLΓR/ (ΓL+ ΓR)

2. Hence, when
the junction is symmetric, i.e. when ΓL = ΓR , the transmission at resonance is perfect. By inserting the
expression of r (E ) and t (E ) in eq. (2.95) one obtains the following equation, see [46]

Ω(E )+ ΓE 2
p

|∆2| −E 2 = 0, (2.103)

where Ω(E ) is defined by

Ω(E ) = (|∆|2−E 2)(E 2−ε2
0−

1

4
Γ 2)+ |∆|2ΓL ΓR sin2

�ϕ

2

�

, (2.104)

To determine the position of the spectrum extrema we introduce the function f (ε,ϕ) defined by

f (ε,ϕ) =Ω(ε,ϕ)+ Γε2
p

|∆|2−ε2 (2.105)

The bounds states satisfy f (EABS (ϕ),ϕ) = 0, thus we have

dEABS

dϕ
=−

d f

dϕ
/

d f

dε

�

�

�

�

ε=E (ϕ)
(2.106)

which implies that
dEABS

dϕ
∝ sin

�

ϕ
�

(2.107)

Thus the extrema are located at ϕ ≡ 0 mod π. While at ϕ =π the SQDS junction has the same behaviour
as the SNS junction, the situation is different atϕ = 0 where gaps form between the discrete states and the
continuum, see fig. 2.13. When the junction is almost symmetric and ∆� Γ , |ε0| � |∆|, we can estimate
the size of the gap

1−
|EABS

�

ϕ = 0
�

|
|∆|

=
8|∆|2

Γ 2
+O

�

|∆|4

Γ 4

�

. (2.108)

Under the same assumption, one can approximate the ABS energies by

E±(ϕ) =±∆
q

T0 cos2(ϕ/2)+Rπ sin2(ϕ/2), (2.109)

where the Rπ ≡ 1−Tπ is the junction reflection probability at the Fermi energy

Tπ =
ΓLΓR

((ΓL+ ΓR)/2)
2+ε2

0

, (2.110)
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π 2π

−∆

∆

ϕ

E

EF

Figure 2.13: Spectrum of a slightly dissymmetric S-QD-S junction, the parameters are ε0 = 0.4|∆|, δΓ =
0.2|∆|. We observe the detachment of the Andreev bound states from the continuum at all phase differ-
ences.

and T0 is an effective transmission probability that can be estimated from eq. (2.108) to be of the same
magnitude as |∆|2/Γ 2. Interestingly, Eq. (2.109) also holds in the presence of a strong Coulomb interaction
[23, 47]when the junction is almost symmetric and the gap is small compared to the Kondo temperature
∆� TK after substituting Γ with TK �∆ in the estimate for R0 (up to a logarithmic correction [48]), setting
ε0 to 0 and renormalizing the parameters ΓL/R .

The gaps that detach the Andreev bound states from the continuum at all phase differences is re-
sponsible for the qualitative changes in the non-adiabatic Josephson radiation as it permit complex dy-
namics of the Andreev bound state occupations. Indeed, these occupations are not reset any more when
ϕ ≡ 0 mod 2π. Furthermore, Interferences between successive non-adiabatic processes may occur [24].
In the following chapter we propose a stochastic model of the bound state occupations.
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This chapter explores the out-equilibrium occupation dynamics of the Andreev bound states that are de-
veloped in a junction made of a quantum dot coupled to two conventional superconductors. Hereafter,
we consider that the interaction with the environment is strong enough to suppress any coherence effect,
the ABS dynamics is thus described by a Markov equation. We will derive the average occupation of the
different states and the associated correlation function. Analysing the finite-frequency noise, we find that
the model may exhibit either an integer or a fractional AC Josephson effect, depending on the bias voltage
and the size of the gaps in the Andreev spectrum.

3.1 Stochastic model

We consider a junction made of a spin-degenerate single-level quantum dot that is contacted to two
superconducting leads. For an almost symmetric coupling, when the transmission is almost ballistic,
Rπ ≡ 1−Tπ� 1, the junction accommodates two particle-hole symmetric ABS denoted |+〉 and |−〉. Their
energies are approximated by

E±(ϕ) =±∆
q

T0 cos2(ϕ/2)+Rπ sin2(ϕ/2). (3.1)

The ABS dispersion is illustrated in fig. 3.1. We turn now to the current flowing through the junction. Each

π 2π

−∆

∆

|+〉

|−〉

ϕ

E

Figure 3.1: Spectrum of the Andreev bound states as a function of the superconducting phase difference.
In the presence of a voltage bias, the phase increases with time and non-adiabatic transitions may occur
between states |+〉 and |−〉 (blues arrows), as well as between state |+〉 and the continuum at energy E >∆
or between the continuum at energy E <−∆ and state |−〉 (red arrows).
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occupied ABS carries a supercurrent

I±(ϕ) =
2e

ħh
∂ E±(ϕ)
∂ ϕ

≈∓I J sin
ϕ

2
sign

�

cos
ϕ

2

�

, (3.2)

where I J = e∆/ħh , and we used R0, Rπ� 1 in the last equality. In equilibrium, the average ABS occupations
are set by the Fermi distribution, while the contribution of the continuum is negligibly small. Thus, the
equilibrium supercurrent at zero temperature is given by I−(ϕ). In the presence of a DC voltage bias, the
phase difference increases linearly with time,ϕ(t ) =ωJ t +ϕ0 with a reference phaseϕ0. (Here we assume
V > 0, for concreteness.) As a consequence, changes in the occupations of the ABS can occur due to non-
adiabatic transitions. Using R0, Rπ� 1 and V �∆/e , we can isolate two kinds of non-adiabatic processes.
Near ϕ = πmod2π, these are the transitions between |+〉 and |−〉, which occur with the Landau-Zener
probability pπ = exp(−πRπ∆/e V ) [49]; pπ increases rapidly from 0 to 1 as V increases in the vicinity of Vπ =
Rπ∆/e . Near ϕ = 0 mod 2π, these are non-adiabatic transitions between |+〉 and the continuum states
with energy E >∆ as well as the continuum states with energy E <−∆ and |−〉 [24], which take place with
probability p0 = p (V /V0) with V0 = R 3/2

0 ∆/e , where the function p (x ) calculated in Ref. [50] (and Ref. [24]
at V � V0) is such that p0 increases rapidly from 0 to 1 as V increases in the vicinity of V0. We assume
T �∆, so that continuum states with energy E < −∆ (E >∆) are occupied (empty). We also neglect the
short timescales over which the non-adiabatic processes take place on the scale of the Josephson period,
2π/ωJ . Then at each time, the state of the junction is fully characterized by the occupations n± = 0, 1.
(In particular, we ignore coherent superpositions between |±〉-states.) The states (0, 1) and (1, 0) are the
ground and first excited states in the even parity sector of the junction, respectively; the states (0, 0) and
(1, 1) are the “poisoned” states in the odd parity sector [51]. These last states are degenerate 1. Within a
Markov model that describes switches in their random occupations [44, 50], the average supercurrent is

〈I (t )〉=I (t )
�

P01(ϕ(t ))−P10(ϕ(t ))
�

. (3.3)

Here I (t ) = I−
�

ϕ(t )
�

and Pn+n− (ϕ) with n+, n− = 0, 1 denotes the ABS occupations at a given phase. Ne-
glecting any coupling with an external bath, these probabilities remain constant within intervals πm <
ϕ < π(m + 1) with m integer, while their values immediately before and after the specific phases where
non-adiabatic transitions can take place are related with each other through the transition probabilities
pπ and p0,

P ((2m +1)π+) =LπP ((2m +1)π−), (3.4a)

P (2mπ+) =L0 P (2mπ−) (3.4b)

with P (ϕ) =
�

P11(ϕ), P10(ϕ), P01(ϕ), P00(ϕ)
�T

and the transition matrices

L π =









1 0 0 0
0 1−pπ pπ 0
0 pπ 1−pπ 0
0 0 0 1









, (3.5a)

L 0 =









1−p0 p0(1−p0) 0 0
0 (1−p0)2 0 0

p0 p 2
0 1 p0

0 p0(1−p0) 0 1−p0









(3.5b)

The non-adiabatic processes accounted for by the matrix elements of L π and L 0 are illustrated
in fig. 3.2(b) and fig. 3.2(c). Before evaluating the full current noise spectrum , we shall explore the low
frequenciesω�ωJ behaviour of this system by integrating out the high frequency dynamics.

1The states (0,0) and (1,1) carry zero current (see eq. (3.42)) and have the same incoming and out-coming probabilities (see
fig. 3.2 (c)). Hence, an alternative model not distinguishing these states could be formulated. However, it would be unsuited for
the comparison with topological junctions (see section 3.4).
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∆
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∆
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∆
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∆
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Figure 3.2: (a) The junction state is characterized by the occupations of the two Andreev bound states.
Filled and unfilled circles, depict occupied and unoccupied Andreev bound states. (b)-(c) Graphs of the
transition matrices. Each arrow denotes a possible transition between two states (n+, n−) and (n ′+, n ′−),
and is labelled by the transition probability.(b) non-adiabatic processes described by L π can exchange
the occupation of states (0, 1) and (1, 0) by enabling a particle from one ABS to jump to the other ABS. (c)
non-adiabatic processes described byL 0 can populate the lower ABS, enabling transitions from (0, 0) to
(0, 1), and from (1, 0) to (1, 1). They can also deplete the higher ABS state, enabling transitions from (1, 0) to
(0, 0) and from (1, 1) to (0, 1). As the changes of the population of the lower and upper ABS are independent,
the total transition probabilities indicated in the figure are a product of two probabilities.

3.2 Low frequency model

The initial Markov chain eq. (3.5) is not stationary. But once the high frequencyω¦ωJ is integrated out,
the resultant model is stationary. This greatly simplify the derivation of the low frequency current statistic.

3.2.1 Averaging out the high frequencies

Considering aτ-periodic Markov chain associated to the probabilities p (t ) = (p1, p2, ..., pN ), it is possible to
formulate a stationary low frequency model where the dynamics on timescales shorter thanτare averaged
out. The probability vector satisfies

dp (t )
dt

=M(t )p (t ), (3.6a)

M(t +τ) =M(t ), (3.6b)

where M(t ) is a Markov matrix, id est all its entries are positive numbers and the sum of each column is
equal to 1. We introduce the associated retarded Green function L (t , t ′) that vanishes for t ′ < t and is
defined for t > t ′ by:

p (t ) =L (t , t ′)p (t ′), (3.7)
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where p (t ) is any probability vector that satisfy the master equation e q . (3.6b). One might show that the
Green function satisfies the following differential equation

§

d

dt
−M(t )

ª

L (t , t ′) =δ(t , t ′) (3.8)

From the definitionL (t , t ′), we have

p (nτ+τ) =L (nτ+τ, nτ)p (nτ) (3.9)

Using the periodicity of the Markov chain, we simplify this last expression to

p ((n +1)τ) =L (τ, 0)p (nτ). (3.10)

Hence, the vector pτ(n )≡ p (nτ) obeys the time independent Markov equation:

pτ(n +1) =L (τ, 0)pτ(n ) (3.11)

While the short times scales properties of the initial model are lost, this new effective model provides an
efficient method to access long timescale quantities. This method can be directly applied to the junction
model. The retarded Green function of the equation eq. (3.4) for ϕ ∈ [0, 2π] is

L (ϕ, 0+) =











1 ϕ <π

Lπ π≤ϕ < 2π

L0Lπ ϕ = 2π

(3.12)

Hence,L ≡L (2π, 0+) =L0Lπ. In the same basis than eq. (3.5) we have

L =









1−p0 p0

�

1−p0

� �

1−pπ
�

p0pπ
�

1−p0

�

0

0
�

1−p0

�2 �
1−pπ

�

pπ
�

1−p0

�2
0

p0 p 2
0

�

1−pπ
�

+pπ p 2
0 pπ−pπ+1 p0

0 p0

�

1−p0

� �

1−pπ
�

p0pπ
�

1−p0

�

1−p0









(3.13)

Under careful examination, it appears that a charge is transferred across the system during a period if
and only if a Landau Zener transition occurs. In the other cases, due to the Andreev bound state energy
symmetries, the current averaged to 0 over a period. Thus, as for SNS junction section 2.2.4.3, we just have
to count the number of charges that effectively cross the junction.

3.2.2 Counting field method

The counting field method permits to keep track of a quantity that changes under transition of the Markov
chain but is not included in the state definition. In our problem, the state are defined by the occupation of
the ABS, yet to evaluate the current we must count the particle transfers. Let’s consider a system describe
by a finite Markov chain

p (n +1) = Γp (n ). (3.14)

The probability vector should be normalized
∑

i pi (n ) = 1. To conserve this normalization, Γ must be a
stochastic matrix, i.e.

∑

j Γi j = 1. We are interested in the statistics of an observed variable N̂ (n ). Each
transition s → s ′ change this quantity by a fixed amount Ns ′s . We introduce the probability ps (N , n ) to be
in the state s at step n with N̂ (n ) = N . The transfer matrix is rewrite as Γ =

∑

q Γ q . Where the transition

included in Γ q increase the value of N̂ by q . Thus, we have

p (N , n +1) =
∞
∑

q=−∞
Γ q p (N −q , n ). (3.15)
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We exploit the independence of Γ with respect to the number of counted particles by introducing the
Fourier transform

ρs

�

χ , n
�

=
+∞
∑

N=−∞
ps (N , n )e i Nχ . (3.16)

Thus, equation eq. (3.15) takes the following form

ρ
�

χ ,τ+1
�

=

� ∞
∑

q=−∞
Γ q e i qχ

�

ρ
�

χ ,τ
�

. (3.17)

Writing Γ̃p ,q (χ) = Γp ,q · e i Np ,qχ , we have

ρ
�

χ ,τ+1
�

= Γ̃ (χ)ρ
�

χ ,τ
�

. (3.18)

Solving this trivial recurrence, we get

ρ(χ ,τ) = Γ̃ n (χ)ρ(χ , 0). (3.19)

When χ goes to 0, the spectrum of Γ̃ (χ) converges smoothly to the spectrum of Γ . Assuming that Γ admits
a unique stationary state and can be diagonalized, there is a unique eigenvalue λχ such that λχ → 1 when
χ→ 0. Hence, when χ � 1 and τ� 1, from eq. (3.19) we can write

ρ(χ ,τ)≈λn
χQχ





1
0

...



Q−1
χ ρ(χ , 0). (3.20)

Finally, we introduce the characteristic function of N̂ (n )which we denote by Λ(χ , n ) =
∑

s ρs (χ , n ):

Λ(χ ,τ) =λn
χh (χ) (3.21)

Where h (χ) is the function of χ whose expression is not relevant for what follow. We may now introduce
the cumulant generative function C (χ , n ) = logΛ(χ , n ). Hence, when χ � 1 and n � 1, we got:

C (χ ,τ) =τ log
�

λχ
�

(3.22)

Thus, the cumulant of order p is given by:

κp = (−i )p
∂ p C (χ ,τ)
∂ χp

(3.23)

The firsts cumulants are the mean and standard deviation

κ1 = 〈Nτ〉 , κ2 =σ
2
N (n ). (3.24)

Using n � 1 this simplifies to:

〈Nτ〉/τ=−i
∂ λχ

∂ χ

�

�

�

�

χ=0

(3.25)

σ2
Nτ
/τ=

∂ λχ

∂ χ

�

�

�

�

2

χ=0

−
∂ 2λχ

∂ χ2

�

�

�

�

χ=0

(3.26)
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These derivatives can be evaluated without computing the eigenvalues of Γ̃ . Let’s define F (χ ,λ) = det
�

Γ̃ −λ
�

.
Thus λχ satisfies the equation F (χ ,λχ ) = 0. By taking successive derivatives of this equation with respect
to χ we deduce the expression of the derivatives of λχ :

λ′χ =−
∂1,0F (χ ,λχ )

∂0,1F (χ ,λχ )
(3.27)

λ′′χ =−
∂2,0F (χ ,λχ )+2λ′χ∂1,1F (χ ,λχ )+λ′2χ ∂0,2F (χ ,λχ )

∂0,1F (χ ,λχ )
(3.28)

3.2.3 Zero frequency current statistics

To use the counting field method, we first need to identify the different transitions that participate in
the charges transport. As in the SNS junctions, a charge is transferred during a phase cycle if and only
if a Landau-Zener transition occur at ϕ = π mod 2π. Thus, we deduce that the low frequency transition
matrix augmented by the counting field reads as

L̃ =L 0L̃ π, (3.29)

with

L̃ π =









1 0 0 0
0 1−pπ pπe i q∗χ 0
0 pπe −i q∗χ 1−pπ 0
0 0 0 1









, (3.30)

and q∗ = 2∆/V the effective charge which diverges as the inverse of the bias voltage. Using the previous
results, we immediately derive the DC current and its Fano factor

ID C =
2

π

p0pπ
1−λ3

I J with λ3 = (1−p0)(1−2pπ) (3.31)

The parameters λ3 will reappear later as an eigenvalue of the transition matrix. ID C relates the dissipative
current with non-adiabatic processes through the gaps in the Andreev spectrum. It corresponds to the
low-voltage regime of multiple Andreev reflections (MAR). It generalizes formulas derived in supercon-
ducting atomic contacts [49] at p0 = 1, and in topological Josephson junctions [50] at pπ = 1. The Fano
factor normalized by the effective charge can be cast into

F =
σ2

I

ID C q∗
=

A+B

8p0pπ(1−λ3)
(3.32)

with

A = 8p0pπ(1−pπ)[1+ (1−p0)
2](1+λ3)/N , (3.33a)

B =−16pπp0(2−p0)λ3/N , (3.33b)

N = (2−p0)(1−λ3). (3.33c)

The Fano factor permits to distinguish different regimes of the junction dynamics. At pπ � p0, when
the bottleneck for the transfer of quasiparticles across the junction is the gap near the Fermi level, F =
1. This indicates that charge transfer can be described as a Poisson process. The region where F = 1/2
corresponds approximately to pπ ¦ 0.5 and p0� 1, then the transfer process is limited by two gaps of same
width near the edges of the continuum spectrum. This halving of the Fano factor might be interpreted as a
halving of the effective charge. In particular, at pπ = 1, one recovers the results of Ref. [50] for a topological
junction, see section 3.4. F vanishes at 1 − p0, 1 − pπ � 1, when quasiparticle transfer across the gap
becomes deterministic. In the general case 0< F < 1, see fig. 3.3.
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Figure 3.3: The Fano factor as a function of p0 and pπ.

3.3 Finite frequency current statistics

We now turn to the evaluation of the finite frequency current noise spectrum. While the calculations
are rather simple, deriving the finite frequency noise expression is a long trek. We start by consider-
ing the stochastic matrix describing a full phase cycle L ≡ L 0L π. It admits normalized right and left-
eigenvectors uα and vα, with a common eigenvalue λα, such thatL uα =λαuα,L vα =λαvα, and v T

α uβ =
δαβ . Furthermore, the eigenvalue λ0 = 1 is associated with the left eigenvector v0 = (1, . . . , 1)T , while other
eigenvalues, λ1 = 1−p0, λ2 = (1−p0)2, and λ3 = (1−p0)(1− 2pπ), satisfy |λα6=0| < 1. Thus, the probability
vector P that solves eq. (3.4) reaches a solution at long times that does not depend on the initial condition;
it is given by the eigensolution α= 0:

P (ϕ) =

�

u0, 2mπ<ϕ < (2m +1)π,
L πu0, (2m +1)π<ϕ < (2m +2)π,

(3.34)

with

u0 =
1

N









pπ(1−p0)
pπ(1−p0)2

N −pπ(1−p0)(3−p0)
pπ(1−p0)









, (3.35a)

L πu0 =
1

N









pπ(1−p0)
pπ

N −pπ(3−2p0)
pπ(1−p0)









, (3.35b)

and N = (2 − p0)(1 − λ3). In particular, the ground state (0, 1) is mostly occupied with u0 ≈ L πu0 ≈
(0, 0, 1, 0)T at pπ� p0, while all states are approximately equally occupied with u0 ≈L πu0 ≈ ( 14 , 1

4 , 1
4 , 1

4 )
T at

p0� pπ. Inserting eq. (3.34) into eq. (3.3), we find the average current in the long-time limit,

〈I (t )〉=
p0

1−λ3

�

pπ |I (t )|+ (1−pπ)I (t )
�

(3.36)

= IDC

�

1−
∑

n≥1

2

4n 2−1

�

cos
�

nϕ(t )
�

+2(−1)n n
1−pπ

pπ
sin

�

nϕ(t )
�

�

�

.

The ratio between cosine and sine harmonics of the Josephson frequency is controlled by non-adiabatic
transitions between ABS with positive and negative energies. When these processes are rare, the sine
harmonics dominate like in the adiabatic case.
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3.3.1 Evaluation of the current noise spectrum

Due to the stochastic nature of the non-adiabatic processes, the current fluctuates. We characterize the
fluctuations with the current noise spectrum,

S (ω) = 2

ˆ ∞
0

dτcos(ωτ)S (t +τ/2, t −τ/2), (3.37)

where the bar denotes an average over t . Within the Markov theory, we relate the current correlator,

S (t1, t2) = 〈I (t1)I (t2)〉− 〈I (t1)〉〈I (t2)〉, (3.38)

with
〈I (t1)I (t2)〉=I (t1)I (t2)×

∑

n1,n2

(−1)n1+n2 Pn1n̄1|n2n̄2
(ϕ1|ϕ2)P

∞
n2n̄2
(ϕ2) (3.39)

at t1 > t2. Here Pn1n ′1|n2n ′2
(ϕ1|ϕ2) with ϕi = ϕ(ti ) is the conditional probability for the system to reside in

state (n1, n ′1) at phase ϕ1 if it was in state (n2, n ′2) at phase ϕ2 <ϕ1; it solves the same eq. (3.4) as the prob-
ability Pn1n ′1

(ϕ1), together with the initial condition Pn1n ′1|n2n ′2
(ϕ2|ϕ2) = δn1,n2

δn ′1,n ′2
. Thus, it is the retarded

Green function of this equation. Furthermore, we used the notations 0̄= 1 and 1̄= 0. Using a matrix rep-
resentation [in the same basis of states as the one used in eq. (3.4) and eq. (3.5)] for the closure relation,
∑

α uαv T
α = 1, we find

P (ϕ1|ϕ2) =L k1
π

�

∑

α

uαλ
m1−m2
α v T

α

�

L −k2
π (3.40)

for (2mi +ki )π<ϕi < (2mi +ki +1)πwith mi integer, ki = 0, 1, and i = 1, 2. The second term in the r.h.s. of
eq. (3.38) compensates the contribution from the terms withα= 0 when inserting eq. (3.40) into eq. (3.39).
Furthermore, the expectation value of the current operator in the states with α= 1, 2 vanishes. Therefore,
only the terms with α = 3 contribute to eq. (3.38). Combining eq. (3.38), eq. (3.39) and eq. (3.40), one
obtains the following expression for the noise:

S (t1, t2) =I (t1)I (t2)
3
∑

α=1

v T
0 ÎL

k1
π uαλ

m1−m2
α v T

α L
−k2
π ÎL

k2
π u0, (3.41)

Here Î is the current operator, which in the basis of eq. (3.4) and eq. (3.5) takes the form

Î =









0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0









. (3.42)

To evaluate the noise, the left and right eigenvectors of the stochastic matrix L are needed. The right
eigenvector u0, describing the stationary state is given by eq. (3.35), whereas the others read as follows:

u1 =









1
0
0
−1









, u2 =









1
−1
−1
1









, u3 =









p0(1−2pπ)
−2pπ(1−p0)

−2p0+2pπ(1+p0)
p0(1−2pπ)









. (3.43)

One notes that the eigenvectors u1 and u2 do not carry any current, v T
0 Î u1,2 = 0. Furthermore, u1 and u2

are eigenvectors not only ofL but also ofL π, namelyL πu1,2 = u1,2, which further yields v T
0 ÎL πu1,2 = 0.

As a consequence, the expression for the noise reduces to

S (t1, t2) =I (t1)I (t2)λ
m1−m2
3

�

v T
0 ÎL

k1
π u3

� �

v T
3 L

−k2
π ÎL

k2
π u0

�

. (3.44)
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Only the eigenvalue λ3 contributes to the current fluctuation. Thus, there is a unique timescale for the
decay of correlations. This can be linked to the symmetric structure of the transition graph fig. 3.2: for the
current flow and the occupation dynamics, the states (0, 0) and (1, 1) are indistinguishable. In addition to
v0 = (1, . . . , 1)T , the only other left eigenvector needed is v3, given as

v3 =−
1

2
�

p0−2pπ
�

(1−λ3)









p0

2p0+2pπ(1−p0)
−2pπ(1−p0)

p0









. (3.45)

With the expressions provided in eq. (3.43) and eq. (3.45), as well as eq. (3.4) and eq. (3.5), we can evaluate
the matrix elements contributing to the noise as given in eq. (3.44). In particular,

v T
0 Î u3 = 2(2pπ−p0), (3.46a)

v T
3 Î u0 =

λ3pπ[(1−p0)(2pπ−p0)−N ]
N (p0−2pπ)(1−2pπ)(1−λ3)

, (3.46b)

v T
3 L

−1
π ÎL πu0 =

pπ(2pπ−p0−N )
N (p0−2pπ)(1−2pπ)(1−λ3)

, (3.46c)

v T
0 ÎL πu3 =

�

1−2pπ
�

v T
0 Î u3. (3.46d)

We can now turn to the computation of the noise spectrum S (ω). As a first step, we rewrite eq. (3.37) as

S (ω) = lim
T→∞

2

T

ˆ ∞
0

dτ cos(ωτ)
ˆ T

0
d t S (t +τ, t ). (3.47)

The function S (t +τ, t ) is periodic in t and quasi-periodic in τwith period T = 2π/ωJ :

S (t +2π/ωJ +τ, t +2π/ωJ ) = S (t +τ, t ), (3.48)

S (t +τ+
2π

ωJ
, t ) =λ3S (t +τ, t ). (3.49)

Using the periodicity in t , we rewrite the time average as

lim
T→∞

1

T

ˆ T

0
d t S (t +τ, t ) =

ωJ

2π

ˆ 2π/ωJ

0
d t S (t +τ, t ). (3.50)

And by using the quasi-periodicity in τ, we rewrite the Fourier transform as

ˆ ∞
0

dτ cos(ωτ)S (t +τ, t ) =R

¨∞
∑

n=0

�

λ3e 2iπω/ωJ
�n
ˆ 2π/ωJ

0
dτ e iωτS (t +τ, t )

«

. (3.51)

By combining eq. (3.50) and eq. (3.51), and performing the sum over n , we get

S (ω) =
ωJ

π
R

(

1

1−λ3e
2iπω
ωJ

ˆ 2π/ωJ

0
dτ

ˆ 2π/ωJ

0
d t e iωτS (t +τ, t )

)

. (3.52)

By applying the change of variablesωJ t +ϕ0→ϕ andωJτ→δ, we obtain

ˆ 2π/ωJ

0
dτ

ˆ 2π/ωJ

0
d t e iωτS (t +τ, t ) =

1

ω2
J

ˆ 2π

0
dδ

ˆ 2π

0
dϕ e i ω̃τS (ϕ+δ,ϕ), (3.53)

where ω̃=ω/ωJ . To perform the remaining integration, we shall notice that S (t , t +τ) possesses discon-
tinuities at δ+ϕ = nπ and ϕ = nπ. There, the values of the indices m1 −m2, k1, and k2 change in the
expression of the noise, eq. (3.44). Thus, the integration domain must be split into different segments.
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0 π 2π
0

π

2π

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(0, 1, 1)

(1, 0, 1)

(1, 1, 1)

ϕ

δ

Figure 3.4: Map of the indices (m1−m2, k1, k2) determining S (ϕ+δ,ϕ) according to eq. (3.44) as a function
of ϕ and δ. Discontinuities in S (ϕ+δ,ϕ) appear at the boundaries of the different domains delimited by
full lines. The integration scheme introduces additional segments depending on the value of δ, separated
by the dashed line.

Once we perform the integration over ϕ in the eight segments shown in fig. 3.4, we end up with a piece-
wise continuous function of δ. Integrating over δ and rearranging the terms, we obtain eq. (3.41) with
coefficients

A = 2 (1+λ3)v
T
0 Î u3

��

−2λ3+ (1−2pπ)(1−λ3)
�

v T
3 L

−1
π ÎL πu0+

�

1−λ3+2(1−2pπ)
�

v T
3 Î u0

	

(3.54a)

B = 8v T
0 Î u3

�

λ2
3v T

3 L
−1
π ÎL πu0−

�

1−2pπ
�

v T
3 Î u0

�

(3.54b)

C = 32λ3v T
0 Î u3

�

v T
3 L

−1
π ÎL πu0−

�

1−2pπ
�

v T
3 Î u0

�

(3.54c)

Using eq. (3.46), this finally provide the expression

S (ω)
S0
=

A
�

1+4ω̃2−4ω̃sin(πω̃)
�

+ (B +C ω̃2)cos2(πω̃)

(1−4ω̃2)2
�

(1+λ3)
2−4λ3 cos2(πω̃)

� (3.55)

with

A = 8p0pπ(1−pπ)[1+ (1−p0)
2](1+λ3)/N , (3.56a)

B =−16pπp0(2−p0)λ3/N , (3.56b)

C = 128pπ(1−pπ)(1−p0)[1−λ3(1−p0)]/N , (3.56c)

S0 = I 2
J /(πωJ ) (3.56d)

We published the above result in [52], yet in the published version, the above coefficient eq. (3.56b) con-
tains a typo that we fixed here. Below we discuss the zero-frequency noise as well as structures related to
the AC currents in the finite frequency noise given by eq. (3.55).

3.3.2 Analysis of the finite frequency noise

As it appears in eq. (3.41), the current correlation function decays as |λ3|
�

ωJ τ/2π
�

. Thus, the noise is ex-
pected to display sharp features when 1− |λ3| � 1. This is confirmed by the final expression eq. (3.55).
This happens when p0, pπ � 1 or p0, 1−pπ � 1. At p0, pπ � 1 the noise spectrum displays features with a
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narrow linewidth,

γ=
1

2π
(p0+2pπ)ωJ , (3.57)

nearω= nωJ with n integer. In particular, at very low frequency,ω�ωJ ,

S (ω)
e ?IDC

= F + (Fapp− F )
ω2

ω2+γ2
. (3.58)

Here, eq. (3.31) simplifies to

IDC =
2I J

π

p0pπ
p0+2pπ

, (3.59)

and the Fano factor,

F =
p 2

0 +p0pπ+2p 2
π

(p0+2pπ)2
, (3.60)

is only accessible in a narrow frequency rangeω� γ, while an apparent Fano factor,

Fapp =
(12−4π+π2)p0+8pπ

2π2p0
, (3.61)

characterizes the noise in a wide frequency range γ�ω�ωJ . Note that Fapp� F if p0� pπ. Furthermore

S (ω) =
32n 2

(4n 2−1)2π
(3p0+2pπ)pπ
(p0+2pπ)2

γI 2
J /π

(ω−nωJ )2+γ2
(3.62)

at |ω− nωJ | � ωJ , up to a negative resonance-frequency shift of the order of γ2/ωJ � γ. Comparing
eq. (3.62) with the amplitude of the harmonics in eq. (3.36), we conclude that the Josephson radiation at
p0 � pπ � 1 is dominated by the noise, eq. (3.62); thus it is broadened by non-adiabatic transitions. On
the other hand, the Josephson radiation at pπ� p0� 1 is dominated by the sine harmonics in eq. (3.36);
thus it is broadened by the environment of the junction.

At p0, 1−pπ� 1, IDC = p0I J /π and F = 1/2; the noise spectrum displays a narrow resonance at half
the Josephson frequency

S (ω) =
I 2

J

4

γ′

(ω−ωJ /2)2+γ′2
(3.63)

with linewidth

γ′ =
1

2π
[p0+2(1−pπ)]ωJ , (3.64)

up to a small resonance-frequency shift, of the order of γ′2/ωJ � γ′, which increases as pπ decreases.
Higher order resonances around (n+1/2)ωJ are suppressed. Comparison between eq. (3.36) and eq. (3.64)
shows that the Josephson radiation is dominated by the noise, and it is thus broadened by the non-adiabatic
processes. At 1−pπ� 1, transitions across the gap atπ are very frequent, leading to a large, but random 4π-
periodic contribution to the current. Thus, the Josephson radiation is fractional despite the junction not
being topological. In the extreme case pπ = 1, where the transitions across the gap at π are deterministic,
the system can be described as two independent topological junctions in parallel [23]. The crossover be-
tween a well-resolved fractional or conventional Josephson radiation, when p0 is small and pπ increases
from 0 to 1 occurs through the gradual shift and broadening of the peaks in the noise spectrum, as il-
lustrated in fig. 3.5. A similar behaviour has been reported in topological junctions, but with a residual
coupling to the Majoranas at the far ends of the superconducting wires [19].

To clarifies the relation between our model and topological junctions we propose in the following
section an alternative description of the device at pπ = 1.
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Figure 3.5: Current noise spectrum for p0 = 0.1 and several equally spaced values of pπ between 0.1 and
0.9. The curves are shifted vertically for clarity.

3.4 Equivalent model at pπ = 1

When the Landau-Zener probability is pπ = 1, stochastic processes happen only at phases ϕ = 2mπ. By
contrast, atϕ = (2m+1)π, a deterministic exchange between the states |±〉 takes place. In this case, a more
natural basis of states |a 〉 , |b 〉 is given as

• |a 〉= |+〉 and |b 〉= |−〉 for (4m −1)π<ϕ < (4m +1)π,

• |a 〉= |−〉 and |b 〉= |+〉 for (4m +1)π<ϕ < 4(m +3)π,

which absorbs the effect of the deterministic Landau-Zener transitions due toLπ at pπ = 1. This change of

representation is described by fig. 3.6. Then the probabilities P̃ (ϕ) =
�

P1a 1b
(ϕ), P1a 0b

(ϕ), P0a 1b
(ϕ), P0a 0b

(ϕ)
�T

are constant over the phase intervals 2mπ<ϕ < 2(m +1)π and evolve according to

P̃ (4mπ+) =L0 P̃ (4mπ−), (3.65a)

P̃ ((4m +2)π+) =L2πP̃ ((4m +2)π−). (3.65b)

Here the transition matricesLϕ can be decomposed into a tensor product of Markov matrices acting on

distinct ABS branches,Lϕ =L
(a )
ϕ ⊗L

(b )
ϕ . In particular,

L0 =L−⊗L+, L2π =L+⊗L−. (3.66)

We denote by |n〉x that the state x = a , b contain n = 0, 1 particle. The new transition matrices in the basis
{|1〉x , |0〉x }with x = a , b take the form

L− =
�

1 p0

0 1−p0

�

, L+ =
�

1−p0 0
p0 1

�

. (3.67)

Thus, the occupations of the two states |a 〉 and |b 〉 switch independently. The dynamics of each state is
governed by the same equations as the dynamics of the 4π-periodic Andreev bound state appearing in a
topological Josephson junction [50]. The two states carry a current Ia/b (ϕ) = ±I J sin

�

ϕ/2
�

. Furthermore,

the current operator Î is also separable,

Î =
1

2
(σz ⊗1−1⊗σz ) . (3.68)

As a consequence, at pπ = 1, the system can be described as two independent topological junctions in
parallel. Thus, both the average current and the noise are doubled compared to the values for the topo-
logical junction reported in [50]. As a consequence, one obtains the same Fano factor, F = 1/2, as well as
a peak in the noise spectrum atω=ωJ /2, corresponding to a fractional Josephson effect.
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3.4. Equivalent model at pπ = 1

2π 4π

−∆

∆
|+〉

|−〉

ϕ

E

(a)

2π 4π

−∆

∆
|a〉

|b〉

ϕ

E

(b)

Figure 3.6: (a) Representation of the Andreev Bound states in the initial basis |±〉. The solid line corre-
sponds to the state |−〉. The Dashed line is the state |+〉. (b) Representation of the Andreev Bound states
in the basis |a/b 〉. The deterministic Landau-Zener process at ϕ = (2m + 1)π have been absorbed by the
change of basis. The solid line corresponds to the state |b 〉. The Dashed line is the state |a 〉.

Conclusion

In this chapter, we proposed a simple model to analyse the role of non-adiabatic transitions between
Andreev states in the Josephson radiation of a superconductor-quantum dot-superconductor junction.
Within a simplified model of the Andreev states’ dynamics, we predicted that such a conventional junction
may display either conventional radiation or fractional radiation, thus mimicking a topological Josephson
junction, depending on its parameters and on the bias voltage. Thus, it would be interesting to extend the
analysis to a more general description of the Andreev dynamics, as well as to develop a theory frame to
compare the influence of the environment (neglected in our study) and the non-adiabatic transition on
the loss of coherence of the Josephson radiation. The following chapters will focus on a microscopic model
of the junction, and introduce numerical tools to solve the resulting Dyson equation in time domain.
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CHAPTER 4
Quantum-dot junctions in the quantum

field formalism

This chapter introduces a microscopic description of the quantum dot junction. We start with a Hamil-
tonian picture of the closed system formed by the dot connected to extended leads. In this initial frame-
work, we derive the expressions of the average current and its fluctuations. To reduce the problem size,
we formally integrate out the lead degrees of freedom using the quantum field formalism. This results
in a description of the dot as an open system dressed by the interactions induced by the leads. We then
deduce the expressions of the observables in this new framework.

4.1 Hamiltonian model

4.1.1 Hamiltonian

Here we introduce the different objects appearing in the microscopic Hamiltonian. The leads are BCS
superconductors [13] with uniform order parameter ∆l . The operators ψ†

α,l ,s create an electron of spin

s in the mode α of the lead l , and d †
s create an electron of spin s on the dot at energy ε. The number

operators are defined as nα,l ,s =ψ
†
α,l ,sψα,l ,s and ns = d †

s ds . εα,l is the energy of an electron in the state α
of the lead l at∆l = 0. tα,l is the tunnel coupling between the dot and the mode α of the lead l . The Fermi
level of lead l is denoted by µl . UC is the strength of the coulomb interaction between the electrons of the
dot. It is related to the dot capacitance C by UC ∼ e 2/2C [53]. Up to a unitary transformation, the tunnel
couplings can absorb the order parameter phases such that∆l are positive real numbers. Hence, we may
write the usual Hamiltonian [53, 54]

H =HL +HD +HT −
∑

l

µl Nl , (4.1)

with

HL =
∑

α,l ,s

εα,l nα,l ,s +
∑

α,l

(∆lψ
†
α,l ,↓ψ

†
α,l ,↑+∆lψα,l ,↑ψα,l ,↓), (4.2)

HD = ε
∑

s

d †
s ds +UC n↑n↓, (4.3)

HT =
∑

α,l ,s

¦

tα,lψ
†
α,l ,s ds +h.c.

©

, (4.4)

Nl =
∑

α,s

nα,l ,s . (4.5)
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CHAPTER 4. Quantum-dot junctions in the quantum field formalism

When the Coulomb interaction is large enough, id est U �∆l � |tl |2, and the dot is in the magnetic regime
−UC < ε < 0 one can account for the interactions by renormalizing the junction parameters [23, 24, 53].
It can be understood as follows, in presence of Coulomb interaction and when the dots have a non-zero
spin, a screening electronic cloud may form. When the Coulomb interaction is large compared to the other
relevant energies scales, the state of this electronic cloud is frozen. It results in a system that behaves as
a non-interacting one with renormalized parameters. This situation is similar to the Fermi liquid theory.
Hereafter, we will either suppose that the Coulomb interaction is negligible or that the parameters have
been renormalized to include its effects. In both case, we drop the interaction term UC → 0. A second
unitary transformation removes the energy offsets from the leads to include them in the tunnelling terms
[55]. The operator of this transformation is

U (t ) = exp

�

i
∑

l

N̂l

ħh

ˆ t

µl (τ)dτ

�

. (4.6)

A time-dependent unitary transformation turns a Hamiltonian H into H̃ as follows

H̃ =U (t )H U (t )†− iħh
dU (t )

d t
U †(t ). (4.7)

Both the lead and the dot Hamiltonians are invariant under the action of U (t ) as they conserve the particle
numbers. This is trivial for the dot, but the situation of the leads deserves an explanation. At first sight
the term ∆lψ

†
α,l ,↓ψ

†
α,l ,↑ and ∆lψα,l ,↑ψα,l ,↓ break the particle conservation symmetry. Yet, the parameter

∆l must satisfy the self-consistency relation eq. (2.26). At the end, only the tunnel Hamiltonian must be
examined closely. The operators n̂α,l ,s commute which each others, thereby

U (t ) =
∏

α,l ,s

Uα,l ,s (t ), (4.8)

with

Uα,l ,s = exp

�

i
∑

l

n̂α,l ,s

ħh

ˆ t

µl (τ)dτ

�

. (4.9)

Uα,l ,s is a unitary operator that commutes withψ†
α′,l ′,s ′ when (α, l , s ) 6= (α′, l ′,σ′). Therefore

U (t )ψ†
α,l ,sU †(t ) =Uα,l ,s (t )ψ

†
α,l ,sU †

α,l ,s (t ). (4.10)

Finally, we end up with

U (t )ψ†
α,l ,sU †(t ) = ψα,l ,s exp

�

i

ħh

ˆ t

µl (τ)dτ

�

, (4.11)

which leads to

HT =
∑

α,l ,s

¦

tα,l e iφl (t )/2ψ†
α,l ,s ds +h.c.

©

, (4.12)

with the time dependent phaseφl (t ) set by the following relation

φl (t ) =

�

2e

ħh

ˆ t

Vl (τ)dτ

�

with Vl (τ) =µl (τ)/e . (4.13)

The term −
∑

l µl N̂l being exactly cancelled by iħh dU (t )
d t U †(t ), we are left with

H (t ) =HL +HD +HT (t ). (4.14)
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4.1. Hamiltonian model

To efficiently deal with the superconducting leads, we introduce the operators d and Ψ in a Nambu space

d ≡
�

d↑
d †
↓

�

, (4.15)

Ψα,l ≡
�

ψα,l ,↑
ψ†
α,l ,↓

�

. (4.16)

We express the Hamiltonian H =HL +HD +HT in this representations

HL =
∑

α,l

Ψ†
α,l

�

σx∆l +σzεα,l

�

Ψα,l , (4.17)

HD = d †σz εd , (4.18)

HT =
∑

α,l

¦

Ψ†
α,lTα,l d +h.c

©

, (4.19)

whereσi are the Pauli matrices acting in the Nambu space and T is the tunnel matrix

Tα,l = tα,lσz e iσzφα,l (t )/2. (4.20)

Now that the microscopic Hamiltonian is set, we turn to the definitions of the observables.

4.1.2 Observables

We are interested in the statistical properties of the charge current flowing from a lead l to the dot. In the
Nambu space, the charge number operators of the leads are Ql =−e

∑

αΨ
†
α,lσzΨα,l : Defining the currents

as the variations of these operators under the action of the tunnel Hamiltonians, we get

Il (t ) =
−i e

ħh
[Ht (t ),Ql ] (4.21a)

=
i e

ħh

∑

α

¦

Ψ†
α,lσzTα,l (t )d −d †σzT †

α,l (t )Ψα,l

©

(4.21b)

Once the operators are known, we can express their statistics in terms of the particle correlation functions.
For the average current at the instant t , we start from

〈I (t )〉=
i e

ħh

∑

α

¬

Ψ†
α,l (t )σzTα,l (t )d (t )−d †(t )σzT †

α,l (t )Ψα,l (t )
¶

. (4.22)

To exchange the operators and form proper Green functions we introduce the trace over the Nambu in-
dices TrN , and use its invariance under cyclic permutations, taking into account the sign changes induce
by the fermionic statistics

〈I (t )〉 =
i e

ħh

∑

α

¬

TrN
�

Ψ†
α,l (t )σzTα,l (t )d (t )−d †(t )σzT †

α,l (t )Ψα,l (t )
�¶

, (4.23)

=
i e

ħh

∑

α

TrN
�

σzTα,l (t )
†



Ψα,l (t )d
†(t )

�

−σzTα,l (t )
¬

d (t )Ψ†
α,l (t )

¶�

(4.24)

=
i e

ħh

∑

α

TrN
�

σzTα,l (t )
¬

Ψ†
α,l (t )d (t )

¶

−σzTα,l (t )
†



d †(t )Ψα,l (t )
�

�

. (4.25)

By replacing the creation destruction product by the lesser Green function G < we obtain

〈I (t )〉=
e

ħh

∑

α

TrN
�

σzTl (t )G
<
d ,(α,l )(t , t )−σzT †

l (t )G
<
(α,l ),d (t , t )

�

(4.26)
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CHAPTER 4. Quantum-dot junctions in the quantum field formalism

Following a similar path, we could derive the expression of the current correlation function



I (t ′)I (t )
�

in
terms of the 2-particle correlations functions. That we could factorize into products of one particle Green
functions as the problem is non-interacting. Yet, this would provide a lengthy and useless expression. We
shall wait to have derived the effective model before performing this kind of work.

4.2 Effective model

The initial microscopic Hamiltonian eq. (4.1) provides a description of the quantum dot, the leads and
the coupling between them. Within the BCS theory, the superconducting leads are described by an ef-
fective quadratic Hamiltonian. Thus, the quantum field formalism permits to exactly integrate them out,
leaving an effective description of the dot in terms of the bare dot Green function gd dressed by the lead
induced self-energiesΣl . We start by writing down the action of the initial problem using the results from
section 1.6

S = Sd [d
†, d ] +

∑

α,l

Sl [Ψ
†
α,l ,Ψα,l ] +Sd ,l [d

†,Ψ†
α,l , d ,Ψα,l ], (4.27)

with Sd the action associated to the dot, Sl the action of the lead l and Sd ,l the action resulting from the
tunnel coupling between the dot and the leads l . By introducing the inverse Green functions of the iso-
lated lead g −1

l , and of the isolated dot g −1
d , we can write the actions as

Sl

�

Ψ†
α,l ,Ψα,l

�

=
ˆ

dt Ψ†
α,l (t )g

−1
l (t )Ψα,l (t ), (4.28a)

Sd

�

d †, d
�

=
ˆ

dt d †(t )g −1
d (t )d (t ), (4.28b)

Sd ,l

�

d †,Ψ†
α,l , d ,Ψα,l

�

= −
ˆ

dt
¦

Ψ†
α,l (t )Tα,l (t )d (t )+h.c.

©

. (4.28c)

Thus, the partition function is

Z =
ˆ
D[d †, d ]

ˆ
∏

α,l

D[Ψ†
α,l ,Ψα,l ]e

i
ħh

�

Sd [d †,d ]+
∑

α,l Sl [Ψ
†
α,l ,Ψα,l ]+Sd ,l [d †,Ψ†

α,l ,d ,Ψα,l ]
�

, (4.29)

Exploiting the Gaussian integration formula for Grassmann fields of appendix A, we can perform the in-
tegration over the leads configurations, this result in

ˆ
∏

l

D[Ψ†
l ,Ψl ]e

i
ħh
�∑

l Sl [Ψ
†
l ,Ψl ]+Sd ,l [d †,Ψ†

l ,d ,Ψl ]
�

=
∏

l

det

�

−i g −1
l

ħh

�

e
−i
ħh
˜

C d †(t )T †
l (t )

gl (t ,t ′)
ħh Tl (t ′)d (t ′) dt dt ′ , (4.30)

where we drop the mode index α. The determinant in front of the right-hand side of the above expression
must vanish to preserve the normalization condition Z = 1, see eq. (1.106). The coupling to the leads is
described through the introduction of self-energies Σl defined by

Σl (t , t ′) =T †
l (t )

g l (t , t ′)
ħh

Tl (t
′). (4.31)

Thus, the action of the effective theory is

Seff[d
†, d ] = Sd [d

†, d ]−
∑

l

¨
d †(t )Σl (t , t ′)d (t ′)dt dt ′. (4.32)

The generating functional is recast as an integral over the quantum dot field configurations

Z =
ˆ
D[d †, d ]e

i
ħh Seff[d †,d ] (4.33)
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In the real-time picture, Σl has a matrix structure.

Σ→ Σ̂≡
�

Σ++ Σ+−

Σ−+ Σ−−

�

(4.34)

We denote by τx ,y ,z the Pauli matrices acting in the real-time Keldysh space, thus the real-time represen-
tation of the self-energy takes the form

Σ̂l =
∑

α,α′
T †
α,l (t )τz ĝ (α,l ),(α′,l )(t , t ′)τzTα′,l (t ′) , (4.35)

where τz permits to take into account the sign change of the Hamiltonian on the backward branch, see
eq. (1.95). The time ordered, anti-time ordered, lesser and greater self-energy are defined as

�

Σ++ Σ+−

Σ−+ Σ−−

�

=

�

ΣT −Σ<

−Σ> ΣT̃

�

. (4.36)

By applying to Σ̂ the transformation we applied to Ĝ in section 1.8, we obtain the symmetric represen-
tation of the self-energy, once again this name is misleading, as the corresponding is not symmetric in
general.

Σ→
�

ΣK ΣR

ΣA 0

�

, (4.37)

We observe that the disposition of the retarded, advanced, and Keldysh component is different from the
one of symmetric Green function, see section 1.8. This underline that retarded and advanced component
must be multiplied by components of the same kind. By contrast, the Keldysh components are multiplied
on the left by the retarded one, and on the right by the advanced one.

For more details see chapter 5 of [28]. The expression of the Keldysh, retarded and advanced self-
energies ΣR/A/K

l are provided by the following expression

ΣR/A/K
l =

∑

α,α′
T †
α,l (t )

g R/A/K
(α,l ),(α′,l )(t , t ′)

ħh
Tα′,l (t ′) (4.38)

By integrating the leads out of the system, we prevent direct application of the formula of the kind of
eq. (4.26) as they involve Green functions between the dot and leads. Hence, we follow the counting field
method [38, 54, 56] to derive the expressions of the observables in the reduced description.

4.2.1 Expression of observables in the effective model.

To derive the expression of the average current and its correlations, we supplement the generating func-
tional by a counting field ηl (t ). It is introduced by the transformation Tl (t ) → Tl (t )e i eσz τz

2 ηl (t ) in the
real-time representation. Thus, the generating functional is

Z [η(t )] =
ˆ
D[d †, d ]

ˆ
∏

α

D[Ψ†
l ,Ψl ]e

i
ħh
�

Sd [d †,d ]+
∑

l Sl [Ψ
†
l ,Ψl ]+Sd ,l [d †,Ψ†

l ,d ,Ψl ;ηl ]
�

, (4.39)

while we are using the same notations for the creation operator and the field configurations, one shall
keep in mind that the field configurations have a structure in the Keldysh space

Ψl =

�

Ψ+l
Ψ−l

�

, (4.40)
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where Ψ+l refers to the configuration on the forward time branch, and Ψ−l on the backward branch. This
convention also holds for the dot configurations:

d =

�

d+

d−

�

. (4.41)

By taking the ln-derivative of the generating functional with respect to the counting field ηwe obtain

δ ln
�

Z [η]
�

δηl (t )
=
ˆ
D[d †,Ψ†, d ,Ψ]e

2ħhZ [ηl (t )]

∑

α

¦

Ψ†
α,l (t )σzτzTα,l (t )d (t )−h.c.

©

e
i
ħh Ŝ [d †,Ψ†,d ,Ψ,ηl ]. (4.42)

By adding a trace operator trN K over the Nambu and Keldysh index and taking care of the sign due to
exchange of Grassmann variables, the terms in brackets can be changed into

trN K
¦

Ψ†
α,l (t )σzτzTα,l (t )d (t )−h.c.

©

=− trN K
¦

σzτzTα,l (t )d (t )Ψ
†
α,l (t )−h.c.

©

. (4.43)

From the results of chapter 1, or by having a look at [28, 29]we then deduce that

δ ln
�

Z [η]
�

δηl (t )
=

e

2ħh
trN

�

σzTα,l (t )



TCΨα,l
†(t +)d (t +)

�

−σzTα,l (t )



TCΨα,l
†(t −)d (t −)

�

−h.c.
	

(4.44)

Finally, considering two real times t1, t2 the contour ordering imposes

〈TCΨα,l
†(t +1 )d (t

+
2 )〉=−〈TCΨα,l

†(t −1 )d (t
−
2 )〉. (4.45)

Using this relation, we get

δ ln
�

Z [η]
�

δηl (t )

�

�

�

�

�

η=0

=
e

ħh
trN

�

σzTα,l (t )



Ψα,l
†(t )d (t )

�

−h.c.
�

(4.46)

Thus we express the average current as a function of the augmented partition function Z [η]:

〈Il (t )〉= i
δ ln

�

Z [η]
�

δηl (t )

�

�

�

�

�

η=0

(4.47)

Once the leads have been integrated out, the generating functional reads

Z [η] =
ˆ
D[d †, d ]e

i
ħh
�

Ŝd [d †,d ]−
∑

l

˜
dτdτ′d †(τ)Σl (τ,τ′)d (τ′)

�

. (4.48)

The equation 4.47 still holds, consequently:

2ħh
q
〈Il (t )〉 =

ˆ
D[d †, d ]

ˆ
dτ

�

d †(t )τzσzΣl (t ,τ)d (τ)−d †(τ)Σl (τ, t )τzσz d (t )
�

e
i
ħh Ŝeff[d †,d ], (4.49)

=
ˆ
D[d †, d ] trN K

§

σzτz

ˆ
dτ

�

d (t )d †(τ)Σl (τ, t )−Σl (t ,τ)d (τ)d †(t )
�

ª

e
i
ħh Ŝeff[d †,d ],(4.50)

Finally, we deduce the expression of current:

〈Il (t )〉=
e

2ħh
trN K

§

τzσz

ˆ
G (t ,τ)Σl (τ, t )−Σl (t ,τ)G (τ, t )dτ

ª

(4.51)
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Where G is the contour ordered Green function of the system. Using a similar argument we can also derive
an expression for the current noise. In general, Il (t ) and Il (t ′) do not commute, for a discussion on the
symmetrized and unsymmetrized noise see [57]. To deal with it, we use the same trick as [54, 56]: we
impose the first temporal argument to live on the forward Keldysh branch, while the second is on the
backward branch. Thus, we are not imposing any constraint on their relative position in real-time. The
counting field is changed according to:

Tα,l (t )→Tα,l (t )e
i eσz

�

η+l (t )−η
−
l (t )

�

, (4.52)

As previously the first step is to derive the expression of the correlation function in terms of derivatives of
the partition function with respect to the counting field. This time we start from eq. (1.49) to write

Z [η] = Tr
§

TC exp
�

−
i

ħh

ˆ
C

H̃ (t ) dt
�

ρ(−∞)
ª

(4.53)

where H̃ (t ) is the Hamiltonian augmented by the counting field. This permits to painlessly demonstrate
that

−
δ2 ln Z [η]

δη−l (t )δη
+
l ′ (t ′)

�

�

�

�

η=0

= 〈Il (t )Il ′ (t
′)〉− 〈Il (t )〉〈Il ′ (t

′)〉 (4.54)

The action of the reduced model is still quadratic, thus it can be written as

Seff[d
†, d ] =

ˆ
C

d †(t )G −1(t )d (t ) dt , (4.55)

where the full inverse Green function G −1 is provided by the relation

G −1 = g −1−Σ, (4.56)

and Σ≡
∑

l Σl is the total self-energy. The generating functional is thus

Z [η] =
ˆ
D[d †, d ]e

i
ħh
´

C d †(t )G −1(t )d (t )dt . (4.57)

Once again, using the results from appendix A, we get

Z [η] = exp

�

ln det

�

G −1

iħh

��

(4.58)

To evaluate the derivative of the partition function with respect to the source field we use the same rela-
tions that for the derivation of the mean field approximation in section 2.1.3. We first transform the above
equation into

Z [η] = exp

�

tr ln

�

G −1

iħh

��

(4.59)

Upon taking the functional log-derivative we get

δ2 ln Z [η]
δη−l (t )δη

+
l (t ′)

= tr

�

δ

δη−l (t )

�

G

ħh
δG −1

δη+l (t ′)

��

(4.60)

The counting field is only present in Σ, see eq. (4.56), thus we can rewrite this equation as

−
δ2 ln Z [η]

δη−l (t )δη
+
l ′ (t ′)

= tr

�

δ

δη−l (t )

�

G

ħh
δΣ

δη+l ′ (t ′)

��

(4.61)
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Before diving into the evaluation of this expression, we shall introduce a Dirac operator δt which acts on
a kernel G as follows

δt1
(t , t ′)≡δ(t − t1)δ(t1− t ′). (4.62)

With this definition at hand, we write in a rather compact form the different functional derivatives

δΣ

δη−l (t )
= i e {δtσzΣl −Σlδtσz } (4.63a)

δΣ

δη+l ′ (t ′)
= −i e {δtσzΣl ′ −Σl ′σzδt ′} (4.63b)

δ

δη−l (t )

�

G

ħh
δΣ

δη+l ′ (t ′)

�

=
1

ħh

�

δG

δη−l (t )
δΣ

δη+l ′ (t ′)
+G

δ2Σ

δη−l (t )δη
+
l ′ (t ′)

�

(4.63c)

To evaluate the derivative of G we first notice that G = ħh
�

g −1−Σ
�−1

. Then, we get

δG (t2, t1)
δη−l (t )

=
1

ħh
G

δΣ

δη−l (t )
G (4.64a)

=
i e

ħh
{GδtσzΣl G −GΣlσzδt G } (4.64b)

Hence the first term in brackets of eq. (4.63) is

1

ħh
δG

δη−l (t )
δΣ

δη+l ′ (t ′)
=

e 2

ħh 2 {GδtσzΣl Gδt ′σzΣl ′ −GδtσzΣl GΣl ′σzδt ′

−GΣlδtσz Gδt ′σzΣl ′ + GΣlδtσz GΣl ′σzδt ′}
(4.65)

The second term is

G

ħh
δ2Σ

δη−l (t )δη
+
l ′ (t ′)

=
e 2

ħh
δl ,l ′ {Gδtδt ′Σl ′ −Gδt ′σzΣl ′σzδt −GδtσzΣl ′σzδt ′ +GΣl ′δtδt ′} (4.66)

Finally, after reordering the operators under the full trace we get an expression of the current correlation
function

Sl ,l ′ (t , t ′) =
e 2

ħh 2 tr{(δtσzΣl Gδt ′ )(δt ′σzΣl ′Gδt ) − (δtσzΣl GΣl ′δt ′ )(δt ′σz Gδt )

− (δtσz Gδt ′ )(δt ′σzΣl ′GΣlδt )+ (δtσz GΣl ′σzδt ′ )(δt ′GΣlδt )}

+
e 2

ħh
δl ,l ′ tr{δtΣl ′Gδt ′ − (δt Gδt ′ )(δt ′σzΣl ′σzδt )

− (δt ′Gδt )(δtσzΣl ′σzδt ′ )+δt GΣl ′δt ′} .

(4.67)

The last step is to express the full Green function.

4.3 Dyson equations

The action of the effective theory is quadratic, so the inverse contour ordered Green G −1 function shall
verify

G −1(t ) = g −1−Σ, (4.68)

This can be recast into the usual Dyson equation [28]

G = g + gΣG /ħh , (4.69)
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Or its symmetric form:
G = g +GΣg /ħh . (4.70)

To streamline the following equations, we set ħh ← 1 till the end of this section. In the symmetric R AK
basis, the Dyson equation 4.69 reads

�

0 G A

G R G K

�

=

�

0 g A

g R g K

�

+

�

0 g A

g R g K

��

ΣK ΣR

ΣA 0

��

0 G A

G R G K

�

. (4.71)

By expanding the matrix products, we deduce the equations for each component:

G R/A = g R/A + g R/AΣR/AG R/A , (4.72)

G K = g K + g RΣK G A + g K ΣAG A + g RΣR G K . (4.73)

The equation for G K can be recast as:

G K =
�

1− g RΣR
�−1

g K
�

1+ΣAG A
�

+
�

1− g RΣR
�−1

g RΣK G A . (4.74)

Now, using the Dyson equations 4.69 and 4.70, we have
�

1− g RΣR
�−1
=G R g R−1

=
�

1+G RΣR
�

(4.75)

Thus the equation for the Keldysh component is recast as

G K =
�

1+G RΣR
�

g K
�

1+ΣAG A
�

+G RΣK G A . (4.76)

Hence, the equation for G K is formally solved once the equation for G R is solved. Finally, the Dyson
equation in the R AK basis can be rewritten as:

G R = g R + g RΣR G R ,

G A =G R †
,

G K =
�

1+G RΣR
�

g K
�

1+ΣAG A
�

+G RΣK G A .

(4.77a)

(4.77b)

(4.77c)

Thereby, one first has to solve the equation for the retarded component, and then plug the result in 4.77c
to obtain the full Dyson Green function. In the following, we will come across self-energies and Green
functions describing instantaneous correlations, thus that are proportional to Dirac distribution in the
time domain representation. When discussing the numerical resolution of such equations, it will be useful
to consider a specialized version of the Dyson equation. We first introduce some new notations. For
a function A(t , t ′) = Aδ(t )δ(t − t ′) + Asmooth(t , t ′) where neither Aδ(t ) nor Asmooth(t , t ′) contain a Dirac
distribution, we write

�A(t , t ′) = Aδ(t )δ(t − t ′), (4.78a)

Ǎ(t , t ′) = Asmooth(t , t ′). (4.78b)

Thus, we can write down the product rules for a set of two operators A = �A+ Ǎ and B = �B + B̌

�AB = �A�B , (4.79a)

ǍB = �AB̌ + Ǎ�B + ǍB̌ . (4.79b)

Hence, by defining F R = g RΣR , the retarded equation is rewritten as:

�G R = �g R + �F R �G R , (4.80a)

Ǧ R = ǧ R + F̌ R �G R + �F R Ǧ R + F̌ R Ǧ R . (4.80b)

The equation 4.80a is a linear algebraic equation that is easy to solve. The second equation 4.80b differs
from 4.77a by the presence of the instantaneous term �F R Ǧ R . The expression, in terms of singular and
regular components, of G K stems from the product rule 4.79 and the equation 4.77c. In the following
chapter, we will introduce a set of numerical methods to solve these equations in different setups.
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4.4 Derivation of the bare Green functions

Before contemplating the resolution of the Dyson equation, one shall compute the bare Green functions.
For simple systems like uniform non-interacting leads, or an isolated quantum dot, useful analytical ex-
pressions exist. We derive the Green functions for metallic and BCS superconducting leads. We conclude
the section by the expression of the dot Green functions.

4.4.1 Metallic leads

Starting from eq. (1.132), we write the Green function of a metallic lead l in the energy representation as:

g l ,σ(E + iη) =
∑

α

�

�wα,l

�


wα,l

�

�

E + iη−εα,l
, (4.81)

where
�

�wα,l ,s

�

are the leads eigenvectors of energy εα,l . η is the usual complex shift of energy that ensures
a proper definition of the energy representation of the Green functions. Physically, it corresponds to in-
troducing a finite relaxation rate. We introduce the spectral function Kl (E ) to replace the discrete sum by
a more convenient integral

Kl (E ) =
ˆ
�

�wα,l

�


wα,l

�

�δ(εα,l −E )dα , (4.82)

we get:

g l ,σ(E + iη) =
ˆ ∞
−∞

dε
Kl (ε)

E + iη−ε
. (4.83)

To further simplify the expression, we perform the integration over ε. Hence, we have to choose a model
for the density of states. The dependence of Kl with respect to the spatial coordinates can be disregarded:
all its effects will be included in an effective tunnel coupling. When the characteristic energy width W of
the lead conduction bands is much larger than all the other energy scales, i.e. W �∆, tα,l , T , e V , we may
consider a flat density of states: Kl (E ) = Kl . Due to this wideband assumption, the above integral does
not converge. We regularize it by performing a symmetric integration:

g l ,σ(E + iη) = lim
εc→+∞

ˆ εc

−εc

dε
Kl

E + iη−ε
, (4.84)

this results in:

g R/A
l ,σ (E ) =∓iπKl . (4.85)

It can be recast in the time domain:
g R/A

l ,σ (t ) =∓iπKlδ(t ). (4.86)

The equilibrium kinetic equation is deduced from the relation eq. (1.131) which we reproduce here for the
reader’s convenience

g K (E ) =
�

g R (E )− g R †
(E )

�

tanh
�

E

2kB T

�

. (4.87)

Hence, we immediately deduce the Keldysh component of the lead Green function:

g K
lσ(E ) =−2iπKl tanh

�

E

2kB T

�

(4.88)

The Green function g K
l ,σ is not integrable. This is a direct consequence of the wideband approximation,

but its Fourier transform is well-defined in the sense of distributions [32].
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4.4.2 Superconducting leads

We now turn to superconducting leads. As in section 2.1.4 we first diagonalize the Bogolioubov-De Gennes
Hamiltonian. Let H0 ≡Hl (∆→ 0)be the normal state Hamiltonian, and

�

�wα,l ,↑↓
�

its eigenvalues: H0

�

�wα,l

�

=
εα,l . The Hamiltonian HL is block diagonal in the basis built from

�

�wα,l ,↑↓
�

. In the absence of magnetic

fields, the wave-functions can be factorized as
�

�wα,l ,↑↓
�

= |↑↓〉 ⊗
�

�wα,l

�

, thus the eigenvector associated to
HL reads

�

εα,l ∆l

∆l −εα,l

��

u
v

�

�

�wα,l

�

= E

�

u
v

�

�

�wα,l

�

, (4.89)

where u , v ∈C2 are coordinates in the Nambu space. Hence, it amounts to solve the same equation as in
section 2.1.4

�

εα,l ∆l

∆l −εα,l

��

uα,l

vα,l

�

= E

�

uα,l

vα,l

�

. (4.90)

The eigenvalues are E ±α,l =±
q

∆2
l + ε

2
α,l , and the eigenvectors satisfy

u±α,l /v±α,l =
εα,l ±

q

ε2
α,l +∆

2
l

∆l
. (4.91)

Thus applying eq. (1.132) we may write:

g l (E + iη) =
∑

ν=±

∑

α

�

|u±α,l |
2 u±α,l v±∗α,l

v±α,l u±∗α,l |v±α,l |
2

�

�

�wα,l

�


wα,l

�

�

E + iη−E ±α,l

, (4.92)

Once the sum over the indices ν is performed, we have

g l (E + iη) =
∑

α

�

(ε−E − iη) ∆l

∆l −(ε+E + iη)

�

�

�wα,l

�


wα,l

�

�

E +α,l
2+∆2

l − (E + iη)2
. (4.93)

As for the metallic leads, we replace the sum by an integral in the above expression by using the normal
state spectral function 4.82:

g l (E + iη) =
ˆ ∞
−∞

�

(ε−E − iη) ∆l

∆l −(ε+E + iη)

�

Kl (ε)dε
ε2+∆2

l − (E + iη)2
(4.94)

= lim
εc→∞

ˆ εc

−εc

�

(ε−E − iη) ∆l

∆l −(ε+E + iη)

�

Kl dε

ε2+∆2
l + (η− i E )2

(4.95)

=

�

−(E + iη) ∆l

∆l −(E + iη)

�

πKl
q

∆2
l − (E + iη)2

(4.96)

By taking the limit η→ 0±, we deduce:

g R/A
l (E ) =

�

−(E + i 0±) ∆l

∆l −(E + i 0±)

�

πKl
q

∆2
l − (E + i 0±)2

(4.97)

We notice that the superconducting lead Green functions are diagonal in the same basis as their metallic
counterpart. The eq. (1.131) provides the Keldysh component:

g K
l =−2iπ Im

(

(E + i 0+)σ0−∆lσx
q

∆2
l − (E + i 0+)2

)

Kl tanh
�

E

2kB T

�

(4.98)
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4.4.3 Dot Green function

The dot Hamiltonian describes a system with two degenerate states of opposite spins. The formula eq. (1.132)
gives directly the retarded and advanced Green function in the Nambu space

g R/A
d (E ) = (E ± iη−εσz )

−1 (4.99)

We immediately deduce the Keldysh Green function

g K
d (E ) =−2i

� η
(E−ε)2+η2 0

0 η
(E+ε)2+η2

�

tanh
�

E

2kB T

�

(4.100)

4.5 Derivation of the self energies

Now that we have expressions for the lead Green functions, we are fully equipped to derive the expres-
sions of the self-energies. Using that the lead Green functions are diagonal in the basis formed by the
eigenvectors of the leads. The expression 4.38 is simplified to:

ħhΣR/A/K
l =

∑

α

T †
α,l (t )g

R/A/K
(α,l ),(α,l )(t , t ′)Tα,l (t

′) , (4.101)

4.5.1 Metallic leads

For metallic leads, the tunnel coupling and the Green function commute, hence the phase difference is
cancelled in the retarded and advanced self-energies. Removing for a moment the Nambu space, we have

ħhΣR/A
l ,s (t , t ′) =

∑

α

t ∗α,l (t )tα,l (t
′)g R/A
α,l ,s (t − t ′) (4.102)

= ∓iπ
∑

α

|tα,l |2δ(t − t ′) (4.103)

where s refer to the spin degree of freedom. The functions γl (t , t ′) characterize the interaction

ħhγl (t , t ′) = π
∑

α

t ∗α,l (t )tα,l (t
′), (4.104)

= π
∑

α

|tα,l |2e i
φl (t )−φl (t

′)
2 , (4.105)

It thus appears that the coupling strength between the lead l and the dot is fully determined by |γl |

ΣR/A
l ,s (t , t ′) =∓i |γl |δ(t − t ′) (4.106)

A similar derivation provides the expression of the Keldysh Green function

ΣK
l ,σ =−2iγl (t , t ′)

ˆ ∞
−∞

tanh
�

E

2kB T

�

e −i E (t−t ′)
ħh

dE

2πħh
(4.107)

When the Fermi levels of the different leads are constants, γl depends only on the time difference γ(t , t ′) =
γ(t − t ′), i.e. it is stationary. Which implies that the all the self-energies are also stationary. Thus, in the
steady state, the quantum dot is characterized by stationary Green functions.
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4.5.2 Superconducting leads

As the tunnelling matrix does not commute with the Green function for non-zero order parameter, we
cannot regroup the phase terms

ΣR/A
l (t , t ′) =−|γl |

ˆ ∞
−∞

d E

2πħh
e −iσz

φl (t )−φl (t
′)

2 (E +0±)+∆σx e −iσz
φl (t )+φl (t

′)
2

p

∆2− (E +0±)2
e −

i E (t−t ′)
ħh (4.108)

The same problem persists for the kinetic component:

ΣK
l =−2i |γl |

ˆ ∞
−∞

Im

�

(E +0±)
p

∆2− (E +0±)2

�

e −iσz
φl (t )−φl (t

′)
2 tanh

�

E

2kB T

�

e −i E (t−t ′)
ħh

d E

2πħh

−2i |γl |
ˆ ∞
−∞

Im

�

∆σx
p

∆2− (E +0±)2

�

e −iσz
φl (t )+φl (t

′)
2 tanh

�

E

2kB T

�

e −i E (t−t ′)
ħh

d E

2πħh

(4.109)

Thereby, when there are several superconducting leads in the system, even a constant voltage bias in-
duces a non-stationary steady state, which is at the origin of the AC Josephson effect. This encourages us
to develop a new method to solve the out-of-equilibrium equation, that exploits modern matrix compres-
sion methods initially developed for electrodynamics and classical many-body problems. In the following
chapter we review the classical methods and then introduce the new algorithm.
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CHAPTER 5
Solving the Dyson equations

The previous chapter lays down the physical model of the junction, and lefts us a set of out-of-equilibrium
Dyson equations. At this point, one might expect to find in the literature well established and relatively
efficient methods to solve it, but the bibliography on this subject is surprisingly shallow especially for
the general out-of-equilibrium regime. However, we shall review the classical methods, and discuss their
strength and weakness. To this end, we first introduce some notions of algorithmic complexity, remind a
few things about numerical linear algebra and quadrature methods. Then we turn to the common meth-
ods presented in the literature. We will start with the algorithm for stationary problems, then look at the
computation of the steady state of periodically driven systems by use of the Floquet theorem, to finally
describe a general approach in the time domain.

5.1 Numerical analysis survival guide

Before discussing different strategies to solve the Dyson equations, we shall briefly review some aspects
of computer science. For a general introduction to the algorithmic see Ref. [58], and for the more specific
field of numerical analysis one may have a look to Ref. [59].

5.1.1 Complexity analysis

The computational complexity of an algorithm is the amount of time, space or any other relevant resource
required to perform it. While it is often expressed as a function f of a single parameter n which charac-
terised the problem size, it may depend on other parameters. Some of them might be unknown before
the execution of the algorithm. Hence, depending on the scenario, one may consider the averaged or the
worst case complexity for a fixed n . While the exact complexity depends on the specific implementa-
tion, it is generally accepted that the complexities of two reasonable implementations of the same algo-
rithm shall not differ beyond a proportionality factor. Hence, we use the asymptotic notations: O and Θ.
f (n ) = O (g (n )) indicates that f is asymptotically bounded by g , id est there is a number N and a positive
constant C such that n > N ⇒ f (n ) ≤ C g (n ). While f (n ) = Θ(g (n )) indicates that f is bounded below
and above by g . More formally, there exists a constant N and two positives numbers C1 and C2 such that:
n >N ⇒ C1g (n )≤ f (n )≤ C2g (n ). One shall note that f = O (g ) is often used even though f =Θ(g ) would
also be true.
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5.1.2 Numerical linear algebra

The field of numerical linear algebra is an essential part of the scientific computing theory and practice.
It describes how to perform efficiently matrix algebra operations, while minimizing the errors introduced
by floating points representation of numbers. The adapted algorithm to a particular operation depends
on the properties of matrices at hand.

Dense and sparse matrices

A first possible classification can be to the separation of dense and sparse matrices. A matrix is
said to be dense when a significant part of its entries are non-zero, and we do not suppose any particular
structure in its coefficients. By contrast, a matrix is sparse when most of its entries are zeros. One may ask
what is a "significant part". Essentially, a matrix is dense when there is no clear benefits in using sparse
matrix framework over dense matrix routines. For sake of clarity, let’s consider the product of a m × n
matrix A by a vector x , the complexity of the corresponding dense algebra routine is Θ(mn 2). While in
the case where A is a sparse matrix with on average k non-zero elements per row, the complexity is only
O (k mn ), and the memory usage is reduced fromΘ(mn ) toΘ(k m ). Yet the discarded prefactors are usually
much larger for sparse routines, thus the sparse routines are more efficient than the dense one only when
k � n . Large sparse linear equations appear in numerous fields, notably as the results of the discretization
of partial differential equations. Therefore, intense efforts have been devoted to develop efficient tools to
solve such systems like PARDISO [60–62], MUMPS [63, 64] or Sparse Suite [65–67]. As a side note, in many
numerical analysis textbook, the resolution of Ax = b by inverting the matrix A is discouraged. It is rather
advised to directly compute the solution x by direct methods. Hence, a specific notation exists: x = A\b
that designates the division of b by A on the left.

BLAS and LAPACK

The Basic Linear Algebra Subprogram (BLAS) and the Linear Algebra Package (LAPACK) were orig-
inally libraries to perform elementary matrix algebra operations and solve linear equations. They have
evolved into informal specifications for a set of routines to perform numerical linear algebra operations.
Modern implementations of these specifications are extremely optimized codes. While efficient open-
source implementations exist, most hardware vendors provide libraries specifically tuned for their prod-
ucts. Plus, some BLAS and LAPACK implementations are designed to leverage specialized hardwares such
as graphical processing units (GPUs) or digital signal processors (DSPs). When performing linear algebra
operations in Python with Scipy and Numpy, in Matlab, or in Julia, we are using these libraries through
a convenient abstraction layer. As a rule of thumb, we should recast our algorithms in terms of matrix
operations, to benefit from these optimized codes, even in case where it slightly increases the theoretical
complexity.

5.1.3 Order of convergence

Let’s consider a converging sequence un in a space equipped with a norm. We then borrow the definition

of the index of convergence from Ref. [68].

Algrebraic index of convergence The algebraic index of convergence or convergence order µ of the

sequence un is the largest integer k such that

lim
n→∞

‖un −u∞‖n k <∞. (5.1)
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Spectral convergence A sequence is said to have a infinite order, exponential or spectral convergence

when the algebraic index of convergence is infinite, that is

∀k ∈N, lim
n→∞

‖un −u∞‖n k = 0. (5.2)

To compare spectrally convergent sequences, an exponential index of convergence can be defined
(see Ref. [68]). In the following, the convergence index will be used to describe how different discretization
schemes converge to an exact solution. But we should keep in mind that it is an asymptotic property. Let’s
consider the following problem: we want to solve a functional equationL ( f ) = 0 of unknown f, whereL
is some functional that defines the equation. A usual approach is to first discretize the equation in a space
of dimension N , and solve this new equation. A criterion to select a discretization scheme is the value of
N required to achieve a certain accuracy. For this purpose, the index of convergence can be misleading;
meaning that it only describes how fast the errors decrease once the asymptotic regime is reached. Let’s
say that we need to choose between two discretizations, one of order two and a spectral one. They start
to converge when N ¦ N2 and N ¦ N∞ respectively. If N2 ¦ N∞, the spectral method wins, but when
N2�N∞, the order two method will be more efficient to provide a low accuracy solution.

5.1.4 Quadrature methods

Quadrature rules, i.e. numerical integrations, are a rather broad topic, especially if we consider the prob-
lem arising in large dimensions and the infamous curse of dimensionality. Here we shall focus on a few
results for 1-dimensional quadrature rules that sample the integrand at equidistant points. This last con-
straint prevents the use of efficient high order rules such as Gauss-Legendre 1. In this section, we consider
a sequence of equidistant points x0, x1, ..., xN spaced by a constant step h , and a smooth enough function
f . The problem at hands, is to approximate an integral by a sum

ˆ xp

xq

f (x )dx ≈
p
∑

k=q

wq ,k ,p f (xi ). (5.3)

On a uniform mesh, specifying a quadrature amount to provide the coefficients wq ,i ,p .

Order of a quadrature method The order d of a quadrature method is the largest integer such that the

quadrature provides the exact result for polynomials of degree n ≤ d .

Generally, the order of a quadrature rule does not coincide with its order of convergence, but it may

provide a rough estimate when the integrand can be reasonably approximated by a polynomial of degree

that matches the method order.

Composite quadrature rules A composite quadrature rule is formed by dividing the integration do-

main into subdomains where the integral is evaluated by another quadrature rule.

1High order stable rules on equidistant grid do exist, but they usually require much more points than the classical high order
quadratures [69].
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In this chapter, we shall limit ourselves with the glorious trapezoidal rule and the slightly exotic
Gregory quadrature. We will not discuss the family of notorious Newton-Cotes rules that are present in
most textbooks about numerical analysis, as they are unstable beyond first orders and do not possess the
regularity that we will be seeking in the following chapters.

Trapezoidal rule

The trapezoidal rule is a quadrature that approximates the integrand by an affine function, thus its
order is one ˆ xp+1

xp

f (x )dx =
h f (xp )

2
+

h f (xp+1)

2
+o (h 2), (5.4)

applying this rule on each subsegment, we get

ˆ xq

xp

f (x )dx =
h f (xp )

2
+

h f (xq )

2
+

q−1
∑

i=p+1

h f (xi )+o (h 2). (5.5)

In the following, we refer to this composite rule simply as the trapezoidal quadrature. This quadrature is
extremely important for a few reasons. First, when the integrand is not smooth, this quadrature is difficult
to beat, and it is easy to implement. Second, the approximation error is in even power of h , it may be
shown using the Euler-Maclaurin summation formula [59]

ˆ xq

xp

f (x )dx =
h f (xp )

2
+

h f (xq )

2
+

q−1
∑

i=p+1

h f (xi )−
k
∑

l=2

Bl h 2l

(2l )!
( f (2l−1)(xq )− f (2l−1)(xp ))−Rl , (5.6)

where Bn are the Bernoulli numbers and the rest Rk can be majored by

Rk ≤ h 2k B2k

(2k )!

ˆ xN

x0

| f (2k )(x )|dx . (5.7)

Hence, if one computes an approximation SN of the integral using N points and a second one S2N , a better
approximation can be built by combining the previous one

SN = S∞+
α

N 2
+
β

N 4
+O

�

1

N 6

�

, (5.8)

S2N = S∞+
α

4N 2
+

β

16N 4
+O

�

1

N 6

�

, (5.9)

4S2N −SN

3
= S∞−

β

4N 4
+O

�

1

N 6

�

, (5.10)

where α and β are constants independent of N . Hence, (4S2N −SN )/3 converges as h 4. This process is
called the Richardson acceleration and is particularly efficient with the trapezoidal rule as we increase by
two the convergence order at each iteration. The last point that makes this rule so special is its spectral
convergence for integration over the whole real line, or periodic integrand [70]. For instance, if we consider
the problem

S =
ˆ 2π

0
e cos(x )dx , (5.11)

≈
2π

N

�

e +
N−1
∑

i=1

e cos
�

i 2π
N

�

�

. (5.12)
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The approximation can be compared with the exact value of S

S = 2πI0(1), (5.13)

where I0 is the Bessel modified function of the first kind. Using the trapezoidal rule 5.12, an estimate of S
limited by 64-bits floats points accuracy is reached with only 16 mesh points as shown in fig. 5.1. While
it would require around 106 points to obtain the same accuracy with a cubic method. This suggests that
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Figure 5.1: Comparison of the trapezoidal rule exponential convergence rate to a cubic convergence rate.
On the left panel the horizontal axis is linear, while on the right panel it is in log scale. The spectral accu-
racy of the trapezoidal rule manifests itself on the left plot by the linear slope. The plateau in the errors
associated to the trapezoidal rule is due to the finite accuracy of the number representation, id est the
integral is accurate down to the machine precision.

most of the errors come from the edge of the integration domain. Several methods correct it, for instance
one may rewrite the Euler-Maclaurin formula 5.6 as

ˆ xN

x0

f (x )dx ≈
h f (x0)

2
+

h f (xN )
2

+
N−1
∑

i=1

h f (xi )−
k
∑

p=2

Bp h 2p

(2p )!
( f (2p−1)(xN )− f (2p−1)(x1)). (5.14)

The term of the above equation involving the endpoint derivatives is a correction to the trapezoidal rule.
Another quadrature derived by Gregory in the middle of the 16th century does not require the knowledge
of any function derivatives, and will be useful to provide a compact discretization of the Dyson equation
in the following chapter [71].

Gregory rules

The presentation of Gregory rules usually starts by introducing the finite difference operator∆ f (x ) =
f (x +h )− f (x ). We will consider its iterates

∆0 f (t ) = f (t ), (5.15)

∆1 f (t ) = f (t +h )− f (x ), (5.16)

∆2 f (t ) = f (t +2h )−2 f (t +h )+ f (t ). (5.17)
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k 0 1 2 3 4 5 6

dk − 1
2

1
12 − 1

24
19

720 − 3
160

863
60480 − 275

24192

Table 5.1: Coefficient of the traditional Gregory quadrature

In the above formula, the coefficients of successive lines form the Pascal triangle. The Gregory rules for a
semi-infinite interval with ng +1 correction writes as

ˆ ∞
x0

f (t )dt ≈ h
∞
∑

k=0

f (tk )+h

ng
∑

k=0

dk∆
k f (t0), (5.18)

where the first coefficients dk are tabulated in table 5.1. The rule is extended to a finite interval by replicat-
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Figure 5.2: Benchmark of the Gregory rule of order six and the trapezoidal rule on the test problem´∞
0 e −t dt = 1.

ing the correction on the other side of the domain. For clarity, we introduce the reversed finite difference
operator ∆̃ f (t ) = f (t −h )− f (t ). The integral can then be approximated by

ˆ tn

x0

f (t )dt ≈ h
∞
∑

k=0

f (tk )+h

ng
∑

k=0

dk∆
k f (t0)+h

ng
∑

k=0

dk ∆̃
k f (tn ). (5.19)

By expanding the correction terms for a given value of p , this quadrature can be rewritten under the form
of eq. 5.3 ˆ tp

tq

f (t )dx ≈
q
∑

k=p

`
(ng )
p ,k ,q f (tk ). (5.20)

Fig. 5.2 compares the order 6 Gregory rule to the classical trapezoidal method. At large orders, the coeffi-
cient amplitudes are large, oscillating and some of them are negative. This may induce instabilities. Yet,
it is worthy to note that some improvement over the classical rule can reduce this phenomenon [71]. And
following the approach of Ref. [71]we may extend the historical Gregory rule to deal with edges singular-
ities.

Now that the relevant notions of numerical analysis have been introduced, we can turn to the review
of the classical numerical methods to solve the Dyson equations.
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5.2. Steady state regime

5.2 Steady state regime

Once the steady state is reached , most systems are expected to present some sort of invariance under
time translation. These symmetries in time can be used to solve the Dyson equations in the frequency
domain.

5.2.1 Stationary steady state

Even in the out-of-equilibrium regime, the correlation function might be stationary, meaning that they
can be written as g (t , t ′) = g (t − t ′). By Fourier transforming g (t ), we get g (ω). Then, using the following
classical Fourier analysis result

F
§
ˆ ∞
−∞

dt1A(t − t1)B (t1)
ª

=F {A}F {B } , (5.21)

whereF is the Fourier transform operator, A and B are functions. We can then rewrite the integral equa-
tion as

G (ω) =G (ω)+ g (ω)Σ(ω)g (ω). (5.22)

It can be solved independently at each energy by formally inverting the Dyson equation

G (ω) =
�

1− g (ω)Σ(ω)
�−1

g (ω). (5.23)

Hence, when the self-energy Σ is known, only a relatively small equation per energy must be solved. For
a system with m orbital states, the computational cost of solving the equation at a givenω scales at worst
as O (m 3) in time and the computation requires a memory space of size O (m 2). Hence, to solve the equa-
tion at n energies, the total cost is O (nm 3) in time and O (nm 2) in memory. Yet, in many approximation
schemes [72] that attempt to describe the effects of interactions, the self-energy and higher order corre-
lation functions depend on the dressed Green function, as in the mean field approximation of the BCS
theory. Hence the Dyson equation takes the following form

G (ω) = g (ω)+ g (ω)Σ [G ] (ω)G (ω). (5.24)

This is a non-linear equation in G that must be solved at all energies at once. The Green function energy
spectrum being typically spread over several orders of magnitude, naive approaches to solve the above
equation are restricted to small or well-behaved systems. This is still motivating new research [30, 72].
As we have seen in the previous chapter, these methods are not directly applicable to our problem, even
when we apply a constant bias across the junction as the self-energies induced by the superconducting
leads are not stationary.

5.2.2 Periodic steady state

By the use of the Floquet theorem [73] , the Fourier representation can be extended to an out-of-equilibrium
system driven by a periodic perturbation.

Floquet Theorem Considering a T -periodic piecewise continuous function A(t ) and the following lin-

ear equation
dx (t )

dt
= A(t )x (t ), (5.25)

there is a matrix B and a matrix valued function P (t ) such that a fundamental matrix solution Φ(t )
written as

Φ(t ) = P (t )e t B . (5.26)

85



CHAPTER 5. Solving the Dyson equations

This result is similar to the Bloch theorem that predicts the existence of band structures in a spatially
periodic system. Both of them allow to block diagonalize a periodic Hamiltonian.

Floquet Hamiltonian

Let’s derive the Floquet representation of the periodic Schrödinger equation following the reference
[74]. We start by the usual equation

iħh
d

dt
ψ(t ) =H (t )ψ(t ). (5.27)

When the Hamiltonian is P -periodic, the Floquet theorem suggests to look for solutions of the form

ψα(t ) = e −iεαt /ħh uα(t ) (5.28)

with uα(t ) a P -periodic function, which can be Fourier transformed as

uα(t ) =
+∞
∑

n=−∞
u n
α e −i nΩt , (5.29)

where Ω is the fundamental pulsation: Ω = 2π
P . Plugging this expression in the Schrödinger equation

eq. (5.27) , one get
+∞
∑

m=−∞
(εα+mħhΩt )u m

α =H (t )φα(t ). (5.30)

This suggests that we shall define

Hmn ≡
1

P

ˆ P /2

−P /2
dt H (t )e i (m−n )Ωt , (5.31)

Injecting eq. (5.31) in eq. (5.29), we get the Floquet representation of the Schrödinger equation

∞
∑

n=−∞
Hmn u n

α = (εα+mħhΩ)u m
α . (5.32)

We end up with an equation similar to the stationary Schrödinger equation, except that the energy is con-
served up to an integer multiple of ħhΩ. (εα+mħhΩ) is called the quasi-energy. Hmn is the coupling between
the Floquet modes m and n . One can compare this situation to the diffusion of a wave by a periodic
medium: when a focused beam of electron is shone on a crystal, the electronic wave vector is not con-
served, yet only some directions of diffraction are authorized.

Floquet Green function

While the Green functions associated to a Floquet Hamiltonian are not stationary, one can show
[75–77] that they present a discrete time translation invariance which is made explicit by introducing the
average of time T = (t + t ′)/2 and the time difference τ= t − t ′, so that a Green function can be written as

G (T ,τ) =G (T +τ/2, T −τ/2). (5.33)

When the Green function is associated to a Floquet Hamiltonian, it is periodic in T . Hence, we may de-
velop G (T ,τ) as a Fourier series in T and take the Fourier transform on τ. This leads to

Gn (ω) =
1

P

ˆ P /2

−p/2
dT

ˆ ∞
−∞

dτe i (ωτ−ΩmT )G (T ,τ). (5.34)

86



5.2. Steady state regime

This is the so-called Wigner representation of the kernel G (t , t ′). We then derive the Floquet representation
Gmn (ω), withω restricted to the first Brillouin zone (−Ω/2<ω≤Ω/2)

Gmn (ω)≡Gm−n

�

ω+
m +n

2
Ω
�

. (5.35)

Within this formalism, kernel products can be recast as matrix products

C (t , t ′) =
ˆ

dt1A(t , t1)B (t1, t ′) (5.36)

⇔Cnm (ω) =
∞
∑

p=−∞
Anp (ω)Bp m (ω) (5.37)

Hence in the Floquet representation, the elements Gnm (ω) are the coupling of the Floquet mode n to the
mode m of quasi-energyω. For a stationary correlation function A(τ), one has

Amn (ω) =δm ,n A(ω+mΩ), (5.38)

where the choice of Ω is arbitrary. The Dyson equation for the Floquet Green function is immediately
deduced from section 4.3 in the real-time representation

GF (ω) = gF (ω)+ gF (ω)ΣF (ω)GF (ω), (5.39)

where gF (ω),ΣF (ω) and GF (ω) are the Floquet matrices of the corresponding correlation functions in the
real-time Keldysh formalism. For each value of ω, these matrices are infinite. To numerically solve this
problem, an energy cut-off Ec larger that all the relevant energies of the system is usually included [54, 77].
The size N of Floquet matrices thus scales as N ∝ Ec /ħhΩ. Solving the Dyson equation at a pulsation ω
by standard methods thus costs O (N 3) operations and the required memory scales as O (N 2). Theω-axis
must also be discretized. The required number of points M depends on the typical feature sizeω0�Ω. A
conservative estimate would be M ∼Ω/ω0. Hence, the overall time complexity is O

�

E 3
c /ħh

3ω0Ω
2
�

and the
required memory evolves as O (E 2

c /ω0ħhΩ). For instance, if we consider a Josephson junction formed by a
quantum point contact biased by a small constant voltage V � ∆, where ∆ is the superconducting gap.
The pulsation Ω coincides with the Josephson frequencyωJ = 2e V /ħh . Hence, as we decrease the applied
bias, the computational cost increases as 1/V 2 if the feature width is independent of the bias. However,
in the Markov model, the equation 3.57 suggests that in highly transparent junctions, narrow structure of
width γ appears in the spectrum with

γ=
ωJ

π
exp

�

−
π
Æ

1−T 2
π∆

e V

�

, (5.40)

where Tπ is the junction transparency. This sharp feature may increase largely the solving cost at low ac-
curacy. Thus, the computational cost associated to the Floquet method can grow quickly when the system
spectrum contains sharp resonances or several distant energy scales. Plus, as for the stationary method,
the Fourier transform given by eq. (5.34) typically converges slowly due to a lack of regularity of the real-
time Green function. This might represent a serious difficulty to solve the Dyson equation in interacting
systems where the self-energy is approximated by a functional that depends on the full Green function.
A natural cure is to renounce to solve numerically the Dyson equation in a Fourier representation, and
use more adapted representations [72, 78, 79]. Plus, these frequency domain methods are not able to
capture the general transient regime. This unconstrained out-of-equilibrium dynamics is more naturally
described in the time domain. Hence, the last part of this chapter is dedicated to the exposition of the
classical time domain strategy.

87



CHAPTER 5. Solving the Dyson equations

5.3 Transient regimes

In the transient regime, the absence of strong time invariance asks for resolution of the equations in the
time domain. A rather naive yet instructive method is to construct a matrix representation of the integral
operators appearing in the Dyson equations. And then rewrite the Dyson equation as matrices equations.

5.3.1 Nyström discretization

Let’s consider a uniform discretization of the time axis of step-size h with N steps on each direction, and
a bijection I from {1, 2...N }2 to

�

1, 2...N 2
	

. Let’s suppose that the orbital part, id est all non-temporal
indices except the Keldysh ones, of correlation functions are discretized into M 2 degrees of freedom. A
kernel fx ,x ′ (t , t ′) is then represented as a matrix f of size N 2M ×M organized by blocks of size M ×M . The
I (p , q )-th block represents the correlations between time tp and tq :

fI (p ,q ) ≡D f (tp , tq ), (5.41)

whereD is the operator that discretize the orbital part. In the following, we suppose thatD is a morphism
for the common operations on a vectorial space, up to the errors caused by discretization

D
�

f (t , t1)g (t1, t ′)
	

≈ D
�

f (t , t1)
	

D
�

g (t1, t ′)
	

, (5.42)

D
�

λ f (t , t ′)+ g (t , t ′)
	

≈ λD
�

f (t , t ′)
	

+D
�

g (t , t ′)
	

, (5.43)

with λ a scalar and g another correlation function. Hereafter, the orbital discretization operations will
always be kept implicit. Introducing a set of quadrature rules wp ,k ,q , the integrals are discretized according
to ˆ tβ

tα

K (tp , t1) f (t1, tq )dt1 ≈ h
∑

k

wα,k ,βK (tp , tk ) f (tk , tq ). (5.44)

This is the so called Nyström discretization [80], it permits to discretize the different integral operators
which associate a function f with the map (t , t ′) →

´
K (t , t1) f (t1, t ′)dt1. We start by the operators ap-

pearing in the retarded Dyson equation, to which we refer as Volterra operators parametrized by the kernel
K and write its discretized matrix representation as V[K ]. Its action is discretized following

ˆ

tp>t1>tq

K (tp , t1) f (t1, tq )dt1 ≈ h
∑

k

wp ,k ,q K (tp , tk ) f (tk , tq ). (5.45)

The reader may notice here a first problem caused by the Nyström approach, when K and f are retarded
correlation functions, i.e. when

K (t , t ′) = Θ(t − t ′)K (t , t ′), (5.46)

f (t , t ′) = Θ(t − t ′) f (t , t ′), (5.47)

the eq. (5.45) rewrites as:
ˆ

tp>t1>tq

K (tp , t1) f (t1, tq )dt1 ≈ h
∑

k

wq ,k ,p K (tp , tk ) f (tk , tq )Θ(tp − tk )Θ(tk − tq ), (5.48)

≈ h
p
∑

k=q

wq ,k ,p K (tp , tk ) f (tk , tq ). (5.49)

Thus only (q − p + 1) points are naively available to evaluate the integral from time tq to tp . While to
ensure a certain convergence rate α of the discrete approximation, we would like to use quadratures of at
least order (α− 1). Such quadratures usually require at least α points. Thus, we are limited to the use of
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order 1 quadratures. This issue can be solved by different tricks such as the one proposed in [81] where
an analytic continuation of the retarded correlation function is used. For the moment, we will simply
suppose that either we are using the trapezoidal rule that is of order 1, or that the correlation functions
have been smoothly extended. Thus, the action of V[k ] on a vector f is defined as

V[K ]f =

�

∑

l

wp (l ),l ,q (l )KI (p (l ),l )fI (l ,q (p ))

�

m

, (5.50)

=





∑

l |p (l )=p (m )

wp (m ),q (l ),q (m )KI (p (m ),q (l ))fl





m

, (5.51)

where
�

p (l ), q (l )
�

= I −1(l ). To rewrite the above relation as a matrix product, we introduce the following
sets of indices

I (:, q )≡
�

m |∃p (p , q ) =I −1(m )
	

, (5.52)

and their indicating functions

χ(:,p )(m ) =

�

1 if m ∈ I (:, p )
0 otherwise

. (5.53)

Thus, the general form of the matrix V[K ]writes as

V[K ] =
�

wp (m ),p (l ),q (m )χ(:,q (m ))(l )kI (p (m ),q (l ))
�

m ,l
(5.54)

The resulting discretization of the Volterra operator V[k ] is of size N 2×N 2, but on each line, at most N ele-
ments are non zeros. Hence, the number of non-zero elements is lesser than N 3. It turns out that V[K ] is a
sparse matrix. For simplicity, we consider the case where both the self energy and the bare retarded Green
function do not contain Dirac singularities. Hence, we are left with the usual retarded Dyson equation

G R (t , t ′) = g R (t , t ′)+
ˆ

t>t1>t ′

F R (t , t1)G
R (t1, t ′)dt1, (5.55)

where F R = g RΣR . The solution of the retarded Dyson equation can thus be written as

GR =
�

1−V[F R ]
�

\gR (5.56)

The exact solving cost of this equation depends on the specific method used and the structure of the ma-
trix. But, as we are explicitly storing the solution at each time point, the time and memory complexity
cannot be lower thatΘ(N 2) as it requires at least one operation per point. Usual direct sparse solver would
require to store all the non-zero elements of the matrix resulting in a minimal time and space complexity
of Θ(N 3). Considering the indexing defined by the following relation

I (i , j )≡ ( j −1)N + i , (5.57)

the matrix
�

1−V[F R ]
�

is block diagonal, and each block is almost triangular of size M N ×M N . Thus, the
eq. (5.56) can be solved block by block. Solving each quasi-triangular equation costs O (N 2) operations,
thus the total solving cost is O (N 3) in time. This estimate match the results of the numerical experiment
illustrated in fig. 5.3 that solves the equation by forming the sparse matrices in memory and solve the
linear system by using the direct sparse solver provided by the Julia SparseArray library. This results in
an O (N 3)memory complexity. Once the retarded Green function is known, the direct use of quadrature
formula of the kind of 5.44 combined with expression 4.77c provides the kinetic Green function in Θ(N 3)
operation while requiring Θ(N 2) bytes of memory. Hence, the whole resolution procedure scales at best
asΘ(N 3) in time and O (N 2) in memory, when solving the equation for the retarded Dyson equation block
by block. But parallelizing this approach by solving several blocks at once and thus exploiting modern
computing architecture requires storing several blocks simultaneously in memory, and thus it increases
the space consumption to O (d N 2), where d is the number of blocks solved at once. The time stepping
method prevents this as presented in the next section.

89



CHAPTER 5. Solving the Dyson equations

101.5 101.8

10−1

100

N

R
un

tim
e

in
m

s
runtime

N3

101.5 101.8

105

106

N
U

se
d

sp
ac

e
in

by
te

s

used space
N3

Figure 5.3: Experimental time and space complexity for the resolution of the retarded Dyson equation
by direct resolution using sparse solver. The scaling is linear with the number of non-zero elements in
matrix.

5.3.2 Time stepping method

For each value of t ′, the retarded Dyson equation is a linear integral Volterra equation of the second kind
[59], id est an equation of the form

f (t ) = s (t )+
ˆ t

k (t , t1) f (t1)dt1, (5.58)

where k (t , t ′) and s (t ) are functions defining the problem and f (t ) is the unknown. This kind of problem
arises in numerous fields such as finance [82], physics [83, 84] or biology [85]. Some efforts are still ded-
icated to the development of efficient and general methods [78, 86–88]. Yet, the classical algorithm [59]
is relatively efficient and simple to implement. It amounts to first discretize the integral by the Nyström
method, and then exploit the causal structure of the equation to solve it by a time stepping approach.
The very same approach can be applied to the resolution of the retarded Dyson [81]. Let’s consider the
discretization of the retarded Dyson equation on a uniform grid of step size h with the quadrature rules
wq ,k ,p , such that

G R (tp , tq ) = g R (tp , tq )+h
∑

k≤p

wq ,k ,p F R (tp , tk )G
R (tk , tq ). (5.59)

We may rewrite this equation as

G R (tp , tq ) =
�

1−h wp ,p ,q F (tp , tp )
�

\

(

g R (tp , tq )+
∑

k<p

ωq ,k ,p F R (tp , tk )G (tk , tq )

)

. (5.60)

Hence, once G R (tk<p , tq ) is known, we can compute G R (tp , tq ). The average number of operations re-
quired to perform a time step for a couple (p , q ) is O (N ) as we need to compute the history sum. So the
average cost of a time step for all the values of q at a fixed p isO (N 2). Hence, the total cost isO (N 3) in time.
While its memory complexity is only O (N 2). This method is equivalent to solving one Volterra equation
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per value of q . This algorithm can be parallelized on a cluster [89]. In our own experience when working
on a single node, i.e. on a laptop, the history summations can be efficiently implemented by recasting
them as linear algebra operations. Thus, the parallelization is delegated to the highly optimized BLAS.

Conclusion

The naive time stepping method was until Fall 2020 the only published method at our knowledge to solve
the general out-of-equilibrium Dyson equations. Therefore, both its memory and time complexity were
prohibitive to solve the trajectories of even small systems on long times. As we will see in the following
chapter, both time and memory usage can be greatly reduced by use of compression techniques. The first
step is due to Ref. [30]. They were able to reduce months of computation effort to a day. We will go a step
further and reduce even more the cost of solving the Dyson equations.
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CHAPTER 6
Solving the Dyson equation using

compression techniques
“On n'est jamais mieux servi que par soi-même”

— Charles-Guillaume Étienne, Bruis et Palaprat

In the previous chapter, we reviewed the usual methods to solve the Dyson equation. All of them have
strong limitations: the Fourier representation requires some invariance by time translation and converged
slowly towards the exact solution. While the more general time stepping method partially solves those
issues, its complexity remains prohibitive for long times simulations. This last approach treats the Dyson
equation as a large set of independent Volterra equations and solves them separately. Solving a unique
Volterra equation is already a costly process as for evaluating each new time step, we have to recompute the
whole history sum and by solving each of them independently we do not exploit their similarities to reduce
the total complexity. Without any assumption on the aspect of the discrete problem, we cannot expect
to do much better. However, it arises from the discretization of a continuous linear integral equation
describing a physical system. Hence, it should present some structure that could be leveraged to reduce
the solving cost in both memory and time. We begin this chapter by describing how to convert a certain
class of integral equations into ordinary differential equations, thus removing the burden of the history
sum. This will provide some insight about the kind of regularities that actually matter, and suggest storing
the correlation functions as recursively semi-separable matrices. Then we introduce the hierarchically
semi separable matrix (HSS) [90–93] as a method to efficiently represent the correlation matrices. To fully
exploit this tool, we reformulate the Dyson equation discretized by the Nyström method into a compact
matrix equation. The chapter concludes with some numerical benchmarks.

6.1 The intuition

My work on time domain numerical methods for the resolution of the Dyson equation started in Sum-
mer 2020, when I needed to solve it in the out-of-equilibrium regime. By this time the paper [30] was
still unpublished, and the literature on this topic was rather thin. This deceived me into believing that
the problem was too trivial to deserve any publications. Thus, I got my pen and I tried to cobble a solver
together. It quickly became clear that the problem was still open and I got pretty interested in it. I tried
various approaches with moderate success until I stepped on the theory of holonomic or D-finite func-
tions.
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6.1.1 D-finite functions

D-finite functions A function f (x ) is D-finite or holonomic if it exists an integer n, and a set of poly-

nomial function ak (x ) such that
n
∑

k=0

ak (x )
dk f (x )

dx k
= 0. (6.1)

Such a differential operatorL is called an annihilator of f .

While the theory of holonomic functions is far out of the scope of this manuscript, it is not out of reach of
the interested physicists, see [94, 95]. The set of holonomic functions D is extremely large, it includes all
the rational fractions and all the holomorphic functions. Yet, not all common functions are holonomic.
For instance, 1/cos is not a holonomic function as any element of D has a finite number of poles in the
complex plan. A holonomic function f can be represented by an annihilatorL f combined with a set of
initial conditions. Operations on elements ofD can be often recast as operations on the annihilators and
initial conditions. Hence, the theory of holonomic functions provides a very elegant way to exactly repre-
sent a wide class of functions with a finite set of numbers, and therefore to recast functional equations into
discrete equations. Could we represent the solution of the Dyson equation as a linear differential equation
under some mild assumptions and thus avoid the evaluation of the history sums ? For the particular case
of the retarded Dyson equation, the answer to this question is definitely yes as we are about to show.

6.1.2 Converting the integral equation to an differential equation

For clarity, we will suppose that all the functions appearing in this subsection are smooth enough so all
the transformations are well-defined. For a function of two variables A(t , t ′), we define

∂p ,q A(t , t ′)≡
d p+q A(t , t ′)

d t p d t ′q
. (6.2)

Here we consider the following Volterra equation

G R (t , t ′) = g R (t , t ′)+
ˆ t

t ′
F (t , t1)G (t1, t ′)dt1. (6.3)

By differentiating the above equation with respect to t we get the relation

∂1,0G R (t , t ′) = ∂1,0g R + F R (t , t )G R (t , t ′)+
ˆ t

t ′
∂1,0F (t , t1)G (t1, t ′)dt1. (6.4)

Taking successive derivatives, we obtain a family of integro-differential equation of the form

∂k ,0G R (t , t ′) =
ˆ t

t ′
∂k ,0F (t , t1)G (t1, t ′)dt1+Rk [F

R , g R ]G R , (6.5)

where Rk [F R , g R ] is a differential operator. It admits a closed form, but its expression is of no use here. One
might simply dismiss high order derivatives to obtain an approximate equation for the Green function. We
will rather suppose that the kernel F (t , t ′) satisfies a linear differential equation of the form

k
∑

p=0

cp (t )∂p ,0F (t , t ′) = 0. (6.6)
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6.1. The intuition

We callL the corresponding differential operator. If we restrict the coefficients cp (t ) to be polynomials,
the function t → f (t , t ′) belongs to the set of holonomic functions. When its exists, the determination
ofL can be recast as a linear-algebra problem [94, 95]. Applying this operator on both sides of equation
4.77a, we get a linear differential equation for G R

k
∑

p=1

cp (t )
�

R j [F
R , g R ]− ∂ j ,0

	

G R (t , t ′) = 0, (6.7)

where R j is a differential operator parametrized by F R , g R . Hence, we manage to transform the integral
equation into a differential equation. The initial conditions are provided by taking the limit t → t ′ in
eq. 6.5. The degree k of the resultant differential equation might be large, or the equation could contain
sources of instability. Yet, we can still evaluate the asymptotic cost to solve it. Solving the differential
equation for a given value of t ′ over N time steps costs O (k 3N ), while solving the equivalent Volterra
equation by times stepping as describe in 5.3 cost O (N 2). For large values of N it is a neat improvement.
Second, as the differential equation does not depend on t ′, only the initial conditions do, we do not need
to solve the equation for each t ′. It is enough to compute k independent solutions (ep (t ))p=1...k . This can
be done in O (k 3N ). Hence, the retarded Green function can be written as

G R (t , t ′) =
k
∑

p=1

ap (t
′)ep (t ). (6.8)

Hence, we only need to store the value of ap (t ′) and ep (t ). ap (ti ) is computed by solving a linear equa-
tion of size∝ k , hence it costs O (k 3) per point. Assuming that we discretize the second time axis t ′ on
N points, computing both ap (t ′) and ep (t ) costs O (k 3N ), and requires O (N ) of memory space. As deter-
mining the differential equation satisfied by F (t , t ′) does not depend on N , the overall complexity of this
approach scales as O (N ). This is a significant improvement over the time stepping method described in
5.3. It economizes the cost of the history sums by only keeping tracks of the relevant information, i.e. the
derivatives. It also exploits the similarities between the correlation functions at different time arguments
to reduce the amount of information required to fully describe the solution. Yet, the specific form we as-
sume for the kernel is not general enough, and we did not propose a method for a fast evaluation of kernel
products. Elaborations over the kind of transformations we performe here may permit to overcome these
issues. But, it is October 2020, Jason Kaye and Denis Golež working at the Flatiron institute published on
arXiv [30]. They managed to improve the time stepping method to solve a slightly different version of the
out-of-equilibrium Dyson equation, namely the Kadanoff-Baym equation, by using onlyO

�

n log n
�

space

and O
�

n 2 log n
�

operations. Their essential idea was to use a matrix compression known as Hierarchical
Off Diagonal Low Rank (HODLR) matrices that enable them to speed up the evaluation of the history sum.

6.1.3 Matrix compression

The most general way to represent a matrix is to store all its entries. However, dense matrices arising

from the discretization of continuous equation often present a structure that reduces the amount of in-

formation required to describe it. Finite difference discretizations of partial differential equations produce

sparse matrices. Other scenarios lead to the formation of low-rank or approximately low rank matrices.

Low rank matrix A matrix M of size m×n is said to be low rank when it exists an integer r �min(n , m )
and two matrices U of size m × r and V of size r ×n, such that:

M =U V (6.9)
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Thus, it is more efficient to store and manipulate the factors U and V than the full matrix.

It turns out that a matrix can be dense and yet contains only a small quantity of information. These

matrices are called data-sparse. We can compress them as we would compress a picture, except that we

want to perform some algebraic operation on these compact representations. In quantum physics, the

most known format is probably the Matrix product states (MPS) and matrix product operator (MPO), which

are commonly used to efficiently represent the states and Hamiltonians of many-body problems. To be

of any use, the compression technics shall be adapted to the problem at hand. The HOLDR format used

in [30] is one of the numerous format designed to represent matrix whose diagonal blocks are all semi-

separable.

Semi-separable matrix A n ×n matrix M is said to be semi separable of semi separability rank r if it

satisfies the following conditions

rank(M [i : n , 1 : min(i + r −1, n )]) ≤ r ∀i ∈ {1, 2, ..., n},

rank(M [1 : min(i + r −1, n ), i : n ]) ≤ r ∀i ∈ {1, 2, ..., n}.

That is all the blocks extracted from either above the r -th super-diagonal or below the r -th sub-diagonal

have a rank smaller than r . A whole family of algorithms has been developed to exploit this structure

[96].

While the HOLDR format is commonly used to solve certain integral equations arising from elec-
trodynamics, [30] does not propose any explanation of the observed performance. Yet, in the situation
exposed in section 6.1.2, the retarded Green functions are the inverse of some differential operators. Upon
discretization by finite difference methods, these operators are band diagonal, thus their inverses, that is
the Green functions, are semi-separable [96]. Hence, the performance of HODLR-like format shall not be
a surprise. By providing a compact matrix formulation of the Nyström discretized Dyson equation, and by
doing a more efficient use of the inversion algorithms for compressed matrix, we reduce further the time
complexity from O

�

n 2 log n
�

to O
�

n log n
�

. While the HODLR format is very efficient, we will give a try to
the more sophisticated HSS format.

6.2 Hierarchically semi-separable matrix

The HSS format is traditionally used for integral equations on the plane. It is more involved than the
HODLR format, however it exhibits better asymptotic complexities. Yet, the main argument in favor of
this compression is the availability of an open-source implementation in Julia [97] that we adapted for
our needs, see [98]. While more mature implementations such as STRUMPACK [99] are available, their
integration within our library would have required much more work. The HSS format is a multilevel for-
mat. The stored matrix is divided into blocks which are recursively compressed. At each level the diagonal
blocks are supposed to be semi-separable. The interested reader may find the full details of algorithms
used in our application in [90–92]. In the following we mostly follow the description proposed by [90].
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6.2. Hierarchically semi-separable matrix

At each level k of the hierarchy, we divide the matrix into 2k row blocks and 2k column blocks of width
�

mk : j

	2k

j=1
. The mk : j form a set of partition of n , id est

∀k ,
2k
∑

j=1

mk : j = n . (6.10)

Intersection of the j -th row block and column block at level k defines the diagonal block matrix Dk : j . In
particular, D0:0 corresponds to the full matrix. They are factorized as follows

Dk−1: j =

�

Dk :2 j−1 Uk :2 j−1Bk :2 j−1,2 j V T
k :2 j

Uk :2 j Bk :2 j ,2 j−1V T
k :2 j−1 Dk :2 j .

�

(6.11)

As we expect the blocks Dk , j to be semi separable, the off-diagonal blocks should be low rank, i.e their
rank r should be much smaller that both their height mk :p and width mk :q . Hence, the singular value
decompositions theorem states that there are three matrices Uk :p , Bk :p ,q and Vk :s of size mk :p × r , r × r
and r ×mk :q ,respectively, such that the off-diagonal block at level k formed by the intersection of row
and column blocks k : p and k : q writes as Uk :p Bk :p ,q Vk :q . Storing explicitly these matrices rather than

the blocks would reduce the number of stored matrix entries from mk :p mk :q to r
�

mk :p + r +mk :q

�

, yet the
truncated change-of-basis matrices Uk :p and Vk :s are deduced from the next level matrices

Uk : j =

�

Uk+1:2 j−1Rk+1:2 j−1

Uk+1:2 j Rk+1:2 j

�

, Vk : j =

�

Vk+1:2 j−1Wk+1:2 j−1

Vk+1:2 j Wk+1:2 j ,

�

(6.12)

where Wk :s and Ri :s are the displacement operators. Except at the last compression level, only Bk :i , j , Wk :i

and Rk :i are stored.

HSS rank The HSS rank is the maximum rank of all the off diagonal blocks at all levels. A matrix in

HSS format is said to be compact if its HSS rank is small compared to its size, and all the generator R ,

W and B have size close to the HSS rank.

For matrices of size n ×n in HSS representation, a set of matrix algebra operations including inver-
sion, matrix multiplication and addition can be performed in linear complexity in both memory and time
with respect to n . At least if we suppose the HSS rank r to be independent of the size of the matrices at
hand. But first, we need to build the HSS representation of the matrices. The deterministic methods start-
ing from a plain matrix requires O (n 2r )memory and space and would be the computational bottleneck,
see [90]. Yet, faster algorithms exist for specific matrices [93]. In particular, several stochastic algorithms
have been developed to overcome this issue[91]. They only require a method to access matrix elements
and perform matrix vector products. It reaches a O (n r 2) time complexity when the matrix vector product
routine is O (n ) and the access to individual element is an O (1) operation. In the absence of fast matrix
vector product, the time complexity is quadratic in n but the memory use remains proportional to n .
This method is quite different from stochastic algorithm usually known by physicists, e.g. Monte-Carlo
integration, as the approximation error is very low with relatively few samples. However, there is a finite
probability of failure that is controlled by the user and can be made small enough for most applications.
We shall refrain ourselves from describing further these algorithms to save some place. We emphasize
that the method we propose does not depend critically on a specific compression method. It uniquely
supposes the existence of efficient algorithms for the compression and algebraic manipulations of the
matrices.
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One might be tempted to use the matrix compression wizardry to solve the equation 5.56. We re-
sisted to this temptation, but it shall result in O (N 2) in both memory and time, where N is the number
of time steps on each axis. In the following section, we propose a compact formulation of the discretized
Dyson equation, id est it only involves a few N ×N matrices which will permit to reduce further this com-
plexity.

6.3 Fast time domain solver

In the previous chapter, after using the Nyström method to discretize the equation, we obtain the matrix
equation 5.56 involving N 2×N 2 sparse matrices with O (N 3) non-zero entries, where N is the number of
time steps. Examination of the matrix expression 5.54 reveals that most of the coefficients are identical
from blocks to blocks up to a change of the quadrature weights. The time stepping prevents this mem-
ory waste and can be fastened by compression methods as done in [30], yet this requires to implement
efficiently non-standard linear algebra operations such as the low-rank update of compressed matrices.
Here, we propose a strategy to solve the retarded Dyson equation by performing only standard matrix op-
erations on N ×N size matrices, thereby we exploit the modern matrix compression methods. But first,
let’s compress the matrices.

6.3.1 Compression of the initial kernel

To perform HSS factorization of the initial Green functions g (t , t ′) and self energies Σ(t , t ′), we use the
stochastic HSS factorization algorithm [90]. To compress a matrix A of size N ×N , this method needs a
fast algorithm to multiply A by an arbitrary vector in O (n ) complexity, and constant time access to ele-
ments of A. It is usually easy to comply with this second constraint. For the first one, we have to exploit
matrix particularities. We mostly encounter one of the following situations, either the matrix A is sparse,
thus the problem is trivial, or A describes a stationary system, it is thus a Toplitz matrix. In this last sce-
nario, the matrix vector products implemented using the fast Fourier transform (FFT) reach a computa-
tion complexity of Θ(N log N ). Therefore, in both situation, the overall factorization complexity shall be
of O (N log N ), which is close to the optimal complexity that would be O (N ).

Before discussing the compact discretization itself, we need a last stop which is the boundary con-
ditions.

6.3.2 Boundary conditions

Strictly speaking the initial conditions are embedded in the Dyson equation. We don’t need to supplement
them with explicit conditions on the boundaries. Yet, as the kinetic correlation functions have a priori an
infinite support, the convolution products of the form AR B K or AK B R require performing an integration
on an infinite domain. To get rid of those issues, we suppose hereafter that the self energyΣ(t , t ′) is turned
on after the time t0, and eventually turned off at the end of the simulation time tend

∀(t , t ′) /∈ [t0, tend]
2 : Σ(t , t ′) = 0. (6.13)

Thus, the integrand of the relevant convolution products vanishes outside the simulation domain. In
particular, we have

�

AR B K
�

(t , t ′) =
ˆ t

t0

AR (t , t1)B
K (t1, t ′)dt1, (6.14)

�

AK B R
�

(t , t ′) =
ˆ t

t0

AK (t , t1)B
R (t1, t ′)dt1. (6.15)

One shall note that this constraint on the self-energy is not essential[30]. Yet, it simplifies the problem.
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6.3.3 Equation for the retarded Green function

First we evacuate the resolution of the instantaneous part of the Dyson equation eq. (4.80)

�G R (t ) = �g R (t )+ �g R (t )�ΣR (t )�G R (t ). (6.16)

This equation is diagonal in time. Thus, it can be solved over N time steps inO (N ) by solving the equation
independently at each time step. Let’s turn to the non-instantaneous equation. The Nyström discretiza-
tion of the equation 4.80b yields to the following set of equations for the retarded Dyson equation, where
we use the notation F ≡ gΣ as in chapter 4.

Ǧ R (tp , tq ) = š R (tp , tq )+ �F
R (tp )Ǧ

R (tp , tq )+h
p
∑

k=q

wq ,k ,p F̌ R (tp , tk )Ǧ
R (tk , tq ), (6.17)

where

š R = ǧ R + F̌ R �G R , (6.18)

with F R and G R being both causal, we can extend the summation index

Ǧ R (tp , tq ) = s R (tp , tq )+ �F
R (tp )Ǧ

R (tp , tq )+h
N
∑

k=0

wq ,k ,p F̌ R (tp , tk )Ǧ
R (tk , tq ). (6.19)

The weights wq ,k ,p depend on three indices, and thus prevent from direct rewriting of the above formula
as a N ×N matrix equation. Yet, proper selection and factorization of the quadrature can solve this issue.
For the moment let’s suppose that there exists a quadrature wq ,k ,p of orderα that requires p−q > d ,which
can be factorized as 1

wq ,k ,p = ap ,k bk ,q + cp ,k ,q , (6.20)

with the constraint that it exists an integer n , independent of the number of time steps, such that

|p −q |> 2n =⇒







ap ,q = 1
bp ,q = 1

cp ,k ,q = 0
. (6.21)

Then we extend the definition of coefficients wq ,k ,p to p −q ≤ d by setting

wp ,k ,q ≡
p−q≤d

0, (6.22)

this amounts to set
cp ,k ,q ≡

q−p≤d
−ap ,k bk ,q . (6.23)

For p , q such that p −q > d , we rewrite the sum as

N
∑

k=0

wq ,k ,p F̌ R (tp , tk )Ǧ
R (tk , tq ) =

N
∑

k=0

cp ,k ,q F̌ R (tp , tk )Ǧ
R (tk , tq )+

N
∑

k=0

�

ap ,k F̌ R (tp , tk )
� �

bk ,q Ǧ R (tk , tq )
�

. (6.24)

We introduce boldface symbols to denote the matrix representation of the discretized functions, id est
ǦR ≡

�

Ǧ R (tk , tq )
�

k ,q
, and the element-wise multiplication operator A � B ≡ [Ap ,q Bp ,q ]p ,q , which is also

known as Hadamard product. Thus, we change the above expression into

N
∑

k=0

wq ,k ,p F̌ R (tp , tk )Ǧ
R (tk , tq ) =

N
∑

k=0

cp ,k ,q F̌ R (tp , tk )Ǧ
R (tk , tq )+

�

a.F̌R
� �

b.ǦR
�

. (6.25)

1One shall notice that we exchange the indices p and q .
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From eq. (6.22), the above sum vanishes for p −q ≤ d . By introducing the mask Πd
p ,q defined as

Πd
p ,q ≡

�

1 if p −q > d
0 otherwise

, (6.26)

and the corresponding matrix Πd, we recast the equation 6.19 as

Πd� ǦR =Πd�
�

sR+�FRǦR
�

+h
N
∑

k=0

cp ,k ,q F̌R
p ,k ǦR

k ,q +h
�

a� F̌R
� �

b� ǦR
�

, (6.27)

both sides of this equation are zero when p − q ≤ d , otherwise it is the discretized Dyson equation. To
transform this last expression into a linear matrix equation on Πd� ǦR, we define s̃R as

s̃R ≡Πd� sR+h
N
∑

k=0

cp ,k ,q F̌R
p ,k ǦR

k ,q +h
�

a� F̌R
� ��

b−Πd
	

� ǦR
�

, (6.28)

with 1 is the matrix filled by 1. We finally obtain the compact formulation of the retarded Dyson equation

Πd� ǦR = s̃R +�FR
�

Πd� ǦR
�

+h
�

a� F̌R
� �

Πd� ǦR
�

. (6.29)

As the elements of b−Πd, and cp ,k ,q are non-zero only close to the diagonal, evaluating s̃R requires knowing
G R (tp , tq ) for q − p <max(2n , d ). While evaluating accurately those few terms is crucial to preserve the
overall accuracy, there are so few of them that it shall not be the computational bottleneck. For a solution
to this problem, see [81]. Once these entries of GR are known, we have to evaluate the Hadamard products.
Methods to computes such product of HSS matrices do exist [93], but none is implemented by the library
we use. Thus, we exploit the sparsity of

�

b−Πd
	

�ǦR and
�

1−Πd
	

�ǦR which contain onlyO (N )non-zero
elements to build their HSS representation in linear time using the stochastic factorization algorithm. For
the remaining term, we write ΠdsR = sR + (1−Πd)sR and use the sparsity of (1−Πd)� sR to construct its
HSS representation. While the HSS representation of sR is known from the HSS representation of the self-
energy ΣR and the Green function g R . Finally, using the resolution algorithm for HSS matrix equations,
we can swiftly evaluate Πd� ǦR.

6.3.4 Kernel product

Once the retarded Green function is known, the kinetic one is obtained by eq.4.77c. Thus, we need an
efficient method to perform product of correlation functions. After the Nyström discretization, the general
form of these products is

∀(p , q ), p −m (q )> d :

ˆ
A(t , t1)B (t1, t ′)dt1 ≈ h

∑

k

wq (t ′),k ,p (t )A(t , tk )B (tk , t ′), (6.30)

where the functions p (t ) and q (t ′) describe the integral boundaries, and tm (q ) is the lower integration
bound. Once again we need to represent these operations in terms of usual matrix algebra. We have to
consider the products of correlation functions that preserve the time causality, id est AR B R , AR B K and
AK B A . The operations of the form AR B K C A can be decomposed into (AR B K )C A or AR (B K C A) as the
terms in brackets are similar to a Keldysh correlator for what matters here. For a quadrature wp ,k ,q that
can be factorized as in 6.20 and requires p −q > d , we have

∑

k

wq ,k ,m (q )A(tp , tk )B (tk , tq ) = (a�A) (b�B)+

�

∑

k

cp ,k ,m (q )Ap ,k Bk ,q

�

p ,q

. (6.31)

By this way, we compute most of the kernel products entries in O (N ). We put aside the evaluation of the
remaining O (N )matrix entries. See Ref. [81] for a strategy to evaluate these entries.
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6.3.5 The quadrature rules

The compact formulation we developed here requires a set of quadrature rules wp ,k ,q of orderα that satisfy
the constraints 6.26. For |p − q | > 2d the wp ,k ,q must be equal to 1 except at the edges. In that sense,
this quadrature shall be a trapezoidal rule with endpoints corrections. This suggests to use a Gregory

quadrature. Its weights `
(ng )
q ,k ,p have the property to be equal to 1 in the interior of the integration domain,

more precisely

∀k , q +ng < k < p −ng =⇒ `
(ng )
p ,k ,q = 1. (6.32)

Thus it is possible to factorize these weights as follows

∀ (p , q ), p −q > 2ng +1 : `
(ng )
q ,k ,p = `

(ng )
p ,k ,−∞`

(ng )
∞,k ,q . (6.33)

Hence the Gregory rule can be factorized as announced. Yet, in practice we contented ourselves with the
trapezoidal rule as it greatly simplifies the implementation of all the edges cases and can still be combined
with Richardson acceleration when higher accuracy is required.

6.3.6 Evaluation of the observables

So far, we left aside the problem of efficiently evaluating the observables from the compressed represen-
tation. In general, this problem is difficult. Here, we are interested in the average current 〈Il (t )〉 defined
by eq. (4.51) and its fluctuations Sl ,l ′ (t , t ′) expressed by eq. (4.67). Computing 〈Il (t )〉 only requires a few
kernel products and to take the trace over the Nambu and Keldysh space of the resultant operators. The
result is a vector that does not need any further compression to be stored. The evaluation of Sl ,l ′ (t , t ′) is
much more challenging as it requires performing several blocks wise Hadamard products. While it shall
be possible to extend the algorithm for the usual Hadamard product between compressed HSS or HODLR
matrices to the block wise Hadamard product, we choose a different approach. We implement evalua-
tion of individual elements of Sl ,l ′ (t , t ′) and then use the adaptative-cross-decomposition [100] to form
the HODLR [93] representation of the current map in quasi linear complexity. We manage to evaluate the
whole current fluctuation map in quasi-linear time, but our implementation is still orders of magnitude
slower than the resolution of the Dyson equation. This excessive computational cost combined with the
numerous terms involved in the expression of Sl ,l ′ (t , t ′)make the debugging process extremely tedious.
Despite our effort, the map of the current correlation seems to be still erroneous.

In this section, we use the regularity of certain quadrature to propose a compact formulation of the
Nyström discretized Dyson equation. This enables the efficient use of compressed matrix formats. Yet,
we shall emphasize that it also permits to use regular or GPU-accelerated dense linear algebra routine
to solve small size or difficult problems, id est problems that do not benefit from compression schemes.
This compact formulation used without compression permits to solve the full equation by a few optimized
BLAS routines, thus it shall be competitive with efficient implementations of the time stepping method.
In the following section, we show our actual numerical results.

6.4 Benchmark

We implemented the algorithms described above in a still unpublished Julia library. It permits to solve
the Dyson equation and manipulate the different correlation functions. The matrices are either stored
as non-compressed dense and sparse matrices or compressed in the HSS format. To keep the imple-
mentation simple we renounce to high order methods and implement only the trapezoidal rule, high
accuracy can still be reached by using the Richardson acceleration. The correctness of algorithms is en-
sured by automatic testing most of the library components. We benchmark the solver on both a normal-
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QD-normal junction for which analytical results can be straightforwardly derived and a quantum-point-
contact Josephson junction as the literature contains detailed study of its properties under perfect voltage
bias.

6.4.1 Non superconducting junction

Let’s begin with the non-superconducting device. As we are solving the Dyson equation in the time do-
main, we have access to the full evolution of the Green functions. We can access to the steady states prop-
erties by waiting for the transient regime to damp out. Here we consider two scenarios. In the first one we
apply a constant voltage across the junction to observe the steady state current and plot the differential
conductance of the junction. In the second experiment, we bias the junction with a voltage ramp, and plot
the observed current 〈I (t )〉 as a function of the applied voltage V (t ). As the slope of ramp is decreased,
we observe the convergence of the plotted I V relation toward the adiabatic one. This will be the occasion
to demonstrate the capacity of our method to perform long time simulations. All the simulations are per-
formed for a symmetric junction at resonance, i.e. ΓL = ΓR , at zero temperature and in the atomic units,
i.e. e = ħh = 1.

6.4.1.1 Steady state regime

To evaluate the steady states properties, we set the left lead potential VL to V and the right lead potential
VR to 0. We measure the current 〈I (t )〉 once the steady state regime is settled. As in our situation, the
retarded self-energy ΣR is independent of the dressed Dyson equation, i.e. we are not considering a self-
consistent approximation, the retarded Green function G R (t , t ′)does not depend on what happens before
t ′. Thus, it immediately reaches its steady state values. However, the kinetic component G K that captures
the particle distribution has a long memory. The full retarded dot Green function is independent of the
applied voltage

G R (t , t ′) =−iΘ(t − t ′)e −Γ t . (6.34)

And the average current is given by [38]

I (V ) =
GQ

2

ˆ e V

0
T (E )dE , (6.35)

with T (E ) the junction transmission provided by

T (E ) =
ΓL ΓR

((E − ε0)/ħh )2− ((ΓL + ΓR )/2)2
, (6.36)

and GQ =
2e 2

h . Thus, the differential conductance is provided by

dI

dV
=

GQ e

2
T (e V ). (6.37)

We can already observe in fig. 6.1 that the solver produces the expected outputs. To further evaluate the
code performances, we measure the convergence rate, the average execution time and the averaged total
allocated memory. This last quantity is an upper bound of the required memory, as it is the sum of the
memory size of all the structures that have been allocated while the code was running and not all these
structures coexisted in memory. To characterize the errors, we introduce the L2 norm on matrix vectors
defined as

||A||2 ≡

√

√

√

√

N
∑

p ,q=1

A2
p ,q . (6.38)
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Figure 6.1: Average current flowing through a quantum dot junction at resonance. Left panel: I V charac-
teristics. Right panel: differential conductance. We observe a perfect agreement between the analytical
result and the simulation output.
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Figure 6.2: Evolution of the average error with respect to the number of discretization points. We observe
a quadratic convergence rate. The simulation window extends from 0 to 10/Γ

The fig. 6.2 shows that the retarded Green function converges with an order 2 toward the exact solution.
This is the expected convergence rate, as the quadrature is of degree 1 and the solution is smooth. Yet, the
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convergence rate of the I V characteristics is 1, see fig. 6.3. This slow convergence is probably caused by
the singular behaviour of the free kinetic Green function of the leads at t = t ′. This rate can certainly be
improved by developing suitable quadrature rules. However, we prefer to demonstrate the use of Richard-
son acceleration to cancel the contributions to the error of the form αN +βN −2+γN −3. The accuracy is
then limited by the remains of the transient regime. It appears as a plateau in fig. 6.3.
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Figure 6.3: Convergence of the averaged steady state current toward the analytical results. The Richardson
acceleration permits to increase the convergence order. The plateau, which is revealed by the order 4
method, is caused by the remains of the transient regime. The simulation length is set to P = 100/Γ .

Now that we have demonstrated the convergence of the solver, let’s look at its performance. Once all
the physical parameters are set, we vary the number of time steps N while keeping the simulation length
P constant. We then monitor the total allocated memory and average runtime as shown in fig. 6.4. Both
the memory and time complexity are in Θ(N log N ). This suggests that the resolution time is dominated
by the construction of the stationary Green function that heavily uses the FFT, which has a Θ(N log N )
complexity.

The HSS representation of the matrix may not be exact, thus we have to set a parameter ε that con-
trols the accuracy of this representation. Reducing its value increases the HSS rank of stored matrices, and
thus it increases both runtime and memory cost. Hence, its values shall be chosen so that it does not limit
the computation accuracy, while being large enough to ensure an efficient compression. In some case, the
HSS representation is exact and thus independent of the set accuracy ε once it is below a certain threshold
ε < ε0. The HSS rank may also depend on the other simulation parameters, such the simulation length P .
Numerical results show that HSS rank of both the retarded and kinetic Green function to be independent
of P . In fig. 6.5, we observe that the HSS rank of the retarded Green function G R is even independent of the
compression accuracy, this is not a surprise as t →G R (t , t ′) is the solution of a differential equation that
does not depend on t ′, see section 6.1.2. The kinetic Green function does not have the same regularity,
hence its HSS representation is an approximation, that is why the corresponding HSS rank increases with
the representation accuracy.
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Figure 6.4: Average time and total allocated memory to solve the full Dyson equation for the NQDN junc-
tion biased by a constant voltage for a constant simulation length as a function of the number of time
steps.
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Figure 6.5: Evolution of the HSS rank when varying the accuracy parameter of the compressed matrix. The
discretized Retarded Green function can be exactly represented in the HSS format, hence its HSS rank
is independent of ε0. While the HSS rank of the kinetic Green function depends on the representation
accuracy.

By the way, in the stationary regime, the Fisher-Lee relation 2.65 can be used to evaluate the energy
dependent junction transmission from the voltage independent retarded Green function. That is, one
can evaluate the whole transmission and thus the IV relation by evaluating once the retarded Green func-
tion. While this approach would have been more efficient, the point here was to demonstrate the solver’s
behaviour.
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6.4.1.2 Transition to the adiabatic regime

As our solver deals with general transient regime setups, we can simulate the response of the junction to
a voltage ramp V (t ) =Vamp (2t /P −1), where P is the simulation length, applied on the left lead. The right
lead and the quantum dot potential are kept to 0. By increasing the simulation length P , thus reducing the
voltage ramp slope, we retrieve the static IV characteristics. This is a quite demanding simulation in the
sense that we have two very different time scales: the oscillation of the tunnel coupling phase at pulsation
e V
ħh which must be kept larger than the time step, and the slow variation of the applied voltage. Yet, using

our method, we can perform the simulation with a small amount of memory and time on a single core
of a laptop, while the same calculation by the usual time stepping methods would have been extremely
expensive. As we saw earlier that current converges slowly toward the exact value, we enforce order 2
convergence by using the Richardson acceleration, the procedure is applied to the current interpolation.
The figure 6.6 shows the simulation output. We keep all the parameters constant, including the timestep
sizeδt . In this second simulation, the HSS rank of the Kinetic Green function increases with the simulation
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Figure 6.6: a) Response to a slow varying voltage ramp. The ramp amplitude is kept constant across the
simulations, but the rising time P is changed. b) Differential conductance of a quantum dot junction at
ε = 0 extracted from the current response of the system to a very slow voltage ramp. The numerical noise
originates from finite-difference evaluation of the conductance derivative combined with the relative low
accuracy used to evaluate the current. c) Wall-clock time for each simulation. d) Variation of the HSS rank
of both the full retarded Green function and the full kinetic Green function. The HSS rank of G K seems to
increase as O (log P /Γ ).
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length. Yet it appears to be slow enough to preserve the overall performance. In figure 6.7, we display the
structure of the compressed Green function appearing in this simulation.

Figure 6.7: Structure of the HSS compressed full retarded and kinetic Green functions for P = 25 ·Γ−1. The
numbers indicate the rank of the off-diagonal blocks. The orange blocks are stored as dense matrices.
We observe that the compression is much more efficient for G R than for G K . Yet, in both cases, the HSS
compression reduces dramatically the memory required to store those matrices.

We demonstrate the proper convergence of the solver and its good scaling properties on non-interacting
problems. This is a rather easy problem, namely the retarded Green function is extremely regular and
quickly cancels. The superconductivity shall put more stress in our method.

6.4.2 Superconducting junction

As for the non-superconducting junction, we consider two different experiments. In the first one, we apply
a phase bias ϕ(t ) across the junction and observe the resulting supercurrent 〈I (t )〉. By slowing down the
phase variation, we observe the convergence to the adiabatic regime. In the second experiment, we apply
a constant voltage bias across the junction in the limit ΓL/R �∆. Thus, we effectively replace the quantum
dot by a quantum point contact. By observing the DC current in the steady state, we reproduce the results
of Ref. [25]. It appears that the solver diverges for long simulation time in presence of superconductivity.
Early investigations suggest that the problem does not originate from the HSS approximation. We suspect
that the conversion of the free Green functions from the energy domain to the time domain by FFT is
inaccurate in the presence of the square root divergence near the gap edge. The simplest way to solve
this issue is to set the dissipation rate η/h to a finite value. It appears in the expression of the leads Green
functions, see eq. (4.97) and eq. (4.98).

6.4.2.1 Phase biased junction

Here we compare the results of two sets of simulation. First, we evaluate the thermal equilibrium current-
phase characteristics I (φ) by performing a long enough simulations to observe the thermalization. Then
we perform a set of simulation where the junction phase follows a linear profile from 0 to 4π: φ(t ) = 4πt /P
where P is the simulation length. Like previously, by increasing the simulation length, we observe the
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convergence toward the adiabatic regime. The time-stepδt is set to resolve the tunnel coupling timescale
h/Γ which is the smallest one: here we set Γ = 12.5∆. The quantum dot junction is described by the
effective transmission Tπ = 1 and T0 = 0.7. We set the lead relaxation rate to η= 0.1∆ and the compression
accuracy to 5 · 10−4.
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Figure 6.8: a) Response to a phase difference ramp. The ramp amplitude is kept constant across the sim-
ulation, but the rising time P is changed. b) Wall-clock time for each simulation. c) Variation of the HSS
rank of both the full retarded Green function and the full kinetic Green function. Their HSS ranks increase
slowly with N thus preserving the good scaling of the solver.

The results of this experiment appear in fig. 6.8, while fig. 6.9 shows the typical structure of the
compressed HSS matrices. We effectively observe the convergence of the out-of-equilibrium response
current toward the adiabatic one, as expected. The interesting point is that while storing only one of the
kernel in double precision for the longest propagation time, meaning 216 time steps, would require 137
GB of memories without compression and the simulation would need an indecent amount of CPU work,
they were run within a few hours on an old laptop fitted with an i5-5200U CPU and 12 GB of RAM. Once
again, we demonstrate a quasi-linear scaling of the computational cost with respect to the number of time
steps, thus improving drastically over both the classical time stepping method and the results from [30].
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Figure 6.9: Structure of the HSS compressed full retarded and kinetic Green functions for the supercon-
ducting junction. The numbers indicate the rank of the off diagonal blocks. Similarly to in the non-
superconducting experiment, the compression is more efficient for G R than for G K .

6.4.2.2 DC response of a SNS junction

Finally, we investigate the DC response of the superconducting junction in the limit where ΓL/R �∆. This
regime is extremely demanding for the solver as we have to resolve both the short timescale associated
to the tunnel coupling and the oscillation of the phases associated to much larger timescales τJ =

ħhπ
e V .

A more efficient approach would be to model the quantum dot Green function by a Dirac distribution
in time, but once again the point is to benchmark the solver. The simulation of figure 6.10 has not been
performed on an old laptop, but on a Google cloud instance fitted with 12 CPU cores and 32 GO of RAM.
Once the steady state is reached, we extract the DC component by applying a low-pass filter to the average
current 〈I (t )〉. It reproduces the results from [25]. For the comfort of the reader, we reproduce the relevant
figure of [25], see fig. 6.11.
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Figure 6.10: Current through a Josephson junction made of two superconducting leads connected to a
quantum dot in the limit where ΓL/R �∆. We retrieve similar results to [25] despite the effect of the finite
relaxation rate η.

Figure 6.11: Solid lines: Zero-temperature spectral density of current fluctuations SI (0) as a function of
the bias voltage V in single-mode junctions with different junction transparencies Tπ. Dashed lines: the
average DC current ID C . Figure and legend adapted from [25]
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Conclusion

We showed that under certain assumptions, the solution of the retarded Dyson equation can be repre-
sented as the set of solution for a linear differential equation. Thus, we provided a method to solve certain
problems in linear complexity in both memory and time. This gave us a lesson about a kind of struc-
ture that might be exploited to speed up the resolution. Thus, we proposed to tackle the general problem
by approximating the different kernels as semi-separable matrices. While this has already been done in
[30], we went beyond their result by exploiting the regularities of certain quadrature to recast the Dyson
equation discretized by the Nyström method into a compact matrix equation, thus leveraging the fast
inversion algorithm of HSS matrices. By benchmarking our code on the metallic and superconducting
junction problems, we demonstrated the quasilinear scaling in both memory and time, thus we drasti-
cally extended the size of problems that can be solved.
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Conclusion and outlook

This PhD project started with the development of a stochastic description of a Josephson junction whose
Andreev bound states are detached from the continuum. This phenomenological model predicted the
existence of a parameter regime where the Josephson radiation would be fractional. To assess the validity
of this result I turned to a microscopic description of the junction in the language of the field theory which
required the resolution of the out-of-equilibrium Dyson equation. I developed a new method to solve
this equation, which exploits carefully the mathematical structure of the underlying objects, and allows
performing long-time simulations.

Chapter 3 gives the full description of our stochastic model. It permits to analyse the role of non-
adiabatic transitions between Andreev states in the Josephson radiation of a superconductor quantum-
dot superconductor junction. In such a junction, the Andreev bound states are completely detached from
the continuum. Within a simplified model of the Andreev states’ dynamics, we predicted that this kind of
junction may display either conventional radiation or fractional radiation, thus mimicking a topological
Josephson junction, depending on its parameters and on the bias voltage. Yet, we neglected the effect
of the environment on the junction, and we worked under the a priori strong assumption that coherent
effects are negligible, while another publication that focused on the average current [24] claims that they
induce oscillations in ID C (V ) when Γ ∼∆, that is when the ABSs are well detached from the continuum.
This corresponds to the parameter regime where sharp features are expected in the finite frequency cur-
rent noise. Finally, comparison to experimental data is made difficult by the absence of robust estimate
of the transition rates. This encouraged the development of a microscopic model.

Chapter 6 introduces our new algorithm to solve the general out-of-equilibrium Dyson equation.
It first showed that certain Dyson equations are equivalent to a differential equation. This suggested rep-
resenting the Green functions and self-energies as semi-separable matrices. This has already been done
in reference [30] to reduce the cost of solving the out-of-equilibrium Dyson equation. Yet, we went far
beyond their results by harnessing the regularities of certain quadratures to recast the Dyson equation
discretized by the Nyström method into a compact matrix equation. This new form of the equation per-
mits to leverage the fast product and inversion algorithms for hierarchical semi-separable matrices. This
results in a quasilinear complexity O (τ log(τ)) in memory and time with the simulation length τ. By con-
trast, the already fast method proposed by [30] requires O (τ2 log(τ)) operations and O (τ log(τ)) bytes of
memory. Our new method paves the way towards simulations of long transient regimes.

This PhD work could be first extended by extracting the current correlations of the quantum-dot
junction from the full Green function. This only requires to track down the last bugs present in this part of
the code and eventual errors in the expanded expression of the observable given by eq. (4.67). A curious
mind could also investigate on the connection between the microscopic model exposed in chapter 4 and
the stochastic one. Formally deriving the latter from the first could set constraints on the validity of the
stochastic approximation. Nevertheless, the more exciting perspectives come from the Dyson equation
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solver. Right now it has some artificial limitations: it uses low-order quadratures, and it requires that the
self-energy vanishes before the initial time of simulation, this prevents from direct evaluation of the steady
state or to use a thermal distribution as initial conditions. While improving those points may require
significant amount of work, they shall not present fundamental difficulties. To reduce even further the
required computational resources, one may attempt to use an adaptative time step as would do a modern
differential equation solver. However, the compact formulation of the discretized Dyson equation is an
essential part of the trick , and it relies on the uniform time discretization. We have no clear road to bypass
this. Finally, we did not propose any method to evaluate the self-energy in interacting problems. A very
elegant approach would be to use our fast kernel product method, see section 6.3.4, to implement a real
time functional renormalization group (FRG) scheme in the time domain [101, 102]. In the context of
Josephson junction, this would permit to include many-body interactions within the junction [22], or the
effect of the environment.
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APPENDIX A
Gaussian integrals

The Gaussian integrals can be evaluated in all dimension including in the continuous field limit. These in-
tegration formulas permit to formally solve all non-interacting problems in the quantum field formalism.
The 1D formula is the well known expression

ˆ ∞
−∞

e −
a
2 x 2

p
2π

dx =
1
p

a
, Re{a }> 0 (A.1)

which can be extended to the following integral
ˆ ∞
−∞

e −
a
2 x 2+b x

p
2π

dx =
1
p

a
e

b 2
2a , Re{a }> 0 (A.2)

Similar expressions exist for the integration over the whole complex planeˆ ∞
−∞

d(z̄ , z )e −z̄ w z =
1

w
, Re{w }> 0 (A.3)

ˆ ∞
−∞

d(z̄ , z )e −z̄ w z+ū z+z̄ v =
e

ū v
w

w
, Re{w }> 0 (A.4)

where the measure is defined by
´∞
−∞d(z̄ , z ) ≡

˜∞
−∞

dx dy
π with z = x + i y . u and v are independent

complex numbers. Both the real and complex Gaussian integrals can be generalized to multidimensional
cases.

Real case

For a positive definite real symmetric N -dimensional matrix A and for arbitrary vector j,

ˆ
x∈RN

e −
1
2 xT Ax

p
2π

N dx=
1

p

det{A}
, (A.5)

ˆ
x∈RN

e −
1
2 xT Ax+jT v

p
2π

N dx=
e

1
2 jT A−1j

p

det{A}
, (A.6)

Complex case

For a complex N -dimensional matrix A with positive definite Hermitian part and for arbitrary com-
plex vectors j and j′, ˆ

d(z̄, z)e −z†Az =
1

det{A}
, (A.7)
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ˆ
d(z̄, z)e −z†Az+j†z+z†j′ =

e j†A−1j′

det{A}
, (A.8)

Finally the Gaussian integrals can be extended to Grassmann numbers

Grassmann numbers

For a complex N -dimensional matrix A with positive definite Hermitian part and for arbitrary vec-
tors j and j′ ˆ

d(ψ̄,ψ)e −ψ
†Aψ = det{A} , (A.9)

ˆ
d(ψ̄,ψ)e −ψ

†Aψ+j†ψ+ψ†j′ = det{A}e j†A−1j′ , (A.10)
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